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Abstract

Primordial perturbations of a huge range of wavelengths are generated

in the early universe, and largest wavelengths of these are indirectly ob-

served as anisotropy of the intensity of photons, or they provide the seeds

of the structures of the universe we see today. The nature of primordial

perturbations on large wavelengths has been well determined, while that

of primordial perturbations of shorter wavelengths is less understood. Pri-

mordial perturbations of shorter wavelength cause a wealth of phenomenol-

ogy, through which their properties can be constrained.

For instance, if some region strongly deviates from other places, that

region collapses to a black hole in the early universe. That is, black holes

could have been formed even in the early universe, well before structures

such as stars are formed. So far there is no conclusive observational evi-

dence for the substantial formation of such black holes in the past, which

fact itself provides valuable information about the nature of primordial

perturbations, and hence about mechanisms of generation of primordial

perturbations.

Another example of phenomenology related to primordial perturbations

of short wavelengths is dissipation of them due to diffusion processes, and

this diffusion leads to energy release into the universe, which was originally

stored in sound waves. This energy release causes the slight increase in the

global temperature of the universe, or distortions in the energy spectrum

of photons in the universe.

In this dissertation, investigation of primordial perturbations of short

wavelengths is discussed through these kinds of phenomenology.
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Chapter 1

Introduction

Primordial perturbations of a huge range of wavelengths are generated quantum mechan-
ically in the early universe (see [1–4] for earliest works of generation of irregularities in
the framework of primordial inflation). Largest wavelengths of them are observed as
anisotropy of the cosmic microwave background (CMB), having been observed by satel-
lite missions COBE [5], WMAP [6] and Planck [7], or they provide the seeds of the
large-scale structures (LSSs) of the universe we see today. The nature of primordial per-
turbations on large wavelengths has been well determined (see [8] in 2015 for the latest
results obtained by the Planck collaboration), while that of primordial perturbations of
shorter wavelengths is less understood. Though simplest models of inflation predict al-
most scale-invariant power spectrum (see e.g. [1–4, 9–11]), different models of the early
universe predict different properties of short-wavelength perturbations, e.g. larger power
on small scales (see e.g. [12] and references therein), and so investigation of primordial
power on small scales can also provide helpful information about the early universe, which
is complementary to what can be leaned from observations of CMB or LSS.

Primordial perturbations of shorter wavelengths cause a wealth of phenomenology,
through which their properties can be constrained. For instance, if some region strongly
deviates from other places in the universe, that region collapses to a black hole (called
a primordial black hole, PBH) [13–15]. That is, black holes could have been generated
even in the early universe, well before structures such as stars are formed. So far there
is no conclusive observational evidence for substantial formation of such black holes in
the past (see [12] for a holistic summary of observational upper bounds on PBHs), which
fact itself provides valuable information about the nature of primordial perturbations (see
e.g. [16, 17]), and hence about mechanisms of generation of primordial perturbations.

Another example of phenomenology related to primordial perturbations of short wave-
lengths is dissipation of them due to diffusion processes (diffusion or Silk damping [18,19]),
and this diffusion leads to energy release into the universe, which was originally stored
in sound waves (see one of the earliest works [20]). This energy release causes the slight
increase in the global temperature of the universe, or deviations of the energy spectrum
of photons in the universe from a Planck spectrum (called CMB distortions), depending
on when the dissipation happens, namely, depending on comoving scales of perturbations.
See a recent review [21] and references therein.

If primordial power on small scales is larger than the prediction of the almost scale-
invariant fluctuations, compact dark matter (hereafter abbreviated as DM) halos may be
formed in the early universe (z ∼ 1000) [22]. Annihilation of DM may be highly efficient in
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these mini-halos, and hence they may be detected on earth. In other words, observations
of gamma-rays or neutrinos can be used to constrain these mini-halos, which can then be
translated into constraints on primordial power on small scales. See [23] for a discussion
about constraints on primordial power obtained by gamma-rays from these mini-halos.

In this dissertation, investigation of primordial perturbations of short wavelengths is
discussed through these kinds of phenomenology. This dissertation is organized as follows.

Chapter 2 is dedicated to brief reviews of relevant topics; PBHs, CMB spectral dis-
tortion and compact DM mini-halos are reviewed.

Supermassive black holes (SMBHs) of 109 ∼ 1010M⊙ have been observed at high
redshifts [24–37], and there has been no established explanation about how such gigantic
black holes could have been formed by such early times. In Chapter 3, the possibility of
PBHs as the seeds of these SMBHs observed at high redshifts is discussed. If primordial
perturbations follow a Gaussian distribution or one similar to it, PBHs larger than 104 ∼
105M⊙ are excluded due to constraints on CMB spectral distortion [38,39]. This is because
in order for the probability of PBH formation being sufficiently large to explain SMBHs,
the amplitude of primordial perturbations of wavelengths corresponding to the scales of
the seeds of SMBHs has to be very large, which causes CMB spectral distortion to a level
that is inconsistent with observational upper bounds on CMB spectral distortion obtained
by COBE/FIRAS. We discuss models which predict highly non-Gaussian perturbations
to evade CMB distortion constraints, and in these models PBHs can be produced whose
mass is as large as necessary to account for the observed SMBHs at high redshifts and
whose abundance is also adjustable to match observations. This Chapter is based on a
work in preparation [40] and on a part of [39].

In Chapter 4, acoustic reheating is discussed, which is a slight increase in the global
temperature of the universe, resulting from dissipation of primordial perturbations after
Big Bang Nucleosynthesis (BBN). This acoustic reheating causes a slight decrease in the
baryon-to-photon ratio η. The values of η at BBN and the photon decoupling have been
independently determined from observations of the abundance of the light elements in
the universe [41] and CMB anisotropy [42], which means if η decreases too much, it con-
tradicts with these observations. From this consideration, upper bounds on primordial
perturbations are obtained which dissipate after BBN but before the moment after which
dissipation of perturbations causes CMB spectral distortion, noting perturbations of wave-
lengths which cause substantial CMB distortion have already been tightly constrained.
This Chapter is based on [43].

Cosmological perturbations can be decomposed into scalar, vector, and tensor compo-
nents, and Chapters 2-4 are devoted to discussions of investigation of short-wavelength pri-
mordial scalar perturbations. In Chapter 5, investigation of primordial short-wavelength
tensor perturbations is discussed. It is known that scalar, vector and tensor perturbations
evolve independently in linear theory, but they are coupled at the second-order level. For
instance, scalar perturbations are generated from second-order tensor perturbations. If
the amplitude of these induced scalar perturbations is extremely large, these perturba-
tions collapse to form PBHs. Since there has been no conclusive evidence for the existence
of PBHs, overproduction of PBHs is forbidden to be consistent with observations. This
consideration leads to upper bounds on induced scalar perturbations, which can be trans-
lated into upper bounds on the amplitude of primordial tensor perturbations on small
scales. This Chapter is based on [44] and a work in preparation [45].
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Chapter 2

Probing primordial power
on small-scales: review

In this Chapter an overview is provided about the topic of investigation of primordial
power on small scales. As is explained in §2.1, primordial perturbations of various wave-
lengths are generated in the early universe. Those of large wavelengths (O(Mpc) −
O(Gpc)) have been well investigated by observations of CMB and LSS, but those of
shorter wavelengths are less understood. Since different models of the early universe pre-
dict different properties of primordial perturbations of various wavelengths, investigation
of primordial power on small scales also provides useful information. There are several
methods to be used for this, which include primordial black holes (§2.2), CMB spectral
distortion (§2.3) and compact DM mini-halos (§2.4).

2.1 Primordial perturbations of various wavelengths

generated in the early universe

The theory of inflation provides solutions to the horizon problem, flatness problem and
unwanted relics problem, and it was proposed by Starobinsky in 1979 [46] and in 1980 [47],
by Sato (1981) [48], and by Guth (1981) [49]. This theory also provides a mechanism of
generation of primordial perturbations through quantum fluctuation, which serve as the
seeds of the structures in the universe we observe today. During inflation, perturbations†1

are generated quantum mechanically at each moment on scales less than the Hubble ra-
dius. Then, the wavelength of these perturbations is stretched exponentially outside the
Hubble radius due to the exponential expansion of the universe, when these perturba-
tions are thought to ”classicalize” (see e.g. [50] and references therein). This process
of generation inside the Hubble radius and subsequent stretching happen continuously
during inflation, and so a huge range of wavelengths of perturbations are generated. Pri-
mordial perturbations generated during inflation are quite often represented in terms of

†1As is mentioned in the Introduction, perturbations to the metric can be decomposed into
scalar, vector and tensor perturbations. In the early universe, all of these are generated due
to quantum fluctuation, and what matters to the structures of the universe is basically scalar
perturbation. This dissertation discusses investigation of short-wavelength primordial scalar
perturbations in Chapters 2,3,4 and tensor perturbations in Chapter 5.
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the so-called ”curvature perturbation”, and this quantity is conserved on super-horizon
scales (see e.g. [51] and references therein). Then this curvature perturbation is converted
into perturbations of various components of the universe, e.g. perturbations in radiation
energy density or perturbations in DM energy density. After the exponential expansion
phase of inflation, the universe enters into decelerated expansion phases, during which
perturbations reenter the horizon. That is, the physical scales of perturbations become
once more smaller than the Hubble radius, and the longer the wavelength is, the later this
reentry happens. After the reentry, perturbations of different components with different
wavelengths and amplitudes evolve differently, leading to a wealth of phenomenology, a
few of which are discussed in this dissertation.

The largest scale which can be observed today roughly corresponds to the current
Hubble or horizon scale, which is ∼Gpc†2, and perturbations of these scales reenter the
horizon relatively recently, and so they maintain primordial nature of perturbations more
than shorter-wavelength perturbations. Perturbations of these scales are observed as the
anisotropy of CMB (see e.g. [8] by the Planck collaboration (2015)), which has revealed
that the amplitude of anisotropy is O(10−5), which is comparable to the amplitude of the
curvature perturbation generated during inflation on these scales. Primordial perturba-
tions in principle exist on all the scales below this scale (∼Gpc)†3.

Simplest inflationary models predict almost-scale-invariant power spectrum [1–4,9–11],
i.e. the amplitude of the primordial curvature perturbation (in modern parlance) is almost
the same on any scales, which was hypothesized by Harrison (1970) [54], by Peebles
(1970) [55] and by Zel’dovich (1972) [56] (Harrison-Zel’dovich-Peebles spectrum). As
mentioned above, this has been confirmed on largest observable scales (Mpc-Gpc) by
observations of CMB anisotropy or LSSs of the universe, and the amplitude of primordial
perturbations on these large scales has been inferred to be ∼ 10−5. However, the power
spectrum of primordial perturbations on smaller scales is less understood, and we only

†2When scales of perturbations are referred to, they indicate comoving length scales, or current
length scales. That is, the physical scale at time t, lphys(t), is related to its comoving scale lcom
by lphys(t)a(t0)/a(t) = lcom, where a is the scale factor and t0 is the age of the universe.

†3Sometimes the Hubble radius at the end of inflation, the comoving scale of which is ∼
Gpc × e−60 ∼m if we assume the number of e-folds during inflation is sixty, is referred to as
the shortest scale, below which perturbations are assumed to be absent. This may be because
perturbations below this scale have never exited the Hubble radius, and so the classical nature of
these perturbations is uncertain. Strictly speaking however, perturbations below this scale would
also have been generated quantum mechanically during inflation. Note that the most plausible
ways to probe extremely short scales of primordial perturbations are gravitational waves (GWs)
and PBHs, as will be explained in the text. See [52] about PBH formation due to collapse
of perturbations below this ”shortest scale”. The frequency range of GWs these perturbations
cause (at the level of second-order perturbations) would be extremely high, and so probing these
perturbations would be challenging (see also [53] for a discussion about possible implications
of these extremely short-scale perturbations). With these in mind, in this dissertation the
above-mentioned scale (∼m) is referred to as the ”shortest scale”, and we focus on scales larger
than this. There is another comment about small-scale perturbations. Though we currently
observe perturbations on meter or smaller scales (e.g. human body), these do not directly
reflect primordial perturbations of the same scales. Rather, these result from power transfer
from large to small scale perturbations, which happens relatively recently when larger-scale
perturbations become nonlinear to form the structures of the universe.
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have relatively weak constraints on them. This situation is well illustrated in Fig.6 of
Bringmann, Scott and Akrami (2012) [23]. The almost-scale-invariant power spectrum
may continue all the way down to smallest scales (∼ Gpc × e−60 ∼ m, if the number of
e-folds during inflation is assumed to be sixty), as is predicted by simplest models, but
this may be a very strong extrapolation noting the almost-scale-invariant power spectrum
has been confirmed only on largest scales mentioned above. The primordial power may
be smaller or larger than the prediction of the almost-scale-invariant power spectrum.

So far, a number of inflationary models have been proposed, which are consistent with
large-scale observations mentioned above, and some of these predict small-scale power
larger than the prediction of the almost-scale-invariant power spectrum, with the frac-
tional amplitude of O(10−5). One of the simplest models of inflation which can poten-
tially lead to large power on small scales was discussed by Ivanov, Naselsky and Novikov
(1994) [57]. They consider a phenomenological single inflation model with the inflaton
potential having a relatively narrow plateau region somewhere in the middle. The power
spectrum of scalar perturbations of this model can coincide with the standard almost
scale-invariant power spectrum on large scales, but the power spectrum is enhanced on
some small scale. The position of this enhancement is roughly determined by the position
of the plateau region and the structures such as height and width are determined by the
width of the plateau region in the inflaton potential. Another simple single-inflation model
(chaotic new inflation) was analyzed by Yokoyama in 1998 [58], and by Saito, Yokoyama
and Nagata (2008) [59]. They used the Coleman-Weinberg potential [60], which has two
minima. If the initial value of the inflaton is large, the chaotic inflation occurs first, and,
depending on the parameter choice, the field rolls up towards the origin through one of the
minima, moves slowly there, and the new inflation begins towards one of the minima. At
the end of the chaotic inflation, the slow-roll conditions are violated, and consequently the
curvature perturbation is enhanced, at the scale corresponding to that moment. About
other inflationary models predicting large power on small scales, see also [38,61–74]. See
also a recent review by Green (2014) [75] and references therein.

Since different models predict different properties of primordial perturbations on small
scales, probing them is important to narrow down models of inflation. Completely de-
termining the properties of primordial perturbations on small scales would be probably
hopeless, but the question of to what extent mankind can probe primordial power on
small scales itself would be an interesting question. There are several methods to probe
small-scale primordial power, which include PBHs, CMB spectral distortion and compact
DM mini-halos. In the next sections we will take a brief look at these topics.

2.2 Primordial black holes

2.2.1 Overview

Black holes (BHs) are thought to form at the end of collapse of stars, and the typical
mass of these astrophysical BHs is the solar mass ∼ M⊙. However, BHs could have
been also formed in the early universe, well before the standard structure formation of
the universe has even begun, and these BHs are called primordial black holes (PBHs).
PBHs were first discussed by Zel’dovich and Novikov in 1966 [13], by Hawing in 1970 [14],
and by Carr and Hawking in 1974 [15]. There are several mechanisms which cause PBH
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formation (see [76] and references therein), but the most conceivable mechanism would
be direct collapse of large amplitude perturbations during radiation domination upon
horizon reentry, which we will focus on in this dissertation. Let us consider a region on a
super-horizon scale, which strongly deviates form the background universe by order unity,
namely, the curvature perturbation smoothed over this region is order unity. This region
evolves as a closed universe, and initially, this region expands, just as other parts of the
universe do, but the expansion of this region becomes slower and slower than other parts.
As time goes by, this region stops expansion at around the moment of the horizon crossing
of this region, and begins to contract, and soon afterwards, this regions falls into its own
Schwarzschild radius, namely, a PBH is formed. Since the formation of the BH horizon
takes place shortly after the horizon crossing, the mass of PBHs can be roughly estimated
by the horizon mass, or the total energy contained inside the horizon at the moment of
the horizon crossing of this region:

MPBH ∼ ρrad
4π

3

( c
H

)3
∼ c3t

G
∼ 2× 105M⊙

(
t

1sec

)
. (2.1)

That is, the mass of PBHs can in principle take various values (”10−5g upwards” [14]),
depending on when they are formed. Subsequent accretion of radiation after the formation
before matter domination is negligible due to the rapid expansion and resultant dilution
of radiation, as is shown by both analytical and numerical studies cited in the following
subsections. Equivalently, the mass of PBHs is determined by the comoving wavenumber
k of perturbations collapsing to PBHs. Defining the horizon crossing by k = aH and using
H =

√
ΩrH0a

−2 to eliminate the scale factor, the above relation (2.1) can be rewritten as

MPBH ∼ 2× 1013M⊙

(
k

1Mpc−1

)−2

. (2.2)

The formation of PBHs numerically simulated is reviewed in the Appendix A.

2.2.2 Analytical arguments of PBH formation condition

As previously mentioned, PBHs are formed when perturbation amplitude is order unity,
which was noted in the earliest works mentioned above, but in order to calculate the
probability of PBH formation more precisely, the condition for PBH formation needs
to be determined more precisely. This endeavor was initiated by Carr in 1975 [77], in
which the threshold of PBH formation in terms of the amplitude of the radiation density
perturbation at the moment of the horizon crossing (in the uniform Hubble slicing) δr ≃
1/3 was obtained, which has long been used quite often in the literature when calculating
PBH formation probability. This condition was obtained using a simplified model of PBH
formation, and the Jeans analysis, in which the above condition is obtained by requiring
the radius of the overdensity at the moment of the maximum expansion is larger than
the Jeans scale, over which sound waves propagate over cosmological time scale. This
indicates that the uncertainty of order unity is expected in the above threshold†4.

Recently, Harada, Yoo and Kohri (2013) [80] has refined the arguments in [77], to
obtain more precise PBH formation criteria, which are consistent with the threshold

†4To the knowledge of the author, spherical symmetry is assumed in all the works on PBH
formation process. This may be partially justified by Bardeen, Bond, Kaiser and Szalay (1986)
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values obtained in numerical simulations by Polnarev and Musco (2006) [81]. They adopt a
three-zone model, in which the central overdense region is described by a closed Friedmann
universe, and this overdense region is connected to an underdense layer, which is then
matched to a surrounding flat Friedmann universe. Then they adopt the condition that

”if and only if the sound wave crosses from the center to the surface outwardly
or from the surface to the center inwardly before the maximum expansion, the
pressure gradient force prevents the overdense region from becoming a black
hole.”

also noting that this

”requirement is naturally equivalent to the formation criterion that the sound
crossing time over the radius be longer than the free fall time from the maxi-
mum expansion to complete collapse.”

2.2.3 Numerical simulations of PBH formation process

Here we review numerical works on PBH formation. See also the Appendix A, where PBH
formation process is reviewed, based on [82, 83]. The process of PBH formation and its
condition have been investigated in a number of subsequent numerical works, the earliest
of which is probably Nadezhin et.al. (1978) [84]. They adopted a formulation similar
to the one developed by Misner and Sharp (1964) [85] (hereafter MS formulation), and
they used a time coordinate which is synchronized with the proper time of an observer
in an FRW universe at infinity. In their formulation the BH singularity appears at the
center after the BH horizon is formed, and so subsequent accretion of radiation cannot
be followed to determine the eventual mass of PBHs.

Niemeyer and Jedamzik (1999) [86] circumvented this problem by combining the MS
formulation and the one by Hernandez and Misner (1966) [87] (hereafter MSHM formu-
lation), which was first developed by Baumgarte, Shapiro and Teukolsky [88] to simulate
supernova collapse. See the Appendix A for more details.

One of the important and interesting aspects of PBH formation, investigated by
Niemeyer and Jedamzik, is a scaling relation of the mass of PBHs near the threshold:
MPBH = KMhor(δ − δc)γ, where K is a numerical coefficient of order unity, Mhor is the
horizon mass at the moment of the horizon crossing of the perturbation collapsing to a
PBH, δ is a parameter characterizing the amplitude of initial perturbation, for which the
density perturbation is often used, δc is its threshold, above which the perturbation col-
lapses to a PBH, and γ is a positive non-dimensional parameter. Niemeyer and Jedamzik

[78]. First note that only statistically rare high-σ peaks are relevant to PBH formation since the
probability of PBH formation has to be extremely rare to be consistent with observations, as
will be discussed later in more detail. In [78] these high-σ peaks are shown to tend to be more
spherically symmetric, at least under the assumption of Gaussian perturbations (see also Adler
(1981) [79]). Also, PBHs are formed shortly after the horizon crossing, since the Schwarzschild
radius of an overdensity is comparable to the Hubble radius, and so there may not be sufficient
time for non-sphericity to play an important role in PBH formation, though detailed analysis
on this matter would be merited and awaited.
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were the first to investigate this scaling relation in the context of PBHs in [86]†5.
In their work, the initial conditions are provided at around the moment of the horizon

crossing, and so Shibata and Sasaki (1999) [92] noted that the initial conditions in [86]
are ”inevitably contaminated by unrealistic decaying mode perturbations”, and their cri-
terion of PBH formation ”cannot be directly related to the initial condition at the end of
inflation”. On the other hand, Shibata and Sasaki provide initial conditions when per-
turbations are on super-horizon scales, with the help of the gradient expansion approach,
which is basically an expansion over the ratio of the Hubble radius to the length scale
of perturbation, which is smaller than unity when perturbations are on super-horizon
scales. They provide initial conditions adopting a class of initial perturbation profiles and
obtain PBH formation condition for that class. They use the constant-mean-curvature
slicing, which is expected to help avoid singularity without the need to switch slicings in
the middle of numerical integration. They present a formulation which can be applied to
general 3D cases, but they apply it to spherical symmetric cases.

Hawke and Stewart (2002) [93] report that the scaling relation of the mass of PBHs
levels off at around MPBH ∼ 10−4Mhor, which indicates that there exists a minimum mass
of PBHs for each scale of primordial perturbation. But it would be worthwhile to mention
that they provide initial conditions on sub-horizon scales.

Musco, Miller and Rezzolla (2005) [94] calculate the time evolution of initially super-
horizon, growing nonlinear perturbations, and obtain threshold values consistent with
those found by Shibata and Sasaki. Polnarev and Musco (2007) [81] develop a formalism
to provide initial conditions for simulation of PBH formation, using what they call the
quasi homogeneous solution. They introduce the squared ratio ϵ of the Hubble radius
to the scale of perturbation, which is small when the perturbation is on super-horizon
scales. They also introduce a curvature profile K(r) describing the initial perturbation
profile in the limit ϵ → 0. This function can be related to the curvature perturbation.
They then expand solutions in terms of ϵ, and obtained first order solution written in
terms of K(r). That is, the time evolution of nonlinear perturbations can be partially
followed from ϵ → 0 to some finite ϵ, which is sufficiently small so that the expansion
is valid. This expansion looks similar to the gradient expansion mentioned above, and
indeed the spirit is the same. They calculate the time evolution of initial curvature
profiles K(r), using their quasi-homogenious solution to solve for the time evolution while
perturbations are on super-horizon scales, and then using numerical simulation whose
initial conditions are prepared using the quasi-homogeneous solution at some moment
in time when the perturbation is on a super-horizon scale. They consider two classes of
profilesK(r), one is Gaussian, and another class which includes those which are closer to a
top-hat. They find that the PBH formation criterion in terms of the density perturbation

†5This scaling relation of the mass of PBHs is important also to calculate the mass spectrum of
PBHs. Since this scaling relation means that the mass of PBHs can be smaller than the horizon
mass, and as a result the mass spectrum becomes in principle broader than the assumption of
the monochromatic mass function at the horizon mass. This issue is investigated by Niemeyer
and Jedamzik (1997) [89] and by Yokoyama (1998) [90]. They find that a mass spectrum still has
a sharp peak at around the horizon mass, which is probably because the scaling relation matters
only when δ is extremely close to δc (see e.g. [91]), and the probability of such realizations is
relatively small, even though the probability density function (PDF) of δ is usually monotonically
decreasing.
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smoothed over the overdense region and evaluated at the moment of the horizon crossing
depends on the slope of K(r). That is, the PBH formation condition can not be fully
described by a single parameter describing the amplitude of the primordial perturbation,
and at least more than one parameters are required, to describe the PBH formation
condition more precisely. In Musco, Miller and Polnarev (2008) [95] and Musco and
Miller (2013) [91] the critical nature of PBH formation is investigated much in detail,
using the quasi homogenious solution describing growing perturbations. They do not find
the level-off of the scaling relation of the mass of PBHs, reported by Hawke and Stewart,
at least up to (δ − δc,MPBH) ∼ (10−10, 10−3Mhor).

The author and collaborators have also contributed to this endeavor of investigation
of PBH formation process in [82,83,96,97]. Though these do not constitute a part of this
dissertation, it would be worthwhile to take a brief look at these.

First, in [96], we generalized the quasi-homogeneous solution by [81] to include higher
order corrections in terms of the expansion parameter ϵ. We formally expand the solutions
and the equations in terms of ϵ, to obtain a system of recursive relations. By solving these,
one can obtain arbitrarily higher order solutions in terms of ϵ, which are expressed in
terms of the curvature profile K(r). The inclusion of higher-order corrections enables us
to calculate the time evolution of initial perturbations, specified in ϵ → 0 limit in terms
of K(r), up to a moment which is much closer to the moment of the horizon crossing
(ϵ = 1) of the perturbation under consideration. In [96], up to seventh order solutions are
obtained, to be contrasted with the first order solution presented in [81].

Since [81] has shown the importance of initial perturbations profiles in determining
PBH formation, and also various kinds of profiles of perturbations must have been gen-
erated in the early universe, it is desirable to investigate PBH formation condition which
is applicable to as many types of profiles as possible. Hence, armed with the higher order
solutions mentioned above, in Nakama, Harada, Polnarev and Yokoyama [82], we numer-
ically solve the evolution of spherically symmetric, strongly perturbed configurations to
clarify the criteria of PBH formation using an extremely wide class of curvature profiles
characterized by as many as five parameters, (in contrast to only two parameters used in
previous papers) which specify the curvature profiles not only at the central region but
also at the outer boundary of configurations. This includes initial perturbations profiles
investigated in [81, 92], and also includes those which have not been investigated. It is
shown that formation or non-formation of PBHs is determined essentially by only two
master parameters one of which can be presented as an integral of curvature over initial
configurations and the other is presented in terms of the position of the boundary and
the edge of the core.

It turns out that the function introduced in [82] enables us to investigate a phenomenon
we call the double formation of PBHs, investigated in Nakama (2014) [83]. Suppose there
exists a highly perturbed region which will collapse to form a PBH after horizon crossing,
and also that this region is superposed on a much larger region, which also collapses as it
enters the horizon later. Then, the collapse of the central smaller region at the time of the
horizon crossing should be followed by another collapse of the larger-scale perturbation
at the time of the horizon crossing of this larger-scale perturbation. The smaller PBH,
formed earlier, is involved in the second collapse leading to a larger PBH as the final state.
It is expected that the first collapse is not significantly affected by the presence of the
larger perturbation since it is still outside the horizon at the time of the crossing of the
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smaller perturbation†6. [83] was aimed at reporting a first direct numerical confirmation
of this phenomenon of double PBH formation†7.

In the double formation of PBHs, from the smaller PBH perspective, one is simply
swallowed by the larger PBH. But from the point of view of the larger PBH, the presence
of the smaller-scale perturbation leading to the smaller PBH corresponds to the existence
of a high-frequency mode (hereafter a HF mode), whose wavelength is much shorter than
the perturbed region under consideration. In numerical simulations of the formation of
PBHs, the presence of HF modes is not usually taken into account, implicitly assumed
to be smoothed out. In reality, HF modes should also exist unless PBHs result from
a spike in the primordial power spectrum with extremely small width, and thus affect
the formation of PBHs to some extent so investigating this issue is also important to
fully understand the dynamics of the PBH formation. This has also been numerically
investigated for the first time in [83] and we find that HF-modes facilitate the formation
of PBHs. These issues are briefly reviewed in the Appendix A, based on [83].

In Harada, Yoo, Nakama and Koga [97], the gradient expansion approach and quasi
homogeneous solution were manifestly shown to be equivalent. Also, the relationship
between the results obtained in the formulation by Shibata and Sasaki and by the MSHM
formulation is obtained.

2.2.4 Abundance of PBHs generated by collapse of
primordial perturbations

So far we have argued that PBHs form if the amplitude of primordial perturbations be-
comes order unity somewhere in the universe. Then, the question one might ask is, to
what extent that was possible in the early universe? To address this question one needs
statistical properties of primordial perturbations. Suppose that the almost-scale-invariant
power spectrum is valid up to the shortest scales, and that the number of e-folds during

†6Related to this issue, in [98], it is argued that one should focus on the density contrast on
comoving slices to correctly calculate PBH abundance, considering the existence of super-horizon
modes of the curvature perturbation.

