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Abstract

In this thesis, we consider the cosmology of the Peccei-Quinn models paying particular
attention to the dynamics of the scalar fields which have U(1)PQ charges. Cosmological
consequences largely depend on the dynamics of such scalar fields in the early universe.
If U(1)PQ is restored at some epoch, the U(1)PQ charged scalar fields start to oscillate later.
Such oscillating scalar fields may dominantly decay into relativistic axion particles
which become a dark radiation component of the universe, whose energy density is
tightly bounded. We clarify in what circumstances the axion overproduction is avoided
taking effects from the thermal plasma in the universe into account. We show that
owing to the thermal dissipation effects, the axion overproduction can be avoided even
when the scalar field once dominates the universe. We also consider the case where the
U(1)PQ symmetry is always broken in the history of the universe due to field values of
scalar fields. In such a case, a severe constraint is imposed on the Hubble scale during
inflation. We propose two new scenarios which relax this constraint. In both scenarios,
the dynamics of the U(1)PQ charged scalar fields play important roles.
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Chapter 1

Introduction

1.1 Overview

The standard model of the particle physics is well established after the discovery of
the Higgs boson by the Large Hadron Collider experiments at CERN [4, 5]. However,
we surely know that the standard model has some difficulties. The Peccei-Quinn (PQ)
mechanism [6, 7] was proposed motivated by one of the most serious difficulties in
the standard model: the strong CP problem [8]. If a model has the PQ mechanism,
the strong CP problem is elegantly solved. In this point of view, models with the PQ
mechanism (PQ model) are promising candidates of the model beyond the standard
model. Therefore, it is important to test whether PQ models are consistent with present
observations or not.

The PQ mechanism can be realised if a model has a global U(1) symmetry: U(1)PQ

which is anomalously broken by the quantum chromodynamics (QCD). Then, if U(1)PQ

is spontaneously broken by vacuum expectation values of U(1)PQ charged complex
scalar fields (PQ field), the PQ mechanism can work. After U(1)PQ is spontaneously
broken, one of the components in the PQ field(s) becomes a (pseudo) massless mode,
which is called as “axion” [9, 10]. The properties of the axion are extensively studied in
the literature (see [11] for a review).

In this thesis, we consider the physics of the PQ fields paying particular attention to
their dynamics in the early universe. At the present time, the expectation values of the
PQ fields are considered to settle down at the minimum of the potential and only the
physics of the axion would be relevant. However, at an early epoch of the universe, the
PQ fields may have field values different from that of vacuum and may show dynamical
motions. In some cases, the dynamics of the PQ field drastically affects the cosmological
history as we will see below and some scenarios are already excluded by the present
observations [12]. In this point of view, to analyse the cosmological dynamics of the PQ
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2 CHAPTER 1. INTRODUCTION

field is a powerful tool to test the PQ models.
The cosmological scenario of the PQ models can be divided into two cases. One case

is that the U(1)PQ symmetry is restored at some epoch of the universe after inflation.
The other case is that the U(1)PQ symmetry is always broken due to the field values of
the PQ fields. For both cases, the dynamics of the PQ fields affects the cosmological
history.

First, let us consider scenarios where the U(1)PQ symmetry is restored at some
epoch of the universe. The restoration of the U(1)PQ symmetry can be caused by the
interaction between the PQ field and particles in the universe. Such interactions can
stabilise the potential of the PQ field around the symmetry enhanced point, at which
the PQ symmetry is restored. In fact, it is shown that in some cases the PQ field is
likely to be trapped at such a point due to the interactions even if the PQ field initially
exists far away from there [1, 13]. After the PQ field is trapped at the symmetry
enhanced point, the PQ field stays there as long as the potential is stabilised. As the
universe expands, the number densities of the particles, which stabilise the potential,
decrease. As a result, the stabilisation effects become weaker and weaker. At some
time, the PQ field escapes from the symmetry enhanced point and starts to roll down
to the minimum of the vacuum potential. Then, the PQ field starts to oscillate around
the minimum of the potential. Globally, cosmic strings are formed because the U(1)PQ

symmetry becomes broken. Both the cosmic strings and the oscillation of the PQ field
can affect the cosmological consequences as we see below.

Let us see the fate of the cosmic strings formed after the PQ symmetry breaking.
When the temperature of the universe decreases to the QCD scale (∼ 400 MeV), the
potential of the axion is formed due to the QCD effects. As a result, cosmic strings
becomes string-domain-wall networks. The fate of the string-domain-wall networks
depends on the number of the minima of the axion potential, which is called as the
domain wall number. If the domain wall number is greater than one, string-domain-
wall networks are stable and soon over dominate the universe [14]. Thus, such a
scenario is excluded. On the other hand, if the domain wall number is equal to one,
string-domain-wall networks can decay into axions, which contribute to the present
dark matter abundance [15] .

The oscillation of the PQ field after the PQ symmetry breaking may also affect the
cosmological consequences. The oscillation of the PQ field can produce relativistic ax-
ion particles through a perturbative decay. Such axions contribute to a dark radiation
component whose energy density is tightly constrained by the cosmic microwave back-
ground (CMB) observations [16]. Thus, scenarios which predict too much axion dark
radiation are excluded.

So far, we have seen the case in which the PQ symmetry is restored at some epoch
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in the universe. Let us see the opposite case: the PQ symmetry is always broken by the
PQ fields. During inflation, the axion field may have a certain value different from the
vacuum expectation value. As the temperature of the universe decreases to the QCD
scale and the potential for the axion is lifted up, the axion starts to oscillate around
the minimum of the potential. Such an oscillating axion contributes to a part of the
present cold dark matter abundance [17–19]. On the other hand, since the axion is
almost massless, it acquires quantum fluctuations during inflation. Such fluctuations
induce the isocurvature perturbation of the cold dark matter [20–24], which is tightly
constrained by the CMB observations. This constraint is imposed on the inflation scale
since the size of the quantum fluctuation is of order of the Hubble parameter during
inflation. This tight constraint is incompatible with many high scale inflation models
including the Higgs inflation [25], which is the most economical inflationary scenario
because the Higgs field plays the role of the inflaton. There are some ways to relax the
constraint on the inflation scale [26–34] and it would be worth to consider a different
possibility to relax the constraint.

In this thesis, we consider the cosmology of PQ models paying particular attention
to the dynamics of the PQ field, based on the author’s works [2, 3, 35]. In particular, we
focus on the dynamics of the PQ field oscillation after the PQ symmetry restoration in
Chapter 4. We also consider the case where the PQ symmetry is always broken by the
PQ fields. We propose two new scenarios in which the constraint on the inflation scale
can be relaxes in Chapter 5.

In Chapter 4, we consider the dynamics after the restoration of the PQ symmetry.
As the temperature of the universe decreases, the PQ scalar starts to oscillate around
the minimum of the potential. In the dynamics of the PQ field oscillation, the thermal
dissipation effects play important roles. This is because without the thermal dissipation
effects, the PQ field often dominantly decays into axions, resulting in the axion over-
production. We study the dynamics of the PQ field taking thermal dissipation effects
into account. We show that owing to the thermal dissipation effects, a wide parame-
ter region can survive against the axion overproduction. Especially, such a parameter
region includes a class of supersymmetric PQ models.

In Chapter 5, we consider scenarios in which the constraint on the inflation scale
is relaxed and the PQ symmetry restoration is avoided, which is indispensable for the
models with the domain wall number greater than unity. We propose two new scenarios
in this direction. In the first scenario, a peculiar behaviour of scalar field motion in the
expanding universe is considered. We show that if the shape of the scalar potential
and the expansion rate of the universe satisfy a certain condition, a peculiar feature
of the scalar field dynamics shows up, which we denote as “pseudo scaling solution”.
Then, we find that if the PQ field obeys the pseudo scaling solution, the constraint on
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the inflation scale can be relaxed without the PQ symmetry restoration. In the second
scenario, the dynamics of multi PQ fields is considered. We find that if one PQ field
has a larger initial value and another PQ field dominantly breaks the PQ symmetry at
present day, the constraint on the inflation scale can be also relaxed without the PQ
symmetry restoration. We apply this idea on the DFSZ(Dine, Fichler, Srednichki and
Zhitnitskii) [36, 37] axion model, which has domain wall number greater than unity.
We show this scenario can work within the framework of Higgs inflation, which has
relatively large inflation scale.

1.2 Organisation of this thesis

The organisation of this thesis is as following.
In Chapter 2, we review the Peccei-Quinn mechanism and its properties. We explain

the strong CP problem in Sec. 2.1. Then, we introduce the PQ mechanism which solves
the strong CP problem in Sec. 2.2. In Sec. 2.3, we summarise properties of the axion
field which appears in the PQ models. We introduce some PQ models in Sec. 2.4. The
astrophysical and experimental constraints are summarised in Sec. 2.5.

In Chapter 3, we review the cosmology of the PQ models. We show an overview
of the PQ cosmology in Sec.3.1. The cosmological consequences largely depends on
whether the PQ symmetry is restored at some epoch after inflation or not. In Sec. 3.2,
we review the case where the PQ symmetry is not restored in the history of the universe.
In Sec. 3.3, we review the opposite case where the PQ symmetry is restored at some
epoch. We discuss with what conditions the PQ symmetry is restored in Sec.3.4. Finally
we review the dark radiation constraint on the axion in Sec. 3.5.

In Chapter 4 We consider the dynamics of the PQ field after the PQ symmetry
restoration. In Sec. 4.1, we summarise basic ingredients of this scenario. Then, we
introduce the coupled Boltzmann equation which determine the evolution of the system
in Sec. 4.2. We also explain qualitative features of the dynamics. We show numerical
results in Sec. 4.3. Sec. 4.4 is devoted to the conclusion of this Chapter.

In Chapter 5, we consider scenarios where the constraint on the inflation scale is
relaxed by some mechanism without the PQ symmetry restoration. In Sec. 5.1, we show
an overview of scenarios in this direction. In Sec. 5.2, we study the pseudo scaling
solution which is a peculiar behaviour of the scalar field motion. We show that if the PQ
field once obeys the pseudo scaling solution, the constraint on the Hubble parameter
can be relaxed without the PQ symmetry restoration. In Sec. 5.3, we propose a new
scenario in which the dynamics of multi PQ fields plays important roles. Then, we
apply this mechanism to the DFSZ model with the Higgs inflation.

The Chapter 6 is devoted to the conclusion.



Chapter 2

Peccei-Quinn Mechanism and its
Properties

The strong CP problem [8] is a naturalness problem related to the standard model
of the particle physics. One of the most elegant ways to solve this problem is the
Peccei-Quinn(PQ) mechanism [6, 7].

In this chapter, we first explain the strong CP problem. Then, we see how the
PQ mechanism solves this problem. Then, we briefly review the properties of the
models with the PQ mechanism. In general, models with the PQ mechanism contain
an additional (pseudo) massless boson particle called “axion” [9, 10]. We list up the
interactions between the axion particle and the stared model particles and summarise
observational constraints on them.

2.1 Strong CP problem

The quantum chromodynamics(QCD) has a so called theta term [38] in the Lagrangian:

LQCD ⊃
θ

32π2 GG̃, (2.1.1)

where G indicates the strength tensor of the gluon field and G̃ ≡ ϵµνρσ

2 Gρσ is the dual
tensor. The term G̃G/32π2 takes only integer values by instanton solutions [39]. The
parameter θ can be changed by the chiral phase rotation of quarks. However, the
combination

θ̄ ≡ θ + Im[ln det(MDMU)], (2.1.2)

where MD/U denotes the up/down quark mass matrix, is invariant and in fact is an
observable [38, 40].

5
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Theoretical calculations indicate the neutron electric dipole moment to be dn ∼
10−16θ̄e cm [41–46] with e being the absolute value of the electron electric charge. So far,
there is no evidence of the neutron electric dipole moment. The current experimental
limit is obtained as |dn| < 2.9× 10−26ecm (90% C.L.) [47]. This limit gives a bound on the
value of θ̄:

|θ̄| ≲ 10−10. (2.1.3)

On the other hand, the parameter θ̄ is supposed to be ofO(1) parameter by two reasons:

• we expect the value of Im[ln det(MDMU)] is of order unity because we know there
exists a CP violating phase in the quark mass matrix known as CKM phase [48, 49].

• the parameter θ is an undetermined free parameter which has nothing to do with
the quark mass matrix.

Thus, the smallness of the parameter θ̄ ≲ 10−10 is considered to be unnatural. This
problem is called the strong CP problem [8]. We expect that the new physics will
explain the smallness of θ̄. One of the most elegant solutions to the strong CP problem
is the Peccei-Quinn mechanism [6, 7].

2.2 Peccei-Quinn Mechanism

In Peccei-Quinn mechanism, the parameter θ̄ becomes a dynamical field called “axion”.
If the minimum of the axion potential corresponds to θ̄ = 0, the strong CP problem is
solved. First, let us consider the effective potential regarding θ̄ as a dynamical field. The
potential energy of the Euclidian1 QCD with some gauge changed fermions (qi, i = 1, 2, ..)
V(θ̄) can be evaluated as [8]

exp
[
−

∫
x

V(θ̄)
]
=

∫
DA

∫ ∏
i

Dq̄iDqi exp

−∫
x

 1
4g2

s
GG +

∑
i

q̄i( /D +mi)qi −
iθ̄

32π2 GG̃

 ,
(2.2.1)

where D indicates the path integral, gs denotes the gauge coupling of QCD and the
masses mi are set to be real and positive. The Dirac operator i /D is Hermitian and thus
the eigenvalues are real. Then, it can be shown that Det[ /D +mi] to be real and positive.

1 The vacuum structure can be obtained by the Euclidian formalism.
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By using the Schwarz inequality, we can have:

exp
[
−

∫
x

V(θ̄)
]
=

∣∣∣∣∣∣∣
∫
DA

∏
i

Det[ /D +mi] exp
[
−

∫
x

(
1

4g2
s
GG − iθ̄

32π2 GG̃
)]∣∣∣∣∣∣∣

≤
∫
DA

∣∣∣∣∣∣∣∏i

Det[ /D +mi] exp
[
−

∫
x

(
1

4g2
s
GG − iθ̄

32π2 GG̃
)]∣∣∣∣∣∣∣

=

∫
DA

∏
i

Det[ /D +mi] exp
[
−

∫
x

(
1

4g2
s
GG

)]
= exp

[∫
x

V(θ̄ = 0)
]
. (2.2.2)

This calculation indicates V(θ̄ = 0) ≤ V(θ̄) and the equality holds if and only if θ̄ = 0
for −π ≤ θ̄ ≤ π. In other words, if θ̄ is a dynamical field, its potential minimum exists
at θ̄ = 0.

Let us consider a new field a called “axion” which only has the following interaction

La =
1
2

(∂a)2 +
1

32π2

a
F

GG̃, (2.2.3)

with F being a constant. Then,

⟨θ̄ + a
F
⟩ = 0 (2.2.4)

can be realised at vacuum, which solves the strong CP problem. The interaction
Eq. (2.2.3) can be realised by the following way:

• introduce a U(1) symmetry called U(1)PQ which is anomalously broken by QCD.

• break U(1)PQ spontaneously by non-zero vacuum expectation values of U(1)PQ

charged scalar fields.

Then, the (pseudo) flat direction in scalar fields related to the U(1)PQ becomes axion
which has E.q. (2.2.3) type interaction. The properties of axion depend on models.
Below, we briefly summarise them.

2.3 Properties of Axion

First, let us consider a rather general situation. We assume there is a set of canonically
normalised complex scalars ϕA(A = 1, 2, ...) and pairs of QCD charged fermions qR

c , qL
c

and QCD singlet fermions qR
l , qL

l where L/R indicates the projection of chirarity on the
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Dirac fermion. We use subscript c(l) to indicate that the fermion qc(l) does have (does
not have) a QCD charge. For convenience, we define the subscript i which runs over
both c and l: i = c, l. We assign U(1)PQ charges for each field as qL/R

i : Qi and ϕA : CA . In
this notation, U(1)PQ rotation of angle β is defined as

q•i → eiβQ•i q•i , ϕA → eiβCAϕA. (2.3.1)

We consider the following interaction which preserves the U(1)PQ symmetry:

Lint =

∑
A,i

yi,Aq̄L
i qR

i ϕA +H. c.

 + V(ϕA), (2.3.2)

where yi,A denotes a Yukawa coupling and V(ϕA) indicates a scalar potential. U(1)PQ

invariance demands QL
i − QR

i = CA for yi,A , 0. We consider the situation where PQ
charged scalars obtain vacuum expectation values ⟨ϕA⟩ = ΦA depending on the potential
V(ϕA). We can define the canonically normalised “axion” field a to be

ϕA = ΦA exp
[
i
CAa

F

]
, (2.3.3)

F ≡
√∑

A

1
2
Φ2

AC2
A, (2.3.4)

where we do not consider other degrees of freedom in ϕA for simplicity. In some cases,
some of ϕA have gauge charges and some degrees of freedoms in ϕA are eaten due to the
Higgs mechanism. We can choose the U(1)PQ in such a way that the field a in Eq. (2.3.3)
becomes a physical degree of freedom. We assume such a choice of U(1)PQ is made.
In addition, the overall sizes of CA is chosen so that the scalar configuration becomes
periodic under the shift a→ a+2πF and no shorter period of scalar configuration exists.

After substituting Eq. (2.3.3) into the Lagrangian, we can obtain:

La ⊃
1
2

(∂a)2 +
∑

i

(q̄L
i i /DqL

i + q̄R
i i /DqR)

−
∑

A,i

|yi,AΦA|q̄L
i qR

i exp
(
i
Cia
F

)
+H. c.

 . (2.3.5)

Here, Ci ≡ CL
i −QR

i and we remove constant phases for simplicity. We can redefine the
phases of quarks like qL → qLeiαa(x)/F and qR → qRe−iαa(x)/F. With the phase rotation of
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fermions, the Lagrangian can be generically written as [11]:

La ⊃
1
2

(∂a)2 +
∑

i

(q̄L
i i /DqL

i + q̄R
i i /DqR)

+
∑

i

[
ci,1

(∂µa)
F

q̄γµγ5qi −
(
q̄L

i miqR
i exp[ici,2

a
F

] +H.c.
)]

+ c3
a

32π2F
GG̃ + cem

a
32π2F

FemF̃em, (2.3.6)

where Fem indicates the field strength of photon field and mi ≡
∑

A |yi,AΦA|. The co-
efficients c• in Eq. (2.3.5) are read to be ci,1 = c3 = cem = 0 and ci,2 = Ci. When we
rotate fermion phases as qL

i → qL
i eiαia(x)/F and qR → qR

i e−iαia(x)/F, each coefficient shifts as
ci,1 → ci,1−αi, ci,2 → ci,2−2αi and c3 → c3+2

∑
c αc

2. Though the physics does not depend
on the choice of the phases 3 , there are some convenient choices of c• depending on
what one would like to know.

Let us consider the potential structure of the axion field. To see this, it is convenient
to set all ci,2 to be zero by the phase rotation. In this choice, the coefficient c3 becomes
c3 → c3 +

∑
c cc,2. Note that the combination

∑
c cc,2 + c3 is invariant under the phase

rotation. We define the domain wall number NDW as

NDW ≡
∣∣∣∣∣∣∣∑c

cc,2 + c3

∣∣∣∣∣∣∣ . (2.3.7)

Then, the interaction of the axion can be written as

La = NDW
a

32π2F
GG̃, (2.3.8)

where we neglect derivative couplings and cem term. As the term GG̃/32π2F takes
integer values, minima of the axion potential exist at a/F = 2πn/NDW with an integer n.
On the other hand, the field values a/F = 2πn(n = 0,±1, ..) correspond to the same point
in the scalar field configuration ϕA. Thus, the domain wall number NDW represents
the number of the minima of the scalar potential. As we will see in the next Chapter,
whether NDW = 1 or not is important for the PQ cosmology. More detailed shape of the
axion potential is given in Sec. 2.3.1. For later convenience, we define the axion decay
constant Fa as Fa ≡ F/NDW. We also denote Fa as the PQ scale.

2 Here we assume qc belongs to the fundamental representation of the QCD for simplicity.
3Though properties of the field a depend on the choice of the phases , we call the field a as “axion” for

simplicity.
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2.3.1 Axion potential

Here, we consider the potential of the axion. We have seen the axion potential is periodic
under the shift a→ a+ 2πFa with Fa being the axion decay constant. On the other hand,
the mass of the axion at vacuum is computed to be [9]:

ma =
fπ0mπ0

Fa

√
zd

(1 + zd)(1 + zd + zs)
≃ 6 meV × 109 GeV

Fa
, (2.3.9)

where fπ0 and m0
π are the pion decay constant and pion mass respectively and

zd ≡
mu

md
≃ 0.568 ± 0.042, (2.3.10)

zs ≡
mu

md
≃ 0.029 ± 0.0003, (2.3.11)

(2.3.12)

are given in [50]. In appendix A, We derive this axion mass using the chiral perturbation
theory. Noticing the periodicity of the axion and the vacuum mass, the following simple
cosine form of the axion potential is widely used in cosmological studies:

V(a) = m2
aF2

a [1 − cos(a/Fa)] . (2.3.13)

In general, global structure of the axion potential can be much more complicated com-
pared to this simple cosine form [51–56]. But the detailed form of the axion potential is
beyond the scope of this thesis and we use the axion potential of Eq. (2.3.13).

When we consider the cosmological history of the axion field, it is important to know
the temperature dependence of the axion mass. The temperature dependence of axion
mass is estimated by the interacting instanton liquid model [57, 58] and is given by4

ma(T) ≃
 4.05 × 10−4Λ2

Fa

(
T
Λ

)−3.34
T ≳ 0.26Λ,

ma(T = 0) T ≲ 0.26Λ,
(2.3.14)

where Λ ≃ 400 MeV denotes the QCD scale.

2.3.2 axion interaction with standard model particles

Here, we summarise interactions between the axion and other particles in the standard
model. First, let us consider the physics just above the QCD scale. There exist three

4Now, the lattice studies on the temperature dependence of the axion mass are developing (see [59–
61]).
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light quarks u, d and s. The effective Lagrangian can be written as

La ⊃
1
2

(∂a)2 +
∑

i=u,d,s

(q̄L
i i /DqL

i + q̄R
i i /DqR

i )

+
∑

i=u,d,s

[
c0

i,1

(∂µa)
F

q̄iγ
µγ5qi −

(
q̄L

i miqR
i +H.c.

)]
+ c0

3
a

32π2F
GG̃ + c0

em
a

32π2F
FemF̃em, (2.3.15)

c0
i,1 = −Ci/2, (2.3.16)

c0
em = 2

∑
i

niCiQ2
i,em, (2.3.17)

c0
3 =

∑
c

Cc, (2.3.18)

where we set all c2 to be zero and Qi,em denotes the electric charge of i-th PQ quark. ni

denotes the number of Dirac fermions in qi.
When we consider axion interactions with standard model particles, it is convenient

to remove the c3 term by a chiral rotation. The following rotation removes the mass
mixing between axion and pions[62, 63]:

qL → exp(−iaQA/F)qL, qR → exp(iaQA/F)qR, (2.3.19)

where q = (u, d, s) and

QA = c0
3

M−1
q

2tr(M−1
q )
, Mq ≡ diag[mu,md,ms]. (2.3.20)

After this rotation, coefficients c• become model dependent values which we denote c̄•.
Below, we list up the axion coupling with photons, leptons and hadrons respectively.

