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Abstract

In this thesis, I study the sign problem appearing in the path-integral approach to strongly-
coupled systems. This problem appears in many interesting systems, such as finite-density
quantum chromodynamics (QCD), the repulsive Hubbard model away from the half filling,
frustrated spin systems, and so on. In these systems, the Euclidean classical action S takes
complex values, and the oscillatory nature of the Boltzmann weight e−S causes the serious
technical problems in ab initio numerical computations. In this study, I use the recently
developing technique, called the path integral on Lefschetz thimbles, in order to understand
the essence and difficulties of the sign problem in the path-integral formalism.

The basic idea of the Lefschetz-thimble method is to deform the integration contours in the
complexified configuration space using Cauchy integration theorem. Under this deformation,
the original oscillatory integral is decomposed into the sum of nicely convergent integrals, and
the sign problem becomes moderate. Each integration cycle in this decomposition is called a
Lefschetz thimble. In this thesis, I first give a concise review on this method, and demonstrate
how it works by computing real-time Feynman kernels for free theories.

Next, I discuss the spontaneous breaking of chiral symmetry in 0-dimensional field theories
without the sign problem. Chiral symmetry breaking is one of the characteristic features of low-
energy QCD spectrum, and it is important to revisit this phenomenon using Lefschetz thimbles.
I developed an efficient way to compute Lefschetz thimbles when a continuous symmetry is
slightly broken due to the small explicit breaking term. This study also elucidates that the
Lefschetz-thimble decomposition is suitable to analyze Lee–Yang zeros in the path-integral
formulation, and the phase structure of the model is discussed for complex coupling constants.

If one tries to analyze finite-density QCD in the same way, the sign problem appears even
at the level of the mean-field approximation. I show that the Lefschetz-thimble decomposition
respects the anti-linearly extended charge conjugation so that the effective potential becomes
manifestly real, and the saddle-point analysis based on this theorem solves the sign problem
appearing in the mean-field approximation. The Polyakov-loop effective model of heavy-dense
QCD is studied with this method as a lucid demonstration. Since all the quarks are heavy in
this model, fermion dynamics is simplified and the mean-field treatment becomes accurate.

The sign problem in finite-density QCD with light flavors is known to become too severe
as the quark chemical potential goes beyond the threshold of pion mass. In order to see what
happens there, I consider the one-site Fermi Hubbard model, which is exactly solvable but
has the severe sign problem in the path-integral expression. In this case, the above mean-field
approximation is not applicable, and I elucidate its reason by studying topological structures
of Lefschetz thimbles. I also show that interference of complex phases among multiple classical
solutions play a pivotal role to understand the sign problem and the correct phase structures
using path integrals. I discuss this interference is also important in the finite-density QCD with
light flavors if the baryon chemical potential exceeds the pion mass.

In order to give a feedback of this finding to other approaches to the sign problem, I re-
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late this newly developing technique, the Lefschetz-thimble path integral, with a conventional
approach to the sign problem, the complex Langevin method. It is known that the complex
Langevin method sometimes does not give correct answers, and I analytically show that the
original complex Langevin method cannot give correct results if interference of complex phases
among classical solutions becomes important. This gives a simple criterion for incorrectness of
the complex Langevin method without doing its numerical simulation, and suggests that the
complex Langevin method is not directly applicable to the finite-density QCD. To resolve this
problem, I propose to modify the complex Langevin method with some technical working hy-
pothesis, and it is numerically tested for the one-site Hubbard model. The original formulation
of the complex Langevin method gives the wrong answer for this model. The modified complex
Langevin method improves the result, but there exists systematic discrepancy, which requires
further systematic studies on its properties.
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Chapter 1

Introduction

Path integral is a useful tool to study strongly-correlated systems, however it sometimes suffer
from the sign problem in its numerical computations. In this thesis, I study the sign problem
by applying the Picard–Lefschetz theory to unveil its essence and difficulties. First, I would
like to give a general introduction to study nonperturbative aspects of quantum statistical
physics using path integrals in Sec. 1.1. In Sec. 1.2, we explain the sign problem appearing
in the finite-density Quantum ChromoDynamics (QCD), and its relevance to neutron stars is
mentioned. The basic idea of the Picard–Lefschetz theory is introduced in order to analyze the
sign problem in Sec. 1.3 via the simple example of the Airy integral. We show the outline of
this thesis in Sec. 1.4.

1.1 Path integral quantization

Path integral is invented as one of the ways to quantize the classical system [1, 2]. The biggest
difference of quantum mechanics from classical mechanics is the existence of interference of
transition amplitudes. In order to deal with it, the Feynman path integral tells us that the
time development of quantum states can be interpreted as a summation of classical amplitudes
exp(iS[x]/~) over all possible spacetime classical paths x(t). That is, we can compute the time
development kernel K(xi, ti;xf , tf ) of a quantum particle in the potential V (x) by performing
the infinite-dimensional formal integration,

K(xi, ti;xf , tf ) =

∫
Dx exp

[
i

~

∫ tf

ti

dt

(
1

2

(
dx

dt

)2

− V (x)

)]
, (1.1.1)

with the boundary condition x(ti) = xi and x(tf ) = xf . This reformulation of the Schrödinger
equation is conceptually interesting, and it becomes easy to observe connection between classical
and quantum mechanics.

By replacing the time t with the imaginary time −iτ , one can study the thermal equilibrium
property instead of the quantum dynamical processes [3]. This relates the d-dimensional quan-
tum systems with (d+ 1)-dimensional classical statistical systems, and we can study statistical
physics using computational techniques of quantum physics and vice versa. In the path-integral
representation, the partition function Z(T ) is given by

Z(T ) =

∫
Dx exp

[
−1

~

∫ β

0

dt

(
1

2

(
dx

dτ

)2

+ V (x)

)]
, (1.1.2)
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2 Chapter 1. Introduction

with the periodic boundary condition x(0) = x(β), and β = 1/T is the inverse temperature.

From the viewpoint of numerical computation, however, there is an outstanding difference
between the real-time formalism (1.1.1) and the imaginary-time one (1.1.2). The integrand of
(1.1.2) is positive definite, which means that we can regard it as a probability density. Instead
of solving the quantum system exactly, we can create the ensemble of spacetime paths x(τ)
according to the Boltzmann weight and solve the system in a stochastic way. This is called the
Monte Carlo simulation of the path integral, and its computational cost scales algebraically with
the system size in this method even when the system consists of many particles. Many thermo-
dynamic quantities can be computed for various systems using the path-integral Monte Carlo
method, such as finite-temperature quantum chromodynamics (QCD) in hadron physics [4],
and liquid helium [5], ultracold atomic gases [6], Bose–Fermi mixtures [7] in condensed matter
physics.

1.2 QCD at finite chemical potential, and sign problem

Quantum ChromoDynamics QCD is a part of the Standard Mode in particle physics, and
is a non-Abelian gauge theory with the color gauge group SU(3). The gauge bosons are called
gluons that belong to the adjoint color representation, while the spin-1

2
particles called quarks

are in the fundamental color representation. QCD describes strong interaction among quarks
and gluons, which are confined inside of hadrons. Therefore, this theory plays a pivotal role to
understand properties of nuclei, compact stars, and also early Universe.

The QCD Lagrangian has quite a simple form,

LQCD = LYM(A) + q
[
( /DA +m)− µqγ4

]
q, (1.2.1)

LYM =
1

4g2
Tr(Fµν)

2, (1.2.2)

where Fµν = ∂µAν−∂νAµ+i[Aµ, Aν ] is the field strength of the SU(3) gauge field, q is the quark
Dirac field, and /D = γν(∂ν + iAν) is the Dirac operator (See, e.g., Refs. [8–11] as a textbook).
Here, µq is the quark chemical potential. In order to study the equation of state of QCD, one
have to compute the partition function

ZQCD(T, µq) =

∫
DADqDq exp

(
−
∫

d4xLQCD

)
=

∫
DADet

[
( /DA +m)− µqγ4

]
exp

(
−
∫

d4xLYM

)
. (1.2.3)

In the second line, quark and antiquarks are integrated out, and we have to take the statistical
average in terms of the gauge field A to find the thermodynamic properties.

Let us first describe the properties of QCD in the vacuum and its spectrum. One of the
remarkable property of QCD as a four-dimensional gauge theory is its asymptotic freedom [12–
14]: The gauge coupling constant g depends on the renormalization scale Q, and the one-loop
renormalization group shows that

αs(Q) =
g(Q)2

4π
=

1

4πβ0 ln(Q2/Λ2
QCD)

, (1.2.4)
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with β0 = (11Nc − 2Nf )/48π2. In QCD, the number of color is Nc = 3, and the number of
fermion flavor isNf = 6, and thus β0 > 0. ΛQCD is the typical energy scale of strong interactions,
and its appearance in quantization is called the dimensional transmutation. The world average
value is ΛQCD = 213(8) MeV when αs is measured at the Z boson mass using the modified
minimal subtraction (MS) renormalization scheme based on the next-to-next-to-leading-order
QCD predictions [15, 16]. This means that the QCD coupling constant becomes logarithmically
weaker as the energy scale Q2 →∞, and this property is called asymptotic freedom. Thanks to
the asymptotic freedom of QCD, we can study the deep inelastic scattering experiments [17, 18]
based on the first-principle computations, and the parton picture inside nucleons can be justified
in high-energy nuclear collisions.

At low energies Q . ΛQCD, physics of strong interaction is much more difficult. Free quarks
and gluons have never been observed even though QCD Lagrangian contains them. Because of
the nature of strong interaction, they cannot live longer than the timescale ∼ 1/ΛQCD. All the
quarks and gluons are confined inside hadrons, and this is called the quark confinement [19].
Thanks to the lattice formulation of gauge theories [19] and its Monte Carlo numerical sim-
ulation [20–22], we have a solid theoretical foundation to study the nonperturbative aspects
of low-energy QCD. Analytical study of nonperturbative gauge theories is still a big dream
in theoretical and mathematical physics. Confinement of color degrees of freedom has a close
relation with topological aspects of gauge theories [23–28]. Indeed, development of supersym-
metric gauge theories elucidates that confining phases have rich topological structures [29, 30].
In order to extend this knowledge for non-supersymmetric cases, we must look more carefully
at the microscopic dynamics of gauge fields, and there is much effort in that direction [31–44].

Let us briefly mention the phenomenological aspects of low-energy QCD spectrum. In the
quark model, conventional hadrons are classified into mesons and baryons:

hadron

{
meson (qq′) · · · π, K, η, etc.
baryon (qqq) · · · N, Σ, Ξ, etc.

(1.2.5)

Mesons are bound states of a quark q and an anti-quark q′, and thus they have no baryon charge
QB = 0. The lightest meson is the pion (π), whose mass mπ is about 140MeV. Baryons are
bound states of three quarks q, and thus they are fermions with the baryon number QB = 1.
The lightest baryon is nucleon N , e.g. proton p or neutron n, whose mass mN is about 940MeV.

It is important to notice that there is a huge difference betweenmπ/2 andmN/3. In the QCD
Lagrangian, the light flavor of quarks, u, d, and s, have approximate chiral symmetry under
q 7→ eiθγ5q because their masses are smaller than the strong scale ΛQCD. At 2 GeV, the current
quark masses of u, d, and s in the MS scheme are mu ' 2.15(15) MeV, md ' 4.70(20) MeV, and
ms ' 93.5(2.5) MeV, respectively [16]. This chiral symmetry SU(nf )×SU(nf ) is spontaneously
broken to SU(nf ) in the QCD vacuum (nf = 2 or 3),

〈qq〉 = (−230 MeV)3, (1.2.6)

and pseudo-scalar mesons, such as pions, can be regarded as Nambu–Goldstone bosons [45, 46].
Because of the small explicit breaking of the chiral symmetry, those Nambu–Goldstone bosons
become massive. The pion mass, mπ ∝

√
ΛQCDmu,d, is parametrically much smaller than ΛQCD,

which sets the natural mass scale of other hadrons.

QCD matters The possibility of existence of quark matters inside neutron stars has been
discussed since the discovery of the asymptotic freedom [47]. Since the coupling constant be-
comes smaller at high energies or densities, quarks and gluons are expected to be liberated from
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confinement. Based on such an idea, a prototype of the QCD phase diagram was proposed in
Ref. [48]. The transition temperature there was given by the limiting temperature of the sta-
tistical model of hadrons, which comes from the exponential growth of hadron resonances [49].
For a modern version of the QCD phase diagram, see Ref. [50].

Finite-temperature QCD at µq = 0 can be studied using Monte Carlo simulations of lattice
QCD [4]. Around the physical quark masses with (2+1)-flavor, lattice QCD suggests that there
is no phase transition between hadron and quark-gluon plasma phases [51–53]. Thermodynamic
functions show rapid crossover around the pseudo-critical temperature Tpc ' 160 MeV, and it
is a big surprise to have a continuity of two seemingly-disparate systems. Only at sufficiently
high temperatures T � Tpc, does the system become weakly coupled plasma. Near the pseudo-
critical temperature, the system is most likely strongly coupled, and the non-perturbative
treatment is inevitable. This system is also studied experimentally by colliding ultra-relativistic
nuclei, and its phenomenology and model study are developing [54].

However, the situation becomes totally different for the finite-density QCD. We have no
lattice QCD simulation of finite-density nuclear matters, and this is because of the big obstacle
called the sign problem. Before its explanation, let us mention physical importance of finite-
density QCD. One way to realize a high-density QCD matter is to mash up nuclei by external
forces, like gravity, and the neutron star is a strongly promising candidate of a laboratory for
its study. We must have rather stiff neutron star cores in order to explain recently observed
two-solar-mass neutron stars [55]. The origin of large magnetic fields of magnetars is also still
veiled. Forthcoming observation of gravitational waves from neutron star mergers is expected to
provide many clues about high-density nuclear matters. Thus, its ab initio calculation becomes
more and more important to understand dense nuclear matters.

Sign problem and Silver Blaze phenomenon At finite µq, the quark determinant becomes
oscillatory complex functions of the gauge field A. In order to see this fact, let us study the
properties of the Dirac spectrum. Let us set D(A, µq) = /DA − γ4µq +m, and consider[

/DA − γ4µq
]
ψn;A,µq = iλn(A, µq)ψn;A,µq . (1.2.7)

Here, iλn(A, µq) is the n-th eigenvalue and ψn;A,µq is its eigenfunction. Let us multiply γ5 from
the left on the both sides of (1.2.7), then we obtain that[

/DA − γ4µq
]
γ5ψn;A,µq = −iλn(A, µq)γ5ψn;A,µq . (1.2.8)

Therefore, det(D(A, µq)) =
∏

n(λn(A, µq)
2 + m2). The quark determinant is positive definite

if µq = 0 because γνDν(A) is anti-Hermitian and λn(A, 0) ∈ R. On the other hand, this does
not hold for µq 6= 0, and λn(A, µq) is complex in general. This means that the integrand of
the QCD partition function does not accept the probabilistic interpretation, and importance
sampling breaks down [56]. This is called the sign problem, and the same problem appears in
many other condensed matter systems [57], such as non-Fermi liquids, the repulsive Hubbard
model away from half filling, frustrated spin systems, etc.

One way to perform the Monte Carlo simulation is to consider the phase-quenched QCD,
defined by

Z|QCD|(T, µq) =

∫
DA

∣∣Det(D(A, µq))
∣∣ exp

(
−
∫

d4xLYM
)
. (1.2.9)

Since there is no oscillatory nature, we can generate the ensemble of the gauge field for this path
integral and perform the Monte Carlo simulation. If the phase-quenched QCD is sufficiently
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“similar” to the finite-density QCD, we can use this ensemble of the gauge fields to study
finite-density nuclear matters and we have no problems in a practical sense.

This is not the case, however. In order to explain this lucidly, we consider the two-flavor
QCD at T = 0. In this case, the phase-quenched QCD is the same with QCD with isospin
chemical potential because |DetD(A, µq)| is realized by assigning the positive chemical potential
+µq to the up quark and the negative one −µq to the down quark. Since /DA is anti-Hermitian,
we find that

det(D(A, µq)) = det
[
− /DA − γ4µq +m

]
=

∏
n

(
λn(A,−µq)2 +m2

)
= det(D(A,−µq)). (1.2.10)

Therefore, |det(D(A, µq))|2 = det(D(A, µq))det(D(A,−µq)) as we mentioned. At T = 0, the
thermodynamic partition function picks up the minimum of the free energy. The lightest hadron
is pion (mπ ' 140 MeV), and it belongs to the three dimensional representation of the isospin.
Therefore, Z|QCD|(0, µq) has a singularity at µq = mπ/2, and the pion condensation appears,
〈π+〉 6= 0, in the phase-quenched QCD for µq > mπ/2.

For QCD at finite baryon densities, nothing must happen at µq = mπ/2 because pion has
no baryon charges. In the hadron spectrum, the lightest baryon is a nucleon (mN ' 940 MeV).
Therefore, ZQCD(0, µq) has the first-order phase transition at µq = (mN−B)/3, which is known
as the nuclear liquid-gas phase transition. Here, B is the nuclear binding energy ' 16MeV. For
µq < (mN −B)/3, the QCD partition function must pick up the QCD vacuum state at T = 0,
but this is highly nontrivial from the consideration on the phase-quenched QCD.

In order to perform the ab initio computation of the finite-density QCD, we have to under-
stand why QCD at low temperatures experiences nothing for µq < (mN − B)/3. Only after
comprehension of this “trivial physics” from the viewpoint of path integral, can we study the
properties of finite-density nuclear matters by using lattice QCD. We must give much effort on
nothing by saying it the “curious incident”, and, in Ref. [58], this fact is called with the funny,
fashionable name “Silver Blaze problem” after the famous story [59] of Sherlock Holmes. There,
“the curious incident of the dog in the night-time” is an essential clue for Sherlock Holmes to
unveil the mystery. It was quite natural that the dog did nothing at ordinary times, however
Holmes said “I had grasped the significance of the silence of the dog, for one true inference
invariably suggests others...”.

In our case, the phenomenological evidence clearly tells us that the partition function has no
singularities at low temperatures for µq ≤ (mN−B)/3, but this becomes a curious incident from
the viewpoint of the quark picture. The hadron spectrum contains the quasi-massless pions.
Since the Dirac spectrum knows it, its real part starts from mπ/2. Naively thinking, quarks can
be excited without any cost for µq > mπ/2, and the thermodynamic state must experience the
phase transition from the QCD vacuum. We must have much imagination and guess the reason
why the quark chemical potential does nothing for mπ/2 . µq . (mN −B)/3. Interestingly, we
can argue that all the phase transitions are hidden by the Silver Blaze problem: The orbifold
equivalence in the large-Nc limit suggests that all the critical points in the QCD phase diagram
must lie inside the pion condensation phase of the phase quenched QCD [60, 61].
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1.3 Lefschetz-thimble approach to the path integral

Now I can concretely state the purpose of this thesis. We would like to understand how the
partition function becomes constant on the chemical potential at T = 0 in the path-integral
formulation. After unveiling its origin and analytical structure, I would like to propose a new
way to solve the sign problem which can explain the Silver Blaze phenomenon.

For this purpose, I apply the Picard–Lefschetz theory to the path integral. The Picard–
Lefschetz theory is a basic technique in the complex analysis with many variables. This theory
is very useful in analyzing the asymptotic behavior of multiple oscillatory integrals [62, 63],
because it gives a suitable extension of the steepest descent method for the one-dimensional
integration. In the context of physics, its usefulness was found out in the study of analytic
properties of the Chern–Simons and Liouville theory [64–66].

In the case of one-dimensional integrals,
∫

dφ exp (−S(φ)/~), the steepest descent path can
be determined by solving the stationary phase condition, Im [S(φ)] = constant, in the complex
plane φ ∈ C. The stationary phase condition is also important even for multiple oscillatory
integrals, and it looks quite suitable for solving the sign problem. In Refs. [67–70], the Monte
Carlo integration on a steepest descent cycle was proposed and numerically tested for scalar
field theories.

Example: Airy integral Its formulation will be reviewed in the following chapter, and let
us quickly remind the steepest descent method in the case of Airy integral. This is the simplest
model to understand the philosophy of the Lefschetz-thimble method. When x ∈ R, the Airy
function is given by

Ai(x) =

∫
R

dφ

2π
exp (−S(φ, x)) , (1.3.1)

S(φ, x) = −i

(
φ3

3
+ xφ

)
. (1.3.2)

If one tries to evaluate this integration literally, this is a hard numerical task because of its
oscillatory nature. Such a hard task is not necessary thanks to Cauchy’s integration theorem.
We can continuously change the integration contour in the complex plane C without changing
the result of integrals.

We show the usefulness of changing the integration contour in Fig. 1.1 for the Airy integral
with x = 1. If we perform the integration on the real axis, we must perform the oscillatory
integral, which integrand is shown with red dashed line in Fig. 1.1 (b). In order to apply the
steepest descent method, we complexify the integration variable, φ ∈ C and find the complex
saddle points:

∂φS(φ, 1) = −i
(
φ2 + 1

)
= 0, =⇒ φ = ±i. (1.3.3)

Let us change the integration contour to the steepest descent path J as shown in Fig. 1.1 (a),
which passes the saddle point φ = +i. In the case of one-variable integrals, the path of steepest
descent can be found by solving

Im [S(φ, 1)] = Im [S(i, 1)] . (1.3.4)

The integrand shows the nice convergence after the deformation of the integration contour, and
it is shown with the blue solid line in Fig. 1.1 (b). Furthermore, the condition (1.3.4) tells us
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(a) Deformation of cycles
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(b) Integrand Re(e−S) on R and on J

Figure 1.1: Effectiveness of the change of integration contours in the Airy integral (x = 1).
(a) Gray region represents the nicely convergent direction Re(S) → ∞, and the blue curve is
the steepest descent path J that connects two distinct convergent directions. (b) Dashed red
and solid blue curves represents behaviors of the integrand Re(e−S) on R and J , respectively.

(a) x = e0.1i (b) x = eπi

Figure 1.2: Steepest descent and ascent paths, J±i
√
x (solid black lines) and K±i

√
x (dashed

orange lines), in the complex φ-plane. Blue blobs show complex saddle points, φ = e±iπ/2
√
x.

that the oscillatory complex phase does not appear from the exponential part in the integrand
of (1.3.1). As we already mentioned, this property is useful to study the sign problem, and
Monte Carlo integrals on steepest descent paths were proposed in Refs. [67–73].

Let us consider a generic case when x takes complex values and perform analytic continua-
tion of Ai(x). Once the integration contour in (1.3.1) is deformed to the steepest descent path
J for x > 0, the integral expression is convergent for generic x. Let us rewrite that path J
in Fig. 1.1 using the steepest descent paths at x. We show steepest descent paths at x = e0.1i

and x = eπi in Fig. 1.2. If the phase of x is sufficiently small, or, more precisely speaking, if
|arg(x)| < 2π/3, only the steepest descent path J+i

√
x contributes as we can see in Fig. 1.2 (a).

That is, for |arg(x)| < 2π/3,

Ai(x) =

∫
J+i
√
x

dφ

2π
e−S(φ,x). (1.3.5)

However, when the phase of x is close to π, the topological structure of steepest descent paths
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changes drastically, as is shown in Fig. Fig. 1.2 (b). For |arg(x)− π| < π/3,

Ai(x) =

∫
J+i
√
x

dφ

2π
e−S(φ,x) +

∫
J−i
√
x

dφ

2π
e−S(φ,x). (1.3.6)

The jump between these two expression occurs at arg(x) = 2π/3, which is called the Stokes
jump. At arg(x) = 2π/3, the complex phases of the classical actions at two saddle points
become identical,

Im
[
S(+i

√
x, x)

]
= Im

[
S(−i

√
x, x)

]
, (1.3.7)

since S(±i
√
x, x) = ±2

3
x3/2. Therefore, the stationary phase condition Im(S(φ)) = constant

connects two saddle points φ = ±i
√
x. This is called the Stokes ray, at which the topological

structure of J±i
√
x changes. In order to apply the steepest descent method, tracing this change

of the topological structure of Jσ is essential for σ ∈ {±i
√
x}. Using the steepest ascent paths

Kσ shown with orange dashed lines in Fig. 1.2, this topological information can be encoded as
intersection numbers. The integral on Jσ must be taken into account if the intersection number
〈Kσ,R〉 between Kσ and the original contour R is nonzero, and

Ai(x) =
∑

σ∈{±i
√
x}

〈Kσ,R〉
∫
Jσ

dφ

2π
e−S(φ,x). (1.3.8)

This single equation summarizes (1.3.5) and (1.3.6). Its extension to multiple oscillatory inte-
grals will be considered in Sec. 2.1, and the steepest descent contours Jσ are called Lefschetz
thimbles.

Based on the steepest descent method with (1.3.5) and (1.3.6), let us study the asymptotic
behavior of Ai(x) with |x| → ∞. According to (1.3.5), for |arg(x)| < 2π/3,

Ai(x) ∼ exp
(
−2

3
x3/2

)
2
√
πx1/4

. (1.3.9)

Since the second term in (1.3.6) is exponentially smaller than the first term, this expression
turns out to be valid not only for |arg(x)| < 2π/3 but also for |arg(x)| < π. On the other hand,
for |arg(x)− π| < π/3, we obtain

Ai(x) ∼ cos
(

2
3
(−x)3/2 − π

4

)
√
π(−x)1/4

. (1.3.10)

This expression is also valid for |arg(x) − π| < 2π/3. Remarkably, there are two different
asymptotic expressions of Ai(x) for π/3 < arg(x) < π, although Ai(x) is a single-valued function
on C. This is one realization of the Stokes phenomenon. The boundary of applicability of each
asymptotic approximation is called the anti-Stokes ray, at which the dominance of different
Lefschetz thimbles is interchanged.

Stokes jumps, Borel summation For completeness of our analysis, let us briefly review
the above analysis from the viewpoint of the differential equation. Let us recall that the Airy
function is a solution of the Airy equation:(

d2

dx2
− x
)
Z(x) = 0. (1.3.11)
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One can easily see that (1.3.1) satisfies the Airy equation (1.3.11) by using the integration by
parts. By regarding Ai(x) as a partition function Z(x), the Airy equation is nothing but the
Dyson–Schwinger equation,

0 =

∫
R

dφ

2π

d

dφ
exp i

(
φ3

3
+ xφ

)
= i

∫
R

dφ

2π

(
φ2 + x

)
exp i

(
φ3

3
+ xφ

)
. (1.3.12)

Since φ2 in the last expression can be replaced by −d2/dx2, we can obtain (1.3.11). This
is a second-order ordinary differential equation and has two linearly independent solutions,
commonly called Ai(x) and Bi(x). This corresponds to the fact that this model has two complex
saddle points and thus two steepest descent contours. One can also easily see that using a new
variable ζ = 2

3
x3/2 the Airy equation has a regular singularity at ζ = 0 and an irregular

singularity of rank 1 at ζ = ∞. Because of these singularities, the perturbative expansion of
these partition functions Ai(x) and Bi(x) at infinities can only have asymptotic expansions, i.e.,
the formal power series in terms of 1/ζ are divergent. This fact leads an exotic but interesting
fact, which is called the Stokes phenomenon.

Let us observe an example of the Stokes phenomenon. In the limit x→∞ with arg(x) < π,
the Airy function has a formal series expansion

Ai(x) ∼ exp
(
−2

3
x3/2

)
2
√
πx1/4

∞∑
k=0

(−1)k
Γ
(
k + 5

6

)
Γ
(
k + 1

6

)
Γ
(

5
6

)
Γ
(

1
6

)
2kk!

1(
2
3
x3/2

)k . (1.3.13)

This series is asymptotic because the coefficients show factorial growth. In order to make sense
out of this divergent series, we perform the Borel transformation;

B(η) =
∞∑
k=0

(−1)k
Γ
(
k + 5

6

)
Γ
(
k + 1

6

)
Γ
(

5
6

)
Γ
(

1
6

)
2k(k!)2

ηk. (1.3.14)

Here, the series coefficient is divided by k! compared with that of the corresponding divergent
series, and we can easily check that this series has the convergent radius |η| < 2. By regarding
B(η) as an analytic function by using the analytic continuation, it has a branch point at η = −2.
In this easy case, one can perform this summation explicitly to find that

B(η) = 2F1

(
1

6
,
5

6
; 1;−η

2

)
. (1.3.15)

In order to relate B(η) with the Airy function, we perform the Laplace transformation and get

Ai(x) =
ζ5/6e−ζ

25/631/6π1/2

∫ ∞
0

dη e−ζηB(η), (1.3.16)

with ζ = 2
3
x3/2 and arg(ζ) < π/2. This is a well-known expression of Ai(x) using the confluent

hypergeometric function. In this way, we can reconstruct the original analytic function using
its asymptotic series expression, and this process is called the Borel summation.

Using the Borel summation (1.3.16), let us observe how Stokes jump plays into the game.
Let us add a phase ζ 7→ ζeiθ, then we also rotate the phase of the integration contour of η so
that η ∈ e−iθ[0,∞). Therefore, for −π < θ < π,

Ai(xei2θ/3) =
(ζeiθ)5/6e−ζe

iθ

25/631/6π1/2

∫ e−iθ∞

0

dη e−ζe
iθηB(η). (1.3.17)
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As θ → π, the integration contour comes close to the negative real axis, while B(ζ) has a branch
cut (−∞,−2]. For θ > π, the additional contribution comes from the contour integration
around the branch cut, and this phase clearly corresponds to arg(x) = 2π

3
. Therefore, the

appearance of this additional contribution is the Stokes jumping, and θ = π is the Stokes ray.
More interestingly, asymptotic expansions at two complex saddle points have some relations;
for example, large order perturbations at a saddle point determines the small order behaviors of
perturbations at another saddle point. This is an example of resurgence, proposed by Écalle [74].
For a readable review of resurgence, see Ref. [75] for example.

1.4 Outline of this thesis

In Chapter 2, we briefly review the Picard–Lefschetz theory and study its basic properties in
the context of oscillatory integrations. Picard–Lefschetz theory is established only for finite-
dimensional oscillatory integrals, and thus we confirm that the Picard–Lefschetz theory works
well also for free quantum mechanical systems.

In order to understand how this technique describes the symmetry breaking phenomena, we
discuss, in Chapter 3, the Z2 and O(4) chiral symmetry breaking in simple models without the
sign problem. By relating the Lefschetz-thimble analysis with the Lee–Yang zeros of partition
functions, we can find how the phase transition is described in the Lefschetz-thimble path
integral for these models.

