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Abstract

It is known that the Mach number and temperature ratio affects the characteristics of

supersonic jet noise significantly. Toward the accurate prediction and reduction of the

supersonic jet noise, it is necessary to understand those effects correctly. Regardless of

the importance of the parameter dependence, however, the systematic explanation with

detail underling physics has not been achieved so far.

In the present study, the direct numerical simulations (DNS) of the isotropic com-

pressible turbulence and the temporally evolving compressible mixing layer were con-

ducted to understand the Mach number and the temperature ratio dependence on su-

personic jet noise. In the isotropic compressible turbulent simulation, the effects of the

turbulent Mach number which is highly related with the smaller turbulent fluctuation

were analyzed. In the temporally evolving compressible mixing layer simulation, on the

other hand, the effects of two important parameters determining the large scale of tur-

bulence were investigated. In the computation, the convective Mach number and the

density (temperature) ratio dependence on the noise characteristics were analyzed. One

unique point in the present study is that the source terms of the Lighthill equation which

are numerically obtained by DNS results were analyzed to understand the relationship

between change in flows and sound sources.

In the isotropic compressible turbulent simulation, it was shown that the sound gen-

eration mechanism is highly depending on the turbulent Mach number. For the lower

turbulent Mach numbers, the important sound sources are only vortices. For the higher

turbulent Mach numbers, on the other hand, eddy shocklets become the other impor-

tant sound sources in addition to vortices. The relationship between the Reynolds stress

term and the entropy term is changed depending on the turbulent Mach number due

to the different sound generation mechanism (vortices and shocklets) between the lower

and higher turbulent Mach numbers. For the lower turbulent Mach number flows, the

Reynolds stress term and the entropy term are intensified each other around vortices,

whereas those are canceled out each other across shocklets for the higher turbulent Mach

numbers. Note, however, that the contribution of the entropy term for the lower turbu-
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lent Mach numbers would become smaller, because the entropy term is generated by the

diffusion process around vortices, so that it would become smaller in the higher Reynolds

number flows, though the trend was not observed in the present range of the Reynolds

number.

In the temporally evolving compressible mixing layer computation, the results showed

that the convective Mach number has two important effects. One is that the acoustic

waves are weakened with increasing the convective Mach number. This is due to the

suppression of vortices because of the compressibility effects. The other important effect

is that shocklets in flows affects the acoustic wave characteristics for the higher convective

Mach number cases. For those cases, the turbulent Mach number becomes high enough

to generate shocklets and the acoustic waves show smaller (based on the scale of vortices),

random, and non-linear (but still small) characteristics.

For the density ratio dependence, the strength of acoustic waves becomes weaker with

increasing the density (temperature) ratio. There are two possible reasons. One is that

the vortices (as sound sources) are weakened with increasing the density ratio. The other

reason is that the source terms of the Reynolds stress term and the entropy term are

canceled out each other. This is because the mean profile of density affects the Reynolds

stress term and the entropy term significantly. Then, it leads to the similar mean profiles

of the Reynolds stress term and the entropy term. In addition, the randomness of the

Mach angle increases with increasing the density ratio. The results of the Mach angle

would suggest the existence of various modes of instability wave moving with different

convective Mach number which generates different Mach wave for the higher density ratio

cases. The mean temperature difference over the mixing layer leads to locally different

speed of sound, so that it would cause the locally different Mach numbers. The other

possibility affecting the Mach angle is that the appearance of a lot of different scale

structures over the mixing layer for the higher density ratio cases. This is also due to

the mean temperature difference across the mixing layer. The temperature difference

makes the Reynolds number locally different over the mixing layer and creates many

different scales of turbulence. Note, however, that the effect is expected to be smaller at

sufficiently high Reynolds number flows, because the Reynolds number difference between

upper and lower streams becomes relatively smaller (based on the Reynolds number of

the mixing layer) than that of the low Reynolds number flows. Also, at least in the

present range of the density ratio and the convective Mach number, the non-linearity of

acoustic waves is not changed significantly depending on the density ratio, regardless of

the different sound source characteristics between cases.
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Chapter 1

Introduction

In this chapter, at first, the background and general features of supersonic jet noise

are presented. After the explanation, the recent advancement of the computational

prediction of the supersonic jet noise and the relationship between supersonic jets and

compressible turbulence are addressed. Then, the previous studies of compressible tur-

bulent flows are introduced. Finally, the objectives and the outlines of this thesis are

described.

1.1 Supersonic Jet Noise

Supersonic jet exhausted from rockets and supersonic aircrafts generate a large amount

of noise (Fig. 1.1). The very loud noise causes the various issues in designing those

transport systems. In rocket launch of H-IIA, for example, the noise level reaches 190

dB which is over 1000 times louder than that of subsonic aircraft engines (120-130dB).

For the reliable launch, we need to conduct the very expensive sound vibration tests

several times to prevent satellites from malfunction in such severe launch circumstances.

Meanwhile, in airline industry, the regulation of noise has been more strict than it was

in the past. International Civil Aviation Organization (ICAO) revised the regulation

of noise level in 2001 and is expected to revise it again in the near future. The next

generation civil supersonic aircrafts should also be strongly desired to satisfy the severe

regulation. Therefore, the accurate prediction and reduction of supersonic jet noise is

an essential topic for designing the future transport systems.

So far, the basic features of supersonic jets have been clarified by various previous

studies[11]. The characteristics of supersonic jet noise are much different from subsonic

contour part in which large scale turbulent structures are not sound sources[12], whereas

those are one of the most important sound sources in supersonic jets. In supersonic jets,

5
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(a)

(b)

Figure 1.1: Examples of the applications of supersonic jet noise: (a) Rockets; (b) super-
sonic aircrafts.

large scale turbulence with supersonic speed generates large amount of noise, so called

Mach waves. Mach waves are classified into one component of turbulent mixing noise and

have been investigated by a lot of researchers up to now. In 1963, Williams[13] derived

that the acoustic power of the Mach waves is proportional to the third power of jet

velocity U3
J by applying the Lighthill’s work[12] to the supersonic context. In addition,

Tam et al. successfully explained the generation mechanism of the Mach waves in 1980’s.

They showed that the sound sources of Mach waves are supersonically moving wavy wall

like instability waves i.e. large scale structures with supersonic speed [14, 15, 16](Fig.

1.2). In addition to Mach waves, it is believed that the other turbulent mixing noise

exists. Tam[17] reported that supersonic jet noise has two similarity spectra by analyzing

a lot of experimental data of NASA Langley research center. One is for Mach waves, and

the other is for acoustic waves from fine scale turbulence. The classification, however, is

somewhat questionable, because the reported spectra of acoustic waves from fine scale

turbulence spreads over the wide range of frequencies regardless of the name of fine

scale acoustic waves. Also, the given spectra were derived only by fitting from various

kind of experimental data, so that no theoretical explanation for the spectra of fine

scale acoustic waves was provided. Though the term ”fine scale” might not be suitable,

his study implied the existence of the other turbulent mixing noise than Mach waves,

because the similarity spectra were given from the data including ideally expanded jets

in which no shock cell exists. Crackle noise which is generated from high thrust engines

of military aircrafts would also be one of the turbulent mixing noise. The noise is known

as shock-like N-shaped acoustic waves with sharp compression and shows high skewness
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Figure 1.2: Schematic of Mach waves[1].

of pressure Sk(p
′) > 0.4[18]. Some studies suggested that the important parameters

for crackle is flow speed[19, 20, 21] and temperature[22, 23], but how those parameters

determine the characteristics of crackle remains unclear.

In addition to the turbulent mixing noise, shock associated noise should be taken into

account in under- or over-expanded jets where shock train in the jet plume is present

due to the pressure mismatch. The interaction between the quasi-periodic shock cells

and mixing layer outside the plume creates additional noise components. The noise

is relatively important in upstream side, whereas the preferential direction of Mach

waves is downstream. It is known that shock-associated noise has two different noise

components[1]. One is the screech tone, and the other is the broadband shock noise

(Fig. 1.3). Though the firm conclusion has not been acquired yet, the most capable

explanation of screech is a feedback loop mechanism proposed by Powell [24, 25]. The

process is briefly stated as follows:

1. The initially small amplitude of intrinsic instability in the jet flow grows enough

to interact with shock cells at the position of 2nd to 4th shock cells.

2. Due to the interaction between the instability waves and shock cells, acoustic waves

are generated.

3. The acoustic waves propagate to the upstream direction and excite the other in-

stability waves at the nozzle lip.

4. The excited instability waves grow with distance and interact with shock cells.

A feedback loop is closed by repeating those processes (Fig. 1.4). For a long period, the

study of screech had not progressed much since the work by Powell. In the early 2000’s,
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Figure 1.3: Two components of shock associated noise: (a) screech tone; (b) broadband
shock noise[1].

however, a generation mechanism of the shock associated noise including both screech

and broadband shock noise is proposed by the group of Stanford based on the direct

numerical simulation (DNS) and a geometrical theory[26, 2]. They showed that the

noise generation can be explained by a shock-leakage near the saddle points of vortices

(Fig. 1.5). The requirement for the occurrence of shock-leackage is the unsteadiness of

the vortices, so that some distance should be required from the nozzle lip for vortices to

grow. The distance would correspond to the observed strong sound source position of

the 2nd to 4th shock cells. In further downstream, however, the scale of vortices becomes

finer, then, noise generation by shock-leackage becomes weaker. They claimed that the

broadband shock noise generates at the further downstream position, instead.