Axion coupling with photon

The coefficient c̄em represents the interaction between axion particle and the photons
and given by

c̄em = c0
em − 6

c0
3

tr(M−1
q )

∑
i=u,d,s

m−1
i Q2

i,em

= c0
em − e2c0

3
2(4 + zd + zs)
3(1 + zd + zs)

≃ c0
em − 1.92e2c0

3. (2.3.21)
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Note that even when the all PQ charged quarks have no electric charge, the coupling
c̄em have non zero value of order O(e2).

Conventionally, the axion photon coupling is normalised by the following form

Laγ = −
gaγ

4
aFemF̃em, (2.3.22)

where the coupling gaγ is called axion-photon coupling and given by

gaγ =
αem

2πFa
|c̄em/NDWe2|, (2.3.23)

where αem = e2/4π.

Axion coupling with leptons

The coefficient c̄1,i represents the interaction between the i-th fermion and the axion.
Here, we consider the coupling between the axion and a lepton “L”. Conventionally,
the coupling with leptons are normalised as

LaL =
gaL

2mi
ψ̄LγµψL∂

µa, (2.3.24)

which gives

|gaL| =
mLCL

FaNDW
. (2.3.25)

If a lepton L does not have a PQ charge, there is no tree-level interaction between
the axion and the lepton L. However, an one-loop process through the cem coupling
generates the coupling gaL. In such a case, the size of gaL is suppressed by a factor
O(α2

em/(4π)2) compared to the case with an order one c̄1,L [64].

Axion coupling with hadrons

Here, we list up the couplings between the axion and hadrons. In the c̄• frame, the axion
has the following interaction

L ⊃
∑

i=u,d,s

c̄i,1
(∂µa)

F
q̄iγ

µγ5qi. (2.3.26)
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In a energy scale below the chiral symmetry breaking, this interaction becomes the
coupling between the hadrons and the axion as

LaN =
∂µa
F

[
Capp̄γµγ5p + Cann̄γµγ5n + iCaπN

(
π+

fπ
p̄γµn − π

−

fπ
n̄γµp

)]
, (2.3.27)

Laπ = Caπ
∂µa
F fπ

(π0π+ + π0∂π+ − 2π+π−∂µπ0), (2.3.28)

where p, n, π denote the proton, neutron and pion respectively and fπ ≃ 130 MeV is the
pion decay constant. The coefficients Ca(n/p) are given by

Cap = c̄1,u△u + c̄1,d△d + c̄1,s△s, (2.3.29)

Can = c̄1,u△d + c̄1,d△u + c̄1,s△s, (2.3.30)

where △q are the axial vector current matrix element △qSµ = ⟨p|q̄γµγ5q|p⟩ with Sµ being
the proton spin. They are given by △u = 0.84 ± 0.02, △d = −0.43 ± 0.02 and △s =
−0.09 ± 0.02 [65]. The coefficients Caπ are given by [11]

CaπN =
c̄1,u − c̄1,d√

2
, (2.3.31)

Caπ =
2(c̄1,u − c̄1,d)

3
. (2.3.32)

The couplings like Cap and Can are normalised as

L ⊃ gaN

2mN
N̄γµN∂µa, (N = p/n), (2.3.33)

which gives

gaN = 2
CaNmN

FaNDW
, (N = p/n). (2.3.34)

2.4 Axion models

In this section, we review some known axion models. There are two main ingredients
for the axion model.

The first ingredient of the axion model is the form of the scalar potential which
generates the vacuum expectation values of the PQ charged scaler around the PQ scale
Fa. In some cases, the cosmological history of the PQ field much depends on the potential
of it. Thus, it is worth knowing what kind of scalar potential are probable. We introduce
typical types of scalar potential of the PQ field especially within the framework of the
supersymmetric models in Sec. 2.4.3.
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The second ingredient of the axion model is the contents of PQ charged fields. There
are two well known setups: KSVZ (Kim, Shifman, Vainshtein and Zakharov) axion
model [66, 67] and DFSZ one[36, 37]. Below, we summarise them one by one.

2.4.1 KSVZ axion model

The axion model proposed by Kim [66], and by Shifman, Vainshtein and Zakharov [67]
called the KSVZ model has one extra pair of PQ charged quarks. On the other hand,
standard model particles do not have the PQ charge. The Lagrangian is given by

LKSVZ ⊃ yϕψ̄LψR +H.c. + Vstab(|ϕ|), (2.4.1)

where ψ denotes the QCD charged extra quark. Vstab denotes the potential of the PQ
scalar ϕ, and stabilise the potential at |ϕ|/

√
2 = Fa. We assume ψL belongs to the

fundamental representation in QCD. If we assign the PQ charge of ϕ as one, Cq also
becomes one. In this model, the relevant parameters for axion interaction are given by

NDW = 1, (2.4.2)

gaγ ≃
αem

2πFa
|6Q2

ψ,em/e
2 − 1.92|, (2.4.3)

gaL = O
(
α2

em

(4π)2

mL

Fa

)
, (2.4.4)

c̄2,u =
1

1 + z + zs
, (2.4.5)

c̄2,d =
z

1 + z + zs
, (2.4.6)

c̄2,s =
zs

1 + z + zs
, (2.4.7)

c̄1,q = c̄2,q/2 (q = u, d, s), (2.4.8)

(2.4.9)

Note that in this model, the domain wall number is equal to one. Thus, the axion
potential has a unique minimum. Sometimes the KSVZ model is called as the Hadronic
axion model.

2.4.2 DFSZ axion model

The so called DFSZ axion model is proposed by Dine, Fichler and Srednicki [36] and
by Zhitnitskii [37]. This model contains the two Higgs doublet fields (Hu, Hd) and one
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additional complex scalar field ϕ. The potential of the scalar is given by

LDFSZ ⊃ λHuHdϕ
2 + Vstab(|ϕ|) (2.4.10)

Vstab denotes the potential of the PQ scalar ϕ and stabilises the potential at |ϕ|/
√

2 = Fa.
We assume that Hu/d generates masses of the up/down type quarks. If we set the PQ
charge of ϕ to be −1, the PQ charges of Higgs fields CHu/d in our convention become

CHu = 2 cos2 β, (2.4.11)

CHd = 2 sin2 β, (2.4.12)

where tan β ≡ ⟨Hu⟩/⟨Hd⟩. In this model, the relevant parameters for axion interaction
are given by

NDW = 6, (2.4.13)

gaγ ≃
αem

2πFa
|8/3 − 1.92|, (2.4.14)

gaL = 3 sin2 β, (2.4.15)

c̄2,u =
6

1 + z + zs
, (2.4.16)

c̄2,d =
6z

1 + z + zs
, (2.4.17)

c̄2,s =
6zs

1 + z + zs
, (2.4.18)

c̄1,q = c̄2,q/2 − Cq (q = u, d, s), (2.4.19)

(2.4.20)

where we assume the leptons couple to the Hd. Noted that in this model, the domain
wall number is equal to 6.Thus, the axion potential has sixth degenerate minima.

2.4.3 Models of the potential for the PQ field with supersymmetry

Since supersymmetric (SUSY) models can explain the hierarchy problem, the SUSY PQ
model is well motivated. If the PQ mechanism is embedded into a SUSY framework,
there appear some characteristic features. In a SUSY framework, the PQ symmetry
ϕi → ϕiαi

i can be extended to a symmetry of scale transformation: ϕi → ϕαi
i due to the

holomorphic property of the superpotential [68]. This scale transformation symmetry
is broken by soft SUSY breaking terms. Thus, in general, a typical mass scale of the PQ
scalar potential becomes soft SUSY breaking mass one.
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As will be mentioned in Sec. 2.5. the PQ scale is expected to be around Fa ∼ 109−1012

GeV. This range of the PQ field is called the axion window. On the other hand, the soft
SUSY breaking mass scale is expected to be not too much larger than the electroweak
scale, otherwise the hierarchy problem becomes serious. Thus in most cases of interest,
the PQ scale is much larger than the soft SUSY breaking mass scale. However in such a
case, it seems non trivial to make the scalar potential stabilised at appropriate scale Fa.
Below, we list up some examples of the PQ potential in SUSY models.

Example 1

First, we show a mechanism in which the running of the soft mass induces radiative
symmetry breaking at an appropriate scale [69, 70]. Let us consider the following
superpotential

WPQ = λQϕQQ̄ + λLϕLL̄, (2.4.21)

where ϕ denotes the PQ field, and (Q̄)Q and (L̄)L denote chiral multiplets in (anti-
) fundamental representation of SU(5). Then, the renormalization group equations
(RGEs) for the soft SUSY breaking masses are given by

dm2
ϕ

dt
=

1
8π2

[
3λ2

Q(m2
ϕ +m2

Q +m2
Q̄) + 2λ2

L(m2
ϕ +m2

L +m2
L̄)
]
,

dm2
Q

dt
=

dm2
Q̄

dt
=

1
8π2

[
λ2

Q(m2
ϕ +m2

Q +m2
Q̄)

]
,

dm2
L

dt
=

dm2
L̄

dt
=

1
8π2

[
λ2

L(m2
ϕ +m2

L +m2
L̄)
]
,

(2.4.22)

where t = log E (with E being the energy scale), m• (with • = Q, Q̄, L, L̄) denotes the
soft SUSY breaking mass. The potential of the PQ field is given by

Vϕ = m2
ϕ(ϕ)|ϕ|2. (2.4.23)

If mϕ has a positive value at high energy scale and changes the sign at a PQ scale,
the PQ symmetry can be broken properly. Fig. 2.1 shows running of the soft SUSY
breaking mass mϕ. We have solved the RGEs with the boundary condition at the ground
unification scale (MGUT ∼ 2 × 1016 GeV) as mϕ = mQ = mL = 10 PeV, and λQ = λL = 0.7
(the red solid line) and λQ = λL = 1 (the green dashed line). We have taken the runnings
of couplings (λQ,L and standard model couplings) into account. Here we have ignored
gaugino masses for simplicity. One can see that for λQ,L ≃ 0.7, the expectation value
of the PQ field can be around ∼ 1010 GeV. Note that in this model, λ• should be O(1)
otherwise the running effects on the soft masses become negligible.
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Figure 2.1: RGE evolution of the soft mass of the PQ field. Red solid and green dashed
lines are the cases with λQ,L(MGUT) = 0.7 and 1 respectively. From [1].

Example 2

Another example of the supersymmetric axion model has the following superpoten-
tial [71]

WPQ =
γϕnS
nMn−2

∗
, (2.4.24)

where ϕ and S are the PQ field with the PQ charge +1 and −n respectively. M∗ denotes
the cut off scale. The scalar potential is given by

V = −m2|ϕ|2 +
γ2|ϕ|2n

M2n−4
∗

(2.4.25)

where −m2 denotes the soft mass for ϕ and we set S = 0 for simplicity. If m2 < 0, n > 2
and M2

∗ ≫ |m2|, the PQ field ϕ will have a vacuum expectation value much larger than
the soft SUSY mass m. Then, the appropriate PQ scale can be realised.
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2.5 Constraints on axion

Here we briefly summarise constraints on couplings between the axion and standard
model particles which are obtained by experiments and astrophysical observations.

2.5.1 Astrophysical constraints

If couplings between the axion and standard model particles exist, axion emission
process becomes an energy loss channel for stars. Such a process is limited by observed
properties of stars [72–75].

The strongest astrophysical constraint on the axion-photon coupling gaγ comes from
globular cluster observations in which energy loss process due to the axion-photon
coupling reduces the lifetime of stars on the horizontal branch. The constraint is given
by [76]

gaγ ≲ 10−10GeV−1. (2.5.1)

(2.5.2)

This constraint gaγ ≲ 10−10 GeV−1 can be translated to the constraint on Fa. For the KSVZ
model, this constraint becomes Fa > 2.3 × 107 GeV and for DFSZ model it becomes
0.8 × 107 GeV.

The axion-electron coupling gae is limited by the energy loss process in globular
cluster and given by [77]:

gae < 4.3 × 10−13. (2.5.3)

The axion-electron coupling gae also affects the cooling process of white dwarfs. Recent
studies show [78, 79] that the white dwarf cooling process can be better explained with
a new energy loss channel that can be interpreted in terms of axion electron coupling
gae ≃ 2.2× 10−13. On the other hand, the region gae > 5× 10−13 is excluded. For the DFSZ
model, the constraint gae < 5 × 10−13 can be interpreted as Fa ≳ 2 × 108 sin2 β GeV. The
constraint on the KSVZ model is suppressed because there is no tree level coupling.

The axion-nucleon coupling gaN is constrained by the cooling of the supernova
1987a [80]. The following range of coupling is excluded[75]:

3 × 10−10 ≲ gaN. (2.5.4)

This constraint is especially important for the KSVZ type models in which the bounds
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from gae are mild. For the KSVZ model, the following limit on Fa is obtained [75] 5

Fa ≳ 4 × 108 GeV. (2.5.5)

2.5.2 Experimental constraints

If the axion photon coupling gaγ exists, the Sun can be a source of axion fluxes. Pro-
duced axions can be detected at Earth through the axion photon conversion process in
a macroscopic magnetic field [82]. This idea of axion detection is called “axion helio-
scope”. The CAST ( CERN Axion Solar Telescope) experiment gives most severe bound
on the axion photon coupling geγ [83]. They exclude axion models with the PQ scale
around Fa ∼ 107−108 FeV. The Tokyo axion helioscope also put bounds on axion models
with ma ∼ 1 eV [84]. The future project “International Axion Observatory” (IAXO) [85]
may reach the parameter range of Fa ∼ 109 GeV.

Axion may contribute a significant fraction of the cold dark matter (see Chapter 3).
Axions in galactic halo may be detected by using a microwave cavityy [82, 86–88]. The
ADMX experiment [89] excludes the axion dark matter scenario for a certain range of
the PQ scale around Fa ∼ 1011 GeV.

We have seen that constraints on three couplings gaN, gae and gaγ are obtained from
astrophysical observations. Constraints on the coupling gaγ are also obtained from
experiments. Note that it is very unlikely that all of these couplings are accidentally
suppressed. Thus, one can say that the PQ scale Fa is bounded from below as Fa ≳ 109

GeV. As is shown in Sec. 3.2, Fa ≳ 1012 GeV requires a turning otherwise axion dark
matter dominates the universe. Thus, a promising range of the PQ scale is around
109GeV ≲ Fa ≲ 1012 GeV. This range of the PQ scale is called as the axion window.

5 If gaN ≲ 3 × 107 GeV, axions rapidly interact and no constraint is obtained in terms of cooling.
However, in such a case, thermally produced axions become a hot dark matter and this case is disfavoured
by cosmological observations [81].





Chapter 3

Overview of Peccei-Quinn Cosmology

3.1 Overview

Is the PQ symmetry is restored after the inflation? 

The PQ field will break the PQ 
symmetry later. Then, 

・cosmological defects are formed. 
           or explicit U      is needed.  
(Sec. 3.2) 

・the oscillation of the PQ field may 
 overproduce axion dark radiations.  
(Chapter. 4) 

Axion field holds quantum fluctuations 
during the inflation.  

・Such fluctuations are constrained 
by CMB observations. 
 (Sec. 3.3) 

・We propose ways to relax this 
constraint by simple mechanisms.  
(Chapter. 5) 

For both cases, axion can be a dark matter component. (Sec. 3.2,3.3)

Yes. No.

We discuss in what conditions 
the PQ symmetry is restored 
in Sec. 3.4.

NDW = 1 (1)PQ

Figure 3.1: Schematic picture of the PQ cosmology and this thesis.

In this Chapter, we show an overview of the PQ cosmology paying particular atten-
tion to the dynamics of the PQ field. Fig. 3.1 shows a schematic picture of the of the PQ
cosmology and this thesis.
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The cosmological implications much depend on whether the PQ symmetry is re-
stored at some epoch after the inflation or not. In general, scalar fields tend to be
trapped at the symmetry enhanced point. For example, thermal potential may stabilise
the scalar potential at the symmetry enhanced point. In some cases, the PQ field is
trapped at the symmetry enhanced point and the PQ symmetry is restored at some
epoch in the cosmological history.

If the PQ symmetry is restored at some epoch, the PQ field will go down to the
minimum of the vacuum potential as the universe expands. After the breaking of the
PQ symmetry, cosmic strings are formed with typical scale being the Hubble one.

When the temperature decreases to the QCD scale, the potential of the axion field
is lifted up.Then, string-domain-wall networks are formed. If the domain wall number
NND (see Eq. (2.3.7)) is greater than unity, domain walls become stable and such a
scenario is excluded [14]. Thus, for NDW > 1, an explicit PQ symmetry breaking is
needed. On the other hand, if NND = 1, domain walls can decay into axion particles.
Axions produced in this way can be a part of the cold dark mater component of the
universe [90, 91]. We give a briefly summary of this situation in Sec. 3.3. There are
another dynamics of the PQ field: the oscillation of the PQ field around the minimum
of the potential. The PQ field has a sizeable decay rate to axions in general. Thus, in
some cases, axion particles are overproduced and are constrained by dark radiation
abundance [12]. We discuss when the axion overproduction is avoided taking thermal
effects into account in Sec. 4.

The PQ symmetry may always broken after the inflation due to the non zero values
of the PQ fields. In such a case, the axion field has an initial value different from the
vacuum value in general. When the temperature of the universe decreases to the QCD
scale, the axion mass is lifted up. Then, axion field starts to oscillate. Such oscillating
axion can be a dark matter component of the universe [17–19]. If the PQ symmetry is
always broken in the history of the universe, quantum fluctuations in the axion direction
produced during the inflation remain until today. Such fluctuations are independent
from other fluctuations in the universe and are constrained by CMB observations [16].
Since the size of fluctuations is proportional to the inflation scale, the inflation scale is
bounded from above by this constraint. In Sec. 3.2 we summarise the axion dark mater
abundance and constraint on the inflation scale of in this case.

As is shown above, the cosmology of the PQ field largely depends on whether the
PQ symmetry is restored at some epoch or not. We discuss in what circumstances the
PQ symmetry is restored in Sec. 3.4. We will see that the PQ symmetry is rather likely
to be restored because thermal or non-thermal effects tend to trap a scalar field at the
symmetry enhanced point.

Here, we would like to emphasise that in many cases of interest, the PQ field will
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be trapped at the symmetry enhanced point. From this point of view, it is important
to consider the dynamics of the PQ field after the trapping. The PQ field starts to
move as the universe expands. After that, there are two kinds of the dynamics of the
PQ field: defect formation and the oscillation around the minimum of the potential.
The dynamics of cosmological defects has been considered in the literature [15, 92–95].
However, studies on the dynamics of the oscillating PQ field is limited. For example,
there are few studies which takes the thermal effects into account, that can affect the
dynamics of the PQ field oscillation drastically. As we will see in Chapter 4, in the
dynamics of the PQ field oscillation, the thermal effects play important roles. The study
by the author [1] is the first study to discuss the dynamics of the PQ field after the
trapping taking thermal effects into account. We have obtained a condition when the
axion overproduction is avoided.

On the other, it is also important to consider the situation where the PQ symme-
try restoration is avoided by some mechanisms. If the domain wall number NDW is
greater than one, the PQ symmetry must not be restored, otherwise stable domain walls
overclose the universe. In addition, for such a case, severe constraints on the axion
fluctuations are imposed. Thus, it is interesting to consider a scenario in which the PQ
symmetry is not restored in the history of the universe and at the same time constraints
on the axion fluctuations are relaxed. In Chapter 5 We discuss such a possibility and
propose new tow scenarios in this direction.

3.2 Non Trapped PQ field

In this section, we consider the case where the PQ symmetry is always broken in the
history of the universe by the field values of the PQ fields. During inflation, the quantum
fluctuations are generated in the axion direction. After the inflation, the PQ field may
move by a nontrivial way. We consider the dynamics of the PQ field in Sec. 3.4 and
Sec. 5. In this section, we mainly consider the dynamics of the axion direction. Here,
we assume that the PQ field stays at the minimum of the potential |ϕ| = Fa/

√
2 all the

time. We concentrate on the dynamics of the axion field.
In general, the axion field has a field value different from one at the minimum of

the potential during inflation. When the temperature of the universe becomes the scale
of QCD (Λ ∼ 0.1GeV), the axion potential is lifted up and the axion starts to oscillate
around the minimum of the potential. This oscillation survives until today and can be
a dark matter component [17–19]. We show the dark matter abundance of the axion
oscillation in Sec. 3.2.1.

Since the axion field is almost massless, it acquires quantum fluctuations during
the inflation. The size of the quantum fluctuation becomes the inflation scale ∼ Hinf/2π
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where Hinf denotes the Hubble parameter during the inflation. Such produced quantum
fluctuation in the axion field will remain until today. On such fluctuations, severe
constraints are imposed by the CMB observations [16]. In particular, the inflation scale
is limited in this way because the size of the axion fluctuation is related to the inflation
scale. We discuss such constraints in Sec. 3.2.2. In the review Section, we basically
follow the arguments in [96].

3.2.1 Axion Dark Matter Abundance

The axion has the following potential (see Sec. 2.3.1)

V(a) = ma(T)2F2
a [1 − cos(a/Fa)] , (3.2.1)

where the temperature depending mass is given by [57, 58]

ma(T) =

 4.05 × 10−4Λ2

Fa

(
T
Λ

)−3.34
T > 0.26Λ,

ma(T = 0) T < 0.26Λ,
(3.2.2)

where T indicates the temperature of the universe and Λ ≃ 400MeV denotes the QCD
scale. The axion field obeys the follow equation of motion1 :

ä + 3Hȧ +ma(T)2a = 0. (3.2.3)

We denote the initial value of the axion field ai and we define the initial angle of the
axion field as θi ≡ a/Fa. When the temperature of the universe is high enough compared
to the QCD scale, the axion mass is suppressed. As the temperature decreases to the
QCD scale, the axion mass increases. When the axion mass becomes comparable to the
Hubble parameter ma ≃ 3H, the axion starts to oscillate around the minimum of the
potential. By using Eq. (3.2.2), the temperature of the onset of oscillation Tos can be
estimated as

Tos = 0.98
( Fa

1012GeV

)−0.19 ( Λ

400MeV

)
GeV. (3.2.4)

After Tos, the axion continues to oscillate until today. Such an oscillating axion becomes
a cold dark matter component. The present axion dark matter density is estimated
as [97]:

Ωah2 = 0.18 θ2
i

( Fa

1012GeV

)1.19 ( Λ

400MeV

)
, (3.2.5)

1For simplicity, we assume the case where the initial angle θi is not around π and the axion potential
can be regarded as quadratic one.
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with h being the present Hubble parameter normalised by 100km/s/Mpc. Since the
axion dark matter abundance must not exceed the present cold dark matter (CDM)
density [16]

ΩCDMh2 = 0.1199 ± 0.0022, (3.2.6)

the value of Fa is bounded from above:

Fa ≤ 6.6 × 1011θ−1.68
i GeV. (3.2.7)

This bound suggests a typical scale of Fa. If the initial angle θi is not so suppressed, the
PQ scale should be lower than ∼ 1012 GeV. On the other hand, lower bounds of the PQ
scale is obtained from astrophysical observations (see Sec. 2.5) which give Fa ≳ 109 GeV.
Therefore, in the range 109 GeV ≲ Fa ≲ 1012 GeV, PQ models are promising. This range
of the PQ scale is called as the axion window.

