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Abstract

Galactic cosmic rays (GCRs) are believed to be accelerated at the shockwaves of supernova

remnants (SNRs) in our galaxy. The diffusive shock acceleration (DSA), which is known as the

first-order Fermi acceleration, is the standard theory to explain the particle acceleration at the

shocks, and have a good agreement with the observed power-law energy spectrum. It is known

that the spectral index for the power-law spectrum can be determined only by the shock com-

pression ratio. Although the standard DSA theory assumed that not only the cosmic ray (CR)

density but also the energy density is negligible compared with the thermal gas (test-particle

assumption), several recent observations suggest that the energy densities of CRs around the

shocks are not necessarily negligible, and can be more or less comparable to those of the back-

ground plasma. In such a situation, the dynamical feedback effect of the CRs should be taken

into account. Since the CR pressure has a spatial gradient in front of the shocks, the flow struc-

tures of the background plasma are modified drastically, and then the total shock compression

ratio may increase. As the result, CRs can be accelerated more efficiently than the test-particle

limit of DSA. This acceleration mechanism is known as the nonlinear DSA (NLDSA), and the

modified shocks in NLDSA are called as the cosmic ray modified shocks (CRMSs). The CR

production rate in NLDSA is thought to be optimistically enhanced, simply because the larger

population of CRs can make shocks more compressive and the spectrum more harder. Such a

positive feedback effect, however, might not be permitted in the nature of physics. Our main

purpose of this study is to address the question how efficiently the NLDSA can produce CRs.

In this thesis, two important issues on cosmic ray physics are investigated: one is the stabil-

ity/stationarity of the non-linear shock in a fluid approximation. The other is to understand the
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kinetic plasma process in the non-linear shock beyond the fluid approximation. It is well known

that the CRMSs have the multiple (up to three) steady-state solutions for a given upstream

parameter. These three solutions are different in the CR production efficiency, and one of the

solutions with the maximum efficiency is believed to be realized, for example, in the supernova

shocks. As the first step to understand the nature of CRMSs, we investigate the stability of

these solutions in the two-fluid approach, where both of the thermal gas and non-thermal CRs

are approximated by fluids. By the numerical simulations for a set of two-fluid, time evolutional

equations, we find that two solutions/branches with the maximum and minimum CR efficiencies

and stable, while the intermediate branch is unstable in time, and this stability features are

independent of any shock parameters. We also study the time evolution of the CR production

and find that only the inefficient branch with the minimum CR production is realized among

three multiple solutions. Our findings suggest that the CR production efficiency of CRMSs is

less efficient than believed before. We can conclude that the production of CRs plays a role of

negative feedback in NLDSA.

Next, we extend the above two-fluid model by taking into account of the momentum-

dependent CR kinetic effects. This model is called CR-kinetic model, and enables us to dis-

cuss about the spectrum of the CRs that can be compared with cosmic ray observations. In

addition, we investigate the effect of Alfvénic waves excitation on NLDSA, which is believed to

play an important role in NLDSA. In the shock precursor region where the CRs are streaming

upstream, the streaming CRs have a free energy that can excite the Alfvénic waves through

a current-driven plasma instability. The energy density for these excited waves may become

comparable to or not be negligible to that of the thermal background plasma. Hence, we should

take into account the feedback from the amplified waves as the essential behavior of CRMSs. We

include the elementary processes of the wave generation and dissipation model in the CR-kinetic

system, and study the steady-state solutions with our own semi-analytical methods. Our nu-

merical parameter surveys about the steady-state solutions clearly reveal that the wave pressure

effect reduces the CR production by suppressing the shock compression ratio. Moreover, the

heating of the background plasma in the precursor region by the dissipation of waves leads to
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the further depression of the CR production efficiency. Such tendencies are robust regardless of

the Mach numbers, the injection parameters and the wave parameters, such as Alfvén velocities

and subshock compression ratios for the waves. These results conclude that the CR production

is less efficient than the “standard” (without consideration of waves) NLDSA predicts.

Finally, our findings suggest that the negative feedback process involved in NLDSA may be

carefully taken into account in the theoretical/observational studies for collisionless shocks such

as supernova shocks and Interplanetary shocks and so on.
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Chapter 1

GENERAL INTRODUCTION

1.1 History and Observations of Cosmic Rays

Cosmic ray (CR) is the generic name of high energy particles coming from space. These particles

collide with the atoms or molecules of the earth’s atmosphere and generate many photons and

elementary particles, which are called the secondary cosmic rays. In 1912, Victor Hess discovered

the existence of these particles [Hess, 1912]. About 90% of the primary CRs are protons, 9%

are alpha particles and 1% are heavier ions and electrons (electron/proton number ratio in

the primary CRs Kep ∼ 10
−2). Figure 1.1 shows the energy spectra of CRs measured by the

satellites and ground based observations (from Amato [2014]). The CR energy spectrum is

nearly a power law ranging from 109 eV to about 1020 eV. The spectrum is described ∝ E−2.7 up

to (3−5)×1015 eV which is called “knee”. After the knee, the spectrum steepens, ∝ E−(3.0−3.2)

until 3×1018 eV which is called “ankle”. Over the ankle, we detect higher energy up to about

4×1019 eV (so-called Greisen-Zatsepin-Kuzumin (GZK) cut-off energy), energy at which particles

begin to interact with the cosmic microwave background (CMB) photons and to be suppressed.

CRs with energies below the knee are called “Galactic cosmic rays (GCRs)”, because their origin

is thought to be in our Galaxy. On the other hand, CRs whose energies are above the knee are

thought to be of extragalactic origin. Possible candidates of these extragalactic CRs include

such as active galactic nuclei (AGN), clusters of galaxies, or radio galaxies.

From the early age of CR research history, the shock waves driven by supernova explosions
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Figure 1.1: Energy spectrum of CRs measured by various experiments (from Blasi [2013]; Amato
[2014]). The horizontal axis means the energies of each CR particles and vertical axis means the number
fluxes. Each symbol means the results of experiments.
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have been considered as the reliable origins of GCRs. After the explosions, there are nebulae left,

which are called supernova remnants (SNRs). The average kinetic energy released by supernova

explosions is ∼ 1051 erg. A supernova rate is estimated to be about 2 times per century [van den

Bergh and Tammann, 1991]. This leads to the energy input rate ∼ 6×1041 erg/s. On the other

hands, the average energy density of CRs confined in our galaxy is typically ∼ 1eV/cm3 [Gaisser,

1990] that is comparable to that of the magnetic fields and CMB photons. Since the volume of

our galaxy is about 1067 cm3, the total energy of GCRs is ∼ 1067 eV. The lifetime of these GCRs

is equal to the confinement time, which has been estimated by the isotope 10Be generated by

the spallation of CR carbon and oxygen near the SNRs. From the comparison of the abundance

of 10Be around SNRs with that of near the earth, the escape time can be inferred as ∼ 107 yr.

Then, the required CR production rate is ∼ 5×1040 erg/s. This is satisfied if about 10% of the

supernova explosion energy is converted into the energy of GCRs and there is no candidates

in our galaxy other than supernova explosions that can provide such large energies. There is

increasing evidences that suggest the above hypothesis is indeed correct.

SNRs are classified into three categories based on the radio morphology, i.e. “Shell-type”,

“Filled-center” and “Composite”. Shell-type SNRs have bright rings that corresponds to the

expanding shock fronts, and filled-center SNRs have the pulsars at the center of the remnants

and bright nebula called as “Pulsar Wind Nebula (PWN)”. Composite SNRs show the features

of the both types. Most SNRs, about 79% of the known SNRs in out galaxy, are categorized

into Shell-type [Green, 2014]. Figure 1.2 shows one of the typical examples of Shell-type SNRs,

which is the remnant of the supernova explosion in 1006, therefore, called as SN 1006. This

is the X-ray image by Chandra X-ray observatory. At the northeast and southwest rims (the

upper left and lower right in the figure), the brightest X-ray radiations are observed (blue color

in the figure), which are the emissions from the relativistic CR electrons. Not only in X-ray

band, but also in the broad range from radio to γ-ray, radiations from non-thermal (relativistic)

particles have been detected in the observations of SNRs.
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Figure 1.2: X-ray image of the SN1006 by Chandra (Courtesy of NASA/CXC/SAO). Colors show the
different energies of X-ray photons (red: 0.50−0.91keV, cyan: 0.91−1.34keV, blue: 1.34−3.00keV).

1.1.1 Radiation processes of CRs

The emission process related to the non-thermal particles are summarized as follows. Relativistic

electrons produce non-thermal emissions by synchrotron radiation, non-thermal bremsstrahlung

and Inverse Compton (IC) scattering. Synchrotron radiation is emitted by relativistic elec-

trons in the gyro-motion around the magnetic fields. Typical magnetic fields in the interstellar

medium (ISM) ∼ 3 µG, which shows the almost equal energy density to that of the GCRs in our

galaxy (∼ 1eV/cm3) [Gaisser, 1990]. Synchrotron radiation can be detected from the radio to

X-ray bands for such a strength of magnetic fields. Radiations by non-thermal bremsstrahlung

and Inverse Compton (IC) scattering are observed in the X-ray ∼ γ-ray band. Bremsstrahlung

(or free-free emission) occurs when the relativistic electrons are scattered by the ions or elec-

trons. IC scattering is a process where relativistic electrons conflict with low-energy photons,

and produce high-energy emission. This is an opposite case of Compton scattering where the
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high-energy photons conflicts with the low-energy electrons. On the other hand, emissions from

the non-thermal protons are thought to be generated by nuclear reaction. Collisions of relativis-

tic protons and the ambient proton (or nucleus) in ISM generate a neutral pion (π0) through

nuclear reaction p+ p→ π0. Subsequently, γ-ray photons are generated via π0 decays. This γ-ray

emission is called a “hadronic” process in contrast with a “leptonic” process by bremsstrahlung

and IC due to the relativistic electrons.

A relativistic electron with the energy E emits the synchrotron radiation at the critical

frequency νc defied as

νc =
3
2

eBsinα

2πmec

(
E

mec2

)2

∼ 16.08
(

B
µG

)(
sinα

1

)(
E

GeV

)2

MHz. (1.1)

α is the pitch angle between the electron’s velocity vector and the magnetic field. At this critical

frequency, a photon has the energy Ep,sync:

Ep,sync = hνc ∼ 6.65×10−8
(

B
µG

)(
sinα

1

)(
E

GeV

)2

eV. (1.2)

The frequency (and the photon energy) depends on the energy of the electron and the strength of

the local magnetic field. When B is equal to the typical value of the interstellar magnetic fields (a

few µG), the electrons with the GeV energies emit the synchrotron radiation in radio band: the

frequencies of MHz−GHz (or the photon energies of 10−8−10−3 eV). Electrons with TeV energies

can be detected in X-ray band: the photon energies of ∼ keV. If the non-thermal electrons are

assumed to be in power-law distributions, N(E) ∝ E−s, the spectra of the synchrotron radiation

also become power-law, i.e. energy flux F(ν) per unit frequency ν is described as F(ν) ∝ ν−α .

The index α is expressed by the formula α = (s− 1)/2. The energy loss rate Psync of electrons

emitting the synchrotron radiations is

Psync ∼
4
3

(
8πe4

3m2
ec4

)
c
(

B2

8π

)(
E

mec2

)2

(1.3)

∼ 4.06×10−21
(

B
µG

)2( E
GeV

)2

erg/s,
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and the cooling time τcool of relativistic electrons by the synchrotron radiations is

τcool ∼
E

Psync
∼ 1.25×1010

(
B

µG

)−2( E
GeV

)−1

yr. (1.4)

Under a few µG magnetic fields, the cooling time is sufficiently large.

An electron whose energy is E typically emits the bremsstrahlung photon of the energy

Ep,brems ∼ E/3. Therefore, suprathermal electrons of 10−1000keV are responsible for the hard

X-ray, where the photon energy is over 10keV, and relativistic electrons of MeV-TeV energies

that cause synchrotron radiation in radio - X-ray bands, contribute to the γ-ray photons. Non-

thermal bremsstrahlung from relativistic electrons is distinguished from thermal bremsstrahlung

by thermal Maxwellian electrons, which shows the flat photon spectrum independent from the

frequencies in the radio band. It has power-law distributions, expressed by F(ν) ∝ ν1−s, when

the relativistic electrons are in N(E) ∝ E−s.

The energy of the IC photon Ep,IC becomes maximum at the frequency νmax:

νmax ∼ 4
(

E
mec2

)
ν0 ∼ 2.50×1012

(
E

GeV

)2(
ν0

νCMB

)
MHz, (1.5)

and

(Ep,IC)max ∼ 1.03×104
(

E
GeV

)2(
ν0

νCMB

)
eV (1.6)

where ν0 and νCMB are the frequency of incident, unscattered photon and the peak frequency

of CMB (νCMB = 1.6× 1011 Hz), which is the most likely candidate for seed photons scattered

by relativistic electrons, respectively. When CMB photons are scattered by 1GeV electrons, the

scattered photons become keV energy photons, i.e. X-ray photons. Spectrum of IC photons

is F(ν) ∝ ν−(s−1)/2, which shows the same index as that of the synchrotron radiation, and this

power-law spectrum continues up to νmax, then has an exponential cut-off after the frequency.
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The energy loss rate of the electrons PIC by IC scattering is

PIC ∼ 4
3

(
8πe4

3m2
ec4

)
cUrad

(
E

GeV

)2

erg/s. (1.7)

Urad is the energy density of the radiation.

Emissions by π0 decay are detected only in the γ-ray band, where the photons energies are

MeV-TeV. The creation of π0 by the reaction p+ p → π0 occurs when the energies of the CR

protons are above 1.2GeV. π0 quickly decays into two γ-ray photons (π0 → 2γ), whose energies

are mπ0c2/2 ∼ 67.5MeV in the rest frame of π0, where mπ0 is the mass of the neutral pion. In

the lab frame, the photons have roughly one-tenth the energies of the parent CR protons. The

resulting spectrum is F(ν) ∝ ν1−s when the parent CR protons are in the power-law distribution:

N(E) ∝ E−s, and it has the characteristic low-energy cut-off around 0.1GeV.

Typical examples of the shape of the spectra described above are shown in Figure 1.3, which

indicates the broadband spectral energy distribution of Tycho’s SNR [Giordano et al., 2012].

Each line means the different radiation models: synchrotron radiation, IC scattering of CMB,

non-thermal bremsstrahlung, π0 decay and the sum of the four. Horizontal axis means the photon

energy E(= hν), and the vertical axis means the photon energy flux E2dN/dE(= νF(ν)), where

N is the photon flux in the interval energy dE, therefore this map is qualitatively equal to the

ν −νF(ν) map. The power-law indices of both of CR electrons and protons are assumed to be

2.3 (N(E) ∝ E−2.3). The spectrum of the synchrotron radiations that continues from the radio to

the X-ray (keV photons) is νF(ν) ∝ ν−(s−3)/2 ∝ ν0.35, and IC has the same index (νF(ν) ∝ ν0.35)

but is seen in the different energies (X-ray - TeV γ-ray). Non-thermal bremsstrahlung (X-ray

- TeV γ-ray) has slope νF(ν) ∝ ν2−s ∝ ν−0.3 in the higher energies. The radiation by π0 decay

(GeV-TeV γ-ray) show the same trend as the non-thermal bremsstrahlung (νF(ν)∝ ν−0.3) above

the low-energy cutoff around 0.1GeV. The colored dots show the observational results of the

different experiments: radio data, X-ray from Suzaku X-ray satellite, GeV γ-ray from Large

Area Telescope (LAT) on Fermi γ-ray space telescope, TeV γ-ray from Very Energetic Radiation

Imaging Telescope Array System (VERITAS).
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Figure 1.3: The broadband spectra of the Tycho’s SNR in the hadronic scenario (from Giordano et al.
[2012]). Each line shows the different radiation models: synchrotron radiation, IC scattering of CMB,
non-thermal Bremsstrahlung, π0 decay and the sum of them. Each color dot shows the observational
results obtained by the different experiment: radio data, X-ray from Suzaku, GeV γ-ray from Fermi-LAT,
and TeV γ-ray from VERITAS. The horizontal axis means the energies of photons, and the vertical axis
means the photon energy flux.

1.1.2 Observations of SNR shocks

The radio observations of SNRs have a long history from 1940’s, radio spectra have been obtained

from 274 SNRs out of 294 known in our galaxy [Green, 2014]. These observations revealed that

the radio emissions, which was the synchrotron radiations from GeV electrons, had power-law

spectra. Although there are the variations among SNRs, their spectral indices α were approx-

imately 0.5 [Green, 2014; Dubner and Giacani, 2015]. From the relation between α and the

spectral indices of CR electrons s, such values of α imply s ∼ 2, which have a good agreement

with the index of GCRs. This fact was one of the evidences that SNR shocks were the origins

of GCRs. However, steeper CR electron spectra (α >∼0.5) are also reported typically in young

SNRs, these spectra can be qualitatively explained by the nonlinear shock accelerations due to

the efficient CR generations [Reynolds and Ellison, 1992].

The X-ray observations began in 1970’s by means of the astronomy satellites. In 1995,
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Koyama et al. [1995] discovered synchrotron X-rays from SN 1006 by ASCA X-ray astronomy

satellite. The observed spectra continued to ∼ 20keV. From Equation (1.2), the energies of

electrons responsible for the X-ray emission were up to ∼ 200TeV, when the strength of the

magnetic fields was assumed to be ∼ µG. This was the first direct evidence suggesting that

non-thermal electrons are accelerated to around the knee energy. After then, X-ray observations

revealed X-ray synchrotron radiations in various SNRs, such as RX J1713.7-3946 [Koyama et al.,

1997; Slane et al., 1999; Allen et al., 1997], RCW 86 [Borkowski et al., 2001], Cas A [Allen et al.,

1997], G266.2-1.2 [Aschenbach, 1998; Slane et al., 2001], indicating the acceleration of GCR

electrons. In addition to the X-ray spectra, the thin filament structures around the shells of

some SNRs were discovered by the observations in the X-ray band. Typical examples is shown

in the northeast and southwest rims of SN1006 in Figure 1.2. Bamba et al. [2003] investigated

those filaments, and the width of the filaments were about 0.1pc, which was the 1% of the

diameter of the remnant. If the width of the filament is equal to the length of the mean free

path of the parent (∼ 100TeV) CR electron, the cooling time by the synchrotron radiations

becomes so short, 10− 100yr. This requires the magnetic fields of 10− 100 µG, which is more

than 10 times larger than that of ISM [Bamba et al., 2004; Yamazaki et al., 2004]. In the other

SNRs, thin X-ray filaments also inferred the amplified magnetic fields to 10− 100 µG [Vink

and Laming, 2003; Bamba et al., 2005]. Such amplification was deduced from the rapid time

variation of synchrotron X-ray. Figure 1.4 is the X-ray images of the western shell of SNR RX

J1713.7-3946 by Chandra [Uchiyama et al., 2007]. In the overall image of Figure 1.4a, the bluish

white hotspots mean the strong synchrotron X-ray emissions. The enlarged images 1.4b and

1.4c for the boxes (b) and (c) in 1.4a show the more compact hotspots, which change brightness

in less than a few years. If such a rapid variability reflects the time scale of the energy loss of

CR electrons by the synchrotron cooling, the strength of the magnetic fields can be estimated

as B ∼ 1mG from the relation

τcool ∼ 2.86
(

B
mG

)−1.5(Ep,sync

keV

)−0.5

yr, (1.8)
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Figure 1.4: Chandra X-ray images of the western shell of SNR RX J1713.7-3946 (from Uchiyama et al.
[2007]). a: Chandra X-ray (1−2.5keV) color image overlaid with TeV γ-ray contours from HESS. b: a
time sequence of X-ray observations in the same energy band as a (1−2.5keV) in July 200, July 2005
and May 2006 for a small box labeled (b) in a. c: a time sequence in hard X-ray band (3.5−6keV) for
a box (c) in a, in the same time as b.

which is derived from Equations (1.2) and (1.4). Similar year-scale variability was also observed

in SNR Cassiopeia A, and inferred the strong magnetic fields of 1mG [Uchiyama and Aharonian,

2008].

