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1 General Introductions

Quasi-probabilities of Quantum Observables Since the discovery of quantum me-
chanics in the beginning of the last century, our classical understanding of the concept of
‘observables’ has undergone a drastic change. It is now a widely accepted and established
fact that, in the microscopic world, outcomes of a quantum observable behave intrin-
sically randomly, and that certain combinations of quantum observables do not admit
coexistence, as typically exemplified by position and momentum of a free particle. Such
remarkable characteristics of quantum observables impose certain limitation to the math-
ematical framework to be employed for describing their probabilistic behaviour, namely,
that it is not always possible to assign probability spaces for the description of the ‘joint
behaviour’ of their arbitrary combinations in the classical sense. There had, nonetheless,
long been various attempts to construct a mathematical framework for the probabilistic
description of the combination of quantum observables that resembles the Kolmogorovian
style of formulation of classical probability theory, and extending the notion of ‘proba-
bility’ had thus been one of the major trends. Such extended notion of probabilities are
generally termed ‘quasi-probabilities’ or ‘pseudo-probabilities’, and among the most cel-
ebrated classical proposals are the Wigner-Ville distribution (WV distribution) and the
Kirkwood-Dirac distribution (KD distribution), the former of which is alleged to describe
the ‘joint behaviour’ of a canonically conjugate pair of quantum observables, whereas the
latter can be defined for arbitrary pairs. Historically, both the WV and KD distributions,
along with the various other proposals, are said to be discovered more or less in a heuris-
tic manner, and as such, the general mathematical framework for the study, including a
general prescription for the concrete construction of such ‘quasi-joint-probability’ (QJP)
distributions of a pair of arbitrary quantum observables and a transparent overview of
how each of them relate to each other, is rather vague. In comparison to classical proba-
bility theory, both the WV and KD distributions retain similar properties to the standard
joint-probability distributions defined for a pair of classical random variables. On the other
hand, they also retain their own outstanding queerness, in that the former generally admits
negative numbers to be assigned whereas the latter even takes complex numbers, which
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has occasionally been considered a serious impediment to their physical interpretation.
The theme of this thesis revolves around the concept of QJP distributions of quantum

observables, and the first objective of our analysis would thus be to construct a mathe-
matically solid framework to address some of their problems in a more transparent and
systematic manner.

Aharonov’s Weak Value The novel physical quantity in quantum mechanics called
the weak value

Aw :=
⟨ψ′, Aψ⟩
⟨ψ′, ψ⟩

(1.1)

was proposed in 1988 by Aharonov and co-workers. Despite its growing attention, the
positioning of the weak value in the framework of quantum mechanics along with its
physical interpretation has yet to come to an agreement. One of the recent strategies
in addressing this question has been to investigate its relations to quasi-probabilities,
specifically those to the KD distributions.

As an application to the findings in the study of QJP distributions in the thesis, we shall
follow this line of the study of weak values and intend to provide its geometric/statistical
interpretation based on the general framework of QJP distributions.

Uncertainty Relations Uncertainty relations lie at the heart of quantum mechanics,
characterising the indeterministic nature of microscopic phenomena stemming from the
incompatibility of simultaneous measurement of two non-commuting observables, as typ-
ically exemplified by position and momentum. Soon after the celebrated exposition of
Heisenberg’s tradeoff relation between error and disturbance, there appeared a revised
form known as the Robertson-Kennard (RK) inequality which refers to the relation in
standard deviation in independently performed measurements on the two observables.
Due to its mathematical clarity and universal validity, the latter has now become a stan-
dard textbook material. On the other hand, the uncertainty relation between time and
energy has to be dealt with quite independently from these, due to the lack of a genuine
time operator conjugate to the Hamiltonian. For this, several ingenious frameworks have
been proposed, including the one devised by Mandelshtam and Tamm and that by Hel-
strom, where the uncertainty relation is shown to be identified with a quantum version of
the Cramér-Rao inequality in estimation theory.

As another application to the findings in the study of QJP distributions, we shall
conduct a closer analysis on the quantum analogue of ‘correlations’ of a given pair of
observables, and thus present a novel inequality of uncertainty relations, providing its
geometric/statistical interpretations alongside.

2 Main Themen of the Thesis

The main theme of this thesis is thus to obtain a more coherent understanding to the
formalism of QJP distributions of quantum observables, and subsequently to apply the
findings in some areas of the foundational problems of quantum mechanics, in which the
problem of interpretation of the weak value and a proposal of novel uncertainty relations
are the two main choices. Now, the key problems regarding QJP distributions include, on
top of the other,

(i) providing a solid and rigorous mathematical framework for the study of QJP dis-
tributions based on measure and integration theory, and possibly on the theory of
generalised functions,
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(ii) presenting a systematic scheme to address the inherent indefiniteness/arbitrariness
to the possible candidates for QJP distributions of non-commuting pairs of quantum
observables, a methodical way for their constructions, and the relation between each
of the candidates,

(iii) devising a concrete method in measuring such various candidates of QJP distribu-
tions in a systematic manner.

We shall address this problem from two complementary approaches: one from a bottom-up
and strictly operational construction by carefully examining the mathematical framework
of the conditioned measurement scheme, and the other from a top-down viewpoint by
applying the results of spectral theorem for normal operators and its Fourier transforms.

