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Abstract

To date, the separation control devices such as flap and vortex generetors have been

well developed for practical use, which can enhance the aerodynamic performances of

airfoils when the flow is separated. However, it is difficult to propose the further better

design for these devices because of its heavy weight and complicated machine mechanism

or the property of essentially passive control which only works well at a certain condition

of the separated flow. For these reason, the micro devices such as a synthetic jet (SJ) and

DBD plasma actuator (DBDPA) are focused on, which are small, less energy consuming,

and able to conduct an active control based on the surrounding flow conditions. The

SJ consists of the cavity and orifice embedded in the airfoil surface, of which bottom

oscillates periodically using a speaker and piezo devices. The resultant periodic flow

fluctuation affects the external separated flow, which is suppressed to the attached or

less separated flow. A lot of researchers have tucklled on the practical use of the SJ for

decades, where the optimal control parameters have been surveyed for the separation

control over an airfoil. Nevertheless, the mechanism of the separation control has not

been adequately clarified so that it is difficult to suggest the optimal parameters for

variety of separated flow conditions. For example, there have been two regimes of the

optimal actuation frequency, i.e., F+ = O(1) and O(10) (F+ is the actuation frequency

normalized by the chord length and uniform flow velocity). The former frequency F+ =

O(1) is reported to be optimal in terms of the higher lift coefficient; on the other hand,

the latter frequency F+ = O(10) is shown to be better because it directly affects the

smaller vortex structures in the view point of turbulent transition. The objective of

this study is to clarify the mechanism of separation control using the SJ, which can

support construction of the criteria for optimal parameters. In this study, a large-eddy

simulation is conducted for the highly-accurate unsteady computation because strong

turbulent vortex structures are introduced from the SJ. In addition, the oscillation of

the cavity bottom is considered using the moving and deforming grids. The target flow

is around the NACA0015 airfoil with the chord-Reynolds number 63,000 at the angle of

attack 12◦, which is completely separated near the leading edge. The SJ is modelled by

the simple cavity with a spanwise-uniform shape, which is implemented at the leading

edge. The mechanism of the separation control around an airfoil with a synthetic jet

device is investigated using high-fidelity computation.
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The new methodology for high-order computation of compressible flows on moving

and deforming grid is generally constructed in terms of a freestream preservation and

conservation of conservative quantities. The scheme includes new evaluations of time

metrics and the Jacobian defined as the component of coordinate-transformation matrix

when the body-fitted coordinate is adopted. The new form of time metrics and Jacobian,

i.e., symmetric conservative metrics hereafter, attains the fully conservative property of

conservative quantities as well as satisfying the geometric conservation law (GCL) where

any linear high-order finite difference scheme can be employed.

The computation of separation control around NACA0015 airfoil with a synthetic

jet (angle of attack is 12 [deg] and chord Reynolds number is 63,000) is conducted using

6th-order compact scheme.The effect of actuation frequency and position of the synthetic

jet is arranged by varying the actuation frequency and position of the synthetic jet, and

the control performance is surveyed in terms of aerodynamic coefficients. The controlled

flow is investigated by time averaged fields, and the relation between separated regions on

the suction surface and aerodynamic coefficients is discussed. The significant turbulent

statistics is also extracted in terms of momentum addition in freestream direction by

the mixing, and the related vortex structure is detected by phase-averaging procedure

based on actuation frequency. The u′w′ component of Reynolds shear stress is especially

focused in this thesis, and turbulent component is mainly enhanced almost all over the

airfoil surface. In addition, two-dimensional vortex structure is extracted in phase and

span-averaged flow fields, and the Reynolds shear stress is found to be locally enhanced

between each vortex structure.

In the appendix, the newly developed geometric interpretations of symmetric con-

servative metrics is presented. It is based on the spatial discretization by any linear

high-order finite-diffrence scheme, and the resulting geometric interpretation of metrics

is strongly related to that given by classical finite-volume like interpretations. The spatial

symmetry property is also investigated in terms of the robustness and resolution of the

high-order finite-difference scheme, and the property is shown significant with the use of

highly-skewd stationary grids.
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Chapter 1

Introduction

Micro devices for a separation control recently attract a lot of attention because they

achieve less energy consumption, comparatively simple structures, and more effective

control on unsteady flow fields compared to conventional devices: “steady jet” and “vor-

tex generator”. In this thesis, “synthetic jet” (hereafter, denoted as SJ) is focused. SJ

is one of the most advanced micro device to control a separated flow. Figure 1.2 shows

a schematic diagram of a synthetic jet. A synthetic jet consists of a cavity and an ori-

fice connected to the cavity whose bottom oscillates with a small amplitude. The brief

sequence of separation control using a synthetic jet is as follows. The periodic deforma-

tion of the cavity produces blowing and suction flow periodically from the orifice exit.

First, the resulting flow from the orifice exit fluctuates the separated shear layer near

the exit, and then the fluctuation is amplified as it shedding along an airfoil. Finally,

the whole separated flow is modified, and the attached flow is obtained. The momentum

flux directly provided from the synthetic jet is so small that piezoelectric devices, piston,

and speaker are practically used to oscillate the cavity bottom[14] [4] [13] . Therefore, a

synthetic jet is considered suitable for unmanned air vehicles (UAV) and microscale air

vehicles (MAV) due to its simple structures and small energy consumption. Recently,

some research reports the practical use of a synthetic jet (see Fig. 1.1). In addition,

many experimental and numerical studies in related literature report that a synthetic jet

is also applicable for separation control not only over an airfoil but for the other fluidic

machineries, e.g., turbine blades.
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Fig. 1.1: Application of synthetic jet devices to a tiltrotor aircraft by McVeigh et al. [19].

1.1 Overview of the previous studies on separation

control using the SJ

To date, a lot of experimental and numerical studies have focused on optimal control

variables of a synthetic jet determined by time-averaged flow fields[4][13]. In particular,

most of numerical studies adopt a Reynolds-averaged Navier-Stokes (RANS) equations

to obtain time-averaged flow fields, and the aerodynamic coefficients and optimal control

variables show good agreement with those obtained by experiments[17][9][14]. In these

computational studies using RANS, the synthetic jet is often modeled by two-dimensional

(in spanwise direction) velocity condition on an airfoil surface although the practical syn-

thetic jet produces blowing and suction flows by oscillating the cavity bottom. Therefore,

it implies that the synthetic jet can be modeled by two-dimensional velocity condition on

an airfoil in terms of aerodynamic coefficients and optimal control variables determined

by time-averaged flow fields adopting RANS analysis. On the other hand, it has been

reported that time variant values, e.g., turbulent statistics and phase-averaged flow fields,

do not correspond to those of experiments. This may because aerodynamic coefficients

of time-averaged flow fields are governed by large flow structures such as large vortices

shdding along an airfoil surface, and two-dimensionality is essential to them.

1.2 Numerical studies on the separation control us-

ing SJ

Recently, three-dimensional unsteady analyses are getting more and more significant with

regards to the physics of the separation control focusing on turbulent structure which
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Fig. 1.2: Schematic diagram and geometric configuration of a synthetic jet.

is three-dimensional and unsteady. For example, Rizzetta and Visbal investigated a

synthetic jet using a direct numerical simulation of Navier-Stokes equations (DNS) and

discussed effects of the Reynolds number defined by the characteristic of the induced

jet. However, the induced jet is modeled by a two-dimensional boundary condition given

at the orifice exit (without cavity), therefore the effects of the three-dimensional flow

structure is not strictly examined. On the other hand, Ravi et al. conducted DNS[26]

on an induced jet from the three-dimensional cavity, and reported that the strong three-

dimensional unsteady flows exist in the cavity. Accordingly, Okada et al. performed

large-eddy simulation of Navier-Stokes equations (LES) on the separation control over a

backward facing step using the synthetic jet with three-dimensional cavity[24], and the

characteristics of turbulent structures in the external flow controlled by the synthetic jet

is discussed. In this way, the computation of unsteady flows both in an external flow and

in the deforming cavity using high-resolutional schemes is regarded important among

recent studies. They also investigated three-dimensional turbulent structures from the

cavity to static air by comparing the synthetic jet modeled by the Cavity and Bc model,

and concluded that the turbulent structure is more enhanced with the Cavity model,

therefore the Bc model should not be adopted as the model of synthetic jet.
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1.3 Investigation of the mechanism for sepaaration

control

For an applied flow, You and Moin conducted LES[33] for the separation control around

an airfoil, and the aerodynamic coefficients well correspond to those of experimental

results. They also reported that the key mechanism of separation control is not only the

modification of two-dimensional boundary layer profile by adding or removing momentum

in freestream direction, but also three-dimensional turbulent mixing. However, since

their synthetic jet produces a jet in the downstream direction, it is difficult to clarify

the effect of direct momentum addition from that of turbulent mixing with respect to

the mechanism of separation control. Moreover, they have not quantitatively discussed

turbulent statistics of controlled flow fields, and the effects of an actuation frequency

and position of SJ on the turbulent structure has not been well investigated. In this

way, the mechanism of separation control around an airfoil has not been clearly classified

especially in terms of three-dimensional turbulent structure in the controlled flow field.

1.4 Outline of this thesis

In this thesis, the effect of an actuation frequency and position of SJ on the aerodynamic

performance and turbulent statistics of the separation-controlled flow over NACA0015

airfoil is focused. Therefore, LES is adopted to evaluate the unsteady characteristics

of turbulent structures. As refered in the previous pargraph, the flow field inside the

cavity includes a turbulent structure, and it much affects the external flow and the

resulting perfomance of a separation control. Thus, a high-fidelity computation is needed

to simulate the flow field inside the cavity which is deforming according to the acutuation

frequency. In the related literature where the flow field inside the deforming cavity is

simulated [24], the body-fitted coordinate is adopted to generate computational grids,

and the grid is deformed according to the actuation frequency. High-order computation

of compressible flow on a moving and deforming grid generally requires special treatment

to evaluate the component of a coordinate-transformation matrix (hereafter, denoted as

metrics and Jacobian), otherwise a freestream is not correctly computed. The criteria of

the adequate evaluation of metrics and Jacobian is known as the geometric conservation
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law (GCL), which corresponds to computing the freestream correctly (hereafter, denoted

as a freestream preservation). The technique to satisfy the GCL identities with using

high-order finite-difference scheme has been proposed to rewrite the governing equation

from its strong conservative form to nonconservative form in terms of Jacobian [31][24].

However, this technique adopts the nonconservative form of the governing equation,

and so the conservation property of conservative quantities is not strictly ensured. The

conservation property is, for example, important to compute a shock speed or evaluate

a net mass flux correctly through the finite volume on moving and deforming grid. One

of the significant property of the synthetic jet is zero-net property of a mass flux from a

cavity to the external flow. Considering this property, the scheme which adopts a strong

conservative form of the governing equation and employs high-order finite differencing

for the spatial discretization is appropriate to the present computation.
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Chapter 2

Problem settings

2.1 Flow condition

In this section, the flow condition and configurations of SJ are presented. Note that in the

following section, the asterisk denotes the dimensional value; the terms “leading edge”

and “trailing edge” are frequently used, which indicate the location of 0% and 100% of

the airfoil chord. The flow is around the NACA0015 airfoil, and the angle of attack is

set to 12 [deg]. The freestream Mach number is set to 0.2 as the compressibility of the

fluid is almost negligible except near the leading edge. The Reynolds number, defined by

the chord length c∗h and freestream velocity u∗
∞, is set to 63, 000. The flow is completely

separated from 2.5% of the airfoil chord without control. The fluid is assumed to be air,

and the specific heat ratio and the Prandtl number are set to 1.4 and 0.72, respectively.

2.2 Configuration of the synthetic jet

The synthetic jet is installed at the leading edge (x/ch = 0.0) of the airfoil, and its

orifice is normal to the airfoil surface. In this study, we adopt the leading edge as the

position of the synthetic jet, which has been reported effective for a wide variety of

airfoils [4][14]. In the following, all nondimensional values are based on the freestream

velocity, u∗
∞, the wing chord length c∗h, and the freestream density ρ∗

∞; they are denoted

without a superscript “∗”, e.g., pressure p, density ρ, and velocity vector u = (u, v, w).

The nondimesional value of actuation frequency f∗ is denoted by F+ according to the
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previous studies [14][24][23] which is defined as F+ ≡ f ∗c∗h/u
∗
∞. Note that ch ≡ 1 and

u∞ ≡ 1 hold according to the definition above but ch and u∞ are often explicitly written

for ease of understanding below. For simplicity, two-dimensional shapes along the span

are adopted for the orifice and cavity, as shown in Fig.2.1. The orifice width is set to

0.5% of the chord length (d = 0.005ch), which is often used in previous studies[25] [33];

the orifice height is set to d; the cavity depth is set as zL0 = 10d; and the cavity bottom

width is set as xL = 5.5d. The shapes of the cavity and orifice are similar to those used

in a previous study[25]. The bottom of the cavity oscillates in a translational motion

Fig. 2.1: Geometric configuration of synthetic jet

according to Eq.(2.1).The amplitude of oscillation is denoted by A, time is denoted by t,

and the depth of cavity is denoted by zL(t) as follows:

zL(t) = zL0 + A cos(2πF+t), F+ =
f ∗c∗h
u∗
∞

. (2.1)

The momentum coefficient Cµ is defined by Eq.(2.2), which is the ratio of the momentum

induced by the synthetic jet and the freestream. Here, the fluid in the cavity is assumed to

be incompressible, and the momentum induced by the synthetic jet ρumax is determined

according to the cavity depth, zL(t).

Cµ ≡ ρu2
maxd

ρu2
∞ch

, umaxd ≡ xLmax

(
dzL(t)

dt

)
= 2πxLAF+. (2.2)

Note that the amplitude A is changed according to F+ when Cµ is kept constant as

A = u∞
√

chCµd/(2πF+xL).

2.3 Boundary condition models
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Chapter 3

Numerical methods

3.1 Flow solver

In this study, LANS3D[10], a fluid analysis solver developed at the ISAS/JAXA, is em-

ployed for the series of computations. The governing equations are three-dimensional

compressible Navier-Stokes equations. These equations are solved in the body fitted

coordinates (ξ, η, ζ). As the fluid structure in the cavity and orifice is very small and

unsteady, a high-resolution unsteady computational method is required. Thus, the spa-

tial derivatives of convective terms and viscous terms, metrics, and the Jacobian are

evaluated by a six-order compact difference scheme[18]. Near the boundary, second-

order explicit difference schemes are used. Tenth-order filtering[30] [12] is used with a

filtering coefficient of 0.495. For time integration, lower-upper symmetric alternating di-

rection implicit and symmetric Gauss-Seidel(ADI-SGS)[21] methods are used. To ensure

time accuracy, a backward second-order difference formula is used for time integration,

and five sub-iterations[32] are adopted. The computational time step is 2 × 10−4 in

nondimensional time to obtain a maximum Courant-Friedrichs-Levy (CFL) number of

approximately 1.8. Using these methods, implicit LES approach (ILES[32]) is adopted.

In the ILES approach, no additional stress and heat flux is appended as the sub-grid-

scale (SGS) models. Instead, a high-order, low-pass filter selectively damps only poorly

resolved high-frequency waves in this study. At the outflow boundary, all variables are

extrapolated from one point in front of the outflow boundary (pressure is fixed to that

of the freestream). For the surface of airfoil, cavity, and orifice, no-slip conditions are
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adopted. A periodic boundary condition is applied to the boundaries in the spanwise

direction. Note that on the deforming grid (ZONE4), the geometric conservation law

(the GCL identity) is satisfied with using symmetric conservative metrics proposed by

Abe et al.[1].

Q∗
t∗ = −E∗

x∗ − F ∗
y∗ − G∗

z∗ , (3.1)

Q∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗

ρ∗u∗

ρ∗v∗

ρ∗w∗

e∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗u∗

ρ∗u∗u∗ + p

ρ∗v∗u∗

ρ∗w∗u∗

(e∗ + p∗)u∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F ∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗v∗

ρ∗u∗v∗

ρ∗v∗v∗ + p

ρ∗w∗v∗

(e∗ + p∗)v∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G∗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ∗w∗

ρ∗u∗w∗

ρ∗v∗w∗

ρ∗w∗w∗ + p

(e∗ + p∗)w∗

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

e∗ =
p∗

γ − 1
+

1

2
ρ∗(u∗2 + v∗2 + w∗2) (3.2)

p∗ = (γ − 1)

(
e∗ − 1

2
ρ∗(u∗2 + v∗2 + w∗2)

)
, a∗ =

√
γp∗

ρ∗ , M =
1

a

√
u∗2 + v∗2 + w∗2

(3.3)

ρ =
ρ∗

ρ∗
∞

, u =
u∗

a∗
∞

, v =
v∗

a∗
∞

, w =
w∗

a∗
∞

, a =
a∗

a∗
∞

, p =
p∗

p∗∞γ
, e =

e∗

e∗∞

(
1

γ(γ − 1)
+

1

2
M2

∞

)

(3.4)

ρ = q1, u =
q2

q1
, v =

q3

q1
, w =

q4

q1
, (3.5)

p = (γ − 1)(e − 1

2
ρ(u2 + v2 + w2)), a =

√
γp

ρ
, M =

1

a

√
u∗2 + v∗2 + w∗2 (3.6)

a∗
∞ =

√
γp∗∞
ρ∗
∞

, e∗∞ =
p∗∞

γ − 1
+

1

2
ρ∗
∞(a∗

∞M∞)2 (3.7)

ρ∞ = 1, a∞ = 1,
√

u2
∞ + v2

∞ + w2
∞ = M∞, p∞ =

1

γ
, e∞ =

1

γ(γ − 1)
+

1

2
M2

∞,

(3.8)
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(ρ∗u∗)t∗ = −(ρ∗u∗u∗ + p∗)x∗ − (ρ∗u∗v∗)y∗ − (ρ∗u∗w∗)z∗ (3.9)

⇐⇒ 1

a∗
∞

(ρu)t∗ = −(ρuu + p)x∗ − (ρuv)y∗ − (ρuw)z∗ (3.10)

(e∗)t∗ = −((e∗ + p∗)u∗)x∗ − ((e∗ + p∗)v∗)y∗ − ((e∗ + p∗)w∗)z∗ (3.11)

⇐⇒ 1

a∗
∞

(e)t∗ = −((e + p)u)x∗ − ((e + p)v)y∗ − ((e + p)w)z∗ (3.12)

Qt = −Ex − Fy − Gz, (3.13)

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

e

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

e + p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

e + p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, G =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

ρu

ρv

ρw

e + p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

e =
p

γ − 1
+

1

2
ρ(u2 + v2 + w2) (3.14)

3.2 Computational grids

A zonal grid approach[11] is employed: background grid around airfoil (ZONE1), cavity of

the synthetic jet (ZONE4), orifice of the synthetic jet (ZONE3), and intermediate region

(ZONE4) are generated separately as shown in Fig. 3.1. Every five or ten points in each

direction are shown in this figure. On the boundaries of zonal grid connected with each

other, around 20 grid points are overlapped and the flow variables are exchanged with

small errors[11]. The total number of grid points is approximately 30 million (Table ??).

3.2.1 Background grid

The C-type grid is adopted around an airfoil, and the outer boundary is located at

25ch away from the leading edge. The length of the computational region in the span

direction (y direction) is 0.2ch, and a periodic boundary condition is applied to the

spanwise boundaries. The boundary-fitted coordinate system (ξ, η, ζ) is employed for

the computation; the minimum grid size in the direction normal to the airfoil surface (ζ
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direction) is 0.12% of the chord length ch. Note that the attached flow (angle of attack

is 9 [deg]) is computed for ZONE1 grid, and the grid size in each direction is obtained

as (∆ξ+, ∆η+, ∆ζ+) ≤ (8, 9, 1) with using wall units. These values satisfy the criteria of

grid spacing to resolve a near-wall turbulence proposed by Kawai et al.[16].

3.2.2 Grids around the synthetic jet

All grids (ZONE1 to ZONE4) are employed for the computation. The minimum grid size

of orifice and cavity grid (ZONE3 and ZONE4) correspond to that of background grid

(ZONE1). The grid system for the cavity region (ZONE4) deforms[20] according to the

oscillation of the cavity bottom.