The γ-ray observations started in 1960’s with the satellites, and in late 1980’s, observations

with the ground-based Cherenkov telescopes began. These telescopes detected the Cherenkov

radiations emitted by the numerous secondary CRs, which were generated by the interaction

between the molecules of the upper atmosphere and the incident γ-ray photons. Though the

acceleration of the CR electrons in the SNR shocks is confirmed by the synchrotron radiations,

an evidence of the acceleration of the CR protons, which are made up of the majority of CRs

has been a matter of debate. That is because whether the origin of γ-ray is in hadoronic

process or in leptonic process is difficult to determine only from the spectrum. CANGAROO, a
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ground-based atmospheric Cherenkov telescope, first detected TeV γ-rays from RX J1713.7-3946

[Enomoto et al., 2002] and High Energy Stereoscopic System (HESS) observed this SNR with

high spatial resolutions [Aharonian et al., 2004, 2006; Aharonian et al., 2007]. Whereas some

authors suggested the TeV γ-ray emissions are the hadronic origin [Morlino et al., 2009; Berezhko

and Völk, 2008; Yamazaki et al., 2009], others suggested that these are due to the leptonic process

[Zirakashvili and Aharonian, 2010; Ellison et al., 2010]. As explained above, if non-thermal

protons (or electrons) are in the power law distributions: N(E) ∝ E−s, the theoretically predicted

spectra of photons: F(ν) ∝ ν1−s in the bremsstrahlung and π0 decay, F(ν) ∝ ν(s−3)/2 in IC. The

former is softer than the latter (when s = 2 that is the standard value of GCRs), and should be

more dominant in lower energies. In addition, for the π0 decay scenario, a certain density of

“target” thermal protons with which non-thermal protons interact around the shocks is required.

However, thermal X-ray that these thermal protons should radiate is very faint [Lazendic et al.,

2004]. Furthermore, GeV γ-ray observations of RX J1713.7-3946 by the Fermi-LAT show the

smooth connection with the TeV γ-ray spectra of HESS [Abdo et al., 2011]. The resulting

broadband photon spectra (GeV-TeV) indicate a flatter index than the π0 decay predicts, and

can not sustain the dominance of π0 decay scenario in the lower energies. Therefore, recently,

the leptonic scenario is preferred to explain the TeV emission of RX J1713.7-3946.

RX J1713.7-3946 is a young and most energetic TeV γ-ray SNRs. As for other young (. 5kyr)

SNRs with bright γ-ray emission such as RX J0852.0 − 4622, RCW 86, SN 1006 and HESS

J1731 − 347, their emissions are also seemed to be leptonic-dominated [Acero et al., 2015]. A

direct evidence of the hadronic γ-ray emission was found in the two middle-age SNRs, W44

(∼ 20kyr) and IC443 (∼ 10−20kyr). The multi-wavelength observations of W44 from the radio,

optical, X-ray and γ-ray (50MeV−10GeV by Fermi [Abdo et al., 2010b] and AGILE [Giuliani

et al., 2011] satellites) gave the broadband spectra of the photons. These spectra well fitted to

the low-energy cut off, which was the typical feature of the radiations by π0 decay. Similarly,

the spectrum of IC443 had good correspondence only to the hadronic model [Tavani et al., 2010;

Abdo et al., 2010c]. These results were the first direct evidence indicating the acceleration of

CR protons. This was due to the existence of dense molecular clouds (MCs) nearby the SNRs,
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which provided rich thermal protons as targets of the CRs protons. Notice that the estimated

maximum energy of the protons was limited around a few hundred GeV, which was much smaller

that the knee energy, and the estimated power-law indices in the energy region were steeper than

that of GCRs (-2), indicating the less efficient acceleration. It is also noted that such hadronic

γ-ray emissions do not necessarily mean the CR protons are “newly” accelerated by the SNR

shocks. Uchiyama et al. [2010] suggested that these γ-ray emissions could be explained by the

interaction between the “re-accelerated” pre-existing CRs in ISM by the passage of the shocks

and the thermal protons in the MCs. Although there are not so conclusive evidences as those

in W44 and IC443, the γ-ray from two young SNRs, Tycho’s SNR and Cassiopeia A, imply the

hadronic processes [Giordano et al., 2012; Morlino and Caprioli, 2012; Blasi, 2014; Abdo et al.,

2010a]. For example, the hadronic model where γ-ray photons are mainly emitted by the π0

decay, is consistent with the γ-ray data from Fermi-LAT and VERITAS in Tycho’s SNR, as

shown in Figure 1.3. If that is the case, the CR protons are accelerated up to ∼ 500TeV at

a maximum in Tycho’s SNR, which is still smaller than the knee energy (∼ 3× 1015 eV), and

10−15% of the kinetic energy of the shock is converted into CR protons [Morlino and Caprioli,

2012; Slane et al., 2014]. Besides, the predicted CR proton spectrum becomes steeper than the

standard value (N(E) ∝ E−2). Caprioli [2011] summarized the spectral indices of the GeV and

TeV γ-ray photons in the other γ-ray-bright SNRs. If the γ-rays are assumed to be the hadronic

(π0 decay) origin, most SNRs also showed the steeper spectra.

The observations of SNRs also revealed some typical structure in the upstream region. Figure

1.5 shows the X-ray photons counts across the rim of RCW 86 [Bamba et al., 2005]. We can

see the decay of photon counts towards the upstream (left) from the peak. These photon counts

are due to the synchrotron emission of the non-thermal electrons. If these photon counts simply

reflect the number density of emitting electrons, this profile indirectly shows the decaying profiles

of the CR electrons density. Such decay profiles in photon counts have been reported in other

SNRs [Bamba et al., 2003, 2005]. These decay structures from the shock towards the upstream

are called “precursor”, and these structures are reflects on the acceleration mechanism of CRs.

Precursor is not typical structure only for SNR shocks. In heliosphere, we can obtained the
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direct data of the densities of the accelerated particles by the in-situ observations of interplan-

etary shocks (IPSs) [Shimada et al., 1999; Terasawa et al., 2005, 2006]. Figure 1.6 shows the

profiles of the density of the protons measured by GEOTAIL spacecraft in the passage of an

IPS formed by coronal mass ejection (CME) [Shimada et al., 1999]. The precursor was seen for

energetic protons in every energy band. In addition, the width of the precursor that depends

on the diffusion coefficient became larger for the higher energy protons, which is similar to the

Bohm-type diffusion, where the diffusion coefficient is proportional to the particle momenta.

Figure 1.5: Photon counts in the hard X-ray band (2.0− 10.0keV) across the shell of RCW 86 from
upstream (left) to downstream (right) (from Bamba et al. [2005]). The vertical dashes mean the photon
counts and solid lines shows the best-fit of the exponential-type function to the photon counts.

1.2 Theory of Diffusive Shock Acceleration (DSA)

Observations of SNR shocks have revealed the evidences of GCR acceleration, as described in

the previous section. In this section, we briefly review the acceleration mechanism of parti-

cles. Classical acceleration theory of non-thermal particles in astrophysics is known as “Fermi
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Figure 1.6: Counts of protons for the different four energy channels (97 − 165keV, 390 − 990keV,
0.99−2.5MeV and 2.5−4MeV), of the interplanetary shock on 21 February 1994 (from Shimada et al.
[1999]). Left side is upstream and right is downstream.

acceleration”, which was proposed by Fermi in 1949 [Fermi, 1949]. In his theory, particles re-

flect off interstellar clouds, which have stronger magnetic field than interstellar magnetic field

through magnetic mirroring. Particles gain energy in “head-on collisions” with the clouds, and

lose energy in “trailing collisions”. When the probabilities of these collisions are considered,

the probabilities of head-on collisions is slightly higher than the other. Therefore, after the

many collisions, energy gains slightly exceeds energy losses, then particles are accelerated to

non-thermal energy. This theory suggested the rate of the energy gain of a particle dE/dt:

dE
dt

=
4
3

(
V
v

)2 1
tcoll

E, (1.9)

where V is the velocity of interstellar clouds, v and E are the velocities and energies of each

particles, respectively, and tcoll is the average collision time. This formula gives

E = E(t = 0)exp
(

t
tacc

)
, (1.10)
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where tacc is the acceleration time defined as

tacc =
3
4

( v
V

)2
tcoll . (1.11)

Typically, V ∼ 10km/s and tcoll ∼ 109 s in the ISM and v is almost equal to the speed of light

c for the CR particles. Then the acceleration time tacc ∼ 1018 s, which is too longer than the

age of our universe (∼ 1017). Today, Fermi’s acceleration theory is called “second order Fermi

acceleration” because the rate of the energy increase is proportional to (V/c)2.

In late 1970’s, a more effective statistical particle acceleration theory was proposed [Bell,

1978; Blandford and Ostriker, 1978; Axford et al., 1977], where the method of original Fermi

acceleration was applied to the shock waves. This theory was called “Diffusive Shock Accelera-

tion (DSA)”. The mechanism of DSA is described as follows. Figure 1.7 shows a schematic view

Upstream	

(supersonic flow in V1)	


Downstream	

(subsonic flow in V2)	


Shock	


V1

V2

θ+

θ−

Figure 1.7: A cartoon of DSA (based on Scholer). Left side of the shock surface is upstream region and
right is downstream.

of the DSA. V1 and V2 are the upstream and downstream flow velocities in the shock rest frame

(V1 > V2). Around the shock, the magnetic irregularities such as Alfvén waves are excited by

some plasma instabilities between the CRs and the background plasma. When CRs “collide”

with these waves, they are elastically reflected and turn their directions of motion. This scatter-

ing process is known as “pitch angle scattering”. The velocities of the reflected particles decrease

15



(increase) when the particles collide with the waves that moving the same (opposite) direction

because of the conservation of momentum. In the upstream region, particles gain energies by

“head-on collisions” with the waves moving in V1 (co-moving with the background plasma flow)

and lose energies by “trailing collisions” with the waves moving in V2 in the downstream. At the

one reflection, the direction of particle’s motion change randomly and a certain ratio of particles

can be reflected back to the shock surface.

Here is the derivation of the energy gain and the spectrum of accelerated particles in DSA.

Through one cycle (starts from the upstream region and returns to the upstream by the scattering

in the downstream), the energy of a particle changes from E to E ′. The ratio of E ′ and E is

described following,

E ′

E
=

1− V1v
c2 cosθ−

1− V2v
c2 cosθ−

1− V2v
c2 cosθ+

1− V1v
c2 cosθ+

(1.12)

where the θ+ and θ− is the angles between the particle velocity and the shock normal; a

superscript +(-) means the particle goes into (out from) the downstream region, which are

shown in Figure 1.7. If the particles are assumed to be isotropic, the expectation of Equation

(1.12) become,

〈
E ′

E

〉
= 1+

4
3
(V1 −V2)v

c2 ∼ 1+
4
3
(V1 −V2)

c
. (1.13)

Note that V1,V2 << c(∼ v) in the above final transformation. Only a small fraction of particles

can experiences above stochastic reflection many times and accelerated to the relativistic energy.

The energy gain in one cycle in DSA is proportional to ∼ (V/c), where V is the velocity of the

shock wave, DSA is also called “first order Fermi acceleration” compered with the original

Fermi’s mechanism.

After the n cycles, the energy of the particle becomes,

En = E(t = 0)
(

1+
4
3
(V1 −V2)

c

)n

∼ E(t = 0)exp
(

4n
3
(V1 −V2)

c

)
. (1.14)
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In the acceleration, some particles which are not reflected to the upstream region escape from

the shock region. A possibility of such a escape per one cycle Pesc is evaluated by the ratio of

the flux of particles which flow away from the shock in the downstream, to the inflow flux into

the shock from the upstream:

Pesc =
N0V2
N0
2

v
2

∼ 4V2

c
. (1.15)

N0 is the number of particles at the upstream region. The inflow flux is the product of the

number of particles heading to shock (N0/2) and the mean velocity of them (v/2). Considering

the escape, the possibility that particles can exist around the shock after n cycles is,

Pn = (1−Pesc)
n =

(
1− 4V2

c

)n

∼ exp
(
−n

4V2

c

)
. (1.16)

Substitution of Equation (1.14) into Equation (1.16) gives

Pn '
(

En

E(t = 0)

)−3V2/(V1−V2)

. (1.17)

Pn can be expressed by the N(E) that is the number of particles whose energies are between E

and E +dE:

Pn =
∫

∞

En

N(E)dE. (1.18)

From Equations (1.17) and (1.18), N(E) is solved as follows,

N(E) ∝ E−s, (1.19)

where s is expressed by the compression ratio of the shock r = V1
V2
:

s =
3V2

V1 −V2
+1 =

V1/V2 +2
V1/V2 −1

=
r+2
r−1

. (1.20)
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This means that the index s of the power-law energy spectrum in DSA depends only on the

compression ratio of shocks. The compression ratio r approaches to 4 at strong shocks such as

SNRs, then the asymptotic spectrum index is 2. This value has a good correspondence with the

observational value of GCRs (2.7), when the softening effects due to the decay in propagating

the interstellar medium are taken into account.

Above discussion about DSA is based on the particles’ motions, which was proposed by Bell

[1978]. On the other hand, DSA theory can be understood by the transport equations of CRs’

distribution function F(x, p, t). These equations have been proposed by many authors in the

long history [Parker, 1965; Gleeson and Axford, 1967; Jokipii, 1971; Skilling, 1975a]. Among

them, most simplest formula is:

∂ f
∂ t

+u ·∇ f −∇(κ∇ f ) =
1
3
(∇ ·u)p

∂ f
∂ p

, (1.21)

which is so-called “diffusion-convection equation” of CRs. u is the velocity of the background

plasma flow. CRs are assumed to be scattered efficiently by the scattering center fixed in the

flow, and to be almost isotropic. f = f (x, p, t) is an isotropic part of F . The second terms of the

left and the one in the right hand side mean the convection and the adiabatic heating with the

change of volume, respectively. The terms excluding the third diffusion term in the left hand

side that means spatially diffusion are essentially derived from the conservation of the phase

space density. The diffusion term is due to the random particle scattering by the perturbed

magnetic fields. For the simplicity, a most optimistic diffusion coefficient is often used (where

discussed in Drury [1983]), i.e. the Bohm diffusion coefficient κB = 1
3 rgv, where rg is the gyro

radius of a particle. The Bohm diffusion is the fastest diffusion across the magnetic fields, then

it gives the maximum values of the diffusion coefficient.

DSA can be described by the diffusion-convection equation as follows. When the one dimen-

sional parallel shocks (located at x = 0), where the background magnetic fields are parallel to
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the normal of the shock surface, are considered, Equation (1.21) is simplified to

∂ f (x, p)
∂ t

+u(x)
∂ f (x, p)

∂x
− ∂

∂x

(
κ(x, p)

∂ f (x, p)
∂x

)
=

1
3

∂u(x)
∂x

p
∂ f (x, p)

∂ p
. (1.22)

In the time-asymptotic state, the time-derivative term is neglected as follows,

u(x)
∂ f (x, p)

∂x
− ∂

∂x

(
κ(x, p)

∂ f (x, p)
∂x

)
=

1
3

∂u(x)
∂x

p
∂ f (x, p)

∂ p
. (1.23)

For the simplicity, the flow velocity of the background plasma u(x) and the diffusion coefficient

κ(x, p) are assumed to be spatially constant in the upstream and downstream, i.e.

u(x) =


V1 (x < 0),

V2 (x > 0),

(1.24)

(1.25)

where V1 >V2(> 0), and

κ(x, p) =


κ
′
1(p) (x < 0),

κ
′
2(p) (x > 0).

(1.26)

(1.27)

Off the shock, the steady-states obey the following simple diffusion equation because the com-

pression term of Equation (1.23) is neglected,

V1,2
∂ f (x, p)

∂x
− ∂

∂x

(
κ
′
1,2(p)

∂ f (x, p)
∂x

)
= 0. (1.28)

From this equation, we can obtained following asymptotic profiles of the upstream and down-

stream, assuming the finite (nonzero) values at the far upstream and downstream:

f (x, p) =


f1(p)exp

(
V1

κ ′
1(p)

x
)
+ f0(p) (x < 0)

f2(p) (x > 0),

(1.29)

(1.30)

where f0(p), f1(p) and f2(p) are the values at the far upstream, the shock and the far upstream,
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Figure 1.8: Typical time-asymptotic structures of the number density of CRs n (solid line) and the ve-
locity of the background plasma V (dashed line) in DSA. Subscripts 1 and 2 means the values at the
upstream (x < 0) and the downstream (x > 0).

respectively. The profiles of the number density n of CRs are also written by


n(x) ∝ exp

(
V1

κn,1
x
)

(x < 0)

n(x)∼ n2 (x > 0).

(1.31)

(1.32)

κn,1 and n2 are the average diffusion coefficient at the upstream and the number density at the

downstream. The profiles of above solutions are illustrated in Figure 1.8 with the solid line. The

exponentially decaying upstream profiles should correspond to the precursor, which is observed

in SNR shocks or IP shocks.

At the shock (x = 0), CRs are assumed to be distributed continuously across the shock

because of the large mean free path of CR compared with the width of the shock, i.e.

[ f (x, p)]0+0− = 0. (1.33)
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Hence, the integral of Equation (1.22) from x = 0− to x = 0+ becomes

−
[

κ
∂ f
∂x

]0+

0−
=

1
3

p
∂ f1

∂ p
[u]0+0−, (1.34)

then Equations (1.29) and (1.32) give

p
∂ f1

∂ p
=

3
V1 −V2

[
κ

∂ f
∂x

]0+

0−
=− 3

V1 −V2
κ
′
1

∂ f
∂x

∣∣∣∣
x=0+

=− 3V1

V1 −V2
f1(p) =− 3r

r−1
, (1.35)

where r = V1/V2 is the compression ratio of the shock. The spectrum at the shock is given as

follows,

f1(p) ∝ p−3r/(r−1). (1.36)

Notice that the number of particles per unit energy N(E) (equivalently, the number of particles

per unit relativistic momentum N(p)) is connected with the distribution function f (p) through

the relation N(E)dE = N(p)d p = 4π p2 f (p)d p. N(E) follows,

N(E) ∝ E−3r/(r−1)+2
∝ E−(r+2)/(r−1), (1.37)

where the spectral index corresponds to Equation (1.20). Again, as for the strong shocks (r ∼ 4),

the asymptotic spectra become N(E) ∝ E−2,

f (p) ∝ p−4.

(1.38)

(1.39)

From the above two different approaches, i.e. approaches by the CR particles’ motions and

the diffusion-convection equation of the CRs, the equivalent results show the good correspon-

dence between theoretical predictions of DSA and observations of GCRs. That is why DSA is

widely accepted as a standard acceleration theory of CRs.
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1.3 Nonlinear Diffusive Shock Acceleration (NLDSA)

Although the DSA theory basically gives good explanations about observations, there are many

issues we have to work on in the acceleration theory. One of them is the acceleration efficiency

of the CRs. From the energetic relation between the GCR energy and the kinetic energy of

supernova explosions, the efficiency is roughly estimated as ∼ 10%. However, this value is not

the definite one, and varies largely depending on observations.

Helder et al. [2009] observed RCW 86 and estimated downstream thermal proton temperature

at about 2.3keV from Hα spectrum. This temperature was about one-twentieth of the theoretical

temperature calculated by RH relation, 42keV. Cold downstream thermal plasma means that the

kinetic energy of upstream plasma is distributed to other than downstream thermal plasma, to

acceleration of CRs. In this case, the ratio of the energy density of CRs to the total energy density

at downstream region is about 50%. Similar observations have also been reported [Hughes et al.,

2000; Decourchelle et al., 2000; Helder et al., 2010; Warren et al., 2005; Cassam-Chenäı et al.,

2008]. In contrast to these observations suggesting efficient production of CRs, Fukui [2013]

estimated, using observations of γ-rays and interstellar molecular clouds, that the CR proton

energy is only ∼ 0.1% of the total kinetic energy in young SNRs RX J1713.7-3946 and RX

J0852.0-4622.

In the heliosphere, the energy densities of particles accelerated by IP shocks driven by CMEs

were estimated using in-situ observations. The results indicated that the energetic particles

accounted for at most 10− 20% of the CME kinetic energy [Mewaldt et al., 2005; Mewaldt,

2006]. Other observations of IP shocks also referred to the negligible energy of non-thermal

particles [Terasawa et al., 1999; Terasawa et al., 2006].

Although the CR production efficiency in the SNRs shocks is still controversial, some fraction

of the kinetic energies are actually more or less converted into CRs. The number of CRs is

extremely low but each particles’ energy is tremendous compared with the background plasma.

