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Abstract

In this thesis, we study long-time asymptotic states of periodically driven quantum
systems in a dissipative environment. In order to describe the subclass of the systems,
we introduce the Floquet-Gibbs state, i.e., a state whose density matrix is diagonal
in the basis of the Floquet states with diagonal elements given by a Boltzmann
distribution over the quasienergies. We obtain sufficient conditions for the realization
of the Floquet-Gibbs state in a system with an infinitesimal system-bath coupling
strength, and find that these conditions severely restrict a class of suitable systems
attaining this form. With the aid of a truncated Floquet Hamiltonian in the Floquet-
Magnus expansion and without the rotating wave approximation, we lift the condition
of the infinitesimal coupling strength and extend the idea of the Floquet-Gibbs state
to a broader subclass of open quantum system with a finite dissipation effect. We also
study cooperative phenomena of a periodically driven cavity system surrounded by a
dissipative environment. We found a novel-type of symmetry breaking phenomenon,
which originates from a synergistic effect of the microscopic dynamical effects of the
driving field and interaction effects. We show that a part of this phenomenon can be
understood from the concept of the Floquet-Gibbs state.
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Chapter 1

Introduction and periodically
driven closed systems

1.1 Aim of thesis

Surrounded by a heat bath, the system with a time independent Hamiltonian relaxes
into an equilibrium state [1]. When the coupling strength between the system and
the heat bath is infinitesimal, the state is described by a canonical Gibbs distribution,
ρ ∝ e−βH , where H is the Hamiltonian of the system and β is the inverse temperature
of the heat bath [2]. The closed-form solution allows us to evaluate the properties
of the equilibrium state without details of the heat bath except for its temperature.
The mechanism behind the universal closed-form solution and its emergence from the
complicated dynamics remain in the focus of active studies for a long time [3, 4, 5, 6].

When a system is subjected to a periodic driving, no universal closed-form ex-
pression is known for the long-time asymptotic state, and hence we have to explicitly
take the heat bath into account and analyze the dissipative dynamics numerically or
analytically. In a coherent quantum dynamics, a system presents a variety of non-
trivial dynamical properties. We review here dynamics observed in driven two-level
systems, which show peculiar phenomena, e.g., Rabi oscillations [7] and suppres-
sion of quantum tunneling [8]. Some applications of these properties include the
control of chemical reaction rates [9], the control of electric transport [9], ion-trap
experiments [10], and the photo-induced phase transitions [11]. In cold atom optics,
recent experimental progress enables us to control macroscopic properties by using
off-resonant and strong oscillating field. An effective Hamiltonian, which is obtained
by a time-evolution operator over one period of the driving field and a perturbative
method, is an efficient tool to engineer these properties theoretically, which is called
“Floquet engineering”. This Hamiltonian depends on the amplitude and frequency
of the driving field, and new phases or topological structures, absent in equilibrium,
have been found; see the recent review by Bukov et al. [12], references therein.

In this thesis, we will discuss the meaning of the effective Hamiltonian from a
thermodynamical viewpoint. When we try to control some system by using a peri-
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odically driving field, the system is usually surrounded by a dissipative environment,
and then relaxes into a steady state. If the dissipative environment is characterized
by a heat bath at very low temperature, is the steady state described by a ground
state of the effective Hamiltonian? In general, when the system interacts with a heat
bath with finite temperature, is the steady state described by a Gibbs form of the
effective Hamiltonian?

In order to give a basis to answer this issue, in Chap. 2, we plan to explain a
master equation formalism, which is one of the conventional methods to treat the
dissipation effects. In this framework, it is known that the long-time asymptotic
state of a system under a periodic driving field generally does not have a closed-form
solution due to the lack of the conserved energy owing to the breakdown of the time-
translational symmetry [13]. However, it does not always deny the existence of the
closed-form solution, and then we may ask a question: Which system can acquire the
closed-form solution?

Indeed, a closed-form solution arises in some systems: a single particle subjected
to a modulated harmonic oscillator [14, 15] and systems where the time dependence
can be eliminated through a unitary transformation [16]. In a non-integrable system
we are tempting to use the Floquet basis and see whether its diagonal elements of the
asymptotic density matrix are the Boltzmann distribution or not. But before doing
so, we have to determine what quantity should take place of the energy Ei. One
of the natural ideas that this role could be played by is an averaged energy of the
Floquet state, i.e., the expectation value of the system Hamiltonian averaged over
one period of the driving. This idea has been tested in [14, 17]. They demonstrate
that in some region the Boltzmann factor with an “effective temperature”, which is
different from the actual temperature of the heat bath, appears, while in other region
so-called infinite temperature states appear. This separation is related to coexistence
of semi-classically chaotic and regular Floquet states.

These previous studies imply the existence of parameter regimes where the long-
time asymptotic states can be described in a closed-form solution. The aim of this
thesis is to find the conditions without limiting to some specific model. In Chap. 2, we
introduce two types of quantum mater equation: Floquet Lindblad equation [18] and
Redfield equation [19]. The Lindblad equation has a much simpler structure than the
Redfield equation, but via the derivation it needs the rotating wave approximation
(RWA) or secular approximation. We discuss the range of the applicability of these
master equations, and explicitly show that the long-time asymptotic state in the
Lindblad formalism is independent of the dissipation strength and only applicable to
systems with infinitesimal system-bath coupling strength.

In Chap. 3, we try to find the conditions that the long-time asymptotic state is
given in a closed-form solution in the framework of the Lindblad equation. The simple
structure of the Lindblad equation and the Kubo-Martin-Schwinger relation [20],
which holds for the correlation functions of the bath operators, allows us to introduce
the notion of the Floquet-Gibbs state, i.e., a state whose density matrix is diagonal
in the basis of the Floquet state with diagonal elements given by the Boltzmann
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distribution of the quasienergies. Thus, the Floquet states and quasienergies take
place of the eigenenergy states and eigenenergies in the conventional canonical Gibbs
state. Here, we try to show that under what conditions the Floquet-Gibbs state
appears in the long-time asymptotic state.

The obtained result in Chap. 3 is, however, only applicable to systems with in-
finitesimal system-bath coupling. Then, we ask a following question: Is the long-time
asymptotic state independent of the details of the coupling to the heat bath, e.g.,
system-bath coupling strength and timescales of the bath dynamics? The answer for
the system with a time-independent Hamiltonian is “yes”, because the asymptotic
properties of the system only depend on the temperature and/or chemical potential
of the heat bath. However, the answer for systems subjected to a periodic driving
field is not obvious. In order to answer this question, in Chap. 4, we use the Redfield
equation, which allows us to investigate the effects of finite system-bath coupling.
Then, we study the dependence of the conditions for the Floquet-Gibbs state on the
details of system-bath coupling.

In Chap. 5, we study a cooperative phenomenon in a driven cavity system. We
adopt the Dicke model in which multiple two-level systems interacts with a single
quantized mode of photon field. Owing to the effects of the atom-photon coupling
and the dynamical effects induced by a periodic driving field, we find a new type
of dynamical phase transition. We discuss the mechanism of this phenomenon and
relation to the Floquet-Gibbs state. For the study of the long-time asymptotic states,
we introduce a phenomenological master equation in Chap. 2.

Finally, in Chap. 6, we give a conclusion and future prospect.

1.2 Floquet state, quasienergy, and Floquet Hamil-

tonian

The primary interest of this thesis is in a system subjected to an intense oscillating
field. The system can be investigated in a semiclassical treatment [21]; A quantum
system interacts with a time-dependent classical field. We study a system under a
periodic driving field at frequency Ω whose Hamiltonian reads

H(t) = H(t+ T ), (1.1)

where T is a period of the driving field (T = 2π/Ω).
The time-evolution of the system obeys the Schrödinger equation,

iℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ . (1.2)

The periodicity of the Hamiltonian enables us to expand the solution of the Schrödinger
equation into eigenmodes, called “Floquet states” |ψn(t)⟩.

In order to define the Floquet states, we introduce the time evolution operator
from time t0 to time t1,

U(t1, t0) = T e−
i
ℏ
∫ t1
t0

H(τ)dτ , (1.3)
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where T denotes the time-ordering operator. The Floquet state is given by the
eigenstate of the time evolution operator over one period,

U(t0 + T, t0) |ψn(t0)⟩ = an(t0) |ψn(t0)⟩ . (1.4)

Owing to the unitarity of U(t0 +T, t0), the absolute value of eigenvalues, {an(t0)}, is
one, and the set of |ψn(t0)⟩ can be chosen to form the complete orthonormal basis.
Because |ψn(t0)⟩ obeys the Schödinger equation by definition,

|ψn(t1)⟩ = U(t1, t0) |ψn(t0)⟩ , (1.5)

by using the property of the unitary operator, U(t1+T, t0+T ) = U(t1, t0), we obtain
from Eq. (1.4)

U(t1 + T, t1) |ψn(t1)⟩ = an(t0) |ψn(t1)⟩ . (1.6)

The independence of the eigenvalue on time leads us to a quasienergy ϵn,

an(t0) = an(t1) = e−
i
ℏ ϵnT , (1.7)

which is defined within the region −ℏΩ/2 ≤ ϵn < ℏΩ/2. The Floquet state then
satisfies the following relation,

|ψn(t+ T )⟩ = e−
i
ℏ ϵnT |ψn(t)⟩ , (1.8)

from which we can divide the Floquet state into two parts,

|ψn(t)⟩ = e−
i
ℏ ϵnt |un(t)⟩ . (1.9)

Here, |un(t)⟩ is called Floquet mode, which is periodic in time,

|un(t+ T )⟩ = |un(t)⟩ . (1.10)

The solution of the Schrödinger equation with initial condition |ψ(t0)⟩ is therefore
given by

|ψ(t)⟩ =
∑
n

cn |ψn(t)⟩ =
∑
n

cn |un(t)⟩ e−
i
ℏ ϵnt, (1.11)

where cn = ⟨ψn(t0) |ψ(t0)⟩. By substituting this form, Eq. (1.9), into the Schrödinger
equation, Eq. (1.2), we obtain the equation for the Floquet mode to satisfy;(

H(t)− iℏ
∂

∂t

)
|un(t)⟩ = ϵn |un(t)⟩ . (1.12)

In atomic laser physics, laser field is often treated as a single mode of a quantized
photon field. In this treatment, since the system Hamiltonian including the laser field
becomes time independent, the eigenstates called dressed states can be introduced.
The idea of the dressed states gives us simple interpretations of the resonance effects
such as Rabi oscillation, AC stark shifts, and Bloch Siegert shifts, and so on [22].
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Here, although the effects of photon fluctuations are intriguing, we limit ourselves
to situations where the driving field can be treated as a classical field, in which the
dressed states are identical to the Floquet states.

Finally, we introduce the Floquet Hamiltonian H
[t]
F , which is defined by the time-

evolution operator over one period;

e−
i
ℏH

[t]
F T = U(t+ T, t). (1.13)

This Hamiltonian describes dynamics at stroboscopic times at t + nT with n inte-
gers. The Floquet Hamiltonian depends on the initial time of the unitary operator
U(t + T, t) while its energy spectrum is independent of t because quasienergies are
independent of time.

1.3 Perturbative methods

The set of the Floquet states and quasienergies completely gives a time evolution
of the coherent quantum systems under a periodic driving field. However, there are
only a few systems in which their exact solutions can be analytically obtained. The
systems are for example a parametrically driven harmonic oscillator [23] and a spin
system under a specific driving field [7]. We hence resort to perturbative methods or
numerical calculation in order to obtain the Floquet states and quasienergies.

In order to obtain them by solving Eq. (1.12), it is convenient to introduce an
extended Hilbert space, which is given by the product space of a state space of a
quantum system and a space of time-periodic function [24]. A state in this extended
Hilbert space includes its time dependence from t = 0 to t = T , and the inner product
⟨⟨·| ·⟩⟩ is defined by

⟨⟨u|v⟩⟩ =
∫ T

0

⟨u(t)| v(t)⟩dt
T
, (1.14)

where |u(t)⟩ and |v(t)⟩ belong to the extended Hilbert space.
In the extended Hilbert space, i times derivative with respect to the time, i∂/∂t,

is a Hermite operator,

⟨⟨u|i ∂
∂t

|v⟩⟩ =
∫ T

0

⟨u(t)| i ∂
∂t

|v(t)⟩ dt
T

= (⟨⟨v|i ∂
∂t

|u⟩⟩)∗, (1.15)

and hence Eq. (1.12) is nothing but an eigenvalue problem for an Hermite operator
H(t) − iℏ∂/∂t. We can employ the methods for the system with time-independent
Hamiltonian: perturbative methods for the stationary states [24], which will be ex-
plained in the following subsection 1.3.2, variational method, and adiabatic theo-
rem [25], and so on.
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1.3.1 Weak perturbation: non-degenerate case

In this section we study the system subjected to a weak periodic driving field, and
then obtain the Floquet modes and quasienergies perturbatively [24]. The Hamilto-
nian of the system reads

H(t) = H0 + ξHex(t), (1.16)

where ξ represents the driving amplitude. We treat the second term as a perturbation.
In this section, we assume that there is no degeneracy in quasienergy spectrum. For
simplicity, we assume time independence of the non-perturbative Hamiltonian H0,
but its extension to a time-periodic case is straightforward.

The eigenmode problem for non-perturbative Floquet mode is given by(
H0 − iℏ

∂

∂t

)
|u(0)i (t)⟩ = ϵ

(0)
i |u(0)i (t)⟩ , (1.17)

where the label i is chosen so that limξ→0 |ui(t)⟩ = |u(0)i (t)⟩. This Floquet state and
its quasienergy are related to the eigenstate |ψi⟩ and its eigenenergy Ei of H0 as
follows {

|u(0)i (t)⟩ = e−imiΩt |ψi⟩ ,
ϵ
(0)
i = Ei −miℏΩ,

(1.18)

where mi is chosen so that −ℏΩ/2 ≤ ϵ
(0)
i < ℏΩ/2.

The perturbative method aims to approximate the genuine Floquet state |ui(t)⟩ by
using the set of these non-perturbative Floquet states |u(0)i (t)⟩ or eigenenergy states
|ψi⟩. First, we fix the phase of the Floquet states at t = 0 as in the conventional

perturbative method [26] so that the inner product of |u(0)i (0)⟩ and |ui(0)⟩ is real;

⟨u(0)i (0)|ui(0)⟩ = ⟨ui(0)|u(0)i (0)⟩. (1.19)

Since |ui(t)⟩ and |u(0)i (t)⟩ obey the first-order differential equation of t, Eq, (1.12)
and Eq. (1.17), respectively, it is sufficient to fix the phase at a certain moment.

However, because they obey different equations, the inner product ⟨u(0)i (t)| ui(t)⟩ is
not generally real for 0 < t < T . We then introduce a real and periodic variable
θi(t, ξ), θi(t, ξ) ∈ R and θi(t, ξ) = θi(t+ T, ξ), as

|ui(t)⟩ = |vi(t)⟩ e−
i
ℏ θi(t,ξ), (1.20)

so that the inner product between |u(0)i (t)⟩ and |vi(t)⟩ is real,

⟨u(0)i (t)| vi(t)⟩ = ⟨vi(t)| u(0)i (t)⟩. (1.21)

Here, θi(t, ξ) is chosen to satisfy θi(0, ξ) = θi(t, 0) = 0. Due to the periodicity of
|ui(t)⟩ and θi(t, ξ), |vi(t)⟩ is also periodic in time.
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We find from Eq. (1.12) and Eq. (1.20) that |vi(t)⟩ obeys(
H0 − iℏ

∂

∂t
− ∂θi(t, ξ)

∂t
+ ξHex(t)

)
|vi(t)⟩ = ϵi |vi(t)⟩ . (1.22)

From Eq. (1.17) and Eq. (1.22), we find for θi(t, ξ)

∂θi(t, ξ)

∂t

=
⟨u(0)i (t)|H0 − iℏ ∂

∂t
+ ξHex(t) |vi(t)⟩

⟨u(0)i (t)| vi(t)⟩
−

⟨vi(t)|H0 − iℏ ∂
∂t
|u(0)i (t)⟩

⟨vi(t)| u(0)i (t)⟩
− (ϵi − ϵ

(0)
i ),

=ϵi(t)− ϵi, (1.23)

where

ϵi(t) = ϵ
(0)
i + ξRe

[
⟨u(0)i (t)|Hex(t) |vi(t)⟩

⟨u(0)i (t)| vi(t)⟩

]
. (1.24)

Thus, θi(t, ξ) is obtained by integrating the differential equation for the interval 0 to
t with the boundary condition, θi(0, ξ) = 0. Owing to the periodicity of θi(t, ξ) and
Eq. (1.23), the quasienergy is given by

ϵi =

∫ T

0

ϵi(t)
dt

T
. (1.25)

Substituting Eq. (1.23) into Eq. (1.22), we obtain the differential equation for
|vi(t)⟩, (

H0 − iℏ
∂

∂t
+ ξHex(t)

)
|vi(t)⟩ = ϵi(t) |vi(t)⟩ , (1.26)

which is perturbatively solved under the following conditions. First, we impose or-
thonormal condition on |ui(t)⟩;

⟨⟨ui|uj⟩⟩ = δi,j ↔ ⟨vi(t)| vj(t)⟩ = δi,j, (1.27)

where δ represents the Kronecker delta. Next, we assume that |vi(t)⟩ can be expanded
into the power series of ξ as

|vi(t)⟩ = |u(0)i (t)⟩+ ξ |v(1)i (t)⟩+ · · · . (1.28)

Here we use limξ→0 |vi(t)⟩ = |u(0)i (t)⟩. Finally, we assume that the equations (1.19)
and (1.27) hold for each order of ξ. These conditions uniquely give the perturbative
solution of |vi(t)⟩.

We obtain the solution up to the first order of ξ. In the order of ξ, we obtain two
constraints on |v(1)i (t)⟩:

⟨v(1)i (t)|u(0)i (t)⟩ = ⟨u(0)i (t)| v(1)i (t)⟩ (Eq. (1.19)),

⟨v(1)i (t)|u(0)j (t)⟩+ ⟨u(0)i (t)| v(1)j (t)⟩ = 0 (Eq. (1.27)), (1.29)
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which indicate that
⟨u(0)i (t)| v(1)i (t)⟩ = 0. (1.30)

We find from Eq. (1.24) that ϵi(t) is given up to the order of ξ by

ϵi(t) = ϵ
(0)
i + ξ ⟨u(0)i (t)|Hex(t) |u(0)i (t)⟩ . (1.31)

The equation for |vi(t)⟩, Eq. (1.26), up to the order of ξ thus reads(
H0 − ϵ

(0)
i − iℏ

∂

∂t

)
|v(1)i (t)⟩ = (⟨u(0)i (t)|Hex(t) |u(0)i (t)⟩ −Hex(t)) |u(0)i (t)⟩ , (1.32)

and we obtain for j ̸= i[
iℏ
∂

∂t
+ (ϵ

(0)
i − ϵ

(0)
j )

]
⟨u(0)j (t)| v(1)i (t)⟩ = ⟨u(0)j (t)|Hex(t) |u(0)i (t)⟩ . (1.33)

The restriction Eq. (1.30) leads to

|v(1)i (t)⟩ =
∑
j

(j ̸=i)

∞∑
m=−∞

H̃jim

Ei − Ej +mℏΩ
e−i(m+mi)Ωt |ψj⟩ , (1.34)

where H̃jin is a Fourier component of the driving Hamiltonian in the basis of the
energy eigenstates of H0,

H̃jin =

∫ T

0

⟨ψj|Hex(t) |ψi⟩ einΩtdt

T
. (1.35)

The Floquet states and quasienergies up to O(ξ) are as follows: Since we obtain
θi(t, ξ) from Eq. (1.23) by

θi(t, ξ) =

∫ t

0

(ϵi(τ)− ϵi)dτ =
∞∑

m=−∞
(m̸=0)

−iξH̃iin(1− e−imΩt)

mℏΩ
, (1.36)

the Floquet states are given by

|ui(t)⟩ = |vi(t)⟩ e−
i
ℏ θi(t,ξ)

=e−imiΩt

[(
1−

∞∑
m=−∞
(m̸=0)

ξH̃iim

mℏΩ

)
|ψi⟩+

∑
j

(j ̸=i)

∞∑
m=−∞

ξH̃jime
−imΩt

Ei − Ej +mℏΩ
|ψj⟩

]
.

(1.37)

The quasienergies are given by

ϵi = ϵ
(0)
i + ξ

∫ T

0

⟨u(0)i (t)|Hex(t) |u(0)i (t)⟩ dt
T

= ϵ
(0)
i + ξH̃ii0. (1.38)
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1.3.2 Weak perturbation: Degenerate case

We can employ the degenerate perturbation theory for the system with time-independent
Hamiltonian in order to obtain the Floquet modes and quasienergies when the unper-
turbed quasienergies are degenerate [24]. The Hamiltonian of the system is divided
into two parts,

H(t) = H0(t) + ξH1(t), (1.39)

where ξ is sufficiently small. We treat the second term as a perturbation. The Floquet
modes and quasienergies are assumed to be expanded by power series of ξ;

|uj(t)⟩ = |u(0)j (t)⟩+ ξ |u(1)j (t)⟩+ · · · ,

ϵj = ϵ
(0)
j + ξϵ

(1)
j + · · · . (1.40)

We study the case where some Floquet states for H0(t) are n-fold degenerate.
The corresponding unperturbed Floquet modes |vjk(t)⟩ satisfy for k = 1, · · · , n,(

H0(t)− iℏ
∂

∂t

)
|vjk(t)⟩ = ϵ

(0)
j |vjk(t)⟩ , (1.41)

where j labels the different unperturbed quasienergies ϵ
(0)
j . Here, we choose |vjk(t)⟩

to be orthonormal with each other at each instant,

⟨vjk(t) |vjl(t)⟩ = δk,l. (1.42)

In order to obtain the first-order quasienergy ϵ
(1)
j and the corresponding appro-

priate lowest-order Floquet mode |u(0)j (t)⟩, we write the lowest-order Floquet mode
as a superposition of the unperturbed Floquet modes,

|u(0)j (t)⟩ =
∑
k

cjk |vjk(t)⟩ . (1.43)

The equation (1.12) in the order of ξ reads(
H0(t)− iℏ

∂

∂t

)
|u(1)j (t)⟩+H1(t) |u(0)j (t)⟩ = ϵ

(0)
j |u(1)j (t)⟩+ ϵ

(1)
j |u(0)j (t)⟩ . (1.44)

By multiplying ⟨vjk(t)| from the left and taking average over one period, we obtain

⟨⟨vjk|H1(t)|u(0)j ⟩⟩ = ϵ
(1)
j ⟨⟨vjk|u(0)j ⟩⟩,

↔
∑
l

⟨⟨vjk|H1(t)|vjl⟩⟩cjl = ϵ
(1)
j cjk (1.45)

where we have used the fact that H0(t) − iℏ∂/∂t is an Hermite operator. By solv-

ing this eigenvalue problem, we obtain |u(0)j (t)⟩ and ϵ(1)j as in the case of degenerate
perturbation theory for the system with time-independent Hamiltonian. Resolution
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of the degeneracy in this order is proportional to ξ. If the degeneracy is not resolved
within the lowest-order perturbation, we have to calculate higher-order contribution
in order to obtain non-degenerate lowest-order Floquet modes |u(0)j (t)⟩. If the de-
generacy is resolved when the mth-order perturbation is performed, the resolution is
proportional to ξm, which describes, e.g., a transition rate induced by a weak driving
field between two energy eigenstates with eigenvalues E and E +mℏΩ.