The noise introduced above is known to be very sensitive to the parameters of the

Mach number and the temperature ratio of jet plume and the atmosphere. Kandura[27]

reported that the velocity dependence on the overall acoustic power is changed from 3 to

6 depending on the jet Mach number MJ by investigating the various experimental data.

Bodony and Lele showed that the noise level is weakened in heated jets where the the

nozzle exit velocity is set to be the same[28, 29]. Also, Suzuki and Lele[2] demonstrated

that the directivity of shock associated noise is weakly changed to the downstream with

increasing the temperature ratio. However, no systematic explanation of the effects of
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Figure 1.4: Schematic of jet screech[1].

Figure 1.5: Shock-front trajectories in an iso-thermal mixing layer[2].
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those parameters on the characteristics of acoustic waves has been achieved so far. In

the present study, we tackle the problem of the Mach number and the temperature ratio

dependence on acoustic waves toward the more accurate prediction of supersonic jet

noise. Meanwhile, our target here is the turbulent mixing noise. This is because the

turbulent mixing noise is present regardless of whether a jet is perfectly expanded or

not by keeping its characteristics [17, 30]. Also, recent computation of the unstructured

large eddy simulation (LES) showed that the shock associated noise can be weakened

significantly by using a shevron nozzle[21]. This means that the turbulent mixing noise

would become more important even in under- or over expanded jets when such device

is used practically. Therefore, we investigate the characteristics of turbulent mixing

noise which should be the first priority toward the systematic understanding, accurate

prediction and reduction of the supersonic jet noise.

1.2 Computational Prediction of Supersonic Jet Noise

As explained in the previous section, supersonic jet noise is very complicated, because

the sound sources are the non-linear unsteady fluid dynamics such as turbulence, shock

waves and their interactions. Recent progresses of the computers and numerical meth-

ods, however, have enabled us to predict the complex acoustic waves. Japan Aerospace

Exploration Agency (JAXA) has also devoted to the computational prediction of vari-

ous aeroacoustical issues such as noise of rocket launch[31, 32, 33, 34], noise of slat[35]

and noise of randing gear[36] of aircrafts. In particular, the recent launch of solid rocket

(epsilon rocket) is one of the successful model cases using computational prediction. The

acoustic level in the rocket launch of epsilon was 10 dB smaller than that of the previous

solid rocket of M-V. In the designing process of launch pad, the computational predic-

tion gave the valuable knowledge[34]. The computational analysis makes it possible to

conduct the detail investigation of sound sources with instantaneous unsteady flow data

which gives us plenty of knowledge for designing. Basically, sound sources are unsteady

flow phenomena, so that DNS or LES should be appropriate to be used, though, some

studies chose the Reynolds-averaged Navie-Stokes equations (RANS) for the advantage

of computational costs. Many studies (including the examples of JAXA) chose LES (or

the hybrid computation of LES and RANS) due to the acceptable computational costs

and the capability for predicting the higher Reynolds numbers which are more important

in engineering.

Since the late 1990s, various researchers have shown the prediction capability for

supersonic jet noise by LES (Fig. 1.6). The recent status of prediction accuracy in the
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Figure 1.6: An example of the computational prediction of supersonic jet noise by LES[3].

overall sound pressure level (OASPL) is 1-5 dB compared with experiments[37, 38, 3].

The prediction can be more accurate in the near future thanks to the recent advancement

of the computational technique and machine power. They enable us to improve the

most important factors of inflow[39]. The point of the inflow in the experiments is thin

turbulent shear layer. Inflow forcing technique[37, 40, 41] can enhance the turbulent

flows and the machine power makes it possible to use more grid points to resolve the thin

turbulent shear layer[42, 43]. In subsonic jet studies, the inflow forcing and shear layer

thickness change the sound pressure level from 15 to 20 dB depending on whether strong

vortex paring in transition (which should not occur in the experimental turbulent jets)

occur or not. In supersonic jets, the thin shear layer decreases the sound pressure level

by 5dB. Then, it leads to the better prediction due to the similar reason with subsonic

counter part[33]. The reason why the relatively small effects of inflow in supersonic case

would be the difference of the dominant mode of the vortex paring between subsonic

and supersonic jets. Also, the unstructured high-fidelity LES has been developed these

days and has enabled us to compute the jet flow with complex nozzle shape[44, 45]. As

mentioned in the previous section, the unstructured LES provided the knowledge of the

strong noise reduction capability of the shevron nozzle[45].

Computational studies of supersonic jets have contributed not only for the noise

prediction, but also for understanding of the complex sound generation mechanism.

Bodony and Lele investigated the relationship between the source terms of the Lighthill

equation by using the results of LES[29] and suggested that the noise reduction in hot

jets would be due to the canceling out of the Reynolds stress term and the entropy term.

Nichols et al.[21] conducted LES of the heated supersonic jets and reported that the
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flow velocity enhances the characteristics of crackle and the jet temperature seems not

to affect them. Also, Berland et al. [46] confirmed that a noise generation in an under

expanded planar jets can be expalined by shock-leakage mechanism proposed by Suzuki

and Lele[2].

We have shown that the computational studies of supersonic jet noise is very strong

tool for predicting the noise characteristics and understanding the underlying physics,

but the computational database is still insufficient to clarify our target of parameter

dependence of the Mach number and the temperature ratio. Parametric study of su-

personic jet computation needs very large computational resources and contains a lot

of uncertainties due to the individual inflow conditions, resolution, sub-grid scale (SGS)

model, and method of far-field prediction. One way to resolve the difficulties is to sim-

plify the problem from the whole jet configuration. The generation mechanism of the

supersonic jet noise is basically the same as the sound generated from the fundamental

compressible turbulent mixing layer (Fig. 1.7). The choice of the temporally evolving

mixing layer (not spatially evolving mixing layer) makes it possible for us to save the

computational costs and to conduct a parametric study with DNS data. Pressures at the

upper and lower streams are the same in the temporally evolving compressible mixing

layer, so that the density ratio between the upper and lower streams correspond to the

temperature ratio. Thus, the effects of temperature are investigated by changing the

density ratio of the temporally evolving compressible mixing layer. Moreover, thanks to

the simplified model, we can focus on the pure parameter effects of the Mach number

and temperature ratio without considering uncertainties stated above. In the present

study, we analyze the effects of two different Mach numbers. The effects of the convec-

tive Mach number which is related with large scale turbulence are analyzed by DNS of

the temporally evolving compressible mixing layer. In addition, the effects of the tur-

bulent Mach number which is closely related with fine scale turbulent motion is mainly

investigated by DNS of the isotropic compressible turbulence. We firstly conduct DNS

of the isotropic compressible turbulence to understand the effects of the turbulent Mach

number. After that, we investigate the effects of the convective Mach number and the

temperature ratio by DNS of the temporally evolving compressible mixing layer. In the

next section, previous studies of those compressible turbulent flows are introduced, and

the points to focus in the present studies are addressed.
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Figure 1.7: Present approach to understand the parameter dependence on supersonic jet
noise.
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1.3 Previous Studies of Compressible Turbulent Flows

We conduct DNS of the compressible turbulent flows to understand the Mach number

and the temperature ratio dependence on supersonic jet noise. There are two types in

the studies of compressible turbulent flows. One is for the turbulent structures, and

the other is for the acoustic waves. The previous studies of turbulent structures are

introduced at first, and then, those of acoustic waves are discussed.

1.3.1 Turbulent structures

In moderate to high turbulent Mach number flows, it is known that shocklets are gen-

erated when flows become locally supersonic (Fig. 1.8). The existence of shocklets

was firstly reported by Passot and Pouquet[47] in two-dimensions, and later reported

in three-dimensions[48]. Although the regions of shocklets are only a few percent of

the total volume[5, 49], they strongly affect the properties of turbulence. Lee et al.[48]

conducted DNS of the isotropic decaying compressible turbulence and confirmed that

the properties of shocklets are the same as those of shock waves. They demonstrated

that the compressible dissipation around shocklets is ten times larger than the typical

values in incompressible turbulence. This is because, in shocklets regions, the pressure

is highly correlated with dilatation to convert the kinetic energy to the internal energy.

Shocklets have large impacts on the dynamics of the enstrophy or vorticity, and the

suppression of the overall enstrophy production is remarkable once the Mach number

becomes high enough for shocklets to appear [49]. However, shocklets also have a role to

intensify the enstrophy production [50, 51]. Also, shocklets change the tear drop shape

of the joint probability density function (JPDF) of the second and third invariants of

the velocity gradient tensor to a longer tail one compared to those for incompressible

turbulence[49, 52]. These previous studies clearly demonstrated that the occurrence of

shocklets changes flow fields significantly.