In order to understand the origin and structures of the sign problem, we consider two
examples with the sign problem in Chapter 4. The first one is the Polyakov-loop effective model
of the finite-density quantum chromodynamics (QCD) with heavy quarks. In order to study it,
we developed the mean-field approximation which is applicable even if the sign problem exists,
and we can judge whether this works nicely by computing topologies of Lefschetz thimbles. This
gives the mathematical foundation to study the Polyakov-loop models at finite quark densities.
The second one is the one-site Fermi Hubbard model, which can be exactly solved and has
the severe sign problem in the path-integral expression. In this case, the above mean-field
approximation is not applicable, and we elucidate its reason by studying topological structures
of Lefschetz thimbles. We show that interference of complex phases among complex classical
solutions play a pivotal role to understand the sign problem and the correct phase structures
using path integrals. We discuss this interference is also important in the finite-density QCD
with light flavors if µq exceeds the half of the pion mass.

We relate the Lefschetz-thimble path integral with the complex Langevin method, in Chap-
ter 5. Since the complex Langevin method has longer history for the study of the sign problem,
this establishment enables us to translate the new findings in the Lefschetz-thimble approach
to other methods, and vice versa. We show that the original complex Langevin method cannot
give correct results if interference of complex phases among classical solutions is important.
This gives the simplest criterion for incorrectness of the complex Langevin method without
doing its numerical simulation. This also means that the complex Langevin method is not
directly applicable to the baryon Silver Blaze phenomenon in finite-density QCD. To resolve
this problem, we propose to modify the complex Langevin method by introducing a technical
working assumption, and it is numerically tested with the one-site Hubbard model. The original
complex Langevin method does not give the correct answer, while the modified one shows rapid
transitions of number densities. Although the result is not yet perfect, this study shows the
importance of relating the Lefschetz-thimble method to other approaches to the sign problem.



Chapter 2

Path integral on Lefschetz thimbles

In this chapter, we describe the application of the Picard–Lefschetz theory to the oscillatory
multi-dimensional integrals, and its formal application to the functional integration. We study
its generic properties, and compute it for solvable examples in quantum mechanics.

2.1 Picard–Lefschetz theory for oscillatory integrations

In this section, we first explain how to apply the Picard–Lefschetz theory to oscillatory in-
tegrals [62, 64, 65]. This gives a mathematically rigorous extension of the steepest descent
analysis given in Sec. 1.3. In this formulation, the complex analogue of the Morse homology
theory turns out to be useful, which basics is briefly summarized in Appendix A. The procedure
for its formal application to the path integral is summarized in Sec. 2.2.

We consider the following integral,

Z~ =

∫
Y

dθ exp (−S(θ)/~) , (2.1.1)

where ~ is a real parameter. Here, the integration region Y is taken as a real affine variety
with a natural volume form dθ. One can think of Y = Rn and dθ = dnx as the simplest
example, but one can also think of classical real Lie groups such as Y = O(n), U(n), etc. with
the Haar measure. Let S : Y → C be a complex-valued polynomial on Y , and Re(S) → ∞ as
|θ| → ∞ if Y is non-compact. In the language of physics, Y is the configuration space, dθ is the
path-integral measure, and S is the (Euclidean) classical action of the system to be quantized.
Since S(θ) is complex in general, this is an oscillatory integral, which often impedes the study
of analytic properties of the partition function Z~. Picard–Lefschetz theory provides a beautiful
framework, which converts such oscillatory integration into a sum of nicely convergent integrals.
This ~ in quantum physics appears with different symbols in different contexts; e.g., it can be
replaced by kBT in statistical mechanics, 1/N in N ×N matrix models, etc.

We assume the existence of complexification X of Y . This means that there is a complex
manifold X which contains Y as its subspace, and that Y is fixed under the complex conjugation
· of X ; i.e. Y ↪→ X and y = y for any y ∈ Y . For Y = Rn, O(n), U(n), their complexifications
are X = Cn, O(n,C), GL(n,C), respectively. By assumption, X has a Kähler metric

ds2 =
1

2
gij

(
dzi ⊗ dzj + dzj ⊗ dzi

)
, (2.1.2)

and we denote its Kähler form as ω = i
2
gijdz

i ∧ dzj. Here, (z1, . . . , zn) is a local holomorphic
coordinate on X .

11
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One of the primary purposes of this section is to construct all the possible n-dimensional
integration cycles J in X , on which Im(S/~) is constant so that the integrand is not oscillatory.
After that, we represent (2.1.1) using those integrations. Let us denote I = −S/~ and regard
it as a holomorphic function on X (~ can now be complex in general). The Morse function h
is defined by its real part:

h = Re I =
I + I

2
. (2.1.3)

Since the integrand is given by eh−i Im(S/~), this function h represents the importance of field
configurations in the complexified space.

Let p ∈ X be a critical point of h; i.e., ∂ih|p = ∂ih
∣∣
p

= 0 using a local holomorphic

coordinate (z1, . . . , zn) around p. Equivalently, p ∈ X is a critical point if and only if

∂iI|p = 0, (2.1.4)

because ∂iI = 0 follows automatically from the Cauchy–Riemann condition. This is nothing
but the classical equation of motion. It is important to study the property of the Hessian
matrix around the critical point. Using a complex version of the Morse lemma, we obtain that
there exists a local coordinate around a non-degenerate critical point p such that

I(z) = I(0) + (z1)2 + · · ·+ (zn)2. (2.1.5)

By taking its real part, we find that the Morse function behaves around the non–degenerate
critical point as

h(z) = h(0) + (x1)2 + · · ·+ (xn)2 − (y1)2 − · · · − (yn)2, (2.1.6)

with zj = xj + iyj. Therefore, the Morse index of non-degenerate critical points of h is always
n = dimCX .

In order to find the integration cycles J , it turns out to be important to compute a relative
homology of X using the Morse function h. In order to explain it, we introduce the Morse’s
gradient flow equation by

dzi

dt
= −2gij

∂h

∂zj
= −gij ∂I

∂zj
,

dzj

dt
= −2gij

∂h

∂zi
= −gij ∂I

∂zi
. (2.1.7)

Along this flow equation, the Morse function h decreases monotonically:

dh

dt
= −2gij∂ih∂jh (=: −|∇h|2) ≤ 0. (2.1.8)

It is clear that the equality holds only at a critical point of h on X . It is of great importance
for our purpose to notice that Im(S/~) is constant on each flow line given by the gradient flow.
Let us denote H := Im I = (I − I)/2i, and then

dH

dt
=

dzi

dt
∂iH +

dzj

dt
∂jH = −g

ij

2i
(∂iI∂jI + ∂iI(−∂jI)) = 0. (2.1.9)

This phenomenon has a clear interpretation based on the classical mechanics [64], and it be-
comes useful when we extend this formalism to the case with continuous symmetries. Such an
extension will be discussed in Sec. 3.2, and for a moment we continue to assume that all the
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critical points are non-degenerate. In order to explain the classical-mechanical interpretation,
we pay attention to the symplectic structure ω of X , which defines the Poisson bracket {·, ·}P
by

{f, g}P = −2igkl
(
∂kf∂lg − ∂lf∂kg

)
. (2.1.10)

In the language of classical mechanics, this says that xi and yi describe coordinates and canon-
ical momenta, respectively. Now, the conservation of H becomes crystal-clear because the
gradient flow equation is nothing but the Hamilton equation of motion:

dzi

dt
= {H, zi}P ,

dzj

dt
= {H, zj}P . (2.1.11)

The conservation of H is very important to define J , because we would like to find integration
cycles satisfying that property.

Let us denote the set of critical points by Σ. It labels critical points pσ, i.e.,

∂I|pσ = 0, (2.1.12)

for any σ ∈ Σ. In order for J to be an integration cycle of the integration measure eh−i Im(S)dnz,
it must be an n-dimensional object in X and h → +∞ as |z| → ∞ on J . Therefore, we can
identify all the possible integration cycles as an element of the relative homology Hn(X ,X−T ;Z)
for T � 1, where

X−T := {x ∈ X | h(x) ≤ −T}. (2.1.13)

In order words, we identify all the points in X if eh is sufficiently close to zero, and compute the
n-th homology of X/X−T . The homology can be computed in the following way (see Appendix A
for its detail). Assume that any two critical points are not connected via the gradient flow,
then the Morse function h diverges to −∞ as the flow time goes to ∞. The Lefschetz thimble
Jσ associated to the critical point pσ is defined as the moduli space for endpoints of solutions
c : R→ X of the downward flow

dc

dt
= {Im I, c}P , (2.1.14)

with the initial condition c(−∞) = pσ. That is,

Jσ =
{
c(0) ∈ X

∣∣∣ lim
t→−∞

c(t) = pσ

}
. (2.1.15)

Since all the critical points of h has the Morse index n, the Lefschetz thimbles Jσ generates
the n-th homology Hn(X ,X−T ;Z). By construction, the integrand becomes non-oscillatory and
exponentially convergent on Jσ.

Let us rewrite the original oscillatory integral (2.1.1) by using integrals on Jσ. For that
purpose, we regard the real cycle Y as an element of Hn(X ,X−T ;Z) and express it in terms of
Lefschetz thimbles as

Y =
∑
σ∈Σ

nσJσ, (2.1.16)

where nσ ∈ Z. With this expression, the oscillatory integral becomes

Z~ =
∑
σ∈Σ

nσ

∫
Jσ

dθ exp(−S/~). (2.1.17)
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Since Im(S/~) is constant on each Lefschetz thimble Jσ, each integration on the right hand
side is expected not to suffer from the sign problem.

The coefficients nσ is still unknown, and thus we must give the formula for them. Those
coefficients can be obtained by introducing the intersection pairing. Consider the relative
homology Hn(X ,X T ;Z), where

X T = {x ∈ X | h(x) ≥ T}. (2.1.18)

As we have shown for Hn(X ,X−T ;Z) for T � 1, the n-th homology Hn(X ,X T ;Z) is generated
by

Kσ =
{
c(0) ∈ X

∣∣∣ lim
t→+∞

c(t) = pσ

}
. (2.1.19)

By definition, h(z) ≤ h(pσ) for z ∈ Jσ and h(z) ≥ h(pσ) for z ∈ Kσ, and the equality holds only
at z = pσ. Therefore, Jσ and Kσ intersects only at pσ. Since we have assumed that any two
distinct critical points are not connected via the gradient flow, Jσ and Kτ does not intersect
with each other if σ 6= τ . We find that the intersection pairing is naturally given as

〈Jσ,Kτ 〉 = δστ (2.1.20)

under some appropriate orientations. Therefore, the coefficients nσ can be calculated as

nσ = 〈Y ,Kσ〉. (2.1.21)

That is, nσ is given by the intersection number between the original integration cycle Y and
Kσ, which gives an extension of the formula (1.3.8) for the example of the Airy integral. We
now find that that the integration cycle can be decomposed into the sum of Lefschetz thimbles
without any ambiguities.

2.2 Path integral on Lefschetz thimbles

We apply the Picard–Lefschetz theory to path integrals, which method is called the Lefschetz-
thimble path integral. In this section, we first summarize the way to compute the Lefschetz-
thimble path integral by formally using the argument in Sec. 2.1. This decomposes an infinite-
dimensional oscillatory integral into the sum of well-defined, i.e. convergent, path integrals on
Lefschetz thimbles. On each Lefschetz thimble, we show that the Schwinger–Dyson equation
holds. This section is adapted from Ref. [76].

Application of the Picard–Lefschetz theory to path integrals Let us consider the
path-integral quantization of a classical action S[x(t)] =

∫
dt L(x, dx/dt)(For a Minkowski

path integral, −S should be regarded as iS in the usual convention). In the path-integral quan-
tization, the transition amplitude K(xf , tf ;xi, ti) is computed by summing up the probability
amplitude exp (−S[x]/~) over the set of all the possible space-time paths Y = {x : [ti, tf ] →
R|x(ti) = xi, x(tf ) = xf},

K(xf , tf ;xi, ti) =

∫
Y
Dx exp

(
−S[x]

~

)
. (2.2.1)

In general, the action S[x] takes complex values for generic spacetime paths x : [ti, tf ] → R,
and (2.2.1) must be regarded as a limit of multiple oscillatory integrals.

The formal application of the Picard–Lefschetz theory to (2.2.1) can be summarized as
follows [64–66]:
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1. First, we must find all the solutions of the “complex” classical equation of motion, δS[z] =
0, in X = {z : [ti, tf ]→ C|z(ti) = xi, z(tf ) = xf}. We denote those solutions by zσ (σ ∈ Σ
is the label).

2. For each zσ, we compute the Lefschetz thimble Jσ by solving the gradient flow equation

∂z(t;u)

∂u
=

(
δS[z(t;u)]

δz(t;u)

)
, (2.2.2)

with the boundary conditions z(t;−∞) = zσ(t), and z(ti, u) = xi and z(tf , u) = xf . As
we have shown in Sec. 2.1, Re S → +∞ and Im S is a constant along flows. Therefore,
the path integral on each Lefschetz thimble,

Jσ :=

{
z( · ; 0) : [ti, tf ]→ C

∣∣∣ lim
u→−∞

z(t, u) = zσ(t)

}
, (2.2.3)

shows good convergence.

3. The path integral (2.2.1) can be decomposed into the sum of the path integral on Lefschetz
thimbles Jσ;

K(xf , tf ;xi, ti) =
∑
σ∈Σ

〈Kσ,R〉
∫
Jσ
Dz exp

(
−S[z]

~

)
. (2.2.4)

Here, 〈Kσ,R〉 is the intersection number of Y and the dual thimbles,

Kσ :=
{
z(·; 0) : [ti, tf ]→ C

∣∣∣ z(t,+∞)→ zσ(t)
}
. (2.2.5)

Since we have only shown that this method is valid for finite-dimensional integrals in Sec. 2.1, the
above procedure is somewhat formal and must be performed with appropriate regularization.
We assume that some regularization is chosen, and that Lefschetz thimbles are well-defined as
an integration cycle. If two distinct saddle points are connected via (2.2.2), the system is on
the Stokes ray and the second assumption breaks down. However, this breakdown does not
happen for generic cases because ImS is a conserved quantity. In the following of this section,
we use these assumptions implicitly.

Quantum equation of motions on Lefschetz thimbles Let us consider the consequence
of the quantum equation of motion from the viewpoint of Lefschetz thimbles. The quantum
equation of motions, or the Dyson–Schwinger equation, is given by∫

Dx δS[x]

δx(t)
e−S[x] = 0 (2.2.6)

for any boundary conditions at t = ti and tf . We first show that this equality (2.2.6) holds on
each Lefschetz thimble, that is, for any σ ∈ Σ∫

Jσ
Dz δS[z]

δz(t)
e−S[z] = 0. (2.2.7)
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Let us show a finite-dimensional analogue of (2.2.7) since the path integral is assumed to
be regularized. S(z) a holomorphic function of z = (z1, . . . , zn), which has critical points zσ.
Then, we have to prove that ∫

Jσ
dnz

∂S(z)

∂zi
e−S(z) = 0. (2.2.8)

The following notations are useful to prove (2.2.8): let ε = (ε1, . . . , εn) ∈ Cn, then

Sε(z) := S(z + ε), Zσ,ε :=

∫
Jσ

dnz e−Sε(z). (2.2.9)

Since we can find that
∂Zσ,ε
∂εi

∣∣∣∣
ε=0

=

∫
Jσ

dnz
∂S(z)

∂zi
e−S(z), (2.2.10)

it suffices to prove that Zσ,ε is independent of ε for sufficiently small ε.
All the saddle points zσ,ε of Sε are clearly given by

zσ,ε = zσ − ε. (2.2.11)

We can also readily find that the Lefschetz thimble Jσ,ε of Sε is given by

Jσ,ε = Jσ − ε := {z − ε|z ∈ Jσ} (2.2.12)

as a subset of Cn. When ε = 0, Jσ,ε does not intersect Kτ if σ 6= τ and it intersects Kσ
transversally only at one point. This is an open condition, and thus valid for an open region of
ε including ε = 0. For |ε| � 1,

〈Jσ,ε,Kτ 〉 = δστ , (2.2.13)

which implies that Jσ,ε = Jσ as integration cycles. This completes the proof of Zσ,ε = Zσ,0,
and we obtain (2.2.8).

Let us reverse the story. Assume that we have a generating functional Z[j] satisfying the
Dyson–Schwinger equation, or the quantum equation of motion,(

−S ′[∂/∂j] + ~j
)
Z[j] = 0. (2.2.14)

Using Lefschetz thimbles Jσ, we can construct the general solution of this functional differential
equation as

Z[j] =
∑
σ

dσ

∫
Jσ
Dz e−S[z]/~+j·z. (2.2.15)

with some dσ ∈ C. These coefficients dσ can be anything if one just requires the Dyson–
Schwinger equation. In order to relate those generic solutions with the path-integral quantiza-
tion, we must choose dσ = 〈Kσ,Y〉.

Flow equations around complex classical solutions It would be useful to consider the
structure of the perturbative fluctuations around a complex classical solution zσ. Let us consider
a classical and real-time action I = i

∫
dt
[

1
2
ż2 − V (z)

]
as an example; then the gradient flow

(2.2.2) is given by
∂z(t;u)

∂u
= −i

(
∂2z(t;u)

∂t2
+ V ′(z(t;u))

)
. (2.2.16)
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In order to restrict our consideration to the perturbative computations, we consider its lin-
earization, z = zσ +∆z, around the classical solution zσ. It gives a parabolic partial differential
equation,

∂

∂u
∆z(t;u) = −i

(
∂2

∂t2
+ V ′′(zσ(t))

)
∆z(t;u). (2.2.17)

In order to find analytic properties of this linearized equation, we try to construct its solutions
by separating variables. Using an Ansatz ∆z(t;u) = eiπ/4 exp(λu)f(t) (λ > 0), (2.2.17) reduces
to an eigenvalue equation

−
(
∂2

∂t2
+ V ′′(zσ(t))

)
f(t) = λf(t). (2.2.18)

By separating the real and imaginary parts, f(t) = f1(t) + if2(t), (2.2.18) reads(
− [∂2

t + ReV ′′(zσ(t))] −ImV ′′(zσ(t))
−ImV ′′(zσ(t)) [∂2

t + ReV ′′(zσ(t))]

)(
f1

f2

)
= λ

(
f1

f2

)
. (2.2.19)

On the space of smooth functions with the Dirichlet boundary condition, this differential op-
erator L on the left hand side of (2.2.19) is self-adjoint. Its eigenvalues λj are real and eigen-
functions associated with different eigenvalues are orthogonal to each other. By assumption,
λj 6= 0 for any j due to the non-degeneracy of critical points. Using this information, we can
show that eigenvalues of L must be paired with opposite sign, ±λj. To see this, the self-adjoint
operator L is represented as L = −[∂2

t + ReV ′′(zσ(t))]σ3− ImV ′′(zσ(t))σ1 using Pauli matrices
σi. Introducing the “chirality” matrix ε = iσ2, we can easily show that

ε†Lε = −L, (2.2.20)

where εε† = 1.
It may be useful to remark here that the above property on the complexified fluctuation

operator holds in general, although we are considering the Minkowski path integral as an
example. It follows from the fact that the fluctuation operator is given by taking the continuum
limit of the complex symmetric matrix.

The orthonormal property of L is not enough in order to perform the perturbative calcula-
tions around a complex saddle point. Let λa and λb be eigenvalues of L, and their eigenfunctions
are denoted by (fa,1, fa,2) and (fb,1, fb,2), respectively. Assuming that |λa| 6= |λb|, we must show∫

dtfafb = 0, (2.2.21)

where fa = fa,1 + ifa,2 and fb = fb,1 + ifb,2 for our purpose. Since the eigenfunctions are
paired by multiplying ε†, (fb,2,−fb,1) = ε†(fb,1, fb,2) is an eigenfunction with the eigenvalue
−λb. Orthogonality of L shows that∫

dt(fa,1fb,1 + fa,2fb,2) =

∫
dt(fa,1fb,2 − fa,2fb,1) = 0. (2.2.22)

This is nothing but (2.2.21). The tangent space of Jσ at zσ is spanned by eigenfunctions with
positive eigenvalues. In contrast, those with negative eigenvalues span the tangent space of Kσ.
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Now, we construct the tangent space TzσJσ of Jσ at zσ explicitly. Let {λn}∞n=1 denote the
positive eigenvalues of L, and {fn}n the corresponding normalized eigenfunctions. Then, the
tangent space TzσJσ is given by

TzσJσ =

{
∞∑
n=1

ane
iπ/4fn(t)

∣∣∣∣∣ an ∈ R

}
. (2.2.23)

The behavior of I[z] on Jσ up to O(∆z2) is given by (∆z(t) =
∑

n ane
iπ/4fn(t))

I[zσ + ∆z] = I[zσ] +
∑
n,m

anam
2

∫
dtfn(t)

(
∂2

∂t2
+ V ′′(zσ(t))

)
fm(t)

= I[zσ]−
∞∑
n=1

λn
2
a2
n. (2.2.24)

This means that the real-time path integral on the Lefschetz thimble Jσ is realized as a Wiener
integration at least for small quantum fluctuations around zσ.

Let me give one notice before closing this section. In quantum and many body physics,
several low-lying eigenvalues λn may be sufficiently close to zero, e.g. λn ∼ O(~αn) with
αn > 0. For these quasi-zero modes, the Gaussian approximation is not necessarily enough and
we have to take into account the higher order corrections for those modes.

2.3 Simple examples in quantum mechanics

In this section, we compute real-time Feynman kernels using Lefschetz-thimble path integral
for its demonstration. Three simple examples of quantum mechanics will be considered; free
particles on a line and on a circle, and a harmonic oscillator. Since the our argument in previous
sections is general and abstract, it would be useful to see the concrete way to compute Lefschetz
thimbles of simple examples. It is also interesting to see that the real-time path integral for
those systems turns out to be constructed as Lebesgue integrals on Lefschetz thimbles. This
section is adapted from Ref. [76].

2.3.1 Free non-relativistic particles

Free particle on a line First, we consider path integral for a free particle on the real line
R. Let us solve the fundamental solution Kfree(xf , tf : xi, ti) of the Schrödinger equation,

i~
∂

∂t
ψ(x, t) = −~2

2

∂2

∂x2
ψ(x, t), (2.3.1)

by using the Lefschetz-thimble path integral.
The classical action of this system in (2.2.1) is given by,

I[z] = i

∫
dt

1

2

(
dz

dt

)2

. (2.3.2)

This can formally be regarded as a holomorphic functional on X = {z : [ti, tf ] → C|z(ti) =
xi, z(tf ) = xf}. The classical solution zcl of this system is given by solving the Euler–Lagrange
equation:

d2zcl(t)

dt2
= 0. (2.3.3)
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Under the Dirichlet boundary condition z(ti) = xi and z(tf ) = xf , it is solved as

zcl(t) = (xf − xi)
t− ti
tf − ti

+ xi, (2.3.4)

and the classical action is I[zcl] = i(xf − xi)2/2(tf − ti). This is a real-valued function, and
then it belongs to the original integration cycle Y of (2.2.1).

Let us compute Lefschetz thimbles, and, for that purpose, we have to write down the
gradient flow. The Kähler metric of X can be chosen as

ds2 =

∫
dt

1

2
(δz(t)⊗ δz(t) + δz(t)⊗ δz(t)), (2.3.5)

and then the cotangent space is spanned by δz(t) and δz(t). The Kähler form of this metric is
ω =

∫
dt i

2
δz(t)∧ δz(t). Let us recall the definition of the Lefschetz thimble J around zcl(t): It

is defined as a set of gradient flows emanating from zcl(t):

J =

{
z(t; 0) ∈ X

∣∣∣∣∣z(t;−∞) = zcl(t),
∂z(t;u)

∂u
= −

(
δI[z(t;u)]

δz(t;u)

)}
. (2.3.6)

This is a middle-dimensional cycle in X and can be used as a domain of integration. Let us
rewrite the path-integral expression of the Feynman kernel of the free particle Kfree as

Kfree(xf , tf ;xi, ti) =

∫
J
Dz exp

I[z]

~
. (2.3.7)

In the following, we will explicitly find that zcl has the intersection number 1. In the real-time
path integrals, it can generally be shown that the real-valued saddle point always has the unit
intersection number [64, 65].

The Lefschetz thimble J are computed as follows. Let us write z(t;u) = zcl(t) + ∆z(t;u),
where ∆z → 0 as u→ −∞. The gradient flow equation in (2.3.6) becomes a partial differential
equation of the parabolic type,

∂

∂u
∆z(t;u) = −i

∂2

∂t2
∆z(t;u). (2.3.8)

The boundary condition is ∆z(t;−∞) = 0, and the Dirichlet boundary condition ∆z(ti;u) =
∆z(tf ;u) = 0 is also required. The basis of solutions ∆z(t;u) for (2.3.8) is given by

∆z`(t;u) = eiπ/4 exp

(
π2`2

4(tf − ti)2
u

)
sin

(
π`

t− ti
tf − ti

)
, (2.3.9)

with ` ∈ Z>0. As a result, any element of Lefschetz thimbles J can be written as

z(t) = zcl(t) + eiπ/4

∞∑
`=1

a` sin

(
π`

t− ti
tf − ti

)
, (2.3.10)

where the coefficients a` are real values.
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Since the Fourier transformation is unitary, the Jacobian associated with the change of
integration variables does not appear. Indeed, the induced metric on the Lefschetz thimble J
from (2.3.5) is given by

ds2
∣∣
J =

∑
`,`′ 6=0

da`da`′

∫ tf

ti

dt sin

(
π`

t− ti
tf − ti

)
sin

(
π`′

t− ti
tf − ti

)
= (tf − ti)

∑
`6=0

(da`)
2. (2.3.11)

The path-integral measure on the Lefschetz thimble J is proportional to∫
J
Dz = N

∫ ∏
` 6=0

√
ida`, (2.3.12)

with some normalization factor N . Since I[z] − I[zcl] is a real-valued Gaussian functional of
{a`}`, the real-time path integral becomes the Wiener integration on the Lefschetz thimble. It
reads ∫

J
Dz exp I[z] = N

∏
` 6=0

[
πi

π2`2/2(tf − ti)2

]1/2

exp
I[zcl]

~
. (2.3.13)

Since the computation of the normalization factor N is standard, we do not give its details.
The result is ∫

J
Dz exp I[z] =

√
1

2πi~(tf − ti)
exp
I[zcl]

~
. (2.3.14)

It would be useful to point out the relationship of real- and imaginary-time path integrals
from the viewpoint of Lefschetz thimbles. The imaginary-time formalism is also a mathemati-
cally rigorous approach to the path integral [77–79]. By formally replacing the real time t by
the imaginary time −i eiϕtϕ with 0 ≤ ϕ ≤ π

2
, the classical action I[z] becomes positive definite

at ϕ = 0. Therefore, the path integral at ϕ = 0 is well-defined as the Wiener integration. The
complex time tϕ matches the real time t at ϕ = π/2, and we compute Lefschetz thimbles at
each ϕ to show its connection to the real-time Lefschetz thimble. The path integral (2.2.1)
becomes

Kfree(xf ,−i eiϕtf ;xi,−i eiϕti) =

∫
Y
Dx exp

[
−e−iϕ

~

∫
dtϕ

1

2

(
dx

dtϕ

)2
]
. (2.3.15)

It is now clear that this path integral with the imaginary time, ϕ = 0, is well-defined as a
Wiener integral, and that the Lefschetz thimble at ϕ = 0 is nothing but the original integration
cycle. In order to compute Lefschetz thimbles of (2.3.15) for general ϕ, we introduce

Iϕ[z(tϕ)] = −e−iϕ

~

∫
dtϕ

1

2

(
dz

dtϕ

)2

(2.3.16)

as a holomorphic functional of z : [ti, tf ]→ C with z(ti) = xi and z(tf ) = xf . Since the classical
solution is obtained by solving the same Euler–Lagrange equation (2.3.3), it is given by zcl(tϕ)
of (2.3.4). By repeating the same procedure in (2.3.8–2.3.10), the elements of the Lefschetz
thimble J around zcl(tϕ) are obtained as

z(tϕ) = zcl(tϕ) + eiϕ/2
∑
`>0

a` sin

(
π`
tϕ − ti
tf − ti

)
. (2.3.17)

At ϕ = π/2, as we remarked above, this is equal to the real-time Lefschetz thimble (2.3.10).
Therefore, our results (2.3.7) and (2.3.14) have a clear relationship with the imaginary-time
path integral of free theories by deforming Lefschetz thimbles smoothly as given in (2.3.17).
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Free particle on a circle Using these results, the Lefschetz-thimble path integral can be
computed also for quantum mechanics of a free particle on a circle S1. This is an interesting
and simple example to learn about the path integral of quantum mechanics on a non-trivial
topological space. We solve the Schrödinger equation (2.3.1) under the different boundary
condition for x ∈ S1 = R/2πZ. The wave functions obey

ψ(x+ 2π, t) = eiθψ(x, t).

Here, θ is a real parameter.
The classical action in (2.2.1) of this system has a topological θ-term,

I[z] = i

∫
dt

1

2

(
dz

dt

)2

+ i
~θ
2π

∫
dz. (2.3.18)

This is a holomorphic functional of z : R→ C/2πZ with the boundary condition z(ti) = xi and
z(tf ) = xf . The topological term distinguishes the first homotopy class π1(R/2πZ) of possible
real-valued paths in the usual path integral. This is the same even after the complexification.
The real-valued target space is embedded as R/2πZ ⊂ C/2πZ, and thus the topological term
distinguishes π1(C/2πZ) ( = Z) of complex paths.

Solving the same Euler–Lagrange equation (2.3.3) under the boundary condition z(ti) = xi
and z(tf ) = xf in R/2πZ ⊂ C/2πZ, the set of solutions {zcl,w(t)}w∈Z are parametrized by the
winding number w ∈ Z;

zcl,w(t) = (xf + 2πw − xi)
t− ti
tf − ti

+ xi. (2.3.19)

Let Jw be the Lefschetz thimble for zcl,w(t), and its elements are calculable as (2.3.10). We can
compute the path integral (2.2.1) of this system as we have done in (2.3.13), and the result is

Kfree,θ(xf , tf ;xi, ti) =
∑
w∈Z

∫
Jw
Dz exp

I[z]

~
=

√
1

2πi~(tf − ti)
∞∑

w=−∞

exp
I[zcl,w]

~
. (2.3.20)

Each classical solution has the intersection number 1, and thus all of them labeled by the
topological number w must be summed up.