1.3.3 High frequency case: Floquet-Magnus expansion

There are situations where the system is subjected to a rapidly oscillating field, and
hence well-separated two timescales exist. If the prime interest is in the dynamics of
the long-time scale, the system can be effectively described by a time-independent
Hamiltonian with renormalized coefficients due to the rapidly oscillating field. If the
rapidly oscillating term is time periodic, the Floquet Hamiltonian plays a role of the
time-independent Hamiltonian, and the renormalized coefficients are obtained in a
systematic way by the Floquet-Magnus expansion [27].

The idea of the Floquet-Magnus expansion is as follows. First, take the logarithm
of both sides in Eq. (1.13),

H
[t0]
F =

iℏ
T

ln[T e−
i
ℏ
∫ t0+T
t0

H(τ)dτ ]. (1.46)

Next, we expand the right hand side in power series of the inverse of the driving
frequency Ω−1 by using the Baker-Campbell-Hausdorff formula,

H
[t0]
F =

1

T

∞∑
n=1

Ω(n)[t0](T ), (1.47)

where Ω(n)[t0](T ) is the order of Ω−n. The first order term is given by

Ω(1)[t0](t) =

∫ t0+t

t0

H(τ)dτ, (1.48)

and n-th order term for n ≥ 2 is given by

Ω(n)[t0](t) =
k−1∑
j=1

(−i)jBj

ℏjj!

∞∑
s1=1

· · ·
∞∑

sj=1

δ∑j
i=1 si,k−1

×
∫ t0+t

t0

[Ω(s1)[t0](τ) · · · [Ω(sj)[t0](τ), H(τ)] · · · ]dτ. (1.49)

The first two terms are explicitly given by

Ω(1)[t0](T ) =

∫ t0+T

t0

H(t)dt,

Ω(2)[t0](T ) =
−i
2!ℏ

∫ t0+T

t0

dt1

∫ t0+t1

t0

dt2[H(t1), H(t2)]. (1.50)
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The first-order term is simply the time-averaged Hamiltonian over one period. The
higher-order term gives the correction for the time-averaged Hamiltonian. We call
the sum of the term up to nth-order term nth-order-truncated Floquet Hamiltonian,
which is given by

H
(n)[t0]
F =

1

T

n∑
k=1

Ω(k)[t0](T ). (1.51)

1.4 Periodically driven two-level system

Even when the system itself is simple, the dynamics under a time-periodic driving
field shows various peculiar dynamical features. We take up a two-level system, where
the Hamiltonian is given by

H0 = hzSz, (1.52)

where Sz is a usual spin operator along z-axis and hz is the corresponding energy
gap.

This model describes diverse systems whose Hilbert space can be effectively re-
stricted to a two-dimensional space. The simplest system is a particle with one-half
spin in a static magnetic field along z-axis. Around the z-axis, the magnetic moment
precesses at Larmor frequency hz/ℏ. An electron system hopping between double
quantum dots [28] in a Coulomb blockade regime is another realization of this sys-
tem. Even when the system consists of multiple eigenstates, there are some situations
where truncation to the two-level system is possible. For example, in quantum optics
the transition due to the interaction with light can occur mainly between two atomic
states, e.g., the ground state and an excited state. The situation is also observed in
a system with two locally stable potential wells such as a superconducting quantum
bit [29]. If only the two lowest doublets should be concerned, the system can be
regarded as a two-level system.

We apply a time-periodic driving field to the two-level system. The Hamiltonian
is given by

H(t) = H0 + ξHex(t). (1.53)

The response to the driving field has been extensively studied in the above various
systems, which leads to the control of an electron transport through double quantum
dots by an external oscillating electric field [30] and the control of a superconducting
artificial atom in a strong microwave pulses [31].

In this chapter, we overview the phenomena of this two-level system under two
different types of periodic driving fields:{

ξHex(t) = ξ(cos(Ωt)Sx + sin(Ωt)Sy),

ξHex(t) = 2ξ cos(Ωt)Sx,

In the first case, a circularly polarized driving field is applied to the two-level system,
in which the dynamics is exactly solvable. In the second case, a linearly polarized
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driving field is applied to the two-level system. Although the model is simple, the
dynamics cannot be solved exactly which leads us to the approximation based on the
perturbation methods.

1.4.1 Circularly polarized driving field: Rabi oscillation

When a two-level system is under a circularly polarized driving field, the well-known
phenomenon called Rabi oscillation occurs [7]. We can follow the dynamics exactly
because the time-dependent Hamiltonian can be mapped into a time-independent
one by using a unitary transformation. The unitary transformation changes a state
in the static frame |ψ(t)⟩ into the state in the rotating frame |ψR(t)⟩,

|ψR(t)⟩ = eiΩSzt |ψ(t)⟩ = V (t) |ψ(t)⟩ . (1.54)

In the following, we use the notation V (t) in order to denote the unitary operator
which transforms a state in the static frame into the state in the rotating frame. The
time evolution of |ψR(t)⟩ obeys the Schödinger equation with the time-independent
Hamiltonian,

HR = V (t)

(
H(t)− iℏ

∂

∂t

)
V †(t) = ∆dS

z + ξSx. (1.55)

Here, ∆d is defined by the detuning energy between the energy gap and the driving
frequency, ∆d = hz − ℏΩ. Since the Hamiltonian is time independent, we obtain the
dynamics by solving the eigenvalue problem of HR;

HR |±⟩ = ±
√
∆2

d + ξ2

2
|±⟩ , (1.56)

where

|+⟩ = 1√
(∆d +

√
∆2

d + ξ2)2 + ξ2

[
(∆d +

√
∆2

d + ξ2) |↑⟩+ ξ |↓⟩
]
,

|−⟩ = 1√
(∆d +

√
∆2

d + ξ2)2 + ξ2

[
−ξ |↑⟩+ (∆d +

√
∆2

d + ξ2) |↓⟩
]
. (1.57)

Here, |↑⟩ and |↓⟩ are eigenstates of Sz with positive eigenvalue and negative eigen-
value, respectively.

For simplicity, we study the dynamics when an initial state at t = 0 is prepared
in |↓⟩. We try to obtain the probability, P↑(t), that the system is in |↑⟩ as a function
of time t. Since the initial state is expanded into

|ψR(0)⟩ = 1√
(∆d +

√
∆2

d + ξ2)2 + ξ2

[
ξ |+⟩+ (∆d +

√
∆2

d + ξ2) |−⟩
]
, (1.58)
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the system evolves in time as

|ψR(t)⟩ =
ξe−i

√
∆2
d
+ξ2

2ℏ t |+⟩+ (∆d +
√
∆2

d + ξ2)ei
√

∆2
d
+ξ2

2ℏ t |−⟩√
(∆d +

√
∆2

d + ξ2)2 + ξ2
. (1.59)

The probability P↑(t) is therefore given by

P↑(t) =|⟨↑ |ψ(t)⟩ |2 = |⟨↑ |ψR(t)⟩ |2,

=
ξ2

∆2
d + ξ2

sin2

(√
∆2

d + ξ2

2ℏ
t

)
. (1.60)

This equation is validated for any driving frequency and strength. When the detuning
energy ∆d is large compared to the driving strength, the system almost remains
to be in the initial state. The system is not heated by off-resonant driving field.
On the other hand, when the system is resonant with the driving field, that is,
∆d = hz − ℏΩ = 0, the system goes back and forth between |+⟩ and |−⟩. This
phenomenon is called the Rabi oscillation and the frequency between two states are
proportional to the driving amplitude ξ.

1.4.2 Linearly polarized weak driving field: Bloch-Siegert
shift

From hereon, we study the second case where the system is subjected to the linearly
polarized driving field, Eq. (1.54). Depending on the driving frequency and the
driving amplitude, the dynamics of the two-level system are qualitatively different.
We first study the case where a weak driving field is nearly resonant with the energy
gap of the two-level system;

ξ ≪ ℏΩ and |∆d| = |hz − ℏΩ| ≪ ℏΩ. (1.61)

We will find a similar dynamical feature to the two-level system under a circularly
polarized driving field, but the energy gap hz is modified by the driving field.

In this case, it is also convenient to consider the rotating frame defined by the
unitary operator V (t), Eq. (1.54). The corresponding Hamiltonian in the rotating
frame reads

HR(t) = ∆dS
z + ξSx +

ξ

2
(S+e2iΩt + S−e−2iΩt). (1.62)

The remaining time dependence avoids us to solve the dynamics exactly, and we have
to resort to the approximation.

Since under the above conditions, Eq. (1.61), the time-dependent terms in this
Hamiltonian rapidly oscillate, we can obtain the approximated Floquet Hamiltonian
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by using the Floquet-Magnus expansion. The first-order-truncated Floquet Hamilto-
nian is just the time-averaged Hamiltonian (see Eq. (1.50)),

H
R(1)[0]
F = ∆dS

z + ξSx, (1.63)

which is the same as the Hamiltonian in the rotating frame for the two-level sys-
tem under the circularly polarized driving field (see Eq. (1.55)). The second-order-
truncated Hamiltonian is also obtained by calculating the commutator in Eq. (1.50),
which renormalizes the coefficients as

H
R(2)[0]
F =

(
∆d +

ξ2

ℏΩ

)
Sz + ξ

(
1 +

∆d

2ℏΩ

)
Sx. (1.64)

The renormalization changes the resonant frequency;

∆d +
ξ2

ℏΩ
= 0 ↔ Ω ≃ 1

ℏ

(
hz +

ξ2

hz

)
. (1.65)

This shift of the resonance frequency is called Bloch-Siegert shift [32].

1.4.3 Linearly polarized strong driving field: Coherent de-
struction of tunneling

When the driving field becomes stronger, the dynamical features are qualitatively
different from previous cases. In order to study the system under a strong driving
field, ξ ≫ hz, we regard H0 as a perturbation term [33]. There are two linearly
independent solutions for the Schrödinger equation of Hex(t) given by

|ψ±(t)⟩ =
1√
2
e∓

iξ sinΩt
ℏΩ (|↑⟩ ± |↓⟩). (1.66)

These solutions which are time periodic correspond to the unperturbative Floquet
modes |v±(t)⟩ (corresponding to |vjk(t)⟩ in subsection 1.3.2) with degenerate quasiener-

gies, ϵ
(0)
± = 0.

In a perturbation theory for the degenerate Floquet modes, what we have to do
is solve the eigenvalue problem of the following matrix;(

⟨⟨v+(t)|H0|v+(t)⟩⟩ ⟨⟨v+(t)|H0|v−(t)⟩⟩
⟨⟨v−(t)|H0|v+(t)⟩⟩ ⟨⟨v−(t)|H0|v−(t)⟩⟩

)
=

(
0 hz

2
J0(

2ξ
ℏΩ)

hz

2
J0(

2ξ
ℏΩ) 0

)
, (1.67)

where J0(·) is the zeroth-order Bessel function. The eigenstates of this matrix are
the appropriate lowest-order Floquet modes,

|u(0)1 (t)⟩ = 1√
2
(|v+(t)⟩+ |v−(t)⟩) =

1√
2
(|ψ+(t)⟩+ |ψ−(t)⟩),

|u(0)2 (t)⟩ = 1√
2
(|v+(t)⟩ − |v−(t)⟩) =

1√
2
(|ψ+(t)⟩ − |ψ−(t)⟩), (1.68)
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Figure 1.1: Two instantaneous eigenvalues of H(t) are plotted. We divide the dy-
namic into two regimes, adiabatic regime and transition regime. In the adiabatic
regime, two instantaneous eigenstates of H(t) are denoted by |Right⟩ and |Left⟩.
Gray stripe denotes the transition regime.

and the eigenvalues of this matrix are the quasienergies up to the order of hz

ϵ1 = −ϵ2 =
hz

2
J0

(
2ξ

ℏΩ

)
. (1.69)

When we observe the dynamics at stroboscopic times t = nT with integers n, the
long-time dynamics is described by the Floquet Hamiltonian,

H
[0]
F ≃ hzJ0

(
2ξ

ℏΩ

)
Sz, (1.70)

where we have used |u(0)1 (0)⟩ = |↑⟩ and |u(0)2 (0)⟩ = |↓⟩. If the system is a particle with
one-half spin, the Larmor frequency is modified by the factor J0(2ξ/(ℏΩ)). Especially
when the ratio 2ξ/(ℏΩ) is one of the zeros of the zeroth-order Bessel function, the
system returns back to the same state at every period, which is known as the coherent
destruction of tunneling (CDT).

The origin of this phenomenon is a quantum interference effect [34, 35]. In Fig. 1.1,
we plot two instantaneous eigenvalues of H(t) by black curves. When the driving
amplitude is sufficiently large, we can divide the dynamics into two regimes: adiabatic
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regime and transition regime (see Fig. 1.1). We define the transition regime where
the separation of two instant energies is small, ξHex(t) = 2ξ cos(Ωt) ≃ hz.

In the transition regime, the dynamics is regarded as a non-adiabatic transition
process described by the Landau-Zener-Stückelberg process [36]. The transition prob-
ability between |Left⟩ and |Right⟩ is given by

PLZS = 1− e−
π(hz)2

4ξℏΩ . (1.71)

As the driving amplitude increases, the transition probability becomes small. In a
diabatic limit ξ(ℏΩ) ≫ (hz)2, the state acquires the phase shift of π/4 through the
transitions between |Left⟩ and |Right⟩ [34]. In the adiabatic regime, owing to a large
energy separation between two instant energy eigenstates, the dynamics is regarded
as a time evolution without non-adiabatic transition, and hence we call this regime
adiabatic regime.

We evaluate the probability, ProbL→R, that the system is in |Right⟩ after one
sweep of AC external field when we prepare the initial state at t = 0 in |Left⟩. From
the path integral method, the transition probability is obtained by calculating all the
probability amplitudes of paths from |Left⟩ at t = 0 and |Right⟩ at t = T . There
exist two paths which give a significant contribution to the transition probability:
One is the path denoted by red curve in Fig. 1.1 in which the state goes to |Left⟩
at t = T/2 and then goes to |Right⟩ at t = T . The other is the path denoted by
blue curve in the figure in which the state goes to |Right⟩ at t = T/2 and then goes
to |Right⟩ at t = T . Because of the symmetry of the paths, the magnitude of the
transition amplitudes is the same,

√
PLZS ≃

√
π(hz)2/4ξΩ. The relative phase of the

transition amplitudes of two paths is approximately given by

∆ϕ = 2

(∫ 3T
4

T
4

ξ

ℏ
cosΩtdt+

π

4

)
= −2

(
2ξ

ℏΩ
− π

4

)
. (1.72)

We therefore obtain the probability by

ProbL→R =PLZS|1 + ei∆ϕ|2, (1.73)

=
π(hz)2

ξℏΩ
cos2

(
2ξ

ℏΩ
− π

4

)
. (1.74)

We compare the dynamics under a periodic driving field to a precession along
z-axis at the Larmor frequency ω(> 0), and estimate the Larmor frequency ω from
the transition probability ProbL→R. The corresponding probability in the Larmor
precession is the probability of the system in one of the eigenstate of Sx, (|↑⟩+|↓⟩)/

√
2,

at time T when the state is initially prepared in other eigenstate of Sx at t = 0. The
probability is given by sin2 (πω/Ω). We therefore estimate the Larmor frequency in
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the driven two-level system as

sin2
(πω
Ω

)
=
π(hz)2

ℏξΩ
cos2

(
2ξ

ℏΩ
− π

4

)
,

↔ℏω ≃ hz

√
ℏΩ
πξ

cos

(
2ξ

ℏΩ
− π

4

)
≃ hzJ0

(
2ξ

ℏΩ

)
, (1.75)

which is consistent with the previous result, Eq. (1.70). This observation clearly indi-
cates that the CDT originates from the quantum interference effect of two paths [35].

1.4.4 Linearly polarized high-frequency field: Coherent de-
struction of tunneling

Finally we study the case where a strong and fast driving field is applied, ξ ≫ hz and
ℏΩ ≫ hz, and the driving amplitude is scaled by the driving frequency as ξ ∼ ℏΩ.
In this case, it is convenient to transform into a rotating frame where a state in the
rotating frame |ψR(t)⟩ is related to the state in the static frame |ψ(t)⟩ by

|ψR(t)⟩ = e
i
ℏ
∫ t
0 ξHex(τ)dτ |ψ(t)⟩ = e

2iξ
ℏΩ sinΩtSx |ψ(t)⟩ . (1.76)

The Hamiltonian in the rotating frame is given by

HR(t) =e
i
ℏ
∫ t
0 ξHex(τ)dτ

(
H(t)− iℏ

∂

∂t

)
e−

i
ℏ
∫ t
0 ξHex(τ)dτ ,

=hz
[
cos

(
2ξ

ℏΩ
sinΩt

)
Sz + sin

(
2ξ

ℏΩ
sinΩt

)
Sy

]
. (1.77)

Since the time-dependent terms in this Hamiltonian show a rapid oscillation, we can
employ the Floquet-Magnus expansion. The lowest-order term is a time average of
the rotating Hamiltonian,

H
R[0]
F ≃

∫ T

0

HR(t)
dt

T
= hzJ0

(
2ξ

ℏΩ

)
Sz, (1.78)

which is the same form as the previous case (see Eq. (1.70)). Thus, when the ratio
2ξ/(ℏΩ) is one of the zeros of the Bessel function, the CDT occurs. This phenomenon
is originally proposed in a particle system with a double-well potential [8] and is now
extended to a two-level system [37, 35] and a system with double quantum dots [38].

If we take the high-frequency limit keeping ξ fixed, the effect of the driving field
disappears in H

R[0]
F because the Bessel function approaches one. In the limit of

Ω → ∞, the simultaneous scaling of the driving amplitude and the driving frequency
is thus necessary to obtain the non-trivial Floquet Hamiltonian, which is different
from the undriven Hamiltonian H0. This scaling is used in the field of the Floquet
engineering [12], which is explained in next section.
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1.5 Floquet engineering

As mentioned before, the two-level system describes double quantum dots where an
electron tunnels between adjacent two dots. The tunneling strength determined by
hz can be modified into hzJ0(2ξ/ℏΩ) by using, e.g., a fast and strong driving field.
These observations lead us to control the dynamical properties of lattice systems, e.g.
tight-binding model [39], Hubbard model [40], and graphene [41], and so on by using
the driving field. With the progress of cold atomic systems, the driving field is now a
new knob to engineer effective Hamiltonians with novel properties which are absent
in equilibrium systems or difficult to realize. We overview recent achievements in this
direction: quantum phase transition using the periodic driving field.

1.5.1 Dynamical localization and superfluid-insulator tran-
sition

We first consider a tight-binding model subjected to an external driving field. The
Hamiltonian is given by

H(t) =H0 + ξHex(t),

H0 =h
∞∑

n=−∞

[|n+ 1⟩ ⟨n|+ |n⟩ ⟨n+ 1|],

ξHex(t) =2ξ cos(Ωt)
∞∑

n=−∞

n |n⟩ ⟨n| , (1.79)

where n denotes each cite and h denotes a tunneling strength between adjacent cites.
In this system, we can obtain an explicit form of the Floquet Hamiltonian. It is

also convenient to move to a rotating frame. Again, the state in the rotating frame
|ψR(t)⟩ is related to the state in the static frame |ψ(t)⟩ by

|ψR(t)⟩ = e
i
ℏ
∫ t
0 ξHex(τ)dτ |ψ(t)⟩ = ei

2ξ
ℏΩ sinΩt

∑∞
n=−∞ n|n⟩⟨n| |ψ(t)⟩ . (1.80)

The state in the rotating frame obeys the Schrödinger equation of the following
Hamiltonian,

HR(t) =e
i
ℏ
∫ t
0 ξHex(τ)dτH0e

− i
ℏ
∫ t
0 ξHex(τ)dτ

=h
∞∑

n=−∞

[|n⟩ ⟨n+ 1| e−i 2ξ
ℏΩ sinΩt + |n+ 1⟩ ⟨n| ei

2ξ
ℏΩ sinΩt]. (1.81)

Since the following two operators are commutable [42],[
∞∑

n=−∞

|n⟩ ⟨n+ 1| ,
∞∑

m=−∞

|m+ 1⟩ ⟨m|

]
= 0, (1.82)
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we can evaluate the time evolution over one period as

|ψ(T )⟩ =e−
i
ℏ
∫ T
0 ξHex(τ)dτ |ψR(T )⟩ ,

=e−
i
ℏ
∫ T
0 h

∑∞
n=−∞|n⟩⟨n+1|e−i

2ξ
ℏΩ sinΩtdte−

i
ℏ
∫ T
0 h

∑∞
n=−∞|n+1⟩⟨n|ei

2ξ
ℏΩ sinΩtdt |ψR(0)⟩ ,

=e−
i
ℏhJ0(

2ξ
ℏΩ)

∑∞
n=−∞[|n⟩⟨n+1|+|n+1⟩⟨n|]T |ψ(0)⟩ . (1.83)

The Floquet Hamiltonian is therefore given by

H
[0]
F = hJ0

(
2ξ

ℏΩ

) ∞∑
n=−∞

[|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|]. (1.84)

We control the tunneling strength by adjusting the driving amplitude and frequency.
Especially, when 2ξ/ℏΩ is one of zeros of the zeroth-order Bessel function, an electron
localized in a cite at t = 0 returns back to the same cite at stroboscopic times t = nT
with integers n. This phenomenon is called the Dynamical localization [39], and it is
observed in a system of cold atoms in an optical lattice [43].

Next, we consider a one-dimensional softcore Bose Hubbard model with on-site
potential U . The Hamiltonian reads

H(t) = H0 + ξHex(t),

H0 = h
∞∑

j=−∞

(c†j+1cj + cj+1c
†
j) + U

∑
j

nj(nj − 1),

ξHex(t) = 2ξ cos(Ωt)
∞∑

j=−∞

jnj, (1.85)

where c†j and cj are creation and annihilation bosonic operator on site j, respectively,

and nj = c†jcj is a number operator of site j. We study the system under a driving field
with large amplitude and high frequency, ξ ≫ (h, U), ℏΩ ≫ (h, U), and ξ ∼ ℏΩ [40].

We also move to a rotating frame by using a similar unitary transformation to
the previous case, in which the Hamiltonian reads

HR(t) =e
i
ℏ
∫ t
0 Hex(τ)dτH0e

− i
ℏ
∫ t
0 Hex(τ)dτ

=h
∞∑

j=−∞

[c†jcj+1e
−i 2ξ

ℏΩ sinΩt + c†j+1cje
i 2ξ
ℏΩ sinΩt] + U

∞∑
j=−∞

nj(nj − 1). (1.86)

We approximately evaluate the Floquet Hamiltonian by using the Floquet-Magnus
expansion. The first-order-truncated Floquet Hamiltonian is the time average of
HR(t);

H
R(1)[0]
F =

∫ T

0

HR(t)
dt

T
= hJ0

(
2ξ

ℏΩ

) ∞∑
j=−∞

[c†jcj+1+c
†
j+1cj]+U

∞∑
j=−∞

nj(nj−1). (1.87)
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The effects of driving field are renormalized into the tunneling strength as observed
in the driven tight binding model.

The ground state of this system with large tunneling strength hJ0(2ξ/ℏΩ) is
a superfluid phase, while the ground state with large onsite potential U is a Mott-
insulator phase. Between these qualitatively different ground states, a quantum phase
transition occurs. Since the tunneling strength can be tuned by sweeping the driving
amplitude, we can control the macroscopic features of the system by applying the
driving field [40].