†7This phenomenon is an analogue of situations where a dark matter halo, formed at some
time, becomes a part of a larger halo later, in the process of large-scale structure formation.
These situations are taken into account in Press-Schechter formalism [99]. This issue in the
context of PBH formation has also been noted in the literature as well, for example in [77]. But
it may be interesting to note the difference between the halo and PBH case. In the case of dark
matter halos, a given halo is destined to be involved in a larger halo and this process takes place
continuously; a halo forms at some time and in the next instant this halo becomes a part of
a slightly larger halo. This is because perturbations of the dark matter always grow and the
formation of a halo is determined solely by whether the amplitude of the density perturbation,
smoothed over each scale, exceeds the threshold value ∼ 1.68 (for the spherical case), irrespective
of the timing (in this case the notion of the horizon crossing does not play any role since the
halo formation takes place well inside the horizon). For the case of PBHs, the double-(or
potentially multiple-)formation does not always take place, and when it happens it happens
basically discretely (the next PBH formation, involving another smaller PBH or PBHs inside,
takes place after some finite time interval). This is because whether a perturbation collapses to
form a PBH has already been determined by the time of the horizon crossing, and if it does not
collapse, it disperses completely.
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inflation is sixty and the universe is instantaneously reheated at the end of the inflation
to be dominated by radiation. Let us consider the probability of PBH formation on
small scales. If we assume Gaussianity of primordial perturbations, then the perturbation
amplitude δ smoothed over some scale at the moment of the horizon crossing follows a
Gaussian distribution ∼ e−δ

2/2σ2
(here we neglect the prefactor). Noting the perturbed

region with δ ∼ 1 collapses to a PBH and setting σ = 10−5, extrapolating the observation-
ally determined value on large scales to small scales, the probability of PBH formation
is roughly estimated by ∼ e−1/2(10−5)2 ∼ 10−1010/2 log10 e, which seems hopelessly small for
PBHs to be formed. However, the universe is vast, and so we have a huge number of dices
to be rolled in the universe, which fact also needs to be taken into consideration before
jumping to a conclusion when we discuss potential observational consequences of PBHs.
Let us consider the shortest scale e−60×Gpc, for which we have the maximum number of
dices. There are roughly (e60)3 = 10180 log10 e boxes of this length in the current observable
universe. This is still enormously smaller than the inverse of the probability above, and
so there is no way for PBHs to leave observational traces, under the assumption of the
almost-scale-invariant Gaussian perturbations. If PBHs leave meaningful observational
traces, one needs either larger typical amplitude of small-scale primordial perturbations,
realized in previously mentioned [57] for instance, or non-Gaussian statistics of primordial
perturbations. In Chapter 3, a phenomenological inflationary model is discussed which
can predict non-Gaussian perturbations, leading to adjustable probability of PBH forma-
tion, and so this model may, for instance, explain the supermassive black holes observed
at high redshifts. Conclusive observational evidence for the existence of PBHs (both in
the present and in the past) has not been found, discussed in the next subsection, and this
non-existence of PBHs can be used to constrain properties of primordial perturbations,
as is discussed in the subsection after the next one.

2.2.5 Observational constraints on PBHs

If the probability of PBH formation in the early universe is sufficiently large, they can
leave a number of possible observational consequences. So far there has been no conclusive
evidence found for the existence (both in the present and in the past) of PBHs, and so
various observations have placed upper bounds on the abundance of PBHs on each mass
scale. These observational upper bounds were updated and summarized in [12]. A few of
observational constraints or implications are concisely described in the following.

If PBHs in the mass range 10−7M⊙ ≲ MPBH ≲ 10M⊙ exist, they cause detectable
gravitational microlensing, so they may explain (part of) Massive Compact Halo Objects
(MACHOs) observed in microlensing experiments. Note that MACHOs behave as cold
dark matter, and so they were a good candidate of dark matter, but the possibility
of MACHOs explaining the entire dark matter has already been excluded by MACHO
collaboration (1998) [100] and EROS collaboration (2006) [101].

As was shown by Hawking (1974) [102], BHs slowly lose their mass by emitting high
energy particles (Hawking radiation). PBHs with initial mass less than ∼ 1015g have
completed evaporation by now, and high energy particles emitted in the past or in the
present can also leave observational traces. For instance, PBHs with initial mass ∼ 1010g
complete evaporation at around the epoch of BBN, when the Hawking radiation from these
PBHs is most intense, and high energy particles emitted then affect processes of BBN,
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which affect the abundance of the light elements in the universe. That is, observations
which determine the abundance of the light elements can be used to place upper bounds
on the abundance of these small-mass PBHs.

PBHs have attracted attention partly because they may explain (part of or the entire)
dark matter. Up until recently, there has been a ”window” of mass scales of PBH dark
matter, 1020g-1026g [12], namely, PBHs in this mass range have been a viable candidate of
dark matter. In other words, in this mass range, the tightest upper bounds on PBHs had
been obtained by noting the abundance of PBHs can not exceed the current abundance
of dark matter. However, more recently, progress has been made in the observational
constraint of PBHs in this window. Several authors have claimed that the possibility of
PBHs being all the dark matter has been excluded based on microlensing [103] and PBH
capture by neutron stars [104, 105] and stars [106]. Therefore, the window for PBH dark
matter has been narrowed substantially. However, this is not the whole story. Several
authors have claimed that Hawking radiation stops when the mass of PBHs reaches the
Planck mass, with so called ”Planck mass relics” left, and these relics can also provide
a viable candidate of dark matter [107] (see also [12] and references therein). It would
be fair to say that the relative importance of Planck mass relics being dark matter has
been increased since the aforementioned window has been diminishing, and so further
exploration of this possibility is much awaited.

PBHs may also explain supermassive black holes (SMBHs). SMBHs of 109 − 1010M⊙
at high redshifts z ∼ 9 − 10 have been observed, but how such massive BHs have been
formed is still unknown. It is more difficult for astrophysical processes to explain the most
massive SMBHs found at highest redshifts observed, than the smaller SMBHs at lower
redshifts, and so it would be more important and interesting to investigate the possibility
of PBHs explaining those SMBHs at high redshifts. This issue will be explored in more
detail in Chapter 3.

2.2.6 Upper bounds on primordial small-scale power from PBHs

Here we revisit this issue briefly using simplified arguments and estimations. For more
detailed, rigorous discussions see e.g. Josan, Green, Malik (2009) [17] and Bugaev and
Klimai (2008) [16] (see also Peiris and Easther (2008) [108] and references therein). We
assume the amplitude of primordial perturbations is much larger than that on largest
observable scales mentioned above, only at around some particular small scale. Let us
consider density perturbations δ on comoving hypersurfaces smoothed over this scale when
this scale reenters the horizon, denote the root-mean-square (RMS) amplitude of δ by σ,
and assume that δ follows a Gaussian distribution. The question we address here is, how
small σ should be, in order not to overproduce PBHs to a level that is inconsistent with
observations, a few of which are mentioned in the previous subsection. The probability
of PBH formation is roughly given by the following:

β =

∫ ∞
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− δ2
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Since the probability of PBH formation has be be extremely rare, σ ≪ δth, and so the
second term here is negligible. In addition, the prefactor of the first term can be neglected,
to a first approximation. Then the above can be solved for δth/σ as δth/σ ∼

√
−2 log β.

This approximation can be easily improve by including the dropped prefactor, for which
this first approximation can be plugged in, with the result being†8

δth
σ
≃
√
−2(log β + log

√
−4π log β). (2.7)

This relation is plotted in Fig.2.1, which shows the dependence of δth/σ on β is quite week.
As is shown in Carr et al. [12], observational upper bounds on β are roughly 10−15−10−25,
depending on the mass of PBHs or the scale of perturbations collapsing to PBHs, so in
order not to overproduce PBHs, we require

δth
σ

≳ 10, σ2 ≲ (0.1δth)
2 ≃ 2× 10−3, (2.8)

where we have used the threshold value δth ≃ 0.4, obtained in [80,81]. Note that σ2 ∼ PR,
the comoving curvature perturbation, which is often used in the literature. The above in-
equality shows that peaks in density field collapsing to PBHs have to be rarer than ”ten-σ
peaks”, which are extremely rare, in order not to overproduce PBHs. So we can constrain
small-scale perturbations by PBHs, and this is basically the only way†9 to probe primor-
dial perturbation all the way down to shortest scales. This is because if perturbations on

†8 This result can also be derived with the help of the Lambert’s W function as follows. First,
(2.3) can be rewritten as

1

2πβ2
≃

δ2th
σ2

exp

(
δ2th
σ2

)
, (2.4)

which leads to
δ2th
σ2
≃W0

(
1

2πβ2

)
, (2.5)

with W0 denoting a branch of the Lambert’s W function definde by z = W (z)eW (z). The
properties of this function are well understood, and for instance W0(x) = log x− log log x+O(1)
for large x. This leads to

W0

(
1

2πβ2

)
≃ −2 log β − log 2π − log {−(2 log β + log 2π)}

= −2
(
log β + log

√
−4π log β {1 + (log 2π)/2 log β}

)
, (2.6)

the square root of which coincides with (2.7) aside from a tiny correction.
†9Strictly speaking there is another method to probe primordial perturbations on extremely

small scales. As mentioned earlier, perturbations to the metric or the energy momentum tensor
can be decomposed into scalar, vector and tensor components. In linear theory, they evolve
independently, but they mix at the level of the second-order in perturbations. For instance,
second-order scalar perturbations can generate tensor perturbations, which are sometimes called
induced gravitational waves. This means that any upper bounds on high frequency cosmological
GWs can be translated into upper bounds on primordial scalar perturbations, which issue is
discussed by Assadullahi and Wands [109]. This also indicates that observational upper bounds
on induced gravitational waves can be used to place upper bounds on the abundance of PBHs,
as is discussed by Saito and Yokoyama in 2009 [110] and in 2010 [111].
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these scales fail to collapse to PBHs, which lead to a wealth of phenomenology, they start
propagation due to pressure, and also they are exponentially damped due to the diffusion
damping, discussed later. This means the information about primordial perturbations on
extremely small scales is lost†10.

Figure 2.1: The plot of δth/σ as a function of β (eq.(2.7)).

2.3 CMB spectral distortion

Observations of CMB anisotropy have provided precious information about large-scale
primordial perturbations (see e.g. [8]), or, equivalently, about the early universe when
primordial perturbations are generated. There is another aspect of CMB, which is the
energy spectrum, and this provides complementary information about primordial pertur-
bations. Here we give an overview of CMB spectral distortion.

There are three important processes which determine the photon spectrum in the early
universe: Compton scattering (CS) e+ γ → e+ γ, bremsstrahlung (BS) e+ p→ e+ p+ γ
and double Compton scattering (DS) (or radiative scattering) e + γ → e + γ + γ. Note
that CS only redistributes photon in frequency, without changing the number of photons,
while BS and DS can change the number of photons. At sufficiently high redshifts, all of
these three processes are efficient, or the typical time scales of these processes are much
shorter than the cosmological time scale, and so the full thermodynamic equilibrium is

†10When they are damped due to diffusion damping, the energy stored in sound waves is
released, but if this happens before the BBN, there is no way to probe such energy release. If
it happens after the beginning of BBN, then it can be probed by acoustic reheating and CMB
spectral distortions. These issues will be discussed later.
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maintained (CS helps to maintain the kinetic equilibrium and BS and DS maintain the
chemical equilibrium). In these circumstances the photon spectrum is always described by
a Planck spectrum, which is fully specified by only one parameter, the temperature of the
universe T . Suppose some energy ∆ργ is injected into the photon bath (possible examples
of energy injection mechanisms are described below), then due to energy conservation the
energy density increases ργ → ργ + ∆ργ. Photons are redistributed in frequency due
to Compton scattering, to maintain a Planck spectrum with an increased temperature
T +∆T , with ∆T/T = ∆ργ/4ργ. Furthermore, the number of photons has increased, to
maintain the relation nγ ∝ (T + ∆T )3, which is possible thanks to DS and BS. That is,
to maintain a Planck spectrum the two conditions are necessary, which are readjustment
of number of photons (BS and DS), and redistribution of photons in frequency (CS). At
lower redshifts one or both of these conditions are not satisfied and hence CMB spectrum
deviates from a black body when some sort of energy release happens.

As the universe expands, the efficiencies of these processes decrease, partly because
the number density of relevant particles, photons, electrons and protons decreases. At
high redshifts 3 × 105 ≲ z [112]†11 DS is more important than BS, and DS becomes
inefficient at z ∼ zµ ≡ 2× 106, below which redshift any energy injection into the photon
bath leads to deviation of the photon spectrum from a Planck distribution. This is
because photons can no longer be produced efficiently by BS nor DS, namely, chemical
equilibrium can not be maintained. For zy ≡ 5 × 104 ≲ z ≲ zµ, Compton scattering is
still efficient, and in this case the photon spectrum becomes a Bose-Einstein distribution,
with an effective positive chemical potential µ. Energy injection during this redshift
range leads to positive µ, and so this epoch is often called µ−era†12. At lower redshifts
z ≲ zy, energy injection causes a global y-distortion, and so this epoch is sometimes
called ”y-era”. COBE/FIRAS measured the CMB photon spectrum, and it turned out
to be described by a Planck distribution quite well; COBE/FIRAS placed tight (2σ)
upper bounds µ and y distortions, µ ≲ 9 × 10−5 and y ≲ 1.5 × 10−5 [114]. Future
experiments are expected to constrain CMB distortions much tighter, or possibly detect
CMB distortions. The expected 2σ detection limits of the Primordial Inflation Explorer
(PIXIE) are µ ≃ 2 × 10−8 and y ≃ 4 × 10−9 [115]. Recently another satellite mission
PRISM was proposed, which has ten times the spectral sensitivity of PIXIE [116].

Constraints or future detection of CMB distortions carry vital information about pos-
sible physical processes involving energy injection in the early as well as late-time universe.
There are several possible mechanisms which inject energy into the photon bath, and these
mechanisms would be divided into two categories; astrophysical and cosmological mecha-
nisms. The former includes Sunyaev-Zel’dovich effect, i.e. energy of hot electrons in e.g.
clusters of galaxies, is transferred to lower-energy photons (inverse Compton scattering),

†11The reaction rates of CS, BS and DS are conveniently compared with the expansion rate in
e.g. [112].
†12In reality CMB spectral distortions caused by any mechanisms are spatially inhomogeneous,

namely, potentially observed CMB spectral distortions would be anisotropic, but the anisotropy
of CMB spectral distortions (caused by cosmological processes) would be much harder to mea-
sure, and so usually attention is paid to the homogeneous part of CMB spectral distortions,
when CMB distortions of cosmological origins are discussed. However, it would worthwhile to
mention that anisotropy of CMB spectral distortions themselves also contain rich information,
such as primordial non-Gaussianity of perturbations [113].
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which distorts the energy spectrum of CMB photons (see e.g. [117]). The latter includes
diffusion damping of primordial perturbations, which is one of the most plausible cos-
mological mechanisms since primordial perturbations on small scales must have existed,
though the amplitude of them is unknown. We focus on this aspect of CMB spectral
distortion in this dissertation.

Other possible energy injection mechanisms include (see. e.g. [118] and references
therein) reionization and structure formation, evaporation of PBHs, accretion disks around
PBHs, dissipation of perturbations induced by cosmic strings, energy injection due to
shrinking cosmic string loops (this was recently discussed in Anthonisen et al. (2015)
[119]), dissipation of small-scale magnetic fields, annihilation or decay of particles, and
so all of these mechanisms can be probed by CMB spectral distortion. Potential distinc-
tion of several mechanisms of energy is discussed in [118]. During radiation domination,
density perturbations δr of radiation on sub-horizon scales are characterized by two im-
portant physical processes; one is acoustic oscillation, or sound wave propagation driven
by pressure forces of radiation, and sound waves carry fractional energy density of ∼ δ2r .
Secondly, δr on sufficiently small scales at each epoch is damped due to Silk damping or
diffusion damping, simply due to the diffusion of (basically) photons†13. The diffusion
scales, below which scales perturbations are damped, can be roughly given by the mean
free path of photons, in the presence of free electrons. Due to diffusion damping, the en-
ergy originally stored in sound waves is transferred into the background universe. Energy
injection due to diffusion damping happening during the µ−era and y−era causes µ and
y distortions. A Fourier mode is damped when the wavelength of that mode becomes
comparable to the diffusion scale, determined by photon diffusion. Modes with comoving
wavenumber 50Mpc−1 ≲ k ≲ 104Mpc−1 dissipate during the µ−era (see e.g. [121]), so
observational upper bounds on µ can be translated into upper bounds on the amplitude
of these modes, while longer-wavelength modes cause y distortion and so these can be in
principle constrained by y distortion. The magnitude of these distortions is roughly esti-
mated by the amount of the fractional energy injection, and this amount can be roughly
estimated by the energy stored in sound waves, ∼ δ2r . That is, µ, y ∼ δ2r , and so the
COBE/FIRAS upper bounds of µ, y ≲ 10−5 are roughly translated into upper bounds on
δ2r as δ2r ∼ Pζ ≲ 10−5 on corresponding scales which dissipate during the µ− or y−era,
which provide precious information about the early universe. See [121] for more detailed
discussions, where current/future constraints on several types of the power spectrum of
the primordial curvature perturbation are presented, which can be translated into con-
straints on inflationary models which predict small-scale power larger than the standard
almost-scale-invariant perturbation. Energy injection due to diffusion damping happen-
ing before the µ−era causes only the global (slight) rise ∆T ∼ δ2r of the temperature of

†13To be more precise, the diffusion scale at each epoch is determined by [120]

”the particle that is most weakly interacting, yet still kinetically coupled and as
abundant as radiation”.

The diffusion scale is determined by photons only for z ≲ 107, and it is determined by other
particles such as neutrinos at higher redshifts. That is, as long as we are interested in dissipation
of acoustic waves for z ≲ 107, which matters for CMB spectral distortions, we can assume the
diffusion scale at each moment is determined by photons. So in the text we focus only on
diffusion due to photons.
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the universe, and this has not received much attention for a long time since cosmological
CMB distortions have been intensively studied by e.g. Sunyaev and Zel’dovich (1970) [20].
More recently however, small-scale perturbations which damp before the µ−era are also
found to be constrained [43, 120]. This is discussed in Chapter 4 in detail, but it would
be worthwhile to give a brief sketch here about this issue.

In [43] we argued that the slight global rise of the temperature ∆T ∼ δ2r (termed
”acoustic reheating”), causes the fractional change of the baryon-to-photon ratio, ∆η/η ∼
−δ2r . On the other hand, since η at BBN and photon decoupling have been observation-
ally inferred by the abundance of light elements of the universe and CMB anisotropy,
if η changes considerably between these events, it contradicts with these observations.
Roughly we should require |∆η/η| ≲ O(0.1), and so we obtain δ2r ≲ O(0.1). The con-
straints from acoustic reheating will be discussed in Chapter 4 in more detail.

2.4 Dark matter mini-halos as a probe of

primordial power on small scales

Perturbations in DM grow after the horizon reentry, slowly (or logarithmically) during
radiation domination, and more rapidly (in proportion to the scale factor) during matter
domination. Overdense regions can be locally regarded as closed universes, and the ex-
pansion of these regions becomes slower and slower. At some moment in time, this region
stops expanding and starts to contract and finally collapses, at which moment the ampli-
tude estimated by extrapolating linear theory reaches δ ≃ 1.7, according to the so-called
spherical collapse model.

Shorter wavelength modes reenter the horizon earlier, and hence they have more time
to grow during radiation domination. That is, small-scale perturbations become nonlinear
earlier, and smallest halos are formed first, and later they become part of even larger halos.

If we assume so-called weakly interacting massive particles (WIMPs) as DM, the min-
imum mass of halos is determined by the free streaming of DM, erasing DM perturbations
below the free streaming scale, and also by the horizon scale at the moment of the ki-
netic decoupling, before which modes inside the horizon are damped due to the acoustic
oscillation (see e.g. [122]). The minimums mass is determined by the larger of the scales
determined by these mechanisms, and this depends on the temperature at the kinetic
decoupling and the free streaming scale. Typically, the minimum mass is roughly the
same as the earth mass (∼ 10−6M⊙). These smallest halos are formed at z ∼ O(10), if
we assume the standard almost scale-invariant power spectrum.

Recently, dark matter minihalos have attracted attention as a method to probe pri-
mordial power on small scales. Riccoti and Gould (2009) [22] pointed out that primordial
perturbations which are smaller than O(1), but larger than ∼ 10−3, do not collapse to
form PBHs at horizon crossing, but later collapse in the early universe (z ∼ 103), much
earlier than the formation of DM halos from the standard almost scale-invariant pertur-
bations, and they called these halos formed at high redshifts as ultracompact minihalos
(UCMHs). They calculated light curves of microlensing events caused by these UCMHs,
and concluded that these can be distinguished from those caused by point-like objects.
That is, they proposed UCMHs as a novel type of the so-called massive compact halo
objects (MACHOs), and these are far more extended than the conventional point-like
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MACHOs.
If we assume the standard almost scale-invariant Gaussian perturbations, smallest

halos are formed at z ∼ O(10), and the probability of halos formed at z ∼ 1000 would
be vanishingly small. However, if the typical amplitude of primordial perturbations is
much larger than the standard value δ ∼ 10−5, say, δ ∼ 10−3, then UCMHs are formed
abundantly at high redshifts (though the probability of PBH formation would be still
vanishingly small). If these UCMHs survive the processes of relatively recent standard
structure formation, they would be observed as their gravitational or dynamical effects, or
annihilation signals from these UCMHs. In other words, any constraints on UCMHs can
be translated into constraints on primordial power on small scales, just as observational
upper bounds on PBHs do. For instance, since Ricotti and Gould have pointed out
that UCMHs can cause microlensing, we can immediately place upper bounds on them
through microlensing experiments, to constrain primordial power on some range of scales,
the corresponding DM mass of which causes observable microlensing, though none has
explicitly obtained such bounds yet as far as the author is aware.

Annihilation signals from UCMHs also provide a method to probe UCMHs. The anni-
hilation rate of DM is determined by the square of the density, and as a result clumpiness
of DM enhances annihilation signals. To precisely calculate annihilation signals from
UCMHs, DM profile of them is needed. Recent works of UCMHs (e.g. [23]) adopt what
is known as the secondary infall model (see e.g. Bertschinger (1985) [123]). In [123], a
spherically symmetric initial overdensity in the Einstein de-Sitter universe is considered
and its subsequent time evolution is analytically analyzed. When the amplitude of this
initial overdensity becomes nonlinear, this initial overdensity stops expanding and starts
to contract, or turn around, and finally to form a virialized object. If we consider some
spherical shell whose radius is sufficiently larger than the initial overdensity, the density
perturbation averaged inside this shell would be still in the linear regime, and so this shell
is still expanding, but the expansion rate is smaller than the average in the universe, and
it gets smaller and smaller as the density perturbation smoothed inside the shell grows.
At some moment in time, the smoothed density perturbation inside this shell even be-
comes nonlinear, and this shell also collapses (secondary infall), and this process repeats.
Bertschinger analyzed this process using self-similar solutions, and found that resultant
profiles of collapsed objects are described by ρ ∝ r−9/4 for a collisionless gas.

Constraints on UCMHs or primordial power on small scales obtained from gamma-rays
from DM constituting UCMHs have been investigated by Bringmann, Scott and Akrami
(2012) [23] in detail. They assume the profile is described by the secondary infall model
ρ ∝ r−9/4 outside some radius rc, within which the density is assumed to be constant.
They consider two physical mechanisms determining rc, one of which is the breakdown of
radial infall near the center; the profile ρ ∝ r−9/4 was obtained under the assumption of
spherical symmetry, or perfectly radial infall of matter, but in reality infalling matter has
non-zero angular momentum, so ρ ∝ r−9/4 would be naturally violated near the center.
Another mechanism which potentially determines rc is annihilation of DM; if one believes
ρ ∝ r−9/4 is correct up to the center, ρ becomes infinitely large, and hence annihilation
becomes infinitely efficient there, which would result in the decrease in the density near
the center. They determine rc so that the time scale of the annihilation at the central
core is comparable to the cosmological time scale. They assume a pair of WIMPs always
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annihilate into bb̄, with ⟨σv⟩ = 3 × 10−26cm3s−1†14, as well as mχ = 1TeV. Under these
assumptions, they find annihilation is more important than the breakdown of radial infall
in determining rc. They constrain UCMHs as galactic or extra-galactic point sources,
assuming no unassociated point sources reported by Fermi-LAT represent UCMHs. They
also constrain UCMHs from diffuse components of gamma-rays observed by Fermi-LAT.

They estimate the probability of a region of comoving size R later collapsing to UCMHs
by the amplitude of perturbations of DM δχ as follows:

β(R) =
1√

2πσχ,H(R)

∫ δmax
χ

δmin
χ

exp

(
−

δ2χ
2σχ,H(R)2

)
dδχ. (2.9)

Perturbations larger than δmin
χ later collapse to form UCMHs, while those larger than δmax

χ

collapse to form PBHs shortly after the horizon reentry, and δmax
χ is something like 1/3

or 0.5, but this values is not so important in estimating the abundance of UCMHs, which
is mostly determined by δχ ≃ δmin

χ . One may define UCMHs as minihalos which collapse
before some redshift zc, say zc ∼ 1000, before which the secondary infall model describes
UCMH formation relatively well, and in this case δmin

χ ∼ 10−3. Bringmann et al. calculate
δmin
χ more rigorously based on the linear perturbation theory and the spherical collapse
model, as a function of k and zc. δ

min
χ decreases as k increases or zc decreases, since in

these cases perturbations have more time to grow after horizon reentry. They refer to
zc = 1000 as their canonical value. They relate the mass variance of DM perturbations
in the comoving gauge at the horizon reentry to the dimensionless power spectrum PR of
the curvature perturbation as

σχ,H(R)
2 =

1

9

∫ ∞

0

x3W 2
TH(x)PR(x/R)T

2
χ(x/
√
3)dx, (2.10)

where x = kR, WTH(x) is the Fourier transformed top-hat window function, and the
transfer function Tχ is given by

Tχ(θ) =
6

θ2

[
ln θ + γE −

1

2
− Ci(θ) +

1

2
j0(θ)

]
, (2.11)

where γE is the Euler-Mascheroni constant, Ci is the cosine integral function, and j0 is the
spherical Bessel function of the first kind. The above integration is mostly determined
by the parts with x ∼ 1, or k ∼ kR = 1/R, namely, this variance reflects the power
spectrum of the curvature perturbation at around this wavenumber. They assume local
scale invariance at around kR, and find σ2

χ,H(R)/PR(kR) = 0.907. Then, constraints
on UCMHs of each mass scale can be translated into constraints on σ2

χ,H(R), with R
corresponding to that mass of UCMHs, or equivalently into constraints on PR(k = kR).
They report upper bounds on PR(k) from Fermi-Lat observations as PR(k) ≲ 10−7−10−6

in 10Mpc−1 < k < 107Mpc−1, with constraints tighter on larger k due to more time for
growth of perturbations, but the dependence on k is only logarithmic, reflecting the

†14This value of ⟨σv⟩ is the so-called ”canonical value”, which can explain the current abun-
dance of DM, and also which can be naturally obtained assuming the typical strength of
electroweak interactions. This coincidence is sometimes referred to as ”WIMP miracle” (see
e.g. [124]).
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logarithmic growth during radiation domination†15. UCMH constraints on the power
spectrum are compared with other constraints, such as CMB, LSS and PBHs in their
Fig.6.

It would be natural to assume that DM particles annihilate into standard model par-
ticles other than photons as well, and so UCMHs may be constrained by observations
other than gamma-rays. Yang, Yang and Zong (2013) [125] use potential neutrino signals
from UCMHs, and constrain them by demanding that the neutrino flux from UCMHs on
earth be less than the flux of atmospheric neutrinos.

The properties of DM, such as annihilation modes, the annihilation cross section, and
the mass of DM need to be assumed to place upper bounds on primordial power from
annihilation signals, such gamma-rays or neutrinos. If DM properties are revealed in
future, with moderate annihilation cross section, then these can be used as reliable upper
bounds on primordial power, providing viable information about the early universe, but,
needless to say, if they do not annihilate much these constraints are useless. Hence, at this
stage one may regard these as joint constraints on the properties of DM, and primordial
power.

In this sense, constrains on UCMHs from their dynamical or gravitational effects may
be more promising, which are expected to be less sensitive to the properties of DM, one of
which is gravitational microlensing caused by UCMHs mentioned above. Another example
is astrometric microlensing caused by UCMHs, which is change of the apparent position of
a star due to the variation of the gravitational field when a UCMH transpasses between
the observer and the star. Li, Erickcek and Law (2012) [126] forecast constraints on
primordial power assuming the Gaia mission [127]. They adopt the model of DM profiles
in UCMHs similar to that used in [23], namely, the combination of the secondary infall
model ρ ∝ r−9/4 and the constant core determined by the angular momentum of infalling
DM or annihilation, and so the inner profile is affected by DM annihilation. Since the
magnitude of astrometric microlensing turns out to be sensitive to the inner profile, their
predicted constraints on primordial power also depend on DM properties, even though
they discuss gravitational effects of UCMHs.

Most recently, Clark, Lewis and Scott (2015) [128, 129] have discussed constraints
on UCMHs and primordial power by their effects on pulsar timing observations. Their
constraints are probably less dependent on DM properties or DM profiles inside UCMHs
than those obtained previously, and hence the reported upper bounds seem to be more
robust.

†15They also obtained upper bounds from the effects of gamma-rays from UCMHs on reion-
ization of the universe, and these are roughly one order of magnitude weaker than constraints
from Fermi-LAT.
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Chapter 3

Primordial black holes as potential
seeds of supermassive black holes
at high redshifts

Observations have revealed the existence of supermassive black holes (SMBHs) of about
109M⊙ at high redshifts z = 6 ∼ 7; so far, about 40 quasars, which are thought to
be SMBHs blazing by accreting the surrounding gas, have been discovered [24–36]. In
particular, a quasar suggesting an SMBH as massive as twelve billion-solar-mass was
discovered recently [37]. Up to the present time, there is no established astrophysical
explanation†1 of why such massive black holes could have already existed in such high

†1There are several possible explanations of SMBHs at high redshifts, one of which is the so-
called direct collapse model. According to this model, massive BHs ∼ 105M⊙ are first formed as
a result of collapse of supermassive stars of ∼ 105M⊙ (see e.g. a recent work [130] and references
therein).

