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Abstract

This thesis studies the variable selection problem in mixed effects models, especially the method
of information criteria is focused on. The conditional AIC proposed by Vaida and Blanchard
(2005) is more appropriate for the focus on clusters than the conventional AIC is. This is useful
in problems involving prediction of random effects such as small area estimation. Concerning
the conditional AIC and the related fields, several problems are addressed and some new results
are obtained. Firstly, the conditional AIC is modified for the underspecified model, which does
not include the true model. Secondly, the variable selection problem in linear mixed model
under covariate shift situation is considered. It is also shown that considering the covariate
shift situation is meaningful in small area estimation problem. Thirdly, the conditional AIC in
nonlinear mixed models based on natural exponential family is derived. Lastly, some variants
of the AIC and the conditional AIC are proposed and their properties are discussed, which are
also related to the Bayesian procedure as well as frequentists’ methods.
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Chapter 1

Introduction

This thesis studies the variable selection problem in mixed effects models, especially the method
of information criteria is focused on. Vaida and Blanchard (2005) introduced the conditional
Akaike information, which is related to the expected Kullback–Leibler divergence based on the
conditional likelihood given random effects. The conditional Akaike information (cAI) and the
corresponding criterion, called the conditional AIC (cAIC), are more appropriate for the focus
on clusters than the conventional AIC (or marginal AIC, mAIC), which is based on the marginal
likelihood integrating out the random effects. This is useful in problems involving prediction of
random effects such as small area estimation. First of all, we here intruduce a class of mixed
effects models and its application to small area estimation. Next, we review the variable selection
problem in mixed effects models.

The class of mixed effects models has been studied for a long time from both theoretical
and applied aspects. Especially, the linear mixed model and the best linear unbiased predictor
(BLUP) introduced by Henderson (1950) provide flexible framework for modeling several types
of data sets, whose applications are longitudinal data analysis in biostatistics, panel data analysis
in econometrics, small area estimation in official statistics and others. The small area estimation
problem is how to produce reliable estimates of some characteristic of interest for areas with
small sample sizes. Model based estimator in small area estimation problem using mixed effects
models can ‘borrow information’ from neighboring areas, which results in stable estimation of
small area parameter. Datta and Ghosh (2012), Pfeffermann (2013) and Rao and Molina (2015)
give good reviews about small area estimation.

There are several methods of variable selection in mixed effects models, which include the
information criteria such as AIC or BIC, shrinkage methods such as LASSO, the Bayesian pro-
cedure, the Fence methods (Jiang et al., 2008), and others. Müller et al. (2013) is a good review
of variable selection problem in linear mixed models. In this thesis, we focus on the information
criteria, especially the cAIC. Since Vaida and Blanchard (2005), variable selection procedures
using the cAIC have been developed and the properties of the cAIC have been discussed. Liang
et al. (2008) proposed a different bias correction, who take into account estimation of the un-
known parameters included in the covariance matrix of the vector of the random effects. It is
noted that their bias correction is closely related to the generalized degrees of freedom of Ye
(1998), while Vaida and Blanchard (2005) pointed out their bias correction is the same as the
effective degrees of freedom of Hodges and Sargent (2001). Greven and Kneib (2010) derived
analytical representation of the bias correction of Liang et al. (2008) and also applied to selecting
the random effects. Srivastava and Kubokawa (2010) proposed other versions of the cAIC by
changing the estimators of the regression coefficients and the variance parameter. Kubokawa
(2011) derived the cAIC with a general covariance matrices of the vectors of the random effects
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10 CHAPTER 1. INTRODUCTION

and the error terms. He also proposed a conditional version of Mallows’ Cp (Mallows, 1973).
The cAIC has been also applied to the variable selection problem in the generalized linear mixed
models (GLMM). Donohue et al. (2011), Yu and Yau (2012) and Yu et al. (2013) derived the
cAIC in the GLMM under the assumption that the sample size in each cluster goes to infinity.
Saefken et al. (2014) proposed an exact unbiased estimator of the cAI, which is also justified
for finite sample case, in a special case of the GLMM, Poisson mixed regression. As a related
procedure to the cAIC, Zhang et al. (2014) proposed a model averaging method based on the
prediction risk relative to the conditional Mallows’ criterion. This procedure is an extension
of the Mallows model averaging of Hansen (2007) to the linear mixed model and Zhang et al.
(2014) also proved the model averaging estimator is asymptotically loss efficient under some
regularity condition.

In this thesis, some problems are considered and new results are obtained. Firstly, the
conditional AIC is modified for the underspecified model, which does not include the true model.
Most of the Akaike-type information criteria put the assumption that the candidate model
includes the true model, which we call overspecified assumption. Due to the assumption, the
cAIC has large bias for estimating the cAI. This problem is considered in Chapter 3. Secondly,
the variable selection problem in linear mixed model under covariate shift situation is considered.
We also show that considering covariate shift situation is meaningful in small area estimation
problem. We discuss this problem in Chapter 4. Thirdly, we derived the cAIC as a variable
selection problem in a class of mixed effects models based on natural exponential family, which
includes nonlinear mixed models such as Poisson-gamma model and binomial-beta model in
Chapter 5. Lastly, some variants of the AIC and the cAIC are proposed and their properties are
discussed, which are also related to the Bayesian procedure as well as frequentists’ methods. We
develop a variant of marginal AIC in Chapter 6 taking linear regression model as an example.
In Chapter 7, variants of the cAIC are considered.



Chapter 2

Mixed effects models and conditional
AIC

In this chapter, mixed effects models are introduced and the setup of the variable selection
problem is explained. The mAIC and cAIC are also briefly summarized.

2.1 Mixed effects models

2.1.1 General

Let y be an observable random vector, and let θ be an unobservable random vector. We treat
continuous or discrete cases for y and θ. The conditional probability density (or mass) function
of y given θ is f(y|θ,η) for a vector of unknown parameters η, and the the probability density
(or mass) function of θ is p(θ|η), namely,

y|θ ∼ f(y|θ,η),
θ ∼ p(θ|η).

(2.1)

When θ denotes random effects, this expresses general mixed effects model. Because this model
can be interpreted as a Bayesian model, we also use the terminology used in Bayes statistics.
The marginal likelihood function of y and the conditional (or posterior) density function of θ
given y are

m(y|η) =
∫
f(y|θ,η)p(θ|η)dθ,

p(θ|y,η) = f(y|θ,η)p(θ|η)/m(y|η).

2.1.2 Linear mixed model

One of the most important examples of the mixed effects model is the linear mixed model, which
is given as the following general form:

y =Xβ +Zb+ ε, (2.2)

where y is an n× 1 observation vector of the response variables, X and Z are n× p and n× q
matrices of covariates, β is a p× 1 vector of unknown regression coefficients, b is a q × 1 vector
of random effects, and ε is an n × 1 vector of random errors. It is common to assume that b
and ε are mutually independent and b ∼ Nq(0,Q), ε ∼ Nn(0,R).

11
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The empirical best linear unbiased predictor (EBLUP) of the linear combination of β and
b, which is of the form cTβ+dTb for a p× 1 vector c and a q× 1 vector d, is cTβ̂+dTb̂, where

β̂ = (XTΣ−1X)−1XTΣ−1y,

b̂ = QZTΣ−1(y −Xβ̂),

where Σ = ZQZT +R.

2.2 Setup of variable selection problem

2.2.1 Candidate models, full model and true model

We focus on the variable selection of the fixed effects. To this end, we clarify candidate models,
the true model, and the full model and use the following notations throughout the paper. We
take a linear mixed model (2.2) for example.

First, we consider the collection of candidate models as follows. Let n × pω matrix X(ω)
consist of all the explanatory variables and assume that rank (X(ω)) = pω. In order to define
candidate models by the index set j, suppose that j denotes a subset of ω = {1, . . . , pω} con-
taining pj elements, i.e. pj = #(j), and X(j) consists of pj columns of X(ω) indexed by the
elements of j. We define the index set by J = P(ω), namely the power set of ω, where we call
ω the full model. Then we consider the candidate model j expressed as

y =X(j)βj +Zbj + εj ,

where βj is a pj × 1 vector of regression coefficients, bj is a q× 1 vector of random effects, εj is
an n× 1 vector of random errors.

Second, we assume that the true model exists in the collection of the candidate models
P(ω), which is denoted by j∗. It is noted that the dimension of the true model is pj∗ , which is
abbreviated to p∗. Under the assumption, the true model can be written by using the full model
design matrix, namely the true mean of y can be expressed as

E(y) =X(ω)β∗,

where β∗ is pω × 1 vector of regression coefficients, whose pω − p∗ components are exactly 0 and
the rest of components are not 0. Moreover, when the true model is included by the candidate
model, the true mean of y can be also expressed as

E(y) =X(j)β∗
j ,

where β∗
j is pj × 1 vector of regression coefficients, whose pj − p∗ components are exactly 0 and

the rest of components are not 0. It is common to assume that the true model is included by
the candidate model for the derivation of the Akaike-type information criteria.

2.2.2 Overspecified and underspecified

We introduce the terms overspecified and underspecified models. Candidate model j is over-
specified if X(ω)β∗ ∈ R[X(j)], which means that X(ω)β∗ is in the column space of X(j)
following Fujikoshi and Satoh (1997) or Kawakubo and Kubokawa (2014). The set of overspec-
ified models are denoted by J+ = {j ∈ J |j∗ ⊆ j}. On the other hand, candidate model j is
called underspecified when X(ω)β∗ ̸∈ R[X(j)]. The set of underspecified models are denoted
by J− = J \ J+.



2.3 MARGINAL AND CONDITIONAL AIC 13

2.3 Marginal and conditional AIC

2.3.1 Marginal AIC

The marginal AIC (mAIC) is related to the expected Kullback–Leibler (KL) divergence based
on the marginal likelihood defined as∫ [∫

log

{
m(ỹ|η)
m(ỹ|η̂)

}
m(ỹ|η)dỹ

]
m(y|η)dy, (2.3)

where ỹ is an independent replication of y and η̂ is the maximum likelihood estimator of η.
The marginal AIC (mAIC) is an (asymptotically) unbiased estimator of the following marginal
Akaike information (mAI):

mAI =

∫∫
−2 log{m(ỹ|η̂)}m(ỹ|η)m(y|η)dỹdy,

which is a part of (2.3) (multiplied by 2). Then, the mAIC is

mAIC = −2 log{m(y|η̂)}+∆mAI,

where ∆mAI is bias correction (or penalty) term, which is given by

∆mAI = mAI− E[−2 log{m(y|η̂)}].

Akaike (1973, 1974) proposed that the bias correction converges to 2p where p is the dimension
of the candidate model.

2.3.2 Conditional AIC

The marginal AIC is not appropriate for the focus on the prediction of specific clusters or random
effects. Taking this point into account, Vaida and Blanchard (2005) considered the expected KL
divergence based on the conditional density, which is given by∫∫ [∫

log

{
f(ỹ|θ,η)
f(ỹ|θ̂, η̂)

}
f(ỹ|θ,η)dỹ

]
f(y|θ,η)p(θ|η)dydθ, (2.4)

where ỹ is an independent replication of y given θ, and θ̂ is some predictor of θ. The condi-
tional AIC (cAIC) is an (asymptotically) unbiased estimator of the following conditional Akaike
information (cAI):

cAI =

∫∫∫
−2 log{f(ỹ|θ̂, η̂)}f(ỹ|θ,η)f(y|θ,η)π(θ|η)dỹdydθ,

which is a part of (2.4) (multiplied by 2). Then, the cAIC is

cAIC = −2 log{f(y|θ̂, η̂)}+∆cAI,

where ∆cAI is bias correction (or penalty) term, which is given as

∆cAI = cAI− E[−2 log{f(y|θ̂, η̂)}].





Chapter 3

Modified conditional AIC in linear
mixed models

A weak point of cAIC is that it is derived as an unbiased estimator of conditional Akaike
information (cAI) in the overspecified case, namely in the case that candidate models include
the true model. This results in larger biases in the underspecified case that the true model is
not included in candidate models. In this chapter, we derive the modified cAIC (McAIC) to
cover both the underspecified and overspecified cases, and investigate properties of McAIC. It
is numerically shown that McAIC has less biases and less prediction errors than cAIC. This
chapter is based on Kawakubo and Kubokawa (2014).

3.1 Motivation

The cAIC by Vaida and Blanchard (2005) is derived under the condition that the candidate
model includes the true model. This assumption is called the overspecified assumption. On the
other hand, the underspecified case means that a candidate model does not include the true
model. Thus, we have the following questions:

(I) Is cAIC appropriate as an estimator of cAI in the underspecified case ?

(II) Can one extend cAIC to a procedure useful for both the under- and over-specified cases
?

For the query (I), it is noted that the cAIC is not an asymptotically unbiased estimator of cAI
in the underspecified case. In fact, cAIC has large biases in the underspecified case as illustrated
in Table 3.1. Thus, the drawback of cAIC gives a motivation for addressing the query (II).

In this chapter, we derive an asymptotically unbiased estimator of cAI in both under- and
over-specified cases. This procedure is here called the modified conditional AIC (McAIC). The
setup of the problem is explained in Section 3.2. In Section 3.3, we derive the McAIC as an
asymptotically unbiased estimator of cAI in both under- and over-specified cases. This approach
was used by Fujikoshi and Satoh (1997) to modify AIC and Mallows’ Cp in multivariate linear
regression models. The performance of McAIC is investigated numerically by simulation in
Section 3.4, and it is shown that McAIC and the corresponding model averaging procedure are
better than cAIC in terms of the prediction error. In Section 3.5, we apply the McAIC to
estimate small area land prices. All the proofs are given in Section 3.6.

15
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3.2 Setup of problem

We focus on the problem of selecting explanatory variables in linear mixed model, whose nota-
tions are given in Section 2.2.

First, we explain about the collection of candidate models. We consider the candidate model
j, which is given as follows:

y =X(j)βj +Zbj + εj , (3.1)

where y is an n × 1 observation vector of the response variables, X(j) and Z are n × pj and
n× q matrices of covariates, βj is a pj × 1 vector of regression coefficients, bj is a q × 1 vector
of random effects, and εj is an n × 1 vector of random errors. We here assume that bj and εj
are mutually independent and that bj ∼ Nr(0, σ

2
jG), εj ∼ Nn(0, σ

2
j In) for a common unknown

parameter σ2j and a known matrix G. It is important to point out that the random effects
part remains the same over the models {j}. This means that we here consider the problem of
selecting only the explanatory variables of the fixed effects. The conditional density function of
y given bj for model j is denoted by f(y|bj ,ηj), where ηj is the vector of unknown parameters,
namely ηj = (βT

j , σ
2
j )

T. The density function of bj is denoted by p(bj |ηj).
Second, we assume that the data are generated from the true model which is given by

y =X(ω)β∗ +Zb∗ + ε∗

for b∗ ∼ Nq(0, σ
2
∗G), ε∗ ∼ Nn(0, σ

2
∗In). Thus the marginal distribution of y is

y ∼ Nn(X(ω)β∗, σ
2
∗Σ), (3.2)

where Σ = ZGZT + In. For the true model, the conditional density function of y given b∗
and the density function of b∗ are denoted by f(y|b∗,η∗) and p(b∗|η∗), respectively, where
η∗ = (βT

∗ , σ
2
∗)

T.
Third, we assume that the collection of candidate models includes both underspecified and

overspecified models, and that the full model ω includes the true model. This means that the
set of overspecified models J+ is not empty set.

3.3 Modification of cAIC

3.3.1 Conditional Akaike information in linear mixed models

We begin with introducing the conditional Akaike information (cAI) in linear mixed models,
which was proposed by Vaida and Blanchard (2005). The cAI is the estimand of the cAIC, and
is related to the expected Kullback–Leibler (KL) divergence based on the conditional likelihood.
The cAI for the setup explained in Section 3.2 is

cAI =

∫∫∫
−2 log{f(ỹ|b̂j , η̂j)}f(ỹ|b∗,η∗)f(y|b∗,η∗)p(b∗|η∗)dỹdydb

= E(y,b∗)Eỹ|b∗
[
n log(2πσ̂2j ) + ∥ỹ −X(j)β̂j −Zb̂j∥2/σ̂2j

]
,

where ỹ is an independent replication of y given b and E(y,b∗) and Eỹ|b∗ denote the expectation
with respect to the joint distribution of (y, b∗) and the conditional distribution of ỹ given b∗.
The cAI measures the risk of plug-in predictive density f(ỹ|b̂j , η̂j), where η̂j is the maximum
likelihood estimator of ηj = (βT

j , σ
2
j )

T based on the candidate model j given as

β̂j = (X(j)TΣ−1X(j))−1X(j)TΣ−1y,

σ̂2j = (y −X(j)β̂j)
TΣ−1(y −X(j)β̂j) / n,

(3.3)
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and b̂j is the empirical Bayes estimator for quadratic loss of bj given as

b̂j = GZ
TΣ−1(y −X(j)β̂j).

Then the cAIC is a bias corrected unbiased estimator of cAI, which is given as

cAIC = −2 log{f(y|b̂j , η̂j)}+∆cAI,

where
∆cAI = cAI− E(y,b∗)

[
− 2 log{f(y|b̂j , η̂j)}

]
, (3.4)

which is called the bias correction (or penatly) term.

3.3.2 Evaluation of the bias of cAIC

Vaida and Blanchard (2005) evaluated the bias correction in (3.4) under the assumption that the
candidate model j is overspecified. Then the cAIC is the exact unbiased estimator of cAI when
the candidate model j is overspecified. However, when the candidate model j is underspecified,
the cAIC has large bias for estimating the cAI. Thus we evaluate the bias correction in (3.4)
both for overspecified and underspecified case.

First, it follows that

−2 log f(y|b̂j , η̂j) = n log(2πσ̂2j ) + ∥y −X(j)β̂j −Zb̂j∥2/σ̂2j . (3.5)

Then, as shown in Section 3.6, the bias correction can be expressed as

∆cAI = E
[{

(2n− tr [Σ−1])σ2∗ − uTΣ−2u+ 2uTΣ−2(X(j)β̂j −X(ω)β∗)
} /

σ̂2j

]
, (3.6)

where expectation is taken with respect to the joint distribution of (y, b∗) and u = y−X(ω)β∗.
It is important to note that the distribution of σ̂2j for the underspecified case is different from

that for the overspecified case. Thus, we need to clarify the distribution of σ̂2j . To this end, nσ̂2j
is decomposed as

nσ̂2j = σ2∗ {zT(In −Mω)z + zT(Mω −M j)z}
= σ2∗(K0 +K1),

where K0 = z
T(In −Mω)z, K1 = z

T(Mω −M j)z,

z = Σ−1/2y/σ∗,

Mω = Σ−1/2X(ω)(X(ω)TΣ−1X(ω))−1X(ω)TΣ−1/2,

M j = Σ−1/2X(j)(X(j)TΣ−1X(j))−1X(j)TΣ−1/2.

Note thatM j andMω are symmetric and idempotent. Let v = Σ−1/2u/σ∗ and ξ = Σ−1/2X(ω)β∗/σ∗.
Then, it is seen that Mωξ = ξ and

M jξ

{
= ξ if j ∈ J+,
̸= ξ if j ∈ J−,

since X∗β∗ ∈ R[Xj ] if j ∈ J+. Thus K0 can be rewritten as

K0 = (ξ + v)T(IN −Mω)(ξ + v) = v
T(IN −Mω)v, (3.7)
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so that K0 follows a chi-squared distribution with n− pω degrees of freedom, denoted by

K0 ∼ χ2
n−pω .

Also, K1 can be rewritten as

K1 = vT(Mω −M j)v + 2ξT(Mω −M j)v + ξT(Mω −M j)ξ

= vT(Mω −M j)v + 2L+ nδ, (3.8)

where

L = ξT(Mω −M j)v,

δ = ξT(Mω −M j)ξ / n.
(3.9)

In the overspecified case, we have K1 ∼ χ2
pω−pj since Mωξ = M jξ = ξ. In the underspecified

case, K1 follows a noncentral chi-squared distribution with pω − pj degrees of freedom and with
the noncentrality parameter Nδ, denoted by K1 ∼ χ2

pω−pj (nδ). Thus,

K1 ∼

{
χ2
pω−pj if j ∈ J+,

χ2
pω−pj (nδ) if j ∈ J−.

Since uTΣ−2u = σ2∗v
TΣ−1v and

uTΣ−2(X(j)β̂j −X(ω)β∗) = σ2∗
{
vTΣ−1M jv − ξT(Mω −M j)Σ

−1v
}
,

we can rewrite (3.6) as

∆cAI = n·E
[
(K0 +K1)

−1
{
(2n− tr [Σ−1])− vTΣ−1v + 2vTΣ−1M jv − 2ξT(Mω −M j)Σ

−1v
}]
.

(3.10)

Although K0 +K1 has a central chi-squared distribution in the overspecified case, it has a
noncentral chi-squared distribution in the underspecified case. Thus, we need to approximate
the bias ∆cAI. To this end, we assume the following conditions:

(A1) ξT(Mω −M j)ξ = O(n), which is the non-centrality parameter of K1.

(A2) ξT(Mω −M j)Σ
−1(Mω −M j)ξ = O(n).

The condition (A1) is equivalent to δ = O(1) given in (3.9). It is also noted that the condition
(A2) is satisfied by (A1) if the maximum eigenvalue of Σ−1 is uniformly bounded. Under these
assumptions, we can get the following theorem, which will be proved in Section 3.6.

Theorem 3.1 In the overspecified case, the bias correction of cAIC is provided by the exact
expression ∆cAI = B∗, where

B∗ = 2n×
{
n− tr [Σ−1] + tr [P j ]

n− pj − 2
+

tr [Σ−1]− tr [P j ]

(n− pj − 2)(n− pj)

}
, (3.11)

for P j = Σ−1X(j)(X(j)TΣ−1X(j))−1X(j)TΣ−1. In the underspecified case, the bias correc-
tion of cAIC is approximated as

∆cAI = B∗ +B1 +B2 +B3 +O(n−1), (3.12)
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where B1, B2 and B3 are defined as

B1 =
2n(λ− 1)

n− pj − 2
(n− tr [Σ−1]), (3.13)

B2 = 2pjλ(λ− 1)− 4λ(λ− 1)2 + 2tr [P j ](λ− 1)

+ 2(λ− 1)tr [Σ−1]× 2λ2 − (pj + 1)λ+ 1

n
, (3.14)

B3 =
4λ2

n
ξT(Mω −M j)Σ

−1(Mω −M j)ξ, (3.15)

where λ = 1/(1 + δ).

It is noted that in the overspecified case the bias B∗ given in (3.11) is identical to that in
Vaida and Blanchard (2005). It is also noted that B1 = B2 = B3 = 0 in the overspecified case,
since λ = 1 and M jξ = ξ.

3.3.3 Estimation of the bias

We now derive an asymptotically unbiased estimator of the bias ∆cAI. It follows from Theorem
3.1 that it is sufficient to estimate B1, B2 and B3 because B∗ does not include any unknown
parameters. Since B1 and B2 are linear functions of λ, λ2 and λ3, we begin by estimating these
polynomials of λ.

Let us define λ̂, λ̂2 and λ̂3 as

λ̂ =
n− pj
n− pω

σ̂2ω
σ̂2j
, (3.16)

λ̂2 =
(n− pj)(n− pj + 2)

(n− pω)(n− pω + 2)

(
σ̂2ω
σ̂2j

)2

, (3.17)

λ̂3 =
(n− pj)(n− pj + 2)(n− pj + 4)

(n− pω)(n− pω + 2)(n− pω + 4)

(
σ̂2ω
σ̂2j

)3

. (3.18)

In the overspecifed case, it is noted that nσ̂2ω = σ2∗K0 ∼ σ2∗χ
2
n−pω , K1 ∼ χ2

pω−pj and nσ̂2j =

σ2∗(K0 +K1), so that

σ̂2ω
σ̂2j

∼ Be

(
n− pω

2
,
pω − pj

2

)
,

where Be(·, ·) denotes the beta distribution. This implies that E[λ̂] = E[λ̂2] = E[λ̂3] = 1 in the
overspecified case. In the underspecified case, on the other hand, it follows that E[(σ̂2ω/σ̂

2
j )
k] →

λk as n→ ∞ for k = 1, 2, 3, where the brief proof is given in Section 3.6.

Lemma 3.1 In the overspecified case, E[λ̂] = E[λ̂2] = E[λ̂3] = 1. In the underspecified case, λ̂,

λ̂2 and λ̂3 are asymptotically unbiased estimators of λ, λ2 and λ3, respectively.

Using estimators (3.16), (3.17) and (3.18), we can estimate B1 and B2 in (3.13) and (3.14).
However, because of B1 = O(n), a naive estimator that just substitutes λ̂ for λ in B1 has a bias
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with order O(1). Then E[λ̂] can be expanded up to O(n−1) as

E[λ̂] =
n− pj
n− pω

E

[
K0

K0 +K1

]
=λ+

−2λ2(λ− 1) + pjλ(λ− 1)

n
+O(n−2), (3.19)

where the proof is given in (3.33) in Section 3.6.

Lemma 3.2 Consider the following estimator for B1:

B̂1 =
2n(n− tr [Σ−1])

n− pj − 2

{
λ̂− 1 +

2(λ̂3 − λ̂2)− pj(λ̂2 − λ̂)

n

}
. (3.20)

Then, in the overspecified case, E[B̂1] = 0, and in the underspecified case, E[B̂1] = B1+O(n−1).

We next obtain an estimator of ξT(Mω−M j)Σ
−1(Mω−M j)ξ which is a part of B3. Define

σ̃2j by

σ̃2j = (y −X(j)β̂j)
TΣ−2(y −X(j)β̂j).

From the fact that σ̃2j = σ2∗(v + ξ)T(In −M j)Σ
−1(In −M j)(v + ξ), it follows that

E[σ̃2j ] = σ2∗
{
tr [Σ−1 − P j ] + ξ

T(Mω −M j)Σ
−1(Mω −M j)ξ

}
.

Hence an estimator of ξT(Mω −M j)Σ
−1(Mω −M j)ξ is given by

σ̃2j /σ̂
2
ω − tr [Σ−1 − P j ].

Lemma 3.3 Consider the following estimator for B3:

B̃3 =
4

n

(
σ̂2ω
σ̂2j

)2

×

{
σ̃2j
σ̂2ω

− tr [Σ−1 − P j ]

}
.

Then in the overspecified case, E[B̃3] = O(n−1). In the underspecified case, E[B̃3] = B3 +
O(n−1).

Lemma 3.3 implies that in both overspecified and underspecified cases, B̃3 is an asymptoti-
cally unbiased estimator of B3 up to O(1), but B̃3 has an O(n−1) bias that cannot be negligible
for overspecified models. Since the cAIC by Vaida and Blanchard (2005) is an exact unbiased

estimator of cAI, we want to adjust B̃3 so that the adjusted estimator can have a bias with order
O(n−2) in the overspecified case.

Lemma 3.4 For B3, consider the following estimator as a higher order unbiased estimator than
B̃3 :

B̂3 = B̃3 −
4pω · tr [Σ−1 − P j ]

n2
+

8tr [P ω − P j ]

n2
, (3.21)

where P ω = Σ−1X(ω)(X(ω)TΣ−1X(ω))−1X(ω)TΣ−1. Then, in the overspecified case, E[B̂3] =

O(n−2). In the underspecified case, E[B̂3] = B3 +O(n−1).
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Using Lemmas 3.1, 3.2 and 3.4, we can estimate the bias correction ∆cAI by the estimator

∆̂cAI = B∗ + B̂1 + B̂2 + B̂3. (3.22)

The bias correction estimator can be used not only for overspecified models, but also for under-
specified models. Thus, we get the modified conditional Akaike information criterion (McAIC)
given as

McAIC = −2 log f(y|b̂j , β̂j , σ̂2j ) + ∆̂cAI. (3.23)

Theorem 3.2 In the overspecified case, it follows that

E[∆̂cAI] = ∆cAI +O(n−2) and E[McAIC] = cAI +O(n−2).

In the underspecified case, it follows that

E[∆̂cAI] = ∆cAI +O(n−1) and E[McAIC] = cAI +O(n−1).

Remark 3.1 In the derivation of McAIC, we assume that the covariance matrix of b∗ is σ2∗G
for a known matrix G. This setup seems restrictive, since σ2∗G involves some unknown variance
components in most linear mixed models. For example, we consider the nested error regression
model which will be treated in the next section for simulation. In this model, G is a function
of ψ∗ = τ2∗ /σ

2
∗ where τ2∗ is a variance component of random effects. We then propose to use

a consistent estimator ψ̂ = ψ̂(y) which satisfies ψ̂(y + Xα) = ψ̂(y) for any p-dimensional
vector α, and replace G(ψ∗) in (3.23) by its plug-in estimator G(ψ̂). For the location invariant
property of ψ̂, the influence by replacement may be limited as long as we consider the problem
of selecting only explanatory variables. Our recommendation is to estimate ψ∗ by the full model.
Estimating nuisance parameters by the full model is an methodology similar to Mallows’ Cp.

3.4 Simulations

In this section, we investigate the behaviors of the suggested criterion McAIC by simulation
through two kinds of experiments.

[the first experiment] In the first experiment, we compare the performance of the criteria
cAIC and McAIC by measuring the biases of estimating cAI and the relative frequency of
selecting the true model. It is important to note that Akaike-type criteria may be useful in getting
the ”best predictive model”, but are not very suited for selecting the ‘correct model’ unlike the
Bayesian information criterion (BIC) by Schwarz (1978). However, it has been reported that
the performance of selecting the true model improves by modification or bias correction of
Akaike-type criteria in Hurvich and Tsai (1989), Fujikoshi and Satoh (1997) and others. Thus
it is meaningful to investigate the performance of selecting the true model, and we handle the
experiment to measure the prediction error next.

We consider a class of the nested candidate models jα = {1, . . . , α} for α = 1, . . . , pω. The
observed vector y is generated by the true model (3.2) with Z = diag (Z1, . . . ,Zq),Zi = 1r for
i = 1, . . . , q and G = Iq, where 1r denotes an r × 1 vector of ones and r = n/q. Note that
this model is known as the nested error regression model (NERM), and that q and r denote the
number of clusters (or areas) and the sample size in each cluster, respectively. Let X(ω) be
generated as vec (X(ω)T) ∼ N (0, In ⊗Σx) with Σx = 0.9Ipω + 0.1Jpω where Jpω = 1pω1

T
pω .

The true coefficient vector β∗ is given by β∗ = (β1, . . . , βp∗ , 0, . . . , 0)
T and βl is generated as
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βl = 2 × ((−1)l/(l + 0.7)) × U(1, 2), 1 ≤ l ≤ p∗ for a uniform random variable U(1, 2) on the
interval (1, 2).

