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Abstract

The solar chromospheric jet is one of the most characteristic structures near the solar sur-

face. The quantitative understanding of chromospheric jets is of substantial importance

for not only the partially ionized phenomena in the chromosphere but also the energy

input and dissipation processes in the corona. In this dissertation, the formation and dy-

namics of chromospheric jets are investigated using the radiation magnetohydrodynamic

simulations.

We newly develop a numerical code for the radiation magnetohydrodynamic sim-

ulations of the comprehensive modeling of solar atmosphere. Because the solar chro-

mosphere is highly nonlinear, magnetic pressure dominated, and turbulent, a robust and

high-resolution numerical scheme is required. In Chapter 2, we propose a new algorithm

for the simulation of magnetohydrodynamics. Through the test problems and accuracy

analyses, the proposed scheme is proved to satisfy the requirements.

In Chapter 3, the effect of the non-local radiation energy transport, Spitzer-type ther-

mal conduction, latent heat of partial ionization and molecule formation, and gravity are

implemented to the magnetohydrodynamic code. The numerical schemes for the radia-

tion transport and thermal conduction is carefully chosen in a view of the efficiency and

compatibility with the parallel computation.

Based on the developed radiation magnetohydrodynamic code, the formation and dy-

namics of chromospheric jets are investigated. In Chapter 4, we investigate the depen-

dence of chromospheric jets on the coronal temperature in the two-dimensional simula-

tions. Various scale of chromospheric jets with the parabolic trajectory are found with
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the maximum height of 2–8 Mm, lifetime of 2–7 min, maximum upward velocity of 10–

50 km/s, and deceleration of 100–350 m/s2. We find that chromospheric jets are more

elongated under the cool corona and shorter under the hot corona. We also find that the

pressure gradient force caused by the periodic shock waves accelerates some of the short

chromospheric jets. The taller jets tend to follow ballistic trajectory. The contribution of

the coronal conditions are quantitatively modeled in the form of a power law based on the

amplification of shock waves under the density stratified medium.

In Chapter 5, the role of the magnetic field is investigated using the two-dimensional

simulations. We distinguish the contribution of the corona and magnetic field using the

power law. The average magnetic field strength produces only a small effect on the scale

of chromospheric jets. The observed regional difference is mainly explained by the differ-

ence of the coronal conditions, which is caused by the different magnetic field structure.

We also find shorter chromospheric jets above the strong magnetic flux tube. This is in

contrast to the observational studies.

In Chapter 6, a three-dimensional simulation is presented to investigate the effect of

three-dimensionality on the scale of chromospheric jets and the dependence on the pho-

tospheric magnetic field structure. The tall chromospheric jets with the maximum height

of 10–11 Mm and lifetime of 8–10 min are formed. These tall jets are located above

the strong magnetic field concentration. This result is different from the two-dimensional

study and consistent with the observational reports. The strongly entangled chromo-

spheric magnetic field drives these tall chromospheric jets through the Lorentz force. We

also find that the produced chromospheric jets form a cluster with the diameter of several

Mm with finer strands.

In Chapter 7, we summarize and discuss our new findings and their implications for

the solar chromospheric jets. The regional difference of chromospheric jets is explained

through the coronal temperature and density, which is produced by the heating process

with the different strength and structure of the magnetic field. The observational relation

between the magnetic network and chromospheric jets are interpreted through the mag-
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netic energy release in the complex photospheric magnetic field with mixed-polarity. The

formation of the horizontal structure like the multi-threaded nature of solar spicules and

the possible driver of observed chromospheric jets are also discussed. The comprehen-

sive numerical model developed in this dissertation allows various future applications for

the dynamics on the sun.

The most important new results in this dissertation are (1) the reproduction of tall (>

6 Mm) chromospheric jets using the simulation with realistic physical processes, (2) the

quantification of the effect of the coronal condition and magnetic field on the scale of

jets, and (3) the reproduction of the cluster of jets with fine-scale internal structure. We

conclude that the solar chromospheric jets reflect the information of not only the magnetic

field but also the corona and fine-scale motion in the lower atmosphere.
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Chapter 1

General introduction

1.1 Structure of solar atmosphere

Figure 1.1 shows the semi-empirical model chromosphere in quiet regions given by Avrett

& Loeser (2008). The vertical variation of physical quantities is chosen so that the sim-

ulated intensity matches the observed spectra. The magnetic field is highly structured

and non-uniform in the solar atmosphere. At least, we can argue that the scale height

of horizontally averaged magnetic pressure is longer than of gas pressure because of the

conservation of magnetic flux. The vertical variation of the magnetic pressure is adopted

from the simplified approach in Leake et al. (2014) defined by:

Pm(z) = Pm(0) exp

(
−γm

∫ z

0

dz

Hp

)

= Pm(0)

(
Pg(z)

Pg(0)

)γm (1.1)

Here, we assume that the scale height of the magnetic pressure is proportional to the

scale height of gas pressure Hp. We assume the proportional constant γm = 0.75 and the

strength of photospheric magnetic field of 1000 G.

The gas temperature monotonically decreases from the center of the sun to the surface.

It becomes minimum around the height of 600 km. Above this minimum, the temperature

1



Figure 1.1: Vertical structure of solar atmospheric model by Avrett & Loeser (2008). Gas
temperature T (panel (a)), Number density of total (neutral plus ionized) hydrogen N(H)
(panel (b), solid line), neutral hydrogen N(HI) (panel (b), dotted line), electron Ne (panel
(b), dashed line), gas pressure Pg (panel (c), solid line), and magnetic pressure Pm (panel
(c), dotted line) are shown. The height dependence of magnetic pressure Eq. (1.1) is
assumed, using the photospheric magnetic field strength of 1000 G.

gradually increases in the chromosphere. At the chromosphere-corona transition region,

the temperature suddenly increases and reaches the coronal temperature. The transition

region has small width of several tens to hundreds of kilometers. The mass density and

temperature varies about two orders of magnitude below and above this thin region with-

out the large variation of gas pressure. Therefore, the transition region is sometimes

assumed to be a contact discontinuity. The plasma in the chromosphere is partially ion-

ized by the low temperature of several thousand K. The ionization degree becomes lower

than 10−4. Because of this, various physical processes of the partially ionized plasma are

important in the chromosphere, such as the ambipolar magnetic diffusion by the drift mo-

tion between the neutrals and ions and the non-equilibrium ionization/excitation coupled

with the radiation. Therefore, the solar chromosphere is one of the best places to observe

the behavior of the partially ionized plasma in the universe. See Leake et al. (2014) for a

detailed review.

The chromosphere has small gas pressure scale height considering the small thickness

of chromosphere, which makes the six orders of magnitude of the variation of gas pressure

from the photosphere to the upper chromosphere. Under the strong stratification, the

acoustic waves excited by the upper convection zone (Nordlund & Stein, 2001; Stein &
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Nordlund, 2001) easily steepen into shock waves. The chromosphere is filled with strong

shock waves. The small gas pressure scale height also produces the rapid variation of the

plasma beta (gas pressure divided by magnetic pressure) because the magnetic pressure

has the larger scale height by the conservation of magnetic flux. This strong variation of

plasma condition affects the magnetohydrodynamic (MHD) waves in various ways such

as reflection and mode conversion (Rosenthal et al., 2002; Bogdan et al., 2003).

Understanding of the chromosphere leads to understand the coronal heating prob-

lem, which is one of the most important problems in the solar physics. Because of the

large mass density in the chromosphere, the radiative energy loss in the chromosphere is

much greater than in the corona. For example, the chromospheric radiative energy loss in

the quiet region that is required to maintain the chromospheric temperature, is typically

4× 106 erg cm−2 sec−1, which is ten times greater than the coronal total (conductive plus

radiative) energy loss of 3 × 105 erg cm−2 sec−1 (Withbroe & Noyes, 1977). The most

of the energy injected from the convection zone dissipates in the chromosphere without

reaching the corona. The quantitative understanding of the response of the chromosphere

to the energy injection from the photosphere is inevitable to understand the coronal heat-

ing problem.

Most of the energy injected into the chromosphere originally comes from the turbu-

lent motion in the convection zone. The granulation (Figure 1.2, left column) is one of

the clearest structures in the photosphere. It has the typical diameter of 1 Mm, and the

typical lifetime of 10 min. This structure is understood as the overshoot from the upper

convection zone to the convectively stable photosphere. The Doppler velocity map in the

photosphere also suggests the existence of the larger scale structure called supergranula-

tion (Leighton et al., 1962). The typical diameter of the supergranulation is 30 Mm and

the typical lifetime is one day.

The turbulent convective motion generates the magnetic flux ubiquitously in the con-

vection zone from the small scale of sub-granular size to the global scale. This dynamo

process produces various magnetic structures in the solar surface. (Figure 1.3). Espe-
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Figure 1.2: Left: Photospheric granulation pattern in continuum images. Positive (blue)
and negative (red) magnetic flux are also shown. Right: Chromosphere observed in Hα
line core (top) and summed Hα ±35 pm (bottom). Image extracted from Rouppe van der
Voort et al. (2007).

Figure 1.3: Distribution of positive (white) and negative (black) line-of-sight magnetic
field around a sunspot (left panel) and in a quiet region (right panel), observed by Hinode
SOT/SP. Both images cover the same area of 110 × 110 Mm2. Image extracted from
Parnell et al. (2009).
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Table 1.1: Typical parameters and observed jets in active regions, quiet regions, and coro-
nal holes. The values of coronal temperature are taken from Withbroe & Noyes (1977).

Active region Quiet region Coronal hole
Temperature at 1.1 R⊙ [MK] 2.5 1.1–1.6 1

Flux imbalance [G] ∼ 100 ∼ 10 ∼ 10
Typical chromospheric jets Dynamic fibrils Spicules, Mottles Spicules

cially, the magnetic network around the boundary of the supergranular cells often have a

counterpart in the chromosphere called the chromospheric network (Simon & Leighton,

1964), which is supposed to have important role in the chromospheric dynamics. The

convective motion with the strong magnetic field concentration in the photosphere drives

various MHD waves and injects the energy into the upper atmosphere.

1.2 Observation of solar chromospheric jets

Various jets are observed in the solar chromosphere. In this section, we mainly review

relatively small-scale jets that fill the chromosphere. The typical parameters and chro-

mospheric jets in observed regions are summarized in Table 1.1. More detailed review on

the observational studies were provided by Beckers (1968, 1972), Zaqarashvili & Erdélyi

(2009), and Tsiropoula et al. (2012).

1.2.1 Spicules

Spicules (Figure 1.4) are the most representative and common chromospheric jets. They

are the long and thin jets observed at the solar limb in quiet regions and coronal holes.

The jets were first observed by Secchi (1875). The name of “spicules” is given by Roberts

(1945). Spicules consist of the cool (9,000–17,000 K) and dense (1010–1011 cm−3) chro-

mospheric plasma (Beckers, 1972).

Beckers (1972) reported that the typical spicule has the maximum height of 4–10 Mm,

lifetime of 1–7 min, and maximum upward velocity of 20–100 km/s. These observed

5



Figure 1.4: Spicules observed at the solar limb of a quiet region, in Hinode SOT/BFI Ca
II H 396.8 nm data. A snapshot of observed intensity (top panel) and space-time plots
along the white dashed line in the top panel, for the original data (bottom left panel)
and time-differenced data (bottom right panel). Image extracted from De Pontieu et al.
(2007b).
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Figure 1.5: Normalized histograms of the chromospheric jets observed in a coronal hole
(left column) and a quiet region (right column). The physical parameters derived by
Pereira et al. (2012) (blue solid line) and Zhang et al. (2012) (red dashed line) are shown.
Image extracted from Pereira et al. (2012).
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values depends on the observed region, e.g., spicules in coronal holes are larger than in

quiet regions (e.g., Zhang et al., 2012; Pereira et al., 2012, see also Figure 1.5).

The top of spicules shows both upward motion followed by downward motion, only

upward motion, and only downward motion (Beckers, 1972). When both upward and

downward motions are observed, we can estimate the deceleration of vertical motion as-

suming the parabolic trajectory. De Pontieu et al. (2007b) report that the deceleration is

around 50–400 m/s2. Zhang et al. (2012) report 130 m/s2 as an average in the quiet region

and Pereira et al. (2012) report 182–343 m/s2.

The width of spicules is often defined as the full-width-half-maximum of the radiative

emission. Beckers (1968) reported the typical width of 700–2500 km. This parameter is

affected by the spatial resolution, observational seeing, and observed wavelength. It is

sometimes reported that spicules have width smaller than several hundreds of kilometers

(e.g., De Pontieu et al., 2007b; Pasachoff et al., 2009; Zhang et al., 2012; Pereira et al.,

2012).

De Pontieu et al. (2007b) reported a new kind of spicules with much higher velocity,

shorter lifetime, and only upward motion. This phenomenon is called “type II spicule”.

The bottom right panel in Figure 1.4 shows type II spicules with the lifetime of around 1

min, superposed on longer living classical type I spicules with parabolic trajectory. The

existence of type II spicules is still under debate. Zhang et al. (2012) reported that they

could not find any evidence of type II spicules in the same data set of De Pontieu et al.

(2007b). On the other hand, Pereira et al. (2012) analyzed the same data set and reported

that most of spicules observed in quiet regions and coronal holes exhibit linear trajectory

(only upward motion) and do not show parabolic trajectory. They argued that most of

spicules should be categorized as type II spicules.

Pereira et al. (2014) reported the multi-wavelength observation of spicules in the quiet

region and found that many spicules observed in the Ca II H line with the linear trajectory

have the parabolic trajectory in other wavelength with higher formation temperature, like

Mg II k and Si IV lines. They interpreted this results as a consequence of the heating

8



during the upward motion of type II spicules. Skogsrud et al. (2015) reported the statisti-

cal analysis of spicules in the multi-wavelength observation. They argue that the type II

spicules have parabolic path like type I spicules, but type II spicules are more violent and

undergo heating. Further questions will be raised on the type II spicules, like whether type

I and II spicules have different drivers or they are the two extreme cases from a continuous

distribution.

1.2.2 Disk-counterparts of type II spicules

Rutten (2006, 2007) found brighter and thinner structures than mottles in the Ca II H line

center image. The structures are named “straws”. De Pontieu et al. (2007b) argued that

straws are the disk-counterpart of type II spicules. The dark and thin structures called

rapid blue-shifted events (also called as rapid blue-shifted excursions or RBEs) are ob-

served in the blue wing of Ca II 854.2 nm line (Langangen et al., 2008b). They have the

typical length of 1.2 Mm, width of 0.5 Mm, and lifetime of 45 s. Rouppe van der Voort

et al. (2009) found similar structures in the blue wing of Hα. The Doppler velocity of

RBEs in Hα is slightly larger than Ca II 854.2 nm, but the length and lifetime are roughly

consistent.

1.2.3 Mottles

Mottles are dark (absorbing) features in the chromospheric lines observed on the disk

in quiet regions (Figure 1.2, middle column). Suematsu et al. (1995) reported that they

have the maximum length of 2–10 Mm, extension velocity of 10–30 km/s, and lifetime

of 5–15 min. Mottles are found near the boundary of magnetic network cells (Suematsu

et al., 1995), and considered to be the disk-counterpart of spicules in quiet regions (e.g.,

de Jager, 1957; Bhavilai, 1965; Suematsu et al., 1995). Tsiropoula & Schmieder (1997)

estimated that mottles have the mass density of 1.1×10−13 g/cm3, electron number density

of 3.4× 1010 cm−3, and temperature of 10,000–14,000 K in average.
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Figure 1.6: Active region observed in Hα wideband (left) and Hα line center (right) taken
by Swedish 1 m Solar Telescope (SST). Image extracted from De Pontieu et al. (2007a).

Mottles have upward motion followed by downward motion from the measurement of

Doppler shift (Beckers, 1963) and apparent motion from the radiative intensity (Suematsu

et al., 1995). Rouppe van der Voort et al. (2007) tracked the trajectory of mottles and

found that the maximum upward velocity is roughly proportional to the deceleration, like

dynamic fibrils. They also pointed out that tracking the motion of mottles is often difficult

due to the diffuse nature of the top of mottles.

1.2.4 Dynamic fibrils

Dynamic fibrils are dark structures observed on the disk near active regions (Figure 1.6).

They are considered to be the active region counterpart of mottles. The trajectory of

dynamic fibrils is more precisely determined than mottles. Hansteen et al. (2006) and De

Pontieu et al. (2007a) estimated the maximum length, lifetime, maximum velocity and

deceleration assuming the parabolic path (Figure 1.7). They found the correlation between

maximum velocity and deceleration similar to that of mottles. They further argued that

mottles and dynamic fibrils share the same driver of acoustic p-mode oscillation in the
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Figure 1.7: Scatter plots on the parabolic trajectory of dynamic fibrils. Deceleration vs.
maximum velocity (top left), maximum length vs. duration (top right), deceleration vs.
duration (bottom left), and maximum velocity vs. maximum length (bottom right) are
shown. Image extracted from De Pontieu et al. (2007a).
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Figure 1.8: Shape of the magnetic flux tube assumed in the one-dimensional numerical
study by Kudoh & Shibata (1999). Image extracted from Kudoh & Shibata (1999).

photosphere. The dynamic fibrils are also observed in other wavelengths (Langangen

et al., 2008a; Pietarila et al., 2009; Anan et al., 2010) and roughly consistent with the Hα

dynamic fibrils.

1.3 Theoretical and numerical approach

Many theoretical and numerical studies have been devoted on the mechanism of chro-

mospheric jets. In this section, we introduce the three representative models of chromo-

spheric jets: (1) acoustic wave model, (2) Alfvén wave model, and (3) magnetic recon-

nection model. Sterling (2000) provided more detailed review mainly on the dynamical

one-dimensional numerical studies.

1.3.1 Acoustic wave models

The convective motion makes strong magnetic field concentrations in the photosphere

through flux expulsion (e.g., Galloway & Weiss, 1981) and convective intensification
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(e.g., Parker, 1978; Spruit, 1979; Schüssler, 1990). The plasma beta in the convectively

collapsed magnetic flux tubes is equal or lower than unity. The flux tubes act as the guide

of MHD waves, like slow-mode magneto-acoustic and Alfvén waves. This allows to

approximate the vertical dynamics inside the flux tube in the one-dimensional (magneto-

)hydrodynamic models (Figure 1.8).

One of the proposed models is driven by acoustic waves (e.g., Thomas, 1948; Uchida,

1961; Osterbrock, 1961; Parker, 1964; Suematsu et al., 1982; Shibata & Suematsu, 1982;

Sterling et al., 1993). The photospheric convective motion produces the acoustic pertur-

bation inside the flux tube. This perturbation propagates along the magnetic field line. In

these models, the magnetic field acts only as the wave guide of slow-mode acoustic waves

and the fundamental picture is understood from the one-dimensional hydrodynamics.

The acoustic waves propagate upward in the stratified chromosphere. In the WKB ap-

proximation, the acoustic wave conserves the energy flux, i.e., SρV 2
∥ Cs = constant. Here

S is the cross-section of the magnetic flux tube, Cs is the sound speed, and V∥ is the veloc-

ity parallel to the magnetic field. This relation is reduced to V∥ ∝ (SρCs)−1/2. Under the

strong density stratification in the chromosphere, the acoustic waves are rapidly amplified

and form shock waves. Once the shock front is formed, this dependency becomes weaker.

According to the semi-analytic study of the shock wave propagation in the isothermal

stratification by Ôno et al. (1960), the dependency becomes V/Cs ∝ P−0.236.

The chromospheric shock waves hit the chromosphere-corona transition region, which

is assumed to be a contact discontinuity. The transition region is elevated through the

shock-transition region interaction (e.g., Hollweg, 1982). This elevated cool and dense

chromospheric material is observed as chromospheric jets.

In the real solar atmosphere, acoustic waves are often periodic. The acoustic p-mode

oscillation has the relatively long period of 3–5 min. Under the short gas pressure scale

height near the temperature minimum, acoustic waves with the period longer than the

acoustic cut-off period of several minutes become evanescent. The inclination of the

magnetic flux tube is suggested as a candidate to relax this cut-off (Suematsu, 1990; De
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Pontieu et al., 2005; Heggland et al., 2007). The rebound shock model (Hollweg, 1982)

uses this limitation as another process for the production of chromospheric jets. The

acoustic waves with the longer period are trapped in the upper photosphere, which ex-

cites a train of upward-propagating shocks with relatively small amplitude. The transition

region is gradually lifted upward by the continual interactions with these rebound shocks.

The chromospheric jets with the parabolic trajectory are usually assumed to be decel-

erated by the gravity. Heggland et al. (2007) suggests a new deceleration process, called

“shock deceleration hypothesis”, in which the expansion waves in the periodic N-shaped

shock waves decelerate the transition region. In this hypothesis, the deceleration should

be proportional to the maximum upward velocity, which is consistent with the correla-

tion observed for mottles and dynamic fibrils. Following this discussion, Hansteen et al.

(2006) and De Pontieu et al. (2007a) suggested the p-mode oscillation as the origin of

mottles and dynamic fibrils.

1.3.2 Alfvén wave models

The Alfvén waves are also suggested as a candidate of the driver of chromospheric jets

(Hollweg et al., 1982; Kudoh & Shibata, 1999). The photospheric convection with the

strong magnetic field concentration makes the incompressible waves not only the acous-

tic waves (e.g., Steiner et al., 1998). Such incompressible (swaying and/or torsional)

motion is also observed in the photosphere and chromosphere (e.g., Ulrich, 1996; Fu-

jimura & Tsuneta, 2009; Wedemeyer-Böhm et al., 2012). Zaqarashvili & Erdélyi (2009)

review the various waves propagating along spicules. In the WKB approximation, Alfvén

waves follow the relation of V⊥ ∝ ρ−1/4 under the stratification. Here, V⊥ is the velocity

perpendicular to the magnetic field. Amplified nonlinear Alfvén waves forms the longi-

tudinal (acoustic) waves through the magnetic pressure gradient. These acoustic waves

steepen into shock waves and lift the transition region upward, as in the acoustic wave

models. Hollweg (1992) also suggests the possibility of the reflection of Alfvén waves in
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the strong slow-mode shock front, which contributes to the heating of chromosphere and

acceleration of chromospheric jets.

The models mentioned above are mainly on the relatively low frequency Alfvén waves.

There are models on the Alfvén waves with higher frequency. The low ionization degree

in the chromosphere causes the magnetic diffusion like the ambipolar diffusion by the

drift motion between neutrals and ions. According to Haerendel (1992) and De Pontieu

(1999), high frequency Alfvén waves are damped by this effect and produces chromo-

spheric jets. On the other hand, James & Erdélyi (2002) suggested that the acceleration

of chromospheric jets are mainly by the formation of shock waves by the turbulent inter-

action of Alfvén waves.

1.3.3 Magnetic reconnection models

Various multi-dimensional magnetic reconnection models are suggested for the chromo-

spheric jets (e.g., Uchida, 1969; Pikel’ner, 1969, 1971; Heggland et al., 2009; Singh et al.,

2011; Takasao et al., 2013; Yang et al., 2013). A part of one-dimensional acoustic wave

models introduced above sometimes assume the heating by the magnetic reconnection as

the driver. The magnetic reconnection can accelerate the chromospheric material not only

by the generation of shock waves but also by the magnetic tension force. (Takasao et al.,

2013). This allows strong upward forcing in the low-beta chromosphere. This is the rea-

son why the magnetic reconnection is sometimes assumed to be the driver of the type II

spicules (e.g., De Pontieu et al., 2007b; Moore et al., 2011; Shimizu, 2015).

The magnetic reconnection requires the anti-parallel component of the magnetic field.

