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Abstract

Bulk properties of cold and hot neutron stars (NSs) are studied on the basis of the hadron-

quark crossover picture where a smooth transition from the hadronic phase to the quark phase

takes place at finite baryon density. We developed a phenomenological equation of state (EOS)

“CRover” EOS, which interpolates the two phases at around 3 times the nuclear matter density

(⇢0), and found that the cold NSs with the gravitational mass larger than 2M� can be sustained.

This is in sharp contrast to the case of the first-order hadron-quark transition where the quark

matter inevitably leads to soft EOS. We show this novel sti↵ening of EOS by the appearance

of quark matter through the hadron-quark crossover does not depend on the methods of inter-

polation nor the choice of hadronic EOSs. The radii of the cold NSs with the CRover EOS are

in the narrow range (12.5±0.5) km which is insensitive to the NS masses. Due to the sti↵ening

of the EOS induced by the hadron-quark crossover, the central density of the NSs is at most

4 ⇢0 and the hyperon-mixing barely occurs inside the NS core if we have the repulsive three

body force between hyperons. This constitutes a solution of the long-standing hyperon puzzle

about the maximum mass and the rapid cooling of neutron stars with hyperons. The e↵ect of

color superconductivity (CSC) on the NS structures is also examined with the hadron-quark

crossover. For the typical strength of the diquark attraction, a slight softening of the EOS due

to two-flavor CSC (2SC) takes place at the core of neutron stars and the maximum mass is

reduced by about 0.2 M�. However, the maximum mass of NSs sustained by this phenomeno-

logical EOS with CSC can still exceed 2M�. Through the percolation of nucleons to quarks

with the diquark correlation, the e↵ects of CSC can be seen even in low mass neutron stars.

The CRover EOS is also generalized to the supernova matter at finite temperature to describe

the hot NSs at birth. The hadron-quark crossover is found to decrease the central temperature

of the hot NSs under isentropic condition due to the color degrees of freedom. The gravitational

energy release and the spin-up rate during the contraction from the hot NS to the cold NS are

also estimated.
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Chapter 1

Introduction

The strongly interacting systems of quarks and gluons are known to be described by quantum

chromo dynamics (QCD) which is the color SU(3)C gauge theory with the Lagrangian LQCD

below [6]:

LQCD = qf↵(i�
µD↵�

µ �mf�
↵�)qf� � 1

4
F a
µ⌫F

aµ⌫ . (1.1)

where

F a
µ⌫ = @µA

a
⌫ � @⌫A

a
µ + gfabcAb

µA
c
⌫ ,

Dµ = @µ � igtaAa
µ,

Aa
µ(a = 1, ..., 8) is the gauge field in the adjoint representation, qf↵ is the quark field in the

fundamental representation (↵ and f are color and flavor respectively), g is the coupling con-

stant of the strong interaction and mf is the current mass matrix for the flavor space. The

generators for SU(3)C , ta, are defined by ta ⌘ 1
2⌧a where ⌧a are the Gell-Mann matrices. They

are normalized by the condition Tr(tatb) = 1
2�

ab. fabc are the structure constant defined by

[ta, tb] = ifabctc. The fine structure constant in QCD, ↵s = g2/(4⇡), which is an e↵ective

coupling strength among quarks and gluons at the energy scale Q, is governed by the QCD

beta-function �(↵s) ⌘ Q2 d↵s

dQ2 . For large Q, the beta function can be evaluated by perturbation

theory as

�(↵s) = �(b0↵
2
s + b1↵

3
s + b2↵

4
s + ...). (1.2)

In the MS renormalization scheme, the numerical constants, b0,1,2, are given as b0 = 33�2Nf

12⇡ ,

b1 = 153�19Nf

24⇡2 and b2 =
�
2857� 5033

9 Nf +
325
27 N

2
f

�
/(128⇡3) where Nf is the number of flavors.

From this di↵erential equation (1.2), we can evaluate the running coupling constant as follows

[7]

↵s(Q
2) =

1

b0t

✓
1� b1

b20

logt

t
+

b21((logt)
2 � logt� 1) + b0b2

b40t
2

�
b31
�
(logt)3 � 5

2(logt)
2 � 2logt+ 1

2

�
+ 3b0b1b2logt

b60t
3

!
, (1.3)

t ⌘ log(Q2/⇤2
QCD) (1.4)

1
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Figure 1.1: The coupling constant ↵s as a function of the energy scale Q. At the high energy scale, we can

see g(Q) ! 0 (Q2 ! 1), which corresponds to the asymptotic freedom. On the other hand, at low energy

scale, the non-perturbative e↵ects can be seen. At around Q ⇠ ⇤
QCD

, the confinement of quarks occurs. This

figure is taken from [7].

up to the 3-loop calculation. Here ⇤QCD is the energy scale, at which the coupling constant

becomes divergent and the non-perturbative e↵ects of QCD appear.

In Fig. 1.1, we show the behavior of the running coupling constant [7]. Since b0 is positive

in QCD, ↵s(Q) ! 0 (Q2 ! 1). As a result, the coupling constant becomes small as the

system scale becomes high energy. This property is called as the asymptotic freedom and is

a unique property of the non-Abelian gauge theory such as QCD [8, 9]. On the other hand,

the other important feature for QCD, confinement of quarks, takes place at the low energy

scale Q ⇠ ⇤QCD where the coupling becomes strong and the perturbation theory breaks down.

Experimentally, only the confinement of quarks and gluons is observed and isolated quarks and

gluons have never been observed.

Due to these non-perturbative e↵ects, strongly interacting matter described by QCD is

believed to have a rich phase structure under the change of external parameters such as the

temperature (T ) and the baryon chemical potential (µ) [11] as shown Fig. 1.2. At low T

and µ, the system is in the hadronic phase where the dynamical breaking of chiral symmetry

(we discuss the chiral symmetry in detail in Chapter 3) and the confinement of quarks and

gluons take place. At high T and low µ, the quark-gluon plasma with deconfined quarks and

gluons was predicted theoretically and is under active experimental studies by the relativistic

heavy-ion collisions (HIC) at relativistic heavy ion collider (RHIC) and large hadron collider

(LHC) [12]. At low T and high µ, the superconducting quark matter with deconfined quarks

is expected to appear, which is relevant to the central core of neutron stars [13].

The transition from the hadronic matter to the quark-gluon plasma at high T has been
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Figure 1.2: Schematic QCD phase diagram at finite temperature (T ) and at finite quark chemical potential

(µ) . As the temperature increases, the chiral symmetry is partially restored and the quark-gluon plasma with

deconfined quarks and gluons emerges. Physics along the vertical axis is under active experimental studies by

the relativistic heavy-ion collisions at RHIC and LHC and studied by the lattice QCD simulations theoretically.

The pseudo critical temperature T
PC

is estimated as (147� 157)MeV in [10]. As the quark chemical potential

increases, the superconducting quark matter with deconfined quarks is expected to appear. QCD properties

along the horizontal axis still is not understood well since Monte Carlo simulations in lattice QCD cannot be

done due to the sign problem. The finite size baryons start to overlap with each other and the percolation of

quarks will take place at about µ ⇠ (350� 400)MeV from the rough estimation.

studied quantitatively by using the lattice QCD Monte Carlo simulations [10]. The results from

the lattice QCD Monte Carlo simulations predict the crossover transition from the hadronic

phase to this quark-gluon plasma phase at the pseudo critical temperature TPC ⇠ (147 �
157)MeV for physical quark masses in the continuum limit with Nf = 2 + 1 flavor case [10].

On the other hand, the transition from the hadronic matter to the quark matter at high µ is

not well understood partly due to the lack of reliable first-principle theoretical methods; the

Monte Carlo simulations in lattice QCD are not suitable for µ/T � 1 because of the fermion

sign problem [11]. Let us make a phenomenological estimate of the quark chemical potential µ

where the transition from the hadronic phase to the quark phase takes place. As the baryon

density increases, the finite size baryons start to percolate at a certain baryon density ⇢per.

This baryon density can be characterized by 1
⇢per

= 4⇡
3 r

3
b , where rb is the radius of baryons.

If we take rb = 0.8(0.5) fm, which corresponds to the proton charge radius [7] (the range of

the repulsive core of the nuclear force [14]), we obtain ⇢per ⇠ 0.466(1.91)/fm3. Since the quark
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chemical potential µ is related with the baryon number density ⇢ by ⇢ = 2µ3

3⇡2 for the u and d

quark matter and at zero temperature, the typical quark chemical potential µ for the transition

from the hadronic phase to the quark phase can be estimated as 351(402)MeV.

Under such circumstance, any information from neutron stars (NSs), whose central cores

may reach the baryon density relevant to the hadron-quark transition, provides us with a testing

ground for the rich phase structure of QCD through the observables such as the mass (M),

the radius (R), the surface temperature (Tsur), the surface magnetic field (Bsur)1 and so on

[15]. Among these observables, M and R are particularly important probes for constraining

the equation of state (EOS) and the composition of high density matter.

In Fig. 1.3 (a), we show the observed NS mass list, which is taken from [15]. We can see

the masses for double NS binaries can be determined very well and the canonical masses for

the neutron star binaries are about 1.4M�. Recently, a massive NS (PSR J1614-2230) with

M = (1.97± 0.04)M� has been observed through the Shapiro delay technique [17] and another

massive NS (PSR J0348+0432) with M = (2.01± 0.04)M� [18] was also reported. Especially,

it is believed that the first observation is very reliable since the mass determination requires

only the Shapiro delay technique, which is the pure e↵ect of general relativity. We will discuss

the impact of this observation on nuclear physics in detail in Chapter 2.

Theoretically, we can obtain a mass and radius relation (M -R relation) through Tolman-

Oppenheimer-Volkov (TOV) equation 2,

dP

dr
= �G

r2
�
M(r) + 4⇡Pr3

�
("+ P ) (1� 2GM(r)/r)�1

M(r) =

Z r

0

4⇡r02"(r0)dr0 (1.5)

where we have assumed the spherical symmetry with r being the radial distance from the center

of the star. Fig. 1.3 (b) shows the M -R relation by phenomenological polytrope EOSs3, which

can sustain 1.97M�-NS [16]. From Fig. 1.3 (b), the radius of NSs sustained by EOSs consistent

with the causality and the crust BPS EOS [19] around ⇢0, which is a well-established EOS below

⇢0, is in the range, (10�13)km. This result is consistent with the results from the observations

of the quiescent low mass X-ray binaries (qLMXB) and photospheric radius expansion (PRE)

X-ray bursts with some uncertainties [20, 21, 22, 23].

Let us turn to the internal compositions of NSs. The onset of the strangeness degrees of

freedom inside the NSs has attracted much attention in recent years: General consensus is that

the hyperons (Y ) such as ⇤ and ⌃� would participate in NS cores at densities of several times

nuclear matter density [24, 25, 26, 27, 28, 29, 30]. As we will discuss in Chapter 2, strong

1We consider the spontaneous magnetization along quantized vortices in the neutron 3P
2

superfluidity in

Appendix A.
2We derive the TOV equation in Appendix B.
3Polytrope type EOSs are given by P = K⇢1+

1
� . Here � is called as the adiabatic index defined by � ⌘

dlogP/dlog⇢.
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(a) (b)(a) (b)(a) (b)(b)

Figure 1.3: (a) The observed neutron star mass list. For neutron star binaries, the typical neutron star mass

is about 1.4M�. In 2010, the very massive neutron star with (1.97± 0.04)M� is observed through the Shapiro

delay technique. The other massive neutron star with (2.01± 0.04)M� was also reported in 2013. This figure is

taken from [15]. (b) Mass and Radius relations (M -R relation) obtained through the TOV equation. Polytrope

type EOSs smoothly connected with BPS crust EOS at ⇢
0

/2.7 are used. Black, orange, blue and red regions

correspond to EOSs whose maximum masses are 1.97, 2.1, 2.3 and 2.5M� respectively. The light green shaded

area means the region where the causality is violated. The radius of NSs lighter than 2M� can be restricted in

the region, (10� 13)km. This figure is taken from [16].

softening of EOS takes place due to the hyperon mixture. As a result, even the canonical mass

1.4M� cannot be sustained with the hyperon mixture. We need some repulsive forces at high

density region such as the three body force between hyperons [31]. To solve the confliction

between the observation of massive NSs and the appearance of hyperons in the core of NSs is

one of the most important topics related with NSs.

The hot NS also provides us with various information on the properties and dynamics of

high density matter with finite temperature [32, 33]. In the core-collapsed Type-II supernova

explosion, the proto-neutron star (PNS) with the radius ⇠ 100�200 km is formed. During the

first few seconds after the core bounce, the PNS undergoes a rapid contraction and evolves into

either a “hot” neutron star with the radius ⇠ 10�20 km or a black hole. The hot NS at birth

in quasi-hydrostatic equilibrium is composed of the supernova matter with the typical lepton
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Figure 1.4: Schematic pictures of the relation between the neutron star interior and how the transition to

the quark matter takes place and the QCD phases as a function of the baryon density (⇢) under the assumption

of (a) the first-order transition and (b) the hadron-quark crossover. The dotted area at the surface of a neutron

star is the crust. The mixed-phase region in (a) and the crossover region in (b) are indicated by the shaded

area. This figure is adopted from [3].

fraction, Yl = Ye + Y⌫ ⇠ 0.3� 0.4, and the typical entropy per baryon 4, Ŝ ⇠ 1� 2: They are

caused by the neutrino trapping at the baryon density ⇢ exceeding 1012g/cm3. With this as an

initial condition, the hot NS contracts gradually by the neutrino di↵usion with the time scale

of several tens of seconds and evolves to a nearly “cold” NS with Y⌫ ' 0 and Ŝ ' 0), unless

another collapse to a black hole does not take place [34, 35, 36].

The main purpose of this thesis is to investigate whether the “hybrid stars” which have

quark matter in the core are compatible with 2M�-NS. Historically, the transition from the

hadronic matter to the quark matter has been assumed to be of first order and the Gibbs phase

equilibrium conditions are imposed. However, treating the point-like hadron as an independent

degree of freedom is not fully justified in the transition region because all hadrons are extended

objects composed of quarks and gluons. Furthermore, the system must be strongly interacting

in the transition region, so that it can be described neither by an extrapolation of the hadronic

EOS from the low-density side nor by an extrapolation of the quark EOS from the high-density

4Throughout this thesis, we put hat-symbol for the thermodynamic quantities per baryon.
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side [37]. This is analogous to the BEC-BCS crossover realized in the many-body system of

ultra-cold fermionic atoms [38].

Fig. 1.4 illustrates the relation between the NS interior and how the phase transition occurs

and the di↵erence between (a) the first-order transition where the phase separation between

hadrons and quarks takes place, and (b) the crossover where the percolation of finite size hadrons

takes place. Such a percolation picture of hadrons has been first discussed in Refs.[39, 40], and

later elaborated in the contexts of the hadron-quark continuity [41, 42] and the hadron-quark

crossover [43, 44].

This thesis is organized as follows. In Chapter 2, after we briefly introduce the phenomeno-

logical nuclear force, some e↵ective models to describe hadronic EOSs (H-EOSs) are introduced.

The characteristic features of H-EOSs to be used at low density region are summarized. In sec-

tion 2.3, we note the hyperon puzzle which is the contradiction between the observation of

massive NSs and the softening of EOS due to the hyperon mixture. We show M -R relations for

various hadronic EOSs with and without hyperons. The calculation was done by Prof. Takat-

suka and me. In Chapter 3, after summarizing the dynamical breaking of chiral symmetry

in QCD as well as the color superconductivity, we investigate the strongly interacting quark

matter by using the (2+1)-flavor Nambu-Jona-Lasinio (NJL) type model and derive the quark

EOS (Q-EOS) to be used at high densities. The calculation about this Q-EOS was done by me.

In Chapter 4, we introduce an interpolation procedure at zero temperature to obtain the EOS

(CRover-C EOS) in the smooth hadron-quark crossover picture by considering the pressure (P )

or energy density (") as a basic quantity. Then, we discuss the bulk properties of cold hybrid

stars, such as the M -R relationship, the maximum mass Mmax and the M -⇢c(central density)

relationship with CRover-C EOS. We also discuss how these results depend on the di↵erent

choice of H-EOSs and Q-EOSs. A comment on the cooling of NSs with respect to the hyperon

mixture inside the core is also given. We show the e↵ects of color superconduncting (CSC) phase

on the bulk properties of NSs are small. After our original works for cold NSs [1, 2], similar

phenomenological models with similar conclusions for cold NSs have been reported by several

other groups [45, 46, 47]. In Chapter 5, we generalize the idea of the hadron-quark crossover at

zero temperature to finite temperature by considering the Helmholtz free energy F (N, V, T ) as

a basic quantity to interpolate the hadronic matter and the quark matter. Here N and V are

the total baryon number and the total volume, respectively. By using this phenomenological

EOS (CRover-H EOS) for supernova matter with fixed Yl and Ŝ, we study not only the bulk

observables such as M -R relation of the hot neutron star at birth, but also the temperature,

density and sound velocity profiles inside the star. In chapter 4 and 5, phenomenological in-

terpolation methods are suggested by Prof. Hatsuda, Prof. Takatsuka and me. Calculations

of cold and hot NS bulk properties was done by me. Chapter 6 is devoted to summary and

discussion.
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Chapter 2

The Hadronic Phase

In this chapter, we first summarize the phenomenological models for the two body nuclear force

and three body force which reproduce the nuclear saturation properties. Then, by using G-

matrix, which is a many-body method to include the medium e↵ect, we construct the hadronic

EOSs with and without hyperons. With these EOSs, M -R relations are derived. Finally we

point out that the universal three-body repulsion among baryons, which is necessarily to sustain

the canonical 1.4M� NSs, is still not enough to sustain 2M� NSs.

2.1 Phenomenological Baryon-Baryon Interactions

After the introduction of the meson theory by Yukawa in 1935 [48], Taketani proposed that

the nuclear force can be divided into three parts [49, 50] as shown in Fig. 2.1: (I) the phe-

nomenological repulsive part rM⇡
<⇠ 0.7, (II) the intermediate region 0.7 <⇠ rM⇡

<⇠ 1.5 where

the two pion exchange or the heavy meson exchange are dominant and (III) the long range

part 1.5 <⇠ rM⇡ where the one pion exchange (OPE) is dominant. Here M⇡ is the pion mass.

Below, we introduce several examples of phenomenological baryon interactions to be used in

our analysis.

Reid Soft Core NN Potential [51]

Reid “soft core” NN potential is written as

VReid = Vc(M⇡r) + V12(M⇡r)S12 + VLS(M⇡r)L · S. (2.1)

Here, the first term is the central potential, the second term is the tensor potential and the

third term is the spin-orbit potential. An operator Sij is defined as

Sij = 3(�i · r̂ij)(�j · r̂ij)� �i · �j, (2.2)

9
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Figure 2.1: The nuclear force can be divided into three regions. (I) Short range region with

the repulsive core. (II) Intermediate region where the two pion exchange or the heavy meson

exchange become dominant. (III) Long range region where the one pion exchange is dominant.

and Vc(x), V12(x) and VLS(x) are

Vc(x) =
1X

n=1

an
e�nx

x
, VLS(x) =

1X

n=1

cn
e�nx

x
, (2.3)

V12(x) =
b1
x

✓
1

3
+

1

x
+

1

x2

◆
e�x +

1X

n=2

bn
e�nx

x
. (2.4)

a1, b1 and c1 are determined to reproduce the one pion exchange potential (OPEP) VOPEP

defined as

VOPEP =
G2

⇡N

3
(⌧1 · ⌧2)


e�M⇡r

r
(�1 · �2) +

✓
1 +

3

M⇡r
+

3

(M⇡r)2

◆
e�M⇡r

r
S12

�
(2.5)

where ⌧ is the isospin matrices and G⇡N is the coupling constant between pions and nucleons.

Other coe�cients (up to n = 7) are determined to reproduce the NN scattering data with the

total angular momentum J  2. For J � 3, OPEP is used.

Paris NN Potential [52]

Paris group proposed a di↵erent phenomenological NN potential VParis,

VParis = V0(r, p
2)⌦0 + V1(r, p

2)⌦1 + V12(r)S12 + VLS(r)L · S + VQ(r)Q12 (2.6)

where

⌦0 =
1� �1 · �2

4
, ⌦1 =

3 + �1 · �2

4
, (2.7)
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Q12 = 2(L · S)2 +L · S �L2. (2.8)

Q12 is a quadratic LS potential. The important point of Paris potential is that the central

potential depends on the velocity |p| in the following way,

V0,1(r, p
2) = V a

0,1(r) +
p2

M
V b
0,1(r) + V b

0,1(r)
p2

M
(2.9)

where p is the momentum operator and M is the nucleon mass. The coe�cients V a
0,1, V

b
0,1 and

V12,LS,Q are defined as

V a
0 (r) =

1X

n=1

an
e�mnr

mnr
, V a

1 (r) =
1X

n=1

bn
e�mnr

mnr
, (2.10)

V b
0 (r) =

1X

n=1

cn
e�mnr

mnr
, V b

1 (r) =
1X

n=1

dn
e�mnr

mnr
, (2.11)

V12(r) =
1X

n=1

en

✓
1 +

3

mnr
+

3

(mnr)2

◆
e�mnr

mnr
, (2.12)

VLS(r) =
1X

n=1

fn

✓
1

mnr
+

1

(mnr)2

◆
e�mnr

mnr
, (2.13)

VQ(r) =
1X

n=1

gn
1

(mnr)2

✓
1

mnr
+

1

(mnr)2

◆
e�mnr

mnr
. (2.14)

The coe�cients an, bn, cn, dn, en, fn and mn with n = 1 are determined to reproduce OPEP in

Eq. (2.5). Other coe�cients (up to n = 12) are determined to reproduce NN scattering data.

Argonne V18 NN potential [53]

One of the modern and high-precision phenomenological potentials is the Argonne V18 (AV18)

potential. Here, the potential VAV 18 is decomposed into 18 parts:

VAV 18 =
X

i=1,18

V iOi (2.15)

where Oi are the central, spin-spin, tensor, LS, centrifugal and quadratic centrifugal terms with

and without isospin dependence,

Oi = 1, ⌧1 · ⌧2,�1 · �2, (�1 · �2)(⌧1 · ⌧2), S12, S12(⌧1 · ⌧2), (L · S), (L · S)(⌧1 · ⌧2),L2,

L2(⌧1 · ⌧2),L2(�1 · �2),L
2(�1 · �2)(⌧1 · ⌧2), (L · S)2, (L · S)2(⌧1 · ⌧2),

T12, T12(�1 · �2), S12T12, (⌧1)z + (⌧2)z (2.16)

where

Tij = 3(⌧i)z(⌧j)z � ⌧i⌧j. (2.17)
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The coe�cient V i can be divided into three parts related with Taketani’s three regions,

V i = V i
⇡ + V i

R + V i
EM . (2.18)

Here V⇡ is OPEP, VR is the potential for the remaining parts (the short range region and the

intermediate region) and VEM is the electromagnetic potential including one and two photon ex-

change, Darwin-Foldy potential, vacuum polarization and magnetic-moment interaction. AV18

potential includes 40 parameters which are fitted to reproduce pp and np scattering data in the

Nijmegen database, low energy nn scattering parameters and the deutron binding energy.