Fig. 3.1: Computational grids
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3.3 Tools for analysis

3.3.1 Averaging procedure

3.3.2 Fourier analysis

3.3.3 Linear stability analysis

3.4 Verification and validation of the flow solver

3.4.1 Convergence study of the grid spacing

First, we conducted a series of verification tests for the separated flow around the

NACA0015 airfoil, where the angle of attack is 12 [deg]. Three types of computational

grids were prepared for verification: coarse, medium and fine grids, in which the number

of grid points is 9 million, 19 million, and 44 million, respectively. The medium grid

corresponds to the grid presently used in this paper. Table 3.1 shows the aerodynamic

coefficients (CL, CD, and CL/CD); both CL and CD slightly increase with the grid den-

sity. On the other hand, the suction peak at the leading edge and the plateau pressure

distribution are similarly observed for all grids, as shown in Fig. 3.2. In addition, for the

separation controlled flow with F+ = 6.0, the grid sizes in the wall unit were obtained as

(∆ξ+, ∆η+, ∆ζ+) ≤ (10, 9, 1) in the attached-flow region over the airfoil (see Fig. 3.3).

These values satisfy the criteria of grid spacing to resolve a near-wall turbulence pro-

posed by Kawai and Fujii [16] and Teramoto [29] . Therefore, the grid density of the

medium grid is sufficient for discussion on the separation control effects in this paper.

Note that the aerodynamic coefficients of the noncontrolled case have been validated by

comparing with those of the experiments [22] . In addition, the Mach number effect for

the computation with and without control has been verified using the same grid and

scheme although a dielectric barrier discharge (DBD) plasma actuator is employed [6] .

Second, the controlled flow with Cµ = 2.0 × 10−3 of F+ = 6.0 is computed using the

medium and fine grids.

12



Table 3.1: Aerodynamic coefficients

Grid density CL CD CL/CD

Coarse 0.410 0.143 2.85

Medium 0.458 0.157 2.92

Fine 0.477 0.159 2.99

Fig. 3.2: Cp distribution of time-averaged flow fields on fine, medium, and coarse grids.

Fig. 3.3: Grid sizes in the wall units near the wing surface are shown for the controlled

case (F+ = 6.0).
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3.4.2 Verification of the time step size

Here, the separated flow around the NACA0015 airfoil with the angle of attack 12 [deg]

is computed using the medium grid. The computational time-step size in the wall unit

was obtained as ∆t+ ≤ 0.1 in Fig 3.4, which is sufficiently smaller than that proposed

by Choi [8] for turbulent flow.

Fig. 3.4: Time-step size in the wall unit is shown for the controlled case (F+ = 6.0).

3.4.3 Verification of the spanwise length for the computation

3.4.4 Validation of the flow solver

3.5 Verification of the LST tools
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Chapter 4

Effects of the actuation frequency on

the separation control using a

synthetic jet

4.1 Outline

For example, Okada et al. performed a large-eddy simulation (LES) on the separa-

tion control over a backward facing step using a synthetic jet with a three-dimensional

cavity[24]. The characteristics of turbulent structures in external flow controlled by

the synthetic jet were also discussed. You and Moin also conducted LES[33] on the

separation control around an airfoil; the aerodynamic coefficients from the simulation

corresponded well to those obtained experimentally. They also reported that the key

mechanisms of separation control include not only the modification of two-dimensional

boundary layer profile by adding or removing momentum in the freestream direction, but

also three-dimensional turbulent mixing. However, they did not examine control effects

on actuation frequency, and a quantitative discussion has never been conducted in terms

of the relationship between turbulent mixing and separation control over an airfoil.
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4.2 Case description

The following computational cases are discussed in this chapter: the SJ is installed at

the leading edge of the airfoil, and the momentum coefficient is set to Cµ = 2.0 × 10−3

and 2.0 × 10−5; the actuation frequency is set to F+ = 1.0, 6.0, 10, 15, 20, and 30.

The momentum coefficient Cµ show the strength of induced jet from the SJ, which

is set to relaatively smaller value than the previous studies, e.g., Cµ = 3.5 × 10−3 by

Amitay and Glezer[4], Cµ = 1.23 × 10−3 by You and Moin[33], Cµ = 2.13 × 10−4 by

Zhang et al.[34], and Cµ = 2.00× 10−3 by Okada et al.[?][?] The present study adopt the

smaller Cµ so that the contributions of direct momentum addition and development of

disturbances from SJ would be effectively clarified in the separation control mechanism

(see Sec. ??). Note that the definitions of the momentum coefficient Cµ is not strictly

Table 4.1: Computational cases. The synthetic jet is installed at the leading edge of the

airfoil.

case name input momentum (Cµ) F+

Off control — —

strong input 2.0 × 10−3 1.0, 6.0, 10, 15, 20, 30

weak input 2.0 × 10−5 1.0, 6.0, 10, 15, 20, 30

the same among the studies above. Here again, the definition of Cµ is presented:

Cµ ≡ ρu2
maxd

ρu2
∞ch

, (4.1)

which has been introduced in Eq.(??). The present study, You and Moin[33], and Okada

et al.[?] adopt the definition of umax as

umaxd ≡ xLmax

(
dzL(t)

dt

)
= 2πxLAF+, (4.2)

where the jet is assumed to be incompressible fluid and have the spatially uniform profile

on the orifice exit plane. On the other hand, the definition of umax by Amitay and

Glezer[4] is

umaxd ≡ 2d

Tperi

∫ Tperi/2

0

⟨ujet(φ, 0, 0)2⟩φdφ, (4.3)
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where ⟨•⟩φ indicates the phase average based on the actuation frequency F+; Tperi =

1/F+. The jet velocity ujet(φ, xjet, zjet) is assumed to be a point value at the center of the

orifice exit plane (xjet, zjet) = (0, 0) although in their paper, the location is not specifically

denoted except for the “jet exit plane”. The definition of umax by Zhang et al.[34] is,

whereas,

umaxd ≡ 2d

Tperi

∫ d/2

−d/2

∫ Tperi/2

0

⟨ujet(φ, xjet, 0)2⟩φdφdxjet. (4.4)

The velocity profile of ujet in their study is assumed to be Poiseuille-type one: 0.2u∞[1−
(xjet/d)2] sin(2πF+t) with spanwise-uniform profile on the orifice exit plane. The follow-

ing table summarizes the Cµ values of the present study in the different definitions above.

The results do not show remarkable differences up to ±%, which would be acceptable for

the discussion in this study because the main focus of this study lies on the actuation

frequency F+.

Table 4.2: Cµ of the present study in different definitions (F+ = 6.0)
Cµ of Eq.(4.2)

(present study, You and Moin[33], Okada et al.[?])
Cµ of Eq.(4.3)

(Amitay and Glezer[4])
Cµ of Eq.(4.4)

(Zhang et al.[34])

2.0 × 10−3 2.1 × 10−3 1.8 × 10−3

2.0 × 10−5 2.1 × 10−5 1.8 × 10−5

The actuation frequency F+ covers equally to or higher values compared with the

previous studies [4][33][?][34] including the optimum ones F+ ≃ 1[4][34] and F+ ≃ 10[4].

The other criteria for the present range of F+ comes from the previous studies for airfoil-

flow separation control using DBDPA[7][22][27], which shows the effective F+ to be ap-

proximately 6 to 10. The results using SJ will be compared with those using DBDPA

in Chap.??. Note that the different definition of F+ has been also proposed in the pre-

vious studies [?], where the reference length is taken to be the lengh of a separation

bubble near the leading edge:F+
sep ≡ f ∗+/Lsep. Let Lsep be the separation length defined

in Sec.?? (Fig.??), then the following values are obtained as the F+
sep for the case with

Cµ = 2.0 × 10−5.
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Table 4.3: F+ of the present study in different definitions (Cµ = 2.0 × 10−3)

F+ of Eq.(4.2)
(present study, You and Moin[33], Okada et al.[?])

F+
sep of Eq.(4.3)

(Amitay and Glezer[4])

1.0 1.8 × 10−3

6.0 1.8 × 10−5
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4.3 Capabilities of the SJ in separation control based

on aerodynamic coefficients

In this section, the capabillities of the SJ are arranged in terms of its time-averaged

aerodynamic coefficients. Figure 4.1 shows the time history of the aerodynamic coeffi-

cients CL and CD, which fluctuats based on the actuation frequency F+. The CL and CD

show significant increase and reduction from the baseline case (absence of the control),

respectively, which indicate the stall recovery for each controlled cases in Fig.4.1. Note

that again, the period 20 ≤ t/u∞ch ≤ 28 is regarded as the quasi-steady state and taken

for the time averaging procedure as explained in Sec.??.

(a) CL (b) CD

Fig. 4.1: Time history of the aerodynamic coefficients in the cases with Cµ = 2× 10−3 :

(a) lift coefficient CL; (b) drag coefficient CD.

4.3.1 Time-averaged aerodynamic performances

The definitions of CL and CD are as follows:

CL =
Lift

1

2
ρ∞u2

∞chyspan

, CD =
Drag

1

2
ρ∞u2

∞chyspan

, (4.5)

where yspan indicates the spanwise length (yspan is set to 0.2/ch in the present study).

CDp and CDv indicates the contribution of the drag from pressure and skin friction.

Table 6.2 and Fig. 4.2 show time-averaged aerodynamic coefficients. In Table 6.2,

the values of lift coefficient CL, drag coefficient CD, lift-drag ratio CL/CD, pressure
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drag CDp, frictional drag CDf , and standard deviation of CL and CD. The ∆ indicates

the improvement ratio from the baseline case, e.g., ∆CL ≡ CL;controlled/CL;control off, and

∆CD ≡ CD;control off/CD;controlled. In Fig.4.2, the effect of F+ on CL and CD is shown,

where blue line shows the strong input Cµ = 2.0 × 10−3, and red line shows the weak

input Cµ = 2.0×10−5 cases, respectively. The fluctuation of CL and CD in time direction

is also shown by error bars in Fig.4.2(a) and (b), where the length of each error bars is

75 times larger than actual fluctuation for ease of visualization. In Fig.4.2, the absolute

value of fluctuation can be compared with each other cases although its length do not

show the accurate value.

Table 4.4: Time averaged aerodynamic coefficients

Cµ F+ CL CD CL/CD CDp CDv σCL σCD

Control off — 1.10 0.0775 14.2

2.0 × 10−3 1.0 1.10 0.0775 14.2

6.0 1.10 0.0775 14.2

10 1.10 0.0775 14.2

15 1.10 0.0775 14.2

20 1.10 0.0775 14.2

30 1.10 0.0775 14.2

2.0 × 10−5 1.0 1.10 0.0775 14.2

6.0 1.10 0.0775 14.2

10 1.10 0.0775 14.2

15 1.10 0.0775 14.2

20 1.10 0.0775 14.2

30 1.10 0.0775 14.2

In the cases with a strong input (Cµ = 2.0×10−3), all the actuation frequencies attain

stall recovery for ∆CL/CD ≃ 200%. Figure 4.2(a) shows the CL variation for F+. The

strong input case (blue line: Cµ = 2.0× 10−3) shows the most improved CL at F+ = 1.0.

However, the lift-drag ratio of the case with F+ = 1.0 shows the less recovery than the

other F+. This is mainly caused by the less improvement of CD, which is dominated

by the pressure drag CDp. This implies that the drag reduction would be more effective
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(a) CL

(b) CD

(c) CL/CD

Fig. 4.2: Time-averaged aerodynamic coefficients are shown; the fluctuation of CL and

CD in time direction is shown by error bars, where the length of each error bars is 75

times larger than actual fluctuation for ease of visualization.
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for the improvement of the lift-drag ratio in the present conditions for the baseline flow

(Re = 63, 000, NACA0015, AoA = 12[deg]) and the actuator position. The superiority of

6 ≤ F+ ≤ 20 to F+ = 1.0, 30 is more clearly observed in weak input cases in Fig.4.2 (red

lines: Cµ = 2.0 × 10−5), where only the cases with 6.0 ≤ F+ ≤ 20 can achive the stall

recovery (∆CL/CD ≃??%). Therefore, in the present baseline flow/acturator conditions,

the effect of the actuation frequency on the SJ capability is summarized as follows:

the optimum frequency for the separation control is localized within 6.0 ≤ F+ ≤ 20

regime. In this thesis, hereinafter, the capability of the SJ is evaluated by the time-

averaged lift-drag ratio. Note that the fluctuation in temporal direction is also smaller

in 6.0 ≤ F+ ≤ 20 than F+ = 1.0 as shown in σCL ,σCD in Table.6.2. The fluctuation of

the aerodynamic coefficients will be discussed in Sec.?? in detail.

However, the significance of the drag reduction and lift increase which has been men-

tioned in this section can largely rely on the flow/actuator conditions. For example, recent

study on separation control over an airfoil using the SJ by Zhang et al.[34] reported that

F+ = 1.0 attains better lift-drag ratio than F+ = 4.0 although the drag reduction is

better achived by the case with F+ = 4.0. This indicates that in their conditions, the

lift increase using F+ = 1.0 would be more effective for the recovery of the lift-drag

ratio. The inconsistency with the present result can be explained by the smoothness

and quickness of a turbulent transition using a high-frequency mode (F+ > 1). As will

be explained in Sec.??, one of the key mechanisms for the separation control is turbu-

lent structures over an airfoil, which can effectively exchange the chordwise momentum

near the airfoil surface. The chord-Reynolds number of their study is 10, 000, and the

SJ is modelled by the two-dimensional (spanwise-uniform) velocity profile on the airfoil

surface. These two factors can contribute to the enhancement of spanwise coherent struc-

tures on the controlled flows because the Reynolds number of O(104) is in a very sensitive

regime for a turbulent transition, where Re = 63, 000 (present study) and Re = 10, 000

(Zhang et al.[34]) would result in significantly different turbulent structures[?]; and the

three-dimensional vortex structure can be generated inside the cavity of the SJ, which is

omitted in their study but would affect the turbulent transition on the airfoil surface.
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4.3.2 Basic features of controlled flows on time-averaged Cp and

Cf

The pressure coefficient Cp and skin friction Cf are similarly defined as functions of

(x, z) (coordintes in the chordwise and vertical direction), where the spatial averaging

procedure is conducted in the spanwise (y) direction.

Cp =
pairfoil surface

1

2
ρ∞u2

∞

, Cf =
∂U/∂ξairfoil surface

1

2
ρ∞u2

∞

, (4.6)

Fig.4.3 shows the pressure coefficient Cp on the airfoil surface in the case with

F+ = 1.0, 6.0 and 10 of Cµ = 2.0 × 10−3 (Fig.4.3(a)) and 2.0 × 10−5 (Fig.4.3(b)), where

black lines show the case without control (baseline case); blue, red, and green lines show

F+ = 1.0, 6.0 and 10 cases, respectively. The other results with F+ ≥ 15 will be sum-

marized in Appendix.??. In this paragraph, the cases with F+ = 1.0, 6.0 and 10 are

discussed because the effect of F+ on the SJ capability can be sufficiently explaned by

the characteristics of these three frequiencies.

First, the strong input case (Cµ = 2.0 × 10−3; Fig.4.3(a) and (c)) shows that in the

controlled cases, the suction peak near the leading edge is much higher than that of the

baseline case (black solid line), and the pressure recovery (Cp = 0.0) is observed at the

trailing edge of the airfoil surface. This indicates that the separation is almost supressed

to the atached flow by the actuation with F+ = 1.0, 6.0, and 10. The pressure recovery

near the leading edge shows inflection point at x/ch ≃ 0.05 in all the controlled cases,

where almost plateau region appears for 0.05 ≤ x/ch ≤ 0.1 in the F+ = 1.0 case. Such

a pressure plateau region is frequently observed in a separation bubble, which will be

discussed in the next section in detail. The difference between F+ = 1.0 and F+ > 1.0

cases is clear in this Cp distribution, where 1) the larger pressure plateau region in

F+ = 1.0 than F+ > 1.0 case and 2) the stronger suction peak in F+ > 1.0 than F+ = 1.0

case are observed in Fig.4.3. The former property, i.e., 1) larger pressure plateau region

in the F+ = 1.0 case, contributes to the better lift enhancement as shown in Table6.2

and Fig.4.2(a). This is because in the F+ = 1.0 case, the larger pressure plateau region

delays a pressure recovery at x/ch ≃ 0.1, which results in the larger low-pressure region

on the airfoil surface; and the wall-normal direction at x/ch ≃ 0.1 is almost vertical in

the present flow condition (NACA0015 airfoil and AoA = 12[deg]). On the other hand,
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the latter property, i.e., 2) the stronger suction peak in F+ > 1.0, contribute to the

drag reduction as discussed in the previous part (Table6.2 and Fig.4.2(b)). The reason is

that the wall-normal direction at the leading edge corresponds to the chordwise direction

(almost horizontal in the present flow conditions), thus the suction at the leading edge

mainly enhances the thrust. In the present flow condition, the capability (time-averaged

lift-drag ratio) of the SJ is determined by the drag reduction (Table6.2 and Fig.4.2(c)):

F+ > 1.0 cases show better capability than the F+ = 1.0 case. Therefore, it suggests that

the smaller separation bubble could provide the better capability of separation control.

However, as discussed in this paragraph, the lift enhancement and drag reduction show

trade off based on the size of a separation bubble generated near the leading edge. Such

a property of trade off would be the reason why in a different flow condition, another

trend is observed in terms of the F+ effect for the SJ capability as shown in the previous

paragraph [34].

Second, the weak input case (Cµ = 2.0 × 10−5) is described in Fig.4.3(b) and (d). In

this case, the F+ = 1.0 case (blue solid line) cannot suppress the separation, where the Cp

distribution shows almost the same result with the baseline case (black solid line). On the

other hand, the case with F+ > 1.0 clearly shows the strong suction peak at the leading

edge and pressure plateau region at x/ch ≃ 0.1, which indicates the attached flow with

the small separation bubble near the leading edge. Compared with the strong input case

(Fig.4.3(a) and (c)), the difference between F+ = 6.0 and F+ = 10 cases is more clearly

observed: the suction peak at the leading edge is stronger in F+ = 10 case than F+ = 6.0

case due to the smaller separation bubble. This would contribute to the drag reduction

but lift reduction in F+ = 10 , which results in the better capability as discussed in

Fig.4.2 for the weak input case. Note that the comparison between F+ = 6.0 and 10

cases for the strong input shows that the better capability is attained in the F+ = 6.0

case although the suction peak is slightly stronger and the size of separation bubble is

smaller in F+ = 10 than F+ = 6.0. This is explained by the contribution of a lift

enhancement due to larger separation bubble in F+ = 6.0. In this way, the discussion

on the capabilities of SJ in the present flow condition should be carefully conducted

considering the trade-off relationship between the drag reduction and lift enhancement

based on the separation bubble size.

Fig.4.4 shows the skin friction Cf on the airfoil surface. The Cf value is often adopted
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(a) Cµ = 2.0 × 10−3 (b) Cµ = 2.0 × 10−5

(c) Cµ = 2.0 × 10−3 (d) Cµ = 2.0 × 10−5

Fig. 4.3: Pressure coefficient Cp on the airfoil surface: (a)Cµ = 2.0 × 10−3 and (b)Cµ =

2.0 × 10−5.
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for the criteria of attached/separated flow on the airfoil surface since the negative value

of Cf indicates the reversed flow near the airfoil surface. The attached/separated region

is visualized in Fig.4.5 based on this criteria, where horizontal axis shows the chordwise

coordinate (x/ch) and vertical axis shows the actuation frequency F+; red and blue

colored region correspond to the attached and separated region, respectively. The strong

input cases (Cµ = 2.0 × 10−3; Fig.4.4(a) and Fig.4.5(a)) show the attached flow almost

all the airfoil surface with F+ = 1.0, 6.0, and 10. The flow is reattached at x/ch ≃ 0.2

with F+ = 1.0 case, and x/ch ≃ 0.1 with F+ = 6.0 and 10 cases. This indicates that

the separation bubble size is smaller in F+ = 1.0 than F+ > 1.0 cases as is discussed

in Fig.4.3 for the Cp distribution. The other interesting feature is that near the trailing

edge in Fig.4.5(a), the flow is attached more downstream in the F+ = 1.0 case than

F+ > 1.0 cases. This indicates that the larger separation bubble would result in the

larger attached region on the airfoil surface. The attached flow near the trailing edge

contribute to the lift increase and drag increase because the wall-normal direction is

almost vertical in the present flow conditions. Similar trend regarding the separation

bubble size and separated region near the trailing edge is observed in the weak input

cases (Cµ = 2.0 × 10−5:Fig.4.5(b)) with F+ = 6.0 and 10.

(a) Cµ = 2.0 × 10−3 (b) Cµ = 2.0 × 10−5

Fig. 4.4: Skin friction Cf on the airfoil surface: (a)Cµ = 2.0×10−3 and (b)Cµ = 2.0×10−5.

The effects of actuation frequency F+ on time-averaged aerodynamic coefficients are

summarized as follows:

1 Leading edge separation bubble size =¿affect CD¿ CL
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(a) Cµ = 2.0 × 10−3 (b) Cµ = 2.0 × 10−5

Fig. 4.5: Separated flow region on the airfoil surface: (a)Cµ = 2.0 × 10−3 and (b)Cµ =

2.0 × 10−5.

