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Abstract

The aim of this dissertation is to evaluate the impacts of internal compositional distribu-

tions on the thermal evolution and the bulk composition’s evolution of ice giants. This

dissertation is composed of three parts. In chapter 1, general introduction of this dis-

sertation is described. In chapter 2, the evolution of an ice giant in a long-period orbit

is described. We deal with the thermal evolution of the ice giants in the solar system

Uranus and Neptune and discuss their origins. In chapter 3, the evolution of an ice giant

in a short-period orbit, namely water-rich sub/super-Earths, is described. We deal with

the thermal and mass evolution of water-rich planets outside the solar system. We reveal

the relationships among masses, radii, and semi-major axes of water-rich super-Earths

and also sub-Earths that have undergone photo-evaporative mass loss. Through those

two parts, we investigate the impact of condensation or evaporation of water on the

evolution of ice giants in long-period, low-temperature or short-period, high-temperature

environments.

Though Uranus and Neptune are similar in the mass and radius, the former is sig-

nificantly fainter than the latter. As previous theoretical studies of thermal evolution

of the ice giants demonstrated, the faintness of Uranus cannot be explained by simple

three-layer models that are composed of a H/He-dominated envelope, an ice mantle and

a rocky core. Namely, the observed effective temperature of Uranus is lower than theoret-

ically predicted (e.g., Hubbard & MacFarlane 1980, Fortney et al., 2011; Nettelmann et

al., 2013). Since the speed of the thermal evolution is determined by how efficiently the

planetary atmosphere radiates energy, the evolution of the atmospheric structure is im-

portant. If the atmosphere contains ice materials such as water, ammonia and methane,

those materials are condensed and removed from the atmosphere during the cooling. In

this study, we quantify the impact of the condensation of ice components in the atmo-

sphere on the thermal evolution to explain the current luminosity of Uranus. To do so,

we simulate the thermal cooling of the ice giants, based on three layer models with a

relatively ice-component-rich, H/He-dominated envelope on top of a water mantle that

surrounds a rocky core. We demonstrate that the effect of the condensation makes the



timescale of the thermal cooling of the planet shorter by an order of magnitude than

in the case without condensation. Such accelerated cooling is shown to be fast enough

to explain the current faintness of Uranus. We also discuss the factors that would have

caused the difference in current luminosity between Uranus and Neptune.

Recent progress in transit photometry opened a new window to the interior of ice

giants. From measured radii and masses, we can infer constraints on planetary inter-

nal compositions. It has been recently revealed that ice giants orbiting close to host

stars (i.e., hot super-Earths) are diverse in composition. This diversity is thought to

arise from diversity in volatile content. The stability of the volatile components is to be

examined, because hot super-Earths, which are exposed to strong irradiation, undergo

photo-evaporative mass loss. While several studies investigated the impact of photo-

evaporative mass loss on hydrogen-helium envelopes, there are few studies as to the

impact on water-vapor envelopes, which we investigate in this study. To obtain theoreti-

cal prediction to future observations, we also investigate the relationships among masses,

radii, and semi-major axes of water-rich super-Earths and also sub-Earths that have un-

dergone photo-evaporative mass loss. We simulate the interior structure and evolution

of highly-irradiated sub/super-Earths that consist of a rocky core surrounded by a water

envelope, taking into account mass loss due to the stellar XUV-driven energy-limited

hydrodynamic escape. We find that the photo-evaporative mass loss has a significant

impact on the evolution of hot sub/super-Earths. With a widely-used empirical formula

for XUV flux from typical G-stars and the heating efficiency of 0.1 for example, the plan-

ets of less than 3 Earth masses orbiting 0.03 AU have their water envelopes completely

stripped off. We then derive the threshold planetary mass and radius below which the

planet loses its water envelope completely as a function of the initial water content and

find that there are minimums of the threshold mass and radius. We constrain the do-

main in the parameter space of planetary mass, radius, and the semi-major axis in which

sub/super-Earths never retain water envelopes in 1-10 Gyr. This would provide an essen-

tial piece of information for understanding the origin of close-in, low-mass planets. The

current uncertainties in stellar XUV flux and its heating efficiency, however, prevent us

from deriving robust conclusions. Nevertheless, it seems to be a robust conclusion that

Kepler planet candidates contain a significant number of rocky sub/super-Earths.
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This dissertation investigates the impact of the distribution of condensable con-

stituents on the thermal evolution and the bulk composition’s evolution of the ice giants.

Long-period ice giants experienced the thermal evolution and the condensation of wa-

ter, ammonia, and methane in the atmosphere simultaneously. Short-period ice giants

experienced the thermal evolution and mass loss simultaneously. Though the effects of

condensation and mass loss remove the water or other volatiles from the atmosphere,

those effects leave the trails on the evolution and observations of the ice giants. Those

results will give essential insights to understand the relationship between origins and

observations of planetary systems.
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Chapter 1

General Introduction

Our solar system has four giant planets, Jupiter, Saturn, Uranus and Neptune. Jupiter

and Saturn were found prehistorically, while Uranus and Neptune were found by Herschel

and Watson (1781) and Le Verrier (1846), respectively. Giant planets are also discovered

in extra-solar systems. Mayor and Queloz (1995) discovered the first Jupiter-mass object

around a solar-type star. The planet, 51 Peg b, is the first discovered extra-solar planet

(or exoplanet) around a main sequence star, while Struve (1952) indicated that exoplanets

around the star could be found from the radial velocity of the host stars. Since the first

exoplanet 51 Pegasi b was discovered in 1995 (Mayor and Queloz 1995), 1977 exoplanets

have been found until today (exoplanet.eu, 2015/11/5). There are several observation

methods for detecting exoplanets, the radial velocity measurement, transit measurement,

astrometry, gravitational microlensing and direct imaging. Given the measured masses

and radii, we can infer the internal bulk compositions of the exoplanets, which give crucial

constraints to their origins. Indeed, we have gained deep insight into the origin of the

solar-system giant planets from the knowledge of the interior structure of the planets.

The planetary structure is composed of mainly two parts, the interior structure and

the atmospheric structure. The interior structure is related to the bulk composition of

the planet that is closely related to the evolution and origin of the planet. In § 1.1, the

theory of the giant planets in our solar system is described. The basic theory of interior

structures of Uranus and Neptune is common with that of Jupiter and Saturn (hereafter

the gas giants). The basic theory of interior structure is applied to the exoplanets. Since

those planets are located in close to the host (hereafter close-in exoplanets), they are in
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high-temperature and strong X-ray and extra ultra-violet (hereafter XUV) environment.

In § 1.2, studies of mass loss and thermal evolution of close-in exoplanets are described.

To understand the planetary structure, the atmospheric structure is also important. The

interior structure of the planet can not be observed directly, while the atmospheric com-

positions and temperature structures can be observe. Since atmospheres of gas giants

and ice giants are connected to their own interior continuously, understanding the at-

mospheric structure is essential to understand the entire structure and evolution of the

planet. In § 1.3, studies of the atmospheric structure of water-rich planet are described.

Lastly, we summarize the aim of this dissertation in § 1.4.

1.1 Interior structure of giant planet in our solar sys-

tem

The giant planets account for 99.5 % of the total mass of the planets and the other small

bodies in our solar system (Stevenson, 1982). If we want to discuss the formation of the

solar system, it is important to understand where and when the giant planets were formed.

To understand the origins of giant planets, it is essential to know what giant planets are

mainly composed of and what are the ages of giant planets. For understanding the

compositions and evolutions of giant planets, it is important to investigate the planetary

interior structure. The main topic in this dissertation is ice giants. However, the theory

of the interior structure has been improved by studies on Jupiter and Saturn. That is, to

understand the interior structure of ice giants, it is necessary to understand that of gas

giants.

The interior structure of the giant planets in the solar system has been investigated by

many authors since the twentieth century. Zapolsky and Salpeter (1969) was a pioneer

in studying the relation between the planetary mass Mp and the planetary radius Rp.

The planetary mass-radius relationship is important to discuss the bulk composition. In

their study, equations of state were assumed to be simple ones that were derived from

the Thomas-Ferimi-Dirac equations by Salpeter and Zapolsky (1967). They simulated

the structure of spherically symmetric planets in hydrostatic equilibrium and uniform in

composition. They found that there is the maximum radius of a planet with a given
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uniform composition. That is because the dominant force that governs the structure

differs depending on the planetary mass: For relatively low-mass planets, the gravitational

force is small compared with the electrostatic solid state force such as the Colomb force,

which means that the material is not compressed enough to increase the density ρ, so that

Rp ∝ M
1/3
p . In contrast, for higher-mass planets, the electrons are free because pressure

ionization and the electrostatic forces are small compared with the Fermi pressure and

with gravitational force, namely, the material is compressed by the gravitational force,

so that Rp ∝ M
−1/3
p . The mass at the maximum radius depends on the planetary

composition and its equation of state. Thus the planetary mass-radius relationship can

never be predicted without considering the property of materials. They also found that

Jupiter and Saturn were composed mainly of hydrogen and helium, and estimated the

mass fraction of hydrogen X to be 0.82 for Jupiter and 0.73 for Saturn. According to their

modeling, Uranus and Neptune were not mainly composed of hydrogen and helium due to

their large mean density compared to Jupiter and Saturn. That is, Uranus and Neptune

could possess more heavy elements than Jupiter and Saturn. Those heavy elements are

included in the form of cores. Podolak and Cameron (1974) simulated the planetary

interior structure considering a central core composed of heavy elements and showed that

the interior of Jupiter and Saturn was not uniform in composition and likely had more

than 10M⊕ heavy element cores.

The thermal evolution of Jupiter was studied by Grossman et al. (1972) and Gra-

boske et al. (1975). Grossman et al. (1972) calculated the evolution of a stellar object

of mass 0.001M⊙ (∼Jupiter mass) composed of pure hydrogen to ascertain whether a

gravitational contraction model for substellar mass objects was applicable to gas giant

planets. Then, they concluded that the qualitative behavior agreed with the standard

stellar evolutionary picture; gas giants behave like pre-main-sequence low-mass stars,

and then rapidly goes over to a configuration like a white dwarf which indicate that the

planetary radius slightly decreases and the planetary luminosity decreases. They also

indicated that it was reasonable for the interior of gas giants to be approximated by

adiabatic fluid models. The turbulent motion transports enormous flux of energy in a

very compressible gas, which is stratified in density, pressure, temperature and gravity

over many powers of ten. Böhm-Vitense (1958) described the convective transport of
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energy as an exchange of energy between hotter and color layers in a dynamically un-

stable region through the exchange of macroscopic mass elements, which is so-called the

mixing-length theory and is widely used to describe the thermal transport in the stellar

interior (Kippenhahn and Weigert, 1990). Gough and Weiss (1976) discussed the stellar

evolution using the mixing-length theory for a convective envelope and showed that the

temperature structure of the convective envelope was able to described by the adiabatic

lapse rate. That is, if we want to calculate the temperature structure of convective zone,

that can be described by the adiabatic lapse rate. This approximation is widely used in

the thermal evolution of the planet (e.g. Graboske et al. (1975); Guillot et al. (1995)).

Namely, the dominant equations for gas giants are the same as stars without hydrogen

burnings and the luminosity of gas giants can be explained by the released energy due to

the gravitational contraction of the planet that has adiabatic interior structure.

Hubbard (1977) studied the cooling of Jupiter, assuming that Jupiter had fully con-

vective interior and lost its primordial heat which had been reserved in the convective

interior since Jupiter had formed. That cooling model was based on the energy balance

equation, namely, the planet’s interior heat was lost by the planet’s luminosity. The

planet’s interior temperature structure is determined by its interior heat. Given that the

planet’s interior is fully adiabatic, the planet’s temperature structure can be determined

by the planet’s entropy which is determined by the planetary atmospheric condition.

When the planet loses its interior heat via its luminosity, the planet’s entropy decreases.

He found that the Jovian total cooling time derived by that model was in good agreement

with the age of the solar system. Note that he assumed Jovian interior was chemically

homogeneous and its interior structure had not changed throughout the evolution. Gra-

boske et al. (1975) used the accurate thermodynamic properties for hydrogen and helium,

while Hubbard (1977) used that for only metallic hydrogen and ignored the molecular

hydrogen. The discrepancy between Graboske et al. (1975) and Hubbard (1977) is due

to the treatment of thermodynamic properties. Thus, it is important for the gas giant’s

thermal evolution to evaluate the planet’s entropy correctly.

The internal compositional distribution of gas giants has a significant effect on the

planetary evolution as follows. While the Jovian thermal evolution could be explained

by the cooling model that assumes the interior is chemically homogeneous, that is not
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the case with Saturn. Pollack et al. (1977) calculated the gravitational contraction of

a homogeneous interior model for Saturn and found that Saturn emitted more energy

in addition to the loss of primordial heat. A possible mechanism is heat output due

to the downward migration of helium in the metallic-hydrogen region, which was sup-

ported by the observed depletion of helium in Saturn’s atmosphere (Hanel et al., 1981).

A study about the Saturnian evolution, considering chemically inhomogeneous interior

structure (that is, the composition and the entropy change as a function of the radius

of a mass shell inside the planet), was recently done by Fortney and Hubbard (2003).

They demonstrated that provided helium was free to migrate down to the planet’s core,

the released potential energy was large enough to extend the Saturn’s cooling time so as

to match the age of the solar system. Another explanation for the Saturn’s luminosity

is that the delay in evolution is due to the chemically inhomogeneous interior structure,

the effect of which may be important for other giant planets such as Jupiter, Uranus,

Neptune and exoplanets. The chemically inhomogeneous interior provides a composi-

tional gradient which affects the efficiency of thermal transport via convection. Leconte

and Chabrier (2013) calculated the thermal evolution of Saturn considering the layered

convection generated by compositional gradients. The layered convection is a structure of

convection which is consisted of uniformly mixed convective layers separated by thin dif-

fusive interfaces characterized by a steep jump in the mean molecular weight. The layered

convection has a great impact on the thermal transport by convection and changes the

thermal evolution timescale of the planet. They found that the layered convection could

explain the Saturn’s present luminosity without any additional energy source, such as

helium sedimentation described above. Though there are uncertainties for mechanisms

maintaining the compositional gradient structure, evolution of layers, and the number

of layers (Nettelmann et al., 2015; Vazan et al., 2015; Kurokawa and Inutsuka, 2015),

that effect should be important for other giant planets such as Uranus, Neptune and

exoplanets.

Here we summarize understanding of the thermal evolution derived by studies of

gas giants. The thermal evolution of gas giants can be described by a simple model of

gravitational contraction with fully convective interior structure.

Since the ice giants Uranus and Neptune have hydrogen-helium envelopes, they should
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have been formed before the protoplanetary disk disappeared. Observations suggest that

the lifetime of a protoplaneary disk is on the order of ≤ 10 Myr (e.g. Haisch et al. (2001);

Hernández et al. (2007)). If we assume that the initial luminosity Linit of an ice giant

was equivalent to the gravitational energy due to the accretion of planetesimals , we can

estimate the accretion timescale τacc (Podolak et al., 1991). We can write the gravitational

energy as GMp

Rp
and the accretion rate as dM

dt
≃ Mp

τacc
, where Mp is the planetary mass, Rp

is the planetary radius, G(= 6.67× 10−8 dyn cm2 g−2) is the gravitational constant. We

can estimate Linit =
GMp

Rp

Mp

τacc
and then we can rewrite

τacc =
GM2

p

RpLinit

. (1.1)

Then we can derive the initial luminosity as follows (Podolak et al., 1991),

Linit = 6× 1026
(
Mp

MU

)2(
Rp

RU

)−1(
τacc

100 Myr

)−1

erg s−1, (1.2)

where MU is the mass of Uranus (= 8.68 × 1028 g), RU is the radius of Uranus (=

2.56× 109 cm). We can find that Linit is greater than the present luminosities of Uranus

(= 3.4± 3.8× 1021 erg s−1) and Neptune (= 3.3± 0.35× 1022 erg s−1) by several orders

of magnitude (Pearl and Conrath, 1991).

Uranus and Neptune contain more heavy elements than Jupiter and Saturn (e.g.

Hubbard and Macfarlane (1980)), as mentioned above. Their constituents are thought

to be ice components such as water, methane and ammonia (e.g. Stevenson (1982)).

Although Uranus and Neptune are similar in mass and radius, Uranus is observationally

known to be less luminous than Neptune (e.g. Podolak et al. (1991); Hubbard et al.

(1995)). Pioneering works for thermal evolutions of Uranus and Neptune were done by

Hubbard (1978) and Hubbard and Macfarlane (1980). Hubbard (1978) simulated the

thermal evolution of Uranus and Neptune by a simple model that is a scaled model of

Jupiter, while Hubbard and Macfarlane (1980) did so by assuming three layered model

and using equation of states for hydrogen-helium, ice, and rock composition. Hubbard

and Macfarlane (1980) concluded that initial temperatures and luminosities for Uranus

and Neptune were not substantially higher than the present values, though Hubbard
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(1978) concluded that thermal emissions of Uranus and Neptune are consistent with

recent infrared observations when the initial luminosities were substantially higher than

the present values. That is because the heat capacity for ice compositions that Hubbard

(1978) adopted was underestimated compared to what Hubbard and Macfarlane (1980)

adopted. The initial planetary luminosity that pioneering studies predicted were too faint

to maintain the consistency with the formation scenario (Podolak et al., 1991) and the

state-of-the-art heat capacity and equation of state were essential to evaluate the thermal

evolution timescale.

Fortney et al. (2011) recently investigated the thermal evolution, taking into account

the radiative-convective atmosphere grid models to determine the upper boundary con-

ditions for the interior structure. They found that planets had longer cooling times com-

pared to the previous works, because of higher atmospheric opacities. Moreover, to the

equation of state of water developed from the quantum molecular dynamics simulations

(French et al., 2009), their Neptune model matched the observed effective temperature

and planet’s gravitational field constraints. However, Uranus was far cooler than their

calculations predicted. That is, if we construct the formation scenario of ice giants, the

initial luminosity of Neptune was high due to the accretion energy, while that of Uranus

was low if the initial luminosities were the same values. Hence, evolutionary models

that previous studies showed cannot explain the difference of the present luminosities of

Uranus and Neptune as long as each initial luminosity was assumed to be different. How-

ever, to be consistent with the formation scenario, the initial luminosity of Uranus and

Neptune was high enough to explain that their formation timescale (e.g. Bodenheimer

and Pollack (1986); Podolak et al. (1991); Pollack et al. (1996)). Therefore, we investigate

the thermal evolution process of Uranus whose initial luminosity was high.

1.2 The evolution of close-in extrasolar planets

Because of capability limitations in observational techniques, available data concerning

exoplanets are only orbital period, planetary mass, radius and so on. From measured

mass and radius, we can obtain the mean density of an exoplanet. The mean density

is related to the planet’s composition, which provides an important constraint to the
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planet’s origin.

Compositions of exoplanets are inferred by comparing observational and theoretical

mass-radius relationships of exoplanets. The theoretical mass-radius relationships were

derived by many authors. Most of the exoplanets that we know currently are close

to their host star, their semi-major axes being typically ≲ 0.1AU. Although previous

models of exoplanet’s structure are based on the knowledge of the solar system (e.g.

Stevenson (1982); Hubbard and Macfarlane (1980); Fortney et al. (2011), the environment

of exoplanets should be rather different from those of our solar system planets, because

effects of tidal heating and irradiation from the host star are important for these close-in

exoplanets.

As mentioned above, recent progress in observation techniques has enabled us to find

exoplanets with relatively small masses and/or radii compared to hot-Jupiters. These

small exoplanets are called hot-Neptunes or super-Earths. The mass-radius relationships

for solid planets were derived by Sotin et al. (2007), Seager et al. (2007), Grasset et al.

(2009), and Valencia et al. (2010). These models are based on the knowledge as to the

terrestrial planets in our solar system. If only the planetary mass and radius are available,

we are unable to determine the planet’s composition uniquely. Moreover, Adams et al.

(2008) examined the influence of the hydrogen-helium envelope on the planetary radius

and demonstrated that adding a gas envelope equivalent to 0.1-10% of the mass of a solid

planet causes its radius to increase by 5-60% from its gas-free value.

To remove such degeneracy in composition, we may make use of constraints from plan-

etary evolution. Since close-in planets are strongly irradiated by host stars, these planets

are exposed to strong X-ray and ultraviolet (hereafter XUV). Because of that, close-in

planets possibly experienced atmospheric escape. Indeed, Vidal-Madjar et al. (2003) ob-

served the evaporating atmosphere of the hot-Jupiter HD209458 b. Atmospheric escape

can also occur for close-in super-Earths. Lammer et al. (2013) calculated the hydrody-

namic escape for close-in super-Earths. They found that super-Earths experienced the

hydrodynamic escape.

To survey the composition and origin of close-in exoplanets, the thermal evolution

and mass loss are important. Valencia et al. (2010) studied the interior structure and

mass loss of the super-Earth CoRoT-7b. They found that CoRoT-7 b could not posses
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massive hydrogen-helium envelope because of the intense irradiation and its small size. A

similar study for the Kepler-11 five-super-Earth system was done by Lopez et al. (2012)

and they discussed compositions of Kepler-11 b-f and their origin. That is, the amount

of hydrogen-helium envelope of CoRoT-7b and Kepler-11 planets were restricted by the

mass loss and the mass loss plays an important role in determining close-in planets’

compositions.

Mass loss has a significant impact on the distribution for the mass-semimajor axis or

radius-semimajor axis of close-in exoplanets (Owen and Wu, 2013; Lopez and Fortney,

2013; Kurokawa and Nakamoto, 2014). They calculated the mass loss evolution of short-

period planets composed of a rocky core surrounded by a hydrogen-helium envelope

and found that the mass loss evolution could explain the observed correlation between

the separation and mass (radius, density) of the planets detected until the paper was

published. They concluded that the mass loss of a planet changes its bulk composition

from its birth. That is, the observed mass and radius of a planet can not be connected to

the formation scenario without considering the evolution after the planet was formed. To

discuss the thermal evolution and the mass loss is essential for understanding the planet

when is was formed. If we consider the mass loss as a energy-limited hydrodynamic

escape, the mass loss rate Ṁ is a function of the planetary mean density (see Chap. 3

more detail). Since the planetary mean density infers the planetary bulk composition, to

understand the impact of mass loss on the planetary mass and radius is important for

understanding the origin and evolution of the planet. Hence, we investigate the stability

of the envelope of the close-in ice giant against photo-evaporation. If we want to estimate

the mass loss rate, we have to estimate the planetary mean density. Since the planetary

mean density changes by the age, to estimate the entropy of the planet is also important,

which is related to the time evolution. The entropy of the planet is determined by the

atmospheric structure. Therefore, understanding of atmospheric structure of ice giants

is essential.
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1.3 The atmospheric structure of giant planets

When emission and transmission spectra from a planet are observed, those include infor-

mation of the atmospheric structure and composition. The atmospheric structure of a

giant planet controls the thermal emission from the interior, which is essential to estimate

the cooling timescale and to compare the observation of atmospheric composition and the

present thermal emission. That is, the atmospheric structure is important for both of the

planetary evolution and observation of the planet, which is essential to characterize the

planet. Giant planets’ atmospheres are mainly composed of hydrogen and helium.

The atmospheric structure is essential to determine the entropy of the planet. Since

the radiative-convective boundary and the outward flux from the planet is determined

by the atmospheric structure, the atmospheric structure could constrain the timescale

the thermal evolution. Moreover, if the planetary atmosphere is not mainly composed of

hydrogen molecules, the atmospheric structure would be changed.

The atmospheric structure is composed of a radiative region atop a convective region.

