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Chapter 1

Point-extinction and geometric expansion of solutions

to a crystalline motion

Outline: We consider the asymptotic behavior of solutions to a generalized crys­

talline motion which describes evolution of plane curves driven by nonsmooth in­

terfacial energy. Our main results say that solution polygonal curves shrink to a

single point, or expand to infinity depending on the size of initial data and the sign

of the driving force term. We also give lower and upper bounds of the extinction

time for the shrinking case. An isoperimetric ratio is estimated for the expansion

case. Moreover, we show that if the driving force term is a constant, then any so­

lution polygon approaches to a regular polygon even if the motion is anisotropic.

In the appendix, we shall expalin the notion of a discrete curvature and crystalline

curvature from a numerical point of view.

Key Words: crystalline motion, crystalline curvature, discrete curvature, motion

by curvature, curve-shortening, point-extinction, geometric expansion, estimates of

blow-up time, entropy estimate, comparison principle, isoperimetric ratio.

1 Introduction and main results

1.1 The aim of this chapter

Let Po be a convex closed polygon in the plane n 2 with the angle between two adjacent

sides of Po being 11" - t>B, where t>B := 211"/n and n is the number of sides of the polygon.

We consider the evolution problem of finding a family of polygons P = UO~«T(Pt X {t})
satisfying

{
~"j(t) = vj(t)nj, 0::; j < n, 0 < t < T,

P n {t = O} = Po,



where the vector nj is the inward normal of the jth side of the polygon P, and the vector

Zj(t) denotes the point of intersection between the line containing the jth side of the

polygon P, and the line spanned by nj. The function Vj is the inward normal velocity

of the jth side which will be specified later. Throughout this paper the interval [0, T),

with T E (0, ooJ, will be understood to be the maximal time interval of existence for each

solution polygon. We note that the angle between two adjacent sides of P, always equals

7r - f).() as long as the solution polygons exist.

In this chapter we consider a generalized crystalline motion of the form

(1.1b)

where a > 0 and b are smooth functions defined on 51, and "'j is the crystalline curvature:

2tan(M/2) .
"'j(t)=~, O:SJ<n.

Here dj(t) is the length of the jth side of polygon Pt.

We introduce the set

(1.1c)

N. is the set of orientations that appear on the Wulff shape (see below) being an regular

n-polygon. A convex polygon Pis N.-admissible if the normal vector of each side of Pis

the element of N•. We can then translate Problem (1.1) into the problem of finding an

N.-admissible polygon evolved by the crystalline flow (LIb) with (LIe). On a general

admissibility, we touch upon later.

The aim of this chapter is to study the asymptotic behavior of solutions to Problem

(1.1). Our main results say that solution polygons shrink to a single point, or expand

to infinity depending on the size of initial data Po and the sign of driving force term b.

Roughly speaking, if the initial polygon is sufficiently small (resp., large), then a solution

polygon shrinks to a single point (resp., expands toward to infinity). We also give lower

and upper bounds of the extinction time for the shrinking case. An isoperimetric ratio is

estimated for the expansion case. Moreover, if the driving force term b is isotropic (that

is, independent of j), then any solution polygon approaches to a regular polygon even if

the coefficient a = a(nj) is anisotropic. In the appendix, we shall explain the notion of a

discrete curvature and crystalline curvature from a numerical point of view.

1.2 Background

Problem (1.1) is a typical model equation for crystal growth in the plane. In this context

the solution polygon represents the boundary curve between two different materials. Such



a boundary curve is called the interface, or free boundary. The motion of in terfaces or

free boundaries fascinates many researchers in the fields of applied mathematics, material

sciences, physics, biology and so on. The notion of interfacial energy plays an important

role in those contexts. As we shall show below, the gradient flow of a total interfacial

energy provides a curvature-dependent motion.

ow let us explain how one derives Problem (1.1) in the context of curvature dependent

motion of curves. Let f t be a closed curve parametrized by 0, the angle between the

outward normal of f t and the fixed axis. Let I be an interfacial energy defined on

ft. If the interfacial energy I = I(n) is positively homogeneous of degree one, then

the gradient flow of total interfacial energy with respect to the L2-metric provides the

weighted curvature flow v = W := (1(0) + J"(O))K.. Here we set 1(0) = l(n(O)), and

K. = K.(O, t) is the curvature of f,. See Elliott IE] and appendix A.

We note that 1+ J" is the inverse of the curvature of the boundary of the Wulff shape

Wf: a region enclosed by a solution to the problem of finding a closed embedded plane

curve f that minimizes the total interfacial energy Ir I ds at fixed enclosed area in the

plane. It is not difficult to see that the solution is uniquely determined and the Wulff

shape is described by

Wf = {OIl E R 2
1 (OIl, -n(O)) ::; 1(0) for all 0 E R}.

See, e.g., Gurtin [Gu1] for about properties of the Wulff shape.

If the Wulff shape W f is a polygon, we call I the crystalline energy (see Angenent­

Gurtin [AGuJ). Let I be a crystalline energy with W f being an n-polygon (n-gon in short)

and n(Oj) being the normal of the jth side, called facet, of aWf' We can then define the

finite set

For such an energy, Taylor [T2] and Angenent-Gurtin [AGu] restrict the curve f t to the

class of N-admissible piecewise linear curves P" in which (1) each normal vector is the

element of Nand (2) normal vectors of two adjacent sides of P, are the adjacent in

N (see, e.g., Giga-Gurtin [GGuJ). Note that we do not need the condition (2) if Pt is

convex (see the definition of N.-admissible above). The evolution equation of P, is then

reduced to the ordinary differential equations Vj(t) = Wj(t). This equation is called the

crystalline motion, or crystalline flow. Here Vj is the velocity of the jth side and Wj is

the jth crystalline curvature defined by Wj(t) = xjl(nj)/dj(t). Here l(nj) is the length of

the side of aWf that has orientation nj E N, Xj is the transition number which has the

constant value +1, -1, or 0 depending on whether the polygon is strictly convex, strictly



concave, or neither near the jth side of P t , dj is the length of the jth side of Pt. In fact,

the jth crystalline curvature can be decomposed as follows (see appendix C):

_ "lj
Wj(t) = (J + D.8 f);l<j(t), I<j(t) = Xj dj(t)·

Here"lj := tan(D.lij+l/2) + tan(D.1i;/2), and D.8 is a kind of difference operator defined by

(1.2)

with D.lij = lij -lij-l. We call1<j the "discrete curvature," which is an approximation of

the real curvature I«li j ) (see appendix B). We note that the discrete curvature and the

crystalline curvature are equivalent when the Wulff shape is a regular polygon.

Remark 1.1 In this chapter we consider the asymptotic behavior of an N.-admissible

convex n-gon. Although N. is a special case of N, the set N. is better than N from a

numerical point of view. See Remark 1.8 below and appendix B.

1.3 Generalized crystalline motion and its application

Angenent-Gurtin [AGu] proposed a generalized crystalline motion:

,B(nj)Vj(t) = Wj(t) - U, (1.3)

where ,B(nj) is the kinetic modulus, U is the constant bulk energy. Independently, Taylor

[T2] derived the planar crystalline motion under the assumption: ,B = const x f- 1 and

U == o. For the further detail and background of a crystalline flow and a weighted

curvature flow, see the papers [AIT, RT, Tl, T4], the papers including a survey [T3, TCH,

GirK2, GMHG4, Gu2] and the book [Gul]. Recently, the three dimensional crystalline

flow is analyzed in [GGuM]. In [Ry], a Stefan-type problem which has the crystalline

interfacial energy is studied. In [lIU], they apply the crystalline motion for the shrinking

spiral problem. A numerical simulation is proposed for a curvature-dependent motion

with a crystalline type anisotropy in [GP]. Structure and existence of stationary finger of

two-dimensional solidification for crystalline energy are investigated in [AI].

It is clear that any circle shrinks to a point self-similarly under the isotropic flow v = 1<.

In general, we call a solution curve which does not change shape a self-similar solution.

We can easily check that the boundary of the Wulff shape is a self-similar solution of the

weighted curvature flow v = fw = f(J + 1")1<. In [GLj, they show the existence and

uniqueness of self-similar solution to the anisotropic flow v = a(Ii)I<. The assumption

on a(.) is relaxed to just boundness in [DGM]. Stancu [Sl, S2, S3] shows the existence

and uniqueness, under a symmetric assumption, of self-similar solution to the crystalline

flow Vj = a(lij)l<j. Recently in [Yl] and [Y2], the author studies the asymptotic behavior



of solutions to a motion by a power of crystalline curvature Vj = a((lj)"'i (0 > 0) and

Vj = _",;{3 (f3 > 0), respectively.

Remark 1.2 Let P, be a convex N-admissible polygon with a crystalline energy f. We

consider the crystalline motion Vj = Ji(Wj - V). Then we can find a self-similar solution

P, = A(t)aWf with Po = AOawf . Here A is the solution of

d I
"dtA(t) = - A(t) +V, A(O) = Ao·

When V = 0, it is easy to obtain the exact solution A(t) = JAfJ - 2t. In general, we have

the followings:

- If V:::; 0, then the polygon shrinks to a single point;

- If V> 0 and Ao < V-I, then the polygon shrinks to a single point;

- If V > 0 and Ao > V-I, then the polygon expands into infinity.

Angenent-Gurtin [AGu] extend Remark 1.2 to the following three cases for the evo­

lution equation (1.3) of N-admissible piecewise linear curve. Let T > 0 be a duration of

solution polygon of equation (1.3), £(t) the length and A(t) the enclosed area. Here and

hereafter, we use the term "duration" for the maximal existence time of solution polygons.

- If V :::; 0, then A(t) -t 0 as t -t T < 00;

- If V> 0 and £(0) is small enough, then A(t) -t 0 as t -t T < 00;

- If V > 0 and A(O) is large enough, then A(t) -t 00 as t -t T = . Even so,

isoperimetric ratio remains bounded: lim SUPHoo £(t)2j(47fA(t)) < 00.

1.4 Main results

The goal of this chapter is to extend Remark 1.2 and the above results of [AGu] for

the motion of convex N.-admissible n-gon with general a and b. We assume one of the

following:

(AI) b:::; 0 is a constant.

(AI)' b:::; 0 is not constant and min "'j(O) > maxo<j<"b(nj) - mino<j<"b(nj).
0:Sj<n mino:Si<na(nj)

(A2) b> 0, and min "'j(O) > 2 maxo<j<n b(nj).
O$]<n - minO:Si<n a(nj)



minO<j<n b(nj)
(A3) b> 0, and or;tl<";. I<j(O) :::: maXo~j<n a(nj)(1 + J) for any fixed J> O.

Assumptions (AI)' and (A2) mean that the initial polygon Po is sufficiently small and

(A3) means that Po is sufficiently large. We note that if b :::: 0 is not constant, then

mino~j<n b(nj) < O.

Our main results are the following.

Theorem A (point-extinction) Let n ~ 4. Assume (AI), or (AI)'. Let P, be a solu­

tion polygon of Problem (1.1) with a duration T•. Then any solution polygon Pt shrinks

to a single point as t -r T. and it holds that

T. < I (£(0)) 2 •

- 2mino~j<na(nj) 2ntan(.0.B/2)

No side of the polygon vanishes before t reaches T•. Here £(0) is the initial length of Po.

Theorem B (point-extinction) Let n ~ 4. Assume (A2). Let P, be a solution polygon

of Problem (1.1) with a duration T•. Then any solution polygon P t shrinks to a single

point as t -r T•. Moreover

{ }
where (£(0)/2ntan(.0.B/2))2

T. :::: min TJ, T2, T3 , T1 = minO~j<n a( nj) ,

_ £(0) _ / 2

T2 - 2 tan(.0.B/2) I:o~j<n b(nj) , T3 - T2 - V + V(v - T2) +vT1 ,

and v = n2(I:o~j<n b(nj) I:o~j<nb(nj)/a(nj)t 1
• No side of the polygon vanishes before

t reaches T•.

Remark 1.3 We call T. the "extinction time," or the "blow-up time" (see section 2.4).

Remark 1.4 If b == 0, then the point-extinction holds and the solution is asymptotic

self-similar (see [53]). Let A(t) be the area of region enclosed by Pt. We can easily check

dA(t)/dt = -2 tan(.0.B/2) I:o~j<n a(nj), hence we have

T - T _ A(O)
• - ~ - 2tan(.0.B/2)I:o~j<na(nj)

since point-extinction holds.

For a convex N.-admissible polygon P" we define the isoperimetric ratio by

It = £(t)2
() 4ntan(M/2)A(t)"

(1.4)

It is not difficult to see that the inequality I(t) ~ I holds. The equality I(t) = 1 holds if

and only if the polygon P, is a regular polygon. See [Y2], especially section 3.



Theorem C (geometric expansion) Let n ~ 4. Fix 0 > 0 and assume (A3). Let P,

be a solution polygon of Problem (1.1). Then the length .c(t) and the enclosed area A(t)

of the polygon P, diverge to infinity as t tends to infinity. Every side of the polygon is

finite if t is finite. Moreover, the isoperimetric ratio I(t) remains bounded:

limsupI(t):<:; (m~Xo<j<nb(nj))2
t-too ffilnO.$j<n b(nj)

Consequently if b is a positive constant, then any solution polygon P, expands to mfinity

approaching a regular polygon in the Hausdorff metric as t tends to infinity.

Remark 1.5 For the evolution equation (1.3) Angenent-Gurtin[AGuJ(seetion 11) con­

jectures that a solution polygon is asymptotic to the Wulff shape for {3-1 as t ~ 00 and

remarks that if (3 = const., then .c(t)2/(41rA(t)) ~ ntan(bJ)/2)/1r, that is, I(t) ~ 1

as t ~ 00. Although we do not give a complete answer to this conjecture, Theorem C

asserts that if b = const., the asymptotic shape is a regular polygon even if a(nj) is not

constant. We also note that the result does not depend on 0 in Assumption (A3).

Theorem D (lower bound of the blow-up time) Assume b t O. Under the same

assumption of Theorem A, the blow-up time T, is estimated as follows:

Here A(O) is the area of the region enclosed by Po.

Remark 1.6 Let Po be a regular polygon. Suppose a == 1 and b == canst < O. We denote

the upper bound in Theorem A by Tu , and the lower bound in Theorem D by Tl . If we

set b = J.'''(O) ("j(O) == ,,(0)), then we have J.' < 0 and lim,,-to- Tl = Tu = ,,(Ot2/2 = T~.

Theorem E (lower bound of the blow-up time) Under the same assumption of The­

orem B, the blow-up time T, is estimated as follows:

Remark 1.7 Let Po be a regular polygon. Suppose a == 1, b == const > 0 and the

Assumption (A2) holds. If we set b = J.'''(O) ("j(O) == ,,(0)), then we have J.' :<:; 1/2. We

denote the lower bound in Theorem E by Tl • It holds that T2 > T1 > T3 > Tl and that

lim,,-to+ Tl = lim,,-to+ T3 = ,,(0)-2/2 = T".



Remark 1.8 (approximation) Many authors recently studied an approximation of curvature­

dependent motions by using crystalline motions. In both [GirK1] and [FG], the conver-

gence results are shown for graph-like curves. In [EGS], the properties of a solution in the

sense of [FG] are investigated, and several numerical examples are presented in order to

visualize their results. The new notion of solutions to a fully nonlinear equation including

crystalline motion is introduced and analyzed in [GMHG1, GMHG2, GMHG4]. Its notion

is in the realm of viscosity solution theory, and so is based on comparison principle which

is an extension of [GGu]. The convergence results are discussed in [GMHG3, GMHG5]

for the solutions in its notion.

Let the Wulff shape be a regular polygon. Girao [Gir] showed that the crystalline

motion Vj = Wj approximates the weighted curvature flow v = W if the curve is closed

and convex. This result was extended by [UY1] for the motion by a power of curvature

v = "a (a > 0). Moreover, they constructed a crystalline algorithm to the equation

v = 1"la-l" for nonconvex curves in [UY2]. Implicit crystalline algorithm is treated in

[UY3] for an area-preserving motion by curvature v = ,,- 2"'1r / [ (." 2 1 is a winding

number of curve). In [IS], the curve-shortening equation v = " is approximated by the

crystalline motion Vj = "j if the Wulff shape is a regular polygon. See the survey [E] for

more general information about an approximation of curvature-dependent motion.

The organization of this chapter is as follows: in section 2, we give several fundamental

properties of solutions to Problem (1.1). In section 3, we present a point-extinction

property of solutions via entropy estimates, and prove Theorems A and B. In section 4,

we prove Theorem C by the super- and subsolution method, or the comparison principle.

By using Schwarz inequality twice, we give a lower bound of the extinction time, and the

proof of Theorems D and E in section 5. In appendix A, we give a brief summary on the

gradient flow for a total interfacial energy. In appendices Band C, we explain the notion

of the discrete curvature and the crystalline curvature, respectively.

2 Properties of solutions to Problem (1.1)

In this section we first give an equivalent formulation of Problem (1.1). Secondly, we

present comparison principle, and evolution of the length and the area. Finally, we show

a finite time blow-up of solution.

Throughout this chapter we use the notation Lj Uj, Urn aX> Umin and u(t) for LO~j<n Uj,

maXo~j<nUj, mjnO~j<nUj and du(t)/dt, respectively. Hereafter we denote aj := a(nj) and

bj := b(nj) for simplicity, and assume n 2 4. We note again OJ = jt>.O.



2.1 A formulation equivalent to Problem (1.1)

Let p, be a solution of Problem (1.1). The jth vertex B;(t) of P, is given as the following:

B;(t) (:I.';_l(t) - :I.';(t), t; +n; cot [',.0) t; + :I.';(t),

Bo(t) + L dm(t)tm, 1:S j :S n, O:S t < T
O$m<i

(2.1)

with Bo(t) == Bn(t), where t; = '( - sin 0;, cos 0;) is the tangent vector, since the position

vector :1.'; is on the line containing the jth side (n.b. :1.'; is not necessarily on the jth side),

and (-, -) is the usual inner product. Then the time evolution of the length of the jth side

d;(t) is given as the following (cf. Figure 10C in [AGu]):

d d M
did;(t) = diIB;+I(t) - B;(t)1 = -2 tan 2([',.0 v + v);.