During inflation, the axion field acquires quantum fluctuations of the Hubble scale
during inflation: δa ∼ Hinf/2π since the axion is almost massless. Such a fluctuation can
become a part of the axion dark matter. The fluctuations of the axion δa can be written
as

⟨δa(⃗k)δa(⃗k′)⟩ = (2π)3δ(3)(⃗k + k⃗′)
2π2

k3 Pa(k), (3.2.8)

Pa(k) =
H2

inf

4π2 . (3.2.9)

where ⟨•⟩ denotes the vacuum expectation value. Note that squared average of axion
fluctuations has a finite amplitude: ⟨δa2(x⃗)⟩ = H2

inf/4π
2, We can estimate the axion dark

matter abundance including the fluctuation as

Ωah2 = 0.18
( Fa

1012GeV

)−1.19 ( Λ

400MeV

)
× ⟨(ai + δa)2⟩

F2
a

= 0.18
[
θ2

i +
H2

inf

4π2F2
a

] ( Fa

1012GeV

)1.19 ( Λ

400MeV

)
. (3.2.10)

By considering Ωah2 < ΩCDMh2 ≃ 0.11, an upper bound on the inflation scale Hinf is
obtained [98]:

Hinf < 5.0 × 1012GeV
( Fa

1012GeV

)0.41

, (3.2.11)

for a small initial angle range θi ≲ Hinf/2πFa. The energy fraction of axion dark matter
ra can be written as

ra ≡
Ωa

ΩDM
= 1.6 ×

[
θ2

i +
H2

inf

4π2F2
a

] ( Fa

1012GeV

)1.19 ( Λ

400MeV

)
≤ 1. (3.2.12)
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3.2.2 Constraints on the fluctuation in axion direction

Fluctuations in the axion field generated during inflation are independent from fluctu-
ations of the background. Such fluctuations induce isocurvature fluctuations of cold
dark matter [20–24] which is tightly bounded by the CMB observations [16]. Here, we
summarise constraints on axion fluctuations.

The axion isocurvature perturbation Sa is defined as

Sa(x⃗) = 3(ζa − ζ), (3.2.13)

where ζ(ζa) denotes the curvature perturbations on the uniform density slice of the total
matter(axion). The δN formalism [99, 100] relates the energy density of the axion ρa(x⃗)
on the uniform density slice and the axion isocurvatue perturbation as

ρa(x⃗) = ρ̄aeSa(x⃗), (3.2.14)

where •̄denotes a spacial average of•. Note that the axion energy density is proportional
to the square of initial amplitude:

ρa(x⃗) ∝ [ai + δa(x⃗)]2. (3.2.15)

This gives the following relation:

eSa = 1 + 2
aiδa(x⃗)

ã2 +
δa2(x⃗) − ⟨δa2⟩

ã2 , (3.2.16)

ã2 ≡ a2
i + ⟨δa2⟩. (3.2.17)

The dark matter density on the uniform density surface can be written as2

ρCDM(x⃗) = ρ̄CDM

[
1 + ra(eSa − 1)

]
, (3.2.18)

where ra denotes the energy fraction of the axion defined in Eq. (3.2.12). This gives us
the isocurvature density perturbations of CDM:

SCDM = ln
(
ρCDM(x⃗)
ρ̄CDM

)
≃ 2ra

aiδa
ã2 + ra

δa2 − ⟨δa2⟩
ã2 . (3.2.19)

The power spectrum of the CDM isocurvature perturbation can be calculated as3

⟨SCDM(⃗k)SCDM(⃗k′)⟩ ≡ (2π)2δ(3)(⃗k + k⃗′)
2π3

k3 PSCDM(k), (3.2.20)

PSCDM ≃ 4r2 (Hinf/2π)2

a2
i + (Hinf/2π)2

. (3.2.21)

2 We assume that total system except axion field has the same origin of fluctuation.
3 We can neglect higher correlation terms due to the smallness.
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The amplitude of the CDM isocurvature perturbation is constrained by the CMB obser-
vations. The present constraint is obtained by [16] which gives

PSCDM

Pζ

∣∣∣∣∣
k=0.002Mpc−1

< 0.038, (3.2.22)

From this constraint and Eq. (3.2.12), we can obtain the following limit on parameters
θi, Hinf and Fa: [

θ2
i +

( Hinf

2πFa

)2] ( Hinf

2πFa

)2 ( Fa

1012GeV

)2.38

< 0.8 × 10−11, (3.2.23)

where we use the value of the curvature perturbation as Pζ(k∗) = 2.2 × 10−9 [12]. This
impose a severe constraint on the inflation scale and the PQ scale. If the axion is
a dominant component of the present dark matter (Fa ∼ 1012 GeV), Hinf ≲ 107 GeV
must hold. In addition to this a constraint from a non Gaussianity of SCDM can be
imposed [101–104] especially for a small θ2

i region.
In this section, we have seen the case where the PQ symmetry is always broken in the

history of the universe assuming that the PQ fields except axion do not play important
roles. In this case, the axion can be a dark matter component. At the same time, severe
constraints on the Hubble parameter at the inflation are obtained due to the Hubble
size fluctuations in the axion direction. High scale inflation scenarios with Hinf ≳ 107−10

GeV are excluded in this case. This feature seems unpleasant because a high inflation
scale around ∼ 1013 GeV are within the reach of future observations [105].

There are some scenarios in which the constraints imposed on the inflation scale can
be relaxed [2, 26–34]. We discuss such scenarios in Chapter 5. We also propose two new
scenarios in this direction.

3.3 Trapped PQ field

In the previous section, we consider the case where the PQ symmetry is always broken.
Here, we consider the opposite case: the PQ field is once trapped at the symmetry
enhanced point. The trapping of the PQ field is likely to occur even if the PQ field has
a large initial value during the inflation. We discuss the dynamics of the trapping in
Sec. (3.4). In this review Section, we basically follow the arguments in [96].

The PQ field can be trapped at the origin by the finite density effects, which stabilise
the potential of the PQ field around the symmetry enhanced point. For example, if
the PQ field couples to particles which participates in the thermal bath of the universe,
the thermal potential for the PQ field is formed which stabilises the potential at the
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symmetry enhanced point. As the universe expands, the strength of the trapping
becomes weaker and weaker. At some time, the vacuum potential exceeds the effective
potential generated by the finite density effects. Then, the PQ field will roll down to
the minimum of the potential. Below, we consider the dynamics after the PQ field has
started to move. To be concrete, we consider the following potential:

V =
λ2

2
(|ϕ|2 − f 2

a )2, (3.3.1)

where λ indicates a self coupling and fa denotes a parameter of order of the PQ scale 4 .
First, let us consider the dynamics of the radial direction of ϕ. After the end of the

trapping, ϕ will oscillate around the minimum of the potential ϕ = fa. This oscillation
will remain until a damping effect on the motion of ϕ becomes efficient. There are two
mechanisms of the damping: a thermal dissipation or a perturbative decay.If thermal
dissipation becomes efficient, the energy of the PQ field oscillation is converted to the
thermal bath of the universe. On the other hand, if a perturbative decay damps the oscil-
lation of ϕ, the decay products may cause a cosmological problem. For example, axion
particles may be produced by the decay of the PQ field. Produced axions becomes an
extra radiation component which has a negligible interaction with the standard model
sector. Such a radiation component, dubbed a dark radiation, affects the evolution of
the universe. The energy density of dark radiation is tightly constrained by the CMB
observations [12] (see Sec. 3.5). Since the oscillation of the PQ field potentially overpro-
duces the axions, whether the PQ field is thermally dissipated or decays drastically is
a relevant question. We study the dynamics of the oscillation of the PQ field after the
trapping to answer this question in Chapter 4 .

Next, let us consider the dynamics related to the phase of ϕ. At the onset of the
oscillation, the PQ field has finite fluctuations in general. As a result, the phase of the
field ϕ becomes spatially random after the PQ field starts to oscillate. Consequently,
one dimensional topological defects are formed, which we call axion strings. After the
formation of axion strings, the distribution of axion strings comes to obey a scaling
solution in which the energy density of the axion string is given by

ρst = ξ
µ

t2 , (3.3.2)

where µ is the string tension of order f 2
a . ξ is called the length parameter which is

constant in time. Note that ξ can be regarded as an average number of the axion
strings in the Hubble volume 1/H3 since the Hubble parameter behaves as H ∼ 1/t.

4Here and Hereafter we denote fa as a vacuum expectation value of the complex scalar field. In
general, fa and the PQ scale Fa has a few factor difference.
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The numerical simulations show ξ ≃ O(1) [91]. Note that if Fa is much less than
the Planck scale ∼ 1018 GeV, the energy fraction of the axion strings in the universe
becomes subdominant. This is because the total energy of the universe is given by
ρtot ∼ H2M2

P ∼M2
P/t

2 with MP denoting the reduced Planck scale MP ≃ 2.4 × 1018 GeV.
As axion strings evolve in time, axion particles are emitted from strings [92–94]. A

typical momentum of produced axion particles becomes the Hubble scale [90, 91] and
such axion particles also contribute to the dark matter density of the universe. In [91],
the dark matter abundance of emitted axions is estimated by a lattice simulation and
given by

Ωst
a h2 = 2.0 × ξ

( Fa

1012GeV

)1.19 ( Λ

400MeV

)
, (3.3.3)

with ξ ≃ 0.7 − 1.0. Note that this abundance is larger than the non-trapping case in
Eq. (3.2.10).

The axion strings obey the scaling solution until the temperature of the universe
becomes the QCD scale. When the temperature decreases to the QCD scale, the potential
for the axion field is lifted up (see Eq. (3.2.2)). Then, the shift symmetry in the axion
potential becomes discrete ZNDW symmetry with NDW being the domain wall number.
As a result, string-domain networks are formed. The domain walls separate the NDW

distinct minima of the potential. As we will see whether NDW = 1 or not crucially
determines the fate of the domain walls. Below, we discuss two cases NDW = 1 and
NDW > 1 in order.

3.3.1 NDW = 1 case

If NDW = 1, the minimum of the axion potential is unique, In such a case, the domain
walls become disc like objects with axion string boundaries. Such discs of domain
wall will soon collapse after the formation due to their tension. This fact has been
numerically confirmed by [15, 106].

During the collapses of the domain walls, axion particles are produced, which
contribute the amount of the dark matter. The abundance of the axions from the
collapse of the domain walls are evaluated [15]:

Ωwall
a h2 ≃ (5.8 ± 2.8)

( Fa

1012GeV

)1.19 ( Λ

400MeV

)
. (3.3.4)

This amount is comparable to that of the emission from the strings in Eq. (3.3.3).
In total, the axion dark matter abundance in this scenario is given by [15]

Ωah2 ≃ (8.4 ± 3.0)
( Fa

1012GeV

)1.19 ( Λ

400MeV

)
, (3.3.5)
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which gives an upper bound on the PQ scale:

Fa ≲ (2.0 − 3.8) × 1010GeV. (3.3.6)

The axion becomes the dark matter with a smaller PQ scale Fa compared to the non-
trapped case Eq. (3.2.10). It should be noted that the dark matter abundance in this
scenario does not depend on the initial condition like the initial angle θi in the non-
trapped case.

3.3.2 NDW > 1 case

If NDW > 1, domain walls become stable. This is because domain walls separate different
potential minima and there is no way for the PQ field to settle down into one minimum.
The energy density of the domain walls scales as [106]

ρwall ∝
1
t

(3.3.7)

Note that the total energy density of the universe scales as ∝ 1/t2. Such domain walls
will soon dominate the universe, which is inconsistent with the present universe [14].
Thus, a scenario in which NDW > 1 and the PQ field is once trapped at the symmetry
enhanced point is ruled out.

The formation of the stable domain walls occurs because the potential has a ZDW

symmetry. Thus, if the ZDW symmetry is not exact, the domain walls become unstable.
In the literature, such a possibility is considered [106].

Let us consider the explicit PQ symmetry violating term like

VU(1)PQ = −CF3
a(ϕeiδ +H.c.), (3.3.8)

where the parameter C denotes a size of the PQ symmetry violation. We assume that
the strong CP problem is solved when the phase of ϕ is zero. Thus, the parameter δ
denotes the gap of the potential minimum. Qualitatively, the following statements hold

• Small C and δ are required in order not to spoil the Peccei-Quinn mechanism.

• Not too small C is needed, otherwise the domain wall becomes stable again.

• The smallness of δ can be regarded as a fine-tune because there is no reason for
δ = 0 to be favoured.

Depending on the value of δ, C is bounded both from sides (above and below). In [106],
it is shown that for δ ≳ 10−2, there is no allowed parameter region. On the other hand,
for δ ≲ 10−2, there exists allowed region around log10[C] ∼ −50. The requirement of
δ ≲ 10−2 indicates that a kind of fine-tune is needed if NDW ≥ 1 and the PQ symmetry is
restored at some epoch.
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3.4 Trapping of the PQ field

In this section, we consider the trapping of PQ field at the symmetry enhanced point.
If the PQ field is trapped at some epoch, cosmological consequences are drastically
changed compared to the opposite case. First, models with the domain wall number
being greater than one (NDW > 1) are ruled out, otherwise a small explicit PQ symmetry
violation is required. This is because stable domain walls are formed after the temper-
ature becomes QCD scale which cause a cosmological disaster (see Sec. 3.3.2). Second,
no constraint is imposed on the quantum fluctuations in the axion direction because
such fluctuations are dissipated away after the trapping. Third, the axion dark matter
abundance becomes different from that of non trapping case (see Sec. 3.3.1). Fourth,
relativistic axion can be produced due to the late time decay of the PQ field oscillation.
The energy density of such produced axions are bounded by the dark radiation con-
straint (see 3.5 ). Therefore, it is important to know in what circumstance the PQ field
is trapped at the symmetry enhanced point. In this section, we consider the dynamics
of the PQ field after inflation and discuss with what conditions the PQ field is trapped
at the symmetry enhanced point.

To be specific, we consider the following interaction

Lint = Vϕ(|ϕ|) +
∑

i

yiϕq̄iqi, (3.4.1)

where Vϕ indicates the potential of the PQ field ϕwhich has a minimum at the PQ scale.
qi denotes the PQ charged quarks coupling to the PQ field. yi is a coupling constant. We
assume qi has a QCD charge and participates in the thermal bath of the standard model
sector. There are two effects to cause the trapping. One is the effect of self interaction
which we will call as the non-thermal trapping. The other is interactions with particles
in the thermal bath (qi), which we denotes as the thermal trapping. The non-thermal
trapping is caused by the potential term Vϕ, while the thermal trapping is caused by the
interaction term with qi . In the KSVZ axion models, an interaction term with the extra
PQ quark is indispensable and the effect of thermal trapping is important. On the other
hand, models like DFSZ type, sizeable interactions with other fields is not necessary
and the effect of non thermal trapping may be essential. Below, we consider both cases
one by one 5 .

Before going into details, let us comment on the initial field value of the PQ field. If
the PQ field has an initial value larger than Fa during inflation and if the PQ symmetry
is not restored after inflation, cosmological constraints on the inflation scale can be

5In this thesis, we consider two effects of trapping separately. If we consider the both effects at the
same time, the PQ field will be more likely to be trapped at the origin.
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relaxed [26]. This mechanism is explained in Chapter 5. Bearing this point in mind, in
this section, we assume the initial value of the PQ field to be much larger than the PQ
scale and consider whether the trapping occurs or not.

3.4.1 Non Thermal Trapping

After inflation, the PQ field starts to oscillate around the origin of the potential. Due
to the oscillation, quantum fluctuations in the PQ field are amplified by the parametric
resonance [107–109]. In some cases, the PQ field comes to be trapped at the origin [110–
113]. The non thermal restoration of the PQ symmetry is studied by lattice simulations
in the radiation dominated background [114] and in the matter dominated one [13].
Here, we show a simple analytic discussion on this matter which is consistent with the
lattice simulation [13].

To be concrete, let us consider the following potential

Vϕ =
λ2

2M2n−4
∗

(
|ϕ|2 − f 2

a

)n
, (n ≥ 2) (3.4.2)

where the value of fa is around the PQ scale, λ denotes the self coupling constant, n is
an integer and M∗ indicates some mass scale. We denote the initial value of ϕ as a real
and positive one ϕi without loss of generality. We are interested in the situation ϕi ≫ fa

as is mentioned before. The condition that the PQ field is almost stopped during the
inflation can be written as

m2
eff ≡

1
ϕi

dVϕ(ϕi)
dϕ

≃ λ2
ϕ2n−2

i

M2n−4
∗
≲ H2

inf, (3.4.3)

where Hinf indicates the Hubble parameter during inflation. After the end of inflation,
the inflaton dominated epoch begins. During this epoch, we assume the following form
of the Hubble parameter: H = p/t. Note that p = 2/3 or 1/2 corresponds to the matter or
radiation dominated universe. When the Hubble parameter becomes comparable with
the effective mass meff, the PQ field will start to oscillate.

In general, the PQ field initially has a quantum fluctuation δϕ. This fluctuation
may be amplified by the oscillation of the ϕ due to the parametric resonance [107–109].
To see this, let us consider the fluctuation of the imaginary part δψ ≡ Im[ϕ] since the
parametric resonance is likely to occur in the imaginary part as well as the real part.
The equation of motion for δψ ≡ Im[ϕ] in the expanding universe can be written as

δψ̈k + 3Hδψ̇k +
k2

a2δψk + λ
2ϕ(t)2n−2

M2n−4
∗

δψk ≃ 0, (3.4.4)
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where k is the comoving momentum, δψk denotes the Fourier mode of δψ(x) and a
indicates the scale factor of the universe.

In order to see the effects of the parametric resonance, let us consider the situation
where the expansion of the universe is neglected. We assume that the field ϕ oscillates
around the origin with an amplitude Φ. In such a case, the frequency of the oscillation
becomes ∼ meff. We denote the amplitude of the oscillation of ϕ as Φ. The typical
frequency of the oscillation can be given by the effective mass,

meff(Φ) ≃
∂Vϕ

Φ∂ϕ
. (3.4.5)

which characterise the force due to the potential term. For simplicity, we parameterise
ϕ(t) as6

ϕ(t) ≃ Φ cos(mefft) (3.4.6)

Then, Eq. (3.4.4) becomes the following form

δψ̈k +

[
k2

a2 + c1m2
eff + c2m2

eff cos(c3mefft)
]
δψk ≃ 0, (3.4.7)

where c1, c2 and c3 are O(1) numerical constants and we keep only typical terms for
simplicity as we do not demand high accuracy in this discussion. This equation can
be regarded as a so called Mathieu equation (see [108] for a review). It is known that
the Mathieu equation has exponentially growing solutions in some bands along k/a.
In later time t ≫ 1/meff, growing modes dominate δψ. The growing rate δψ ∝ eµt can
be estimated as µ ∼ O(1) × meff. Once some modes start to grow up exponentially, the
size of fluctuation δψ will become soon comparable to that of ϕ. In such a case, the
effective mass of ϕ is lifted up by the fluctuation: m2

eff,fluc ∼ λ2δϕ2n−2/M2n−4
∗ . As a result,

the potential of the PQ field is stabilised at the origin, which means the trapping of the
PQ field. Thus, if ϕ(t) oscillates more than O(102) times, the PQ field is supposed to be
trapped at the symmetry enhanced point 7. We denote this critical number of oscillation
as Ncr (Ncr ≲ O(102)) : after Ncr times oscillations, the PQ field is trapped at the origin8 .

So far, we have neglected the expansion of the universe. As the universe expands,
the positions of the bands of growing modes are red shifted. If the expansion is too

6Strictly speaking,Φ(t) contains several oscillating modes:
∑

N aN cos(2Nπt/T) with T being the period
of the oscillation. However, small N modes are dominant in general and we do not demand a high
accuracy in this discussion.

7Initially, δψ has a fluctuation of order Hinf. This fluctuation is amplified by ∼ exp[mefft] due to the
parametric resonance. Thus, if ϕ oscillates O(102) times, the size of δψ is expected to be large enough to
be comparable to ϕ.

8To obtain precise number of Ncr, one may have to perform a lattice simulation.
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fast, no efficient growth of δψ is expected. The typical band position and width in
momentum space are both∼ meff. On the other hand, the momentum is shifted by order
one in one Hubble time 1/H. Thus, the time span for fluctuations δψ to grow up is
evaluated as one Hubble time. We come to the conclusion that if ϕ oscillates Ncr times
in one Hubble time before the amplitude decreases to ∼ fa, fluctuations grow enough
to trap the PQ field at the origin.

Now, let us derive the condition of the trapping in terms of fa, ϕi and Ncr. If scalar
field oscillates by the potential ∝ |Φ|2n, the amplitude scales as

Φ ∝ t−
3p

n+1 . (3.4.8)

The scaling of the effective mass can be obtained as

meff ∝ t−
3p(n−1)

n+1 . (3.4.9)

From these, we can obtain

Φ ≃ ϕi

( H
Hos

) 3p
n+1

, (3.4.10)

meff ≃ meff(ϕi)
( H
Hos

) 3p(n−1)
n+1

, (3.4.11)

where Hos denotes the Hubble parameter at the onset of the oscillation Hos = meff(ϕi). If
the amplitude decreases to fa, the following relation holds

fa ≃ ϕi

( Hv

Hos

) 3p
n+1

, (3.4.12)

where Hv denotes the Hubble parameter at this time. On the other hand, if the effective
mass becomes greater than Ncr ×H at H = Htrap, the following relation holds:

Ncr ×Htrap ≃ meff(ϕi)
(

Htrap

Hos

) 3p(n−1)
n+1

, (3.4.13)

(3.4.14)

The condition for the PQ scalar to be trapped at the origin is given by Htrap ≳ Hv. This
condition can be rewritten as 9

ϕi

fa
≳ (Ncr)nc , (3.4.15)

nc ≡
3p

n + 1 − 3p(n − 1)
. (3.4.16)

9The denominator of nc should be positive, otherwise the PQ field does not oscillate (see Sec. 5.2).
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For example if n = 2 (quartic potential), nc becomes 2 for the matter dominated universe
and 1 for the radiation dominated universe. Considering Ncr ≲ O(102), we can see if the
initial field value ϕi is much larger than v, the PQ symmetry is inevitably restored. This
conclusion is consistent with the numerical lattice simulations [13, 114].