The other important change in flows depending on the Mach number is decreased

shear layer growth rate. The convective Mach number Mc = ∆u/(c1 + c2) proposed by

Papamoschou and Roshko[7] has been used by a lot of studies as a parameter to deter-

mine the effects of compressibility in the shear layer where ∆u is the velocity difference

between two streams, c1 and c2 are the speeds of sound at the upper and lower streams,

respectively. Fig. 1.9 shows the decrease of the shear layer growth rate with increasing

the convective Mach number. A lot of studies were conducted to understand the rea-

sons. The first attempt for the explanation was using pressure-dilatation term[53, 54].

At the higher turbulent Mach number flows, the magnitude of pressure-dilatation term
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(a) (b)

Figure 1.8: (a) Schematic of shocklets[4] and (b) shocklets in an isotropic compressible
turbulence[5]. (b) shows volume rendering of dilatation.

is larger due to the existence of eddy shocklets, so that it could cause the decreased

turbulent production and decreased growth rate. The later study, however, reported

that the decreased growth rate is caused by the decreased kinetic energy, and not by

the pressure-dilatation term[55]. Moreover, Vreman et al.[56] showed that the decreased

pressure-strain term is the main reason for the decreased growth rate by their DNS of

the temporally evolving compressible mixing layer. The explanation was also supported

by DNS of the annular mixing layer[57]. In addition, Pantano and Sarkar[6] successfully

explained the decreased pressure-strain term, and then decreased growth rate with in-

creasing the convective Mach number. They also showed that the shear layer growth rate

is decreased with increasing the density ratio because of the shift of the peak shear stress

to the lower density side. In addition to the decreased growth rate, the decrease of the

transverse length scale of the mixing layer was reported with increasing the convective

Mach number[57].
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Figure 1.9: Convective Mach number dependence on the mixing layer growth rate[6].
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1.3.2 Acoustic waves generated from compressible turbulence

Although, fewer studies were conducted compared with the studies of turbulent struc-

tures, some studies for the acoustic waves from compressible turbulent flows were re-

ported. To begin with, the studies of the lower Mach number flows are introduced.

Sarkar et al. [58] conducted DNS of the isotropic compressible turbulence and analyzed

radiated noise from the turbulence at very low turbulent Mach number of 0.05. They

showed that the obtained acoustic power agree with the proportionality which is de-

rived theoretically by Proudman[59]. Choi et al.[60] conducted DNS of the temporally

evolving compressible mixing layer of Mc = 0.2 in a transitional state to investigate the

characteristics of the source terms of the Lighthill equation[12] and showed that the en-

tropy term is comparable to the Reynolds stress term due to the large dissipation around

vortices even in low Mach number flows. Colonius et al.[61] conducted two-dimensional

DNS of the spatially evolving mixing layer for two stream Mach numbers of M1 = 0.05

and M2 = 0.2. They showed that the acoustic waves have some super-directive prop-

erties despite the low Mach number and supported that the theory of modulated wave

packets[62]. Some studies in moderate to high Mach number cases were also investigated.

Avital et al. [63, 64] conducted DNS of a transitional temporally evolving mixing layer

at supersonic convective Mach numbers and showed that two types of Mach waves were

observed in the transition. However, it was pointed out that the validity of the results

were questionable due to the insufficient computational domain[65]. Kleinman et al.[65]

performed DNS of the temporally evolving compressible mixing layer of Mc = 0.45 and

showed that the far field pressure spectra collapse well with the scaling of the Taylor

micro scale at different Reynolds number cases. In addition, recently, DNS of high con-

vective Mach number (Mc = 0.75 − 1.75) mixing layer was performed and showed that

characteristics of crackle appear for Mc > 1.25. The results implied that the non-linear

merging occurs for crackle cases. Although, those previous studies showed that the stud-

ies of compressible turbulent flows provide valuable knowledge for the characteristics of

acoustic waves, still only few studies were done compared with those of flow structures.

Also, how the change in flows connects the sound sources have not been well under-

stood. In order to resolve the problem, we compute the source terms of the Lighthill

equation[12] by the results of DNS as in the previous study by Choi et al[60]. Their

study only focused on the lower convective Mach number flow, whereas our study also

apply the method to the higher Mach number and the variable temperature ratio cases.

It would support us to understand the connection between change in flows and the sound

generation process. Though, non-linear propagation effects should be taken in account
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in the higher Mach number flows for the better discussion, the effects are small except

for very far field[57, 38, 66]. In addition, even in high convective Mach number cases,

the difference in pressure fluctuation with assumed isentropic pressure was shown to be

small[20]. Those facts suggest that the Lighthill equation can be used for the qualitative

discussion of the sound sources for the higher Mach number cases.

1.4 Objectives

A lot of knowledge of supersonic jet noise has revealed from the previous studies exper-

imentally, theoretically and numerically. However, the understanding of the underling

physics is still insufficient, regardless of the significant effects of parameters of the Mach

numbers and the temperature ratio on the acoustic wave characteristics. The recent ad-

vancement of the computational technique and machine power increase the capability to

understand the relationship between flows and sound sources with high resolution com-

putational data. We conduct DNS of the simplified model of the isotropic compressible

turbulence and the temporally evolving compressible mixing layer. The choice enables us

to focus on the pure parameter dependence of the Mach numbers and temperature ratio

without considering the effects of nozzle, resolution, and inflow condition and to save

the computational costs for a parametric study. In order to understand the relationship

between the change in flows and the sound generation process, the source terms of the

Lighthill equation are used to support the discussion. In the present study, we focus on

the turbulent mixing noise due to its importance. The points to focus in the present

thesis are stated as follows.

Turbulent Mach number dependence

In the turbulent mixing noise, the properties of turbulent fluctuation should be one of

the most important factors. For the discussion, the turbulent Mach number can be a

suitable parameter. At higher turbulent Mach numbers, shocklets generate and affect

the flow field significantly, so that they would change the sound source characteristics.

We analyze the various turbulent Mach numbers by DNS of the isotropic compressible

turbulence and discuss the change in the sound source characteristics.

Convective Mach number and temperature ratio dependence

The decreased shear layer growth rate with increasing the convective Mach number and

the temperature ratio were discussed for a long period. Also, the decreased transverse
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length scale with increasing the convective Mach number was shown in the previous

study. However, how those changes in flows affect the sound sources have not been well

understood. We conduct DNS of the temporally evolving compressible mixing layer and

investigate the convective Mach number and the density ratio (corresponds to temper-

ature ratio) dependence. The acoustic wave characteristics of the strength, radiation

angle, spectra and non-linearity are discussed in addition to the sound source character-

istics.

1.5 Outline of this thesis

The outline of this thesis is as follows. In chapter 2, the problem settings of the isotropic

compressible turbulence and the temporally evolving compressible mixing layer are ad-

dressed. The initial condition to simulate the turbulent flows and the treatment of the

boundary are described. In chapter 3, governing equation, applied numerical methods

are introduced. In chapter 4, the turbulent Mach number dependence by DNS of the

isotropic compressible turbulence is discussed. Firstly, the determination of time for com-

parison of the simulated cases and verification of the present computation are conducted.

Then, the change in sound source characteristics with various turbulent Mach numbers is

discussed. In chapter 5, the convective Mach number and the density ratio (temperature

ratio) dependence on the sound source and acoustic wave characteristics are discussed

by conducting DNS of the temporally evolving compressible mixing layer. Firstly, the

determination of time for comparison results and the validation are conducted. After

that, the convective Mach number dependence are discussed by fixing the density ratio

to be unity. Then, the density ratio dependence is investigated with a fixed convective

Mach number of 1.5. In chapter 5, the characteristics of acoustic waves at a distance

from the center of mixing layer are analyzed in addition to the sound source character-

istics toward the understanding the far field acoustic wave characteristics. Chapter 6

summarizes the obtained the results and draws conclusions.





Chapter 2

Problem Settings

In the present study, two fundamental compressible turbulent flows are simulated. At

first, the isotropic compressible turbulence is explained, and then, the temporally evolv-

ing compressible mixing layer is introduced.

2.1 Isotropic compressible turbulence

A three-dimensional decaying isotropic compressible turbulence is simulated (Fig. 2.1).

Turbulent fluctuations whose spectrum is a final state of decaying turbulence are given

for the initial condition. Turbulence is freely decaying from the initial state to a quasi

steady state in the cubic box of 2π. The periodic boundary conditions are imposed for

all directions. The isotropic compressible turbulence is characterized by two important

parameters of the turbulent Mach number and the Taylor micro scale Reynolds number,

so that those parameters are introduced in the next subsection. Also, the initial condition

which takes one of the most important roles in the simulation is introduced subsequently.

2.1.1 Turbulent Mach number and Taylor micro scale Reynolds

number

The turbulent Mach number is defined based on the magnitude of the velocity fluctuation√
u2
i and the average value of the speed of sound c:

Mt =

√
< u2

i >

< c >
, (2.1)

where < · > denotes the spatial average. The values of the turbulent Mach number

are highly depending on the small scale turbulent fluctuations, so that the effects of

21
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Figure 2.1: A simulation result of the decaying isotropic compressible turbulence. The
iso-surface is the second invariant of the velocity gradient tensor.

small scale turbulent fluctuations can be investigated. Note that the convective Mach

number in the temporally evolving compressible mixing layer is related with the large

scale turbulent motion. It is worth noting that the existence of shocklets are reported

for moderate to high turbulent Mach numbers and the typical critical turbulent Mach

number for the occurrence of shocklets is around Mt0 = 0.4[48, 5, 49]. Note that Mt0 is

the initial turbulent Mach number. The range of simulated turbulent Mach number is

Mt0 = 0.2 − 1.0, so that the effects of the turbulent Mach number including the effects

of shocklets on sound source characteristics can be investigated.

