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Abstract

From pulsars, extremely stable pulsed emission is observed, which suggests that pulsars

are rapidly rotating and magnetized neutron stars. Among more than 2500 pulsars ever

discovered, the Crab pulsar is one of the most famous pulsars, which is located at the

center of the Crab nebula. The Crab has been extensively studied theoretically and

observationally.

Only ∼ 10 of 2500 pulsars, including the Crab pulsar, sporadically emit extremely

strong radio pulses called Giant Radio Pulses (GRPs). The emission mechanism of

GRPs has not been revealed yet. In most pulsars, normal pulses are so weak that their

pulse profiles are obtained only by accumulating synchronously the data at the pulse

period. This averaging (folding) procedure leads to loss of information on the behavior

of individual pulses. On the other hand, GRPs can be readily detected without being

hidden by background noise due to their strong signals. Therefore GRPs give us more

direct information about their emission mechanism.

GRPs show a pulse-to-pulse variation of pulse structures or flux at different fre-

quencies. It is important to observe GRPs at multiple frequency bands simultaneously.

In order to study how GRPs relate at different frequencies and how GRPs affect the

emissions at other wavelengths, we study the emission mechanism of GRPs from the

Crab pulsar in terms of the “simultaneous multi-wavelength observation” in this thesis.

First, we present the results of the simultaneous observation of the GRPs from the

Crab pulsar at 0.3, 1.6, 2.2, 6.7 and 8.4 GHz with four telescopes in Japan (Kashima,

Usuda, Iitate and Takahagi observatories). The frequency coverage (∼ 1.5 decades) is

the most broadband among ever reported. We obtain 3194 and 272 GRPs occurring

at the main pulse (MPGRPs) and the interpulse phases (IPGRPs). The number of

samples are large compared to most of the past multi-frequency observations. Some past

studies collect more GRP samples than our study, but their samples are not obtained

simultaneously. For our GRP samples, we carry out the spectral fitting with a single

power-law function to each GRP spectrum. For the frequency range from 0.3 to 2.2 GHz,

about 70% of the GRP spectra are consistent with single power-laws and the spectral
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indices of them are roughly distributed from −4 to −1. We find apparent correlations

between the fluences and the spectral hardness, which may indicate that less energetic

pulses tend to show harder spectra (“dim-hard” GRPs). We also find a significant

number of GRPs which are too weak to identify at 0.3 GHz but can be identified at

both 1.6 GHz and 2.2 GHz. Those GRPs imply harder spectra than stronger ones

and also normal pulses. Stacking such weak GRPs, we confirm the existence of such

“dim-hard” GRPs at 0.3 GHz. Those results may strengthen the fluence-hardness

correlations, or they indicate that most of GRPs may have intrinsically harder spectra

than that ever reported.

The second work in this thesis is a search for a correlation between GRPs and hard

X-ray pulses from the Crab pulsar. Since the spectral signature at higher energy bands

is quite different from a radio band, the emission mechanism at radio band is thought to

be different from that at higher energy bands. For this reason, those high energy pulses

were not thought to show violent flux variation similar to the variation in radio bands,

i.e., GRPs. Nevertheless, recent observation showed that optical pulses coincident with

the GRPs from the Crab pulsar were on average a few percent brighter than those at

non-GRP periods. This suggests that there is some kind of link between GRPs and high

energy emissions. Testing the correlation between the GRPs and the pulses at other

frequency bands is important for understanding the generation mechanism of GRPs in

the pulsar magnetosphere.

We report the results of the simultaneous radio and hard X-ray observations of the

Crab pulsar in 2010, 2013 and 2014. The correlation between GRPs and pulsed emission

at the hard X-ray band has not been explored before. The observations were made with

the Kashima and Usuda antennae at radio band and the Suzaku HXD at hard X-ray

band. From the entire observing sessions, we obtain 7414 MPGRPs and 556 IPGRPs

during the X-ray exposure times of more than 12 hours. We search for flux enhancement

at hard X-ray band coincident with GRPs compared to that of non-GRP periods. For

the PIN (15-75 keV) data, we set the upper limit of peak flux enhancement coincident

with the MPGRPs and the IPGRPs to 33% and 88%, respectively, at a confidence

level of 95%. For the GSO (40 - 600 keV) data, we also set the upper limit of peak

flux enhancement to 63% and 193% coincident with the MPGRPs and the IPGRPs,

respectively, at a confidence level of 95%. In contrast to radio band, hard X-ray emission

does not show violent flux variation, which is consistent with the past optical study.

The future X-ray telescopes, such as ASTRO-H, will improve our results.
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Chapter 1

Introduction

A “Pulsar”, from which we can receive extremely stable pulsed emission, was firstly

discovered in 1967 (Hewish et al., 1968). Pulsars have been identified with rapidly

rotating, magnetized neutron stars since the proposals by (Pacini, 1967; Gold, 1968).

Since the discovery of pulsars, it is still not possible to give a clear explanation of

“what makes them shine”, which Taylor & Stinebring (1986) mentioned. In pulsars,

huge electric potential is induced due to their strong magnetic fields and rapid rotations

by the process of unipolar induction (Goldreich & Julian, 1969). The electric force

due to the induced electromagnetic field around the pulsar is much stronger than the

gravitational force (by a factor of ∼ 108 for a proton). Therefore, charged particles

are pulled away from the surface of the star, and form a co-rotating magnetosphere

surrounding the star. In order to explain the observed pulsed emission, a part of

the induced electric potential should be exhausted for the acceleration of plasmas and

plasma multiplication in the magnetosphere. Many models assume an existence of

the namely “gap” region in the magnetosphere, where the condition of a co-rotating

magnetosphere is not satisfied, a force-free state cannot be maintained and the electric

field parallel to a magnetic field line exist. Such gap region is modeled as, for example,

the “polar cap” (e.g. Sturrock, 1971; Ruderman & Sutherland, 1975), or the “outer gap”

(e.g. Cheng et al., 1986a,b). Recent observations have restricted the emission region at

γ-ray bands (e.g. Abdo et al., 2009), but there is no widely accepted and self-consistent

model so far.

Radio emission from pulsars has a more difficult problem. We can estimate the

brightness temperatures of the observed pulses Tb = (λ2/2kB)(Sν/Ω) from the distance

of the pulsar, the duration of the pulse and observed flux density of the pulse Sν

(where kB is the Boltzmann constant and λ is the observing wavelength). They are

typically 1023−1026K, considerably exceeding the temperatures of matters in the pulsar
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magnetosphere. Therefore, pulsar radio emission cannot be explained by a simple sum of

emission from accelerated particles in the pulsar magnetosphere, and may be attributed

to some coherent process such as a bunching mechanism (e.g. Cheng & Ruderman,

1977) or a maser process (e.g. Luo & Melrose, 1992). Many theoretical models have

been proposed, but the question how the radio emission is produced has not been solved

yet. One of the reasons of it is that, as Melrose (1995) pointed out, no widely accepted,

self-consistent model of the pulsar magnetosphere is constructed. In this situation, it

is difficult to predict the distributions of plasmas required to determine the relevant

process of coherent emission.

We focus on a peculiar form of pulsar radio emission, giant radio pulses (GRPs).

GRPs are characterized by a large intensity variation reaching more than ten times, or

occasionally thousands of times larger than that of average pulses. The energy distri-

butions of GRPs follow power-law ones, while the intensity distributions of “normal”

pulses in many pulsars follow log-normal ones (Burke-Spolaor et al., 2012). While more

than 2500 pulsars have been discovered at present1 (Manchester et al., 2005), GRPs

have been detected in only ∼ 10 pulsars so far (e.g. Cognard et al., 1996; Johnston &

Romani, 2003; Singal & Vats, 2012). Some theoretical models of GRPs have been pro-

posed so far (Petrova, 2004; Gil & Melikidze, 2005; Lyutikov, 2007), but their emission

mechanism have not been revealed yet.

Most of normal pulses are weak and their pulse profiles can be obtained by adding

synchronously of the data at the pulse period. By this “folding” procedure, some

characteristics of individual pulses are lost. On the other hand, GRPs can be readily

detected without being hidden by a background noise due to their strength. Therefore

from GRPs, we can get more direct information about the particles relevant to their

emission and their emission mechanism.

In this thesis, we focus on the GRPs from the Crab pulsar (Figure 1). The Crab

pulsar was discovered by GRPs (Stalin & Reifenstein, 1968). The GRPs from the

Crab pulsar can be relatively frequently observed compared to the other GRP-emitting

pulsars (e.g. Knight et al., 2006a). Besides, we obtain more information from the

emission at higher energy bands because of relatively bright emission from the Crab

pulsar compared to other pulsars (e.g. Thompson et al., 1999). Therefore, the Crab

pulsar is the best candidate studying GRPs.

We study the GRPs from the Crab pulsar from the viewpoint of the “multi-wavelength

observations” in this thesis. First, we carry out the spectral study of the Crab GRPs

1http://www.atnf.csiro.au/people/pulsar/psrcat/
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Fig. 1.1.— Example of a GRP from the Crab pulsar. This GRP was detected with the
Kashima 34m antenna on Apr. 6, 2010. The 100-ms time series data (light curve) is
drawn. The “normal” pulses around the GRP are hidden by the noise, which is mainly
due to the emission from the Crab nebula.

based on the simultaneous multi-frequency observation at the radio frequency band.

There are a lot of multi-frequency observations of the Crab GRPs (e.g. Kostyuk et al.,

2003; Hankins et al., 2015), and in some studies, spectral indices or shapes have been

investigated (Sallmen et al., 1999; Popov et al., 2009; Oronsaye et al., 2015). However,

the numbers of samples were insufficient to discuss the statistical properties of the GRP

spectra in some studies. Also, the relation between spectral indices and other quantities

such as fluences has not yet been reported. Using the telescopes in Japan, we made

the wide-band simultaneous observation of the Crab GRPs at 0.3, 1.6, 2.2, 6.7 and 8.4

GHz, and extracted the spectral features of the GRPs.

The second work in this thesis is a search for a correlation between GRPs and hard

X-ray pulses from the Crab pulsar. As mentioned above, radio emission from pulsars

requires some coherent process, while emission at higher energy bands, for example

optical or X-ray emission, is modeled by the incoherent synchrotron radiation (e.g.

Takata & Chang, 2007). Radio and high-energy pulses seem to be irrelevant, but

Shearer et al. (2003) reported that optical pulses concurrent with the GRPs from the

Crab pulsar are on average ∼ 3% brighter than those coincident with normal radio

pulses. Similar enhancement was also obtained by Collins et al. (2012) and Strader

et al. (2013). This suggests that there is some kind of link between the coherent and

incoherent emissions generated in the Crab pulsar. Testing the correlation between

the GRPs and the pulses at other frequency bands is important for obtaining a clue

to understand the generation mechanism of GRPs in the pulsar magnetosphere. We
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focus on the hard X-ray band, where no other correlation study was carried out in the

previous studies (e.g. Bilous et al., 2011; Aliu et al., 2012). We did not find a significant

enhancement of hard X-ray emission coincident with GRPs, but set the upper limit on

its enhancement.

This thesis is organized as follows. In Chapter 2, we review the basic concepts of

a pulsar and a pulsar magnetosphere at first. In this chapter, we also review GRPs

in the observational and the theoretical viewpoints. In Chapter 3, we describe basic

principles of our data analysis including the dedispersion procedure, the transformation

of the data time and the flux calibration. In Chapter 4, we describe our results of the

wide-band observation of the GRPs from the Crab Pulsar. In Chapter 5, we show the

results of a search for a correlation between GRPs and hard X-ray pulses from the Crab

pulsar. In Chapter 6, we summarize the results and discuss them.
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Chapter 2

Pulsars and Giant Radio Pulses
from Pulsars

2.1 Spin-down, and magnetic dipole radiation

Change in the observed pulse periods can be related to the loss of the rotational energy

of the pulsar. The rate of increase in pulse periods of a pulsar Ṗ and the rate of loss of

its rotational energy Ė are related in the following relation;

Ė ≡ dErot

dt
=

d(1
2
IΩ2)

dt
= −IΩΩ̇ = 4π2IṖP−3, (2.1)

where Ω ≡ 2π
P

is the rotational angular frequency of the pulsar, and I represents the

moment of inertia of the pulsar. Ė is also referred to as ”spin-down luminosity”. Using

I = 1045g · cm2, 1

Ė ≃ 4× 1031erg · s−1

(
Ṗ

10−15

)(
P

1s

)−3

. (2.4)

There is a strong dipole magnetic field around a neutron star. When a magnetic

dipole with a magnetic moment m rotates, it emits an electromagnetic wave at its

rotational frequency. This radiation is called “magnetic dipole radiation”. The emitted

power of magnetic dipole radiation is represented as

Ėdipole =
2

3c3
|m|2Ω4 sin2 α, (2.5)

1A moment of inertia of a sphere of uniform density is described as

I =
2

5
MR2, (2.2)

where M and R is mass and a radius of the sphere, respectively. If we substitute M = 1.4M⊙ and
R = 10km,

I ∼ 1045g · cm2. (2.3)
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where α is the angle between the rotational axis and the magnetic moment. When we

equate the power in Equation (2.5) with spin-down luminosity described in Equation

(2.1), we get

Ω̇ = −
(
2|m|2 sin2 α

3Ic3

)
Ω3. (2.6)

Using the relation Ω = 2πν, we obtain

ν̇ = −Kνn. (2.7)

where n is referred to as a ”braking index”. If the spin-down of the pulsar is only due

to magnetic dipole radiation, n = 3.

When we differentiate Equation (2.7) by time, we obtain

ν̈ = −nKνn−1ν̇. (2.8)

From Equations (2.7) and (2.8),

n =
νν̈

ν̇
. (2.9)

Therefore, we can estimate the braking index of a pulsar with pulse period P, its rate

of increase Ṗ and its rate of change P̈. The obtained braking index deviates from n = 3

(Livingstone et al., 2007). This suggests that there are some process(es) of energy

dissipation other than magnetic dipole radiation, but the condition n = 3 is often

assumed in order to see the basic characteristics of pulsars. We discuss them below.

From Equation (2.7),

Ṗ = KP 2−n (2.10)

By assuming that K is constant and integrating Equation (2.10) from t = 0 (the birth

time of the pulsar) to t = T (now), we obtain∫ t=T

t=0

P n−2dP =

∫ T

0

Kdt

KT =
1

n− 1
(P n−1 − P n−1

0 ), (2.11)

where P0 is the rotational period of the pulsar at birth.

T =
1

K(n− 1)
· P n−1

[
1−

(
P0

P

)n−1
]

(2.12)

Using the relation shown in Equation (2.10), we get

T =
P

Ṗ (n− 1)

[
1−

(
P0

P

)n−1
]
. (2.13)
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Assuming that the present rotational period of the pulsar is much slower than that at

birth (P ≫ P0) and that the spin-down of the pulsar is only due to magnetic dipole

radiation (n = 3), we obtain

Tage =
P

2Ṗ
= 1.58× 107year

(
P

1s

)(
Ṗ

10−15s/s

)
. (2.14)

Tage is often used as the ”characteristic age” of a pulsar.

When we assume the spin-down of the pulsar is only due to magnetic dipole radiation

(n = 3). The magnetic moment |m| is related to strength of the magnetic field in the

following relation;

B ≈ |m|
r3

. (2.15)

From Equation (2.6),
PṖ

4π2
=

2|m|2 sin2 α

3Ic3
. (2.16)

By substituting r = R (radius of the star) to Equation (2.16), strength of the magnetic

field at the surface of the neutron star BS can be described as

BS ≡ B(r = R) =

√
3c3

8π2

I

R6 sin2 α
PṖ . (2.17)

Assuming I = 1045g · cm2, R = 10km, α = 90◦, we obtain

BS = 3.2× 1019Gauss
√

PṖ ≃ 1012Gauss

(
P

1s

)1/2
(

Ṗ

10−15s/s

)1/2

. (2.18)

It should be noted that this expression is a rough estimate because α is usually unknown,

mass and a radius of a neutron star is currently uncertain, and the spin-down process

can be due to processes other than magnetic dipole radiation. However, this expression

is often used as an indicator of strength of the magnetic field at the surface of the star.

2.2 Pulsar Magnetosphere

In this subsection, we discuss the electromagnetic field formed around the pulsar. Gol-

dreich & Julian (1969) discussed the electromagnetic fields around the pulsar in the

case of the aligned rotator, where the magnetic axis and the rotational axis are aligned

with each other. This model depicts basic principles of a pulsar magnetosphere. Below,

we summarize their discussion.

Here, we consider the neutron star as a conducting sphere rotating with the angular

frequency Ω. We also assume that the sphere is uniformly magnetized in z-direction,
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and the magnetic field is therefore described as Bin = B0ez. Due to the rotation of the

magnetized sphere, the electric field is induced at any point r in the sphere. Charged

particles in the interior feel the electric force from the induced field. As the star rotates,

particles also feel the Lorentz force, and two types of forces are finally balanced. As a

result, at any point r in the inside of the star, the relation

Ein +
1

c
(Ω× r)×Bin = 0 (2.19)

is satisfied. Therefore, Ein · Bin = 0 is satisfied inside the star. Using the spherical

coordinates (r, θ, ϕ), Ein is described as

Ein = −ΩB0r

c
(sin2 θer + sin θ cos θeθ). (2.20)

Since ∂Bin/∂t = 0, the equation ∇ × Ein = 0 is realized inside the star. Using the

electric potential Φin, we can represent Ein as Ein = −∇Φin. Therefore, we get

Φin =

(
ΩB0

2c

)
(r sin θ)2 + const. (2.21)

= −
(
ΩB0r

2

3c

)
[P2(cos θ)− 1] + const. (2.22)

where P2(cos θ) is the Legendre polynomial of order 2.

Next, we consider the electromagnetic field outside the star. Since we now assume

that there is a vacuum outside the star, the electric potential Φout satisfies the following

relation;

△Φout(r, θ) = 0. (2.23)

This is namely the Laplace equation, and we take its general solution in the form

Φout(r, θ) =
∞∑
l=1

al
rl+1

Pl(cos θ). (2.24)

The electric potentials on the inside and outside of the star should match each other at

the surface of the star, r = RNS. Therefore, we get

Φout(r, θ) =
BSΩR

5
NS

6cr3
(3 cos2 θ − 1). (2.25)

The electric field outside the star is expressed as

Eout = −∇Φout(r, θ) = −∂Φout

∂r
er −

1

r

∂Φout

∂θ
eθ (2.26)

= −B0ΩR
5
NS

2cr4
(3 cos2 θ − 1)er −

B0ΩR
5
NS

cr4
cos θ sin θeθ.(2.27)
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The magnetic field outside the star is a dipole field with moment m = B0R
3
NS, that is

Bout =
B0R

3
NS cos θ

r3
er +

B0R
3
NS sin θ

2r3
eθ. (2.28)

Therefore, we get the following relation;

Bθ

Br

=
rdθ

dr
=

sin θ

2 cos θ
. (2.29)

Solving the differential equation above, we get

sin2 θ

r
= const. (2.30)

for a dipole field. We also obtain the charge density at the surface of the star, σsur,

from the discontinuity of the radial component of the electric field;

σsur =
1

4π
(Ein,r − Eout,r) =

ΩB0RNS

12π
[2− 5P2(cos θ)] (2.31)

From Equations (2.27) and (2.28), we get

Eout ·Bout = −ΩRNSB
2
0

c

(
RNS

r

)7

cos3 θ. (2.32)

Therefore, at the surface of the star, the electric field along the magnetic field line is

E∥ =

[
E ·B
B

]
r=R

= −BSΩRNS

c
cos3 θ. (2.33)

From Equation (2.33), we evaluate the electric force working on a charged particle. For

a single proton,

(electric force)

(gravitational force)
=

eΩBSRNS/c

GmpM/R2
NS

∼ 108
(

BS

1012G

)(
M

1.4M⊙
)(

P

1s

)−1

. (2.34)

Therefore, the environment around the star can not be a vacuum. Charged particles

can be pulled out of the surface and they will create a “magnetosphere” around the

star.