2.3.2 Harmonic oscillator

So far, path integrals of free particles are reconsidered by using the path integral on Lefschetz
thimbles. Next, we compute quantum mechanics of a harmonic oscillator. The classical action
is given by

I[z] = i

∫
dt

[
1

2

(
dz

dt

)2

− 1

2
z2

]
, (2.3.21)

and we regard it as a holomorphic functional on X . The Euler–Lagrange equation is

d2z(t)

dt2
= −z(t). (2.3.22)

Thus, the classical solution is obtained as

zcl(t) =
xf − xi cos(tf − ti)

sin(tf − ti)
sin(t− ti) + xi cos(t− ti). (2.3.23)
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Let us assume that tf − ti 6= nπ for any n ∈ Z>0 in order to make (2.3.23) meaningful. Since
this condition can be satisfied for generic initial and final times, ti and tf , the assumption is
harmless in the following computations. The classical action is given as

I[zcl] =
i

2 sin(tf − ti)
[
(x2

f + x2
i ) cos(tf − ti)− 2xfxi

]
. (2.3.24)

In order to calculate the Lefschetz thimble, the gradient flow equation is considered,

∂

∂u
∆z(t;u) = −i

(
∂2

∂t2
+ 1

)
∆z(t;u). (2.3.25)

Here, the complex path z is decomposed as z(t;u) = zcl(t) + ∆z(t;u) with boundary conditions
∆z(t;−∞) = 0 and ∆z(ti;u) = ∆z(tf , u) = 0. The Lefschetz thimble is spanned by the
following solutions ∆z,

∆zn(t;u) =


eiπ/4 exp

[((
πn
tf−ti

)2

− 1

)
u

]
sin nπ

tf−ti
(t− ti), (nπ > (tf − ti)),

e−iπ/4 exp

[(
1−

(
πn
tf−ti

)2
)
u

]
sin nπ

tf−ti
(t− ti), (nπ < (tf − ti)).

(2.3.26)

Let ν denote the maximal non-negative integer smaller than (tf − ti)/π. Then, the Lefschetz
thimble J consists of complex paths,

z(t) = zcl(t) + e−iπ/4

ν∑
`=1

a` sin
π`

tf − ti
(t− ti) + eiπ/4

∞∑
`=ν+1

a` sin
π`

tf − ti
(t− ti), (2.3.27)

with real-valued coefficients a`. Therefore, the path-integral measure on the Lefschetz thimble
J is given by∫

J
Dz = N

∫ ν∏
n=1

e−
iπ
4 dan

∞∏
m=ν+1

e
iπ
4 dam = e−iπν/2N

∫ ∞∏
`=1

√
ida`. (2.3.28)

Compared with that of the free particle case (2.3.12), the path-integral measure has an extra
factor exp

(
−iπν

2

)
. This integer ν is called the Maslov–Morse index of the classical trajectory

(see, e.g., Appendix 11 of Ref. [80]), and this represents the number of turning points during
the time interval [ti, tf ].

We can readily compute the Feynman kernel Kh.o. of the harmonic oscillator by using the
Lefschetz thimble in the following way:

Kh.o.(xf , tf ;xi, ti) = exp

(I[zcl]

~
− i

πν

2

)
N
∏
`

∫ √
ida` exp

(
−
∣∣∣∣∣
(

π`

tf − ti

)2

− 1

∣∣∣∣∣ a2
`

)

= exp

(I[zcl]

~
− i

πν

2

)√
1

2πi~(tf − ti)
∞∏
`=1

√
1

|1− ((tf − ti)/π`)2|

=

√
1

2πi~| sin(tf − ti)|
exp

(I[zcl]

~
− i

πν

2

)
. (2.3.29)

The normalization factor N in this calculation is the same with that for the free particle. In the
case of the harmonic oscillator, the Maslov–Morse index describes how the Lefschetz thimble
intersects with the original space of paths.
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2.4 Physical relevance of complex classical solutions

Since the original path integral is defined as the summation over real spacetime paths, it may
not be clear what is the physical meaning of complex classical solutions. In this section, we
demonstrate their possible usefulness by considering the tunneling or decaying process in the
Minkowski path integral at the semi-classical level. This section is adapted from Ref. [76].

2.4.1 Complex classical solutions of the double-well potential

Tunneling is a characteristic process of quantum mechanics. Many dynamical phenomena are
related to quantum tunneling; e.g., false vacua decays, bubble nucleation at first order phase
transitions, domain wall fusions, etc. [81, 82]. Although quantum tunneling can be described
very well by the WKB analysis of the Schrödinger equation, its understanding based on path
integrals is not fully developed. This is mainly because any classical solutions cannot connect
two classically stable regions when the potential barrier exceeds the energy. The purpose of this
section is to open a new possibility to approach this problem by using the Lefschetz-thimble
path integral, which shows the physical relevance of complex classical solutions.

Double-well potential As a model to discuss the tunneling, we consider the double-well
quantum mechanics. In the real-time formalism, the classical action is

I[z] = i

∫
dt

[
1

2

(
dz

dt

)2

− 1

2
(z2 − 1)2

]
. (2.4.1)

The Euler–Lagrange equation of (2.4.1) is

d2z

dt2
= −2z(z2 − 1), (2.4.2)

with the boundary condition z(ti) = xi and z(tf ) = xf . Instead of solving (2.4.2) directly, we
use the conservation law of energy,(

dz

dt

)2

+ (z2 − 1)2 = p2, (2.4.3)

where p (∈ C) is a complex parameter. Using the Jacobian elliptic functions, the general
solutions of (2.4.3) can be obtained as follows:

z(t) =

√
p2 − 1

2p
sd

(√
2p t+ c,

√
1 + p

2p

)
. (2.4.4)

Here, c is an integration constant to satisfy the boundary condition z(ti) = xi, and k =√
(1 + p)/2p is called an elliptic modulus. Our notation of elliptic functions is based on Chap. 22

of Ref. [83]. Later, we will find all the possible parameters p so as to satisfy z(tf ) = xf .
Before calculating them, let us comment on properties of the double-well potential by ob-

serving qualitative behaviors of certain classical solutions. The potential term in (2.4.1) has two
classical minima at z = ±1, and thus there are two different kinds of real solutions depending on
their classical energies p2/2. At high energies p2 > 1, the energy exceeds the potential barrier at
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Figure 2.1: Typical behaviors of real classical solutions. The left and right panels show them
for p > 1 and p < 1, respectively. (Figures are taken from Ref. [76].)

the origin z = 0, and thus the oscillation of the particle is given by the left panel of Fig. 2.1. In
contrast, at low energies p2 < 1, the potential traps the particle in one of the potential minima
and its behavior is shown in the right panel of Fig. 2.1. At low energies, it is impossible to
connect two potential minima if only the real-valued solutions are considered. There are also
complex classical solutions, which properties will be discussed in the next subsection.

Classification of classical solutions By solving the boundary condition z(ti) = xi and
z(tf ) = xf , we calculate the set of elliptic modulus k for classical solutions. Let us recall
that the Jacobian elliptic function in (2.4.4) has the double half periodicities (see Sec. 22. 4 of
Ref. [83]):

sd(z + 2K(k), k) = sd(z + 2iK(
√

1− k2), k) = −sd(z, k). (2.4.5)

Here, K(k) represents the complete elliptic integral given by K(k) =
∫ π/2

0
dθ/
√

1− k2 sin2 θ.
The inverse elliptic function has ambiguities because of the above half-periodicities, and a label
(n,m) must be introduced in order to remove them. The boundary condition is (k′ =

√
1− k2)

xf =
kk′√

(2k2 − 1)/2
sd

(
tf − ti√

(2k2 − 1)/2
+ sd−1

(√
(2k2 − 1)/2

kk′
xi, k

)
, k

)
, (2.4.6)

and it can be solved as

2
(
nK(k) + imK(

√
1− k2)

)
=

tf − ti√
(2k2 − 1)/2

+

{
sd−1

(√
2k2 − 1√

2kk′
xi, k

)
− (−1)n+msd−1

(√
2k2 − 1√

2kk′
xf , k

)}
. (2.4.7)

It is possible to show that an appropriate subset of Z2 gives the set of classical solutions by
using this relation (2.4.7)1.

Intersection numbers nσ and short-time asymptotic behaviors Since we have identi-
fied the set of complex classical solutions, we can calculate classical actions of those classical
solutions. By taking the short-time limit tf − ti → +0, the leading asymptotic behaviors of
the classical action is easily calculable, and they provide useful information for intersection
numbers nσ.

1The proof is given in Ref. [76].
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Let us set xi = xf = 0 just for simplicity. Indeed, the leading short-time asymptotic
behavior does not depend on xi, xf . For (n,m) ∈ Z, we must solve the boundary condition
(2.4.7) to find the elliptic modulus k:√

2k2 − 1

2

(
nK(k) + imK(

√
1− k2)

)
=
tf − ti

2
. (2.4.8)

In the limit (tf − ti) → +0, the right-hand-side of (2.4.8) goes to zero. Therefore, the elliptic
modulus k converges to 1/

√
2 to satisfy this equality. We find from this observation that

k2 =
1

2
+

(
tf − ti

2(n+ im)K(1/
√

2)

)2

+O
(
(tf − ti)4

)
. (2.4.9)

If we adopt the standard choice of the branch cut, n must be a non-negative integer. The
approximate expression for the classical solution is given by

z(n,m)(t) '
(n+ im)K(1/

√
2)

tf − ti
sd

(
2(n+ im)K(1/

√
2)
t− ti
tf − ti

,
1√
2

)
. (2.4.10)

According to this formula of short-time behaviors, classical solutions are real-valued if and only
if nm = 0. Other solutions take complex values. The total classical energy of this solution is
given by

p2
(n,m)

2
=

1

2(2k2 − 1)2
' 2

(
(n+ im)K(1/

√
2)

tf − ti

)4

. (2.4.11)

Here, p(n,m) refers the parameter p of the label (n,m), where k =
√

(1 + p)/(2p). We can
compute the leading term of the classical action I in this limit only by evaluating the terms of
O(1/(tf − ti)4) in the Lagrangian. As a result, we find

I[z(n,m)] = i

∫ tf

ti

dt

(
p2

(n,m)

2
− (z2

(n,m) − 1)2

)
' i

2K(1/
√

2)4

3

(n+ im)4

(tf − ti)3
. (2.4.12)

The last expression can be obtained by using a formula in Sec. 23.14 of Ref. [83]. We can use
these formulas also for the imaginary time by replacing t, ti, and tf by −it, −iti, and −itf .

By using this expression (2.4.12), we can derive a constraint on the intersection number
nσ = 〈Kσ,Y〉. The real-time classical action I is purely imaginary for real-valued paths, and
thus complex classical solutions with Re(I) > 0 does not contribute to the Lefschetz-thimble
decomposition of the path integral [64, 65]. Moreover, there are real-valued classical solutions
when nm = 0, and we can conclude that their intersection numbers are unity, nσ = 1. It
means that there are infinitely many real-valued solutions, which contribute to the short-time
asymptotic behavior of the path integral. In order to consider about complex classical solutions,
we assume that n > 0 and m 6= 0. Using (2.4.12), we find the real part of I as

Re I[z(n,m)] ' −
8K(1/

√
2)4

3(tf − ti)3
nm(n2 −m2). (2.4.13)

Since Re(I) is positive for complex solutions with nm(n2−m2) < 0, the intersection numbers nσ
of those classical solutions must be zero. On the other hand, complex solutions with n > m > 0
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or 0 < n < −m may be able to contribute, although the intersection numbers for them are
difficult to be determined. In order to find the intersection numbers for them, we must solve
the gradient flow equations.

It is an open problem to compute undetermined coefficients nσ. Moreover, the intersection
number nσ must be defined with an appropriate regularization, since we do not know the notion
of the intersection between two infinite-dimensional manifolds. This problem always happens
for interacting quantum field theories. Let N be the number of lattice sites when the lattice
regularization is used, then the number of complex classical solutions is

(deg V ′)
N

= (deg V − 1)N , (2.4.14)

where deg V denote the degree of the potential term V . Except for free field theories with
deg V = 2, the number of classical solutions grows exponentially with the lattice size N .
Therefore, it is very difficult to solve the theory completely using the Lefschetz-thimble method.
Nevertheless, this method sheds a new light on properties of the path integral. In this thesis,
we will see that the structure of the sign problem is elucidated thanks to this technique.

2.4.2 Quantum tunneling in the real-time path integral

Let us try to describe the real-time tunneling phenomena by using the path integral on Lefschetz
thimbles. Although our discussion in this part is incomplete because of limitation of our current
knowledge on Lefschetz thimbles, this trial will make clear the physical relevance of complex
classical solutions. Let us first review the consequence of quantum tunneling in the double-well
potential. The ground and first excited states, ψ0 and ψ1, are parity even and odd, respectively.
In order to realize localized wave-functions in the semiclassical limit, we must consider the
following superpositions, ψ± := (ψ0 ± ψ1)/

√
2. In the limit ~→ 0,

|ψ±(x)|2 → δ(x∓ 1). (2.4.15)

These states ψ± fail to be eigenstates of the Hamiltonian: A particle localized on a classi-
cal minimum transits to another classical minimum. This is the quantum tunneling, and its
oscillation is characterized by the difference of two energies, E1 − E0 ∼ e−S0/~ (S0 > 0).

In order to construct a classical solution describing the quantum tunneling, let us evaluate
the long-time asymptotic behaviors of complex classical solutions. This would be important
as a first step to develop our physical insight to describe the quantum tunneling using the
real-time path integral.

For our purpose, it would be useful to start from instantons of the imaginary-time path inte-
gral, which play an important role to study the quantum tunneling. In Fig. 2.2 (a), instanton-
like solutions in the imaginary-time formalism are shown for the case xi = −1, xf = 1 at the
finite-time interval tf − ti = −10i. The two left figures, (n,m) = (0, 0) and (1, 0), show classical
solutions with the one-instanton classical action I0 = −4/3 in the limit tf − ti → −i∞. The
right figure, (n,m) = (3, 0), shows a classical solution with I ' 3I0(= −4), and thus it seems
to be naturally interpreted as an instanton–anti-instanton–instanton process. Let us study an
instanton by setting (n,m) = (0, 0); then the boundary condition (2.4.7) becomes

− i

2
T =

√
2k2 − 1

2
sd−1

(√
2k2 − 1

2k2(1− k2)
, k

)
= −i

√
1

1 + p
sn−1

(√
1

1− p,
√

1− p
1 + p

)
. (2.4.16)
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(a) Instanton-like solutions in the imaginary time
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(b) Corresponding classical solutions in the real time

Figure 2.2: (a) Instanton-like solutions in the imaginary-time formalism. They correspond to
(n,m) = (0, 0), (1, 0), and (3, 0), respectively, for xi = −1, xf = 1, and tf − ti = −10i in
(2.4.7). (b) Corresponding solutions in the real-time formalism. Especially, the solution with
(n,m) = (0, 0) is very close to the unstable classical solution, and it seems to be natural to
interpret them as sphalerons. (Figures are taken from Ref. [76].)

We rewrite the right hand side into a suitable form to study an asymptotic behavior in p→ 0
from the side Im p > 0 by using the formula given in Sec. 22. 17 of Ref. [83]. In the limit
T → +∞, we can solve the asymptotic behavior of p(0,0) = 8i e−T , and obtain the well-known
one-instanton solution (t = −iτ):

z(0,0)(τ) =
√

1− p(0,0) sn

(√
1 + p(0,0)τ,

√
1− p(0,0)

1 + p(0,0)

)
' tanh τ. (2.4.17)

By doing the same analysis for (n,m) = (1, 0), we find that another instanton-like solution
behaves as

z(1,0)(τ) '
√

1− p(1,0) sn

(√
1 + p(1,0)

(
τ +

T

2
− 1

2
ln

8

p(1,0)

− π

4
i

)
,

√
1− p(1,0)

1 + p(1,0)

)
' tanh

(
τ +

π

4
i
)
, (2.4.18)

with p(1,0) ' −8e−T . This explains that both solutions has the same action, I0 = −4/3, in the
limit T →∞.

In Fig. 2.2 (b), we show the corresponding classical solutions in the real-time formalism.
These processes have sufficient energies, p2/2 ' 1/2, to overcome the potential barrier clas-
sically. This always happen when the label (n,m) is fixed and the limit tf − ti → +∞ is
considered: Since the label (n,m) designates the number of oscillation within the time interval
(tf − ti), the classical solution must stop almost at the top of the potential barrier. They might
be related to unstable classical solutions, called sphalerons, in the long time limit tf − ti →∞,
and then these processes are not suppressed in the semi-classical limit [84–86].
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Figure 2.3: Highly-oscillatory complex solutions. In spite of their oscillatory nature, actions of
these solutions can be comparable with multi-instanton actions. Indeed, we obtained p(31,30) =
0.427 + 0.155i and I(31,30) = −1.072 + 0.007i for (n,m) = (31, 30) with (tf − ti) = 100, and
p(52,50) = 0.528 + 0.185i and I(52,50) = −2.892 + 0.092i for (n,m) = (52, 50) with (tf − ti) = 172,
in these examples. (Figures are taken from Ref. [76].)

We expect that there exist complex classical solutions with p ' 0 because the quantum
tunneling is a low-energy phenomenon [76, 87]. Indeed, if we perform the Wick rotation τ 7→ it
in (2.4.17) or (2.4.18), we can find classical solutions with p2 = 0. Although they do not satisfy
the boundary condition xi = −1 and xf = 1, it is intriguing to notice that those solutions
oscillate with the period π. This observation may suggest that the quantum tunneling in our
formulation is described by complex solutions with large labels (n,m). Let us set the labels
n, m of the order of tf − ti (see Fig. 2.3). Such solutions can have finite classical actions
with non-vanishing negative real parts, since they oscillate in the complexified configuration
space (see Ref. [87] for detailed discussion on this property). Indeed, if nσ of such solutions are
nonzero, then their classical actions have negative real parts and those transition amplitudes
are exponentially suppressed in the limit ~→ 0.

Therefore, it is very promising to conclude that infinitely many complex solutions including
large (n,m) are significant in the real-time path-integral description of the quantum oscillation.
This insight can be checked by computing intersection numbers nσ of those complex solutions zσ,
and then we expect that those intersection numbers nσ must be non-zero. Similar observation
has been done also in the context of the particle production [88–90], and we will see its great
importance to study the sign problem in Sec. 4.

2.5 Brief summary

In the present Chapter, we reviewed the foundation of the Picard–Lefschetz theory in order to
apply it to the evaluation of oscillatory multiple integrals in Sec. 2.1 [62–66]. This naturally
extends the idea of steepest descent methods (see Sec. 1.3 in the introduction). If the number
of integration variables is one, we can easily designate the steepest descent path by using
the stationary phase condition. When the number becomes larger, however, that condition is
insufficient to pick up half-dimensional integration cycles. Mathematically, we can overcome
this difficulty by using the Morse theory, and the steepest descent cycles can be found by solving
the gradient flow in the complex phase space. Those steepest descent integration cycles are
called Lefschetz thimbles, and they form a basis of a linear space.

In Sec. 2.2, we concretely describe the procedure to apply the Picard–Lefschetz theory to
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the path integral in quantum mechanics following Refs. [64, 65]. After that, we confirm that the
quantum equation of motion on each Lefschetz thimble. This explicitly shows that Lefschetz
thimbles form a basis of complex vector space formed by the set of solutions of the Dyson–
Schwinger equation. We also study the properties of the Gaussian fluctuation around complex
classical solutions in a direct analytic way.

It is important and helpful to understand this method by applying it to the simplest exam-
ples of quantum mechanics. For that purpose, we compute the real-time Feynman kernels of
free particles and the harmonic oscillator with this method in Sec. 2.3. The Lefschetz-thimble
method reproduces the well-known results for these simple models, and we can confirm that
this model works well. It is still interesting to see that we can compute Maslov–Morse index for
the Feynman kernel of the harmonic oscillator without introducing explicit regulator explicitly.

In the following chapters, we will see the usefulness of the Lefschetz-thimble method to ob-
serve phase transitions and to understand the sign problem appearing in the statistical systems.
In Sec. 2.4, we mention another possible direction for this method to be helpful. The real-time
tunneling process can be studied using the WKB analysis, but its path-integral derivation is
not fully understood. If we can understand it using path integral, then that computation is
available not only in quantum mechanics but also in quantum field theory. As a prototype of
this study, we consider the real-time tunneling of the double-well system based on the path
integral on Lefschetz thimbles. We elucidate that the complex solutions play an important role
there.
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Chapter 3

Lefschetz-thimble approach to the
spontaneous symmetry breaking

Chiral symmetry breaking is one of the characteristic nonperturbative phenomena of low-energy
QCD. In this chapter, we study symmetry breaking phenomena for simple zero-dimensional toy
models from the viewpoint of Lefschetz-thimble path integrals. In Sec. 3.1, the 0-dimensional
Gross–Neveu model is considered for studying Z2 chiral symmetry breaking, and we directly
relate the Lefschetz-thimble decomposition and the Lee–Yang zeros in the study of phase tran-
sitions. We develop a computational method to analyze the O(n)-symmetric systems using
Lefschetz thimbles in Sec. 3.2. This formalism is effectively used in Sec. 3.3 to study the O(4)
chiral symmetry breaking of the 0-dimensional Nambu–Jona-Lasinio model.

3.1 Spontaneous breaking of Z2 chiral symmetry

In this section, we discuss the spontaneous breaking of the discrete symmetry in the theory with
chiral fermions based on the Lefschetz-thimble approach to the path integral. The discussion
is adapted from Ref. [91].

3.1.1 0-dimensional Gross–Neveu model

We discuss a prototype of the spontaneous breaking of a discrete symmetry. For this purpose,
we introduce the 0-dimensional analogue of the Gross–Neveu (GN) model [92]. This is the
theory of 2-component Grassmann variables ψa and ψa with N colors (a = 1, . . . , N), and its
partition function is defined by

ZN(G,m) =

∫
dψdψ exp

(
N∑
a=1

ψa(i/p+m)ψa +
G

4N

( N∑
a=1

ψaψa

)2
)
. (3.1.1)

Here, G > 0 is a coupling constant that describes the four-fermion interaction, m is a bare
fermion mass, and /p :=

∑2
i=1 piσi is a 2 × 2 matrix-valued constant that mimics the effect of

nonzero-momentum modes in higher dimensions. In the massless case m = 0, the classical
action in (3.1.1) is invariant under the Z2 chiral transformation defined by ψ 7→ γ5ψ. Then, the
theory has a discrete symmetry, and we will discuss its spontaneous breaking in the large-N
limit.

31
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In order to consider the path integral on Lefschetz thimbles for this system, we perform the
Hubbard–Stratonovich transformation,

ZN(G,m) =

√
N

πG

∫
dψdψdσ exp

(
N∑
a=1

ψa(i/p+m+ σ)ψa −
N

G
σ2

)
(3.1.2)

=

√
N

πG

∫
R

dσ
[
det(i/p+m+ σ)

]N
exp

(
−N
G
σ2

)
. (3.1.3)

Here, σ is an auxiliary bosonic field. The equation of motion tells us that σ is nothing but the
fermion condensate,

〈σ〉 =
G

2N

∑
a

〈ψaψa〉. (3.1.4)

The partition function is given by

ZN(G,m) =

√
N

πG

∫
R

dσ e−NS(σ) , (3.1.5)

where the classical action is

S(σ) ≡ σ2

G
− log[p2 + (σ +m)2] (3.1.6)

with p2 ≡ p2
1 + p2

2 > 0. Because of the fermion loop, the classical action has a logarithmic term.
One of important purposes of this section is to demonstrate that the Lefschetz-thimble path
integral is applicable also for such systems. According to the expression (3.1.5), we can see that
the saddle-point analysis becomes accurate in the large-N limit. We separate the cases with
m = 0 and m > 0 in the following, and the chiral limit m = 0 is discussed at first.

3.1.2 Structures of Lefschetz thimbles in massless case

Complex saddle points in the massless limit In order to understand the physical prop-
erties of the model, we assume that G > 0 for a moment and consider the case m = 0:

S(σ) =
σ2

G
− log(p2 + σ2). (3.1.7)

The classical action in the chiral limit takes its minimum at σ = 0 for 0 < G ≤ p2 and at σ 6= 0
for G > p2. Because of this difference, the second-order phase transition associated with the
chiral symmetry breaking occurs at G = p2 in the limit N →∞.

In the following, we discuss this phase transition of the 0-dimensional GN model by using the
path integral on Lefschetz thimbles. Because of the logarithmic singularity, the complexification
of σ ∈ R is given by z ∈ C \ {±ip}. The Morse function Re(S(z)) and the integrand e−NS(z)

are well-defined as functions on C \ {±ip}, and thus we can compute Lefschetz thimbles as
one-dimensional manifolds in C \ {±ip}. The complex saddle points are obtained as

0 =
∂S(z)

∂z
=

2z

G
− 2z

p2 + z2
=⇒ z = 0, ±

√
G− p2 . (3.1.8)
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(a) G = 0.7e−0.1i, p = 1, m = 0 (b) G = 0.7e+0.1i, p = 1, m = 0

Figure 3.1: Lefschetz thimbles J (black lines) and duals K (dashed red lines) on the z-plane
for the GN-like model in the chiral limit. The three orange blobs at z = 0 and z± = ±i

√
1−G

are the critical points of S(z), while the two red blobs at z = ±i are the points where S(z)
diverges. The background color scale describes ReS(z). (Figures are taken from Ref. [91].)

Let us set z± := ±
√
G− p2. The three critical points coalesce at G = p2. As a result, Lefschetz

thimbles become ill-defined at G = p2, and thus we hereafter put G 6= p2.

When G is positive, all the classical actions at the saddle points z = 0, z± are real, and

S(0)− S(z±) = −1 +
p2

G
− log

p2

G
≥ 0. (3.1.9)

The equality holds if and only if G = p2. Therefore, if z± = ±
√
G− p2 contribute, the

symmetry is spontaneously broken in the limit N → ∞. This can be judged by computing
Lefschetz thimbles and their duals.

Before starting its computation, we must notice that ImS(0) = ImS(z±) = 0 for real G
and p. When this happens, the gradient flow may connect different complex saddle points, and
the Lefschetz thimbles become ill-defined. This is a typical behavior when the theory is on the
Stokes ray, as we have explained in Sec. 1.3 [64, 93]. In order to avoid this, we endow G with a
phase factor eiθ (0 < |θ| � 1)1. This solves the degeneracy of ImS(z) among the critical points.
We postpone more detailed analysis of Stokes jumps in the complex G-plane until Sec. 3.1.3.

Lefschetz thimbles in symmetric phase Let us consider the case where the chiral sym-
metry is unbroken, i.e., G < p2. We compute Lefschetz thimbles and their duals for p = 1
and G = 0.7eiθ with θ = ±0.1, and the result is shown in Fig. 3.1. There are three Lefschetz
thimbles J0, Jz+ , and Jz− (solid black lines in Fig. 3.1) and three accompanying duals K0, Kz+ ,
and Kz− (dashed red lines in Fig. 3.1). Lefschetz thimbles Jz+ and Jz− terminate at branch
points of the logarithmic term (red blobs), and this behavior is characteristic when fermions
are included. Even though S(z±) ≤ S(0), only the Lefschetz thimble J0 contributes since it
has a nonzero intersection number. Thus, the symmetry is unbroken.

1It is not appropriate to rotate the entire action as S(z) → eiθS(z) because it allows the 2π-ambiguity in
the imaginary part of S(z) to induce an ambiguity in the real part of eiθS(z).
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(a) G = 1.1e−0.1i, p = 1, m = 0 (b) G = 1.1e+0.1i, p = 1, m = 0

Figure 3.2: Same as Figure 3.1 but with |G| = 1.1. (Figures are taken from Ref. [91].)

Since θ = 0 is a Stokes ray, Jz± and K0 jump as θ crosses zero. This is a Stokes jumping,
which is explained analytically in Sec. 1.3. When |G| < p2, J0 does not jump at θ = 0. The
Stokes jump does not affect the computation of ZN(G, 0) itself at θ = 0.

Lefschetz thimbles in symmetry-broken phase Next, let us set |G| = 1.1 and p2 = 1 in
order to study the symmetry broken phase. A small phase factor is attached to the four-fermion
coupling G in order to circumvent the Stokes jump. Figure 3.2 shows the behavior of Lefschetz
thimbles and their duals in this case. The structure of Lefschetz thimbles in Fig. 3.2 totally
changes in comparison with Fig. 3.1. This difference plays an important role to describe the
different phases, but the connection is not so straightforward, as we will see in Sec. 3.1.3.

In Fig. 3.2, all the dual thimbles K0, Kz+ , and Kz− (dashed red lines) intersect with R.
This is the biggest difference between Figs. 3.1 and 3.2, and it indicates that all three Lefschetz
thimbles J0, Jz+ and Jz− contribute to ZN(G, 0). Indeed it is visually clear that the union of
the three thimbles is homologically equivalent to R. Since S(z±) ≤ S(0) in the limit θ = 0
according to (3.1.9), the behavior of ZN(G, 0) in the large-N limit is completely dominated
by the nontrivial saddle points z±. As a result of the spontaneous breaking of the Z2 chiral
symmetry, fermions obtain a dynamical mass.

Let us analyze the Stokes jump in Figure 3.2 in more details. The orientation of Jz± is fixed
so that Re z increases along the positive direction, and that of J0 is defined by the direction
from z = −ip to z = +ip (p > 0). Then, the Lefschetz-thimble decompositions of the real
integration cycle R at θ = 0∓ can be expressed as follows:

R =

{
Jz+ − J0 + Jz− for θ = 0− ,
Jz+ + J0 + Jz− for θ = 0+ .

(3.1.10)

There are two remarks on (3.1.10).

• As we can see in Figs. 3.1 and 3.2, J0 does not jump across the Stokes ray. This fact can
be intuitively understood: By definition of the gradient flow and (3.1.9), ReS(z)|J0 ≥
ReS(0) > ReS(z±). Any flows along J0 do not approach z±.
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• The integral coefficients of Jz± in (3.1.10) do not jump across θ = 0. This fact can be
readily understood by applying the same argument to show that Kz± do not jump across
the Stakes ray. This is convincing also from the viewpoint of the asymptotic analysis.
The asymptotic behavior of ZN(G, 0) for G > p2 at N � 1 is given by the nontrivial
saddle points z = z±. Since ZN(G, 0) is a continuous function on G, the contributions
from Jz± cannot jump discontinuously in the large-N limit.

Both arguments have been presented in Sec. 3 of Ref. [64] in the context of bosonic integrals.
Here, their usefulness is highlighted in a fermionic model.

3.1.3 Stokes phenomena and Lee–Yang zeros

Stokes lines So far, we have considered the phase transition of the 0-dimensional GN model,
and the Stokes jumps for G > 0 are studied. Through those explicit calculations, the Lefschetz
thimbles turn out to be well-defined if a small complex phase eiθ (0 < |θ| � 1) is attached to the
four-fermion coupling G. Let us now study the Stokes phenomenon for a generic four-fermion
coupling G ∈ C.2

Before starting our analysis, let us remark a technical comment. In the original path-integral
expression (3.1.5), the integral is convergent only when Re(G) > 0. Only after its computation,
can we perform the analytic continuation to study ZN(G, 0) as an entirely analytic function in
terms of G. Here, the Lefschetz-thimble decomposition again plays an essential role. Lefschetz
thimbles connect nicely convergent regions to provide an integration cycle, and thus the path
integral on Lefschetz thimbles always converges even if the coupling G is complexified. Thus,
we can study analytic properties of ZN(G, 0) while keeping its path-integral expression by using
Lefschetz thimbles.