Hyperon-Nucleon and Hyperon-Hyperon Interactions

Since the experimental data on the hyperon (Y )-nucleon (N) and Y -Y interactions are still

limited, we take the Nijmegen one-boson-exchange potential for these interactions. It is based

on the flavor SU(3) classification of baryons and mesons. For example, the eight JP = 1
2

+

baryon octet B can be written

B =

0

B@

⌃0p
2
+ ⇤p

6
⌃+ p

⌃� �⌃0p
2
+ ⇤p

6
n

�⌅� ⌅0 � 2⇤p
6

1

CA . (2.19)

The scalar, pseudo scalar, vector and axial vector mesons form SU(3)-nonets, respectively. For

example, the pseudo-scalar nonet with JP = 0� reads

MPS =
⌘0p
3
1+

0

B@

⇡0p
2
+ ⌘8p

6
⇡+ K+

⇡� � ⇡0p
2
+ ⌘8p

6
K0

K� K̄0 �2⌘8p
6

1

CA . (2.20)

Then, the SU(3) invariant couplings between the baryon octet and pseudo-scalar nonet have

three possible structures, F-type, D-type and S-type:

[B̄BMPS]F = tr(B̄MPSB)� tr(B̄BMPS), (2.21)

[B̄BMPS]D = tr(B̄MPSB) + tr(B̄BMPS)�
2

3
tr(B̄B)tr(MPS), (2.22)

[B̄BMPS]S = tr(B̄B)tr(MPS). (2.23)

By using these combinations, we can construct SU(3) flavor symmetric Lagrangian LNIJ,

LNIJ = GOCT{↵[B̄BMPS]F + (1� ↵)[B̄BMPS]D}+GSIN[B̄BMPS]S (2.24)

where GOCT and GSIN are the coupling constants and ↵ means the ratio between F and D

type interactions. By using this Lagrangian together with other couplings to scalar and vector
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mesons, one may construct the phenomenological NN , Y N and Y Y interactions with certain

constraints from the experimental NN and Y N scattering data.

Baryon-Baryon interactions with with scalar, pseudo-scalar, and vector mesons with the

D (F) type couplings with phenomenological hard-core repulsion are called the Nijmegen D

(F) potentials [54]([55]). More sophisticated potentials of this type with a phenomenological

soft-core repulsion and fine-tuned spin-spin interactions are called Nijmegen NSC97a-f models

[56]. In Table 2.1, we summarize the single particle potential of ⇤ for each partial wave in ND,

NF and NSC97a-f. We note that it is important to have new data on hyperon interactions

from the Y -N scattering and hypernuclei experiments at J-PARC [57, 58, 59] and also from

the lattice QCD simulations at the physical quark masses [60].

Three Body Force

By using phenomenological two baryon forces, we can derive hadronic EOSs by using nuclear

many-body methods to be explained shortly. To reproduce the experimental data, we need the

attractive force at low density region and the repulsive force at high density region. The three

body forces are considered as one of origins of such e↵ects. At present, many phenomenolog-

ical three body forces have been proposed. Here, we show two examples; (I) Three Nucleon

Interaction (TNI) model suggested by Lagaris-Pandharipande and (II) Urbana IX type phe-

nomenological Three Body Force (TBF) [62, 63]. The TNI three body potential VTNI is

VTNI = VTNA + VTNR

= V2e
�(r/�a)2⇢e�⌘2⇢(⌧1 · ⌧2)2 + V1e

�(r/�r)2(1� e�⌘1⇢) (2.25)

where ⇢ ⌘ ⇢n + ⇢p. The first term VTNA gives the attractive force and the second term VTNR

gives the repulsive force. In [64], �a , �r and ⌘1 are fixed at 2.00fm, 1.40fm and 0.15fm3.

Table 2.1: Partial wave contributions to ⇤ single particle potential U
⇤

(k
⇤

= 0) at kF = 1.35fm�1 in the

various models (MeV) [56, 61].

U⇤(S) U⇤(1S0) U⇤(3S1) U⇤(P ) U⇤

ND -32.5 -7.4 -25.1 -8.0 -40.5

NF -30.5 -10.0 -20.7 -0.9 -31.6

NSC97a -34.5 -3.8 -30.7 0.6 -33.9

NSC97b -35.5 -5.5 -30.0 1.4 -34.1

NSC97c -37.5 -7.8 -29.7 2.1 -35.3

NSC97d -38.7 -11.0 -27.7 3.5 -35.1

NSC97e -38.8 -12.8 -26.0 4.5 -34.3

NSC97f -37.3 -14.4 -22.9 6.2 -37.4



14 Chapter 2. The Hadronic Phase

The other three parameters are determined to reproduce the saturation properties such as the

saturation density and the binding energy for the symmetric nuclear matter and the nuclear

incompressibility. The TBF three body potential VTBF is

(VTBF)ijk = V 2⇡
ijk + V R

ijk

= A
X

cyc

✓
{Xij, Xjk}{⌧i · ⌧j, ⌧j · ⌧k}+

1

4
[Xij, Xjk][⌧i · ⌧j, ⌧j · ⌧k]

◆

+U
X

cyc

T 2(rij)T
2(rjk) (2.26)

where

Xij = Y (rij)�i · �j + T (rij)Sij. (2.27)

Here Y (r) is the Yukawa function, which is defined by Y (r) ⌘ e�r

r
and T (r) is the tensor

function, T (r) ⌘
�
1 + 1

r
+ 1

r2

�
e�r

r
. Parameters A and U are fitted to reproduce the saturation

density and the binding energy for the symmetric nuclear matter.

2.2 Models for Hadronic EOS

In this subsecton, we review briefly the hadronic EOSs obtained by combining the baryon-

baryon interactions and the nuclear many-body methods.

APR EOS from variational method [65]

In constructing the standard APR EOS, one uses the AV18 two body nuclear force and Ur-

bana IX type phenomenological three body force with the relativistic boost correction. The

Hamiltonian HAPR is

HAPR = H0 +
X

(V ⇤
AV 18)ij +

X
(V ⇤

TBF)ijk. (2.28)

Here H0 is the free part, and ⇤ denotes that the relativistic corrections are included in the

forms of the 2-body and 3-body forces. The variational wave function  for hadronic matter

at zero temperature is written as

 = Sym

"
Y

i<j

fij

#
� (2.29)

where � is the Fermi-gas wave function, Sym is a symmetrizer, and fij is the Jastrow type

correlation function,

fij =
X

T=0,1

X

S=0,1

[fc(rij)(1)ijTS + f12(rij)(Sij)ijTS + fLS(rij)(L · S)ijTS] . (2.30)
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Here S is the total spin, T is the total isospin and i, j are the proton or neutron. The variational

parameters, fc, f12 and fLS are determined by minimizing the total energy,

Etot[f ] =
h |HAPR | i

h | i . (2.31)

EOS from Bethe-Brueckner-Goldstone (BBG) Theory [66, 67, 68]

Suppose we have only 2-body forces. Then the total Hamiltonian Hamiltonian H with the free

Hamiltonian H0 reads

H = H0 +H1 ⌘
X

k

~2k2

2m
+

1

2

X

{ki}
hk1k2| v |k3k4i a†k1a

†
k2ak3ak4. (2.32)

From Gell-Mann and Low theorem[69], under the assumption of an adiabatic evolution of the

system, the ground state of H and H0, | 0i and |�0i ⌘
Q

|k|<kF
a†
k

|0i satisfying H0 |�0i =

E0 |�0i respectively, have the following relation:

| 0i = lim
"!0

U (")(�1) |�0i
h�0|U (")(�1) |�0i

. (2.33)

Here

U (")(�1) = 1� i

~

Z 0

�1
HI(t1)dt1 +

✓
� i

~

◆2 Z 0

�1
HI(t2)dt2

Z t2

�1
HI(t1)dt1 + . . .

= 1 +
1X

n=1

✓
� i

~

◆n 1

n!

Z 0

�1
dtn . . .

Z 0

�1
dt1T [HI(tn) . . .HI(t1)], (2.34)

HI(t) = eiH0t/~e�"|t|H1e
�iH0t/~. (2.35)

As a result, the energy di↵erence �E by adding the interaction H1 can be written as

�E = lim
"!0

h�0|H1U "(�1) |�0i
h�0|U "(�1) |�0i

(2.36)

= lim
"!0

h�0|H1U
"(�1) |�0iCL (2.37)

where the subscript CL denotes the connected diagrams. Thus we obtain

�E = lim
"!0

h�0|H1

 
1 +

1X

n=1

nY

m=1

✓
1

E0 �H0 � im"
H1

◆!
|�0iCL

= lim
⌘!0

h�0|H1

1X

n=0

✓
1

E0 �H0 � i⌘
H1

◆n

|�0iCL . (2.38)

In the BBG theory, �E is expanded in terms of the number of hole lines in the diagram-

matic representation of the perturbative series, which physically corresponds the low density
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expansion. For example, we show the typical diagrams for 2-hole line expansion in Fig. 2.2 (a)

and (b). However, there are infinite number of diagrams at the level of the 2-hole line expansion

as shown in Fig. 2.2 (c). As a tool to include them all together, the two-body scattering matrix

G is introduced:

hk1, k2|G(!) |k3, k4i = hk1, k2| v |k3, k4i+
X

k03,k
0
4

hk1, k2| v |k0
3, k

0
4i

⇥ (1� ✓F (k0
3))(1� ✓F (k0

4))

! � ek03�ek04
hk0

3, k
0
4|G(!) |k3, k4i . (2.39)

Here, ! is the initial energy and the intermediate states, |k0
3, k

0
4i, are restricted to those above

the Fermi sea (the particle states), which is clearly shown explicitly by the factor (1�✓F (k0
3))(1�

✓F (k0
4)) with

✓F (k
0
3) ⌘

8
<

:
1 (|k| < kF )

0 (|k| > kF ).
(2.40)

Now �E2, which is �E up to the 2-hole line expansion, can be written as

�E2 =
1

2

X

k1,k2<kF

hk1k2|G(!) |k1k2iA (2.41)

where the subscript A denotes the anti-symmetrization.

Instead of Eq. (2.32), one may introduce a decomposition with an arbitrary single-particle

potential (or the self-energy) U:

H = (H0 + U) + (H1 � U) = H0
0 +H0

1. (2.42)

k1 k2

k1

k2

+ + · · · · · · · · ·

+ + · · · · · · · · ·

(a)

(b) (c)

Figure 2.2: (a,b) The typical diagrams for 2-hole line expansion. (a) is the Hartree term and (b)

is the Fock term. (c) The diagrams contributing at the same time in the 2-hole line expansion

[70].
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With the new interaction term H0
1, we can construct the U -dependent G-matrix. The choice

of U motivated by the Hartree-Fock approximation reads

U(k) =
X

k0<kF

hkk0|G(!) |kk0iA . (2.43)

This is called as the continuous choice. On the other hand, in the gap choice, Eq. (2.43) is

adopted only for k < kF and otherwise U = 0.

EOS from Chiral SU(3) Relativistic Mean Field Model [71]

The chiral SU(3) Lagrangian LSCL describing the baryons and � and ⇣ scalar mesons and !,

⇢0 and � vector mesons is written as

LSCL =
X

i

q̄i[i�µ@
µ �M⇤

i � �µU
µ
i ]qi +

1

2
@µ �@

µ � �
1

2
m2

� 
2
� +

1

2
@µ ⇣@

µ ⇣ �
1

2
m2

⇣ 
2
⇣

�1

4
Wµ⌫W

µ⌫ +
1

2
m2

!!µ!
µ +

1

4
c!(!µ!

µ)2

�1

4
Rµ⌫R

µ⌫ +
1

2
m2

⇢⇢µ⇢
µ � 1

4
�µ⌫�

µ⌫ +
1

2
m2

��µ�
µ

�1

4
Fµ⌫F

µ⌫ � V�⇣( �, ⇣). (2.44)

Here, qi represents the SU(3) baryon field, �, !µ, ⇢µ and �µ are the �, !, ⇢0 and � meson fields

respectively,

M⇤
i = Mi � g�i � � g⇣i ⇣ , (2.45)

Uµ
i = g!i!

µ + g⇢i⇢
µ +

1 + �3
2

eAµ, (2.46)

 � = f⇡ � �,  ⇣ = f⇣ � ⇣, (2.47)

W µ⌫ , Rµ⌫ and �µ⌫ are the field strength tensors for !, ⇢0 and � mesons and gmB is the coupling

constant between meson m and baryon B. g�N is ignored since the suppression of this coupling

is predicted by the Okubo-Zweig-Iizuka rule [72, 73, 74]. c! is the coupling constant between

! mesons. V�⇣ is a logarithmic potential, which can be obtained from the staggered fermion

action with the chiral limit and the strong coupling limit. The explicit form of V�⇣ is given by

V�⇣ = �a

⇢
2fSCL

✓
 �

f⇡

◆
+ fSCL

✓
 ⇣

f⇣

◆�
+ ⇠�⇣ � ⇣ (2.48)

where fSCL(x) ⌘ log(1�x)+x+ x2

2 . The parameters except m�, g!N , g⇢N , c! and the coupling

constants between hyperons and mesons are determined to reproduce the masses of ⇡, K and ⇣

mesons and the vacuum condensates of � and ⇣ mesons. Parameters, g!N and c!, are determined



18 Chapter 2. The Hadronic Phase

to reproduce the saturation density and the binding energy of the nuclear matter at a given

m�. Then, m� and g⇢N are fitted to reproduce the binding energy of Sn and Pb isotopes. The

coupling constants between hyperons and vector mesons are determined under the flavor SU(3)

symmetry as we have already discussed in the previous section. Finally, we determine g�⇤ and

g⇣⇤ to reproduce the separation energy of ⇤ of 13C and 12C and ⇤⇤ binding energy.

Summary of Hadronic EOSs (H-EOSs) to be employed in this thesis

• APR EOS [65]: APR EOS is obtained by the variational method by AV18 potential and

the three-body force of Urbana-type with the relativistic boost correction. APR EOS does

not include hyperons. Phenomenological parameters in three body force are determined

to reproduce the saturation properties.

• TNI2, TNI3, TNI2u and TNI3u [31, 75]: TNI2 and TNI3 are obtained by the G-matrix

calculation with Reid soft-core potential for NN and Nijmegen type-D hard-core potential

for Y N and Y Y . Also, a phenomenological TNI type three-body force [63] is introduced

in a form of e↵ective NN force to reproduce the saturation point of symmetric nuclear

matter with the incompressibility =250MeV (TNI2) and =300MeV (TNI3). For TNI2u

and TNI3u, the three-body interaction is introduced universally in a form of e↵ective NN ,

NY and Y Y forces.

• AV18+TBF and Paris+TBF [76]: They are obtained by the G-matrix calculation but

with di↵erent choice of potentials, AV18 and Paris potentials for NN and Nijmegen soft-

core potential for Y N and Y Y . Also, the three-body force of Urbana-type is introduced

in a form of e↵ective NN force to meet the saturation condition.

• SCL3⇤⌃ [71]: It is based on RMF model with chiral SU(3) symmetry and logarithmic

potential motivated by the strong coupling lattice QCD approach. Phenomenological

parameters of the model are determined to reproduce the saturation condition, bulk

properties of normal nuclei and separation energies of single- and double-⇤ hypernuclei.

In Fig.2.3(a), we plot the hadronic EOSs with hyperons (TNI2u, TNI2, TNI3u, TNI3,

AV18+TBF+⇤⌃ and SCL3⇤⌃) together with APR. Filled circles on each line denote the

density where the hyperon-mixing starts to occur. One can see that (i) the mixture of hyperons

softens the equation of state relative to APR, and (ii) onset of the hyperon-mixing is shifted to

higher density if we consider the three-body interaction in the hyperon sector.

2.3 Hyperon Puzzle

Let us consider what would be the NS structure under the hadronic EOS with and without

hyperons . Although there exist large uncertainties for the two-body Y -N interactions, various
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M
/M

⇤⌃

⇤⌃

(a) (b)

Figure 2.3: (a) The hadronic equation of states with and without the hyperon mixing. The black

line denotes the EOS without hyperon, APR (AV18+�V+UIX⇤). The red lines correspond

to the EOS with hyperons; TNI2 (only three-nucleon force with  = 250MeV) and TNI2u

(universal three-baryon force with  = 250MeV). The blue lines correspond to TNI3 (only three-

nucleon force with  = 300MeV) and TNI3u (universal three-baryon force with  = 300MeV).

The green line corresponds to AV18+TBF+⇤⌃ (G-matrix with AV18 + 3-nucleon force +

hyperons), and SCL3⇤⌃ (relativistic mean-field model with chiral SU(3) symmetry). (b) M�⇢
relations for seven EOSs considered in (a). In both figures, filled circles on each line show the

density where the hyperons start to mix. The cross points are the densities where the maximum

mass is obtained. The solid horizontal line shows M = 1.44M� corresponding to PSR 1913+16.

Those figures are adopted from [1, 2].

di↵erent models suggest that hyperons may appear at densities of several times ⇢0 as shown in

Fig.2.3(a). Those hyperons introduce significant softening of EOS and even the well-established

1.4M� NSs may not be reproduced if we do not include the repulsive three body force among

hyperons at high densities (see the reviews, [24, 77] and the references therein). The three-body

force in the hyperon sector originally suggested in [31] may or may not describe the 2M� NSs

depending on its strength [24, 78, 79, 80, 81]. This is called the “Hyperon Puzzle”. In Fig.2.3(b),

the M -⇢ relations with these EOSs are plotted by the same color lines. The solid horizontal

line shows M = 1.44M� corresponding to PSR 1913+16. The cross points correspond to the

maximum mass. As we have already mentioned, if the three body force in hyperon sector is not

included (TNI2, TNI3, AV18+TBF+⇤⌃ and SCL3⇤⌃), the canonical NSs with 1.44M� cannot

be sustained due to the hyperon mixture. The universal three body force certainly makes EOS
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Table 2.2: Properties of various hadronic EOSs with hyperons; TNI2, TNI3, TNI2u, TNI3u [31, 75],

Paris+TBF, AV18+TBF [76, 82, 83] and SCL3⇤⌃ [71].  is the nuclear incompressibility and ⇢
th

is the

threshold density of hyperon-mixing with ⇢
0

(=0.17/fm3) being the normal nuclear density. R and ⇢c denote

the radius and central density for the maximum mass (M
max

) NS, respectively. The numbers in the parentheses

are those without hyperons. ⇤s indicate that the numbers are read from the figures in [76].

EOS TNI2 TNI3 TNI2u TNI3u Paris+TBF AV18+TBF SCL3⇤⌃

 (MeV) 250 300 250 300 281 192 211

⇢th(⇤)/⇢0 2.95 2.45 4.01 4.01 2.9⇤ 2.8⇤ 2.24

⇢th(⌃�)/⇢0 2.83 2.23 4.06 4.01 1.9⇤ 1.8⇤ 2.24

Mmax/M� 1.08 1.10 1.52 1.83 1.26 1.22 1.36

(1.62) (1.88) (2.06) (2.00) (1.65)

R(km) 7.70 8.28 8.43 9.55 10.46 10.46 11.42

(8.64) (9.46) (10.50) (10.54) (10.79)

⇢c/⇢0 16.10 13.90 11.06 8.26 7.35 7.35 6.09

(9.97) (8.29) (6.47) (6.53) (6.85)

sti↵. However, it is still not enough to sustain 2M� NSs.

In Table 2.2, we show the nuclear incompressibility  defined by  ⌘ 9 d2Ê
d⇢2

���
⇢=⇢0

, the thresh-

old densities of hyperon-mixing, ⇢th(⇤) and ⇢th(⌃�), for each H-EOS. In the same table, we

show the maximum-mass Mmax, the radius R and the central density ⇢c of the NS obtained

from each H-EOS. The values obtained by switching o↵ the Y -mixing are given in the paren-

theses for comparison. For the H-EOSs without universal three-body repulsion, significant

softening due to Y -mixing reduces Mmax, i.e., Mmax (without Y )=(1.62 � 2.00)! Mmax (with

Y )=(1.08�1.26). This clearly contradicts the observed mass Mobs = 1.44M� for PSR1913+16.

On the other hand, H-EOSs with universal three-body repulsion (TNI2u, TNI3u), Mmax is

recovered nearly to that without Y . The radius of NSs with SCL3⇤⌃ becomes large since EOS

obtained by RMF becomes sti↵ at low densities as shown in Fig. 2.3(a).

The use of several kinds of EOS mentioned above, from di↵erent theoretical methods (G-

matrix, RMF), with various sti↵ness ranging from  ⇠ 190 MeV to 300 MeV and with the

variation of ⇢th(Y ) ' (2� 4)⇢0, is expected to cover the present uncertainties of the H-EOSs.

2.4 Brief Summary

In this chapter, we have introduced examples of the phenomenological 2-body and 3-body

baryon potentials with and without hyperons. Also, we have summarized the hadronic EOSs

obtained by the several many-body approaches (the variational method, the Bethe-Brueckner-

Goldstone approach and the relativistic mean field theory). Then, by solving the TOV equation,
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we have shown that (i) the maximum mass of the NSs is substantially reduced by the hyperon

mixture, and (ii) 2M� NS cannot be sustained even if we introduced universal 3-body repul-

sion among baryons. We call this as the “hyperon puzzle”, a serious conflict between the

astrophysical observation and the nuclear theory.
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Chapter 3

The Quark Phase

In this chapter, we introduce quark EOS (Q-EOS) to be used in the high density region. Two

important condensations in Quantum Chromo Dynamics (QCD), the chiral and the diquark

condensations, are considered. Q-EOS in NSs cannot be described by the dynamics of free

fermions since the quark matter is still strongly interacting at the density relevant to the NS

interior. In this thesis, we employ the (2 + 1)-flavor Nambu-Jona-Lasinio (NJL) model, which

captures the essential properties of QCD such as the dynamical breaking of chiral symmetry

and its restoration at finite T and µ.