The charged particles pulled from the surface of the star move along the magnetic

field lines. The momentum perpendicular to the magnetic field line is rapidly lost by

radiation. The particles rearrange their own motion so that no net electromagnetic

force acts on them. Therefore, for the particles in the magnetosphere, the following

relation is satisfied;

E+
v

c
×B = 0, (2.35)
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where the velocity v satisfies v = Ω × r. From the resulting electric field E, the

Maxwell’s equations ∇ · E = 4πρ and ∇ × B = 4π
c
ρv, the charge density in the co-

rotating magnetosphere is

ρGJ =
1

4π
∇ · E = −B ·Ω

2πc

1

1− (rΩ/c)2 sin2 θ
. (2.36)

This charge density is referred to as the “Goldreich-Julian density”. The number density

of the charges is approximately

nGJ ∼
BSΩ

2πce
=

BS

ceP
∼ 7× 1010cm−3

(
P

1s

)−1/2(
BS

1012G

)1/2

. (2.37)

The charged particles co-rotate with the star. If the charge density deviates from ρGJ ,

Equation (2.35) is not satisfied and E · B ̸= 0. Therefore, the electric fields along

magnetic field lines will develop and the particles will be accelerated by them. This

will be discussed later.

Since plasmas cannot move at a speed faster than the speed of light, co-rotation of

plasmas can be maintained only within the cylindrical region called the “light cylinder”.

The radius of the light cylinder RLC is

RLC =
c

Ω
=

cP

2π
≃ 4.8× 104km

(
P

1s

)
(2.38)

From Equation (2.15) and (2.17), the magnetic field at the position of the light cylinder

BLC is

BLC = BS

(
R

RLC

)3

≃ 9.2Gauss

(
P

1s

)−5/2
(

Ṗ

10−15s/s

)1/2

, (2.39)

where we assume I = 1045g · cm2 and R = 10km. The motion of particles depends on

whether the magnetic field line along which they move closes before reaching the light

cylinder. According to Equation (2.30), the field lines emanating at the angular region

θ > θPC close before reaching the light cylinder (“closed field lines”), and the field lines

emanating at the angular region θ < θPC cross the light cylinder (“open field lines”).

The angular region θ < θPC is referred to as the polar cap region. The critical field line

is tangential to the light cylinder. This line satisfies the following relation;

sin2 90◦

RLC

=
2π

cP
=

sin2 θPC
R

(2.40)

Assuming θPC ≪ 1, the polar cap radius RPC is

RPC ≃ R sin θPC =

√
2πR3

cP
= 1.5× 104cm

(
P

1s

)−1/2(
R

10km

)3/2

. (2.41)
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The potential difference ∆Φ between the magnetic pole and the edge of the polar cap

region is estimated as follows;

∆Φ = Φ(R, 0)− Φ(R, θp)

=
BSΩR

5

3cR3
− BSΩR

5

6cR3
(3 cos2 θp − 1)

=
2π2BSR

3

c2P 2

= 2× 1013Volt

(
P

1s

)−3/2
(

Ṗ

10−15s/s

)1/2

, (2.42)

where Equation (2.17) is used in the last equality.

The deviation of the charge density from the Goldreich-Julian charge density gives

rise to the electric field along the magnetic field lines, and they will accelerate the par-

ticles. However, it is an open question where such electric field is formed. Some models

of the electric field were proposed based on the formation of the charge depleted region

(“gap” region) accompanied with the outflow of the particles from the magnetosphere.

One of the models is the “polar cap” model (e.g. Sturrock, 1971; Ruderman & Suther-

land, 1975), of which gap region is formed near the magnetic pole. Another model is

the “outer gap” model (e.g. Cheng et al., 1986a,b), of which gap region is formed near

the “null surface” satisfying ρGJ = 0 in the outer magnetosphere. From these models,

different shapes of the energy spectrum at γ-ray band were predicted (e.g. Daugherty &

Harding, 1996). Recent γ-ray observations with the Fermi satellite have suggested that

the polar cap region is unlikely to be the acceleration site of the particles responsible

for γ-ray emission (e.g. Abdo et al., 2009). In recent studies, Takata & Chang (2007)

also reported that the emission from the Crab pulsar from optical to γ-ray bands can

be modeled by the emission from the outer gap. However, a generally acceptable model

at the whole energy bands has not been constructed yet.

2.3 Giant Radio Pulses

2.3.1 Observational aspects of Giant Radio Pulses

In this section, we discuss giant radio pulses from pulsars. Radio pulses from some

pulsars show anomalous excess of pulse flux compared to average ones. Those extremely

strong radio pulses are called “Giant Radio Pulses (GRPs)”. In some previous studies,

the “working” definition of a GRP is used, which is that the peak flux and the total

energy of a pulse is more than ten times the mean ones (e.g. Johnston et al., 2001;

17



Tsai et al., 2015). However, as Hankins et al. (2015) pointed out, there is no standard

criterion for defining GRPs at present.

GRPs commonly show the distribution of peak flux density or total energy of GRPs

follows a power-law statistics (e.g. Argyle & Gower, 1972; Cognard et al., 1996, see

also Figure 2.1), while those of “normal pulses” are well described as log-normal ones

(Burke-Spolaor et al., 2012). For the Crab GRPs, it is also reported that the power-law

indices are different according to the observing frequencies and the observation dates

(Mickaliger et al., 2012, and references therein).

Fig. 2.1.— Left: Distribution of the pulse intensity of GRPs detected at the main-
(top) and interpulse (bottom) phases, respectively. The best fit power-law curve is
shown with slope −2.79± 0.01 for the pulses in main pulse phase and −3.06± 0.06 for
the pulses in the interpulse phase. This figure is taken from Figure 4 of Karuppusamy
et al. (2010). Right: Cumulative distribution of amplitudes grater than S, measured in
units of mean amplitudes of the main or interpulse phase windows, reported by Cognard
et al. (1996). The solid line represents a best fit power-law function. This figure is taken
from Figure 3 of Cognard et al. (1996).

The second point is that the occurrence phases of GRPs are limited to the narrow

region(s) within one rotational period. For example, the occurrence phases of GRPs

in the Crab pulsar are limited to the main pulse and the interpulse phase, which are

the two main components of the average profile (Cordes et al., 2004, see also Figure

2.2). In addition, it is also reported by (Cusumano et al., 2003) that the occurrence

phases of GRPs in PSR B1937+21 were not aligned with the average profile, and were

concentrated in the trailing edge of the mean radio profile, and roughly match the peak
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phase of the mean X-ray profile. The occurrence phases of GRPs in PSR J0218+4232

were also not aligned with the average profile and roughly match the peak phase of the

mean X-ray profile (Knight et al., 2006a). It may be suggested that the emission region

of GRPs may be related to that at higher energy bands (Figure 2.3).

Fig. 2.2.— The average intensity profile (black) and the number counts of GRPs plotted
against pulse phase (red) at each frequency band. This figure is taken from Figure 1 of
Cordes et al. (2004).

At present, detection of GRPs is reported in fifteen pulsars. In Table 2.1, we sum-

marize those pulsars. The Crab pulsar, PSR B0540-69 and the millisecond pulsars have

relatively larger magnetic fields at the position of the light cylinder. It may be sug-

gested that the emission mechanism of GRPs of those pulsars can be related to some

process occurring in the outer region of the magnetosphere, which is thought to be the

emission region of the high energy bands.

Some researchers reported the detection of GRPs from relatively slowly rotating

pulsars. The magnetic fields at the light cylinder of those pulsars are much smaller

than those of the Crab or the millisecond pulsars. The widths of the GRPs are ∼ms

(e.g. Tsai et al., 2015), considerably longer than the GRPs from the Crab pulsar or the
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Fig. 2.3.— Left: Pulse profile of PSR B1937+21 in the 2-17 keV energy band (top), the
4-10 keV pulse profile (middle) and radio pulse profile at 1.6 GHz (bottom). Vertical
arrows indicate the occurrence phases of the GRPs. This figure is taken from Figure
1 of Cusumano et al. (2003). Right: Phases and energies of GRPs detected from PSR
J0218+4232 superimposed on an integrated pulse profile (top) and 0.08-10 keV pulse
profile (bottom). This figure is taken from Figure 1 of Knight et al. (2006a).

millisecond pulsars. The GRPs from the slowly rotating pulsars have been observed

only at relatively lower frequencies so far. On the other hand, the GRPs from those

pulsars might have to be treated carefully. Gajjar et al. (2014) reported that they did

not find GRPs from PSR J1752+2359 at 325MHz. Weltevrede et al. (2006) argued

that strong pulses from PSR B0656+14 differ from GRPs based on their result that

the pulse energy distribution follows a log-normal distribution rather than a power-

law one. Crawford et al. (2013) also reported that they could not distinguish whether

the intensity distribution of the GRPs from PSR J0529-6652 follows a power-law or a

log-normal distribution. Weltevrede et al. (2006) or Karuppusamy et al. (2011) also

mentioned that some of the “GRPs” from the ordinary pulsars might be some sort

of RRAT-like emissions. RRAT (Rotating RAdio Transients) is one of the bursting

neutron stars firstly discovered by McLaughlin et al. (2006). The RRAT is characterized

as no detectable pulse for many hundreds of rotational periods followed by a bright

detectable emission, and the underlying pulse period of it can be found by the long

term observation (e.g. Lyne & Graham-Smith, 2012).
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The Crab pulsar was discovered by GRPs (Stalin & Reifenstein, 1968). Since in-

tensity variation of radio pulses from the Crab pulsar is larger than other pulsars, we

can detect GRPs from the Crab pulsar more frequently than other pulsars (e.g. Knight

et al., 2006a). Therefore, GRPs from the Crab pulsar have been investigated by many

researchers since its discovery. GRPs from the Crab pulsar are detected at a wider

frequency range than the other GRP pulsars, from 20 MHz (Ellingson et al., 2013) to

46 GHz (Hankins et al., 2015).

Some interesting features of Crab GRPs have been revealed by the observations

with ∼ GHz bandwidths. Hankins et al. (2003) reported that the Crab MPGRPs

were composed of a number of “nanoshots”, and these nanoshots were suggested to be

strongly circular polarized (see Figure 2.4). Hankins & Eilek (2007) and Jessner et al.

(2010) also reported that the Crab IPGRPs were strongly linearly polarized.

Fig. 2.4.— Intensity and polarization profiles of nanoshots reported by Hankins et
al. (2003). The upper panel shows the intensity profile of a GRP plotted with 2-ns
resolution. The polarized flux from six of the nanoshots corresponding to the sections
shown by the name a-f in the upper panel plotted with 100-ns duration are plotted in
the lower panel also with 2-ns resolution.

In the Crab GRPs, some peculiar features in the spectral structures have also been

reported. According to the dynamic spectrum2 of GRPs detected at 8 - 10 GHz (Figure

2A two dimensional image of pulse intensity as a observation time and frequency (Lorimer & Kramer,
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2.5) reported by Hankins & Eilek (2007), the “emission band” structures were seen in

the dynamic spectra of the IPGRPs, while similar structures were not found in the

dynamic spectra of the MPGRPs. The origin of the band structure has not yet been

resolved, but Lyutikov (2007) constructed the theoretical model to explain the structure

(Section 2.3.2).

Fig. 2.5.— Total intensity profiles (top) and their dynamic spectra (bottom) for the
typical MPGRPs (left) and IPGRPs (right) at 8 - 10 GHz reported by Hankins & Eilek
(2007). The dispersive delay (see Section 3.1) is corrected. In the dynamic spectra, flux
density is drawn with contours.

The spectra of the Crab GRPs are also investigated by the simultaneous multi-

frequency observations. This subject will be discussed in Chapter 4.

From the Crab pulsar, pulsed emission is also detected at the energy bands higher

than the radio band, such as optical, X-ray and γ-ray bands (Abdo et al., 2010, see

also Figure 2.6). Simultaneous observations of the Crab GRPs and the pulses at higher

energy bands may give a clue to the emission mechanism of GRPs. In the Crab pulsar,

optical pulses concurrent with GRPs are on average ∼ 3% brighter than those not

coincident with GRPs (Shearer et al., 2003; Strader et al., 2013). These results suggest

that GRPs have some correlation with the emission at higher energy bands. We will

discuss more details of this subject in Chapter 5.

2.3.2 Theoretical models of GRPs

Several theoretical models of GRPs have been proposed so far. Petrova (2004) proposed

the model that GRPs are generated by the process of induced Compton scattering of

radio emission off the plasma particles in the pulsar magnetosphere. Gil & Melikidze

(2005) argued that GRPs can be explained by the angular beaming effect due to the

relativistic motion of the emitting sources. Lyutikov (2007) argued that GRPs are

2004). See also Figure 3.1.1
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Fig. 2.6.— Average pulse profiles of the Crab pulsar from radio to very high energy
γ-ray band. At each frequency band, two cycles of pulse profiles are drawn repeatedly.
This figure is taken from Figure 2 of Abdo et al. (2010).

generated by the process of anomalous cyclotron resonance on the L/O-mode waves.

Below, we describe the model proposed by Lyutikov (2007).

The model proposed by Lyutikov (2007) intends to explain the band structure (sim-

ilar to Figure 2.5) in the dynamic spectrum of the GRPs at ∼ 8 GHz reported by Eilek

& Hankins (2007). He suggested that the separations of those bands came from the

anomalous cyclotron resonance (e.g. Terasawa & Matsukiyo, 2012) between the L/O-

mode waves and the plasmas in the pulsar magnetosphere. He fitted the separation of

the band structure in the dynamic spectrum reported by Eilek & Hankins (2007) to the

resonant frequencies for anomalous cyclotron resonance. From the derived parameters

by the fit, he made a suggestion that the required Lorentz factor of the plasma particles,

γ ∼ 107, can be obtained by the magnetic reconnection in the Y-point of the pulsar

magnetosphere and those accelerated particles could emit curvature radiation in γ-rays.

Therefore, they argued that enhanced γ-ray emission accompanied with GRPs might be

found. This is important for a correlation study between Crab GRPs and γ-ray pulses.

Bilous et al. (2011) and Mickaliger et al. (2012) investigated a correlation between them
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Table 2.1: Some basic data of the pulsars from which detection of GRPs has been
reported. The data of pulse period P , Distance, period mean flux density at 400 MHz
and 1400 MHz S400/1400 and the magnetic field at the position of the light cylinder
of each pulsar are taken from the ATNF pulsar catalogue (Manchester et al., 2005).
“Freq.” is the frequency at which detection of GRPs has been reported.

P Dist. Freq. S400 S1400 BLC

Name [ms] [kpc] [GHz] [mJy] [mJy] [G]

B0531+21 33 2 0.02a-46b 550 14 9.55× 105

(J0534+2200)
B0540-69 50 48.1 1.4c 0.0007 0.024 3.62× 105

(J0540-6919)
B1937+21 1.56 4.6 0.1d-2.4e 240 13.2 1.02× 106

(J1939+2134)
B1821-24A 3.05 4.9 0.8f-3.5g 40 2.0 7.40× 105

(J1824-2452A)
J0218+4232 2.32 5.85 0.9,1.4h 57.7 0.9 3.21× 105

B1957+20 1.61 1.53 0.8h 20 0.4 3.76× 105

(J1959+2048)
B1820-30A 5.44 7.9 0.7i,1.4j 16 0.72 2.52× 105

(J1823-3021A)
B1112+50 1656 0.54 0.1k 5.3 3 4.24

(J1115+5030)
B0031-07 943 1.08 0.04l,0.1m 52 11 7.02

(J0034-0721)
J1752+2359 409 2.7 0.1n 3.5 * 71.1
B0656+14 385 0.29 0.1o 6.5 3.7 766

(J0659+1414)
B0950+08 253 0.26 0.04p, 0.1q 400 84 141

(J0953+0755)
B0529-66 976 53.7 1.4r * 0.3 39.7

(J0529-6652)
B1237+25 1382 0.84 0.1s 110 10 4.14

(J1239+2453)
B1133+16 1188 0.35 0.1t 257 32 11.9

(J1136+1551)
[References. a: (Ellingson et al., 2013), b: (Hankins et al., 2015), c: (e.g. Johnston & Romani, 2003),
d: (Kuzmin & Losovsky, 2002), e: (Kinkhabwala & Thorsett, 2000), f: (Bilous et al., 2015), g: (Knight
et al., 2006b), h: (Knight et al., 2006a), i: (e.g. Knight, 2007), j: (Knight et al., 2005), k: (Ershov &
Kuzmin, 2003), l: (Kuzmin & Ershov, 2004), m: (e.g. Kuzmin et al., 2004), n: (Ershov & Kuzmin,
2005), o: (Kuzmin & Ershov, 2006), p: (Tsai et al., 2015), q: (e.g. Singal & Vats, 2012), r: (Crawford
et al., 2013), s: (Kazantsev & Potapov, 2015a), t: (Kazantsev & Potapov, 2015b) ]

by the simultaneous observations at radio and γ-ray bands with the Fermi satellite, but

no significant enhancement has been found so far (see also Chapter 5).
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Chapter 3

Radio Observation and Data
Analysis

In this chapter, some basic principles and techniques in pulsar radio observations are

reviewed.