Let us at first study the Stokes jumping in the complex G-plane. A Stokes jump can occur
if multiple saddle points have the same imaginary part of the classical action. This condition
reads

0 = Im
[
S(0)− S(z±)

]
= Im

[
− 1 +

p2

G
− log

p2

G

]
. (3.1.11)

Recall that p2 > 0 by assumption. This condition can be solved by G ∈ R>0 or by G ∈
{ p2reiφ | r = sinφ

φ
and − π < φ ≤ π}. We show the union of these curves by blue lines in

Fig. 3.3, on which the Stokes jump happens. In the shaded area of Fig. 3.3, J0 is the unique
Lefschetz thimble that contributes to ZN(G, 0) as in Fig. 3.1. Outside the shaded area, all the
Lefschetz thimbles J0 and Jz± contribute to ZN(G, 0) as in Fig. 3.2.

It must be pointed out that the Stokes jump at the boundary of the shaded area does not
describe the phase transition directly. In the large-N limit, we find

ZN(G, 0) ∼
{

#e−NS(0) inside the curve,
#e−NS(0) + #e−NS(z+) + #e−NS(z−) outside the curve,

(3.1.12)

with some coefficients symbolically represented by #. In both cases, ZN(G, 0) is entirely dom-
inated by the same term e−NS(0) since ReS(0) < ReS(z±) on the boundary. Because of the
continuity of ZN(G, 0), subdominant contributions can emerge across the Stokes ray but the
dominant one cannot change discontinuously [93, 96].

2A complex four-fermion coupling appears in studies of the θ vacuum in QCD [94, 95].
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ImG

ReG

Figure 3.3: Stokes lines for the GN-like model with p = 1 and m = 0 (blue lines). The
global topology of Lefschetz thimbles and their duals changes across the Stokes lines. In the
shaded area, only J0 contributes to ZN(G, 0). Outside the shaded area, all the three thimbles
contribute. (The Figure is taken from Ref. [91].)

Anti-Stokes lines and Lee-Yang zeros Let us now study the phase transition of the chiral
symmetry breaking in the complex-G plane by applying the path integral on Lefschetz thimbles.
In order to find the nonzero chiral condensate in the large-N limit, the following two conditions
must be satisfied simultaneously:

1. Jz± contribute to ZN(G, 0), and

2. ReS(z±) < ReS(0).

We have already seen that Jz± contribute outside the shaded region in Fig. 3.3. The second
condition says that Jz± must give the dominant contributions in the large-N limit in order to
break the chiral symmetry spontaneously. This is characterized by an anti-Stokes line, at which
saddle points exchange their dominance. In the present model, the anti-Stokes line is specified
by

0
!

= Re
[
S(0)− S(z±)

]
= Re

[
− 1 +

p2

G
− log

p2

G

]
. (3.1.13)

The anti-Stokes line is shown with the green curve in Fig. 3.4 for p = 1, together with the Stokes
rays from Fig. 3.3.3 For this simple model, we can neglect the effect of fluctuations around
saddle points zσ, but in general we must compare the real part of “free energies” instead of
those of classical actions. Outside the green anti-Stokes curve, chiral symmetry is spontaneously
broken in the limit N → ∞. The phase transition along the anti-Stokes curve is generally of
first order because several saddle points exchange their dominance. The only exception is the
point G = p2, at which the phase transition is of second order. This happens since the Stokes
and anti-Stokes curves intersect there, and the physical phase transition occurs at G = p2.

3The anti-Stokes line actually extends into the interior of the Stokes curve, but this part is not shown in
Fig, 3.4 because Jz+ and Jz− do not contribute to ZN (G, 0) there.
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ImG

ReG

Figure 3.4: Anti-Stokes line for the GN-like model with p = 1 and m = 0 (green curve),
overlaid with Lee-Yang zeros for N = 40 (red bullets) and the Stokes line in Figure 3.3 (blue
curve). (The figure is taken from Ref. [91].)

Next, we would like to explore a connection between the anti-Stokes line and zeros of the
partition function. According to the seminal work by Lee and Yang [97, 98], zeros of a finite-
volume partition function in a complex parameter space, called Lee–Yang zeros, provides rich
information on the phase transition in the thermodynamic limit. We here give only a brief
review on this topic (See [99] for a review and [100–107]). Assume that we put a field theory on
a compact torus so that the partition function Z(µ) is analytic in terms of a parameter µ, such
as the chemical potential. If the physical parameter is real, the partition function is positive
definite, and thus it has no zeros for µ ∈ R. However, if we allow the chemical potential µ
being complex after computing the partition function, it can have zeros in C \ R, and let us
denote them by {µα}, i.e.,

Z(µ) ∼
∏
α

(µ− µα). (3.1.14)

Therefore, the partition function satisfies the following second-order differential equation:

∂µ∂µ lnZ(µ) =
∑
α

πδ2(µ− µα). (3.1.15)

This is nothing but the Poisson equation in the complex µ-plane, and we can exploit our
knowledge on electrostatics. In this interpretation, the number density n = ∂

∂βµR
lnZ is nothing

but the electric field in the real direction. In the decompactification limit, V → ∞, the set of
zeros {µα} typically forms lines in the complex µ-plane. If the line of electric charges cuts the
real µ-axis smoothly at µc ∈ R, the electric field ∂µZ has a discontinuous singularity at that
point and thus the system experiences the first-order phase transition there. If the line ends or
has a singularity, such as a kink, at some µc ∈ R, ∂µZ(µ) is continuous but singular at µ = µc.
This is nothing but the higher-order phase transition.

In order to see the connection between the anti-Stokes curve and Lee–Yang zeros, we can
compare them directly. We can evaluate the partition function (3.1.1) or (3.1.5) explicitly to
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find that

ZN(G, 0) = p2N

N∑
k=0

(
N
k

)(
2k
k

)
k!

(
G

4Np2

)k
. (3.1.16)

We show the numerical result of Lee–Yang zeros at N = 40 and p = 1 in Fig. 3.4. All Lee–Yang
zeros are located in the vicinity of the anti-Stokes curve (green curve). As N become larger,
we can observe that Lee–Yang zeros align on the anti-Stokes curve more and more densely.
In the large-N limit, they form the anti-Stokes curve. Since the anti-Stokes curve in Fig. 3.4
has a kink at G = p2, this phase transition is of higher order. By using (3.1.13), we can show
that the anti-Stokes curve pinches the real axis at angle ±π/4. According to a general theory
of Lee–Yang zeros [99], this behavior characterizes the second-order phase transition with the
mean-field critical exponent. This is exactly what happens in this model at G = p2.

3.1.4 Structures of Lefschetz thibles in a massive case

At the nonzero fermion mass m 6= 0, it breaks the Z2 chiral symmetry explicitly and the “chiral
condensate” 〈σ〉 becomes nonzero even for small G > 0. Although a phase transition is absent
at m 6= 0, it is still interesting to see the behavior of Lefschetz thimbles because of a crossover.
Let us assume m > 0 in the following.

We complexify σ to z ∈ C in order to use the path integral on Lefschetz thimbles. The
saddle points of S(z) are obtained as solutions of

0 =
∂S(z)

∂z
=

2z

G
− 2(z +m)

p2 + (z +m)2
. (3.1.17)

There are three solutions: One of them is always real, and other two solutions are both real or
form a complex conjugate pair.

Figure 3.5 (left panel) is the phase diagram of the 0-dimensional Gross–Neveu model. The
typical shape of S(σ) is also shown in each region. Across the blue dashed line in Fig. 3.5 (left
panel), the number of real saddle points changes. This line does not describe a phase tran-
sition, but a metastable state appears/disappears across this line. We schematically show in
Fig. 3.5 (right panel) how complex saddle points move when the line of metastability is crossed
from below by making the fermion mass m larger.

We can now elucidate the behavior of Lefschetz thimbles. Let us take two points A and B
in Fig. 3.5 (left panel) that represent white and blue regions, respectively. In Fig. 3.6 (a), we
draw the Lefschetz thimbles with p = 1 at the point A. It is interesting to see that no gradient
flows connect distinct saddle points at m 6= 0 and G < p2. We do not need to introduce a
complex factor to G in this case, and the chiral condensate vanishes in the limit m = 0. Just
as we saw in Fig. 3.1, we find that only one Lefschetz thimble (the real axis, R) contributes
to the partition function ZN(G,m). In the large-N limit, the saddle point associated with this
Lefschetz thimble gives the expectation value of the chiral condensate 〈σ〉 6= 0.

Figure 3.6 (b) displays the Lefschetz thimbles at the point B in Fig. 3.5 (left panel) at
G = 1.5e−0.1i, p = 1, and m = 0.05. When G > p2, the three saddle points lie on the real axis
with ImS = 0. Therefore, G ∈ R is right on the Stokes ray and we must attach a complex phase
to G.4 The overall structure of the thimbles is the same as in Fig. 3.2 at m = 0. Among the

4More generally, a Stokes phenomenon occurs everywhere in the shaded region of Fig. 3.5 (left panel), since
all critical points are real there.
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G/p2

m

p

Figure 3.5: Left: Phase diagram of the GN model. The solid red line represents a first-order
phase transition line. The dashed blue line is a limit of metastability (not a phase transition).
Concerning the points A and B, see Figs. 3.6 (a) and (b). Right: The behavior of saddle
points of S(z) when m is increased at fixed G > p2. As we move out of the blue region in the
left panel upward, two of the three saddles on the real axis merge and then migrate into the
complex plane. (Figures are taken from Ref. [91].)

(a) G = 0.7, p = 1, m = 0.05 (b) G = 1.5e−0.1i, p = 1, m = 0.05

Figure 3.6: Same as Fig. 3.1 but with G = 0.7 and m = 0.05 (a), and at G = 1.5e−0.1i and
m = 0.05 (b). (Figures are taken from Ref. [91].)

three saddle points, the right-most one has the smallest ReS and hence governs the partition
function and condensate at N � 1.

Between G = 0.7 and G = 1.5, the number of contributing Lefschetz thimbles changes from
one to three. This change happens when the four-fermion coupling G traverses the blue dashed
boundary in Fig. 3.5 (left panel). This is not a phase transition since the symmetry is always
broken. From the viewpoint of asymptotic analysis, this is because the dominant saddle point
always lies on R>0 and moves smoothly in terms of G. Although the Stokes line crosses the
real axis in the complex G plane, the anti-Stokes line does not if m 6= 0.
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3.2 Lefschetz thimbles with continuous symmetry

In order to study the phase transition associated with continuous symmetry breaking, we must
develop a formalism to compute the Lefschetz thimble if continuous symmetry exists. If there
exists a continuous symmetry, the classical solutions of the equation of motion are degener-
ate in general, which forbids us naive application of the Picard–Lefschetz theory described in
Sec. 2.1. In Sec. 3.2.1, we give a brief review about the way to compute Lefschetz thimbles
with continuous symmetry following Refs. [64, 65]. Applying this knowledge, a general way to
compute Lefschetz thimbles with small explicit breaking terms is developed in Sec. 3.2.2. This
extension is necessary to study the phase transition associated with the spontaneous continu-
ous symmetry breaking, and we study its application to the Nambu–Jona-Lasinio-like model
in Sec. 3.3. This section is adapted from Ref. [108].

3.2.1 Exact continuous symmetry

In this subsection, we review applications of Picard–Lefschetz theory to oscillatory integrations
with unbroken continuous symmetries [64, 65]. For simplicity, we concretely consider a zero-
dimensional O(n) sigma model.

Let σ = (σa)a ∈ Rn, and then consider the Lie group action O(n) y Rn given by the
defining representation. Using real anti-symmetric matrices ε, its infinitesimal transformation
reads

δεσa = εabσb (3.2.1)

with εab = −εba ∈ R. We consider a classical action function S0 : Rn → R, which is invariant
under O(n), and study the property of integration,

Z0(~) =

∫
Rn

dnσ exp(−S0[σ]/~), (3.2.2)

where dnσ = dσ1 ∧ · · · ∧ dσn is the Lebesgue measure.

Before trying Lefschetz-thimble methods to evaluate (3.2.2), let us consider the result of
O(n) symmetry directly. The O(n) symmetry of the integrand and integration measure tells
us that we can integrate radial and angular directions separately, Rn \ {0} ' R>0 × Sn−1. By
integrating out the angular directions Sn−1, we just need to evaluate the following integration

Z0(~) =
2πn/2

Γ(n/2)

∫ ∞
0

dσ σn−1 exp(−S0(σ)/~), (3.2.3)

with S0(σ) = S0[σê] (ê is an arbitrary unit vector), instead of the original one (3.2.2). This
result can be interpreted from the viewpoint of the reduction of integration cycles: The quotient
space (Rn \{0})/O(n) is identified with the positive real axis R>0(= (0,∞)). In the rest of this
section, let us review a general way to derive (3.2.3) without taking quotients of the original
integration cycle at first [64]. This consideration also provides a basic setup for taking into
account the effect of explicit breaking terms.

We take the complexification Cn of Rn, and introduce the complex coordinate ξa = σa+iηa.
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The complexified space Cn canonically admits the symplectic structure5,

ω = − i

2
dξa ∧ dξa = dηa ∧ dσa . (3.2.4)

We exploit the fact that a gradient flow for the Lefschetz thimble can be viewed as a Hamiltonian
flow of classical mechanics [64] (see also Sec. 2.1). Namely, we regard {σa}a as canonical
coordinates and {ηa}a as conjugate momenta, and consider the Poisson bracket

{f, g} =
∂f

∂σa

∂g

∂ηa
− ∂f

∂ηa

∂g

∂σa
. (3.2.5)

Let us consider the Hamilton mechanics with the Hamiltonian

H0 = Im S0[ξ], (3.2.6)

then its equation of motion with respect to “time” t, dξa
dt

= {H0, ξa}, is nothing but Morse’s
downward flow equation,

dξa
dt

=

(
∂

∂ξa
S0[ξ]

)
. (3.2.7)

Along the flow, the Hamiltonian H0 = Im S0[ξ] as well as other constants of motion are
conserved, which plays a pivotal role in the following discussions.

The group action (3.2.1) must also be extended. The real orthogonal group O(n) is complex-
ified to the complex orthogonal group O(n,C) = {A ∈ GL(n,C)|AAT = idn}. The complexified
group action O(n,C) y Cn is given by

δε̃ξa = ε̃abξb, (3.2.8)

with ε̃ab = −ε̃ba ∈ C. This extension makes clear that the O(n) symmetry of the original action
S[σ] is extended to the O(n,C) symmetry of S[ξ]. Under this O(n,C) transformation, the
symplectic structure (3.2.4) transforms as

δε̃ω = Im(ε̃ab) dξa ∧ dξb, (3.2.9)

and thus it is invariant if and only if the infinitesimal parameter ε̃ab is real. Therefore, the
symmetry of this Hamilton system is O(n), although the Hamiltonian H0 is invariant under
O(n,C). Noether charges of the O(n) symmetry are

Jab(ξ, ξ) = −ηaσb + ηbσa =
i

2
(ξaξb − ξbξa), (3.2.10)

and a collection of these Noether charges is called the momentum map, denoted by µO(n) (See
Appendix 5 of Ref. [80] for example). It is important to notice that µO(n) = 0 on the original
integration cycle Rn. Since Lefschetz thimbles contributing to the original integration must be
connected with Rn via a flow [64], such Lefschetz thimbles must be connected to the region
µO(n) = 0 through O(n,C) transformations.

5As we have already seen in Sec. 2.1, the complexified space must be chosen to admit a Kähler metric, which
is a closed, non-degenerate two-form and compatible with the complex structure. The important point is that
the Kähler metric uniquely provides the symplectic form ω in (3.2.4), which defines the Poisson bracket.
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Figure 3.7: Downward flows of the reduced Hamilton system (pθ = 0) in the rpr plane with
α = 0.1. Two points with (r, pr) = (0, 0) and (1, 0) are critical points of this system. Red
solid lines represent Lefschetz thimbles J , i.e., downward flows emanating from critical points.
Green dashed lines are their homological duals K, which are characterized by downward flows
getting sucked into critical points. Blue arrows show Hamiltonian vector fields. (The figure is
taken from Ref. [108].)

Let us consider the simplest toy model:

S0[ξ] =
eiα

4
(ξ2 − 1)2, (3.2.11)

with ξ2 = ξ2
1 + · · ·+ ξ2

n. Here, α should be formally regarded as an infinitesimally small positive
constant, α = 0+, which makes Lefschetz thimbles well-defined as integration cycles. Critical
points of S0[ξ] consist of two sets: One of them is the origin O = {ξ = 0}, and the other one
is a complex quadric,

Qn−1 = {ξ ∈ Cn | ξ2 = 1}. (3.2.12)

Complexified critical orbits can be nicely parametrized with slow variables. For each symmetry,
there exists two degenerate directions around a critical point: One of them is given by the
symmetry transformation, and another one by the corresponding Noether charge. This provides
the easiest way to find the set of zero modes, or slow variables, of the flow equation (3.2.7).
Mathematically, this implies the fact that Qn−1 can be identified with the cotangent bundle
T ∗Sn−1 of the hypersphere Sn−1 = {σ ∈ Rn | σ2 = 1}. We will see this explicitly in Sec. 3.2.2
for n = 2.

Since the critical point ξ = 0 is nondegenerate, we can compute its Lefschetz thimble in
a usual way. Thus, we only explain how to construct the Lefschetz thimble of ξ2 = 1 in the
following. Let us introduce the polar coordinate to emphasize the rotational symmetry by
using the (point) canonical transformation: r = |σ| is a radial coordinate, pr = (σ · η)/|σ|
is its conjugate momentum, and p2

θ =
∑

a<b J
2
ab represents the total angular momentum. The

O(n,C)-invariant variable ξ2 can be written using r, pr, and pθ as

ξ2 = (σ + iη)2 = (σ2 − η2) + 2iσ · η

= r2 −
(
p2
r +

p2
θ

r2

)
+ 2irpr. (3.2.13)
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The Hamiltonian H0 of this O(n)-invariant system becomes

H0 =
sinα

4

{(
(r2 − 1)−

(
p2
r +

p2
θ

r2

))2

− 4r2p2
r

}

+ cosα rpr

(
(r2 − 1)−

(
p2
r +

p2
θ

r2

))
. (3.2.14)

Because of the conservation law of µO(n), dynamics of the rpr direction is completely determined
once p2

θ is fixed. The result for the case p2
θ = 0 is shown in Fig. 3.7, and this is nothing but

the downward flow for the integral (3.2.3) by regarding r + ipr as a complexified variable of σ:
H0|pθ=0 = Im(S0(r + ipr)) with S0(σ) in (3.2.3). The red and green dashed lines in Fig. 3.7
show downward flows emanating from and getting sucked into a critical point at r + ipr = 1,
respectively, which are given by

H0(r, pr)|pθ=0 = H0(r = 1, pr = 0)|pθ=0. (3.2.15)

Once the radial motion is totally determined in this way, the angular motion is automatically
determined, and thus we can embed Fig. 3.7 into Cn. In order to obtain an n-dimensional
convergent integration cycle J sym.

r=1 and its dual Ksym.
r=1 , we must pick up other (n− 1) directions

from the 2(n− 1)-dimensional critical orbit Qn−1(= T ∗Sn−1).
The convenient procedure to construct the Lefschetz thimble, which is proposed in [64],

is to rotate a red solid line of Fig. 3.7 by using O(n) symmetry. As a result, the Lefschetz
thimble J sym.

r=1 for r = 1 can be determined as the direct product of Sn−1 = {σ2 = 1} and the
red solid line at r = 1 of Fig. 3.7: J sym.

r=1 ' R × Sn−1 as manifolds. Its dual Ksym.
r=1 is given by

rotating the green dashed line at r = 1 in Fig. 3.7 using the imaginary direction of O(n,C).
This procedure ensures that J and K intersect only at a single point. The reader may suspect
that this construction contains some ambiguities because we pick up (n−1) directions for J sym.

r=1

by hand, but we can argue that this is the unique choice up to continuous deformations [64].
In Sec. 3.2.2, we will see that this special choice of directions in T ∗Sn−1 is consistent with the
downward flows with symmetry-breaking perturbations.

3.2.2 Continuous symmetry with small explicit breaking

In this section, we add a small symmetry-breaking term ε∆S, which lifts degeneracies of critical
points and allows us to use the familiar formulation of Picard–Lefschetz theory. Global behav-
iors of downward flows are scrutinized, and use of approximate symmetries plays an essential
role for computation of Lefschetz thimbles. This study can become important in studying
spontaneous symmetry breaking using Lefschetz thimbles.

O(2) sigma model We again consider the O(2) linear sigma model with the action (3.2.11),
and add a symmetry-breaking term,

ε∆S[σ] = εeiασ1, (3.2.16)

with 0 < ε� 1. We formally set α = 0+ to simplify our argument. We study properties of the
path integral

Zε(~) =

∫
R2

dσ1dσ2 exp [− (S0[σ] + ε∆S[σ]) /~] , (3.2.17)
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Figure 3.8: Flows projected on the critical orbit T ∗S1 induced by the perturbation ε∆H at
α = 0.1. Black circles at θ = 0, π correspond to critical points in the perturbed system. Red
solid and green dashed curves are downward flows projected onto T ∗S1, which emanate from
and get sucked into critical points, respectively. Blue arrows show Hamiltonian vector fields.
(The figure is taken from Ref. [108].)

using Lefschetz-thimble techniques. We also discuss the relation to the previous formulation in
the limit ε→ +0 at the end of this section.

Since there is an approximate O(2) symmetry, the canonical transformation to the polar
coordinate is again useful:

r =
√
σ2

1 + σ2
2 , θ = tan−1 σ2

σ1

,

pr =
σ1η1 + σ2η2√

σ2
1 + σ2

2

, pθ = η2σ1 − η1σ2 .
(3.2.18)

Here, pθ is nothing but the Noether charge J12 in (3.2.10), and ω = dpr ∧ dr + dpθ ∧ dθ. Since
ξ2 = r2 + 2irpr − (p2

r + p2
θ/r

2), the critical condition ξ2 = 1 can be solved as pr = 0 and
r2 − (pθ/r)

2 = 1. Now, the O(2,C) critical orbit (3.2.12) is explicitly represented as{
ξ =

(
r cos θ − i(pθ/r) sin θ
r sin θ + i(pθ/r) cos θ

) ∣∣∣∣∣ r =
√

(1 +
√

1 + 4p2
θ)/2 ,

pθ ∈ R, θ ∈ [0, 2π)

}
. (3.2.19)

As we mentioned, this has a nice parametrization via slow variables θ and pθ, which implies
that Q1 ' T ∗S1.

The Hamiltonian of this system is H = H0 + ε∆H = Im(S0[ξ] + ε∆S[ξ]). The unperturbed
Hamiltonian is given in (3.2.14), and the perturbation is given by

∆H = sinα r cos θ + cosα
(
pr cos θ − pθ

r
sin θ

)
. (3.2.20)

This solves degeneracies of critical orbits, and validates Morse theory. However, naive compu-
tation of flows can easily fail, because of the remnant of symmetry. After giving a proposal for
circumventing this technical difficulty, we show its origin by scrutinizing properties of downward
flows through concrete computations.

Before starting explicit computations, we mention an efficient way to compute Lefschetz
thimbles and comment on behaviors of downward flows. We advocate that the downward
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flow on the nearly critical orbit T ∗S1 should be calculated at first: The perturbation ∆H
breaks the O(2,C) symmetry of S[ξ], and it induces slow downward flows. The slow downward
flow can be projected onto T ∗S1, which is shown in Fig. 3.8. In order to get Fig. 3.8, the
Hamilton mechanics in terms of θ and pθ is solved under the critical condition pr = 0 and

r =
√

(1 +
√

1 + 4p2
θ )/2. This step turns out to be important because Lefschetz thimbles in

this system are two-dimensional cycles with one nearly flat direction: To create such integration
cycles, downward flows must first travel slowly along red solid curves on T ∗S1 in Fig. 3.8 [up
to O(ε)]. After that, flows branch into radial directions, as will be confirmed below.

The critical condition ∂S/∂ξa = 0 gives

(ξ2
1 + ξ2

2 − 1)

(
ξ1

ξ2

)
+

(
ε
0

)
=

(
0
0

)
. (3.2.21)

Critical points of this system consist only of three points: (ξ1, ξ2) = (ε, 0), (±1 − ε/2, 0) up
to O(ε), and two of them (±1 − ε/2, 0) correspond to black blobs in Fig. 3.8 (α = 0.1 in this
figure). In the polar coordinate (3.2.18), these solutions are (r, θ) = (ε, 0), (1 − ε/2, 0), and
(1 + ε/2, π) with pr = pθ = 0. Among these critical points, Re(S0 + ε∆S) takes the smallest
value at (r, θ) = (1 + ε/2, π), and the largest value at (r, θ) = (ε, 0). Because of the symmetry-
breaking term, the value at (r, θ) = (1 − ε/2, 0) is lifted up from the smallest one roughly by
2ε cosα(= 2ε).

The Hamiltonian H takes 0, sinα, and − sinα at (r, θ) = (ε, 0), (1−ε/2, 0), and (1+ε/2, π),
respectively, up to O(ε0), and thus flows cannot connect distinct critical points. At α = 0+,
however, these differences are infinitesimally small: The Lefschetz thimble J(1+ε/2,π) around
(r, θ) = (1 + ε/2, π) can pass infinitesimally close to other critical points.

The set of Hamilton equations (exactly at α = 0) is

dr

dt
= r

(
r2 − p2

θ

r2
− 1

)
− 3rp2

r + ε cos θ, (3.2.22a)

dpr
dt

= (1− 3r2)pr + p3
r −

prp
2
θ

r2
− εpθ

r2
sin θ, (3.2.22b)

dθ

dt
= −2prpθ

r
− εsin θ

r
, (3.2.22c)

dpθ
dt

= ε
(
pr sin θ +

pθ
r

cos θ
)
. (3.2.22d)

One can find a set of special solutions of this Hamiltonian system such that pr ≡ 0 and
pθ ≡ 0, which indeed automatically solves (3.2.22b) and (3.2.22d). Moreover, Figs. 3.7 and 3.8
imply that these are nothing but the conditions for a part of J(1+ε/2,π). Solutions of (3.2.22) are
shown in Fig. 3.9 (a) in the original coordinate system (σ1, σ2) = r(cos θ, sin θ). Let us consider
flows starting from (r, θ) = (1 + ε/2, π). Near the critical point, one solution flows along the
radial direction in the same way as in the symmetric case, but there is another solution along
the θ direction. Indeed, setting r ' 1 in (3.2.22c) gives

θ(t) = ±2 tan−1(exp(−εt)). (3.2.23)

According to (3.2.23), there is a downward flow rotating along a nearly flat direction with a
time scale 1/ε. For consistency with (3.2.22a), the radial direction should be fine-tuned so that
r(t) ' 1− (ε/2) tanh(εt). After traveling along the critical orbit T ∗S1 in this way, flows branch
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Figure 3.9: (a) Behaviors of downward flows (3.2.22) in the σ1σ2-plane when pr = pθ = 0 and
α = 0. Black blobs are critical points of the symmetry-broken system. Red arrowed curves are
typical solutions starting from the global minimum (r, θ) = (1+ε/2, π) with 0 < ε� 1 (ε = 0.1
in this figure). Before branching into the r direction, every flow from the global minimum moves
slowly along the critical orbit r = 1. (b) Behaviors of solutions to the differential equation
(3.2.22) in the σ1η2-plane with θ = pr = 0 when α = 0. Red arrowed curves show typical
solutions starting from (r, θ) = (1− ε/2, 0) with ε = 0.1. (Figures are taken from Ref. [108].)

into radial directions, as shown in Fig. 3.9 (a): Drawing flow lines starting from a critical point
is thus a difficult task, because we must designate the way of branching after traveling the nearly
critical orbit just by tuning the initial condition. Since we already know the approximate flow
on the critical orbit in Fig. 3.8; however, we can start and revert a flow from a point of branch
in drawing Fig. 3.9 (a). This procedure does not require fine-tuning of initial conditions. All
we have to confirm is that the reverted flow is drawn into the critical point.

Next, let us calculate the Lefschetz thimble J(1−ε/2,0) for (r, θ) = (1 − ε/2, 0). For that
purpose, we consider another set of special solutions of (3.2.22) by putting θ = 0 and pr = 0,
which gives the red solid line around θ = 0 in Fig. 3.8 (but at α = 0). This condition solves
(3.2.22b) and (3.2.22c) automatically. Behaviors of the downward flow in this plane are shown
in Fig. 3.9, and, as we expected, downward flows go along the hyperbola σ2

1 − η2
2 = 1 at first,

which is characterized by pθ: Put r(pθ) =

√
1+
√

1+4p2θ
2

, and then (3.2.22d) gives

2r(pθ(t))− tanh−1(1/r(pθ(t))) = εt. (3.2.24)

After this slow motion, they branch into the r direction in order to span a two-dimensional
cycle J(1−ε/2,0). In drawing red flow lines in Fig. 3.9 (b), we start and revert the flow from a
point of branch instead of a point near the critical point. It would be really hard to control
global behaviors of the flow if we compute the flow starting from a point near the critical point.

Now that we have identified local behaviors of Lefschetz thimbles around critical points
and properties of approximate downward flows on the nearly critical orbit, we can comment
on global behaviors of Lefschetz thimbles. This enables us to comment also on the relation
of Lefschetz thimbles in symmetric and non-symmetric cases. The Lefschetz thimble J(1+ε/2,π)

around the global minimum goes away to infinities in the η2 direction at θ = 0, 2π because there
is another Lefschetz thimble J(1−ε/2,0) at θ = 0. See Fig. 3.10 for its schematic description. In
order to recover the symmetric Lefschetz thimble J sym.

r=1 in the limit ε → +0, we must sum
J(1+ε/2,π) and J(1−ε/2,0) for the cancellation of the η2 direction.
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Figure 3.10: Schematic figure for a global structure of Lefschetz thimbles J(1+ε/2,π) and J(1−ε/2,π)

at α = 0+, which are shown with green and blue surfaces, respectively. In this limit, flows into
pr direction of these thimbles are quite small unless r ' 0, and we totally neglect that direction.
Three black blobs represent critical points of this system, and arrowed lines show slow motion
with time scale 1/ε along the critical orbit T ∗S1. (Figures are taken from Ref. [108].)

What is the fate of each Lefschetz thimble J(1+ε/2,π), J(1−ε/2,0) in the limit ε→ +0? Let us
observe the behavior of integration on J(1−ε/2,0) in the limit ε→ +0:∫

J(1−ε/2,0)
d2z exp [− (S0 + ε∆S) /~]

∼ −i

∫ ∞
0

λdλ exp

(
−(λ2 − 1)2

4~

)∫ ∞
−∞

dφ exp

(
−ελ

~
coshφ

)
. (3.2.25)

Here, we have set σ1 = λ coshφ and η2 = λ sinhφ. The integration of λ is convergent, but the
integration of φ is logarithmically divergent in the limit ε/~→ +0:∫

dφ exp

(
−ελ

~
coshφ

)
∼ 2 ln

~
ε
. (3.2.26)

This divergent integration is nothing but the integration along the critical orbit r2−(pθ/r)
2 = 1.