We here handle the case that pω = 7, p∗ = 5, n = 50 and q = 10. The true values of cAI
in each model are calculated from (3.27) in Section 3.6 based on 10,000 replications. The biases
and the rates of selecting each model are computed as their averages based on 1,000 replications.
The results are shown in Table 3.1. In each row, the several values, which are explained below,
for each corresponding model jα are reported. In the second column of the table, the true values
of cAI in each model are reported. In the third and fourth columns, the averages of biases of
estimating cAI by cAIC and McAIC are reported, respectively. In the fifth and sixth columns,
the rates of selecting each model by cAIC and McAIC are reported, respectively.

bias selection rates
model cAI cAIC McAIC cAIC McAIC

pattern (a): σ2∗ = 1

j1 217.81 16.234 -0.63453 0 0
j2 184.14 12.170 -0.55772 0 0
j3 167.68 7.2864 -0.25035 0.005 0.025
j4 163.66 4.7962 -0.15384 0.050 0.087
j5 158.84 -0.16459 -0.13939 0.778 0.812
j6 160.59 -0.22447 -0.14562 0.117 0.062
j7 162.47 -0.23391 -0.15563 0.050 0.014

pattern (b): σ2∗ = 0.5

j1 210.62 18.465 -0.53668 0 0
j2 168.35 16.200 -0.47607 0 0
j3 142.90 11.564 -0.20047 0 0.001
j4 134.82 8.4066 -0.083391 0.004 0.014
j5 124.18 -0.16459 -0.13939 0.824 0.907
j6 125.94 -0.22447 -0.14562 0.122 0.063
j7 127.81 -0.23391 -0.15563 0.050 0.015

Table 3.1: Biases of estimating cAI by cAIC and McAIC, and the rates of selecting each model
by cAIC and McAIC

Table 3.1 shows that although the conventional cAIC has large biases for underspecified
models, namely model j1 to j4, our proposed McAIC has smaller biases for both underspecified
and overspecified models. Especially, because cAIC overestimates the cAI for underspecified
cases, cAIC does not tend to select smaller models. The McAIC procedures also have better
performances of selecting the true model than the conventional cAIC procedures do. The fact
that McAIC can estimate with small biases for each model may imply that this criterion provides
an appropriate weight vector for model averaging methods. We will check this hypothesis in the
next experiment.

[the second experiment] In the second experiment, we investigate the prediction error of
the best model chosen by cAIC and McAIC and that of model averaged predictor based on cAIC
and McAIC. We here handle the case of unknown G and consider the model class which consists
of all subsets of ω = {1, . . . , pω}. The other setup is the same as that in the first experiment
except for G = G(ψ∗) = ψ∗Iq where ψ∗ = τ2∗ /σ

2
∗, namely b∗ ∼ N (0, τ2∗ Iq). σ2∗ and τ2∗ are

estimated by unbiased estimators proposed by Prasad and Rao (1990) under the full model,
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which are explained as follows. Let S = yT{In − X(ω)(X(ω)TX(ω))−1X(ω)T}y and S1 =
yT{E − EX(ω)(X(ω)TEX(ω))−1X(ω)TE}y where E = diag (E1, . . . ,Eq),Ei = Ir − r−1Jr
for i = 1, . . . , q. Then, the Prasad–Rao estimators of σ2∗ and τ2∗ are given by

σ̂2PR = S1/(n− q − pω) and τ̂2PR =
{
S − (n− pω)σ̂

2PR
}
/n∗, (3.24)

where n∗ = n − tr [ZTX(ω)(X(ω)TX(ω))−1X(ω)TZ]. We estimate ψ∗ by ψ̂ = τ̂2PR/σ̂2PR

and use the plug-in value of G(ψ̂) for cAIC and McAIC. This ψ̂ satisfies the properties of
consistency and location invariance mentioned in the Remark 3.1. It is important to point out
that we use the ML estimator σ̂2j or σ̂2ω in cAIC or McAIC given in (3.3), though we use σ̂2PR

to estimate ψ∗ by substituting Σ(ψ̂) for Σ. We measure the performance of cAIC and McAIC
via ∥ŷj −X(ω)β∗ −Zb∗∥2/n for ŷj =X(j)β̂j +Zb̂j , which is here called the prediction error

because b̂j is a predictor of b∗. The prediction errors are given as averages based on 1,000
replications.

In addition to the procedures that select the best model by the cAIC and McAIC, we consider
a model averaging method. The aim of model averaging is to predict a future value by a weighted
mean of the predictors for the candidate models. The weighting functions are important in the
model averaging method, and we use optimal weights suggested in Burnham and Anderson
(2002). In the context of McAIC, the weight is defined as follows. Let McAICj denote the
value of McAIC in the model j and let McAICmin be the minimum McAIC value. Also, let
McAICj = McAICj −McAICmin. Then the weight is defined by

wj =
exp(−McAICj/2)∑
l exp(−McAICl/2)

. (3.25)

Based on the weights given in (3.25), we can obtain a model averaged predictor

ŷAve =
∑
j

wjŷj ,

where ŷj is the predictor based on model j, and the summation is taken over all the candidate
models. We call this method ‘Smoothed McAIC (S-McAIC)’. A similar method based on cAIC
is called ‘Smoothed cAIC (S-cAIC)’.

Table 3.2 reports the prediction errors for the best model selected by cAIC and McAIC and
for the model averaged predictors based on S-cAIC and S-McAIC for the six cases in which
n, σ2∗ and τ2∗ take different values. We set pω = 5 and p∗ = 3. The values in parentheses are the
improvement over the prediction error by the cAIC procedure expressed in percentage. From
the table, it can be seen that McAIC and the corresponding averaging procedure S-McAIC are
better than cAIC and S-cAIC. Also, it is revealed that the prediction errors get smaller as the
sample size is larger. This implies that the information criteria can estimate the cAI more
accurately for the large sample size.

3.5 Real data example

We apply the variable selection procedures cAIC and McAIC to the posted land price data
along the Keikyu train line, which connects the suburbs in Kanagawa prefecture to the Tokyo
metropolitan area. This data set was used by Kubokawa and Nagashima (2012), who studied
parametric bootstrap methods in the linear mixed models.
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cAIC McAIC S-cAIC S-McAIC

pattern (a) 0.23198 0.22628 0.22581 0.22240
N = 50, σ2∗ = 1.0, τ2∗ = 0.5 (2.46) (2.66) (4.13)

pattern (b) 0.13107 0.12818 0.12837 0.12629
N = 50, σ2∗ = 0.5, τ2∗ = 1.0 (2.20) (2.06) (3.65)

pattern (c) 0.12516 0.12231 0.12234 0.12040
N = 50, σ2∗ = 0.5, τ2∗ = 0.5 (2.28) (2.25) (3.80)

pattern (d) 0.15561 0.15344 0.15091 0.14930
N = 80, σ2∗ = 1.0, τ2∗ = 0.5 (1.39) (3.02) (4.06)

pattern (e) 0.083838 0.082674 0.081682 0.080744
N = 80, σ2∗ = 0.5, τ2∗ = 1.0 (1.39) (2.57) (3.69)

pattern (f) 0.081538 0.080418 0.079368 0.078477
N = 80, σ2∗ = 0.5, τ2∗ = 0.5 (1.37) (2.66) (3.75)

Table 3.2: Prediction errors of the predictors based on cAIC, McAIC, S-cAIC and S-McAIC,
and improvement over cAIC procedure

We analyze the land price data in 2001 with covariates for 47 stations which we consider as
small areas and let q = 47. For the ith small area, there are data of ni land spots, and the total
sample size is n =

∑q
i=1 ni = 189. The land price (Yen in hundreds of thousands) per m2 of the

k spot in the ith small area is denoted by yik, TRNi is the time to take by train from the station
i to the Tokyo station around 9:00 in the morning, DSTik is the geographical distance from
the spot k to the nearby station i, FOOTik is the time to take on foot from the spot k to the
nearby station i and FARik denotes the floor-area ratio of the spot k. As explanatory variables,
we consider nine variables FARik, TRNi, TRN

2
i , DSTik, DST2

ik, FOOT2
ik, TRNi×DSTik and

TRNi × FOOTik, which are denoted by x1, . . . , x9 and x0 denotes constant term.

When one wants to estimate the mean land prices of each small area, naive estimators such
as sample mean may have large variabilities because the sample sizes in each small area are
small. Then we use some model based small area estimation technique, which introduce random
effects and borrow the strength from the information of other areas. For the details, see Rao and
Molina (2015). One example is the nested error regression model (NERM), which we handled
in the second experiment of the previous section. We here employ NERM to estimate the mean
land prices in the places around each station. In order to specify the model, or to select the
explanatory variables from 10 covariates x0, . . . , x9, we use the variable selection criteria cAIC
and McAIC. The procedure is that regressors which minimizes the information criteria are added
to the model known as the forward stepwise selection. The unknown parameter ψ∗ = τ2∗ /σ

2
∗ is

estimated by τ̂2PR/σ̂2PR given in (3.24) by the full model.

Table 3.3 reports the values of cAIC and McAIC in each model. Both criteria select the
same model j = {1, 0, 2, 3}, namely,

yik = β0 + FARiβ1 +TRNiβ2 + (TRNi)
2β3 + bi + εik,

where the parameters are estimated by σ̂2PR = 0.46382, τ̂2PR = 0.08199, i.e., ψ̂ = 0.17722 and
(β̂0, β̂1, β̂2, β̂3) = (5.0823, 6.3790 × 10−3,−1.0561 × 10−1, 6.4938 × 10−4), σ̂2ω = 0.43889, σ̂2j =
0.44465. This result demonstrates that the most important factor to decide land prices is the
floor area ratio, which is very natural, and that the land prices are decreasing as a quadratic
function of the time to take by train to the metropolitan area. It is interesting to see that the
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model cAIC McAIC

{1} 531.89 512.08
{1, 0} 482.63 467.98
{1, 0, 2} 419.18 417.31
{1, 0, 2, 3} 410.07∗ 410.92∗

{1, 0, 2, 3, 4} 412.21 413.01
{1, 0, 2, 3, 4, 5} 413.09 413.79
{1, 0, 2, 3, 4, 5, 8} 415.02 415.54
{1, 0, 2, 3, 4, 5, 8, 6} 417.14 417.60
{1, 0, 2, 3, 4, 5, 8, 6, 9} 419.02 419.23
ω 420.97 420.98

Table 3.3: The values of cAIC and McAIC in each model in the example of posted land price
data

values of cAIC is bigger than that of McAIC for the models {1}, {1, 0} and {1, 0, 2} and both
criteria take similar values for the models bigger than {1, 0, 2, 3}, which we take as the ‘true’
model. This result seems to consistent with the demonstration of the first numerical experiment
in the previous section, in which cAIC tends to overestimate cAI for the underspecified models.

3.6 Proofs

3.6.1 Derivation of (3.6)

First compute the expectation with respect to ỹ ∼ f(ỹ|b∗,η∗) in cAI. Then, cAI can be written
as

cAI = E
[
n log(2πσ̂2j ) + nσ2∗/σ̂

2
j

]
+ E

[
∥(X(j)β̂j −X(ω)β∗) +Z(b̂j − b∗)∥2/σ̂2j

]
. (3.26)

Note that b∗|y ∼ N
(
GZTΣ−1u, σ2∗(G−GZTΣ−1ZG)

)
and that

X(j)β̂j −X(ω)β∗ +Z(b̂j − b∗) = Σ−1(X(j)β̂j −X(ω)β∗)−Z(b∗ −GZTΣ−1u).

Taking the expectation with respect to b∗|y ∼ π(b∗|y,η∗) in (3.26), we rewrite the cAI as

cAI = E
[
n log(2πσ̂2j ) + (2n− tr [Σ−1])σ2∗/σ̂

2
j

]
+ E

[
(X(j)β̂j −X(ω)β∗)

TΣ−2(X(j)β̂j −X(ω)β∗)/σ̂
2
j

]
. (3.27)

Next, for a part of −2 log f(y|b̂j , η̂j) in (3.5), it is noted that

y −X(j)β̂j −Zb̂j

= y −X(ω)β∗ − (X(j)β̂j −X(ω)β∗)−ZGZTΣ−1
{
y −X(ω)β∗ − (X(j)β̂j −X(ω)β∗)

}
= Σ−1u−Σ−1(X(j)β̂j −X(ω)β∗). (3.28)

Thus, from (3.27) and (3.28), we can see that ∆cAI = cAI − E[−2 log f(y|b̂j , η̂j)] is expressed
as (3.6). □
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3.6.2 Proof of Theorem 3.1

For (3.10), we decompose ∆cAI as

∆cAI = b1 + b2 + b3 + b4,

where b1 = nE[(2n−trΣ−1)/(K0+K1)], b2 = −nE[vTΣ−1v/(K0+K1)], b3 = 2nE[vTΣ−1M jv/(K0+
K1)] and b4 = −2nE[ξT(Mω −M j)Σ

−1v/(K0 +K1)].
We begin with expanding (K0+K1)

−1 up toOp(n
−2). Let = vT(In−Mω)v+v

T(Mω−M j)v.
Then, K0 +K1 = K +2L+nδ, K ∼ χ2

n−pj , K = Op(n) and L = Op(n
1/2), so that we can write

(2L+ nδ)/K = δ +D and D = Op(n
−1/2). Thus, it follows that

(K0 +K1)
−1 =(K + 2L+ nδ)−1 = K−1(1 + δ +D)−1 =

λ

K
(1 +Dλ)−1

=
λ

K

{
1−Dλ+ (Dλ)2 +Op(n

−3/2)
}
. (3.29)

Since δλ = 1− λ, it is seen that

Dλ = (1− n

K
)(λ− 1) +

2Lλ

K
.

Let A =W/{(m− pj)− 1}, which is of Op(n
−1/2). then,

1

K
=

1

n− pj

{
1−A+A2 +Op(n

−3/2)
}

=
1

n
(1−A+A2 +

pj
n
) +Op(n

−5/2),

1− n

K
=A−A2 − pj

n
+Op(n

−3/2). (3.30)

Hence, (K0 +K1)
−1 can be evaluated as

(K0 +K1)
−1 =

λ

n

{
1− (A+

2L

n
)λ+A2λ2 +

pjλ+ 4ALλ2

n
+

4L2λ2

n2

}
+Op(n

−5/2). (3.31)

For any function q(·), we have E[q(vTGv)L] = 0 since q(vTGv)L is an odd function of v. Also,
E[A] = 0, E[A2] = 2/(n− pj), E[L2] = nδ. Hence, it is observed that

E[(K0 +K1)
−1] =

λ

n

{
1 +

−2λ2 + (pj + 4)λ

n

}
+O(n−3). (3.32)

Using the expansions (3.31) and (3.32) , we can evaluate b1, b2, b3 and b4, respectively.

First, b1 can be evaluated as

b1 = n(2n− tr [Σ−1])× λ

n
×
{
1 +

−2λ2 + (pj + 4)λ

n

}
+O(n−1)

= b∗1 + (2n− tr [Σ−1])(λ− 1)

{
n

n− pj − 2
+

−2λ2 + (pj + 2)λ

n

}
+O(n−1),

where

b∗1 =
n(2n− tr [Σ−1])

n− pj − 2
,
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which is the exact b1 for overspecified models.
Next note that tr [Σ−1] = O(n), vTΣ−1v − tr [Σ−1] = Op(n

1/2). Then, b2 is evaluated as

b2 = − nE

[{
tr [Σ−1] + (vTΣ−1v − tr [Σ−1])

}
× λ

n

{
1− (A+

2L

n
)λ+A2λ2 +

pjλ+ 4ALλ2

n
+

4L2λ2

n2

}]
+O(n−1)

= − λtr [Σ−1]

{
1 +

−2λ2 + (pj + 4)λ

n

}
+ λ2E[vTΣ−1vA] +O(n−1).

From the second order moment of quadratic forms of standard normal random vectors, it follows
that

E[vTΣ−1vA] =
2

n− pj

{
tr [Σ−1]− tr [Σ−1M j ]

}
.

Using this equality, we can evaluate b2 as

b2 =− λtr [Σ−1]

{
1 +

−2λ2 + (pj + 2)λ

n

}
+O(n−1)

=b∗2 − tr [Σ−1](λ− 1)

{
n

n− pj − 2
+

−2λ2 + pjλ− 2

n

}
+O(n−1),

where

b∗2 = −n×
{

tr [Σ−1]

n− pj − 2
− 2tr [Σ−1]− 2tr [Σ−1M j ]

(n− pj)(n− pj − 2)

}
,

which is the exact b2 for overspecified models.
As for b3, it can be decomposed as

vTΣ−1M jv

K0 +K1
=
vTM jΣ

−1M jv

K0 +K1
+
vT(In −M j)Σ

−1M jv

K0 +K1
.

Since M jv is independent of (In −M j)v and K0 +K1, and E[M jv] = 0, it follows that

E

[
vT(In −M j)Σ

−1M jv

K0 +K1

]
= 0.

Further, because vTM jΣ
−1M jv and K0 +K1 are mutually independent, b3 is evaluated as

b3 = 2n×E[vTM jΣ
−1M jv]× E[(K0 +K1)

−1]

= b∗3 + 2tr [Σ−1M j ](λ− 1) +O(n−1),

where

b∗3 =
2ntr [Σ−1M j ]

n− pj − 2
,

which is the exact b3 for overspecified models.
Finally, we evaluate b4. Note that ξT(Mω −M j)Σ

−1v = Op(n
1/2) from the assumption

(A2). Then, b4 can be expanded as

b4 = − 2n× E

[
ξT(Mω −M j)Σ

−1v × λ

n

{
1− (A+

2L

n
)λ

}]
+O(n−1)

=
4λ2

n
ξT(Mω −M j)Σ

−1(Mω −M j)ξ +O(n−1).

Combining the evaluations of b1, b2, b3 and b4 yields the result in (3.12), where B∗ is defined by
B∗ = b∗1 + b∗2 + b∗3. □
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3.6.3 Proof of Lemma 3.1

It follows from K0 = n+Op(n
1/2) and (3.31) that

E

( σ̂2ω
σ̂2j

)k = E

[(
K0

K0 +K1

)k]
→ λk (n→ ∞),

which proves lemma 3.1. □

3.6.4 Proof of Lemma 3.2

In the overspecified case, it follows from Lemma 3.1 that E[λ̂] = E[λ̂2] = E[λ̂3] = 1, so that

E[B̂1] = 0. In the underspecified case, we shall check (3.19). Using the expansion (3.31) of
(K0 +K1)

−1, we can approximate E[λ̂] as

E[λ̂] =
n− pj
n− pω

×E

[
K0

K0 +K1

]
=
n− pj
n− pω

λ

n
× E

[
{(n− pω) + v

T(In −Mω)v − (n− pω)}

×
{
1− (A+

2L

n
)λ+A2λ2 +

pjλ+ 4ALλ2

n
+

4L2λ2

n2

}]
+O(n−2). (3.33)

Evaluating (3.33) up to O(n−1), we can get (3.19) and Lemma 3.2. □

3.6.5 Proof of Lemma 3.3

Let c1 = tr [Σ−1(In −M j)], c2 = tr [Σ−1(In −Mω)] and

D1 = vT(In −M j)Σ
−1(In −M j)v,

D2 = 2ξT(In −M j)Σ
−1(In −M j)v,

D3 = ξT(Mω −M j)Σ
−1(Mω −M j)ξ. (3.34)

Since σ̃2j = σ2∗(D1 +D2 +D3), we can rewrite B̃3 as

B̃3 =
4K0(D1 +D2 +D3)

(K0 +K1)2
− 4c1

n

K2
0

(K0 +K1)2

= B̃31 − B̃32. (say)

From the exapansion (3.31) of (K0 +K1)
−1, it follows that

E[B̃31] =
4λ2

n2
× {E[K0D1] + E[K0D3]}+O(n−1)

=
4c1λ

2

n
+

4λ2D3

n
+O(n−1),

E[B̃32] =
4c1
n

× λ2

n2
× E[K2

0 ] +O(n−1)

=
4c1λ

2

n
+O(n−1),

which proves Lemma 3.3. □
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3.6.6 Proof of Lemma 3.4

It is noted that the adjustment term of B̂3 is of order O(n−1) from (3.21). Then it follows from

Lemma 3.3 that E[B̂3] = B3 +O(n−1). Thus it is sufficient to evaluate E[B̃3] up to O(n−1) for
overspecified models.

In the overspecified case, it is noted that nσ̂2j = σ2∗K and σ̃2j = σ2∗D1 for D1 given in (3.34).
Then,

B̃3 = 4× K0 ×D1

K2
− 4c1

n

(
K0

K

)2

= B̃33 − B̃34. (say)

From (3.30), K−2 is expanded as

1

K2
=

1

n2

(
1− 2A+ 3A2 +

2pj
n

)
+Op(n

−7/2).

Thus, E[B̃33] is written as

E[B̃33] =
4

n2
E
[
{(n− pω) +K0 − (n− pω)}{c1 + (D1 − c1)}

× {1− 2A+ 3A2 +
2pj
n

}
]
+O(n−2)

=
4

n2
×
{
(n− pω)c1

(
1 + 3E[A2] +

2pj
n

)
− 2c1E[K0A]− 2(n− pω)E[D1A] + E[K0D1]− c1(n− pω)

}
+O(n−2)

=
4(n− pω + 2pj)c1

n2
+

8(c2 − c1)

n2
+O(n−2), (3.35)

since K0 − (n − pω) = Op(n
1/2), c1 = O(n) and D1 − c1 = Op(n

1/2). Noting that K0/K ∼
Be((n− pω)/2, (pω − pj)/2), we can evaluate E[B̃34] as

E[B̃34] =
4c1
n

(n− pω)(n− pω + 2)

(n− pj)(n− pj + 2)

=
4(n− 2pω + 2pj)c1

n2
+O(n−2). (3.36)

Combining (3.35) and (3.36) gives

E[B̃3] =
4c1pω
n2

+
8(c2 − c1)

n2
+O(n−2),

which shows Lemma 3.4. □





Chapter 4

Conditional AIC under covariate
shift with application to small area
prediction

In this chapter, we consider the problem of selecting explanatory variables of fixed effects in linear
mixed models under covariate shift, which is the situation that the values of covariates in the
predictive model are different from those in the observed model. We construct a variable selection
criterion based on the conditional Akaike information introduced by Vaida and Blanchard (2005)
and the proposed criterion is generalization of the conditional AIC in terms of covariate shift. We
especially focus on covariate shift in small area prediction and show usefulness of the proposed
criterion.

4.1 Motivation

For prediction problems, it is often the case that the values of covariates in the predictive model
are different from those in the observed model, which we call covariate shift. However, even
when the information about the covariates in the predictive model can be used, most Akaike-
type criteria do not use it. This is because most criteria put the assumption that the predictive
model is the same as the observed model. We explain what this means in the context of the
conditional AIC.

Vaida and Blanchard (2005) proposed the conditional AIC (cAIC) as an unbiased estimator
of the cAI, which is given by

cAI =

∫∫∫
−2 log{f(ỹ|θ̂, η̂)}f(ỹ|θ,η)f(y|θ,η)p(θ|η)dỹdydθ, (4.1)

in general, where the notations are the same as those in Chapter 2. We call the model in which
y is the vector of the response variables the ‘observed model’, and call the model in which ỹ
is the vector of the response variables the ‘predictive model’. The cAI in (4.1) assumes that
the conditional density of y given θ and that of ỹ given θ are the same and both of them are
denoted by f(·|θ,η), which implies that the observed model and the predictive model are the
same. However, under covariate shift, the conditional density of ỹ given θ should be different
from that of y given θ and is denoted by g(ỹ|θ,η). Then, we redefine the cAI under covariate
shift as follows:

cAI =

∫∫∫
−2 log{g(ỹ|θ̂, η̂)}g(ỹ|θ,η)f(y|θ,η)p(θ|η)dỹdydθ.

31
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In the next section, we define the cAI under covariate shift in linear mixed model.

4.2 Covariate shift conditional AIC

4.2.1 Observed model

The candidate observed model j is the linear mixed model

y =X(j)βj +Zbj + εj , (4.2)

where y is an n× 1 observation vector of response variables, X(j) and Z are n× pj and n× q
matrices of covariates, respectively, βj is a pj × 1 vector of regression coefficients, bj is a q × 1
vector of random effects, and εj is an n× 1 vector of random errors. Let bj and εj be mutually
independent and bj ∼ Nq(0, σ

2
jG), εj ∼ Nn(0, σ

2
jR), where G and R are q×q and n×n positive

definite matrices and σ2j is a scalar. We assume that G and R are known and σ2j is unknown.
The conditional density function of y given bj and the density function of bj for the model j
are denoted by f(y|bj ,βj , σ2j ) and p(bj |σ2j ), respectively.

The true observed model j∗ is

y =X(ω)β∗ +Zb∗ + ε∗,

where b∗ ∼ Nq(0, σ
2
∗G), ε∗ ∼ Nn(0, σ

2
∗R). Note thatX(ω) is n×pω matrix of covariates for the

full model ω and that β∗ is pω×1 vector of regression coefficients, whose pω−pj components are
exactly 0 and the rest of components are not 0, as explained in Section 2.2. Then the marginal
distribution of y is

y ∼ Nn(X(ω)β∗, σ
2
∗Σ),

where Σ = ZGZT +R. For the true model, the conditional density function of y given b∗ and
the density function of b∗ are denoted by f(y|b∗,β∗, σ

2
∗) and p(b∗|σ2∗), respectively.

4.2.2 Predictive model

The candidate predictive model j is the linear mixed model which has the same regression coef-
ficients βj and random effects bj as in the candidate observed model j, but different covariates,
namely

ỹ = X̃(j)βj + Z̃bj + ε̃j , (4.3)

where ỹ is m× 1 random vector of the target of prediction, X̃(j) and Z̃ are m× pj and m× q
matrices of covariates whose columns correspond to those of X(j) and Z, respectively, and
ε̃j is m × 1 vector of random errors, which is independent of bj and εj and is distributed as

ε̃j ∼ Nm(0, σ
2
j R̃), where R̃ is a known m × m positive definite matrix. We assume that we

know the values of X̃(j) and Z̃ in the predictive model and that they are not necessarily the
same as those of X(j) and Z in the observed model. We call this situation covariate shift. The
conditional density function of ỹ given bj for the model j is denoted by g(ỹ|bj ,βj , σ2j ).

The true predictive model j∗ is

ỹ = X̃(ω)β∗ + Z̃b∗ + ε̃∗,

where X̃(ω) ism×pω matrix of covariates and ε̃∗ ∼ Nm(0, σ
2
∗R̃). Then the marginal distribution

of ỹ is
ỹ ∼ Nm(X̃(ω)β∗, σ

2
∗Σ̃),

where Σ̃ = Z̃GZ̃
T

+ R̃. For the true model, the conditional density function of ỹ given b∗ is
denoted by g(ỹ|b∗,β∗, σ

2
∗).
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4.2.3 Conditional Akaike information

The conditional Akaike information (cAI) measures the prediction risk of the plug-in predictive
density g(ỹ|b̂j , β̂j , σ̂2j ), where β̂j and σ̂2j are maximum likelihood estimators of βj and σ

2
j , which

are given as

β̂j = (X(j)TΣ−1X(j))−1X(j)TΣ−1y,

σ̂2j = (y −X(j)β̂j)
TΣ−1(y −X(j)β̂j)/n,

and b̂j is empirical Bayes estimator of bj for quadratic loss, which is given by

b̂j = GZ
TΣ−1(y −X(j)β̂j).

Then, the cAI under covariate shift is

cAI = E(y,b∗)Eỹ|b∗
[
−2 log{g(ỹ|b̂j , β̂j , σ̂2j )}

]
= E(y,b∗)Eỹ|b∗

[
m log(2πσ̂2j ) + log |R̃|+ (ỹ − X̃(j)β̂j − Z̃b̂j)TR̃

−1
(ỹ − X̃(j))β̂j − Z̃b̂j)/σ̂2j

]
,

where E(y,b∗) and Eỹ|b∗ denote expectation with respect to the joint distribution of (y, b∗) ∼
f(y|b∗,β∗, σ

2
∗)p(b∗|σ2∗) and the conditional distribution of ỹ given b∗, namely ỹ|b∗ ∼ g(ỹ|b∗,β∗, σ

2
∗),

respectively. Taking expectation with respect to ỹ|b∗ ∼ g(ỹ|b∗,β∗, σ
2
∗) and b∗|y ∼ Nq(b̃∗, σ

2
∗(G−

GZTΣ−1ZG)) for b̃∗ = GZ
TΣ−1(y −X(ω)β∗), we can obtain

cAI = E
[
m log(2πσ̂2j ) + log |R̃|+ tr (R̃

−1
Λ) · σ2∗/σ̂2j + aTR̃

−1
a/σ̂2j

]
, (4.4)

where

Λ = Σ̃− Z̃GZTΣ−1ZGZ̃
T

,

a = (X̃(j)β̂j − X̃(ω)β∗)− Z̃GZTΣ−1(X(j)β̂j −X(ω)β∗).
(4.5)

4.2.4 Criterion for overspecified model

In this subsection, we propose the covariate shift cAIC (CScAIC) as an unbiased estimator of cAI
in (4.4) under the assumption that the candidate model is overspecified. When the candidate
model j is overspecified, the true mean vector of y and ỹ can be expressed as

E(y) =X(j)β∗
j , and E(ỹ) = X̃(j)β∗

j

where β∗
j is pj × 1 vector, whose pj − p∗ components are exactly 0 and the rest of components

are not 0. In this subsection, we hereafter abbreviate X(j) to X, X̃(j) to X̃ and β∗
j to β for

notational convenience. Then, a in cAI given by (4.5) can be reduced to

a = A(β̂j − β),

whereA = X̃−Z̃GZTΣ−1X. Furthermore, nσ̂2j /σ
2
∗ follows chi-squared distribution with n−pj

degrees of freedom, denoted by nσ̂2j /σ
2
∗ ∼ χ2

n−pj , which implies that

E[(β̂j − β)(β̂j − β)T] = σ2∗(X
TΣ−1X)−1,
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when the candidate model j is overspecified. Noting that β̂j and σ̂
2
j are mutually independent,

we can evaluate the cAI in (4.4) as

cAI = E[m log(2πσ̂2j )] + log |R̃|+ n

n− pj − 2

{
tr [R̃

−1
Λ] + tr [R̃

−1
A(XTΣ−1X)−1AT]

}
. (4.6)

We propose the CScAIC as an unbiased estimator of cAI as follows:

CScAIC = l(j) + ∆CS, (4.7)

where l(j) is likelihood (or goodness of fit) part and ∆CS is bias correction, which are given by

l(j) = m log(2πσ̂2j ) + log |R̃|+ (y −Xβ̂j −Zb̂j)TR−1(y −Xβ̂j −Zb̂j)/σ̂2j , (4.8)

∆CS =
n

n− pj − 2

{
tr [R̃

−1
Λ] + tr [R̃

−1
A(XTΣ−1X)−1AT]

}
+

n

n− pj

{
−tr [RΣ−1] + tr [RP ]

}
, (4.9)

where P = Σ−1X(XTΣ−1X)−1XTΣ−1. Then we obtain the following theorem.

Theorem 4.1 When the candidate model is overspecified, the covariate shift cAIC (CScAIC)
in (4.7) is an unbiased estimator of the cAI in (4.4).

Next corollary shows that our CScAIC includes the cAIC by Vaida and Blanchard (2005) as
special case.