If the planetary entropy is determined by the condition of the bottom of the atmosphere,

the net flux through the atmosphere is determined by the atmospheric structure. The

main constituents of the present ice giants’ atmospheres is hydrogen and helium. However,

the ice giants’ atmospheres when it was formed may have been composed of mainly

volatiles which include hydrogen, helium, water, ammonia, methane, carbon monoxide

and other constituents that are in gas phase. Moreover, the atmosphere of close-in water-

rich super-Earths is mainly composed of water molecule. To understand the structure that

composed mainly of water, the Earth’s atmospheric structure is a good reference. That

is, to understand the atmospheric structure of terrestrial planets is useful to understand

that of ice giants whose atmospheres are mainly composed of condensable constituents

which indicate water, ammonia, and methane. In this study, we indicate condensable

constituents are water, ammonia, and methane.

The atmosphere of the terrestrial planets, especially Earth, is controlled by the be-

havior of water molecules. If the water is condensed in the atmosphere, the latent heat

warms up the surroundings and the temperature gradient changes. The saturation vapor

pressure has a dominant effect on the temperature-pressure relation in the atmosphere.
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The outward flux from the top of the atmosphere is fixed as long as the water in the

atmosphere is condensed around the photosphere where the optical thickness of infrared

radiation is on the order of unity (e.g. Ingersoll (1969); Komabayasi (1967); Nakajima

et al. (1992)). Abe and Matsui (1988) studied the atmospheric properties of the impact-

generated atmosphere composed of H2O and CO2. The amount of the atmosphere is more

than 200 bars and the optical thickness is larger than unity. They found that the surface

temperature decreases due to the cooling of the planet when the energy flux is less than

1.50× 105 erg s−1cm−2(= 150 W m−2). This energy flux is quite large, comparing to the

present luminosity of Uranus. If we assume the planetary radius is equal to the present

radius of Uranus RU , the planetary luminosity is Lp = 4πR2
UF = 1.2 × 1025 erg s−1

which means that the Kelvin-Helmholtz timescale, which describes the timescale of the

contraction of the planet, is τKH =
GM2

U

2RULp
∼ 3× 108 year.

The present atmospheric structure of the ice giants is summarized here. Observations

by Earth-based and Earth-orbital telescopes, and Voyager 2 spacecraft suggeste that the

atmosphere of Uranus is enriched in heavy elements relative to solar composition. The

atmosphere is mainly composed of hydrogen, helium, methane, and hazes composed of

hydrocarbons. Observations also suggeste that the helium mole fraction is 15.2±3.3 %

(0.262±0.048 by mass fraction), which, within the uncertainties, is the same as the value of

the primitive solar nebula (0.27-0.28 by mass) derived from standard evolutionary model

of the Sun (Fegley et al. (1991) and references therein). The atmosphere of Neptune is

composed of hydrogen, helium, methane, HCN, CO, and hydrocarbons (e.g. C2H6, C2H2).

(Bishop et al. (1995) and references therein) The atmospheric temperature structure of

Uranus is calculated by Marley and McKay (1999). They found that internal heat fluxes

≤ 60 erg cm−2 s−1 were inconsistent with the observed tropospheric temperature profile.

The internal flux was about 80 erg cm−2s−1, which was derived from the best-fitting

model throughout the troposphere.

There is the hint for discussing what determines the timescale of the thermal evolution.

The ice giants have potentially a lot of condensable constituents in their interior. If

mole fractions of volatiles in the atmosphere are fixed at the present values, volatiles

in the atmosphere were not be saturated through the planetary evolution. When the

planetary atmosphere were mainly composed of condensable constituents, excess volatiles
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in the atmosphere were removed due to the condensation. However, excess condensable

constituents warm the atmosphere due to the latent heat, which in turn have an influence

on the thermal evolution history of the planet. Therefore, mole fractions of volatiles when

the planet formed are important issue to understand the origin and evolution of ice giants.

1.4 Purpose of this dissertation

Through this dissertation, we investigate the evolution of the ice giants in the solar

system and beyond. In our solar system, the present luminosity of Uranus is too faint to

explain if it was formed within the age of our solar system as described above in § 1.1.

Constraining the evolutionary pass of Uranus is important to understand the formation

scenario of our solar system. Outside our solar system, many close-in ice giants have been

discovered. Since those ice giants are in high-temperature and strong X-ray and extreme

UV environments, they experience the atmospheric escape and decrease their mass. The

amount of condensable constituents that the planet possesses would be useful to constrain

when and where the planet was formed. The evolution and bulk composition of ice

giants are clues to connect the formation history and the planetary system. However, no

systematic study is yet to be done for the stability of water envelopes.

The rest of this dissertation is composed of two parts. In chapter 2, the impact of

the condensable constituents in the atmosphere on the thermal evolution of ice giants is

investigated. We deal with the thermal evolution of cold ice giants in the solar system and

discuss the origins of Uranus and Neptune. In chapter 3, the impact of photo-evaporative

mass loss on masses and radii of water-rich sub/super-Earths is examined. Considering

the thermal and mass evolution of ice giants outside the solar system, we investigate the

relationships among the masses, radii, and semi-major axes of water-rich super-Earths

and also sub-Earths that have undergone photo-evaporative mass loss. Through those

two parts, we reveal the role of volatiles on the evolution of ice giants in long-period, low-

temperature or short-period, high-temperature environments. Though some key volatile

constituents cannot currently be detected directly by observations of atmospheres of ice

giants in the solar system and beyond, they would act as tracers for constraining the

origin and evolution of ice giants due to differences in their evolution history. If we can
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determine those tracers, they would provide us useful information to reveal the origin of

the planetary system.
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Chapter 2

Impact of the condensable

composition in the atmosphere on

the thermal evolution of ice giants

2.1 Introduction

The interior structure of Uranus is thought to consist of three layers, a rocky core, an ice

mantle and a hydrogen/helium-dominated envelope from inside out (e.g. Hubbard and

Macfarlane (1980); Stevenson (1982); Fortney et al. (2011)). Observation done by Voyage

2 determined the effective temperature of Uranus to be 59.3± 0.8 K, which corresponded

to the intrinsic luminosity of less than 7×1022 erg s−1 (Pearl and Conrath, 1991). Previous

studies (e.g. Hubbard and Macfarlane (1980); Fortney et al. (2011)) predicted the initial

effective temperature Teff ∼ 65-70 K. However, such a low initial luminosity means that

the formation timescale is longer than the age of solar system (Podolak et al., 1991).

Thus, it is essential to understand the evolutionary track from a high luminosity state of

Uranus that is consistent with the formation theory.

Here we show typical examples of a evolutionary track of planetary luminosity as-

suming low initial luminosities. Fig. 2.1 shows the time evolution of the ice giants for

various initial luminosities. The initial luminosity is related to the accretion timescale

(see Eq. (1.2) or Podolak et al. (1991)). Lines’ colors represent the accretion timescales.

We can find that if we assume the long accretion timescale, which means the low initial
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Figure 2.1: The time evolution of planetary luminosity with various initial luminos-
ity. The luminosity and age are normalized by the present luminosity of Uranus
LU = 5.6 × 1022 erg s−1 and year, respectively. Lines’ colors represent the initial lu-
minosity. The red, blue, purple, and aqua blue represent τacc =200 Myr, 4.6 Gyr, 13 Gyr,
500 Gyr, respectively. We assume Z0 = 0.3, Ztot = 0.8, and Zw = 0.5, respectively. The
condensation of ice compositions (water, ammonia, and methane) are ignored. See § 2.2
for the detail model description.

luminosity, the present luminosity of Uranus can be explained. However, to satisfy such

the low initial luminosity, the accretion timescale is required to be longer than the age

of our solar system. If we assume τacc < 10 Gyr, which is equivalent to the age of the

universe, the difference among initial luminosities is eased after 5 Gyr.

The initial state of thermal evolution of Uranus is equivalent to the final state of for-

mation. To understand the initial luminosity of Uranus, knowledge of formation theories

are essential. The formation stage is divided by five parts (e.g. Bodenheimer and Pollack

(1986); Pollack et al. (1996); Ikoma et al. (2000)). Below we review the formation pro-

cesses of gas giants. (a) A core composed of the condensable constituents (rocky, water,

ammonia, and other species) is formed due to the accretion of planetesimals. (2) When

the core mass has grown to the one from a few tenth of an Earth mass, a gaseous envelope

in hydrostatic equilibrium begins to form around the core. (b) The core whose mass is the

one from a few ten Earth masses obtain a gaseous envelope in hydrostatic equilibrium.
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(c) The core and envelope continue to grow until the crossover mass is reached. (d) When

the core mass is reached the crossover mass, the envelope mass increases rapidly. This

is so-called runaway accretion. At the same time, the planet produced a high luminosity

which is caused by the gravitational contraction of the envelope. (e) Accretion of both

core and envelope halts, and the planet contracts and cools. The thermal evolution of

the planet is process (e). The initial condition of the thermal evolution is determined by

process (d). However, the formation of ice giants does not follow the runaway accretion,

namely process (d). Pollack et al. (1996) calculated the formation of Uranus and Neptune.

They concluded that Neptune and Uranus contain 1–4 Earth mass of hydrogen-helium

envelope with the remaining 10–16 Earth mass core. Thus, the accretion of hydrogen-

helium envelope was halted before the runaway accretion occurred. They also found that

the minimum luminosity during the formation phase was about 3× 1026 erg s−1 that was

equivalent to τacc ∼ 200 Myr derived by Eq. (1.2). If we calculate the thermal evolution of

Uranus from the high initial luminosity state, we can not explain the present luminosity

of Uranus as shown above.

The thermal evolution of an ice giant has been described as a homogeneous evolution,

which means the planetary interior is fully adiabatic and consisted of a compositionally

homogeneous structure (Hubbard and Macfarlane, 1980; Fortney et al., 2011; Nettelmann

et al., 2013). The luminosity of the ice giant decreases with time through the thermal

emission from the planetary atmosphere. Hubbard and Macfarlane (1980) calculated the

thermal evolution of Uranus and Neptune. They concluded that Uranus and Neptune did

not have substantially high temperature interior and high luminosities when they were

formed. Fortney et al. (2011) calculated the thermal evolution of Uranus and Neptune

with the state-of-the-art equations of state and atmospheric model. They found that

Neptune matched the measured effective temperature of the planet with the homogeneous

model that also matched the current gravity field constraints of the planet. However

they found that the present luminosity of Uranus was underluminous comparing to the

numerical results.

The previous studies have proposed three ideas to solve that problem. The concept

of the following ideas is that the primordial heat is reserved in the deep interior. One

idea is that the super-ionic water layer is formed in the deep interior, which prevents the
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transport of the heat from the deep interior. However, such a layer is formed too deep

to reserve enough primordial heat within the deep interior (Nellis et al., 1988; Podolak

et al., 1991). The second idea is that giant impact events deposited the impact energy

into the thin shell to inhibit convection. The interior structure of proto-Uranus would

be compositonally stably stratified. When porto-Uranus experienced a giant impact, the

upper layer was heated and the impact energy was deposited. However, the crucial issue

is how to partition the impact energy. To distribute the input energy into the thin outer

shell of Uranus, it would require strict impact parameters. The last idea is that semi-

convection or double diffusive convection prevents convective transport of heat in the

planetary interior (Podolak et al., 1991). Uranus might have a thermodynamically stable

interior that prevents convection due to compositional gradients. In this case, even when

the outer envelope cooled, the deep interior did not cool efficiently (Stevenson, 1986;

Nettelmann et al., 2013). The convection with compositional gradients, which is called

semi-convection or double diffusive convection, is important to discuss the transport of

the heat and constituents by convection in the deep interior. The transport property

depends on the form of convection. In especially, the layer convection, which is separated

by diffusive interface, prevents the thermal transport and delays the cooling (Radko,

2003; Rosenblum et al., 2011; Mirouh et al., 2012; Wood et al., 2013). The transport

property of the layered convection depends on the layer thickness. It is still unclear

whether there is an equilibrium layer thickness. The impact of the layered convection

on the thermal evolution was examined for the cases of gas giants (Vazan et al., 2015;

Kurokawa and Inutsuka, 2015; Nettelmann et al., 2015). However, the layered convection

is hydrodynamically unstable for the large-scale-overturning convection. Efficient mixing

due to the overturning convection may smooth out the compositional inhomogeneity

in the planetary interior (Vazan et al., 2015; Kurokawa and Inutsuka, 2015). If the

compositional inhomogeneity disappears, the planetary interior should be compositional

homogeneity and the convective transport of heat is not prevented. Hence, this thesis

propose another hypothesis to solve the thermal evolution of Uranus.

We assume that Uranus possessed a significant amount of condensable constituents in

the atmosphere when it was formed. If ice materials are condensed, the lapse rate in the

convective region of atmosphere is changed. The atmospheric temperature is raised due
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to the latent heat of condensation compared to a dry adiabatic condition. In this study,

we demonstrate the acceleration of cooling due to the condensation in the atmosphere

when we assume a significant amount of condensable constituents.

In this study, we aim to find a self-consistent evolutionary track of Uranus whose

initial condition is consistent with a core accretion scenario. We also discuss the factors

that determine the difference between Uranus and Neptune in the present luminosity.

Our study will be useful to discuss the consistency between the formation scenario and

the observations of the ice giants.

The rest of this chapter is organized as follows. The basic equations and assumptions

in this study adopted are described in § 2.2. The results of our calculations are described

in § 2.4. The discussion of our study are described in § 2.5. Finally, the conclusions are

described in § 2.5.

2.2 Model description

In this study, we simulate the evolution of the luminosity and radius of a planet that

consists of hydrogen-helium, ice constituents (water, ammonia, and methane) and rock,

including the effects of condensation in the atmosphere. The structure model is depicted

in Fig. 2.2. The planet is assumed to consist of four layers in spherical symmetry and

hydrostatic equilibrium; namely, from top to bottom, a hydrogen-helium-dominated at-

mosphere with water, ammonia, and methane, a hydrogen-helium-dominated envelope

with water, a water mantle and a rocky core. At each interface, the pressure and tem-

perature are continuous. We summarize the picture of the evolution of the ice giant as

follows. With the thermal evolution, the atmosphere cools and the water, ammonia, and

methane (hereafter we call condensable constituents) condenses. Then the atmospheric

temperature structure can be affected by the latent heat due to the condensation of

condensable constituents. We set the parameters the mole fraction of condensable con-

stituents and its fraction of constituents. We investigate the effect of those parameters

on the thermal evolution of the ice giants.
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Figure 2.2: Model of the planetary structure in this study.

2.2.1 Interior structure

The assumptions for the interior structure are shown here.

• The planet has non-rotating, spherically symmetric, hydrostatic-equilibrium struc-

ture.

• The interior is three-layer structure that consists of a rocky core, a water mantle,

and a hydrogen-helium-dominated envelope with water from inside out.

• The envelope, the water mantle, and the rocky core are fully convective and the

convection is vigorous enough that the entropy S is constant in each layer.

The interior structure of the planet is determined by the differential equations (e.g. Kip-

penhahn and Weigert (1990)),

∂P

∂Mr

= −GMr

4πr4
, (2.1)

∂r

∂Mr

=
1

4πr2ρ
, (2.2)

∂T

∂Mr

= −GMr

4πr4
T

P
∇, (2.3)
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and the equation of state,

ρ = ρ(P, T ) (2.4)

where r is the planetcocentric distance, Mr is the mass contained in the sphere with

radius of r, P is the pressure, ρ is the density, T is the temperature, and G(= 6.67 ×

10−8 dyn cm2 g−2) is the gravitational constant. The symbol ∇ is the temperature

gradient with respect to pressure, which means ∇ = d lnT
d lnP

. We assume that the water

envelope and rocky core are fully convective, and the convection is vigorous enough that

the entropy S is constant; namely,

∇ = ∇ad. (2.5)

2.2.2 Atmospheric structure

The assumptions for the atmospheric structure are shown here.

• The atmosphere is one-dimensional radiative-convective equilibrium.

• The net flux is constant through the atmosphere.

• The atmosphere contains five molecules; hydrogen, helium, water, ammonia, and

methane.

• Each molecule’s distribution in the atmosphere is dominated by the saturation

pressure of each molecule.

• The interface between the atmosphere and interior corresponds to the pressure of

Pbtm = 100 bar.

The temperature-pressure relation in the stratosphere is determined by the analytical

formula that was derived by Matsui and Abe (1986),

σT 4 = F0
τ + 1

2
+

S0

4

(λ+ α) + (λ− α)β + (α2/λ− λ)(e−αt + βeαt)

(1 + α) + (1− α)β
(2.6)

where τ and t are the normal optical depths for the long- and short-wave radiation fluxes,

S0 is the solar flux, F0 is the thermal energy flux given at the base of the atmosphere, µ

is the reflectivity of the short-wave radiation at the bottom of the atmosphere, ω is the
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albedo for single scattering, λ = τ/t, α =
√
1− ω, β = β0e

−2αt, and β0 = [µ(1 + α) −

(1− α)]/[(1 + α)− µ(1− α)]. We introduce mean opacities κth and κv to describe τ and

t. Subscripts ”th” and ”v” are opacities integrated by thermal and visible wavelength,

respectively. In this study, we assume that the mean opacity for long-wavelength are

described by the Rosseland mean opacities,

1

κth

=

∫ ∞

0

1

κν

dBν(Tatm)

dT
dν

/∫ ∞

0

dBν(Tatm)

dT
dν, (2.7)

where ν is the frequency, κν is the opacity for ν, and Bν is the Planck function. Then

we represent dτ = κthdm where dm is a mass coordinate. The mean opacity for short-

wavelength κv is quite unknown. In this calculation, we simply assume κv = 0.1κth. We

assume ω = 1, µ = 0. Consequently, the temperature-pressure profile in the stratosphere

is determined by

σT 4 = F0
τ + 1

2
+

σT 4
eq

2

[
1 +

κth

κv

+

(
κv

κth

− κth

κv

)
e−τv

]
, (2.8)

where Teq is the equilibrium temperature and σ(= 5.67 × 10−5 erg cm−2K−4s−1) is the

Stefan-Boltzmann constant. A comparison between the observations and our theoretical

model is described in subsection 2.5.3. The position of photosphere (i.e. the optical

depth is equal to unity) is important for the thermal evolution. As discussed below in

subsection 2.5.3, using the Rosseland mean opacity is valid to determine the photosphere

of the planet.

We assume the temperature-pressure relation in the tropopause is determined by the

pseudo-moist adiabatic profile (Ingersoll, 1969; Atreya, 1986; Abe and Matsui, 1988). We

set N numbers of species including j numbers of non-condensable species,

d lnT

d lnP
=

(
∂ lnT

∂ lnP

)
dry

1 +
∑N

i=j+1
xi

1−xi

d ln p∗i
d ln T

1 +
∑N

i=j+1
Rg

Cp

xi

1−xi

d ln p∗i
d ln T

, (2.9)

where Cp =
∑N

i=1 xiCp,i is the mean heat capacity, p∗i is the vapor pressure of the i-th

condensable spices (i = j + 1, · · · , N), respectively.
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The radiation transfer equation is integrated using the Eddington approximation. The

upward and downward radiation flux densities (F+
IR and F−

IR) can be written as

F+
IR(τ) = πB(τ)−

∫ τ

τb

d

dτ ′
(πB(τ ′)) exp

(
−3

2
(τ ′ − τ)

)
dτ ′, (2.10)

F−
IR(τ) = πB(τ)−

∫ τ

0

d

dτ ′
(πB(τ ′)) exp

(
−3

2
(τ − τ ′)

)
dτ ′ − πB(0) exp

(
−3

2
τ

)
,(2.11)

Frad = F+
IR − F−

IR − Firr, (2.12)

and

Fnet = Frad + Fc, (2.13)

where Fc is the convective flux, Firr is the direct solar flux. Note that Ftop = F0 =

F+
IR(τ = 0). We assume the net flux (2.13) is constant through the atmosphere and the

convective flux Fc is equal to 0 in the stratosphere.

2.2.3 Thermal evolution

The thermal evolution of the planet is represented by the change of the entropy. That is,

we can write the time evolution of entropy as

∂Lr

∂Mr

= −T
dS

dt
(2.14)

where Mr is the mass contained in a sphere of radius r, Lr is the luminosity in a sphere of

radius r, T is the temperature, S is the entropy, and t is the time. We integrate Eq. 2.14

by the mass and obtain

Lp = −
[
dSenv

dt

∫ Mp

Mm

TdMr +
dSm

dt

∫ Mm

Mc

TdMr +
dSc

dt

∫ Mc

0

TdMr

]
, (2.15)

where Lp is the planetary luminosity, Senv is the entropy of the envelope, Sm is the entropy

of the mantle, Sc is the entropy of the core, Mc is the mass of the core, Mm is the mass

of the mantle, respectively. Lp is written as

Lp = 4πR2
pFtop, (2.16)
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where Rp is the planetary radius and Ftop is the outgoing flux from the top of the atmo-

sphere.

2.2.4 Abundance in atmosphere and interior

We set the parameters for mass fractions of ice and rock. Here we define

Ztot =
We +Wm +R

H +We +Wm +R
, (2.17)

Z0 =
We

H +We

, (2.18)

Zw =
We +Wm

We +Wm +R
, (2.19)

where Ztot is the total heavy elements mass fraction of the planet, Z0 is the heavy element

mass fraction in the envelope, Zw is the water mass fraction in the heavy element, H is

the hydrogen-helium mass in the envelope over planetary mass, We is the water mass

in the envelope over the planetary mass, Wm is the water mass in the mantle over the

planetary mass, R is the rocky core mass over the planetary mass, respectively. Note

that H +We+Wm+R = 1. We assume the atmospheric mass fraction Ma ∼ 0. That is,

H = 1− Ztot (2.20)

We =
Z0

1− Z0

(1− Ztot) (2.21)

Wm = Zw · Ztot −
Z0

1− Z0

(1− Ztot) (2.22)

R = (1− Zw) · Ztot (2.23)

We assume Zw = 0.5.

2.2.5 Opacities of hydrogen-helium

The opacities for hydrogen and helium are due to the collision induced absorption and

Rayleigh scattering. We assume the mass fractions for hydrogen and helium are 75 % and

25 % respectively. We use the data table for the opacity for hydrogen-helium calculated

by Freedman et al. (2008). The density and temperature range are from ρ = 2.5× 10−12

to 10 g cm−3 and from T = 102 to 104 K, respectively.
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2.2.6 Opacities of H2O, NH3, and CH4

We calculate the line profiles for H2O, NH3, and CH4 by use of HITRAN 2012 database

(Rothman et al., 2013). We calculate the Rosseland mean opacity from line profiles whose

temperature and pressure range are P = 100, 10, 1, 0.1, 10−2, 10−3, 10−4 bar, and T =70,

100, 200, 300, 400, 500, 600, 700, 800, 900 K, respectively.

The calculation method of line profiles is based on Rothman et al. (1998). In following

descriptions, h, c, kB, and c2 are the Planck constant, speed of light, Boltzmann constant,

and the second radiation constant (c2 = hc/kB), respectively. The spectral line intensity

[cm−1/molecule cm−2] is defined here for a single molecule, which is a function of the

spectral line transition frequency [cm−1]. The transition between lower and upper states

η and η′ is accompanied by the emission or absorption of a photon of energy E = νηη′ .

The line intensity Sηη′ is written by

Sηη′(T ) = Sηη′(Tref)
Q(Tref)

Q(T )

exp(−c2Eη/T )

exp(−c2Eη/Tref)

1− exp(−c2νηη′/T )

1− exp(−c2νηη′/Tref)
, (2.24)

where T is the temperature, Tref is the reference temperature (Tref = 296 K), Q is the

partition function, Eη is the lower state energy of the transition, and νηη′ is the spectral

line transition frequency, respectively. In our calculations, we use νηη′ = Eη′ − Eη. Data

of Sηη′(Tref) and Eη for a frequency ν are tabulated in the HITRAN data table. The

partition function Q(T ) is calculated by TIPS code developed by Fischer et al. (2003).