Exactly the same divergence with the opposite sign appears in the integration over J(1+ε/2,π),
and we must sum them up to construct a convergent integration cycle in the limit ε → 0. As
already mentioned, this is identical with J sym.

r=1 in the homological sense:

J sym.
r=1 = J(1+ε/2,π) + J(1−ε/2,0). (3.2.27)

This might be surprising because the number of possible integration cycles changes under
continuous change of parameters. Physically, this means that the number of solutions of the
Dyson–Schwinger equation in the symmetric system is smaller than that of symmetry-broken
systems.

We need to pick up half dimensions of the critical orbit T ∗Sn−1 in order to construct
the middle-dimensional integration cycle J sym.

r=1 . In the previous section, we picked them up
in a specific way by rotating the Lefschetz thimble of the reduced system using the original
symmetry O(n). However, we did not explain why we cannot use imaginary directions of
O(n,C). The above analysis clearly shows the reason we have to give up imaginary directions
of the complexified symmetry group: Otherwise, integration does not converge.

We have stuck to the case α = 0+ in order to draw Figs. 3.9, but our proposal is expected
to be useful for generic α. Since there is no Stokes jump in 0 < α < π, Lefschetz thimbles at
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generic α are continuous deformations of Fig. 3.10 (in C2). In order to span such cycles, flows
should still go along T ∗S1 up to O(ε) as shown in Fig. 3.8, and branch. The dynamics after
the branch can be solved in a similar way to get Fig. 3.7: ε∆H is expected to be negligible
since critical conditions are broken at O(ε0).

Generalization to O(n) sigma models Let us consider the case with general n. Then, the
original action has O(n) symmetry, and the perturbation ∆H breaks it into O(n−1) symmetry:

O(n− 1) =

(
1 0
0 O(n− 1)

)
⊂ O(n). (3.2.28)

In order to study the effect of ∆H, we need nothing new. All the computations are reduced
into the ones in the case of O(2) symmetry as follows.

Since the O(n − 1) symmetry is not broken at all, let us integrate it out. The O(n − 1)-
invariant variables are

σ1, σ
′
2 =

√
σ2

2 + · · ·+ σ2
n. (3.2.29)

The original O(n) invariance ensures that the unperturbed action can only depend on σ2
1 +

σ′2
2. Therefore, even after O(n − 1) symmetry is reduced, there still exists a continuous O(2)

symmetry. Thus, all of the previous argument for the system with explicit symmetry breaking
holds. After computing downward flows in the reduced system, we can construct Lefschetz
thimbles by rotating them under O(n− 1).

3.3 Spontaneous breaking of U(1)A chiral symmetry

In this section, we discuss the spontaneous breaking of the continuous symmetry in the theory
with chiral fermions based on the Lefschetz-thimble approach. The computational technique
developed in Sec. 3.2 is applied in our analysis for that purpose. The discussion is adapted
from Ref. [91].

3.3.1 0-dimensional Nambu–Jona-Lasinio model

Let us consider two zero-dimensional toy models which have continuous chiral symmetries.
They are zero-dimensional analogues of the Nambu–Jona-Lasinio (NJL) model [45, 46]. The
first model is defined by

ZU(1) =

∫
dψdψ exp

( N∑
a=1

ψa(i/p+m)ψa +
G

4N

{( N∑
a=1

ψaψa

)2

+
( N∑
a=1

ψaiγ5ψa

)2
})

. (3.3.1)

We use the same symbols and variables as in (3.1.1). In the chiral limit m = 0, the classical
action is invariant under the U(1)A chiral rotation ψ → eiθγ5ψ and ψ → ψeiθγ5 . By introducing
auxiliary fields σ and π via the Hubbard–Stratonovich transformation, we get

ZU(1) =
N

πG

∫
R2

dσdπ
[
det(i/p+m+ σ + iγ5π)

]N
exp

(
−N
G

(σ2 + π2)

)
=

N

πG

∫
R2

dσdπ e−NS(σ,π) , (3.3.2)



3.3. Spontaneous breaking of U(1)A chiral symmetry 49

with

S(σ, π) ≡ − log
[
p2 + (σ +m)2 + π2

]
+
σ2 + π2

G
. (3.3.3)

The U(1)A
∼= O(2) transformation rotates (σ, π) as a two-dimensional vector, and it is a sym-

metry when m = 0. If we set π = 0 by using an O(2) rotation, then the present model reduces
to the GN-like model in Sec. 3.1 up to an O(2)-invariant measure. This perspective will become
important in analyzing the structure of Lefschetz thimbles later.

The second model we consider is defined by the partition function

ZSU(2) =

∫
dψdψ exp

( N∑
a=1

ψa(i/p+m)ψa +
G

4N

{( N∑
a=1

ψaψa

)2

+
3∑

A=1

( N∑
a=1

ψaiγ5τ
Aψa

)2
})

,

(3.3.4)

where ψ and ψ are two-component Grassmann variables with SU(2) flavors and N colors, {τA}
are the Pauli matrices for SU(2) flavors, and the summation over flavor indices is implicitly
assumed. In the chiral limit m = 0, this model has an exact SU(2)R × SU(2)L symmetry, and
it is explicitly broken to its diagonal component, SU(2)L+R, by nonzero m. Again using the
Hubbard–Stratonovich transformation,

ZSU(2) =

(
N

πG

)2 ∫
R4

dσdπA
[
det(i/p+m+ σ + iγ5πAτ

A)
]N

exp

(
−N
G

(σ2 + π2
A)

)
(3.3.5)

=

(
N

πG

)2 ∫
R4

dσdπA
{
p2 + (m+ σ)2 + π2

A

}2N
exp

(
−N
G

(σ2 + π2
A)

)
. (3.3.6)

Under the chiral symmetry SU(2)L×SU(2)R
∼= O(4), (σ, π1, π2, π3) rotates as a four-dimensional

vector. One can rotate any such vectors to (σ, 0, 0, π3) by using an unbroken SU(2)L+R
∼= SO(3)

rotation. The resulting integral over σ and π3 is essentially equivalent to the former model
s(3.3.2) and does not entail a new feature. For this reason we focus on the first model in the
following.

3.3.2 Structures of Lefschetz thimbles in the massless case

Let us consider the chiral limit m = 0 at first. In this case, there exists an exact continuous
symmetry. Therefore, in order to apply the Lefschetz-thimble method for ZU(1), we have to
decompose the original integration cycle R2 according to Sec. 3.2.1. Upon a complexification
of variables, the action becomes

S(z, w) = − log(p2 + z2 + w2) +
z2 + w2

G
, (3.3.7)

whose domain is {(z, w) ∈ C2 | z2 + w2 6= −p2}. The set of singular points of logarithm,
{(z, w) ∈ C2 | z2 + w2 = −p2}, forms a two-dimensional surface in C2. It is equal to the
O(2,C)-orbit of the singular points (z, w) = (±ip, 0) of the massless GN-like model.

The flow equation reads6

dz

dτ
=

2z

p2 + z2 + w2
− 2z

G
and

dw

dτ
=

2w

p2 + z2 + w2
− 2w

G
. (3.3.8)

6In this section, the definition of the fictitious time τ has an extra minus sign.
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It is important to point out that the symmetry of this flow equation is O(2) instead of O(2,C),
although the classical action is invariant under O(2,C) (see Sec. 3.2.1).

The set of saddle points is obtained by solving (3.3.8) with

dz

dτ
=

dw

dτ
= 0. (3.3.9)

Let us put G 6= p2 in order to circumvent accidental degeneracy of complex saddle points. The
set of saddle points in C consists of two connected components:

C0 := {(0, 0)} and C1 := {(z, w) ∈ C2 | z2 + w2 = G− p2} . (3.3.10)

C1 is equal to the O(2,C) critical orbit of the saddle points
(
±
√
G− p2, 0

)
in the 0-dimensional

massless GN model. It crosses the real plane R2 if G−p2 > 0 but has no intersection otherwise.
We now construct Lefschetz thimbles Jσ and their duals Kσ (σ = 0, 1) for saddle points

C0 and C1. Since C0 = {(0, 0)} is a non-degenerate saddle point, we can compute J0 and K0

in the standard manner; ReS(z, w) increases in two directions and decreases in the other two
directions around C0. Since the gradient flow preserves the O(2) symmetry, we can obtain J0

by rotating a Lefschetz thimble in the GN-like model with the O(2) action:

J0 =

{(
z
w

)
=

(
cos θ − sin θ
sin θ cos θ

)(
z′

0

) ∣∣∣∣∣ − π < θ ≤ π and z′ ∈ J0

∣∣
GN

}
. (3.3.11)

The dual thimble K0 can be computed in the same way.
Since C1 is the set of degenerate saddle points, we need a special treatment to construct J1.

The general method given in Ref. [64] is already explained in Sec. 3.2.1, but we try to compute
it in a more concrete manner. Let us pick up a point (

√
G− p2, 0) ∈ C1. Two directions along

C1 give two null eigenvectors of the Hessian matrix of S, and other two directions are non-
degenerate. For non-degenerate directions, we can construct the flow lines, and the flow line
emanating from (

√
G− p2, 0) can be identified as a Lefschetz thimble Jz+ of the 0-dimensional

GN model. Recalling that the flow respects the O(2) symmetry, J1 can simply be obtained as
an O(2) revolution of Jz+ in Sec. 3.1. We thus conclude that

J1 =

{(
z
w

)
=

(
cos θ − sin θ
sin θ cos θ

)(
z′′

0

) ∣∣∣∣∣ − π < θ ≤ π and z′′ ∈ Jz+
∣∣
GN

}
. (3.3.12)

Since the Noether charge µ is conserved along a flow, µ vanishes everywhere on J1.
By our construction, it is clear that behaviors of the Lefschetz thimbles, (3.3.11) and (3.3.12),

in terms of G ∈ C can be learned from Sec. 3.1 without additional calculation:

• J0 and J1 jump on the Stokes lines (blue lines) in Fig. 3.3.

• For G inside the shaded area of Fig. 3.3, only J0 contributes to ZU(1).

• For G outside the shaded area of Fig. 3.3, both J0 and J1 contribute to ZU(1).

• For G inside the anti-Stokes line (green line) in Fig. 3.4, J0 dominates J1 at large N .
Their dominance is exchanged as G moves out across the anti-Stokes line.
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(a) m = 0 (b) m = 0.4 (c) m = 1

Figure 3.11: Snapshots of the action S(σ, π) in (3.3.3) for varying m at G = 3 and p = 1. The
number of saddle points jumps from 3 to 1 at m ' 0.724. (Figures are taken from Ref. [91].)

• Spontaneous breaking of the O(2) chiral symmetry is a first-order phase transition for
generic complex couplings G. For physical G ∈ R>0, this is the second-order phase
transition at G = p2.

As a conclusion, the Lefschetz thimbles for the 0-dimensional massless NJL model (3.3.2) can
be obtained by O(2) revolutions of the Lefschetz thimbles for the 0-dimensional massless GN
model (3.1.5). Therefore, we can immediately derive many properties of the chiral symmetry
breaking for the NJL-like model thanks to the knowledge of the GN-like model.

3.3.3 Massive case

With nonzero fermion massm 6= 0, theO(2) chiral symmetry is explicitly broken. The behaviors
of the NJL-like model becomes qualitatively similar to those of the massive GN-like model.
Because of the absence of the continuous symmetry, there are only three saddle points {(z, w) =
(zσ, 0) |σ = 0,±}, where {zσ}σ=0,± are the three solutions to (3.1.17), and a critical manifold
(3.3.10) has different meaning. Associated with three non-degenerate saddle points, there are
three Lefschetz thimbles Jσ and their dual thimbles Kσ.

We have already discussed the dependence of {zσ}σ on G and m in Sec. 3.1.4 (see, e.g.,
Fig. 3.5). For sufficiently large fermion mass m, there is only one saddle point in the real space
(σ, π) ∈ R2, and only one Lefschetz thimble contributes to ZU(1) (see Fig. 3.11 (c)). At small
m or large G, all the three Lefschetz thimbles contribute (see Figs. 3.11 (a) and (b)). In the
latter case, the Stokes phenomenon occurs among the three thimbles, but it is hard to visualize
as it occurs in C2.

Let us try to calculate Lefschetz thimbles for sufficiently small m. This helps us to visualize
the Stokes jump in the NJL-like model. So far, we have emphasized similarities of the NJL-like
model to the GN-like model. However, the flow equation of the NJL-like model has a unique
character: There are quasi-fixed points of the flow equation because of the approximate O(2,C)
symmetry of S (see Sec. 3.2.2). That is, the flow along the critical orbit C1 in the massless case
is extremely slow compared with that of other directions.

For simplicity, we put p = 0 in the following (This simplification in the GN-like model is
discussed in Ref. [91]). Here we summarize main features of the NJL-like model at p = 0.

• m = 0: The Lefschetz thimble J0 in (3.3.11) disappears at p = 0 as J0

∣∣
GN

no longer
exists. This is because the singularity of logarithm exists at the origin at p = 0. Therefore,
J1 is the unique Lefschetz thimble. From (3.3.12), we find J1 = R2 \ {(0, 0)}.

• m > 0: There are only two saddle points at (z, w) =

(−m±√m2 + 4G

2
, 0

)
=: (z±, 0),
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(a) m = 0 (G = 2, p = 0) (b) m = 0.4 (G = 2, p = 0)

Figure 3.12: The downward flow (3.3.13) of the NJL-like model in a plane with Im z = Imw ≡
0. The background color scale represents ReS(z, w). The red blob at (−m, 0) is a singularity of
the flow. The orange circle in the left panel and the orange blobs in the right panel are saddle
points. (Figures are taken from Ref. [91].)

and C1 is no longer the set of saddle points. The associated Lefschetz thimbles are
denoted by J+ and J−. Both J+ and J− contributes to (3.3.2), and J+ gives a dominant
contribution at N � 1 as Re(S(z+, 0)) < Re(S(z−, 0)).

Thus, the Lefschetz thimble J1 is split as J+ ∪ J− by an arbitrarily small m 6= 0. In order to
visualize the Stokes jump, we compute Lefschetz thimbles J± on the Stokes ray G > 0, and
the quasi-stationary flows are important there. The flow equations at p = 0 read7

dz

dτ
=

2(z +m)

(z +m)2 + w2
− 2z

G
, (3.3.13a)

dw

dτ
=

2w

(z +m)2 + w2
− 2w

G
. (3.3.13b)

It is easy to check that the condition Im z = Imw = 0 is conserved along the flow. That is, if
we start a flow from a point (z, w) ∈ R2, then the flow stays in R2. In Fig. 3.12, we show a
sketch of the flow for (z, w) ∈ R2 at m = 0 (left panel) and m > 0 (right panel). At m = 0,
there is a ring of fixed points z2 + w2 = G (orange line) that is C1 ∩ R2 and attracts all flows
on the plane J1 = R2 \ {(0, 0)}.

For m > 0, there are only two saddle points shown with orange blobs in Fig. 3.12 (b). This
figure corresponds to the left panel of Fig. 3.9. Now there is a slow but non-vanishing flow
along the orbit z2 +w2 ' G. It is clear from the figure that (z+, 0) attracts all the flows on this
plane, except for the real axis to the left of (−m, 0) on which the flow is attracted to (z−, 0).
Since J+ is defined as the union of all flows that sink in (z+, 0), we find that the set

JA := R2 \ {(x, 0) |x ≤ −m} ⊂ C2 (3.3.14)

is contained in J+.

7In this section, the definition of the fictitious time τ has an extra minus sign.
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(a) m = 0 (G = 2, p = 0) (b) m = 0.4 (G = 2, p = 0)

Figure 3.13: Same as Fig. 3.12 but with Im z = Rew ≡ 0. The X-shaped white lines are
points of logarithmic singularity of the action. (Figures are taken from Ref. [91].)

Let us go back to (3.3.13), then the condition Im z = Rew = 0 is also conserved along
the flow. Figure 3.13 shows the flow pattern in the (Re z, Imw) plane with Im z = Rew = 0.
At m = 0 the fixed points of the flow form a hyperbola (Re z)2 − (Imw)2 = G, which is the
non-compact orbit of C1 in Sec. 3.3.2.

At m > 0, a slow but non-vanishing flow appears along the hyperbola (see Fig. 3.13 (b),
which corresponds to the right panel of Fig. 3.9). According to Fig. 3.13 (b), we can find that
the Lefschetz thimble J− is given by the wedge-shaped region

JB := {(z, w) ∈ C2 | Im z = 0, Rew = 0, Re z +m < Imw < −Re z −m} . (3.3.15)

In Fig. 3.14, we combines flow plots in Figs. 3.12 (b) and 3.13 (b) at m = 0.4 within a
three-dimensional subspace of C2 specified by Im z = 0, as we did in Fig. 3.10. Since G > 0
is on the Stokes ray, two saddle points (z±, 0) are connected via a flow and Lefschetz thimbles
are ill-defined as cycles. Although the singularity of Lefschetz thimbles can be smoothed out
through complexification of G as Geiθ, it makes the Lefschetz thimbles extend into the whole
C2 space.

Since the complexification ofG impedes our visualization of the Stokes jump, we shall deduce
the behavior of Lefschetz thimbles as θ → 0± by exploiting an indirect argument. The sum of
J+ and J− is identical to the original integration cycle, R2, since both J+ and J− contribute
to ZU(1) with unit coefficients. Since J− gives a subdominant contribution compared with J+,
J+ changes by an integer multiple of J− at θ = 0±. These considerations indicate that we have{

J+ = JA + JB

J− = JB
at θ = 0− ⇒

{
J+ = JA − JB

J− = JB
at θ = 0+ . (3.3.16)

Here, we assume an appropriate orientation of JB. We find that the Lefschetz-thimble decom-
position is given by R2 = J+ −J− at θ = 0− and by R2 = J+ + J− at θ = 0+. It is important
to notice that the contribution of JB is exactly canceled between J+ and J−. This cancellation
keeps the partition function real-valued and continuous in G, because the integral over JB is
purely imaginary (see below). This is one example that highlights the reason why we need sum
up multiple Lefschetz thimbles in order to obtain a physically correct result.
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Re z

Rew

Imw

Figure 3.14: The downward flow (3.3.13) in a 3-dimensional space with Im z ≡ 0. The
parameters are m = 0.4, G = 2 and p = 0 (same as for the right panels in Figs. 3.12 and 3.13).
(Figures are taken from Ref. [91].)

It is intriguing to ask what happens near the chiral limit. As m → 0+, we can regard
that JA converges to J1 = {(z, w) ∈ R2 | (z, w) 6= (0, 0)} up to a null set. However, according
to (3.3.16), both J+ and J− contain an imaginary component JB, and thus neither of them
converges to J1 in the chiral limit. The same thing happens for the bosonic model discussed
in Sec. 3.3.2. A unique feature of the fermionic model in comparison to bosonic models is that
one of the thimbles (J−) is the wedge-shaped region because of the logarithmic singularity.

Near the chiral limit (m �
√
G), we have observed that a quasi-stationary flow along the

orbit z2 +w2 ' G emerges (see Figs. 3.12 and 3.13). This originates from the O(2,C) symmetry
of S(z, w) at m = 0. Since O(2,C) is non compact, the non-compact orbit on JB (see Fig. 3.13)
extends to infinity and it gives a divergent contribution in the limit m→ 0, as we discussed in
Sec. 3.2.2. More explicitly, we find for the contribution from JB

Z
∣∣
JB

=
N

πG

∫
JB

dzdw
{

(z +m)2 + w2
}N

e−
N
G

(z2+w2) (3.3.17)

= i
N

πG

∫ ∞
0

dRR2N+1

∫ ∞
−∞

dΦ e−
N
G

(m2+2mR cosh Φ+R2) (3.3.18)

= 2i
N

πG
e−

N
G
m2

∫ ∞
0

dRR2N+1e−
N
G
R2

K0

(2NR

G
m
)
. (3.3.19)

In the second and third lines, we changed the integration variables as z = −m−R cosh Φ and
w = −iR sinh Φ. Roughly speaking, Φ parametrizes the hyperbola in Fig. 3.13. Using the

asymptotic formula K0(x) = −
(

log
x

2
+ γ
)
I0(x) + O(x2), we conclude that Z

∣∣
JB

diverges as

∼ logm in the chiral limit, m → 0. Since both J+ and J− include JB with the opposite sign
(see (3.3.16)), this infrared divergence on each thimble exactly cancels out when we sum up
both contributions. We suspect that this is a generic phenomenon that occurs when we handle
the spontaneous breaking of continuous symmetries by the path integral on Lefschetz thimbles.
It is an important check of future studies to compute the behavior of Lefschetz thimbles for
field-theoretical models in higher dimensions.
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3.4 Brief summary

In this chapter, we discussed the chiral symmetry breaking from the viewpoint of the Lefschetz-
thimble approach. Since the spontaneous breaking of the chiral symmetry is an essential in-
gredient to understand low-energy dynamics of QCD, this study gives a part of the theoretical
foundation to study low-temperature and finite-density QCD using Lefschetz thimbles.

In Sec. 3.1, we first study the case where the chiral symmetry is given by a discrete group
Z2 using a 0-dimensional Gross–Neveu model. After introducing a auxiliary bosonic field for
the chiral condensate, we apply the Lefschetz-thimble method for evaluating the bosonic in-
tegral. This is the first application of the Lefschetz-thimble method when the effective action
has a contribution from the fermionic determinant. The Lefschetz-thimble decomposition of
the integration cycle provides a nice setup to study the analytic structure of the partition func-
tion because we can complexify the four-fermion coupling before performing the path integral.
Thanks to this property, we can discuss the phase transition of this model in the large-N limit
from the viewpoint of anti-Stokes rays and Lee–Yang zeros.

In QCD, the chiral symmetry is a continuous and approximate symmetry. Indeed, pions
are pseudo Nambu–Goldstone bosons of the symmetry breaking from SU(2)L × SU(2)R to
SU(2)L+R. In order to extend our analysis in Sec. 3.1 to spontaneous breaking of continuous
symmetries, we developed a computational way of Lefschetz thimbles with approximate con-
tinuous symmetries in Sec. 3.2. If there exists an exact continuous symmetry, the set of saddle
points form a critical orbit of the Lie group, and there exists a remnant of that structure even
after adding a small explicit symmetry breaking. In this case, we can approximately decouple
the quasi-zero mode of the gradient flow to compute Lefschetz thimbles.

By applying this technique, we study the spontaneous breaking of the axial U(1) symme-
try of the 0-dimensional Nambu–Jona-Lasinio model in Sec. 3.3. After overcoming technical
difficulties of computing Lefschetz thimbles with continuous symmetries, we can analyze this
model in the almost same way as what we have done for the Gross–Neveu model. The only
difference is that picking up one Lefschetz thimble has a singularity in taking the chiral limit,
and thus we must sum up Lefschetz thimbles related by the gradient flow along the quasi-zero
mode.

It is an important future study to extend those analysis of 0-dimensional models to that
of lattice field theories or other matrix models. When many degrees of freedom are correlated
with one another in a complex manner, then the perturbative fluctuation around the saddle
points becomes important. It is interesting to see whether our techniques and results in this
chapter are useful under such circumstances.
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Chapter 4

Lefschetz-thimble approach to the
Silver Blaze problem

In this chapter, the Lefschetz-thimble path integral is applied to the sign problem of several
models. In this circumstance, the mean-field approximation in a usual sense cannot be applied
because the self-consistent equation has no real solution. When the classical action is complex,
we need complexify integration variables in order to search relevant Lefschetz thimbles. Physical
observables must have real expectation values; then how can this condition be satisfied? This
question is answered in Sec. 4.1.

In Sec. 4.2, the one-site Hubbard model is studied in detail, which is a good playground
to study the sign problem in the path-integral expression. This model is easily and exactly
solvable, but it has the severe sign problem in the path integral, whose mathematical structure
is quite similar to that of finite-density QCD at µq > mπ./2. Using the Lefschetz-thimble
method, we unveil the secret of the severe sign problem from various points of view.

4.1 Sign problem in the mean-field approximation

When the sign problem exists, there is no solution of the self-consistent equation of the mean-
field approximation. When we try to solve it, the mean field usually takes complex values, which
contradicts the real-valuedness of physical observables. This is the sign problem appearing in the
mean-field approximation, and we consider its origin from the viewpoint of Lefschetz thimbles.
We first show the general theorem to ensure the real-valuedness of physical observables in
the Lefschetz-thimble decomposition, and applies that theorem to the complex saddle-point
approximation. Using this method, the sign problem of the heavy-dense QCD is shown to be
completely understood. The discussion in this section is adapted from Ref. [109].

4.1.1 Real-valuedness of the partition function and observables

Let us consider a multiple integration that gives the partition function,

Z =

∫
Rn

dnx e−S(x), (4.1.1)

where S(x) is the action functional of the real field x = (x1, . . . , xn). Since the partition function
(4.1.1) for physical systems is given by the trace of a positive operator,

Z = tr
[
exp−βĤ

]
, (4.1.2)

57
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it must be a positive quantity; however the Boltzmann weight exp (−S(x)) can be complex in
general. In this section, we elucidate how the real-valuedness of the partition function holds
manifestly in the Lefschetz-thimble decomposition

Z =
∑
σ∈Σ

〈Kσ,Rn〉
∫
Jσ

dnz e−S(z). (4.1.3)

of (4.1.1).
One of the sufficient conditions for ensuring Z ∈ R is the existence of a reflection symmetry

L : (xi) 7→ (Lijxj), which satisfies Lij = Lji ∈ R, L2 = 1 and

S(x) = S(L · x). (4.1.4)

In the case of finite-density QCD, we will see later that the charge conjugation gives this
correspondence. The main purpose of this section is to derive the useful formula for the mean-
field analysis and its systematic improvement while keeping Z real under Eq.(4.1.4).

Let us recall Morse’s flow equation which defines Lefschetz thimbles,

dzi
dt

=

(
∂S(z)

∂zi

)
. (4.1.5)

In order to show invariance of the Lefschetz-thimble decomposition under the complex conju-
gation, some invariance of the flow equation (4.1.5) associated with the reflection symmetry
(4.1.4) is sufficient. We extend the linear map L on Rn to an antilinear map on Cn by [109]

K : (zi) 7→ (Lijzj). (4.1.6)

The flow equation (4.1.5) shows the covariance under this antilinear reflection: Using Eq.(4.1.4),
we find

dzi
dt

=

(
∂S(L · z)

∂zi

)
, (4.1.7)

and thus the antilinearly transformed function z′(t) := K(z(t)) satisfies the same gradient flow
equation (4.1.5):

dz′i(t)

dt
= Lij ·

(
∂S(L · z)

∂zj

)
= Lij · Lkj ·

(
∂S(z′)

∂z′k

)
=

(
∂S(z′)

∂z′i

)
. (4.1.8)

Many important properties can be deduced from this conclusion [109]:

1. When zσ is a saddle point, so is K(zσ). Let Jσ be the Lefschetz thimble around zσ;
then J K

σ := {K(z) | z ∈ Jσ} coincides with the Lefschetz thimble around K(zσ) up to
orientation.

2. Since the flow is covariant under the antilinear map, 〈Kσ,Rn〉 = 〈KKσ ,Rn〉 under an
appropriate choice of the orientation. This means that the contributing thimbles always
form an invariant pair Jσ ∪ J K

σ .



4.1. Sign problem in the mean-field approximation 59

Let us decompose Σ into three disjoint parts. For simplicity, we assume that S(zσ) ∈ R only if
the saddle point satisfies zσ = K(zσ) 1; then, Σ = Σ0 ∪ Σ> ∪ Σ<, where

Σ0 = {σ | zσ = L · zσ}, Σ≷ = {σ | ImS(zσ) ≷ 0}. (4.1.9)

The transformation K induces a one-to-one and onto correspondence between Σ> and Σ<.
Equation (4.1.3) becomes

Z =
∑
σ∈Σ0

nσ

∫
Jσ

dnz e−S(z) +
∑
τ∈Σ>

nτ

∫
Jτ+JKτ

dnz e−S(z). (4.1.10)

Each integral on the r.h.s. of the formula (4.1.10) is real or purely imaginary depending on
whether K changes orientation of Jσ ∪ J K

σ . Since the l.h.s. is real, nτ must be zero unless the
integral on Jτ +J K

τ is real 2. This conclusion can also be applied to expectation values of any
physical observables that satisfy the symmetry (4.1.4). The decomposition formula (4.1.10)
takes a suitable form for the saddle-point analysis.

Let us emphasize here that the real-valuedness of the partition function is ensured only by
the invariance under the antilinear map K. The point of our discussion is that the Lefschetz-
thimble decomposition of the integration cycle manifestly respects the antilinear reflection K,
and so does the saddle-point analysis based on it.

4.1.2 Mean-field approximation and complex classical actions

Charge conjugation in finite-density QCD The QCD partition function at temperature
T = β−1 and quark chemical potential µq is given by

ZQCD =

∫
DA detD(A, µq) e−SYM[A], (4.1.11)

where SYM = 1
2
tr
∫ β

0
dx4

∫
d3x|Fµν |2 (> 0) is the Yang-Mills action, and

detD(A, µq) = det
[
γν(∂ν + igAν) + γ4µq +m

]
(4.1.12)

is the quark determinant. When µq 6= 0, the quark determinant becomes an oscillatory func-
tional of the gauge field A, and the sign problem emerges. Even when µq 6= 0, the charge
conjugation A 7→ −At with the γ5 hermiticity implies that the fermion determinant still satis-
fies the identity [113, 114],

det D(A, µq) = det D(A†,−µq)
= det D(−A, µq). (4.1.13)

The charge C and complex K conjugation, or the CK transformation, serves as the antilinear
map (4.1.6) for finite-density QCD [115, 116]. The Lefschetz-thimble decomposition (4.1.10)

1This technical assumption can be removed by carefully defining Σ≷ so that they are conjugate to each other
under the antilinearly extended map K(z) of L.

2We here assume that the coupling constant is generic so that Stokes phenomenon does not occur. If it does,
several saddle points are connected via some downward flows, and subdominant saddle points may give a purely
imaginary contribution so as to cancel ambiguities of the large-order perturbation series at the dominant saddle.
This is discussed in the context of the resurgence trans-series of quantum field theories [35, 37, 40, 41, 75, 110–
112].
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manifestly respects the CK symmetry so that ZQCD ∈ R. Since the discussion is robust, this
conclusion applies to any effective descriptions of QCD, including lattice QCD simulations
[67–70, 117] and also matrix models.