For the Reynolds number, the Reynolds number based on the Taylor micro scale Rλ

is often used. The Reynolds number is defined as;

Rλ =
< ρ >

√
< u2

i /3 >λ

< µ >
(2.2)

in which ρ and µ are density and viscosity, respectively. The Taylor micro scale λ is

defined as follows:

λ =

√
< u2

i /3 >

< (∂ui/∂xi)2/3 >
. (2.3)

The derivation of the Taylor micro scale is found in App. C. We set the initially three

different Taylor micro scale Reynolds numbers of 130, 100 and 70 to understand the

Reynolds number effects. Rλ0 = 130 is used for the most discussion.
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2.1.2 Initial condition

An initially solenoidal and isentropic fluctuation is used in the present simulation. Note

that some initial condition dependence are reported in the isotropic decaying compress-

ible turbulence[67, 68, 50, 69, 5, 49, 70]. One reason for choosing the initial condition is

to check whether the entropy term in the Lighthill equation which is often neglected in

low Mach numbers can be actually negligible or not. The turbulent motion could gener-

ate entropy term even in low Mach number flow[60]. The discussion for neglecting the

entropy term is given by assuming isentropic condition. We try to exclude the possibility

that the non-uniformity of entropy is generated by the initial condition. A recent DNS of

the two-dimensional decaying isotropic compressible turbulence for low turbulent Mach

numbers showed that the initially solenoidal, uniform entropy case maintain almost uni-

form entropic flow, whereas the initially solenoidal, non-unifrom entropy case changes

the scaling of density[70]. The results suggested that the initially solenoidal, isentropic

conditions are preferable not to contaminate the assumption of the low Mach number

flows by at least the initial condition. If the assumption is no longer applied after a pe-

riod of the simulation with the initial condition, the resulting non-uniform entropy field

should be caused by the turbulent motion, not by the initial condition. Also, the initial

condition would change the critical turbulent Mach number for generating shocklets and

the strength of shocklets[50, 49, 70], but the characteristics of shocklets themselves are

not changed. Therefore, the conclusions for the effects of shocklets on sound sources

can be discussed without considering of the effects of the initial condition. The brief

procedure for generating the initial fluctuation is as follows:

1. Velocity is determined to satisfy the spectra of a final state of decaying turbulence.

2. The compressive component of velocity is subtracted by the given velocity field

above.

3. Pressure and density fluctuations are determined by a Poisson equation derived by

assuming isentropic and selenoidal conditions.

To begin with, a energy spectrum of a final state of the decaying turbulence is con-

sidered:

E(k) ∼ k4 exp
(
−2

k2

k2
peak

)
, (2.4)

where k is the magnitude of the wave number in space and kpeak is its peak value. The

value k4 is multiplied for kpeak to be the peak wave number. In the present simulation,
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the peak wave number is set to be kpeak =
√
10. To satisfy the energy spectrum, the

velocity in the Fourier space û is determined as follows:

û ∼ k exp
(
− k2

k2
peak

)
, (2.5)

where the amplitudes and the phases are randomized by a random seed. The solenoidal

condition is satisfied by subtracting the compressive component ûc written as;

ûc =
k · u
|k|

. (2.6)

After the inverse Fourier transform, the solenoidal velocity field is obtained. The am-

plitudes of the given velocity filed are adjusted depending on the initial turbulent Mach

numbers.

The pressure and density fluctuations (p′ and ρ′) are determined by a Poisson equation

as follows[70]:

∇2
(p′
ρ′

)
= −γ − 1

γ

∂2(uiuj)

∂xi∂xj

, (2.7)

The Poisson equation is derived by the divergence of the momentum equation by assum-

ing solenoidal and isentropic flows[5]. Here, the viscous term is neglected in (Eq. 2.7).

The Poisson equation is solved with the isentropic relation p′/(ρ′)γ = pref/(ρ)
γ
ref = 1/γ,

where pref and ρref is the reference values of pressure and density.

2.2 Temporally evolving compressible mixing layer

The schematic of the temporally evolving compressible mixing layer is shown in Fig.

2.2. The computational domain is Lx × Ly × Lz = 343 × 86 × 692. The flow develops

temporally to the transverse directions. The periodic boundary conditions are imposed

in the streamwise and spanwise directions. The boundaries of the transverse direction

are set to be very far to avoid the reflection of spurious acoustic waves. Two important

parameters of the convective Mach number Mc and the density ratio s in the temporally

evolving compressible mixing layer are explained in the following subsection. Also, the

Reynolds number based on the momentum thickness is introduced. The initial condition

for the present simulation is explained afterwards.
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Figure 2.2: Schematic of temporally evolving compressible mixing layer.

Figure 2.3: Schematic figure of the turbulent mixing layer in the convective frame of
reference moving with convective velocity Uc[7].

2.2.1 Convective Mach number, density ratio and Reynolds

number

The convective Mach number Mc is a popular choice to determine the compressibility in

the shear layer and defined as;

Mc =
∆u

c1 + c2
, (2.8)

where ∆u is the velocity difference between the upper and lower streams, whereas c1

and c2 are the speeds of sound at the upper and lower streams. The derivation is briefly

described in the following[7]. Fig. 2.3 shows the schematic figure of the mixing layer

in the convective frame of reference moving with the convective velocity Uc. The Mach
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number at the upper stream Mc1 and the lower stream Mc2 are defined as follows:

Mc1 =
U1 − Uc

c1
,

Mc2 =
Uc − U2

c2
, (2.9)

where U1 and U2 are the velocities at the upper and lower streams, respectively. If the

flow is assumed to be steady and isentropic, the static pressures of two streams are equal:

(
1 +

γ1 − 1

2
Mc1

) γ1
γ1−1

=
(
1 +

γ2 − 1

2
M2

c2

) γ2
γ2−1

, (2.10)

where γ1 and γ2 are the ratio of specific heats at the upper and lower streams, respectively.

Note that the the assumption comes from the existence of the saddle point (corresponds

to a stagnation point) between two streams in the convective frame. Assuming γ1 = γ2,

(Eq. 2.10) is written in;

Mc1 = Mc2(= Mc). (2.11)

Substituting (Eq. 2.9) into (Eq. 2.11), the convective velocity Uc is given as;

Uc =
c1U2 + c2U1

c1 + c2
. (2.12)

Then, we have the final form of the convective Mach number Mc as follows:

Mc = Mc1 =
U1 − c1U2+c2U1

c1+c2

c1

=
U1 − U2

c1 + c2

=
∆u

c1 + c2
. (2.13)

Note that the flow direction of the present setup of the mixing layer (Fig. 2.2) is opposite

to the discussion above, but the the same form of the convective Mach number is derived

by setting the subscripts to be 2 → 1 and 1 → 2.

The fact that the decreased mixing layer growth rate was explained as the function of the

convective Mach number[6] showed that the convective Mach number is a very important

parameter to characterize the shear layer, i.e. large scale flow structures. The change

in sound sources and generated acoustic waves are discussed with different convective

Mach numbers. Our focus is on supersonic jet noise, so that the values of the convective
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Mach number are set to be 1.2− 1.8. In isothermal jets, the convective Mach number is

the half of the jet Mach number[71], so that the corresponding jet Mach numbers are the

range 2.4− 3.6 which covers the various applications of supersonic jets from supersonic

aircrafts to rockets. Note that the convective Mach number dependence is investigated

using the isothermal mixing layer as explained later. Density ratio s is also an important

parameter and defined as;

s =
ρ1
ρ2

. (2.14)

In the temporally evolving compressible mixing layer, the pressures at the upper and

lower streams are the same, so that density ratio corresponds to the temperature ratio

which is very important for hot jets. The density ratio (temperature ratio) is also known

as an important parameter to determine the decreased mixing layer growth rate[6]. The

temperature effects are investigated with various density ratios s = 1 − 8. It is worth

noting that the temperature ratio of a sub-scale liquid rocket motor is 6.48[3], so that

the range s = 1 − 8 covers such an extreme case. For the discussion of the effects of

the convective Mach number, we consider the isothermal mixing layer, i.e. s = 1. For

the effects of the density ratio, on the other hand, we fix the convective Mach number

to be 1.5 and discuss the effects of density (temperature) ratio on the sound source and

acoustic wave characteristics.