Using the line intensities, we can calculate the cross section for kηη′(ν, T, p) by use of the

Voigt-profile

kηη′(ν, T, p) = Sηη′fV (ν − νηη′), (2.25)

where fV is the Voigt-profile function, and p is the pressure. The Voigt-profile is described

by the Lorenz profile fL and Doppler profile fD as

fV (ν − νηη′) =

∫ ∞

−∞
fL(ν

′ − νηη′)fD(ν − ν ′)dν, (2.26)
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where

fL(ν − νηη′) =
αL

π[(ν − νηη′)2 + α2
L]

(2.27)

fD(ν − νηη′) =
1

αDπ1/2
exp

[
−(ν − νηη′)

2

α2
D

]
. (2.28)

The doppler width αD is described by αD = νηη′
(
2kBT
mc2

)1/2
. The Lorentz half-width

αL is described by αL = αL(pref , Tref)
(

p
pref

)(
T

Tref

)n
, where pref is the reference pressure

(pref = 1 bar). Those parameters are tabulated in HITRAN database (Rothman et al.,

2013). The Voigt profile is calculated by Kuntz (1997). Kuntz (1997) showed a implemen-

tation of Humlices’s algorithm for approximation the Voigt profile function. Humlicek’s

implementation has error at most 2 × 10−6, which is correspond to the cutoff for the

Voigt function. Thus, our calculations include the cutoff implicitly, which stems from the

error of Humlicek’s implementation. With the above methods, we can calculate the cross

section kηη′(ν). Then we can obtain the opacity κ(ν) as

κ(ν) =
kηη′(ν, T, p)

M
, (2.29)

where M is the mass of molecule. With Eq. 2.7 and κ(ν), we can obtain the Rosseland

mean opacity. In this study, we calculated the mean opacity κ as

κ = xHκH + xHeκHe + xH2OκH2O + xNH3κNH3 + xCH4κCH4 (2.30)

where xH , xHe, xH2O, xNH3 , xCH4 are the mole fraction of hydrogen molecule, helium, wa-

ter, ammonia, and methane, respectively.

2.2.7 Equations of state

In the high pressure regime, the ideal gas approximation is no longer valid. That is

because the interaction of molecule is not negligible. In this study, we use the equation

of state for H and He based on Saumon et al. (1995), which is derived by the thermo-

dynamic model. Saumon et al. (1995) covers the range 2.10 < log T (K) < 7.06 and

4 < logP (dyn cm−2) < 19 and includes partial dissociation and ionization caused by
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both pressure and temperature effects.

We use the equation of state for H2O, SESAME 7150 (Lyon and Johnson, 1992),

which is derived by the thermodynamic model. SESAME 7150 covers the density range

from 9.98 × 10 g/cm−7 to 4.99 × 103 g/cm3 and the temperature range from 0.00 K to

1.16 × 109 K. I combine these two equations of state. For 1.00 × 10−6 g/cm3 ≤ ρ ≤

1.50× 101 g/cm3 and 1.0× 103 K ≤ T ≤ 2.4× 104 K,

We assume that the composition for the rocky core is the same as the mineralogical

composition known for Earth. In the pressure regime corresponding to the upper mantle

of Earth, the lower-pressure form is taken to be olivine (hereafter ”ol”) and the higher-

pressure forms of olivine are wadsleyite [hereafter ”wd”] and ringwoodite [hereafter ”rw”].

In the higher pressure regime corresponding to the lower mantle of Earth, rw transforms

to perovskite (hereafter ”pv”) and ferromagnesiowüstite (hereafter ”fmw”), with an ad-

ditional shell at high pressures when pv transforms to post-perovskite (hereafter ppv).

We adopt the equations of state of rocks derived by Valencia et al. (2007), which uses

Vinet EOS (Vinet et al., 1987);

P (x, 300) = 3K0(x
2/3 − x1/3) exp

[
3

2
(K ′

0 − 1)(1− x−1/3)

]
(2.31)

where P is the pressure in GPa, x = (ρ/ρ0)
−1/3 and K0 and K ′

0 is the isothermal bulk

modulus and its first pressure derivative at a reference state—zero pressure and 300 K.

Table 2.1 list parameters for Eq.(2.31) and Table 2.2 shows the condition of phase tran-

sitions.

Composition ρ0 K0 K ′
0

(kg/m3) (GPa)
ol 3347 126.8 4.274

wd+rw 3644 174.5 4.274
pv+fmw 4152 223.6 4.274
ppv+fmw 4270 233.6 4.524

Table 2.1: Parameters for Vinet EOS used in each shell of the model.

The envelope is mixed with hydrogen, helium, and water. We assume the equation

of state satisfies the volume additive law (Saumon et al., 1995; Soubiran and Militzer,
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Transition Boundary
ol→ wd+rw T ≥ 400P − 4287
rw→ pv+fmw P ≥ 22.6 if T > 1750K

T ≥ 13573− 500P if T ≤ 1750K
pv+fmw→ppv+fmw T ≥ 133P − 1392

Table 2.2: Phase boundaries of constituent materials of the rocky core. P is in GPa and
T is in kelvins.

2015),
1

ρ(P, T )
= (1− Z0)

(
X

ρH(P, T )
+

Y

ρHe(P, T )

)
+

Z0

ρH2O(P, T )
, (2.32)

where ρ is the density for the mixture gas, Z0 is the mass fraction for water in the

envelope, and X and Y are the mass fractions of hydrogen and helium, respectively. ρH ,

ρHe and ρH2O are the densities of hydrogen, helium, and water, respectively. Note that

the definition of X, Y , and Z are described by the mass fractions of hydrogen xH , helium

xHe and water xW in the area of interest. We can represent

X =
xH

xH + xHe

, (2.33)

Y =
xHe

xH + xHe

, (2.34)

Z =
xW

xH + xHe + xW

. (2.35)

In this study, we assumed X = 0.75 and Y = 0.25. Z is determined by the water mass

fraction in the envelope Z0. Here we assumed Z0 = Z. Since the behavior of ammonia

and methane in the high-pressure and high-temperature are not well known, we assumed

the equations of state, for ammonia and methane are substituted by that for water in

the envelope in accordance with the previous research (Nettelmann et al., 2013). Here

we deal with Z0 as the sum of the water, ammonia, and methane.
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Adiabatic profile and mixing entropies

We estimate the adiabatic temperature gradient of as

∇ad = −

(
∂ lnS

∂ lnP

)
T(

∂ lnS

∂ lnT

)
P

= −SP

ST

, (2.36)

where, SP =
(
∂ lnS
∂ lnP

)
T
, ST =

(
∂ lnS
∂ lnP

)
T
. The total entropy for m kinds of spices is written

by

S̄

kB
=

m∑
i=1

S̄i

kB
+

S̄mix

kB
, (2.37)

S̄mix

kB
= N lnN −

m∑
i=1

Ni lnNi, (2.38)

where S̄ is the total entropy par particle, Ni is the number density for i-th spices, kB is

the Boltzmann constant，S̄i is the entropy par particle for i-th spices, and N =
∑m

i=1Ni.

Soubiran and Militzer (2015) calculate the ab initio simulations of liquid water-hydrogen

mixtures. They conclude that the thermodynamic behavior of water-hydrogen mixtures

can be described by a ideal mixing approximation. Here we assumed that the mixing

entropy is described by a ideal mixing formulation. In this study, we consider the equation

of state including the hydrogen, helium, and oxygen atom. The equation of state mixed

with the hydrogen, helium, and oxygen atom is written by

S̄mix

kB
= (NH +NHe +NH2O) ln(NH +NHe +NH2O)

−NH2 lnNH2 −NH lnNH −NH+ lnNH+

−NH2O lnNH2O −NOH lnNOH −NOH− lnNOH−

−NO lnNO −NO− lnNO− −NO2− lnNO2− −NO2 lnNO2

−NHe lnNHe −NHe+ lnNHe+ −NHe2+ lnNHe2+

−Ne lnNe,
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where N· is the number of electron for each molecule, N· is the number for each molecule

N· = NH
· +NHe

· +NH2O
· , (2.39)

respectively. The number of each molecule is calculated by chemical reactions between

H, He, O, and electrons. We can obtain the mixing entropy as

S̄mix

kB
=

S̄H−mix

kB
+

S̄He−mix

kB
+

S̄H2O−mix

kB

+NH ln

(
1 +

NHe

NH

+
NH2O

NH

)
+NHe ln

(
1 +

NH

NHe

+
NH2O

NHe

)
+NH2O ln

(
1 +

NH

NH2O

+
NHe

NH2O

)
−NH

H2
ln

(
1 +

NH2O
H2

NH
H2

)
−NH2O

H2
ln

(
1 +

NH
H2

NH2O
H2

)

−NH
H ln

(
1 +

NH2O
H

NH
H

)
−NH2O

H ln

(
1 +

NH
H2

NH2O
H

)
−NH

H+ ln

(
1 +

NH2O
H+

NH
H+

)
−NH2O

H+ ln

(
1 +

NH
H+

NH2O
H+

)

−NH
e ln

(
1 +

NH
e

NH
e

+
NH2O

e

NH
e

)
−NHe

e ln

(
1 +

NH
e

NHe
e

+
NH2O

e

NHe
e

)
−NH2O

e ln

(
1 +

NH
e

NH2O
e

+
NHe

e

NH2O
e

)
.

For given pressure P and temperature T ,

nH
i =

2ρ/mH

1 + 3XH2 +XH

Xi =
ρ

mH

nHXi, (2.40)

nHe
i =

3ρ/mHe

1 + 2XHe +XHe+
Xi =

ρ

mHe

nHeXi, (2.41)

nH2O
i =

ρ/mH2O

2XO2− +XO− +XOH− −XH+ + 1
Xi =

ρ

mH2O

nH2OXi, (2.42)
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where Xi = Ni/N . We can obtain the mixing entropy as

S̄int−mix

ρkB

=
(1− Z)(1− Y )

mH

ln

(
1 +

mH

mHe

Y

1− Y

nHe

nH

+
mH

mH2O

Z

(1− Z)(1− Y )

nH2O

nH

)
+
(1− Z)Y

mHe

ln

(
1 +

nH

nHe

mHe

mH

1− Y

Y
+

nH2O

nHe

mHe

mH2O

Z

(1− Z)Y

)
+

Z

mH2O

ln

(
1 +

nH

nH2O

mH2O

mH

(1− Z)(1− Y )

Z
+

nHe

nH2O

mH2O

mHe

(1− Z)Y

Z

)
−(1− Z)(1− Y )

mH

XH
H2

ln

(
1 +

nH2O

nH

mH

mH2O

Z

(1− Z)(1− Y )

XH2O
H2

XH
H2

)

−
ZXH2O

H2

mH2O

ln

(
1 +

nH

nH2O

mH2O

mH

(1− Z)(1− Y )

Z

XH
H2

XH2O
H2

)

−(1− Z)(1− Y )

mH

XH
H ln

(
1 +

nH2O

nH

mH

mH2O

Z

(1− Z)(1− Y )

XH2O
H

XH
H

)
−ZXH2O

H

mH2O

ln

(
1 +

nH

nH2O

mH2O

mH

(1− Z)(1− Y )

Z

XH
H

XH2O
H

)
−(1− Z)(1− Y )

mH

XH
H+ ln

(
1 +

nH2O

nH

mH

mH2O

Z

(1− Z)(1− Y )

XH2O
H+

XH
H+

)

−
ZXH2O

H+

mH2O

ln

(
1 +

nH

nH2O

mH2O

mH

(1− Z)(1− Y )

Z

XH
H+

XH2O
H+

)

−(1− Z)(1− Y )

mH

XH
e ln

(
1 +

mH

mHe

Y

1− Y

nHe

nH

XHe
e

XH
e

+
mH

mH2O

Z

(1− Z)(1− Y )

nH2O

nH

XH2O
e

XH
e

)
−(1− Z)Y

mHe

XHe
e ln

(
1 +

nH

nHe

mHe

mH

1− Y

Y

XH
e

XHe
e

+
nH2O

nHe

mHe

mH2O

Z

(1− Z)Y

XH2O
e

XHe
e

)
− Z

mH2O

XH2O
e ln

(
1 +

nH

nH2O

mH2O

mH

(1− Z)(1− Y )

Z

XH
e

XH2O
e

+
nHe

nH2O

mH2O

mHe

(1− Z)Y

Z

XHe
e

XH2O
e

)
,
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where we set

A =
(1− Z)(1− Y )

mH

(2.43)

fheh =
Y

1− Y

mH

mHe

(2.44)

fwh =
Z

(1− Z)(1− Y )

mH

mH2O

(2.45)

fwhe =
Z

(1− Z)Y

mHe

mH2O

(2.46)

nheh =
nHe

nH

(2.47)

nwh =
nH2O

nH

(2.48)

nwhe =
nH2O

nHe

, (2.49)

and

S̄int−mix

ρAkB
= ln (1 + fhehnheh + fwhnwh) + fheh ln

(
1 +

1

fhehnheh

+ fwhenwhe

)
+fwh ln

(
1 +

1

fwhnwh

+
1

fwhenwhe

)
−XH

H2
ln

(
1 + fwhnwh

XH2O
H2

XH
H2

)
−XH2O

H2
fwh ln

(
1 +

1

fwhnwh

XH
H2

XH2O
H2

)

−XH
H ln

(
1 + fwhnwh

XH2O
H

XH
H

)
−XH2O

H fwh ln

(
1 +

1

fwhnwh

XH
H

XH2O
H

)
−XH

H+ ln

(
1 + fwhnwh

XH2O
H+

XH
H+

)
−XH2O

H+ fwh ln

(
1 +

1

fwhnwh

XH
H+

XH2O
H+

)

−XH
e ln

(
1 + fhehnheh

XHe
e

XH
e

+ fwhnwh
XH2O

e

XH
e

)
−XHe

e fheh ln

(
1 +

1

fhehnheh

XH
e

XHe
e

+ fwhenwhe
XH2O

e

XHe
e

)
−XH2O

e fwh ln

(
1 +

1

fwhnwh

XH
e

XH2O
e

+
1

fwhenwhe

XHe
e

XH2O
e

)

respectively. Hence, we can obtain the entropy as

Smix = SH−mix + SHe−mix + SH2O−mix + Sint−mix. (2.50)
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2.2.8 Condensation curves

The condensation curve is derived by the Clausius-Clapeyron equation. In this study,

the condensation curve of H2O is used derived by Nakajima et al. (1992) and those of

NH3 and CH4 are used derived by Sánchez-Lavega et al. (2004). The condensation curve

is written by

lnPV = lnC +
µ

Rg

[
−L0

T
+∆α lnT +

∆β

2
T

]
(2.51)

where PV is the vapor pressure, T is the temperature, µ is the molecular weight, L0 is the

latent heat, and Rg(= 8.31× 107 erg K−1g−1) is the universal gas constant. Parameters

for Eq. (2.51) are listed in Table (2.3). Heat capacities of ice compositions are 4 Rg,

Component lnC L0 ∆α ∆β/2 µ
(C in bars) (J·g−1) (J·g−1· K−1) (J·g−1· K−2) (g mole−1)

H2O 27.967 2425.3 0 0 18.0
NH3 27.863 2016 -0.888 0 17.0
CH4 1.627 553.1 1.002 -4.1×10−3 16.0

Table 2.3: Parameters for the condensation curves. Parameters for H2O is derived by
Nakajima et al. (1992). Parameters for NH3 and CH4 are derived by Sánchez-Lavega
et al. (2004).

which are assumed the ideal gas approximation. The critical temperature in K and

pressure in atm (Tc, Pc) of water, ammonia, and methane are (647.3, 217.6), (405.6, 111.3),

and (190.6, 45.4), respectively (Reid et al., 1987). If the pressure is greater than the

critical pressure, the molecule behave as a supercritical fluid. Then the condensation

curve cannot be adopted. The water-hydrogen mixing ratios at high temperature (2000-

6000 K) and high pressure (a few tens of GPa) was calculated using ab initio molecular

dynamics simulations. The previous studies found that water was miscible in hydrogen

(Wilson and Militzer, 2012; Soubiran and Militzer, 2015). Our model assumed that when

water, ammonia, and methane molecule behave as supercritical fluids, those molecules are

miscible with a hydrogen and helium. In this study, we assumed that the condensation

curves for water, ammonia, and methane are extrapolated up to 100 bar.
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2.3 Numerical procedure

In this subsection, we introduce the numerical procedure. To simulate the thermal evolu-

tion, we integrate Eq. (2.15) by the following procedure. Our model is consisted of three

parts, the atmospheric structure, the interior structure, and the thermal evolution.

We assume the radiative-convective boundary height pad and Ftop. The temperature-

pressure profile is determined by Eq. (2.6) in the stratosphere and Eq. (2.9) in the tro-

posphere respectively. Then we can determine the flux distributions for upward and

downward by Eqs. (2.10), (2.11), (2.12), and (2.13). The radiative-convective boundary

is determined by the divergence of the net flux for radiation. That is,

dFrad

dτ
∼ F i+1

rad − F i
rad

τi+1 − τi
< 0 =⇒ convective region, (2.52)

dFrad

dτ
∼ F i+1

rad − F i
rad

τi+1 − τi
≥ 0 =⇒ radiative region. (2.53)

where i is the number of grid of the atmosphere. We assume the bottom of the atmosphere

is Pbtm = 100 bar and the top of atmosphere is Ptop = 10−5 bar. We determine the self-

consistent value of pad and Ftop for a given atmospheric structure by an iterative method.

First we simulate two adiabatic interior models that are separated in time by a time

interval ∆t for the known Sp(t) and an assumed Sp(t+∆t), where Sp is the total entropy

of the planet. The two structures should be integrated for two different values of the

temperature at the bottom of atmosphere Tbtm. To this end, we integrate Eqs. (2.1)-(2.5)

inward from the bottom of the atmosphere (Pbtm, Tbtm) to the planetary center, using the

fourth-order Runge-Kutta method. We then look for the solution that fulfills the inner

boundary condition (i.e., r = 0 at Mr = 0) in an iterative fashion. Note that determining

pad and Ftop requires the gravity in the atmosphere (or the planetary radius Rp), which

is obtained after the interior structure is determined. Thus, we have to find the solution

in which the interior and atmospheric structures are consistent with each other also in

an iterative fashion.
Then we calculate ∆t from the second-order difference equation for Eq. (2.15), which
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is written as

∆t = −
1

4πR2
p(t+∆t)Ftop(t+∆t) + 4πRp(t)2Ftop(t)

{
[S̄env(t+∆t)− S̄e(t)][Θenv(t+∆t) + Θe(t)]

+[S̄m(t+∆t)− S̄m(t)][Θm(t+∆t) + Θm(t)] + [S̄c(t+∆t)− S̄c(t)][Θc(t+∆t) + Θc(t)]
}
, (2.54)

where

Θenv(t) ≡
∫ Mp

Mm

T (t)dMr, Θm(t) ≡
∫ Mm

Mc

T (t)dMr, Θc(t) ≡
∫ Mc

0

T (t)dMr. (2.55)

We have confirmed that our numerical code for the atmospheric structure reproduces

well the pad and Ftop values presented by Nakajima et al. (1992), given the infrared opacity

κth = 0.1 cm2 g−1. Finally we have confirmed that our numerical code for the interior

structure reproduces well the mass and radius relationship for super-Earths presented by

Valencia et al. (2010).

We summarize parameters. Free parameter are the initial mole fraction of the ice

(which includes H2O, NH3, and CH4) xbtm, the fraction of NH3/H2O, and CH4/H2O.

In this study, we focus on the effect of xbtm, NH3/H2O, and CH4/H2O. We adjust Z0

and Ztot to satisfy the present radius of Uranus RU = 2.56 × 109 cm at the age of solar

system. We assumed the planetary mass was the mass of Uranus MU(= 8.68 × 1028 g),

the equilibrium temperature Teq = 58.2 K (Pearl and Conrath, 1991).

2.4 Results

Here we demonstrate the results of the calculations. Before showing the results, we

summarize the assumptions and parameters in Table 2.4. We assumed the planetary mass

was the mass of Uranus MU(= 8.68× 1028 g), the equilibrium temperature Teq =58.2 K,

NH3/H2O=0.135, and CH4/H2O=0.05675, which corresponds to a C/O value smaller by

0.1 than the solar composition. Since the planetary radius decreases with the time, we

adjust Z0 and Ztot to satisfy the present radius of Uranus RU = 2.56× 109 cm at the age

of 5 giga years. Hence we set Z0 = 0.3, Ztot = 0.8, and Zw = 0.5. Z0 is equivalent to the

mass fraction of metal in the outer envelope, which affects the gravitational moment.
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Temperature Mass Z0 Ztot NH3/H2O CH4/H2O
58.2 K MU 0.3 0.8 0.135 0.05675

Table 2.4: Parameters we assumed in the calculation.

2.4.1 Atmospheric structure

We show the results of the atmospheric structure. Fig. 2.3 shows the atmospheric struc-

ture for (Pbtm, Tbtm) = (100 bar, 1000 K). We set 70 mol % of H2O, 9.45 mol % of NH3,

and 3.97 mol % of CH4. The atmospheric structure was composed of three parts; a dry

convective region, a moist convective region, and a stratosphere from the bottom to the

top. The lapse rate in the dry convective region was determined by the heat capacity of

the ice components. That is, the lapse rate is described by a dry adiabatic lapse rate.

When the atmosphere is cooled enough to condensate ice components, the lapse rate is

changed due to the latent heat. In the case of Fig. 2.3, the condensed constituents are

mainly water. Then the atmospheric temperature structure was determined by the moist

adiabatic convection driven by the condensation of water. The stratosphere existed atop

the moist convective region. Those atmospheric structure decide the outgoing flux from

the top of the atmosphere.

As the bottom temperature is cooled, the main condensable constituents are gradually

changed. Fig. 2.4 shows the atmospheric structure for various bottom temperatures. As

the planet cools, the bottom temperature decreases. That is, those atmospheric structures

represent the evolution of atmospheric structure. That affects the outgoing flux from the

top of the atmosphere.

The outgoing flux from the top of the atmosphere (hereafter Ftop) is determined by

the atmospheric temperature-pressure structure. Fig. 2.5 shows the relationship between

the Ftop and the bottom temperature Tbtm. This figure shows that the Ftop becomes

constant in particular temperature ranges. If the bottom temperature range is from 500 K

to 1000 K, Ftop = 3.3 × 105 erg s−1cm−2, which is a similar value with Komabayashi-

Ingersoll limit of H2O dominated atmosphere (Nakajima et al., 1992). That is because the

atmospheric temperature structure is determined by the moist convection of water. The

atmosphere’s photosphere, which is equivalent to the optical depth of infrared wavelength

is unity, is in the moist convective region. Therefore the Ftop value is nearly constant while
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the atmospheric structure is dominated by the moist convection due to the condensation

of water. Hereafter we call such a flat Ftop the radiation limit of water. The radiation limit

also appears when the atmospheric composition is dominated by ammonia or methane.

As the bottom temperature decreases, Ftop changes sharply when the bottom temper-

ature reaches ∼ 500 K. When the bottom temperature reaches ∼ 400 K, the Ftop value

is nearly constant value again. That is because the atmospheric temperature-pressure

structure is dominated by the moist convection due to the condensation of NH3. The

Ftop value is of the order of 104 erg s−1cm−2. This mechanism is same as the radiation

limit of water and then we call such Ftop as the radiation limit of ammonia.

The radiation limit of ammonia ceases when the bottom temperature is lower than

∼ 300 K. Then the atmospheric structure is dominated by the condensation of CH4, which

is the same as described above. However, if the atmosphere does not possess the sufficient

amounts of condensable constituents to dominate the temperature-pressure structure by

the moist adiabatic profile, the Ftop value is not constant and the value deceases as the

bottom temperature decreases.

Fig. 2.5 shows that Ftop without the effect of the condensation is smaller than that with

the effect of the condensation when Tbtm is the same value. Since the dry adiabatic lapse

rate is greater than the moist adiabatic lapse rate, photospheric temperature without the

condensation is lower than that with the condensation. That difference in Ftop should

affect the planetary luminosity and the thermal evolution timescale.