We apply our insight on the Lefschetz-thimble method to the sign problem in Polyakov-
loop effective models. The Polyakov loop `3 of the fundamental representation 3 is an order
parameter for the confinement-deconfinement transition [24];

`3 =
1

3
tr

[
P exp

(
ig

∫ β

0

A4dx4

)]
, (4.1.14)

where P refers to the path ordering. To understand its properties, the constrained effective
action Seff(a4) of the Polyakov loop is useful [118, 119]. It describes the (complex) weight of
the partition function under the background Polyakov-loop phase a4:

exp (−Seff(a4)) =

∫
DA e−S[A] δ (A4 − a4) , (4.1.15)

where A4 is the temporal gauge field and S[A] = SYM[A]− ln detD(A, µq). We implicitly take
the Polyakov gauge fixing with

exp
(

i
ga4

T

)
= diag

[
ei(θ1+θ2), ei(−θ1+θ2), e−2iθ2

]
. (4.1.16)

The Weyl group action (θ1, θ2) 7→ (−θ1, θ2), (θ1, θ2) 7→ ((θ1 + 3θ2)/2, (θ1− θ2)/2) just permutes
eigenvalues of the Polyakov loop (4.1.16), and thus the parameter region can be restricted to C =
{θ = (θ1, θ2) | 3|θ2| ≤ θ1 ≤ π}. This background field method, or the mean-field approximation
(MFA), gives a single integration over a4(θ1, θ2) to compute the partition function:

ZQCD =

∫
C

dθ1dθ2H(θ1, θ2) exp [−Seff(θ1, θ2)] , (4.1.17)

with H(θ) = sin2 θ1 sin2((θ1 + 3θ2)/2) sin2((θ1 − 3θ2)/2) coming from the SU(3) Haar measure
[120, 121]. When the quark chemical potential µqk is turned on under the nontrivial Polyakov-
loop background, the effective action Seff(θ) takes complex values in general due to the quark
determinant. This makes the integration (4.1.17) oscillatory, and the sign problem remains in
the mean-field approximation [113, 114].

Lefschetz-thimble analysis of heavy-dense Polyakov-loop models In order to evade
the sign problem of the MFA, we should rewrite Eq.(4.1.17) based on the decomposition formula
(4.1.10). Since H(θ) identically vanishes at the edge of C, the Lefschetz-thimble method can
be applied by regarding S(θ) = Seff(θ) − lnH(θ). In terms of the Polyakov-loop (4.1.16), the
CK transformation K becomes

K(z1, z2) = (z1,−z2), (4.1.18)

where zi is the complexified variable of θi, up to some Weyl transformations. The CK symmetry
(4.1.13) leads

Seff(z1, z2) = Seff(z1,−z2). (4.1.19)

It is important to remark that the Polyakov loop,

`3(θ) =
1

3

(
2eiθ2 cos θ1 + e−2iθ2

)
, (4.1.20)
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Figure 4.1: Flows at h = 0.1 and µ = 2 around the CK-symmetric saddle point (the black blob)
z∗ in the Re(z1)-Im(z2) plane. The red solid and green dashed lines are the Lefschetz thimble
J∗ and its dual K∗ of z∗, respectively. Since K∗ intersects with Im(z2) = 0, the integral over
J∗ is equal to that over C. (The figure is taken from Ref. [109])

satisfies the CK symmetry (4.1.19). For our demonstration, we take a simplified heavy-quark
model [113, 122–127]:

Seff = −h(32 − 1)

2

(
eµ`3(θ1, θ2) + e−µ`3(θ1, θ2)

)
= −8h

3

(
2 cos θ1 cos(θ2 − iµ) + cos(2θ2 + iµ)

)
. (4.1.21)

Since the Polyakov loop `3 can be regarded as a free energy for single quark excitation, this
effective action represents the free energy for static quarks. Therefore, this approximation can
be justified when quarks are sufficiently heavy. When h 6= 0 and µ = βµqk 6= 0, the integration
(4.1.17) is oscillatory because Seff takes complex values. The gluon dynamics is neglected just
for simplicity.

If h = 0, the system has the Z3 symmetry generated by (θ1, θ2) 7→ (θ1, θ2 +2π/3) up to Weyl
group actions. The Haar measure factor H(θ1, θ2) takes the unique maxima at θ∗ = (2π/3, 0)
in C, and this is Z3 invariant. For later purposes, it is important to notice that this saddle
point is CK symmetric in the sense that θ∗ = K(θ∗). The eigenvalues of the temporal Wilson
line (4.1.16) become uniformly separated, and thus 〈`3〉 = 0.

When h 6= 0, the Z3 symmetry is explicitly broken, and the saddle point z∗ moves away
from the Z3-symmetric point (2π/3, 0), but it still must be CK symmetric because there are no
other saddles to form a pair. By continuity of intersection numbers, z∗ will contribute to ZQCD

even for finite h and µ. In order to demonstrate it lucidly, we explicitly solve the flow equation
(4.1.5) around the CK-symmetric saddle point (see Fig. 4.1). The dual thimble K∗ of z∗ is
shown with the green dashed curve, and it indeed intersects with the original integration cycle
C. Therefore, the complex saddle point contributes, but physical quantities take real values
since the CK symmetry is respected under the Lefschetz-thimble decomposition.

In the limit µ→ +∞, the saddle-point approximation becomes accurate. In this limit, the
effect of the quark potential Seff becomes quite large. By solving the saddle-point equation of



62 Chapter 4. Lefschetz-thimble approach to the Silver Blaze problem

S in the limit µ→∞, we find that

z∗1 '
3e−µ/2

2
√
h
, z∗2 ' −i

e−µ

8h
, (4.1.22)

and it indeed approaches the perturbative vacuum z∗pert. = (0, 0) of Seff . Thus, 〈`3〉 and 〈`3〉
converge to 1 in this limit, as was numerically observed in Fig.2 of Ref. [113]. Using the
saddle-point approximation, we can see that these Polyakov loops have different expectation
values:

〈`3〉 − 〈`3〉 '
2

3
(sinh 2iz∗2 − 2 cos z∗1 sinh iz∗2) > 0. (4.1.23)

These results are consistent with those of exact computations of expectation values [113], and
the CK-symmetric saddle point gives real expectation values [115, 116]. The formula (4.1.10)
shows that this approximation can be systematically improved perturbatively to satisfy these
physical requirements.

In this model, the flow equation tells us that only the single saddle point contributes to the
path integral. In order to make our mean-field analysis valid, the one-thimble approximation
must be sufficiently accurate and this condition can be checked by solving the flow equation in
principle.

4.2 One-site Hubbard model

In this section, we apply the Lefschetz-thimble approach to the one-site model of electron
systems. This toy model can be regarded as an extreme limit of strong couplings, because it
can be obtained by neglecting hopping in the Hubbard model, and its Hamiltonian can be easily
diagonalized. If we rewrite its partition function using the path integral with the Hubbard–
Stratonovich transformation, the sign problem emerges and thus this toy model provides us
a good playground to study theoretical structures of the Lefschetz-thimble approach when we
apply it to the sign problem. In a previous study [117], the two-dimensional Hubbard model
is studied using the Lefschetz-thimble Monte Carlo method, but one must use the so-called
“one-thimble approximation” due to the current limitation of the numerical algorithm. Since
our system is exactly solvable, we can understand the complete structure of Lefschetz thimbles,
and suggest appropriate approximation schemes. The discussion in this section is adapted from
Ref. [128].

4.2.1 Physical properties of the model

The Hubbard model [129–131] is a lattice model of many-body electron systems, and it can
describe the transition between Mott insulators and metals. Its dynamics is governed by

Ĥ = −t
∑
〈i,j〉,σ

ĉ†σ,iĉσ,j + U
∑
i

n̂↑,in̂↓,i − µ
∑
i

(n̂↑,i + n̂↓,i). (4.2.1)

The summation is taken over all the lattice sites i, and the notation 〈i, j〉 denotes that only the
nearest neighbor hopping is considered. ĉ†σ,iand ĉσ,i are creation and annihilation operators of

fermions of the spin σ(=↑, ↓) at the site i obeying
{
ĉσ,i, ĉ

†
τ,j

}
= δστδij, and n̂σ,i = ĉ†σ,iĉσ,i is the
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number operator. The parameter t is called the hopping parameter, and we will consider the
case t = 0 in this section. The parameter U(> 0) describes the on-site repulsive interaction, and
the energy increases if more than one particles get together at the same site. The Hamiltonian is
invariant under the global U(1) rotation ĉ

(†)
σ,i 7→ exp(±iα)ĉ

(†)
σ,i, and the total number of fermions is

conserved. In the Hamiltonian (4.2.1), the chemical potential µ is introduced for this conserved
quantity.

At zero temperature, the Hubbard model shows a Mott insulating phase if t� U . Especially
in the strong coupling limit t = 0, one can solve the model (4.2.1) analytically and let us see
the result on the total number density 〈n̂〉 as a function of the chemical potential µ. Since each
site is totally independent from others, one can study the single-site Hamiltonian,

Ĥ = Un̂↑n̂↓ − µn̂, (4.2.2)

instead. Since the Hamiltonian (4.2.2) commutes with the number density operator n̂ = n̂↑+n̂↓,
we can take the number basis to find the ground state. Let us defines the partition function

Z = tr
[
exp

(
−βĤ

)]
, (4.2.3)

then the number basis gives an explicit result:

Z = 1 + 2eβµ + e−β(U−2µ) (4.2.4)

The number density is given as

〈n̂〉 =
1

β

∂

∂µ
lnZ =

2(eβµ + e−β(U−2µ))

1 + 2eβµ + e−β(U−2µ)
, (4.2.5)

and, in the zero-temperature limit β →∞, it shows a non-analytic behavior:

n(β =∞) =


0 for µ/U < 0,
1 for 0 < µ/U < 1,
2 for µ/U > 1.

(4.2.6)

At the half-filling µ = U/2, Eq. (4.2.5) shows that 〈n̂〉 = 1 for any β, which comes from the
particle-hole symmetry n̂ 7→ 2− n̂ (or, n̂σ 7→ 1− n̂σ) in (4.2.2).

4.2.2 Path integral formulation and the sign problem

We have explicitly seen that the Hubbard model can be solved analytically using the number
eigenstates in the strong coupling limit, or the static limit t = 0. However, if one changes the
basis of the Hilbert space in taking trace, the sign problem emerges and the Hubbard model in
the strong coupling provides us a good lesson.

Let us first derive the path integral expression of the partition function. Using two-
component complex Grassmannian variables ψ = (ψ↑, ψ↓), the fermion coherent state is defined
by

|ψ〉 = exp(−ψĉ†)|0〉, (4.2.7)

which satisfies ĉ|ψ〉 = ψ|ψ〉. In the following, the summation over spin is taken without showing
it explicitly. We take the convention in which all the Grassmannian variables anticommute with
each other and with fermionic creation/annihilation operators. It is easy to check that

〈ψ1|ψ2〉 = eψ
∗
1ψ2 ,

∫
dψ∗dψ|ψ〉e−ψ∗ψ〈ψ| = 1, (4.2.8)
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and

tr(O) =

∫
dψ∗dψe−ψ

∗ψ〈−ψ|O|ψ〉. (4.2.9)

Let |n↑, n↓〉 be a fermionic Fock state, and the inner product with coherent states is

〈0, 0|ψ〉 = 1, 〈1, 0|ψ〉 = ψ↑, 〈0, 1|ψ〉 = ψ↓, 〈1, 1|ψ〉 = −ψ↑ψ↓. (4.2.10)

Using these relation, one can compute the matrix element of the time-development operator in
the following way:

e−ψ
∗ψ〈ψ|e−∆τĤ |ψ′〉 = exp−

[
ψ∗
(
ψ − e∆τµψ′

)
+ (1− e−∆τU)(ψ∗↑e

∆τµψ′↑)(ψ
∗
↓e

∆τµψ′↓)
]

' exp−
[
ψ∗
(
ψ − e∆τµψ′

)
+ ∆τU(ψ∗↑e

∆τµψ′↑)(ψ
∗
↓e

∆τµψ′↓)
]
. (4.2.11)

The first equality is exact thanks to the knowledge on the number eigenstates, and we take an
approximation for small ∆τ in the last equality. In order to circumvent the quartic interaction,
let us introduce an auxiliary field ϕ vis the Hubbard–Stratonovich transformation, so that

1 =

√
∆τ

2πU

∫
dϕ exp−∆τ

2U

(
ϕ− iU(ψ∗↑e

∆τµψ↑ + ψ∗↓e
∆τµψ↓)

)2
. (4.2.12)

Inserting (4.2.12) into (4.2.11), we obtain that

e−ψ
∗ψ〈ψ|e−∆τĤ |ψ′〉 =

√
∆τ

2πU

∫
dϕ exp−

[
∆τ

2U
ϕ2 +

∑
σ

ψ∗
(
ψ − e∆τµ(1 + i∆τϕ)ψ′

)]
.

(4.2.13)
In order to take the naive continuum limit of the path integral expression, we must exponentiate
the auxiliary field in the fermionic bilinear term:

e∆τµ(1 + i∆τϕ) = exp

(
∆τ(µ+ iϕ) +

∆τ 2

2
ϕ2 +O(∆τ 3/2)

)
= exp

(
∆τ(µ+ iϕ) +

∆τ 2

2
〈ϕ2〉0 +O(∆τ 3/2)

)
= exp

(
∆τ

(
µ+

U

2
+ iϕ

)
+O(∆τ 3/2)

)
. (4.2.14)

Here, 〈ϕ2〉0 means the expectation value of ϕ2 with the Gaussian weight in (4.2.13), which gives
U/∆τ . We find the path integral expression of the partition function as

Z = lim
N→∞

√
β/N

2πU

N ∫ N∏
k=1

dϕk exp

(
− β
N

N∑
k=1

ϕ2
k

2U

)

×
∫ N∏

k=1

dψ∗kdψk exp

(
−

N∑
k=1

ψ∗k+1

(
ψk+1 − e

β
N

(iϕk+µ+U/2)ψk

))
, (4.2.15)

with the antiperiodic boundary condition ψN+1 = −ψ1. Equation of motion in terms of ϕ shows

〈n̂〉 = 〈ψ∗k+1e
β
N

(iϕk+µ+U/2)ψk〉 = − i

U
〈ϕk〉. (4.2.16)
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The expectation value of ϕ is nothing but that of the total number density. This formula
will be used later in order to compute the number density. Since Eq. (4.2.15) is quadratic in
the fermionic field ψ and ψ∗, we can perform the Grassmannian integration explicitly. The
spectrum of the fermion bilinear operator is given by

λ`(ϕ, µ) = 1− e(2`−1)πi/N exp
β

N2

N∑
k=1

(iϕk + µ+ U/2). (4.2.17)

and then in the continuum limit

lim
N→∞

(
N∏
`=1

λ`

)2

=

(
1 + exp

∫ β

0

dτ (iϕ(τ) + µ+ U/2)

)2

. (4.2.18)

Since fermions have two flavors, the overall square is taken. Since the fermionic determinant
contains only the Matsubara zero mode of ϕ, the path integral of non-zero Matsubara modes
of ϕ gives a trivial Gaussian integration without coupling to µ. Therefore, the path integral is
now reduced to an integral of zero Matsubara mode ϕbg, and we obtain that

Z =

√
β

2πU

∫
dϕbg

(
1 + exp β

(
iϕbg + µ+

U

2

))2

exp− β

2U
ϕ2

bg. (4.2.19)

This integration can be performed analytically to find (4.2.4). Instead, we apply the Lefschetz-
thimble method because (4.2.19) has the sign problem, and this simple model may lead us to
the deeper understanding of the problem.

Sign problem

In order to explicitly show that the path integral (4.2.19) contains the sign problem, let us
compare it with the sign-quenched partition function. In order to make the sign problem less
severe, we first shift the integration variable ϕbg to

φ :=


ϕbg − 2iU for µ/U > 3

2
,

ϕbg − i
(
µ+ U

2

)
for −1

2
< µ/U < 3

2
,

ϕbg for µ/U < −1
2
.

(4.2.20)

After shifting the integration variable, we take absolute values of the integrand, and the result
is called the phase quenched partition function. For µ/U < −1/2,

Zpq =

∫
dφ√

2πU/β

∣∣1 + eβ(iφ+µ+U/2)
∣∣2 e−βφ

2/2U . (4.2.21)

For −1/2 < µ/U < 3/2,

Zpq =

∫
dφ√

2πU/β

∣∣1 + eiβφ
∣∣2 e−βφ

2/2U+β(µ+U/2)2/2U . (4.2.22)

The ratio Z/Zpq is shown in Fig. 4.2 as a function of the chemical potential at βU = 30. For
small (large) chemical potentials, µ/U . −1/2 (µ/U & 3/2), the ratio Z/Zpq is almost one
because the dominant contribution comes from the unoccupied (occupied) state, and the sign
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Figure 4.2: Z/Zpq as a function of µ at βU = 30.

problem is sufficiently weak. In the later section, we can interpret this semiclassically because
the important configurations accumulate around the origin ϕbg ' 0 (ϕbg ' 2iU). According to
Fig. 4.2, there is another remarkable condition in which the sign problem disappears again by a
simple shift of the integration variable: At the half-filling µ = U/2, the shift of the integration
variable solves the sign problem. By introducing a new integration variable by ϕbg = ϕ′bg + iU ,
we find that

Zhalf-filling =

√
β

2πU

∫
dϕ′bg

(
2 cos

βϕ′bg

2

)2

exp

[
− β

2U
(ϕ′bg

2 − U2)

]
, (4.2.23)

and the integrand is positive definite. The sign problem can be evaded in these three special
case even using the path integral formalism, but this does not happen in general. Indeed,when
µ/U = 0 or 1 at which number densities (4.2.6) jumps, the sign problem is severe because

Z/Zpq '
3

2
e−βU/8 � 1. (4.2.24)

We explore the origin of this sign problem in the path integral formalism by applying the Picard–
Lefschetz theory to the integration (4.2.19). If we naively use (4.2.21) instead of (4.2.22) for
the whole region, the sign problem becomes more severe so that Z/Zpq ∝ e−βU for µ = 0.

When the sign problem becomes severe µ/U = −0.5, the second-order phase transition
happens in the phase quenched theory at T = 0. This situation is quite similar to what
happens in the finite-density QCD at µq = mπ/2.

4.2.3 Lefschetz-thimble analysis at strong couplings

Let us apply the Picard–Lefschetz theory to (4.2.19). The effective action of this system is
obtained as

S(z) =
β

2U
z2 − 2 ln

(
1 + exp β

(
iz + µ+

U

2

))
, (4.2.25)

which satisfies the real-valued condition of the partition function (4.1.4); S(z) = S(−z). As
we have shown in Sec. 4.1, this gives a strong constraint on the configuration of Lefschetz
thimbles to ensure the real-valuedness of physical observables in the decomposition (4.1.10).
The logarithmic function has branch singularities at fermionic Matsubara modes z = i(µ +
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Figure 4.3: Behaviors of Morse’s downward flow equation at βU = 30, for µ/U = 2 (a) or
µ/U = 0 (b). Star-shape black points show singular points of logarithm, and red blobs show
complex saddle points zσ. We only show the region Re(z) ≥ 0 because of the symmetry of the
flow equation under z 7→ −z. (Figures are taken from Ref. [128].)

U/2) + (2` + 1)π/β for ` ∈ Z. The integrand converges to 0, i.e., S → +∞, at these points.
The flow equation of Eq. (4.2.25) reads

dz

dt
=

z

U
+

2i exp β
(
−iz + µ+ U

2

)
1 + exp β

(
−iz + µ+ U

2

) . (4.2.26)

Semiclassical analysis and gradient flows Let us find the set of saddle points, which is an
important step not only for the saddle-point approximation but also for the Lefschetz-thimble
method. The saddle-point condition of the effective action (4.2.25) is

izσ = − 2U

1 + exp−β
(
izσ + µ+ U

2

) . (4.2.27)

In order to simplify our analysis, we consider a limiting case where T � U, |µ|. We can
approximately obtain the saddle points as

zm = i

(
µ+

U

2

)
+ T

(
2πm+ i ln

3
2
U − µ
U
2

+ µ

)
+O(T 2) (4.2.28)

for m ∈ Z by assuming that the second term is much smaller than the first one. The real-valued
condition says that z−m and zm form a pair. If µ > 3U/2 or µ < −U/2, there is another solution

z∗ =

{
2iU + o(T ) for µ > 3

2
U,

0 + o(T ) for µ < −1
2
U.

(4.2.29)

Behaviors of the downward flow equation (4.2.26) are shown in Fig. 4.3 with U = 1 and
βU = 30. Let us discuss the case when the chemical potential is sufficiently large (µ = 2U).
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Figure 4.4: Schematic behavior of the number density. The exact result at β = ∞ is shown
with the solid blue curve. The dashed red line shows the naive expectation from the positions
of the complex saddle points, Im(zm) ' µ+ U/2, for −1/2 < µ/U < 3/2.

In this case, Morse’s flow is shown in Fig. 4.3 (a). Only one Lefschetz thimble J∗ associated
with z∗ contributes in the Lefschetz-thimble decomposition. Other dual thimbles shown with
green dashed lines do not intersect with the original integration cycle R as in Fig. 4.3 (a). Thus
intersection numbers in Eq. (4.1.3) vanish and we have

Z =

∫
J∗

dz exp−S(z). (4.2.30)

Within the saddle-point approximation using the complex saddle point z∗, the number density
is given as

n ' −iz∗
U

= 2, (4.2.31)

and thus the saturation of fermions is well described. The exactly similar thing happens also
for µ/U . −1, and then the saddle-point approximation gives n ' −iz∗/U = 0. This analysis
explicitly shows why the sign problem is significantly weakened with an appropriate shift of
integration variables for µ/U . −1 and µ/U & 2, as we have show in Fig. 4.2.

In the following, let us concentrate on the case where the sign problem is severe, −1/2 .
µ/U . 3/2, at low temperatures βU & 10. In this parameter region, the typical behavior of the
flow is shown in Fig. 4.3 (b). All dual thimbles Km intersect with the original integration cycle
R. This shows that all the saddle points zm contribute to the partition function3, so that the
interference among them may not be negligible. This interference requires a careful treatment
of the semiclassical analysis in order to solve the sign problem. Behaviors of the flow equation
in Figs. 4.3 (a) and (b) are very different. This big difference can be explained by the Stokes
phenomena [64], which occur around µ/U ' 3/2 and also around µ/U ' −1/2. However,
this is irrelevant to the non-analytic behaviors of the number density, and then we stick to the
analysis for −1/2 . µ/U . 3/2.

There is a big question on the behavior of the number density for −1/2 . µ/U . 3/2. Since
the number density is given by n = Im〈z〉/U , we may naively expect that the number density

3This statement can be shown at half-filling due to the particle-hole symmetry, but in general cases we have
checked it numerically only for |m| . βU/2π. For sufficiently large |m|(� βU/2π), the Stokes phenomena may
happen and it may cause a peculiar behavior. However, the effect of that subtlety is quite small, and it does
not change the result of the following argument.
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is
1

U
Im(zm) ' µ

U
+

1

2
, (4.2.32)

by using (4.2.28). This is shown with the dashed red line in Fig. 4.4, which is totally different
from the exact result (the solid blue curve). This behavior is, however, also expected from the
phase quenched theory Zpq in (4.2.22). The similar problem happens in the finite-density QCD
at µq = mπ/2 (see Sec. 1.2), and thus this model is a prototype of the sign problem appearing
in the finite-density QCD. This is the Silver Blaze problem in the one-site Hubbard model4.
This aspect will be discussed in detail in Sec. 4.3.

Semiclassical partition function Let us denote the classical action at the saddle point zσ
as Sσ(:= S(zσ)). Substituting the approximate expression (4.2.28) into Eq. (4.2.25), we have

Re (Sm − S0) ' 2π2

βU
m2, (4.2.33)

ImSm ' 2πm

(
µ

U
+

1

2

)
, (4.2.34)

and

S0 ' −
β

2U

(
µ+

U

2

)2

. (4.2.35)

Equation (4.2.33) shows that subdominant thimbles Jm can be comparable with the dominant
one J0 for βU � 1 so long as |m|(6= 0) is not so large. According to Eq. (4.2.34), these
different thimbles have different complex phases, and thus a contribution from one Lefschetz
thimble is in general canceled by other ones. Exactly at the half-filling, µ/U = 1/2, the
complex phase is always an integer multiple of 2πi, and such a cancellation is absent. This
gives an interpretation on the reason why the sign problem disappears at the half-filling from
the viewpoint of Lefschetz-thimble approach.

Let us compute the partition function Zcl only using these semiclassical information. Ne-
glecting the higher order correction in the Gaussian fluctuation, let us simply compute

Zcl :=
∞∑

n=−∞

exp−Sn. (4.2.36)

This can be computed analytically in the following way using the elliptic theta function:

Zcl ' e−S0

(
1 + 2

∞∑
n=1

cos 2nπ

(
µ

U
+

1

2

)
e−2π2n2/βU

)

= e−S0θ3

(
π

(
µ

U
+

1

2

)
, e−2π2/βU

)
(4.2.37)

4Recently, the one-site massive Thirring model is studied in Refs. [132–134] using the Monte Carlo simulation
with one-thimble approximation. The one-thimble approximation reproduces the naive expectation, which does
not explain the Silver Blaze problem correctly.
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Here we used an approximate expression of the saddle points (4.2.33-4.2.35) to obtain (4.2.37) 5.
Using this result, in the limit β →∞, one can analytically show that

ncl :=
1

β

∂

∂µ
lnZcl →


2 (1 < µ/U < 1.5),
1 (0 < µ/U < 1),
0 (−0.5 < µ/U < 0).

(4.2.38)

Of course, this good agreement is accidental to some extent, since we have neglected higher order
contributions in the semiclassical analysis. This result, however, still indicates the usefulness
of the semiclassical approximation even when the sign problem is quite severe.

Lee–Yang zeros and fermion spectrum Let us discuss this non-analytic behavior from the
viewpoint of Lee–Yang zeros [97, 98, 100–107] in this semiclassical expression (4.2.37) (For Lee–
Yang zeros see Sec. 3.1.3). Using the infinite-product expression of the elliptic theta function,

θ3(z, q) =
∞∏
`=1

{(
1− q2`

)(
1 + 2q2`−1 cos(2z) + q4`−2

)}
, (4.2.39)

the zeros of the partition function in the complex µ plane satisfy

cos
(

2π
µ

U

)
= cosh

(
2π2

βU
(2`− 1)

)
(4.2.40)

for some positive integer `. Since (4.2.37) is originally derived as an approximate expression
for −1/2 < µ/U < 3/2, we restrict the real part of the complex chemical potential to −U/2 <
Reµ < 3U/2. Then, the zeros of the partition function are

µ = iπT (2k − 1), µ = U + iπT (2k − 1), (4.2.41)

for k ∈ Z. In the limit T → 0, these zeros form straight lines crossing to the real axis at
µ = 0, U , which causes the first-order phase transition as shown in (4.2.38).

Let us apply the same analysis to the quenched partition function. Let us again define the
phase quenched semiclassical partition function by

Zpq,cl :=
∞∑

n=−∞

∣∣∣exp−Sn
∣∣∣. (4.2.42)

In the phase quenched approximation, interference of complex phases exp iImSm disappears,
and the chemical potential dependence on µ is given by exp−S0. This is consistent with (4.2.22).
Lee–Yang zeros does not exists if −U/2� Reµ� 3U/2. Therefore, the only possibility of the
phase transition in this phase quenched approximation originates from the Stokes phenomena
around µ/U ' −1/2, 3/2, which usually gives the second-order transition [91].

In order to investigate this failure of the phase quench approximation more deeply, we
analyze the fermion spectrum (4.2.17) at complex saddle points. For simplicity, let us take the
continuum limit at first with an appropriate renormalization,

λren
` (ϕ, µ) := lim

N→∞
TNλ`(ϕ, µ) = −

{
(2`− 1)πiT + iϕ+ µ+

U

2

}
. (4.2.43)

5The Gaussian integral gives an m-independent prefactor (1 + βU (µ/U − 3/2) (µ/U + 1/2))
−1/2

at the lead-
ing order. It does not change a qualitative behavior and thus it is neglected in the following.
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The spectral representation of the number density is given by

n(ϕ, µ) = −2T
∞∑

`=−∞

ei0+`

λren
` (ϕ, µ)

=
2

e−β(iϕ+µ+U/2) + 1
. (4.2.44)

If the sign problem is mild enough, µ < −U/2, then the eigenvalue at the saddle point z∗ = 0
is

λren
` (z∗, µ) ' −

(
(2`− 1)πiT + µ+

U

2

)
. (4.2.45)

Since Reλren
` (z∗, µ) cannot be zero, the chemical potential dependence of the number density is

exponentially suppressed as T → 0,

n(z∗, µ) ' 2

e−β(µ+U/2) + 1
' 0. (4.2.46)

However, for µ > −U/2, Reλ` can be zero in the vicinity of saddle points, and indeed one finds

λren
` (zm, µ) = −

(
(2(`+m)− 1)πiT − T ln

3
2
U − µ
U
2

+ µ

)
. (4.2.47)

Within this approximation, the number density becomes

n(zm, µ) ' 2

e−β(izm+µ+U/2) + 1
' µ

U
+

1

2
. (4.2.48)

The near-zero fermionic mode provokes the fake second-order transition at µ = −U/2 again,
as shown with the dashed red line in Fig. 4.4. From the viewpoint of fermion spectrum at
complex saddle points, nothing special happens in the vicinity of the correct transition points
µ = 0, U . In the language of Lefschetz thimbles, this implies that their topological structure
does not change at all around µ = 0, U , as we can see in Fig. 4.3 (b).

4.2.4 Importance of interference

Numerical results Let us consider one-, three-, and five-thimble approximations in order to
analyze the importance of the interference among multiple Lefschetz thimbles. We consider the
case where the sign problem is severe, i.e., −1/2 . µ/U . 3/2 and βU & 10. The (2m + 1)-
thimble approximation takes into account only J0,J±1, . . . ,J±m in Fig. 4.3 (b). The partition
function (4.2.19) in this approximation reads

Z ' Z(m) :=

∫
J0

dz e−S(z) +
m∑
k=1

2Re

∫
Jk

dz e−S(z). (4.2.49)

Each contribution of the summation in the second term comes from a pair Jk and J−k, and
becomes manifestly real because of the reflection symmetry z 7→ −z (see Sec. 4.1 and Ref. [109]).
Since the Lefschetz thimble Jk is homologically equivalent to the interval in the complex plane
i(µ+ U/2) + [(2k − 1)πT, (2k + 1)πT ], the above integration (4.2.49) is reduced to

Z(m) =

∫ +(2m+1)πT

−(2m+1)πT

dx exp−S
(
x+ i(µ+ U/2)

)
, (4.2.50)
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Figure 4.5: Behaviors of the number density n = −i〈ϕ〉/U as a function of µ at βU = 30. The
thin solid black line shows the exact solution. Other lines, dotted green one, dashed blue one,
and thick solid red one, show the result of one-, three-, and five-thimble approximations, which
integrate over J0, J0 ∪J±1, and J0 ∪J±1 ∪J±2, respectively. The five-thimble approximation
gives an almost exact result, and most parts of the solid red line overlaps with the solid black
one. (This figure is adapted from Ref. [128].)

with x = z− i(µ+U/2). The result on the number density at βU = 30 is shown in Fig. 4.5, in
which one-, three-, and five-thimble approximations are compared with the exact computation.