In the present simulation, we use the Reynolds number based on the momentum

thickness defined as;

Reθ =
ρave∆uδθ

µave

, (2.15)

where ρave = (ρ1 + ρ2)/2 and µave = (µ1 + µ2)/2 are averaged density and viscosity of

the upper and lower streams. The momentum thickness δθ is defined as follows:

δθ =
1

ρave∆u2

∫ Ly/2

−Ly/2

ρ̄
(1
2
∆u− ũ1

)(1
2
∆u+ ũ1

)
dx2, (2.16)

where (̃) and (̄) denote the Favre and Reynolds averages. The initial Reynolds number

based on the momentum thickness Rθ0 is set to be the similar value 154.2 with the

previous DNS by Pantano and Sarkar[6].
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2.2.2 Initial condition

We follow the similar procedure of the previous DNS by Pantano and Sarkar[6]. The

velocity profile is given by a hyperbolic tangent profile:

ū1(y) =
∆u

2
tanh

(
− y

2δθ0

)
, ū2 = 0, ū3 = 0, (2.17)

where δθ0 is the initial momentum thickness. The mean density profile is also determined

by the following hyperbolic tangent profile:

ρ̄(y) = ρave

(
1 + λ(s)tanh

(
− y

2δθ0

))
, (2.18)

where λ(s) = (s− 1)/(s+ 1). To trigger turbulence we impose the same initial fluctua-

tion with that of the isotropic compressible turbulent simulation. The initial turbulent

intensity is set to be 10% of the velocity difference ∆u. The isotropic fluctuations are

limited in the y direction by an exponential decay of the form[72]:

exp
(
− x2

2δθ0

)
. (2.19)



Chapter 3

Numerical Methods

The numerical methods used in the present study are described. Our focus in the present

study is to investigate the pure parameter dependence on sound sources and radiated

acoustic waves in supersonic jets. To achieve the objectives, the direct numerical simula-

tions of the isotropic compressible turbulence and the temporally evolving compressible

mixing layer are conducted. This approach helps us to investigate the underlying physics

without considering uncertainties such as inflow condition, nozzle, resolution and turbu-

lence model. In the following sections, firstly, the governing equation is described. Then,

the spatial difference scheme with shock-capturing and the time integration scheme are

presented. After the explanation of the numerical schemes, the boundary conditions are

explained.

3.1 Governing Equation

The three-dimensional compressible Navier-Stokes equations in the conservation form

are written as;

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=

∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z
, (3.1)

29
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Q = (ρ, ρu, ρv, ρw, e)T ,

E = (ρu, ρu2 + p, ρuv, ρuw, (e+ p)u)T ,

F = (ρv, ρvu, ρv2 + p, ρvw, (e+ p)v)T ,

G = (ρw, ρwu, ρwv, ρw2 + p, (e+ p)w)T ,

Ev = (0, τxx, τxy, τxz, βx),

Fv = (0, τyx, τyy, τyz, βy),

Gv = (0, τzx, τzy, τzz, βz), (3.2)

βx = τxxu+ τxyv + τxz − qx,

βy = τyxu+ τyyv + τyz − qy,

βz = τzxu+ τzyv + τzz − qz,

where e, τij, qi is the total energy per unit volume, viscous stress tensor and heat flux,

respectively. For an ideal state of gas, the total energy per unit volume e satisfies the

following equation:

ρe =
1

γ − 1
p+

1

2
ρ(u2 + v2 + w2), (3.3)

in which γ is the ratio of specific heats. With Stokes’s hypothesis, the viscous stress

tensor τij is written as follows:

τij = µ
(∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
. (3.4)

The viscous coefficient µ is determined by the Sutherland’s law:

µ

µref

=
( T

Tref

)3/2( (1 + T1)/Tref

(T + T1)/Tref

)
, (3.5)

where T1 and Tref are 110.6 and 293.7, respectively. Also, µref is determined by the

Reynolds number explained in the following subsection. The heat flux qi is defined by

the Fourier’s law:

qi = −κ
∂T

∂xi

, (i = 1, 2, 3), (3.6)
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where κ is the thermal conductivity. The equation is rewritten with the Prandtl number

Pr and the speed of sound c in the ideal state of gas:

Pr =
cpµ

κ
, (3.7)

c =
√

γRT =

√
γp

ρ
, (3.8)

where cp is the specific heat at constant pressure and R is the gas constant, respectively.

In the ideal state of gas, the specific heat at constant pressure is written as;

cp =
γR

γ − 1
. (3.9)

With those relations, the final form of the heat flux qi is derived as follows:

qi = − 1

γ − 1

µ

Pr

∂c2

∂xi

, (3.10)

where the Prandtl number Pr is set to be 0.72 in the present computation.

3.1.1 Non-dimensionalization of Navier-Stokes Equations

The non-dimensional form of the Navier-Stokes equations is used for the actual com-

putation. In the present study, the non-dimensionalization is conducted by using the

reference values of density ρref , speed of sound cref , and length scale Lref :

ρ∗ =
ρ

ρref
, c∗ =

c

cref
, L∗ =

L

Lref

, (3.11)

where astarisk shows non-dimensional quantities. Those operations derive the following

non-dimensionalized Navier-Stokes equations:

∂Q∗

∂t∗
+

∂E∗

∂x∗ +
∂F ∗

∂y∗
+

∂G∗

∂z∗
=

M

Re

(∂E∗
v

∂x∗ +
∂F ∗

v

∂y∗
+

∂G∗
v

∂z∗

)
, (3.12)
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Q∗ = (ρ∗, ρ∗u∗, ρ∗v∗, ρ∗w∗, e∗)T ,

E∗ = (ρ∗u∗, ρ∗u∗2 + p∗, ρ∗u∗v∗, ρ∗u∗w∗, (e∗ + p∗)u∗)T ,

F ∗ = (ρ∗v∗, ρ∗v∗u∗, ρ∗v∗2 + p∗, ρ∗v∗w∗, (e∗ + p∗)v∗)T ,

G∗ = (ρ∗w∗, ρ∗w∗u∗, ρ∗w∗v∗, ρ∗w∗2 + p∗, (e∗ + p∗)w∗)T ,

E∗
v = (0, τ ∗xx, τ

∗
xy, τ

∗
xz, β

∗
x),

F ∗
v = (0, τ ∗yx, τ

∗
yy, τ

∗
yz, β

∗
y),

G∗
v = (0, τ ∗zx, τ

∗
zy, τ

∗
zz, β

∗
z ), (3.13)

β∗
x = τ ∗xxu

∗ + τ ∗xyv
∗ + τ ∗xz − q∗x,

β∗
y = τ ∗yxu

∗ + τ ∗yyv
∗ + τ ∗yz − q∗y,

β∗
z = τ ∗zxu

∗ + τ ∗zyv
∗ + τ ∗zz − q∗z ,

where

x∗
i =

xi

Lref

, t∗ =
t

Lref/cref
, u∗

i =
ui

cref
, e∗ =

e

ρrefc2ref
, p∗ =

p

ρrefc2ref
=

p

γpref
,

µ∗ =
µ

µref

, τ ∗ij =
τij

µrefcref/Lref

, q∗i =
qi

µrefc2ref/Lref

. (3.14)

Also, the Reynolds number Re and Mach number M are defined as follows:

Re =
ρrefurefLref

µref

,M =
uref

cref
. (3.15)

3.2 Numerical Schemes

3.2.1 Spacial Difference Scheme

The central difference scheme is preferable to solve turbulent flows due to its non-

dissipative properties. It is known that, however, the numerical instability occurs when

a standard central finite difference scheme is used without any viscosity. One possible

solution to resolve the issue is to stabilize the computation by quadratic invariants preser-

vation which corresponds to the kinetic energy conservation for incompressible flows. The

skew-symmetric splitting scheme is constructed based on the idea of the quadratic in-
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variants preservation, and preserve the kinetic energy at the semi-discrete level. A form

of the skew-symmetric scheme used in the present computation is explained. In addi-

tion, our study needs to consider turbulent flows with weak shock waves, i.e. shocklets,

because our target is high speed turbulent flows. Thus, the method of shock capturing

is described after introducing the skew-symmetric splitting scheme.

Skew-symmetric splitting scheme

The discussion starts with the following Euler equation:

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
= 0, (3.16)

Q = (ρ, ρu, ρv, ρw, e)T ,

E = (ρu, ρu2 + p, ρuv, ρuw, (e+ p)u)T ,

F = (ρv, ρvu, ρv2 + p, ρvw, (e+ p)v)T ,

G = (ρw, ρwu, ρwv, ρw2 + p, (e+ p)w)T . (3.17)

If the pressure force is disregarded, the equation for any components of the vector can

be written as;

∂ρϕ

∂t
+

∂

∂xi

(ρuiϕ) = 0, (3.18)

where ϕ is a general transport scalar. Here, two splitting forms of the convective deriva-

tive are introduced:

1. FE splitting form[73]

∂uiϕ

∂xi

=
1

2

∂ρuiϕ

∂xi

+
1

2
ϕ
∂ρui

∂xi

+
1

2
ρui

∂ϕ

∂xi

. (3.19)

2. KG splitting form[74, 75]

∂uiϕ

∂xi

= α
∂ρuiϕ

∂xi

+ β
(
ui
∂ρϕ

∂xi

+ ρ
∂uiϕ

∂xi

+ ϕ
∂ρui

∂xi

)
+(1− α− 2β)

(
ρui

∂ϕ

∂xi

+ ρϕ
∂ui

∂xi

+ uiϕ
∂ρ

∂xi

)
, (3.20)

where α, β are free parameters.
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The above two splitting forms preserve kinetic energy at the semi-discrete level. Note

that the kinetic energy preservation in KG form is achieved only for α = 1/4, β = 1/4.