In the discussion above, we assume the oscillation ofϕ after the time of H ≃ meff. This
is not always correct . If the effective mass decreases faster than the Hubble parameter
when the oscillation of ϕ is assumed, the resultant motion of ϕ becomes so called
“scaling solution”. In this case, ϕ follows an universal trajectory in which the effective
mass and the Hubble parameter are always comparable. ϕ starts to oscillate when the
dominant term in the potential is changed and the effective mass comes to drop down
slower than the Hubble parameter. After the oscillation of ϕ, the above argument can
be applied with the replacement ϕi → ϕchange where ϕchange denotes the field point in
which the dominant term in the potential changes. The non-trivial phenomenon occurs
if effective mass has the same scaling property with the Hubble parameter when we
assume the oscillation of ϕ. The motion of ϕ becomes different from the oscillatory case
and the scaling case, which we call a “pseudo scaling” motion. If the pseudo scaling
motion occurs, the trapping of ϕ is not likely to occur. In Sec. 5.2, we study this case in
details.

So far, we do not consider the interactions with the thermal bath of the universe. If
we take thermal effects into account, the dynamics of the PQ field is drastically changed.
But, the PQ field is also likely to be trapped at the origin due to the interactions. We
consider this case (thermal trapping) in Sec. 3.4.2.

3.4.2 Thermal Trapping

Here, we consider the situation where the PQ field has interactions with particles in the
thermal bath. In such a case, the dynamics of the PQ field is affected by the interaction.
For example, the thermal potential may stabilise the PQ field around the origin or the
thermal dissipation may damp the oscillation of the PQ field. Thus, it is important to
know the effects of the interaction on the dynamics. We discuss whether the PQ field
is trapped at the origin due to the interaction with particles in the thermal bath. In the
KSVZ model [66, 67], an PQ charged extra quark is needed. Thus, the interactions with
other fields are likely for PQ models.

To be concrete, we assume the following interaction:

Lint =
∑

i

yqiϕq̄iqi, (3.4.17)

where qi is assumed to have a standard model gauge charge and to participate in the
thermal bath of the standard model sector. Due to the interaction, the PQ field tends
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to be trapped at the origin. This is because ϕ = 0 is realised at the thermal equilibrium
state if the total energy of the system is large enough. If the typical time scale of the
interaction is shorter than that of the expansion of the universe, trapping of the PQ field
will occur. As we will see below, this is the case for most parameter regions of interest.

A study of the PQ field trapping in the presence of the thermal effects was done by
the author [1]. Details are relatively complicated. Here, we briefly summarise some
important points.

First, let us see the effects of the interaction Eq. (3.4.17) on the dynamics of the PQ
field. Below, we list up main effects.

• Due to the couplings, a thermal potential is formed for the PQ field. The thermal
potential tends to stabilise the PQ field toward the symmetry enhanced point.
Even when ϕ has a large field value and q decouples from the thermal bath, a so
called thermal logarithmic potential [115] is formed which stabilise the PQ field.

• The thermal dissipation effects [116–122] convert the energy in the PQ field to the
thermal bath. As a result, the PQ field is likely to lose its energy and eventually to
be trapped at the origin.

• If the temperature is low enough to neglect the thermal effects, non-perturbative
particle production of q particles would occur as the PQ field oscillates. Such
produced q particles form an effective potential for the PQ field which stabilise
the PQ field at the symmetry enhanced point. Even when the decays of q is
effective and particle numbers of them do not grow up, the energy in the PQ field
is converted to the thermal bath through the decay process of q. As a result, the
thermal bath is heated and the PQ field is likely to be trapped at the origin.

All effects above are likely to force the PQ field to be trapped at the origin. Below, we
show how the PQ field is trapped by the thermal effects in some typical models. The
purpose of the discussion below is to show qualitative features of the thermal trapping.
Thus, we do not demand high accuracy in the discussion.

Setup

After inflation, ϕ starts to oscillate with initial field value ϕi when the effective mass
becomes comparable to the Hubble parameter. In order to discuss the dynamics of the
PQ field concretely, we first fix the situation.
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We consider the following form of the zero temperature potential:

V0 =


−m2

0|ϕ|2 for |ϕ| ≪ Fa

λ2
ϕ

2nM2n−4
∗
|ϕ|2n (n ≥ 1) for |ϕ| ≫ Fa

, (3.4.18)

where m0 and M∗ are parameters of some mass scales and λϕ indicates a coupling. We
assume the minimum of the potential exists at |ϕ| = Fa/

√
2. This potential characterise

the form around the origin and far way from the origin, which are relevant in this
discussion.

As we consider interactions with particles in thermal bath, we have to know the
temperature of the universe. For simplicity, we assume that the inflaton behaves as
matter during the inflaton-oscillation dominated era with a constant decay rate. In such
a case, the energy of the radiation component ρrad can be written as

ρrad ≃
H
HR

T4
R for H > HR, (3.4.19)

→ T ≃
( H
HR

)1/4

TR, (3.4.20)

where TR denotes the reheating temperature and HR denotes the Hubble parameter at
the reheating.

Next, let us summarise the effects of the interactions on the dynamics of the PQ field.

Thermal Potential

As q participates in the thermal bath and its mass depends on the value of ϕ, thermal
potential for the PQ field will be formed. At the one-loop level, the thermal potential is
written as [123]

V1−loop
th (|ϕ|,T) = − 2

∑
i

T4

π2

∫ ∞

0
dz z2 ln

[
1 + exp

(
−

√
z2 +M2

qi
(ϕ)/T2

)]
(3.4.21)

where Mqi(= yi|ϕ|) denotes the field value dependent mass of the particle qi. When
Mqi ≲ T is satisfied, the particles qi are populated in the thermal bath. In such a case,
the one-loop thermal potential behaves quadratic one which is often called as thermal
mass term. On the other hand, if Mqi ≫ T holds, the number of the particles qi is
exponentially suppressed. In such a case, the effects of the one-loop thermal potential
becomes negligible. Consequently, the behaviour of the one-loop thermal potential can
be approximately written as

V1−loop
th (|ϕ|,T) ≃ cMΘ(T − y|ϕ|) × y2T2|ϕ|2, (3.4.22)
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where y represent a typical value of yqi , Θ denotes the step function and cM is an order
one constant.

In the region of M(ϕ) ≫ T, higher loop effects dominate the thermal potential.
Mainly, their effects come from the running of the gauge coupling. Since the mass of
gauge charged field qi depends on the field value of ϕ, the gauge coupling also depends
on the value of ϕ. On the other hand, the thermal free energy of a system which
have a gauge interaction contains a term proportional to g2T2 with g denotes the gauge
coupling. Through the running of the gauge coupling, the thermal potential depends
on ϕ. This kind of potential is called thermal log [115] and is given by

Vlog
th (|ϕ|,T) ≃ cLΘ(y|ϕ| − T) × α2(T)T4 ln

(
y2|ϕ|2

T2

)
, (3.4.23)

where cM is an order one positive constant in general. α indicates the strength of the
gauge coupling.

The effective potential for the PQ field is approximately given by the sum: Veff =

V0 +Vth. We define the effective mass of the PQ field mϕ

eff as mϕ

eff

2
≡ V′eff/ϕ. The effective

mass can be written as

mϕ

eff(ϕ,T) ≃ max[m0,eff, yT for yϕ < T, αT2/ϕ for yϕ < T], (3.4.24)

where m0,eff indicates the effective mass of the zero temperature potential: m0,eff ≡ V′0/ϕ.
We drop off O(1) constants for simplicity. The time when the PQ field starts to oscillate
can be determined by

Hos ≃ mϕ

eff(ϕ,T). (3.4.25)

(non) perturbative particle production at the origin

Due to the interaction terms the dispersion relations of q depends on the field value of
ϕ:

ωq(t) =
√

y2|ϕ|2 +m2
eff,q + k⃗2, (3.4.26)

where we use the subscript q to indicate particles qi. y denotes a typical value of yi. k⃗
is the momentum. meff,q(∼ gT) denotes the effective mass of q generated by the thermal
bath and g indicates a typical coupling constant of the thermal bath. When ϕ oscillates
around the origin with an amplitude Φ ≫ T/y, the value of ωq varies in time. Around
the origin, ϕ has the following velocity:

|ϕ̇|ϕ∼0 ∼ meffΦ. (3.4.27)
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The dynamics of the system crucially depends on whether this velocity is fast or slow
compared to the typical scale of the thermal bath

If the velocity |ϕ̇|ϕ∼0 is fast enough to break the adiabaticity of q: |ω̇/ω2| ≫ 1, the
non-perturbative particle production will occur [108, 124]. The condition for the non-
perturbative particle production to occur is given by 10

yΦ≫
m2

eff,q

mϕ

eff

. (3.4.28)

If this condition is satisfied, q particles are suddenly generated at the first crossing:

nq ∼
k3
∗

4π3 , (3.4.29)

k2
∗ ≡ ymϕ

effΦ, (3.4.30)

where nq denotes the number density of produced q particles and k∗ is a typical momen-
tum of the produced particles. The condition Eq. (3.4.28) can be rewritten as

k2
∗ ≫ g2T2 (3.4.31)

We denote the case where this condition holds as “fast” case. After the first crossing,
the field value |ϕ| grows up and q becomes massive again. If q has a decay channel to
lighter particles, q will decay after the production. Such a decay can occur for example,
through the mixing with standard model particles. Thus, the dynamics depends on
whether the mixing is large or not. Suppose that the q field has a mixing term with light
particles whose coupling constant is κ, the particle q has the following decay rate:

Γq ∼ κ2mq ∼ κ2yΦ. (3.4.32)

If the condition Γq ≫ meff holds, produced q particles will soon decay at each oscillation
of the PQ field. In this paper, we assume that the mixing term is not so suppressed
and the condition Γq ≫ meff holds. The case with Γq ≪ meff is discussed in [1], where
the trapping behaviour is obtained in the most parameters of interest. This is because
the resonantly produced particles form an effective potential for ϕ which stabilise the
potential at the origin.

Let us consider the opposite situation where the velocity of ϕ at the origin is small
enough. In such a situation, particle production of q may be caused by the thermal bath.

10 In addition, the condition k∗ > mϕ
eff is needed for the sudden production. As we consider the effects

of the interaction, we assume the coupling y is not so suppressed and the condition k∗ > mϕ
eff holds.
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During y|ϕ| ≲ T, the effective mass of q becomes lower than the temperature. The time
span δt in which y|ϕ| ≲ T is realised is estimated to be:

δt ≃ T

ymϕ

effΦ
=

T
k2
∗
. (3.4.33)

At the first crossing, thermal bath produces q particles by nq:

nq ∼ min[g4T4δt,T3] = min[1, g4 T2

k2
∗

]T3, (3.4.34)

where we use the production rate being ∼ g4T5. If k∗ < g2T holds, q particles are
thermalised when the PQ field exists around the origin. In such a case, we can estimate
the dissipation rate of the PQ field by using knowledge of thermal field theory. We
denote the case with k∗ ≪ g2T as “slow” case.

We have seen that if k∗ ≫ gT holds, non-perturbative particle production becomes
effective. On the other hand, if k∗ ≪ g2T is satisfied, q particles are thermalised when
the PQ field passes through the origin. However, the intermediate case gT > k∗ > g2T
is relatively complicated to deal with. This is because we can not rely on the criteria of
adiabaticity breaking or use the thermal distribution of q particles. The purpose of this
section is to show the trapping of the PQ field in some typical situations and we do not
consider this intermediate case.

Figure 3.2 shows the contour plot of the temperature at the onset of the oscillation
Tos as a function of the initial field value ϕi and the reheating temperature TR. We take
y = 0.05, α being the QCD one and m0

eff = 1 GeV bearing supersymmetric models with
a gauge mediation in mind [125–127]. In the region (A), the PQ field begins to oscillate
with thermal log potential. In the region (B), the PQ field starts to oscillate with zero
temperature mass without non perturbative particle production. In the region (C), the
PQ field starts to oscillate with zero temperature mass with non perturbative particle
production. As we consider the case with relatively large initial value of ϕi, there is no
region where the PQ field starts to oscillate with the thermal mass term.

Summary So Far

So far, we have seen effects of the interaction with q particles. There are several important
ingredients which determine the dynamics of the PQ field:

• What dominants the effective potential of ϕ at the onset of the oscillation.

• Whether the velocity |ϕ̇| around the origin is fast or slow.
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Figure 3.2: The contour of Tos in [ϕi, TR] plane. In the region (A), the PQ field starts to
oscillate with the thermal log term. In the region (B/C), the PQ field starts to oscillate
with the zero temperature mass without/with the non perturbative particle production.
From [1].

The resultant dynamics of the PQ field is much different for each situation. From now
on, we consider the dynamics of the PQ field for the following cases:

• Case A : The PQ field begins to oscillate with the thermal log term.

• Case B : The PQ field begins to oscillate with the zero temperature potential, q
particles are thermally produced when the PQ field passes through the origin:
slow case.

• Case C: The PQ field begins to oscillate with the zero temperature potential, non-
perturbative particle production is effective and the mixing between q and light
particles is large: fast and large mixing case.

While the dynamics is different for each case, the conclusion is universal: for most
parameter regions of interest, the PQ field is likely to be trapped at the origin.

Case A

Here, we consider the situation where the PQ field starts to oscillate with the thermal
log potential. ϕ will start to oscillates with the thermal log potential if the condition

ϕi < αTR

√
MPL

m0,eff(ϕi)
, (3.4.35)
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hold. The temperature Tos at the onset of the oscillation is given by

Tos ≃
√
αMPL

ϕi
TR. (3.4.36)

In addition, the condition Tos > TR should hold since otherwise the scalar oscillates with
the zero temperature potential since the effective mass from the thermal log term cannot
exceed the Hubble parameter during the radiation dominated era. When ϕ oscillates
with the thermal log potential, the parameter k∗ is given by

k2
∗ ∼ yαT2. (3.4.37)

When ϕ is located around the origin (y|ϕ| ≲ T), particles q are thermally produced
(nq ∼ T3) with the assumption y < g2. The interactions with thermalised particles q
cause the dissipation of ϕ. The oscillation averaged dissipation rate Γϕ is evaluated as
[128]

Γeff ≃
(

y
g4

)
α

T2

Φ
. (3.4.38)

Assuming that the dominant potential remains the thermal log one after the oscillation
11 the scalar field scales as [121, 122]

Φ ∝ H3/2. (3.4.39)

To gather with Eq. (3.4.19), the dissipation rate is rewritten by

Γeff ≃
(

y
g4

)
Hos

( H
Hos

)−1

, (3.4.40)

where Hos ≃ αT2/ϕi is the Hubble parameter at the onset of the oscillation. When
H ≃ Γeff is satisfied, the oscillation of ϕ is soon damped. This condition gives:

Hdiss

Hos
≃ min

 (
y
g4

)1/2

, 1

 ≡ η ≤ 1. (3.4.41)

where Hdiss is the Hubble parameter at H = Γeff.
Now, we discuss whether ϕ is trapped at the origin or not. Here, we impose the

following conservative condition of the trapping: the origin is the absolute minimum
11 If the mixing of q is negligible, q particles produced at ϕ ∼ 0 forms an effective potential which will

stabilise the potential and the trapping will become more probable. Here we do not take such effects into
account for simplicity.
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of the potential when the dissipation effects become active Γdiss = H. When Γeff = H
holds, the effective mass from the thermal log potential becomes

mlog
eff (Φ) = η−1

(
α2M2

PL

ϕ2
i

)
TR > η

−1m0,eff(ϕi). (3.4.42)

If this is greater than the negative mass term around the origin m0, the trapping is
expected. One sufficient condition of the trapping is written as

m0 < η
−1m0,eff(ϕi). (3.4.43)

For most case of interest, the mass scale of the potential at the origin m0 is at most
comparable to that at far away from the origin m0 ≲ m0,eff(ϕi). Thus, we can conclude
that for case (A), the trapping of the PQ field occurs if the negative mass around the
origin m0 is not unnaturally large m0 ≫ m0,eff(ϕi).

Case B

Here, we consider the case in which the PQ field begins to oscillate with the zero
temperature potential, and q are thermally produced when the PQ field passes through
the origin: k∗ < g2T. In this case, the dissipation rate at the onset of the oscillation can
be written as [128]

Γeff ∼
y
g4

T2

Φ

∣∣∣
osc
=

[
y
g4

(
g2T
k∗

)]2

meff,0(ϕi)
∣∣∣
osc
. (3.4.44)

If the condition

y ≳ g4 k∗
g2T

, (3.4.45)

holds, the PQ field dissipates its energy soon after the onset of oscillation because at
the onset of oscillation, H ≃ meff,0(ϕi) holds. In case B, k∗ < g2T is satisfied and the
condition Eq. (3.4.45) is likely to be satisfied with not so suppressed y. Here, we assume
the condition Eq. (3.4.45) for simplicity.

After the energy in the PQ sector is converted to the that of thermal bath, the
temperature of the thermal bath becomes

Tdis ∼ max[
√

meff,0(ϕi)ϕi,Tos], (3.4.46)

where Tos denotes the temperature at the onset of the oscillation.
As before, we impose the following conservative condition of the trapping: the

origin is the absolute minimum of the potential when the dissipation of the PQ field
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completes. To check this condition, we compare the zero temperature negative mass
around the origin m0 and the effective mass from thermal potential at ϕ = Fa since
the zero temperature potential has the minimum at ϕ = Fa. If yFa < Tdiss, the thermal
mass term dominates the thermal potential at ϕ = Fa. On the other hand, if yFa < Tdiss,
the thermal log term dominates the thermal potential at ϕ = Fa. The condition of the
trapping can be written as

m0 < yTdis for yFa < Tdiss,

m0 < α
T2

dis
Fa

for yFa > Tdiss,
(3.4.47)

By noticing T2
dis > meff,0(ϕi)ϕi, we can obtain the following sufficient condition for the

trapping: (
m0

meff,0(ϕi)

) (
m0
ϕi

)
< y2, for yFa < Tdis,(

m0
meff,0(ϕi)

) (
Fa
ϕi

)
< α, for yFa > Tdis.

(3.4.48)

In most case of interest, m0 ≲ meff,0(ϕi) and ϕi ≫ Fa will be satisfied. Thus, the trapping
of the PQ field is expected with not so suppressed y.

Case C

Here, we consider the case where the PQ field starts to oscillate with the zero temperature
potential, non-perturbative particle production is effective and the mixing between q
and light particles is large: fast and large mixing case (a study of small mixing case
can be found in [1]). In this case, the non-perturbative particle production occurs at
the crossing of ϕ ∼ 0. As is mentioned, the number density of produced q in this way
is given by k3

∗ . The produced particles decay as the field value of ϕ becomes large
(Γq ∼ yκ2|ϕ|). Though the decay of q, the energy in the PQ field sector is converted to
the thermal bath. From this, we can estimate the effective dissipation rate of the PQ
field as [122]

Γeff ∼
y2meff,0(ϕ)

κ
. (3.4.49)

At each oscillation, the thermal bath obtains the energy density △ρrad ∼ k4
∗/κ. This pro-

cess continues until the condition of the non-perturbative production is violated:gTNP ∼
k∗. The condition of the non-perturvative production is soon violated after a few Hubble
time if the coupling g is at least O(0.1).

After the non-perturbative production stops, the system evolves keeping the relation
k∗ ∼ gT. This relation k∗ ∼ gT holds until the thermal dissipation rate becomes effective
or the zero temperature mass around the origin −m2

0 starts to affect the dynamics.
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To be concrete, let us consider the case where the zero temperature potential far
away from the origin is quadratic one (n = 1 in Eq. 3.4.18) bearing supersymmetric
models in mind. While the relation k∗ ∼ gT is maintained, the amplitude of the PQ field
Φ and the temperature scale as

Φ ∝ H, T ∝ H1/2, (3.4.50)

where Φ denotes the amplitude of the PQ field. The dissipation rate in this epoch can
be estimated as 12

Γeff ∼ yg4 T2

ϕ
= y2g2Hos, (3.4.51)

where Hos denotes the Hubble parameter at the onset of the oscillation. When H ∼ Γeff is
satisfied, the oscillation of the PQ field damps and the PQ field is trapped at the origin.
When H ∼ Γeff is realised and the oscillation of the PQ field is dissipated , the Hubble
parameter becomes Hdiss

Hdiss ∼ y2g2Hos, (3.4.52)

and the temperature becomes Tdiss:

Tdiss ∼ yg
√

meff,0(ϕi)ϕi, (3.4.53)

because the energy density of the PQ field has evolved as ρϕ ∼ m2
eff,0(ϕi)ϕ2

i (H/Hos)2.
As before, we impose the conservative condition of the trapping: the origin is the

absolute minimum of the potential when the dissipation of the PQ field completes. We
can obtain the following condition of the trapping:(

m0
meff,0(ϕi)

) (
m0
ϕi

)
< y4g2, for yFa < Tdis,(

m0
meff,0(ϕi)

) (
Fa
ϕi

)
< αy2g2, for yFa > Tdis.

(3.4.54)

This condition can be satisfied if y is not so suppressed for most cases of our interest.

3.4.3 Summary of the PQ field trapping

In this section, we have seen that the PQ field is likely to be trapped at the origin even
when the initial field value is much larger than the PQ scale Fa. If the PQ field has a

12 When ϕ passes through the origin, q particles are produced nq ∼ g2T3 (see Eq. (3.4.33)). During
ϕ ∼ 0, the PQ field interacts with produced particles q. The dissipation rate due to a scattering process is
estimated as ∼ y2g2T × (nq/T3). By averaging the oscillation of ϕ, we can estimate the dissipation rate of
the oscillation.
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interaction with other fields, the PQ field is likely to be trapped at the origin by the
thermal trapping shown as is shown Sec. 3.4.1. If the PQ field has a self interaction, the
PQ also tends to be trapped by the non thermal trapping as is shown in Sec. 3.4.2. Note
that if the domain wall number is greater than one, the trapping must not occur (see
Sec. 3.3). Thus, some mechanisms may be needed for scenarios with NDM and ϕi ≫ Fa

not to be excluded. We discuss such a mechanism in Chapter 5.
After the trapping, the PQ field starts to oscillate around the minimum of the poten-

tial when the effective mass at the origin becomes negative. We discuss the dynamics
of the PQ field after the trapping in Chapter 4.

3.5 Axion as Dark Radiation

The dark radiation is an extra radiation component in the universe whose interactions
with the standard model particles are negligible. The relativistic components of axion
particles can be a part of the dark radiation. On the other hand, the amount of the
dark radiation is tightly bounded by the CMB observations [12]. Conventionally, the
amount of the dark radiation density in the early universe is parameterised by Neff,
which is defined so that the total relativistic energy density of neutrons and any other
dark radiation is given by

ρ = Neff
7
8

( 4
11

)
ργ, (3.5.1)

where ργ is the present photon energy density in T ≪ 1 MeV. The standard cosmological
prediction is given by Neff = 3.046. Thus,△Neff ≡ Neff−3.046 > 0 indicates that there exist
extra radiation components other than standard model particles. The recent observation
shows [12]

Neff = 3.04 ± 0.18, (3.5.2)

at 68% confidence level. This result is consistent with standard value Neff = 3.046,
though there is still some room for an extra radiation component. However, models
which predict △Neff ≫ 1 are of cause not consistent with the observations.