Here the operator [',.0 is defined as

([',.0 (0» '= (');+1 - 2(.); + (-);-1
,. 2(1- cos [',.0)

(2.2)

which is a kind of central difference operator (this is a special version of (1.2». Then we

get a discretized version of the equation (2.20) in the book [Gu1]:

~"-;(t)="-;([',.ov+v);, O:Sj<n, O:St<T.

Therefore we can restate Problem (1.1) as follows.

Problem 1 Let n :::: 4. Find a function v(t) = (vo,v" .. ,vn-d E [C'(O,TW, and a

duration T E (0,00] satisfying

d
div;(t) = a(nX ' (v; + b(n;»2([',.0 v + v);, O:S j < n, O:S t < T, (2.3a)

vitO) = a(n;),,-;(O) - b(n;), O:S j < n, (2.3b)

V_I(t) = Vn-I(t), vn(t) = VO(t), O:S t < T, (2.3c)

where "-;(0) is the jth initial crystalline curvature o/Po.

Remark 2.1 (equivalence) Problem (1.1) and Problem 1 are equivalent except the

indefiniteness of position of the polygon, Indeed, suppose v is a solution of Problem 1,

then we have

1 d 2a;tan([',.8/2)
2 tan([',.O /2) dt 21 v;(t) + b; t; = - 21([',.0 v +v);t; = - 21([',.0 t + t);v; = O.

Here we have used the relation of summation by parts:

L /;([',.0 g); = - L(D+ f);(D+ 9); = L9;([',.0 f);,
;

(2.4)



and the relation (t>s t)j = -tj . Here and hereafter, we define the forward difference such

as

Hence by equation (2.1), we can construct a closed convex n-gon whose length of the jth

side is 2aj tan(t>lIj2)j(vj(t) + bj ) =: d;(t), and the jth normal vector is nj, as long as v

is a solution of Problem 1. This n-gon is the very solution polygon of Problem (1.1).

2.2 Comparison principle

The following comparison principle plays an important roll in this chapter.

Lemma 2.2 Fix T > O. Let (Pj(t))O::;j<n > 0 and (qj(t))O::;j<n be defined on t E [O,T]. If

U = (Uj(t))O::;j<n E [C' (O,T) n C[O,TW is a solution of

1

~Uj ~ Pj(t>s U)j + qjUj, 0::; j < n, 0 < t < T,

U_1(t) = Un-1(t), un(t) = uo(t), 0::; t ::; T,

Uj(O) ~ 0, 0::; j < n,

then Uj (t) ~ 0 holds for 0 ::; j < nand 0 ::; t ::; T.

See, e.g., [Y1] for the proof of this lemma.

As an application of the above lemma, we obtain the next:

Lemma 2.3 For a solution v of Problem 1, we have the followings.

(1) Ifvj(O) ~ c, then Vj(t) ~ c for a constant c ~ O.

(2) If Vj(O) ::; c, then Vj(t) ::; c for a constant c ::; o.

Proof. For each proposition, put (1) Uj = Vj - c; (2) Uj = c - Vj; and apply Lemma 2.2.

o

2.3 The length and the area

The (total) length of the polygon is

£(t):= Ldj = 2tan MLl<jl =2tanML~'
j 2 j 2 j Vj + bj

and the rate of change of £(t) can be computed by

itt) = -2tan~ LVj(t).
2 j

10

(2.5)

(2.6)



(2.7)

(2.8)

If Vj(O) 2: 0, then vAt) 2: 0 by Lemma 2.3, itt) :'S 0 and the motion of solution polygons

is cliscretized curve-shortening.

The area enclosed by the polygon is

A(t):= -~ 2]zj(t),nj)dj (t),
2 j

and the rate of change of A(t) can be computed by

A(t) = -2 tan~ L ajvj
2 j Vj + bj

Here we use equations (2.2) and (2.4), definition (a,j,nj) = Vj and geometric relation

dj = -2 tan(b.8/2)(b.s ('I', n) + ('I', n)k

2.4 Finite time blow-up

In this subsection, we give a partial proof of Theorems A and B, namely the statement

concerning finite time blow-up.

Lemma 2.4 (finite time blow-up) Suppose v is a solution of Problem 1. Under the

same assumption of Theorem A, there exists a finite time T. > 0 such that the maximum

of {Kj = (Vj +bj)/aj} blows up to infinity as t /' T.:

T < 1 (£(0))2
• - 2minO<j<na(nj) 2ntan(b.8/2)

Proof. Since n 2 = O:::j 1)2 = (Ej Ky2"'j'/2)2, Schwarz inequality and the assumption

b:'S 0 yields

(2ntan ~8r :'S

By the general argument for ordinary differential equation, a solution v of Problem

1 exists uniquely, and locally in time. Put T. > 0 such as maximal existing time. Take

0< t < T•. Integration of the above inequality over (0, t) yields

£(t):'S £(0)2 _ 2am ;n (2ntan ~8) 2 t.

Since £(t) 2: 2ntan(b.8/2)/KmaXl we have

"'max 2: 2ntan ~8 (£(0)2 _ 2am ;n (2ntan~)2t) -1/2,

and the assertion is concluded. 0

11



Lemma 2.5 (finite time blow-up) Suppose v is a solution of Problem 1. Under the

same assumption of Theorem B, there exists a finite time T. > 0 such that the maximum

of {"; 0= (v; + b;)la;} blows up to infinity as t /' T.:

T. ~ min{TI> T2 , T3 }·

Here T I , T2 , and T3 have been defined in Theorem B.

Proof. The Assumption (A2) implies vitO) ?: bmox • Then Lemma 2.3 provides v;(t) ?:
bmox ?: b;. Hence, we get T I by a similar proof of Lemma 2.4.

Integration of -itt) 0= 2 tan(b.1J/2) E; v; ?: 2 tan(b.1J 12) E; h; over (0, t) yields

(2.9)

and then we obtain T2 •

Substitute the inequality (2.9) to (2.8), integrate it over (0, t), and solve it. Then we

get t ~ T3 - 0

3 Point-extinction (proof of Theorems A and B)

Before we give the proof of Theorem A and B, we present the following theorem.

Theorem 3.1 Assume (AI), or (AI)', or (A2). If the area A(t) is bounded away from

zero, then a solution v of Problem 1 is uniformly bounded fort E [0, T.), where the blow-up

time T. attains A(T.) 0= O.

Remark 3.2 This theorem does not claim that the polygon shrinks to a single point.

We use the analogue of several estimates by Gage-Hamilton [GH] for the curvature

and by Girao [Girl for the weighted curvature. For reader's convenience, we do not omit

the proofs except completely the same one.

Lemma 3.3 There exists a constant CI 0= C1(v(O), b.1J) ?: 0 such that

b.1J b.1J
2tan 2 2: (D+ v); ~ 2 tan 2 2: v; + C1 ·

05i<n 051<n

Proof. It can be shown that the next estimate:

12



By the integration of this inequality over (0, t) and putting

{ /).()" 2 2}Ct ~ max -2 tan 2 ~jv(O) - (D+ v(O)) )j, 0 ,

we get the assertion. 0

One can easily get: L:;:t;]sin()j ~ 2cot(/).()/2), where [n/2] is n/2 for n even and

(n - 1)/2 for n odd, since the left-hand side equals to cot(/).()/2) for n even, and (1 +
sec(M/2)) cot(M/2)/2 for n odd.

We introduce the median normal velocity which is a similar to the median curvature

in [GH] and the median discrete weighted curvature in [GirJ.

Definition 3.4 (median normal velocity) v.(t) := max09<n minj+lSiSj+[n/2] Vi(t).

Lemma 3.5 Assume (AI), or (AI)', or (A2). Fix t E [O,T.). If A(t) is bounded away

from zero, then v.(t) is bounded.

Proof. Let jo be a value of j which attains the maximum of v. A polygon lies between

parallel lines whose distance is less than

jo+[n/2]
L sin(()j-()jo)dj

j=jo+l

/).() [n/2] . ()
2tan- L aj+joSlll j

2 j=l Vj+jo + bj + jo

( /)
In/2]

~ 2tan /).() 2 am.. L sin()j
v. + bmin j;;:1

If we assume (AI)', then we have Vmin(O) + bmin > O. We also have v.(t) ~ Vmin(O) by

Lemma 2.3. Therefore the denominator v. +bmin is positive for all t ~ O.

The diameter is bounded by £/2, and the area is bounded by the width times the

diameter:

A(t) ~ 2amax£(t) .
v.(t) + bmin

Hence v.(t) ~ 2am..£(0)/A(t) - bmin .

The assertion is proved in a similar way if we assume (AI) or (A2). 0

Definition 3.6 Let the entropy be:

M ( b(nj ))&(t) := 2 tan - L a(nj) log I<j(t) + -(-) .
2 0Sj<n I<j t

Lemma 3.7 Assume (AI), or (AI)', or (A2). Fix t E [O,T.). It there exists a constant

C. > 0 such that v.(r) ~ C. for 0 ~ r ~ t, then &(t) is bounded.
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Proof. By using the summation by parts (2.4), one has

£(t) = 2 tan M L(v2 - (D+ v)2Ji.
2 j

We use the same estimates as in the proof of Girao[Gir] (section 2, Fourth), and have the

next estimate (see also [Y2)):

f),.(J '" 2 2 f),.(J 2 .
2 tan T ~)v - (D+ v) )j ::; 2n tan TV. - 2v.£(t).

Hence, £(t) ::; £(0) + 2n tan(M/2)C?T. + 2C.£(0) holds. 0

Lemma 3.8 Assume (AI), or (AI)', or (A2). If £(t) is bounded, then for any (j > 0

there exists a constant C2 > max{l, amox } - bmin if b ::; 0 and C2 > amox if b > 0 such

that Vj(t) ::; C2 except for (Jj in intervals of length less than (j for t E [0, T.).

Proof. If Vj ? C2 for m values of j and mf),.(J ? (j, then

f),.(J( C2 +bmin I 2tan(M/2)1)£(t) ? 2tanT maminlog~-amox(n-m)log~ +B

2 M ( C2 + bmin I 2 tan(f),.(J/2) I)? tJi tan T (jamin log~ - a mox (271" - (j) log~ +B

where B = bmin£(O) when b::; 0 and

M (C2 I 2tan(f),.(J/2)!)£(t) ? 2 tan T mamin log amin - (n - m)amox log~

2 M( C2 I 2tan(M/2)I)? tJi tan T (jamin log amin - (271" - (j)amox log~

when b > O. This gives a contradiction when C2 is large. 0

Lemma 3.9 Assume (AI), or (AI)', or (A2). For t E [O,T.), if Vj(t) ::; C2 for some

constant C2 » 1 except for (Jj in intervals of length less than (j and (j > 0 is small enough,

then vmox(t) is bounded.

Proof. As in the proof of Girao[Gir] (section 2, Sixth), we have the next estimate:

Vj = Vi + L (Vrn+l - vrn )
i~m<j

(
2(1 - cos f),.(J)) 1/2 (f),.(J 2) 1/2

::; Cd L 2tan(M/2) 2tanT L (D+v)rn
~:s:.m<J l~m<J

::; C2 + J(j - i) sin f),.(J (2 tan ~(J L v~ +Cl) 1/2
OST1l<n

::; C2 + VJ (2ntan ~(J V~ox +Cl) 1/2

::; C2 + VJ (~Vmox + ve:)
14



since Vj ::; C2 and Oi - OJ ::; d. Here we have used Lemma 3.3.

Hence (1 - V2V27rd)Vmax ::; C2 +~ holds, and we get Vma• ::; (C2 + ~)/(1 -

V2V27rd) for small d. 0

Proof of Theorem 3.1. Suppose that a side of P, disappears for t < T. where T. attains

A(T.) = O. Put to as the first time that happens (n.b. to > 0 is clear). Then A(t) > 0

for 0 ::; t ::; to, and the estimates above imply that sUPO~t9o vmax(t) is bounded, so

dm;n(to) > O. This is a contradiction. Hence the assertion holds. 0

We are now ready to present of the proof of Theorem A and B.

Proof of Theorem A and B. By Theorem 3.1, we have A(T.) = O. If n is odd, then

£(T.) = 0 since the angle between two adjacent sides of polygon is always 7r - fjJ} and

we have no two sides which is parallel each other. Suppose that n is even. Then the jth

side and the (j + n/2)th side are parallel. Let Wj be the distance between the jth and

the (j + n/2)th side, and we have

m+n/2 7'1./2

W m = L sin(Oj - Om) dj = L sin OJ dj+m,
j;:;m+l j:;;;1

W m = - L sin OJ dj +m •

j;n/2+!

Therefore,

2wm = L Isin Ojl dj+m = 2 tan fj,0 L Isin Ojl aj+m .
j 2 j Vj+m + bj+m

Then we have

- tan M L 1sinOjl (fj,Bv + v)j+m
2 j

- tan M L Vj (fj,B 1sin 01 + 1sin Ol)j-m
2 j

-(vm +Vm+n /2)

since

(fj, 1 . 01 I' 01) {cot(M/2) if i = 0, n/2;
B sm + SIn i = 0 if otherwise.

Proof of Theorem A. Put C > 0 such as A(t) ~ -2 tan(fj,0/2) Lj aj + bmin£(O) =: -C.

By Theorem 3.1, we have A(t) ::; CrT. - t). Then tUm ::; -Vm ::; -2 tan(fj,0/2)amd;;,t and

A(t) ~ wm dm /2 yield

tUm tan(M/2) tan(M/2)
W m ::; -am---:4(t) ::; -am CrT. - t) .

Hence, by integration over (0, t), we have

(
T _ t)am,an1tJ.B/2)/C

wm(t) ::; wm(O) T
15



and wm(T.) = 0 for all m. Then l(T.) = 0 is concluded. 0

Proof of Theorem B. Since b > 0, it holds that A(t) ::::: C(T. - t) for a positive constant

C> O. By the condition (A2), we have v;(t) :::: bmax and

-Vm = -am 2 tan~~()/2) + bm ::::: -am 2 tan~~()/2) + Vm+
n

/2.

Then wm ::::: -2 tan (Ll.()/2)amd;;.1 and A(t) :::: wmdm/2 provide the point-extinction in a

way similar to the proof of Theorem A. 00

4 Geometric expansion (proof of Theorem C)

We shall prove Theorem C by the super- and subsolution method, or the comparison

principle.

Lemma 4.1 Let v be a solution of Problem 1. Under the Assumption (A3), we have the

followings.

(1) Let Vu be a solution of

(4.1)

Then we have vu(t) :::: Vj(t) for all t :::: O. Moreover,

(4.2)

holds for all t :::: O.

(2) Let VI be a solution of

(4.3)

Then we have v;(t) :::: VI(t) for all t :::: O. Moreover,

(4.4)

holds for all t :::: O.

Corollary 4.2 Under the same assumption as in Lemma 4.1, we have

for all t :::: 0 where Vuu (resp., VII) is the right-hand side of inequality (4.2) (resp., (4.4)).

16



Proof of Lemma 4.1. Assumption (A3) provides vu(O) < 0, and so vult) ~ 0 holds

by Lemma 2.3. Remark 2.1 asserts that there exists a polygon corresponding a solution

Vu of (4.1). This means that there is a crystalline curvature, say I<u(t) such that vult) =
amaxl<u(t)-bmin with l<u(O) = (vmax(O)+bmin)/amax. Thereforevu(t)+bmin = amaxl<u(t) > 0

holds.

Define u;(t) := vult) - v;(t). Then

U; a;;'~x(vu + bmin)2vu - ajl(V; + by(b.ev + v);

::::: ajl(V; + b;)2(b.eu); + ajl(V; + b;)2u; + ajl ((vu + bmin )2 - (v; + b;)2) Vu

ajl(V; + b;)2(b.eU); + ajl(v; + b;)2u;

+ at(vu + bmin + v; + b;)(vu - v; + bmin - b;)vu

::::: at (v; + b;)2(b.eu); + ajl ((v; + b;)2 + (vu + bmin + v; + b;)vu) u;.

Here we have used the inequalities: a;;;~xvu ::::: ajlvu, Vu + bmin > 0, Vu < 0 and etc. Hence

the initial estimate u;(O) = vu(O) - vitO) ::::: 0 provides the first assertion by Lemma 2.2.

Inequality vult) ~ vu(O) yields

Solution of the above inequality satisfies (4.2). Then the proof of (1) is completed.

Proof of the first assertion in (2) is a similar to (1). To prove (4.4) use the relation

Vl(t) ~ -bmax , and solve Vl ~ -a~~n(VI + bmax)2bmax' 0

We are now ready to present the proof of Theorem C.

Proof of Theorem C. By Corollary 4.2, we can estimate itt):

Integration over (0, t) yields

[(t)
2ntan(M/2)

for all t > 0 and

for all t ::::: 1. Here constant CI depends on a, b, vu(O) and Po, and C2 = amax/vu(O).

17



By Corollary 4.2 and (2.7), we have

Hence

M
A(t) :::: A(O) +bmax£(O)t +n tan 2b~axt2

holds for all t > °and

M
A(t) ~ C3 + c4log t + cst + n tan 2b~int2

holds for all t ~ to where to is large enough. Here constants C3, C4 and Cs depend on a, b,

vu(O), Po and to·
Therefore it holds that the limits: £(t), A(t) ---; 00 as t ---; 00. Moreover, one can

easily calculate the limit of isoperimetric ratio I(t) = £(t)2 /(4n tan(t..e/2)A(t)):

limsupI(t):::: (bb
max

)
2

.
t-+oo mm

In particular, if b is a constant, then lim SUPHoo I(t) :::: 1 and the Bonnesen's type in­

equality (see [Eg]) provide that P, converges to a regular polygon in the Hausdorff metric.

This completes the proof of Theorem C. 0

5 Lower bound of the blow-up time (proof of Theo­

rems D and E)

We will use Schwarz inequality twice to obtain a lower bound of blow-up time. A similar

idea was used in Giga-Yama-uch..i [GY] to give a bound for the mean curvature flow in

higher dimension.

