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Abstract

The origins of baryon asymmetry and dark matter are outstanding myster-

ies in cosmology and particle physics. In particular, the observed amount of

energy densities of baryon and dark matter are equal to each other up to a fac-

tor of unity, which is known as the baryon–dark-matter coincidence problem.

In this thesis, we investigate the Affleck-Dine baryogenesis in supersymmetric

theories to account for the origins of baryon asymmetry and dark matter, and

propose two scenarios to account for the coincidence between their energy den-

sities. In the first scenario, we consider the case that non-topological solitons

called Q-balls form after the Affleck-Dine baryogenesis and decay into baryons

and light supersymmetric particles before the big-bang nucleosynthesis epoch.

The light supersymmetric particles then decay into the lightest one, which

is the candidate of dark matter. Thanks to the fact that the branchings of

Q-ball decay are determined by the Pauli blocking effect, there is a natural

coincidence of energy densities of baryon and dark matter. The second sce-

nario is based on our new scenario of the Affleck-Dine baryogenesis, where the

baryon asymmetry is generated just after the end of inflation in contrast to

the ordinary scenario. When inflaton decays mainly into gravitinos, the sub-

sequent decay of gravitinos is a non-thermal source of dark matter. We find

that the resulting baryon-to-dark-matter ratio is naturally of order unity in

hybrid inflation models. As a result of these two scenarios, we conclude that

the Affleck-Dine baryogenesis is a promising mechanism to explain the origins

of baryon asymmetry and dark matter and the coincidence between their en-

ergy densities. Those scenarios would be tested by future collider experiments

and direct and indirect dark-matter searches.
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Chapter 1

Introduction

The discovery of the Higgs boson completes the contents of particles in the Standard Model

(SM) of particle physics [1, 2]. However, there are several mysteries in cosmology that cannot

be explained by the SM: the origin of baryon-anti-baryon asymmetry, existence of dark matter

(DM), and inflation.

The Big Bang theory explains the expansion of the Universe, the cosmic microwave back-

ground (CMB), and the amounts of light element abundances, which says that the Universe

was filled with the thermal plasma in the early Universe with a certain baryon abundance.

In fact, the Big Bang nucleosynthesis (BBN) theory explains observed helium (4He) [3, 4]

and deuterium (D) [5] abundances by only one parameter Yb ≡ nb/s, where nb is baryon

number density and s is the entropy density at present. In addition, the spectrum of CMB

temperature anisotropies is sensitive to the baryon abundance and the observed spectrum is

consistent with the one obtained from the BBN theory [6]. Those facts implies that there is

baryon asymmetry of Yb ≃ 8.6× 10−11 at least at the temperature of order 1 MeV [7].

However, it confronts severe initial-condition problems, such as the horizon problem and

the flatness problem. Then the paradigm of cosmology is shifted to the inflation theory,

where those initial condition problems are explained by an exponentially expanding era in

the early Universe [8, 9, 10, 11]. It also provides a natural mechanism of producing primordial

perturbations that seed the large-scale structure of the Universe [12, 13, 14]. It predicts a

spectral index of the spectrum of primordial perturbations. It is precisely measured by the

observations of CMB temperature anisotropies, so that we could say that the inflation theory

is confirmed experimentally [15, 6].

Unfortunately, the inflation theory implies that the baryon abundance is washed out by

the exponential expansion of the Universe. Therefore, we still have a problem to generate



the baryon asymmetry. There should be a mechanism to generate the observed amount of

baryon asymmetry after inflation.

In order to generate baryon asymmetry, we have to satisfy the Sakharov conditions,

which clarify that it is generically difficult to generate the baryon asymmetry [16]. First, we

of course need a baryon number violation operator to generate baryon asymmetry. Secondly,

charge conjugation symmetry (C) and parity and charge conjugation symmetry (CP) need to

be broken. This is because baryon and anti-baryon are odd under these symmetries. Thirdly,

we need departure from thermal equilibrium. In particular, if the above symmetry-violating

operators are in thermal equilibrium, no net baryon asymmetry is generated. Although all

of these conditions are satisfied in the SM, we cannot generate enough baryon asymmetry

to explain that observed. This means that we need physics beyond the SM to explain the

baryon asymmetry.

In addition, cosmological and astrophysical observations reveal that there must be invis-

ible massive particles in the Universe, called dark matter (DM). There is no candidate of

such an invisible particle in the SM, so that we require new physics beyond the SM. Since

inflation washes out the abundance of DM, we also need a mechanism to generate it after

inflation. Remarkably, observations reveal that the energy densities of baryon and DM are

equal with each other within of order unity [6]. This is known as the baryon-DM coincidence

problem. This coincidence may imply that the baryon and DM may have a common origin

or at least have a common parameter dependence in their production mechanism.

The origin of baryon asymmetry and DM imply new physics beyond the SM. Supersym-

metry (SUSY) is a promising candidate of new physics in particle physics. It is a symmetry

that relates fermions and bosons, which results in a cancellation of the quadratic divergences

of scalar fields and addresses the hierarchy problem between the electroweak scale and the

Planck scale. SUSY is assumed to be softly broken about the TeV scale, so that new particles

are introduced around the TeV scale via SUSY. In particular, the lightest SUSY particle is

stable and is a good candidate of DM.

In SUSY theories, baryon asymmetry can be generated by the Affleck-Dine mechanism,

where B − L asymmetry is generated via the dynamics of scalar partner of quarks and/or

leptons [17, 18, 19]. A B−L charged scalar field with a flat potential, called an Affleck-Dine

(AD) field, can obtain a large tachyonic effective mass and have a large vacuum expectation

value (VEV) during and after inflation. As the energy of the Universe decreases, the effective

mass becomes inefficient and the AD field starts to oscillate coherently around the origin of
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its potential. At the same time, the phase direction of the AD field is kicked by its A-term

potential, which breaks C, CP, and B − L symmetry. Since the B − L number density is

proportional to the phase velocity of the AD field, the B−L asymmetry is generated through

this non-equilibrium dynamics. When the coherent oscillation of the AD field decays and

dissipates into thermal plasma, the B − L asymmetry is converted to the desired baryon

asymmetry through the sphaleron effects [20, 21].

Depending on the potential of the AD field, the Affleck-Dine baryogenesis (ADBG) may

predict formation of localized lumps composed of condensation of the AD field carrying

enormously large baryon charges [22, 23, 24, 25]. The lump is referred to as a Q-ball [26],

which is long-lived due to the conservation of baryon charge. The Q-balls emit quarks from

their surfaces and release their charges into standard model particles [27]. In this scenario,

baryons are generated from the decay of Q-balls. In addition, since Q-balls consist of squarks,

their decay produces light SUSY particles. Therefore, their decay may be the origins of

DM as well as baryons, which may provide us a solution to the baryon-DM coincidence

problem [24, 28].

In this thesis, we focus on ADBG in SUSY theories to explain the origin of baryon

asymmetry and the coincidence problem, which are partially related to inflation models.

We provide two scenarios to account for the coincidence between the energy densities of

baryon and DM. We also provide a new scenario of ADBG, which broaden parameter spaces

explaining the observed amount of baryon asymmetry. These topics are based on the works

by the author [29, 30, 31, 32, 33].

In Chap. 5, we explain a scenario to account for the coincidence via Q-ball decay. The

decay rate of Q-ball is determined by the Pauli blocking effect, so that its branching ratios

into quarks and SUSY particles are determined by simple counting of degrees of freedom [27,

34, 35, 30]. As a result, the resulting baryon-to-DM ratio from Q-ball decay is found to be

naturally of order unity.

In Chap. 7, we provide a new scenario of ADBG, where the AD field starts to oscillate

around the minimum just after inflation [33]. Then in Chap. 8, we show that the resulting

baryon-to-DM ratio is naturally of order unity in hybrid inflation models, which is another

possibility to account for the coincidence problem [31].

As a result of these two studies, we conclude that the Affleck-Dine baryogenesis is a

promising candidate for baryogenesis to account not only for the observed baryon asymmetry

but also for the baryon-DM coincidence problem.

3



This thesis is organized as follows.

In Chap. 2, we explain the mysteries of baryon asymmetry, DM, and inflation. In particu-

lar, the observed energy densities of baryon and DM are equal to each other up to a factor of

order unity. This coincidence is known as the baryon-DM coincidence problem. In Chap. 3,

we review the ADBG in the conventional scenario. Then in Chap. 4, we explain Q-ball,

which is a non-topological soliton of a complex scalar field. It sometimes form after ADBG

and modifies its scenario. Its decay rates into quarks and SUSY particles are important to

discuss the co-genesis of baryon and DM.

Chapter 5 is one of the main part of this thesis. In Sec. 5.1, we explain the scenario

for co-genesis in general models of gravity mediation. In Sec. 5.2, we apply it to the con-

strained minimal SUSY SM (CMSSM) and show that the observed baryon asymmetry, DM

abundance, and the 126 GeV Higgs boson can be simultaneously explained in that scenario.

We determine a parameter region to realize the scenario and find that it would be tested by

future collider experiments and direct and indirect DM searches.

In Chap. 6, we explain the relation between ADBG and inflation. We focus on three

important inflation models; F-term hybrid inflation, D-term hybrid inflation, and chaotic

inflation. In particular, we investigate the backreaction of the AD field to inflaton dynamics.

We also explain that the scenario for co-genesis from Q-ball decay is naturally realized after

a chaotic inflation model.

Chapter 7 and 8 are the other main part of this thesis. In Chap. 7, we provide a new

scenario of ADBG, where the AD field starts to oscillate around the minimum just after

the end of inflation. The resulting baryon asymmetry is independent of low-energy SUSY

parameters but is dependent on parameters in inflaton sector. We investigate the scenario

in F-term hybrid inflation, chaotic inflation, and D-term hybrid inflation and show that the

observed baryon asymmetry can be explained in this new scenario. In Chap. 8, we apply

the new scenario to some models and consider non-thermal DM production from gravitino

decay. Although the baryon and DM are not generated from a common origin, their resulting

abundances are related through same parameters in inflaton sector. As a result, the energy

densities of baryon and DM naturally coincide with each other. This is another scenario to

account for the baryon-DM coincidence problem.

Chapter 9 is devoted to the conclusion of this thesis.
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Chapter 2

Cosmological problems

In this chapter, we briefly explain mysteries in cosmology: the origin of baryon-anti-baryon

asymmetry, dark matter (DM), and inflation. The observed amount of light elements implies

that the baryon-to-entropy ratio is of order 10−10, whose origin cannot be explained in the

Standard Model (SM) of particle physics and cosmology. Astrophysical and cosmological

observations reveal that the Universe is partially filled with DM, which is an unknown particle

beyond the SM. In the early Universe, there is an era of exponential expansion called inflation,

which explains initial condition problems in the Big Bang cosmology.

2.1 Origin of baryon asymmetry

The Universe seems to be isotropic and homogeneous for a scale larger than of order 100 Mpc.

The metric of its geometry gµν is then described by the Friedmann-Robertson-Walker metric:

gµν = diag[−1, a2(t), a2(t), a2(t)], (2.1)

where a(t) is the scale factor and we neglect the curvature of the space. When the energy-

momentum tensor for matter is isotropic and homogeneous, Einstein’s field equations lead

to the following equations called the Friedmann equations:

H2 =
ρ

3M2
Pl

(2.2)

ρ̇ = −3H (ρ+ p) , (2.3)

where ρ and p are the energy density and pressure of matter, and

H(t) ≡ ȧ

a
≡ 1

a

da

dt
, (2.4)
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is the Hubble parameter. When the Universe is filled with the thermal plasma, the energy

density and the pressure is given by

ρ = g∗
π2

30
T 4 (2.5)

p =
ρ

3
, (2.6)

where g∗ is the effective degrees of freedom of relativistic particles. This implies that the

Hubble parameter is given by H(t) = 1/2t, T ∝ a−1(t), and a(t) ∝ t1/2. Therefore, the

temperature increases as we look at the earlier Universe. The early Universe is filled with a

high temperature plasma, which is called the Big Bang cosmology.

The early Universe is filled with a hot dense plasma, so that the quarks and anti-quarks

are in thermal equilibrium and are relativistic. Their abundance is determined by the thermal

abundance and the fraction to entropy density is of order 1/10. As the temperature decreases

due to the expansion of the Universe, the QCD phase transition occurs and baryon and anti-

baryon form. Then their abundance exponentially decreases due to annihilation. Here, if

there is asymmetry between the abundance of baryon and anti-baryon, baryons remain in

the thermal plasma while anti-baryons completely disappear. The light element abundances,

including 4He and D, form from the remaining baryons. The observed abundance of these

light elements implies that the baryon-to-entropy ratio after the annihilation is of order

1/10000000000. The origin of this small amount of asymmetry between baryon and anti-

baryon is a mystery in cosmology.

2.1.1 BBN theory

The Big Bang theory explains the expanding Universe, cosmic background radiation called

CMB, and light-element abundance. The light-element abundance is calculated by using only

well-known physics such as the quantum electrodynamics, weak interactions, and nucleosyn-

thesis. The initial condition is the Universe filled with the hot plasma with some abundance

of baryon asymmetry. The resulting amount of light-element abundance thus depends on the

initial baryon asymmetry. In this subsection, we briefly explain the BBN theory and estimate

deuterium (D) and helium (4He) abundance following Ref. [36]. We then compare the results

with observed abundance, which gives us information of initial baryon abundance.

Suppose that the Universe is filled with a hot plasma with a temperature higher than

1 MeV and below the QCD scale. At such a high temperature, there are protons and

neutrons, where the weak interaction p+ e↔ n+ νe is in the thermal equilibrium. The ratio

6



of their number densities at a temperature of T is given by

nn
np

= exp (−∆m/T ) (2.7)

∆m ≡ mn −mp ≃ 1.293 MeV, (2.8)

where mp (≃ 938.272 MeV) and mn (≃ 939.565 MeV) are proton and neutron masses,

respectively [7]. The weak interaction freezes out at the temperature of Tf given by Γ(Tf ) ≃
H(Tf ), where Γ(Tf ) ≈ G2

FT
5 is the reaction rate of weak interaction and GF ≃ 1.17× 10−5.

We obtain

Tf ∼
(
G2
FMPl

)−1/3 ∼ 0.8 MeV. (2.9)

The ratio of number densities is fixed at this time such as nn/(np + nn) ≃ 1/6. After that,

the neutron abundance decreases via its decay and we obtain

nn
np + nn

≃ 1

6
exp

[
−t− tf

τn

]
, (2.10)

where τn (≃ 880 sec) is the lifetime of neutron [7]. Since the ratio of number densities is

determined by this relation, their number densities are determined once we set the baryon

abundance, i.e., their total abundance. Note that neutrons do not decay after deuterium

formation.

Next we estimate deuterium abundance. We can understand the reactions of nucleosyn-

thesis by minimizing the Hermhortz free energy F = E − TS, where E is energy and S

is entropy. At a high temperature, protons and neutrons, whose binding energy is about

2.2 MeV, move independently so that the entropy can be small. As the temperature de-

creases due to the expansion of the Universe, deuteriums form because of the energy loss of

their binding energy:

p+ n → D+ γ. (2.11)

The binding energy of deuterium is 2.2 MeV, so that their abundance is related as

nD

nnnp
=

3

4

(
4π

mpT

)3/2

e2.2 MeV/T , (2.12)

by the detailed balance. Using nn ∼ np ∼ nb and the photon number density of nγ ∼ T 3, we

rewrite this as

nD
nb

∼ ηb

(
T

mp

)3/2

e2.2 MeV/T , (2.13)
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where ηb ≡ nb/nγ is the baryon-to-photon ratio. Deuteriums form at a much low temperature

than the energy scale of the binding energy because photons are much abundant than protons

(i.e., ηb ≪ 1). The deuterium abundance is sufficiently generated at the time when nD ≈ nb,

or, at the temperature of

T = TD ≃ 0.06 MeV (1 + 0.03 Logη10) , (2.14)

where η10 ≡ ηb/10
−10. This corresponds to the time of

t = tD ≃ 200 sec (1− 0.06 Logη10)

(
3.36

g∗

)1/2

. (2.15)

For a very rough estimation, we could assume that deuteriums are generated at this time

and then combine into heavier elements 3H and 3He:

D + D → 3H+ p (2.16)

D + D → 3He + n. (2.17)

In this assumption, the Boltzmann equation of deuterium is approximately written as [36]

dXD

dt
= −1

2
⟨σv⟩DD nBX

2
D, (2.18)

⟨σv⟩DD ≃ 82 GeV−2T
−2/3
9 exp

(
−4.258/T

1/3
9

)
(2.19)

≃ 0.86 GeV−2 for T = 0.06 MeV, (2.20)

where XD ≡ 2nD/nB is the mass fraction of deuterium. Once we approximate the cross

section as a constant value with T = 0.06 MeV (Tg ≃ 0.7), we can calculate the deuterium

abundance such as

XD ≃ 1.2× 10−4

√
g∗

g∗s

10−10

Yb
(2.21)

≃ 5.6× 10−510
−10

Yb
, (2.22)

where Yb ≡ nb/s and g∗s is the effective degrees of freedom of relativistic particles for entropy

density. We have used g∗ = 3.36 and g∗s = 3.91 in the second line. Note that s = 7.04nγ

(i.e., Yb = ηb/7.04) at present. The deuterium mass fraction is inversely proportional to the

initial baryon abundance. This is because the deuterium abundance is determined by its

cross section and is almost independent of its initial abundance.
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We can easily estimate 4He abundance. It is so stable that we can assume that all neutrons

are contained in 4He. Thus we obtain

X4He ≡ 4n4He

nb
, (2.23)

≃ 2nn
np + nn

∣∣∣∣
T=TD

(2.24)

≃ 0.25 + 0.005 Log η10. (2.25)

For larger baryon asymmetry, the temperature of deuterium formation increases, so that more

neutrons are contained in nucleons before they decay. As a result, 4He abundance increases

as baryon asymmetry increases.

Here let us compare the above results with observations. Aver et al. reported 4He

abundance such as [3]

X
(obs,Aver)
4He = 0.2465± 0.0097. (2.26)

It was also reported by Izotov et al. such as [4]

X
(obs,Izotov)
4He = 0.2551± 0.0022. (2.27)

Observed deuterium abundance is usually expressed by the ratio of number densities of

deuterium and hydrogen:

D/H =
XD

2XH

(2.28)

≃ XD
np + nn

2(np − nn)

∣∣∣∣
T=TD

≈ 0.4XD. (2.29)

It is measured such as [5]

(D/H)(obs) = (2.53± 0.04)× 10−5. (2.30)

These observed values can be explained by the above rough estimation with the baryon

asymmetry of order Yb = O(10−10). More detailed calculations show that observations of

light element abundance imply the baryon abundance of

Ω
(BBN)
b h2 = 0.02202± 0.00046, (2.31)

which can be rewritten as

Y
(BBN)
b = (8.33± 0.17)× 10−11. (2.32)
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2.1.2 CMB temperature anisotropies

The CMB temperature anisotropies also have information of baryon abundance at the time

of recombination epoch. Since protons, electrons, and photon interact strongly before the

recombination epoch, they behave like fluid. There is a typical frequency for their density

perturbation, which is related to the sound velocity. Since the sound velocity is smaller

for larger baryon abundance, the typical frequency for density perturbation becomes larger.

In addition, the free-streaming length of photon is inversely proportional to the number

density of electrons, so that the length scale of damping due to its free-streaming, called

the Silk damping, is smaller for larger baryon abundance. The observed CMB temperature

anisotropies therefore give us information of baryon abundance and it is given by [6]

Ω
(CMB)
b h2 = (0.02222± 0.00023). (2.33)

This remarkably agrees to the results of the BBN theory and observations of light-element

abundances [see Eq. (2.31)].

In this thesis, we use the following values reported in Ref. [7]:

Y
(obs)
b = 8.6× 10−11 (2.34)

Ω
(obs)
b h2 = 0.0227. (2.35)

2.1.3 Sakharov conditions

In order to generate baryon asymmetry, we need to satisfy the Sakharov conditions [16].

First, we need a reaction that violates baryon number conservation. Otherwise the time

evolution of baryon number vanishes:

ṅb ∝
[
Ĥ, B̂

]
= 0, (2.36)

where Ĥ and B̂ are operators of Hamiltonian and baryon charge, respectively. Secondly,

we need C and CP violations, where C is the charge conjugate symmetry and P is the

parity. This is because if C (CP ) is conserved, the reaction rate for baryon production is

the same with that C (CP ) conjugated, which produce anti-baryon. Thus the net baryon

asymmetry cannot be generated in C or CP conserving theory. The third condition is

realization of departure from thermal equilibrium. If the baryon violating interaction is in
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thermal equilibrium, the density matrix can be written as e−Ĥ/T . In this case, we obtain⟨
B̂
⟩

= Tr
[
e−Ĥ/T B̂

]
, (2.37)

= Tr
[
e−Ĥ/T B̂(CPT )(CPT )−1

]
, (2.38)

= −Tr
[
e−Ĥ/T (CPT )B̂(CPT )−1

]
, (2.39)

= −Tr
[
(CPT )e−Ĥ/T B̂(CPT )−1

]
, (2.40)

= −Tr
[
e−Ĥ/T B̂

]
, (2.41)

= 0, (2.42)

where T is the time-reversal. Thus we need non-equilibrium process to generate baryon

asymmetry.

The baryon number is violating in the SM due to anomaly [37, 38]:

∂µj
µ
B = ∂µj

µ
L = nf

(
g22

64π2
ϵµνσρ(W

µν)a(W σρ)a − g21
64π2

ϵµνσρ(F
µν)(F σρ)

)
, (2.43)

where nf is the number of family, g1 and g2 are the gauge couplings of U(1)Y and SU(2),

respectively, and (F µν) and (W µν)a are their field strength tensors. The baryon violating

process requires a tunnelling effect associated with instanton and its rate is exponentially

suppressed at the vacuum [39]. At a higher temperature than the electroweak scale, on the

other hand, the process is efficient and in thermal equilibrium due to thermal effect called

sphaleron effect [40, 20]. Since B + L number is washed out via the sphaleron effect, we

need a B − L violating interaction to realize baryogenesis at higher temperature than the

electroweak scale. Therefore, the first Sakharov condition is rephrased such that we need a

reaction violating B − L asymmetry to generate baryon asymmetry at higher temperature

than the electroweak scale. By the detailed valance, resulting baryon asymmetry is related

to B − L asymmetry such as [41]

nb ≃
8

23
nB−L, (2.44)

at higher temperature than the electroweak scale in SUSY theories. Note that when we

aim to generate baryon asymmetry after the electroweak symmetry breaking, we still need a

baryon violating process rather than the B − L violating one.
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2.2 DM

The idea of DM is first proposed by Zwicky, motivated by the unexpected high velocities

of nebulae in the Coma cluster [42]. Then, in 1978, Rubin et al. found that the rotation

curve of velocity distribution around galaxies becomes constant with increasing distance from

their galaxy center [43]. This behavior cannot be explained by the energy density of visible

matter around the galaxies, while an uniformly distributing DM can. Gravitational lensing

measurements give a further hint for the existence of DM [44, 45]. Trajectory of light is

deformed by the gravitational lensing effect, which results in the deformation of observable’s

image. The mass distribution can be reconstructed via observations of such deformed images

and it reveal that there must be energy density other than luminous objects. In particular,

mass distribution reconstructed around galaxy-cluster collisions is separated from luminous

gas clouds. This indicates that DM is collisionless (see, e.g., Ref. [46]).

The observations of CMB temperature anisotropies reveal that the plasma is homoge-

neous within of order 10−5 at the recombination epoch. If there was no DM, the density

perturbation of baryons, which are tightly coupled with photons, cannot develop to form

large scale structures because of the lack of time after the recombination. In addition, its

density perturbation is smoothed out by the free-streaming of baryon-photon plasma before

the recombination and the density perturbations are smoothed out for the scale of galaxies.

These problems can be addressed when we introduce DM. Since DM is non-baryonic, the

evolution of its density perturbation is different from that of baryons. In particular, DM is

decoupled from photons, so that its density perturbation can develop before the recombina-

tion epoch and its diffusion length is smaller than that of baryons.

If DM is relativistic at present, it is called hot DM. In this case, density perturbations

are smoothed out for the scale of superclusters so that the large scale structure of the Uni-

verse forms by fragmentation, where superclusters form first and subsequently fragment into

smaller objects. This disagrees with the observed large scale structure. On the other hand,

when DM is non-relativistic, i.e., when DM is cold, the large scale structure forms hierarchi-

cally, where smaller objects form first and then cluster into larger ones. This scenario agrees

with observations very well. This implies that DM is cold, and in particular, relativistic

neutrinos cannot play its role [47]. Therefore we need new physics beyond the SM to account

for DM.

The CMB temperature anisotropies are affected by the contents of the Universe. While

baryons are tightly coupled with photons, DM is decoupled from these particles. The gravi-

tational potential of DM with density perturbations gives rise to the characteristic oscillation
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pattern in the spectrum of CMB temperature anisotropies. If the DM abundance is less than

that observed, the epoch of matter-radiation equality becomes close to the recombination

epoch. As a result, the peak height of the spectrum of CMB temperature anisotropies is

lower for less DM abundance. In addition, since the gravitational potential well is not con-

stant, the integrated Sacks-Wolfe effect contributes more significant to the final anisotropy

spectrum than the case withe larger DM abundance. The results of Planck measurement are

given as [6]

ΩDMh
2 = 0.1197± 0.0022. (2.45)

This can be rewritten as

ρDM

s
≃ (3.55 eV)× ΩDMh

2, (2.46)

≃ (0.425± 0.008) eV. (2.47)

To construct a consistent cosmological scenario, it is necessary to account for the above DM

density as well as the baryon density.

2.3 Inflation

Inflation solves some initial condition problems in the Big Bang cosmology, including the

flatness problem and the horizon problem. It can be realized by a potential of a scalar field

called an inflaton when it is specially homogeneous and slowly rolls towards its potential

minimum. After the slow roll ends, the inflaton starts to oscillate around its potential

minimum and then decay into radiation. The resulting Universe is then consistent with the

Big Bang theory. Here we shortly explain the motivation of inflation while in Appendix B

we briefly explain inflation, its realization by a scalar field, reheating, and its predictions.

If the curvature of the Universe K is nonzero, the Friedmann equation is written as

H2 =
ρ

3M2
Pl

− K

a2
, (2.48)

where ρ is the total energy density of the Universe, a is the scale factor, and MPl (≃ 2.4 ×
1018 GeV) is the reduced Planck scale. The parameterK is bounded above by the observation

of CMB temperature anisotropies such as |ΩK | ≡ |K| /(a20H2
0 ) ≲ 0.01, where a0 and H0 are

the scale factor and the Hubble parameter at present. However, the curvature term in the

Friedmann equation is proportional to a−2, so that the combination of |K| /a2H2(t) has to be
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extremely smaller than unity in the early Universe. Such an extremely small dimensionless

parameter is a mystery known as the flatness problem.

The observations of CMB temperature anisotropies show that the background tempera-

ture of the Universe is homogeneous up to a factor of of order 10−5. However, if the Universe

begins from the radiation or matter dominated era, there is no correlation for the whole

observable Universe. There is no reason that the whole Universe is homogeneous without

correlations. This is known as the horizon problem.

The above flatness and horizon problems are explained by an era of exponential expla-

nation called inflation. Suppose that the early Universe is dominated by a constant energy

density. In this case, the Friedmann equation implies that H = Hinf = const. and the scale

factor exponentially increases such as a(t) = a(tini) exp[Hinf(t − tini)], where tini is the time

at the beginning of inflation. Therefore the curvature term in the Friedmann equation de-

creases exponentially compared with the constant energy term, which explains the smallness

of the curvature term. Note that the Hubble-horizon length is given by a(tini)H(tini) at the

beginning of inflation. The volume of this correlated region exponentially increases due to

inflation, so that it explains the homogeneous Universe. Finally, the constant energy density

is converted to radiation at a time denoted by tend. When we define e-folding number such

as N(t) ≡ log (a(tend)/a(t)), N(tini) ≈ 50− 60 is sufficient to solve those problems.

Inflation can be realized by a potential energy of a scalar field called inflaton. The quan-

tum fluctuations of inflaton during inflation is a seed of large scale structure. In particular, the

observations of CMB temperature anisotropies give us information of density perturbations

and confirm predictions of inflation models (see Appendix B for a short review). Unfortu-

nately, inflation washes out baryon asymmetry and DM. Therefore we need mechanisms to

generate them after inflation.

2.4 Discussion

Here let us consider some solutions to the origin of baryon asymmetry and DM.

The thermal leptogenesis is a simple mechanism to generate baryon asymmetry via the

decay of heavy right-handed neutrinos and the B + L violating sphaleron process [21]. It

can be realized when the mass of the lightest right-handed neutrino is larger than of order

109 GeV and the reheating temperature of the Universe after inflation is larger than its mass

(see, e.g., Ref. [48]). Unfortunately, such a high reheating temperature may be inconsistent

with the gravitino and/or LSP overproduction problem in SUSY theories, unless the gravitino

mass is larger than of order 100 TeV and the LSP mass is sufficiently small [49, 50]. The
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electroweak baryogenesis is another candidate of baryogenesis, where the baryon asymmetry

is generated via the sphaleron process in front of bubble of Higgs phase transition [20]. This

requires a modification of Higgs potential to realize a first-order electroweak phase transition,

so that it is expected that some signals are observed in collider experiments in the near future.

However, it might be inconsistent with the experiments of the neutron electric dipole moment

unless we allow some amount of cancellation in CP phases.

The relic density of DM can be explained by freeze-out mechanism when the DM is a

weakly-interacting massive particle (WIMP). The WIMP is thermal equilibrium in the hot

plasma and then decoupled at a temperature below its mass. Its annihilation cross section

determines its relic density, which is of order the observed amount of DM for the WIMP

with mass of order the electroweak scale. It is motivated also by particle physics, such as

supersymmetric theories. However, the non-observation of new physics at the LHC puts

questions on this scenario because there should be new particles around the electroweak

scale.