This phase transition has been observed in a cold atom system [44]. Owing to
the adiabatic theorem on the Floquet state [25], the slow sweeping of the driving
amplitude keeps the system to be in the ground state of the instantaneous Floquet
Hamiltonian. This procedure makes it possible to change the state between a super-
fluid phase and a Mott-insulator phase repeatedly.

1.5.2 The role of truncated Floquet Hamiltonians

So far we have observed that the driving field induces peculiar dynamical features,
and it now plays a role to control the macroscopic properties of the system. The off-
resonant and strong oscillating field is used to create these properties in experiment,
and their properties are investigated by the truncated Floquet Hamiltonian [12],
which is obtained by truncating up to the first or second order of the Floquet-Magnus
expansion.

However, the validity of the truncated Floquet Hamiltonian is still now under
debating, because the convergence of the Floquet-Magnus expansion is not ensured
for macroscopic systems. It has been known that the sufficient condition for the
convergence is [27]

max
t

∥H(t)∥ < ℏΩ
2
, (1.88)

but this condition is useless for a large system because the norm of the Hamiltonian
is proportional to the system size. When the system Hamiltonian including driving
fields is written by a bilinear form of fermionic operators or bosonic operators, we
can divide the Hilbert space into product of independent Hilbert spaces, whose size
is independent of system size. In this case, the condition Eq. (1.88) can be applied
to each small Hilbert space [12], but this situation is limited to such an integrable
system.

There exist other conditions which can be applied to large systems. Recent suc-
cessive papers have shown that there exists an truncated Floquet Hamiltonian with
optimal order that accurately describes long-time transient states when ℏΩ is much
larger than the energy to flip a single spin [45, 46, 47]. Since the truncated Flo-
quet Hamiltonian is quasi-conserved quantity in this timescale, the transient states
can be described by the microcanonical ensemble for the corresponding energy of the
truncated Hamiltonian [48, 49]. Thus, the eigenbasis of the truncated Floquet Hamil-
tonian is better to describe this transient states than that of the Floquet Hamiltonian
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when the Floquet-Magnus expansion is not converged.
It has been extensively studied on the long-time asymptotic states of the coherent

system subjected to a driving field. The notion of eigenstate thermalization hypoth-
esis (ETH) [50, 51] has been extended to systems subjected to a periodic driving
field. The ETH states that the expectation values of local observables with respect
to eigenstates have thermal values in the thermodynamic limit. Since there is no
conserved energy in a periodically driven system, each Floquet state is expected to
be indistinguishable with an infinite temperature state as far as we observe local ob-
servables. It is still an open problem to give conditions for this hypothesis to hold;
Numerical studies show the heating up to the infinite temperature state in some sys-
tems [52, 53, 54], but it does not occur in other systems and/or situations [55, 56].
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Chapter 2

Periodically driven open systems

In this section we overview the master equation formalism which describes dynamics
of a system of interest under a periodic driving field in a dissipative environment.
First, in section 2.1, we review the derivation of two types of master equations:
Redfield equation and Floquet Lindblad equation. Next, in section 2.2, we introduce
a phenomenological master equation for the study of a driven cavity system in a
dissipative environment.

2.1 Master equation formalism

The dissipation effects appear through the interaction between a large system. The
total system is modeled by the Hamiltonian,

H(t) = HS(t) +HB + λHI, (2.1)

where HS(t) and HB are the Hamiltonians for the system of interest and the heat
bath, respectively. For a while, we consider a generic time-dependent system Hamil-
tonian, and thus we do not impose the time-periodicity on HS(t). The interaction
Hamiltonian between the system of interest and a heat bath is given by HI with the
interaction strength λ, which is assumed to be small. Without loss of generality, we
can decompose the interaction Hamiltonian into sum of product of Hermite operators
of the system of interest and the heat bath [18];

HI =
∑
µ

Xµ ⊗ Y µ. (2.2)

The Hermite operators for the system of interest and the heat bath are denoted by
Xµ and Y µ, respectively.

The Liouville equation gives a time evolution of the total system,

dW (t)

dt
= − i

ℏ
L(t)W (t) = − i

ℏ
(LS(t) + LB + λLI)W (t), (2.3)
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where Lα({α} = S,B, I) denote Liouville operators for the system of interest, the
heat bath, and interaction between them, respectively. The Liouville operators are
defined by a commutator such as

L(t)· = [H(t), ·]. (2.4)

The density matrix of the whole system including the heat bath is defined by W (t).
We assume that at initial time t = t0, there is no correlation between the system of
interest and the heat bath;

W (t0) = ρ(t0)⊗ ρB. (2.5)

The state of the heat bath is described by the Boltzmann distribution,

ρB =
e−βHB

TrBe−βHB
, (2.6)

where the symbol TrB stands for the trace operation over the bath degrees of freedom
and β is the inverse temperature of the heat bath. We assume that this canoni-
cal state has a Gaussian property on correlation functions of the operator Y µ, e.g.,
a four-body correlation function can be decoupled into the sum of the product of
two-body correlation functions. We also assume that the time correlation function,
TrB(Y

µ(t)Y νρB), decays at a certain time τbath which denotes the typical timescale
of the bath dynamics. Without loss of generality we can set the constant force due
to the interaction Hamiltonian to be zero,

λ ⟨HI⟩B ≡ λTrB(HIρB) = 0, (2.7)

because we can eliminate it by redefining the system Hamiltonian asHS(t)+λ ⟨HI⟩B →
HS(t). Here, ⟨·⟩B represents the average of the operator over the Boltzmann distri-
bution of the heat bath,

If we focus on the observables of the system of interest, the reduced density matrix
ρ(t) = TrBW (t) is sufficient to evaluate them. Under the above conditions, we obtain
the Markov equation of ρ(t), which is called the Born-Markov master equation. There
are two types of master equations, the Redfield equation and the Floquet Lindblad
equation. We overview the derivation of the Redfield equation in Sec. 2.1.1 and the
Floquet Lindblad equation in Sec. 2.1.2, and then we compare two types of the master
equations in Sec. 2.1.3. Finally, we review the reason why the long-time asymptotic
states subjected to a periodic driving field does not have a universal description in
the framework of the Lindblad formulation.

2.1.1 Derivation of Redfield equation (finite system-bath cou-
pling)

We first define the projection operators P and Q [57], which act as

Pf = (TrBf)⊗ ρB, Q = 1− P. (2.8)
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where f is an arbitrary operator defined in the total Hilbert space. From the Liouville
equation, Eq. (2.3), we obtain sets of equations:

dPW (t)

dt
=− i

ℏ
PL(t)PW (t)− i

ℏ
PL(t)QW (t),

dQW (t)

dt
=− i

ℏ
QL(t)PW (t)− i

ℏ
QL(t)QW (t),

(2.9)

where we have used [P, d/dt] = 0. From the second equation, we can solve QW (t) as

QW (t) = − i

ℏ

∫ t

t0

T e−
i
ℏ
∫ t
t1

QL(τ)Qdτ
QL(t1)PW (t1)dt1, (2.10)

where we have used the assumption that there is no correlation between the system
of interest and the heat bath in the initial state, QW (t0) = 0. By substituting this
form into the first one of Eqs. (2.9), we obtain the closed equation for the reduced
density matrix ρ(t) as

dρ(t)

dt
= − i

ℏ
LS(t)ρ(t)−

λ2

ℏ2

∫ t

t0

⟨LIT e−
i
ℏ
∫ t
t1

QL(τ)Qdτ
LIρ(t1)⟩Bdt1, (2.11)

which is called Nakajima-Zwanzig equation [58, 57].
By using the following relation,

T e−
i
ℏ
∫ t
t1

QL(τ)Qdτ
= T e−

i
ℏQ(LS(τ)+LB)dτT e−

i
ℏλ

∫ t
t1

QLI(t1,τ)Qdτ
, (2.12)

where
LI(t, t

′) = T e−
i
ℏ
∫ t
t′ (LS(τ)+LB)dτLI, (2.13)

and by expanding the second exponential in the right hand side of Eq. (2.12) into
the power series of λ, Eq. (2.11) up to the order of λ4 reads

dρ(t)

dt
= − i

ℏ
LS(t)ρ(t)

− λ2

ℏ2

∫ t

t0

dt1⟨LILI(t, t1)T e−
i
ℏ
∫ t
t1

LS(τ)dτρ(t1)⟩B

+ i
λ3

ℏ3

∫ t

t0

dt1

∫ t

t1

dt2⟨LIQLI(t, t2)QLI(t, t1)T e−
i
ℏ
∫ t
t1

LS(τ)dτρ(t1)⟩B

+
λ4

ℏ4

∫ t

t0

dt1

∫ t

t1

dt2

∫ t

t2

dt3⟨LIQLI(t, t3)QLI(t, t2)QLI(t, t1)T e−
i
ℏ
∫ t
t1

LS(τ)dτρ(t1)⟩B.

(2.14)

The λ2 term is the order of λ2τbath/ℏ2 because the time correlation function of Y µ

has a significant contribution only in the regime, t − τbath < t1 < t. The λ3 term
including three-body bath correlation function of Y µ is zero, because the correlation
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function can be decomposed into the product of two-body correlation function and
expectation value of Y µ. The λ4 term includes the product of four bath operators,
Y µ. The representative term consists of

⟨Y µ(t)QY µ′
(t3)QY

ν(t2)QY
ν′(t1)⟩B, (2.15)

where Y µ(t) = e
i
ℏLBtY µ. Owing to the existence of the projection operator Q and

gaussian property of the bath state, we can express it by

⟨Y µ(t)Y ν′(t1)⟩B⟨Y µ′
(t3)Y

ν(t2)⟩B ± ⟨Y µ(t)Y ν(t2)⟩B⟨Y µ′
(t3)Y

ν′(t1)⟩B, (2.16)

where ± depends on whether the heat bath consists of boson particles (+) or fermion
particles (-). It is important to note that these combinations of the correlation
functions contribute to Eq. (2.14) only when t− t1 ∼ O(τbath). This argument holds
also in other terms, and hence the λ4 term is the order of λ4τ 3bath/ℏ4. Now, we use the
assumption that the system of interest weakly couples to a heat bath λ2τ 2bath/ℏ2 ≪ 1,
and perform the Born approximation, i.e., we keep terms up to the order of λ2;

dρ(t)

dt
= − i

ℏ
LS(t)ρ(t)−

λ2

ℏ2

∫ t

t0

dt1⟨LILI(t, t1)T e−
i
ℏ
∫ t
t1

LS(τ)dτρ(t1)⟩B. (2.17)

In order to perform the Markov approximation, it is convenient to move to a
rotating frame in which the reduced density operator in the rotating frame σ(t) is
given by

ρ(t) = T e−
i
ℏ
∫ t
t0

LS(τ)dτσ(t). (2.18)

The equation (2.17) is transformed as

dσ(t)

dt
= −λ

2

ℏ2

∫ t

t0

dt1⟨LI(t0, t)LI(t0, t1)σ(t1)⟩B. (2.19)

Because the right hand side is the order of λ2τbath/ℏ2 and the integrand contributes
only in the regime, t− τbath < t1 < t, for this time region of t1,

σ(t1) = σ(t) +O(λ2τ 2bath/ℏ2). (2.20)

Furthermore, if we focus on the long-time dynamics t − t0 ≫ τbath, we can take
the integration range from [t0, t] to [−∞, t]. These observations lead to the Markov
equation, by putting t1 by t− τ ,

dσ(t)

dt
= −λ

2

ℏ2

∫ ∞

0

dτ⟨LI(t0, t)LI(t0, t− τ)σ(t)⟩B. (2.21)

When we transform back to the static frame, the equation is given by

dρ(t)

dt
= − i

ℏ
LS(t)ρ(t)−

λ2

ℏ2

∫ ∞

0

dτ⟨LILI(t, t− τ)ρ(t)⟩Bdτ. (2.22)
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We call this equation the “Redfield equation”. Up to here, we have not used the
periodicity of the system Hamiltonian HS(t)

In order to derive the Redfield equation, we perform the Born-Markov approxima-
tion on the Nakajima-Zwanzig equation, Eq. (2.11). This approximation is justified
when λ2τ 2bath/ℏ2 is sufficiently small. The relaxation timescale of the system of inter-
est approaching a long-time asymptotic state is determined by the order of the right
hand side of Eq. (2.21) given by

τrelax =

(
λ2τbath
ℏ2

)−1

, (2.23)

and τbath represents the timescale of the bath dynamics. This approximation is
therefore justified when the relaxation timescale of the system is much larger the
timescale of the heat bath.

It is noted that this approximation excludes higher-order processes within a heat
bath, e.g., Raman process. These processes may become important when the system-
bath coupling is stronger and/or observation timescale is much longer than O(λ−2)
such as O(λ−4). Here, we restrict ourselves to systems with weak system-bath cou-
pling strength, and discuss the long-time asymptotic state within the Born-Markov
approximation.

2.1.2 Derivation of Floquet Lindblad equation (infinitesimal
system-bath coupling)

In order to obtain simpler equation, it is necessary to resort to a further approxima-
tion called the rotating wave approximation (RWA) or secular approximation. From
hereon, we impose the time periodicity on the system Hamiltonian,

HS(t) = HS(t+ T ). (2.24)

We denote the Floquet modes and quasienergies by |ua(t)⟩ and ϵa, respectively. Here,
we assume the non-resonance condition of the quasienergy;

if ϵa − ϵb +nℏΩ = ϵc − ϵd +n′ℏΩ and a ̸= b then ϵa = ϵc, ϵb = ϵd, and n = n′, (2.25)

which also imposes no degeneracy on quasienergy spectrum.
We first introduce an operator,

Πµ
abn(t) =

(∫ T

0

⟨ua(τ)|Xµ |ub(τ)⟩ e−inΩ(τ−t)dτ

T

)
|ua(t)⟩ ⟨ub(t)| . (2.26)

By using this operator, we can rewrite Eq. (2.21) as

dσ(t)

dt
=− λ2

ℏ2
∑
a,b,c,d

∞∑
n=−∞

∞∑
n′=−∞

e−i(ωabn−ωcdn′ )(t−t0)
∑
µ,ν

× {Gµν
+ (ωcdn′)[Πµ†

abn(t0),Π
ν
cdn′(t0)σ(t)]−Gνµ

− (−ωcdn′)[Πµ†
abn(t0), σ(t)Π

ν
cdn′(t0)]},

(2.27)
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where ℏωabn = ϵa − ϵb + nℏΩ and

Gµν
± (ω) = ±

∫ ±∞

0

⟨Y µ(τ)Y ν⟩Be−iωtdt. (2.28)

In the RWA we neglect the terms except for the elements (a, b, c, d, n, n′) ∈ A
satisfying

• ϵa = ϵc, ϵb = ϵd, n = n′, ϵa ̸= ϵb,

• ϵa = ϵb, ϵc = ϵd, n = n′,

for which the phase factor in Eq. (2.27) proportional to ωabn − ωcdn′ is zero. Among
the elements (a, b, c, d, n, n′) /∈ A, we define

ωmin = min
(a,b,c,d,n,n′)/∈A

|ωabn − ωcdn′|, (2.29)

which describes the rate of the slowest mode of the density matrix for the system
of interest. The RWA is justified when the timescale of this slowest mode is much
smaller than the relaxation timescale of the system,

ω−1
min ≪ τrelax. (2.30)

This approximation leads to the “Floquet Lindblad equation”;

dρ(t)

dt
=− i

ℏ
[HS(t) +HLamb(t), ρ(t)]

− λ2

ℏ2
∑
a,b

(a ̸=b)

∞∑
n=−∞

∑
µ,ν

Gµν(ωabn)

[
1

2
{Πµ†

abn(t)Π
ν
abn(t), ρ(t)} − Πν

abn(t)ρ(t)Π
µ†
abn(t)

]

− λ2

ℏ2
∑
a,c

∞∑
n=−∞

∑
µ,ν

Gµν(nΩ)

[
1

2
{Πµ†

aan(t)Π
ν
ccn(t), ρ(t)} − Πν

ccn(t)ρ(t)Π
µ†
aan(t)

]
,

(2.31)

where {·, ·} is an anticommutator and

Gµν(ω) = Gµν
+ (ω) +Gµν

− (ω) =

∫ ∞

−∞
⟨Y µ(t)Y ν⟩Be−iωtdt. (2.32)

The Hamiltonian HLamb(t) represents the Lamb shift, which is explicitly given by

HLamb(t) =− i
λ2

2ℏ2
∞∑

n=−∞

∑
µ,ν

{ ∑
a,b

(a ̸=b)

(Gµν
+ (ωabn)−Gµν

− (ωabn))Π
µ†
abn(t)Π

ν
abn(t)

+
∑
a,c

(Gµν
+ (nΩ)−Gµν

− (nΩ))Πµ†
aan(t)Π

ν
ccn(t)

}
, (2.33)
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which is an Hermite operator and renormalized into the system Hamiltonian. It is
also noted that this operator commutes with the Floquet Hamiltonian of the system
of interest at time t, i.e., [H

[t]
F , HLamb(t)] = 0, and hence the Lamb shift Hamiltonian

does not contribute to the transition among the Floquet states of the system of
interest.

We expand the Floquet Lindblad equation by using the basis of the Floquet states
of the system of interest. We then obtain the set of equations for the elements of
density matrix in this basis given by

ρij(t) = ⟨ui(t)| ρ(t) |uj(t)⟩ . (2.34)

Particularly for the diagonal elements {ρii(t)}, the set of equations is closed;

dρii(t)

dt
=
∑
j

(i̸=j)

[Tj→iρjj(t)− Ti→jρii(t)]. (2.35)

Here, Ti→j is the transition probability from the Floquet state |ui(t)⟩ to |uj(t)⟩ given
by

Ti→j =
λ2

ℏ2
∞∑

n=−∞

∑
µ,ν

Gµν(ωjin)X
µ∗
jinX

ν
jin, (2.36)

where Xµ
jin denotes the Fourier components of the matrix elements of Xµ,

Xµ
jin =

∫ T

0

⟨uj(t)|Xµ |ui(t)⟩ e−inΩtdt

T
. (2.37)

This type of equation Eq. (2.35) is often referred to as the Pauli’s master equation [14,
15] or the rate equation [13].

The off-diagonal elements of density matrix ρij(t) for i ̸= j obey

dρij(t)

dt
= [−i(ϵi − ϵj)− Γij]ρij(t). (2.38)

Since the real part of Γij is positive, each off-diagonal element decays to be zero while
oscillating at frequency, ϵi − ϵj + ImΓij. The off-diagonal element disappears in the
long-time asymptotic state [59].

As a result, the density matrix for the long-time asymptotic state in the Lindblad
formalism, ρALind(t), is given in the diagonalized form of the Floquet state, [14, 13]

ρALind(t) =
∑
i

Pi |ui(t)⟩ ⟨ui(t)| , (2.39)

in which the Floquet occupations Pi(= ρii) are obtained by putting the right hand
side of Eq. (2.35) to be zero;

0 =
∑
j

(i̸=j)

[Tj→iPj − Ti→jPi]. (2.40)
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The long-time asymptotic state is periodic in time, ρALind(t + T ) = ρALind(t). Since
the sum of Pi over i is normalized to be one, we can interpret the set of {Pi} as the
probability distribution.

2.1.3 Comparison between the Redfield equation and the
Floquet Lindblad equation

We have derived the Redfield equation Eq. (2.22) and the Floquet Lindblad equation
Eq. (2.31). First we discuss again the region of the applicability of these two master
equations. In the derivation of the Redfield equation, we have used the Born-Markov
approximation. This approximation is justified when the relaxation timescale of the
system of interest is much longer than the bath correlation times, τrelax ≫ τbath.
In order to derive the Floquet Lindblad equation, the non-resonance condition and
the RWA are necessary. The RWA is justified when the relaxation timescale of the
system is also much longer than the timescale of the slowest mode of the system,
τrelax ≫ ω−1

min. These arguments on conditions are listed in the following table.

master equation conditions

Redfield equation Eq. (2.22) τrelax ≫ τbath
Floquet Lindblad equation Eq. (2.31) non-resonance condition

τrelax ≫ τbath, τrelax ≫ ω−1
min

We discuss the relation of the long-time asymptotic states obtained by the Lind-
blad equation ρALind(t) and the Redfield equation ρARed(t). The Pauli’s master equation,
Eq. (2.35), gives the long-time asymptotic state for the Floquet Lindblad equation.
Since we can eliminate λ-dependence of the Pauli’s master equation by rescaling
time as t → τ = λ2t, the long-time asymptotic state is independent of the system-
bath coupling strength λ. On the other hand, the asymptotic state for the Redfield
equation depends on the coupling strength. Actually, the long-time asymptotic state
obtained by the Pauli’s master equation is identical to that of the Redfield equation
only in the weak coupling limit, λ→ 0.

In order to see this relation, we define the long-time asymptotic state of the
Redfield equation by imposing the time pediodicty on the density matrix,

ρARed(t+ T ) = ρARed(t). (2.41)

In this subsection, since we will address only ρARed(t), the label “A” and “Red” are
dropped. We expand the asymptotic density matrix into the power series of λ2,

ρ(t) = ρ(0)(t) + λ2ρ(2)(t) + O(λ4), (2.42)

where each term is expanded into Fourier components, for l = 0 and 2,

ρ
(l)
ijn =

∫ T

0

⟨ui(t)| ρ(l)(t) |uj(t)⟩ e−inΩtdt

T
. (2.43)
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Substituting this form into the Redfield equation Eq. (2.22) and comparing the order
of λ0, we obtain

0 = −iωijnρ
(0)
ijn. (2.44)

Using the assumption that there exists no degeneracy in quasienergy spectrum, we
evaluate the Fourier components of the 0th-order density matrix, except for i = j
and n = 0,

ρ
(0)
ijn = 0. (2.45)

Thus, the asymptotic density matrix in the Floquet basis is diagonalized and time
independent in the weak coupling limit (λ→ 0).

In order to obtain the diagonal elements, we evaluate the order of the λ2. The
equations for the asymptotic density matrix in the order of λ2 reads

0 =− iωijnρ
(2)
ijn

− 1

ℏ2
∑
µ,ν

∑
k

∞∑
n′=−∞

{Gµν
+ (ωkjn′)Xν

kjn′X
µ∗
ki(n′−n)ρ

(0)
jj0 +Gνµ

− (−ωikn′)Xν
ikn′X

µ∗
jk(n′−n)ρ

(0)
ii0

− [Gµν
+ (ωikn′)Xν

ikn′X
µ∗
jk(n′−n) +Gνµ

− (−ωkjn′)Xν
kjn′X

µ∗
ki(n′−n)]ρ

(0)
kk0}. (2.46)

For the set i = j and n = 0, the first term of right hand side is zero, and thus we
obtain equations for {ρ(0)ii0},

0 =
∑
i

[Ti→jρ
(0)
ii0 − Tj→iρ

(0)
jj0]. (2.47)

Since this expression is identical to Eq. (2.40), ρii0 = Pi. Thus, the asymptotic density
matrix for the Redfield equation approaches that for the Floquet Lindblad equation,
as the system-coupling strength decreases; limλ→0 ρ

A
Red(t) = ρALind(t). In other words,

the long-time asymptotic state in the Lindblad formalism is only applicable to systems
with infinitesimal system-bath coupling strength.

The Equation (2.46) gives the λ2-order term of the asymptotic density matrix,

ρ
(2)
ijn, except for i = j and n = 0. In order to evaluate the components ρ

(2)
ii0 , we

generally resort to the fourth-order master equation. The hierarchical structure has
been discussed in the system with time-independent system Hamiltonian coupled to
a single bath [5, 6] or multiple baths [60, 61].