Another candidate for the SMBHs at high redshifts is the remnants of Population III stars
of 102−3M⊙. However, this scenario may be in tension with the standard ΛCDM cosmology,
due to the lack of sufficient time for these seeds to grow to become SMBHs of 109 − 1010M⊙ at
high redshifts, which we briefly review following Bramberger et al. [131]. If a BH is accreting
at a fraction λ of the Eddington rate, its emitted luminosity is L = λMc2/t∗ = ϵṀaccc

2, where
t∗ ≃ 4.5 × 108yrs is the Eddington time, ϵ is the accretion efficiency and Ṁacc is the matter
falling onto the black hole. The growth rate of the BH Ṁ is thus given by Ṁ = (1 − ϵ)Ṁacc,
since a fraction ϵ of the accreted mass is converted into energy and thus escapes the BH. These
lead to the following expression for the growth from Mi to Mf as

Mf = Mi exp

(
1− ϵ

ϵ

∆t

t∗
λ

)
. (3.1)

They adopt (ϵ, λ) = (0.1, 1), and from the above formula find that the seeds of 102 − 103M⊙
have to be present already at z ≳ 40 to explain a recently discovered SMBH of 1.2 × 1012M⊙
at z = 6.3, which is noted to be unlikely under the assumption of Gaussian fluctuations in the
standard ΛCDM cosmology. They estimated the mass of nonlinear objects whose comoving
separation is Mpc, which roughly corresponds to that between galaxies, and this mass turns out
to be much smaller than 102M⊙ at z ≳ 20.

Note that above the Eddington rate is kept throughout the growth (λ = 1), and super-
Eddington accretion may ameliorate the tension. In addition, if early structure formation is
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redshifts when the age of the universe is less than a billion years (see e. g. [134–138] for
reviews of SMBHs in the high-redshift universe).

In light of this situation, it is intriguing to consider a possibility that the observed
SMBHs are primordial black holes (PBHs) which formed in the very early universe when
the universe was still dominated by radiation [139], as is discussed in Chapter 2 in more
detail. If some region has perturbation of order of unity, this region undergoes gravi-
tational collapse shortly after the size of the region becomes comparable to the Hubble
horizon [14, 15]. Typically, the mass of the resultant black hole is roughly equal to the
horizon mass at the formation time (see (2.1)). Noting the formation time of PBHs can be
related to the (comoving) scale of the perturbations collapsing to PBHs, the mass of PBHs
can also be related to the (comoving) scale of the perturbations (see (2.2)). At first sight,
the desired amount of PBHs of the desired mass, as large as necessary to grow to even
1010M⊙ by z ∼ 6, 7, can be formed by just preparing moderate probability of primordial
perturbations of order unity at the corresponding (comoving) scale. Such perturbations
can be indeed realized in some inflation models [38, 57–59, 61–74]. Note that the suffi-
cient formation of such black holes does not happen in the standard cosmology in which
primordial perturbations are almost scale-invariant and Gaussian [140], as is discussed in
Chapter 2. Although the approximate scale invariance and Gaussianity of the primordial
perturbation are observationally confirmed at large scales, namely the scales relevant to
observations of the cosmic microwave background (CMB) (for the recent Planck results,
see [141, 142]) or large-scale structures of the universe, these properties could be largely
violated on much shorter scales, including the scales corresponding to the PBHs relevant
to the seeds of SMBHs considered in this Chapter.

However, simply enhancing the amplitude of the primordial perturbation at the PBH
scale to the value that yields sufficient amount of SMBHs is already excluded from the
observations of the energy spectrum of CMB photons [39,121,140,143]. To see this let us
assume Gaussianity of the primordial perturbation, and note that the requirement that
produced PBHs are sufficient enough to explain the abundance of the observed SMBHs
fixes the typical amplitude, or the root-mean-square (RMS) amplitude, of the perturba-
tions [140]. This amplitude is fairly greater than the upper limit set by non-detection of
the distortion of the CMB spectrum by COBE [114], which severely restricts the validity
of the scenario of PBHs exceeding ∼ 104− 105M⊙ as the origin of the SMBHs [39]†2. The
root of this constraint is the fact that requiring the formation of sufficient amount of PBHs
inevitably leads to large inhomogeneities everywhere in the universe. More precisely, even
though the site of PBH formation, where primordial perturbation is the order of unity,
is rare, a Gaussian (or similar) probability density function (PDF) implies perturbations
everywhere else take large enough amplitude, whose diffusion damping distorts the en-
ergy spectrum of CMB photons from a perfect Planck distribution (CMB distortion) at a
level excluded by COBE measurement (see the left panel of Fig. 3.1). See Chapter 2 for
more details about CMB distortion. There is possibility that PBHs whose initial mass is
∼ 104 − 105M⊙ grow to explain SMBHs of 109 − 1010M⊙ at high redshifts, as is argued

enhanced, one can ameliorate this tension. They resorted to cosmic string loops in [131], and to
primordial non-Gaussianity in [132]. A blue-tilted primordial power spectrum of scalar pertur-
bations may also help [133].

†2Smaller PBHs are also potentially excluded by compact dark matter halos [39] (or UCMHs,
briefly discussed in Chapter 2) and acoustic reheating [43,120], discussed in Chapter 4.
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in [38], but whether PBHs can grow to these masses is uncertain. One of the benefits of
resorting to PBHs is that one can create sufficiently large black holes in the early universe
due to collapse of primordial perturbations, but this benefit seems to have been partially
lost due to CMB µ−distortion. Also, future experiments may reveal even more massive
SMBHs at higher redshifts.

In this light, we propose a novel inflationary scenario in which density perturbations
are generated yielding PBHs larger than 104 − 105M⊙ as the origin of SMBHs while
evading the constraint from CMB distortion mentioned above. The idea is to assume that
the PDF of primordial perturbation smoothed on some small scale, corresponding to the
scale of the seeds of SMBHs, is basically bimodal and has two sharp peaks of different
heights as shown in the right panel of Fig. 3.1. We require that one spike is located at
zero with small enough variance (for instance, the variance simply extrapolated from the
observations of perturbations on large scales) and the other at amplitude of order unity
from which PBHs can be formed. The height of the spike for PBHs must be much smaller
than the other so that in most regions of the Universe primordial perturbations are small
and sites of PBH formation are rare, as is required by the observations [24]. The PDF is
negligibly small between the spikes, which ensures that there is virtually no place where
primordial perturbation is smaller than that for PBH formation but is considerably larger
than the upper limit set by the CMB distortion. In this way, the constraint from the
CMB distortion can be satisfied while producing sufficient amount of PBHs.

After revisiting CMB distortion constraints on PBHs in the next section, we will
discuss a mechanism of how such a non-Gaussian PDF can be realized in the framework
of inflation. We also provide two simple toy models in which such a mechanism is realized.
We focus on the most massive SMBHs (109− 1010M⊙) observed high redshifts, since it is
more difficult for astrophysical processes to explain these. In the last section, we discuss
consequences of our scenario and how it can be tested and distinguished from astrophysical
explanations.

As already mentioned, simply preparing Gaussian perturbations whose dispersion is
sufficiently large to generate PBHs as the seeds of SMBHs is inconsistent with constraints
of CMB distortion. One may first try to evade this by a monotonically decreasing PDF
whose tail is considerably enhanced than a Gaussian one, different from a bimodal PDF
discussed in this Chapter. In the Appendix B, this possibility is briefly explored, by
calculating CMB distortion for a class of phenomenological models of PDFs. It turns out
that it may work (if such a PDF can be indeed realized in some inflationary model, which
we do not discuss any further here,) but the PDF has to be tremendously distorted from
a Gaussian PDF.

This Chapter is based on a part of [39] and on a work in preparation [40], and is
organized as follows: In §3.1, constraints on the abundance of PBHs obtained from CMB
µ-distortion are revisited. Then in §3.2 we discuss inflationary models, in which PBHs
can be produced whose mass and abundance are adjustable to explain SMBHs observed
at high redshifts, and we summarize and conclude in §3.3.
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Figure 3.1: Left figure: The probability density function P (ζ) of the curvature perturba-
tion ζ which is Gaussian or Gaussian-like. In this case, significant CMB distortion which is
incompatible with the COBE/FIRAS measurement is induced if we require PBHs explain
the SMBHs. Right figure: An illustration of the probability density function P (ζ) realized
in the model proposed in this Chapter. In this case, only negligible CMB distortion is
induced even if we require PBHs explain the SMBHs.

3.1 Constraints on the abundance of PBHs obtained

from CMB µ-distortion

Constraints on the abundance of PBHs obtained from CMB distortions were investigated
in 1993 and 1994 by Carr et al. [140, 143]. Also in Chluba et al. (2012) [121] (here after
CEB) the upper bound on the amplitude of the primordial power spectrum from CMB
distortions for the locally scale-invariant spectrum with a Gaussian filter was compared
with PBH upper bound, and the former was shown to be a few orders of magnitude
tighter than the PBH bound around 10Mpc−1 ≲ k ≲ 104Mpc−1. In this section, follow-
ing CEB, we briefly revisit this issue by considering δ-function shape of the primordial
power spectrum†3. In CEB, the primordial power spectrum of curvature perturbation was
decomposed as follows;

Pζ = P st
ζ (k) + ∆Pζ(k), (3.2)

where the first term represents the standard almost scale-invariant power spectrum, which
has been determined by CMB experiments accurately, with the second term denoting
the deviation from this standard spectrum. Let us consider the δ-function like ∆Pζ(k)

†3In typical models (e.g., [38]) predicting the formation of PBHs as the seeds of SMBHs, the
power spectrum of curvature perturbation has a sharp peak, the height of which exceeds O(0.01).
The width of the peak should be finite but it cannot be arbitrarily wide to avoid overproduction
of PBHs of masses irrelevant to the seeds of SMBHs. In addition, if we take into account the
effects of the finite width of the spectrum, it leads to more production of µ distortion since in this
case more than one k-modes contribute to µ distortion. For example, if we consider a step-like
power spectrum ∆Pζ(k) = 2π2Aζk

−3(1Mpc−1 < k), 0(otherwise), the resultant µ distortion is
µ ∼ 11Aζ (see CEB). Therefore, for our purpose here it is sufficient to restrict our attention to
a delta-function like power spectrum.
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parameterized as follows:

∆Pζ(k) = 2π2Aζk
−2δ(k − k∗). (3.3)

They found that the µ distortion originating from a single k-mode is approximated by

µ ∼ 2.2Aζ

exp(− k̂∗
5400

)
− exp

−[ k̂∗
31.6

]2 , (3.4)

where k∗ = k̂∗Mpc−1. The COBE/FIRAS experiment provides the 2σ upper limit as
µ ≲ 9 × 10−5 [114]. Noting that Aζ ≳ O(0.01) is necessary to produce PBHs to an

observationally relevant level [17], we can plot µ as a function of k̂∗. Fig. 3.2 shows
the plot of µ with Aζ fixed to 0.02. We find that any spike with Aζ ≳ 0.02 in a range

1 ≲ k̂∗ ≲ 3 × 104 produces µ larger than the COBE/FIRAS upper bound. Therefore,
PBHs formed from the density perturbation in the above k̂∗ range are excluded. This
conclusion is insensitive to the change of Aζ (as long as it is O(0.01)), as is evident from
the figure. Since k∗ is related to the PBH mass (see Eq. (2.2)), the above k̂∗ range can be
translated into the PBH mass range as (from (2.2)) 2×104 M⊙ ≲MPBH ≲ 2×1013 M⊙

†4.
PBHs in this mass range are basically ruled out, at least for Gaussian perturbations (see
the subsequent sections and the Appendix B for non-Gaussian cases)†5.

3.2 Supermassive black holes formed from

inflationary perturbations

3.2.1 Basic idea

Our basic idea is the following. Let us first recall that our observable universe consists of
many small patches which become causally disconnected during inflation. For instance,
if we consider a patch of comoving wavenumber k, it becomes decoupled from the other
patches of the same size at a time when k = aH. After this time, each patch evolves
independently as if they themselves were an individual Friedmann-Lemaitre-Robertson-
Walker (FLRW) universe. If the inflation is caused by a slowly rolling single field, only
adiabatic perturbation is generated. In this case, each patch follows the same trajectory
in field space and the difference between the patches is just the difference of time when
the field value takes a particular value. On the other hand, if the inflation is caused

†4Density perturbations corresponding to larger PBH masses generate y-type distortion which
is also constrained by the COBE/FIRAS experiment. From the view point of the observed
supermassive black holes, such PBHs are too heavy and we do not consider this case.

†5This point was also noted in [38], but they concluded PBHs with MPBH > 105M⊙ are
severely constrained, and this upper bound of mass is slightly larger than the one we obtain
here (MPBH ≃ 2×104M⊙). This is because, in [38], the upper bound was obtained by assuming
only the perturbation modes which dissipate during the µ−era are severely constrained, but
strictly speaking the transition to the µ−era is continuous, and modes which dissipate before
the onset of µ−era can also cause µ−distortion and hence be constrained, though weakly, and
this effect is taken into account in our calculation based on CEB.
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Figure 3.2: The µ distortion generated from a single k-mode, with Aζ = 0.02. The
horizontal line corresponds to the 2σ upper limit provided by COBE/FIRAS.

by multiple fields, isocurvature perturbation as well as adiabatic one is also generated.
Because of the presence of the isocurvature mode, each patch follows different trajectories
in field space in general. In the following, we assume multiple field inflation.

Now, suppose that there are essentially only two different trajectories that each patch
can follow (see the left panel of Fig. 3.3). Let us label each trajectory by A and B, respec-
tively (see the right panel of Fig. 3.3). In general, the patches corresponding to A and
the patches corresponding to B, after causally disconnected, expand by different amount,
namely, NA ̸= NB (NA(NB) is the number of e-folds in the patches A(B)). According
to the δN formalism [51, 144–148], NA −NB is equal to the curvature perturbation ζ on
constant density hypersurfaces. See the Appendix C for a brief review of δN formalism.

It is known that if the region of interest has ζ exceeding ζc ≃ 1, such a region undergoes
gravitational collapse to form a black hole when it reenters the Hubble horizon [15]. The
threshold value ζc depends on perturbation profile and there is a lot of literature in which
the determination of ζc as well as its dependence on the perturbation profile has been
investigated (see Chapter 2 for more details). However, precise knowledge of ζc is not
crucial for our discussions here and so we simply take ζc = 1.

Let us assume that most of the patches followed the trajectory A and the trajectory B
is followed by a small number of patches and that NB −NA > ζc = 1. Then the patches
corresponding to B distribute sparsely and each is surrounded by patches corresponding
to A and each patch B has positive curvature perturbation NB−NA. In other words, large
curvature perturbation of ζ > ζc is generated only in the patches B and no substantial
curvature perturbation is generated by the present mechanism in the patches A occupying
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Figure 3.3: Left figure: This shows the separate universe picture in which patch A and
B evolve independently as if each were an FLRW Universe. Right figure: Trajectories in
field space corresponding to patch A and B, respectively.

most part of the universe. Because of our assumption that NB − NA > ζc, each patch
B turns into a BH upon horizon reentry. Noting that the mass of the resultant BH is
directly related to the comoving size of the patch B, the time when the trajectories A and
B start to deviate determines the BH mass. In this Chapter we consider two inflation
models which can realize these situations with appropriately chosen model parameters.

Denoting by β the probability that a region whose size is the same as that of patches
B collapses to a BH, β is given by

β =
number of patches B

number of patches A
. (3.5)

The rareness of the patches B means β ≪ 1, which is required by observations as we will
show below.

Observations of SMBHs at high redshifts suggest that one SMBH of MBH ∼ 1010M⊙
exists roughly in every comoving volume of 1 Gpc3 [24]. Taking these as fiducial, we find
the present energy density of these SMBHs normalized by the present critical density ρc,
denoted by ΩBH,0, from the observations is given by

ΩBH,0 =
MBH

ρcV
≈ 7× 10−11

(
MBH

1010M⊙

)(
V

Gpc3

)−1

. (3.6)

In order to relate β with ΩBH,0, let us note that the mass of a BH that formed at a redshift
z is given by

MBH ≃
1

2GH(z)
, (3.7)

where H(z) is the Hubble parameter at z. From this equation, we findMBH = 6×1017 M⊙
if it is formed at the matter-radiation equality z = zeq. Hence BHs with MBH≲1010M⊙,
which we are interested in, formed in the radiation-dominated epoch. Using H(z) =
H0(1 + z)2

√
Ωr,0, valid for z > zeq, we have

1 + z = 2× 107
(

MBH

1010M⊙

)−1/2

. (3.8)
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Then, using a relation ΩBH,0 = βΩr,0(1 + z), we have

β = 4× 10−14

(
MBH

1010M⊙

)3/2(
V

Gpc3

)−1

. (3.9)

Thus, observations require β ≪ 1. Note that the initial mass of PBHs does not have to
be ∼ 1010M⊙ to explain the observed SMBHs at high redshifts, since the mass of PBHs
should grow to some extent, mainly after the matter-radiation equality since the growth
during radiation domination is known to be quite limited. The accurate description of the
growth of mass on a cosmological time scale would be a formidable task, which is beyond
the scope of this work. However, we can adjust the typical mass of PBHs formed in our
models simply by changing ϕBH introduced later, so this issue won’t affect the feasibility of
our model. Also, it would be more natural to expect that only a fraction of SMBHs shine
to be observed at high redshifts and so the total number density of SMBHs, including
those which are too dim to be observed, would be larger than ∼ 1Gpc−3 mentioned
above. However, the uncertainty of β stemming from these two issues does not affect
the feasibility of our model, since β turns out to only affect χ̄ estimated later in (3.28)
slightly.

3.2.2 Simple model 1: a hill on top of ϕ2 potential

In this subsection, we provide a two-field inflation model in which PBHs as the observed
SMBHs are produced by the mechanism we explained in the previous subsection. The
Lagrangian density we consider is given by

L = −1

2
(∂ϕ)2 − 1

2
(∂χ)2 − V (ϕ) (1 + θ(χ)v(ϕ)) , (3.10)

where θ(χ) is the unit step function. Inflation is caused by the potential V (ϕ) for χ < 0
and V (ϕ)(1 + v(ϕ)) for χ > 0. To be definite, we adopt the following functions for V (ϕ)
and v(ϕ);

V (ϕ) =
1

2
m2ϕ2, v(ϕ) = α exp

(
−(ϕ− ϕ0)

2

2µ2

)
. (3.11)

Here α is a positive dimensionless parameter. Then, the field ϕ in the positive χ region
rolls down the potential which is higher than the negative χ region. Thus, trajectories in
the positive χ region experience a greater number of e-folds than those in the negative χ
region. In terms of the definition introduced previously, trajectories with negative/positive
χ correspond to patches A and B, respectively (see Fig. 3.4).

We describe how the above inflation model can realize the mechanism described in
the previous subsection. The first thing to do is to evaluate the initial condition of each
patch of the comoving size k−1

BH corresponding to the mass of SMBHs when each patch
becomes causally disconnected. In other words, we have to determine how different the
field values in the two classes of patches eventually have to take to form PBHs. To
this end, let us denote by ϕobs and χ̄ the values of the scalar fields when the current
observable universe crosses the Hubble horizon during inflation. At this moment, all
the patches of the comoving size corresponding to the SMBHs are well deep inside the
Hubble horizon and roughly take the same values (ϕobs, χ̄). We require χ̄ < 0 so that the
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Figure 3.4: Illustrations of trajectories of mini-universes A and B in field space for the
potential given by Eq. (3.11). Suppose there exists a hill at ϕ = ϕ0 for 0 < χ, and all
trajectories are assumed to start at (ϕ, χ) ≃ (ϕobs, χ̄), denoted by the star in this figure.
Zigzag trajectories reflect quantum fluctuation of χ, and if the absolute magnitude of
χ̄(< 0) is sufficiently large, only an extremely rare fraction of the patches of ∼ kBH enter
into the region 0 < χ, subsequently reaching the hill. The amount of expansion is different
between these two types of trajectories, and so patches experiencing the hill are where
the curvature perturbation is locally large. If the hill is sufficiently wide and high, the
amplitude of this curvature perturbation becomes order unity, leading to the formation
of PBHs. The mass and abundance of PBHs can be roughly controlled by the position of
the hill and χ̄, to explain SMBHs observed at high redshifts.

most regions of the universe follow trajectories with negative χ afterwards. By the time
when kBH becomes equal to aH, regions of comoving size larger than k−1

BH but smaller
than k−1

obs, the comoving scale of the current observable universe, have undergone classical
slow-roll motion associated with stochastic motion originating from redshifting of the
short wavelength vacuum fluctuations [149]. Thus, at the moment when kBH = aH, each
patch of the comoving size k−1

BH has randomly different field values centered at the values
determined by the classical slow-roll equations of motion. The distribution of the χ field
value around the center, in this case χ̄, is approximately Gaussian and its variance is
given by [1]

⟨(χ− χ̄)2⟩ ≃ H2

4π2
(Nobs −NBH), (3.12)

where Nobs−NBH is the number of e-folds between the time when the observable universe
crossed the Hubble horizon and the one when the size of k−1

BH crossed the Hubble horizon.
Approximating that H remains almost constant during that period, we have Nobs−NBH ≃
ln(kBH/kobs).

After the time kBH = aH, each patch of the comoving size k−1
BH becomes causally
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disconnected and the fields on each patch evolve independently from the others. Adopting
the viewpoint of the separate universe picture [148], we make an assumption that the fields
on each patch behave as spatially uniform fields which obey classical equations of motion
for the homogeneous fields in the FLRW spacetime whose expansion is also determined by
the field values in the same patch. Each patch follows different trajectories in field space
due to different field values at the time kBH = aH. However, because of the special form
of the potential we consider, only whether χ is positive or negative matters in terms of the
number of e-folds. In this sense, there are essentially only two trajectories in field space
(trajectories with positive χ and negative χ) and the model can effectively realize the
mechanism described previously. The condition that the patches having positive χ (the
patches B in the language introduced previously) yield curvature perturbation greater
than ζc imposes constraints among the model parameters. In addition to this, in order
for the above inflation model to be successful for explaining the origin of SMBHs, the
model also needs to achieve the observationally suggested values of β and MBH, without
stopping the classical motion of the ϕ−field, or equivalently with the potential in the ϕ
direction being everywhere monotonically decreasing, basically. We will show that there
is a parameter space where all the conditions are simultaneously satisfied†6.

Let us discuss how to calculate the curvature perturbation on k−1
BH more closely, working

in a box of comoving size k−1
obs ∼ O(Gpc). Let us first discuss the amplitude of the

curvature perturbation on kBH, when this mode exits the horizon at tBH, noting that, as
is discussed shortly, the effects of the hill are chosen to be negligible up to ϕBH. First, the
amplitude of field fluctuations δϕ and δχ on flat slices are given by (see e.g. [150])

Pδϕ,δχ(tBH, kBH) =

(
HkBH

2π

)2

, (3.13)

where HkBH
is the Hubble parameter when the mode kBH exits the horizon. We assume

that the energy density of χ is always negligible, and so the curvature perturbation ζ on
uniform-density slices at tBH is solely determined by δϕ and is given by ζ = −Hδϕ/ϕ̇.
Hence, the power spectrum of the curvature perturbation at tBH is

Pζ(tBH, kBH) =
1

4π2

(
H2

ϕ̇

)2

=
1

24π2M4
Pl

V

ϵ
. (3.14)

Without the presence of the hill (α = 0), fluctuations on kBH just correspond to the time
difference on the essentially same trajectory, noting that in this case χ does not affect
cosmic expansion and hence plays no role, and the curvature perturbation is conserved
after kBH exits the horizon. Also, perturbations in this case are Gaussian and almost
scale-invariant. These perturbations are determined by V (ϕ) and we choose it so that
Pζ ∼ O(10−9) to match observations on large scales. In this case, the probability of PBH
formation is vanishingly small, as is discussed in Chapter 2. Next, let us consider the

†6 The existence of the parameter space itself may be self-evident, since by increasing the
height of the hill NB −NA can become arbitrarily large, without stopping the slow-roll motion
of ϕ, noting the complete hindrance of the classical motion of the ϕ field corresponds to the
limit of NB − NA → ∞. So a certain probability of PBH formation would be guaranteed by
an appropriate choice of the shape of the hill. Also, the abundance of PBHs or the rareness of
patches B can be arbitrarily tuned by the choice of χ̄, as is estimated later.
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effects of the hill (α ̸= 0). After k−1
BH exits the horizon, each region of k−1

BH can be regarded
as evolving as an independent FLRW universe [148]. The metric on uniform density slices
may be written as dx2 = −dt2 + ã(t,x)d3x, where ã(t,x) = a(t) exp[ζ(t,x)] is the local
scale factor, a(t) is the global scale factor and ζ(t,x) is the curvature perturbation. Here
and hereafter, the position-dependent quantities are understood to be those smoothed
over the comoving scale of k−1

BH, not over the Hubble radius at each moment. Let us
consider two patches A and B of k−1

BH around points xA and xB, and assume that in most
of the regions inside the patch A(B) χ continues to be negative (positive) for t > tBH.
Note that, even if χ(tBH,xB) > 0, this does not ensure the positivity of χ in most of the
regions inside the patch B for t > tBH. To see this first recall that, after tBH, the field
values ϕ and χ smoothed over the Hubble radius at each point keep randomly fluctuating
by ∼ H over the time scale ∼ H−1. This means that, naively, if χ(tBH,xB) > 0 but
χ(tBH,xB) ≪ H, roughly half of the region in the patch B would end up having χ < 0,
but more precisely due to the sharp wall at χ = 0, hindering crossing from χ < 0 to
χ > 0 for t > tBH, actually more than half of the region in the patch B would end up
having χ < 0. Hence, we need χ(tBH,xB) > O(1)H to ensure the positivity of χ in most
of the regions in the patch B for t > tBH. The curvature perturbation at (tBH,xA,B),
ζ(tBH,xA,B), is of order O(10−5), the same as the case without the hill as explained above
since the effects of the hill are negligible up to tBH. When the hill is present, the inflaton
trajectories for t > tBH qualitatively differ depending on χ, and in this case the curvature
perturbation of the patch B grows for tBH < t < tend, where tend corresponds to the end
of the inflation, and this growth is entirely determined by the difference in the overall
expansion histories of the patches A and B for t > tBH. This is because, as long as χ
stays negative (positive) in most regions in the patch A (B), quantum fluctuations of χ
on the Hubble radius arizing after tBH essentially do not play any role, in the sense that it
no longer affects background expansion. Also, quantum fluctuations of ϕ on the Hubble
radius arizing after tBH keep being converted to curvature perturbation on k > kBH, but
this does not affect the curvature perturbation on k−1

BH either. To calculate the growth
of the curvature perturbation for t > tBH due to the difference in the expansions, let us
define the local Hubble parameter H(t,x) by

H(t,x) ≡
˙̃a(t,x)

ã(t,x)
=
ȧ(t)

a(t)
+ ζ̇(t,x). (3.15)

During inflation, the equation of motion for ϕ in the patch A is given by

3Hϕ̇+ V ′(ϕ) ≃ 0, H2 ≃ 1

3M2
Pl

V (ϕ), (3.16)

where a prime denotes differentiation with respect to ϕ and MPl is the reduced Planck
mass, and for the patch B

3Hϕ̇+
[
V (ϕ)(1 + v(ϕ))

]′ ≃ 0, H2 ≃ 1

3M2
Pl

V (ϕ)(1 + v(ϕ)). (3.17)

The numbers of e-folds of the patches A and B from tBH to tend are given by

NA =
1

M2
Pl

∫ ϕBH

ϕend

dϕ
V (ϕ)

V ′(ϕ)
, NB =

1

M2
Pl

∫ ϕBH

ϕend

dϕ
V (ϕ)(1 + v(ϕ))[
V (ϕ)(1 + v(ϕ))

]
′ . (3.18)
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PBH formation is determined by the difference in the curvature perturbation at the end
of inflation, since thereafter it is conserved, and from (3.15) it is expressed as

ζ(tend,xB)− ζ(tend,xA) = ζ(tBH,xB)− ζ(tBH,xA) + ∆N, ∆N ≡ NB −NA. (3.19)

As mentioned above, ζ(tBH,xA,B) ∼ O(10−5), while we are interested in situations where
∆N ∼ 1 to produce PBHs, and so we can safely neglect ζ(tBH,xA,B) and focus on ∆N in
the following. See also the Appendix C for a brief review of δN formalism.

Let us calculate the relationship between ϕBH and MBH. The mass of PBHs MBH

is roughly estimated by the horizon mass at the moment when the comoving scale kBH

reenters the horizon, from which one finds

MBH ∼ 2.2× 1013M⊙

(
kBH

1Mpc−1

)−2

. (3.20)

This can be inverted as follows:

kBH ∼ 47

(
MBH

1010M⊙

)−1/2

Mpc−1. (3.21)

Noting the following relation

ln

(
kBH

kobs

)
≃ Nobs −NBH =

∫ tBH

tobs

dtH ≃ 1

M2
Pl

∫ ϕobs

ϕBH

dϕ
V

V ′ =
1

4M2
Pl

(ϕ2
obs − ϕ2

BH) (3.22)

and setting kobs = 1Gpc−1, we obtain

ϕBH =

√
ϕ2
obs − 4M2

Pl log

(
kBH

kobs

)
≃ 13

√
1 + 0.01 log

(
MBH

1010M⊙

)
, (3.23)

where we have set Nobs = 55 (ϕobs ≃ 14.8MPl). Note that the dependence of ϕBH on MBH

is very weak, and for instance if we set MBH = 1M⊙, ϕBH ≃ 12. Therefore, though we
assume MBH = 1010M⊙ and ϕBH = 13 in the following, our analysis is valid for other
masses as well. For instance, one may choose the typical initial mass of PBHs to be
smaller than 1010M⊙, taking account possible mass growth of PBHs.