Corollary 4.1 Suppose that covariate shift does not occur, namely X̃ =X, Z̃ = Z and n = m.
In addition, let the covariance matrix of ε and ε̃ be both σ2In, namely R = R̃ = In. Then the
bias correction of the CScAIC in (4.9) is reduced to

∆CS =
2n2

n− pj − 2
+

2n(n− pj − 1)

(n− pj)(n− pj − 2)

{
−tr [Σ−1] + tr [Σ−1X(XTΣ−1X)−1XTΣ−1]

}
,

(4.10)
which are identical to bias correction of the cAIC by Theorem 2 in Vaida and Blanchard (2005).

4.3 Modification of the criterion

4.3.1 Drawback of overspecified model assumption

Most of the Akaike-type criteria are derived under the assumption that ‘the candidate model
includes the true model’, namely overspecified assumption. Although the assumption is too
strong, the influence is restrictive in practical use. This is because the likelihood part of the
criterion is a naive estimator of the risk function, namely the cAI in the context of the cAIC.

However, under the covariate shift situation, the likelihood part of the CScAIC is not a good
estimator of the cAI. As a result, the CScAIC in (4.7) has large biases for estimating the cAI of
the underspecified models as illustrated in simulations in Section 4.5.

Thus we evaluate and estimate the cAI directly both for the overspecified models and un-
derspecified models in the following subsections.
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4.3.2 Evaluation of cAI

We evaluate the cAI in (4.4) both for overspecified model and for underspecified model. We
assume that the full model ω is overspecified, namely the collection of the overspecified models
J+ is not empty set. We also assume that the size of response variable in predictive model m is
of order O(n).

When the candidate model j is overspecified, nσ̂2j /σ
2
∗ follows the chi-squared distribution.

However, for the underspecified model, this is not true. We decompose nσ̂2j /σ
2
∗ as

nσ̂2j /σ
2
∗ = zT(In −Mω)z + zT(Mω −M j)z

= K0 +K1 (say),

where

z = Σ−1/2y/σ∗,

Mω = W ω(W
T
ωW ω)

−1W T
ω = Σ−1/2X(ω)(X(ω)TΣ−1X(ω))−1X(ω)TΣ−1/2,

M j = W j(W
T
jW j)

−1W T
j = Σ−1/2X(j)(X(j)TΣ−1X(j))−1X(j)TΣ−1/2,

for W ω = Σ−1/2X(ω)/σ∗ and W j = Σ−1/2X(j)/σ∗. Note that M j and Mω are projection
matrices, namely symmetric and idempotent. Let v = Σ−1/2u/σ∗ and ξ = W ωβ∗. Then, it
can be seen that Mωξ = ξ and

M jξ

{
= ξ if j ∈ J+,
̸= ξ if j ∈ J−,

since X(ω)β∗ ∈ R[X(j)] if j ∈ J+. Thus K0 can be rewritten as

K0 = (ξ + v)T(In −Mω)(ξ + v) = v
T(In −Mω)v,

so that K0 ∼ χ2
n−pω . Also, K1 can be rewritten as

K1 = vT(Mω −M j)v + 2ξT(Mω −M j)v + ξT(Mω −M j)ξ

= vT(Mω −M j)v + 2L+ nδ,

where

L = ξT(Mω −M j)v,

δ = ξT(Mω −M j)ξ/n.

In the overspecified case, we have K1 ∼ χ2
pω−pj since Mωξ = M jξ = ξ. In the underspecified

case, K1 follows a non-central chi-squared distribution with pω−pj degrees of freedom and with
the noncentrality parameter nδ, denoted by K1 ∼ χ2

pω−pj (nδ). Thus,

K1 ∼

{
χ2
pω−pj if j ∈ J+,

χ2
pω−pj (nδ) if j ∈ J−.

Because β̂j and σ̂
2
j are mutually independent, the cAI in (4.4) can be rewritten as

cAI = E[m log(2πσ̂2j )] + log |R̃|+ n · E[(K0 +K1)
−1]{tr (R̃

−1
Λ) + E[aTR̃

−1
a/σ2∗]}. (4.11)

Evaluating E[(K0 +K1)
−1] and E[aTR̃

−1
a/σ2∗], we can obtain the following theorem.
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Theorem 4.2 For the overspecified case, it follows that cAI = E[m log(2πσ̂2j )] + log |R̃| + R∗,
where

R∗ =
nγ

n− pj − 2
,

for γ = tr (R̃
−1

Λ) + tr [R̃
−1
A(X(j)TΣ−1X(j))−1AT] and A = X̃(j) − Z̃GZTΣ−1X(j). For

the underspecified case, cAI is approximated as

cAI = E[m log(2πσ̂2j )] + log |R̃|+R∗ +R1 +R2 +R3 +R4 +O(n−1), (4.12)

where

R1 = γ(λ− 1),

R2 = γ · n−1{−2λ3 + (pj + 4)λ2 − (pj + 2)},

R3 = λ · βT
∗B

TR̃
−1
Bβ∗/σ

2
∗,

and
R4 = n−1{−2λ3 + (pj + 4)λ2} × βT

∗B
TR̃

−1
Bβ∗/σ

2
∗,

for λ = 1/(1 + δ),

B =
{
P̃ jX(ω)− X̃(ω) + Z̃GZT(P ω − P j)X(ω)},

P j = Σ−1X(j)(X(j)TΣ−1X(j))−1X(j)TΣ−1,

P ω = Σ−1X(ω)(X(ω)TΣ−1X(ω))−1X(ω)TΣ−1,

and
P̃ j = X̃(j)(X(j)TΣ−1X(j))−1X(j)TΣ−1.

When the candidate model j is overspecified, it follows that R1, R2, R3 and R4 are exactly 0.

4.3.3 Estimation of cAI

Because the approximation of cAI in (4.12) includes unknown parameters, we have to provide
an estimator of cAI for practical use. Firstly, we obtain estimators of R1 and R2, which are

polynomials of λ. We define λ̂, λ̂2 and λ̂3 as

λ̂ =
n− pj
n− pω

σ̂2ω
σ̂2j
,

λ̂2 =
(n− pj)(n− pj + 2)

(n− pω)(n− pω + 2)

(
σ̂2ω
σ̂2j

)2

,

and

λ̂3 =
(n− pj)(n− pj + 2)(n− pj + 4)

(n− pω)(n− pω + 2)(n− pω + 4)

(
σ̂2ω
σ̂2j

)3

.

When j ∈ J+, it follows that nσ̂2ω/σ
2
∗ = K0, nσ̂

2
j /σ

2
∗ = K0 + K1, and that K0 and K1 are

mutually independent and distribute as K0 ∼ χ2
n−pω , K1 ∼ χ2

pω−pj . Thus,

σ̂2ω
σ̂2j

∼ Be

(
n− pω

2
,
pω − pj

2

)
,
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where Be(·, ·) denotes the beta distribution. This implies that E(λ̂) = E(λ̂2) = E(λ̂3) =
1 for the overspecified case. For the underspecified case, on the other hand, it follows that
E[(σ̂2ω/σ̂

2
j )
k] = λk + O(n−1) as n → ∞ for k = 1, 2, 3. Then we can obtain an estimator of R2

in the approximation of cAI given by (4.12), which is given as follows:

R̂2 = γ · −2λ̂3 + (pj + 4)λ̂2 − (pj + 2)

n
. (4.13)

Noting that γ = O(n), we can get the following lemma.

Lemma 4.1 When the candidate model j is underspecified, R̂2 in (4.13) is an asymptotically
unbiased estimator of R2 whose bias is of order O(n−1), namely

E(R̂2) = R2 +O(n−1).

When the candidate model j is overspecified, it follows that E(R̂2) = 0.

Because R1 is of order O(n), we have to estimate λ with higher order accuracy in order to
obtain an estimator of R1 whose bias is of order O(n−1) for the underspecified case. To this
end, we expand E(λ̂) up to O(n−1) as

E(λ̂) =
n− pj
n− pω

· E
(

K0

K0 +K1

)
= λ+

−2λ3 + (pj + 2)λ2 − pjλ

n
+O(n−2).

Then we can obtain an estimator of R1 given as

R̂1 = γ ·

{
λ̂− −2λ̂3 + (pj + 2)λ̂2 − pj λ̂

n
− 1

}
. (4.14)

Lemma 4.2 When the candidate model j is underspecified, R̂1 in (4.14) is an asymptotically
unbiased estimator of R1 whose bias is of order O(n−1), namely

E(R̂1) = R1 +O(n−1).

When the candidate model j is overspecified, it follows that E(R̂1) = 0.

We next consider estimation procedures of R3 and R4, which are complex functions of un-
known parameters. We see R3 and R4 as functions of η∗ = (βT

∗ , σ
2
∗)

T, namely R3 = R3(η∗),

R4 = R4(η∗) and substitute their unbiased estimators η̃ = (β̃
T

, σ̃2)T, which are given by

β̃ = β̂ω = (X(ω)TΣ−1X(ω))−1X(ω)TΣ−1y,

σ̃2 = (y −X(ω)β̃)TΣ−1(y −X(ω)β̃)/(n− pω).

Then, plug-in estimators of R3 and R4 are

R̃3 = R3(η̃) = λ̃ · β̃
T

BTR̃
−1
Bβ̃/σ̃2,

R̃4 = R4(η̃) = n−1{−2λ̃3 + (pj + 4)λ̃2} × β̃
T

BTR̃
−1
Bβ̃/σ̃2, (4.15)
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where λ̃ = 1/(1 + δ̃) for

δ̃ = β̃
T

X(ω)T(P ω − P j)X(ω)β̃/(nσ̃2).

Because R3 is of order O(n), plug-in estimator R̃3 has second order bias. Then we correct the
bias by analytical method based on Taylor series expansions. We can see that expectation of
the plug-in estimator R3(η̃) is expanded as

E[R3(η̃)] = R3(η∗) +B1(η∗) +B2(η∗) +O(n−2), (4.16)

where B1(η∗) and B2(η∗) are second- and third-order biases of R3(η̃), respectively, namely
B1(η∗) = O(1) and B2(η∗) = O(n−1). Because β̃ and σ̃2 are independent, it follows that

B1(η∗) =
1

2
· tr

[
∂2R3(η∗)

∂β∗∂β
T
∗
E[(β̃ − β∗)(β̃ − β∗)

T]

]
+

1

2

∂2R3(η∗)

(∂σ2∗)
2
E[(σ̃2 − σ2∗)

2], (4.17)

where E[(β̃ − β∗)(β̃ − β∗)
T] = σ2∗(X(ω)TΣ−1X(ω))−1 and E[(σ̃2 − σ2∗)

2] = 2(σ2∗)
2/(n − pω).

Second order partial derivatives of R3 are given by the following lemma.

Lemma 4.3 Second order partial derivative of R3(η∗) with respect to β∗ is

∂2R3(η∗)

∂β∗∂β
T
∗

=
βT
∗B

TR̃
−1
Bβ∗

σ2∗
×
{
− 2C

nσ2∗(1 + δ)2
+

8Cβ∗β
T
∗C

n2(σ2∗)
2(1 + δ)3

}
− 4BTR̃

−1
Bβ∗β

T
∗C + 4Cβ∗β

T
∗B

TR̃
−1
B

n(σ2∗)
2(1 + δ)2

+ 2λ ·BTR̃
−1
B/σ2∗,

where C =X(ω)T(P ω −P j)X(ω). Second order partial derivative of R3(η∗) with respect to σ2∗
is

∂2R3(η∗)

(∂σ2∗)
2

=
βT
∗B

TR̃
−1
Bβ∗

σ2∗
×
{
− 2βT

∗Cβ∗
n(σ2∗)

3(1 + δ)2
+

2(βT
∗Cβ∗)

2

n2(σ2∗)
4(1 + δ)3

}
− 2βT

∗B
TR̃

−1
Bβ∗β

T
∗Cβ∗

n(σ2∗)
4(1 + δ)2

+ 2λ · βT
∗B

TR̃
−1
Bβ∗/(σ

2
∗)

3.

When the candidate model j is overspecified, second order bias B1(η∗) can be simplified to

B1(η∗) = tr [BTR̃
−1
B(X(ω)TΣ−1X(ω))−1],

because Cβ∗ = Bβ∗ = 0 and λ = 1, which implies that (∂2R3(η∗))/(∂β∗∂β
T
∗ ) = 2BTR̃

−1
B/σ2∗

and that (∂2R3(η∗))/(∂σ
2
∗)

2 = 0. However, one cannot know which candidate models are
overspecified. Then, we propose the following bias corrected estimator of R3:˜̃

R3 = R3(η̃)−B1(η̃). (4.18)

Lemma 4.4 Both for the cases where the candidate model j is overspecified and where j is

underspecified,
˜̃
R3 and R̃4 in (4.18) and (4.15) are asymptotically unbiased estimators of R3 and

R4, whose biases are of order O(n−1), namely

E(
˜̃
R3) = R3 +O(n−1), and E(R̃4) = R4 +O(n−1).
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Using R̂1, R̂2,
˜̃
R3 and R̃4 given by (4.14), (4.13), (4.18) and (4.15), respectively, we can construct

an estimator of cAI as follows:

ĉAI = m log(2πσ̂2j ) + log |R̃|+R∗ + R̂1 + R̂2 +
˜̃
R3 + R̃4. (4.19)

Theorem 4.3 Both for the cases where the candidate model j is overspecified and where j is
underspecified, ĉAI in (4.19) is a second-order asymptotically unbiased estimator of cAI, namely

E(ĉAI) = cAI +O(n−1).

Because the CScAIC in Section 4.2 is an exact unbiased estimator of the cAI when the
candidate model is overspecified, the performance of ĉAI in (4.19) is not as good as that of the
CScAIC for the overspecified model when n is small. Thus we should improve the estimator of
R3 and R4 to remove the biases which are of order O(n−1). To this end, we adopt parametric
bootstrap method. Bootstrap sample y† is generated by

y† =X(ω)β̃ +Zb† + ε†,

where b† and ε† are generated by the following distribution:

b† ∼ N (0, σ̃2G), and ε† ∼ N (0, σ̃2In).

Then, we use the following estimator of R4:

R̂4 = 2R4(η̃)− Eη̃[R4(η̃
†)] (4.20)

where Eη̃ denotes expectation with respect to bootstrap distribution and η̃† = ((β̃
†
)T, σ̃2†)T is

β̃
†
= (X(ω)TΣ−1X(ω))−1X(ω)Σ−1y†,

σ̃2† = (y† −X(ω)β̃
†
)TΣ−1(y† −X(ω)β̃

†
)/(n− pω).

As for R3, it follows from (4.16) that

Eη̃[R3(η̃
†)] = R3(η̃) +B1(η̃) +B2(η̃) +Op(n

−2).

However, B1(η̃) has bias which is of order O(n−1), namely

E[B1(η̃)] = B1(η∗) +B11(η∗) +O(n−2),

where B11(η∗) = O(n−1). Because this bias is not negligible when one wants to estimate R3

with third order accuracy, we estimate this bias by bootstrap method as follows:

B̂11 = Eη̃[B1(η̃
†)]−B1(η̃).

Then we obtain an estimator of R3, which is given as

R̂3 = 2R3(η̃)− Eη̃[R3(η̃
†)] + B̂11

= 2R3(η̃)− Eη̃[R3(η̃
†)] + Eη̃[B1(η̃

†)]−B1(η̃). (4.21)
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Lemma 4.5 Both for the cases where the candidate model j is overspecified and where j is
underspecified, R̂3 and R̂4 in (4.21) and (4.20) are asymptotically unbiased estimators of R3 and
R4, whose biases are of order O(n−2), namely

E(R̂3) = R3 +O(n−2), and E(R̂4) = R4 +O(n−2).

Using R̂1, R̂2, R̂3 and R̂4 given by (4.14), (4.13), (4.21) and (4.20), we can obtain an estimator
of cAI as follows:

ĉAI
†
= m log(2πσ̂2j ) + log |R̃|+R∗ + R̂1 + R̂2 + R̂3 + R̂4, (4.22)

which improves ĉAI in unbiasedness.

Theorem 4.4 When the candidate model j is overspecified, ĉAI
†
in (4.22) is a third order

asymptotically unbiased estimator of cAI, namely

E(ĉAI
†
) = cAI +O(n−2).

When the candidate model j is underspecified, ĉAI
†
is a second order asymptotically unbiased

estimator of cAI, namely

E(ĉAI
†
) = cAI +O(n−1).

4.4 Application to small area prediction

A typical example of the covariate shift situation appears in small area prediction problem.
The model for small area prediction supposes that the observed small area data have the finite
population which has the super-population model with random effects, one of which is the
well-known nested error regression model (NERM) proposed by Battese et al. (1988).

Let Yik and xik(j) denote the value of a characteristic of interest and its pj-dimensional
auxiliary variable for the kth unit of the ith area for i = 1, . . . , q and k = 1, . . . , Ni. Note that
xik(j) is subvector of xik(ω), which is the vector of the explanatory variables in the full model
ω, and we hereafter abbreviate the model index j and write xik instead of xik(j), p instead of
pj and others. Then, the NERM is

Yik = x
T
ikβ + bi + εik (i = 1, . . . , q; k = 1, . . . , Ni), (4.23)

where β is a p × 1 vector of regression coefficients, bi is a random effect for the ith area and
bi’s and εik’s are mutually independently distributed as bi ∼ N (0, τ2) and εik ∼ N (0, σ2).
We consider the situation that only ni values of the Yik’s are observed through some sampling
procedure. We define the number of the unobserved variables in the ith area by Ni − ni = ri
and let n = n1 + · · · + nq, r = r1 + · · · + rq. Suppose, without loss of generality, the first ni
elements of {Yi1, . . . , Yi,Ni} are observed, which are denoted by y1, . . . , yi,ni , and Yi,ni+1, . . . , Yi,Ni
are unobserved. Then the observed model is defined as

yik = x
T
ikβ + bi + εik (i = 1, . . . , q; k = 1, . . . , ni), (4.24)

which corresponds to (4.2) with y = (yT
1 , . . . ,y

T
q )

T for yi = (yi1, . . . , yi,ni)
T,X = (XT

1 , . . . ,X
T
q )

T

for Xi = (xi1, . . . ,xi,ni)
T, Z = diag (Z1, . . . ,Zq) for Zi = 1ni , G = ψIq and R = In, where

1ni denotes an ni × 1 vector of ones and ψ = τ2/σ2. In the derivation of our proposed criteria,
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we have assumed that the covariance matrix of b is σ2G for a known matrix G. However in the
NERM, G includes the parameter ψ, which is usually unknown and has to be estimated. In this
case, we propose thatG in the bias correction should be replaced with its plug-in estimatorG(ψ̂).
The influence caused by the replacement may be limited because ψ is the nuisance parameter
when one is interested in selecting only explanatory variables. Kawakubo and Kubokawa (2014)
discussed the problem in their Remark 3.1.

We consider two types of predictive models. The first one can be used in the situation where
all xik’s are available. Then the predictive model, which we call the ‘unit level predictive model’,
is defined by

Yik = x
T
ikβ + bi + εik (i = 1, . . . , q; k = ni + 1, . . . , Ni), (4.25)

which corresponds to (4.3) with ỹ = (ỹT
1 , . . . , ỹ

T
q )

T for ỹi = (Yi,ni+1, . . . , Yi,Ni)
T, X̃ = (X̃

T

1 , . . . , X̃
T

q )
T

for X̃i = (xi,ni+1, . . . ,x
T
i,Ni

)T, Z̃ = diag (Z̃1, . . . , Z̃q) for Z̃i = 1ri , R̃ = Ir. Note that m = r.

In the problem of small area prediction, we often encounter the situation where all xik’s are
not observed but the area mean x̄i = N−1

i

∑Ni
k=1 xik is known and we are interested in predicting

Y i, which is the mean of finite population {Yi1, . . . , Yi,Ni}, by using the value of x̄i. Then the
second type of predictive model, which we call the ‘area level predictive model’, can be defined
as

Y i(u) = x̄
T

i(u)β + bi + ε̄i(u) (i = 1, . . . , q), (4.26)

where Y i(u) = r−1
i

∑Ni
k=ni+1 Yik, the mean of unobserved variables, x̄i(u) = r−1

i

∑Ni
k=ni+1 xik,

calculated from x̄i and (xi1, . . . ,xini), and ε̄i(u) = r−1
i

∑Ni
k=ni+1 εik distributed as N (0, σ2/ri).

The model (4.26) corresponds to (4.3) with ỹ = (Y 1(u), . . . , Y q(u))
T, X̃ = (x̄1(u), . . . , x̄q(u))

T,

Z̃ = Iq and R̃ = diag (R̃1, . . . , R̃q) for R̃i = 1/ri. Note that m = q.

After selecting explanatory variables with our proposed criteria, we predict Y i(u) by the

empirical best linear unbiased predictor Ŷ i(u) = x̄
T

i(u)β̂ + b̂i and obtain a predictor of the finite

population mean Y i, which is given as

Ŷ i =
1

Ni

{
ni∑
k=1

yik + riŶ i(u)

}
. (4.27)

Thus, covariate shift appears in standard models for small area prediction and the proposed
criterion is important and useful in such a situation.

4.5 Simulations

4.5.1 Simulations of measuring the biases of estimating the true cAI by the
criteria

In this subsection, we compare the performance of the criteria by measuring the biases of estimat-
ing the cAI. We consider a class of the nested candidate models jα = {1, . . . , α} for α = 1, . . . , pω
where pω = 7. The true observed model is the NERM in (4.24) with σ2 = τ2 = 1 and ni = 3 for
i = 1, . . . , q. We consider the unit level predictive model (4.25) for the first experiment and the
area level predictive model (4.26) for the second experiment. The explanatory variables in the
full model xik(ω)’s (i = 1, . . . , q; k = 1, . . . , Ni) are independently generated by N (0,Σx) where
Σx = 0.9Ipω+0.1Jpω for Jpω = 1pω1

T
pω . The true coefficient vector β∗ is β∗ = (β1, . . . , βp∗ , 0, 0)
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for p∗ = 5 and βl’s (1 ≤ l ≤ p∗) are generated by βl = 2 × ((−1)l/(l + 0.7)) × U(1, 2) for a
uniform random variable U(1, 2) on the interval (1, 2). The values of the explanatory variables
xik’s and the vector of regression coefficients β∗ are fixed through simulations.

Table 4.1: Relative biases of estimating cAI by CScAIC, ĉAI and ĉAI
†
for unit level predictive

model

true value relative bias

model cAI CScAIC ĉAI ĉAI
†

pattern (a): q = 10

j1 206.38 -33.439 -0.33371 -0.080972
j2 152.81 -18.840 -0.2414 -0.16414
j3 140.79 -18.556 -0.23026 -0.46789
j4 132.61 -11.451 0.26445 -0.19514
j5 116.51 -0.0019291 1.5979 0.49514
j6 122.46 -0.050686 0.77756 0.15429
j7 128.88 0.0086256 0.09468 0.09468

pattern (b): q = 15

j1 233.35 -0.22534 0.11255 0.1159
j2 189.54 9.431 0.24145 0.21667
j3 177.28 14.197 0.42246 0.37347
j4 163.62 -0.76563 0.32597 0.02934
j5 152.94 0.13627 0.8566 0.25115
j6 156.73 0.068668 0.53817 0.15002
j7 161.65 0.083897 0.015869 0.015869

pattern (c): q = 20

j1 299.12 4.3775 0.084838 0.084654
j2 252.60 6.1677 0.24072 0.23581
j3 250.27 -5.1825 -0.016634 0.010911
j4 208.25 2.6115 0.36013 0.23929
j5 197.52 0.25682 0.53321 0.26101
j6 200.38 0.24977 0.40855 0.25647
j7 203.57 0.22713 0.21272 0.21272

Table 4.1 and 4.2 report the true values of the cAI and the relative biases of estimating the

cAI by the criteria CScAIC in (4.7), ĉAI in (4.19) and ĉAI
†
in (4.22), for the experiment using

the unit level predictive model and for the experiment using the area level predictive model,
respectively. We handle the cases where the number of the areas q = 10, 15, 20. The true
values of cAI in each candidate model are calculated based on (4.4) with 10000 Monte Carlo
iterations. The relative biases of estimating the cAI by the criteria is defined as

100× E[IC]− cAI

cAI
,

where IC = CScAIC, ĉAI, ĉAI
†
and expectation is computed based on 1000 replications. From

the tables, we can see the following facts. Firstly, the CScAIC has large biases for underspecified
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Table 4.2: Relative biases of estimating cAI by CScAIC, ĉAI and ĉAI
†
for area level predictive

model

true value relative bias

model cAI CScAIC ĉAI ĉAI
†

pattern (a): q = 10

j1 61.095 -10.429 -0.27157 -0.21359
j2 46.635 5.4222 0.40292 -0.055653
j3 50.744 -10.285 0.36735 -0.23857
j4 47.323 -0.77484 1.3412 0.36198
j5 45.735 -0.21108 2.2751 0.60073
j6 49.452 -0.32466 0.82334 0.017969
j7 52.805 -0.29278 -0.082743 -0.082743

pattern (b): q = 15

j1 95.393 -5.4716 0.12331 0.13930
j2 70.056 17.521 0.39905 0.36599
j3 66.412 21.039 0.59611 0.53872
j4 61.310 5.174 0.58453 0.10853
j5 60.532 0.23723 1.0853 0.25515
j6 63.109 0.13276 0.50306 0.096935
j7 65.379 0.16648 -0.0017143 -0.0017143

pattern (c): q = 20

j1 98.841 21.017 0.18161 0.17565
j2 94.83 10.059 0.31607 0.30894
j3 88.346 5.6464 0.13835 0.11302
j4 78.383 7.8734 0.46942 0.27593
j5 77.794 0.18930 0.54202 0.17009
j6 79.277 0.18908 0.41365 0.18534
j7 81.216 0.15395 0.11783 0.11783
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models, namely j1, j2, j3 and j4, while the modified estimators of the cAI, ĉAI and ĉAI
†
have

smaller biases for both overspecified and underspecified models. Secondly, ĉAI
†
can estimate the

cAI more unbiasedly than ĉAI can for the case of small sample size because ĉAI
†
is third order

asymptotically unbiased estimator of the cAI. However, the relative biases of ĉAI, which is the
second order asymptotically unbiased estimator of the cAI, gets smaller as the sample size is

larger and the difference in performance between ĉAI and ĉAI
†
is not very important.

4.5.2 Simulations of predicting finite population mean

In this subsection, we investigate the numerical performance of the small are prediction problem
explained in Section 4.4. We consider the model class which consists of all subsets of the full
model ω = {1, . . . , pω} for pω = 5. The true observed model is the NERM in (4.23) with
σ2 = τ2 = 1 and ni = 3 for i = 1, . . . , q, but we consider that τ2 is unknown, namely G = ψIq
for ψ = τ2/σ2 and ψ is the unknown parameter. Estimating procedure of ψ is the same as the
one introduced in Section 3.4. We consider both the unit level predictive model (4.25) and the
area level predictive model (4.26). The explanatory variables xik’s for k = 1, . . . , ni, namely the
observed model, are independently generated by N (41pω ,Σx) where Σx = 0.9Ipω +0.1Jpω . On
the other hand, the explanatory variables xik’s for k = ni + 1, . . . , Ni, namely the predictive
model, are independently generated by N (a1pω ,Σx) for a = 2, 4, 6. Under this setting, we
measure the simulated prediction error of the best model selected by the conventional cAIC
of Vaida and Blanchard (2005) and ĉAI’s based on unit level predictive model and area level
predictive model. The prediction error is measured by quadratic loss

q∑
i=1

(Ŷ i − Y )2,

where Ŷ is given by (4.27). The prediction errors are given as the averages based on 1000
replications.

Table 4.3: Prediction errors based on Vaida and Blanchard (2005)’s cAIC (VB), ĉAI using unit

level predictive model (unit) and ĉAI using area level predictive model (area). The values in
parentheses are the improvement over VB expressed in percentage.

VB unit area

a=2 0.16966 0.16925 0.16887
(0.24) (0.47)

a=4 0.15419 0.15382 0.15322
(0.24) (0.63)

a=6 0.15346 0.15316 0.15257
(0.20) (0.58)

Table 4.3 reports the prediction errors of the best model selected by the cAIC of Vaida and
Blanchard (2005) denoted by ‘VB’, ĉAI using unit level predictive model denoted by ‘unit’,

and ĉAI using area level predictive model denoted by ‘area’. The values in parentheses are the
improvement over the prediction error based on the cAIC expressed in percentage. It can be
seen that our proposed criteria are better than the cAIC in the sense that predicting the small
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area mean. It is valuable to point out that the prediction error of the mean of finite population
can be improved by using our proposed criteria, which motivates us to use them for variable
selection in small area prediction of the finite population.

4.6 Proofs

Firstly, we introduce the following lemma, which was shown in Section A.2 of Srivastava and
Kubokawa (2010).

Lemma 4.6 Assume that C is an n×n symmetric matrix, M is an idempotent matrix of rank
p and that v ∼ N (0, In). Then,

E

[
vTCu

vT(In −M)v

]
=

tr (C)

n− p− 2
− 2tr [C(In −M)]

(n− p)(n− p− 2)
.

4.6.1 Proof of Theorem 4.1

Because the cAI can be evaluated as (4.6) for the overspecified case, it suffices to show that

E[(y −Xβ̂j −Zb̂j)TR̃
−1

(y −Xβ̂j −Zb̂j)/σ̂2j ]

=
n

n− pj

{
tr [RΣ−1]− tr [RΣ−1X(XTΣ−1X)−1XTΣ−1]

}
. (4.28)

It follows that

y −Xβ̂j −Zb̂j
= y −Xβ̂j −ZGZTΣ−1(y −Xβ̂j)

= RΣ−1
{
y −Xβ −X(β̂j − β)

}
= RΣ−1(y −Xβ)−RΣ−1X(β̂j − β).

Then, we can see that

E[(y −Xβ̂j −Zb̂j)TR̃
−1

(y −Xβ̂j −Zb̂j)/σ̂2j ]

= E[(y −Xβ)TΣ−1RΣ−1(y −Xβ)/σ̂2j ] + E[(β̂j − β)TXTΣ−1RΣ−1X(β̂j − β)/σ̂2j ]

− 2E[(y −Xβ)TΣ−1RΣ−1X(β̂j − β)/σ̂2j ].

We define v = Σ−1/2(y −Xβ)/σ∗ and M = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2, which are the
same notations as those in Section 4.3. Then, we can rewrite the equation above as

E
[
(y −Xβ̂j −Zb̂j)TR̃

−1
(y −Xβ̂j −Zb̂j)/σ̂2j

]
= nE

[
vTΣ−1/2RΣ−1/2v

v(In −M)v

]
+ nE

[
vTMΣ−1/2RΣ−1/2Mv

vT(In −M)v

]
− 2nE

[
vTΣ−1/2RΣ−1/2Mv

vT(In −M)v

]
= I1 + I2 − 2I3 (say).
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It follows from Lemma 4.6 that

I1 = n×

{
tr [RΣ−1]

n− pj − 2
− 2tr [Σ−1/2RΣ−1/2(In −M)]

(n− pj)(n− pj − 2)

}

= n×
{
tr [RΣ−1]

n− pj − 2
− 2tr [RΣ−1]− 2tr [RP ]

(n− pj)(n− pj − 2)

}
. (4.29)

As for I2, because v
TMΣ−1/2RΣ−1/2v is independent of vT(In −M)v, we can obtain

I2 =
n

n− pj − 2
· tr [RP ].