It is more importantly noted that the Redfield equation can describe the long-
time asymptotic states even when the use of the Floquet Lindblad equation is no
more valid, e.g., ω−1

min > τrelax. In this case, the perturbative expansion of the asymp-
totic density operator, Eq. (2.42), is not allowed, and we have to solve it in a non-
perturbative way (see Chap. 4).

2.1.4 Long-time asymptotic states of systems with infinites-
imal system-bath coupling

In this subsection, we overview the generic properties of the long-time asymptotic
density matrix obtained by the Floquet Lindblad equation. If a system Hamiltonian
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is time independent, the system coupled to a dissipative environment relaxes into a
canonical state. On the other hand, under a periodic driving field, it is known that
the long-time asymptotic state can not be generally described in a universal way [13].

First, we consider a system whose Hamiltonian is time independent. The eigenen-
ergy states |ψi⟩ and eigenvalues Ei of the time-independent system Hamiltonian H0

are related to the Floquet states and quasienergies by

|ui(t)⟩ = |ψi⟩ e−imiΩt,

ϵi = Ei −miℏΩ, (2.48)

where mi is chosen so that the quasienergy ϵi is within the regime, −ℏΩ/2 ≤ ϵi <
ℏΩ/2. By substituting this form into the matrix elements of Xµ, Eq. (2.37), we
obtain

Xµ
ijn = ⟨ψi|Xµ |ψj⟩ δn,mi−mj

, (2.49)

which gives a transition probability from the eigenenergy state |ψi⟩ to |ψj⟩ as

Ti→j =
λ2

ℏ2
∑
µ,ν

Gµν([Ej − Ei]/ℏ) ⟨ψj|Xν |ψi⟩ ⟨ψi|Xµ |ψj⟩ . (2.50)

The role of the heat bath that thermalizes the attached system into a canonical
state is played by the Kubo-Martin-Schwinger (KMS) relation [20],

Gµν(ω) = Gνµ(−ω)e−βℏω, (2.51)

which holds independently of the details of the heat bath at its temperature, β−1/kB
though the function Gµν(ω) itself depends on the details such as the bath Hamiltonian
and the bath operator interacting with the system of interest (see Eq. (2.32)). The
KMS relation leads to the detailed balance condition between transition probabilities,
Ti→j and Tj→i;

Ti→j =
λ2

ℏ2
∑
µ,ν

Gνµ([Ei − Ej]/ℏ)e−β(Ej−Ei) ⟨ϕj|Xν |ϕi⟩ ⟨ϕi|Xµ |ϕj⟩ = Tj→ie
−β(Ej−Ei),

↔ Ti→j

Tj→i

=
e−βEj

e−βEi
. (2.52)

If the ergodic property on the transition probability is satisfied [1], the asymptotic
density matrix is diagonalized by the energy eigenstates of H0 and its diagonal ele-
ments are given by the Boltzmann distribution at the temperature of the heat bath
∝ e−βEi . The detailed balance condition thus ensures the universal description of the
long-time asymptotic state.

This property originates from the existence of the conserved energy in the total
system. Through the transition process from |ψi⟩ to |ψj⟩, the change of the energy
in the heat bath denoted by the argument of G(ω) is Ei − Ej. Thus, the sum of the
energy of the system of interest and the energy of the heat bath is conserved.
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On the other hand, under a periodic driving field, the summation of n appears in
the transition probabilities, Eq. (2.36), which avoids the existence of the conserved
energy. The detailed balance condition is thus not generally satisfied;

Ti→j

Tj→i

=

∑∞
n=−∞

∑
µ,ν G

µν(ωjin)X
µ∗
jinX

ν
jin∑∞

n=−∞
∑

µ,ν G
µν(ωijn)X

µ∗
ijnX

ν
ijn

,

=

∑∞
n=−∞

∑
µ,ν G

µν(ωijn)X
µ∗
ijnX

ν
ijne

βωijn∑∞
n=−∞

∑
µ,ν G

µν(ωijn)X
µ∗
ijnX

ν
ijn

. (2.53)

The long-time asymptotic states generally depend on the details of the heat bath,
Gµν(ω) [13], and hence its universal description does not exist.

2.2 The master equation in cavity systems

The effects of interaction between photons and atoms have attracted much attention
for a long time. A cavity system is introduced to enhance the interaction by confining
photons in a finite region with mirrors. A cavity system, consisting of a two-level atom
coupled to a single mode of photon field, is described by Jaynes-Cummings model [62,
63] or Rabi model. The effects of interaction has been observed in experiment as
cavity ringing phenomena [64, 65] and vacuum Rabi splitting [66]. Recently, this
coupling has been utilized to control quantum information [67, 68, 69, 70, 71, 72, 73].

When the cavity system includes multiple atoms, cooperative phenomena due to
the interaction occur, which has been studied since Dicke pointed out the impor-
tance of the coherent coupling between multiple atoms and photons in the study
of superradiance [74]. An optical bistability occurs in the strong coupling regime
where the atom-photon coupling strength is larger than the decay rate of photons
and atoms [75, 76]. This phenomenon is a discontinuous transition of nonequilibrium
steady states by changing an amplitude or a frequency of a laser field, which was
observed in experiment [77, 78]. When the interaction increases and it is compara-
ble with the energy scales of two-level atoms and photons, the regime is called the
ultra-strong coupling (USC) regime. In this regime, the phase transition called the
Dicke transition appears in equilibrium state [79, 80, 81]. In the ordered phase, the
photon number of the ground state is not zero and the dipole moment of atoms is
spontaneously polarized. This phase is called the “superradiant phase” [79].

Recent experimental progress allows us to study the USC regime. A cold atom
system in an optical cavity shows a phase transition corresponding to the Dicke
transition [82], and phenomena induced by a parametric resonance were proposed [83,
84]. Other systems such as semiconductor cavities [85, 86, 87, 88] and circuit QED
systems [89, 90] show the ultra-strong coupling, which is expected to be utilized to
study the cooperative phenomena in the USC regime.

The cavity system is thus an attractive system to study non-equilibrium steady
states subjected to a periodic driving field in a dissipative environment. In Chap. 5,
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we will show the cooperative phenomena induced by the dynamical effects and inter-
action effects.

2.2.1 Dressed master equation

As a preparation to study the long-time asymptotic state of the driven cavity sys-
tem, in this subsection we introduce a phenomenological master equation. In order
to study the USC regime, we have to extend the master equation which was conven-
tionally used to study the optical bistability [76]. In a single two-level atom system
coupled to a quantized photon mode, it has been pointed out that the incorporation
of the atom-photon coupling into the dissipative terms is important to give a correct
equilibrium value [91, 92]. For such a treatment, it is necessary to obtain all the
eigenvalues and eigenmodes of the system, which is possible in a system with small
degrees of freedom [91, 92, 93, 94, 95] or a simple system such as a harmonic chain [96].
However, it is difficult for macroscopic systems because the system consists of many
degrees of freedom. In order to overcome this difficulty, we use the property of the
cavity system that all the atoms uniformly couple to the photon field. This property
enables us to study the many-body problem by using a mean-field (MF) treatment,
which was actually justified in the thermodynamic limit [97]. In this section, we first
introduce the model of the cavity system. Next, we give a master equation in terms
of photons and atoms dressed by the mean field, and compare it with the master
equation for the study of the optical bistability.

We adopt the Dicke model [74] as a model of the cavity system, which describes
an ensemble of two-level atoms coupled to a single quantized mode of photon field.
The Hamiltonian reads

H0 = ωpa
†a+

N∑
j=1

ωaS
z
j +

N∑
j=1

2g√
N
Sx
j (a+ a†). (2.54)

The first term describes the single quantized photon mode for which the annihilation
and creation bosonic operators, a and a†, are assigned. The energy of the photon
is denoted by ωp. The second term represents the ensemble of two-level atoms with
excitation energy ωa. Since the dimension of the Hilbert space for each atom is two,
they are described by a usual one-half spin operators Sj, where j labels each atom,
j = 1, · · · , N . The last term describes the interaction among the photons and atoms
with the strength being g. Here, we study the USC regime where g is comparable to
ωp and ωa.

We apply a periodic driving field which enhances photon field inside the cavity.
The Hamiltonian is given by

ξHex(t) = 2
√
Nξ cos(Ωt)(a+ a†), (2.55)

where ξ and Ω describes the amplitude and frequency of the driving field.

33



The Hamiltonian of the cavity system is thus expressed by

HS(t) = H0 + ξHex(t). (2.56)

We study its property in the thermodynamic limit N → ∞, in which the expectation
values of photon numbers a†a and excitations of atoms

∑N
j=1 S

z
j is the order of N .

Thus, we adopt the rescaled parameters g and ξ for the atom-photon coupling and
the amplitude of the driving field, respectively.

In the MF treatment, the density operator of the system is given in the product
form;

ρ(t) = ρp(t)⊗ ρa(t)⊗ · · · ⊗ ρa(t)︸ ︷︷ ︸
N

= ρp(t)⊗ ρa(t)
⊗N , (2.57)

where ρp(t) and ρa(t) are the density operators for photons and atoms, respectively.
Here, we assume that all the atoms are in the same states, and hence we will use
S instead of Sj. Since there is no correlation between photons and each atom, MF
Hamiltonians Hp(t) and Ha(t) govern the time evolution of photon density matrix
ρp(t) and atom density matrix ρa(t), respectively. They are obtained by trancing out
other degrees of freedom. The MF Hamiltonian of photons reads

Hp(t) =Tratoms[HS(t)ρa(t)
⊗N ],

=ωpa
†a+ 2

√
N [g ⟨Sx(t)⟩+ ξ cosΩt](a+ a†) + ζ(t), (2.58)

where ⟨S(t)⟩ = Tratom[Sρa(t)] and ζ(t) is a scalar which does not affect the dynamics.
We introduce a bosonic operator ã(t),

ã(t) = a+
2
√
N

ωp

[g ⟨Sx(t)⟩+ ξ cosΩt], (2.59)

by which the MF Hamiltonian is written in the bilinear form;

Hp(t) = ωpã
†(t)ã(t) + ζ ′(t), (2.60)

where ζ ′(t) is a scalar. This operators ã(t) and ã†(t) thus describe the dressed photon
which incorporates the mean field of atoms. The MF Hamiltonian for one of the atoms
reads

Ha(t) =TrphotonTrother atoms[HS(t)ρp(t)⊗ 1̂⊗ ρa(t)
⊗N−1]

=ωaS
z +

2g√
N
(⟨a(t)⟩+ ⟨a(t)⟩∗)Sx + ζ ′′(t), (2.61)

where ⟨a(t)⟩ = Trphoton[aρp(t)] and ζ
′′(t) is a scalar. We introduce a unitary operator

Uatom(t) so that the MF Hamiltonian is expressed by

Ha(t) = ω̃a(t)S̃
z(t) + ζ ′′(t), (2.62)
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where S̃(t) = U †
atom(t)SUatom(t). Here S̃(t) describes the dressed atom which incor-

porates the MF of photon fields and ω̃a(t) reads

ω̃a(t) =

[
ω2
a +

4g2

N
(⟨a(t)⟩+ ⟨a(t)⟩∗)2

] 1
2

. (2.63)

In order to study the nonequilibrium steady state in a dissipative environment, we
adopt the “dressed Lindblad equations” in terms of the dressed quantities: dressed
photons denoted by ã(t) and a dressed atom denoted by S̃(t). For photon fields, it
is given by

dρp(t)

dt
= − i

ℏ
[Hp(t), ρp(t)]−

γp
ℏ
({ã†(t)ã(t), ρp(t)} − 2ã(t)ρp(t)ã

†(t)), (2.64)

where γp describes the decay rate of the dressed photons. For each atom, it is given
by

dρa(t)

dt
= − i

ℏ
[Ha(t), ρa(t)]−

γa(t)

ℏ
({S̃+(t)S̃−(t), ρa(t)} − 2S̃−(t)ρa(t)S̃

+(t)), (2.65)

where γa(t) describes the decay rate of the excited state of the dressed atom into
its ground state. Here, S̃±(t) is defined by S̃x(t) ± iS̃y(t). Now, we assume that
the system interacts with a thermal bath via dipole moment of each atom, which is
represented by Sx. The time dependence of γa(t) is given by

γa(t) = 4| ⟨↓̃(t)|Sx |↑̃(t)⟩ |2γa, (2.66)

where |↑̃(t)⟩ and |↓̃(t)⟩ are the eigenenergy states of S̃z(t) with the positive eigenvalue
and the negative eigenvalue, respectively. Here, γa denotes the decay rate of each
atom when there is no interaction between photon fields and atoms.

The dressed Lindblad equation incorporates the effects of atom-photon coupling
and driving field into the dressed quantities ã(t) and S̃(t). When g and ξ is much
smaller than ωa and ωp, this equation approaches the “bare Lindblad equation”,

dρp(t)

dt
=− i

ℏ
[Hp(t), ρp(t)] +

γp
ℏ
(2aρp(t)a

† − {a†a, ρp(t)}),

dρa(t)

dt
=− i

ℏ
[Ha(t), ρa(t)] +

γa
ℏ
(2S−ρa(t)S

+ − {S+S−, ρa(t)}),
(2.67)

in which dissipative effects relax bare photons inside cavity and excited states of bare
atoms, |↑⟩. The bare Lindblad equation is applicable to study the optical bistabil-
ity [76] because this phonomenon occurs in the strong coupling regime, (γa, γp) <
(g, ξ) ≪ (ωa, ωp). However, it is expected that the application is not extended to
the USC regime since the bare Lindblad equation does not take the effect of the
interaction into account.

Finally, we demonstrate that bare Lindblad equation does not give the correct
ground state for the Dicke transition at ξ = 0. In Fig. 2.1, we plot the ordered

35



0.5 0.55 0.6

Interaction strength g

0

0.1

0.2

0.3

0.4

O
rd
er

p
a
ra
m
et
er

|α
|

Figure 2.1: Dependence of order parameter of photon field as a function of the
interaction strength g. The data obtained by the bare Lindblad equations (2.67) are
denoted by crosses (γp = γa = 0.1), squares (γp = γa = 0.01), and triangles (γp =
γa = 0.001), respectively. The data obtained by the dressed Lindblad equations (2.64)
and (2.65) are denoted by bullets. They agree with the curve in the ordered phase
(g > 0.5), |α| = 1

2
[4g2/ω2

p − ω2
a/(4g

2)]1/2, which is obtained from the equilibrium
statistical mechanics [81]. We set parameters, ωa = ωp = 1.
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component of the photon field |α| = limN→∞ | ⟨a⟩ /
√
N | as the function of the atom-

photon coupling strength g. We show the stationary states obtained by the bare
Lindblad equations for γp = γa = 0.1 (crosses), γp = γa = 0.01 (squares), γp = γa =
0.001 (triangles). The stationary states show a phase transition, but they do not
give the correct values of the order parameter in the ordered phase. This deviation
is not owing to the finite system-bath coupling but owing to the form of the master
equation. Indeed, as the system-bath coupling decreases, the data converges to the
limiting values which are different from the correct values. This observation indicates
that the bare Lindblad equations are inadequate to study the USC regime. On the
other hand, the dressed Lindblad equations reproduce the correct values which are
obtained by the equilibrium statistical physics [81]. Thus, the present formalism of
dissipation terms satsfies the minimal condition in order to study the USC regime
subjected to a periodic driving field, which will be discussed in Chap. 5.

In this section, we employed a mean field approach and introduced the phe-
nomenological dressed master equations. It is noted that the dressed master equa-
tions at time t depend only on the mean field at time t in spite of the finite correlation
time of the heat bath, τbath. We therefore implicitly assume that the mean field does
not change much during the correlation time of the heat bath. When the system
Hamiltonian is time periodic, the dynamics during the bath correlation time can be
incorporated by expanding it into the Floquet modes, Eq. (2.27), which is not ap-
plicable to our case since the mean field is not time periodic in general. However, it
is plausible that there exists a parameter regime where the mean field becomes time
periodic in the long-time asymptotic state. In Chap. 5, in order to study the high-
frequency regime, in which the mean field also rapidly oscillates, we propose a method
to find the long-time asymptotic state by using the Floquet Lindblad equation and
the MF approach.
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Chapter 3

Floquet-Gibbs state in open
systems with infinitesimal
system-bath coupling

3.1 Floquet-Gibbs state

In the previous chapter, we have shown that under an appropriate condition, the
dissipation dynamics can be described by the Floquet Lindblad equation. The simple
structure of the Floquet Lindblad equation and the KMS relation naturally leads us
to the notion of the Floquet-Gibbs state. The strategy that we employ is as follows.
In the framework of the Floquet Lindblad equation, the probability distribution {Pi}
for the long-time asymptotic state is obtained by solving the following equations,

0 =
∑
j

Tj→iPj − Ti→jPi, (3.1)

where

Ti→j =
∞∑

m=−∞

Ti→j,m =
λ2

ℏ2
∞∑

m=−∞

∑
µ,ν

Gµν(ωjim)X
µ∗
jimX

ν
jim. (3.2)

As shown previously, the asymptotic states are not generally given in the Gibbs form
owing to the summation of the m. However, if for each transition process, there
exists an integer mij for which Ti→j,mij

gives a dominant contribution of Ti→j and the
integer mij can be expressed in the form1,

mij = mi −mj, (3.3)

then the detailed balance condition recovers owing to the KMS relation, Eq. (2.51);

Ti→je
−β(ϵi+miℏΩ) = Tj→ie

−β(ϵj+mjℏΩ). (3.4)

1There is an ambiguity to add a certain integer to every mi owing to this definition, but it does
not matter because the origin of mi is not important
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If the ergodic property is satisfied, the long-time asymptotic state is given in the
Gibbs form as

ρALind(t) =
∑
i

e−β(ϵi+miℏΩ)∑
j e

−β(ϵj+mjℏΩ)
|ui(t)⟩ ⟨ui(t)| =

e−βH
[t]
F

Tre−βH
[t]
F

, (3.5)

where
H

[t]
F =

∑
i

(ϵi +miℏΩ) |ui(t)⟩ ⟨ui(t)| . (3.6)

It is noted that this state is obtained by replacing the eigenstates and eigenenergies
in the canonical state by the Floquet states and their quasienergies, and thus we call
it Floquet-Gibbs state.

The qualitative explanation why the Gibbs distribution of the Floquet Hamilto-
nian is realized is as follows. The introduction of mi allows us to assign well-defined
“energies”, ϵi+miℏΩ, for each Floquet state, and there exists conserved total energy
consisting of this energy and the energy of the heat bath through the transition pro-
cess. The existence of the conserved total energy ensures the Gibbs description of
the Floquet Hamiltonian as in a time-independent system. In this chapter, we show
that the above situation actually occurs in some physically relevant cases.

The Hamiltonian for the total system is given in the same form as Eq. (2.1). We
divide the system Hamiltonian HS(t) into two parts;

HS(t) = H0 + ξHex(t), (3.7)

where the driving Hamiltonian is determined to satisfy∫ T

0

Hex(t)dt = 0. (3.8)

3.2 Emergence of the Floquet-Gibbs state in the

linear response (weakly driven) regime

Here we study the linear response regime where the driving amplitude ξ is sufficiently
weak. We show that in this regime the probability distribution of the asymptotic state
is given by the Floquet-Gibbs state up to the first order of ξ. This result is plausible
because the asymptotic state is expected to be close to the thermal equilibrium state
as discussed in [98], but the explicit derivation has not be done before.

We expand the Floquet mode perturbatively into the basis of the eigenenergy
states of H0, H0 |ψi⟩ = Ei |ψi⟩. By using a perturbation method [24] (See details in
section 1.3.1), the Floquet mode up to the order of ξ is given by

|ui(t)⟩ eimiΩt =

1− ξ
∞∑

m=−∞
(m̸=0)

H̃iim

mℏΩ

 |ψi⟩ − ξ
∑
j(̸=i)

∞∑
m=−∞
(m̸=0)

H̃jime
−imΩt

Ej − Ei −mℏΩ
|ψj⟩ , (3.9)
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where H̃jim is a Fourier component of the driving Hamiltonian in the basis of the
Floquet states, Eq. (1.35), and mi is defined so that −ℏΩ

2
< Ei−miℏΩ ≤ ℏΩ

2
. In order

to use this perturbative method, we have assumed that there is no near degeneracy
in quasi-energy spectrum,

|Ei − Ej +mℏΩ| ≫ ξmax
t

| ⟨ψi|Hex(t) |ψj⟩ |, (3.10)

for any set of (i, j,m) except i = j and m = 0. This condition is not satisfied when
there exist two eigenenergy states of H0 which are in resonance with the driving field.

We evaluate Xµ
ijn in the basis of eigenstates of H0 up to the order of ξ. For

n = mi −mj,

Xµ
ijn =

[
1 + ξ

∞∑
m=−∞
(m̸=0)

H̃jjm − H̃iim

mℏΩ

]
⟨ψi|Xµ |ψj⟩ , (3.11)

and for n ̸= mi −mj,

Xµ
ij(mi−mj−n) = ξ

∑
l

(
H̃iln ⟨ψl|Xµ |ψj⟩
Ei − El − nℏΩ

− ⟨ψi|Xµ |ψl⟩ H̃ljn

El − Ej − nℏΩ

)
. (3.12)

The transition probability from the Floquet mode |ui(t)⟩ to |uj(t)⟩ is given by (see
next section for the bound of O(ξ2) term),

Ti→j =
λ2

ℏ2
∑
µ,ν

Gµν(ωji[mj−mi]) ⟨ψi|Xµ |ψj⟩ ⟨ψj|Xν |ψi⟩+O(ξ2), (3.13)

where ωijn = (ϵi − ϵj)/ℏ + nΩ. An integer mi is assigned for each Floquet mode
|ui(t)⟩ in the transition process (see Eq. (3.3)), which ensures the detailed balance
condition among the Floquet states. The KMS relation, Eq. (2.51), indeed leads to

Ti→je
−β(ϵi+miℏΩ) = Tj→ie

−β(ϵj+mjℏΩ) +O(ξ2). (3.14)

If an ergodic property is satisfied in the limit ξ → 0, then the long-time asymptotic
state is given by the Floquet-Gibbs state,

ρALind(t) =
e−βH

[t]
F

Tre−βH
[t]
F

+O(ξ2), (3.15)

where
H

[t]
F =

∑
i

(ϵi +miℏΩ) |ui(t)⟩ ⟨ui(t)| . (3.16)

Owing to the definition of the Hamiltonian for the driving field, Eq. (3.8), the
quasienergy is related to the eigenenergy of H0 as Ei = ϵi + miℏΩ + O(ξ2) (See
the derivation in Eq. (1.38)), and thus the distribution Pi does not change in the
first order of ξ. However, because the Floquet state changes in the order of ξ, the
expectation values of observables in the long-time asymptotic state are different from
the equilibrium values in this order.
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3.2.1 Estimation of the smallness of transition probabilities
that break the detailed balance condition

Here we show that O(ξ2) term in Eq. (3.13) is bounded by

λ2ξ2

ℏ2
∞∑

m=−∞
(m̸=0)

(∆i(m) + ∆j(−m))2
∑
µ,ν

∥Xµ∥∥Xν∥|Gµν(ωjim)|, (3.17)

where ∆i(m) is given by

∆i(m) =

√√√√∑
l

|H̃ilm|2
(Ei − El −mℏΩ)2

. (3.18)

In this subsection, we derive this bound. The O(ξ2) term, which breaks the
detailed balance condition among Floquet states, is given by

λ2

ℏ2
∞∑

m=−∞
(m̸=0)

∑
µ,ν

Gµν(ωjim)X
µ
ij[mi−mj−m]X

ν
ji[mj−mi+m]. (3.19)

The absolute value of Xµ
ij(mi−mj−m) is bounded as

|Xµ
ij[mi−mj−m]| ≤ξ

(∣∣∣∣∣∑
l

H̃ilm ⟨ψl|Xµ |ψj⟩
Ei − El −mℏΩ

∣∣∣∣∣−
∣∣∣∣∣∑

l

⟨ψi|Xµ |ψl⟩ H̃ljm

El − Ej −mℏΩ

∣∣∣∣∣
)
,

≤ξ(∆i(m) + ∆j(−m))
√
⟨ψj|Xµ†Xµ |ψj⟩,

≤ξ(∆i(m) + ∆j(−m))∥Xµ∥. (3.20)

In a similar way, |Xν
ji[mj−mi+m]| is bounded by

|Xν
mj−mi+m| ≤ ξ(∆i(m) + ∆j(−m))∥Xν∥. (3.21)

Substituting these forms into Eq. (3.19),

Eq. (3.19) ≤ λ2

ℏ2
∞∑

m=−∞
(m̸=0)

∑
µ,ν

|Gµν(ωjim)||Xµ
ij(mi−mj−m)||X

ν
mj−mi+m|,

≤ λ2ξ2

ℏ2
∞∑

m=−∞
(m̸=0)

(∆i(m) + ∆j(−m))2
∑
µ,ν

|Gµν(ωjim)|∥Xµ∥∥Xν∥. (3.22)

It is noted that the ∆i(m) is finite only when the driving Hamiltonian has a corre-

sponding Fourier component,
∫ T

0
Hex(t)e

imΩtdt ̸= 0.
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3.3 Emergence of the Floquet-Gibbs state beyond

the linear response regime

Next, we study the case beyond the linear response regime. We will show that under
the following three conditions,

(i) ℏΩ ≫ ∥H0∥,
(ii) for all t1 and t2, [Hex(t1), Hex(t2)] = 0,

(iii) [Hex(t), HI] = 0,

the long-time asymptotic state is described by the Floquet-Gibbs state,

ρFG(t) =
∑
i

e−βϵi∑
j e

−βϵj
|ui(t)⟩ ⟨ui(t)| , (3.23)

up to the order of Ω−1. The first condition states that the system is subjected to a high
frequency driving field. The second condition restricts the form of the driving field;
The driving Hamiltonians Hex(t) (see Eq. (3.7)) at different times commute with each
other. The third condition requires that the interaction Hamiltonian HI commutes
with the driving Hamiltonian. It is noted that these conditions are independent of
driving strength ξ, and therefore the Floquet-Gibbs state can be realized even when
the Floquet quasienergy spectrum is far from the eigenenergy spectrum of H0.