The one-thimble approximation, which is shown with the dashed green line, is an approx-
imation to integrate only over the Lefschetz thimble J0, and it almost gives the mean-field
result,

nMF =
µ

U
+

1

2
, (4.2.51)

for −1/2 < µ/U < 3/2. Figure 4.5 shows that the one-thimble approximation is not sufficient
to describe the plateaus of the number density in the region −1/2 < µ/U < 3/2. One can
easily check that this is also obtained from the sign-quench approximation (4.2.22).

The result of the three-thimble approximation provides us a useful lesson for an application
of the Lefschetz-thimble approach to the sign problem. The number density diverges at several
chemical potentials around a rapid crossover, although the result is improved around each
plateau. Let us analyze this divergence by using the semiclassical analysis. For that purpose,
we introduce the semiclassical partition function with the (2m+ 1)-thimble approximation by

Z
(m)
cl :=

m∑
k=−m

exp−Sk. (4.2.52)

In the three-thimble approximation, the semiclassical partition function approximately behaves
as

Z
(1)
cl ' e−S0

[
1 + 2e−

2π2

βU cosπ

(
1 +

2µ

U

)]
. (4.2.53)
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Since βU � 1 and thus e−2π2/βU ∼ 1, the second term is not suppressed, compared with the
first term. This approximate partition function vanishes at some chemical potentials around
µ/U = 0 and 1 (Z

(3)
cl vanishes at µ/U ' ±0.04, which is roughly consistent with Fig. 4.5). This

example clearly demonstrates that picking up a part of the Lefschetz-thimble decomposition
can violate the physical requirement, such as the positivity condition on the thermodynamic
quantities. In this instance, the incompressibility (∂n/∂µ)/n2 should not be negative.

According to Fig. 4.5, we can conclude that five Lefschetz thimbles J0 ∪ J±1 ∪ J±2 are
necessary in order to explain rapid jumps of the number density in terms of the chemical
potential at a low temperature βU = 30. Indeed, the five-thimble approximation (solid red
line) and the exact computation (solid black line) almost overlap with one another in Fig. 4.5.

Necessary numbers of Lefschetz thimbles How many Lefschetz thimbles are necessary
in general at a given lower temperature β? Let us propose the criterion to neglect the Lefschetz
thimbles Jm for large |m|: ∣∣∣∣∣Z(m)

cl − Z
(m−1)
cl

Z
(m)
cl

∣∣∣∣∣� 1. (4.2.54)

Assuming that the number of Lefschetz thimbles, (2m+1), is sufficiently large, one can replace

Z
(m)
cl in the denominator by the semiclassical partition function Zcl. Since

∣∣Z(m)
cl − Z

(m−1)
cl

∣∣ ≤
2| exp−Sm|, the contribution from Jm can be negligible if

2| exp−Sm|
Zcl

. ε. (4.2.55)

Here ε is a controlling parameter of an error, and ε� 1. Using the approximate results (4.2.33)
and (4.2.37), we can solve this inequality with respect to m:

|m| &
√
−βU

2π2
ln
ε

2
θ3 (π(µ/U + 1/2), e−2π2/βU). (4.2.56)

This criterion gives different results depending on µ, and thus let us first derive the strongest
restriction. If the sign problem is severe, i.e. µ = 0, the elliptic theta function is exponentially
small with respect to βU :

θ3

(π
2
, e−2π2/βU

)
'
√

2βU

π
e−βU/8. (4.2.57)

Therefore, for reasonable ε such as ε ' 0.1, the effect of ε is negligible because of its mild
logarithmic dependence. The criterion gives

|m| & βU

4π
(4.2.58)

in the limit of βU � 1. It means that we need (2dβU/4πe + 1) thimbles in order to describe
the rapid crossover of the number density for the one-site Hubbard model.

Let us discuss this behavior from alternative point of view. Since βU becomes large, the
relevant integration region becomes smaller as |Re z| .

√
U/β. However, Fig. 4.3 shows that

the length of each Lefschetz thimble Jk is proportional to 1/β, and thus we need more Lefschetz
thimbles in order to cover the relevant integration region. That number is clearly proportional
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Figure 4.6: Behaviors of the number density n = −i〈ϕ〉/U as a function of µ at βU = 100.
In order to explain the Silver Blaze phenomenon, the 7-thimble approximation is already rea-
sonable. In order to describe the correct transition behavior, 17 Lefshetz thimbles become
necessary. (This figure is adapted from Ref. [128].)

to
√
βU , and is much smaller than Eq. (4.2.58). This is because interference of complex phases

among different saddle points makes the semiclassical partition function much smaller than
that of the naive expectation if µ/U ∼ 0 and 1. This indicates that the explanation of the
plateau in the vicinity of the half-filling is much easier than that of the rapid crossover. The
necessary number of Lefschetz thimbles for each phenomenon is also largely different. Indeed,
for µ/U = 1/2, one can show that

Zcl

e−S0
' θ3

(
π, e−2π2/βU

)
'
√
βU

2π
, (4.2.59)

and, roughly speaking, we need

|m| &
√
βU

2π2
ln

√
8π

ε
√
βU

(4.2.60)

for Jm being negligible in order to achieve a good accuracy only around the half filling. This is
consistent with the result of the above heuristic argument. Now, we can understand that the
large gap of these two estimates (4.2.58) and (4.2.60) comes from the sign problem in summing
up Lefschetz thimbles, and the semiclassical analysis provides a reasonable rough indication.
In Fig. 4.6, we plot the number density at βU = 100, and the exact result is compared with
those of 7- and 17-thimble approximations. The result of the 17-thimble approximation (thick
solid red line) completely overlaps with the exact one (thin solid black line). The 7-thimble
approximation (dashed blue line) is insufficient to describe the phase transition at µ/U ∼ 0
and 1, but it nicely describes the silence of the number density in the vicinity of µ/U ∼ −1/2,
1/2, and 3/2.
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~~

Figure 4.7: Schematic illustration of the Silver Blaze phenomenon in finite-density QCD. This
plots the baryon number density nB as a function of the quark chemical potential µq. In the
phase quenched QCD, the second-order phase transition happens at µq ' mπ/2 (the dashed red
line), but the full QCD must experience nothing until the nuclear liquid-vapor phase transition
at µq ' mN/3 (the solid blue line). It is similar to Fig. 4.4 for the one-site Hubbard model.

4.3 Speculation on the Silver Blaze problem at finite-

density QCD

We have studied the one-site Hubbard model in Sec. 4.2 as a toy model of the sign problem. We
elucidate that the interference of complex phases among multiple saddle points is important
to explain n = 0 for −U/2 < µ < 0 and the rapid jump of n at µ = 0. In this section, we
first discuss the similarity of the mathematical structure of the one-site Hubbard model to that
of finite-density QCD, and mention the speculation on the baryon Silver Blaze problem. The
discussion in this section is adapted from Ref. [128].

Let us recall the baryon Silver Blaze problem. We consider properties of finite-density QCD
at T = 0. In general, the quark determinant, Det

[
γ4( /DA +m)− µq

]
, will have the (nontrivial)

µq-dependence. Naively thinking, this means that the baryon number density nB arises for any
chemical potentials. However, since we know that the lightest baryon in the QCD spectrum is
nucleon, the baryon number density nB must be zero for any 3µq < mN − B ' 923 MeV at
T = 0. It is difficult to explain this empirically trivial fact by using the path-integral expression
of finite-density QCD. It contains the essence of the sign problem, and this is called the baryon
Silver Blaze problem [58]. Indeed, the unphysical early onset of nB has been observed in the
reweighting method of lattice QCD [135, 136] (Fig. 4.7 schematically illustrates this situation).

So far, we have understood the baryon Silver Blaze problem only for small quark chemical
potentials µq < mπ/2 [58, 106, 137]. In general, the eigenvalues of γ4( /DA+m) can be expressed
as

λ(j,n)(A, µq) = εj(A)− µq − iφj(A) + i(2n+ 1)πT (4.3.1)

with −πT < φj ≤ πT , and they do not depend on µq. Using this expression, the quark
determinant becomes

Det
[
γ4( /DA +m)− µq

]
= N e−βµq Tr(1)/2

∏
j

(
1 + e−β(εj−µq)eiβφj

)
, (4.3.2)

= N
∏
εj>0

eβ(εj+iφj)
(
1 + e−β(εj−µq−iφj)

) (
1 + e−β(εj+µq+iφj)

)
. (4.3.3)

where N is the normalization factor. Here, we implicitly use the zeta-function regularization,
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and see Ref. [137] for its derivation. Its µq-dependence at sufficiently low temperatures and at
µq > 0 becomes crystal clear according to the following expression [58, 137]:

Det
[
γ4( /DA +m)− µq

]
Det

[
γ4( /DA +m)

] '
∏

0<εj(A)≤µq

(
1 + e−β(εj(A)−µq)eiβφj(A)

)
. (4.3.4)

The quark determinant becomes independent of µq at T = 0 if µq is smaller than the minimum
of εj(A)(> 0). For statistically significant gauge fields, it is confirmed that min(εj(A)) = mπ/2
at µq = 0 [58, 106, 137], and thus nB = 0 for µq < mπ/2. This also means that the Lefschetz-
thimble decomposition of lattice QCD at µq < mπ/2 and at sufficiently low temperatures is
identical to the original integration cycle up to an exponentially small correction because the
quark determinant at µq = 0 is positive-definite.

In contrast, as computed in Eq. (4.2.18), the fermion determinant in the one-site fermion
model is

Det

[
∂τ −

(
iϕ(τ) + µ+

U

2

)]
=
(
1 + e−β(−U/2−µ)eiβϕbg

)2
. (4.3.5)

We can ask the same question: How can we show n = 0 for µ < 0 using the path-integral
expression when the fermion determinant depends on µ? This Silver Blaze problem for µ <
−U/2 can be solved in the same manner for the baryon Silver Blaze problem at µqk < mπ/2.
At µ < −U/2, the fermion determinant becomes independent of µ as T → 0. This also explains
why the Lefschetz thimble J∗ at µ < −U/2 is almost identical to the original integration cycle
R (The similar discussion shows the Lefschetz thimble J∗ at µ > 3U/2 is almost identical to
the line with Im(z) = 2).

For −U/2 < µ < 0, the µ-dependence of the fermion determinant (4.3.5) becomes exponen-
tially large, and thus the property n = 0 at T = 0 is still veiled. At µ ' −U/2, zeros of the
fermion determinant (star-shape black points in Fig. 4.3) move close to the real axis, and let us
recall that J∗ = R for µ < −U/2 up to an exponentially small correction. In the case of one-site
fermion model, this triggers Stokes jumps and the original integration cycle is decomposed into
multiple Lefschetz thimbles for µ > −U/2. One can no longer replace the expectation value
of the number density by the number density at a complex saddle point. The significance of
interference among multiple Lefschetz thimbles is identified in order to explain not only the
rapid jumps of n but also the property n = 0 for −U/2 < µ < 0 at the zero temperature.
Furthermore, if the number of Lefschetz thimbles is insufficient, the thermodynamic stability
is violated in the one-site fermion model.

We speculate that this interference of complex phases also play an important role in finite-
density QCD to analyze the Silver Blaze problem and also the sign problem beyond half of
the pion mass. For µqk > mπ/2, the quark determinant becomes dependent on µqk and highly
oscillatory on the statistically significant domain of real gauge fields. This means that zeros of
the quark determinant around µqk ' mπ/2 move closer to that domain. It would be natural to
conclude that the statistically dominant region of the original integration cycle is decomposed
into multiple Lefschetz thimbles around µqk ' mπ/2. The complex phase of the fermion deter-
minant becomes ill-defined at its zeros. Thus, the constant-phase condition of the integrand on
a Lefschetz thimble would be hard to be satisfied without such decomposition, when zeros of
the fermion determinant are located in the vicinity of the Lefschetz thimble.

Because of the complexity of QCD, we cannot show these statements so far. Future study of
QCD-like models based on Lefschetz thimbles will be crucial to develop our understanding on
the baryon Silver Blaze problem and on the finite-density QCD. Since the statistically significant
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domain of real gauge fields can be partially mimicked by chiral random matrix models and by
instanton liquid models, it would be desired to study those models from this viewpoint of
Lefschetz thimbles.

4.4 Brief summary

In this chapter, we discussed the sign problem appearing in the path-integral expression of the
partition function from the viewpoint of the Lefschetz-thimble approach.

In Sec. 4.1, we first establish a theorem which ensures the real-valuedness of physical observ-
ables. Since we have to complexify the integration variables to deform the integration contour,
it is not obvious whether physical observables take real values in a manifest manner. Our anal-
ysis shows that the antilinear symmetry of the gradient flow is its key. If the system accepts
the charge conjugation, we can construct the antilinear charge conjugation operation, and it
ensures that physical observables take real values.

This theorem is helpful to understand the sign problem appearing in the mean-field ap-
proximation and in the perturbation theory. Since the fermion chemical potential makes the
effective action complex, the gap equation in the mean-field approximation has no solution
when the sign problem exists. This problem can be solved by applying the background field
method and the Lefschetz-thimble analysis, which gives the mathematical foundation for the
results of previous studies [113, 114]. This knowledge is used to analyze the heavy-dense QCD
for a lucid demonstration of this method.

In Sec. 4.2, we apply the Lefschetz-thimble method to the one-site Fermi Hubbard model in
order to understand the essence of difficulty hidden in the sign problem of finite-density QCD.
The one-site Hubbard model is quite simple but its path-integral expression has the severe
sign problem. If the phase-quenched approximation is applied, the fictitious phase transition
appears at µ = −U/2 although the number density must stay zero until µ = 0. This reminds
us what happens for QCD, because phase-quenched QCD experiences the second-order phase
transition at µq = mπ/2 although there is nothing until the liquid-vapor phase transition
µq = (mN −B)/3. Therefore, the one-site Hubbard model has a severe Silver Blaze problem.

Using the Lefschetz-thimble approach to the path integral, we succeeded to unveil the secret
of this Silver Blaze problem for the one-site Hubbard model. For µ < −U/2, we can apply
the complex mean-field approximation described in Sec. 4.1. Around µ = −U/2, the Stokes
jumping happens because of fermionic zero modes, and the topological structure of Lefschetz
thimbles drastically changes, and the situation totally changes. In order to explain the Silver
Blaze phenomenon, the interference of complex phases among complex saddle points play a
pivotal role. We discuss Lee–Yang zeros within the semiclassical analysis, and the correct
phase transition can be explained in a clear way.

Based on the semiclassical analysis, the necessary number of Lefschetz thimbles is estimated.
It is proportional to the inverse temperature, βU/2π, and we confirmed its correctness by using
the numerical computation. We hope this analysis suggests the general strategy to evaluate
the difficulty of tackling the sign problem using the Lefschetz-thimble approach.

In Sec. 4.3, we discuss the implication on the Silver Blaze problem of finite-density QCD
based on our analysis of the one-site Hubbard model. These theories share the difficulty of
the sign problem from various points of view. Outside of the pion condensation of the phase-
quenched QCD, the contributing Lefschetz thimbles would not have different complex phases.
This means that we can apply the complex mean-field approximation or also other conventional
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approaches to the sign problem. If µq > mπ/2, then the fermion determinant would divide the
integration cycle into multiple Lefschetz thimbles with different complex phases. In summing
up those phases, the baryon number density stays zero, which breaks our naive expectation
obtained from the pion condensation in the phase-quenched theory. This speculation must be
justified/denied in the future to deepen our understanding on the baryon Silver Blaze problem.



Chapter 5

Complex Langevin method revisited
via Lefschetz-thimble integrals

The complex Langevin method has been considered as a sign problem solver for a long time.
Even how severe the sign problem is, this method solve it for some cases. However, it is also
known that the complex Langevin method shows wrong convergence in other cases, and this
situation is annoying when we apply it to the strongly-correlated systems.

In Sec. 5.1, we show a simple criterion for incorrectness of the complex Langevin method
by relating it with the Lefschetz-thimble path integral through the Dyson–Schwinger equa-
tion. This clearly shows that the naive complex Langevin method cannot solve the Silver Blaze
phenomenon at finite-density QCD for µ > mπ/2. In Sec. 5.2, we propose to revise the com-
plex Langevin method to evade the proof of its incorrectness. We check our criterion for the
incorrectness numerically for two zero-dimensional examples, and test the modified complex
Langevin method.

The discussion in this chapter is adapted from Ref. [138].

5.1 Complex Langevin method and its failure

After a brief review of the complex Langevin method, we show that it gives wrong convergence
in generic cases by relating it with the Lefschetz-thimble path integral.

5.1.1 Brief review on basics of complex Langevin method

For simplicity, we discuss an oscillatory integral of one variable x, which can be extended to
multiple integrals in a straightforward way,

〈O(x)〉 =
1

Z

∫
R

dx e−S(x)/~O(x). (5.1.1)

The classical action S(x) is complex valued in general, which makes the Monte Carlo simulation
of (5.1.1) difficult because of the sign problem. One proposal for solving the sign problem is
to take the noise average of the solution of the classical equation of motion with random
noises [139–142]. For this purpose, we need to solve the Langevin equations for complex values
z along the fictitious time direction

∂θzη(θ) = −S ′(zη(θ)) +
√
~ η(θ), (5.1.2)

79
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with θ being the continuous fictitious time. η(θ) is real Gaussian noises satisfying 〈η(θ)〉η = 0
and 〈η(θ)η(θ′)〉η = 2δ(θ−θ′). The function zη shows the classical trajectory of the system when
the random force η is fixed. Since the action S(x) is complex, the right-hand side of Eq. (5.1.2)
is complex. Thus, complexification of the variable z is unavoidable, and this method is named
the complex Langevin method.

For that purpose, let us review the result of Itô calculus. We can restrict our consideration
on the set of holomorphic operators O(z) for later purpose. The stochastic calculus shows that

d

dθ
〈O(zη(θ))〉η = ~〈O′′(zη(θ))〉η − 〈O′(zη(θ)S ′(zη(θ)))〉η. (5.1.3)

If we assume that the expectation values reach equilibrium, then the set of expectation values
satisfy the Dyson–Schwinger equation:

lim
θ→∞
〈O′(zη(θ)S ′(zη(θ)))〉η = lim

θ→∞
~〈O′′(zη(θ))〉η. (5.1.4)

The real Langevin method is equivalent to the path-integral quantization; if S(x) were real, the
ensemble average 〈O(xη(θ))〉η can be shown to converge into (5.1.1) as θ →∞ by rewriting this
Dyson–Schwinger equation into the Fokker–Planck equation [143]. There is a folklore theorem
stating that the complex Langevin method also gives correct expectation values, but let us first
show that it is true only for very restricted cases in the next subsection. After that, we propose
a new prescription to evade this breakdown.

5.1.2 Semiclassical inconsistency

In the following, we assume that expectation values of holomorphic operators O(z) converge
as θ → ∞. As we have already seen, Itô calculus shows that they must satisfy the Dyson–
Schwinger equation

〈O(zη)S
′(zη)〉η = ~〈O′(zη)〉η. (5.1.5)

Here the argument θ = ∞ of z is omitted. The Lefschetz-thimble method shows that the
expectation value of the holomorphic operator O(z) at θ →∞ can be represented, by using a
sum of complex contour integrals on steepest descent paths Jσ of ReS(z) (σ ∈ Σ labels the
critical points zσ of S) [64, 65, 76], as

〈O(zη)〉η =
1

Z

∑
σ∈Σ

dσ

∫
Jσ

dz e−S(z)/~O(z). (5.1.6)

Here, dσ is a complex number in general. If and only if dσ is an intersection number 〈Kσ,R〉
between the steepest ascent path Kσ and the original integration path R, the original integration
(5.1.1) is obtained:

〈O(zη)〉η =
1

Z

∫
R

dx e−S(x)/~O(x) ⇔ dσ = 〈Kσ,R〉. (5.1.7)

We already proved in Sec. 2.2 that each integration on Lefschetz thimble respect the Dyson–
Schwinger equation. Another linearly independent solution does not exist since the Dyson–
Schwinger equation requires that S ′(z) = 0 in the limit ~→ 0, which is nothing but the saddle-
point condition. Thus, all the possible integration cycles must be associated with complex
saddle points.
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Let us take the semiclassical limit ~→ +0 of (5.1.6). For semiclassical analysis, we expand
S(z) around each complex saddle point zσ as

S(zσ + δz) = Sσ +
ωσ
2
δz2 +O(δz3). (5.1.8)

Let us first analyze the left hand side of (5.1.6). If Reωσ > 0, the solution of the equation of
motion (5.1.2) can converge into zσ as θ → ∞ in the limit of ~ → 0. On the other hand, it is
impossible for Reωσ ≤ 0. In the semiclassical approximation, we have

〈O(z)〉η '
∑
σ

cσO(zσ), (5.1.9)

where cσ ≥ 0, and cσ = 0 if Reωσ ≤ 0. Next let us analyze the right hand side of (5.1.6). In
the semiclassical approximation, the integration along the thimble becomes∫

Jσ
dz e−S(z)O(z) '

√
2π~
ωσ

e−Sσ/~O(zσ). (5.1.10)

Now, we reach

cσ =
1

Z

√
2π~
ωσ

e−Sσ/~dσ. (5.1.11)

Notice that cσ ≥ 0, however, dσ must be an integer 〈Kσ,R〉 in order to give the original in-
tegration (5.1.1). These two statements clearly contradict with one another for generic cases,
especially when there are several dominant saddle points with different complex phases. There-
fore, complex Langevin methods cannot reproduce original integrals at least in the semiclassical
limit.

Let us give a notice about subdominant saddle points. Since the Borel resummation of
higher-order perturbations may cancel the subdominant contributions of complex saddle points,
we need a careful case-by-case study in order to conclude inconsistency from the above argu-
ments. Nevertheless, we strongly believe that the above argument is still robust and applicable
to judge the breakdown of complex Langevin method for wide class of classical actions S(x).
We give a clear and simple criterion for the incorrectness of the complex Langevin method.

Let us give a few comment on previous studies. There is a formal proof [144, 145] on the
correctness of complex Langevin method, but it relies on several nontrivial assumptions. Recent
study [146] elucidates that this assumption is questionable especially if some singularities exist
in complex classical action S(x), such as poles or branch points. Our semiclassical analysis show
that this breakdown happens in more generic cases. Furthermore, our criterion for incorrectness
of the complex Langevin method can be applied before performing the complex Langevin
simulations.

5.2 Modification of complex Langevin method

In the previous section, we showed that the complex Langevin method gives an unphysical
solution of the Dyson–Schwinger equation in generic cases. We give a trial to modify the
complex Langevin method in order to evade the semiclassical inconsistency. Although this trial
is still incomplete, it may open a way to perform numerical multi-thimble lattice simulation,
which has not yet been achieved in the current technology.
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5.2.1 Proposal to modify complex Langevin method

Let us assume that if Reωσ ≤ 0 then 〈Kσ,R〉 = 0 for a complex classical action S(z). Otherwise,
the number of contributing saddle points in the semiclassical limit is different between the
complex Langevin method and the original integral. In such cases, I have no idea how to
modify the complex Langevin method to evade this inconsistency. Therefore, we require that
S(x) satisfy this restriction.

Let us propose a way to circumvent the inconsistency of semiclassical analysis by adopting
this conjecture as a working principle. We denote the equilibrium distribution of the complex
Langevin method by P i.e., 〈O(z)〉η =

∫
dxdy P (x, y)O(x + iy). In the semiclassical limit, P

will be approximated as a sum of localized distributions Pσ around complex saddle points zσ,
as P =

∑
σ cσPσ, which gives the expectation value (5.1.9). Here, each Pσ is a normalized

probability density that localizes around zσ. In order to evade the inconsistency, we need to
introduce another distribution function,

P̃ (x, y) =
1

Z

∑
σ

〈Kσ,R〉
√

2π~
ωσ

e−Sσ/~Pσ(x, y). (5.2.1)

Here, Z is a normalization factor, as usual. As a result, the new average
∫

dxdyP̃ (x, y)O(x+iy)
follows the correct semiclassical limit, and thus the Dyson–Schwinger equation is not violated at
the semiclassical level. In order to represent this new average as an ensemble average, introduce
the following phase function,

Φ(x, y) =
∑
σ

〈Kσ,R〉
√

2π~
ωσ

e−Sσ/~

cσ
χσ(x, y), (5.2.2)

where χσ is almost the characteristic function of supp(Pσ) so that χσPτ ' δστPτ because of
locality of Pσ. When cσ = 0, we must put χσ = 0. Using this phase function, we can easily
find that ∫

dxdyP̃ (x, y)O(x+ iy) =
〈Φ(xη, yη)O(xη + iyη)〉η

〈Φ(xη, yη)〉η
. (5.2.3)

This seems to be the only way to circumvent the inconsistency in the semiclassical limit for
the complex Langevin method. However, we must give a notice that this prescription contains
several unsolved problems to be tackled: (i) Phase factors are calculated in the semiclassical
limit, and they can suffer from higher order corrections of ~. (ii) In order to apply this pre-
scription, we must compute cσ in (5.1.9) and its higher order corrections in ~. (iii) When ~ is
not so small, P does not necessarily localize around saddle points and thus we may not be able
to find good characteristic functions χσ. We must evaluate an error affected by this failure of
the prescription in order to give a reliable prediction.

The first problem (i) is not a big deal, because we can compute higher order corrections by
usual perturbation theory. The third problem (iii) can be a fatal disease for strongly coupled
systems if quantum fluctuations give huge corrections. This must be an important future task
when the complex Langevin method is applied. The second one (ii) may look similar to the
first one, but there is no standard way to compute cσ to my best knowledge. Since the Fokker–
Planck operator of the complex Langevin method is non-Hermitian, the developed techniques
in quantum mechanics are not necessarily useful.
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In order to demonstrate that this prescription may work well, we put a working hypothesis
on cσ. Let us assume that

cσ = 〈Kσ,R〉
∣∣∣∣∫
Jσ

dze−S(z)

∣∣∣∣ '
√

2π~
|ωσ|

e−ReSσ/~〈Kσ,R〉. (5.2.4)

This solution means that the complex Langevin method gives an extension of the so-called
phase quenched approximation so as to include complex saddle points:

〈O(zη)〉η '
1

Z ′

∑
σ

〈Kσ,R〉
√

2π~
|ωσ|

e−ReSσ/~O(zσ). (5.2.5)

Note that there are many other possibility to satisfy semiclassical consistency. This is just a
one of possibilities and it has not been proven that this is indeed the solution of the complex
Langevin method. Computation of cσ directly from the complex Langevin method is of great
importance if one would like to solve the sign problem using it.

Once we adopt this working hypothesis on cσ, we can write down the phase function Φ in
an explicit manner as

Φ =
∑
σ

〈Kσ,R〉
√
|ωσ|
ωσ

e−i Im(Sσ)/~χσ. (5.2.6)

The expectation values of holomorphic operators are computed by (5.2.3).

5.2.2 Numerical test of the proposal

In this section, we check that our criterion for incorrectness of the complex Langevin method,
and test our proposal of modification by applying it to two examples with and without a
singular drift term. As a nonsingular potential, we consider the double-well potential with a
complex linear term, which is called the complex double-well potential here. As a singular one,
we consider the one-site Fermi Hubbard model which is studied in Sec. 4.2 using Lefschetz
thimbles.

Complex double-well potential The first example is a nonsingular action

S(x) =
x4

4
− x2

2
− iαx, (5.2.7)

with α > 0. This action has three saddle points on the complex plane, and let us see their
properties in the limit α→ +∞. In the case α� 1, the x2 term in (5.2.7) becomes negligible
and we can give simple expressions for three saddle points as

z1 ' α1/3eπi/6, z2 ' α1/3e5πi/6, z0 ' α1/3e−πi/2. (5.2.8)

Around these points, we evaluate the classical action as

S(z1 + δz) ' −3

4
α4/3e2πi/3 + 3α2/3eπi/3δz2, (5.2.9)

S(z2 + δz) ' −3

4
α4/3e−2πi/3 + 3α2/3e−πi/3δz2, (5.2.10)

S(z0 + δz) ' −3

4
α4/3 − 3α2/3δz2. (5.2.11)
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(a) Scatter plot for α = 3.8
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Figure 5.1: Test of the complex Langevin method for the complex double-well potential S(x) =
x4/4− x2/2 + iαx with α > 0. (a) Scatter plot obtained by the complex Langevin for α = 3.8.
For large α, two local distributions around saddle points are well separated. (b) Expectation
values of z2. The red boxes are obtained by the original complex Langevin method, and the
blue circles by our new formula (5.2.3). (Figure (b) is taken from Ref. [138].)

Only two of them, z1 and z2, have positive Re[ωσ] as we can easily see, and contribute to the
Langevin simulation in the semiclassical limit α →∞. In the present model, the same is true
for the Lefschetz-thimble method, and only these two saddle points give contributions in the
Lefschetz-thimble decomposition:

Z(α) =

∫
J1

dz e−S(z) +

∫
J2

dz e−S(z)

'
√

π

3α2/3
e−3α4/3/8 cos

(
3
√

3

8
α4/3 +

π

6

)
. (5.2.12)

The last expression is the asymptotic expression which is valid only for α � 1, but it clearly
tells us the oscillatory behavior of the partition function. This oscillatory behavior comes from
interference of complex phases between dominant saddle points z1,2, and thus the naive complex
Langevin method is expected to give wrong results for this model.

We numerically solved the complex Langevin equations with the fictitious time step ε =
5.0× 10−7. We adopted a higher order algorithm [147], and errors were estimated by using the
jackknife method. The result for 〈z2〉 is shown in Fig. 5.1 (b). The red squares show the result
for the naive complex Langevin method, and they are clearly incorrect as we expected.

Let us try our proposal on modification of the complex Langevin method. Since there are
two contributing saddle points with Re[z1] > 0 and Re[z2] < 0, we divide the complex plane C
into two regions for positive and negative real parts (See Fig. 5.1 (a)). We introduce the phase
function by

Φ(x, y) =
∑
σ=1,2

√
|S ′′(zσ)|
S ′′(zσ)

e−i ImS(zσ) θ((−1)σ+1x), (5.2.13)

where θ(x) is the Heaviside step function. Here, saddle points z1,2 are computed exactly,
although we only showed their approximate expressions for α � 1 in (5.2.8). The result
for 〈Φ(x, y)z2〉/〈Φ〉 is shown with blue circles in Fig. 5.1 (b), and those points are roughly
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consistent with the exact result (black dashed line). Especially for large α’s, our prescription
on the modification works nicely for this model.

