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The synovial joints represent the hinges of the musculoskeletal system that 

allow us to perform various motions in daily life from as simple as standing to 

as complex as playing sports. Despite its simplicity in macro-level appearance, 

the biochemical composition on the micro-level is astonishingly complex and is 

what gives the articular joint its superior mechanical functionalities. However 

at the same time, the complexity also renders its full regeneration to be very 

difficult. Hydrostatic pressure is one of the major modes of mechanical stress 

that exists in the native joint environment and is essential for the maintenance 

of healthy osteochondral tissues. Hence, the application of hydrostatic pressure 

may have stimulatory effects for tissue-engineering cartilage and bone. In this 

dissertation, we attempted to elucidate the effects of dynamic hydrostatic 

pressure on the joint maturation process, as well as its effects on our 

hydrogel-based tissue engineered models for both cartilage and bone. 

 

In the first study, we used the rat model to first examine the post-natal 

development of the synovial joint and the role of hydrostatic pressure in the 

process. By tracking juvenile rats and examining their knee joints at 1 to 7 weeks, 

we observed the timing of the secondary endochondral ossification and thinning 

of the cartilage during the tissue maturation progress after birth. The maturation 

stages also corresponded with the mobility of the animals, suggesting the 

requirement for tissue function prior to any mechanical stressful movements. When 

we isolated the epiphyses from the femoral distal end, we were able to maintain 

the tissue ex vivo and even demonstrated growth after one week of culture. However, 

we observed that the maturation process (specifically the onset of ossification) 



was halted in ex vivo culture, especially under static culture conditions. With 

the application of dynamic hydrostatic pressure stimulation on the other hand, 

we were able to initiate the maturation process resulting in changes in the gene 

expressions of cells and also matrix biochemical composition. Our analysis was 

performed using the whole epiphysis though, which results in low resolution in 

regards to which part of the joint the change is really occurring at. Since both 

bone formation and cartilage maturation progress simultaneously, it may be more 

meaningful to perform regional analysis for future work.  

 

The second study involved using a photo-crosslinkable HA hydrogel for cartilage 

tissue engineering. By methacrylating the HA molecules, polymerization between 

the monomers was easily initiated by UV exposure. By embedding cells in the 

hydrogel, we were able to create 3D tissue-engineered cartilage constructs. Using 

this scaffolding material, we examined the effects of mechanical stimulation, 

namely dynamic compression and hydrostatic pressure, on de-differentiated 

chondrocytes and hMSCs in 3D culture. From the experimentation, we demonstrated 

the ability of our hydrogel to re-differentiate the expanded chondrocytes where 

cell regained their spherical morphology and started producing aggrecan and type 

II collagen. The effect was further enhanced with the dynamic compression loading 

and even resulted in constructs with higher elastic and aggregate moduli. A 

peculiar trend observed, however, was the inconsistency between the mechanical 

properties and biochemical composition of the constructs. Intuitively the 

relation between the amount of matrix proteins and construct strength should be 

proportional, but the protein quantity was lesser in the dynamically cultured 

constructs than the static controls. The proposed hypothesis to explain this 

phenomenon was the concept of collagen fiber orientation, where chondrocytes 

within the matrix can actively re-orientate their surrounding fibers to better 

withstand the mechanical stress. Similarly, hydrostatic pressure was applied to 

tissue-engineered constructs embedded with hMSCs to better promote chondrogenesis. 

While the results show enhanced induction with the mechanical stimulation, the 

change was not as significant. Differential control of stem cells is still a major 

challenge in tissue engineering, where the optimization of numerous parameters 

is needed to achieve desired outcomes. Nevertheless, both dynamic compression and 

hydrostatic pressure were shown to be effective in stimulating construct 

maturation and can potentially be applied in other approaches for cartilage tissue 

engineering.  



For the third study, we developed a bioactive HA hydrogel bone tissue engineering 

by taking advantage of the osteoconductive potentials of inorganic polyphosphate. 