3.1 The Dispersion Effect and the Dedispersion Tech-

nique

3.1.1 Dispersion effect

Here, we consider a (transverse) electromagnetic wave propagating to x-direction in un-

magnetized plasma. The electric and magnetic field consisting of the wave is described

as E and B, respectively. The equation of motion of the plasma particles are described

as:
∂ve

∂t
+ ve · ∇ve = − e

me

E− e

mec
ve ×B. (3.1)

The Maxwell’s equations are described as:

rotB− ∂E

c∂t
=

4π

c
j = −4π

c
n0eve, (3.2)

and

rotE+
∂B

c∂t
= 0. (3.3)

By assuming that the velocities of the electrons are initially zero and neglecting the non-

linear terms such as ve · ∇ve or ve × B, we get the following equation from Equation

(3.1),
∂ve

∂t
≃ − e

me

E. (3.4)
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Taking only the y-component, we get

∂vey
∂t

= − e

me

Ey. (3.5)

From the y-component of Equation (3.2) and the z-component of Equation (3.3), we

get

−∂Bz

∂x
− ∂Ey

c∂t
= −4πn0e

c
vey, (3.6)

and
∂Ey

∂x
+

∂Bz

c∂t
= 0, (3.7)

respectively. For the quantities vey, Ey and Bz taking a from of ∝ exp {i(kx− ωt)}, a
set of equations for those three parameters is described as follows,

−iω
e

me

0

4πn0e

c

iω

c
−ik

0 ik − iω

c




vey
Ey

Bz

 = 0. (3.8)

The condition that (3.8) has a non-trivial solution is :

−iω

(
ω2

c2
− k2 − 4πn0e

2

mec2

)
= 0. (3.9)

From the equation above, we obtain the following dispersion relation :

ω2 = c2k2 + ω2
pe. (3.10)

Here, we define the “plasma frequency” as

ωpe ≡
(
4πn0e

2

me

)1/2

. (3.11)

The “group velocity” Vg is calculated as,

Vg =
∂ω

∂k
=

(
∂k

∂ω

)−1

= c

√
1−

ω2
pe

ω2
. (3.12)

Therefore, the time T that is taken for pulses with the angular frequencies ω = 2πf

to propagate along a path of length L is

T =

∫ L

0

ds

Vg

=

∫ L

0

ds

c

√
1−

ω2
pe

ω2

. (3.13)
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For the observing frequency f satisfying f ≫ fpe,

T ≃
∫ L

0

1

c

[
1 +

1

2

ω2
pe

ω2

]
ds =

L

c
+

2πe2

mec

1

ω2

∫ L

0

n0ds =
L

c
+

e2

2πmec

1

f 2

∫ L

0

n0ds. (3.14)

We define the “dispersion measure” (DM) as

DM ≡
∫ L

0

n0ds. (3.15)

From Equation (3.14), difference in the arrival times of pulses with the frequencies

(f1, f2) is describes as follows;

∆t ≃ e2

2πmec

(
1

f 2
1

− 1

f 2
2

)
DM. (3.16)

Fig. 3.1.— Example of the pulse profile (top) and the dynamic spectrum (bottom)
of a Crab GRP. The non-dedispersed intensity is shown in the left panel, and the
dedispersed intensity is shown in the right panel. In the left panel, the dispersion effect
can be clearly seen in the dynamic spectrum and the GRP is not seen in the intensity
profile. By the dedispersion procedure, the GRP is clearly seen.

27



3.1.2 Basic principles of the dedispersion procedure

Signals are affected by the dispersion effects described in the previous section. The

way to recover the pulse profile at the source position is to divide the frequency band

into many independent “channels” and appropriately shift the time samples so that the

pulses at each frequency band arrive at the same time. This dedispersion technique

is often called a “incoherent dedispersion” (e.g. Lorimer & Kramer, 2004). Another

way to correct the dispersion effect is a “coherent dedispersion”, which is based on the

fact that the delay caused by the interstellar dispersion can be represented as a phase

rotation depending on frequency (e.g. Lorimer & Kramer, 2004). Below, we describe a

basic principle of the coherent dedispersion.

We represent the signal unaffected by the dispersion effect as V̂0(t), and its fourier

transform is represented as V̂0(ω). These signals can be regarded as the signals at the

source position. These two quantities satisfy the following relation;

V̂0(t) =

∫
V̂0(ω)exp (iωt) dω. (3.17)

Taking into account propagation of the signal over a distance D, V̂ (t) is described as

V̂ (t) =

∫
V̂0(ω)exp {iωt− ik(ω)D} dω. (3.18)

V̂ (t) is also represented by using a fourier transform as follows;

V̂ (t) =

∫
V̂obs(ω)exp (iωt) dω. (3.19)

Therefore, from Equation (3.18)、(3.19), we get

V̂0(ω) = V̂obs(ω)exp {ik(ω)D} . (3.20)

Therefore, V̂0(t) is reproduced from the observed data and Equation (3.17),

V̂0(t) =

∫
V̂obs(ω)exp {ik(ω)D} exp (iωt) dω. (3.21)

The dispersion relation for the electromagnetic wave in cold plasma is described as;

ω =
√
c2k2 + ω2

pe, k =

√
ω2 − ω2

pe

c
. (3.22)

See Equation (3.10). In the case of ω ≫ ωpe, the wave number k(ω) is approximated as

follows;

k(ω) =
ω

c

(
1−

ω2
pe

ω2

)1/2

∼ ω

c

(
1−

ω2
pe

2ω2

)
=

ω

c
−

ω2
pe

2cω
. (3.23)
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Using a “frequency” f = ω/2π and a wavelength (in vacuum) λ = c/f = 2πc/ω instead

of ω, Equation (3.23) is also represented as;

k(ω) ∼ 2π

λ
− e2

mec
ne

(
1

f

)
. (3.24)

Therefore, Equation (3.21) is also represented as;

V̂0(t) =

∫
V̂obs(ω)exp

{
i
2πD

λ
− iD

e2

mec
ne

(
1

f

)}
exp (iωt) dω

=

∫
V̂obs(ω)exp

{
i2πf

(
t+

D

c

)
− i2παDne

(
1

f

)}
dω. (3.25)

Here, we define a constant α as;

α ≡ e2

2πmec
. (3.26)

Dne in Equation (3.25) is Dispersion Measure defined in the previous section (see equa-

tion 3.15). When D is represented in unit “pc” (parsec) and ne in unit cm−3, it is

convenient to write

α ≃ 4.15× 109[MHz · pc−1 · cm3]. (3.27)

The term t+D/c appearing in the integrand in Equation (3.25) represents the time-shift

according to the propagation delay. When we define the time at the “source position”

t̃ = t−D/c, and regard V̂0 as a function of t̃, Equation (3.25) becomes a more simplified

form;

V̂0(t̃) =

∫
V̂obs(ω)exp

{
i2πf t̃− i2παDne

(
1

f

)}
dω. (3.28)

3.1.3 Coherent dedispersion procedure in our analysis

In this section, we apply the dedispersion procedure described in the previous section

to the data in our observation. In our observation, a signal received from the antenna

is converted to a digitized one. We define the sampling time of the digitized data as

∆t. In other words, the data is sampled at the time tn = n∆t (n = 0, 1, · · · , N − 1)

when we process of the data with duration T ≡ N∆t. On the other hand, frequency

resolution of this data is represented as ∆f = 1/T and the expression in a frequency

space is discrete one; fk = k∆f , where −(NNyq − 1) ≤ k ≤ NNyq and NNyq = N/2

corresponding to the Nyquist frequency.

The fourier transformation is rewritten in a discrete manner;

q̂obs(fk) =
1

N

N−1∑
n=0

Qobs(tn)exp (−i2πfktn) (3.29)
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Qobs(tn) =

NNyq∑
k=−(NNyq−1)

q̂obs(fk)exp (+i2πfktn) , (3.30)

where Qobs(tn) is a digitized voltage output, and q̂obs(fk) is its fourier pair. In the

procedure of dedispersion, we introduce the complex sampled data P̂obs(tn) and its

fourier pair p̂obs(fk) for convenience;

p̂obs(fk) =


2q̂obs(fk) [0 < fk < fNNyq

]
q̂obs(0) [fk = 0]
q̂obs(fNNyq

) [fk = fNNyq
]

0 [fk < 0]

(3.31)

P̂obs(tn) =

NNyq∑
k=0

p̂obs(fk)exp (+i2πfktn) (3.32)

Using the expression p̂obs(fk) obtained in Equation (3.31), Equation (3.28) is rewrit-

ten as;

P̂0(t̃n) =

NNyq∑
k=0

p̂obs(fk)exp

{
+i2πfk t̃n − i2παDne

1

fk

}
. (3.33)

If the frequency coverage in the data is limited to a finite range (here, fmin ≤ fk ≤ fmax),

the sum in Equation (3.33) is limited to the range kmin ≤ k ≤ kmax corresponding to

the frequency range. In this case, we get

P̂0(t̃n) =
kmax∑

k=kmin

p̂obs(fk)exp

{
+i2πfk t̃n − i2παDne

1

fk

}
. (3.34)

In this thesis, all of the data described in Chapter 4 are analyzed using Equation (3.33),

and all of the data described in Chapter 5 are processed using Equation (3.34).

Here, we consider a quantity ϕ(fk) ≡ −2παDne
1

fk
in Equation (3.34). From the

concept of geometric series, we get

∞∑
l=0

(
fkmax − fk

fkmax

)l

=
1

1− fkmax − fk
fkmax

=
fkmax

fk
. (3.35)

Therefore, we get
1

fk
=

1

fkmax

∞∑
l=0

(
fkmax − fk

fkmax

)l

. (3.36)

Separating the first term and the other terms in Equation (3.36), we get

1

fk
=

1

fkmax

{
1 +

fkmax − fk
fkmax

}
+

1

fkmax

∞∑
l=2

(
fkmax − fk

fkmax

)l
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=
2

fkmax

− fk
f 2
kmax

+

(
fkmax − fk

fkmax

)2
1

fkmax

∞∑
l=0

(
fkmax − fk

fkmax

)l

=
2

fkmax

− fk
f 2
kmax

+
(fkmax − fk)

2

f 2
kmax

fk
, (3.37)

where in the last equality, we use the expression derived in Equation (3.35). Therefore,

we obtain

ϕ(fk) = −4παDne

fkmax

+
2παDne

f 2
kmax

fk − 2παDne
(fkmax − fk)

2

f 2
kmax

fk
. (3.38)

Here, we pay attention to the three terms in Equation (3.38),

Φ0 ≡ −4παDne

fkmax

, (3.39)

Φ1 ≡
2παDne

f 2
kmax

, (3.40)

and

δϕ(fk) ≡ −2παDne
(fkmax − fk)

2

f 2
kmax

fk
. (3.41)

Using these expressions, ϕ(fk) is rewritten as;

ϕ(fk) = Φ0 + Φ1fk + δϕ(fk). (3.42)

Equation (3.34) is simplified with (3.39), (3.40) and (3.41) as follows;

V̂0(t̃n) = exp(iΦ0)
kmax∑

k=kmin

p̂obs(fk)exp

{
+i2πfk

(
t̃n +

Φ1

2π

)}
exp (iδϕ(fk)) . (3.43)

The quantity in our interest is a “squared” voltage, which is equivalent to power

or flux density. exp(iΦ0) is a constant phase offset and is not affected by calculating a

squared voltage. According to the shift theorem, the term is a shift in the time domain.

This term is the additional propagating time due to an existence of plasma. Since we

are not interested in the pulse “emitted” time at the source, this term can be neglected

in the data processing. Therefore, the coherent dedispersion procedure can be described

as the following expression;

P̂0(t̃n) =
kmax∑

k=kmin

p̂obs(fk)exp (iδϕ(fk)) exp
(
+i2πfk t̃n

)
(3.44)

Using the equation above, we can correct phase rotations corresponding to the frequency

dependent delays within our observing frequency band. The factor exp (iδϕ(fk)) corre-

sponds to the transfer function, H described in (e.g. Hankins & Rickett, 1975; Lorimer

& Kramer, 2004).
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3.2 Timing Analysis

3.2.1 Transformation to the time at the Solar system barycen-
ter

In order to compare the pulse TOAs (Times Of Arrival) in the common inertial reference

frame, we often covert the pulse TOAs at each observatory (often called the “topocentric

arrival times” Lorimer & Kramer (2004)) to Barycentric Dynamical Time (TDB) at the

Solar system barycenter (hereafter SSB). The transformations of TOAs are summarized

as follows (e.g. Lorimer & Kramer, 2004);

tSSB = ttopo +∆tframe +∆tD +∆tR +∆tS +∆tE (3.45)

∆tframe is the conversion of the time standard. If TOAs of pulses are recorded in Co-

ordinated Universal Time (UTC), UTC is related to TAI (International Atomic Time)

by the following relation;

TAI = UTC + (number of leap seconds). (3.46)

where leap seconds are inserted into UTC so that the difference between UTC and

UT11 does not exceed 0.9 second. The TAI is maintained by a number of atomic clocks

Bureau International des Poids et Mesures (BIPM). TAI is related to TT (Terrestrial

Time) by the following relation;

TT = TAI + 32.184s. (3.47)

The purpose of the offset of 32.184 seconds is to maintain continuity between TT and

ET (Ephemeris Time)2. Therefore, if pulse TOAs are recorded in UTC,

∆tframe = (number of leap seconds) + 32.184s. (3.48)

∆tD represents the correction for the dispersive delay described in Section 3.1. ∆tR

represents the correction for the Römer delay, which is the vacuum light travel time

between the telescope and the SSB. ∆tS represents the correction for the Shapiro delay

due to the objects in the Solar System, which is the delay caused by propagating with an

existence of massive objects. ∆tE represents the correction for the Einstein delay, which

1The timescale determined by the rotation of the Earth. Because of the non-uniform rotation of
the Earth, the rate of UT1 is not constant.

2e.g. Recommendation IV of Resolution A4 of the XXIst General Assembly of the IAU in 1991 at
Buenos Aires,
https://www.iau.org/static/resolutions/IAU1991 French.pdf
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is due to the annual variation in the clock rate on Earth. When the TOAs of the pulses

from the binary pulsars are treated, the additional corrections accompanied with an

existence of the companion star (the additional Römer delay due to the binary motion,

the Shapiro delay caused by the companion star, etc.) will be taken into account. Other

effects, for example the additional Römer delay due to a proper motion of the pulsar

should be corrected, but it is negligible for an one-day observation and is neglected in

our work. We can relatively easily carry out the transformation procedures described

above with some packages. In our analysis, we used a package “TEMPO2” (Hobbs et

al., 2006) for the radio data, and the FTOOLS task “aebarycen” for the X-ray data

(Blackburn, 1995).

3.2.2 Folding procedure

Since each pulse signal are usually very weak, a number of pulse signals are added

in order that we can see a clear pulse profile exceeding the background noise. This

procedure is called the “folding” (Lorimer & Kramer, 2004). The outline of the folding

is described as follows; (1) Carry out the dedispersion of the data (see Section 3.1). (2)

Create an array with N equally spaced elements (which we refer to as “phase bins”

hereafter) across the pulse period to store the dedispersed data (squared voltage). (3)

Calculate the phase relative to the pulse period from the data time. (4) Find the

appropriate phase bin which is closest to the calculated phase, and add the dedispersed

data in this phase bin. (5) Normalize each phase bin in the obtained pulse profile by

the number of data samples accumulated per bin.

The obtained pulse profiles in our observation are displayed in Figure 3.2. This

folding procedure can be also applied to the X-ray data. The obtained X-ray pulses

will be shown in Chapter 5. However, GRPs are much stronger than noise levels and

we can see GRPs without the folding procedure (Figure 1).

3.3 Flux Calibration and Estimation

3.3.1 Definition of some basic quantities

The infinitesimal power dP crossing an infinitesimal surface dσ is

dP = Iν cos θdΩdσdν, (3.49)

where dν is an infinitesimal bandwidth, θ is the angle and Iν is called brightness or

(specific) intensity (Wilson et al., 2013).
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Fig. 3.2.— Folded pulse profiles obtained during the observation of the Crab pulsar
on September 6-7, 2014. Left: the 323.1 - 327.1 MHz (P band) profile from the data
acquired in the Iitate planetary radio telescope. Right: the 1570 - 1602 MHz (LL band)
profile from the data acquired in the Kashima 34 m antenna. The main pulse (MP)
component can be seen at the phase ∼ 0.5, and the interpulse (IP) component can be
seen at the phase ∼ 0.9. At P band, the precursor component (e.g. Moffett & Hankins,
1996) can be seen at the phase ∼ 0.45.

The total flux density of a source Sν is obtained by integrating Equation (3.49) over

the solid angle ΩS subtended by the source

Sν =

∫
ΩS

Iν cos θdΩ. (3.50)

The flux density is measured in units of W m−2 Hz−1, erg s−1 cm−2 Hz−1 or the “Jansky

(Jy)” which satisfies the relation

1Jy = 10−26Wm−2Hz−1 = 10−23erg s−1cm−2Hz−1. (3.51)

The brightness temperature is the temperature which a blackbody should have so as

to reproduce the observed intensity of an object at frequency ν (e.g. Burke & Graham-

Smith, 2010). The intensity of black body radiation Iν,BB(T ) at a certain frequency ν

is represented as

Iν,BB(T ) =
2hν3

c2
1

exp(hν/kBT )− 1
, (3.52)

where kB is the Boltzmann constant, h is the Planck constant, and c is the speed

of light. In the Rayleigh-Jeans regime (hν ≪ kBT ), Equation (3.52) can be written

approximately

Iν,BB(T ) ≃
2hν3

c2
· kBT
hν

=
2ν2kBT

c2
. (3.53)

By using equation above, the brightness temperature Tb is defined as (e.g. Wilson et

al., 2013)

Tb =
c2

2kBν2
Iν . (3.54)
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Using flux density Sν , Tb is also written as

Tb =
c2

2kBν2Ω
Sν , (3.55)

where Ω is a solid angle.

When we observe a pulse with flux density Sν at a frequency ν and duration ∆t

from the source at a distance of D, the size of the emission region must be smaller

than c∆t. Therefore, the brightness temperature can be rewritten as (e.g. Lorimer &

Kramer, 2004)

Tb ≥
D2

2πkBν2(∆t)2
Sν ∼ 1029K

(
D

1kpc

)2 ( ν

1GHz

)−2
(
∆t

1µs

)−2(
Sν

1Jy

)
. (3.56)

The equality in Equation (3.56) is realized when the maximum source size is taken into

account.

3.3.2 Antenna temperature and system equivalent flux density

According to Nyquist (1928), the power per unit frequency available at the terminal of

a resistor Pν is related to the temperature of the resistor Tr by the following relation,

Pν = kBTr. (3.57)

If we replace an antenna with the resistor, the same relation is satisfied (e.g. Wilson et

al., 2013). We define the antenna temperature TA as follows;

TA =
Pν

kB
. (3.58)

If we receive unpolarized emission of a certain source with an antenna of effective area

Ae, received power Pr,ν is expressed as

Pr,ν =
1

2
SνAe, (3.59)

where the factor of 1/2 is taken into account that each receiving element of an antenna

is sensitive to one linear or circular polarization (e.g. Campbell, 2002; Wilson et al.,

2013).

In a practical observation, there are many types of contributions to TA. For example,

the radiation from the atmosphere or noise generated by the antenna itself can be

contributed to TA. The galactic synchrotron radiation can be also contributed to the

temperature TA. The total contribution of noise to the system noise temperature, Tsys.

Using Tsys, the system equivalent flux density (SEFD) is also defined as

SEFD =
2kBTsys

Ae

. (3.60)

Tsys or SEFD is a measure of the sensitivity of a certain radio telescope system.
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3.3.3 Flux calibration procedure

In order to determine flux density of a source, we have to determine SEFD. A straight-

forward way to estimate SEFD is to observe a stable radio source with well-known flux

density Ssrc, and to measure the received power in an “off-source” position near the

source where no strong radio signal exists (Lorimer & Kramer, 2004). In Figure 3.3, we

show the schematic image (left) and the real data (right) of change in received power

during the observation in an on-/off- source position. As shown in the left of Figure

Fig. 3.3.— Left: Schematic picture showing the relationship between the received
power (machine counts), antenna temperature and flux density during a typical system
calibration measurement. This figure is taken from Figure 7.4 of Lorimer & Kramer
(2004). Right: The received power during our observation on September 7, 2014. The
received power of the Crab nebula (target source) and Jupiter (calibration source) are
shown. Increase of the received power in the time interval from 700 to 1300 seconds is
due to increase of a noise level associated with the observation at a low elevation angle.

