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Abstract

In this thesis, I will discuss the application of the bootstrap program to conformal field theories
(CFTs) in d = 3 Euclid space-time dimensions, with particular emphasis on the hypothetical models
with O(n)×O(2)-symmetry, the existence of which have been somewhat controversial.

These hypothetical CFTs correspond to the scale invariant fixed points, if any, of O(n) × O(2)-
symmetric Landau-Ginzburg-Wilson (LGW) models formulated in d = 3 Euclid space-time, and are
candidates for the thermal effective theories of various physical systems at their criticality. These mod-
els are of great physical interest, including geometrically frustrated spin systems on triangular lattice
and massless two-flavor quantum chromodynamics in the scenario where the axial U(1)A is restored
above the chiral phase transition temperature. The phenomenological relevance of these hypothet-
ical CFTs then follows: if they are absent, the corresponding systems must undergo discontinuous
(first order) phase transitions, while the presence allows continuous transition with the prediction of
universal critical exponents.

Despite their importance, however, these models are notoriously hard to analyze. The serious
problem is that the answer is method-dependent. Notwithstanding their common origin, while ε-
expansion based scheme for dealing with β-functions and functional renormalization group analysis
predict the absence of these CFTs (first order transitions), resummed β-functions indicate the presence
of such models.

We employ a technique called the conformal bootstrap program to study CFTs. The benefit of the
method is the rigorous bounds (with easily controllable errors) on the parameters (including various
critical exponents) characterizing CFTs, and these bounds must be met by all the unitary CFTs.
What is quite intriguing is that these numerically derived bounds often seem to be saturated by the
actual models, which have been located so far by other methods, with characteristic behaviors called
“kinks”. The models cornered in this way include nontrivial ones in d = 3 dimensions, like the Ising,
XY, Heisenberg models and their O(n) descendants.

Given the success of the bootstrap program for these simple LGW-models, we here carry out the
bootstrap studies for O(n) × O(2)-symmetric general CFTs following the state of the art bootstrap
technologies to obtain any information about the controversial fixed points. We numerically compute
the bounds for various operators contained in these models, and it will turn out that some of these
bounds too are strong enough to be saturated by the hypothetical CFTs stated above, with some
characteristic behaviors observed as in the previous examples of simple LGW models. We will also
provide non-trivial checks for our scenario, i.e., the saturation of the bootstrap bounds by these
hypothetical CFTs, existence of which we are led to believe in.

As a by-product, we will simply argue that the ramification of U(1)A-restoration scenarios are
required to conclude the order of massless two-flavor QCD chiral phase transition.
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Chapter 1

Introduction

Because it’s all logic and reason now. Science. Progress. Laws of
hydraulics. Laws of social dynamics. Laws of this, that, and the
other. No place for three-legged cyclops in the South Seas. No
place for cucumber trees and oceans of wine. No place for me.

– The Adventures of Baron Munchausen

After the introduction of renormalization group (RG) by Wilson, it was realized that scale invariant
quantum field theories are ubiquitous objects in theoretical physics, as they describe the theories at
the endpoints of RG flows. Although it is easy to maintain scale invariance at classical level, the
task becomes surprisingly nontrivial once an ultraviolet cutoff (or some other renormalization scale)
is introduced to define quantum theory. In fact, without supersymmetry, scale invariance emerges
only at some special points in the space of theories, and the candidates for non-trivial such points are
rather limited. This observation led him to the explanation of the universality of critical phenomena
observed earlier for various condensed-matter systems – there, certain quantities, that is, critical
exponents somehow exhibit an agreement between apparently quite different systems.

A further surprising observation is that scale invariance, combined with other assumptions like
unitarity and Lorentz invariance, leads to an enhanced amount of symmetry, i.e., conformal symme-
try. While scale invariance states that the theory is invariant under constant scale shift of metric
gµν → λgµν , conformal invariance requires the invariance under local scale transformation gµν(x) →
λ(x)gµν(x). Although it looks a much more stringent requirement, this enhancement is in fact the
case for d = 2 scale invariant theories under the assumption of unitary and rotational invariance [1].
Much effort and ingenious arguments have been made so far [2][3] but it still lacks the complete non-
perturbative proof in the case of most interest, d = 4 (for odd space-time dimensions the situation is
even worse). See [4] and reference therein for the aspects of this interesting conjecture and attempts
for a proof.

Regardless of the general validity of the equivalence between scale and conformal invariance, we
already have numerous important examples of quantum field theories which have enough evidence
to be realized as CFTs: those dual to quantum (super)gravity theories in AdS backgrounds, various
supersymmetric gauge theories, and effective field theories which describe continuous phase transitions.
Investigation of CFTs has thus been one of the primary concerns for theoretical physicists.

Although the task of understanding CFTs looks easier compared to non-scale invariant ones due to
the presence of extended symmetry, this bonus has not been fully appreciated in conventional schemes
of quantum field theory like perturbation series. Even worse, in strongly coupled region (where we are
sometimes obliged to employ numerical techniques) studying theories at the fixed points is in some
sense harder, since numerical techniques are not capable of handling an infinite number of lattice sites,
which however is mandatory to have scale invariance in the infrared (IR).

Already in early 1970s, an alternative approach called the conformal bootstrap has been proposed
[5][6]. The hope is that, since CFTs are constrained more tightly than ordinary field theories, we
might be able to start from the space of all potentially possible parameters characterizing CFTs and
gradually solve the consistency conditions to classify all possible CFTs, independently of their (if
any) Lagrangian description. Such a Lagrangian-independent approach should be welcomed both
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phenomenologically and theoretically, as some important class of CFTs like d = 6 (2, 0) theories are
speculated to possess no description by Lagrangian. Even more, throughout this process every quantity
is finite and the constraints can be stated with mathematical rigor. However, this approach too had
been considered a quite challenging one. It turns out that both the number of unknown parameters
and the dimensionality of the constraints are infinitely many. Except in the case of d = 2 (where
the further enhancement of the symmetry to the Virasoro algebra takes place) with c < 1 (where the
unitarity representation theory is highly constraining) [7], again the full task seems to be unwieldy.

This is not a mere evanescent dream, however. What I want to tell you in sections 2 through 4 is
the surprising success in this direction after the ground-breaking paper [8]. Now we know that highly
nontrivial information can be derived along the conformal bootstrap philosophy. The information has
the form of bounds for the parameters characterizing CFTs, which must be respected by all unitary
CFTs formulated in specific space-time dimensions d, irrespective of their Lagrangian description (if
any). One might ask to what extent these bounds are strong. In fact, they turn out to be so strong
for certain models. The most dramatic success is for the d = 3 Ising model [9]. Despite its simple
nature, we believe this model is not integrable and we have to resort to approximation methods like
lattice Monte-Carlo or high temperature expansion or higher-order resummed perturbative series. The
conformal bootstrap is believed to capture this models in a completely different way – it is located on
a corner in the space of all possible unitary CFTs, and numerical evidence has been given. Once you
accept this conjecture, you can produce the best prediction for critical exponents in a computationally
quite cheap way [10]. Even more dramatically, we can almost prove the universality of the d = 3 Ising
model with the assumption on the number of relevant operators in the spectrum [11][12], if we adopt
the scale → conformal enhancement.

Now that we have found the surprising power of the conformal bootstrap approach to these models
(the properties of which have been well-known already by other methods), it is quite natural to ask
whether we can say something about more non-trivial models where the conventional techniques of
field theories can be poorly applied. In later Chapters 5 and 6, we discuss the application of the
conformal bootstrap to quite controversial but “real-world” problems. These models include

• Anomalous U(1)A-restored chiral symmetry breaking phase transition of Nf = 2 flavor massless
QCD,

• Anti-ferromagnetic Heisenberg n-component spin-system placed on stacked triangular lattice.

Universal properties of these phase transition can be, if they are of second order, described by the fixed
point of O(n) × O(2)-symmetric Landau-Ginzburg-Wilson(LGW) models in d = 3 dimensions. The
mechanism of these emergent symmetries are reviewed in Chapter 5. Although the O(n)×O(2)-LGW
models are direct generalization of the O(n)-LGW (vector) models, they have been known to possess
dynamically richer structure of RG flows. First, when ε = 4 − d is reasonably small, one-loop beta
functions already indicate that there exists a critical value nc(ε) for n, above which non-Heisenberg
type fixed points can exist. When ε is around physical value ε ∼ 1, these fixed points do not seem to
exist for phenomenologically preferable values n = 2, 3, 4 (although nc(1) is much smaller). However,
an alternative scenario is suggested: for these relatively small values of n, new fixed points which are
absent if ε≪ 1 show up. This means that the conventional ε-expansion to seek for the zeroes of beta
functions fails to capture these fixed points. If this conjecture is the case, these properties bring us
a striking consequence for the above-stated problems – such models might undergo phase transitions
which are not of the conventional O(n)-Heisenberg type. Note that ε = 1 and small n (recall that the
smaller n, the easier it is to realize in experiment) is the hardest regime to apply conventional field
theory technique like ϵ-expansion and 1/n-expansion, and the conjecture has been based on higher-
order (with typical loop order 5, 6) perturbation series with elaborate use of resummation technique.
However, in other approaches like functional (also called “exact” or “non-perturbative”) RG method,
the presence of conjectured fixed points has not been implied, so these transitions are predicted to
be first-order. Experiments (for spin systems) and Monte-Carlo studies too have been inconclusive to
decide whether the scenario proposed from higher-loop series is correct or not.

These controversies urge us to apply the conformal bootstrap program to these models, given
the success of the program applied for the d = 3 Ising model and its O(n) descendants, which too
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are summarized as the LGW models. We discuss our numerical studies of O(n) × O(2) symmetric
CFTs in Chapter 6. This will be carried out in two-steps. We first discuss how the unfamiliar fixed
points are indicated in the bootstrap bounds for a non-controversial region, i.e., the one where the
large n-predictions are believed to be reliable. Along with the conventional Heisenberg-type fixed point
CFTs, non-Heisenberg type interacting fixed points will be discovered in a somewhat different way. The
presence of the conformal window (existence of which is agreed in all other approach) is also indicated.
Then, the next step is to apply the methods to controversial region. The results have two aspects -
one is scientifically rigorous and the other is empirical. On the rigorous side, bounds are so strong
for proposed fixed and exclude vast regions of these predictions. On the empirical side the surviving
regions of the predictions are concentrated around the bounding curves, and around those regions, the
bootstrap bounds develop corners just as the Ising and O(n)-model family did. Moreover, around those
regions, other quantities (which are not constrained so-tightly) derived from the bootstrap outputs
show a non-trivial agreement with the values predicted on resummed perturbative series. Such an
agreement between Lagrangian-based diagrammatic approach and the one without Lagrangian is a
miracle without the presence of these fixed points. As a by-product, we will show that the validity of
the conjecture will lead to an interesting conclusion about the QCD chiral phase transition.

The organization of this thesis is as follows.
In chapter 2 and 3, we collect features of CFTs required to formulate them without any reference

to Lagrangian descriptions. Since there are already nice references for these topics like [13][14][15][16],
I tried to make them as brief as possible, yet the essential ingredients for the up-to-date bootstrap
studies are included.

Chapter 4 introduces an exciting development after [8], and illustrate how nontrivial models like
Ising and its O(n)-descendants are cornered.

Chapter 5 explains the relevance of phase transitions related to the O(n)×O(2)-symmetric Landau-
Ginzburg-Wilson models, with a very brief summary of earlier RG studies.

In Chapter 6, we will discuss our applications of the bootstrap program to the O(n)×O(2)-models.
Finally in Chapter 7, we conclude the discussion with summary and some future prospects.
The discussion and the lines of argument of the chapter 6 are re-worked version of the following

two papers with Yu Nakayama:

• ”Approaching the conformal window of O(n)×O(m) symmetric Landau-Ginzburg models using
the conformal bootstrap”, Phys. Rev. D89, 126009[17],

• ”Bootstrapping phase transitions in QCD and frustrated spin systems”, Phys. Rev. D91,021901[18].

Some of the results presented here are new with different symmetry groups and improved value of
parameters. Also, the original conclusion of the latter paper for the QCD chiral phase transitions are
a bit refined.
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Chapter 2

CFT Hilbert space and radial
quantization

This Chapter is devoted to define the objects of interest in this thesis:radially quantized conformal
field theories. To this end, we first review the structure of conformally invariant quantum theories
focusing on their Hilbert spaces. The algebra of the conformal symmetry in the flat space, together
with its representation theory, makes this subject interesting and rather constraining. In particular,
the natural and convenient way to label states in a Hilbert space turns out to be somewhat different
from usual massive QFTs: although it is a good idea to use d-momenta eigenvalues as the label when
particle interpretation of the states is valid, in CFTs a state cannot be interpreted as a collection of
particles (in particular, S-matrix cannot be defined). Fortunately, conformal invariance provides us
with a way to label the Hilbert space by discrete eigenvalues while keeping everything covariant. This
is achieved through an interpretation of conformal correlators by different quantization scheme, which
is called radial quantization. Moreover, radial quantization urges us to make a requirement known as
state-operator correspondence, which asserts that in CFTs the states are in one-to-one correspondence
with the set of local operators in radial quantization.

Since this is a quite concise introduction to the topic, those who are interested in the subject are
advised to consult more detailed lectures like [13] and [15] (but the lines of discussion might differ).
Although our focus is on d > 2 space-time dimensions, some features are common in d = 2 (where the
conformal symmetry is much larger!) as well, and it will also be helpful to refer to d = 2 literatures
like [19][20][21].

2.1 Conformal invariance and its algebraic counterparts in flat space

Conformal transformations are coordinate transformations after which the metric retains its original
form up to a scalar factor which can be position-dependent, hence preserving the mutual angle of two
vectors defined on an identical point. Thus, if a diffeomorphism x→ y(x) is a conformal transformation
on a flat d-dimensional space with flat metric η, it must satisfy

∂xµ

∂yµ′
∂xν

∂yν′
ηµν = eσ(x)ηµ′ν′ (2.1)

In a flat space where the metric (either Euclidean or Minkowskian) is constant for an appropriate
coordinate system x, it is not hard to classify these diffeomorphisms: suppose an infinitesimal trans-
formation x→ x+ ξ satisfies the infinitesimal version of (2.1),

∂µξν + ∂νξµ = σ(x)ηµν . (2.2)
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Then the solution ξ for d > 2 is a linear combination of the following:

Lorentz Rotation : −ωµ
νx

ν (2.3)

Translation : aµ (2.4)

Dilatation : −λxµ (2.5)

Special Conformal : bν(δµνx
2 − 2xµxν). (2.6)

Here ωµ
ν , a

µ, λ and bν are real infinitesimal parameters. As usual ωµ
ν must satisfy anti-symmetry

condition ωµν + ωνµ = 0. In this way, we have in total (d+2)(d+1)
2 parameters as the transformation

group.
This classification is easy: acting on (2.2) ∂ρ∂σ, we have

∂ρ∂σ∂µξν + ∂ρ∂σ∂νξµ = ηµν∂ρ∂σσ(x). (2.7)

Contraction with ηµρ and symmetrization with respect to ν ↔ σ yields

∂2

2
(∂νξσ + ∂σξν) + ∂ν∂σ∂ · ξ = ∂ν∂σσ(x)

=
1

2
ηνσ∂

2σ(x) + ∂ν∂σ∂ · ξ. (2.8)

On the other hand, contraction of (2.7) with ηµν leads to

2∂ρ∂σ∂ · ξ = d∂ρ∂σσ(x). (2.9)

Substituting this expression for (2.8), we obtain(
d

2
− 1

)
∂µ∂νσ(x) +

1

2
ηµν∂

2σ(x) = 0. (2.10)

When d > 2, this means

∂µ∂νσ(x) = 0, (2.11)

hence

σ(x) = λ+ bµxµ, (2.12)

where bµ and λ are integration constant. Next we want to calculate ξν . For this purpose, note

∂ρ∂µξν = ∂µ∂ρξν

= ∂µ(−∂νξρ + ηνρσ(x))

= −∂ν∂µξρ + ηνρ∂µσ(x)

= −∂ν(−∂ρξµ + ηµρσ(x)) + ηνρ∂µσ(x) (2.13)

= ∂ρ∂νξµ − ηµρ∂νσ(x) + ηνρ∂µσ(x), (2.14)

and

∂ρ(∂µξν − ∂νξµ) = ∂ρ(2∂µξν − ηµνσ(x)) = ηνρ∂µσ(x)− ηµρ∂νσ(x). (2.15)

In this way, we have

2∂ρ∂µξν = ηνρ∂µσ(x)− ηµρ∂νσ(x) + ηµν∂ρσ(x) (2.16)

= ηνρbµ − ηµρbν + ηµνbρ. (2.17)

Integrating this twice, we reach

2ξµ = xµ(b · x)−
x2

2
bµ +Ωµνx

ν + aν , (2.18)
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where Ωµν and aµ are integration constant. Plugging this back into (2.2), we have additional con-
straints on Ωµν :

Ωµν +Ωνµ = 2ηµνλ. (2.19)

In this way, our final expression for ξµ is (after adding a prefactor),

ξµ = aµ + bν(x2ηµν − 2xµxν)− λxµ + ωµνx
ν , (2.20)

where ωµν is anti-symmetric. A simple mnemonic for special conformal transformation rule xµ →
xµ + (bµx2 − 2xµ(x · b)) is to regard it as the translation in the conformal inversion of x:

yµ :=
xµ

x2
. (2.21)

Although this transformation does not lie in the identity-connected component of the conformal group
(hence its realization as a quantum mechanical symmetry is not guaranteed), this itself keeps the metric
up to a Weyl factor. Then, pulling back the translation y → y + b results in the special conformal
transformation rule (2.6). Given this interpretation, exponentiated form of the special conformal
transformation follows to be

xµ → xµ + bµx2

1 + 2b · x+ b2x2
. (2.22)

Quantum mechanically, these symmetries manifest themselves as hermitian operators acting on
the Hilbert space. We denote the operators corresponding to symmetry generators by

Lorentz Rotation :Mµν

Translation : Pµ

Dilatation : D

Special Conformal : Kµ.

Their commutation relations can be read off from the infinitesimal transformation rules (2.3) - (2.6).
In the convention of [22], non-zero commutators are

[Mµν , Mρσ] =
1

i
{(ηνρMµσ − ηµρMνσ)− (ηνσMµρ − ηµσMνρ)} , (2.23)

[Mµν , Pρ] =
1

i
(ηνρPµ − ηµρPν) , (2.24)

[Mµν , Kρ] =
1

i
(ηνρKµ − ηµρKν) , (2.25)

[D , Pµ] =
1

i
Pµ, (2.26)

[D , Kµ] =
1

i
Kµ, (2.27)

[Pµ , Kν ] =
1

i
(2ηµνD + 2Mµν) . (2.28)

Those not listed like [Pµ , Pν ] vanish. Unlike the Poincaré symmetry SO(d − 1, 1) ⋉ Rd, the algebra
here is simple, which means that there is no proper subalgebra invariant under the adjoint action
of the whole algebra. The algebra is SO(d, 2) if the space is flat Minkowskian, and SO(d + 1, 1) if
Euclidean. To see this, we define SO(d, 2)-generator SAB = −SAB (A,B = −1, 0, · · · , d) by

Sµν =Mµν , (2.29)

S−1ν = (Pν +Kν)/2, (2.30)

Sdν = (Pν −Kν)/2, (2.31)

S−1d = D. (2.32)

Defining R2,d metric ηAB by η−1,−1 = η0,0 = −1 and ηa,b = δab, it is straightforward to check

[SAB , SCD] =
1

i
[{−ηACSBD + (A↔ B)} − {C ↔ D}] . (2.33)
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2.2 Radial quantization interpretation of SO(d, 2) algebra

Having identified the conserved quantities, the next task is to find a convenient way to label states
in Hilbert states. As stated, labelling them by momenta-eigenvalues is rather inconvenient due the
failure of particle interpretation of states. Here we introduce a trick called radial quantization which
regulates IR-issues without destroying any symmetry. A nice bonus is that we have a covariant way
to have so(d, 2) symmetry on Hilbert space while working on the Euclidean field theory (where the
conformal algebra is so(d+ 1, 1)).

Before this, it is convenient to rotate so(d, 2) algebra into so(d + 1, 1) algebra by adding extra
phases,

S′
ab = Sab,

S′
0b = iS0b,

S′
−1b = S−1b,

S′
−10 = iS−10, (2.34)

where a, b run from 1 to d. At the cost of obtaining so(d+ 1, 1), hermiticity of the generators is lost,
i.e., S′

0b and S
′
−10 are now anti-hermitian. In other notation,

P ′
a ≡ S′

−1a + S′
0a, (2.35)

K ′
a ≡ S′

−1a − S′
0a, (2.36)

D′ ≡ S′
−10, (2.37)

with the commutator [
P ′
a , K

′
b

]
= −2i

(
2M ′

ab + δabD
′) . (2.38)

Non-hermiticity appears as

(P ′
a)

† = K ′
a, (2.39)

(D′)† = −D′. (2.40)

Now to the point: we start from a Euclidean CFT on Rd, where the metric is, in terms of spherical
coordinate,

ds2 =

d∑
i=1

(dxi)2 = dr2 + r2(dΩd−1)
2. (2.41)

Here dΩd−1 represents the line element on Sd−1. Writing r = Reτ for some arbitrary R > 0, we obtain

ds2 = R2e2τ
{
dτ2 + (dΩd−1)

2
}
. (2.42)

Therefore, Rd is conformally equivalent to R × Sd−1, with the Weyl rescaling factor e2τ . Given this
equivalence, we automatically possess the conformal group SO(d+ 1, 1) as the isometry (up to Weyl
factor) of R × Sd−1. We parametrize R by τ and Sd−1 by n with ||n||2 = 1 (and setting R = 1 for
convenience), hence

x = eτn. (2.43)

In this interpretation of the space-time, it is natural to consider R-factor as the time-direction,
and Sd−1 as the spatial-direction. In the Euclid space, this corresponds to its foliation by “equal-
time surfaces”, Sd−1, each of which is centered at the origin. Then, under hermitian conjugation,
the generators of so(d + 1, 1) in this space-time behave exactly as the brute-force rotated generators
defined above. First of all, time translation operator in this picture is simply given by the dilatation
operator D′, which is anti-hermitian because it represents Euclidean time-translation operator. For
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SO(d) rotation, since it maps the equal-time onto itself, it is guaranteed to be hermitian. However,
due to our choice of equal-time surface which is not preserved under translation or special conformal
transformation, P ′ and K ′ do not need to be hermitian: rather, these operators are flipped under
conjugation. To see this, observe that D′-eigenvalue is flipped under the conjugation,[

D′ , P ′]† = −
[
D′† , P ′†

]
=
[
D′ , P ′†

]
= (−iP ′)† = +iP ′†.