To evaluate I3, we rewrite

I3 = nE

[
vTMΣ−1/2RΣ−1/2Mv

vT(In −M)v

]
+ nE

[
vT(In −M)Σ−1/2RΣ−1/2Mv

vT(In −M)v

]
. (4.30)

Because Mv is independent of (In −M)v and E[Mv] = 0, the second term of the right hand
side of the above equation is 0. Then we get I3 = I2 and (4.28) form (4.29) and (4.30). □

4.6.2 Proof of Theorem of 4.2

For the overspecified case, the cAI is evaluated as (4.6), which is the same expression as Theorem
4.2. Thus we show that the cAI in (4.11) is evaluated as (4.12) for the underspecified case.

Because E[(K0+K1)
−1] is evaluated as (3.32) in Chapter 3, it suffices to evaluate E[aTR̃

−1
a/σ2∗].

Let u = y −X(ω)β∗. Then, we can rewrite X̃(j)β̂j − X̃(ω)β∗ in a as

X̃(j)β̂j − X̃(ω)β∗ = P̃ j(X(ω)β∗ + u)− X̃(ω)β∗

= (P̃ jX(ω)− X̃(ω))β∗ + σ∗P̃ jΣ
1/2v.

Next, we can rewrite X(j)β̂j −X(ω)β∗ in a as

X(j)β̂j −X(ω)β∗ = σ∗Σ
1/2{M j(W ωβ∗ + v)−W ωβ∗}

= σ∗Σ
1/2{−(Mω −M j)W ωβ∗ +M jv}

= −Σ(P ω − P j)X(ω)β∗ + σ∗Σ
1/2M jv.

Then, we obtain
a = Bβ∗ + σ∗(P̃ jΣ

1/2 − Z̃GZTΣ−1/2M j)v.

Moreover, it follows that

P̃ jΣ
1/2 − Z̃GZTΣ−1/2M j = (X̃(j)− Z̃GZTΣ−1X(j))(X(j)TΣ−1X(j))−1X(j)TΣ−1/2

= A(X(j)TΣ−1X(j))−1X(j)TΣ−1/2

Thus, E[aTR̃
−1
a/σ2∗] can be evaluated as

E[aTR̃
−1
a/σ2∗] = tr [R̃

−1
A(X(j)TΣ−1X(j))−1AT] + βT

∗B
TR̃

−1
Bβ∗/σ

2
∗. (4.31)

It follows from (3.32) and (4.31) that

n · E[(K0 +K1)
−1]{tr (R̃

−1
Λ) + E[aTR̃

−1
a/σ2∗]}

= (γ + βT
∗B

TR̃
−1
Bβ∗/σ

2
∗)×

{
λ+

−2λ3 + (pj + 4)λ2

n

}
+O(n−1),

which shows that the cAI in (4.11) is approximated to (4.12). □
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4.6.3 Proof of Lemma 4.1

When the candidate model j is overspecified, E(λ̂) = E(λ̂2) = E(λ̂3) = 1 because σ̂2ω/σ̂
2
j ∼

Be((n− pω)/2, (pω − pj)/2). Thus, it follows that E(R̂2) = 0.

When the candidate model j is underspecified, it follows that

E

( σ̂2ω
σ̂2j

)k = E

[(
K0

K0 +K1

)k]
= λk +O(n−1), (4.32)

for k = 1, 2, 3 because (K0 +K1)
−1 is expanded as (3.31) and K0 = vT(In −Mω)v. Thus, it

follows that R̂2 = R2 +O(n−1). □

4.6.4 Proof of Lemma 4.2

When the candidate model j is overspecified, E(R̂1) = 0 because E(λ̂) = E(λ̂2) = E(λ̂3) = 1.

When the candidate model j is underspecified, it follows from (3.33) that

E(λ̂) = λ+
−λ3 + (pj + 2)λ2 − pjλ

n
+O(n−2). (4.33)

Thus it follows from (4.32) and (4.33) that E(R̂1) = R1 +O(n−1). □

4.6.5 Proof of Lemma 4.3

Firstly, note that

R3(η∗) = λ · βT
∗B

TR̃
−1
Bβ∗/σ

2
∗,

where λ = 1/(1 + δ) for

δ = βT
∗X(ω)T(P ω − P j)X(ω)β∗/(nσ

2
∗).

Then, we can see that
∂R3(η∗)

∂η∗
=
∂λ

∂δ
· ∂δ
∂η∗

and that ∂λ/∂δ = −(1 + δ)−2. After some calculations, we can obtain Lemma 4.3. □

4.6.6 Proof of Lemma 4.4

Firstly, note that E[R3(η̃)] is expanded as

E[R3(η̃)] = R3(η∗) +B1(η∗) +O(n−1),

where B1(η∗) is given as (4.17). Because B1(η∗) = O(1), it follows that B1(η̃) = B1(η∗) +
O(n−1), which shows that

E[
˜̃
R3] = R3 +O(n−1).

In the same way, we can obtain E[R̃4] = E[R4(η̃)] = R4(η∗) +O(n−1). □
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4.6.7 Proof of Lemma 4.5

It follows from (4.21) that

E[R̂3] = E
[
2R3(η̃)− Eη̃[R3(η̃

†)] + Eη̃[B1(η̃
†)]−B1(η̃)

]
.

Because E[R3(η̃)] is expanded as E[R3(η̃)] = R3(η∗) + B1(η∗) + B2(η∗) + O(n−2), we can see
that

E
[
2R3(η̃)− Eη̃[R3(η̃

†)]
]
= 2 {R3(η∗) +B1(η∗) +B2(η∗)} − E [R3(η̃) +B1(η̃) +B2(η̃)] +O(n−2)

= R3(η∗) +B1(η∗) +B2(η∗)− E [B1(η̃) +B2(η̃)] +O(n−2).

Moreover, because E[B1(η̃)] = B1(η∗) + B11(η∗) + O(n−2) and E[B2(η̃)] = B2(η∗) + O(n−2),
the equation above can be rewritten as

E
[
2R3(η̃)− Eη̃[R3(η̃

†)]
]
= R3(η∗)−B11(η∗) +O(n−2). (4.34)

Next, it is seen that

E
[
Eη̃[B1(η̃

†)]−B1(η̃)
]
= E[B1(η̃) +B11(η̃)]− {B1(η∗) +B11(η∗)}+O(n−2)

= B11(η∗) +O(n−2). (4.35)

Thus, it follows from (4.34) and (4.35) that

E[R̂3] = R3(η∗) +O(n−2).

Similarly, we can show that E[R̂4] = R4(η∗) +O(n−2). □

4.6.8 Proof of Theorem 4.3 and Theorem 4.4

From Theorem 4.2 and Lemmas 4.1–4.5, we can easily show the theorems. □



Chapter 5

Conditional AIC in mixed effects
models based on natural exponential
family

In this chapter, we consider the variable selection problem for the class of mixed effects models
based on natural exponential family, which includes useful nonlinear mixed models, Poisson-
gamma model and binomial-beta model. We construct the conditional AIC in the models and
show the usefulness for variable selection.

5.1 Motivation

For variable selection problem in mixed effects models, Vaida and Blanchard (2005) introduced
the conditional Akaike information (cAI), which is related to the expected Kullback–Leibler
divergence based on the conditional likelihood given random effects. The cAI and the resulting
information criterion conditional AIC (cAIC) are appropriate when one is interested in predict-
ing the random effects. Vaida and Blanchard (2005) proposed the cAIC for variable selection
criterion in normal linear mixed model. Since then, the cAIC has been studied for various
models, which include generalized linear mixed model (GLMM) as well as linear mixed model.

However, variable selection problem in nonlinear mixed model, for example Poisson-gamma
model or binomial-beta model, has not been considered well. Although the conventional AIC
(or marginal AIC, mAIC), which is based on the marginal likelihood integrating out the random
effects, can be used as a variable selection criterion, the mAIC is not appropriate for predicting
the random effects. Then, we consider the cAI for mixed effects models based on natural
exponential family and construct the cAIC as an asymptotically unbiased estimator of the cAI.

The rest of this chapter is organized as follows. In Section 5.2, we explain about the mixed
effects models based on natural exponential family and define the cAI for the class of the models.
In Section 5.3, we evaluate and estimate the bias correction and construct the cAIC in three
ways. The numerical performance of the proposed criteria is investigated by simulations in
Section 5.4. Section 5.5 shows some results of analytical calculations and Section 5.6 gives
proofs of lemmas and theorems.

49
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5.2 Model and conditional AIC

5.2.1 Mixed effects models based on natural exponential family

Let y1, . . . , ym be mutually independent random variables where the conditional distribution of
yi given θi belongs to the following natural exponential family (NEF):

yi|θi ∼ f(yi|θi) = exp[ni(θiyi − ψ(θi)) + c(yi, ni)], (i = 1, . . . ,m), (5.1)

where θi is the natural parameter, ni is a known scale parameter and ψ(·) and c(·, ·) are functions
specific to each distribution. As an example of the random variable yi with probability density
(or mass) function (5.1), we consider the following situation.

For i = 1, . . . ,m, which denote clusters (or areas in the context of small area estimation),
let the random variables Zi1, . . . , Zi,ni be independent and identically distributed given θi with
the common distribution belonging to the one parameter exponential family, namely,

P (Zij ∈ A) =

∫
A
exp{θiz − ψ(θi)}dF (z),

with F a Stieltjes measure on R. When we define yi = (Zi1 + · · · + Zi,ni)/ni, the conditional
distribution of yi given θi has the density function of the form (5.1). This situation is also
considered in Ghosh and Maiti (2008), who developed empirical Bayes (EB) confidence intervals
for population means in each small area with NEF distributions. In their work, the result is
based on an asymptotic theory in the sense that ni → ∞ and m → ∞. We also consider the
same setup to derive a criterion in Section 5.3.2.

From the property of NEF, the mean of yi given θi is

µi = E(yi|θi) = ψ′(θi),

where ψ′(·) denotes the derivative of ψ(·). Define Q(µi) = ψ′′(θi), where ψ
′′(·) is the second

derivative of ψ(·), then the variance of yi given θi is

V (yi|θi) =
ψ′′(θi)

ni
=
Q(µi)

ni
.

Q(·) is called the variance function and we hereafter assume that Q(·) is a quadratic function,
namely Q(x) = v0 + v1x + v2x

2 for known constants v0, v1 and v2, which are not simultane-
ously zero. The family of such distributions is called natural exponential family with quadratic
variance function (NEF-QVF), many properties of which are studied by Morris (1982, 1983).

As the random cluster (area) effect, we consider the conjugate prior for θi with the probability
density function

p(θi|λ,mi) = exp[λ(miθi − ψ(θi))]C(λ,mi), (5.2)

where λ is an unknown scalar hyperparameter and C(·, ·) is a function specific to each distribu-
tion. The mean and variance of µi = E(yi|θi) are

E(µi|λ,mi) = mi and V (µi|λ,mi) =
Q(mi)

λ− v2
,

respectively. When p × 1 auxiliary variable xi is available, one uses xT
i β as a predictor of mi,

where β is an unknown p × 1 vector of regression coefficients. We here consider the following
link function h(·) between mi and x

T
i β:

mi = h−1(xT
i β).
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If h−1(·) = ψ′(·), the link function h(·) is called canonical. We henceforth consider the canonical
link. We define the vector of the unknown parameters in this model as η = (βT, λ)T.

The posterior density function of θi given yi, and the marginal density (or mass) function of
yi are

p(θi|yi, λ,mi) = exp[(ni + λ)(µ̂Bi θi − ψ(θi))]C(ni + λ, µ̂Bi ), (5.3)

m(yi|λ,mi) =
C(λ,mi)

C(ni + λ, µ̂Bi )
exp[c(yi, ni)], (5.4)

respectively, where µ̂Bi is the Bayes estimator of µi under quadratic loss, namely

µ̂Bi = µ̂i(yi,η) =
niyi + λmi

ni + λ
, mi = ψ′(xT

i β).

We can get the empirical Bayes (EB) estimator of µi by substituting η̂ = (β̂
T

, λ̂)T for η in
µ̂i(yi,η) as follows:

µ̂EBi = µ̂i(yi, η̂) =
niyi + λ̂m̂i

ni + λ̂
, m̂i = ψ′(xT

i β̂),

where β̂ and λ̂ are some estimators of β and λ based on the marginal distribution of y =
(y1, . . . , ym)

T.
The model explained above is an example of general mixed effects model (2.1) for y and

θ = (θ1, . . . , θm)
T and is called nonlinear mixed model unless h(·) is the identity function, which

is the case of normal linear mixed model. Nonlinear mixed model is useful in the context of
small area estimation and is used by Ghosh and Maiti (2004, 2008), Lohr and Rao (2009) and
others. We provide two useful examples belonging to the nonlinear mixed model, one for the
count and the other for binary data sets.

[1] Poisson-gamma mixture model. Let z1, . . . , zm be mutually independent random vari-
ables having

zi|µi ∼ Po(niµi) and µi ∼ Ga(λmi, λ
−1),

where µ1, . . . , µm are mutually independent, Po(µ) denotes Poisson distribution with mean µ,
and Ga(a, b) denotes gamma distribution with density function

f(x) =
1

Γ(a)ba
xa−1 exp(−x/b), x > 0,

where Γ(·) denotes gamma function. Let yi = zi/ni. Then the probability mass function of yi
given µi is (5.1) with θi = log(µi), ψ(·) = exp(·) and the probability density function of θi is
(5.2). In this model, canonical link function is h(·) = ψ′−1(·) = log(·) and the quadratic variance
function is Q(x) = x, namely v1 = 1, v0 = v2 = 0.

[2] binomial-beta mixture model. Let z1, . . . , zm be mutually independent random variables
having

zi|µi ∼ Bin(ni, µi) and µi ∼ Beta(λmi, λ(1−mi)),

where µ1, . . . , µm are mutually independent, Bin(n, p) denotes binomial distribution, and Beta(a, b)
denotes beta distribution. Let yi = zi/ni. Then the probability mass function of yi given µi is
(5.1) with θi = logit(µi) and ψ(θi) = log(1 + exp(θi)) and the probability density function of
θi is (5.2). In this model, canonical link function is h(·) = ψ′−1(·) = logit(·) and the quadratic
variance function is Q(x) = x− x2, namely v0 = 0, v1 = 1, v2 = −1.
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5.2.2 Variable selection problem in nonlinear mixed model

For the variable selection problem in the nonlinear mixed model, the marginal AIC (mAIC) can
be easily used, because the marginal likelihood (5.4) is obtained analytically. However, when
one wants to predict the random area effect θi, the mAIC based on the marginal likelihood is
not appropriate (Vaida and Blanchard, 2005). Then we derive the cAIC for nonlinear mixed
model.

In the same way as the previous chapters, we define candidate models by the index set j,
which is a subset of ω = {1, . . . , pω}. Then, we define X(j) = (x1(j), . . . ,xm(j))

T, where xi(j)
is a pj × 1 vector for pj = #(j). Let j∗ denote the true model and the dimension of the true
model be pj∗ , which is abbreviated to p∗. To derive the criterion, we here assume that the
candidate model j is overspecified. Under the assumption, the mean of the true model can be
expressed as

mi = ψ′(xi(j)
Tβ∗

j ),

where β∗
j is pj × 1 vector of regression coefficients, whose pj − p∗ components are exactly 0

and the rest of components are not 0. Thus we henceforth abbreviate xi(j) to xi, β
∗
j to β for

notational convenience.

5.2.3 Conditional AIC in nonlinear mixed model

Vaida and Blanchard (2005) proposed the cAIC as an (asymptotically) unbiased estimator of a
part of the prediction risk of the plug-in predictive density relative to the expected Kullback–
Leibler divergence, which is called the conditional Akaike Information (cAI). Firstly, let us
define the conditional Akaike Information (cAI) for the nonlinear mixed model. Let ỹi be an
independent replication of yi given θi. Then the logarithm of the plug-in predictive density is

log{f(ỹi|θ̂EBi )} = ni(θ̂
EB
i ỹi − ψ(θ̂EBi )) + c(ỹi, ni),

where θ̂EBi = ψ′−1(µ̂EBi ) = h(µ̂EBi ). Because the second term of the equation above, namely
c(ỹi, ni), is irrelevant to the candidate model, we define the cAI in the nonlinear mixed model
as

cAI = − 2E(y,θ)Eỹ|θ

[
m∑
i=1

ni(θ̂
EB
i ỹi − ψ(θ̂EBi ))

]

= − 2E(y,θ)

[
m∑
i=1

ni(θ̂
EB
i µi − ψ(θ̂EBi ))

]
, (5.5)

where E(y,θ) and Eỹ|θ denote expectation with respect to the joint distribution of (y,θ) and
the conditional distribution of ỹ given θ for ỹ = (ỹ1, . . . , ỹm)

T, respectively. When we estimate
the cAI by −2

∑m
i=1 ni(θ̂

EB
i yi − ψ(θ̂EBi )), the bias is

E

[
−2

m∑
i=1

ni(θ̂
EB
i yi − ψ(θ̂EBi ))

]
− cAI = − 2E

[
m∑
i=1

niθ̂
EB
i (yi − µi)

]
= − 2B (say). (5.6)

Then we propose the cAIC for the nonlinear mixed model as bias corrected estimator of the cAI,
which is given by

cAIC = −2
m∑
i=1

ni(θ̂
EB
i yi − ψ(θ̂EBi )) + 2B̂,



5.3. APPROXIMATION AND ESTIMATION OF PENALTY TERM 53

where B̂ is an asymptotically unbiased estimator of B, which we call the bias correction term or
the penalty term. In the next section, we give an asymptotic approximation and an estimator
of the penalty term B.

5.3 Approximation and estimation of penalty term

5.3.1 Decomposition of penalty term

Because it is difficult to evaluate the penalty term B exactly, we give second-order approximation
of B for large m. Taylor series expansion of θ̂EBi = h{µ̂i(yi, η̂)} around η̂ = η gives

h(µ̂EBi ) = h(µ̂Bi ) +
∂h(µ̂Bi )

∂ηT
(η̂ − η) + 1

2
(η̂ − η)T∂

2h(µ̂Bi )

∂η∂ηT
(η̂ − η) + op(m

−1).

Then the penalty term B in (5.6) can be expanded as

B = E

[
m∑
i=1

nih(µ̂
B
i )(yi − µi)

]
+ E

[
m∑
i=1

ni(yi − µi)
∂h(µ̂Bi )

∂ηT
(η̂ − η)

]
,

+
1

2
E

[
m∑
i=1

ni(yi − µi)(η̂ − η)T∂
2h(µ̂Bi )

∂η∂ηT
(η̂ − η)

]
+ o(1)

= B1(η) +B2(η) + 2−1B3(η) + o(1), (say) (5.7)

where B1 = O(m), B2 = O(1) and B3 = O(1). We evaluate each term of (5.7) in the following
subsections by three different methods. To this end, we consider the following conditions:

(C1) The number of clusters m goes to infinity, and for each i = 1, . . . ,m, ni is sufficiently large,
which is of order ni = O(m1/2+δi) for some positive δi > 0.

(C2) The number of clusters m goes to infinity, and for each i = 1, . . . ,m, ni = O(1).

In the next subsection, we evaluate and estimate B1, B2 and B3 by analytical method under
the condition (C1). In Section 5.3.3 and 5.3.4, we consider the case of constant ni, namely
the condition (C2). In Section 5.3.3, we propose a method using numerical integration and
differentiation, and in Section 5.3.4 we give a numerical method based on parametric bootstrap.

5.3.2 Analytical method for the case of large ni

Firstly, we evaluate B1, which is given by

B1(η) = E

[
m∑
i=1

nih(µ̂
B
i )(yi − µi)

]
. (5.8)

Though the Bayes estimator µ̂Bi = (niyi + λmi)/(ni + λ) is written as the linear function of yi,
the function h(·), which is the link between the mean parameter and the natural parameter,
is nonlinear for most of the members of the natural exponential family except for the normal
distribution. Thus it is difficult to evaluate B1 exactly. We here use closeness of µ̂Bi and µi
for large ni, and expand h(µ̂Bi ) = h(µi + µ̂Bi − µi) in (5.8). Then h(µ̂Bi ) is approximated by
polynomials of the linear function of random variables yi and µi, and B1 can be asymptotically
approximated.
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We give two examples of approximation of B1, one is the Poisson-gamma mixture model,
where h(·) is the logarithmic function, the other is the binomial-beta mixture model, where h(·)
is the logit function. For the Poisson-gamma mixture model, h(µ̂Bi ) = log(µ̂Bi ) is expanded as

h(µ̂Bi ) = log

{
µi

(
1 +

µ̂Bi − µi
µi

)}
= θi +

µ̂Bi − µi
µi

− 1

2

(
µ̂Bi − µi
µi

)2

+
1

3

(
µ̂Bi − µi
µi

)3

+

∞∑
k=4

(−1)k+1

k

(
µ̂Bi − µi
µi

)k
.

Because E
[
{(µ̂Bi − µi)/µi}r(yi − µi)

]
= O(n−3

i ) for r ≥ 4, if ni = O(m1/2+δi) for some positive
δi > 0, it follows that

B1(η) =

m∑
i=1

niE[θi(yi − µi)] +

m∑
i=1

niE

[
µ̂Bi − µi
µi

(yi − µi)

]
− 1

2

m∑
i=1

niE

[(
µ̂Bi − µi
µi

)2

(yi − µi)

]

+
1

3

m∑
i=1

niE

[(
µ̂Bi − µi
µi

)3

(yi − µi)

]
+ o(1).

We can evaluate each term in the equation above exactly, noting that

µ̂Bi − µi =
ni

ni + λ
(yi − µi)−

λ

ni + λ
(µi −mi).

After some calculations, we can obtain the following lemma.

Lemma 5.1 Under the condition (C1), for the Poisson-gamma mixture model, B1 in (5.8) is
approximated up to second-order as

B1(η) = B11(η) + o(1),

where

B11(η) = m−
m∑
i=1

2λ2mi − λ

2ni(λmi − 1)
. (5.9)

For the binomial-beta mixture model, where h(·) is the logit function, h(µ̂Bi ) = log{µ̂Bi /(1−
µ̂Bi )} is expanded as

h(µ̂Bi ) = log

{
µi

(
1 +

µ̂Bi − µi
µi

)}
− log

{
(1− µi)

(
1− µ̂Bi − µi

1− µi

)}
= θi + log

(
1 +

µ̂Bi − µi
µi

)
− log

(
1− µ̂Bi − µi

1− µi

)
=θi + (Ci +Di)−

1

2
(C2

i −D2
i ) +

1

3
(C3

i +D3
i ) +

∞∑
k=4

1

k

{
(−1)k+1Cki +Dk

i

}
,

where Ci = (µ̂Bi − µi)/µi, Di = (µ̂Bi − µi)/(1− µi). If ni = O(m1/2+δi), δi > 0, it follows that

B1 =

m∑
i=1

niE[θi(yi − µi)] +

m∑
i=1

niE[(Ci +Di)(yi − µi)]−
1

2

m∑
i=1

niE[(C2
i −D2

i )(yi − µi)]

+
1

3

m∑
i=1

niE[(C3
i +D3

i )(yi − µi)] + o(1),
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where each term in the equation above can be evaluated exactly. After some calculations, we
get the following lemma.

Lemma 5.2 Under the condition (C1), for the binomial-beta mixture model, B1 in (5.8) is
approximated up to second-order as

B1(η) = B11(η) + o(1),

where

B11(η) = m−
m∑
i=1

λ+ 1

ni
+

m∑
i=1

4λ2mi(1−mi)− (λ+ 2)(λ− 1)

2ni(λmi − 1){λ(1−mi)− 1}
. (5.10)

B11(η̂), where B11(η) is given by (5.9) or (5.10), is expanded as

B11(η̂) = B11(η) +
∂B11(η)

∂ηT
(η̂ − η) + 1

2
tr

[
∂2B11(η)

∂η∂ηT
(η̂ − η)(η̂ − η)T

]
+ op(1),

then we propose a bias corrected estimator of B1 given by

B̂1 = B11(η̂)−B12(η̂)−B13(η̂), (5.11)

where

B12(η) =
∂B11(η)

∂ηT
E(η̂ − η),

B13(η) =
1

2
tr

[
∂2B11(η)

∂η∂ηT
E[(η̂ − η)(η̂ − η)T]

]
.

When η is estimated by the estimating equation (5.12) explained later, E(η̂ − η) and E[(η̂ −
η)(η̂−η)T] are analytically approximated by (5.34) and (5.31). For the Poisson-gamma mixture
model, ∂B11(η)/∂η and (∂2B11(η))/(∂η∂η

T) are

∂B11(η)

∂β
=

m∑
i=1

λ2mi

2ni(λmi − 1)2
xi,

∂B11(η)

∂λ
=

m∑
i=1

1

ni

{
1

2(λmi − 1)2
− 1

}
,

and

∂2B11(η)

∂β∂βT
= −

m∑
i=1

λ2mi(λmi + 1)

2ni(λmi − 1)3
xix

T
i ,

∂2B11(η)

∂β∂λ
= −

m∑
i=1

λmi

ni(λmi − 1)3
xi,

∂2B11(η)

∂λ2
= −

m∑
i=1

mi

ni(λmi − 1)3
.

For the binomial-beta mixture model, it follows that

∂B11(η)

∂β
=

m∑
i=1

λ2(λ− 1)(λ− 2)mi(1−mi)(1− 2mi)

2ni(λmi − 1)2{λ(1−mi)− 1}2
xi,

∂B11(η)

∂λ
= −

m∑
i=1

1

ni
+

m∑
i=1

−λ(3λ− 4)mi(1−mi) + (λ− 1)2

2ni(λmi − 1)2{λ(1−mi)− 1}2
,
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and

∂2B11(η)

∂β∂βT
= λ2(λ− 1)(λ− 2)

m∑
i=1

{ {1− 6mi(1−mi)}
2ni(λmi − 1)2{λ(1−mi)− 1}2

− λ2mi(1−mi)(1− 2mi)
2

ni(λmi − 1)3{λ(1−mi)− 1}3
}
mi(1−mi)xix

T
i ,

∂2B11(η)

∂β∂λ
= −

m∑
i=1

λ(3λ− 4)(1− 2mi)

2ni(λmi − 1)2{λ(1−mi)− 1}2

+

m∑
i=1

λ2(1− 2mi){λ(3λ− 4)mi(1−mi)− (λ− 1)2}
ni(λmi − 1)3{λ(1−mi)− 1}3

∂2B11(η)

∂λ2
=

{2(λ− 1)−mi(1−mi)(6λ− 4)}
2ni(λmi − 1)2{λ(1−mi)− 1}2

− {2mi(1−mi)λ− 1}{(λ− 1)2 − λ(3λ− 4)mi(1−mi)}
ni(λmi − 1)3{λ(1−mi)− 1}3

.

Next, we give an asymptotic approximation of B2 and B3 analytically when the hyperparam-
eter η is estimated by the estimating equation suggested by Godambe and Thompson (1989).
We define gi = (g1i, g2i)

T for g1i = yi −mi and g2i = (yi −mi)
2 − ϕiQ(mi) and

DT
i = E

(
−∂g

T
i

∂η

)
= Q(mi)

[
xi Q′(mi)ϕixi
0 −(1 + v2/ni)(λ− v2)

−2

]
,

Σi = Cov (gi) =

[
µ2i µ3i
µ3i µ4i − µ22i

]
,

where µri = E[(yi−mi)
r] and ϕi = (λ/ni+1)/(λ− v2). Following Ghosh and Maiti (2004), the

exact expressions of µri’s for r = 2, 3, 4, are

µ2i = ϕiQ(mi), µ3i =
Q(mi)Q

′(mi)(λ/ni + 1)(λ/ni + 2)

(λ− v2)(λ− 2v2)
,

µ4i = (di + 1)(2di + 1)(3di + 1)E[(µi −mi)
4] + 6n−1

i Q′(mi)(di + 1)(2di + 1)E[(µi −mi)
3]

+ n−2
i (di + 1)

[
7{Q′(mi)}2 + 2ni(4di + 3)Q(mi)

]
E[(µi −mi)

2]

+ n−3
i Q(mi)

[
ni(2di + 3)Q(mi) + {Q′(mi)}2

]
,

where di = v2/ni and E[(µi −mi)
2] = Q(mi)/(λ − v2), E[(µi −mi)

3] = 2Q(mi)Q
′(mi)/{(λ −

v2)(λ− 2v2)} and

E[(µi −mi)
4] =

3Q(mi)
[
(λ− 2v2)Q(mi) + 2{Q′(mi)}2

]
(λ− v2)(λ− 2v2)(λ− 3v2)

.

Then, Ghosh and Maiti (2004) derived the estimating equation:

s(η) = 0 for s(η) =

m∑
i=1

DT
i Σ

−1
i gi. (5.12)

This method is also used in Ghosh and Maiti (2008) and Kubokawa et al. (2014). The esti-
mating equation by Godambe and Thompson (1989) is an extension of quasi-likelihood methods
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proposed by Wedderburn (1974) and s(η) is the ‘extended quasi-score function’. In this context,
‘quasi-Fisher information’ is given by

E(ssT) =
m∑
i=1

DT
i Σ

−1
i E(gig

T
i )Σ

−1
i Di =

m∑
i=1

DT
i Σ

−1
i Di

=U (say),

and the asymptotic variance of η̂, which is the solution of s(η) = 0, is E(η̂η̂T) = U−1+o(m−1).
Derivation of the asymptotic bias and variance of η̂ are shown in Section 5.5.1 which gives a
stochastic expansion of η̂.

Following Ghosh and Maiti (2004), we define

Jr = Cov (s,
∂sr
∂η

), Kr = E

(
∂2sr
∂η∂ηT

)
, r = 1, . . . , p+ 1

aT = [tr (U−1J1), . . . , tr (U
−1Jp+1)], bT = [tr (U−1K1), . . . , tr (U

−1Kp+1)],

where s = (s1, . . . , sp+1)
T and the expressions of Jr and Kr are given by (5.37) and (5.38),

respectively. Then the asymptotic bias of η̂ is E(η̂−η) = U−1(a+b/2)+o(m−1). Furthermore,
we decompose U−1 as

U−1 =

[
U1

U2

]
, U−1 =

[
U11 U12

UT
12 U22

]
,

where U1 and U2 are (p, p+ 1) and (1, p+ 1) matrices, U11,U12 are (p, p) and (p, 1) matrices,
respectively, and U22 is a scaler. Now we can evaluate B2 as the following lemma.