3.3, the received power during the observation in an on-source position is proportional

to the sum of the system noise and the source, while the received power during the

observation in an off-source position is proportional to only the system noise. This

means that
Pon − Poff

Poff

=
Ssrc

SEFD

(
=

Tsrc

Tsys

)
, (3.61)

where Pon,off is the received power in an on-/off-source position of the source. Therefore,

SEFD =
Ssrc

Pon

Poff
− 1

. (3.62)

If we can estimate SEFD, then we can estimate flux density of the target source Ssrc,t

by the on-/off-source observation of it with the SEFD estimated above, assuming that
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SEFD during the observation of the calibration source is not different from the SEFD

during the observation of the target source. Therefore,

Ssrc,t = SEFD

(
Pon,t

Poff,t

− 1

)
, (3.63)

where Pon/off,t is the received power in an on-/off-source position of the target source.
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Chapter 4

Wide-Band Spectra of the Giant
Radio Pulses from the Crab Pulsar

4.1 Introduction

Simultaneous multi-frequency observations of GRPs give a number of clues to under-

stand the emission mechanism of GRPs. Investigation of the GRP spectra is one of the

important study making use of simultaneous multi-frequency observations. The spec-

tra of the Crab GRPs have been investigated in several studies. Sallmen et al. (1999)

showed that the spectral indices distribute between −4.9 and −2.2 for the GRPs si-

multaneously detected at 0.6 and 1.4 GHz. Oronsaye et al. (2015) also reported that

the spectral indices of the GRPs simultaneously detected at 0.2 and 1.4 GHz distribute

between −4.9 and −3.6. At 1.30–1.45 GHz, Karuppusamy et al. (2010) claimed that

the spectral indices of the Crab GRPs were −1.4 ± 3.3 and −0.6 ± 3.5 for the GRPs

occurring at the main pulse and the interpulse phases. They also reported that ∼ 4000

GRPs were not detected at the frequency sub-bands of 1.30–1.45 GHz, which may imply

a narrow-band spectral feature intrinsic to the GRPs. From a simultaneous observation

at 0.6, 1.65 and 4.85 GHz, Popov et al. (2008) claimed that the GRP spectra seem to

be bent harder with increasing frequency. Popov et al. (2009) also reported that the

spectra became harder with frequency for 27 GRPs simultaneously detected at 0.6, 1.4

and 2.2 GHz. In those previous studies, spectral indices or shapes were investigated,

but the relation between spectral indices and other quantities such as fluences has not

yet been reported. In some studies, the numbers of samples were insufficient to discuss

the statistical properties of the GRP spectra. In some studies, frequency separation is

too small to discuss the global structure of the spectra. Our study is carried on in order

to overcome those weak points.

39



In this chapter, we show the results of our simultaneous observation of the Crab

GRPs at 0.3, 1.6, 2.2, 6.7 and 8.4 GHz with the four radio telescopes in Japan. The

outline of our observation and data analysis are described in Section 4.2. Spectral anal-

yses with about 3200 main pulse GRPs and about 250 interpulse GRPs at a frequency

range from 0.3 to 2.2 GHz, are shown in Section 4.3. A large number of the GRPs have

spectra consistent with single power-laws. We find a correlation between the spectral

index and the total fluence in those samples. We also show some examples that appar-

ently contradict with a single power-law. Wider spectra from 0.3 to 8.4 GHz are shown

in Section 4.4. Our results are summarized with discussion in Section 4.5.

Recently, some researchers have reported the discovery of another sporadic phe-

nomenon, fast radio bursts (FRBs) (e.g. Lorimer et al., 2007; Thornton et al. , 2013).

FRBs are radio transients having a few millisecond duration, and they have high dis-

persion measures which exceed that expected from the interstellar medium of our own

Galaxy. The origin of FRBs has been under debate (e.g. Kashiyama et al., 2013; Totani,

2013), but if they come from the extragalactic space, they can be used as a probe of

the unknown extragalactic medium (e.g. Macquart et al., 2015). GRPs have similar

characteristics to FRBs such as their time scales, and GRPs are discussed as one of the

candidates of FRBs (Cordes & Wasserman, 2015; Connor et al., 2015). More recently,

FRBs are observed at various frequency bands and some restriction of their spectra are

being given (Karastergiou et al., 2015; Tingay et al., 2015). Therefore, revealing the

spectral features of GRPs gives some information as a candidate of FRBs.

4.2 Observation and Analysis

Our radio wide-band observational campaign was conducted from UTC 14h30m on

September 6 to 04h00m on September 7, 2014. Simultaneous observations at all obser-

vatories were overlapped from UTC 21h35m on September 6 to 02h20m on September

7. We summarize our observation in Tables 4.1 and 4.2. During the simultaneous ob-

servation period, calibration observations were intermittently made. The data for the

periods when radio frequency interference (RFI) frequently appeared for Kashima 34m

antenna were manually removed. As a result, the effective simultaneous observation

time of the Crab GRPs is 2.9 hours.
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Table 4.1: Observation summary.

Observatory
anntena

start timea

(duration)

center frequency
νk,c [MHz]

(band name)b

Bandwidthc

∆ν [MHz]
(bits/sample)
Polarizationd

SEFDe

(Jy)
Sf
CN
(Jy)

Selection
threshold

Iitate
31m×16.5m,
2 asymetric
offset dishes

15:10
(670min)

325.1 (P) 4(8) Linearg 1066-1326 1164±128 500µs, 5σ

Kashima
34m dish

14:30
(810min)

1586(L2) ≡ LL
1674(L6)
1696(L7)
1718(L8)

 ≡ LH

32(4) R
32(4) R
32(4) R
32(4) R

 76

422-543
357-443
400-549
416-525

816±16
801±16
797±16
794±16

10µs, 6σ

10µs, 6σ

Usuda
64m dish

20:50
(430min)

2198(S1)
2224(S2)
2250(S3)
2276(S4)
2302(S5)

 ≡ S

8445 (X)

32(4)R
32(4)R
32(4)R
32(4)R
32(4)R

 136

32(4) R

112-122
106-116
103-112
102-111
107-117
100-110

661±13
657±13
653±13
648±13
644±13
125±15

10µs, 6σ

1µs, 9σ
Takahagi
32m dish

14:30
(750min)

6672 (C) 16(4) L 289-359 406±9 1µs, 10σ

aUTC on September 6, 2014.

bL2 is renamed as LL. L6-8 and S1-5 are synthesized as LH and S, respectively (see section 4.2.1). The central frequencies

after the synthesizing procedure is shown with underline.

cEffective bandwidth after the synthesizing procedure is shown with underline.

dR/L: Right/Left-Handed Circular Polarization.

eSystem equivalent flux density. Characteristic values during our observing session are shown.

fReceived flux density of the Crab nebula. See Appendix A.

gHorizontal component.

Table 4.2: Observatory positions.
Obervatory longitude latitude

Iitate 140o 40’E 37o 42’N
Kashima 140o 40’E 35o 57’N
Usuda 138o 22’E 36o 08’N

Takahagi 140o 42’E 36o 42’N

41



The observation at 0.3 GHz (P band) was made with the Iitate Planetary Radio

Telescope (IPRT), Tohoku University (Misawa et al., 2003; Tsuchiya et al., 2010). The

telescope consists of two sets of asymmetric offset dish antennae of 31m×16.5m. To

record the data, we used the K5/VSSP32 sampler (Kondo et al., 2003). The signal

was 8-bit sampled at the Nyquist rate of 8 MHz with 4 MHz bandwidth. Only the

horizontal polarization signal was recorded.

The GRP data for 1.4-1.6 GHz (L band) was obtained with the 34m telescope at the

Kashima Space Research Center operated by the National Institute for Communication

Technology (NICT). We recorded the data with the ADS3000+ recorder (Takefuji et

al., 2010). The signals were digitized with 4-bit sample at the Nyquist rate of 64 MHz,

and the data were divided into 8 ch (L1–L8) with 32 MHz bandwidths. Only the right-

handed circular polarization (RHCP) signal was received at all the frequency channels.

At Kashima observatory, to avoid RFI from cell phone base stations, a superconductor

filter is installed. Nevertheless, frequent RFI occurred during our observation at some

frequency channels. We use only the four channels of L2, L6, L7 and L8, which are less

affected by the RFI in subsequent analysis.

The 64m telescope, belonging to the Usuda Deep Space Center of the Institute of

Space and Astronautical Science (ISAS), took part in the observation at 2.2 GHz (S

band) and 8.4 GHz (X band). The data acquisition system is the same as that in

Kashima observatory; the ADS3000+ recorder and 4-bit samples with 8 ch × 32 MHz

bandwidths at the Nyquist rate of 64 MHz. Seven channels of them were assigned to

S band data (S1–S7), and the other one channel was used for X band data. Only the

RHCP signal was received at all the frequency channels. Since the receiver sensitivities

in S6 and S7 were insufficient, only the data for S1–S5 and X bands were analysed. At

Kashima and Usuda observatories, sampling clocks were generated with hydrogen maser

references. The recorded times in the two observatories were corrected to Coordinated

Universal Time (UTC) in a subsequent off-line processing.

The Takahagi 32m antenna, which received the LHCP signals at 6.7 GHz (C band)

with 16 MHz bandwidth, is a branch of Mizusawa VLBI observatory of National Astro-

nomical Observatory of Japan. The K5/VSSP32 sampler recorded the data with 4-bit

sample at the Nyquist rate of 32 MHz.

We determined the dispersion measure (DM) by aligning the peak times of some

bright main pulse GRPs at the frequency channels of L band (L2, L6, L7 and L8) and

S band (from S1 to S5). The times of arrival (TOAs) of the GRPs were converted to

those at the solar system barycenter with the pulsar timing package TEMPO2 (Hobbs
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et al., 2006). The accuracy of the TOAs in our analysis is within 1µs. According to the

dispersion delay formula between frequencies f1 and f2,

∆t ≃ e2

2πmec

(
1

f 2
1

− 1

f 2
2

)
DM, (4.1)

the DM value was determined as 56.764 pc/cm3 in our observation period. The sampled

data for each frequency channel were dedispersed with this DM value, based on the

coherent dedispersion method (Hankins & Rickett (1975), Lorimer & Kramer (2004)).

4.2.1 GRP Selection

Below, we describe our methods of GRP selection. To extract real GRPs ,we set

two criteria for GRP selection: 1) a peak S/N value of dedispersed data exceeds the

threshold tabulated in Table 4.1, and 2) the signal appears at the rotational phase of

the main pulse or interpulse.

We smoothed the time series of the dedispersed data for each channel with a time

span tabulated in Table 4.1, which is adjusted to draw the typical GRP light curve with

a few time-bins. From off-pulse phases, we obtained the noise flux, which is mainly

due to the Crab nebula, and its average fluctuation. Based on those noise level and

fluctuation, we calculated the signal-to-noise ratio (S/N) of the time series of the data.

In order to improve the S/N and mitigate the effects of the interstellar scintillation

(see Section 4.3), the data from the L6 to L8 channels, and the data from S1 to S5

channels were merged taking into account the overlaps of the frequency intervals of

those channels. Hereafter, we call those merged frequency bands “LH band” and “S

band”, respectively. Between the LH band and the L2 band, there is a frequency gap.

This separated L2 band is called “LL band”. RFI and statistical fluctuations of the

noise give rise to pseudo-signals.

The thresholds of the S/N for the GRP selection (hereafter, “selection thresholds”)

were determined to collect as many GRPs as possible and avoid contamination of

pseudo-GRPs. The GRP candidates, whose peak S/N exceeds the selection thresh-

old, are plotted in Figure 4.1 during a part of our observation period. We extracted the

candidates within the appropriate phase ranges as GRP samples. For P, LL, LH and

S bands, the main pulse and interpulse phases were empirically determined from the

distribution of the GRP candidates in our samples. For LL, LH and S bands, the phase

widths are 0.03 rotational period centering at the peak phases for both the main pulse

and interpulse phase ranges. We shift the peak phases of the main pulse to 0.500 at

these frequency bands. The width for P band is determined as 0.05 rotational period.
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At C and X bands, the number of the candidates is too small to determine the phase

ranges for the GRP selection. We adopted the same phase ranges as those at S band for

the main pulse. For the interpulse phase, we shift the central position 0.015 rotational

period earlier than that in S band with a width of 0.06 rotational period following the

results of Cordes et al. (2004), who reported that the occurrence phases of GRPs shifts

∼ 0.03 period earlier above ∼ 4 GHz.

As shown in the time-phase plot of Figure 4.1, the candidates at inappropriate

phases, namely pseudo-signals, are not so many. In our selection method, the expected

number of the pseudo-signals appearing accidentally at the GRP selection phases be-

comes at most ∼ 5.2 ± 2.3 (at LH band, assuming a Poisson error) during the entire

time of the simultaneous observation at all the observatories.

Examples of the pre-dedispersed dynamic spectra and the dedispersed pulse profiles

of the GRP are shown in Figures 4.2 and 4.3, respectively. This GRP is plotted as the

stars in Figure 4.1, In Figure 4.2, the dispersive delays of the GRP signal expected from

equation (4.1) is clearly shown, indicating that this signal is a real GRP. Even in this

case, the peak S/N value (7.2 σ) in C band is lower than the GRP selection threshold.

However, the synchronized pulse with the light curves in the other bands suggests that

the C band signal is a true GRP. As long as a GRP is selected in a certain band,

the fluences or their upper-limits are estimated for all the bands. We explain detailed

methods of the fluence estimate in the next section.
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Fig. 4.1.— Scatter plots of phase and time for the GRP candidates from 21h30m on 6th September
2014 to 02h20m on 7th September 2014 for all the frequency bands. The times at all observatories are
converted to Barycentric Dynamical Time at the Solar system barycenter (See section 3.2.1).
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Fig. 4.2.— The dynamic spectra of the GRP #2677.
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Fig. 4.3.— The dedispersed light curves of the GRP #2677 (same GRP as that shown
in Figure 4.2), which is simultaneously detected at all the bands. The curve in P band
is smoothed with 10µs time-bin. The other curves are smoothed with 125ns. The
spectrum of this GRP is shown in Figure 4.17.
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4.2.2 Fluence Estimate

We obtained 3194 GRPs occurring at the main pulse phase (hereafter MPGRPs), and

272 GRPs occurring at the interpulse phase (hereafter IPGRPs) during the effective

observation time of 2.9 hours. Hereafter, we focus on the time-integrated flux (fluence)

of the GRPs rather than the peak flux, because the scatter broadening of the pulse

profile depends on frequency (e.g. Cronyn, 1970). For LL, LH and S bands, we generated

time-series of the S/N values with a finer time resolution of 1µs than that used in our

GRP selection. Then, the S/N values of all the frequency bands were transformed to

the flux density calibrated by reference sources (Cas A, Cyg A etc.). The durations of

GRPs distribute widely, but a too long time interval to integrate the flux leads to a

too large error in the GRP fluence. Therefore, the time interval to obtain the fluence

was individually set for each GRP to contain the entire pulse sufficiently. The details

of those methods are summarized in Appendix B. Integrating over this time interval,

we estimated the GRP fluence, or upper-limit in each frequency band.

Representing the fluence distribution as N(Fi) ∝ F Γ
i for the high-fluence portion,

the index Γ is obtained for each band as shown in Table 4.3. The detected numbers of

the GRPs at C and X bands are too small to estimate the index. The obtained indices

Γ at bands from P to S (P–S bands) are consistent with the previous studies (Mickaliger

et al., 2012).

Table 4.3. Power-law index Γ for the fluence distribution.

Band Γ (Sample Number)
MPGRP IPGRP

P −2.44+0.20
−0.24 (760) −2.73+0.55

−0.83 (101)
LL −2.98+0.11

−0.12 (2252) −2.88+0.37
−0.50 (182)

LH −2.97+0.13
−0.15 (2696) −2.75+0.72

−0.87 (210)
S −2.68+0.11

−0.13 (2803) −3.62+0.55
−0.70 (202)
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4.2.3 Single Power-Law Fit

We examined whether the wide band spectra of our samples follow a single power-law

(hereafter SPL) or not. The GRP spectra were fitted by the SPL as a function of

frequency ν,

F (ν) = F0.3

( ν

325.1MHz

)α
, (4.2)

with a normalization parameter F0.3 and index α. The goodness-of-fit test was done by

means of the modified χ2 statistic,

χ̂2 =
∑

i∈P,LL,LH,S,C,X

(
Fi − F (νi)

σi

)2

− 2
∑

j∈P,LL,LH,S,C,X

ln

∫ Fmax,j

−∞

1√
2πσ2

j

exp

[
−1

2

(
F ′ − F (νj)

σj

)2
]
dF ′. (4.3)

to deal with non-detection data points (Avni et al., 1980; Sawicki, 2012). The first sum

corresponds to the standard χ2 statistic for detected data points at a frequency channel

i with the fluence Fi and its 1σ error σi. The second sum expresses the contribution

of non-detection (upper-limit) data points, where Fmax,j is the 1σ upper-limit of the

fluence at the frequency band j. As we describe in Appendix A, the error of the fluence

in this analysis consists of the systematic one and the statistical one. Assuming that the

systematic error follows a Gaussian distribution in the same manner as the statistical

one, the sum of those errors is adopted in the fitting procedure. We also assume that

χ̂2 follows a χ2 distribution with n− 2 degrees of freedom for n data points, and set a

critical value of χ̂2 to reject the SPL hypothesis.

For the GRPs whose spectra are consistent with SPLs (hereafter, PL-GRPs), we es-

timated the confidence intervals or the upper-limits of the fitting parameters as follows.

For each pair of the parameters (F0.3, α), we calculate χ̂2, and express

χ̂2 = χ̂2
min +∆χ̂2, (4.4)

where χ̂2
min is the minimum value of χ̂2. Based on the discussion of Lampton et al.

(1976), we assumed that ∆χ̂2 follows a chi-square distribution with p degree(s) of

freedom, where p is the number of fitting parameters. A 68% confidence interval of

each fitting parameter is the interval satisfying

∆χ̂2 = 2.3, (4.5)

for p = 2 in our case. When we detect a GRP only at P band, the upper-limits at other

bands lead to an upper-limit of α. In this case, we set χ̂2
min = 0. Then, we set the 68%

upper-limit of α as the maximum value of α satisfying ∆χ̂2 = χ̂2 = 2.3.
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4.2.4 Detection Category

Fig. 4.4.— Categorization of our spectral samples. The numbers of GRPs divided
according to the detected bands are shown. The numbers in the regions where circles
overlap each other mean the number of GRPs detected at corresponding multiple bands.
The GRPs detected at LL band and/or LH band are merged into the category of “L
band”. See also Tables 4.4 and 4.5.

In Figure 4.4, we categorize our GRPs into the three groups according to the

detection/non-detection in the individual bands. The numbers of GRPs are small at C

and X bands, we categorize only the GRPs detected at P, L or S band. The GRPs in

Group (I) are detected at multiple frequency bands including P band. For Group (I)

GRPs, the parameters F0.3 and α are determined more precisely than the GRPs in the

other groups. An example of the χ̂2-map of the GRPs in Group (I) is shown in the top

panel of Figure 4.5.
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Fig. 4.5.— Behavior of χ̂2 in the parameter space (F0.3, α) for the typical GRPs in
Groups (I)–(III) (see Section 4.2.4).
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Group (II) is defined as the GRPs detected at both L and S bands, but not detected

(set an upper-limit) at P band. For these GRPs, the P band fluence is estimated by

extrapolation using the fluences at L and S bands. For the samples consistent with

SPLs in Group (II), of course, the extrapolated value does not conflict with the upper-

limit at P band. As shown in the middle panel of Figure 4.5, the typical allowed

region in the parameter space for Group (II) GRPs is obliquely elongated. In this case,

the spectral index is loosely determined because of the relatively narrow frequency

separation between L and S bands.