For simplicity, the kinetic energy preservation in FE splitting form is shown by following

the explanation of Pirozolli[75]. Similar discussion can be applied to KG form. Before

the discussion, the discretization rule is introduced. For the discretization, the explicit

central approximation for the general function f in the ith direction is considered:

DifX =
L∑
l=1

al(fi;l − fi;−l)X , (3.21)

where X ≡ (x1, ..., xd) represents grid node and (fi;l)X is simple notation for the shift

defined as;

(fi;l)X = fx1,...,xi+l,...,xd
. (3.22)

al are determined depending on the formal order of accuracy, so that the order of accuracy

is 2L for a given stencil half-width L. Then, the kinetic energy preservation at the

semi-discrete level is shown as follows. Substituting ϕ = 1 for the continuity equation,

and ϕ = ui for the momentum equation into (Eq. 3.19), then equation (Eq. 3.19) is

discretized by;

d(ρ)X
dt

+Di(ρui)X = 0, (3.23)

d(ρuj)X
dt

+
1

2
Di(ρuiuj)X +

1

2
(uj)XDi(ρui)X +

1

2
(ρui)XDi(uj)X = 0. (3.24)

(Eq. 3.23)×(uj)X , summing over j, and subtracting (Eq. 3.24)×(ujuj/2)X derive:

d

dt
(
ρujuj

2
)X +

1

2
(uj)XDi(ρuiuj)X +

1

2
(ρuiuj)XDi(uj)X = 0. (3.25)

By summing (Eq. 3.25) over all grid nodes, the total kinetic energy preservation is

achieved. Note that the convective derivative of both FE splitting form and KG splitting

forms can be approximated as;(∂uiϕ

∂xi

)
X
≈ 1

∆x

(
f̂i;1/2 − f̂i;−1/2

)
X
, (3.26)
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where ∆x is the grid spacing. Especially, for the KG splitting form, the numerical flux

can be written as;

f̂i;1/2 = 2
L∑
l=1

al

l−1∑
m=0

(1
8
(ρi;−m + ρi;−m+l)(ui;−m + ui;−m+l)(ϕi;−m + ϕi;−m+l)

)
=

1

4

L∑
l=1

al

l−1∑
m=0

(
(ρi;−m + ρi;−m+l)(ui;−m + ui;−m+l)(ϕi;−m + ϕi;−m+l)

)
. (3.27)

Similarly, the numerical flux of the pressure gradient in the conservative form is derived

(not shown here). Applying those formula to the Euler equation, the numerical flux

F̂ skew
i;1/2 is obtained. In the present study, the KG splitting with the sixth order explicit

central difference approximation (L = 3) is used for the computation.

Shock capturing

In highly compressible turbulent flows, eddy-shocklets appear due to the high level of

fluctuations. To solve such complex flow fields, shock capturing scheme providing ap-

propriate dissipation in shock region is necessary. In the present study, the dissipation

part of the sixth order central-upwind weighted essentially non-oscillatory (WENOCU)

scheme is used for shock capturing with a shock sensor. In no shock region, only the sixth

order skew symmetric splitting scheme is used, whereas in shock region, the dissipation

part of the sixth order WENOCU[76] scheme is used with the skew symmetric scheme.

For detecting shocklets, a sensor similarly with Ducros sensor[77] is used:

Φ =
−∇ · u

|∇ · u|+ |ω|+ ϵ
, (3.28)

where ω is vorticity, ϵ is very small number to avoid division by zero. For strong shock

region, the sensor approaches unity, whereas it approaches to zero in no-shock region,

so that the values of adding dissipation is determined depending on the sensor. In the

detected shocklets region, the dissipation part of the sixth order WENOCU scheme is

added. Here, the sixth order WENOCU scheme and the decomposition into the consis-

tent part and the dissipative term are briefly described. We consider one-dimensional

advection equation:

∂u

∂t
+

∂

∂x
f(u) = 0, (3.29)
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where ∂f
∂x

> 0 is assumed for simplicity. The simple notation (Eq. 3.22) is also used here.

The convective derivative is approximated in the conservative form as;(∂f
∂x

)
X
≈ 1

∆x
(f̂i;1/2 − f̂i;−1/2). (3.30)

For the sixth order WENOCU scheme, the numerical flux f̂i;1/2 is constructed by the

upwinding fluxes:

f̂0,i;1/2 =
1

6
(2fi;−2 − 7fi;−1 + 11fi;0), (3.31)

f̂1,i;1/2 =
1

6
(−fi;−1 + 5fi;0 + 2fi;1), (3.32)

f̂2,i;1/2 =
1

6
(2fi;0 + 5fi;1 − fi;2), (3.33)

f̂3,i;1/2 =
1

6
(11fi;1 − 7fi;2 + 2fi;3). (3.34)

With the upwinding fluxes, f̂i;1/2 is reconstructed as follows:

f̂i;1/2 = ω0f̂0,i;1/2 + ω1f̂1,i;1/2 + ω2f̂2,i;1/2 + ω3f̂3,i;1/2, (3.35)

where ωk is non-linear weight and defined by;

ωk =
αk

α0 + α1 + α2 + α3

, αk = dk

(
C +

τ6
βk + ϵ

)
(k = 0, 1, 2, 3), (3.36)
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in which the optimized weight dk, smoothness indicators βk, τ6, adjusting parameter C,

and small number ϵ for avoiding division by zero are as follows:

d0 =
1

20
, d1 =

9

20
, d2 =

9

20
, d3 =

1

20
,

C = 20,

β0 =
1

4
(fi;−2 − 4fi;−1 + 3fi;0)

2 +
13

12
(fi;−2 − 2fi;−1 + fi;0)

2,

β1 =
1

4
(fi;−1 − fi;1)

2 +
13

12
(fi;−1 − 2fi;0 + fi;1)

2,

β2 =
1

4
(3fi;0 − 4fi;1 + fi;2)

2 +
13

12
(fi;0 − 2fi;1 + fi;2)

2,

β3 = β6

=
1

120960

[
271779f 2

i;−2 +

+ fi;−2(2380800fi;−1 + 4086352fi;0 − 3462252fi;1 + 1458762fi;2 − 245620fi;3)

+ fi;−1(5653317fi;−1 − 20427884fi;0 + 17905032fi;1 − 7728988fi;2 + 1325006fi;3)

+ fi;0(19510972fi;0 − 35817664fi;1 + 15929912fi;2 − 2792660fi;3)

+ fi;1(17195652fi;1 − 15880404fi;2 + 2863984fi;3)

+ fi;2(3824847fi;2 − 1429976fi;3) + 139633f 2
i;3

]
,

τ6 = β6 −
1

6
(β0 + 4β1 + β2). (3.37)

Note that β6 is the smoothness indicator of 6 point stencil for the sixth order interpolation

and replaced by the original form of β3. The flux f̂i;1/2 can be divided into the consistent

part and the dissipation part as follows[78, 33]:

f̂i;1/2 =
1

60
(f̂i;−2 − 8f̂i;−1 + 37f̂i;0 + 37f̂i;1 − 8f̂i;2 + f̂i;3)︸ ︷︷ ︸

consistent part

+
1

60

(
(20ω0 − 1)f

′′′

0 − (10(ω0 + ω1)− 5)f
′′′

1 + (1− 20ω3)f
′′′

2

)
︸ ︷︷ ︸

dissipation part

, (3.38)

where the first term and the second term are the consistent part and the dissipation

part, respectively, and f
′′′

l are as follows:

f
′′′

0 = fi;1 − 3fi;0+3fi;−1 − fi;−2,

f
′′′

1 = fi;2 − 3fi;1 + 3fi;0 − fi;−1,

f
′′′

2 = fi;3 − 3fi;2 + 3fi;1 − fi;0. (3.39)
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The dissipation part has only high order derivatives[33], so that it can be purely behaved

as numerical dissipation. We add the term in the detected shocklets region. In the actual

computation, the sixth order WENOCU scheme is adopted to the characteristic fields

with Roe average and the flux of the dissipation part F̂wenodisp
i;1/2 is obtained, where the low

dissipation Lax-Friedrichs splitting[79] is used for the flux splitting. Using the fluxes of

the skew symmetric scheme F̂ skew
i;1/2 and the dissipation part F̂wenodisp

i;1/2 , the numerical flux

of the whole region F̂whole
i;1/2 is determined as follows:

F̂whole
i;1/2 =

{
F̂ skew
i;1/2 (for smooth region)

F̂ skew
i;1/2 + F̂wenodisp

i;1/2 (for shocklets region).
(3.40)

3.2.2 Time integration scheme

In the present study, the classical fourth order Runge-Kutta method is used. We start

with a differential equation:

∂ϕ

∂t
= g(ϕ, t). (3.41)

(3.42)

In the Runge-Kutta method, the value at (n+1) time step ϕn+1 is given by the estimated

gradients kl;

k1 = g(ϕn, tn), (3.43)

k2 = g((ϕn +∆t/2)k1, tn +∆t/2) (3.44)

k3 = g((ϕn +∆t/2)k2, tn +∆t/2), (3.45)

k4 = g((ϕn +∆t)k3, tn +∆t), (3.46)

ϕn+1 = ϕn +
∆t

6
(k1 + 2k2 + 2k3 + k4), (3.47)

where ∆t is the time step. The final gradient is determined by a weighted average of

four gradients k1 − k4. Each gradient is computed in the following steps:

1. k1 is the gradient at the present time.