Here let us reconsider the baryon and DM abundance. From Eqs. (2.35) and (2.45), we

obtain the baryon-to-DM ratio such as

Ωb

ΩDM

≃ 1

5
= O(1). (2.49)

Therefore, there is a coincidence between the energy densities of baryon and DM. This coinci-

dence may imply that the baryon and DM are generated from a common origin. However, the

above mechanisms generate baryon asymmetry and DM independently, so that they cannot

explain the coincidence.

In this thesis, we focus on another mechanism to generate baryon asymmetry called the

Affleck-Dine baryogenesis (ADBG). It is based on SUSY theories, where SUSY partners

of quarks called squarks are introduced. The ADBG generates baryon asymmetry via the

dynamics of squarks in the early Universe, which subsequently decay and release their baryon

charge into SM particles. Here, in SUSY, the lightest SUSY particle (LSP) is stable and is

good candidate of DM when we assume R-parity conservation. Therefore, the decay of

squarks may be a non-thermal source of DM in the scenario of ADBG. This fact may result

in a coincidence between the resulting energy density of baryon and DM. In Chap. 5 and 8,

we show that ADBG can in fact account for the coincidence problem as well as the observed

baryon asymmetry.

15





Chapter 3

Affleck-Dine baryogenesis

In this chapter, we review the conventional scenario of Affleck-Dine baryogenesis (ADBG).

3.1 Overview of ADBG

Before we explain the detail of the ADBG, in this section we overview its mechanism. In

supersymmetric (SUSY) theories, baryon asymmetry can be generated by ADBG using a

B − L charged flat direction called an AD field [17, 19]. The AD field is assumed to have

a negative effective mass term, called a Hubble-induced mass term, due to a finite energy

density of the Universe via supergravity effects, which implies that it obtains a large VEV

during and after inflation. As the energy density of the Universe decreases, the effective mass

decreases. Eventually, the effective mass becomes comparable to the soft mass of the AD field,

and then the AD field starts to oscillate around the origin of its potential, whose dynamics is

far from thermal equilibrium. Non-renormalizable terms, which break B (or B−L) symmetry

in general, are relevant for the dynamics of the AD field due to its large initial amplitude. The

difference between the initial phase of the AD field and the phase in the potential minimum

(along a nonzero VEV) leads to CP violation. In this way, the Sakharov conditions for

baryogenesis [16] are satisfied and B (or B − L) asymmetry is generated. In fact, its phase

direction is kicked by its non-renormalizable A-term potential at the beginning of oscillation.

The asymmetry is actually generated through this dynamics because the B − L number

density is proportional to the phase velocity of the AD field. Note that the amplitude of the

oscillation decreases due to the Hubble expansion, the non-renormalizable terms becomes

irrelevant and B (or B − L) symmetry is approximately restored soon after the beginning

of oscillation. Finally, the coherent oscillation of the AD field decays and dissipates into the

thermal plasma. If the AD field releases its charge into the standard model particles after
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the sphaleron process [20] freezes out, the AD field should have B charge to account for the

baryon asymmetric Universe. On the other hand, if the AD field releases its charge before the

sphaleron process freezes out, the AD field should have B − L charge so that the sphaleron

process does not wash out the asymmetry.

3.2 Flat directions in the MSSM

In SUSY theories, there are SUSY partners of quarks and leptons, called squarks and sleptons,

which are complex scalar fields carrying B − L charges. Let us consider one of them and

denote it as ϕ. When we write its B−L charge as q, the number density of B−L asymmetry

associated with ϕ is written as

nB−L = iq
(
ϕ̇∗ϕ− ϕ∗ϕ̇

)
= 2qIm

[
ϕ∗ϕ̇
]
. (3.1)

This implies that we can obtain a large amount of B−L asymmetry when the field ϕ rotates

in the complex plane with a large amplitude. Thus we focus on a B − L charged scalar field

that has a very flat potential. In fact, the potentials for scalar fields are severely restricted

by SUSY, which especially results in existence of many flat directions. Flat directions are

scalar fields whose potentials are absent within the renormalizable level as long as SUSY is

unbroken.

Here, we illustrate how the potentials for scalar fields are absent in SUSY theories by

taking a flat direction called the ucdcdc flat direction as an example. Let us focus on a scalar

field constructed by right-handed squarks through the following orthogonal matrix: ϕ
·
·

 =
1√
3

 1 1 1
·
·

 (uc)R1
(dc)G1
(dc)B2

 , (3.2)

where the lower and upper indices represent flavour and color, respectively. The dots repre-

sent other directions, which we are not interested in. Since the inverse matrix is given by the

transposed matrix, we obtain (uc)R1
(dc)G1
(dc)B2

 =
1√
3

 1
1 · ·
1

 ϕ
·
·

 . (3.3)

In the MSSM, the superpotential is given by Eq. (A.7) within the renormalizable level. F-

term potentials are determined by superpotential W as

VF (ϕ) =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 , (3.4)
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where φi generically denote the fields in W . It is easy to see that the F -term potential for

the field ϕ is absent. The D-term potential is also absent like

|Da
3 |

2 = g23
∣∣(uc)R∗

1 T a(uc)R1 + (dc)G∗
1 T a(dc)G1 + (dc)B∗

2 T a(dc)B2
∣∣2 (3.5)

=
g23
9
|ϕ|4 |Tr (T a)|2 = 0, (3.6)

|D1|2 =

∣∣∣∣−2

3

∣∣(uc)R1 ∣∣2 + 1

3

∣∣(dc)G1 ∣∣+ 1

3

∣∣(dc)B2 ∣∣∣∣∣∣2 = 0, (3.7)

where |Da
3 |

2 and |D1|2 are D-term potentials for SU(3) and U(1)Y , respectively. Therefore,

the field ϕ has a flat potential and is called a flat direction. The above example consists of

right handed squarks of uc, dc, dc, and is called the ucdcdc flat direction. It is known that

every flat direction is characterized by gauge-invariant monomial in this manner.

The following combination is another famous example of flat directions called LHu flat

direction [18]:

Li =
1√
2

(
0
ϕ

)
, Hu =

1√
2

(
ϕ
0

)
, (3.8)

where L and Hu are left-handed slepton and up-type Higgs, respectively. The directions in

the MSSM are listed in Table. 3.1 with their B − L and B charges [51].1 Note that there

are many flat directions even in such a simple model. It is expected that the dynamics of

such a flat direction can generate a large amount of B − L asymmetry. Hereafter, we call a

B (or B − L) charged flat direction as an AD field and investigate its dynamics in the early

Universe.

Although flat directions have no potential within the exact SUSY limit and the renormal-

izable level, they obtain nonzero potentials through SUSY breaking and nonrenormalizable

operators (i.e., underlying higher energy theory). These potentials induce non-trivial dynam-

ics of flat directions. The next section is devoted to discussing this point.

3.3 Potentials for flat directions

In this section, we discuss the induced potentials for flat directions through SUSY breaking,

thermal effect, and nonrenormalizable operators. Flat directions have soft (SUSY breaking)

masses of the order of sparticle masses, which are subject to collider experiments and should

1Although LHu flat direction has a potential coming from the Higgs µ-term, it is assumed that µ is of
order the soft mass scale and absorb it to the meaning of mϕ [see Eq. (3.9)].
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Table 3.1: Flat directions in the MSSM and their B − L and B charges [51].

flat directions B − L B

LHu -1 0
HuHd 0 0
ucdcdc -1 -1
LLec -1 0
QdcL -1 0
QQQL 0 1
QucQdc 0 0
QucLec 0 0
ucucdcec 0 -1
dcdcdcLL -3 -1
ucucucecec 1 -1
QucQucec 1 0
QQQQuc 1 1
(QQQ)4LLLe

c -1 1
ucucdcQdcQdc -1 -1

be larger than O(102-3)GeV [52, 53]. In addition, the finite energy density of the Universe

contributes to potentials for flat directions. For instance, scalar fields obtain so-called Hubble

induced terms through supergravity effects during inflation because inflation is driven by a

finite energy density [19]. This is also the case during the inflaton oscillation dominated era

as we explain in Sec. 3.3.2. In a finite temperature plasma, flat directions acquires thermal

potentials due to thermal effects [19, 54, 55, 56]. Finally, when a flat direction has a large

VEV, nonrenormalizable operators become important.

3.3.1 Soft terms

In low energy, the AD field obtains soft terms coming from the low-energy SUSY breaking

effect. In gravity-mediated SUSY breaking models, soft terms of the AD field is given by [see

Eq. (A.37)]

Vsoft = m2
ϕ(ϕ) |ϕ|

2 + am3/2W
(AD) + c.c., (3.9)

where mϕ is the soft mass of the AD field, m3/2 is gravitino mass, and a (= O(1)) is a

constant. The higher-dimensional superpotential of the AD field W (AD) is determined below.
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Note that not only soft masses but µ-term can also contribute to mϕ if the flat direction

consists of Higgs field.

In models of gravity-mediated SUSY breaking, the soft mass is approximately constant

such as

mϕ(ϕ) ≃ mϕ, (3.10)

where mϕ is roughly of order the gravitino mass [see Eq. (A.37)]. We take into account the

renormalization running effect in the next chapter but we neglect it for simplicity in this

chapter. On the other hand, in models of gauge-mediated SUSY breaking, SUSY breaking in

a hidden sector is transmitted to the standard model sector by gauge interactions mediated by

a messenger sector.2 Since the AD field has some gauge charge, gauge fields acquire effective

masses of the order of g |ϕ|, where g generically stands for the Standard Model gauge coupling.

The transmission of SUSY breaking effect is therefore suppressed for g |ϕ| ≫Mm, where Mm

is a messenger scale [57], and thereby the soft mass of the AD field is suppressed. The

following potential is well fitted with an analytical result [see Eqs. (A.51) and (A.58)]:

m2
ϕ(ϕ) |ϕ|

2 =

{
m2
ϕ |ϕ|

2 for g |ϕ| ≪Mm

M4
F

[
log g

2|ϕ|2
M2

m

]2
for g |ϕ| ≫Mm.

(3.11)

A parameter M2
F is proportional to the VEV of the F component of a gauge-singlet chiral

multiplet in the messenger sector as

M2
F =

m2
ϕM

2
s

g2
=

gy

(4π)2
⟨Fs⟩ , (3.12)

where y is a coupling constant for the interaction between the gauge singlet chiral multiplet

and the messenger field [see Eq. (A.42)]. The mass of the gravitino is related to the SUSY

breaking F -term as

⟨Fs⟩ = k
√
3m3/2MPl, (3.13)

k ≤ 1, (3.14)

where a factor k is less than one when the messenger sector indirectly couple to the SUSY

breaking sector. Hereafter we redefine the combination of yk as k (≲ 1).

2Here we implicitly assume that the AD field is not identified with LHu flat direction. It has a SUSY
mass from the Higgs µ term, which is not suppressed above the messenger scale.
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The above potential can be understood as follows. Since soft masses are proportional to

the SUSY breaking parameter Fs, m
2
ϕ ∝ |Fs|2. From the dimensional analysis, its propor-

tionality coefficient is given as m2
ϕ(µ

2) ∼ |Fs|2 /µ2 at the energy scale of µ that is higher than

the messenger scale. Since we consider the potential of the AD field, µ should be replaced

by ϕ, so that we obtain a suppressed mass term such as m2
ϕ(ϕ

2) |ϕ|2 ∼ |Fs|2. Note that in

gravity mediated SUSY breaking models, the cutoff scale is of order the Planck scale and

m2
ϕ ∼ |Fs|2 /M2

Pl, so that there is no suppression up to the Planck scale.

3.3.2 Hubble-induced terms

During and after inflation, the AD field obtains effective potentials from the energy density

of inflaton I via supergravity effects [19]. The potential for a flat direction ϕ is modified by

supergravity effects during and after inflation. The energy density of the Universe is so large

that we have to consider its effects on the potential for the flat direction. In the supergravity,

scalar potentials are written in terms of superpotential, W , and Kähler potential, K. The

potential of scalar fields is written as Eq. (A.29).

We introduce an inflaton I and treat it as a background field. As explained in Appendix B,

the potential energy of inflaton drives inflation. We assume that the F-term potential of I

drives inflation and satisfies |WI |2 ≃ 3H2
infM

2
Pl, where Hinf is the Hubble parameter during

inflation. We consider a Kähler potential of

K = |ϕ|2 + |I|2 + c

M2
Pl

|ϕ|2 |I|2 , (3.15)

where c is an O(1) constant. In this case, the supergravity potential of Eq. (A.29) includes

the following interaction:

V ⊃ exp

(
K

M2
Pl

)
WI(K

IĪ)−1W ∗
I (3.16)

≃ |FI |2
(
1 + (1− c)

|ϕ|2

M2
Pl

)
, (3.17)

where we assume ⟨ϕ⟩ , ⟨I⟩ ≪MPl and neglect irrelevant higher-dimensional terms. Thus the

AD field ϕ obtains an effective mass term of order the Hubble parameter during inflation:

VH = cHH
2
inf |ϕ|

2 (3.18)

cH = −3(c− 1), (3.19)

where we use |FI |2 = 3H2
infM

2
Pl. This is called a Hubble-induced mass term.

22



If there is a Kähler potential of I |ϕ|2 /MPl + c.c., it leads to a Hubble-induced A-term

such as (
−λaH
nMn−3

Pl

Hϕn + c.c.

)
, (3.20)

where aH is an O(1) constant. However, the above Kähler potential is absent and the Hubble-

induced A-term is suppressed when the field which has a non-zero F -term during inflation is

charged under some symmetry and its VEV is less than the Planck scale during inflation [58].

These conditions are satisfied for models of hybrid inflation [59, 60] and high-scale inflation

in supergravity [61, 62] and thus we set aH = 0 in this thesis. Note that other small A-terms

play important roles in our new scenario of ADBG explained in Chap. 7 though they do not

in the conventional scenario explained in this chapter.

After inflation ends, the inflaton starts to oscillate around the potential minimum and

its oscillation energy dominates the Universe. During this inflaton-oscillation dominated era,

the Hubble-induced mass comes also from higher-dimensional kinetic interactions, which are

determined by the Kähler potential as

Lkin = Kij̄∂µϕ
i∂µϕ∗j, (3.21)

where ϕi generically represents the fields of ϕ and I. There is a kinetic interaction of

Lkin ⊃ KIĪ

∣∣∣İ∣∣∣2 ⊃ c

M2
Pl

∣∣∣İ∣∣∣2 |ϕ|2 . (3.22)

A typical time scale of the dynamics of the AD field is at most of order the Hubble parameter

as shown below. That of inflaton is the curvature of its potential, which is larger than the

Hubble parameter during inflaton-oscillation dominated era. Thus we can take a time-average

over the inflaton-oscillation time scale to investigate the dynamics of the AD field. Assuming

that the inflaton oscillates in a quadratic potential after inflation, we obtain an effective

Hubble-induced mass for ϕ after inflation:

VH = cHH
2(t) |ϕ|2 (3.23)

cH = −3

(
c− 1

2

)
, (3.24)

where we use the Virial theorem and include the contribution from the F-term potential.3

3 Inflation may be driven by a D-term potential of inflaton [63, 64]. In this case, the Hubble-induced mass
is absent during inflation but the AD field stays at a nonzero VEV due to the Hubble-friction effect [67, 65, 66].
The inflaton obtains nonzero F-term after inflation ends, so that the AD field obtains a Hubble-induced mass
during the inflaton oscillation dominated era. Thus the scenario of ADBG and resulting B − L asymmetry
are the same with the ones in F-term inflation.
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3.3.3 Thermal-log potential

After inflation ends and before reheating completes, inflaton gradually decays into radiation

(see Appendix B.4). Therefore, even if the energy density of the Universe is dominated by

that of oscillating inflaton, there is a background plasma with temperature of Eq. (B.18). In

the finite temperature plasma, the AD field acquires an effective potential via the thermal

effect [55, 56]. In this subsection, we explain the origin of thermal-log potential, focusing on

LHu flat direction.

The free energy of the thermal plasma F depends on QCD coupling g3 in the next-to-

leading order as

F =
3

8
(1 +N

(th)
f )g23(T )T

4, (3.25)

where N
(th)
f is the number of family in the thermal plasma. Here, quark multiplets obtain

effective masses via the Yukawa interactions when LHu flat direction has a large VEV [see

Eq. (A.7)]. When its VEV is larger than the temperature of the plasma, the renormalization

running of g3 is affected and its value at the energy scale of T depends on the VEV of LHu

flat direction [see Eq. (A.25)]:

d

dlogµ

8π2

g2
= (3N − F ) , (3.26)

g(µ) = g0

(
1− g20

16π2

[
(3N − F )log

(
µ

µ0

)])
, (3.27)

where the renormalization scale µ should be replaced by ϕ. When there are ∆F particles

that obtain the effective mass larger than the temperature, the renormalization running is

given by

g(µ) = g0

(
1− g20

16π2

{
[3N − F ]log

(
µ

µ0

)
+∆F log

(
µ

ϕ

)})
. (3.28)

Therefore the free energy depends on ϕ and LHu flat direction acquires a potential depending

on temperature. Since the renormalization running has a logarithmic dependence, it is written

as [55, 56]

VT (ϕ) ≃ cTα
2
sT

4log

(
|ϕ|2

T 2

)
, (3.29)

with cT = 45/32 for y |ϕ| ≫ T , where αs ≡ g2s/4π and y generically stands for Yukawa

couplings for quarks. This is sometimes called thermal log potential.
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Note that temperature is given by Eq. (B.18) during the inflaton-oscillation dominated

era. Since many MSSM particles are decoupled from the thermal plasma due to the effective

mass from the VEV of the AD field, it is calculated as g∗(T ) ≃ 142.5 before the LHu flat

direction starts to oscillate around the origin of the potential. Assuming that the reheating

completes after the oscillation, we obtain g∗(TRH) = 228.75.

3.3.4 Higher-dimensional terms

As we explain in the next section, we assume that cH is negative during and after inflation to

realize ADBG. This means that the AD field has a large tachyonic mass and obtains a large

VEV during the time of H(t) ≳ mϕ. Since the AD field has a large VEV, we have to take into

account non-renormalizable terms to investigate its dynamics. Although the superpotential

of the AD field is absent within the renormalizable level, it may have a higher-dimensional

superpotential such as

W (AD) = λ
ϕn

nMn−3
Pl

, (3.30)

where n (≥ 4) is an integer depending on flat directions and MPl (≃ 2.4× 1018 GeV) is the

reduced Planck scale. For example, since the neutrinos have nonzero masses (denoted as

mνi), we introduce a superpotential of

W (LHu) =
mνi

2 ⟨Hu⟩2
(LiHu)

2 , (3.31)

≡ λ

4MPl

ϕ4 for
ϕ2

2
= LHu, (3.32)

where ⟨Hu⟩ = sin β×174GeV and tan β ≡ ⟨Hu⟩ / ⟨Hd⟩. Thus LHu flat direction corresponds

to the case of n = 4 in Eq. (3.30). In the case of the ucdcdc flat direction, it may come from

a term like

W = λ
(ucdcdc)2

6M3
Pl

= λ
ϕ6

6M3
Pl

, (3.33)

where we use Eq. (3.3). In this case, the power of superpotential n is 6. The superpotential

leads to a F-term potential of ϕ as

VF (ϕ) = λ2
|ϕ|2n−2

M2n−6
Pl

, (3.34)

where we neglect irrelevant higher-dimensional terms in the supergravity potential.
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3.3.5 Summary of this section

Here we summarize the potential for the AD field. It is given by

V (ϕ) = Vsoft + VH + VF + VT (3.35)

= m2
ϕ(ϕ) |ϕ|

2 + am3/2W
(AD) + c.c.

+cHH
2(t) |ϕ|2 + λ2

|ϕ|2n−2

M2n−6
Pl

+ cTα
2
sT

4log

(
|ϕ|2

T 2

)
, (3.36)

where the soft term Vsoft depends on SUSY breaking models and is given by Eqs. (3.10) or

(3.11). We assume negative Hubble induced mass term (cH < 0) during and after inflation.

Hereafter, we set the phase of the AD field and the SUSY-breaking F-term such that Im[a] =

0.

In the next section, we investigate the dynamics of the AD field with the above potential.

3.4 Dynamics of AD fields and baryon asymmetry

In this section, we explain the dynamics of the AD field and calculate B − L asymmetry.

As explained in the previous section, the potential of the AD field is given by

V (ϕ) ≃ VH + VF (3.37)

= cHH
2
inf |ϕ|

2 + λ2
|ϕ|2n−2

M2n−6
Pl

, (3.38)

during inflation, where we assume H2
inf ≫ |ϕ|−1 V ′

soft and neglect the soft terms. The coeffi-

cient cH is assumed to be negative so that the AD field has a tachyonic mass and obtains a

large VEV. The VEV of the AD field at the potential minimum is given by

⟨|ϕ|⟩min ≃
(
|cH |H2

infM
2n−6
Pl

λ2(n− 1)

)1/(2n−4)

. (3.39)

When we decompose the AD field as ϕ = φeiθ/
√
2, the equations of motion are written as

φ̈+ 3Hinfφ̇− θ̇2φ+
∂V (φ)

∂φ
= 0 (3.40)

θ̈ + 3Hinf θ̇ + 2
φ̇

φ
θ̇ +

∂V

∂θ
= 0. (3.41)
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Since Hinf is almost constant during inflation, the AD field damps to the potential minimum

exponentially fast:

|ϕ| − ⟨|ϕ|⟩min ≈ exp

[
−3

2
Hinft

(
1−

√
1− 4 |cH |

9

)]
. (3.42)

The phase direction has a Hubble-friction term (3Hθ̇), so that it stays at a certain phase

during inflation. We denote the initial phase of the AD field as θini, which is expected to be

of order unity.

During the inflaton-oscillation dominated era and the time satisfying H(t) ≫ (|ϕ|−1 V ′
soft+

|ϕ|−1 V ′
T )

1/2, the potential of the AD field is given by

V (ϕ) = VH + VF (3.43)

= cHH
2(t) |ϕ|2 + λ2

|ϕ|2n−2

M2n−6
Pl

, (3.44)

where H(t) = 2/3t. Here, we redefine the parameters such as [19]

z ≡ log t, (3.45)

ϕ ≡ χ(z)

(
4|cH |

9(n− 1)λ2

)1/2(n−2) (
Mn−3

Pl e−z
)1/(n−2)

. (3.46)

Then the equation of motion is written as

χ̈+
n− 4

n− 2
χ̇−

(
4|cH |
9

+
n− 3

(n− 2)2

)
χ+

4|cH |
9

χ2n−3 = 0. (3.47)

We find that the parameter χ oscillates around the minimum of

χ0 =

(
1 +

9(n− 3)

4|cH |(n− 2)2

)1/2(n−2)

. (3.48)

�The oscillation amplitude is damped for the case of n > 4. Therefore, the AD field follows

the potential minimum of Eq. (3.39) with the replacement of Hinf → H(t).

When the Hubble parameter decreases to (|ϕ|−1 V ′
soft+|ϕ|−1 V ′

T )
1/2, the potential of the AD

field is dominated by these terms and it starts to oscillate around the origin of the potential.

We write the Hubble parameter at the time of oscillation as

Hosc ≃
(
|ϕ|−1 V ′

soft + |ϕ|−1 V ′
T

)1/2
. (3.49)
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The VEV of the AD field at that time is given by

ϕosc ≃
(
|cH |H2

oscM
2n−6
Pl

λ2(n− 1)

)1/(2n−4)

. (3.50)

Note that the curvature of the phase direction is given by

m2
θ ≡

1

⟨φ⟩2
∂2V

∂θ2
≃ n|λag|

2n/2
m3/2φ

n−2

Mn−3
Pl

. (3.51)

Since the amplitude of the flat direction decreases as time evolves due to the Hubble ex-

pansion, the curvature of the phase direction, which is proportional to some powers of φ,

decreases fast. Thus we can estimate the phase velocity of the AD fields such as

θ̇ ≈ m2
θ

Hosc

θini. (3.52)

This means that the AD field starts to rotate in the phase space, which is the dynamics that

generates the B − L asymmetry [see Eq. (3.1)]:

a3(t)

a3(tosc)
nB−L(t) = 2θ̇ |ϕ|2

∣∣∣
osc

(3.53)

≡ ϵqHoscϕ
2 (3.54)

ϵ ∼ m2
θ

H2
osc

sin (nθini) , (3.55)

where a(t) is the scale factor and we define the ellipticity parameter ϵ. Since the B−L density

is smaller than the charge times the number density of AD field, ϵ is smaller than unity. The

amplitude of the flat direction decreases as time evolves due to the Hubble expansion and the

B − L breaking effect (i.e., the A-term) becomes irrelevant soon after the oscillation. Thus,

the generated B − L asymmetry within a comoving volume is conserved soon after the AD

field starts to oscillate.

In the case that the oscillating AD field decays and dissipates into radiation before the

sphaleron process freezes out [68], the sphaleron effect relates the B − L asymmetry to the

baryon asymmetry as Eq. (2.44) [20, 21]. We can calculate the resulting baryon-to-entropy

ratio Yb such as

Yb ≡ nb
s

≃ 8

23

nB−L

s

∣∣∣∣
RH

(3.56)

≃ 8

23

3TRHnB−L

4ρinf

∣∣∣∣
osc

(3.57)

≃ 8

23

ϵqTRH

4Hosc

(
ϕosc

MPl

)2

, (3.58)
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where ρinf (≃ 3H2(t)M2
Pl) is the energy density of the inflaton and TRH is reheating temper-

ature. On the other hand, in the case that the oscillating AD field decays and dissipates

into radiation after the sphaleron process freezes out [68], e.g., in the case that Q-balls form

after the oscillation and decay after the sphaleron process freezes out as explained in the next

chapter, we should replace the B − L charge q with the B charge qB and remove the factor

of 8/23 to calculate present baryon asymmetry in the above equations.

In the following subsections, we consider the cases that the dynamics is determined by

the soft mass term in gravity-mediated and gauge-mediated SUSY breaking models and the

thermal-log potential. We explicitly write Hosc and derive the epsilon parameter to calculate

baryon asymmetry in each case.

3.4.1 Gravity-mediated SUSY breaking models

In this subsection, we consider gravity-mediated SUSY breaking model where the soft mass of

the AD field is given by Eq. (3.10). We neglect the thermal-log potential, which is discussed

in Sec. 3.4.3.

When the Hubble parameter decreases to mϕ, the potential of the AD field is dominated

by the soft mass term and it starts to oscillate around the origin of the potential. Here we

denote the Hubble parameter at the time of beginning of oscillation as Hosc:

Hosc ≃
mϕ√
|cH |

. (3.59)

For a rough estimation, we can use Eq. (3.55) and obtain

ϵ ∼
m3/2

mϕ

sin (nθini) , (3.60)

where we use Eq. (3.50).

Here we calculate B − L asymmetry in more detail. The evolution of equation for the

B − L number density is written as

ṅB−L + 3HnB−L = −qφ2

(
∂V

∂θ

)
, (3.61)

where q denotes the B − L charge of the AD field. We semi-analytically and numerically

solve this equation and obtain

a3nB−L(t) = −
∫

dtqa3(t)φ2∂V

∂θ
(3.62)

≡ ϵqHoscϕ
2
osca

3(tosc) (3.63)

ϵ ≃ (1− 2)× a(n− 2)√
n− 1(n− 3)

m3/2

mϕ

sin (nθini) for ϵ ≲ 1, (3.64)
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Figure 3.1: Evolution of B−L number density in a comoving volume (left panel) and the AD field
(right panel) in the conventional scenario of ADBG. We set n = 6, cH = −1, am3/2/mϕ = −1, and
θ0 = π/10. The dimensionfull quantities are rescaled such as t → t/mϕ and ϕ → ϕ/ ⟨|ϕ|⟩t=H−1

osc
.

where we assume cH = −1 in the last line. This result confirms the rough estimation of

Eq. (3.60). We have numerically solved the equation of motion for ϕ and have obtained the

numerical factor of (1 − 2) in Eq. (3.64) for cH = −1 and ϵ ≲ 1. One of the numerical

results is shown in Fig. 3.1, where we set n = 6, cH = −1, am3/2/mϕ = −1, and θ0 = π/10.

One can see that the phase direction is kicked and the B − L asymmetry is generated at

t ∼ m−1
ϕ ≃ H−1

osc. The generated B − L asymmetry within a comoving volume is conserved

soon after the AD field starts to oscillate as one can see in Fig. 3.1.

We can calculate the resulting baryon-to-entropy ratio Yb such as

Yb ≃ 8

23

ϵqTRH

4Hosc

(
ϕosc

MPl

)2

(3.65)

≃ 1.2× 10−10ϵqλ−1/2

(
TRH

100 GeV

)( mϕ

1 TeV

)−1/2

for n = 6. (3.66)

In the last line, we use Eq. (3.50). The resulting baryon asymmetry can be consistent with

the observed baryon asymmetry of Y
(obs)
b ≃ 8.6 × 10−11 [7]. Since we expect ϵq ∼ 1, a

relatively low reheating temperature is required to explain the observed amount of baryon

asymmetry unless the parameter λ is much larger than unity.

3.4.2 Gauge-mediated SUSY breaking models

In models of gauge mediation, the gravitino mass is much smaller than the soft mass of the

AD field. In addition, the soft mass term of the AD field (other than LHu flat direction)

becomes flat for a larger VEV than the messenger scale such as Eq. (3.11). In this case, the
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Hubble parameter at the beginning of oscillation is determined as4

Hosc ≃
√
ϕ−1V ′

gauge. (3.67)

As a result, the ellipticity parameter may be much smaller than unity. Since the curvature of

the potential at the energy scale of |ϕosc| is roughly given by M2
F/ |ϕosc|, the AD filed begins

to oscillate at the time of Hosc ∼ M2
F/ |ϕosc|. Using this and Eqs. (3.50), (3.12), and (3.13),

the VEV of the AD field at the beginning of its oscillation is calculated as

|ϕosc| ≃

{
3× 1013 k1/3

( m3/2

1 GeV

)1/3 ( λ
10−6

)−1/3
, for n = 4,

1015 k1/5
( m3/2

1 GeV

)1/5 ( λ
10−4

)−1/5
, for n = 6.