Note that for each µ, ϕ0 has to be sufficiently smaller than ϕBH. This is needed in
order that the sharp wall of the potential at χ = 0 does not prevent stochastic motion of
χ from crossing the wall at kBH = aH to simplify the subsequent analysis. The criterion
that the stochastic motion can cross over the wall freely is that the kinetic energy of χ
field, ∼ H4, is larger than the potential gap at ϕ = ϕBH. If this condition is not satisfied,
the wall blocks the stochastic motion effectively and χ virtually cannot enter the positive
region. The height of the potential wall at the peak ϕ = ϕ0 is given by αV (ϕ0) and this
is much larger than H4 in our present model for a range of α in which O(1) difference of
the number of e-folds is generated between A and B. Thus, ϕBH must be located far from
the peak where the height of the wall is smaller than H4, which yields

R ≡ H4

V (ϕBH)v(ϕBH)
≃ m2ϕ2

BH

18αM4
Pl exp{−(ϕBH − ϕ0)2/2µ2}

≫ 1. (3.24)
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Figure 3.5: The time evolution of the slow-roll parameters for different choices of α and
µ.

If we require R = 100 and rewrite the exponential factor here by defining ν as ϕBH =
ϕ0 + νµ, we can calculate ν as

ν ≃ 7
{
1 + log

( α

0.06

)}1/2

, (3.25)

where we have set ϕBH = 13 and m = 3× 10−6. Hence in the following we set ν = 7†7. If
α is larger and µ is smaller, ∆N is larger, but at the same time the absolute magnitudes
of the slow-roll parameters (ϵ ≡ M2

PlV
′2/2V 2 and η ≡ M2

PlV
′′/V ) become also larger

(see Fig. 3.5). Since our calculation of ∆N is based on the slow-roll approximation,

†7Here we assume the crossing to the positive χ region happens only at ϕ = ϕBH = 13,
leading to the monochromatic mass function of PBHs at MBH ≃ 1010M⊙. Strictly speaking
however, the masses would be distributed around some mass scale determined by ϕ0, and this
mass spectrum is determined by the following two effects. First, the crossing to the positive
χ region can in principle occur also when ϕ > ϕBH, though the probability of these cases is
exponentially suppressed, since the probability of reaching χ = 0 becomes rapidly rarer as ϕ
is increased. This leads to a power-law tail of the mass function at larger masses, noting the
exponential dependence of MBH on ϕBH. Second, the crossing can occur even for ϕ < ϕBH,
though the probability would be increasingly suppressed as ϕ becomes closer to ϕ0, due to the
gap of the potential at χ = 0, for which quantification the probability of crossing with a gap
has to be calculated. Or, one may introduce an additional wall at χ = 0 except for ϕ ∼ ϕBH,
allowing crossing of χ = 0 only at around ϕBH, in which case an almost monochromatic mass
function would be realized.
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Figure 3.6: A contour plot of ∆N ≡ NB −NA and ηmin. For the parameter choices in the
shaded region, the inflaton can not cross over the hill, and hence this region is prohibited.

the results where slow-roll conditions are violated are not trustable. It turns out that η
takes the minimum value at around ϕ0, η(ϕ0) ≃ −α/µ2 ≡ ηmin, and ensuring |η(ϕ0)| < 1
is sufficient to maintain the slow-roll conditions (see Fig. 3.5). A contour plot of ∆N
and ηmin is shown in Fig. 3.6. Roughly, if ϕ̇(∝ −[V (ϕ)(1 + v(ϕ))]′) becomes negative
somewhere for some parameter choices (α, µ), the inflaton cannot cross the hill, and so
such cases should be excluded. This region is represented by the gray region in the Fig.
3.6. To conclude, there is a parameter space where the curvature perturbation exceeds
unity and hence PBHs can be formed (see also the footnote †6), and the resulting SMBHs
have mass around 1010M⊙.

Finally, let us determine the initial value χ̄ of χ which leads to an observationally
suggested value of β. As already mentioned, χ on the patches corresponding to kBH when
ϕ = ϕBH is randomly distributed around the central value χ̄ with its variance given by
Eq. (3.12). As a result, noting (3.5) β is given by†8

β ≃
∫ ∞

0

dχ
1√
2πσχ

exp

(
−(χ− χ̄)2

2σ2
χ

)
≃ − σχ√

2πχ̄
exp

(
− χ̄2

2σ2
χ

)
. (3.26)

To obtain the right-hand side we have made an approximation that the integral picks up
only the tail of the Gaussian distribution (notice that χ̄ < 0). Solving the above equation

†8As explained previously, our calculation of the curvature perturbation at patches B is valid
for χ(tBH,xB) > O(1)H, so the lower bound of the integration here should be strictly speaking
taken as O(1)H, but this only affects χ̄, evaluated below, only slightly.
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for χ̄ yields

χ̄ = −σχ

√
W0

(
1

2πβ2

)
, (3.27)

whereW0 is the Lambert function (see the footnote †8 of Chapter 2). Using the expansion
of W0(x) for large x given by W0(x) = lnx− ln lnx+O(1), we have

χ̄ ≃ −H
2π

√
Nobs −NBH

[
− ln(2πβ2)− ln(− ln(2πβ2))

]1/2
. (3.28)

Thus, the observed abundance of SMBHs can be realized if χ̄ takes the above value.

3.2.3 Simple model 2: a hill on top of R2-inflation type potential

The ϕ2 potential considered in the previous subsection is somewhat disfavored by the
Planck data [151]. However, our mechanism can work for other types of potentials, in-
cluding those favored by the Planck data. To see this in this subsection we consider a hill
on top of the following potential:

V (ϕ) =
3M2M2

Pl

4

{
1− exp

(
−
√

2

3

ϕ

MPl

)}2

. (3.29)

This can be obtained by a conformal transformation (see e.g. [152]) of R2−inflation [47],
which is so far favored by the Planck data. The parameter M is fixed by the COBE-
WMAP normalization of the amplitude of the curvature perturbations as follows (see
e.g. [152]):

M ≃ 10−5MPl
4π
√
30

Nobs

(
P(k∗)

2× 10−9

)1/2

≃ 1.25× 10−5MPl

(
Nobs

55

)−1( P(k∗)
2× 10−9

)1/2

.

(3.30)

If we define ϕf by ϵ = 1, then ϕf =
√

3
2
log
(
1 + 2√

3

)
MPl ≃ 0.94MPl. Ntot for this model

is given by

Ntot =
3

4

{
exp

(√
2

3

ϕobs

MPl

)
− exp

(√
2

3

ϕf
MPl

)}
−
√
6

4MPl

(ϕobs − ϕf ). (3.31)

This can be approximately solved for ϕobs (neglecting the last two terms above) as

ϕobs ≃
√

3

2
MPl log

{
1

3

(
4Ntot + 2

√
3 + 3

)}
. (3.32)

We set Ntot = 55 and then ϕobs ≃ 5.3MPl. Then ϕBH can be determined as follows:

Nobs −NBH ≃ ln

(
kBH

kobs

)
≃ 10.8

{
1 + 0.21 log10

(
MBH

10M⊙

)}
≃ 3

4

{
exp

(√
2

3

ϕobs

MPl

)
− exp

(√
2

3

ϕBH

MPl

)}
, (3.33)
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Figure 3.7: A contour plot of ∆N and ηmin for an inflaton potential of (3.29).

from which

ϕBH ≃ 5.0MPl

[
1 + 0.56 log10

{
1− 0.049 log10

(
MBH

1010M⊙

)}]
. (3.34)

The condition corresponding to (3.24) is

R ≡ H4

V (ϕBH)v(ϕBH)
≃ M2

12αM2
Pl

exp

{
(ϕBH − ϕ0)

2

2µ2

}{
1− exp

(
−
√

2

3

ϕBH

MPl

)}2

≫ 1.

(3.35)
Once more, let us rewrite exp(ϕBH − ϕ0)

2/2µ2 = exp ν2/2 and solve for ν to get

ν ≃ 7.1

[
1 + 0.09

{
log10

(
R

100

)
+ log10

( α

0.01

)}]1/2
. (3.36)

A contour plot of ∆N and ηmin is shown in Fig. 3.7. In this case in the parameter region
where ∆N ≳ 1, the slow-roll condition is not satisfied well, but it does not mean that the
curvature perturbation can not become sufficiently large. It would be safe to conclude
that there exists a parameter region where ∆N ≳ 1 (see also the footnote †6).

3.3 Summary and discussion

We have proposed a new mechanism in which primordial perturbations large enough to
produce PBHs are generated while keeping most regions of the universe to be almost
homogeneous to the extent that constraints from CMB distortions can be evaded. In
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particular, our model can explain SMBHs observed at high redshifts by PBHs. The
basic idea is that each patch of the comoving size corresponding to the comoving Hubble
horizon at the time of the PBH formation, after causally disconnected, followed either
one of the two different inflationary histories yielding different amount of expansion. A
history followed by a tiny number of patches has more expansion than the other history
followed by most patches. If this difference of expansion, in terms of the number of e-folds,
exceeds unity, the minor patches, having experienced more expansion than the major ones,
collapse to form PBHs when they reenter the Hubble horizon. Since perturbation is tiny
outside the minor patches, nothing special happens there that might lead to phenomena
contradicting with observations. In particular, no significant CMB distortion is generated
in our mechanism and the upper bound set by COBE/FIRAS measurements can be
satisfied.

In our scenario, PBHs of mass 1010M⊙, or less considering the growth of these PBHs,
are produced at redshifts z≳2×107. Thus, this scenario predicts that SMBHs exist at any
redshift range relevant to astrophysical observations. This is a huge difference from any
astrophysical scenario in which the number of SMBHs rapidly decreases as the redshift is
increased. If future observations continuously discover SMBHs at higher redshifts, then
our scenario will be a strong candidate. On the other hand, if SMBHs turn out to be
absent at higher redshifts, then our scenario will be disfavored.

There are a few more remarks to be given about our models. In order for the χ-filed
to take a positive value at around ϕBH in some patch of kBH, larger regions encompassing
that patch must have experienced more ”kicks” to the positive direction (see Fig.3.4).
This indicates that the spatial distribution of PBHs as the seeds of the SMBHs at high
redshifts tend to be clustered in our models, which feature may turn out to be inconsistent
with observations. One may circumvent this problem by modifying the potential in such a
way that the field trajectory is restricted to some constant χ̃ (χ̄ < χ̃ < 0) for ϕBH + dϕ <
ϕ ≲ ϕobs, with dϕ chosen sufficiently small to avoid spatial clustering and χ̃ adjusted
to give an appropriate value of β, as has been done around (3.28). This work should be
regarded as an existence proof of phenomenological models which can predict PBHs whose
mass is sufficiently large to explain SMBHs of ∼ 1010M⊙ at high redshifts, and to this
end we have introduced two toy models. The potentials we used may appear somewhat
contrived, and it would be more desirable to find simpler and apparently more natural
models, which can realize the desired properties discussed here.
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Chapter 4

Acoustic reheating: a novel probe of
primordial power on small scales

Primordial inhomogeneities have been intensively investigated by cosmic microwave back-
ground (CMB) [153, 154] or large scale structures of the universe. However, the pertur-
bation scales relevant to these probes are limited to O(Mpc) to O(Gpc) and information
of fluctuations on smaller scales is relatively scarce. On the other hand, some models of
the early universe predict enhancement of the power spectrum of fluctuations on small
scales [57,68,155–166], so investigating small scale perturbations is important. Given this
situation, several methods to probe small scale fluctuations have been studied such as
primordial black holes (PBHs) [16,17], ultracompact minihalos [23,125,126,167,168], and
CMB spectral distortions [121,169–177]. See Chapter 2 for more details.

In this Chapter, we discuss a novel method to probe perturbations on smaller scales
than those probed by CMB spectral distortions (104Mpc−1 < k). This method is based on
a phenomenon we call “acoustic reheating”. During the radiation-dominated era, short-
wavelength perturbations are damped below diffusion scales (diffusion damping or Silk
damping [18,178]), injecting energy into the background universe. Before the µ-era, or the
epoch when energy release leads to µ-distortions, any energy injection mostly causes an
increase in the average photon temperature, without invoking subtantial spectral distor-
tions [20,179,180]. If this energy injection takes place after the Big Bang Nucleosynthesis
(BBN), it increases the number density of photons nγ, without changing the number den-
sity of baryons nb, resulting in a decrease in the baryon-photon ratio η ≡ nb/nγ . Since
the value of η is independently inferred by the abundance of the light elements [41] and
CMB observations [42], we can put constraints on the amount of energy injection [181],
or primordial perturbation amplitude (see also [182]) in the range of wavenumbers which
dissipate after the BBN and before the µ−era.

This Chapter is based on [43]. In §4.1 we calculate the energy injection due to dissipa-
tion of perturbations assuming constant power in the range 104Mpc−1 < k < 105Mpc−1,
and then provide constraints on that power in §4.2, and conclude in §4.3.
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4.1 Calculation of energy injection

The basic equations we use can be found in [121]. The total energy release due to the
damping of acoustic waves from the redshift z2 to z1(< z2) is given by

∆ργ
ργ

=

∫ z2

z1

1

a4ργ

d(a4Qac)

dz
dz, (4.1)

with
1

a4ργ

d(a4Qac)

dz
∼ 9.4a

∫
kdk

k2D
Pζ(k)2 sin2(krs)e

−2k2/k2D , (4.2)

where rs ∼ 2.7×105(1+z)−1Mpc is the sound horizon and kD ∼ 4.0×10−6(1+z)3/2Mpc−1

is the damping scale determined by the diffusion of photons.
Let us briefly review how this formula was obtained, following [171]. They use the

Newtonian gauge: ds2 = a2e2ϕdx2 − e2ψc2dt2. Temperature perturbations in different
orders are denoted by Θ(i) ≡ (∆T/T )(i), and peculiar velocities by βp ≡ vp/c. The unit
vector representing the direction of photons is denoted by γ̂. The Legendre transforms
of the temperature field are given by Θ̂l =

∫
Θ(µ)Pl(µ)dµ/2, where Pl(µ) is a Legendre

polynomial and µ ≡ γ̂ · β̂p. Let us assume the photon distribution in every direction γ̂ at
every point x is given by a black body with temperature T (t,x, γ̂) = Tav(t)[1+Θ(t,x, γ̂)],
with the spatial average ⟨T ⟩ = Tav. Defining xav = hν/kTav, for Θ ≪ 1 the photon
occupation number is expressed as

n(t, xav,x, γ̂) = (exav/[1+Θ(t,x,γ̂)]−1)−1 ≃ nPl(xav)+G(xav)(Θ+Θ2)+
1

2
YSZ(xav)Θ

2. (4.3)

Here, nPl(x) = (ex − 1)−1, G(x) ≡ −x∂xnPl(x), Y(x) ≡ 1
2
G(x)x ex+1

ex−1
and YSZ = 2[Y(x) −

2G(x)]. Allowing for the possible spectral distortion of the globally averaged spectrum
∆nav, nav = nPl + ∆nav. From the second-order Boltzmann equation, with the second-
order collision terms for Compton scattering, double Compton scattering and bremsstrahlung

(obtained by lengthy calculations there) included, they arrive at ∂∆n
(2)
av

∂τ
∋ ⟨Sac⟩ YSZ, with

τ̇ = N
(0)
e σTc denoting the time derivative of the Thomson optical depth and YSZSac ≃

YSZ[(3Θ̂1 − βp)
2/3 + 9Θ̂2

2/2]. The main source of distortions turned out to be deter-

mined by this term in the evolution equation for ∆n
(2)
av . In the tight coupling limit, we

have, in the Fourier space [183], βp ≃ 3Θ̂1/(1 − ikcsR/τ
′) and Θ̂2 ≃ 4ikΘ̂1/9τ

′, where

cs ≃ 1/
√

3(1 +R) is the effective sound speed of the photon-baryon fluid, R = 3ρb/4ργ is
the baryon loading and τ ′ is the derivative of τ with respect to the conformal time. Then,
the Fourier-transformed source term above becomes

Sac →
k2

τ ′2

[
R2

1 +R
+

8

9

]
|Θ̂1|2YSZ. (4.4)

According to [183],

|Θ̂1|2 ≃
sin2(krs)

3(1 +R)
[3Θ̂0(0)]

2e−2k2/k2D (4.5)

and this is related to the power spectrum of the curvature perturbation by [184]

[3Θ̂0(0)]
2 = Pζ(k)/[1 + 4Rν/15]

2 ≡ ανPζ(k), (4.6)
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where Rν = ρν/(ργ + ρν) ≃ 0.41. Using ∂ηk
−2
D = c2s[R

2/(1 +R) + 9/8]/(2τ ′),

⟨Sac⟩ ≃
αν
τ ′
∂ηk

−2
D

∫
d3k

(2π)3
k2Pζ(k)2 sin

2(krs)e
−2k2/k2D . (4.7)

To obtain the heating rate, this is multiplied by τ ′YSZ and integrated over x3dxd2γ̂, which
gives ∂ηQac. Since

∫
x3YSZdx = 4ργ, (a

4ργ)
−1d(a4Qac)/dz ≡ −4τ̇ ⟨Sac⟩ /H(1 + z). In the

limit R≪ 1,

1

a4ργ

d(a4Qac)

dz
≃ 32ανc

45τ ′H

∫
dk

2π2
k4Pζ(k)2 sin

2(krs)e
−2k2/k2D

≃ 9.4a

∫
kdk

k2D
Pζ(k)2 sin2(krs)e

−2k2/k2D , (4.8)

where P(k) ≡ k3Pζ(k)/2π
2.

The largest contributions to the energy release at a redshift z come from the modes
around k ∼ kD(z) and so we can safely approximate sin2(krs) ∼ 1/2, since kD(z)rs(z) ∼
(1 + z)1/2 ≫ 1. Let us consider a top-hat power spectrum: Pζ(k) = Aζ(k1 < k <
k2), 0(otherwise), noting that the effects of acoustic reheating are more significant when
the width of the enhanced part of the power spectrum is wider. We set k1 = 104Mpc−1,
since the power spectrum is severely constrained for k1 < 104Mpc−1 by µ-distortion [121].
On the other hand, the modes 105Mpc−1 < k dissipate before the neutrino decoupling
due to the neutrino diffusion. This is because the comoving wavenumber for the neutrino
diffusion becomes k = 105Mpc−1 at the time of neutrino decoupling, which is close to
the horizon scale at that time [185]. Let us briefly revisit the estimation of the horizon
scale at the epoch of the neutrino decoupling following [186]. During the epoch when
the relativistic particles in equilibrium are photons, electrons, neutrinos and their corre-
sponding anti-particles, the cosmological time in seconds and the temperature in MeV are
related by tsec ≃ 0.74/T 2

MeV. When the time scale of the reactions between the electron
neutrinos and the relativistic electron-positron plasma becomes comparable to the cos-
mological time scale, neutrinos are said to be decoupled. Equivalently, the free-streaming
scale of the neutrinos becomes comparable to the horizon at this epoch, and consequently
perturbations roughly below the horizon scale at this epoch are washed out. The main
reactions to consider are†1 e++ e− ↔ νe+ ν̄e, e

±+ νe(ν̄e)→ e±+ νe(ν̄e). At temperatures
under consideration, much lower than the masses of the mediating Z- and W-bosons, the
propagators of these reduce to M−2

W,Z , and the Fermi theory can be used to estimate the

cross sections. For relativistic electrons, σνe ≃ O(1)α2
wM

−4
W,Z(p1 + p2)

2, where αw ≃ 1/29
is the weak fine-structure constant and p1,2 are the 4-momenta of the colliding particles.
Then, the collision time is tν ≃ (σνene)

−1 ≃ O(1)α−2
w M4

WT
−5, noting (p1 + p2)

2 ∼ T 2 and
ne ∼ T 3. Comparing this and the cosmic time above, the electron neutrinos decouple at(,

restoring the Planck mass mPl ≃ 1019Gev,) Tνe ≃ O(1)α
−2/3
w (MW/mPl)

1/3MW ≃ 1.5MeV.
From this, it turns out that perturbations whose comoving wavenumber 105Mpc−1 ≲ k

†1The number densities of µ- and tau-leptons are negligibly small at this epoch, and the
only reactions which keep these in thermal contact with the rest of the matter are the elastic
scatterings between them and electrons, mediated only by the neutral Z-bosons. The cross
sections of these reactions are smaller than those of the reactions between νe and e±, and hence
ντ,µ decouple earlier than νe.
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are washed out at this epoch. Since what can be probed by the consistency between the
BBN era and the CMB era (photon decoupling) is only energy injection after BBN, taking
place shortly after the neutrino decoupling, modes shorter than k = 105 Mpc−1 cannot
be constrained and so we set k2 = 105Mpc−1. Correspondingly, we choose z1 = 2 × 106,
the onset of µ-era, and z2 = 8.5× 106, around when the mode k = 105 Mpc−1 dissipates,
assuming it dissipates due to the diffusion of photons.

For the top-hat power spectrum ranging from k1 to k2, the energy release given by
Eq. (4.2) becomes

1

a4ργ

d(a4Qac)

dz
∼ 2.4Aζ

1 + z

[
exp

{
−2
(
1 + z∗,1
1 + z

)3
}
− exp

{
−2
(
1 + z∗,2
1 + z

)3
}]

, (4.9)

where k∗ ≡ 4× 10−6Mpc−1 and

z∗,i ≡
(
ki
k∗

)2/3

(i = 1, 2) (4.10)

is the redshift when the mode ki dissipates. The total energy release then becomes

∆ργ
ργ
∼ 0.8Aζ

[
Ei

(
−2
(
1 + z∗,1
1 + z

)3
)
− Ei

(
−2
(
1 + z∗,2
1 + z

)3
)]z1

z2

∼ 2.3Aζ , (4.11)

where Ei denotes an exponential integral.

4.2 Constraints on Aζ obtained

by the baryon-photon ratio

The baryon-photon ratio η has been determined independently by the abundance of the
light elements and the CMB anisotropy, and so the damping should not increase the
number of photons too much (or equivalently should not decrease η too much) after BBN,
from which constraints on Aζ can be obtained. To be consistent with observation, we
require (noting nγ ∝ T 3, ργ ∝ T 4)

ηCMB

ηBBN

=

(
1− 3

4

∆ργ
ργ

)
>
ηCMB,obs

ηBBN,obs

, (4.12)

where ηBBN and ηCMB are the baryon-photon ratios at the time of BBN and after the
onset of the µ-era (η becomes constant after this moment since we only consider energy
injection before the µ-era); the subscript “obs” implies a value determined by observation.
Using (4.11), this inequality is rewritten as a constraint on Aζ :

Aζ ≲ 0.6

(
1− ηCMB,obs

ηBBN,obs

)
. (4.13)

In [41] observations of 4He and deuterium were used†2 to infer the baryon-to-photon ratio
η10 ≡ 1010(nb/nγ)0, related to the current baryon density parameter by Ωbh

2 = η10/273.9,

†2About the use of 4He and deuterium, they note the following in [41]:
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as well as the effective number of neutrinos Neff . The constraints adopted there were,
in terms of yDP ≡ 105(D/H)P and the 4He mass fraction YP, yDP = 2.60 ± 0.12 [187]
and YP = 0.54 ± 0.003 [188]. From these they obtained η10 = 6.19 ± 0.21 (Ωbh

2 =
0.0226±0.0008) and Neff = 3.56±0.23. They adopted Planck constraints, including BAO,
of Ωbh

2 = 0.0223± 0.0003 (η10 = 6.11± 0.08)†3 and Neff = 3.30± 0.27. For 1σ constraint,
we conservatively set ηCMB,obs = (6.11−0.08)×10−10 and ηBBN,obs = (6.19+0.21)×10−10

(and 2σ constraints are considered similarly). Then, the constraint on Aζ is

Aζ ≲ 0.03(1σ), 0.06(2σ). (4.14)

4.3 Discussion

The constraints on the amplitude of the curvature perturbation have also been obtained
to avoid overproduction of PBHs to be consistent with observations [12, 110, 111]. If we

”To account for, or minimize, the post-BBN contributions to the primordial abundances, observations at

high redshift (z) and/or low metallicity (Z) are preferred. Deuterium (and hydrogen) is observed in high-z,

low-Z, QSO absorption line systems and helium is observed in relatively low-Z, extragalactic H II regions.

Even so, it may still be necessary to correct for any post-BBN nucleosynthesis that may have modified their

primordial abundances. The post-BBN evolution of D and 4He is simple and monotonic. As gas is cycled

through stars, D is destroyed and 4He produced.”

They did not use 3He and 7Li for the following reasons:

”In contrast, 3He has a more complicated, model dependent, post-BBN evolution and has only been observed

in the relatively metal-rich interstellar medium of the Galaxy. · · · . 7Li suffers from some of the same issues

as 3He. Its post-BBN evolution is complicated and model dependent.”

In their work also the BBN predicted abundance of 7Li, based on the parameter estimations
obtained from 4He, deuterium and CMB, turns out to be inconsistent with that inferred from
observations of 7Li, and so the so-called lithium problem still persists.

†3The amount of baryons can be well determined by the CMB anisotropy spectrum, due to the
sensitive response of the CMB anisotropy spectrum to the change in the amount of the baryons.
See e.g. [189] about the details, and we briefly summarize the discussions there. The m-th
acoustic peak in the anisotropic spectrum of CMB corresponds to the wavenumber satisfying
krs = mπ. The odd-numbered peaks correspond to the compression phases of the baryon-
photon fluid falling into the gravitational potential at the moment of the photon decoupling.
When the baryons are more abundant, the sound speed is smaller, and the restoring forces of
acoustic oscillations are weaker. This indicates larger compression rate, and so the amplitude of
temperature perturbations is larger. On the other hand, the even-numbered peaks are roughly
determined by the initial amplitude, without being affected by the baryon loading. Rather, the
second peaks becomes smaller due to the effects of the cosmic expansion. Or, more baryons
make it difficult for photons to escape from gravitational potential, reducing the amplitude of
perturbations corresponding to underdensity [183]. In summary, only the odd-numbered peaks
are enhanced with more baryons. Also, smaller amount of the baryons means the smaller sound
velocity and sound horizon, and as a result the positions of the acoustic peaks are shifted towards
the smaller angular scales. Furthermore, more baryons means more free electrons, which results
in a decrease in the mean free path of photons. Then the diffusion damping gets weaker and
the diffusion scale is shifted towards smaller scales.
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follow [17] (see also [16]), considering the disruption of wide binaries, which is relevant to
the scales accessible by acoustic reheating, we obtain a constraint by PBHs as Aζ ≲ 0.05.

Although the order of magnitude of these constraints is the same, we may not compare
the two directly. This is partly because PBHs are created at high-σ peaks, and so possible
non-Gaussian distribution may change their abundance in a model dependent manner [57,
155,162]. In particular, when non-Gaussianity is extremely large, it can change constraints
to avoid overproduction of PBHs [190,191].

On the other hand, acoustic reheating considered here is insensitive to the assumption
of Gaussianity (as is also pointed out in [121]) and is relatively easy to quantify precisely
as well as relate to observations. Furthermore, what is interesting about constraints on
the amplitude of primordial fluctuations obtained by acoustic reheating is that they can
improve almost in proportion to potential future decrease in error bars associated with
the determination of η.

Though our constraints apply only in a relatively narrow range 104Mpc−1 < k <
105Mpc−1, this technique will have profound implications. For example, if the constraints
from acoustic reheating become tighter in future, PBHs in the corresponding comov-
ing horizon mass range 103M⊙ < M < 105M⊙ may be severely constrained (note that
PBHs bigger than 105M⊙ are severely constrained by µ-distortion [39]), unless primordial
perturbations are highly non-Gaussian (see Chapter 3). This mass range is particularly
interesting in the context of scenarios of PBHs as the seeds of supermassive black holes.
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Chapter 5

Primordial black holes as a novel
probe of primordial short-wavelength
gravitational waves

One of the profound implications of primordial inflation [47, 192, 193] (or other alter-
natives) is the generation of stochastic gravitational wave background (SGWB) [46] on
a wide range of scales. SGWB on largest observable scales have been investigated by
Planck [42] and BICEP2 [194]. SGWB on smaller scales can be constrained in terms of
the value of Neff , the effective number of extra degrees of freedom of relativistic species,
at the Big Bang Nucleosynthesis (BBN) through the current abundance of light ele-
ments [195], or at photon decoupling through the anisotropy of Cosmic Microwave Back-
ground (CMB) [196, 197]. (More recently SGWB on small scales has turned out to be
constrained by CMB spectral distortions as well [198, 199].) BBN and CMB have played
a major role in constraining SGWB since it is applicable on a wide range of scales, noting
ground-based laser interferometers tend to target GWs on a relatively limited frequency
range with high sensitivity. However, it would be worthwhile to note that upper bounds
obtained through Neff needs an assumption about the number of relativistic species in
the early universe, as is discussed later. In addition, in obtaining BBN or CMB bounds
we implicitly assume that any physical mechanisms, both known and unknown, increase
Neff , making Neff larger than the standard value Neff = 3.046 [200]. However, it may also
be possible to decrease Neff (see e.g. [201–203]). Given these and also given the impor-
tance of the issue, it would be desirable to have another independent cosmological method
to probe SGWB on a wide range of scales, which does not depend on the assumptions
mentioned above, and we propose such a method in this Chapter.

The very physical mechanism we employ to probe SGWB is the formation of primor-
dial black holes (PBHs), black holes formed in the early universe well before the structure
formation. There have been a number of mechanisms to create PBHs (see e.g. [12] and
references therein), but one of the simple and natural mechanisms is the direct collapse
of radiation overdensity during radiation domination, which happens when the density
perturbation becomes order unity at the moment of the horizon crossing of the perturba-
tion [15, 77, 204]. (See also [80] for an updated discussion of the formation condition and
see also [81–84, 86, 92, 96] for numerical simulation of the formation of PBHs.) There is
no conclusive evidence for the existence of PBHs and so upper bounds on the abundance
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of PBHs on various mass scales have been obtained by various kinds of observations (see
e.g. [12] and references therein). These upper bounds can be translated into those on the
power spectrum of the curvature perturbation on small scales [16, 17], namely, they can
be used to exclude models of the early universe which predict too many PBHs.