The possible candidates are suggested, such as the interaction between the ambient field

and emerging flux (Shibata et al., 2007; Singh et al., 2011; Moore et al., 2011) as in the

models of X-ray coronal jets and Hα surges (Yokoyama & Shibata, 1995), kink instability

of flux tube by the vortex in the photosphere (Pariat et al., 2009, 2010, 2015), and three-

dimensional component reconnection by torsional motion (Shimizu, 2015). The sheared
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field configuration in the sunspot penumbra (Nakamura et al., 2012) is also suggested as

the origin of tiny transient chromospheric jets (Katsukawa et al., 2007).

The existence of the fast reconnection in the chromosphere is not clear because the

chromosphere is collisional and partially ionized in contrast to the corona. Some fea-

tures resembling to the reconnection current sheet were observed in the chromospheric

anemone jets around the sunspot (Shibata et al., 2007; Singh et al., 2011). Parker (1963)

and Brandenburg & Zweibel (1994) suggested that the ambipolar diffusion contributes to

make thinner current sheet, which will enhance the magnetic reconnection. Leake et al.

(2012) reported that the fast reconnection is expected under the chromospheric condition

using the two-fluid (ions and neutrals) magneto-hydrodynamic simulations.

1.3.4 Effect of non-ideal physical processes

Abovementioned theoretical and numerical studies are relatively simplified models. In

the real solar chromosphere, various effects like the radiative cooling, thermal conduction,

latent heat from the partial ionization, multi-dimensional interaction of MHD waves and

magnetic flux tubes should be considered for the quantitative understanding of chromo-

spheric jets (e.g., Sterling & Mariska, 1990; Sterling et al., 1993; Guerreiro et al., 2013).

Moreover, the energy injection processes, e.g., perturbation in the one-dimensional mod-

els and the structure of the magnetic field in the reconnection models, are assumed in

these studies.

The uncertainties of the driving forces in the idealized models can be resolved by using

the self-consistent dynamical model of the solar atmosphere with sufficiently realistic

physical processes. Nordlund (1982) found that the radiation hydrodynamic simulation

from the upper convection zone to the lower chromosphere with the effect of the radiative

energy transport and latent heat by the partial ionization can reproduce the near-surface

convection in the excellent accuracy (Figures 1.9 and 1.10). Bifrost code (Gudiksen et al.,

2011) extended the upper boundary of the numerical box up to the corona and included

16



Figure 1.9: Comparison of emerging radiative intensity from the radiation hydrodynamic
simulation of photospheric convection (Top), the simulation convolved with a point-
spread function (Middle), and the observation by the Swedish Vacuum Solar Telescope
on La Palma (Bottom). Image extracted from Stein & Nordlund (1998).
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Figure 1.10: Vertical variation of horizontally and temporary averaged energy flux in
the radiation hydrodynamic simulation of photospheric convection. Positive energy flux
represents upward flux. Enthalpy flux (eint + P )Vz、ionization energy (latent heat) flux
(eint−3P/2)Vz、thermal energy flux (3P/2)Vz、acoustic energy flux PVz、kinetic energy
flux (ρV 2/2)Vz、and total energy flux (eint + P + ρV 2/2)Vz are shown. The energy
transport by the horizontally uniform vertical mass transport is subtracted. The large
fraction (2/3) of the energy is transported as the ionization energy flux. Image extracted
from Stein & Nordlund (1998).

18



the Spitzer-type thermal conduction, in addition to the radiation and latent heat, for the

realistic modeling of the chromosphere and corona. This is the only code with such

various physical processes and applied to various studies (e.g., Martı́nez-Sykora et al.,

2008; Hansteen et al., 2010; Carlsson & Leenaarts, 2012; Hansteen et al., 2015). However,

we could not cross-check nor validate the results without the other realistic code. There

are also some problems in the numerical methods implemented in the code, which is

reviewed in Chapter 3.

Heggland et al. (2011) investigated the propagation of chromospheric acoustic wave,

especially on the effect of acoustic cut-off with inclined magnetic field in the two-dimensional

simulations by the Bifrost code (Figure 1.11). Martı́nez-Sykora et al. (2009) analyzed

the chromospheric jets found in the three-dimensional flux emergence simulation and re-

ported the existence of various drivers. Martı́nez-Sykora et al. (2011) investigated the

origin of one tall jet in the simulation assuming that it is the type II spicule. Martı́nez-

Sykora et al. (2013) reported that the structure similar to the type II spicule have the

density significantly smaller than the observed type II spicules. The common problem

among these studies is that they could not reproduce tall (> 6 Mm) chromospheric jets,

although the numerical setting is aimed to mimic quiet regions.

1.4 Motivation

The chromospheric jet is the most ubiquitous fundamental structure in the solar chromo-

sphere. Its mysterious nature has been attracted many scientists for over 100 years. It

is also crucially important to understand the various properties of chromospheric jets for

the other scientific targets in the chromosphere as represented by the physical phenomena

of partially ionized plasma and energy transport into the corona. For example, the la-

tent heat by the ionization states changes the thermodynamic property of chromospheric

plasma and the scale of chromospheric jets. The collision between neutrals and ions helps

the fast magnetic reconnection in the collisional chromospheric plasma, which enhances
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Figure 1.11: Snapshots from the two-dimensional radiation magnetohydrodynamic sim-
ulation by Heggland et al. (2011). Gas temperature from five different magnetic field
configuration, i.e., extremely weak magnetic field (Case A), vertical magnetic field with
moderate strength (Case B), strong expanding tube (Case C), inclined magnetic field with
moderate strength (Case D), and inclined strong magnetic field (Case E), are shown. The
white lines indicate β = 1. The gray lines indicate the magnetic field lines. Image ex-
tracted from Heggland et al. (2011).
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the production of reconnection-driven jets. The repetition and strength of the MHD waves

propagating along the jets should be quantified to understand the amount of energy dis-

sipated in the chromosphere or transported into the corona. The formation process of

chromospheric jets directly relates to the generation process of chromospheric waves.

The quantitative understanding of chromospheric jets is inevitable for understanding the

whole solar atmosphere.

The origin of chromospheric jets, especially of spicules, has been debated. Various

simplified and realistic models are devoted on this topic. The multidimensional radiation

MHD modeling of the chromosphere started recently, but it could not reproduce suffi-

ciently tall (> 6 Mm) chromospheric jets as observed in quiet regions and coronal holes.

In this dissertation, we develop a new radiation MHD code with most important phys-

ical processes in the solar atmosphere for the comprehensive dynamical modeling of the

solar atmosphere. Using the developed numerical code, we conduct radiation MHD simu-

lations for the quantitative investigation of the formation and dynamics of chromospheric

jets.

The rest of this dissertation is structured as follows. In Chapter 2, we propose a

new algorithm for the high-resolution magnetohydrodynamic simulation in the strongly

magnetic pressure-dominated medium, which is the case in the solar chromosphere and

corona. In Chapter 3, we develop a new numerical code for the radiation magnetohydro-

dynamic simulations of solar atmosphere, from the upper convection zone to the corona.

Based on the developed numerical code, the effect of coronal conditions on the scale and

dynamics of chromospheric jets is investigated in Chapter 4. In Chapter 5, the role of

magnetic field on the scale and formation process of chromospheric jets is studied. In

Chapter 6, we investigate the effect of three-dimensionality on chromospheric jets. Fi-

nally, we summarize and discuss the results in Chapter 7.
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Chapter 2

New numerical scheme of ideal

magnetohydrodynamics

2.1 Introduction

The solar atmosphere is known to be turbulent and highly nonlinear region with low

plasma beta. We need a high-resolution, upwind, and essentially divergence-free mag-

netohydrodynamics scheme to capture the dynamics in these regions correctly. In this

study, we develop a new numerical scheme of ideal magnetohydrodynamics for the basis

of the realistic simulation of solar atmosphere.

The numerical magnetohydrodynamics (MHD) simulation is an important tool for

understanding the various nonlinear phenomena in fields related to the plasma dynamics,

e.g., astrophysics, geophysics, and engineering. One of the difficulties with such multi-

dimensional MHD simulations is the preservation of the constraint of the divergence-free

magnetic field during the time integration process. The violation of the divergence-free

condition causes artificial forces and heating in the simulation results, particularly when

the magnetic energy is stronger than the internal energy of the plasma.

Various methods of maintaining the divergence-free constraint have been proposed.

The central difference method on a collocated mesh (Tóth, 2000; Kawai, 2013) is one
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of the simplest ways to maintain the divergence-free constraint with machine precision.

However, it is difficult to avoid odd-even decoupling using this method. The divergence-

cleaning method is widely used when small divergence errors are permitted, e.g., in the

high plasma-beta region. Various divergence cleaning methods have been proposed, in-

cluding the projection method (Brackbill & Barnes, 1980), eight-wave method (Powell

et al., 1999), and Lagrangian multiplier method (Dedner et al., 2002). However, the diver-

gence cleaning methods sometimes demands a significant computational cost to achieve

sufficiently small divergence errors in the low plasma-beta region. The constrained trans-

port method (Evans & Hawley, 1988) on a staggered mesh can construct an essentially

divergence-free scheme without introducing odd-even decoupling. A more detailed com-

parison of the various methods used to control the divergence error can be found in Tóth

(2000), Balsara & Kim (2004), and Miyoshi & Kusano (2011).

The constrained transport scheme requires the evaluation of the electric fields at cell

edges. Many authors have discussed the construction of the electric field (Balsara &

Spicer, 1999; Ryu et al., 1995; Londrillo & del Zanna, 2004; Gardiner & Stone, 2005;

Lee & Deane, 2009; Balsara, 2010). One efficient way to perform this evaluation is with

a divergence-free reconstruction of the magnetic field. This strategy was first proposed by

Balsara (2001) for use in the prolongation process in adaptive mesh refinement. Balsara

(2004) developed robust second-order MHD schemes on the basis of the proposed recon-

struction. Balsara (2009) also proposed higher-order extensions (up to fourth order) of

the method for centered WENO (Weighted Essentially Non-Oscillatory) reconstruction

(Dumbser & Käser, 2007). Although this method is accurate and robust, it is designed

for centered WENO reconstruction only. Thus, the scheme cannot be directly applied to

a wide variety of reconstruction schemes, including PPM (Piecewise Parabolic Method;

Colella & Woodward, 1984), WENO-JS (Jiang & Shu, 1996), MP5 (Suresh & Huynh,

1997), and WENO-Z (Borges et al., 2008).

Here we present a new form of the third-order divergence-free reconstruction of mag-

netic fields that can be applied to a wider variety of one-dimensional reconstruction pro-
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cedures. In Section 2.2, we describe a new form of the divergence-free reconstruction. In

Section 2.3, the details of the numerical scheme used for the test problem are described.

In Section 2.4, we provide test problems to check the convergence rate. The proposed

scheme is tested with several problems in Section 2.5.

2.2 New form of the divergence-free reconstruction of

magnetic fields

In this section, we propose a new variant of third-order divergence-free magnetic fields

reconstruction. We first drop some cross-differential terms in the multidimensional re-

construction for simplicity and for reducing the numerical cost. This process is described

in subsection 2.2.1. Following this, we reinterpret the general one-dimensional recon-

struction as a third-order reconstruction and present an efficient method for deriving the

coefficient for the reconstruction. This step is described in subsection 2.2.2.

2.2.1 Third-order divergence-free reconstruction without cross-differential

terms

Balsara (2009) described the derivation of the divergence-free reconstruction up to fourth-

order. His original third-order form includes cross-differential terms to account for the

multidimensional character of the reconstruction accurately. Here, we summarize a ver-

sion in which some cross-differential terms are dropped.

To simplify the description, we assume that each control volume in a cell has been

mapped to a unit cube of dimension (x, y, z) ∈ [−1/2, 1/2]× [−1/2, 1/2]× [−1/2, 1/2].

Following Balsara (2009), we choose the Legendre polynomial Pn(x) as the basis func-

tion of the reconstruction. The explicit form of the Legendre polynomials is given as
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follows:

P0(x) = 1; P1(x) = x; P2(x) = x2 − 1

12
; P3(x) = x3 − 3

20
x (2.1)

As the boundary conditions, the profile of the magnetic field on both sides of the cell

face, normal to the component of the magnetic field, is given as follows:

Bx(x = ±1/2, y, z) = A0
± + Ay

±P1(y) + Ayy
± P2(y)

+ Az
±P1(z) + Azz

± P2(z)

By(x, y = ±1/2, z) = B0
± +Bx

±P1(x) + Bxx
± P2(x)

+ Bz
±P1(z) + Bzz

± P2(z)

Bz(x, y, z = ±1/2) = C0
± + Cx

±P1(x) + Cxx
± P2(x)

+ Cy
±P1(y) + Cyy

± P2(y)

(2.2)

Each of the coefficients is determined from one-dimensional reconstruction in the usual

manner. The details of this are given in Section 2.2.2.

In Eq. (2.2), we dropped the cross-differential terms included in Balsara (2009), to

reduce the numerical cost. This choice does not alter the edge averaged magnetic field

reconstructed at the cell edge (e.g., at (x, y, z) = (+1/2,−1/2, 0)); however, it could

potentially reduce the multidimensional accuracy of the reconstruction to second order in

the worst case. In compensation for this reduction in accuracy, our scheme achieves high

cost effectiveness in terms of the numerical cost and numerical dissipation.

The multidimensional profile of the reconstructed magnetic field inside each control
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volume is expressed as follows:

Bx(x, y, z) = a0 + axP1(x) + axxP2(x) + axxxP3(x)

+ ayP1(y) + ayyP2(y)

+ azP1(z) + azzP2(z)

+ axyP1(x)P1(y) + axyyP1(x)P2(y)

+ axzP1(x)P1(z) + axzzP1(x)P2(z)

By(x, y, z) = b0 + byP1(y) + byyP2(y) + byyyP3(y)

+ bxP1(x) + bxxP2(x)

+ bzP1(z) + bzzP2(z)

+ bxyP1(x)P1(y) + bxxyP2(x)P1(y)

+ byzP1(y)P1(z) + byzzP1(y)P2(z)

Bz(x, y, z) = c0 + czP1(z) + czzP2(z) + czzzP3(z)

+ cxP1(x) + cxxP2(x)

+ cyP1(y) + cyyP2(y)

+ cxzP1(x)P1(z) + cxxzP2(x)P1(z)

+ cyzP1(y)P1(z) + cyyzP2(y)P1(z)

(2.3)

This set of coefficients represents the minimum degree of freedom for a smooth profile

and the divergence-free property inside the control volume when the boundary condition

is given as in Eq. (2.2).

The coefficients in Eq. (2.3) are determined from two constraints. The first is that the

boundary conditions at the cell faces must be normal to the component of the magnetic

field (Eq. 2.2). By substituting, e.g., x = ±1/2, into Eq. (2.3) and comparing with Eq.
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(2.2), we obtain the following:

a0 =
1

2
(A0

+ + A0
−)−

1

6
axx; ax = (A0

+ − A0
−)−

1

10
axxx

b0 =
1

2
(B0

+ +B0
−)−

1

6
byy; by = (B0

+ −B0
−)−

1

10
byyy

c0 =
1

2
(C0

+ + C0
−)−

1

6
czz; cz = (C0

+ − C0
−)−

1

10
czzz

(2.4)

ay =
1

2
(Ay

+ + Ay
−); a

z =
1

2
(Az

+ + Az
−)

ayy =
1

2
(Ayy

+ + Ayy
− ); azz =

1

2
(Azz

+ + Azz
− )

bx =
1

2
(Bx

+ + Bx
−); b

z =
1

2
(Bz

+ +Bz
−)

bxx =
1

2
(Bxx

+ +Bxx
− ); bzz =

1

2
(Bzz

+ +Bzz
− )

cx =
1

2
(Cx

+ + Cx
−); c

y =
1

2
(Cy

+ + Cy
−)

cxx =
1

2
(Cxx

+ + Cxx
− ); cyy =

1

2
(Cyy

+ + Cyy
− )

(2.5)

axy = Ay
+ − Ay

−; a
xz = Az

+ − Az
−

axyy = Ayy
+ − Ayy

− ; axzz = Azz
+ − Azz

−

bxy = Bx
+ − Bx

−; b
yz = Bz

+ −Bz
−

bxxy = Bxx
+ − Bxx

− ; byzz = Bzz
+ − Bzz

−

cxz = Cx
+ − Cx

−; c
yz = Cy

+ − Cy
−

cxxz = Cxx
+ − Cxx

− ; cyyz = Cyy
+ − Cyy

−

(2.6)

As the second constraint, the divergence-free condition of the magnetic field

∂Bx(x, y, z)

∂x
+

∂By(x, y, z)

∂y
+

∂Bz(x, y, z)

∂z
= 0 (2.7)

must be enforced for any points inside the control volume. From Eq. (2.7), we obtain the
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following:

(ax + by + cz) +
1

10
(axxx + byyy + czzz) = 0 (2.8)

axx = −1

2
(bxy + cxz); byy = −1

2
(axy + cyz); czz = −1

2
(axz + byz)

axxx = −1

3
(bxxy + cxxz); byyy = −1

3
(axyy + cyyz); czzz = −1

3
(axzz + byzz)

(2.9)

axx, axxx, and others are determined by substituting Eq. (2.5) and Eq. (2.6) into Eq. (2.9),

and the remaining coefficients, a0, ax, and others are derived from Eq. (2.4).

The divergence-free condition is automatically satisfied during the update using the

constraint transport method. This condition appears in Eq. (2.8), which is not used to

determine the coefficients. From Eq. (2.4), the equation is equivalent to the integral form

of the divergence-free condition:

(A0
+ − A0

−) + (B0
+ −B0

−) + (C0
+ − C0

−) = 0 (2.10)

This condition is the integral version of the divergence-free condition. For the control

volume at (i, j, k) with the cell size of ∆x×∆y ×∆z, Eq. (2.10) can be rewritten in the

dimensional form as follows:

∆y∆z
(
Bx,i+1/2,j,k −Bx,i−1/2,j,k

)

+∆x∆z
(
By,i,j+1/2,k −By,i,j−1/2,k

)

+∆x∆y
(
Bz,i,j,k+1/2 −Bz,i,j,k−1/2

)
= 0

(2.11)

The original version by Balsara (2009) includes more cross-differential terms. It re-

quires a condition for the minimum magnetic energy in addition to the divergence-free

and boundary ones, to determine the coefficients uniquely. As we have shown above, the

minimization process is not required in our approach. Balsara (2009) also notes this point.
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2.2.2 Reinterpretation of the one-dimensional reconstruction

In this subsection, we propose an efficient method for obtaining the coefficients of the

boundary condition in Eq. (2.2). The main idea is the reinterpretation of the arbitrary-

order one-dimensional reconstruction as a third-order reconstruction.

In the one-dimensional control volume x ∈ [−1/2, 1/2] with a volume-averaged value

⟨u⟩, one can derive the cell face values u(x = ±1/2) from a one-dimensional reconstruc-

tion. In the third-order form, the profile u(x) can be written as follows:

u(x) = u0 + uxP1(x) + uxxP2(x) (2.12)

The coefficients are given as follows:

u0 = ⟨u⟩; ux = ∆L
xu−∆R

x u; u
xx = 3(∆L

xu+∆R
x u) (2.13)

Here we define the reconstruction slopes ∆L
xu = u(x = +1/2)− ⟨u⟩ and ∆R

x u = u(x =

−1/2) − ⟨u⟩. The coefficients u0, ux, and uxx are chosen to reproduce the values for

the volume average ⟨u⟩ and at the cell surfaces u(x = ±1/2). Although Eq. (2.12)

is only accurate to third order, the expression in Eq. (2.13) can be applied to various

one-dimensional schemes with arbitrary accuracy, maintaining the original value for the

volume average ⟨u⟩ and the reconstructed value u(x = ±1/2).

Following the proposed strategy, the coefficients of the boundary condition in Eq.
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(2.2) are rewritten as follows:

A0
± = Bx,i±1/2,j,k

Ay
± = ∆L

yBx,i±1/2,j,k −∆R
y Bx,i±1/2,j,k

Ayy
± = 3(∆L

yBx,i±1/2,j,k +∆R
y Bx,i±1/2,j,k)

Az
± = ∆L

zBx,i±1/2,j,k −∆R
z Bx,i±1/2,j,k

Azz
± = 3(∆L

zBx,i±1/2,j,k +∆R
z Bx,i±1/2,j,k)

B0
± = By,i,j±1/2,k

Bx
± = ∆L

xBy,i,j±1/2,k −∆R
xBy,i,j±1/2,k

Bxx
± = 3(∆L

xBy,i,j±1/2,k +∆R
xBy,i,j±1/2,k)

Bz
± = ∆L

zBy,i,j±1/2,k −∆R
z By,i,j±1/2,k

Bzz
± = 3(∆L

zBy,i,j±1/2,k +∆R
z By,i,j±1/2,k)

C0
± = Bz,i,j,k±1/2

Cx
± = ∆L

xBz,i,j,k±1/2 −∆R
xBz,i,j,k±1/2

Cxx
± = 3(∆L

xBz,i,j,k±1/2 +∆R
xBz,i,j,k±1/2)

Cy
± = ∆L

yBz,i,j,k±1/2 −∆R
y Bz,i,j,k±1/2

Cyy
± = 3(∆L

yBz,i,j,k±1/2 +∆R
y Bz,i,j,k±1/2)

(2.14)

The third-order divergence-free reconstruction described in the previous subsection

can be applied directly. For example, we describe the derivation of the volume-averaged

magnetic fields a0, b0, and c0. The first-order cross-differential coefficients in Eq. (2.6)
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are given as follows:

axy =
(
∆L

yBx,i+1/2,j,k −∆R
y Bx,i+1/2,j,k

)

−
(
∆L

yBx,i−1/2,j,k −∆R
y Bx,i−1/2,j,k

)

axz =
(
∆L

zBx,i+1/2,j,k −∆R
z Bx,i+1/2,j,k

)

−
(
∆L

zBx,i−1/2,j,k −∆R
z Bx,i−1/2,j,k

)

bxy =
(
∆L

xBy,i,j+1/2,k −∆R
xBy,i,j+1/2,k

)

−
(
∆L

xBy,i,j−1/2,k −∆R
xBy,i,j−1/2,k

)

byz =
(
∆L

zBy,i,j+1/2,k −∆R
z By,i,j+1/2,k

)

−
(
∆L

zBy,i,j−1/2,k −∆R
z By,i,j−1/2,k

)

cxz =
(
∆L

xBz,i,j,k+1/2 −∆R
xBz,i,j,k+1/2

)

−
(
∆L

xBz,i,j,k−1/2 −∆R
xBz,i,j,k−1/2

)

cyz =
(
∆L

yBz,i,j,k+1/2 −∆R
y Bz,i,j,k+1/2

)

−
(
∆L

yBz,i,j,k−1/2 −∆R
y Bz,i,j,k−1/2

)

(2.15)

The second-order differential coefficients axx, byy, and czz are derived from Eq. (2.9) or

in the dimensional form:

axx = −∆x

2
(
bxy

∆y
+

cxz

∆z
); byy = −∆y

2
(
axy

∆x
+

cyz

∆z
); czz = −∆z

2
(
axz

∆x
+

byz

∆y
) (2.16)

We then obtain the volume-averaged magnetic fields:

⟨Bx⟩i,j,k = a0 =
1

2

(
Bx,i+1/2,j,k +Bx,i−1/2,j,k

)
− 1

6
axx

⟨By⟩i,j,k = b0 =
1

2

(
By,i,j+1/2,k +By,i,j−1/2,k

)
− 1

6
byy

⟨Bz⟩i,j,k = c0 =
1

2

(
Bz,i,j,k+1/2 +Bz,i,j,k−1/2

)
− 1

6
czz

(2.17)

Another example is the area-averaged magnetic field at (i, j +1/2, k) reconstructed from
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the control volume at (i, j, k), which can be written as follows:

BL
x,i,j+1/2,k = a0 + ayP1(1/2) + ayyP2(1/2)

= ⟨Bx⟩i,j,k +
1

2

(
∆L

yBx,i+1/2,j,k +∆L
yBx,i−1/2,j,k

)

BL
y,i,j+1/2,k = b0 + byP1(1/2) + byyP2(1/2) + byyyP3(1/2)

= ⟨By⟩i,j,k +
1

6
byy +

1

2

(
By,i,j+1/2,k − By,i,j−1/2,k

)
= By,i,j+1/2,k

BL
z,i,j+1/2,k = c0 + cyP1(1/2) + cyyP2(1/2)

= ⟨Bz⟩i,j,k +
1

2

(
∆L

yBz,i+1/2,j,k +∆L
yBz,i−1/2,j,k

)

(2.18)

Here the superscript L denotes that the variable is reconstructed from the “left”-hand

side, i.e., the negative x-direction from (i, j + 1/2, k). Other face-centered variables can

be derived similarly. The final example is the edge-averaged magnetic field at (i+1/2, j−

1/2, k), reconstructed from the control volume at (i, j, k), given as follows:

BLU
x,i+1/2,j−1/2,k =a0 + axP1(1/2) + axxP2(1/2) + axxxP3(1/2) + ayP1(−1/2)

+ ayyP2(−1/2) + axyP1(1/2)P1(−1/2) + axyyP1(1/2)P2(−1/2)

=Bx,i+1/2,j,k +∆R
y Bx,i+1/2,j,k

BLU
y,i+1/2,j−1/2,k =b0 + byP1(−1/2) + byyP2(−1/2) + byyyP3(−1/2) + bxP1(1/2)

+ bxxP2(1/2) + bxyP1(1/2)P1(−1/2) + bxxyP2(1/2)P1(−1/2)

=By,i,j−1/2,k +∆L
xBy,i,j−1/2,k

BLU
z,i+1/2,j−1/2,k =c0 + cxP1(1/2) + cxxP2(1/2) + cyP1(−1/2) + cyyP2(−1/2)

=⟨Bz⟩i,j,k +
1

2

(
∆L

xBz,i+1/2,j,k +∆L
xBz,i−1/2,j,k

+∆R
y Bz,i+1/2,j,k +∆R

y Bz,i−1/2,j,k

)

(2.19)

Here the superscript U denotes that the variable is reconstructed from the “upward” di-

rection, i.e., the negative x-direction from (i, j + 1/2, k).
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It is worth noting that in practical implementation, many of the coefficients in Eq.