First of all, let us qualitatively explain why these conditions lead the asymptotic
state to the Floquet-Gibbs state. As we have shown in Chap. 1 in order to obtain
the approximated Floquet Hamiltonian when a strong and high-frequency field is
subjected, it is convenient to transform into a rotating frame by using a unitary
operator,

V (t) = T e−
i
ℏ
∫ t
0 ξHex(τ)dτ . (3.24)

The total Hamiltonian, which gives a time evolution in the rotating frame, reads

HR(t) = HR
S (t) + λHR

I (t) +HB, (3.25)

where

HR
S (t) =V

†(t)H0V (t),

HR
I (t) =V

†(t)HIV (t). (3.26)

When a system meets all the conditions (i), (ii), and (iii), the time-dependent Hamil-
tonian HR(t) can be effectively replaced by a time-independent one. Here, it is noted
that the bath Hamiltonian does not change because the unitary operator acts only
on the Hilbert space of the system of interest.

Conditions (i) and (ii) play a role of replacing HR
S (t) by a time-independent one.

The condition (ii) allows us to drop the time-ordering operator in the unitary oper-
ator V (t), Eq. (3.24). This property with the definition of the driving Hamiltonian,
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Eq. (3.8), ensures the time periodicity of this operator, V (t) = V (t+T ). As a result,
HR

S (t) is also periodic in time,

HR
S (t+ T ) = HR

S (t), (3.27)

which can be expressed by the Fourier expansion,

HR
S (t) =

∞∑
n=−∞

H̃(n)e−inΩt. (3.28)

Since the norm of HR
S (t) is independent of the driving amplitude,

∥HR
S (t)∥ = ∥H0∥, (3.29)

the amplitude of the oscillating terms in HR
S (t), H̃

(n), is also bounded by a value
independent of ξ;

∥H̃(n)∥ ≤
∫ T

0

∥HR
S (t)e

inΩt∥dt
T

= ∥H0∥. (3.30)

We thus find from Eq. (3.27) and Eq. (3.30) that at high frequency (condition (i)) the
Hamiltonian in the rotating frame consists of rapidly oscillating terms with amplitude
bounded by ∥H0∥. We then have an intuitive picture that this rotating Hamiltonian
HR

S (t) can be replaced by the time-averaged one (effective Hamiltonian),

HR
S (t) → Heff = H̃(0). (3.31)

The effective Hamiltonian is actually close to the Floquet Hamiltonian in the rotating
frame owing to the Floquet-Magnus expansion [27] (see Sec. 1.3.3),

Heff = H
[0]
F +O

(
∥H0∥T

ℏ

)
. (3.32)

Under the conditions (i) and (ii), we thus introduce the time-independent system
Hamiltonian in the rotating frame.

The third condition (iii) ensures time independence of the interaction Hamiltonian
in this rotating frame, HR

I (t). When the condition (iii) is satisfied, unitary operator
V (t) and the interaction Hamiltonian HI commutes with each other, and thus

HR
I (t) = HI. (3.33)

Therefore, we can effectively introduce the time-independent Hamiltonian for the
total system in the rotating frame, H

[0]
F +λHI +HB. The time independence ensures

the existence of the conserved energy for a total system, which allows us to describe
the asymptotic density matrix in a Gibbs form.

We now confirm this scenario in the framework of the Floquet Lindblad equation.
For this purpose, we introduce Floquet modes |uRi (t)⟩ and quasienergies ϵRi for HR

S (t),(
HR

S (t)− iℏ
∂

∂t

)
|uRi (t)⟩ = ϵRi |uRi (0)⟩ (3.34)
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Here we have used the periodicity of HR
S (t) due to the condition (ii). The quasiener-

gies and the Floquet states are related to the ones in the static frame by

|uRi (t)⟩ = V (t) |ui(t)⟩ , ϵRi = ϵi. (3.35)

The unitary operator V (t) commutes with the interaction Hamiltonian HI owing
to the condition (iii),

[V (t), HI] = 0 → [V (t), Xµ] = 0, (3.36)

which leads to the expression of Xµ
ijn in Eq. (2.37) using the Floquet basis in the

rotating frame;

Xµ
ijn =

∫ T

0

⟨uRi (t)|V (t)XµV †(t) |uRj (t)⟩ e−inΩtdt

T

=

∫ T

0

⟨uRi (t)|Xµ |uRj (t)⟩ e−inΩtdt

T
. (3.37)

We expand the Floquet mode in the rotating frame up to the first order of T .
Using the Magnus expansion for 0 ≤ t ≤ T ,

|uRi (t)⟩ = T e−
i
ℏ
∫ t
0 (H

R
S (τ)−ϵi)dτ |uRi (0)⟩ ,

=
(
e−

i
ℏ
∫ t
0 (H

R
S (τ)−ϵi)dτ− 1

2ℏ2
∫ t
0 dτ1

∫ τ1
0 [HR

S (τ1),HR
S (τ2)]+···

)
|uRi (0)⟩ ,

=

[
e
− i

ℏ
∫ t
0 (H

R
S (τ)−ϵi)dτ−O

(
∥H0∥t

2

ℏ2

)]
|uRi (0)⟩ ,

=

[
1− i

ℏ

∫ t

0

(HR
S (τ)− ϵi)dτ +O

(
∥H0∥t2

ℏ2

)]
|uRi (0)⟩ . (3.38)

We use the fact that the operator norm of HR
S (t) is ∥H0∥.

Owing to the periodicity of the Floquet state, |uRi (T )⟩ = |uRi (0)⟩, we find from
Eq. (3.38) that

(H̃(0) − ϵi)T |uRi (0)⟩ = O

(
∥H0∥2T 2

ℏ2

)
|uRi (0)⟩ . (3.39)

Substituting this form into Eq. (3.38), the Floquet state is given by

|uRi (t)⟩ =

1 + ∞∑
m=−∞
(m̸=0)

H̃(m)(e−imΩt − 1)

mℏΩ
+O

(
∥H0∥2T 2

ℏ2

) |uRi (0)⟩ . (3.40)

The independence of ∥H0∥T
ℏ on ξ reflects the fact that the amplitude of the oscillating

terms in HR
S (t) is bounded by ∥H0∥.
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We then evaluate Xµ
ijn for n = 0,

Xµ
ij0 = ⟨uRi (0)|Xµ |uRj (0)⟩+O

(
∥H0∥T

ℏ

)
, (3.41)

and for n ̸= 0,

Xµ
ijn =

⟨uRi (0)| [H̃(−n), Xµ] |uRj (0)⟩
nℏΩ

+O

(
∥H0∥2T 2

ℏ2

)
. (3.42)

The transition probability is written as(see Sec. 3.3.1 for the bound of O(T 2) term)

Ti→j =
λ2

ℏ2
∑
µ,ν

[
⟨uRi (0)|Xµ |uRj (0)⟩ ⟨uRj (0)|Xν |uRi (0)⟩+O

(
∥H0∥T

ℏ

)]
Gµν(ωji0)

+ O

(
∥H0∥2T 2

ℏ2

)
. (3.43)

Since an integermi = 0 is assigned for each Floquet state, the KMS relation Eq. (2.51)
leads to the detailed balance condition,

Ti→je
−βϵi = Tj→ie

−βϵj +O

(
∥H0∥2T 2

ℏ2

)
. (3.44)

If the ergodicity is satisfied in the limit of T → 0 with ξT held fixed, the long-time
asymptotic state is expressed by the Floquet-Gibbs state,

ρALind(t) =
e−βH

[t]
F

Tre−βH
[t]
F

+O

(
∥H0∥2T 2

ℏ2

)
, (3.45)

where
H

[t]
F =

∑
i

ϵi |ui(t)⟩ ⟨ui(t)| . (3.46)

In this way, under three conditions (i), (ii), and (iii), the long-time asymptotic state
is described by the Floquet-Gibbs state.

This result is compatible with the idea of the effective Hamiltonian. In the rotating
frame, the asymptotic density matrix is obtained by replacing H

[t]
F by

H
R[t]
F =

∑
i

ϵi |uRi (t)⟩ ⟨uRi (t)| , (3.47)

which is close to the effective Hamiltonian owing to the Floquet-Magnus expansion,

H
R[t]
F =

∫ t+T

t

HR
S (τ)

dτ

T
+O

(
∥H0∥2T

ℏ

)
= Heff +O

(
∥H0∥2T

ℏ

)
. (3.48)

The long-time asymptotic state in the rotating frame is therefore approximately given
by the canonical state of the effective Hamiltonian.
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3.3.1 Estimation of the smallness of transition probabilities
that break the detailed balance condition

In this section we show that the O(T 2) term in Eq. (3.43) is bounded by

2λ2

ℏ2
∥H0∥2

(ℏΩ)2
∑
µ,ν

Gµν∥Xµ∥∥Xν∥, (3.49)

where

Gµν = max
i,j

√√√√√ ∞∑
n=−∞
(n ̸=0)

|Gµν(ωijn)|2
n4

. (3.50)

The O(T 2) term, which breaks the detailed balance condition between the Floquet
states |ui(t)⟩ and |uj(t)⟩, is given by

λ2

ℏ2
∑
µ,ν

∞∑
m=−∞
(m̸=0)

Gµν(ωjim)X
µ
ij[−m]X

ν
jim. (3.51)

By using the explicit form of Xµ
ijm in Eq. (3.42), this term is bounded by

λ2

ℏ2
∑
µ,ν

∣∣∣∣∣∣∣
∞∑

m=−∞
(m̸=0)

Gµν(ωjim)

(mℏΩ)2
⟨ψi| [Xµ, H̃(m)] |ψj⟩ ⟨ψj| [Xν , H̃(−m)] |ψi⟩

∣∣∣∣∣∣∣ ,
≤λ

2

ℏ2
∑
µ,ν

Gµν

(ℏΩ)2

√√√√ ∞∑
m=−∞

| ⟨ψi| [Xµ, H̃(m)] |ψj⟩ |2| ⟨ψj| [Xν , H̃(−m)] |ψi⟩ |2. (3.52)

The quantity inside the square root is written as

∞∑
m=−∞

(
4∏

l=1

∫ T

0

dtl
T

)
eimΩ[(t1−t2)−(t3−t4)] ⟨ψi| [Xµ, HR

S (t1)] |ψj⟩ ,

× (⟨ψi| [Xµ, HR
S (t2)] |ψj⟩)∗ ⟨ψj| [Xν , HR

S (t3)] |ψi⟩ (⟨ψj| [Xν , HR
S (t4)] |ψi⟩)∗,

≤(max
t

| ⟨ψi| [Xµ, HR
S (t)] |ψj⟩ |)2(max

t
| ⟨ψi| [Xν , HR

S (t)] |ψj⟩ |)2,

≤4∥Xµ∥2∥Xν∥2∥H0∥4, (3.53)

where we have used ∥HR
S (t)∥ = ∥H0∥. Substituting this into Eq. (3.52), we obtain

the bound Eq. (3.49).
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g

Driving field

Figure 3.1: Illustration of the spin chain model subjected to a periodic driving in a
dissipative environment. The spin sites at edges are connected to independent baths.
Both heat baths possess the same thermal properties.

3.3.2 Numerical simulation in a spin-chain model

We demonstrate the Floquet-Gibbs state in a spin-chain model. As shown in Fig. 3.1,
the system consists of six spins and the only spins at edges are in contact with heat
baths. The static Hamiltonian is given by

H0 =
6∑

i=1

(hzSz
i + hxSx

i )− g
6∑

i=1

(Sx
i S

x
i+1 + Sy

i S
y
i+1). (3.54)

Here hz and hx are the static magnetic field applying along the z and x direction,
respectively, and g is the coupling strength between nearest neighbor spins. We use
the following set of parameters: hz = 1.0, hx = 0.01, and g = 0.2. In addition, there
is a time-periodic driving field denoted by Hex(t). In order to test the conditions in
various situations, we study the following three cases:

Case A: ξHex(t) =ξ
6∑

i=1

cos(Ωt)Sx
i

Case B: ξHex(t) =ξ
5∑

i=2

cos(Ωt)Sx
i

Case C: ξHex(t) =ξ
5∑

i=2

[cos(Ωt)Sx
i + r sin(Ωt)Sy

i ]

(3.55)

For case A, it is necessary to fine-tune the system-bath coupling to satisfy condition
(iii), while for case B and case C, the fine-tuning is not necessary because the spins
in contact with heat bath and the spins driven by the external field are different. For
case C, the condition (ii) is broken when r ̸= 0. Throughout this section, we fix the
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ratio of driving amplitude and the frequency to be ξ/Ω = 2ℏ. The spins at edges are
coupled to independent baths denoted by L and R through

XL =
∑

k={x,y,z}

αkSk
1 ,

XR =
∑

k={x,y,z}

αkSk
6 . (3.56)

The properties of the heat baths are determined by temperature β−1 and the Fourier
transform of bath correlations, GLL(ω) = GRR(ω) = G(ω). The temperature of the
both heat baths is set to be β−1 = 0.1 and G(ω) is taken to satisfy the KMS relation
Eq. (2.51);

G(ω) =


ω2
c

ω2 + ω2
c

(ω < 0),

ω2
c

ω2 + ω2
c

e−βℏω (ω > 0),

(3.57)

with cut-off frequency ωc = 5000/ℏ. It is noted that the long-time asymptotic states
are independent of the system-bath coupling strength within the Lindblad formalism
as discussed in Chap. 2.

As a measure of the difference between the long-time asymptotic state and the
Floquet-Gibbs state, we calculate

∆Prob =
∑
i

| ⟨ui(t)| ρALind(t) |ui(t)⟩ − ⟨ui(t)| ρFG(t) |ui(t)⟩ |,

=
∑
i

∣∣∣∣∣Pi −
e−βϵi∑
j e

−βϵj

∣∣∣∣∣ . (3.58)

In Fig. 3.2(a) we study the case A for various values of the ratio αx/αy. Here we
set αz = 0. For αy = 0 when [Hex(t), HI] = 0, the asymptotic states approache the
Floquet-Gibbs state as the period of the driving field is short and ∆Prob is propor-
tional to T 2 (squares in figure), which agrees with the result, Eq. (3.45). When the
ratio αy/αx increases, ∆Prob deviates from the T 2 dependence due to the violation
of condition (iii). We also depict the probability distribution Pi in Fig. 3.2(b). The
asymptotic distribution is described in the Floquet-Gibbs form at the temperature
of the heat bath for αy = 0 (squares in figure), while it is substantially heated up for
other cases.

In contrast, in the case B depicted in Fig. 3.2(c), the asymptotic state approaches
the Floquet-Gibbs state with the T 2 dependencies independently of the couplings.

Finally, in the case C depicted in Fig. 3.2(d), the asymptotic state is deviated
from the Floquet-Gibbs state when r ̸= 0 due to the violation of condition (ii).

The numerical studies demonstrate that the long-time asymptotic states can be
described by the Floquet-Gibbs state under the three conditions (i), (ii), and (iii),
and these three conditions are necessary in order to realize the Floquet-Gibbs state
in the above spin chain model.
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Figure 3.2: (a) ∆Prob versus the period of the driving field T for various realizations
of αy/αx = {0 (squares), 0.01 (crosses), 0.1 (circles), 1 (asterisks), ∞(triangles) },
and αz = 0. When [Hex(t), HI] = 0 (squares), the asymptotic state approaches the
Floquet-Gibbs state as the period is short. The larger αy/αx is, the larger ∆Prob is.
The black line shows ∆Prob ∝ T 2. (b) Probability distribution {Pi} for the shortest
period in figure (a). We use the same symbols to denote different values of αy/αx.
The black line shows that Pi ∝ e−βϵi . (c) Like (a), but the driven spins and the
spins coupled to the thermal bath are separated. We study the set (αx, αy, αz) =
{(0.1, 0.1, 1) (filled squares), (0.1, 1, 0.1) (circles), and (1, 0.1, 0.1) (triangles)}. The
asymptotic state approaches the Floquet-Gibbs state independently of the set as the
period is short. The black line shows ∆Prob ∝ T 2. (d) Like (c), but the driving
field on Sy

i (i = 2, · · · , 5) is applied with strength rξ. We study various realization of
r = {0 (triangles), 0.1 (asterisks), 0.5 (crosses)}. The asymptotic state is deviated
from the Floquet-Gibbs state when r ̸= 0. The black line shows ∆Prob ∝ T 2.
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3.4 Conclusion and discussion on experiments

We studied the long-time asymptotic state of a periodically driven system by using
the Floquet Lindblad equation. We gave the sufficient conditions under which the
asymptotic state can be described by the Floquet-Gibbs state even when the sys-
tem goes beyond the linear response regime. This work reveals the applicability of
the Floquet-Gibbs state to an asymptotic state of a driven system surrounded by
a heat bath. It has been argued that the Floquet Hamiltonian H

[0]
F ≃ Heff real-

izes new phases not accessible without driving field as introduced in Chap. 1. It is
naively expected that the effective Hamiltonian Heff , Eq. (3.31), can be used for the
description of the system in a high-frequency driving field whether the dissipative
environment is coupled to the system or not, but this argument is incorrect. The
system in a high-frequency field coupled to a heat bath is not necessarily described
by the Floquet-Gibbs state. The conditions obtained here restrict the applicability
of the Floquet-Gibbs state. First, condition (i) restricts the system with a relatively
small Hilbert space. In addition, the condition (iii) is not expected to be realized in
experiment, which leads to non-Floquet-Gibbs form as demonstrated in Fig. 3.2(a).
The Floquet-Gibbs state is relevant for the description of the long-time asymptotic
states when (A) the operator coupled to a dissipative environment can be specified
or (B) the subsystems in contact with heat baths and the subsystems driven by the
external field are different as in Fig. 3.2(c). We expect that driven two-level systems,
e.g., an atom in a laser field [22] and a superconducting qubit under microwaves [31]
are candidates to realize the first setup (A). In these systems, the dipole moment
coupled to the driving field also becomes the origin of the dissipation, for example,
by additionally couping the atom to a bad cavity. We also expect that the second
setup (B) is realized in systems consisting of quantum dots [28] or molecular wires
under irradiation of microwaves, in which quantum transport of the system with the
edge coupled to electrodes (heat baths) has been studied [99].

3.5 Comparison to other works

We have shown two cases where the long-time asymptotic state is expressed by the
Floquet-Gibbs state. In addition to these cases, it has been reported that in some
specific models the Gibbs form gives an appropriate description. We discuss the
following three cases:

• Case 1: Time dependence of the total Hamiltonian can be eliminated by a
unitary transformation only on the system of interest,

• Case 2: Time dependence of the total Hamiltonian can be eliminated by a
unitary transformation on the system of interest and the heat bath,

• Case 3: A linearly driven harmonic oscillator.
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In the first and third case, the asymptotic state is given by the Floquet-Gibbs state,
while in the second case it is not in general.

• Case 1

We consider a periodically driven open system with a total Hamiltonian H(t) =
HS(t) + λHI +HB, which can be transformed into a time-independent Hamiltonian
by using a unitary operator acting only on the Hilbert space of the system of interest,
VS(t). The time independent Hamiltonian reads

HR = V †
S (t)

(
H(t)− iℏ

∂

∂t

)
VS(t), (3.59)

where VS(t) is chosen to be time periodic. The simple system satisfying this property
is a particle with one-half spin under a static and circularly polarized magnetic fields,

HS(t) = hzSz + ξ(Sx cosΩt+ Sy sinΩt), (3.60)

which interacts with a heat bath through Sz. Here, S is a usual one-half spin operator
and hz denotes the strength of the static magnetic field. In this case, the unitary
operator given by VS(t) = e−iΩt(Sz+1/2) transforms the total Hamiltonian to the time-
independent one. This is also realized in more sophisticated system, e.g. graphene
with time- and site-dependent driving field [100, 16].

First, we derive the relation between the Floquet mode in the static frame and the
eigenenergy state in the rotating frame. The time-independent system Hamiltonian
in the rotating frame reads

HR
S = V †

S (t)

(
HS(t)− iℏ

∂

∂t

)
VS(t), (3.61)

whose eigenstates and eigenenergies are given by HR
S |ψR

i ⟩ = ER
i |ψR

i ⟩. Now, we show
that VS(t) |ψR

i ⟩ is the Floquet mode. The Floquet mode |ui(t)⟩ with a quasienergy ϵi
obeys a following differential equation (see Eq. (1.12)),(

HS(t)− iℏ
∂

∂t

)
|ui(t)⟩ = ϵi |ui(t)⟩ . (3.62)

Since (
HS(t)− iℏ

∂

∂t

)
VS(t) |ψR

i ⟩ = VS(t)H
R
S |ψR

i ⟩ = ϵiVS(t) |ψR
i ⟩ , (3.63)

VS(t) |ψR
i ⟩ is the Floquet mode with quasienergy ϵi = ER

i
2.