The findings of the study shall be subsequently applied to two specific areas among
the problems of foundation of quantum mechanics, namely, weak values and uncertainty
relations. To this end, we first concentrate on the L2 structures which QJP distributions
naturally induce, and see that they provide ‘statistical’ interpretation of the geometric
structures introduced on the space of observables on the underlying Hilbert space, in ana-
logue to those introduced on the space of random variables in classical probability theory.
Geometric concepts such as orthogonal projections and inner products are accordingly en-
dowed statistical interpretation as ‘conditionings’ and ‘correlations’, respectively. These
observation form a solid starting place to perform further study on weak values and uncer-
tainty relations. Weak values Aw are thus given a geometric and statistical interpretation,
either as the orthogonal projection of an observable A on the subspace generated by an-
other observable B, in geometric terminology, or equivalently in statistical expressions, as
the conditioning of A given B with respect to the QJP distribution under consideration.
On the other hand, application of the Cauchy-Schwartz inequality to the correlation of
A and B is found to yield novel inequalities interpreted as uncertainty relations of ap-
proximation/estimation, and thus providing connections between uncertainty relation for
correlations (the Robertson-Kennard type) and the time-energy uncertainty relations, in
particular.

3 Main Results

Systematic Construction of QJP distributions We first provide a general prescrip-
tion for the construction of QJP distributions intended to describe the ‘joint behaviour’
of an arbitrary pair of quantum observables. Inspired by the observations made on the
Fourier transform of the product spectral measure of two simultaneously measurable ob-
servables A and B, we introduce

#(s, t) := a mixture of the disintegrated components of e−isA and e−itB (3.1)

for arbitrary pairs of (generally non-commuting) observables, and define the QJP distribu-
tion of the pair by the inverse Fourier transform of the distribution (s, t) 7→ ⟨ψ,#(s, t)ψ⟩/∥ψ∥2
given a quantum state |ψ⟩. Here, each of the QJP distributions is found to possess rea-
sonable properties to be qualified as what its name suggests it to be, and that both the
WV distribution and the KD distribution belong to this class. The inherent indefinite-
ness/arbitrariness to the possible candidates for QJP distributions is then understood as
the possible variety of the way one could ‘mix’ the disintegrated components of the unitary
operators, which originates directly from the non-commutative nature of the pair A and B.
A concrete measurement scheme for members of a specific subfamily of QJP distributions
is further proposed.
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Geometric and Statistical Interpretation of the Weak Value As distributions,
each QJP distribution naturally induces an L2 structure. It is found that the QJP dis-
tributions provide convenient methods of representing geometric structures, specifically
inner products of the form

⟪B,A⟫ψ,α :=
1 + α

2
⟨Bψ,Aψ⟩+ 1− α

2
⟨Aψ,Bψ⟩, −1 ≤ α ≤ 1, (3.2)

which can be introduced on the space of operators on the underlying Hilbert space. En-
dowed with the inner product, we then specifically focus on orthogonal projections onto
the subspaces E(B) of operators generated by self-adjoint operators B, and find that the
orthogonal projections can be interpreted as ‘conditioning’ given B with respect to the
QJP distributions under consideration. The projection

Pα(A|B;ψ) =

∫
R

(
1 + α

2

⟨b, Aψ⟩
⟨b, ψ⟩

+
1− α

2

⟨ψ,Ab⟩
⟨ψ, b⟩

)
|b⟩⟨b|db (3.3)

of the observable A on the subspace E(B) is further found to be described by the weak
value, providing us its geometric and statistical interpretation (Proposition 7.5).

Proposal of novel Uncertainty Relations We then subsequently investigate the in-
ner product (3.2) of observables in depth. The representation of the inner product by
integration with respect to the QJP distribution under consideration is thus found to pro-
vide statistical interpretation to the quantities: the inner products are examples of the
possible definitions for quantum analogues of ‘correlations’ between observables, in imita-
tion to those between random variables in classical probability theory. Now, in studying
the correlation, we start from the inequality

∥A− f(B)∥ψ · ∥g(B)∥ψ ≥ 1

2

∣∣∣ ⟨[A, g(B)]⟩ψ
∣∣∣ , (3.4)

by introducing the inner product ⟨Y,X⟩ψ := ⟪Y,X⟫ψ,0 and the semi-norm ∥X∥ψ :=

⟨X,X⟩
1
2
ψ , where the notation f(A) represents the operator defined from a function f(a)

of a through the spectral decomposition, f(A) =
∫
f(a)|a⟩⟨a| da. The inequality admits

interpretation as uncertainty relations for analysing the error of approximating an observ-
able based on the measurement of another observable through an appropriate choice of
proxy functions, and thus directly addresses the effect of non-commutativity as

min
f

∥A− f(B)∥ψ ≥ max
ḡ

1

2

∣∣∣⟨[A, ḡ(B)]⟩ψ
∣∣∣ , (3.5)

by introducing ḡ(B) = g(B)/∥g(B)∥ψ (Theorem 7.9). Since the standard deviation may
be regarded as a special case of the approximation error, the inequality can formally be
considered as an extension of the RK inequality. Moreover, instead of approximating
an observable, we may also choose to estimate a physical parameter pertinent to the
observable by considering the unitary evolution |ψ(t)⟩ := e−itA|ψ⟩ so that the time-energy
relation

∥H − f(B)∥t0 · ∥t0 − g(B)∥t0 ≥ ℏ
2
, (3.6)

where we introduced the abbreviation ∥X∥t := ∥X∥ψ(t), can be treated along with the
position-momentum relation (Theorem 7.10). Interestingly, in both approximation and
estimation, Aharonov’s weak value of the concerned observable arises as a key geometric
ingredient, deciding the optimal choice for the proxy functions.
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