3.1 q̄q Correlation

Let us define the chiral invariant part of the QCD Lagrangian, Lchiral, as

LQCD ⌘ Lchiral � qf↵mf�
↵�qf� (3.1)

where LQCD is given in Eq. (1.1). We consider 3-flavor QCD from now on. The quark field q

can be divided into two parts by using the eigenstates of �5.

q = qR + qL,

qR/L =
1± �5

2
q ⌘ PR/Lq. (3.2)

Lchiral is invariant under the SU(3)R ⇥ SU(3)L chiral rotations;

qR/L ! qR/L = ei✓
a
R/L

�a/2qR/L (3.3)

where ✓aR and ✓aL are space-time independent parameters and �a are generators for the flavor

space. The conserved current jaµR/L and the conserved charge Qa
R/L for this global symmetry are

jaµR/L = q̄R/L�
µ�

a

2
qR/L, (3.4)

Qa
R/L =

Z
d3xja0R/L. (3.5)

23
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From these jaµR/L, we define the vector current jaµV and the axial vector current jaµA as follows.

jaµV ⌘ jaµR + jaµL , (3.6)

jaµA ⌘ jaµR � jaµL . (3.7)

We can also define the conserved current for vector and axial vector current asQa
V/A ⌘

R
d3xja0V/A

respectively. By considering the commutation relations between the conserved charges for the

vector and the axial vector currents and the Hamiltonian H, the angular momentum operator

J and the parity operator P

[Qa
V/A, H] = [Qa

V/A, J ] = 0, (3.8)

PQa
V P

�1 = Qa
V , (3.9)

PQa
AP

�1 = �Qa
A, (3.10)

the hadronic states can be characterized by the mass m, the angular momentum j and parity p.

Therefore, the hadronic states |m, j, pi and Qa
A |m, j, pi have the same energy, the same angular

momentum and di↵erent parities. If the chiral symmetry is preserved in the QCD vacuum, there

must be the degenerate states, which have the same energy, the same angular momentum and

di↵erent parities. However, these degenerate states do not appear in the hadronic spectrum.

To solve this confliction, the concept “the spontaneous symmetry breaking” was introduced.

From the Nambu-Goldstone theorem [84, 85] , the pseudo scalar mesons ⇡, K, ⌘ are considered

as NG bosons for

SUL(3)⇥ SUR(3) ! SUL+R(3) (3.11)

from their quantum numbers. The pion mass comes from the explicit symmetry breaking due

to the current mass term. In this case, the scalar field q̄q satisfying

[iQa
5, q̄i�5�

bq] =
1

2
q̄{�a,�b}q = �abq̄q (3.12)

is called as the chiral condensation. In fact, from Gell-Mann-Oakes-Renner relation [86],

f 2
⇡m

2
⇡± = �mhūu+ d̄di+O(m2

u,d), m ⌘ (mu +md)/2 (3.13)

where f⇡ is the pion decay constant , we find that the QCD vacuum has strong chiral condensates

due to strong q̄q correlation;

hūui ⇠ hd̄di = (�(270� 293)MeV)3 (3.14)

in the case of m = (3.5+0.7
�0.2)MeV at the renormalization scale of 2 GeV [7].
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3.2 qq Correlation

To illustrate the fact that QCD has not only the strong q̄q correlation but also a strong qq

correlation, let us consider the e↵ective 4-fermi interaction induced by the one-gluon exchange

(OGE):

LOGE = �GOGE(p
2)
⇣
q�µ

⌧a
2
q
⌘2

(3.15)

where GOGE(p2) > 0 is the momentum-dependent e↵ective coupling and ⌧a are the SU(3)C
generators. From the Fierz transformation (see Appendix C), we can rewrite the color part of

the interaction as

(⌧a)
ij(⌧a)

kl = �Nc + 1

Nc

(⌧A)
ik(⌧A)

lj +
Nc � 1

Nc

(⌧S)
ik(⌧S)

lj (3.16)

where Nc is the number of colors and ⌧A/S are antisymmetric / symmetric SU(3)C generators.

As we can see clearly, the color-antisymmetric channel is attractive from the sign of (⌧A)(⌧A)

term. Therefore, it leads to a strong diquark correlation inside hadrons at low density and also

the color superconductivity (CSC) at high baryon density by the condensation of diquarks [87].

Since we treat the CSC phase in NSs in later sections, let us explain the two phases of CSC,

2-flavor colorsuperconducting (2SC) phase and color flavor locked (CFL) phase.

Ginzburg�Landau Potential for CSC

Let us consider the following diquark condensation, hqTOqi. Because the Pauli principle,

qTOq = Oijqiqj = �Oijqjqi = �qTOT q (3.17)

must be satisfied, O should be an antisymmetric operator satisfying OT = �O. If we consider

the 1S0 pairing, this pairing should be the flavor antisymmetric since the condensate is already

color antisymmetric from Eq. (3.15) and Eq. (3.16). In the color and flavor antisymmetric

channel, the order parameter of the condensate  2 3̄C ⌦ 3̄F transforms

 ! gC gF (3.18)

where gC/F 2 SU(3)C/F . Then, the Ginzburg-Landau (GL) e↵ective potential V invariant

under the color and flavor rotations reads

V = �a2tr( † ) + �1[tr( 
† )]2 + �2tr[( 

† )2]. (3.19)

By the stability analysis of the potential [88, 89, 90], if �2 < 0 and �1 + �2 > 0 are satisfied,

the ground state is given by

 =

0

B@
� 0 0

0 0 0

0 0 0

1

CA . (3.20)
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This state is called as 2-flavor superconducting (2SC) phase. In 2SC phase, a red (green) u

quark and a green (red) d quark make a condensate. On the other hand, in the case of �2 > 0

and 3�1 + �2 > 0,

 =

0

B@
� 0 0

0 � 0

0 0 �

1

CA (3.21)

becomes the ground state. This state is called as color flavor locked (CFL) phase.

2-Flavor Superconducting Phase [87]

If the strange quark mass Ms is relatively large compared with the quark chemical potential µ,

the Fermi momentum of u and d quarks becomes much larger than that of s quark. Therefore,

only the condensate between u and d quarks appears. The order parameter of 2SC phase  2SC

can be written as

 2SC ⌘ "↵�3"ij3h(qT )i↵C�5qj�i = "↵�3"ij3�2SC. (3.22)

Here, C = i�2�0 is the charge conjugation matrix1. Symmetry breaking pattern of 2SC phase

is

SU(3)c ⇥ SU(3)L ⇥ SU(3)R ⇥ U(1)B ! SU(2)C ⇥ SU(2)L ⇥ SU(2)R ⇥ U(1)B̄. (3.23)

Here U(1)B̄ is the combination of the U(1)B and U(1)8 2 SU(3)c. 2SC phase is not superfluid

phase but superconducting phase since the global U(1)B̄ survives.

Color Flavor Locked Phase [91]

At very high density at which the mass of strange quarks Ms becomes much smaller than the

quark chemical potential, the CFL phase is expected to be realized. The order parameter of

CFL phase  CFL is

 CFL ⌘ "↵��"ijkh(qT )j�C�5qk�i = �↵i �CFL. (3.24)

As the name shows, in the CFL phase, the simultaneous rotation for color and flavor space is

invariant. In this phase, the symmetry breaking pattern is

SU(3)C ⇥ SU(3)L ⇥ SU(3)R ⇥ U(1)B ! SU(3)C+L+R. (3.25)

In CFL phase, u, d and s quarks contribute the paring equally. This symmetry breaking pattern

is very similar with the symmetry breaking pattern for 3He-B phase, in which the simultaneous

rotation for orbital angular momentum and spin space is invariant. CFL phase is both superfluid

and superconducting since local SU(3)C and global U(1)B are completely broken.

1Due to this operator C, the condensate with the positive parity state is selected. An analysis of the instanton

induced interaction suggests that the positive parity state is realized in the ground state.
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3.3 Chiral Anomaly

Classically, Lchiral is invariant under the U(1)V and U(1)A transformation. However, due to the

quantum e↵ect, the axial vector current jµA is not conserved even for massless quark [92]

@µj
µ
A = �Nfg2

32⇡2
"µ⌫⇢�Fµ⌫F⇢�. (3.26)

This explicit breaking of U(1)A symmetry explains the reason why the ⌘0 mass is much heavier

than other pseudo-scalar mesons. An e↵ective 6 quark interaction which preserves SU(3)L ⇥
SU(3)R but breaks U(1)A was introduced by Kobayashi, Maskawa [93] and later by ’tHooft

[94]:

LKMT = �G
D
(p2)det (q̄(1 + �5)q) + h.c.. (3.27)

Here, G
D
(p2) > 0 and the determinant is taken for the flavor space. The Fierz transformation

of Eq. (3.27) has a structure,

X

i,j,k=1,2,3

[(q�̃i⌧̃k(1 + �5)Cq̄T )(q̄�̃j ⌧̃k(1 + �5)Cq)(q̄i(1 + �5)qj) + h.c.] (3.28)

where �̃1,2,3 ⌘ �7,5,2 and ⌧̃1,2,3 ⌘ ⌧7,5,2 and �i (⌧i) are the SU(3) generators for flavor (color)

space. From Eq. (3.27) and Eq. (3.28), we can see U(1)A anomaly contributes both to the q̄q

and qq correlations.

3.4 (2 + 1)-flavor Nambu-Jona-Lasinio (NJL) Model

In this section, we consider EOS in the high density region. One way to describe EOS at high

densities is the perturbative treatment of QCD (pQCD). Due to the asymptotic freedom, at

extremely high energy scale, we can treat QCD EOS perturbatively. At present, QCD EOS

is calculated up to O(g4) [95]. Fig. 3.1 shows the pressure of massless 3-flavor QCD matter

as a function of the quark chemical potential µ. Light (dark) shaded area corresponds to the

pressure from the renormalization scale between ⇤ = µ and ⇤ = 4µ up to O(g2) (O(g4)) and

P0(µ) is the pressure without interactions. Up to the energy scale µ ⇠ (1� 2)GeV, the results

strongly depend on the renormalization scale as shown in Fig. 3.1. Therefore, we cannot trust

the result of pQCD calculation in the region below µ ⇠ 1GeV.

The baryon density at the central core of the NSs would be at most 10⇢0. Even for such a

high density, the chemical potential of the quarks are about (400� 500)MeV which is not large

enough for pQCD to be reliable. Namely, the deconfined quarks inside the NSs, even if they

exist, would be still strongly interacting.

Since the lattice QCD Monte Carlo simulation is unfortunately not possible due to the

notorious sign problem at present, we adopt an e↵ective theory of QCD, the (2 + 1)-flavor
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Figure 3.1: Pressure (P ) of massless 3 flavor QCD matter as a function of the quark chemical potential µ.

Light (dark) shaded area corresponds to the pressure from the renormalization scale from ⇤ = µ to ⇤ = 4µ up

to O(g2) (O(g4)). The solid (dashed) line comes from the pressure with ⇤ = 2µ up to O(g2) (O(g4)). This

figure is taken from [95].

Nambu-Jona-Lasinio (NJL) model instead of pQCD. This model is particularly useful to take

into account the important phenomena such as the partial restoration of chiral symmetry at

high density [96, 97, 98, 99].

The model Lagrangian we consider reads

LNJL = q(i/@ �m)q +
1

2
G

S

8X

a=0

[(q�aq)2 + (qi�5�
aq)2]�G

D
[detq(1 + �5)q + h.c.]

+
H

2

X

I,A=2,5,7

(q̄i�5�
I⌧ACq̄T )(qTCi�5�

I⌧Aq)

+
G0

D

8

X

i,j,k=1,2,3

[(q�̃i⌧̃k(1 + �5)Cq̄T )(q̄�̃j ⌧̃k(1 + �5)Cq)(q̄i(1 + �5)qj) + h.c.]

�

8
<

:

1
2gV

(q�µq)2

1
2GV

P8
a=0 [(q�

µ�aq)2 + (qi�µ�5�aq)2] .
(3.29)

The term proportional to G
S
makes a q̄q interaction and has a U(3)L ⇥U(3)R symmetric four-

fermi interaction where �a are the Gell-Mann matrices in flavor space with �0 =
p

2/3 I. The

term proportional to G
D
is called as the Kobayashi-Maskawa-’t Hooft (KMT) coupling which

breaks U(1)A symmetry explicitly [93, 94]. We consider two types of vector interaction (the

final line of Eq.(3.29)): The term proportional to g
V
(> 0) gives a universal repulsion among

di↵erent flavors, while the one proportional to G
V
(> 0) gives flavor-dependent repulsion. The

term proportional to H gives a qq interaction and a diquark condensation with color antitriplet,
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flavor antitriplet and JP = 0+ state where C = i�2�0 is the charge conjugation matrix and ⌧a

are the Gell-Mann matrices in color space with ⌧ 0 =
p
2/3 I. The term proportional to G0

D

2 is

obtained by the Fierz transformation of the KMT term and gives a coupling between the chiral

condensate and the diquark condensate. Here we have introduced a notation, �̃1,2,3 ⌘ �7,5,2 and

⌧̃1,2,3 ⌘ ⌧7,5,2.

In the mean field approximation, the constituent quark masses Mi and the gap parameters

�i are generated dynamically through the NJL interactions3,

Mi = mi � 2G
S
�i + 2G

D
�j�k +

G0
D

4
|si|2, (3.30)

�i = �
✓
H �

G0
D

2
�i

◆
si, (3.31)

where �i = hq̄iqii is the chiral condensate in each flavor, si = hq̄TC�5�̃i⌧̃iqi is the diquark

condensate in each color and flavor with (i, j, k) corresponding to the cyclic permutation of u, d

and s. The thermodynamic potential ⌦ is related to the pressure as ⌦ = �T logZ = �PV with

P given by

P (T, µu,d,s) =
T

2

X

`

Z
d3p

(2⇡)3
Trln

✓
S�1(i⌫`,p)

T

◆

�G
S

X

i

�2
i � 4G

D
�u�d�s +

g
V

2

 
X

i

ni

!2

�
X

i=1,2,3

1

2
(H �G0

D
)|si|2.(3.32)

Here i⌫` = (2` + 1)⇡T is the Matsubara frequency, ni = hq†i qii is the quark number density in

each flavor, and S is the quark propagator in the Nambu-Gor’kov representation 4,

⇥
S�1

⇤ij
↵�

=

 
[G+

0 ]
�1

P
i=1,2,3�i�5�̃i⌧̃i

�
P

i=1,2,3�
⇤
i �5�̃i⌧̃i [G�

0 ]
�1

!
(3.33)

where

[G±
0 ]

�1 = /p� M̂ ± �0µ̂
e↵ . (3.34)

Here, M̂ is a unit matrix in color space and a diagonal matrix in flavor space, diag(Mu,Md,Ms).

The e↵ective chemical potential matrix µ̂e↵ is defined from

µ̂e↵ ⌘ µ̂� g
V

X

j

nj (3.35)

2In the GL approach and 3-flavor massless NJL model, this term, which comes from U(1)A anomaly, favors

the coexistence of the chiral condensation and the diquark condensation from the context of hadron-quark

continuity.
3In Appendix D, we derive this gap equation by using Bogoliubov-Valatin transformation.
4In the numerical simulation, we decompose this matrix into some metrices. We show the detail of this

decomposition in Appendix E.
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where each component of µ̂ is given by

µij
↵� = (µ�ij + µQQ

ij)�↵� + (µ3(⌧3)↵� + µ8(⌧8)↵�)�
ij.

There are nine independent parameters in the (2+1)-flavor NJL model; the UV cuto↵, ⇤,

the coupling constants, G
S
, G

D
, g

V
, H and G0

D
and the current quark masses, mu,d and ms. Five

parameters except for g
V
(G

V
), H and G0

D
have been determined from hadron phenomenology

in the vacuum. We consider three parameter sets summarized in Table 3.1; HK (Hatsuda

and Kunihiro), RKH (Rehberg, Klevansky and Hufner) and LKW (Lutz, Klimt and Weise)

[96, 97, 98, 99].

Table 3.1: Parameter sets of (2+1)-flavor NJL model [96, 97, 98, 99].

⇤(MeV) G
S
⇤2 G

D
⇤5 mu,d(MeV) ms(MeV)

HK 631.4 3.67 9.29 5.5 135.7

RKH 602.3 3.67 12.36 5.5 140.7

LKW 750 3.64 8.9 3.6 87

The magnitude of g
V
(G

V
) has not been determined well: Recent studies of the PNJL model

applied to the QCD phase diagram suggest that g
V
may be comparable to or larger than G

S

[100, 101], so that we change its magnitude in the following range,

0  g
V

G
S

 1.5. (3.36)

The parameters H and G0
D
are chosen to be H = G

S
and G0

D = G
D
as characteristic values 5.

The EOS of quark matter with strangeness is obtained from the above model under three

conditions: (i) the charge neutrality among quarks and leptons, 2
3nu� 1

3nd� 1
3ns�ne�nµ = 0,

(ii) the color neutrality among quarks, nr = ng = nb, and (iii) the �-equilibrium among quarks

and leptons, µd = µs = µu + µe and µe = µµ. The ground state of the system is obtained by

searching the maximum of the pressure in Eq. (3.32) with the conditions,

@P

@�u,d,s
=

@P

@�1,2,3
=

@P

@µ3,8
= 0. (3.37)

Let us first discuss a composition of the �-equilibrated quark matter at T = 0 without

color superconductivity (H = G0
D
= 0). In Fig.3.2 (a), the number fractions (nu,d,s,e/ntot with

ntot = nu + nd + ns = 3⇢) as a function of the baryon density ⇢ are plotted. In Fig.3.2 (b),

the constituent quark masses (Mi) as a function of ⇢ are plotted. These figures do not depend

5Corresponding values from the Fierz transformation are H = 3

4

GS and G0
D = GD . For extensive analyses

with other choice of parameters in the diquark channels, see [43, 102, 103].
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Figure 3.2: (a) The number fractions (nu,d,s,e/ntot

with n
tot

= nu + nd + ns = 3⇢) as a function of the

baryon density ⇢ without color superconductivity (H = G0
D
= 0). Red, blue and green lines correspond to u, d

and s quark, respectively. The black line corresponds to the electron number fraction ⇥ 100. Muon does not

appear due to the emergence of s quarks. (b) The constituent quark masses (Mi) as a function of ⇢. Colors on

each line are the same with those in (a). These figures are taken from [2].

on the magnitude of the vector type interaction g
V

because the flavor-independent g
V
-type

interaction leads to a pressure in Eq.(3.32) depending only on µe↵
↵,a.

At low densities, the s quark appears only above ⇢th ' 4⇢0 due to its heaviness as can

be seen from Fig.3.2 (a): Here ⇢th is determined by the condition, µs(⇢th) = Ms(⇢th). The

dynamical masses of u and d quarks decrease rapidly below ⇢th due to partial restoration of

chiral symmetry, while the s quark is a↵ected only a little through the KMT interaction as

seen from Fig.3.2 (b). Once the s-quark whose electric charge is negative starts to appear

above ⇢th, the number of electrons decreases to satisfy the charge neutrality. Since the electron

Table 3.2: The baryon density where the transition occurs for 0 < ⇢ < 6⇢
0

. NQ means the normal quark

matter. We fix (gV /GS , G
0
D/GD ) = (0.5, 1).

H/G
S
= 0.5 H/G

S
= 0.75 H/G

S
= 1 H/G

S
= 1.5 H/G

S
= 2

NQ to 2SC none (4.4� 4.8)⇢0 0 0 none

2SC to CFL none none (4.8� 5.8)⇢0 (2.9� 3.7)⇢0 none

NQ to CFL none none none none 0
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Figure 3.3: (a) The constituent mass as a function of the quark chemical potential µ. Solid (dotted) lines

is the case with (without) CSC. Red, blue and green lines are u, d and s quarks respectively. (b) The gap

parameters �i (i = 1, 2, 3) as a function of the quark chemical potential µ. Solid red line: �
3

corresponding

to the pairing between u quark and d quark. Solid blue line: �
1

and �
2

corresponding to the ds pairing and

su pairing, respectively. (c) The energy density (") and pressure (P ) as a function of baryon number density

⇢. The red lines show the quark EOSs with diquark condensate. The blue lines show the quark EOSs without

diquark condensate. Figures (b) and (c) are taken from [4].

chemical potential does not exceed the muon mass 106MeV, the muons do not appear even

at high density. In the high density limit, the system approaches the flavor symmetric u, d, s

matter without leptons.

Let us discuss the e↵ects of the interactions in the diquark channels (H and G0
D
). We
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survey how the color superconductivity (CSC) develops with H/G
S
= 0.5, 0.75, 1, 1.5 and 2

and (g
V
/G

S
, G0

D/GD
) = (0.5, 1) for 0 < ⇢ < 6⇢0 related with the central density of NSs. We

consider only 2SC and CFL phases. In Table 3.2, we summarize the baryon density where the

transition takes place for various diquark interactions. NQ means the normal quark matter.

Typically, if the magnitude of the diquark interaction is enough small (H/G
S
= 0.5), 2SC

phase does not appear and only CFL phase appears at very high densities (⇢ > 6⇢0). As

the diquark interaction becomes strong H/G
S
= 0.75, 1, 1.5, 2SC phase starts to emerge and

CFL appears at lower densities. For example, in the case of H/G
S
= 0.75, the first order

transition from the normal quark phase to 2SC phase takes place at µ = 520 MeV (around

(4.4�4.8)⇢0) and CFL phase does not appear below 6⇢0. If we take H/G
S
= 1(1.5), 2SC phase

appears as the quark matter emerges and the first order transition from 2SC phase to CFL

phase occurs at µ = 520(400) MeV (around (4.8� 5.8)((2.9� 3.7))⇢0). Finally, if the diquark

correlation becomes enough strong, CFL phase appears as the quark matter appears. If we

take H/G
S
= 0.75 corresponding to the Fierz transformation, CSC barely appears inside NSs.

Therefore, in this thesis, we take H/G
S
= 1 to see the e↵ects of CSC on bulk properties of NSs.

6.