PBHs can also be used to constrain tensor modes generated during inflation, which
we discuss in this Chapter for the first time quantitatively in detail. This is because large
amplitude tensor perturbations induce scalar perturbations (induced scalar perturbations)
due to their second-order effects, though tensor and scalar perturbations are decoupled
at the linear level. If the typical amplitude of primordial gravitational waves is too large,
then the typical amplitude of resultant induced scalar perturbations becomes also too
large and there appear too many regions where the amplitude of density perturbation
becomes order unity by the moment of their horizon crossing to form PBHs. In short,
if the initial amplitude of tensor modes is too large, PBHs are created too abundantly,
which situation is inconsistent with observations. In other words, we can obtain upper
bounds on the amplitude of initial tensor modes requiring PBHs are not overproduced†1†2.

Due to our ignorance of the physics operating in the early universe, new upper limits
on tensor perturbations on small scales in themselves would be worthwhile. In addition, it
makes our new upper limits still more valuable that there are models of the early universe
which can predict large tensor perturbations on small scales. Note that, if a model predicts
large tensor perturbations on small scales, and even larger scalar perturbations at the same
time, then such a model would be more severely constrained by PBHs generated from
first-order scalar perturbations. Here we consider PBH formation only from second-order
tensor perturbations, but if scalar perturbations are also large, PBHs are formed more,
and so our bounds on tensor perturbations are conservative or model-independent, in the
sense that those bounds do not depend on the amplitude of first-order scalar perturbations
on small scales. Note also that there are models of the early universe which can predict
not only large tensor perturbations on small scales, but also large tensor-to-scalar ratio
on small scales, and our PBH bounds are particularly useful to constrain these types of
models, some of which are briefly described below.

In [222], blue tensor power spectra (i.e. larger power on smaller scales) were obtained
in cyclic/ekpyrotic models, with the spectrum of scalar perturbations being kept slightly
red (smaller power on smaller scales) to match observations on large scales. The cyclic
universe entails the periodic collisions of orbifold planes moving in an extra spatial dimen-
sion, which is equivalently described by a scalar field rolling back and forth in an effective

†1In several papers, second-order effects of scalar perturbations to induce tensor perturbations
(termed induced gravitational waves) have been discussed [205–211]; we can place upper bounds
on the amplitude of scalar perturbations (which can be translated into upper bounds on the
abundance of PBHs [110,111,212]) from the non-detection of GWs. Our present work is opposite
to this direction.

†2The direct gravitational collapse of nonlinear localized gravitational waves has been dis-
cussed in the literature [213–221] and so one may place upper bounds on tensor modes differ-
ently from this work using this direct collapse mechanism. However, the initial condition and
dynamics of nonlinear gravitational waves originated from SGWB during the radiation domi-
nation have not been fully understood and so in this work we consider the second-order effects
of GWs to induce radiation density perturbations, noting the dynamics of nonlinear radiation
density perturbations is better understood.
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potential. Each cycle consists of an accelerated expansion phase, a slow contraction phase
(the ekpyrotic phase), during which the universe is dominated by the kinetic energy as
well as negative potential energy of the scalar field and primordial fluctuations are gener-
ated, a rapid contraction phase followed by a bounce at which matter and radiation are
generated, a phase dominated by the kinetic energy of the scalar field, a radiation domi-
nated, expanding phase, and finally matter and dark energy domination. The spectrum
of scalar perturbations can be adjusted to be slightly red by the choice of the scalar field
potential during the ekpyrotic phase, and the tensor spectrum turns out to be blue up to
the scale corresponding to the end of the ekpyrotic phase. For early universe scenarios
where the spectrum of tensor perturbations is strongly blue, probing them on CMB scales
may be challenging, while constraints on small-scale components, such as those discussed
in this Chapter, may provide useful information. Indeed, they noted that the strongest
constraint on the model parameters is obtained from BBN constraints on high-frequency
GWs.

If the inflaton violates the Null Energy Condition (NEC, ρ + p ≥ 0), the Hubble
parameter increases during inflation(, called super inflation), and the spectral tilt nT
becomes positive, since nT = −2ϵ ≡ 2Ḣ/H2 ∝ −(ρ + p) [223]. They pointed out that it
is possible to violate NEC, without the instability of fluctuations of the inflaton. They
introduced a toy model, with the energy density of the NEC-violating inflaton ρ = ϕ̇2/2−
V0e

−λϕ/Mpl , which leads to a stage of pole-like inflation, when a(t) ∼ (−t)p, t < 0, p =
−2/λ2 < 0. The background and fluctuations are shown to be stable at the classical level.
In this model, some mechanism, quantum effects or another field, is necessary to avoid
singularity at t→ 0 and drive the universe into a radiation dominated epoch.

The spectrum of tensor perturbations generated during super inflation in the frame-
work of Loop Quantum Cosmology (LQC) is calculated in [224]. There a strong blue
tile with nT ≃ 2 was obtained, while the form of the inflaton potential to realize a scale-
invariant power spectrum of scalar perturbations was also discussed in their previous
works. In their scenario, the non-dimensional power spectrum of tensor perturbations on
smallest scales is roughly given by the square of the Hubble parameter He at the end of
inflation in units of the Planck scale, and this means He can be constrained by our PBH
constraints discussed in this Chapter. They note that He is in principle related to the
amplitude of scale-invariant curvature perturbations as well, but such a relation has not
been obtained yet in the scenarios they consider.

Large tensor perturbations on small scales may also be realized in the framework
of the so-called generalized G-inflation (G2-inflation) [225]. This model was the most
general non-canonical, non-minimally coupled single-field inflation ever, yielding second-
order field equations and containing almost all the previously known single field inflation
models in the literature, such as potential-driven slow-roll inflation, k-inflation, new Higgs
inflation, f(R) inflation. Non-canonical kinetic terms naturally arise in particle physics
models of inflation, and an extra gravitational degree of freedom of modified gravity
theories is often equivalently described by a scalar field non-minimally coupled to gravity
or matter. The action of G2-inflation contains four generic functions K,G3, G4, G5 of ϕ
and X = −∂µϕ∂µϕ/2. The quadratic action for the tensor perturbations is

S
(2)
T =

1

8

∫
dtd3xa3

[
GT ḣ2ij −

FT
a2

(∇hij)2
]
, (5.1)
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FT ≡ 2
[
G4 −X(ϕ̈G5X +G5ϕ)

]
, (5.2)

GT ≡ 2
[
G4 − 2XG4X −X(Hϕ̇G5X −G5ϕ)

]
. (5.3)

The squared sound speed is c2T = FT/GT , which is not necessarily unity in general cases.
The parameters ϵ ≡ −Ḣ/H2, fT ≡ ḞT/HFT and gT ≡ ĠT/HGT are introduced and they
are assumed to be nearly constant. The non-dimensional power spectrum of the tensor
perturbations was obtained as

PT = 8γT
G1/2T

F3/2
T

H2

4π2

∣∣∣∣
−kyT=1

, (5.4)

where

νT ≡
3− ϵ+ gT

2− 2ϵ− fT + gT
, γT = 22νT−3

∣∣∣∣ Γ(νT )Γ(3/2)

∣∣∣∣2(1− ϵ− fT
2

+
gT
2

)
, dyT ≡

cT
a
dt.

(5.5)
The tensor spectral tilt is given by nT = 3−2νT , and the tensor spectrum is blue (0 < nT )
if 4ϵ+ 3fT − gT < 0. Also, if the sound speed becomes temporarily small, the amplitude
of tensor perturbations is enhanced on the corresponding scales.

A slightly red spectrum of the curvature perturbation, while keeping the gravitational
spectrum strongly blue-tilted, was also shown to be realized during a stringy thermal con-
tracting phase at temperatures beyond the so-called Hagedorn temperature (the Hagedorn
phase) in [226], assuming a non-singular bounce. In that scenario, primordial curvature
perturbations originate from statistical thermal fluctuations, not by scalar field quantum
fluctuations.

Scalar and tensor perturbations in large field chaotic models with non-Bunch-Davies
(non-BD) initial states were analyzed in [227], and it was shown that in that model also
gravitational waves can be blue while maintaining slightly red scalar perturbations. Nor-
mally, initial states for perturbations are chosen to be Bunch-Davies (BD) vacuum states,
namely, perturbation modes on sub-Hubble scales effectively propagate in vacuum states
associated with flat space. Non-BD initial states were characterized by the Bogoliubov
coefficients for each k mode and for both scalar and tensor perturbations, which were
denoted by αSk , β

S
k , α

T
k , β

T
k , with (αS,Tk , βS,Tk ) = (1, 0) corresponding to the standard BD

initial states. These parameters are determined by unknown high energy physics, and
depending on the choice of the above parameters, blue gravitational waves were obtained
while maintaining the scalar perturbations slightly red.

Blue gravity waves with slightly red scalar perturbations were also obtained without
violating NEC by breaking the spatial diffeomorphism, usually imposed on the dynamics
of perturbation, in the context of effective theory of inflation [228, 229]. There, breaking
of spatial diffeomorphism was considered by effective quadratic mass terms or derivative
operators for metric fluctuations in the Lagrangian during inflation without the necessity
for specifying the UV completion, while noting that it may be a version of massive gravity
coupled to an inflaton, some model of inflation using vectors, or sets of scalars obeying
some symmetries.

This Chapter is based on [44, 45], and is organized as follows; In section §5.1 simple
estimations of PBH upper bounds on tensor perturbations are provided; The radiation
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density perturbation generated from tensor perturbations is calculated in §5.2; Section
§5.3 is dedicated to the discussion of upper bounds on tensor modes from PBHs along
with the comparison of them with those obtained from exiting methods such as BBN,
CMB, ground-based laser interferometers and pulsar timing arrays; Finally we conclude
in §5.4.

5.1 Simple physical arguments of PBH upper bounds

on tensor perturbations

For simplicity we assume the typical amplitude of tensor fluctuations of only a limited
range of wavelength around λp (say, in the range (e−1/2λp, e

1/2λp)) is particularly large,
namely we consider a peak in the power spectrum around λp. Let us denote by σh the
root-mean-square amplitude (RMS) or the typical amplitude of tensor fluctuations when
the relevant modes under consideration are on super-horizon scales. Note that σ2

h roughly
corresponds to the dimensionless power spectrum Ph of primordial GWs. Suppose these
large amplitude tensor perturbations whose wavelength is around λp reenter the horizon
during the radiation-dominated era. Then it generates radiation density perturbations
δr whose wavelength is around λp and whose RMS σδr at around the horizon crossing
is roughly given by σδr ∼ σ2

h, simply because δr is generated by second-order GWs.
As confirmed later, this relation indeed holds well at least for the delta-function power
spectrum. If δr > δr,th ∼ 0.4 [80], the induced radiation density perturbations collapse
to form PBHs. The probability of formation of PBHs has to be extremely small to be
consistent with various observations [12]. Therefore, in order not to overproduce PBHs,
one may require (see (2.8)) Ph ∼ σ2

h ∼ σδr ≲ 0.1δr,th ∼ 0.04. This upper bound is
applicable on all the scales which reenter the horizon during the radiation-dominated era.
Furthermore, this bound is probably conservative on scales which reenter the horizon
during the (early as well as late) matter-dominated era, since formation of black holes
by direct collapse of primordial perturbations is easier when the universe is (literally or
effectively) dominated by pressureless dust†3. To summarize, we have

Ph ≲ 0.04 (PBH), (5.6)

and this is applicable from the comoving wavelength of ∼ 1Gpc all the way down to
∼ 1Gpc × e−60 ∼ 0.3m, assuming the total number of e-folds during inflation is sixty†4.
This is consistent with upper bounds obtained by more rigorous calculations later. See
Discussion for some comments regarding the constraints on smallest scales.

†3Note that PBH formation due to second-order GWs during a dust-dominated universe can-
not be completely regarded as collapse of dust in a dust-dominated universe, since locally the
energy density of GWs is sizable, and so the effective equation of state there would be positive.

†4The idea of using PBHs to constrain tensor fluctuations itself is so simple and indeed it does
not seem to be new. For example, we found in [230] PBH constraints are briefly mentioned.
There they require Ph ≲ 1, which is probably too conservative to ensure the sufficient rareness
of formation of PBHs to be consistent with observations (see eq.(5.6) and the preceding argu-
ments). We discuss PBH constraints on tensor fluctuations in detail, quantitatively in [44] and
an accompanying paper [45] for the first time.
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5.2 The radiation density perturbation generated from

tensor perturbations

Perturbations to the metric and energy momentum tensor are written as (see [231] for
more details)

ds2 = a2[−(1 + 2Φ)dη2 + 2B,idηdx
i + {(1− 2Ψ)δij − 2E,ij + 2hij} dxidxj], (5.7)

Tµν = (p+ δp)gµν + (ρ+ δρ+ p+ δp)(uµ + δuµ)(uν + δuν), (5.8)

and the spatial components of the velocity perturbation δuµ are written as δui = δu,i.
Let us consider a coordinate transformation of the form xµ → xµ + ϵµ(xµ), with ϵ0 =
−ϵ0, ϵi = a2ϵi, ϵi = ϵ,i. Then E and δu at each spacetime point can be thought of
effectively transforming as E → E + ϵ, δu → δu − ϵ0 (gauge transformation). Here we
choose ϵ so that E = 0, and then choose ϵ0 so that δu = 0. Both choices are unique,
so that there is no freedom to make gauge transformations, and this choice is called the
comoving gauge. Then the metric is written as

ds2 = a2[−(1 + 2Φ)dη2+2B,idηdx
i + ((1− 2Ψ)δij+2hij)dx

idxj]. (5.9)

Here a few comments are in order. In calculations of this Chapter it is assumed that the
amplitude of initial tensor perturbations is much larger than that of scalar perturbations
(schematically, (scalar)≪ (tensor)) and so the scalar quantities in the metric above should
be regarded as second-order in hij. Hence, for scalar perturbations we write down the
Einstein equations keeping second-order terms only in hij. Importantly, our PBH upper
bounds on tensor perturbations thus obtained are applicable even if this initial hierarchy
between tensor and scalar perturbations is not realized. This is because if the amplitude
of scalar perturbations is as larger as, or larger than that of tensor perturbations, then
the abundance of PBHs increases when the amplitude of tensor modes is fixed. That is,
assuming (scalar) ≪ (tensor) initially is most conservative in placing upper bounds on
tensor modes and hence our bounds are applicable even if that assumption does not hold.

Let us write down the fundamental equations in the following. We denote the energy
density and pressure of dominating radiation by ρ and p respectively, and write p =
c2sρ, where cs is the speed of sound. In this Chapter we restrict our attention to the
formation of PBHs due to collapse of the radiation density perturbation during radiation
domination and so we set cs = 1/

√
3 in calculations, though we leave cs unspecified in

equations below for generality. We decompose ρ and p as ρ(η,x) = ρ0(η) + δρ(η,x) and
p(η,x) = p0(η) + δp(η,x).

The zeroth-order Einstein equations yield

H2 =
8πG

3
a2ρ0, (5.10)

H2 −H′ = 4πGa2(ρ0 + p0), (5.11)

where H ≡ a′/a with a prime denoting differentiation with respect to the conformal time
η. These two equations are combined to give

2H′ + (1 + 3c2s )H2 = 0. (5.12)
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The Einstein equations at first-order gives the standard evolution equation for tensor
modes as follows;

h′′ij + 2Hh′ij −∆hij = 0. (5.13)

The Einstein equations at second-order, derived in the Appendix D, are as follows:

∆Ψ− 3H(Ψ′ +HΦ)−H∆B + S1 = 4πGa2δρ, (5.14)

(Ψ′ +HΦ + S2),i = 0, (5.15)

Ψ′′+H(2Ψ+Φ)′+(2H′+H2)Φ+
1

2
∆(Φ−Ψ+B′+2HB)+S3+S4 = 4πGa2δp, (5.16)

(Φ−Ψ+B′ + 2HB − 2S5),ij = 0. (5.17)

Here, the following terms, second order in hij, source the scalar perturbations:

S1 ≡ −
1

4
h′ijh

ij′ − 2Hhijhij
′
+ hij∆h

ij − 1

2
∂jhik∂

khij +
3

4
∂khij∂

khij, (5.18)

∆S2 = ∂iSi, (5.19)

Si = −hjk∂kh′ij +
1

2
hjk

′
∂ihjk + hjk∂ih

′
jk, (5.20)

S3 ≡
3

4
h′ijh

ij′ + hijh
ij′′ + 2Hhijhij

′ − hij∆hij +
1

2
∂jhik∂

khij − 3

4
∂khij∂

khij, (5.21)

∆S4 =
1

2
(∆Sii − ∂i∂jSij), (5.22)

∆2S5 =
1

2
(3∂i∂jSij −∆Sii), (5.23)

Sij ≡ −h k′

i h′jk − hikh k′′

j − 2Hh k
i h

′
jk + hkl∂k∂lhij + h k

i ∆hjk − hkl∂l∂ihjk − hkl∂l∂jhik

−∂khjl∂lh k
i + ∂lhjk∂

lh k
i +

1

2
∂ihkl∂jh

kl + hkl∂i∂jhkl.

(5.24)

Using (5.13), these source terms are rewritten as follows:

S1 = −
1

4
h′ijh

ij′ + hijh
ij′′ − 1

2
∂jhik∂

khij +
3

4
∂khij∂

khij, (5.25)

S3 =
3

4
h′ijh

ij′ +
1

2
∂jhik∂

khij − 3

4
∂khij∂

khij, (5.26)

Sij = −h k′

i h′jk + hkl∂k∂lhij − hkl∂l∂ihjk − hkl∂l∂jhik

−∂khjl∂lh k
i + ∂lhjk∂

lh k
i +

1

2
∂ihkl∂jh

kl + hkl∂i∂jhkl. (5.27)

The conservation of the energy-momentum tensor yields

δρ′ + 3H(δρ+ δp)− (ρ+ p)∆B − 3(ρ+ p)Ψ′ − 2(ρ+ p)hijh′ij = 0, (5.28)
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∂i(δp+ (ρ+ p)Φ) = 0. (5.29)

One can derive an evolution equation of Ψ as follows. First, eqs.(5.28) and (5.29) lead
to (hereafter we work in Fourier space)

Φ′ = −c2s
(
−k2B + 3Ψ′ + 2hijh′ij

)
. (5.30)

The term −k2B of the above can be eliminated by the following relation, obtained from
eqs.(5.14) and (5.15):

− k2B =
−k2Ψ
H

+ 3S2 +
S1

H
− 3

2
Hδr, (5.31)

where δr ≡ δρ/ρ0. Using these and (5.17) as well as (5.12), (5.16) can be rewritten as

Ψ′′ + 2HΨ′ + c2sk
2Ψ = S, (5.32)

where
S ≡ c2sS1 − S3 − k̂ik̂jSij + 2c2sHhijh′ij. (5.33)

From (5.15) and (5.29), the energy density perturbation is given by

δr =
1 + c2s
c22H

(Ψ′ + S2). (5.34)

Eq.(5.32) can be formally solved as

Ψ(η,k) = a−1(η)

∫ η

0

dη̃gk(η, η̃)a(η̃)S(η̃,k), (5.35)

where gk is the Green’s function satisfying

g′′k +

(
c2sk

2 − a′′

a

)
gk = δ(η − η̃), (5.36)

which can be constructed by the two homogeneous solutions

v1(k, η) = sin(cskη), v2(k, η) = cos(cskη) (5.37)

as follows [209]:

gk(η, η̃) =
v1(k, η)v2(k, η̃)− v1(k, η̃)v2(k, η)
v′1(k, η̃)v2(k, η̃)− v1(k, η̃)v′2(k, η̃)

=
1

csk
sin (csk(η − η̃)) . (5.38)

The two point correlation function of Ψ can be expressed as

⟨Ψ(η,k)Ψ∗(η,K)⟩ = 2π2

k3
δ(k −K)PΨ(k)

= a−2(η)

∫ η

0

dη1

∫ η

0

dη2gk(η, η1)gK(η, η2)a(η1)a(η2)⟨S(η1,k)S(η2,K)⟩. (5.39)
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In the following, let us write down the Fourier components of the source (5.33). First let
us decompose hij(η,x) as follows (following [111]):

hij(η,x) =

∫
d3k

(2π)3/2
eik·x(h+(η,k)e+ij(k) + h×(η,k)e×ij(k)), (5.40)

where for k in the z-direction

e+11(ẑ) = −e+22(ẑ) = e×12(ẑ) = e×21(ẑ) = 1, others = 0 (5.41)

while for k̂ in any other direction erij(k̂)(r = +,×) is defined by applying on each of the

indices i and j a standard rotation, that takes the z-direction into the direction of k̂ (see
e.g. [231]). Then one can check the following:∑

ij

erij(k)e
s
ij(k) = 2δrs. (5.42)

Let us further decompose Fourier components as hr(η,k) = D(η, k)hr(k), where hr(k) is
the initial amplitude and D(η, k) is the growth factor, which can be obtained by solving
the linear evolution equation (5.13) for hij:

D(η, k) =
sin kη

kη
. (5.43)

It turns out that the source can be written as follows (see the Appendix E):

S(η,k) =
∑
rs

∫
d3k′

(2π)3/2
hr(k′)hs(k − k′)Ars(η,k,k

′), (5.44)

Ars(η,k,k
′) ≡ f1(η,k,k

′)Ers
1 (k,k′) + f2(η,k,k

′)Ers
2 (k,k′), (5.45)

where
Eij
rs kl(k,k

′) ≡ eijr (k
′)eskl(k − k′), (5.46)

Ers
1 (k,k′) ≡ k̂j k̂

kErs ij
ik (k,k′), Ers

2 (k,k′) ≡ Eij
rs ij(k,k

′), (5.47)

whose components are written by

E++
1 (k,k′) = −µ1

√
1− µ2

√
1− µ2

2, (5.48)

E××
1 (k,k′) = −

√
1− µ2

√
1− µ2

2, (5.49)

E++
2 (k,k′) = 1 + µ2

1, (5.50)

E××
2 (k,k′) = 2µ1, (5.51)

µ ≡ k · k′/k k′, (5.52)

µ1 ≡
k′ · (k − k′)

k′|k − k′|
=
kµ− k′

|k − k′|
, (5.53)

µ2 ≡
k · (k − k′)

k|k − k′|
=
k − k′µ
|k − k′|

, (5.54)
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with other components shown to vanish†5.
The definitions of f1 and f2 should be read off from eq.(E.9) as follows;

f1(η,k,k
′) = D(η, k′)

{
←−
∂η∂η −

1

2
(3− c2s )k2 + 3kk′µ− k′2

}
D(η, |k − k′|), (5.55)

f2(η,k,k
′) = D(η, k′)

{
−1

4
(3 + c2s )

←−
∂η∂η + c2s∂

2
η + 2c2sH∂η +

1

8
(1− 3c2s )k

2

−1

2
k′µ(k − k′µ) + 3

4
(1 + c2s )k

′2

}
D(η, |k − k′|), (5.56)

where
←−
∂η is supposed to differentiate only D(η, k′) on the left.

Introducing the power spectrum of tensor perturbations as

⟨hr(k)hs∗(K)⟩ = 2π2

k3
δ(k −K)δrsPh(k) (5.57)

and assuming hr(k) is Gaussian, we can obtain the following expression for the correlation
of the source:

⟨S(η1,k)S(η2,K)⟩ = πδ(k +K)
∑
rs

∫
d3k′Ph(k′)Ph(|k − k′|)

k′3|k − k′|3
Ars(η1,k,k

′)Ars(η2,k,k
′).

(5.58)
In this work, we assume the following delta function tensor-mode power spectrum:

Ph(k) = A2kδ(k − kp). (5.59)

From (5.34) and (5.35), the energy density perturbation can be calculated as

δr(η,k) =
1 + c2s
c2sH

∑
rs

∫
d3k′

(2π)3/2
hr(k′)hs(k − k′)Frs(η,k,k

′), (5.60)

where

Frs(η,k,k
′) ≡

∫
dη̃(η̃/η)Ars(η̃,k,k

′)(∂η −H)gk(η, η̃)

+D(η, k′)

{
−∂ηErs

1 +

(
1

2

←−
∂η + ∂η

)(
1− k′

k
µ

)
Ers

2

}
D(η, |k − k′|). (5.61)

The power spectrum is defined by

⟨δr(η,k)δ∗r(η,K)⟩C ≡ ⟨δr(η,k)δ∗r(η,K)⟩ − ⟨δr(η,k)⟩⟨δ∗r(η,K)⟩ = 2π2

k3
δ(k −K)Pδr(η, k)

(5.62)

†5These expressions are obtained by first setting k̂ = ẑ, which is possible due to isotropy, and
by assuming k̂′ is on the x− y plane, which is justified by the rotational invariance of Ers

1 and
Ers

2 .
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and calculated as follows:

Pδr(η, k) =
(
1 + c2s
c2s

)2

A4

(
k

kp

)2

η2Θ

(
1− k

2kp

)∑
rs

Frs

(
η, k, kp,

k

2kp

)2

. (5.63)

The time evolutions of the power spectrum for a few modes are shown in Fig.5.1, where
A = 1. The power spectrum takes the maximum value shortly after the horizon crossing of
each mode. After reaching the maximum, it starts oscillation with the amplitude almost
constant, similarly to the behavior in the standard linear cosmological perturbation theory.
This is because the first order tensor perturbations decay after the horizon crossing, and
so do the source terms, leading to the reduction of our fundamental equations to the
standard ones in the linear theory.

k=2kp

k=1.5kp

k=1kp

k=0.5kp

0 2 4 6 8 10
0.001
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0.1

1

10

100

kpΗ

P∆rHΗ,kL

Figure 5.1: The time evolution of the power spectrum for each mode.

5.3 PBH upper bound on SGWB

In order to place upper bounds on tensor-modes from PBHs, the abundance of PBHs
needs to be calculated, which is obtained by integrating the high-σ tail of the probability
density function (PDF) of the density perturbation averaged over the horizon scale. In
the following we estimate the moment when the PBH formation is most efficient for
each position of the spike specified by kp, by calculating the dispersion of the density
perturbation, and then present the PDF at this moment to calculate the abundance of
PBHs and place upper bounds on tensor perturbations.

First it is important to note that the average ⟨δr(η,x)⟩ is non-zero, since the den-
sity perturbation is generated by the second-order effects of tensor modes, and so let us
evaluate it in the following. First we introduce f3 and f4 by rewriting Frs as

Frs(η,k,k
′) = f3(η,k,k

′)Ers
1 + f4(η,k,k

′)Ers
2 . (5.64)
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The explicit forms of f3 and f4 can be obtained by using (5.45), though the integration
over η can not be done analytically for general k:

f3(η,k,k
′) =

∫
dη̃(η̃/η)f1(η̃,k,k

′)(∂η −H)gk(η, η̃)−D(η, k′)∂ηD(η, |k − k′|), (5.65)

f4(η,k,k
′) =

∫
dη̃(η̃/η)f2(η̃,k,k

′)(∂η −H)gk(η, η̃)

+D(η, k′)

(
1

2

←−
∂η + ∂η

)(
1− k′

k
µ

)
D(η, |k − k′|). (5.66)

Noting only the zero-mode δr(η,k = 0) contributes to ⟨δr(η,x)⟩, we need f3 and f4 in
k→ 0 limit, which are, assuming the delta-function power spectrum,

f3 = 0, f4 = −
−1 + 2k2pη

2 + cos(2kpη)

24k2pη
3

. (5.67)

Hence,

⟨δr(η,x = 0)⟩

=

∫
dk3

(2π)3/2
1 + c2s
c2sH

∫
d3k′

(2π)3/2
2π2

k3p
δ(k)A2kpδ(k

′ − kp)f4(η,k = 0,k′)× (2− (−2))

= −(1 + c2s )A2

6c2sk
2
pη

2
{−1 + 2k2pη

2 + cos(2kpη)}. (5.68)

When kpη ≫ 1, the time average of this asymptotes to

⟨δr⟩ = −
(1 + c2s )

3c2s
A2, (5.69)

while ⟨δr⟩ → 0 for kpη → 0. We denote the density perturbation averaged over a sphere
with comoving radius R by δr(η,x, R), the dispersion of which is related to the power
spectrum as follows:

σ(η,R) ≡ (⟨δr(η,x, R)2⟩ − ⟨δr(η,x)⟩2)1/2 =
(∫

dk

k
W 2(kR)Pδr(η, k)

)1/2

, (5.70)

where W is the Fourier transform of the top-hat window function: W (x) = 3(sinx −
x cos x)/x3. It turned out that the dispersion of the density perturbation at the horizon
crossing of some mode k1 smoothed over the horizon scale at that moment (namely,
η = k−1

1 ), σ(η = k−1
1 , R = k−1

1 ), is maximum and is ∼ A2 at around k1 ∼ 0.7kp (see
Fig. 5.2), which means the PBH formation is most efficient at around this moment, so
we restrict our attention to this moment in the following.