2 trailing edge separated region =¿affect CL¿ CD

which is dominant? relationship 1 & 2? In the

4.4 Flow fields

In this section, the relationship between the flow fields and two items summarized in the

previous section is discussed. The following discussion is mainly based on the time- and

spanwise-averaged fields.

4.4.1 Separated region and separation bubble near the leading

edge

Figure 4.6 and 4.7 show the time- and spanwise-averaged chordwise velocity fields u/u∞

and its zoom views. In the strong input cases (Cµ = 2.0 × 10−3:Fig.4.6(a), (c), and (e)),

the flow is attached on almost all the airfoil surface. The reversed flow region appears

near the leading edge in each cases, which correspond to the separation bubbles. The size

of the separation bubble is more quantitatively visualized in Fig.4.8(a) and (b), where the

velocity profiles of a wall-tangential component are visualized on each x/ch planes; and

the reversed flow region is also plotted. The size of reversed flow region is corresponding

to that of the separation bubble. The size of the separation bubble is the largest in
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F+ = 1.0 (blue color), and F+ > 1.0 cases show smaller ones. Such a trend for the

size of the separation bubble is expected in Sec.?? on the actuation frequency F+. The

significant result in Fig.4.8 is that the size of the separation bubble is further different

between F+ = 1.0 and F+ > 1.0 cases as well as the length of the separated-flow region

shown in Fig.4.5. This can be explained by the difference of a spatial growth rate of

disturbances developing in the separated shear layer, which will be discussed in the next

chapter in detail.

In the cases with a weak input (Cµ = 2.0×10−5:Fig.4.6 and 4.7 (b), (d), and (f)), the

case with F+ = 1.0 cannot suppress the separation, and the flow is completely separated

from the leading edge. The other F+ = 6.0 and 10 cases attain the attached flow with

a separation bubble near the leading edge. In addition, Fig.4.8(c) and (d) clearly shows

the difference of the separation bubble size in F+ = 6.0 and 10 (in F+ = 1.0 case, the

reversed flow region remains and develops along downstream).

Therefore, the results of both strong and weak input cases support the fact that the

higher actuation frequency (F+ > 1.0) is significant for generating the smaller separation

bubbles. This trend supports the mechanism of (1) in the previous section, i.e., smaller

separation bubble gives higher suction peak and drag reduction. Note that another

interesting feature is in the comparison of F+ = 1 with strong input case and F+ = 6

with weak input cases as follows. These two controlled flows show almost the same

size for the separation bubble (compare the blue line in Fig.4.8(b) with the red line in

Fig.4.8(d)). Nevertheless, the Cp distributions are different in their separation bubbles

(compare the blue line in Fig.4.3(b) with the red line in Fig.4.3(d)), where the weak

input case (red line in Fig.4.3(d)) clearly shows pressure plateau region while the stong

input case (blue line in Fig.4.3(b)) shows faster pressure recovery without clear plateau

region. Such a difference would arise from that of a turbulent transition on the separation

bubble, which is significantly affected by the property of disturbances from the SJ.
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(a) Cµ = 2.00 × 10−3, F+ = 1.0 (b) Cµ = 2.00 × 10−5, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (d) Cµ = 2.00 × 10−5, F+ = 6.0

(e) Cµ = 2.00 × 10−3, F+ = 10 (f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.6: Chordwise velocity field (u/u∞): 0.0 ≤ u/u∞ ≤ 1.5

(a) Cµ = 2.00 × 10−3, F+ = 1.0 (b) Cµ = 2.00 × 10−5, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (d) Cµ = 2.00 × 10−5, F+ = 6.0

(e) Cµ = 2.00 × 10−3, F+ = 10 (f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.7: Zoom view of chordwise velocity field (u/u∞) near the leading edge: 0.0 ≤
u/u∞ ≤ 1.5
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(a) Cµ = 2.0 × 10−3

(b) Zoom view of Cµ = 2.0 × 10−3

(c) Cµ = 2.0 × 10−5

(d) Zoom view of Cµ = 2.0 × 10−5

Fig. 4.8: Profiles of wall-tangential velocity component and reversed flow region.
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4.4.2 Instantaneous flow fields near the separation bubble

The instantaneous flow fields are discussed in terms of turbulent structures on controlled

cases. First, the general aspects of the controlled flows are overviewed using Fig.4.9.

Figs.4.9 shows instantaneous flow fields of controlled cases with F+ = 1.0, 6.0, and 10 at

the beginning of a blowing phase (see Fig.4.10). The isosurface near the airfoil surface is

a second invariant of the velocity gradient tensor and is colored by the vorticity in the

chordwise direction (the isosurface is visualized on every two grid points in each direction

hereinafter). The contour plane normal to the spanwise direction (y-axis) shows the

chordwise component of the velocity u/u∞. In both controlled cases, three-dimensional

fine vortex structures are developed, and a turbulent boundary layer covers the airfoil

surface when the flow is attached. On the other hand, a two-dimensional separated shear

layer appears near the leading edge in both snapshots. Therefore, a laminer separation

bubble would be developed near the leading edge when the flow is attached (Cµ =

2.0 × 10−3 with F+ = 1.0, 6.0, and 10; Cµ = 2.0 × 10−3 with F+ = 6.0 and 10), where

laminer flow is separated near the leading edge and transient to turbulence. The turbulent

transition in a laminer separation bubble is typically triggerd by a linear instability of two-

dimensional (spanwise uniform) disturbances, i.e., Kelvin-Helmholtz (KH) instability,

which will be discussed in detail later. Note that the Cp distribution with a plateau

region on the separation bubble, which is discussed in Sec.??, is frequently observed in

a laminer separation bubble[?].

Next, the oscillation of the separation bubble is discussed in Fig.4.11. Figure 4.11

shows the closed view of instantaneous flows at each phase angle (ϕ/2π = 1/10, 3/10, 5/10, 7/10,

and 9/10). The phase angle is defined by the actuation frequency F+ as illustrated in

Fig.4.10. In strong input cases (Cµ = 2.00 × 10−3:Fig.4.11(a)(b)(c)), three-dimensional

vortex structure is generated inside the cavity (near the leading edge). In the F+ = 1.0

case, the disturbance is introduced to the separated shear layer near the leading edge at

ϕ/2π = 3/10 which is collapsed and divided into multiple small vortex structures (black

dotted circle in Fig.4.11(a)). Interestinglly, although the three-dimensional (spanwise)

disturbance from the SJ is clearly observed inside the shear layer, the vortex structures

emitted from the shear layer keeps a little two-dimensional (spanwise uniform) shape

at ϕ/2π = 3/10, which is gradually broken down into three-dimensional fine vortex

structures. This implies that the two-dimensional disturbances are still dominant and
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developing fast inside the shear layer although the three-dimensional fluctuation exists

and would enhance a turbulent transition. Similarly, in Fig.4.11(b) and (c) with F+ = 6.0

and 10 actuation, the separated shear layer is broken down into multiple two-dimensional

vortex structures with spanwise disturbances from the SJ (black dotted circles). Note

that the actuation period is different for each F+ so that the phase angle when the shear

layer is broken down by the disturbances from the SJ is different for each F+ cases. In

weak input cases (Cµ = 2.00 × 10−3:Fig.4.11(d)(e)(f)), the vortex structure inside the

SJ cavity is almost two-dimensional (spanwise uniform) such that no three-dimensional

fluctuation appears inside the separated shear layer near the leading edge. In the con-

trollable cases (F+ = 6.0 and 10), the two-dimensional disturbances seem to develop

primarily inside the shear layer, which breaks the shear layer together with smaller two-

dimensional vortex structures (black dotted circles). The difference from the strong input

case is that the small vortex structures emitted from the shear layer do not contain a

three-dimensional fluctuation generated inside the SJ cavity but the one based on flow

instability inside the shear layer (e.g., secondary instability). The instability related to

the development of two-dimensional (spanwise uniform) disturbances will be discussed

in the next chapter.
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(a) Cµ = 2.00 × 10−3, F+ = 1.0 (b) Cµ = 2.00 × 10−5, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (d) Cµ = 2.00 × 10−5, F+ = 6.0

(e) Cµ = 2.00 × 10−3, F+ = 10 (f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.9: Instantaneous flow fields (u/u∞): 0.0 ≤ u/u∞ ≤ 1.5
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Fig. 4.10: Schematic diagram of phases for actuation

  φ/2π  =   1/10                      3/10                         5/10                         7/10                           9/10         

(b) Cµ = 2.00 × 10−3, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0

(d) Cµ = 2.00 × 10−3, F+ = 10

(e) Cµ = 2.00 × 10−5, F+ = 1.0

(f) Cµ = 2.00 × 10−5, F+ = 6.0

(g) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.11: Instantaneous flow fields (u/u∞): 0.0 ≤ u/u∞ ≤ 1.5
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4.4.3 PSD of velocity fluctution

In this section, the power spectra density (PSD: see Sec.??) of the wall-normal velocity

component (uw) is discussed. Figure 8.3 shows the PSD of uw in x/ch = 0 to 0.2, and

the grey straight line indicates the Kolmogorov’s 5/3 law. The sampling points are

determined at each x/ch so that the turbulent kinetic energy takes its maximum along

each grid line from the airfoil surface (see Fig.??). Most of these sampling points would

be located near the center line of the shear layer (Appendix ??). In all cases, the PSD

at high frequencies (≃ 100) is close to the Kolmogorov’s law at x/ch = 0.2, where a

turbulent boundary layer is well developed.

In strong input cases (Cµ = 2.0×10−3: Fig.8.3(a), (c), and (e)), the peaks which cor-

respond to the actuation frequency F+ and its harmonic component remain even at 20%

of the chord length. This indicates that some flow structure periodically appears inside

the turbulent boundary layer, whose period is the same as F+. Therefore, the phase av-

eraging procedure based on the actuation frequency F+ is expected to extract such flow

structures (see next section). Since such periodic flow structure remains further down-

stream, the aerodynamic coefficients would be periodically fluctuated in F+ (Fig.??).

Finally, another remarkable characteristic is the rapid growth of PSD at St ≃ 40 from

x/ch = 0.02 (blue lines) to 0.05 (red lines) although its frequency is significantly different

from the actuation frequency F+ = 1.0 to 10. Such a spatial growth of high-frequency

disturbances would be related to the KH instability, which will be discussed in the next

chapter.

The weak input cases (Cµ = 2.0× 10−5: Fig.8.3(b), (d), and (f)) show similar trends

to the strong input cases when the attached flow is achieved (F+ = 6.0 and 10 cases).

However, the PSD near the leading edge is much lower than that of strong input cases

in F+ = 6.0 and 10 cases, which indicates that the disturbances from the SJ is dominant

in terms of the wall-normal fluctuation near the leading edge. In the uncontrollable case

(F+ = 1.0), the actuation frequency does not have a peak, but the PSD of St ≃ 15

selectively develops near the leading edge. This would be related to the two-dimensional

vortex structures emitted from the shear layer (see Fig.4.11(d)), which will be validated

in the next chapter in detail.
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(a) Cµ = 2.00 × 10−3, F+ = 1.0 (b) Cµ = 2.00 × 10−5, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (d) Cµ = 2.00 × 10−5, F+ = 6.0

(e) Cµ = 2.00 × 10−3, F+ = 10 (f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.12: Power spectra of wall-normal velocity component; the horizontal axis is a

frequency normalized by freestream velocity and chord length. The straight line in grey

color shows the Kolmogorov’s 5/3 law.
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4.5 Turbulent statistics including the evaluation of

chordwise momentum exchange

In this section, the turbulent statistics are discussed from the viewpoint of turbulent

transition and chordwise momentum exchange.

4.5.1 Turbulent transition point

Figure 4.13 shows the spatial distribution of a turbulent kinetic energy for controlled

cases. When the flow is controlled to the attached one, the high TKE appears inside the

turbulent boundary layer due to the three-dimensional turbulent vortex strucutures. On

the other hand, when the separation is not suppressed (Cµ = 2.0× 10−5 with F+ = 1.0),

the TKE becomes high for the wide region over an airfoil where the turbulent vortex

structures are generated. The other important issue is the location where TKE takes a

maximum value. In the controllable cases (Fig.4.13(a), (c), (d), (e), and (f)), the higher

TKE value appears near the leading edge, which is on the separation bubble. As the

separation bubble size become smaller (higher F+ generates smaller separation bubble

discussed in Sec.??), the higher TKE region (red colored region) becomes smaller. For

example, the higher TKE region in F+ = 6.0 or 10 cases (Fig.4.13(c) and (e)) is smaller

than that of F+ = 1.0 (Fig.4.13(a)).

Figure 4.14 shows the wall-normal profiles of TKE values for 0 ≤ x/ch ≤ 0.5 more

quantitatively. Compared with the reversed flow region of Fig.4.8 and instantaneous flow

fields Fig.4.11, the following two points are summarized for controllable cases. First, the

zn/ch location (wall-normal distance from the airfoil surface) wher TKE takes maximum

value is approximately at the outer edge of the separation bubble, where the shear layer

exists. Second, the x/ch location where TKE takes maximum value is at the latter half of

the separation bubble, where the smaller vortex strcutures are emitted from the separated

shear layer along with a three-dimensional fluctuation. These two characteristics suggest

that the TKE value would become higer where small vortex structures are emitted from

the shear layer and transient to turbulence. Similar trend is observed in the uncontrollable

case (Cµ = 2.0× 10−5 with F+ = 1.0). The details of the relationship between unsteady

vortex motion and flow disturbances will be discussed in Sec.??.
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The peak values of TKE are different for each F+ cases, which is clearly visualized

in Fig.??. Figure ?? visualize the spatial distribution of maximum value of TKE for

0 ≤ x/ch ≤ 1.0, where the peak values of TKE at each x/ch are plotted (hereinafter,

called TKE-max plot). As mentioned in the previous paragraph, the peak of the TKE

value is almost corrsponding to the turbulent transition point []. First, the black lines

in Fig.?? show the cases without control. In this case, the small vortex structures are

emitted from the separated shear layer, where the two-dimensional structures are gradu-

ally broken down with a three-dimesnional fluctuation (see Fig.4.11). This suggests that

the turbulent transition would occur slowly, thus the profile of TKE-max is more widely

spread (e.g., the half width of the TKE-max plot shows larger value) than controlled

(with separation bubbles) cases. In strong input cases (Cµ = 2.0 × 10−3: blue, red, and

green lines in Fig.??(a)), the F+ = 6.0 and F+ = 10 cases show its maximum value at

more upstream position than F+ = 1.0 case. It is the same trend with the separation

bubble size (Sec.??), and the turbulent transition would occur smoothly at more up-

stream position in F+ = 6.0 and 10 than F+ = 1.0 case. In weak input and controllable

cases (Cµ = 2.0 × 10−5 with F+ = 6.0 and 10: red and green lines in Fig.??(b)), the

F+ = 10 case clearly show its maximum value at more upstream position than F+ = 6.0

case. This is the same reason as in the strong input cases, where the turbulent transition

occurs smoothly at more upstream position in F+ = 10 than F+ = 6.0 case. Therefore,

the better control based on the small separation bubbles (in terms of minimizing the

drag) is achieved by the enhancement of the turbulent transition at more upstream po-

sition. Note that even in the uncontrollable case (Cµ = 2.0 × 10−5 with F+ = 1.0: blue

line in Fig.??(b)), the maxmium point is slightly upstream compared to the baseline case

(control off: black solid line). Such a enhancement of turbulent transition is caused by

small disturbances from the SJ although it cannot attain the suppression of the seprated

flows.

The previous criteria of the turbulent transition point was based on turbulent kinetic

energy, which includes fluctuations in all the velocity component. In terms of the extrac-

tion of three-dimensional structures, the similar plots for spanwise fluctuation are also

helpful. Figures 4.16 and 4.17 show the spanwise fluctuation v′ for controlled cases. The

trend of maximum spanwise fluctuation (v′-max) point for F+ is almost the same with

that of TKE-max in Fig.4.17 and 4.15. That is, the turbulent transition occurs smoothly
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(a) Cµ = 2.00 × 10−3, F+ = 1.0 (b) Cµ = 2.00 × 10−5, F+ = 1.0

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (d) Cµ = 2.00 × 10−5, F+ = 6.0

(e) Cµ = 2.00 × 10−3, F+ = 10 (f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.13: Turbulent kinetic energy

(a) Cµ = 2.0 × 10−3

(b) Cµ = 2.0 × 10−5

Fig. 4.14: Profiles of TKE near the leading edge (0 ≤ x/ch ≤ 0.5)
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(a) Cµ = 2.0 × 10−3 (b) Cµ = 2.0 × 10−5

Fig. 4.15: Profiles of maximum TKE near the leading edge (0 ≤ x/ch ≤ 0.5)

at more upstream position in the higher F+ cases. Therefore, the criteria of TKE-max

is sufficient for the evaluation of turbulent transition point, and the TKE-max position

at each x/ch will be frequently adopted as a sampling point for unsteady flow properties

in this thesis.

4.5.2 Decomposition of turbulent statistics by the phase-averaging

procedure

As discussed in the previous section, the PSD of wall-normal velocity component suggests

the existence of periodic flow structures in the turbulent boundary layer, whose period is

corresponding to the actuation frequency F+. Therefore, the phase averaging procedure

is conducted for the unsteady flow fields to extract these structures, and the turbulent

statistics, e.g., turbulent kinetic energy, are decomposed into periodic and turbulent (non-

periodic) components. Hereinafter, the instantaneous physical quantity f = f(t, x, y, z)

is decomposed into overall average, f ; phase fluctuation, f̃ ; and turbulent fluctuation,

f ′′. The phase average is denoted by ⟨f⟩. The detail of the decomposition was explained

in Sec.??. Note that in this chapter, all the quantities are averaged in the spanwise

direction, of which symbol is omitted for the brevity.

The separation control mechanism is frequently discussed with a chordwise momen-

tum exchange near the airfoil surface. In terms of the momentum exchange in the chord-

wise direction, it is essential to evaluate the Reynolds shear stress because the present
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(a) Cµ = 2.0 × 10−3

(b) Cµ = 2.0 × 10−5

Fig. 4.16: Profiles of spanwise fluctuation (v′) near the leading edge (0 ≤ x/ch ≤ 0.5)

(a) Cµ = 2.0 × 10−3 (b) Cµ = 2.0 × 10−5

Fig. 4.17: Profiles of the maximum spanwise fluctuation v′ near the leading edge (0 ≤
x/ch ≤ 0.5)
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controlled flow exhibits the turbulent boundary layer almost all over the airfoil surface.

Based on the phase decomposition above, three types of Reynolds shear stress can be

defined in the present study. The first one is the overall component of the fluctuation:

u′w′, which is defined by the overall flucutaion from the time-averaged flows. The second

and third ones are the phase and turbulent component, respectively: ũw̃ and u′′w′′, which

are based on the phase and turbulent component of the fluctuation, respectively. These

three types of Reynolds shear stress are related as follows:

u′w′ = ũw̃ + u′′w′′. (4.7)

Note that in the present section, the Reynolds shear stress comprise x and z compo-

nents of fluctuation (u′ and w′) because the entrainment of chordwise momentum (u′) by

vertical flow motion (−w′) is focused.

Figure 4.18 shows the phase decomposition of the Reynolds shear stress in controlled

flows. The left column show the overall component of u′w′, middle and right column show

the phase and turbulent components of ũw̃ and u′′w′′. The result indicates that in all the

controlled cases, the turbulent component u′′w′′ is dominant for almost all the region.

In other words, the chordwise momentum exchange is chiefly achived by the turbulent

fluctuation, which is generated by three-dimensional turbulent vortex strucutures. The

first important issue is that such an unsteady motion of turbulent vortex structures is not

strongly related to F+ and are not spanwise-uniformly distrubuted, thus the turbulent

component becomes dominant in terms of the decomposed Reynolds shear stress. It is

interesting that such a feature, i.e., turbulent component being dominant, is commonly

observed regardless of F+ and Cµ when the separation is suppressed. In this way, the

turbulent structure is one of the important mechanism for momentum exchange in sepra-

tion control in the present flow/actuator conditions, thus the enhancement of turbulent

transition would be a significant issue as is expected in the previous section.

Figure ?? more precisely shows the profiles of Reynolds shear stress in wall-normal

direction. In each controlled cases, the turbulent component is dominant for almost all

the airfoil surface as discussed in the previous paragraph and Fig.4.18. The periodic

component, on the other hand, is locally enhanced near the leading edge (at the latter

half of the separation bubble) for each controlled cases (red, blue, and green lines in

Fig.??(a); blue and green lines in Fig.??(b)). Therefore, some periodic flow motion
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based on F+ is expected at this location. The small vortex structures emitted from the

separated shear layer would be related to this unsteady motion from the discussion on

instantaneous flow fields near the separation bubble, which will be verified in detail using

phase averaged flow fields in the next section.