2. k2 is the gradient at the intermediate point tn+∆t/2 which are given by assuming

the gradient to be k1 at tn ≤ t ≤ tn +∆t/2.

3. k3 is the recalculated gradient at the intermediate point tn+∆t/2 which are given

by assuming the gradient to be k2 at tn ≤ t ≤ tn +∆t/2.
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4. k4 is the gradient at the next time (tn + ∆t) which are given by assuming the

gradient to be k3 at tn ≤ t ≤ tn +∆t.

3.2.3 Boundary Conditions

Periodic Boundary Condition

The periodic boundary conditions are used in all directions for the isotropic compressible

turbulence, and in the streamwise and spanwise directions for the temporally evolving

mixing layer. Additional grid points are used in addition to the computational grids.

Ten grid points for the isotropic compressible turbulence, and twelve points for the

temporally evolving compressible mixing layer are overlapped for the interpolation. The

information of flow variables Q in the ith direction are interpolated in the following way:

Qi=1 = Qi=imax−isleeve+1,

Qi=2 = Qi=imax−isleeve+2,
...

Qi=isleeve/2−1 = Qi=imax−isleeve/2−1,

Qi=isleeve/2 = Qi=imax−isleeve/2, (3.48)

Qi=imax−isleeve/2+1 = Qi=isleeve/2+1,

Qi=imax−isleeve/2+2 = Qi=isleeve/2+2,

...

Qi=imax−1 = Qi=isleeve−1,

Qi=imax = Qi=isleeve . (3.49)

Note that imax = icomp+isleeve is the total grid point in the computation, where icomp is the

grid point for the computational region and isleeve is the grid point for the interpolation,

so that the index for the computational domain corresponds to (isleeve/2 + 1 ≤ i ≤
icomp + isleeve/2).

Buffer region

For the temporally evolving compressible mixing layer, the boundary for the transverse

direction is set to be very far from the computational region. Total 72 grid points for
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both upper and lower directions are used. The stretching ratio for the buffer grids are

set to be 5% at |zedge| ≤ |z| ≤ |zedge|+ 20δθ0 and 20% at |z| ≥ |zedge|+ 20δθ0 where zedge

is the position at the edge of the computational region and δθ0 is the initial momentum

thickness, respectively.



Chapter 4

Sound source characteristics in

isotropic compressible turbulence

In this chapter, the turbulent Mach number dependence on sound sources are investigated

using the source terms of the Lighthill equation[12] which are numerically computed

by DNS results of the isotropic compressible turbulence. Simulation parameters are

shown in Tab. 4.1. We compute total 15 cases. The main discussion is conducted by

the highest Reynolds number Rλ0 = 130 corresponding to series A, whereas the lower

Reynolds number Rλ0 = 100 and Rλ0 = 70 (series B and C) are used to investigate the

Reynolds number dependence. Note that A10’ and A10” are used for verification study.

The normalization is conducted by the root mean square (rms) value of the considered

valuable, unless otherwise noted.

4.1 Development of flow and grid sensitivity

The isotropic compressible turbulence decays temporally, so that the determination of the

time for comparison between cases is necessary. In the present study, time is normalized

by the initial values of large eddy turn over time τ = LI/
√

< u2
i /3 >. The integral scale

LI is defined as;

LI =
3π

2
√
< u2

i >

∫ kmax

0

E(k)

k
dk, (4.1)

where k is the magnitude of the wave number. To determine a quasi-steady state,

the enstrophy W =< |ω|2 > and the velocity derivative skewness Sk are often used in

the decaying isotropic turbulence[80, 81] where ω is vorticity. The velocity derivative

41



42
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COMPRESSIBLE TURBULENCE

Case Mt0 Rλ0 Mt steady Rλ steady Resolution N3 kmaxη

A02 0.2 130 0.11 32 5123 6.29
A03 0.3 130 0.17 32 5123 6.31
A04 0.4 130 0.22 32 5123 6.35
A05 0.5 130 0.29 33 5123 6.40
A06 0.6 130 0.33 33 5123 6.49
A07 0.7 130 0.38 33 5123 6.59
A08 0.8 130 0.42 33 5123 6.75
A09 0.9 130 0.45 33 5123 6.91
A10 1.0 130 0.48 32 5123 7.22
A10’ 1.0 130 0.48 22 3843 5.34
A10” 1.0 130 0.46 24 2563 3.69
B02 0.2 100 0.12 29 3843 5.59
B10 1.0 100 0.48 28 3843 6.44
C02 0.2 70 0.12 24 2563 4.96
C10 1.0 70 0.48 24 2563 5.64

Table 4.1: Parameters used in the direct numerical simulation. Mt0 andRλ0 are the initial
values of turbulent Mach number and Taylor micro scale Reynolds number. Mt steady and
Rλ steady and kmaxη are the turbulent Mach number, the Taylor micro scale Reynolds
number, and the resolution parameter at the quasi steady state: t/τ0 = 3 for case A;
t/τ0 = 2.78 for case B; t/τ0 = 2.39 for case C where τ0 is the initial value of the large
eddy turn over time.
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skewness is defined as follows:

Sk =
< ((∂ui/∂xi)

2/3 >

[< ((∂ui/∂xi)2/3 >]3/2
. (4.2)

The time history of the enstrophy and the velocity derivative skewness for Rλ0 = 130 are

shown in Figs. 4.1 (a) and 4.1 (b), respectively. The value of the enstrophy is normalized

by its initial value. The enstrophy has passed the peak after t/τ0 = 2 and the velocity

derivative skewness reaches the steady negative value of around −0.5 at t/τ0 = 3 for all

cases. Those indicate that turbulence developed enough and show nonlinear dynamics

with the smallest scales. Therefore, we determine the time t/τ0=3 as a steady state and

compare the results at that time. At t/τ0 = 3, the kinetic energy E =< u2
i > decreases

around 33% of the initial state for all cases, and almost decay similarly between cases

except for the initial transient (Fig. 4.2). Note that the lower Reynolds number cases

develops faster than the cases of Rλ0 = 130, so that we chose the time t/τ0 = 2.39 for

Rλ0 = 70 and t/τ0 = 2.78 for Rλ0 = 100 when the kinetic energy reaches 33% of the

initial values. At the selected times, the enstrophy and the velocity derivative skewness

also showed the same sign of the nonlinear characteristics discussed above. We use those

selected time for the discussion hereafter.

Before the main discussion, the verification study is conducted. In the computation

of the isotropic turbulence, the validation is very difficult to conduct due to lack of the

experimental data, so that grid sensitivity is checked, instead. In order to asses the

grid sensitivity, we consider the velocity power spectra of two components based on the

Helmholtz decomposition:

u = ui + uc, (4.3)

where the incompressible component ui and the compressive component uc satisfy ∇ ·
ui = 0 and ∇ × uc = 0, respectively. The case Mt0 = 1.0 at Rλ0 = 130 is shown in

Fig. 4.3 with different resolutions where the selected case shows the most probability of

shocklets occurrence, so that the necessity of resolution is the highest. The spectra of the

incompressible component shows very good agreement between cases. Also, resolution

N3 = 512 achieves good grid convergence for the compressive component of the velocity

spectra which are highly related with shocklets. In addition to the discussion above, the

resolution parameter kmaxη based on the maximum value of wave number kmax and the

Kolmogorov length scale η = [(< µ/ρ >)3/ < ε/ρ >]1/4 is shown in Tab. 4.1. Note

that ε = τijSij is the dissipation where Sij = 1/2 (∂ui/∂xj + ∂uj/∂xi) is the strain rate
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Figure 4.1: Time history of (a) enstrophy and (b) velocity derivative skewness for Rλ0 =
130: —, Mt0 = 0.2; · · ·, Mt0 = 0.4; − · −, Mt0 = 0.6; ·· ··, Mt0 = 0.8; – –, Mt0 = 1.0. Note
that the value of enstrophy is normalized by its initial value.
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Figure 4.2: Time history of the kinetic energy for Rλ0 = 130: —,Mt0 = 0.2; ···,Mt0 = 0.4;
− · −, Mt0 = 0.6; ·· ··, Mt0 = 0.8; – –, Mt0 = 1.0. Note that the value is normalized by its
initial value

tensor. All cases except for the verification case A10” are kmaxη ≃ 5 or larger which are

much larger values of the criteria for DNS of incompressible turbulence kmax ∼ 1, so that

the smallest scale turbulent characteristics are well resolved in our simulation. Note that

we set the higher resolution from the viewpoint of the criteria of incompressible DNS to

capture the characteristics of shocklets which take important role of sound sources in the

higher turbulent Mach numbers. Overall, the smallest scale of turbulence and shocklets

are well captured in the present simulation. The same confirmation has been done also

for Rλ0 = 100 and Rλ0 = 70, and the resolution N3 = 3843 and N3 = 2563 are selected

for those cases.
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(a)