(2.3) do not need to be calculated or stored. We choose to store the reconstruction slopes

as a form of ⟨u⟩ and ∆L/R
x u defined for Eqs. (2.12) and (2.13). In the case of the x-

component of the magnetic field, Bx,i±1/2,j,k and ∆L/R
y/z Bx,i±1/2,j,k are stored to obtain

the quantities at (i ± 1/2, j, k), (i ± 1/2, j ± 1/2, k), and (i ± 1/2, j, k ± 1/2). The

volume-averaged magnetic field ⟨Bx⟩i,j,k, derived from Eqs. (2.3), (2.15), and (2.17), is

also stored. The face-centered variables at (i, j ± 1/2, k) and (i, j, k± 1/2) can be easily

derived from the volume-averaged magnetic field ⟨Bx⟩i,j,k, along with the reconstruction

slopes ∆L/R
y/z Bx,i±1/2,j,k, as shown in Eq. (2.18). Here we complete the description of the

modified version of the third-order divergence-free reconstruction of the magnetic field.

We must stress several important points regarding the proposed scheme.

1. One of the advantages of the proposed scheme is the low numerical cost of the re-

construction. We need only two one-dimensional reconstruction calculations per

unit cell per single component of the magnetic field for the multidimensional re-

construction. This number does not increase even if we employ higher-order one-

dimensional reconstructions.

2. Another advantage of this scheme is that the various types of one-dimensional re-

construction can be used. The original divergence-free reconstruction is designed

only for use with centered WENO schemes; however, our scheme can be combined

with a wider variety of low-dissipative, higher-order schemes straight forwardly.

3. As reported previously (Balsara, 2004), the second-order term in the volume-averaged

magnetic field contributes to preserving the positivity of the gas pressure. This is

advantageous for the simulation in low-beta regions.

4. The degree of the numerical dissipation of the magnetic field is mainly determined

by the one-dimensional reconstruction on the cell face. This is advantageous in

achieving the low-dissipative advection properties of the magnetic field.
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5. Our scheme does not employ the minimization of the volume-averaged magnetic

energy as in Balsara (2009). Although it makes the derivation simple, the positivity

of the gas pressure is less robust than that in the original third-order divergence-free

reconstruction with cross-differential terms.

6. The convergence accuracy in the multidimensional problem can be affected by the

dropping of the cross-differential terms. Theoretically, it can reduce the conver-

gence rate down to second order in the worst case. However, as we will show in the

following section, the proposed scheme achieves a sufficiently high convergence

rate, particularly when the main cause of the numerical error comes from the nu-

merical dissipation and not from the dispersion error.

2.3 Constrained transport scheme for ideal magnetohy-

drodynamics

In this section, we briefly describe a new numerical scheme based on the constrained

transport method with the proposed divergence-free reconstruction. The equations of the

ideal magnetohydrodynamics are written in the conservative form as follows:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= 0 (2.20)
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The conservative variables Q and the fluxes F, G, and H are as follows:

Q =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ

ρVx

ρVy

ρVz

etot

Bx

By

Bz

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρVx

ρV 2
x + P +B2/8π − B2

x/4π

ρVyVx − ByBx/4π

ρVzVx − BzBx/4π

(etot + P +B2/8π)Vx − (V ·B)Bx/4π

0

−cEz

cEy

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.21)

G =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρVy

ρVxVy − BxBy/4π

ρV 2
y + P +B2/8π −B2

y/4π

ρVzVy − BzBy/4π

(etot + P +B2/8π)Vy − (V ·B)By/4π

cEz

0

−cEx

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.22)

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρVz

ρVxVz − BxBz/4π

ρVyVz − ByBz/4π

ρV 2
z + P +B2/8π − B2

z/4π

(etot + P + B2/8π)Vz − (V ·B)Bz/4π

−cEy

cEx

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.23)
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where ρ is the mass density, V is the velocity, B is the magnetic field, etot = P/(γ−1)+

ρV 2/2 + B2/(8π) is the total energy density, γ is the adiabatic index, c is the speed of

light, and

E =

⎛

⎜⎜⎜⎜⎝

Ex

Ey

Ez

⎞

⎟⎟⎟⎟⎠
=

1

c

⎛

⎜⎜⎜⎜⎝

−VyBz + VzBy

−VzBx + VxBz

−VxBy + VyBx

⎞

⎟⎟⎟⎟⎠
(2.24)

is the electric field. In accordance with the previous constrained transport schemes (Ryu

et al., 1998; Balsara & Spicer, 1999; Gardiner & Stone, 2005), the mass density ρ, the

momentum vectors ρV, and the total energy densities etot are defined as volume-averaged

quantities located at the cell centers, and the magnetic field vectors B are defined as area-

averaged quantities located at the face centers.

2.3.1 One-dimensional reconstruction

One of the advantages of our scheme is that a wider variety of one-dimensional recon-

struction methods can be used, such as PPM (Colella & Woodward, 1984), MP5 (Suresh

& Huynh, 1997), WENO-JS (Jiang & Shu, 1996) and WENO-Z (Borges et al., 2008).

Here two of these are used in the test problems.

The first is the third-order centered WENO scheme by Dumbser & Käser (2007)

(WENO-DK3). This was also used in the original study on the divergence-free recon-

struction for the third-order scheme (Balsara, 2009). This reconstruction is useful for

clarifying the effect of the cross-differential terms accounted for the third-order scheme

in Balsara (2009).

The second example is the fifth-order WENO-Z scheme by Borges et al. (2008) (WENO-

Z5). This scheme provides lesser dissipation than the classical fifth-order WENO scheme

with r = 3 (Jiang & Shu, 1996), with the same stencil as the third-order centered WENO

scheme. It is employed to check the utility of the proposed scheme in combination with

higher-order one-dimensional reconstructions.
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2.3.2 Evaluation of the nonlinear term

We need nonlinear algebra for the derivation of the primitive variables from the conser-

vative variables, along with the evaluation of the face-averaged numerical flux and the

edge-averaged electric field. In the higher-order finite volume scheme, the proper eval-

uation of the nonlinear terms involves some delicate issues. One possible method is to

evaluate the point-wise values at the proper points of the cell, and to use the fourth-order

Simpson’s rules or their variants. However, this requires a considerable numerical cost.

Here we evaluate the spatially averaged product/quotient as the product/quotient of

the spatially averaged values. Although this is an evaluation to second-order accuracy

and could potentially reduce the convergence property of the proposed scheme, we find

that this method performs as well as that shown in Section 2.4, considering the numerical

cost and the ease of the implementation.

2.3.3 Multidimensional reconstruction

We choose to reconstruct the variables in the primitive form U = (ρ,V, P,B). First,

the magnetic field vectors U6,7,8 = (B) are reconstructed to obtain the volume-averaged

magnetic field as shown in Section 2.2. Following this, the hydrodynamic variables

U1,...,5 = (ρ,V, P ) are reconstructed. These variables U1,...,5 are expressed as follows:

U(x,y, z) = u0 + uxP1(x) + uxxP2(x)

+ uyP1(y) + uyyP2(y) + uzP1(z) + uzzP2(z)
(2.25)

Here we drop the cross-differential terms. This does not affect the reconstruction of

the face-centered variables but reduces the accuracy of the reconstruction of the edge-

centered variables, which are used for the evaluation of the electric field. In other words,

the face-centered variables are reconstructed in the usual manner with one-dimensional

reconstruction schemes. The edge-centered variables are reconstructed with the vector
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sum of the reconstruction slope in each direction, as follows:

ULU
i+1/2,j−1/2,k = Ui,j,k +∆L

xUi,j,k +∆R
y Ui,j,k (2.26)

Here the superscripts L (Left) and U (Up) denote that the variable is reconstructed from

the negative x-direction and the positive y-direction, respectively.

2.3.4 Evaluation of the flux and electric field

The face-centered numerical fluxes are evaluated from the face-averaged quantities using

the local Lax–Friedrich (LLF) scheme. For example, the x-component of the numerical

flux is described as follows:

F1,...,5,i+1/2,j,k =
1

2

(
FL
1,...,5,i+1/2,j,k + FR

1,...,5,i+1/2,j,k

)
− a

2

(
QR

1,...,5,i+1/2,j,k −QL
1,...,5,i+1/2,j,k

)

(2.27)

Here a represents the maximum characteristic speed between the two adjoining cells.

The edge-centered electric field is also obtained from the LLF scheme. For example,

the electric field Ez at the cell edge is evaluated as follows:

cEz,i+1/2,j+1/2,k = −F7,i+1/2,j+1/2,k = G6,i+1/2,j+1/2,k

=
c

4
(ERU

z,i+1/2,j+1/2,k + ERD
z,i+1/2,j+1/2,k + ELU

z,i+1/2,j+1/2,k + ELD
z,i+1/2,j+1/2,k)

+
a

4
(BRU

y,i+1/2,j+1/2,k +BRD
y,i+1/2,j+1/2,k − BLU

y,i+1/2,j+1/2,k − BLD
y,i+1/2,j+1/2,k)

− a

4
(BRU

x,i+1/2,j+1/2,k −BRD
x,i+1/2,j+1/2,k +BLU

x,i+1/2,j+1/2,k − BLD
x,i+1/2,j+1/2,k)

(2.28)

Here the superscripts R (L) and U (D) denote that the variable is reconstructed from the

positive (negative) x-direction and the positive (negative) y-direction, respectively, and

a represents the maximum characteristic speed among the four adjoining cells. We note
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the equality of BRU
y = BRD

y , BLU
y = BLD

y , BRU
x = BLU

x , and BRD
x = BLD

x , due to

the boundary conditions of the divergence-free reconstruction. The proper upwinding of

the electric field has been a topic of discussion. Our approach follows the studies (Ryu

et al., 1998; Londrillo & del Zanna, 2004), where the dissipation terms were doubled

compared with the simple flux-averaging scheme given by (Balsara & Spicer, 1999). This

reduces to the properly upwinded one-dimensional scheme when the domain approaches

one dimension. Another option is to use a multidimensional version of the Riemann

solvers (Balsara, 2010).

2.3.5 Time advancement

We employ the third-order SSP Runge–Kutta method (Jiang & Shu, 1996; Gottlieb et al.,

2001, 2009) for time advancement. When demonstrating the accuracy analysis of the

fifth-order WENO-Z5 scheme in Section 2.4, we multiply the Courant number by a cer-

tain factor when the number of meshes increases so that the relation (∆t)3 ∝ (∆x)5 is

satisfied. A constant Courant number is used in the accuracy analysis of the WENO-DK3

scheme.

2.4 Accuracy analysis

In this section, we provide the results of the accuracy analysis in the multidimensional

problems of magnetohydrodynamics to show that the new divergence-free reconstruction

scheme shows high-order convergence for the problems that require accurate evolution of

the magnetic field. The Courant number is set to 0.4 for all runs with the WENO-DK3

scheme and for the lowest resolution runs with the WENO-Z5 scheme. As mentioned

previously, we reduce the Courant number to achieve (∆t)3 ∝ (∆x)5 for the spatial

fifth-order WENO-Z5 scheme so that we can focus on the errors arising from the spatial

discretization.
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Table 2.1: The accuracy analysis for the magnetized isodensity vortex problem in two-
dimensions. The errors are measured in the x-component of the magnetic field.

Method Number of mesh L1 error L1 order L∞ error L∞ order
WENO-DK3 32× 32 1.23391× 10−2 2.01523× 10−1

64× 64 2.76382× 10−3 2.16 4.79692× 10−2 2.07
128× 128 3.79622× 10−4 2.86 7.01097× 10−3 2.77
256× 256 4.80638× 10−5 2.98 9.04273× 10−4 2.95

WENO-Z5 32× 32 6.28667× 10−3 3.09841× 10−1

64× 64 8.57310× 10−4 2.87 5.82211× 10−2 2.41
128× 128 4.47140× 10−5 4.26 2.95134× 10−3 4.30
256× 256 2.89276× 10−6 3.95 2.32102× 10−4 3.67

2.4.1 The magnetized isodensity vortex in two dimensions

This test problem is described in Balsara (2004), and is used for a convergence check of

the divergence-free reconstruction to second order (Balsara, 2004) and higher (Balsara,

2009). The magnetized vortex in the dynamical balance is advected in an oblique direc-

tion to the two-dimensional mesh. This is a genuine two-dimensional problem, and it

complements the masked errors of the one-dimensional problems with an oblique direc-

tion, as presented in the next subsection.

The numerical domain is given by [−5, 5] × [−5, 5] and integrated over a time of 10

units for the WENO-DK3 scheme. For the WENO-Z5 scheme, the domain is increased

to [−10, 10] × [−10, 10], and the integration time is increased to 20 units. This comes

from the loss of accuracy near the boundary because of the inconsistency of the initial

and boundary conditions, which becomes significant in the higher-order scheme (Balsara,

2009). Periodic boundary conditions are assumed. The unperturbed state is initialized as

(ρ, Vx, Vy, Vz, P, Bx, By, Bz) = (1, 1, 1, 0, 1, 0, 0, 0). The adiabatic index γ is set to 5/3.

The vortex is produced as a perturbation on the velocity

(δVx, δVx) = V0e
(1−r2)/2(−y, x), (2.29)
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and on the magnetic field initialized by the vector potential

δAz = B0e
(1−r2)/2, (2.30)

where r =
√

x2 + y2. We choose the parameter of (V0, B0) = (1/(2π), 1/
√
π). The total

force balance is achieved by creating a perturbation in the gas pressure

δP =
1

8π
B2

0(1− r2)e1−r2 − 1

2
ρV 2

0 e
1−r2 , (2.31)

No perturbation is required for (ρ, Vz, Bz).

Table 2.1 shows the convergence rate in this problem. The error is measured for the

x-component of the magnetic field. The L1/L∞ error is defined as the average/maximum

of the absolute value of the difference between the initial and final state over the whole

domain. Both schemes achieve the desired level of accuracy. The results obtained with

the WENO-DK3 scheme are directly compared with those of the third-order WENO-RK

scheme in Table 1 in Balsara (2009). The errors of our WENO-DK3 scheme are sev-

eral times larger than those of the third-order scheme by Balsara (2009) for all mesh

numbers. This is because he employs the linearized Riemann solver, the high-order eval-

uation of nonlinear terms, and cross-differential terms in the reconstruction. However,

our WENO-DK3 scheme produces an order of accuracy similar to that produced by the

scheme proposed in Balsara (2009). The result of the WENO-Z5 scheme shows much less

numerical diffusion than the WENO-DK3 scheme and a high convergence rate, although

it does not reach the spatial accuracy of the one-dimensional fifth-order WENO-Z recon-

struction. The abovementioned results prove that our modification on the divergence-free

reconstruction performs well for this problem.
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Table 2.2: The accuracy analysis for the circularly polarized Alfvén wave problem in
two-dimensions of θ = π/3 case. The errors are measured in the x-component of the
magnetic field.

Method Number of mesh L1 error L1 order L∞ error L∞ order
WENO-DK3 8× 8 3.49481× 10−2 5.80017× 10−2

16× 16 2.22055× 10−2 0.65 3.52868× 10−2 0.72
32× 32 4.02669× 10−3 2.46 6.33940× 10−3 2.48
64× 64 5.29214× 10−4 2.93 8.31611× 10−4 2.93

WENO-Z5 8× 8 2.25209× 10−2 3.69293× 10−2

16× 16 1.18054× 10−3 4.25 1.84657× 10−3 4.32
32× 32 3.54686× 10−5 5.06 5.73430× 10−5 5.01
64× 64 1.11858× 10−6 5.01 1.77847× 10−6 4.99

2.4.2 The circularly polarized Alfvén wave in two dimensions

The obliquely propagating, one-dimensional, circularly polarized Alfvén wave can be

used to check the convergence rate in a multidimensional domain (Tóth, 2000). Here we

employ a two-dimensional version of the problem with the parameters used in Balsara

(2009), which are chosen to reduce the effects of parametric instability on the circularly

polarized Alfvén wave.

The circularly polarized Alfvén wave propagates at an angle of α = π/3 relative to

the x-axis. The domain size is [0, 1/ cosα] × [0, 1/ sinα], and the wave length is set to

unity. Each variables are initialized as follows:

ρ = ρ0, P = P0,

Vx = V∥ cosα + V⊥ sinα cos(2πx∥), Bx = B∥ cosα−B⊥ sinα cos(2πx∥),

Vy = V∥ sinα− V⊥ cosα cos(2πx∥), By = B∥ sinα +B⊥ cosα cos(2πx∥),

Vz = −V⊥ sin(2πx∥), Bz = B⊥ sin(2πx∥),

(2.32)

where x∥ = x cosα+ y sinα is the coordinate along the propagation direction. The x and

y-components of the magnetic field are initialized by the vector potential

Az = B∥y cosα− B∥x sinα−B⊥ sin(2πx∥)/(2π). (2.33)
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We use the parameters ρ0 = 1, P0 = 1000, V∥ = 1, V⊥ = B⊥/
√
4πρ0 = 0.02, and

B∥ =
√
4πρ0. The resulting wave propagation speed is 2 units, and the calculation is

stopped at a time of 1/2.

Table 2.2 shows the results of this accuracy analysis. The error is measured for the

x-component of the magnetic field. The low convergence rate appears between 8 × 8

and 16 × 16 meshes in the WENO-DK3 scheme. This is because the wave is damped to

almost zero by the strong numerical dissipation in both cases. The WENO-DK3 scheme

recovers the high convergence rate with a larger number of meshes. The WENO-Z5

scheme performs very well and produces the desired accuracy. The results seem to not

be affected by the parametric instability as reported previously (Balsara et al., 2009).

The abovementioned results show that our new method provides sufficient convergence

properties for this problem. It is notable that the WENO-DK3 scheme and the WENO-Z5

scheme have the same stencil and essentially the same numerical cost. This demonstrates

the high cost effectiveness of the WENO-Z5 scheme.

2.5 Test problems

In this section, we present the results of several standard test problems of magnetohydro-

dynamics. The Courant number is set to 0.4 for all test problems.

2.5.1 The field loop advection in two-dimensions

The field loop advection problem (Gardiner & Stone, 2005) is set up on a domain of

[−0.5, 0.5] × [−0.5, 0.5]. A weak magnetic loop is advected in the high plasma beta

region. This problem is used to assess the multidimensional properties of the numerical

dissipation by the scheme.

Fig.2.1 shows the results obtained with the WENO-DK3 scheme (panel (a)) and the

WENO-Z5 scheme (panel (b)). The results show no oscillations within the loop and

lesser directional bias than the second-order upwind schemes with less dissipative Rie-
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mann solvers (Gardiner & Stone, 2005; Lee & Deane, 2009). The directional bias in

both schemes seems to be larger than that in the recent scheme (Balsara et al., 2013) that

employs the centered WENO scheme with many more cross-differential terms than our

reconstructions. We also note that the reconstruction in Balsara et al. (2013) does not

employ the divergence-free reconstruction. It is noted that the directional bias due to the

LLF scheme is smaller than that due to the HLL(E), HLLC, HLLD or linearized Riemann

solvers with less dissipation. The reconstruction of the velocity field does not affect the

results in this problem. We also note that even if the cross-differential terms are appropri-

ately accounted for in the reconstruction step, the directional bias in this level cannot be

avoided. This is because any cross-differential term of the magnetic field reconstruction

does not contribute to the evaluation of the edge-averaged electric field when the velocity

field is uniform. These results indicate that the proposed scheme sufficiently reproduces

the multidimensional advection of the magnetic field.

2.5.2 The rotor problem in two-dimensions

The rotor problem (Balsara & Spicer, 1999; Tóth, 2000) is set up on a domain of [−0.5, 0.5]×

[−0.5, 0.5]. We demonstrate a version of this problem as described in (Balsara, 2004).

Fig.2.2 shows the results calculated by the WENO-Z5 scheme on a 200× 200 mesh. The

results are consistent with those of the previous study (Balsara & Spicer, 1999). This

shows that our new usage of the divergence-free reconstruction works well on this gen-

uinely multidimensional problem with a discontinuity.

2.5.3 The blast problem in two-dimensions

The blast problem (Balsara & Spicer, 1999) is commonly used to check the robustness

of a numerical scheme for shock propagation in the low plasma beta region. Fig.2.3 is a

version of the problem proposed by Gardiner & Stone (2005), obtained using the WENO-

Z5 scheme on a 200×200 mesh. The plasma beta in the ambient medium is β = 2×10−2.
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The results are consistent with those of the previous study (Gardiner & Stone, 2005). The

abovementioned results indicate that the proposed scheme also works well for this strong

shock propagation problem in the low plasma beta region.

2.6 Conclusions

We have presented a method to construct a higher-order scheme on the basis of the

divergence-free magnetic field reconstruction. The new magnetohydrodynamics scheme

based on the proposed method using the third-order centered WENO and the fifth-order

WENO-Z reconstructions have been presented and tested. The proposed method can be

applied to a wide variety of one-dimensional reconstructions such as PPM, classical fifth-

order WENO, and MP5. The proposed divergence-free reconstruction is invariant for the

choice of the one-dimensional reconstruction, and it performs with high cost-effectiveness

when it is combined with a less-dissipative WENO-Z scheme.