Therefore, the energy density of CRs is not necessarily negligible in comparison with that of the

background plasma. In order to evaluate the energy density of CRs, we consider the CR pressure

pc and the CR internal energy density Ec by the moments of the isotropic CR distribution
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function defined as,

pc(x) =
4π

3

∫
∞

0
p3v f (x, p)d p, (1.40)

Ec(x) = 4π

∫
∞

0
p2T (p) f (x, p)d p, (1.41)

where p and v are the momenta and velocities of the CR particles. T (p) is the relativistic kinetic

energy of the particles with momentum p. When the contribution of pc to the total pressure,

i.e. the pressure ratio N:

N =
pc

pg + pc
, (1.42)

is not small, pc can exert an additional pressure to the shock structure, which is known as

“back-reaction” to the shocks. The back-reaction occurs in the nonlinear regime of the particle

acceleration when the population of CRs increases. In contrast with the test-particle limit

where CRs behave passively as mentioned in Section 1.2, this mechanism is called “Nonlinear

DSA (NLDSA)” that was firstly proposed in the 1980’s. [Drury and Völk, 1981; Drury, 1983;

Axford et al., 1982]. Shocks affected by the back-reaction of CRs are typically called “cosmic

ray modified shocks” or “cosmic ray mediated shocks” (CRMSs).

1.3.1 Theory of NLDSA

The back-reaction was first studied by Drury and Völk [1981] in the “two-fluid” model, where

both of the background plasma and CRs are treated as fluids and the back-reaction is explained

by the force by the CR pressure gradient. They showed the following hydrodynamical equations

modified the additional CR pressure:

∂ρ

∂ t
+

∂

∂x
(ρu) = 0, (1.43)

∂

∂ t
(ρu)+

∂

∂x
(ρu2 + pg + pc) = 0, (1.44)

∂

∂ t

(
1
2

ρu2 +
pg

γg −1
+

pc

γc −1

)
+

∂

∂x

[(
1
2

ρu2 +
γg

γg −1
pg +

γc

γc −1
pc

)
u− κ̄(x)

γc −1
∂ pc(x)

∂x

]
= 0. (1.45)
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ρ, u, pg and γg are the density, velocity of the flow, pressure and the specific heat ratio of the

background plasma, respectively. γc is the specific heat ratio of CRs defined as γc = pc/Ec +1.

Notice that the mass density of CRs ρc is neglected compared to ρ in above equations. The

density of CRs ρc is

ρc ∼ 4π

∫
∞

0
p2

(
T (p)

c2

)
f (x, p)d p ∼ Ec

c2 . (1.46)

If Ec is comparable with the energy density of the background plasma Eg(pg/(γg −1)):

Ec ∼ Eg ∼
pg

γg −1
∼ 1

γg −1
kBT
m

ρ, (1.47)

where kB, T and m are Boltzmann constant, temperature of the background plasma and the mass

of the particles. T ∼ 100− 10000K, typically for upstream plasma (i.e. ambient ISM plasma)

and the proton mass is assumed for m, then kBT
m ∼ (1− 100)× 1010 (cm/s)2. From Equations

(1.46) and (1.47), ρc is

ρc ∼
(1−100)×1010 (cm/s)2

c2 ρ ∼ 10−10
ρ, (1.48)

which is much smaller than the density of the background plasma ρ.

The hydrodynamical energy equation for Ec is given by the energy moment of the diffusion-

convection equation (1.22):

∂EC

∂ t
+u

∂Ec

∂x
− ∂

∂x

(
　κ̄(x)

∂Ec

∂x

)
= 0. (1.49)

The diffusion coefficient κ̄(x) are defined following:

κ̄(x) =
∫

∞

0 κ(x, p)p2T (p)(∂ f/∂x)d p∫
∞

0 p2T (p)(∂ f/∂x)d p
. (1.50)

From basic hydrodynamical equations, the “modified” RH conditions in the two-fluid model are

24



obtained:

ρ(x)u(x) = A(= constant), (1.51)

Au(x)+ pg(x)+ pc(x) = B(= constant), (1.52)

1
2

Au(x)2 +
γg pg(x)
γg −1

u(x)+
γc pc(x)
γc −1

u(x)− κ̄(x)
γc −1

∂ pc

∂x
=C(= constant). (1.53)

In the precursor, the background plasma is compressed adiabatically:

pg(x)u(x)γg = D(= constant). (1.54)

Equations (1.51), (1.52), (1.53) and (1.54) determine the profiles of ρ(x), u(x), pg(x) and pc(x) in

the precursor. Figures 1.9 show the typical spatial profiles of the flow velocity u(x) (upper panel)

and the CR pressure pc (lower panel). In the precursor, pc decreases exponentially towards the

upstream, this CR pressure gradient forces the flow of the background plasma to decelerate. As

the result, the flow velocity of the back ground plasma u declines smoothly in the precursor and

connects to the discontinuity. The discontinuity that is left at the original location of the shocks

is called “subshock”. Thus the structures of shocks are apparently modified to those including

precursor and subshock by the back-reaction of CRs.

Across the subshock, the continuous condition for the distribution function of CRs (1.33)

gives the similar continuous condition for the CR pressure:

[pc] = 0, (1.55)

which is illustrated in the lower profile of Figures 1.9. Angled brackets mean the difference

across the subshock ([X ]≡ Xdownstream −Xupstream). By the integral of Equation (1.49) (without a

time-derivative term) across the subshock, it follows,

∫
∂

∂x
(uEc)+

∫
pc

∂u
∂x

−
∫

∂

∂x

(
　κ̄(x)

∂Ec

∂x

)
= 0, (1.56)

⇒ [uEc]+ [pcu]−
∫

u
∂ pc

∂x
− [κ̄(x)

∂Ec

∂x
] = 0, (1.57)
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Figure 1.9: Typical structure under the modification by CRs. The upper profiles show the flow velocities
of the background plasma in the cosmic ray modified shock (solid line) and the unmodified hydrody-
namical shock (dashed line). The lower shows the CR pressure.
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⇒ [u
γc pc

γc −1
− κ̄

γc −1
∂ pc

∂x
] = 0. (1.58)

In the transformation from Equation (1.57) to (1.58), we use the continuous condition for pc

(Equation (1.55)). By using Equation (1.55) and (1.58), we can derive the following jump

condition at the subshock:

[ρu] = 0, (1.59)

[Au+ pg] = 0, (1.60)

[pc] = 0, (1.55)

[
1
2

Au2 +
γg pg

γg −1
u] = 0, (1.61)

[u
γc pc

γc −1
− κ̄

γc −1
∂ pc

∂x
] = 0. (1.57)

The above jump conditions mean the subshock can be seen as a one-fluid hydrodynamical

shock. Drury and Völk [1981] first obtained the analytical steady-state solutions from the above

modified RH conditions with spatially constant κ̄.

Two-fluid model is a good approximation of CRMS because the nonlinear feedback of CRs

can be treated easily in the global temporal and spatial scales. However, in the fluid approx-

imation, we can not understand the momentum dependent behaviors of CRs. A more general

approximation of CRs by the diffusion-convection equation was coupled by the hydrodynamical

equations by some authors [Malkov, 1997a, b; Blasi, 2002]. Their model was called “CR-kinetic”

model, where CRs are distributed not only in the spatial spaces but also in the momentum

spaces. CR-kinetic model revealed the effect of the CRs’ momentum dependent behaviors on

the CR spectrum in NLDSA. In NLDSA, the additional (adiabatic) compression precedent to

the subshock increases the total compression ratio from the typical value 4 in the test-particle

limit. This increase makes the energy spectrum harder since the index s is determined by the

shock compression ratio as described in Section 1.2. Additionally, there are the differences in

the compression ratio that each CR particle “feels”, due to the broad structure of CRMSs.

High-energy CRs that have large mean free paths swim from the downstream of the subshock to
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Figure 1.10: Typical energy spectra of CRs in DSA and NLDSA. The black line is the power-law spec-
trum of CRs in DSA (N(E) ∝ E−2), and the red line is the concave spectrum in NLDSA.

the far upstream. They feel the total compression ratio larger than 4. Therefore, the hardening

effect is significant in higher energy regime. On the other hand, relatively low-energy CRs with

smaller mean free paths diffuse around the subshock and see a smaller compression ratio than

4, leading to a softer spectrum in this energy range. Consequently, the energy spectrum in the

whole energy range may become concave as shown in Figure 1.10. This spectral characteristic

may explain recent X-ray and γ-ray observations of young SNRs [Vink et al., 2006; Morlino and

Caprioli, 2012].

It is the well-known that the steady-state CRMSs generally have the multiples solutions

on the same upstream parameter. Figure 1.11 shows the steady-state solutions of CRMSs in

the two-fluid model [Drury and Völk, 1981]. It shows the normalized downstream CR pressure

pc/(ρu2 + pg + pc) as a function of the upstream CR pressure fraction N = pc/(pg + pc) for

the upstream Mach number M = u/
√
(pg + pc)/ρ = 6.0. Compared with the test-particle limit

(dashed-dotted line) that shows the linear behavior, the time-asymptotic states have up to three

solutions for a given upstream state when N <∼0.07. Differences in the downstream CR pressure

fractions mean that the CR production efficiencies in the steady-states are different among

these three solutions. Therefore, these solutions may be called “efficient”, “intermediate”, and
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Figure 1.11: Downstream CR pressure fraction (of the total momentum flux) as a function of the upstream
CR pressure fraction N (from Drury and Völk [1981]). The solid line and dashed-dotted lines show the
solutions for M = u/

√
(pg + pc)/ρ = 6.0 and for the test-particle limit.

“inefficient” solutions from the top to bottom. Although the CR production rate in inefficient

solutions are more or less similar to the test-particle limit, over 50% or more fraction of CRs

are produced in efficient solutions. This multiple-valued steady-state solutions of CRMSs are

observed not only in the two-fluid model, but also in CR-kinetic model.

Recent major topic concerned with NLDSA is the magnetic field amplification. X-ray obser-

vations of young SNRs reveals the magnetic fields amplified to ∼ 100 µG [Berezhko and Völk,

2004; Ballet, 2006], or up to ∼ 1mG in the most extreme case of RX J1713.7-3946 [Uchiyama

et al., 2007]. These values are the a few hundred - one thousand times larger than the typical

value of ISM (∼ 3 µG). Theoretically, the amplification of the magnetic fields are required for the

DSA theory. Lagage and Cesarsky [1983] estimated the maximum attainable energies expected

from DSA in the most optimistic case of the Bohm limit:

Emax ' 1013 −1014 Z
(

B
µG

)(
Vshock

1000km/s

)2( t
1000yr

)
. (1.62)

Z is the charge of particles and Vshock is the velocity of shocks. The predicted value is not enough

to explain the knee energy (∼ 1015 eV), then the increase of B is the one of the keys to solve this

problem.
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As pointed out for a long time, it is possible that the diffusive flow of CRs toward the

upstream can drive the various plasma instabilities in the precursor due to the electric current

carried by CRs. If the acceleration of CRs is so efficient that their energy density becomes

comparable to the background plasma and that there are the well-developed precursor and CR

streaming towards the upstream, these instabilities may amplify the ambient magnetic field in

the upstream more than 100 times [e.g. Bell, 2004].

1.4 Motivation

Historically, the concept of CRMSs was proposed about 30 years ago [Drury and Völk, 1981;

Axford et al., 1982], many numerical and theoretical approaches were devoted to this topic until

now. At the beginning, CRMS was investigated theoretically based on the two-fluid model,

where the background plasma and CRs are treated as fluids interacting through the pressure

[Drury and Völk, 1981]. Two-fluid model was a first successive model in discussing CRMS, so

many derivations of two-fluid model have been proposed until recently Zank et al. [1993]; Webb

et al. [1986]. Numerical calculations in the two-fluid model were also conducted by the hydrody-

namical simulations [Jones and Kang, 1990] and Monte Calro simulations [Ellison and Eichler,

1984]. Malkov [1997a, b] proposed the model where the hydrodynamical equations and the

diffusion-convection equation of CRs were coupled. This model was so-called CR-kinetic model

compared to the two-fluid model. They analyzed the steady-state of this model and investigate

the behavior of the solutions. Numerically, these equations are solved in two ways, the one is the

fully time-dependent simulation [Kang and Jones, 1997; Kang et al., 2002; Kang and Jones, 2005]

and another is the semi-analytical method [Blasi, 2002; Amato and Blasi, 2005; Reville et al.,

2009; Caprioli et al., 2010]. The latter is the combined method of the analytical formulation of

the time-steady solutions of the diffusion-convection equation. Caprioli et al. [2010] qualitatively

and quantitatively compared the three different approaches of the fully time-dependent [Kang

and Jones, 2007], Monte Calro [Vladimirov et al., 2006] and semi-analytical calculations [Capri-

oli et al., 2010]. Even though there are differences in these method, they concluded that these

methods gave the consistent results in the spectra of CRs and the behaviors of the background
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plasma.

In the previous studies, much attentions have been focused on the efficient nature of CRMSs.

By the feedback effect of the CRs, the shock compression ratio become larger than that of test-

particle limit, this lead to the hardening of the spectrum and enhancement of CRs pressure

around the shock. The efficient CRs acceleration in CRMSs can be realized by such a positive

feedback effect. In the efficient solutions of CRMSs, above positive feedback effect play a dom-

inant role and the CR production rate is exclusively high. However, in the nature of physics,

such a excessive enhancement of high energy particle is not natural. Some regulation mechanism

should necessarily depress such a enhancement due to the conservation of energies.

The wave generation in NLDSA may be a good candidate. Actually, some authors recently

suggested that we can not dismiss the dynamical feedback of the amplified waves which may have

the comparable energy to that of the background plasma, and the dissipation of wave energies

[Caprioli et al., 2009; Caprioli, 2012]. In this thesis, we will investigate the general nature of

NLDSA and confirm our speculation about how efficiently the NLDSA can produce the CRs.

This thesis is structured as follows. In Chapter 2, we investigate the stabilities of the multiple

solutions in the two-fluid model and show which solutions are possibly realized in the nonlinear

time evolutions. In Chapter 3, we investigate the more general NLDSA including the wave

generation and dissipation in the CR-kinetic model and reveal how the CR production efficiency

changes with the effect of waves. In Chapter 4, we show the conclusions of this thesis and the

implication for the observations.
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Chapter 2

STABILITY OF COSMIC RAY

MODIFIED SHOCKS IN THE

TWO-FLUID MODEL

2.1 Introduction

The CRMS was firstly studied by using a two-fluid model proposed by Drury and Völk [1981].

In two-fluid model, both the background thermal plasma and CRs are approximated as fluids

coupled with each other. The advantage of the two-fluid model is its simplicity making it possible

to investigate the property of the system analytically. From the proposal, two-fluid model has

been extended by many authors, e.g. the model with the particle injection [Zank et al., 1993],

magnetic fields [Webb et al., 1986], radiation [Wagner et al., 2006], and a model with the effect

of an acoustic instability [Wagner et al., 2007, 2009] were also proposed.

A peculiar feature of a CRMS is that it possibly has multiple steady-state solutions, i.e.,

the downstream state cannot be uniquely determined from given upstream parameters. This

fact was first pointed out by Drury and Völk [1981] by using a two-fluid model in which CRs

are approximated to a massless fluid that interacts with the background plasma through their

pressure. Becker and Kazanas [2001] investigated the exact analytical conditions for the exis-
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tence of these multiple solutions depending on the Mach number, the specific heat ratio of the

background plasma and CRs in the two-fluid model. This model was extended to include the

effect of injection [Zank et al., 1993], magnetic fields [Webb et al., 1986], and to a fully kinetic

treatment in which the diffusion-convection equation for CRs and the hydrodynamic equations

for the background plasma are coupled with each other [Malkov, 1997a, b; Malkov and Völk,

1996; Malkov and Drury, 2001; Blasi et al., 2005; Amato et al., 2008; Reville et al., 2009]. Al-

though the detailed structure of solutions depends on the model, they all possess up to three

distinct solutions in some regions in parameter space, indicating that this is a generic feature of

the nonlinear shock. A question naturally arises as to which of these solutions indeed exist in

nature as the time-asymptotic state of a nonlinear particle-accelerating shock. It is particularly

important because the problem is intimately linked to the maximum energy attainable through

the acceleration process in the efficient branch as well as the CR scenario of magnetic field am-

plification. Understanding the stability of these multiple solutions is thus crucial for modeling

broadband spectra of astrophysical shocks, from which physical parameters of the acceleration

sites can be deduced.

In the original paper of Drury and Völk [1981], they suggested the possibility of intermediate

branch being unstable and these three branches may have a “bistable” feature. They conjec-

tured that when the downstream CRs increases (decreases) from the intermediate branch, a

self-induced increase (decrease) may bring the solution toward the efficient (inefficient) branch.

We note that the intermediate branch was previously shown to be “corrugative” unstable against

perturbations transverse to the shock [Mond and Drury, 1998]. Donohue et al. [1994] conducted

time-dependent numerical simulations adopting the two-fluid model, and confirmed that the

inefficient and the efficient branches exist at least as the time-asymptotic states. Particularly

for the efficient branch, it is known that the acoustic instability occur in the precursor region,

and analytical as well as numerical studies on this instability have been given so far [Drury and

Falle, 1986; Ryu et al., 1993; Drury and Downes, 2012]. Nevertheless, to the authors knowledge,

a comprehensive investigation of the stability of these multiple solutions has not been given

even within the framework of the two-fluid model. In this chapter, we study the stability of the
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global CRMS structure in various parameter regimes by means of one-dimensional (1D) direct

time-dependent numerical simulations of the two-fluid equations.

2.2 Basic Equations of Two-Fluid Model

The basic equations of the two-fluid model are

∂ρ

∂ t
+∇ · (ρu) = 0, (2.1)

∂

∂ t
(ρu)+∇ ·

[
ρuu+

(
pg + pc +

B2

2

)
I− BB

µ

]
= 0, (2.2)

∂

∂ t

[
1
2

ρu2 +Eg +Ec +
B2

2µ

]
+∇ ·

[(
1
2

ρu2 +Eg + pg +Ec + pc

)
u+

1
µ
− E× B−κ∇Ec

]
= 0, (2.3)

∂Ec

∂ t
+∇ · (uEc)+ pc(∇ ·u)−κ∇

2Ec =−α∇ ·u, (2.4)

∂ B
∂ t

= ∇× (u× B), (2.5)

E =−u× B, (2.6)

Eg =
pg

γg −1
, (2.7)

Ec =
pc

γc −1
(2.8)

where ρ, u, pg and µ denote the density, flow velocity, and pressure of the thermal component

and the magnetic permeability, I, E and B are the unit tensor and the electric and magnetic

fields. Throughout this study, γg = 5/3 and γc = 4/3 are assumed for the specific heat ratios of

the background plasma and CRs, respectively.

For the simplicity, arbitrary spatial and energy dependences of the diffusion coefficient κ is

eliminated (κ = constant) and we assume that the diffusion of CRs are isotropic to the magnetic

fields because the gyro radius of CRs are quite large.

The most crucial difference of the two-fluid model from kinetic models is probably the absence

of the maximum CR energy, which introduces differences in the steady-state solutions. However,

we believe that it will not affect the stability property of the system (see discussion in Section
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2.4 for details).

2.2.1 Thermal leakage injection model

We adopt the injection model proposed by Zank et al. [1993] based on the idea of thermal

leakage. It defines the momentum boundary p0 above which particles are considered to be CRs

and their transport obeys the diffusion-convection equation (1.22). Namely, heating of the gas

component injects a fraction of thermal particles into CRs. Under the assumption, the CR

pressure pc and the CR internal energy density Ec are defined as follows,

pc(x) =
4π

3

∫
∞

p0

p3v f (x, p)d p, (2.9)

Ec(x) = 4π

∫
∞

p0

p2T (p) f (x, p)d p, (2.10)

Integrating the diffusion convection equation (1.22) above p0 in momentum space leads to Equa-

tion (2.4). The particle injection term appears in the right hand side because of this lower limit

of integration. The injection parameter α defined as

α =
4π

3
E(p0)p3

0 f (p0), (2.11)

represents the energy density of the injected particle flux. Since the particle injection term is

written as a product of α and the spatial gradient of the flow,

S = α
∂u
∂x

, (2.12)

the injection at the subshock is dominant over the precursor. Notice that the parameter α must

be a function of both space and time because it is a quantity determined by local density and

temperature of the thermal plasma. Zank et al. [1993] and Donohue et al. [1994], however,

assumed that it is constant to make the problem analytically tractable.