(3.68)

We can calculate the ellipticity parameter ϵ (≃ m3/2/Hosc) and the required reheating tem-

perature as

ϵ ≃

{
10−3 k−2/3

( m3/2

1 GeV

)1/3 ( λ
10−6

)−1/3
, for n = 4,

4× 10−2 k−4/5
( m3/2

1 GeV

)1/5 ( λ
10−4

)−1/5
, for n = 6,

(3.69)

and

TRH ≃

{
3× 106 GeV k2/3

( m3/2

1 GeV

)−1/3 ( λ
10−6

)4/3
, for n = 4,

3 GeV k6/5
( m3/2

1 GeV

)1/5 ( λ
10−4

)4/5
, for n = 6,

(3.70)

respectively. Here we use the observed value of baryon-to-entropy ratio.

3.4.3 Case with thermal effects: LHu flat direction

In this section, we take into account thermal log potential. It is particularly important for

the case of n = 4, including the case of LHu flat direction.

In the previous two subsections, we neglect the thermal potential and the AD field starts

to oscillate around the origin of the potential at H(t) ≃
√

|ϕ|−1 V ′
soft. When the thermal log

potential dominates the potential before that time, the AD field starts to oscillate at the

time of

Hosc ≃
√
ϕ−1V ′

T . (3.71)

Using Eqs. (3.50) and (B.18), this can be rewritten as

Hosc ≃ 0.6αs
√
λTRH, (3.72)

4Here we implicitly assume that Hosc is larger than the gravitino mass. Otherwise the AD field starts to
oscillate due to the soft mass from the gravity-mediated SUSY breaking effect and Hosc is given by m3/2 [69].
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Figure 3.2: Evolution of B − L number density in a comoving volume (left panel) and the phase
direction of the AD field (right panel) in the conventional scenario of ADBG. We set cH = −1,
aHm3/2/Hosc = −0.01, and θ0 = π/10. The dimensionfull parameters are rescaled as t → t/Hosc

and ϕ → ϕ/ ⟨|ϕ|⟩t=H−1
osc

.

where we assume |cH | = 1 and n = 4.

We numerically solve the equation of motion for ϕ and obtain the ellipticity parameter as

ϵ = (0.4− 3.5)× a sin (nθ0)
m3/2

Hosc

(3.73)

≡ ϵ̃
m3/2

Hosc

, (3.74)

where we define ϵ̃ that is expected to be of order unity. One of our results is shown in Fig. 3.2,

where we set cH = 1, am3/2/Hosc = −0.01, and θ0 = π/10. The ellipticity parameter ϵ is

much smaller than unity in this numerical calculation, so that the phase direction is kicked

slightly. We are difficult to see that the AD field rotates in the phase space in the right panel

of Fig. 3.2 though it actually does.

The large numerical uncertainty comes from the fact that the AD field does not stay at

the VEV of Eq. (3.39) during the inflaton oscillation dominated era for the case of n = 4.

Rather, it continues to oscillate around a VEV of order Eq. (3.39). Then at the time of

H ≃ Hosc it starts to oscillate and rotate around the origin of the potential. The amount of

the baryon asymmetry depends on the oscillation amplitude, which depends on the evolution

of the AD field during the inflaton oscillation dominated era.

The baryon-to-entropy ratio is calculated as

Yb ≃ 8

23

qϵ̃m3/2

4αsλ3/2MPl

(3.75)

≃ 3.7× 10−10ϵ̃

(
λ

10−4

)−3/2 ( m3/2

1 TeV

)
, (3.76)
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where we assume |cH | = 1, n = 4, and αs = 0.1 and use ϵ = ϵ̃m3/2/Hosc. This result is

independent of the reheating temperature [56].

The observed baryon asymmetry can be explained when the coupling λ satisfies

λ ≃ 2.6× 10−4
( m3/2

1 TeV

)2/3
, (3.77)

where we assume ϵ̃ = 1. When we identify the AD field as LHu flat direction, this result

implies that the lightest left-handed neutrino has a tiny mass of

mν ≃ 1.6× 10−9 eV

(
λ

2.6× 10−4

)
(3.78)

≃ 1.6× 10−9 eV
( m3/2

1 TeV

)2/3
. (3.79)

Since the mass squared differences of the left-handed neutrinos are measured by observations

of atmospheric and solar neutrino oscillations, this determines the total neutrino mass such

as ∑
mν ≃

{
0.06 eV for NH
0.1 eV for IH,

(3.80)

for the cases of normal hierarchy (NH) and inverted hierarchy (IH), respectively. We can also

calculate the upper and lower bounds on the effective Majorana mass for the 0νββ decay

process such as [56, 70]

0.001 eV ≲ |mββ| ≲ 0.004 eV for NH (3.81)

0.01 eV ≲ |mββ| ≲ 0.04 eV for IH, (3.82)

where we take the values for the experimentally measured parameters from Ref. [71]. These

results of total neutrino mass and effective Majorana mass are too small to measure in the

near future at least for the case of NH. Therefore, if we would measure the total neutrino

mass or the effective Majorana mass in the near future, we can falsify the scenario of the

ADBG by LHu flat direction.

Here we write the condition that the thermal effect dominates the soft mass term at the

oscillation in the case of n = 4. It is written as TRH ≳ mϕ(ϕ)/(0.6αs
√
λ) [see Eq. (3.72)]. For

a typical parameter set, it is rewritten as

TRH ≳ 2× 106 GeV

(
mϕ(ϕ)

1 TeV

)(
λ

10−4

)−1/2

, (3.83)
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where we use αs ≈ 0.1. Next we write the condition that the thermal effect can be neglected

in the case of n = 6. It can be given by VT ≲ Vsoft at the time of oscillation, so that in

gravity-mediated SUSY breaking models,

TRH ≲ M
(n−3)/(n−2)
Pl

αM
1/2
Pl

m
n/(2n−4)
ϕ , (3.84)

≃ 7.0× 107GeV

(
0.1

α

)( mϕ

TeV

)3/4(MPl

MPl

)3/2

for n = 6, (3.85)

while in gauge-mediated SUSY breaking models,

TRH ≲ M
(n−3)/(2n−2)
Pl

αM
1/2
Pl

V n/(4n−4)
gauge , (3.86)

≃ 108GeV

(
0.1

α

)(
V

1/4
gauge

109GeV

)6/5(
MPl

MPl

)3/10

for n = 6. (3.87)

For reheating temperature below these values, we can neglect the thermal-log potential and

can use the results of the previous two sections. In fact, observed abundance of baryon

asymmetry favours reheating temperature much lower than these bounds for the case of

n = 6 [see Eqs. (3.66) and (3.70)].

3.5 Baryonic isocurvature constraint

Hubble-induced A-terms are absent during inflation if the field which has a non-zero F -term

during inflation is charged under some symmetry and its VEV is less than the Planck scale

during inflation [58]. In this case, since the phase direction of the AD field is massless during

inflation, it has quantum fluctuations during inflation. As a result, baryonic isocurvature

density perturbations, which are tightly constrained by recent observations of CMB temper-

ature anisotropies, are produced. The ADBG after high-scale inflation results in a sizable

baryonic isocurvature fluctuation [65, 66, 58], unless the vacuum expectation value (VEV) of

the AD field is very large during inflation.

The phase direction of the AD field acquires quantum fluctuations during inflation as [65,

66, 58]

|δθini| ≃
√
2Hinf

2π |ϕinf |
. (3.88)
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Since the baryon number is related to the initial phase [see Eq. (3.55)], this fluctuation

induces a sizable baryonic isocurvature fluctuation as

Sbγ ≡
δYB
YB

≃ n cot (nθini) δθini. (3.89)

The baryonic isocurvature perturbation is constrained by observations of the cosmic mi-

crowave background, which have shown that the density perturbations are predominantly

adiabatic [15, 6]. The Planck Collaboration puts an upper bound on the totally uncorrelated

isocurvature fraction as [72]

PSS(k∗)

PRR(k∗) + PSS(k∗)
≲ 0.038, (3.90)

where PRR and PSS are power spectra of the adiabatic fluctuation and isocurvature fluctu-

ation, respectively, and k∗ (= 0.05Mpc−1) is a pivot scale. Since we are interested in the

baryonic isocurvature fluctuation, we use the following relation:

PSS =

(
Ωb

ΩDM

)2

PSbγSbγ
. (3.91)

Thus we obtain an upper bound on the baryonic isocurvature fluctuation as

|Sbγ| ≲
ΩDM

Ωb

(
0.038× 2.2× 10−9

)1/2 ≃ 5.0× 10−5, (3.92)

where we have used PRR
1/2 ≃ 2.20 × 10−9 [6]. This implies that the VEV of the AD field

during inflation is bounded from below:

|ϕinf | ≳ 4× 1017 GeV × n |cot(nθini)|
(

Hinf

1014 GeV

)
. (3.93)

Using Eq. (3.39), the baryonic isocurvature constraint can be rewritten as

λ ≲
{

2.6× 10−4
(

Hinf

2.1×1013 GeV

)−1
for n = 4

1.1
(

Hinf

2.6×1012 GeV

)−3
for n = 6,

(3.94)

where we assume |cH | = 1 and |cotnθini| = 1. This constraint is severe for high-scale inflation

models such as chaotic inflation, where the energy scale of inflation is of order 1014 GeV.
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Chapter 4

Q-ball

In this section, we explain the dynamics of Q-ball, which is a non-topological soliton formed

after the Affleck-Dine mechanism in many SUSY models [26, 22, 23, 24, 25]. We first explain

the condition of the Q-ball to form and then review its decay processes.

4.1 Q-balls in SUSY theories

After the AD field starts to oscillate and rotate around the low energy vacuum, the amplitude

of the oscillation decreases due to the Hubble expansion. Since baryon number-violating

terms are higher-dimensional ones, their effects become irrelevant and the generated baryon

number is conserved soon after the beginning of the oscillation. Thus, in this section, we

assume baryon number to be conserved and investigate the stable configuration of the AD

field in a system with non-zero baryon charge.

4.1.1 Formation of Q-ball

Let us first consider an AD field with conserved baryon symmetry. The Lagrangian density

is written as

L = −∂µϕ∗∂µϕ− V (ϕ). (4.1)

The energy of the AD field is given as

E =

∫
d3x

[
˙|ϕ|

2
+ |∇ϕ|2 + V (|ϕ|)

]
. (4.2)

We are interested in the case with sufficiently small value of the VEV of the AD field, for

which the potential is approximated by V = m2
ϕ(ϕ) |ϕ|

2. Since the baryon density is already
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generated via ADBG, we consider a system with non-zero baryon charge. The baryon charge

is given by

Q = −2

∫
d3xIm

[
ϕ∗ϕ̇
]
, (4.3)

[see Eq. (3.1)], where we have omitted the factor q for notational simplicity. The scalar field

configuration which minimizes the energy given in Eq. (4.2) with a fixed baryon charge Q0

is obtained by minimizing the following combination;

E + ω0

[
Q0 + 2

∫
d3xIm

[
ϕ∗ϕ̇
]]
, (4.4)

where ω0 is a Lagrange multiplier. Terms with time derivatives are rewritten as

˙|ϕ|
2
+ 2ω0Im

[
ϕ∗ϕ̇
]
=
∣∣∣ϕ̇+ iω0ϕ

∣∣∣2 − ω2
0 |ϕ|

2 . (4.5)

Thus, the minimization condition determines the time dependence of the AD field as

ϕ(r, t) = φ(r)e−iω0t/
√
2. (4.6)

Assuming a spherically symmetric ansatz, φ(r) = φ(r), we obtain the following equation

which determines φ(r):

∂2

∂r2
φ+

2

r

∂

∂r
φ+ ω2

0φ− ∂

∂φ
V (φ) = 0. (4.7)

The boundary conditions are φ′(0) = 0 and φ(∞) = 0 since we are interested in smooth

and localized configurations. Regarding φ and r as a position x and a time variable t, we

can interpret Eq. (4.7) as the equation of motion of a particle in one dimension with a

friction term (2/t)∂x/∂t and a potential of ω2
0x

2/2−V (x) (see Fig. 4.1). In this analogy, the

boundary conditions imply that the initial velocity is absent and the position is asymptotic

to the origin at t → ∞. Since the total energy decreases due to the friction term, there is a

solution only when the initial potential energy is larger than the one at x = 0. This requires

a condition of Maxx [ω
2
0x

2/2− V (x)] > 0, which can be rewritten as Minx [2V (x)/x2] < ω2
0.

It is also needed that the curvature of the potential at the origin is negative so that there is

an asymptotic solution. This requires another condition of ω2
0 − V ′′(x) < 0. Thus, one can

find the following condition for existence of a spatially localized configuration, referred to as

Q-ball [26]:

Minφ

[
2V (φ)

φ2

]
< ω2

0 <
∂2V (0)

∂φ2
. (4.8)

38



�

φ

ω
�� φ

� /
�
-
�(
φ)

r = 0r = 1

Figure 4.1: Examples of potential that have Q-ball solutions. These examples satisfy the condition
of Eq. (4.8).

The energy of the Q-ball per unit charge is given by ω0 because

δE =

∫
d3x

[
ω0δω0φ

2 + ω2
0φδφ−∆φδφ+ V ′(φ)δφ

]
(4.9)

= ω0

∫
d3x

[
δω0φ

2 + 2ω0φδφ
]

(4.10)

= ω0δQ. (4.11)

If there is a Q-ball solution, a condensed scalar field is more stable in the Q-ball configu-

ration than in the homogeneous one. Therefore, the AD field, which is homogeneous for the

first time, is unstable and fragments into Q-balls soon after the beginning of oscillation. In

fact, linear analyses indicate that there are instability bands during the oscillation of the AD

field if the condition of Q-ball formation Eq. (4.8) is satisfied [23, 24]. This means that the

coherently oscillating AD field is unstable and fragments into Q-balls soon after the onset

of its oscillation. A typical charge of Q-balls is roughly estimated by the charge which is

contained in the volume of a typical instability wavelength (which is roughly equal to the

Q-ball size R) at the formation time:

Q ∼ nB(tform)R
3 ∼

(
a(tosc)

a(tform)

)3

ω0 |ϕosc|2R3, (4.12)

where we have included the dependence on the scale factors a because it needs some time
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for Q-ball to be formed completely. The numerical simulations have shown that Q-balls

are indeed formed when the condition of Q-ball formation Eq. (4.8) is satisfied, and have

determined the proportional constant including a3(tosc)/a
3(tform) of Eq. (4.12) for the cases

we are interested in [see Eqs. (4.32) and (4.40)] [25, 73].

In the following subsections, we consider gravity-mediated and gauge-mediated SUSY

breaking models, where mϕ(ϕ) is given by Eqs. (3.10) and (3.11), respectively, and derive

solutions of Q-ball.

4.1.2 Q-balls in gravity-mediated SUSY breaking models

In gravity-mediated SUSY breaking models, the soft mass term mϕ(ϕ) is approximately

constant of order the gravitino mass. However, the mass of the AD fieldmϕ(ϕ) logarithmically

depends on |ϕ| due to the renormalization group running of squark masses (see Appendix

A.1.2). We simply write the potential of the AD field in gravity mediation as

V = m2
ϕ(ϕ) |ϕ|

2 (4.13)

≃ m2
ϕ|ϕ|2

(
1 +Klog

|ϕ|2

M2
Pl

)
, (4.14)

where the second term in the parenthesis represents renormalization group running. In many

cases in gravity mediation, the strong interaction dominates quantum corrections for a typical

flat direction, and we obtain K < 0 and |K| ∼ 0.01 − 0.1 [24], which satisfies the condition

for Q-ball formation of Eq. (4.8). The configuration of the AD field is obtained by solving

Eq. (4.7) with the above potential. The solution is well approximated by [24]

ϕ(r, t) ≃ 1√
2
ϕ0e

−r2/2R2

e−iω0t, (4.15)

where R, ω0, and ϕ0 are given as

R ≃ 1

|K|1/2mϕ(ϕ0)
, (4.16)

ω0 ≃ mϕ(ϕ0), (4.17)

ϕ0 ≃
(
|K|
π

)3/4

mϕ(ϕ0)Q
1/2, (4.18)

where mϕ(ϕ0) is the mass of the AD field at the energy scale of ϕ0. Since the energy of the

Q-ball, MQ, is calculated from Eq. (4.2) as

MQ ≃ mϕ(ϕ0)Q, (4.19)
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we find that the energy of the Q-ball per unit charge is equal to ω0 ≃ mϕ(ϕ0). Note that this

is of order the TeV scale and is much larger than the proton mass, which fact is important

to discuss the decay of Q-ball as explained in Sec. 4.3.

Here we consider the instability of the AD field by the linear analysis. When we decompose

the AD field as ϕ = φeiθ/
√
2, their equations of motion are given by

φ̈+ 3Hφ̇− 1

a2
∆φ− θ̇2φ+

1

a2
(∂iθ)

2φ+
∂V

∂φ
= 0 (4.20)

θ̈ + 3Hθ̇ − 1

a2
∆θ +

2φ̇

φ
θ̇ − 2

a2φ
(∂iθ)(∂

iφ) = 0. (4.21)

Let us consider the time just after the AD field starts to oscillate coherently. The coher-

ent oscillation of the AD field is approximately specially homogeneous, so that we set a

perturbation such as

φ = φ(t) + δφ(x, t), (4.22)

θ = θ(t) + δθ(x, t), (4.23)

so that their equations of motion are written as

δ̈φ+ 3H ˙δφ− 1

a2
∆(δφ)− 2φθ̇(δ̇θ) + V ′′δφ− θ̇2δφ = 0, (4.24)

δ̈θ + 3Hδ̇θ − 1

a2
∆(δθ) +

2φ̇

φ
δ̇θ +

2θ̇

φ
˙δφ− 2φ̇θ̇

φ2
δφ = 0. (4.25)

Let us expand the solution such as

δφ = δφ0φ(t)e
αt−ikx, (4.26)

δθ = δθ0e
αt−ikx, (4.27)

and seek a growing mode α > 0. Eliminating δχ0 and δθ0, we obtain a dispersion relation

such as[
α2 + 3Hα +

k2

a2
+

2φ̇

φ
α+ V ′′ − V ′

φ

] [
α2 + 3Hα +

k2

a2
+

2φ̇

φ
α

]
+ 4θ̇2α2 = 0, (4.28)

when we assume V = V0φ
2n and use the Vilial theorem of φ̇φ = −3H/(n+ 1), we obtain[

α2 − 3
1− n

1 + n
Hα +

k2

a2
− 4n(1− n)φ2n−2V0

] [
α2 − 3

1− n

1 + n
Hα +

k2

a2

]
+ 4θ̇2α2 = 0. (4.29)
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Then we can find that for the case of 0 < n < 1, the mode in the interval of [0, kmax] grows,

where kmax is given by

kmax(t) ≃ a(t)
√

4n(1− n)V/φ2. (4.30)

We expect that Q-balls are originated from these growing modes, so that a typical size of

Q-balls are given by of order kmax. The logarithmic potential of the AD field of Eq. (4.14)

can be approximated as V ∼ ϕ2(1+K), so that kmax is given by

k2max

a2(t)
≃ 2 |K|m2

ϕ. (4.31)

Note that kmax is of order R−1 [see Eq. (4.16)].

Using ω0 ≃ mϕ and R ∼ m−1
ϕ in Eq. (4.12), we estimate a typical charge of Q-ball formed

after the Affleck-Dine baryogenesis as

Q ∼ β

(
|ϕosc|
mϕ

)2

, (4.32)

≃ 2× 1023
(

|ϕosc|
3× 1015 GeV

)2 ( mϕ

1TeV

)−2

. (4.33)

The numerical simulations have shown that the coefficient β is approximately given by [25, 73]

β ≃
{

2× 10−2ϵ for ϵ ≳ 0.01,
2× 10−4 for ϵ ≲ 0.01,

(4.34)

which we have used in the second line in Eq. (4.33).

4.1.3 Q-balls in gauge-mediated SUSY breaking models

In this subsection, we consider the AD field in gauge-mediated SUSY breaking models and

calculate the solution of Q-ball.1 As shown in Sec. A.1.5, the soft mass term for the AD

field is absent for a VEV larger than the messenger scale because the transmission of SUSY

breaking effect is suppressed for such a large VEV. Thus the potential of the AD field is

written as Eq. (3.11).

1We implicitly assume that the AD field is not identified with LHu flat direction. It has a SUSY mass
from the Higgs µ term, so that there is no Q-ball solution.
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For the potential in Eq. (3.11), there exists a Q-ball solution, approximated to be [74]23

ϕ(r, t) ≃

{
1√
2
ϕ0

sin(ω0r)
ω0r

e−iω0t forr ≤ R ≡ π
ω0
,

0 forr > R,
(4.35)

where ω0 and ϕ0 are given as

ω0 ≃
√
4πcMFQ

−1/4, (4.36)

ϕ0 ≃
√
c

π
MFQ

1/4

(
≃ c

M2
F

ω0

)
. (4.37)

Here, the parameter c is fitted as [77]

c ≃ 1.7log(ms/ω0) + 2. (4.38)

The energy of the Q-ball is calculated as

MQ ≃ 4
√
4πc

3
MFQ

3/4. (4.39)

Using R ≃ π/ω0 and ω0 ∼ M2
F/ϕ in Eq. (4.12), a typical charge of Q-balls formed after

the Affleck-Dine baryogenesis is estimated as

Q ∼ β

(
|ϕosc|
MF

)4

, (4.40)

≃ 3× 1023 k−6/5λ−4/5
( m3/2

1 MeV

)−6/5

for n = 6. (4.41)

We have used Eq. (3.68) in the last line. The numerical parameter β has been calculated by

the numerical simulation of Q-ball formation and is given by [25]

β ≃
{

6× 10−4ϵ for ϵ ∼ 1
6× 10−5 for ϵ≪ 1.

(4.42)

Note that there are instability modes even if ϵ→ 0, which means that the baryon charge does

not generated by the dynamics of the AD field. This implies that both anti-Q-balls, which

carry negative baryon charge, and Q-balls form to compensate the total baryon charge. This

feature is actually found in numerical simulations.
2If ϕosc or ϕ0 is less than about the messenger mass Ms (≃ gM2

F /mϕ), the suppression on the transmission
of SUSY breaking effect is absent and the situation is similar to models of gravity mediation [75, 76]. We
have checked that ϕosc and ϕ0 is larger than Ms in the case we are interested in, if the mass of the AD field
mϕ is larger than 10 TeV or that of gravitino m3/2 is less than 10 GeV.

3If ϕ0 ≳ M2
F /m3/2, the potential of the AD field is dominated by the soft mass of the form m2

3/2|ϕ|
2,

which is induced by gravity mediated SUSY breaking effect. In this case, a Q-ball solution is known as a
“new type Q-ball” [69], which is stable and is a DM candidate for the case of m3/2/ |q| ≲ 1 GeV. Note that
if k ∼ 1, a “new type Q-ball” is never formed.
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4.2 Evaporation and dissipation of Q-ball

After Q-balls form, they interact with particles in the thermal plasma and release their

charges. There are two important processes: dissipation and evaporation.

4.2.1 Evaporation

Q-balls evaporate via collisions of particles in the thermal plasma [78]. The evaporation rate

par unit time is given by

Γevap =
dQ

dt
∼ −ζ(µQ − µplasma)T

24πR2, (4.43)

where µQ = ω0 is the energy of Q-ball per unit charge. The parameter ζ (≲ 1) is the collision

rate of particles in the thermal plasma. In the case of T ≳ mϕ, the AD field (i.e., squarks)

exists in the thermal plasma, so that the collision rate is of order unity. Since the AD field

decouples below that temperature, ζ is suppressed for T ≲ mϕ.

4.2.2 Dissipation

If the transfer of baryon charges around a Q-ball is not sufficiently fast, the chemical equilib-

rium is realized around the Q-ball. In this case, a dissipation rate determines the evaporation

rate of Q-ball [79].

The dissipation equation is given by

∂

∂t
nB (r, t) = D∆nB = D

1

r

∂2

∂r2
(rnB) , (4.44)

where D is the dissipation coefficient. For squarks, it is given by D = A/T and A = 4 − 6.

Assuming that the baryon density is constant in time around the Q-ball, i.e., nB(R, t) =

neq
B (R), we obtain the solution such as

nB (r, t) = neq
B

R

r
. (4.45)

Thus the charge current is calculated from

j = −D∇nB = Dneq
B

R

r2
, (4.46)

so that the evaporation rate of Q-ball is given by

Γdiff =
dQ

dt
= −

∫
j (R, t) dS ≃ −4πDRneq

B ∼ −4πDRµQT
2. (4.47)
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In the last equality, we use neq
B ≃ µQT

2 for T ≳ mϕ.

The evaporation rate of Q-ball is determined by the smaller rate between the evaporation

and dissipation rates. Since their ratio is given by

Γdiff

Γevap

∼ A

ζTR
∼ ω0

ζT
, (4.48)

we find that the dissipation rate determines the evaporation rate. Since ζ is suppressed for

T ≲ mϕ, we should integrate Eq. (4.47) for T ≳ mϕ.

4.2.3 Summary in this section

When TRH ≲ mϕ, we use Eq. (B.18) and obtain

dT

dt
≃ T

4

Ḣ

H
= −3

8
TH, (4.49)

so that the solution is given by

−δQ ≃ 4π (Rω0)A
8

3
T 2
RHMPl

5

m3
ϕ

∼ 8× 1018
(
TRH

TeV

)2 ( mϕ

TeV

)−3

. (4.50)

On the other hand, when TRH ≳ mϕ, the radiation dominated era contributes to the integral:

dT

dt
≃ −

(
π2g∗
90

)1/2
T 3

MPl

. (4.51)

Thus we obtain

−δQ ≃ 4π (Rω0)A
90MPl

πg
1/2
∗

1

mϕ

∼ 5× 1018
( mϕ

TeV

)−1

. (4.52)

In either case, Q-balls with charge smaller than 1018 disappear and dissipate into thermal

plasma.

4.3 Decay of Q-ball

In this section, we explain the decay rate of Q-ball and calculate its decay temperature. Let

us focus on a Q-ball which consists only of squarks for simplicity.

Numerical simulations have shown that almost all of the baryon charge of the AD field

are transferred into Q-balls [25, 73]. As explained in the previous section, small Q-balls soon
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dissipate into thermal plasma. When a typical charge of Q-balls is larger than about 1018, it

survives at low temperature. Then Q-balls decay and release their baryon charge into quarks

if they are unstable. The AD field interacts (i.e., squarks) with quarks via gauge interactions

and thus Q-balls lose their baryon charge by emitting quarks from their surfaces [27].4 The

condition for Q-ball decay is that the energy of the Q-ball per unit baryon charge, ω0/ |b|, is
larger than masses of baryons in the hadron phase, mb ≃ 1GeV. This is satisfied for Q-balls

in gravity-mediated SUSY breaking models. On the other hand, in gauge-mediated SUSY

breaking models, this condition can be rewritten as

Q ≲ 1029k2c2 |q|−4
( m3/2

1 MeV

)2
, (4.53)

where k and c are parameters defined in Eqs. (3.13) and (4.38), respectively.

4.3.1 Decay of Q-ball into quarks

The baryon charge density inside a Q-ball is so large that a naive rate estimated by squark

decay exceeds an upper limit by the Pauli blocking effect around the Q-ball surface. The

rate of (massless) particle emission from the Q-ball surface is therefore determined by the

Pauli blocking effect on its surface and is given as [27]

dN

dt
≃

∑
i

4πR̃2n · ji, (4.54)

n · ji ≃ 2

∫
d3k

(2π)3
θ (Ei/2− |k|) θ (k · n) k̂ · n

=
E3
i

96π2
, (4.55)

where n is the outward-pointing normal vector, j is particle flux, and R̃ is the effective

radius of the Q-ball given by ϕ(R̃) ∼ ω0 [34]. The interaction energy Ei is given by the

energy of the Q-ball per unit charge, ω0, when the relevant elementary process is squark

decay, such as (squark) → (quark)+(gaugino). In addition, the baryon charge density inside

the Q-ball is so large that the scattering process via gaugino (and/or Higgsino) exchange

(squark) + (squark) → (quark) + (quark) occurs efficiently. It has been shown that the rate

of this process is also saturated by the Pauli blocking effect, and the interaction energy Ei is

4Far inside Q-balls, field values of squarks are large and hence gauginos and quarks are heavy. Therefore,
Q-balls cannot decay into them.
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given by 2ω0 in this case [34].5 The rate of Q-ball decay is dominated by the latter process

and thus its lifetime Γ−1
Q is given by

Γ−1
Q ≃

(
1

Q

dN

dt

)−1

, (4.56)

≃

(
8nq

R̃2ω3
0

24πQ

)−1

, (4.57)

where nq is the number of species for quarks interacting with the AD field and is typically

O(10).

4.3.2 Decay of Q-ball into SUSY particles

Q-balls decay into SUSY particles if the decay process is kinematically allowed. From kine-

matics and the conservation of baryon charge, Q-ball can decay only into particles lighter

than the energy of the Q-ball per unit charge, ω0. Since ω0 is less than the mass of the AD

field [see Eq. (4.8)], Q-balls cannot decay into the AD field itself. This is another explanation

of the stability of Q-ball. On the other hand, Q-balls decay into gauginos and/or Higgsinos

if they interact with the Q-balls and their masses are less than ω0. However, in contrast to

the case of quarks, gauginos and Higgsinos cannot be produced through a scattering process

like (squark) + (squark) → (gaugino) + (gaugino) due to the conservation of baryon charge.

Thus if we could neglect their masses, their production rate from Q-ball decay is given by

Eq. (4.55) with Ei = ω0.