In Fig. 3.3 (a), we plot the constituent masses for u, d and s quarks as a function of the

quark chemical potential µ. Solid and dotted lines correspond to the cases with and without

CSC. The diquark condensates a↵ect the behavior of the constituent quark masses (Mi) and the

number fractions (ni,e/ntot) through the coupled equations, Eq.(3.30). The threshold density

for s quark becomes lower ⇢th ' 3.6⇢0 since the number of d quarks decreases in 2SC phase at

a given baryon density with the condition of the charge neutrality. At around µ = 520MeV, we

can see the jump of constituent masses, which corresponds to the first order transition from 2SC

to CFL phase. Fig. 3.3 (b) shows the gap parameters �i as a function of the quark chemical

potential µ. The red line corresponds to the ud pairing, and blue line corresponds to the ds or

su pairings. With H/G
S
= 1, two-color superconductivity (2SC) appears as soon as the baryon

density of the quark matter becomes finite at µ = 335 MeV. The first-order transition from the

2SC to CFL phase can be seen more clearly. Fig. 3.3 (c) shows the thermodynamic quantities

(P and ") as a function of ⇢ in the (2+1)-flavor NJL model. The red (blue) lines correspond to

the case with (without) CSC. In terms of the baryon density, 2SC (CFL) appears for ⇢ < 5⇢0
( 5⇢0 < ⇢) in the present parameter set. The plateau of the red line (P with CSC) reflects the

fact that there is a first-order transition from 2SC to CFL. As we will see later, baryon density

relevant to neutron stars with the hadron-quark crossover is below 5⇢0. Therefore, the CFL

phase barely appears in the central core of the NSs in the present model.

6The EOS of [104], where H/GS = 1.5 is adopted, is consistent with our EOS at the same value of H/GS .
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3.5 Brief Summary

In this chapter, we first summarized the two non-perturbative aspects of QCD; the chiral

condensate induced by the strong q̄q correlation and the color superconductivity induced by

the strong qq correlation. To treat the strongly interacting quark matter relevant to the central

core of the neutron stars, we then introduced the (2 + 1)-flavor NJL model as as an e↵ective

theory of QCD. We showed how the chiral and diquark condensates evolve as a function of the

baryon density and found that the partial restoration of chiral symmetry and the transition to

the 2-flavor color superconducting phase take place for the quark chemical potential relevant to

NSs, µ = 350� 500 MeV . Finally we derived the Q-EOS of strongly interacting quark matter

which embodies these characteristic features.



Chapter 4

Cold Neutron Stars with Crossover

In this chapter, we introduce a phenomenological interpolation method at finite density region

and apply the resultant EOS to cold neutron star observables. We show the smooth crossover

from the hadronic phase to the quark phase makes EOS sti↵ so that massive NSs with 2M�
can be sustained independent of the choice of various hadronic EOSs and the choice of the

interpolating methods. The internal structure and the cooling of NSs with the crossover and

the e↵ects of CSC on the bulk NS properties are also discussed. The discussions of this chapter

are based on [1, 2, 3].

4.1 Phenomenological Model for Crossover

As discussed in Chapter 1, treating the point-like hadron as an independent degree of freedom

loses its validity as the baryon density approaches the percolation region. In other words,

the system in the intermediate density region can be described neither by an extrapolation of

the hadronic EOS from the low-density side nor by an extrapolation of the quark EOS from

the high-density side. Under such situation, it does not make much sense to apply the Gibbs

criterion of two phases I and II, PI(Tc, µc) = PII(Tc, µc) since PI and PII are not reliable in the

transition region.

One may expect a gradual onset of quark degrees of freedom in dense matter associated

with the percolation of finite size hadrons, i.e., a smooth crossover from the hadronic matter to

the quark matter. A similar concept about the crossover is already considered as the BEC-BCS

crossover [38]. Such a percolation picture of hadrons has been also discussed in seminal works

such as [39, 40]. Also, hadron-quark continuity [41, 42] and hadron-quark crossover [44, 105]

have been discussed in relation to the existence of color superconductivity at high density.

Fig. 4.1 illustrates the above situation. At the low densities, quarks are confined inside

baryons. As density increases, quarks in the finite size baryons become percolated. Finally,

the deconfined quarks emerge at high density region. The resultant EOS based on the smooth

crossover picture should be the smooth curve as shown by the solid line in this figure. In the

intermediate region, the hadronic EOS based on the point-like hadron picture and the weakly

35
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Figure 4.1: Schematic picture of the QCD thermodynamic quantities (such as the pressure P or the energy

density ") as a function of the baron density (⇢) under the assumption of the hadron-quark crossover. The

crossover region where finite-size hadrons start to overlap and percolate is shown by the shaded area. The

thermodynamic quantities calculated on the basis of the point-like hadrons (shown by the dashed line at low

density) and that calculated on the basis of weakly interacting quarks (shown by the dashed line at high density)

lose their validity in the crossover region. This figure is adopted from [2].

interacting quark EOS break down and have large uncertainties shown in the shaded areas at

low and high densities.

Since the first principle QCD calculation at high baryon density is not available and e↵ective

models at finite baryon density with proper treatment of the confinement phenomena do not

exist at present, we will consider a phenomenological “interpolation” between the H-EOS and

Q-EOS as a first step. Such an interpolation is certainly not unique: Here we consider two

simplest possibilities, P -interpolation and "-interpolation as described below.

• P -interpolation as a function of baryon density

P (⇢) = PH(⇢)w�(⇢) + PQ(⇢)w+(⇢), (4.1)

w±(⇢) =
1

2

✓
1± tanh

✓
⇢� ⇢̄

�

◆◆
, (4.2)

where PH and PQ are the pressure in the hadronic matter and that in the quark matter,

respectively. The interpolating function w± is similar to the phenomenological interpo-

lation method at finite temperature in [106, 107, 108] (see Appendix F). There are two

phenomenological parameters, ⇢̄ and �. ⇢̄ means the typical crossover density and � is the

width of the crossover region. The window ⇢̄� � ⇠ ⇢ ⇠ ⇢̄+ � characterizes the crossover

region in which both hadrons and quarks are strongly interacting, so that neither pure

hadronic EOS nor pure quark EOS are reliable. The percolation picture illustrated in Fig.
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4.1 is best implemented by the interpolation in terms of the baryon density ⇢ instead of

the baryon chemical potential. One should not confuse Eq.(4.1) with the pressure in the

mixed phase associated with the first-order phase transition in which w± is considered to

the volume fraction of each phase. In our crossover picture, the system is always uniform

and w� (w+) should be interpreted as the degree of reliability of H-EOS (Q-EOS) at the

given baryon density.

To calculate the energy density " as a function of ⇢ in a thermodynamically consistent

way, we integrate the thermodynamical relation,

P = ⇢2
@("/⇢)

@⇢
(4.3)

and obtain

"(⇢) = "H(⇢)w�(⇢) + "Q(⇢)w+(⇢) +�" (4.4)

�" = ⇢

Z ⇢

⇢̄

("H(⇢
0)� "Q(⇢

0))
g(⇢0)
⇢0

d⇢0 (4.5)

with

g(⇢) =
2

�
(eX + e�X)�2, (4.6)

X =
⇢� ⇢̄

�
. (4.7)

Here "H ("Q) is the energy density obtained from H-EOS (Q-EOS). �" is an extra term

which guarantees the thermodynamic consistency. Note that the energy per baryon from

the extra term �"/⇢, which receives main contribution from the crossover region, is finite

even in the high-density limit. Therefore the energy density obtained by the procedure

does not reach to the energy density of the pure quark matter.

• "-interpolation as a function of baryon density

"(⇢) = "H(⇢)w�(⇢) + "Q(⇢)w+(⇢). (4.8)

Other thermodynamic quantities are obtained through the thermodynamic relation;

P (⇢) = PH(⇢)w�(⇢) + PQ(⇢)w+(⇢) +�P (4.9)

�P = ⇢("Q(⇢)� "H(⇢))g(⇢), (4.10)

and µ = (" + P )/⇢. Here �P is an extra term which guarantees the thermodynamic

consistency; it is a localized function in the crossover region and obeys the property,

�P (0) = �P (1) = 0.

In the following, we consider crossover window which satisfies the following physical con-

ditions: (i) The system is always thermodynamically stable dP/d⇢ > 0, and (ii) the normal

nuclear matter is well described by the H-EOS so that ⇢̄� 2� > ⇢0 is satisfied.
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4.2 Neutron Star Properties with P -interpolation with-

out CSC

4.2.1 Interpolated EOS

In the present section, we consider the case of P -interpolation without diquark condensation

(H = G0
D
= 0). In Fig.4.2 (a) and (b), pressure and energy density as a function of density are

plotted in the case of the P -interpolation between TNI2u for H-EOS and NJL with g
V
= G

S

for Q-EOS according to Eq.(4.1). The crossover window is chosen to be (⇢̄,�) = (3⇢0, ⇢0)

and is shown by the shaded area on the horizontal axis. The filled circles denote the onset

of strangeness degrees of freedom, either hyperons or strange quarks. We comment on that

TNI2u and NJL with the “universal” four-Fermi vector type interaction g
V
include hyperons or

strange quarks at almost the same density ⇢th ⇠ 4⇢0. An important lesson one can learn from

Fig.4.2 is that the H-EOS (Q-EOS) is nothing more than the asymptotic form of the “true”

P (⇢) around ⇢ = 0 (⇢ = 1). Therefore, naive extrapolation of H-EOS and Q-EOS beyond

their applicability would miss essential physics. To see the sti↵ness of the interpolated EOS,

we plot the pressure as a function of energy density in Fig.4.3 (a). The parameters are the

same as in Fig. 4.2. At higher density region than the crossover window, the interpolated EOS

(a) (b)

(c) (d)

Figure 4.2: (a) The interpolated pressure between TNI2u H-EOS and NJL Q-EOS with gV = GS for

(⇢̄,�) = (3⇢
0

, ⇢
0

). Pressure is illustrated by a blue line. The filled circle denotes the threshold density of

strangeness. (b) The energy density obtained from the interpolated pressure in (a). Energy density is illustrated

by a blue line. The filled circle denotes the threshold density of strangeness. These figures are taken from [2].
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(a) (b)

(c) (d)(a) (b)

Figure 4.3: (a) The relation between interpolated pressure and the energy density. The parameters are same

as Fig. 4.2 (a). The filled circle denotes the threshold density of strangeness. (b) Interpolated pressure (P ) as

a function of baryon density ⇢ for the case (⇢̄,�) = (3⇢
0

, ⇢
0

) with gV /GS = 0, 1.0, 1.5. These figures are taken

from [2].

is certainly sti↵er that the hadronic and quark EOSs. In Fig.4.3 (b), we plot the interpolated

EOS using TNI2u and NJL for various di↵erent values of g
V
/G

S
= 0, 1.0, 1.5. From this figure,

we can clearly see the vector type interaction g
V
makes EOS sti↵. In the following, we call this

phenomenological EOS as “CRover-C” EOS.

4.2.2 Mass-Radius Relation

We now solve the Tolman-Oppenheimer-Volkov (TOV) equation Eq. (1.5) to obtain M -R

relationship by using the EOSs with and without the hadron-quark crossover.

In Fig. 4.4(a), we show the M -R relationship for various H-EOSs with hyperons whose

onset is denoted by the filled circles. The crosses denote the points where maximum masses

are realized: In all cases, Mmax does not reach 2M� due to the huge softening of EOS by the

hyperon mixture. In Fig. 4.4(b), we show the M -R relationship with the CRover-C EOSs: For

the H-EOS, we consider the same EOSs as shown in Fig. 4.4(a), while for the Q-EOS, we adopt

the HK-parameter set with g
V
= G

S
as a typical example. The crossover window is fixed to

be (⇢̄,�) = (3⇢0, ⇢0). Cases for di↵erent parameters in Q-EOS as well as for di↵erent window

parameters are discussed in the next subsection.

The red lines in Fig. 4.4(b) correspond to the cases with TNI2u and TNI2, the blue lines

correspond to TNI3u and TNI3, and the green lines correspond to SCL3⇤⌃ and AV18+TBF.
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Figure 4.4: M �R relationships. (a)M �R relationships with various H-EOS including hyperons. Solid red

lines: TNI2u (universal 3-body force with  = 250MeV) and TNI2 (3-nucleon force with  = 250MeV). Solid

blue lines: TNI3u (universal 3-body force with  = 300MeV) and TNI3 (3-nucleon force with  = 300MeV)

[31, 75]. Solid green lines: AV18+TBF (G-matrix approach with hyperons) [76] and SCL3⇤⌃ (Relativistic

mean field model with a chiral SU(3) symmetry) [71]. The gray band denotes M = (1.97 ± 0.04)M� for PSR

J1614-2230. The solid black line denotes M = 1.44M� for PSR 1913+16. (b) M -R relationship with the

EOS interpolated between H-EOS in (a) and Q-EOS with the HK parameter set and gV = GS , by the window

parameters (⇢̄,�) = (3⇢
0

, ⇢
0

). Colors on each line are the same with those in (a). These figures are taken from

[2].

The onset of strangeness and the maximum mass are denoted by the filled circles and the

crosses, respectively. Irrespective of the H-EOSs, the interpolated EOS can sustain hybrid star

with Mmax > 2M�: A smooth crossover around ⇢ ⇠ 3⇢0 and the sti↵ Q-EOS due to repulsive

vector interaction are two fundamental reasons behind this fact. Also, we note that the radius

of the hybrid star with interpolated EOS is in a range R = (11± 1)km for 0.5 < M/M� < 2.0,

except for the case of SCL3⇤⌃. The reason why the case with SCL3⇤⌃ is di↵erent from others

can be easily seen from Fig. 2.3 (a): The pressure P of SCL3⇤⌃ is nearly twice as large as that

of the other EOSs at ⇢ = (1�2)⇢0. This leads to a larger R of light NSs. Such a narrow window

of R independent of the values of M is consistent with the phenomenological constraints on R

based on recent observations of both transiently accreting and bursting sources [16, 22, 23, 109].

It is in order here to comment on the relationship between the maximum mass and the

nuclear incompressibility . From the properties of finite nuclei, the nuclear incompressibility

 is estimated to be (240 ± 20)MeV [110]. The interpolated EOSs with TNI2 and TNI2u are

consistent with this empirical , and yet they can reach Mmax > 2M�. In other words, what
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Table 4.1: M
max

/M� (⇢c/⇢0) for di↵erent choice of H-EOS and di↵erent sti↵ness of Q-EOS.

H-EOS g
V
=G

S
g
V
=1.5G

S

TNI2u 2.05 (6.1) 2.17 (5.5)

TNI2 2.04 (6.1) 2.16 (5.9)

TNI3u 2.07 (5.9) 2.18 (5.4)

TNI3 2.04 (6.1) 2.16 (5.5)

Paris+TBF 2.06 (6.1) 2.17 (5.6)

AV18+TBF 2.06 (6.1) 2.17 (5.5)

SCL3⇤⌃ 2.06 (5.9) 2.17 (5.5)

is important to sustain massive hybrid stars is not the value of the incompressibility, but the

sti↵ness of the EOS at and above ⇠ 3⇢0. The value of radius mainly comes from the EOS

properties around (1� 2)⇢0. On the other hand, the maximum mass strongly depends on the

sti↵ness of EOS around (3� 4)⇢0.

In Table 4.1, we summarize the maximum mass and the associated central density of the

hybrid star with CRover-C EOS with g
V
=G

S
and g

V
=1.5G

S
. In all combinations of H-EOS

and Q-EOS, Mmax exceeds 2M� with the central density, ⇢c = (5.4� 6.1)⇢0.

Now, let us discuss the internal structure of the hybrid star, in particular its strangeness

content. From the location of the filled circles in Fig. 4.4(b), one finds that the flavor-

independent universal three-baryon repulsion in TNI2u and TNI3u increases the onset density

of the strangeness inside the hybrid star due to the repulsive force acting on the hyperons. This

can be seen more explicitly by plotting the radial profile of the hybrid star: The upper panels

of Fig.4.5 show the ⇢� r relationships for 2M� and 1.44M� hybrid stars with TNI2 (left) and

TNI2u (right). The threshold densities of the strangeness given in Table 2.2 are indicated by

the double lines. In CRover-C EOSs, the above stars turn out to have almost the same radius.

The lower illustrations of Fig.4.5 show the cross sections of the corresponding hybrid stars.

These figures imply that, even if the mass and the radius are the same, the strangeness

content of the hybrid stars can be quite di↵erent. There are two important points. (i) Due to

the sti↵ness of EOSs, which comes from crossover, the central density for NSs with crossover is

much smaller that that without crossover even if the masses are the same. (ii) The threshold

density for strangeness for TNI2u larger than that for TNI2 due to the repulsive force among

hyperons.

This point is of particular interest for the cooling problem of NSs. As is well known, NSs with

a Y -mixed core undergo an extremely rapid cooling due to the e�cient ⌫-emission processes

called “hyperon direct URCA” (Y -Durca, e.g., ⇤! p+e�+ ⌫̄e, p+e� ! ⇤+⌫e) and are cooled

very rapidly below the detection limit of thermal X-ray. Therefore, for the NSs consisting of

pure hadronic components with Y , only the very light-mass NSs (M < (1.0� 1.2)M� without
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Figure 4.5: Density-profiles ⇢(r) with r being the distance from the center for the 2.0M� star (red line) and

1.44M� star (blue line). In the left upper panel TNI2 H-EOS and Q-EOS with gV = GS and the HK parameter

set are used in the interpolation with the window parameters (⇢̄,�) = (3⇢
0

, ⇢
0

), while in the right upper panel

TNI2u H-EOS and Q-EOS above are used. Double line shows the density above which the strangeness appears.

Lower illustrations show the schematic internal structure. Only the blue shaded regions contain strangeness

degrees of freedom. This figure is taken from [2].

hyperons, as in Fig. 2.3 (b) with TNI2u case) can escape from Y -Durca rapid cooling. This

means an unlikely situation that all the NSs whose Tsur are observed should be light-mass stars

in spite of the fact that the observed mass distribution is centered around (1.4� 1.5)M� [15].

On the contrary, in the case of the hybrid star with g
V
= G

S
(1.5G

S
) under consideration, NSs

as heavy as up to 1.9(2.0)M� can avoid this rapid cooling, allowing the Tsur-observed NSs to

be from the light-mass to heavy mass stars (M  (1.9� 2.0)M�, as in Fig. 4.6 (a)). However,

in the case of the hybrid star with smooth crossover, “quark direct URCA” (Q-Durca) instead

of Y -Durca may takes place in the crossover region. The e↵ect of spin-singlet and spin-triplet

color superconductivity on this Q-Durca is an interesting open question to be studied.
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4.2.3 Dependence on Q-EOS

To see how the hybrid star structure changes by the sti↵ness of Q-EOS, we plot M � ⇢c
relationship for g

V
/G

S
= 0, 0.5, 1.0, 1.5 with HK parameter set in Fig.4.6(a). We take TNI2u

for H-EOS and the same crossover window (⇢̄,�) = (3⇢0, ⇢0) as in Fig.4.4. For comparison,

the M � ⇢c relationship only with TNI2u is plotted by the dashed line. Fig.4.6(b) shows the

corresponding M �R relations. As anticipated, Mmax increases as g
V
increases.

In Table 4.2, we show how Mmax and ⇢c depend on the choice of g
V
and the choice of the

NJL parameter set. Although the parameter dependence is not entirely negligible, the massive

hybrid star with 2M� can be sustained for su�ciently large values of g
V
.

Finally, we consider the flavor-dependent vector interaction proportional to G
V

given in

Eq.(3.29). In the high density limit where u, d, s quarks have equal population, hu†ui = hd†di =
hs†si, the g

V
interaction and the G

V
interaction have the same contribution to the pressure

in the mean-field approximation if we make the identification, G
V
= 3

2gV
. Motivated by this

relation, we show Mmax and ⇢c for GV
/G

S
= 1.5, 2.25, 3.0 in Table 4.3. For the density relevant

to the core of the hybrid stars, the flavor SU(3) limit is not yet achieved due to the s-quark

mass (see Fig. 3.2 (a)). Therefore, the EOS for the flavor-dependent repulsion with G
V
= 3

2gV
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(a) (b)

Figure 4.6: (a) M � ⇢c relationships with the interpolated EOSs. We adopt the HK-parameter set for the

Q-EOS with various gV /GS = 0, 0.5, 1.0, 1.5. The crossover window are fixed to be (⇢̄,�) = (3⇢
0

, ⇢
0

). The cross

symbols denote the points of M
max

, while the filled circles denote the points beyond which the strangeness

appears. The gray band denotes M = (1.97 ± 0.04)M� for PSR J1614-2230. The solid black line denotes

M = 1.44M� for PSR 1913+16. (b) M -R relationships with the interpolated EOSs. These figures are taken

from [2].
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Table 4.2: The values of M
max

/M� (⇢c/⇢0) for gV /GS = 1.0, 1.5, 2.0 with (⇢̄,�) = (3⇢
0

, ⇢
0

) and TNI2u. The

parameter sets of the NJL model, HK, RKH and LKW, are given in Table 3.1.

Q-EOS g
V
=GS g

V
=1.5GS g

V
=2GS

HK 2.05 (6.1) 2.17 (5.5) 2.24 (5.4)

RKH 1.99 (6.2) 2.12 (5.8) 2.20 (5.4)

LKW 1.72 (7.5) 1.87 (6.7) 1.97 (6.3)

is softer than the flavor independent repulsion with g
V
. This can be seen by comparing the

corresponding values in Table 4.3 and those in Table 4.2. In any case, the massive hybrid star

is possible for su�ciently large values of G
V
.

Table 4.3: M
max

/M� (⇢c/⇢0) for the HK parameter set with the flavor-dependent repulsion GV . The

crossover window is (⇢̄,�) = (3⇢
0

, ⇢
0

) and the hadronic EOS is TNI2u.

G
V
=1.5G

S
G

V
=2.25G

S
G

V
=3.0G

S

1.87 (6.6) 1.99 (6.2) 2.07 (5.8)

4.2.4 Dependence on Crossover Window

In Table 4.4, we show Mmax and ⇢c for di↵erent choice of the crossover window parameterized

by ⇢̄ and �. TNI2u and HK parameter set are adopted for H-EOS and Q-EOS for various vector

interaction g
V
, respectively. As the crossover window becomes lower and/or wider in baryon

density, the CRover-C EOS becomes sti↵er and Mmax becomes larger. This can be understood

by considering that the e↵ects of the crossover and strongly interacting quark matter make

EOSs sti↵. To be compatible with the observed massive NS with M = (1.97 ± 0.04)M�, the

crossover needs to occur in (2� 4)⇢0.

4.2.5 Sound Velocity of Interpolated EOS

One of the measures to quantify the sti↵ness of EOS is the sound velocity

v
S
=
p

dP/d". (4.11)

In Fig.4.7, we plot v2
S
for our interpolated EOS with g

V
/G

S
= 0, 1.0, 1.5 as a function of ⇢.