In numerical simulations, we can easily calculate α more rigorously for a given momentum

boundary p0 by assuming a distribution function of the background plasma fth(p). For this
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purpose, we adopt the (non-relativistic) Maxwellian distribution

fth(p) = n
(

1
2πmkBT

)3/2

exp
[
− p2

2mkBT

]
, (2.13)

where m,n,T are the proton mass, density and temperature of the background plasma and kB

denotes the Boltzmann constant, respectively. The parameter α can then be written as follows,

α(p0) =
4π

3
E(p0)p3

0 fth(p0). (2.14)

The particle kinetic energy is given in the relativistic form E(p) =
√

1+(p/mc)2 −1, where c is

the speed of light. In this thesis, the injection model given by the equation (2.14) is referred to

as self-consistent.

Note that the injection momentum p0 is typically chosen to be a few times the downstream

thermal momentum pth = 2
√

mkBTdown. This choice is motivated by the fact that suprathermal

particles in the downstream region leaking out toward the upstream can be a seed population

to the acceleration process. The most important feature of the self-consistent injection model

is that the injection efficiency is regulated in response to the downstream temperature changes

due to the dynamical shock modification. One can expect that the increase in CR pressure

tends to reduce the subshock strength and thus the injection efficiency and vice versa. Despite

a simplified manner, a self-consistent regulation of the injection takes into account the feedback

effect at least qualitatively.

In this study, we investigate both cases; the constant-α injection (Section 2.3.3) and the

self-consistent injection (Section 2.3.4) to clarify the role of injection on the stability of CRMSs.

2.2.2 Analytical solutions of cosmic ray modified shocks in the two-fluid model

Analytical steady-state CRMS solutions to the equations (2.1)-(2.8) were obtained by some

authors. When the parallel shock is assumed, we can simplify the basic equations to one-

dimensional hydrodynamical equations by neglecting the term involving the magnetic fields. In

such a hydrodynamical treatment, the steady-state solutions were obtained for non-injection
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case (α = 0) [Drury and Völk, 1981] and injection case with a constant α [Zank et al., 1993],

which are the extension of the non-injection case. When the oblique shock is taken into account,

the steady solutions without the particle injection were obtained by Webb [1983], and investi-

gated closely by Webb et al. [1986]. We here briefly review the basic characteristics of these

solutions.

The solution in the non-injection case of the parallel shocks, in which acceleration of pre-

existing CRs is considered, is characterized by the Mach number M and the fraction of CRs N

in the far upstream

M =
u

Cs
, (2.15)

N =
pc

pg + pc
, (2.16)

where Cs =
√

γg pg/ρ is the sound speed of the background plasma. The solid line in Figure 2.1

shows the relation between N and the downstream CR pressure pc,down for an upstream Mach

number of M = 6.5. One immediately finds that, for N . 0.07, multiple solutions exist for a given

upstream state. This is a distinct feature for the system absent in the hydrodynamic shock. For

convenience, we shall call these solutions, “efficient”, “intermediate”, and “inefficient” from the

top to bottom as shown in Figure 2.1, as they are characterized by CR production efficiencies.

The inefficient branch essentially corresponds to the test particle limit and the modification is

of only minor importance. On the other hand, CRs absorb most of the kinetic energy in the

efficient branch. The substantial difference in the CR production efficiency, more than one order

of magnitude between the two in this particular case, motivates us to investigate the stability

of the multiple solutions.

Note that the subshock appears only in a relatively low CR fraction N and Mach number M

in the two-fluid model. For sufficiently large values of N and/or M, the subshock eventually dis-

appears and the smooth transition connects quantities between the upstream and downstream.

The absence of the subshock may be, however, an artifact of the two-fluid model. It has been

shown that the subshock always exists in a fully kinetic treatment [Malkov and Drury, 2001].
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We thus concentrate our discussion on the solution involving the subshock.

The basic feature does not change even when the injection is taken into account. The dashed

line of Figure 2.1 shows the same diagram for the injection case with a constant α/pg,up = 0.1 for

a modified upstream Mach number M∗ = 6.5. The modified Mach number M∗ = u/C∗
s is defined

in terms of the sound speed

C∗
s =

√
γg pg

ρ

(
1−

γg −1
γg

α

pg

)
, (2.17)

modified by the effect of injection. The structure of the solution is essentially the same as the

non-injection case. It may be seen that the range of parameter N where multiple solutions exist

is somewhat narrower in the injection case, which reflects the role of injection; i.e., it effectively

increases the CR pressure. According to Zank et al. [1993], there are solutions involving not only

a precursor, but also a postcursor behind the subshock which is not seen in the non-injection

case. However, we do not consider such solutions in this chapter for simplicity and focus on the

stability of multiple solutions.

Furthermore, by adopting the CR pressure to MHD equations, the characteristic velocities;

the velocities of the fast and slow mode are modified,

(
V ∗

f ,s
)2

=
1
2

[
V 2

A +C2
sc ±

((
V 2

A +C2
sc
)
−4V 2

AC2
sc
)1/2

]
, (2.18)

where VA and Csc =
√
(γg pg + γc pc)/ρ are Alfvén and the modified sound velocities. For MHD

shocks, it is known that there are 3-types shocks: fast, intermediate and slow shocks. In our

research, we treat only the first mode shocks, because we assume the first-mode blast waves of

SNRs. The solution is characterized by the fast-mode Mach number M f , the fraction of CRs N,

plasma beta β and shock angle θ in the far upstream

M f =
u

V ∗
f
, (2.19)

β =
pg

B2/2µ
. (2.20)
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Figure 2.1: Downstream CR pressure pc as a function of the upstream CR fraction N. The solid and
dashed lines show solutions for M = 6.5, α = 0, and M∗ = 6.5, α/pg,up = 0.1, respectively.

The dash-dotted line in Figure 2.1 shows the relation between N and the downstream CR pressure

pc,down for M f = 6.5, β = 5 and θ = 30◦. The effects of magnetic fields also do not influence the

whole structure of steady-state solutions compared with the parallel (hydrodynamical) shocks.

2.3 Stability of Global Shock Structure

The stability of the global structure of the steady-state solutions of CRMS is investigated by

direct time-dependent numerical simulations of the two-fluid equations (2.1)-(2.8). As for the

numerical method, we adopt a splitting method [Dahlburg et al., 1987] in solving the equations

(2.1)-(2.4). Namely, we split the time step into a diffusion phase and a non-diffusion phase. In

the diffusion phase, the following equation is solved (here a constant diffusion coefficient κ is

assumed),

∂ pc

∂ t
= κ

∂ 2 pc

∂x2 , (2.21)
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in an implicit manner using the Bi-CGSTAB method [van der Vorst, 1992] to update the CR

pressure to p∗c . In the non-diffusion phase, we solve the equations (2.1)-(2.4) without the diffusion

term by the modified Lax-Wendroff method [Rubin and Burstein, 1967], which has the second-

order accuracy both in time and space, using p∗c updated in the diffusion phase. For the CFL

condition, we adopt a variable time step such that ∆t = 0.1∆x/max(u+Csc) for hydrodynamical

calculations and ∆t = 0.1∆x/max(u+V ∗
f ) for magnetohydrodynamical calculations, where ∆x is

the grid spacing, and max() indicates the maximum value in the simulation box.

The number of grids is set to be Nx = 5000, which we believe is sufficient for the following

reasons. Frank et al. [1994, 1995] concluded that their numerical solutions of MHD-CRMSs well

converge to analytical ones when sufficiently high resolution is used nr & 10− 20, where nr is

defined as nr = κ/(us∆x) (where us is the shock speed). In the present calculations, the parameter

is always chosen to be nr > 100, sufficient to give numerical solutions with reasonable accuracy

and discuss the stability of the analytical solutions. We employ the fixed boundary at the

left-hand (upstream) side and the free boundary (∂/∂x = 0) at the right-hand (downstream) side

of the box. We have checked that the boundary conditions do not influence our numerical results

by enlarging the simulation domain by five times. Space and time are respectively normalized to

the diffusion length κ/uup and the diffusion time κ/u2
up. Note that our simulations are conducted

in the shock-frame, so uup ∼ us.

2.3.1 Parallel shock calculations without injection (α = 0)

We choose an analytical steady-state solution as an initial condition for the time-dependent sim-

ulation to investigate the stability. While we do not put any perturbations into the simulation,

it evolves from those caused by numerical errors mainly at the subshock inherent in any finite

difference schemes.

In this section, we study the non-injection case α = 0 of the parallel shocks corresponding

to Drury and Völk [1981]. Figures 2.2(a)-(d) show the results for N = 0.1 and M = 6.5 in which

only one solution involving a subshock exists. In these kind of simulations, we have found that

a numerical solution always evolves into a steady state from which no appreciable changes are
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observed, which is then regarded as the final state. One finds that the final state (solid line) is

almost unchanged from the initial condition (dashed line), suggesting that the solution is stable.
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Figure 2.2: Numerical solution for a CRMS with M = 6.5 and N = 0.1 where only one solution exists.
Normalized profiles of (a) the CR pressure, (b) background plasma flow velocity, (c) background plasma
pressure, and (d) background plasma density are shown. pg,up, uup, and ρup are the upstream background
plasma pressure, flow velocity, and density, respectively. The initial and final states (t/(κ/u2

up) = 1760)
are shown in dashed and solid lines respectively.

Figures 2.3 - 2.5 compare the results of three analytical solutions corresponding to the effi-

cient, intermediate, inefficient branches found for N = 0.05, respectively. We see that the down-

stream CR pressures of the efficient and inefficient branches appear to be almost unchanged

(Figures 2.3(a)-(d) and 2.5(a)-(d)), while that of the intermediate branch decreases significantly

(Figures 2.4(a)-(d)). This result indicates that the intermediate branch is unstable while the

others are stable. Note that the difference between the background plasma parameters of the

initial and final states is relatively minor compared to the CR pressure for the simulation started

from the intermediate branch. We find that the final state in this case corresponds to the ineffi-

cient solution. The reason for the minor difference in the background plasma parameters is that

the shocks of both the initial and final states are intrinsically weakly modified ones. Strictly

speaking, the downstream CR pressure of the inefficient branch shows a slight decrease, which
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Figure 2.3: Numerical solution for the efficient branch at t/(κ/u2
up) = 1760 (M = 6.5 and N = 0.05).

The format is the same as Figure 2.2.
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Figure 2.4: Numerical solution for the intermediate branch at t/(κ/u2
up)= 1760 (M = 6.5 and N = 0.05).

The format is the same as Figure 2.2.
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Figure 2.5: Numerical solution for the inefficient branch at t/(κ/u2
up) = 1760 (M = 6.5 and N = 0.05).

The format is the same as Figure 2.2.

we think is numerical. As we mentioned earlier, we have checked the convergence of numerical

solutions to the analytical ones by increasing the resolution.

Figure 2.6 summarizes the results for various initial conditions. Each symbol represents a

simulation run for a given upstream CR fraction N. The downstream CR pressure, averaged

over 250 grid points near the right-hand side boundary, is shown in the vertical axis. In cases

where there exists multiple solutions for a given N, we investigate all the possibilities. The

initial conditions are indicated in (a), while the final states t/(κ/u2
up) = 1760 are shown in

(b). As was found in the case of N = 0.05, the efficient and inefficient branches exhibit only

slight changes from the initial conditions due to numerical errors as mentioned above. On

the other hand, the intermediate branch always shows the transition to the inefficient branch.

This has been confirmed in the range 5 ≤ M ≤ 15, 0.01 ≤ N ≤ 0.13, whenever multiple solutions

exist. The sampling intervals for M and N are 0.5 and 0.02, respectively. Note that, for higher

Mach numbers, there exists only one solution (corresponding to the efficient state) in the range

N ≥ 0.01.
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Figure 2.6: Summary of simulation results, for the parallel shocks without injection, M = 6.5 and
α/pg,up = 0 (constant) at (a) the initial state and (b) the final state. The dotted line indicates the analytical
steady-state solution. Open circle, open triangle and open square show the results for the efficient,
intermediate and inefficient branches respectively. Simulations were conducted at N = 0.01, 0.03, 0.05,
0.07, 0.09 0.11, and 0.13.

2.3.2 Oblique shock calculations without injection (α = 0)

In the calculations of oblique shocks, magnetohydrodynamical equations (2.1)-(2.8) are solved.

Figures 2.7(a)-(f) show the results for N = 0.11, M f = 6.5, θ = 30◦ and β = 5 in which only one
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Figure 2.7: Numerical solutions for a MHD-CRMS with M f = 6.5, N = 0.11, θ = 30◦ and β = 5, where
only one solution exists. Normalized profiles of (a) the CR pressure, (b) background plasma pressure (c)
x-component of background plasma flow velocity, (d) y-component of background plasma flow velocity,
(e) background plasma density, and (f) y-component of magnetic field are shown. pg,up, ux,up, and ρup are
the pressure, x-component of flow velocity, and density of the upstream background plasma, respectively.
The initial and final states (t/(κ/u2

up) = 2001) are shown in dashed and solid lines respectively.

solution involving a subshock exists.

Figure 2.8 summarize the results for various initial conditions with the same format as Figure

2.6 for M f = 6.5, θ = 30◦ and β = 5. Similarly to parallel shock calculations, the efficient and

inefficient branches are stable and the intermediate branch is unstable. We also conduct same

calculations for 5≤M f ≤ 10, θ = 30◦,60◦,90◦ and β = 1,5. These stability features do not change

in all calculations.

2.3.3 Parallel shock calculations with injection (α 6= 0)

We now study the effect of injection with a constant injection parameter α. As in the non-

injection case, we can use the analytical solutions of Zank et al. [1993] presented in Section 2.2.2

as the initial conditions.

Figure 2.9 shows the results with the same format as Figure 2.6 for M∗= 6.5 and α/pg,up = 0.1.
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Figure 2.8: Summary of simulation results with M f = 6.5, θ = 30◦ and β = 5 at the final state
(t/κ/u2

up,N=0.01 = 1901). The format is the same as Figure 2.6.

Note that the reason why the efficient branch in the injection case is less efficient than that in

the non-injection case (which may easily be seen in Figure 2.1) is due to the definition of M∗

which is a function of parameter α. One immediately sees that the basic stability property is

essentially unchanged, i.e., the efficient and inefficient branches are stable while the intermediate

branch is always unstable and evolves into the inefficient one. Extensive parameter survey in

the range 0.001 ≤ α ≤ 1, 5 ≤ M∗ ≤ 15 and 0.01 ≤ N ≤ 0.13 again confirms that the property

does not change, although the use of different parameters modifies the structure of analytical

solutions itself (the sampling intervals are the same as previous ones for M∗ and N, and 0.001,

0.01, 0.1, 1 for α). One might naively expect that the introduction of injection tends to make

the acceleration more efficient, but this is not the case.

2.3.4 Parallel shock calculations with self-consistent injection

Unlike the case with a constant α (including non-injection case), no analytical solution is known

for the self-consistent injection case. However, since the injection is the strongest at the subshock

where the downstream α plays an essential role, we initialize the simulation in the following way.
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Figure 2.9: Summary of simulation results for the injection case M∗ = 6.5 and α/pg,up = 0.1 (constant)
at the final state. The format is the same as Figure 2.6.

First, we set up an initial condition for the background plasma parameters and CR pressure

using an analytical solution for a constant α. We then calculate p0 using the equation (2.14)

and the downstream density and temperature T . This p0 is kept constant during the entire

simulation. The parameter α can now be calculated by using the local density and temperature,

and thus becomes a function of both space and time. Notice that the parameter α so calculated

in the precursor and upstream differs from the original value even at the initial condition. The

inconsistency due to this is, however, relatively minor as the injection primarily occurs at the

subshock, which is indeed confirmed by simulation results discussed below.

Figure 2.10 shows the results with the self-consistent injection with the same format shown in

Figure 2.9. The initial condition is set up by an analytical solution for a constant α/pg,up = 0.1.

In each calculation, the momentum boundary p0 differs slightly because we set initial downstream

α in all calculations to satisfy α/pg,up = 0.1 considering each different downstream state (e.g.,

p0/pth ' 2.65 for N = 0.13 and p0/pth ' 2.75 for N = 0.01 of the inefficient branch). We see

that the stability property is essentially not affected by the different injection model. The only

difference we can find from Figure 2.10 is that the solutions as a whole slightly shift to lower CR
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Figure 2.10: Summary of simulation results for the self-consistent injection case M∗ = 6.5 at the final
state. The dotted line indicates the analytical steady-state solution for α/pg,up = 0.1 (constant) for
reference. The format is the same as Figure 2.6.

pressure states from the initial condition constructed for a constant α. This may be explained by

considering a finite subshock width. Namely, since the injection flux is expressed by a product

of α and the flow divergence, the strongest injection occurs at the subshock which is resolved

by a finite number of grid points. The α parameter calculated by density and temperature in

the subshock structure thus gives an intermediate value between the upstream and downstream

at which the flow divergence is largest. This means that an effective α is somewhat smaller

than the downstream value. We have confirmed that the numerical solutions agree very well

with analytical solutions calculated using the effective α parameters evaluated from simulation

results (assumed to be constant). Therefore, the differences between the initial and final states

are injection model dependent. Such an issue is obviously beyond the scope of the present

study, and it should not be taken too seriously. It is rather important to emphasize that the

self-consistent injection does not introduce appreciable differences to the stability of the CRMS

solutions.
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2.3.5 Parallel shock calculations with large-amplitude perturbations

So far we have investigated the stability against relatively small perturbations caused by nu-

merical errors, where the intermediate branch is always unstable and evolves into a less efficient

state. For application to realistic astrophysical situations where the shock parameters may

change in time (e.g., slowing down of SNR shocks, inhomogeneous upstream media), it may also

be important to understand the stability property against large-amplitude perturbations.
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Figure 2.11: Initial profiles of perturbed CR pressure pc for the inefficient solution with M∗ = 6.5,
N = 0.002, and α/pg,up = 0.1. The thin and thick solid lines show respectively the flow velocity and the
CR pressure for the analytical solution. Perturbed CR pressure profiles by amount ±25% are shown in
the dashed and dashed-dotted lines respectively.

We investigate the response of the system against large-amplitude perturbations. Specifi-

cally, we change the downstream CR pressure pc,down at the initial condition to investigate the

behaviors in the N − pc diagram. Figure 2.11 shows an example of perturbed and unperturbed

profiles of the CR pressure. In order to obtain an initial perturbed profile p
′
c(x), we multiply

the analytical solution pc(x) by a constant factor corresponding to the amplitude of perturba-

tion. On the other hand, hydrodynamic quantities u, pg and ρ are remain unchanged. Figures

2.12 and 2.13 show the response of the system obtained by numerical simulations for (a) the
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inefficient, and (b) the efficient branches, respectively. We choose an analytical steady-state

solution for M∗ = 6.5, N = 0.002, and a constant α/pg,up = 0.1 on which initial large-amplitude

perturbations are imposed. The results with perturbations up to ±25% of the unperturbed state

are shown in these figures. The ratios of the momentum boundary to the downstream thermal

momentum for this case are p0/pth ' 2.35 and p0/pth ' 2.47 for the inefficient and the efficient

branches respectively. The CR pressure in the downstream as well as the α parameter shown

in Figures 2.12 and 2.13 are calculated by taking the average over the values, respectively in

all cells between the downstream boundary and ∼ 10% inside the uniform region downstream.

We can see that the injection parameter α immediately increases (decreases) in response to the

decrease (increase) in the CR pressure. This confirms the feedback effect of injection due to

dynamical modification of the shock. Nevertheless, the simulation results show that the numeri-

cal solutions quickly converge into the solution obtained without perturbations, suggesting that

these solutions are stable even against large-amplitude perturbations and the injection does not

play a role for modifying the stability.

We finally discuss numerical simulation results of time evolution from a hydrodynamic shock

with injection. This is particularly important in that it would be more or less similar to the

situation realized in a realistic astrophysical scenario. Figure 2.14 summarizes the results for

shocks with a Mach number of M∗ = 6.5 without pre-existing CRs (N = 0), with (a) constant-α

injection, and (b) self-consistent injection.

For the constant α injection case shown in Figure 2.14(a), we find that the final states of

numerical simulations with 0.05≤α/pg,up ≤ 0.25 settle into the inefficient branch of the analytical

solutions shown by dotted lines at t/(κ/u2
up,α=0.05) = 1760, where uup,α=0.05 is the upstream flow

velocity of the background plasma at α/pg,up = 0.05. As seen in the equation (2.17), the upstream

sound velocity decreases with increase in the parameter α by a factor of
√

1− (2/5)(α/pg,up).