Here, let us take into account nonzero masses of gaugeinos and higgsinos [35]. While flux

of a massless particle at the Q-ball surface is calculated as in Eq. (4.55), that of a massive

particle is suppressed by its mass. Here we consider the Q-ball decay through an elementary

process (squark) → (quark) + (particle χ). We denote the mass of χ as mχ. Since the

total energy of this process is given by the energy of the Q-ball per unit charge, ω0, the

particle χ obtains energy in the range of [mχ, ω0] and the quark obtains energy in the range

of [0, ω0 −mχ]. Their flux is determined by the following procedure. Due to conservation of

energy and angular momentum, quark flux with the energy of E have to coincide with χ flux

with the energy of ω0−E. Since either of them cannot exceed upper bound on their flux due

to the Pauli blocking effect, their flux is determined by the severer bound. The quark flux

with the energy of E is proportional to dpquark = dE, while the χ flux with the energy of

5It has been shown that the rates of N (≥ 3) body scattering processes are not saturated by the Pauli
blocking effect and we can neglect these processes.
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ω0−E is proportional to vχ×dpχ = pχ/E×E/pχdE = dE, where we use p2χ = (ω0−E)2−m2
χ.

We obtain their flux at the Q-ball surface as

n · jχ ≃ 1

8π2

∫ ω0−mχ

0

dEmin
[
E2, (ω0 − E)2 −m2

χ

]
. (4.58)

This integral can be performed analytically and we obtain the following correction to the

flux given in Eq. (4.55):

n · jχ ≃ ω3
0

96π2
× f(mχ/ω0), (4.59)

f(x) ≡
{

1− 6x2 + 8x3 − 3x4 for 0 ≤ x ≤ 1
0 for 1 < x.

(4.60)

The fluxes of massive gauginos and/ro higgsinos are given by this formula.

4.3.3 Decay temperature

Q-balls completely lose their charge and energy when the condition ΓQ ∼ H is satisfied. The

decay temperature of Q-ball is thus determined as

Tdecay ≃

 TRH

(√
30
π2g∗

ΓQMPl

T 2
RH

)1/4
for Tdecay > TRH,(

90
4π2g∗

)1/4√
ΓQMPl for Tdecay < TRH,

(4.61)

where the first line is the case where Q-balls decay before reheating completes while the

second one is the case where Q-balls decay after reheating completes. In the latter case,

the energy density of Q-balls may dominate the Universe. Since Q-balls are localized lumps

much smaller than the horizon scale, their energy density decreases as a−3, where a is a scale

factor. Thus the energy density of Q-balls never dominate that of the Universe when the

following condition is satisfied:

1 ≳ ρQ
ρrad

∣∣∣∣
T=Tdecay

≃ ρQ
ρrad

∣∣∣∣
T=TRH

(
TRH

Tdecay

)
, (4.62)

≃ ρQ
ρinf

∣∣∣∣
osc

(
TRH

Tdecay

)
≃ ϕ2

osc

3M2
Pl

(
TRH

Tdecay

)
, (4.63)

where ρQ, ρrad, and ρinf are the energy densities of Q-balls, radiation, and inflaton, respec-

tively.
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Here we write a typical decay temperature of Q-balls. In gravity-mediated SUSY breking

models, it is given by

Tdecay ≃ 2GeV
( ω0

103 GeV

)1/2( Q

1023

)−1/2

, (4.64)

where we assume nq = 10, R̃ = 20/ω0, and TRH > Tdecay. In gauge-mediated SUSY breking

models, it is given by

Tdecay ≃ 0.1GeV
( ω0

100GeV

)1/2( Q

1023

)−1/2

(4.65)

≃ 0.08GeVk3/4
( m3/2

1MeV

)1/4( Q

1023

)−5/8

, (4.66)

where we assume nq = 10, c = 6, and TRH > Tdecay, and use R̃ = π/ω0. These low decay

temperatures imply that the decay of Q-balls can be a non-thermal source of DM.
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Chapter 5

Co-genesis from Q-ball decay

This chapter is based on the work done by the author [30]. As explained in Chap. 2, the

observed baryon and DM densities are equal up to a factor of 5, which indicates that the

baryon asymmetry and DM have a common origin. In this chapter, we provide a scenario that

explains the coincidence in gravity-mediated SUSY breaking models including the CMSSM,

where the baryons and DM are generated simultaneously through the late-time decay of

Q-balls. In particular, the scenario can be naturally realized in chaotic inflation models as

shown in the next chapter.

5.1 Scenario for co-genesis from Q-ball decay

As explained in Chap. 2, the observed energy densities of baryon and DM are equal to each

other up to a factor of 5. This coincidence is a mystery known as the baryon-DM coincidence

problem.

In this section, we provide a scenario for co-genesis of baryon and DM to overcome the

baryon-DM coincidence problem in models of gravity-mediated SUSY breaking [24]. The

baryon asymmetry is generated in the early Universe as a form of squark (q̃) condensation

by ADBG, which then fragments into Q-balls (see Chap. 4) [24, 26, 22, 23, 25]. Although

Q-balls are very long-lived, they decay before the Big Bang Nucleosynthesis epoch through

baryon-number-conserving elementary processes, such as the decay of squark into quark (q)

and gaugino (g̃) (see Sec. 4.3) [27]. Since the gaugino subsequently decays into the LSP DM,

the baryon (quark) and DM (LSP) are generated simultaneously by the decay of Q-balls.

In the original work of the scenario for the co-genesis proposed in Ref. [24], they focused

on the process of squark decay into quark and gaugino, which implies that the number of

quarks is the same as that of the LSP due to the R-parity conservation. To explain the
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baryon-DM coincidence problem, they concluded that the mass of DM has to be O(1) GeV.

Since this is excluded by the collider experiments, alternative scenarios have been proposed

in Refs. [28, 80, 81, 82]. However, as we see in Sec. 4.3, we should take into account the

annihilation of squarks inside Q-balls. As a result, we find that the branching ratio into

SUSY particles is of order 0.01 and the resulting baryon-to-DM ratio is naturally of order

unity for the LSP with mass of O(100) GeV [35, 30].

In this section, we generically consider gravity-mediated SUSY breaking models, where

the mass of the AD field mϕ(|ϕ|) logarithmically depends on |ϕ| due to the renormalization

group running of squark masses. In many cases, the strong interaction dominates quantum

corrections for a typical flat direction, and we obtain K < 0 and |K| ∼ 0.01 − 0.1 [24] [see

Eq. (4.14)], which satisfies the condition for Q-ball formation in Eq. (4.8).

Since we are interested in the non-thermal production of DM from Q-ball decay, it has

to be generated from Q-ball after DM freezes out for the pair annihilation of LSPs to be

ineffective. This implies that the Q-ball decay temperature of Eq. (4.64) is much smaller

than the mass of DM. This indicates that the charge of Q balls should be Q ≳ 1026 and thus

the magnitude of the scalar field at the onset of oscillation is given by ϕ0 ≳ 1013mϕ(ϕ0).

As we have explained in Sec. 4.3, the decay rate of Q-ball is saturated and determined

by the Pauli blocking effect. While SUSY particles are produced from the Q-ball sur-

face only through elementary decay process like (squark) → (quark) + (gaugino), quarks

are dominantly produced through scattering process via gaugino or Higgsino exchange like

(squark) + (squark) → (quark) + (quark) [34]. Thus, the ratio of the Q-ball decay into

sparticles and quarks is calculated as

Br(Q−ball → (gauginos))

Br(Q−ball → (quark))
≃ ns

8nq
, (5.1)

where a factor of 8 is due to the difference of the elementary processes. The factor ns is the

effective number of sparticles into which Q-balls can decay. Since the flux of massive particles

from a Q-ball surface is smaller than that of massless particles, there is a correction due to

non-zero sparticle masses [see Eq. (4.60)]. Thus we obtain

ns =
∑
s

gsf(ms/ω0), (5.2)

where ms is the mass of the sparticle s, gs is the number of species for the sparticle and f is

a function given in Eq. (4.60). For example, gs = 1, 3, and 8 for the bino, wino, and gluino,

respectively.1 However, Q-balls can decay only into particles lighter than the energy of the
1Note that gs also depends on the flat direction. In the case of ūd̄d̄ flat direction, Q-balls do not decay

into winos, gwino = 0, because they consists of only right-handed squarks [35].
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Q-ball per unit charge, ω0, which is approximately equal to the mass of squarks at the energy

scale of |ϕ| (∼ 1015 GeV). In a typical model of gravity mediation, a mass of squarks at the

energy scale of 1015 GeV is mostly smaller than the mass of the gluino and larger than that

of the bino (LSP). Thus in the typical models Q-balls can decay into binos, and not into

gluino.2 Depending on a model, Q-balls can also decay into winos and Higgsinos. Hereafter,

we assume Q-balls can not decay into Higgsinos, for simplicity.

Since all sparticles eventually decay into binos,3 we obtain the following formula for the

baryon-to-DM ratio:4

ΩDM

Ωb

=
mb̃

|b|mp

ns
8nq

, (5.3)

≃ mb̃

|b|mp

∑
s f(ms/ω0)

8nq
. (5.4)

We should emphasize that this ratio is independent of the reheating temperature and the

charge of Q-balls. As an illustration, let us calculate two asymptotic solutions. When ms ≪
ω0, the function f approaches 1 [see Eq. (4.60)] and ns ≃ 12, where we have included

contributions from gauginos. On the other hand, if mb̃ → ω0 with other particles mass larger

than ω0, a combination of mb̃ns/ω0 approaches 4(1 − mb̃/ω0)
3 ≪ 1. Thus we obtain two

asymptotic solutions for the bino mass, which yields the correct ratio of DM and baryon

density;

mb̃ ≈


0.7nq |b|mp

ΩDM

Ωb
≃ 10 GeV (ω0 ≫ ms)

ω0

[
1−

(
2nq |b| ΩDM

Ωb

mp

ω0

)1/3]
(mb̃ → ω0),

(5.5)

where we assume nq = 10 and b = 1/3 in the first line. The bino mass of 10 GeV is

unrealistic for ordinary models in gravity mediation. We conclude that we can explain the

observed baryon-to-DM ratio if the bino mass is close to below ω0.

In Fig. 5.1, we show the constraint on ω0 and mb̃. On the boundary of and inside the blue

shaded region, the DM density produced by the decay of Q-balls is equal and larger than the

observed value respectively. Here, we have assumed the grand unified theory (GUT) relation,

where the masses of the wino and gluino are two and six times larger than that of the bino

2Even in this case Eq. (5.2) is valid since f(x > 1) = 0.
3For the case of the axino LSP, see Refs. [81].
4We do not include the quarks from the process of (squark) → (quark) + (bino), because the quarks

production rates are determined by the Pauli exclusion principle and the phase space of the quarks produced
by the squark decay is a subset of that of the quarks produced by the squark annihilation.
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Figure 5.1: Exclusion plot in a model of gravity mediation with Q-ball formation. We
assume that the number of quarks interacting with Q-ball, nq, is 10 and baryon charge of the
AD field, b, is −1/3. We also assume that the masses of the wino and gluino are two and
six times larger than that of the bino, which is a typical case in gravity mediation with the
grand unified theory relation. The abundance of DM produced from Q-ball decay is larger
than that observed in the blue shaded region. In the red shaded region, the gluino mass is
smaller than 1.4 TeV and excluded by the gluino search at the ATLAS Collaboration [83].
The green-dotted and yellow-dashed lines indicate the limit of mb̃ → ω0 and mb̃ → 10 GeV,
respectively.

(see Appendix A.1.2). Under the GUT relation, the red shaded region is already excluded

by the gluino search at the ATLAS Collaboration [83].

5.2 Application to the CMSSM

In this section, we apply the scenario explained in the previous section to the CMSSM,

which is defined by only five parameters at the GUT scale (≃ 2 × 1016 GeV) and is one of

the simplest SUSY extended Standard Models. The discovery of the 125-GeV Higgs boson

by the LHC experiment [1, 2] and theoretical 3-loop calculations of Higgs mass implies that

the masses of SUSY particles are O(1) TeV [84, 85].

We assume a reheating temperature lower than the LSP freeze-out temperature to dilute

the thermal relic density of the LSP. Note that since we consider a scenario for non-thermal

production of DM, the phenomenological aspects are different from those of conventional
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bino thermal relic scenarios. In conventional scenarios, the bino LSP and the stau have to

be nearly degenerate in mass and their mass has to be smaller than about 1TeV to obtain

the required annihilation cross section. On the other hand, co-genesis mitigates the required

degeneracy and allows heavier SUSY particles. It follows that our scenario is compatible

with both the discovery of 125GeV Higgs boson and null-detection of SUSY particles. The

abundance of DM produced through the reheating process is negligible for a sufficiently low

reheating temperature TRH ≲ O(100)MeV and a sufficiently large inflaton mass [86]. Such

a low reheating temperature is also favoured in light of baryonic isocurvature constraints as

shown in Sec. 3.5 [65, 66, 58, 29]. Hereafter, we take the reheating temperature as a free

parameter less than O(1) GeV.

If the beta function of the mass for the AD field K is negative, it leads to an instability

of the homogeneous solution of the AD field. This results in the formation of Q-balls [24, 26,

22, 23, 25]. We have calculated beta functions for the mass of flat directions using the code

SOFTSUSY 3.3.6 [87] and have found that the beta function is indeed negative in most of the

parameter space in which the co-genesis scenario can be realized (see Figs. 5.2 and 5.3).

Q-balls decay during inflaton-oscillation (matter-dominated) era in the relevant CMSSM

parameter region (shown in Figs. 5.2 and 5.3). Thus we define the Q-ball decay temperature

Td by the first line in Eq. (4.61). In the CMSSM, Q-balls can decay solely into binos among

SUSY particles via the squark decay5

ΩDM

ΩB

≃ 3mb̃

mp

f(mb̃/ω0)

8nq
, (5.6)

where mb̃ and mp are the bino mass and the proton mass, respectively. We should emphasize

that the resulting baryon-to-DM ratio Eq. (5.6) depends only on the masses of SUSY particles

except for nq, which is typically O(10). This simple ratio illustrates that our co-genesis

scenario can be realized not only in the CMSSM but also in a wide class of SUSY models.

Note that the resulting baryon-to-DM ratio of Eq. (5.6) naturally results in O(1) when the

mass of the LSP mLSP is O(1) TeV and the function f is O(0.1).

The annihilation of LSPs produced via Q-ball decay might spoil the baryon-to-DM ratio

of Eq. (5.6).6 Here we check its efficiency. One might wonder that the spatial distribution

of LSPs is localized around the Q-balls. However, the spatial distribution of LSPs becomes

5The decays into the other gauginos and higgsinos are kinematically forbidden for the parameter set in
which the following co-genesis scenario is realized and the Higgs mass is consistent with the observation,
though we correctly take into account these decay channels in our analysis.

6If we consider the case that the pair annihilation is effective, the resultant LSP density is determined by
the mass of LSP, the pair annihilation rate of LSP, and the decay temperature of the Q ball [28, 80]. Thus,
the branching ratios of the Q-ball decay do not affect the ratio of the baryon to LSPs.
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homogeneous due to their free streaming before its thermalization and annihilation become

effective [24]. The annihilation is ineffective when nDM ⟨σv⟩ ≲ H is satisfied at the time of Q-

ball decay. We estimate the annihilation cross section ⟨σv⟩ as follows. First, we check whether
the LSPs kinematically thermalized due to elastic interactions with the thermal plasma or

not. Since the LSP is mostly bino, the elastic scattering through sfermion exchange is in

charge of losing their energy. The energy-loss rate is given as

− dEb̃
Eb̃dt

=
∑
i

31π3

5120
g41
T 6

m6
b̃

Eb̃

(
1−

m2
b̃

E2
b̃

)(
6
E2
b̃

m2
b̃

− 1

)

×


(

Y 2
L

m2
f̃L
/m2

b̃
− 1

)2

+

(
Y 2
R

mf̃R
/m2

b̃
− 1

)2
 , (5.7)

with g1 =
√

5/3gY , left/right-handed sfermion masses mf̃L/R
, YL = −1/2, 1/6 for leptons

and quarks, and YR = −1, 2/3,−1/3 for charged leptons, up- and down-type quarks. The

summation is taken for all relativistic particles. We average the energy-loss rate over non-

thermal distribution, that is, we integrate it in terms of the energy of the bino Eb̃ with the

weight given by the flux of bino at the surface of Q-ball. If the energy-loss is larger than the

Hubble expansion rate, we use the thermally averaged annihilation cross section. Otherwise,

we adopt the non-thermal annihilation cross section. The sfermion exchange dominates the

annihilation of LSPs, whether the produced LSPs are thermalised or not. For the thermally

averaged annihilation cross section, we consider s- and p-wave contributions [88]. When

we calculate the non-thermal annihilation cross section, we ignore the fermion masses and

average it over non-thermal distribution determined by the Q-ball decay.

Note that the Q-ball decay temperature Td is proportional to Q−1/4T
1/2
RH and hence is

proportional to T
3/4
RH [see Eqs. (3.66), (4.12), and (4.64)]. This implies that when we consider

a sufficiently high reheating temperature, the energy-loss rate Eq. (5.7) is so large that the

bino-like LSP is thermalized. If the LSP is thermalized (high TRH), its annihilation cross

section is so small that its annihilation can be neglected. If the LSP is not thermalized (low

TRH), its annihilation cross section is independent of TRH and is sizable. Here, noting that

at the time of Q-ball decay nDM ∝ T 8
d/T

5
RH and H ∝ T 4

d/T
2
RH [see Eq. (4.61)], we find that

nDM/H is independent of TRH. It follows that the efficiency of the annihilation nDM ⟨σv⟩ /H
at T = Td is independent of TRH once the LSP is not thermalized. Therefore, there should

be a region in which the annihilation can be neglected independently on TRH (see the light

green lines in Figs. 5.2 and 5.3).

We explicitly calculate the baryon-to-DM ratio of Eq. (5.6) in the CMSSM, where all
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Figure 5.2: Allowed contours consistent with observations in two (m0,M1/2) planes of the
CMSSM, with tanβ = 10 and A0 = 0 with sign[µ] = +1. We can account for the baryon-to-
DM ratio as well as baryon density in the blue shaded region, where we use nq ≤ 36. The
red lines represent contours for the mass of the Higgs boson. The annihilation of the LSP is
ineffective above the light green lines, which is plotted in the case of TRH ≲ 0.1GeV. Above
the magenta dot-dashed line, K < 0 for all squarks. In the light gray region, the averaged
value of K is positive. The dark gray shaded areas are excluded either because the LSP
is charged, there is no consistent electroweak vacuum, or the mass of chargino is less than
100GeV. The light green regions are excluded by the ATLAS search. The 14TeV LHC with
100 fb−1 and 3000 fb−1 would probe the parameter space below the magenta and blue dotted
line, respectively. We assume that the top quark pole mass as mpole

t = 173.3GeV.

parameters are defined at the GUT scale (≃ 2× 1016 GeV); the universal scalar mass (m0),

the universal gaugino mass (M1/2), the universal trilinear scalar coupling (A0), the ratio of the

VEV of the two Higgs fields (tanβ), and the sign of the higgsino mass parameter (sign[µ]).

Low scale SUSY parameters, especially mass spectrum used in Eq. (5.6), are obtained by

solving renormalization group equations. To this end, we use SOFTSUSY 3.3.6 [87].

Let us summarize our procedure. Given a reheating temperature TRH, we obtain the
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VEV of the flat direction ϕosc from Eq. (3.66), which then determines the charge of Q-balls

from Eq. (4.12). For each CMSSM parameter set, we obtain the beta function K and the

mass of the flat direction mϕ and bino mb̃ by solving the renormalization group equations

numerically with the code SOFTSUSY 3.3.6 [87]. Here we take the parameters K and mϕ as

averages of beta functions and masses over all squarks at the energy scale of ϕ0. Then we

can calculate the baryon-to-DM ratio from Eq. (5.6). Figure 5.2 is the result for the case of

relatively small tanβ and A0, which require relatively large stop mass to explain the 125-GeV

Higgs boson. Figure 5.3 is the result for the case of relatively large tanβ and large mixings in

the stop sector (i.e., A0/m0 ∼ ±2.5), where relatively small stop mass can be consistent with

the 125-GeV Higgs boson. The figures show that the baryon-to-DM ratio and their absolute

abundance can be consistent with the observed values in the blue shaded region. The result

implies the relation m0 ∼M1/2 to realize the co-genesis scenario. This is because the function

f in Eq. (4.60) has to be suppressed for bino mass of O(1) TeV, that is, mb̃ ≃ ω0 (≃ m0).

Note that the result is insensitive to the value of reheating temperature TRH because ω0 in

Eq. (5.6) depends on TRH only logarithmically.

We have checked whether or not the beta function of the mass for the flat direction K is

negative, which is a condition for Q-ball formation. Above the magenta dot-dashed line in

Figs. 5.2 and 5.3, the beta functions of all squarks are negative, which means that Q-balls

are always formed after the Affleck-Dine baryogenesis. In the light gray region, the averaged

value of K is positive and Q-balls cannot be formed unless the flat direction consists mainly

of first and second family squarks. One can see that Q-balls actually form after ADBG in

most of the blue shaded regions.

The annihilation of the LSP is ineffective above the light green lines in Figs. 5.2 and 5.3,

where we assume TRH ≲ 0.1GeV. For higher reheating temperature, the annihilation of the

LSP is less effective, as long as the reheating temperature is sufficiently lower than the mass

of the LSP such that the thermal relic density of the LSP can be ignored. This is because for

a higher reheating temperature, LSP’s are well thermailzed and its annihilation cross section

is p-wave suppressed. One can see that the annihilation effect is irrelevant in most of the

blue shaded regions and Eq. (5.6) is justified.

In Figs. 5.2 and 5.3, the red curves are contours of Higgs mass calculated with the nu-

merical code FeynHiggs 2.10.0 [89, 90, 91, 92, 93]. Note that there are uncertainties in the

predicted Higgs mass coming mainly from the uncertainties in the top mass and higher loop

corrections. We have found that the co-genesis scenario can be consistent with the observed

125 GeV Higgs mass.

The light green regions are excluded by the ATLAS search for /ET events with 20 fb−1 of

59



æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

ææ

ææ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

ææ
æ

æ

ææ

æ
æ æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æææ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

ææ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ æ

æ

ææ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ æ

æ æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ
æ

æ æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ æ

æ

æ

æ
æ

ææ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ
æ

æ

æ

æ

æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ

ææ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

ææ

æ æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ æ

æ

æ

æ

æ
æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ æ
æ

æ

æ

æ
æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ æ

æ
æ

æ

æ

æ

ææ

æ

æ
æ

æ

æ

æ æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

ææ

æ
æ

æ

æ

æ

æ
æ æ

æ

æ

æ
æ

æ

æ
æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à
à

à

à

à

à

àà

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

àà

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

à

àà
à

à

à

à

à

à à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

à

àà

à

à

à

à

à

àà

à

à

à

à

à

à à
à

à

à

à

àà

à

à

à

à
à

à

à
à à à

à

à

à
à

à

à

à

à

à à

à

à

à

à

à

à

à

à

ààà
àà

à

à

à
à

à

à

àà

àà à

à

à
à

à

à

à

à

à
à

à

à

à

à

à

à
à

à

à
à

à
à

à

à

à

àà

à

à

àà

à
à

à

à
à

à
à

à

à
à

à

à

à

à

à

à

à
à

à

à

à
à à

à
à

à
à àà

à

à

à

à

à
à

à

à à

à

à
à

à

à

à

à

à
à

à

à

à

à

à

à

à
à

à

à

àà

à
à

à

à

à

à
à

à

à
à

à
à à

à

à

à

à à

à
à

à
à

àà à

à

à à
à

àà

à

à

à

à

à

à

à

à à

à

à

à

à

à

à
à

à

à

à

à

à

à

à

à

à

ààà à

à

à

àà

à

àà

à

à

à

à

à

à à

à

à
à

à

à
à

à

à

à

à

à

ààà

à

à

à
à

à

à
à

à

à

à

à

à
à
à

à

à

à

à

àà

à

à

à

à

à

à
à

à

à

à

à
à

à

à

à

à

à

à

à
à

à
à

à

à

à

à

à

à

à

à

àà
à

à

à

à
à

à

à
à

à

à

à
à

à

à

à

à

à
àà

à

à

à

à

à

à

à

à

à

à

à à
à

à àà
àà

à
à

à

à

à
à

à

à

à à
à

à
à

à

à

à
à

à à
à à

à

à
à àà

à

à

à

à

à

à

à
à

à

à

àà
à

à

à

à

àà

à

à

à

à

à

à

à

àà

à

à

à

à

à

à

à
à

à

à
à

à

à àà

à

à

àà

à

à

à

à

à

à

à

à

à
à

à

à

à
àà

à

à

àà
à

à

à

à

à

à

àà
à

à

à

à

à

à

à

à

à

à

à

à

à

à

à à

à

à

à

à
à

à
à

à
à

à

à
à

à

à

à
à

à
à

à

à

à

à

à

à
à

à

à

à
à

à

à

à

àà
à

à

à

à à

à à

à

à

à
à

à

à

à

à

à

10 50 100 500 1000
10-50

10-48

10-46

10-44

10-42

mLSP @GeVD

Σ
S

I
@cm

2
D

XENON1T

XENONnT

DARWIN

neutrino coherent scattering

Figure 5.4: Spin-independent cross sections for the interactions of the LSP on nucleons as a
function of LSP mass, and sensitivities of future DM direct detection experiments [98]. The
green, blue, and red curves are the future sensitivities for XENON1T [99], XENONnT, and
DARWIN [100], respectively. The yellow region is experimentally unaccessible due to irre-
ducible neutrino backgrounds [101]. The blue dots correspond to sets of CMSSM parameters
for the co-genesis scenario, while the red ones correspond to those realizing the observed
Higgs mass as well as the co-genesis scenario.

data at 8TeV [85], which has been shown to be independent of tanβ and A0 [94]. The 14TeV

LHC with 100 fb−1 and 3000 fb−1 would probe the parameter space below the magenta and

blue dotted line, respectively [84, 95, 96]. Our results with the observed 125-GeV Higgs

boson is consistent with the ATLAS results and would be partially tested by future LHC

experiments.

We also use the code micrOMEGAs 3.6.9 to calculate the spin-independent interactions of

the LSP on nucleons [97]. The CMSSM parameters are generated randomly in the ranges

m0 = 0 - 10TeV, M1/2 = 0 - 10TeV, A0 = (−3m0) - (3m0), tanβ = 1 - 60, and sign[µ] =

±1 with a flat distribution. The results are plotted as blue dots in Fig. 5.4 when the co-

genesis scenario is realized, while they are plotted as red dots when the Higgs mass, baryon

density, and DM density are consistent with the observations. We find that XENONnT and

DARWIN [100] can test a significant part of the parameter region for the co-genesis scenario

consistent with the 125GeV Higgs boson.
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Chapter 6

Inflation and ADBG

This chapter is based on the works done by the author [29, 32]. In this chapter, we investigate

the relation between ADBG and inflation. We focus on three typical models of inflation in

SUSY theories: F-term hybrid, D-term hybrid, and chaotic inflation.

As we can see from Eq. (3.66), the baryon asymmetry generated via ADBG may depend

on reheating temperature TRH. To determine it, we consider the decay of inflaton for each

inflation model.

Since the AD field obtains a large VEV during inflation, we may need to take into account

its effect on inflaton dynamics via supergravity effects.1 In fact, there are many works

revealing that a constant term in superpotential and a scalar field with a large VEV may

affect inflaton dynamics [104, 105, 106, 107]. These effects may rescue the F -term hybrid and

chaotic inflation models, which themselves are somewhat inconsistent with the observations

of CMB temperature anisotropies. We investigate the backreaction of ADBG to inflaton

dynamics in the F -term and D-term hybrid and chaotic inflation models in supergravity.

Focusing on LHu flat direction, we determine the lightest neutrino mass in these models

so that the predictions of spectral index, tensor-to-scalar ratio, and baryon abundance are

consistent with observations.

6.1 F-term hybrid inflation

In this section, we consider the simplest model of F -term hybrid inflation [59, 60]. We first

explain its model and the reheating process. Then we discuss the backreaction of the AD

field to inflaton dynamics.

1See Refs. [102, 103] for the case that the AD field also plays the role of inflaton.
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6.1.1 Model

The superpotential of the inflaton sector is given by

W (inf) = κS
(
ψψ̄ − µ2

)
, (6.1)

where κ is a coupling constant, S is inflaton, and ψ and ψ̄ are superfields that are charged

under a U(1) gauge symmetry. Since the D-term potential gives a D-flat condition of |ψ| =∣∣ψ̄∣∣, we write a flat direction called a waterfall field such as ψ+ = (ψ+ ψ̄)/
√
2 and its minimal

VEV as ⟨ψ+⟩min ≡ v =
√
2µ. The F-term potentials are given as

Vinf |tree = κ2
∣∣∣∣ψ2

+

2
− µ2

∣∣∣∣2 + κ2 |S|2 |ψ+|2 . (6.2)

When the inflaton S has a sufficiently large VEV, the fields ψ and ψ̄ obtain large effective

masses of κ ⟨S⟩ and thus stay at the origin of the potential. Then the F-term of S is nonzero

and drives inflation, where the energy scale of inflation is given by

Hinf ≃ κµ2

√
3MPl

(6.3)

≃ 2.4× 108 GeV
( κ

10−3

)( µ

1015 GeV

)2
. (6.4)

The inflaton s (≡ |S| /
√
2) slowly rolls toward the origin due to the 1-loop Coleman-Weinberg

potential:

Vinf |1−loop =
κ4µ4

32π2

[(
x2 + 1

)2
ln
(
x2 + 1

)
+
(
x2 − 1

)2
ln
(
x2 − 1

)
− 2x4 lnx2 − 3

]
(6.5)

≃ κ4µ4

16π2
lnx2, (6.6)

where we define x ≡ |S| /µ ≡ s/v and use x ≫ 1 in the second line. The inflaton s slowly

rolls down to the origin of the potential until its VEV reaches the critical value of scr ≡ v.

The COBE normalization requires [15, 6]

µ ≃
(
3As
4N∗

)1/4

≃ 5.7× 1015 GeV, (6.7)
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where we assumeN∗ = 50 in the second equality. The e-folding number, slow-roll parameters,

and spectral index are given by

N∗ ≃ 8π2

κ2
s2∗ (6.8)

ϵs ≃ 1

2

(
κ2

16π2

)2
1

s2∗
(6.9)

ηs ≃ − κ2

16π2

1

s2∗
≃ − 1

2N∗
(6.10)

ns ≃ 1− 1/N∗ ≃ 0.98, (6.11)

where s∗ is the field value at the e-folding number of N∗ and N∗ (≈ 55) is the e-folding

number at the horizon exit of the pivot scale (see Appendix B). When the inflaton s reaches

a critical VEV of scr, the waterfall field and inflaton start to oscillate about their global

minimum and inflation ends. Around the minimum of the potential, the masses of inflaton

and waterfall field are given by
√
2κµ.