For a comparison, we plot the sound velocity squared of TNI2u by the dotted line. The kinks

of v
S
at ⇢ ' 4⇢0 are caused by the softening of EOS by the appearance of strangeness. The

enhancement of v
S
of CRover-C EOS relative to the pure hadronic EOS takes place just at and

above the crossover window.
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Table 4.4: M
max

/M� (⇢c/⇢0) under the variation of the parameters, ⇢̄ and �, which characterize the crossover

window. H-EOS and Q-EOS are obtained from TNI2u and HK parameter set, respectively. Columns without

numbers are the excluded cases corresponding to ⇢̄� 2� < ⇢
0

.

�/⇢0 = 1 �/⇢0 = 2

⇢̄ g
V
=GS g

V
=1.5GS g

V
=GS g

V
=1.5GS

3⇢0 2.05 (6.1) 2.17 (5.5) � �
4⇢0 1.89 (7.2) 1.97 (6.8) � �
5⇢0 1.73 (8.2) 1.79 (8.0) 1.74 (8.0) 1.80 (7.7)

6⇢0 1.60 (9.6) 1.64 (9.3) 1.62 (9.2) 1.66 (9.0)
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Figure 4.7: Sound velocity squared v2
S
as a function of baryon density ⇢. Solid lines: v2

S
� ⇢ obtained from

the interpolated EOS between the H-EOS with TNI2u and the Q-EOS with gV /GS = 0, 1.0, 1.5. The crossover

window is (2� 4)⇢
0

and is shown by the shaded area in the horizontal axis. Dotted line : that for pure H-EOS

with TNI2u. The filled circles denote the points beyond which strangeness starts to appear. This figure is

adopted from [2].

4.2.6 Stability of Hybrid Star

The NSs are gravitationally stable if the average adiabatic index �̃ satisfies the following in-

equality [111]:

�̃ ⌘
R R

0 �Pd3r
R R

0 Pd3r
>

4

3
+ �

GM

R
. (4.12)
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Here

� ⌘ d logP

d log⇢
(4.13)

is the adiabatic index. Also, �GM/R with � being a numerical constant of order unity is a

general relativistic correction whose magnitude is much less than 1. Since � of our H-EOS is

about 2 at all densities and � of our Q-EOS is larger than 4/3 due to the constituent quark

mass and the repulsive vector interaction, Eq.(4.12) is always satisfied and our hybrid star is

gravitationally stable. 1

4.3 Neutron Star Properties with "-interpolation with-

out CSC

4.3.1 Interpolated EOS

In this section we consider the di↵erent interpolation procedure using the energy density "

as a function of ⇢ given in Eq.(4.8) without the diquark correlation (H = G0
D
= 0). Shown

1For the free non-relativistic matter, � = 5/3. On the other hand, for the free relativistic matter, � = 4/3.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 4.8: (a) The interpolated energy density between TNI2u H-EOS and NJL Q-EOS with gV = 0.5GS for

(⇢̄,�) = (3⇢
0

, ⇢
0

). Energy density is illustrated by a blue line. The filled circle denotes the threshold density of

strangeness. (b) The pressure obtained from the interpolated energy density in (a). The pressure is illustrated

by a blue line. The filled circle denotes the threshold density of strangeness. These figures are taken from [2].
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Figure 4.9: (a) The relation between the interpolated energy density and the resultant pressure for gV = 0

(green) and gV = 0.5GS (blue). The crossover window is (2 � 4)⇢
0

. The filled circle denotes the threshold

density of the strangeness. (b) Sound velocity squared v2
S
as a function of baryon density ⇢. Solid lines show

v2
S
�⇢ obtained from the interpolated EOS with gV /GS = 0, 0.5, while the dotted line corresponds to the TNI2u

hadronic EOS. The filled circles denote the points beyond which strangeness starts to appear. Those figures are

taken from [3].

in Fig.4.8 (a), the energy density is interpolated as a function of the baryon density between

TNI2u for H-EOS and NJL with g
V
= 0.5G

S
for Q-EOS. The crossover window is chosen to

be (⇢̄,�) = (3⇢0, ⇢0) and is shown by the shaded area on the horizontal axis. The pressure

obtained from the interpolated energy density using the thermodynamic relation is shown in

Fig. 4.8 (b). Due to the extra positive term �P in Eq.(4.10), the full pressure is larger than PH

and PQ in the crossover region with the "-interpolation procedure. Although �P is necessary

for the thermodynamic consistency, its physical interpretation is not clear at the moment and

is left for the future studies. The di↵erence between P -interpolation and "-interpolation is that

the extra term in "-interpolation vanishes at ⇢! 0, 1. On the other hand, the extra term in

P -interpolation does not vanish at all densities.

To see the sti↵ness of EOS, we show the energy density as a function of pressure for the "-

interpolated EOS between the TNI2u as a hadronic EOS and the NJL with g
V
= 0 (g

V
= 0.5G

S
)

as a quark EOS in Fig.4.9 (a). The sound velocity squared as a function of ⇢ is also shown in

Fig.4.9 (b). In both figures, the onset of the strangeness is indicated by the filled circles. From

both figures, one finds that the CRover-C EOS becomes sti↵er than the quark phase and the

hadronic phase in the crossover region indicated by the shaded band. Such sti↵ening is induced
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Figure 4.10: (a) M � ⇢c relationships with the interpolated EOSs. We adopt the HK-parameter set for the

Q-EOS with various gV /GS = 0, 0.5. The crossover window are fixed to be (⇢̄,�) = (3⇢
0

, ⇢
0

). The cross symbols

denote the points of M
max

, while the filled circles denote the points beyond which the strangeness appears. The

gray band denotes M = (1.97 ± 0.04)M� for PSR J1614-2230. The solid black line denotes M = 1.44M� for

PSR 1913+16. (b) M -R relationships with the interpolated EOSs. These figures are taken from [3].

by the extra pressure in Eq. (4.10). Thus the maximum mass of the neutron star is expected

to become large even for moderate value of g
V
by comparing this v2

S
with Fig. 4.7.

4.3.2 Bulk Properties of NSs

In Fig.4.10(a), we plot M � ⇢c relationship between TNI2u for H-EOS and NJL Q-EOS for

g
V
/G

S
= 0, 0.5 with HK parameter set. We choose the crossover window as (⇢̄,�) = (3⇢0, ⇢0).

For comparison, the M � ⇢c relationship only with TNI2u is also plotted by the dashed line.

Fig.4.10(b) shows the corresponding M � R relations. As anticipated from Fig. 4.9 (b), the

maximum mass is larger than the case of the P -interpolation for given g
V
. The radius of

NSs with "-interpolated EOS is in (12.5 ± 0.5) km, which is slightly larger than that with

P -interpolation due to the sti↵ness of the "-interpolated EOS.

In Table 4.5, we show Mmax and ⇢c for di↵erent H-EOS, vector type interaction g
V

and

choice of the crossover window parameterized by ⇢̄ and �. The "-interpolation makes EOS sti↵

more drastically than the P -interpolation. Even for (g
V
, ⇢̄) = (0, 3⇢0) and (g

V
, ⇢̄) = (0.5, 5⇢0),

the maximum mass Mmax can exceed 1.97M�.
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Table 4.5: M
max

/M� (⇢c/⇢0) for di↵erent choice of H-EOS, sti↵ness of Q-EOS and crossover window.

g
V
= 0 g

V
= 0.5G

S

H-EOS (⇢̄,�) = (3⇢0, ⇢0) (5⇢0, 2⇢0) (3⇢0, ⇢0) (5⇢0, 2⇢0)

TNI2u 2.02 (4.5) 1.86 (8.7) 2.59 (4.4) 2.25 (6.1)

TNI2 2.02 (5.8) 1.84 (9.1) 2.59 (4.3) 2.23 (6.8)

TNI3u 1.99 (4.8) 1.89 (8.5) 2.57 (4.7) 2.26 (6.0)

TNI3 1.97 (5.8) 1.80 (6.3) 2.55 (4.5) 2.21 (7.3)

Paris+TBF 1.92 (4.8) 1.75 (6.5) 2.52 (4.7) 2.17 (6.5)

AV18+TBF 1.94 (4.7) 1.75 (7.2) 2.53 (4.7) 2.19 (6.1)

SCL3⇤⌃ 1.85 (4.8) 1.73 (7.7) 2.46 (4.7) 2.15 (6.8)

Figure 4.11: (a,b) Comparison between the CRover EOS and the sound velocity squared without CSC

(H = G0
D = 0) and those with CSC (H = GS and G0

D = GD) for gV /GS = 0.5. These figures are taken from

[3].

4.4 Neutron Star Properties with "-interpolation with

CSC

In this section, we add the diquark channel with H = G
S
and G0

D
= G

D
. By turning on CSC,

CRover-C EOS becomes a little bit softer than the case without CSC in the crossover region as



50 Chapter 4. Cold Neutron Stars with Crossover

Figure 4.12: (a) The M � ⇢c relations with the CRover EOS (solid lines) and TNI2u hadronic EOS (dotted

line) with and without the CSC phase for gV /GS = 0.5. (b) The M � R relation with the same EOSs as (a).

These figures are taken from [3].

shown by the red lines in Fig.4.11 (a) pressure as a function of the energy density and (b) sound

velocity squared v2
S
as a function of baryon density. Associated with this, the onset density of

the strangeness is reduced from 4⇢0 to 3.6⇢0 as shown by the solid circle. As we have discussed

in Chapter 3, there is little room for the CFL phase to appear inside NSs in our CRover-C

EOS, which is not considered in this figure.

In Fig. 4.12 (a,b), M � ⇢c and M � R relations are plotted by using the CRover-C EOS

with and without CSC given in Fig.4.11(a). For comparison, the results of the TNI2u hadronic

EOS are shown by the black dotted lines. As we have already discussed, the CSC softens the

EOS. Then, the Mmax of the NS with CSC becomes smaller by 0.2M� than that without CSC

phase. Such a reduction of Mmax due to CSC is consistent with other calculations (see e.g.,

[112, 113]). However, the massive NSs with 2M� can be still sustained by the interpolated EOS

with CSC.

Two remarks are in order here about the e↵ect of CSC on the M � R relation: (i) The

central density of the NSs does not exceed 4.9⇢0 in CRover EOS with CSC, so that the CFL

phase barely appears inside the star. (ii) The e↵ect of 2SC already becomes visible for low mass

stars with the low central density . This is because we have a smooth interpolation between

the hadronic EOS and quark EOS, so that the 2SC component has small but non-negligible

contribution even in low densities. Physically, this could be interpreted as partial percolation

of the nucleons into quarks with strong diquark correlations.
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Table 4.6: M
max

/M� (⇢c/⇢0) for di↵erent choices of hadronic EOS, quark EOS. We fix (⇢̄,�) at (3⇢
0

, ⇢
0

).

g
V
= 0

without CSC
g
V
= 0.5G

S

without CSC
g
V
= 0.5G

S

with CSC

(⇢̄,�) (3⇢0, ⇢0) (3⇢0, ⇢0) (3⇢0, ⇢0)

TNI2u 2.02 (4.5) 2.59 (4.4) 2.40 (4.9)

TNI2 2.02 (5.8) 2.59 (4.3) 2.40 (4.8)

Table 4.6 is a summary of the the maximummassMmax and the central density ⇢c normalized

by ⇢0 with the CRover-C EOS including CSC phase. Two sets of hadronic EOS (TNI2u and

TNI2) are adopted, but the di↵erence is small. The e↵ect of CSC generally decreases Mmax

and increases ⇢c. As long as ⇢̄ is around 3⇢0, the CRover-C EOS can easily accommodate the

2M� NSs.

4.5 Brief Summary

In this chapter, we introduced a phenomenological interpolation method between the hadronic

phase and the quark phase at zero temperature on the basis of the smooth crossover. We

call this EOS “CRover-C” EOS. We should note that thermodynamic relations are satisfied

by our phenomenological EOS. Through the TOV equation, we can calculate bulk properties

of cold NSs sustained by this CRover-C EOS. Due to the e↵ects of the crossover, CRover-C

EOS becomes sti↵ when the quark matter appears. This is in sharp contrast to the case of

the first order transition. We showed this sti↵ness does not depend on the choice of H-EOSs

and interpolation methods. Due to the sti↵ness of the interpolated EOS, the central density

of NSs with crossover becomes much smaller than that without crossover. Therefore, if we

have the universal repulsive three body force among hyperons, since the onset of the hyperon

mixture delays, there is a possibility that our interpolated EOS solves the well-known rapid

cooling problem with hyperons. Finally, we consider the e↵ects of CSC on NSs. CSC makes

EOS soft so that the maximum mass of NSs with CSC is smaller by about 0.2M� than that

without CSC. Interpolated EOSs including CSC can still sustain 2M� NSs. Due to the partial

percolation of nucleons to quarks, in our model, CSC has a small but non negligible e↵ects even

in low mass NSs.
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Chapter 5

Hot Neutron Stars with Crossover

In this chapter, we discuss the bulk properties of hot NSs, which come from the contraction

after the core-collapsed Type-II supernova explosion. To discuss the e↵ect of the hadron-quark

crossover on the hot NSs, we generalize the previous crossover model at zero temperature to

the finite temperature region naturally. By using this new phenomenological EOS, we calculate

the mass, radius and the temperature profiles about hot NSs. The discussions of this chapter

are based on [3, 4].

5.1 Hot Neutron Stars

After the core-collapsed Type-II supernova explosion, a hot NS with the radius ⇠ 10�20 km

emerges if the mass is so small that a proto NS does not evolve into a BH[34, 35, 36]. Since in

hot NSs the neutrino trapping occurs at the baryon density ⇢ exceeding 1012g/cm3, the hot NS

at birth in quasi-hydrostatic equilibrium is composed of the supernova matter with the typical

lepton fraction, Yl = Ye + Y⌫ ⇠ 0.3� 0.4, and the typical entropy per baryon, Ŝ ⇠ 1� 2.

Of course, cold NSs give us the rich information about dense QCD matter as we have

already mentioned, the hot NSs also provide us with various information on the properties and

dynamics of high density matter. Thermal properties of the hot NSs are intimately related

to the physics of high density matter at finite temperature. We note that the hot neutron

stars with the hadron-quark mixed phase has been studied previously, e.g. [114, 115, 116, 117].

Such a mixed phase generally leads to soft EOS, so that it is rather di�cult to sustain 2M�
NSs as we have already discussed in Chapter 2. On the contrary, our hadron-quark crossover

approach does not su↵er from the problem, since it leads to sti↵ EOS in the crossover region

shown in Chapter 4. The purpose of this chapter is to study the hot neutron star at birth with

degenerate neutrinos on the basis of smooth percolation picture from the hadronic phase to

quark phase.

In Fig.5.1, we show a schematic picture, which compares the internal structure of the hot and

cold NSs with 2M�. Above the normal nuclear matter density ⇢0, we use the EOS interpolated

between hadronic phase and quark phase. On the other hand, below ⇢0, we use the thermal

53
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Figure 5.1: Comparison between the hot NS and cold NS with M = 2M� obtained by the CRover EOS with

gV = 0.5GS . We take (Yl, Ŝ) = (0.3, 1) to characterize the hot NS. As for the details of the EOSs adopted at

di↵erent densities, BPS, HS, TNI2 and NJL, see the text. This figure is taken from [4].

EOS which consists of an ensemble of nuclei and interacting nucleons in nuclear statistical

equilibrium given by Hempel and Scha↵ner-Bielich (HS EOS) [118]. As the density decreases,

the temperature also decreases monotonically: For example, T ⇠ 10 (2) MeV at ⇢=0.1 (0.001)

fm�3 for (Yl, Ŝ) = (0.3, 1). Other EOSs in this region do not show quantitative di↵erence from

the HS EOS as discussed in [119]. Once the baryon density becomes smaller than the neutron

drip density 10�3⇢0, the temperature becomes smaller than 0.1 MeV. Then we switch to the

standard BPS EOS [19].

5.2 Crossover at Finite Temperature

There are some important di↵erences between the cold matter and the supernova matter.

• The di↵used Fermi surface due to the e↵ect of finite T .

• The existence of degenerate neutrinos.

• The contributions from anti-particles.

The main purpose of this chapter is to see the di↵erences between the cold EOS and the

hot EOS with crossover. Therefore, in the following, we fix the typical crossover density ⇢̄

and the typical width of the crossover � at (3⇢0, ⇢0). We also fix the magnitude of the flavor

independent four Fermi vector type interaction at g
V
= 0.5Gs.
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We neglect the strangeness in the hadronic matter since the typical threshold density for

the strangeness in the hadronic matter is almost the same or larger than the typical crossover

density ⇢̄ = 3⇢0. Also, we neglect muons since muons are irrelevant for the sti↵ness of EOS.

Under these assumptions, we consider a system composed of n, p, e�, e+, ⌫e and ⌫̄e in the

hadronic EOS (TNI2) at finite T , and u, d,s, e�, e+, ⌫e and ⌫̄e in the quark EOS (NJL) at finite

T . We construct EOSs in the mean field approximation with the charge neutrality, chemical

equilibrium and baryon and lepton number conservations. In practice, we find µe/T > 15 in

the interior of the hot NSs, so that the e↵ects of anti-particles, e+ and ⌫̄e, and neutrinos in

second and third generations are negligibly small. The color superconductivity is switched o↵

for simplicity.

To generalize the "-interpolation method to the finite temperature region naturally, we sug-

gest the phenomenological interpolation of the Helmholtz free-energy per baryon F̂ = F/N =

Ê�T Ŝ to describe the smooth interpolation between the hadronic matter and the quark matter

at finite T . F̂ is a function of ⇢, T and Yl, so that we have

F̂ (⇢, T ;Yl) = F̂H(⇢, T ;Yl)w�(⇢, T ) + F̂Q(⇢, T ;Yl)w+(⇢, T ). (5.1)

Here F̂H and F̂Q are the hadron+lepton free-energy per baryon and the quark+lepton free-

energy per baryon, respectively. Of course, in the case of the supernova matter, the weight

function w± depend on both the density and the temperature. However, the typical temper-

ature of hot NSs is about 30MeV which is su�ciently smaller than the thermal dissociation

temperature of hadrons of about 200 MeV, which is already known by the lattice QCD Monte

Carlo simulation. Therefore, we ignore the T -dependence of these weight functions w±,

w±(⇢, T ) ! w±(⇢) ⌘
1± tanh(⇢� ⇢̄)/�

2
. (5.2)

As a result, the resultant Helmholtz free-energy per baryon F̂ can be written as the following

form,

F̂ (⇢, T ;Yl) = F̂H(⇢, T ;Yl)w�(⇢) + F̂Q(⇢, T ;Yl)w+(⇢). (5.3)

The entropy per baryon Ŝ = �@F̂ /@T and the energy per baryon Ê = F̂ + T Ŝ are obtained

by using the thermodynamic relations,

Ŝ = �@F̂ /@T, (5.4)

Ê = F̂ + T Ŝ. (5.5)

Under the assumption that w± is T -independent, Eq.(5.3) leads to

Ŝ(⇢, T ;Yl) = ŜH(⇢, T ;Yl)w�(⇢) + ŜQ(⇢, T ;Yl)w+(⇢),

Ê(⇢, T ;Yl) = ÊH(⇢, T ;Yl)w�(⇢) + ÊQ(⇢, T ;Yl)w+(⇢).
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Figure 5.2: (a) The entropy per baryon Ŝ as a function of the baryon density ⇢ for Yl = 0.3 with T=10 MeV

(red), 15 MeV (blue) and 20 MeV (green). Solid lines correspond to the cases with crossover. Dotted lines at

low and high density regions come from the hadronic and the quark phase respectively. (b) The temperature T

of the isentropic matter as a function of the baryon density ⇢ for Yl = 0.3 with Ŝ = 1 (red) and Ŝ = 2 (blue).

Solid lines and the dashed line correspond to the cases with crossover and without crossover, respectively. These

figure are taken from [4].

The thermodynamic quantities for isothermal matter with ⇢, T and Yl can be converted into

those for isentropic matter by means of the T -⇢ relationship constrained by the constant entropy

per baryon, Ŝ =const. Then the isentropic pressure P and the isentropic baryon chemical

potential µ
B
are obtained as

P (⇢, T (⇢);Yl, Ŝ) = � @E

@V

����
S,N

= ⇢2
@Ê

@⇢

�����
Ŝ

, (5.6)

µ
B
(⇢, T (⇢);Yl, Ŝ) =

@E

@N

����
S,V

=
@"

@⇢

����
Ŝ

(5.7)

where " ⌘ ⇢Ê is the energy density. From the definition of our interpolation method Eq. (5.3),

P and µ
B
approach those of pure hadronic (quark) matter in the low (high) density limit.

5.3 Construction of Hot EOS

In the following, we consider typical values of the lepton fraction Yl = 0.3, 0, 4 and those of

the entropy per baryon Ŝ = 1, 2. To carry out the conversion from the isothermal matter with
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fixed T and Yl to the isentropic matter with fixed Ŝ and Yl, firstly we calculate Ŝ(⇢, T, Yl) as a

function of ⇢/⇢0.

In Fig.5.2 (a), we show Ŝ for T=10, 15, 20 MeV and Yl = 0.3 with crossover by the solid

lines, while the entropy per baryon for the pure hadronic matter and the pure quark matter

are shown by the dashed lines. One finds that the entropy per baryon turns out to increase at

high densities, once the quark degrees of freedom start to appear. By imposing the isentropic

condition, we can make the relation between the temperature T and the density ⇢/⇢0 as shown in

Fig.5.2 (b). Fig.5.2 (b) shows the temperature as a function of ⇢/⇢0 under isentropic conditions

for Ŝ = 1, 2 and Yl = 0.3 with crossover (solid lines) and for Ŝ = 2 and Yl = 0.3 without

crossover (the dashed line).

The rapid increase of Ŝ given T in the crossover region as shown in Fig. 5.2 (a) can be

understood as follows. First of all, the temperature is enough smaller than the Fermi energy at

high densities, so that the low T expansion (the Sommerfeld expansion) is applicable. Then,

let us consider, for illustrative purpose, the non-relativistic neutron matter in the hadronic

phase and the massless u-d quark matter with �-equilibrium in the quark phase. The ratio

of the entropy per baryon of the hadronic matter (ŜH) and that of the quark matter (ŜQ)

for non-interacting case can be evaluated in the leading order of the Sommerfeld expansion

as, ŜQ

ŜH
⇠ 1.14

g
1/3
Q

g
2/3
H

⇣
⇢
⇢0

⌘1/3
. Here, the fractional powers originate from the di↵erence between

relativistic and non-relativistic kinematics. Note that the right hand side is T -independent.