The GRPs detected at P band, but neither L nor S band, belong to Group (III). For

those GRPs, while the fluence at P band, F0.3, is precisely determined, the upper-limits

at higher frequency bands merely provide an upper-limit on α. The χ̂2-map in the

bottom panel of Figure 4.5 shows the allowed region is vertically elongated.

As will be mentioned below, the fluences at P–S bands (0.3–2.2 GHz) may be less

affected by interstellar scintillation so that the fluences in this frequency range are

relatively reliable compared to the fluences in higher frequency bands. Therefore, we

first discuss the spectra at P–S bands in the next section.

Extrapolating the data in Figure 3 of Rickett & Lyne (1990), the timescales of the

refractive interstellar scintillation (RISS) are estimated to be about 12 hours or longer

for the frequency range lower than ∼ 2 GHz. Therefore, at these frequency bands,

the intensity modulation due to the RISS can be almost negligible during our about

5-hour simultaneous observing session. In contrast, the RISS timescales for C and X

band observations are estimated to be about one hour so that the pulse flux could be

modulated by the RISS during our observing session. Indeed, in the 8.9 GHz observation

of the Crab pulsar, Bilous et al. (2011) showed that the numbers of the detected GRPs

during 2-hour observing sessions in the same day were quite different. This variation

of the detection rate may be due to the RISS rather than the intrinsic variation of the

GRP activity. As for the diffractive interstellar scintillation (DISS), in the observation

by Cordes et al. (2004), the mean pulse flux density was deeply modulated on timescales

as short as 5 minutes at frequencies ≳ 3 GHz. To evaluate the effect of the DISS in

our case, we compared our bandwidths with the scintillation bandwidths obtained in

Cordes et al. (2004). The scintillation bandwidths are < 0.024 MHz, < 0.8 MHz, and

2.3 ± 0.4 MHz, at 0.43, 1.48 and 2.33 GHz, respectively. For our P, L and S bands,

they are at least an order of magnitude smaller than our bandwidths of the frequency

channels (see Table 4.1). The scintillation modulation is presumed to be averaged out
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at those channels 1. Also, at L and S bands, the synthesis of the multiple channels

described in Section 4.2.1 may reduce the effect of the DISS. In contrast, extrapolating

the result in Cordes et al. (2004) with ν4.4 scaling (corresponding to the Kolmogorov

spectrum for the interstellar electron density fluctuation), the scintillation bandwidths

for C and X bands are larger than the observation bandwidths. Therefore, the fluences

for our C and X bands may be significantly affected by both the RISS and DISS. We

focus on the spectra at P–S bands below.

4.3 GRP Spectra from P to S Bands

Following the method in Section 4.2.3, we fitted the obtained spectra with a SPL

function. We limited the parameter ranges from 100.5 to 107.5Jy µs on the normalization

F0.3, and from −5.0 to +2.0 on the index α. The number of the data points (P, LL, LH,

and S bands) results in 2 degrees of freedom (DoF) for χ2 distribution. We adopted

a critical value of χ̂2 = 5.99 (significance level of 5%) to judge the consistency of the

SPL hypothesis. As we mention in Section 4.3.4, spectra with α > 2 or < −5 were

excluded from the SPL samples even if the χ̂2-value is small enough. In Figure 4.6, we

show some examples of the spectra of the PL-GRPs. For the GRPs detected at P–S

bands, the spectral index widely distributes between −1 and −4, while the spectral

index of the normal main pulse and interpulse are −3.0 and −4.1, respectively (Moffett

& Hankins, 1999). GRP spectra may show wider variety in their indices than those of

normal pulses.

The numbers of the GRPs divided according to the consistency of their spectra

with SPLs, are summarized in Tables 4.4, and 4.5. In our samples, the fractions of

the broadband GRPs, namely GRPs in Group (I), are 15% and 27% for MPGRPs and

IPGRPs, respectively. We find that the spectra of 2140 of 3194 MPGRPs (67.0%) and

180 of 253 IPGRPs (71.1%) are consistent with SPLs at a significance level of 5%. The

goodness of fit depends on the method of the error estimate. When we impose more

conservative errors on the fluences than those in our“ standard”analysis, the fraction

of the consistent spectra with SPLs becomes more than 95% (see Appendix C).

1Note that we obtained some GRPs that show spectral structures in narrow frequency ranges as
shown in Appendix C. This may indicate that the DISS effect has not been completely understood
yet. Alternatively, the spectral structures may be intrinsic in GRPs.
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Table 4.4. The numbers of the MPGRPs.

SPL Hypothesis
Detected Band(s) Groupa Consistent Inconsistent

(χ̂2
min < 5.99) (χ̂2

min > 5.99)

P & LL & LH & S I 117 192
P & LL & LH I 7 8

P & S I 15 31
P & LL & S I 3 3
P & LH & S I 20 26

P & LL I 2 25
P & LH I 20 19

LL & LH & S II 1230 619 (α > 2 : 8)
LL & S II 13 7
LH & S II 342 60 (α > 2 : 4)

LL & LH · · · 0 24
S · · · 103 22 (α > 2 : 22)

LL · · · 0 2
LH · · · 1 11
P III 267 5 (α < −5 : 5)

Total 2140 1054
(α > 2 : 34, α < −5 : 5)

aWe categorize the GRPs into three groups, from I to III. See Section 4.2.4.

Table 4.5. The number of the IPGRPs.

SPL Hypothesis
Detected Band(s) Groupa Consistent Inconsistent

(χ̂2
min < 5.99) (χ̂2

min > 5.99)

P & LL & LH & S I 31 22
P & LL & LH I 1 1

P & S I 0 0
P & LL & S I 0 0
P & LH & S I 3 2

P & LL I 1 1
P & LH I 3 3 (α < −5 : 1)

LL & LH & S II 88 34
LL & S II 0 0
LH & S II 15 1

LL & LH · · · 0 1
S · · · 6 0

LL · · · 0 2
LH · · · 0 5
P III 32 1 (α < −5 : 1)

Total 180 73
(α > 2 : 0, α < −5 : 2)

aWe categorize the GRPs into three groups, from I to III. See Section
4.2.4.
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Fig. 4.6.— Examples of the GRP spectra consistent with SPLs. The best-fit power-
law functions are plotted with the dotted lines. The obtained parameters with 68%
confidence intervals and the minimum χ̂2 are also shown.

4.3.1 Correlation between the L/S-Band Fluence and Hard-
ness

Our results of the spectral analysis show apparent correlations between the parameters.

We choose PL-GRPs in Group (I) (see Tables 4.4 and 4.5, and Section 4.2.4). The un-

certainty in the spectral index tends to be small owing to the wide frequency separation

between P and L/S bands (see Section 4.2.4).

We show scatter plots of the fluences at LL, LH or S band and the indices α in

Figures 4.7 and 4.8 for the MPGRPs and IPGRPs, respectively. In these figures, we

also draw the “observation bias” lines indicating the regions where the fluence at P or

the corresponding frequency band is below the detection limit. In these figures, there

seems to be apparent correlations between the fluences and the indices α. For those

GRPs, we calculate the Spearman rank correlation coefficient, R (e.g. Press et al., 1992).

From the values of R, we reject the hypothesis that those the fluences and the indices

are unrelated at ∼ 10σ, ∼ 13σ and ∼ 13σ level at LL, LH and S band, respectively.

These values of R are merely reference ones. GRPs in the upper-left region have harder

and dimmer spectra, and may be hard to be detected at P band. Therefore, the deficit

of samples in the upper-left region can be due to the selection bias. However, the deficit

in the lower-right region cannot be explained by the selection bias. Those results rule
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Fig. 4.7.— Scatter plots of the observed fluences at LL (left), LH (middle) and S (right)
bands and the spectral indices α for MPGRPs belonging to Group (I). The distributions
of the fluences and indices are projected on the upper and left sides of each panel. On
the upper-right panel of each figure, the Spearman rank correlation coefficient R (e.g.
Press et al., 1992) is shown.

Fig. 4.8.— Same as Figure 4.7 but for IPGRPs.

out at least an uniform distribution of α between ∼ −4 and ∼ −1. An alternative

interpretation is that the typical spectral index is ∼ −1 or harder. In such cases, a

small fraction of GRPs in the tail of the α-distribution is seen beyond the detection

limit in our plots. This may result in the apparent correlations. Adding the GRPs in

Group (II) for the correlation analysis, we did not find a significant correlation. This

may be partially due to the large errors in the index of Group (II) GRPs. Alternatively,

another type of GRPs whose spectra are not SPLs may be contaminated in Group (II)

samples.
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4.3.2 Correlation between the P-Band Fluence and Hardness

Subsequently, we investigated the correlation between the P-band fluence and hardness.

We show the scatter plots of the GRP fluences at P band and the spectral indices α in

the central panel of Figures 4.9 and 4.10 for the MPGRPs and IPGRPs, respectively.

We also show the histograms of the spectral indices sorted by FP or F0.3 in Figures 4.11

and 4.12. The mean spectral indices of them in Table 4.6. In figures 4.9 and 4.10, we

plot the observed fluences FP for Groups (I) and (III), while the values F0.3 estimated

from Equation 4.2 are plotted for Group (II). With the 68% confidence interval, the

errors in the figures are plotted in the standard manner for Group (I), but the confidence

region ellipses (Press et al., 1992) are directly drawn for Group (II). This is because the

allowed regions for Group (II) are inclined and elongated, as shown in the middle panel

of Figure 4.5, reflecting the fact that the value of F0.3 estimated from extrapolation

largely depends on α. For Group (III), we plot the upper-limits on α with the observed

FP. We also draw the “observation bias” lines similar to Figures 4.7 and 4.8.

If we extract only the samples in Group (I) (green points), whose parameters are

determined most accurately, the values of the Spearman rank correlation coefficients

R are −0.41 for the MPGRPs and −0.37 for the IPGRPs. From the values of R,

the hypothesis that those two variables are unrelated is rejected at ∼ 5.9σ level for

MPGRPs, and at ∼ 2.7σ level for IPGRPs. As we mentioned in the previous section,

since R is evaluated without considering error bars, obtained significance levels are only

reference ones. Contrary to L/S bands, a negative correlation between the fluence and

spectral hardness is found at P band although it is less significant than that at L/S

bands.

In the scatter plots of Figures 4.9 and 4.10, dimmer and softer GRPs are not found

in the lower-left region. Such GRPs are expected to be very dim also at L/S bands so

that the deficit of GRPs in that region can be due to the observation bias. On the other

hand, the brighter and harder (the upper-right region) GRPs are expected to be easily

detected at L/S band as long as the spectrum extends. It is also seen from those scatter

plots that whereas the samples in Group (II) imply an existence of a significant number

of hard GRPs (α ≳ −1), there are not so much hard GRPs in Group (I). Note that

the existence of such dim–hard GRPs may be not so convincing because the fluences of

Group (II) GRPs at P band are extrapolated ones. In order to obtain such dim–hard

GRPs, we make a stacking analysis in the next section.
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Fig. 4.9.— Scatter plot of the observed/extrapolated P-band fluences and the spectral
indices α for the MPGRPs whose spectra are consistent with SPLs. The data for Groups
(I), (II), and (III) are shown with green, blue, and red symbols, respectively. The upper-
left and the lower-right panels are the number distributions for the parameters of their
axes, where we put samples into a bin neglecting the errors. Note that the histogram
of Group (III) for α consists of the upper-limit values. On the upper-right panel, the
Spearman rank correlation coefficient R is shown for Group (I). Based on the vertical
dashed lines in the central panel, we further divide the samples in Group (II) into sub-
groups. The average values of FP and α (F̄stack and ᾱest) obtained with the stacking
analysis for each sub-group are plotted with the triangles and the square (see Section
4.3.2 and Table 4.7).

4.3.3 Stacking Analysis of the GRPs in Group (II)

We collect the light curves at P band in the rotational periods when Group (II) GRPs

occurred. Then, we divide those light curves into a few sub-groups according to the

values of F0.3, and superpose the light curves in each sub-group. The obtained average

pulse profiles are shown with the colored lines in Figures 4.13 and 4.14 for the MPGRPs

and the IPGRPs, respectively. Compared to the average pulse profile of the off-GRP

periods, it is clearly seen that the pulse at P band is on average enhanced at the GRP

period defined with L/S bands. The average fluences F̄stack and F̄Off−GRP for on- and

off-GRP periods, respectively, are evaluated for phase intervals shown with arrows in
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Fig. 4.10.— The same plot as Figure 4.9, but for the IPGRPs.

Figures 4.13 and 4.14. The width of the intervals is 0.11 period, which is the sum of

the width for the GRP selection (0.05 period) and the characteristic duration of the

GRPs at P band (∼ 2ms, 0.06 period). The calculated values of F̄stack and F̄Off−GRP

are summarized in Table 4.7. From F̄stack and the fluence FS of each GRP at S band,

we deduce a spectral index ᾱest as

ᾱest ≡
1

NGRP

NGRP∑
i

log (F̄stack/FS,i)

log (325.1MHz/2250MHz)
(4.6)

. The mean values of αest are tabulated in Table 4.7, and (F̄stack, ᾱest) are plotted in

Figures 4.9 and 4.10 as the open black points.

If all the spectra in each sub-group are followed by SPL, F̄stack is expected to be

within the range predicted by F0.3. For the sub-groups of the GRPs with larger F0.3,

especially for F0.3 ≥ 104.7Jy µs (mean fluence of the “normal” pulse, including MP,

IP and also the precursor components), the values of F̄stack are ∼ 104.97Jy µs for the

MPGRPs, and ∼ 105.12Jy µs for the IPGRPs, consistent with the range of F0.3. How-

ever, for the sub-groups of the MPGRPs with F0.3 < 103.9Jy µs and the IPGRPs

with F0.3 < 104.7Jy µs, the values of F̄stack are ∼ 104.58Jy µs for the MPGRPs, and

∼ 104.83Jy µs for the IPGRPs, which are inconsistent with the range of F0.3, Since we
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Table 4.6. Mean spectral index α sorted by FP or F0.3.

GRP fluences at P band Group α
MPGRP IPGRP

I −3.54± 0.85 · · ·
≥ 106.0 Jy µs II · · · · · ·

III < −3.89 < −4.54
I −2.98± 0.53 −2.61± 0.40

105.5 − 106.0 Jy µs II −2.59 −2.61
III < −3.21 < −3.66
I −2.65± 0.56 −2.68± 0.57

< 105.5 Jy µs II −0.91± 0.98 −1.38± 0.82
III < −2.75 < −2.75
I −2.85± 0.59 −2.65± 0.52

ALL II −0.91± 0.98 −1.39± 0.82
III < −2.75 < −2.75

Table 4.7. The mean fluences F̄stack, F̄Off−GRP and spectral indices ᾱest

MPGRP IPGRP
log10 F0.3[Jy µs] ≥ 4.7 3.9− 4.7 < 3.9 ≥ 4.7 < 4.7

NGRP
a 568 510 507 49 54

F̄stack[10
4Jy µs] 9.32± 1.05 4.33± 0.58 3.94± 0.55 13.11± 1.80 6.81± 1.29

F̄Off−GRP[10
4Jy µs] 1.92± 0.21 0.96± 0.10

ᾱest −1.81± 0.33 −1.37± 0.32 −1.39± 0.26 −2.17± 0.24 −1.79± 0.18

aNumber of GRP samples.
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Fig. 4.11.— Histograms of the spectral index α for the MPGRPs. Each panel is
divided according to the fluence at P band: (F0.3, FP) ≥ 106Jy µs (top), 105.5Jy µs ≤
(F0.3,FP) < 106Jy µs (middle), and (F0.3, FP) < 105.5Jy µs (bottom). The errors in α
are neglected, and the histogram of Group (III) corresponds to the upper-limit values.

have assumed that the normal pulse is absent at the GRP periods, we have not sub-

tracted the contribution of the normal pulse. For such low-fluence GRPs, the method

to distinguish GRPs from the normal pulses is not established so far. Here we avoid to

conclude the fluences at P band for such GRPs.

4.3.4 Inconsistent Spectra with SPLs

The non-PL GRPs include 1) the GRPs whose spectra are inconsistent with SPLs at a

significance level of 5%, and 2) the “ultra-soft/hard” GRPs whose spectral indices are

lower than −5 and higher than +2, respectively.
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Fig. 4.12.— The same plot as Figure 4.11, but for the IPGRPs.

The fractions of the GRPs judged to be inconsistent with SPLs at a significance level

of 5% are 33.0% and 28.9% for the MPGRPs and the IPGRPs, respectively. When the

significance level is set to 0.1% (χ̂2 < 13.82), the fractions are 15.9% and 15.8% for the

MPGRPs and the IPGRPs, respectively. Examples of the spectra apparently incon-

sistent with SPLs are shown in Figure 4.15. Some spectra show softening (hardening)

at higher frequencies. Such hard-to-soft (left), soft-to-hard (center), and other (right)

examples are displayed in Figure 4.15. Popov et al. (2008, 2009) claimed that GRP

spectra tend to show soft-to-hard behavior at 0.6 - 2.2 GHz. In order to examine this

tendency, we choose 192 MPGRPs and 22 IPGRPs that are detected at all the bands

from P to S, and are inconsistent with SPL spectra at a significance level of 5%. In

those MPGRP samples, the fractions of hard-to-soft, soft-to-hard, and irregular spectra
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Fig. 4.13.— The average pulse profiles at P band when Group (II) MPGRPs occurred.
The samples are divided into three sub-groups according to the fluence F0.3. We also
show the average profile for the off-GRP periods. The 1σ statistical errors are shown
with the error bars. The phase intervals to estimate the fluence are shown by the
arrows.
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Fig. 4.14.— The same as Figure 4.13, but for the IPGRPs.

are 49 (26%), 81 (42%), and 62 (32%), respectively. For the 22 IPGRPs, the numbers

are 3 (14%), 5 (23%), and 14 (64%), respectively. We do not find a clear tendency in

the spectral behavior.

We find 5 (0.2%) ultra-soft and 34 (1.1%) ultra-hard MPGRPs, and we also find

2 (0.8%) ultra-soft IPGRPs. In our GRP samples, no ultra-hard IPGRP is found.
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Fig. 4.15.— Examples of the GRP spectra inconsistent with SPLs: hard-to-soft (left),
soft-to-hard (middle), and other (right) spectra. The minimum χ̂2 values and corre-
sponding SPL functions (dotted lines) are shown.

Examples of the spectra for such ultra-soft or ultra-hard GRPs are shown in Figure

4.16.

Fig. 4.16.— Examples of the spectra of the ”ultra-soft” (left) and the ”ultra-hard”
(right) GRPs. For the ultra-soft GRP, the SPL function with the 68% confidence
upper-limit of α is plotted with the dotted line. Also for the ultra-hard GRP, the
best-fit SPL function is plotted.
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4.4 GRPs Detected at C/X Band

In this section, we discuss the GRPs detected at C and/or X band(s). Note that the

fluences at C and X bands are expected to be affected by intensity modulation due to

the interstellar scintillation.