Since U(1) symmetry is spontaneously broken by the VEV of waterfall field, cosmic strings

form after inflation. In the F-term hybrid inflation model, the energy density of cosmic string

per unit length µCS is calculated as (see, e.g., Ref. [108])

µCS = 2πB(κ2/e2)µ2 (6.12)

B(x) ≃
{

1.04x0.195 for 10−2 < x≪ 1
2.4 ln−1 (2/x) for x < 10−2,

(6.13)

where e is U(1) gauge coupling constant. They contribute to the spectrum of CMB temper-

ature anisotropies, so that their energy density is bounded above by observations [109]:

GµCS ≲ 3.2× 10−7, (6.14)

where G ≡ 1/(8πM2
Pl).

Pulsar timing arrays put a constraint on the energy density of stochastic gravitational-

wave background, which can be recast into a constraint on the string tension because cosmic

strings emit gravitational waves via decaying string loops. The recent results from the North

American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration put a

conservative bound such as [110]

GµCS ≲ 3.3× 10−8, (6.15)

where they allow loop size to be a free parameter. The Square Kilometre Array (SKA)

telescope will improve this constraint by one or two order of magnitudes [111].
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In this simplest model, the spectral index is predicted as ns ≃ 0.98 [see Eq. (6.11)], which

is inconsistent with the observed value more than 2 sigma level: n
(obs)
s = 0.963± 0.008 [109].

The tension of the cosmic string Eq. (6.13) is also inconsistent with the constraint by the

CMB observation. However, some modifications can make them consistent with the observed

value and constraint [112, 113]. In Sec. 6.1.3 we also show that the backreaction of the AD

field on the inflaton dynamics can make the spectral index and tension of cosmic string

consistent with the constraint.

6.1.2 Reheating temperature

As we can see from Eq. (3.66), the resulting baryon asymmetry may depend on reheating

temperature TRH. Here we consider the decay of inflaton, which determines the reheating

temperature. There is a lower bound on the reheating temperature because the inflaton

decays into the MSSM particles via supergravity effects. The fields ψ and ψ̄ can be written

as

ψ± ≡ ψ ± ψ̄√
2
. (6.16)

The ψ+ is the waterfall field, which starts to oscillate after inflation, while ψ− does not because

of D-term. Thus around the minimum of the potential, the superpotential is reduced to be

Eq. (B.25) with minf =
√
2κµ and the replacements of S → ψ+ and X → S. Thus we can use

the results in Appendix with KS =
√
2µ. From Eq. (B.29), the lower bound on the reheating

temperature is given by [114]

T
(min)
RH ≃ 3× 103 GeV |yt|

( µ

1015 GeV

)( minf

1012 GeV

)3/2
. (6.17)

If there is an interaction between the inflaton and Higgs fields such as

W ⊃ ySHuHd, (6.18)

then the inflaton decay rate and the reheating temperature are estimated as

Γinf =
y2

4π
mϕ (6.19)

TRH ≃ 2× 1010 GeV
( y

10−4

)( minf

1012 GeV

)1/2
. (6.20)

Note that the coupling constant y should be smaller than κ so as not to affect the Coleman-

Weinberg potential of Eq. (6.6). Thus the reheating temperature cannot be higher than that

of Eq. (6.20) with y ≈ κ.

64



We have to take into account the constraint on TRH from gravitino overproduction prob-

lems. The inflaton decays also into gravitinos via supergravity effects. Its production rate is

given by Eq. (B.34). The resulting gravitino-to-entropy ratio from this contribution is given

by

Y
(decay)
3/2 ≃ 3

2

(
90

g∗π2

)1/2 Γ3/2MPl

minfTRH

. (6.21)

Gravitinos are also produced from scatterings in the thermal plasma after reheating com-

pletes. Its abundance is given by [115, 116, 117, 118]

Y
(thermal)
3/2 ≃ 0.26

ρc
m3/2s0

(
TRH

1010 GeV

)[
0.13

( m3/2

100 GeV

)
+

(
100 GeV

m3/2

)( mg̃

1 TeV

)2]
, (6.22)

where s0 (≃ 2.9 × 103 cm−3) and ρc (≃ 1.052 × 10−5h2 GeV/ cm3) are the present entropy

density and critical energy density, respectively. The parameter mg̃ is gluino mass and h is

the present Hubble parameter in the unit of 100 km s−1 Mpc−1. Stringent bounds on the

reheating temperature are obtained when we assume that the gravitino is the lightest SUSY

particle (LSP) and is stable. In this case, its abundance should not exceed the observed DM

abundance:

m3/2

(
Y

(decay)
3/2 + Y

(thermal)
3/2

)
≤ ρc
s0
ΩDM ≃ 0.4 eV, (6.23)

where ΩDMh
2 (≃ 0.12) is the DM relic density.2 For example, in the case of m3/2 = 100 GeV,

the reheating temperature is bounded such as

2× 107 GeV
( µ

1015 GeV

)2 ( minf

1012 GeV

)2
≲ TRH ≲ 9× 109 GeV, (6.24)

where we use h ≃ 0.67 [7].

From Eq. (3.66), we can see that an extremely large value of λ is required to be consistent

with the lower bound on reheating temperature. In the case of such a large value of λ,

the thermal log potential has to be taken into account even for n = 6 [see Eq. (3.94)]. In

Sec. 6.1.3, we focus on LHu flat direction, which corresponds to the case of n = 4.

2If the gravitino mass is about 1 TeV and it is unstable, its decay products interact with the light elements
and destroy them at the time of BBN epoch. Then the gravitino abundance is bounded above by about four
order of magnitude severer than the bound of Eq. (6.23) [49]. Here we assume gravitino to be stable. In this
case, the next to lightest SUSY particle may decay in the epoch of Big Bang nucleosynthesis and may destroy
light elements. This problem can be avoided when sneutrino is the next to lightest SUSY particle [49]. This
constraint is highly model dependent, so that we use a conservative bound such that the gravitino abundance
is below the observed DM abundance.
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Here we briefly comment on the isocurvature constraint explained in Sec. 3.5. It can

be easily satisfied because the energy scale of inflation is relatively small in F-term hybrid

inflation models [see Eq. (6.4)].

6.1.3 Backreaction

Since the AD field obtains a large VEV during inflation, we should take into account its

effect on inflaton dynamics via supergravity effects. Here we focus on the LHu flat direction.

In supergravity, the potential of scalar fields is determined by Eq. (A.29). When we

consider the total superpotentialW = W (AD)+W (inf), the terms ofWSK
S̄ϕWϕ̄+c.c.−3 |W |2

give a linear potential of inflaton such as [119, 105]

VBR ≃ a′
κv2

M2
Pl

⟨
W (AD)

⟩
S + c.c., (6.25)

where a′ is anO(1) constant determined by higher dimensional Kähler potentials and
⟨
W (AD)

⟩
is determined by Eqs. (3.30) and (3.39). Hereafter we assume a′ = 1 for simplicity.

The effect of the linear term in the F -term hybrid inflation model has been studied in

Ref. [105]. They have found that the linear term affect the inflaton dynamics when the slope

of the linear term is the same order with that of the Coleman-Weinberg potential. They

introduce a parameter to describe the relative importance of the two contributions to the

slope:

ξ ≡ 29/2π2

κ3 ln 2

⟨
W (AD)

⟩
vM2

Pl

, (6.26)

which should be smaller than unity so that the inflaton can rolls towards the critical value.

When ξ is of order but below unity, the linear term is efficient for the inflaton dynamics. We

define a critical value of coupling constant for the AD field [see Eq. (3.30] such as

λc ≡ 2.2
v3

κ
, (6.27)

where we use H2
inf = κ2v4/12M2

Pl. When λ is near the critical value, ξ is close to unity and

the backreaction of the AD field to inflaton dynamics is efficient. Note that λ should not

larger than λc so that the inflaton can rolls towards the critical value and inflation can end.

Since the linear term breaks R-symmetry, under which the inflaton S is charged, we need

to investigate the inflaton dynamics in its complex plane as done in Ref. [105].3 We read their
3A CP-odd component of inflaton is excited via this dynamics, which also provide another scenario of

baryogenesis [120].
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result of Fig. 9, where desired values of
⟨
W (AD)

⟩
can be read from the contours of gravitino

masses by the relation of m3/2M
2
Pl ↔

⟨
W (AD)

⟩
.4 The result is shown in Fig. 6.1, where the

spectral index as well as the baryon asymmetry can be consistent with the observed values

in the colored region. Here, we assume that the final phase of the inflaton is larger than

π/32 to avoid a fine-tuning of initial condition. Above the red-dashed curves for each case

of gravitino mass, we can neglect the effect of a linear term arising from low energy SUSY

breaking, which is investigated in the original work of Ref. [105]. If there is only the effect of

a linear term arising from low energy SUSY breaking, the spectral index can be consistent

with the observation on the red-dashed curve for each case of gravitino mass. Thus we can

explain the observation on and above the red-dashed curve for each case of gravitino mass

in our model.5

We set reheating temperature such that the gravitino abundance generated from inflaton

decay [114] and scattering in the thermal plasma [115, 116, 117] is minimized. The upper-

right regions (above the upper green dot-dashed line for m3/2 ≤ 100 GeV and the lower one

for m3/2 = 1 TeV) are excluded by the overproduction of gravitinos if they are stable. Note

that if gravitino is unstable, the bound is much severer than the case of stable gravitino.

For the cases of stable gravitino with mass heavier than a few TeV, we find that there is no

viable region because of the gravitino problem [105].

The regions above the green lines are excluded by the cosmic string bound from the

observations of CMB temperature anisotropies [see Eq. (6.14)] [109] and pulsar timing array

(PTA) [see Eq. (6.15)] [110]. The Square Kilometre Array (SKA) telescope will improve the

sensitivity of PTA by about one order of magnitude in terms of the parameter v [111], so

that we can search whole parameter region for the case of m3/2 ≳ 100 GeV.

Since the value of superpotential of the AD field is determined at each point in Fig. 6.1,

we can determine its coupling constant λ. Then we can use Eq. (3.76) to calculate the

baryon abundance. For the case of m3/2 = 100 GeV, we can explain the baryon abundance

by taking ϵ̃ properly. On the other hand, for the case of m3/2 = 100 MeV, the baryon

asymmetry cannot be produced efficiently below the blue-doted curve even if ϵ̃ is as large as

unity.6 Using Eq. (3.31), we predict lightest neutrino mass mν as given in the contour plot.

Since the coupling constant in the superpotential of the AD field is roughly determined by

4The dynamics of the phase direction of the AD field can be neglected for the case of λ ≪ κ, which is
actually satisfied in our case, so that the dynamics of inflaton is basically equivalent to the one in Ref. [105].

5We neglect an O(1) uncertainty arising near the red-dashed curve that comes from the phase difference
between two linear terms.

6When the coefficient of A-term a in Eq. (3.3.1) is much larger than unity, ϵ̃ can be larger than unity and
the bound of the blue curve disappear.
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Figure 6.1: Contour plot of Log[mν ] in the unit of eV in Log[v]-Log[κ] plane. For the case
of m3/2 = 100 GeV, the spectral index as well as the baryon abundance can be consistent
with the observations above the corresponding red-dashed curve in the colored region, while
for the case of m3/2 = 100 MeV, they can above the corresponding red-dashed curve and
blue-dotted curve in the colored region.

Eq. (6.27) to affect the inflaton dynamics, mν is larger for larger v and smaller κ. From the

figure, we can see that mν can be as large as 10−10 eV for the case of m3/2 = 100 GeV, while

it is at most 10−13 eV for the case of m3/2 = 100 MeV.

6.2 D-term hybrid inflation

In this section, we consider the simplest model of D-term hybrid inflation [63, 64]. We first

explain its model and the reheating process. Then we discuss the baryonic isocurvature

problem and backreaction of the AD field to inflaton dynamics.
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6.2.1 Model

D-term inflation models are motivated by the so-called η-problem. If inflation is driven by

a nonzero F-term potential energy, supergravity effects induce masses of order the Hubble

parameter to all scalar fields, including inflaton. However, the Hubble-induced mass for

inflaton spoils the flatness of its potential and results in an O(1) slow roll parameter η ∼
1. Since Hubble-induced masses come only from nonzero F-term potential energy, the η

problem is absence in the case of D-term inflation, in which inflation is driven by nonzero

D-term potential energy. Although the following simple model of D-term inflation predicts

the spectral index relatively blue tilted compared with the observation of CMB temperature

anisotropies and is also excluded by the cosmic string constraint, we use it as an illustration.

Note that there are variants of D-term inflation models which predict the spectral index

consistent with the observed value [121, 122], and the results in the next subsection can be

applied to those models, too.7

We introduce a U(1) gauge symmetry with a Fayet-Ilipoulos (FI) term ξ and consider

superfields S, ψ−, and ψ+ with U(1) gauge charges as 0, −1, and 1, respectively. The D-term

potential is written as

VD =
g2

2

(
|ψ+|2 − |ψ−|2 − ξ

)2
, (6.28)

where g is the U(1) gauge coupling constant. We introduce a superpotential given as

W (inf) = λSψ+ψ−, (6.29)

where λ is a coupling constant.

The field s (≡ |S| /
√
2) plays the role of inflaton. Suppose that the inflaton s has a

VEV larger than the critical value of scr ≡ g
√
ξ/(

√
2λ). The fields ψ− and ψ+ obtain large

effective masses from the VEV of the inflaton and stays at the origin of the potential. In

this regime, the nonzero D-term potential of V0 = g2ξ2/2 drives inflation. The Coleman-

Weinberg potential for the inflaton lifts its potential above the critical point as Eq. (6.6)

with the replacement of κ2µ2 → g2ξ. Thus, the inflaton slowly rolls down to the origin of

the potential. The COBE normalization requires [15, 6]

√
ξ ≃

(
3As
N∗

)1/4

≃ 8.1× 1015 GeV, (6.30)

7The results are not applicable to the inflation model considered in Ref. [123] because a F-term potential
drives inflation with a sizable e-folding number in that scenario.
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where we assume N∗ = 50 in the second equality. This leads to the Hubble parameter during

inflation such as

Hinf ≃
gξ/

√
2√

3MPl

≃ 5.7× 1012 GeV
( g

0.5

)( √
ξ

8.2× 1015 GeV

)2

. (6.31)

The e-folding number, a slow roll parameter, and spectral index are calculated as

N∗ ≃ 2π2

g2
s2∗
M2

Pl

, (6.32)

ηs ≃ − g2

4π2

M2
Pl

s2∗
≃ − 1

2N∗
(6.33)

ns ≃ 1− 1

N∗
≃ 0.98, (6.34)

where the subscript ∗ denotes values corresponding to the pivot scale k∗ = 0.05 Mpc−1. The

slow roll condition fails (i.e., ηs = 1) at the VEV around s ≃ g/(2π)MPl, which is larger than

the critical value scr for the case of λ = O(1). Thus, slow roll inflation ends at the VEV

around s ≃ g/(2π)MPl and soon after that the waterfall field ψ+ starts to oscillate around

the low energy minimum of
√
ξ.

The scalar spectral index deviates from the observation by about 2σ. Let us emphasize

that the results in the next section can be applied to other variants of D-term inflation

models, including the ones which predict the spectral index consistent with the observed

value within a 1σ level [121, 122]. In Sec. 6.2.4 we also show that the backreaction of the AD

field on the inflaton dynamics can make the spectral index consistent with the observation.

In order to obtain a sufficiently large e-folding number, say, N∗ ≳ 60, the initial VEV

of the inflaton s has to be as large as N∗
g2

2π2MPl ≃ 0.8MPl for g = 0.5. which is of order

the Planck scale. Planck-scale physics may affect the potential of the inflaton at such a high

energy scale and may spoil its flatness. Hereafter, we just assume the above potential for

simplicity. In Sec. 8.2, we provide a model to avoid this problem.

Since U(1) symmetry is spontaneously broken by the VEV of waterfall field, cosmic strings

form after inflation. They contribute to the spectrum of CMB temperature anisotropies, so

that their energy density is bounded above by the CMB observation as Eq. (6.14) [109]. In

the D-term hybrid inflation model, the energy density of cosmic string per unit length µCS

is calculated by Eq. (6.13) with B = 1, so that it is written as

GµCS ≃ 2.9× 10−6

(
ξ

8.2× 1015 GeV

)
. (6.35)
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Therefore, the cosmic string bound of Eq. (6.14) is inconsistent with the value of ξ required

by the COBE normailzation. To avoid the cosmic string constraint, we may have to modify

the D-term inflation model (see, e.g., Ref. [121, 122, 123]).

6.2.2 Reheating temperature

After inflation ends, the inflaton S and waterfall field ψ+ start to oscillate around the minima

and the energy density of the Universe is dominated by these oscillations. When some

MSSM fields carry nonzero U(1) charge, the field ψ+ immediately decays into the MSSM

fields through the interaction in the D-term potential. Even if the MSSM fields have no

U(1) charge, the kinetic mixings between the U(1) and U(1)Y makes the field ψ+ decay

into the MSSM fields relatively fast [67]. Thus, the reheating temperature of the Universe

is determined by the relatively late-time decay of the inflaton S, which dilutes the relics

produced from the decay of ψ+.

Thus around the minimum of the potential, the superpotential is reduced to be Eq. (B.25)

with minf = λ
√
ξ and the replacements of X → ψ−. However, since Kψ− = KS = 0, non-

thermal production process of gravitinos is absent in this model. If there is an interaction

between the inflaton and Higgs fields such as

W ⊃ ySHuHd, (6.36)

then the inflaton decay rate and the reheating temperature are estimated as

Γinf =
y2

4π
mϕ (6.37)

TRH ≃ 2× 1010 GeV
( y

10−4

)( minf

1012 GeV

)1/2
. (6.38)

The gravitino overproduction problem puts the upper bound on the reheating temperature

as explained in the previous section. Note that the lower bound is absent because Kψ− =

KS = 0.

6.2.3 Baryonic isocurvature constraint

The isocurvature constraint explained in Sec. 3.5 implies that the coupling constant λ should

be smaller than 10−3 for n = 4 and 0.1 for n = 6 when we assume Hinf = 6× 1012 GeV [see

Eq. (6.31)]. Note that for n = 4 the coupling constant λ has to be smaller than of order 10−4

to explain the observed amount of baryon asymmetry [see Eq. (3.76)], so that the baryonic

isocurvature constraint is satisfied. For the case of n = 6, the upper bound on λ implies an

upper bound on TRH of order 102−3 GeV via the relations of Eqs. (3.66) and (3.70).
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6.2.4 Backreaction

In order to discuss the backreaction of the AD field to the dynamics of inflaton, we need

to estimate the VEV of the AD field during inflation. When we consider D-term inflaton

models, the Hubble-induced mass term is absent during inflation [65, 66]. In this case, there

is no reason that the AD field stays at the origin because the potential of the AD field is

extremely flat compared with the Hubble parameter. To estimate the VEV of the AD field

during D-term inflation, we solve the equation of motion of the AD field [66]:

3Hinf ϕ̇+ V ′
ϕ ≃ 0, (6.39)

where we assume the slow roll of the AD field and neglect a second derivative term. Assuming

a sufficiently large initial VEV of the AD field, we obtain its VEV at the time of horizon exit

of the pivot scale such as

⟨|ϕ|⟩inf ≃
(

1

2
√
δN

HinfMPl

λ

)1/2

, (6.40)

where δN is the difference of e-folding number from the beginning of primordial inflation

to the time of horizon exit of the pivot scale. Although the resulting VEV of Eq. (6.40) is

slightly different from the one in the case of F-term inflation models [see Eq. (3.39)], the

resulting baryon asymmetry are the same with the ones in F-term inflation (see footnote 3).

Here we consider the backreaction. In the case of D-term inflation, no linear potential

can be induced by the backreaction of the AD field because the superpotential of the inflaton

sector vanishes during inflation. However, a Hubble-induced mass term of inflaton comes

from the higher dimensional Kähler potential, which is necessary to realize the Affleck-Dine

mechanism [104]:

V ⊃ c′HH
2 |S|2 (6.41)

c′H = (1− c)
VF

H2M2
Pl

(6.42)

=
(1− c)

4N
⟨|ϕ|⟩2inf , (6.43)

where we use Eqs. (3.34) and (6.40). Note that we have assumed (1 − c) < 0 to realize

the Affleck-Dine mechanism, so that it gives a negative contribution to the curvature of

inflaton potential. As a result, the slow roll parameter η is smaller than the case without the

backreaction such as

η ≃ −c
′
H

3

[
1 +

(
1− e−2/3c′HN

)]
, (6.44)
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where N is the e-folding number. The spectral index can be consistent with the observed

value (n
(obs)
s = 0.963 ± 0.008) within 1 sigma level for the case of 0.009 < −c′H < 0.024. In

addition, the slow roll epsilon parameter is also smaller, so that the energy scale of inflation

is lower. This implies that the FI parameter ξ and Gµ are smaller such as

√
ξ ≃ 8.2× 1015 GeV ×

(
2c′HN

3

e−4/3c′HN

1− e−2/3c′HN

)1/4

(6.45)

Gµ ≃ 2.9× 10−6 ×
(
2c′HN

3

e−4/3c′HN

1− e−2/3c′HN

)1/4

. (6.46)

Unfortunately, the correction to the energy density per unit length µ is at most about a

factor of 0.5, which is not enough to avoid the cosmic string constraint of Eq. (6.14). To

avoid the cosmic string constraint, we may have to modify the D-term inflation model (see,

e.g., Ref. [121, 122, 123]).

Next, let us identify the AD field as LHu flat direction. We determine the VEV of the AD

field during inflation to predict the lightest neutrino mass. Note that the VEV of inflaton at

the time of horizon exit of pivot scale is just below or of order the Planck scale, so that the

total e-folding number of inflation could not be much larger than O(10). For example, if the

initial VEV of inflaton is the Planck scale, the total e-folding number of D-term inflation is

at most 52 (62) for c′H = 0.017 (0.024). Thus we take (1− c)/(4N) = −0.1 in Eq. (6.43) to

determine c′H . This result implies that the coefficient of the Hubble induced mass of inflaton

can be of order 0.01 when the VEV of the AD field is just below the Planck scale. Therefore,

the lightest neutrino mass is given by mν ≈ 10−11 eV for c′H = O(0.01).

6.3 Chaotic inflation

In this section, we consider a chaotic inflation model in supergravity [125]. We first explain

its model and the reheating process. Then we discuss the baryonic isocurvature problem and

backreaction of the AD field to inflaton dynamics.

6.3.1 Model

We consider a chaotic inflation model in supergravity where an inflaton superfield I has shift

symmetry in the Kähler potential [125]:

Kinf = c0MPl (I + I∗) +
1

2
(I + I∗)2 + |X|2 − c3

4

|X|4

M2
Pl

, (6.47)
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where X is a stabiliser field. Note that c0 is an order parameter of Z2 symmetry, under which

the fields I and X are odd, so that we take c0 as a free parameter that may be smaller than

unity. We include the |X|4 term in the Kähler potential, which cannot be suppressed by any

symmetries. The other higher dimensional terms do not change our discussion qualitatively,

so that we neglect them in the following analysis.

The imaginary part of its scalar component η ≡ (I − I∗)/
√
2 is identified with inflaton.

The shift symmetry is explicitly broken by a superpotential of

W (inf) = minfIX, (6.48)

where minf is inflaton mass. When the inflaton has a large VEV, the stabiliser field obtains

a large effective mass and stays at the origin. The inflaton potential is then given by the

quadratic potential via the F -term of the stabiliser field. Thanks to the shift symmetry in

the Kähler potential, the VEV of inflaton can be larger than the Planck scale and quadratic

chaotic inflation can be realized in this model.

The real component of I obtains a Hubble-induced mass and stays at a VEV of Re[I] ≃
−c0/2 [125]. When the VEV of the inflaton decreases down to the Planck scale, the real

component of I as well as the inflaton start to oscillate around the origin of the potential

and inflation ends. The dynamics is illustrated in Fig. 6.2, where we numerically solve the

equation of motion of the field I and plot its trajectory for the case of c0 = 1. The field I

slowly rolls along the imaginary axis during inflation, where Re[I] = −c0/2 is approximately

satisfied. We denote the imaginary part of I as η, which has a quadratic potential such as

Vinf ≃
1

2
m2

infη
2. (6.49)

Thus the energy scale of inflation is given by

Hinf ≃
minfη√
6MPl

. (6.50)

The COBE normalization implies that the mass of the inflaton is given by

minf ≃
(
24π2As
4N 2

∗

)1/2

≃ 1.6× 1013 GeV, (6.51)

where we assume N∗ = 55 in the last equality. The e-folding number, slow roll parameters,
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Figure 6.2: Dynamics of the field I in the complex plane in the chaotic inflation model. We set
c0 = 1. The field I slowly rolls along the line of Re[I] = −c0/2 during inflation. After it reaches
the red point, inflation ends and it starts to oscillate and rotate around the origin.

and spectral index are calculated as

N∗ ≃ η2∗
4M2

Pl

(6.52)

ϵs ≃ 2

η2
≃ 1

2N∗
(6.53)

ηs ≃ 2

η2
≃ 1

2N∗
(6.54)

ns ≃ 1− 2

N∗
≃ 0.96. (6.55)

Inflation ends when the slow roll parameters reaches unity. The Hubble parameter at the

end of inflation is given by

Hinf,end ≃ minf√
3
. (6.56)

In Fig. 6.2, inflation ends when the field I reaches the red point. After inflation ends, it

starts to oscillate and rotate around the origin.

The stabiliser field X obtains a Hubble-induced mass via the higher dimensional Kähler

potential such as

V ⊃ c3m
2 |I|

2

M2
Pl

|X|2 ≃ 3c3H
2 |X|2 . (6.57)
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This implies that the dynamics of X is qualitatively different from the case with c3 = 0. We

should include them because the higher dimensional Kähler potential cannot be suppressed

by any symmetries, To realize chaotic inflation, we assume c3 > 0. Then the field X stays at

the origin.

6.3.2 Reheating temperature

The inflaton can decay into the MSSM particles via supergravity effects when the Z2 breaking

parameter is nonzero. Its decay rate is calculated in Sec. B.4.1 and is given by Eq. (B.29)

with KS = c0, which implies that there is a lower bound on reheating temperature given by

TRH ≃ 2× 108 GeVc0 |yt|
( minf

1013 GeV

)3/2
. (6.58)

Note that there may be a renormalizable coupling such as

W ⊃ yXHuHd. (6.59)

If c0 is sufficiently small, the decay rate is determined by this term and is given by

TRH ≃ 6× 108 GeV
( y

10−6

)( minf

1013 GeV

)1/2
. (6.60)

However, the coupling constant y should be suppressed by a factor of minf/MPl not to affect

the inflaton potential, so that the reheating temperature is at most 109 GeV [126].

The Z2 breaking term makes the inflaton decay into gravitinos efficiently via supergravity

effects and its decay rate is the same order with that of Eq. (B.29) as shown in Eq. (B.34).

Therefore, there is a gravitino problem from inflaton decay as explained in Sec. 6.1.2. For

example, in the case of m3/2 = 100 GeV, the reheating temperature is bounded such as

106 GeV
( c0
10−5

)2 ( minf

1013 GeV

)2
≲ TRH ≲ 9× 109 GeV. (6.61)

Here we assume that the inflaton decays into the MSSM particles via Eq. (6.59) and write

the resulting temperature as TRH.

6.3.3 Baryonic isocurvature constraint

The isocurvature constraint explained in Sec. 3.5 implies that the VEV of the AD field

should be as large as the Planck scale in chaotic inflation models, where Hinf is as large as

1014 GeV. This means that the higher-dimensional operator in the superpotential should
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be suppressed; λ ≲ Hinf/MPl ≈ O(10−4) [see Eq. (3.39)]. Note that for the case of n = 4

the coupling constant λ should be smaller than 10−4 to account for the observed amount of

baryon asymmetry [see Eq. (3.76)], so that the baryonic isocurvature constraint is usually

satisfied.

When the VEV of the AD field is as large as the Planck scale, we have to take into account

higher-dimensional terms VK coming from a Kähler potential. Let us consider the following

Kähler potential as an illustration for the origin of VK :

K ∼ |X|2 ϕn
′

Mn′
Pl

+ c.c., (6.62)

where X is a field which has a non-zero F -term during inflation (i.e. |FX |2 = 3H2
infM

2
Pl).

This operator gives the AD field a potential as

VK =

(
−aH2

n′Mn′−2
Pl

H2ϕn
′
+ c.c.

)
+ . . . , (6.63)

where “· · · ” denotes higher-dimensional Planck-suppressed terms. The parameter aH2 is an

O(1) constant. Curvature of the phase direction of AD field, θ, is dominantly given by VK ;

m2
θ ≡ 1

2 |ϕinf |2
∂2VK
∂θ2

, (6.64)

≃ n′|aH2 |
2

H2
inf

(
|ϕinf |
MPl

)n′−2

. (6.65)

Note that the curvature is highly suppressed compared with H2
inf for |ϕinf | ≲ MPl, that is,

for λ ≳ 10−4. [see Eqs. (6.50) and (3.39)]. Therefore, the phase direction of the AD field

obtains a mass of the order of the Hubble parameter during inflation [see Eq. (6.65)].8 In

this case, the baryonic isocurvature fluctuation is absent from the beginning. To summarize,

in order to avoid a sizable baryonic isocurvature fluctuation, the VEV of the AD has to be

as large as the Planck scale, in which case baryonic isocurvature fluctuation is absent due to

the potential originated from a Kähler potential.