2.4.2 Effect on the thermal evolution

In this subsection, we demonstrate the difference of the thermal evolution between with-

out and with the condensation effect on the atmospheric structure. Fig. 2.6 shows the

time evolution of the ice giant’s luminosity. This figure indicates that the evolutionary

track with the effect of the condensation has specific features compared to one without the

condensation. The evolutionary track with the condensation shows a steplike evolution.

The steps in the figure correspond to the radiation limits of condensable constituents. The

timescale of thermal evolution becomes shorter than that without the condensation. As a

result, the planetary luminosity decreased and reached the present luminosity of Uranus.

On the other hand, the evolutionary track without the effect of the condensation did not
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Figure 2.3: The temperature-pressure relation of atmosphere. We set 70 mol % of H2O,
9.45 mol % of NH3, and 3.97 mol % of CH4, respectively. We assumeZtot = 0.8, Z0 = 0.3,
and Zw = 0.5. The bottom of atmosphere is P = 100 bar. Temperature at P = 100 bar
is 1000 K. The equilibrium temperature is 58.2 K.

decrease enough to explain the present luminosity of Uranus within 5 gigayears. Figure

2.7 shows the elapsed time and the change of the total planetary entropy. We set t = 0

as the temperature at 100 bar is equal to 1000 K. We calculated the reduced rate of the

total planetary entropy (Sp(Tbtm = 1000 K)− Sp)/Sp(Tbtm = 1000 K). We compared the

decrease of the planetary entropy with and without the effect of condensable constituents

in the atmosphere. We can find that the early stage of the evolution (namely within 108

years) is important for the thermal evolution of Uranus. The planetary entropy is quickly

decreased compared to the result of without condensation. We conclude that the effect

of the condensation is essential to describe the thermal evolution of Uranus.

Sensitivities to parameters: the initial content of ice constituents

We take different mole fractions of H2O from 5 to 50 mol %. Fig. 2.8 shows the sensitivity

of the initial content of ice compositions. For low water contents cases (dashed lines: 35

mol % or less), the luminosities at 4.6 Gyrs do not fall with in the current luminosity

range of Uranus even taking into account it’s errors. This in turn means that initial low
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Figure 2.4: The temperature-pressure relation of atmosphere. We set 70 mol % of H2O,
9.45 mol % of NH3, and 3.97 mol % of CH4, respectively. Line colors represent main
compositions in the atmosphere. Green, blue, and black lines are H2O, NH3, and CH4,
respectively. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium tempera-
ture is 58.2 K.
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Figure 2.5: The relationship between the Ftop and the temperature at 100 bar in the
atmosphere. We set 70 mol % of H2O, 9.45 mol % of NH3, and 3.97 mol % of CH4,
respectively. The red line is the relationship without the effect of the condensation of
H2O, NH3, and CH4. The green line is the relationship with the effect of condensation
of H2O, NH3, and CH4. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium
temperature is 58.2 K.
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luminosities, e.g. 1.5 times the present values, are required to explain the current value.

On the other hand, initial low luminosity is not required for high water content cases

(solid lines). To explain the present luminosity of Uranus, the atmosphere is required to

have possessed condensable constituents contents higher than 40 % in the atmosphere

immediately after its formation, when Uranus started with in the high luminosity states

(i.e., several hundreds times the present value). Figure 2.9 shows the relationship of the

time and planetary luminosity that is followed backward in time from 4.6 × 109 years

that is correspond to the age of solar system. The backward integration can be easy

to understand those behaviors. We can find that the present luminosity of Uranus can

explain if the atmosphere is allowed to possess condensable constituents contents higher

than 40 % in the atmosphere.

Sensitivities to parameters: CH4/H2O, NH3/H2O

We investigate the sensitivities to the parameters of CH4/H2O and NH3/H2O. In the

above calculations, we assumed CH4/H2O= 0.05675, which was less than the solar C/O

value, and NH3/H2O= 0.135, which was equal to the solar N/O. Figure 2.10 shows the

evolution of the planetary luminosity assuming CH4/H2O= 0.458, which was equal to the

solar C/O, and NH3/H2O= 0.135, which were equal to the solar N/O. We found that the

thermal evolution timescale was longer than that for Fig. 2.8 at the same initial water

mole fraction. That is because the condensation of methane prevented the cooling of the

planet. If we want to explain the present luminosity of Uranus, the initial mole fraction of

methane should be small. We also checked the effect of NH3/H2O. If we want to explain

the present luminosity of Uranus, the initial NH3/H2O should be larger than that of the

solar N/O value according to the result of Fig 2.10. Fig. 2.11 shows the evolution of

planetary luminosity assuming CH4/H2O= 0.458, which was equal to the solar C/O, and

NH3/H2O= 0.427, which was 100.5 times as large as the solar N/O. We can find that

the thermal evolution timescale for NH3/H2O= 0.427 become shorter than that for the

solar ratio of the NH3/H2O. That is, high NH3/H2O and low CH4/H2O are plausible to

explain the present luminosity of Uranus.

Fig. 2.12 shows the Ftop − Tbtm relations for (CH4/H2O, NH3/H2O)= (0.135 ,0.458).

We also calculated the Ftop without the effect of condensation. We can find that the
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Figure 2.6: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. We set 70 mol % of H2O, 9.45 mol % of
NH3, and 3.97 mol % of CH4, respectively. The red line is the relationship without the
effect of the condensation of H2O, NH3, and CH4. The green line is the relationship with
the effect of condensation of H2O, NH3, and CH4. We assume Ztot = 0.8, Z0 = 0.3, and
Zw = 0.5. The equilibrium temperature is 58.2 K
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Figure 2.7: The time evolution of the planetary entropy. t = 0 represents the temperature
at 100 bar 1000 K. We set 70 mol % of H2O, 9.45 mol % of NH3, and 3.97 mol % of
CH4, respectively. The red line is the relationship the effect of the condensation of H2O,
NH3, and CH4. The green line is the relationship without the effect of condensation of
H2O, NH3, and CH4. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium
temperature is 58.2 K.
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Figure 2.8: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the initial mole
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temperature is 58.2 K.
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Figure 2.9: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the initial mole
fraction of H2O. We set 10-65 mol % of H2O. The initial fraction of NH3/H2O= 0.135
and CH4/H2O= 0.05675. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equi-
librium temperature is 58.2 K. The evolutions is calculated backward from the age is
4.6× 109 years.
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Figure 2.10: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the initial mole
fraction of H2O. We set 5-50 mol % of H2O. The initial fraction of NH3/H2O= 0.135 and
CH4/H2O= 0.05675. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium
temperature is 58.2 K.
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Figure 2.11: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the initial mole
fraction of H2O. We set 5-60 mol % of H2O. The initial fraction of NH3/H2O= 0.135 and
CH4/H2O= 0.05675. We assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium
temperature is 58.2 K.
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Ftop value depends on the molecular fraction of condensable species. As the condensable

spices increased, Ftop also increased at the same bottom temperature. The upper limit of

Ftop is dominated by the temperature structure determined by the condensation of water,

ammonia, and methane. If the atmospheric temperature structure is dominated by the

condensation curve of water, ammonia, and methane, the temperature structure is fixed

by the condensation curve and Ftop is obeyed by that temperature structure.
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Figure 2.12: The relationship between the Ftop and temperature at 100 bar. Line colors
represent the initial mole fraction of H2O. We set 5-50 mol % of H2O. The initial fraction
of NH3/H2O= 0.458 and CH4/H2O= 0.05675. We assume Ztot = 0.8, Z0 = 0.3, and
Zw = 0.5. The equilibrium temperature is 58.2 K

2.5 Discussion

In this subsection, we evaluate the validity of the assumptions and uncertainties of the

model.
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2.5.1 Validity of the assumptions I: the effect of the super-

adiabatic lapse rate

We consider the effect of the super-adiabatic as the compositional gradient in the interior.

That is, the temperature gradient in the interior is described as

d lnT

d lnP
=

(
∂ lnT

∂ lnP

)
S,µ

+

(
∂ lnT

∂ lnS

)
µ,P

d lnS

d lnP
+

(
∂ lnT

∂ lnµ

)
P,S

d lnµ

d lnP
, (2.56)

where T is the temperature, P is the pressure, S is the entropy, and µ is the mean

molecular weight, respectively. Eq. (2.56) describes the true temperature gradient in the

atmosphere considering the gradient of entropy and mean molecular weight.

A simple explanation for the super-adiabatic lapse rate is due to the compositional gra-

dient, which is made by the condensation and sedimentation of condensable constituents.

We assume that the entropy in the troposphere is constant and the thermodynamical

properties is given from the ideal gas approximation. Then we can find Eq. (2.56) as

d lnT

d lnP
=

(
∂ lnT

∂ lnP

)
S,µ

+
d lnµ

d lnP
. (2.57)

However, the temperature gradient in the troposphere is determined by the efficiency of

thermal transport by the convective motion. When the convection is not vigorous enough

to transport the entropy from the deep interior, the temperature gradient in the tropo-

sphere cannot be described by the adiabatic lapse rate. Moreover, the thermal properties

cannot be approximated by ideal gas in the high pressure region (P ≳ 100 bar). Thus,

the non-ideal behavior for thermal properties of gas is also important near the bottom of

the atmosphere. Since there are uncertainties to determine the super-adiabatic term, we

deal with this term as a parameter and check its sensitivity of the evolutionary track of

the ice giant. In this study, we evaluated the temperature gradient in the troposphere as

d lnT

d lnP
=

(
∂ lnT

∂ lnP

)
S,µ

+ δ∇, (2.58)

where δ∇ is the super-adiabatic gradient term. Fig. 2.13 shows the evolutionary track

considering the super-adiabatic lapse rate. The red line is 0, the green line is 0.001, the
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blue line is 0.01, and the purple line is 0.1. If the super-adiabatic term is less than 0.001,

the impact on the thermal evolutionary track is small and the effect of super-adiabatic

term cannot change our conclusions. On the other hand, if the super-adiabatic term

is larger than 0.01, the thermal evolution timescale becomes long and then that effect

changes our conclusions. If the compositional gradient is formed by the condensation

curve, δ∇ = 0.07− 0.14. Guillot (1995) indicated that the moist convection in ice giant’s

atmosphere was prevented when the atmosphere possessed too much ice constituents due

to the compositional gradient. However, determining the lapse late of super-adiabatic

condition is required the two- or three-dimensional atmospheric circulation calculation

considering the condensation, but that problem is beyond our study (Sugiyama et al.,

2011, 2014).
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Figure 2.13: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. The red, green, blue, and purple lines are
δ∇ =0, 0.001, 0.01, and 0.1, respectively (see Eq. (2.58) for the definition of δ∇). We set
70 mol % of H2O, 9.45 mol % of NH3, and 3.97 mol % of CH4, respectively. We assume
Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium temperature is 58.2 K.
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2.5.2 Validity of the assumptions II: the effect of the cloud

In this study, we ignored the effect of clouds. When the condensation occurs in the

atmosphere, clouds are also made but its radiative properties is quite uncertain. We

evaluated the effect of clouds absorbing the infrared light. If the clouds absorb the infrared

light, the atmosphere is warmed up. We evaluate the effect of clouds to multiple the

infrared opacity by factor of 2 or 10. Fig. 2.14 shows the evolutionary track, considering

enhanced infrared absorption. Uncertainties of clouds’ radiative properties have non-

negligible impact on the thermal evolution of ice giants. In this study, we only point out

the importance of clouds, but more detailed studies would be required to understand the

thermal evolution of ice giants.
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Figure 2.14: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the difference of the
effect of cloud. The red, green, blue, and purple lines are no cloud, κth × 2, and κth × 10,
respectively, where κth is the infrared opacity of the atmosphere. We set 70 mol % of
H2O, 9.45 mol % of NH3, and 3.97 mol % of CH4, respectively. We assume Ztot = 0.8,
Z0 = 0.3, and Zw = 0.5. The equilibrium temperature is 58.2 K.
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2.5.3 Validity of the assumptions III: comparison to the today’s

atmospheric compositions

The consistency between the theory and observations is important to discuss the valid-

ity of our study. We compare the results of atmospheric temperature-pressure structure

when the planetary luminosity satisfies the present luminosity of Uranus. Fig. 2.15 shows

the comparison between our calculation results and the observational data (Marley and

McKay, 1999). We found that our results was consistent with the observation from 0.1 to

several bars, which corresponded to the photosphere of infrared light. Since the temper-

ature near the photosphere determines the outward flux from the top of the atmosphere,

our assumption is valid enough to discuss the thermal evolution of the planet. The in-

consistency of upper stratosphere is due to the photo-chemical reaction and multi-band

effect, and that of deep troposphere is due to the abundance of methane.

2.5.4 Validity of the assumptions IV: the continuity between

the interior and atmosphere

Above the results, there are inconsistency for the water content in the atmosphere and

interior. Since we do not know the interaction between the atmosphere and interior

clearly, we consider an assumption to take the consistency. Here we assumed for the

consistency between planetary atmosphere and interior: The initial abundance of ice

compositions in the atmosphere is determined by the initial abundance of water in the

envelope. The abundance of water in the interior is determined by the initial abundance

of water in the interior and the abundance is constant through the evolution. The initial

abundance of water in the atmosphere is consistent with that in the interior and the

abundance in the atmosphere changes through the evolution. This means that the mixing

of condensable constituents in the envelope is strong enough to maintain the mass fraction

for condensable constituents in the envelope during the evolution. The conversion relation

between the mole fraction and mass fraction is

xbtm =
Z0

µW

µH
(1− Z0) + Z0

, (2.59)
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Figure 2.15: The temperature-pressure relation of atmosphere. Line colors represent the
difference of the initial H2O mole fraction. The red, green, and blue are 45 %, 50 %, and
55 %, respectively. The initial fraction of NH3/H2O= 0.05675 and CH4/H2O= 0.135. We
assume Ztot = 0.8, Z0 = 0.3, and Zw = 0.5. The equilibrium temperature is 58.2 K. The
T-P profile and observational data are cited from Marley and McKay (1999).

52



where xbtm is the mole fraction of the ice (which includes H2O, NH3, and CH4), µW (=

18.0) is the molecular weight of the water, and µH(= 2.3) is the molecular weight of the

hydrogen-helium, respectively. Table 2.5 shows the relationship between Z0 and the mole

fraction of ice xbtm. The abundance of water in the envelope is constant through the

evolution. This assumption means that the mixing of condensable constituents in the

envelope is strong enough to maintain the mass fraction of condensable constituents in

the envelope through the evolution.

Z0 0.023 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
xbtm 0.003 0.0067 0.013 0.03 0.05 0.078 0.11 0.16 0.23 0.34 0.53 0.71

Table 2.5: The relationship between the mass fraction of ice Z0 and the mole fraction of
ice xbtm.

Figure 2.16 shows the evolution of luminosity with the above values. The evolution

of planetary radius is also showed in Fig. 2.17. We set parameters as Z0 which represents

the water mass fraction in the envelope. The initial total mole fraction of H2O is also

Z0. We set Z0 = 0.80, 0.85, 0.90, 0.95 and Zw = 0.97 (see also section 2.2.4). We assume

CH4/H2O= 0.458 and NH3/H2O= 0.135, which is corresponding to the solar abundances.

We cannot find the self consistent solution of both luminosity and radius of Uranus. When

we want to keep a consistency with the present radius of Uranus, the atmosphere required

too low initial mole fraction of volatiles to explain the present luminosity of Uranus.

To explain the present luminosity and radius of Uranus, CH4/H2O and NH3/H2O

should be changed. We set CH4/H2O= 0.05675 and NH3/H2O= 0.135. We assume

Z0 = 0.8, 0.85, 0.9, 0.95 and Zw = 0.97. Figure 2.18 shows the evolution of luminosity

with these values. The evolution of planetary radius is also showed in Fig. 2.19. If we

set Z0 ≥ 0.95, the planetary luminosity reached the present luminosity of Uranus within

the age of the solar system. However, the planetary radius was smaller than the present

radius of Uranus. Those results indicate that the transport of ice compositions in the

planetary interior should be important as long as we assume the atmosphere of ice giants

had a lot of ice compositions when it was formed. Our model required a large amount

of condensable constituents in the envelope, The amount of condensable constituents in

the envelope our model required was larger than that previous studies predicted. The

mass fraction of heavy elements in the planet, was more than 0.85 (e.g. Nettelmann et al.
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(2013); Helled et al. (2011)). However, the mass fraction of condensable constituents in

the outer envelope should be smaller than the bulk mass fraction of heavy elements to

explain the present radius of Uranus. During the evolution, condensable constituents in

the atmosphere and envelope should be settle down and formed an ice mantle atop a solid

core in the planet. That is, condensation of condensable constituents in the atmosphere

and ice mantle formation in the deep interior of the planet occurred simultaneously. If the

sedimentation of condensable constituents in the envelope occurred, the mean molecular

weight of planetary envelope decreased and that affected the planetary radius. There are

uncertainties of convective transport in the planetary interior and that will be important

future work to reveal the origin and evolution of ice giants.
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Figure 2.16: The time evolution of the planetary luminosity divided by the present lu-
minosity of Uranus LU = 5.6 × 1022 erg s−1. Line colors represent the initial mass
fraction H2O in the atmosphere and envelope. The initial fraction of NH3/H2O= 0.458
and CH4/H2O= 0.135. We assume (Z0, Ztot) =(0.80, 0.81), (0.85, 0.86), (0.90, 0.91),
and (0.95, 0.96), respectively. We assume Zw = 0.97 and Z0 in the envelope is constant
through the evolution. The equilibrium temperature is 58.2 K

54



0.7

0.8

0.9

1

1.1

1.2

10
6

10
7

10
8

10
9

10
10

R
a

d
iu

s
 [
R

U
=

1
]

Age [year]

Z0=0.80
Z0=0.85
Z0=0.90
Z0=0.95

Figure 2.17: The time evolution of the planetary radius divided by the present radius
of Uranus RU = 4.01 R⊕. Line colors represent the initial mass fraction H2O in the
atmosphere and envelope. The initial fraction of NH3/H2O= 0.458 and CH4/H2O=
0.135. We assume (Z0, Ztot) =(0.80, 0.81), (0.85, 0.86), (0.90, 0.91), and (0.95, 0.96),
respectively. We assume Zw = 0.97 and Z0 in the envelope is constant through the
evolution. The equilibrium temperature is 58.2 K.
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Figure 2.18: The time evolution of the planetary luminosity divided by the present lumi-
nosity of Uranus LU = 5.6× 1022 erg s−1. Line colors represent the initial mass fraction
H2O in the atmosphere and envelope. The initial fraction of NH3/H2O= 0.05675 and
CH4/H2O= 0.135. We assume (Z0, Ztot) =(0.80, 0.81), (0.85, 0.86), (0.90, 0.91), and
(0.95, 0.96), respectively. We assume Zw = 0.97 and Z0 in the envelope is constant
through the evolution. The equilibrium temperature is 58.2 K.
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Figure 2.19: The time evolution of the planetary radius divided by the present radius
of Uranus RU = 4.01 R⊕. Line colors represent the initial mass fraction H2O in the
atmosphere and envelope. The initial fraction of NH3/H2O= 0.05675 and CH4/H2O=
0.135. We assume (Z0, Ztot) =(0.80, 0.81), (0.85, 0.86), (0.90, 0.91), and (0.95, 0.96),
respectively. We assume Zw = 0.97 and Z0 in the envelope is constant through the
evolution. The equilibrium temperature is 58.2 K.
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2.5.5 Validity of the assumptions V: the model of the atmo-

sphere

The latent heat has dependence on temperature, but in this study we do not include

that effect. The dependence on temperature of the latent heat, however, does not have

significant effect on the thermal evolution qualitatively. Since the radiation from the top

of the atmosphere is determined by the height where the optical thickness is unity, the

non-ideal effect of the condensable constituents, which is important in the high pressure

and high temperature region, is not important.

We also assumed that the bottom of the atmosphere is 100 bars. Below 100 bars,

the condensable constituents behave as supercritical fluids. Since the critical pressures

of water, ammonia, and methane are 217.6 bars, 111.3 bars, and 45.4 bars respectively

(Reid et al., 1987), the assumption does not affect the result qualitatively for the same

reason of the dependence on the temperature of the latent heat.

2.5.6 The evolution of Neptune

We show the thermal evolution of Neptune. We try to find the evolutionary pass of

Neptune and discuss the difference between the Uranus and Neptune. The evolution of

Neptune is also solved by Fortney et al. (2011) and Nettelmann et al. (2013).

We set the equilibrium temperature 46.6 K, the present luminosity of Neptune 5.3×

1022 erg s−1 (Pearl and Conrath, 1991), and planetary mass Neptune mass MN = 1.02×

1029 g. We assumed NH3/H2O= 0.135 and CH3/H2O= 0.458 which are equal to the solar

value of N/O and C/O, respectively. We adjust Z0, Ztot and Zw to satisfy the present

radius of Neptune RN = 2.48 × 109 cm at the age of 5 giga years. We summarize the

parameters as described in Table 2.6.

Temperature Mass Radius NH3/H2O CH3/H2O
46.6 K MN RN 0.135 0.458

Table 2.6: Parameter sets we assumed in the calculation.

Fig. 2.20 and Fig. 2.21 show the time evolution of the planetary radius and luminosity,

respectively. We found that the too much Z0 could not explain the present luminosity of
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Neptune because of the condensation of methane. If we set Z0 = 0.7, the mole fraction of

methane at 5 giga years was larger than the that predicted by the observation of Neptune

atmosphere (Bishop et al., 1995). Our model suggests that Z0 ≤ 0.5 is good agreement

with the present luminosity and radius of Neptune. We conclude that the envelope of

Neptune is less polluted by ice compositions compared to Uranus.
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Figure 2.20: The time evolution of the planetary radius divided by the present radius of
Neptune RN = 3.89 R⊕. The initial fraction of NH3/H2O= 0.458 and CH4/H2O= 0.135.
Lines’ colors represent the parameters of Z0, Ztot and Zw. The red, green, and blue
represent (Z0, Ztot, Zw) =(0.5, 0.85, 0.5), (0.7, 0.85, 0.8), and (0.3, 0.87, 0.5), respec-
tively. We assume Z0 in the envelope is constant through the evolution. The equilibrium
temperature is 46.6 K.

2.5.7 Implications for the origin of Uranus

Our results suggest that the atmosphere of Uranus had been polluted by condensable

constituents when it was formed to explain the present luminosity of Uranus. Here we

compere ideas to explain the present luminosity of Uranus. Stevenson (1986) showed that

the present luminosity of Uranus could be explained when the giant impact event provided

the impact energy in the deep interior (hereafter the impact-heated model). Stevenson

(1986) assumed that the deep interior of Uranus was stably stratified when Uranus was
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Figure 2.21: The time evolution of the planetary luminosity divided by the present lumi-
nosity of Neptune LN = 5.3× 1022erg s−1. The initial fraction of NH3/H2O= 0.458 and
CH4/H2O= 0.135. Lines’ colors represent the parameters of Z0, Ztot. The red, green, and
blue represent (Z0, Ztot, Zw) =(0.5, 0.85, 0.5), (0.7, 0.85, 0.8), and (0.3, 0.87, 0.5), respec-
tively. We assume Z0 in the envelope is constant through the evolution. The equilibrium
temperature is 46.6 K.
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formed gradually from small bodies. The interior of Uranus was difficult to sustain adi-

abatic, homogeneous interior because the compositionally stratified interior prevent the

convective motion in the deep interior. Thus the idea required that one-thirds of the mass

(i.e. outer region of Uranus) should significantly heated by the impact event (Stevenson,

1986). The giant impact event also affects the rotation axis of Uranus. Accordingly, this

idea also explain the difference of not only the present luminosity but also the spin axes

of Uranus and Neptune. To satisfy the condition, the oblique impact occurred when the

Uranus was formed. However, this impact-heating model requires strict condition for the

impact parameter. Morbidelli et al. (2012) suggested that one impact event could not ex-

plain the Uranus’s tilted rotation axis. They argue that Uranus should have experienced

at least two impact events. To satisfy that condition, the impact-heated model requires

only oblique impacts. Moreover, the impact-heated model ignore the contribution of the

inner region of Uranus on the thermal evolution. Thus, the thermal transport between

the outer and inner regions should be prevented. This idea requires that the Uranus did

not have fully convective interior but a stable stratified interior. During the accretion

phase, the interior of the porto-uranus was fully convective (Bodenheimer and Pollack,

1986; Pollack et al., 1996). Thus, the initial condition of Uranus which this idea required

is difficult to satisfy from the point of view of the formation scenario. To ignore the

contribution of thermal transport from the deep interior, an inhibition of the convective

transport due to a compositional gradient is realistic.