We found 5 MPGRPs and 19 IPGRPs exceeding the selection thresholds (see Section

4.2.1 and Table 4.1) at C and/or X band(s). All of these 5 MPGRPs were simultaneously

detected at some of the frequency bands of P, L or S band. In contrast, all the 19

IPGRPs were detected only at X band. As for the IPGRPs in Groups (I) and (II)

discussed in Section 4.3, the spectra may have a cut-off below the X band frequency.

In Figure 4.17, we show the spectrum of the MPGRP #2677, whose pulse profiles

and dynamic spectra are shown in Figures 4.2 and 4.3, respectively. The spectrum is

consistent with a SPL at P–X bands at a significance level of 5%. This is only the case

consistent with a SPL in the 5 MPGRPs.

As seen in Figure 4.17, the light curve shows two distinct components. For such

bright GRPs, we can easily identify the distinct components, but it is difficult to resolve

components for weaker GRPs. Therefore in the previous sections, we have discussed

only the fluence spectra integrated over the whole duration of each GRP. Here, we

attempt to obtain the temporally divided spectra. When we divide the light curve into

two intervals A and B as shown in Figure 4.17, it turns out that the spectrum for the

interval B needs a high-frequency cut-off. In Figure 4.3, many finer (sub-µs) structures

(e.g. Hankins et al., 2003) are found in the light curve. Therefore, the spectrum may

consist of further more components as well.

The spectra of the other four MPGRPs are inconsistent with SPLs as shown in

Figure 4.18. The P band fluence of GRP #3012 is about three orders of magnitude

brighter than fluences at the higher frequency bands. The spectrum seems to consist of

two or more different components, which may be supported by the slight misalignment of

the peak times (∼ 4 µs) between S and C/X bands. Taking into account uncertainty of

the TOA between LL and X band (∼ 1.5 µs), the ∼ 4µs misalignment may be intrinsic.

The pulse profile of GRP #0703 appears to have multiple components (especially at L

and S bands), similarly to the GRP #2677 (Figure 4.17). The stringent upper-limit at X

band may require a sharp high-frequency cut-off in the spectrum. For GRP #0703, the

temporally divided spectra are also inconsistent with SPLs and need low/high frequency

breaks or cut-offs.
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Fig. 4.17.— The spectra of the GRP (upper-right), whose dynamic spectra and pulse
profiles are shown in Figures 4.2 and 4.3. The spectra for time intervals A and B
defined in the upper-left light curve are shown in the bottom panels. In the fitting of
the spectra for time intervals A and B, the data point at P band is neglected.

4.5 Discussion and Conclusion

The broadband (0.3, 1.6, 2.2, 6.7 and 8.4 GHz) simultaneous observation of the GRPs

from the Crab pulsar was conducted with four Japanese observatories, Iitate, Kashima,

Usuda, and Takahagi, on September 6-7th, 2014. We obtained 3194 MPGRPs and five
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Fig. 4.18.— Examples of broadband GRP spectra (right) inconsistent with SPLs. The
pulse profiles (left) are also shown with the time intervals for flux integration.

of them were detected at the multiple frequency bands including 6.7 and/or 8.4 GHz.

We also obtained 272 IPGRPs and 19 of them were detected only at 8.4 GHz. We

investigated the spectra of those GRPs. Our results are as follows:

• In the frequency range at P, L and S bands (0.3–2.2 GHz), about 70% of the

spectra in our GRPs are consistent with single power-laws.
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• For the GRPs which are detected at all the frequency bands of 0.3–2.2 GHz and

whose spectra are consistent with SPLs, the spectral index is widely distributed

from ∼ −4 to ∼ −1.

• There are apparent positive correlations between the fluence at L/S bands and

the spectral hardness. Conversely at P band, an apparent negative correlation

between the fluence and the spectral hardness is indicated. Those results rule out

at least an uniform distribution of α. Alternatively, the typical spectral index

may be ∼ −1 or harder.

• For the L/S band GRPs which are not detected at P band, we carry out the

stacking analysis of the P band light curve. We find significant enhancement in

the P band light curves compared to the light curves in the non-GRP periods.

This indicates dim P-band GRPs correlated with the L/S-band(s) GRPs. The

average spectral index for such dim samples at P band is harder than the bright

GRPs. Since the dim and hard GRPs (Group (II)) occupy about a half of our

GRP samples, it might be suggested that most of GRPs may have intrinsically

harder spectra than that suggested in the previous studies. This is consistent with

the apparent correlations between L/S band(s) fluences and spectral hardness we

found.

• We find several ultra-soft (α < −5) and ultra-hard (α > 2) GRPs.

• A small fraction of spectra apparently deviate from SPLs. We do not find any

tendency in the spectral shape for such GRPs.

• Those features or trends mentioned above are seen in not only MPGRPs but also

IPGRPs.

4.5.1 Comparison with the previous studies

Karuppusamy et al. (2010) reported that the distribution of the spectral index is ex-

tremely wide (from about −15 to +10) for a narrow frequency range of 1.3–1.45 GHz.

In our observation, the fluences at the 4 channels in L band significantly fluctuate (see

Appendix C). If we fit such data with a SPL, a similar result to Karuppusamy et al.

(2010) may be obtained. Such fluctuation might be intrinsic, or due to the scintillation

modulation. It should be noticed that a large fraction of our broad band spectra do not
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conflict with SPLs from P to S bands. Our broadband analysis seems more convincing

than the results based on the narrow frequency range.

Sallmen et al. (1999) investigated the spectral index between 0.6 and 1.4 GHz, and

obtained their distribution ranging from −4.9 to −2.2. Although the frequency range

is slightly different, the index for Group (I) is distributed within a similar range (see

Figures 4.11 and 4.12). Oronsaye et al. (2015) investigated the spectral index between

0.2 and 1.4 GHz, and obtained their distribution ranging from −4.9 to −3.6. However,

fluences at 1.4 GHz which they estimated are about 2 order of magnitude smaller than

those of (e.g. Sallmen et al., 1999; Bhat et al., 2008). Our estimated fluences at L band

are roughly consistent with (e.g. Sallmen et al., 1999; Bhat et al., 2008), the fluences

Oronsaye et al. (2015) estimated are something wrong.

4.5.2 Emission Mechanism

The emission mechanism for the broadband GRPs may be different from the anomalous

cyclotron resonance model (Lyutikov, 2007) proposed for the characteristic property of

the IPGRPs above 4 GHz (Eilek & Hankins, 2007), for which we did not detect the sig-

nal of the counterpart at P–S bands. In the induced scattering model (Petrova, 2004),

the intensity variation is attributed to the fluctuation of the optical depth to the in-

duced scattering. Petrova (2004) suggested that the intensity amplification for the Crab

GRPs is more efficient at the lower frequencies, which agrees with the correlation we

found. Alternatively, a larger energy release may enhance the efficiency of the electron–

positron pair production. The resultant high density pairs may screen out the electric

field relatively soon, which may reduce the fraction of higher energy electrons/positrons.

Considering the unstable behaviour of the magnetosphere as demonstrated by Timo-

khin & Arons (2013), the above simple interpretation can be an option to explain the

correlation. In any case, before jumping to a conclusion, we need to examine various

non-linear processes in the GRP activity such as the detailed properties of the charge

bunching due to two stream instability (Cheng & Ruderman, 1980) and the photon

softening due to the induced Compton scattering (e.g. Tanaka, Asano & Terasawa,

2015).

4.5.3 Future Prospects

The dim and hard GRPs in Group (II) implies a negative correlation between the fluence

at P band and the hardness. Taking into account the results in the previous subsection,
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our results suggest that the fluences at P band and L/S bands have an anti-correlation.

Since the most of the GRP energy is released at P band or lower frequencies, the anti-

correlation means that brighter GRPs tend to show softer spectra. The correlation

between the fluence and the hardness seen at P band is weaker than that at L/S bands.

This may be because the variation of the fluence at P band is relatively smaller than

that at L/S bands, as seen in Figure 4.9, 4.10 or 4.7. Furthermore, the contribution

of the normal pulse may disturb the correlation at P band. More observational studies

will be required to confirm the correlation we found. The correlation seen at P band is

weaker than that for L/S bands. Considering the possible anti-correlation between the

P band fluence and the L/S band fluences, there may exist a pivot frequency between

P and L bands. In the pivot frequency, the fluence variation may be smaller than those

in this paper. Simultaneous observations at a frequency between P and L (for example,

∼ 0.7 GHz), and other frequencies may verify the correlation we found.

As for PSR B1133+16, each single pulse, not GRP, can be detected. Kramer et al.

(2003) claimed that only the pulse at 4850 MHz showed a large fluence fluctuation, while

the fluences in other frequencies (341, 626, 1412 MHz) distributed below a few times

the mean value. For the “GRP-like” pulses at 4.85 GHz, Kramer et al. (2003) found the

correlation between the flux density at 4850 MHz and the spectral index for 341 MHz–

4850 MHz. However, no significant correlation was found for the fluences at 341, 626,

and 1412 MHz. Also in this case, most of energies are emitted at lower frequencies.

Thus, the correlation we found is qualitatively different from that in Kramer et al.

(2003). Studies based on more spectra of GRPs or normal pulses for other pulsars are

desired to compare with the results for the Crab GRPs. Since single pulses in a narrow

band tend to be affected by the intensity modulation due to the interstellar scintillation,

ultra-wideband observations with the next generation telescopes, such as SKA, will be

promising for such studies.
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Chapter 5

Hard X-ray Observations at the
time of Giant Radio Pulses from
the Crab Pulsar

5.1 Introduction to this work

As mentioned in the previous section, some coherent process should be concerned with

the mechanism of the radio emission from pulsars, while the non-coherency is the dom-

inant nature of the emission process of higher energy (optical, X-ray or γ-ray) pulses.

Thus, it was thought that GRPs are not necessarily accompanied with enhancement of

photons at higher energy.

However, for optical pulses from the Crab pulsar, there is a statistically significant

brightening coincident with GRPs (∼ 3%) over those accompanying with normal ra-

dio pulses (Shearer et al., 2003; Strader et al., 2013, see Figure 5.1). Furthermore, in

the emission mechanism of GRPs proposed by Lyutikov (2007, see also Chapter 2),

enhanced GeV-γ ray emission accompanied by GRPs was predicted. The existence

of correlation, if proved, would provide useful information to elucidate the enigmatic

mechanisms of emission as well as those of particle acceleration in the pulsar magneto-

sphere.

Some correlation studies have been carried out in the energy bands other than the

optical band. In Table 5.1, we summarize the correlation studies which have been car-

ried out so far. For example, Bilous et al. (2012) made the simultaneous radio (∼ 1.5

GHz) and soft X-ray (1.5 - 4.5 keV) observation with the Chandra X-ray observatory.

They did not find a significant enhancement of soft X-ray emission coincident with

GRPs, but set the 2σ limits on flux changes during GRPs to ±10% and ±30% in the

main pulse (hereafter MP) and the interpulse (hereafter IP) emission region, respec-
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tively. Bilous et al. (2011) carried out the simultaneous observations at radio (∼ 9 GHz)

and γ-ray (> 100 MeV) wavelengths with the Fermi satellite. Significant correlation

between them was not found and set the upper limit of flux increase at the γ-ray band

to four times of the average flux. At higher energy bands, it is difficult to examine a

correlation mainly because of insufficient number of photons at high energy bands. For

example, Mickaliger et al. (2012) collected more than 9× 104 GRPs, but the number of

γ-ray photons detected with the Fermi satellite was only 393. However, setting upper

limits on flux increase is important for the future theoretical studies.

We have been investigated a correlation between GRPs and hard X-ray pulses of the

Crab pulsar, which has not been examined so far. Using the radio data from a parabola

antenna in Japan, either Kashima 34m or Usuda 64m, and the hard X-ray data from

the Suzaku satellite, we made simultaneous radio and hard X-ray observations of the

Crab pulsar, and found a marginal increase (21.5%, 2.7σ) of hard X-ray flux in a limited

phase-angle interval (3-6◦) from the peak of the main phase of GRPs for the PIN 15 - 75

keV data (Mikami et al., 2014a). We also searched for a correlation between GRPs and

X-ray emissions at 35 - 315 keV (Mikami et al., 2014b). We did not find a significant

correlation between them, but set 1σ upper limits on X-ray flux increase concurrent

with the GRPs occurring at the main pulse phase to 70% at the peak phase of the X-ray

pulse. In this thesis, we analyze the new data acquired in September, 2013 and March,

2014 and try to improve our results. During about 12 hour observation, we collected

about 8000 GRPs and ∼ 106 photons. Our observation and data analysis in Section

5.2. The results of our correlation analysis are shown in Section 5.4. In Section 5.5, we

discuss the results of our analysis and the possibility of improvement of our study with

the next generation X-ray telescopes.

5.2 Observation

The simultaneous observations at radio and X-ray frequencies were made on April 6,

2010, September 16-17, 2013 and March 6, 2014. Our observations are summarized in

Table 5.2.

5.2.1 Radio Observation

Our radio observations were conducted with the 34 m antenna at the Kashima Space

Technology Center of the National Institute of Information and Communications (NICT),

and the 64 m antenna at the Usuda Deep Space Center of the Institute of Space and
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Table 5.1: Previous correlation studies between GRPs and emissions at other frequency
bands.

Energy Satellite or Flux variation Ref.
range Telescope concurrent with GRPs

[in units of average flux]

Optical William Herschel 3% (7.8 σ) (1)
(600-750 nm) Telescope increase

Optical Palomer 3.2% (7.2 σ) (2)
(400-1100 nm) increase
Soft X-ray Chandra HRC-S <10% (2 σ) (3)

(1.5-4.5 keV) (MP phase window)
Soft γ-ray CGRO OSSE <250% (1 σ) (4)

(50-220 keV) (GRP ± 5 periods)
γ-ray Fermi LAT <400% (95% CL) (5)

(0.1-5 GeV) (on-pulse window)
Very High Energy VERITAS <500-1000% (95% CL) (6)
γ-ray (>150 GeV) (around IP GRPs)

[References. 1: Shearer et al. (2003), 2: Strader et al. (2013), 3: Bilous et al. (2012), 4: Lundgren et
al. (1995), 5: Bilous et al. (2011), 6:Aliu et al. (2012)]

Astronautical Science (ISAS). For the observations at Kashima, we sampled the signal

of 1378 - 1442 MHz at the Nyquist rate of 128 MHz. Only the right-handed circular

polarization signal was recorded. Due to frequent RFI, only the data at 1405–1435

MHz were used. In the observation in 2014, we also sampled the signal of 2182 - 2396

MHz in 8 channels at the Nyquist rate of 64 MHz. However, the total observing time

at this frequency band is small (about 3 hours), and it was completely overlapped with

the observation time in Usuda. Therefore, we decided to use those 2 GHz data only for

precise determination of the value of DM described below.

For the observations at Usuda, 1392 - 1456 MHz at the Nyquist rate of 128 MHz.

However, due to frequent RFI, only the data at 1424-1456 MHz were used. The data

were dedispersed with the values of DM tabulated in Table 5.2.

For each observation in 2010 and 2013, we adopted the value of DM reported in the

Jodrell bank Crab pulsar monthly ephemeris1 (Lyne et al., 1993) nearest our observation

date. For the observation in 2014, the DM value was determined more accurately by

aligning the peak times of some strong GRPs simultaneously detected at 1.4 GHz band

(Usuda) and 2 GHz band (Kashima) with the accuracy of 1 µs.

From off-pulse phases, we obtained the noise flux and its average fluctuation. Based

on those noise level and fluctuation, we calculated the signal-to-noise ratio (S/N) of the

1http://www.jb.man.ac.uk/ pulsar/crab.html
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time series of the data. The thresholds of the S/N for the GRP selection were determined

to collect as many GRPs as possible and avoid contamination of false GRPs. In our

analysis, the thresholds were set as 6 at both Kashima and Usuda for all observing

sessions.

Table 5.2: Summary of the radio and hard X-ray observations.
Date Apr. 6, 2010 Sep. 16-17, 2013 Mar. 6, 2014 Total

Observatory Kashima Usuda Kashima/Usuda
Radio freq. 1405–1435 1424–1456 1405–1435 (K)

[MHz] 1424–1456 (U)
DM [pc/cm3] 56.8228 56.7679 56.761
Simultaneous 5.5 2.1 4.9 12.4
obs. time [hr] (K: 2.1, U: 2.8)
No. of GRPs
MPGRP 2974 1168 3272 7414

(K: 1690, U: 1582)
IPGRP 194 89 273 556

(K: 139, U: 134)
No. of photons
PIN (15-75 keV) 596293 227262 537865 1361420

GSO 1303586 390459 897228 2591273

For comparison with the arrival times of X-ray photons, the arrival times of the

GRPs were then converted to the solar system barycenter with the TEMPO2 package

Hobbs et al. (2006).

5.2.2 X-ray Observation

The X-ray data were acquired by the hard X-ray detector (HXD, Kokubun et al., 2007;

Takahashi et al., 2007) aboard the Suzaku satellite (Mitsuda et al., 2007, , Figure 5.2.2).

The sequence numbers of the data used in our analysis are 105002010, 408008010 and

108012010. We use the PIN data only at 15 - 75 keV and the GSO data in our analysis.

We converted their times of arrival to those at the solar system barycenter using the

FTOOLS2 (Blackburn, 1995) task “aebarycen”. In the observation in 2014, there has

been a trouble in assignment of the data time. We used the corrected data by the

Suzaku team (Koyama, private communication).

2http://heasarc.gsfc.nasa.gov/ftools/

76



Fig. 5.1.— Average optical pulse profiles reported by Strader et al. (2013). This figure
is taken from Figure 1 of Strader et al. (2013). At the peak phase, the optical pulses
concurrent with GRPs (black) are reported to be on average 3.2± 0.5% brighter than
those of non-GRP periods (red). The radio pulse profile is also shown as a reference.

Fig. 5.2.— Left : X-ray Astronomy Satellite, Suzaku (ASTRO–EII). This picture is
taken from the JAXA website.
(http://jda-strm.tksc.jaxa.jp/archive/photo/P-021-08577/038c4adcba5244a5426f3dcad4652e2f.jpg)

Right : Hard X-ray Detector (HXD). This picture is taken from Figure 1 of Takahashi
et al. (2007).
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5.3 Correlation Analysis

We selected the data used in our correlation analysis in the way described below. First,

in order to extract the X-ray data not affected by the earth occultation, we stack the

X-ray photons every second, and use the data of the time when the number of photons

is larger than the threshold value. Next, for the radio data, the time of severe RFI is

not used in the subsequent analysis. The resulting simultaneous observation time is

5.5, 2.1 and 4.9 hours for the observations in 2010, 2013 and 2014, respectively. The

numbers of the GRPs and X-ray photons obtained during those observing sessions are

summarized in Table 5.2. From the whole of simultaneous radio and X-ray observations,

we accumulated 7414 and 556 GRPs occurring at the main pulse (hereafter MPGRPs)

and the interpulse phase (hereafter IPGRPs), respectively. The expected number of the

pseudo-GRPs was at most a few for all observing sessions. The amplitude (peak S/N)

distributions of the obtained GRPs during each observing session is shown in Figure

5.3 to 5.6. The power-law indices Γ obtained in those distributions are consistent with

the previous studies (e.g. Mickaliger et al., 2012). The examples of the obtained GRPs

from the three observing sessions are also shown in Figure 5.7 to 5.10.