As is mentioned, the relativistic axion particles becomes a part of the dark radiation.
There are two ways to produce the relativistic axion particles. One way is the thermal
production in which thermal plasma produces axion particles at early universe. The
other way is the non thermal production in which axion particles are produced by decay
processes of heavy particles. The decay of the PQ fields can be a source non thermal
production of axions.
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First, let us consider the thermal production of axion particles. The thermal produc-
tion of axion particles is estimated in [129, 130]. The abundance of thermally produce
axions can be parametrised as [130]

△Neff = 0.0264
Ya

Yeq
a
, (3.5.3)

where the yield Ya ≡ na/s with na being the number density of axions and s denotes
the entropy density of the universe. After the thermal production of the axion particles
becomes ineffective, Ya becomes constant. Yeq

a denotes the yield of thermally populated
axion number density. The thermal production of axions at least stops when the number
density of the axion becomes thermal one. Thus, △Neff from the thermally produced
axions has an upper limit 0.0264 which is far below the sensitivity of the present CMB
observations.

If the PQ field mainly decays into axion particles after the energy density of the
universe is dominated by the PQ field, the amount of the axion dark radiation △Neff will
be inconsistent with the present observations. If the PQ field is thermally trapped at
the symmetry enhanced point, the late time decay into axion particles may be harmful.
This is because during the thermal trapping, the potential energy of the PQ field re-
mains. Note that the minimum of the potential exists at the PQ scale and the symmetry
enhanced point has a certain potential energy. After the trapping of the PQ field ends,
such a potential energy is converted to the oscillation energy of the PQ field. In some
cases, the energy density of the PQ field oscillation will soon dominate the total energy
of the universe. Thus, if the PQ field is trapped at the origin, whether the axion over
production is avoided or not is a relevant question. Considering that the PQ field is
likely to be trapped at the symmetry enhanced point (see Sec. 3.4), it is important to
investigate with what conditions, the axion over production is avoided. We deal with
this issue in Chapter 4.





Chapter 4

Peccei-Quinn field Dynamics after
trapping

Here, we consider the dynamics after the PQ field is thermally trapped at the symmetry
enhanced point. As the universe expands and the temperature decreases, the effect of
the thermal potential becomes negligible . As a result, the PQ field begins to roll down to
the minimum of the potential at some time. After the PQ field escape from the thermal
trapping, the PQ field starts to oscillate around the minimum of the potential. Then, the
PQ field may lately decay into axion particles. The amount of produced axion particles
is tightly constrained by the dark radiation observation [16]. Thus, it is important to
clarify with what conditions, axion overproduction is not harmful.

In order to estimate amount of the axion dark radiation, we have to know the time
evolution of the PQ field. In the dynamics of the PQ field, the thermal dissipation effects
are important because they can reduce the amount of axion dark radiation. We take the
dissipation effects on both the PQ field and axion particles into account and estimate
the amount of axion dark radiation.

In this Chapter, we study the dynamics of the PQ field after the trapping at the sym-
metry enhanced point paying particular attention to the axion overproduction problem.
In Sec. 4.1, we introduce our setup and summarise ingredients relevant for the dynam-
ics of the system. In Sec. 4.2, we write down the coupled Boltzmann equations which
determine the time evolution of the system. Then, we explain qualitative features of the
dynamics. We show the numerical results in Sec. 4.3. The conclusion is given in Sec. 4.4

This Chapter is based on author’s work [2].
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4.1 Basic ingredients

4.1.1 Setup

In this thesis, we consider the hadronic axion model [66], because NDW = 1 holds 1 . We
discuss the dynamics of the PQ field with the following Lagrangian

L = |∂ϕ|2 − (λ′ϕψψ̄ + h.c.) +m2
ϕ|ϕ|2 − Vstab(|ϕ|), (4.1.1)

where ψ and ψ̄ are PQ quarks with (anti-)fundamental representations of color SU(3),
and Vstab denotes the potential term that stabilizes the PQ field ϕ at the PQ scale
|⟨ϕ⟩| ≡ fa = Fa/

√
2. λ′ denote a coupling constant. If we assume the supersymmetry

(SUSY), ϕwill additionally couple to squarks which are the super-partners of ψ and ψ̄2.
We suppose the range of the PQ scale to be fa ∼ 109−10 GeV. The lower bound comes from
the observational constraints (see Sec. 2.5). On the other hand, the upper bound comes
from the condition of the axion dark matter abundance (see Sec. 3.3). In this section,
we call the radial direction of the PQ field as the PQ field and the phase direction as the
axion if there is no ambiguity.

We do not pay particular attention to the concrete form of Vstab. The important
quantities which determine the dynamics are the mass the PQ field at the origin mϕ (V ⊃
−m2

ϕ|ϕ2|) and at the minimum of the potential ms and the hight of the potential at the
origin Vhight ≡ V(0) − V(Fa). A typical scale of these quantities are supposed to be:

ms ∼ mϕ, (4.1.2)

Vhight ∼ m2
ϕF2

a , (4.1.3)

for most cases of interest. Since the details of the relation between mϕ, ms, Fa and Vhight

are model dependent, we assume ms = mϕ and Vhight = m2
ϕF2

a regarding mϕ and Fa as
free parameters.

When the temperature of the universe is high enough, the PQ field is supposed to
be trapped at the origin. During this epoch, the thermal potential for the PQ field is
formed due to the coupling with the PQ quarks. At the origin, the effective mass of the
PQ field meff, ori can be written as

m2
eff, ori ≃ λ2T2 −m2

ϕ, (4.1.4)

λ = cMλ
′ (4.1.5)

1In this Chapter, we consider the situation where the PQ symmetry is once restored. In such a case,
models with NDW > 1 are excluded (see Sec. 3.3.2).

2 In this Chapter, we study the dynamics as model independently as possible in order to see universal
features of this scenario.
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where cM is an order one model dependent constant. The thermal trapping ends when
the effective mass at the origin crosses zero 3 . The temperature at the end of the thermal
trapping Tend is given by 4

Tend ≃ mϕ/λ. (4.1.6)

During the thermal trapping, the vacuum energy of the PQ field may dominate the
energy component of the universe. The energy of the PQ field starts to dominate over
that of the radiation ρrad ∼ T4 at Tbeg:

Vhight ≳ T4, (4.1.7)

→ Tbeg ∼
√

mϕ fa. (4.1.8)

If Tbeg > Tend, the universe experiences the vacuum energy of the PQ field dominated
era. We pay a particular attention to the case Tbeg ≫ Tend because in such a case,
a significant energy is restored in the PQ sector initially and axion overproduction
problem is severe. The condition Tbeg ≫ Tend can be rewritten as

mϕ ≪ λ2 f 2
a . (4.1.9)

During Tbeg > T > Tend, the universe expand exponentially and the ratio of the scale fac-
tor is given by abeg/aend = Tend/Tbeg. Such a phenomena is called thermal inflation [131].
It should be noted that in SUSY models, the typical mass scale of the PQ field becomes
the soft breaking SUSY mass scale (see Sec. 2.4.3). Thus, a plausible value of mϕ is
considered to be much less than the PQ scale Fa 109−10 GeV. In general, in SUSY PQ
models, the thermal inflation is likely to occur.

After the thermal trapping, the PQ field starts to oscillate around the minimum of the
potential. with the typical frequency ms. At this stage, the PQ field can perturbatively
decay into a pair of relativistic axion particles. The decay rate is given by

Γϕ→2a =
1

64π
m3

s

f 2
a
. (4.1.10)

In the following, we replace ms to mϕ for simplicity, otherwise stated. There are other
decay channels such as a decay into a gluon pair. However, such decays are subdomi-
nant due to a loop and coupling suppression. Thus, if perturbative decay is the main

3 The thermal trapping may end by the first order phase transition. However, As long as Vhight is
much larger than the energy density of the radiation, our discussion does not change in the point of view
of axion overproduction.

4We assume Tend is lower than the reheating temperature of the universe.
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process to damp the oscillation of the PQ field, the universe would be dominated by
axion particles produced in this way. They contribute to dark radiation of the universe,
whose energy density is strictly bounded by CMB observations (see Sec. 3.5) 5 .

Fortunately, there is another damping process of the PQ field oscillation. The process
is the thermal dissipation effect [1, 120, 121]. If thermal dissipation effect is efficient
enough to convert the energy of the PQ field into the thermal bath, the axion over
production is avoided. In the next section, we summarise the thermal dissipation
effects on the PQ field. We also consider the thermal dissipation on the axion particles
which may also reduce the amount of the axion particles.

4.1.2 Thermal Dissipation

In this section, we consider the thermal dissipation effects on the PQ field. If a scalar
field couples to other particles which participate in the thermal bath, the interactions
tend to damp the motion of the scalar field [116–122]. First, let us briefly summarise
general aspects of the thermal dissipation.

Suppose a scalar field φ has a following interaction term:

Lint(x) ⊃ φ(x)Ô(x), (4.1.11)

where we assume the operator Ô consists of fields that are thermalised. The mean value
of the scalar field obeys the following equation of motion [132]

0 = □φ(x) + V′φ(φ) +
∫

dτΠO
ret(t − τ)φ(τ), (4.1.12)

where Vφ denotes the potential of φ and

ΠO
ret(x) ≡ −iθ(x0)ΠO

J (x), (4.1.13)

ΠO
J (x) ≡ ⟨[Ô(x), Ô(0)]⟩, (4.1.14)

with ⟨•⟩ being a thermal average. The last term in Eq. (4.1.12) indicates the interaction
with the thermal bath.

5 Axions can be regarded as dark radiation if the momenta are much larger than its mass at the time
of the recombination. We have checked this condition is (at least marginally) satisfied if △Neff > 1 where
△Neff denotes the effective number of an extra dark radiation (see Sec. 3.5). In the region △Neff ≫ 1,
axions becomes highly relativistic because the radiation is not reheated so much.. Thus, scenarios with
△Neff > 1 are excluded by the constraint on the dark radiation [12] .
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From the last term of Eq. (4.1.12), we can pick up the dissipation term [117]:

−φ̇Γth ⊂
∫

dτΠO
ret(t − τ)φ(τ) (4.1.15)

Γth ≡
ΠO

J (ω, 0)

2ω
, (4.1.16)

ΠO
J (ω, p⃗) ≡

∫
d4xei(ωt−p⃗·x⃗)ΠO

J (t, x⃗), (4.1.17)

where we assume the scalar field φ oscillates with a frequency ω. In addition, we
assume the motion of φ is mild so as not to disturb the thermal correlation functions.
Similar to this, the dissipation rate of φ particles can be written as

Γ
par
th =

ΠO
J (ω, p⃗)

2ω
, (4.1.18)

where (ω, p⃗) is the four momentum of the corresponding mode.
In general, a precise estimation of a thermal dissipation rate is highly complicated.

This is because higher loop contributions such as ladder diagrams can also give leading
contributions especially for theω≪ gT case [133]. Fortunately, the dissipation rate of the
radial direction of the PQ field is estimated completely at the leading order in the gauge
coupling expansion [134–136]. On the contrary, there is no leading order calculation
of the dissipation rate of axion particles. Thus, we apply a certain approximation to
estimate the dissipation rate of the axion. Below, we briefly summarise the thermal
dissipation rate of the PQ field and the axion.

Thermal dissipation rate of the PQ field

After the PQ field starts to oscillate around |ϕ| = fa, the PQ quarks ψ obtain the mass of
mψ = λ|ϕ|. Note that the condition Eq. (4.1.9) indicates that the PQ quarks are thermally
decoupled in most time of the oscillation. In such a case, the dominant interaction term
of the PQ field is obtained by integrating out the PQ quarks and given by

L ⊃
nϕαsδϕ

8π2 fa
GµνGµν ≡ δϕÔϕ, (4.1.19)

δϕ ≡ fa − ϕ, (4.1.20)

where αs denotes the QCD gauge coupling strength, Gµν denotes the gluon field strength
and nϕ is a model dependent order one constant depending 6 . The dissipation rate of

6For example, if we consider SUSY models, there exists PQ squarks which affect the value of Aϕ.
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the PQ field is given by

Γϕ =
Π

Oϕ

J (mϕ, 0⃗)

2mϕ
. (4.1.21)

The right hand side of Eq. (4.1.21) is related to the bulk viscosity of the QCD plasma
and extensively studied in the literature [134–136]. The bulk viscosity can be estimated
by using the effective Boltzmann equation which ensure the leading order result. The
dissipation rate of the PQ field is given by

Γ(dis)
ϕ ≃ bα2

s T3

f 2
a
×

1 for mϕ ≪ g4
s T√

g4
s T/mϕ for g4

s T ≪ mϕ ≪ g2
s T
, (4.1.22)

where b is a numerical constant.7 In the case of quark gluon plasma, b ≃ 1/(32π2 logα−1
s )

holds [136]. In our numerical calculation, we adopt this value of b. 8

Thermal dissipation of the axion particles

The axion particles, which are produced by the decay of the PQ field oscillation, also
interact with the thermal bath. The interaction term with the thermal bath is given by

L ⊃ g2a
32π2Fa

G · G̃. (4.1.23)

The production (dissipation) rate of the axion particles with momentum p ≳ gT is
estimated in [129, 130]. In our case, the typical momentum of axion particles may be
much smaller than the temperature of the universe p ≪ T. However, the dissipation
rate for a soft mode p ≪ T may be different from a hard mode p ≳ gT as is the case
in the PQ field. In the case of the PQ field, pole contributions regulated by its thermal
width give the dominant contribution . However, contrary to the PQ field case, the
interaction term Eq. (4.1.23) can be rewritten as aGa

µνG̃aµν = a∂µKµ ∼ (∂µa)Kµ. The axion
energy/momentum times temperature may be picked up in the dissipation rate. As a
result, we expect a suppression factor, p2/(g4

s T2), for the dissipation rate of produced
axion particles compared with the PQ field dissipation rate. 9 .

7 Here we assume the oscillation time scale of the PQ field is much slower than the interaction time
scale of the thermal plasma: ms ≪ T, which marginally holds during the course of dynamics of interest.

8Strictly speaking, if the PQ quarks are also charged under other gauges like SU(2)L, there is a
contribution from the corresponding gauge interactions. In addition, in a class of SUSY axion models,
there exist contributions from the couplings with PQ squarks and gauginos. We do not consider those
contributions in the this discussion because they are model dependent.

9 We expect the suppression factor p2/(g4
s T2) by the following way. First, let us consider the dissipation

rate of φ coming from the operator yφÔ where y denotes a coupling constant and Ô does not contain a
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In order to estimate the dissipation rate of the axion particle, we compute one
loop effects with the Breit-Wigner approximation for the spectral function of gauge
bosons, In appendix B, we summarise a detailed calculation of the dissipation rate of
the axion particles. In fact, we observed the suppression behave of factor p2/(g4

s T2). Our
estimation of the axion dissipation rate is given by

Γ(dis)
a =

α2
s T3

32π2 f 2
a

p2

g4
s T2

f (x), (4.1.24)

where x = p/(g4
s T), and the definition of the function f (x) is given in the Appendix

[Eq. (B.0.6)]. Qualitatively, the function f (x) behaves as f ∼ const. for x ≪ 1 and
f ∝ x−2 for g−2 ≫ x ≫ 1 and takes order one values at x ≲ 1. As is mentioned,
a precise estimation of a thermal dissipation rate require all order resummation of
relevant diagrams. In addition, the thermal dissipation rate depends on the particle
contents of the model and thus, model dependent. Therefore, our estimate of the axion
dissipation rate has a factor uncertainty. In order to take the uncertainty into account,
we adopt the following dissipation rate in our numerical calculation:

Γ(dis)
a =

α2
s T3

32π2 f 2
a

p2

g4
s T2

f (x) × C. (4.1.25)

where we explicitly introduce an order one parameter C which represents the uncer-
tainty of the thermal dissipation.

Let us consider a typical momentum of the axion particles. If the decay of the PQ
field into axion is negligible (H ≫ Γϕ→2a), The energy density of axion particles are
dominated by latest produced particles. In such a case, the typical momentum of the
axion becomes ≃ mphi/2. On the the other, when H ∼ Γϕ→2a holds, the PQ field will
soon decay into axion particles. After that, the energy density of the axion particles are
dominated by the particles produced at the epoch H ∼ Γϕ→2a. In this case, the typical
momentum of the axion particles are written as p ≃ (adec/a(t)) ×mϕ/2 with adec and a(t)
being the scale factor at the time of H = Γϕ→2a and at the time t, respectively. In our
numerical analysis, we use

p =
mϕ

2
min

(
1,

adec

a(t)

)
, (4.1.26)

coupling constant. In such a case, we may expect Γth ∼ y2T/αdamp with αdamp being a typical interaction
rate of the thermal bath. In non Abelia gauge theory, αdamp ∼ g4 with g denotes the gauge coupling is
expected. If the operator Ô has a non-trivial structure, an extra consideration of coupling counting is
needed. For example, the PQ field couples to GµνGµν, which is the trace of the energy momentum tensor.
If the gauge coupling g is zero, the energy momentum tensor also becomes zero. The number counting
of GµνGµν is supposed to be g2 [134]. In the case of the axion dissipation, if the operator K does not have
such a non trivial structure, the suppression of factor p2/(g4

s T2) is expected.
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for the momentum of the axion particles. We set the initial condition as ρϕ = Vhight =

m2
ϕ f 2

a , ρa = 0 and T = mϕ/λ.

4.2 Boltzmann equations and its properties

In this section, we introduce coupled Boltzmann equations which determine time evo-
lution of the system. Then, we discuss qualitative features of the dynamics.

4.2.1 Coupled Boltzmann equations

After the thermal inflation, the energy densities of the PQ field oscillation ρϕ, axion ρa

and radiation ρr evolve as

ρ̇ϕ + 3Hρϕ = −(Γ(dis)
ϕ + Γϕ→2a)ρϕ (4.2.1)

ρ̇a + 4Hρa = Γϕ→2aρϕ − Γ(dis)
a ρa, (4.2.2)

ρ̇r + 4Hρr = Γ
(dis)
ϕ ρϕ + Γ

(dis)
a ρa, (4.2.3)

where H denotes the Hubble parameter. The dissipation rates and the decay rate of the
PQ field are given in the previous section. We do not take thermal production effects of
the axion and the PQ field into account because the amount of the axion dark radiation
by the thermal production is tiny (see. 3.5).

4.2.2 Qualitative features of the dynamics

We pay particular attention to the case where the energy of the PQ field dominates
the universe. In such a case, the axion will be over produced if there is no thermal
dissipation effects. This is because without the thermal dissipation effects, the PQ field
just decays into axion particles. Then, the energy of axion particles dominants the
universe, which leads △Neff ≫ 1 with △Neff being the effective number of an extra dark
radiation expressed in unit of one neutrino (see Sec. 3.5). △Neff is tightly bounded by
the CMB observations: △Neff < 1 [12]. Thus, in order not to produce too much axion
dark radiation, the thermal dissipation effects must affects the dynamics in some way.

The thermal dissipation effects is proportional to ∝ T3. On the other hand, the
Hubble parameter scales as ∝ a−3/2 in the matter dominated universe. If there is no
entropy injection into the thermal bath, the thermal dissipation effects become less and
less important as the universe expands because the thermal dissipation effects scale as
∝ a−3 in such a case. Here we denote “no entropy injection” as the situation where the
temperature of the universe is well approximated by the scaling solution ∝ a−3. If there
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is no entropy injection in a few Hubble times after the onset of the PQ field oscillation,
the thermal dissipation effects never affect the dynamics of the PQ field. This is because
the thermal dissipation effects becomes most effective at the initial time in this case but
no entropy injection means the energy density of the PQ field is not affected by the
thermal dissipation effects. From these considerations, we can say that the dynamics in
a few Hubble times after the onset of the PQ field oscillation is very important. In this
time span, whether the axion over production is avoided or not is determined.

Now, let us consider the time span of a few Hubble time just after the onset of the
PQ field oscillation. Thanks to the thermal dissipation effect of the PQ field, the thermal
bath is reheated to some extent. The dynamics largely depends on whether the decay
of the PQ field into axions is effective or not. In other words, whether Γϕ→2a > H or
Γϕ→2a < H is important. This is because the entropy injection into the thermal bath in a
first few Hubble time largely depends on the ratio Γϕ→2a/H. This ratio is given by

Γϕ→2a

H

∣∣∣∣∣
T=Tend

∼ 10
m2
ϕMP

64π f 3
a
∼

( mϕ

1 PeV

)2
(

109 GeV
fa

)3

. (4.2.4)

Below, we discuss the two cases: Γϕ→2a≲H and Γϕ→2a≳H, one by one.

The case with Γϕ→2a ≲ H(T = Tend)

Here we consider the case where the decay of the PQ field into axions is negligible at
the onset of the oscillation. In this case, the energy density of the thermal bath obeys
the following equation:

ρ̇r + 4Hρr = Γ
(dis)
ϕ ρϕ. (4.2.5)

Within a few Hubble time, the energy density ρr comes to obey the following solution:

4Hρr ∼ Γ(dis)
ϕ ρϕ. (4.2.6)

Here we assume that ρϕ decreases at most by a factor of a few during the first few
Hubble time. From Eq. (4.2.6), we can deduce that the thermal bath is reheated to Tc:

ρr(Tc) ∼
Γ(dis)
ϕ (Tc)

4H(tend)ρϕ(tend)
, (4.2.7)

→ Tc ∼
(

30
π2g∗

)
bα2

s mϕMP

fa
∼ 107 GeV

(
200
g∗

) ( mϕ

1 PeV

) (1010 GeV
fa

)
, (4.2.8)

where we denote tend as the time when the thermal inflation ends and the PQ field starts
to oscillate. We regard this temperature Tc as a “first reheat temperature”. Remember



58 CHAPTER 4. PECCEI-QUINN FIELD DYNAMICS AFTER TRAPPING

that in the derivation of Tc, we assume that ρϕ decreases at most by a few factor during
a first few Hubble time. If this assumption is not true, ϕ must lose most of the energy
during this time span, which means that the energy density of the PQ field is well
converted to the thermal bath by the thermal dissipation effects. In such a case, the
axion overproduction is avoided.