Since the upstream flow velocity (uup) depends on α, we choose uup,α=0.05 as a representative

value for the unit of time. We have also checked the development beyond this time but found no

evidence for any further evolution, consistent with the fact that the inefficient branch is stable

against large-amplitude perturbations. We also conduct simulations with α/pg,up = 0.3 or even
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Figure 2.12: Time evolution of the deviation of downstream CR pressure from the unperturbed case
for M∗ = 6.5, N = 0.002 and α/pg,up = 0.1. The panels (a) and (b) show the inefficient and efficient
branches respectively. In each case, positive and negative perturbation runs are shown in the top and
bottom. The absolute amplitude of perturbation is shown with different line types (solid: 5%, dotted:
10%, dashed: 15%, dashed-dotted: 20%, dashed double-dotted: 25%).
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Figure 2.13: The same as Figure 2.12 but for the downstream α .

larger, where only the efficient branch of solution exists. In these cases, the pressure balance

across the shock is broken because of strong modification of the shock. As a result, the shock

propagates toward upstream and the solution settles into the efficient branch but with a different
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Figure 2.14: Asymptotic states of simulations started from hydrodynamic shocks of M = 6.5 with (a)
constant α injection, (b) self-consistent α injection. The dotted lines indicate the analytical solution for
M∗ = 6.5 with constant α for reference.

Mach number. Although we are not able to plot the simulation result on Figure 2.14(a) for this

reason, it is certainly true that the time asymptotic state is on the efficient branch. One might

notice that the CR pressure of the analytical solution on the efficient branch decreases as the

injection parameter α increases. This is because the plot is made for a fixed M∗ which is a
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function of α and is therefore not surprising.

Figure 2.14(b) shows the final states of simulations with the self-consistent injection (notice

the different vertical scale). We choose p0 in such a way that an initial α determined by the

downstream background plasma density and pressure corresponds to 0.05 ≤ α/pg,up ≤ 0.25. The

analytical solution for a constant α is also shown for reference. The simulation results always

converge to solutions below the reference solution. The reason for this is the same as that given

in Section 2.3.4 (i.e., due to a smaller effective α), and is not important.

All these results indicate that the solutions on the efficient and inefficient branches are

stable even against large-amplitude perturbations, independent of the assumption of the injection

model. It is also worth mentioning the case with a finite upstream CR fractions (N > 0) at the

initial state, which is more realistic for the astrophysical applications. In such cases, we have

confirmed that the time asymptotic states are also on the inefficient branch if N is relatively

low so that the inefficient branch exists. Therefore, if one considers realistic time evolution of

an astrophysical shock, the asymptotic state realized in nature will very likely to be the least

efficient state in terms of particle acceleration for given upstream parameters.

2.4 Summary and Discussion

In this chapter, we have investigated the stability of the global structure of the CRMS by using

the two-fluid model with the effect of injection and magnetic fields. The system is known to have

up to three distinct solutions in some regions in parameter space, which are respectively referred

to as “efficient”, “intermediate”, and “inefficient” in terms of corresponding CR production

efficiencies. Understanding the stability of these solutions is crucial for the application of non-

linear shock acceleration theory to astrophysical shocks. By performing direct time-dependent

numerical simulations, we have studied the stability for the multiple solutions in a wide range

of parameters space by changing the Mach number M(M f ,M∗), the fraction of upstream pre-

existing CRs N, the shock angle θ and the injection parameter α. Our simulation results can

be summarized as follows.

Firstly, numerical simulations with three initial states given by the analytical solutions of
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CRMSs demonstrate that the efficient and inefficient branches are stable, while the intermediate

solution always shifts toward the inefficient branch. This features do not depend on the shock

angle, in other words, the magnetic fields do not play a so much role in the stability of CRMSs.

We have also confirmed this downward transition even if large-amplitude perturbations are

imposed on the intermediate solution independent of the “direction” of perturbation. This

result is consistent with the earlier conjecture of the bistable feature suggested by Drury and

Völk [1981] even without invoking the so-called corrugation mode known to be unstable in a

multi-dimensional system [Mond and Drury, 1998].

Secondly, the stability property does not depend on the injection model and efficiency. We

have investigated both the constant-α injection, as well as the self-consistent injection in which

α is determined by the instantaneous density and temperature of the background plasma. In

particular, the self-consistent injection model implements the feedback effect due to dynamical

shock modification. Whereas the structure of steady-state solution certainly depends on the

injection, the stability is hardly affected even in the case of self-consistent injection.

Thirdly, the efficient and inefficient branches are shown to be stable even against large-

amplitude perturbations, again regardless of the injection model. The feedback effect of the

self-consistent injection in response to large-amplitude perturbations to the downstream state

does not play a role in regulating the stability. Consequently, a hydrodynamic shock with in-

jection evolves into the inefficient branch whenever it exists as a result of self-consistent time

development. For the injection parameter above a critical value in which only one solution

corresponding to the efficient branch exists, the shock structure drastically develops into the

strongly modified one. This suggests that the time asymptotic solution of the nonlinear shock

is likely to be the least efficient state for given parameters of the shock.

Our conclusions on the stability of the CRMS are based on the framework of the two-fluid

model. However, judging from the insusceptibility of the stability property to otherwise impor-

tant shock parameters (M(M∗), N, θ , α and the injection model), we believe that it will remain

the same even in a fully kinetic treatment. The limit of the two-fluid model has been discussed

in the literature [Kang and Jones, 1990; Jones and Ellison, 1991; Malkov and Drury, 2001]. It
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has been suggested that the model gives essentially the correct description of the CRMS pro-

vided that the adiabatic index of CRs γc is adequately chosen in the range 1 < γc < γg. In the

two-fluid model, increase of γc results in the shrinkage of the region of multiple solutions and

vice versa [e.g., Becker and Kazanas, 2001]. The effective γc in a kinetic model is determined by

solving self-consistently the modified shock structure. The crucial assumption in doing so is the

maximum energy of CRs. Since the CRs absorb the available kinetic energy through the positive

feedback of shock modification, the CR production rate tends to diverge and no steady-state

solution would be obtained unless one imposes a cut-off energy above which CRs escape from

the system. This makes the shock virtually radiative in the sense that the effective γc approaches

unity, which thus enlarges the region of multiple solutions. We have also conducted simulations

with different γc, and confirmed that the bistable feature is insensitive to this parameter. In any

case, solutions of the CRMS based on the kinetic model have been obtained and confirmed the

existence of multiple solutions [Malkov, 1997a, b; Malkov et al., 2000; Blasi, 2004; Blasi et al.,

2005; Amato et al., 2008; Reville et al., 2009]. Rigorous proof of the stability in the kinetic

regime is however left for the future investigation. Note that, in a kinetic model, multiple so-

lutions exist for much higher Mach numbers, e.g., M > 100−1000, which is not the case in the

two-fluid model, probably due to the existence of the cut-off energy. The disappearance of the

subshock in the two-fluid model can also be explained similarly.

The fact that both the efficient and inefficient branches are stable even against a large-

amplitude perturbation makes it even more important to understand the detailed structure of

the CRMS solutions. More specifically, understanding the critical parameters which distinguish

the regions of single and multiple solutions needs to be clarified for astrophysical applications.

For instance, considering realistic time evolution of a SNR shock propagating in the interstellar

medium, it may settle either on the inefficient or efficient branches depending on the Mach num-

ber, upstream CR fraction, and injection rate. The physics of injection is still a controversial

issue and certainly beyond the scope of this chapter. The injection is indeed determined as a

result of thermalization involving complicated physics of collisionless shocks. There exist plenty

of theoretical and numerical studies of injection processes, which indicates that the injection
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processes and/or its efficiencies depend on the orientation of magnetic fields, plasma β , and

Mach numbers [e.g., Malkov and Völk, 1995; Sugiyama et al., 2001; Scholer, 1990; Amano and

Hoshino, 2010]. The injection not only controls the number of particles accelerated by the shock

but also the total energy converted into CRs through nonlinear shock modification, possibly

leads to an abrupt “phase transition”. This kind of discontinuous transition may occur even

for a fixed injection rate because of intrinsic nonlinearity of the modified shock as suggested

previously by Malkov and Drury [2001]. Note that the CR production rate at SNR shocks is

still uncertain [Helder et al., 2009; Hughes et al., 2000; Fukui, 2013], but both the efficient and

the inefficient solutions may in principle applicable at present. Although our limited knowledge

of the physics of injection and the maximum energy makes it difficult to state anything conclu-

sive in predicting observational consequences of astrophysical shocks, our results suggest that

an actual SNR shock may reside in the inefficient state, so that the CR production rate is lower

than previously discussed based on the strongly modified solutions.
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Chapter 3

WAVE GENERATION AND

DISSIPATION EFFECTS ON THE

COSMIC RAY MODIFIED SHOCKS IN

THE KINETIC MODEL

3.1 Introduction

In two-fluid model, the behavior of CRs is determined by the energy equation of CRs as typically

shown in the previous section:

∂Ec

∂ t
+∇ · (uEc)+ pc(∇ ·u)−κ∇

2Ec =−α∇ ·u, (2.4)

in the form of the energy density Ec and the pressure of CRs pc. In this two-fluid model, we

cannot discuss the energy spectrum, which can be compared with observations. The next better

approximation of the CRs transport equation is the diffusion-convection equation described as

∂ f
∂ t

+u ·∇ f −∇(κ∇ f ) =
1
3
(∇ ·u)p

∂ f
∂ p

+Q, (3.1)
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where the source term Q in the last term in the right hand side means the injected particle from

background plasma. For the simplicity, we consider the parallel plane shock in the one-dimension

(along x coordinate) and assume f is isotropic. Equation (3.1) reduces to

∂ f (x, p)
∂ t

+u(x)
∂ f (x, p)

∂x
− ∂

∂x

(
κ(x, p)

∂ f (x, p)
∂x

)
=

1
3

∂u(x)
∂x

p
∂ f (x, p)

∂ p
+Q(x, p). (3.2)

Note that the hydrodynamical values Ec and pc for CRs are given by taking the averages of

f (x, p) over the momentum space:

Ec(x) = 4π

∫ pmax

p0

p2T (p) f (x, p)d p = 4πmc2
∫ pmax

p0

p2
(√

1+(p/(mc))2 −1
)

f (x, p)d p, (3.3)

pc(x) =
4π

3

∫ pmax

p0

vp3 f (x, p)d p =
4π

3
mc2

∫ pmax

p0

c
p/(mc)√

1+(p/(mc))2

 p3 f (x, p)d p. (3.4)

T (p) is the kinetic energy of a particle with momentum p. p0, pmax, m and c are the minimum

and maximum momenta of CRs, the mass of the proton and the speed of light, respectively.

As the extension of the two-fluid model, we can consider a system where the kinetic diffusion-

convection fir CRs is coupled with the hydrodynamical equations for the background thermal

plasma. Such a system can be called as “CR-kinetic” model, because the kinetic behavior of CRs

depending the momentum is included, which is neglected in the hydrodynamical approximation.

The theoretical investigations of the diffusion-convection equation coupled with NLDSA

(Nonlinear Diffusive Shock Accelerations) began from almost the same time of the two-fluid

model [Drury and Völk, 1981]. Blandford [1980] and Heavens [1983] investigated the equation

with the background plasma which is almost close to ones of the test-particle limit but slightly

modified by CRs. The first study including the more strongly modified case is conducted by

Malkov [1997a]. He investigated the steady-state diffusion-convection equation with the Bohm

diffusion, where the diffusion coefficient κ is only proportional to the particle momentum p:

u(x)
∂ f (x, p)

∂x
− ∂

∂x

(
κ(p)

∂ f (x, p)
∂x

)
=

1
3

∂u(x)
∂x

p
∂ f (x, p)

∂ p
, (3.5)
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Figure 3.1: A profile of the background plasma flow u(x) and the spatial distribution function of CRs
f (x, p) with the different momentum p (from Berezhko and Ellison [1999]). A thick solid line shows
u(x) and three thin solid lines show f (x, p) at the low (p < mc), middle (p = mc) and high (p > mc)
energy.

where the background plasma flow is smoothly decelerated in the upstream precursor region:

u =


u(x), (x < 0)

u2(= constant), (x > 0)

(3.6)

(3.7)

which is shown in Figure 3.1. The subscripts 0, 1 and 2, each means the value of the far up-

stream, immediate upstream of subshock and just behind the subshock respectively. In addition,

we set the x-coordinate, where subshock is located at x = 0 and the region x < 0 (x > 0) corre-

sponds to the upstream (downstream) region, these settings are used hereafter. Equation (3.5)

is coupled with the hydrodynamical mass and momentum flux conservation in the precursor for

the (parallel) shock:

ρ(x)u(x) = ρ0u0, (3.8)

ρ(x)u(x)2 + pc(x)+ pg,0

(
u0

u(x)

)γg

= ρ0u2
0 + pg,0. (3.9)
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The third term of the right hand side of Equation (3.9) means that the background plasma

pressure changes adiabatically with the deceleration of the flow. The approximate steady-state

solution in the precursor is given following,

f (x, p) = fsub(p)exp
[

q(p)
3κ(p)

∫ 0

x
u(x′)dx′

]
. (x < 0) (3.10)

fsub(p) is the distribution function of CRs at the subshock and q(p) = dln fsub(p)/dln p is the

spectrum index of CRs at the subshock. It is noted that in the test-particle limit of NLDSA

where there is no background thermal plasma modification by the action of CRs, i.e. u(x) =

V1(= constant) at x < 0 and V2(= constant) at x > 0, the spectrum index q = 4 ( fsub(p) ∝ p−4),

Equation (3.10) reduces to

f (x, p) = fsub(p)exp
[
− 4V1

3κ(p)
x
]
, (x < 0) (3.11)

which gives the similar profile of f (x, p) in DSA (c.f. Equation (1.29)).

The spectrum index q is the important values showing the acceleration efficiency, and we

will show that the spectrum shape is modified by the action of CRs. This effect is not included

in two-fluid model. Let us consider the velocity up, which is the fluid velocity that CR particles

with momentum p feel in the upstream. By the similar analysis to the DSA in Section 1.2,

the particle with momentum p, which goes back and forth across the subshock and is reflected

by the waves moving with the speed up in the upstream and u2 in the downstream, shows the

spectrum index s′ (of the power law N(E) ∝ E−s′(⇔ N(p) ∝ p−s′)),

s′(p) =
3u2

up(p)−u2
+1. (3.12)

From the relations N(p)d p = 4π p2 f (p)d p and f (p) ∝ p−q,

q(p) =−s′(s)−2 =− 3u2

up(p)−u2
−3 =−

3up(p)
up(p)−u2

=− 3
1−u2/up(p)

. (3.13)
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As illustrated in Figure 3.1, particles with higher momentum p have longer mean free paths.

Therefore CRs with higher energies can exist further from the subshock. In the precursor, the

velocity of the background plasma u decreases monotonically towards the subshock. It means

the velocity up(p) increases monotonically with increase of the particle momentum p. Equation

(3.13) suggests the index q(p) also increases with p monotonically. In the test-particle limit,

up = 4u2 for shocks with high Mach and then q(p) =−4(constant). The total compression ratio

R = u0/u2 becomes larger than 4 in NLDSA, so the flatter spectrum than the test-particle limit

is seen at high energies. The spectrum index of the low energies CRs, which feel up ∼ u1 around

the subshock, depends on the compression ratio of the subshock rs = u1/u2. If the modification

of CRs is week and rs does not change greatly, the q is almost similar to -4. On the other hand,

rs decreases well bellow 4 in the strongly modified regime. In such cases, q is smaller than -4

and the spectrum becomes steeper, leading to the concave spectrum at the whole.

Blasi [2002] derived up in the alternative way. He gave the following formula:

up(p) = u1 −
1

fsub(p)

∫ 0−

−∞

f (x, p)
∂u
∂x

dx. (3.14)

He also derived the analytical formula of fsub(p):

fsub(p) =
3Rrs

RrsU(p)−1
ηn0

4π p3
0

exp
[
−
∫ p

p0

d p′

p′
3RrsU(p′)

RrsU(p′)−1

]
. (3.15)

For the derivation of this equation in details, see Appendix B. Equation (3.15) is an analyt-

ical solution of the steady-state diffusion-convection equation with the monoenergetic particle

injection Q:

u
∂ f
∂x

− ∂

∂x

(
κ(p)

∂ f
∂x

)
=

1
3

(
∂u
∂x

)
p

∂ f
∂ p

+Q(x, p). (3.16)

Q(x, p) is given by

Q(x, p) =
ηng1u1

4π p2
0

δ (p− p0)δ (x), (3.17)

62



which means that the mono-energetic particles with the momentum p0 are injected at the sub-

shock position x= 0. η is the parameter determining the ratio of the background plasma injected

to the CRs, therefore, ηng1u1 means the number flux injected to the CRs across the subshock.

It is noted that the effect of the particle escaping from the shock region plays a key role in the

above CR-kinetic system. The maximum momentum pmax (or a corresponding to free escaping

boundary in the upstream [Caprioli et al., 2010]) which cut-off the higher energies is essentially

required to settle the system to the steady-state. As mentioned above, the modification by the

CRs flattens the spectra at the higher energies. Without cut-off, such a flattening enhances the

population of highest energy CRs, which leads to the increase the CR pressure and consequently

drive the stronger modification unlimitedly. The boundary conditions are required to prevent

such a positive feedback.

3.2 Nonlinear Diffusive Shock Acceleration with Waves

3.2.1 Basic equations of cosmic ray kinetic model

We consider the one-dimensional cosmic ray modified shock, including the effect of the generation

and dissipation of waves. As pointed out for a long time, it is possible that the diffusive flow

of CRs toward the upstream can drive the various plasma instabilities in the precursor. Some

author suggested the amplitudes of the generated waves are so large compared to the background

magnetic fields [e.g. Bell, 2004]. In such situations, we can not dismiss the dynamical feedback

of the amplified waves that may have the comparable energy to that of the background plasma,

which is suggested by some authors recently [Caprioli et al., 2009; Caprioli, 2012]. When the

wave generation and the feedback of them are taken into consideration, we can extend the

“classical” model of NLDSA to the one described following basic equations:

∂ρ

∂ t
+

∂

∂x
(ρu) = 0, (3.18)

∂

∂ t
(ρu)+

∂

∂x
(ρu2 + pg + pc + pw) = 0, (3.19)

∂

∂ t

[
1
2

ρu2 +Eg

]
+

∂

∂x

[
1
2

ρu3 +Fg

]
=−u

∂ pc

∂x
−u

∂ pw

∂x
+L−W, (3.20)
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∂Ew

∂ t
+

∂

∂x
[(u− va)Ew +upw] = u

∂ pw

∂x
+ va

∂ pc

∂x
−L, (3.21)

∂ f
∂ t

+(u− va)
∂ f
∂x

− ∂

∂x

(
κ(x, p)

∂ f
∂x

)
=

1
3

(
∂

∂x
(u− va)

)
p

∂ f
∂ p

+Q(x, p), (3.22)

Q(x, p) =
ηng1u1

4π p2
0

δ (p− p0)δ (x), (3.17)

Eg =
pg

γg −1
, (3.23)

Ew = (δB)2/4π = pw/2, (3.24)

Fg = u(Eg + pg) = u
γg pg

γg −1
, (3.25)

ρ, u, pg, pc are the density, the velocity of flows and the pressure of the background plasma and

CRs, respectively. pw and va are the pressure of waves (magnetic pressure by the perturbation

δB) and Alfvén velocity. Eg, Ew and Fg are the energy density of the background plasma

and waves and the energy flux of the background plasma, respectively. Q(x, p) is the flux

of distribution function injected into CRs from the background plasma, and the corresponding

energy loss of the background plasma is expressed byW . L is the energy density by the dissipation

of the wave. The specific heat ratio of the background plasma γg = 5/3 and the diffusion

is assumed to be Bohm diffusion, where the diffusion coefficient is proportional to the CR

momentum p, i.e. κ ∝ p in this chapter. We note that the momentum p is normalized by mc,

which is the product of the proton mass m and the speed of light c. When the particle injection

is assumed to be the delta-type injection shown in Equation (3.17), the energy loss term W is

calculated,

W =
∫ p0+ε

p0−ε

4π p2
0T (p0)Qd p = T (p0)ηng1u1δ (x). (3.26)

The convection velocity of the diffusion-convection equation (3.22) is different from the one

shown previously,

∂ f
∂ t

+u
∂ f
∂x

− ∂

∂x

(
κ

∂ f
∂x

)
=

1
3

∂u
∂x

p
∂ f
∂ p

, (1.22)
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which is derived in the approximation where the waves as scattering centers are fixed in the

flow. By contrast, the finite velocities of waves are considered in Equation (3.22). The velocity

va = B0/
√

4πρ, where B0 is the strength of the unperturbed magnetic fields, is given because

the shear Alfvén waves are assumed as scattering waves. Although, precisely, these scattering

waves propagate in two directions (+x and −x) relative to the flows [Lerche, 1967; Skilling,

1975a, b], only forward waves (propagating +x) are taken into account in this chapter [Dewar,

1970; McKenzie and Völk, 1982].