4.6 Mechanism of chordwise momentum exchange

by unsteady flow motion

In the previsous section, the effect of chordwise momentum exchange is decomposed

into periodic and turbulent components, and the turbulent component is shown to be

dominant for each controlled cases. On the other hand, periodic component is locally

enhanced near the separation bubble, which indicates that some periodic flow motion

appears at the downstream of the separation bubbles. In this section, the phase averaged

flow fields are discussed at each phase angle from the viewpoint of coherent (spanwise

uniform) vortex strucutre and Reynolds shear stress.

For this purpose, the following decomposition is conducted for the Reynolds shear

stress at each phase angle (the phase angle was illustrated in Fig.4.10):

⟨u′w′⟩ϕ = ⟨ũw̃⟩ϕ + ⟨u′′w′′⟩ϕ. (4.8)

Note that spanwise averaging procedure is also conducted but the symbol for this oper-

ation is omitted for the brevity. The detail of the computation of each Reynolds stress

is explained in Sec.??.

4.6.1 Coherent vortex structures and chordwise momentum ex-

change in phase-averaged flow fields

In Figs.??–??, the decomposition of the Reynolds shear stress is shown. The black con-

tour lines indicate the second invariant of the velocity gradient tensor, which corresponds

to vortex structures with its axis along the spanwise (y) direction. In this section, the fol-

lowing three points are summarized: 1) coherent vortex structure; 2) periodic component

of Reynolds shear stress; 3) turbulent component of Reynolds shear stress.
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(a) Cµ = 2.00 × 10−3, F+ = 1.0
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(b) Cµ = 2.00 × 10−3, F+ = 6.0
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(c) Cµ = 2.00 × 10−3, F+ = 10
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(d) Cµ = 2.00 × 10−5, F+ = 1.0
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(e) Cµ = 2.00 × 10−5, F+ = 6.0
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(f) Cµ = 2.00 × 10−5, F+ = 10

Fig. 4.18: Decomposition of the Reynolds shear stress: left column shows the overall

component of u′w′, middle and right column show the phase and turbulent components

of ũw̃ and u′′w′′.
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(a) Periodic

(b) Turbulent

Fig. 4.19: Cµ = 2.0×10−3 cases. Decomposition of the Reynolds shear stress: the phase

and turbulent components of (a)ũw̃ and (b)u′′w′′.
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(a) Periodic

(b) Turbulent

Fig. 4.20: Cµ = 2.0×10−5 cases. Decomposition of the Reynolds shear stress: the phase

and turbulent components of (a)ũw̃ and (b)u′′w′′.
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Coherent vortex with the period of F+

In each controlled cases, the coherent vortex structures are detected by black contour

lines. In the strong input case Cµ = 2.0× 10−3 with F+ = 1.0 (Fig.4.21(a) and (b)), the

separated shear layer is visualized near the leading edge at ϕ/2π = 1/10. At ϕ/2π = 2/10,

the shear layer is divided into small vortex strucutures. These vortex structures are

shedding downstream, and one of them remains strong further downstream as a coherent

vortex inside the turbulent boundary layer. The generation of single coherent vortex

would be caused by both of small vortex merging and diffusion (see next subsection). In

this way, these phase averaged shots illustrate that the separation bubble is oscillated

with its period being F+, and the multiple coherent vortex structures are generated

from the separation bubble, one of which strongly remains further downstream. Such

a resultant single coherent vortex goes through an airfoil surface and is emitted from

the trailing edge periodically (the same period as F+). The fluctuation of aerodynamic

coefficients shown in Fig.4.1 would be strongly related to this coherent vortex structure.

The similar trend is observed in the strong input case Cµ = 2.0 × 10−3 with F+ = 6.0

and 10 (Fig.4.21(a) and (b)). In F+ = 6.0 and 10 cases, the number of coherent vortices

is much more than that in F+ = 1.0, which is almost corresponding to the F+. Another

different feature is that the strength of the coherent vortex, which remains more strongly

(clearly in the visuallization) further downstream in the F+ = 1.0 case than the 6.0 and

10 cases. Since the F+ = 1.0 case attains larger attached region than the F+ = 6.0 and 10

cases, the strong coherent vortex can suppress the separation near the trailing edge which

is achived by the lower (F+ = 1.0) actuation frequency. Note that the coherent vortex

tends to strongly remain near the trailing edge when it is generated more downstream.

Similar trend has been reported in the previous study for “MF” and “HF” (middle and

high frequencies) cases in Zhang et al. [34].

In the weak input cases Cµ = 2.0 × 10−5 with F+ = 6.0 and 10 (controllable cases:

Fig.4.24), similar trend is observed where the coherent vortices are generated periodically

on the airfoil surface and emitted from the trailing edge based on F+. On the other hand,

the location where small vortex structures are emitted from the separated shear layer is

more downstream than the strong input cases with F+ = 6.0 and 10, which indicates

that the separation bubble is larger than the strong input cases (as discussed in Sec. ??).

Therefore, the coherent vortex is generated by small vortices merging and diffusion more
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downstream than the strong input cases. This would contribute to the strong coherent

vortex near the trailing edge as discussed in the previous paragraph, but the energy of

disturbances input from the SJ is smaller than the strong input cases so that the resultant

coherent vortex remains weaker downstream than strong input cases. The difference in

the energy of the disturbances input from the SJ and its spatial growth will be discussed

in detail in the next chapter. In the case of Cµ = 2.0×10−5 with F+ = 1.0, the separated

flow cannot be suppressed. In this case, the coherent vortex cannot be clearly observed

as in the controllable cases although the periodic oscillation based on F+ = 1.0 slightly

appears at the edge of separated shear layer near the leading edge.

Periodic component of the Reynolds shear stress

In the present decomposition, the periodic component of the Reynolds shear stress

strongly appears where the unsteady flow motion is periodic with its period correspond-

ing to F+. Such periodic flow motion is typically observed at the oscillated separation

bubble and on the coherent vortex structures.

In the strong input case with F+ = 1.0 (Fig.4.21(a) and (c)), the periodic component

is strongly enhanced at the edge of the separation bubble at ϕ/2π = 1/10 first, then

it surrounds the small vortex structures at ϕ/2π = 3/10 and also the coherent vortex

at ϕ/2π = 5/10 to 9/10. Such a quadrupole distribution of the Reynolds shear stress

−⟨ũw̃⟩ϕ frequently appears around the strong two-dimensional (spanwise uniform) vortex

structures, which are rotating in the clockwise direction. Therefore, the periodic compo-

nent of the Renolds shear stress is more enhanced around two-dimensional strong vortex

structures such as single coherent vortex remaining further downstream. In the cases

with F+ = 6.0 and 10, the similar quadrupole distributions appear around the small and

coherent vortices at ϕ/2π = 5/10 to 9/10. However, the strength of the periodic compo-

nent is weaker than the case with F+ = 1.0, which indicates that in the F+ = 6.0 and 10

cases, the coherent vortex does not contribute to the chordwise momentum exchange by

periodic component compared to the F+ = 1.0 case. This would strongly related to the

trailing edge separated region as discussed in the characteristics of the coherent vortex

previously. In the cases with weak input of Cµ = 2.0 × 10−5 (Figs.4.25 and 4.26), the

similar trend is observed for the periodic component of the Reynolds shear stress, which

is, however, weaker than the cases of strong input because the energy of the disturbances
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input from the SJ is smaller.

To summarize, the most important characteristic here is that the periodic component

of the Reynolds shear stress is localized only around the coherent vortices, which is not

dominant over an airfoil since its strength is quickly decreased downstream.

Turbulent component of the Reynolds shear stress

The turbulent component of the Reynolds shear stress strongly appears where the un-

steady flow motion is nonperiodic (not related to the period of F+). In the present flow

field, such unsteady flow motion is frequently appears together with the three-dimensional

turbulent vortex structures over an airfoil.

In the cases with a strong input with F+ = 1.0 (Fig.4.21(b) and (d)), the strong tur-

bulent component covers almost all the airfoil surface for each phases, which supports the

discussion on the decomposition of the total component of Reynolds shear stress in Sec.??.

In particular, the turbulent component is locally enhenced inside the small vortex struc-

tures emitted from the separation bubble at ϕ/2π = 1/10 and 3/10. This is because the

strong three-dimensional fluctuation appears in the turbulent transition as discussed in

Sec.?? and ??. The important point is that such a locally-enhanced turbulent component

of Reynolds shear stress convects downstream together with the coherent vortex. This

indicates that the strong turbulent component (therefore the three-dimensional turbulent

vortex structure) is entrained by coherent vortex convecting downstream. Therefore, the

coherent vortex periodically generated and convecting downstream shows significance not

only for the chordwise momentum exchange by a periodic component of the Reynolds

shear stress but also for its turbulent (nonperiodic) component. Such a turbulent com-

ponent is dominant and further stronger than periodic component.

In the strong input cases with F+ = 6.0 and 10, the similar trend is observed: the

turbulent component is locally enhanced inside the small vortex structures emitted from

the separation bubble at ϕ/2π = 1/10 and 3/10, and the strong component is entrained

by the coherent vortex convecting downstream. Resultantly, the turbulent component of

the Reynolds shear stress covers almost all over the airfoil surface, which becomes dom-

inant for the chordwise momentum exchange in these cases. The similar trend appears

in the weak input cases with F+ = 6.0 and 10.
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(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 4.21: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

1.0 case
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Fig. 4.22: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

6.0 case
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Fig. 4.23: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

10 case
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(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 4.24: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−5, F+ =

1.0 case
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Fig. 4.25: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−5, F+ =

6.0 case
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Fig. 4.26: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−5, F+ =

10 case
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4.6.2 Generation of the coherent vortex

In this subsection, the generation of the coherent vortex is discussed for the strong input

case with F+ = 6.0. Figure 4.27 shows the space-time combined system for a visualization

of coherent vortex motion and turbulent component of the Reynolds shear stress. The

ϕ-axis indicates the phase angle based on F+ = 6.0 for 0 ≤ ϕ ≤ 8π (4 period), and the

x/ch-axis indicates the spatial chordwise direction. At each phase, the phase- and span-

averaged flow fields are visualized, where the isosurface shows the second invariant of the

velocity gradient tensor. Therefore, the isosurface in Fig. 4.27 shows the convection of

vortex structures which are illustrated by black contours at each phase in Fig.4.22. The

isosurface is colored by the turbulent component of the Reynolds shear stress, −⟨u′′w′′⟩ϕ.

In Fig 4.27(a), the separation bubble expands during ϕ = π to 2π, from which the

small vortex structures are emitted at ϕ = 2π to 3π. Each small vortex structures

are convecting downstream, and two of them are merging at x/ch ≃ 0.25 and ϕ ≃ 4π,

which generates the strong coherent vortex. The resultant coherent vortex remains strong

further downstream, which is emitted periodically from the trailing edge. The other small

vortex structures are gradually diffused as convecting downstream.

(a) Vertical view (b) Perspective view

Fig. 4.27: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

6.0 case
52



4.7 Summary

The effect of the actuation frequency on the capabilities of separation control is discussed,

and the mechanism of the separation control is investigated mainly from the viewpoint

of a chordwise momentum exchange by the Reynolds shear stress.

53



Chapter 5

Spatial development of the

disturbances from the synthetic jet

5.1 Outline

5.2 Case description

In this chapter, the mechanism of spatial development of disturbances from the SJ is

investigated in the separation controlled flows. In particular, the case with an optimal

frequencies for the SJ capability is discussed. The cases shown in this chapter are as

follows:

Table 5.1: Computational cases. The synthetic jet is installed at the leading edge of the

airfoil.

case name input momentum (Cµ) F+

Off controlled/separated (AoA=12[deg.]) — —

Off controlled/attached (AoA=10[deg.]) — —

strong input (AoA=12[deg.]) 2.0 × 10−3 1.0, 6.0, 10

weak input (AoA=12[deg.]) 2.0 × 10−5 1.0, 6.0, 10

In this chapter, the noncontrolled case of AoA = 10 [deg.] is additionally discussed

based on the following reasons: the flow at AoA = 10 [deg.] is attached with a laminar
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separation bubble near the leading edge; the spatial development of disturbances on the

separation bubble is an important issue for the separation control mechanism in the

present flow/actuator conditions.

The wall-normal fluctuation in the separated shear layer is focused for the discussion

on the spatial development of disturbances.

5.3 Noncontrolled cases

In this section, the spatial development of disturbances in the noncontrolled cases of

AoA = 12◦ and 10◦ is discussed. The case of AoA = 12◦ exhibits the flow separation

at 2.5% of the chord length, which is the baseline case for the separation control in this

study. In the case of AoA = 10◦, the flow is separated at 2.5% of the chord length and

reattached at 2.5% with a laminer separation bubble. The details of noncontrolled cases

are described in Sec.??.

5.3.1 Spatial growth rate

According to Sec.??, the spatial growth rate of wall-normal fluctuation is compared be-

tween LST and LES results. Here again, the notation of LST indicates “linear stability

theory”, and the spatial growth rate αi is estimated from the eigen value problem in

Eq.??, where the time-averaged wall-tangential velocity profiles are used. The LES in-

dicates the αi based on the PSD of wall-normal fluctuation in Eq.??, where FFT is

conducted on the unsteady data of the LES data.

Separated flow case (AoA = 12◦)

Figure 5.1 shows the comparison of sptial growth rate αi for LST and LES results. In each

cases, the top contour figure shows the chordwise velocity of time-averaged fields, and the

bottom three figures show the αi distribution for St at different x/ch position. The black

dots in αi distributions show the FFT results of LES data at three different grid points

near each x/ch position on the TKE-max line (see Sec.??); on the other hand, the red solid

lines show the LST results based on the time-averaged wall-tangential velocity profile. In

each αi plots, the smaller αi (i.e., the larger −αi) corresponds to more unstable fluctuation
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so that the St number indicating the smallest αi is the most unstable frequency. Note

that if the fluctuation follows the linear stability theory, the most unstable mode (or the

frequency) can be estimated by solving the eigen value problem, where, the profile of αi

by LST (red solid line) is corresponding to that by LES data (black dots). The most

unstable frequency estimated by LST is called “linear instability frequency” hereinafter.

In the case of AoA = 12◦ (Fig.5.1(a)), the αi profiles of LST and LES data show

good agreement at x/ch = 8% in terms of the most unstable frequency. Therefore,

the fluctuation in the separated shear layer at x/ch = 8% linearly develops as has been

reported in many previous studies for the flow instability in a shear layer[][][]. In this linear

growth regime, the linear instability frequency is St ≃ 20. At x/ch = 11%, the αi profiles

of LST and LES data are different in terms of the most unstable frequency, where the

linear instability frequency is St ≃ 15 (red solid line), but the most unstable frequency

estimated by LES data (black dots) is St ≃ 30 of harmonics of the linear instability

frequency. In this region, the fluctuation has sufficiently developed in the upstream of

x/ch = 11% such that the linearlized approximation cannot be adopted in Eq.(??), and it

is transient to the nonlinear growth regime. The flucutation at x/ch = 13% is also in the

nonlinear growth regime, where the linear instability frequency St ≃ 10 is not the most

unstable frequency, but the modes in higher frequencies (St ≃ 50) show larger spatial

growth rate −αi. Such larger growth rate in the higher frequency modes indicates that

a turbulent transition is promoted by fine vortex structures developping downstream.

In this way, the spatial development of the fluctuation in a shear layer can be typ-

ically explained by the sequential two regimes: the first one is a linear growth regime,

where the spatial development of the fluctuation can be approximated by the linearized

equation, and the most unstable mode is estimated by LST; the second one is a nonlin-

ear growth regime, where the amplitude of the fluctuation has been already saturated

in more upstream region such that the most unstable mode cannot be determined by

the linearlized approximation, but higher frequency modes show larger growth rate than

linear instability mode. Note that the coherent vortex shedding frequency described in

Sec.?? is estimated as St = 12, based on which the emission of the large and coherent

vortex from the separated shear layer is clearly captured in the phase-averaged flow fields

(Fig.??(a) and Fig.??(a)). The frequency of St = 12 is slightly different from that of

the linear instability mode in a linear growth regime (St ≃ 20 at x/ch = 8%), but is

56



much more close to the instability mode in the nonlinear growth regime (St ≃ 10 at

x/ch = 13%). This is because although the St = 12 mode (linear instability mode) is

not the most unstable at x/ch = 13% in terms of the spatial growth rate, the amplitude

of St = 12 mode would be further larger than that of St ≃ 50 (nonlinear instability

modes). Therefore, the frequency of coherent vortex emission from the separated shear

layer should be carefully discussed in the plot of the spatial growth rate αi, where the

linear instability frequency in the nonlinear growth regime would be corresponding to

that of the coherent vortex emission if the amplitude of the linear instability mode has

been sufficiently developed in the upstream region.

Laminar separation bubble case (AoA = 10◦)

In the case of AoA = 10◦ (Fig.5.1(b)), the αi profiles of LST and LES data show good

agreement at x/ch = 8%, where St ≃ 20 is the linear instability frequency. The higher

frequency modes such as St ≃ 40 show comparable growth rate at x/ch = 14%, where

the nonlinear growth regime begins. At x/ch = 18%, the linear instability frequency is

St ≃ 15, but the higher frequency modes St ≥ 40 show much larger growth rate. In

this way, the trend of sequential transient from the linear to nonlinear growth regime

of the fluctuation is similar to that of AoA = 12◦ (separated flow) case. Similarly, the

frequency of coherent vortex emission is estimated as St ≃ 12 from the phase-averaged

flows, which is close to that of linear instability frequency in nonlinear growth regime

(x/ch = 18, 19, and 20%: see Sec.??). However, at x/ch = 18%, the αi profiles of LST

and LES results do not show a good agreement, but the LES data shows lower unstable

frequency than the linear instability frequency St ≃ 15, i.e., the unstable frequency of

LES data is St ≃ 10 and lower (this is more clearly observed in x/ch = 19 and 20% in

Sec.??). This would be caused by the merging procedure of coherent vortex emitted from

the separated shear layer, which results in larger coherent vortex convecting downstream.

Such a larger growth rate in the lower frequency mode than the linear instability mode

could specifically appear in the flow with a laminer separation bubble, which is one of

the distinctive characteristics in the present attached flow. Based on these investigation,

hereinafter, the scenario for the spatial development of fluctuation is re-categolized into

following three regime: linear growth regime, higher-nonlinear growth regime, and lower-

nonlinear growth regime. The linear growth regime exhibits spatial development of the
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fluctuation based on the linear instability theory; the higher-nonlinear growth regime

indicates the larger growth rate in higher frequency modes than the linear instability

frequency (i.e., observed in both of the AoA = 12 and 10◦ cases); the higher-nonlinear

growth regime indicates the larger growth rate in lower frequency modes than the linear

instability frequency (i.e., appearing only in the AoA = 10◦ case).

Figure 5.2 shows the spatial growth rate αi on a St-x plane for 0.0 ≤ x/ch ≤ 0.2.

The red lines shows the contour of αi estimated by LST, and the black-to-white contour

shows the αi distribution evaluated by LES data.

The St-x visualization for the AoA = 12◦ case (Fig.5.2(a)) more clearly shows the

linear instability regime in 2% ≤ x/ch ≤ 8% where the red lines and black-to-white

contours are corresponding with each other. In 8% ≤ x/ch, the larger growth rate αi

appears in higher frequencies, which is called higher-nonlinear instability regime in this

thesis. The linear instability frequency gradually decreases due to the development of

the separated shear layer as going to the downstream (the inflection point in the wall-

tangential flow profile becomes farther from the airfoil surface), which is still observed

even in the higher-nonlinear regime. The interesting feature is that such a linear insta-

bility frequency clearly remains further downstream (x/ch ≃ 20%) although it is not the

most unstable frequency. The spatial growth rate in higher frequencies than linear in-

stability frequency becomes large at 8% ≤ x/ch, where it rapidlly spreads from St ≃ 30

to 100 for 8% ≤ x/ch ≤ 15%. This indicates that the nonlinear interaction between

fluctuations of multiple frequencies occurs rapidlly so that the spatial growth of higher

frequency modes are promoted faster than the linear instability modes.