The effect of a composition gradient is important to discuss the efficiency of ther-

mal transport via convection. Hydrodynamical simulations indicated that the layered

convection occurred due to the compositional gradient (Radko, 2003; Rosenblum et al.,

2011; Mirouh et al., 2012; Wood et al., 2013). The impact of the layered convection on

the thermal evolution was calculated for gas giants (Vazan et al., 2015; Kurokawa and

Inutsuka, 2015; Nettelmann et al., 2015) but not calculated for ice giants. The effect

of the compositional gradient on the thermal evolution is also important to explain the

present luminosity of Uranus. Nettelmann et al. (2013) showed that the contribution of

45 % of the mass of Uranus on thermal evolution needed to be ignored to explain the

present luminosity of Uranus. Thus, the thermal transport between the outer and inner

regions should be prevented. To prevent the thermal transport, the convective transport
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between the inner and outer regions should be suppressed. This suggests that there are

a compositional gradient between the inner and outer regions to suppress the convective

transport (Podolak et al., 1991; Nettelmann et al., 2013). To verify this idea, we should

discuss the thermal transport via convection considering a compositional gradient. How-

ever, the layered convection is unstable for the large-scale-overturning convection (Vazan

et al., 2015; Kurokawa and Inutsuka, 2015). If the compositional inhomogeneity disap-

pears, the planetary interior should be compositional homogeneity and the heat transport

via convection is not prevented.

Our results show that to explain the current luminosity, the atmosphere of Uranus is

required to have been polluted by water, ammonia, and methane when it was formed.

Moreover, the atmosphere of Uranus immediately after the formation should have had

both the C/O value lower than the solar composition and the N/O value higher than the

solar composition. These are consistent with the observations of the current atmosphere

of Uranus. Atmospheric observations (Orton et al., 2014a,b) indicated that the present

atmosphere of Uranus is not polluted by H2O or NH3. This apparently seems inconsistent

with our conclusions; nevertheless, these species should have been condensed and removed

from the atmosphere. Thereby, the fact that the current atmosphere is not polluted by

H2O and NH3 is consistent with our conclusions. Encrenaz et al. (2004) first detected

CO molecule in the atmosphere of Uranus using the ISAAC imaging spectrometer at the

VLT-UTI (ANTU) 8-m telescope of European Southern Observatory. Based on Herschel-

HIFI observations, Orton et al. (2014b) constrain the CO content in the stratosphere of

Uranus as 7.1 − 9.0 × 10−9 in a mole fraction. They found that CO was of an internal

origin because their thermochemical model showed an upper limit of a mole fraction of

2.1 × 10−9. Their calculation results also suggested that C/H was 13-40 times the solar

composition while O/H was 340-500 times the solar composition (Cavalié et al., 2014).

Thus, the C/O value value of the present atmosphere of Uranus is estimated between 0.01

and 0.05, which is smaller than solar C/O value. Since our results show that the C/O

valueless than 0.05 is required to explain the current luminosity, our conclusions agree

with the observation of the atmosphere. Our conclusions show that the atmosphere should

contain less CH4 compared with H2O given the solar compositions. This in turn means

that the major C-bearing molecule in the Uranus-forming region in the protoplanetary
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disk would have been CO. If the disk temperature at the Uranus-forming region was low

sufficient to condense CO into the solid phase (20 K or less; Alibert and Mousis (2007)),

CO should have been present in the current atmosphere. The observations, however,

show that the CO content is as low as (7.1−9.0)×10−9 (Orton et al., 2014b). Thus, this

imply that the disk temperature at the Uranus-forming region would have been higher

than the condensation temperature of CO but allows H2O, CH4, and NH3 to condense

into the solid phase, namely 20-50 K (Alibert and Mousis, 2007).

If planet experienced a giant impact event, the planetary interior would be mixed due

to the shock wave through the interior (Slattery, 1992). If the Uranus experienced the

giant impact event, the atmosphere also mixed with ice compositions from the interior.

Slattery (1992) calculated the giant impact of primitive Uranus using smooth particle

hydrodynamical simulation. They suggested that the large obliquity of Uranus is due to

the giant impact. Morbidelli et al. (2012) suggested that Uranus was not tilted from 0◦ to

98◦ in one shot. They indicated that Uranus experienced at least two giant collisions. The

obliquity of Uranus cannot be explained due to the tidal interaction with the satellites.

That is because the required mass of satellite becomes greater than the total mass of

Uranian satellites to explain the large Uranian obliquity within the age of the solar system

(Kubo-Oka and Nakazawa, 1995; Boué and Laskar, 2010). That is, giant impact events

are consistent with the obliquity of Uranus. On the other hand, the thermal evolution of

Neptune does not need the effect of condensation (Fortney et al., 2011; Nettelmann et al.,

2013). We argue that giant impact events make the difference of present luminosities

between Uranus and Neptune.

2.6 Conclusions

We calculated the thermal evolution of ice giant considering the effect of condensation of

water, ammonia, and methane in the planetary atmosphere. We found that the thermal

evolution timescale with the effect of condensation in the atmosphere was shortened

compared to that without the effect because the latent heat due to the condensation in the

atmosphere raised the atmospheric temperature and increased the outward flux from the

top of the atmosphere Ftop. We also found that the amount of condensable constituents
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(water, ammonia, and methane in our calculation) in the atmosphere controlled the

thermal evolution of the ice giants. If the ice giant has large amount of condensable spices,

the thermal evolution timescale is controlled by a radiation limit of water, ammonia, and

methane. Then the the thermal evolution timescale with condensation effect is shorter

than that without the condensation. The initial fractions of NH3/H2O and CH4/H2O

are also important. A large fraction of NH3/H2O causes the rapid thermal evolution due

to the effect of the condensation of NH3, while large fraction of CH4/H2O prevents the

cooling of Uranus. Our study indicated that large fraction NH3/H2O and small fraction of

CH4/H2O is suitable to explain the present luminosity of Uranus. The present planetary

luminosity and compositions imply the initial contents of condensable constituents in the

atmosphere that reflects the formation history of the planet. Our result will be useful to

connect the formation scenario and observations of the ice giants.
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Chapter 3

Effect of photo-evaporative mass loss

on masses and radii of ice giants

3.1 Introduction

Exoplanet transit photometry reveal the interior and atmosphere of exoplanets. The most

important advantage of this technique would be that planetary radii are measured, while

planetary masses are measured via other techniques such as the radial velocity method

and the transit timing variation method. Relationships of measured mass and radius

allow us to infer the interior structure and bulk composition of exoplanets theoretically,

which brings crucial constraints to the formation and evolution processes of the planets.

A growing number of exoplanets with radii of 1 to 2 Earth radius (= 6.38× 108 cm) has

been identified, which are often called super-Earths (Batalha et al., 2013). We can thus

discuss the compositions of such small planets in addition to gas giants by comparing

theory with observation nowadays.

Transiting super-Earths detected so far show a large variation in radius, suggesting

diversity in composition. There are many theoretical studies on mass-radius relationships

for planets with various compositions and masses (Valencia et al., 2007; Fortney et al.,

2007; Sotin et al., 2007; Seager et al., 2007; Grasset et al., 2009; Wagner et al., 2011; Swift

et al., 2012). A recent important finding by comparison between theory and observation is

that there are a significant number of low-density super-Earths that are larger in size than

they would be if they were rocky. This implies that these transiting super-Earths have
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components less dense than rock. From a viewpoint of planet formation, the possible

components are hydrogen-rich (hereafter H-rich) gas and water which make an outer

envelope. A small fraction of H-rich gas or water is known to be enough to account for

observed radii of the low-density super-Earths (Adams et al., 2008; Valencia et al., 2010).

The stability of the envelopes are, however, to be investigated. Transiting planets

are in general orbiting close to their host stars (typically ≲ 0.1 AU), because detection

probability of planetary transits is inversely proportional to the separation (e.g., Kane

2007). Such close-in planets are highly irradiated and exposed to intense X-ray and

ultraviolet radiation (hereafter XUV) coming from their host stars. This causes the

planetary envelope to escape hydrodynamically from the planet (e.g., Watson et al. 1981).

This process is often called the photoevaporation of planetary envelopes. As for massive

close-in planets, namely, hot Jupiters, the possibility of the photoevaporation and its

outcome have been investigated well both theoretically and observationally (e.g., Yelle

et al. 2008 and references therein).

While the photoevaporation may not affect the evolution and final composition of hot

Jupiters significantly except for extremely irradiated or inflated hot Jupiters, its impact

on small close-in planets in the sub/super-Earth mass range should be large, partly

because their envelope masses are much smaller than those of hot Jupiters (Owen and

Wu, 2013; Lopez and Fortney, 2013; Kurokawa and Nakamoto, 2014). For example, the

structure and composition of the first transiting super-Earth CoRoT-7 b are investigated

by Valencia et al. (2010). They discussed the sustainability of the possible hydrogen-

helium (hereafter H+He) envelope with mass of less than 0.01 % of the total planetary

mass. The envelope mass was consistent with its measured mass and radius. However,

the estimated lifetime of the H+He envelope was only 1 million years, which was much

shorter than the host star’s age (2 − 3 × 109 years). This suggests that CoRoT-7 b is

unlikely to possess the H+He envelope at present.

Young main-sequence stars are known to be much more active, and emit stronger XUV

than the current Sun (e.g., Ribas et al. 2005). Therefore, even if a super-Earth had a

primordial atmosphere initially, it may lose the atmosphere completely during its history.

Such discussions concerning the photo-evaporative loss of H+He envelopes were done

for GJ 1214 b (Nettelmann et al., 2011; Valencia et al., 2013) and super-Earths orbiting
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Kepler-11 (Lopez et al., 2012; Ikoma and Hori, 2012), in addition to CoRoT-7 b (Valencia

et al., 2010). Systematic studies were also done by Rogers et al. (2011) and Lopez and

Fortney (2013). Those studies demonstrated the large impact of the photoevaporation on

the stability of H+He envelopes for super-Earths. In particular, Lopez and Fortney (2013)

performed simulations of coupled thermal contraction and photo-evaporative mass loss of

rocky super-Earths with H+He envelopes. They found that there were threshold values

of planetary masses and radii, below which H+He envelopes were completely stripped

off.

In this study, we focus on ice giants which are close to their host star. Planet formation

theories predict that low-mass planets migrate toward their host star, which is strongly

supported by the presence of many close-in ice giants, from cooler regions (e.g., Ward

1986), where they may have accreted a significant amount of water. This suggests that

ice giants may also exist close to host stars. Therefore, similar discussions should be done

for water envelopes of close-in super-Earths. However, there are just a few studies, which

treat specific sub/super-Earths such as CoRoT-7 b (Valencia et al., 2010) and Kepler-

11 b (Lopez et al., 2012). No systematic study is yet to be done for the stability of water

envelopes.

The aim of this study is to examine the stability of primordial water envelopes of close-

in ice giants against photo-evaporation. The thermal evolution of planets with significant

fractions of water envelopes (i.e., water-worlds), incorporating the effect of stellar-XUV-

driven photo-evaporative mass loss is simulated. The theoretical model is described in

§ 3.2. As for the atmosphere model, the details are described in Appendix F. In § 3.3,

we show the evolutionary behavior of the water-rich planets. Then, we find threshold

values of planetary masses and radii below which such water-rich planets are incapable of

retaining primordial water envelopes for a period similar to ages of known exoplanet-host

stars (i.e., 1–10 Gyr). In § 3.4, we compare the theoretical mass-radius distribution of

water-rich planets with that of known transiting planets. Furthermore, we compare the

threshold radius with sizes of Kepler objects of interest (KOIs) to suggest that KOIs

include a significant number of rocky planets. Finally we summarize this chapter in § 3.5.
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3.2 Numerical models

In this study, the evolution of the mass and radius of a planet which is composed of

water and rock, including the mass loss due to photoevaporation is calculated Figure 3.1

shows the interior model. We assumed that the planet consist of three layers in spher-

ical symmetry and hydrostatic equilibrium; namely, from top to bottom, a water vapor

atmosphere, a water envelope and a rocky core. At each interface, the pressure and

temperature are continuous.

The assumptions and equations which determine the planet’s interior structure and

thermal evolution are described in § 3.2.1 and § 3.2.2, respectively. The equations of state

for the constituents in the three layers are summarized in § 3.2.3. The structure of the

atmosphere and the photoevaporative mass loss, both of which govern the planet’s overall

evolution, are described in § 3.2.4 (see also Appendix F) and § 3.2.5, respectively. Since

a goal of this study is to compare our theoretical prediction with results from transit

observations, we also calculate the transit radius, which is defined in § 3.2.6. Finally, we

summarize our numerical procedure in § 3.2.7.

3.2.1 Interior structure

The interior structure of the planet is determined by the differential equations (e.g. Kip-

penhahn and Weigert 1990),

∂P

∂Mr

= −GMr

4πr4
, (3.1)

∂r

∂Mr

=
1

4πr2ρ
, (3.2)

∂T

∂Mr

= −GMrT

4πr4P
∇, (3.3)

and the equation of state,

ρ = ρ(P, T ), (3.4)

where r is the planetocentric distance, Mr is the mass contained in the sphere with

radius of r, P is the pressure, ρ is the density, T is the temperature and G (= 6.67 ×
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10−8 dyne cm2 g−2) is the gravitational constant. The symbol ∇ is the temperature

gradient with respect to pressure. We assume that the water envelope and rocky core are

fully convective and the convection is vigorous enough that the entropy S is constant;

namely,

∇ =

(
∂ lnT

∂ lnP

)
S

. (3.5)

Equations (3.1), (3.2) and (3.3) require three boundary conditions. Three boundary

conditions are required by Eqs. (3.1), (3.2) and (3.3). We set the inner one r = 0

at Mr = 0. The outer boundary corresponds to the interface between the envelope

and the atmosphere, which is called the tropopause. The tropopause pressure Pad and

temperature Tad are determined from the atmospheric model, the details of which is

described in § 3.2.4 and Appendix A. The atmospheric mass is negligible, relative to the

planet total mass Mp. In our calculation, the atmospheric mass is less than 0.1 % of the

planetary mass. Thus, the outer boundary conditions are given as

P = Pad and T = Tad at Mr = Mp. (3.6)

As mentioned above, the pressure and temperature are also continuous at the interface

between the water envelope and the rocky core.

Rocky core

Water envelope

Convective interior

M = Mr core

Convective interior

M = 0, r=0r

Photosphere
Transit radius

R  ,τ =2/3
τ  =2/3

th

ch

Vapor atmosphere

TropopauseR     , P  , T

p

conv ad ad

Figure 3.1: Model of the planetary structure in this study.
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3.2.2 Thermal evolution

The thermal evolution of the planet without internal energy generation is described by

(e.g., Kippenhahn and Weigert 1990)

∂L

∂Mr

= −T
∂S

∂t
, (3.7)

where L is the intrinsic energy flux passing through the spherical surface with radius of

r, S is the specific entropy, and t is time. Since the entropy is constant in each layer, the

integrated form of Eq. (3.7) is written as

−Lp =
∂S̄e

∂t

∫ Mp

Mc

TdMr +
∂S̄c

∂t

∫ Mc

0

TdMr, (3.8)

where Lp is the total intrinsic luminosity of the planet and Mc is the mass of the rocky

core, and S̄e and S̄c are the specific entropies in the water envelope and the rocky core,

respectively. In integrating Eq. (3.7), we have assumed L = 0 at Mr = 0.

In the numerical calculations of this study, we use the intrinsic temperature Tint,

instead of Lp, which is defined by

T 4
int ≡

Lp

4πR2
pσ

, (3.9)

where Rp is the planet photospheric radius (see § 3.2.4 for the definition) and σ is the

Stefan-Boltzmann constant (= 5.67× 10−5 erg cm−2 K−4 s−1).

3.2.3 Equation of state (EOS)

In the vapor atmosphere, the temperature and pressure are sufficiently high and low, re-

spectively, so that the ideal gas approximation is valid. We thus adopt the ideal equation

of state, incorporating the effects of dissociation of H2O. In practice, we use the nu-

merical code developed by Hori and Ikoma (2011), which calculate chemical equilibrium

compositions among H2O, H2, O2, H, O, H+, O+ and e−.

Since pressure due to molecular interaction is not negligible, the ideal gas approxima-

tion is not valid at high pressures in the water envelope. In this study, we use mainly the
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ab initio EOS for H2O, H2O-REOS (French et al., 2009). H2O-REOS covers a density

range from 1.0 × 10−6 g cm−3 to 15 g cm−3 and a temperature range from 1.0 × 103 K

to 2.4× 104 K. For T and ρ outside the ranges that H2O-REOS covers, we use SESAME

7150 (Lyon and Johnson, 1992).

The rocky core is assumed to be mineralogically the same in composition as the silicate

Earth. We adopt a widely-used EOS, the Vinet EOS, and calculate thermodynamic

quantities following Valencia et al. (2007).

3.2.4 Atmospheric model

As described above, we consider an irradiated, radiative-equilibrium atmosphere on top

of the water envelope. The thermal properties of the atmosphere govern the internal

structure and evolution of the planet. To integrate the atmospheric structure, we follow

the prescription developed by Guillot (2010) basically, except for the treatment of the

opacity. Namely, we consider a semi-grey, plane-parallel atmosphere in local thermal

equilibrium. The wavelength domains of the incoming (stellar) and outgoing (planetary)

radiations are assumed to be completely separated; the former is visible, while the latter

is near or mid infrared.

We solve the equation of radiative transfer by integrating the two sets (for incoming

and outgoing radiations) of the zeroth and first-order moment equations for radiation

with the Eddington’s closure relation: the incoming and outgoing radiations are linked

through the equation of radiative equilibrium (see Appendix F). Guillot (2010) derived an

analytical, approximate solution which reproduced well the atmospheric structure from

detailed numerical simulations of hot Jupiters (see also Hansen (2008)). The solution

depends on the opacities in the visible and thermal wavelengths. Guillot (2010) also

presented empirical formulae for the mean opacities of solar-composition (i.e., hydrogen-

dominated) gas.

However, no empirical formula is available for opacities of water vapor of interest in

this study. We take into account the dependence of the water-vapor opacity on tem-

perature and pressure, and integrate the momentum equations numerically. The details

about the mean opacities and momentum equations are described in Appendix E.

The bottom of the atmosphere is assumed to be the interface between the radiative
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and convective zones. We use the Schwarzschild criterion (e.g., see Kippenhahn and

Weigert 1990) to determine the interface. The pressure and temperature at the interface

(Pad, Tad) are used as the outer boundary conditions for the structure of the convective

water envelope.

The photospheric radius Rp used in Eq. (3.9) is the radius where the thermal optical

depth measured from infinity, τ , is 2/3, namely,

τ =

∫ ∞

Rp

κr
thρdr =

2

3
, (3.10)

where κr
th is the Rosseland mean opacity for the outgoing radiation (see Appendix A for

the definition). This level is above the tropopause, the radius of which is written by Rconv

(see Fig.3.1). We evaluate the atmospheric thickness z (= Rp −Rconv) by integrating the

hydrostatic equation from P = Pad to P = Pph, namely

z = −
∫ Pph

Pad

dP

gρ
= −

∫ Pph

Pad

R
µg

T

P
dP, (3.11)

where g is the constant gravity, R (= 8.31×107 erg K−1 g−1) is the gas constant and

µ is the mean molecular weight. Pph is the photospheric pressure that we calculate by

integrating
dP

dτ
=

g

κr
th

(3.12)

from τ = 0 to 2/3.

3.2.5 Mass loss

The mass loss is assumed to occur in an energy-limited fashion. Its rate, including the

effect of the Roche lobe, is given by (Erkaev et al., 2007)

Ṁ = −εFXUVRpπR
2
XUV

GMpKtide

, (3.13)

where ε is the heating efficiency, defined as the ratio of the rate of heating that results

in hydrodynamic escape to that of stellar energy absorption, FXUV is the incident flux

of X-ray and UV radiation from the host star, Ktide is the potential energy reduction
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factor due to stellar tide and RXUV is the effective radius at which the planet receives

the incident XUV flux. In Eq. (3.13), we have assumed RXUV = Rp, which is a good

approximation for close-in planets of interest (Lammer et al., 2013). It is noted that

Lammer et al. (2013) focused on the hydrogen-helium atmosphere. Since the scale height

of the vapor atmosphere is smaller than that of a hydrogen-helium atmosphere with the

same temperature, RXUV ≃ Rp is a good approximation also for the vapor atmosphere.

In this study, we assumed the host star to be a G-star. We adopt the empirical formula

derived by Ribas et al. (2005) for FXUV:

FXUV =


504

( a

1AU

)−2

erg s−1 cm−2 (t < 0.1Gyr)

29.7

(
t

1Gyr

)−1.23 ( a

1AU

)−2

erg s−1 cm−2 (t ≥ 0.1Gyr).
(3.14)

We use the formula for Ktide derived by Erkaev et al. (2007)

Ktide =
(η − 1)2(2η + 1)

2η3
, (3.15)

where η is the ratio of the Roche-lobe (or Hill) radius to the planetary radius, Rp.

Since minor gases such as CO2 contribute to it via radiative cooling, the value of the

heating efficiency is unknown. For photoevaporation of hot-Jupiters, ε is estimated to be

of the order of 0.1 (Yelle et al. (2008) and reference therein). Thus, we adopt ε = 0.1 as

a fiducial value, and investigate the sensitivity of our results to ε.

Adopting ε = 0.1 implies that the atmospheric escape occurs from a hydrogen-

dominated photosphere. In this study, we assumed that oxygen atoms also escape from

the atmosphere with hydrogen atoms. This is valid when oxygen is minor in the atmo-

sphere, as we can estimate this based on the following equation of the crossover mass

mc,

mc = mH +
kBTFH

nHDH−O

(3.16)

where mH is the mass of a hydrogen atom, FH is the escape flux of hydrogen atoms, T

is the temperature at the upper atmosphere, nH is the number density of hydrogen, and

DH−O is the molecular diffusion coefficient, respectively. The relationship between the

73



escape flux FH and the mass loss rate Ṁ is

Ṁ = 4πR2
p

NA

mH

FH (3.17)

where NA(= 6.02×1023) is the Avogadro’s number. With Eqs. (3.13), (3.16), and (3.17),

we can obtain

mc = mH + 16.7
T

nHDH−O

( a

0.01 AU

)−2 ( ε

0.1

)(Rp

R⊕

)(
Mp

M⊕

)−1

. (3.18)

If T
nHDH−O

is larger than unity, oxygen atoms can be escaped from the atmosphere. When

we assume a typical Jovian middle atmosphere value, T
nHDH−O

∼ 10−17, oxygen atoms

cannot be escaped from the atmosphere. However the planet we consider here is in much

hotter circumstances than that of Jovian middle atmosphere. Moreover the exact values

for T , nH , and DH−O at the upper atmosphere are unknown. In this study, we simply

assume that T
nHDH−O

is large enough to satisfy mc > mO where mO is the mass of an

oxygen atom.