To determine the abundance of PBHs, the PDF of the density perturbations is neces-
sary. In many cases the PDF of the density perturbations is assumed to be Gaussian, but
in our situation it is in general highly non-Gaussian, since the density perturbation is gen-
erated due to the second-order effects of tensor perturbations, whose statistical properties
are assumed to be Gaussian in this work. We can simulate the PDF of δr by randomly
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Figure 5.2: The dependence of σ(η = k−1
1 , R = k−1

1 ) on k1.

generating the Fourier modes of GWs {hr(k)} repeatedly, in principle (for the details see
the Appendix F), whose result is shown in Fig.5.3. The simulated PDF P (δr) of δr turns
out to be well approximated by the formula (F.29). The fraction of the volume which has
collapsed into PBHs at the moment of the formation is estimated by

β =

∫ ∞

δr,th

P̃ (δr − ⟨δr⟩)dδr =
∫ ∞

δr,th/A2

P (δ̃r)dδ̃r, (5.71)

where δr,th is the threshold amplitude required for the formation of PBHs, in the following
assumed to be δr,th ∼ 0.4 [81,82]†6. This quantity β has been constrained observationally
on various mass scales and we use Fig.9 of [12]. Upper bounds for each value of β,
corresponding to different masses of PBHs, can be obtained, which is shown in Fig.5.4.
Here, upper bounds are shown as a function of kp, using the following relation between
the mass of PBHs and the comoving scale of perturbations:

MPBH = 2.2× 1013M⊙

(
k

1Mpc−1

)−2

. (5.72)

Note that the dependence of the upper bounds on the perturbation scales is logarithmically
weak, which can be understood from the exponential dependence of the PDF on δr and
hence on A2 for 0 ≲ δr.

Let us compare this PBH bound with BBN and CMB bound. To see this let us first
rederive the formula for the energy density of gravitational waves ρGW on sub-horizon

†6In these papers the initial conditions of numerical simulations were given in terms of the
curvature profile in the limit of the vanishing ratio of the Hubble radius to the scale of pertur-
bation, which is related to the radial profile of the curvature perturbation. In the present work
scalar perturbations are sourced by second-order tensor perturbations, and so strictly speaking
the threshold values obtained in these numerical simulations may not be directly applied. A
more precise treatment may require dedicated numerical simulations, which is beyond the scope
of this work. It would be worthwhile to mention here that the energy density of GWs is expected
to help gravitational collapse, in light of previous works on direct collapse of nonlinear GWs,
mentioned in the footnote †2. This effect is not taken into account in the present work, so in
this sense our upper bounds may be conservative.
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Figure 5.3: The PDF of δ̃r ≡ (δr − ⟨δr⟩)/A2 for ∼ 106 realizations of {hr(ki)} (see
Appendix F for the details). The curve is the approximate PDF of δ̃r given by (F.29).

scales. Noting ρGW = −⟨S1⟩/4πGa2 from (5.14), where the brackets here imply temporal
and spatial average (see e.g. [232] for more details), let us rewrite ⟨S1/a

2⟩ in the following.
By integration by parts and using (5.13),⟨

S1

a2

⟩
=

⟨
1

a2

(
−1

4
h′ijh

ij′ − 3

2
Hhijhij

′
+

1

4
hijh

ij′′
)⟩

=

⟨
−1

4
ḣijḣ

ij − 5ȧ

4a
hijḣ

ij +
1

4
hijḧ

ij

⟩
= −1

2
⟨ḣijḣij⟩, (5.73)

hence†7,

ρGW =
⟨ḣijḣij⟩
8πG

. (5.74)

Assuming the delta-function power spectrum (5.59),

ρGW =
A2⟨Ḋ(η, kp)

2⟩
2πG

=
A2

2πGa2

⟨(
cos kpη

η
− sin kpη

kpη2

)2
⟩
∼ A2

4πGa2η2
. (5.75)

The following will be used shortly, obtained from ρrad = 3H2/8πG = 3/8πGa2η2:

ρGW

ρrad
=

2

3
A2. (5.76)

It is often useful to characterize the existence of gravitational waves in terms of the
effective number of degrees of freedom of fermionic relativistic species. First note that

†7If we defined tensor perturbations without the factor 2 in front of hij in (5.9), then we would
obtain, instead of (5.74), the formula often used in the literature: ρGW = ⟨ḣij ḣij⟩/32πG.
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Figure 5.4: Comparison of upper bounds on the amplitude A2 of a spike in the power
spectrum of primordial tensor perturbations, Ph(k) = A2kδ(k − kp), as a function of kp.
Note that in this figure the PTA bound is shown to be more than two-orders-of-magnitude
tighter than the PBH bound at around 4× 106Mpc−1.

the total energy density of radiation without the presence of gravitational waves is written
as

ρrad(T ) =
π2

30
g∗T

4. (5.77)

Here, g∗ is the effective number of degrees of freedom of relativistic species and at around
the epoch of BBN it is given by [195,233]

g∗ = 2 +
7

8
(4 + 2Nν), (5.78)

where Nν is the standard effective number of neutrinos Nν = 3.046†8. This value of
g∗ is obtained by counting the degrees of freedom of photons, electrons, positrons, and
(anti-)neutrinos. Note that electrons and positrons annihilate when T ≃ 0.5MeV and
hence should not be included at the photon decoupling. Effects of GWs or, possibly, dark
radiation, are denoted by ∆Neff , as a correction to Nν above. In the following we use
∆NGW as a contribution of GWs and relate it to A2. When GWs are present, the total
energy density becomes (noting (5.69))

ρtot = ρrad(T )(1 + ⟨δr⟩) + ρGW, (5.79)

†8The slight deviation from Nν = 3 arises from the slight heating of neutrinos due to the relic
interactions between e± and neutrinos at the epoch of e± annihilations, which took place only
shortly after the neutrino decoupling [200].
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which can be written, with the redefinition of the temperature T → T (1 + ⟨δr⟩/4), as

ρtot = ρrad(T ) + ρGW. (5.80)

Note that ρGW/ρrad ∼ Ph ≪ 1 by definition of tensor ”perturbations”, or this is marginally
guaranteed at least thanks to our PBH constraint. Therefore in the following we assume
this inequality, but it turns out that most of the upper limits discussed below are too
weak to be compatible with this condition, which may appear to invalidate the following
analyses. However, our purpose here is to show that other constraints are not so tight
and hence the above condition can be assumed. After the horizon crossing of GWs, its
energy density starts to scale as ∝ a−4, while, denoting the effective degrees of freedom of
relativistic species in terms of entropy at temperature T by gS(T ), the photon temperature

evolves following gS(T )T
3a3 =const. (i.e. constant entropy) and ρrad ∝ g∗T

4 ∼ 1/(a4g
1/3
S )

(see e.g. [233]). Then, defining ΩGW≡ ρGW/ρcrit ≃ ρGW/ρrad,

ΩGW(T ) =

(
gS(T )

gS(Tin)

)1/3

ΩGW(Tin), (5.81)

where Tin = Tin(kp) is the temperature of radiation at the moment of the horizon crossing
of GWs with comoving wavenumber kp, and T < Tin

†9. The contribution of GWs is
characterized by ∆NGW as follows, at the epoch of BBN;

ρrad(T ) + ρGW(T ) =
π2

30

[
2 +

7

8
{4 + 2(Nsta +∆NGW)}

]
T 4, (5.83)

which leads to

ρGW(T ) = ρrad(T )×
7

8
×2×∆NGW(T )

/{
2 +

7

8
(4 + 2Nsta)

}
≒ 7

43
ρrad∆NGW(T ). (5.84)

Since

ΩGW(Tin) ≃
2

3
A2 (5.85)

from (5.76), ∆NGW(T ) can be written as

∆NGW(T ) =
43

7
ΩGW(T ) =

86

21
A2

(
gS(T )

gS(Tin)

)1/3

. (5.86)

An upper bound on ∆Neff < ∆Nupper is usually translated into an upper bound on ∆NGW,
∆NGW < ∆Nupper. As is also mentioned previously, here it is assumed that any physical

†9In [234] the following convenient fitting function is shown:

gS(Tin(k)) = gS0

{
A+ tanh [−2.5 log10 k/2πf1]

A+ 1

}{
B + tanh [−2.0 log10 k/2πf2]

B + 1

}
, (5.82)

where A = (−1 − gBBN/gS0)/(−1 + gBBN/gS0), B = (−1 − gmax/gBBN)/(−1 + gmax/gBBN),
gS0 = 3.91, gBBN = 10.75, f1 = 2.5×10−12Hz and f2 = 6.0×10−9Hz. As for gmax following [234]
we assume the sum of the standard-model particles, gmax = 106.75. Note that k/2πf1 =
k/(1.6× 10−3pc−1) and k/2πf2 = k/(3.9pc−1).
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mechanisms, both known and unknown, contribute positively to Neff . However, it would
be worthwhile to note that at least there are examples where Neff decreases [201–203].
The requirement above, ∆NGW < ∆Nupper, is translated into an upper bound on A2 from
(5.86) as follows:

A2 ≲ 21

86

(
gS(Tin)

gS(T )

)1/3

∆Nupper. (5.87)

Note that gS(T ) = 10.75, for BBN.
On the other hand, at the epoch of photon decoupling,

ρrad(T ) + ρGW(T )

=
π2

30

{
2 + 2× 7

8

(
4

11

)4/3

(Nν +∆NGW)

}
, (5.88)

which yields

ΩGW(T ) =
2× 7

8

(
4
11

)4/3
2 + 2× 7

8

(
4
11

)4/3
Nν

∆NGW ≃ 0.13∆NGW. (5.89)

So in this case we find

A2 < 0.13× 3

2
×∆Nupper

(
gS(Tin)

gS(T )

)1/3

. (5.90)

Note that this constraint depends on gS, which one may regard as a drawback of these
methods since gS is uncertain especially at high temperatures. It also depends on other
potential entropy productions [234]. On the other hand, the PBH constraint is not so
sensitive to gS nor other entropy productions.

In order not to spoil BBN, we set, following [234], ∆Nupper = 1.65 as a 95% C.L.
upper limit, which is applicable for the scales smaller than the comoving horizon at the
time of BBN, namely, 6.5 × 104Mpc−1 ≲ k†10. As for CMB constraints, in [196] the
use of homogeneous initial conditions of GWs is advocated for SGWB generated, for
instance, by quantum fluctuations during inflation. In this case 95 % upper limits are
∆Nupper = 0.18 [235]†11. For adiabatic initial conditions of GWs we refer to

Neff = 3.52+0.48
−0.45 (95%; Planck +WP+ highL + H0 + BAO) (5.91)

of [42] to set ∆Nupper = 1.00 [197].
The current energy density of SGWB, ΩGW,0, is also constrained by LIGO and Virgo,

most severely in the band 41.5 − 169.25Hz as ΩGW,0 ≲ 5.6 × 10−6 × log(169.25/41.5) ≃
8× 10−6 [236]. Noting ΩGW,0 ∼ (4/100)1/3 × 2A2/3zeq ∼ 7.6× 10−5A2 (zeq ∼ 3000 is the

†10The effect of potential extra degrees of freedom of relativistic species, which we denote by
∆N , on BBN is summarized as follows (see e.g. [233]); ∆N > 0 increases the expansion rate,
leading to the freeze-out of the conversion reaction between protons and neutrons at a higher
temperature; this increases neutrons available at BBN and therefore 4He is produced more.
†11One would get somewhat tighter constraints than those in [235] for homogeneous initial

conditions of GWs energy density, by repeating the analysis of [235] using more recent data.
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redshift at the matter-radiation equality, and the factor z−1
eq reflects ΩGW ∝ (1+z)/(1+zeq)

during a matter-dominated era), we have A2 ≲ 0.1†12.
Pulsar timing arrays (PTAs) have also been used to constrain GWs. Following [234]

we use the most stringent upper bound around f = 5.72×10−9Hz (∼ 4× 106Mpc−1),
ΩGW,0 ∼ (4/11)1/3 × 2A2/3zeq ≲ 5× 10−8, which leads to A2 ≲ 3× 10−4.

Note that GW detectors or PTA experiments usually target GWs on a relatively
limited frequency range, while cosmological methods like PBHs probe primordial GWs
on a wide range of frequencies, and this is another advantage of PBHs in constraining
primordial GWs (see Fig.5.4).

These upper bounds as a function of kp is shown in Fig.5.4 along with the PBH upper
bound. One may not regard some of these constraints as meaningful, because upper limits
correspond to the amplitude of GWs which is (almost) nonlinear.

PBH upper bounds can also be expressed in temrs of ∆NGW using (5.86), and also in
terms of the current energy density parameter of GWs, ΩGW,0, using

ΩGW,0 =
2A2

3zeq

(
gS0

gS(Tin)

)1/3

, (5.92)

which follows from (5.81) and (5.85). Here, the factor zeq ≃ 3000 takes into account the
relative dilution of the energy density of GWs in comparison to that of non-relativistic
matter during the matter domination. PBH upper bounds in terms of these quantities
are shown in Fig.5.5. Be reminded that if future experiments reveal meaningfully large
value of ∆Neff , then primordial GWs provide a possible explanation, as well as dark
radiation. However, if the value of ∆Neff is large, say 0.5, exceeding the values indicated
in Fig.5.5, then we may exclude primordial GWs as a candidate thanks to our PBH
bounds on them†13. This shows an example of how our PBH upper bounds can provide
useful information about the early universe.

5.4 Discussion

A novel method to probe primordial gravitational waves is discussed, which method in-
volves the formation of PBHs. If the amplitude of tensor perturbations initially on super-
horizon scales is very large, large-amplitude scalar perturbations are generated due to the
second-order effects of tensor modes. If the typical amplitude of resultant induced scalar

†12They also obtained weaker upper bounds on a few other frequency ranges other than the
one around ∼ 100Hz, which we did not include. Also, strictly speaking, in [236] some power
low frequency dependence is assumed in each band, and so their results may not be directly
translated into constraints on a narrow peak in the power spectrum we consider. Indeed in [237]
an optimal analysis method is discussed to search for a sharp emission line of SGWB, which
can increase the signal-to-noise ratio by up to a factor of seven. That is, our comparison here is
only a crude one, but it is sufficient for our purposes. The same applies to the comparison with
PTA.
†13There may be a loophole, however. Logically, if primordial GWs follow a tremendously non-

Gaussian PDF, it might be possible to realize large ∆NGW without producing too may PBHs.
See also a discussion about possible effects of non-Gaussianity of primordial GWs, made in the
Discussion of this Chapter.
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Figure 5.5: PBH upper bounds in terms of ΩGW,0 and ∆NGW as a function of kp.

perturbations becomes too large, PBHs are produced too abundantly to a level that is
inconsistent with various types of existing observations which have placed upper bounds
on the abundance of PBHs on a wide range of mass scales.

To constrain tensor modes from PBHs, as well as the power spectrum of the radiation
density perturbations, we have calculated the PDF of the radiation density perturbations,
which is in general highly non-Gaussian since they are sourced by the terms in the Einstein
equations which are second-order in tensor modes hij. The PDF is inferred from a Monte
Carlo simulation and an approximate formula for the PDF is also derived.

Using this PDF we have placed upper bounds on the initial amplitude of tensor modes
assuming a delta-function power spectrum. PBH bounds have been compared with other
bounds obtained from BBN, CMB, LIGO and Vigo, and PTAs.

As already mentioned PBH constraints are applicable from ∼ Gpc all the way down to
∼ 0.3m if we assume the number of e-folds during inflation is sixty. Note that the exclu-
sion of an overproduction of smallest PBHs (MPBH ≲ 105g) depends on the assumption
that stable Planck mass relics are left over at the end of Hawking evaporation, which con-
tribute to cold dark matter (see [107], [12] and references therein). The range of comoving
scales corresponding toMPBH ≲ 105g is roughly ≲ 50m, and so PBH upper bounds in this
range depend on this assumption. If Planck mass relics are not formed, to what extent
an overproduction of PBHs withMPBH ≲ 105g is cosmologically problematic is uncertain.
Such an overproduction of smallest PBHs may lead to an early matter-dominated era,
during which PBH binaries are formed and emit GWs, or larger PBHs may form due to
merger taking place after the collapse of perturbations of PBHs’ density, thereby leaving
observable traces [238]. Therefore, in principle one may still exclude such an over produc-
tion of smallest PBHs even without the left over of Planck mass relics to fully validate
our upper bounds on smallest scales, though we do not discuss it in detail here.

In this Chapter the delta function power spectrum of tensor modes (5.59) is assumed
and an upper bound on the amplitude of that spike is obtained from the non-detection of
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PBHs. This PBH upper bound in this case turns out to be somewhat tighter than upper
bounds obtained from BBN or CMB. It would be worthwhile to generalize our analysis
to other types of tensor power spectrum such as a blue spectrum. Let us briefly discuss
to what extent a blue tensor spectrum can be constrained by simple estimations. To this
end here we assume the tensor power spectrum has the following form:

Ph(k) = rPζ(kref)
(
k

kref

)nT

, (k < kmax), (5.93)

where Pζ is the dimensionless power spectrum of the curvature perturbation on uniform-
density hypersurfaces and r is the tensor-to-scalar ratio, here defined at kref= 0.01Mpc−1.
Let us further assume r = 0.2 and P(kref) = 2.2 × 10−9 following [234] and also kmax ∼
1Gpc−1e60 ∼ 3m−1. If we simply require Ph(kmax) ≲ 0.04, referring to (5.6), we obtain
nT ≲ 0.3, which is tighter than other constraints such as BBN constraints shown in [234].
Once more, this PBH bound is not so sensitive to the details of a potential early matter-
dominated era phase nor an entropy production, on which constraints other than PBHs
are sensitive [234]. If we use a more secure but weaker constraint on PBHs of around 105g
by their entropy production [12], we may require Ph(20km−1) ≲ 0.4, leading to nT ≲ 0.4,
still tighter than other constraints. To conclude, PBHs can provide important constraints
also on a blue spectrum, though a more careful analysis would be merited.

We have used perturbative expansion in terms of small perturbations so far, so one
may be worried about the validity of the PDF, shown in Fig.5.3, close to the threshold of
δth ≃ 0.4 we adopted, which value indicates further nonlinearities may affect. Very naively,
next-order corrections would appear in the fundamental equations whose magnitude is
∼ O(hij) ∼

√
0.4 ∼ 0.6, so the upper bounds can be affected by ∼ 60%. Certainly this

estimation is very naive and so a more careful estimation would be merited. If additional
nonlinearities enlarge the amplitude of induced perturbations, then our upper bounds
based on the present formulation would be conservative. To see how these nonlinearities
can affect eventual results, one may write down the next-order correction terms, and the
behaviors of these terms may provide insight into how additional nonlinearities affect our
results. Gradient expansion approach may also be helpful (see e.g. [97] and references
therein). This is another perturbative approach based on the smallness of the ratio of
spatial derivatives to time derivatives for perturbations on super-horizon scales. This is
valid only on super-horizon scales, but this can treat nonlinear perturbations, relevant
to PBH formation. If one compares the amplitude of induced perturbations obtained by
the gradient expansion approach and that we have obtained, one would gain insight into
how nonlinearities might affect. However, the gradient expansion approach itself is not
perfect either, since it does not allow us to evolve perturbations up to the moment of the
horizon crossing of perturbations under consideration, which is required to calculate the
probability of PBH formation. Refining our results further would be a formidable task,
which is beyond the scope of this work. The present formulation would be acceptable,
providing moderately precise and potentially conservative bounds, for our purpose here
to propose a novel method to constrain primordial tensor perturbations on small scales
from PBHs with detailed calculations for the first time. Though PBH upper bounds on
scalar perturbations have long been known, probably since [143], we have newly found
PBH upper bounds on tensor perturbations as well.

In this Chapter we have assumed Gaussianity of primordial tensor perturbations, but
PBH constraints on tensor perturbations depend on the statistics of tensor perturbations,
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determining the statistics of induced density perturbation, just as PBH constraints on
scalar perturbations depend on the statistics of scalar perturbations [190]. If high-σ real-
izations of tensor perturbations are suppressed (enhanced) in comparison to a Gaussian
case, PBH constraints on tensor perturbations are tighter (weaker). One may conjecture
the dependence of PBH constraints of tensor perturbations on the statistics of tensor per-
turbations is weaker than the dependence of PBH constraints of scalar perturbations on
the statistics of scalar perturbations. This is because in the former case the probability of
PBHs is determined by the statistics of induced radiation perturbations, generated from
second-order tensor perturbations, and so the PDF of induced radiation perturbations
is something similar to a χ2 distribution (see (F.28)). That is, the probability of high-
σ peaks of radiation leading to PBH formation is determined by lower-σ realizations of
tensor perturbations, for which non-Gaussianity is less important than it is for higher-σ
realizations, but a more careful analysis on this matter also would be merited.

We have restricted attention to PBH formation as a result of direct collapse of ra-
diation density perturbations induced by second-order tensor perturbations, but these
density perturbations would also dissipate to induce CMB spectral distortion, and hence
constraints on CMB spectral distortion would also be used to probe tensor perturbations.
Furthermore, second order tensor perturbations naturally induce perturbations in DM as
well, and if the amplitude of induced DM perturbations is large, it leads to substantial
formation of UCMHs. That is, (potential) constraints on UCMHs can also be translated
into upper bounds on tensor perturbations, which will be explored elsewhere [239].
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Chapter 6

Conclusion

Primordial perturbations on a wide range scales were generated in the early universe.
Those with largest comoving wavelengths, O(Mpc) − O(Gpc), are (indirectly) observed
as anisotropy of cosmic microwave background (CMB), or they serve as the seeds of
large-scale-structures of the universe we see today, as a result of which the nature of
these perturbations on large scales are relatively well understood. On the other hand,
primordial perturbations on much smaller scales should also exist, but the nature of these
is less understood. Since different models of the early universe predict different properties
of primordial perturbations on small scales, investigation of these also provides valuable
information about the early universe.

There are several methods to probe primordial power on small scales, one of which
is primordial black holes (PBHs), which was reviewed in Chapter 2. If an overdensity of
order unity exists on the horizon scale in the early universe, this region collapses to form a
black hole. There has been no conclusive evidence for the existence (both in the past and
in the present) of these PBHs, which fact itself serves as a unique tool to probe the early
universe. If we assume standard almost-scale-invariant primordial perturbations with am-
plitude O(10−5), confirmed on large scales mentioned above, then the probability of PBH
formation is vanishingly small. In order for PBHs to be produced to an observationally
relevant level, we must have the dispersion, or the typical squared amplitude of primor-
dial perturbations at horizon crossing, of ∼ 10−3, under the assumption of Gaussianity of
primordial perturbations (See Chapter 2 for more details). In other words, the amplitude
of primordial perturbations on small scales has to be smaller than this values, in order
not to overproduce PBHs, and this is the only method we have to probe primordial power
all the way down to smallest scales.

As we briefly reviewed in Chapter 2, Another method to probe primordial power
on small scales is CMB spectral distortion. In the sufficiently early universe (z ≳ 2 ×
106), the energy spectrum of photons is maintained to be a black body spectrum well,
which is characterized by only one parameter, the temperature. This is because at such
high redshifts all of the three predominant processes determining the photon spectrum,
which are double Compton scattering (DS), Bremsstrahlung (BS) and Compton scattering
(CS), are efficient, in comparison to the expansion rate of the universe, with DS and BS
controlling the number of photons, and with CS redistributing photons in frequency.
Below z ∼ 2 × 106, DS and BS become relatively inefficient, after which a black body
spectrum can no longer be kept when some energy is injected into the background universe.

70



During the redshift interval 5 × 105 ≲ z ≲ 2 × 106, CS is still efficient, and under
these circumstances the photon spectrum becomes a Bose-Einstein spectrum with an
effective chemical potential if some energy is injected into the background universe, and
so this redshift range is sometimes called the ”µ−era”. CMB spectral distortion has been
tightly constrained by COBE/FIRAS and will be detected or more tightly constrained by
future experiments, and these have provided and will provide valuable information about
the mechanisms which release energy in the early universe. One of important physical
mechanisms of energy injection, leading to CMB distortion, is dissipation of primordial
perturbations due to diffusion of photons. The energy originally stored in acoustic waves is
released in this process of diffusion damping, which causes CMB µ-distortion if it happens
during the µ−era.

Supermassive black holes (SMBHs) of 109−10M⊙ have been observed at high redshifts
(z ∼ 10). The reason why such gigantic SMBHs already existed at such high redshifts
is not fully understood yet, and so far it appears to be difficult for usual astrophysical
processes to provide an established explanation, though intensive studies are under way.
Given this situation, it would be worthwhile and interesting to consider a possibility of
PBHs providing the seeds of these SMBHs. To this end, let us recall that, as is discussed
in Chapter 3, primordial perturbations whose comoving wavenumber lies in the range
50Mpc−1 ≲ k ≲ 104Mpc−1 dissipate during the µ−era, leading to positive µ−distortion.
This implies primordial perturbations of these wavenumbers can be constrained by CMB
µ−distortion, and resultant COBE/FIRAS upper bounds are tighter than upper bounds
obtained by the absence of PBHs. This means that PBHs larger than 104−5M⊙ are ex-
cluded, to be consistent with COBE/FIRAS upper bounds on µ−distortion. However, this
conclusion is based on the assumption that primordial perturbations are Gaussian, and
hence can be evaded if primordial perturbations (on small scales) are highly non-Gaussian.
A few examples of such models were discussed, which predict highly non-Gaussian and
large amplitude small-scale primordial perturbations with a certain probability, and con-
sequently predict formation of PBHs as massive as necessary to later serve as the seeds
of SMBHs at high redshifts, without violating CMB distortion bounds by COBE/FIRAS.
There we have resorted to two-inflation models which are characterized by the form of
the inflaton potential depicted in Fig.3.4.

In Chapter 4, we have discussed another novel probe, named acoustic reheating, of
primordial power in the comoving wavenumber range 104Mpc−1 ≲ k ≲ 105Mpc−1. These
modes dissipate before the µ−era, which (basically) only results in a slight global increase
in the temperature of the universe (acoustic reheating), without causing substantial CMB
µ−distortion, and so the dissipation of these modes has not received much attention
for a long time. However, recently in [43] (see also [120]), we have pointed out that
acoustic reheating caused by the dissipation of these modes results in an increase in the
number density of photons, without changing that of baryons, and hence results in a
slight decrease of the baryon-to-photon ratio η. Since the values of η at the epoch of big
bang nucleosynthesis and photon decoupling are independently inferred from observations
of the current abundance of the light elements and CMB anisotropy, too much decrease
in η between these two epochs contradicts with observations. This consideration lead
to upper bounds on the amplitude of primordial perturbations in the above range of
comoving wavenumbers.

Perturbations to the isotropic and homogeneous universe can be decomposed into
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scalar, vector and tensor parts, and Chapters 2, 3 and 4 are dedicated to discussions
of investigation of primordial scalar perturbations on small scales. In Chapter 5, we
have also discussed investigation of primordial tensor perturbations on small scales. In
linear theory, scalar, vector and tensor perturbations evolve independently, but at the
second-order level they are coupled. For instance, scalar perturbations can be generated
from second-order tensor perturbations (induced scalar perturbations). If the amplitude of
primordial tensor perturbations is sufficiently large, then the amplitude of induced scalar
perturbations becomes also large enough for PBHs to be generated abundantly. This
means that the absence of PBHs can also be translated into upper bounds on primordial
tensor perturbations, just as it leads to upper bounds on scalar perturbations. PBH
upper bounds on the delta-function power spectrum, introduced by (5.59), are expressed
in Fig.5.4, which shows PBHs provide valuable bounds on a relatively wide range of scales,
in comparison to other bounds.

To conclude, primordial power on small scales causes a wealth of phenomenology, such
as PBH formation, acoustic reheating (Chapter 4) and CMB distortion. PBHs potentially
have various implications, for instance, they may explain SMBHs at high redshifts (Chap-
ter 3). Viewed from a different angle, constraints on these consequences of primordial
power on small scales can be used to place upper bounds on primordial short-wavelength
scalar (Chapter 4) as well as tensor perturbations (Chapter 5), which would provide help-
ful information about the early universe when primordial perturbations arose. These
constraints on primordial power are often expressed in terms of the power spectrum, but,
importantly, these constraints depend on the statistical properties of primordial perturba-
tions, for which Gaussianity is often assumed. In other words, what we obtain should be
regarded as joint constraints on the power spectrum and non-Gaussianity. This tendency
is most noticeable for PBH constraints, which are related to the extremely rare, high-σ re-
alizations of perturbations. This is why it was possible to produce appreciable amount of
PBHs to explain SMBHs at high redshifts, without violating CMB distortion constraints
on the dispersion or the typical amplitude of primordial perturbations. With this kept
in mind, constraints on primordial perturbations on small scales provide complementary
information about the early universe, which can not be obtained by methods based on
CMB or LSS. For instance, in Chapter 3, we have discussed a phenomenological infla-
tionary model which can produce PBHs to explain SMBHs, but, viewed from a different
angle, PBHs provide a unique tool to constrain those types of features in the inflaton
potential discussed there since overproduction of PBHs is inconsistent with various ob-
servational facts we have. This would be just one of many known or unknown examples
which can only be investigated by probes of small-scale primordial power, discussed in
this dissertation.
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Appendix A

PBH formation revisited

Here we briefly review PBH formation process numerically investigated, following [82,83].