Our numerical methods include some important approximations that could potentially

reduce the convergence accuracy to second order in the worst case. Firstly, in the evalu-

ation of the velocity field at the cell edges, we employed Eq. (2.25), where we dropped

some cross terms. This reduces the multidimensional accuracy of the reconstruction. The

second approximation we made was the evaluation of the nonlinear terms from the spa-

tially averaged quantities in Section 2.3.2. This is also a potential source of accuracy

loss. Despite the points mentioned above, the accuracy analysis proposed in Section 2.4

proves sufficient convergence. In conclusion, all the tests presented here suggest that the

proposed scheme is highly cost effective and sufficiently robust for practical use.
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Figure 2.1: The magnitude of the magnetic field for the field loop advection problem.
The results obtained with (a) the WENO-DK3 scheme and (b) the WENO-Z5 scheme on
a 128 × 64 mesh are shown. Five equally spaced contour lines are plotted between the
minimum and the maximum values.

46



Figure 2.2: (a) Density, (b) gas pressure, (c) Mach number, and (d) the magnitude of the
magnetic field for the rotor problem. Thirty equally spaced contours are shown for the
ranges 0 ≤ ρ ≤ 10.41, 0 ≤ P ≤ 0.739, 0 ≤ V/Cs ≤ 2.354, and 0 ≤ B ≤ 4.183. The
results are obtained with the WENO-Z5 scheme on a 200× 200 mesh.
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Figure 2.3: (a) The logarithm of the density, (b) the logarithm of the gas pressure, (c)
the magnitude of the velocity, and (d) the magnitude of the magnetic field for the blast
problem. Twenty equally spaced contours are shown for the ranges between the minimum
and the maximum of −0.716 < log10 ρ < 0.510, 0.0845 < log10 P < 1.50, 0.00 < V <
6.28, and 24.0 < B < 43.7, respectively. These results are obtained with the WENO-Z5
scheme on a 200× 200 mesh.
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Chapter 3

Development of radiation

magnetohydrodynamic code

3.1 Introduction

The numerical study of the photospheric convection by Nordlund (1982) is one of the most

sophisticated modeling in the solar and stellar physics. They found that the granulation in

the solar photosphere can be reproduced in excellent accuracy by the hydrodynamic simu-

lation from the upper convection zone to the lower chromosphere with the effect of latent

heat by the partial ionization and the energy transfer by the radiation (Stein & Nordlund,

1998). This realistic radiative hydrodynamic model of the solar surface convection has

been applied, for example, on excitation process of solar acoustic oscillation (Nordlund

& Stein, 2001; Stein & Nordlund, 2001), abundance determination of solar photosphere

(Asplund et al., 2009), magneto-convection (Vögler et al., 2005), sunspot (Rempel et al.,

2009), and flux emergence (Cheung et al., 2008; Stein et al., 2011).

Bifrost code (Gudiksen et al., 2011) extended the upper boundary of the simulation

box to the lower corona for the realistic modeling of the upper solar atmosphere, espe-

cially the chromosphere and the lower corona. The code includes the Spitzer-type thermal

conduction, approximated chromospheric radiative cooling, and non-equilibrium hydro-
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gen ionization in addition to the physical processes in the code by Nordlund (1982). This

was the only radiative magnetohydrodynamic (MHD) code for the modeling of the chro-

mosphere and corona, which employed the realistic photospheric convection following

the approach of Nordlund (1982). We note that Abbett (2007) and Isobe et al. (2008) also

produced the dynamical models of the chromosphere and corona using the simplified ra-

diative cooling without the non-local radiative transfer. Although successful, the Bifrost

code still has shortcomings, such as non-guaranteed total energy conservation due to the

employment of non-conservative form for the energy equation and the possible wrong

convergence on the non-equilibrium calculation (Golding, 2010). Since its uniqueness,

no one has been able to independently confirm the results by the Bifrost code so far. It is

necessary to develop a independent numerical code with such various physical processes.

Because the chromosphere is one of the most interesting targets for the solar physics, the

discussion on the plans for the new instrument and satellite are very active. This kind of

realistic modeling of solar atmosphere is demanded.

In this study, we develop a new radiative MHD code for the dynamical modeling of

solar atmosphere. The code employs the high-resolution conservative MHD code devel-

oped in the previous chapter. The numerical algorithm is chosen for the efficiency and

compatibility with the massively parallel computation.

3.2 Basic equations

The basic equations solved by our code are the MHD equations with the gravity, local

thermodynamic equilibrium (LTE) equation of states, radiative cooling, and thermal con-

duction along magnetic field lines.
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3.2.1 Magnetohydrodynamics

The MHD equations employed in this study are given as follows:

∂ρ

∂t
+∇ · (ρV ) = 0 (3.1)

∂ (ρV )

∂t
+∇ ·

[
ρV ⊗ V +

(
P +

B2

8π

)
I− B ⊗B

4π

]
= ρg (3.2)

∂e

∂t
+∇ ·

[(
e+ P +

B2

8π

)
V − 1

4π
B (V ·B)

]

= ρ (g · V ) +Qcnd +Qrad +Qart

(3.3)

∂B

∂t
+∇ · (V ⊗B −B ⊗ V ) = 0 (3.4)

Here, ρ is mass density, e = eint+ρV 2/2+B2/(8π) is total energy density, eint is internal

energy density, V is velocity field, B is magnetic flux density, P is gas pressure, and g is

gravitational acceleration.

An artificial heating term Qart is included to prevent very low temperatures around

the photosphere and the low chromosphere, which is given by

Qart =
3

2

(
P

T

)
max

(
0,

Tlb − T

τart

)
, (3.5)

where Tlb = 2000 K and τart = 1 s. This artificial heating term is switched on only when

the temperature becomes lower than 2000 K and heats the plasma over a timescale of 1 s.

3.2.2 Equation of states

The latent heat production associated with the change of the internal states of atoms and

molecules is important in the partial ionized atmosphere near the solar surface. This effect

on the equation of states is not negligible from the upper convection zone to the transition
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Z Element Number fraction As Mass fraction
1 H 9.21054E-01 7.39300E-01
2 He 7.79620E-02 2.48500E-01
6 C 2.43185E-04 2.32598E-03
7 N 6.10854E-05 6.81356E-04
8 O 5.19921E-04 6.62433E-03

10 Ne 1.59821E-04 2.56832E-03

Table 3.1: Elemental abundance used for the equation of states.

region. In this study, six most abundant elements (H, He, C, N, O, Ne) are considered.

We assume the local thermodynamic equilibrium (LTE).

Table 3.1 shows the elemental abundance used in this study. The mass fraction be-

tween hydrogen, helium, and other metals are taken from Asplund et al. (2006). The

relative abundance among C, N, O, and Ne is same as in Rogers et al. (1996).

The mass density ρ is defined by

ρ =
∑

s

msns = mana, (3.6)

ma =

∑
s msns

na
=
∑

s

msAs, (3.7)

where ns, ms, and As are the number density of atomic nuclei, mass per particle, and

abundance for the element s, respectively. ma is the average mass per particle for the

neutral gas. na is the total number density of atomic nuclei.

We consider the four states for the hydrogen; ground and first excited state for neutral

atom, ionized atom, and hydrogen molecule. The number density for each states satisfies

2∑

i=1

nH I, i + nH II + 2nH2 = nH = AHna, (3.8)

where nH I, i is the number density of neutral hydrogen in the i-th energy level, nH II is the

number density of ionized hydrogen, nH2 is the number density of molecular hydrogen.

The neutral and ionized hydrogen are related by the Saha-Boltzmann equation given
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by
nH I, i

nenH II
=

(
h2

2πmekBT

)2/3 gH I, i

gegH II
exp

(
ϵH II − ϵH I, i

kBT

)
, (3.9)

where me is the electron mass per particle, h is the Planck constant, kB is the Boltzmann

constant, ge = 2 is the statistical weight of electron, gH I, i = 2i2 is the Gaunt factor of

neutral hydrogen in the i-th level, gH II = 1 is the Gaunt factor of ionized hydrogen, ϵH I, i

is the energy level of neutral hydrogen in the i-th level, and ϵH II is the energy level of

ionized hydrogen.

The molecular hydrogen are treated under the assumption of chemical equilibrium.

The equation is given by

nH2 =

(
2∑

i=1

nH I, i

)2

K(T ), (3.10)

where K(T ) is the chemical equilibrium constant taken from Kurucz (1970).

The other elements (He, C, N, O, Ne) are modeled by Saha’s ionization equilibrium.

We consider three states for each element: bound, first ionized, and second ionized states.

The number density of the element s satisfies

2∑

j=0

ns, j = ns = Asna. (3.11)

The equation of Saha’s ionization equilibrium for the element s is given by

ns, j

nens, j+1
=

Us, j(T )

geUs, j+1(T )
exp

(
ϵs, j+1 − ϵs, j

kBT

)
, (3.12)

where ns, j , Us, j(T ), and ϵs, j are the number density, partition function, and energy level

for the ionization degree of j = 0, 1, 2, respectively. The partition function is taken from

Irwin (1981).

The charge conservation law between the electron and ions is given by

nH II +
∑

s,j

jns, j = ne. (3.13)
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The total (neutral plus ionized) gas pressure and internal energy are defined as

P =

(
2∑

i=1

nH I, i + nH II + nH2 +
2∑

j=0

ns, j + ne

)
kBT, (3.14)

eint =
3

2
P +

2∑

i=1

ϵH I, inH I, i + ϵH IInH II + ϵH2(T )nH2 +
2∑

j=0

ϵs, jns, j, (3.15)

where ϵH2(T ) is the internal energy of molecular hydrogen calculated from the polyno-

mial approximation in Vardya (1965). The first term and others in Eq. (3.15) represent

the contribution from the energy of translational motion and internal (latent) energy, re-

spectively.

3.2.3 Radiation

We model the radiative heating rate Qrad by the combination of two approximations, i.e.,

the optically thick Qthick and thin Qthin, expressed as

Qrad = ξ(mc)Qthick + [1− ξ(mc)]Qthin, (3.16)

ξ(mc) = max

[
0,min

(
1,

logm1/mc

logm1/m0

)]
, (3.17)

where the column mass density mc is defined as

mc(x, y, z, t) =

∫ ztop

z

ρ(x, y, z′, t)dz′. (3.18)

We take log(m0 [g/cm2]) = −1.5 and log(m1 [g/cm2]) = −2. ztop is the height of the

top boundary of the numerical domain, typically in the corona. This is the value near the

temperature minimum region.
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Optically thick radiation

The optically thick radiative heating rate Qthick is calculated by directly solving the fre-

quency averaged radiative transfer equation

n ·∇I = αR(S − I). (3.19)

Here, I is the frequency averaged radiative intensity, S is the source function, n is the

unit vector of the ray direction, αR = ρκR is the absorption coefficient, and κR is the

Rosseland mean opacity. We employ the OPAL opacity (Iglesias & Rogers, 1996) for

κR(ρ, T ). We suppress the effect from the transition region and corona, where the gray

approximation is not appropriate, by reducing the αR where log(mc [g/cm2]) < −2.1 and

setting αR = 0 where log(mc [g/cm2]) < −2.3.

The optically thick radiative heating rate Qthick is expressed using the two different

(but physically equivalent) forms of

QF = −∇ · F , F =

∫

4π

nI(n)dn (3.20)

and

QJ = 4παR (J − S) , J =
1

4π

∫

4π

I(n)dn. (3.21)

Bruls et al. (1999) pointed out that QF (QJ) is suffered from the numerical errors in the

optically thin (thick) region. Following the approach in Bruls et al. (1999), Vögler et al.

(2005), and Hayek et al. (2010), we combine the two expressions as:

Qthick = e−(τ/τ0)2QJ +
[
1− e−(τ/τ0)2

]
QF. (3.22)

Here, we set τ0 = 0.1.
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Optically thin radiation

In the chromosphere and corona, we employ the so-called coronal approximation for the

radiative cooling rate

Qthin = −nenHΛ(T ), (3.23)

where Λ(T ) is the radiative loss function.

The radiative loss function Λ is calculated as:

Λ(T ) = ζΛGJ(T ) + (1− ζ)ΛC(T ) (3.24)

ζ = max

[
0,min

(
1,

T1 − T

T1 − T0

)]
(3.25)

Here, we employ the loss function ΛC(T ) from Chianti Atomic Database ver. 7.1 (Landi

et al., 2012) in the high temperature region, assuming the coronal abundance. We use the

“effectively optically thin” radiative loss function ΛGJ by Goodman & Judge (2012) in

the low temperature region. We set T0 = 10000 K and T1 = 15000 K.

3.2.4 Thermal conduction

The Spitzer-type thermal conduction is energetically important in the transition region and

the corona. The heating rate by the an-isotropic thermal conduction is written as follows:

Qcnd = −∇ · F cnd (3.26)

F cnd = −κ (b⊗ b) ·∇T (3.27)

Here, we set κ = κ0T 5/2 and κ0 = 10−6 (in c.g.s.). b = B/B is the unit vector parallel

to the magnetic field.

The conductive heating roughly balances with radiative cooling near the chromosphere-

corona transition region. We can estimate the thickness of the transition region as several
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tens of kilometers assuming this balance. However, the numerical grid size required to

resolve such thin structure becomes several km, which is too computationally high. In

this study, we artificially increase the thermal conductivity κ near the transition region so

that the transition region becomes thick enough.

3.3 Numerical methods

3.3.1 Magnetohydrodynamics

We use the MHD scheme described in the previous chapter. We modify several points for

the numerical stability mainly under the strong variation of mass density and temperature

near the transition region and the strong shock waves in the very low plasma beta region.

First, the reconstruction variables are changed. In this radiation MHD code, we re-

construct the logarithm of mass density log ρ, the internal energy per unit mass eint/ρ, the

gas pressure divided by mass density P/ρ, the velocity field V , and the magnetic flux

density B. Here, we reconstruct both P/ρ and eint/ρ to reduce the numerical cost for the

interpolation of tabulated equation of states.

We use the combination of the fifth-order WENO-Z scheme (Borges et al., 2008) and

piecewise linear method with minmod limiter. The minmod limiter is applied near the

shock front, transition region, and region with very low temperature. This is fulfilled by

the use of flattener d̃i,j,k defined as follows:

dshocki,j,k = max

[
0,min

(
1,−1− ∆V

M0Cs;min

)]
(3.28)

∆V = min (∆x,∆y,∆z) (∇ · V )i,j,k (3.29)

dTR
i,j,k =

1

2

[
1 + tanh

(
R−R0

∆R

)]
(3.30)

R = Tmax/Tmin (3.31)
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dlowi,j,k =
1

2

[
1 + tanh

(
Tmin,0 − Tmin

∆Tmin

)]
(3.32)

di,j,k = max
(
dshocki,j,k , dTR

i,j,k, d
low
i,j,k

)
(3.33)

d̃i,j,k = max (di,j,k, di−1,j,k, di+1,j,k, di,j−1,k, di,j+1,k, di,j,k−1, di,j,k+1) (3.34)

Here, we set M0 = 0.4, R0 = 10, ∆R = 1, Tmin,0 = 2000 K, and ∆Tmin = 10 K.

Umax (Umin) for variable U represents the maximum (minimum) among the nearby cells

(i, j, k), (i− 1, j, k), (i+ 1, j, k) (i, j − 1, k), (i, j + 1, k), (i, j, k − 1), and (i, j, k + 1).

(∇ · V )i,j,k is evaluated by the second-order central difference. The functional form of

flattener for the shock front dshocki,j,k is suggested by Balsara (2012). We use the sound

speed Cs instead of the speed of fast-mode so that the flattener becomes sensitive near

the slow-mode shock front in the low plasma beta region. We combine the slope from the

fifth-order WENO-Z scheme ∆D
WZ;sU (s = x, y, z、D = L,R) and the piecewise linear

slope with minmod limiter ∆D
MM;sU as follows:

∆D
s U = d̃i,j,k∆

D
WZ;sU +

(
1− d̃i,j,k

)
∆D

MM;sU (3.35)

Following the strategy in Balsara (2004) to limit the primitive variables, we apply the

flattener to the reconstruction of the internal energy, gas pressure, and velocity field be-

cause they are strongly related with compressive mode. We do not apply the flattener to

the mass density nor magnetic field because they are mainly affected by the entropy mode

and Alfvén mode. This approach allows us to achieve the high numerical stability without

diffusing the sharp density contrast or the fine structure of magnetic field.

The gas pressure and internal energy can be very small near the strong shock wave

in the corona. To maintain the stability under such situation, we also solve the internal

energy equation, without the viscous nor Joule heating, in addition to the total energy
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equation. The internal energy equation is written as:

(
∂eint
∂t

)

ad

= −∇ · (eintV )− P∇ · V +Qcnd +Qrad +Qart (3.36)

The left-hand side in Eq. (3.36) does not include the dissipative heating terms that come

from the artificial diffusion of upwind scheme in the momentum and induction equations.

Because these heating processes are automatically included in the total energy equation,

the inequality

∂eint
∂t

=

(
∂eint
∂t

)

tot

=
∂e

∂t
− ∂

∂t

(
1

2
ρV 2 +

1

8π
B2

)
≥
(
∂eint
∂t

)

ad

(3.37)

should be satisfied. Based on this inequality, we use (∂eint/∂t)ad as the lower bound of

∂eint/∂t so that the unrealistic low energy is suppressed in low plasma beta regions. In the

practical case, this inequality is not strictly satisfied because of the discretization errors.

Thus, we force the lower bound using the coefficient Cdamp ≤ 1 as:

∂eint
∂t

= max

[(
∂eint
∂t

)

tot

, Cdamp

(
∂eint
∂t

)

ad

]
(3.38)

Cdamp is defined as:

Cdamp = min

[
Cub,max

(
Clb,

α

C0 + α

)]
(3.39)

α = pmag/pgas, β = 1/α (3.40)

This definition makes Cdamp ∼ Clb when β ≫ 1, and Cdamp ∼ 1 − C0β when β ≪ 1.

This choice allows maintaining the positivity of gas pressure in the low plasma beta region

without affecting the high beta region. We set Cub = 1, Clb = 0.99, C0 = 0.03 in this

study.
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3.3.2 Equation of state

We have to calculate the gas pressure, gas temperature, and electron density from the

mass density and internal energy as the equation of states. First, we calculate the internal

energy as a function of mass density and temperature assuming that the mass density and

temperature is given. We employ the iteration method on the electron density, which is

written as follows:

1. Set initial guess of the number density of electron.

2. Calculate the number density of all energy levels, ionization states, and molecules

from the Saha-Boltzmann equation (Eq. (3.9)), the chemical equilibrium equation

(Eq. (3.10)), and the Saha’s equation for ionization equilibrium (Eq. (3.12)) in

addition to the conservation of atomic nuclei for each element (Eqs. (3.8) and

(3.11)).

3. Update the electron density from the charge conservation law (Eq. (3.13)).

4. Repeat from step 2 to step 3 until the change of electron number density becomes

small enough.

5. Calculate the internal energy from Eq. (3.15).

The gas temperature is calculated for the given mass density and internal energy, inverting

the internal energy as a function of mass density and temperature, by applying the bisec-

tion method on the temperature. Once the number densities and temperature is calculated

from the mass density and internal energy, the gas pressure is directly calculated from Eq.

(3.14). The equation of states is stored in the numerical table and numerically interpo-

lated during the time integration. The variables are linearly interpolated in the logarithmic

space.
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Figure 3.1: Left panel: Schematic illustration of the short-characteristic method for a
single computational cell. First, the radiative intensities defined on cell corners are inter-
polated into the point u on a characteristic ray. Then, it is integrated along a ray uo based
on the formal solver of radiative transfer equation. Right panel: Schematic illustration of
the short-characteristic method for the multiple computational cells.

3.3.3 Radiation

Optically thick radiation

The radiative transfer equation is integrated by the short characteristic method (Mihalas

et al., 1978; Kunasz & Auer, 1988), which has an advantage in the parallelization by

the domain decomposition. In this method, we consider short characteristic ray for each

numerical cell, and solved by the combination of interpolation into a ray and integration

along the ray (Figure 3.1). The equation is integrated along the ray using the formal

solution of the radiative transfer equation:

Io = Iue
−∆τuo + e−∆τuo

∫ ∆τuo

0

S(τ)eτdτ (3.41)
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Here, Iw is the intensity at the point w (= u, o, d) and ∆τab is the optical depth of the ray

segment ab, which is calculated by the second-order form given by

∆τab =
1

2
(αa + αb)∆lab (3.42)

where ∆lab is the length of the ray segment ab and αw is the absorption coefficient at the

point w. We use the bi-linear interpolation for the interpolation into the ray.

We have to calculate the analytic profile of the source function along the line segment

to integrate Eq. (3.41). In this study, we use the second-order Bézier interpolation in the

region τ ∈ [0,∆τuo], given by

S(τ) = (1− y)2Su + y2So + 2y(1− y)Sc, (3.43)

where y = τ/∆τuo. Sw is the source function S(T ) at the point w (= u, o, d) in Fig-

ure 3.1, respectively. The above equation is equivalent to the second-order polynomial

interpolation when the control point Sc is defined by:

Sc = So −
∆τuo
2

S ′
o (3.44)

S ′
o =

∆τodS ′
uo +∆τuoS ′

od

∆τuo +∆τod
(3.45)

S ′
uo =

So − Su

∆τuo
(3.46)

S ′
od =

Sd − So

∆τod
(3.47)

We force the monotonicity condition for the segment uo (Auer, 2003)

min (Su, So) ≤ Sc ≤ max (Su, So) (3.48)

when S ′
uoS

′
od > 0 to prevent the numerical oscillation. This condition is satisfied by
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taking Sc as follows:

Sc = So −
∆τuo
2

S ′
MM (3.49)

S ′
MM = minmod (θS ′

uo, S
′
o) , θ ∈ [1, 2] (3.50)

The monotonicity condition is satisfied for arbitrary θ ∈ [1, 2]. When Sc = 0, S ′
uoS

′
od ≤ 0

and the source functions Su, So, and Sd have an extremum at the point o, so that the

interpolation does not produce the new extremum. Smaller θ produces more numerical

stable (but diffuse) interpolation. We set θ = 2 in this study. minmod(a, b) is the minmod

function implemented as:

minmod(a, b) = [sign(0.5, a) + sign(0.5, b)]min (|a| , |b|) (3.51)

Here, sign(a, b) is the sign function defined in Fortran, which returns the absolute of a

with the sign of b. We also set

S ′
MM = 0 (3.52)

when ∆τuo∆τod < 10−10 to avoid the division by zero.

Using the above-mentioned monotonic interpolation, the radiative intensity at the

point o Io is derived from the formal solution of the radiative transfer equation Eq. (3.41)

as follows:

Io = Iue
−∆τuo +∆I (3.53)

∆I = (V0 − 2V1 + V2)Su + V2S0 + 2(V1 − V2)Sc (3.54)

V0 = 1− e−∆τuo (3.55)

V1 = 1− V0

∆τuo
(3.56)

V2 = 1− 2V1

∆τuo
(3.57)

here, V0, V1, and V2 include the division by ∆τuo. We use the limit expression for ∆τuo →
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Figure 3.2: Radiative loss functions used in this study. The implemented radiative loss
function (solid line), one calculated from Chianti atomic database (crosses), and one from
Goodman & Judge (2012) (diamonds) are shown.