2It is noted that the quasienergies may not be within the region, −ℏΩ/2 ≤ ϵi < ℏΩ/2. However
it is always possible to define the quasienergies outside of the region by multiplying appropriate
phase factors on the Floquet modes so that the Floquet states are kept in the same form.
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Next, we discuss the long-time asymptotic state of this case. Because the time-
independent system couples to a thermal bath, the asymptotic state in the rotating
frame is given by the canonical distribution,

ρR,A
Lind =

∑
i

e−βER
i∑

j e
−βER

j

|ψR
i ⟩ ⟨ψR

i | . (3.64)

In the static frame, because the density matrix is transformed as

ρALind(t) = VS(t)(ρ
R,A
Lind)V

†
S (t), (3.65)

the asymptotic state is expressed by

ρALind(t) =
∑
i

e−βER
i

Z
VS(t) |ψR

i ⟩ ⟨ψR
i |V

†
S (t) =

∑
i

e−βϵi

Z
|ui(t)⟩ ⟨ui(t)| , (3.66)

which is a form of the Floquet-Gibbs state.

• Case 2

Next, we study the case where the time dependence of the total Hamiltonian H(t) =
HS(t)+λHI+HB can be eliminated by using a unitary operator on the Hilbert space
of the system of interest and heat bath,

HR = V †
S (t)V

†
B(t)

(
H(t)− iℏ

∂

∂t

)
VS(t)VB(t), (3.67)

where VS(t) is an operator on the system of interest and VB(t) is an operator on
the heat bath. Even when the total Hamiltonian is time independent, the long-time
asymptotic state is not generally given by the Floquet-Gibbs state.

It is important to take note of the fact that the bath Hamiltonian also changes
in the rotating frame as

HB → HR
B = V †

B(t)

(
HB − iℏ

∂

∂t

)
VB(t). (3.68)

Thus, the time evolution of the bath dynamics in the rotating frame is described
by HR

B . On the other hand, even in the rotating frame, the state of the heat bath
is described by the canonical distribution of HB. As a result, the bath correlation
function does not satisfy the KMS relation, Eq. (2.51), and hence the detailed balance
condition is generally violated.

Although it has been reported that when a nonlinear resonator driven by this type
of driving field is coupled to a low-temperature heat bath, the concept of effective
temperature is useful for the description of the asymptotic state [101], the state is
not generally described in a Gibbs form.
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• Case 3

Finally, we study a linearly driven harmonic oscillator coupled to a heat bath. In this
system, the long-time asymptotic state is given in the Floquet-Gibbs state neverthe-
less the time dependence of the total Hamiltonian is not completely excluded by the
unitary transformation as in the first case.

First, we derive the eigenmodes of a linearly driven harmonic oscillator follow-
ing [23, 102, 103]. The Hamiltonian is given by

HS(t) =
p2

2m
+

1

2
mω2

0x
2 − xξ(t), (3.69)

where a particle with mass m is confined in a harmonic potential. The particle is
driven by a time-dependent force ξ(t). For a while we study a general case, and thus
we do not impose the periodicity on ξ(t).

This system is reduced to a time-independent harmonic oscillator by moving to a
rotating frame using a unitary transformation,

V (t) = e−
i
ℏ
∫ t
0 L(ζ,ζ̇,τ)dτe−

i
ℏmζ̇(t)xe

i
ℏpζ(t), (3.70)

where L(ζ, ζ̇, t) is a classical Lagrangian,

L(ζ, ζ̇, t) =
1

2
mζ̇2 − 1

2
mω2

0ζ + ζξ(t), (3.71)

and ζ obeys a classical equation of motion,

mζ̈ = −mω2
0ζ + ξ(t). (3.72)

The state in the rotating frame obeys the dynamics for the Hamiltonian given by

HR
S = V (t)

(
HS(t)− iℏ

∂

∂t

)
V †(t) =

p2

2m
+

1

2
mω2

0x
2. (3.73)

As a result, the general solutions |ψ(t)⟩ can be expanded using eigenmodes |ψn(t)⟩,

|ψ(t)⟩ =
∑
n

⟨ϕn|V †(0) |ψ(0)⟩ |ψn(t)⟩ , (3.74)

where
|ψn(t)⟩ = V (t)e−iEnt |ϕn⟩ . (3.75)

Here HR
S |ϕn⟩ = En |ϕn⟩ and En = ℏω0(n+ 1

2
).

From hereon, we assume that the driving field is time periodic, ξ(t) = ξ(t + T ),
and the frequency is not resonant with the harmonic oscillator, ω0 ̸= Ω. In this case,
we find that |ψn(t)⟩ can be the Floquet state. In order to see this, we set ζS(t) as a
time-periodic solution of Eq. (3.72), ζS(t) = ζS(t+T ), which is uniquely determined.

53



By using ζS(t) for the definition of the unitary operator V (t), we find the following
relation,

|ψn(T )⟩ = V (T )e−iEnTV †(0) |ψn(0)⟩ = e−i(En+L)T |ψn(0)⟩ , (3.76)

where L is a one-period average of L(ζS(t), ζ̇S(t), t). From this equation, we can
choose |ψn(t)⟩ to be the Floquet state, and corresponding quasienergy ϵn and the
Floquet mode |un(t)⟩ are expressed by

ϵn = En + L, (3.77)

and
|un(t)⟩ = ei(En+L)t |ψn(t)⟩ = V (t) |ϕn⟩ eiLt, (3.78)

respectively.
Here we study the asymptotic state of the driven harmonic oscillator weakly

coupled to a heat bath through x, that is, the interaction Hamiltonian is given by

HI = x⊗ Y, (3.79)

where Y is an operator of the heat bath. To evaluate the transition probabilities
among the Floquet states, we calculate

xijm =

∫ T

0

⟨ui(t)|x |uj(t)⟩ e−imΩtdt

T
, (3.80)

which is simply given by

xijm =

∫ T

0

⟨ϕi|V †(t)xV (t) |ϕj⟩ e−imΩtdt

T

= ⟨ϕi|x |ϕj⟩ δm,0 − δi,j

∫ T

0

ζS(t)e
−imΩtdt

T
. (3.81)

Because only one term denoted by m = 0 in Eq. (3.2) contributes to the transition
probability, the asymptotic state is described by the Floquet-Gibbs state [14],

ρALind(t) =
∑
i

e−βϵi∑
j e

−βϵj
|ui(t)⟩ ⟨ui(t)| . (3.82)

Let us reconsider this result from another aspect. Total Hamiltonian in the ro-
tating frame is given by

HR = V (t)

(
HS(t) +HI +HB − iℏ

∂

∂t

)
V †(t) = HR

S + λ(x− ζS(t))Y +HB, (3.83)

whereHB is a bath Hamiltonian. The time-dependent term remains in the interaction
Hamiltonian, but since ζS(t) is a scalar, this term does not play any role in a transition
probability between different Floquet states within the lowest-order perturbation of
the interaction Hamiltonian (Fermi’s golden rule). As a result, the system of interest
relaxes into the Floquet-Gibbs state. In contrast to the first case, it has been known
that this time-dependent term induces finite energy flow from the system of interest
to the thermal bath [15].
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Chapter 4

Floquet-Gibbs state in open
systems with finite system-bath
coupling

4.1 Introduction and brief summary

In the last chapter, we introduced the notion of the Floquet-Gibbs states, and showed
that within the Lindblad formalism the states are realized under the following three
conditions:
(i) the driving frequency is much faster than the width of the eigenenergy spectrum
of the system Hamiltonian,
(ii) the driving Hamiltonians at different times commute,
(iii) the driving Hamiltonian and the interaction Hamiltonian for the system-bath
coupling commute.

As we mentioned, the above conditions severely restrict the class of suitable mod-
els attaining the Floquet-Gibbs state. The condition (i) restricts the system with a
relatively small Hilbert space. The condition (iii) requires a fine tuning on the system-
bath coupling operators. This work thus indicates that the long-time asymptotic state
is different from the Floquet-Gibbs states except for the restrictive situation.

As mentioned in Chap. 2, the Lindblad formalism imposes an extra condition. Its
use is justified when the relaxation timescale of the system τrelax is much longer than
any other timescales of the system. In addition, the typical timescale of the bath
dynamics τbath is often assumed to be smaller than other timescales of the system.

These assumptions are not always satisfied, and difficult to meet especially when
the system is subjected to a high frequency field. At high frequency, the heating rate
τ−1
heat is extremely small [45, 46, 47, 48], and hence this rate τ−1

heat can be smaller than
the relaxation rate τ−1

relax. Thus, a finite system-bath coupling can strongly change the
long-time dynamics and there is no guarantee that the Lindblad equation correctly
describes the long-time asymptotic state. In addition, the period of the driving field
T can be smaller than the timescales of the heat bath τbath.
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In this chapter, we study generic situations of a finite system-bath coupling by
carefully considering timescales τrelax, τheat, τbath, and T . We focus on the depen-
dence of the long-time asymptotic states on the system-bath coupling strength and
timescales of the heat bath. In order to achieve our purpose, we go beyond the RWA
and use the Redfield equation, which allows us to capture the effects of the finite
system-bath coupling strength on the long-time asymptotic state. We then use the
effective (truncated) Floquet Hamiltonian, which can be obtained by the Floquet-
Magnus expansion. This step allows us to circumvent the condition (i). In addition,
the condition (iii) becomes irrelevant when the period of the driving field is smaller
than the timescale of the bath dynamics, T < τbath. Thus, the Floquet-Gibbs state
can be observed in a broader subclass of the driven open systems without imposing
the strict conditions (i) and (iii) on the system operators. We illustrate this hy-
pothesis by using a non-integrable spin chain model, and we demonstrate that the
Floquet-Gibbs state is realized even when conditions (i) and/or (iii) are not satisfied.

This chapter is organized as follows; In the next section 4.2, we explain the outline
how to obtain the long-time asymptotic state in the Redfield formulation. In Sec. 4.3,
we redefine the Floquet-Gibbs state using the effective Floquet Hamiltonian, and in
Sec. 4.4 we introduce the spin chain model. In Sec. 4.5, we demonstrate how condition
(i) is lifted via the finite system-bath coupling. In Sec. 4.6, we show that condition
(iii) is not necessary when the bath dynamics is longer than the periodic driving
field, τbath > T . Finally, in Sec. 4.7 we conclude with a discussion of the physical
implications of our results.

4.2 Long-time asymptotic states of systems with

finite system-bath coupling strength

In this section, we show how to obtain the long-time asymptotic state of the Redfield
equation, Eq. (2.22). An element of the density matrix in the basis of the Floquet
state, ρij(t) = ⟨ui(t)| ρ(t) |uj(t)⟩, obeys

dρij(t)

dt
=− i

ℏ
(ϵi − ϵj)ρij(t)−

λ2

ℏ2
∑
µ

∑
l,m

∞∑
n=−∞

∞∑
n′=−∞

ei(n+n′)Ωt

× {Gµ
+(ωlmn)X

µ
lmnX

µ
iln′ρmj(t)−Gµ

+(ωimn)X
µ
imnX

µ
ljn′ρml(t)

−Gµ
−(−ωljn)X

µ
ljnX

µ
imn′ρml(t) +Gµ

−(−ωlmn)X
µ
lmnX

µ
mjn′ρil(t)},

(4.1)

where the frequency differences are given by ωlmn = (ϵl − ϵm)/ℏ + nΩ and Xµ
lmn is

given by Eq. (2.37). Here, we assume that there is no correlation between Y µ and
Y ν for µ ̸= ν, and we write the Fourier components of the bath correlation function
as

Gµ
±(ω) =

∫ ±∞

0

⟨Y µ(t)Y µ⟩B e
−iωtdt. (4.2)
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It is quite natural to assume that the long-time asymptotic behavior converges to
a periodic motion,

ρARed(t+ T ) = ρARed(t). (4.3)

Below we will address this asymptotic solution only, and hence the label “A” and
“Red” are dropped from hereon.

The periodic asymptotic state can be expressed by the Fourier expansion of the
elements of the density matrix,

ρij(t) =
∞∑

n=−∞

ρijne
inΩt. (4.4)

By substituting this form into Eq. (4.1), we obtain the equations for the asymptotic
solution; for the set of (i, j, n)

0 =iωijnρijn +
λ2

ℏ2
∑
µ

∑
l,m

∞∑
n′=−∞

∞∑
n′′=−∞

{
Gµ

+(ωlmn′)Xµ
lmn′X

µ
il[n−(n′+n′′)]ρmjn′′

−Gµ
+(ωimn′)Xµ

imn′X
µ
lj[n−(n′+n′′)]ρmln′′ −Gµ

−(−ωljn′)Xµ
ljn′X

µ
im[n−(n′+n′′)]ρmln′′

+Gµ
−(−ωlmn′)Xµ

lmn′X
µ
mj[n−(n′+n′′)]ρiln′′

}
. (4.5)

The second term of the right hand side of this equation is of the order of λ2, and in or-
der to fulfill this equation, the corresponding element ρijn has to be small (by absolute
value) when ωijn is large [98]. The argument leads to the following approximation,

∀|ωijn| > ℏ−1, ρijn = 0. (4.6)

This approximation means that we set to be zero those Fourier components of the
density matrix element for which the absolute value of ℏωijn is greater than one. The
number of elements with ℏ|ωijn| ≤ 1 decreases as the driving frequency increases,
and hence at high frequency this approximation enables us to study the system with
large Hilbert space.

The approximation allows us to go beyond the Lindblad formalism, which is re-
produced by putting ρijn = 0 except when ωijn = 0. The corresponding asymptotic
state in the Lindblad formalism is independent of the coupling strength [13, 98, 17].
In contrast, our scheme shows the dependence on λ of the long-time asymptotic
state. It also allows us to go beyond the so-called “moderate rotating wave approxi-
mation” [59], in which only the n = 0 mode is kept [104, 105].

4.3 Redefinition of the Floquet-Gibbs state

In this section we redefine the notion of the Floquet-Gibbs state. In the last chapter,
we introduced the Floquet-Gibbs state in the Lindblad formulation by using the
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Floquet Hamiltonian H
[t]
F , which is explicitly given by

ρ(t) =
e−βH

[t]
F

Tre−βH
[t]
F

. (4.7)

However this form is not suitable when the condition (i) is violated. This is
because the energies of the Floquet Hamiltonian are not uniquely determined; The
quasienergy of the Floquet states, being a mere phase factor, can be shifted by
multiple of ℏΩ. Thus, there is no natural order to sort the quasienergies. This
ambiguity restricts the idea of the Floquet-Gibbs state to the case where condition
(i) is satisfied.

Here we introduce the truncated Floquet Hamiltonian H
(n)[t]
F which is defined via

the Floquet-Magnus expansion (see Sec. 1.3.3). This truncated Floquet Hamiltonian
overcomes the deficiency of the Floquet Hamiltonian. Energies of the truncated
Floquet Hamiltonian are uniquely defined (see Eq. (1.48)-(1.51)). In addition, this
Hamiltonian provides an efficient basis to express the asymptotic density matrix.

While it is known that the Floquet-Magnus expansion may not converge when
the condition (i) is not satisfied, there exists a truncated Floquet Hamiltonian with
an optimal n that accurately describes long-lived transient states of the decoupled
dynamics [49, 45, 46, 47, 48] as far as the driving frequency is much higher than
energy scale of a single-site spin. When a periodically driven system is coupled to
a dissipative environment, the interaction with the environment suppresses the con-
tinuous “heating process” up to an infinite temperature state, which usually appears
in decoupled coherent systems [52, 53, 54]. Since we will study the high frequency
regime, the rate of the energy absorption rate and thus the heating rate is slow. When
the system-bath coupling is weak but finite, the dissipation rate can be larger than
the heating rate. Therefore, the system will not heat up to the infinite temperature
state even in the long-time limit. In this situation, the eigenbasis of the truncated
Floquet Hamiltonian, corresponding to the transient metastable states, prefers to the
Floquet basis. It is reasonable to probe the idea of the asymptotic density matrix
having the Gibbs form in the basis of the effective (truncated) Floquet Hamiltonian
with an optimal value of neff . The redefined Floquet-Gibbs state is given by

ρFG(t) =
e−βH

(neff)[t]

F

Tre−βH
(neff)[t]

F

. (4.8)

We determine neff by following the previous study [45]; There exists an optimal
n which minimizes the deviation of the eigenspectrum of the Floquet Hamiltonian
from that of the truncated Floquet Hamiltonian,

∆ = max
|ψ⟩

(⟨ψ|ψ⟩=1)

∥∥∥(T e− i
ℏ
∫ T
0 HS(t)dt − e−

i
ℏH

(n)[0]
F T

)
|ψ⟩
∥∥∥ . (4.9)

The above deviation can be evaluated by diagonalizing the operator in the parenthesis
and then taking the maximal eigenvalue. Our idea is that this truncation order neff
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g

Driving field

Thermal Bath

Figure 4.1: Illustration of the spin chain model subjected to a periodic driving in a
dissipative environment. Each spin site is connected to an independent bath and a
driving field. All baths possess the same thermal properties and are all kept at the
same inverse temperature β.

should be used to construct an effective Floquet Hamiltonian, and its eigenstates
should be used to express the asymptotic density matrix 1. When the condition (i) is
satisfied, the redefined Floquet-Gibbs state is identical to that defined in the previous
chapter, because the Floquet-Magnus expansion converges. The redefined Floquet-
Gibbs state is realized under some reasonable conditions, which will be discussed in
the following section.

4.4 Spin chain model

In order to verify the existence of the Floquet-Gibbs state, we study a spin chain
model (see the schematic picture in Fig. 4.1) with the Hamiltonian,

HS(t) =H0 + ξHex(t),

H0 =h
z

6∑
i=1

Sz
i + hx

6∑
i=1

Sx
i − g

5∑
i=1

Sx
i S

x
i+1,

ξHex(t) =ξ cos(Ωt)
6∑

i=1

Sx
i , (4.10)

1There exist other Hamiltonians which give the same values of ∆. For instance even if we
add the projection operator on a eigenstate of the effective Floquet Hamiltonian times ℏΩ to the
effective Floquet Hamiltonian, the deviation ∆ does not change. However, these other choices than
the effective Floquet Hamiltonian is inappropriate for the description because they contain highly
nonlocal terms.

59



where {Sα
i }α=x,y,z is a one-half spin operator at site i. Here hz and hx denotes the

strength of a static magnetic field along z-axis and x-axis, respectively, and g is the
coupling strength between neighboring spins. Additionally, a time-periodic driving
field is applied along x direction. This model describes a quasi-one-dimensional Ising
ferromagnet [106] or a chain of interacting superconducting qubits [107]. Through
this chapter we fix the parameters: hz = 1, g = 0.75, and hx = 0.7 keeping ξ/(ℏΩ)
to be 2/3. These set of parameters fixes the width of the energy spectrum of H0,
∆0 = 7.6. With this choice, it is possible to study the regime where the frequency
of the driving field Ω is smaller than ∆0/ℏ, and thus condition (i) is violated. We
employ three different values for the frequency of the driving field, ℏΩ = 4.2, 4.6,
and 5.0. These values are smaller than ∆0, but larger than the characteristic energy
scale of a single spin.

In order to introduce the truncated Floquet Hamiltonian when the system is
subjected to a fast and strong driving field, it is convenient to transform into the
rotating frame. Following the same argument in the last chapter from Eq. (3.24) to
Eq. (3.26), we obtain the Hamiltonian in the rotating frame,

HR
S (t) = V †(t)H0V (t), V (t) = e

∑6
j=1[−iξ sin(Ωt)Sxj /ℏΩ], (4.11)

which remains time periodic because the condition (ii) is satisfied (see Sec. 3.3). The

Floquet Hamiltonian in the rotating frame H
R[t]
F is defined by the time evolution

operator over one period, from time t to time t+ T ,

e−
i
ℏH

R[t]
F T = T e−

i
ℏ
∫ t+T
t HR

S (τ)dτ . (4.12)

Hereafter we consider in the rotating frame.
In Fig. 4.2, we show the dependence of ∆, Eq. (4.9), on the truncated order n

for different frequencies. For each Ω, ∆ initially decreases with the increase of n,
but then after reaching a minimum, it increases again. The minimal determines neff .
From hereon for notational simplicity, we will suppress the explicit dependence on neff

and assume the values neff = 13, 14, and 16 for the driving frequency ℏΩ = 4.2, 4.6,
and 5.0, respectively.

4.5 Dependence of asymptotic states on dissipa-

tion strength

In this section, we show the dependence of the finite coupling strength on the long-
time asymptotic state in the spin chain model. The dissipative effect of the heat bath
in the Redfield equation is determined through the correlation function of the bath
operators. In order to explicitly give the form, we need to specify the model of the
thermal bath. Here we follow the standard prescription and consider a thermal bath
consisting of an ensemble of harmonic oscillators [108].
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Figure 4.2: Deviation ∆, Eq. (4.9), versus the truncation order n for the spin chain
model. Three values of the driving frequency (ℏΩ = 4.2, 4.6, and 5.0 from the top to
the bottom) are used in simulations, while keeping the ratio ξ/(ℏΩ) = 2/3 fixed.
Arrows represent the optimized order neff = 13(ℏΩ = 4.2), 14(ℏΩ = 4.6), and
16(ℏΩ = 5.0)

The bath is described by a Hamiltonian,

HB =
6∑

i=1

∑
α

pα2i
2mα

+
mαωα2xα2i

2
, (4.13)

where xαi and pαi are canonical variables of α-th mode of the heat bath, and mα and
ωα are the mass and the frequency of the oscillator, respectively. The index i indicates
that each spin is coupled to an independent heat bath, which is uncorrelated with
any other heat baths [109].

In this section, we set for the interaction Hamiltonian between the system of
interest and the heat bath a form that commutes with Hex(t), i.e.,

HI = λ
6∑

i=1

∑
α

Sx
i ⊗ xαi . (4.14)

This choice satisfies the condition (iii) (see Sec. 3.3), and hence we study the effects
of the finite system-bath coupling when the condition (i) is broken. The heat baths
are characterized by a spectral density that we choose to be of the ohmic form,

J(ω) =
∑
α

π

2mαωα
δ(ω − ωα) = ωe−

ω
ωc , (4.15)
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where we fix the cutoff frequency to be ωc = 100/ℏ. As far as the condition (i) is
concerned, the value of the cutoff frequency does not play a crucial role, whose effect
is strongly related to the condition (iii), which will be shown in the next section. The
inverse temperature of the heat baths is set to be β = 1.

With these settings, we obtain the asymptotic density matrix by solving Eq. (4.5)
under the approximation specified in Eq. (4.6). We calculate the probability,

P
[t]
l = ⟨ϕl(t)|V †(t)ρARed(t)V (t) |ϕl(t)⟩ ,

=
∑
i,j

∞∑
k=−∞

ρkijcjl(t)[cil(t)]
∗eikΩt, (4.16)

with elements cil(t) = ⟨ui(t)|V (t) |ϕl(t)⟩, and |ϕl(t)⟩ are the eigenstates of the effective
Floquet Hamiltonian.

We then compare the probabilities P
[t]
l with the Boltzmann factors by using the

norm

∆Prob[t] =
∑
l

∣∣∣∣∣∣P[t]
l − e−βE

[t]
l∑

j e
−βE

[t]
j

∣∣∣∣∣∣ , (4.17)

where E
[t]
l are the eigenenergies of the effective Floquet Hamiltonian. As the differ-

ence ∆Prob[t] approaches zero, the asymptotic state is closer to the Floquet-Gibbs
state.