We numerically checked whether the Dyson–Schwinger equation is satisfied for this model,
but it turns out not to be satisfied for zn with n > 3. The equilibrium probability distribution
seems to show a power-law decay in the Im(z) direction for this model, and this might be a
reason for this illness. Our criterion for incorrectness still gives the sufficient condition for the
complex Langevin method to break down, and we can clearly see it in this example. What is
surprising is that our prescription of the modified complex Langevin works nicely for zn with
n ≤ 4 in this case, and it is an open problem to understand its reason.

One-site Fermi Hubbard model Next, we analyze the action with a logarithmic singular-
ity. We analyze the one-site Fermi Hubbard model studied in Sec. 4.2, which is the simplest
model and shows the severe sign problem like finite-density QCD (see also Refs. [128, 132–134]).
For reader’s convenience, let us briefly describe properties of this model again.

The Hamiltonian of this model (4.2.2) is given by

Ĥ = Un̂↑n̂↓ − µ(n̂↑ + n̂↓), (5.2.14)

with n̂s = ĉ†sĉs. At the zero temperature, this system shows the first-order phase transitions at

µ/U = 0, 1. A path-integral expression of the partition function Z = tr
[
exp

(
−βĤ

)]
is given

by the following one-variable integral (4.2.19),

Z =

√
β

2πU

∫
dϕbg

(
1 + exp β

(
iϕbg + µ+

U

2

))2

exp− β

2U
ϕ2

bg. (5.2.15)

The expectation value of the number density can be computed as n = Im〈ϕ〉/U . For µ/U <
−0.5 or µ/U > 1.5, behaviors of the number density can be easily described just by solving the
classical equation of motion, which comes from the fact that the µ-dependence of the fermion
determinant becomes trivial. What was difficult to understand in this path-integral expression
is the step-function behaviors of n for −0.5 < µ/U < 1.5, and the sign problem in this region
is expected to have strong connection with that of finite-density QCD at mπ/2 < µ < mN/3.

Let us again stick to the case −0.5 < µ/U < 1.5, since this is the best testing ground for the
complex Langevin method. In this region, the contributing complex classical solutions (4.2.28)
are labeled by integers m ∈ Z as (βU � 1)

zm ' i

(
µ+

U

2

)
+ T

(
2πm+ i ln

3
2
U − µ
U
2

+ µ

)
. (5.2.16)

At these saddle points, the classical action is evaluated as

Re (Sm − S0) ' 2π2

βU
m2, (5.2.17)

ImSm ' 2πm

(
µ

U
+

1

2

)
. (5.2.18)

In this model, the most dominant contributions comes only from a saddle point z0, and then,
strictly speaking, one cannot apply our proof of incorrectness of the complex Langevin method.
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(a) Scatter plot for βU = 30, µ/U = 0
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Figure 5.2: Test of the complex Langevin method for the one-site Fermi Hubbard model.
(a) Scatter plot obtained by the complex Langevin method for βU = 30 and µ/U = 0. This
has a remarkable similarity with Fig. 4.3 (b). (b) The red boxes are obtained by the original
complex Langevin method, and the blue circles by our new formula (5.2.3). (Figure (b) is taken
from Ref. [138].)

However, other saddle points zm (m 6= 0) also give almost dominant contributions at βU →∞
as long as |m| is not too large. This suggests that our criterion can still conclude that the
complex Langevin method shows wrong convergence in this model. That is, because of the
difference of complex phases among Sm, the complex Langevin method is expected to give a
wrong answer for this model.

Figure 5.2 (a) shows the scatter plot obtained by the complex Langevin method obtained by
the complex Langevin method. Here, Im(z) is subtracted by the offset µ+U/2 in order to look
at details of the distribution. They does not show step-function behaviors and instead show the
linear dependence on µ. It is quite similar to the structure of Lefschetz thimbles in Fig. 4.3 (b),
and the distribution is nicely separated by fermionic zero modes. The result for the number
density of the naive complex Langevin method is shown with red squares in Fig. 5.2 (b). This is
expected because the position of the complex saddle points is Im(zm)/U ' µ/U + 1/2, and this
indicates that the complex Langevin method at least loses the complex phases among saddle
points.

We introduce the phase function Φ by

Φ(x, y) =
∞∑

m=−∞

e−i ImSmθ
(

(2m− 1)π < βx < (2m+ 1)π
)
. (5.2.19)

The result of the modification, Im〈Φ · z〉/〈Φ〉, is shown with blue circles in Fig. 5.2 (b). Al-
though we cannot observe the perfect agreement between our modified computation of the
complex Langevin method and the exact result, step-function behaviors can be observed after
modification. It is an important future study to refine the modification procedure and explore
the Silver Blaze phenomenon using the modified complex Langevin method.

5.3 Brief summary

In this chapter, we discussed the relation between the Lefschetz-thimble path integral and
the complex Langevin method through the Dyson–Schwinger equation. Establishment of this
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relation enables us to give feedbacks from our new findings on the Lefschetz-thimble approach
for other approaches to the sign problem, and vice versa.

In Sec. 5.1, we formally relate the complex Langevin method and the Lefschetz-thimble
path integral by using Itô calculus. Since Itô calculus gives the Dyson–Schwinger equation if
the Langevin dynamics equilibriates, the ensemble averages of the complex Langevin method
must be given by a complex linear combination of Lefschetz-thimble integrals. Only when it is
given by the linear combination with appropriate integers, does the complex Langevin method
simulates the original quantum system.

Using the semiclassical analysis, we derived the sufficient condition for the complex Langevin
method to show the wrong convergence. This condition is quite simple: The complex Langevin
method is always wrong if the classical action has several dominantly contributing saddle points
with different complex phases.

Since we have identified a missing part in the complex Langevin simulation, we can propose
a way to change the complex Langevin method in Sec. 5.2. Since the phase factors appear-
ing in summing up multiple Lefschetz thimbles are missed, we introduce them and perform
the reweighting. This is the minimal modification in order to circumvent the semiclassical
inconsistency in Sec. 5.1.

Our proposal is checked numerically. If we apply the complex Langevin method to the
one-site Hubbard model, it shows the fictitious phase transition which we observed with the
phase-quenched approximation in Sec. 4.2. After performing the reweighting, the result on
the number density is improved and shows a rapid transition at correct values of the chemical
potential.
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Chapter 6

Summary and Outlook

In Chapter 2, I first give a brief review on a foundation of the Picard–Lefschetz theory. This
gives an extension of steepest descent methods by applying it to the multiple oscillatory integral,
and the steepest descent integration cycles are called Lefschetz thimbles. In order to understand
how it works, I compute the real-time Feynman kernels of free particles and the harmonic
oscillator.

In Chapter 3, spontaneous breaking of chiral symmetry is discussed from the viewpoint of the
Lefschetz-thimble approach. This study tackles one of the important aspects of nonperturbative
QCD using simple 0-dimensional fermionic models, Gross–Neveu and Nambu–Jona-Lasinio
models. In both cases, an auxiliary bosonic field for the chiral condensate is introduced, and its
integration cycle is decomposed into Lefschetz thimbles. This allows ones to study the analytic
property of the partition function for complex four-fermion interactions before performing the
path integral. Thanks to this property, one can easily compute Lee–Yang zeros of these models
in the large-N limit.

In this chapter, I also develop the computational tool of Lefschetz thimbles with the contin-
uous chiral symmetry. The Lefschetz thimble method can be naively applicable only when all
the saddle points are non-degenerate, which is not the case if there exists an exact continuous
symmetry. Even when the continuous symmetry is explicitly broken, the remnant of the sym-
metry introduces a practical difficulty in its application because of the appearance of quasi-zero
modes. I find that the quasi-zero mode of the gradient flow can be decoupled approximately,
and Lefschetz thimbles become computable in an efficient way. This technique turns out to be
quite useful, and it is applied for the 0-dimensional Nambu–Jona-Lasinio model.

In Chapter 4, I consider two examples with the sign problem in order to understand the
origin and structures of the sign problem. The first one is the Polyakov-loop effective model
of the heavy-dense quantum chromodynamics (QCD). In order to study it, I developed the
mean-field approximation based on the Lefschetz-thimble approach so that it is applicable even
if the sign problem exists. One can judge whether this works nicely by computing topologies
of Lefschetz thimbles. This gives the mathematical foundation to study the Polyakov-loop
effective models at finite quark densities.

The second one is the one-site Fermi Hubbard model, which is easily and exactly solvable but
has the severe sign problem in the path-integral expression. In this case, the above mean-field
approximation is not applicable, and I elucidate its reason by studying topological structures
of Lefschetz thimbles. I show that interference of complex phases among complex classical
solutions play a pivotal role to understand the sign problem and the correct phase structures
using path integrals. This interference is shown to become also important in the finite-density
QCD with light flavors if the baryon chemical potential exceeds the pion mass.
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In Chapter 5, I relate this newly developing technique, the Lefschetz-thimble path integral,
with a conventional approach to the sign problem, the complex Langevin method. I show that
the original complex Langevin method cannot give correct results if interference of complex
phases among classical solutions is important. This gives the simple criterion for incorrectness
of the complex Langevin method without doing its numerical simulation, and suggests that the
complex Langevin method is not applicable to the finite-density QCD. To resolve this failure,
I propose to modify the complex Langevin method and it is numerically tested. Our proposal
on modification improves the result for the one-site Hubbard model but it is not perfect yet.
This study strongly suggests that the Lefschetz-thimble approach is quite powerful to invent
or justify other sign problem solvers.

In this thesis, I elucidate what is an essential difficulty of the sign problem when the path-
integral formulation is applied. This requires some changes or modifications of conventional
approaches to the sign problem, and this study may be able to infer how to do them. For
that purpose, I must study further details and evaluate the amount of computational costs.
Especially, it is important to understand the structures of Lefschetz thimbles when the system
has infinitely many degrees of freedom.

In order to explore the phase diagram of QCD using the path-integral approach, I believe
that we must further develop the theoretical and technical foundations of Lefschetz-thimble
methods. It is quite important to fully understand how the sign problem in finite-density QCD
is correlated to the low-energy dynamics of QCD characterized by confinement and spontaneous
chiral symmetry breaking. Each aspect of the problem is partly explored in this thesis, and
I would like to know how these results play into the realistic problems. As a next step, it is
interesting to revisit the structure of the sign problem in the chiral random matrix model and
the instanton liquid model. These models simplify the dynamics of gauge fields in QCD, and
thus one would be able to learn how the chiral symmetry breaking affects the difficulty of the
sign problem in an explicit way. It is fascinating if these studies shed a new light on the cold
and dense nuclear matters and a longstanding and new problems of neutron stars.

So far, the path integral on Lefschetz thimbles relies on sophisticated mathematics. Its
applications can be discussed based on solid mathematical foundations thanks to this aspect.
However, if one could relate this analysis with our conventional physical intuition on quantum
field theories, then this method must have wider applications and become practical tools. I
believe that this is possible, because this method is suitable for the semiclassical study of
quantum physics. Dynamical aspects of field theories, such as real-time phenomena, have vast
unexplored areas compared with static ones, and I would like to tackle those problems in future
by extending the applicability of this technique.



Appendix A

Homology

A.1 General property

Homology can be defined in a quite abstract way, and it is sometimes useful to compute the
homology since we can deal them without considering details of its construction. Therefore, let
us just remark the Eilenberg–Steenrod axioms [148] of the homology at first.

Eilenberg–Steenrod axiom

For every pair (X,A) of topological spaces, i.e. A ⊂ X, Abelian groups Hi(X,A) (i ≥ 0)
and boundary maps ∂ : Hi(X,A) → Hi−1(A, ∅)(=: Hi−1(A)) are assigned, and a map of pairs
f : (X,A)→ (Y,B) induces a group homomorphism f∗ : Hn(X,A)→ Hn(Y,B). They further
satisfy the following five axioms:

1. [Naturalness] The boundary map ∂ is natural, i.e. for a map f : (X,A) → (Y,B) the
induced maps must commute with ∂; f∗ ◦ ∂ = ∂ ◦ (f |A)∗.

2. [Homotopy] If two maps f, g : (X,A) → (Y,B) is homotopic, the induced maps f∗, g∗
to the homology are the same.

3. [Excision] Let (X,A) be a pair and U ⊂ A. If the closure of U is inside the interior of
A, then the inclusion (X \ U,A \ U) ↪→ (X,A) induces Hi(X \ U,A \ U) = Hi(X,A).

4. [Dimension] For the one-point set ∗, Hi(∗) = 0 for i > 0. In the singular homology,
H0(∗) = Z.

5. [Additivity] Let X is given by a disjoint union of Xα’s, then Hi(X) =
⊕

αHi(Xα).

6. [Exactness] For each pair (X,A), two inclusions i : A ↪→ X and j : (X, ∅) ↪→ (X,A)
induces the long exact sequence

· · · ∂−→ Hn(A)
i∗−→ Hn(X)

j∗−→ Hn(X,A)
∂−→ Hn−1(A)

i∗−→ · · · . (A.1.1)

With these axioms, the homology can be uniquely determined. For some topological spaces
like spheres, one can compute their homologies directly from these axioms.

If one were familiar with the homology group Hn(X) but not with the relative homology
group Hn(X,A), one can think of Hn(X,A) as Hn(X/A) for n > 0 (for singular homologies).
For n = 0, H0(X,A) = H0(X/A, ∗) and it is the free module of one rank less than H0(X/A).
These properties follow from the excision axiom.

91



92 Appendix A. Homology

Mayer–Vietoris exact sequence

The Mayer–Vietoris sequence provides a helpful way to compute the homologies, and this
theorem follows from the above Eilenberg–Steenrod axioms. Let A,B ⊂ X be topological
subspaces of X, and X be covered by interiors of A and B. We can consider natural inclusions
i : A∩B ↪→ A, j : A∩B ↪→ B, k : A ↪→ X, and l : B ↪→ X, then the Mayer–Vietories sequence
states that the following is the long exact sequence:

· · · → Hn(A ∩B)
(i∗,j∗)−−−→ Hn(A)⊕Hn(B)

k∗−l∗−−−→ Hn(X)
∂∗−→ Hn−1(A ∩B)→ · · · . (A.1.2)

The map ∂∗ needs a little explanation. Let us set U = B \A, then the closure of U is contained
in B because X is covered by interiors of A and B by the assumption. Using the excision
property, one finds

Hn(X,B) ' Hn(X \ U,B \ U) = Hn(A,A ∩B). (A.1.3)

Then, ∂∗ is given by the composition,

∂∗ : Hn(X)→ Hn(X,B) ' Hn(A,A ∩B)
∂−→ Hn−1(A ∩B). (A.1.4)

For spheres Sk, this states that Hn(Sk) = Hn−1(Sk−1) by dividing it into two hemispheres.
In the case of singular homologies, one can iteratively show that H0(Sk) = Hk(S

k) = Z and
Hn(Sk) = 0 for n 6= 0, k.

A.2 Smale–Witten theory

Morse homology provides a useful way to understand homologies of compact smooth mani-
folds. Semiclassical analysis of a supersymmetric quantum mechanics gives a physical idea of
homologies [149, 150]. For its relevant extension in our context, see Refs. [151–154].

Morse inequalities Let (M, g) be a smooth Riemannian manifold with finite dimension,
and consider h : M → R. For a moment, let us assume that M is compact. The function h
is called a Morse function on M if all the critical points p ∈ Σ = {x ∈ M | dh(x) = 0} is
non-degenerate, i.e.

det

(
∂2h

∂xi∂xj

)∣∣∣
p
6= 0. (A.2.1)

For each critical point p, the Morse index λ(p) is defined by the number of negative eigenvalues
of the Hessian.

The strong Morse inequality gives∑
p∈Σ

tλ(p) −
∑
n≥0

(dimHn(M))tn = (1 + t)
∑
n≥0

Qnt
n (A.2.2)

for some nonnegative integers Qn. This gives #{λ(p) = n} ≥ dimHn(M). This inequality
can be shown for any homologies satisfying the Eilenberg–Steenrod axioms. Especially if all
Qn = 0, h is called a perfect Morse function.
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Gradient flow and stable/unstable manifolds Let us still stick to the smooth compact
Riemannian manifold M . Taking a local coordinate xi, Morse’s downward flow equation is
defined as

dxi

dt
= −gij ∂h

∂xj
. (A.2.3)

There are two types of solutions in general; one is the constant solution at a critical point,
x(t) ≡ p, and another one is a one-dimensional curve connecting two critical points. Let’s
call this one-dimensional manifold as an “instanton”, because this is indeed an instanton of a
supersymmetric quantum mechanics [149]. For each critical point p, we define the descending
and ascending manifolds by

Jp :=

{
x(0) ∈M

∣∣∣ lim
t→−∞

x(t) = p

}
, Kp :=

{
x(0) ∈M

∣∣∣ lim
t→+∞

x(t) = p

}
, (A.2.4)

respectively. The stable/unstable manifold theorem states that Jp and Kp are smooth mani-
folds, which are homeomorphic to open disks, and dimJp = λ(p) and dimKp = dim(M)−λ(p).

The pair (h, g) of the Morse function and the metric is called Morse–Smale if Jp and Kq
are transverse to each other for any p, q ∈ Σ: For any r ∈ Jp ∩ Kq, TrJp ⊕ TrKq = TrM . This
condition gives an exact sequence,

0→ Tr(Jp ∩ Kq)→ Tr(Jp)⊕ Tr(Kq)→ TrM → 0, (A.2.5)

for r ∈ Jp ∩ Kq. This is a generic condition, in other words, small perturbations can always
satisfy this even when a Morse function h is not Morse–Smale. We assume that (h, g) is Morse–
Smale in the following.

Since dim(Jp ∩ Kq) = λ(p)− λ(q) and

Jp ∩ Kq = {x(0) |x(−∞) = p, x(+∞) = q}, (A.2.6)

the dimension of the moduli space of instantons is given by λ(p) − λ(q). Therefore, if λ(q) =
λ(p)− 1, the number of instantons connecting two critical points p and q is finite. The number
of such instantons is precisely necessary information for computing homologies of M [149].
Consider the free Z-module generated by descending manifolds Jp graded by Morse indices,

C(M,h) =
⊕
n

Cn(M,h), Cn(M,h) =
∑

p∈Σ, λ(p)=n

ZJp. (A.2.7)

The boundary operator ∂ : Cn → Cn−1 is given by

∂Jp =
∑

q∈Σ, λ(q)=λ(p)−1

n(p, q)Jq, (A.2.8)

where n(p, q) is a number of instantons connecting p and q. Here, an instanton is counted as
±1 whether it preserves the orientation of the exact sequence (A.2.5) or not. One can check
that ∂2 = 0, and the homology of the complex C(M,h) is nothing but H∗(M). This also shows
the strong Morse inequality.
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Sketch of Witten’s proof Let us recall the de Rham complex at first. Denoting the set of
n-forms on M by Ωn(M), the de Rham complex is

Ω∗ : Ω0(M)
d−→ Ω1(M)

d−→ · · · d−→ Ωdim(M)(M). (A.2.9)

Cohomology of this complex is called the de Rham cohomology H∗dR(M), and the Poincaré

duality states that Hk(M) ' H
dim(M)−k
dR (M) as R-vector spaces. One can introduce an L2 inner

product on Ωn by

〈α|β〉 =

∫
M

?α ∧ β, (A.2.10)

where ? is the Hodge star operator and α is the complex conjugation of α. If degrees of α and
β are different, we set 〈α|β〉 = 0. Let us regard Ω∗ as a “Hilbert space” of quantum mechanics.
As a “Hamiltonian”, we use the positive-definite operator

H0 = dd† + d†d

(
= −

∑
n

∂2

(∂xn)2

)
, (A.2.11)

where 〈d†α, β〉 = 〈α, dβ〉 (The last equality is true only on a flat local coordinate). This is
nothing but the Laplace operator. The Hodge theory tells us that Hn

dR(M) is nothing but the
space of vacua of degree n, i.e., Hn

dR(M) = {α ∈ Ωn |H0α = 0}.
Instead of the exterior derivative d, one can consider another operator dt = e−thdeth for

t ≥ 0. Here h is a Morse function, and assume that (h, g) is Morse–Smale. Since this is just a
conjugation, the de Rham cohomology is invariant for any t. Let us consider a Hamiltonian

Ht = dtd
†
t + d†tdt, (A.2.12)

then we would like to compute the space of vacua in order to obtain (co)homologies. In
Ref. [149], the spectrum of Ht is computed in the limit t→∞ semiclassically.

Because of the anticommuting property of differential forms dxi ∧ dxj = −dxj ∧ dxi, the
space of n-forms Ωn can be regarded as the Hilbert space including n fermions, and α 7→ dxi∧α
gives the creation of ith fermion ĉi †. The Hamiltonian Ht is expressed as

Ht =
∑
n

(
−∂2

n + t2 (∂nh)2)+ t
∑
i,j

∂2h

∂xi∂xj
[
ĉi †, ĉj

]
. (A.2.13)

In the limit t → ∞, low-energy wave functions must localize around critical points p ∈ Σ
because of the potential term (∂nh)2. However, the bosonic part of Hamiltonians still have
large energy due to zero-point oscillation. In order to cancel it, we need to make the fermionic
energy maximally negative, and thus fermions must be occupied for negative eigenvalues of the
Hessian of h and other fermions unoccupied. Let us denote this wave function by |p〉.

So far, by approximating the system as harmonic oscillators around critical points, we
obtained the space of classical vacua Xn(M,h) with n fermions, and dimXn is the number of
critical points p with Morse index λ(p) = n. Because of instantons (A.2.3), some elements of
Xn may not be quantum vacua, which must be eliminated. The derivative δ : Xn → Xn+1,

δ|p〉 =
∑

r∈Σ, λ(r)=λ(p)+1

n(r, p)|r〉, (A.2.14)

satisfies δ2 = 0. The cohomology of the complex (X∗, δ) gives the de Rham cohomology [149].



Appendix B

Path integral on Lefschetz thimbles
and supersymmetry

Lefschetz thimbles can be interpreted as ground states of N = 2 supersymmetric quantum
systems [152–154] (see also Ref. [65]). It is possible to use this reformulation of the Lef-
schetz thimble in order to compute expectation values of observables. This work is taken from
Ref. [155].

B.1 Lefschetz thimble and SUSY quantum mechanics.

Let us consider an N -dimensional real integral as a “quantum field theory” defined by a (com-
plex) classical action S(x). In this theory our goal is to compute an expectation value of an
“observable” O(x) defined by

〈O〉 = N
∫ ∞
−∞

dNx eS(x)O(x) , (B.1.1)

where x = (x(1), x(2), . . . , x(N)) ∈ RN and the normalization N is chosen such that 〈1〉 = 1.
The starting point in our discussion is to reformulate this theory in an equivalent and more
treatable way using a complexified representation:

〈O〉 =

∫
dNz dNz P (z, z)O(z) . (B.1.2)

Here z(i) = x
(i)
1 + ix

(i)
2 and z(i) = x

(i)
1 − ix

(i)
2 with x

(i)
1 , x

(i)
2 ∈ R and

∫
dzdz represents the

integration over the whole complex plane; i.e.
∫∞
−∞ dx1

∫∞
−∞ dx2. The choice of the gener-

alized weight function P (z, z) may not be unique. Indeed, a trivial example is P (z, z) =
N eS(z)

∏
i δ(z

(i) − z(i)). At the cost of complexifying the variables, nevertheless, it is often the
case that P (z, z) could be endowed with more desirable properties for analytical and numerical
computation than the original eS(x).

A clear criterion to simplify the integral is to find P (z, z) such that the phase oscillation
can be as much suppressed along integration paths as possible, while in the complex Langevin
method P (z, z) is optimized to become a real probability. To suppress the phase oscillation, let
us pick up a saddle point zσ satisfying S ′(zσ) = 0. The steepest descent cycle or the Lefschetz
thimble Jσ of the saddle point zσ is defined with a fictitious time t as

Jσ =

{
z(0) = x1(0) + ix2(0)

∣∣∣∣ dx
(i)
j (t)

dt
= −∂ReS

∂x
(i)
j

, lim
t→−∞

(x1(t) + ix2(t)) = zσ

}
. (B.1.3)
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This is a multi-dimensional generalization of the steepest descent path in complex analysis,
which we will refer to as the downward path. The original integration path on the real axis
in Eq. (B.1.1) can be deformed as a sum of contributions on Jσ weighted with an integer mσ;
i.e.,

∫
RN dNx =

∑
σmσ

∫
Jσ dNz. In mathematics it is established how to determine mσ from

the intersection pattern between the steepest ascent (upward) path from zσ and the original
integration path [62, 64, 65]. It is important to note that ImS is a constant on each Lefschetz
thimble for the application to the sign problem [67, 70].

In the following, let us restrict ourselves to N = 1 for simplicity, because the generalization
is straightforward. So far, the Lefschetz thimble is constructed as a line, and let us find a two-
dimensional smooth distribution P (z, z) according to Ref. [65]. For that purpose, we define the
“delta-functional one-form” δ(Jσ) supported on the Lefschetz thimble so that∫

Jσ
O(z)eS(z)dz =

∫
C
δ(Jσ) ∧ O(z)eS(z)dz. (B.1.4)

For instance, δ(R) = δ(y)dy. Such delta-functional forms δ(Jσ) (on a Kähler manifold) have
a path-integral expression from the supersymmetric quantum mechanics [152–154] (see also
Secs. 2.8 and 4 of Ref. [65] for more details in this context). Integration (B.1.4) can be repre-
sented as

〈O〉 = N
∫
D[x, p, π, ψ] exp

[
i

∫ 0

−∞
dt pi

(
dxi
dt

+
∂ReS

∂xi

)]
× exp

[
−
∫ 0

−∞
dt πi

(
d

dt
δij +

∂2ReS

∂xi∂xj

)
ψj

]
O(z(0)) eS(z(0)) (ψ1+iψ2)(0) . (B.1.5)

Here x, p are bosonic fields and π, ψ are fermonic ghost fields, and z(t) → zσ as t → −∞.
We should note that an integration in terms of z is promoted to the path integral on z(t) for
t ≤ 0, while the observable and the weight O(z(0)) expS(z(0)) are functions of z(0) only. Let
us outline how these two expressions (B.1.4) and (B.1.5) are equivalent [65, 152–154]. We first
integrate out p(t) to get the Dirac delta function,∫

Dp exp

[
i

∫ 0

−∞
dt pi

(
dxi
dt

+
∂ReS

∂xi

)]
= δ

(
dxi
dt

+
∂ReS

∂xi

)
. (B.1.6)

This delta function constrains the path integral on x(t) to a gradient-flow line defining Lefschetz
thimbles. Since z(−∞) → zσ, this path integral for t < 0 gives a delta-functional support on
Jσ. However, the delta function produces an unwanted determinant factor. As is well-known,
the path integral on ghost fields π(t), ψ(t) for t < 0 can eliminate that factor as∫

DπDψ exp

[
−
∫ 0

−∞
dt πi

(
d

dt
δij +

∂2ReS

∂xi∂xj

)
ψj

]
= Det

(
d

dt
δij +

∂2ReS

∂xi∂xj

)
. (B.1.7)

Now, we obtain an integration over surface variables x(0), ψ(0), and denote them by x, ψ.
Locally, the Lefschetz thimble Jσ can be expressed as zeros of a certain function f , then we
can find that the path integral (B.1.5) eventually gives∫

d2xd2ψ δ(f)
∂f

∂xi
ψi ∧ O(z) eS(z) (ψ1+iψ2) =

∫
δ(f(x))df(x) ∧ O(z) eS(z) dz, (B.1.8)

which is nothing but the local expression of the original integration (B.1.4). Going back to
(B.1.5), this shows that the so-called residual sign problem comes from the fermionic surface
term ψ1(0) + iψ2(0) because one can identify ψi(0) = dxi as above.
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B.2 Hamilton dynamics

Importantly, with these added fields, pi, πi, ψi, the action is BRST exact under a transformation;
δ̂xi = ψi, δ̂ψi = 0, δ̂πi = −ipi, δ̂pi = 0 [65]. By definition the nilpotency δ̂2 = 0 is obvious.
Thanks to the boundary fermionic operator in (B.1.5), the surface term is BRST-closed so long
as the observables are holomorphic. This makes a sharp contrast to the complex Langevin
method that could also acquire the BRST symmetry but it is violated by the surface term.
Because of the BRST symmetry we can add any BRST exact terms without changing the
original integral, and it is useful to insert εi

2

∫
dt p2

i . In summary, the effective Lagrangian that
describes the fictitious time evolution is given by the following topological theory:

Leff = −εi
2
p2
i + ipi

(
dxi
dt

+
∂ReS

∂xi

)
+ πi

(
d

dt
δij +

∂2ReS

∂xi∂xj

)
ψj

= −δ̂
{
πi

(
i
εi
2
pi +

dxi
dt

+
∂ReS

∂xi

)}
,

(B.2.1)

which is nothing but a Legendre transform of an effective Hamiltonian:

Heff =
∑
i

[
εi
2
p̂2
i −

i

2

(
∂ReS

∂xi
p̂i + p̂i

∂ReS

∂xi

)]
−
∑
i,j

1

2

∂2ReS

∂xi∂xj

[
π̂i, ψ̂j

]
(B.2.2)

with [xi, p̂j] = iδij and {π̂i, ψ̂j} = δij. The fermion number F = π̂1ψ̂1 + π̂2ψ̂2 is a conserved
quantity of this Hamiltonian. After the time evolution from t = −∞ only the ground state with
the lowest energy eigenvalue remains, so that the generalized weight is given by P (z, z)dzdz =
Ψ(z, z) ∧ eS(z)dz, where Ψ(z, z) is the ground state wave-function and converges to δ(Jσ) in
the limit εi → +0. Note that the weight factor expS(z) is necessary in this formula, since the
wave function designates only the integration cycle Jσ. We can further simplify this Hamilton
problem by choosing ε = ε1 = ε2. Performing the conjugate transformation Ψ = e−ReS/εΨ′, the
first derivative terms are eliminated as

H ′eff =
∑
i

[
ε

2
p̂2
i +

1

2ε

(
∂ReS

∂xi

)2]
−
∑
i,j

1

2

∂2ReS

∂xi∂xj

[
π̂i, ψ̂j

]
. (B.2.3)

This describes supersymmetric quantum mechanics with the superpotential ReS [65].
By restricting ourselves to the F = 1 sector, we can define the effective potential in a form

of 2× 2 matrix-valued function that amounts to

Veff =
1

2ε

[(
∂ReS

∂x1

)2

+

(
∂ReS

∂x2

)2]
−
(

∂2ReS/∂x2
1 ∂2ReS/∂x1∂x2

∂2ReS/∂x1∂x2 −∂2ReS/∂x2
1

)
, (B.2.4)

and then the Hamiltonian is

H ′eff = −ε
2

(
∂2

∂x2
1

+
∂2

∂x2
2

)
+ Veff . (B.2.5)

This reformulation provides one way to compute Lefschetz thimbles for numerical purpose by
solving the ground state of the above H ′eff at some ε [155].
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