0 given by

V0 → ∆τuo, (3.58)

V1 →
1

2
∆τuo, (3.59)

V2 →
1

3
∆τuo, (3.60)

when ∆τuo < 10−4 to prevent the division-by-zero.

In this study, the radiative intensity I is defined at the nodes of the cells for MHD

calculation to avoid the odd-even decoupling. The source function and absorption coeffi-

cient are linearly interpolated into the nodes. The radiative heating rate at the cell center

for the MHD simulation is calculated from the radiative intensity at the nodes, after the

integration of the radiative transfer equation.
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Optically thin radiation

The radiative loss function taken from Chianti Atomic Database ΛC is linearly interpo-

lated from the numerical table in the logarithmic space. The radiative loss function defined

in Goodman & Judge (2012) ΛGJ is calculated during the time integration. The combined

radiative loss function Λ is shown in Figure 3.2.

3.3.4 Thermal conduction

The spatial discretization of the thermal conduction is essentially same as the appendix

in Yokoyama & Shibata (2001) or “centered asymmetric scheme” in Sharma & Hammett

(2007). As pointed out in Sharma & Hammett (2007), the standard central difference

discretization of an-isotropic thermal conductive flux cannot maintain the monotonicity of

the temperature where the temperature gradient is very large. Following the suggestion in

Sharma & Hammett (2007), we apply the limiter for the an-isotropic terms in the thermal

conductive flux. The thermal conductive flux in x-direction F cnd
x at the cell face is written

as:

F cnd
x;i+1/2,j,k =− κi+1/2,j,kb

2
x;i+1/2,j,kδxT

− κi+1/2,j,kbx;i+1/2,j,kby;i+1/2,j,kδyT

− κi+1/2,j,kbx;i+1/2,j,kbz;i+1/2,j,kδzT

(3.61)

κi+1/2,j,k = (2κi,j,kκi+1,j,k) / (κi,j,k + κi+1,j,k) (3.62)
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δxT =
1

∆x
(Ti+1,j,k − Ti,j,k) (3.63)

δyT =
1

∆y
LM4 (Ti,j,k − Ti,j−1,k, Ti+1,j,k − Ti+1,j−1,k,

Ti,j+1,k − Ti,j,k, Ti+1,j+1,k − Ti+1,j,k)

(3.64)

δzT =
1

∆z
LM4 (Ti,j,k − Ti,j,k−1, Ti+1,j,k − Ti+1,j,k−1,

Ti,j,k+1 − Ti,j,k, Ti+1,j,k+1 − Ti+1,j,k)

(3.65)

Here, bi+1/2,j,k is the unit vector parallel to the magnetic field at the cell surface (i +

1/2, j, k). LM4(a, b, c, d) is the limiter similar to the Monotonized Central (MC) limiter

defined as:

LM4(a, b, c, d) = minmod5 [0.25(a+ b+ c+ d), 2a, 2b, 2c, 2d] (3.66)

Here, the minmod function for five arguments are implemented as follows:

minmod5(a, b, c, d, e) = [sign(0.5, a) + sign(0.5, b)]

|sign(0.5, b) +sign(0.5, c)| |sign(0.5, c) + sign(0.5, d)|

|sign(0.5, d) +sign(0.5, e)|min (|a| , |b| , |c| , |d| , |e|)

(3.67)

This limiter is different from the suggestion in Sharma & Hammett (2007), but it has

an advantage that it is symmetric for the exchange of coordinate axis. y and z-directed

thermal conductive flux is calculated in the same way. The conductive heating rate Qcnd

is written as:

Qcnd;i,j,k =− 1

∆x

(
F cnd
x;i+1/2,j,k − F cnd

x;i−1/2,j,k

)

− 1

∆y

(
F cnd
y;i,j+1/2,k − F cnd

y;i,j−1/2,k

)

− 1

∆z

(
F cnd
z;i,j,k+1/2 − F cnd

z;i,j,k−1/2

)

(3.68)

This discretization is second-order in space.
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3.3.5 Time advance

The criterion for the time stepping from the thermal conduction is generally much (about

several tens to thousands times) severe than that from the magnetohydrodynamics. In

order to avoid too small time step, we use the second-order operator splitting method

(Strang, 1968) and solve the magnetohydrodynamics and thermal conduction indepen-

dently. The algorithm is written as:

1. Determine the time step ∆t.

2. Integrate the thermal conduction for ∆t/2.

3. Integrate the magnetohydrodynamics for ∆t.

4. Integrate the thermal conduction for ∆t/2.

5. Go back to step 1.

Following this method, we can achieve the second-order accuracy in time if the time

integration scheme of the thermal conduction and magnetohydrodynamics is more than

second-order.

The radiative heating rate and gravitational force is simultaneously integrated with

the MHD equations, by the third-order optimal SSP Runge-Kutta method (Jiang & Shu,

1996). For the evolution equation in the form of

∂U

∂t
= S(U), (3.69)

this scheme is written as:

U (1) = Un +∆tS (Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tS

(
U (1)

)

Un+1 =
1

3
Un +

2

3
U (1) +

2

3
∆tS

(
U (2)

)
(3.70)
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The time integration scheme for the thermal conduction equation is the second-order

Runge-Kutta-Legendre (RKL2) Super Time Stepping (STS) method by Meyer et al. (2012,

2014). In the STS method (Alexiades et al., 1996), the stability criterion for the time step-

ping is forced for the multiple step in contrast to the ordinary Courant-Friedrichs-Lewy

condition (Courant et al., 1967). By carefully choosing the relative widths of the multiple

time stepping, the criterion for the time stepping can be much more relaxed. This method

is suitable for the stiff problems and massively parallel computation because the equation

can be integrated like the explicit method. Moreover, because we employ the nonlinear

flux limiter for the thermal conduction, the implicit method like Yokoyama & Shibata

(2001) is not suitable. For the number of substep N and the time step τ (e.g., ∆t/2), the

RKL2 STS method for the evolution equation Eq. (3.69) is written as follows:

U0 =Un

U1 =U0 + µ̃1τS (U0)

Uj =µjUj−1 + νjUj−2 + (1− µj − νj)U0

+ µ̃jτS (Uj−1) + γ̃jτS (U0) ; 2 ≤ j ≤ N

Un+1/2 =UN

(3.71)

Here, each coefficients are determined as:

µj =
(2j − 1)(j + 2)(j − 1)2

j(j − 2)(j + 1)2

νj =− (j − 1)3(j2 − 4)

j3(j + 1)(j − 3)

µ̃j =
(2j − 1)(j + 2)(j − 1)2

j(j − 2)(j + 1)2
4

N2 +N − 2
, µ̃1 =

4

3(N2 +N − 2)

ν̃j =− (j − 1)(j + 2)(2j − 1)(j2 − j + 2)

2j2(j − 2)(j + 1)2

(3.72)

The stability condition for τ is given by

τ ≤ ∆texp
N2 +N − 2

4
. (3.73)
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Here, ∆texp is the maximum time step allowed for the single step of the first-order forward

Euler method.

The total time step ∆t is determined as follows. First, we calculate the maximum time

step allowed for the magnetohydrodynamics ∆tmhd and thermal conduction ∆tcnd. Next,

we determine the number of substep N for the STS method from

N = min

[
floor

(
1

2

√
9 + 16

τ

∆tcnd
− 1

2

)
, 50

]
, (3.74)

where we set τ = ∆tmhd/2. The maximum allowed time step τ ′ for the STS method

is calculated from Eq. (3.73) using N derived above. Finally, we get the time step for

the whole scheme as ∆t = min(2τ ′,∆tmhd). Here, we set the upper bound of N to

be 50. Although the RKL2 STS method shows the second-order convergence, the time

discretization error is not small enough when N is very large. This upper bound is set

so that the physical characteristics of the thermal conduction are not altered. This upper

bound is required only for the situation with very hot corona with small magnetic field.

The simulations introduced in this dissertation are not affected by this criterion.
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Chapter 4

Two-dimensional simulation of solar

chromospheric jets: effect of the

coronal condition

4.1 Introduction

Various chromospheric jets are observed in the solar atmosphere. In quiet regions and

coronal holes, we observe classical (type I) spicules at the limb, which have maximum

lengths of 4–10 Mm, lifetimes of 1–7 min, and maximum upward velocities of 20–100

km/s (Beckers, 1972). Recently, the existence of more violent “type II” spicules is re-

ported (De Pontieu et al., 2007b). The type I and II spicules are considered to have

their on-disk counterparts of mottles (Rouppe van der Voort et al., 2007) and the rapid

blue-shifted events (RBEs) (De Pontieu et al., 2009; Rouppe van der Voort et al., 2009;

McIntosh & De Pontieu, 2009), respectively. The dynamic fibrils observed on the disk in

active regions have maximum lengths of several Mm, lifetimes of 2–8 min, and maximum

velocities of 10–40 km/s (Hansteen et al., 2006; De Pontieu et al., 2007a). Rouppe van

der Voort et al. (2007) reported that the dynamic fibrils are considered to be the active

region counterpart of the quiet-sun mottles.
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Theoretical studies have suggested various models for these chromospheric jets (see

Sterling, 2000, for a review). For the dynamic fibrils, the periodic acoustic wave model is

in agreement with observations (Hansteen et al., 2006; De Pontieu et al., 2007a; Heggland

et al., 2007), particularly in terms of the correlation between deceleration and maximum

velocity. The origin of spicules (types I and II) is still under debate. Many candidates,

such as acoustic waves (e.g., Hollweg, 1982; Suematsu et al., 1982), Alfvén waves (e.g.,

Hollweg et al., 1982; Kudoh & Shibata, 1999), and magnetic reconnection (e.g., Uchida,

1969; Heggland et al., 2009; Takasao et al., 2013) have been suggested. Most of these

models include a process by which the transition region is lifted by the shock wave prop-

agating upward into the corona. This process is called the shock-transition region interac-

tion (Hollweg, 1982). Several multi-dimensional simulations with the sophisticated mod-

eling of convective motion have been reported (Hansteen et al., 2006; Martı́nez-Sykora

et al., 2009; Heggland et al., 2011). Although some of these studies is intended to be

the representative for quiet regions, the simulated chromospheric jets was significantly

shorter than the observed spicules.

Using idealized one-dimensional hydrodynamic simulations, Shibata & Suematsu (1982)

explained why the spicules are long in the coronal hole. The key process is the amplifica-

tion of the strength of the shock wave in the solar chromosphere. Based on their idea, we

investigate the effect of the coronal temperature on the scale of the solar chromospheric

jets using two-dimensional magnetohydrodynamic simulations with more realistic phys-

ical processes, to provide a unified perspective on the quiet region spicules, the coronal

hole spicules, and the active region dynamic fibrils.

4.2 Simulation setup

The basic equations and numerical methods are described in the previous chapters. We

do not repeat them here.

The two-dimensional numerical domain in the XZ-plane extends from 2 Mm below
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the surface to 14 Mm above. The horizontal extent is 18 Mm. The uniform grid size is 42

km in the horizontal direction and 32 km in the vertical direction.

The bottom boundary condition is the “open” boundary. The total (gas plus magnetic)

pressure equilibrium is assumed. The entropy of the upward plasma is fixed. The upward

velocity field is slowly damped to the horizontally uniform up flow that complements

the mass flux by the downward flow (e.g., Bercik, 2002). This weak damping is not

important in the present results but able to suppress the unrealistic instability that appears

after the long time integration. The downward plasma evolves adiabatically and freely.

The top boundary has a free-slip condition and is open for vertical flow. The density

is extrapolated exponentially by the scale height at the boundary. Our two-dimensional

simulation with a top boundary at the lower corona cannot maintain the 1 MK coronal

temperature (e.g., Leenaarts et al., 2011; Heggland et al., 2011). To prevent the corona

from being cooled by radiation and thermal conduction, the conductive flux is introduced

through the top boundary to heat the corona. In this study, the conductive flux is adjusted

to preserve the different coronal temperature at the top boundary, Tc. The magnetic field is

assumed to be vertical at the top and bottom boundaries. The periodic boundary condition

is employed horizontally.

The initial condition is the plane-parallel atmosphere with a uniform vertical magnetic

field of 3 G. The sufficiently relaxed convection is obtained after the integration of 5

solar hours (5 hours in the internal time of the simulation) with a temperature at the top

boundary, Tc, of 1 MK. We impose the uniform vertical magnetic field of 30 G on the

relaxed atmosphere and integrate another 3 solar hours with the same Tc. Next, we change

the temperature at the top boundary, Tc, to 2, 1, and 0.4 MK to imitate the conditions of

the active region, the quiet region, and the coronal hole, respectively. The simulations are

integrated for another 1 solar hour after the change of Tc. We find that the coronal density

and temperature reach statistical equilibrium within 20 min. The data analyzed below is

the last 30 min of each simulation.
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Figure 4.1: Vertical structure of the three simulations with the different temperatures at
the top boundary, Tc = 2 MK (left column), 1 MK (middle column), and 0.4 MK (right
column). The probability density functions (PDFs) of gas pressure (top row), temperature
(middle row), and mass density (bottom row) are shown.

4.3 Structure of atmosphere

Figure 4.1 presents the vertical structure of the three simulated atmospheres. The higher

temperature at the top boundary Tc leads higher gas pressure and mass density. Because

the optically thin radiative cooling, which is proportional to the square of density, roughly

balances to the conductive heating from the corona, the higher density is required. We

also observe that the chromospheric material is extended to the higher altitude with the

lower coronal temperature. These results indicate the dependence of chromospheric jets
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Figure 4.2: Snapshots from the three simulations with the different temperatures at the
top boundary, Tc. Panels (a)–(c) show the temperature, and panels (d)–(f) represent the
logarithm of mass density. The solid lines in panels (a)–(c) indicate the magnetic field
lines. Panels (a) and (d) correspond to the simulation with Tc = 2 MK, panels (b) and (e)
correspond to the simulation with Tc = 1 MK, and panels (c) and (f) correspond to the
simulation with Tc = 0.4 MK.

on the coronal temperature.

Figure 4.2 shows snapshots from three simulations with the temperature at the top

boundary, Tc, set to 2, 1, and 0.4 MK. We find the strong magnetic field concentration

near X = 8 Mm. Because the magnetic field structure is essentially the same among

these three simulations, we can concentrate on the effect of the coronal temperature. The

jet-like structures with various scales are formed in the chromosphere. These structures

are basically driven by the shock waves, arising from convective motion, which pass

through the transition region. This process is consistent with both the one-dimensional

simulations (Hollweg et al., 1982; Suematsu et al., 1982) and multi-dimensional simula-

tions (Heggland et al., 2011). We clearly find that the simulation with a lower coronal

temperature produces higher chromospheric jets. The density near the top of each jet and
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over the entire corona is smaller when Tc is lower. The widths of the produced jets in

these simulations are approximately independent of Tc if measured at a specific height

like Z = 3 Mm, but the jets become sharper near their tops in the lower Tc simulations.

4.4 Time evolution of chromospheric jets

We automatically detect the chromospheric jets in the simulations for the purpose of quan-

titative comparison. We assume that each jet is approximately vertical. The top of each

jet is detected as the local maximum of the height of the transition region over the tem-

poral and horizontal directions. The height of the transition region is defined where the

temperature is 40,000 K following Heggland et al. (2011). From the top of each jet, the

time variation of the height of the transition region along the magnetic field line is calcu-

lated. The appearance and disappearance times of each jet are defined as the nearby local

minimum of this time variation of the transition region height. The resulting motion of

the transition region is fitted by a parabola, and the maximum height from Z = 0 Mm,

maximum length from the initial height of the transition region, lifetime, maximum up-

ward velocity, and deceleration for each jet is calculated from the fitting. The jets with

large deviation from the parabola or large asymmetry of the rising and falling period are

removed from the analysis below, because such types of jets suffer from serious fitting

errors and/or difficulty in being distinguished from overlapping jets. We find that this

procedure does not alter the qualitative picture shown below.

An example of the time-distance plots for short chromospheric jets in the Tc = 2 MK

case is shown in Figure 4.3. The automatic detection algorithm provides the maximum

height of 4.3 Mm, maximum length of 2.7 Mm, lifetime of 255 s, maximum upward ve-

locity of 45 km/s, and deceleration of 350 m/s2. The top of the jet is located at X = 12.8

Mm, which is outside of the strong magnetic field concentration at X = 4 Mm. The

trajectories of shock fronts are identified by the divergence of velocity field. The shock

front hits the transition region at the time of 532 min and propagates into the corona.
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Figure 4.3: Time-distance plots showing the temperature T , mass density ρ, gas pressure
P , divergence of velocity field div(V ), and velocity parallel (normal) to the magnetic field
Vp (Vn) along a magnetic field line through the top of a chromospheric jet in the simulation
of Tc = 2 MK. The solid line indicates the location of plasma beta unity (β = 1). The
dashed line represents the transition region (T = 40 kK).
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Figure 4.4: Same as Figure 4.3, but showing the case of a tall chromospheric jet in the
simulation of Tc = 0.4 MK.
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The transition region is lifted up by the shock wave (e.g., Hollweg, 1982) and follows

parabolic trajectory. This process is essentially same as the previous one-dimensional nu-

merical studies assuming the acoustic perturbations (e.g., Suematsu et al., 1982; Sterling

et al., 1993). The chromospheric jet has a region with the small gas pressure than the sur-

roundings near the transition region around the time of 533–536 min. The lack of the gas

pressure is one of the reasons why the deceleration of this jets exceeds the gravitational

acceleration of 274 m/s2 at the solar surface (see also Section 4.6).

Another example of tall chromospheric jets in the Tc = 0.4 MK case is shown in Fig-

ure 4.4. The parameters on the vertical motion of this jet are calculated as the maximum

height of 8.2 Mm, maximum length of 6.0 Mm, lifetime of 405 s, maximum upward ve-

locity of 59 km/s, and deceleration of 276 m/s2. The jet is located at X = 13.8 Mm. The

temporal evolution of the transition region through the shock-transition region interaction

is essentially same as the previous example. We cannot find the significant decrease of

the gas pressure as opposed to the previous one, which is consistent with the deceleration

very close to the gravitational acceleration.

4.5 Statistical properties of chromospheric jets

The distribution of the parameters on the vertical motion of chromospheric jets is shown

in Figure 4.5. The dependence of the scale of chromospheric jets on the coronal temper-

ature are clearly identified. The lower coronal temperature produces taller, faster, longer

living chromospheric jets. The deceleration for Tc = 2 MK (blue solid line) and 1 MK

(green dashed line) is distributed over a relatively broad range, exceeding the gravitational

deceleration on the solar surface. The deceleration for Tc = 0.4 MK (red dotted line) is

concentrated below the gravitational deceleration.

The correlation among the derived parameters are shown in Figure 4.6. We find a

clear correlation between maximum length and maximum upward velocity for all three

simulations (panels (a)–(c)). The lifetime roughly correlates with the maximum velocity
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Figure 4.5: Histograms showing the maximum height (top left), lifetime(top right), max-
imum upward velocity (bottom left), and deceleration (bottom right) of chromospheric
jets in the simulations of Tc = 2 MK (blue solid lines), 1 MK (green dashed lines), and
0.4 MK (red dotted lines).

for each simulation (panels (d)–(f)). The lifetime becomes longer and the correlation

between lifetime and maximum velocity becomes stronger when the coronal temperature

is lower. The correlation between deceleration and maximum velocity is relatively weak

(panels (g)–(i)).

The abovementioned dependence on the temperature at the top boundary, Tc, can be

explained as follows. When Tc is high (i.e., 2 MK) and the chromospheric jets are small,

as in panels (a), (d), and (g) in Figure 4.6, the obtained correlations are consistent with

the “shock deceleration hypothesis” suggested by Heggland et al. (2007). According to

this hypothesis, the deceleration is determined by the periodicity of the slow-mode shock

wave and can exceed the gravitational deceleration (see Eq. (1) in Heggland et al., 2007).

The lifetime of the jet is determined by the period of the driving shock wave. The dotted

lines in panels (a), (d), and (g) are the theoretical lines of parabolic motion with lifetimes

of 2, 3, and 5 min. These lines are well consistent with the results from the simulation

with Tc = 2 MK. Because the lifetime of chromospheric jet is equal to the period of

driving acoustic wave in the “shock deceleration hypothesis”, the long lifetime in Tc =
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Figure 4.6: Statistical properties of the produced chromospheric jets in the three simu-
lations with different temperatures at the top boundary, Tc. Each cross sign corresponds
to a chromospheric jet detected. See Section 4.5 for the description on the procedure for
chromospheric jet detection. Panels (a), (d), and (g) correspond to Tc = 2 MK, panels (b),
(e), and (h) correspond to Tc = 1 MK, and panels (c), (f), and (i) correspond to Tc = 0.4
MK. The three dotted lines in panels (a), (d), and (g) represent the theoretical lines of
parabolic motion with lifetimes of 2, 3, and 5 min. The dashed lines in panels (c), (f), and
(i) indicate the theoretical lines of ballistic motion.

80



0.4 MK case (panels (f)) requires long period of driving waves, which is not expected

under the short acoustic cutoff period in the lower solar atmosphere (e.g. Michalitsanos,

1973). The deceleration by the gravity becomes more important in this case. The resulting

motion of taller chromospheric jets approaches free-fall. The dashed lines in panels (c),

(f), and (i) indicate the theoretical lines of ballistic motion, which approximately explain

the properties of simulated jets. Since the simulated jets in the case of Tc = 0.4 MK

do not exactly follow ballistic paths, both of the gravitational and gas pressure gradient

forces play a role in addition to the inclination of the magnetic field line. The case of

Tc = 1 MK, shown in panels (b), (e), and (h), exhibits intermediate properties between

these two extremes.

4.6 Deceleration of chromospheric jets

To consider the abovementioned view on the determination of deceleration, we investigate

the vertical force near the top of the chromospheric jets. The vertical component of the

equation of motion can be written as follows.

−DVz

Dt
= DG

∥ +DP
∥ +DG

⊥ +DP
⊥ +DL

⊥

DG
∥ = g0b

2
z

DP
∥ = b ·

(
1

ρ
∇P

)
bz

DG
⊥ = g0 −DG

∥ = g0b
2
x

DP
⊥ =

1

ρ

∂P

∂z
−DP

∥

DL
⊥ = −1

ρ
(J ×B)z

(4.1)

Here, g0 is the gravitational acceleration at the solar surface, P is the gas pressure, B

is the magnetic flux density, J is the current density, D/Dt = ∂/∂t + V · ∇ is the

Lagrangian derivative, and b = B/ |B| is a unit vector parallel to the magnetic field. If
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Figure 4.7: Contribution of gas pressure gradient and gravitational forces on the deceler-
ation of the produced chromospheric jets in the three simulations with different tempera-
tures at the top boundary, Tc. Each cross sign corresponds to a chromospheric jet detected.
Panels (a), (d), and (g) correspond to Tc = 2 MK, panels (b), (e), and (h) correspond to
Tc = 1 MK, and panels (c), (f), and (i) correspond to Tc = 0.4 MK. See Section 4.6 for
the description on the definition of each variables.
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we assume that the transition region at the top of the chromospheric jets is the contact

discontinuity, the deceleration of the jets can be approximated by −DVz/Dt near the

transition region. The result is shown in Figure 4.7. Panels (a)–(c) show the deceleration

produced by the total force parallel to the magnetic field DP
∥ +DG

∥ versus the deceleration

calculated by the motion of the chromospheric jets. Although there is some level of

dispersion, the motion of the transition region is roughly explained by the forces parallel to

the magnetic field. The possible candidates of the discrepancy are the effect of the forces

perpendicular to the magnetic field (DG
⊥, DP

⊥, and DL
⊥), the deviation of the transition

region from the contact discontinuity by the thermal conduction and waves, and the fitting

and discretization errors. Panels (d)–(f) show the deceleration produced by the gravity

parallel to the magnetic field DG
∥ . DG

∥ is more concentrated near the value of gravitational

acceleration in the lower coronal temperature. Because the structure of the magnetic

field is nearly independent of the coronal temperature, the temperature dependence in

these panels is caused by the difference of the height of produced jets. When the coronal

temperature is higher, the maximum length of jets becomes small and the transition region

moves near the root of the magnetic field where the magnetic field is more inclined. Panels

(g)–(i) show the deceleration produced by the gas pressure gradient force parallel to the

magnetic field DP
∥ . In Tc = 0.4 MK case, the pressure gradient force always decreases

the deceleration of the jets. However, in Tc = 2 and 1 MK cases, a part of the jets is

decelerated by the pressure gradient force. This is consistent with the “shock deceleration

hypothesis” where the deceleration is determined by the periodic shock wave.