3.2.2 Wave generation and dissipation

In the precursor region, the diffusive CRs streaming against the background plasma flow may

excite some plasma instabilities [Bell, 1978, 2004], because the streaming of CRs can carry the

electric current. These instabilities generate the magnetic fields and amplify them to the a few

hundred times of the strength of the magnetic fields of ISM in some cases. In the nonlinear

stage, these generated magnetic fields possibly grow into turbulence and heat the background

plasma by their dissipation. In our model of this chapter, we adopt a simple model of wave

generation and transport proposed by McKenzie and Völk [1982]. They derived the equation

of the Alfvén waves generated by the resonant instabilities between the background plasma and

CRs [Lerche, 1967] with the growth rate σ(k,x) (given in Drury [1983]; Amato and Blasi [2006])

:

σ(k,x) =
4π

3
va(x)

εw(k,x)
p4v

∂ f (x, p)
∂x

, (3.27)

where εw(k,x) is the energy density of Alfvén waves (resonant with the particles of momentum

p) per unit logarithmic bandwidth. The growth of waves is expressed by the above σ ,

∂ε(k,x)
∂ t

= 2σ(k,x)ε(k,x). (3.28)
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The hydrodynamical expression of growth of waves is given by the integral of Equation (3.28)

with respect to k as following,

∫
∂ε(k,x)

∂ t
dk = 2

∫
σ(k,x)P(k,x)dk, (3.29)

⇒ ∂

∂ t
(δB)2

4π

(
=

∂Ew

∂ t

)
= va

∂ pc

∂x
. (3.30)

In the transformation from Equation (3.29) to (3.30), we used the relation (δB)2 =
∫

εdk and the

definition of pc (Equation (1.40)). Equation (3.30) means the generation of the energy density

occur the precursor region with the gradient of the CR pressure, as illustrated in Section 1.2.

The time evolution of the energy density Ew(x) is given by,

∂Ew

∂ t
+

∂

∂x
[uconvEw] =−pw

∂u
∂x

+ va
∂ pc

∂x
−L, (3.31)

where uconv = u− va is the convection velocity of Ew. The fist and third terms of the right hand

side mean the work to the background plasma done by the wave pressure and the energy loss,

respectively. From Equation (3.31), we can derive Equation (3.21) of the basic equations:

∂Ew

∂ t
+

∂

∂x
[(u− va)Ew +upw] = u

∂ pw

∂x
+ va

∂ pc

∂x
−L, (3.21)

The dissipation term L totally depends on the physical model. In this chapter, we use following

simple formula:

L = αhva
∂ pc

∂x
, (3.32)

which means the ratio αh (0≤αh ≤ 1) of the generated wave energy is converted into heat energy.

When αh = 0, there is no dissipation (no heating of the background plasma). Always pw = 0 and

all energies generated by the instabilities are converted into the heat flux when αh = 1.

In the limit of va → 0, there is no generation of waves according to Equation (3.30). Then, if

66



pw = 0 at initial, always pw = 0. Therefore, the full set of the basic equations are described by

∂ρ

∂ t
+

∂

∂x
(ρu) = 0, (3.18)

∂

∂ t
(ρu)+

∂

∂x
(ρu2 + pg + pc) = 0, (3.33)

∂

∂ t

[
1
2

ρu2 +Eg

]
+

∂

∂x

[
1
2

ρu3 +Fg

]
=−u

∂ pc

∂x
−W, (3.34)

∂ f
∂ t

+u
∂ f
∂x

− ∂

∂x

(
κ(x, p)

∂ f
∂x

)
=

1
3

∂u
∂x

p
∂ f
∂ p

+Q(x, p), (3.2)

Q(x, p) =
ηng1u1

4π p2
0

δ (p− p0)δ (x), (3.17)

Eg =
pg

γg −1
, (3.23)

Fg = u(Eg + pg) = u
γg pg

γg −1
. (3.25)

The above set of equations are well-known formulas in CR-kinetic model used by many authors

[e.g. Malkov and Drury, 2001; Blasi, 2002].

3.3 Semi-analytical Method

A direct numerical calculations for the above set of equations is difficult due to two reasons.

First, the CR momentum p ranges in the several orders of magnitudes. The diffusion length

of CRs defined as Ldi f f = κ/u also have the same scales. In order to resolve these diffusion

length, we need the numerous spatial grids. Second, the diffusion-convection equation includes

the diffusion term which impose a more severe CFL condition, therefore the time needed for the

convergence is too large. Some authors who conduct direct simulations avoid these problems by

the special techniques saving the number of grids, such as Adoptive mesh refinement (AMR),

e.g. Cosmic-Ray Amr SHock (CRASH) code by Kang et al. [2002].

In this study, we focus on the steady-state solutions and use the semi-analytical method

proposed by Blasi [2002]; Amato and Blasi [2005]; Reville et al. [2009]. This method is the

combination of the analytical steady-state solutions and numerical integrations and repeat the

steps until the solutions converge. This procedures finish in the reasonable time, saving the
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computational resources. Therefore, we can investigate the behavior of the system easily by the

parameter surveys.

3.3.1 Numerical recipe

Our numerical method to obtain the steady-state solutions of the Equations (3.18)-(3.25) is

similar to that of Reville et al. [2009] or Caprioli et al. [2009]. Again, the subshock is located

at x = 0 and the region of x < 0 (x > 0) is the upstream (downstream) of the subshock and the

subscripts 0, 1 and 2 means the value of the far upstream (x=−∞), the upstream of the subshock

(x = 0−) and the downstream (x = 0+). The fixed parameter all through the procedure is far

upstream Mach number M0.

Initial conditions for the calculations

To start iterative procedures, we have to prepare a guess initial conditions. As the guess initial

conditions, we set the solutions with pw(x) = 0 in all spatial region. The other parameters u(x),

ρ(x), pg(x) pc(x) and f (x, p) are determined under the given initial precursor compression ratio

R = u0/u1, which determine the strength of the precursor. It is noted that R changes according

to the evolution of the downstream values in the later iterative steps.

The background plasma velocity u(x) is set in order to satisfy the value of R = u0/u1. In the

upstream region, u(x) decrease linearly. The background plasma pressure pg has the adiabatic

profile, pg(x) = pg,0(u(x)/u0)
−γg . Initial pc is determined by the conservation of the momentum

flux,

ρ0u0u(x)+ pg(x)+ pw(x)+ pc(x) = ρ0u2
0 + pg,0, (3.35)

and does not change across the subshock (pc,1 = pc,2). The other values at downstream of the

subshock, ρ2, u2, pg,2 , are determined by the subshock compression ratio rs = u1/u2,

rs =
γg +1

γg −1+2Rγg+1M−2
0

, (3.36)
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which is derived from the above conservation law (Equation 3.35). rs depends on the precursor

compression ratio R and Mach number at far upstream M0. The subshock boundary condition

rs > 1 gives the limitation to the precursor compression ratio R at an arbitrary Mach number,

R < M
2

γg+1

0 . (3.37)

The CR distribution function f (x, p) has simple power law (∝ p4) at the subshock (x = 0), and

decrease to the upstream region exponentially. All values at downstream of the subshock are

assumed to have the structure with a flat functional behavior, so we focus the structure from

far upstream to the just behind of the subshock.

Each iterative step

From given f (x, p) and u(x), we can calculate “modified” up(p) by the introduction of waves,

up(p) = (u1 − va,1)−
1

fsub

∫ 0−

−∞

dx f (x, p)
d
dx

(u− va). (3.38)

This up(p) enable us to obtain the new fsub,

fsub =
3Rwrs,w

Rwrs,wU(p)−1
ηn0

4π p3
0

exp
[
−
∫ p

p0

d p′

p′
3Rwrs,wU(p′)

Rwrs,wU(p′)−1

]
, (3.39)

where U(p) = up/u0, Rw = (u0−va,0)/(u1−va,1) and rs,w = (u1−va,1)/(u2−va,2). For the derivation

of Equation (3.39), see Appendix B. The injection parameter η is determined by the following

normalization,

4π

3
mc2

∫ pmax

p0

p√
1+ p2

p3 fsub(p)d p = pc,1. (3.40)
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pc,1 is calculated according to the below set of equations independently,



ρ0u0u(x)+ pg(x)+ pw(x)+ pc(x) = ρ0u2
0 + pg,0,

∂

∂x
[(u− va)Ew +upw] = u

∂ pw

∂x
+ va

∂ pc

∂x
−αhva

∂ pc

∂x
,

uργg

γg −1
∂

∂x

(
pg

ργg

)
= αhva

∂ pc

∂x
.

(3.35)

(3.41)

(3.42)

By differentiating the Equation (3.35) and transforming Equation (3.41) and (3.42),



ρ0u0
∂u
∂x

+
∂ pg

∂x
+

∂ pw

∂x
+

∂ pc

∂x
= 0,

∂ pw

∂x
=

[
−
(

3
∂u
∂x

−2
∂va

∂x

)
pw +(1−αh)va

∂ pc

∂x

]
{2(u− va)}−1 ,

∂ pg

∂x
+ γg

pg

u
∂u
∂x

= (γg −1)αh
va

u
∂ pc

∂x
.

(3.43)

(3.44)

(3.45)

Substitution of the Equations (3.44) and (3.45) into the Equation (3.43) and use of the Equation

(3.35) lead to

A
∂ pc

∂x
+Bpc +C = 0, (3.46)

A =

[
(γg −1)αh

va

u
+1+(1−αh)

va

2(u− va)

]
, (3.47)

B =

[
γg

1
u

∂u
∂x

]
, (3.48)

C =

[
ρ0u0 −

γg

u

{
(ρ0u2

0 + pg,0)−ρ0u0u− pw
}
− 3pw

2(u− va)

]
∂u
∂x

+
1

u− va

∂va

∂x
pw. (3.49)

When va is constant spatially, Equations (3.46)- (3.49) become

A
∂ pc

∂x
+Bpc +C′ = 0, (3.50)

A =

[
(γg −1)αh

va

u
+1+(1−αh)

va

2(u− va)

]
, (3.47)

B =

[
γg

1
u

∂u
∂x

]
, (3.48)

C′ =

[
ρ0u0 −

γg

u

{
(ρ0u2

0 + pg,0)−ρ0u0u− pw
}
− 3pw

2(u− va)

]
∂u
∂x

. (3.51)
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Above differential equation for pc(x) depends only on u(x) and pw(x). pc,1 is calculated from the

integral of (3.46) from the far upstream to the subshock numerically, from u(x) and pw(x).

Updated fsub gives the new profile of f (x, p),

f (x, p)' fsub(p)exp
[

q(p)
3κ(p)

(
1− u2 − va,2

u1 − va,1

)∫ 0

x
(u− va)dx′

]
. (3.52)

The Equation (3.52) is the approximate solution that is slightly changed by the additional factor

from

f (x, p) = fsub(p)exp
[

q(p)
3κ(p)

∫ 0

x
(u− va)dx′

]
. (3.53)

We can calculate new pc(x) from updated f (x, p) by the Equation (3.4). pw is updated by

the Equation (3.44) from the new pc(x) and u(x). The procedure to update u(x) and p(g) is

described following. The entropy pgρ−γg is calculated from the numerical iteration according to

the Equation (3.42) from pc. New pg is solved from this new entropy with fixed ρ. Then, u (and

ρ) is updated from the conservation of momentum flux (3.35) from pg, pc, pw. The calculation

of f (x, p), pc, pw, pg and u is repeated until the u(x) converges, on each iterative step.

After the profiles of all variables at upstream of subshock is solved, the downstream values

are updated. The mechanism of amplification of wave at (sub)shock is controversial matter,

so we assume that the pw is amplified by the factor ξ at subshock. When the compression

ratio of pw is fixed, the other values are determined by the Rankine-Hugoniot relations of the

hydrodynamical shock,

[ρu]0+0− = 0, (3.54)[
ρu2 + pg + pw

]0+
0− = [pc]

0+
0− = 0, (3.55)[

1
2

ρu3 +
γg pg

γg −1
u
]0+

0−
=−[(3u2 −2va,2)ξ pw,1 − (3u1 −2va,1)pw,1]. (3.56)

In the Equation (3.56), the energy flux of particle injection is neglected. From the Equations

(3.54) - (3.56), ρ2, u2 and pg,2 are obtained. These give the new subshock compression ratio rs
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(or rs,w), which is needed in the calculation of fsub(p) on the next iterative step. As mentioned

above, all variables are updated, then the next steps are repeated in the same way. The steps

continues until the injection parameter η converges well. It is noted that in this study the Alfvén

velocity va is assumed to be spatially uniform, i.e.

va(x) =


va,0 = va,1 =

√
2
β0

pg,0

ρ0
(x < 0),

va,2 = 0 (x > 0),

(3.57)

(3.58)

where β0 is the far upstream plasma beta. At the precursor region, we only consider the Alfvén

waves moving to the upstream (in the direction of the negative x) relative to the background

plasma flow. At the subshock, some of these waves are transmitted and others are reflected. All

of them are advected to the downstream because we consider the fast shock as the subshock,

where both upstream and downstream flow velocities are super-Alfvénic. Therefore, we have to

take into account of Alfén waves moving opposite directions (negative and positive x) relative

to downstream flow. The reflection ratio of waves at the shocks is the controversial matter, so

we treat the effective downstream Alfén velocities va,2 as the zero assuming that the fractions of

the opposite propagating waves are roughly equal.

3.4 Steady-state Solutions

3.4.1 Case without wave generation (va = 0): fiducial case

In the limit of va = 0, if pw = 0 initially, the basic equations are simplified to the equations

excluding the waves, which have been well investigated by many people [Blasi, 2002; Amato

and Blasi, 2005; Reville et al., 2009]. Figure 3.2 shows typical steady-state solutions for the

parameter of upstream Mach number M0 = u0/Cs0 = 100 and the downstream pressure of the

background plasma pg,2/ρ0u2
0 = 0.3. The energy range of the cosmic rays is assumed to be from

p0/mc = 1 to pmax/mc = 1000. This energy range is fixed throughout this chapter. The minimum

momentum p0 corresponds to the injection energy. The upper three panels are the profiles of
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Figure 3.2: Numerical steady-state solutions with M0 = 100, va = 0 and pg,2/ρ0u2
0 = 0.3. Normalized

profiles of the background plasma flow velocity, background plasma pressure, CR pressure, (from left in
the upper three panels), wave pressure, the spectrum index at the subshock: q(p) = dln fsub(p)/dln p,
and the profile of p4 fsub(p) (from left in the lower three panels), respectively. The dashed lines show the
theoretical values in the test-particle limit.

the background plasma u, the pressure of the background plasma pg and the pressure of CRs

pc, which show the similar profiles given in two-fluid model. The precursor compression ratio

R = u0/u2 = 2.46 and the subshock compression ratio rs = 3.99 are obtained. The lower three

panels are the profiles of the wave pressure pw (of course equal to 0), the spectrum index at

the subshock q = ln fsub(p)/ ln p and the normalized spectrum at the subshock p4 fsub(p) with

p4
0 fsub(p0). Notice that the normalization unit for the space is the diffusion length κ0/u0, where

the κ0 = κ(p = p0). In the test-particle limit, the spectrum index is known to be q = −4(=

constant) and p4 fsub(p) = constant. As for the solutions of Figure 3.2, however, the spectrum

becomes flatter than the test-particle limit in all momentum range (q(p)>−4). The spectrum

index q increases monotonically with the momentum p, as mentioned in Section 3.1, from the

value of slightly above -4 at the injection momentum p0 to the maximum value ∼ 3.5 at the

highest momentum pmax, showing the concave spectrum. When there is no wave generation (and

dissipation in the precursor region), the entropy of the background plasma is conserved, and
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then the pressure of the background plasma changes adiabatically. The compression ratio of the

subshock rs only depends on R and M0 according to Equation (3.36). The increase of R leads to

the decrease of rs. This means that the stronger modification of CRs causes further deceleration

of the background plasma, and the Mach number of the subshock decreases, consequently. Then,

the subshock compression ratio becomes weak. In the test-particle limit, i.e. R = 1, Equation

(3.36) becomes

rs =
γg +1

γg −1+2M−2
0

, (3.59)

which gives the relation between the compression ratio and the Mach number of the hydro-

dynamical shocks. On the other hand, the increase of M0 enhances rs up to the theoretical

maximum value of the hydrodynamical shocks (rs = 4). Figure 3.3 shows the spectrum indices

q(p0) and q(pmax) at the injection momentum p0 and at the maximum momentum pmax as the

function of R and the variation of M0. q(p0) that represents the acceleration efficiency of the

lowest energetic particles can be determined by the subshock compression. Consistent with

above qualitative discussion for rs, q(p0) are below -4 in the low M0 or high R, where rs is smaller

than 4. For the case of M0 = 10, q(p0)<−4 almost all R. For M0 = 100, q(p0) become less than

-4 after R ∼ 7. In the case of M0 = 500, however always q(p0) > −4 regardless of R. The index

q(pmax) at the highest momentum pmax reflects the total compression ratio u0/u2(= Rrs) since

the highest energy particles feel the total velocity difference between the far upstream and the

downstream of the subshock. The total compression ratio Rrs is given as follows,

Rrs =
(γg +1)R

γg −1+2Rγg+1M−2
0

. (3.60)

Notice that the above formula can be used only in the case where there is no wave generation

(and always pw = 0). Mathematically, above formula has a peak at

Rγg+1M−2
0 =

2γg −1
γg

⇔ R =

[(
2γg −1

γg

)
M2

0

] 1
γg+1

(≡ Rc(M0)). (3.61)
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Figure 3.3: The spectrum index q(p) at the injection momentum p0 and the maximum momentum pmax

as a function of the precursor compression ratio R. The open squares mean the q(p0) and filled squares
mean q(pmax). Different colors show the results of different M0 (black:M0 = 10, blue:M0 = 100 and
red:M0 = 500). The horizontal solid line shows the value of the test-particle limit (q =−4).

We can predict that pmax shows the monotonic increase until around Rc and decrease in R>∼Rc.

For M0 = 10, 100 and 500, Rc ∼ 3.1, 17.3 and 57.8, respectively. From the results of M0 = 10

in Figure 3.3, we can see the consistent peak of pmax around R = 3. This is consistent with the

above theory.

Figure 3.4 shows the downstream CR pressure pc,2 as a function of the normalized injection

parameter ν defined as

ν =
4π

3
mc2

ρ0u2
0

p4
0 fsub(p0), (3.62)

which was introduced by Malkov et al. [2000]. This parameter means the fraction of the energy

density at the injection momentum p0 given at the subshock, to the total kinetic momentum

given at the far upstream. In Figure 3.4, solid line shows the test-particle limit as reference

where there is no deceleration of u in the precursor and rs = 4 at the subshock. We can clearly
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Figure 3.4: Downstream CR pressure pc as a function of the normalized injection parameter ν =
(4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). Different M0 is shown with different line types (solid: test-particle

limit, dotted: M0 = 20, dashed: M0 = 50, dash-dotted: M0 = 70, dashed triple-dotted: M0 = 100 and
long-dashed:M0 = 500).

see the cosmic ray pressures for the nonlinear shocks are strongly modified from the test-particle

limit. This figure is qualitatively the same with Figure 2.14(a) of the two-fluid model (Section

2.3) although the definition of the injection parameters in horizontal axes are different each

other. It is natural that the CR pressure at the subshock increases with the increasing ν in

the steady-states solution, because the particles are injected into the CR component and the

population of CRs around the subshock grows. It is noted that there are also three multiple

solutions for a given ν , i.e. efficient, intermediate and inefficient solutions in the CR-kinetic

model. In the two-fluid model, the multiple solutions disappear and only the single solutions

can exist in high Mach regime (M0
>∼10) [Becker and Kazanas, 2001]. On the other hand, the

multiples solutions can be seen over M0 ∼ 50−70 and always exist in even higher Mach number

[Malkov, 1997b; Malkov et al., 2000]. Notice that in Figure 3.4, the efficient branch of M0 = 500

is partially depicted, because the numerical iterations of our calculation become hard to converge

in higher Mach regime where the shock is strongly modified.
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3.4.2 Case of wave generation without dissipation (va 6= 0 & αh = 0)

Without the constraint of va = 0, the waves are generated in precursor. They exert the wave

pressure to the background plasma and heat the background plasma by wave dissipation. In

order to distinguish the effect of wave pressure and heating, we consider the most extreme cases

where the dissipation is prohibited (αh = 0) and all wave energies are converted into heat (αh = 1).