We also estimate the escape parameter for a water-dominated atmosphere. We can

find that

λ =
GMm

RkBT
∼ 68×

(
m

mH2O

)(
T

2000 K

)−1(
M

M⊕

)(
R

R⊕

)−1

. (3.19)

The escape parameter for a hydrogen atom for Earth is λ ∼ 25. For a close-in planet

we consider here, the upper atmosphere should be high temperature compared to that of

Earth. In this study, we also simply assume that the upper atmosphere is high tempera-

ture environment enough to escape water molecules from the atmosphere.

Finally, we assume that the rocky core never evaporates. That is simply because

we are interested in the stability of water envelopes in this study. Whether rocky cores

evaporate or not is beyond the scope of this study.

3.2.6 Transit radius

The planetary radius measured by transit photometry is different from the photospheric

radius defined in the preceding subsection. The former is the radius of the disk that blocks

the stellar light ray that grazes the planetary atmosphere in the line of sight. This radius
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is called the transit radius hereafter in this study. Below we derive the transit radius,

basically following Guillot (2010). Note that Guillot (2010) assumed the plane-parallel

atmosphere, while we consider spherically symmetric structure, because the atmospheric

thickness is not negligibly small relative to the planetary radius in some cases in this

study.

We introduce the chord optical depth, τch (e.g. Guillot 2010), which is defined as

τch(r, ν) =

∫ +∞

−∞
ρκνds, (3.20)

where r is the planetocentric distance of the light of interest (see Fig.3.2), s is the distance

along the line of sight measured from the point where the line is tangent to the sphere,

and κν is the monochromatic opacity at the frequency ν. Using τch, we define the transit

radius, Rtr, as

τch(Rtr) =
2

3
. (3.21)

Let the altitude from the sphere of radius r be ztr. Then s2 = (r+ ztr)
2− r2 (Fig.3.2).

Eq.(3.20) is written as

τch(r, ν) = 2

∫ ∞

0

ρκν
ztr + r√

ztr2 + 2rztr
dztr. (3.22)

Furthermore, we choose pressure P as the independent variable, instead of ztr. Using the

equation of hydrostatic equilibrium,

dP

dztr
= − GMpρ

(r + ztr)2
, (3.23)

one obtains

τch(ν, r) = − 2

gr

∫ 0

Pr

κν
(1 + ztr/r)

2√
1− (1 + ztr/r)−2

dP, (3.24)

where

gr =
GM

r2
(3.25)

and Pr is the pressure at r. To integrate Eq.(3.24), we write ztr as a function of P . To
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do so, we integrate Eq.(3.23) and obtain

∫ ztr

0

dz′

(r + z′)2
= −

∫ Pz

Pr

dP

GMpρ
, (3.26)

where Pz is the pressure at ztr. Eq.(3.26) is integrated as

1

r + ztr
=

1

r
− 1

r2gr

∫ Pr

Pz

dP

ρ

=
1

r
− zp(Pr, Pz)

r2
, (3.27)

where

zp(Pr, Pz) ≡
∫ Pr

Pz

P

ρgr
d lnP. (3.28)

Thus, z is written as

ztr = zp

(
1− zp

r

)−1

. (3.29)

Note that zp corresponds to the altitude in the case of a plane-parallel atmosphere,

and (1− zp/r)
−1 is the correction for spherical symmetry.

r

z

s

Planetary Center

Light from the host star
Observer

tr

r

Figure 3.2: The figure of the chord optical depth.

3.2.7 Numerical procedure

To calculate the mass and radius evolution simultaneously, we integrate Eqs. (3.8) and

(3.13) by the following procedure.

First we calculate two adiabatic interior models which are separated in time by the

time interval ∆t for the known Mp(t) and an assumed Mp(t+∆t). The two structures are
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integrated for two different values of Tint. We integrate Eqs. (3.1)-(3.4) inward from the

tropopause to the planetary center, using the fourth-order Runge-Kutta method. The

inward integration is started with the outer boundary condition given by Eq. (3.6); Pad

and Tad are calculated according to the atmospheric model described in § 3.2.4. We then

look for the solution that fulfills the inner boundary condition (i.e., r = 0 at Mr = 0)

in an iterative fashion. Note that determining Pad and Tad requires the gravity in the

atmosphere (or Rconv), which is obtained after the interior structure is determined. Thus,

we have to find the solution in which the interior and atmospheric structures are consistent

with each other also in an iterative fashion.
Then we calculate ∆t from the second-order difference equation for Eq. (3.8), which

is written as

∆t = −
[S̄e(t+∆t)− S̄e(t)][Θe(t+∆t) + Θe(t)] + [S̄c(t+∆t)− S̄c(t)][Θc(t+∆t) + Θc(t)]

Lp(t+∆t) + Lp(t)
, (3.30)

where

Θe(t) ≡
∫ Mp(t)

Mc

T (t)dMr, Θc(t) ≡
∫ Mc

0

T (t)dMr. (3.31)

Using this ∆t, we integrate Eq. (3.13) to calculate Mp(t+∆t) as

Mp(t+∆t) = Mp(t) + Ṁ∆t. (3.32)

The assumed value of Mp(t + ∆t) is not always equal to that obtained by Eq. (3.32).

Therefore the entire procedure must be repeated until the Mp(t + ∆t) in Eq. (3.32)

coincides with that assumed for calculating Eq. (3.30) with satisfactory accuracy, which

is ≲ 0.1 % in our calculations.

Once we obtain the interior and atmospheric structure, we calculate the transit radius

by the procedure described in § 3.2.6. Finally we have confirmed that our numerical code

reproduces well the mass and radius relationship for super-Earths presented by Valencia

et al. (2010).
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3.3 Mass evolution

In this section, we show our results of the mass evolution of a close-in ice giant. The

evolution is controlled by the following five parameters: the initial total mass of the

planet (Mp,0), the initial luminosity (L0), the initial water mass fraction (Xwt,0), the

semi-major axis (a), and the heating efficiency (ε). Below we adopt L0 = 1×1024 erg s−1,

Xwt,0 = 75 %, a = 0.1 AU, and ε = 0.1 as fiducial values unless otherwise noted. We also

show how the five parameters affect the fate of a close-in water-rich planet.

3.3.1 Examples of mass evolution

Figure 3.3 shows examples of the mass evolution for water-rich planets with six different

initial masses; L0 = 1 × 1024 erg s−1, Xwt,0 = 50 %, a = 0.1 AU, and ε = 0.1 in these

simulations, as stated above. The smallest planet loses its water envelope completely

in 1 Gyr (the dashed line), while more massive planets retain their water envelopes for

10 gigayears (solid lines). This means that a water-rich planet below a threshold mass

ends up as a naked rocky planet.

The existence of the threshold mass is understood in the following way. Using

Eq. (3.13), we define a characteristic timescale of the mass loss (τM) as

τM =

∣∣∣∣∣XwtMp

Ṁp

∣∣∣∣∣ = 4GKtideXwtMpρpl
3εFXUV

, (3.33)

where ρpl is the mean density of the planet. As the mass of the planet decreases, the

timescale of mass loss becomes shorter. This trend is enhanced by the fact that the mean

density decreases as Mp decreases, according to our numerical results.

In addition, the time-dependence of the stellar XUV flux (see Eq. [3.14]) is a crucial

factor to cause a striking difference in behavior between the low-mass and high-mass

planets. Using Eq. (3.14), we obtain the following relation for τM :

τM ≃


3× 108f yr, for t < 0.1 Gyr,

3× 108
(

t

0.1 Gyr

)1.23

f yr, for t ≥ 0.1 Gyr,
(3.34)
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where

f = 1
( a

0.1AU

)2(XwtMp

M⊕

)(
ρpl

0.1g cm−3

)(
Ktide

0.9

)( ε

0.1

)−1

. (3.35)

Note that 0.1 g cm−3 is a typical value of ρpl in the case of sub-Earth-mass planets

with age of 108 years, according to our calculations. As seen in Eq.(3.34), τM becomes

longer rapidly with time. This implies that small planets that satisfy τM < 0.1 gigayears

experience a significant mass loss. In other words, massive planets that avoid significant

mass loss in the early phase can retain their mass for 10 gigayears. Thus, there exists a

threshold mass below which a planet never retains its water envelope for a long period.

Our numerical calculations found that the threshold mass (hereafter Mthrs) is 0.16 M⊕

for the fiducial parameter set, which is in good agreement with Mp < 0.2 M⊕ derived

from Eq.(3.34).

A similar idea of threshold mass was proposed by Lopez and Fortney (2013) for the

planet with the hydrogen-helium atmosphere. Hydrogen-rich planets are more vulnerable

to the photoevaporative mass loss than water-rich planets. According to their study, the

threshold mass of the hydrogen-rich planet at 0.1 AU is ∼ 5 M⊕. That is, Mthrs for

water-rich planets is smaller by a factor of ∼ 10 than that of hydrogen-rich planets.

The ice giants for Neptune-mass should retain their water during their ages. Thus the

ice giants for Neptune-mass planet can ignore the mass loss due to the photo-evaporation.

3.3.2 Dependence on the initial planet’s luminosity

The evolution during the first 0.1 gigayears determines the fate of the ice giant, as shown

above. Such a trend is also shown by Lopez and Fortney (2013) for H+He atmospheres

of rocky planets. This suggests that the sensitivity of the planet’s fate to the initial

conditions must be checked. In particular, the initial intrinsic luminosity may affect the

early evolution of the planet significantly, because the planetary radius, which has a great

impact on the mass loss rate, is sensitive to the intrinsic luminosity; qualitatively a large

L0 enhances mass loss because of a large planetary radius. On the other hand, L0 is

rather uncertain, because it depends on how the planet forms (e.g. accretion processes

of planetesimals, migration processes and giant impacts). However, as shown below, the

fate of the planet is insensitive to choice of L0
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Figure 3.3: Mass evolution of close-in water-rich planets. The blue solid lines represent
planets that retain their water envelopes for 10 gigayears. In contrast, the planet shown
by the red dashed line loses its water envelope completely in 10 gigayears. We set Lp,0 =
1× 1024 erg s−1, Xwt,0 = 50%, a = 0.1AU, and ε = 0.1 for all the planets. In this model,
we assume that the rocky core never evaporates.
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Fig. 3.4 shows Mthrs as a function of L0 for a = 0.02, 0.03, 0.05 and 0.1 AU. We have

found that Mthrs is almost independent of L0. This is because an initially-luminous planet

cools down rapidly, so that the integrated amount of water loss during the high-luminosity

phase is negligible. This is confirmed by the following argument. The mass loss, ∆M , at

the early stage can be estimated by

∆M ∼ ṀτKH, (3.36)

where τKH is the typical timescale of Kelvin-Helmholtz contraction,

τKH ≃
GM2

p

2RpLp

. (3.37)

With Eqs. (3.33) and (3.37) given, Eq.(3.36) can be written as

∆M ∼ Mp
τKH

τM
= Mp

ε

2Ktide

·
πR2

pFXUV

Lp

(3.38)

∼ 3× 10−2

(
FXUV

504 erg cm−2 s−1

)( ε

0.1

)(Ktide

0.9

)−1

×
( a

0.1 AU

)−2
(

Rp

3 R⊕

)2(
Lp

1024 erg s−1

)−1

Mp. (3.39)

Because FXUV is constant in the early phase, ∆M decreases as Lp increases, i.e., the

Kelvin-Helmholtz contraction proceeds more rapidly. Therefore, the choice of the value

of L0 has little effect on the total amount of water loss, as far as L0 is larger than

1024 erg s−1. For smaller L0, Rp is insensitive to L0. Thus, Mthrs is insensitive to L0.

3.3.3 Dependence on the initial water mass fraction

The fate of a water-rich planet also depends on the initial water mass fraction, Xwt,0.

Figure 3.5 shows Xwt(t) at t = 10 gigayears as a function of the initial planet’s mass,

Mp,0, for four different values of Xwt,0(= 25 %, 50 %, 75 %, and 100 %). As Mp,0

decreases, Xwt(10 gigayears) decreases. The pure water planet (solid line) with Mp,0 <

0.82 M⊕ is completely evaporated in 10 Gyr, namely Xwt(10 Gyr) =0 %; otherwise

Xwt(10 Gyr) = 100 %. In other cases, we find that the threshold mass, Mthrs, below
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Figure 3.4: The threshold mass in M⊕ as a function of the initial planet’s luminosity in
erg s−1 for four choices of semimajor axes. The solid, dashed, dotted and dot-dashed
represent a = 0.02, 0.03, 0.05 and 0.1 AU, respectively. We have assumed Xwt =75 % and
ε = 0.1.

which Xwt(10 Gyr) =0 %, is 0.56 M⊕ for Xwt,0 = 75 %, 0.44 M⊕ for Xwt,0 = 50 % and

0.44 M⊕ for Xwt,0 = 25 %.

Figure 3.7 shows the relationship between Xwt,0 and Mthrs for four different semi-

major axes. Mthrs is found not to be a monotonous function of Xwt,0. For Xwt,0 < 25 %,

Mthrs decreases, as Xwt,0 increases. This is explained as follows. According to Eq. (3.33),

the mass loss timescale, τM , depends on the absolute amount of water, XwtMp, and the

planetary bulk density, ρpl. When Xwt is sufficiently small, ρpl is equal to the rocky

density and is therefore constant. Thus, τM is determined only by the absolute amount

of water (i.e., XwtMp). This means that if Xwt,0 is small, Mp must be larger for τM to be

the same. As a consequence, Mthrs decreases with increasing Xwt,0. More exactly, Mthrs

changes with Xwt,0 in such a way that Xwt,0Mthrs is constant. In contrast, when Xwt,0 is

large, not only Xwt and Mp, but also ρpl affect the mass loss timescale. For a given Mp,

an increase in Xwt,0 leads to a decrease in ρpl (or, an increase in radius), which enhances

mass loss. As a result, Mthrs increases with Xwt,0 for Xwt,0 > 25 %. Therefore, there is a

minimum value of Mthrs, which is hereafter described by M∗
thrs.
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Figure 3.5: Relationship between the initial planetary mass and the fraction of the water
envelope at 10 gigayears for four initial water mass fractions ofXwt,0 = 100 % (solid), 75 %
(dashed), 50 % (dotted), and 25 % (dot-dashed). We have assumed L0 = 1×1024 erg s−1,
a = 0.1 AU and ε = 0.1.

Similar trends can be seen in Figs. 3 and 4 of Lopez and Fortney (2013).

To compare our results for water-rich planets with those for hydrogen-rich rocky

planets from Lopez and Fortney (2013) in a more straightforward way, we show the

relationship between the initial total mass and the fraction of the initial water envelope

that is lost via subsequent photo-evaporation in 5 gigayears in Fig. 3.6 (see Fig. 3c of

Lopez and Fortney 2013). We set L0 = 1 × 1024 erg s−1, a = 0.1 AU, ε = 0.1, and six

initial water mass fractions of Xwt,0 = 1 % (solid), 3 % (long-dashed), 10 % (dotted),

30 % (dash-dotted), 50 % (dot-dashed), and 60 % (dashed), which are similar to those

adopted by Lopez and Fortney (2013). As mentioned above, for the same fraction of the

initial envelope to survive photo-evaporation, the initial total mass larger by a factor of

∼10 is needed in the H+He case than in the water case. In addition, in the water case,

the required initial total mass for Xwt,0 < 10% becomes significantly large. This behavior

is also found in the case of the hydrogen-rich planets for Xwt,0 = 1 − 3%. However, the

trend is less noticeable in the H+He case. This is because the density effect described

above is effective even for small H+He fractions.
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Figure 3.6: Relationship between the initial planetary mass and the fraction of the initial
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3.3.4 Dependence on the semi-major axis

At small a, the incident stellar XUV flux becomes large. Thus, Mthrs increases, as a

decreases. Certainly, the distance to the host star affects the equilibrium temperature

Teq which has an influence on ρpl: The higher Teq is, the smaller ρpl is. However, its

impact on Mthrs is small, relative to that of FXUV. According to the planet’s mass and

mean density relationship, ρpl differs only by a factor of ≲ 1.5 between 880 K and 2000 K.

Therefore, increasing FXUV has a much greater impact on the mass loss than decreasing

ρpl. In Fig. 3.7, we find M∗
thrs = 5.2 M⊕ for a = 0.02 AU, M∗

thrs = 2.5 M⊕ for a = 0.03 AU,

M∗
thrs = 1.2 M⊕ for a = 0.05 AU, and M∗

thrs = 0.44 M⊕ for a = 0.1 AU.
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Figure 3.7: Relationship between the initial water mass fraction Xwt,0 in % and the
threshold massMthrs inM⊕ for four choices of semi-major axes of 0.02 AU (solid), 0.03 AU
(dashed), 0.05 AU (dotted) and 0.1 AU (dot-dashed). We have assumed L0 = 1 ×
1024 erg s−1 and ε = 0.1.
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3.3.5 Expected Populations

Figure 3.8 shows the relationship betweenMthrs (notM
∗
thrs) and the radius that the planet

with Mthrs would have at 10 Gyr without mass loss (solid line). We call this radius the

threshold radius, Rthrs. We have calculated Rthrs for Xwt,0 = 100 %, 75 %, 50 %, 25 %,

10 %, 5 % and 1 %. In addition, the mass-radius relationships for rocky planets (dashed

line) and pure-water planets (dotted line) at 0.1 AU are also drawn in Fig. 3.8. There

are four characteristic regions in Fig. 3.8:

I Planets must contain components less dense than water such as hydrogen/helium.

II Planets with water envelopes and without hydrogen-helium can exist. The water

envelopes survive photo-evaporative mass loss.

III Primordial water envelopes experience significant photo-evaporative mass loss in

10 gigayears.

IV Planets retain no water envelopes and are composed of rock and iron.

Only in the region II, the planet retains its primordial water envelope for 10 gigayears

without significant loss. There are minimum values not only of Mthrs but also of Rthrs;

the latter is denoted by R∗
thrs hereafter. Note that R∗

thrs is not an initial radius. Those

minimum values are helpful to discuss whether planets can possess water components or

not, because the uncertainty in water mass fractions can be removed. Since Mthrs and

Rthrs depend on semi-major axis, we also compare those threshold values with observed

M − a and R− a relationships in the next section.

3.4 Implications for distributions of observed exo-

planets

Figure 3.9 compares the relationship between the threshold mass, Mthrs, and threshold

radius, Rthrs with measured masses and radii of super-Earths around G-type stars iden-

tified so far. Here we show three theoretical relationships for a = 0.02, 0.05, and 0.1 AU.

As discussed above, for a given a, only planets on the right side of the theoretical line
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(i.e., in region II) are able to retain their water envelopes without significant loss for

10 gigayears.

For future characterizations, planets in region III would be of special interest, because

our results suggest that planets should be rare in region III. Three out of the 14 planets,

55 Cnc e, Kepler-20 b, and CoRoT-7 b might be in region III, although errors and the

uncertainty in ε (see also the lower panel of Figure 3.10 and 3.11 for the sensitivity of

M∗
thrs to ε) are too large to conclude so. There are at least three possible scenarios for

the origin of planets in region III. One is that those planets are halfway to complete

evaporation of their water envelopes. Namely, some initial conditions happen to make

planets in region III, although such conditions are rare. The second possible scenario is

that those planets had formed far from and migrated toward their host stars recently. The

third is that those planets are in balance between degassing from the rocky core and the

atmospheric escape. Thus, deeper understanding of the properties of those super-Earths

via future characterization will provide important constraints on their origins.

In this study, low-mass exoplanets whose masses are ≤ 20 M⊕ and radii ≤ 4 R⊕ are of

special interest. (We call them super-Earths below.) While there are only 14 super-Earths

whose masses and radii were both measured (see Fig. 3.9), the minimum masses (Mp sin i),

in addition to orbital periods, were measured for about 22 super-Earths around G-type

stars (see Fig. 3.10 and 3.11). Also, over 1,000 sub/super-Earth-sized planet candidates

have been identified by the Kepler space telescope (Batalha et al. 2013). The size and

semi-major axis distribution of those objects is known. It is, thus, interesting to compare

our theoretical prediction with the observed Mp-a and Rp-a distributions.

Before doing so, we demonstrate thatM∗
thrs and R∗

thrs are good indicators for constrain-

ing the limits below which evolved planets cannot retain water envelopes. Figure 3.10

and 3.12 show the theoretical distributions of masses and radii of planets that evolved

for 10 gigayears, starting with various initial water mass fractions and planetary masses

(i.e., Xwt,0 = 25, 50, 75 and 100 % and log(Mp,0/M⊕) = −1 + 0.1j with j = 0, 1, · · · , 21).

The crosses (red) and open squares (blue) represent the planets that lost their water

envelopes completely (i.e., rocky planets) and those which survive significant loss of their

water envelopes, respectively. As seen in these figures, two populations of rocky planets

and water-rich planets are clearly separated by the M∗
thrs and R∗

thrs lines. Note that there
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Figure 3.9: Relationship between the threshold mass Mthrs and radius Rthrs (lines; see
text for definitions), compared with masses and radii of observed transiting super-Earths
around G-type stars (points with error bars; exoplanets.org (Wright et al. 2011), as of
June 29, 2013, ). The solid, dashed and dotted represent the Mthrs and Rthrs relationships
for orbital periods of 11 days (= 0.1 AU), 4 days (= 0.05 AU) and 1 day (= 0.02 AU),
respectively. The dash-dotted line represents the planet composed of rocks. Note that
black points represent planets whose orbital periods are longer than 11days. In those
calculations, we have assumed the heating efficiency ε = 0.1 and the initial luminosity
L0 = 1× 1024 erg s−1. ”CoR” are short for CoRoT and ”Kep” are short for Kepler. Note
that there are two lines. Planets on those lines are detected by only transit method.
Planetary masses are estimated by the empirical formula derived by Weiss et al. (2013).
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are some planets that retain water envelope below the threshold line. These planets just

retain ≲ 1 % water mass fraction at 10 gigayears. However, such planets are found to be

obviously rare.

In Fig. 3.11, we show the distribution ofMp sin i and a of low-mass exoplanets detected

around G-type and K-type stars so far, compared withM∗
thrs for three choices of ε. Among

them, Kepler-10 b and CoRoT-7 b are well below the M∗
thrs line for ε = 0.1. Thus, the

two planets are likely to be rocky, provided ε = 0.1. However, the uncertainty in ε (and

FXUV) prevents us from deriving a robust conclusion. An order-of-magnitude difference

in ε is found to change M∗
thrs by a factor of three. The aforementioned three planets are

between the two M∗
thrs lines for ε = 0.01 and 0.1. This demonstrates quantitatively how

important determining ε and FXUV more accurately is for understanding the composition

of super-Earths only with measured masses. It would be worth mentioning that few

planets are found between the lines for ε = 0.1 and ε = 1. Since all the planets in

Fig. 3.11 were found by the radial-velocity method, the apparent gap would be unlikely

to be due to observational bias. Thus, the gap might suggest that the actual M∗
thrs line

lies between those two ones.

In Fig. 3.13, we show the distribution of Rp and a of KOIs, which is compared with

R∗
thrs for three choices of ε. Many planets are found to be below the R∗

thrs lines. We are

unable to constrain the fraction of rocky planets quantitatively, because of the uncertainty

in ε. However, since there are many points below the R∗
thrs line for ε of as small as 0.01,

it seems to be a rather robust conclusion that KOIs contain a significant number of rocky

planets. Note that the distribution must include rocky planets that formed rocky without

ever experiencing mass loss. This means there are more rocky planets in reality than we

have predicted in this study.