4.7 Amplification of shock waves in the chromosphere

To understand why the scale of the chromospheric jets depends on the coronal tempera-

ture, we investigate the relationship between the coronal gas pressure and the maximum

velocity of the produced jets as shown in Figure 4.8. The scale height of the gas pres-

sure in the corona is sufficiently long and the gas pressure is almost constant across the
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Figure 4.8: Dependence of the maximum upward velocity Vmax, of the chromospheric jets
on the coronal gas pressure from the simulation of Tc = 2 MK (shown as blue diamonds),
Tc = 1 MK (shown as green crosses), and Tc = 0.4 MK (shown as red triangle). The
coronal gas pressure, Pc, is measured at the initial time of each chromospheric jet and
averaged over the height range of 1–3 Mm above the transition region. The dashed line is
the result of the least-square fitting, Vmax ∝ P−0.108

c , assuming a power-law relation.
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transition region. Thus, we can use the coronal gas pressure, Pc, as the representative

value of the gas pressure near the transition region. Shibata & Suematsu (1982) suggest

that the density difference at the transition region causes the differences in the amplitude

of the chromospheric shock wave and in the size of the chromospheric jets. For a linear

wave, the energy flux of the slow magneto-acoustic wave is conserved during the prop-

agation as SρV 2Cs = constant. Here S is the cross-section of the magnetic flux tube,

Cs is the speed of the slow magneto-acoustic wave, and V is the velocity parallel to the

magnetic field. This relation is reduced to V ∝ (SρCs)−1/2 ∼ (SPc)−1/2. The depen-

dence on S does not appear in our current results because the magnetic field structure is

almost the same in each of our three simulations. In fact, the shock wave is strong in the

upper chromosphere, and the energy dissipation near the shock front violates the energy

flux conservation. Ôno et al. (1960) analytically derived the relation of V ∝ P−0.236
c

for a strong shock wave with the constant chromospheric temperature and an adiabatic

heat ratio of 5/3. Shibata & Suematsu (1982) reported the relation of V ∝ P−0.23
c in

their one-dimensional adiabatic hydrodynamic simulation, which is very close to the an-

alytic estimate for strong shock wave. We obtain the relation of V ∝ P−0.108
c from the

three simulations with different coronal temperatures. This result indicates that another

energy-loss process contributes to the formation of chromospheric jets in our simulations,

like the radiative energy loss. We note that the amplitude of the maximum upward veloc-

ity depends only on the nonlinear propagation of acoustic waves in the photosphere and

chromosphere and does not depend on the deceleration models discussed in the preceding

section.

Figure 4.9 shows the relation between the coronal gas pressure and other parameters of

the vertical motion of chromospheric jets. As can be seen from panel (c), the dependence

of the deceleration is weak. We can only observe that the dispersion of the deceleration is

larger when the coronal gas pressure is high. If we assume that the average deceleration

does not depend on the coronal gas pressure, the power law indices of the maximum

length (panel (a)) and lifetime (panel (b)) can be explained from the index of the maximum
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Figure 4.9: Dependence of (a) maximum length Lmax, (b) lifetime τ , and (c) deceleration
d of the chromospheric jets on the coronal gas pressure from the simulation of Tc = 2
MK (shown as blue diamonds), Tc = 1 MK (shown as green crosses), and Tc = 0.4 MK
(shown as red triangle). The coronal gas pressure, Pc, is measured at the initial time of
each chromospheric jet and averaged over the height range of 1–3 Mm above the transition
region. The dashed lines are the least-square fittings assuming a power-law relation.

velocity using the relations Lmax = V 2
max/(2d) and τ = 2Vmax/d.

The power law index of around −0.1 of the maximum velocity (Figure 4.8) is also

observed in the propagation of longitudinal waves in the chromosphere as shown in Figure

4.10. The velocity parallel to the magnetic field line seems to follow the relation of Vp ∝

ρ−0.1 over the mass density of 10−13–10−10 g/cm3. The joint probability density functions

between the field-aligned velocity and the mass density in the three different simulations

share almost the same profiles below the transition region. The only difference appears

on the density of the transition region (around 10−14 g/cm3 in Figure 4.10). This result

is consistent with the dependence of the maximum velocity of chromospheric jets on the

coronal gas pressure in Figure 4.8. We note that the plasma beta is low in the region

with this density range. Because the dispersion of slow-mode shock waves should be

small in the low-beta plasma, the deviation from the power law index of −0.236 (Ôno

et al., 1960) in Figures 4.8 and 4.10 seems to be not associated with the multidimensional

effect. The possible candidates of the energy-loss process for chromospheric shock waves

are the radiative energy loss, the thermal conduction, and the latent heat of ionization. The

dynamic variation of the chromospheric temperature will also affect the result.
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Figure 4.10: Joint probability density function of the velocity parallel to the magnetic
field Vp against the mass density ρ in the simulation of Tc = 0.4 MK. The color-coding
indicates the logarithm of the frequency. The black and white lines represent the power
law relation of Vp ∝ ρ−0.1 and Vp ∝ ρ−0.236, respectively. Note that the power law index
of −0.1 is shown only for the comparison with the index in Figure 4.8 and not derived
from the fitting.
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4.8 Discussion

We can compare our three simulations with different temperatures at the top boundary

(Tc = 2, 1, and 0.4 MK) to the observations of the active region dynamic fibrils, the

quiet region spicules, and the coronal hole spicules, respectively. Panels (a), (d), and

(g) in Figure 4.6 show behavior similar to the observation of the active region dynamic

fibrils by De Pontieu et al. (2007a). The properties of the spicules in quiet regions and

coronal holes were investigated by Zhang et al. (2012) and Pereira et al. (2012). Both

studies reported that the spicules became longer in the coronal hole and shorter in the

quiet region, which was consistent with our results. We note that the parabolic trajectory

of jets in our study are consistent with the type I spicules but inconsistent with the type II

spicules, which exhibit linear trajectory. Because the top of the spicule was considerably

affected by the observed wavelength (Pereira et al., 2014; Skogsrud et al., 2015), further

studies are required for the more quantitative comparison. We also note that Tc = 0.4

MK is too low for coronal holes and Tc = 2 MK is also too low for active regions. The

regional difference of density and the spatial inhomogeneity of temperature and density

will explain at least a part of this discrepancy. The magnetic field strength is also not

the typical value for these regions. However, if the chromospheric jets are driven by the

acoustic waves from the lower atmosphere, we expect that the magnetic field does not

affect the scale of the jets strongly.

The numerical setting of the two-dimensional simulation by Heggland et al. (2011)

was very similar to that in our study. The simulation with Tc = 1 MK is consistent with

Case B in their study. Their simulation employed the Bifrost code (Gudiksen et al., 2011)

with more sophisticated treatment of radiation. This agreement supports the validity of

our simulations. Martı́nez-Sykora et al. (2009) investigated the chromospheric jets in

three-dimensional domain with the emerging magnetic flux. The typical length of their

jets was approximately 1 Mm. The high coronal temperature produced by the energy

release of the flux emergence, in addition to the rapid expansion of the magnetic field
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lines in the corona, is a possible explanation for why these jets were small.

We note that a part of the transverse waves are reflected from the corona (Figures 4.3

and 4.4). The top boundary condition of the vertical magnetic field is the main reason

of this reflection. We confirm that the vertical motion of the chromospheric jets is not

sensitive to the top boundary condition for the magnetic field. More delicate treatment

of boundary conditions is necessary for the analysis on the transverse motion of chro-

mospheric jets. The dependence on the grid size is also investigated by doubling the

numerical resolution, and we find the similar dependence on the coronal temperature of

the chromospheric jet motion. We find that the widths of the simulated jets are strongly

affected by the numerical resolution. Further research should be undertaken to investigate

on the horizontal structure of jets.
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Chapter 5

Two-dimensional simulation of solar

chromospheric jets: role of the

magnetic field

5.1 Introduction

In the solar chromosphere, the average strength of the magnetic field varies significantly

depending on the region observed. The magnetic field in active regions is usually several

times stronger than in quiet regions and coronal holes. Heggland et al. (2011) investigated

the effect of magnetic field strength and inclination on the chromospheric jets using the

two-dimensional simulations with the sophisticated modeling of convective motion, but

they did not provides the statistical comparison with different magnetic field strengths.

The chromospheric jets in quiet regions like mottles (Suematsu et al., 1995), Rapid

Blue-shifted Excursions (Langangen et al., 2008b), and network jets (Tian et al., 2014)

are observed mainly along the magnetic network. On the other hand, in the previous

chapter (Iijima & Yokoyama, 2015), chromospheric jets tend to be elongated in the re-

gion with weak magnetic field. Heggland et al. (2011) also reported the similar results

in their two-dimensional simulations. Two possible candidates were suggested to explain
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this behavior. The first was that the multidimensional interaction of acoustic waves is

more frequent in the weakly magnetized regions. The second was that the magnetic field

expansion from the photosphere to the corona reduces the amplitude of acoustic waves.

As pointed out by Shibata & Suematsu (1982) and previous chapter (Iijima & Yokoyama,

2015), the temperature and density of corona is also important for the scale of chromo-

spheric jets. The effect of the magnetic field should be distinguished from the contribution

of the coronal condition to clarify the dependence on the local magnetic field structure.

In this study, the effects of the magnetic field on chromospheric jets, especially the de-

pendence on the average magnetic field strength and local magnetic field structure, are

investigated.

5.2 Simulation setup

The basic equations, numerical methods, grid and domain size, and initial and boundary

conditions are essentially same as in the previous chapter. We analyze two new simula-

tions with the different magnetic field strengths in Section 5.3 and one simulation from

the previous chapter in Section 5.4. The two simulations in Section 5.3 has the tempera-

ture at the top boundary of Tc = 1 MK and the average vertical magnetic field strength of

B0 = 10 and 100 G. The simulation described in Section 5.4 has the temperature at the

top boundary of Tc = 0.4 MK and the average vertical magnetic field strength of B0 =

30 G. This parameter is chosen because chromospheric jets in this simulation are tall so

that the dependence on the local magnetic field structure can be easily identified.

5.3 Dependence on the average magnetic field strength

In this section, we focus on the effect of the initial magnetic field strength B0 on the

properties of chromospheric jets using the two simulations with the strong (B0 = 100 G)

and moderate (B0 = 10 G) field strength. We fix the coronal temperature of Tc = 1 MK
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to focus on the effect of the magnetic field strength.

5.3.1 Morphology

Figure 5.1 presents the snapshot of the temperature and mass density of the two simu-

lations with the coronal temperature of Tc = 1 MK and average magnetic field strength

of B0 = 100 and 10 G. The B0 = 100 G case has several strong magnetic field concen-

trations near X = 3, 5, and 15 Mm. On the other hand, the B0 = 10 G case has the

complicated magnetic field structure in the photosphere and does not have any kilogauss

magnetic field concentrations. The chromospheric jets in the B0 = 100 G case is more

inclined than in the B0 = 10 G case. The height of the transition region tend to be low

near the center of the magnetic field concentrations in the B0 = 100 G case, which is

consistent with the simulations in the previous chapter and Heggland et al. (2011).

5.3.2 Statistical properties of chromospheric jets

Figure 5.2 shows the statistical properties of simulated jets in the two simulations. The

distributions of the maximum height, lifetime, and maximum upward velocity are very

similar in both cases. The difference appears in the deceleration of jets. The B0 = 100

G case has a broader distribution of the deceleration. The deceleration of the B0 = 10 G

case is more concentrated near the solar gravity at 274 m/s2. This difference is interpreted

as the result of the inclined magnetic field in the B0 = 100 G case. The deceleration

in both cases sometimes exceeds the solar gravitational acceleration, which suggests the

existence of the “shock deceleration” process (Heggland et al., 2007; Iijima & Yokoyama,

2015).

Figure 5.3 compares the correlation between the two of the maximum length, lifetime,

maximum velocity, and deceleration of simulated jets. No significant difference is found

in the correlation between the maximum length and maximum velocity (panels (a) and

(b)). The lifetime in the B0 = 100 G case is slightly larger than in the B0 = 10 G case
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Figure 5.1: Snapshots from the two simulations with the different initial magnetic field
strength, B0. Panels (a) and (b) show the temperature, and panels (c) and (d) represent
the logarithm of mass density. The solid lines in panels (a) and (c) indicate the magnetic
field lines. Panels (a) and (c) correspond to the simulation with B0 = 100 G and panels
(b) and (d) correspond to the simulation with B0 = 10 G.
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Figure 5.2: Histograms showing the maximum height (top left), lifetime(top right), max-
imum upward velocity (bottom left), and deceleration (bottom right) of chromospheric
jets in the simulations of B0 = 100 G (blue solid lines) and 10 G (red dashed lines).

comparing for the same maximum velocity in panels (c) and (d). The broader distribution

of the deceleration in the B0 = 100 G case causes the longer lifetime in the same velocity

than the B0 = 10 G case (panels (e) and (f)).

5.3.3 Deceleration of chromospheric jets

Figure 5.4 shows the contribution of the gas pressure gradient and gravitational forces on

the deceleration of simulated jets. The distribution of the gravitational force indicates that

the inclination of the magnetic field effectively reduces the deceleration in the B0 = 100

G case, which is consistent with the results in Figures 5.2 and 5.3. The gas pressure

gradient force sometimes decelerate the jets in both cases, which is similar to the Tc = 2

and 1 MK cases with B0 = 30 G in the previous chapter (Iijima & Yokoyama, 2015). The

results suggest that the “shock deceleration” process affects the deceleration of a part of

simulated jets.
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Figure 5.3: Statistical properties of the produced chromospheric jets in the three simula-
tions with different temperatures at the top boundary, Tc. Each cross sign corresponds to a
chromospheric jet detected. Panels (a), (c), and (e) correspond to B0 = 100 G and panels
(b), (d), and (f) correspond to B0 = 10 G.
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Figure 5.4: Contribution of gas pressure gradient and gravitational forces on the decel-
eration of the produced chromospheric jets in the two simulations with different initial
magnetic field strength B0. Panels (a), (c), and (e) correspond to B0 = 100 G and panels
(b), (d), and (f) correspond to B0 = 10 G.
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5.4 Dependence on the local magnetic field structure

In this section, we investigate the dependence on the local structure of the magnetic field,

especially the strength of the photospheric magnetic field, on chromospheric jets using the

simulation with the initial magnetic field strength of B0 = 30 G and coronal temperature

of Tc = 0.4 MK. These parameters are chosen because of the variety of both the structure

of the magnetic field and scale of simulated jets in this simulation.

5.4.1 Structure of atmosphere

Figure 5.5 shows the time-distance plots at the height of transition region, defined as the

tallest position with T = 40 kK. The strong vertical component of the magnetic field at the

transition region (panel (d)) roughly indicates that the magnetic field line is connected to

the kilogauss magnetic field concentration near X = 3 Mm in the photospheric level. The

height of the transition region (panel (a)) clearly anti-correlates with the magnetic field

strength, which indicates that the transition region tends to be low inside the magnetic flux

tube (the strong concentration of the magnetic field). We note that the strong elevation of

the transition region around the time of 530 min. As described in the following section,

this is caused by the collision of two nearby magnetic flux tubes at the time of about 525

min near X = 3 Mm in the photosphere. The gas pressure shown in panel (b) shows the

correlation with the vertical magnetic field strength. This correlation affects to enhance

the anti-correlation between the transition region height and magnetic field strength in

Figure 5.5(a).

The correlation between the field-aligned velocity (Figure 5.5(c)) and magnetic field

strength (Figure 5.5(d)) is shown in Figure 5.6. The positive field-aligned velocity corre-

sponds to the upward motion. The absolute velocity is clearly larger when the magnetic

field is weaker. This result indicates that the velocity is weaker above the stronger photo-

spheric magnetic field. This is consistent with the anti-correlation between the transition

region height and magnetic field strength in Figure 5.5(a) since the height is naturally
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Figure 5.5: Time-distance plots at the height of transition region showing (a) the height
of the transition region Z(TR), (b) logarithm of gas pressure Pg, (c) velocity parallel to
the magnetic field Vp, and (d) vertical magnetic field Bz subtracted by the initial magnetic
field strength B0 G. The solid line indicates the contour of the vertical magnetic field
strength of 500 G at the surface (Z = 0 Mm). The results for the simulation with B0 = 30
G and Tc = 0.4 MK are shown.
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Figure 5.6: Joint probability density function of the velocity parallel to the magnetic field
Vp against the vertical component of the magnetic field strength Bz subtracting the initial
magnetic field strength B0 in Figure 5.5(c). The results for the simulation with B0 = 30
G and Tc = 0.4 MK are shown.

Figure 5.7: Same as Figure 5.6, but showing the velocity parallel to the magnetic field
corrected for the contribution of the gas pressure Vp(P/P0)0.1. The reference coronal gas
pressure P0 is taken to be 0.01 dyn/cm2.

99



larger with a larger velocity. This dependence of the velocity field is also affected by

the dependence of gas pressure. We remove the contribution from the distribution of gas

pressure by assuming that the shock wave propagates the stratified chromosphere satis-

fying the relation Vp ∝ P−0.1 as shown in Figure 5.7. This relation is taken from the

previous chapter (Iijima & Yokoyama, 2015). The longitudinal component of the velocity

field shows the anti-correlation with the magnetic field strength even when the contribu-

tion from the coronal gas pressure is removed. The result indicates that the shock waves

driven in the photosphere and lower chromosphere is weak inside the strong magnetic

flux tube.

Figure 5.8 shows the time-distance plots at the isodensity height of ρ = 10−12 g/cm3.

The height of the isodensity tends to be lower in the magnetic flux tube than in the sur-

roundings as in Figure 5.8(a). In other words, the mass density is lower inside the flux

tube when it is compared at the same height. This is a natural consequence if the horizon-

tal total (gas plus magnetic) pressure balance is accounted. No significant difference of

the temperature between inside and outside of the flux tube is found (Figure 5.8(b)).

Figure 5.9 presents the dependence of the field-aligned velocity field on the magnetic

field strength at the isodensity height of ρ = 10−12 g/cm3. The velocity parallel to the

magnetic field shows anti-correlation with the magnetic field strength. The result again

indicates that the acoustic perturbation inside the flux tube is weaker than in the surround-

ings.

5.4.2 Relation between chromospheric jets and the magnetic field at

the photosphere

Figure 5.10 shows the dependence of the properties of chromospheric jets on the photo-

spheric magnetic field strength. If we focus on the jets not produced in the time range of

525–535 min (shown as blue diamonds), the chromospheric jets tend to be taller with the

weaker photospheric magnetic field. A part (not all) of jets in the time range of 525–535
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Figure 5.8: Time-distance plots at the height where the mass density equals to 10−12

g/cm3. Shown are (a) the height of isodensity Z(ρ = 10−12 [g/cm3]), (b) gas temper-
ature T , (c) velocity parallel to the magnetic field Vp, and (d) difference of the vertical
component of the magnetic field Bz and initial magnetic field strength B0. The solid line
indicates the contour of the vertical magnetic field strength of 500 G at the surface (Z = 0
Mm). The results for the simulation with B0 = 30 G and Tc = 0.4 MK are shown.

101



Figure 5.9: Joint probability density function of the velocity parallel to the magnetic field
Vp against the vertical component of the magnetic field strength Bz subtracting the initial
magnetic field strength B0 in Figure 5.8(c). The results for the simulation with B0 = 30
G and Tc = 0.4 MK are shown.

min (shown as red crosses) are produced by the collision of nearby magnetic flux tubes at

the time of 525 min. This process is described in Section 5.4.3.

The difference of coronal gas pressure Pc contributes to the scale of chromospheric

jets (Shibata & Suematsu, 1982; Iijima & Yokoyama, 2015). By using the power law

relations of Vmax ∝ P−0.1
c , Lmax ∝ P−0.2

c , and τ ∝ P−0.1
c obtained in the previous chapter

(Iijima & Yokoyama, 2015), the contribution from the distribution of coronal gas pressure

is removed. The result is shown in Figure 5.11. The dependence on the photospheric

magnetic field strength becomes weaker but still remains. The strength of acoustic waves

as the driver of chromospheric jets is weaker inside the magnetic flux tube even if the

contribution of the coronal gas pressure is accounted.

5.4.3 Generation and propagation of acoustic waves: typical cases

We introduce four examples of the excitation and propagation of acoustic waves in the

photosphere to understand the mechanisms in the magnetic flux tube and the surrounding
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Figure 5.10: Dependence of the maximum upward velocity (top left), maximum length
(top right), lifetime (bottom left), and deceleration (bottom right) of simulated chromo-
spheric jets on the magnetic field strength observed at the height of Z = 0 Mm. The red
crosses represent the jets in the time range of 525–535 min. The blue diamonds indicate
other jets. The results for the simulation with B0 = 30 G and Tc = 0.4 MK are shown.
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Figure 5.11: Dependence of the maximum upward velocity Vmax (top left), maximum
length Lmax (top right), lifetime τ (bottom left), and coronal gas pressure Pc (bottom right)
of simulated chromospheric jets on the magnetic field strength observed at the height of
Z = 0 Mm. The maximum velocity, maximum length, and lifetime is corrected to the
reference coronal gas pressure P0 = 0.01 dyn/cm2 using the relations Vmax ∝ P−0.1

c ,
Lmax ∝ P−0.2

c , and τ ∝ P−0.1
c . The red crosses represent the jets in the time range of

525–535 min. The blue diamonds indicate other jets. The results for the simulation with
B0 = 30 G and Tc = 0.4 MK are shown.
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region.

Figure 5.12 shows the excitation of acoustic waves by the collision of two nearby mag-

netic flux concentrations at the time of 525 min. The negative divergence of the velocity

field is a good indicator of the shock front. The two nearby magnetic flux concentrations

located at X = 2 and 4 at time = 522.0 min (top left panel) produce the compres-

sion between the flux tubes at X = 3 Mm (top right panel). The compression produces

the fan-shaped shock wave propagating upward inside the collided flux tube (bottom left

panel). The shock wave hits the transition region at time = 525.0 min in bottom right

panel. The strong elevation of the transition region in the flux tube at the time of 530 min

in Figure 5.5(a) and a part of chromospheric jets shown as the red crosses in Figure 5.10

is caused by this process. This process is the possible candidate to produce tall jets inside

the strong flux tube at least in the two-dimensional simulations.

Figure 5.13 shows the excitation process of acoustic waves in the independent mag-

netic flux tube. The acoustic waves are generated in the magnetic flux concentration at

X = 3.5 Mm by the surrounding photospheric convection motion (top panels). The fan-

shaped shock wave propagates upward (bottom left panel) and hits the transition region

at time = 537.0 min (bottom right panel). The acoustic waves excited inside the flux tube

spread over by the expansion of flux tube and reduce their amplitude. We also note that

the low density inside the magnetic flux tube produces the small density contrast between

the chromosphere and transition region. This also contributes to reduce the amplification

of shock waves and produce shorter chromospheric jets in the flux tube.