This means that P ′† has the D′-eigenvalue of K ′, which leads to the relation1P ′† = K ′, assuming the
absence of further symmetry.

In the following sections, we will study eigenvalues of D′ (i.e., “energy” in radial quantization) in
more detail. To avoid cluttering the notation, until the end of this thesis we will drop the primes of
the conformal group generators and let the Greek indices like µ, ν, ρ, σ run through 1 to d.

2.3 Unitary irreducible representations of the conformal algebra

2.3.1 Highest weight representations of SO(d, 2) – general remarks

We have seen that the algebra of conformal transformations is (locally isomorphic to) the group
SO(d, 2), and thus the Hilbert space of CFTs must develop certain representations of this group.
If the theory under consideration is unitary, the space must be a direct sum of unitary irreducible
representations. Thus seeking for unitary irreducible representations of SO(d, 2) is a building block in
the investigation of CFTs, but one immediately confront the problem: the conformal group SO(d, 2)
is non-compact! Thus we do not have finite-dimensional unitary representation except for the trivial
case2, and have to look for an infinite-dimensional ones instead.

Compared to the compact group representation theory, the tools in such cases are rather limited
and indeed the task of classifying unitary irreducible representations (or “unitary dual of the group”
in mathematical literature) is one of the unsolved problems in representation theory. To the author’s
knowledge, the full list is known only for special cases like SO(4, 2) ≃ SU(2, 2) for d = 4 [23]. However,
if we restrict ourselves to limited cases – which is sufficient for CFT physics – of highest weight modules,
we have complete answers [24]. Indeed we should have the highest weights for our modules. Take
the Cartan subalgebra to be that of maximal compact subgroup SO(d) × SO(2) where the SO(2)
factor is spanned by D. According to the radial quantization interpretation, this is the Hamiltonian
along the radial direction and it is natural to require them to be bounded from below to have sensible
dynamics. Thus, any unitary irreducible component must have lowest D-eigenstates, which we call
primary states.

Primary states are annihilated by Kµ-action: otherwise Kµ|primary⟩ will have D-eigenvalue
smaller than the primaries. One observes that the entire representation is spanned by the states
of the form

Pµ1Pµ2 · · ·Pµn |primary⟩. (2.44)

The number of P s acting on primary states is referred to as the level.

The primary states must furnish an SO(d)-unitary representation, as SO(d) and D commute.
Moreover, in order for the entire so(d, 2)-module to be irreducible, the SO(d)-representation by pri-
mary states must be irreducible as well, as the orthogonality at the level 0 will be preserved at higher
levels. In this way, primary states appear in the SO(d)-irreducible multiplet with highest weight
(h1, h2, · · · , h[ d

2
]).

1We should not have the opposite sign P ′† = −K′, because it will lead to unreasonable spectrum of D′ (see next
Section).

2 If there is some unitary representation of finite-dimensionality n, we see that a certain quotient of the group can be
embedded into U(n), which is impossible. The only and readily seen exception to the argument is the case of abelian
group like R, a certain quotient of which (U(1)) is compact.
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To summarize, every irreducible representation relevant for CFT Hilbert space comprises pri-
mary states, which have D-weight ∆ and transforms under SO(d) as unitary irreducible represen-

tation specified by its highest weight
(
h1, · · · , h[ d

2
]

)
, and their descendants, which are of the form

Pµ1 · · ·Pµn |primary⟩.

2.3.2 Necessary Conditions for Unitarity

Let us examine what conditions are imposed in order for the representation to be unitary. As a first
step, we normalize primary states (which we assume to have D-eigenvalue ∆) by

⟨∆;m|∆;n⟩ = δ n
m , (2.45)

where m and n label the states in an SO(d)-irreducible representation R to which they belong. Then
consider the states at the first level

P ρ|∆;n⟩. (2.46)

For these states to have non-negative norm, the elements

⟨∆;m|KρP σ|∆;n⟩, (2.47)

seen as a matrix with index {mρ:nσ}, i.e., seen as an operator on the space R ⊗ v where v refers to
the vector representation of SO(d), must be positive (semi-)definite. One can compute these matrix
elements by

[Kρ , Pσ] = −2iMρσ + 2iδρσD, (2.48)

and the primary property

Kρ|∆;n⟩ = 0, (2.49)

resulting in

⟨∆;m|KρPσ|∆;n⟩ = −2i(T (R)
ρσ ) n

m + 2∆δρσδ
n

m , (2.50)

where (T
(R)
ρσ ) n

m is the representation matrix of Mρσ, i.e., Mρσ|∆;n⟩ = |∆;m⟩(T (R)
ρσ ) n

m .

Thus the unitarity condition is

∆ ≥ −the smallest eigenvalue of the operator (−iT (R)
ρσ ) n

m acting on R⊗ v. (2.51)

The right-hand side can be written as

−i(T (R)
ρσ )m

n =
1

2
(T (R)

µν )m
n(T (v)

µν )ρσ, (2.52)

as the vector representation matrix is given by

(T (v)
µν )ρσ = −i(δµρδνσ − {µ↔ ν}). (2.53)

If we define

(T (R1) · T (R2))m1m2
n1n2 ≡ 1

2
(T (R1)

µν )m1
n1(T (R2)

µν )m2
n2 (2.54)

or

(T (R1) · T (R2)) =
1

2
T (R1)
µν ⊗ T (R2)

µν , (2.55)
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then

−i(T (R)
ρσ ) n

m =
(
T (R) · T (v)

)
{ρm:σn}

(2.56)

=
1

2

{
(T (R) ⊗ 1 + 1⊗ T (v))2 − (T (R) ⊗ 1)2 − (1⊗ T (v))2

}
{ρm:σn}

. (2.57)

Here,

(T (R))2 ≡ T (R) · T (R) (2.58)

is the quadratic Casimir for R, and (T (R) ⊗ 1+ 1⊗ T (v))2 takes constant value if we decompose R⊗ v
into irreducible representations.

Thus, we have replaced the problem

“ Find the smallest eigenvalue of (T
(R)
µν ) n

m .”

with

“ Decompose R⊗ v into irreducible representation
and find one with the smallest quadratic Casimir.”

This is an easy exercise of finite-dimensional Lie-algebra representation theory (for the answer, see

[22] Appendix 2). Letting {hi}[d/2]i=1 be the highest weight which characterize R, the result is

1

2
(c2(R) + c2(v)− c2(R

′)) = |hi|+ d− i− 1, (2.59)

where R′ is the irreducible representation that appears in R ⊗ v with the smallest Casimir and i is
the least integer such that

hi ≥ hi+1 + 1. (2.60)

If there are no such an index i, i.e., h1 = h2 = · · ·h[d/2]−1 = |h[d/2]|, we have to consider them
separately. When |h[d/2]| ≥ 1, substitute i = [d/2] in the above formula. When h[d]/2] = 1/2, R′ is
again a spinor (with chirality flip when d is even) and

1

2
(c2(R) + c2(v)− c2(R

′)) =
d− 1

2
. (2.61)

When all hi are 0, of course

1

2
(c2(R) + c2(v)− c2(R

′)) = 0. (2.62)

For example, vector representation has h1 = 1 and others 0, so i = 1 and

∆ ≥ d− 1, (2.63)

which is precisely the dimension of conserved currents (see next Section for the state-operator corre-
spondence). The bounds for spinor states implies canonical dimension of free spinor theory. In fact
this is a general feature: unitarity bounds are saturated if the corresponding operator obeys conser-
vation condition or equation of motion. However, for scalar operator, the bound and the canonical
dimension (d− 2)/2 do not agree (except for the identity operator). The condition ∆ ≥ (d− 2)/2 can
be derived from second level constraints, i.e., the requirement of the positive semi-definiteness of

⟨ϕ|KρKσP
ρP σ|ϕ⟩. (2.64)

Although it is tedious to handle all the tensor indices, the scalar e.o.m suggests that P 2|ϕ⟩ becomes
0 for free theory and we require the non-negativity only of

⟨ϕ|KρKρP
σPσ|ϕ⟩. (2.65)
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This element can be reduced again by moving K toward |ϕ⟩,

⟨ϕ|KρKρP
σPσ|ϕ⟩ = ⟨ϕ|KρP σKρPσ|ϕ⟩+ ⟨ϕ|Kρ(−2iM σ

ρ + 2iδ σ
ρ D)P ν |ϕ⟩ (2.66)

= ⟨ϕ|KρP σ(−2iMρσ + 2iδρσD)|ϕ⟩+ ⟨ϕ|Kρ(−2Pρδ
σ
σ + 2Pσδ

σ
ρ + 2δρσP

σ)|ϕ⟩
+ ⟨ϕ|KρP σ(−2iMρσ + 2iDηρσ)|ϕ⟩ (2.67)

= (4∆− 2d+ 4) ⟨ϕ|KρPρ|ϕ⟩︸ ︷︷ ︸
2d∆

(2.68)

= 8d∆

(
∆− d− 2

2

)
. (2.69)

Thus, the region (0, (d− 2)/2) is excluded as desired. To summarize according to the highest weight

{hi}[d/2]i=1 ,

• If an index j with

hj ≥ |hj+1|+ 1 (2.70)

exists, the bound is

∆ ≥ hi + d− i− 1, (2.71)

where i is the least one satisfying (2.70). As an important example, for the traceless-symmetric
tensor representation of rank l > 1, since its highest weight is (l, 0, · · · , 0), we have i = 1 and

∆ ≥ l + d− 2. (2.72)

Note that the finite-dimensional lie algebra representation theory tells us that the non-existence
of such an index implies h1 = h2 = · · ·h[d/2]−1 = |h[d/2]|.

• For h1 = · · ·h[d/2]−1 = |h[d/2]| ≥ 1, put i = [d/2] in (2.71).

• For h1 = · · ·h[d/2]−1 = |h[d/2]| = 1/2,

∆ ≥ d− 1

2
. (2.73)

• For h1 = · · ·h[d/2] = 0,

∆ ≥ d− 2

2
. (2.74)

The argument made so far has been to derive necessary conditions for unitarity, and says nothing
about these sufficiency. However, according to the construction of [25], for d = 4 the conditions
derived here actually turn out to be also sufficient. For general dimensions, the sufficiency of these
conditions is derived in [26] by adapting the result of [24]. The proof makes extensive use of the
determinant formula derived by Jantzen [27]. See also [28][29] for the discussion of the results of [27].

2.4 State-operator correspondence and the properties of local oper-
ators

So far we have concentrated solely on the representation theoretical aspects of the CFT Hilbert space.
Although Hilbert spaces are essential ingredient in any quantum theories, what concerns us is usually
not the Hilbert space itself, but space-time dependent operators acting on it and expectation values
thereof. In generic quantum field theories, there is no way to guess the local operator spectra from given
Hilbert space. However, in CFTs, the story greatly simplifies: there is a one-to-one correspondence
between the operator and Hilbert space spectra, known as the state-operator correspondence.
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This idea is readily motivated by the structure of highest weight representations discussed above.
We have seen that an irreducible component is spanned by primary states and its descendants by
Pµ-action. Thus, an irreducible representation component of the Hilbert space looks exactly like
the Taylor-expansion of some space-time dependent quantity, which presumably reminds us of local
operators.

Indeed, one way of this correspondence is straightforward to declare. From a local operator O(x),
we can directly construct the associated state by taking the limit,

lim
x→0

O(x)|0⟩ := |O⟩. (2.75)

Beware that such states can be finite-norm thanks to the radial-quantization: in usual quantiza-
tion scheme in Minkowski signature, operators can be hermitian O(x)† = O(x), and ||O(0)|0⟩||2 =
⟨0|O(0)O(0)|0⟩, which generally diverges. This suggests that local operators are composed quite dif-
ferently in radial quantization. We will have something to say in the next subsection about hermitian
conjugate of local operators in radial quantization. In this way, we have a map from operators to
states.

The map for the other direction, i.e., state→operator is much harder to construct and we have to
resort to an additional requirement. For example, when the path-integral formulation of the theory is
available, the correspondences can be proven using the wave-functional representation of general state
(see e.g. [21] section 2 for an elegant exposition). If this is not the case, to the author’s knowledge,
a definite axiom which leads to the complete proof for this claim is not known for d > 2 (see e.g.[30]
for a discussion in d = 2). Although it might be better to require the correspondence as an axiom
to characterize CFTs, to grasp the essence, here we very roughly argue for it assuming a fork of the
Reeh-Schlieder theorem to be valid in the present context3. The Reeh-Schlider theorem in axiomatic
quantum field theory asserts that the actions of sufficient number of local operators on the vacuum
can create any states in the theory: if this is not the case, there exists a decoupled sector in the Hilbert
space. Then, given a primary state |Φ⟩, there exists a string of local operators satisfying

ϕ1(x1) · · ·ϕ(xi)|0⟩ = |Φ⟩.

Now send the operator toward infinite past of the cylinder (the origin of the Euclid spaces) by the
action of exp(iDτ), while keeping the norm of RHS by a factor of exp(∆Φτ). We see

ϕ1(e
τx1) · · ·ϕi(eτxi)|0⟩ ∝ |Φ⟩.

In the limit τ → −∞, in Rd, the string of operators is confined into a tiny ball centered at the origin
and we expect it to behave as a local operator, so we have (though very loosely) constructed the
desired operator. The crucial point in the argument is the ability of the conformal transformation to
shrink arbitrary equal radial-time surface into a single point, the infinite past on the cylinder.

The local operators at arbitrary position is obtained from operators at the origin by P translation

O(x) = e−iP ·xO(0)eiP ·x. (2.76)

Note that the translation operator e−iP ·x is not unitary due to unusual hermitian conjugation rule in
radial quantization, P † = K.

Using (2.76), one can deduce various actions of conformal generators on primary operator Om.

First, trivially,

[Pρ , Om(x)] = e−iP ·xP ρO(0)eiP ·x − e−iP ·xO(0)P ρeiP ·x

= i∂ρO(x).

3The theorem itself has been proven only in the context of causal Minkowskian QFT, and therefore, strictly speaking,
does not apply here.
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Commutators with other conformal generators such as Kρ can also be read off via

eiP ·xMρσe
−iP ·x =Mρσ + [iP · x , Mρσ]

=Mρσ + (xρPσ − xσPρ), (2.77)

eiP ·xDe−iP ·x = D + [iP · x , D]

= D − xρPρ, (2.78)

eiP ·xKρe−iP ·x = Kρ + [iP · x , Kρ] +
1

2
[iP · x , [iP · x , Kρ]] ,

= Kρ + 2(xσMσρ + xρD) + (x2δ σ
ρ − 2xρx

σ)Pσ. (2.79)

These result in

[Pµ , Om(x)] = i∂µO(x), (2.80)

[Mρσ , Om(x)] = i(xa∂σ − xσ∂ρ)Om(x)− (Mρσ)
n
mOn(x), (2.81)

[D , Om(x)] = i(−x · ∂)Om(x)− i∆OOm(x), (2.82)

where ∆O is the (iD)-eigenvalue of the corresponding state, which we also call “the operator dimension
of O” by an obvious reason. The action of Kρ for general operators is much complicated. Special
simplification occurs for primary operators, which are the corresponding operators for primary states
(likewise, the operators corresponding to descendant states are called descendant operators). Since
such operators Om(x) satisfies [Kρ , Om(0)] = 0, we have

[Kρ , Om(x)] = i(x2δρ
σ − 2xρx

σ)∂σOm(x)− 2xσ(Mσρ)
n
m − 2i∆OxρOm(x). (2.83)

The commutators (2.80)–(2.83) define differential operators (LAB)m
n, which represents so(d + 1, 1)

and impose strong constraints on the correlation functions of local operators, as we will see in the
next Chapter.

2.4.1 Note on hermitian conjugate in radial quantization

In Minkowski QFTs, taking hermitian conjugate of local operators is a simple task. For an operator
ϕ to be real, we just have to require

ϕ(x)† = ϕ(x).

The story is not as easy for radial quantization, due to the unusual hermiticity property of SO(d+1, 1)-
generators, (2.39) and (2.40). Recalling the interpretation of D as the time-translation operator for
radial-direction, we define scalar operator on the cylinder as ϕ(τ,n) = |x|−∆ϕϕ(x). Here, additional
factor |x|−∆ϕ is to ensure [D , ϕ] = −i∂τϕ. Then, ϕ(τ,n) is given by time-translation

ϕ(τ,n) = exp(iDτ)ϕ(τ, 0) exp(−iDτ),

but due to D† = −D, its conjugate is translated by −τ :

(ϕ(τ,n))† = exp(−iDτ) (ϕ(τ, 0))† exp(iDτ).

This suggests the correct form of the hermitian conjugation to be

ϕ(x)† =
1

|x|2∆ϕ
ϕ(y), (2.84)

where y = xµ/x2. The conjugation rule thus defined is now consistent with both hermiticity (2.39)–
(2.40) and operator transformation rules (2.80)-(2.83).

For operators with spin, additional issues arise. For vector operator Vµ(x), the answer is

Vµ(x)
† =

1

|x|2∆ϕ
Iµν(x)Vν(y), (2.85)
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where a tensor Iµν(x) is defined by

Iµν(x) = δµν − 2
xµxν

x2
. (2.86)

Again, one can check its compatibility with (2.80)–(2.83). There is a simple explanation for the
appearance of Iµν : on a cylinder it is natural to decompose a vector into components tangent to the
sphere, Vσ, and the radial component, Vτ . Since radial direction is a Wick-rotated one, for Vτ , an
additional factor of −i is imposed compared to the Minkowskian one (where we can impose trivial

hermiticity). Therefore, V †
τ = −Vτ , and the tensor I works for reversing the τ -component while

keeping Vσ fixed.
For operators with a representation which is a tensor-product of vectors, simply act Iµν on each

index. Then, symmetry property, irreducibility against taking trace, and self-duality with ϵ-tensor are
preserved by

I2 = 1

det I = −1.

For operators in Dirac representations, the answer turns out to be

ψ(x)† =
xµγ

µ

|x|2∆ψ+1
ψ(y), (2.87)

where γ-matrices are chosen so that {γµ , γν} = δµν and (γµ)† = γµ. For its tensor product with
vector indices, irreducibility with respect to the contraction by (γµ)α

β can be again checked easily.
Given these definitions for hermitian conjugate, we can now state the condition for reflection-

positivity in radially quantized CFTs. In unitary CFTs, given local operators of distinct positions
{ϕi(xi)}, a correlation function of the following form must be positive,

⟨0|(ϕn(xn))† · · · (ϕ1(x1))†ϕ1(x1) · · ·ϕn(xn)|0⟩ > 0, (2.88)

provided that it is defined (see the beginning of the next Chapter for radial ordering).

2.4.2 Operator product expansion

Operator product expansion (OPE) is a statement that a product of two local operator can be, if
their arguments are sufficiently close, expanded into the complete set of local operators present in
the theory. Although in usual massive field theory the proof is only perturbatively available (even
worse, they are known to be only asymptotic), this can be made very precise in CFTs thanks to the
state-operator correspondence (see [31] for details). Consider a product of two operators (suppressing
spins for notational convenience) acting on the vacuum,

ϕ1(x)ϕ2(0)|0⟩ = ϕ1(x)|ϕ2⟩.

This state has a finite norm-squared if x is close enough to o, as its norm is given by a 4-point function

y2∆ϕ1 ⟨ϕ2|ϕ1(y)ϕ1(x)|ϕ2⟩ (yµ = xµ/x2),

which has non-clashing arguments if |x| < 1. Trivially, finite norm state can be expanded into
orthonormal basis of the Hilbert space {Oi}, so with c-number coefficient functions ci(x), we can write

ϕ1(x)|ϕ2⟩ =
∑
i

ci(x)|Oi⟩,

but according to the state-operator correspondence, each |Oi⟩ is of the form Oi(0)|0⟩. From invariance
of the vacuum under translation, at least on the vacuum we have an expansion

ϕ1(x)ϕ2(y) =
∑
i

ci(x− y)Oi(y). (2.89)

Note that the right-hand side should include both the primary and descendant operators.
Two comments follow:
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• From conformal invariance, the form of ci(x) is severely restricted. In principle they are fully
determined up to small number of parameters once the spins and scaling dimensions of ϕ1,2
and Oi are known. In particular, the prominent feature is that the knowledge of OPE coeffi-
cients between primary operators fully determines all the OPE. We can directly investigate the
issue using the invariance of the vacuum under SAB and differential operator representation of
their actions on local operators (2.80)–(2.83), but things will be much more transparent using
correlators.

• So far, the operator equality holds only when it acts on the vacuum. In causal Minkowski theory,
the equality on the vacuum is enough to ensure operator equality itself (2.89). In this case of
radially quantized CFTs, the operator equality holds as a consequence of crossing relation, to
be discussed in Chapter 4.
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Chapter 3

Scalar conformal correlators

As I mentioned, most import observables in quantum field theories are correlation functions of local
operators like

⟨O1(x1)O2(x2) · · ·On(xn)⟩.

Following the radial quantization argument of Chapter.2, these correlator can be interpreted as those
on Sd−1 × R, with equal time surfaces taken to be spheres Sd−1 centered at the origin and (the
logarithms of) their radii correspond to time direction, whose translation is generated by the dilatation
generator D. To make the correlators sensible, ordering of the operator matters: to see this, consider
operator products written in terms of cylinder coordinate (2.43),

O1(x1)O2(x2) = O1(τ1,n1)O2(τ2,n2)

= expiDτ1 O1(0,n1) exp
−iD(τ1−τ2)O2(0,n2) exp

−iDτ2 .