Proof of Theorem D and E. By Schwarz inequality, we have

-A(t)

18



Integration the above inequality over (0, T.), the point-extinction and Schwarz inequal­

ity yield

{T. ((jJ) d £(t)2) 1/2
A(O) ::::: ,;a;;:;;.J

o
2tan"2£(t)yb;-dt-2- dt-B

::::: ,;a;;:;;. (f' dt) 1/2 (f' (2 tan ~(J£(t) yb; _ ~ £~)2) dt) 1/2 - B

(

£(0)2 (jJ) T. ) 1/2
,;a;;:;;.jT. --+2tan-L:b; {£(t)dt -B

2 2 ; Jo

where B = 2 tan(l:J.(J/2) It L; b;/ k; dt.

Proof of Theorem D. Since b::::: 0, we get

A(O) ::::: ff-£(0)jT. - bmin£(O)T•.

Assumption b =t 0 means bmin < O. Hence the solution of this inequality provides the

lower bound of T.. 0

Proof of Theorem E. Since b > 0, we get

2 (l:J.(J,,) 1 2)A(O) ::::: am.xT. 2 tan "2 7 b;£(O T. + 2£(0) .

The solution of this inequality provides the lower bound of T.. DO

Appendices

A Gradient flow of a total interfacial energy

If the interfacial energy on the curve f is distributed uniformly as constant 1, then the

total interfacial energy of f is given by

Erf] = J.lds = IT 1:C8Id(J, (ds = 1:C8Id(J: the arc-length parameter),

where T = R/21rZ is the flat torus. The first variation of E has the form:

JE[f~J d 'I {
J;-:= ~E[fz] ,;0 = Jr(-t"z)ds

where f~ = {i E R 2
1 i = :c + ez((J), :c Eft, (J E T}. Hence the gradient of E with £2_

metric is grad E[r] = -t,. Then Frenet-Serret formula t, = t<n yields :c, = -grad Elf] =
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I<n, i.e. v = (Zt, n) = 1<. This equation is called the classical curve-shortening equation,

and is investigated by many authors (see [GH, Gry, ?] and references therein).

If the interfacial energy j = j(n) is a positively homogeneous of degree one in

C2(R2\{O}), then the gradient flow of total interfacial energy E[f] = I r j(n)ds is com­

puted as Zt = t(I<Hessj(n)t).1 (see Elliott[El). Here '(Xl,X2).1 = '(-x2,xd. Then

we obtain v = (zt,n) = ((I<Hessj(n)t).1 ,n) = K(Hessj(n)t,t). Moreover, if we put

j(O) = j(n(O)), then we get the weighted curvature flow v = w = (J + r)K since

(Hess j( n )t, t) = j + r holds. The function j + r is the inverse of curvature on the

boundary aWf of the Wulff shape Wf. Indeed, the locus of the boundary of the Wulff

shape aWf is

aWf = {i E R 2
1 i = y(O) = - j(O)n(O) + J'(O)t(O), 0 E T},

and then its curvature is KW = -(Yo,Yi"o)IYol-3 = (J +rt1

Incidentally, if the interfacial energy is a spatially inhomogeneous I = I( z) > 0,

then the gradient flow of total interfacial energy provides the anisotropic and advected

curvature flow: v = j(Z)K - ('Vj(z),n). See [NMHS].

B Discrete curvature

Suppose a subarc of a curve f, say f,ub, is Gauss-parametrized and strictly convex as

follows:

We define a part of circumscribed piecewise linear curve, say P,ub, of f,ub such as

See Figure l.

We call the side including z(Oj) of P,ub the jth side. The length of the jth side is

denoted by dj. The jth side is a part of tangent line which has the orientation t(Oj) =
t(-sinOj,cosOj) since the inward normal at z(Oj) is n(Oj). We note that the transition

number is Xj = +l.

Let K(Oj) be the curvature at z(Oj) E r,ub and I<j = 'Yj/dj the discrete curvature

defined on the jth side of P,ub.

The relation between Kj and I«Oj) is calculated as follows (cf. section 3 in [Girl). First,

we decompose the length of the jth side as dj = dj +dj(see Figure 1). Next, we obtain

d+ = _1_ (L'lOj+l _ (L'lOj+d
2

K'(Oj) 0 ((M )3))
, K(Oj) 2 6 K(Oj) + ,+1
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/;

by the Taylor expansion of

around B; and the decomposition:

In the same way, we obtain

Therefore we have

since

tan l>B;+l + tan l>B;
2 2

M;+I + l>B; (l>B;+d
3+ (l>B;)3 0 ((l>B )5 (M)5)

2 + 24 + 1+1 + J

holds. Here l>Bmax = max{l>B;+l, l>B;} and 0 (.) in equation (B.1) depends on

(B.1)

L max Id>.(B) I and min I«B).
lSi=,2 8E[8,_. ,8,+,] dB 8E[8,_. ,8,+,]

Hence, it is reasonable to use N., i.e. l>B; == l>B as an admissible normal set from a

numerical point of view.

Furthermore, if l>B; == l>B, then we have the relation 1/1<; = X; X d;/2tan(l>B/2),

that is,

l/discrete curvature

X; x radius of the largest (inscribed circle of) inscribed regular polygon.

This relation is a discretized version of the inverse of usual curvature:

1/curvature = sign x radius of the largest inscribed circle.

See Figure 2.
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C Crystalline curvature

Let I be a crystalline energy. Then the Wulff shape WI is a polygon and the distance

between the origin and the jth side (which has the orientation nj E /II) is Ij (see Figure

3).
If we decompose the length of the jth side such as I(nj) = It +Ij (see Figure 3 again),

then we get I(nj) = 'Yj(f + 1:18 f)j since

1,+ I . 1:1(J Ij - !;+I cos l:1(Jj+l and
j+l SIn j+l - tan l:1(Jj+l '

1,-:- I . 1:1(J. Ij - Ij-I cos l:1(Jj
j-I SIn , - tan l:1(Jj

hold (awake around equation (1.2) again).

The discrete curvature of the polygon aWl is given as 'Yj/I(nj) = (f +1:18f)jl Hence

the crystalline curvature Wj (t) is

Wj(t) = discrete curvature of P,
discrete curvature of polygon aWl

"j(t)
(f + 1:1

8
fl; I = (f + 1:1 8 I);"j(t).

This is a discrete version of weighted curvature w( (J, t);

w((J t) = curvature of f, = ,,((J,t)
, curvature of aWl (f((J) + f"((J))-1 = (f((J)+f"((J)),,((J,t)

at the point ((Jj,t) if I is smooth. amely, the crystalline curvature is discrete weighted

curvature.
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Figure 1: P.ub (outside: the part of circumscribed piece­

wise linear curve of f.ub ), and f.ub (inside: the subarc

of f).

~
----a-.

v ~

..0 ---••-" .....

'., .. '

Figure 2: Symbolic figure to compare the discrete curvature and the

usual curvature. Thick solid = piecewise linear curve P (left) and curve

f (right), Solid = the largest inscribed polygon (left), and the largest

inscribed circle (right), Dashed = radius (both), Long dashed = half of

diagonal (left).

Figure 3: The jth side of the Wulff shape Wi if f is a

crystalline energy.
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Chapter 2

Existence of self-similar solutions to an anisotropic

motion by a power of crystalline curvature

Outline: We consider the asymptotic behavior of solutions to the motion of

polygonal curves by a power of crystalline curvature. Our main results state that if

the power is sufficiently large, then any solution polygon shrinks to a single point

in a finite time with its shape approaching a self-similar solution. On the other

hand, if the power is very small, this point-extinction result does not hold. More

precisely, we present examples in which the solution polygons collapses to a line

segment of positive length in a finite time. We also give upper and lower bounds of

the "extinction time" (when a solution polygon shrinks to a point) or the "collapse

time" (when some of the sides of the polygon vanishes).

Key Words: crystalline motion, crystalline curvature, motion by a power of cur­

vature, curve-shortening, point-extinction, blow-up rate, asymptotic self-similar, es­

timates of blow-up time.

1 Introduction and main results

This chapter is concerned with the asymptotic behavior of solutions to a motion of polyg­

onal curves in the plane. A typical example of motion of smooth curves by its curvature

is the classical curve-shortening equation v = 1<: the normal velocity v of the curve is pro­

portional to its curvature 1<. One of the specific features of the classical curve-shortening

motion is that any Jordan curve shrinks to a single point approaching a shrinking circle.

See Gage-Hamilton [GH] and Grayson [Gry]. We call this property the asymptotic self­

similarity since any shrinking circle is self-similar, i.e. homothetically shrinking solution.

Gage-Li [GL] and Dohmen-Giga-Mizoguchi [DGM] show the asymptotic self-similarity

for an anisotropic motion by curvature v = g(n)l<. Here g(.) is a smooth (in [GL)) or
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bounded (in [DGMJ) function defined on 5', assumed 7l"-periodicity, and n is the normal

vector of the curvature.

Such an equation arises in a model describing the motion of interface separating two

materials in an anisotropic medium (see Gurtin [Gu1J). Actually, if the interfacial energy

is smooth, and isotropic (resp., anisotropic), then a gradient flow of total interfacial energy

(with a suitable metric) leads to the motion by curvature v = K (resp., the anisotropic

motion v = g(n)K). See, e.g., Elliott [E].

Besides the smooth interfacial energy, some materials have a nonsmooth interfacial

energy, for instance, crystalline. In this case, we do not calculate the gradient flow of

total interfacial energy in the usual sense. For such an energy, Angenent-Gurtin [AGu],

and correspondingly Taylor [T1] introduced a weak formulation: the motion of admissible

piecewise linear curves by crystalline curvature. See also Taylor [T2], [T3] and Gurtin

[Gu1]. This motion is called the crystalline flow, or the crystalline motion. The crystalline

flow and its application have been investigated by many authors. See, e.g., [TCH, GirK2,

GMHG1, Gu2) for including a survey, and [AIT, GGu, GMHG2, GGuM, Ry, GP, Y]

for an application and development. For a perspective application including numerical

approximation of crystalline flow, we refer to [GirK1, FG, GMHG3, GMHG5, EGS, Gir,

UY,IS, E].
The asymptotic behavior of solutions to a crystalline flow is investigated by Stancu

[Sl, S2, S3]. The author showed the asymptotic self-similarity in [S3], and the uniqueness

of self-similar solution, under a symmetric assumption, in [SlJ.

The aim of this chapter is to extend the result of Stancu [S3] to the motion of polygonal

curves by a power of crystalline curvature. This generalization is already introduced by

Andrews [And] and Taniyama-Matano [TMa] for the motion of curves by a power of

curvature. The above two papers show that there is the critical power 1/3 such that if

a power is less than 1/3, then there exists the case where the isotropic ratio diverges to

infinity in a finite time, or the so-called type II blow-up occurs (see Remark 4.3). We also

refer to Sapiro-Tannenbaum [SaTa] for the motion of curves in the case where the power

is 1/3.

Our main results say that if the power is sufficiently large, then a solution polygon

shrinks to a single point approaching a self-similar solution in a finite time. We present

some examples which show that this point-extinction result does not necessarily hold in

the case where the power is small enough. We also give upper and lower bounds of the

extinction time.

We now introduce our problem setting. Let Po be a convex closed polygon in the

plane R 2 with the angle between two adjacent sides of Po is 7l" - !'1f) where

!'1f):=~, n ~ 4,
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(l.la)

and n is a number of sides. We consider the evolution problem to find a family of polygons

{P(t)}O~t<T satisfying

{

d.
dtZj(t) = vj(t)nj, 0::; J < n, 0::; t < T,

P(O) =Po

for some T > 0, where nj := -'(cos 0;, sin OJ) is the inward normal vector of the jth side,

Zj is the position vector of the point of intersection between on the line containing the

jth side and the line spanned by nj and Vj is the inward normal velocity of the jth side.

Here and hereafter we denote OJ = jt!.O. We note that the angle between two adjacent

sides of P(t) is always 7r - t!.0 as long as solution polygons exist.

In this chapter we consider the case where the normal velocity is homogeneous of some

degree a > 0 in the crystalline curvature:

(l.lb)

where 9 is a positive smooth function defined on 51 and "-j is the crystalline curvature:

2tan(M/2) .
"-j(t)=~, O::;J<n. (l.lc)

Here dj(t) is the length of the jth side of polygon P(t).

Our main results are the following. Let £(t) and A(t) be the length and the enclosed

area of P(t), respectively.

Theorem A (finite time blow-up) Let a > 0 and n ? 4. There exists a finite time,

say T. > 0 such that the maximum solution v of Problem (1.1) blows up to infinity as

t /' T•. This number T. satisfies T. ::; min{T1 , T2 } where

1 (£(0) )0+1
Tl:=(a+1)minO~j<ng(nj) 2ntan(t!.0/2) , and

£(0)

Remark 1.1 We call T. the "extinction time," or the "blow-up time".

Theorem B (point-extinction) Assume a ? 1 and n ? 4. Then any solution polygon

shrinks to a single point in finite time T•. No side of the polygon vanishes before t reaches

T•.

Remark 1.2 (non point-extinction) When 9 := 1, regular polygons shrink to a single

point in finite time for any a > 0 (see Remark 3.3). However, if a polygon is not regular

and a is sufficiently small, then the polygon does not necessarily shrink to a single point

but may collapse to, say, a line segment (see section 4.3 and Figure 2).
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Theorem C (lower bound of the blow-up time) Let a > 0 and n :::: 4. If the en­

closed area A(t) converges to zero as t approaches T., then the following lower bounds

hold: T. :::: max{Tl , T.}, where

Remark 1.3 We remark that the order of T1 and T2 (resp., Tl and T.) depend on the

initial condition Po and the weight function g. We denote maxo~j<n(-)i>mino~j<n(·)jand

L09<n(- )j/n, by (. )ma., (. )min and (- )av, respectively.

- If the initial polygon Po is a regular polygon, then we put »j(O) == »(0) and have

T. :'::: T1 = «a + 1)gmin»(Ot+1t 1 < T2 = (a + l)TI,

T.:::: T. = (gmin/gmax)l+l/nTI, Tl = (gmin/g~,.xl«a + 1)/2t+1a-nT1;

- if 9 == c > 0, then T. = «a + 1)c»(0)n+It1 and

Tl :'::: T. = T. = T1 < T2 ;

Equality Tl = T. holds iff c1-n«a + 1)/2)0+la -n = 1 (e.g. a = c = 1);

- if 9 t= c and a = 1, then T. = (2gav»(0)2t l and

T. < Tl = (2gmax »(0)2t l < T. < T1 = (2gmin »(0)2t 1 < T2 •

- If Po is not necessarily a regular polygon and if gj = c»j(otn
, then

Inequality T1 :::: T2 holds iff (»max(O)(l/»(O))av)n:::: (a+ 1).

Theorem D (type I blow-up) Assume a:::: 1 andn :::: 4. Then a solution v of Problem

(1.1) diverges to infinity in finite time T. with at most the self-similar rate. That is, there

exist to E [O,T.) and a positive constant C which depends only on a, g, jjJJ, v(O) and

v(to) such that

Vj(t) :'::: C(T. - ttn/(n+ll, 0:'::: j < n, to:'::: t < T•.

Remark 1.4 (type II blow-up) When the above inequality holds, we call a solution v

which undergoes the "type I blow-up." There is the case that the maximum of v diverges

to infinity faster than the type I blow-up rate when a is small enough. We call this type

of blow-up the "type II blow-up." See Definition 3.4 and section 4.3.
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Theorem E (asymptotic self-similarity) Assume a > 0 and n ~ 4. If the solution

polygon shrinks to a single point and a solution v undergoes the type I blow-up, then any

solution polygon approaches a shrinking self-similar solution in the sense that the rescaled

polygon approaches the set of stationary solutions of Problem 2' in section 3 with respect

to the H ausdorfJ metric.

See section 3 for the definition of the rescaling.

Corollary E.l (existence of self-similar solutions) Under the same assumption of

Theorem E, there exist self-similar solutions to Problem (1.1).

Remark 1.5 (non uniqueness of self-similar solutions) In the case where a < 1

and g == 1, we have self-similar solutions except the regular n-gon. For instance, an

"almost regular" (n/2)-gon is a self-similar solution for n even. See section 4.2 and

Figure 1.

The organization of this chapter is as follows: in section 2, we present fundamental

properties of solutions, and give a proof of Theorem A. In section 3, the asymptotic

behavior of solutions is given, and Theorems B, C, E and D are proved by using entropy

estimates and a rescaling technique. In the last section 4, we discuss a stability of the

regular polygon solutions, and give self-similar solutions except the regular polygons. We

also present some examples of type II blow-up and non point-extinction.

2 Fundamental properties of solutions

Throughout this chapter we use the notation Lj uj, UmaX> Um;n and u(t) for L09<n Uj,

maXO~j<nUj, minO~j<nUj and du(t)/dt, respectively. Hereafter we denote gj := g(nj) for

simplicity, and assume n ~ 4. We note again OJ = j!10.

2.1 Equivalent formulation

Let P(t) be a solution of Problem (1.1). The jth vertex Bj(t) of P(t) is given as the

following:

Bj(t) (2Jj_1(t) - 2Jj(t), t j +nj cot !10) tj + 2Jj(t),

Bo(t) + L dm(t)tm , 1:S j :S n, O:S t < T
O:Sm<i

(2.1)

with Bo(t) == Bn(t), where t j = '(- sin OJ, cos OJ) is the tangent vector, since the position

vector 2Jj is on the line containing the jth side (n.b. 2Jj is not necessarily on the jth side),
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(2.3a)

(2.3b)

(2.3c)

and (-, -) is the usual inner product. Then the time evolution of the length of the jth side

dAt) is given as the following (cf. Figure 10C in [AGu]):

idj(t) = iIBj+l(t) - Bj(t)1 = -2 tan M (b.6v + vli- (2.2)& & 2
Here the operator b.6 is defined as

(b.
6

(.» := (')j+l - 2(')j + (-)j_1
J 2(1 - cos b.9)

which is a kind of central difference operator. Then we obtain a discretized version of the

equation (2.20) in the book [Gu1]:

d 2 .
dil<j(t) = I<j(b.6V+V)j, O~J<n, O~t<T.

Therefore we can restate Problem (1.1) as follows.