Lemma 5.3 Under the condition (C1), B2 in (5.7) is approximated as

B2(η) = B21(η) +B22(η) + o(1),

when η is estimated by the estimating equation (5.12). B21 and B22 are

B21(η) =

m∑
i=1

niλ
2

(ni + λ)2
Q(mi)x

T
i U1D

T
i Σ

−1
i

[
ξ2i

ξ3i − ϕiQ(mi)ξ1i

]

−
m∑
i=1

n2iλ

(ni + λ)3
U2D

T
i Σ

−1
i

[
ξ3i

ξ4i − ϕiQ(mi)ξ2i

]
,

B22(η) =
m∑
i=1

niλ
2

(ni + λ)2
Q(mi)ξ1ix

T
i U1(a+ 2−1b)−

m∑
i=1

n2iλ

(ni + λ)3
ξ2iU2(a+ 2−1b),

where ξri = E[h′(µ̂Bi )(yi −mi)
r] for r = 1, . . . , 4 and their approximations in the case of ni =

O(m1/2+δi), δi > 0 are shown in Section 5.5.5.

By the lemma above, we can estimate B2 by

B̂2 = B21(η̂) +B22(η̂), (5.13)

which is second-order unbiased.

Next, B3 can be evaluated as follows.
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Lemma 5.4 Under the condition (C1), B3 in (5.7) is approximated as

B3(η) = B31(η) + 2B32(η) + o(1),

when η is estimated by the estimating equation (5.12). B31 and B32 are

B31(η) =

m∑
i=1

niλ
2

(ni + λ)2
Q(mi)Q

′(mi)ξ1ix
T
i U11xi,

B32(η) =

m∑
i=1

n2iλ

(ni + λ)3
Q(mi)ξ1ix

T
i U12,

where ξ1i = E[h′(µ̂Bi )(yi−mi)] and its approximation in the case of ni = O(m1/2+δi), δi > 0 are
shown in Section 5.5.5.

By the lemma above, we can estimate B3 by

B̂3 = B31(η̂) + 2B32(η̂), (5.14)

which is second-order unbiased.
Using B̂1, B̂2 and B̂3 given by (5.11), (5.13) and (5.14), we propose the cAIC in nonlinear

mixed model as follows:

cAIC = −2

m∑
i=1

ni(θ̂
EB
i yi − ψ(θ̂EBi )) + 2(B̂1 + B̂2 + 2−1B̂3). (5.15)

Theorem 5.1 Under the condition (C1), the cAIC in (5.15) is a second-order unbiased estima-
tor of cAI in (5.5), namely

E(cAIC) = cAI + o(1),

when η is estimated by the estimating equation (5.12).

5.3.3 Method for constant ni by using numerical integration and differentia-
tion

In the last subsection, we consider the condition of large ni to derive the criterion. However,
this condition is not appropriate for many cases in real data. The most typical example is small
area estimation, where the number of observations in each area is not very large. Then, in this
and the next subsection, we propose alternative methods of estimating the penalty term, which
does not need the assumption of large ni.

The first method is based on stochastic expansion of η̂, which is the same as the method of
the previous subsection. However we cannot approximate h(µ̂Bi ) by polynomials of µ̂Bi for the
case of ni = O(1). Then, we alternatively use numerical integration to evaluate the expectation
of complex functions of random variables. We firstly estimate B1. By the law of iterated
expectations and the fact that yi − µ̂Bi = λ(yi −mi)/(ni + λ), B1 can be rewritten as

B1(η) =

m∑
i=1

niλ

ni + λ
E[h(µ̂Bi )(yi −mi)].

Because it is hard to obtain closed form expression of B1(η), we propose to calculate B1(η̂)
by Monte Carlo simulation, or which can be seen as parametric bootstrap method. Bootstrap
sample y∗ = (y∗1, . . . , y

∗
m)

T is generated by

y∗i ∼ f(y∗i |θ∗i ), and θ∗i ∼ p(θ∗i |λ̂, m̂i). (5.16)



5.3. APPROXIMATION AND ESTIMATION OF PENALTY TERM 59

Then B1(η̂) can be written as

B1(η̂) =

m∑
i=1

niλ̂

ni + λ̂
E∗[h(µ̂

B∗
i )(y∗i − m̂i) | y], (5.17)

where µ̂B∗
i = (niy

∗
i + λ̂m̂i)/(ni+ λ̂) and E∗ denotes expectation with respect to the distribution

of y∗ given y. Monte Carlo approximation of (5.17) is

B1(η̂) ≈ B̃1
∗
= B−1

B∑
b=1

m∑
i=1

niλ̂

ni + λ̂
h(µ̂B∗

i (b))(y∗i (b)− m̂i), (5.18)

for large B, where y∗i (b) is the bth bootstrap sample based on (5.16) and µ̂B∗
i (b) is the version

of µ̂B∗
i based on the bootstrap sample.
Because B1(η̂) has second-order bias, we consider bias correction as follows:

B1(η̂)−B14(η̂)−B15(η̂),

where

B14(η) =
∂B1(η)

∂ηT
U(η)−1(a(η) + b(η)/2), and B15(η) =

1

2
tr

[
∂2B1(η)

∂η∂ηT
U(η)−1

]
,

noting that E(η̂− η) = U−1(a+ b/2)+ o(m−1) and E[(η̂− η)(η̂− η)T] = U−1 + o(m−1) when
η̂ is estimated by the estimating equation (5.12). The values of the first- and second-derivative
of B1(η) evaluated at η = η̂ is calculated by numerical differentiation method. We propose the
following procedure:

∂B1(η)

∂ηk

∣∣∣∣
η=η̂

≈ B̃1
∗
(η̂ + εek)− B̃1

∗
(η̂ − εek)

2ε
, (k = 1, . . . , p+ 1),

and

∂2B1(η)

∂ηk∂ηl

∣∣∣∣
η=η̂

≈


B̃1

∗(kk)
= {B̃1

∗
(η̂ + εek) + B̃1

∗
(η̂ − εek)− 2B̃1

∗
(η̂)}/ε2 (if k = l),

B̃1
∗(kl)

=
[
{B̃1

∗
(η̂ + ε(ek + el)) + B̃1

∗
(η̂ − ε(ek + el))− 2B̃1

∗
(η̂)}

−ε2{B̃1
∗(kk)

+ B̃1
∗(ll)

}
]
/(2ε2) (if k ̸= l),

for small positive ε, where ek is the (p+ 1)× 1 vector, with the kth component equal to 1 and
the other components equal to 0. Using these numerical integration and differentiation, we can

approximate B14(η̂) and B15(η̂), which we call B̂14
∗
and B̂15

∗
. Then we can obtain an estimator

of B1 as follows:
B̂1

∗
= B̃1

∗
− B̂14

∗
− B̂15

∗
. (5.19)

Next we estimate B2 and B3. By Lemma 5.3, we can approximate B2 as

B2(η) = B21(η) +B22(η) + o(1),

which is also valid under the condition (C2). In the previous subsection, ξri = E[h′(µ̂Bi )(yi−mi)
r]

(r = 1, . . . , 4) in B21 and B22 are approximated by Taylor series expansion of h(·) for large ni.
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However, we now consider the case of ni = O(1). Then we calculate ξri(η̂) by Monte Carlo
approximation based on bootstrap samples (5.16) as follows:

ξri(η̂) ≈ B−1
B∑
b=1

m∑
i=1

h′(µ̂B∗
i (b))(y∗i (b)− m̂i)

r.

Calculating ξri(η̂)’s, we can obtain B21(η̂) and B22(η̂) based on Monte Carlo approximation,

which we call B̂21
∗
and B̂22

∗
, and the following estimator of B2:

B̂2
∗
= B̂21

∗
+ B̂22

∗
. (5.20)

As for B3, Lemma 5.4 gave an asymptotic approximation. However, this approximation is based
on the condition (C1), we have to modify the evaluation. Then we give the following lemma.

Lemma 5.5 Under the condition (C2), B3 in (5.7) is approximated as

B3(η) = B33(η) + 2B34(η) +B35(η) + o(1),

when η is estimated by the estimating equation (5.12). B33(η), B34(η) and B35(η) are

B33(η) = B31(η) +

m∑
i=1

niλ
3

(ni + λ)3
{Q(mi)}2ν1ixT

i U11xi,

B34(η) = B32(η)−
m∑
i=1

n2iλ
2

(ni + λ)4
Q(mi)ν2ix

T
i U12,

B35(η) =
m∑
i=1

{
2n2iλ

(ni + λ)4
ξ2i +

n3iλ

(ni + λ)5
ν3i

}
× U22,

where νri = E[h′′(µ̂Bi )(yi −mi)
r] for r = 1, . . . , 3.

We calculate νri(η̂) in the lemma above by Monte Carlo approximation based on bootstrap
samples (5.16) as follows:

νri(η̂) ≈ B−1
B∑
b=1

m∑
i=1

h′′(µ̂B∗
i (b))(y∗i (b)− m̂i)

r

Calculating νri(η̂)’s, we can obtain B33(η̂), B34(η̂) and B35(η̂), which we call B̂33
∗
, B̂34

∗
and

B̂35
∗
, and the following estimator of B3:

B̂3
∗
= B̂33

∗
+ 2B̂34

∗
+ B̂35. (5.21)

Using B̂1
∗
, B̂2

∗
and B̂3

∗
given by (5.19), (5.20) and (5.21), we propose the following cAIC∗ using

numerical integration and differentiation:

cAIC∗ = −2

m∑
i=1

ni(θ̂
EB
i yi − ψ(θ̂EBi )) + 2(B̂1

∗
+ B̂2

∗
+ 2−1B̂3

∗
). (5.22)

Theorem 5.2 Under the condition (C2), the cAIC∗ in (5.22) is second-order asymptotically
unbiased estimator of cAI in (5.5), namely

E(cAIC∗) = cAI + o(1),

when η is estimated by the estimating equation (5.12).
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5.3.4 Numerical method for constant ni based on parametric bootstrap

The second method to estimate the penalty term without the assumption of large ni is based
on parametric bootstrap. This method does not need stochastic expansion of η̂.

We firstly estimate B1. The plug-in estimator B1(η̂) can be calculated by Monte Carlo

approximation B̃1
∗
given by (5.18). However, this naive estimator has second-order bias. When

it is hard to obtain analytical form of asymptotic bias and variance of η̂, we cannot correct
the bias of B1(η̂) analytically. Then we propose numerical bias correction based on parametric
bootstrap method as follows:

2B1(η̂)−E∗[B1(η̂
∗) | y].

The second term of the equation above can be written as

E∗[B1(η̂
∗) | y] =

m∑
i=1

E∗

[
niλ̂

∗

ni + λ̂∗
· E∗∗

[
h(µ̂B∗∗

i )(y∗∗i − m̂∗
i ) | (y∗,y)

]
| y
]
, (5.23)

where the distribution of y∗∗i is

y∗∗i ∼ f(y∗∗i |θ∗∗i ), and θ∗∗i ∼ p(θ∗∗i |λ̂∗, m̂∗
i ), (5.24)

µ̂B∗∗
i = (niy

∗∗
i + λ̂∗m̂∗

i )/(ni + λ̂∗), and E∗∗ denotes expectation with respect to the distribution
of y∗∗ = (y∗∗1 , . . . , y

∗∗
m )T given y∗ and y. Monte Carlo approximation of (5.23) is

E∗[B1(η̂
∗) | y] ≈ B̃1

∗∗
= (BC)−1

B∑
b=1

C∑
c=1

m∑
i=1

niλ̂
∗(b)

ni + λ̂∗(b)
h{µ̂B∗∗

i (c(b))}{y∗∗i (c(b))− m̂∗
i (b)},

for large B and C, where y∗∗i (c(b)) is the cth double bootstrap sample from the bth bootstrap
sample based on (5.24), and µ̂B∗∗

i (c(b)) is the version of µ̂B∗∗
i based on the bootstrap sample.

Then, we propose the following bias corrected estimator of B1:

B̂1
∗∗

= 2B̃1
∗
− B̃1

∗∗
. (5.25)

We next estimate B2 and B3. It is noted that B2(η) and B3(η) can be rewritten as

B2(η) =

m∑
i=1

niλ

ni + λ
E

[
(yi −mi)

∂h(µ̂Bi )

∂ηT
(η̂ − η)

]
,

B3(η) =

m∑
i=1

niλ

ni + λ
E

[
(yi −mi)(η̂ − η)T∂h(µ̂

B
i )

∂ηT
(η̂ − η)

]
,

by the law of iterated expectations and the fact that yi− µ̂Bi = λ(yi−mi)/(ni+λ). Then B2(η̂)
and B3(η̂) can be written as

B2(η̂) =
m∑
i=1

niλ̂

ni + λ̂
E∗

[
(y∗i − m̂i)

∂h(µ̂B∗
i )

∂η̂T (η̂∗ − η̂) | y
]
,

B3(η̂) =

m∑
i=1

niλ̂

ni + λ̂
E∗

[
(y∗i − m̂i)(η̂

∗ − η̂)T∂
2h(µ̂B∗

i )

∂η̂∂η̂T (η̂∗ − η̂) | y
]
,

(5.26)

where η̂∗ is an estimator of η based on bootstrap sample y∗. Note that the exact expressions
of ∂h(µ̂B∗

i )/∂η̂T and ∂2h(µ̂B∗
i )/∂η̂∂η̂T are

∂h(µ̂B∗
i )

∂η̂
=

[
h′(µ̂B∗

i )λ̂(ni + λ̂)−1Q(m̂i)xi
−h′(µ̂B∗

i )ni(ni + λ̂)−2(y∗i − m̂i)

]
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and
∂2h(µ̂B∗

i )

∂η̂∂η̂T =

[
∂2h(µ̂B∗

i )/(∂β̂∂β̂
T

) ∂2h(µ̂B∗
i )/(∂β̂∂λ̂)

∂2h(µ̂B∗
i )/(∂λ̂∂β̂

T

) ∂2h(µ̂B∗
i )/(∂λ̂)2,

]
where

∂2h(µ̂B∗
i )

∂β̂∂β̂
T =

λ̂

ni + λ̂
Q(m̂i)

{
h′′(µ̂B∗

i )
λ̂

ni + λ̂
Q(m̂i) + h′(µ̂B∗

i )Q′(m̂i)

}
xix

T
i ,

∂2h(µ̂B∗
i )

∂β̂∂λ̂
=

ni

(ni + λ̂)2
Q(m̂i)

{
−h′′(µ̂B∗

i )
λ̂

ni + λ̂
(y∗i − m̂i) + h′(µ̂B∗

i )

}
xi,

∂2h(µ̂B∗
i )

∂λ̂2
=

ni

(ni + λ̂)3
(y∗i − m̂i)

{
h′′(µ̂B∗

i )
ni

ni + λ̂
(y∗i − m̂i) + 2h′(µ̂B∗

i )

}
.

Monte Carlo approximation of (5.26) is

B2(η̂) ≈ B̂2
∗∗

= B−1
B∑
b=1

m∑
i=1

niλ̂

ni + λ̂
(y∗i (b)− m̂i)

∂h(µ̂B∗
i (b))

∂η̂T (η̂∗(b)− η̂),

B3(η̂) ≈ B̂3
∗∗

= B−1
B∑
b=1

m∑
i=1

niλ̂

ni + λ̂
(y∗i (b)− m̂i)(η̂

∗(b)− η̂)T∂
2h(µ̂B∗

i (b))

∂η̂∂η̂T (η̂∗(b)− η̂),

(5.27)

for large B, where y∗i (b) is the bth bootstrap sample based on (5.16) and µ̂B∗
i (b) and η̂∗(b) are

the versions of µ̂B∗
i and η̂∗ based on the bootstrap sample. Because B2(η) and B3(η) are of

order O(1), B̂2
∗∗

and B̂3
∗∗

are asymptotically unbiased estimators of B2 and B3 whose biases
are of order o(1).

Using B̂1
∗∗
, B̂2

∗∗
and B̂3

∗∗
given by (5.25) and (5.27), we propose the following cAIC∗∗ based

on parametric bootstrap:

cAIC∗∗ = −2

m∑
i=1

ni(θ̂
EB
i yi − ψ(θ̂EBi )) + 2(B̂1

∗∗
+ B̂2

∗∗
+ 2−1B̂3

∗∗
). (5.28)

Theorem 5.3 Under the condition (C2), the cAIC∗∗ in (5.28) is a second-order asymptotically
unbiased estimator of cAI in (5.5), namely

E(cAIC∗∗) = cAI + o(1).

Though the cAIC∗∗ does not depend on the method of estimating η, this requires parametric
bootstrap, which is computationally harder than cAIC and cAIC∗. Especially, estimation of
B1 needs double bootstrap method. However, because each step in estimation of B1 does not
include maximization algorithm, namely B1 does not require estimating the hyperparameter,
the computational load of estimating B1 is the same level as estimating B2 and B3, which only
requires single bootstrap.

5.4 Simulations

In this section, we compare the numerical performance between the conventional mAIC and the
proposed criteria. We handle Poisson-gamma model introduced in Section 5.2. We consider
a class of the nested candidate models jα = {1, . . . , α} for α = 1, . . . , pω. Let xi(ω)’s be
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independently generated as N (0,Σx) where Σx = 0.9Ipω + 0.1Jpω for Jpω = 1pω1
T
pω . The

true vector of coefficients β∗ is given by β∗ = (1, 1, 1, 0, 0)T, namely pω = 5 and p∗ = 3. Scale
parameters are given by λ = 4 and ni = 11 for i = 1, . . . ,m, where the sample size m varies
with simulations.

We compare the performance between the mAIC

mAIC = −2

m∑
i=1

log{m(yi|λ̂, m̂i)}+ 2(pj + 1),

where m(yi|λ,mi) is given in (5.4), and the proposed criteria, based on 500 replications. We
handle the cases of m = 100 and m = 70. Note that the case of m = 100 satisfies the condition
(C1) but the case of m = 70 does not.

Table 5.1: The number of selecting each model based on 500 replications and prediction error
of the best model selected by the criteria

the number of selection prediction error
j1 j2 j3 j4 j5

m = 100

mAIC 91 102 211 58 38 7.42962
cAIC 59 98 223 72 48 7.42248

m = 70

mAIC 112 114 190 59 25 5.30810
cAIC 97 163 145 62 33 5.30644

Table 5.1 reports the number of selecting each model and prediction error of the best model
selected by the mAIC and the cAIC in (5.15). The prediction error is measured by quadratic
loss

m∑
i=1

(µ̂EBi − µi)
2,

and the values are given as the averages based on 500 replications. For the case of m = 100,
where the condition (C1) is satisfied, the performance of the cAIC is better than that of the
mAIC in terms of both selecting the true model and prediction error. For the case of m = 70,
where the condition (C1) is not satisfied, the performance of the cAIC is comparable to that
of the mAIC in terms of the prediction error, but is not in terms of selecting the true model.
Although we conducted simulations which investigate cAIC∗ in (5.22) and cAIC∗∗ in (5.28), the
performance of the criteria was numerically instable. This is the future work to be resolved.

5.5 Some results of analytical calculations

5.5.1 Stochastic Expansion of η̂

We give a stochastic expansion of η̂ and derive the asymptotic bias and variance of η̂. Let
t = (t1, . . . , tp+1)

T where

tr = (η̂ − η)T∂
2sr(η)

∂η∂ηT
(η̂ − η), r = 1, . . . , p+ 1.
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It follows from the Taylor series expansion of s(η̂) around η̂ = η that

0 = s(η) +
∂s(η)

∂ηT
(η̂ − η) + 1

2
t+ op(1),

thus we can get the expression

η̂ − η =

(
−∂s(η)
∂ηT

)−1{
s(η) +

1

2
t+ op(1)

}
. (5.29)

It follows that

−∂s(η)
∂ηT

=
m∑
i=1

(
−
∂DT

i Σ
−1
i

∂ηT

)
(Ip+1 ⊗ gi) +

m∑
i=1

DT
i Σ

−1
i

(
− ∂gi
∂ηT

)
(≡ V 1 + V 2),

and E(V 1) = 0,V 1 = Op(m
1/2), E(V 2) = U = O(m). Let W = V 1 + V 2 − U , then noting

that V 2 −U = Op(m
1/2),W = Op(m

1/2), we can expand η̂ − η in (5.29) as

η̂ − η = (U +W )−1

{
s+

1

2
t+ op(1)

}
=
{
U−1 −U−1WU−1 + op(m

−3/2)
}{

s+
1

2
t+ op(1)

}
= U−1s−U−1WU−1s+

1

2
U−1t+ op(m

−1)

≡ η̂(1) + η̂(2) + η̂(3) + op(m
−1), (5.30)

where η̂(1) = Op(m
−1/2), η̂(2) = Op(m

−1), η̂(3) = Op(m
−1). Now we evaluate each term in

(5.30).

First we evaluate the first and the second moment of η̂(1) = U−1∑m
i=1D

T
i Σ

−1
i gi. It is easy

to see that E(η̂(1)) = 0. The second moment is

E[η̂(1)(η̂(1))T] =

m∑
i=1

U−1DT
i Σ

−1
i E[gig

T
i ]Σ

−1
i DiU

−1

=
m∑
i=1

U−1DT
i Σ

−1
i DiU

−1

= U−1,

thus it follows that

E[(η̂ − η)(η̂ − η)T] = U−1 + o(m−1), (5.31)

where U−1 is the asymptotic variance of η̂.

Next we see η̂(2). Let W = (w1, . . . ,wp+1)
T, then η̂(2) can be rewritten as

η̂(2) = U−1(−W )U−1s

=U−1
[
tr [U−1s(−wT

1 )], . . . , tr [U
−1s(−wT

p+1)]
]T
.
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It is noted that E[s(−wT
r )] = Cov (s,−wr) = Cov (s, ∂sr/∂η) = Jr, then

E(η̂(2)) = U−1a. (5.32)

Finally we evaluate η̂(3) = 2−1U−1t. It can be seen that

tr = (η̂(1))T
∂2sr
∂η∂ηT

η̂(1) + op(1)

= tr

[
∂2sr
∂η∂ηT

U−1ssTU−1

]
+ op(1),

Because E(s) = 0 and yi’s are mutually independent, it follows that

E(tr) = tr

[
E

(
∂2sr
∂η∂ηT

)
U−1E(ssT)U−1

]
+ o(1)

= tr [KrU
−1] + o(1).

Thus we can get

E(η̂(3)) = 2−1U−1b+ o(m−1). (5.33)

From (5.32) and (5.33), the bias of η̂ is

E(η̂ − η) = U−1(a+ 2−1b) + o(m−1). (5.34)

5.5.2 Expressions of J r and Kr

First we get the expression of Jr. Let V 1 = [v11, . . . ,v1,p+1]
T,V 2 = [v21, . . . ,v2,p+1]

T. It follows
from W = V 1 + V 2 −U that

Jr = Cov (s,−wr) = Cov (s,−v1r) +Cov (s,−v2r).

Let DT
i = [di1, . . . ,di,p+1]

T. Then Cov (s,−v1r) can be written as

Cov (s,−v1r) = E

 m∑
i,j=1

DT
i Σ

−1
i gi

(
∂dT

jrΣ
−1
j

∂ηT

)
(Ip+1 ⊗ gj)


=

m∑
i=1

DT
i Σ

−1
i E(gig

T
i )

(
∂dT

irΣ
−1
i

∂η

)T

=
m∑
i=1

DT
i

{
∂dT

ir

∂η
Σ−1
i + (Ip+1 ⊗ dT

ir)
∂Σ−1

i

∂η

}T

. (5.35)

Cov (s,−v2r) is

Cov (s,−v2r) = E

 m∑
i,j=1

DT
i Σ

−1
i gid

T
jrΣ

−1
j

∂gj
∂ηT


= E

[
m∑
i=1

DT
i Σ

−1
i gid

T
irΣ

−1
i

∂gi
∂ηT

]
.
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Here ∂gi/∂η
T is expressed as

∂gi
∂ηT

= −2Q(mi)(yi −mi)

[
0 0
xT
i 0

]
−Q(mi)

[
xT
i 0

ϕiQ
′(mi)x

T
i −(1 + v2/ni)(λ− v2)

−2

]
,

thus it follows that

Cov (s,−v2r) = −2

m∑
i=1

Q(mi)D
T
i Σ

−1
i

[
µ2i
µ3i

]
dT
irΣ

−1
i

[
0 0
xT
i 0

]
. (5.36)

From (5.35) and (5.36),

Jr =
m∑
i=1

DT
i

{
∂dT

ir

∂η
Σ−1
i + (Ip+1 ⊗ dT

ir)
∂Σ−1

i

∂η

}T

− 2
m∑
i=1

Q(mi)D
T
i Σ

−1
i

[
µ2i
µ3i

]
dT
irΣ

−1
i

[
0 0
xT
i 0

]
,

(5.37)
where the expressions of ∂dT

ir/∂η and ∂Σ−1
i /∂η are given in Section 5.5.3 and 5.5.4.

Next we get the expression of Kr = E[(∂2sr)/(∂η∂η
T)]. It can be seen that

Kr =
m∑
i=1

{
2
∂dT

ir

∂η
Σ−1
i E

(
∂gi
∂ηT

)
+ 2(Ip+1 ⊗ dT

ir)
∂Σ−1

i

∂η
E

(
∂gi
∂ηT

)
+ {Ip+1 ⊗ (dT

irΣ
−1
i )}E

(
∂2gi
∂η∂ηT

)}

=

m∑
i=1

{
−2

∂dT
ir

∂η
Σ−1
i Di − 2(Ip+1 ⊗ dT

ir)
∂Σ−1

i

∂η
Di + {Ip+1 ⊗ (dT

irΣ
−1
i )}E

(
∂2gi
∂η∂ηT

)}
,

(5.38)

where the expressions of ∂dT
ir/∂η and ∂Σ−1

i /∂η are given in Section 5.5.3 and 5.5.4, and
E[(∂2gi)/(∂η∂η

T)] = [GT
1 , . . . ,G

T
p+1]

T is written as

[GT
1 , . . . ,G

T
p ]

T

= −Q(mi)xi ⊗
[

Q′(mi)x
T
i 0

{−2Q(mi) + (Q′(mi))
2 + 2v2ϕiQ(mi)}xT

i −Q′(mi)(1 + v2/ni)(λ− v2)
−2

]
,

Gp+1

= −Q(mi)

[
0 0

−(1 + v2/ni)(λ− v2)
−2Q′(mi)x

T
i 2(1 + v2/ni)(λ− v2)

−3

]
.

5.5.3 Expression of ∂dT

ir/∂η

First, we give the expression of ∂dT
ir/∂η for r = 1, . . . , p. It follows that

dT
ir = Q(mi)

[
xir, Q

′(mi)ϕixir
]
,

then we get

∂dT
ir

∂β
= Q(mi)xir

[
Q′(mi),

{
(Q′(mi))

2 + 2v2Q(mi)
}
ϕi
]
⊗ xi,

∂dT
ir

∂λ
= Q(mi)Q

′(mi)xir
[
0,−(1 + v2/ni)(λ− v2)

−2
]
.

Next, we give the expression of ∂dT
i,p+1/∂η. It follows that

dT
i,p+1 = Q(mi)

[
0,−(1 + v2/ni)(λ− v2)

−2
]
,
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then we can get

∂dT
i,p+1

∂β
= −Q′(mi)Q(mi)(1 + v2/ni)(λ− v2)

−2[0;xi],

∂dT
i,p+1

∂λ
=
[
0, 2Q(mi)(1 + v2/ni)(λ− v2)

−3
]
.

5.5.4 Expression of ∂Σ−1
i /∂η

It follows that

∂Σ−1
i

∂η
= −(Ip+1 ⊗Σ−1

i )
∂Σi

∂η
Σ−1
i ,

thus it suffices to evaluate ∂Σi/∂η.

Let ∂Σi/∂η = [HT
1 , . . . ,H

T
p+1]

T. For r = 1, . . . , p,

Hr =

[
∂µ2i/∂βr ∂µ3i/∂βr
∂µ3i/∂βr ∂µ4i/∂βr − ∂µ22i/∂βr

]
,

where

∂µ2i
∂βr

= ϕiQ(mi)Q
′(mi)xir,

∂µ22i
∂βr

= 2ϕ2i {Q(mi)}2Q′(mi)xir,

∂µ3i
∂βr

=
(λ/ni + 1)(λ/ni + 2)

(λ− v2)(λ− 2v2)

[{
Q′(mi)

}2
+ 2v2Q(mi)

]
Q(mi)xir.

Let di = v2/ni, then

∂µ4i
∂βr

=

{
6(di + 1)(2di + 1)(3di + 1)

(λ− v2)(λ− 2v2)(λ− 3v2)
+

12(di + 1)(2di + 1)

ni(λ− v2)(λ− 2v2)
+

7(di + 1)

n2i (λ− v2)
+

1

n3i

}
J1,

+

{
3(di + 1)(2di + 1)(3di + 1)

(λ− v2)(λ− 3v2)
+

2(di + 1)(4di + 3)

ni(λ− v2)
+

2di + 3

n2i

}
J2,

where

J1 =
[{
Q′(mi)

}2
+ 4v2Q(mi)

]
Q(mi)Q

′(mi)xir,

J2 = 2 {Q(mi)}2Q′(mi)xir.

It can be seen that

Hp+1 =

[
∂µ2i/∂λ ∂µ3i/∂λ
∂µ3i/∂λ ∂µ4i/∂λ− ∂µ22i/∂λ

]
,
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where

∂µ2i
∂λ

= −Q(mi)
v2/ni + 1

(λ− v2)2
,

∂µ22i
∂λ

= − 2 {Q(mi)}2
(λ/ni + 1)(v2/ni + 1)

(λ− v2)3
,

∂µ3i
∂λ

= Q(mi)Q
′(mi)

(2λ+ 3ni)(λ− v2)(λ− 2v2)− (λ+ ni)(λ+ 2ni)(2λ− 3v2)

n2i (λ− v2)2(λ− 2v2)2
,

∂µ4i
∂λ

= 6(di + 1)(2di + 1)(3di + 1)J3 +
12

ni
(di + 1)(2di + 1)Q(mi)

{
Q′(mi)

}2
J4

−
{
2(di + 1)(4di + 3)

ni
{Q(mi)}2 +

7(di + 1)

n2i
Q(mi){Q′(mi)}2

}
1

(λ− v2)2
,

for

J3 = − {Q(mi)}2
λ− 2v2

(λ− v2)2(λ− 3v2)2
−Q(mi)

{
Q′(mi)

}2 3λ2 − 12v2λ+ 11v22
(λ− v2)2(λ− 2v2)2(λ− 3v2)2

,

J4 = − 2λ− 3v2
(λ− v2)2(λ− 2v2)2

.