To avoid divergence coming from the factor exp(−(τ1−τ2)iD) (recall that iD has a spectrum bounded
from below), we have to have τ1 > τ2 if the order of operator is O1(x1)O2(x2). That is, operators
inside the correlator must be sorted according to the radii of their arguments. This operation R is an
analogue of time-ordering in Minkowski signature QFT and called radial ordering. The precise form
of the correlator should thus be understood as

⟨0|R {O1(x1) · · ·On(xn)} |0⟩.

Like Lorentz boost in Minkowski QFT, there is a finite symmetry transformation which can exchange
the operator ordering. Henceforth we impose

[O1(x1) , O2(x2)] = 0, (3.1)

if |x1| = |x2| and x1 ̸= x2 to make this action continuous.
Given these definitions, conformal correlators enjoy differential equations following from the in-

variance of vacuum SAB|0⟩ = 0,

⟨0| [SAB , R {O1(x1) · · ·On(xn)}] |0⟩

=

n∑
i=1

⟨0|R {O1(x1) · · ·Oi−1(xi−1) [SAB , Oi(xi)]Oi+1(xi+1) · · ·On(xn)} |0⟩

=(

n∑
i=1

LAB)⟨0|RO1(x1) · · ·On(xn)|0⟩ = 0, (3.2)

where the differential operators LAB was defined in (2.80)–(2.83). From this differential equation, we
can in principle write down an expression for all 2-point and 3-point correlators up to small number of
parameters (like iD-eigenvalues of operators and OPE coefficients among three operators). This is one
of the most prominent feature of CFTs. In other words, the dependence of these physical observables
are achieved only through these parameters.
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Although such an expression is not available for 4-point correlators, we have a neat and rapidly
converging infinite sum representation for them known as conformal partial wave or conformal block
decomposition. What this decomposition tells you is that 4-point functions too are severely restricted
(but here not from the conformal symmetry alone) and determined solely once all the three-point
functions are known.

Here we review various aspects of conformal correlators with n = 2, 3, 4 points, restricting our
attentions to the cases where at least two of the inserted operators are scalar, which will be of repeated
use in the following chapters.

3.1 Correlators from Embedding Space Formalism

As mentioned, conformal invariance strictly restricts the form of correlation functions. This is because
any two points can be reached by some fixed, canonical points, say xµ = 0 and yµ = (1, 0, · · · , 0). The
same procedure works for three-point functions: conformal invariance allows one to locate any three
points on

(0, · · · , 0), (1, 0, · · · , 0), ∞. (3.3)

To do this, first put one of three points on the origin by translation. Then using special conformal
transformation (2.22), send one of the remaining two points to the infinity1. Recall that the special
conformal transformation preserves the location of the origin. Finally, by rotation and dilatation,
one can put the remaining one position to (1, 0, · · · , 0). Since every configuration of three-point
functions can be transformed into this particular choice, if we fix the correlator at this configuration
to some value, we can unambiguously determine the correlator at any other configurations by conformal
transformations up to constants. In particular, it suffices to know these constants for primary three-
point functions, where all three operators are primary, because those for descendants can be directly
obtained by the differentiation.

In principle one can proceed in the above steps and derive an expression for all three-point func-
tions. However, the operator transformation rule under conformal transformations are rather messy to
trace. In particular, if the operators have non-trivial spin representation, the task of the classification
becomes devastatingly complicated and the closed expression for operators in arbitrary spins and in
arbitrary dimensions have not been known at present.

Here we use a formalism called Embedding Spacemethod [32], which is a trick to realize the operator
transformation rules in a quite simple fashion. For simplicity we restrict our attentions to correlators
with at least two scalars. For recent discussions of the generalization, see [33][34].

3.1.1 Embedding space lift of scalars

Here we construct a d + 1-dimensional space to which the conformal field is lifted, which is called
“projective null-cone”. The benefit is that the action of SO(d+1, 1) linearizes for the lifted operator,
thus making conformally invariant quantities quite transparent. The construction is as follows;

1. Denote the standard coordinate in Rd+1,1 by XǍ, Y Ǎ · · · where Ǎ = −1, 0, 1, · · · , d. From
this coordinate we compose light-cone coordinate XA, Y A, and a non-checked index A runs
−,+, 1, · · · , d. Define the null-cone in Rd+1,1 by

ηABX
AXB = −X−X+ +XiXi = 0 with X± > 0, (3.4)

where ηAB is the metric for Rd+1,1 written in light-cone terminology. Note that SO(d + 1, 1)
acts transitively on this null-cone (with the origin omitted).

2. This null-cone is projected to our physical Euclidean space by equivalence relation

X ∼ Y ⇐⇒ ∃λ > 0, X = λY. (3.5)

1An operator at infinity should be understood as the conjugate of an operator at the origin, i.e., factor y2∆O is
accompanied (see (2.84)). Special conformal transformation generates such a prefactor.
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3. We take a convenient representative of the above equivalence class to be2

PA
x = (1, x2, xµ). (3.6)

Following [33], we call Px as “Poincaré section”.

4. Define the lift of scalar operators on Rd to the null-cone by

O(X) ≡ (X+)−∆O

(
Xµ

(X+)

)
, (3.7)

where ∆ is the operator dimension. The crucial property of this definition is

O(λX) = λ−∆O(X). (3.8)

It is easy to check that various SO(d + 1, 1) actions on the embedding space actually reproduces
those in physical space. Linear SO(d+ 1, 1) action induces

XǍ → XǍ + δXǍ = XǍ + ϵǍ
B̌
XB̌ (3.9)

where ϵǍB̌ is anti-symmetric infinitesimal parameter for SO(d+1, 1)-Lorentz rotation. In component,

δX−1 = +ϵ−10X0 + ϵ−1µXµ (3.10)

δX0 = +ϵ−10X−1 + ϵ0µXµ (3.11)

δXµ = +ϵ−1µX−1 − ϵ0µX0 + ϵµµXν (3.12)

In light-cone frame,

(X + δX) =

 X+ − ϵ−10X+ + (ϵ−1µ − ϵ0µ)Xµ

X− + ϵ−10X− + (+ϵ−1µ + ϵ0µ)Xµ

Xµ + ϵ−1µ (X++X−)
2 − ϵ0µ (−X++X−)

2 + ϵµνXν

 . (3.13)

Dividing by the + component so that this makes the representative (3.6), we conclude that the
transformation corresponds to

δxµ = −ϵνρ(xν∂ρ − xρ∂ν)−
1

2
(ϵ−1ν + ϵ0ν)∂ν −

1

2
(ϵ−1ν − ϵ0ν)(x2∂ν − 2xνx · ∂)− (ϵ−10)(−x · ∂)

(3.14)

which reduces to the conformal transformation (2.3)–(2.6).
So we have identified the transformation rule for the lifted operator O(X) to be[

ϵAB

2
SAB , O(X)

]
=− i

ϵAB

2

{
XA

∂

∂XB
−XB

∂

∂XA

}
O(X). (3.15)

This simple linearized transformation rule is the fruits of the embedding tensor formalism, enabling
us to classify the conformal invariants quite easily. First consider the 2-point correlator of O,

⟨O(X)O(Y )⟩ := F (X,Y ). (3.16)

This has to be an SO(d+ 1, 1)-invariant function of X and Y . Since X2 = Y 2 = 0, the only available
quantity is (−2X · Y ). So F (X,Y ) = f(−2X · Y ). However, we have to require the homogeneity
equation,

f(−λ2X · Y ) = ⟨O(λX)O(Y )⟩ = λ−∆⟨O(X)O(Y )⟩ = λ−∆f(−2X · Y ). (3.17)

2 Points with X− = 0 do not lie in this orbit. Actually, this forces Xi = 0 by null-cone condition, so the points
correspond to (0,1,0). This represents the point at infinity.
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This requires

f(−2X · Y ) =
C

(−2X · Y )∆
. (3.18)

Finally, substituting X = (1, x2, xµ) and Y = (1, y2, yµ), we obtain

⟨O(x)O(y)⟩ = C

((x− y)2)∆
(3.19)

The value of C is just a matter of convention. Below, we always normalize O(X) by

⟨O(x)O(y)⟩ = 1

((x− y)2)∆
. (3.20)

This operator normalization is equivalent to require that O(0) creates a unit-norm states according
to (2.84). Three point functions can also be fixed in this way to be

⟨O1(X)O2(Y )O3(Z)⟩ =
λ

(−2X · Y )α(−2Y · Z)β(−2Z ·X)γ
. (3.21)

Homogeneity in X,Y, Z completely determines these exponents: it turns out that

α =
∆1 +∆2 −∆3

2
,

β =
∆2 +∆3 −∆1

2
,

γ =
∆3 +∆1 −∆2

2
.

Thus the expression for 3-point function is

⟨O1(X)O2(Y )O3(Z)⟩ =
λ123

(−2X · Y )
∆1+∆2−∆3

2 (−2Y · Z)
∆2+∆3−∆1

2 (−2Z ·X)
∆3+∆1−∆2

2

, (3.22)

or in d-dimensional language,

⟨O1(x)O2(y)O3(z)⟩ =
λ123

|x− y|∆1+∆2−∆3 |y − z|∆2+∆3−∆1 |z − x|∆3+∆1−∆2
. (3.23)

The constant λ is called OPE coefficient: if scalar-scalar OPE O1(x)O2(0) contains c1,2,3(x)O3(0)
as in (2.89), we can extract c1,2,3(x) by the projection with

{O3(0)|0⟩}†O1(x)O2(0)|0⟩ = lim
y→∞

|y|2∆3⟨0|O3(y)O1(x)O2(0)|0⟩.

So for scalar-scalar to scalar OPE, we can relate

c1,2,3(x) =
λ123

x∆1+∆2−∆3
.

Proceeding in this way, it is also possible to determine how descendants of O3 appear in the OPE by
projecting with {Pµ|O3⟩}† = ⟨O3|Kµ.

Finally, let us consider the 4-point function of scalars with identical dimension ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4).
This time the form of the correlator cannot be determined by conformal invariance alone. Indeed, all
we can do by conformal invariance is to set

x1 = 0,

x2 = (x, y, 0, · · · , 0),
x3 = (1, 0, · · · , 0),
x4 = ∞. (3.24)
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To do this first put x1, x3 and x4 on their desired position (just as we did for three-point functions)
and then employ residual SO(d − 1) symmetry to set xµ2 = 0 for µ > 2. We call such configurations
as standard configurations. In this way, we have two remaining degrees of freedom which cannot be
fixed by the symmetry.

The embedding space formalism allows us to restrict the form of the four-point function to be

⟨O(X1)O(X2)O(X3)O(X4)⟩ =
1

X∆O
12 X∆O

34

F (X1, X2, X3, X4), (3.25)

where we have defined Xij := −2Xi ·Xj (which reduces to (xi − xj)
2 in the d-dimensional language)

and F is a function invariant under both SO(d+1, 1) and rescaling. Unlike three-point function, any
function made out of the following variables (called “conformal cross ratio”)

u =
X12X34

X13X24
=
x212x

2
34

x213x
2
24

(3.26)

v =
X14X23

X13X24
=
x214x

2
23

x213x
2
24

(3.27)

respects the condition (3.2). These variables are related to the x2 coordinate in the standard config-
uration by

u = zz̄, (3.28)

v = (1− z)(1− z̄), (3.29)

where z = x+ iy. (3.30)

Using u and v (or z, z̄,equivalently), we have

⟨O(X1)O(X2)O(X3)O(X4)⟩ =
1

X∆O
12 X∆O

34

F (u, v). (3.31)

As will be discussed in the next section, compatibility of the four-point function with three-point
functions together with the state-operator correspondence puts further constraints on the form of
F (u, v).

3.1.2 Embedding Space Formalism for Symmetric Tensors

Before plunging into the study of four-point functions, let us briefly consider the generalization of the
embedding formalism to operators with SO(d) spin l, i.e., symmetric traceless tensor of rank l 3. The
highest weight of this representation is

h1 = l , h2 = h3 = · · · = h[d/2] = 0.

In this case, to lift the tensor indices in a covariant manner, one should also lift the index to Rd+1,1.
This can be achieved as follows (see [33])

1. Consider traceless symmetric tensor FA1···Al on the null cone.

2. To reduce the degrees of freedom to that of Rd, impose the homogeneity condition

FA1···Al(λX) = λ−∆FA1···Al(X) (3.32)

3. We have to reduce the number of independent spins - to do this, impose transversality condition

XA1FA1···Al(X) = 0. (3.33)

To further reduce the expression, we require gauge invariance,

FA1···Al ∼ XA1GA2···Al + (symmetrization) (3.34)

3 For d = 3 this sufficient for bosonic representations. For an attempt with non-symmetric representation in other
dimensions (especially in d = 4), see [35][36] and [34].
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4. Components in physical space is given as a pull back by Poincaré section;

fµ1···µl =
∂PA1

x

∂xµ1
· · · ∂P

Al
x

∂xµl
FA1···Al(Px). (3.35)

One can directly confirm that fµ1···µl produced in this way does behave in a desired way.

Note also that these constraints XAFAB···C = 0 and gauge invariance FAB···C ∼ XAGB···C are
analogous to Lorentz gauge condition kµAµ(k) and residual (on-shell) gauge invariance Aµ(k)+kµc(k).

One can also treat tensor indices conveniently [33] by noting the one-to-one correspondence

d-dimensional rank l symmetric traceless tensor fµ1···µl(x)
⇐⇒ homogeneous polynomial f(x, z) of degree l in d variables (z1 · · · zd) modulo z2 := zµzµ .

The ⇒ correspondence is given by

f(x, z) = fµ1···µl(x)z
µ1 · · · zµl (mod(z2)). (3.36)

To give the ⇐ direction, first choose a representative f̃ and put

f̃µ1···µl =
1

l!

∂

∂zµ1
· · · ∂

∂zµl
f̃(z) (3.37)

and then subtract traces from f̃ . That this procedure does not depend on the choice of representative
is obvious. In a similar way one can construct a homogeneous polynomial F (Z) of d + 2 variables
Z−, Z+, Z1, · · ·Zd modulo Z2 = −Z−Z+ + ZµZµ, which represents the lifted tensor. The crucial
advantage is that F (Z) is invariant under

F (X,Z) = F (Z + tX) ∀t ∈ R, (3.38)

which represents constraints (3.33). Then, one can easily confirm that

f(x, z) = F (X|x,Z|z,x) (3.39)

relates f(x, z) and F (X,Z). X|x is the Poincaré section defined in (3.6) and Zz,x are defined by

(Z|z,x)− = 0 , (Z|z,x)+ = 2x · z , (Z|z,x)µ = zµ. (3.40)

These are chosen so that

X|x · Z|z,x = 0, (3.41)

which is consistent with gauge invariance Z → Z + tX.

Examples

Let us now enjoy the advantage of the index-free notation above. First consider the two-point function

⟨Oµ1···µl(x1)Oν1···νl(x2)⟩. (3.42)

Our strategy is to calculate

F (X1, X2, Z1, Z2) = ⟨O(X1, Z1)O(X2, Z2)⟩ (3.43)

instead. This function has the homogeneity

F (X1, X2, Z1, Z2) = λ∆F (λX1, X2, Z1, Z2) = λ∆F (X1, λX2, Z1, Z2) (3.44)

= λ−lF (X1, X2, λZ1, Z2) = λ−lF (X1, X2, Z1, λZ2), (3.45)
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and partial translation invariance

F (X1, X2, Z1, Z2) = F (X1, X2, Z1 + tX1, Z2) = F (X1, X2, Z1, Z2 + tX2). (3.46)

To maintain the property (3.46), F must be composed out of the combination

Ci;AB = XiAZiB −XiBZiA. (3.47)

Although

Zi ·Xi (3.48)

also respects translation invariance, this vanishes after the substitution (3.39). By the same reason,
we can omit XA

i Ci;AB and Ci;ABC
i;AC from F . Thus,

F ∝
(C1;ABC

AB
2 )l

(−2X1 ·X2)∆+l
∝ (X1 ·X2 Z1 · Z2 −X2 · Z1 X1 · Z2)

l

(−2X1 ·X2)∆+l
(3.49)

According to our dictionary (3.40), in d−dimensional expression this takes the form{
x212(z1 · z2)− (z1 · x12)(z2 · x12)

}l
x
2(∆+l)
12

. (3.50)

Recovering the index, we conclude

⟨Oµ1···µl(x1)Oν1···νl(x2)⟩ =
Iµ1ν1(x12) · · · Iµlνl(x12)

x2∆12
− (trace), (3.51)

where the tensor Iµν(x) = δµν − 2xµxν/x2 is the one introduced in (2.86). This factor maintains the
hermitian conjugation relation of tensor operators, e.g., for vectors,

δµν = ⟨Vµ|Vν⟩ = lim
x→0

⟨0|(Vµ(x))†Vν(0)|0⟩ = lim
y→∞

Iµρ(y)|y|2∆V ⟨0|Vρ(y)Vν(0)|0⟩.

For scalar-scalar-tensor correlation function

⟨O1(x1)O2(x2)O
µ1···µl(x3)⟩, (3.52)

we prepare the function

F (X1, X2, X3, Z) = ⟨O1(X1)O2(X2)O(X3, Z)⟩ (3.53)

As in the two-point function example, we have to construct it using

CAB = X3AZB −X3BZA. (3.54)

Indices of CAB must be contracted with X1 and X2, so along with homogeneity,

F (X1, X2, X3, Z) ∝
(XA

1 X
B
2 CAB)

l

X
∆1+∆2−∆3+l

2
12 X

∆2+∆3−∆1+l
2

23 X
∆3+∆1−∆2+l

2
13

(3.55)

∝
{
ZA(X1AX23 −X2AX13)

}l
X

∆1+∆2−∆3+l
2

12 X
∆2+∆3−∆1+l

2
23 X

∆3+∆1−∆2+l
2

13

(3.56)

and in d-dimensional language,

⟨O1(x1)O2(x2)O
µ1···µl(x3)⟩ = λ12O

vµ1(x13, x23) · · · vµl(x13, x23)− (trace)

|x12|∆1+∆2−∆3+l|x23|∆2+∆3−∆1+l|x13|∆3+∆1−∆2+l
, (3.57)

where

vµ(x13, x23) = xµ13x
2
23 − xµ23x

2
13. (3.58)

A great simplification for such scalar-scalar-tensor correlator is that there is only a single OPE coeffi-
cient. This is not the case when two of three operators have spin.
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3.2 Conformal Block Decomposition of four-point Functions

3.2.1 Definition

So far we have seen how conformal symmetry works to fix two and three-point functions, but it does
not do the same job for four-point correlators: due to the presence of conformal invariant cross ratios
u, v defined as (3.26), any functions made up of u, v are perfectly compatible with the constraint (3.2).

However, not every function of u, v is allowed to occur for correlation function. Indeed, the
compatibility with three-point functions and Hilbert space structure determines the natural basis for
three-point function compatible functions. To see this, let us consider a correlator with four identical
real scalars (in the sense of (2.84)) ϕ with dimension ∆ϕ, and fix the operator ordering to be

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ = ⟨0|ϕ(x4)ϕ(x3)ϕ(x2)ϕ(x1)|0⟩

by assuming the radial order

|x4| > |x3| > |x2| > |x1|. (3.59)

Recall that our Hilbert space is decomposed into irreducible representations spanned by primary and
descendants. In particular, denote the projector into a irreducible subspace with a primary O by ΠO.
Summing over all primaries yields 1 =

∑
O ΠO.

Now the four-point function can be written as∑
O

⟨0|ϕ(x4)ϕ(x3)ΠOϕ(x2)ϕ(x1)|0⟩ (3.60)

where the summation is over all irreducible representations in the Hilbert space labeled by primaries
O. Each component is called conformal partial wave from analogy with the decomposition of scattering
wave function into rotation-group representations.

The virtue of the decomposition in terms of conformal partial waves is that they are determined
solely from the information of three-point functions. The first thing to note is that projectors are
obtained by summing over primaries and descendants in the multiplet,

ΠO =
∑
i,j

|Φi⟩⟨Φj |(N−1)ij . (3.61)

Here Φi runs over all states in the multiplet O, so they are of the form O,PµO,PµP νO, · · · , and the
matrix Ni

j represents the inner product ⟨Φj |Φi⟩ (note that this is block-diagonal where each block
comprises the states of equal D-eigenvalue and is finite-dimensional). So long as we project out null-
states, N is invertible and responsible for Π2

O = ΠO. To compute the matrix element, first consider
when Φ = O (i.e., primary states) and O is scalar. By the state-operator correspondence and operator
conjugation rule (2.84), we have

⟨O|ϕ(x2)ϕ(x1)|0⟩ = lim
x→0

{O(x)|0⟩}† ϕ(x2)ϕ(x1)|0⟩

= lim
y→∞

|y|2∆O⟨0|O(y)ϕ(x2)ϕ(x1)|0⟩

= λϕϕO
1

|x12|2∆ϕ−∆O
,

where we have used the three-point function (3.23). Similar relation holds for the paired matrix
elements ⟨0|ϕ(x4)ϕ(x3)|O⟩. For the descendants of O like Pµ1 · · ·Pµn , matrix elements are of the form

⟨O|Kµ1 · · ·Kµnϕ(x1)ϕ(x2)|0⟩

and can be also computed from primary three-point function ⟨Oϕϕ⟩ by the differential operator action
(2.83). Note that the descendants contribute as terms with higher powers of z when z → 0 limit is
taken: a scaling analysis tells that the matrix elements behave as 1/|z|2∆ϕ−(∆O+n).
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While the defining sum for partial waves involves complicated factors of internal operator dimension
∆O and ∆ϕ (but the latter dependence turns out to be somewhat simpler than näıve expectation), the
dependence on the primary OPE coefficient λϕϕO is common among the summation. So the conformal
partial wave has actually the form

⟨0|ϕ(x4)ϕ(x3)ΠOϕ(x2)ϕ(x1)|0⟩ = λ2ϕϕO
g(∆O,∆ϕ;u, v)

x
2∆ϕ
12 x

2∆ϕ
34

.

where the prefactor x
2∆ϕ
12 x

2∆ϕ
34 is added to make g an invariant function.