Problem 1 Let n :::: 4. Find a function v(t) = (vo, VI, ... ,vn-d E [C'(O, TW for some

T > 0 satisfying

~Vj(t) = a.gi 1/"v/+ I /"(b. 6v + v)j, 0 ~ j < n, 0 ~ t < T,

Vj(O) = g(nj)l<j(O)", 0 ~ j < n,

V_I(t) = Vn-l(t), vn(t) = VO(t), 0 ~ t < T,

where I<j(O) is the initial crystalline curvature of Po·

Remark 2.1 (eigenvalue and eigenvector) The kth eigenvalue and the kth eigenvec­

tor for the difference operator -b.6 (under the periodic boundary condition (2.3c)) are

>. 1 - cos(kb.9) sin
2
(kb.9/2) 0 ~ k < n, and

k= 1-cosb.9 =sin2(b.9/2)'

-,p7 = CI cos (k9 j ) +C2sin (k9 j ), 0 ~ j < n, 0 ~ k < n

for any constants (C"C2 ) # (0,0), respectively. In particular, (b.6t)j = -tj holds since

>', = 1.

Remark 2.2 (equivalence) Problem (1.1) and Problem 1 are equivalent except the

indefiniteness of position of the polygon. Indeed if we suppose v(t) is a solution of Problem

1, then we have

1 d g~/"
2 tan(b.9/2) di~ Vj(t)!/" t j = - ~(b.6 V+ vlitj = - ~(b.6 t + tLVj = o.

Here we have used the relation of summation by parts:

2:, fj(b.6g)j = - 2:,(D+ n(D+ g)j = 2:,gj(b.6n,
J j
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and the relation (t>s tli = -tj . The operator D+ is defined as

(D f) fj+l - fj
+ j:= 2sin(t>ilj2)" (2.5)

Hence by equation (2.1) we can construct a closed convex n-gon, whose length of the jth

side is 29Y" tan(t>ilj2)vj(tt 1/<> =: dj(t) and the jth normal vector is nj, as long as v(t)

is a solution of Problem 1. This n-gon is the very solution polygon of Problem (1.1).

2.2 Comparison principle

We present the comparison principle and its application in this subsection.

Lemma 2.3 Fix T > O. Let (Pj(t))O~j<n > 0 and (qj(t))O~j<n be defined on t E [O,T]. If

U = (Uj(t))O~j<n E [CI (0, T) n C[O, T)]n is a solution of

1
~Uj:2: Pj(t>s u)j +qjUj, 0:::; j < n, 0 < t < T,

U_I(t) = Un-l(t),. un(t) = uo(t), 0:::; t:::; T,

Uj(O) :2: 0, 0:::; ] < n,

then Uj (t) :2: 0 holds for 0 :::; j < nand 0 :::; t :::; T.

The proof is done by a similar argument to the one for the maximum principle. See, e.g.,

IY).
As an application of the above lemma, we obtain the next:

Lemma 2.4 Let a> O. For the solution v of Problem 1, we have the followings.

(1) If Vj(O) :2: -.pj, then Vj(t) :2: -.pj for k = 1,2. In particular, Vmin(O) is the lower bound

ofv(t). Here -.pj is the kth eigenvector of -t>s.

(2) If Vj(O) :::; v,(O), then Vj(t) :::; v,(t) where v,(t) is the solution of

d av,(t)2+I/<>
dtv,(t) = --1-/<>-' v,(O) = vmax(O),

gmm

that is, v,(t) = ((a + l)g;;'~!<>(T, - t)t<>/(<>+I). Here the blow-up time T, has been

defined in Theorem C.

Proof. For each proposition, put (1) Uj = Vj - -.pj; (2) Uj = v, - Vj; and apply Lemma

2.3. D
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2.3 The length and the area

The (total) length of solution polygon P(t) is

£(t) := L:dj = 2tan~ L:gyovj'/O,
j 2 j

and the rate of change of £(t) can be computed by

itt) = -2 tan~ I:Vj(t).
2 j

Since itt) < 0, motion of solution polygons is discretized curve-shortening.

The enclosed area of solution polygon P(t) is

and the rate of change of A(t) can be computed by

A(t)- 2t 6.0 L: '/0 '-1/0- - an T j gj Vj .

(2.6)

(2.7)

(2.8)

Here we use equations (2.2) and (2.4), definition (:il j , nj) = Vj and geometric relation

dj = -2 tan(M/2)(6.8 (Ol, n) + (Ol, n));.

2.4 Finite time blow-up (proof of Theorem A)

Proof of Theorem A. Since n = Lj 1 = Lj(gi'Vjt'/(O+1)(gi'Vj)I/(O+I), Holder's inequal­

ity, equations (2.6) and (2.7) yield

2n tan ~O S 2 tan ~O (~(gjVi1)1/0) 0/(0+1) (~gj'Vj) 1/(0+1)

S g;;,;I:(O+I) £(W/(O+I)( _i(t))I/(o+1),

and then we have

By the general argument for ordinary differential equation, solution v of Problem (1.1)

or Problem 1 exists uniquely, and locally in time. Put T. > 0 such as maximal existing

time. Take 0 < t < T•. Then we obtain

6.0 (( £(0) ) 0+' ) 1/(0+1)

£(t)S2ntanT 2ntan(M/2) -(a:+1)gm;n t
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Since £(t) ~ 2ntan(b.B/2)g~~v;;;~~0,we have

(

0+1 ) -0/(0+1)
v > (0 + 1)-O/(O+I)gl/(o+1) __1__ ( £(0) ) _ t

max - moo (0 + l)gm;n 2ntan(b.B/2) ,

and obtain T1• By Lemma 2.4 (1) and equation (2.7), we have

£(t) ~ £(0) - 2n tan(M/2)vm;n(0)t,

and obtain T2 • 0

Remark 2.5 Let 0 > 0 and 9 == 1. For any k such as the eigenvalue A. < 1, we have

~ 2: ~t = - 2: ";';(b.ev + v)j = -(1 - A.) 2: ";';Vj ~ -(1 - A.) 2:(..;,;)2 < o.
3 V, J J j

Integration over (O,t) yields t ~ I:j..;,jVj(ot l/o ((1- A.) I:j(..;,;?f
l

< 00. This gives

another proof of the finite time blow-up when 9 == 1.

3 Asymptotic behavior of solutions when a :::: 1

Here we will prove the rest theorems by using entropy estimates and a rescaling technique.

3.1 Self-similar rescaling and the blow-up rate

We magnify R 2 by

h(t) = ((0 + 1)(T. _ t))-I/(o+l) ,

and replace the time t by

r = r(t) = __I_log (T. - t): [O,T.) 3 t >-t r E [0,00).
0+1 T.

Then the rescaled velocity is given by

Vj(r) = h(WOvj(t), 0 ~ j < n,

and Problem 1 is transformed into the following rescaled problem:

(3.1)

Problem 2 Let 0 > O. Find a function v(r) = (vo, VI, .. , vn-d E [CI(R+W satisfy­

ing

-fVj(r) = ogjl/OV;+I/O(b.eV+ v - gl/oV-I/o)j, 0 ~ j < n, r ~ 0, (3.2a)

Vj(O) = ((0 + I)T.t/(o+l) Vj(O), 0 ~ j < n, (3.2b)

V_I(r) = Vn_l(r), Vn(r) = VO(r), r ~ O. (3.2c)
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The stationary problem of Problem 2 is stated as follows:

Problem 2' Let c< > o. Find a positive vector v = (VO' VI> ,vn-d E R~ satisfying

(3.3a)

(3.3b)

Now we define the term "self-similar":

Definition 3.1 (self-similar) We call a solution of Problem 2' a "self-similar solution."

Moreover, we call a solution polygon P(t) a "self-similar" if and only if there exists a

Junction l(t) and a fixed polygon P such that P(t) = l(t)P +;ii, where ;ii is a fixed point

in R 2. In our case, l(t) = h(tt 1
•

Remark 3.2 If a solution polygon P(t) is a self-similar, then a fixed polygon P is a

solution of Problem 2' in the sense of Remark 2.2.

Remark 3.3 (regular polygon) When g == 1 and Vj == 1, i.e. Vj(t) == v,(t) is a self­

similar solution for any c< > 0:

~g ~g

v,(t) = h(t)"', A(t) = n tan Th(/t2, £(t) = 2n tan Th(ttl, 0:::; t < T,

where T, = ((c< + I)V,(0)1+1/"'f
1
. In other words, regular polygons are self-similar when

g== 1.

Definition 3.4 (blow-up rate) Let c< > O. We call that the solution undergoes the

"type I blow-up" when the blow-up rate of the maximum of solution v is at most the

self-similar rate, that is,

tl!.~.oTl<';. vj(t)(T. - t)"'/("'+I) < 00,

and we call that the solution undergoes the "type II blow-up" when the blow-up rate of the

maximum of solution v is faster than the self-similar rate, that is,

tl!.~. oTlln vj(t)(T, - t)"'/("'+1) = 00.

Remark 3.5 lf the "point-extinction," and the "type I blow-up" hold, then the solution

Vj blows up with the same order of the self-similar rate for all j (see Lemma 3.22).

In order to prove Theorem E, we will use the self-similar rescaling technique (see

section 3.6). Remark 3.3 will suggest to consider this strategy. Another reason to do so

is that the self-similar rate lies between Vm;n and Vmax : the following lemma is the most

we can say about the blow-up rate at this stage. It will be clear that the self-similar rate

is a dominant rate in seciton 3.5.
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Lemma 3.6 Let 0> O. Then it holds that

( )

1/(0+1)
min v·(t) < max g- ((0 + l)(T. - t))-o/(o+l)
O~j<n 1 - O~j<n:J ,

and that

( )

1/(0+1)
m!'x Vi(t) ~ min gi ((0 + l)(T. - two/HI)

O$J<n O$1<n

Proof. The following proof is based on the proof of Lemma 2.2 in Stancu [53].

If Vmin(t) = Vi, (t) for some 0 :::; it < n, then

for any t E (0, T.). The function Vmin(t) is a continuous function, but it may not be

differentiable. It is, however, Lipschitz. Therefore we have

Since comparison principle (similar result to Lemma 2.3 for the operator d- Idt) holds,

once Vmin is bigger than w(t), the solution of w= og;;,~LOW2+1/0, it must stay bigger. This

comparison holds when w(t) = g:J~~+I)((O + l)(T. - 6 - t)to/(o+l) for any 6 > 0 and any

t. Then Vmin must blow up at T. - 6, earlier time than the blow-up time T•. This is a

contradiction. Hence Vmin(t) < g:J~~+J)((o + l)(T. - 6 - t)to/(o+l) holds and this proves

the first assertion.

The second assertion will be proved in a similar way. 0

3.2 Entropy estimates

Definition 3.7 Let the entropy be:

j
2tan(69/ 2) " I/o ()I-I/o .f
~ L. gi vi t • 0>1;

£(t) := 69 O~i<n

2tan- L 9ilogvi(t) if 0 = 1.
2 OSi<n

The next lemma is a discrete analogue of estimates due to Tsutsumi ITsu] for the

curve-shortening equation.

Lemma 3.8 Let 0> 1. Then there exists t l E [0, T.) such that

£(t):::; C(T. - t)(1-o)/(I+o), t J :::; t < T.

for some constant C = C(0,69,g,v(tJl) > O.
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Proof. Differentiating of £(t) and making use of the relation (2.4), we have

£(t) - .: t M L I/a -:1/a.. d £(t) - ~ t M L I/a -:(1+1/a)(. y- a an 2 j 9, v, v" an - a an 2 j 9, v, v, .

Claim: There exists t l E [O,T.) such that £(tIl > o. If not, £(t) ~ 0 for all t E [O,T.).
Then we have £(t) ~ £(0) for all t E [0, T.) which contradicts that vm •• and so £(t) blows

up at time T•.

From this claim and £(t) > 0 for all t E [0, T.), we see that £(t) > 0 for all t E [tl> T.).
Schwarz inequality gives

. a-I··
(£(t))2 ~ ~£(t)£(t), t l ~ t < T.

from which it follows that

£(t)£(t)2a/(I-a) 2 £(tIl£(td 2a/(I-a) > 0, t l ~ t < T•.

Hence

~£(t)(I+a)/(I-a) < ~£(t )£(t )2a/(I-a) t < t < T .dt - 1 _ a I I ,1 - •

Integration over (t, T.) yields £(t) ~ C(T.-t)(I-a)/(!+a) for a constant C = C(a, tJ.B,9, v(td) >
o. 0

Since £(t) 2 2 tan(tJ.B/2)9yaV}-I/a/(a -1) for any 0 ~ j < n, we have the next:

Corollary 3.9 Let a > 1. Suppose that t l is the same as in Lemma 3.8. Then we have

Vj(t) ~ C(T. - tta/(1+a), 0 ~ j < n, t l ~ t < T•.

Lemma 3.10 Let a = 1. Then there exists t2 E [0, T.) such that

~£(t) ~ tan M L 9j(T. - ttl, t2~ t < T•.
dt 2 0Sj<n

Proof. As in the proof of Lemma 3.8, we have the following estimates:

. tJ.B" I tJ.B"£(t) = 2tan 2 79jV; Vj = 2tan 2 7 Vj(tJ. 6 v +V)j,

.. tJ.(}" -2' 2 £2
£(t) = 4 tan 2 7 9jVj (Vj) 2 tan(M/2) L,j 9j'

As in the proof of Lemma 3.8, there exists t2 E [O,T.) such that £(t2) > O. Then we

obtain

£(t) 1
£(tF 2 tan(M/2) L,j 9j' t2 ~ t < T•.

Hence, integration of

_~£(ttl > 1
dt - tan(M/2) L,j 9j

over (t,T.) concludes the assertion since £(t) diverges to infinity when t tends to T•.
o
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3.3 Point-extinction (proof of Theorem B)

Before presenting the proof of Theorem B, we show the following theorem.

Theorem 3.11 Let a ? 1. If the area A{t) is bounded away from zero, then a solution

v is uniformly bounded for t E [0, T.), where the blow-up time T. attains A{T.) = O.

Remark 3.12 This theorem does not claim that a solution polygon shrinks to a single

point.

We use analogue of several estimates by Gage-Hamilton [GH] for the curvature and

by Girao [Gir] for the weighted curvature. For reader's convenience, we do not omit the

proofs except the completely the same one. Recall the forward difference (2.5).

Lemma 3.13 Let a> O. There exists a constant C , = C, {v(0),tJ.8)? 0 such that

2tan
M L {D+v);::;2tan

M L v;+C, .
2 O~j<n 2 O~j<n

Proof. It can be shown that the next estimate:

tJ.8 d"" 2 2 tJ.8"" '+1/" 22tan 2dt7{v -(D+v) )j=4atan
27

vj {tJ.ev+v),?O.

By integration of this inequality over CO, t) and putting

we obtain the assertion. 0

One can easily obtain: L~:;';lsin8j ::; 2cot{tJ.8/2), where [n/2] is n/2 for n even

and (n - 1)/2 for n odd, since the left hand side equals to cot{tJ.8/2) for n even, and

(I + sec{M/2)) cot{M/2)/2 for n odd.

We introduce the median normal velocity which is a similar to the median curvature

in [GH].

Definition 3.14 (median normal velocity) v.{t) := max min viet).
O~j<n j+l~i~j+{nI2]

Lemma 3.15 Let a> 0 and fix t E [0, T.). If A{t) is bounded away from zero, then v.{t)

is bounded.
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Proof. We assume that jo is a value of j which attains the maximum of Vj' A polygon

lies between parallel lines whose distance is less than

j.+[n/2}
L (djtj,nj.)

;;;;;;0+1

j.+{n/2} D.(J [n/2]
L sin( (Jj - (Jj. )dj = 2 tan - L g;!~j sin (JjVj,~;

;=;0+ 1 2 ;=1

2 tan(M/2)g:,{.,: [n/2] . 4g:,{.':
::; I/o LSlll(Jj::;~

v. ;=1 V.

The diameter is bounded by £/2 and the area is bounded by the width times the diameter:

A(t) < 2£(t)g:,{:X.
- v.(t)l/o

(
2£(0)gl/0) 0

Hence v.(t) ::; A(t)m.x 0

The next lemma, due to Girao [Girl, is the core of strategy for the proof of Theorem

3.11. One can find the original idea in Gage-Hamilton [GH] for the motion by curva­

ture. Although the proof of the next lemma is almost the same as in [Gir], for reader's

convenience we do not omit the proof.

Lemma 3.16 (Girao [Gir], section 2, especially Fourth) Let vo, ... ,Vn_1 be n posi­

tive numbers with Vn = Vo and V_I = Vn_I' Then it holds that

2 tan~ L (v2 - (D+V)2)j::; 2ntan D.(J v~ +4tan D.(J v. L Vj
2 O~j<n 2 2 O~j<n

where v. is the median of v defined in Definition 3.14.

To prove this lemma, we will use the following discrete version of Wirtinger's inequality:

Proposition 3.17 (discrete version of Wirtinger's inequality) Let fo, ... .Jm be m+

1 real numbers with fo = fm = O. Assume m:::: 2. Then we have I;j;"{/(j2-(D+ f)2)j ::; O.

Proof. Let A = (Aij ) be a (m -l)x(m - 1) symmetric matrix such that Aij takes 2, -1

and 0 for j = i, j = i ± 1 and otherwise, respectively. Put (D.AJ)j := Ji+1 - 2Ji + fj-I'

Since the eigenvalue of A is J.'k = 2(1 - cos(krr /m)) for k = 1, ... , m - 1 and J.'l ::; J.'k, we

have - Ji(D.AJ)j :::: J.'lfj and obtain the following inequality ([Girl, equation (9)):

m-l 1 m-I

t; f? ::; 2(1 _ cos(rr/m)) t; (ji+1 - J;)2.

Note that 2 sin 2 (D.(J/2) = 1- cos D.(J and 2(1- cos(rr /m)) :::: 2(1- cos D.(J) if 2 ::; m ::; n/2.