In Fig. 4.3, we show the dependence of ∆Prob[0] on the system-bath coupling
strength λ2. The values of ∆Prob[0] for λ2 = 10−6 are nearly identical to those
obtained by the Lindblad equation. In addition, ∆Prob[t] is almost independent of t,
and thus the value at time t = 0 gives a good representative of all the instants of t.
We also estimate the value of the off-diagonal elements in the basis of the effective
Floquet Hamiltonian. For the used set of parameters, their absolute values at largest
system-bath coupling in Fig. 4.3 are at most around 10−3 and typically the order of
10−5 or less. Therefore, the asymptotic density matrix has an almost diagonal form
at large system-bath coupling, λ2 ≃ 10−2.

We find from this figure that for the driving frequency Ω = 4.6/ℏ, ∆Prob[0]

reduces as the system-bath coupling becomes stronger. This indicates that the finite
system-bath coupling can push the asymptotic state closer to the Floquet-Gibbs
state. The large difference observed in the weak system-bath coupling regime at
ℏΩ = 4.6 originates from the coherences between the states due to the resonance,
i.e., the energy gap between two eigenenergies of the effective Floquet Hamiltonian
is in resonance with the driving frequency, E

[0]
1 − E

[0]
2 ≃ ℏΩ = 4.6. In the inset of

Fig. 4.3, we show the dependence of the coherence,

Ψ = | ⟨ϕ1(0)| ρARed(0) |ϕ2(0)⟩ |, (4.18)

as a function of the dissipation strength. The coherence disappears as the system-
bath coupling becomes strong which leads to the realization of the Floquet-Gibbs
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Figure 4.3: The dependence of ∆Prob[0] on the dissipation strength λ2 for three val-
ues of driving frequency ℏΩ = 4.2 (red circles), 4.6 (blue squares), and 5.0 (black
asterisks). There is a resonance (see the text) for ℏΩ = 4.6, which deviates the
diagonal elements from the Boltzmann distribution at weak system-bath coupling.
The deviation decreases as the system-bath coupling increases. Inset shows the de-
pendence of the coherence Ψ, Eq. (4.18), between the eigenstates in resonance with
the driving field as a function of λ2 for ℏΩ = 4.6. The cutoff frequency is set to be
ℏωc = 100.

state. Since the resonance effect is not observed at ℏΩ = 4.2 and 5.0, the long-time
asymptotic state can be reasonably approximated by the Floquet-Gibbs state even
when the system-bath coupling is weak.

In order to see how the asymptotic state is close to the Floquet-Gibbs state for
the resonant case ℏΩ = 4.6, we calculate the populations P

[0]
k as functions of E

[0]
k for

two values of system-bath coupling strength, λ2 = 10−2 and λ2 = 10−6; see Fig. 4.4.
For the stronger system-bath coupling, the resonance is completely suppressed and
the distribution of populations is close to the Boltzmann distribution. However, the
linear fit of the log dependence gives the exponent βeff which is smaller than the actual
one, (βeff = 0.930 < β = 1). This is the reason why the difference ∆Prob[0] does
not approach zero even at large system-bath coupling. This observation agrees with
the previous results obtained in the Lindblad formulation [14, 17]. In these works,
the “effective temperature” Teff = 1/(kBβeff) was found to be higher than the actual
temperature of the heat bath. The mechanism behind the “effective temperature”,
although very interesting, is beyond the scope of this thesis. Overall this shows that
the Floquet-Gibbs state is realized in a system with a relatively large Hilbert space
(condition (i) is not satisfied), and the finite system-bath coupling helps to lead the
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Figure 4.4: The populations P
[0]
k in the eigenbasis of the effective Floquet Hamiltonian

of the driving frequency Ω = 4.6/ℏ for strong system-bath coupling λ2 = 10−2 (open
black circles) and weak system-bath coupling λ2 = 10−6 (closed red circles) . At
the weaker coupling, there are two eigenstates which are resonance with the driving
field. Their populations strongly deviate from the Boltzmann distribution. Solid
black line corresponds to the Boltzmann distribution with βeff = 0.930 < β = 1.
Other parameters are the same in Fig. 4.3.

long-time asymptotic state to this form.

4.6 Dependence of asymptotic states on the ther-

mal bath timescale

Can the asymptotic density matrix be closer to the Floquet-Gibbs state? In other
words, what conditions guarantee that the diagonal elements are well described by
the Boltzmann factors at the temperature of the heat bath?

In this section we try to answer this question and study the transition to the
Floquet-Gibbs state as a function of the timescale of the bath dynamics, τbath. Thus,
We drop the condition (iii) (see Sec. 3.3), and study the general case where the
interaction Hamiltonian is not commutable with the driving Hamiltonian. Here, we
use the following interaction Hamiltonian:

HI =
6∑

i=1

∑
α

xαi (S
x
i + Sy

i ). (4.19)

It is worth noting here that throughout this thesis we have neglected the counter
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Figure 4.5: The dependence of ∆Prob[0], Eq. (4.17), on the bath cutoff frequency ωc

at λ2 = 10−2 for three values of driving frequency, ℏΩ = 4.2 (red circles), 4.6 (blue
squares), 5.0 (black asterisks). Gray stripe marks the interval ωc ∈ [4.2, 5].

term that generally appears in the Zwanzig-Caldeira-Leggett model [110, 111, 112].
In the present choice of the interaction Hamiltonian, the counter term does not play
any role since it is proportional to (Sx

i )
2 and (Sx

i + Sy
i )

2 that cause a constant shift
in the system Hamiltonian.

When condition (iii) is not satisfied, the fast modes of the heat bath, whose
frequencies are close to the integer multiple of the driving frequency, are excited by
the periodic driving field. The response of the system to the fast bath dynamics
affects the long-time asymptotic states. In our context, this effect will induce further
deviation of the asymptotic density matrix from the Floquet-Gibbs state. This is
the reason why the condition (iii) needs to be satisfied. However, if the heat bath
consists of only slow modes, the energy pumping inside the bath is suppressed, and
thus the distortion is weak. The characteristic timescales of the bath dynamics is
controlled by the inverse cutoff frequency ω−1

c of the spectral density, Eq. (4.15).
In Fig. 4.5, we study the dependence of ∆Prob[0] on the cutoff frequency for dif-

ferent values of the driving frequency at λ2 = 10−2. We again observe the almost
independence of ∆Prob[t] on t. When the timescale of the bath dynamics is short
(ωc ≈ 100/ℏ ≫ Ω), the deviation from the Floquet-Gibbs state is large for all fre-
quencies owing to the violation of the condition (iii). On the other hand, when the
timescale of the heat bath is long (ωc ≪ Ω), the long-time asymptotic state is well
described by the Floquet-Gibbs state at the temperature of the heat bath.

Figure 4.6 shows the dependencies of ∆Prob[0] on λ2 for the cutoff frequency
ωc = 0.4/ℏ. The dependencies for three values of Ω exhibit similar behavior to that
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Figure 4.6: The dependence of ∆Prob[0] on λ2 on the dissipation strength λ2 for
ℏΩ = 4.2 (circles), 4.6 (squares) and 5.0 (asterisks). For ℏΩ = 4.6 there is a resonant
coupling of two eigenstates of the effective Floquet Hamiltonian, and the dependence
follows the same scenario observed in Fig. 4.3. The cutoff frequency is set to be
ωc = 0.4. Inset: The populations P

[0]
k for ℏΩ = 4.6 for two values of dissipation

strength λ2 = 10−2 (filled squares) and λ2 = 10−6 (open squares), respectively. The
solid line gives the Boltzmann factors with the exponent βeff = 0.99 ≃ β.

presented in Fig. 4.3. The resonance present for Ω = 4.6/ℏ still exists, and it is
responsible for the deviation from the Boltzmann distribution in the limit of weak
coupling, λ2 ≤ 10−4. The increase of the system-bath coupling suppresses the effect
of resonance, and the distribution of the diagonal elements of the asymptotic density
matrix approaches the Boltzmann distribution with βeff = β; see inset in Fig. 4.6.

4.7 Conclusion and discussion on experiments

Dissipation plays a leading role to shape the long-time asymptotic states of a period-
ically driven quantum system. If the system meets some conditions, the asymptotic
state is characterized by the Floquet-Gibbs state, Eq. (4.8). These conditions are
specified by the relations on the timescales of three constituents: the system of in-
terest, the heat bath, and the driving field. Namely, (1) the dissipation rate of the
system τ−1

relax (controlled by the system-bath coupling strength) is higher than the
heating rate τ−1

heat (controlled by the driving frequency) and (2) the period of the
driving field T is much shorter than the timescale of the bath dynamics τbath (con-
trolled by the cutoff frequency of the spectral density). Condition (1) suppresses the
resonance transitions between the eigenstates of the effective Floquet Hamiltonian,
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while condition (2) avoids the excitation inside the heat bath due to the periodic
driving field.

These observations can be understood by transforming the total Hamiltonian into
the rotating frame by using the unitary operator Eq. (3.24). The total Hamiltonian
in the rotating frame reads

HR(t) = HR
S (t) +HB + λHR

I (t), (4.20)

where HR
I (t) is given by

HR
I (t) = V †(t)HIV (t). (4.21)

The Floquet-Gibbs state is realized when this time-dependent Hamiltonian can be
effectively replaced by a time-independent one. The system Hamiltonian in the ro-
tating frame can be replaced, see e.g. in Ref. [48], in the absence of the resonance
effects. Resonances will exist when the condition (i) is broken (in the present model,
ℏΩ = 4.6). The presence of the resonance induces a finite coherence in the system.
The coherence leads to the appearance of non-negligible off-diagonal elements in the
asymptotic density matrix, and thus causes deviations of the diagonal elements of the
density matrix from the Boltzmann distribution. This effect can not be explained by
a time-independent Hamiltonian, and thus the corresponding asymptotic state devi-
ates from the Floquet-Gibbs state. However, as the system-bath coupling increases,
the coherence decreases, and hence HR

S (t) can be replaced by the time-independent
effective Floquet Hamiltonian. The finite system coupling pushes the asymptotic
density matrix into the Floquet-Gibbs state.

Besides the resonance effect, there is another channel for deviations of the asymp-
totic density matrix from the Floquet-Gibbs state. It is the periodic modulation of
the interaction Hamiltonian HR

I (t). When the system satisfies the condition (iii),
this Hamiltonian becomes time independent, and thus there is no excitation due to
the periodic motion in the heat bath. This is the reason why the condition (iii) is
generally necessary to realize the Floquet-Gibbs state. However, when the spectral
properties of the heat bath are such that the fast modes cannot be excited by default
(e.g., when the cutoff frequency of the spectral density is much smaller than the fre-
quency of the driving field, ωc ≪ Ω), condition (iii) is redundant. In this case we can
effectively replace HR

I (t) by the corresponding time-average.
Finally we discuss the experimental implementation of the Floquet-Gibbs state.

For the condition (1), although the finite dissipation effect lifts the restriction of the
applicability of the Floquet-Gibbs state to a small system (the condition (i)), the
frequency is necessary to be much higher than the single site energy of the system,
in which the heating rate due to the driving is slow. In addition, strong driving
amplitude which is compatible with the driving frequency (ξ ∼ ℏΩ) is necessary
to obtain the non-trivial Floquet spectrum. The strong and fast driving field can
be realized in cold atomic systems (kilohertz regime), superconducting qubits and
quantum dots (gigahertz regime), and semiconductor superlattices and Dirac fermion
systems (teraherz regime). The estimation of the relaxation time of the system into
a long-time asymptotic state remains to be solved.
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For the condition (2) it is necessary to engineer the energy filter so that the
excitation of the bath modes around the multiple of the driving frequencies, nℏΩ(n =
1, 2, · · · ), is suppressed. The way of engineering the filter may strongly depend on
the frequency of the driving field (lattice oscillation, microwaves) and dissipative
environment (electrodes, phonon bath, photon bath). The study of the dependence
of, for example, the transport properties for some specific model on the energy filter
is an important future problem.
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Chapter 5

Periodically driven cavity systems

5.1 Overview of this chapter

In this chapter, we study cooperative phenomena of the driven cavity systems intro-
duced in Sec. 2. We find a novel type of symmetry-breaking phenomenon induced by
a strong driving field in the USC regime, and give an explanation of this phenomenon
in terms of a dynamical feature observed in a driven two-level system (see Sec. 1.4 ).

In order to make clear the essence of this phenomenon, we also study other models
of the cavity system and/or other situations:

• Driven Tavis-Cummings model (Sec. 5.5),

• Driven Dicke model with the squared electromagnetic vector potential, A2-term
(Sec. 5.6),

• Driven effective spin models for Dicke model subjected to a fast and strong
driving field (Sec. 5.7),

which strengthen our findings in the driven cavity systems that dynamical effects due
to a periodic driving field are enhanced by the interaction, which appears as a novel
type of dynamical phase transition.

5.2 Long-time asymptotic states

We study the expectation values of photon field and polarization of atoms:

α(t) = lim
N→∞

Tr(aρp(t))√
N

,

mx(t) =Tr(Sxρa(t)). (5.1)

We investigate them by solving the dressed Lindblad equations Eq. (2.64) and Eq. (2.65)
by the Runge-Kutta method. We regard the state at t ∼ 10000π as the long-time
asymptotic state.
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5.3 Classification of the long-time asymptotic states

into three phases

In order to classify the long-time asymptotic states into phases, we focus on two types
of symmetries of the system Hamiltonian HS(t) (See Eq. (2.54)-Eq. (2.56)). One is a
discrete time-translation symmetry due to the periodicity of the driving field. Thus,
the system Hamiltonian remains to be in the same form under the time translation
t→ t+ T . The other is related to a unitary transformation,

U = eiπ(a
†a+

∑N
j=1 S

z
j ), (5.2)

which changes the sign of the operators Y ∈ {a, a†, Sx, Sy}, i.e.,
U †Y U = −Y. (5.3)

The system Hamiltonian does not change under this unitary transformation with
extra time translation, t→ t+ T/2,

HS(t) = U †HS

(
t+

T

2

)
U. (5.4)

The dynamical features in long-time asymptotic states are qualitatively different
whether the states satisfy these two symmetries or not. If both symmetries are
satisfied, the system exhibits the following relations,

α

(
t+

T

2

)
= −α(t), mx

(
t+

T

2

)
= −mx(t). (5.5)

These relations lead to the oscillation over the period T around the origin. We call
the state in the “regularly oscillating phase”. If the second symmetry is broken, the
relations Eq. (5.5) no more hold. In this case, α(t) and mx(t) oscillate around a
finite value with the period T . We call this phase “ordered phase” [113]. If both
symmetries are broken, the system shows a periodic oscillation with longer period
than T . Such a state is said to be in the “long-periodic phase”. The nature of the
long-periodic phase is not studied in detail in this thesis. It is noted that since the
state satisfying the second symmetry is always time periodic, there are only three
phases.

In order to distinghish these three phases, we define two order parameters. First,
we calculate a sequence of the time average of α(t) over one period from jT ≤ t ≤
(j + 1)T denoted by αj. We define the mean value α and fluctuation σα of αj over j
as

α = lim
n→∞

1

n

n−1∑
j=0

αj,

σα = lim
n→∞

√√√√ 1

n

n−1∑
j=0

(αj − α)2, (5.6)

which play a role of order parameters. We can characterize the phases as follows;
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Figure 5.1: Phase diagrams of the driven Dicke model at ωa = ωp = ℏΩ = 1 for
the case γp = γa = 0.1. The long-time asymptotic state for given g and ξ is
labeled by dots (regularly oscillating phase), bullets (ordered phase), and crosses
(long-periodic phase). The blue curves are defined by zeros of zeroth order Bessel
function, J0(4gξ/γpℏΩ) = 0, where the CDT occurs. The periodicity of the curves
agrees with that of the ordered phase, which indicates the intimate relation between
the CDT and this ordered phase.

(i) regularly oscillating phase: α(t) oscillates around zero with the period T ; α = 0
and σα = 0.

(ii) ordered phase: α(t) oscillates around a finite value with the period T ; α ̸= 0
and σα = 0.

(iii) long-periodic phase: α(t) shows a long periodic oscillation; σα ̸= 0.

5.4 Novel Symmetry-broken phase

In this section, we study the long-time asymptotic states when ωa = ωp = ℏΩ = 1.
As an initial state, we choose the equilibrium state of the Dicke model for the given
parameters ωa, ωp, and g. After the system reaching an asymptotic state, we calculate
order paremeters α and σα over sufficiently long time interval.

In Fig. 5.1, we show the overall phase diagram as functions of interaction strength
g and driving amplitude ξ. In the phase diagram there are two types of ordered phases
denoted by bullets: One is a conventional type of the ordered phase originated from
the Dicke transition. It appears when the interaction strength exceeds the critical
value g = 0.5 along the line ξ = 0. The driving field breaks the order α, and the
ordered phase disappears at a certain value of driving amplitude.
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Figure 5.2: Dependence of the order parameters |α| (top) and σα (bottom) on the
driving amplitude. The ordered phase appears repeatedly as a function of ξ.

The other is a novel type of the ordered phases which appear at strong driving
field. A characteristic structure repeatedly appears and it extends along the curve
given by gξ =constant. In Figure 5.2, we show the order parameters of α and σα as a
function of ξ for g = 0.35. Since the ordered phase appears even when the interaction
strength is less than the critical value of the Dicke transition, this phenomenon is not
induced only by interaction effects. Thus it is a synergistic phenomenon due to the
atom-photon interaction effects and the dynamical effects.

Next, we search for a mechanism of this phenomenon within a simpler model.
Since this phenomenon occurs at relatively small g, we treat the interaction effect as
a perturbation. The equation for photon field obtained by dressed Lindblad equa-
tion (2.64) reads

d

dt
α(t) =

1

ℏ
(−iωp − γp)

[
α(t) +

2

ωp

(gmx(t) + ξ cos(Ωt))

]
. (5.7)

The perturbative treatment of interaction term which is proportional to g in Eq. (5.7)
leads to an effective spin model without degrees of photon field.

As we will see later, the lowest-order term describes the quantum interference ef-
fect under a classical photon field, which gives a key ingredient of this nonequilibrium
phenomenon. The next-order term exhibits the long-range interaction among atoms,
which is also necessary to induce the cooperative phenomenon.

The long-time asymptotic solutions of α(t) in the lowest order is given by

α(0)(t) = −i ξ
γp
e−iΩt, (5.8)

where we have used ωp = ℏΩ and ℏΩ ≫ γp. Since the driving frequency is resonant
with the frequency of the cavity, the photon field in the cavity system is strongly
excited.
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By substituting Eq. (5.8) into the MF Hamiltonian of each atom Eq. (2.61), we
obtain the Hamiltonian of the effective spin model up to the first order of g,

H
(1)
spin =

N∑
j=1

ωaS
z
j −

N∑
j=1

4gξ

γp
sin(Ωt)Sx

j , (5.9)

which describes the independent two-level systems under a strong driving field be-
cause there is no interaction between spins. As observed in Sec. 1.4.3, the system
shows the CDT due to the quantum interference effect when

J0

(
4gξ

γpℏΩ

)
= 0. (5.10)

In the phase diagram, we plot the points for the CDT by blue curves. We find a good
agreement between the periodicity of the CDT and that of the ordered phase.

Thus, it is strongly suggested that the CDT gives a key ingredient for this
symmetry-breaking phenomenon. However, if we take a dissipation effect into ac-
count in this system, Eq. (5.9), the quantum dynamical feature of the CDT disap-
pears and the long-time asymptotic state is simply in the regularly oscillating phase.
The lowest order term is thus insufficient to understand the mechanism of the present
phase transition.

We then resort to the next-leading-order term of the effective spin model, which
describes the long-range interaction among atoms. We find from Eq. (5.7) that time
evolution of the photon field in the first order of g denoted by α(1)(t) obeys

d

dt
α(1)(t) =

(
−iΩ− γp

ℏ

)(
α(1)(t) +

2g

ℏΩ
mx(t)

)
. (5.11)

In the long-time asymptotic states, α(1)(t) is given by

α(1)(t) =
2g(−iℏΩ− γp)

ℏ2Ω

∫ ∞

0

mx(t− τ)e(−iΩ−γp/ℏ)τdτ. (5.12)

Since the integrand decreases at a decay rate γp, we focus on the time regime 0 < τ <
ℏ/γp. Within this timescale, time evolution of the two-level atom can be regarded as
a Hamilton dynamics without dissipative effect, because at strong driving amplitude
the decay rate of an atom is much smaller than that of photon field almost all the
time, γp ≫ γa(t). It is because the MF Hamiltonian for an each atom Eq. (2.61) under
the strong driving field is almost commutable with system-bath coupling represented
by Sx for almost all the time.

We thus evaluate the dynamics of an atom by using the Schrödinger equation
of the lowest-order effective Hamiltonian, Eq. (5.9), which was investigated in sec-
tion 1.4.3 by replacing hz by ωa and 2ξ by 4gξ/γp. By using the Floquet modes

|u(0)1 (t)⟩ and |u(0)2 (t)⟩ obtained in Eq. (1.68), we evaluate mx(t) as

mx(t) =
1

2
(⟨u(0)1 (t)| ρa(t) |u(0)2 (t)⟩+ ⟨u(0)2 (t)| ρa(t) |u(0)1 (t)⟩), (5.13)
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where we have used

Sx |u(0)1 (t)⟩ = 1

2
|u(0)2 (t)⟩ , Sx |u(0)2 (t)⟩ = 1

2
|u(0)1 (t)⟩ . (5.14)

From Eq. (5.13), we obtain

mx(t−τ) = 1

2
[e

i
ℏωaJ0

(
4gξ
γpℏΩ

)
τ ⟨u(0)1 (t)| ρ(t) |u(0)2 (t)⟩+e−

i
ℏωaJ0

(
4gξ
γpℏΩ

)
τ ⟨u(0)2 (t)| ρ(t) |u(0)1 (t)⟩].

(5.15)
The phase rate is given by the quasienergy difference between two Floquet states
(See Eq. (1.69)). Since the asympotic form of the Bessel function J0(x) at large x is
proportional to x−1, at strong driving amplitude such that

ωaJ0

(
4gξ

γpΩ

)
≪ γp, (5.16)

we can regard mx(t− τ) to be constant in the time region 0 < τ < ℏ/γp.
By substituting mx(t− τ) = mx(t) into Eq. (5.12), we obtain α(1)(t) in the long-

time asymptotic state as

α(1)(t) = − 2g

ℏΩ
mx(t) = − 2g

NℏΩ

N∑
j=1

Sx
j . (5.17)

The effective spin model up to the order of g2 thus reads

H(2)
spin =

N∑
j=1

ωaS
z
j −

N∑
j=1

4gξ

γp
sin(Ωt)Sx

j − 1

N

N∑
j=1

N∑
k=1

4g2

ℏΩ
Sx
j S

x
k , (5.18)

where the second-order term describes the infinite-range interaction among atoms.
In Fig. 5.3, we present the phase diagrame of the effective spin model. We obtain

this phase diagram in the similar way to the driven Dicke model. First, we derive the
MF Hamiltonian for each atom from which we obtain the dressed Lindblad equation.
Next, we evaluate the order parameters which are defined by replacing photon field
α(t) by polarization of atoms mx(t).