Entirely analogous argument goes through for intermediate multiplet with non-scalar primary.
An important remark is that only multiplet of spin l-representation (i.e., totally symmetric traceless
representation of rank l) can contribute to scalar four-point functions. To see this it suffices to consider
scalar-scalar OPE to some non-scalar operator O

ϕ(x)ϕ(0) = · · ·+ Iµ1···µn(x)Oµ1···µn(0) + · · · .

Every bosonic irreducible representation is made up by proper symmetrization condition for indices
µ1 · · ·µn and trace subtraction. On the other hand, the only ingredients to compensate for indices in
Iµ1···µn(x) are xµ and δµν , but the latter is projected out because of SO(d)-irreducibility of O. Thus,

ϕ(x)ϕ(0) = xµ1 · · ·xµnOµ1···µn(0) (3.62)

which can be non-vanishing only when O is in a spin-n representation. In particular, when the
primary operators in the multiplet are not of spin-l type, the entire contribution must vanish as the
contribution from descendants to conformal partial wave is obtained by the differential operator action
on the primary contribution. Furthermore, since we are only considering identical scalars, going to
more symmetric configuration ϕ(x/2)ϕ(−x/2), we see that n must be even4. The partial wave
decomposition is now

⟨0|ϕ(x4)ϕ(x3)ϕ(x2)ϕ(x1)|0⟩ =
∑

O: even spin primaries

λ2ϕϕO
g(∆O, lO,∆ϕ;u, v)

x
2∆ϕ
12 x

2∆ϕ
34

(3.63)

where λ-independent function g is called the conformal block. Thus we have a way to decompose
four-point functions. Again the theory dependence of the function enters only through parameters,
i.e., OPE coefficients and operator dimensions.

The defining summation for the conformal block is quite complicated. An exception occurs when
d = 2 with SL(2,C) (not Virasoro) conformal algebra, thanks to the factorization of the entire algebra
into holomorphic and anti-holomorphic subalgebra. The result factorizes as well,

g(∆O,∆l,∆ϕ;u, v) = {k∆O+l(z)k∆O−l(z̄) + (z ↔ z̄)} (3.64)

kα(z) = zα/2 2F1

(α
2
,
α

2
, α ; z

)
(3.65)

Surprisingly enough, in d = 4, Dolan and Osborn found that the exact expression is available and
analogous to d = 2 one,

gO(∆O,∆l,∆ϕ;u, v) =
zz̄

z − z̄
{k∆O+l(z)k∆O−l−2(z̄)− (z ↔ z̄)} (3.66)

by summing up the series directly in [37] for l = 0. Later in [38] they derived the expression for general
l by solving the Casimir differential equation, which will be briefly explained below. The kα(z) in the
d = 4 expression is exactly the same as in the one for d = 2 expression (3.65). This explicit expression
is the foundation of many earlier conformal bootstrap investigations [8][39][40][41][42].

One thing to note is that both (3.64) and (3.66) are independent of ∆ϕ. This is the case for every
space-time dimensions d when all the scalar operators under consideration have an identical dimension.

4Later we will deal with correlation function of O(n)-multiplet of scalars. Then odd spin operators contribute as well.
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3.2.2 Convergence

The summation in the decomposition (3.63) is in fact taken over an infinite number of primary op-
erators (this too is a consequence of conformal bootstrap). So one might be afraid of the issue of
convergence. It turns out that the expansion is absolutely convergent, by a simple argument [31]. The
only requirement to prove the assertion is the finiteness of correlation function at non-colliding points.
To see this first move to a configuration with x1 = 0 and x2 = ∞,

⟨0| {ϕ(0)}† ϕ(x3)ϕ(x2)ϕ(0)|⟩ = ⟨ϕ|ϕ(x3)ϕ(x2)|ϕ⟩.

By conformal transformation we can always assume |x2| < 1 < |x3| = |x2|−1. In particular we can
take x2 = 1√

|z|
(x, y, · · · , 0) and |x3| = 1√

|z|
(1, 0, · · · ). Again x, y and z = x + iy is the standard

configuration coordinate for x2 (3.24). The point is that the norm of the state ϕ(x2)|ϕ⟩ takes the form
of correlation function and hence is finite:

||ϕ(x2)|ϕ⟩||2 = |y2|2∆ϕ⟨ϕ|ϕ(y2)ϕ(x2)|ϕ⟩ (3.67)

where yµ2 = xµ2/x
2
2 and we used (2.84). Similarly ||⟨ϕ|ϕ(x3)||2 is also finite. Then consider the

decomposition of of the four-point function∑
i: all SO(d)
multiplets

⟨ϕ|ϕ(x3)πiϕ(x2)|ϕ⟩, (3.68)

where

πi =
∑
α

|i;α⟩⟨i;α|.

Here α labels the orthonormal basis for SO(d)-representation labelled by i, so πi works as the pro-
jector. For a moment we are ignoring primary/descendants structure in the complete set summation
and regarding the Hilbert space as a direct sum of SO(d)-representations, each of which is finite-
dimensional. Each πi-projected contribution is a finite sum (in the representation i) of real analytic
function5with respect to x2, and it reaches the maxima at x3 = y2 := x2/x

2
2 within the constraint

|x2| = |x3|−1 = |
√
z|,

⟨ϕ|ϕ(x3)πiϕ(x2)|ϕ⟩ ≤ ⟨ϕ|ϕ(y2)πiϕ(x2)|ϕ⟩
= |x2|2∆ϕ ||πiϕ(x2)|ϕ⟩||2,

which sums up to the norm-defining correlation function (3.67). Thus we have obtained the positive
upper bound series and hence the summation is absolutely convergent with respect to i. The conformal
blocks are partial (infinite) summation of these, so it also converges as a summation over conformal
blocks.

The Norm formula (3.67) becomes divergent as |x2| → 1 as the operators tend not to be radially
ordered, and the above argument becomes invalid if z > 1. As the exact expression in d = 2 suggests,
however, the region of convergence is larger (recall that the hypergeometric function has branch cut
with branch point starting from z = 1). In fact, except for real z with z > 1, we can always take a
sphere surrounding x1 and x2 with a large enough radius (but now it’s not necessarily centered at the
origin), and the above argument goes through. What is invalidated is the expansion of the conformal

5More explicitly, from the argument similar to the one around (3.62) i must be a traceless symmetric tensor repre-
sentation, and we can write the explicit form of the matrix element to be

⟨i;µ1 · · ·µn|ϕ(x)|ϕ⟩ = cϕϕi
1

|x|2∆ϕ−∆i

(xµ1 · · ·xµn − trace)

|x|n .

where cϕϕi can be (in principle) determined with primary-correlator differentiation. In particular, ⟨ϕ|ϕ(x3)πiϕ(x2)|ϕ⟩
can be written in terms of Gegenbauer polynomials [43].
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blocks in terms of z with |z| > 1, but the function still exists and the decomposition of the four-point
function is still absolutely convergent.

The benefit of this fact can be best explained by a new choice of conformal kinematics representative

x1 = (−r cos θ,−r sin θ, 0, · · · , 0),
x2 = (r cos θ, r sin θ, 0, · · · , 0),
x3 = (1, 0, · · · 0),
x4 = (−1, 0, · · · 0).

The cross ratio can be matched by setting

ρ := reiθ =
z

(1 +
√
1− z)2

. (3.69)

Entire region of z-plane except for z > 1 real axis is mapped to the unit circle. Repeating the above
argument, we immediately see that the expansion is absolutely converging again, this time over in
entire unit circle, hence in the entire z-plane except for x-axis with x ≥ 1.

In [31], the authors further argued to establish the exponentially fast convergence of the series. This
means that if we make a sufficiently large cutoff ∆∗ in the decomposition (3.63), i.e., approximating
it by ∑

O:∆O≤∆∗

λ2ϕϕO
g(∆O, lO; z, z̄)

x
2∆ϕ
12 x

2∆ϕ
34

,

the error term is exponentially suppressed:∑
O:∆>∆∗

λ2ϕϕO g∆O,lO ∼ (∆ϕ-depending factor)× ρ(z)∆∗ . (3.70)

The key in their argument is the asymptotics of the correlation function in taking ρ → 1 (z → 1)
limit, which we expect to be

⟨ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)⟩ ∼
1

(1− z)2∆ϕ
∼ 1

(1− ρ)4∆ϕ
, (3.71)

because ϕ(x2) is colliding with ϕ(x3) and most singular contribution to it comes from ϕ×ϕ→ 1 OPE.
Then the classical theorem by Hardy and Littlewood can be neatly applied to give the estimate (3.71).
See also [44] for the estimate of the convergence rate.

3.2.3 Conformal Block as the Solution to Casimir equation

There is a neat way to characterize conformal partial waves. Note that ΠO is conformally invariant:

[SAB , ΠO] = 0. (3.72)

A conformal partial wave can be characterized as an eigenfunction for the conformal Casimir
equation as follows. First we note operator equality

[SAB , ϕ1(x1)ϕ2(x2)] = (L1AB + L2AB)ϕ1(x1)ϕ2(x2)|0⟩

Acting SAB twice,

[SCD , [SAB , ϕ1(x1)ϕ2(x2)]] = [SCD , (L1AB + L2AB)ϕ1(x1)ϕ2(x2)] (3.73)

= (L1AB + L2AB) [SCD , ϕ1(x1)ϕ2(x2)] (3.74)

= (L1AB + L2AB)(L1CD + L2CD)ϕ1(x1)ϕ2(x2) (3.75)
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Hence inside the vacuum and ΠO, by the invariance of vacuum under conformal transformation,

ΠO [SCD , [SAB , ϕ1(x1)ϕ2(x2)]] |0⟩ = (L1AB + L2AB)(L1CD + L2CD)ΠOϕ1(x1)ϕ2(x2)|0⟩ (3.76)

= ΠOSCD [SAB , ϕ1(x1)ϕ2(x2)] |0⟩ (3.77)

= ΠOSCDSABϕ1(x1)ϕ2(x2)|0⟩ (3.78)

Contracting the indices,

(L1AB + L2AB)(LAB
1 + LAB

2 )ΠOϕ1(x1)ϕ2(x2)|0⟩ = ΠOS
ABSABϕ1(x1)ϕ2(x2)|0⟩, (3.79)

but SABSAB is the quadratic Casimir element of the conformal algebra and therefore constant when
projected to the irreducible subspace by ΠO. We have thus established the second order differential
equation that characterizes conformal partial waves. The approach of [38] was to solve this equation
directly, with boundary condition

g(∆, l; z, z̄) → |z|∆ (z → 0 along real axis).

A similar equation holds for quartic Casimir elements like SA
BSB

CSC
DSD

A and (SA
BSB

A)2,
which lead to other partial differential equation and impose further constraints constraints on the
blocks. In [45], based on these quadratic and quartic differential equation, a very efficient way to
evaluate conformal block and its derivatives along the real axis (that is, z = z̄ = x) was proposed:

1. Using quadratic equation, express ∂/∂y-derivative of the conformal block at the real axis in
terms of its ∂/∂x-derivative. Plugging the expression in to quartic-Casimir equation, we obtain
an ordinary differential equation for g∆,l(z = z̄ = x).

2. This equation can be solved by means of series expansion. Moreover, the convergence can be
made drastically accelerated by changing the variable to (3.69),

ρ =
x

(1 +
√
1− x)2

and rewriting the differential equation by ρ. The acceleration of the convergence is expected
because it now converges in entire physical ρ < 1.

3. Re-expressing the conformal block x-derivative is just a simple linear algebra if we know the
derivative table of ρ. Now we (approximately but almost exactly) know the g(∆, l; z = z̄ = x)
and its x-derivatives.

4. Using the quadratic Casimir equation again, we can also derive y-derivatives along the real axis.

In later chapters, we compute the conformal blocks with this procedure.

3.2.4 Recursion relation for conformal block

Another way to approach the conformal blocks is invented long ago by A.B.Zamolodchikov [46] in
the context of d = 2 (Virasoro) conformal block and utilized for d ≥ 3 first in [47]. This approach
characterizes conformal blocks in more representation-theoretical way.

Let us consider the conformal block as a function of internal operator dimension ∆. Its defining
equation includes the projector into irreducible component ΠO, defined in (3.61)

ΠO =
∑
i,j

|Φi⟩⟨Φj |(N−1)ij

If the unitary condition (2.71)–(2.74) are met for ∆, the norm-matrix N will be regular thanks to the
positive-definiteness of the descendant states.6 However, if we let O to have non-unitary dimension,

6Strictly speaking, null states also appear in physical region at the edge of unitarity bounds. However, such an
unitarity-bound saturating operator enjoys the field equation, which means that such pole-creating descendant like ∂µj

µ

will becomes zero in the correlator. Hence such contribution was absent in the result in [47]. However, conservation
condition or equation of motion can be consistent only when two operator dimensions are identical (differentiate (3.57)),
and if it is not the case, conserved current term too contribute as a pole [11].
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this does not necessarily hold because null-states might be present in the multiplet, i.e., the descendant
states with vanishing norm could appear at ∆ = ∆i for some ∆i. Such null states then contribute
to the conformal block as a pole in ∆ → ∆i as the factor N develops a vanishing eigenvalue. Then,
the representation multiplet at ∆ = ∆i is no longer irreducible – there exists a proper submodule
defined as the set of all the null states. In particular there exists the highest weight state in this
submodule, denoted by |O(i)⟩ and satisfying the primary condition Kµ|O(i)⟩ = 0. In this way, when
∆ approaches the value ∆i, all the states in this submodule descending from |O(i)⟩ has the norm
decaying polynomially (recall how the norm of descendant states are computed),

⟨O(i)|Kµ1 · · ·KµnP ν1 · · ·P νn |O(i)⟩ ∼ (∆−∆i)
ki

with some integer exponent ki. Then the residue at ∆O = ∆∗ is another conformal block with primary
state O(i). The analytic structure around ∆ ∼ ∆∗ is

g(∆, l) ∼ ci
g(∆O(i) , lO(i))

(∆−∆∗)ki

with some representation theoretical constant ci.
On the other hand, the asymptotic behavior of the conformal block with |∆| → ∞ limit can be

derived from the quadratic Casimir equation (3.79) to be [47]

g(∆ → ∞, l) ∼ (4|ρ|)∆h∞(l)

with h∞ independent of ∆,

h∞(ρ) =
G

(d−2)/2
l (cos θ)

(1− r2)(d−2)/2
√

(1 + r2)2 − 4r2 cos2 θ

l!

(d− 2)l
.

Splitting off the factor of (4|ρ|)−∆ϕ to define

h(∆, l; z, z̄) := (4|ρ|)−∆ϕg(∆, l; z, z̄),

h(∆) behaves regularly as ∆ → ∞. Elimination of singularity in ∆ → ∞ and poles leaves entirely
holomorphic function of ∆, which obligatorily is a constant (w.r.t. ∆) h∞, so

h(∆, l) = h∞,l +
∑
i

ci
(4ρ)nih(∆O(i) , lO(i))

(∆−∆i)ki
. (3.80)

Here ni = ∆O(i) − ∆i, i.e., the level at which O(i) appears. For scalar-conformal blocks, the actual
location of poles ∆i, primary-descendants O(i), and coefficient ci were first guessed numerically in [47]
when all the external scalars are identical. It has been generalized in [11] to the case with non-identical
scalars. Representation theoretical derivation has been carried out in [28] for d = 3.
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Chapter 4

The bootstrap equation and positivity
argument

Now we are ready to introduce the dramatic success of the conformal bootstrap program after the
breakthrough in 2008 by Rattazzi, Rychkov, Tonni and Vichi [8]. This chapter illustrates how their
ingenious argument imposes highly non-trivial constraints in the operator spectrum, and even “solve”
particular models.

4.1 The bootstrap equation

As stated in the beginning of the last chapter, the precise form of the conformal four-point correlator

⟨ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)⟩

is radially-ordered one,

⟨0|R {ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)} |0⟩.

While we have considered its decomposition in the configuration (3.24) or (3.69) so that the operator
ordering is

⟨0|ϕ(x4)ϕ(x3)ϕ(x2)ϕ(x1)|0⟩,

we can make a conformal transformation to send the arguments to align differently. For example, we
can rotate and translate the standard configuration to set x3 to the origin and x1 = (1, 0, · · · ) (with
x4 fixed at the infinity), getting x2 = 1− z on the plane.

We also have the conformal block decomposition in this region, but this time converging in the
region everywhere except for real z with (1− z) > 1, which has an overlap with the above one. These
two expression must agree on this overlapping region. This results in the celebrated crossing relation
for scalar four point function,∑

O∈ϕ×ϕ

λ2ϕϕO
g(∆O, lO; z, z̄)

x
2∆ϕ
12 x

2∆ϕ
34

=
∑

O∈ϕ×ϕ

λ2ϕϕO
g(∆O, lO; 1− z, 1− z̄)

x
2∆ϕ
23 x

2∆ϕ
14

(4.1)

We can also consider other operator orderings, e.g, ϕ(x4)ϕ(x2)ϕ(x3)ϕ(x1), this time resulting in∑
O∈ϕ×ϕ

λ2ϕϕO
g(∆O, lO; z, z̄)

x
2∆ϕ
12 x

2∆ϕ
34

=
∑

O∈ϕ×ϕ

λ2ϕϕO
g(∆O, lO; 1/z, 1/z̄)

x
2∆ϕ
23 x

2∆ϕ
13

(4.2)

In this case of identical scalar function (4.2) is satisfied once (4.1), but in general this equation of give
rise to another constraints (e.g., when scalar is charged under SU(n) [41]).

Of course, similar requirements must be made for all four-point functions made up by all operators
in the theory, possibly with spins. The proposal made in early 1970s [48] [6] was that we define CFTs
with the CFT data
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• Operator multiplets specified by primary, i.e., operator dimensions and spins

• OPE coefficients among operators

subject to all the non-trivial crossing relations. Along with an infinite number of CFT data parameters,
as we will investigate in a moment, the crossing relation requires a non-trivial functional equality to
hold. This means that the constraint too is an infinite-dimensional one. Although this system of
degrees of freedom and constraints look devastatingly complicated one, from the single equation (4.1)
alone, we can extract surprisingly non-trivial information. This argument is called the positivity
argument.

4.2 Positivity argument

To introduce the method we first slightly rewrite the equation (4.1) to a more convenient form by

multiplying
{
(x212x

2
34x

2
14x

2
23)/(x

2
13x

2
24)
}∆ϕ . Now every quantity in the equation is covariant:

0 =
∑

O∈ϕ×ϕ

λ2ϕϕO
{
v∆ϕg(∆O, lO, z, z̄)− u∆ϕg(∆O, lO, 1− z, 1− z̄)

}
=

∑
O∈ϕ×ϕ

λ2ϕϕO F (∆ϕ,∆O, lO; z, z̄), (4.3)

where F is defined by

F (∆ϕ,∆, l; z, z̄) := (1− z)∆ϕ(1− z̄)∆ϕg(∆, l; z, z̄)− z∆ϕ z̄∆ϕg(∆, l; 1− z, 1− z̄), (4.4)

and is anti-symmetric in exchanging z ↔ (1 − z). The function is non-zero away from exchange-
symmetric point z = 1/2, so the functional equality is non-trivial.

The argument in [8] can be essentially stated in the following manner [42].

positivity argument� �
Suppose there exists a real number ∆h and a linear functional α, whose domain is the function of
z and z̄ anti-symmetric in z ↔ (1− z) with the following properties:

α(F (∆ϕ, 0, 0; ∗)) = 1,

α(F (∆ϕ,∆, l; ∗)) ≥ 0 whenever ∆ ≥ l + d− 2,

α(F (∆ϕ,∆, 0; ∗)) ≥ 0 whenever ∆ ≥ ∆h. (4.5)

Apply this functional to the equation (4.3). Linearity assumption allows us to write

0 =
∑

O∈ϕ×ϕ

λ2ϕϕOα(F (∆ϕ,∆O, lO; ∗)).

Then divide the summation in the following way: noting that the identity operator always con-
tribute with λϕϕ1 = 1, we have

= α(F (0, 0; ∗)) +
∑

O∈ϕ×ϕ
lO=0, ∆O≤∆h

λ2ϕϕO α(F (∆ϕ,∆O, 0; ∗)

+
∑

O∈ϕ×ϕ
lO=0, ∆O>∆h

λ2ϕϕO α(F (∆ϕ,∆, 0; ∗)) +
∑
l≥2

∑
O∈ϕ×ϕ
lO=l

λ2ϕϕO α(F (∆ϕ,∆O, l; ∗)).

The unitarity of the theory tells us ∆O ≥ lO + d − 2 is always satisfied (2.72). The reflection
positivity tells λ2ϕϕO > 0. Thus these facts together with the above assumptions about α make
the first, third, and forth term sum up to positive number ≥ 1.
In order for the equality to hold, the second sum must be non-empty. There must
exist an operator in ϕ× ϕ OPE with dimension below ∆h.� �
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4.2.1 Truncation method 1: discretization and linear programming

The presence of such an α together with some value ∆h brings us a quite nontrivial constraint on the
spectrum, which holds for general unitary CFTs, whatever their contents are.

How can we find such a linear functional α and ∆h? To obtain better bounds, we would like to
seek for ∆h as small as possible with fixed ∆ϕ . We denote such an optimal value by ∆c.

Mainly there are two hurdles in carrying this search out if we want to let the computer solve the
problem numerically.

The first difficulty is that the space of such linear functionals is infinite-dimensional. We usu-
ally compromise by satisfying ourselves with some finite-dimensional subspace to search. Currently,
numerically most reasonable way is to take this subspace to be derivative expansions up to finite order,

αcandidate(F ) =
∑

m,n≥0
m+n≤Λ

am,n∂
m
z ∂

n
z̄ F |z=z̄= 1

2
, (4.6)

with am,n real and anti-symmetric under m ↔ n exchange. With a fixed cutoff Λ, such functionals
make finite-dimensional vector space. Notice that a functional found within this truncated vector
space still gives a completely rigorous bound provided the positivity condition (4.5) is met.