As mentioned in Introduction, Lopez and Fortney (2013) performed a similar investi-

gation of threshold mass and radius concerning H+He atmospheres on rocky super-Earths

(see Figs. 8 and 9 of Lopez and Fortney (2013)). As the horizontal axis, they adopted

the incident stellar flux, instead of semi-major axis. In Figs. 3.10 and 3.12, we have also

indicated another scale of the incident flux calculated from the relationship between the
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semi-major axis a and the incident flux F ,

F =
Lstar

4πa2
= FEarth

(
Lstar

L⊙

)( a

1AU

)−2

, (3.40)

where Lstar is the luminosity of the host star and FEarth is the current bolometric flux that

the Earth receives from the Sun. Comparing with their results for the H+He envelope,

we find that while a similar linear dependence is found, the threshold value of the initial

mass (or incident flux) for H2O is smaller by a factor of about 10 than that for H+He.

For example, in the case of F = 103F⊕, the threshold mass for H+He is ∼ 30M⊕ (derived

by Eq. (6) of Lopez and Fortney 2013), while that for H2O is ∼ 2M⊕.

Figure. 9 of Lopez and Fortney (2013) suggested that the frequency of planets with

radii of 1.8 − 4.0 R⊕ for Fp ≥ 100 F⊕ (corresponding to a ≤ 0.1 AU) should be low

as a consequence of photo-evaporative mass loss. In contrast, our results suggest that

water-rich planets with radii of 1.5−3.0 R⊕ are relatively common, because they are able

to sustain their water envelopes against photo-evaporation. Indeed, there are many KOIs

found in such a domain in the Rp-a diagram shown in Fig. 3.12. Thus, those KOIs may

be water-rich planets, although it is also possible that they are rocky planets without

ever experiencing mass loss.

Finally, in this study, we deal with the thermal escape of the upper atmosphere

due to stellar XUV irradiation. In addition, ion pick-up induced by stellar winds and

coronal mass ejections may be effective in stripping off atmospheres of close-in planets, as

discussed for close-in planets with hydrogen-rich atmospheres (e.g. Lammer et al. 2013).

Such non-thermal effects lead to increase in M∗
thrs. This implies that the M∗

thrs obtained

in this study is a lower limit on survival of water-rich planets.

3.5 Summary

In this study, we have investigated the impact of photo-evaporative mass loss on masses

and radii of water-rich sub/super-Earths with short orbital periods around G-type stars.

We simulated the interior structure and evolution of highly-irradiated sub/super-Earths

that consist of a rocky core surrounded by a water envelope, including the effect of mass
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Figure 3.11: Distribution of masses and semimajor axes (or incident fluxes) of detected
exoplanets compared with the minimum threshold mass, M∗

thrs, derived in this study (see
§ 3.3 for definition). We have shown three M∗

thrs−a relationships for different heating effi-
ciencies: ε = 1 (solid line), ε = 0.1 (dashed line) and ε = 0.01 (dotted line). Filled circles
with error bars represent observational data (from http://exoplanet.org (Wright et al.
2011), as of February 12, 2016) for planets orbiting host stars with effective temperature
of 5000-6000 K (relatively early K-type stars and G-type stars). Planets are colored ac-
cording to their zero-albedo equilibrium temperatures in K. In the planet names, ”CoR”
and ”Kep” stand for CoRoT and Kepler, respectively.
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loss due to the stellar XUV-driven energy-limited hydrodynamic escape (see § 3.2).

Here we summarize this study below. In § 3.3, we have investigated the mass evolu-

tion of water-rich sub/super-Earths, and then found a threshold planet mass Mthrs, below

which the planet has its water envelope stripped off in 1-10 Gyr (§ 3.3.1). The initial

planet’s luminosity has little impact on Mthrs (§ 3.3.2). We have found that there is a

minimum value, M∗
thrs, for given a and ε (§ 3.3.4). Water-rich planets with initial masses

smaller than M∗
thrs lose their water envelopes completely in 10 gigayeras, independently

of initial water mass fraction. The threshold radius, Rthrs, is defined as the radius that

the planet of mass Mthrs would have at 10 gigayers if it evolved without undergoing mass

loss. We also found that there is a minimum value of the threshold radius, R∗
thrs (§ 3.3.5).

Finally, in § 3.4, we discussed the composition of observed low-mass exoplanets, by com-

paring the threshold values with measured masses and radii of the exoplanets. Then,

we have confirmed quantitatively that more accurate determination of planet masses and

radii, ϵ and FXUV is needed for deriving robust prediction for planetary composition. Nev-

ertheless, the comparison between R∗
thrs and radii of KOIs in the Rp − a plane suggests

that KOIs contain a significant number of rocky planets.

In this study, we demonstrated that photo-evaporative mass loss has a significant

impact on the evolution of water envelopes of sub/super-Earths, especially with short

orbital periods, as well as that of H+He envelopes of super-Earths. Since water envelopes

are more stable against photo-evaporation than H+He envelopes, the stability limit for

water envelopes gives more robust constraints on the detectability of rocky planets. Thus,

the Mthrs and Rthrs will provide valuable information for future search for rocky Earth-like

exoplanets.
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Chapter 4

Conclusions

This dissertation investigates the impacts of the internal compositional distribution on

the thermal evolution and the bulk composition’s evolution of ice giants. Long-period

ice giants experienced the thermal evolution and the condensation of water, ammonia,

and methane in the atmosphere simultaneously. We propose one hypothcis to explain

the present luminosity of Uranus. Our results suggest that the difference of the present

luminosities between Uranus and Neptune have been related to their rotation axis that is

made by giant impact events. Short-period ice giants, water-rich sub/super-Earths, have

experienced the thermal evolution and mass loss simultaneously. We indicate that the

bulk composition of ice giants would be different depending on when they were formed.

We also show that the effect of mass loss of the vapor atmosphere would be essential to

understand the origin of planetary system, together with the comparisons with obser-

vations. Condensation and mass loss remove the water or other ice compositions from

the atmosphere. In this dissertation, we revealed that even though the present planetary

atmosphere would have contained a small amount of ice constituents, the planetary evo-

lution is totally quit different whether the planet possessed a lot of ice compositions when

it was formed. These results will give insights into connecting theory and observations

of planetary atmosphere, which is essential to understand the origins of the solar system

and beyond.
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Appendix A

Theory: Basic physics of the

planetary interior structure and the

thermal evolution

A.1 Interior structure for the polytropic model

I summarize the interior structure for the polytropic model and derive the mass-radius

relationship for the polytropic model planet.

If I assume the relation between the pressure and the density as

P ≡ Kρ1+1/n, (A.1)

the planetary interior structure can be solved, because the hydrostatic equations is closed.

I assume the planet is in spherical symmetric hydrostatic equilibrium;

dP

dr
= −ρ

dΦ

dr
(A.2)

where Φ is the gravitational potential which requires Poisson’s equation;

1

r2
d

dr

(
r2
dΦ

dr

)
= 4πGρ. (A.3)
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With polytropic relation, A.2 can be written

dΦ

dr
= −

(
1 +

1

n

)
Kρ−1+1/ndρ

dr
(A.4)

where K is assumed to be constant. If n ̸= 0, (A.4) can be integrated by r from center

(r = 0) to surface (r = R, which means Φ(R) = 0 at the surface ρ(R) = 0);

ρ =

(
−Φ

(n+ 1)K

)n

. (A.5)

Note that the interior of the planet Φ < 0 gives there ρ > 0.

Here I derive the Lane-Emden equation. With (A.2) and (A.4), I obtain an ordinary

differential equation for ρ:

d2ρ1/n

dr2
+

2

r

dρ1/n

dr
= − 4πG

(n+ 1)K

(
ρ1/n

)n
(A.6)

I now define dimensionless variables z, w by

z = Ar (A.7)

w =

(
ρ

ρc

)1/n

(A.8)

where A is constant;

A2 =
4πG

(n+ 1)K
ρ1−1/n
c , (A.9)

and subscript ”c” refers to the center; ρc = ρ(r = 0). At the center I have z = 0 and

ρ = ρc and therefore w = 1. Then (A.9) can be written

d2w

dz2
+

2

z

dw

dz
+ wn = 0 (A.10)

or
1

z2
d

dz

(
z2
dw

dz

)
+ wn = 0. (A.11)
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(A.10) is called Lane-Emden equation. (A.10) has analytical solutions for n = 0, 1 and 5;

n = 0 : w(z) = 1− 1

6
z2, (A.12)

n = 1 : w(z) =
sin z

z
, (A.13)

n = 5 : w(z) =
1√

1 + z2/3
, (A.14)

if I set boundary condition w(z = 0) = 1 and w′(z = 0) = 0. Note that w represents not

only ρ but also Φ. With (A.5), w and A can be written

w =
Φ

Φc

(A.15)

A2 =
4πG

(n+ 1)nKn
(−Φc)

n−1 (A.16)

where Φc is

Φc = −(n+ 1)Kρ1/nc . (A.17)

I derive the mass-radius relationship of the polytropic planet. With (A.5) and (A.7),

ρ can be written

ρ = ρcw
n ; ρc =

(
−Φc

(n+ 1)K

)n

. (A.18)

Then I can write the planetary mass

Mr =

∫ r

0

4πr2ρdr =
4πρc
A3

∫ z

0

wnx2dz. (A.19)

With (A.19), (A.11) and A = z/r, Mr can be written

Mr = 4πρcr
3

(
−1

z

dw

dz

)
. (A.20)

For the special case of the surface, I have

Mp = 4πρcR
3
p

(
−1

z

dw

dz

)
z=zn

, (A.21)
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where Mp is planetary mass, Rp is planetary radius and zn is the value which satisfy

Rp = Azn at the surface of the planet. According to (A.9), if the polytropic constant K

is constant through the planetary interior, I can find

1

A2
=
(r
z

)2
=

(
Rp

zn

)2

=
(n+ 1)K

4πG
ρ(1−n)/n
c . (A.22)

With (A.21) and (A.22), I can find the relation (n ̸= 1)

Mp = CR(3−n)/(1−n) (A.23)

where

C = 4π

(
4πG

(n+ 1)Kz2n

)n/(1−n)

·
(
−1

z

dw

dz

)
z=zn

(A.24)

If n = 1, I can derive zn = π by (A.13) for w = 0 which means outer boundary condition

ρ(Rp) = 0. Then I can find the relation

Rp =

√
πK

2G
(A.25)

which is independent of planetary mass. (A.25) relation appears in the case of gas giants

such as hot-Jupiters.

A.2 The Virial theorem

I summarize the virial theroem for the hydrostatic equilibrium planet and derive how to

shrink by cooling.

The virial theorem provides the general relation between the kinetic energy and the

stable system bounded by potential energy. In astrophysics, this theorem describe the

relation between the gravitational potential energy and the kinetic or thermal energy. To

apply to the planetary interior structure, I use the hydrostatic equilibrium equation. I

multiple v = 4πr3/3 and integrate over dMr in the interval [0,M ], that is from center to
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surface. Then, I can describe the ∂P/∂Mr as

∫ M

0

4

3
πr3

∂P

∂Mr

dMr =

[
4

3
πr3P

]M
0

−
∫ M

0

4πr2
∂r

∂Mr

PdMr (A.26)

= PsVp −
∫ Rp

0

4πr2Pdr, (A.27)

where Ps is the surface pressure of the planet, Vp is the bulk volume of the planet and Rp is

the radius of the planet (r(Mp) = Rp). The inner boundary condition is P (Mr = 0) = 0.

If I assume the outer boundary condition as P (Rp) = 0, the external force’s work term

PsVp = 0. In the right-hand side, the first term means the external force’s work and the

second term the internal force’s work. The term 4πr2Pdr can be rewrite to (P/ρ)dMr

due to the mass conservation.

As a result, the hydrostatic equilibrium equation can be rewrite to

−
∫ M

0

P

ρ
dMr = −1

3

∫ M

0

GMr

r
dMr (A.28)

I define the gravitational energy Eg by

Eg := −
∫ M

0

GMr

r
dMr. (A.29)

I also define the total internal energy Ei by

Ei :=

∫ M

0

u · dMr (A.30)

where u is the internal energy per unit mass. For a general equation of state, I define a

quantity ζ by

ζu := 3
P

ρ
(A.31)

Then, the virial theorem is ∫ M

0

u · dMr + Eg = 0. (A.32)

If ζ is constant throughout the planet, I can derive

ζEi + Eg = 0. (A.33)
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I now define the total energy W ;

W = Ei + Eg (A.34)

where for a gravitationally bound system W < 0. If I combine the virial theorem result

and W < 0, I can find the condition;

W = (1− ζ)Ei =
ζ − 1

ζ
Eg < 0. (A.35)

In the case of ζ = 1 the total energy vanishes.

In order to understanding ζ, I derive the ζ value for ideal gas. For ideal gas,

P

ρ
=

Rg

µ
T = (cP − cv)T = (γ − 1)cvT, (A.36)

where cP , cv are the specific heats per unit mass, γ is heat capacity ratio

γ :=
cP
cv

(A.37)

in this subsection, Rg is universal gas constant (Rg = kB/mu, where kB is Boltzmann

constant and mu is the atomic mass unit). I can write u = cvT which means the internal

energy per unit mass of the ideal gas. Therefore, (A.31) is written

ζu = 3(γ − 1)u =⇒ ζ = 3(γ − 1). (A.38)

The heat capacity ratio γ is related to the degree of freedom f of a molecule. According

to the kinetic theory of gasses, a molecule’s energy is distributed to kBT/2 per one degree

of freedom. then molecule’s internal energy per unit mass u is written

u =
kBT

2
· f · 1

µmu

=
f

2
· Rg

µ
T. (A.39)

Due to Rg

µ
= (γ − 1)cv for ideal gas, I can derive the relation

γ = 1 +
2

f
. (A.40)

104



Note that I assume vibration degrees of freedom is ignored. For a monatomic gas, degrees

of freedom f = 3, for a linear molecules gas f = 5 and non-liner molecules gas f = 6.

For a monatomic gas γ = 5/3 and I can find ζ = 2. For a diatomic gas γ = 7/5 and I

can find ζ = 6/5 = 1.2. And for a non-liner molecule gas, such as H2O, γ = 4/3 and I

can find ζ = 1.

As an example, I give a general expression for the gravitational energy Eg of poly-

tropes. From the definition (A.29) of Eg, I find

Eg := −
∫ Mp

0

GMr

r
dMr = −

GM2
p

2Rp

− G

2

∫ Rp

0

M2
r

r2
dr. (A.41)

To derive (A.41), I make use of partial integration and the fact that Mr/r vanishes at

the center. On the other hand, the gravitational potential Φ satisfies

Fgrav = −GMr

r2
= −dΦ

dr
(A.42)

and therefore (A.41) can be written

Eg = −
GM2

p

2Rp

− 1

2

∫ Rp

0

Mr
GMr

r2
dr

= −
GM2

p

2Rp

+
1

2

∫ Mp

0

ΦdMr (A.43)

where I have integrated the second term of the left hand side partially;

−1

2

∫ Rp

0

Mr
dΦ

dr
dr = −1

2

∫ Mp

0

Mr
dΦ

dMr

dMr

= −1

2
[MrΦ]

Mp

0 +
1

2

∫ Mp

0

ΦdMr

=
1

2

∫ Mp

0

ΦdMr, (A.44)

considering the inner boundary condition r → 0 ⇒ MrΦ → 0 and outer boundary

condition r → Rp ⇒ MrΦ → 0. Since the outer boundary condition is defined by ρ = 0,

I put Φ(r = Rp) = 0 according to the relation (A.18). With (A.1) and (A.18), I can write

Φ = −(n+ 1)Kρ1/n = −(n+ 1)
P

ρ
(A.45)
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and then (A.43) can be written

Eg = −
GM2

p

2Rp

− n+ 1

2

∫ Mp

0

P

ρ
dMr. (A.46)

According to (A.28) and (A.29), (A.46) can be written

Eg = −
GM2

p

2Rp

+
n+ 1

6
Eg, (A.47)

and therefore

Eg = − 3

5− n

GM2
p

Rp

. (A.48)

According to the virial theorem (A.33), I can derive the total internal energy

Ei = −1

ζ
Eg =

3

ζ(5− n)

GM2
p

Rp

(A.49)

Therefore the total energy (A.34) becomes

W = Ei + Eg = − 3

5− n

(
1− 1

ζ

)
GM2

p

Rp

. (A.50)

(A.50) indicates that the total energy W for a polytrope of finite radius vanishes when

ζ = 1. And W for a polytrope of finite radius also vanishes when n ≥ 5.

A.3 The impact of the initial luminosity on the ana-

lytical thermal evolution of the planet

In general, W,Eg and Ei are coupled. As the planet release its energy by radiation, the

planet’s total energy W must decrease. I set L the luminosity of the planet, i.e. the total

energy loss per unit time by radiation. Then conservation of energy requires

dW

dt
+ L = 0 (A.51)

Then I can derive

L = (ζ − 1)
dEi

dt
= −ζ − 1

ζ

dEg

dt
(A.52)

106



(A.52) suggests that if the planet emits radiation and gets cool, the planet’s total internal

energy Ei increase and gravitational energy Eg decrease. If Eg decrease, the planet’s

radius gets shrink. And if Ei increase, the planet’s interior temperature also increase.

I represent the gravitational energy

Eg = −η
GM2

p

Rp

(A.53)

where η is a parameter. If I assume polytrope, η = 3/(5− n) according to (A.48). With

(A.52) and (A.53), I can find

L =
ζ − 1

ζ

d

dt

(
η
GM2

p

Rp

)
. (A.54)

Here I assume η is constant by time, (A.54) can be written

d

dt

(
1

Rp

)
=

ζ

ζ − 1
· L

ηGM2
p

(A.55)

(A.55) represents the shrinkage rate of the planetary radius. If The right hand side of

(A.55) is positive, 1/Rp becomes large and then the planet’s radius Rp becomes small.

I integrate (A.55) by time whose range is [t0, t]. I assume the planet’s luminosity

L = 4πσT 4
int where Tint is intrinsic temperature and σ is Stefan?Boltzmann constant.

Here I assume Tint is constant if t = [t0, t]. Then (A.55) can be written

(
1

Rp(t)

)3

=

(
1

Rp(t0)

)3

+
ζ

ζ − 1
· 12πσT

4
int

ηGM2
p

· (t− t0) (A.56)

where Rp(t) is the planet’s radius at t. I define the Kelvin-Helmholtz timescale:

τKH =
|Eg|
L

=
ηGM2

p

4πR3
pσT

4
int

. (A.57)

With (A.56) and (A.57), I can find

Rp(t) = Rp(t0)

(
1 + 3

ζ

ζ − 1

∆t

τKH,0

)−1/3

(A.58)
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where ∆t = t− t0 and

τKH,0 =
ηGM2

p

4πσR3
p(t0)T

4
int(t0)

. (A.59)

If τKH,0 ≫ 3ζ∆t/(ζ − 1), (A.58) can be written approximately

Rp(t) ≈ Rp(t0)

(
1− ζ

ζ − 1
· ∆t

τKH,0

)
. (A.60)

Therefore, the planet’s cooling causes the shrinkage of planetary radius. However,

ζ is not constant through the interior of the real planet because ζ probably change in

the planetary interior, And τKH changes by time because the gravitational energy and

planet’s luminosity are not constant by time. I have to numerically integrate the interior

structure of the planet to estimate the planet’s shrinkage.

Here we explain the dependence of the initial luminosity on the thermal evolution

of the planet. The basic theory is summarized by Hubbard (1977). We assume the

atmospheric structure is described by

T = T (g, T, ρ) = A(g)T β
effρ

γ, (A.61)

where A(g) is a function of the surface gravity g, ρ is the density, T is the temperature,

Teff is the effective temperature, and γ is the Gruneisen parameter. β is determined by the

atmospheric model. For example, β = 0 means the radiation limit regime which indicate

that the outgoing flux from the top of atmosphere Ftop is constant even though the bottom

temperature of atmosphere is changed. β = 1 means the black body limit which indicate

that the ground temperature denote the radiation field. The atmosphere grid calculated

by Hubbard and Macfarlane (1980) indicated β = 1.243 while that calculated by Leconte

and Chabrier (2013) indicated β = 0.454 − 2.09 for Jupiter and β = 0.293 − 2.31 for

Saturn. Here we assume 0 < β < 4. The thermal evolution of the planet is described

by the energy conservation (see § 2.2.3). Using the thermodynamical relation dS =

( ∂S
∂T

)ρdT + (∂S
∂ρ
)Tdρ = Cv[dT − (∂T

∂ρ
)Sdρ], we can rewrite

4πσR2
pT

4
eff =

∫
dMrCv

[
dT

dt
−
(
∂T

∂ρ

)
S

dρ

dt

]
, (A.62)
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where Rp is the planetary radius, Cv is the heat capacity, and σ is the Stevan-Boltzmann

constant. Here we assume Rp is constant and dρ
dt

= 0 for simplification, We can find that

dt = −
[

1

4πσR2
p

∫
Cv

1

T 4
eff

dMr

]
dT (A.63)

= −
[

1

4πσR2
p

∫
Cv

(
∂ lnT

∂ lnTeff

)
TdMr

]
dTeff

T 5
eff

(A.64)

Here we substitute
(

∂ lnT
∂ lnTeff

)
= β and we set α = 1

4πσR2
p

∫
CvβA(g)ρ

γdMr. Here we assume

α and β are constant and then we can find

dt = −αT β−5
eff dTeff . (A.65)

Then we obtain

t− t0 = − α

β − 4

[
T β−4
eff − T β−4

eff,0

]
, (A.66)

where Teff,0 is the initial effective temperature (Teff,0 = Teff(t = t0)) and t0 is the initial

time (t0 = 0). The we can rewrite

Teff =

 1

4−β
α
t+
(

1
Teff,0

)4−β


1

4−β

. (A.67)

α can be written as

α =
βT 4−β

eff,0

4πσR2
pT

4
eff,0

∫
CvTdMr (A.68)

∼ E

Lp,0

βT 4−β
eff,0 ∼ τKH,0βT

4−β
eff,0 . (A.69)

We can find that (
Teff

Teff,0

)4−β

=
1

4−β
β

t
τKH,0

+ 1
. (A.70)

This equation suggests the thermal evolution of the initial state. If t > τKH,0, the effective

temperature is not affected by the initial effective temperature Teff,0. However, if t < τKH,0,

the effective temperature is strongly affected by the initial effective temperature.
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Appendix B

Derivation of Ktide

In this section, I summarize the derivation of the Roche lobe effect for the mass loss Ktide.

The form of Ktide is derived by Erkaev et al. (2007).

I set the host star mass Ms, the planet’s mass Mp and the distance between the two

objects a. I consider the system of rotating axis and its center is the center of masses. I

set a test particle whose distance from the planet ra, the host star rb and the center of

the planet and the host star s respectively. In the rotating coordinate system, the energy

per unit mass of a test particle in the ecliptic plane is written

Φ = −GMp

ra
− GMs

rb
− G(Mp +Ms)s

2

a3
(B.1)

where G is the gravitational constant. I set dimensionless quantities in this section

δ =
Mp

Ms

;λ =
a

Rp

; η =
ra
Rp

(B.2)

where Rp is the planet’s radius. I assume a ≫ Rp. I consider a test particle is on the line

which is drown by the host star and the planet. Then rb and s can be written

rb = a− ra, (B.3)

s =
Ms

Ms +Mp

a− ra. (B.4)
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Therefore (B.1) can be written

Φ(η) = Φ0

[
−1

η
− 1

δ(λ− η)
− δ + 1

δ

(
λ

1 + δ
− η

)2
1

2λ2

]
, (B.5)

Φ0 =
GMp

Rp

. (B.6)

I consider the Roche lobe size as

rRL ≈
(
δ

3

)1/3

a, (B.7)

which I assume the zero velocity curve surrounded by L1 and L2 is a circular shape. With

(B.6) and (B.7), η on the boundary of the Roche lobe can be written

η =

[
Ms

Ms +Mp

a−
(
δ

3

)1/3

a

]
/Rp =

[
1

1 + δ
−
(
δ

3

)1/3
]
λ. (B.8)

The difference of the potential ∆Φ between the planet’s surface and the point whose

distance from the planet’s center ra can be written

∆Φ = Φ(η)− Φ(η = 1) (B.9)

= Φ0 ·
η − 1

η

[
1− η

δλ2
· λ(1 + η)− η

(λ− 1)(λ− η)
− (1 + δ)η(1 + η)

2δλ3

]
.