Let us discuss the implication of the baryonic isocurvature constraint on the reheating

temperature. Since the VEV of the AD field at the beginning of its oscillation is related

with that during inflation via |ϕosc| = (Hosc/Hinf)
1/(n−2) |ϕinf |, a large VEV during inflation

results in a relatively large VEV at the onset of its oscillation, and then the AD field tends

8In contrast, if λ = O(1), the lower bound in Eq. (3.93) requires about 1% and 10% tuning on the initial
phase θ for n = 4 and n = 6 flat directions, respectively. This tuning would not be explained by the anthropic
principle because human life would be able to exist whether or not baryonic isocurvature fluctuation exists.
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to dominate the Universe. Therefore, in order to account for today’s baryon-to-entropy

ratio without additional entropy production except for the decay of inflaton, the reheating

temperature tends to be small to dilute the AD field successfully. From Eq. (3.39), the VEV

of the AD field at the beginning of its oscillation is given by

|ϕosc| ≃

{
3× 1015 GeV

(
λ

10−4

)−1/4 ( Hosc

1 TeV

)1/4
for n = 6,

3× 1016 GeV
(

λ
10−4

)−1/6 ( Hosc

1 TeV

)1/6
for n = 8,

(6.66)

where Hosc is the Hubble parameter at the oscillation time. Thus the observed baryon density

requires the reheating temperature of the Universe as

TRH ≃

{
0.8 GeV ϵ−1

(
λ

10−4

)1/2 ( Hosc

1TeV

)1/2
for n = 6,

9 MeV ϵ−1
(

λ
10−4

)1/3 ( Hosc

1TeV

)2/3
for n = 8,

(6.67)

where we have used YB ≃ 8.7 × 10−11 for the observed baryon-to-entropy ratio [7], and

assumed b = −1/3. We should emphasize that the tight constraint on the baryonic isocur-

vature perturbation requires that λ ≲ 10−4 and puts a severe upper bound on the reheating

temperature.

6.3.4 Backreaction

The isocurvature constraint requires that the AD field has a VEV of order the Planck scale

during inflation. Such a large VEV may affect the inflaton potential via supergravity effects.

In this subsection, we investigate the backreaction of the AD field to the inflaton dynamics.

The full supergravity potential for the inflaton η and the AD field ϕ is given by

V = e|ϕ|
2/M2

Pl

[
1

2
m2η2

1

1 + c3 |ϕ|2 /M2
Pl

+ λ2

(
|ϕ|6

M2
Pl

+
5

16

|ϕ|8

M4
Pl

+
1

16

|ϕ|10

M6
Pl

)]
, (6.68)

where we assume c0 = 0 and n = 4 for simplicity. The constant c3 is the parameter in

the Kähler potential [see Eq. (6.47)]. This potential implies that the effect of the AD field

is relevant when its VEV is as large as the Planck scale. Since Hinf ∼ 10m in the chaotic

inflation model, the VEV of the AD field is as large as the Planck scale for the case of

λ ∼ λc ≡ 10
√
c− 1

m

MPl

, (6.69)

[see Eq. (3.39)].
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We numerically solve the equations of motion of the inflaton η and the AD field ϕ and cal-

culate the tensor-to-scalar ratio r and spectral index ns. We show the result in Fig. 6.3, where

we take the parameters c3 and λ randomly within the intervals of [1, 10] and [0, 100m/MPl],

respectively. The red, green, and blue dots represent the results at e-folding numbers of

50, 55, and 60, respectively. As a result, the tensor-to-scalar ratio can be as small as 0.14,

0.13, and 0.12 at the e-folding number of 50, 55, and 60, respectively, which is marginally

consistent with the present upper bound within 2σ. We plot the results as the light dots for

the case of λ/λc < 0.5, 5 < λ/λc, or c3 < 5, which clarifies that the tensor-to-scalar ratio can

be smaller only for the case of 0.5 < λ/λc < 5 and c3 > 5. This requires that the coupling

constant in the superpotential is of order 10m/MPl ∼ 10−4. When we identify the AD field as

LHu flat direction, the lightest neutrino mass is predicted to be of order 10−9 eV. Note that

the resulting baryon asymmetry of Eq. (3.76) is naturally consistent with the observation

when gravitino mass is of order 100 GeV − 1 TeV.

Finally, we also perform numerical calculations including higher dimensional Kähler po-

tentials of

K ⊃ d
1

M2
Pl

|ϕ|4 + d′
1

M4
Pl

|ϕ|6 + c′
1

M4
Pl

|X|2 |ϕ|4 , (6.70)

and find that the tensor-to-scalar ratio can not be smaller than about 0.11 at the e-folding

number of 60 even in this case.9 This is in contrast with the result of Ref. [107], where they

have investigated the effect of an additional scalar field to chaotic inflation in a non-SUSY

model and found that the tensor-to-scalar ratio can be much smaller than 0.1. This is because

the exponential factor in the supergravity potential of Eq. (6.68) makes the VEV of the AD

field smaller and its backreaction to the inflaton dynamics smaller in supergravity.

6.3.5 Realization of co-genesis scenario

Here we comment on the relation to the scenario for the co-genesis explained in Chap. 5.

Suppose that Q-balls form after ADBG in the chaotic inflation model. A typical charge of

Q-ball formed after the Affleck-Dine baryogenesis is given by Eq. (4.33) in gravity-mediated

SUSY breaking models, where we should substitute Eq. (6.66) for the value of ϕosc. The

decay rate of the Q-ball is calculated from Eq. (4.57) with R̃ ≃ R(2log(ϕ0/
√
2ω0))

1/2 ≃ 7R.

9We also take into account kinetic couplings between the inflaton and AD field due to the higher-
dimensional Kähler potential of c′′ |ϕ|2 (I+I∗)2/2M2

Pl. However, we find that their effect is also very limited.
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Figure 6.3: Spectral index ns and tensor-to-scalar ratio r in the chaotic inflation model
with the backreaction of the AD field. The red, green, and blue dots represent our results
at e-folding numbers of 50, 55, and 60, respectively. We randomly take 100 points for the
parameters c3 and λ within the intervals of [1, 10] and [0, 100m/MPl], respectively. We plot
the results as the light dots for the case of λ/λc < 0.5, 5 < λ/λc, or c3 < 5. The blue regions
are the 1σ (deep colored regions) and 2σ (pale colored regions) constraints of the Planck
experiment [6]. For comparison with standard results, we plot the predictions in the chaotic
inflation models with linear and quadratic potentials without the backreaction as the black
thin and thick lines, respectively, where the results are given as intersection points of black
lines and dashed lines for corresponding e-folding numbers.

For n = 6 and n = 8, the Q-ball decays just before the reheating such as

Tdecay ≃

{
2 GeV

(
λ

10−4

)3/8 ( Hosc

1 TeV

)1/8 ( mϕ

1 TeV

)3/4
, for n = 6,

60 MeV
(

λ
10−4

)1/4 ( Hosc

1 TeV

)1/4 ( mϕ

1 TeV

)3/4
, for n = 8,

(6.71)

where we assume that the effective number of relativistic degrees of freedom at the decay

time g∗ is 10.75. We find that Q-balls decay after DM freezes out for n = 6 and n = 8. Thus,

we can realize the scenario of baryon and DM co-genesis from Q-ball decay as explained in

Chap. 5.
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Chapter 7

New scenario of ADBG

This chapter is based on the work done by the author [33]. In this chapter, we propose a

new scenario of the Affleck-Dine baryogenesis where a flat direction in the MSSM generates

B−L asymmetry just after the end of inflation. The resulting amount of baryon asymmetry

is independent of low-energy supersymmetric models but is dependent on inflation models.

We consider the hybrid and chaotic inflation models and find that reheating temperature is

required to be higher than that in the conventional scenario of ADBG, which is explained in

Chap. 3. In particular, non-thermal gravitino-overproduction problem is naturally avoided

in the hybrid inflation model. Our results imply that ADBG can be realized in a broader

range of SUSY and inflation models than expected in the literature.

7.1 Introduction

As mentioned in Chap 3, the AD field obtains a Hubble-induced mass due to the finite energy

density of the Universe during and after inflation. In the conventional scenario of ADBG, the

sign of the Hubble-induced mass term is assumed to be negative during and after inflation.

However, the sign of the Hubble-induced mass term can change after inflation because the

source of the energy density of the Universe generically changes after inflation. In this

chapter, we investigate a new scenario that the AD field obtains a negative Hubble-induced

mass term during inflation while it obtains a positive one after inflation.1 In this case, the AD

field starts to oscillate around the origin of the potential due to the positive Hubble-induced

1The opposite case, where the Hubble-induced mass term is positive during inflation and is negative after
inflation, has been considered in Refs. [127, 128] (see Refs. [129, 130] for earlier works). Although B − L
asymmetry cannot be generated via the dynamics of the flat direction, topological defects form after inflation
and emit gravitational waves.
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mass term just after the end of inflation. At the same time, its phase direction is kicked by

an A-term and B−L asymmetry is generated. We calculate the produced amount of baryon

asymmetry and show that it can be consistent with that observed.

The whole scenario is much simpler than the conventional scenario of ADBG. This is

because the dynamics of the AD field is determined only by the Hubble-induced terms and

the low-energy potential of the AD field [e.g., Vsoft in Eq. (3.35)] does not affect the resulting

B − L asymmetry. This means that the scenario and our calculations in this chapter can

be applied to many SUSY models, including gravity-mediated and gauge-mediated SUSY

breaking models. In particular, the scenario does not result in the formation of Q-balls even

in gauge-mediated SUSY breaking models. In addition, thermal effect on the dynamics of

the AD field can be neglected in our scenario because it starts to oscillate before thermal

plasma grows. This is the case even for LHu flat direction. However, the resulting B − L

asymmetry depends on the energy scale of inflation because the dynamics of the AD field is

determined by Hubble-induced terms. In particular, the A-term depends on inflation models,

so that we need to calculate B − L asymmetry for each inflation model. Since the resulting

B − L asymmetry depends on parameters in inflaton sector, we could check the consistency

of the scenario by observing predictions of inflation models, such as the spectral index and

tensor-to-scalar ratio.

In the next section, we briefly overview our scenario of ADBG. Then we apply it to the

hybrid inflation model in Sec. 7.3 and the chaotic inflation model in Sec. 7.4. Finally, we

consider a similar scenario in the D-term hybrid inflation model, where the Hubble-induced

mass term is absent during inflation and appears with a positive coefficient after inflation.

7.2 Affleck-Dine baryogenesis just after inflation

In this section, we overview a new scenario of ADBG where the AD field starts to oscillate

around the origin of the potential just after the end of inflation. In general, this scenario is

realized when the Kähler potential is give by

K = |ϕ|2 + |S|2 + |ψ|2 + c1
M2

Pl

|ϕ|2 |S|2 − c2
M2

Pl

|ϕ|2 |ψ|2 , (7.1)

where S is the field whose F-term drives inflation and ψ is the field whose oscillation energy

dominates the Universe after inflation. Here, we assume that the fields S and ψ are different

fields, which is actually the case in F-term hybrid and chaotic inflation models as shown in

the subsequent sections.
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During inflation, the AD field acquires the Hubble-induced mass via the F-term potential

of the field S as Eq. (3.17). After inflation ends, the Hubble-induced mass comes also from

higher-dimensional kinetic interactions between ϕ and ψ as Eq. (3.24). Therefore, the Hubble

induced mass term for the AD field ϕ is given by

VH = cHH
2(t) |ϕ|2 (7.2)

cH =

{
−3(c1 − 1) during inflation
3
(
−(1− r)c1 + rc2 +

1
2

)
after inflation,

(7.3)

where r (0 ≤ r ≤ 1) is the fraction of the energy density of ψ to the total energy after

inflation. Therefore the sign of the Hubble-induced mass term can change after inflation.

If its sign continues to be negative after inflation, the conventional scenario of ADBG is

realized as we explain in Chap. 3. On the other hand, when the coefficient is negative during

inflation and is positive after inflation, the AD field starts to oscillate around the origin of

the potential just after the end of inflation.

In the above scenario, the dynamics of the AD field is determined by the potential of

V (ϕ) = cHH
2(t) |ϕ|2 + λ2

|ϕ|2n−2

M2n−6
Pl

+ VA(ϕ), (7.4)

where cH < 0 during inflation and cH > 0 after inflation. The A-term potential of VA depends

on inflation models and is explicitly derived in the subsequent sections. The low-energy soft

terms of Eq. (3.9) are irrelevant for the dynamics of the AD field. This makes our calculation

simple and independent of low-energy SUSY models. In particular, the resulting B − L

asymmetry is independent of how SUSY breaking effect is mediated to the visible sector.

Since we consider the case that cH < 0 during inflation and cH > 0 after inflation, the

AD field starts to oscillate around the origin just after the end of inflation. At the same

time, its phase direction is kicked by the A-term. The origin of A-term depends on inflation

models and thus the resulting B − L asymmetry does. Here we just write generated B − L

asymmetry as

a3(t)

a3(tosc)
nB−L(t) ≡ qϵHosc |ϕ|2osc , (7.5)

and derive ϵ in the subsequent sections. The resulting baryon-to-entropy ratio is thus written

as

Yb ≃ 8

23

3TRHnB−L

4ρinf

∣∣∣∣
osc

(7.6)

≃ 8

23

ϵqTRH

4Hosc

(
ϕosc

MPl

)2

. (7.7)
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This is the same with Eq. (3.66) but Hosc is not given by Eqs. (3.59) and (3.71). Since the

AD field starts to oscillate just after the end of inflation in this scenario, Hosc is given by

the Hubble parameter at the end of inflation. Here, let us emphasise differences from the

conventional scenario of ADBG. The Hubble parameter at the time of beginning of oscillation

Hosc is determined by the energy scale of inflation, not by either mϕ nor TRH [see Eqs. (3.59)

and (3.72)]. This is because the flat direction starts to oscillate just after the end of inflation

due to the positive Hubble-induced mass term. In addition, ϕosc depends only on Hosc and

λ via Eq. (3.50). Therefore, the resulting B −L asymmetry is independent of parameters in

low-energy SUSY models, such as mϕ and m3/2.

There are some advantages in this scenario. First, as we explained above, the resulting

B − L asymmetry is independent of the masses of the AD field and gravitino. The result is

also independent of how SUSY breaking effect is mediated to the visible sector. Secondly,

Q-balls may not form (or dissipate soon if they form as discussed in the next section) in our

scenario. This makes the discussion much simpler. Thirdly, the thermal effect on the AD

field can be neglected because the AD field starts to oscillate just after the end of inflation

and before the thermal plasma grows sufficiently [131]. This also makes calculations simpler.

In particular, the thermal log potential can be neglected even for LHu flat direction. Finally,

our results imply that ADBG works in broader range of parameter space. Since the sign of the

Hubble-induced mass term cannot be determined by underlying physics, it is equally possible

that the sign becomes positive after inflation. In addition, viable parameter regions for some

parameters, e.g., the reheating temperature, are different from the ones in the conventional

scenario of ADBG. These fact imply that the Affleck-Dine mechanism works well in more

cases than expected in the literature.

One might wonder if the energy density of the AD field dominates that of the Universe in

the case that its initial VEV is as large as the Planck scale. This may be true in the case of

conventional scenario of ADBG. However, the energy density of the AD field never dominates

the Universe in the above scenario because it decreases faster than that of radiation. Just

after inflation, the AD field starts to oscillate around the origin due to the positive Hubble-

induced mass term. Then, its number density decreases with time as a−3 due to the expansion

of the Universe. This means that its energy density decreases as a−9/2 because its effective

mass is of order the Hubble parameter, which decreases as a−3/2. When the Hubble parameter

decreases down to the mass of the AD field, that is, when H(t) ≃ mϕ, its energy fraction to
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the total energy density is given as

ρAD

ρtot

∣∣∣∣
H≃mϕ

≃
(
mϕ

HI

)
ρAD

ρtot

∣∣∣∣
H≃HI

≃ 10−11

(
ϕosc

MPl

)2 ( mϕ

TeV

)( HI

4× 1012 GeV

)−1

. (7.8)

Thus, the energy density of AD field is negligible and the result of Eq. (7.7) is applicable to

the case of ϕosc ≃MPl.

7.2.1 Comments on Q-ball formation

In this subsection, we comment on Q-ball formation. If the potential of the AD field is

shallower than the quadratic potential, its coherent oscillation is unstable and fragments into

Q-balls [26]. In the case considered in this chapter, the AD field starts to oscillate by the

positive Hubble-induced mass term. When the beta function for the Hubble-induced mass of

the AD field is positive, Q-ball does not form. The beta function has positive contributions

from Yukawa interactions while it has negative ones from gauge interactions (see Sec. A.1.2).

The former positive contributions are roughly proportional to the squared masses of squarks

and sleptons, and the latter negative ones are roughly proportional to the squared masses of

gauginos. Here, since the Hubble-induced mass for gauginos is absent or 1-loop suppressed,

the positive contributions from Yukawa interactions are usually dominant. Therefore, the

beta function for the Hubble-induced mass of the AD field is usually positive and Q-balls may

not form in our scenario. However, if the AD field consists only of the first and second family

squarks and/or sleptons, the positive contributions from Yukawa interactions are suppressed

by small Yukawa couplings. In this case, Q-balls might form. We estimate the typical charge

of Q-balls as

Q ∼ β

(
ϕosc

mϕ,eff

)2

, (7.9)

where mϕ,eff is the effective mass and β (∼ 10−4 − 10−2) is a numerical factor obtained from

simulations of Q-ball formation [see Eqs. (4.34) and (4.42)]. Here, we should substitute the

Hubble-induced mass into the effective mass, and so the typical charge of Q-balls is at most

108. Such small Q-balls soon evaporate into thermal plasma via interactions with the thermal

plasma (see Sec. 4.2).2 Therefore, the subsequent cosmological scenario and the calculation
2The evaporation is efficient during the inflaton oscillation era. In addition, since the energy per unit

charge for these Q-balls is given by the Hubble parameter, their energy density decreases with time as a−9/2.
Thus, the energy density of the Q-balls never dominate that of the Universe.
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of the baryon asymmetry does not change.

Even if Q-balls do not form just after the end of inflation, they may form at the time

of H(t) ≃ mϕ. After that time, the potential of the AD field is dominated by its soft mass

term. If the beta function of the soft mass is negative, the AD field becomes to fragment

into Q-balls at that time. Since nb ∝ H(t)ϕ2(t) ∝ a−3 ∝ H(t)2 until the Hubble parameter

decreases down to the soft mass, the amplitude of the AD field at H(t) ≃ mϕ is given as

ϕ|H(t)≃mϕ
≃
(
mϕ

Hinf

)1/2

ϕosc. (7.10)

Here we implicitly assume that mϕ ≳ HRH. This implies that a typical charge of Q-balls is

given as

Q ≃ β

(
ϕ|H(t)≃mϕ

mϕ

)2

≃ β

(
ϕ2
osc

mϕHinf

)
. (7.11)

This is at most 1018 for typical parameters. Such small Q-balls are evaporate into thermal

plasma. Even if Q-balls survive, they may be so small as to decay into quarks before the

BBN epoch. However, they may decay after the electroweak phase transition [27, 34]. Since

the sphaleron process is decoupled at that time, the AD field has to carry a nonzero baryon

charge (not B − L) to generate the baryon asymmetry. In that case, the resulting baryon

asymmetry is given by Eq. (7.7) without the factor of 8/23.

7.3 F-term hybrid inflation

In this section, we consider the new scenario of ADBG in the simplest hybrid inflation

model [59, 60] and calculate B − L asymmetry.

7.3.1 Dynamics of the AD field

The inflaton S is identified with the field S in Eq. (7.1) and the waterfall fields ψ and ψ̄ play

the role of the field ψ in Eq. (7.1). Thus the coefficient of the Hubble-induced mass cH can

change after inflation. In this subsection, we consider the dynamics of the AD field in the

hybrid inflation model and calculate B − L asymmetry.

Let us first consider the dynamics of the phase direction of the AD field. Using Eq. (A.29)

with the total superpotential of W (AD) +W (inf), we find that there is an A-term potential
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coming from

W
(inf)
S K S̄ϕW

(AD)

ϕ̄
+KϕW

(inf)
(
W

(AD)
ϕ

)∗
(7.12)

+KSW
(AD)

(
W

(inf)
S

)∗
− 3W (inf)

(
W (AD)

)∗
+ c.c. (7.13)

The A-term is written as

VA = −
(
1− c1 −

2

n

)
κµ2λ

Mn−1
Pl

S∗ϕn + c.c. (7.14)

= −aH
2
inf

MPl

|S| |ϕ|2 cos (θS − nθϕ) , (7.15)

a ≡ −2

(
c1 − 1 +

2

n

)√
3 |cH |
n− 1

, (7.16)

where θS and θϕ are the complex phases of the fields S and ϕ, respectively. We use Eq. (3.39)

and H2
inf = κ2µ4/3M2

Pl in the second line. This is a linear term of the inflaton S, so that

the slope of the potential should not be larger than that of the Coleman-Weinberg poten-

tial [119, 113, 105]. Otherwise the inflaton cannot reach the critical VEV and inflation

cannot terminate unless we allow a fine-tuning of the initial phase of inflaton. Referring to

Ref. [105] or Eq. (6.26), we introduce a parameter to describe the relative importance of the

two contributions to the slope of the potential:

ξ ≡ 1

2

(
1− c1 −

2

n

)
16π2

κ3 ln 2

⟨|ϕ|⟩n

µMn−1
Pl

(7.17)

≃ 8π2a

3 ln 2

µ ⟨|ϕ|⟩2

κ2M3
Pl

, (7.18)

which should be smaller than unify so that the inflaton can roll towards the critical value

without the fine-tuning. When the VEV of the AD field is so large that the parameter ξ

becomes of order unity (but below unity), the A-term of Eq. (7.15) affects inflaton dynamics

and the spectral index can be consistent with the observed value as explained in Sec. 6.1.3.

In the above minimal setup, there is no other term than Eq. (7.15) that affects the

dynamics of the phase directions. Therefore, there is only one massive phase during inflation.

For simplicity, let us assume that the inflaton and the AD field have approximately constant

VEVs and (θS − nθϕ) ≪ 1. In this case, the unitary matrix to diagonalise the squared mass

matrix for the phase directions is given by

1√
n2 |S|2 + |ϕ|2

(
|ϕ| − n |S|
n |S| |ϕ|

)
, (7.19)
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in the (|S| θS/
√
2, |ϕ| θϕ/

√
2)T basis. Thus, the massive direction denoted by fmθm can be

written as

fmθm =

√
2 |S| |ϕ|√

n2 |S|2 + |ϕ|2
(θS − nθϕ) , (7.20)

and its mass mθm is given by

mθm =

√
aH2

2

|ϕ|
MPl

(
|ϕ|
|S|

+ n2
|S|
|ϕ|

)
. (7.21)

If the curvature of the phase direction is larger than the Hubble parameter during inflation,

it stays at the minimum of the A-term, i.e., θm = 0, and the phase direction cannot be kicked

in the complex plane after inflation. In this case, B − L asymmetry cannot be generated.

Thus, we require mθm ≪ Hinf , which can be rewritten as

a |ϕ|2 ≪ |S|MPl, (7.22)

an2 |S| ≪ MPl, (7.23)

in order that the phase direction can stay at a different phase from the minimum due to the

Hubble friction effect. We denote the initial phase as θinim .

After inflation ends, the AD field acquires a positive Hubble-induced mass term and starts

to oscillate around the origin of the potential. At the same time, the massive phase direction

is kicked by the above A-term. Since the radial direction decreases with time due to the

Hubble expansion, the A-term is relevant just after the beginning of oscillation. Thus we can

estimate the angular velocity of massive phase direction such as

θ̇m ≈
m2
θm

H
θinim , (7.24)

[see Eq. (3.41)]. Using the inverse of the unitary matrix of Eq. (7.19), we obtain the angular

velocity of the phase of the AD field such as

θ̇ϕ =
−n |S|√

n2 |S|2 + |ϕ|2
fm√
2 |ϕ|

θ̇m (7.25)

≈
m2
θm

H

−n |S|√
n2 |S|2 + |ϕ|2

fmθ
ini
m√

2 |ϕ|
(7.26)

=
m2
θm

H

−n |S|√
n2 |S|2 + |ϕ|2

|S|√
n2 |S|2 + |ϕ|2

(θS − nθϕ)
ini (7.27)

= −an
2

|S|
MPl

H (θS − nθϕ)
ini . (7.28)
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Thus we obtain

a3(t)

a3(tosc)
nB−L(t) = 2θ̇ϕ |ϕ|2

∣∣∣
osc

(7.29)

≡ ϵqHoscϕ
2 (7.30)

ϵ ≡ ϵ̃
Scr

MPl

(7.31)

ϵ̃ ≃ (0.1− 0.2)an sin (nθϕ − θS)osc , (7.32)

where we define ϵ̃ which is expected to be of order unity. The numerical factor of (0.1− 0.2)

is determined from our numerical calculations explained below. Note that the resulting el-

lipticity parameter ϵ is consistent with a naive estimation of ϵ ∼ V ′
A/ϕH

2
osc.

3 The ellipticity

parameter ϵ, which describes the efficiency of baryogenesis, is much smaller than unity be-

cause of the condition of Eq. (7.23). This is because the phase direction of the AD field is

kicked by the A-term that is suppressed by the VEV of the inflaton.

After the oscillations begins, the amplitude of the radial direction of the inflaton S de-

creases with time as |S| ∝ a−3/2. That of the AD field does as |ϕ| ∝ a−3/4 so that its number

density (H(t) |ϕ|2 /2) decreases as ∝ a−3. Since the A-term, i.e., the B−L number violating

interaction, is a higher dimensional term, it is turned off soon after the AD field starts to

oscillate after inflation. The generated B − L asymmetry is then conserved in a comoving

volume and thus nB−L ∝ a−3 for t > tosc.

We have numerically solved the equations of motion together with the Friedmann equa-

tion, where the waterfall fields are collectively described by a real scalar field ψ̃ such as

ψ = ψ̄ ≡ ψ̃/
√
2. We assume |S|2 /M2

Pl, |ϕ|
2 /M2

Pl, ψ̃
2/M2

Pl ≪ 1 and take into account next-

to-leading order terms in terms of them. We use the full kinetic terms for S and ϕ [see

Eq. (A.30)], while we assume a canonical one for ψ̃ for simplicity. One of the results is

shown in Fig. 7.1, where the generated B−L asymmetry is consistent with Eq. (7.60). Tak-

ing parameters such as n = 4, 6, κ = 0.02 − 0.5, µ = 0.0004 − 0.02, λ = 0.01 − 100, and

θiniϕ = 0.001 − 0.1, we confirm the above parameter dependences and obtain the numerical

uncertainty of (0.1− 0.2) in Eq. (7.32). We assume cH = −1 and c2 = 0 in our calculations,

but we check that nonzero values of c2 (= O(1) and ≥ 0) does not change our results even

quantitatively.

3We implicitly assume that (Scr/MPl) ≳ m3/2/Hosc so that we can neglect an A-term of m3/2Wϕ [see
Eq. (3.9)]. Otherwise ϵ may be of order m3/2/Hosc.
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Figure 7.1: Evolution plot for B − L number after hybrid inflation. The dashed curve is our
prediction of Eq. (7.32) with a numerical factor of 0.2. We assume λ = 1, n = 6, cH = −1, c2 = 0,
κ = 0.05, µ = 0.001, and θiniϕ = 0.01.

7.3.2 Baryon asymmetry

The AD field starts to oscillate just after inflation and generate B − L asymmetry. The

oscillating AD field decays and dissipates into radiation [68] and the sphaleron effect relates

the B − L asymmetry to the baryon asymmetry [20, 21]. Using Eq. (7.60), we can calculate

the baryon-to-entropy ratio Yb such as

Yb ≃ 8

23

ϵqTRH

4Hosc

(
ϕosc

MPl

)2

(7.33)

≃

 0.05
√
|cH |q ϵλ

TRH

MPl
for n = 4

0.06 |cH |1/4 q ϵ
λ1/2

TRH√
HoscMPl

for n = 6.
(7.34)

Since ϵ ≡ ϵ̃Scr/MPl, Scr = µ, and H2
osc ≃ κ2µ4/(3M2

Pl), this is rewritten as

Yb ≃

 0.05µTRH

λM2
Pl

for n = 4

0.08 TRH√
κλMPl

for n = 6,
(7.35)

where we assume |cH | = 1, q = 1, and ϵ̃ = 1. For typical parameters, it is given by

Yb ≃

{
9× 10−11

(
µ

1015 GeV

) (
TRH

109 GeV

) (
λ

10−4

)−1
for n = 4

1× 10−10λ−1/2
(

κ
10−3

)−1/2 ( TRH

107 GeV

)
for n = 6.

(7.36)

We check that the constraints of Eqs. (7.22) and (7.23) and ξ ≤ 1 [see Eq. (7.18)] are satisfied

for the above reference parameters. Thus, we can explain the observed baryon asymmetry of

Y obs
b ≃ 8.6× 10−11 [7] in this scenario.
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As we can see in Eq. (7.36), the resulting baryon asymmetry depends on reheating tem-

perature TRH. Here we need to take into account the constraint on TRH from gravitino

overproduction problem. For example, in the case of m3/2 = 100 GeV, the reheating temper-

ature is bounded as Eq. (6.24). We can see that the reference parameters used in Eq. (7.36)

are consistent with that bound.

Note that for the case of n = 4, the coupling constant in the superpotential of the AD field

cannot be much larger than 10−4 because of the upper bound on the reheating temperature.

For the case of n = 6, we can naturally explain the observed baryon asymmetry for λ = O(1)

with a reheating temperature consistent with the gravitino problem. This is in contrast to

the result in the conventional scenario of ADBG [see Eq. (3.66)], where an extremely large

value of λ is required to be consistent with the lower bound on reheating temperature.

Since a linear combination of phase directions is massless during inflation, our scenario

predicts nonzero baryonic isocurvature fluctuations as explained in Sec. 3.5. However, the

energy scale of hybrid inflation can be lower than the constraint of Eq. (3.93). In fact, for

the above reference parameters, our scenario is consistent with the present upper bound on

the isocurvature fluctuations.

7.4 Chaotic inflation

In this section, we consider the new scenario of ADBG in the chaotic inflation model with a

shift symmetry in supergravity [61, 62].