In previous works, we have modified HA molecules by attaching adipic dihydrazide 

and aldehyde groups to form HA-ADH and HA-CHO respectively, which can then be 

crosslinked to form HAX hydrogels. HA-ADH was further modified to covalently bind 

PolyP chains to synthesize scaffolds with immobilized PolyP. The functionalized 

scaffolds were first tested with MC3T3-E1 pre-osteoblasts to examine the potential 

for osteoconduction. From our experiments, we demonstrated that the embedded cells 

were indeed stimulated by the immobilized factors and that this stimulation is 

constantly present throughout the culture period. Up-regulation of bone marker 

genes, as well as the increase in osteogenic activities and matrix mineralization 

all verifies the osteoconductive effects of PolyP. In comparison, constructs that 

were initially loaded with the factors directly or in the culture medium did not 

exhibit such increase in osteoconduction, denoting the limited effects of the 

factors in free-floating form. Embedded cells within scaffolds tend to have 

limited motility, hence immobilization of factors can allow for easier and 

constant access to such chemical stimulation. These experiments demonstrated the 

potency of conjugating factors onto scaffolds as a method for efficient factor 

delivery.  

 

We then used the HAX-PolyP model with hMSCs and attempted to further compliment 

the osteoconductive effects of immobilized PolyP with dynamic hydrostatic 

pressure stimulation. The outcome was synergetic, where mechanical loading 

enhanced osteogenic differentiation of the embedded stem cells. Although further 

experimentation is required to fully demonstrate osteogenesis and bone formation 

with hMSCs in the HAX-PolyP hydrogel, we have preliminarily illustrated the 

potential use of hydrostatic for this purpose. Mechanical loading used in bone 

tissue engineering are mainly flow-induced shear stresses with little attention 

to hydrostatic pressure. However, the existence of hydrostatic pressure is 

significant in the native tissue where it facilitates the bone maintenance. As 

such, this study presented their role in in vitro bone conduction as a start to 

deeper investigation.   

 

In the last study, we combined the know-hows from the second and third study 

to develop a tissue-engineered osteochondral model using composition HA hydrogel 

scaffolds. Although it may be more common to use stiffer materials for the bone 



layer, problems including low cell inoculation rates and poor interface 

integration still persist. We have demonstrated that ease of using HA hydrogels 

for constructing osteochondral tissues with strong interface integrity by 

layering MeHA with HAX-PolyP and embedding hMSCs. We exploited the osteoconductive 

capabilities of immobilized PolyP, which are localized only to the HAX-PolyP layer. 

As such, when we cultured the constructs in chondrogenic medium, hMSCs did not 

undergo chondrogenesis and were committed to osteogenesis. Two distinct types of 

matrices were also developed along with the construct maturation as shown by the 

difference in histology, biochemical composition and mechanical properties. From 

the results obtained in the previous studies, dynamic hydrostatic pressure loading 

can also be used to stimulate and promote the maturation of the tissue-engineered 

osteochondral construct. Since both of these materials are injectable hydrogels 

and can conform to any shape and size, this approach for treating osteochondral 

defects is clinically useful. For example, the subchondral defect can first be 

filled with HAX-PolyP containing hMSCs then topped with MeHA for the cartilage 

region. Further animal experimentation would be necessary to fully examine how 

this model perform in vivo. 

 

In summary, this dissertation have met the objective set in Chapter 1 by 

elucidating the effects of dynamic hydrostatic pressure in the post-natal 

developing joint and also in tissue-engineered cartilage and bone constructs. 

Several new models for tissue-engineered cartilage, bone and osteochondral 

constructs have also developed and validated using functionalized hyaluronic acid 

hydrogels. The data combined gave new insights and a better understanding to the 

involvement of mechanical stresses in the regulation of the osteochondral tissue. 

These newly obtained knowledge have also gave us hints and a more definitive 

direction as to what to further research for achieving the ultimate goal of 

creating the ideal tissue-engineered osteochondral construct for the treatment 

of degenerative joint diseases. Hopefully perhaps within the next one or two 

decades as the demands become even larger with the aging society, clinical 

application of osteochondral tissue engineering can be commonly implemented 

worldwide. 

 