The second difficulty is that the number of inequality to be checked in (4.5) is continuously infinite.
In earlier papers [8][39][41][49][40][42], this difficulty was truncated by the discretization over values
of ∆ with some finite cutoff ∆max. That is, we check the inequalities

α(F∆,l) ≥ 0

on discretized intervals

∆ = ∆min, ∆min + ϵ, ∆min + 2ϵ, · · · ,∆+Nϵ.

Here ∆min = ∆h if l = 0 and d+ l− 2 otherwise, ϵ is a sufficiently small interval, and N is taken to be
large enough so that Nϵ >> 1. We also have to have a cutoff lmax for l in order to make the number
of checked inequality finite.

Though not rigorous, from the smoothness of the conformal block dependence on ∆, we expect a
sufficiently good approximation can be obtained when we take ϵ small enough. Also, for individual
CFTs, recalling that the exponential suppression of high-dimensional operator [31][44] with

ρ(z = 1/2) = 3− 2
√
2 ≃ 0.17,

it does not sound like a bad idea to have a cutoff in the inequality for high-operator dimensions.

After these truncations, the problem is

find am,nwith∑
m,n≥0
m+n≤Λ

am,n∂
m
z ∂

n
z F (0, 0; z, z̄)|z=z̄= 1

2
= 1,

∑
m,n≥0
m+n≤Λ

am,n∂
m
z ∂

n
z F (∆, l; z, z̄)|z=z̄= 1

2
≥ 0 for discretized values of (∆, l),

which has precisely the form of linear programming, and can be solved by computers efficiently. Now
the task of finding smallest possible ∆h can be performed with a try-and-error approach (usually by
binary-search starting from presumed large ∆h). Anyway, one can check that, beyond sufficiently
small value of ϵ and large cutoff for (∆, l), the output is converging.
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4.2.2 Truncation method 2: translation into semi-definite programming

An alternative to the discretization method was invented in [50]. This is achieved through approximat-
ing conformal block g(∆, l; z, z̄) regarded as a function of ∆. This always exists due to the recursion
formula discussed in Section 3.2.4. To recap, the approximation takes the form

g(∆, l; z, z̄) = (4|ρ|)∆
{
h(∞, l, ; z, z̄) +

∑
i

ci
(4|ρ|)nih(∆i + ni, li)

(∆−∆i)ki

}

where {ni, li, ci, ki} are constants. The very fact that the asymptotic solution h(∞) exist assures that
the summation tends to 0 along ∆ → ∞. Thus, we can truncate the sum by setting cutoff for ni,
which is called νmax in the literature [11][12]. After this, the conformal blocks factors into rational
and irrational part with respect to ∆,

g(∆, l; z, z̄) ≃ (4|ρ|)∆
h(∞, l, ; z, z̄) +

∑
i: ni≤νmax

ci
(4|ρ|)nih(∆i + ni, li)

(∆−∆i)ki


=

(4|ρ|)∆∏
i:ni≤νmax

(∆−∆i)ki
× (polynomial of ∆) . (4.7)

Notice that taking derivatives with respect respect to z, z̄ changes the form of the polynomial, but the
approximation retains its form. So we write

∂mz ∂
n
z̄ g(∆, l; z, z̄)|z=z̄=1/2 =

(4ρ∗)
∆∏

i:ni≤νmax
(∆−∆i)ki

× pm,n(l;∆) (4.8)

with ρ∗ = ρ(z = 1/2) = 3 − 2
√
2 and pm,n(l;∆) is the result of the differentiation. This property

descends to F -function (4.4),

∂mz ∂
n
z̄ F (∆ϕ,∆ϕ, l, z, z̄)|z=z̄=1/2 ≃

(4ρ∗)
∆∏

i:ni≤νmax
(∆−∆i)ki

× qm,n(∆ϕ, l;∆) (4.9)

Now we go back to the positivity argument. Assuming the form of α to be a differential operator as
in (4.6), the inequality conditions (4.5) reads

∑
m,n≥0
m+n≤Λ

am,n∂
m
z ∂

n
z̄ F |z=z̄= 1

2
≃

∑
m,n≥0
m+n≤Λ

(4ρ∗)
∆∏

i:ni≤νmax
(∆−∆i)ki

am,nqm,n(∆ϕ, l;∆)

=
(4ρ∗)

∆∏
i:ni≤νmax

(∆−∆i)ki

∑
m,n

am,nqm,n(∆ϕ, l;∆) ≥ 0

for ∆ ≥ ∆min. Since the poles of the conformal blocks lie in the non-unitary region and ∆min ≥ ∆i

holds for all the poles, the prefactor is positive in the region under consideration. Now eliminating
this away, we have translated the inequality constraints by polynomial conditions∑

m,n

am,n q(∆ϕ, l;∆) ≥ 0 ( for ∆ ≥ ∆min).

Making cutoff lmax again for l, we have a finite number of such polynomial inequalities on half-lines.
The task of finding such {am,n} can again be handled with computers, this time by using the solver
for semi-definite programming(SDP), a generalization to linear programming. After creating tables
of polynomials qm,n, it can be passed to a general-SDP solver like SDPA-GMP [51] or more bootstrap-
specialized one SDPB [12].
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SDP is more natural language for bootstrap

Though elegant, the SDP truncation with polynomial approximation might look somewhat artificial
way to approximate bootstrap problems. However, in more general situations e.g.

• Require consistency conditions for a multiple number of four-point correlation functions [11][12][52][53],

• External operators are not necessarily scalar and multiple types of OPE coefficients can appear
in three-point functions [54],

it is mandatory to use SDP to carry out the generalization of the above-stated argument [41][11].

4.2.3 Bounds for single correlator without any further assumption

d = 4

We here reproduce the original result of [8] for d = 4 CFTs, where several phenomenological model of
walking technicolor has been proposed. To carry out the computation, we implemented in the open-
source general purpose mathematics software sage-math [55] a code to create a polynomial table,
which then can be solved by SDPB [12]. Part of the codes written for this purpose is available at
https://sites.google.com/site/tomokuohtsky/cboot (in Japanese).

The result shown in Fig.4.1 is a newly obtained one using slightly improved parameters over past
works [8][39][50] with Λ = 23 and νmax = 22 as truncation parameters, where Λ is the derivative-order
cutoff in (4.6) and νmax is the pole-inclusion cutoff in (4.7). To recap, this bounding curve means that

1 1.2 1.4 1.6 1.8 2

2.5

3

3.5

4

4.5

5

∆φ

∆c (∆φ )

Figure 4.1: Bounds for general d = 4 CFTs with scalar field ϕ derived from SDP-truncation
method. νmax = 22 with Λ = 23 is taken. Spins included in the optimization problem are
l = 0, 2, · · · , 20, 24, 28 · · · , 48. Binary search precision goal is generically 10−3. The parameter for
SDPB solver can be the default one in [12]. The value of ∆ϕ for which ∆c cross the marginality line
∆c = 4 is about ∆ϕ ∼ 1.618, which is only slightly improved over the one in [50] derived with Λ = 21.

the first non-trivial (non-identity) operator appearing in ϕ × ϕ must have dimension below ∆c(∆ϕ).
The result of [8] improved in [39] ,[49], and [50] was strong enough to exclude almost all possibility of
conformal-technicolor proposed in [56].

Such a rigorous statement is a precious one in quantum field theories without supersymmetry.
From the current perspective, however, this was merely the starting point of the surprising adventure
of the bootstrap program.
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d = 2

Already in [8], to verify the validity of the method, they carried out a rough (small derivative cutoff
Λ) estimate for the bound for d = 2, where certain exact information is available like the critical
exponents of minimal model sequence [7]. They used d = 2 SL(2,C)-conformal block – forgetting the
actual Virasoro module structure of the Hilbert space 1.
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Figure 4.2: Bounds for general d = 2 CFT with scalar field ϕ, derived from SDP-truncation
method. νmax = 20 with Λ = 23 is taken. Intermediate operator spins taken into account are
l = 0, 2, · · · , 20, 24, 28 · · · , 48. Binary search precision goal is generically 10−3. The parameter for
SDPB solver can be the default one in [12].

Improved bounds derived in [39] looked quite intriguing, for the two-dimensional Ising model, which
has scalar σ with dimension 1/8 and ε with dimension 1, seemed to saturate the bound in a peculiar
way (with slope-changing behavior). Of course this is a numerical approximation and discontinuity
is not a real one2, and saturation of the bound is only approximate (the ideal value for the bound at
∆ϕ = 0.125 is 1+ 4.4× 10−7 here at Λ = 23). However, the figure is so impressive that we are obliged
to assume the saturation and actual discontinuity at the Λ → ∞ limit. What cannot be emphasized
enough is that such a “kink” emerged from almost no input – the only one input was the presence of
scalar field ϕ. The figure is derived by changing the values of ∆ϕ, and polynomials qm,n change their
coefficient continuously, but the result looks (for our poor eyes) singular. The result encouraged the
authors of [9] to carry out the same analysis but in d = 3.

By the way, although it seems that the tri-critical Ising model, who has ∆σ = 1/5 and ∆ϵ = 6/5
also comes close to saturate the bound, but the convergence (if any) is not as impressive as for the
Ising model. At Λ = 23, the best bound is ∆c(0.2) = 1.2016. See also [10] for this numerology.

d = 3

For the d = 3 CFTs, at this stage, no exact expression for the conformal blocks is available3and the
authors of [9] had to solve numerically the intricate recursion relation written down in [58] to derive the
conformal block values of interest. The result looked like Fig. 4.3, again showing the kink. The d = 3
Ising model critical exponents computed by Monte-Carlo [59] again seems to saturate the bootstrap

1 The main reason might be that the full Virasoro conformal blocks are harder to access, due to the absence of analytic
expressions unlike the ones in SL(2,C)-block in (3.64), and one has to resort to the Zamolodchikov’s recursion formula
[46] in order to numerically estimate it. Also, to specify the Virasoro-block, one has to specialize to a certain value of
central charge. Such a type of study has been recently implemented in supersymmetric context [57].

2A resolution will reveal that everything is continuous. Indeed, in the original figure of [39], due to the smallness of
Λ compared the one in here, the kink is not as sharp as the one in here.
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bounds around the kink location (∆ϕ,∆
c) ∼ (0.518, 1.41). Given this result, further computation

with increased cutoff Λ and more elaborate method was applied in [10] [12], and the current most
precise estimates for the d = 3 Ising critical exponents using the bootstrap method beat all the other
predictions.
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Figure 4.3: Bounds for general d = 3 CFT with scalar field ϕ, derived from SDP-truncation
method. νmax = 20 with Λ = 23 is taken. Intermediate operator spins taken into account are
l = 0, 2, · · · , 20, 24, 28 · · · , 48. The parameter for SDPB solver can be the default one in [12].

4.3 Incorporation of global symmetry : O(n) example

So far we have been seeking for the constraints for CFTs which must be respected by all CFTs in specific
dimensions. Since many interesting models are believed to exist with further global symmetries, given
the surprising power of the bootstrap study for the 2 ≤ d < 4 Ising models, the next natural task is
then to derive the bounds for theories with global symmetries, especially the simplest descendants of
the Ising model (which has Z2 ≃ O(1) as its symmetry), O(n)-LGW (vector) models. Let us illustrate
what we can do in such cases in this section.

4.3.1 Structured conformal block decomposition

We assume the presence of a CFT with O(n)-symmetry, and scalar operators ϕi(x) behaving as an
O(n)-vector representation. Two and three-point functions are fixed in the same way, but additional
structure appears. For example, two-point functions of ϕs are fixed to be

⟨ϕi(x)ϕj(y)⟩ =
δij

|x− y|2∆ϕ
.

In order for a three-point function ⟨ϕiϕjO⟩ to be non-zero, from the invariance of the vacuum under
O(n)-symmetry, O must behave as an irreducible representation in the tensor product vector⊗vector.
This decomposes into scalar (S), traceless-symmetric tensor (T), and anti-symmetric tensor (A) rep-

3See, however, [44] for the compact exact expression in d = 3 along z = z̄ axis
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resentations4. They respectively have the three-point functions of the forms

⟨ϕi(x1)ϕj(x2)O(S)
µ1···µl(x3)⟩ ∝ δij , (4.10)

⟨ϕi(x1)ϕj(x2)O(T)
kl;µ1···µl(x3)⟩ ∝ (δliδkj + δljδki −

2

n
δijδkl), (4.11)

⟨ϕi(x1)ϕj(x2)O(A)
kl;µ1···µl(x3)⟩ ∝ (δliδkj − δljδki), (4.12)

where the kinematical factors are given by (3.57). An important remark follows: under the exchange
of x1 ↔ x2, the kinematical factor acquires the factor of (−1)l (this is why only spin even operator
appeared in the previous computation), so it must be compensated by the sign from i ↔ j exchange
in order for the three point function to be invariant under the simultaneous exchange of x1 ↔ x2 and
i ↔ j. So the operators in S and T-representations must have even spin (e.g. the identity operator
and the energy-momentum tensor), while those in A have spin odd (e.g. O(n)-symmetry current).

Conformal partial wave decomposition for four-point functions is performed similarly, but here the
three point function structures must be taken into account. The result for ⟨ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4)⟩
in the radial ordering by |x1| < |x2| < |x3| < |x4| is 5

x
2∆ϕ
12 x

2∆ϕ
34 ⟨ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4)⟩ = δijδkl

∑
O∈ϕ×ϕ
and S

λ2ϕϕO g(∆O, lO; z, z̄)

+

(
δilδjk + δikδjl −

2

n
δijδkl

) ∑
O∈ϕ×ϕ
and T

λ2ϕϕO g(∆O, lO; z, z̄)

+ (δilδjk − δikδjl)
∑

O∈ϕ×ϕ
and A

λ2ϕϕO g(∆O, lO; z, z̄). (4.13)

4.3.2 Vectorial bootstrap equations and positivity arguments

Then the crossing relation for four-point functions are required in an equal fashion. In the kinematical
region |x4| > |x1| > |x2| > |x3|, the decomposition is

x
2∆ϕ
23 x

2∆ϕ
14 ⟨ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4)⟩ = δjkδil

∑
O∈ϕ×ϕ
and S

λ2ϕϕO g(∆O, lO; 1− z, 1− z̄)

+

(
δijδkl + δikδjl −

2

n
δjkδil

) ∑
O∈ϕ×ϕ
and T

λ2ϕϕO g(∆O, lO; 1− z, 1− z̄)

+ (δijδkl − δikδjl)
∑

O∈ϕ×ϕ
and A

λ2ϕϕO g(∆O, lO; 1− z, 1− z̄), (4.14)

which must agree with (4.13). Matching all the coefficients of Kronecker’s deltas imposes three func-
tional equalities

S(z, z̄)− 2

n
T (z, z̄) = T (1− z, 1− z̄) +A(1− z, 1− z̄),

T (z, z̄)−A(z, z̄) = T (1− z, 1− z̄)−A(1− z, 1− z̄),

S(z, z̄)− 2

n
T (z, z̄) = S(1− z, 1− z̄)− 2

n
T (1− z, 1− z̄),

where R(z, z̄) represents the sum (1−z)∆ϕ(1−z̄)∆ϕ
∑

O∈ϕ×ϕ; O in R g(∆O, lO; z, z̄). The third equation
is actually redundant in the sense that it can be obtained from the first one by substituting z → (1−z).

4Strictly speaking, for n = 2 A is actually equivalent to S, but this does not affect the bootstrap equation.
5 The sign for A-sector contribution might be a bit confusing. This is due to the normalization convention of

conformal block g(∆, l; z, z̄) > 0 along the positive side of real axis. The positivity of each summand at the reflection
positive configuration like ⟨0|ϕ1(∞)ϕ2(x2/x

2
2)ϕ2(x2)ϕ1(0)|0⟩ then fixes this sign.
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It is customary to separate the functional equations into symmetric parts and anti-symmetric parts
with respect to z ↔ (1−z) exchange. The result can be conveniently summarized in terms of vectorial
bootstrap equation:

0⃗ =
∑

O∈ϕ×ϕ
O in S

λ2ϕϕOV⃗S(∆ϕ,∆O, lO; z, z̄) +
∑

O∈ϕ×ϕ
O in T

λ2ϕϕOV⃗T(∆ϕ,∆O, lO; z, z̄) +
∑

O∈ϕ×ϕ
O in T

λ2ϕϕOV⃗A(∆ϕ,∆O, lO; z, z̄),

(4.15)

where

V⃗S(∗; ∗) :=

 0

F (−)(∗; ∗)
F (+)(∗; ∗)

 , (4.16)

V⃗T(∗; ∗) :=

 F (−)(∗; ∗)(
1− 2

n

)
F (−)(∗; ∗)(

−1− 2
n

)
F (+)(∗; ∗)

 , (4.17)

V⃗A(∗; ∗) :=

 −F (−)(∗; ∗)
F (−)(∗; ∗)

−F (+)(∗; ∗)

 , (4.18)

with the (anti-)symmetrized function

F (±)(∆ϕ, ∗; z, z̄) := (1− z)∆ϕ(1− z̄)∆ϕg(∗; z, z̄)± (z)∆ϕ(z̄)∆ϕg(∗; 1− z, 1− z̄) (4.19)

The positivity argument developed in Section 4.2 can be almost parallelized[41]. This time the linear
functional α takes its domain to be 3-dimensional vector-valued functions of z, z̄ with the first and
second column being anti-symmetric in z ↔ (1− z) exchange and the third component symmetric.

First consider the following positivity conditions for α:

•

α(V⃗S)(∆ϕ, 0, 0; z, z̄) = 1.

Note that V⃗S(∆ϕ, 0, 0; ∗) is the identity operator contribution to the bootstrap equation 4.15,
which is included in the S-channel.

•

α(V⃗S)(∆ϕ,∆, 0; z, z̄) ≥ 0 ( for ∆ ≥ ∆h),

where ∆h plays an analogous role of that in (4.5).

•

α(V⃗T)(∆ϕ,∆, 0; z, z̄) ≥ 0 ( for ∆ ≥ d− 2

2
).

For now we do not insert artificial parameters, instead the unitarity bound for the scalar operator
(2.74).

•

α(V⃗R)(∆ϕ,∆, l; z, z̄) ≥ 0 ( for l > 0, ∆ ≥ l + d− 2, and R = S,T,A).

Again for these sectors, we require the positivity for all unitary region of ∆.
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If we find such a functional α, an argument entirely analogous to that in (4.2) tells you the following:
there must be an O(n)-singlet scalar operator in ϕ× ϕ OPE with dimension below ∆h.

A very important remark is that we do not necessarily have to insert hypothetical gap parameter
in the S spin 0 sector. For example, we can equally impose

α(V⃗S)(∆ϕ,∆, 0, z; z̄) ≥ 0 ( for ∆ ≥ d− 2

2
)

and

α(V⃗T)(∆ϕ,∆, 0; z, z̄) ≥ 0 ( for ∆ ≥ ∆h),

and this time the argument tells you that there must be an O(n)-T scalar operator in ϕ×ϕ OPE with
dimension below ∆h.

4.3.3 O(n)-bootstrap results

The first computations was performed for d = 4 dimensions [41] with discretization scheme employed
to truncate the problem. Those bounds have been improved in the first SDP-based paper [50]. For
d = 4 model, as in Fig.4.1, no kink was observed. Below we will see what happens in d < 4.

d = 3 O(2)

In dimension 2 < d < 4, O(n)-LGW models, which are direct generalizations of the ϕ4 model, are
believed to flow into IR fixed points describing the continuous phase transitions of various spin systems
(see e.g., [60] [61]). Since the d = 3 Ising models are cornered by means of the conformal bootstrap,
it is natural to ask what will happen for the bounds which must be respected by those LGW models.

The result in [47]6for the O(2)-model looks like Fig.4.4. Again there showed up a kink. Here the
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Figure 4.4: d = 3 bounds derived from SDP-truncation method for O(2)-singlet operator dimensions
in vector×vector OPE. Here νmax = 20 with Λ = 23 is taken. Spins included in the matrix l =
0, 1, 2, · · · , 25, 28, 29, 32, 33, · · · , 48, 49. Binary search precision goal is 10−3. The parameter for SDPB
solver can be the default one in [12] as well.

star represents the hybrid lattice-MC result of [62], which is indistinguishable in this figure from the
prediction of space-shuttle experiment result in [63]. These two results however disagree (see [64] for
a discussion). Unfortunately, at this stage, even with increased precision and inevitably increased
numerical cost, bootstrap method is not powerful enough to resolve this discrepancy[52].

6In [47], to increase the numerical efficiency of the rational approximation of conformal blocks, a bit stronger condition
α(V⃗T(∆, 0; ∗)) > 0 for ∆ ≥ 1 is imposed, which is not completely general. Here we did not impose this condition, at the
cost of increasing νmax.
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As remarked, we can also find bounds for operators transforming in T-representation. The result
at Λ = 23 is shown in Fig.4.5. The rectangle there is a combined prediction for the XY -model lowest
T-operator dimension, horizontal value of which is from [62] and vertical value from [65]. In this
example of O(2)-CFTs, two bounds (for S and T-sectors) computed independently seemed to exhibit
kinks corresponding to the same theory (critical XY -model). However, this is not always the case
– see Chapter 6. Note also the dictionary between SO(2) → U(1). The bound for singlet in ϕ × ϕ
can be equivalently stated as the bound for charge 0 operator dimensions appearing in the OPE of
charge 1 and its conjugate. Meanwhile, that for T-representation operator is the bound for charge 2
operator dimension contained in a charge 1 operator with itself. This restatement will be useful in
the discussion of 6.3.3.
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Figure 4.5: d = 3 bounds derived from SDP-truncation method for O(2)-T representation operator
dimensions in vector×vector OPE. Here νmax = 20 with Λ = 23 is taken. Spins included in the matrix
l = 0, 1, 2, · · · , 25, 28, 29, 32, 33, · · · , 48, 49. Binary search precision goal is 5 × 10−4. The parameter
for SDPB solver can be the default one in [12] as well.