Let us consider the condition for the PQ field not to be dissipated. In such a case,
the temperature of the universe becomes Tc within a few Hubble time after tend. If
H ≳ Γ(dis)

ϕ (Tc) holds, the thermal dissipation effects cannot damp the oscillation of the
PQ field because the thermal dissipation effect becomes most effective when T = Tc.
On the other hand, if the opposite H ≲ Γ(dis)

ϕ (Tc) holds, the thermal dissipation effect
damps the energy of ϕ. As the energy in the PQ sector is converted to the thermal
bath, the temperature of the universe becomes higher and higher, which makes the
thermal dissipation effect stronger. As a result, the whole energy of the PQ sector
will be converted to the thermal bath and the axion over production is avoided. We
can conclude that the axion over production is avoided if and only if H ≳ Γ(dis)

ϕ (Tc) is
satisfied. This condition can be rewritten as

Γ(dis)
ϕ

H

∣∣∣∣∣∣∣
T=Tc

∼
(

30
π2g∗

)3 (bα2
s m1/2

ϕ )4M4
P

f 6
a

∼
(

200
g∗

)3 ( mϕ

3 PeV

)2
(

1010 GeV
fa

)6

≳ 1. (4.2.9)

The case with Γϕ→2a ≳ H(T = Tend)

Here we consider the case where the PQ field can efficiently decay into axions just after
the onset of the oscillation Γϕ→2a ≳ H(T = Tend). For simplicity, let us concentrate on the
case Γϕ→2a ≫ H(T = Tend). In such a case, the PQ field soon decays to axion particles
just after the inflation. Then, almost all energy of the PQ field is converted to the axion
particles: ρa = ρϕ(tend). Then the energy density of the thermal bath obeys the following
equation:

ρ̇r + 4Hρr = Γ
(dis)
a ρa. (4.2.10)

The situation becomes similar to the previous case. We can apply the same logic used
in the previous case just by replacing ϕ → a. What we have to do first is to estimate
the first reheated temperature in this case: T(a)

c . If we parameterise T(a)
c = δ · Tc we can

derive the condition for the axion not to remain much until today as

Γ(dis)
ϕ

H

∣∣∣∣∣∣∣
T=T(a)

c

∼ δ4

(
200
g∗

)3 ( mϕ

3 PeV

)2
(

1010 GeV
fa

)6

≳ 1. (4.2.11)
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Figure 4.1: The evolutions of energy densities as a function of H normalised by the
Hubble parameter at the PQ phase transition HPT: ρϕ/ρϕ,PT (black), ρr/ρϕ,PT (pink) and
ρa/ρϕ,PT (blue) with ρϕ,PT denoting the initial energy density of ϕ. Left/Right panel
shows the case [mϕ, Fa] = [50 PeV, 1010 GeV]/[10 TeV, 5 × 108 GeV]. From [2].

The first reheat temperature in this case T(a)
c is determined by the following equation

4Hρr(T
(a)
c ) ∼ Γ(dis)

ϕ (T(a)
c )ρϕ. (4.2.12)

Since the dissipation rate of the axion depends on a numerical function f (x) (see
Eq. 4.1.24) , it is difficult to write down T(a)

c analytically. Qualitatively, the function
f (x) obeys f (x) ∝ xn−2 (0 < n < 2) and f (x) ∼ O(1) for x ≲ 1. Thus, the Fa dependance of
the parameter δ ∝ Fn/(n+1)

a can be bounded as δ ∝ F0
a to F2/3

a .
If the condition Eq. (4.2.9) for Γϕ→2a ≲ H(tend) or the condition Eq. (4.2.11) for Γϕ→2a ≳

H(tend) is satisfied, the temperature increases and the PQ field oscillation disappears
in a few Hubble time without producing too much axion dark radiation. In the next
section, we show numerical results of the Bolzmann equation.

4.3 Numerical results

In this section, we show numerical results of the Boatman equations (Eqs. (4.2.1) –
(4.2.3)).

First, let us see the time evolution of the system for typical situations. Fig. 4.1 shows
evolution of various quantities after the phase transition as a function of the Hubble
time normalised by that at the PQ phase transition: HPT/H. We set Tend = mϕ. The
black, pink and blue lines represent evolution of the energy densities of the PQ field
oscillation, the radiation and the axion particles produced by the decay of the PQ field
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respectively. These energy densities are normalised by the initial energy density of the
PQ field. The left panel shows the case with [mϕ, Fa] = [50 PeV, 1010 GeV]. In this
case, the condition Γϕ→2a ≳ HPT is satisfied. As one can see, the PQ field soon decay
to the axion particles. After that, the radiation is heated in a few Hubble times. The
amount of the axion particles are dissipated and finally the energy density of the axion
becomes lower than that of radiation. In this case, the effective number of the extra dark
radiation becomes △Neff ≃ 0.4. On the other hand, the right panel show the case with
[mϕ, Fa] = [10 TeV, 5 × 108 GeV]. In this case, Γϕ→2a ≲ HPT is satisfied. In a few Hubble
time, the radiation is heated and the PQ field is dissipated to some extent. Then, before
the PQ field dominates the universe again, the PQ fields decay into axions. In this case,
△Neff ≃ 0.2 holds.

Fig. 4.2 shows contour of △Neff = 1 10 on the [mϕ, Fa] plane for Tend = mϕ (left panel)
and Tend = 10mϕ (right panel). In the shaded blue region, Fa ≲ Tend is satisfied. As is
mentioned, the dissipation rate has uncertainty factor owing to the model dependence
and theoretical uncertainties. To see this dependence, we vary the parameter C in
Eq. (4.1.25). The upper (lower) boundary correspond to C = 1(10). Above the band,
△Neff becomes smaller than one. The black dashed line represents the contour △Neff = 1
without the thermal dissipations. We can see that the region with △Neff ≲ 1 is signifi-
cantly extended by the thermal dissipation effects especially in the case of Tend = mϕ. As
we can see, the behaviour of the lines becomes changed at [mϕ, Fa] ∼ [100 TeV, 109 GeV]
Around this point, Γϕ→2a ∼ HPT is satisfied. If Fa is smaller than this point, the dissipa-
tion of the PQ field is important. On the other hand, if Fa is larger than this point, the
dissipation of the axion becomes relevant as is discussed in Sec. 4.2.2.

4.4 Conclusion of this Section

In this section, we consider the dynamics of the PQ field after the PQ field is thermally
trapped at the symmetry enhanced point. As the temperature decreases, the PQ field
starts to oscillate around the minimum of the potential. The oscillation of the PQ field
may cause the over production of axion particles. If a typical mass scale of the potential
is smaller than the PQ scale, as is the case in a class of SUSY PQ models, the energy
of the oscillation becomes larger than that of radiation. In such a case, the axion over
production problem becomes serious.

10 On the line △Neff = 1, the dissipation effects and the Hubble parameter becomes comparable at some
epoch. Thus, if we change the parameter on this line slightly , the prediction of △Neff is rather affected.
In this respect, the line △Neff = 1 can be understood as the boundary whether the dark radiation is over
produced or not.
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Figure 4.2: The contour of △Neff = 1 on the [mϕ, Fa] plane for Tend = mϕ (left panel) and
Tend = 10mϕ (right panel). In the shaded blue region, Fa ≲ Tend holds. The upper (lower)
boundary correspond to C = 1(10). Above the band, △Neff becomes smaller than one.
The black dashed line denotes the contour △Neff = 1 without the thermal dissipations.
From [2].

We take the thermal dissipation effects into account and show that the axion over-
production can be avoided even if the PQ field once dominates the universe. In the
dynamics of the PQ field, the thermal dissipation effects of both the PQ field and the
axion play important roles to suppress the amount of the axion dark radiation. This
scenario works if the mass scale of the potential mϕ is larger than O(10) TeV - O(10) Pev
for Fa ∼ 109−10 GeV. Such parameter range includes some high scale supersymmetric
models.





Chapter 5

Suppression of Isocurvature
perturbation

5.1 Overview

In this Chapter, we consider a situation where the PQ symmetry is always broken by
field values of PQ fields.

As is discussed in Sec. 3.2, in the standard cosmological scenario where the PQ
symmetry is already broken during the inflation and the PQ scalar is stabilised at the
minimum of the potential |ϕ| = Fa/

√
2, the magnitude of the axion fluctuation is given

by

δa
ai
≃ Hinf

2πFaθi
, (5.1.1)

where Hinf denotes the Hubble parameter during inflation, ai indicates the initial value
of the axion field and θi ≡ ai/Fa. In this case, the cold dark matter isogurvature
perturbation is given by SCDM ≃ r(2δa/ai) with r being the axion fraction in the dark
matter energy density and estimated as (see Sec. 3.2.2)

SCDM ≃ 1 × 10−5θi

( Fa

1012 GeV

)0.19 ( Hinf

107 GeV

)
. (5.1.2)

The Planck constraints on the this value reads SCDM ≲ 0.9 × 10−5 [16]. For the axion
window 109 GeV ≲ fa ≲ 1012 GeV, the inflation scale is tightly bounded from above
Hinf ≲ 107−10 GeV. In particular, if axion is a dominant component of the cold dark
matter, the constraint reads Hinf ≲ 107 GeV. It excludes high-scale inflation models
unless the PQ symmetry is restored after the inflation. However, if the domain wall
number is greater than one as is the case in the DFSZ model [36, 37], the formation of
axion domain walls leads to a cosmological disaster [14].

63
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There are some ways to relax the constraint on the quantum fluctuation in the axion
direction. For example, the value of the PQ field during inflation |ϕinf| may be much
larger than the PQ scale Fa. In this case, the isocurvature perturbation is suppressed by
the ratio Fa/|ϕinf| [26] ( see also [2, 27, 28]). This is because the size of the fluctuation
in the massless direction generated during the inflation is given by δϕ ∼ Hinf/2π which
sets the fluctuation on the angle of ϕ to be δθ = δϕ/|ϕinf|. After the PQ field settle down
at |ϕ| = Fa/

√
2, the fluctuation of the axion can be regarded as δa = δθ · Fa = δϕFa/|ϕi|,

which can be suppressed if Fa/|ϕi| ≫ 1. Another way is to make the axion heavy during
the inflation by the stronger QCD effects [28–31] or by the explicit PQ breaking term
[32, 33] so as not to generate the fluctuations in the axion direction. The non-minimal
kinetic term of the axion may also weaken the constraint [34].

As we discussed in Sec. 3.4, the PQ symmetry is likely to be restored by the dynamics
of the PQ field after the inflation. Thus, when we consider a scenario of this direction,
we have to care about the trapping of the PQ field. For example, the idea to put the PQ
field far away from the PQ scale [26] may seem simple and natural. However, in such a
case, the PQ symmetry is likely to be restored by the thermal or non thermal trapping
(see Sec. 3.4).

We propose two new scenarios which relax the constraints on the quantum fluc-
tuations avoiding the PQ symmetry restoration, which is inevitable for models with
NDW > 1. In both cases, the dynamics of the PQ field plays important roles.

The first way uses scalar field motion in the expanding universe. If a certain condition
holds, scalar motion becomes very peculiar one which is different from oscillation or a
scaling solution. We call this behaviour as a “pseudo scaling”. If a scalar field once obey
the pseudo scaling solution, it tends not to be trapped at the symmetry enhanced point
even with a large initial field value. This study is based on the work by the author [3].

In the second way, multi PQ charged scalar fields are considered. In our scenario, if
one of the PQ fields has a large initial field value, the bound on the quantum fluctuations
can be relaxed. At the same time, it is relatively easy for the PQ symmetry not to be
restored all the time because there exist other PQ charged scalar fields. One interesting
example of this set up is that the inflaton field has a PQ charge. We will show that within
the framework of Higgs inflation in DFSZ axion model, the experimental constraint can
be satisfied. This study is based on the work by the author [35]

5.2 Pseudo Scaling Solution

In this section, we consider a pseudo scaling solution which is a peculiar motion of a
scalar field that occurs when certain conditions hold. In Sec. 5.2.1, we summarise the
properties of the pseudo scaling solution. Then, we apply the pseudo scaling solution
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in Sec. 5.2.2. We show how the pseudo scaling solution can relax the constraint on the
inflation scale without the symmetry restoration. Sec. 5.2.3 is devoted to the conclusion
of this section.

5.2.1 Properties of Pseudo scaling solution

Setup

Let us consider a real scalar field theory with the Lagrangian 1

L = 1
2

(∂ϕ)2 − V(ϕ), (5.2.1)

where the scalar potential is given by the monomial one2.

V(ϕ) =
λ
n
ϕn, (n > 2). (5.2.2)

The equation of motion for ϕ in expanding universe can be written as

ϕ̈ + 3Hϕ̇ + λϕn−1 = 0, (5.2.3)

where H denotes the Hubble parameter. We assume the following form of H:

H =
p
t
, (3p − 1 > 0). (5.2.4)

Note that p = 2/3(1/2) corresponds to the matter (radiation)-dominated (MD (RD))
universe. A more general value of p may be possible in the inflaton oscillation dominated
universe. Let us parametrise ϕ and time t as

ψ ≡ a
2

p(n−2)ϕ, (5.2.5)

s ≡ ln(t/ti), (5.2.6)

where a(t) denotes the scale factor of the universe and ti is the initial time. We set
a(ti) = 1. Hi is the initial value of the Hubble parameter. Then, the equation of motion
can be rewritten as [137, 138]

ψ′′ +
(
3p − n + 2

n − 2

)
ψ′ + µ2ψ +

λp2

H2
i

ψn−1 = 0, (5.2.7)

1In this discussion, we consider a real scalar field for simplicity. The same arguments can be applied
to the complex scalar case.

2 For n except even integer one, ϕ should be regarded as |ϕ|.
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where the prime indicates derivative with respect to s and µ2 is given by

µ2 ≡ 2(6p − 3pn + n)
(n − 2)2 . (5.2.8)

The equation (5.2.7) can be regarded as a motion of the rescaled scalar field ψ in the
effective potential

Veff =
1
2
µ2ψ2 +

λp2

nH2
i

, (5.2.9)

with a friction term: (
3p − n + 2

n − 2

)
ψ′. (5.2.10)

The effective potential has a minimum at ψmin where

ψmin =

{
0 if µ2 > 0
(−µ2H2

i /λp2)1/(n−2) if µ2 < 0
. (5.2.11)

On the other hand, there exists a critical n which gives no friction term:

nc ≡
6p + 2
3p − 1


4 p = 1
6 p = 2/3
10 p = 1/2

, (5.2.12)

→ p =
nc + 2

3(nc − 2)
. (5.2.13)

If n > nc holds, the sign of the friction term is positive and µ2 < 0 is ensured 3. As a
result, the oscillation of ψ damps and it goes to the minimum the potential ψmin. This
behaviour corresponds to the scaling solution in which the original field ϕ scales as

ϕ(t) ∝ a−
2

p(n−2) ∝ t−
2

n−2 . (5.2.14)

Note that this asymptotic solution is independent from the initial condition. In such a
case, the every terms in the original equation of motion Eq. (5.2.3) are comparable.

On the other hand, if n < nc holds, the friction term has a negative sign. Thus, ψ
never relaxes to its potential minimum. This corresponds to the oscillating solution.
This behaviour is easily understood as follows. Assuming an oscillating solution for ϕ
and using the Virial theorem, we can obtain the scaling of the amplitude of ϕ : Φ

Φ(t) ∝ a−
6

n+2 ∝ t−
6p

n+2 . (5.2.15)

3If there exists a so called Hubble mass term, µ2 < 0 is not always satisfied.
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The effective mass of ϕ scales as meff ∝ Φ(n−2)/2 ∝ t−3p(n−2)/(n+2). Compared to the Hubble
parameter H ∼ t−1, the effective mass becomes larger and larger as time goes by. In
other words, after the effective mass becomes comparable to the Hubble parameter,
the potential term dominates over the Hubble friction term in the original equation of
motion Eq. (5.2.3).

In the case of n = nc, the scalar motion becomes peculiar one as is shown below.

Pseudo scaling solution: n = nc

We have shown that a scalar field goes to a scaling solution for n > nc and oscillation
solution for n < nc independently from the initial condition. However in the case of
n = nc, the scalar motion becomes more non trivial. If n = nc, the equation of motion for
ψ Eq. (5.2.7) becomes

ψ′′ − 4
(n − 2)2ψ +

(n + 2)2

9(n − 2)2

λ

H2
i

ψn−1 = 0. (5.2.16)

The motion of ψ is just an oscillating one without damping. Thus, resulting dynamics
largely depends on the initial condition of ϕ. If the initial condition is chosen so that ψ
oscillates around ψmin and does not cross the origin ψ = 0, the original field ϕ does not
also cross the origin ϕ = 0. The resulting solution of the original field ϕ is not similar to
the scaling solution nor the oscillating solution. We call this solution a “pseudo scaling
solution”.

Before considering the equation of motion for ψ, let us specify the initial condition.
One cosmologicaly motivated initial time ti is just after the inflation. In order for ϕ not
to move down the potential during inflation,

m2
eff(ϕ(ti)) ≡ λϕ(ti)n−2 ≲ H2

i , (5.2.17)

must hold. Then, the initial condition can be written as

ϕ(ti) = ϕi, (5.2.18)

ϕ̇(ti) ≃ −
∂ϕV(ϕi)

3Hi
, (5.2.19)

where we assume ϕi > 0 without loss of generality. The condition (5.2.17) indicates
ψi ≲ ψmin. In particular, we assume the case ψi ≪ ψmin in which the Hubble parameter
is much larger than the effective mass at the initial time.

The initial velocity of ψ can be given by

ψ′ = ti

(
ϕ̇i +

6
n + 2

Hiϕi

)
. (5.2.20)
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The conserved energy density of ψ can be written as

ρψ =
1
2
ψ′2i + Veff(ψi) ≃ −

n + 2
9n(n − 2)

λϕn
i

H2
i

, (5.2.21)

where we have used the approximation ψi ≪ ψmin or |ϕ̇i| ≪ |Hiϕi|. Note that the energy
density ρψ is negative. This indicates that ψ never crosses the origin. As a result,
the original field ϕ does not oscillate around the origin ϕ = 0. The rescaled field just
oscillates around the potential minimum ψmin

4 .
In terms of ψ, the dynamics seems to be simple. However, the “pseudo scaling”

solution looks like non trivial in terms of ϕ. Fig. 5.1 shows typical behaviours of the
pseudo scaling solution. We have numerically solved the equation of motion for ϕwith
an initial condition Hi = 1, ϕi = 0.2ψmin, ϕ̇i = −V′(ϕi)/3Hi and we have taken λ = 1 in
Planck unit. The left(right) panel is p = 1/2(2/3), n = 6(10) case which corresponds to
the MD (RD) background. The red solid line represents a numerical solution, while the
green dashed line is a scaling solution (ϕ ∝ t−2/(n−2)). We can see that a “psuedo scaling”
solution is actually different from the scaling solution and shows a kind of periodic
behaviour. This behaviour can be understood by considering the equation of motion
Eq. (5.2.7). Below, let us understand main features of the pseudo scaling solution and
how the periodicity depends on the initial condition of ϕ.

First, note that the dynamics of ψ is dominated by the region ψ ≪ ψmin because
|ρψ| ≪ |V(ψmin)| holds in our case of interest 5. If we consider the dynamics in the region
ψ≪ ψmin, we can neglect the second term in Eq. (5.2.16). In the ψ≪ ψmin, The equation
of motion is approximated as

ψ′′ − 4
(n − 2)2ψ = 0. (5.2.22)

This equation of motion has a general solution which is a sum of a growing and decaying
mode:

ψ(s) = A exp
( 2s
n − 2

)
+ B exp

( −2s
n − 2

)
, (5.2.23)

where the coefficients A and B are determined by initial conditions. In terms of the
original field ϕ, this solution reads

ϕ(t) = A + B
(ti

t

)4/(n−2)

. (5.2.24)

4 This behaviour depends on the assumption of the initial condition 3Hiϕ̇ ≃ −V′. However, as long as
ϕ̇i ∼ O(V′/H), the dynamics is almost the same.

5 This statement holds as long as ϕ̇i ∼ O(V′/Hi).
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Figure 5.1: The time evolution of the original field ϕ(t) for n = nc with initial condition
Hi = 1, ϕi = 0.2ψmin, ϕ̇i = −V′(ϕi)/3Hi and we have taken λ = 1 in Planck unit. The
left panel is a case for for p = 2/3 (n = 6) and the right panel is for p = 1/2 (n = 10).
The red solid line shows a numerical solution, which corresponds to a “pseudo scaling”
solution, while the green dashed line represents a hypothetical scaling solution for
representative purpose. From [3].

Let us divide the time into three phase: the first phase ti < t < t1, the second phase
t1 < t < t2 and the third phase t2 < t < t3. We define t1 as the time when the motion of ϕ
starts. t2 is defined as the time when the motion of ϕ stops. After t = t2, ϕ starts to move
again at t3. Fig. 5.1 shows t1, t2 and t3 of example cases. The second term of Eq. (5.2.16)
affects the dynamics only for some short spans around t1, t2 and t3 as one can see below.

First phase
In the time span ti < t1, the coefficients A and B are determined by the initial condition
of ϕ(ψ) as

A =
1
2

(
ψi +

n − 2
2

ψ′i

)
, (5.2.25)

B =
1
2

(
ψi −

n − 2
2

ψ′i

)
. (5.2.26)

This solution breaks down when ψ becomes close to ψmin at t ≃ t1(s = s1). After that, ψ
passes though ψmin and goes back to ψmin again within an order one unit time in s. The
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time s1(t1) can be estimated as

s1 ≃
n − 2

2
ln

(
ψmin

ψi

)
, (5.2.27)

→ t1 ≃ ti

(
ψmin

ψi

)(n−2)/2

≃
(

1
λψn−2

i

)1/2

=
1

meff(ϕi)
. (5.2.28)

Note that the time t1 is the epoch when the Hubble parameter becomes comparable to
the effective mass of ϕ. This indicates that ϕ starts to move when the Hubble parameter
becomes equal to the effective mass.

Second phase
Here, we consider the time span t1 < t < t2. As is mentioned, after t1, ψ passes though
ψmin and goes back to ψmin again within a few time in terms of s. After that, ψ can be
approximated by the form of Eq. (5.2.23) again. What we have to know is the coefficients
A and B in this situation. We define the position ψ j somewhere between ψi and ψmin

like ψ j ∼ 0.1ψmin. Suppose that ψ passes through ψ j at s j after t1 with a velocity ψ′j. In
the time span s1 < s < s j, the potential term ∝ ψn affects the dynamics and s j − s1 ∼ O(1)
holds. Since the dynamics is dominated by the region ψ ≪ ψmin as is noted before, we
do not discuss the dynamics during s1 < s < s j.

By using the fact that the total energy ρψ is conserved, we can estimate ψ′j as

ψ′j = −
(
2ρψ +

4
(n − 2)2ψ

2
j

)1/2

≃ −2
n − 2

ψ j(1 − ϵ), (5.2.29)

ϵ ≡ n2 − 4
36n

λψn
i

H2
i ψ

2
j

=
n − 2

n(n + 2)
ψn

i

ψ2
jψ

n−2
min

≪ 1. (5.2.30)

Then, we can estimate the coefficients A and B of Eq. (5.2.23) after s j as

A j ≃
1
2
ψ jϵ, B j ≃ ψ j (5.2.31)

Note that A j ≪ B j holds. The end of the second period t = t2 (s = s2) is the time when
the decaying mode ∝ B j becomes equal to the growing mode ∝ A j. The time (t2)s2 is
estimated as

s2 − s j ≃
n − 2

4
ln

2
ϵ
, (5.2.32)

→ t2 ≃ c t1

(
ψmin

ψi

)n(n−2)/4

, (5.2.33)
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where c represents uncertainty in s j−s1 and is anO(1−10) constant . We have numerically
checked that the ψi dependence on t2 is given by Eq. (5.2.33) if meff(ϕi)≪ Hi is satisfied.
Note that t2 is much longer than the inverse mass scale of the scalar field 1/meff(ϕi) = t1.
From Eq. (5.2.24), we can see that the original field scales as ∝ t−4/(n−2) during this time
span. ϕ(t) is given by

ϕ(t) ≃ ϕi

( t1

t

)4/(n−2)

for t1 < t < t2, (5.2.34)

and at t2, it becomes

ϕ(t2) ∼ ϕi

(
ψi

ψmin

)n

. (5.2.35)

Note that in this time span, ϕ satisfies ϕ̈ + 3Hϕ̇ ≃ 0. In other words, the potential term
becomes irrelevant soon after t1. In fact, the effective mass meff(ϕ) becomes smaller and
smaller compared to the Hubble parameter in this time span. During this time span,
the energy density of ϕ is dominated by the kinetic term and scales as ρϕ ∝ a−6.