Then, the mean X-ray pulse profiles are made every ∼ 5000 seconds by the folding

procedure described in Section 3.2.2. We determine the peak phase of each pulse pro-

file by fitting a Gaussian function with a constant. The determined peak phases are

plotted in Figure 5.11. While the peak phases in the observations of 2010 and 2013

are stable, those in the observation in 2014 were gradually shifted due to the trouble of

time assignment mentioned in the previous section. Since it is sure that the corrected

arrival times of the photons do not vary more than one pulse period (Koyama, pri-

vate communication), We correct the time of arrival of each photon based on the peak
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Fig. 5.3.— Peak S/N distribution in 10 µs time bin for the MPGRPs (left) and the
IPGRPs (right) detected on April 6, 2010.
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Fig. 5.4.— Peak S/N distribution in 10 µs time bin for the MPGRPs (left) and the
IPGRPs (right) detected on September 16–17, 2013.
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Fig. 5.5.— Peak S/N distribution in 10 µs time bin for the MPGRPs (left) and the
IPGRPs (right) detected in the Kashima 34m antenna on March 6, 2014.
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Fig. 5.6.— Peak S/N distribution in 10 µs time bin for the MPGRPs (left) and the
IPGRPs (right) detected in the Usuda 64m antenna on March 6, 2014.
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Fig. 5.7.— The light curve of the strongest GRP detected with the Kashima antenna
on April 6, 2010.
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Fig. 5.8.— The light curve of the strongest GRP detected with the Usuda antenna on
September 17, 2013.
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Fig. 5.9.— The light curve of the strongest GRP detected with the Usuda antenna on
March 6, 2014.
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Fig. 5.10.— The light curve of the strongest GRP detected with the Kashima antenna
on March 6, 2014.
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phases of the pulses obtained in the other two observations. The pulse peak phases in

the observation in 2014 after correction are shown in Figure 5.12.

The bin width of each profile is adopted to 0.05 period, taking into account the

absolute timing accuracy of the Suzaku HXD (∼ 360µs) and the additional error in

time assignment for the data in the observation in 2014.

We define the “off-pulse” phase interval as the range from −0.45 to −0.15, and

calculate the off-pulse count rate, fBG, by fitting a constant function to the data in

that range. The value of fBG for each observing session is tabulated in Table 5.3. For

the PIN data, we do not find a significant difference of the values of fBG in the three

observing sessions. On the other hand, for the GSO data, the values of fBG are different

from each other. We normalize the data by multiplying the factor C so that the values

of fBG are equal to that in the observation in 2014. Then, we subtracted fBG from the

raw count rate in each phase bin because we are interested in flux variability of only

the “pulse” component.

5.4 Results

The pulse profiles made from the PIN and GSO data are displayed in Figure 5.13 to

5.28. For the data in each observing session, we divide the photons into the two groups;

one includes the photons detected in the same rotational periods as GRPs, and the

other includes the photons detected in the non-GRP periods. We make the folded

profiles from each group of photons, and compare the count rate (flux) of them. We

define a flux enhancement at the peak phase Ep and its significance sp as

Ep ≡ fp,onGRP − fp,offGRP

fp,offGRP

· 100[%], (5.1)

and

sp ≡ fp,onGRP − fp,offGRP√
σ2
p,onGRP + σ2

p,offGRP

[σ], (5.2)

respectively. Here, fp,onGRP and fp,offGRP denote the count rate of X-ray photons at the

peak phase during the GRP periods and the off-GRP periods, respectively. σp,onGRP and

σp,offGRP are those 1σ statistical errors. Significance of flux enhancement at the peak

phase is at most ∼ 2.5σ. We do not find a significant increase of X-ray flux coincident

with GRPs, but at a confidence level of 95%, we can set its upper limits to 33% and

88% for the PIN data concurrent with the MPGRPs and the IPGRPs, respectively. For

the GSO data, the upper limit for flux increase concurrent with the MPGRPs and the

IPGRPs can be set to 63% and 193% , respectively, at a confidence level of 95%.
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Fig. 5.11.— The peak phases of the average X-ray pulse profiles in each ∼ 5000 second
observation (“scan”). The peak phases of the mean radio pulses during the three
observing sessions are defined as 0.5. The additional correction of the data time of the
observation in 2014 is not done.
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Fig. 5.12.— Same as Figure 5.11, but the additional correction of the data time of the
observation in 2014 is carried out.
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Fig. 5.13.— Average pulse profiles at PIN 15-75 keV band for the observation on April
6, 2010. The average profile coincident with MPGRP periods is represented by the red
data points, and the profile averaged over non-GRP periods is represented by the black
line. Phase 0 corresponds to the peak phase of the average radio pulse profile.
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Fig. 5.14.— Same plot as Figure 5.13, but for the observation on September 16-17,
2013.
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Fig. 5.15.— Same plot as Figure 5.13, but for the observation on March 6, 2014.
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Fig. 5.16.— Same plot as Figure 5.13, but the data of the three observations are merged
together.
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Fig. 5.17.— Average pulse profiles at PIN 15-75 keV band for the observation on April
6, 2010. The average profile coincident with IPGRP periods is represented by the red
data points, and the profile averaged over non-GRP periods is represented by the black
line. Phase 0 corresponds to the peak phase of the average radio pulse profile.
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Fig. 5.18.— Same plot as Figure 5.17, but for the observation on September 16-17,
2013.
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Fig. 5.19.— Same plot as Figure 5.17, but for the observation on March 6, 2014.
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Fig. 5.20.— Same plot as Figure 5.17, but the data of the three observations are merged
together.
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Fig. 5.21.— Average pulse profiles at GSO band for the observation on April 6, 2010.
The average profile coincident with MPGRP periods is represented by the purple data
points, and the profile averaged over non-GRP periods is represented by the black line.
Phase 0 corresponds to the peak phase of the average radio pulse profile.
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Fig. 5.22.— Same plot as Figure 5.21, but for the observation on September 16-17,
2013.
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Fig. 5.23.— Same plot as Figure 5.21, but for the observation on March 6, 2014.
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Fig. 5.24.— Same plot as Figure 5.21, but the data of the three observations are merged
together.
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Fig. 5.25.— Average pulse profiles at GSO band for the observation on April 6, 2010.
The average profile coincident with IPGRP periods is represented by the purple data
points, and the profile averaged over non-GRP periods is represented by the black line.
Phase 0 corresponds to the peak phase of the average radio pulse profile.
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Fig. 5.26.— Same plot as Figure 5.25, but for the observation on September 16-17,
2013.
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Fig. 5.27.— Same plot as Figure 5.25, but for the observation on March 6, 2014.
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Fig. 5.28.— Same plot as Figure 5.25, but the data of the three observations are merged
together.
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Table 5.3: Derived parameters from the hard X-ray pulses. For more details, see text.
Date PIN/MPGRP PIN/IPGRP GSO/MPGRP GSO/IPGRP

fBG 25.88± 0.07 61.83± 0.10
Apr. 6, C 1 0.767
2010 Ep 19± 17% 96± 79% −3± 28% 89± 111%

sp 1.12σ 1.23σ −0.11σ 0.80σ
fBG 26.35± 0.11 48.60± 0.15

Sep. 16-17, C 1 0.975
2013 Ep −30± 24% −98± 77% 51± 41% 53± 135%

sp −1.21σ −1.27σ 1.25σ 0.40σ
fBG 26.47± 0.07 47.38± 0.10

Mar. 6, C 1 1
2014 Ep 43± 17% 19± 60% 26± 25% 66± 80%

sp 2.57σ 0.32σ 1.01σ 0.83σ
Total Ep 11± 11% 6± 42% 26± 19% 68± 64%

sp 0.96σ 0.13σ 1.37σ 1.06σ
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5.5 Summary and Future Prospects

We made the simultaneous radio and hard X-ray observations of the Crab pulsar on

April 6, 2010, September 16-17, 2013 and March 6, 2014. We did not find a significant

flux enhancement of the X-ray pulses concurrent with GRPs. However, for the PIN

15-75 keV data coincident with the MPGRPs and the IPGRPs, the upper limit for

the flux enhancement can be set to 33% and 88%, respectively, at a confidence level

of 95%. For the GSO data, the upper limit for the flux enhancement coincident with

the MPGRPs and the IPGRPs at a confidence level of 95% can be also set to 63%

and 193%, respectively. From our results, we can not yet conclude an existence of a

correlation between GRPs and hard X-rays from the Crab pulsar. In this section, we

qualitatively discuss a correlation between GRPs and pulses in higher energy bands at

first, and we also roughly estimate the improvement of our results expected with the

future hard X-ray telescope.

In the Crab pulsar, the average radio pulse profile is roughly aligned with the X-ray

profile (see Figure 2.6). Since the occurrence phases of the Crab GRPs are aligned

with the average radio profile, they are also aligned with the X-ray profile. Therefore,

it may be suggested that the radio (GRP) emission may occur at the same location

as the X-ray emission. As mentioned before, the optical or X-ray emission from the

Crab pulsar can be modeled by the incoherent synchrotron radiation from the outer gap

region (e.g. Takata & Chang, 2007). Therefore, it may be suggested that GRPs also

generate within the outer gap region. As we also mentioned in Section 5.1, the optical

pulses concurrent with the Crab GRPs showed an enhancement at only the peak phase

(Shearer et al., 2003; Strader et al., 2013). This result may imply that within the outer

gap region, only the limited region is affected by the occurrence of GRPs. Therefore,

some process(es) might generate the GRP emission in the limited region within the

outer gap region, and affect the emission at higher energy bands.

In order to examine the correlation more accurately, we need to collect more X-ray

photons with a good timing precision. Since the flux enhancement which we discuss

is the photon count rate, the accuracy of the flux enhancement is improved roughly

by a factor of ∼ T
−1/2
obs assuming a Poisson statistics, where Tobs is the duration of an

observation. The flux enhancement coincident with GRPs seen at the optical band was

∼3% at the peak phase (Shearer et al., 2003; Strader et al., 2013). In the discussion

below, we roughly estimate the observation time required to examine 3% enhancement

with 1σ accuracy, assuming that the same enhancement is seen at the hard X-ray band.
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We also take into account that the bin width within which Shearer et al. (2003) or

Strader et al. (2013) detected optical flux enhancement is 0.01period, 5 times narrower

than ours.

With the Suzaku HXD, the observation time required to examine 3% enhancement

with 1σ accuracy at 15 - 75 keV is ∼ 8.3 × 102 hours, which is ∼ 67 times longer

than our work. Now that the Suzaku satellite completed the scientific mission3, we

expect to improve our correlation study with the next generation X-ray telescopes. In

Table 5.4, we summarize the next generation X-ray telescopes covering the hard X-ray

band. At the hard X-ray band, the number of photons from the Crab pulsar becomes

larger at lower energies (e.g. Kuiper et al., 2001). Therefore, the effective areas of the

telescopes at 15 keV corresponding to the minimum energy of the PIN data used in

our analysis are summarized in Table 5.4. NuSTAR (Nuclear Spectroscopic Telescope

ARray, Harrison et al., 2013) is the first telescope focusing on high-energy X-ray band,

and was launched on June 13, 2012. The observation of the Crab pulsar and nebula

with NuSTAR was reported by Madsen et al. (2015). The raw (not live-time corrected)

pulse profile is distorted due to 2.5 ms data readout, and therefore additional correction

may be needed in the data analysis. However, the effective area of NuSTAR is about

four times larger than the Suzaku HXD at 15 keV and the observation time needed

to examine 3% enhancement with 1σ accuracy will be ∼ 2.0 × 102 hours. ASTRO-H

(Takahashi et al., 2014) is the sixth satellite in a series of X-ray astronomy missions by

the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace Exploration

Agency (JAXA), and is scheduled to be launched by the end of Japanese fiscal year 2015

(e.g. Ohno et al., 2015). Its effective area is ∼ 5−6 times larger than that of the Suzaku

satellite at 15 keV. We plan to improve our results with these two satellites. LOFT (the

Large Observatory For X-rat Timing, Feroci et al., 2012) was one of the candidates of

an Medium-size mission selection (M3). The Large Area Detector (LAD) is planned to

achieve an effective area of ∼ 10m2, about 102 times larger than the Suzaku HXD, or

about 20 times larger than the area of the past timing mission such as RXTE (e.g. Bradt

et al., 1993). If we compare only the effective areas of the Suzaku HXD and LOFT,

the required time to examine 3% enhancement with 1σ accuracy will be about ∼ 1.4

hours. Mignani et al. (2015) also simulated observed flux enhancement concurrent with

GRPs using the LAD. Assuming that GRPs occurred every second (∼ 3% of rotational

period) and X-ray flux was enhanced by 3% accompanied with GRPs, they estimated

that 3% peak flux enhancement could be detected at 13.7 σ during an observation of

3http://global.jaxa.jp/press/2015/08/20150826 suzaku.html
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∼ 104 seconds . The energy coverage of LOFT is lower than the Suzaku HXD, and

therefore, the collected number of photons may be relatively large due to the spectrum

of the Crab pulsar as described above. However, the LOFT satellite may be a powerful

tool for correlation studies in the future.

Revealing the link between coherent and incoherent emission from pulsars is im-

portant for understanding the physical mechanism in the pulsar magnetosphere. The

future X-ray telescopes described above will give a new perspective in our knowledge.
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Table 5.4: Performance parameters of some telescopes covering the hard X-ray band.
Telescope Suzaku1 NuSTAR2 ASTRO-H3 LOFT4

(Detector) (HXD) (HXT) (LAD)

Energy range 10 - 600 keV 3 - 78.4 keV 5 - 80 keV 2 - 30 keV
Timing resolution 61µs 2µs 25.6µs 10µs
Effective area ∼ 130cm2 (PIN) ∼ 550cm2 ∼ 700cm2 ∼ 8× 104cm2

(at 15 keV)
Launch Date July, 2005 June, 2012 2016 ? ?

1 Suzaku technical description. See
https://heasarc.gsfc.nasa.gov/docs/suzaku/prop tools/suzaku td/

2 Harrison et al. (2013)
3 Takahashi et al. (2014). The data of the effective area is extrapolated from
Mori et al. (2014). The total effective area of HXT-1 and HXT-2 is shown.

4 Feroci et al. (2012)
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Chapter 6

Overall Conclusions

In this thesis, we study Giant Radio Pulses (GRPs) from the Crab pulsar in terms of the

multi-wavelength observations. Here, we summarize the results from our observations.

• We make the simultaneous observation of the GRPs from the Crab pulsar at 0.3,

1.6, 2.2, 6.7 and 8.4 GHz, whose frequency coverage (∼ 1.5 decades) is the most

broadband among ever reported. We collect more than 3000 GRPs, which are the

largest samples among the past multi-frequency observations.

• We find that at the bands from 0.3 to 2.2 GHz, about 70% or more of the GRP

spectra are consistent with single power-laws.

• The spectral indices of GRPs at the bands from 0.3 to 2.2 GHz are distributed

widely from the range which was already reported by the previous studies to the

range harder than ever reported.

• We perform the stacking analysis to obtain weak GRPs below the detection limit.

From this analysis, we find dim GRPs at 0.3 GHz correlated with the 1.6/2.2-

GHz GRPs. The average spectral index for such dim samples at 0.3 GHz is harder

than the bright GRPs and normal pulses. Since the dim and hard GRPs occupy

about a half of our GRP samples, it might be suggested that most of GRPs have

intrinsically harder spectra than those suggested in the previous studies.

• We find an apparent correlation between fluences and spectral indices of GRPs,

which indicate that less energetic pulses tend to show harder spectra. The result

of the stacking analysis supports such a correlation. To decide whether the cor-

relation is true or not, we need to collect more GRP samples and to improve our

detection limits.
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• We make the simultaneous radio and hard X-ray observations of the Crab pulsar.

We set the first constraint on the flux enhancement coincident with GRPs at hard

X-ray band.

As we mentioned in Chapter 1, no widely accepted, self-consistent model of the pulsar

magnetosphere is constructed. In this situation, it is premature that we determine

the emission mechanism of GRPs from our results and what we should do now is to

accumulate observational results to approach the emission mechanism. If the correlation

between fluences and spectral indices of GRPs which we find is true, it will be absolutely

a clue to understand the emission mechanism of GRPs. Also, if the GRPs truly have

harder spectra than normal pulses, it will be useful to construct the theoretical models

of GRPs in the future. We also draw the future prospects from our results. We discuss

them below.

It is interesting that all the IPGRP detected at X band are not detected at the

other frequency bands. Since the occurrence phases of the Crab GRPs at ≳ 4 GHz

are slightly different from those at lower frequency bands (Cordes et al., 2004, see also

Figure 2.2), the particles generating ≳ 4 GHz emission may be originated from another

region. At the frequency higher than S band, few GRPs can be collected due to our

limited sensitivity or the effect of the interstellar scintillation. The statistical study of

the GRP spectra including ≳ 4 GHz will be one of our future work.

We also found the spectra inconsistent with single power-laws. In our work, we

integrate all the pulse components within one GRP and investigate the total fluence

spectra. However, some GRPs have distinct components in one GRP. For those GRPs,

different spectral components may be superposed in the fluence spectra. Looking at

the GRP profiles, there is a diversity of microstructures of GRPs and it seems difficult

to make a systematic analysis of the structures of GRPs. Therefore, we neglected them

in this work. Investigating a relationship between fine structures of GRPs and spectral

features may bring deep insight into the spectra of GRPs. We will work on this subject.

In many previous studies, only a small number of strong GRPs were analyzed. We

focused on a number of “weak GRPs” at P band through the method of the stacking

analysis. Those GRPs can not be found at a single frequency band, and can be detected

making use of the information that they are detected at the other frequency bands. As a

result, we detected “dim-hard” GRPs, and from them, it might be suggested that GRPs

might have intrinsically harder spectra than normal ones, or that GRPs might require

such emission mechanism that their brightness and spectral hardness are correlated

each other. Due to the limited sensitivity of our observation, those hypotheses are still
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only speculations. They should be tested in the future by high sensitivity observations

and more GRP samples.

The spectral study of GRPs from the pulsars other than the Crab pulsar will be

also interesting. According to Popov & Stappers (2003), in PSR B1937+21, there was

no GRP detected simultaneously at 1.4 GHz and 2.2 GHz. If their observation at 1.4

and 2.2 GHz can be associated with our observation L and S bands (see Section 4),

we will not find GRPs simultaneously detected at L and S bands, which correspond to

Group (II) GRPs and a part of Group (I) GRPs in Section 4. They occupied about a

half of all the GRP samples in the case of the Crab pulsar. Although the detection rate

of the GRPs from PSR B1937+21 is much smaller than that of the Crab pulsar, it is

possible to test their result using our Japanese observation network. Multi-frequency

observations of the GRPs from the pulsars other than the Crab pulsar may reveal the

pulsar-dependent spectral features. This subject will be also carried out as a future

work.