Fun with d = 2 O(n)-bounds

The situation in d = 2-dimensions is quite different. While the ϕ4-family of the Wilson-Fisher fixed
points continue to exist for d = 2, the O(n)-vector models with n ≥ 2 no-longer have fixed points
(non-linear sigma models exhibit the confinement). To have some fun, we derived bootstrap bounds
in d = 2 for O(n)-singlet, which looks like Fig.4.6. The first feature is that the bounds for O(2)
model seems to have a plateau starting from ∆ϕ = 0 with value= 2. This is as it should be: in
two-dimensions, (periodic) free scalar field X can be exponentiated (with normal ordering) to give a
well-defined scalar field (see Section 2.2 of [21])

: eikX :

with dimension k2. The translation invariance of the target torus act as a U(1)-action on this field,
so these fields must obey the bounds derived above. Then, O(2)-invariant spectrum is contained in

: eikX(z) :: e−ikX(0) :∼ 1

|z|2k2
(1 + k2|z|2 : ∂X∂̄X(0) : + · · · )

The singlet operator with smallest nontrivial dimension is thus : ∂X∂X :, which has dimension 2. The
numerical bound should not exclude such a possibility.7

Another peculiar feature is that O(n > 2) bounds have peaks: at some point they start to de-
crease. In particular, for n = 4, the peak look singular, despite the absence for non-linear sigma
model fixed points with target S3. We conjecture that the bound will be saturated in Λ → ∞

7I thank Yu Nakayama for pointing this out to me.

42



0.2 0.4 0.6 0.8 1

1

2

3

4

5

O(1)

O(2)
O(3)
O(4)
O(5)
O(6)
O(7)
O(8)
O(9)
O(10)

∆φ

∆c
S (∆φ )

Figure 4.6: Bounds derived from SDP-truncation method for O(N)-singlet operator dimensions
in vector×vector OPE. Here νmax = 22 with Λ = 23 is taken. Spins included in the matrix
l = 0, 1, 2, · · · , 25, 28, 29, 32, 33, · · · , 48, 49. Although the original data was obtained for discrete values
of ∆ϕ, with horizontal step of 0.03125 at generic points and 0.0078125 around the peak, we interpo-
lated the results to help the readers’ eyes. Binary search precision goal is 10−3. The parameter for
SDPB solver can be the default one in [12] as well. The gray star represents the location of the first
level SU(2) WZW-model.

limit by the SU(2) first-level Wess-Zumino-Witten model, which has a scalar field charged under
SU(2)L × SU(2)R ≃ SO(4)-fundamental representation with dimension 1/2. Somehow SL(2,C)-
bootstrap equation “knows” about current algebras.
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Chapter 5

Zoo of O(n)×O(2)-symmetric
Landau-Ginzburg-Wilson models

In this chapter, two very different type of 3 + 1-dimensional thermal systems are introduced. One
is a chromodynamical system with Nf = 2 massless flavors or Dirac fermions, which is a suitable
idealization of the real QCD. The other system (potentially less familiar to high-energy physicists) is
a frustrated spin system on stacked triangular lattice, where a significantly more complicated dynamics
than usual spin system appears. Both are believed to undergo phase transition with some spontaneous
symmetry breaking pattern. Although their transition temperature differs by a magnitude of 1010,
potentially relevant (in this case both emergent at the transition) symmetry of these systems can be
summarized to be O(n) × O(2), and this is why we treat them together. In Section 5.1 and 5.2, we
will review why such a symmetry emerges at the transition point of these systems.

Following the philosophy of Landau-Ginzburg-Wilson(LGW), we write a general super-renormalizable
Lagrangian by the order parameter fluctuation ϕ to seek a candidate of critical point. Unlike the Ising
and its O(n)-generalizations, however, these systems are extremely hard to study by any conven-
tional schemes like Monte-Carlo, epsilon-expansion, and functional-renormalization group. In 5.3, we
will concisely review several aspects of LGW models and summarize earlier studies and controversies
regarding the presence of IR-stable fixed point.

5.1 Linear σ model analysis of Nf = 2 QCD chiral phase transition

5.1.1 Pisarski-Wilczek argument

The most dramatic success of the notion of spontaneous symmetry breaking in the 1960s was the
explanation of the relatively small masses of pions by Nambu. He pointed out that the theory of
strong interaction (which we now believe is QCD) has approximate symmetry

SU(2)L × SU(2)R (5.1)

and it breaks down to diagonal subgroup SU(2)V at some non-zero temperature, Tc. Since then, one
of the primary concerns of the theory of hadrons is to clarify the nature of this phase transition, like
the transition temperature and its order.

To discuss its order, Pisarski and Wilczek followed a classical argument by Landau-Ginzburg-
Wilson[66]. Since we know that after the confinement the effective degrees of freedom comprises those
of mesons, it is natural to attempt writing an effective Lagrangian out of them. They are created by
quark bilinear

Φj
i = Ψ̄j

(
1 + γ5

2

)
Ψi

and transform as a bi-fundamental of SU(2)L×SU(2)R or a fundamental of SO(4) ≃ SU(2)L×SU(2)R.
Under the diagonal unbroken subgroup SU(2)V , they decompose as

Φ(x) =
1

2
(σ(x) + iη(x))12×2 +

1

2
(iπ⃗(x) + δ⃗(x)) · τ⃗ , (5.2)
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where τ⃗ is the Pauli’s matrix. After integrating out modes with non-zero thermal frequency, the most
general (three-dimensional) quartic action made from this field invariant under the SO(4) symmetry
is

tr(∂µΦ∂
µΦ†) + c(T )tr(ΦΦ†) + cA(T )(detΦ + detΦ†) + λ(T )(tr(ΦΦ†))2

+λxtr(ΦΦ
†)(detΦ + detΦ†) + λy

{
(detΦ)2 + (detΦ†)2

}
, (5.3)

under the assumption of parity Φ → Φ†. Here all the coefficients are real and temperature dependent
and as usual, we expect thermal effective mass c(T ) to decrease (from some positive value) as we cool
down the system. The term proportional to cA represents the effect of chiral anomaly: the instanton
configuration induces a 2Nf−point interaction of quark of this form. In the case of interest Nf = 2,
it also works as a mass term: while c(T ) represents uniform mass

c(T )

2

{
σ2 + π⃗2 + η2 + δ⃗2

}
, (5.4)

cA(T ) gives rise to the mass-splitting

cA(T )

2

{
σ2 + π⃗2 − η2 − δ⃗2

}
. (5.5)

In order for all the mesons to be massless, we have to tune both c(T ) = cA(T ) = 0, which is generically
impossible. Thus at the critical temperature, if cA(T ) ̸= 0, only half of meson fields are massless and
the effective Lagrangian for scale invariant physics should be that of SO(4)-vector model, and there
is an IR-stable fixed point of Heisenberg type. Of course we cannot conclude the actual order of the
transition solely from this universality argument as it depends on the bare coupling, but if it is of
second order, various critical exponents must be those of O(4) universality class.

5.1.2 possibility of U(1)A restoration and Aoki-Fukaya-Taniguchi “theorem”

This is not the end of the story, however. In the above discussion, we have assumed that the U(1)A-
breaking mass term survives beyond chiral symmetry breaking point. Although the anomaly manifests
itself in our world (which is nearly in absolute-zero temperature environment) as the mass of η′ meson,
at finite temperature environment the situation becomes quite subtle due to thermal compactification
(or more physically, Debye screening). Indeed at the high-temperature limit, the partition function is
computed by dimensionally reduced path integral and it is free of anomaly.

What really happens for the chiral phase transition point (which is of order O(102MeV)) has been
quite controversial, in both theoretical and lattice QCD simulation perspective, depending on the
assumption or the method we use. See e.g. [67][68] for earlier discussions. Recently, a quite elaborate
use of Ward identity for SU(2)L × SU(2)R symmetry restored at T ≥ Tc led the authors of [69] to
conclude the following striking assertion.

Aoki-Fukaya-Taniguchi “theorem”� �
cA(T ) = 0

for T ≥ Tc, under the assumptions to be stated.� �
Below we review the point of the assumptions they made and the argument which led to cA(T ) = 0
for T ≥ Tc, following the simplified discussion of [70].

Setup

To avoid nuisance coming from UV and IR-divergence, we start with finite spatial volume V3 with
some UV-regularization preserving SU(2)L × SU(2)R (like lattice with overlap fermions, which was
the original setup in [69]). For convenience we also add a mass term M i

jΨ̄
j(1 + γ5)Ψi/2.

45



Setting mass matrix M to be real diagonal and integrating out fermions, the action for pure gauge
field A is

PM (A) = e−SYM (A)(detM)N
A
L (detM †)N

A
R × (non-zero modes contributions). (5.6)

More specifically, when we take mass to be real and diagonal, this is.

PM (A) = e−SYM (A)(mumd)
NA
L+NA

L

∏
i=u,d

∏
n>0

(λ2n +m2
i ). (5.7)

Here NL(R) refers to the number of left (right) handed zero-modes for given gauge configuration A,
mu,d up and down quark masses, and λn the n-th positive eigenvalue of the Dirac operator. Recall
that λn-eigenstate un is accompanied by −λn-eigenstate γ5un, due to the anti-commutativity of the
Dirac operator and γ5.

Assumption 1

The weight function PM (A) is real analytic with respect to M , and at finite-volume, since the gauge
field integration is just a integration over compact set, this property descends to the partition function.
Taking V3 → ∞ or IR-cutoff → 0 limit is subtle, but if we are in T ≥ Tc, all the effective degrees of
freedom are massive, and we are led to assume1:

assumption 1� �
Expectation value of observables made out purely of gauge field∫

DA O(A) PM (A)∫
DA PM (A)

:= ⟨O(A)⟩M (5.8)

is an (real) analytic function of mu,d in V3 → ∞ limit if T ≥ Tc.� �
Of course we also assumed the free-energy per volume f defined from partition function

⟨1⟩M =

∫
DAPM (A) = exp (−V4 f(T, V3,M)) , (5.9)

where V4 = V3/T is the space-time volume, has a Taylor-expansion in terms of M . Though there is
already no dynamical field, just as an analogy we call f(T, V3,M) “dual effective action” for M .

The dual effective action takes a form analogous to (5.3) from invariance under background field
transformation. At T ≥ Tc, the general form up to quadratic order (compatible with parity transfor-
mation M →M †) is

f(T, V,M) = f0 − f1tr(MM †) + fA(detM + detM †) +O(M4). (5.10)

Again these coefficients are temperature dependent. cA vanishes precisely when fA does. To see this,
it suffices to prove effective mass difference between π3 and δ3 vanishes at M = 0. A convenient
quantity to measure mass difference is chiral susceptibility defined by

lim
p→0

{
⟨π3(p)π3(−p)⟩ − ⟨δ3(p)δ3(−p)⟩

}
=

1

V3

∫
d3x

{
⟨π3(x)π3(0)⟩ − ⟨δ3(x)δ3(0)⟩

}
=

1

c(T ) + cA(T )
− 1

c(T )− cA(T )
,

1This is a slightly stronger requirement compared to the original one in [69], where the analyticity with respect to
uniform mass m2 = m2

u = m2
d was required.
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where we used (5.4) and (5.5) to express thermal effective mass for π3 and δ3. The propagator integra-
tion can be neatly expressed by dual effective action. From decomposition (5.2), (1/V3)

∫
⟨δ3(x)δ3(0)⟩

can be calculated setting M = diag(b,−b) with real b and differentiation:

1

V3

∫
d3x ⟨δ3(x)δ3(0)⟩ = ∂2

∂b2
f (5.11)

= f1 + fA. (5.12)

In turn, setting M = dial(ib,−ib) equates

1

V3

∫
d3x ⟨π3(x)π3(0)⟩ = ∂2

∂b2
f (5.13)

= f1 − fA. (5.14)

Thus, cA(T ) = 0 if and only if fA = 0. Below we argue fA vanishes under one more assumption.

Assumption 2

Topologically nontrivial configuration of gauge fields and accompanying fermion (exact) zero modes
were the key to solve the U(1)A puzzle. However, this is highly suppressed in T ≥ Tc and V3 → ∞
limit. To see this consider an expectation value of Σ := Ψ̄iΨi, which is invariant under diagonal
SU(2)V but transforms non-trivially in the full SU(2)L ×SU(2)L. As we are in an SU(2)L ×SU(2)R
restored phase, when we take M → 0 and V → ∞ limit, we have

lim
M→0

lim
V→∞

1

V
⟨Σ⟩M = 0. (5.15)

The expectation value in the left-hand side can be neatly expressed as a integral of quark propagator:

1

V

∑
i=u,d

(
NA

L +NA
R

mi
+
∑
n

mi

λ2n +m2
i

)
. (5.16)

Here mi is the diagonal entry of M and note that NL is the number of zero modes with respect to the
massless Dirac operator, not /D +M , and their m-dependence is provided solely by Pm(A). Taking
mi → +0, we see that both zero and non-zero modes contribution tend to be 0 as both are positive.
Thus we arrive at

⟨NA
L +NA

R ⟩M
miV

= O(m).

Indeed, according to [69], we can further prove

⟨NA
L +NA

R ⟩M
V

= 0

independently of small but nonzero mass M . Although their proof is elaborate and dependent also
on another assumption to be made shortly, it can be directly inferred from (5.7) [69]. If NA

L +NA
R is

of order V3, then such contribution of gauge configuration is suppressed by the factor | detM |O(V3).
Thus in the presence of fermion and at large V3-limit, such configuration is measure-zero.

The vanishing of second term implies nontrivial consequence for Dirac eigenvalue distribution,
defined as

ρ(λ) :=
1

V4

∑
n

δ(λ− λn). (5.17)

Them the second term in (5.16) can be written as∫
dλ

mi

λ2 +m2
i

ρ(λ).
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If V → ∞ makes ρ continuous, then mi → 0 limit produces π⟨ρ(0)⟩M and this must tend to 0.
Whether it is continuous or not, or even analytic around λ = 0 or not, is still quite nontrivial, but
above argument prohibits overpopulation of near-zero modes. We are encouraged to assume:

Assumption 2� �
ρ(λ) defined in (5.17) is analytic around λ = 0.� �

Under these assumptions we have shown that

⟨ρ(0)⟩M = O(M2) (5.18)

Note that the right-hand side is O(M2), not O(M) because of the background SU(2)L × SU(2)R
invariance.

Proof of fA = 0

Now it is straightforward to prove fA = 0 using the dual effective action (5.10). Setting M =
diag(mu,md) again, consider the derivative of partition function with respect to mu,

1

V4

∂

∂mu
ZM (T, V3,M). (5.19)

From the expression of PM (A) (5.7), the microscopic expression for (5.19) is

∑
n

⟨ mu

λ2n +mu
⟩M =

∫ ΛUV

0

2mu ⟨ρ(λ)⟩M
λ2 +m2

u

dλ, (5.20)

where ΛUV is the UV-cutoff. Macroscopically, from (5.10), this is expressed as

2f1mu + 2fAmd +O(m3). (5.21)

Taking mu → 0 limit reduces (5.20) to π⟨ρ(0)⟩M , which according to (5.18) is of O(m2
d), while

macroscopically derived expression reduces to 2fAmd. Thus,

2fAmd = O(m2
d). (5.22)

This completes the proof of Aoki-Fukaya-Taniguchi “theorem”.

The assumption 2 on the analyticity of the Dirac-eigenvalue spectrum ⟨ρ(λ)⟩ around λ ∼ 0 is
physically less persuading than the assumption 1. Much effort has been made by lattice studies to
determine the behavior of ⟨ρ(λ)⟩ [71, 72, 73, 74, 75, 76, 77, 78, 79], but there are obvious difficulties.
First it was critical to employ a UV-regularization which maintain the full chiral symmetry SU(2)L×
SU(2)R, which had been unreachable before the introduction of overlap fermion. See [80] for a recent
discussion of the relation between the Dirac eigenvalues and violation of Ginsparg-Wilson relation.
Secondly and trivially, taking V → ∞ limit is also required in making ρ(λ) continuous. At this stage,
enlarging lattice size with overlap fermion seems to be the only plausible way to actually guess the
true nature of ⟨ρ⟩.

The relation between the absence of cA and fully U(1)A-restored LGW model is rather subtle
[81]. Even with fA = 0, there are still U(1)A violating interactions in (5.3). Apparently, since
λx-term has exactly the same symmetry as cA mass term, it can easily generate a cA mass term
under renormalization, which according to the above discussion is forbidden. To circumvent this, it is
natural to assume the presence of symmetry, e.g. Z4 which rotates meson field (or Z8 for quark field),
or irrelevance of such an interaction in IR. For λy-term, at this stage, there seems to be no principle to
forbid its appearance. Hence, if this is indeed non-vanishing, the corresponding operator detΦ2 + c.c.
at fixed point (if any) must be an irrelevant one to achieve emergent O(4)×O(2). We will reconsider
this point later.
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Figure 5.1: A two dimensional slice of stacked triangular lattice. The ground states are “120◦ config-
urations”.

5.2 Frustrated spin system on triangular lattices

Introducing frustration is a simple but intriguing twist for spin systems: much complicated structure
of ground-states brings much tough but interesting dynamics of the phase transition. Here we discuss
the most simple class of frustrated spin systems, which is called stacked triangular anti-ferromagnets
(STA). In this system, as its name indicates, anti-ferromagnetic n-component spins are placed on the
two-dimensional triangular lattice (Fig. 5.1), which is piled up into the third direction to form a
three-dimensional one. We denote the lattice spacing of triangular lattice as a and take fundamental
lattice vectors to be

r1 = (a, 0) ,

r2 =

(
a

2
.

√
3a

2

)

Whether interlayer interaction is ferromagnetic or anti-ferromagnetic will be irrelevant for the following
discussion. Perhaps n = 1 (Z2-spin) is the simplest example of spin frustration, where for each triangle
we can only have at most two anti-parallel pairings of spins. In this case, we have an infinite number of
degenerate ground states in the large-volume limit. For n > 1, thanks to relaxation by the continuity
of spin direction, situation is totally different.

5.2.1 Ground states

Here we follow [82] to discuss how ground states look like. To do this it is convenient to perform
Fourier transform on the triangular lattice. Hamiltonian

J
∑
⟨xj⟩

S(x) · S(y) (J > 0)

will then be

JN
∑
k

S̃(k) · S̃(−k) {cos(k · r1) + cos(k · r2) + cos(k · (r1 + r2)} , (5.23)
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where N is the number of sites (which at moment taken to be finite) and S̃(k) =
∑

x e
ik·xS(x) subjects

to

S̃(−k) = S̃(k)∗, (5.24)∑
k,k′

S̃(k) · S̃(k′)ei(k+k′)·x = 1. (5.25)

In minimizing (5.23), since the condition (5.25) is a bit complicated, we replace the condition by the
integrated form,

1 =
1

N

∑
x

∑
k,k′

S̃(k) · S̃(k′)ei(k+k′)·x

=
∑
k

S̃(k)S̃(−k), (5.26)

and then check that the minimizing solution satisfies the original condition (this will be met if there
is a sort of translational invariance). Now the task is rudimentary: introducing Lagrange multiplier λ
for (5.26), we yield

S̃(k) {cos(k · r1) + cos(k · r2) + cos(k · (r1 + r2))− λ} . (5.27)

Dotting (5.27) with S̃(−k) and summing over k, we see that the total ground states energy should be
JNλ, hence we have to minimize λ. If cos(k · r1) + cos(k · r2) + cos(k · (r1 + r2)) does not reach its
minima, then S̃(k) = 0 by (5.27). Thus, the critical modes are at

k = ±Q = ±2π

a
(2/3, 0), (5.28)

and the ground states are of the form

S(x) = v1 cos(Q · x) + v2 sin(Q · x), (5.29)

where v1,2 are mutually orthogonal unit vectors and then (5.25) is satisfied. An example of these
configuration for n = 2 is delineated in Fig.5.1.

5.2.2 emergent O(2)

The degeneracy of the ground states (5.29) is somewhat different from non-frustrated systems. Along
with O(n)-rotation of entire spin, we can rotate (v1, v2) → (v1, v2)g by g ∈ O(2). The connected part
of O(2) can be simply understood as the phase shift of the trigonometric function in (5.29). Since
O(n − 2) × O(2)diag (the latter is a mixed subgroup of O(n) and O(2)) preserves a particular choice
of ground states, the moduli space is

O(n)×O(2)/(O(n− 2)×O(2)diag). (5.30)

In this way, in writing the non-linear σ model description of the phase transition, new factor O(2)
emerges as a symmetry of its target space.

We can also explain the emergence of O(2) in a more renormalization group theoretical fashion
[83]. The first step is to employ the Hubbard-Stratonovich transformation trick to replace rigid spins
to unconstrained ones. The Hamiltonian in terms of new spin variable ϕ(x) is∫

dk P (k)ϕ̃(k)ϕ̃(−k) +
∑
x

V (ϕ(x)), (5.31)

where P (k) = {r + cos(k · r1) + cos(k · r2) + cos(k · (r1 + r2))}−1 is the inverse of kinetic operator in
(5.23) with regularization parameter r, and the potential term V (ϕ) =

∫
S∈Sn−1 dS exp(−S ·ϕ) appears
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Figure 5.2: The first Brillouin zone of triangular lattice

in integrating out the original variable. Again the ground states are realized not on k = 0, but k = ±Q
where Q is defined in (5.28). To explain the shell-momentum integration procedure, it is crucial to
recognize the first Brillouin zone of the triangular lattice. Fundamental reciprocal lattice vectors

K1 = 2π/a

(
1,− 1√

3

)
K2 = 2π/a

(
0,

2√
3

)
also form a triangular lattice and the resulting quotient is hexagonal as in Fig.5.2. Under the identifica-
tion by inverse lattice vectors, this hexagon can be neatly divided into three independent sub-hexagons
A, B, and C, the center of which are Q,−Q, 0, respectively. The vector Q = (2K1 +K2)/3 defined in
(5.28) describes the ground states, while the parallel configuration k = 0 corresponds to that of largest
kinetic energy. Thus we want to retain the modes with momentum k around ±Q, not around k ∼ 0.
Especially, in the RG flow into IR, entire region of C is integrated out in the procedure. In the final
form, the effective Hamiltonian should look like∫

P ′(k)(A(k) ·B(−k)) + λ1

∫
A(k1) ·A(k2)B(k3) ·B(k4)

+λ2

∫
A(k1) ·B(k2)A(k3) ·B(k4). (5.32)

Here A(k) = ϕ̃(Q+ k), and B(k) = ϕ̃(−Q+ k) hence A(k)∗ = B(−k). In (5.32), each k-integration is
performed in a tiny region centered at the origin and in the second and third terms, they are subject
to
∑

i k = 0. The absence of A4, A3B,AB3, B4-like term is due to momentum-conservation rule in the
original momentum variable: for example, A4 like term has momentum 4Q +

∑
ki, which cannot be

proportional to any inverse-lattice vectors provided that the left region for momenta is small enough.
At quartic order of spin variables, the action now has an additional symmetry A(k) → eiθA(k) and
B(k) → B(k)e−iθ, resulting in O(n) × O(2)-symmetry. Although A6(k)-like term is compatible with
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momentum-conservation, we expect such terms to be suppressed compared to the super-renormalizable
interactions in (5.32).