A.1 Setting up the initial condition

Assuming spherical symmetry, it is convenient to divide the collapsing matter into a
system of concentric spherical shells and to label each shell with a Lagrangian comoving
radial coordinate r. Then the metric can be written in the form used by Misner and
Sharp [85]:

ds2 = −a2dt2 + b2dr2 +R2(dθ2 + sin2 θdϕ2), (A.1)

where R, a and b are functions of r and the time coordinate t. We consider a perfect
fluid with the energy density ρ(r, t) and pressure P (r, t) and a constant equation-of-state
parameter γ, P (r, t) = γρ(r, t). We express the proper time derivative of R as

U ≡ Ṙ

a
, (A.2)

with a dot denoting a derivative with respect to t.
We define the mass, sometimes referred to as the Misner-Sharp mass in the literature,

within the shell of circumferential radius R by

M(r, t) = 4π

∫ R(r,t)

0

ρ(r, t)R2dR. (A.3)

We consider the evolution of a perturbed region embedded in a flat Friedmann-Lemaitre-
Robertson-Walker (FLRW) universe with metric

ds2 = −dt2 + S2(t)(dr2 + r2dθ2 + r2 sin2 θdϕ), (A.4)

which is a particular case of (A.1). The scale factor in this background evolves as

S(t) =

(
t

ti

)α
, α ≡ 2

3(1 + γ)
, (A.5)

where ti is some reference time.
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We denote the background solution with a suffix 0. In terms of the metric variables
defined in (A.1), we find

a0 = 1, b0 = S(t), R0 = rS(t). (A.6)

The background Hubble parameter is

H0(t) =
Ṙ0

a0R0

=
Ṡ

S
=
α

t
, (A.7)

and the energy density is calculated from the Friedmann equation,

ρ0(t) =
3α2

8πGt2
. (A.8)

The energy density perturbation is defined as

δ(t, r) ≡ ρ(t, r)− ρ0(t)
ρ0(t)

. (A.9)

We introduce a variable H defined by

H(t, r) ≡ Ṙ

aR
=
U

R
. (A.10)

The curvature profile K(t, r) is defined by rewriting b as

b(t, r) =
R′(t, r)√

1−K(t, r)r2
. (A.11)

This quantity K(t, r) vanishes outside the perturbed region so that the solution asymp-
totically approaches the background FLRW solution at spatial infinity.

We denote the comoving radius of a perturbed region by ri, the precise definition of
which will be given later (see eq. (A.15)), and define a dimensionless parameter ϵ in
terms of the square ratio of the Hubble radius H−1

0 to the physical length scale of the
configuration,

ϵ ≡
(
H−1

0

S(t)ri

)2

= (Ṡri)
−2 =

t2αi t
β

α2r2i
, β ≡ 2(1− α). (A.12)

When we set the initial conditions for PBH formation, the size of the perturbed region is
much larger than the Hubble horizon. This means ϵ≪ 1 at the beginning, so it can serve
as an expansion parameter to construct an analytic solution of the system of Einstein
equations to describe the spatial dependence of all the above variables at the initial
moment when we set the initial conditions. Here, the second order solution, obtained
in [96], is basically used to provide the initial conditions for the numerical computations.

We define the initial curvature profile as

K(0, r) ≡ Ki(r), (A.13)

where Ki(r) is an arbitrary function of r which vanishes outside the perturbed region.
Note that, from (A.11), Ki(r) has to satisfy the condition

Ki(r) <
1

r2
. (A.14)
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We normalize radial Lagrangian coordinate r in such a way that Ki(0) = 1.
In order to represent the comoving length scale of the perturbed region, we use the

co-moving radius, ri, of the overdense region. We can calculate ri by solving the following
equation for the energy density perturbation defined by (A.9):

δ(t, ri) = 0. (A.15)

Since the initial condition is taken at the superhorizon regime, when ϵ is extremely small,
the following lowest-order solution [81]

δ(t, r) =
2r2i
9r2

(r3Ki(r))
′ϵ(t) (A.16)

suffices to calculate ri, which is obtained by solving

3Ki(ri) + riK
′
i(ri) = 0. (A.17)

Note that the physical length scale in the asymptotic Friedmann region is obtained by
multiplying by the scale factor S(t), the normalization of which we have not specified. We
can therefore set up initial conditions for the PBH formation with arbitrary mass scales
by adjusting the normalization of S(t) which appears in the expansion parameter.

We also introduce the averaged over-density, denoted by δ̄ and defined as the energy
density perturbation averaged over the over-dense region as follows:

δ̄(t) ≡
(
4

3
πR(t, rod(t))

3

)−1 ∫ R(t,rod(t))

0

4πδR2dR. (A.18)

Here rod(t) represents the comoving radius of the overdense region and is the solution of
δ(t, rod(t)) = 0. It turns out that rod(t) is very close to ri calculated from (A.17), i.e.
lowest-order expansion.

A.2 Basic equations used in the numerical computa-

tions

The following equations were used in [240] to analyze the gravitational collapse of spher-
ically symmetric masses:

U̇ = −a
(
4πR2 Γ

w
P ′ +

MG

R2
+ 4πGPR

)
, (A.19)

Ṙ = aU, (A.20)

(νR2)·

νR2
= −aU

′

R′ , (A.21)

Ė = −P
(
1

ν

)·

, (A.22)

(aw)′

aw
=
E ′ + P (1/ν)′

w
, (A.23)
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M = 4π

∫ r

0

ρR2R′dr, (A.24)

Γ = 4πνR2R′, (A.25)

P = γρ, (A.26)

w = E + P/ν, (A.27)

where E ≡ ρ/ν and

ν ≡ 1

4πbR2
. (A.28)

The constraint equation reads(
R′

b

)2

= Γ2 = 1 + U2 − 2M

R
. (A.29)

We introduce the barred variables, which are defined by factoring out the scale factor S
and the background energy density ρ0 as shown below:

R̄ ≡ R/S, (A.30)

ā ≡ a, (A.31)

Ū ≡ U/Ṡ, (A.32)

ρ̄ ≡ ρ/ρ0, (A.33)

M̄ ≡M/(ρ0S
3), (A.34)

b̄ ≡ b/S, (A.35)

ν̄ ≡ S3ν, (A.36)

Γ̄ ≡ Γ, (A.37)

P̄ ≡ P/ρ0, (A.38)

w̄ ≡ w/(ρ0S
3). (A.39)

The boundary conditions are imposed such that Ū = R̄ = M̄ = 0 and Γ = 1 at the
center, and ā = ρ̄ = 1 on the outer boundary so that the numerical solution is smoothly
connected to the FLRW solution.

A.3 Typical time evolution of perturbed regions in

the cosmic time slicing

Let us adopt the following two-parameter family of curvature profile

Ki(r) =

[
1 +

B

2

( r
σ

)2]
exp

[
−1

2

( r
σ

)2]
, (A.40)

which was also investigated in [81] (hereafter PM). As mentioned previously, the amplitude
of the profile is set to unity at the origin, meaning that we use the same normalization as
a spatially closed Friedmann universe. Here the parameters B and σ control the shapes of
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Figure A.1: A wide and narrow initial curvature profiles Ki(r) represented by (A.40).
Note that Ki(r) has to satisfy the condition Ki(r) < 1/r2.

initial perturbations. The range of B is limited to 0 ≤ B ≤ 1 so that Ki(r) is a monotonic
function. Two examples of (A.40) are shown in Figure A.1.

In order to relate the initial curvature perturbation to the amplitude of the density
perturbation, following PM, let us approximately evaluate the energy density perturbation
averaged over the over-dense region, denoted by δ̄ and defined by (A.18), at the time of
the horizon crossing. Using (A.16) δ̄(t) becomes

δ̄(t) =

(
4

3
πr3i

)−1 ∫ ri

0

8πr2i
9

(r3Ki(r))
′ϵ(t)dr =

2

3
Ki(ri)r

2
i ϵ(t). (A.41)

By setting ϵ(t) = 1, we define

δ̄hc ≡
2

3
Ki(ri)r

2
i . (A.42)

Note that (A.41) is valid only when ϵ(t) ≪ 1, so this formula gives just an approximate
value of δ̄(t) at the time of the horizon crossing. Still, (A.42) gives a good indicator of
how strong gravity is.

A profile for which δ̄hc is small corresponds to a small amplitude perturbation and PBH
is not formed from this kind of initial configurations. The narrow profile in Figure A.1 with
(B, σ) = (0, 0.3) corresponds to δ̄hc = 0.04, while the wide profile with (B, σ) = (1, 0.7)
corresponds to δ̄hc = 0.51. So the width of Ki(r) approximately tells how large δ̄hc is,
as can be seen from (A.42). In the following the time evolution of the initial perturbed
region for these two cases is presented as illustration.

First, let us look at the case of the narrow profile (δ̄hc = 0.04). The time evolution of
the energy density ρ̄, normalized by the background energy density, is shown in Figure
A.2. In this case the growth of the perturbation stops at some point in time after the
horizon crossing and the energy density starts to decrease in the central region, with a
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Figure A.2: An example of the time evolution of the energy density perturbation ρ̄,
normalized by the background energy density, in a case where (B, σ) = (0, 0.3) and no
PBH is formed. The plots are numbered in order of time evolution.

sound wave propagating outward, the amplitude of which gradually decreases. That is,
the initial perturbation dies away and the eventual state at t = ∞ is the flat FLRW
universe.

Next, let us consider a case where the amplitude of the initial perturbation is suffi-
ciently large ((B, σ) = (1, 0.7), δ̄hc = 0.51) and a PBH is eventually formed. The time
evolution of ρ̄, U and 2M/R in this case is shown in Figure A.3.

Near the center the energy density increases drastically and the central perturbed
region gradually expands outward. The central perturbed region is always surrounded by
the under-dense region.

From (A.10) U is written as U = HR and it corresponds to the recession velocity in the
FLRW universe. At an early stage, when the amplitude of the perturbation is small, U is
positive everywhere, reflecting the expansion of the universe. In the central region where
gravity becomes increasingly stronger, the expansion decelerates rapidly and therefore U
decreases rapidly. Then at some point in time, the central region stops expanding and U
becomes negative there, starting gravitational contraction.

The mass M is defined by (A.3) and represents the total energy contained in a sphere
of radius R. When the amplitude of perturbation is small, M ∼ ρ0(t)R(t, r)

3 hence
2M/R ∝ R2. As mentioned earlier, at a later stage the energy density in the central region
increases dramatically as a black hole is formed, which is contrasted with the decrease
in the energy density in the surrounding region due to the expansion of the universe.
In such a situation the mass profile in the central region is steep but is relatively gentle
in the surrounding region. This feature of the mass profile can be easily understood by
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Figure A.3: Examples of time evolution of ρ̄(top-left), U(top-right), M(down-left) and
2M/R(down-right), calculated using the cosmic time slicing. These are obtained for the
case (B, σ) = (1, 0.7) and a PBH is formed. Each line is numbered in order of the time
evolution.

an analogy with a situation where a star resides in the vacuum, in which case the mass
profile is a monotonically increasing function inside the radius of the star and is flat
outside that radius. Due to this behavior of M at a later stage, in the region away from
the center the mass only weakly depends on R and so approximately 2M/R ∝ R−1 there.
This means that a peak appears in the profile of 2M/R at some moment in cases where
perturbation grows sufficiently. Specifically, in cases where a black hole is formed, the
height of this peak exceeds unity and this implies the formation of the apparent horizon
from the following arguments [241].

Suppose the trajectory of a photon moving outward, along which

adt = bdr, (A.43)

so along the geodesic of this photon,

dR

dt
=
∂R

∂t
dt+

∂R

∂r
dr = a(U + Γ)dt, (A.44)

where the definition of U (A.2) and Γ = R′/b, followed from (A.25) and (A.28), have been
used. From this we find dR/dt = 0 where U = −Γ holds, meaning the photon reaching
that point cannot escape further away from the center. Since we find U = −Γ when
2M/R = 1 from the constraint (5.4), the peak of 2M/R with the height exceeding unity
means that there exist photons which are trapped by the gravitational potential of the
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central black hole and cannot escape to infinity. That is, the apparent horizon has been
formed.

A.4 accretion onto PBHs and null slicing

The determination of the mass without facing a singularity by using the null slicing
[88, 242–245] is discussed in this section. In this slicing, the space-time is sliced along
the null geodesics of hypothetical photons emitted from the center and reaching a distant
observer. In other words, the space-time is sliced with the hyper-surfaces, each defined
by a constant null coordinate u, the so-called observer time defined shorterly. By this
construction of the null slicing, only the information outside the horizon is calculated,
without looking into what happens inside the apparent horizon. The initial conditions are
given on some hypersurface defined by u =const., which is depicted by a blue dotted line in
Figure A.4, and are obtained using the cosmic time slicing by calculating the null geodesic
of a hypothetical photon which reaches a distant observer after being emitted from the
center at some moment in time, while at the same time recording the physical quantities
of this null geodesic [88]. As is seen in Figure A.4, in this slicing, the information can

Figure A.4: Illustration of how a singularity is avoided in the null slicing.

be obtained without facing a singularity until a sufficiently later time when the eventual
mass of a PBH can be determined.

Let us define the time variable u by first noting

adt = bdr (A.45)

along an outgoing photon. Then, u is defined by

fdu = adt− bdr, (A.46)
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where f is the lapse function and is necessary to make du a perfect differential. From
this definition, (A.45) holds along the hypersurfaces each defined by u =const., meaning
that these surfaces correspond to the null geodesics of outgoing photons. Using u as the
time variable then means that the space-time is sliced with the null slices. A boundary
condition on the lapse function is imposed by setting a(u, r = ∞) = f(u, r = ∞) = 1,
hence u = t at the surface defined by r = ∞. The physical meaning of this boundary
condition is that u is chosen to coincide with the proper time measured by a distant
observer residing at spatial infinity in the background FLRW universe. For this reason,
the null slicing is also sometimes referred to as observer time slicing in the literature.

The Einstein equations in the null slicing were obtained in [242] and were later used to
simulate the gravitational collapse followed by the formation of a black hole [88,243] and
recently to simulate the PBH formation as well [244,245]. We used numerical techniques
similar to those used in [88,245]. The fundamental equations are as follows:

U =
1

f
Ru, (A.47)

1

f
Mu = −4πR2PU, (A.48)

Eu = −P
(
1

ν

)
u

, (A.49)

b =
1

4πνR2
, (A.50)

1

f
Uu = −

3

2

(
4πΓR2

w
P ′ +

M + 4πR3P

R2

)
− 1

2

(
4πνR2U ′ +

2UΓ

R

)
, (A.51)

1

f

(
1

ν

)
u

=
1

νΓ

(
2UΓ

R
+ 4πνR2U ′ − 1

f
Uu

)
, (A.52)

1

b

(
Γ + U

f

)′

= −4πRρ+ P

f
, (A.53)

where the subscript u denotes differentiation with respect to u.
We now present results of numerical computations using the null slicing. The hyper-

surfaces of u =const., corresponding to null geodesics, are shown in the top left panel of
Figure A.5. Observe that the intervals between the null geodesics are tiny in the central
region, meaning that time does not pass there in effect. Therefore, the formation of a
singularity can be avoided in this slicing as expected. The upper lines in this figure corre-
spond to the null geodesics of the hypothetical photons which are emitted from the center
at later times and feel the effects of stronger gravity, so that they need more time to reach
a distant observer. In this figure there is an envelope curve of the null geodesics, which
shows approximately the location of the apparent horizon. In this way the time evolution
is computed only outside the apparent horizon, so the eventual mass of a PBH can be de-
termined without facing a singularity. From the same figure, the apparent horizon radius
can be confirmed to asymptote to a constant value after its formation. This means that
the black hole mass asymptotes to a constant value because R = 2M on the apparent
horizon, and this behavior of the mass can be confirmed by the converging curves of the
mass profile in the bottom left panel of Figure A.5.
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The flatness of the mass profile in later time can be understood by noting that the
energy density in a region away from the center decreases due to the expansion of the
universe and also due to the existence of an underdense region surrounding the central
overdense region. As mentioned earlier, this behavior of the mass profile is similar to
that of the vacuum inhabited by a star at the center, in which case the mass profile is a
monotonically increasing function in r inside the star and is flat outside.

The time evolution of 2M/R is shown in the bottom right panel of Figure A.5. The
fact that the height of the peak of 2M/R saturates to unity in a late time in the null
slicing is clearly seen, which is contrasted with the cosmic time slicing in which the peak
is confirmed to exceed unity (see Figure A.3). This feature of the time evolution being
frozen near the center in the null slicing can also be confirmed by the behavior of the lapse
function, which is shown in the top right panel of Figure A.5. Thus Figure A.5 as a whole
shows that using the null slicing the Einstein equations can be solved until a sufficiently
late time when the eventual mass of a PBH can be determined.

Figure A.5: Examples of time evolutions of the relevant quantities in the null slicing for
the case where (B, σ) = (1, 0.7). The horizontal line represents the circumferential radius
R, normalized by the Hubble radius at the horizon crossing. The u =const. surfaces are
shown in the top left panel. Shown in the top right panel is the lapse function, which
goes to zero near the center. The mass M normalized by the horizon mass at the time
of the horizon crossing is shown in the down left panel. The profile of 2M/R, the height
of which asymptotes to unity, is shown in the down right panel. Arrows in each figure
indicate the evolution in time sequence.
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A.5 The double formation of PBHs

Suppose there exists a highly perturbed region which will collapse to form a PBH after
horizon crossing, and also that this region is superposed on a much larger region, which
also collapses as it enters the horizon later. Then, the collapse of the central smaller region
at the time of the horizon crossing should be followed by another collapse of the larger-
scale perturbation at the time of the horizon crossing of this larger-scale perturbation
(double formation of PBHs). The smaller PBH, formed earlier, is involved in the second
collapse leading to a larger PBH as the final state. It is expected that the first collapse is
not significantly affected by the presence of the larger perturbation since it is still outside
the horizon at the time of the crossing of the smaller perturbation.

In [82], the following function was introduced to parameterize various types of initial
curvature profiles:

Ki(r) = A

[
1 +B

(
r

σ1

)2n
]
exp

[
−
(
r

σ1

)2n
]
+ (1− A) exp

[
−
(
r

σ2

)2
]
, (A.54)

which turned out to allow us to investigate double formation. We consider a profile with
A = 0.99, B = 0, σ1 = 1.45, σ2 = 10σ1 and n = 1, depicted in Fig.A.6. In this case,
the central perturbed region, represented by the first term of (A.54), is superposed on
the perturbed region represented by the second term whose length scale is ten times
larger than the central perturbed region. The first term itself corresponds to an initial
perturbation which can collapse to form a PBH after the perturbed region r ≲ σ1 crosses
the horizon as mentioned earlier. The perturbation represented by the second term is
physically equivalent to the following profile, after a scale transformation r →

√
1− Ar:

Ki = exp

[
−
(

r√
1− Aσ2

)2
]
. (A.55)

So when
√
1− Aσ2 = σ1, which holds in the current parameter choice, the perturbation

represented by the second term is equivalent to the one represented by the first. Therefore,
the second term itself can also collapse to form a PBH after horizon crossing without the
presence of the first term. Physically, what is expected to happen from this initial set up
is that the central region, represented by the first term, collapses to form a PBH as it
enters the horizon and then the larger-scale perturbation represented by the second term
collapses to form a larger PBH after this scale crosses the horizon, involving the central
smaller PBH already formed earlier.

We confirm this prediction by a numerical computation with the aforementioned initial
curvature profile provided as the initial condition; results are shown in Fig.A.7 and A.8.
First, a PBH with mass around 1.5MH(tH), where tH is the horizon-crossing time defined
by the first term of (A.54), is formed, and then another larger PBH ∼ 100MH(tH) is
formed. Note that the mass of the smaller PBH is somewhat larger thanMH(tH), the mass
of the PBH in the previous case with (A,B, σ1, n) = (1, 0, 1.45, 1), even though the first
term is equivalent to this case. This is due to the existence of the second term describing
the larger scale perturbation, which makes the average density around the central region
larger at the time of the formation of the smaller PBH. On the other hand, the mass
of the larger PBH is almost 100 times larger than the previous case with (A,B, σ1, n) =
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Figure A.6: The initial curvature profile eq.(A.54) with (A,B, σ1, σ2, n) =
(0.99, 0, 1.45, 10σ1, 1). The left panel shows the central perturbed region represented by
the first term of eq.(A.54), which is superposed on the perturbed region shown in the
right panel and represented by the second term.

(1, 0, 1.45, 1), which can be understood as follows. First of all, in this simulation of double
formation, the radius of the overdense region ri is defined by the first term of (A.54). So
let us denote this radius by ri,1 to be contrasted with ri,2, the radius of the overdense
region defined by the second term. Since ri,1 ∝ σ1 and ri,2 ∝ σ2, we find ri,2 = 10ri,1.
Then, denoting the horizon crossing time defined by the first term as t(ϵ(ri,1) = 1), we
have t(ϵ(ri,2) = 1) = 100t(ϵ(ri,1) = 1) from eq.(A.12). Since the Hubble radius and the
horizon mass are proportional to t, we find MH(t(ϵ(ri,2) = 1)) = 100MH(t(ϵ(ri,1) = 1)) as
well as RH(t(ϵ(ri,2) = 1)) = 100RH(t(ϵ(ri,1) = 1)).

A.6 The effects of high-frequency modes

In numerical simulations of the formation of PBHs, the presence of high-frequency modes
(hereafter HF modes), whose wavelength is much shorter than the perturbed region under
consideration, are not taken into account [81,92,244,246,247]. HF modes, however, should
exist since in principle the power spectrum of primordial curvature perturbations has an
extended profile and thus affect the formation of PBHs to some extent. In this section,
the effects of HF modes are discussed.

To this end, let us introduce the following initial curvature profile:

Ki(r) = exp

[
−
(
r

σ1

)2
] [

1 + A cos

(
r

Bσ1

)]
. (A.56)

When B < 1, this function represents situations where a HF mode is superposed upon a
perturbation of longer wavelength, as is shown in Fig.A.9.

The time evolution of the energy density perturbation of a typical case is shown in
Fig.A.10. The HF mode crosses the horizon first and starts to grow before the main, or
long-wavelength perturbation crosses the horizon. At this point, the main perturbation
does not seem present as long as we focus on the density perturbation, since the density
perturbation is suppressed on super-horizon scales in the comoving slicing we employ.
After the horizon crossing of the main perturbation, the density perturbation with the
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Figure A.7: Null geodesics of photons for the case of a double formation of PBHs where
(A,B, σ1, σ2, n) = (0.99, 0, 1.45, 10σ1, 1). Arrows represent the direction of the time evo-
lution. Photons emitted at later times first become almost trapped by the smaller PBH,
and narrowly escape to the outer region, where they once more become almost trapped
by the larger PBH before they escape to infinity.

corresponding wavelength starts to grow, and the HF mode starts to propagate towards
the center due to stronger gravity in the center, resulting from the main perturbation.
When a local maximum arrives at the center, it bounces, but soon it pulls back towards
center once more and as a whole the energy density in the center seems to increase
more rapidly than the case without the HF mode. As a result, the value of the density
perturbation at the center fluctuates significantly, as is shown in Fig.5.32†1.

For A = 0 (without the HF mode), the PBH is formed when 1.42 ≲ σ1. When A

†1This makes it difficult to determine (as quickly as possible to reduce computational costs)
when the perturbation is destined to die without forming a PBH, the determination which is
necessary to investigate the formation condition of PBHs. Without the presence of HF modes,
determining when a perturbation is destined to vanish is simple, since in this case the density
perturbation at the center monotonically increases when a BH is eventually formed, and once
it starts to decrease, the perturbation will definitely die so at this time one can stop numerical
integration. In contrast, when a HF mode is present, one cannot conclude the perturbation will
decay even if the density perturbation at the center starts to decrease, because it can be due to
the presence of the HF mode, as is shown in Fig.5.32. So careful analysis is required to ensure
the quasi-global decrease in the density perturbation before stopping numerical integration in
cases including HF modes.
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Figure A.8: The time evolution of the mass profile for the case of a double formation of
PBHs where (A,B, σ1, σ2, n) = (0.99, 0, 1.45, 10σ1, 1). The arrows represent the direction
of the time evolution. The two flat parts measure the mass of the smaller PBH and larger
one, respectively

is larger, the threshold value decreases, implying the HF mode somewhat facilitates the
formation of PBHs, though one may have expected the HF mode to hinder formation.

To understand why HF modes help the formation of PBHs, let us look at Fig.5.32 once
more, showing the local maxima start to move towards the center after horizon crossing
of the main perturbation. This behavior seems to result from strong gravity in the center
due to the main perturbation. This indicates more effective transportation of radiation
towards the center, which may explain the reason for the decrease in the threshold value
when a HF mode is present.

It also turned out that the threshold is insensitive to the wavelength of the HF mode
(confirmed in the range 0.01 < B < 0.2), and that introducing two HF modes at the same
time facilitates PBH formation somewhat more.
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Figure A.9: An example of the initial curvature profile described by eq.(A.56).

Solid: Σ1=1.4, A=0.3, B=0.05
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Figure A.10: An example of the time evolution of the density perturbation for a case
where a PBH is eventually formed. Each curve corresponds to the density perturbation
profile at ϵ = 0.1, 0.2, · · · , 2.9, 3. For comparison, the density perturbation profile for the
same time sequence for a case with the same value of σ1 but without the HF mode, in
which case a PBH can not be formed, is shown by the dashed lines. The arrows indicate
the direction of the fluid motion.
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Appendix B

Dependence on non-Gaussianity of
primordial perturbations
of µ−distortion constraints on PBHs

As is discussed in section 3.1, in [39] PBHs as the seeds of SMBHs are shown to be con-
strained by CMB µ−distortions. That is, if PBHs with MPBH ≳ 104 − 105M⊙ formed by
collapse of radiation perturbations provide the seeds of SMBHs, CMB spectral distortions
larger than observational upper bounds obtained by COBE/FIRAS inevitably arise†1.
However, there primordial perturbations are assumed to be Gaussian, and one would
expect constraints obtained in [39] change for non-Gaussian cases. If non-Gaussianity is
such that high-σ peaks are suppressed, then constraints on PBHs from CMB µ−distortions
(and UCMHs, see the footnote †1) are even tighter, since in this case the dispersion of
primordial perturbations for a fixed abundance of PBHs is larger than that in a Gaus-
sian case. Conversely, if non-Gaussianity is such that high-σ peaks are enhanced, then
µ−distortion constraints on PBHs would be relaxed, and if non-Gaussianity is sufficiently
large, µ−distortion constraints on PBHs would be completely evaded. This was the
essence to avoid CMB distortion constraints to explain most massive SMBHs at high
redshifts by PBHs, discussed in Chapter 3.

In this Appendix we show primordial perturbations have to be tremendously non-
Gaussian, with high-σ peaks enhanced considerably in comparison to a Gaussian case,
to completely evade constraints on PBHs from CMB distortions, adopting the following
class of PDFs:

P (ζ) =
1

2
√
2σ̃Γ (1 + 1/p)

exp

[
−
(
|ζ|√
2σ̃

)p]
, (B.1)

where σ̃ and p are positive. That is, here we consider a monotonically decreasing PDF
unlike a bimodal one considered in Chapter 3. This satisfies

∫∞
−∞ P (ζ)dζ = 1 and reduces

to a Gaussian PDF when p = 2. If p < 2 high-σ peaks are enhanced compared to the

†1Likewise, the formation of PBHs with MPBH ≲ 105M⊙ as the potential seeds of SMBHs
simultaneously leads to an abundant production of dark matter mini-halos (ultracompact mini-
halos (UCMHs)) at high redshifts (say, z ∼ 1000), which may emit standard model particles
such as photons too intensely to be consistent with observed flux obtained by experiments like
Fermi (see [39]). UCMHs are another probe of primordial power on small scales (see Chapter
2).
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case of p = 2 and so we restrict our attention to p < 2 here. For general p, derivatives at
ζ = 0 are discontinuous and so this PDF is unphysical, but the purpose of this Appendix
is to show that ζ has to be tremendously non-Gaussian for PBHs as the seed of SMBHs to
avoid constraints from CMB µ−distortion and UCMHs, and this toy model is convenient
for that purpose. The dispersion is

σ2 ≡
∫ ∞

−∞
ζ2P (ζ)dζ =

2Γ(1 + 3/p)

3Γ(1 + 1/p)
σ̃2, (B.2)

where Γ(a) is a Gamma function. In particular, σ = σ̃ when p = 2, as it should be. The
abundance of PBHs is

β =

∫ ∞

ζc

P (ζ)dζ =
Γ(1/p, 2−p/2(ζc/σ̃)

p)

2pΓ(1 + 1/p)
, (B.3)

where Γ(a, z) is an incomplete Gamma function. This can be solved for σ̃ as

σ̃ =
2−1/2ζc

Q−1(1/p, 2β)1/p
. (B.4)

where Q−1(a, z) is the inverse of the regularized incomplete gamma function Q(a, z) ≡
Γ(a, z)/Γ(a), namely, z = Q−1(a, s) if s = Q(a, z). The PDF for different values of p for
the same β = 4× 10−14 (see eq.(3.9)) and with ζc = 1 is shown in Fig. B.1. Note that all
the curves in this figure cross at ζ ∼ 1, which is expected since the integral above ζc ∼ 1
is fixed and the dominant contribution to the integral comes from ζ ∼ 1. In addition, the
plot of σ as a function of p, with β fixed to the above value, is shown in Fig. B.2. If p is
smaller, the tail of PDF or the probability of PBH formation is enhanced for fixed σ, and
so the value of σ, required to explain SMBHs at high redshifts by PBHs, is smaller, and
if σ is sufficiently small constraints from CMB µ−distortion and UCMHs can be avoided.
Let us consider constraints on PBHs obtained from CMB µ−distortion following [39]. If
we assume the following delta-function power spectrum (, which is conservative, see the
footnote †3 of Chapter 3) leads to a sufficient probability of PBH formation,

Pζ = σ2kδ(k − k∗), (B.5)

µ−distortion generated from this spike is [121]

µ ≃ 2.2σ2

exp(− k̂∗
5400

)
− exp

−[ k̂∗
31.6

]2 , (B.6)

where k∗ = k̂∗Mpc−1. We adopt µupper = 9 × 10−5 as a 2σ upper limit obtained by
COBE/FIRAS [114]. If µupper ≲ 2.2σ2, noting the inside of the square bracket is less than
unity, there exists a range of k∗ excluded by CMB µ−distortion. This condition yields
6.4× 10−3 ≲ σ or 0.43 ≲ p fixing β as above, and if this is satisfied approximately a spike
in the following range is excluded;

31.6

√
− log

(
1− µupper

2.2σ2

)
≲ k̂∗ ≲ −5400 log

(µupper

2.2σ2

)
. (B.7)
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Figure B.1: The PDF of the curvature perturbation ζ for the same β with different values
of p of eq.(B.1).