Therefore we obtain the assertion. 0

Proof of Lemma 3.16. The set U := {i E N I Vi > v.} can be divided uniquely as

the union of a maximal subsets of the form Uj := {ij,i j + 1, ... ,ij + mj - 2}. Let
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Ij := {ij - I} U Uj = {ij - 1,ij , ... , ij + mj - 2}, 1:= Uj Ij and J := N\!. Note that

Ij has mj elements (mj ::: 2), and note also that mj - 1 :5 n/2 - 1, or mj - 1 :5 n/2,
because by the definition of v. there are at most [n/2]- 1 v;'s corresponding to adjacent

sides and with Vi > V•. We have

L (v2 - (D+v)2)j:5 L v;:5 nv;.
jEJn{o.I •...•n-l} jon{o.l •...•n-l}

By Proposition 3.17 with m = mj ::: 2, fl = Vi,+l-l - v. for 1 :5 l :5 mj - 1, and the fact

that ViJ-I ~ v. < Vi, and Vi
J
+mj-2 > v. 2. Vi,+mJ-l, we have

rn,-2

L (v2 - (D+ v)2)i,+l_1 :5
/=1

and so

L(v2 - (D+ v)2)i
iEIj

i)+mj-3

(v2 - (D+ v)2k_l + L (v2 - (D+ V)2)i + (v2 - (D+ V)2k+m,_2

mj-2

(v2 - (D+ V)2)i,_1 + L (v2 - (D+ v)2)i,+l_1 + (v 2 - (D+ v)2)i,+m,_2
l=l

mJ-l

:5 2v. L Vi,+l-l'
l=1

Combining the above two estimates lead the assertion. 0

Lemma 3.18 Let a ::: 1 and fix t E [0, T.). It there exists a constant C. > 0 such that

V.(T) :5 C. for 0:5 T :5 t, then £(t) is bounded.

Proof. By using the summation by parts (2.4), one has

. D,(}" 2 2
£(t)=2tanT'])v -(D+v))j

for all a::: 1.

By the Lemma 3.16, we have the next estimate:

D,()" 2 2) D,(} 2 .
2 tan T 7(V - (D+ v) j:5 2n tan TV. - 2v.L:(t).

D,(} 2
Hence £(t) :5 £(0) + 2n tan TC, T. + 2C.L:(0) holds.

41

o



Lemma 3.19 Let 0 ::::: 1. If £(t) is bounded, then for any Ii > 0 there exists a constant

C2 > 1 such that Vj(t) :S C2 except for OJ in intervals of length less than Ii for t E [0, T.).

Proof. If Vj ::::: C2 for m values of j and m{}.O ::::: Ii, then

£(t) > 2g;!;~ t M ( CI- I/o + ( _ ) . (0)1-1/0) > 2g;!;~ t ~liCI-I/O
- 0 _ 1 an 2 m 2 n m Vrnm - (0 _ 1){}.O an 2 2

when 0 > 1 and

M
£(t) ::::: 2grnin tan T(mlog C2 + (n - m) 10gvrnin(0))

2grnin {},O( )
::::: ~tan T lilogC2 + (2.". - Ii 10gvrnin(0))

when 0 = 1 (we have assumed Vrnin(O) < 1). This gives a contradiction when C2 is large.

D

Lemma 3.20 Let 0> O. For t E [0, T.), if Vj(t) :S C2 for some constant C2 > 1 except

for OJ in intervals of length less than Ii and Ii > 0 is small enough, then maXO~j<nVj(t) is

bounded.

Proof. As in the proof of Girao[Gir] (section 2, Sixth), we have the next estimate:

Vj = v.+ L(V~+I-Vm)
i$;rn<i

(
2(1_COS{}.O))1/2( {}.O 2)1/2

:S Cd L 2tan(M/2) 2tanT L (D+v)rn
t$;rn<3 t$;m<3

:S C2 + .j(j - i) sin M (2 tan {}.O L v~ +CI) 1/2

2 O$;m<n

:S C2+ VJ (2ntan ~Ov~&X +CI) 1/2

:S C2 + VJ (j2J2;vrnax + ;C:)
since Vj :S C 2 and O. - OJ :S Ii. Here we have used Lemma 3.13.

Hence (1- .j2V2.".Ii)vrnax :S C2 +,JC;S holds, and we obtain Vrnax :S (C2 + ,JC;S)/(1-

.j2"!2.,,.1i) for small Ii. D

Proof of Theorem 3.11. Suppose a side of the polygon disappears for t < T. where T.

attains A(T.) = O. Put to as the first time that happens (n.b. to > 0 is clear). Then

A(t) > 0 for 0 :S t :S to and the above estimates imply that sUPO~t~to vrnax(t) is bounded,

so drnin(to) > O. This is a contradiction. Hence the assertion holds. D

We are now ready to present of the proof of Theorem B.
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Proof of Theorem B. By Theorem 3.11, we have A(T.) = O. If n is odd, then £(T.) = 0

for 0 2: 1 since the angle between two adjacent sides of polygon is always 1r - !:>B and we

have no two sides which is parallel each other. Suppose that n is even. Then jth side and

(j +n/2)th side are parallel. Let w; be the distance between j and (j +n/2)th side, and

we have
7n+n/2 n/2

W m = L sin( B; - Bm)d; = L sin B; d;+m'
;:::;m+l ;=1

W m = - L sinB;d;+m.
i=n/Z+l

(3.4)

Therefore,

2wm = L IsinBildi +m = 2 tan M L IsinB;lgJ~:v;':~o.
i 2 i

Then by (2.4) we have

tUm = -(vm + vm+n/Z)

since

{
cot(M/2) if i = 0, n/2j

(!:>81 sin BI + Isin BI)i = 0 if otherwise,

holds.

Case 0 > 1. Since A(t) = -(0 - l)E(t), by Lemma 3.8, there exists t l E [0, T.) such

that

A(t) = -(0 -l)E(t) 2: -C(T. - t)(I-o)/(1+o), t l ::; t < T.

for some constant C = C(o,!:>B,g,v(td) > O. Integration over (t,T.) and A(T.) = 0 yield

A(t) ::; C(T. - t)2/(1+o), t 1 ::; t < T•.

Therefore by this inequality, A(t) 2: wm(t)dm(t) and Corollary 3.9, we have

W (t) <~(~) I/o < C(T _ t)I/(I+O) t < t < T
m - 2tan(M/2) gm _. , 1 - •

for any m and some positive constant C = C(o,!:>B,g,v(td). Hence wm(T.) = 0 for all

m and £(T.) = O.

Case 0 = 1. By tUm ::; -Vm and A(t) = 2 tan(!:>B/2) Li gilT. - t) 2: wmdm, we have

W m 2 tan(M/2) gm
W m ::;-~gm = L, g,(T. - t)

Hence, by integration over (O,t), we have

(
T. - t)9~/LJ9J

wm(t) ::; wm(O) r:- '
and wm(T.) = 0 for all m. Then £(T.) = 0 is concluded. 0
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A(O)

3.4 Lower bound of the blow-up time (proof of Theorem C)

Giga-Vama-uchi [GV] remarks that by using the Schwarz inequality twice, it is easy to

obtain a lower bound of the blow-up time for the motion of smooth surfaces by mean

curvature in higher dimension. Here we will use the Holder's inequality twice to obtain

Ti , and apply Lemma 2.4 (2) to calculate T•.

Proof of Theorem C. We apply the Holder's inequality to the equation (2.8):

-.4(t) = 2 t M L I/o -1/(0(0+1)) 0/(0+1)an 2 j gj Vj Vj

_< 2 t M ("'. 1+1/0 _I/O) 1/(0+1) ("'. ) 0/(0+1)
an 2 L;gj Vj L; Vj

1/(0+1)(~) 1/(0+1) ( £(t) )O/(O+l
l .

::::: gmax 2 tan(b.B/2) 2 tan(M/2)

Here we have used the equations (2.6) and (2.7). Integration over (0, T.) of this inequality,

assumption A(T.) = 0 and the Holder's inequality yield

::::: gl/(o+l) ( fT. dt) 1/(0+1) ( fT. ~~£(t)l+l/Odt) 0/(0+1)
max 10 10 0 +1 dt

go/(o+1lTI/(o+l) (_0_)0/(0+1) r(o).
::::: max. 0 + 1 '-

Hence we obtain Ti . By Lemma 2.4 (2), we have Vj(t) ::::: v.(t). Therefore v. blows up to

infinity faster than solution v. In other words T. ::::: T. holds. 0

3.5 Type I blow-up (proof of Theorem D)

By using Theorem B, we show the next lemma:

Lemma 3.21 Let 0 = 1. Suppose t2 is the same as in Lemma 3.10. Then there exists

t3 E [t2, T.) such that

Vj(t) ::::: Cj(T. - tt l
/

2
, 0::::: j < n, t3::::: t < T.

where Cj = vj(t2h/T. - t2 > 0, and so Cj ::::: C = C(g, b.B,v(0),v(t2)).

Proof. Integration of t(t) ::::: tan(b.B/2) Lj gAT. - ttl over (t2,t) is

b.B T. - t
£(t)::::: £(t2) - tan 2 ygjlog T. _ t

2
' t2 ::::: t < T•.
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0:":: j < n,

By Theorem B, Vrn;n blows up at T" and equation (2.3a) shows that Vrn;n dose not decrease

in time. Then there exists t3 E [t2,T.) such that vrn;n(t) ~ Vrn~(t2) for all t E [t 3 , T.).

Hence the next inequality holds.

tit) - £(t2) = 2 tan t:"JJ L gi log Vi((t)) ~ 2 tan t:,,() log Vj((t)) L gi
2 i Vi t2 2 Vj t2 i

for 0 :":: j < nand t3 :":: t < T•. Combination of equation (3.5) and the above inequality

leads the assertion. 0

Corollary 3.9 and Lemma 3.21 conclude the proof of Theorem D.

3.6 Asymptotic self-similarity (proof of Theorem E)

If the "point-extinction," and the "type I blow-up" hold, then we have the following:

Lemma 3.22 Let a > o. If a solution polygon shrinks to a single point and the solution

v undergoes the type I blow-up, then the rescaled length l(r) = h(t)£(t) is bounded.

Moreover, a solution v(r) of Problem 2 is bounded away from zero and is bounded for all

time r ~ O.

Proof. By equation (2.7), and the assumption of the "type I blow-up," there exist to E

[0, T.) and a positive constant C which depends only on a, g, t:,,(), v(O) and vito) such

that

£(t) ~ -CiT. - /t<>/(<>+ll, to:":: t < T•.

Integration over (t, T.) yields

Lit) :":: CiT. - t)I/(<>+I), to:":: t < T.

since the "point-extinction" holds.

Hence we have

l(r) :":: C, r ~ r(to).

For t < to the length Lit) is bounded, and so the rescaled length l(r) is also bounded

for r < r(to). Therefore the first assertion holds.

Next, since the rescaled length is given by

- t:,,() '" 1/<>_-1/<> t:,,() 1/<>_-1/<>
£(r)=2tan2'S-'gi vi ~2tan2grn;nVj ,

we have Vj ~ (2tan(t:,,()j2))<>grn;nl(rt". Then v(r) is bounded away from zero for all

time r ~ 0 by the first assertion. And the "type I blow-up" property leads the upper

bound of v. Therefore the second assertion holds. 0
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Now we prove Theorem E. In the sense of the dynamical systems, Theorem E implies

that there exists a Lyapunov function, and so the w-limit set consists of the equilibrium

solution only, if the "point-extinction," and the "type I blow-up" hold.

Definition 3.23 Let the functional be:

In fact, we see that :J is the Lyapunov function:

Lemma 3.24 Under the same assumption of Lemma 3.22, :J does not increase in time

r and is bounded from below.

Proof. By the direct calculation, one can obtain:

d 4!J.() 1 " _ 1+1" (d )2-:J[v(r)] = -- tan - '" g/ v ( I) -v' :s 0
dr 0 2 7 J J dr J

for all 0 > O.

By Lemma 3.22, for 0> 0 there exist positive constants C1 , C2 such that C1 :S v(r) :S
C2 for all r 2 O. Hence the summation by parts (2.4) yields

1
-2ntan(!J.()/2)C~ if 0> 1;

2 !J.() 1
:J[v(r)]2 -2ntan(!J.()/2)C2+4ntanTgmaxCjlogCl if 0=1;

-2ntan(D.()/2)C~+ ~tan ~g:!::'C:-l/Q if 0 < 1,
0-1 2

here we have assumed C1 < 1 if 0 = 1. 0

Proof of Theorem E. The previous lemma implies lim,.-->oo d:J[v(r)]/dr = 0, and so we

have the limit lim.,.-->oo dVj(r)/dr = 0 for all 0 :S j < n.

By Lemma 3.22, v is bounded and bounded away from zero, and so there exists a

sequence r; of time diverging to infinity such that v(r;) has a converging subsequence

and converges positive value. Therefore the converging subsequence must converge to a

solution of Problem 2', that is, a self-similar solution. 0

4 The case where a < 1

In this section, we will discuss about a stability of the regular polygon solution, Remark

1.2 and Remark 1.4. Throughout this section, we assume the isotropic motion 9 == 1.
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4.1 Stability of the regular polygon solution

In this subsection, we discuss the stability of the regular polygon solution from the lin­

earization. By the assumption g == 1, we see that the constant Vj == 1 is a stationary

solution to (3.2a). We linearize (3.2a) around 1. Substitute Vj = 1 + eVT'Pj and neglect

the second order terms 'Pi'Pj and also the higher order terms. Then we would obtain

(fl,,'P)j:= a(flo'P)j + (a+ 1)'Pj = a (flo'P+ a: 1'P)j = V'Pj

The eigenvalues of fl" are Vk = 1 - a(Ak - 1) and the eigenvectors are 'Pj = ?f;; where

Ak and ?f;j are defined in Remark 2.1. For k = 0,1,2, ..

Vk = 1 + a, 1, 1 - a(2 cos fl() + 1),.

Remark 4.1 (see [MaD Because of the positiveness Vo = 1 + a > 0, it seems that the

regular polygons are linearly instable solutions for any a> O. This instability, however,

comes from the difference of suitable rescaling between the stationary solution and its

perturbed solution, in other words, the difference of the blow-up time before rescaling.

Hence we can remove this instability if we take a suitable rescaling. Although we have

another instability VI = 1, this instability comes from the non-closeness of the perturbed

solution. Hence we can also remove this instability if we set initial perturbed solution

polygon is closed.

This remark implies the next lemma.

Lemma 4.2 Assume g == 1. Then a shrinking regular solution polygon to Problem 1 are

linearly stable if a> an := 1/(2 cos fl() + 1).

Remark 4.3 For n = 4,6,8, ... We have

1 1 1
an = 1, 2' 1 + y'2, ... ---t"3 as n ---t 00.

The power a = 1/3 is the critical power (of the blow-up type) for the motion of closed

convex curves by power a of curvature: if a :::: 1/3 there is the type I blow-up only, and

if a < 1/3 there exists a type II blow-up. See Andrews [And]' Taniyama-Matano [TMa]

and references therein.

4.2 Self-similar solutions other than the regular polygons

For k = 2,3,4, ... the k-peaked (in regard to the crystalline curvature) self-similar solution

may bifurcate from the regular polygons solution since the eigenvectors of fl" are?f;;' We

provide these special solutions from a example under the symmetric assumption:

d2j (t) == do(t), d2j+l (t) == dl(t), n: even, 0::::: j < n/2, 0::::: t < T.. (4.1)
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lf we put

and substitute it in equation (3.2a) through the relation Vj{t) = (2tan{t>B/2)/dj(tW,
then we would obtain the equation:

F{I-') := 1-',,+1 + 1-''' - I-' - 1 = 0 if n 2: 6
cos t>B

for a > O. When n = 4, we have the equation 1-''' - I-' = 0, then any rectangles are the

self-similar solutions if a = 1. Hereafter we consider the case n 2: 6.

We can easily check the properties of F:

F{l) = 0, F{O) = -1, F{l/l-') = _F{I-')/I-',,+l (4.2)

for I-' > 0, a > 0 and n 2: 6. Hence we suffice to consider F in the interval 0 < I-' < 1.

In the case there a 2: 1, we have F"(I-') > 0 for 0 < I-' < 1, F'{O) SO and F'{l) > 0,

then the solution of F{I-') = 0 does not exist in the interval 0 < I-' < 1. In other words, the

self-similar solution are the only regular polygons (I-' = 1) under the symmetric assumption

(4.1).

Now let us consider the case where a < 1. One can easily check

F"{I-') S al-',,-2F'(1), F'{l) = a +1- 1- a .
cos t>B

Hence if a is sufficiently small such as

_ 1 - cos t>B
a < an := 1 + cos t>B'

then F'{l) < 0 and so F"{I-') < O. Therefore by the properties in (4.2), we see there

exists unique solution of F{I-') = 0 in 0 < I-' < 1 if a < an' Here we have an S an and

the equality an = an holds iff n = 4. Figure 1 indicates some examples of this kind of

self-similar solutions except regular polygons.

We note that 8F/8a < 0 if 0 < I-' < 1 and so the zero-point 1-'" of F = 0, i.e. the ratio

1-'" == dtl do is decreasing as a (< an) approaches to O. This means that this self-similar

n-gon is an "almost regular" (n/2)-gon if a is small enough.

4.3 Examples of type II blow-up and non point-extinction

In this subsection, we shall present a type II blow-up, and non point-extinction by three

exaples when 9 == 1 and n = 4,6,8. Consequently, the order of type II blow-up O{(T. ­

tt") as t /' T., will be given. See also Figure 2.
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Figure 1: Self-similar solutions except regular polygons

in the case where Q = an /{l + 1:) with I: = 0.1. From

left to right n = 6,8,10,12.

Lemma 4.4 Let 9 == 1 and n = 4. Assume V2(0) = vo(O) and V3(0) = VI (0). If VI(O) >
vo(O) and Q < 1, then

(4.3a)

(4.3b)

(4.3c)

Proof. Under the assumption, evolution equations are

(4.4)

By Theorem A, Vo or VI blow up at T•. If Vo blows up, then the assumption VI (0) > vo(O)

leads that there exists to such that vo(to) = VI (to), and so the axi-symmetry leads vo(t) =
Vl(t) for t ~ to. Hence anyhow VI blows up.

Direct calculation yields

~ (vo(t)I-I/a - VI(t)I-I/a) = O. (4.5)

Integration over (O,T.) gives (4.3b) if Q < 1 and VI(O) > vo{O).

We have vo(O) :s vo(t) :s vo(T.) since Vo ~ o. Thus by Lemma 2.4 (1), inequality

vo(O) :s -~VI(WI/a :s vo(T.)

holds from (4.4, right). Hence integration over (O,T.) gives (4.3a).