The obtained phase diagram agrees with that of driven Dicke model at strong
driving amplitude. Thus, the novel type of symmetry breaking phenomenon observed
at strong driving amplitude is governed by the driving strength for each atom 4gξ/γp
and interaction strength between atoms 4g2/(ℏΩ)

5.5 Driven Tavis-Cummings model

In this section, we study another model of cavity systems called Tavis-Cumming
model in a periodic driving field. The Hamiltonian of the Tavis-Cummings model
reads [114]

H0 = ωpa
†a+ ωa

N∑
j=1

Sz
j +

N∑
j=1

g√
N
(S+

j a+ S−
j a

†), (5.19)

74



0 0.2 0.4 0.6 0.8 1

Driving amplitude ξ

0

0.2

0.4

0.6

In
te
ra
ct
io
n
st
re
n
g
th

g

Figure 5.3: Phase diagrams of the effective spin model with the same parameters
as the driven Dicke model. The long-time asymptotic state for given g and ξ is
labeled by dots (regularly oscillating phase), bullets (ordered phase), and crosses
(long-periodic phase). The blue curves are defined by zeros of zeroth order Bessel
function, J0(4gξ/γpℏΩ) = 0, where CDT occurs. The qualitative agreement of the
phase diagram with the driven Dicke model at strong driving field justifies the use of
the effective spin model to study the novel type of symmetry breaking phenomenon.

in which the interaction term in the Dicke model changes. This model is proposed to
be implemented in the system with superconducting qubits [115]. This model shows
the Dicke transition at the critical value of the interaction strength twice as large as
that of the Dicke model at zero temperature [81, 79, 80].

It is noted that the Tavis-Cummings model has a U(1) symmetry while the Dicke
model has only a Z(2) symmetry; In the Tavis-Cummings model the Hamiltonian is
invariant under the following unitary transformation,

eiθ(
∑
j S

z
j+a†a)H0e

−iθ(
∑
j S

z
j+a†a) = H0, (5.20)

for any real value of θ, while in the Dicke model this equality holds only for θ = π or
θ = 0 modulo 2π.

We apply the same type of the driving field as the Dicke model, Hex(t) (see
Eq. (2.55)), and study the long-time asymptotic states. We derive dressed Lindblad
equations in a similar way to the case of the driven Dicke model by using the MF
Hamiltonians for the photon field,

Hp(t) = ωpa
†a+

√
N [g(⟨S+(t)⟩ a+ ⟨S−(t)⟩ a†) + 2ξ cosΩt(a+ a†)] (5.21)

and for each atom,

Ha(t) = ωaS
z +

g√
N
(⟨a(t)⟩S+ + ⟨a(t)⟩∗ S−), (5.22)
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We use the same order parmeters in order to classify the asymptotic states into three
phases. We find that the difference of the symmetry substantially changes the phase
diagram in the USC regime at strong driving amplitude.
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Figure 5.4: Phase diagrams of the Tavis-Cummings model with the same parameters
as the driven Dicke model. The long-time asymptotic state for given g and ξ is
labeled by dots (regularly oscillating phase), bullets (ordered phase), and crosses
(long-periodic phase), respectively.

In Fig. 5.4, we show the phase diagram of the driven Tavis-Cummings model for
ωa = ωp = ℏΩ = 1, where the ordered phase does not appear at strong driving field.
We obtain an effective spin model in order to investigate why the phase diagram is
totally different from that of the Dicke model. Since the lowest order of photon field
in the long-time asymptotic state is in the same form as Eq. (5.8), the effective spin
model up to the order of g, which is obtained by substituting Eq. (5.8) into Eq. (5.22),
reads

Hspin =
N∑
j=1

ωaS
z
j −

N∑
j=1

2gξ

γp

[
sin(Ωt)Sx

j − cos(Ωt)Sy
j

]
. (5.23)

In contrast to the driven Dicke model where the effective spin model shows the CDT
at a specific value of the driving amplitude, this model shows the Rabi oscillation (see
Sec. 1.4.1), in which the xy components of spins rotate at the frequency Ω. Since the
localization of the spin state due to the driving field does not occur, we expect that
the ordered state does not appear in the driven Tavis-Cummings model as observed
in the phase diagram.

Through the study of this model, we have found that the difference of the symme-
try in the interaction Hamiltonian strongly changes the dynamical features of the spin
system, which substantially changes the phase diagram at strong driving amplitude.

76



5.6 Driven Dicke model with the squared electro-

magnetic vector potential, A2-term

In this section we study the long-time asymptotic state of the driven Dicke model
with the A2-term. The Hamiltonian is given by

H0 = ωpa
†a+

N∑
j=1

ωaS
z
j +

N∑
j=1

2g√
N
Sx
j (a+ a†) +D(a+ a†)2, (5.24)

where the last term is called the A2-term with strength being D. First, we explain
the origin of A2-term and the relation with the no go theorem of the Dicke transi-
tion. Next, we study the system subjected to a periodic driving field, Hex(t) (see
Eq. (2.55)).

In order to explain the origin of the A2-term, we consider the cavity system
embedding identical N atoms, whose Hamiltonian is given by

H = Hphoton +
N∑
i=1

H
(i)
atom({x

(i)
j }, {p(i)

j + eA(x
(i)
j )}), (5.25)

where Hphoton is the Hamiltonian for photon field and H
(i)
atom is the Hamiltonian for

ith atom. The atom Hamiltonian is described by the set of canonical variables of
j-th elctron in i-th atom denoted by x

(i)
j and p

(i)
j . We assume that there is no

interaction among atoms, and the Hamiltonian of each atom can be described in a
non-relativestic way;

H
(i)
atom({x

(i)
j }, {p(i)

j }) =
∑
j

p
(i)2
j

2me

+ V ({x(i)
j }), (5.26)

where me is an electron mass and V ({x(i)
j }) is a coulomb potential for the ith atom.

The interaction effects are taken into account by replacing the momentum of an
electron in the atom Hamiltonian p

(i)
j by p

(i)
j + eA(x

(i)
j ), where e is an electron

charge and A(x
(i)
j ) is a vector potetial for the cavity photon field.

In order to derive the Dicke model, we perform the following approximations:

• cavity photon field can be described by a single quantized mode with polariza-
tion vector e,

• only the transition between the ground state |0⟩ and an excited state |1⟩ occurs,

• the wave length of the cavity photon field is so long that the spacial dependence
of the vector potential can be neglected, A(x

(i)
j ) = A.
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The atom Hamiltonian includes the term proportional to (p
(i)
j + eA)2. The term

propotional to ep
(i)
j ·A gives the interaction term of the Dicke model with the strength,

g =

√
ρ

2ϵ0ωp

ωa| ⟨0| e
∑
j

x
(i)
j · e |1⟩ |, (5.27)

where ρ is a density of atoms inside the cavity and ϵ0 is the vacuum permittivity. In
addition, e2A ·A gives the A2-term, Eq. (5.24), with the strength,

D =
∑
j

ρe2

4ϵ0meωp

. (5.28)

The Dicke transition was originally investigated in the Dicke model without the
A2-term [81, 79, 80], but after that it has been argued that the A2-term plays a crucial
role of the no-go theorem of the Dicke transition [116]. This argument is based on the
sum rule called Thomas-Raiche-Kuhn (TRK) sum rule, which gives a bound between
g and D.

In order to see the bound, we use the following identity for k ≥ 0 (for the deriva-
tion, see [117]),

⟨ϕα| [B, [H̃, [· · · [H̃︸ ︷︷ ︸
k

, A] · · · ]]] |ϕα⟩

=
∑
β

[(Eβ − Eα)
k ⟨ϕα|B |ϕβ⟩ ⟨ϕβ|A |ϕα⟩ − (Eα − Eβ)

k ⟨ϕα|A |ϕβ⟩ ⟨ϕβ|B |ϕα⟩],

(5.29)

where H̃ is a self-adjoint operator with eigenvalues Eα and eigenstates |ϕα⟩, and A
and B are hermite operators. By substituting k = 1, H̃ = H

(i)
atom, and

A = B =
∑
j

ex
(i)
j · e, (5.30)

we obtain the TRK sum rule,∑
j

e2

me

= 2
∑
β

(Eβ − Eα)| ⟨α|
∑
j

ex
(i)
j · e |β⟩ |2. (5.31)

When we take |α⟩ to be the ground state of the atom Hamiltonian |0⟩, then the right
hand side is the sum of positive terms because Eβ − Eα ≥ 0. This observation leads
to the relation, ∑

j

e2

me

≥ 2ωa| ⟨0|
∑
j

ex
(i)
j · e |1⟩ |2 ↔ D ≥ g2

ωa

, (5.32)

which bounds the interaction strength g.
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The ordered phase appears at zero temperature when

g2

ωa

> D +
ωp

4
, (5.33)

which is incompatible with the bound Eq. (5.32). Thus, the Dicke transition does
not occur due to the inclusion of A2-term, which is called no-go theorem of the Dicke
transition [116].

Now we study the system subjected to a periodic driving field. The MF Hamil-
tonians for photon field is given by

Hp(t) = ωpa
†a+ 2

√
N [g ⟨Sx(t)⟩+ ξ cosΩt](a+ a†) +D(a+ a†)2. (5.34)

In order to simplify the expression, we perform a Bogoliubov transformation; We
define annihilation and creation bosonic operators b and b† as

b =
1√

1− p2
a− p√

1− p2
a†,

b† =
1√

1− p2
a† − p√

1− p2
a,

(5.35)

where

p =
−(ωp + 2D) +

√
ωp(ωp + 4D)

2D
, (5.36)

so that the MF Hamiltonian reads

Hp(t) = ω̃pb
†b+ 2

√
N [g̃ ⟨Sx(t)⟩+ ξ̃ cosΩt](b+ b†). (5.37)

Here, the A2-term modifies the paremeters as

ω̃p =
(1 + p2)ωp + 2D(1 + p)2

1− p2
,

g̃

g
=
ξ̃

ξ
=

√
1 + p

1− p
. (5.38)

The MF Hamiltonian for each atom can be written using the modified interaction
strength g̃ as

Ha(t) = ωaS
z +

2g̃√
N
(⟨b(t)⟩+ ⟨b(t)⟩∗)Sx, (5.39)

Thus, we can map the system with parameters (ωa, ωp, g, ξ,Ω) with finite A2-term
into the system with parameters (ωa, ω̃p, g̃, ξ̃,Ω) without A

2-term. For example, the
phenomenon for system parameters ωa = 1, ωp = 0.62, g = 0.4, D = 0.25 is estimated
from the phenomenon for ωa = 1, ωp ≃ 1, g̃ ≃ 0.31, D = 0. Since we find from the
phase diagram of the driven Dicke model (see Fig. 5.1) that for the latter parameters,
the novel type of symmetry breaking phenomenon occurs as we sweep the driving
amplitude, this clearly shows that this phenomenon appears even when the A2-term
exists and D > g2/ωa.
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5.7 Understanding the non-equilibrium phase tran-

sition in terms of the Floquet-Gibbs state

Finally, we investigate the effective spin model subjected to a strong and high fre-
quency field. The Hamiltonian of this model is given by

H
(2)
spin(t) =

N∑
j=1

ωaS
z
j −

N∑
j=1

4gξ

γp
sin(Ωt)Sx

j − 1

N

N∑
j=1

N∑
k=1

4g2

ℏΩ
Sx
j S

x
k , (5.40)

where we have used ωp = ℏΩ. In order to obtain the meaningful results at high
frequency limit Ω → ∞, we rescale the interaction strength g and driving amplitude
ξ as

g =
√
ℏΩḡ, ξ =

√
ℏΩξ̄. (5.41)

In the high frequency limit, Ω → ∞, the Floquet-Gibbs state is expected to be
realized, since all the conditions (i)-(iii)(see Chap. 3) are satisfied. In this subsec-
tion, we aim to compare the result obtained by the Floquet-Gibbs state and that
obtained by a master equation. In order to treat the high-frequency regime, where
the mean field rapidly oscillates, and thus the use of the dressed Lindblad equations
is inappropriate, we use the Floquet Lindblad equation, Eq. (2.31), in this subsection.

First we study what kind of a phenomenon is expected from the Floquet-Gibbs
state. When the system is subjected to a strong and high-frequency field, it is con-
venient to move to a rotating frame, where the state in the static frame |ψ(t)⟩ is
transformed by using a unitary operator V (t) into

|ψR(t)⟩ = e
−i

∫ t
0

∑N
j=1

4ḡξ̄Ω
γp

sinΩτSxj dτ |ψ(t)⟩ = V (t) |ψ(t)⟩ . (5.42)

The time evolution of |ψR(t)⟩ obeys the Schrödinger equation for the rotating Hamil-
tonian,

H
(2)R
spin (t) =V

†(t)

(
H

(2)
spin(t)− iℏ

∂

∂t

)
V (t),

=
N∑
j=1

ωaV
†(t)Sz

jV (t)− 1

N

N∑
j=1

N∑
k=1

4g2

ℏΩ
Sx
j S

x
k . (5.43)

As an approximation, we evaluate the lowest-order truncated Floquet Hamiltonian
by using the Floquet-Magnus expansion, H

(2)R
spin (t), which is given by (see Eqs. (1.50)

and (1.51))

H
(1)[0]
F = ωaJ0

(
4ḡξ̄

γp

) N∑
j=1

[
Sz
j cos

(
4ḡξ̄

γp

)
+ Sy

j sin

(
4ḡξ̄

γp

)]
−

N∑
j=1

N∑
k=1

4ḡ2

N
Sx
j S

x
k ,

(5.44)
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which is a transverse Ising model with infinite-range coupling. It is known that this
model shows a phase transition at a critical value of interaction strength between
atoms, e.g., at zero temperature given by

ḡ =
1

2

√
ωaJ0

(
4ḡξ̄

γp

)
. (5.45)

Since the right hand side is determined by the rescaled driving amplitude, it is ex-
pected from the Floquet-Gibbs state that the phase transition occurs when the driving
amplitude is swept. In Fig. 5.5, we depict the order parameter mx =

∑N
j=1⟨Sx

j ⟩/N
by dotted line.

Next, we study the long-time asymptotic state of this model in a dissipative
environment by using the Floquet Lindblad equation and MF approach. The MF
Hamiltonian of each atom is given by

Ha(t) = ωaS
z − 4gξ

γp
sin(Ωt)Sx − 8g2

ℏΩ
mx(t)Sx. (5.46)

In general, because the mean field denoted by mx(t) is not time periodic, the Floquet
Lindblad equation cannot be used. However, it is plausible that there exists a param-
eter regime, where the mean field in the long-time asymptotic state is time periodic.
In this region, the asymptotic solution should satisfy the Floquet Lindblad equation,
and thus the solution is obtained by the Pauli’s master equation, Eq. (2.40),

0 =
∑
j

(i̸=j)

Tj→i[m
x(t)]Pj − Ti→j[m

x(t)]Pi, (5.47)

where we explicitly show the dependence of the transition probabilities on the mean
field.

We further assume that during one period of the driving field, the time evolution
of each atom can be described by the Hamilton dynamics of Ha(t),

d

dt
ρa(t) = − i

ℏ
[Ha(t), ρa(t)], (5.48)

which is a nonlinear equation on ρa(t). Because it is the first-order differential equa-
tion, we have only to obtain an appropriate ρa(0) so that ρa(t) is time periodic and
consistent with Eq. (5.47).

In order to find the appropriate ρa(0), we employ the following strategy; First,
we take some ρa(0). Next, From Eq. (5.48), we obtain mx(t) for 0 ≤ t < T , from
which we obtain the Floquet modes and quasienergies. By using them, we evaluate
the transition probabilities Ti→j[m

x(t)], and then we obtain the asymptotic density
matrix for the long-time asymptotic state, ρ̃a(t). If ρ̃a(0) is inconsistent with ρa(0),
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Figure 5.5: The dependence of the time-averaged dipole moment mx on the scaled
driving amplitude ξ̄. The data for ℏΩ = 1, 3, and 5 are depicted by red squares,
green circles, and blue triangles, respectively. The black dotted line corresponds
to the value of the Gibbs state of the lowest-order truncated Floquet Hamiltonian,
Eq. (5.44). The crosses denotes the points of the CDT, ξ̄ = 0.24, 0.55, and 0.87. we
set the inverse temperature of the heat bath β = 20.

we replace ρa(0) by (1− ϵ)ρa(0)+ ϵρ̃a(0) 1. We repeat this cycle until ∆ρa = ∥ρ̃a(0)−
ρa(0)∥ < 10−5.

An each atom couples to the heat bath through the dipole moment represented by
Sx. As the property of the bath, we adopt the ohmic spectral density with Lorentz-
Drude cutoff frequency ωc,

J(ω) =
ω

π

ω2
c

ω2 + ω2
c

, (5.49)

where ωc = 10. We set the temperature of the bath to be β−1/kB = 0.05.
In Fig. 5.5, we show the time-averaged values of the dipole moment mx in the

long-time asymptotic states for the driving frequency, ℏΩ = 1, 3 and 5. At ℏΩ = 1,
there exist some points where ∆ρa does not converge during 106 cycles, which are
dropped in this figure. The crosses on x-axis denote the point of the CDT, around
which the order parameter mx appears. However, at high frequency ℏΩ = 3 and 5,
there are two peaks and the order parameter disappears around the points of the
CDT in contrast to the expectation of the Floquet-Gibbs state.

1We test various values of ϵ(= 0.001, 0.01, 0.1, and 1). They give the same results for almost all
the points except around the points of the CDT, in which smaller ϵ gives a better convergence of
∆ρa. In Fig. 5.5, we depict the data for ϵ = 0.001.
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The deviation from the Floquet-Gibbs state can be explained by the ergodic
breaking in the leading-order transition probabilities. At the point of the CDT, the
lowest-order truncated Floquet Hamiltonian, Eq. (5.44), commutes with the interac-
tion Hamiltonian HI, and thus the energy exchange between the system and the heat
bath does not occur in the order of Ω0. The detailed analysis of the next-leading-order
term is a future problem.

When ξ̄ is apart from the points of the CDT, the ergodicity recovers, and thus
the Floquet-Gibbs state gives a well description of the long-time asymptotic states
at high frequency.

5.8 Conclusion

In this section, we studied cooperative phenomena of the driven cavity systems in a
dissipative environment. First we adopted the dressed Lindblad equations, Eq. (2.64)
and Eq. (2.65), in order to study the driven Dicke model. In the USC regime subjected
to a strong driving field, we found a novel type of symmetry breaking phenomenon.
Through the study of the simpler effective spin model, we concluded that this phe-
nomenon originats from the synergestic effects of the driving field and atom-photon
coupling; The microscopic dynamical feature of each atom under a periodic driving
field is enhanced by the interaction effects.

We also studied other models for comparison. In the Tavis-Cummings model,
the difference of the symmetry qualitatively changes the dynamical feature of each
atom, leading to the different phase diagram at strong driving amplitude. Since this
nonequilibrium phenomenon originates in the dynamical effect, the inclusion of the
A2-term, which prohibits the occurrence of the Dicke transition, does not harm at
all.

Finally we used the Floquet Lindblad equation in order to study the long-time
asymptotic states under a strong and high-frequency driving field. We found that
the Floquet-Gibbs state gives a well description of the long-time asymptotic state as
far as the ergodicity is satisfied.

These investigations demonstrated that microscopic dynamical features can in-
duce a cooperative phenomenon due to interaction effect even in the existence of a
dissipative environment. Since the Floquet-Gibbs state appears only in a restricted
parameter regime, we usually cannot expect directly from the Floquet Hamiltonian
or its coherent dynamics what types of phenomena occur in the long-time asymptotic
state. However, our study supports the idea that the dynamical features remain to
be observed even out of the regime of the Floquet-Gibbs state.
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Chapter 6

Summary and future prospects

In the present thesis, long-time asymptotic states of a time-periodically driven system
in a dissipative environment was investigated by using quantum master equations.
Throughout the thesis we tried to find the condition in order to express the asymptotic
states by a closed-form solution (Floquet-Gibbs state).

In Chap. 3, we investigated within the Lindblad formulation the condition for the
emergence of the Gibbs state of the Floquet Hamiltonian. We found that even when
the driving field is strong, the asymptotic state can be expressed by the Floquet-
Gibbs state under the following three conditions:

(i) the driving frequency is much larger than the spectral width of the system Hamil-
tonian,
(ii) the driving Hamiltonians commute with itself at different instants of time,
(iii) the driving Hamiltonian and the system-bath interaction Hamiltonian should
commute.

These conditions severely limit a class of suitable physical models attaining the
Floquet-Gibbs state. The condition (i) restricts the system with a relatively small
Hilbert space and the condition (iii) requires a fine tuning of the system-bath cou-
pling.

In Chap. 4, we found that the conditions (i) and/or (iii), which severely restrict
the emergence of the Floquet-Gibbs state, can be lifted by imposing conditions on
timescales of the three constituents, the system, heat bath, driving field. Namely,

(i)’ the relaxation rate of the system τrelax is higher than the heating rate τheat,
(iii)’ the period of the driving field T is shorter than the timescale of the bath dy-
namics τbath.

The condition (i)’ suppresses the resonance transition between the eigenenergy state
of the effective Floquet Hamiltonian, which allows us to circumvent the condition (i).
When the condition (iii)’ is satisfied, energy excitation of the heat bath due to the
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periodic driving is suppressed, in which the condition (iii) is no more necessary. We
illustrated these scenarios in a spin-chain model by using the Redfield equation, and
demonstrated that the Gibbs state of the effective Floquet Hamiltonian can be real-
ized without imposing strict conditions on the system operators. This result clearly
indicates that the long-time asymptotic states of a periodic driven system strongly
depend on the detailed property of the coupling to the heat bath in contrast to the
system with time-independent Hamiltonian.

In Chap. 5, we studied the cooperative phenomena of the driven cavity systems by
combining the Lindblad formalism and the MF approach (dressed Lindblad equation).
We found a novel type of symmetry breaking phenomenon subjected to a strong
driving field. Through the study of the effective spin model, we found that this
phenomenon originates from the synergistic effects of the CDT, which is observed
in the driven two-level systems, and the effective interaction among atoms. We also
studied the asymptotic state under a fast and strong driving field by using the Floquet
Lindblad equation and MF approach. When the system meets the conditions for
the Floquet-Gibbs state, we demonstrate that this cooperative phenomenon can be
understood in terms of the Floquet-Gibbs state of the truncated Floquet Hamiltonian.

As a future prospect, the realization of the Floquet-Gibbs state in a dissipative
environment may allow us to control thermal or electronic transport by using a peri-
odic driving field. Since the Floquet Hamiltonian or the effective Floquet Hamiltonian
plays a role of the energy instead of the system Hamiltonian, the quasienergies and
the energy of the heat bath are exchanged with each other. Because the Floquet
Hamiltonian depends on the amplitude and frequency of the periodic driving field,
for example, the slow operation of the amplitude and frequency in time corresponds
to an adiabatic process, which may control currents between the system and a heat
bath or between two different heat baths. The formulation of, e.g., a thermodynamics
including effects of a periodic driving field is one of the future directions.

There remains a broad parameter regime where the Floquet-Gibbs state is not
realized. The asymptotic states are not determined only by the Floquet Hamiltonian
but also the details of the system-bath coupling. Thus, it is necessary to make clear
the role played by the interaction Hamiltonian on the long-time asymptotic states as
in Chap. 4. Even in an ideal Bose Einstein condensation, the unique phenomenon
has been reported [118], and thus it is expected that future research will unveil novel
types of phenomena in this regime.
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atoms, and the A2 term,” Phys. Rev. Lett., vol. 35, p. 432, 1975.

94



[117] R. Kubo, M. Toda, and N. Hashitsume, Statistical physics II: nonequilibrium
statistical mechanics. Springer, 1991.

[118] D. Vorberg, W. Wustmann, R. Ketzmerick, and A. Eckardt, “Generalized Bose-
Einstein condensation into multiple states in driven-dissipative systems,” Phys.
Rev. Lett., vol. 111, p. 240405, 2013.

95