Figure 5.2(b) shows the case of AoA = 10◦. Similar to the case of AoA = 12◦,

the linear instability regime and higher-nonlinear instability regime clearly appear at

5% ≤ x/ch ≤ 13% and 13% ≤ x/ch, respectively. On the other hand, the spatial growth

rate in lower frequencies (St ≤ 10) becomes larger than linear instability frequency at

15% ≤ x/ch, which is called lower-nonlinear instability regime. Note that the large

growth rate near the leading edge at St ≃ 10 would be related to the linear instability

mode based on a visousity effect (eigen mode of the Orr-sommerfelt equation), which

cannot be validated here and would not be a dominant effect in the separation control

viewpoint.
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(b) AoA = 10◦

Fig. 5.1: Control off cases: top figure shows time-averaged u/u∞; bottom figures show

the spatial growth rate αi estimated by LST and FFT analysis for LES data.
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(a) AoA = 12◦ (b) AoA = 10◦

Fig. 5.2: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).

5.3.2 Spatial development of the PSD of wall-normal fluctua-

tion

Figure 5.3 shows the spatial development of the PSD of wall-normal fluctuation for each

cases. In the case of AoA = 12◦, the low frequency St = O(1) is larger near the leading

edge, but the higher frequency mode St ≃ 15 is more rapidlly developing at 2% ≤
x/ch ≤ 10%. The spatial distribution of each freqency modes are more clearly observed

in Fig.5.4(a) in St-x plane. This is a linear growth regime, where the sptial growth rate of

linear unstable frequency mode (St ≃ 15) is the largest. After the linear growth regime,

the higher-nonlinear growth regime begins at x/ch ≃ 11%, which promotes generation of

fine vortex structures and a turbulent transition. Although the higher frequency mode

begins developing faster than the linear instability mode, the amplitude (energy) of linear

instability mode (St ≃ 15) is already larger than those of higher frequency modes so that

the coherent vortex structure is emitted from the separated shear layer with its frequency

St ≃ 15 as pointed out in the previous section.

On the other hand, the laminer separation bubble case (AoA = 10◦) shows a rapid

growth of linear instability mode St ≃ 15 at 5% ≤ x/ch ≤ 15, which can be regarded

as a linear growth regime (see Fig.5.3(b) and Fig.5.4(b)). After this regime, the nonlin-

60



ear growth regime begins, and higher freqeuncy modes develops faster than the liniear

instability frequency mode. As pointed out in the previous paragraph, the amplitude of

the linear instability mode is much larger than the higher frequency mode even in this

higher-nonlinear growth regime so that the linear instability frequency is corresponding

to that of coherent vortex emission from the separation bubble. The other characteris-

tic of this laminer separation bubble case is that the lower freqeuncy mode shows rapid

growth in the nonlinear growth regime, which indicates that the vortex merging occurs

and larger coherent vortex would be generated in the downstream direction. Such three

growth regimes (i.e., linear, higher-nonlinear and lower-nonlinear regimes) of fluctuation

are the characteristic of laminer separation bubble case.

Note that the strong PSD is observed discretely at St = 24, 48, 72, and 96 in Fig.5.4(b)

near the leading edge (0% ≤ x/ch ≤ 15). This is caused by the trailing edge tone, which

would maintain a feedback loop between the generation of acoustic waves from the trailing

edge and the oscilation of the separation bubble (see Sec.??). Similar discrete peak of

PSD is slightly observed also in the case of AoA = 12◦ (Fig.5.4(a)). Although the PSD of

such trailing edge tone is much stronger than the disturbances of another frequency near

the leading edge, the present study does not precisely discuss the mechanism because the

input frequency of the SJ (F+) is much more dominant in the controlled cases.

(a) AoA = 10◦

Fig. 5.3: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).
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(a) AoA = 12◦ (b) AoA = 10◦

Fig. 5.4: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).
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5.4 Separation controlled cases

In this section, the spatial development of disturbances in the separation controlled cases

are discussed. The spatial growth rate and development of the PSD of wall-normal

fluctuation is compared with noncontrolled cases.

5.4.1 Spatial growth rate

The spatial growth rate of wall-normal fluctuation is compared between LST and LES

results. In the case of a strong input case with F+ = 1.0 (Fig.5.5(a)), the αi profiles of

LST and LES data show good agreement at x/ch = 3% in terms of the most unstable

frequency St ≃ 35. Therefore, the fluctuation in this region linearly develops, which is

called the linear instability regime. At x/ch = 6%, the linear instability frequency is

St ≃ 30 (red solid line), but the most unstable frequency estimated by LES data (black

dots) is St ≥ 60. In this region, the spatial development of fluctuation is in the higher-

nonlinear instability regime. At x/ch = 7%, the growth rate of lower frequencies is larger

than that of the linear instability frequency, which is the lower-nonlinear growth regime

as well as the higher-nonlinear one. Similar trend is observed in the case with F+ = 6.0

and 10 (Figs.5.5), where the linear growth, lower- and higher-nonlinear growth regimes

appear. These regimes from linear to nonlinear development of fluctuation are observed

in a laminer separation bubble case without contorl (Figs.?? and ?? for AOA = 10◦

case). One of the important point here is that the linear instability frequency clearly

appears near the leading edge even when the periodic fluctuation is introduced from the

SJ for separation control. The linear instability frequency in the linear growth regime

(x/ch ≃ 3%) is St = 30 to 40 for F+ = 1.0, 6.0, and 10 cases (see bottom left figure in

Fig.5.7), which are different from that of input frequency by SJ.

In the case of a weak input case with F+ = 1.0 (Fig.5.6(a)), the attached flow

is not obtained, where the αi profiles of LST and LES data show good agreement at

x/ch = 8%. The growth rate in higher frequencies than linear instability frequency is

larger in x/ch = 11 and 13%, which are similarly observed in the noncontrolled case at

AoA = 12◦ in Fig.5.1(a). The other controlled cases with F+ = 6.0 and 10 show good

agreement for LST and LES data near the leading edge. In the downstream region, the

growth rate of higher and lower frequencies become larger than that of linear instability
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(a) Cµ = 2.0 × 10−3, F+ = 1.0
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(b) Cµ = 2.0 × 10−3, F+ = 6.0
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(c) Cµ = 2.0 × 10−3, F+ = 6.0

Fig. 5.5: Control off cases: top figure shows time-averaged u/u∞; bottom figures show

the spatial growth rate αi estimated by LST and FFT analysis for LES data.
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frequency. This trend is observed in noncontrolled case with a laminer separation bubble

and the controlled cases with a strong input, where the linear growth, higher- and lower-

nonlinear growth regime appear.

Figures 5.7 and 5.8 show the spatial growth rate αi on a St-x plane for 0.0 ≤ x/ch ≤
0.2. The St-x visualization for the AoA = 12◦ case (Fig.5.7) more clearly shows the linear

instability regime in 2% ≤ x/ch ≤ 5% where the red lines and black-to-white contours are

corresponding with each other. The spatial growth rate in higher frequencies than linear

instability frequency becomes large at x/ch ≃ 5%, where the mode at St ≥ 50 rapidlly

spreads. At the same position, the growth rate of lower frequencies is larger as discussed

in the previous paragraph. This would be related to the vortex merging, which generates

the large coherent vortex with its period F+. The similar feature is observed in the case

with F+ = 6.0 and 10 in Figs.5.7(b) and (c). The another important point is that in the

case with F+ = 6.0 and 10, the growth rate of the actuation frequency and its harmonics

(Fig.5.7(b) and (c)) is smaller than other frequencies, i.e., white horizontal stripes appear

in each figures. This indicates that the flucutuations with the actuation frequency and its

harmonics are strongly introduced by the SJ so that their amplitudes are almost saturated

to develop in the downstream. The controllable cases with a weak input (Cµ = 2.0×10−5:

Fig.5.8(b) and (c)) show the growth rate similar to the strong input cases, where the

linear, higher-nonlinear, and lower-nonlinear growth regimes appear although their values

are almost twice the larger than those of strong input cases because of weaker the input

fluctuation. The discrete weak growth ratio in the actuation frequency and its harmonics

(appearing as white horizontal stripes in each figures) are similarly observed.

5.4.2 Validation of the linear growth regime in the controlled

flows

In this part, the spatial developing mode (eigen mode) is compared in LST and LES

data in order to validate the linear growth regime in controlled cases. First, the spatial

developing mode ũ′
n(xw, zw) is estimated by LST result for a certain St number (called

Sttarget hereinafter):

ũ′
n(xw, zw) = û′

n(zw) exp

[
i

∫ xw

0

α(x′
w)dx′

w

]
. (5.1)
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(a) Cµ = 2.0 × 10−5, F+ = 1.0

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 10 %, LES data
  LST   

 0.04

 0.06

 0.08

 0.1

 0.12

 0.05  0.1  0.15  0.2  0.25  0.3

z/
c h

x/ch

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 7 %, LES data
  LST   

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 4 %, LES data
  LST   

-α
i

(b) Cµ = 2.0 × 10−5, F+ = 6.0

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 6 %, LES data
  LST   

 0.04

 0.06

 0.08

 0.1

 0.12

 0.05  0.1  0.15  0.2  0.25  0.3

z/
c h

x/ch

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 5 %, LES data
  LST   

 0

 50

 100

 150

 200

 250

 0  20  40  60  80  100

_
r

St

x/c= 2 %, LES data
  LST   

-α
i

(c) Cµ = 2.0 × 10−5, F+ = 6.0

Fig. 5.6: Control off cases: top figure shows time-averaged u/u∞; bottom figures show

the spatial growth rate αi estimated by LST and FFT analysis for LES data.
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(a) Cµ = 2.0 × 10−3, F+ = 1.0 (b) Cµ = 2.0 × 10−3, F+ = 6.0

(c) Cµ = 2.0 × 10−3, F+ = 10

Fig. 5.7: Cµ = 2.0 × 10−3 cases: spatial distributions of αi; black-to-white contour and

red contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 50).
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(a) Cµ = 2.0 × 10−5, F+ = 1.0 (b) Cµ = 2.0 × 10−5, F+ = 6.0

(c) Cµ = 2.0 × 10−5, F+ = 10

Fig. 5.8: Cµ = 2.0 × 10−3 cases: spatial distributions of αi; black-to-white contour and

red contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 50).
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The unstable mode û′
n is normalized by its maximum value. The line integral for xw in

Eq.(5.1) is conducted along the airfoil surface. On the other hand, the DFT is conducted

for wall-normal fluctuation to extract the spatial developing mode from the LES data.

For the DFT analysis, four period of F+ is taken from the beginning of each phases,

where the flow is assumed to be periodic for F+. The phase average of a real part

is ũ′
n obtained from the LES data. Figure 5.9 shows the spatial developping mode in

the four controlled cases discussed in the previous part. Each modes are illustrated by

white-to-black contour, and the red contour lines show the instantaneous shear layer

(isosurface of a second invariant of the velocity gradient tensor). Note that in the strong

input cases (Cµ = 2.0 × 10−3), the Sttarget is selected as Sttarget = 40 for F+ = 1.0 and

Sttarget = 36.92 for F+ = 10; and in the weak input cases (Cµ = 2.0×10−5), the Sttarget is

selected as Sttarget = 33.85 for F+ = 6.0 and Sttarget = 43.08 for F+ = 10. These are the

linear instability frequencies in linear growth regime. The results of LST and DFT show

qualitatively good agreement, which validate the linear growth regime near the leading

edge. However, the spatial wave number is slightly higher in LST than DFT result (the

wave length is smaller), which would be caused by the approximation of parallel flow and

neglegting the curvature and pressure gradient in the streamwise direction in the LST.

(a) DFT (CASE1) (b) LST (CASE1)

Fig. 5.9: Comparison of mode shapes (real part) for wall-normal velocity fluctuation (the

range is arbitrarily set). (a) and (b) show the CASE1: St = 40.00 in Cµ = 0.2% with

F+ = 1.0 case; (c) and (d) show the CASE2: St = 36.92 in Cµ = 0.2% with F+ = 10

case; (e) and (f) show the CASE3: St = 33.85 in Cµ = 0.002% with F+ = 6.0 case; (g)

and (h) show the CASE4: St = 43.08 in Cµ = 0.002% with F+ = 10 case. Red contour

lines show the instantaneous Q-invariant values.
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5.4.3 Spatial development of the PSD of wall-normal fluctua-

tion

Figure ??(a) shows the spatial development of the PSD of a strong input case with

F+ = 1.0. The modes at linear instability frequency St ≃ 40 is smaller than input

frequency mode (St = 1.0), nevertheless it is rapidlly developping in the downstream

direction up to x/ch ≤ 5% and its PSD almost overcomes the other modes. This is

corresponding to the linear growth regime. On the other hand, the higer frequency

modes such as St = 70 and 80 show smaller PSD than another frequency modes at the

leading edge, which begin developping after the sufficient growth of the linear instability

modes (5% ≤ x/ch). The PSD of St = 1.0, which is the actuation frequency F+ = 1.0, is

the largest at the leading edge since its fluctuation is directly introduced by the SJ. The

PSD of St = 1.0 develops rapidly at 0% ≤ x/ch ≤ 5%, and it maintains strong further

downstream. This promotes lower frequency modes than linear instability frequency

at the downstream position, i.e., lower-nonllinear growth regime, which contribute to

generating the coherent vortex with its period corresponding to the actuation frequency.

For example, the lower frequency mode such as St = 5.0 is weaker near the leading edge,

which the linear instability modes overcomes at x/ch ≃ 5% although the initial PSD

of St = 5.0 is stronger due to the harmonics of the input frequency. Then, after the

linear instability modes sufficiently developping, i.e., after the linear growth regime, the

lower frequency mode St = 5.0 rapidlly develops. The sequence of spatial growth regime

is more clearly seen in the St-x visualization in Fig.5.11(a). In addition, this is seen

in the case without control for a laminer separation bubble (Fig.5.3(b) and Fig.5.4(b)),

but the input frequency F+ = 1.0 would promote the spatial development of this lower

frequency mode. In this way, the important point is that even in the controlled case,

the fluctuation with a linear instability frequency is developping initially, then the other

higher-nonlinear and lower-nonlinear instability modes are enhanced, which are related to

the promotion of turbulent transition and generation of large coherent vortex structures,

respectively. Specifically, the lower-nonlinear instability modes would be promoted by the

input frequency (which is generally much lower than the linear instability frequency), i.e.,

St = 1.0 in the case of this paragraph. The better seprartion control would be realized

by the smooth and quick transition from linear to higher- and lower-nonlinear growth
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regime, which causes the difference of capabilities for separation control with F+ = 1.0

and 6.0 or higher frequencies as discussed below.

The cases of strong input Cµ = 2.0 × 10−3 with higher actuation frequencies such as

F+ = 6.0 and 10 are shown in Figs.??(b) and (c). In these cases, the trangient sequence

of a spatial growth ratio is almost similar to that of the case with F+ = 1.0 in the previous

paragraph. However, the gap of the initial PSD (at the leading edge: x/ch = 0%) between

the linear instability frequency and input frequency is much smaller than the F+ = 1.0

case: in other words, the initial PSD of linear instability frequency is further larger. For

example in the case with F+ = 6.0 (Fig.5.11(b)), the initial PSD of St = 40 of Fig.5.11(b)

is much larger than St = 27 of Fig.5.11(a) (this is close to the linear instability frequency

in the case with F+ = 1.0) at the leading edge. This is caused by the smaller gap of

frequencies between input and linear instability modes in the F+ = 6.0 case than the

F+ = 1.0 case. The smaller gap between the actuation frequency and linear instability

frequency results in the higher PSD of linear instability modes because the SJ introduces

not only the fluctuation with the actuation frequency F+ but also its harmonic modes.

For this reason, the initial PSD of linear instability frequency is much larger than the

case with F+ = 1.0, which contributes to the quick and smooth transition to the higher-

and lower-nonlinear growth regime. Therefore, the turbulent transition occurs in more

upstream position in the case with F+ = 6.0 and 10 than the F+ = 1.0 case, and

the size of a separation bubble becomes smaller. The other important fact is that the

enhancement of lower frequency mode would be enhanced by the actuation frequency

mode, i.e., F+ = 6.0 and 10, which promote the generation of large coherent vortex

structures in the downstream direction. Such coherent vortex structure is significant

in terms of chordwise momentum exchange as well as the turbulent vortex structure as

discussed in Sec.??. Therefore, the case without promotion of such lower frequency mode

cannot effectively suppress the separation, e.g., the F+ = 40 case of strong and weak

inputs although it directly introduces higher PSD of the linear instability frequency. The

St-x visualization in Fig.5.11(b) and (c) supports the present discussion more clearly,

where the higher PSD of the linear instability frequency appears at 0% ≤ x/ch ≤ 5% and

the discrete higher PSD region appears at the actuation frequency F+ and its harmonics.

In the controllable cases with a weak input: Cµ = 2.0 × 10−5, F+ = 6.0 and 10

(Figs.5.12(b) and (c)), the similar trend appears. In each cases, the fluctuation at linear
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instability frequencies St = 36 and 42 develops first, then the higher frequency (St = 70

and 80) and lower frequency (St = 6 and 10) begins developping in the downstream

direction. On the other hand, the amplitude of the fluctuation from the SJ is smaller in

these weak input cases than strong input cases. Therefore, the end of a linear growth

regime is located at more downstream position, where the longer distance is required for

the linear instability mode to sufficiently develop. This follows that the position of a

turbulent transition is located at more downstream and the size of a separation bubble

becomes larger than strong input cases. However, for example in the case with F+ = 1.0,

the fluctuation cannot develop suffciently so that the separated flow is not suppressed.

To summarize, the important points for the effective separation control are the smooth

and quick growth of higher and lower frequency modes, which contribute to the turbulent

transition and generating the coherent vortex structures. In order to enhance these higher

and lower nonlinear growth, the linear instability mode should be effectively developped

first. Therefore, when the fluctuation of linear instability frequency (St = 30 to 40) is

strongly introduced as a harmonics of actuation frequency, the turbulent transition more

quickly occurs and the size of a separation bubble becomes smaller. In the present cases,

it is more clearly observed in the case with F+ = 6.0 and 10 than F+ = 1.0; and the case

with a strong input Cµ = 2.0 × 10−3 than the weak input cases Cµ = 2.0 × 10−5. Note

that when the fluctuation of a linear instability frequency is directly introduced from the

SJ (e.g., the case with F+ = 40), the better capability cannot be achieved than lower

input frequency (e.g., F+ = 6.0 and 10) cases because of the lack of promoting lower

frequency mode.

5.5 Summary

In sumamry, the following three items are important for the better separation control:

a
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(a) Cµ = 2.0 × 10−3, F+ = 1.0 (b) Cµ = 2.0 × 10−3, F+ = 6.0

(c) Cµ = 2.0 × 10−3, F+ = 10

Fig. 5.10: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).
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(a) Cµ = 2.0 × 10−3, F+ = 1.0 (b) Cµ = 2.0 × 10−3, F+ = 6.0

(c) Cµ = 2.0 × 10−3, F+ = 10

Fig. 5.11: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).
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(a) Cµ = 2.0 × 10−5, F+ = 1.0 (b) Cµ = 2.0 × 10−5, F+ = 6.0

(c) Cµ = 2.0 × 10−5, F+ = 10

Fig. 5.12: Control off cases: spatial distributions of αi; black-to-white contour and red

contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 100).
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Chapter 6

Effects of spanwise fluctuations in

the induced flow

6.1 Outline

Recently, three-dimensional unsteady analyses are getting more and more significant with

regards to the physics of the separation control, focusing on turbulent structures. For

example, Okada et al. performed a large-eddy simulation (LES) on the separation control

over a backward facing step using a synthetic jet with a three-dimensional cavity [24]

. You and Moin also conducted LES [33] on the separation control around an airfoil;

the aerodynamic coefficients from the simulation corresponded well to those obtained

experimentally. They also reported that the key mechanisms of separation control in-

clude not only the modification of two-dimensional boundary layer profile by adding or

removing momentum in the freestream direction, but also three-dimensional turbulent

mixing. More quantitatively, our recent study has shown that the turbulent structure is

significant in terms of the momentum exchange based on Reynolds shear stress, and the

large vortex structure appearing in phase- and spanwise-averaged flow fields specifically

entrains the turbulent component of Reynolds shear stress [2] . Considering these results,

we have investigated the significance of three-dimensional turbulent structures induced

from the synthetic jet [3], where the synthetic jet was modeled by the deforming cavity

(Cavity model) and two-dimensional jet profile of the boundary condition (Bc model),

and the controlled flows were compared. The instantaneous and time-averaged flow fields
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of the Bc model are significantly different from those of the Cavity model, where the tur-

bulent transition occurs near the leading edge in the Cavity model, but near the trailing

edge in the Bc model. In this way, three-dimensional turbulent structures inside the

cavity is found important in terms of the turbulent transition in the controlled flow,

which contributes to an enhancement of turbulent mixing and improvement in aerody-

namic coefficients. Similar trend has been reported in the separation control using the

dielectric barrier discharge (DBD) plasma actuator where the body force is distributed

in a spanwise intermittent layout [15] . However, the key three-dimensional structure

(spanwise disturbance) in the induced flow and its spatial development interacting with

the turbulent boundary layer was not discussed in details.