From (4.5) and (4.4, right), we have

_~v~l/a = vo(t) = (VI(t)I-I/a - VI(o)I-I/a +vo(O)I-I/a)"/P-a),

and this leads (4.3c). 0
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Lemma 4.5 Let 9 == 1 and n = 6. Assume V3(0) = vo(O) and V2(0) = V4(0) = V5(0) =
VI (0). If VI (0) »vo(O) and a « 1, then

(vo(T.)(T. - tWo< ::; VI(t) ::; (vo(O)(T. - twa, 0::; t < T.,

vo(T.) ::; C(v(O),a).

Proof. Under the assumption, evolution equations are

(4.6a)

(4.6b)

(4.7)

By Theorem A, Vo or VI blow up at T•. If Vo blows up and VI remains bounded at T.,

then for sufficiently large t, Vo is negative by (4.7, left). This contradicts that Vo blows

up. Hence anyhow VI must blow up. From (4.7, right) and Lemma 2.4 (1), we have

_dv-;,/a /dt = vo(t) ~ vo(O) and so VI(t) ::; (vo(O)(T. - twa. Then by (4.7, left), it holds

that

and that its integration over (0, T.):

(1 - a)vo(O)o<'

We put d,(O) = p.do(O) and vo(O) = 1 without loss of generality, then we would obtain the

upper bounds of the blow-up time TI = Tf+I/(a + 1), T2 = (1 +2p.)/3 and so

2TI-o< 2TI-o<
vo(T.t'/o< ~ 1 + T. - 1:' a ~ 1- 1 ~ a =: c(p.,a).

Hence c(p., a) is bounded away from zero if T. ::; TI « 1 i.e. p. « 1 and a « 1. For

example, if p. = 1/8 and a = 1/4, then we have c(1/8, 1/4) = 0.00725391 ... > 0, and so

vo(T.) ::; 3.42655 ... < 00.

The lower estimate of (4.6a) follows easily. 0

Lemma 4.6 Let 9 == 1 and n = 8. Assume V4(0) = vo(O), V3(0) = V5(0) = V7(0) = VI (0),

and V6(0) = V2(0). If V2(0) > VI (0) > vo(O), V2VI (0) - V2(0) > ao where ao := (1 +
2(o<+I)/(2o<ltlvo(0), and a « 1, then

holds for 0 ::; t < T. and

vo(T.)::; C(v(O),a)

holds. Here bo := ao/(V2 - 1).
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Proof. Under the assumption, evolution equations are

Vo = a'v~+'/a(2vI - V2vo), VI = a'v;+1/a(V2 - V2Vl + Vol and

V2 = a'v;+1/a(2vI - V2V2)
(4.9)

where a' = a/(2 - V2).

Claim 1: At least VI blows up. By Theorem A, some of vo, v, and V2 blow up at T•. We

use the same argument as in the proof of Lemma 4.5: if Vo blows up, v, must blow up by

(4.9, left); if V2 blows up, v, must blow up by (4.9, right); anyhow v, blows up and so Vo

or V2 must blow up by (4.9, middle).

Claim 2: V2 blows up and V2 ::::: Vo holds. If Vo blows up and V2 remains bounded at T.,

then the assumption V2(0) > vo(O) leads there exists to > 0 such that V2(tO) = vo(to) and

V2(t) > vo(t) for t < to. Thus the axi-symmetric assumption leads that V2(t) := vo(t) for

all t ::::: to. This is a contradiction. Hence anyhow V2 blows up and V2 ::::: Vo holds.

Claim 3: V2 ::::: VI ::::: Vo holds. If there is a time to > 0 such as the first time that

VI(tO) = V2(tO) happens, and so v,(t) < V2(t) for t E [O,to), then VI(tO) :::: V2(tO) holds at

t = to by Claim 2. This yields V2 ::::: VI' The right inequality VI ::::: Vo will be proved in a

similar way.

Claim 4: V2v, - V2 ::::: ao holds. If there is a time to > 0 such as the first time

that V2v,(to) - V2(tO) = ao happens, and so V2Vl(t) - V2(t) > ao for t E [O,to), then

V2v,(to) > V2(tO) holds. Here we have used vo(to) ::::: vo(O) and ao > O. This yields

V2v, - V2 ::::: ao·
By Claim 4, we have V2 ::::: V2a'v;+l/aao, and so

Substitution the above estimate into (4.9, left), and integration over (0, T.) yield

vo(T.t'/a > vo(otl/a + vo(O)T. _ 2T.
I
-a .

- V2 - 1 (2 - V2)(1 - a)b~

Now we put d2(0) = 1-'2do(0), d,(O) = l-',do(O), and vo(O) = 1 without loss of generality.

The assumption leads the relations 1-'2 < 1-'1 < 1, V2l-'i a - I-':;a > ao, and the lower and

upper bounds of the blow-up time T.: T, = 1-''2+1/(0. + 1), T, = T:;+I/(o. + 1) and

T2 = (1 + 21-" +1-'2)/4 < 1. Thus we have

V (T )-I/a > 1 ~ _ V2(1 + 2(a+1)/(2a))aTI _. c a.
O. - + V2 -1 (V2 -1)(1-a)(I- a.) -. (1-'1,1-'2, ).

Hence c(l-'1> 1-'2, a.) is bounded away from zero if 1-'1> 1-'2 and a. are small enough. For

example, if 1-'1 = 1/15, 1-'2 = 1/20 and a. = 1/4, then the assumptions are satisfied and

c(I/15, 1/20, 1/4) = 0.0217784 ... > 0 holds, and so we have v(T.) :::: 2.60312 ... < 00.
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The lower estimate of (4.8a) follows easily. 0

Numerical examples. In Figure 2, we show the comparison to the asymptotic behavior of

solution polygons between the type I blow-up case (upper figure), and the type II blow-up

case (lower figure). The initial figure is the outmost polygon. We can observe the point­

extinction in Figure 2 (a)(b)(c), and the non point-extinction in Figure 2 (a')(b')(c').

The parameters are PI = 9/10, PI = 1/8, and (P1>P2) = (1/15,1/20) from left to right.

Here d1(0) = P1do(0) and d2(0) = P2dO(0) in each figure. Note that the initial polygon in

Figure 2 (a)(a') is rectangle. All figures are performed by using the scheme developed in

Ushijima-Yazaki [UY] at Graduate School of Mathematical Sciences, The University of

Tokyo, Japan.

(a) (b) (c)

(a') (b') (c')

I] II
Figure 2: Numerical expamples of Lemma 4.4, 4.5 and

4.6. The upper figure (resp., the lower figure) is in the

case where Q = 1 (resp., Q = 1/4). From left to right,

the number of sides is n = 4, 6 and 8.
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Chapter 3

Asymptotic behavior of solutions to an expanding

motion by a negative power of crystalline curvature

Outline: This chapter is concerned with an expanding motion of polygonal curves

by a negative power of crystalline curvature. Main results say that solution polygonal

curves expand to infinity approaching a regular polygon as time tends to infinity,

or in a finite time, depending on the power. We prove these results by using a

comparison principle, a discrete version of Aleksandrov reflection method, estimates

of an isoperimetric ratio and some fundamental inequalities. We also prove an

isoperimetric inequality for polygonal curves.

Key words: crystalline motion, crystalline curvature, motion by a negative cur­

vature, geometric expansion, blow-up, asymptotic self-similar, isoperimetric ratio,

isoperimetric inequality.

1 Introduction and main results

In this chapter we study the asymptotic behavior of solutions to a motion of polygonal

curves in the plane. In the last several years, many authors have investigated in the

asymptotic behavior, especially the asymptotic self-similarity of solutions to a motion of

plane curves by a function of their curvature. The typical example for contracting flows

is the classical curve-shortening equation, or the motion by curvature. A property of

the motion is that any given Jordan curve shrinks to a single point, and its asymptotic

shape just before disappear is a circle. This result was given by Gage-Hamilton [GH],

and Grayson [Gry]. Subsequently, Gage-Li [GL] and Dohmen-Giga-Mizoguchi [DGM]

extended the result for an anisotropic motion by curvature which is derived in Gurtin

[Gu]. More recently, Andrews [And] and Taniyama-Matano [TMa] study a motion of

closed convex curves by a power of curvature. Besides contracting flows, there has been
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(l.la)

considerable interest in expanding flows: motion of plane curves by their principal radius,

or the inverse of their curvature. See Urbas fUr], Chow-Tsai [CTs], Tsai [Ts], Andrews

[And] and references therein. A part of the main results in this chapter is proved by using

a discrete version of proposition in [CTs). We will touch upon this later.

The classical curve-shortening equation comes from a physical context: the equation

is derived from a gradient flow of total smooth interfacial energy defined on the curves

which are boundaries separating two materials. Anisotropic interfacial energy leads the

weighted curvature flow, or an anisotropic motion by curvature. See Angenent-Gurtin

[AGuJ.

Some materials have nonsmooth interfacial energies, for instance, crystalline. In this

case the problem is reduced to the motion of polygonal curves by its crystalline curvature

(defined below) with a driving force term. This motion is called crystalline motion, or

crystalline flow, which is proposed by [AGu], [Gu] and correspondingly Taylor [T3]. On

the recent development of crystalline motion and its application, see, e.g., Taylor-Cahn­

Handwerker [TCH], Giga-Giga [GMHG4], Giga-Gurtin-Matias [GGuMJ, Roosen-Taylor

[RT], Rybka [Ry].

The asymptotic self-similarity of solutions to a crystalline motion, except a driving

force term, is studied by Stancu [S2]. Uniqueness of self-similar solutions is proved in [SI]

which Taylor [T2] conjectured. Recently Yazaki [Yl] studies the asymptotic self-similarity

of solutions to a motion by a power of crystalline curvature. See also [Y2] for a generalized

crystalline motion.

Our aim in this chapter is to study the asymptotic behavior of solutions to an expand­

ing crystalline flow, or motion by a negative power of crystalline curvature, and to show

the asymptotic self-similarity of solutions.

Many authors have recently studied an approximation of curvature-dependent motions

by using crystalline motions in their articles. See Remark 1.1 below.

Now we state our problem setting, the motion of polygons by a negative power of

crystalline curvature as follows. Let Po be a convex closed polygon in the plane R 2 with

the angle between two adjacent sides is 1r - ~() where

21r
~():= -;;,

and n is a number of sides. We consider the evolution problem to find a family of polygons

{P(t)}o"t<T satisfying

{

d.
diz;(t) = vj(t)nj, 0 ~ J < n, 0 ~ t < T,

P(O) = Po

for some T > 0, where nj := -'(cos ()j, sin ()j) is the inward normal vector of the jth side,

Zj is the position vector of the point of intersection between on the line containing the
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jth side and the line spanned by nj and Vj is the inward normal velocity of the jth side.

Here and hereafter we denote lij = jllli. We note that the angle between two adjacent

sides of P(t) is always 7r - llli as long as solution polygons exist.

In this chapter, we treat of the case that the normal velocity is homogeneous of some

degree -f3 in the crystalline curvature:

Vj(t) = K.,(tt13 , 0::; j < n, 0 < t < T

where f3 is a positive parameter, and K.j is the crystalline curvature:

2tan(1l1i/2) .
K.j(t) =~' 0::;) <n, O::;t<T.

Here dj(t) is the length of the jth side of polygon P(t).

The main result of this chapter is the following.

(l.lb)

(l.lc)

Theorem A Let n ~ 4 and Po a convex closed polygon in the plane R 2 with the angle

between two adjacent sides is 7r-llli. Then there exists a solution polygon P(t) of Problem

(1.1) which expands to infinity as t tends to T., the maximal existence time of solution

polygon. If 0 < f3 ::; 1, then T. = 00 and if f3 > 1, then T. < 00. For any f3 > 0, a rescaled

solution polygon p(t) := R(tt1p(t) converges to a regular polygon in the Hausdorff metric

as t tends to T. ::; 00. Here the rescaling rate R(t) is given as the following:

1
C(C•• + (1 - f3)tp/(I-13) if 0 < f3 < 1,

R(t) = Cet if f3 = 1,

C(T. - W1/(13-1) if f3 > 1

for some constant C = C(Po,f3, llli) > 0, where C.v := (LOSj<n Vj(O)l/13 /n)I-13.

Main tools of the proof of Theorem A include the comparison principle, a discrete

version of Aleksandrov reflection method which is used in [eG] and leTs], an estimate of

isoperimetric ratio, and some fundamental inequalities. We will define an isoperimetric

ratio for polygons, and show the isoperimetric inequalities in section 3. In section 2, we

will discuss the fundamental properties of solutions, and see solution polygons expand

to infinity in a finite time or infinite time dependeing on the power f3. In section 4 and

5, an asymptotic behavior of solutions will be given, and a proof of Theorem A will be

completed.

At the end of this section, we mention an approximation by using crystalline motion.

Remark 1.1 (approximation) One of the view points of approximation is to present

the relation between a motion of smooth curves, and polygonal curves through the con­

vergence. If curves are graph-like, convergence results are shown in both papers Girao­

Kohn [GirK] and Fukui-Giga [FG]. In Elliott-Gardiner-Schiitzle [EGS], the properties
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of a solution in the sense of [FG] are investigated, and several numerical examples are

presented for which visualize the results. The new notion of solutions to a fully non­

linear equation including crystalline motion is introduced and analyzed in Giga-Giga

[GMHG1, GMHG2, GMHG4]. Its notion is in the realm of viscosity solution theory,

and so is based on comparison principle which is an extension of Giga-Gurtin [GGu].

Convergence results are discussed in [GMHG3, GMHG5] for the solutions in its notion.

Girao [Gir] showed that a crystalline motion approximates a weighted curvature flow

if the curves are closed and convex. This result was extended by Ushijima-Yazaki [UY1]

for the motion by a positive power of curvature. Moreover, they constructed a crystalline

algorithm to the motion of nonconvex curves by a power of curvature in [UY2]. Implicit

crystalline algorithm is considerable interest in [UY3] for an area-preserving motion by

curvature. In Ishii-Soner [ISj, they show the crystalline motion approximates the curve­

shortening equation through the level set method. See the survey Elliott [E] for more

general information about an approximation of curvature-dependent motions.

2 Preliminaries

Throughout this chapter we use the notation 2::j Uj, Um.X> Urnin and u(t) for 2::0<::j<n Uj,
maxo<::j<n Uj, mino<::j<n Uj and du(t)/dt, respectively. Hereafter we assume n ::::: 4. We

note again OJ = jb.O.

2.1 Restatement of Problem (1.1)

Let P(t) be a solution of Problem (1.1). The jth vertex Bj(t) of P(t) is given as the

following:

(:llj_l(t) - :llj(t), t j + nj cot b.0) t j + :llj(t),

Bo(t) + L dm(t)tm , 1 ~ j ~ n, 0 ~ t < T
O$m<j

(2.1)

with Bo(t) == Bn(t), since the position vector :llj is on the line containing the jth side

(n.b. :llj is not necessarily on the jth side). Here t j = '(-sin OJ, cos OJ) is the tangent

vector, and (.,.) is the usual inner product. Then the time evolution of the length of the

jth side d](t) is given as the following (cf. Figure 10C in [AGuJ):

(2.2)

Here the operator b.e is defined as

(b.ev).:= vj+1-2vj+Vj_l
, 2(1 - cos b.0)
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(2.3a)

(2.3b)

(2.3c)

which is a kind of central difference operator. Then we obtain the following evolution

equation:

~"-;(t) = -,,-J(D.sv + v);, 0 $; j < n, 0 $; t < T.

Therefore we can restate Problem (1.1) as follows.

Problem 1 Assume {3 > 0 and n :::: 4. Find a function v(t)

[el (0, T)]n for some T E (O,ooJ satisfying

~v;(t) = {3v;'-I//3(D.sv +v);, 0 $; j < n, 0 < t < T,

vitO) = ,,-;(0)-/3, 0 $; j < n,

V_I(t) = Vn_l(t), Vn(t) = va(t), 0 $; t < T

where ,,-;(0) is the initiaL crystalline curvature ofPa·

Remark 2.1 (equivalence) Problem (1.1) and Problem 1 are equivalent except the

indefiniteness of position of the polygon. Indeed, suppose v is a solution of Problem 1,

then we have

_(19/ )-dd L2tan~v;(t)I//3t; = L(D.sv +v);t; = L(D.st +t);v; = O.
2 tan D. 2 t; 2 ; ;

Here we have used the relation of summation by parts:

and the relation (D. s t); = -t;. Hence by equation (2.1), we can construct a closed convex

n-gon, whose length of the jth side is 2tan(D.9/2)v;(t)I//3 =: d;(t) and the jth normal

vector is n;, as long as v is a solution of Problem 1. This n-gon is the very solution

polygon of Problem (1.1).

2.2 Support function

The support function h;(t) of P(t) is defined by

h;(t) = (z;(t),n;).

The length of the jth side is given as

M
d;(t) = 2 tan T(D.s h(t) +h(t));

by geometry. Then we have

v;(t) = "-;(t)-/3 = (D.s h(t) + h(t))f·

(2.5)

(2.6)

Since h;(t) = (;i:;(t),n;) = v;(t) holds, we obtain the following problem equivalent to

Problem 1:
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(2.7a)

(2.7b)

(2.7c)

Problem l' Assume (3 > a and n 2: 4. Find a function h(t) = (ho,h1> ... ,hn_d E

[C I (0, T)Jn for some T E (O,ooJ satisfying

d .
dihj(t) = (""0 h + h)~, o:s J < n, 0< t < T,

hj(O) = (:l:j(O), nj), O:S j < n,

h_dt) = hn_l(t), hn(t) = ho(t), O:S t < T

where :l:j(O) is the position vector on the line containing the jth side of the initial Po.

2.3 The length and the area

The (total) length of polygon is

£(t):= Ldj = 2tan~ LvJ1/3,
j 2 j

and the rate of change of £(t) can be computed by

itt) = 2 tan~ L Vj(t).
2 j

(2.8)

Since itt) > 0, the motion of solution polygons is a discretized curve-lengthening, or an

expanding flow.

The area enclosed by polygon is

1 MJ
A(t) := '2 ~ hj(t)dj(t) = tan '2~ hj(t)Vj(t)I//3,

and the rate of change of A(t) can be computed by

.4(t) = 2tan~ LVj(t)I+I//3.
2 j

Here we use equations (2.2), (2.4), (2.5) and (2.6).