5.3 Aspects of O(n)×O(m) Landau-Ginzburg-Wilson models

5.3.1 The model

Here ϕ transforms as a bi-fundamental representation of O(n) × O(2) indexed as ϕia, where i =
1, 2, · · · , n and a = 1, 2. The most general Lagrangian is

n∑
i=1

∑
a=1,2

1

2
∂µϕia∂µϕia+

1

2
m2ϕiaϕia + u

 n∑
i=1

∑
a=1,2

ϕiaϕia

2

+ v

n∑
i,j=1

∑
a,b=1,2

(ϕiaϕjaϕjbϕib − ϕiaϕiaϕjbϕjb) .

(5.33)

Note that the second contribution of the v-term is identical with the u-term. Thanks to this choice of
v, the symmetry breaking pattern is directly connected to the sign of v. To discuss ground states, it is
convenient to diagonalize the positive-semidefinite symmetric 2×2 matrix Φ := ϕiaϕib to diag(Φ1,Φ2)
with Φ1 ≥ Φ2 ≥ 0. It is now elementary to minimize the potential in terms of Φi,

m2

2
(Φ1 +Φ2) + u(Φ1 +Φ2)

2 − 2vΦ1Φ2. (5.34)

First of all, to bound the potential from below, we require u > 0 and 2u ≥ v. The sign of v determines
the symmetry-breaking pattern: when v > 0, vacuum occurs for Φ1 = Φ2 and unbroken symmetry is
O(n− 2)×O(2), and when v < 0, we have to set Φ2 = 0 and the unbroken symmetry is O(n− 1).

Thus, the LGW model relevant for U(1)A-restored QCD chiral phase transition, the symmetry
breaking pattern of which is

SU(2)L × SU(2)R × U(1)A ≃ O(4)×O(2) → SU(2)V ≃ O(3),

should be n = 4 with v < 0 model, while the one for n-component triangular lattice model has to
have v > 0.

5.3.2 The status of RG studies: a chronological overview

Although the model introduced above is a straightforward generalization of O(n)-LGW models, its
property under the RG flow is much more interesting. The phenomenologically relevant question
is whether an IR-stable RG fixed point exists or not with the desired symmetry breaking pattern
explained above. If it does, the phase transition can be (but do not have to be) of second order with
the universality class characterized by the RG-fixed point, while the absence of such a fixed point
concludes with a prediction of the first order transition. Thus the renormalization group theoretical
aspects of the models are intensively studied. Here we briefly summarize the pre-bootstrap history of
the issue. For a more complete summary and the discussion of experimental results for spin systems,
we refer the reader to [84][85].

In [86] the beta functions of at two-loop order of the MS scheme has been computed. Kawamura
[83] analyzed these functions and found that depending on the value of n, there are four possible-types
of RG flows in d = 4− ε:

1. n > nI(d) = 21.8−23.4ε+O(ε2): In this case there are two additional fixed points with v > 0 to
Gaussian and Heisenberg ones. The striking property is that one of them called the chiral fixed
point is IR-stable. When n hits nI(d), the chiral fixed point co-annihilates (starting to acquire
imaginary part) with the other unstable fixed point, which is called the anti-chiral fixed point.
See Fig.5.3 for a plot of this type of flow. The beta functions used in the plots are the 3-loop
results taken from [87].
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2. nI(d) > n > nII(d) = 2.20− 0.57ε+O(ε2):

In this region there are only Gaussian and Heisenberg fixed points, and both are IR-unstable.
The Gaussian one is unstable against both u, v while the Heisenberg one against v. See Fig.5.4.

3. nII(d) > n > nIII(d) = 2− ε+O(ε2):

Again additional fixed points appear, but with v < 0, and one is stable and the other is unstable.
The stable one is called sinusoidal or collinear fixed point, while the unstable one acquires the
”anti” prefix, prosaically. See Fig.5.5.

4. nIII(d) > n: As n hits nIII, the collinear fixed point moves towards the u-axis and cross it
colliding with the Heisenberg fixed point. In the collision, the stabilities of the Heisenberg and
the collinear fixed points are exchanged, making the Heisenberg fixed point stable, i.e, the v-term
becomes irrelevant around the Heisenberg point. See Fig.5.6.
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Figure 5.3: The RG flow of d = 3.9 (i.e., ε =
0.1) O(25) × O(2)-LGW model. The arrows
head toward IR.
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Figure 5.4: The RG flow of d = 3.9 (i.e., ε =
0.1) O(15) × O(2)-LGW model. The arrows
head toward IR.
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Note that the terminology “chiral” for v > 0 fixed points is a conventional one. Rather it is its
v < 0 counterpart that works for the QCD chiral phase transition.

So, at least when d is close enough to 4 and n > nI, there exists an IR-stable fixed point with
symmetry breaking pattern O(n)×O(2) → O(n−2)×O(2), which could be a candidate to explain the
phase transition of STA system. Kawamura [83], extrapolating the two-loop result nI = 21.8−23.4ε to
ε = 1, conjectured that the chiral fixed point continues to exist around n ∼ 2, 3 (i.e., experimentally
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accessible values) in d = 3 spatial dimensions. In particular, he explained unconventional type of
phase transition reported experimentally through this fixed point.

In contrast, for the fixed point with v < 0 (which is suitable for QCD purpose), the allowed region
of n for it to exist is nII(d) > n > nIII, which is quite narrow if ε ∼ 0. Extrapolation ϵ → 1 does not
seem to help so much for broadening the region. Based on the RG result (though the beta functions
are of one-loop and computed in the context of U(n) × U(n)-LGW models), Pisarski-Wilczek [66]
concluded that fully U(1)A-restored chiral phase transition is of first order.

These conclusions were, however, just the beginnings of controversies for these systems. First of
all, perturbative computation at even higher loops has been performed in [88][89]. The state of the
art, five-loop result for nI is

nI(ε) = 21.80− 23.43ε+ 7.09ε2 − 0.03ε3 + 4.26ε4 +O(ε5).

Although these expansion are only asymptotic in ε = 4 − d, we see that the higher-order terms
contribute positively and extrapolation ε = 1 tends to imply nI > 3. Meanwhile the functional
renormalization group approach for these system initiated in [90][91] for n = 2, 3 with v > 0 also
imply the absence of the corresponding fixed points around these physical points. All these methods
predict this value to be nI = 5 ∼ 6.

On the contrary, in [92], the fixed-dimension d = 3 perturbation series (proposed in [93]) has been
worked out for the model and they predicted fixed points for n = 2, 3, but seemingly without Borel-
summability. The point is that these fixed points are disconnected to the one present in larger n (they
also agree that these disappear somewhere around n ∼ 6), and cannot be captured by the conventional
scheme of ε-expansion. In later analysis, the use of beta-functions computed via MS scheme also
turned out to predict such fixed points with better Borel-summability, marginally agreeing with fixed-
dimension series (see the tables in the next chapter) [94]. Again, in order to find these points, we must
not persist in seeking the zeros of beta-function by expanding in ε, but rather should plug first ε = 1
in the MS beta-function, and then solve it after the resummation.

For the analysis of v < 0, the situation is almost parallel. The functional RG studies for the
O(4) × O(2)-model was initiated in [95][96] and developed in various settings e.g., [97][98]. They
tend to support the original conclusions of Pisarski-Wilczek (see however [99]) – that is, the system
undergoes a first-order phase transition. The method has been applied also for O(3)×O(2) with v < 0
in [100], in the context of the 3He-phase transition. Again on the contrary, v < 0 fixed points have
been found within the perturbative scheme for v > 0 [101] in the condensed-matter context. Later in
[102], the model was re-investigated in the context of QCD and stability has been verified within the
fixed-dimension and ε = 1 MS scheme.

Both the perturbative and functional RG schemes have their drawbacks. For the functional RG
studies, although it is originally formulated as the one-loop exact ordinary differential equation for-
mulated on the infinite-dimensional space of all possible action functional, in order to trace the flow
numerically, we have to truncate this space to a finite-dimensional one. Indeed, it is reported in [99]
that the existence of the fixed point is rather unstable against the change of truncation for O(4)×O(2)
v < 0 theories2. Perturbative series too have serious problem from the beginning – they are only
asymptotic and one has to go through the resummation procedure to obtain a sensible answer, in
which we have to manually select real parameters. This point, arbitrariness of these real parameters,
was critically examined in [104][105] and found to affect the final result in a significant way.

Thus, all what is clear is the necessity of other non-perturbative argument – like the conformal
bootstrap.

2 Very recently, in [103] the analysis for O(3)×O(2) with v > 0 has been reworked with higher-dimensional truncation
space, again concluding the absence of the fixed points.
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Chapter 6

Bootstrapping controversies

In this chapter we work out the bootstrap study for the CFTs with O(n)×O(2) symmetry, the moti-
vation of which has been explained in the last chapter. What is physically important and controversial
is the (non-)existence of the d = 3 fixed points which are not of O(nm)-Heisenberg or Gaussian type.

To carry this out we obtain numerical bounds by the methods described in Chapter 4. This is
achieved in several steps. We first perform the group theoretical classification of relevant OPEs and
the bootstrap equations in 6.1. After this setup we test the validity of the methods and check whether
it works for non-Heisenberg type fixed points in a less-controversial region. To this end, we chose
n ≫ 2 models in d = 3 dimensions. The choice is made so that we have better control of critical
exponents by means of large-n expansion, which has been computed to order 1/n2 in [87]. Note that
while ε-expansion tends to be invalid for ε = 1, the large n method is legitimate (though asymptotic)
whenever n is large. We will observe the intriguing behaviors of the bounds as in those witnessed in
Chapter 4, but in a more elaborate way. After confirming the power of the bootstrap program for
these non-controversial cases, we finally carry out the study of controversial region, n = 3, 4 models
formulated in d = 3.

6.1 Setup : the bootstrap equation

The first step in carrying out the bootstrap analysis is to write down the bootstrap equation as in
Section 4.3. With LGW-order parameter bi-fundamental field ϕia of Section 5.3 in mind, we expect a
natural extension of the bounds obtained for the Ising and O(n)-models to be those from

⟨ϕia(x1)ϕjb(x2)ϕkc(x3)ϕld(x4)⟩. (6.1)

Recall that i, j, k, l = 1, 2, · · · , n and a, b, c, d = 1, 2. In carrying out the conformal block decomposition
of this four-point function, it is crucial to classify the additional structures labelled by the irreducible
representations contained in the OPE. In this case, there are nine representations inside the OPE,

(bi-fundamental)⊗ (bi-fundamental) = SS⊕ ST⊕ SA⊕ TS⊕ TT⊕ TA⊕AS⊕AT⊕AA. (6.2)

Here for each label, the first letter represents the O(n)-representation under which the field is charged,
and the second letter the O(2)-representation. So for example, SS is neutral under both O(n) and O(2),
ST represents O(n)-singlet but traceless-symmetric tensor of O(2) (or charge 2 in U(1)-terminology).
Again index-exchange symmetry of a representation is correlated with the operator spins which it can
include. It follows then that SS, ST,TS,TT,AA sectors contain the even spin contributions, while
SA,AS,AT,TA odd ones.

The bootstrap equation too can be derived in a fashion entirely analogous to the O(n)-example,
matching all the coefficients of Kronecker’s deltas. In this case the possible independent Kronecker’s
delta is a product of O(n) and O(2) ones, so nine conditions appear. A straightforward computation
leads to ∑

R∈(bi-fund)2

∑
O∈ϕ×ϕ
O in R

λ2ϕϕOV⃗R(∆ϕ,∆O, lO; z, z̄) = (0, 0, 0, 0, 0, 0, 0, 0, 0)t,
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where

V⃗SS :=



F (−)

0
0
0
0

F (+)

0
0
0


, V⃗ST :=



−2
m F (−)

F (−)

F (−)

0
0

− 2
mF

(+)

F (+)

F (+)

0


, V⃗SA :=



0

−F (−)

F (−)

0
0

0− F (+)

F (+)

0



V⃗TS :=



− 2
nF

(−)

0

F (−)

F (−)

0
0

− 2
nF

(+)

0− F (+)

F (+)


, V⃗TT :=



(
1 + 4

nm

)
F (−)(

1− 2
n

)
F (−)(

− 2
n − 2

m

)
F (−)(

1− 2
m

)
F (−)

F (−)(
1 + 4

nm

)
F (+)(

−1− 2
n

)
F (+)(

− 2
n + 2

m

)
F (+)(

−1− 2
m

)
F (+)


, V⃗TA :=



F (−)(
−1 + 2

n

)
F (−)

− 2
nF

(−)

F (−)

−F (−)

−F (+)(
1 + 2

n

)
F (+)

− 2
nF

(+)

−F (+)



V⃗AS :=



0
0

F (−)

−F (−)

0
0
0

−F (+)

−F (+)


, V⃗AT :=



F (−)

F (−)

− 2
mF

(−)(
−1 + 2

m

)
F (−)

−F (−)

−F (+)

−F (+)

2
mF

(+)(
1 + 2

m

)
F (+)


, V⃗AA :=



F (−)

−F (−)

0

−F (−)

F (−)

−F (+)

F (+)

0

F (+)


. (6.3)

Since this bootstrap equation is quite lengthy, the solver requires about O(100)-times as long runtime
as for the Ising model bootstrap equation, if the cutoff parameter Λ is equal.

A technical remark is that for O(4) ≃ SU(2)× SU(2), the anti-symmetric representation (“A”) is
in fact a direct sum of two irreducible representations, each of which satisfies self-duality condition.
For the model of interest, O(4)×O(2) = SU(2)L×SU(2)R×U(1)A-symmetric LGW model, however,
we expect the discrete symmetry exchanging SU(2)L and SU(2)R (which is a parity transformation,
microscopically) to be present, so there is a relation among the operator contents and OPE coefficients.
Encapsulating these related channel reduces the crossing relation to (6.3).

6.2 O(n)×O(2) with n ≫ 2: uncontroversial region

Before directly plunging into the study of theories with great physical interest n = 3, 4, we first check
the validity of the bootstrap program to the problems under better-control, yet non-trivial physics
emerges. We choose O(n) × O(2) models with n ≫ 2 as the starter1, as we expect 1/n-expansion
becomes precise in such a region. According to the large n-ansatz, the fixed points found around
d = 4 − ε in Section 5.3 continue to exist in d = 3. There two additional fixed points to Heisenberg
and Gaussian ones are present, i.e., the chiral and anti-chiral fixed point. Natural question is then,
can we find these additional fixed points by means of the conformal bootstrap, as in the case of the
Ising and the O(n) models? Below we carry out this theoretical experiment.

1 In our original paper [17], the symmetry group O(n)×O(3) was chosen, because O(n)×O(2) seemed too controversial
then.
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6.2.1 O(10)×O(2)

Let us begin with the symmetry group with n = 10, i.e., O(10) × O(2). The choice n = 10 has no
physical meaning but lies well beyond the existence limit of these fixed points n ∼ 6 predicted by the
other methods. First we consider the bounds for O(10)×O(2)-singlet operator (i.e., dimension of the
mass term if the model under consideration is a LGW model). The result is plotted in Fig.6.1 as blue
dots. They turned out to be equal (within our precision goal of 5 × 10−4) with those plotted as the

0.505 0.51 0.515 0.52 0.525 0.53

1.2

1.4

1.6

1.8

2

2.2

Heisenberg

chiral

anti-chiral ∆φ

∆c (∆φ)

Figure 6.1: Blue dots: The upper bound for the dimension of the first operator appearing in SS-channel
of O(10)×O(2) bi-fundamental OPE with itself. Red line: The bound for O(20)-S operator in O(20)
vector OPE with itself. For O(20), the original data are discrete and step is 0.001, but they are refined
to be 0.0002 around kink location ∆ϕ ∼ 0.506. The binary precision goal is 5 × 10−4. Considered
spins are 0, 1, · · · , 21, 24, 25, 28, 29, · · · , 40, 41, and νmax = 18 is taken. Parameters can again be the
SDPB default set in [12].

red line, which is the bound for O(20) = O(10× 2)-singlet operator dimension in O(20) vector×vector
OPE (this has been already considered in [47], by the way). Since O(20) can be artificially decomposed
in such a way that O(20)-vector becomes O(10)×O(2)bi-fundamental, any consistent CFT spectra of
O(20) lead to those for O(10)×O(2), and it trivially follows that ∆c

O(20),S ≤ ∆c
O(10)×O(2),SS. However,

the equality ∆c
O(20),S = ∆c

O(10)×O(2),SS has not been proven analytically. Such an agreement was also

observed between the bound of the singlet operators for SU(N) and SO(2N) [50].
Anyway, we are obliged to conjecture that the equality is valid at least in this case, and although

It has a sharp kink around ∆ϕ = 0.506, it should represent the O(20)-Heisenberg fixed point.
On the other hand, large 1/n-expansion for O(n)×O(2) models predicts the critical exponents for

chiral fixed points to be

∆ϕ =
1

2
+

2

π2
1

n
+

−32

3π4
1

n2
+O(1/n3),

∆SS = 2− 16

π2
1

n
−
(
56

π2
+

128

3π4

)
1

n2
+O(1/n3), (6.4)

and anti-chiral

∆ϕ =
1

2
+

4

3π2
1

n
− 112

27π4
1

n2
+O(1/n3),

∆SS = 1 +
32

3π2
1

n
+

4096

27π4
1

n2
+O(1/n3), (6.5)

where we have used the conversion rule for correlation-length exponent ν and ∆SS,

∆SS = 3− 1

ν
(6.6)
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and η and ∆ϕ,

∆ϕ =
d− 2 + η

2
. (6.7)

These predictions to order 1/n2 for n = 10 are also depicted in Fig.6.1, and both are well-beneath
the bounding line. As a matter of course, this bound is to be saturated by all O(10)×O(2)-symmetric
CFTs including these, and this result is perfectly consistent. However, what surprised us in Chapter
4 is saturation of bounds by actual LGW-model fixed points, and from this perspective, the result is
not satisfactory.

spin 1 operator in the TA sector

This is not the end of the adventure, however. We have a lot more to compute, i.e., the bounds for op-
erators in the other channels of global symmetry representations, like we did for O(2) T-representation
in Section 4.3. In this case, to gain some information about the extent of symmetry-breaking, we have
first computed the operator dimension bound in TA-spin 1 sector. Note that lowest-dimensional op-
erator in this sector has dimension exactly 2 when the full O(20)-symmetry is maintained, but has
positive anomalous dimension on proper O(10)×O(2)-symmetric CFTs. The numerical result is shown
in Fig.6.2. There is a slope-changing behavior around ∆ϕ = 0.513, as Fig.6.10 will suggest. The hori-
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Figure 6.2: The upper bound for the dimension of the first operator appearing in the TA-sector spin
1 channel. The same parameter as in Fig.6.1 setting works. O(20) Heisenberg fixed points has the
dimension exactly 2 for this operator, because on the point, TA spin 1 operators combine with the ones
in TA, SA and AS sector to form A-representation of O(20), lowest of which is the O(20)-conserved
current.

zontal location of this “kink” looks reasonably close to the large-n prediction of the anti-chiral fixed
points for n = 10 in 6.5,

∆
(large n)
ϕ = 0.513, (6.8)

∆
(large n)
SS = 1.14. (6.9)

Let us provide a further piece of evidence for the saturation of the bounds by the anti-chiral fixed
point.

Spectral study for the kink

In [106], a clever use of the bootstrap output linear functional is proposed and applied to d = 2 Ising
model, to reproduce the entire low-lying spectrum contained in the ϕ×ϕ OPE. This argument makes
the full-use of the singular property of CFT spectra saturating the bootstrap bounds. To do this,
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consider the variant of the positivity argument (without any global symmetry, for simplicity), which
is equivalent to the formulation of Section 4.2. We seek for α satisfying

α(F (∆, l = artificially chosen value above the unitarity bound)) = 1, (6.10)

α(F (∆ϕ,∆, l; ∗)) ≥ 0 whenever ∆ ≥ l + d− 2,

α(F (∆ϕ,∆, 0; ∗)) ≥ 0 whenever ∆ ≥ ∆h, (6.11)

where the first condition serves merely as the normalization condition for α, and the search for the
one which maximizes the identity contribution

obj := max(α(F (0, 0))). (6.12)

If we find such an α with obj > 0, again we conclude the presence of operator under ∆h. Equivalence
of the previous formulation is just a rescaling then. As we try to choose the smaller ∆h, obj trivially
decreases as the search space for α shrinks, and at some point, obj becomes 0. This is the optimal
value for the bootstrap dimension bound ∆c.

Now, assume that a CFT is saturating the bound. Then, action of optimal α on the crossing
relation

∑
O λ

2
ϕϕOF (∆O, lO; z, z̄) = 0 is,

α(F (0, 0)) +
∑

∆O≥∆c

λ2ϕϕOα(F (∆O, lO)) = obj +
∑

∆O≥∆c

λ2ϕϕOα(F (∆O, lO)) = 0

From the definition, the first term is 0 and the second contribution is non-negative. Thus, if a
bound-saturating CFT exists, such a CFT is highly-constrained, in a sense that whenever λϕϕO ̸= 0
α(F (∆O, lO)) = 0. In other ways, if we start from α with these properties, we can list up the potential
candidate for operators which are allowed to appear in ϕ×ϕ OPE by the condition α(F (∆O, lO)) = 0.
This method was extensively used to derive a spectrum (including those which have not been accessible
before the pre-bootstrap era) in the d = 3 Ising model [10]. The generalization to the case with global
symmetry is just an easy exercise.