In this study, the spatial growth of the spanwise disturbance induced by a synthetic

jet is investigated on separated-flow control around NACA0015 (Re=63, 000 and AOA =

12.0◦) using LES. The synthetic jet is installed at a leading edge which is numerically

modeled by a three-dimensional deforming cavity: “Cavity model”; and an artificial

jet profile for a boundary condition: “Bc model”. The jet profile of the Bc model is

sinusoidally oscillated in a spanwise direction with a wave number from kyin/2π = 0 to

95. Using these models, the following three topics are focused: 1) using the Cavity model,

the spanwise Fourier modes of the induced jet and their spatial growth in the controlled

flow field are investigated; 2) the aerodynamic performances are compared among the

Bc models with kyin/2π = 0 to 95; 3) the turbulent transition and the spatial growth of

spanwise Fourier modes are discussed when the spanwise disturbance of the Bc model is

based on the most amplified mode in the Cavity model.

6.2 Case description

The computational cases are arranged in Table 6.1. In this study, the momentum co-

efficient Cµ is set to 0.2% which is smaller than that used in the previous study [33] ;

the actuation frequency is set to F+ = 6.0; the synthetic jet is installed to the leading

edge. The actuation frequency F+ = 6.0 shows the better aerodynamic performances

compared to the other frequencies [3],[2] . The spanwise wave number kyin/2π is varied

for 0 ≤ kyin/2π ≤ 95.
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Table 6.1: Computational cases

Spanwise wave number (kyin/2π) Synthetic jet is modeled by

— deforming cavity

0 boundary condition

10 boundary condition

30 boundary condition

95 boundary condition
† Cµ is set to 2.0 × 10−3; synthetic jet is installed at the leading edge; actuation frequency is

set to F+ = 6.0.

6.3 Aerodynamic performances

Table 6.2 and Fig. 6.1 show the time-averaged aerodynamic coefficients for 20 ≤ tu∞/ch ≤
28. In Fig. 6.1, the black broken line shows the coefficients of Cavity model, and the

red one shows those of Bc model with spanwise wave number from kyin/2π = 0 to 95.

All the controlled cases attain the lift enhancement and drag reduction which indicate a

stall recovery. The two-dimensional Bc model (kyin/2π = 0) shows less CL and higher CD

than the Cavity model, and the resultant lift-drag ratio is worse than the Cavity model.

Similar trend has been reported in our previous study [3] although its two-dimensional

jet profile was assumed to be parabolic shape unlike the present study. Therefore, the

difference between parabolic and prescribed (using phase- and span-averaged jet profile

of the Cavity model) jet profile for Bc model without three-dimensional disturbances

would not significantly affect the qualitative trend in the aerodynamic performances in

the present flow conditions. On the other hand, all the cases with a three-dimensional

jet profile for Bc model (kyin/2π = 10, 30, and 95) show higher CL and lower CD than

the case with the two-dimensional jet profile, which indicates that the three-dimensional

(spanwise) disturbance enhances the aerodynamic performance as suggested in our previ-

ous study [3] . However, the trend of CL and CD variance is not monotonic with respect

to kyin in the Bc models; e.g., CD is most reduced at kyin/2π = 30, and CL is most

recovered at kyin/2π = 10. These results indicate that some optimal kyin would exist in

terms of higher CL and lower CD in the present flow condition and parameters of the

synthetic jet, which will be discussed in Sec.6.4.2 and 6.5.1 in detail.
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Table 6.2: Time averaged CL and CD values in 20 ≤ tu∞/ch ≤ 28. CDp and CDf indicate

the pressure and frictional drag, respectively.

CASE CL CD CL/CD CDp CDf

Off control 0.427 0.151 2.82 0.1435 0.007644

Cavity model 1.10 0.0669 16.4 0.05417 0.01272

Bc model (kyin/2π = 0) 1.03 0.0712 14.5 0.06039 0.01032

Bc model (kyin/2π = 10) 1.14 0.0674 17.1 0.05300 0.01375

Bc model (kyin/2π = 30) 1.06 0.0656 16.1 0.05334 0.01231

Bc model (kyin/2π = 95) 1.14 0.0680 16.8 0.05636 0.01162

(a) Lift coefficient CL (b) Drag coefficient CD

(c) Lift-drag ratio CL/CD

Fig. 6.1: Time average of aerodynamic coefficients.
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(a) Cavity model (b) kyin/2π = 0 (c) kyin/2π = 10

(d) kyin/2π = 30 (e) kyin/2π = 95

Fig. 6.2: Time-averaged chordwise velocity u/u∞ is shown for each model; the black

lines indicates the position of x/c = 0.0, 0.1, 0.2, . . . , 1.0.

6.4 Flow fields and mechanism of separation control

6.4.1 Instantaneous flow fields

Figure 6.3 shows the instantaneous flow fields of controlled cases with the Cavity and

Bc models. The isosurface is the second invariant of the velocity gradient tensor and is

colored by the vorticity in the chord direction. The contour plane normal to the span

direction shows the chordwise velocity u/u∞. In the Cavity model case and Bc model

cases with kyin/2π ≥ 10, a turbulent boundary layer with three-dimensional fine vortex

structures is developed over the airfoil. On the other hand, the two-dimensional Bc model

case (kyin/2π = 0) shows two-dimensional spanwise vortex structures near the leading

edge, where the turbulent transition is significantly delayed compared to other cases.

Additionally, in the case with kyin/2π = 30 (Fig. 6.3(d)), the coherent structures with

spanwise-oscillating structure strongly remains further downstream, where the turbulent

transition occurs more quickly than the other cases as will be shown in Figs. 6.5(b) and

(c).

6.4.2 Time-averaged flow fields

Figure 6.2 shows time-averaged chordwise velocity fields u/u∞, where the attached flows

are observed in all the controlled cases. Each figure includes a zoom view near the

leading edge, and a reversed region is observed in each case, which are more quantitatively
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(a) Cavity model (b) kyin/2π = 0 (c) kyin/2π = 10

(d) kyin/2π = 30 (e) kyin/2π = 95

Fig. 6.3: Instantaneous flow field: x-direction velocity contour; isosurfaces of second

invariant of velocity gradient tensor (colored by x vorticity).

illustrated in Fig.6.5(a). Figure 6.5(a) shows the reversed flow region where the vertical

axis indicates the wall-normal distance of its edge. The small separation bubble is formed

and turbulent transition occurs near the leading edge in the Cavity and Bc model cases

with three-dimensional disturbances kyin/2π = 10, 30, and 95 which are not observed in

two-dimensional input case: kyin/2π = 0. In three-dimensional input cases, such smaller

separation bubble would contribute to the reduction of the drag as seen in Table 6.2.

On the other hand, Figs. 6.5(b) and (c) show the spatial distribution of a turbulent

kinetic energy (TKE) and spanwise velocity fluctuation v′, respectively. Note that the

vertical axis of Figs.6.5(b) and (c) show the maximum value of TKE and v′, respectively,

along a grid line extended from the airfoil surface at certain x/c (horizontal axis value)

position. We call these plots TKE-max and v′-max lines, respectively. A turbulent

transition occurs most quickly and smoothly in the Bc model with kyin/2π = 30 in Figs.

6.5(b) and (c), which results in the smallest separation bubble observed in Fig.6.5(a).

Therefore, the quick and smooth turbulent transition near the leading edge resultantly

contribute to the reduction of the drag coefficient. However, the flow is separated near

the trailing edge earlier in the Bc model case with kyin/2π = 30 than the other cases:

kyin/2π = 10 and 95 as shown in Figs.6.5(a) and 6.2. This result indicates that although

the three-dimensional turbulent boundary layer (i.e., momentum exchange by a turbulent

mixing [2],[3]) is important to maintain the flow close to the airfoil surface, the case
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with a quick and smooth turbulent transition could not keep a strong mixing further

downstream, which would result in the earlier flow separation near the trailing edge. The

trend of the lift coefficient CL between each three-dimensional Bc model case corresponds

to that of the flow separation point near the trailing edge in Fig.6.5(a), where the CL

becomes the worst in kyin/2π = 30 case. Note that the turbulent mixing is quantitatively

evaluated by the −u′w′ component of a Reynolds shear stress in Fig.6.4, which contribute

to inducing a chordwise momentum from the freestream. According to Eq.(??), the

Reynolds shear stress, u′w′, can be decomposed [2] into overall phase component, ũw̃,

and overall turbulent component, u′′w′′: u′w′ = ũw̃ + u′′w′′.

(a) Cavity model (b) kyin/2π = 0 (c) kyin/2π = 10

(d) kyin/2π = 30 (e) kyin/2π = 95
Fig. 6.4: The turbulent component of the Reynolds shear stress −u′′w′′/u2

∞.

Overall, although the quick and smooth turbulent transition would contribute to

the reduction of the pressure drag owing to minimize the separation bubble near the

leading edge, the lift coefficient would be deteriorated due to the flow separation near

the trailing edge. Therefore, the Bc model case with kyin/2π = 30 does not show the best

performance in terms of the lift-to-drag ratio although it shows the smallest CD among

all the computational cases in Table 6.2. This indicates that the quick and smooth

turbulent transition would not always contribute to an enhancement of aerodynamic

coefficient in the present flow conditions and the synthetic jet parameters. Note that the

present results are all based on the controlled cases where the aerodynamic coefficients

between each model is not significantly different; accordingly more various synthetic jet

parameters, e.g., smaller input Cµ, should be examined to verify the present result on

the aerodynamic performances. Dispite this, the differences between each Bc model

are apparent concerning a turbulent transition and the size of the separation bubble
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resultantly; therefore, some optimal parameter would be expected to exist in the spanwise

wave-number input from a viewpoint of quick and smooth turbulent transition, which

may enhance the aerodynamic performances in more efficiently controlled cases, e.g.,

using smaller Cµ input. In the next section, we will investigate the spatial development

of spanwise disturbances in the controlled flows, which yields three-dimensional mixing

and directly contribute to the turbulent transition in three-dimensional Bc model case.

6.5 Spanwise disturbance

6.5.1 Spatial growth of a spanwise disturbance

The spanwise disturbance of the controlled flow field is investigated using a spanwise

Fourier transform of the turbulent fluctuation of the velocity: û′′
n, where un is the wall-

normal component of the velocity, and the hat indicates the spanwise Fourier mode in

the rest of this paper. Note that the value û′′
n corresponds to the amplitude of complex

Fourier mode: the energy of spanwise mode in u′′
n.

6.5.1.1 Overall spanwise Fourier modes

Figure 6.6 shows the overall (i.e., time-averaged) spanwise Fourier modes û′′
n. In Fig.6.6,

the spanwise (y-) axis indicates the spanwise wave number ky/2π; and the other axes (x

and z) show the physical coordinates defined in Fig.??. The filled contour visualizes the

PSD of the overall spanwise Fourier modes û′′
n on w′-max line, where the definition of

the w′-max line is similar to that of Figs.6.5(b) and (c).

In the Cavity model case (Fig.6.6(a)), a wide range of the wave number ky/2π is

introduced from the synthetic jet at the leading edge, but the modes of ky/2π = 20 to 30

are selectively amplified at x/c ≃ 5%, which is close to the edge of the separation bubble

in the time-averaged flow field shown in Fig.6.5(b). This implies that although the higher

wave number such as ky/2π ≥ 30 is introduced from the synthetic jet, they are shortly

damped as convecting in the separated shear layer near the leading edge (approximately

at 0.0% ≤ x/c ≤ 10.0%); at x ≥ 10.0%, the modes of ky/2π = 20 to 30 are immediately

amplified and it remains a peak value further downstream.

In each Bc model case (Figs.6.6(c)–(e)) except for the case with kyin/2π = 0, the
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(a) Reversed flow region

(b) Turbulent kinetic energy

(c) Spanwise velocity fluctuation v′

Fig. 6.5: Time-averaged flow fields: (a) shows the wall-normal distance of an inflection

point from the airfoil surface; (b) shows the turbulent kinetic energy; (c) shows the

spanwise velocity fluctuation v′.
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input wave number modes remains strong for 0% ≤ x/c ≤ 20%. In the Bc model case

with kyin/2π = 95 in Fig.6.6(e), the higher wave number modes ky/2π ≥ 90 are shortly

damped at 20% ≤ x/c although they are close to the input mode. On the other hand, the

lower modes (ky/2π ≃ 10) appears independently from the higher mode input, which are

gradually extended to higher modes and develop the similar distribution of the Cavity

model at 50% ≤ x/c, where the higher mode input is no longer dominant. Concerning

that the Bc model case with kyin/2π = 95 shows neither the quick nor smooth turbulent

transition (Sec.6.4.2) compared to the Cavity and other Bc models, such a higher wave-

number mode input does not amplify the spanwise disturbance encouraging the turbulent

transition in the present flow condition.

In the lower input-mode cases such as kyin/2π = 10 and 30, the strong input-mode

is maintained further downstream, i.e., even at x/c ≃ 40% in Figs.6.6(c) and (d). These

input modes would effectively enhance the modes around ky/2π = 20 to 30 at 50% ≤ x/c,

which is close to the primary mode observed in the Cavity model case. This implies

that the lower modes such as ky/2π = 10 and 30 can effectively enhance the spanwise

disturbances, which would contribute to the quick and smooth turbulent transition in the

present flow condition. In addition, characteristic harmonics of the input wave number

mode are strongly enhanced at x/c ≃ 20% in the Bc model case with kyin/2π = 30 in

Fig.6.6(c). Such harmonic modes support the existence of coherent structures observed

in the instantaneous flow field (Fig.6.3(c)), which cannot be clearly observed in other Bc

model cases.

6.5.2 Phase-averaged spanwise Fourier modes

Figure 6.7 shows the phase-averaged spanwise Fourier modes ⟨û′′
n⟩ on w′-max line. The

⟨•⟩ indicates the phase averaged value as introduced in Eq.(??). The phases φ/2π = 2/10,

4/10, and 6/10 correspond to the blowing phases; and φ/2π = 8/10 and 10/10 correspond

to the suction phases.

The Cavity model case (Fig.6.7(a)) introduces a wide range of wave number modes at

the blowing phase (blue dotted circle in Fig.6.7(a):φ/2π = 6/10) as was discussed on the

overall Fourier modes in Sec.6.5.1.1. The modes around ky/2π = 20 to 30 are selectively

amplified during convection and remain strong further downstream (blue dotted circle

in Fig.6.7(a):φ/2π = 10/10), where the turbulent boundary layer is developed. Note
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(e) Bc model with kyin/2π = 95

-4.0-20.0

Fig. 6.6: The overall (time-averaged) spanwise Fourier modes of the wall-normal velocity

fluctuation û′′
n are visualized.. (a) Cavity model; (b) Bc model (input mode is kyin/2π =

0); (c) Bc model (input mode is kyin/2π = 10); (d) Bc model (input mode is kyin/2π = 30);

(e) Bc model (input mode is kyin/2π = 95).
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that these modes are most amplified at x/c ≃ 10%, where the spanwise small vortex

structures are merged to generate a large vortex structure in phase- and span-averaged

fields, and turbulent transition takes place [2] .

In the Bc model cases with a three-dimensional spanwise disturbances (Figs.6.7(c)–

(e)), the input modes strongly appears during the blowing phases at φ/2π = 2/10, 4/10,

and 6/10. However, the input mode ky/2π = 95 in Fig.6.7(e) is damped at x/c ≃
20%, and another lower modes of ky/2π = 20 to 30 become dominant as discussed in

Sec.6.4.2. Similarly, in the Bc model cases with kyin/2π = 10 and 30, the dominant modes

are ky/2π = 20 to 30 in Fig.6.7(c) (shown in the blue dotted circle); moreover, these

dominant modes are specifically amplified and entrained by the spanwise large vortex

structures. This trend is similar to that of the turbulent component of the Reynolds

shear stress −⟨u′′w′′⟩ corresponding to the momentum mixing by turbulent structures,

which is considered to be one of the key mechanisms for separation control regarding

the momentum induction from the freestream as discussed in our previous work [2].

Therefore, the spatial growth of the spanwise disturbances on coherent spanwise vortex

structures would be important from the viepoint of both of turbulent transition and

turbulent mixing yielding a chordwise momentum exchange, which will be discussed in

the next subsection (Figs.6.8–6.11). Finally, the modes around ky/2π = 30 and its

harmonics are maintained strong in the Bc model case with kyin/2π = 30 (Figs. 6.7(b))

as discussed in Sec.6.4.2 on overall Fourier modes, which turns out to be convected by

spanwise vortex structures.

6.5.2.1 Convective growth of phase-averaged spanwise Fourier modes

Figures 6.8–6.11 show the convective growth of phase-averaged spanwise Fourier modes

⟨û′′
n⟩ in the spanwise vortex structures (Vortex 1, 2 and 3) detected in the phase- and

spanwise-averaged field at φ/2π = 1/10 in Figs 6.8(a)–6.11(a). These small spanwise

vortex structures are generated from the separated shear layer near the leading edge,

which is observed in the phase- and spanwise-averaged flow fields (discussed in the pre-

vious studies [2],[3] in detail). These vortex structures are convecting downstream, and

merged to generate larger vortex structures whose period corresponds to the actuation

frequency (St = 6.0(= F+) in the present the condition). The convective growth of

phase-averaged spanwise Fourier modes is observed by plotting ⟨û′′
n⟩ on each vortex
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φ/2π=2/10                                                    φ/2π=4/10                                                 φ/2π=6/10                                                    φ/2π=8/10                                                   φ/2π=10/10

(a) Cavity model

φ/2π=2/10                                                    φ/2π=4/10                                                 φ/2π=6/10                                                    φ/2π=8/10                                                   φ/2π=10/10

(b) Bc model (input mode is kyin/2π = 0)

φ/2π=2/10                                                    φ/2π=4/10                                                 φ/2π=6/10                                                    φ/2π=8/10                                                   φ/2π=10/10

(c) Bc model (input mode is kyin/2π = 10)

φ/2π=2/10                                                    φ/2π=4/10                                                 φ/2π=6/10                                                    φ/2π=8/10                                                   φ/2π=10/10

(d) Bc model (input mode is kyin/2π = 30)

φ/2π=2/10                                                    φ/2π=4/10                                                 φ/2π=6/10                                                    φ/2π=8/10                                                   φ/2π=10/10

(e) Bc model (input mode is kyin/2π = 95)

-4.0-20.0

Fig. 6.7: Phase-averaged spanwise Fourier modes of the wall-normal velocity fluctuation

⟨û′′
n⟩ are visualized for φ/2π = 1/10, 2/10, . . . , 10/10; The black contour line shows the

second invariant of the velocity gradient tensor at each phase. (a) Cavity model; (b) Bc

model (input mode is kyin/2π = 0); (b) Bc model (input mode is kyin/2π = 10); (c) Bc

model (input mode is kyin/2π = 30); (d) Bc model (input mode is kyin/2π = 95).
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structures in Figs.6.8–6.11. The points in each plot correspond to the ⟨û′′
n⟩ on spanwise

vortex structures (Vortex 1, 2, and 3) at each phase. The location of each vortex is first

detected by a local maximum of the second invariant of velocity gradient tensor, and

the pathline of each vortex centroid is computed using the phase- and span- averaged

flow fields for 1/20 ≤ φ/2π ≤ 60/20, i.e., 3 cycles. In terms of the linear stability the-

ory [?][?] , secondary instability mode based on the spanwise vortex structure is expected

to yield the optimal growth of spanwise distubance modes which would result in quick

and smooth turbulent transition.

In the Cavity model, the spatial distribution does not show significant difference

between each mode (shown in Fig.6.8(b)–(d)), where both of ky/2π = 10, 20, 30, and

90 modes show qualitatively similar profiles. The growth rates (β := Dφ log[⟨û′′
n⟩) also

show qualitatively similar results for ky/2π = 10 to 90 (shown in Fig.6.8(b)–(d)). This

implies that the selectively amplified mode cannot be clarified assuming the exponential

growth along the vortex convection in the framework of linear stability theory in the

present flow condition. The reason is that a wide range of strong spanwise disturbances

are introduced from the synthetic jet using the present parameters, where the nonlinear

effect cannot be neglected during the convection. The mode of ky/2π = 30 strongly

remains further downstream compared to the other modes on both of the Vortex 1 and

2 (Fig.6.8(b) and (c)) as discussed in Sec. 6.5.1.1 and 6.5.2. In the Bc model case with

kyin/2π = 10 in Fig.6.9(b)–(d), the input mode of ky/2π = 10 is dominant at x/c ≤ 10%

in all vortices, but the mode of ky/2π = 20 exceed ky/2π = 10 at x/c ≤ 15% on the

Vortex 3. Similarly, in the Bc model case with kyin/2π = 95 in Fig.6.11(b)–(d), the lower

modes such as ky/2π = 10–30 exceed the input mode ky/2π ≃ 90 at x/c ≃ 20%. On the

other hand, in Fig.6.10(b)–(d), the case with kyin/2π = 30 shows that the input mode

of ky/2π = 30 remains strong further downstream although its growth rate shows the

similar profiles to other modes ky/2π = 10, 20, and 90 in Fig.6.10(e)–(g).