7.4.1 Dynamics of the AD field

Taking into account the AD field, we consider the Kähler potential of

K = Kinf + |ϕ|2 + c1 |X|2 |ϕ|2 − c2
2
(I + I∗)2 |ϕ|2 , (7.37)

where Kinf is given by Eq. (6.47). Although we introduce a shift symmetry for the field I, the

fields X and I basically correspond to the fields S and ψ in Eq. (7.1), respectively. The AD

field acquires the Hubble-induced mass term from the F-term of X during inflation. After

inflation ends, the Hubble-induced mass term partially comes from kinetic interactions. In

fact, the Kähler potential of −c2/2(I + I∗)2 |ϕ|2 induces a kinetic interaction of

L ⊃ −c2
1

M2
Pl

|ϕ|2 |∂µI|2 . (7.38)
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We obtain the effective Hubble-induced mass term of (3c2/2)H
2(t) |ϕ|2 from this kinetic

interaction. To sum up, the Hubble-induced mass term is given by

VH = cHH
2(t) |ϕ|2 (7.39)

cH =

{
−3(c1 − 1) during inflation
3
2
(c2 − c1 + 1) after inflation,

(7.40)

where the other terms than the one proportional to c2 come from the potential energy. Thus

we can consider the case that the coefficient cH is negative during inflation and is positive

after inflation.

There is also an A-term such as

VA =
1

n
(n(1− c1)− 2)

λminf

Mn−1
Pl

IX(ϕ∗)n + c.c. (7.41)

=
2

n
(n(1− c1)− 2)

λminf

Mn−1
Pl

|I| |X| |ϕ|n cos (θI + θX − nθϕ) (7.42)

≃ −aH2(t)
|X|
MPl

|ϕ|2 cos (θI + θX − nθϕ) , (7.43)

where we use Eq. (3.39) and H(t) ≃ minf |I| /
√
3MPl in the last line and θI , θX , and θϕ are

the complex phases of the fields I, X, and ϕ, respectively. The coefficient a is given by

a = 2

√
3 |cH |
n− 1

(
c1 − 1 +

2

n

)
. (7.44)

The A-term can be regarded as a linear term for X. Since the field X has a positive Hubble-

induced mass term of Eq. (6.57), it stays at the following minimum during inflation:

⟨|X|⟩ ≃ a

6c3

1

MPl

|ϕ|2 . (7.45)

A linear combination of the phase directions has a mass of order the Hubble parameter due

to the A-term, so that it stays at the following minimum during inflation:

⟨θX − nθϕ⟩ = −⟨θI⟩ ≃ −sign[c0]
π

2
, (7.46)

where we use Re[I] ≪ Im[I] during inflation.

After inflation ends, the field I starts to rotate in the phase space as shown in Fig. 6.2

and its phase θI has a nonzero velocity. This implies that a linear combination of the phases

θX and θϕ obtains a nonzero velocity to follow its potential minimum. We perform numerical

calculations to solve the equations of motion for the complex scalar fields I, X, and ϕ. We use
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the full supergravity potential for I, X, and ϕ. The kinetic interactions are simplified such

that I and X have canonical kinetic terms for simplicity. We take into account the kinetic

interactions for ϕ associated with c2, which is needed to change the sign of its Hubble-induced

mass term. The parameters are taken in the intervals of λ = 10−3 − 104 and c0 = 10−5 − 1

for n = 4 and 6. The O(1) coefficients in the Kähler potential are assumed to be c1 = 2,

c2 = 1, and c3 = 1. From our numerical calculations, we obtain the following results:

a3(t)

a3(tosc)
nB−L(t) ≡ ϵqHoscϕ

2
osc (7.47)

ϵ ≡ ϵ̃c0 (7.48)

ϵ̃ ≃ (0.01− 0.1)a, (7.49)

where the factor of 0.01−0.1 is a numerical uncertainty. One example of our results is shown

in Fig. 7.2, where we set λ = 1, n = 6, c0 = 0.5, c1 = 2, |c2| = 1, and c3 = −1. The blue

curve represents the time evolution of the B − L number after the end of inflation, while

the orange dashed curve corresponds to Eq. (7.49) with a numerical factor of 0.01. The

oscillation behaviour of B − L number density may come from the effect of the oscillating

inflaton through supergravity effects and is irrelevant for our discussion.4 The c0 dependence

in our result of Eq. (7.48) comes from the ellipticity of the dynamics of the inflaton in the

complex plane. This means that B −L asymmetry cannot be generated for c0 = 0, in which

case no CP odd component of the field I is excited.

7.4.2 Baryon asymmetry

Using the results obtained in the previous subsection, we calculate the baryon-to-entropy

ratio such as

Yb ≃ 2ϵ̃q

23
c0
TRH

Hosc

(
ϕosc

MPl

)2

(7.50)

≃

 0.005c0
TRH

λMPl
for n = 4

0.006c0
TRH√

λHoscMPl
for n = 6,

(7.51)

4It has been investigated that this supergravity effect can be used for another scenario of baryogenesis [120].
Note that we do not introduce a B−L violating operator associated with the right-handed neutrino, so that
the net B − L asymmetry vanishes for this effect. Even if we introduce the B − L violating operator, the
resulting B − L asymmetry generated from this effect is much smaller than that generated from ADBG.
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Figure 7.2: Evolution plot for B − L number density in our scenario of ADBG in the chaotic
inflation model. The dashed curve is our prediction of Eq. (7.49) with a numerical factor of 0.01.
We take λ = 1, n = 6, c0 = 0.5, c1 = 2, |c2| = 1, and c3 = −1.

where we assume ϵ̃q = 0.1 and |cH | = 1 in the last line. For typical parameters, it is given by

Yb ≃

{
2× 10−10

(
c0TRH

107 GeV

) (
λ

10−4

)−1
for n = 4

1× 10−10
(

c0TRH

106 GeV

) (
λ

10−4

)−1/2
for n = 6,

(7.52)

where we use Hosc ≃ minf ≈ 1013 GeV. Thus, we can explain the observed baryon asymmetry

of Y obs
b ≃ 8.6× 10−11 [7].

Since the COBE normalisation of the amplitude of density perturbations requires that

the energy scale of chaotic inflation is given by Hinf ≃ 1014 GeV, the baryonic isocurvature

constraint of Eq. (3.93) is much severer than the case in the hybrid inflation. It requires that

the parameter in the superpotential λ is smaller than about 10−4. This means that the VEV

of the AD field is as large as the Planck scale during inflation. In this case, the backreaction

of the AD field to inflaton dynamics might be relevant as explained in Sec. 6.3.4. As a result,

the tensor-to-scalar ratio can be consistent with the present constraint within 2σ [32]. Note

that the number density of the AD field decreases with time as ∝ a−3 due to the expansion

of the Universe. This means that its energy density decreases as a−9/2 because its effective

mass is of order the Hubble parameter, which decreases as a−3/2. Thus its energy density

never dominates that of the Universe and the result of Eq. (7.50) is applicable even for the

case of ϕosc ≃MPl.

Note also that when the oscillation amplitude of the AD field is as large as the Planck scale

as indicated by the baryonic isocurvature constraint, higher-dimensional Kähler potential

may affect the dynamics of inflaton. In particular, the phase direction of the AD field may

be kicked by some Kähler potentials as we explain in Sec. 7.5 [see Eq. (7.57)]. In this case,
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the epsilon parameter is typically of order unity.

In order to kick the phase direction and generate B−L asymmetry, we may need a nonzero

value of Z2 breaking parameter c0. However, the Z2 breaking term makes the inflaton decay

into gravitinos efficiently via supergravity effects and it leads to the gravitino overproduction

problem as explained in Sec. 6.3.2. We can avoid the problem by assuming that the gravitino

is sufficiently heavy (m3/2 ≳ 100 TeV) so as to decay before the BBN epoch and the R-parity

is violated for the LSP not to overclose the Universe. Or, we can assume that gravitino

is sufficiently light (m3/2 ≲ 2 keV), in which case its thermal abundance do not overclose

the Universe. The former possibility might be well motivated partly because the observed

125 GeV Higgs mass favours a heavy squark mass of order 100 TeV for a small tan β [132, 133].

However, since we need a VEV of order the Planck scale to avoid the baryonic isocurvature

constraint, the AD field may be kicked by higher-dimensional Kähler potential. In this case,

we can generate baryon asymmetry without introducing the Z2 breaking term in the inflaton

sector and we can set c0 = 0. Then we can avoid the gravitino problem.

7.5 D-term inflation

In this section, we investigate a similar scenario to the one explained in the previous sections,

where the AD field starts to oscillate just after the end of inflation [134, 31]. This is realized

in D-term inflation when the AD field obtains a positive Hubble-induced mass term after

inflation.

7.5.1 Dynamics of the AD field

In the case of D-term inflation, the superpotential in the inflaton sector is absent during

and after inflation because ψ− in Eq. (6.29) has a vanishing VEV throughout the history of

the Universe. Thus the A-term of the AD field may come only from the low-energy SUSY

breaking effect, which may be too small to explain the observed baryon asymmetry in our

scenario. However, there is another source of B−L violating operator as shown below when

the VEV of the AD field is as large as the Planck scale. Thus, in this section, we assume that

the superpotential of the AD field is absent or sufficiently small so that the initial VEV of the

AD field ϕosc can be as large as the Planck scale (ϕosc ≃MPl). Such a large VEV is favoured

to avoid the baryonic isocurvature constraint as shown in Sec. 6.2.3. Note that owing to the

exponential term in the supergravity potential the VEV of the AD field is restricted below

the Planck scale. Since the curvature of the phase direction is absent (or at least much less
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than the Hubble parameter), the phase of the flat direction also stays at a certain phase

during inflation. We denote the initial phase of the AD field as θini.

After inflation, the energy density of the Universe is dominated by that of oscillating

inflaton. Since the F-term of ψ− is given by λSψ+, the flat direction obtains Hubble-induced

terms through supergravity effects [19]:

VH = 3
|ϕ|2

M2
Pl

|λSψ+|2 , (7.53)

for the minimal Kähler potential. Using ψ+ =
√
ξ and taking average with respect to time,

we obtain the Hubble-induced mass term of

VH = cHH
2(t) |ϕ|2 (7.54)

cH =
3

2
. (7.55)

Introducing a higher-dimensional Kähler potential of

K(H) = cS |S|2
|ϕ|2

M2
Pl

, (7.56)

we allow the coefficient cH to be an arbitrary O(1) parameter.

In addition to the Hubble-induced mass term, the flat direction obtains higher-dimensional

terms from non-renormalizable Kähler potentials. If we assign R-charges as, for example,

R(Q) = R(L) = R(ec) = R(uc) = R(dc) = 0 and R(Hu) = R(Hd) = 2, we can write

nonrenormalizable Kähler potentials of5

2

3
aH

∫
d2θd2θ̄ |S|2 ϕn

nMn
Pl

+ c.c.

≃ −2

3
aH |∂µS|2

ϕn

nMn
Pl

+ c.c.

≃ −aHH2(t)

(
ϕn

nMn−2
Pl

+ c.c.

)
, (7.57)

where n is an integer depending on flat directions. For example, n = 3, 6, 9, . . . for ucdcdc

flat direction. In the last line, we take average with respect to time and use the relation

5 The R-symmetry has to be broken to obtain nonzero gaugino and higgsino masses and to set the vacuum
energy (almost) zero. Its symmetry breaking order parameter is proportional to the SUSY breaking scale,
so that R-symmetry breaking terms are suppressed by a factor of m2

ϕ/M
2
Pl. Since this is much smaller than

the energy scale of inflation, such breaking terms can be neglected in the following discussion. Therefore, it
is reasonable to consider that R-symmetry may suppress the superpotential for the flat direction.
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of ⟨(∂0S)2⟩ ≃ 3H2(t)MPl/2, which comes from the virial theorem. Note that this term has

a nonzero phase which is different from the phase of the flat direction θini during inflation.

We can redefine the phase of the flat direction to eliminate the phase of aH . After the

elimination, we redefine the initial phase of the flat direction as θini without loss of generality.

The discrepancy between the initial phase of the flat direction and the phase of the above

U(1) breaking term is essential to generate the baryon asymmetry.

In summary, the AD field obtains the following potential after inflation:

V (ϕ) = cHH
2(t) |ϕ|2 − aHH

2(t)

(
ϕn

nMn−2
Pl

+ c.c.

)
+ . . . , (7.58)

where cH and aH are positive O(1) parameters. The dots represents higher-dimensional terms

which restrict the AD field below the Planck scale. Since the flat direction starts to oscillate

due to the Hubble-induced mass, we can neglect usual soft mass and A-terms for the AD

field.

7.5.2 Baryon asymmetry

In this subsection, we calculate the baryon asymmetry generated from the AD field with

the potential (7.58). The initial VEV and phase are ϕosc and θini, respectively. For cH > 0,

the flat direction starts to oscillate around the origin of the potential just after the end of

inflation. At the same time, the flat direction is kicked in the phase direction due to the

second term in Eq. (7.58). The B − L asymmetry is generated through this dynamics:

a3(t)

a3(tosc)
nB−L(t) ≡ ϵqHoscϕ

2
osc (7.59)

ϵ ≃ (3− 4)× 8

3n− 6
aH sin (−nθini)

(
ϕosc

MPl

)n−2

, (7.60)

where we have used ϕ ∝ a−3/4. We have numerically solved the equations of motion for ϕ and

S with the Friedmann equation and have obtained the numerical factor of (3− 4) for ϵ ≲ 1.

The amplitude of the flat direction decreases as time evolves due to the Hubble expansion

and the B−L breaking effect is absent soon after the oscillation. Thus, the generated B−L

asymmetry is conserved soon after the AD field starts to oscillate.

We can calculate the resulting baryon-to-entropy ratio Yb as

Yb ≃ 8

23

ϵqTRH

4HI

(
ϕosc

MPl

)2

≃ 8.7× 10−11ϵq

(
TRH

4× 103 GeV

)(
HI

4× 1012 GeV

)−1(
ϕosc

MPl

)2

. (7.61)
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This can be consistent with the observed baryon asymmetry when TRH is of order 103−4 GeV.
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Chapter 8

Solutions to the coincidence problem
in the new scenario

This chapter is based on the work done by the author [31]. In this chapter, we apply the

scenario explained in the previous chapter and provide another scenario to account for the

baryon-DM coincidence problem.

8.1 Introduction

In this chapter, we propose another scenario that predicts an O(1) ratio of baryon and DM

densities. The inflaton sector is constructed such that the inflaton and waterfall fields decay

into gravitinos with an O(1) branching ratio. The gravitino is assumed to be as heavy as

100 TeV so that it decays into the MSSM particles before the BBN epoch. The decay of

those gravitinos is a source of non-thermal production of LSP DM and the resulting DM

abundance is proportional to the reheating temperature and inversely proportional to the

inflaton mass. When the AD field has a VEV as large as the Planck scale, the resulting

amount of the baryon asymmetry has similar parameter dependences to that of DM. As a

result, the baryon and DM densities are related with each other through the energy scale

of inflation. The resulting baryon and DM densities are naturally of order unity when the

scenario applies to F- term and D-term hybrid inflation models.1

1Another scenario for co-genesis of baryon and DM has been proposed in Ref. [135] where they introduce
an additional heavy field to generate both of them.
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8.2 Models

In this section, we provide models that realise the scenario to account for the coincidence

problem explained in the subsequent sections.

The AD field is assumed to start to oscillate around the minimum just after inflation as

we explain in the previous chapter. We require that its superpotential is absent or highly

suppressed so that its oscillation amplitude is as large as the Planck scale. This is actually

required in chaotic inflation models to avoid the isocurvature constraint. It is also required

in D-term inflation models to kick the AD field in the complex plane by higher-dimensional

Kähler potentials. In the hybrid inflation model, the superpotential should be highly sup-

pressed so that the backreaction of the AD field to the inflaton can be neglected for such

a large initial VEV of the AD field. In any cases, when the oscillation amplitude of the

AD field is as large as the Planck scale, the AD field is kicked by higher-dimensional Kähler

potentials and the ellipticity parameter is of order unity. The resulting baryon asymmetry is

then given by Eq. (7.7) with ϕosc ≃MPl and ϵ ≈ 1.

We also require that gravitinos are produced with anO(1) branching ratio in the reheating

epoch. This is naturally realized when inflaton (and/or waterfall fields if there exist) decays

only through the supergravity effects as explained in Sec. B.4.1. This is naturally realized

in F-term hybrid inflation model when we suppress the interaction of Eq. (6.18). In this

case, the branching into gravitino is of order unity and the reheating temperature is given

by Eq. (6.17). In the chaotic inflation model, we suppress the interaction of Eq. (6.59) so

that the inflaton decays mainly into gravitinos. The reheating temperature is determined by

Eq. (6.58), which depends on the Z2 breaking parameter c0.

As for D-term inflation models, we modify it by introducing a shift symmetry and an

approximate Z2 symmetry for the inflaton field S [61]. Under these symmetries, S transforms

as S → S + iα (α:real) and S → −S, respectively. Then, the Kähler potential is written as

K = c0 (S + S∗) +
1

2
(S + S∗)2 + |ψ−|2 + |ψ+|2 , (8.1)

where c0 (≪ 1) is an order parameter for the Z2 symmetry breaking effect. The superpotential

of Eq. (6.29) explicitly breaks the shift symmetry, which is required to ensure a graceful exit

of inflation. In this model, we should replace |S|2 with (S + S∗)2/2 for the calculations in

Sec. 7.5, though the results are unchanged. We introduce Z2 breaking terms in the Kähler

potential so that the field S efficiently decays into gravitinos [114], whose decay is a source of

non-thermal production of LSP DM. There is an advantage to impose the shift symmetry to

the inflaton. In order to obtain a sufficiently large e-folding number, say, N∗ ≳ 60, the initial
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VEV of the inflaton S has to be as large as N∗

√
2g2

4π2 MPl ≃ 0.5MPl. which is of order the Planck

scale. This implies that the Planck-scale physics may affect the potential of the inflaton and

spoil its flatness. However, the shift symmetry ensures the flatness of the inflaton potential

above the Planck scale.

As explained in Sec. 6.2.2, the field ψ+ decays into the MSSM fields much faster than the

inflaton S, so that the reheating temperature of the Universe is determined by the relatively

late-time decay of the inflaton S [67]. After the field ψ+ decays completely, the effective

superpotential can be rewritten as Eq. (B.25) with minf = λ
√
ξ and the replacements of

X → ψ−. Thus we can use the results derived in Appendix B.4.1.

8.3 Reheating process

In this section, we investigate the reheating process and calculate the DM abundance in the

models introduced in the previous section. At the minimum of potential, the models reduce

to the one considered in Appendix B.4.1, so that we use the same notation with the one used

in Sec B.4.1.

The Z2 breaking term in the Kähler potential or the nonzero VEV of water fall fields

result in their decay through supergravity effects [114]. The branching ratio of inflaton decay

into gravitinos is given by Eq. (B.35). Since d/c = O(1) and yt = O(1), the branching ratio

is almost unity. This means that the energy density of the Universe is dominated by that of

the gravitinos after the fields Φ± decay completely.2

Since the fields Φ± are much heavier than gravitino, the produced gravitinos are highly

relativistic. The Lorentz factor for the gravitinos at a time H−1(t) is given as

γ(t) =

[(
minf

m3/2

)2
H(t)

Γinf

+ 1

]1/2
≃ minf

m3/2

(
H(t)

Γinf

)1/2

. (8.2)

The gravitinos decay into MSSM particles with a rate of

Γ3/2 ≃ γ−1(t)
1

48π

∑
im

5
X̃i

m2
3/2M

2
Pl

, (8.3)

where the summation is taken for all MSSM particles X̃i. When we consider a SUSY model

with relatively light gauginos and relatively heavy squark and sleptons, we can roughly

2Note that since we consider relatively low reheating temperature ∼ 103−4 GeV as explained in the next
section, we can neglect the thermal production of gravitinos [116, 117].
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estimate the numerator as 24m5
3/2. This implies that the gravitino decays into radiation at

the temperature of

T3/2 ≃
(

90

g∗π2

)1/4√
Γ3/2MPl

≃ 1.1 MeV

(
TRH

4× 103 GeV

)1/3(
minf

5× 1015 GeV

)−1/3 ( m3/2

400 TeV

)4/3
, (8.4)

where g∗ (≃ 10.75) is the effective number of degrees of freedom at the decay time. We

require that the mass of gravitino is of order 102−3 TeV or larger so that its decay completes

before the BBN epoch, that is, T3/2 ≳ 1 MeV. Otherwise the decay particles interact with

the light elements and spoil the success of the BBN [49]. The gravitino decay temperature

T3/2 is much smaller than the mass of the LSP, so that the decay of gravitino is a source of

its nonthermal production. Since the energy density of the Universe is dominated by that of

gravitino before they decay, the thermal relic density of the LSP is diluted by the entropy

production from the gravitino decay. Therefore, the LSP abundance is determined by the

nonthermal production from the gravitino decay. The produced number density of the LSPs

is equal to that of the gravitinos due to the R-parity conservation. Note that the annihilation

of the produced LSP is usually inefficient in such a low temperature.

The Lorentz factor of the gravitino is of order 103 for the reference parameters shown in

Eq. (8.4). This implies that the scale factor of the Universe continues to decrease as a−4 from

the time of reheating by the decay of Φ±. Although the LSPs are relativistic at the time

they are produced from gravitino decay, they lose their energy through interactions with the

thermal plasma and soon become to non-relativistic particles [136, 137, 138]. Therefore, the

LSP DM is cold even though they are produced non-thermally in this scenario.

Here we comment on the hierarchy of gravitino mass and other SUSY particles. Such

a heavy gravitino is well motivated in a class of SUSY models with a split spectrum [139,

140, 141, 50]. In these models, the masses of gravitino as well as squarks and sleptons are of

order (or larger than) 102−3 TeV while those of gauginos are of order 1 TeV. This hierarchy

can be realized when gauginos acquire one-loop suppressed soft masses through the anomaly

mediated SUSY breaking effect [142, 143]. When the Higgs µ-term is of order the gravitino

mass, the Higgsino threshold correction is important and the wino mass can be as small

as 10−3m3/2. Note that neutral higgsino can also be the LSP when the Higgs µ-term is

sufficiently small. The following discussion does not rely on the detailed properties of the

LSP except for its mass. Hereafter, we assume that the mass of gravitino is O(102−3) TeV

and that of the LSP is O(102−3) GeV.
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8.3.1 DM density and baryon-DM coincidence

Let us summarize the scenario of non-thermal production of DM. First, the fields Φ± (i.e.,

inflaton and/or waterfall fields) decay into gravitinos as well as the MSSM particles at H(t) ≃
Γinf . Then the energy density of the Universe is dominated by the relativistic gravitinos and

decreases as a−4. The gravitinos decay into the MSSM particles just before the BBN epoch

and the LSP DM is produced non-thermally. Since the thermal relic density of the LSP is

diluted by the entropy production of gravitino decay, its abundance is determined by the

gravitino decay. Thus, we can estimate the resulting DM abundance as

YDM ≡ nLSP

s

≃
n3/2

s

∣∣∣
H=Γ3/2

≃
3T3/2
4

n3/2

ρ3/2

∣∣∣∣
H=Γ3/2

≃
3T3/2
4

(
Γinf

Γ3/2

)1/2 n3/2

ρ3/2

∣∣∣∣∣
H=ΓS

≃ 3T
(eff)
RH

4

2Br3/2nS
ρS

∣∣∣∣∣
H=ΓS

≃ 3T
(eff)
RH

2minf

, (8.5)

where we have used Br3/2 ≃ 1 in the last line. We define the effective reheating temperature

T
(eff)
RH by Eq. (B.19) with the replacement of g∗(TRH) → g∗(T3/2) as

T
(eff)
RH ≃

(
90

g∗(T3/2)π2

)1/4√
ΓinfMPl

≃ 1.5× 103 GeV

(
minf

5× 1015 GeV

)3/2(
d

10−10

)
. (8.6)

In the chaotic inflation model and D-term inflation model, the reheating temperature is

adjusted by the Z2 symmetry order parameter d to obtain a desirable abundance of baryon

asymmetry from Eq. (7.7) or DM from Eq. (8.5). On the other hand, in the F-term hybrid

inflation model the reheating temperature is determined as Eq. (6.17), where we can realize

TRH = 103−4 GeV for µ ≃ 1015 GeV and minf ≃ 1012 GeV.

Here we take into account the baryon asymmetry generated by ADBG. Once we replace

the reheating temperature TRH with the effective one T
(eff)
RH defined by Eq. (8.6), the resulting
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baryon asymmetry is still given by Eq. (7.7) even in this scenario. Combining Eqs. (7.7) and

(8.5), we obtain the following simple relation for the baryon-to-DM ratio:

Ωb

ΩDM

≃ 4

69
ϵq

mp

mLSP

minf

Hosc

, (8.7)

where we assume ϕosc ≃MPl.

In chaotic inflation models, Hosc ≃ minf , so that the resulting baryon-to-DM ratio cannot

be consistent with the observed value. On the other hand, in the F-term hybrid inflation

model, substituting benchmark parameters and the proton mass mp ≃ 0.938 GeV, we obtain

Ωb

ΩDM

≃ 0.11ϵq
( mLSP

500 GeV

)−1 ( minf

1012 GeV

)( HI

109 GeV

)−1

,

≃ 0.13ϵq
( mLSP

500 GeV

)−1
(

v

5× 1015 GeV

)−1

. (8.8)

These benchmark parameters result in the reheating temperature consistent with Eq. (8.6).

In the D-term inflation model, we obtain

Ωb

ΩDM

≃ 0.22ϵq
( mLSP

400 GeV

)−1
(

minf

6.6× 1015 GeV

)(
HI

4× 1012 GeV

)−1

,

≃ 0.12ϵqλg−1
( mLSP

400 GeV

)−1
( √

ξ

6.6× 1015 GeV

)−1

. (8.9)

Those results are naturally of order unity and are consistent with the observed value of

Ω
(obs)
b /Ω

(obs)
DM ≃ 0.2 [7]. The scenario naturally explains the coincidence of their energy density,

known as the baryon-DM coincidence problem. This is because both of them are related

to the energy scale of inflation. The amount of baryon asymmetry is proportional to the

reheating temperature of the Universe and inversely proportional to the Hubble parameter

during inflation. That of DM is proportional to the reheating temperature and inversely

proportional to the mass of inflaton. Since the Hubble parameter and the inflaton mass is

related to each other, the resulting baryon and DM density is naturally of order unity.

Although the result has an O(1) uncertainty coming mainly from v or λ and ξ, the LSP

with mass of O(102−3) GeV is favoured in our scenario. If the LSP DM is mostly wino or

higgsino, the indirect detection experiments of DM puts lower bounds on DM mass. The

wino DM with mw̃ ≤ 390 GeV and 2.14 TeV ≤ mw̃ ≤ 2.53 TeV is excluded [144], while the

higgsino DM withmh̃ ≤ 160 GeV is excluded [145]. The future indirect detection experiments

can detect the wino DM with mw̃ ≤ 1.0 TeV and 1.66 TeV ≤ mw̃ ≤ 2.77 TeV [144].
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Chapter 9

Conclusion

The origin of baryon asymmetry is an outstanding mystery in cosmology and particle physics.

The BBN theory and observations of light element abundance imply that the baryon-to-

entropy ratio is of order 10−10 at least at the temperature of 1 MeV. The Sakharov conditions

clarify that it is difficult to generate baryon asymmetry, and in particular, we cannot generate

enough baryon asymmetry in the SM of particle physics. The cosmological and astrophysical

observations also reveal that there is DM in the Universe. Remarkably, the energy density

of DM is almost equal to that of baryons within a factor of order unity, which is known as

the baryon-DM coincidence problem. This coincidence may imply that the baryon and DM

have a common origin in the early Universe.

In this thesis, we have investigated the Affleck-Dine mechanism to generate baryon asym-

metry and to explain the baryon-DM coincidence problem in SUSY theories. It generates

squark condensation in the early Universe via the dynamics of a baryonic flat direction called

an AD field. The condensation subsequently decays into quarks and light SUSY particles.

Since the LSP is a good candidate of DM, this scenario may be able to account for the

coincidence between the energy densities of baryon and DM. In fact, we have provided two

scenarios to account for the coincidence problem by using the Affleck-Dine mechanism.

The first scenario stands on the formation and decay of non-topological solitons called

Q-balls. The squark condensation forms Q-balls after the ADBG in many SUSY models and

they carry enormously large baryon charges. The Q-balls eventually decay into baryons and

light SUSY particles before the BBN epoch. Therefore the Q-balls are the sources of baryon

and DM in this scenario. The branchings of its decay are determined by the Pauli blocking

effect and the ratio of LSP and quarks is of order 0.01. As a result, the LSP with mass

of order the electroweak scale, which is expected in light of solution of hierarchy problem
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in particle physics, can explain the baryon-DM coincidence problem. We have applied this

scenario to the CMSSM, which is a typical example of SUSY models, and have determined

a parameter region where the coincidence, baryon abundance, and the observed 125 GeV

Higgs boson are simultaneously explained. We have shown that the future LHC experiment

will search a part of parameter region and would test our scenario.

We have also investigated the relation between the ADBG and inflation models. In par-

ticular, we have shown that the backreaction of the AD field affects predictions of inflation

models. In F-term hybrid and chaotic inflation models, we have revealed that the resulting

spectral index and tensor-to-scalar ratio can be consistent with the observed values by the

backreaction. As for the F-term hybrid inflation model, the SKA telescope would detect

stochastic gravitational background emitted from cosmic strings and could check the consis-

tency of our scenario. The ADBG predicts baryonic isocurvature density fluctuations that

affect CMB temperature anisotropies. The observation thus puts a constraint on a parameter

of the AD field. We have shown that the above co-genesis scenario is naturally realized in

the chaotic inflation model avoiding the isocurvature constraint and predicting the consistent

spectral index and tensor-to-scalar ratio.