Let us first study αh = 0, where no energy transfer from the generated waves to the heating of

the background plasma exists. We only take into account of the modification by the additional

wave pressure pw. Figure 3.5 shows the steady-state solutions with M0 = 100, va,0/u0 = 1.1×10−2

(plasma beta at far upstream β0 = 1), and the compression ratio of the wave pressure across

the subshock ξ = 10, which is in the same format with Figure 3.2. For the comparison of the

different cases, we choose the data that show the almost the same downstream background

plasma pressure (pg,2/ρ0u2
0 ' 0.3). The compression ratios are R = 2.00 for the precursor and

rs = 3.85 for the subshock, both decrease from those neglecting the wave generation in Figure 3.2.

That means the wave pressure weakens the precursor, the subshock, and the total compression

of CRMS. The pressures of the generated waves are pw,1/ρ0u2
0 = 6.8× 10−3 at the upstream of

subshock and pw,2/ρ0u2
0 = ξ pw,1/ρ0u2

0 = 6.8×10−2 at the downstream, which gives δB2/B0 = 33.6.

As for the spectrum, the decrease of all of rs, R and Rrs leads to the decline of the spectrum

index q from that in Figure 3.2. Besides them, q(p0) is even below -4. As the result, the shape of

spectrum becomes steeper in all energies, especially steeper than the test-particle limit in lower

energies.

Figure 3.6 shows four energy densities at the upstream of the subshock as the function of the

injection parameter ν when M0 = 100. Let us compare this result with the case without waves

(va = 0). Three solid lines show the case of no wave, while four symbols of diamonds are the

case of wave generation for the parameters of va/u0 = 1.1×10−2,αh = 0,ξ = 10, for the kinetic

Ek,1 (green), thermal Eg,1 (orange), CR Ec,1 (purple) and wave Ew,1 (brown), respectively. In

both cases, CR energy densities (purple lines and diamonds) enter into the strongly modified

(efficient) shock regime with the increase of ν , because of the increase of injected energies at

the subshock. The higher energies of CRs (equivalently, the higher CR pressure) produce the
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Figure 3.5: Numerical steady-state solutions with M0 = 100, αh = 0 and pg,2/ρ0u2
0 = 0.3. The format is

the same as Figure 3.2.

steeper pressure gradient structure of CRs in the precursor. By setting va 6= 0, this possibly

leads to stronger generation of waves (brown diamonds) according to the energy equation of

waves (3.21). By the excitation of wave pressure, the CR energies (purple diamonds) decrease

compared to the case without wave generation (purple solid line). Therefore, the effect of the

deceleration of incoming plasma flow is weakened (green diamonds), and leads to the increase

of the kinetic energy compared to the case without wave generation (green solid line). Thermal

energies (orange diamonds) is smaller than the case without wave (orange solid line). This is

simply due to the pressure balance with the generated wave pressure.

The decrease of the CR pressure mentioned above is shown explicitly in Figure 3.7 in the

linear scale. The solid line is the results of M0 = 100 in the case without waves, which is also

shown in Figure 3.4 as the dashed triple-dotted line. The blue diamonds show the results of the

case with waves (the parameters are the same as those of Figure 3.6). The CR pressures with

the feedback from the Alfvénic wave appear below the solid line, and the rates of reduction are

typically 60% of the efficient branch of the case without waves. More interestingly, the multiple
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Figure 3.6: Energy density at the upstream of subshock as a function of the normalized injection
parameter ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0) with M0 = 100. The solid lines show the results of

va = 0 and diamonds show the results of va,0/u0 = 1.1× 10−2 (β0 = 1), αh = 0 and ξ = 10. Each
color shows the different kind of energy density (green: kinetic energy of the background plasma
Ek,1 = ρ1u2

1/2, orange: thermal energy of background plasma Eg,1 = pg,1/(γg − 1), purple: CR energy
Ec,1 = 4π

∫ pmax
p0

p2T (p0) fsub(p)d p, brown: wave energy Ew,1 = 2pw,1).
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Figure 3.7: Downstream CR pressure pc as a function of the normalized injection parameter ν =
(4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0) with M0 = 100. The solid lines show the results of va = 0 and dotted

line shows test-particle limit. The blue diamonds show the results of va,0/u0 = 1.1× 10−2 (β0 = 1),
αh = 0 and ξ = 10. The red diamonds show the results of va,0/u0 = 1.1×10−2 (β0 = 1), αh = 1.

solutions disappear in 0.042<∼ν <∼0.045 and behaviors of the solution for αh = 0 is close to the

test-particle limit (dotted line).

When the waves are excited by the CR streaming instability, the CR energies are converted

into the wave energies. As the results, the CR pressure in the precursor decreases and the

precursor compression ratio becomes weak. This is shown by the blue diamonds in the Figure

3.8, which is the same format with Figure 3.7. Compared with the solid line (the results

of the case without waves), the blue diamonds (the results with waves) show the precursor

compression ratio R(= u0/u1) becomes much lower especially in the efficient branches (in the

regime of large ν). The weak precursor compression leads to the increase (decrease) of u1 (ρ1),

and the decrease of pg,1, because the background plasma is compressed adiabatically in the

precursor: pg(x) = pg,0(u(x)/u0)
−γg . The Mach number of the subshock M1 defied following,

M1 =
u1√

γg pg,1/ρ1
=

√
ρ0u0

γg

u1

pg,1
, (3.63)
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also increases due to the larger u1 and the smaller pg,1 (blue diamonds in Figure 3.9). Figures

3.10 and 3.11 show the subshock compression ratio rs(= u1/u2) and the total compression ratio

Rrs(= u0/u2) as the functions of normalized injection parameter ν in the same format with Figure

3.7. Although the magnitude relation of rs between the solid line (va = 0) and the blue diamonds

(αh = 0) depends on the injection parameter ν , the range of rs in the case of αh = 0 is limited in

3.5 < rs ≤ 4, and there is a significant increase from the solid line (va = 0) at the large ν . This

increase is basically due to the compression of waves at the subshock. By the wave pressure,

the hydrodynamical RH relations at the subshock is modified. The increase of the degrees of

the freedom fdeg reduces the effective specific heat ratio for the background plasma γg, because

γg is connected with fdeg in the following relation:

γg =
fdeg +2

fdeg
. (3.64)

The smaller γg enhances the compression ratio of the subshock rs, which depends on γg:

rs ∼
γg +1
γg −1

∼ 1+
2

γg −1
. (3.65)

The total compression ratio that is given by a product of R and rs shows the same trend as

the precursor compression ratio R, which is indicated by blue diamonds in Figure 3.11. By the

suppression of the total compression ratio Rrs, the spectral indices of the higher energy CRs that

reflects the total compression ratio become softer typically in the efficient branches, therefore

the feedback effect of CRs becomes weaker than the case without waves.

The decline of the downstream CR pressure can also be understood in the respect of the

injection. Figure 3.12 shows the injection energy flux:

Fin j = ν
ρ0u2

0T (p0)

mc2 p0
(u1 −u2), (3.66)

normalized by the thermal flux of the background plasma Fth,2 = γg pg,2u2/(γg −1) in the down-

stream. From the comparison between solid line (case without waves) and blue diamonds (case
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Figure 3.8: Precursor compression ratio R = u0/u1 as a function of the normalized injection parameter
ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). The format is the same with Figure 3.7.
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Figure 3.9: Mach number of the subshock M1 as a function of the normalized injection parameter ν =
(4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). The format is the same with Figure 3.7.
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Figure 3.10: Subshock compression ratio rs = u1/u2 as a function of the normalized injection parameter
ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). The format is the same with Figure 3.7.
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Figure 3.11: Total compression ratio Rrs = u0/u2 as a function of the normalized injection parameter
ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). The format is the same with Figure 3.7.
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Figure 3.12: The ratio of the energy flux of injected particles Fin j = ν(ρ0u2
0T (p0)/mc2 p0)(u1 −u2) and

downstream thermal flux Fth,2 = γg pg,2u2/(γg − 1), as a function of the normalized injection parameter
ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0) with M0 = 100. The format is the same with Figure 3.7.

with waves), we can see a large suppression of the injection energy flux from the case without

wave generation effect of the solid line in the efficient regime. The blue diamonds in Figure 3.13,

which indicates the subshock compression ratio rs as a function of the pressure of the downstream

background plasma pg,2. Notice that the horizontal axes are different between Figure 3.10 and

3.13. The figure shows the weakening rs than the solid line when the downstream pressure of

the background plasma pg,2 is fixed. This weakening of the subshock compression ratio leads

to less production of the injection flux from the downstream thermal plasma at the subshock,

consequently the CR pressure decreases.

3.4.3 Case of wave energy dissipation (va 6= 0 & αh = 1)

Let us study the effect if the Alfvénic wave dissipation excited by the cosmic rays. In the case of

αh = 1, the energy of the generated waves is totally converted into the heating of the background

plasma. As the result, the condition pw = 0 is always satisfied and the modulation by the wave

pressure is eliminated. Figure 3.14 shows the shock profiles for M0 = 100, va,0/u0 = 1.1× 10−2
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Figure 3.13: The subshock compression ratio rs as a function of downstream pressure of the background
plasma pg,2 with M0 = 100. The format is the same with Figure 3.7.

(β0 = 1) and pg,2/ρ0u2
0 = 0.3. The compression ratios for the precursor and the subshock are

R = 2.45 and rs = 3.37, respectively. The precursor compression ratio R becomes larger than

that of αh = 0 (R = 2.00) and close to that of va = 0 (R = 2.46). On the other hand, as shown in

Figure 3.13, the subshock compression ratio rs is smaller than both of them (rs = 3.85 in αh = 0

case and rs = 3.99 in va = 0 case). Therefore the spectrum index at the injection momentum p0

and the maximum momentum pmax become smallest of the three. Then, the spectrum with the

wave dissipation effect becomes the softest of the three (but still concave of course).

Figure 3.15 shows the comparison of energy density in the same format as Figure 3.6. The

dependence of the injection parameter ν in M0 = 100, is depicted. Most notable behavior is

the fact that the thermal energy density of the background plasma increases drastically com-

pared with the va = 0 case in Figure 3.15. This is the natural consequence because all the

generated wave energy (which increase with ν) can be dissipated and the background plasma is

simultaneously heated.

As shown by red diamonds in the Figure 3.8, the convert of energies from the CRs to the waves
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Figure 3.14: Numerical steady-state solutions with M0 = 100, αh = 1 and pg,2/ρ0u2
0 = 0.3. The format

is the same as Figure 3.2.

(and ultimately, to the background plasma) similarly decreases the precursor compression ratio

R. The heating of the background plasma raises up the temperature of it and the sound velocity

Cs =
√

γg pg/ρ in the precursor. The larger sound velocity directly leads to the decrease of the

Mach number of the subshock M1, as shown by the red diamonds in Figure 3.9. Although M1 is

almost the same order between the case of va = 0 and αh = 0 (solid line and blue diamonds), M1

in the case of αh = 0 (red diamonds) is suppressed by one-fifth at most. From the comparison of

rs between the blue (αh = 0) and red (αh = 1) diamonds in Figure 3.10, the red diamond shows

the slight decline from the blue, not only because M1 becomes smaller, but also because the

compression of the waves at the subshock is eliminated. The resulting total compression ratio

Rrs is even lower than that of the case of αh = 0 (as shown in Figure 3.11), and this suppresses

the CR production further.

The smaller M1 is consistent with the larger decrease in the subshock compression ratio rs

(the red diamonds in Figure 3.13, which is the comparison in the fixed downstream gas pressure

pg,2), ultimately the larger decrease of the injection flux and CR pressure is realized (the red
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Figure 3.15: Energy density at the upstream of subshock as a function of the normalized injection pa-
rameter ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0) with M0 = 100. The solid lines show the results of va = 0 and

diamonds show the results of va,0/u0 = 1.1×10−2 (β0 = 1), αh = 1 and ξ = 10. Each color shows the
different kind of energy density (green: kinetic energy of the background plasma Ek,1, orange: thermal
energy of background plasma Eg,1, purple: CR energy Ec,1).
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diamonds in Figures 3.12 and 3.7). From the studies about two cases of αh = 0 and αh = 1, we

can conclude that the excitation of waves reduces the CR production efficiency by the weakening

of the total compression ratio. In addition, the heating of the gas by the wave dissipation in the

precursor region reduces further the CR production efficiency.

3.4.4 Case with general αh

In Section 3.4.1 and Section 3.4.2, we consider two special situations where the dissipation does

not occur (αh = 0) and all generated wave energies are dissipated (αh = 1) in order to consider

separately the effects of the pressure and heating. In this section, we study the effect of the wave

energy dissipation as the function of αh(0 < αh < 1). Figure 3.16 shows the dependence of four

different momentum fluxes at the upstream of the subshock (green: ram pressure ρ1u2
1, orange:

the background plasma pressure pg,1, purple: CR pressure pc,1, brown: wave pressure pw,1) for

the case of the injection parameter ν ' 0.55, and M0 = 100, va,0/u0 = 1.1× 10−2(β0 = 1) and

ξ = 10, which are the same as the previous parameter survey. As one can see, with increasing

αh, the fraction of the gas pressure increases, while the wave pressure decreases monotonically,

and the equipartition is realized at αh ' 0.4. The CR pressure shows the monotonic decrease

with increasing αh, while the ram pressure of the background plasma increases. The maximum

wave pressure occurs at αh = 0 and the normalized wave pressure becomes pw,1/ρ0u2
0 ' 0.01

(equal to δB1/B0 ' 12.4). Even in the higher Mach number and the larger injection parameter

(not shown here), we confirmed that the maximum values of pw,1/ρ0u2
0 are in the same order of

magnitude, which provide the limit of the generation of wave in our model.

3.4.5 Effect of the variation of ξ and va

In our calculations,　the compression parameter for the wave pressure ξ is an arbitrary pa-

rameter. The downstream wave pressure is assumed to be ξ times of the upstream value, i.e.

pw,2 = ξ pw,1. In our parameter surveys described above, we have adopted ξ = 10 for the wave

compression at the subshock. Although the compression of the Alfvén wave at the shock is

still controversial matter, Caprioli et al. [2009] estimated the compression ratio for the waves
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Figure 3.16: Normalized upstream momentum fluxes: ρ1u2
1, pg,1, pc,1 and pw,1 as a function of αh, for

the case of ν ' 0.55, M0 = 100, va,0/u0 = 1.1×10−2(β0 = 1) and ξ = 10. Each color shows the different
kind of momentum fluxes (green: kinetic momentum of the background plasma ρ1u2

1, orange: pressure
of the background plasma pg,1, purple: CR pressure pc,1, brown: wave pressure pw,1).

as pw,2 = r2
s pw,1 from the formula derived by McKenzie and Westphal [1969] in the “test-wave”

model, where waves injected from the upstream only reflect and transmit at the shocks and the

shock structures are not modified by the waves pressure. Their estimation gives the amplifica-

tion for the wave pressure i.e. pw,2 = 16pw,1 in the test particle limit (rs = 4). On the other hand,

Vainio and Schlickeiser [1999] calculated the compression ratio at the parallel shocks modified

by wave pressure, and estimated the compression ratio as the values less than 10, when the

plasma beta is order of unity. Hence, out treatment of the subshock compression ratio for the

wave pressure (ξ = 10) is more or less reasonable.

Dependence of the wave compression ξ is shown in the upper panel of Figure 3.17. In the

upper panel, the dotted and solid lines show the results of the case without waves (va = 0)

and the test-particle limit, respectively. Five colored diamonds show ξ = 5 (blue), 10 (red), 15

(green), 20 (orange), 50 (purple), respectively. When ξ is greater than ξ = 15, the downstream

cosmic rays have the multiple solutions for a given injection parameter ν . When ξ = 15 (green
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diamonds) that is close to the limit proposed by Caprioli et al. [2009], the solutions close to the

solid line (cases without waves). For even larger ξ (≥ 20), the solutions shift leftward in the plot

and the region where the multiple solutions exist become wider, although these extreme solutions

are unlikely to exist. When ξ < 10, the behavior of the multiple solutions disappears. Notice

that the upper efficient branches for ξ > 10 is not shown, because the numerical convergence is

poor.

From the jump condition at the subshock:

[
ρu2 + pg + pw

]0+
0− = [pc]

0+
0− = 0, (3.55)

we can derive following relation:

ρ0u0[u]0+0−+[pg]
0+
0−+[pw]

0+
0− = 0. (3.67)

The above relation means that the kinetic energy density is converted to the thermal and wave

energy densities at the subshock. The larger ξ (larger [pw]
0+
0−) weakens the background plasma

pressure jump [pg]
0+
0−. The decrease of the downstream gas pressure pg,2 leads to the decline of the

downstream gas temperature T2(∝
√

pg,2/ρ2), and the weak gas compression at the shock means

the effective adiabatic index of the background plasma γg become lower. Since the compression

ratio of the hydrodynamical shocks rs depends on the γg as follows,

rs ∼
γg +1
γg −1

∼ 1+
2

γg −1
, (3.65)

the lower γg enhances the shock compression ratio. As the results, larger ξ increases the subshock

compression ratio rs, and the downstream CR pressure pc,2 also increases due to the larger total

compression ratio Rrs.

However, these increases of the CR pressure by the larger ξ is suppressed when the finite

dissipation is taken into account (αh 6= 0). The lower panel of Figure 3.17 shows the results of αh =

0.9. We find the dependence of ξ is very weak. This is because the heating of the background
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plasma due to the dissipation of the wave energies drastically decreases the Mach number of

the subshock M1, and the subshock compression ratio rs from those of αh = 0. Furthermore, the

wave pressure at the upstream of the subshock pw,1 is suppressed approximately by one-tenth

because of the dissipation of waves, so the downstream wave pressure pw,2 is not enough large

to decrease the downstream gas pressure pg,2 efficiently. Therefore, the influence of the change

of ξ becomes very small.

Another important point may be the effect of the propagation of the Alfvén wave against

the background medium. Alfvén velocity va determines the convection velocities of CRs and

waves, and the growth rate in the generation of waves. For astrophysical high Mach number

(M0 > 100) shocks such as SNR shocks, the contribution of the finite Alfvén velocities to the

background convection velocity is negligible (va � u). The increase of the growth rate of Alfvén

waves, however, leads to the higher wave pressures. Figures 3.18 show the dependence of Alfvén

velocities va that defined by the far upstream plasma beta β0. The results in the upper panel

are obtained under the condition of M0 = 500, αh = 0 and ξ = 10. The solid and dotted lines

are the same as Figure 3.17, and the red diamonds for β0 = 1 are the same as the red diamonds

of the upper panel of Figure 3.17. Note that the typical plasma beta for the ambient ISM that

corresponds to the upstream region of shocks is order of unity. For a given parameter ν , the

CR pressure increases with increasing β0. Also in these cases, the dissipation of wave energies

decrease the downstream CR pressure as shown in the lower panel of Figure 3.18, where αh = 0.9.

3.5 Summary and Discussion

In this chapter, we have studied the generalized NLDSA where, both the waves generated by the

CRs streaming instabilities and the energy density of generated waves are taken into account. In

such a case, the dynamical wave pressure in addition to the CR pressure affects the background

plasma in precursor and the downstream of the subshock, which leads to the modification of

“standard” CRMS without consideration of waves. By our own semi-analytical theory, we can

reveal the steady-states of the NLDSA affected by waves with the reasonable computer resources.

We conduct parameter surveys and investigate the behaviors of the shocks mediated not only
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Figure 3.17: Dependence of the wave compression ξ (blue: ξ = 5, red:10, green:15, orange:20, pur-
ple:50). Upper: downstream CR pressure pc as a function of the normalized injection parameter
ν = (4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0) of M0 = 500, va/u0 = 2.0× 10−3(β0 = 1) and αh = 0. The solid

line and dotted line indicate the results of the case without waves (va = 0) and the test-particle limit.
Lower: the same format and the same parameters other than αh = 0.9.
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by the CRs but also by the waves. Our results of this chapter can be summarized as follows.

First and most important point is that the downstream CR pressure effectively decreases

by the effect of the Alfvénic waves. This suggests that the standard argument such that the

CR production efficiency is enhanced in the framework of NLDSA should be carefully discussed.

This is because the additional wave pressure decrease the total compression ratio of the shock.

The weakening of CR production efficiency are also associated with the steepening of the CR

spectrum index especially in the high energy range.