6.6 Summary

The spatial growth of the spanwise disturbance induced by a synthetic jet is investigated

on separated-flow control around NACA0015 (Re=63, 000 and AOA = 12.0◦) using LES.

The synthetic jet is installed at the leading edge and actuated with nondimensional fre-
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(a) Vortex 1, 2, and 3 on phase-averaged field (left)

and instantaneous field (right) at φ/2π = 1/10

(b) ⟨û′′
n⟩ on Vortex 1 (c) ⟨û′′

n⟩ on Vortex 2 (d) ⟨û′′
n⟩ on Vortex 3

(e) β on Vortex 1 (f) β on Vortex 2 (g) β on Vortex 3

Fig. 6.8: The convective growth of ⟨û′′
n⟩ on the Vortex 1,2 and 3 in Cavity model. The

spatial growth rate β := Dφ log[⟨û′′
n⟩] is also shown for each spanwise wave number.
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(a) Vortex 1, 2, and 3 on phase-averaged field (left)

and instantaneous field (right) at φ/2π = 1/10

(b) ⟨û′′
n⟩ on Vortex 1 (c) ⟨û′′

n⟩ on Vortex 2 (d) ⟨û′′
n⟩ on Vortex 3

(e) β on Vortex 1 (f) β on Vortex 2 (g) β on Vortex 3

Fig. 6.9: The convective growth of ⟨û′′
n⟩ on the Vortex 1,2 and 3 in the Bc model with

kyin/2π = 10. The spatial growth rate β := Dφ log[⟨û′′
n⟩] is also shown for each spanwise

wave number.
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(a) Vortex 1, 2, and 3 on phase-averaged field (left)

and instantaneous field (right) at φ/2π = 1/10

(b) ⟨û′′
n⟩ on Vortex 1 (c) ⟨û′′

n⟩ on Vortex 2 (d) ⟨û′′
n⟩ on Vortex 3

(e) β on Vortex 1 (f) β on Vortex 2 (g) β on Vortex 3

Fig. 6.10: The convective growth of ⟨û′′
n⟩ on the Vortex 1,2 and 3 in the Bc model with

kyin/2π = 30. The spatial growth rate β := Dφ log[⟨û′′
n⟩] is also shown for each spanwise

wave number.
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(a) Vortex 1, 2, and 3 on phase-averaged field (left)

and instantaneous field (right) at φ/2π = 1/10

(b) ⟨û′′
n⟩ on Vortex 1 (c) ⟨û′′

n⟩ on Vortex 2 (d) ⟨û′′
n⟩ on Vortex 3

(e) β on Vortex 1 (f) β on Vortex 2 (g) β on Vortex 3

Fig. 6.11: The convective growth of ⟨û′′
n⟩ on the Vortex 1,2 and 3 in the Bc model with

kyin/2π = 95. The spatial growth rate β := Dφ log[⟨û′′
n⟩] is also shown for each spanwise

wave number.
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quency F+ = 6.0, which has been revealed to be an optimal input frequency in terms of

lift-to-drag ratio in the previous study [2] . The jet profile of the Bc model is constructed

from the phase- and spanwise-averaged jet profile obtained by LES of the synthetic jet [2]

(i.e., Cavity model) with its amplitude being sinusoidally oscillated in a spanwise direc-

tion: the artificial spanwise oscillation of the jet profile in the Bc model is chosen to be

kyin = 0, 10, 30, and 95. LES of the airfoil-flow control was carried out using these Bc

models, and the following items are found in this study: 1) in the Cavity model case,

the spanwise disturbance modes around ky/2π = 30 are selectively amplified near the

synthetic jet, which remains strong in the turbulent boundary layer; 2) in the Bc model

cases, the cases for kyin/2π > 0 (i.e., three-dimensional input cases) show higher aerody-

namic performance than the two-dimensional input case (i.e., without artificial spanwise

disturbances: kyin/2π = 0); 3) in the Bc model cases, the most quick and smooth tur-

bulent transition is observed in the case with kyin/2π = 30, where the coherent spanwise

structure strongly remains in the turbulent boundary layer although its aerodynamic

performance is not the best, which indicates that in the present condition, the spanwise

disturbance of the jet profile does not always contribute to the higher aerodynamic per-

formance even if it provides quick and smooth turbulent transition. 4) the mechanism

of the strongly remaining mode (ky/2π = 30) in the Cavity model cannot be clarified

assuming the exponential growth along the vortex convection based on the secondary in-

stability mode, because strong nonlinear interaction of the spanwise disturbances would

take place in the present flow condition and input parameters of the synthetic jet. The

last item is expected to be verified by examining the smaller input parameters of the

synthetic jet (i.e., smaller Cµ), where the difference of the aerodynamic performances

would be clearly observed for Bc model cases with various spanwise disturbances.
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Chapter 7

General mechanism on a separation

control using micro devices

7.1 Outline

7.2 Case description

The computational cases for separation control using the SJ and PA are described in

Table 7.1.

Table 7.1: Computational cases. SJ and PA are installed at the leading edge of the

airfoil.

case name input momentum (Cµ) F+

strong input (SJ) 2.00 × 10−3 1.0, 6.0, 10, 15, 20, 30

strong input (PA) 2.00 × 10−3 1.0, 6.0, 10, 15, 20, 30

weak input (SJ) 2.00 × 10−5 1.0, 6.0, 10, 15, 20, 30

weak input (PA) 5.15 × 10−5 1.0, 6.0, 10, 15, 20, 30

The computational results of the SJ are the same with those discussed in Sec.??.

In order to compare the capabilities of the SJ and PA, both of the strong and weak

input momentum cases are taken. Note that the weak Cµ values are different for SJ

and PA (Cµ = 2.00 × 10−5 for SJ; and Cµ = 5.15 × 10−5 for PA) because the case
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with Cµ = 2.00 × 10−5 cannot control the separation using the PA, and the case with

Cµ = 5.15×10−5 would be close to the minimum input controllable case. Such a difference

in the PA and SJ would be caused by the definitions of Cµ, which is defined using the

maximum velocity at the orifice exit for the SJ and spatial integral of the time-averaged

body force for the PA. The detail of the differences of input fluctuations are discussed in

the next section.

7.3 Differences of fluctuations input from the SJ and

PA

The time average of an induced flow by the PA is in the direction from the exposed

to covered [5]. On the other hand, the time-averaged (net) input momentum from the

SJ should be zero because the blowing and suction phases periodically occur. In this

chapter, Cµ is adopted as the criteria for the strength of input momentum by each

devices, which has conventionally used. Although the definitions of Cµ are not strictly

the same for the SJ and PA, it would not affect the present discussion on the separation

control mechanism. Another possibility of the criteria for the strength of an input is the

net energy, which is not focused in this chapter. In this section, the following viewpoints

are taken for the comparison of input fluctuation from the SJ and PA:

A. Existence of direct momentum addition (wall-tangential component) from the in-

duced flow

B. Locality of the induced flow

C. Fluctuation in spanwise direction (three-dimensional structure in the induced flow)

D. Timewise fluctuation of the induced flow

A. Existence of direct momentum addition (wall-tangential com-

ponent) from the induced flow

Figure 7.1 show the phase- and spanwise-averaged velocity component at the orifice exit,

where ujet is in the wall-normal (normal to the orifice exit) component and wjet is in
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the wall-tangential (along the orifice exit) component. The notations of u and w follow

those used for the flows around the airfoil so that the negative value for the ujet indicates

the blowing phase. The horizontal axis xorifice shows the coordinate along the orifice exit

plane (see the red line in Fig.7.1(d)), which is on the orifice section at the half depth. The

blowing phase (ϕ = π/2) is illustrated by solid lines, and the suction phase (ϕ = 3π/2) is

by the broken lines, where the results of four types of the Cµ are shown. The actuation

frequency F+ is fixed to 6 (the other frequencies show the similar features explained

below).

All the different input momentum cases show that wjet (wall-tangential component)

is approximately 10% so that ujet (wall-normal component) is dominant in the input

fluctuation. In these cases, the three cases (Cµ = 2.0× 10−3, 2.0× 10−4, and 2.0× 10−5)

can supress the separation. Note that wjet and ujet show asymmetric profiles with respect

to the center of the orifice (xorifice = 0) at the suction phase. This is caused by the external

flow passing across the orifice exit, where the internal flow is entrained in the downstream

direction (xorifice > 0). When the SJ is located in the quisent flow, the profiles should be

symmetric [24] and the wall-tangential flow component should be ideally zero, but in the

present separation controlled case, the internal flow is slightly affected by the external

flow.

On the other hand, the induced flow by PA has large component of wall-tangential

flow so that the momentum in the freestream direction more directly introduced from PA

than SJ, which is one of the important mechanism of the separation control using strong

input fluctuation. The difference of the control capability caused by this difference would

arise at the case with strong input momentum (large Cµ).

B. Locality of the induced flow

Figure 7.2 shows the PSD of the wall-normal fluctuation near the leading edge in the

separation control using a weak input with F+ = 6.0. The PSD is taken on the TKE-max

line (see Sec.??) for each x/ch. The PSD of the SJ and PA commonly show the peak at

the actuation frequency F+ = 6.0 and its harmonics near the leading edge. On the other

hand, the PSD of St = 6.0 of the actuation frequency is approximately 10 times larger

in the SJ than PA although the momentum coefficients (Cµ) are set to almost the same

value (Cµ = 2.00×10−5 for SJ; Cµ = 5.15×10−5 for PA). This indicates that the velocity
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(a) Phase diagram

(b) Wall-normal velocity (c) Wall-tangential velocity

(d) Vortex structures inside the cavity

(Cµ = 2.0 × 10−3, F+ = 6.0)

Fig. 7.1: Phase-averaged velocity profile inside the orifice of SJ. Solid/broken lines show

the blowing (ϕ = π/2) /suction (ϕ = 3π/2) phases, respectively: (a) wall-normal velocity;

(b) wall-tangential velocity; (d) instantaneous vortex structures inside the cavity.
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of the induced flow at the referened point is different although the input momentum is

almost the same order because the present PSD shows the wall-normal component of the

fluctuation.

Figure 7.3 shows the spatial profile of time- and spanwise-averaged induced flow by

PA and SJ. The induced flow of SJ is evaluated from the flow field inside the orifice in the

separatin controlled cases, where the r.m.s is taken for the wall-normal component (wjet)

at the half depth of the orifice. Note that for the consiseness, the vertical axis of Fig.7.3

is the coordinate along the orifice exit plane (xjet in Fig.7.1(a) and (b)) for the profile of

SJ fluctuation. The induced flow of PA is computed in the quisent flow [5] because the

induced flow of PA cannot be easily evaluated in the separation controlled flow. For the

profile of PA fluctuation, the vertical axis of Fig.7.3 is the coordinate in the wall-normal

direction. Each profiles in Fig.7.3 (solid lines show the SJ; dotted lines show the PA) are

not exactly the same between SJ and PA, but it shows that the induced flow is locally

larger and more localized in the flucutation of SJ than that of PA. This trend for the

locality of the induced flow would be similarly expected in the separation controlled flow

using PA, which is shown in the schematic of the induced flow in Fig.7.4. In the present

flow/actuator conditions, the boundary layer covers the leading edge where the SJ and

PA is implemented. The thickness of the boundary layer is so small at the leading edge

that the SJ can more effectively introduce the fluctuation into the boundary layer than

PA. As a result, the introduced and developing fluctuation inside the boundary layer is

larger in the SJ than PA, which would affect the PSD in the separated shear layer as

shown in Fig.7.2.

However, the spatial profiles of induced flow by SJ can be changed by and based on

the orifice width, and the distance between the separated shear layer and the orifice exit

significantly depends on the flow condition (e.g., AoA) and the location of the SJ. There-

fore, the locality of the induced flow by SJ is not always superior to that by PA, which

should be carefully discussed in the different flow/actuator conditions. Additionally, the

difference of the locality of the induced flow would not be so large that the order of the

induced flow is different by 10 times between SJ and PA in Fig.7.2.
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(a) SJ,Cµ = 2.00 × 10−5, F+ = 6.0 (b) PA,Cµ = 5.15 × 10−5, F+ = 6.0

Fig. 7.2: PSD of wall-tangential velocity fluctuation near the airfoil surface in separation

control. The straight line with gray color shows Kolmogorov’s 5/3 law in each figure.

Fig. 7.3: Comparison of time-averaged velocity profiles of the fluctuation (wall-tangential

component for PA; wall-nomral component for SJ).

Fig. 7.4: Schematics of induced flow near the leading edge by SJ (left) and PA (right);

grey region shows a zoomed view of the leading edge of an airfoil; red arrows indicate

the induced flucuation; black dotted lines show separation streamlines.
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C. Fluctuation in spanwise direction (three-dimensional struc-

ture in the induced flow)

Figure 7.5 (a) show the turbulent component of the spanwise velocity inside the orifice for

the four controlled cases using the SJ (actuation frequency is fixed to F+ = 6.0). The solid

and dashed lines show the blowing and suction phases, respectively (ϕ = π/2 and 3π/2).

The stronger input momentum provides larger turbulent component of the spanwise

fluctuation inside the cavity, which indicates the strong three-dimensional structure of the

input fluctuation. Such an effect of input momentum coefficient on the three-dimensional

structure of the induced flow has been reported in the previous studies on the induced

flow from the SJ for the quisent condition [?], where the effect of the actuation frequency

has been also arranged. Figure 7.6 shows the instantaneous vortex structures inside the

cavity for three different Cµ at each phase ϕ/2π = 1/10 to 9/10, where the isosurface is

of the second invariant of the velocity gradient tensor colored by the chordwise vorticity.

These figures show the strong three-dimensional structure appear inside the cavity even

with the separation controlled cases in the present conditions.

φ

2ππ

D
ep

th
 o

f c
av

ity

Suction phaseBlowing phase

(a) Phase diagram

(b) Spanwise fluctuation

Fig. 7.5: Phase-averaged velocity profile inside the orifice of SJ. Solid/broken lines show

the blowing (ϕ = π/2) /suction (ϕ = 3π/2) phases, respectively.
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  φ/2π  =   1/10                      3/10                         5/10                         7/10                           9/10         

(b) Cµ = 2.0 × 10−3, F+ = 6.0

(c) Cµ = 5.0 × 10−5, F+ = 6.0

(d) Cµ = 2.0 × 10−5, F+ = 6.0

Fig. 7.6: Instantaneous vortex structure inside the cavity for three different Cµ with

F+ = 6.0.

On the other hand, the body force model for the PA adopts the spanwise uniform (two-

dimensional) profiles so that the three-dimensional flow structure would not be generated

in the present study. Note that the three-dimensionality of the body force (spanwise

fluctuation) is recently reported by several researchers, which would not significantlly

affect the three-dimensional structures of the induced flow[?]. For these observation,

the differences for the SJ and PA arise in the spanwise fluctuation (three-dimensional

structure of the induced flow) when the input momentum coefficient Cµ is strong, which

would affect the quickness and smoothness of turbulent transition inside the separated

shear layer near the leading edge. The cases with weak input momentum (Cµ = O(10−5)

in the present condition) do not show the strong spanwise fluctuation even in the SJ,

therefore the induced flow from the SJ and PA do not show significant differences.

D. Timewise fluctuation of the induced flow

In the PSD of the wall-normal fluctuation (Fig.7.2), the PSD of high frequency modes at

St ≃ 100 is larger in PA than SJ near the leading edge, where the fluctuation of induced

flow directly affects its profile. Therefore, the difference between SJ and PA in such
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high frequency domain is caused by the timewise fluctuation of the induced flow. The

actuation frequency F+ = 6.0 is common for each devices so that the PSD of St = 6.0

and its harmonics are discretely enhanced even in the downstream direction. On the

other hand, only the PA contains the higher (St ≥ 100) frequencies in the induced flow

because of the base frequency of AC input vortage. Figures ??(a) and (b) clearly show

the differences in the history of input fluctuations. Similar trend in the large amplitude

of higher frequency fluctuation (St ≥ 100) has been reported in the previous studies for

the PA [27][5], where the operation using the burst mode (duty cycle) is adopted.

In order to clarify the effect of base frequency in the PA operation, the following

computations are additionally conducted for the SJ in the quisent flow. The geometry

of the SJ is the same as that in the previous section in this thesis. Figure 7.7 shows the

PSD of burst and normal actuation using SJ in the quisent flow. The PSD is taken at the

center of the orifice exit for the wall-normal component of the flow velocity. The result

clearly shows that the PSD of higher frequencies (St ≃ 100) is largely enhanced in the

burst actuation case than the normal case. This indicates that the burst actuation can

introduce the higher frequency fluctuation of the base frequency in the induced flow.

Such a higher frequency mode can affect the nonlinear growth regime in the separation

controlled cases (see Sec.??). On the other hand, the variation of the base frequency do

not so much affect the capability of the separation control using the burst actuation of

PA [28], whereas the differences from the normal actuation case without such higher

frequency fluctuation (such as the present SJ operation) are not well discussed.

Fig. 7.7: PSD of wall-tangential velocity fluctuation near the airfoil surface in separation

control. The straight line with gray color shows Kolmogorov’s 5/3 law in each figure.
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7.4 Comparison of the capabilities for separation con-

trol

7.4.1 Time-averaged aerodynamic coefficients

In this section, the capabillities of the SJ and PA are compared in terms of time-averaged

aerodynamic coefficients. Figure 7.8 show time-averaged aerodynamic coefficients, where

the horizontal axis indicates the actuation frequency F+, and the vertical axis shows

each time-averaged coefficients using the SJ and PA. Red, blue, and black lines show

the strong, weak, and off controlled cases; and the solid and dashed lines show the SJ

and PA result, respectively. The capabilities of the sepation control is evaluated based

on the time-averaged lift-drag ratio throughout this chapter. In both of the SJ and PA,

the lift-drag ratio is the most recovered at 6 ≤ St ≤ 20 for either strong or weak input

momentum, therefore the optimal frequency for the separation control in the present

flow condition would be localized commonly for each devices. In order to discuss the

mechanism of the locality of the optimal actuation frequency, the controlled flow fields

of F+ = 1.0 and 6.0 are mainly focused on in each devices hereafter.

In the cases with a weak input (Cµ = 2.00 × 10−5 for SJ; Cµ = 5.15 × 10−5 for

PA), the lift-drag ratio of PA is lower than that of PA in the F+ = 6.0, 10, and 15

cases. Specifically, the case with F+ = 20 can suppress the separation only when the

SJ is adopted. In this way, in the cases with a weak input momentum, the SJ achieves

slightly better control capabilities for the wide range of F+ although the Cµ value of PA

is approximately two times larger than that of SJ. Such a difference would be partially

caused by the locality of the induced flow described in Sec.?? (B. Locality of). That

is, the energy of input fluctuation (e.g., wall-normal fluctuation) introduced from the

devices into the separated shear layer is larger in SJ than PA, which causes the turbulent

transition in more upstream position and thus the size of the separation bubble is kept

smaller (see the red lines in Fig.??). Note that in the case with F+ = 1.0 (both devices

cannot suppress the separation), the lift-drag ratio, lift, and drag coefficients are better

in PA than SJ. This would be related to the existence of the higher frequency fluctuations

in the induced flows (see D. Timewise fluctuation of the induced flow in Sec.??), which

will be discussed in Sec.?? in detail. On the other hand, in the cases with a strong input
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(Cµ = 2.00×10−3 for SJ and PA), the lift-drag ratio of PA is better than that of SJ in each

actuation frequencies. This would be caused by the difference of the direct momentum

addition in the induced flow (see A. in Sec.??), where the PA can more directly introduce

the momentum in the freestream direction. The effect of direct momentum addition is

thought to be more significant than the other effects such as three-dimensional structure

of the induced flow (See C. in Sec.??) and locality of the induced flow (B. in Sec.??) in

the present condition. This is because the turbulent transition occurs at more upstream

in the case of SJ than PA, which affects the size of the separation bubble (see blue lines

in Fig.??).