We also investigated a correlation between hard X-ray pulses and GRPs from the

Crab pulsar. We do not find any significant correlations between them, but set upper

limits of flux enhancement concurrent with GRPs. The upper limits which we set will

be improved with the future X-ray telescope. As we mentioned in Section 5.5, the

correlation study with the LOFT satellite will be very promising. As we mentioned in

Chapter 5, the optical pulses concurrent with the Crab GRPs showed an enhancement

at only the peak phase (Shearer et al., 2003; Strader et al., 2013). This result may

imply that within the outer gap region, only the limited region may be affected by the

occurrence of GRPs. Therefore, some process(es) might generate the GRP emission in

the limited region within the outer gap region, and might affect the emission at higher

energy bands. If a sufficient number of photons is collected with a sufficient timing

precision, we can determine more precisely the pulse phase showing enhancement of

X-ray flux concurrent with GRPs. This may reveal the emission region of GRPs and

the corresponding X-ray emission region.
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Appendix A

Flux Density and Error

The flux density in each time bin τ is calculated from its signal-to-noise ratio S/N as

Sτ = S1(S/N)τ , (A.1)

where S1 is obtained from the radiometer equation (Dicke, 1946; Lorimer & Kramer,

2004) as

S1 =
SCN + SEFD√

∆ν∆tnp

. (A.2)

Here, SCN is the received flux density of the Crab nebula in each frequency channel,

and SEFD is the system equivalent flux density. The definitions of ∆ν, ∆t, and np

are the observation bandwidth [Hz], the width of the time bin [s], and the number of

polarization directions, respectively. In our observation, np = 1 in all the observatories.

For L, S and C bands, we used the Crab nebula itself as a calibration source. The

method to obtain SCN is as follows. We assume that the antenna pattern is axisymmetric

Gaussian one,

P (θ) = exp

[
−4 ln 2

(
θ

θb

)2
]
, (A.3)

where P (θ) is the normalized power pattern (Wilson et al., 2013), and θ is the distance

from the center of the Crab nebula in the sky coordinate. The half power beam width

(HPBW) θb is given by λ/D, where λ is the observed wavelength and D is the antenna

diameter. From Figure 1 of Amato et al. (2000), the spatial intensity distribution of

the Crab nebula is approximated by a linear function of θ,

BCN(θ) = B0

(
1− θ

θCN

)
. (A.4)

We adopt θCN = 3 arcmin in all the frequency bands (e.g. Bietenholz et al., 2015). The

coefficient B0 is determined by

2π

∫ θCN

0

BCN(θ)θdθ = SCN,tot. (A.5)
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The total flux SCN,tot is calculated from the value in Maćıas-Perez et al. (2010) as

SCN,tot = 973± 19Jy
( ν

1GHz

)−0.296±0.006

exp (−κ(Tobs − 2003)) , (A.6)

where κ = 1.67 × 10−3/year, ν is the observed frequency, and Tobs is the epoch of

observation [year]. We estimate the reception of the Crab nebula R as

R ≡
∫ θCN

0
dθθBCN(θ)P (θ)∫ θCN

0
dθθBCN(θ)

. (A.7)

Then, the received flux density of the Crab nebula SCN is obtained as

SCN = R · SCN,tot. (A.8)

A standard on-off observation provides SEFD as

SEFD =
SCN

y − 1
, (A.9)

y ≡ Pon

Poff

=
SEFD + SCN

SEFD
, (A.10)

where Pon/off is the received power pointing at the on-source/off-source. The off-source

observation was pointed at a direction 1 degree away from the nebula center.

For X band, we observed Jupiter as a calibration source. We estimate SEFD with

an on-off observation of Jupiter. When estimating SEFD, we assume that the spatial

intensity distribution of Jupiter is uniform within θ < 16.15 [arcsec], and we use the

total flux of Jupiter reported by Imke de Pater et al. (2003). Then, using the value of

SEFD estimated above, we estimate SCN with an on-off observation of the Crab nebula.

For P band, the calibration source was Cyg A. The flux density of Cyg A is given by

Baars et al. (1977), and the receptions of Cyg A and the Crab nebula are set to unity,

because the sizes of those sources are sufficiently smaller than the beam size.

Taking into account the overlaps of the frequency intervals, the calibrated flux den-

sities for L6–L8 and S1–S5 channels are synthesized into the values for LH and S bands,

respectively. The statistical error σsta = S1 is imposed on the flux density in each time

bin. The systematic error σsys includes uncertainty of the literature values of flux den-

sity used in our analysis, and the time fluctuation of Pon/off . For each GRP, setting a

time interval with a method described in Appendix B, we integrate the flux to obtain

the fluence F . The systematic error in F is written as

σsys = F · asys, (A.11)
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where asys is defined by using the errors of SEFD (∆SEFD) and the errors of SCN

(∆SCN), as

asys ≡
∆SEFD +∆SCN

SEFD + SCN

. (A.12)

Therefore, the total error for the fluence Fi at a given band i is described as

σi =
√
N(σsta∆t)2 + (σsys)2, (A.13)

where N is the number of time bins in the interval to estimate the fluence. When

Fi < 3σi, we set an upper-limit on the fluence. Note that we use Fi + σi as an upper-

limit value to estimate χ̂2.

In order to verify our calibration, we also observed Cas A with Kashima and Iitate

telescopes, and Jupiter at S band with Usuda telescope. We estimated the total flux

densities of these objects. For the intensity distribution of Cas A, a shell with an outer

radius of 130 ± 5 arcsec and a thickness of 32 ± 5 arcsec were assumed, based on the

observation of Rosenberg (1970). As shown in Figure A.1, our flux calibration seems

to be roughly consistent with previous observations (Imke de Pater et al., 2003; Baars

et al., 1977; Vinyaikin, 2014).

Fig. A.1.— Flux densities of Jupiter (left) and Cas A (right). Our data and previous
observations (Imke de Pater et al., 2003; Baars et al., 1977; Vinyaikin, 2014) are plot-
ted. As for Jupiter, our data is normalized to the flux at the distance of 4.04 AU for
comparison with the other data. Taking into account that the fluxes of Cas A show
secular decrease with a frequency-dependent rate, we plot three cases with different
combinations of the literal flux density and decrease rate of Baars et al. (1977) and
Vinyaikin (2014).

We also compare the period mean flux density of the Crab pulse S̄CP (e.g. Maron

et al., 2000) with previous studies in each frequency band. In Figure A.2, our results
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are roughly consistent with previous studies (Sieber, 1973; Lorimer et al., 1995; Moffett

& Hankins, 1996). The significant pulse signals were not detected at C and X bands,

which may be due to the effects of interstellar scintillation.
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Fig. A.2.— Period mean flux density of the Crab pulse. Our data and previous obser-
vations (Sieber, 1973; Lorimer et al., 1995; Moffett & Hankins, 1996) are plotted The
dotted line is a reference one showing ∝ ν−3.1 (Lorimer et al., 1995). For C and X
bands, our observation leads to just upper-limit values.

108



Appendix B

Time Interval for Fluence Estimate

We need to determine the time interval to estimate the fluence for each GRP. This

time interval is different from the selection width defined in Section 4.2.1. According

to the phase distributions of the GRP signals detected at both LL and P bands, we

empirically established the method to determine the interval as follows. Following the

method described in Section 4.2.1, we search for GRPs at P–S bands. To determine the

time interval, we divided the GRP samples into two cases: 1) there are signals above

the GRP selection thresholds in the LL, LH, and S bands data. 2) there are signals

above the GRP selection thresholds only in the P band data.

B.1 GRPs Selected at LL/LH/S Bands

First, for LL, LH, and S bands, in the light curves with 10µs time bin, we search for

signals of S/N≥ 4 around the peak time bin, where the signal is above the selection

threshold (Section 4.2.1). Next, we set a minimal time interval that includes all the

signals of S/N≥ 4, then we estimate the S/N values with 1µs time bin for this interval.

We denote the bin numbers of the first and last time bins where the signal exceeds 3

σ as τi,1 and τi,2, respectively, for each band i. Finally we determine the interval of

the bin numbers from min(τi,1) − 1 to max(τi,2) + 1 to adopt for LL, LH, and S band

commonly, and estimate fluences and their errors or upper-limits.

Since the interstellar scattering largely broadens the pulse profile at P band, another

method is required. The bin number τP is defined as the 500µs time bin in which the

peak time of the highest S/N signal in LL/LH/S bands is included. When there is

no time bin of S/N≥ 4 for an interval from τP − 1 to τP + 1, this GRP is judged as

non-detection at P band. We set an upper-limit based on the fluence for an interval

from τP−1 to τP+2, whose duration 2000 µs corresponds to the interval 95% of the our
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GRP samples detected at P band are contained. When we find a time bin of S/N≥ 4

signal(s), a minimal interval that contains all the S/N≥ 4 signal(s) is set. Then, we

extend the interval as long as S/N values of the consecutive bins are larger than 2.

B.2 GRPs Selected at only P band

When signals above the selection threshold are found only at P band, we need to

determine an interval for L–S bands in spite of the much broader pulse profile in P

band. For LL, LH and S bands, in the 10µs-resolution light curve, we tentatively

determine an interval first. When multiple and successive time bins with S/N≥ 4 are

found between the bin numbers τ ′i,1 and τ ′i,2, an interval from τ ′i,1 − 1 to τ ′i,2 + 1 is

defined. Then, from the 1µs-resolution light curve in this interval, we determine a final

interval with the same method in the previous subsection, and calculate fluences and

their errors or upper-limits. If there is no time bin with S/N≥ 3 in the 1µs light curve

for all the bands, we adopt the tentative interval based on the 10µs light curve as the

final interval.

When, in the 10µs light curve, multiple and successive time bins with S/N≥ 4 are not

found, we set a tentative interval of 30µs (3 bins) centering the time bin with the largest

S/N value among LL, LH and S bands. Then, the final interval with 1µs-resolution is

determined in the same way described above.

For P band, a minimal interval that contains all the S/N≥ 4 signal(s) is set. Then,

we extend the interval as long as S/N values of the consecutive bins are larger than 2.
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Appendix C

Error Estimate for LH and S Bands

In our analysis, we synthesized the flux densities for L6–L8 and S1–S5 channels into LH

and S bands, respectively. While statistical errors in the synthesized flux are estimated

with the standard manner taking into account the overlaps of the frequency intervals,

systematic errors σsys,LH and σsys,S are the sums of the systematic errors of the individual

channels. The total error is given by σLH/S =
√

σ2
sta,LH/S + σ2

sys,LH/S. The obtained

errors become significantly small owing to the channel synthesis as shown in the central

panel of Figure C.1. Hereafter, this method is called “method A”, which is the method

adopted in the analysis in the main text.

The obtained fluences for the individual channels frequently show significant varia-

tions within their narrow frequency range as seen in the left panel of Figure C.1. As

Karuppusamy et al. (2010) claimed, the fluence fluctuation in the narrow bands may

be intrinsic property in the GRP spectra similarly to the band spectral structure seen

in Hankins & Eilek (2007). Although the modulation due to the diffractive interstellar

scintillation may be negligible at the channels in L and S bands as discussed in Section

4.3, the fluctuation may be the result of the unknown effects of the interstellar scintil-

lation. In order to take into account this uncertainty, we attempt another method for

the error estimate of the synthesized fluences, “method B”. In this method, the actual

fluence is assumed to be between the highest and the lowest values in the fluences for

the channels in each band. For example, at LH band, the upper and lower fluence

Fmax,LH and Fmin,LH are defined as follows:

Fmax,LH ≡ max(Fch + σch), Fmin,LH ≡ min(Fch − σch), (C.1)

where Fch and σch are the fluence and its 1σ error at channel ch = L6,L7 and L8,

respectively. In method B, the representative fluence FLH and its 1σ error σLH are
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Fig. C.1.— Error estimates for the fluences at LH and S bands. Left: original data
points of the four channels in L band (red), and five channels in S band (blue) for GRP
#1173. Middle: synthesized data points and errors of LH and S bands with the method
A adopted to the analysis in the main text. Right: the same as the middle panel but
for the conservative error estimate with method B described in Appendix C.

assumed as

FLH ≡ Fmax,LH + Fmin,LH

2
, (C.2)

σLH ≡ FLH − Fmin,LH = Fmax,LH − FLH. (C.3)

As shown in the right panel of Figure C.1, method B leads to larger errors. When there

is a channel with a fluence below 3σch, we set an upper-limit Fmax,LH on the fluence at

LH band. We also estimate the fluence or its upper-limit at S band in the same way as

LH band.

When we use the data generated with method B in the spectral analysis, 95.4% of

MPGRPs and 97.0% of IPGRPs are judged to be consistent with SPLs at a significance

level of 5% (see Tables C.1 and C.2). In this conservative method, even if a S/N value

for a certain channel is above the selection threshold, there are cases that just the

upper-limit is set for the synthesized fluence. The numbers of the GRP samples in

method B decrease compared to the method A.
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Table C.1. The same table as Table 4.4, but with the conservative error estimate,
method B.

SPL Assumption
Detected Band(s) Group Consistent Inconsistent

(χ̂2
min < 5.99) (χ̂2

min > 5.99)

P & LL & LH & S I 163 20
P & LL & LH I 72 3

P & S I 5 1
P & LL & S I 9 0
P & LH & S I 1 0

P & LL I 88 2
P & LH I 8 0

LL & LH & S II 944 59 (α > 2 : 1)
LL & S II 165 1
LH & S II 39 2

LL & LH · · · 408 25
S · · · 146 1 (α > 2 : 1)

LL · · · 278 15
LH · · · 79 2
P III 385 3 (α < −5 : 3)

Total 2790 134
(α > 2 : 2, α < −5 : 3)

Table C.2. Same as Table C.1, but for the IPGRPs.

SPL Assumption
Detected Band(s) Group Consistent Inconsistent

(χ̂2
min < 5.99) (χ̂2

min > 5.99)

P & LL & LH & S I 26 2
P & LL & LH I 14 0

P & S I 0 0
P & LL & S I 0 0
P & LH & S I 0 0

P & LL I 15 0
P & LH I 1 0

LL & LH & S II 60 0
LL & S II 10 0
LH & S II 1 0

LL & LH · · · 28 2
S · · · 4 0

LL · · · 23 2
LH · · · 2 0
P III 42 1 (α < −5 : 1)

Total 226 7
(α > 2 : 0, α < −5 : 1)
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Maćıas-Pérez, J. F., Mayet, F., Aumont, J., & Désert, F.-X. 2010, ApJ, 711, 417

Majid, W. A., Naudet, C. J., Lowe, S. T., & Kuiper, T. B. H. 2011, ApJ, 741, 53

Manchester, R. N., Hobbs, G.B., Teoh, A. & Hobbs, M. 2005, AJ, 129, 1993

Maron, O., Kijak, J., Kramer, M., & Wielebinski, R. 2000, A&A, 147, 195

McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., et al. 2006, Nature, 439, 817

Melrose, D. B. 1995, JApA, 16, 137

Mickaliger, M. B., Mclaughlin, M. A., Lorimer, D. R., et al. 2012, ApJ, 760, 64

Mignani, R. P., Bocchino, F., Bucciantini, N., et al. 2015, arXiv: 1501.02773

Mikami, R., Terasawa, T., Kisaka, S., et al. 2014, JPSCP, 1, 015106

Mikami, R., Terasawa, T., Kisaka, S., et al. 2014, Suzaku-MAXI 2014: Expanding the

Frontiers of the X-ray Universe, 180

Misawa, H., Kudo, R., Tsuchiya, F., Morioka, A., and Kondo, T. 2003, Proc. 3rd CRL

TDC Symp., 57

Mitsuda, K., Bautz, M., Inoue, H. et al. 2007, PASJ, 59, S1

Moffett, D. A., & Hankins, T. H. 1996, ApJ, 468, 779

119



Moffett, D. A., & Hankins, T. H. 1999, ApJ, 522, 1046

Mori, H., Kuroda, Y., Miyazawa, T. 2014, Proc. SPIE, 9144, 57

Nyquist, H. 1928, Phys. Rev. Lett., 32, 110

Ohno, M., Kawano, T., Tashiro, M., et al. 2015, arXiv: 1503.01182

Oronsaye, S. I., Ord, S. M., Bhat, N. D. R. et al. 2015, ApJ, 809, 51

Pacini, F. 1968, Nature, 216, 567

Petrova, S. A. 2004, A&AS, 424, 227

Popov, M. V., & Stappers, B. 2003, Astron. Rep., 47, 660

Popov, M. V., Soglasnov, V. I., Kondratiev, A. V., et al. 2008, Astron. Rep., 52, 900

Popov, M., Soglasnov, V., Kondratiev, V., et al. 2009, PASJ, 61, 1197

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1992, in Numerical

Recipes in C. The Art of Scientific Computing, ed. W. H. Press, S. A. Teukolsky, W.

T. Vetterling, & B. P. Flannery (2nd ed.; Cambridge: Cambridge Univ. Press)

Rickett, B. J., & Lyne A. G. 1990, MNRAS, 244, 68

Rosenberg, I. 1970, MNRAS, 147, 215

Ruderman, M. A. & Sutherland, P. G. 1975, ApJ, 196, 51

Sallmen, S., Backer, D. C., Hankins, T. H., et al. 1999, ApJ, 517, 460

Sawicki, M. 2012, PASP, 124, 1208

Shearer, A., Stappers, B., O’connor, P. et al. 2003, Science, 301, 493

Sieber, W. 1973, A&AS, 28, 237

Singal, A. K. & Vats, H. O. 2012, ApJ, 144, 155

Soglasnov, V. A., Popov, M. V., Bartel, N. et al. 2004, ApJ, 616, 439

Stalin, D. H., & Reifenstein, E. C. III 1968, Science, 162, 1481

Strader, M. J., Johnson, M. D., Mazin, B. A. et al. 2013, ApJ, 779, L12

120



Sturrock, P. A. 1971, ApJ, 164, 529

Takata, J., & Chang, H.-K. 2007, ApJ, 670, 677

Tanaka, S. J., Asano, K., & Terasawa, T. 2015, PTEP, 2015, 073E01

Takahashi, T., Abe, K., Endo, M. et al. 2007, PASJ, 59, S35

Takahashi, T., Mitsuda, K., Kelley, R. et al. 2014, Proc. SPIE, 9144, 25

Taylor, J. H., & Stinebring, D. R. 1986, ARA&A, 24, 285

Terada, Y., Enoto, T., Miyawaki, R. et al. 2008, PASJ, 60, S25

Terasawa, T., & Matsukiyo, S. 2012, Space Sci. Rev., 173, 623

Timokhin, A. N., & Arons, J. 2013, MNRAS, 429, 20

Tingay, S. J., Trott, C. M., Wayth, R. B., et al. 2015, arXiv: 1511.02985

Takefuji, K., Takeuchi, H., Tsutsumi, M., & Koyama, Y. 2010, Sixth International VLBI

Service for Geodesy and Astronomy. Proceedings from the 2010 General Meeting, ed.

D. Behrend and K.D. Baver. NASA/CP 2010-215864., 378

Thompson, D. J., Bailes, M., Bertsch, D. L. et al., 1999, ApJ, 516, 297

Thornton, D., et al., 2013, Science, 341, 53

Totani, T. 2013, PASJ, 65, L12

Tsai -Wei Jr, Simonetti, J. H., Akukwe, B., et al. 2015, AJ, 149, 65

Tsuchiya, F., Misawa, H., Imai, K., Morioka, A., and Kondo, T. 2010, in 2007, Adv.

Geosci., 19, 601

Vinyaikin, E. N., 2014, ARep, 58, 626

Weltevrede, P., Wright, G. A. E., Stappers, B. W., and Rankin, J. M. 2006, A&A, 458,

269
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