Figure 5.14 presents the interaction of the high-beta shock waves and low-beta mag-

netic flux tube. The acoustic waves are first generated by the convective motion around

X = 4–6 Mm outside the magnetic flux concentration located at X = 3.5 Mm (top left

panel). The high-beta acoustic waves propagate upward hit the edge of the magnetic flux

tube around the height of 1 Mm, elevating the plasma-beta unity line (thick solid line) at

time = 526.0 min (top right panel). The high-beta fast magneto-acoustic wave is con-

verted into the low-beta slow magneto-acoustic wave located at (X,Z) = (6.3, 1.0) Mm
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Figure 5.12: Four series of snapshots of the velocity divergence showing the excitation
of acoustic waves by the collision of two nearby magnetic flux concentrations. The thin
solid lines indicate the magnetic field lines. The thick solid lines represent the plasma
beta unity β = 1. The dashed lines show the height of transition region (T = 40 kK). The
results for the simulation with B0 = 30 G and Tc = 0.4 MK are shown.
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Figure 5.13: Same as Figure 5.12 but showing the persistent excitation of acoustic waves
in the independent strong magnetic flux concentration.
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Figure 5.14: Same as Figure 5.12 but showing the interaction of acoustic waves and
magnetic flux tube.
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Figure 5.15: Same as Figure 5.12 but showing the interaction of acoustic waves outside
the magnetic flux tube.

at time = 527.0 min (bottom left panel). The generated slow-mode shock wave hits the

transition region located around (X,Z) = (7.7, 2.1) Mm at the time of 528 min (bottom

right panel). This process produces the locally concentrated acoustic perturbation near

the edge of the flux tube, which is supposed to be one possible mechanism to generate the

small width of chromospheric jets. We also note that the acoustic perturbation in the flux

tube generated through this process does not suffer from the reduction of amplitude by

the strong expansion of flux tube, because the magnetic flux tube has already expanded

around the height of 1 Mm.

Figure 5.15 shows the interaction of acoustic waves outside the magnetic flux tube.
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The convective motion ubiquitously produces acoustic perturbations in the photosphere

(Z ∼ 0 Mm), around the region of X = 11–13 Mm (top left panel). The acoustic

waves interact with each other and assemble into the region of X = 11.5–12.5 Mm at the

height of around 0.5 Mm and the time of 531 min (top right panel). The acoustic waves

experience further assembling and propagate through the plasma-beta unity line located

around (X,Z) = (12, 1) Mm (bottom left panel). The resulting slow-mode shock waves

hit the transition region at (X,Z) = (12.3, 3.3) Mm (bottom right panel). This transition

region is falling down earlier than the neighboring area before it collides with the shock

wave. Because the shock waves are assembled and intensified through this process, the

strong acoustic waves tend to be generated outside the magnetic flux tube.

5.5 Discussion

We investigate the effect of the average magnetic field on chromospheric jets. The average

magnetic field strength only weakly affects the scale of chromospheric jets. The existence

of the inclined magnetic field lines contributes to reduce the deceleration and produce

longer-living chromospheric jets. The effect of the coronal condition investigated in the

previous chapter (Iijima & Yokoyama, 2015) affects the scale of chromospheric jets more

significantly. On the real sun, the coronal temperature and density will be affected by the

global structure (e.g., open field or closed loop) of the magnetic field through the heating

process of corona. Therefore, the difference of the average photospheric magnetic field

strength will indirectly affect the regional difference of chromospheric jets through the

difference of the coronal condition.

Various processes for the generation processes of acoustic waves inside the intense

magnetic flux tube (Parker, 1978; Spruit, 1979; Schüssler, 1990) are suggested, such as the

swaying motion (e.g., Steiner et al., 1998), granular buffeting (Hasan & Kalkofen, 1999),

and pumping effect (Kato et al., 2011). The acoustic waves generated inside the flux tube

propagate upward in the fan-shaped structure due to the expansion of the flux tube (Figure
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5.13). This is one of the reason why the chromospheric jets are short inside the flux tube

as suggested by Heggland et al. (2011). We suggest that the low density inside the flux

tube also reduces the density difference between the photosphere and transition region

and produces weaker amplification of shock waves by the smaller density contrast. We

also find that the collision of two nearby magnetic flux tubes generates the strong acoustic

perturbation (Figure 5.12), which produces tall jets inside the flux tube.

We find that the acoustic waves experience various interaction and mode conversion

processes during the propagation in the photosphere and chromosphere (e.g., Rosenthal

et al., 2002; Bogdan et al., 2003). The acoustic waves generated by the turbulent motions

have been investigated (e.g., Goldreich et al., 1994; Nordlund & Stein, 2001; Stein &

Nordlund, 2001). The collapse of granule cells also generates relatively high-frequency

localized acoustic perturbations (Skartlien et al., 2000). The acoustic waves generated

through these mechanisms are assembled and intensified in the weak field region between

the strong magnetic flux concentrations (Figure 5.15). The intensification of acoustic

waves similar to this processes is suggested in Heggland et al. (2011) as the possible

candidate of the tall chromospheric jets outside the magnetic flux tube in their simulations.

We also find that the high-beta acoustic waves hits the wall of the low-beta magnetic

flux tube and produces the localized acoustic perturbations inside the flux tube (Figure

5.14). This interaction between the magnetic flux tube and shock wave is similar to the

idealized two-dimensional simulations in Hasan & van Ballegooijen (2008) with much

weaker perturbation. We suggest that this process is the possible candidate to produce

thin and tall chromospheric jets inside the magnetic flux tube.

We find that the produced jets tend to be shorter in the magnetic flux tube than in

the surrounding weakly magnetized regions. The coronal gas pressure tends to be high

above the flux tube. Both the amplification of shock waves under the different coronal

gas pressure and the difference of the driving acoustic perturbation inside and outside the

flux tube contribute to produce shorter jets in the magnetic flux tube. The chromospheric

jets in the real solar chromosphere are observed along the network magnetic field. This
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is in contrast to our results and Heggland et al. (2011). One possible explanation of this

difference is that the other driving mechanism of strong acoustic waves in the magnetic

flux tube is missing in the simulations, such as the magnetic reconnection (Pikel’ner,

1969; Uchida, 1969). Another possible explanation is that the density of chromospheric

jets inside the magnetic flux tube is larger than in the surroundings. Because the high

coronal temperature and density is expected above the magnetic flux tube by the magnetic

energy release, the density at the transition region (at the top of jets) can be higher than

the non-magnetized regions.

The coronal gas pressure is higher above the magnetic flux tubes in our simulations.

We do not give clear answer on this dependence, partially because of the simplified treat-

ment of the top boundary condition that reflects a part of the wave energy. On the real

sun, the strength and connectivity of the magnetic field will affect the coronal heating

rate and formation of dense corona. We note that the high density in the corona over

the strong magnetic flux concentration requires stronger acoustic waves to produce tall

chromospheric jets (Shibata & Suematsu, 1982; Iijima & Yokoyama, 2015).
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Chapter 6

Three-dimensional simulation of solar

chromospheric jets

6.1 Introduction

The two-dimensionality is one of the strongest constraints of the studies presented in the

previous chapters. In Chapter 4, we succeeded to reproduce the tall (> 6 Mm) chromo-

spheric jets under the cool corona with low density using two-dimensional simulations.

On the other hand, the three-dimensional simulations by Martı́nez-Sykora et al. (2009)

produce much smaller chromospheric jets. It is not guaranteed that the tall chromospheric

jets will be produced even in the three-dimensional domain. It is also interesting to ad-

dress whether we can achieve tall chromospheric jets with moderately hot corona as in

the quiet regions.

In Chapter 5, we pointed out that the size of jets is smaller above the magnetic flux

tube than in the region with weak magnetic field. We showed that the driving process of

acoustic waves is not effective near the strong magnetic field concentrations. Such de-

pendence of the scale of chromospheric jets on the local structure of the magnetic field is

also found in the two-dimensional study by Heggland et al. (2011). On the other hand,

according to the observational studies, chromospheric jets appear near the network mag-
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netic field (Suematsu et al., 1995; Langangen et al., 2008b; Tian et al., 2014), where the

magnetic field is stronger than the surrounding inter-network region.

In this study, we conduct a three-dimensional simulation of chromospheric jets. We

especially focus on the effect of the three-dimensionality on (1) the scale of chromo-

spheric jets and (2) the distribution of jets on the structure of magnetic field.

6.2 Simulation setup

The basic equations and numerical methods are described in Chapters 2 and 3. We con-

duct a simulation with three-dimensional numerical domain spanning 9 × 9 × 16 Mm3,

including the upper convection zone of 2 Mm. The uniform grid spacing of 41.7 km

in horizontal (X and Y ) direction and 29.6 km in vertical direction is employed. The

boundary condition is same as described in Chapter 4. First, we impose a uniform verti-

cal magnetic field of 10 G on the sufficiently relaxed three-dimensional atmosphere with

the doubled horizontal grid spacing of 83.4 km. We integrate this low-resolution simula-

tion for 3 solar hours (3 hours in the internal time of the simulation). Next, we redefine

the horizontal grid spacing to be 41.7 km and integrate the simulation for 1 solar hour.

We analyze the last 30 min of the simulation. The thermal conductive flux from the top

boundary is imposed to maintain the coronal temperature to be higher than 1 MK as in

Chapters 4 and 5.

6.3 Structure of atmosphere

Figure 6.1 shows the vertical structure of simulated atmosphere. Because of the thermal

conductive flux imposed at the top boundary, the coronal temperature is maintained to

be almost 1 MK. The gas pressure and mass density is also uniform in the corona. We

also observe that the cool chromospheric plasma with the density of 10−12–10−14 g/cm3

covers the height range between 2–10 Mm. This result implies the existence of tall chro-
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Figure 6.1: Vertical structure of the simulated atmosphere. The probability density func-
tions (PDFs) of (a) gas pressure, (b) gas temperature, and (c) mass density are shown.

mospheric jets in the simulation as shown in the following sections.

Figure 6.2 presents the horizontal structure of the simulated atmosphere at the surface

(Z = 0 Mm). The granulation pattern with the typical diameter of about 1 Mm is iden-

tified in the map of vertical velocity. The vertical vorticity of order 0.1 Hz is reproduced

near the boundary of the granulation. The convective motion advects the vertical magnetic

field to form kilogauss magnetic field concentrations around the edge of the granulation.

Figure 6.3 shows the correlation between the field-aligned velocity and mass den-

sity over the whole spatial and temporal domain. As we have investigated in Chapter 4,

chromospheric shock waves are amplified under the density stratification. We find that

the amplitude of the velocity is slightly smaller than the two-dimensional studies in the

previous chapters (see Fig. 4.10). The index of the power law relation between the field-

aligned velocity and mass density is almost same as or slightly larger than the index of

0.1 derived in Chapter 4 (Iijima & Yokoyama, 2015) and smaller than the semi-analytic

estimate of 0.236 by Ôno et al. (1960). The difference from the two-dimensional sim-

ulations in Chapter 4 is probably caused by the reduction of radiative damping with the

weaker strength of shock waves in addition to the three-dimensional dispersion of waves.

Considering the uniform distribution of coronal gas pressure in Figure 6.1(a), the differ-

ence of the scale of chromospheric jets in this simulation comes from the difference of

the strength of the driving mechanism.
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Figure 6.2: (a) Vertical component of vorticity, (b) vertical velocity, (c) horizontal mag-
netic field strength, and (d) vertical magnetic field on the horizontal plane at Z = 0 Mm.
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Figure 6.3: Joint probability density function of the field-aligned velocity against the mass
density over the whole spatial and temporal domain. The black and white lines represent
the slope for the power law relations of Vp ∝ ρ−0.1 (Iijima & Yokoyama (2015) and
Chapter 4) and Vp ∝ ρ−0.236 (Ôno et al., 1960), respectively.

6.4 Statistical analysis of chromospheric jets

Following the method used in the previous chapters, we detect the simulated chromo-

spheric jets automatically from the motion of the height of the transition region. Figure

6.4 shows the histograms of the properties of chromospheric jets. We can compare this

result with the two-dimensional simulation (Figure 5.2, blue solid lines). The distribution

in the three-dimensional simulation is very similar to the result in the two-dimensional

simulation. We note that this frequency should not be compared with the observation di-

rectly, because we derive these properties only from the motion of the transition region.

The effect of superposition will produce lower frequency of small-scale jets.

The properties of taller chromospheric jets are clearly shown in the scatter plot in Fig-

ure 6.5. The result can be compared with the two-dimensional simulation (Figure 5.3).

Although the majority of jets are similar to the two-dimensional case, the tall chromo-

spheric jets with the maximum length of 5–7 Mm appear in the three-dimensional case.

The tallest jets have the maximum velocity of about 70 km/s, which implies the existence
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Figure 6.4: Histograms showing the maximum height (top left), lifetime(top right), max-
imum upward velocity (bottom left), and deceleration (bottom right) of chromospheric
jets.
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Figure 6.5: Statistical properties of the produced chromospheric jets. Each cross sign
corresponds to a chromospheric jet detected.
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Figure 6.6: Dependence of the maximum upward velocity (top left), maximum length (top
right), lifetime (bottom left), and deceleration (bottom right) of simulated chromospheric
jets on the magnetic field strength observed at the height of Z = 0 Mm. Each cross sign
corresponds to a chromospheric jet detected.

of the strong driver of chromospheric jets.

Figure 6.6 shows the dependence of chromospheric jets on the photospheric magnetic

field. The magnetic field strength at the surface for each jet is measured at the time when

the transition region height reaches the maximum. The tall chromospheric jets with the

maximum length greater than 4 Mm only appear above the strong photospheric magnetic

field (the magnetic field strength > 300 G). The results indicate that the magnetic field

plays an important role for the formation of tall chromospheric jets in this simulation.
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Figure 6.7: Four snapshots of the height of the chromosphere-corona transition region.
The transition region is defined as the height where the gas temperature becomes 40000
K.

6.5 Properties of typical chromospheric jets

Figure 6.7 presents the three-dimensional structure of the transition region. The transition

region is defined as the height where the temperature equals 40000 K in this study. The

transition region is elevated up to about 11 Mm near (X, Y ) ∼ (2, 8) Mm, where the

strong magnetic field concentrations in the photosphere are found (see Figure 6.2). The

chromospheric jets form a cluster with the diameter of 2–3 Mm on the horizontal plane.

The cluster seems to have the fine structure with the horizontal size ranging from several

hundreds to one thousand kilometers. In the following of this study, we focus on the
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properties and formation of this cluster of tall chromospheric jets.

For the visualization of this cluster of chromospheric jets, we use the pseudo-emission

ϵ in the optically thin approximation defined as

ϵ =

∫
nenHG(T )dl, (6.1)

where ne is the number density of electrons and nH is the number density of hydrogen

nuclei. The line integral is taken along the line-of-sight of the pseudo-observation. We

assume a Gaussian function for the contribution function G(T ) as

G(T ) = C0 exp

[
−
(
log10 T/Tc

∆ log10 T

)2
]
, (6.2)

where we set log10 Tc[K] = 4.2 and ∆ log10 T = 0.15. The normalization constant

C0 = 10−28 [cm−7] is taken so that the pseudo-emission in Eq. (6.1) becomes unity

(dimensionless) for the plasma with the number density of ne = nH = 1010 [cm−3]

and the line-of-sight thickness of 1 Mm. This contribution function is sensitive to the

temperature range of the upper chromosphere.

Figure 6.8 shows the pseudo-emission observed from the negative Y -direction. The

line integral in Eq. (6.1) is taken over the whole Y -direction for each (X,Z). The cluster

of the chromospheric jets found in Figure 6.7 is located around X = 2–4 Mm. The

height range and time evolution are consistent with the motion of the transition region in

Figure 6.7. This proves that this pseudo-emission can be used as the good indicator of

chromospheric jets.

Figure 6.9 shows the time evolution of the chromospheric jets. Because the chromo-

spheric jets are deformed by swaying and torsional motions, the slit position is not always

at the center of the jets. We roughly estimate the scale of this jets by eye and get the max-

imum length of the elevation of about 7 Mm and lifetime of about 9 min. We estimate the

maximum upward velocity of about 52 km/s and deceleration of about 192 m/s2 assuming
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Figure 6.8: Four snapshots of the logarithm of the pseudo-emission defined in Eq. (6.1)
observed from the negative Y -direction. The dashed lines represent the position of the slit
plotted in Figure 6.9.
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Figure 6.9: Time evolution of the logarithm of the pseudo-emission at the slit of X = 2.7
Mm in Figure 6.8.

the parabolic trajectory.

6.6 Formation of typical chromospheric jets

Figure 6.10 shows the topology of the magnetic field lines and streamlines above the

strong magnetic field concentration at (X, Y, Z) ∼ (2, 8, 0) Mm. The streamlines presents

strong vortex extending from the photosphere to the upper chromosphere and corona,

which looks like the higher layer extension of the “magnetic tornadoes” reported by

Wedemeyer-Böhm et al. (2012). In our simulation, not only the streamlines but also

the magnetic field lines are also twisted and strongly entangled in the chromosphere. We

also note that the axis of this vortex is slightly inclined toward the positive X-direction.

Figure 6.11 shows the horizontal cut at Z = 1 Mm near the root of the “tornado”.

The small-scale swirl is found at (X, Y ) ∼ (2, 8) Mm. The lifetime of this swirl event is

longer than 5 min. The swirl has a hot center with downward flow and a cool edge with

upward flow. The vertical vorticity have the sign opposite to the vertical rotation of the

magnetic field, which is consistent with the upward-propagating torsional Alfvén wave.
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Figure 6.10: Topology of the magnetic field lines (left panel) and streamlines (right panel)
in the small box of 6 × 6 × 8.5 Mm (including 0.5 Mm below Z = 0 Mm) near the
photospheric magnetic field concentration at (X, Y ) ∼ (2, 8) Mm. A snapshot at the
time of 405 min is shown. The color along the magnetic field lines indicates the gas
temperature [K]. The color along the streamlines represents the magnitude of the velocity
[km/s]. The horizontal slice of the vertical magnetic field at Z = 0 Mm is also shown in
gray scale.
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Figure 6.11: (a) Temperature, (b) vertical component of the velocity field, (c) vertical
component of the vorticity, and (d) vertical component of the rotation of the magnetic
field on the horizontal plane at Z = 1 Mm and time = 405.0 min. The variables of Y > 9
Mm are calculated assuming the periodic horizontal boundary condition.
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Figure 6.12: Vertical magnetic field at the four different layers of Z = (a) 0.0, (b) 0.5, (c)
1.0, and (d) 2.0 Mm at time = 405.0 min.

This long-living swirl is the cause of the twisted structure of the magnetic field lines and

streamlines in Figure 6.10.

Figure 6.12 presents the vertical magnetic field at various heights. We find the vertical

magnetic field with the opposite polarity at X = 2–4 Mm and Y = 8 Mm, which is

beside the axis of the swirling motion in Figure 6.11. This opposite-polarity patch in the

chromosphere (Z = 1.0 and 2.0 Mm) does not exist near the temperature minimum (Z =

0.5 Mm) or the surface (Z = 0.0 Mm).

Figure 6.13 shows the three-dimensional topology of the magnetic field lines with

the slice at Z = 1 Mm. The negative-polarity magnetic patch found in Figure 6.12

is a part of the positive magnetic patch at (X, Y, Z) ∼ (2, 8, 0) Mm. The rotational

motion of the “tornado” that inclined to the positive X-direction can help to produce this

structure. The swirling magnetic field lines drag the heavy and cool plasma upward in
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Figure 6.13: Topology of the magnetic field lines in the small box of 6 × 6 × 8.5 Mm
near the photospheric magnetic field concentration at (X, Y ) ∼ (2, 8) Mm and time =
404.0 min. The horizontal slice of the vertical magnetic field [G] at Z = 1 Mm is shown
in gray scale. Left panel: Topology of the magnetic field lines viewed from the negative
Y -direction. Right panel: Topology of the magnetic field lines viewed from the positive
X-direction. Gas temperature [K] on the (Y, Z)-plane of X = 3 Mm is also shown.
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Figure 6.14: Time evolution of the transition region height (top row) and vertical velocity
at the transition region (bottom row). Shown are the snapshots at time = 405.0 (left
column), 405.5 (middle column), and 406.0 min (right column).

the chromosphere (shown in the right panel). The dragged heavy plasma deforms the

magnetic field lines (shown as magenta lines) and produces negative magnetic patch in

the middle chromosphere.

Figure 6.14 shows the motion of the transition region at the initial phase of the jet for-

mation around (X, Y ) ∼ (2, 8) Mm. The chromospheric jets begin to rise in the region of

X = 2–4 Mm and Y ∼ 8 Mm at time = 405.0 min. This rising region corresponds to the

region of negative magnetic patch in the chromosphere shown in Figure 6.12. The rising

region is deformed and rotated by the swirling motion in the chromosphere throughout

the emergence of chromospheric jets.

Figure 6.15 shows the (Y, Z)-slice at X = 3 Mm. The negative vertical magnetic

field is located at Y = 8 Mm. The cool plasma is lifted upward along this vertical field.

Because the plasma beta is low enough in the upper chromosphere, this upward motion is

mainly driven by the Lorentz force, which can be understood as the part of the rotational
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Figure 6.15: Physical quantities on the (Y, Z)-plane at X = 3 Mm. Shown are (a) the gas
temperature, (b) the vertical velocity, (c) the logarithm of horizontal magnetic field, (d)
the vertical component of the buoyancy (gas pressure gradient plus gravitational) force,
(e) the vertical component of the Lorentz force, and (f) the vertical magnetic field at the
time of 404 min. The dashed lines indicate the plasma-beta unity.
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motion of the “tornado” in Figure 6.10. The accelerated cool and dense plasma hits the

transition region at (Y, Z) ∼ (8, 3) Mm and produces the tall chromospheric jets.

6.7 Discussion

In this study, we present the results of a three-dimensional simulation of solar chromo-

spheric jets. We successfully reproduce a cluster of chromospheric jets with the maximum

height of 10–11 Mm and lifetime of 8–10 min under the corona of 1 MK. The transition

region becomes higher above the strong concentration of the magnetic field in the photo-

sphere. The tall chromospheric jets above the strong magnetic flux tube is driven by the

Lorentz force that relates to the rotational motion of the flux tube.

The tall chromospheric jets are found above the strong magnetic field concentrations

in the photospheric level. This result is consistent with the relation between chromo-

spheric jets and the network magnetic field (Suematsu et al., 1995; Langangen et al.,

2008b; Tian et al., 2014). The typical tall chromospheric jets in our simulation show

parabolic path with the maximum height of about 11 Mm, the lifetime of about 9 min,

the maximum velocity of about 50 km/s, and the deceleration of about 192 m/s2. These

parameters are in good agreement with the observed properties of the spicules in the quiet

region (e.g., Skogsrud et al., 2015).

We find the strongly twisted streamlines in the chromosphere. The tornado-like stream-

lines above the strong magnetic concentration are reported by Wedemeyer-Böhm et al.

(2012) and numerically investigated by several authors (e.g., Wedemeyer-Böhm et al.,

2012; Kitiashvili et al., 2013; Shelyag et al., 2013) without including the corona above

the chromosphere. In our simulation, the chromospheric magnetic field is also twisted

following the swirling motion. Kitiashvili et al. (2013) reported weakly twisted magnetic

field lines produced by the chromospheric swirls. Because the average vertical magnetic

field strength of 10 G in their simulation is same as ours, the difference is probably pro-

duced by the position of the top boundary. The simulations by Wedemeyer-Böhm et al.
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(2012) and Shelyag et al. (2013) investigated the cases with stronger magnetic field. Both

of them exhibit little twist of the magnetic field probably due to the fast Alfvén speed

in the chromosphere. The effect of the average vertical magnetic field strength on the

formation of chromospheric jets should be investigated in the future.