Then we have provided a new scenario of ADBG, where the AD field starts to oscillate

coherently just after the end of inflation. Our results imply that the ADBG can be realized

and can explain the observed baryon asymmetry in a broader range of parameter space than

expected in the literature. In fact, it can be realized in the simplest model of F-term hybrid

inflation avoiding the gravitino overproduction problem. Based on this new scenario, we have

explained the second scenario to solve the baryon-DM coincidence problem. We assume that

the AD field has a Planck scale VEV during inflation and then starts to oscillate coherently

just after inflation. When the inflaton does not directly interact with the MSSM particles,

it mainly decays into gravitinos via SUGRA effects. The gravitinos decay into the MSSM

particles before the BBN epoch when the gravitino mass is larger than 100 TeV. As a result,

the baryon-to-DM ratio is written by a simple relation. This is because both of the resulting

baryon and DM densities depend on parameters in inflaton sector. In particular, we have

found that the resulting baryon-to-DM ratio is naturally of order unity in hybrid inflation

models. We could check the scenario by detecting DM via the indirect and direct detection

experiments of DM.

As a result of those studies, we conclude that ADBG is a promising mechanism to explain

the baryon-DM coincidence problem as well as the baryon asymmetry. Those scenarios can

be tested by the future LHC experiment and direct and indirect DM searches.
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Appendix A

Supersymmetry

A.1 Supersymmetry

In this Appendix, we briefly explain supersymmetry (SUSY), which is a symmetry that

relates fermions and bosons. It is motivated in light of a solution to the hierarchy problem.

It also achieves gauge coupling unification, which is required for grand-unified theories. The

lightest SUSY particle (LSP) is a good candidate for DM, and the baryon asymmetry can be

generated by the Affleck-Dine baryogenesis [17, 19], which is the main topic of this thesis.

A.1.1 MSSM

SUSY theories can be formulated by using superspace, where fermionic coordinates θα and

θ̄α̇ is added to the spacetime coordinates. The general renormalizable Lagrangian is written

as

L =

∫
d2θd2θ̄Φ∗i (e2TaV a)j

i
Φj +

∫
d2θ

[
W (Φi) +

1

4g2a
WaαWa

α + c.c.

]
, (A.1)

where Φi are chiral supermultiplets, ga are gauge coupling constants, T a are generators, V a

are vector supermultiplets, W is superpotential, and Wa
α are field strength chiral superfield.

The superscripts a runs over the adjoint representation of the gauge group. In the Wess-

Zumino gauge, it is rewritten in terms of component fields such as

L = −∇µϕ∗i∇µϕi + iχ†iσ̄µ∇µχi −
1

4
F a
µνF

µνa + iλ†aσ̄µ∇µλ
a (A.2)

− 1

2

(
W ijχiχj + h.c.

)
+ |Fi|2 (A.3)

−
√
2ga
(
ϕ∗iT aχi

)
λa −

√
2gaλ

†a (χ†iT aϕi
)
+
∑
a

1

2
(Da)2 , (A.4)
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where F-term and D-term are given by

|Fi|2 = |Wi|2 (A.5)
1

2
(Da)2 =

1

2
g2a
(
ϕ∗iT aϕi

)2
. (A.6)

We define Wi = ∂W/∂ϕi, and W
i = (∂W/∂ϕi)

∗, and W ij = (∂2W/∂ϕi∂ϕj)
∗. The fields ϕi

and χi are scalar and fermion components of chiral supermultiplets Φi, respectively, while the

fields λa and F a
µν are fermion and vector components of vector supermultiplets, respectively.

In the minimal SUSY Standard Model (MSSM), the superpotential is given by

W (MSSM) = yuQHuu
c − ydQHdd

c − yeLHde
c + µHuHd, (A.7)

within the renormalizable level, where we omit flavour indices for simplicity. Note that we

need to introduce up-type and down-type Higgs fields because of the holomorphy of super-

potential and the cancellation of anomaly. Here we implicitly assume R-parity conservation

to avoid disastrous proton decay. As a result, the lightest SUSY particle (LSP) is stable and

is a candidate of DM. Note that the squarks, which are superpartners of quarks, have baryon

charge. Therefore we can generate baryon asymmetry via the dynamics of squarks. In fact,

it can be naturally generated by the Affleck-Dine mechanism, which is the main topic of this

thesis.

SUSY must be broken in a hidden sector so that all superpartners of the SM fields

are sufficiently heavy to be consistent with the null results of collider experiments. As a

result, there are additional terms called soft-SUSY breaking terms, which do not affect the

cancellation of Higgs mass to solve the hierarchy problem. They are written as

Lsoft = −1

2

(
M3g̃g̃ +M2w̃w̃ +M1b̃b̃+ h.c.

)
(A.8)

− (AuQHuu
c − AdQHdd

c − AeLHde
c + c.c.) (A.9)

− m2
QQ

†Q−m2
LL

†L−m2
uc(u

c)†uc −m2
dc(d

c)†dc −m2
ec(e

c)†ec (A.10)

− m2
Hu
H∗
uHu −m2

Hd
H∗
dHd − (BHuHd + c.c.) , (A.11)

where g̃, w̃, and b̃ are gauginos of SU(3), SU(2), and U(1)Y , respectively. We denote scalar

components of chiral supermultiplets by the same symbols as the superfields. The terms

proportional to Mi (i = 1, 2, 3) are gaugino mass terms, that to Ai (i = u, d, e) are A-terms,

that to mi (i = Q,L, uc, dc, ec, Hu, Hd) are soft mass terms, and that to B is a B-term. The

soft masses are assumed to be of order TeV scale or higher to be consistent with the null

results of collider experiments.
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A.1.2 Renormalization running equations

In SUSY theories, the couplings in the superpotential are not renormalized due to the su-

persymmetric non-renormalization theorem. This is the reason that the hierarchy problem

between the electroweak scale and the Planck scale is solved in SUSY. The renormalization

effects therefore come only from wavefunction renormalizations. For example, for particles

with a superpotential of W = yijkΦiΦjΦk, anomalous dimension matrices are calculated as

γij =
1

16π2

[
1

2
yimny∗jmn − 2g2aCa(i)δ

i
j

]
, (A.12)

where Ca(i) are the quadratic Casimir for the superfield Φi:

(T aT a)ji = Ca(i)δ
j
i . (A.13)

For a supermultiplet with a U(1) charge q, C1(i) = q2, while for supermultiplets with funda-

mental representations for SU(2) and SU(3), C2(i) = 3/4 and C3(i) = 4/3.

When SUSY is softly broken, soft terms are also renormalized. Here we write the renor-

malization group equations of soft-masses of squark and sleptons and Higgs µ-parameter with

canonical kinetic terms, which are particularly important to discuss Q-ball formation after

the ADBG:

16π2 d

dlogµ
m2
Q3

= Xt +Xb −
32

3
g23|M3|2 − 6g22|M2|2 −

2

15
g21|M1|2 +

1

5
g21S, (A.14)

16π2 d

dlogµ
m2
uc3

= 2Xt −
32

3
g23|M3|2 −

32

15
g21|M1|2 −

4

5
g21S, (A.15)

16π2 d

dlogµ
m2
dc3

= 2Xb −
32

3
g23|M3|2 −

8

15
g21|M1|2 +

2

5
g21S, (A.16)

16π2 d

dlogµ
m2
L3

= Xτ − 6g22|M2|2 −
6

5
g21|M1|2 −

3

5
g21S, (A.17)

16π2 d

dlogµ
m2
ec3

= 2Xτ −
24

5
g21|M1|2 +

6

5
g21S, (A.18)

16π2 d

dlogµ
µ = µ

[
3y∗t yt + 3y∗byb + y∗τyτ − 3g22 −

3

5
g21

]
, (A.19)

where

S ≡ Tr
[
Yjm

2
ϕj

]
= m2

Hu
−m2

Hd
+ Tr

[
m2
Q −m2

L − 2m2
uc +m2

dc +m2
ec

]
, (A.20)

Xt = 2 |yt|2
(
m2
Hu

+m2
Q3

+m2
ū3

)
+ 2 |at|2 , (A.21)

Xb = 2 |yb|2
(
m2
Hd

+m2
Q3

+m2
d̄3

)
+ 2 |ab|2 , (A.22)

Xτ = 2 |yτ |2
(
m2
Hd

+m2
L3

+m2
ē3

)
+ 2 |aτ |2 . (A.23)
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The trace is taken over the flavour indices. The renormalization running equations for the

first and second families are given by the same equations without Xi terms when we neglect

their small Yukawa couplings.

We also write the renormalization group equations of gauge couplings for an SU(N) gauge

theory with F flavours:

16π2 d

dlogµ
g = −bg3 (A.24)

b = 3N − F. (A.25)

For the U(1)Y gauge theory, b1 =
∑

i 3Y
2
i /5 when we normalize U(1)Y gauge coupling by

g1 =
√

5/3g′. Applying these to the SM gauge symmetries in SUSY, we obtain

(b1, b2, b3) = (−33/5, −1, 3). (A.26)

On the other hand, (b1, b2, b3) = (−41/10, 19/6, 7) without SUSY particles. As a result, the

gauge couplings are unified at the energy scale of MGUT ≃ 2× 1016 GeV in the MSSM. The

renormalization group equations for gaugino masses are similar to those for gauge coupling

constants within one-loop level:

d

dlogµ
Ma = − 1

8π2
bag

2
aMa. (A.27)

Thus we obtain

M1

g21
=
M2

g22
=
M3

g23
=
m1/2

g2GUT

, (A.28)

when we assume that gaugino masses as well as gauge couplings unify near the GUT scale.

This relation implies that the bino is the lightest gaugino in the MSSM.

A.1.3 Supergravity

Supergravity is a theory with a local SUSY. To discuss the ADBG and gravity-mediated

SUSY breaking effect, here we quote the scalar potential in supergravity (see, e.g., Refs. [146,

147] for detail).

In supergravity, scalar potentials are written in terms of superpotential, W , and Kähler

potential, K. The potential of scalar fields is given by

VSUGRA = eK/M
2
Pl

[
(DiW )Kij̄ (DjW )∗ − 3

M2
Pl

|W |2
]
, (A.29)
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where DiW ≡ Wi + KiW/M
2
Pl. The subscripts represent the derivatives with respect to

corresponding fields, e.g., Wi = ∂W/∂ϕi, and Kij̄ is defined by the inverse of Kij̄. The

Kähler potential also determines kinetic terms such as

Lkin = Kij̄∂µϕ
i∂µϕ∗j. (A.30)

The equations of motion of homogeneous scalar fields are thus given by

a−3 d

dt

(
a3Kij̄ϕ̇

i
)
−Kik̄j̄ϕ̇

iϕ̇∗k +
VSUGRA

∂ϕ∗j = 0. (A.31)

In supergravity, gravitino is introduced as a superpartner of graviton and its mass is given

by m3/2 = |W | exp(K/2). Suppose that a field z has a nonzero F-term Fz to break SUSY,

where Fz ≡ − exp(K/2)(Wz +KzW ). Since the vacuum energy (or cosmological constant)

is almost vanish in our Universe, the condition of VSUGRA = 0 yields |Fz|2 = 3 exp(K) |W |2

and m3/2 = |Fz| /
√
3.

A.1.4 Gravity-mediated SUSY breaking models

Here we explain the Polonyi model as an example of SUSY breaking hidden sector:

W (hidden) = µ2z +W0 (A.32)

K(hidden) = |z|2 , (A.33)

where µ and W0 are parameters. The vanishing vacuum energy determines the value of W0.

Using the potential of Eq. (A.29), we obtain⟨
W (hidden)

⟩
= µ2 (A.34)

⟨z⟩ =
√
3− 1 (A.35)

m2
3/2 =

|Fz|2

3
= µ2 exp(

√
3− 1). (A.36)

Here we explain gravity-mediated SUSY breaking effect. Suppose that the field z has a

nonzero F-term as Eq. (A.36). Assuming the Kähler potential of the field z as Eq. (A.33),

we obtain the potential of other scalar fields ϕi from Eq. (A.29) such as

Vsoft = m2
3/2 |ϕ|

2
i + am3/2W

(visible) + c.c. (A.37)

a = n− 3 + ⟨z∗⟩

⟨z⟩+

⟨
(W

(hidden)
z )∗

⟩
⟨W (hidden)⟩

 , (A.38)
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where W (hidden) and W (visible) are superpotentials of hidden and visible sector, respectively.

Here we rescale the superpotential by a factor of exp(|z|2 /2) and absorb it to the definition

of W . For example, a = n −
√
3 in the Polonyi model. Note that there are O(1) factors

in each term in Eq. (A.37) when we consider more generic Kähler potential. Therefore,

scalar fields obtain masses of order gravitino mass via the supergravity effect. This is called

gravity-mediated SUSY breaking effect.

Supergravity action contains a term

L ⊃ 1

4
exp(−K/2) (Wz +KzW )

∂f ∗
αβ

∂z∗
λαλβ (A.39)

= −1

4
F ∗
z

∂f ∗
αβ

∂z∗
λαλβ, (A.40)

where fαβ is gauge kinetic function. When ∂f ∗
αβ/∂z

∗ is of order unity, gauginos obtain masses

of order gravitino mass. This is usually assumed in gravity-mediated SUSY breaking models.

The constrained minimal supersymmetric (SUSY) model (CMSSM) is widely used in the

literature as a typical example of gravity-mediated SUSY breaking model. It is defined by

only five parameters at the GUT scale (≃ 2× 1016 GeV); the universal scalar mass m0, the

universal gaugino massM1/2, the universal A-term A0, the ratio between the VEVs of up-type

and down-type Higgses tan β, and the sign of Higgs µ-term. The low energy spectrum can

be obtained by solving renormalization running equations from the GUT scale. The µ-term

and the B-term are determined by the 246 GeV Higgs VEV and the value of tan β.

A.1.5 Gauge-mediated SUSY breaking models

Suppose that there is a spurion field S that has VEV of

⟨S⟩ =Mm + θ2FS, (A.41)

and interacts with hidden fields Q and Q̄ called messenger fields such as

W = ySQQ̄. (A.42)

When Q and Q̄ are charged under the SM gauge symmetries, the MSSM gauginos obtain

masses via loop effects. Below the messenger scale, we can integrate them out and obtain

effective Lagrangian such as

L ⊃ 1

4g2a(S, µ)
WαWα. (A.43)
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This implies that the gaugino mass is given by

Mλ = 2π
∂g−2

a

∂S

∣∣∣∣
S=Mm

FS. (A.44)

Using Eq. (A.25), we obtain

Mλ =
α

4π

FS
Mm

. (A.45)

The MSSM scalar fields also obtain masses via two-loop effects [148]. First let us consider

the wavefunction renormalization for a chiral superfield in the MSSM Φ′:

L ⊃
∫

d2θd2θ̄2Z(S, S†)Φ′Φ
′†, (A.46)

which can be rewritten as

L ⊃
∫

d2θd2θ̄2
[
Z +

∂Z

∂S
FSθ

2 +
∂Z

∂S†F
†
S(θ

†)2 +
∂2Z

∂S∂S†FSθ
2F †

S(θ
†)2
]∣∣∣∣
S=Mm

Φ′Φ
′†. (A.47)

After canonically normalizing Φ such as

Φ = Z1/2

[
1 +

∂logZ

∂S
FSθ

2

]∣∣∣∣
S=Mm

Φ′, (A.48)

we obtain

L ⊃
∫

d2θd2θ̄2

[
1 +

∂2logZ

∂logS∂logS†
FSF

†
S

XX† θ
2(θ†)2

]∣∣∣∣∣
S=Mm

ΦΦ†. (A.49)

This implies that the scalar component of Φ obtains a soft mass of

m2
Φ = − ∂2logZ

∂logS∂logS†
F 2
S

M2
m

. (A.50)

Using Eq. (A.12), we obtain

m2
Φ ≃ 2Ca(Φ)

α2
a

16π2

F 2
S

M2
m

. (A.51)

These contributions to the soft masses are much larger than those of gravity-mediated effects

explained in the previous subsection. Thus the soft masses are determined by these gauge-

mediated effects and the gravitino mass is allowed to be much smaller than the electroweak

scale. The rescaling of Eq. (A.48) induces A-terms from superpotential such as

Z−1/2∂logZ

∂S

∣∣∣∣
S=Mm

FSΦ
∂W

∂Z−1/2Φ
, (A.52)
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which leads to

A ≃ 2Ca(Φ)

ba

αa
4π

FS
Mm

. (A.53)

This is suppressed by a factor of αa/(4π) compared with the soft-mass scale and is neglected.

Note that these soft terms are suppressed for energy scales larger than the messenger

scaleMm. This is particularly important when a charged field (e.g., an AD field) has a larger

VEV than Mm. Here we derive its potential for a VEV larger than Mm. For simplicity, let

us consider a U(1) gauge theory under which the messenger fields and another scalar field

(an AD field) ϕ are charged. From the superpotential of Eq. (A.42), we have a one-loop

Coleman-Weinberg potential such as

V1−loop ≃ |FS|2
y2

16π2
ln

(
|S|2

µ2
0

)
. (A.54)

We take the renormalization scale µ0 as the GUT scale. The VEV of S is fixed at the

messenger scale Mm. To discuss two-loop effect, we rewrite the one-loop potential such as

V1,2−loop ≃ |FS|2
1

8π2

∫ |S|

µ0

d lnµ y2(µ). (A.55)

Here, since the AD field ϕ is charged under the gauge symmetry and has a large VEV, the

gauge symmetry is spontaneously broken by its VEV and the vector supermultiplet acquires

an effective mass of order gϕ, where g is the gauge coupling constant. Since the messenger

fields Q and Q̄ are charged under the gauge symmetry, the renormalization running of the

coupling constant y in Eq. (A.42) contains contributions from gauge interactions. Therefore,

when the AD field ϕ obtains a larger VEV than the messenger scale, the renormalization

running of the coupling y is affected and is dependent on |ϕ|. The renormalization running

equation for the Yukawa coupling y is written as [see Eq. (A.12)]

dy

dlogµ/µ0

= − g2a
4π2

y + . . . , (A.56)

where we omit the other terms irrelevant for our discussion. When the vector supermultiplet

has an effective mass of g |ϕ|, the gauge contribution of the running of y is absent below this

mass scale. Thus we obtain

y(µ) = y0 −
g2a
8π2

y ln

(
|gϕ|2

µ2
0

)
+ . . . , for µ < g |ϕ| , (A.57)
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where . . . represents terms that are independent of |ϕ|. Therefore, Eq. (A.55) has a |ϕ|
dependent part for the integral below the energy scale of g |ϕ|. As a result, we obtain the |ϕ|
dependent potential such as

V (ϕ) ≃ |FS|2
y2g2

128π4

[
ln
g2 |ϕ|2

M2
m

]2
. (A.58)

This agrees with the result in Ref. [57] for g |ϕ| ≫Mm, where they have explicitly calculated

two-loop diagrams.
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Appendix B

Inflation

In this Appendix, we briefly explain inflation. It solves some initial condition problems in

the Big Bang theory, including the flatness problem and the horizon problem. It can be

realized by a potential of a scalar field called an inflaton when it is spatially homogeneous

and slowly rolls towards its potential minimum. After the slow roll ends, the inflaton starts to

oscillate around its potential minimum and then decay into radiation. The resulting Universe

is then consistent with the Big Bang theory with a negligible curvature in the homogeneous

Universe. The inflaton acquires quantum fluctuations during inflation, which are converted

to fluctuations of scalar part of metric called curvature perturbations. The perturbations can

be observed as the CMB temperature anisotropy.

B.1 Motivations

Here we explain the flatness problem. If the curvature of the Universe is nonzero, the Fried-

mann equations are written as

H2 =
ρ

3M2
Pl

− K

a2
(B.1)

ρ̇ = −3H (ρ+ p) . (B.2)

These can be rewritten as

H2

H2
0

= Ωr

(a0
a

)4
+ Ωm

(a0
a

)3
+ ΩK

(a0
a

)2
, (B.3)

ΩK ≡ − K

a20H
2
0

, (B.4)

where Ωr and Ωm are abundance of radiation and matter, respectively. Here we omit the dark

energy for simplicity. The parameter ΩK is bounded above as |ΩK | ≲ 0.01 by the observation
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of CMB temperature anisotropies. However, the curvature term in Eq. (B.3) is proportional

to a−2, so that the combination of |ΩK | (a0H0/aH)2 is extremely smaller than unity in the

early Universe. Such an extremely small dimensionless parameter is a mystery known as the

flatness problem.

The observations of CMB temperature fluctuations show that the background tempera-

ture of the Universe is homogeneous up to a factor of of order 10−5. However, if the Universe

begins from the radiation or matter dominated era, there is no correlation for the whole

observable Universe. There is no reason that the whole Universe is homogeneous without

correlations. This is known as the horizon problem.

The above flatness and horizon problems are explained by an era of exponential expansion

called inflation. If the early Universe is dominated by the energy density with the equation

of state of p ≃ −ρ, the Friedmann equation implies that H = Hinf = const. and the scale

factor exponentially increases such as a(t) = a(tini) exp[Hinf(t − tini)], where tini is the time

at the beginning of inflation. If the constant energy density is converted to radiation at the

time denoted by tend, then the Universe is filled with the thermal plasma. We define e-folding

number as an alternative of time variable during inflation such as N(t) ≡ log (a(tend)/a(t)).

Suppose that the curvature term in the Friedmann equation is below but comparable to

the constant energy density at the beginning of inflation (t = tini). Since the curvature term

in the Friedmann equation decreases with time as ∝ a−2, |ΩK | is given by

|ΩK | = e−2N(tini)

(
a(tend)H(tend)

a0H0

)2

. (B.5)

Since the observation implies that |ΩK | ≪ 1, we require

N(tini) ≫ log

(
a(tend)H(tend)

a0H0

)
. (B.6)

The right-hand side can be written as

log

(
a(tend)H(tend)

a0H0

)
≃ 56 +

1

3
log

(
TRH

109 GeV

)
+

1

3
log

(
Hend

1013 GeV

)
, (B.7)

where TRH is reheating temperature defined in Sec. B.4. �Here we assume that the energy

density of the Universe decreases as ∝ a−3 after inflation and before reheating completes.

For typical parameters, the required e-folding number is about 50− 60.

The correlation length is given by the Hubble horizon (aH)−1. When the horizon length

at present a0H0 is smaller than the one at the beginning of inflation a(tini)H(tini), the ob-

servable Universe can have correlation before inflation. Thus we again require the condition

of Eq. (B.6) to solve the horizon problem.
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B.2 Inflation by a scalar field

Inflation can be realized by a potential energy of a scalar field. If the inflaton is spatially

homogeneous, its energy density and pressure are given as

ρ = K + Vinf (B.8)

p = K − Vinf , (B.9)

where K and Vinf are kinetic energy and potential energy of inflaton, respectively. When the

kinetic energy of inflaton is smaller than the potential energy, we obtain ρ ≃ −p and can

realize inflation. We define slow roll parameters ϵs and ηs such as

ϵs ≡ 1

2

(
V ′
inf

Vinf

)2

, (B.10)

ηs ≡ V ′′
inf

Vinf
, (B.11)

where the prime denotes the derivative with respect to the inflaton field. � Then the con-

dition of K ≪ Vinf can be rewritten as ϵs ≪ 1. Note that in order to realize inflation for

sufficiently long time, we also require ηs ≪ 1. These conditions are called slow-roll conditions.

The e-folding number can be calculate as

N(t) ≃
∫ tend

t

H(t)dt ≃
∫

dϕ
Vinf
V ′
inf

=

∫
dϕ√
2ϵs

. (B.12)

�

B.3 Curvature perturbation

Quantum fluctuations of the inflaton during inflation is the seed of large scale structure. The

fluctuations are converted to those of scalar part of metric called curvature perturbation.

The power spectrum of curvature perturbation is parametrized as

Ps(k) = As

(
k

k∗

)ns−1

, (B.13)

where k∗ (= 0.05 Mpc−1) is the pivot scale, and As and ns are the amplitude and spectral

index, respectively. They are calculated as

As ≃ Vinf
24π2ϵs

(B.14)

ns ≃ 1− 6ϵs + 2ηs. (B.15)
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The Planck collaboration observes the CMB temperature anisotropies, which give us infor-

mation of curvature perturbation such as [6]

As =
(
2.198+0.076

−0.085

)
× 10−9 (B.16)

ns = 0.9655± 0.0062, (B.17)

at the 68% CL. These values put constraints on inflaton potential via Eqs. (B.14), (B.10),

and (B.11).

B.4 Reheating

Inflation ends when the slow-roll conditions fail and the inflaton starts to oscillate around the

potential minimum. Then the oscillating inflaton gradually decays into radiation. Since the

energy density of radiation is given by ρrad ≃ (3/5)ρinfΓinft, where ρinf (≃ 3H2(t)M2
Pl) is the

energy density of inflaton oscillation and Γinf is its decay rate. Thus there is a background

plasma with a temperature of

T =

(
36H(t)ΓinfM

2
Pl

g∗(T )π2

)1/4

, (B.18)

where g∗ is the effective number of relativistic degrees of freedom in the thermal plasma. We

define reheating temperature by H(TRH) = Γinf , which is then given by

TRH ≃
(

90

g∗(TRH)π2

)1/4√
ΓinfMPl. (B.19)

The reheating temperature has to be higher than 1 MeV so that the subsequent history of

the Universe is consistent with the BBN theory.

B.4.1 Inflaton decay via supergravity effects

Here we briefly explain inflaton decay process via supergravity effects. This puts the lower

bound on reheating temperature and gives a non-thermal source of gravitinos.

We specify the SUSY breaking sector to explain the inflaton decay through supergravity

effects. We introduce a Polonyi field z, which breaks SUSY in low energy scale, and consider

a simple extension of the Polonyi model given as

K(hidden) = |z|2 − |z|4

Λ2
, (B.20)

W (hidden) = µ2
zz +W0, (B.21)
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where Λ is a cutoff scale, µz is the SUSY breaking scale, and W0 is a constant term which

makes the cosmological constant (almost) zero in the present Universe. This can be achieved

by the O’Raifeartaigh model after integrating out relatively heavy particles [149] or by dynam-

ical SUSY breaking models, including the IYIT model [150, 151]. The important parameters

are calculated as

µ2
z ≃

√
3m3/2MPl, (B.22)

m2
z ≃

12m2
3/2

Λ2
M2

Pl, (B.23)

⟨z⟩ ≃ 2
√
3

(
m3/2

mz

)2

MPl, (B.24)

where mz is the mass of z and ⟨z⟩ is its VEV at the low energy vacuum.

Suppose that inflaton sector is effectively written by the following superpotential at the

time around the reheating epoch:

Winf = minfSX. (B.25)

This is actually the cases in F-term and D-term hybrid and chaotic inflation models as we

explain in Chap. 6. In this case, the supergravity effects induce a soft SUSY breaking B-term

of bm3/2minfSX, where b is an O(1) constant. This implies that they maximally mix with

each other and form mass eigenstates of

Φ± ≡ 1√
2
(S ±X∗) , (B.26)

around the potential minimum [114]. Therefore, when the time scale of inflaton decay Γ−1
inf is

longer than that of the mixing effect m−1
3/2, we have to consider the decay of Φ± to investigate

the reheating process. Hereafter we consider this case.

Suppose that a first derivative of Kähler potential in terms of inflaton S, KS, is nonzero

at the potential minimum. This results in the decay of the field Φ± through supergravity

effects [114]. First, let us focus on the top Yukawa interaction in the MSSM sector:

W (top) = ytQ3Huu
c
3, (B.27)

where yt is the top Yukawa coupling constant. The relevant interaction terms between X

and the MSSM fields are given by

V =
1

MPl

KSW
(top)W ∗

S + c.c.+ . . . ,

=
ytminfKS

M2
Pl

X∗(Q̃3Huũ
c
3) + c.c.+ . . . , (B.28)
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where the dots “. . . ” represents the other irrelevant terms. Since the fields Φ± consist of X

as Eq. (B.26), they decay into the MSSM scalar fields through this interaction. They also

decay into the MSSM fermion fields, which equally contributes to the Φ± decay. Thus, the

partial decay rate of Φ± into the MSSM fields is given as

ΓMSSM (Φ± → MSSM) =
3K2

S

256π3
|yt|2

m3
inf

M2
Pl

. (B.29)

When we consider the gaugino mass (mg̃) much smaller than the gravitino mass, the decay

rates of S into gauge fields are suppressed by a factor of (mg̃/m3/2)
2 and can be neglected.

Next, let us consider the decay of Φ± into gravitinos [114]. We follow the discussion

presented in Ref. [152]. Through nonzero values of KS and KSzz̄, the field X mixes with

the SUSY breaking field z and can decays into goldstino, (i.e., longitudinal component of

gravitino). This is because the supergravity effects induce mixing terms such as

V = WS (KSW )∗ +K−1
Sz̄WSW

∗
z + c.c.+ . . .

= minfdFzXz
∗ + c.c.+ . . . , (B.30)

d ≡ ⟨KS⟩ − ⟨KSzz̄⟩ , (B.31)

where the dots ”. . . ” represent the other irrelevant terms. Thus, the fields X and z mix with

each other and the mixing angle is given by

θmix ≃ d
Fzminf

m2
z

, (B.32)

where we use mz ≫ minf . Since the fields Φ± consist of X, they mix with z and the mixing

angle is given by θmix/
√
2. Since the SUSY breaking field z has an operator of

L = −2
Fz
Λ2
zz̃†z̃† + h.c., (B.33)

it decays into goldstino z̃. Together with the mixings between Φ± and z, the fields Φ± decays

into goldstino through this operator. The partial decay rate of the field Φ± into goldstino is

therefore calculated as [153]

Γz̃ (Φ± → z̃z̃) ≃ 1

32π

(
θmix√

2

)2
m4
z

|Fz|2
minf ,

≃ d2

64π

m3
inf

M2
Pl

. (B.34)
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If the fields S and X do not have other interactions, the branching into gravitinos is given

by

Br3/2 =
d2

d2 + 3 |yt|2 c2/(4π2)
. (B.35)

Since d/c = O(1) and yt = O(1), the branching ratio is almost unity. The reheating temper-

ature is then given by

TRH ≃ 3× 108 GeVd
( minf

1013 GeV

)3/2
. (B.36)
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