Note that λ = a/Rp ≫ 1 and δ = Mp/Ms ≪ 1, (B.10) can be written approximately

∆Φ = Φ0
η − 1

η

[
1− 3

2
· η(1 + η)

δλ3

]
. (B.10)

Provided that ra = rRL, (B.7) can be written

η =
rRL

Rp

=

(
δ

3

)1/3
a

Rp

⇔ λ =

(
3

δ

)1/3

η. (B.11)

With (B.10) and (B.11), ∆Φ can be written

∆Φ = Φ0

(
1− 3

2
· 1
η
+

1

2
· 1

η3

)
=

GMpKtide

Rp

(B.12)
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where

Ktide = 1− 3

2
· 1
η
+

1

2
· 1

η3
. (B.13)

I consider the mass loss by use of the energy conservation. I set the XUV energy

flux IXUV which drive the mass loss. Provided that IXUV carries a gas particle from the

planetary surface Rp to its Roche lobe radius rRL, the mass loss per unit time Ṁp can be

written

Ṁp∆Φ = IXUV. (B.14)

IXUV can be written

IXUV = ϵ′FXUV · πR2
XUV (B.15)

where ϵ′ is the mass loss efficiency which is related to the heat efficiency of the atmospheric

molecules, FXUV is the XUV flux per unit time and unit area and πR2
XUV is the fronted

projected area against the XUV flux. Here I put ϵ′ · πR2
XUV = ϵ · πR2

p. With (B.12) and

(B.15),

Ṁp =
ϵFXUV · πR2

p

∆Φ
=

ϵFXUV · πR3
p

GMpKtide

=
3ϵFXUV

4Gρ̄Ktide

(B.16)

where ρ̄ is the planet’s mean density; ρ̄ = 4πR3
p/(3Mp). Provided that η → 1 which

means Rp → rRL, I can find Ktide → 0. That is, Ṁp → ∞ because Φ at the surface of

the planet become 0 if the planet’s radius is equal to its Roche lobe radius.
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Appendix C

EOS data table

Below I describe how to interoperate the EOS data table. One input the pressure P0 and

the temperature T0 and derive thermodynamical values, such as the density ρ and the

entropy S. We find the data table values (P̂1, P̂2, T̂1, T̂2) which satisfies

P̂1 < P0 < P̂2, (C.1)

T̂1 < T0 < T̂2. (C.2)

and then we also derive from the table

(P̂1, T̂1) → Ŝ11, ρ̂11, (C.3)

(P̂1, T̂2) → Ŝ12, ρ̂12, (C.4)

(P̂2, T̂1) → Ŝ21, ρ̂21, (C.5)

(P̂2, T̂2) → Ŝ22, ρ̂22. (C.6)

To derive the thermodynamical value ρ(P0, T0) and S(P0, T0), I interpolate (C.3)-(C.6)

by the plane

ln ρ(P0, T0) = Aρ +Bρ · (lnP0) + Cρ · (lnT0) +Dρ(̇ lnP0) · (lnT0) (C.7)

and

S(P0, T0) = AS +BS · (lnP0) + CS · (lnT0) +DS (̇ lnP0) · (lnT0) (C.8)
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To determine coefficients (Aρ, Bρ, Cρ, Dρ) and (AS, BS, CS, DS), one solve simultaneous

equations; 
1 ln P̂1 ln T̂1 ln P̂1 · ln T̂1

1 ln P̂1 ln T̂2 ln P̂1 · ln T̂2

1 ln P̂2 ln T̂1 ln P̂2 · ln T̂1

1 ln P̂2 ln T̂2 ln P̂2 · ln T̂2

 ·


Aρ

Bρ

Cρ

Dρ

 =


ln ρ̂11

ln ρ̂12

ln ρ̂21

ln ρ̂22

 , (C.9)

and 
1 ln P̂1 ln T̂1 ln P̂1 · ln T̂1

1 ln P̂1 ln T̂2 ln P̂1 · ln T̂2

1 ln P̂2 ln T̂1 ln P̂2 · ln T̂1

1 ln P̂2 ln T̂2 ln P̂2 · ln T̂2

 ·


AS

BS

CS

DS

 =


Ŝ11

Ŝ12

Ŝ21

Ŝ22

 . (C.10)

We can also derive adiabatic temperature T (P, S) from the EOS data table. This

is resemble to how to derive ρ(P, T ) and S(P, T ) One input the pressure P0 and the

specific entropy S̄ and derive the temperature T (P0, S̄) We search the data table values

(P̂1, P̂2, Ŝ11, Ŝ12, Ŝ21, Ŝ22) which satisfies

P̂1 < P0 < P̂2, (C.11)

Ŝmin < S̄ < Ŝmax. (C.12)

where Ŝmin = min(Ŝ11, Ŝ12, Ŝ21, Ŝ22) and Ŝmax = max(Ŝ11, Ŝ12, Ŝ21, Ŝ22). Then we also

derive from the table

(P̂1, Ŝ11) → T̂11, (C.13)

(P̂1, Ŝ12) → T̂12, (C.14)

(P̂2, Ŝ21) → T̂21, (C.15)

(P̂2, Ŝ22) → T̂22. (C.16)
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I interpolate (C.13)-(C.16) by the plane;

lnT (P0, S̄) = AT +BT · (lnP0) + CT · S̄ +DT (̇ lnP0) · S̄. (C.17)

To determine coefficients (AT , BT , CT , DT ), one solve simultaneous equations;


1 ln P̂1 S̄11 ln P̂1 · S̄11

1 ln P̂1 Ŝ12 ln P̂1 · S̄12

1 ln P̂2 S̄21 ln P̂2 · S̄21

1 ln P̂2 S̄22 ln P̂2 · S̄22

 ·


AT

BT

CT

DT

 =


ln T̂11

ln T̂12

ln T̂21

ln T̂22

 , (C.18)

I use Gaussian elimination method to solve Eqs.(C.9), (C.10) and (C.18).
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Appendix D

Analytical formula for the chord

optical depth of the isothermal

plane-parallel atmosphere

I assume the atmosphere is plain parallel structure;

dP

dz
= −gρ (D.1)

where g is the planet’s gravity and ρ is the density. I assume g is constant through the

atmosphere. If I assume the temperature of the atmosphere is constant, (3.28) can be

written

z(Pr, Pz) =
RT

µg
ln

Pr

Pz

= H ln
Pr

Pz

(D.2)

where H is the scale height H := P/|dP/dz| = RT/(µg).

Here I describe the analytical solution of the transit radius. The chord optical depth

can be written

τch = 2

∫ ∞

0

κνρ
z + r√
z2 + 2zr

dz (D.3)

I assume κν is constant for simplicity. With (D.1), (D.3) can be written

τch = −2κ

g

∫ 0

Pr

1 + z/r√
(z/r)2 + 2z/r

dP. (D.4)
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With (D.2), (D.4) can be written by use of change of variables from P to z,

τch = −2κ

g

∫ ∞

0

1 + z/r√
(1 + z/r)2 − 1

·
(
−Pr

H
e−z/H

)
dz. (D.5)

Therefore (D.3) can be written

τch = 2κνρr

∫ ∞

0

1 + z/r√
(1 + z/r)2 − 1

e−z/Hdz (D.6)

where ρr = µPr

RT
, which I assume the ideal gas. To evaluate (D.6), I change of variables

from 1 + z/r to X of the integral part of (D.6). Then I can find

τch = 2κνρrr

∫ ∞

1

X√
X2 − 1

e−r(X−1)/Hdz. (D.7)

By use of partial integral, (D.7) can be written

τch = 2κνρrr
{[√

X2 − 1e−r(X−1)/H
]∞
1

−
∫ ∞

1

−r

H

√
X2 − 1e−r(X−1)/Hdz

}
,

= 2κνρr
r2

H

∫ ∞

1

√
X2 − 1e−r(X−1)/Hdz

= 2κνρr
r2

H

∫ ∞

0

√
t2 + 2te−(r/H)·tdt, (D.8)

where X − 1 = t. (D.8) has finite value. I make use of Laplace transform to evaluate the

integral part of (D.8);

∫ ∞

0

√
t2 + 2te−(r/H)tdt =

∫ ∞

0

f(t)e−ptdt (D.9)

where p = r/H and f(t) =
√
t2 + 2t. Then we can derive

∫ ∞

0

(t2 + 2at)αe−ptdt =
Γ(α+ 1)√

π

(
2a

p

)α+1/2

eapKα+1/2(ap) (D.10)

where Γ is the gamma function and Kα is the modified Bessel function. In general, the
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modified Bessel function is

Kα(x) =
π

2

I−α(x)− Iα(x)

sinαπ
, (D.11)

Iα(x) =
∞∑
n=0

(x/2)α+2n

n!Γ(α + n+ 1)
. (D.12)

In the case of (D.9), α = 1/2 and a = 1. K1(x) can be written

K1(x) = I1(x)
(
log

x

2
+ γ
)
− 1

2

∞∑
k=0

(x/2)1+2k

k!(n+ k)!

[
k∑

m=1

1

m
+

k+n∑
m=1

1

m

]
(D.13)

where γ is Euler’s constant. Therefore I can derive

∫ ∞

0

(t2 + 2t)1/2e−(r/H)tdt =
Γ(1/2 + 1)√

π

(
2H

r

)1/2+1/2

er/HK1/2+1/2(r/H)

=
H

r
er/HK1

( r

H

)
(D.14)

With (D.8) and (D.14),

τch = 2κνρrre
r/HK1

( r

H

)
. (D.15)

The asymptotic expansion of the modified Bessel function Kα(x) can be witten

Kα(x) ≈
√

π

2x
e−x

∞∑
n=0

Γ(α + n+ 1/2)

n!Γ(α− n+ 1/2)

1

(2x)n

≈
√

π

2x
e−x

(
1 +

4α2 − 1

8x
+

(4α2 − 1)(4α2 − 9)

2!(8x)2

+
(4α2 − 1)(4α2 − 9)(4α2 − 25)

3!(8x)3
+ · · ·

)
(D.16)

when x is large enough. Therefore

K1

( r

H

)
≈
√

πH

2r
e−(r/H)

{
1 +

3

8

(
H

r

)
− 15

128

(
H

r

)2

+
105

1024

(
H

r

)3

+ · · ·

}
(D.17)

With (D.15) and (D.17),

τch ≈
√
2πκνρr

√
rH

{
1 +

3

8

(
H

r

)
− 15

128

(
H

r

)2

+
105

1024

(
H

r

)3

+ · · ·

}
. (D.18)
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Appendix E

Analytical formula for the chord

optical depth of the isothermal

spheric symmetric atmosphere

Here I describe the analytical formula of the chord optical depth for the isothermal spheric

symmetric atmosphere.

According to (3.2.6) The spheric symmetric atmosphere is

τch(ν, r) = −2

g

∫ 0

Pr

κν
(1 + z/r)2√

1− (1 + z/r)−2
dP. (E.1)

z = zp

(
1− zp

r

)−1

, (E.2)

and

zp(Pr, P ) = −R
µg

∫ P

Pr

T

P
dP. (E.3)

I assume the planet’s atmosphere is isothermal. Then (E.3) can be written

zp(Pr, P ) =
RT

µg
ln

Pr

P
= H ln

Pr

P
. (E.4)

where H = RT
µg

. Here I assume κν is constant for the simplicity. With (E.3), (E.4), I can

find
dP

dz
= −Pr

H

exp(− r
H

z
r+z

)

(1 + z/r)2
(E.5)
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Then (E.1) can be written

τch =
2κνPr

gH

∫ ∞

0

1 + z/r)2√
(1 + z/r)2 − 1

exp

(
− r

H

z

r + z

)
dz. (E.6)

where ρr = Pr/(gH) = (µPr)/(RT ) I make use of change variables and consequently find

τch = 2κνρr
r2

H
e−r/H

∫ ∞

1

√
X2 − 1

X2
exp

(
r

H

1

x

)
dX. (E.7)
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Appendix F

Atmospheric model for Chapter 3

We demonstrate the opacity models for the water vapor atmosphere. We define the

Planck (κP) and the Rosseland mean opacities (κr) as

κp
v =

∫
visible

κνBν(T⋆)dν

/∫
visible

Bν(T⋆)dν, (F.1)

1

κr
v

=

∫
visible

1

κν

dBν(T⋆)

dT
dν

/∫
visible

dBν(T⋆)

dT
dν, (F.2)

κp
th =

∫
thermal

κνBν(Tatm)dν

/∫
thermal

Bν(Tatm)dν, (F.3)

1

κr
th

=

∫
thermal

1

κν

dBν(Tatm)

dT
dν

/∫
thermal

dBν(Tatm)

dT
dν, (F.4)

where ν is the frequency, κν the monochromatic opacity at a given ν, T⋆ the stellar effective

temperature, Tatm the atmospheric temperature of the planet, and Bν the Planck function.

The subscripts, ”th” and ”v”, mean opacities in the thermal and visible wavelengths,

respectively. In this study, we assume T⋆ =5780 K. We use HITRAN line profile data

for water (Rothman et al., 2009) and calculate mean opacities for 1000 K, 2000 K, and

3000 K at 1, 10, 100 bar. The mean opacities are fitted to power-law functions of P and
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T , using the least squares method;

κp
v = 1.94× 104

(
P

1bar

)0.01(
T

1000K

)1.0

cm2 g−1, (F.5)

κr
v = 2.20

(
P

1bar

)1.0(
T

1000K

)−0.4

cm2 g−1, (F.6)

κp
th = 4.15× 105

(
P

1bar

)0.01(
T

1000K

)−1.1

cm2 g−1, (F.7)

κr
th = 3.07× 102

(
P

1bar

)0.9(
T

1000K

)−4.0

cm2 g−1, (F.8)

where P is the pressure and T the temperature.

In this study, we follow the prescription developed by Guillot (2010) basically, ex-

cept for the treatment of the opacity. We consider a static, plane-parallel atmosphere in

local thermodynamic equilibrium. We assume that the atmosphere is in radiative equi-

librium between an incoming visible flux from the star and an outgoing infrared flux from

the planet. Thus, the radiation energy equation and radiation momentum equation are

written as

dHv

dm
= κp

vJv, (F.9)

dKv

dm
= κr

vHv, (F.10)

dHth

dm
= κp

th (Jth −B) , (F.11)

dKth

dm
= κr

thHth, (F.12)

and the atmosphere in radiative equilibrium satisfies

κp
vJv + κp

th (Jth −B) = 0, (F.13)

where Jv (Jth), Hv (Hth), and Kv (Kth) are, respectively, the zeroth, first, and second-

order moments of radiation intensity in the visible (thermal) wavelengths, m the atmo-

spheric mass coordinate, dm = ρdz, where z is the altitude from the bottom of the
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atmosphere and ρ the density, and B the frequency-integrated Planck function,

B ≡
∫
thermal

Bνdν ∼ σ

π
T 4, (F.14)

where σ is the Stefan-Boltzmann constant. We here assume that thermal emission from

the atmosphere at visible wavelengths are negligible, so that Bν ∼ 0 in the visible region.

The six moments of the radiation field are defined as

(Jv, Hv, Kv) ≡
∫
visible

(Jν , Hν , Kν)dν, (F.15)

(Jth, Hth, Kth) ≡
∫
thermal

(Jν , Hν , Kν)dν, (F.16)

where Jν is the mean intensity, 4πHν the radiation flux, and 4πKν/c the radiation pressure

(c is the speed of light).

We integrate three moments of specific intensity, Jν , Hν and Kν , over all the frequen-

cies:

J ≡
∫ ∞

0

Jνdν =
1

2

∫ ∞

0

dν

∫ 1

−1

dµIν,µ = Jv + Jth, (F.17)

H ≡
∫ ∞

0

Hνdν =
1

2

∫ ∞

0

dν

∫ 1

−1

dµIν,µµ = Hv +Hth, (F.18)

K ≡
∫ ∞

0

Kνdν =
1

2

∫ ∞

0

dν

∫ 1

−1

dµIν,µµ
2 = Kv +Kth, (F.19)

where Iν,µ is the specific intensity and θ the angle of a intensity with respect to the z-axis,

µ = cos θ. The energy conservation of the total flux implies

H = Hv +Hth =
1

4π
σT 4

int, (F.20)

where Tirr is the irradiation temperature given by

Tirr = T⋆

√
R⋆

a
, (F.21)

where R⋆ is the radius of the host star and a the semimajor axis.

For the closure relations, we use the Eddington approximation (e.g. Chandrasekhar
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1960), namely,

Kv =
1

3
Jv, (F.22)

Kth =
1

3
Jth. (F.23)

For an isotropic case of both the incoming and outgoing radiation fields, we find boundary

conditions of the moment equations as follows (see also Guillot 2010 for details);

Hv(m = 0) = − 1√
3

1

4π
σT 4

irr, (F.24)

Hv(m = 0) = − 1√
3
Jv(m = 0), (F.25)

Hth(m = 0) =
1

2
Jth(m = 0). (F.26)

Thus, we integrate Eqs.(F.9)-(F.13) overm numerically, using mean opacities of (F.5)-

(F.8) and boundary conditions of (F.24)-(F.26), and then determine a T-P profile of

the water vapor atmosphere. We assume that the boundary is at P0 = 1 × 10−5 bar.

The choice of P0 (≤ 1 × 10−5bar) has little effect on the atmospheric temperature-

pressure structure. T0 is determined in an iterative fashion, until abs(T0 − [πB(m =

0, P0, T0)/σ]
1/4) ≤ 0.01 is fulfilled. Then we integrate Eqs. (F.9)-(F.13) over m by the

4th-order Runge-Kutta method, until we find the point where d lnT/d lnP ≥ ∇ad. The

pressure and temperature, Pad and Tad, are the boundary conditions for the convective-

interior structure (see §3.2.1).

In Fig. F.1, we show the P -T profile for the solar-composition atmosphere with g =

980 cm s−2, Tint = 300 K and Tirr = 1500 K (dotted line). In this calculation, we take κr
th

and κp
th as functions of P and T from Freedman et al. (2008) and calculate κp

v and κr
v,

for P = 1× 10−3, 0.1, 1, 10 bar and T = 1500 K from HITRAN and HITEMP data that

include H2, He, H2O, CO, CH4, Na and K for the solar abundance respectively as

κv =



1.51× 10−5 cm2 · g−1 (10−3 ≤ P [bar]),

3.88× 10−4 cm2 · g−1 (10−3 < P [bar] ≤ 10−1),

3.05× 10−3 cm2 · g−1 (10−1 < P [bar] ≤ 1),

2.65× 10−2 cm2 · g−1 (1 > P [bar]),

(F.27)
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by use of (F.2). The thin and thick parts of the solid line represent the radiative and

convective zones, respectively.

In addition, to test our atmosphere model, we compare it with the P -T profile derived

by Guillot (2010) with γ = κv/κth = 0.4 (solid line), which reproduces more detailed

atmosphere models by Fortney et al. (2005) and Iro et al. (2005) (see Fig. 6 of Guillot

(2010)). As seen in Fig. F.1, our atmospheric model yields a P -T profile similar to

that from Guillot (2010). In our model, temperatures are relatively low compared with

the Guillot (2010) model at P ≲ 40 bar, which is due to difference in opacity. In our

model, deep regions of P ≳ 40 bar are convective, while there is no convective region

in the Guillot (2010) model, because of constant opacity. We have compare our P -T

profile with the Fortney et al. (2005)’s and Iro et al. (2005)’s profiles, which are shown

in Fig. 6 of Guillot (2010) and confirmed that our P -T profile in the convective region

is almost equal to their profiles. Of special interest in this study is the entropy at the

radiative/convective boundary, because it governs the thermal evolution of the planet.

In this sense, it is fair to say that our atmospheric model yields appropriate boundary

conditions for the structure of the convective interior.

We show an analytical expression for our atmospheric model. κp
v and κr

v are constant

throughout the atmosphere. We differentiate (F.9) and (F.10) by m and obtain

d2Jv
dm2

= µ2Hv
dκr

v

dm
+

κr
vκ

p
v

µ2
Jv, (F.28)

d2Hv

dm2
= Jv

dκp
v

dm
+

κr
vκ

p
v

µ2
Hv, (F.29)

where µ2 = Kv/Jv. As Heng et al. (2012) mentioned, it would be a challenging task

without assumption of constant κp
v and κr

v to obtain analytical solutions for Jv and Hv.

Assuming Jv = Hv = 0 as m → ∞, we obtain

(Jv, Hv) = (Jv,0, Hv,0) exp

(
− κ̄v

µ
m

)
, (F.30)

where κ̄v =
√

κp
vκr

v and Jv,0 and Hv,0 are the values of Jv and Hv evaluated at m = 0

respectively. In general, the heat transportation such as circulation produces a specific

luminosity of heat. Heng et al. (2012) introduced the specific luminosity as Q which has
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units of erg s−1 g−1. Q can be related to the moments of the specific intensity and we

obtain

κp
th (Jth −B) + κp

vJv = Q. (F.31)

We integrate Eq. (F.31) and obtain

H = H∞ − Q̃(m,∞), (F.32)

where H∞ is the value of H evaluated at m → ∞ and

Q̃(m1,m2) =

∫ m2

m1

Q(m′, µ, ϕ)dm′. (F.33)

To obtain Hth and Jth, we substitute Eq. (F.31) in Eqs. (F.11) and (F.12) ant integrate

by m. Then we obtain,

Hth = H∞ −Hv,0 exp

(
− κ̄v

µ
m

)
− Q̃(m,∞) (F.34)

Jth = Jth,0 −
Hv,0

fKth

∫ m

0

κr
th exp

(
− κ̄v

µ
m′
)
dm′

+
1

fKth

∫ m

0

κr
th

{
H∞ − Q̃(m′,∞)

}
dm′, (F.35)

where fKth = Kth/Jth, fHth = Hth/Jth and

Jth,0 =
1

fHth

{
H∞ −Hv,0 − Q̃(0,∞)

}
. (F.36)

That is, we obtain

B = H∞

[
1

fHth

+
1

fKth

τth(m)

]
−Hv,0

[
1

fHth

+
κ̄v

µκp
th

+
1

fKth

τext(m)

]
+ E(m) (F.37)

126



where

τth(m) =

∫ m

0

κr
thdm

′, (F.38)

τext(m) =

∫ m

0

(
κ̄th

2 − fKth

µ2
κ̄v

2

)
1

κp
th

exp

(
− κ̄v

µ
m′
)
dm′, (F.39)

E(m) = −

[
Q

κp
th

+
1

fKth

∫ m

0

κr
thQ̃(m′,∞)dm′ +

Q̃(0,∞)

fHth

]
(F.40)

and κ̄th =
√

κp
thκ

r
th. In our conditions, we assume µ = 1/

√
3, fKth = 1/3, fHth = 1/2 and

Q = 0. Consequently, we obtain the temperature profile as

T 4 =
3

4
T 4
int

[
2

3
+ τth(m)

]
+

√
3

4
T 4
irr

[
2

3
+

κ̄v√
3κp

th

+ τext(m)

]
(F.41)

where

τext(m) =

∫ m

0

κ̄th
2 − κ̄v

2

κp
th

exp
(
−
√
3κ̄vm

′
)
dm′. (F.42)

If we assume κp
th = κv

th and κp
v = κv

v, Eq. (F.41) agrees with Eq. (27) of Heng et al. (2012).
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Figure F.1: Temperature-pressure profiles for a solar-composition atmosphere (see the
details in text). The solid and dotted lines represent the γ = 0.4 (Guillot, 2010) and
our models, respectively. The thin and thick parts of the lines represent the radiative
and convective regions, respectively. We assumed g = 980 cm s−2, Tint = 300 K and
Tirr = 1500 K.
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