5.5.5 Approximations of ξri

It suffices to evaluate ξri up to O(1), namely the remainder is of order O(n−1
i ). It is noted that

ξri = E[h′(µ̂Bi )(yi −mi)
r] = E[h′(µi)(yi −mi)

r] + O(n−1
i ). After some calculations, we can get

ξri. For the Poisson-gamma mixture model,

ξ1i =− 1

λmi − 1
+O(n−1

i ), ξ2i =
mi

λmi − 1
+O(n−1

i ),

ξ3i =− mi

λ(λmi − 1)
+O(n−1

i ), ξ4i =
3λm2

i − 2mi

λ2(λmi − 1)
+O(n−1

i ),

for the binomial-beta mixture model,

ξ1i = − (λ− 1)(1− 2mi)

(λmi − 1){λ(1−mi)− 1}
+O(n−1

i ),

ξ2i =
(λ− 2)mi(1−mi)

(λmi − 1){λ(1−mi)− 1}
+O(n−1

i ),

ξ3i = − mi(1−mi)(1− 2mi)

(λmi − 1){λ(1−mi)− 1}
+O(n−1

i ),

ξ4i =
3λm2

i (1−mi)
2 − 2mi(1−mi)(m

2
i −mi + 1)

(λmi − 1){λ(1−mi)− 1}
+O(n−1

i ).
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5.6 Proofs

5.6.1 Proof of Lemma 5.3

First, B2 can be rewritten as

B2 =

m∑
i=1

niE

[
E

[
(yi − µi)

∂h(µ̂Bi )

∂ηT
(η̂ − η) | y

]]

=
m∑
i=1

niE

[
(yi − µ̂Bi )

∂h(µ̂Bi )

∂ηT
(η̂ − η)

]

=
m∑
i=1

niλ

ni + λ
E [fT

i (η̂ − η)] , (5.39)

where

f i = (yi −mi)
∂h(µ̂Bi )

∂η
=

[
λQ(mi)h

′(µ̂Bi )(yi −mi)

ni + λ
xT
i ,−

nih
′(µ̂Bi )(yi −mi)

2

(ni + λ)2

]T
.

Using the stochastic expansion of η̂ in Section 5.5.1, we decompose B2 as

B2 =

m∑
i=1

niλ

ni + λ
E(fT

i η̂
(1)) +

m∑
i=1

niλ

ni + λ
E[fT

i (η̂
(2) + η̂(3))] + o(1)

≡ I1 + I2 + o(1).

E(fT
i η̂

(1)) is evaluated as

E(fT
i η̂

(1)) = E

[λQ(mi)h
′(µ̂Bi )(yi −mi)

ni + λ
xT
i ,−

nih
′(µ̂Bi )(yi −mi)

2

(ni + λ)2

]
U−1

m∑
j=1

DT
jΣ

−1
j gj


=

λ

ni + λ
Q(mi)x

T
i U1D

T
i Σ

−1
i

[
ξ2i

ξ3i − ϕiQ(mi)ξ1i

]
− ni

(ni + λ)2
U2D

T
i Σ

−1
i

[
ξ3i

ξ4i − ϕiQ(mi)ξ2i

]
,

which yields I1 = B21. From (5.32) and (5.33), E[fT
i (η̂

(2) + η̂(3))] is evaluated as

E[fT
i (η̂

(2) + η̂(3))] = E(fT
i )E(η̂(2) + η̂(3)) + o(m−1)

=

[
λ

ni + λ
Q(mi)ξ1ix

T
i ,−

ni
(ni + λ)2

ξ2i

]
U−1(a+ 2−1b) + o(m−1)

=
λ

ni + λ
Q(mi)ξ1ix

T
i U1(a+ 2−1b)− ni

(ni + λ)2
ξ2iU2(a+ 2−1b) + o(m−1),

which yields I2 = B22 + o(1). □

5.6.2 Proof of Lemmas 5.4 and 5.5

In the same manner as (5.39), B3 can be rewritten as

B3 =
m∑
i=1

niλ

ni + λ
tr [E [F i(η̂ − η)(η̂ − η)T]] ,
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where

F i = (yi −mi)
∂2h(µ̂Bi )

∂η∂ηT
= (yi −mi)

[
∂2h(µ̂Bi )/(∂β∂β

T) ∂2h(µ̂Bi )/(∂β∂λ)
∂2h(µ̂Bi )/(∂λ∂β

T) ∂2h(µ̂Bi )/(∂λ)
2

]
,

for

∂2h(µ̂Bi )

∂β∂βT
=

λ

ni + λ
Q(mi)Q

′(mi)h
′(µ̂Bi )xix

T
i +

(
λ

ni + λ

)2

{Q(mi)}2 h′′(µ̂Bi )xixT
i ,

∂2h(µ̂Bi )

∂β∂λ
=

ni
(ni + λ)2

Q(mi)h
′(µ̂Bi )xi −

niλ

(ni + λ)3
Q(mi)h

′′(µ̂Bi )xi,

∂2h(µ̂Bi )

∂λ∂λ
=

2ni
(ni + λ)3

h′(µ̂Bi )(yi −mi) +
n2i

(ni + λ)4
h′′(µ̂Bi )(yi −mi)

2.

It follows that

E [F i(η̂ − η)(η̂ − η)T] = E(F i)E[η̂(1)(η̂(1))T] + o(m−1)

= E(F i)U
−1 + o(m−1),

which yields B3 = B31+2B32+o(1) under the condition (C1), and B3 = B33+2B34+B35+o(1)
under the condition (C2), respectively. □



Chapter 6

A variant of AIC using Bayesian
marginal likelihood

In this chapter, we propose an information criterion which measures the prediction risk of the
predictive density based on the Bayesian marginal likelihood from a frequentist point of view.
We derive the criteria for selecting variables in linear regression models by putting the prior on
the regression coefficients, and discuss the relationship between the proposed criteria and other
related ones. There are three advantages of our method. Firstly, this is a compromise between
the frequentist and Bayesian standpoint because it evaluates the frequentist’s risk of the Bayesian
model. Thus it is less influenced by prior misspecification. Secondly, non-informative improper
prior can be also used for constructing the criterion. When the uniform prior is assumed on the
regression coefficients, the resulting criterion is identical to the residual information criterion
(RIC) of Shi and Tsai (2002). Lastly, the criteria have the consistency property for selecting
the true model.

6.1 Motivation

The problem of selecting appropriate models has been extensively studied in the literature since
Akaike (1973, 1974), who derived so called the Akaike information criterion (AIC). Since the
AIC and their variants are based on the risk of the predictive densities with respect to the
Kullback–Leibler (KL) divergence, they can select a good model in the light of prediction. It is
known, however, that the AIC-type criteria do not have the consistency property, namely, the
probability that the criteria select the true model does not converges to 1. Another approach to
model selection is Bayesian procedures such as Bayes factors and the Bayesian information cri-
terion (BIC) suggested by Schwarz (1978), both of which are constructed based on the Bayesian
marginal likelihood. Bayesian procedures for model selection have the consistency property in
some specific models, while they do not select models in terms of prediction. In addition, it
is known that Bayes factors do not work for improper prior distributions and that the BIC
does not use any specific prior information. In this chapter, we provide a unified framework to
derive an information criterion for model selection so that it can produce various information
criteria including AIC, BIC and the residual information criterion (RIC) suggested by of Shi
and Tsai (2002). Especially, we propose an intermediate criterion between AIC and BIC using
the empirical Bayes method.

To explain the unified framework in the general setup, let y be an n-variate observable
random vector whose density is m(y|η) for a vector of unknown parameters η. Let m̂(ỹ;y) be

71
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a predictive density for m(ỹ|η), where ỹ is an independent replication of y. We here evaluate
the predictive performance of m̂(ỹ;y) in terms of the following risk:

R(η; m̂) =

∫ [∫
log

{
m(ỹ|η)
m̂(ỹ;y)

}
m(ỹ|η)dỹ

]
m(y|η)dy. (6.1)

Since this is interpreted as a risk with respect to the KL divergence, we call it the KL risk. The
spirit of AIC suggests that we can provide an information criterion for model selection as an
(asymptotically) unbiased estimator of the information

I(η; m̂) =

∫∫
−2 log{m̂(ỹ;y)}m(ỹ|η)m(y|η)dỹdy

= Eη [−2 log{m̂(ỹ;y)}] ,
(6.2)

which is a part of (6.1) (multiplied by 2), where Eη denotes the expectation with respect to the
distribution of m(ỹ,y|η) = m(ỹ|η)m(y|η). Let ∆ = I(η; m̂)−Eη[−2 log{m̂(y;y)}]. Then, the
AIC variant based on the predictor m̂(ỹ;y) is defined by

IC(m̂) = −2 log{m̂(y;y)}+ ∆̂,

where ∆̂ is an (asymptotically) unbiased estimator of ∆.

It is interesting to point out that IC(m̂) produces AIC and BIC for specific predictors.

(AIC) Put m̂(ỹ;y) = m(ỹ|η̂) for the maximum likelihood estimator η̂ of η. Then,
IC(m(ỹ|η̂)) is the exact AIC or the corrected AIC suggested by Sugiura (1978) and Hurvich and
Tsai (1989), which is approximated by AIC of Akaike (1973, 1974) as −2 log{m(y|η̂)}+2dim(η).

(BIC) Put m̂(ỹ;y) = mπ0(ỹ) =
∫
m(ỹ|η)π0(η)dη for a proper prior distribution π0(η).

Since it can be easily seen that I(η;mπ0) = Eη[−2 log{mπ0(y)}], we have ∆ = 0 in this case,
so that IC(mπ0) = −2 log{mπ0(y)}, which is the Bayesian marginal likelihood. It is noted that
−2 log{mπ0(y)} is approximated by BIC = −2 log{m(y|η̂)}+ log(n) · dim(η).

The criterion IC(m̂) can produce not only the conventional information criteria AIC and BIC,
but also various criteria between AIC and BIC. For example, it is supposed that η is divided as
η = (βT,ωT)T for a p-dimensional parameter vector of interest β and an r-dimensional nuisance
parameter vector ω. We assume that β has a prior density π(β|λ,ω) with hyperparameter λ.
The model is described as

y|β ∼ m(y|β,ω),
β ∼ π(β|λ,ω),

and ω and λ are estimated by data. Inference based on such a model is called an empirical
Bayes procedure. Put m̂(ỹ;y) = mπ(ỹ|λ̂, ω̂) =

∫
f(ỹ|β, ω̂)π(β|λ̂, ω̂)dβ for some estimators λ̂

and ω̂. Then, the information in (6.2) is

I(η;mπ) =

∫∫
−2 log{mπ(ỹ|λ̂, ω̂)}m(ỹ|β,ω)m(y|β,ω)dỹdy, (6.3)

and the resulting information criterion is

IC(mπ) = −2 log{mπ(y|λ̂, ω̂)}+ ∆̂, (6.4)

where ∆̂ is an (asymptotically) unbiased estimator of ∆ = I(η;mπ)−Eη[−2 log{mπ(y|λ̂, ω̂)}].
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There are three motivations to consider the information I(η;mπ) in (6.3) and the information
criterion IC(mπ) in (6.4).

Firstly, it is noted that the Bayesian predictor mπ(ỹ|λ̂, ω̂) is evaluated by the risk R(η;mπ)
in (6.1), which is based on a frequentist point of view. On the other hand, the Bayesian risk is

r(ψ; m̂) =

∫
R(η; m̂)π(β|λ,ω)dβ, (6.5)

which measures the prediction error of m̂(ỹ;y) under the assumption that the prior information
is correct, where ψ = (λT,ωT)T. The resulting Bayesian criteria such as PIC (Kitagawa, 1997)
and DIC (Spiegelhalter et al., 2002) are sensitive to the prior misspecification, since they depend
on the prior information. Because R(η;mπ) can measure the prediction error of the Bayesian
model from a standpoint of frequentists, however, the resulting criterion IC(mπ) is less influenced
by the prior misspecification.

Secondly, we can construct the information criterion IC(mπ) when the prior distribution of
β is improper, since the information I(η;mπ) in (6.3) can be defined formally for the corre-
sponding improper marginal likelihood. Because the Bayesian risk r(ψ;mπ) does not exist for
the improper prior, however, we cannot obtain the corresponding Bayesian criteria and cannot
use the Bayesian risk. Objective Bayesians want to avoid informative prior and many non-
informative priors are improper. The suggested criterion IC(mπ) can respond to such a request.
For example, objective Bayesians assume the uniform improper prior on regression coefficients β
in linear regression models. It is interesting to note that the resulting variable selection criterion
(6.4) is identical to the residual information criterion (RIC) of Shi and Tsai (2002), which is
shown in the next section.

Lastly, this criterion has the consistency property. We derive the criterion for the variable
selection problem in general linear regression model and prove that the criterion selects the
true model with probability tending to one. The BIC or marginal likelihood are known to have
the consistency (Nishii, 1984), while most AIC-type criteria are not consistent. But AIC-type
criteria have the property to choose a good model in the sense of minimizing the prediction error
(Shibata, 1981; Shao, 1997). Our proposed criterion is consistent for selection of the parameters
of interest β and selects a good model in the light of prediction based on the empirical Bayes
model.

The rest of this chapter is organized as follows. In Section 6.2, we obtain the information
criterion (6.4) in linear regression model with general covariance structure and compare it with
other related criteria. In Section 6.3, we prove the consistency of the criteria. In Section 6.4,
we investigate the performance of the criteria through simulations. Section 6.5 concludes the
chapter with some discussions.

6.2 Proposed criteria

6.2.1 Variable selection criteria for linear regression model

We consider the linear regression model as the candidate model, which is given as

y =X(j)βj + uj , (6.6)

where y is an n× 1 observation vector of the response variables, X(j) is an n× pj matrix of the
explanatory variables, βj is a pj × 1 vector of the regression coefficients, uj is an n × 1 vector
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of the random errors, and j is the index set which denotes the candidate model. Throughout
the chapter, we assume that X(j) has full column rank pj . Here, the random error uj has
the distribution Nn(0, σ

2
jΣ), where σ2j is an unknown scalar and Σ is a known positive definite

matrix. The linear regression model (6.6) includes the linear mixed model (3.1) in Chapter 3 as
a special case.

We consider the problem of selecting the explanatory variables and assume that the true
model is included by the candidate model, namely all the candidate model is overspecified. This
is the common assumption to obtain the criterion. Under this assumption, the true mean of y
can be written as

E(y) =X(j)β∗
j ,

where β∗
j is pj×1 vector whose pj−p∗ components are exactly 0 and the rest of components are

not 0. We hereafter abbreviate the model index j for notational convenience. We also abbreviate
β∗
j as β and write the true variance parameter as σ2.

We shall construct the variable selection criteria for the regression model (6.6) which is of
the form (6.4). We consider the following two situations.

[i] Normal prior for β. We first assume the prior distribution of β,

π(β|σ2) ∼ N (0, σ2W ),

whereW is a p×p matrix suitably chosen with full rank. Examples ofW areW = (λXTX)−1

for λ > 0 when Σ is identity matrix, which is introduced by Zellner (1986), or more simply
W = λ−1Ip. Because the likelihood is m(y|β, σ2) ∼ N (Xβ, σ2Σ), the marginal likelihood
function is

mπ(y|σ2) =
∫
m(y|β, σ2)π(β|σ2)dβ

=(2πσ2)−n/2 · |Σ|−1/2 · |W |−1/2 · |XTΣ−1X +W−1|−1/2 · exp
{
−yTAy/(2σ2)

}
,

where A = Σ−1 − Σ−1X(XTΣ−1X + W−1)−1XTΣ−1. Note that A = (Σ + B)−1 for
B = XWXT, namely mπ(y|σ2) ∼ N (0, σ2(Σ + B)). Then we take the predictive density
as m̂(ỹ;y) = mπ(ỹ|σ̂2) and the information (6.3) can be written as

Iπ,1(η) = Eη

[
n log(2πσ̂2) + log |Σ|+ log |WXTΣ−1X + Ip|+ ỹTAỹ/σ̂2

]
, (6.7)

where σ̂2 = yT(Σ−1−P )y/n for P = Σ−1X(XTΣ−1X)−1XTΣ−1 and Eη denotes the expecta-
tion with respect to the distribution of m(ỹ,y|β, σ2) = m(ỹ|β, σ2)m(y|β, σ2) for η = (βT, σ2)T.
Note that β is the parameter of interest and σ2 is the nuisance parameter, which corresponds
to ω in the previous section. Then we propose the information criterion.

Proposition 6.1 The information Iπ,1(η) in (6.7) is unbiasedly estimated by the information
criterion

ICπ,1 = −2 log{mπ(y|σ̂2)}+
2n

n− p− 2
, (6.8)

where

−2 log{mπ(y|σ̂2)} = n log σ̂2 + log |Σ|+ log |WXTΣ−1X + Ip|+ yTAy/σ̂2 + (const),

namely, Eη(ICπ,1) = Iπ,1(η).
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If n−1W 1/2XTΣ−1XW 1/2 converges to a p× p positive definite matrix as n→ ∞,
log |WXTΣ−1X + Ip| can be approximated to p log n. In that case, ICπ,1 is approximately
expressed as

IC∗
π,1 = n log σ̂2 + log |Σ|+ p log n+ 2 + yTAy/σ̂2,

when n is large.
Alternatively, the KL risk r(ψ; m̂) in (6.5) can be also used for evaluating the risk of the

predictive density mπ(ỹ|σ̂2), since the prior distribution is proper. The resulting criterion is

ICπ,2 = n log σ̂2 + log |Σ|+ p log n+ p, (6.9)

which is an asymptotically unbiased estimator of Iπ,2(σ
2) = Eπ[Iπ,1(η)] up to constant where Eπ

denotes the expectation with respect to the prior distribution π(β|σ2), namely EπEη(ICπ,2) →
Iπ,2(σ

2)+(const) as n→ ∞. It is interesting to point out that ICπ,2 is analogous to the criterion
proposed by Bozdogan (1987) known as the consistent AIC, who suggested to replace the penalty
term 2p in the AIC with p+ p log n.

[ii] Uniform prior for β. We next assume the uniform prior for β, namely β ∼ uniform(Rp).
Though this is improper prior distribution, we can obtain the marginal likelihood function
formally:

mr(y|σ2) =
∫
m(y|β, σ2)dβ

=(2πσ2)−(n−p)/2 · |Σ|−1/2 · |XTΣ−1X|−1/2 · exp
{
−yT(Σ−1 − P )y/(2σ2)

}
,

which is known as the residual likelihood (Patterson and Thompson, 1971). Then we take the
predictive density as m̂(ỹ;y) = mr(ỹ|σ̃2) and the information (6.3) can be written as

Ir(η) = Eη

[
(n− p) log(2πσ̃2) + log |Σ|+ log |XTΣ−1X|+ ỹT(Σ−1 − P )ỹ/σ̃2

]
, (6.10)

where σ̃2 = yT(Σ−1−P )y/(n−p), which is the residual maximum likelihood (REML) estimator
of σ2 based on the residual likelihood mr(y|σ2). Then we propose the information criterion.

Proposition 6.2 The information Ir(η) in (6.10) is unbiasedly estimated by the infomation
criterion

ICr = −2 log{mr(y|σ̃2)}+
2(n− p)

n− p− 2
, (6.11)

where

−2 log{mr(y|σ̃2)} = (n− p) log σ̃2 + log |Σ|+ log |XTΣ−1X|+ yT(Σ−1 − P )y/σ̃2 + (const),

namely, Eη(ICr) = Ir(η).

Note that yT(Σ−1 − P )y/σ̃2 = n − p. If n−1XTΣ−1X converges to p × p positive defi-
nite matrix as n → ∞, log |XTΣ−1X| can be approximated to p log n. In that case, we can
approximately write

IC∗
r = (n− p) log σ̃2 + log |Σ|+ p log n+

(n− p)2

n− p− 2
, (6.12)

when n is large. It is important to note that IC∗
r is identical to the RIC proposed by Shi and

Tsai (2002) up to constant. Since (n− p)2/(n− p− 2) = (n+2)+ {4/(n− p− 2)− p} and n+2
is irrelevant to the model, we can subtract n + 2 from IC∗

r in (6.12), which results in the RIC
exactly. Note the criterion based on mr(y|σ2) and r(ψ;mr) cannot be constructed because the
KL risk of it diverges to infinity.
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6.2.2 Extension to the case of unknown covariance

In the derivation of the criteria, we have assumed that the scaled covariance matrix Σ of the
error terms vector are known. However, it is often the case that Σ is unknown and is some
function of the unknown parameter ϕ, namely Σ = Σ(ϕ). In that case, Σ in each criterion
is replaced with its plug-in estimator Σ(ϕ̂), where ϕ̂ is some consistent estimator of ϕ. This
strategy is also used in many other studies, for example in Shi and Tsai (2002), who proposed
the RIC. We suggest that the ϕ is estimated based on the full model. The method to estimate
the nuisance parameters by the full model is similar to the Cp criterion by Mallows (1973). The
scaled covariance matrix W of the prior distribution of β is also assumed to be known. In
practice, its structure should be specified and we have to estimate the parameters λ involved
in W from the data. In the same manner as Σ, W in each criterion is replaced with W (λ̂).
We propose that λ is estimated based on each candidate model under consideration because the
structure of W depends on the model.

We here give three examples for the regression model (6.6), a regression model with constant
variance, a variance components model, and a regression model with ARMA errors, where the
second and the third ones include the unknown parameter in the covariance matrix.

[1] regression model with constant variance. In the case where Σ = In, (6.6) represents
a multiple regression model with constant variance. In this model, the scaled covariance matrix
Σ does not contain any unknown parameters.

[2] variance components model. Consider a variance components model (Henderson, 1950)
described by

y =Xβ +Z2b2 + · · ·+Zrbr + ε, (6.13)

where Zi is an n × mi matrix with Σi = ZiZ
T
i , bi is an mi × 1 random vector having the

distribution Nmi(0, θiImi) for i ≥ 2, ε is an n × 1 random vector with ε ∼ Nn(0,Σ0 + θ1Σ1)
for known n×n matrices Σ0 and Σ1, and e, b2, . . . , br are mutually independently distributed.
The nested error regression model (NERM) is a special case of variance components model given
by

yik = x
T
ikβ + bi + εik, (i = 1, . . . ,m; k = 1, . . . , ni), (6.14)

where bi’s and εik’s are mutually independently distributed as bi ∼ N (0, τ2) and εik ∼ N (0, σ2)
and n =

∑m
i=1 ni. Note that the NERM in (6.14) is given by θ1 = σ2, θ2 = τ2, Σ1 = In and

Z2 = diag (1n1 , . . . ,1nm), where 1l is the l-dimensional vector of ones, for variance components
model (6.13). This model is often used for the clustered data and bi can be seen as the random
effect of the cluster (Battese et al., 1988). For such a model, when one is interested in the
specific cluster or predicting the random effects, the conditional AIC proposed by Vaida and
Blanchard (2005), which is based on the conditional likelihood given the random effects, is
appropriate. However, when the aim of the analysis is focused on the population, the NERM
can be seen as linear regression model and the random effects are involved in the error term,
namely we can treat u = Z2b2 + ε, Σ = Σ(ϕ) = ϕΣ2 + In for (6.6), where ϕ = τ2/σ2 and
Σ2 = Z2Z

T
2 = diag (Jn1 , . . . ,Jnm) for J l = 1l1

T
l . In that case, our proposed variable selection

procedure is valid.

[3] regression model with autoregressive moving average errors. Consider the regression
model (6.6), assuming the random errors are generated by an ARMA(q, r) process defined by

ui − ϕ1ui−1 − · · · − ϕqui−q = εi − φ1εi−1 − · · · − φrεi−r,
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where {εi} is a sequence of independent normal random variables having mean 0 and variance
τ2. A special case of this model is the regression model with AR(1) errors satisfying u1 ∼
N (0, τ2/(1 − ϕ2)), ui = ϕui−1 + εi, εi ∼ N (0, τ2) for i = 2, 3, . . . , n. When we define σ2 =
τ2/(1− ϕ2), (i, j)-element of the scaled covariance matrix Σ in (6.6) is ϕ|i−j|.

6.3 Consistency of the criteria

In this section, we prove that the proposed criteria have the consistency property. Our asymp-
totic framework is that n goes to infinity and the true dimension of the regression coefficients p
is fixed. Following Shi and Tsai (2002), we first show the criteria are consistent for the regres-
sion model with constant variance and the prespecified W , and then extend the result to the
regression model with general covariance matrix and the case where W is estimated.

Let ȷ̂ denote the model selected by some criterion. Following Shi and Tsai (2002), we make
the assumptions.

(A1) E(u41) <∞.

(A2) 0 < lim inf
n→∞

min
j∈J

|X(j)TX(j)/n| and lim sup
n→∞

max
j∈J

|X(j)TX(j)/n| <∞.

(A3) lim inf
n→∞

n−1 inf
j∈J−

∥X(ω)β∗−HjX(ω)β∗∥2 > 0, whereHj =X(j)(X(j)TX(j))−1X(j)T.

We can now obtain asymptotic properties of the criteria for the regression model with constant
variance.

Theorem 6.1 If assumptions (A1)–(A3) are satisfied, J+ is not empty, the ui’s are independent
and identically distributed (iid) and W j in the prior distribution of βj is prespecified, then the
criteria ICπ,1, IC

∗
π,1, ICπ,2, ICr and IC∗

r are consistent, namely P (ȷ̂ = j∗) → 1 as n→ ∞.

The proof of Theorem 6.1 is given in Section 6.7.

We next consider the regression model with a general covariance structure and the case where
W j is estimated by the data. In this case, Σ andW j are replaced with their plug-in estimators

Σ(ϕ̂) and W j(λ̂j), respectively.

Theorem 6.2 Assume that ϕ̂ − ϕ0 and λ̂j − λj,0 tend to 0 in probability as n → ∞ for all
j ∈ J . In addition, assume that the elements of Σ(ϕ) and W j(λj) are continuous functions of
ϕ and λj, and Σ(ϕ) and W j(λj) is positive definite in the neighborhood of ϕ0 and λj,0 for all
j ∈ J . If assumptions (A1)–(A3) are satisfied when X(j) and u are replaced with Σ−1/2X(j)
and u∗ = Σ−1/2u respectively, J+ is not empty and the u∗i ’s are iid, then the criteria ICπ,1,
IC∗

π,1, ICπ,2, ICr and IC∗
r are consistent.

For the proof of Theorem 6.2, we can use the same techniques as those for the proof of
Theorem 6.1.

6.4 Simulations

In this section, we compare the numerical performance of the proposed criteria with some other
conventional ones, which are AIC, BIC, the corrected AIC (AICC) by Sugiura (1978) and Hur-
vich and Tsai (1989). We shall consider the three regression models—regression model with
constant variance, NERM, and regression model with AR(1) errors—which are taken as exam-
ples of (6.6) in Section 6.2.2. For the NERM, we consider the balanced sample case, namely
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n1 = · · · = nm(= n0). In each simulation, 1000 realizations are generated from (6.6) with
β = (1, 1, 1, 1, 0, 0, 0)T, namely the full model is seven-dimensional and the true model is four-
dimensional. All explanatory variables are randomly generated from the standard normal dis-
tribution. The signal-to-noise ratio (SNR = {var(xT

i β)/var(ui)}
1/2) is controlled at 1, 3, and 5.

In the NERM, three cases of variance ratio ϕ = τ2/σ2 are considered with ϕ = 0.5, 1 and 2.
In the regression model with AR(1) errors, three correlation structures are considered with AR
parameter ϕ = 0.1, 0.5 and 0.8.

When deriving the criteria ICπ,1, IC∗
π,1 and ICπ,2, we set the prior distribution of β as

Np(0, σ
2λ−1Ip), namely W = λ−1Ip. The hyperparameter λ is estimated by maximizing the

marginal likelihood mπ(y|σ̂2), where the estimate σ̂2 = yT(Σ−1 − P )y/n of σ2 is plugged in.
The unknown parameter ϕ involved in Σ is estimated by some consistent estimator based on
the full model. In the NERM, ϕ = τ2/σ2 is estimated by τ̂2PR/σ̂2PR, where τ̂2PR and σ̂2PR are
unbiased estimators proposed by Prasad and Rao (1990). Let S0 = y

T{In −X(XTX)−1XT}y
and S1 = yT{E −EX(XTEX)−1XTE}y where E = diag (E1, . . . ,Em), Ei = In0 − n−1

0 Jn0

for i = 1, . . . ,m. Then, the Prasad–Rao estimators of σ2 and τ2 are

σ̂2PR = S1/(n−m− p), τ̂2PR =
{
S0 − (n− p)σ̂2PR

}
/n∗

where n∗ = n − tr [ZT
2X(XTX)−1XTZ2]. In the regression model with AR(1) errors, the AR

parameter ϕ is estimated by the maximum likelihood estimator based. Note that ϕ is estimated
based on the full model and that σ2 and λ is estimated based on each candidate model using
the plug-in version of Σ(ϕ̂).

The candidate models include all the subsets of the full model and select the model by
the criteria. The performance of the criteria is measured by the number of selecting the true
model and the prediction error of the selected model based on quadratic loss, namely ∥X(ȷ̂)β̂ȷ̂−
X(ω)β∗∥2/n.

Tables 6.1–6.3 give the number of selecting the true model by the criteria and the average
prediction error of the selected model by each criterion is shown in Tables 6.4–6.6 for each of the
regression models. From these tables, we can see the following three facts. Firstly, the number
of selecting the true model approaches 1000 for all the proposed criteria, that is the numerical
evidence of the consistency of the criteria. Though the BIC is also consistent, the small sample
performance is not as good as our criteria. Secondly, the proposed criteria are not only consistent
but also have smaller prediction error even when the sample size is small. Especially, ICπ,1 is
the best for the most of the experiments except when both the sample size and SNR are small.
AIC and AICC have good performance in that situation in terms of prediction error. Thirdly,
ICπ,1 and ICr have better performance than their approximation IC∗

π,1 and IC∗
r, respectively,

but the difference gets smaller as n becomes larger.
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Table 6.1: The number of selecting the true model by the criteria in 1000 realizations of the
regression model with constant variance.

SNR = 1 SNR = 3 SNR = 5

n = 20 AIC 130 428 428
BIC 118 587 588
AICC 89 749 755
ICπ,1 115 843 905
IC∗

π,1 73 732 738

ICπ,2 73 731 737
ICr 143 797 882
IC∗

r 147 828 898

n = 40 AIC 419 536 536
BIC 424 800 800
AICC 470 687 687
ICπ,1 472 900 938
IC∗

π,1 353 876 876

ICπ,2 352 876 876
ICr 462 895 934
IC∗

r 478 899 941

n = 80 AIC 546 553 553
BIC 827 872 872
AICC 604 613 613
ICπ,1 750 934 968
IC∗

π,1 839 928 928

ICπ,2 838 928 928
ICr 722 937 968
IC∗

r 739 936 969
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Table 6.2: The number of selecting the true model by the criteria in 1000 realizations of the
nested error regression model.

ϕ = 0.5 ϕ = 1 ϕ = 2
SNR 1 3 5 1 3 5 1 3 5

n0 = 5 AIC 75 382 385 104 387 393 137 393 403
m = 4 BIC 60 546 564 90 539 574 134 556 586

AICC 57 694 736 86 693 742 140 691 748
ICπ,1 71 821 902 119 829 915 181 835 941
IC∗

π,1 35 646 702 66 656 715 115 662 721

ICπ,2 34 642 701 70 653 715 116 657 720
ICr 244 789 888 310 818 900 432 838 924
IC∗

r 78 723 912 106 723 922 149 698 941

n0 = 5 AIC 220 458 458 235 465 465 259 473 473
m = 8 BIC 169 731 731 208 739 741 240 746 750

AICC 219 607 607 251 612 612 284 625 627
ICπ,1 319 891 936 369 913 943 436 928 953
IC∗

π,1 107 838 839 151 836 841 199 843 853

ICπ,2 112 838 839 158 836 841 202 841 853
ICr 436 890 934 512 903 943 593 925 953
IC∗

r 209 901 944 230 901 949 247 905 962

n0 = 5 AIC 418 522 522 417 528 528 418 545 545
m = 16 BIC 394 853 853 407 859 859 416 866 866

AICC 452 594 594 447 603 603 443 616 616
ICπ,1 622 926 955 618 941 959 624 951 968
IC∗

π,1 299 911 910 332 913 913 354 915 915

ICπ,2 300 910 910 331 913 913 358 915 915
ICr 691 925 954 695 942 960 709 953 968
IC∗

r 443 932 959 438 946 964 421 956 972
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Table 6.3: The number of selecting the true model by the criteria in 1000 realizations of the
regression model with AR(1) errors.