A caveat in the argument is that we are assuming the ideal linear functional out of the infinite-
dimensional search space is available there. Since we can only handle the finite-dimensional search
space, in order to apply the method in a numerical fashion, we have to resort to the assumption that
the functional obtained with a finite-cutoff Λ is appropriately capturing the character of the ideal one.

Let us apply the above method (called “extremal functional method”) to the hypothetical CFT
located on the kink. After a binary search for the best bound at Λ = 15 with goal 5 × 10−5, we
collected the SDPB output and applied the output functional to polynomially-approximated V⃗SS(∆, 0).
An example of resulting polynomial is depicted in the Fig.6.3, where we observe a sharp minimum.
Locations of such minima are depicted in Fig.6.4 with varying ∆ϕ around the kink.

Unlike the rigorous bound for the TA-sector, from which we have read the functional off, these
values do not tell us anything exact. The source of error comes from the horizontal-impreciseness in
locating the kink (about ±0.001) and the finite-Λ effect, and we are forced to guess the latter value
from the lower-Λ result2. In this way, we predict AT sector kink-saturating CFT have an SS scalar
operator with dimension

∆SS = 1.15(3),

to be compared reasonably with the large-n prediction in (6.9).

6.2.2 Other sectors

We have then tried the bounds for other sectors. We tried ST, TS, TT, with spin 0 and AT with spin
1 (SA and AS spin 1 include the conserved current as their lowest-dimensional operator, so we did
not try it). Out of them, ST and TS looked intriguing. First for ST, the bound is shown in Fig.6.5.
The bound shows a slope change (though not as sharp in that in TA-sector, and we expect this to be
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Figure 6.3: Linear functional out put of TA-
sector bounds at ∆ϕ = 0.513 (Fig.6.2) act-

ing on V⃗SS(∆, 0) to read off the SS spectrum.
Rather large exponents are due to the poly-
nomial approximation (with prefactor omit-
ted for simplicity). Note that the second min-
ima exceeds the ∆c

SS around ∆ϕ in Fig.6.1, so
the first minimum must correspond to an ac-
tual operator.
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Figure 6.4: The location of the first minima
of α(V⃗SS(∆, 0)), with varying ∆ϕ. For the
estimation of error, we have also performed
binary-search for Λ = 11, where the param-
eter is the same as that in Λ = 15 except
νmax = 16.
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Figure 6.5: ST-sector bounds for O(10)×O(2). The parameter settings are the same as in Fig.6.1.
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Figure 6.6: TS-sector bounds for O(10)×O(2). The parameter settings are the same as in Fig.6.1.

sharpen as we take larger Λ) in the region ∆ϕ = 0.513 ± 0.002. Then from the result of the spectral
study Fig.6.7, we estimate ∆SS to be

∆SS = 1.17(10).

Though consistent with (6.9), this is less impressive than the result from TA-sector.
Meanwhile the bounds for TS-sector spin 0 operator shows an intriguing but not as sharp behavior

around the region ∆ϕ = 0.518 ± 0.03, from which it starts growing linearly. Such a behavior is also
observed for O(n)-T sector bounds for large n in Figure 3 of [47]. If we assume the around the presence
of a CFT saturating this bound, such one should have

∆SS = 1.79(10)

as is implied from Fig.6.8. Plugging n = 10 to the large-n expression (6.4) produces

∆
(large n)
ϕ = 0.519, (6.13)

∆
(large n)
SS = 1.75, (6.14)

and is included well in our prediction for TS bound-saturating CFTs (∆ϕ,∆SS) = (0.518(2), 1.79(10)).
It would be interesting to carryout the large-n analysis for the dimensions of operators in the sector

other than SS, to see whether they agree.

6.2.3 Predicting conformal window

So far everything is fine – the bootstrap approach reproduces the critical exponents of O(10)× O(2)
LGW model’s non-Heisenberg fixed points, so the answer to the above stated question seems “yes”.

Let us then lower the value n to see what happens there. All theoretical approaches (ϵ-expansion,
fixed-dimension series, MS without ϵ-expansion and functional RG) predict the lower existence limit
for (anti-)chiral fixed point, on which anti-chiral and chiral merge into single fixed point and below
which they no longer exist.

To see how this fact is reflected in the bootstrap outputs, we use the bounds for TA-sector as a
prove because it was the most sharp one for n = 10. We computed TA bounds for n = 9, 8, 7, 6, 5.
The results is presented in Fig.6.9. To see how slope is changing for each n, we also present in
Fig.6.10 the plot of its first derivatives interpolating the plot with piecewise linear polynomial class
in scipy.interpolate. As we decrease n, while for n = 9, 8 there still is a definite slope changing,
for n = 7, 6 it is not clear to us whether they should be regarded as the “kink”. For n = 5 the
kink is completely absent. Thus we predict that the edge of the conformal window for the anti-chiral

2However, the author doesn’t know an example in which this procedure bowls a wide.
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Figure 6.7: Spectra read off from the bounds
for ST-sector. The setting is equal to that in
Fig.6.4.
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Figure 6.8: Spectra read off from the bounds
for ST-sector. The setting is equal to that in
Fig.6.4.

fixed points is somewhere between 5 ∼ 7. This is to be compared with the Table I of [89], which
summarizes the earlier values for the predictions from the other approaches, all higher-order analysis
lies within our prediction. It would be interesting to further pursue the value of existence limit using
the bootstrap program with increased cutoff Λ.
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Figure 6.9: TA-sector bounds for O(n)×O(2)
with varying n. Horizontal step 0.001 is hid-
den to help the reader’s eye. The parameter
settings are the same as in Fig.6.1.
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Figure 6.10: The slope of of Fig.6.9.
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6.3 O(3)×O(2) and O(4)×O(2): controversial region

6.3.1 O(3)×O(2): implications for frustrated spin systems

We first present our results forO(3)×O(2)-symmetric CFTs, which would describe the anti-ferromagnetic
Heisenberg spin systems placed on stacked-triangular lattices, as discussed in Section 5.2. For this,
resummed perturbation series studied in [92][94],[107], and [101] predict the presence of two stable
fixed points called chiral (v > 0 in (5.33)) and collinear (v < 0 in (5.33)) fixed points in addition to
Gaussian and Heisenberg ones. On the other hand, the functional RG analyses in [90] (for chiral) and
[100](for collinear) predict the absence of such fixed points.

In Figs.6.11 and 6.12, we present the bounds for ST and AA-sector. In both plots we observe
kinks, the location of which is determined as the center point of the domain of rapid slope change.
Another intriguing feature of the kinks is the rapidity of the convergence to optimal bounds around
them: in generic region, the larger ∆ϕ, the more slowly the bound approaches its optimal value, but
around the kinks they tend to converge to the optimal result fastest in their neighborhood. From
these we read off the kink location for ST to be ∆ϕ = 0.539(3) and for AA ∆ϕ = 0.536(3), where we
claim that interacting CFTs are located.
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Figure 6.11: The bounds for ST-sector operator dimensions in O(3)×O(2)-CFTs. The blue dots and
the lower-most line correspond to the bounds obtained with Λ = 27, 23 using SDPB, while the other
lines represent those for Λ = 15, 19 obtained via sdpa-gmp in [18]. The light red rectangle represents
the combined prediction of [107] and [101] for these exponents using the MS-series.

As in the previous section, we can read off the spectrum of the bound-saturating operator from the
bootstrap output. We computed the low-lying scalar spectra in all the intermediate channels which
we denote by ∆R, and summarize the values in Tables 6.1 and 6.2.

While the two kinks that appeared in the two sectors are close in the values of ∆ϕ, given the
spectra of the first operators in various OPE channels, we conclude that they represent two distinct
CFTs. In the tables, we also quote the values of ∆ϕ and ∆Rs for each representation channel. The
converting formulae for ∆SS, ∆ϕ are again given by equations(6.6-6.7). The values of other channel
operators are taken from Table III of [101]3. Our spectra for the kink in the bounds for TS-sector
agree with the resummed 5-loop expansions in MS scheme (without ε-expansion) for the chiral fixed
point within the systematic error, and those for AA also agree with their results for the collinear fixed
point. Although the comparison with the six-loop expansions in MZM scheme is less impressive, it was
anticipated in [101] because of the better Borel-summability of MS series. Our spectra do not show
further relevant operators in the SS sector in agreement with the claim that these fixed points are

3 The exact correspondence is ∆AA = 3− y1, ∆TT = 3− y2, ∆TS = 3− y3 and ∆ST = 3− y4.
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Figure 6.12: The bounds for AA-sector operator dimensions in O(3) × O(2)-CFTs. The blue dots
correspond to the bounds obtained with Λ = 19, while the line represents those for Λ = 15, both of
which were obtained via sdpa-gmp in [18]. The light red rectangle represents the prediction for these
exponents by the MZM-series [101].

stable. We, however, do not find any indication that the chiral fixed point has a focus point behavior
reported in [94].

While the correspondence between kinks and actual CFTs has not been proven yet, we emphasize
that our results (as in all the conformal bootstrap studies) are obtained without any reference to the
RG analysis based on the Lagrangian (5.33). We believe that the most natural explanation for such
an agreement is the actual existence of these CFTs. We are therefore led to the conjecture: both the
chiral and collinear fixed points for O(3)×O(2) LGW model exist and saturate the bound for ST and
AA-sector, respectively. The presence of the chiral fixed point with the symmetry breaking pattern
O(3) × O(2) → O(2) implies that the phase transition in frustrated spin systems can be continuous,
as was first conjectured by Kawamura[83].

In the other channels, we do not see any interesting behaviors. The kink present in TA-spin 1
channel for n = 10 but disappeared around n ∼ 6 still do not show up again for n = 3, 4. On the other
hand, in ∆c,AA,0, where we observed a kink for O(3)×O(2), we do not find any interesting behaviors
for O(10) × O(2). It is plausible that such a “switching” behavior of the sectors showing kinks is a
reflection of the picture that the anti-chiral fixed point merges into chiral one when n is below the
value nI continued from 4− ε dimension, and a qualitatively different fixed point (i.e., collinear fixed
point) emerges for n below another critical value.

6.3.2 O(4)×O(2): kinks and spectral studies

We present our results showing the bounds for ST-sector and AA-sector in Fig.6.13 and 6.13. In
Tables 6.3 and 6.4, we list the spectra at the kink (∆ϕ ≃ 0.530 for ST and ∆ϕ ≃ 0.558 for AA). From
this comparison we find it reasonable to regard the kink in the ST-sector bounds as the chiral fixed
point and that in AA as the collinear fixed point. Hence our non-perturbative results in agreement
with the higher-loop analysis in RG provides a strong support for the existence of the chiral as well as
collinear fixed point, and the latter, in particular, suggests the possibility of continuous chiral phase
transition in QCD once the U(1)A is restored at the level of chiral effective Lagrangian (5.3).

Note that, unlike the earlier prediction, our prediction for the ∆SS ≃ 1.52(5) significantly differs
from ∆S ≃ 1.67(1) of the O(4) Heisenberg universality class and could offer a clue for judging U(1)A
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∆ϕ ∆SS ∆ST ∆TS ∆TT ∆AA

Bootstrap 0.539(3) 1.42(4) 1.68(6) 1.39(3) 1.113(3) 0.89(2)

MS 0.54(2) 1.41(12) 1.79(9) 1.46(8) 1.04(11) 0.75(12)

MZM 0.55(1) 1.18(10) 1.91(5) 1.49(3) 1.01(4) 0.65(13)

Table 6.1: The low-lying spectra read off around the O(3) × O(2) ST-bound saturating CFT with
Λ = 27, 23 using SDPB. The spectra for the O(3)× O(2) chiral fixed point are taken from [107] (∆ϕ

and ∆SS) and [101] (others).
∆ϕ ∆SS ∆ST ∆TS ∆TT ∆AA

Bootstrap 0.536(3) 1.43(4) 0.90(2) 1.003(5) 1.228(3) 1.65(5)

MS 0.543(12) 1.43(20) 0.9(2) 1.0(1) 1.25(5) 1.8(1)

MZM 0.540(4) 1.31(10) 0.95(15) 1.0(2) 1.25(10) 1.75(10)

Table 6.2: The low-lying spectra of the O(3)×O(2) AA-bound saturating CFT read off from Λ = 19, 15
result obtained with sdpa-gmp out put in [18]. The spectra for the O(3)× O(2) collinear fixed point
are taken from [108] (∆ϕ and ∆SS) and [101] (others).

restoration scenario itself in the future lattice and experimental studies of the correlation length.
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Figure 6.13: The bounds for ST-sector operator dimensions in O(4) × O(2)-CFTs. The blue dots
correspond to the bounds obtained with Λ = 19, while the lines represent those for Λ = 15, both of
which were obtained via sdpa-gmp in [18]. The prediction from MZM-series in [101] is plotted in a
light red rectangle.

6.3.3 Bootstrap2: Refined scenarios for the chiral phase transitions

As remarked at the end of Section 5.2, when the U(1)A non-neutral interactions proportional to λx,y-
terms in the effective action (5.3) are present, the RG evolution process does not necessarily end up
with the O(4) × O(2)-fixed point, existence of which we have just argued. Realization of this fixed
points requires either the vanishing of λx,y (from the analysis of QCD) or the RG-irrelevance of such
interactions at the fixed point. Note that the higher-order perturbative studies in [101][102] have not
produced the answer for this operators.

Here we exclude the latter possibility using the bootstrap output of the spectra listed in Table 6.4,
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Figure 6.14: The bounds for AA-sector operator dimensions in O(4) × O(2)-CFTs. The blue dots
correspond to the bounds obtained with Λ = 31 using SDPB, while the other lines represent those for
Λ = 15, 19, 23 obtained via sdpa-gmp in [18] and Λ = 27 via SDPB. The combined prediction of [101]
and [102] by MZM-series is plotted in a light red rectangle.

∆ϕ ∆SS ∆ST ∆TS ∆TT ∆AA

bootstrap 0.530(3) 1.35(4) 1.80(6) 1.31(2) 1.085(3) 0.90(1)

MS 0.536(5) 1.44(10) 1.83(8) 1.35(3) 1.06(10) 0.83(10)

MZM 0.533(3) 1.04(12) 1.94(7) 1.36(5) 0.96(20) 0.71(8)

Table 6.3: The low-lying spectra read off around the kink in Fig.6.13 Λ = 19, 15 result with sdpa-gmp
result in [18]. The spectra for the O(4) × O(2) chiral fixed point are taken from [107] (∆ϕ and ∆SS)
and [101] (others).

∆ϕ ∆SS ∆ST ∆TS ∆TT ∆AA

bootstrap 0.558(4) 1.52(5) 0.82(2) 1.045(3) 1.26(1) 1.70(6)

MS 0.56(3) 1.68(17) 1.0(3) 1.10(1k) 1.35(10) 1.9(1)

MZM 0.56(1) 1.59(14) 0.95(15) 1.25(10) 1.34(5) 1.90(15)

Table 6.4: The low-lying spectra read off around the kink in Fig.6.14 with Λ = 31, 27 SDPB output.
The spectra for the O(4)×O(2) collinear fixed point are taken from [102] (for ∆ϕ and ∆SS), [101].
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Figure 6.15: The same setting as in Fig.4.5, but with large values of ∆ϕ. The horizontal step is
actually 0.05 after ∆ϕ = 0.53.

by showing that the dimension of the operator y := (det(Φ)2 + det(Φ†)2) is forced to be below d = 3.
First of all, note that the four point function does not contain U(1)A-charge four operators (like

y)4as intermediate states, and we will not obtain a bound for this operator directly. Meanwhile a
charge 2 operator det(Φ) is in the Φ× Φ OPE, and translates as an ST operator in the O(4)×O(2)-
terminology.

In the operator language, then, the operator y is the lowest-dimensional operator contained in
the OPE of detΦ× detΦ with charge 4. Denominating the charges by the factor of 2 and forgetting
the O(4)-structure (as detΦ is O(4)-singlet), this is a charge 1 × charge 1 → charge 2 OPE. Thus,
forgetting completely about the presence of original field Φ and O(4)-structure, the operator dimension
bounds of Fig.4.5 obtained in Section 4.3 perfectly applies here to detΦ× detΦ → y OPE.

In Fig.6.15, we compute the numerical bounds in the same setting as in Fig.4.5, but this time
extending it to larger values of ∆ϕ. This shows (detΦ)2 must be relevant unless ∆detΦ > 1.08,
contradicting our prediction in Table 6.4, ∆detΦ = ∆ST ≃ 0.82(2). From this we conclude the
relevance of the operator y, and O(4)×O(2)-fixed point found above is realized only when λy = 0.

4 Although it might be confusing, we are assigning charge 1 to the quark bilinear field Φ, so 1/2 to quark field.
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Chapter 7

Conclusions and future directions

In this dissertation, we applied the conformal bootstrap program to O(n)×O(2)-symmetric CFTs, to
gain insight for the phase transitions represented by the fixed points of corresponding LGW models.
These bounds are rigorous and completely general ones to be respected by all the CFTs with this
symmetry, in particular by LGW-fixed points theories.

Though empirically, we argued that these bounds are actually saturated by these LGW-fixed points
CFTs. This is confirmed by the comparison with large-n expansion around n ∼ 10 by the comparison
of the critical exponents ∆ϕ, ∆SS.

When n is small, in particular for n ≤ 4, the presence of these fixed points has been quite contro-
versial within other approaches so far: the presence of the fixed points are conjectured only through
the perturbative computation with resummation. Our result for these fixed points, marginal satura-
tion of the bounds by these fixed points in ST and AA sectors, together with an agreement of other
critical exponents read-off from bootstrap output, strongly suggests that these fixed points are indeed
present.

As a bonus of the precise determination of critical exponents, for O(4) × O(2)-“collinear” fixed
point, we also showed that the fixed points is unstable against certain kind of partial U(1)A-breaking
term in the LGW-model, by another use of the conformal bootstrap. To summarize, we argued that
the universal properties of the chiral phase transition must be classified into three patterns according
to the extent of partial U(1)A-restoration. These are

1. Complete U(1)A-breaking: In this case, as originally argued in [66], half of the meson fields
becomes massive and integrated out before the RG endpoint, and the transition can be either
of first order or second order. In the latter case, the critical exponents are those of O(4).

2. U(1)A-restored completely at the effective-Lagrangian level: In this case, although the conclusion
in [66] is widely believed, we argued that the SU(2)L×SU(2)R×U(1)A-symmetric LGW-model
has a fixed point, from the agreement with the higher-order perturbative expansions. The
transition can be either of first order or second order. In the latter case, the critical exponents
are those listed in Table 6.4. In particular, ∆SS (equivalently ν-exponent) is significantly different
from that of O(4).

3. U(1)A-restored only partially for the effective-Lagrangian: In this case, we have shown that
at least one of the quartic terms, y, in the most general effective Lagrangian is relevant at
SU(2)L×SU(2)R×U(1)A-fixed point, and this CFT cannot contribute as a critical dynamics of
the model. The phase transition is likely to be of first order then, unless there is an IR-stable,
non-trivial fixed point with λy ̸= 0.

The prediction for the third case is a new one.

There are several possible future directions related to our works.
First of all, we have to understand the meaning of kinks – even the saturation of the bounds for

the d = 2, 3 Ising models are not rigorously proven. Some speculation is made in [10], where it is
observed that there is some jump in the spectra read off via the extremal functional method, when
∆ϕ cross the Ising model location, i.e., the kink.
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Another promising direction for an understanding of the mystery is simultaneous consideration
of consistency conditions coming from multiple number of correlators [11]. There general CFTs with
Z2 symmetry with Z2-odd scalar ϕ (like the Ising model spin field) and Z2-even scalar S (like the
Ising energy operator) was considered with non-vanishing correlators ⟨ϕϕϕϕ⟩, ⟨ϕϕSS⟩, and ⟨SSSS⟩,
and the generalization of positivity argument is applied to extract the constraint coming from the
simultaneous requirement of crossing relation for all these three correlators. In particular for the
Ising model, we expect it to have only two relevant parameters, temperature and magnetic-field. In
operator language, this means that the only relevant primary operators are ϕ and S. Imposition of
this constraint is so strong that it almost sweeps out the possible parameter region, except for very
tiny region around the kink. It is generalized in [52] to O(n)-case, assuming there is only one relevant
primary operator in vector and singlet channel, respectively, and again all but small (but significantly
larger than that of the Ising) region is excluded.

This does not generalize to O(n)×O(m) directly. To see why, recall that the source of the relevant
primary vector operator isolation is the equation of motion: the candidate of relevant primary vector
operator ϕjϕjϕi is, from the näıve equation of motion for O(n)-vector model

∂2ϕi = λϕjϕjϕi,

expected to be proportional to the descendants of ϕj . In our case of O(n)×O(m), however, there are
two candidates for such bi-fundamental relevant operator,

ϕjbϕjbϕia, ϕjbϕibϕja,

and we can expect only one of them to be a descendant of the fundamental field. Therefore, it would
be interesting to find a proper conditions to isolate O(n)×O(m)-kinks.

Our conclusion for O(4) × O(2)-fixed points clearly demands even more delicate study for U(1)A
restoration scenario than in [69]. In particular, we have shown that the presence of λy-term in (5.3)
is likely to affect the order of the chiral phase transition as a relevant operator. Analytic argument to
show the (non)presence of this term or a numerical method to measure the presence of this operator
(involving 8-th order of fermion) is desired. At the level of the effective sigma-model analysis, we
cannot exclude an exotic possibility of the fixed point of (5.3) with cA = 0 with λy ̸= 0. It would also
be interesting to pursue the possibility of the fixed points in such a model via the conformal bootstrap
or other methods.

The author believes that the conformal bootstrap program will revolutionize (or is already revolu-
tionizing) our understanding of nature. In particular, once the complete proof for the correspondence
between “kink” and actual CFT is given, the method will take over the building block of quantum
field theories. Then, the final resolution of the long-standing controversies regarding the presence of
O(n)×O(2)-LGW models will be only a tiny tip of the iceberg.
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