We show that the dragging of the chromospheric material by the torsional motion

plays an important role for the production of chromospheric jets. In the real solar chro-

mosphere, the ambipolar diffusion produced by the drift motion between the ions and

neutrals will reduce the efficiency of the dragging of chromospheric material, which will

lead to the smaller scale of chromospheric jets. The similar reduction of the drag of chro-

mospheric plasma is investigated in the context of the flux emergence and active region

formation (Leake & Arber, 2006; Arber et al., 2007; Leake & Linton, 2013). Another

effect of the ambipolar diffusion is to help the formation of thin current sheets (Parker,

1963; Brandenburg & Zweibel, 1994) and the occurrence of the fast magnetic reconnec-

tion in the chromosphere. A further study with more focus on the ambipolar diffusion is

therefore suggested.

We find that the produced chromospheric jets form a cluster with the diameter of

several Mm with finer strands. Suematsu et al. (2008) reported similar multi-threaded

nature of spicules. Skogsrud et al. (2014) suggested that the Kelvin-Helmholtz instability

by the swaying motion like in the coronal loop (Antolin et al., 2014) produces the multi-

threaded nature. We find the strong swirl and resulting twisted magnetic field in the

chromosphere. We also show that the initial phase of the chromospheric jets formation is

deformed by this swirling motion (see Figure 6.14). Further analysis is recommended to

clarify the exact mechanism of the horizontal structure formation and the relation between

the radiative emission and horizontal structure of the chromospheric material.
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Chapter 7

Concluding remarks

7.1 Summary of the results

In this dissertation, we investigate the formation and dynamics of solar chromospheric

jets based on the radiation magnetohydrodynamic (MHD) simulations. The dissertation

consists of the development of numerical code (Chapter 2 and 3) and investigation of

chromospheric jets (Chapter 4 , 5, and 6).

In Chapter 2, we newly propose a new numerical scheme for the multidimensional

MHD simulations. The solar atmosphere is magnetic pressure dominated, highly nonlin-

ear due to the strong shock waves, and turbulent. A robust and high-resolution numerical

scheme is required for the dynamic simulations of solar atmosphere. We propose a mod-

ified version of the approach by Balsara (2009) to get more cost-effective MHD scheme.

The proposed scheme is validated by many test problems.

In Chapter 3, based on the MHD scheme proposed in Chapter 2, we develop a new

radiation MHD code for the comprehensive dynamical modeling of solar atmosphere.

The effect of the non-local radiation energy transport, Spitzer-type thermal conduction,

latent heat of partial ionization and molecule formation, and gravity are implemented to

the magnetohydrodynamic code. The numerical algorithm is chosen from the standpoint

of the efficiency and compatibility with the massively parallel computation.
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In Chapter 4, we investigate the effect of the coronal condition on the scale and dy-

namics of solar chromospheric jets using the developed radiation MHD code. The higher

coronal temperature causes the higher density at the transition region, which leads to the

small amplification of shock waves under the density stratification in the chromosphere.

The chromospheric jets become shorter under the hot corona. We find that the coronal

temperature also affects the deceleration of chromospheric jets. The taller chromospheric

jets like spicules tend to obey the ballistic (free-fall) motion. On the other hand, the short

chromospheric jets similar to dynamic fibrils sometimes experience the stronger deceler-

ation by the pressure gradient force produced by shock waves.

In Chapter 5, we study the role of magnetic field on chromospheric jets. The scale of

chromospheric jets is not strongly affected by the average strength of magnetic field. The

inclination of magnetic field in the strong field case reduces the deceleration and produces

slightly longer jets. The role of magnetic field becomes important when we focus on the

dependence on the local magnetic structure. The expansion of flux tube and lack of strong

wave excitation process leads the shorter chromospheric jets above the strong magnetic

flux tube. On the other hand, the assembled shock waves between the flux tubes cause

stronger perturbation and taller chromospheric jets.

In Chapter 6, we investigate the effect of three-dimensional domain on the scale of

chromospheric jets and the relation between jets and photospheric magnetic structure. A

cluster of tall chromospheric jets is formed above the strong magnetic field concentrations

at the photospheric level. These tall chromospheric jets are driven by the Lorentz force

of the strongly entangled chromospheric magnetic field.
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Figure 7.1: Schematic illustration of a scenario on the regional difference of chromo-
spheric jets. Open field regions like in coronal holes (panel (a)) have the cool corona with
low density, which produces tall chromospheric jets. The closed loop structure of mag-
netic field (panel (b)) provides hot and dense coronal plasma, which reduces the scale of
chromospheric jets.

7.2 Discussion

7.2.1 Regional difference of chromospheric jets

One of the most important findings in this dissertation is that the coronal temperature

and density significantly affect the scale of chromospheric jets (Chapter 4). We also

find that the difference of average magnetic field strength does not efficiently change the

scale of jets (Chapter 5). These findings suggest a scenario of the regional difference of

chromospheric jets as illustrated in Figure 7.1. Open field regions like in coronal holes

(panel (a)) have the cool corona with low density by the moderate coronal heating rate and

the mass leakage as the solar wind. The cool corona in the open field regions allows strong

amplification of chromospheric shock waves and produces tall chromospheric jets. On

the other hand, the closed loop structure of magnetic field (panel (b)) allows the efficient

coronal heating, which produces hot and dense coronal plasma. The amplification of
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chromospheric shock waves is suppressed. Therefore, short chromospheric jets appear

below closed coronal loops.

The magnetic field does not directly affect the scale of chromospheric jets in this sce-

nario. It changes the efficiency of coronal heating and resulting temperature and density

in the corona, which significantly affects the scale of chromospheric jets. In the open-field

regions like coronal holes, the reflection and phase mixing of Alfvén wave, in addition

to the shock dissipation, are important for the coronal heating (e.g., Suzuki & Inutsuka,

2005, 2006; Matsumoto & Suzuki, 2012, 2014). The resulting coronas in the previous

literatures are relatively cool. In the closed loops observed in quiet and active regions, the

magnetic braiding will be more important and produces hot corona (Parker, 1983, 1989;

Galsgaard & Nordlund, 1996; Gudiksen & Nordlund, 2005). The length of coronal loops

seems to be also related to the heating rate in the corona (Rosner et al., 1978).

We should note the possibility that the scale of the magnetically-driven chromospheric

jets like the reconnection-driven jets will be directly controlled by the average strength

of the magnetic field. However, Takasao et al. (2013) noted that the amplification of

shock waves in the chromosphere is important even if the jets are driven by the magnetic

reconnection in the photosphere or chromosphere. This result implies that the coronal

condition significantly affects the scale of chromospheric jets even when they are driven

by the magnetic energy release in the lower atmosphere. Ishikawa & Tsuneta (2009)

reported that the distribution of small magnetic structures formed through the small-scale

dynamo process is essentially same in a plage region and a quiet region. An implication of

this result is that the average strength of the magnetic field only affects on the large-scale

magnetic field but the small-scale magnetic field, which greatly influences the amplitude

of the magnetic energy release, remains unchanged. These implications also support our

scenario on the regional difference. In three-dimensional simulation (Chapter 6), we find

that the entangled magnetic field above the chromospheric swirl plays an important role

for the generation of tall chromospheric jets. The numerical simulations of chromospheric

swirls (Wedemeyer-Böhm et al., 2012; Kitiashvili et al., 2013; Shelyag et al., 2013) show
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Figure 7.2: Schematic illustration of a scenario on the relation between chromospheric jets
and the network magnetic field. The acoustic waves ubiquitously drive the chromospheric
jets with the moderate size (black arrows). The complex structure of the magnetic
field along the magnetic network drives tall chromospheric jets (red arrows) through the
Lorentz force.

the non-negligible dependence of the complexity of the chromospheric magnetic field on

the average magnetic field strength. It is possible that the scale of chromospheric jets

driven by the torsional motion of flux tube is also affected by the average magnetic field

strength.

7.2.2 Relation between chromospheric jets and magnetic network

In this dissertation, we also focus on the relation between chromospheric jets and strong

magnetic field concentrations. We find the shorter chromospheric jets above the strong

magnetic flux tube in the photosphere in the two-dimensional simulations as described in

Chapter 5. On the other hand, the tall chromospheric jets are formed above the photo-

spheric magnetic flux concentrations in the three-dimensional simulation as reported in

Chapter 6.

These results implies a scenario on the observational relation between chromospheric
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Figure 7.3: Schematic illustration of the horizontal motion of chromospheric jets found in
Chapter 6. The cluster of chromospheric jets possesses the fine-scale horizontal structure
and turbulent motion (red arrows).

jets and the magnetic network (Suematsu et al., 1995; Langangen et al., 2008b; Tian et al.,

2014) as shown in Figure 7.2. The acoustic waves ubiquitously drive the chromospheric

jets with the moderate size both along the magnetic network and in the inter-network

regions. The generation of acoustic waves directly from the swaying, torsional, or com-

pressive motion is not efficient in the magnetic flux tube. The entangled chromospheric

magnetic field is generated by the small-scale motion in the photosphere and lower chro-

mosphere. This complex structure of the magnetic field releases the stored magnetic

energy and drives the tall chromospheric jets along the magnetic network.

7.2.3 Formation of horizontal structure

The formation process of the horizontal structure of chromospheric jets, e.g., the horizon-

tal width of jets and the multi-stranded nature of spicules, is one of the most important

remaining problems. We successfully reproduce many thin chromospheric jets. Although
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the numerical convergence on the horizontal scale of simulated jets is not yet achieved in

the current resolution, our simulations motivate us to think about the origin of the hori-

zontal structure of chromospheric jets. Here, we suggest the possible candidates of the

formation of the horizontal structure.

The first candidate is the interaction of shock waves and magnetic flux tube discussed

in Section 5.4.3. As we have shown, the shock waves produces the spatially localized

slow-mode perturbation in the magnetic flux tube through this interaction, which will

influence the with of chromospheric jets.

The next candidate is the phase mixing of slow-mode waves in the chromosphere like

the one discussed in Heyvaerts & Priest (1983) for the shear Alfvén waves. The small

horizontal difference of the slow-mode phase speed in the chromosphere leads the large

difference of the time when the shock wave reaches the transition region, which can pro-

duce the horizontal structure of chromospheric jets from the temporally and horizontally

uniform perturbation in the photosphere.

The beat phenomena by the difference between the lifetime of chromospheric jets

and the period of acoustic waves will also produce the horizontal structure of the chro-

mosphere. We sometimes find that only a part of the fan-shaped acoustic waves interacts

with the transition region (see figures in Section 5.4.3), because of the large horizontal de-

formation of transition region, whose horizontal structure will be produced by the former

shock-transition region interaction.

In the three-dimensional simulation in Chapter 6, we find that the thinner threads of

chromospheric jets form a cluster. This is consistent with the observation of spicules

(Suematsu et al., 2008; Skogsrud et al., 2014). The torsional motion inside the cluster

illustrated in Figure 7.3 will play an important role for the formation of horizontal struc-

ture in the cluster. Skogsrud et al. (2014) suggested that the large-scale swaying motion

can also generate the small-scale vortexes as investigated in Antolin et al. (2014) for the

coronal loop, which will also contribute the formation of horizontal structure of chromo-

spheric jets.
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7.2.4 Driving mechanism of chromospheric jets

In Chapter 4 and 5, we find that the acoustic wave is the dominant driver of the chro-

mospheric jets in the two-dimensional simulations. In the three-dimensional simulation

(Chapter 6), although the acoustic waves produce many jets that has properties similar

to those in the two-dimensional simulations, we find that the magnetically-driven jets are

much taller than the acoustically-driven jets.

In active regions, we speculate that the acoustic wave is the main driver of the dynamic

fibrils. The parameter ranges and correlations of the length, lifetime, maximum upward

velocity, and deceleration in the two-dimensional simulation with the hot corona (Chap-

ter 4) are sufficiently consistent with the observation of, e.g., De Pontieu et al. (2007a).

This speculation is consistent with the arguments in the previous studies (Hansteen et al.,

2006; De Pontieu et al., 2007a; Heggland et al., 2007). The remaining problem is how to

suppress the scale of the magnetically-driven jets in active regions. Because the Lorentz

force can drive tall chromospheric jets, we expect that there exists any mechanism that

reduces the frequency or power of the magnetically-driven jets. One possibility is that

the magnetic pressure by the strong coronal magnetic field suppresses the formation of

complex structure of the chromospheric magnetic field, which is required for the strong

magnetic energy release.

We should be more careful for the origin of chromospheric jets in quiet regions and

coronal holes. If the two-dimensional effect is not strong for the scale of jets driven by

acoustic waves, the acoustic wave can explain at least some part of spicules and mottles.

More quantitatively speaking, the chromospheric jets that are shorter than 6 Mm in quiet

regions and 8 Mm in coronal holes can be produced by the acoustic waves. However, the

taller jets, e.g., of 10 Mm in quiet regions, should be driven by the Lorentz force. Because

we analyze only single event of the magnetically-driven jets, the statistical investigation

should be undertaken to determine the available parameter range and properties of the

magnetically-driven jets. We do not find any indication of the chromospheric jets with
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the maximum velocity faster than 100 km/s as reported for the type II spicules (e.g., De

Pontieu et al., 2007b). Further investigation is required to determine the origin of tall

chromospheric jets, including the type II spicules.

7.2.5 Limitation of the numerical model

The roughest approximation used in our model is the treatment of the chromosphere. The

local thermodynamic equilibrium (LTE) equation of states is used to avoid the computa-

tional cost required for the simulation with coupling between the radiation and the energy

level of atoms. However, many chromospheric lines are in the condition of so-called

non-LTE and we should not neglect the coupling between the equation of states and ra-

diation (e.g., Vernazza et al., 1981). As pointed out in Carlsson & Stein (2002), the time

scale for the ionization equilibrium in the chromosphere is long, i.e., several minutes to

several hours, which is comparable to the time scale of the shock wave propagation and

the chromospheric jets. This non-equilibrium effect is important for the non-LTE diag-

nosis of the chromosphere. For more accurate equation of states, we have to solve the

rate equations, the evolution equation of the number density for each state, in combina-

tion with the magnetohydrodynamic equations. Moreover, the radiative rate coefficients

in the rate equations require the information of the radiative intensity for the particular

transitions. Ultimately, we have to solve the non-gray radiative transfer with the effect

of partial redistribution and scattering, in combination with the rate equations and MHD

equations. This is too computationally high in the three-dimension. There were a few

codes that directly solve the hydrodynamic equations with non-LTE radiative transfer and

the rate equations (although with many approximation like complete redistribution), such

as Carlsson & Stein (1992) and Rammacher & Ulmschneider (2003). The ad-hoc model-

ing of the radiative rate coefficients to include the effect of the non-equilibrium ionization

was also suggested by Sollum (1999) and implemented in the Bifrost code. However,

the problem on the wrong convergence was reported (Golding, 2010). Further study is
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required in this topic.

The gray approximation in the radiative transfer is assumed from the convection zone

to the photosphere. The validity of the gray approximation was investigated by Vögler

(2004). They concluded that the gray approximation is sufficient for the modeling of sur-

face convection, but the non-gray multi-group method (Nordlund, 1982; Skartlien, 2000;

Vögler et al., 2004) is required for the detailed temperature structure inside the strongly

concentrated magnetic flux tube. Skartlien (2000) and Hayek et al. (2010) pointed out that

the line scattering is important for the radiative cooling rate from the upper photosphere

to the chromosphere. However, the radiative cooling rate in the upper photosphere from

the gray approximation is larger than the multi-group method (Vögler, 2004), and the

radiative cooling rate by the multi-group method is smaller than the multi-group method

without scattering (Skartlien, 2000; Hayek et al., 2010). From these studies, we con-

clude that our approach of gray non-scattering approximation is sufficiently meaningful

to understand the dynamics of the chromospheric jets.

We employ the “effectively optically thin” radiative cooling by Goodman & Judge

(2012) for the chromospheric radiative cooling. The other possible choice is the recipe by

Carlsson & Leenaarts (2012). However, as pointed out in Carlsson & Leenaarts (2012),

the multi-dimensional effect is important for the horizontal variation of the cooling rate.

We also note that the chromospheric radiation should be coupled with the equation of

states for more accurate solution. The coronal approximation is used for the radiative

cooling rate in the transition region and corona. This does not include the effect of the

incident radiation heating in the chromosphere caused by the radiation from the transition

region and corona (Wahlstrom & Carlsson, 1994). The multi-dimensional effect is also

important to this effect (Carlsson & Leenaarts, 2012).

We assume the one-fluid magnetohydrodynamics and do not consider the explicit vis-

cosity nor magnetic diffusion. Cheung & Cameron (2012) and Martı́nez-Sykora et al.

(2012) reported that the slippage between the neutral and ionized particles is important for

the chromospheric reconnection (Parker, 1963; Brandenburg & Zweibel, 1994) and heat-

142



ing in the low temperature region (Martı́nez-Sykora et al., 2015). However, as pointed

out by Martı́nez-Sykora et al. (2012), the approximation by the generalized Ohm’s law

(e.g., Pandey & Wardle, 2008) is not sufficient in the chromosphere and the additional

evolution equation is required to take account of the drift motion of neutral particles.

There are several ways for the verification of the approximation used in our simula-

tion. The best way is to compare the observable radiative intensity and line profile from

our simulation with the observation. This approach requires the non-LTE radiative trans-

fer code and should be investigated in the future. Another way is to compare with the

other numerical codes. The comparison of the several famous photospheric convection

simulation codes is reported by Beeck et al. (2012). We confirm that our model without

the corona is consistent with this report. The verification of the approximation in the upper

atmosphere is more difficult. We find that the statistical properties of the chromospheric

jets in our two-dimensional simulation (Chapter 4 and 5) with the coronal temperature

of 1 MK are consistent with the results by Heggland et al. (2011) that use the Bifrost

code. Because many physical processes are included in our code, further studies for more

detailed verification should be under taken.

From the limitations mentioned above, we apply the developed code only for the dy-

namics of the chromosphere and do not apply to the diagnosis. Even with these limita-

tions, the dynamical model with the realistic surface convection provides us new physical

insights to the phenomena in the solar chromosphere, as we show for chromospheric jets

in this dissertation.

7.3 Future prospect

Before closing this dissertation, we make prospects for the future research. Our new

findings on the chromospheric jets and the comprehensive numerical model of the solar

atmospheric dynamics allow a wide variety of applications.
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7.3.1 Physical aspect

• The relation between the magnetic network and chromospheric jets is one inter-

esting topic for research. The deep convection zone with long integration time is

required for the reproduction of the large-scale magnetic structure in the numerical

simulation. The inclusion of large-scale convective motion will change the struc-

ture of the photospheric magnetic field, which is important for the distribution and

formation of chromospheric jets.

• The appropriate treatment of the small-scale dynamo process is also an interest-

ing issue for the simulation of chromospheric jets. As we found in Chapter 6, the

complexity of the small-scale magnetic field is important for the production of chro-

mospheric jets. This is a challenging topic because of the large numerical costs to

resolve the small-scale dynamo process.

• The formation of horizontal structure is one of the most important issues related to

the chromospheric jets. There will be many approaches. One example is to focus

on the formation of torsional motion in the chromospheric jets as found in Chapter

6. Not only the photospheric vortex but also the large-scale swaying motion or the

reflection and interaction of Alfvén waves will drive the torsional motion.

• The diagnosis of the simulation is crucially important for the accurate comparison

with the observation. Especially, to understand the multi-threaded nature of spicules

will require the careful treatment of radiative transfer. The nature of type II spicules

that fades without falling motion is also an interesting topic for the diagnostic anal-

ysis of the simulation.

• It is interesting to extend the focus to wider varieties of chromospheric jets, such

as the fine-scale jets in the sunspot penumbra (Katsukawa et al., 2007) and the

chromospheric anemone jets (Shibata et al., 2007). Because both jets are observed

around the sunspot, the Lorentz force should be more important than the jets studied
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in this dissertation. This application will extend our unified understandings for

various chromospheric jets.

• The radiation magnetohydrodynamic code developed in this dissertation is designed

for the comprehensive dynamical modeling of solar atmosphere. We can apply the

code for other phenomena on the sun, such as the Ellerman bombs, prominence,

flare, active region formation, etc.

7.3.2 Numerical aspect

• One important next step for the developed code is to implement the non-equilibrium

ionization of hydrogen. Because the hydrogen is the most important supplier of

election in the chromosphere, the dynamic ionization of hydrogen drastically af-

fects the opacity and radiative intensity. This is an inevitable effect for the realistic

diagnostics of simulations.

• The feedback from the non-local radiative transfer to the equation of state through

the rate equations should be included in the future. The completely self-consistent

treatment of the feedback requires unrealizable numerical costs in the current un-

derstanding. Therefore, the efficient and accurate numerical method to treat this

effect should be developed.

• The multi-fluid effect will be also important for the future research. The inclusion of

the ambipolar magnetic diffusion will enhance the occurrence of magnetic energy

release in the chromosphere.

7.4 Conclusion

Since the discovery of spicules (Secchi, 1875; Roberts, 1945), significant amounts of ef-

forts have been made on the observational and theoretical studies of solar chromospheric
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jets. This dissertation is devoted to extending our knowledge of the formation and dynam-

ics of solar chromospheric jets using the radiation magnetohydrodynamic simulations.

The most important new results in this dissertation are (1) the reproduction of tall (> 6

Mm) chromospheric jets using the simulation with realistic physical processes, (2) the

quantification of the effect of the coronal condition and magnetic field on the scale of jets,

and (3) the reproduction of the cluster of jets with fine-scale internal structure. We con-

clude that the solar chromospheric jets reflect the information of not only the magnetic

field but also the corona and fine-scale motion in the lower atmosphere.
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De Pontieu, B., Erdélyi, R., & De Moortel, I. 2005, ApJ, 624, L61

De Pontieu, B., Hansteen, V. H., Rouppe van der Voort, L., van Noort, M., & Carlsson,

M. 2007a, ApJ, 655, 624

De Pontieu, B., McIntosh, S. W., Hansteen, V. H., & Schrijver, C. J. 2009, ApJ, 701, L1

De Pontieu, B., McIntosh, S., Hansteen, V. H., et al. 2007b, PASJ, 59, 655
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Galsgaard, K., & Nordlund, Å. 1996, J. Geophys. Res., 101, 13445

Gardiner, T. A., & Stone, J. M. 2005, Journal of Computational Physics, 205, 509

149



Golding, T. P. 2010, Master’s Thesis, University of Oslo

Goldreich, P., Murray, N., & Kumar, P. 1994, ApJ, 424, 466

Goodman, M. L., & Judge, P. G. 2012, ApJ, 751, 75

Gottlieb, S., Ketcheson, D. I., & Shu, C.-W. 2009, Journal of Scientific Computing, 38,

251

Gottlieb, S., Shu, C.-W., & Tadmor, E. 2001, SIAM Review, 43, 89

Gudiksen, B. V., Carlsson, M., Hansteen, V. H., et al. 2011, A&A, 531, A154

Gudiksen, B. V., & Nordlund, Å. 2005, ApJ, 618, 1020
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Stein, R. F., Lagerfjärd, A., Nordlund, Å., & Georgobiani, D. 2011, Sol. Phys., 268, 271

Stein, R. F., & Nordlund, Å. 1998, ApJ, 499, 914
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