By taking the number of degrees of freedom, gQ = 2spin ⇥ 3color and gH = 2spin, as well as the

typical crossover density ⇢ = 3⇢0, the ratio becomes 1.88. This essentially explains the jump

between the two dashed lines in Fig. 2.3 (a) for given T . Because of the fact that Ŝ given T

with the crossover (the solid line in Fig.5.2 (a)) becomes larger than ŜH without the crossover,

there is no need to increase T to keep Ŝ constant at high densities. This can be indeed seen

from Fig. 5.2 (b) in which T is rather insensitive to ⇢ for fixed Ŝ.

In Fig.5.3(a), (b), (c) and (d), we show the isentropic pressure P (⇢, T (⇢), Yl), the energy

per baryon Ê(⇢, T (⇢), Yl), the baryon chemical potential µ
B
as functions of ⇢, and the P � "

relation, respectively, for three characteristic sets, (Yl, Ŝ) = (0.3, 1), (0.3, 2) and (0.4, 1). For

comparison, the EOS of cold neutron star matter (T = 0 without neutrino degeneracy) is also

shown by the black solid lines. In the following, we call this new phenomenological EOS on the

basis of hadron-quark smooth crossover as “CRover-H EOS”.

5.4 Bulk Properties of Hot Neutron Stars

Now, by using the CRover-H EOS in the last section, we can solve the TOV equation to obtain

the structure of hot NSs at birth; In the following, we consider the hot neutron stars with

typical values, (Yl, Ŝ) = (0.3, 1).

In Fig. 5.4 (a), we show the relation between the gravitational mass M and the baryon



58 Chapter 5. Hot Neutron Stars with Crossover

number NB for hot and cold NSs with and without crossover. First of all, the crossover leads to

heavier NSs due to the sti↵ening of the EOS as shown by the case of the cold NSs. Furthermore,

hot NSs have larger mass than the cold ones for given NB. Moreover, the maximum NB for

hot NS is smaller than that of the cold NS. This fact means that if there is no accretion so that

the baryon number NB is a constant through the thermal evolution, there is no configuration,

which collapses to BH. With the present hadron-quark crossover, the hot EOS is slightly softer

Figure 5.3: (a) The isentropic pressure P as a function of baryon density ⇢ for (Yl, Ŝ) =(0.3, 1), (0.3, 2) and

(0.4, 1). The black line corresponds to the EOS for cold neutron star matter. The crossover window is shown

by the shaded area on the horizontal axis. (b) The energy per baryon Ê with the same set of Yl and Ŝ as (a).

(c) Baryon chemical potential µB as a function of ⇢. (d) P as a function of ". These figures are taken from [4].
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than the cold EOS in the crossover region as shown in Fig.5.3(d), so that the delayed collapse

of the hot NSs to the black hole does not take place. We will discuss the reason why this

softening occurs later. On the other hand, with the first-order hadron-quark phase transition,

the softening of the EOS due to the mixed phase is tamed by the finite temperature e↵ect, so

that the hot NSs may eventually collapse into black holes [114, 116]. The possibility of the

delayed collapse has been also reported in the context of the pion condensation [32]. In Fig.

5.4 (b), we show �E in the unit of M� as a function of the mass of cold neutron star, Mcold.

Typical energy release �E ⌘ Mhot � Mcold for Mcold = 1.4M� due to the contraction reads

Figure 5.4: (a) The neutron star mass M as a function of the total baryon number NB . Red (blue) curves

correspond to the hot (cold) neutron stars with crossover. The dotted lines correspond to the case without

crossover. (b) The energy release �E ⌘ M
hot

�M
cold

as a function of the cold NS mass M
cold

. (Yl, Ŝ) = (0.3, 1)

is adopted. These figures are taken from [4].
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�E ⇠ 0.04M�. By assuming the conservation of angular momentum through the thermal

evolution, we can estimate the spin-up rate. In this case, the spin-up rate is about 14 % for

Mcold = 1.4M� of evolved cold neutron stars.

In Fig. 5.5 (a), the mass-radius (M -R) relations of the hot and cold neutron stars with

hadron�quark crossover are shown. Although the maximum masses are similar between hot

and cold NSs, the sti↵ening of the EOS at finite T at low density (see Fig. 5.3 (d)) makes the

hot NS bigger in size, especially for NSs with small M . On the other hand, a slight softening

of the EOS at finite T in the crossover region (see Fig. 5.3 (d)) leads to the maximum mass of

the hot neutron star slightly smaller than that of the cold neutron star.

This is somewhat counter intuitive since the EOS with neutrinos at finite T usually becomes

sti↵er due to the thermal pressure from constituent particles and the degenerate pressure from

neutrinos. However, it should be remembered that we are considering the isentropic situation

(fixed Ŝ) rather than the isothermal situation (fixed T ). To see the di↵erence, a schematic

illustration of the EOSs at fixed T (the black solid lines) and the EOS at fixed Ŝ (the red

line) is given in Fig. 5.6 (a). The black solid lines become sti↵er as T increases. On the

other hand, due to the decrease of T around the crossover region (see Fig. 5.2(b)), the red line

(the isentropic EOS) can even become slightly softer than the EOS at T=0 in the crossover

region. Such a slight softening can be seen quantitatively by the ratio of the sound velocities,

(vhot
S

� vcold
S

)/vcold
S

, as shown in Fig. 5.6(b) drawn on the basis of our CRover EOS: The sound

velocity ratio (the blue line) becomes negative associated with the decrease of T (the red line)

Figure 5.5: (a) Mass-radius relationship for (Yl, Ŝ) = (0.3, 1). Red: hot neutron stars with crossover. Blue:

cold neutron stars with crossover. (b) The sound velocity squared v2s as a function of the distance from the

center of 1.4M� neutron star. Colors on each line are the same as in (a). These figures are taken from [4].
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in the crossover region.

In Fig.5.5 (b), we plot the local sound velocity squared v2
S
(r) as a function of the distance

from the center r for M = 1.4M�, which is defined by

v2s(⇢;Yl, Ŝ) =
@P

@"

����
Yl,Ŝ

=
dP (⇢, T (⇢);Yl, Ŝ)/d⇢

d"(⇢, T (⇢);Yl, Ŝ)/d⇢

�����
Yl,Ŝ

(5.8)

with ⇢(r) obtained through the TOV equation. As we have demonstrated at T = 0 in Chapter

4, v2
S
becomes large in the crossover region. The sound velocity for cold neutron star is larger

(smaller) at higher (lower) density than that of the hot neutron star. We note that the sound

velocity decreases towards the neutron star surface simply because the baryon density decreases.

In Fig. 5.7(a) and (b), the central temperature Tcent and the central density ⇢cent of the hot

NSs with and without the crossover are plotted as a function of M . The temperature decreases

due to the appearance of the quark degrees of freedom (see Fig.5.2(b)), so that the central

temperature becomes significantly smaller with crossover as shown in Fig. 5.7(a). The central

density of the NSs becomes significantly smaller with crossover as shown Fig. 5.7(b) due to the

fact that the crossover EOS becomes sti↵er than EOS without crossover.

To compare the internal structure of the hot NS with and without the crossover in terms

of the temperature and density, we plot T (r) and ⇢(r) in Fig. 5.8 (a) and (b), respectively.

Here we consider the hot NS with a canonical mass M = 1.4M�. Under the presence of the
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Figure 5.6: (a) The schematic illustration for EOSs at fixed T and fixed Ŝ by black lines and the red curve.

The shaded area in the horizontal axis is the crossover region. T decreases in this region. The red line becomes

slightly softer than the black line with T = 0 in the crossover region. (b) The temperature (red line) and the

sound velocity ratio defined by (vhot
S

� vcold
S

)/vcold
S

with (Yl, Ŝ) = (0.3, 1) as a function of the baryon density.

The shaded area in the horizontal axis is the crossover region. The sound velocity ratio becomes negative in

the crossover region.
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Figure 5.7: (a) The central temperature T
cent

as a function of M . (b) The central density ⇢
cent

as a function

of the neutron star mass M . The solid (dashed) lines correspond to the EOS with (without) crossover, and

(Yl, Ŝ) = (0.3, 1) is taken. These figures are taken from [4].

Figure 5.8: (a) The temperature profiles of the hot neutron star with M = 1.4M� and (Yl, Ŝ) = (0.3, 1).

Solid (dashed) lines correspond to the EOS with crossover and without crossover respectively. (b) The density

profiles of the same neutron star as the case (a). These figures are taken from [4].

hadron�quark crossover, the crossover EOS becomes sti↵er and hence the central density is

smaller, so that the temperature and density profiles of the star are more uniform as compared
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to those without the crossover.

5.5 Brief Summary

In this chapter, we have discussed the properties of hot NSs at birth on the basis of a new

“CRover-H” EOS for supernova matter with hadron-quark crossover. Such a crossover leads to

the EOS sti↵ enough to sustain 2M� neutron stars as the case of “CRover-C” EOS, which is the

phenomenological interpolated EOS on the basis of the smooth crossover at zero temperature.

A noticeable point is that the crossover plays important roles not only to generate the sti↵

EOS but also to lower the internal temperature of hot neutron stars. Such suppression of

temperature originates from a combined e↵ect of the isentropy nature of the supernova matter

and larger entropy for given temperature due to the quark degrees of freedom. Given baryon

number, hot neutron stars have larger radius and larger gravitational mass caused by the high

lepton fraction and the thermal e↵ect. This suggests that, during the contraction from hot

to cold stars, gravitational energy is released and simultaneously the spin-up takes place. In

the present study, the released energy is about 0.04 M� and the spin-up rate is about 14 %

(assuming the conservation of angular momentum) for Mcold = 1.4M� of evolved cold neutron

stars. It is worth noting here that the maximum baryon number Nmax is smaller for the hot

neutron star if there is a crossover. This implies that there could be massive neutron stars

which can be reached only by the mass accretion after the birth.
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Chapter 6

Summary and Discussion

Motivated by the recent observation of the massive neutrons stars with 2M�, we study the

possible fate of the quark matter inside the NSs on the basis of a picture of hadron-quark

crossover.

After the general introduction of high density QCD and neutron stars in Chapter 1, we have

discussed the hadronic EOS with and without hyperons on the basis of the phenomenological

2-body and 3-body baryon interactions in Chapter 2. We showed the hyperon mixture makes

hadronic EOSs soft and 2M� NSs cannot be sustained even with the universal 3-body repulsions

among baryons. We called this conflict between the observation of the massive NS with 2M�
and the hyperon mixture predicted by the nuclear theory as the “hyperon puzzle”.

Then, in Chapter 3 we discussed the quark EOS which would play an important role at

high baryon densities. Since the system in the core of NSs does not reach the asymptotic region

where pQCD can be applied, we employed the (2 + 1)-flavor NJL model as an e↵ective theory

of QCD to describe the strongly interacting quark matter. The NJL model includes the two

non-perturbative aspects of QCD, the chiral condensate induced by the strong q̄q correlation

and the color superconductivity (CSC) induced by the strong qq correlation. We showed how

the partial restoration of the chiral condensate and the diquark condensate evolve as a function

of the baryon density in this model. As a result, if we take a relatively strong diquark coupling

constant, 2-flavor color superconducting phase is shown to emerge at the densities relevant to

the NS interior.

In Chapter 4, we examined the intermediate density region where neither the description

by point-like hadrons nor that by weakly interacting quarks are reliable. On the basis of the

percolation picture of hadrons in this region, we introduced a phenomenological interpolation

method between the hadronic phase and the quark phase at zero temperature We called this

EOS “CRover-C” EOS. Then, we estimated the bulk properties of cold NSs with this CRover-C

EOS. Due to the e↵ects of the crossover, CRover-C EOS becomes su�ciently sti↵ so that it

can sustain 2M�. This fact is in contrast to the case of the first order transition, in which

EOSs become softer due to the transition to quark matter. The radius of NSs with the P (")-

interpolated EOS turns out to be in about (11± 1)km and (12.5 ± 0.5) km depending on the

65
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interpolation methods, and is consistent with the recent estimations from qLMXB and PRE

X-ray bursts. We also discussed the internal structure of NSs: Our crossover model has a

possibility to solve the rapid cooling due to the hyperon mixture if the onset of the hyperon

mixture is delayed by the universal repulsive force between hyperons. The e↵ects of CSC on

bulk properties of NSs are also discussed. CSC makes EOS soft by about 0.2M�. However, the

interpolated EOS with CSC still can sustain 2M�. Also, we found that CSC has non-negligible

e↵ects even in low mass NSs in the case of smooth crossover.

Finally, in Chapter 5 we extended the phenomenological EOS at zero temperature to finite

temperature to examine the properties of the hot NSs at birth characterized by the constant

lepton fraction and constant entropy per baryon due to the neutrino trapping. We constructed a

phenomenological EOS at finite temperature called as CRover-H EOS by imposing the constant

entropy per baryon and the constant lepton fraction conditions. We checked this CRover-H

EOS is su�ciently sti↵ so that 2M� can be sustained. Then, we found that the hadron-quark

crossover plays an important role to lower the central temperature of hot neutron stars in

comparison to the case of hadronic EOS. This suppression of temperature comes from the

presence of the quark degrees of freedom in the crossover region. At a given baryon number,

hot neutron stars have generally larger radius and larger gravitational mass caused by the high

lepton fraction and the thermal e↵ect. This suggests that, during the contraction from hot NS

to cold NS, gravitational energy is released and simultaneously the spin-up takes place. The

released energy is shown to be about 0.04 M� and the spin-up rate is about 14 % (assuming

the conservation of angular momentum) for Mcold = 1.4M� of evolved cold neutron stars. On

the other hand, the maximum total baryon number of hot NSs is smaller than that of cold

NSs since the internal temperature decreases in the crossover region. This means there is no

configuration to collapse into BHs if there is no accretion. Although there is no significant

di↵erence of the maximum mass between hot and cold NSs, the radius of hot NSs is much

larger than that of cold NSs since hot EOS is harder than cold EOS at low density region due

to the lepton and thermal e↵ects.

There are several directions for future works. Firstly, extension of the present phenomenolog-

ical model to higher temperature region is very important to survey the hadron-quark crossover

e↵ects on the neutron star mergers and supernovae. Secondly, the application of our CRover

EOS to low-energy heavy ion collisions would be important to test the validity of the crossover

picture. The compressibility of usual hadronic matter and that of CRover EOS are very di↵er-

ent, so that the hadronic flows and the meson productions from heavy ion collisions could be

good observables to di↵erentiate between the crossover and the first-order transition.

The hadron-quark crossover turns out to have interesting phenomenological implications to

the key issues of the neutron stars, such as the massive neutron stars and hyperon puzzle, the

universal radius of the neutron stars, temperature and density profiles inside the hot neutron

stars, and so on. One of the most important and yet challenging theoretical problems is to

elucidate the QCD basis of the phenomenological hadron-quark crossover introduced in this
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Appendix A

Magnetic Properties of Neutron 3P2
Superfluids

In this appendix, we discuss quantized vortices in neutron 3P2 superfluids, which are believed to

be realized in high density neutron matter in neutron stars. By using the Ginzburg-Landau free

energy for 3P2 superfluids, we not only determine the ground state but also construct the 3P2

quantized vortices numerically in the absence and presence of the external poloidal magnetic

field along the vortex axis. We find in certain situations the spontaneous magnetization of the

vortex core with a typical magnitude of about 107�8 Gauss. However, the net magnetic field

turns out to be negligible if we take into account the area density of the vortices. The discussion

in this appendix is based on [5].

A.1 Magnetic Field of NSs

We can estimate the magnitude of the surface magnetic field Bsur of the NSs from the P -Ṗ

diagram under the assumption that the rotation energy loss comes only from the magnetic

dipole radiation PRAD,

PRAD = �dEROT

dt
(A.1)

where EROT is the rotational energy of NSs. PRAD from the magnetic dipole inclined by the

angle ↵ from the rotational axis is given by the radius R and the surface magnetic field Bsur.

PRAD =
2

3
(BsurR

3sin↵)2
✓
2⇡

P

◆4

. (A.2)

On the other hand, the rotational energy is

EROT =
1

2
I

✓
2⇡

P

◆2

(A.3)
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where I is the momentum inertia of uniform and spherical NSs, I = 2
5MR2. As a result, by

solving Eq. (A.1), we can obtain

B2
sur =

3I

8⇡2R6sin2↵
PṖ . (A.4)

Most abundant middle-aged pulsars show Bsur = 1011�13 Gauss. In recent years, young NSs

with strong magnetic field ⇠ 1013�15 Gauss have been observed by the observations of some soft

gamma ray repeaters and anomalous X-ray pulsars. This kind of NSs is called as the magnetar.

There have been various theoretical attempts to attribute the origin of the strong magnetic

field of NSs to the intrinsic magnetization of the neutron star matter, spontaneous magne-

tization of neutron matter and its failure [120], the ferromagnetism from the quark matter

[121, 122], the inhomogeneous phase [123] and the pion domain wall [124]. In [125], the au-

thors discussed the possibility that the vortex core in neutron 3P2 superfluidity may have the

spontaneous magnetization. However, in this appendix, we show that there is only negligible

spontaneous magnetization in the neutron 3P2 phase in the realistic circumstance of NSs (see

[5]).

A.2 Ginzburg Landau Free Energy for 3P2 Superfluids

and the Ground State

The GL free energy for the 3P2 superfluidity in the weak coupling limit was derived in [126,

127, 128] assuming the contact interaction. Here let us follow their derivation. To this end, we

consider properties of dense neutron matter by the following Hamiltonian H, which includes a

zero range 3P2 force

H =

Z
d3⇢  †

✓
�r2

2M
� µ

◆
 � 1

2
gT †

↵�(⇢)T↵�(⇢) (A.5)

where ⇢ denote space coordinates,  is a neutron field, µ is a baryon chemical potential, M is

the mass of neutrons, and g(> 0) is the coupling constant. Here, ↵, � are the space indices,

and the tensor T↵� is given by

T †
↵�(⇢) =  †

�(⇢)(t
⇤
↵�)��0(r) †

�0(⇢) (A.6)

with a di↵erential operator t defined by

(t↵�)��0(r) =
1

2
((S↵)��0r� +r↵(S�)��0)

�1

3
�↵�(S)��0 ·r (A.7)

and S defined by (S↵)��0 = i(�y�↵)��0 (↵ = x, y, z).
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The order parameter for 3P2 superfluidity is 3⇥ 3 traceless symmertic tensor Aµi, which is

defined by

� =
X

µi

i�µ�yAµiki (A.8)

where � is the gap parameter. The Latin letter µ stands for the spin index as before while the

Roman index i stands for the spatial coordinates. The symmetry acts on the tensor Aµi as

A ! ei✓gAgT , ei✓ 2 U(1), g 2 SO(3) (A.9)

in the matrix notation. The free energy density F as a function of tensor Aµi can be written as

F =

Z
d3⇢ (fgrad + f2+4 + f6 + fH) (A.10)

where fgrad is the gradient term, f2+4 and f6 [128] are the free energy densities up to fourth

order and of the sixth order, respectively, and fH is the magnetic term, given by

fgrad = K1@iAµj@iA
†
µj +K2(@iAµi@jA

†
µj + @iAµj@jA

†
µi)

(A.11)

f2+4 = ↵TrAA† + �[(TrAA†)2 � TrA2A†2], (A.12)

f6 = �[�3(TrAA†)|TrAA|2 + 4(TrAA†)3

+12(TrAA†)Tr(AA†)2 + 6(TrAA†)Tr(A2A†2)

+8Tr(AA†)3 + 12Tr[(AA†)2A†A]

�12Tr[AA†A†A†AA]� 12TrAA(TrAA†AA)⇤] (A.13)

and

fH = g0HH
2Tr(AA†) + gHHµ(AA

†)µ⌫H⌫ . (A.14)

In Table A.1, we summarize the coe�cients (the GL parameters) calculated in the weak coupling

limit by considering only the excitations around the Fermi surface [126, 127, 128]. In this limit,

K1 and K2 take the same value. We ignore the first term with the coe�cient g0H of fH in

Eq. (A.14) since the e↵ect of this term can be incorporated into the shift of ↵ in f2+4 and

consequently the phase structure is not modified.

The ground states of the GL free energy with total angular momentum two were classified

by Mermin [129]. According to this classification, the ground state of 3P2 superfluids in the

weak coupling limit is in the nematic phase [130].

Firstly, we consider the simplest case f2+4. At the fourth order level, the ground state A4th

can be written as

A(x,y,z)
4th =

s
|↵|

�(r2 + (1 + r)2 + 1)

0

B@
r 0 0

0 �(1 + r) 0

0 0 1

1

CA

(A.15)
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↵ K
1

= K
2

� � gH

N(0)

3

T � Tc

T
k2F

7⇣(3)

240m2

N(0)

(⇡Tc)2
k4F

7⇣(3)

60

N(0)

(⇡Tc)2
k4F �31

16

⇣(5)

840

N(0)

(⇡Tc)4
k6F

7⇣(3)

24

N(0)

(⇡Tc)2
(�n~)2

2(1 + F )2
H2k2F

Table A.1: The GL parameters in the weak coupling limit. In the derivation of ↵, we took g = 3⇡2

mk3
F
in order

for the T dependence of ↵ to become the same with that of the BCS theory. Here, kF is the Fermi momentum

defined by kF = ~c(3⇡2⇢)1/3 where ⇢ is the neutron density. N(0) ⌘ mkF
2⇡2 is the density of states N = mk

2⇡2 on

the Fermi surface k = kF , Tc is the critical temperature for the 3P
2

superfluidity and the Riemann zeta function

⇣(n) is defined by ⇣(n) =
P1

k=1

1

kn , for which ⇣(3) ⇠ 1.202 and ⇣(5) ⇠ 1.037. �n is the gyromagnetic ratio

of the neutrons and F is the Fermi liquid correction about the Pauli spin susceptibility. We take F = �0.75,

Tc = 0.2MeV, T = 0.8Tc and ⇢ = 0.17/fm3 for numerical simulations.

with a continuous degeneracy r up to the SO(3) action, where (x, y, z) implies that we take the

Cartesian xyz coordinates for the indices of the tensor A. Here, r 2 R is a parameter whose

range can be restricted to �1  r  �1/2 without the loss of generality. In this range, the

eigenvalues in the order parameter have the following magnitude relation

(1 + r)2  r2  1. (A.16)

The ground states are continuously degenerate with parameterized by r [131] and are referred

as the nematic phase. The ground state manifold can be decomposed into three region called

strata that have the isomorphic unbroken symmetries H; the uniaxial nematic (UN) phase for

r = �1/2, D2 biaxial nematic (D2 BN) phase for �1 < r < �1/2, and D4 biaxial nematic

(D4 BN) phase for r = �1. We summarize the unbroken symmetry H, the order parameter

manifold G/H and the homotopy groups from ⇡0 to ⇡4 of the order parameter manifold in

Table A.2.