Third phase Finally, let us consider the third phase t2 < t < t3. This phase is just a
continuation of the second phase which ends when the growing mode dominates over
the decaying one. Thus, in the third phase, ψ can be given by

ψ(s) ≃ 1
2
ψ jϵ exp

( 2
n − 2

(s − s j)
)
. (5.2.36)

This behaviour is valid until ψ becomes close to ψmin. Thus, s3(t3) can be estimated as

s3 − s2 ≃
n − 2

4
ln

2
ϵ
, (5.2.37)

→ t3 ≃ c t2

(
φmin

φi

)n(n−2)/4

≃ 1
meff(ϕ(t2))

. (5.2.38)

It can be seen that the ratio of the time t3/t2 is equal to t2/t1. During this time span, ϕ(t)
remains almost constant: ϕ(t) ≃ ϕ(t2).

After t = t3, we have exactly the same dynamics: the sequence of the second and
the third phase. This is because ψ does not have a damping term. One period of
“pseudo oscillation” consists of the second and third phase. In one period of pseudo
oscillation, the original field ϕ reduces its field value by an amount of ϵ ≃ (ψi/ψmin)n.
The scaling of ϕ consists of two regime: ϕ = const. and ϕ ∝ t−4/(n−2). If we average the
pseudo oscillation, the scaling solution is obtained. However, the period of the pseudo
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oscillation is much longer than the Hubble time scale and one can not approximate a
pseudo solution as a scaling solution in many cases of interest.

Finally, we show qualitative differences between the scaling solution and the pseudo
scaling solution. In the case of the scaling solution, the all terms in the equation of motion
(the kinetic term, the Hubble friction term and the potential term) are comparable. If
the potential is not monomial, the motion of ϕ deviates from the scaling solution as
soon as the dominant term of the potential changes. On the other hand, in the case
of the pseudo scaling solution, the kinetic and the Hubble friction term dominate over
the potential term in most time. Thus, even after the dominant term in the potential
changes the motion still follows the pseudo scaling solution until the potential term
becomes comparable to the kinetic or the Hubble friction term.

The case with Hubble mass

Here we give brief comments on the case where the Hubble mass term exists in the
potential:

V =
ch

2
H2ϕ2 +

λ
n
ϕn, (5.2.39)

with ch being a constant. The equation of motion for ϕ is given by

ϕ̈ + 3Hϕ̇ + chH2ϕ + λϕn−1 = 0. (5.2.40)

In this case, the equation of motion for the rescaled field ψ is the same with Eq. (5.2.7)
except the constant parameter µ2. Now, µ2 is given by

µ2 ≡ 2(6p − 3pn + n)
(n − 2)2 + chp2. (5.2.41)

Note that in the case of n = nc, the equation of motion becomes

ψ′′ +

(
−36 + ch(n + 2)2

9(n − 2)2

)
ψ +

(n + 2)2

9(n − 2)2

λ

H2
i

ψn−1 = 0. (5.2.42)

If |ch| ≪ 1, the Hubble mass term does not qualitatively affect the dynamics of pseudo
scaling solution. On the other hand If |ch| ≳ 1, the initial position of ϕ cannot be taken
freely because the position of ϕ is fixed during the inflation. In particular, if ch ≳ 1, we
have ϕi = 0 and no dynamics is expected.

Let us consider the negative Hubble mass case ch ≲ −1. In such a case, the initial
position of ϕ is given by the minimum of the potential:

ϕH =

(
−chH2

λ

)1/(n−2)

. (5.2.43)
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After the inflation, ψ oscillates around ψmin. The initial condition ϕi ∼ ϕH leads a
consequence that ψ does not pass around the origin. The oscillation time scale of ψ
becomes an order one in terms of s = ln(t/ti). Thus, the original field ϕ follows the
temporal minimum of the potential ϕH(t) ∝ t−2/(n−2) with oscillation around it . The
time scale of this oscillation is close to the Hubble time scale. One can see that the case
ch ≲ −1 and |ch| ≪ 1 are qualitatively different.

Let us consider the dynamics more closely. The initial amplitude of oscillation △ϕH

around the temporal minimum of the potential ϕH depends on the origin of the Hubble
mass term. One example of the Hubble mass term comes from the Planck suppressed
interactions

−L ⊃
ϕ2

6M2
P

(ck

2
İ2 + cvVinf(I)

)
(5.2.44)

where MPL denotes the reduced Planck mass and ck, cv are constants of order unity. I and
Vinf indicate the inflaton and the inflaton potential respectively. During the inflation,
we have ch = cv. After inflation, the inflaton starts to oscillate and both the kinetic term
and the potential term have comparable energies. If the inflaton oscillates harmonically,
ch = (ck + cv)/2 holds. The shift of the coefficient ch from the inflation ere to the inflaton
oscillating era occurs in time scale of the inflaton mass. Thus, in general ϕ cannot track
the temporal minimum just after the inflation [139]. The oscillation amplitude △ϕH

around the temporal minimum of the potential ϕ is expected to be ∼ O(ϕH) 6. Another
example of the Hubble mass term comes from the coupling to the Ricci scalar R

−L = cR

24
ϕ2R. (5.2.45)

During inflation we have ch = cR, and during the inflaton oscillating era we have
ch = cR/4 in average 7 if the inflaton harmonically oscillates. In this case, the oscillation
amplitude △ϕH is also expected to be ∼ O(ϕH).

The amplitude △ϕH decreases as the universe expands:

H(△ϕ)2 ∝ a−3, (5.2.46)

→ △ϕ ∝ t(1−3p)/2, (5.2.47)

where we use the number density (frequency × amplitude2) conservation. From this,
we can obtain the following scaling for the ratio of the oscillation amplitude △ϕ and the
temporal minimum:

△ϕ
ϕH
∝ t2(nc−n)/(n−2)(nc−2). (5.2.48)

6 Even if ck = cv, ϕ cannot trace the temporal minimum [139].
7 R oscillates between positive and negative values.
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For nc > n, the oscillation amplitude decreases compared to the temporal mimimum.
In such a case, ϕ safely relaxes to the temporal minimum of the potential. On the other
hand, for nc < n, the amplitude increases compared to the temporal minimum. In such
a case, the oscillation of ϕ does not vanish. In the case of n = nc, ψ oscillates around
the temporal minimum and never passes through the origin if ∆ϕ ≲ ϕH initially.This
fact is important for the PQ symmetry restoration [138] because if the PQ field does not
oscillate around the origin, the effects of non thermal trapping becomes negligible.

5.2.2 Implications of Pseudo Scaling Solution on the PQ Cosmology

So far, we have seen general properties of the pseudo scaling solution. Here, we apply
the pseudo scaling solution to the PQ cosmology. There are two advantages of the
pseudo scaling solution to the PQ cosmology.

First advantage of the pseudo scaling solution is that even if the PQ field has an
initial value ϕi much larger than the PQ scale Fa, the PQ field does not oscillate around
the origin. As a result, the trapping of the PQ field at the origin can be avoided. If
the PQ field has a large initial value ϕi ≫ Fa. the cold dark matter isocurvature SCDM

becomes suppressed by the ratio Fa/ϕi as is mentioned before. Then, the constraint
on the inflation scale becomes relaxed. This advantage is also provided by the case of
the scaling solution and the case of the negative Hubble mass. However, the second
advantage below is unique to the pseudo scaling solution.

Second advantage is that even if the potential have lower power terms ϕn(n < nc),
the PQ field follows the pseudo scaling solution for a long time compared to the cases
where the potential term is always effective in the equation of motion. In the case of
the scaling solution and the case of the negative Hubble mass, the potential term is
comparable to the kinetic or the Hubble friction term in the equation of motion. As a
result, when the dominant term of the potential changes to lower power of n, the PQ
field starts to oscillate. The oscillation of the PQ field causes the non thermal trapping
of the PQ field at the origin which results in a cosmological disaster if the domain wall
number is greater than one.

Below, we summarise the second advantage. Then, we consider the constraint on
the inflation scale in a simple setup.

The delay of the oscillation in the pseudo scaling solution

Here we show that the pseudo scaling solution can be more powerful in solving the
domain wall problem than the case of the scaling solution and the negative Hubble
mass. The advantage of the pseudo scaling solution is that even if the potential has
additional terms, the PQ field tends not to oscillate once the PQ field follows the pseudo
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scaling solution. The oscillation of the PQ field may cause the trapping of the PQ field
at the origin which is disfavoured if NDW > 1. To see this advantage, let us consider the
following potential as an example

V =
λl

l
ϕl +

λ
n
ϕn, (5.2.49)

where we assume n, nc > l and l > 2. The dominant term of the potential changes at
ϕc ≡ (λl/λ)1/(n−l). In the regionϕ≫ ϕc, the potential termϕn dominates over theϕl term.
On the other hand, in the region ϕ ≪ ϕc, the opposite holds. First, let us consider the
scaling solution case n > nc. If the initial value ofϕ is larger thanϕc, the fieldϕ obeys the
scaling solution at first. When ϕ crosses ϕc, the dominant term of the potential becomes
ϕl. Then, ϕ start to oscillate around the origin with an amplitude ∼ ϕc. This is also the
case with the negative Hubble mass. If ϕc ≫ Fa holds, the non trapping trapping will
occur (see sec. 3.2).

On the other hand, in the case of the pseudo scaling solution n = nc, the dynamics
becomes dominated by the ϕl term when the Hubble parameter becomes Hl:

Hl√
λ
≡

(
λl

λ

) n−2
2(n−l)

= ϕ
n−2

2
c . (5.2.50)

We can derive this as follows. In terms of the rescaled field ψ, the effective potential can
be written as

Veff(φ) =
µ2

2
ψ2 +

λlp2

lH2
i

(Hi

H

) 2(n−l)
n−2

ψl +
λp2

nH2
i

ψn. (5.2.51)

The amplitude to ψ is given by ≃ ψmin. The potential term ψl becomes effective once the
condition

λl

H2
i

(Hi

H

) 2(n−l)
n−2

ψ2
min ∼ O(1), (5.2.52)

holds. This condition is equivalent to Eq. (5.2.50). Suppose, for example, the ϕl term
starts to dominate the dynamics in the second phase t1 < t < t2, the field value of the
PQ field at H = Hl is estimated as

ϕC ≡ ϕ
∣∣∣
H=Hl
≃
ϕc

ϕi
ϕc. (5.2.53)

After H = Hl, the PQ field starts to oscillate with an amplitude ϕC. Note that the
amplitude ϕC is suppressed by the factor ϕl/ϕi compared to the scaling solution case ϕl.
If ϕC < Fa, the PQ field will oscillate around Fa not the origin. Thus, in this respect, the
symmetry restoration is less likely to occur in the pseudo scaling case compared to the
scaling solution and the negative Hubble mass case.
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Constraints on the inflation scale

We have seen that if the PQ field obeys the pseudo scaling solution, the PQ symmetry
restoration is likely to be avoided even if the initial field value ϕi is much larger than the
PQ scale Fa. Here, we derive constraints on the inflation scale in the case of the pseudo
scaling solution. To be concrete, let us consider the case where the inflation oscillates
harmonically during the inflaton dominated ere (p=2/3). Then the critical value of the
potential power becomes nc = 6. We consider the following potential

V ⊃ g4

3M2
∗
|ϕ|6, (5.2.54)

where g denotes a coupling constant and M∗ is a cut off scale. During inflation, the
effective mass of ϕ must not be larger than the Hubble parameter otherwise, the PQ
field moves during the inflation. This condition is given by

ϕi <

√
M∗Hinf

g
. (5.2.55)

We parameterise the initial field value of ϕ as

ϕi ≡ ζ
√

M∗Hinf

g
, (5.2.56)

with ζ being a parameter not greater than one. In this case, the isocurvature perturbation
of the cold dark matter is suppressed by a factor ϕi/Fa compared to Eq. (5.1.2) and given
by

SCDM ≃ 10−5θi

( Fa

1012GeV

)1.19 ( M∗
1019GeV

)−1/2 ( Hinf

109GeV

)1/2

× g
ζ
≲ 0.9 × 10−5. (5.2.57)

where the right hand side denotes the observational constraint [16]. If g/ζ or Fa is
small, the constraint on the inflation scale becomes relaxed compared the ordinary case
Eq. (5.1.2) though this relaxation is also expected in the case of the scaling solution.

Next, let us consider the constraint on the additional potential terms. To be concrete,
let us consider the following potential

V = g4

[
κ2

(
|ϕ|2 − v2

)2
+
|ϕ|6
3M2

∗

]
, (5.2.58)

where κ is a constant parameter and v denotes a mass scale around Fa. The dominant
term in the potential changes at ϕc ∼ κM∗. In the case of the scaling solution or the
negative Hubble mass, the PQ field oscillates around the origin after ϕ = ϕc and the
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non thermal restoration of the PQ symmetry will occur provided ϕc ≫ Fa,. On the other
hand, in the case of the pseudo scaling solution, if the condition

ϕC ≡
ϕc

ϕi
ϕc =

κ2M2
∗

ϕi
≲ Fa (5.2.59)

is satisfied, the PQ field will not oscillate around the origin and the symmetry restoration
can be avoided 8 . We can see that the the symmetry restoration is less likely to occur
compared to the case of the scaling solution or the negative Hubble mass (κM∗ < Fa).

5.2.3 Conclusion of the pseudo scaling solution

In this section, we have seen the properties of the pseudo scaling solution and how this
solution can relax the constraint on the inflation scale in PQ cosmology.

If the PQ field has a large initial value compared to the PQ scale Fa, the constraint
on the inflation scale is relaxed. However, in such a case, the PQ field tends to oscillate
around the origin with a large initial amplitude. Then, the PQ symmetry will be non
thermally restored. If the PQ field obeys the pseudo scaling solution, this is not the
case. If a scalar field obeys the pseudo scaling solution, the amplitude of a scalar
field decreases without oscillating around the origin of the potential. Even when the
dominant term of the potential changes, the scalar field continues to obey the pseudo
scaling solution. This feature is pleasant for the PQ field motion because the PQ field
can have a large initial value without the non thermal trapping.

5.3 Multi fields solution

In this section, we consider a variant type of the scenario that suppresses the quantum
fluctuation in the axion direction. We introduce multi PQ fields that play different roles.
We assume that a PQ field has a large field value compared to the PQ scale during
the inflation. The PQ symmetry is broken at present by another PQ field whose phase
direction corresponds to the axion field. As a result, the quantum fluctuation in the
axion direction can be suppressed as we see below. Since the PQ symmetry is likely
restored by the dynamics of the PQ field (see Sec. 3.4). we also discuss whether the PQ
symmetry restoration can be avoided.

We apply this mechanism to the DFSZ axion model in which there are two Higgs
doublets with PQ changes. In particular, we consider the Higgs inflation scenario [25] in
which the Higgs boson plays the roll of the inflaton. The DFSZ model has a domain wall

8 Here, we assume that the PQ field goes to the region ϕ < Fa in time interval t1 < t < t2 for simplicity.
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number greater than one. In such a case, the PQ symmetry must not be restored after the
inflation otherwise axion domain walls lead a cosmological disaster (see Sec. 3.2). If the
PQ symmetry is not restored, the inflation scale is bounded from above, which usually
excludes high scale inflation models including the Higgs inflation. In our scenario,
the PQ symmetry is mainly broken by the Higgs fields during the inflation. After the
inflation, the PQ field which dominantly breaks the PQ symmetry becomes different
from the Higgs fields. As a result, the isocurvatur perturbation of the axion cold dark
matter is suppressed.

We first explain the mechanism by using a simple toy model in Sec. 5.3.1. Then, we
consider the Higgs inflation scenario in Sec. 5.3.2.

5.3.1 Toy model analysis

Here, we explain our idea using a toy model. Let us consider the model with two PQ
fields ϕ and S that are gauge singlets and have opposite PQ charges. Then we assume
the following Lagrangian

L = |∂µϕ|2 + |∂µS|2 − V − λ(ϕ2S2 + h.c.), (5.3.1)

where the coupling λ can be taken real and positive without loss of generality, and

V = λϕ

(
|ϕ|2 − v2

a

2

)2

+m2
S|S|2 + λS|S|4 + λϕS|ϕ|2|S|2. (5.3.2)

Here, we assume coupling constantsλϕ, λS and m2
S are real and positive. We also assume

λϕS < 2λ for simplicity. The parameter va is assumed to be of order of the PQ scale. The
stability of the potential at large |S| and |ϕ| is ensured by the condition

λϕλS > (λ − λϕS/2)2. (5.3.3)

A term promotional to ϕS can be avoided by a Z2 symmetry under which only S
transforms as S → −S. The minimum of the potential exists at S = 0 and |ϕ| = va/

√
2.

The PQ scale Fa and va are related as Fa = va/NDW with NDW being the domain wall
number. At the minimum of the potential, the massless mode, axion, is exactly the
phase direction of ϕ:

ϕ =
va√

2
exp

(
i

a
va

)
, (5.3.4)

where a denotes the axion.
However, the role of ϕ and S are inverted is S has a large field value compared to

that of ϕ. In fact S can have a large field value during the inflation. For examle, the
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value of S can be as large as |S| ∼ Hinf/
√
λS during the inflation. S can be the inflaton

by, for example, adding non-minimal couplings to gravity [25]. Let us parameterise the
phases of ϕ and S as

ϕ =
vϕ√

2
exp

(
i
aϕ
vϕ

)
, (5.3.5)

S =
vS√

2
exp

(
i
aS

vS

)
, (5.3.6)

where v• is assumed to be real and a• parameterise the phase of the corresponding field.
At the vacuum where the potential takes the minimum value, vϕ = va and vS = 0 hold.
However, vϕ and vS may not be the same with the vacuum values in early epoch of the
universe. We assume that initially S has a non zero field value vS which is much larger
than vϕ. In such a case vϕ is given by

vϕ ≃ max

va,

√
2λ − λϕS

2λϕ
vS

 . (5.3.7)

The massless mode, which we denote by a consists of the combination of aϕ and aS

and is given by

a ≃ aS −
vϕ
vS

aϕ, (5.3.8)

which is dominated by the phase of S. The field “a” acquires quantum fluctuations
∼ Hinf/2π during inflation. On the other hand the orthogonal component, which is
dominated by aϕ, has a mass of

m2
aϕ ≃ λv2

S. (5.3.9)

Therefore, if maϕ is larger than the Hubble scale during inflation, the massive mode
mainly consisting of aϕ does not develop quantum fluctuations during the inflation.
This condition is given by

λ ≳
(Hinf

vS

)2

. (5.3.10)

aϕ acquires quantum fluctuations through the small mixing with a which is given by

δaϕ
aϕ

∣∣∣
inflation

≃ Hinf

2π
vϕ
vS
. (5.3.11)

The axion isocavature fluctuation after vϕ and vS settle down at the vacuum value can
be estimated as (

δaϕ
aϕ

)
≃ Hinf

2πvSθi
. (5.3.12)



80 CHAPTER 5. SUPPRESSION OF ISOCURVATURE PERTURBATION

Compared to the standard scenario in Eq. 5.1.1, the isocurvature perturbation is sup-
pressed by the factor ∼ Fa/vS ≪ 1. Since we do not introduce explicit PQ symmetry
breaking terms, there is always a massless mode if the PQ symmetry is spontaneously
broken. However, the massless mode during the inflation does not have to be the same
as that in the present universe. In our scenario, the axion at present was massive during
the inflation, while the massive mode at present was massless during the inflation.
Then, the cold dark matter isocurvature perturbation is given by

SCDM ≃ 1 × 10−5θi

( Fa

1012 GeV

)0.19 ( Hinf

107 GeV

) (Fa

vS

)
≲ 0.9 × 10−5. (5.3.13)

where the right hand side indicates the observational constraint [16]. Thus, the inflation
scale as large as Hinf ∼ 1013 GeV can be allowed with vS ∼ 1018 GeV even if the axion is
the dominant component of the cold dark matter.

In this scenario, S has a large initial field value and starts to oscillate after the inflation,
which must decay into standard model particles. The oscillation of S potentially cause
resonant particle production of axions [108] or may induce the dynamical motion of
ϕ. Thus, we have to check whether this scenario can be consistent with the present
universe or not taking the dynamics of S and ϕ after inflation into account. We denote
the frequency of S after the onset of the oscillation as mosc

S .
First, we consider the axion production due to the oscillation of S. If the condition

√
λvS

mosc
S

< 1, (5.3.14)

is satisfied, the axion production of the broad resonance type is avoided even just after
the onset of the oscillation of S 9 . Even if this condition is satisfied, the narrow resonance
would harmfully produce axion particles. However, if the decay rate of S is sizeable,
the narrow resonance is ineffective [140].

Second, let us consider the motion of ϕ induced by the oscillation of S. The potential
of ϕ varies as S oscillates and ϕ would also oscillate around the origin. In such a case
the non thermal trapping of ϕ may (see Sec. 3.4). If both S and ϕ are trapped at the
symmetry enhanced point, the PQ symmetry is restored and our scenario does not work.
The motion of ϕ becomes most violent if S decays just after the onset of the oscillation.
After the decay of S, ϕ will start to oscillate around the origin. This oscillation may
cause the non-thermal trapping. As is discussed in Sec. 3.4, the criteria for ϕ not to be
trapped at the origin due to the non thermal trapping is that the number of ϕ oscillation

9This condition is derived from the adiabaticity of the aϕ. The particles of aS may be resonantly
produced and S may be trapped at the origin. However in such a case, the axion field is given by aϕ and
trapping of S becomes irrelevant for the axion cosmology.
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within one Hubble time does not exceed Ncr ∼ O(102) until the oscillation amplitude of
ϕ reduces to ∼ Fa. This leads to a constraint Hinf√

λϕ fa

n

≲ O(102), (5.3.15)

where n = 1/2(1) for the matter (radiation) dominated back ground evolution and we
assume the condition Eq. (5.3.10) is marginally satisfied:

√
λvS ∼ Hinf.

Finally, let us consider the thermal effects on ϕ. Here, we give a conservative criteria
for the PQ symmetry not to be restored by the thermal effects: the minimum of the
potential for ϕ does not exist at the origin after S decays assuming that S is in the
thermal bath due to the interactions with the standard model sector 10 . In such a case,
the potential of ϕ is stabilised by the interaction with S. The criteria denoted above can
be written as

λϕS ≲ λϕ
( Fa

Tmax

)2

, (5.3.16)

where Tmax denotes the maximum temperature after the inflation.
In order for the PQ symmetry not to be restored, the conditions Eq. (5.3.10), Eq. (5.3.14),

Eq. (5.3.15) and Eq. (5.3.16) are required. Note that these conditions can be satisfied for
reasonable choice of parameters. This is partially because the field ϕ does not necessar-
ily have a large field value during the inflation which weaken the effects of the trapping.
This feature is one advantage over the single PQ field case.