Second, the dissipation of waves energy suppresses the CR production. In the course of the

wave energy dissipation, the background plasma in precursor is heated, and the sound velocities

in precursor also rises. This leads to the sufficient decrease of Mach number of the subshock,

and as the result, the subshock compression ratio is further reduced. A large CR pressure can

be realized for the ideal case without any wave dissipation, but a careful treatment by taking

into account of the wave dissipation effect is necessary.

Third, the CR production efficiency is not sensitive to the upstream Mach number, the

compression ratio of wave pressure at the subshock, Alfvén velocity and the injection parameter

of CRs. In the limit of higher Mach number, or larger wave compression at the subshock, or

smaller Alfvén velocities, or larger CR injection efficiency, our results converge to the case where

there is no dynamical feedback from the waves. It is natural because the effect of waves becomes

relatively less in such regimes. However, even in such regimes, these are definitely non-negligible.

In our study, the dissipation model is very simple one, where a certain ratio of generated

wave energies always dissipate independent from the any wave parameter such as wavelength of

each amplitude of waves, which is a very ideal assumption. Therefore, the dependency of the

dissipation can possibly change from monotonic dependency shown by our results, when another

dissipation model is applied. However, our results show that the decline of CR production is

observed in the extreme case where there is no dissipation. It means our most important results

suggesting the less efficient CR production are independent of dissipation model.

Our kinetic model does not consider the pre-existing CRs in the far upstream region that

corresponds to ISM, i.e. pc,0 = 0. Hence the conservation of the momentum flux is written as
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ρ0u2
0+ pg,0 = ρu2+ pg+ pw+ pc in our calculations. In the two-fluid model, when the fraction of far

upstream (pre-existing) CRs increases, subshocks disappear and the upstream and downstream

flows are smoothly (adiabatically) connected, and ultimately, total compression ratio becomes

maximum (7). On the other hand, in the kinetic model, such a smooth transition without the

subshock is prohibited. This is because the particle injection mainly occurs at the subshock.

The situation of the larger fraction of pre-existing CRs qualitatively corresponds to the situation

of the stronger particle injection in the kinetic model, since more injected CRs at the subshocks

enhance the precursor compression ratio. In such a situation, the Mach number of the subshock

becomes less than 1, and the subshock can not exist physically. We eliminate these solutions in

our parameter surveys, and choose the relatively low injection parameter (ν <∼0.1). Furthermore,

in the actual situations of ISM, the CR pressure is roughly equal to the gas pressure (pc,0 ' pg,0).

Even if the pre-existing CRs are considered, the effect of them can be neglected because the

kinetic energy density is sufficiently large (ρ0u2
0 � pg,0 ∼ pc,0) in the high Mach number shocks

like SNR shocks.

We chose the momentum boundary and the CRs whose momentum are above pmax escape

from the system. In the real SNR shocks, the high energy CRs escape from upstream region be-

cause of their larger mean free path than the length scale of the confinement by the self-generated

waves. The momentum boundary is the mimic of such a free-escaping spatial boundary. Our

choice of the momentum boundary is mainly due to the simplification of the numerical calcu-

lations. Nevertheless, the use of the momentum boundary does not compromise the essential

nature of NLDSA. Reville et al. [2009] investigated the behaviors of the steady-state solutions of

NLDSA with both of the momentum and free-escaping spatial boundary of CRs in the kinetic

model. They argued that the there is no significant difference between them when the spatial

free-escaping boundary is located at x = −Lesc = −κ(p = pmax)/u0, where the subshock is at

x = 0. In our study, Lesc is equal to x/(κ0/u0) = 1000, when pmax/mc and p0/mc are 1 and 1000,

respectively.
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Chapter 4

CONCLUDING REMARKS

4.1 Summary and Conclusions

In this thesis, we have studied the behaviors of the cosmic ray modified shocks (CRMSs), which

involve the dynamical feedback from the cosmic rays (CRs) in the regime of nonlinear diffusive

shock acceleration (NLDSA), by the numerical simulations. It is known that CRMSs can be

more compressive due to the additional compression effect induced by the CR pressure, and

can lead to be a more efficient accelerator of CRs than those without the modification of CRs,

because the efficiency of acceleration is mainly due to the shock compression in the standard

theory of DSA. The feedback effect from CRs works as a “positive feedback”, because the larger

population of CRs around the shocks raises the compression ratio of the shocks, and because

eventually it enhances the acceleration of higher energy CRs. However, due to the total energy

conservation, the above positive feedback process must be balanced with a negative feedback

process. The physics of the negative feedback, however, is not clearly understood so far. Our

fundamental motivation was to examine how much the CR feedback effects control the efficiency

of acceleration of CRs. For this purpose, we have conducted two different problems described

in Chapter 2 and Chapter 3.

In Chapter 2, we adopted the two-fluid model where both of the background plasma and

CRs are approximated by fluids. This model is simple but useful to understand the essential

behavior of CRMSs. With this model, we revisited the stability of CRMSs mainly involving the
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three multiple steady-state solutions, which are generally seen in CRMSs. Among these three

solutions (efficient, intermediate and inefficient solutions), we revealed by the nonlinear time

evolutions that the efficient and inefficient solutions are stable and the intermediate solution

is unstable, which result is robust against any shock parameters such as the Mach numbers,

the fractions of CRs, the shock angles and injection parameters. Furthermore, we also found

that only the inefficient one is realized by taking into account of the time evolutional effect of

CRs. Although this result can be applied only in the regime where the multiple solutions exist,

our finding suggested inherent “negative feedback” effect of the CRs production in CRMSs.

Additionally, when the finite perturbations are added to the CR pressure, CRMSs evolve not

in the physical state where the perturbations are enhanced, but in the state where they are

suppressed. This negative-feedback effect also supports the above inefficiency of CRMSs.

In Chapter 3, we extended the previous two-fluid model so as to include the momentum

dependent kinetics of CRs. This model is called CR-kinetic model. As suggested by many

authors, the diffusive flow of CRs streaming towards the upstream in the precursor region can

carry the electric currents and can drive some plasma instabilities. In the efficient case of

NLDSA, the CR precursor becomes well-developed, and such plasma instabilities more likely to

occur. The observations for the supernova shocks also mention the possibilities of the amplified

magnetic fields around the shock regions. Although the Alfvénic wave generation/magnetic

field amplification is still controversial, it is theoretically believed that the feedback from the

excited (or amplified) waves can regulate the existing NLDSA theory. In order to understand

the physical behaviors, we study the effect of the wave generation and dissipation by including

their effects into the CR-kinetic model of NLDSA. By using the semi-analytical method, we

can obtain the numerical steady-states of our CR-kinetic model including waves. Although our

wave generation and dissipation model may be a simplified toy model, our conclusions seem to be

robust in terms of the Mach number, the injection parameter, Alfvén velocity and the subshock

compression ration of the waves. The important results in the Chapter 3 are summarized in

Table 4.1. The “standard” NLDSA (SNLDSA) means the NLDSA theory without considering

the generation of the waves and the dissipation. The excitation of waves reduces the precursor
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Table 4.1: The magnitude relationships among the test-particle limit, the standard NLDSA (cases with-
out waves), the case with waves (αh = 0) and the case with waves (αh = 1), in the fixed far upstream
Mach number M0. Each row is the precursor compression ratio R, subshock compression ratio rs, total
compression ratio Rrs, downstream CR pressure pc,2, downstream gas pressure pg,2, spectral indices at
the injection momentum q(p0) and at the maximum momentum q(pmax), from the top.

R test-particle (= 1) < with waves (αh = 1) < with waves (αh = 0) < SNLDSA

rs SNLDSA <∼ with waves (αh = 1) <∼ with waves (αh = 0) <∼ test-particle (= 4)

Rrs test-particle (= 4) < with waves (αh = 1) < with waves (αh = 0) < SNLDSA

pc,2 test-particle < with waves (αh = 1) < with waves (αh = 0) < SNLDSA

pg,2 SNLDSA < with waves (αh = 0) < with waves (αh = 1) < test-particle

q(p0) SNLDSA <∼ with waves (αh = 0) <∼ with waves (αh = 1) <∼ test-particle (=−4)

q(pmax) test-particle (=−4) < with waves (αh = 1) < with waves (αh = 0) < SNLDSA

compression ratio R from that of the SNLDSA in the case with waves (αh = 0), due to the

convert of energies from the CRs to the waves, and enhances the subshock compression ratio rs

because of the compression of waves at the subshock. The significant decline of R suppresses the

total compression ratio Rrs from that of the SNLDSA. As the results, the spectral index at the

maximum momentum pmax becomes softer than the SNLDSA, so the positive feedback of CRs

is weakened and the downstream CR pressure pc,2 decreases.

The heating of the background plasma in the precursor leads further decline of R from the

SNLDSA in the case with waves (αh = 1). The hotter background plasma increases the local

sound velocities and reduces the Mach number of the subshock M1. This results in the decrease

of the subshock compression ratio rs from the case of αh = 0. Therefore, the total compression

ratio Rrs in the case of αh = 1 also becomes smaller and q(pmax) is softer than the case of αh = 0.

Consequently, the downstream CR pressure pc,2 shows the further decrease.

Although our wave generation and dissipation model may be a simplified toy model, our

conclusions seem to be robust in terms of the Mach number, the injection parameter, Alfvén

velocity and the subshock compression ration of the waves. Theoretically, the amplification of

the magnetic fields, which is caused by the CR feedback in NLDSA, has the possibility of the

enhancement of the maximum attainable energy of the CRs. Therefore, many authors have

dealt with the topic for a long time. Our conclusions of this thesis suggests that the strong
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magnetic fields do not necessarily give an optimistic answer to the problem.

As for the accelerations of the CR electrons, the observations imply that the amplified

strong magnetic fields suppress the generation of CR electrons. For the typical example of RX

J1713.7-3946, where the leptonic γ-ray is seems to be dominant, the ratio of the emission power

of the synchrotron radiation and IC scattering becomes

Psync

PIC
∼ (B2/8π)/Urad , (4.1)

which only depends on the strength of the magnetic fields if Urad is given. In the case of the

CMB photons, Urad ∼ 4×10−13 erg/cm3, then the ratio is

Psync

PIC
∼ 9.9×10−2

(
B

µG

)2

. (4.2)

If the B is B ∼ 0.1−1mG, Psync/PIC becomes Psync/PIC ∼ 103 −105, which is much larger than the

observational value (∼ 10). This is inconsistent with the strong magnetic fields inferred from the

thin X-ray filaments or the rapid variability of X-ray hotspots. On the other hands, when the

hadronic model is adopted, the estimated CR electron/proton number ratio Kep from the strong

magnetic fields was Kep ∼ 10−6 [Uchiyama et al., 2003], which means the inefficient acceleration

of the CR electrons compared with the global value (Kep ∼ 10−2).

Our results also show the spectra of the CRs become steeper than the test-particle limit at

the lower energies. This feature is consistent with the recent γ-ray observations of middle age

SNRs, like W44 and IC443. These observations suggest the steeper spectrum around the GeV

energies than the test-particle limit, i.e. N(E) ∝ E−2. This softening cannot be explained by the

“standard” NLDSA without consideration of the wave generation, because their concave spectra

become harder than the test-particle limit in all energy bands, in the sufficiently high Mach

number shocks. Even in the recent γ-ray observations, there is still no clear evidence indicating

the acceleration of CR protons up to the knee energies. This detection will be expected in the

future observations. Our findings suggest that in such challenges, the more careful treatments

in the estimation of the spectrum should be required, because not only the classical DSA, but
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also the “standard” NLDSA may not provide the real picture of the parent particle distributions

responsible for those emissions.

4.2 Open Issues and Future Works

In our studies of this thesis, one dimensional, plain shocks have been considered. The effect

of the spherical topology and the expanding effect of the shock is not included. In the actual

situation of SNR shocks, shocks expand spherically towards the ambient ISM medium. On the

contrary to the plane shocks, the upstream volume increase with expansion, and the energy

density of CRs also decreases. In such cases, the feedback effect from the CRs may not be

so significant and shocks may be moderately modified. In addition, the generation of waves

might be more or less suppressed due to the reduction of the free energy. The multidimensional

effect of the CRMSs is also important. Mond and Drury [1998] theoretically predict that the

corrugation of the shock surface occurs on the intermediate branch of the multiple solutions in

the two-fluid model. This corrugation may not change the stability features, but might affect

the transition time to the inefficient branch.

In our treatment of wave generation, we chose the model proposed by McKenzie and Völk

[1982] based on the resonant instabilities. Bell [2004] also proposed the wave amplification by the

non-resonant instability. Hence, the wave excitation mechanism due to the plasma instabilities

can have various origins. We should re-examine our results in other wave generation models

or the combination of them. Nevertheless, the fraction of energy density may be more or less

limited in the shock waves of much high Mach number, such as SNR shocks. We can expect

that our result is independent of the difference of the detail mechanism of wave generation.

The particle injection process is controversial matter, depending on the kinetic physics of the

collisionless shocks. In the CR-kinetic model, we assume that the particle injection occurs only

at the subshock. In addition to this, the dissipation of wave energies can drive the extra injection

in the precursor due to the heating of the background plasma. This can lead to the increase of

the CR energy densities. However, the effect of such an extra injection at the precursor may not

affect our results of this thesis, because our results in both of the two-fluid and the CR-kinetic
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model are robust against the particle injection.

The excitation and amplification of Alfvénic waves in the precursor lead to the spatial and

temporal variation of the diffusion coefficient. Some parameters such as the acceleration time

of CRs, the escaping flux from the shock region, and the maximum energy of the accelerated

particles depends on the diffusion coefficient. In order to estimate them correctly, we have to

adopt more realistic diffusion of CRs, which is totally different from the simple Bohm diffusion.
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Appendix A

The multiple solutions with changes of the

specific heat ratio of cosmic rays γc in the

two-fluid model

Figure A.1 shows the downstream CR pressure pc as a function of far upstream Mach number

M for the different specific heat ratio of CR γc in the two-fluid model, when the upstream CR

pressure ratio N = pc/(pg + pc) = 0.1. In the two-fluid model, γc is chosen arbitrarily in the

range 1 < γc < γg(= 5/3). When γc = 4/3 (red dots in the figure) that is the assumed value in

the simulation studies in Chapter 2, the multiple solutions are seen at the low Mach number

(M ∼ 5.5), and the range where the multiple solutions exist is limited in the narrow parameter

space. However, as discussed in Section 2.4, γc can decrease from 4/3 when the escape of CRs

are taken into account. The decrease of γc drastically changes the picture of the steady-state

solutions. When γc = 1.32 (blue dots in the figure) that is slightly lower than 4/3, the range

where the multiple solutions exist becomes broader (6<∼M<∼9 and 13<∼M). In the results of

γc = 1.3 (green dots in the figure), the multiple solutions always exist in 6.5<∼M. It is noted that

the multiples solutions disappear and solutions shift in the left in the figure, when γc increase

from 4/3 (brown: γc = 1.35, orange: 1.34)
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Figure A.1: Downstream CR pressure pc as a function of the upstream Mach number M. Each dot shows
the results of the upstream CR pressure ratio N = pc/(pg + pc) = 0.1 and the different specific heat ratio
of CRs γc (brown: 1.35, orange: 1.34, red: 4/3, blue: 1.32, green: 1.3).
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Appendix B

Derivation of fsub

The analytical form of fsub,

fsub =
3Rwrs,w

Rwrs,wU(p)−1
ηn0

4π p3
0

exp
[
−
∫ p

p0

d p′

p′
3Rwrs,wU(p′)

Rwrs,wU(p′)−1

]
, (3.39)

is derived from the diffusion-convection equation in the steady-state,

(u− va)
∂ f
∂x

− ∂

∂x

(
κ

∂ f
∂x

)
=

1
3

(
∂

∂x
(u− va)

)
p

∂ f
∂ p

+
ηng1u1

4π p2
0

δ (p− p0)δ (x), (B.1)

By taking the integral of the Equation (B.1) from x0 to x(< 0−), we can obtain the following,

κ
∂ f
∂x

− (u− va) f =
(

κ
∂ f
∂x

)
x=x0

− 1
3p2

∫ x

x0

dx′
∂

∂x′
(u− va)

∂

∂ p
(p3 f ). (B.2)

Similarly, the integral of the Equation (B.1) from x0 to 0− (just ahead of the subshock) gives,

p
3

∂ fsub

∂ p
(u1 − va,1 −up) =−

(
κ

∂ f
∂x

)
x=0−

+

(
κ

∂ f
∂x

)
x=x0

+ fsub

[
p
3

∂up

∂ p
+up

]
, (B.3)

where

up(p) = (u1 − va,1)−
1

fsub

∫ 0−

−∞

dx f
d
dx

(u− va). (3.38)
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Besides, the integral from 0− to 0+ also gives,

κ

(
∂ f
∂x

)
x=0−

=
p
3

∂ fsub

∂ p
(u2 −u1)+

ηng1u1

4π p2
0

δ (p− p0). (B.4)

By substituting the Equation (B.4) into the Equation (B.3),

p
3

∂ fsub

∂ p
(u2 − va,2 −up) =

(
κ

∂ f
∂x

)
x=x0

+ fsub

[
p
3

∂up

∂ p
+up

]
−

ηng1u1

4π p2
0

δ (p− p0), (B.5)

which is simplified to

∂ fsub

∂ p
+

3
p

1
up −u2 + va,2

[
up +

p
3

∂up

∂ p
+(u0 − va,0)

(
κ

∂ f
∂x

)
x=x0

]
fsub =

3
p

1
up −u2 + va,2

ηng1u1

4π p2
0

δ (p− p0).

(B.6)

This normal differential equation for fsub(p) is easily solved and the general solution is

fsub =
3Rwrs,w

Rwrs,wU(p)−1
ηn0

4π p3
0

exp
[
−
∫ p

p0

d p′

p′
3Rwrs,wU(p′)

Rwrs,wU(p′)−1

]
. (3.39)

In the limit va → 0, Equation (3.39) becomes Equation (3.15) given by Blasi [2002].
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Appendix C

Variation of pmax in the kinetic model

In Chapter 3, all numerical simulations are conducted with the fixed momentum boundary, i.e.

p0/mc = 1 for the minimum (injection) boundary and pmax/mc = 1000 for the maximum. When

the protons are considered as the accelerated particles, these minimum and maximum momenta

are approximately equal to the energies of 109 eV and 1012 eV, respectively, because the rest

energy of the protons is about 109 eV. Figure C.1 shows the dependence of the downstream

CR pressure pc,2 on the maximum momentum pmax. The black solid line is the result of the

test-particle limit and four colored solid lines are the results of the cases without waves (va = 0)

and M0 = 100. The diamonds in four colors are the results of the cases with wave generation and

the finite dissipation (αh = 0.1). Four colors show pmax/mc = 103 (blue), 104 (red), 105 (green)

and 106 (orange). The maximum momentum pmax/mc = 106 is approximately equivalent to the

energy of 1015 eV. In the cases without waves (four colored solid lines), the efficient branches

become dominant in the parameter space with the increase of pmax, and the multiple solutions

are seen at the lower injection parameter ν . This is because the positive feedback effect of CRs

is enhanced with larger pmax. The modification by CRs hardens the spectrum in the higher

energies regime, and such hard spectra enhance the CR pressure pc defined as follows,

pc(x) =
4π

3

∫ pmax

p0

vp3 f (x, p)d p, (3.4)
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Figure C.1: Downstream CR pressure pc as a function of the normalized injection parameter ν =
(4π/3)(mc2/ρ0u2

0)p4
0 fsub(p0). Each diamond shows the results of va,0/u0 = 1.1 × 10−2 (β0 = 1),

αh = 0.1, ξ = 10, M0 = 100 and the different maximum momentum pmax/mc (blue: pmax/mc = 103,
red: 104, green: 105, orange: 106). Each colored solid line shows the results of va = 0, M0 = 100 and the
different pmax/mc (blue: 103, red: 104, green: 105, orange: 106). The black line shows the result of the
test-particle limit when pmax/mc = 103.

when the integral interval [p0, pmax] becomes larger. The increasing pc more hardens the spec-

trum, as the results, the CR production rate becomes efficiently high regardless of the low

injection efficiency.

Above positive feedback is weakened by the generation of waves and the dissipation of them

(colored diamonds). The CR energies decrease by the generation of waves, and heating of the

background plasma in the precursor reduces the precursor compression ratio. As the results,

the spectrum in the higher energies, which reflects the total compression ratio, becomes softer

than those of the cases without waves. This leads to the suppression of the CR production.
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