Next, let us consider the total free energy including the sixth order term and magnetic term

(f2+4+f6+fH), where we consider the magnetic field along the z axis. The intermediate states

with the symmetry D2, that we call the D2 BN phase, are realized. The order parameter has

the following form

A(x,y,z) = Ntot

0

B@
1 0 0

0 r 0

0 0 �1� r

1

CA . (A.17)

The free energy density f4 + f6 + fH can be written in terms of the parameter r and Ntot as

follows:

f2+4 + f6 + fH = (2↵(1 + r + r2) + gHH
2
z (1 + r)2)N2

tot

+ �(2r4 + 4r3 + 6r2 + 4r + 2)N4
tot

+ �(48r6 + 144r5 + 312r4 + 384r3

+312r2 + 144r + 48)N6
tot. (A.18)
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r Phase H G/H ⇡
0

⇡
1

⇡
2

⇡
3

⇡
4

Physical situation

�1/2 UN O(2) U(1)⇥ [SO(3)/O(2)] 0 Z� Z
2

Z Z Z
2

f
2+4

+ f
6

�1 < r < �1/2 D
2

BN D
2

U(1)⇥ [SO(3)/D
2

] 0 Z�Q 0 Z Z
2

f
2+4

+ f
6

+ fH

�1 D
4

BN D
4

[U(1)⇥ SO(3)]/D
4
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Table A.2: The strata in the nematic phase. We show the range of r, the phase, the unbroken symmetry

H, the order parameter manifold G/H, the homotopy groups from ⇡
0

to ⇡
4

, and the physical situations (free

energy) that realize these states. ⇤ indicates the universal covering group, and Q = D⇤
2

is a quaternion group.

For the definition of the product ⇥h, see §4.2.2 and Appendix A of [132].
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Figure A.1: The normalization and free energy f
2+4

+ f
6

+ fH . Left panel: the normalization N
tot

as a

function of r. Right panel: f 0
tot

defined by f
2+4

+ f
6

+ fH ⌘ |↵|2
6� f 0

tot

as a function of r (for H = 1015 Gauss).

The intermediate state, the D
2

BN state (with r ⇠ �0.572 for H = 1015 Gauss), is the ground state.

By minimizing this free energy density with respect to r and Ntot, we can obtain the ground

state. In Fig. A.1, we plot Ntot and the free energy density as a function of r with H = 1015

Gauss. In this case, the minimum free energy density can be achieved at

r ⇠ �0.572 ⌘ rtot for H = 1015 Gauss. (A.19)

A.3 Vortex Structures in 3P2 Superfluids

When superfluids are rotating, superfluid vortices are created along the rotation axis. In this

section, we discuss vortices in the 3P2 superfluids. The existence of vortices in the 3P2 superfluids

is topologically ensured by the first homotopy group summarized in Table A.2. The number
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Nv of vortices with the unit circulation created inside rotating neutron stars can be estimated

to be

Nv ⇠ 1.9⇥ 1019
✓
1ms

P

◆✓
M⇤

900MeV

◆✓
R

10km

◆2

(A.20)

where P is the period of the neutron star, M⇤ is the e↵ective neutron mass, and R is the radius

of the 3P2 superfluid. Then, we can estimate the distance between vortices d from

⇡d2 ⇥Nv = ⇡R2, (A.21)

that implies the intervortex distance d to be

d ⇠ 1.7⇥ 10�6m (A.22)

for the typical values for P , M⇤ and R in Eq. (A.20). On the other hand, the coherence length

⇠ of 3P2 superfluid is about 10�100 fm. Therefore the distance between vortices is much larger

than the coherence length, and therefore we consider a single vortex below.

Let us derive the equation of motion from the free energy F introduced in the last section.

Here, we consider the following Ansatz for the order parameter of a vortex state:

A(x,y,z) =

s
|↵|
6�

R(n✓)A(⇢,n✓,z)RT (n✓)eil✓,

A(⇢,n✓,z) =

0

B@
f1 igeim✓+i� 0

igeim✓+i� f2 0

0 0 �f1 � f2

1

CA (A.23)

in the cylindrical coordinates (⇢, ✓, z), where l,m, n are integers, l,m, n 2 Z, explained below,

� is a constant, A(x,y,z) is the order parameters in the Cartesian basis and A(⇢,n✓,z) is the order

parameters in the cylindrical basis (n = 1) or its higher generalizations, which are related by a

rotation matrix R, given by

R(n✓) =

0

B@
cosn✓ �sinn✓ 0

sinn✓ cosn✓ 0

0 0 1

1

CA . (A.24)

In Eq. (A.23), f1, f2, g are profile functions depending only on the radial coordinate ⇢, and the

boundary conditions for them are

f1, f2 ! constant, g ! 0 as ⇢! 1,

f1, f2 ! 0,

(
g ! 0 for n 6= �1

g0 ! 0 for n = �1
as ⇢! 0, (A.25)

where the case of n = �1 is exceptional since the the total winding of g vanishes. As denoted,

the configuration is labeled by the three integers l,m, n 2 Z, where l is the winding number of
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Figure A.2: The conditions for determining whether the Cartesian basis or cylindrical basis is realized. The

cylindrical basis (n = 1) is realized in the shaded area while the Cartesian basis (n = 0) is realized in the rest.

the vortex, n represents a rotation of SO(3) that does not have a topological nature, and m is

a semi-topological winding number (relative to that of f1,2) defined locally for the component

g 1.

Let us consider the tension, the energy per unit length, of the vortex. A bulk part of free

energy density, f2+4 + f6 + fH , does not depend on the integers l,m, n, while the gradient term

depends on them; The leading contribution to the gradient energy at large ⇢ depends on n and

l as follows:

F =

Z
d2⇢

1

⇢2
⇥
2K1(l

2(f 2
1 + f1f2 + f 2

2 ) + n2(f1 � f2)
2)

+2K2(f
2
1 sin

2(n� 1)✓ + f 2
2 cos

2(n� 1)✓) + n2(f1 � f2)
2
⇤

⇠ 2⇡logL[2K1(l
2(f 2

1 + f1f2 + f 2
2 ) + n2(f1 � f2)

2))

+

8
<

:
2K2(l2f 2

2 + n2(f1 � f2)2)] (n = 1)

K2 (l2(f 2
1 + f 2

2 ) + 2n2(f1 � f2)2)] (n 6= 1)
(A.26)

where ⇠ denotes the asymptotic form and L is the system size transverse to the vortex, and f1
and f2 in the last line are the boundary values evaluated at ⇢! 1.

From this equation, we first see that the configuration with l = 1 has the lower energy than

the configuration with higher winding numbers l > 1, as for conventional superfluids, thereby

a vortex with the higher winding l is unstable to be split into l unit winding vortices. In the

following, we concentrate on l = 1.

As for n, we find that either the case of n = 0 (the xyz-basis) or of n = 1 (the cylindrical

basis) gives the lowest free energy. The condition on f1 and f2 that determines which config-

uration with n = 0 or n = 1 has lower energy is plot in Fig. A.2, where the cylindrical basis

1Since the boundary condition for g are zero for ⇢ = 0,1, it is a ring-shape if it appears, and m denotes

how many times the phase of g is twisted along the ring, see [133] for a similar example in a spinor BEC.
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(n = 1) gives lower energy in the shaded region defined by

3

5
f1 < f2 < f1, (A.27)

while the xyz basis (n = 0) gives lower energy in the rest.

We calculate the free energy per the unit vortex length analytically for each basis:

F =

Z
d2⇢

|↵|
6�

�
K1t1 +K2t2 + ↵t3 +

|↵|
6�
�t4 +

↵2

36�2
�t5
�

(A.28)

where the terms t1 and t2 come from the gradient terms and the terms t3, t4 and t5 come from

the second, fourth and sixth order terms in the GL free energy density. Here t1,2 can be written

in the cylindrical basis as

t(⇢,✓,z)1 = 2(f 02
1 + f 02

2 + f 0
1f

0
2 + g02) +

1

⇢2
(4f 2

1 + 4f 2
2 � 2f1f2

+(8 + 2(m+ 1)2)g2 � 4(f1 � f2)g(m+ 2)cos(m✓ + �)), (A.29)

t(⇢,✓,z)2 = 2(f 02
1 + g2) +

2

⇢2
(f 2

2 + 4g2 + (m+ 1)2g2 + (f1 � f2)
2

� 2g(m+ 1)(f1 � f2)cos(m✓ + �) + 4f2gcos(m✓ + �))

+
1

⇢
(�2(f 0

1 + f 0
2)g(m+ 1)cos(m✓ + �) + 2(f1 + f2)g

0cos(m✓ + �)

+ 2(f 0
1 + f 0

2)(f1 � f2)), (A.30)

and in the xyz basis as

t(x,y,z)1 = 2(f 02
1 + f 02

2 + f 0
1f

0
2 + g02) +

2

⇢2
(f 2

1 + f 2
2 + f1f2 + (m+ 1)2g2), (A.31)

t(x,y,z)2 = 2(cos2✓f 02
1 + sin2✓f 02

2 + g02) +
2

⇢2
(sin2✓f 2

1 + cos2✓f 2
2 + (m+ 1)2g2)

� 2sin2✓sin(m✓ + �)(f 0
1 + f 0

2)g
0 � 2

⇢
cos2✓cos(m✓ + �)(m+ 1)(f 0

1 + f 0
2)g

+
2

⇢
cos2✓cos(m✓ + �)(f1 + f2)g

0 +
2

⇢2
sin2✓sin(m✓ + �)(m+ 1)(f1 + f2)g.(A.32)

The rest terms of the free energy density t3,4,5 can be written in the both basis as

t3 = 2(f 2
1 + f 2

2 + f1f2 + g2), (A.33)

t4 = 2f 4
1 + 4f 3

1 f2 + 6f 2
1 f

2
2 + 4f1 + f 3

2 + 2f 4
2

+((6 + 2cos2(m✓ + �))f 2
1 + 4f1f2 + (6 + 2cos2(m✓ + �))f 2

2 )g
2 + 2g4, (A.34)

t5 = 48f 6
1 + 144f 5

1 f2 + 312f 4
1 f

2
2 + 384f 3

1 f
3
2 + 312f 2

1 f
4
2 + 144f1f

5
2 + 48f 6

2 + 48g6

+ ((288 + 144cos2(m✓ + �))f 4
1 + (360 + 120cos2(m✓ + �))f 3

1 f2

+ (576 + 240cos2(m✓ + �))f 2
1 f

2
2 + (360 + 120cos2(m✓ + �))f1f

3
2

+ (288 + 144cos2(m✓ + �))f 4
2 )g

2 + ((288 + 120cos2(m✓ + �))f 2
1

+ (144� 48cos2(m✓ + �))f1f2 + (288 + 120cos2(m✓ + �))f 2
2 )g

4. (A.35)
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grad
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6
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Table A.3: The boundary conditions and physical situation for each case. r
grad

⌘ 6�
p
43 ⇠ �0.557 given in

Eq. (A.38), and r
tot

depends on the magnetic field (r
tot

⇠ �0.572 in Eq. (A.19) for H = 1015 Gauss).

The e↵ect of � on the free energy density is not clear. At present, we restrict the case

with � = 0, which is consistent with the equation of motion, since the imaginary part of

non-diagonal elements is directly connected with real part of diagonal elements through the

equation of motion. By substituting the order parameter into Eq. (A.10) and di↵erentiating it

with respect to f1, f2 and g, we obtain the sets of the equation of motions for each basis.

A.4 Vortex Solutions

In this section, we construct the vortex configurations in the following two cases:

• Case (1): F =
R
d2⇢ f4

• Case (2): F =
R
d2⇢ (f4 + f6 + fH) and H k z.

We summarize the forms of the order parameters in these cases in Table A.3. In numerical

simulations, we change the variable ⇢ (0  ⇢ < 1) by tanh⇢ (0  tanh⇢ < 1). We divide the

domain of tanh⇢ into 100 parts and solve the equations of motion simultaneously by using the

Newton’s method.

Case (1)

This is only the case studied before [127, 134, 125]. This case may be thought to be

unphysical because of the presence of the sixth order term, but it is relevant when the gap is

small enough (f6 is much smaller than f4) and the magnetic field is small compared with f4. In

this case, the ground state takes the form in Eq. (A.15) due to the fourth order term. We can

see from Eq. (A.26) that the leading part of free energy proportional to logL becomes lower

when f 2
2  f 2

1 , so that we take the following order parameter form

A(x,y,z) /
r

1

r2 + r + 1
R(n✓)

0

B@
r 0 0

0 �1� r 0

0 0 1

1

CART (n✓)ei✓ (A.36)
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with �1  r  �1/2. Let us assume that the ground state is in the cylindrical basis (n = 1).

By putting the order parameter into Eqs. (A.29) and (A.30), we obtain

F / 9r2 + 10r + 3

r2 + r + 1
logL. (A.37)

Then, by di↵erentiating this free energy with respect to r, we get [127, 134, 125]

r = 6�
p
43 ⇠ �0.557 ⌘ rgrad (A.38)

that satisfies the condition for the realization of the cylindrical basis, Eq. (A.27), and so the

lowest energy state is in the cylindrical basis (n = 1) consistently. It is interesting to emphasize

that the particular r is selected as the vortex boundary state although the ground states are

continuously degenerate with r.

In Fig. A.3, we plot the profiles functions f1, f2 and g as functions of the distance ⇢ from

the vortex center. The red curves correspond to the case of m = 0 with g 6= 0, which is the

case considered in Ref. [125] without explicit solutions. The new solution here is the case with

g = 0 represented by the black curves. We check that all the terms in the equation of motion

for g contain g if m 6= 0. Consequently, in this case, g = 0 is a trivial solution in the entire

region of ⇢ since g is fixed to be zero at the both boundaries. This implies that all m 6= 0 give

the same solution of g = 0. In order to determine which state between g 6= 0 (with m = 0) and

g = 0 has less energy, we should compare the free energies for these two cases, but we leave it

as a future problem.

Case (2)

Next, let us consider the most realistic case for neutron stars, that is, the case with the

sixth order term in the presence of the magnetic field of 1015 Gauss along the z axis.

In this case, the smallest eigenvalue �1 � r comes to the z component. By minimizing

Eq. (A.18), we have r = rtot ⇠ �0.572 in Eq. (A.19) as the boundary condition at large

distance. Therefore, the xyz basis (n = 0) is realized.

In Fig. A.4, we plot f1, f2 and g as functions of ⇢ with m = �2, ..., 2 in the case (2). In

this situation, we find that g = 0 is a trivial solution in the entire region of ⇢ except for the

cases of m = ±2. This implies that all m( 6= ±2) give the same solution. In the n = 0 basis,

the equation of motions for f1 and f2 have the same form. The blue, green and black curves

correspond to the cases of g 6= 0 with m = 2, g 6= 0 with m = �2, and g = 0, respectively. In

figures for f1 and f2, the cases of g 6= 0 with m = ±2 and of g = 0 take the di↵erent values

numerically although they are almost overlapped.

A.5 Spontaneous Magnetization of the 3P2 Vortex Core

In this section, we calculate the spontaneous magnetization of 3P2 vortex cores due to the

neutron anomalous magnetic moment for the vortex profiles obtained in the last section. The
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Figure A.3: The profile functions f
1

, f
2

and g as functions of the distance ⇢/⇠ from the vortex center in the

case (1). The red curves correspond to the case of g 6= 0 with m = 0, while the black curves correspond to the

case of g = 0.

Figure A.4: The profile functions f
1

, f
2

and g as functions of the distance ⇢/⇠ from the vortex center in the

case (2). The blue, green and black curves correspond to the cases of g 6= 0 with m = 2, g 6= 0 with m = �2

and g = 0, respectively. In the figures of f
1

and f
2

, all the cases take the di↵erent values numerically.

spontaneous magnetization was already reported in the case (1) [125]. This is a characteristic

feature of 3P2 vortices that is absent for conventional 1S0 vortices. The vortex magnetization

M (⇢) can be calculated as

M =
�n~
2

�̂,

�̂ = T
X

n

Z
d3k

(2⇡)3
Tr(�G(k,!n))

=

Z
d⌦

4⇡
Tr(���†)T

X

n

Z
d⇠N(0)

i!n + ⇠

(!2
n + ⇠2)2

=
4

9
N 0(0)k2

F

|↵|
6�

g(⇢)(f1(⇢)� f2(⇢))cosm✓ẑ (A.39)
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Figure A.5: The dependence of the magnetizations Mz on the distance ⇢/⇠ from the vortex core in the cases

(1) and (2). The red, blue and green curves correspond to the cases of m = 0, m = 2 and m = �2 with g 6= 0,

respectively, while the black lines correspond to the case with g = 0 in the cases (1) or (2).

where G(k,!n) is a thermal Green function and !n = (2n + 1)⇡T is the Matsubara frequency

and N 0(0) = m2

2⇡2kF
is the density of states di↵erentiated by the energy E = k2/2m, N 0 = m2

2⇡2k
,

evaluated at the Fermi surface k = kF .

By using the results of the last section, we obtain the magnetization M as a function of ⇢.

We plot Mz (for ✓ = 0) as a function of ⇢ in Fig. A.5. Red, blue and green curves correspond

to the case with m = 0, m = 2 and m = �2 and with non-zero g. Black curves are the case

with g = 0. The maximum value of Mz is about 108-109 Gauss when it is nonzero. The mean

magnetic field in a vortex lattice, which is obtained roughly by multiplying (⇠/d)2 ⇠ 10�14, is

much smaller than the observed magnetic field about 1012-1015 Gauss, and consequently this

magnetic field is negligible.

Note that the magnetization Mz is proportional to (f1(⇢) � f2(⇢))g(⇢) cosm✓. Since it is

proportional to the o↵-diagonal profile function g appearing around the vortex cores, it is

nonzero only for the cases of m = 0 in the cylindrical basis and of m = ±2 in the xyz-basis.

When f1 6= f2 in the region g 6= 0, the magnetization can occur. Among all the cases with

nonzero magnetization Mz, only the case with m = 0 has a net magnetization, since the ✓

integration of cosm✓ vanishes for m 6= 0. Although the case of m = ±2 in the cylindrical basis

has no net magnetization, the direction of the magnetization drastically changes upward and

downward depending on ✓, thereby implying the existence of the large current crossing to the

vortex.
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Tolman-Oppenheimer-Volkov Equation

In this appendix, we derive the Tolman-Oppenheimer-Volkov (TOV) equation, obtained through

Einstein equation with the Schwarzschild metric, which is a spherically symmetric vacuum so-

lution.

The metric with a spherical symmetry is

ds2 = �e2�(r,t)dt2 + e2�(r,t)dr2 + r2(d✓2 + sin2✓d'2). (B.1)

From the Euler-Lagrange equations

@I

@xµ
=

d

d⌧

@I

@(dxµ/d⌧)
(B.2)

where µ = t, r, ✓,',

S = �
Z

Id⌧

I = e2�
✓
dt

d⌧

◆2

� e2�
✓
dr

d⌧

◆2

� r2
✓
d✓

d⌧

◆2

� r2sin2✓

✓
d'

d⌧

◆2

(B.3)

and the following geodesic equation

d2xµ

d⌧ 2
+ �µ

↵�

dx↵

d⌧

dx�

d⌧
= 0 (B.4)

where

�↵
�� = g↵µ�µ��

= g↵µ
1

2
(gµ�,� + gµ�,� � g��,µ) (B.5)

is the Christo↵el symbols, we can obtain the explicit form of �↵
�� with the metric Eq. (B.1).

We summarize the Christo↵el symbols in Table. B.1. Here ’ and ˙ correspond to the derivative

with respect to r and t respectively.

The Einstein equation is

R↵
� � 1

2
�↵�R

µ
µ = 8⇡GT ↵

� (B.6)
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where R↵
� and T ↵

� are Ricci tensor and the energy momentum tensor respectively can be written

down explicitly:

8⇡GT t
t = �

 
2ṙ�̇

r
+

ṙ2

r2

!
e�2� +

✓
2r00

r
+

r02

r2
� 2r0�0

r

◆
e�2� � 1

r2
, (B.7)

8⇡GT t
r =

2e�2�

r
(ṙ0 � ṙ�0 � �̇r0), (B.8)
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2r0�0

r
+

r02

r2

◆
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, (B.9)

8⇡GT ✓
✓ = �
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r
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r
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ṙ�̇
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!
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+

✓
�00 + �02 � �0�0 +

r0�0

r
� r0�0

r
+

r00

r

◆
e�2�. (B.10)

On the other hand, the energy momentum tensor for the perfect fluid in the left-hand side is

given by

Tµ⌫ = ("+ P )uµu⌫ + Pgµ⌫ (B.11)

where uµ is the fluid’s four velocity and " and P are the energy density and pressure. In the

laboratory system, uµ becomes

ut =
dt

d⌧
= e��, ur = u✓ = u' = 0. (B.12)

Table B.1: Christo↵el symbols with a spherically symmetric matric.

� t r ✓ '

tt �̇ �0e2��2� 0 0

tr �0 �̇ 0 0

t✓ 0 0 ṙ/r 0

t' 0 0 0 ṙ/r

rr �̇e2��2� �0 0 0

r✓ 0 0 r0/r 0

r' 0 0 0 r0/r

✓✓ ṙre�2� �r0re�2� 0 0

✓' 0 0 0 cot✓

'' ṙre�2�sin2✓ �r0re�2�sin2✓ -sin✓cos✓ 0



85

Firstly, we define

u ⌘ @r

@⌧
= e��ṙ, (B.13)

� ⌘ e��r0. (B.14)

From the derivative of u with respect to r and t,

u0 = e��(ṙ0 � �0ṙ) = e���̇r0, (B.15)

u̇ = �ṙ�̇e��, (B.16)

we can get

2e��ru�̇ = 2ru
u0

r0
= r

@u2

@r
(B.17)

@

@r
(r�2) = e�2�(r02 + 2rr00 � 2rr0�0) (B.18)

through tr component of the Einstein equation

0 = ṙ�0 + �̇r0 � ṙ0. (B.19)

By substituting Eq. (B.17) and (B.18) into the tt component of the Einstein equation

�8⇡G"r2 = �
⇣
2ṙ�̇r + ṙ2

⌘
e�2� +

�
2r00r + r02 � 2r0�0r

�
e�2� � 1, (B.20)

we obtain

�8⇡G"r2 = 1 + u2 + r
@u2

@r
� (2r00r + r02 � 2r0�0r)e�2�

=
@

@r
(r(1 + u2 � �2)). (B.21)

From this equation, we can obtain

�2 = 1 + u2 � 2GM

r
(B.22)

where

M(r, t) ⌘
Z r

0

4⇡r2"dr (B.23)

is the mass of the sphere with the radius r.