2.4 Comparison principle and its application

The following comparison principle and its application play an important roll of this

chapter.

Lemma 2.2 Fix T > O. Let (Pj(t))O:;j<n > a and (qj(t))O:;j<n be defined on t E [O,T]. If

u = (Uj(t))O:;j<n E [CI(O, T) n C[O, T]]" is a solution of

1

d .
diUj 2: Pj(""9 U)j + qjUj, O:S J < n, a < t < T,

U_l(t) = Un-l(t),. un(t) = uo(t), O:S t:S T,

Uj(O) 2: 0, O:S J < n,

then Uj (t) 2: a holds for a :S j < n and a :S t :S T.
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Proof. Put Jl. > 0 large enough such that iij(t) := qj(t) - Jl. < 0 for any t E [0, T]. We

set Uj(t) := e-I"uj(t) on 0 ~ t ~ T. Then Uj satisfy dUj(t)/dt ~ pj(~eu)j + iijuj for

o~ j < nand 0 < t < T. Suppose that mino~'~T,O~j<nUj(t) attains negative value at

j = jo and t = to. At tills point, however,

d
dtUjo(to) ~ 0, (~e u(to))jo ~ 0, and iijo(to)Ujo(to) > O.

This is a contradiction and hence Uj(t) ~ 0 holds for 0 ~ t ~ T. 0

As an application of the above lemma, we obtain the following:

Lemma 2.3 Let {3 ~ 1 and v a solution of Problem 1. The following comparisons hold.

(1) Let Vu be a solution ofvu = {3v~-l/fJ with vu(O) = vmax(O). Then vult) ~ v;(t) holds

for all 0 < t < T. = 00.

(2) Let VI be the solution of VI = {3v~-l/fJ with VI(O) = vm;n(O). Then Vj(t) ~ VI(t) holds

for all 0 < t < T. = 00.

Proof. For each proposition, put (1) Uj = Vu - Vj; (2) Uj = Vj - VI; and apply Lemma 2.2.
o

Remark 2.4 Solutions V u (resp., vt} corresponds to a motion of a large (resp., small)

regular polygon compare with the solution polygon P(t).

Lemma 2.3 implies that the solution v blows up to infinity as t tends to infinity when

{3 ~ 1. Moreover, the following corollaries hold.

Corollary 2.5 It holds that

Vm;n(O)e' ~ Vj(t) ~ vmox(O)e' (2.9)

for t ~ 0 if {3 = 1 and that

Cl (Ca. + (1- {3)t)fJ/(I-fJl ~ (Vm;n(OtI+l/fJ + (1- {3)t)fJ/(l-fJ) ~ Vj(t), (2.10)

and

for t ~ to if {3 < 1. Here, for a given to > 0, constants Cl and C2 depend on v(O), {3 and

to, and Ca. is defined in Theorem A.

This corollary imply the following:
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Corollary 2.6 Let (3 :::; 1. The solution polygon 1'(t) of Problem (1.1) expands to infinity

as t ---7 00, that is, limt-too minoSi<n IZi(t)1 = 00. Moreover, for any sequence {ti} of time

diverging infinity, there is a convergent subsequence of polygons {in := {1'(ti ,)} such

that PI := R(td-11'(td converges to a polygon Poo as l tends to infinity. Here R(t) is the

rate defined in Theorem A.

In section 4, we will see the polygon P00 is a regular polygon, and a proof of Theorem

A will be completed in the case where (3 :::; 1. See also Remark 3.3.

2.5 Finite time blow-up

In the case where (3 > 1, the maximum of solution v of Problem 1 diverges to infinity in

a finite time:

Lemma 2.7 (Finite time blow-up) Let (3 > 1. Suppose v is a solution of Problem 1.

There exists a finite time T. > 0 such that the maximum of {vi} blows up to infinity as

t /' T.:

T < _1_ (2ntan(~1i/2))iJ-l
• - (3 - 1 £(0)

Proof. Jensen's inequality yields

(
M)iJ ( )iJ ( M)iJ-

1

£(t)iJ= 2tanT ~v~!iJ :::; 2ntanT itt)

By the general argument for ordinary differential equation, a solution v of Problem 1

exists uniquely and locally in time. Put T. > 0 such as maximal existing time and take

t E (O,T.). We obtain

(

1 iJ ) -1!(iJ- 1)

£(t) 2: £(o)l-iJ - ((3 - 1) (2n tan -¥) - t .

Since £(t):::; 2ntan(~1i/2)v;,(!x, we have

(
M)-iJ ( (M)l-iJ )-MiJ-1l

v rn•• 2: 2 tan T £(0)1-IJ - ((3 - 1) 2n tan T t ,

and the assertion is concluded. 0
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3 Isoperimetric ratio and isoperimetric inequality

The isoperimetric ratio for a closed embedded curve f is usually defined as

L 2

iso(f) = 47TA

where L and A are the length and the enclosed area of r, respectively. It is well known

that the isoperimetric inequality iso (r) 2 1 holds. Equality iso (f) = 1 holds if and only

if the curve f is a circle. In this sense, if r is a regular n-gon, say Pn , then it holds that

iso(Pn ) = ntan(flli/2) > 1, and that lim iso(P
n

) = 1.
1(" fl-HIO

In this chapter, we define the isoperimetric ratio such as

Tt ._ [(t)2
( ) .- 4ntan(M/2)A(t) (3.1)

since we consider the polygons P(t) which the angle between two adjacent side is 7T - flli.

For this isoperimetric ratio, the next isoperimetric inequality

T(t) 21 (3.2)

holds. The equality T(t) = 1 holds if and only if the polygon P(t) is a regular polygon.

We shall give a proof of this isoperimetric inequality and equality. We use the next

result in which 5tancu [52] and Yazaki [Yl, Y2] show.

Proposition 3.1 (Point-extinction) Let n 2 4. Then any solution polygon of the

problem:

(l.1a) and Vj(t) = -Itj(t) (instead of (l.1b)) with (l.1c) (3.3)

shrinks to a single point in finite time, say t.. No side of the polygon vanishes before t

reaches t•.

Remark 3.2 We note that the each side of the solution polygon of Problem (3.3) moves

toward the inward normal -nj, and Proposition 3.1 asserts [(t.) = A(t.) = O.

The time gradient of the enclosed area A(t) is given as, from Vj = -Itj,

A(t) = L vjdj = - L Itjdj = -2n tan flli,
j j 2

and then we have

4n tan -¥A(t) = -2 (~ltA)2.
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The length is £(t) = Li di and its time gradient is given as

Here we have used vi = -"'i'

Now we apply Schwarz inequality to (3.4), and we obtain

Integration of this inequality over (t, t.) and the point-extinction result yield

boO 2
-4ntan TA(t) 2 -£(t) .

Hence the isoperimetric inequality (3.2) holds.

The equality of (3.2) holds if and only if the equality in Schwarz inequality holds, in

other words, the polygon is a regular polygon.

We note that the next more accurate geometric inequalities - Bonnesen's inequalities

hold for polygons (see, e.g., [Egg]):

boO 2 boO 2
hmax £ - A-ntanThmox 2 0, and hm;n£ - A- ntanThmin 2 O.

By virtue of this inequalities, we can easily check that

ntan(boOj2) 2
I(t) 2 1 + 4A(t) (hmox(t) - hm;n(t)) 2 1. (3.5)

Remark 3.3 For any solution polygon P(t) of Problem (1.1), if we show limsuPt-tT. I(t) ~

1, then we would obtain the assertion that the solution polygon P(t) expands to infinity

approaching a regular polygon in the Hausdorff metric as t /' T. since (3.5) holds for any

P(t). In the following two sections, we will see the limit supremum of I(t) is less than or

equals to 1.

4 Asymptotic behavior of solutions when (3 S; 1

Corollary 2.6 asserts that there is a limit shape of solution polygon P(t) as subsequence

of t tends to infinity and the convergence rate is given as R(t) defined in Theorem A

when {3 ~ 1. In this section, we will see the limit shape is a regular polygon, and the

following two lemmas will complete a part of Theorem A. Strategy of the proofs is to use

the comparison principle, and an estimate of isoperimetric ratio (3.1).

Lemma 4.1 Let {3 = 1 and v a solution of Problem 1. Then lim sUPt-too I(t) ~ 1.
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Proof. Since itt) = £(t), we have £(t) = £(O)e'. Schwarz inequality leads

( )

2
. M 2 t:.()

A(t) = 2tan - "2:>; :::: - tan - I:>j
2 j n 2 j

Integration over (0, t) yields

A(t) > A(O) + £(0)2 (e2t - 1).
- 4ntan(M/2)

Hence we have

2ntan(M/2)
£(0)2 2'

2ntan(t:.()/2)e .

It = £(t)2 < £(We
2t

() 4ntan(M/2)A(t) - 4ntan(t:.()/2)A(0) +£(0)2(e2t -1)'

and this implies the assertion. 0

Lemma 4.2 Let (3 < 1 and v a solution of Problem 1. Then lim suPHoo I( t) ~ 1.

Proof. Let r(t) := (Cav + (1 - (3)tt l /(l-il ) where

Holder's inequality leads

Hence we have

d (M)l-/ldi£(t)I-/l ~ (1 - (3) 2n tan 2 '

and so £(t) ~ 2ntan(t:.()/2)/r(t).
By equation (2.10) in Corollary 2.5, we have A(t):::: 2ntan(t:.()/2)/r(t)J+/l where

r(t) := (Vrnin(O)-I+l//l + (1- (3)t) -I/(I-/l).

Integration over (0, t) leads A(t) :::: A(O) + n tan(t:.()/2)(r(tt2 - r(Ot 2). Hence

I(t)
(£(t)r(t))2

4n tan(M/2)A(t)r(tJ2
~ (2ntan(M/2))2

4n tan(t:.()/2)(A(0)r(t)2 + n tan(M/2)((r(t)/r(t)J2 - (r(t)/r(O)J2))'

and then the assertion holds since limHOOr(t)/r(t) = 1, and limHoor(t) = O. 0

66



5 The case where f3 > 1

The following lemma is a discrete version of Proposition 1 in Chow-Tsai [CTs], which is

based on a version of Aleksandrov reflection method (see Chow-Gulliver [CG], especially

Theorem 2.1). Although the following proof will be a parallel story to the proof in [CTs],

for the reader's converuence, a proof will be given.

Lemma 5.1 Let f3 > 0 and h a solution of Problem 1'. Then there exists a positive

constant.A depending only on the initial data h(O) such that

Ihj,(t) - hj,(t)1 ~ .Ajsin (11 ;j2 M )I, 0 ~ jI, j2 < n, 0 ~ t < T•.

Proof. Given integer k define

wj := hj(O) - h2k _j (O).

For j = k and j = k - [n/2] we obtain

and

WZ_ln/2j = hk -[n/2J(O) - hk+1n/2](O) = hk+n-(n+l)/2(O) - hk +(n_l)/2(O) = O.

Here and hereafter we set [n/2] := (n - 1)/2 and -[n/2] := -(n + 1)/2 for n odd.

Then there exists .Ak ::::: 0 such that .Ak sin fh_j ::::: wj for k - [n/2] ~ j ~ k since

sin li[n/2] > 0 holds if n is odd.

Let h;(t) := h2k _j (t) +.Ak sin lik_j . We obtain the inequality

and the relation

Now we put

Note that Uk(t) = 0 and uk_ln/2j(t) ::::: O. By mean value theorem, we obtain Uj

f3(~.j 1(Ll9 U +u Ji. Here (k,j is in the between "'i 1 and "'2L j since

hold and so (j is non zero function for any t > O.
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Fix T E (O,T.). Recall T. = 00 if f3::; 1, and T. < 00 if f3 > 1. Let aj(t) > 0 and bitt)

be defined on t E [0, T}. If Uj(t) E C' (0, T) n C[O, TI is a solution to

with the initial condition Uj(O) :::: 0, and the boundary condjtion U.-[n/2J(t) :::: 0, u.(t) = 0,

then u;(t) :::: 0 holds for all k - [n/2] ::; ] ::; k and 0 ::; t ::; T by the comparison principle.

The proof is a similar to Lemma 2.2.

Hence if we put>. = >'(h(O)) > 0 such as >. :::: max. >'k, then we obtain

h2k _j (t) + >. sin (Jk_j :::: hj(t), k - [n/2] ::;] ::; k, 0::; t < T•.

Setting k = [(j, + ]2)/21 and] = ],. We conclude that

· (]2 -]') ()hj,(t)+>'SIll -2-6JJ ::::hj , t. (5.1)

Here we have set 12 := ]2 - 1 if ]1 + 12 is odd. Switching]1 and 12 in (5.1) implies the

assertion. 0

Corollary 5.2 Let f3 > 1 and h a solution of Problem l' with the blow-up time T•. Then

(1) hmox(t) - hm;n(t) ::; C.

(2) hmox(t) /' 00 as t /' T•.

(3) hmin(t) /' 00 and so minO~j<n tZj(t)1 /' 00 as t /' T•.

Proof. First, Lemma 5.1 implies (1) where C is a positive constant depending only h(O).

Secondly, If hmax(t) is bounded, then hj and so K.j' is also bounded. Hence Vj is bounded.

This is a contrailietion to Lemma 2.7. Then (2) holds. Finally, hm;n :::: hmox - C holds by

(1), and therefore the assertion (2) leads (3). 0

The following lemma asserts that any solution polygon expands to infinity approacrung

an expanding regular polygon.

Lemma 5.3 Let f3 > 1 and h a solution of Problem 1'. Then lim SUPt,.i'T. I( t) ::; 1.

Proof. Inequality

holds for sufficiently large t since hmin blows up by Corollary 5.2 (3). Therefore we have

A(t) :::: L:(t)(hmox(t) - C)/2 > 0,
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I(t) < £(t)2 <~.
- 2ntan(D.9/2)£(t)(hmax (t) - 0) - hmax(t) - 0

This leads the assertion. 0

By the following lemma it will be clear that the specific order of the blow-up rate, and

this will complete a proof of Theorem A.

Lemma 5.4 Let (3 > 1. For sufficiently large to E (0, T.) there exist constants Cl and C2

depending on (3, to and h(O) such that

cI(T, - tJ-I/(Ii-I) :::: hj(t) :::: c2(T. - trl/(Ii-I), 0:::: i < n, to:::: t < T•.

Proof. We will prove the estimate hmin(t) :::: (((3 -l)(T. - t)tl/(Ii-I). The following proof

is based on the proof of Lemma 2.2 in Stancu [S2].

If hmin(t) = hj,(t) for some 0:::: it < n, then

d
dihj,(t) = (L'leh+ h)~, ~ h~,

for any t E (0, T,). The function hmin(t) is a continuous function, but it may not be

differentiable. It is, however, Lipschitz. Therefore we have

£h . (t) .- Ii . f hmin(t + 0:) - hmin(t) > hli .
dt mm .- ~ibn c: - mm"

Since comparison principle (similar result to Lemma 2.2 for the operator d- /dt) holds,

once hmin is bigger than R(t), the solution of R(t) = R(t)li, it must stay bigger. This

comparison holds when R(t) = (((3 - l)(T. - fJ - tJ- I/(Ii-l) for any fJ > 0 and any t. Then

hmin must blow up at T, -fJ, earlier time than the blow-up time T•. This is a contradiction.

Hence hmin(t) < (((3 - l)(T. - fJ - tll- 1M- I) holds, and this proves the assertion.

One can prove the estimate hmax(t) ~ (((3 - l)(T. - t)tl/(Ii-I) in a similar way.

The assertion will be proved by the combination of Corollary 5.2 and the above esti-

mates. 0
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Chapter 4

On an area-perserving crystalline motion

Outline: The asymptotic behavior of solutions to an area-preserving crystalline

motion is investigated in this chapter. In this equation, the area enclosed by the

solution polygon is preserved, while its circumference keeps on shrinking. By es­

tablishing several isoperimetric inequalities, we show that the asymptotic shape of

every solution polygon is a regular polygon.

Key Words: crystalline motion, crystalline curvature, curve-shortening, area­

preserving, entropy estimate, isoperimetric inequality, Bonnesen's inequality, Gage's

inequality.

1 Introduction and main results

The isoperimetric inequality for closed embedded curves (in the plane) represents the

variational problem: what is the shape which has the least total length of the curve for

the fixed enclosed area? The answer is a circle. Gage [G2] considers the gradient flow

of the length functional keeping the area enclosed by the curve constant; and shows that

any convex curve in the plane which evolves by this gradient flow remains convex and

converges to a circle in the COO-metric.

Our aim in this chapter is to answer the problem: what is the asymptotic shape of

a solution polygon which evolved by the gradient flow of the length functional keeping

the area enclosed by the polygon constant? For simplycity, we restrict the polygon is a

convex closed polygon, say P, in the plane with the angle between two adjacent sides of

P is 1r - !:1(J, where !:1(J = 21r In, and n is a number of sides of the polygon P. We call

this polygon the admissible polygon. From the admissiblity, without loss of generality,

the inward normal vector of the j-th side is given as nj := -'( cos (Jj, sin (Jj), and the j-th

tangent vector is given as t j := '(-sin (Jj,cos(Jj). Here and hereafter we use the notation
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lij = jboli. Let "'j be the positon vector on (the line containing) the j-th side of polygon

P. Then the length of the j-th side, say dj , is given as

and so the total length of P is £[",j = LO<:;j<n dj[",j.

Now we shall derive the evolution equation from the gradient flow of £[",j keeping the

area enclosed by the polygon P constant. For a small perturbation E:Zj, the change of the

j-th length is dj [", + E:z] = dj[",j + E:dj[zj. Then the first variation of £ is

~£['" + E:zjl = L dj[z] = L (-lijnj,zj)dj[",j,
£=0 O~]<n OSJ<n

where lij is called crystalline curvature (see below in details) defined as

2tan(M/2} .
lij = d

j
, 0 ~ J < n. (l.la)

The enclosed area of P is A[",j = LO<:;j<n("'j, -nj)dj [",j/2, and so we have the first

variation of A:

~A["'+E:zjl = L (-nj,zj)dj[",j.
dE: <=0 O<:;j<n

Since LO<:;j<n( -nj, lijnj)dj = -2n tan(boli /2} holds, the gradient flow of £ along polygons

which enclose a fixed area A == const. is

d .
di"'j(t) = vjnj, 0 ~ J < n,

with the normal velocity:

(l.lb)

V. = Ii. _ 2ntan(boli/2}
1 1 £ ' o~ j < n. (l.lc)

The problem of this chapter is "for a given admissible polygon Po, find a family of

polygons {P(t)}09<T satisfying (1.1) with P(O} = Po and a duration T > 0." We note

that the angle between two adjacent sides of P(t} is always 1f - boli as long as solution

polygons exist, that is a polygon P(t} is the admissible polygon.