5.3.2 DFSZ axion model with Higgs inflation

Here, we apply our mechanism to relax the constraint on the inflation scale to the Higgs
inflation scenario which demands a high inflation scale Hinf ∼ 1013 GeV within the
DFSZ axion model which has the domain wall number NDW = 6. As is discussed, if
the domain wall number is greater than one, high scale inflation scenarios are usually
excluded by the isogurvature constraint Eq. (5.1.1).

The DFSZ axion model [36, 37] contains the PQ charged two Higgs doublets (see
Sec. 2.4.2). In this model, S2 in the toy model Eq. (5.3.1) would be identified the gauge
invariant combination of the Higgs doubled HuHd. Higgs inflation models requires
non-minimal couplings to the gravity. The action in the Jordan frame is given by

S =
∫

d4x
√
−gJ

(
Lg +LJ − VJ +L(SM)

J

)
, (5.3.17)

10 Note that initially the energy density of S dominates over that of ϕ. Just after S decays, the energy
density of the radiation is expected to be much larger than ϕ. Even if the total sector reaches the thermal
equilibrium state, the PQ symmetry will be broken by the field value of ϕ if the criteria is satisfied.
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where

Lg =

(
M2

P

2
+ ξu|Hu|2 + ξd|Hd|2

)
RJ, (5.3.18)

LJ = |DµHu|2 + |DµHd|2 + |∂µϕ|2, (5.3.19)

VJ = m2
u|Hu|2 +m2

d|Hd|2 + (λϕ2HuHd + h.c.)

+ λu|Hu|4 + λd|Hd|4

+ λud|Hu|2|Hd|2 + λ′ud|HuHd|2

+ λuϕ|Hu|2|ϕ|2 + λdϕ|Hd|2|ϕ|2 + V(|ϕ|), (5.3.20)

V(|ϕ|) = λϕ
(
|ϕ|2 − v2

a

2

)2

, (5.3.21)

where L(SM) denotes the standard model Lagrangian except the Higgs self interactions.
RJ indicates the Ricci scalar and the objects with subscript J represents those in the
Jordan frame. The ξ• denotes a coupling constant. Here we assume H(u/d) couples
to (up/down)-type quarks. We assign the PQ charge of ϕ to be one. The coupling
(λϕ2HuHd + h.c.) mediates the PQ charge to the standard model. In this model, the
domain wall number NDW is equal to 6. Thus, the PQ symmetry must not be restored,
otherwise stable domain walls lately dominate the universe (see Sec. 3.3).

In the present vacuum, the PQfieldϕ obtains a vacuum expectation value |ϕ| = va/
√

2
and the two Higgs doublets obtains electroweak scale vacuum expectation values. We
assume va is of order of the PQ scale. In such a case, the axion consists of a combination
of the phases of Hu, Hd and ϕ:

a ≃ aϕ −
sin 2β

va
(vdau + vuad) , (5.3.22)

where we define

H0
u =

vu√
2

exp
(
i
au

vu

)
, H0

d =
vd√

2
exp

(
i
ad

vd

)
, ϕ =

vϕ√
2

exp
(
i
aϕ
vϕ

)
, (5.3.23)

and tan β ≡ vu/vd. Note that the axion mainly consists of aϕ and the mixing is suppressed
by the ratio ∼ vu/d/Fa. Another massless mode, aG ≡ cos βad − sin βau is eaten by the Z
boson and the other orthogonal mode in the phases becomes massive, which is identified
as the pseudo scalar Higgs that we denote as ah.

Let us consider a case where vu/d takes a value much larger than Fa. In such a case,
the axion can be identified as

a ≃ cos βau + sin βad −
vϕ

v sin 2β
aϕ, (5.3.24)
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where v ≡
√

v2
u + v2

d. In fact, in the Higgs inflation scenario vu/d can take a large value
during the inflation. As a result, the axion isocurvature perturbation can be suppressed
as is the case with the toy model in the previous subsection.

From now on, we briefly review the Higgs inflation scenario within the two Higgs
doubled model. A detailed study of the Higgs inflation with the two Higgs doublets
can be found in Ref. [141]. After the conform transformation gE

µν = Ω
2gJ
µν where

Ω2 = 1 +
2ξu|Hu|2

M2
P

+
2ξd|Hd|2

M2
P

, (5.3.25)

and the subscript E represents the Einstein frame, the acion can be rewritten as

S =
∫

d4x
√−gE

(
M2

P

2
RE +LE − VE +L(SM)

E

)
. (5.3.26)

The scalar potential in the Einstein frame is given by

VE(Hu,Hd, ϕ) =
VJ

Ω4 . (5.3.27)

During inflation, the quartic terms of Hu and Hd are relevant and that can be written as

VE

M4
P

=
λuv4

u + λdv4
d + λ̄udv2

uv2
d

4(1 + ξuv2
u + ξdv2

d)2
. (5.3.28)

with λ̄ud ≡ λud + λ′ud. We can see that if vu/d ≫ MP/
√
ξu/d, the potential becomes almost

flat. As we can see later, terms involving ϕ do not affect the dynamics of the inflation.
A stable path of the inflation exists along

v2
u

v2
d

=
2λdξu − λ̄udξd

2λuξd − λ̄udξu
, (5.3.29)

if 2λdξu − λ̄udξd > 0 and 2λuξd − λ̄udξu > 0. The potential energy for the inflaton can be
given by

VE

M4
P

=
λuλd − λ̄2

ud/4

4(λuξ2
d + λdξ2

u − λ̄udξuξd)

(
1 − e−2χ/

√
6MP

)2
, (5.3.30)

where χ denotes the canonically normalised inflaton field. In the large field limit
(v≫MP/ξ), ξ is given by

χ =

√
3
2

MP log
(
1 +

ξuv2
u

M2
P

+
ξdv2

d

M2
P

)
. (5.3.31)



84 CHAPTER 5. SUPPRESSION OF ISOCURVATURE PERTURBATION

Note that the Higgs inflation scenario in the two Higgs doublet model is essentially
the same to the case with a single Higgs double case. For simplicity, we assume
λu ∼ λd ∼ λud ∼ λ′ud and ξu ∼ ξd. We denote λeff and ξeff as typical values of them. The
typical values of vu/d during the inflation is given by vh ∼ 10MP/

√
ξ. To reproduce the

density perturbation obtained from the CMB observation [16],

ξ ∼ 5 × 104
√
λeff, (5.3.32)

must hold. We expect λeff to be O(1) to explain the Higgs boson mass of 125 GeV.
However, the running effects may reduce the λeff at high scale [142, 143].

Next, let us consider the behaviour of the PQ field ϕ during the inflation. The
dynamics of the PQ field ϕ is qualitatively the same to the toy model case. During the
inflation, ϕ obtains a field value:

vϕ ≃ max

va,

√
λ
λϕ

vh

 . (5.3.33)

aϕ obtains a mass of

m2
aϕ ≃

λv2
h

Ω2 ≃
λM2

P

ξ
. (5.3.34)

To suppress the quantum fluctuation of aϕ during inflation, the condition

λ ≳
ξH2

inf

M2
P

, (5.3.35)

must be satisfied. The condition for the PQ symmetry not to be restored due to the
thermal trapping, the following condition is imposed (see Eq. (5.3.16))

λuϕ, λdϕ ≲ λϕ
( Fa

Tmax

)2

, (5.3.36)

where the maximum temperature of the universe Tmax can be as high as ∼ 1013 GeV in
Higgs inflation case [121, 144, 145].

Finally let us consider the quantum fluctuation of the axion. During inflation, the
massless mode is dominated by the pseudo scalar Higgs ah, which develops quantum
fluctuations. It should be noted that the canonically normalised field is ãh ≡ ahMP/

√
ξvh.

Thus, the quantum fluctuation is develops as δãh ≃ Hinf/2π. On the other hand, the
mixing between aϕ and ah is given by ∼ vϕ/vh. Then, we can estimate the effective
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fluctuation of aϕ to be δaϕ/vϕ ∼
√
ξHinf/(2πMP). This gives the axion isocurvature

fluctuation as

δaϕ
aϕ
∼
√
ξHinf

2πMPθi
. (5.3.37)

The cold dark matter iso curvature perturbation SCDM is given by (Eq. 5.3.13) with a
replacement vS → MP/

√
ξ. Conditions for the PQ symmetry not to be restored can

be also rewritten by this replacement vS → MP/
√
ξ. We can see that the constraint

is significantly relaxed. If Fa is smaller than 1012 GeV or θi is smaller than O(1), the
cosmological constraint can be satisfied.

5.3.3 Summary of the Multi fields solution

In this section, we have shown a way to suppress the axion isocurvature perturbation
based on the dynamics of the multi PQ fields. If a PQ field has a large field value during
inflation and another PQ fields breaks the PQ symmetry at present time, the axion
isocurveture can be suppressed. In this mechanism, the PQ symmetry is less likely to
be restored because some PQ fields can have relatively small field values which tends
to avoid the non thermal trapping. Especially, this mechanism can work in the Higgs
inflation scenario within the DFSZ model. High scale inflation scenarios such as the
Higgs inflation scenario are within a reach of proposed future CMB observation [105] .
On the other hand, the DFSZ model is one simple possibility of the PQ models. Thus,
it seems interesting that the Higgs inflation within the DFSZ model can work without
the PQ symmetry restoration.

So far, we have considered the quartic interaction term between the PQ fields.
There are other possibilities. For example, let us consider the case with the cubic
term V = µϕHuHd with µ being a some mass scale. During inflation, ϕ settles around
ϕ ∼ µ/λHϕ and the phase direction of ϕ obtains a mass of ∼ λHϕv2

h where we denote λHϕ

as a typical quartic coupling between the Higgs and ϕ. If µ/λHϕ ≲ Fa, ϕ will not pass
through the origin after inflation. As a result the PQ symmetry restoration due to the
non thermal trapping can be avoided. The higher dimensional teams may also affect
the dynamics of the PQ field.





Chapter 6

Conclusion

In this thesis, we have considered the cosmology of the Peccei-Quinn models. We have
paid particular attention to the dynamics of the PQ field.

First, we have studied the dynamics of the PQ field after the PQ symmetry is
restored at some epoch in the universe. When the thermal mass of the PQ field becomes
comparable to the negative mass at the symmetry enhanced point, the PQ field starts
to oscillate around the minimum of the potential. The oscillation of the PQ field often
dominantly decays into relativistic axion particles. Such produced axions become a
part of the dark radiation component whose energy density is tightly constrained by
the CMB observations. We have found that the constraint on the axion overproduction
can be relaxed by taking thermal dissipation effects into account. We have shown even
if the PQ field oscillation once dominates the universe, the energy of the PQ field can
be converted to the thermal plasma in the universe owing to the thermal dissipation
effects and amount of axion dark radiation can by suppressed. This scenario works if
the potential mass scale around the symmetry enhanced point is larger than O(10) TeV
- O(10) PeV for Fa ∼ 109 GeV - 1010 GeV. This parameter region includes a class of high
scale supersymmetric PQ models.

Second, we have considered scenarios in which the PQ symmetry is always broken
by field values of the PQ fields, which is indispensable for models with the domain wall
number greater than unity. This is because otherwise stable domain walls overclose the
universe. In such a scenario, the axion field acquires quantum fluctuations of order of
the inflation scale during inflation since the axion is almost massless. Such quantum
fluctuations induce the cold dark matter isocurvature perturbation, which is tightly
bounded by the CMB observations. Since the size of quantum fluctuations is of order of
the inflation scale, the bound is imposed on the inflation scale: ≲ 107−10 GeV. We have
proposed two new scenarios in which the constraint on the inflation scale is relaxed
without the PQ symmetry restoration.
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The first scenario is based on the pseudo scaling solution, which is a peculiar be-
haviour of the scalar motion different from the scaling solution or oscillation solution.
We have summarised the properties of the pseudo scaling solution. Then, we have
applied this mechanism to the PQ cosmology. We have shown that if the PQ field once
obeys the pseudo scaling solution, the constraint on the inflation scale is likely to be
relaxed and the PQ symmetry restoration is not likely to occur.

In the second scenario, we have considered the dynamics of multi PQ fields. We
have found that if one PQ field had a large field value during inflation and another
PQ field dominantly breaks the PQ symmetry at the present time, the constraint on the
inflation scale can be relaxed avoiding the PQ symmetry restoration. We have applied
this mechanism to the DFSZ axion model, whose domain wall number is greater than
unity. We have shown that this scenario can work within the framework of the Higgs
inflation, whose inflation scale is high ∼ 1013 GeV.

We have seen variety of the dynamics of the PQ field. We hope that continuous
efforts to investigate such possibilities will lead us to the more fundamental theory of
the nature.
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Appendix A

Axion mass

Here, we derive the axion mass in Eq. (2.3.9). In the energy scale lower than the QCD
scale, the strong gauge coupling constant becomes non-perturbative. In such a region,
the QCD sector can be described by an effective theory called as the chiral perturbation
theory (see [146] for a review). The properties of the axion can also be described by the
framework of the chiral perturbation theory.

In the following, we briefly review the chiral perturbation theory. Then, we derive
the axion mass.

A.1 Chiral perturbation theory

The chiral perturbation theory(ChPT) makes use of the symmetry in the QCD sector.
Thus, we first consider the symmetry in the QCD sector. Then, we introduce the ChPT.

Just above the QCD scale, the strong sector contains the gluon field and three light
quarks (up, down and strange). If we neglect the masses of these quarks due to their
smallness (this procedure is called as “chiral limit”) , the Lagrangian can be written as

L =
∑

i=u,d,s

(q̄R
i i /DqR

i + q̄L
i i /DqL

i ) − 1
4

GG, (A.1.1)

where u, d, s denote up, down and strange quarks respectively and G denotes the field
strength tensor of the gluon. L/R indicates a left/right handed quark field. This La-
grangian has a classical global U(3)L ×U(3)R symmetry in which the Left/Right handed
quarks are rotated by U(3)L/R in the flavour space:

uL/R

dL/R

sL/R

→ UL/R


uL/R

dL/R

sL/R

 , (A.1.2)
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with UL/R being the U(3) matrix. We can define the (axial vector) vector symmetry
U(3)(A)V in which UL and UR are chosen as the (opposite) same rotation. The classical
global symmetry in the Lagrangian can be decomposed into SU(3)V × SU(3)A ×U(1)V ×
U(1)A. In quantum level, U(1)A is broken by the anomaly. Thus, SU(3)V×SU(3)A×U(1)V

is the symmetry in the theory.
It was shown that in the chiral limit, SUV(3) ×U(1)V cannot be broken [147]. On the

other hand, if SU(3)A is not broken, the states are doubly degenerated: if the generator
in SU(3)A is applied to an arbitrary state, one would have a degenerate state with an
opposite parity. However, such a doubling in states is not observed. Thus, SU(3)A

symmetry should be broken in the present vacuum and associated Numbu-Goldstone
modes are mesons.

There is a method which successfully describes the low energy QCD dynamics
based on the symmetry arguments: the chiral perturbation theory [148]. The effective
Lagrangian in the chiral perturbation theory is constructed based on the symmetry
SU(3)V ×SU(3)A×U(1)V taking account of spontaneous symmetry breaking. One build-
ing block of the ChPT is the meson field U(x):

U(x) = exp
[
i
ϕ(x)

fπ

]
, (A.1.3)

ϕ(x) =
8∑

a=1

λaϕa ≡


π0 + 1√

3
η
√

2π+
√

2K+√
2π− −π0 + 1

3η
√

2K0
√

2K−
√

2K̄0 − 2√
3
η

 , (A.1.4)

where λa denotes the generator of SU(3), fπ is a pion decay constant and π, η,K denotes
pion, eta meson and kaon respectively. We define the flavour rotation Under U(3)L ×
U(3)R on U(x) as

U(x)→ URU(x)U†L. (A.1.5)

The lowest order Lagrangian which is invariant under SU(3)V × SU(3)A ×U(1)V can be
written as

Lkin ≡
f 2
π

4
tr[∂µU∂µU†]. (A.1.6)

So far, we have neglected quark mass matrix in the QCD Lagrangian:

−Lmass = q̄RMqL +H.c.. (A.1.7)

If there exists a quark masses, the symmetry SU(3)V×SU(3)A×U(1)V is explicitly broken.
However, the Lagrangian would be invariant if the mass matrix M transformed under
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the flavour rotation as

M→ URMU†L. (A.1.8)

Then, one can construct the LagrangianL(U,M) which is invariant under Eq. (A.1.5,A.1.8).
The lowest order term with respect to M can be written as

LM =
f 2
πB
2

tr(MU† +UM†). (A.1.9)

with a constant B 1 . It should be noted that the Lagrangian Lkin + LM can reproduce
the results of current algebra [148].

We can include the anomolously broken symmetry U(1)A in ChPT. The meson field
matrix is extended to

U(x) = exp

iϕ(x)
fπ
+ i

√
2η′
√

3 fπ

 , (A.1.10)

where η′ denotes the η′ meson. Including instanton effects, the lowest order effective
Lagrangian can be written as [149, 150]:

L = f 2
π

4
tr[∂U∂U†] +

f 2
πB
2

tr(MU† +UM†) − A f 2
π

4Nc
[θ − i log det U]2, (A.1.11)

where Nc = 3 is the number of the color, θ denotes the vacuum angle and A is a constant
parameter. The last term gives a mass to η′.

A.2 Axion mass

The chiral perturbation theory can also describe the PQ model. Just above the QCD
scale, the Lagrangian with axion field can be written as (see Sec. 2.3)

La ⊃
1
2

(∂a)2 +
∑

i=u,d,s

(q̄L
i i /DqL

i + q̄R
i i /DqR)

+
∑

i

[
ci,1

(∂µa)
F

JµA,i −
(
q̄L

i miqR
i exp[ici,2

a
F

] +H.c.
)]

+ c3
a

32π2F
GG̃, (A.2.1)

1The combination tr(MU† −UM†) gives a wrong behaviour under parity.
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where Ji,A denotes the axial current. The replacement:

M→ diag[mie−ici,2
a
F ], (A.2.2)

θ→ θ + c3
a
F
, (A.2.3)

and inclusion of an additional term:

L∂a = +
∑

i

[
ci,1

(∂µa)
F

JµA,i

]
, (A.2.4)

in Eq. (A.1.11) can describe the axion-meson system. In general, the fields a, π, η,K
are not in mass eigen states. Thus, in order to obtain physical particle states, one has
to diagnose the mass matrix. As is mentioned in Sec. 2.3, the following rotation in
Eq. (A.2.1) removes the mass mixing between axion and pions[62, 63] 2 :

qL → exp(−iaQA/F)qL, qR → exp(iaQA/F)qR, (A.2.5)

where q = (u, d, s) and

QA = c0
3

M−1
q

2tr(M−1
q )
, Mq ≡ diag[mu,md,ms]. (A.2.6)

Then, one can obtain physical axion mass:

ma =
fπ0mπ0

Fa

√
zd

(1 + zd)(1 + zd + zs)
≃ 6 meV × 109 GeV

Fa
, (A.2.7)

where fπ0 and m0
π are the pion decay constant and pion mass respectively and

zd ≡
mu

md
≃ 0.568 ± 0.042, (A.2.8)

zs ≡
mu

md
≃ 0.029 ± 0.0003. (A.2.9)

2Here, we neglect the mixing with η′ because it is rather heavy ∼ 1GeV.



Appendix B

Estimation of axion dissipation rate

In this appendix, we estimate the thermal dissipation rate of relativistic axions with soft
momenta p ≪ g2

s T at the one-loop order. The following estimation may be made more
precise by the resummation of many diagrams, but we postpone this task as a future
work.

The dissipation rate of relativistic axion is given by

Γ(dis)
a =

ΠJ(P)
2p0

∣∣∣∣∣
p0=p

. (B.0.1)

where

ΠJ(P) =
α2

s

128π2 f 2
a

∫
P

eiP·x
⟨[
{FaµνF̃a

µν}(x){FaµνF̃a
µν}(0)

]⟩
, (B.0.2)

where ⟨•⟩ ≡ tr[e−βĤ•]/tr[e−βĤ] denotes the thermal average. By performing angular
integrations, one can obtain [130]

ΠJ(P) = f −1
B (p0)

da

8
α2

s

64π5 f 2
a

1
p

∫ ∞

0
dk

∫ ∞

−∞
dk0

∫ k+p

|k−p|
dq kq fB(k0) fB(p0 − k0){ (

ρL(K)ρT(Q) + ρT(K)ρL(Q)
) (

(k + q)2 − p2
) (

p2 − (k − q)2
)
+

ρT(K)ρT(Q)
((

k2
0

k2 +
q2

0

q2

) (
(k2 − p2 + q2)2 + 4k2q2

))
+ 8k0q0(k2 + q2 − p2)

}
, (B.0.3)

where q0 = p0− k0, da = N2
c − 1 = 8, fB is the Bose-Einstein distribution function, and ρT/L

indicates the spectral function for the transverse/longitudinal mode of gauge boson in
the thermal bath.
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To calculate this integral, we approximate the spectral density for the transverse
mode by the Breit-Wigner form:

ρT(P) =
2p0Γp

[p2
0 − ω2

p]2 + [p0Γp]2
; ωp ≡

√
p2 +m2

∞, (B.0.4)

where m∞ indicates the asymptotic mass which is a effective mass of the hard momentum
modes ∼ T. In the case of non-abelian gauge theory with NF flavor, the asymptotic
mass is given by m2

∞ = [C(ad) + NFT(F)]g2
s T2/6 with C(ad) being the adjoint Casimir

and T(F) being the normalisation index. Here we use the rate of large angle scatterings,
Γp ∼ g4

s T3/p2 as the the thermal width Γp [135] . We omit contributions from longitudinal
mode ρL because the loop-integral is typically dominated by a hard momentum ∼ T.
After some calculations, one can obtain the dissipation rate of the axion:

Γ(dis)
a =

α2
s T3

32π2 f 2
a
× C

p2
0

g4
s T2

f (x), (B.0.5)

where x = p0/g4
s T, and the function f can be approximated as

f (x) ≃ da

π2

∫
a

dy
ey

(ey − 1)2

(
y2 − a2)3/2

y

1
2

∫ 1

−1

dϵ

1 + g4
sϵ

√
1 − a2

y2
x
y

y2 − a2 + y2ϵ2 + 2
√

y2 − a2yϵ

x2
(
1 +

√
1 − a2

y2 ϵ
)2

(y2 − a2)2 + 1
, (B.0.6)

with

a = m∞/T, (B.0.7)

and C denotes an uncertain factor. Remember that our estimation of the dissipation rate
is supposed to be an order-of-estimation because it is based on a simplified calculation.
Thus, we introduce the parameter C to take account of the uncertainty. Qualitatively,
f (x) behaves as f (x) ∼ const. for x ≪ 1 and f (x) ∝ x−2 for x ≫ 1. The approximation of
the estimation of f is valid for p < g2T.
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