Noting the following relationship between k∗ and the typical mass of PBHs evaluated by
the horizon mass when the modes with k = k∗ cross the horizon,

MPBH = 2.2× 1013
(

k∗

1Mpc−1

)−2

, (B.8)

the above range of k̂∗ is translated into the following range of mass of PBHs, excluded by
CMB µ−distortion;

8× 105M⊙

(
log
(µupper

2.2σ2

))−2

≲MPBH ≲ 2× 1010
(
− log

(
1− µupper

2.2σ2

))−1

. (B.9)

The lower and upper bound here for each p for the same fixed β above is shown in Fig. B.3.
Noting the logarithmic dependence of this mass range, roughly PBHs in 106M⊙ ≲MPBH ≲
1010MPBH, probably the most important range for PBHs as a candidate for the seeds of
SMBHs, are excluded by CMB µ−distortion(, and larger PBHs are excluded by CMB
y−distortions,) unless primordial perturbations are tremendously non-Gaussian (p ≲ 0.43
in the toy model analyzed here), with high-σ peaks enhanced considerably in comparison
to a Gaussian case. Smaller PBHs can be potentially constrained by annihilation of
dark matter inside UCMHs [39], and these potential constraints are also applicable unless
primordial perturbations are tremendously non-Gaussian. If such a highly non-Gaussian
and monotonically decreasing PDF for 0 ≲ ζ can be indeed realized in some model of
inflation, such a model can also explain SMBHs by PBHs, evading constraints from CMB
distortions or UCMHs. Be reminded that in Chapter 3 we have constructed models leading
to a bimodal PDF (see Fig. 3.1) to explain SMBHs by PBHs.
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Figure B.2: The root mean square σ of ζ for each p, required to produce a desirable
amount of PBHs to explain SMBHs at high redshifts.

Figure B.3: The lower and upper bound of eq.(B.9) for each p. The region between the
curves corresponds to the mass of PBHs excluded by CMB µ−distortion.
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Appendix C

Brief review of δN formalism

Let us briefly review δN formalism following [51], where the following form of the metric
is adopted:

ds2 = −N 2dt2 + γij(dx
i + βidt)(dxj + βjdt). (C.1)

The 3-metric γij is decomposed as γij ≡ e2αγ̃ij, where det[γ̃ij] = 1. Here, ã ≡ eα can

be regarded as the locally-defined scale factor. We further decompose eα = a(t)eψ(t,x
i),

where a(t) represents the homogeneous, global scale factor and ψ(t, xi) represents the
inhomogeneity of the scale factor, or of the expansion of the universe.

In the gradient expansion approach, a fictitious parameter ϵ is put in front of the
spatial gradients, and the equations are expanded in powers of ϵ, and finally ϵ is set to
unity. The parameter ϵ is identified as ϵ = k/aH. In the limit ϵ → 0, the region with
comoving length significantly smaller than ∼ k−1 but larger than the Hubble radius is
assumed to be regarded as locally homogeneous and isotropic (FLRW universe).

In [51] the spatial coordinates which comove with the fluid are used, namely, the
threads xi =const. coincide with the integral curves of the fluid 4-velocity uµ, or the
comoving world lines, and so ui = 0. Note that the gauge is fully specified by the choice
of the slicing on top of the threading. In the uniform-density slicing, ψ is denoted by
−ζ. They also considered the uniform Hubble slicing, and the comoving slicing, which is
orthogonal to the comoving world lines. The specifications of the comoving threading and
comoving slicing fully detemine the gauge, and this gauge is called comoving gauge. They
show that these three slicings coincide with each other to O(ϵ), from the conservation of
the energy-momentum tensor.

The unit time-like vector normal to t =const. hypersurfaces is denoted by nµ, and
then H̃ = ∇µn

µ/3 can be interpreted as the local Hubble parameter:

H̃ =
1

N

(
ȧ

a
+ ψ̇

)
+O(ϵ2), (C.2)

with which the local Friedmann equation is recovered from the Einstein equations. Let
us define the number of e-folds of expansion along a comoving world line:

N(t2, t1; x
i) =

∫ t2

t1

H̃Ndt. (C.3)

Then,

ψ(t2, x
i)− ψ(t1, xi) = N(t2, t1;x

i)−N0(t2, t1), N0(t2, t1) ≡ log

[
a(t2)

a(t1)

]
. (C.4)
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That is, the time evolution of ψ is given by the difference of the number of e-folds of
expansion at that location from the background value. Let A denote the slicing which
starts on a flat slice at t1 and ends on a uniform-density slice at t2, then we find

ψA(t2, x
i) = NA(t2, t1;x

i)−N0(t2, t1), (C.5)

which is the difference in the e-folds from t1 to t2 between the uniform-density slicing and
flat slicing. In the case of P = P (ρ), they find

ψ(t2, x
i)− ψ(t1, xi) = − log

[
a(t2)

a(t1)

]
− 1

3

∫ ρ(t2,xi)

ρ(t1,xi)

dρ

ρ+ P
, (C.6)

which leads to a conserved quantity, independent of the slicing:

− ζ = ψ(t, xi) +
1

3

∫ ρ(t,xi)

ρ(t)

dρ

ρ+ P
. (C.7)

In the limit of the linear theory, this reduces to the conserved curvature perturbation in
the three slicings mentioned above:

− ζ(xi) = Rc(x
i) = ψ(t, xi) +

δρ(t, xi)

3(ρ+ P )
. (C.8)

They note that these results also apply to arbitrary threading.
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Appendix D

Einstein equations for induced
scalar perturbations originating from
second-order tensor perturbations
In this appendix we derive our fundamental equations for scalar perturbations induced
by second-order tensor perturbations. We have also checked the expressions below by a
package for Mathematica, xPand [248].

D.1 Scalar perturbation

We use the formulation of [231], in which the metric was decomposed as†1

gµν = ḡµν + hµν , (D.1)

ḡ00 = −1, ḡi0 = ḡ0i = 0, ḡij = a2δij. (D.2)

The components of the perturbed Ricci tensor are expressed in terms of hµν as [231]†2:

δRjk =−
1

2
h00,jk − (2ȧ2 + aä)h00δjk −

1

2
aȧḣ00δjk

+
1

2a2
(∆hjk − hik,ij − hij,ik + hii,jk)

− 1

2
ḧjk +

ȧ

2a
(ḣjk − ḣiiδjk) +

ȧ2

a2
(−2hjk + hiiδjk) +

ȧ

a
hi0,iδjk

+
1

2
(ḣk0,j + ḣj0,k) +

ȧ

2a
(hk0,j + hj0,k), (D.5)

†1hµν here is not to be confused with tensor perturbations hij in (5.9) and (D.18).
†2In [231] the Ricci tensor is defined by

Rµν ≡ Γλµλ,ν − Γλµν,λ + ΓκµλΓ
λ
νκ − ΓκµνΓ

λ
λκ. (D.3)

With this definition, the Einstein equations are written as

Rµν −
1

2
gµνR = −8πGTµν . (D.4)

If we adopt another definition of the Ricci tensor, which is minus that of (D.3), then the sign of
the right hand side of the Einstein equations should be flipped. We adopt the former definition
in this section following [231], but in the next section we adopt the latter definition.
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δR0j = δRj0 =
ȧ

a
h00,j +

1

2a2
(∆hj0 − hi0,ji)−

(
ä

a
+

2ȧ2

a2

)
hj0

+
1

2

∂

∂t

[
1

a2
(hkk,j − hkj,k)

]
, (D.6)

δR00 =
1

2a2
∆h00 +

3ȧ

2a
ḣ00 −

1

a2
ḣi0,i

+
1

2a2

[
ḧii −

2ȧ

a
ḣii + 2

(
ȧ2

a2
− ä

a

)
hii

]
. (D.7)

The components of the Ricci tensor with mixed indices are expressed in terms of those
with doubly covariant indices as follows:

δR0
0 = −3

ä

a
h00 − δR00, (D.8)

δR0
i = −δR0i − a−2(2ȧ2 + aä)hi0, (D.9)

δRi
j = a−2

(
2H2 +

ä

a

)
hij +

1

a2
δRij. (D.10)

Using these, the Ricci scalar can be calculated as

a2δR =− 3aȧḣ00 − 6(ȧ2 + aä)h00 −∆h00 + 2ḣi0,i + 4Hhi0,i

− ḧij +
2

3a2
∆hii + 2

(
H2 +

ä

a

)
hii. (D.11)

In our notation of (5.9),

h00 = −2Φ , hi0 = aB,i , hii = −6a2Ψ . (D.12)

The time-time component of the Einstein tensor becomes

a2

2
G0

0 = ∆Ψ− 3H(Ψ′ +H2Φ)−H∆B =
a2

2
[−8πG(−δρ)], (D.13)

which recovers the parts of (5.14) involving scalar perturbations. The time-space compo-
nent is

G0
i = R0

i = −δR0i − a−2(2ȧ2 + aä)hi0 = 2Ψ̇,i + 2HΦ,i. (D.14)

So aG0
i /2 = 0 partially recovers (5.15). The space-space components are

δGi
j = a−2

(
2H2 +

ä

a

)
hij +

1

a2
δRij −

1

2
δRδij, (D.15)

and this is written in the form δGi
j = G1δij +G2,ij, where

−a
2

2
G1 = Ψ′′ +H(2Ψ + Φ)′ + (2H′ +H2)Φ +

1

2
∆(Φ−Ψ+B′ + 2HB), (D.16)

a2G2 = Φ−Ψ+B′ + 2HB. (D.17)

Then, −a2G1/2 = −a2(−8πGδp)/2 partially recovers (5.16), and a2G2,ij = 0 partially
recovers (5.17). (5.28) and (5.29) without the source term can also be derived from
(5.1.49) and (5.1.48) of [231]†3.

†3One can also confirm dropping the source terms originating from second-order tensor per-
turbations, eqs. (5.14)-(5.17), (5.28) and (5.29) reduce to eqs. (A.98)-(A.103) of [249].
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D.2 Tensor perturbation

Let us consider the following metric

ds2 = a2(η)[−dη2 + a2(δij + hij)dx
idxj]. (D.18)

The definition of hij here is different from that in (5.9) by the factor two for simplicity.
We decompose the metric (and other tensors below) as gij = ḡij + δgij + δ2gij, with
ḡij = a2δij, δgij = a2hij, δ

2gij = 0. Then, ḡij = a−2δij, δgij = −a2hij, δ2gij = hikhjk.
The indices of hij are raised and lowered by δij. The non-vanishing components of the
Christoffel symbol are

Γ̄0
00 = H, (D.19)

Γ̄0
ij = Hδij, (D.20)

δΓ0
ij =

1

2
(h′ij + 2Hhij), (D.21)

Γ̄ij0 = Hδij, (D.22)

δΓij0 =
1

2
hi

′

j , (D.23)

δ2Γij0 = −
1

2
hikh′kj, (D.24)

δΓijk =
1

2
(hij,k + hik,j − hjk,i), (D.25)

δ2Γijk =
1

2
hil(hlj,k + hlk,j − hjk,l). (D.26)

The components of the Ricci tensor are

δ2R00 =
1

2
hijh′′ij +

1

4
hij

′
h′ij +

1

2
Hhijh′ij, (D.27)

δ2Ri0 =
1

4
hjk

′
hjk,i +

1

2
hjkh′jk,i −

1

2
hjkh′ij,k, (D.28)

R̄ij = (H′ + 2H2)δij, (D.29)

δRij =
1

2
h′′ij +Hh′ij + (H′ + 2H2)hij −

1

2
∆hij, (D.30)

δ2Rij = −
H
2
hklh′klδij −

1

2
hk

′

i h
′
kj +

1

2
hkl(hij,kl − hik,jl − hjk,il) +

1

2
hklhkl,ij

+
1

4
hkl,ihkl,j +

1

2
hk,li hjk,l −

1

2
hk,li hjl,k. (D.31)

The components of the Ricci tensor with mixed indices are given by

δ2R0
0 = −a−2δ2R00, (D.32)

δ2R0
i = −a−2δ2R0i, (D.33)

δ2Ri
j = δ2gikR̄kj + δgikδRkj + a−2δ2Rij. (D.34)
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The Ricci scalar can be written as

δ2R = −a−2δ2R00 + a−2δ2Rii + δgijδRij + δ2gijR̄ij, (D.35)

which leads to

a2δ2R = −hijh′′ij −
3

4
hij

′
h′ij − 3Hhijh′ij + hij∆hij +

3

4
hij,khij,k −

1

2
hij,khik,j. (D.36)

The components of the Einstein tensor are (hereafter we replace hij → 2hij)

− a2

2
δ2G0

0 = S1, (D.37)

δ2Gi
0 = −δ2G0

i = a−2δ2Ri0 =
2Si
a2
, (D.38)

a2δ2Gi
j = a2(δ2gikR̄kj + δgikδRkj + a−2δ2Rij) = 2S3δij + 2Sij. (D.39)

Eqs. (D.13) and (D.37) recover (5.14) (see the footnote †2 in the previous section). Also,
Eqs. (D.14) and (D.38) recover (5.15)†4. Let us decompose Sij as Sij = S4δij+S5,ij+ · · · ,
where · · · is to contain vector and tensor parts, which are irrelevant here. From this, we
find ∆Sii = 3∆S4 +∆2S5 and S

ij
,ij = ∆S4 +∆2S5, which lead to (5.22) and (5.23). Then

we find (5.16) and (5.17) from (D.16), (D.17) and (D.39).
The second-order parts of the divergence of the energy momentum tensor are

δ2T µν;µ = δ2ΓµµλT̄
λ
ν − δ2ΓλµνT̄

µ
λ , (D.40)

which is non-zero when ν = 0:

δ2T µ0;µ = 2(ρ+ p)hijh′ij. (D.41)

The negative of this gives the source term of (5.28).

†4Note that the indices ”0” indicate t in the previous subsection, while those indicate the
conformal time η in this subsection, and they are related by Gt

i = aGη
i .
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Appendix E

Derivation of the source term
for the curvature perturbation
in the Fourier space

In this Appendix we derive (5.55) and (5.56). First, note that the Fourier components of
hijhij become

(hijhij)(η,k) =

∫
d3k′

(2π)3/2

∑
rs

hr(k′)hs(k − k′)D(η, k′)Eij
rs ij(k,k

′)D(η, |k − k′|). (E.1)

Similarly, the source can be written in the following form:

S(η,k) =

∫
d3k′

(2π)3/2

∑
rs

hr(k′)hs(k − k′)D(η, k′)(· · · )D(η, |k − k′|). (E.2)

In the following, let us consider the contribution of each term to (· · · ) in the above
expression. The contribution of the term ∂jhik∂

khij = ∂j∂
k(hikh

ij) in (E.5) to (· · · ), indi-
cated after the arrow in the equation below (the arrows elsewhere should be understood
similarly), is

∂jhik∂
khij = ∂j∂

k(hikh
ij) → −k2Ers

1 . (E.3)

Similarly,

∂khij∂
khij =

1

2
∂k∂

k(hijh
ij)− (∆hij)h

ij → −1

2
k2Ers

2 + k
′2Ers

2 . (E.4)

So the contribution of S1 is

S1 →
(
−1

4

←−
∂η∂η + ∂2η −

3

8
k2 +

3

4
k

′2

)
Ers

2 +
k2

2
Ers

1 , (E.5)

where
←−
∂η is supposed to differentiate only D(η, k′) of eq.(E.2) in the left. Likewise, the

contribution of S3 is

S3 →
(
3

4

←−
∂η∂η +

3

8
k2 − 3

4
k

′2

)
Ers

2 −
k2

2
Ers

1 . (E.6)
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To obtain the contribution of k̂ik̂jSij, let us rewrite Sij as follows:

Sij = −h k′

i h′jk + ∂k∂l(h
klhij)− ∂l(hkl∂ihjk)− (i↔ j)− ∂k∂l(hjlh k

i )

+∂lhjk∂
lh k
i +

1

2
∂i∂j(h

klhkl)−
1

2
∂ih

kl∂jhkl. (E.7)

Then, the contribution is

Sij k̂
ik̂j → −

←−
∂η∂ηE

k
i jkk̂

ik̂j − kkklEkl
ij k̂

ik̂j + 2kl(ki − k′i)Ekl
jkk̂

ik̂j

+kkk
lE k

jli k̂
ik̂j − k′l(kl − k

′l)E k
jki k̂

ik̂j − 1

2
kikj k̂

ik̂jEkl
kl

+
1

2
k′i(kj − k′j)Ekl

klk̂
ik̂j

= (−
←−
∂η∂η + 2k2 − 3kk′µ+ k

′2)Ers
1 +

1

2
(k′µ(k − k′µ)− k2)Ers

2 . (E.8)

The collection of all the contributions yields

S →
{
←−
∂η∂η −

1

2
(3− c2s )k2 + 3kk′µ− k′2

}
Ers

1 +{
−1

4
(3 + c2s )

←−
∂η∂η + c2s∂

2
η + 2c2sH∂η +

1

8
(1− 3c2s )k

2 − 1

2
k′µ(k − k′µ) + 3

4
(1 + c2s )k

′2

}
Ers

2 ,

(E.9)

from which (5.55) and (5.56) can be read off.
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Appendix F

Numerical calculation of the PDF of
the induced density perturbations

In this Appendix, the numerical calculation of PDF is discussed. Recall that Ph(k) is
assumed to be delta-function (see (5.59)) and is approximated by the following top-hat
in the simulation:

Ph(k) = A2ϵ−1
(
kp

(
1− ϵ

2

)
< k < kp

(
1 +

ϵ

2

))
, 0(otherwise). (F.1)

In this Appendix, we set A = 1.
Let us decompose the Fourier components of hr(k) as follows:

hr(k) = ar(k) + ibr(k), (F.2)

where ar and br are real Gaussian random variables satisfying

a+(−k) = a+(k), b+(−k) = −b+(k), a×(−k) = −a×(k), b×(−k) = b×(k) (F.3)

to ensure the reality of hij(η,x) (note that e
×
ij(−k) = −e×ij(k) as well as e+ij(−k) = e+ij(k)

following the definitions of polarization tensors we adopt). In Monte Carlo simulations, we
consider a spherical shell in the Fourier space whose radius is kp and whose width is ϵkp.
Let us call the grid points in this sphere by ki, where i is a natural number. Each grid point
in this sphere is associated with two complex numbers hr(ki) = ar(ki)+ib

r(ki), (r = +,×)
(satisfying h+(−ki) = h+(ki)

∗, h×(−ki) = −h×(ki)∗), where the dispersion of both ar and
br is given by

σ2 =
π2

k3p
dk−3ϵ−1, (F.4)

with dk denoting the interval between two neighboring grid points in the Fourier space.
Then, δr(η,x = 0, R) for a specific realization of {hr(ki)} is calculated by

δr(η,x = 0, R) =
1 + c2s
c2sH

dk6

(2π)3

{∑
r,s

∑
ki,kj∈S

W (|ki + kj|R)hr(ki)hs(kj)Frs(η,ki + kj,ki)

}
,

(F.5)

where S denotes the set comprised of the grid points inside the spherical shell. As
mentioned in the main text, we set η = R = (0.7kp)

−1. Note that in simulations eqs.
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(5.48)-(5.51) can not be used to consistently associate each k mode with + and × polar-
ization states. Instead, one may use the following expressions to calculate Ers

1 and Ers
2

for each ki
†1:

e+ij(k̂) =

 1 0 0
0 −1 0
0 0 0

 (|k̂3| = 1),


k̂23−k̂43−k̂22(1+k̂23)

−1+k̂23

k̂1k̂2(1+k̂23)

−1+k̂23
k̂1k̂3

k̂1k̂2(1+k̂23)

−1+k̂23

−1+k̂23+k̂
2
2(1+k̂

2
3)

−1+k̂23
k̂2k̂3

k̂1k̂3 k̂2k̂3 −1 + k̂23

 (|k̂3| ̸= 1),

(F.6)

e×ij(k̂) = ±

 0 1 0
1 0 0
0 0 0

 (k̂3 = ±1),


−2k̂1k̂2k̂3

−1+k̂23
− k̂3(−1+2k̂22+k̂

2
3)

−1+k̂23
−k̂2

− k̂3(−1+2k̂22+k̂
2
3)

−1+k̂23

2k̂1k̂2k̂3
−1+k̂23

k̂1

−k̂2 k̂1 0

 (|k̂3| ̸= 1).

(F.7)
Let us denote by S/2 the set of the grid points inside the upper half of the spherical

shell S. More precisely, the set S/2 is made up of the gridpoints {ki} in the spherical shell
S with (ki)z > 0, those with (ki)z = 0 and (ki)y > 0, and also those with (ki)z = (ki)y = 0
and (ki)z > 0. Then, the inside of the brace of (F.5) can be rewritten as∑

r,s

∑
ki,kj∈S/2

[W (|ki + kj|) {hr(ki)hs(kj)Frs(η,ki + kj,ki) + hr(−ki)hs(−kj)Frs(η,−ki − kj,−ki)}

+W (|ki − kj|) {hr(−ki)hs(kj)Frs(η,−ki + kj,−ki) + hr(ki)h
s(−kj)Frs(η,ki − kj,ki)}]

=
∑
r,s

∑
ki,kj∈S/2

[W (|ki + kj|) {hr(ki)hs(kj) + hr(ki)
∗hs(kj)

∗}Frs(η,ki + kj,ki)

+W (|ki − kj|)ϵs {hr(ki)∗hs(kj) + hr(ki)h
s(kj)

∗}Frs(η,ki − kj,ki)]

=
∑
r,s

∑
ki,kj∈S/2

[2W (|ki + kj|) {ar(ki)as(kj)− br(ki)bs(kj)}Frs(η,ki + kj,ki)

+2ϵsW (|ki − kj|) {ar(ki)as(kj) + br(ki)b
s(kj)}Frs(η,ki − kj,ki)] , (F.8)

where we have used hr(−ki) = ϵrh
r(ki)

∗ (ϵ+ = 1, ϵ× − 1) and Frs(η,−k,−k′) =
ϵrϵsFrs(η,k,k

′). Note that this has explicitly proven that δr is real, as it should. Let us
label the grid points in S/2 by 1, 2, · · · , N , then introducing

at = σ−1(a+(k1), a
+(k2), · · · , a+(kN), a×(k1), a

×(k2), · · · , a×(kN)), (F.9)

bt = σ−1(b+(k1), b
+(k2), · · · , b+(kN), b×(k1), b

×(k2), · · · , b×(kN)), (F.10)

and using (F.8) we can rewrite (F.5) as

δr(η,x = 0, R) =
1 + c2s
c2sH

dk3

8πϵk3p

{
atM aa+ btM bb

}
, (F.11)

†1When one is interested in the power spectrum, one can use (5.48)-(5.51) due to isotropy,
but in simulations the cross term of (F.5) is non-zero and so its contribution has to be taken
into account.

102



where

M a ≡
(

M a
++ M a

+×
M a

×+ M a
××

)
, M b ≡

(
M b

++ M b
+×

M b
×+ M b

××

)
, (F.12)

(M a
rs)ij = (M 1

rs)ij + (M 2
rs)ij, (F.13)

(M b
rs)ij = −(M 1

rs)ij + (M 2
rs)ij, (F.14)

(M 1
rs)ij = 2W (|ki + kj|)Frs(η,ki + kj,ki), (F.15)

(M 2
rs)ij = 2ϵsW (|ki − kj|)Frs(η,ki − kj,ki). (F.16)

Noting Frs(η,ki + kj,ki) = Fsr(η,kj + ki,kj) and ϵsFrs(η,ki − kj,ki) = ϵrFsr(η,kj −
ki,kj), one can confirm M a and M b are symmetric matrices. So by diagonalizing M a

and M b one can further rewrite (F.11) as

δr = a0

2N∑
i=1

aix
2
i , (F.17)

where x1, x2, · · · are independent Gaussian random variables whose dispersion is unity
and

0 < a0, 1 = |a1| > |a2| > · · · > |a2N |. (F.18)

The average and dispersion of δr can be written as follows:

⟨δr⟩ = a0

2N∑
i=1

ai, (F.19)

σ2 = ⟨δ2r⟩ − ⟨δr⟩
2 = a20

(
2N∑
i=1

a2i
⟨
x4i
⟩
+
∑
i ̸=j

aiaj −
2N∑
i=1

a2i −
∑
i̸=j

aiaj

)
= 2a20

2N∑
i=1

a2i . (F.20)

These quantities can also be calculated from eqs.(5.69) and (5.70). For η = (0.7kp)
−1,

⟨δr⟩ ≃ −0.69 and σ ≃ 1.03, and these values have also been obtained in the numerical
computations (see (F.22) below), which serves as a crosscheck. We chose ϵ = 0.05 and
dk = ϵkp. In this case, N turns out to be 2517, but interestingly approximately 98%
of δr is determined by only the first 24 terms with most of the rest of the terms being
vanishingly small, namely, ∑24

i=1 |ai|∑2N
i=1 |ai|

≃ 0.98. (F.21)

Therefore, in analyzing the PDF of δr one can just focus only on a limited number of
terms, safely neglecting most of the terms, which greatly simplifies the analysis. We
found

⟨δr⟩ ≃ −0.69, σ ≃ 1.0, a0 ≃ 0.30, a1−5 ≃ −1.0,
a6−10 ≃ 0.46, a11−17 ≃ 0.11, a18−24 ≃ −0.078. (F.22)

We have also approximately reproduced (F.21) and (F.22) for the cases ϵ = 0.1,dk = ϵkp
as well as ϵ = 0.1,dk = 2ϵkp/3. This indicates that the above choices of ϵ = 0.05 and
dk = ϵkp are sufficiently small to obtain reliable results.
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In the following let us discuss the PDF of δr using the coefficients shown in (F.22).
First one can resort to a brute-force method of a Monte Carlo simulation to obtain the
PDF of δr, by simply generating 24 random Gaussian variables with dispersion unity,
x1, x2, · · · , x24, and summing up the square of them with the coefficients shown in (F.22).
We have generated {xi} 106 times to infer the PDF of δr, with the result shown in
Fig.5.3. In this Appendix A is set to unity, and so what is shown there is the PDF of
δ̃r ≡ (δr − ⟨δr⟩)/A2.

We adopt Clopper-Pearson interval [250] to obtain 95% confidence interval pL < p < pU
of the probability p of δr being realized in some interval (δr±dδr), when δr in that range is
realized k times in N realizations. First note that the number of an event with probability
p realized in N trials follows a Binomial distribution: P (k; p) = NCkp

k(1 − p)N−k. Let
us introduce α = 1 − C,C = 0.95. From the meaning of the confidence interval, the
probability of the event begin realized less than k times when p = pU is α/2 :

k∑
i=0

P (i; pU) = I(1− pU, N − k, 1 + k) = 1− I(pU, 1 + k,N − k) = α

2
, (F.23)

where I(x, a, b) is the regularized beta function and the relation I(x, a, b) = I(1− x, b, a)
has been used. From this, pU can be expressed by the inverse I−1 of the regularized beta
function as

pU = I−1
(
1− α

2
, 1 + k,N − k

)
. (F.24)

Similarly, the probability of the event being realized more than k times when p = pL is
α/2:

N∑
i=k

P (i; pL) = 1− I(1− pL, N − k + 1, k) = I(pL, k,N − k + 1) =
α

2
, (F.25)

which leads to
pL = I−1

(α
2
, k,N − k + 1

)
. (F.26)

The error bars in Fig.5.3 are obtained from (F.24) and (F.26).
Next let us discuss the approximate form of the PDF. Noting the first ten terms of

(F.17) give dominant contributions, let us first consider the PDF of the form Z = −X+cY ,
where X and Y are both random variables following chi-squared distribution with n
degrees of freedom and c is a positive constant. The PDF of both X and Y is given by

P1(n;X) =
(1/2)n/2

Γ(n/2)
Xn/2−1e−X/2. (F.27)

Then the PDF of Z is calculated as follows:

P2(n, c;Z) = N

∫ ∞

0

dX

∫ ∞

0

dY δ(Z +X − cY )P1(X)P1(Y )

=
N(1/2)n

Γ(n/2)2
e−

Z
2c

(
1

c

)n
2
−1 ∫ ∞

max{0,−Z}
dXX

n
2
−1e−

X
2 (Z +X)

n
2
−1e−

X
2c

=
N√

2π2nΓ(n/2)
c1−n/2 exp

(
−1− c

4c
Z

)(
c|Z|
1 + c

)(n−1)/2

K(n−1)/2

(
1 + c

4c
|Z|
)
,

(F.28)
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where Km(x) is the modified Bessel function of second kind and N is a normalization
factor. In considering the PDF of δr, one may simply replace the terms 11 ≤ i in (F.17)
by their expectation values E ≡ 7a11 + 7a18, noting the relative unimportance of these
terms, and then the PDF of δr is finally given by

P
(
δ̃r

)
= P2

(
5, a6;

δ̃r + ⟨δr⟩/A2

a0
− E

)
. (F.29)

Interestingly, this approximates the PDF inferred from the Monte Carlo simulation men-
tioned above overall fairly well, as is shown in Fig.5.3. In more detail, this formula slightly
deviates from the simulated points around δ̃r ∼ 0, presumably because the terms 11 ≤ i,
simply replaced by their expectation values to obtain the above approximate formula, are
relatively important in this region. On the other hand, the approximate formula is better
for |δ̃r| ≳ 2, which is probably because the probability of these relatively rare events is
mostly determined by the first ten terms, with the rest of the terms lying around their
expectation values. Since the probability of PBH formation has to be extremely rare,
what matters is the integration of the positive tail part of the PDF, for which we use
this approximate formula. Then we obtain PBH abundance for given power spectrum of
primordial tensor perturbations and place upper bounds on tensor perturbations from the
absence of PBHs.
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