Our main result in this chapter is the following.

Theorem A Let n :::: 4, and Po an admissible polygon. A solution polygon P(t} of

Problem (1.1) exists globally in time, and the solution converges to a regular polygon in

the Hausdorff metric as t tends to infinity, keeping the area enclosed by the polygon P(t)

constant.
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Now we will refer to a background and related topics, especially for terminologies the

"admissibility" and the "crystalline." The so-called Wulff's problem is a development

form of the beginning variational problem: what is the shape which has the least total

interfacial energy of the curve for the fixed enclosed area? The answer is the Wulff shape.

The gradient flow of the total interfacial energy of the curve without the constraint fixed

enclosed area provieds the weighted curvature flow: the normal velocity is propotional

to the weighted curvature, i.e. the curvature times a weighted function. Actually, tlUs

weighted function is the inverce of curvature of the Wulff shape's boundary. Such an

evolution equation arises in a model describing the motion of interface separating materials

in an anisotropic medium. See Gurtin [Gu1]. Besides the smooth interfacial energy,

some materials have a nonsmooth interfacial energy, for instance, called crystalline. In

this case, we do not calculate the gradient flow of total interfacial energy in the usual

sense. For such an energy, Angenent-Gurtin [AGu], and correspondingly Taylor [T1]

(see also [T2], [T3], [Gu1]) introduced a weak formulation: the motion of admissible

piecewise linear curves by crystalline curvature. This motion is called the crystalline

flow, or the crystalline motion. Recently, many authors investigate the crystalline flow

and its application. See, e.g., [TCH, GirK2, GMHG1, Gu2] for including a survey, and

[AIT, GGu, GMHG2, GMHG4, GGuM, Ry, GPJ for an application and development. The

asymptotic behavior, especially the asymptotic self-similarity, of solutions to a crystalline

flow is investigated by Stancu [51, 52]. The author showed the asymptotic self-similarity

in [52], and the uniqueness of self-similar solution, under a symmetric assumption, in [51].

For a perspective application including numerical approximation of crystalline flow, we

refer to [GirK1, FG, GMHG3, GMHG5, EGS, Gir, UY1, IS, E]. In particular, an implicit

crystalline algorithm for Problem (1.1) is studied in [UY2).

The organization ofthis chapter is as follows: in section 2, we give several fundamental

properties of solutions to Problem (1.1). In section 3, some isoperimetric inequalities for

admissible polygons, including a discrete version of Gage's inequality, will be shown. In

section 4, we will give the proof of Theorem A, especially the time global existence of

solutions via some estimates, e.g., entropy estimate.

2 Some properties

Throughout this chapter we use the notation L:j Uj, Urn." Urn,n and uti) for L:OSj<n Uj,

maXoSj<n Uj, minOSj<n Uj and du(i)/di, respectively. Hereafter we assume n ~ 4.
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2.1 Discrete curve-shortening

By virtue of the argument in section 1, the time gradient of the j-th side is

. d M
dj(t) = dtdj[~(t)l = dj[.e(t)] = -2tanT(t1ev + v)" (2.1)

and so the time gradient of the length £(t) = £[~(t)l is

. . MJ M (2ntan(t11J/2W
£(t)=Ldj(t)=-2tan-Lvj=-2tan-LI<j+ £() .

j 2 j 2 j t

Here the operator t1e is a kind of central difference operator such as

(t1
e

u) . ._ Uj+' - 2uj +Uj_1 _ (D+ u)j - (D+ U},_l (D) Uj+I - Uj
,.- 2(I-cost1lJ) - 2sin(t11J/2) , +Uj:=2sin(t11J/2)"

Using the Schwarz inequality we have

(
t11J) 2 t11J fJ t11J

2ntanT = 2tanT(~..;r:;Vdj)2:S 2tanT£~I<"

and then itt) :S 0 holds even though the area is fixed: A(t) == A(O). Equality occurs

when the polygon P is a regular polygon, otherwise the evolution of polygons is a discrete

curve-shortening motion.

2.2 Equivalent formulation

From (LIe), (2.1) and the length £ = 2 tan(t11J/2) I:j I<t, we can restate Problem (1.1)

as follows:

Problem 1 Let n ~ 4. Find a junction I«t) = (1<0,1<1>'" ,I<n-d E [C'(O,T)]n, and a

duration T E (0,00] satisfying

n~~
Kj = I<J(t1e I<)j + I<J - ---'---I' O:S j < n, 0 < t < T,

LO~i<n "'i

I<j(O) = I<J, O:S j < n,

1<_I(t) = I<n-I(t), I<n(t) = 1<0(t), O:S t < T

where I<~ is the initial crystalline curvature of Po.

(2.2a)

(2.2b)

(2.2c)

Remark 2.1 (equivalence) Problem (1.1) and Problem 1 are equivalent except the

indefiniteness of position of the polygon. Indeed, suppose I< is a solution of Problem 1,

then we have
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Here we have used the summation by parts:

and (~B t)j = -tj.

Since the j-th vertex Bj(t) of P(t) is given as the following:

Bj(t) (Zj_l(t) - Zj(t), t j +nj cot ~O) t j + Zj(t),

Bo(t) + L d~(t)t~, 1::; j ::; n, 0::; t < T
O~Tn<j

(2.3)

with Bo(t) == Bn(t), we can construct a closed convex n-gon, whose length of the j-th

side is 2tan(~O/2)l<j(ttl =: dj(t) and the j-th normal vector is nil as long as I< is a

solution of Problem 1. This n-gon is the very solution polygon of Problem (1.1).

3 Isoperimetric inequalities

Let the j-th support function be:

hj(t) = (Zj(t),-nj), 0::; j < n.

It is easy to check that the next relation between dj and hj:

M
dj(t) = 2 tan 2(~B h + h)j, 0::; j < n

by geometry.

3.1 Discrete version of isoperimetric inequality

The isoperimetric ratio for a closed embedded curve r is usually defined as

L 2

iso (r) = 47l"A'

where L and A are the length and the enclosed area of r, respectively. It is well known

that the isoperimetric inequality iso (r) ~ 1 holds. Equality iso (r) = 1 holds if and only

if the curve r is a circle. In this sense, if r is a regular n-gon, say Pn , then it holds that

iso (Pn ) = n tan(~O/2) > 1, and that lim iso (P
n

) = l.
7r n~oo

In this chapter, we define the isoperimetric ratio such as

"I t ._ £(t)2
( ) .- 4ntan(M/2)A(t)
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since we consider the polygons P(t) which the angle between two adjacent side is 7r - L:,.(J.
For this isoperimetric ratio, the next isoperimetric inequality

I(t) 2 1 (3.2)

holds. The equality I(t) = 1 holds if and only if the polygon P(t) is a regular polygon.

The isoperimetric ineqality iso (r) 2 1 for smooth curves is proved by using the motion

by curvature. ln a similar way, one can prove the isopermetric inequality (3.2). See, e.g.,

Yazaki [Yl].

3.2 Bonnesen's inequalities

The next Bonnesen's inequalities hold for any admissible polygons (see Eggleston [Eg]):

L:,.(J 2 L:,.(J 2
hmox £. - A - n tan Thmox 2 0, hmin £. - A - n tan Thmin 2 a. (3.3)

Fix any j. Then there exists I' E [0,1] such that hj = J1.h mox + (1 - J1.)hmin . Therefore

h; = J1.2h~ox + (1- J1.)2h~in + 21'(1 - J1.)hminhmo.

:::; J1.h~ox + (1 - J1.)h~in + 1'(1- J1.)(h~in + h~oJ = J1.h~ox + (1 - J1.)h~in·

From (3.3) and the above inequality, we obtain:

L:,.(J 2
hj£. - A - n tan Thj 2 0, 0:::; j < n. (3.4)

Bonnesen's inequalities (3.3) is more accurate than the isoperimetric inequality (3.2)

in the next sence:
ntan(L:,.(J/2) 2

I(t) 2 1 + 4A (hmo• - hmin ) 2 1. (3.5)

3.3 Discrete version of Gage's inequality

We shall present a discrete vertion of Gage's inequality [GIl.

Multiply (3.4) by dj, and sum them over a:::; j < n:

£. L hjdj - A L dj - n tan ~(J L h;dj 2 a.
) ) )

Then we have

£. = Ld = 2 tan M Lh < 2tan M Lh2dL~
j ) 2 j ) - 2 j)) j dj

M F2tan- Lh;dj L"j:::; -£.AL"j·
2 j j n j

Hence we obtain a discrete vertion of Gage's inequality:

n tan(L:,.(J/2)£. < 2 tan L:,.(J"", = ",,2d'.
A - 2"1) "1))
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3.4 Estimate of I(t)

By (3.6), we have

I(t)::::: 2n tan~t>O/2)(I(t) _ 1).

Then

I(t) ::::: 1 +Ce-2ntan(l>O/2),/A (3.7)

where C = C(Po, t>O) ~ O.

Therefore if an evolving polygon does not develop singularilies for all time, then it

converges to a regular polygon. By (3.5), the convergence sence is the one in the Hausdorff

metric (see [G2], especially the proof of COROLLARY 2.5). Consequently,

Lemma 3.1 If a solution polygon does not develop singularilies in a finite time, then it

converges to a regular polygon in the Hausdorff metric as t /' 00.

4 Proof of Theorem A

In this section we will prove the assumption in Lemma 3.1, that is, the time global

existence of solution polygons, and the main theorem. The following strategy is a discrete

version of Gage [G2], section 3 in particular.

As in the proof of LEMMA 3.1 in [G2], we can show the next lower bound of "j by

using the maximum principle and the isoperimetric inequality (3.2).

Lemma 4.1 "min(t) is a non-decreasing in time, and for a parameter satisfying Jio >

ntan(t>O/2)/(4A), "min(t) ~ "min(O)e-~t holds uniformly in t>O.

Proof. Let Uj(t) = "j(t)e~' for a constant Jio. Then Uj satisfies the evolution equation

(4.1)

where f is a quadratic polynomial: f(x) = x2 - 2n tan(t>O/2)x/£ +Jio whose discriminant

is V/ := (2n tan(t>O/2)/£)2 - 4Jio. The isoperimetric inequality (3.2) provides V/ :::::

n tan (t>O /2)/ A - 4Jio. Hence for sufficiently large Jio, V/ < 0 holds, and so we have f > O.

Let Uc := u min(O)/(1 + 0) for any fixed 0 > O. Fix any T > O. Suppose that

minO~t<T,O~j<nUj(t) attains Uc at j = jo and t = to (n.b. to> 0 is clear). At this point,

however, Uj.(to) ::::: 0, (t>ou(to))j. ~ 0 and f("j.(to))Uj.(to) > O. This is a contradiction

to (4.1), and proves that Umin(t) is a non-decreasing function. Therefore

79



holds. 0

We introduce now the median crystalline curvature which is a similar to the median

curvature in [GH], and the median discrete weighted curvature in [Gir].

Definition 4.2 (median crystalline curvature) ".(t) := max. min ",(t).
OS1<n J I SiSi+!n/2)

One can easily obtain: I:~':t;J sin Bj :'::: 2 cot(Ll.B/2), where [n/2) is n/2 for n even

and (n - 1)/2 for n odd, since the left hand side equals to cot(Ll.B/2) for n even, and

(1 + sec(M/2)) cot(Ll.B/2)/2 for n odd.

In order to obtain the maximum crystalline curvature, we first prove the next geometric

estimate.

Lemma 4.3 (geometric estimate) ".(t):,::: 2[(0)/A holds for t 2: o.

Proof. We assume that 10 is a value of 1 which attains the maximum of "j' A polygon

lies between parallel lines whose distance is less than

jo+[n/2]
L (djtj,njo)

;=;0+1

jo+[n/2] Ll.B [n/2]
L sin(Bj-Bjo)dj = 2tan- LsinBj"jo~j

j=jo+l 2 j=1

2tan(Ll.B/2)ln/2] 4:'::: ---- L sinBj :'::: -
1\,. j:;;:1 "'.

The diameter is bounded by [/2 and the area is bounded by the width times the diameter:

A < [(t) _4_ = 2f(t).
- 2 ",(t) ",(t)

Hence ",(t) :'::: 2f(O)/A holds. 0

Next, we will estimate the following entropy:

£(t) := 2 tan M L log "j(t)
2 OSi<n

Lemma 4.4 (entropy estimate) For any fixed T > 0, £(t) is bounded on [0, T).

Proof. By using the summation by parts (2.3), one has

£(t) = 2 tan M L(,,2 _ (D+ ,,)2)j _ n(2tan(M/2))2 L"j.
2 j [j

(4.2)

We use the same estimates as in the proof of Girao[GirJ (section 2, Fourth), and have the

next estimate (see also [Y2]):

Ll.B'I<' 2 2 Ll.B 2 Ll.B 'I<'
2tanT7(" -(D+,,) )j:':::2ntanT",+4tanT"'7"j.
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Let C. := 2£(0)/A, then

. 2 {:,.() 2 ( M n(2tan(M/2))2)"
£(t) ::; ntanTI<.+ 4tanTI<·- £ 71<j

{:,.() 2 ( 2ntan(M/2)) ((2ntan({:,.()/2))2 .)
2n tan TI<. + 21<. - £ £ - £

::; 2n tan ~C: _ 2C.£ + 2C. (2n tan(M/2))2
2 .j4ntan({:"()/2)A

Here we have used the equation

2tan{:,.()"I<= (2ntan({:,.()/2))2_£
2 7 J £ '

and the isoperimetric inequality (3.2). Therefore

£(t)::; £(0) + 2ntan ~()C:t + 2C.£(0) + 4C. (ntan(~()/2))3 t::; Co + CIT (4.3)

holds, where Co and C1 depend only on Po and {:,.(). 0

Lemma 4.5 For a constant C2 = C2(PO, {:,.()) we have

2 tan~ L(D+ I<)~
2 j

::; 2tan~ LI<~ + 2n (2 tan {:,.())2 f'.!!:.- (_(1)) Ll<j(r)dr + C2 •
2 j 2 Jodr £ r j

Proof. We calculate, from (2.2a),

2 tan~~L (1<2 _ (D+ 1<)2 _ 2n tan({:,.()/2) 1<)
2 dt j £ J

{:,.() d" ( 2ntan({:,.()/2))
2 tan T& L., I<j {:,.s I< + I< - £ .

J J

{:,.()" (;")2 n(2tan(M/2))2". n(2tan(M/2))2."
4 tan T 7 ~ j + £ 71<j + £2 £ 7 I<j

:2: n (2 tan {:,.())2 ~ (~LI<) -2n (2 tan {:,.())2 ~ (~) LI<"
2 dt £ j J 2 dt £ j J

Then
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Hence

+ 2n (2 tan ~8r lot 1; C:trJ ~"j(r)dr

t>.8 2 2 (M)2 1+ 2 tan -2 L ((D+ ,,(0)) - ,,(0) ) + 2n 2 tan - -(-) L "j(O).
j ] 2 £ 0 j

holds, and this leads the assertion. 0

Corollary 4.6 If "max(t) ::; M on [0, T), then for a constant C3 = C3(Po, t>.8)

t>.8 '" 2 22 tan T LJ (D+ ")j ::; (MC3 ) •

05i<n

Proof. By using the isoperimetric inequality (3.2), we have

2n (2 tan ~8r fo' 1; C:tr)) ~I<j(r)dr ::; 2 (2ntan ~8r M (£~t) - £to))
4(ntan(M/2))3/2

::; JA M.

Then

t>.8 M2 4(ntan(t>.8/2))3/2 M C
2ntanT + JA + 2

2 ( M 4(ntan(M/2))3/2 C2 )
M 2ntanT + JAM + M2

::; (MC3)2.

Here we have used 2n tan(t>.8/2) = Lj "jdj , £.(t) ::; 0 and so the fact that M ~

2ntan(M/2)/£(0). 0

Lemma 4.7 Let

M:= sup "max(t)
°5 t <T

then

where C4 , Cs and C6 depend only on Po and t>.8.
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Proof. Let t j be a value where I<max(td = 3M/4, and jl a value of j which attains the

maximum of I<j(td, i.e. I<j, (td = 3M/4. By using the Schwarz inequality, sin boO :s: boO

and Corollary 4.6, we have

I<j, (td - I<j(td = 2 sin boO L (D+ 1<).
2 i5: i <il

boO (boO)-1:s: 2sin- L 2tan-
2 jS;i<j, 2

:s: MC3VOj, - OJ.

Therefore

I<j(tJl :::: I<j, (tJl- MC3VOj, - OJ = G-C3VOj, - OJ) M

holds.

If C3VOj, - OJ :s: 1/4 for m values of j (there is at least one value of j, j = j" then

m :::: 1), we can estimate

boO boO
[(tJl :::: 2 tan T 1

8
" -8,~4C,j-J log I<j(tJl + 2 tan T 1

8
;, -8,~4C,j-Jlog I<j(ttl

boO (M) boO:::: 2mtanTlog 2 +2(n-m)tanTlog(l<~in(0)e-"t')

Hence by Lemma 4.1 and (4.3), the assertion is proved. 0

Proof of Theorem A. First, by the general argument for ordinary differential equation, a

solution polygon P(t) of Problem (1.1), that is a solution I< of Problem 1 exists uniquely

and locally in time, say T; then Lemma 4.3 (the geometric esitimate), Lemma 4.4 (the

entropy esitimate) and Lemma 4.7 imply that I<j(t) is bounded on [0, T). Secondly, we

use the local solutions to extend the time global on which the solution is defined. This

follows that the solution can be defined globally in time. Finally, Lemma 3.1 provides the

asymptotic behavior of solutions. 0
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