ϕ = 0.1 ϕ = 0.5 ϕ = 0.8
SNR 1 3 5 1 3 5 1 3 5

n = 20 AIC 110 347 346 125 373 372 193 377 414
BIC 91 482 482 118 523 542 209 502 587
AICC 84 642 646 117 652 688 228 584 715
ICπ,1 101 741 834 138 774 862 274 742 901
IC∗

π,1 64 620 625 83 625 667 194 554 688

ICπ,2 63 618 624 88 621 667 197 553 685
ICr 123 698 801 224 769 846 562 808 901
IC∗

r 122 702 790 144 715 826 241 646 825

n = 40 AIC 365 483 483 356 544 544 283 533 551
BIC 369 756 756 334 791 793 286 737 797
AICC 416 642 642 373 671 672 308 668 700
ICπ,1 422 877 917 450 909 949 427 901 976
IC∗

π,1 315 844 844 281 859 862 247 754 856

ICπ,2 314 844 844 282 858 862 255 752 854
ICr 430 866 917 507 903 945 685 918 974
IC∗

r 412 865 918 377 881 932 316 785 932

n = 80 AIC 516 521 521 483 552 552 333 553 553
BIC 789 851 851 598 865 865 334 859 868
AICC 586 593 593 525 614 614 367 637 638
ICπ,1 738 926 949 691 936 962 550 961 979
IC∗

π,1 795 912 912 560 905 905 289 899 919

ICπ,2 792 912 912 559 905 905 296 889 919
ICr 713 921 951 724 938 961 692 966 980
IC∗

r 714 920 951 600 911 952 382 908 958
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Table 6.4: The prediction error of the best model selected by the criteria for the regression
model with constant variance.

SNR 1 3 5

n = 20 AIC 1.59 0.141 0.0504
BIC 1.74 0.131 0.0468
AICC 1.77 0.120 0.0421
ICπ,1 1.70 0.111 0.0372
IC∗

π,1 1.92 0.122 0.0429

ICπ,2 1.92 0.122 0.0430
ICr 1.56 0.116 0.0383
IC∗

r 1.57 0.114 0.0374

n = 40 AIC 0.708 0.0660 0.0238
BIC 0.862 0.0568 0.0205
AICC 0.732 0.0609 0.0219
ICπ,1 0.754 0.0523 0.0180
IC∗

π,1 1.05 0.0534 0.0192

ICπ,2 1.05 0.0534 0.0192
ICr 0.716 0.0524 0.0181
IC∗

r 0.718 0.0522 0.0179

n = 80 AIC 0.292 0.0321 0.0115
BIC 0.265 0.0260 0.00936
AICC 0.283 0.0310 0.0112
ICπ,1 0.265 0.0244 0.00841
IC∗

π,1 0.285 0.0245 0.00883

ICπ,2 0.285 0.0245 0.00883
ICr 0.270 0.0243 0.00841
IC∗

r 0.267 0.0243 0.00840
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Table 6.5: The prediction error of the best model selected by the criteria for the nested error
regression model.

ϕ = 0.5 ϕ = 1 ϕ = 2
SNR 1 3 5 1 3 5 1 3 5

n0 = 5 AIC 1.80 0.150 0.0524 1.61 0.145 0.0494 1.44 0.140 0.0463
m = 4 BIC 1.96 0.159 0.0496 1.76 0.159 0.0473 1.50 0.158 0.0447

AICC 2.00 0.172 0.0458 1.78 0.174 0.0443 1.53 0.179 0.0428
ICπ,1 1.93 0.151 0.0417 1.72 0.156 0.0410 1.47 0.159 0.0400
IC∗

π,1 2.14 0.190 0.0470 1.88 0.188 0.0452 1.60 0.186 0.0434

ICπ,2 2.14 0.192 0.0470 1.87 0.190 0.0452 1.59 0.186 0.0434
ICr 1.48 0.135 0.0422 1.37 0.137 0.0413 1.21 0.139 0.0404
IC∗

r 1.91 0.251 0.0413 1.72 0.271 0.0434 1.52 0.316 0.0471

n0 = 5 AIC 0.983 0.0696 0.0251 0.907 0.0659 0.0237 0.824 0.0619 0.0223
m = 8 BIC 1.25 0.0622 0.0224 1.11 0.0615 0.0216 1.01 0.0613 0.0209

AICC 1.10 0.0655 0.0236 0.989 0.0627 0.0226 0.899 0.0610 0.0215
ICπ,1 0.989 0.0567 0.0197 0.888 0.0554 0.0196 0.804 0.0565 0.0194
IC∗

π,1 1.41 0.0594 0.0211 1.21 0.0613 0.0207 1.07 0.0635 0.0202

ICπ,2 1.40 0.0594 0.0211 1.20 0.0613 0.0207 1.07 0.0652 0.0202
ICr 0.743 0.0568 0.0197 0.666 0.0557 0.0196 0.602 0.0565 0.0194
IC∗

r 1.16 0.0609 0.0196 1.07 0.0691 0.0195 1.01 0.0841 0.0193

n0 = 5 AIC 0.451 0.0341 0.0123 0.440 0.0325 0.0117 0.434 0.0308 0.0111
m = 16 BIC 0.740 0.0294 0.0106 0.711 0.0289 0.0104 0.684 0.0284 0.0102

AICC 0.489 0.0333 0.0120 0.483 0.0319 0.0115 0.481 0.0304 0.0109
ICπ,1 0.433 0.0280 0.00980 0.435 0.0277 0.00983 0.438 0.0275 0.00980
IC∗

π,1 0.864 0.0283 0.0102 0.812 0.0281 0.0101 0.770 0.0279 0.0100

ICπ,2 0.862 0.0283 0.0102 0.811 0.0281 0.0101 0.766 0.0279 0.0100
ICr 0.348 0.0280 0.00981 0.346 0.0277 0.00982 0.344 0.0274 0.00980
IC∗

r 0.658 0.0278 0.00977 0.664 0.0276 0.00979 0.683 0.0281 0.00978
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Table 6.6: The prediction error of the best model selected by the criteria for the regression
model with AR(1) errors.

ϕ = 0.1 ϕ = 0.5 ϕ = 0.8
SNR 1 3 5 1 3 5 1 3 5

n = 20 AIC 1.85 0.175 0.0628 1.71 0.173 0.0613 1.75 0.256 0.0759
BIC 2.01 0.170 0.0595 1.82 0.192 0.0583 1.73 0.305 0.0802
AICC 2.04 0.163 0.0549 1.85 0.203 0.0577 1.69 0.343 0.0909
ICπ,1 1.96 0.153 0.0492 1.78 0.182 0.0538 1.66 0.312 0.0831
IC∗

π,1 2.17 0.164 0.0559 1.95 0.211 0.0566 1.71 0.355 0.0962

ICπ,2 2.17 0.164 0.0559 1.95 0.216 0.0566 1.72 0.354 0.0972
ICr 1.79 0.154 0.0505 1.59 0.157 0.0516 1.71 0.224 0.0720
IC∗

r 1.84 0.159 0.0507 1.72 0.212 0.0557 1.77 0.361 0.114

n = 40 AIC 0.783 0.0733 0.0264 0.812 0.0685 0.0246 1.09 0.124 0.0365
BIC 0.973 0.0639 0.0230 0.992 0.0640 0.0225 1.13 0.162 0.0408
AICC 0.824 0.0681 0.0245 0.881 0.0662 0.0236 1.12 0.135 0.0360
ICπ,1 0.839 0.0587 0.0204 0.832 0.0595 0.0207 1.07 0.136 0.0347
IC∗

π,1 1.15 0.0601 0.0216 1.10 0.0638 0.0218 1.14 0.202 0.0432

ICπ,2 1.15 0.0601 0.0216 1.10 0.0639 0.0218 1.15 0.202 0.0441
ICr 0.782 0.0592 0.0203 0.711 0.0598 0.0208 0.919 0.118 0.0347
IC∗

r 0.813 0.0592 0.0203 0.857 0.0631 0.0209 1.12 0.195 0.0446

n = 80 AIC 0.311 0.0342 0.0123 0.365 0.0329 0.0118 0.666 0.0520 0.0187
BIC 0.301 0.0282 0.0102 0.500 0.0290 0.0105 0.861 0.0613 0.0182
AICC 0.303 0.0331 0.0119 0.377 0.0322 0.0116 0.693 0.0526 0.0186
ICπ,1 0.286 0.0262 0.00920 0.365 0.0279 0.00983 0.643 0.0530 0.0179
IC∗

π,1 0.331 0.0266 0.00958 0.566 0.0284 0.0102 0.914 0.0692 0.0181

ICπ,2 0.333 0.0266 0.00958 0.566 0.0284 0.0102 0.910 0.0692 0.0181
ICr 0.290 0.0264 0.00918 0.330 0.0278 0.00984 0.514 0.0499 0.0179
IC∗

r 0.292 0.0264 0.00919 0.414 0.0283 0.00991 0.778 0.0662 0.0180
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6.5 Discussion

We have derived the variable selection criteria for linear regression model relative to the fre-
quentist KL risk of the predictive density based on the Bayesian marginal likelihood. We have
proved the consistency of the criteria and have showed that they perform well also in the sense
of the prediction through simulations.

We gave some advantages of the approach based on frequentist’s risk R(η; m̂) in (6.1). We
here explain them more clearly through comparison of the related Bayesian criteria. When the
prior distribution π(β|λ,ω) is proper, we can treat the Bayesian prediction risk

r(ψ; m̂) =

∫
R(η; m̂)π(β|λ,ω)dβ

in (6.5). When λ and ω are known, the predictive density m̂(ỹ;y) which minimizes r(ψ; m̂) is
the Bayesian predictive density (posterior predictive density) m̂π(ỹ|y,λ,ω) given as∫

m(ỹ|β,ω)π(β|y,λ,ω)dβ =

∫
m(ỹ|β,ω)m(y|β,ω)π(β|λ,ω)dβ∫

m(y|β,ω)π(β|λ,ω)dβ
.

When λ and ω are unknown, we can consider the Bayesian risk of the plug-in predictive density
m̂π(ỹ|y, λ̂, ω̂). Then the resulting criterion is known as the predictive likelihood (Akaike, 1980a)
or the PIC (Kitagawa, 1997). The deviance information criterion (DIC) of Spiegelhalter et al.
(2002) and the Bayesian predictive information criterion (BPIC) of Ando (2007) are related
criteria based on the Bayesian prediction risk r(ψ; m̂).

The Akaike’s Bayesian information criterion (ABIC) (Akaike, 1980b) is another information
criterion based on the Bayesian marginal likelihood, given by

ABIC = −2 log{mπ(y|λ̂)}+ 2dim(λ),

where the nuisance parameter ω is not considered. The ABIC measures the following KL risk:∫ [∫
log

{
mπ(ỹ|λ)
mπ(ỹ|λ̂)

}
mπ(ỹ|λ)dỹ

]
mπ(y|λ)dy,

which is not the same as either R(η; m̂) or r(ψ; m̂). The ABIC is the criterion for choosing the
hyperparameter λ in the same sense as the AIC. However, it is noted that the ABIC works as
a model selection criterion for β because it is based on the Bayesian marginal likelihood.

A drawback of such Bayesian criteria is that we cannot construct them for improper prior
distributions π(β|λ,ω), since the corresponding Bayesian prediction risks do not exist. On the
other hand, we can construct the corresponding criteria based on R(η; m̂), because the approach
suggested in this paper measures the prediction risk in the framework of frequentists. In fact,
putting the uniform improper prior on regression coefficients β in the linear regression model, we
get the RIC of Shi and Tsai (2002). Note that the criteria based on improper marginal likelihood
works as variable selection only when the marginal likelihood itself does. For the case where the
improper priors cannot be used for model selection, intrinsic prior was proposed in the literature
(Berger and Pericchi, 1996; Casella and Moreno, 2006, and others), which is an objective and
automatic procedure. As future work, it is worthwhile to consider such an automatic procedure
in the framework of our proposed criteria.
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6.6 Derivations of the criteria

6.6.1 Derivation of ICπ,1 in (6.8)

It is sufficient to show that the bias correction ∆π,1 = Iπ,1(η)−Eη[−2 log{mπ(y|σ̂2)}] is 2n/(n−
p− 2), where Iπ,1(η) is given by (6.7). It follows that

∆π,1 =Eη(ỹ
TAỹ/σ̂2)− Eη(y

TAy/σ̂2)

=Eη(ỹ
TAỹ) · Eη(1/σ̂

2)− Eη(y
TAy/σ̂2).

Firstly,

Eη(ỹ
TAỹ) =Eη[(ỹ −Xβ +Xβ)TA(ỹ −Xβ +Xβ)]

=σ2tr (AV ) + βTXTAXβ. (6.15)

Secondly, noting that nσ̂2 = yT(Σ−1 − P )y = σ2vT(In −M)v for

v =Σ−1/2(y −Xβ)/σ,
M =In −Σ−1/2X(XTΣ−1X)−1XTΣ−1/2,

(6.16)

and that vT(In −M)v ∼ χ2
n−p, we can obtain

Eη(1/σ̂
2) =nEη

[
1

yT(Σ−1 − P )y

]
= nEη

[
1

σ2vT(In −M)v

]
=

n

σ2(n− p− 2)
. (6.17)

Finally,

Eη(y
TAy/σ̂2) =nEη

[
yTAy

yT(Σ−1 − P )y

]
= nEη

[
σ2vTΣ1/2AΣ1/2v + βTXTAXβ

σ2vT(In −M)v

]

=n×
{

tr (AΣ)

n− p− 2
− 2tr [AΣ(Σ−1 − P )Σ]

(n− p)(n− p− 2)
+
βTXTAXβ

σ2(n− p− 2)

}
. (6.18)

The last equation in the above can be derived by Lemma 4.6. Combining (6.15), (6.17) and
(6.18), we get

∆π,1 =
2n · tr [AΣ(Σ−1 − P )Σ]

(n− p)(n− p− 2)
.

We can see that

tr [AΣ(Σ−1 − P )Σ] = tr {(Σ+B)−1(Σ+B −B)(Σ−1 − P )Σ}
= tr [(Σ−1 − P )Σ]− tr {(Σ+B)−1B(Σ−1 − P )Σ}
= tr (In −M) = n− p, (6.19)

since B(Σ−1 − P ) =XWXT(Σ−1 − P ) = 0, then we obtain ∆π,1 = 2n/(n− p− 2). □
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6.6.2 Derivation of ICπ,2 in (6.9)

From the fact that Eη(ICπ,1) = Iπ,1(η) and that EπEη(ICπ,1) = Eπ[Iπ,1(η)] = Iπ,2(σ
2), it

suffices to show that EπEη(ICπ,1) is approximated to

EπEη(ICπ,1) ≈ EπEη[n log σ̂
2 + log |Σ|+ p log n+ 2 + EπEη(y

TAy/σ̂2)]

≈ EπEη[n log σ̂
2 + log |Σ|+ p log n+ p] + (n+ 2) = EπEη(ICπ,2) + (n+ 2),

when n is large. Note that n+ 2 is irrelevant to the model. It follows that

Eη

(
yTAy

σ̂2

)
=n× Eη

[
yT{Σ−1 −Σ−1X(XTΣ−1X +W−1)−1XTΣ−1}y

yT{Σ−1 −Σ−1X(XTΣ−1X)−1XTΣ−1}y

]
=n+ n× Eη

[
yTΣ−1X(XTΣ−1X +W−1)−1W−1(XTΣ−1X)−1XTΣ−1y

yT{Σ−1 −Σ−1X(XTΣ−1X)−1XTΣ−1}y

]
=n+

n

σ2(n− p− 2)
× Eη

[
yTΣ−1X(XTΣ−1X +W−1)−1W−1(XTΣ−1X)−1XTΣ−1y

]
=n+

n

σ2(n− p− 2)
×
[
σ2 · tr {(XTΣ−1X +W−1)−1W−1}

+ βTXTΣ−1X(XTΣ−1X +W−1)−1W−1β
]
,

and that

Eπ[β
TXTΣ−1X(XTΣ−1X +W−1)−1W−1β] = σ2 · tr [XTΣ−1X(XTΣ−1X +W−1)−1].

If n−1XTΣ−1X converges to p×p positive definite matrix as n→ ∞, tr [(XTΣ−1X+W−1)−1W−1] →
0 and tr [XTΣ−1X(XTΣ−1X +W−1)−1] → p. Then we can obtain EπEη(y

TAy/σ̂2−n) → p,
which we want to show.

6.6.3 Derivation of ICr in (6.11)

We shall show that the bias correction ∆r = Ir(η)−Eη[−2 log{mr(y|σ̃2)}] is 2(n−p)/(n−p−2),
where Ir(η) is given by (6.10). Then,

∆r = Eη[ỹ
T(Σ−1 − P )ỹ/σ̃2]− Eη[y

T(Σ−1 − P )y/σ̃2]

= Eη[ỹ
T(Σ−1 − P )ỹ] · Eη(1/σ̃

2)− (n− p).

Since Eη[ỹ
T(Σ−1 − P )ỹ] = (n − p)σ2 and Eη(1/σ̃

2) = (n − p)/{σ2(n − p − 2)}, we get ∆r =
2(n− p)/(n− p− 2). □

6.7 Proof of Theorem 6.1

We only prove the consistency of ICπ,1. The proof of the consistency of the other criteria can
be done in the same manner. Because we see that

P (ȷ̂ = j) ≤ P{ICπ,1(j) < ICπ,1(j∗)}
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for any j ∈ J \ {j∗}, it suffices to show that P{ICπ,1(j) < ICπ,1(j∗)} → 0, or equivalently
P{ICπ,1(j)− ICπ,1(j∗) > 0} → 1 as n→ ∞. When Σ = In, we obtain

ICπ,1(j)− ICπ,1(j∗) = I1 + I2 + I3,

where

I1 =n log(σ̂
2
j /σ̂

2
∗) + y

TAjy/σ̂
2
j − yTA∗y/σ̂

2
∗,

I2 = log |X(j)TX(j) +W−1
j | − log |X(j∗)

TX(j∗) +W
−1
∗ |,

I3 = log{|W j |/|W ∗|}+
2n

n− pj − 2
− 2n

n− p∗ − 2
,

for σ̂2j = y
T(In −Hj)y/n, σ̂

2
∗ = σ̂2j∗ , Aj = In −X(j)(X(j)TX(j) +W−1

j )−1X(j)T, A∗ = Aj∗

andW ∗ =W j∗ . We evaluate asymptotic behaviors of I1, I2 and I3 for j ∈ J− and j ∈ J+\{j∗},
separately.

[Case of j ∈ J−]. Firstly, we evaluate I1. We decompose I1 = I11 + I12, where I11 =
n log(σ̂2j /σ̂

2
∗) and I12 = y

TAjy/σ̂
2
j − yTA∗y/σ̂

2
∗. It follows that

σ̂2j − σ̂2∗ =(X(ω)β∗ + u)
T(In −Hj)(X(ω)β∗ + u)/n− uT(In −H∗)u/n

=∥X(ω)β∗ −HjX(ω)β∗∥2/n+ op(1),

where H∗ =Hj∗ . Then we can see that

n−1I11 = log

(
1 +

σ̂2j − σ̂2∗

σ̂2∗

)
= log

{
1 +

∥X(ω)β∗ −HjX(ω)β∗∥2

nσ2

}
+ op(1), (6.20)

and it follows from the assumption (A3) that

lim inf
n→∞

log

{
1 +

∥X(ω)β∗ −HjX(ω)β∗∥2

nσ2

}
> 0. (6.21)

Because yTAjy/(nσ̂
2
j ) = 1 + op(1) and y

TA∗y/(nσ̂
2
∗) = 1 + op(1), we obtain

n−1I12 = op(1). (6.22)

Secondly, we evaluate I2. It follows that

log |X(j)TX(j) +W−1
j | = pj log n+ log |X(j)TX(j)/n+W−1

j /n| = pj log n+O(1).

It can be also seen that log |X(j∗)
TX(j∗) +W

−1
∗ | = p∗ logn+O(1). Then,

n−1I2 = (pj − p∗)n
−1 log n+ o(1) = o(1). (6.23)

Lastly, it is easy to see that
n−1I3 = o(1). (6.24)

From (6.20)–(6.24), it follows that

P{ICπ,1(j)− ICπ,1(j∗) > 0} → 1, (6.25)

for all j ∈ J−.
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[Case of j ∈ J+ \ {j∗}]. Firstly, we evaluate I1. From the fact that

σ̂2∗ − σ̂2j = u
T(Hj −H∗)u/n = Op(n

−1), (6.26)

it follows that

(log n)−1I11 =(log n)−1 · n log

{
σ̂2∗ − (σ̂2∗ − σ̂2j )

σ̂2∗

}
=(log n)−1 · n · log{1 +Op(n

−1)} = op(1). (6.27)

As for I12, from (6.26) and yTAjy − yTA0y = Op(1), we can obtain

I12 = yTAjy/σ̂
2
j − yTA∗y/σ̂

2
∗

= (yTAjy − yTA∗y)/σ̂
2
∗ +Op(1) = Op(1).

Then,
(log n)−1I12 = op(1). (6.28)

Secondly, we evaluate I2. Since pj > p∗ for all j ∈ J+ \ {j∗},

lim inf
n→∞

(log n)−1I2 = pj − p∗ > 0. (6.29)

Finally, it is easy to see that
(log n)−1I3 = o(1). (6.30)

From (6.27)–(6.30), it follows that

P{ICπ,1(j)− ICπ,2(j∗) > 0} → 1, (6.31)

for all j ∈ J+ \ {j∗}.

Combining (6.25) and (6.31), we obtain

P{ICπ,1(j)− ICπ,1(j∗) > 0} → 1,

for all j ∈ J \ {j∗}, which shows that ICπ,1 is consistent. □





Chapter 7

Variants of conditional AIC in linear
mixed models

In this chapter, we consider information criteria which measure prediction risks of several predic-
tive densities in terms of expected Kullback–Leibler divergence based on conditional likelihood
given random effects for variable selection problem in linear mixed model. When the predictive
density considered is plug-in predictive density, the resulting criterion is the conditional AIC
proposed by Vaida and Blanchard (2005). We consider two types of predictive densities, both
of which are superior to plug-in predictive density in some sense. The first one is the Bayesian
predictive density, which is the best predictive density in the sense of minimizing the expected
Kullback–Leibler divergence. The second one is the predictive density based on the Bayesian
marginal likelihood. The resulting criterion is related to the ones introduced in the last chapter.

7.1 Motivation

For variable selection problem in linear mixed model, Vaida and Blanchard (2005) introduced
the conditional Akaike information (cAI), which is relevant to expected Kullback–Leibler (KL)
divergence based on the conditional likelihood given random effects. This risk function is ap-
propriate when one is interested in predicting the random effects. The cAI or its estimator
conditional AIC (cAIC) measures the risk of the plug-in predictive density. However, there is
no reason to restrict the predictive density to plug-in predictive density. Then, in this chapter,
we consider two types of predictive densities.

The first one is the Bayesian (posterior) predictive density, which is the best predictive
density among any predictive density in the sense of minimizing the expected KL divergence.
Information criterion based on the Bayesian predictive density is known as the predictive like-
lihood (Akaike, 1980a) or the predictive information criterion (PIC) (Kitagawa, 1997). We
construct PIC’s in linear mixed model for two situations. In one situation, we assume that the
vector of regression coefficients is unknown parameter. In the other situation, we consider the
prior distribution of regression coefficients.

The second one is a predictive density based on Bayesian marginal likelihood assuming prior
distribution on the regression coefficients of fixed effects. The resulting criterion is relevant to
the AIC variant using Bayesian marginal likelihood, which was introduced in the last chapter.
Like the AIC variant, there are three advantages of this method. Firstly, this criterion is less
influenced by prior misspecification because risk function does not take expectation with respect
to the prior distribution of regression coefficients. Secondly, non-informative improper prior can
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be also used for constructing the criterion. When the uniform prior is assumed on the regression
coefficients, the Bayesian marginal likelihood is identical to residual likelihood. Then we call
the resulting criterion the conditional residual information criterion (cRIC). Lastly, the criteria
have the consistency property for selecting the true model.

The rest of this chapter is organized as follows. In Section 7.2, we explain about the setup
of variable selection and about the concept of cAIC variants in detail. In Section 7.3, we
propose two PIC’s in linear mixed model. In Section 7.4, we propose the cAIC variants based on
Bayesian marginal likelihood. The numerical performance of the proposed criteria is investigated
by simulations in Section 7.5.

7.2 Variants of conditional Akaike information

7.2.1 Setup of variable selection

The candidate model j is the linear mixed model

y =X(j)βj +Zbj + εj , (7.1)

where y is an n× 1 observation vector of response variables, X(j) and Z are n× pj and n× q
matrices of covariates, respectively, βj is a pj × 1 vector of coefficients, bj is a q × 1 vector
of random effects, and εj is an n × 1 vector of random errors. Let bj and εj be mutually
independent and bj ∼ Nq(0, σ

2
jG), εj ∼ Nn(0, σ

2
j In), where G is a q×q positive definite matrix

and σ2j is a scalar. We assume that G is known and σ2j is unknown.

To derive the criterion, we assume that the true model j∗ is included by each candidate
model j, namely each candidate model j is overspecified. In that situation, the true model j∗
can be expressed by

y =X(j)β∗
j +Zb∗ + ε∗, (7.2)

where b∗ ∼ Nq(0, σ
2
∗G), ε∗ ∼ Nn(0, σ

2
∗In) and β∗

j is a pj × 1 vector of regression coefficients,
whose pj − p∗ components are exactly 0 and the rest of components are not 0, for p∗ = pj∗ .
Henceforth, we abbreviate the model index j for notational convenience when there is no con-
fusion. We also abbreviate β∗

j as β, b∗ as b and σ2∗ as σ2. Let f(y|b,β, σ2) and p(b|σ2) denote
the conditional density function of y given b and the density function of b, respectively.

7.2.2 Conditional Kullback–Leibler risk

A conventional method of selecting the explanatory variable in linear mixed model is to use
the marginal AIC (mAIC). The mAIC is based on the marginal likelihood integrating out the
random effects b, which is given by

mAIC = −2 log{m(y|β̂j , σ̂2j )}+ 2pj ,

where m(y|β, σ2) =
∫
f(y|b,β, σ2)p(b|σ2)db and β̂j is the maximum likelihood estimator of

βj . However, the mAIC is not appropriate for the focus on the prediction of specific clusters or
random effects. Then, Vaida and Blanchard (2005) considered the expected Kullback–Leibler
(KL) divergence based on the conditional density, which is given by

Rc(η; f̂j) =

∫∫ [∫
log

{
f(ỹ|b,β, σ2)
f̂j(ỹ;y)

}
f(ỹ|b,β, σ2)dỹ

]
f(y|b,β, σ2)p(b|σ2)dydb, (7.3)
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where ỹ is an independent replication of y given b, f̂j(ỹ;y) is some predictive density of

f(ỹ|b,β, σ2) based on the candidate model j, and η = (βT, σ2)T. We call Rc(η; f̂j) in (7.3)
the conditional KL risk. We can provide an information criterion as an (asymptotically) unbi-
ased estimator of the information

Ic(η; f̂j) =

∫∫∫
−2 log

{
f̂j(ỹ;y)

}
f(ỹ|b,β, σ2)f(y|b,β, σ2)p(b|σ2)dỹdydb,

which is a part of (7.3) (multiplied by 2). Vaida and Blanchard (2005) proposed the conditional
AIC (cAIC) as an unbiased estimator of Ic(η; f̂j) for f̂j = f(ỹ|b̂j , β̂j , σ̂2j ), which is called plug-in

predictive density, where b̂j , β̂j and σ̂2j are some predictor of bj and estimators of βj and σ2j ,
respectively. The cAIC is of the form

cAIC = −2 log{f(y|b̂j , β̂j , σ̂2j )}+∆cAI,

where ∆cAI = Ic(η; f̂j)− E[−2 log{f(y|b̂j , β̂j , σ̂2j )}].
Although the conditional KL risk Rc(η; f̂j) is appropriate for variable selection in linear

mixed model, there is no reason to restrict the predictive density f̂j to plug-in predictive den-
sity. Thus we consider two types of predictive densities: the first one is the Bayesian (posterior)
predictive density and the second one is a predictive density based on Bayesian marginal like-
lihood, both of which are superior to the plug-in predictive density in some sense. In the
following sections, we derive information criteria based on these predictive densities and discuss
their properties.

7.3 Predictive information criterion

7.3.1 Bayesian predictive density in linear mixed model

Aitchison (1975) showed that the best predictive density f̂j which minimizes the risk Rc(η; f̂j)
is

f̂BP(ỹ|y,η) =
∫
f(ỹ|b,β, σ2)f(y|b,β, σ2)p(b|σ2)db∫

f(y|b,β, σ2)p(b|σ2)db
, (7.4)

when η = (βT, σ2)T is known. The predictive density f̂BP is known as the Bayesian (or posterior)
predictive density. Note that the linear mixed model can be seen as a Bayesian model where
the random effects b has prior distribution p(b|σ2). The cAIC measures the risk Rc(η; f̂j) for

f̂j = f(ỹ|b̂j , β̂j , σ̂2), which is plug-in predictive density, and it follows that

Rc(η; f(ỹ|b̂j ,β, σ2)) ≥ Rc(η; f̂
BP(ỹ|y,η)),

when η is known. Thus it is natural to use the Bayesian predictive density to measure the
prediction risk of the model. Information criterion based on the Bayesian predictive density is
known as the predictive likelihood (Akaike, 1980a) or the predictive information criterion (PIC)
(Kitagawa, 1997).

The next proposition shows the Bayesian predictive distribution in linear mixed model (7.2).

Proposition 7.1 In the linear mixed model (7.2), the Bayesian predictive distribution whose
density function is given by (7.4) is

f̂BP(ỹ|y,η) = N (Xβ +Zb̂
B
, σ2V ), (7.5)

where b̂
B
= GZTΣ−1(y −Xβ) and V = 2In −Σ−1.
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7.3.2 Derivation of PIC in linear mixed model

In this subsection, we derive the PIC in linear mixed model based on the Bayesian predictive
distribution (7.5). Because η = (βT, σ2)T is unknown, we estimate it by maximum likelihood
based on each candidate model j as follows:

β̂j = (X(j)TΣ−1X(j))−1X(j)TΣ−1y,

σ̂2j = (y −X(j)β̂j)
TΣ−1(y −X(j)β̂j)/n.