(a) CL (b) CD

(c) CL/CD

Fig. 7.8: Aerodynamic coefficients arranged by F+. Blue and red solid lines show SJ

results of Cµ = 2.0× 10−3 and 2.0× 10−5; blue and red dashed lines indicates PA results

of Cµ = 2.0 × 10−3 and 5.15 × 10−5, respectively.
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7.4.2 Controlled flows

Figure7.9 shows the time- and spanwise averaged flows of the chordwise velocity com-

ponent u/u∞ in the cases with F+ = 1.0 and 6.0. In the strong input cases (Fig.7.9

(a)–(d)), attached flows are obtained using both of the SJ and PA. The separation bub-

bles are generated near the leading edge in the cases with both devices, where the size

of the separation bubble is smaller in F+ = 6.0 than 1.0. Such a trend in the size of the

separation bubble is more clearly observed in the reversed flow region shown in Fig.7.10.

On the other hand, in Fig.7.10, the size of the separation bubble becomes smaller in the

cases with SJ than PA for each actuation conditions. This difference between each de-

vices will be precisely discussed in the context of a turbulent transition in the separated

shear layer in the next subsection.

Figure ?? shows the instantaneous flow fields, where the isosurfaces are a second

invariant of the velocity gradient tensor colored by the chordwise vorticity. In each cases,

the two-dimensional (spanwise uniform) vortex structures are emitted from the separated

shear layer, which shedding downstream with a three-dimensional fluctuation. When the

flow is controlled (except for the cases with F+ = 1.0 of a weak input for SJ and PA), the

both devices achieve the separation controlled flow with a laminer separation bubble and

turbulent boundary layer is developed over the airfoil surface. In the case with a strong

input, the SJ introduces three-dimensional fluctuation near the leading edge while the

PA only introduce the two-dimensional fluctuation, which is discussed in B. in Sec.??.

7.4.3 Decomposition of turbulent statistics by the phase-averaging

procedure

Figure 7.12 shows the periodic and nonperiodic (turbulent) components of the Reynolds

shear stress: u′w′ = ũw̃ + u′′w′′. The left column shows the overall component of u′w′,

middle and right column shows the phase and turbulent components of ũw̃ and u′′w′′. All

the cases using PA show that the turbulent component u′′w′′ is dominant and turbulent

vortex structures mainly contribute to an exchange of the chordwise-momentum. This

is similar to the cases using SJ as discussed in Sec.?? (see Fig.4.18). On the other hand,

the slight difference appears for the SJ and PA cases in terms of the periodic component

of the Reynolds shear stress. For example, the strong input case (Cµ = 2.0× 10−3) with
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(a) Cµ = 2.00 × 10−3, F+ = 1.0 (SJ) (b) Cµ = 2.00 × 10−3, F+ = 1.0 (PA)

(c) Cµ = 2.00 × 10−3, F+ = 6.0 (SJ) (d) Cµ = 2.00 × 10−3, F+ = 6.0 (PA)

(e) Cµ = 2.00 × 10−5, F+ = 1.0 (SJ) (f) Cµ = 5.15 × 10−5, F+ = 1.0 (PA)

(g) Cµ = 2.00 × 10−5, F+ = 6.0 (SJ) (h) Cµ = 5.15 × 10−5, F+ = 6.0 (PA)

Fig. 7.9: Time averaged fields of u/u∞ for 0.0 to 1.5.
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(a) F+ = 1.0

(b) F+ = 6.0
Fig. 7.10: Reversed flow region near the leading edge: red lines show the case with

Cµ = 2.0×10−3; blue lines show the case with Cµ = 2.0×10−5 for SJ and Cµ = 5.15×10−5

for PA.

Fig. 7.11: Instantaneous flow field: contour plane is colored by chordwise velocity u/u∞

for 0.0 to 1.5 ; isosurfaces is the second invariant of the velocity gradient tensor (colored

by chordwise vorticity).
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F+ = 1.0 and 6.0 using the PA (Figs.7.12(a) and (b)) shows stronger periodic component

at x/ch ≃ 0.5 compared to the case using the SJ (Figs.4.18(a) and (b)). This is caused

by the absense of the three-dimensional (spanwise-nonuniform) fluctuations introduced

from the PA (see Sec.??: C.). Therefore, the two-dimensional vortex structure strongly

remains farther in the case using the PA than SJ for these strong input cases, which

would be related to the strength of the coherent vortex generated on the airfoil surface

and the flow separation point near the trailing edge as discussed in Sec.?? (see Fig.??).

In the controllable and weak input momentum case (Cµ = 5.15 × 10−5 with F+ = 6.0:

Fig.7.12(d)), the periodic component does not so much strongly appear that the turbulent

component of the Reynolds shear stress is dominant similarlly to the case using the SJ

(see Fig.4.18(d)). Therefore, totally speaking, an exchange of the chordwise momentum

is mainly achived by the turbulent vortex structures regardless of devices in the present

flow/actuator conditions although slight difference appears in the strength of periodic

component when the input momenum is strong.
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(c) Cµ = 5.15 × 10−5, F+ = 1.0 (PA)
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(d) Cµ = 5.15 × 10−5, F+ = 6.0 (PA)

Fig. 7.12: Spatial distribution of Reynolds shear stress −u′w′/u2
∞. Reynolds shear stress

is decomposed into periodic and turbulent (nonperiodic) components.
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7.4.4 Coherent vortex structures and chordwise momentum ex-

change in phase-averaged flow fields

The following decomposition is conducted for the Reynolds shear stress at each phase

angle (the phase angle was illustrated in Fig.4.10):

⟨u′w′⟩ϕ = ⟨ũw̃⟩ϕ + ⟨u′′w′′⟩ϕ. (7.1)

Note that spanwise averaging procedure is also conducted but the symbol for this oper-

ation is omitted for the brevity. The detail of the computation of each Reynolds stress

is explained in Sec.??. In Figs.7.13–??, the decomposition of the Reynolds shear stress

is shown for the PA cases. The similar contours are shown in Figs.4.21–4.26 for the

SJ cases. The black contour lines indicate the second invariant of the velocity gradi-

ent tensor, which corresponds to vortex structures with its axis along the spanwise (y)

direction.

Similar to the cases using the SJ discussed in Sec.??, the 1) coherent vortex structures

apper in the controllable cases with the period corresponding to the actuation frequency

F+. In addition, the 3) turbulent component of the Reynolds shear stress is dominant

almost all over the airfoil surface, which is entrained by the coherent vortex structure con-

vecting downstream. On the other hand, in the strong input cases, the 2) periodic com-

ponent of the Reynolds shear stress appears more strongly than the cases using SJ (e.g.,

comparing Fig.4.21(a) and Fig.7.13(a) for the F+ = 1.0 actuation). This is caused by the

spanwise-uniform fluctuation introduced by the PA as discussed in the previous section.

The strength of such coherent vortex would affect the entrainment of turbulent compo-

nent of the Reynolds shear stress, e.g., the turbulent components around coherent vortex

in Fig.7.13(c) and Fig.7.14(c) are stronger than those in Fig.4.21(c) and Fig.4.22(c). This

would contribute to the larger exchange of the chordwise momentum in these strong in-

put cases using PA, thus the aerodynamic performances are better in the PA than SJ

(see blue lines in Fig.??). On the other hand, in the weak input/controllable cases, the

difference does not significantly appear in the periodic component of the Reynolds shear

stress and therefore the entrainment of the turbulent component around coherent vortex

(see Fig.4.25(c) and Fig.??(c)). However, the distribution of turbulent component more

widely spreads at x/ch ≥ 0.5 for farther from the airfoil surface in the PA than SJ (see

Fig.4.25(c) and Fig.??(c)). This would be caused by the higher input frequency discussed
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in Sec.??: D., which is the base frequnecy and burst modulation of the PA. The fluc-

tuations of such higher frequencies can promote the turbulent transition and generate

finer vortex structures compared to the case using the SJ, which will be more precisely

discussed in the next section.

In summary, the mechanism of an exchange of the chordwise momentum based on

the unsteady flow motion is almost the same between the SJ and PA cases, where the

turbulent component of the Reynolds shear stress is dominant and entrained by large

coherent vortex further downstream. On the other hand, in the strong input cases, the

periodic component of the Reynolds stress and entrainment of turbulent component is

slightly larger in PA than SJ due to spanwise-uniform fluctuation introduced from the

PA.

1/10

3/10

5/10

7/10

9/10

(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 7.13: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

1.0 case using the PA

7.5 Spatial development of the disturbances near the

leading edge

In this section, the spatial growth rate of the wall-normal fluctuation is discussed by

comparing the SJ and PA results. All the results of the SJ are the same in Sec.??.

111
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7/10
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(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 7.14: Coherent vortex structures and Reynolds shear stress: Cµ = 2.0× 10−3, F+ =

6.0 case using the PA
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(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 7.15: Coherent vortex structures and Reynolds shear stress: Cµ = 5.15×10−5, F+ =

1.0 case using the PA
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(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 7.16: Coherent vortex structures and Reynolds shear stress: Cµ = 5.15×10−5, F+ =

6.0 case using the PA

7.5.1 Controllable cases

First, the two controllable cases with a strong input are discussed for each devices (Cµ =

2.0 × 10−3 with F+ = 1.0 and 10). Figure 7.17 shows the comparison of sptial growth

rate αi for LST and LES results. The details are explained in Sec.??. In the case with

F+ = 1.0 using the PA, the LST and LES data show good agreement at x/ch = 5%

in terms of the most unstable frequency St ≃ 35. At x/ch = 6%, the linear instability

frequency is St ≃ 30 (red solid line), but the higher frequency modes St ≥ 60 also shows

comparable growth rate. At x/ch = 7%, the growth rate of lower frequencies is larger

than that of the linear instability frequency. The transient sequence of spatial growth rate

estimated by LST and LES data is similar to that discussed in Sec.?? for the SJ, where

linear, higher- and lower-nonlinear growth regimes appear. Similar trend is observed in

the case with F+ = 10 in Fig.7.17(c) and (d). On the other hand, the spatial growth rate

of the case with F+ = 10 is larger in PA than SJ ( Fig.7.17(c) and (d)); and the spatial

growth rate estimated by the LES data (black dots) are oscillating in the frequency (St)

direction. This would be caused by the higher frequency modes introduced by the PA

due to the burst actuation with higher base frequency. Figures 7.18 show the spatial

growth rate αi on a St-x plane for 0.0 ≤ x/ch ≤ 0.2. In this plot, the transient sequence

of linear to nonlinear growth regime can be more clearly observed. In addition, it is also

shown that the growth rate of the PA is larger than that of SJ in both of the LST and

LES-data estimation.
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(a) Cµ = 2.0 × 10−3, F+ = 1.0, SJ
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(b) Cµ = 2.0 × 10−3, F+ = 1.0, PA
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(c) Cµ = 2.0 × 10−3, F+ = 10, SJ
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(d) Cµ = 2.0 × 10−3, F+ = 10, PA

Fig. 7.17: Controlled cases with a strong input momentum (Cµ = 2.0×10−3): top figure

shows time-averaged u/u∞; bottom figures show the spatial growth rate αi estimated by

LST and FFT analysis for LES data.
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(a) Cµ = 2.0 × 10−3, F+ = 1.0, SJ (b) Cµ = 2.0 × 10−3, F+ = 1.0, PA

(c) Cµ = 2.0 × 10−3, F+ = 10, SJ (d) Cµ = 2.0 × 10−3, F+ = 10, PA

Fig. 7.18: Cµ = 2.0× 10−3 cases: spatial distributions of αi; black-to-white contour and

red contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 50).
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Second, the controllable cases with a weak input are discussed for each devices (Cµ =

2.0 × 10−5 for the SJ and Cµ = 5.15 × 10−5 for the PA with F+ = 6.0 and 10).
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(a) Cµ = 2.0 × 10−5, F+ = 6.0, SJ
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(b) Cµ = 5.15 × 10−5, F+ = 6.0, PA
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(c) Cµ = 2.0 × 10−5, F+ = 10, SJ
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(d) Cµ = 5.15 × 10−5, F+ = 10, PA

Fig. 7.19: Controlled cases with a strong input momentum (Cµ = 2.0×10−5): top figure

shows time-averaged u/u∞; bottom figures show the spatial growth rate αi estimated by

LST and FFT analysis for LES data.

7.5.2 Uncontrollable cases

7.6 Summary
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(a) Cµ = 2.0 × 10−5, F+ = 6.0, SJ (b) Cµ = 5.15 × 10−5, F+ = 6.0, PA

(c) Cµ = 2.0 × 10−5, F+ = 10, SJ (d) Cµ = 5.15 × 10−5, F+ = 10, PA

Fig. 7.20: Cµ = 2.0× 10−3 cases: spatial distributions of αi; black-to-white contour and

red contour lines show LES and LST results, respectively (0 ≤ −αi ≤ 50).
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Chapter 8

Concluding remarks

The computation of separation control around NACA0015 airfoil with a synthetic jet

(angle of attack is 12 [deg] and chord Reynolds number is 63,000) is conducted using 6th-

order compact scheme.The effect of actuation frequency and position of the synthetic

jet is arranged by varying the actuation frequency and position of the synthetic jet, and

the control performance is surveyed in terms of aerodynamic coefficients. The controlled

flow is investigated by time averaged fields, and the relation between separated regions on

the suction surface and aerodynamic coefficients is discussed. The significant turbulent

statistics is also extracted in terms of momentum addition in freestream direction by

the mixing, and the related vortex structure is detected by phase-averaging procedure

based on actuation frequency. The u′w′ component of Reynolds shear stress is especially

focused in this thesis, and turbulent component is mainly enhanced almost all over the

airfoil surface. In addition, two-dimensional vortex structure is extracted in phase and

span-averaged flow fields, and the Reynolds shear stress is found to be locally enhanced

between each vortex structure.
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[12] D. V. Gaitonde and M. R. Visbal. Padé-type higher-order boundary filters for the

navier-stokes equations. AIAA Journal, 38(11):2103–2112, 2000.

[13] A. Glezer and M. Amitay. Synthetic jets. Annual Review of Fluid Mechanics,

34:503–529, 2002.

[14] D. Greenblatt and I. J. Wygnanski. The control of flow separation by periodic

excitation. Progress in Aerospace Sciences, 36:487–545, 2000.

[15] I. Kaneda, S. Sekimoto, T. Nonomura, K. Asada, A. Oyama, and K. Fujii. An

effective three-dimensional layout of actuation body force for separation control.

International Journal of Aerospace Engineering, 2012, 2012.

[16] S. Kawai and K. Fujii. Compact scheme with filtering for large-eddy simulation of

transitional boundary layer. AIAA Journal, 46(3):690–700, March 2008.

[17] J. Kim and H. J. Sung. Wall pressure fluctuations and flow-induced noise in a

turbulent boundary layer over a bump. Journal of Fluid Mechanics, 558:79–102,

2006.

[18] S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal

of Computational Physics, 103(1):16–42, 1992.

[19] M. A. McVeigh, H. Nagib, T. Wood, and I. Wygnanski. Full-scale flight tests of active

flow control to reduce tiltrotor aircraft download. Journal of Aircraft, 48(3):786–796,

2011.

120



[20] R. B. Melville, S. A. Moiton, and D. P. Rizzetta. Implementation of a fully-implicit,

aeroelastic navier-stokes solver. In AIAA-1997-2039, 1997.

[21] H. Nishida and T. Nonomura. Adi-sgs scheme on ideal magnetohydrodynamics.

Journal of Computational Physics, 228:3182–3188, 2009.

[22] T. Nonomura, H. Aono, M. Sato, A. Yakeno, K. Okada, Y. Abe, and K. Fujii. Con-

trol mechanism of plasma actuator for separated flow around naca0015 at reynolds

number 63,000 -separation bubble related mechanisms-. In AIAA 2013-0853, 2013.

[23] K. Okada, T. Nonomura, K. Fujii, and K. Miyaji. Computational analysis of vor-

tex structures induced by a synthetic jet to control separated flows. International

Journal of Flow Control, 4(1+2):47–65, June 2012.

[24] K. Okada, A. Oyama, K. Fujii, and K. Miyaji. Computational study on effect of

synthetic jet design parameters. International Journal of Aerospace Engineering,

2010, 2010.

[25] K. Okada, A. Oyama, K. Fujii, and K. Miyaji. Computational study of effects of

nondimensional parameters on synthetic jets. Transactions of the Japan Society for

Aeronautical and Space Sciences, 55(1):1–11, 2012.

[26] B. R. Ravi, R. Mittal, and F. M. Najjar. Study of three-dimensional synthetic jet

flowfields using direct-numerical simulation. In AIAA-2004-91, 2004.

[27] M. Sato, T. Nonomura, K. Okada, K. Asada, H. Aono, A. Yakeno, Y. Abe, and

K. Fujii. Mechanisms for laminar separated-flow control using dbd plasma actuator

at low reynolds number. Physics of Fluids (Accepted for publication), 2015.

[28] M. Sato, K. Okada, T. Nonomura, H. Aono, A. Yakeno, K. Asada, and K. Fujii.

Multifactorial effects of operating conditions of dielectric-barrier-discharge plasma

actuator on laminar-separated-flow control. In AIAA journal, 2015.

[29] S. Teramoto. Computational Study on the Dynamic Stability of a Blunt Reentry

Capsule at Transonic Speeds. PhD thesis, The Institute of Space and Astronautical

Science, 2 2000.

121



[30] M. R. Visbal and D. V. Gaitonde. Computation of aeroacoustic fields on general

geometries using compact differencing and filtering schemes. In AIAA-1999-3706,

1999.

[31] M. R. Visbal and D. V. Gaitonde. On the use of higher-order finite-difference schemes

on curvilinear and deforming meshes. Journal of Computational Physics, 181(1):155–

185, 2002.

[32] M. R. Visbal and D. P. Rizzetta. Large-eddy simulation on general geometries using

compact differencing and filtering schemes. In AIAA-2002-288, 2002.

[33] D. You and P. Moin. Active control of flow separation over an airfoil using synthetic

jets. Journal of Fluids and Structures, 24:1349–1357, 2008.

[34] W. Zhang and R. Samtaney. A direct numerical simulation investigation of the

synthetic jet frequency effects on separation control of low-re flow past an airfoil.

Physics of Fluids, 2015.

122



Appendix A

8.1 Basic characteristics of noncontrolled flows

In this section, the basic characteristics of noncontrolled flows are discussed. The cases

of AoA = 12 and 10 [deg.] are described. The noncontrolled case of AoA = 12 [deg.] is

the baseline flow for the separation control throughout this thesis. The case of AoA =

10 [deg.] is the attached flow with a laminar separation bublle near the leading edge,

which is refered in Sec.?? for the comparison with the controlled flow in terms of spatial

development of disturbances.

8.1.1 Time-averaged fields

Pressure coefficient and skin friction

Chordwise velocity fields

(a) AoA = 12 deg. (b) AoA = 10 deg.

Fig. 8.1: Chordwise velocity field (u/u∞) of noncontrolled cases: 0.0 ≤ u/u∞ ≤ 1.5
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(a) AoA = 12 deg. (b) AoA = 10 deg.

Fig. 8.2: Turbulent kinetic energy of noncontrolled cases: 0.0 ≤ u/u∞ ≤ 1.5

Reversed flow region

Turbulent kinetic energy

8.1.2 Unsteady characteristics

PSD of wall-normal velocity component

(a) AoA = 12 deg. (b) AoA = 10 deg.

Fig. 8.3: Power spectra of wall-normal velocity component; the horizontal axis is a

frequency normalized by freestream velocity and chord length. The straight line in grey

color shows the Kolmogorov’s 5/3 law.

The coherent vortices are emitted from the separation bubble at x/ch ≃ 20%, where

the St = 15 and 12 show the peak of the AoA = 14 and 12 [deg.] cases, respectively.

Therefore, the phase decomposition will be conducted based on the St = 15 and 12 for

each cases for discussion on the unsteady flow motion at the edge of the separated shear

layer.

124



Instantaneous flow fields

Figure 8.4 shows the closed view of instantaneous flows at each phase angle (ϕ/2π =

1/10, 3/10, 5/10, 7/10, and 9/10).

  φ/2π  =   1/10                      3/10                         5/10                         7/10                           9/10         

(b) AoA = 12 deg.

(c) AoA = 10 deg.

Fig. 8.4: Instantaneous flow fields (u/u∞): 0.0 ≤ u/u∞ ≤ 1.5

Phase-averaged flows

1/10

3/10

5/10

7/10

9/10

(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 8.5: Coherent vortex structures and Reynolds shear stress: AoA = 12 [deg.] case
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1/10

3/10

5/10

7/10

9/10

(b) Periodic (c) Turbulent (d) Periodic (e) Turbulent

Fig. 8.6: Coherent vortex structures and Reynolds shear stress: AoA = 10 [deg.] case
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