To derive the TOV equation, we finally consider rr component of the Einstein equation

8⇡GPr2 =
�
2r0�0 + r02

�
e�2� �

⇣
2r̈r + ṙ2 � 2ṙ�̇r

⌘
e�2� � 1 (B.24)

=

✓
2r
�0

r0
+ 1

◆
�2 � u2 � 2ru̇e�� � 1 (B.25)
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where we use Eq. (B.16). From the energy momentum conservation law along r direction, we

obtain

0 = T µ
r;µ =

1

e�+�r2
@("e�+�r2)

@t
� 1

2

✓
�2�0"+ 2�0P + 4

r0

r
P

◆

= P 0 + �0"+ �0P = 0 (B.26)

by using the covariant derivative

T µ
⌫;µ =

1p�g

@(
p�gTµ⌫)

@xµ
� 1

2

@gµ↵
@x⌫

T µ↵, (B.27)

p
�g = e�+�r2sin✓. (B.28)

By substituting Eq. (B.26) and (B.22) into Eq. (B.25), we finally get

e��@u

@t
= �1 + u2 � 2GM/r

"+ P

@P

@r
� GM

r2
� 4⇡GPr. (B.29)

By imposing the equilibrium state, u = 0, this equation is called as the TOV equation,

�r2
dP

dr
= G

�
M + 4⇡Pr3

�
("+ P ) (1� 2GM/r)�1 . (B.30)

The ratios in each term in the right hand side are

P

"
⇠

v2
S

c2
,
4⇡Pr3

M
⇠ 3

v2
S

c2
,
2GM

r
⇠ 4⇥ 10�6

✓
M

M�

◆✓
R�
r

◆
. (B.31)

Therefore, under the condition

v
S
⌧ c, r � 2GM, (B.32)

the TOV equation reduces to the non-relativistic hydrostatic equilibrium equation,

@P

@r
= �GM"

r2
. (B.33)



Appendix C

Fierz Transformation

Generally, the following interaction term Lint

Lint = g(q̄�q)2 = g�il�klq̄iqj q̄kql (C.1)

can be deformed into the quark-antiquark interaction term Lex and the quark-quark (antiqaurk-

antiquark) interaction term Lqq:

Lint = �g�ij�klq̄iqlq̄kqj ⌘ Lex, (C.2)

Lint = g�ij�klq̄iq̄kqlqj ⌘ Lqq. (C.3)

More explicitly, the products of � can be decomposed into

�ij�kl =
X

M

cM�
(M)
il �(M)

kj , (C.4)

�ij�kl =
X

D

cD(�
(D)C)ik(C�

(D))lj. (C.5)

Here, the coe�cients cM and cD are

0

BBBBBB@

(1)ij(1)kl
(i�5)ij(i�5)kl
(�µ)ij(�µ)kl

(�µ�5)ij(�µ�5)kl
(�µ⌫)ij(�µ⌫)kl

1

CCCCCCA
=

0

BBBBBB@

1
4 �1

4
1
4 �1

4
1
8

�1
4

1
4

1
4 �1

4 �1
8

1 1 �1
2 �1

2 0

�1 �1 1
2 �1

2 0

3 �3 0 0 �1
2

1

CCCCCCA

0

BBBBBB@

(1)il(1)kj
(i�5)il(i�5)kj
(�µ)il(�µ)kj

(�µ�5)il(�µ�5)kj
(�µ⌫)il(�µ⌫)kj

1

CCCCCCA
, (C.6)

(�0)ij(�
0)kl =

1

4
[(1)il(1)kj + (i�5)il(i�5)kj

+(�0)il(�
0)kj � (�m)il(�m)kj + (�0�5)il(�

0�5)kj � (�m�5)il(�m�5)kj

�(�0n)il(�0n)kj + (�mn)il(�mn)kj], (C.7)
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0

BBBBBB@

(1)ij(1)kl
(i�5)ij(i�5)kl
(�µ)ij(�µ)kl

(�µ�5)ij(�µ�5)kl
(�µ⌫)ij(�µ⌫)kl

1

CCCCCCA
=

0

BBBBBB@

1
4 �1

4
1
4 �1

4 �1
8

�1
4

1
4

1
4 �1

4
1
8

1 1 �1
2 �1

2 0

1 1 1
2

1
2 0

�3 3 0 0 �1
2

1

CCCCCCA

0

BBBBBB@

(i�5C)ik(Ci�5)lj
(C)ik(C)lj

(�µ�5C)ik(C�µ�5)lj
(�µC)ik(C�µ)lj
(�µ⌫C)ik(C�µ⌫)lj

1

CCCCCCA
, (C.8)

(�0)ij(�
0)kl =

1

4
[(i�5C)ik(Ci�5)lj + (C)ik(C)lj

+(�0�5C)ik(C�
0�5)lj � (�m�5C)ik(C�m�5)lj + (�0C)ik(C�

0)lj � (�mC)ik(C�m)lj

�(�0nC)ik(C�0n)lj + (�mnC)ik(C�mn)lj]. (C.9)

The similar decomposition for the generators of U(N) is the following. We define ⌧a(a =

1, ..., N2�1) as the generators for SU(N) normalized by tr[⌧a⌧b]= 2�ab. Under these definitions,

the the quark-antiquark interaction can be written as

 
(1)ij(1)kl
(⌧a)ij(⌧a)kl

!
=

 
1
N

1
2

2N2�1
N2 � 1

N

! 
(1)il(1)kj
(⌧a)il(⌧a)kj

!
. (C.10)

On the other hand, interaction terms for quark-quark (antiqaurk-antiquark) is

 
(1)ij(1)kl
(⌧a)ij(⌧a)kl

!
=

 
1
2

1
2

2N�1
N

�N+1
N

! 
(⌧S)ik(⌧S)lj
(⌧A)ik(⌧A)lj

!
. (C.11)

Here, the subscript S means the symmetric generators and A corresponds to the anti-symmetric

generators

By using these deformations, we can write down the interaction terms in (2+1)-NJL model

in Chapter 3 by using the following current-current interaction

Lcur = �g(q̄�µ⌧aq)
2. (C.12)

By using above Fierz transformation for this Lcur,

Lex =
N2

c � 1

NfN2
c

g

N2
f�1X

a=0

✓
(q̄�aq)

2 + (q̄i�5�aq)
2 � 1

2
(q̄�µ�aq)

2 � 1

2
(q̄�µ�5�aq)

2

◆

� 1

2Nc

g

N2
f�1X

a=0

✓
(q̄⌧a0�aq)

2 + (q̄i�5⌧a0�aq)
2 � 1

2
(q̄�µ⌧a0�aq)

2

�1

2
(q̄�µ�5⌧a0�aq)

2

◆
, (C.13)
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Lqq =
Nc + 1

2Nc

g(q̄i�5C⌧A�A0 q̄T )(qTCi�5⌧A�A0q) + (q̄C⌧A�A0 q̄T )(qTC⌧A�A0q)

�1

2
(q̄�µ�5C⌧A�A0 q̄T )(qTC�µ�5⌧A�A0q)� 1

2
(q̄�µC⌧A�S0 q̄T )(qTC�µ⌧A�S0q)

�Nc � 1

2Nc

g(q̄i�5C⌧S�S0 q̄T )(qTCi�5⌧S�S0q) + (q̄C⌧S�S0 q̄T )(qTC⌧S�S0q)

�1

2
(q̄�µ�5C⌧S�S0 q̄T )(qTC�µ�5⌧S�S0q)

�1

2
(q̄�µC⌧S�A0 q̄T )(qTC�µ�µ⌧S�A0q) (C.14)

are derived. Here �a (⌧a) are the generators for flavor (color) SU(N). As a result, scalar-type

four Fermi interaction G
S
and diquark interaction H are

G
S
=

(N2
c � 1)

N2
c

g, (C.15)

H =
Nc + 1

2Nc

g. (C.16)

Especially, if Nc = 3, H = 3
4GS

is obtained.
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Appendix D

The Bogoliubov-Valatin Approach

In this appendix, we derive the gap equation in Chapter 3 by using the Bogoliubov-Valatin

transformation and the Dyson-Schwinger approach. For simplicity, we consider Nf = 2 case

with

LNJL = qi/@q +
1

2
G

S
[(qq)2 + (qi�5⌧

aq)2]. (D.1)

A quark field q is

q(x, 0) =
X

s

Z
d3p

(2⇡)3
�
b(p, s)u(p, s)eip·x + d†(p, s)v(p, s)e�ip·x� (D.2)

where b and d are the annihilation operator for the particle and antiparticle respectively and s

means the helicity. |0i satisfies the following relations

b(p, s) |0i = d(p, s) |0i = 0. (D.3)

/pu(p, s) = /pv(p, s) = 0, u†(p, s)u(p, s) = v†(p, s)v(p, s) = 1 (D.4)

are also satisfied by spinors u, v. By the analogy with the BCS theory, we construct the following

vacuum |vaci

|vaci =
Y

p,s

�
cos✓(p) + s sin✓(p)b†(p, s)d†(�p, s)

�
|0i . (D.5)

The di↵erence from the BCS theory is that Eq. (D.5) considers the pairing between a particle

and an anti-particle. On the other hand, BCS theory treats the pairing between the same kind

of particles. If p is given, |vaci can be written down more explicitly,

|vaci = cos2✓ |0i+ sin✓cos✓b†(p,+)d†(�p,+) |0i
+sin✓cos✓b†(p,�)d†(�p,�) |0i
�sin2✓b†(p,�)d†(�p,�)b†(p,+)d†(�p,+) |0i . (D.6)
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By Bogoliubov-Valatin transformation, we can obtain the annihilation operators B and D on

|vaci defined by

B(p, s) = cos✓b(p, s) + ssin✓d†(�p, s), (D.7)

D(p, s) = cos✓d(p, s)� ssin✓b†(�p, s). (D.8)

B and D of course satisfy the following relations,

B(p, s) |vaci = D(p, s) |vaci = 0. (D.9)

A quark field q can be decomposed by these operators as follows,

q(x, 0) =
X

s

Z
d3p

(2⇡)3
�
B(p, s)M1(p, s)e

ip·x +D†(p, s)M2(p, s)e
�ip·x� (D.10)

where

M1(p, s) =
�
cos✓ + �0sin✓

�
u(p, s), (D.11)

M2(p, s) =
�
cos✓ � �0sin✓

�
u(p, s). (D.12)

By using the relations explained above, we can calculate the energy W under the mean field

approximation,

W ⌘ hvac|HNJL |vaci (D.13)

= �2NcNf

Z
d3p

(2⇡)3
pcos�� 2G

S
(NcNf )

2

Z
d3p

(2⇡)3
sin�

�2
(D.14)

where � = 2✓. Here we use

�0sv(�p, s) = u(p, s),
X

s

u(p, s)u†(p, s) =
1

2

✓
1� � · p

p
�0
◆
. (D.15)

� can be determined by minimizing W with respect to �

�W

��
= 0. (D.16)

After the calculation, we obtain

ptan� = 2G
S
NcNf

Z
d3p0

(4⇡)3
sin�(p0), (D.17)

which is the gap equation. Since the right hand side does not depend on p, we put the right

hand side as M , which is not a function of p. Then

tan� =
M

p
, sin� =

Mp
p2 +M2

(D.18)
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are achieved and from Eq. (D.17) we can finally obtain the usual gap equation:

M = 2G
S
NcNf

Z
d3p0

(2⇡)3
Mp

p2 +M2
. (D.19)

On the other hand, we can derive this gap equation more directly from the Dyson-Schwinger

approach. In the Hartree approximation, we can obtain the following gap equation,

M = iG
S
4NcNf

Z
d4p0

(2⇡)4
M

p02 �M2 + i"
, (D.20)

which is the same as Eq. (D.19). Here, the factor 4NcNf corresponds to the degree of freedom

for the Dirac, color and flavor. If we consider the Hartree-Fock approximation, this gap equation

changes to

M = 4iG
S

✓
NcNf +

1

2

◆Z
d4p0

(2⇡)4
M

p02 �M2 + i"
. (D.21)

Therefore, the gap equation Eq. (D.19) can be considered as the first order term of the 1/Nc

expansion.
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Appendix E

Calculation of the Thermodynamic

Potential

In this appendix, we introduce the decomposition of the quark propagator S in Chapter 3 for

the numerical calculation. For simplicity, we ignore G0
D

which gives a coupling between the

chiral condensate and the diquark condensate.

We explicitly calculate Eq. (3.33),

⇥
S�1

⇤ij
↵�

=

 
[G+

0 ]
�1

P
i=1,2,3�i�5�̃i⌧̃i

�
P

i=1,2,3�
⇤
i �5�̃i⌧̃i [G�

0 ]
�1

!
. (E.1)

In the following, we define

�� ⌘
X

i=1,2,3

�i�5�̃i⌧̃i (E.2)

�+ ⌘ �
X

i=1,2,3

�⇤
i �5�̃i⌧̃i. (E.3)

�± have the following relation

�+ = �(��)†. (E.4)

If we take the basis of the quark field q as

q = (qur , q
d
r , q

s
r , q

u
g , q

d
g , q

s
g, q

u
b , q

d
b , q

s
b)

T (E.5)
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where u, d, s mean flavors of quarks and r, g, b correspond to the colors of quarks, �� becomes

�� = ��5

0

BBBBBBBBBBBBBBBB@

0 0 0 0 �3 0 0 0 �2

0 0 0 ��3 0 0 0 0 0

0 0 0 0 0 0 ��2 0 0

0 ��3 0 0 0 0 0 0 0

�3 0 0 0 0 0 0 0 �1

0 0 0 0 0 0 0 ��1 0

0 0 ��2 0 0 0 0 0 0

0 0 0 0 0 ��1 0 0 0

�2 0 0 0 �1 0 0 0 0

1

CCCCCCCCCCCCCCCCA

. (E.6)

By using the project operator P± defined by

P± =
1

2
(1± � · k̂), (E.7)

we can obtain the following two equations,

�0[G
±
0 ]

�1 =
X

s=±

 
p0 ± µ̂� M̂ �sp

�sp p0 ± µ̂+ M̂

!
Ps (E.8)

where each component of µ̂ is given by

µij
↵� = (µ�ij + µQQ

ij)�↵� + (µ3(⌧3)↵� + µ8(⌧8)↵�)�
ij,

M̂ is the diagonal matrix in the flavor space M̂ = diagf (Mu,Md,Ms) and

�0�
± = ±

X

s=±

 
0 �

�� 0

!
Ps (E.9)

where � is defined as

�± = ±�5�. (E.10)

Finally, �0S�1 can be decomposed into two parts by using P±,

�0S
�1 =

X

s=±
Ŝ�1
s Ps

Ŝ�1
s = p0 �Ms

Ms =

0

BBB@

�µ̂+ M̂ sp 0 �

sp �µ̂� M̂ �� 0

0 �� µ̂+ M̂ sp

� 0 sp µ̂� M̂

1

CCCA
. (E.11)
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Moreover, since detS�1 = det(�0S�1) and detS�1
+ = detS�1

� are satisfied, the determinant of

the inverse quark propagator S�1 becomes

det(S�1) =
18Y

i=1

(p20 � "2i )
2. (E.12)

Here, "i are eigenvalues of the matrix M+. The important point is this 36 ⇥ 36 matrix M+

can be decomposed into six 4⇥ 4 matrices and one 12⇥ 12 matrix. This decomposition makes

the numerical calculation easy drastically. These matrices can be written as follows explicitly,

M1
+ =

0

BBB@

�µd
r +Md p 0 ��3

p �µd
r �Md �3 0

0 �3 µu
g +Mu p

��3 0 p µu
g �Mu

1

CCCA
, (E.13)

M2
+ =

0

BBB@

µd
r �Md p 0 ��3

p µd
r +Md �3 0

0 �3 �µu
g �Mu p

��3 0 p �µu
g +Mu

1

CCCA
, (E.14)

M3
+ =

0

BBB@

�µs
r +Ms p 0 ��2

p �µs
r �Ms �2 0

0 �2 µu
b +Mu p

��2 0 p µu
b �Mu

1

CCCA
, (E.15)

M4
+ =

0

BBB@

µs
r �Ms p 0 ��2

p µs
r +Ms �2 0

0 �2 �µu
b �Mu p

��2 0 p �µu
b +Mu

1

CCCA
, (E.16)

M5
+ =

0

BBB@

�µs
g +Ms p 0 ��1

p �µs
g �Ms �1 0

0 �1 µd
b +Md p

��1 0 p µd
b �Md

1

CCCA
, (E.17)

M6
+ =

0

BBB@

µs
g �Ms p 0 ��1

p µs
g +Ms �1 0

0 �1 �µd
b �Md p

��1 0 p �µd
b +Md

1

CCCA
, (E.18)
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M7
+ =

0

BBBBBBBBBBBBBBBBBBBBBBB@

�µu
r �Mu p 0 0 0 0 0 ��3 0 0 0 ��2

p �µu
r +Mu 0 0 0 0 �3 0 0 0 �2 0

0 0 µu
r �Mu p 0 �3 0 0 0 �2 0 0

0 0 p µu
r +Mu ��3 0 0 0 ��2 0 0 0

0 0 0 ��3 �µd
g �Md p 0 0 0 0 0 ��1

0 0 �3 0 p �µd
g +Md 0 0 0 0 �1 0

0 �3 0 0 0 0 µd
g �Md p 0 �1 0 0

��3 0 0 0 0 0 p µd
g +Md ��1 0 0 0

0 0 0 ��2 0 0 0 ��1 �µs
b �Ms p 0 0

0 0 �2 0 0 0 �1 0 p �µs
b +Ms 0 0

0 �2 0 0 0 �1 0 0 0 0 µs
b �Ms p

��2 0 0 0 ��1 0 0 0 0 0 p µs
b +Ms

1

CCCCCCCCCCCCCCCCCCCCCCCA

.(E.19)

Here, we use the chemical potential µ̂ defined in Eq. (E.9) is the diagonal in the flavor and

color space. We define µii
↵↵ ⌘ µ6i↵. Then, we can finally obtain the thermodynamic potential

⌦

⌦ = � 1

4⇡2

X

i=1,36

Z ⇤

0

dpp2
�
|"i|+ 2T ln

�
1 + e�|"i/T |��

+G
S

X

i

�2
i + 4G

D
�u�d�s �

1

2
g
V

 
X

i

ni

!2

+
X

color

|�c|2
2H

(E.20)

by using

�T

2

X

i

X

`

Z
d3p

(2⇡)3
Trln

✓
S�1
i (i!`,p)

T

◆
= � 1

4⇡2

X

i=1,36

Z ⇤

0

dpp2
�
|"i|+ 2T ln

�
1 + e�|"i/T |�� ,

T
X

n

ln

✓
1

T 2
(!2

n + �2k)

◆
= �k + 2T ln(1 + e��k/T ). (E.21)



Appendix F

Crossover at Finite Temperature

In this appendix, we summarize the previous work [106], in which the phenomenological inter-

polation of the entropy density as a function of the temperature was suggested. This model can

reproduce some of results of the lattice QCD Monte Carlo simulations at least qualitatively.

Among a lot of unique properties for the non-perturbative e↵ect, which were found by the

lattice QCD simulations, we focus on the following three characteristics.

• P/T 4 approaches the Stefan-Boltzmann limit smoothly as the temperature T increases.

• "/T 4 has the peak at Tc and approaches the high temperature limit from above as the

temperature T increases.

• At the region T > Tc, the trace anomaly "� 3P takes a large value.

From the thermodynamic laws, we require the following condition for the entropy density s

@s(T )

@T
> 0, (F.1)

s(0) = 0. (F.2)

To satisfy these conditions, we define s as

s(T ) = s
H
(T )w

H
(T ) + s

Q
(T )w

Q
(T ) (F.3)

w
Q
(T ) =

n
�
1 + tanh

�
T�Tc

�

��

m
�
1� tanh

�
T�Tc

�

��
+ n

�
1 + tanh

�
T�Tc

�

�� , (F.4)

w
H

= 1� w
Q
. (F.5)

Here, s
H
(T )(s

Q
(T )) is the entropy density for the hadronic (quark) phase for the massless and
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Figure F.1: (a) The trace anomaly "�3P calculated through lattice QCD simulations [135]. (b) P/T 4, "/T 4

and the trace anomaly calculated from the phenomenological model (m = n) [106].

2-flavor matter,

s
H
(T ) = 12

⇡2T 3

90
, (F.6)

s
Q
(T ) = 148

⇡2T 3

90
. (F.7)

m, n correspond to the asymmetry between hadronic and quark phases. From the definition

of the weight function wH/Q, in the region T � Tc ⌧ �, the EOS reaches at the pure hadronic

EOS and in the region T � Tc � �, the system becomes the pure quark matter. Therefore,

this model satisfies the description discussed above: The resultant thermodynamic properties

approach the non-interactive hadronic or quark matter at the low or high temperature region

and have the non-trivial behavior at the intermediate region Tc � � < T < Tc + �.

From this entropy density Eq. (F.3), we can derive the other thermodynamical quantities

analytically through the thermodynamical relations.

P (T ) =

Z T

0

s(t)dt, (F.8)

"(T ) = Ts(T )� P (T ). (F.9)

In Fig. F.1 (a) [135], the lattice QCD calculation of the trace anomaly "�3P as a function of

the temperature normalized by the critical temperature Tc is plotted. Fig. F.1 (b) [106] shows
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P/T 4, "/T 4 and the trace anomaly � ⌘ " � 3P calculated from this phenomenological model

(m = n). We can see from these figures that this phenomenological interpolation method of

the entropy density as a function of the temperature using the function “tanh” can reproduce

at least three non-perturbative e↵ects in the intermediate region quantitatively.

Finally, Iet us comment on the proof that "/T 4 has the peak at Tc analytically. By consid-

ering

T 5@ ("/T
4)

@T
= T 2

✓
s
H
(T )

@w
H
(T )

@T
+ s

Q
(T )

@w
Q
(T )

@T

◆

�
Z T

0

dt t

✓
s
H
(t)
@w

H
(t)

@t
+ s

Q
(t)
@w

Q
(t)

@t

◆
, (F.10)

sH,Q(T ) / T 3, (F.11)

@w
Q
(t)

@t
> 0, (F.12)

@w
Q
(t)

@t
! O(1/t4) (t ! 1), (F.13)

we can easily prove that T 5 @("/T 4)
@T

is positive (negative) at the region where T is small (large).

Therefore, "/T 4 has the peak.
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