Then we consider the following information:

Ic(η; f̂
BP
j ) =

∫∫∫
−2 log

{
f̂BP(ỹ|y, β̂j , σ̂2j )

}
f(ỹ|b,β, σ2)f(y|b,β, σ2)p(b|σ2)dỹdydb,

=

∫ [∫
−2 log

{
f̂BP(ỹ|y, β̂j , σ̂2j )

}
f̂BP(ỹ|y,η)dỹ

]
m(y|β, σ2)dy

= PI (say), (7.6)

We want to construct an information criterion as an unbiased estimator of PI, which is of the
form

PIC = −2 log
{
f̂BP(y|y, β̂j , σ̂2j )

}
+∆PI,

where

−2 log
{
f̂BP(y|y, β̂j , σ̂2j )

}
= n log(2πσ̂2j ) + log |V |+ (y −Xβ̂j −Zb̂j)TV −1(y −Xβ̂j −Zb̂j)/σ̂2j ,

∆PI = PI− E[−2 log{f̂BP(y|y, β̂j , σ̂2j )}]

for b̂j = GZ
TΣ−1(y −Xβ̂j). Then we have to evaluate the bias correction ∆PI.

Firstly, taking expectation of

−2 log
{
f̂BP(ỹ|y, β̂j , σ̂2j )

}
= n log(2πσ̂2j )+ log |V |+(ỹ−Xβ̂j−Zb̂j)TV −1(ỹ−Xβ̂j−Zb̂j)/σ̂2j ,

with respect to the distribution of ỹ|y ∼ f̂BP(ỹ|y,η) = N (Xβ + Zb̂
B
, σ2V ), we can rewrite

the PI in (7.6) as

PI = E
[
n log(2πσ̂2j ) + log |V |+ nσ2/σ̂2j

+
{
X(β̂j − β) +Z(b̂j − b̂

B
)
}T
V −1

{
X(β̂j − β) +Z(b̂j − b̂

B
)
}]

= E
[
n log(2πσ̂2j ) + log |V |+ nσ2/σ̂2j

+ (β̂j − β)TXTΣ−1V −1Σ−1X(β̂j − β)/σ̂2j
]
,

noting that X(β̂j − β) + Z(b̂j − b̂
B
) = Σ−1X(β̂j − β). Next, −2 log

{
f̂BP(y|y, β̂j , σ̂2j )} is

rewritten as

− 2 log
{
f̂BP(y|y, β̂j , σ̂2j )

}
=n log(2πσ̂2j ) + log |V |+

{
u−X(β̂j − β)

}T
Σ−1V −1Σ−1

{
u−X(β̂j − β)

}
/σ̂2j ,

where u = y −Xβ. Then the bias correction ∆PI is

∆PI = E
[
nσ2/σ̂2j − uTΣ−1V −1Σ−1u/σ̂2j + 2uTΣ−1V −1Σ−1X(β̂j − β)/σ̂2j

]
= I1 − I2 + 2I3 (say).
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Thus, it suffices to evaluate I1, I2 and I3.

Noting that nσ̂2j /σ
2 ∼ χ2

n−pj , we can evaluate I1 as

I1 =
n2

n− pj − 2
.

Next, I2 is rewritten as

I2 = n · E

[
vTΣ−1/2V −1Σ−1/2v

vT(In −M)v

]
,

where v = Σ−1/2u/σ andM = Σ−1/2X(XTΣ−1X)−1XTΣ−1/2. Then, it follows from Lemma
4.6 that

I2 = n×

{
tr (V −1Σ−1)

n− pj − 2
− 2tr [Σ−1/2V −1Σ−1/2(In −M)]

(n− pj)(n− pj − 2)

}

=
n · tr (V −1Σ−1)

n− pj
+

2n · tr (V −1P )

(n− pj)(n− pj − 2)
,

where P = Σ−1X(XTΣ−1X)−1XTΣ−1. Lastly, I3 can be rewritten as

I3 = n · E

[
vTΣ−1/2V −1Σ−1/2Mv

vT(In −M)v

]

= n · E

[
vTMΣ−1/2V −1Σ−1/2Mv

vT(In −M)v

]
+ E

[
vT(In −M)Σ−1/2V −1Σ−1/2Mv

vT(In −M)v

]
.

BecauseMv and (In−M)v are independent and E(Mv) = 0, the second term of the equation
above is 0. Then,

I3 =
n · tr (V −1P )

n− pj − 2
.

Thus we can obtain

∆PI =
n2

n− pj − 2
− n · tr (V −1Σ−1)

n− pj
+

2n(n− pj − 1)tr (V −1P )

(n− pj)(n− pj − 2)
,

and propose the following PIC:

PIC = −2 log
{
f̂BP(y|y, β̂j , σ̂2j )

}
+∆PI. (7.7)

Theorem 7.1 The PIC in (7.7) is an unbiased estimator of PI in (7.6), namely E(PIC) = PI.

7.3.3 Another PIC putting prior on regression coefficients

Although the PIC in (7.7) works as a variable selection criterion, the predictive density function
f̂BP(ỹ|y, β̂j , σ̂2j ) seems not to be very appropriate for evaluation of the risk of the candidate

model j. This is because the Bayesian predictive density f̂BP(ỹ|y,η), which minimizes the
conditional KL risk, is derived under the condition that η = (βT, σ2)T is known, although β
varies with the model j. Then, we consider in this subsection another approach to construct the
PIC.
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To this end, we put the prior on the regression coefficients β as well as on the random effects
b. We assume that the prior distribution of β is β ∼ π(β|σ2) = Np(0, σ

2W ), where W is a
known positive definite matrix, and that β is independent of b. Let θ = (βT, bT)T and ψ(θ|σ2)
denote the prior density function of θ. Then, we can see the linear mixed model as the Bayesian
model

y|θ ∼ g(y|θ, σ2) = N (Xβ +Zb, σ2In),

θ ∼ ψ(θ|σ2) = p(b|σ2)π(β|σ2) = N (0, σ2G) · N (0, σ2W ),
(7.8)

In this model, the Bayesian predictive density is

ĝBP(z|y, σ2) =
∫
g(z|θ, σ2)g(y|θ, σ2)ψ(θ|σ2)dθ∫

g(y|θ, σ2)ψ(θ|σ2)dθ
, (7.9)

where z is independent replication of y given θ. Note that ĝBP(z|y, σ2) is the predictive density
which minimizes the following conditional KL risk:

Rc(σ
2; ĝ) =

∫∫ [∫
log

{
g(z|θ, σ2)
ĝ(z;y)

}
g(z|θ, σ2)dz

]
g(y|θ, σ2)ψ(θ|σ2)dydθ,

when σ2 is known, namely for any predictive density ĝ(z;y) the following inequality holds:

Rc(σ
2; ĝ(z;y)) ≥ Rc(σ

2; ĝBP(z|y, σ2))

It is also important to note that ĝBP(z|y, σ2) implicitly depends on the candidate model j. Thus
an information criterion based on ĝBP(z|y, σ2) is appropriate for variable selection.

The next proposition shows the Bayesian predictive distribution in the Bayesian model (7.8).

Proposition 7.2 In the Bayesian model (7.8), the Bayesian predictive distribution whose den-
sity function is given by (7.9) is

ĝBP(z|y, σ2) = N
(
{In − (B +Σ)−1}y, σ2V 2

)
, (7.10)

where B =XWXT and V 2 = 2In − (B +Σ)−1.

We consider the following information:

PI2 =

∫∫∫
−2 log

{
ĝBP(z|y, σ̂2j )

}
g(z|θ, σ2)g(y|θ, σ2)ψ(θ|σ2)dzdydθ

=

∫ [∫
−2 log

{
ĝBP(z|y, σ̂2j )

}
ĝBP(z|y, σ2)dz

]
gψ(y|σ2)dy, (7.11)

where gψ(y|σ2) =
∫
g(y|θ, σ2)ψ(θ|σ2)dθ. We want to construct an information criterion as an

unbiased estimator of PI2, which is of the form

PIC2 = −2 log
{
ĝBP(y|y, σ̂2j )

}
+∆PI2 ,

where

−2 log
{
ĝBP(y|y, σ̂2j )

}
= n log(2πσ̂2j ) + log |V 2|+ yT(B +Σ)−1V −1

2 (B +Σ)−1y/σ̂2j ,

∆PI2 = PI2 − Egψ [−2 log
{
ĝBP(y|y, σ̂2j )

}
],
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and Egψ denotes the expectation with respect to the distribution of gψ(y|σ2). Then we have to
evaluate the bias correction ∆PI2 .

Firstly, taking expectation of

− 2 log
{
ĝBP(z|y, σ̂2j )

}
= n log(2πσ̂2j ) + log |V 2|+

[
z − {In − (B +Σ)−1}y

]T
V −1

2

[
z − {In − (B +Σ)−1}y

]
/σ̂2j ,

with respect to the distribution of ĝBP(z|y, σ2) = N ({In− (B+Σ)−1}y, σ2V 2), we can rewrite
PI2 in (7.11) as

PI2 = Egψ
[
n log(2πσ̂2j ) + log |V 2|+ nσ2/σ̂2j

]
.

Then, the bias correction ∆PI2 can be expressed as

∆PI2 = Egψ
[
nσ2/σ̂2j − yT(B +Σ)−1V −1

2 (B +Σ)−1y/σ̂2j
]

= I4 − I5 (say).

Thus, it suffices to evaluate I4 and I5.

Noting the fact that

gψ(y|σ2) =
∫
g(y|θ, σ2)ψ(θ|σ2)dθ =

∫∫
f(y|β, b, σ2)p(b|σ2)π(β|σ2)dbdβ

=

∫
m(y|β, σ2)π(β|σ2)dβ,

I4 can be rewritten as

I4 = Egψ [nσ
2/σ̂2j ] = n2EβEy|β[nσ

2/σ̂2j ],

where Ey|β and Eβ denote the expectation with respect to the distribution of y|β ∼ m(y|β, σ2)
and β ∼ π(β|σ2), respectively. Then, I4 is evaluated as

I4 =
n2

n− pj − 2
.

Next, I5 can be decomposed as

I5 = nEgψ

[
vTΣ1/2(B +Σ)−1V −1

2 (B +Σ)−1Σ1/2v

vT(In −M)v

]
+ nEgψ

[
βTXT(B +Σ)−1V −1

2 (B +Σ)−1Xβ

σ2 · vT(In −M)v

]
= I51 + I52 (say).

Using Lemma 4.6, we can evaluate I51 as

I51 =
n · tr [V −1

2 (B +Σ)−1Σ(B +Σ)−1]

n− pj − 2
− 2n · tr [Σ1/2(B +Σ)−1V −1

2 (B +Σ)−1Σ1/2(In −M)]

(n− pj)(n− pj − 2)

=
n · tr [V −1

2 (B +Σ)−1Σ(B +Σ)−1]

n− pj − 2
− 2n · tr [V −1

2 (Σ−1B + In)
−1(Σ−1 − P )(BΣ−1 + In)

−1]

(n− pj)(n− pj − 2)
.



98 CHAPTER 7. VARIANTS OF CONDITIONAL AIC

I52 can be evaluated as

I52 = nEβEy|β

[
βTXT(B +Σ)−1V −1

2 (B +Σ)−1Xβ

σ2 · vT(In −M)v

]
= nEβ

[
βTXT(B +Σ)−1V −1

2 (B +Σ)−1Xβ

σ2(n− pj − 2)

]
=
n · tr [XT(B +Σ)−1V −1

2 (B +Σ)−1XW ]

n− pj − 2

=
n · tr [V −1

2 (B +Σ)−1B(B +Σ)−1]

n− pj − 2
.

Then, it follows that

I5 =
n · tr [V −1

2 (B +Σ)−1]

n− pj − 2
− 2n · tr [V −1

2 (Σ−1B + In)
−1(Σ−1 − P )(BΣ−1 + In)

−1]

(n− pj)(n− pj − 2)

Thus we can obtain

∆PI2 =
n2

n− pj − 2
−n · tr [V −1

2 (B +Σ)−1]

n− pj − 2
+
2n · tr [V −1

2 (Σ−1B + In)
−1(Σ−1 − P )(BΣ−1 + In)

−1]

(n− pj)(n− pj − 2)
,

and propose the following information criterion:

PIC2 = −2 log
{
ĝBP(y|y, σ̂2j )

}
+∆PI2 . (7.12)

Theorem 7.2 The PIC2 in (7.12) is an unbiased estimator of PI2 in (7.11), namely Egψ(PIC2) =
PI2.

7.4 Conditional AIC variant based on Bayesian marginal likeli-
hood

7.4.1 Conditional KL risk of predictive density based on Bayesian marginal
likelihood

In Chapter 6, we considered the KL risk of predictive density based on Bayesian marginal
likelihood. We derived criteria for variable selection in linear regression model by putting the
prior on regression coefficients. The key point of the criteria is that the risk of the predictive
density is measured by KL divergence not considering the prior distribution of the regression
coefficients. In other words, we considered the risk of the Bayesian model (marginal likelihood)
by frequentist point of view.

In this section, we consider the conditional KL risk (7.3) for the predictive density f̂j which
is based on the Bayesian marginal likelihood putting the prior on the unknown parameter of
interest. Especially, we assume the prior distribution of the vector of the regression coefficients
and derive variable selection criteria in linear mixed model.

7.4.2 Case of normal prior

In this subsection, we consider normal prior on regression coefficients. We assume the prior
distribution of β,

π(β|σ2) ∼ N (0, σ2W ),
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where W is a p× p matrix suitably chosen with full rank. Then the marginal likelihood of y is

mπ(y|σ2) =
∫∫

f(y|b,β, σ2)p(b|σ2)π(β|σ2)dbdβ =

∫
m(y|β, σ2)π(β|σ2)dβ

= (2πσ2)−n/2 · |Σ|−1/2 · |W |−1/2 · |XTΣ−1X +W−1|−1/2 · exp{−yTAy/(2σ2)},

where A = Σ−1 − Σ−1X(XTΣ−1X +W−1)−1XTΣ−1. Note that A = (Σ + B)−1 for B =
XWXT, namely mπ(y|σ2) ∼ N (0, σ2(Σ+B)). Then we consider the following information:

Ic(η;mπ) =

∫∫∫
−2 log

{
mπ(ỹ|σ̂2j )

}
f(ỹ|b,β, σ2)f(y|b,β, σ2)p(b|σ2)dỹdydb

=

∫ [∫
−2 log{mπ(ỹ|σ̂2j )}f̂BP(ỹ|y,η)dỹ

]
m(y|β, σ2)dy. (7.13)

We want to construct an information criterion as an unbiased estimator Ic(η;mπ), which is of
the form

ICc,π = −2 log{mπ(y|σ̂2j )}+∆c,π,

where

−2 log{mπ(y|σ̂2j )} = n log(2πσ̂2j ) + log |Σ|+ log |WXTΣ−1X + Ip|+ yTAy/σ̂2j ,

∆c,π = Ic(η;mπ)− E[−2 log{mπ(y|σ̂2j )}].

Note that the expectation in the equation above is the one with respect to the distribution of
y ∼ m(y|β, σ2). Then we have to evaluate the bias correction ∆c,π.

Firstly, taking expectation of

−2 log{mπ(ỹ|σ̂2j )} = n log(2πσ̂2j ) + log |Σ|+ log |WXTΣ−1X + Ip|+ ỹTAỹ/σ̂2j

with respect to the distribution of ỹ|y ∼ f̂BP(ỹ|y,η) = N (Xβ + Zb̂
B
, σ2V ), we can rewrite

Ic(η;mπ) in (7.13) as

Ic(η;mπ) = E
[
n log(2πσ̂2j ) + log |Σ|+ log |WXTΣ−1X + Ip|+ tr (AV ) · σ2/σ̂2j
+ (Xβ +Zb̂

B
)TA(Xβ +Zb̂

B
)/σ̂2j

]
= E

[
n log(2πσ̂2j ) + log |Σ|+ log |WXTΣ−1X + Ip|+ tr (AV ) · σ2/σ̂2j
+ {Xβ + (In −Σ−1)u}TA{Xβ + (In −Σ−1)u}/σ̂2j

]
,

noting that Zb̂
B
= ZGZTΣ−1(y −Xβ) = (In −Σ−1)u. Next, −2 log{mπ(y|σ̂2j )} is rewritten

as

− 2 log{mπ(y|σ̂2j )}
= n log(2πσ̂2j ) + log |Σ|+ log |WXTΣ−1X + Ip|+ (uTAu+ βTXTAXβ + 2uTAXβ)/σ̂2j

Then the bias correction ∆c,π is

∆c,π = E
[
tr (AV ) · σ2/σ̂2j + uT(Σ−1AΣ−1 − 2AΣ−1)u/σ̂2j

]
= J1 + J2 (say).

Thus, it suffices to evaluate J1 and J2.
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Noting that nσ̂2j /σ
2 ∼ χ2

n−pj , we can evaluate J1 as

J1 =
n · tr (AV )

n− pj − 2
= −n× {tr (AΣ−1)− 2tr (A)}

n− pj − 2

Next, J2 is rewritten as

J2 = n · E

[
vT(Σ−1/2AΣ−1/2 −Σ1/2AΣ−1/2 −Σ−1/2AΣ1/2)v

vT(In −M)v

]
,

which can be evaluated by Lemma 4.6 as

J2 = n×

{
tr (AΣ−1)− 2tr (A)

n− pj − 2
− 2tr [Σ−1/2AΣ−1/2(In −M)− 2Σ1/2AΣ−1/2(In −M)]

(n− pj)(n− pj − 2)

}

= n×
{
tr (AΣ−1)− 2tr (A)

n− pj − 2
− 2tr [A(Σ−1 − P )]− 4tr [A(Σ−1 − P )Σ]

(n− pj)(n− pj − 2)

}
= n×

{
tr (AΣ−1)− 2tr (A)

n− pj
+

2tr (AP )− 4tr (APΣ)

(n− pj)(n− pj − 2)

}
Thus we can obtain

∆c,π = n×
{
−2tr [A(Σ−1 − P )] + 4tr [A(In − PΣ)]

(n− pj)(n− pj − 2)

}
,

and propose the following information criterion:

ICc,π = −2 log{mπ(y|σ̂2j )}+∆c,π. (7.14)

Theorem 7.3 The information criterion ICc,π in (7.14) is an unbiased estimator of Ic(η;mπ)
in (7.13), namely E(ICc,π) = Ic(η;mπ).

7.4.3 Conditional RIC

In this subsection, we assume the uniform prior for β, namely β ∼ uniform(Rp). Although
this is improper prior distribution, we can obtain the marginal likelihood function formally as
follows:

mr(y|σ2) =
∫
m(y|β, σ2)dβ

= (2πσ2)−(n−p)/2 · |Σ|−1/2 · |XTΣ−1X|−1/2 · exp{yT(Σ−1 − P )y/(2σ2)},

which is the same as the residual likelihood (Patterson and Thompson, 1971). In the last chapter,
we measured the risk of predictive density mr(ỹ|σ̃2j ) in terms of the following KL divergence:

R(η;mr) =

∫ [∫
log

{
m(ỹ|β, σ2)
mr(ỹ|σ̃2j )

}
m(ỹ|β, σ2)dỹ

]
m(y|β, σ2)dy,

and showed that the resulting criterion is identical to residual information criterion (RIC) pro-
posed by Shi and Tsai (2002). Azari et al. (2006) applied the RIC to variable selection in linear
mixed model for longitudinal data analysis. However, the KL risk R(η;mr) is not appropriate



7.4. CAIC VARIANT BASED ON BAYESIAN MARGINAL LIKELIHOOD 101

when one is interested in predicting random effects, which was pointed out by Vaida and Blan-
chard (2005). Then we propose to measure the prediction risk of mr(ỹ|σ̃2j ) by the conditional

KL risk Rc(η; f̂j) in (7.3) for f̂j = mr(y|σ̃j) and call the resulting criterion the conditional RIC
(cRIC).

Then we consider the following information:

Ic(η;mr) =

∫∫∫
−2 log{mr(ỹ|σ̃2j )}f(ỹ|b,β, σ2)f(y|b,β, σ2)p(b|σ2)dỹdydb

=

∫ [∫
−2 log{mr(ỹ|σ̃2j )}f̂BP(ỹ|y,η)dỹ

]
m(y|β, σ2)dy

= cRI (say), (7.15)

where σ̃2j = yT(Σ−1 − P )y/(n − pj) is the residual maximum likelihood (REML) estimator of

σ2j . We want to construct an information criterion as an unbiased estimator of Ic(η;mr), which
is of the form

cRIC = −2 log{mr(y|σ̃2j )}+∆cRI,

where

−2 log{mr(y|σ̃2j )} = (n− pj) log(2πσ̃
2
j ) + log |Σ|+ log |XTΣ−1X|+ yT(Σ−1 − P )y/σ̃2j ,

∆cRI = cRI− E[−2 log{mr(y|σ̃2j )}].

Note that the expectation in the equation above is the one with respect to the distribution of
y ∼ m(y|β, σ2). Then we have to evaluate the bias correction ∆cRI.

Firstly, taking expectation of

− 2 log{mr(ỹ|σ̃2j )}
= (n− pj) log(2πσ̃

2
j ) + log |Σ|+ log |XTΣ−1X|+ ỹT(Σ−1 − P )ỹ/σ̃2j ,

with respect to the distribution of f̂BP(ỹ|y,η) ∼ N (Xβ + Zb̂
B
, σ2V ), we can rewrite the cRI

in (7.15) as

cRI = E
[
(n− pj) log(2πσ̃

2
j ) + log |Σ|+ log |XTΣ−1X|+ tr [V (Σ−1 − P )] · σ2/σ̃2j

+ {Xβ + (In −Σ−1)u}T(Σ−1 − P ){Xβ + (In −Σ−1)u}/σ̃2j
]

= E
[
(n− pj) log(2πσ̃

2
j ) + log |Σ|+ log |XTΣ−1X|+ tr [V (Σ−1 − P )] · σ2/σ̃2j

+ uT(In −Σ−1)(Σ−1 − P )(In −Σ−1)u/σ̃2j

]
,

noting that (Σ−1 − P )X = 0. From the fact that

− 2 log{mr(y|σ̃2j )}
= (n− pj) log(2πσ̃

2
j ) + log |Σ|+ log |XTΣ−1X|+ (n− pj),

the bias correction can be reduced to

∆cRI = E
[
tr [V (Σ−1 − P )] · σ2/σ̃2j + uT(In −Σ−1)(Σ−1 − P )(In −Σ−1)u/σ̃2j

]
− (n− pj)

= J3 + J4 − (n− pj), (say).
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Thus, it suffices to evaluate J3 and J4.
It is easy to see that

J3 =
(n− pj) · tr [V (Σ−1 − P )]

n− pj − 2
=

(n− pj) · tr [(2In −Σ−1)(Σ−1 − P )]

n− pj − 2
,

because (n− pj)σ̃
2
j /σ

2 ∼ χ2
n−pj . Next, J4 is rewritten as

J4 = (n− pj) · E

[
vTΣ1/2(In −Σ−1)(Σ−1 − P )(In −Σ−1)Σ1/2v

vT(In −M)v

]
,

which can be evaluated by Lemma 4.6 as

J4 = (n− pj)

×
{
tr [(Σ−1 − P )(In −Σ−1)Σ(In −Σ−1)]

n− pj − 2
− 2tr [(In −Σ−1)(In −M)(In −Σ−1)(In −M)]

(n− pj)(n− pj − 2)

}
= (n− pj)

×
{
tr [(Σ−1 − P )(Σ− 2In +Σ−1)]

n− pj − 2
− 2tr [(Σ− In)(Σ−1 − P )(Σ− In)(Σ−1 − P )]

(n− pj)(n− pj − 2)

}
.

Thus we can obtain

∆cRI =
2(n− pj)

n− pj − 2
− 2

n− pj − 2
tr [(Σ− In)(Σ−1 − P )(Σ− In)(Σ−1 − P )]

and propose the following cRIC:

cRIC = −2 log{mr(y|σ̃2j )}+∆cRI. (7.16)

Theorem 7.4 The cRIC in (7.16) is an unbiased estimator of cRI in (7.15), namely E(cRIC) =
cRI.

7.5 Simulations

In this section, we compare the numerical performance of the proposed criteria, PIC, PIC2, ICc,π
and cRIC with the conventional cAIC of Vaida and Blanchard (2005). We handle the nested error
regression model (NERM) and consider the same setting as that of Section 6.4. When we derive
the criteria PIC2 and ICc,π, we set the prior distribution of β as Np(0, σ

2λ−1Ip), namely W =
λ−1Ip. The hyperparameter λ is estimated by maximizing the marginal likelihood mπ(y|σ̂2j ),
where the estimate σ̂2j = yT(Σ−1 − P )y/n of σ2 is plugged in. The unknown parameter ϕ =

τ2/σ2 included by Σ is estimated by consistent estimator based on the full model in the same
way as Section 6.4. The class of the candidate models includes all the subsets of the full model
and select the model by the criteria. The performance of the criteria is measured by the number
of selecting the true model and the prediction error of the selected model based on quadratic
loss, namely ∥X(ȷ̂)β̂ȷ̂ −X(ω)β∗∥2/n.

Table 7.1 and 7.2 show the number of selecting the true model by the criteria and the average
prediction error of the selected model by each criterion, respectively. From the table we can see
the following facts. Firstly, the number of selecting the true model approaches 1000 for ICc,π
and cRIC, which is the numerical evidence of the consistency of the criteria. Especially, ICc,π
performs well for almost all situations in terms of prediction error as well as selecting the true
model. However, for the case of small sample size and noisy data, namely signal-to-noise ratio
(SNR) is small, PIC2 performs the best among the criteria.
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Table 7.1: The number of selecting the true model by the criteria in 1000 realizations

ϕ = 0.5 ϕ = 1 ϕ = 2
SNR 1 3 5 1 3 5 1 3 5

n0 = 5 cAIC 121 718 732 140 694 729 175 677 740
m = 4 PIC 124 706 715 157 683 703 194 673 713

PIC2 155 555 558 171 550 557 201 539 559
ICc,π 146 850 905 176 849 913 237 849 937
cRIC 20 531 730 41 590 758 96 679 804

n0 = 5 cAIC 355 631 631 357 645 645 337 652 653
m = 8 PIC 364 602 602 359 593 593 359 601 601

PIC2 330 479 479 322 487 489 330 495 496
ICc,π 427 894 938 448 918 952 489 934 960
cRIC 153 702 850 234 754 863 358 802 895

n0 = 5 cAIC 576 625 625 542 630 630 492 629 629
m = 16 PIC 561 596 596 535 595 595 507 596 596

PIC2 475 509 511 452 505 507 438 514 515
ICc,π 736 938 958 720 947 963 699 955 971
cRIC 436 832 900 498 856 921 578 893 935

Table 7.2: The prediction error of the best model selected by the criteria

ϕ = 0.5 ϕ = 1 ϕ = 2
SNR 1 3 5 1 3 5 1 3 5

n0 = 5 cAIC 1.44 0.120 0.0430 1.11 0.0962 0.0343 0.708 0.0652 0.0233
m = 4 PIC 1.43 0.121 0.0433 1.10 0.0968 0.0346 0.698 0.0658 0.0235

PIC2 1.35 0.127 0.0455 1.05 0.101 0.0362 0.675 0.0689 0.0247
ICc,π 1.41 0.115 0.0400 1.09 0.0915 0.0320 0.705 0.0615 0.0214
cRIC 1.28 0.127 0.0431 1.01 0.100 0.0341 0.679 0.0664 0.0229

n0 = 5 cAIC 0.846 0.0854 0.0307 0.638 0.0672 0.0242 0.418 0.0455 0.0164
m = 8 PIC 0.845 0.0859 0.0309 0.638 0.0679 0.0244 0.422 0.0460 0.0166

PIC2 0.833 0.0880 0.0317 0.644 0.0695 0.0250 0.429 0.0472 0.0170
ICc,π 0.842 0.0793 0.0280 0.628 0.0621 0.0220 0.405 0.0418 0.0149
cRIC 0.840 0.0840 0.0289 0.655 0.0656 0.0228 0.437 0.0439 0.0153

n0 = 5 cAIC 0.564 0.0622 0.0224 0.459 0.0508 0.0183 0.322 0.0356 0.0128
m = 16 PIC 0.566 0.0625 0.0225 0.461 0.0510 0.0184 0.323 0.0358 0.0129

PIC2 0.572 0.0633 0.0228 0.466 0.0516 0.0186 0.327 0.0362 0.0130
ICc,π 0.547 0.0582 0.0208 0.443 0.0476 0.0170 0.308 0.0334 0.0120
cRIC 0.577 0.0599 0.0212 0.466 0.0488 0.0173 0.323 0.0340 0.0121
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7.6 Proofs

7.6.1 Proof of Proposition 7.1

The marginal joint distribution of ỹ and y is(
ỹ
y

)
∼ N

((
Xβ
Xβ

)
,

(
Λ11 Λ12

Λ21 Λ22

))
,

where Λ11 = Λ22 = σ2Σ,

Λ12 = Λ21

= E[(y −Xβ)(ỹ −Xβ)T]
= E[(Zb+ ε)(Zb+ ε̃)T]

= σ2ZGZT,

and ε̃ is independent replication of ε, which is also independent of b. Then, from the property
of multivariate normal distribution, it follows that

f̂BP(ỹ|y,η) = N (Xβ +Λ12Λ
−1
22 (y −Xβ),Λ11 −Λ12Λ

−1
22 Λ21),

where Λ12Λ
−1
22 (y −Xβ) = ZGZTΣ−1(y −Xβ) = Zb̂B and

Λ11 −Λ12Λ
−1
22 Λ21 = σ2Σ− σ2ZGZTΣ−1ZGZT

= σ2Σ− σ2(Σ− In)Σ−1(Σ− In)
= σ2(2In −Σ−1) = σ2V ,

which shows Proposition 7.1. □

7.6.2 Proof of Proposition 7.2

The marginal joint distribution of z and y is(
z
y

)
∼ N

((
0
0

)
,

(
Γ11 Γ12

Γ21 Γ22

))
,

where Γ11 = Γ22 = σ2(B +ZGZT + In) = σ2(C + In),

Γ12 = Γ21

= E[yzT]

= σ2C,

and C = B + ZGZT. Then, form the property of multivariate normal distribution, it follows
that

ĝBP = N (Γ12Γ
−1
22 y,Γ11 − Γ12Γ

−1
22 Γ21),

where

Γ12Γ
−1
22 = C(C + In)

−1

= (C + In − In)(C + In)
−1

= In − (C + In)
−1

= In − (B +Σ)−1,
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and

Γ11 − Γ12Γ
−1
22 Γ21 = σ2(C + In)− σ2C(C + In)

−1C

= σ2(C + In)− σ2(C + In − In)(C + In)
−1(C + In − In)

= σ2{2In − (C + In)
−1}

= σ2{2In − (B +Σ)−1} = σ2V 2,

which shows Proposition 7.2.
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