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

100 101 102

E
u i

(k
) 
/ u

02

k λ0

N3=5123

N3=3843

N3=2563

(b)

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

100 101 102

E
u c

(k
) 
/ u

02

k λ0

N3=5123

N3=3843

N3=2563

Figure 4.3: Velocity spectra of two components; (a) incompressible component and (b)
compressive component for Mt0 = 1.0, Rλ0 = 130 at t/τ0 = 3: —, N3 = 5123; · · ·,
N3 = 3843; − · −, N3 = 2563.
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4.2 Mach number dependence on sound sources

In this subsection, the overall trend of the turbulent Mach number dependence on the

source terms of the Lighthill equation are analyzed with the case Rλ0 = 130. The

Lighthill equation [12] is defined as follows:

∂2ρ

∂t2
− c20∇2ρ =

∂2Tij

∂xi∂xj

, (4.4)

where Tij is the Lighthill’s turbulent stress tensor written as;

Tij = ρuiuj + δij[p− p0 − c20(ρ− ρ0)] + µ
(∂ui

∂xj

∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
. (4.5)

Note that p0, ρ0, c0 are the initial values of the pressure, density and the speed of

sound, respectively. The second term (entropy component) is exactly zero, if the flow

is isentropic, so that it is often neglected in the low Mach number flows. The third

term is the viscous stress tensor τij. For the higher Reynolds numbers, this term is also

considered to be negligible. Thus, the first term of the Reynolds stress contribution is

often considered to be the main sound source in the low Mach number turbulent flows.

We analyze all components above, however, because the characteristics of three terms in

the higher Mach number flows have not been well understood. Also, a previous study

showed that the entropy term has non-negligible value even in the low convective Mach

number mixing layer due to the dissipation generated around vortices[60], so that all

components should be carefully discussed in all range of Mach numbers. In this study,

we mostly investigate the sound source characteristics by using the sound source itself

∂2Tij/∂xi∂xj, not by the Lightlhill’s turbulent stress tensor Tij. Thus, for discussion, we

classify the sound source into following three terms:

SRe =
∂ρuiuj

∂xi∂xj

,

Sen =
∂(δij[p− p0 − c20(ρ− ρ0)])

∂xi∂xj

,

Svis =

∂

(
µ
(

∂ui

∂xj

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

))
∂xi∂xj

,

Sall = SRe + Sen + Svis, (4.6)

where SRe is the Reynolds stress term, Sen is the entropy term, Svis is the viscous term,

and Sall is the sum of three terms (called as term total), respectively. To begin with,

the contributions of each source term are analyzed. For the discussion, the sound source



48
CHAPTER 4. SOUND SOURCE CHARACTERISTICS IN ISOTROPIC

COMPRESSIBLE TURBULENCE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S x
2  / 

S a
ll2

Mt0

Re
en
vis

Figure 4.4: The ratio of each term to the overall sound source in the sound source
strength for Rλ0 = 130: —, Reynolds stress term SRe; · · ·, Entropy term Sen; − · −,
Viscous term Svis. Note that the values are spatially averaged.

strength is defined by the square of source term. The ratio of each source term to the

term total in the sound source strength is shown in Fig. 4.4. Note that the values

are spatially averaged. The Reynolds stress term shows the most contribution over

the range of turbulent Mach numbers as expected. However, the entropy term is not

negligible even for the lower turbulent Mach number cases which is differently from the

theoretical prediction where the entropy term is negligible in the low Mach number flows.

Also, the viscous term can not be negligible for the higher turbulent Mach number cases

(Mt0 ≥ 0.8). The other important point is that the ratio of the Reynolds stress term

exceeds the value of unity for Mt0 = 1.0, so that two or all terms are canceled out each

other. For the lower turbulent Mach number cases, on the other hand, source terms

are intensified each other, because each value is below unity. Detail discussion for the

relationship between terms is conducted after discussing the spectra characteristics.



4.2. MACH NUMBER DEPENDENCE ON SOUND SOURCES 49

(a)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

100 101 102

E
S a

ll(k
) 
/ (

ρ 0
2  u

04 ) 
· λ

04

k λ0

Mt0=0.2
Mt0=0.4
Mt0=0.6
Mt0=0.8
Mt0=1.0

(b)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

100 101 102

E
S R

e(k
) 
/ (

ρ 0
2  u

04 ) 
· λ

04

k λ0

Mt0=0.2
Mt0=0.4
Mt0=0.6
Mt0=0.8
Mt0=1.0

(c)

10-6

10-5

10-4

10-3

10-2

10-1

100

100 101 102

E
S e

n(k
) 
/ (

ρ 0
2  u

04 ) 
· λ

04

k λ0

Mt0=0.2
Mt0=0.4
Mt0=0.6
Mt0=0.8
Mt0=1.0

(d)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100 101 102

E
S v

is
(k

) 
/ (

ρ 0
2  u

04 ) 
· λ

04

k λ0

Mt0=0.2
Mt0=0.4
Mt0=0.6
Mt0=0.8
Mt0=1.0

Figure 4.5: Sound source spectra of (a) term total Sall, (b) Reynolds stress term SRe, (c)
entropy term Sen and (d) viscous term Svis for Rλ0 = 130: —, Mt0 = 0.2; · · ·, Mt0 = 0.4;
− · −, Mt0 = 0.6; ·· ··, Mt0 = 0.8; – –, Mt0 = 1.0.
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Figure 4.6: Sound source spectra for (a) Mt0 = 0.2 and (b) Mt0 = 1.0 at Rλ0 = 130: —,
term total Sall; · · ·, Reynolds stress term SRe; − · −, entropy term Sen; ·· ··, viscous term
Svis; – –, simple sum of spectra SRe+Sen+Svis. Note that the viscous term is not shown
for Mt0 = 0.2 due to its negligible value.
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For the spectra, the normalization is conducted by the initial values of density ρ0,

the magnitude of velocity u0 and the Taylor micro scale λ0, where those values are

spatially averaged. Fig. 4.5 shows sound source spectra for five different turbulent

Mach number cases. The spectra of the term total have two characteristics. One is the

decrease of the peak value with increasing the turbulent Mach number and the other is

the appearance of the higher wave number components for the higher turbulent Mach

number cases Mt0 = 0.8−1.0. Similar trend is observed in the Reynolds stress term and

the entropy term, though the degree of change is somewhat different: The peak value

decreases more in the entropy term, and the higher wave number components increase

more in the Reynolds stress term. The decrease of the peak values would be affected

by the compressibility effects in which the vortical motion is suppressed[49, 82]. Note

that the ratio of the entropy term to the overall sound source is expected to increase

with increasing the turbulent Mach number, because isentropic flow assumption is not

suitable any more in the moderate to high turbulent Mach numbers. The expectation in

which the ratio of the entropy term increases with increasing the turbulent Mach number

is confirmed in Fig. 4.4, though, the strength itself decreases due to the compressibility

effects. The results of the viscous term also show the trend in which the values of

the higher wave number components increases as the turbulent Mach number increases.

The appearance of the higher wave number components for all source terms implies that

the different sound generation mechanism between lower and higher turbulent Mach

numbers.
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Mt0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Corr(SRe, Sen) 0.38 0.36 0.32 0.28 0.22 0.15 0.01 -0.23 -0.44
Corr(SRe, Svis) - - - - - - -0.01 -0.08 -0.16
Corr(Sen, Svis) - - - - - - 0.13 0.03 0.02

Table 4.2: Correlation coefficients between source terms for Rλ0 = 130.

The spectra of the terms are compared in Fig. 4.6. The viscous term is shown only in

the figures of the higher turbulent Mach number case, because the values in the smaller

turbulent Mach number cases are too small to discuss. In order to check whether terms

are intensified or weakened each other, the spectra of the Reynolds stress term, the

entropy term and the viscous term are simply sum up and shown by the line – –. The

line does not contain the effects of canceling out or constructive interference between

terms, because it is the sum of the square values. If the term total has larger value

than the simple sum up spectra, each term is intensified each other, and vice versa. In

Fig. 4.6 (a), the term total spectra show the highest value, so that the Reynolds stress

term and the entropy term are intensified each other for Mt0 = 0.2. Those terms are

intensified at the broad range of the wave numbers. In addition, it is worth noting that

the spectrum of the entropy term has the peak at the higher wave number than that of

the Reynolds stress term. This is because the entropy term is generated by the diffusion

process as discussed in Sec. 4.3. On the other hand, the spectra of simple sum of terms

show the highest value for Mt0 = 1.0, so that two terms or all terms are canceled out

each other. The trend is remarkable at the higher wave numbers. Thus, the results

suggest that a smaller scale event should be the key for the terms to be canceled out

each other. The reason will be discussed in Sec. 4.4. For more precise discussion, terms

are compared one by one using the joint probability density function (JPDF). In Fig.

4.7, we show JPDF of the Reynolds stress term SRe and the entropy term Sen. Terms

are normalized by the rms values. Positive correlation is observed for Mt0 = 0.2. The

correlation decreases with increasing the turbulent Mach number, and case Mt0 = 0.8

shows almost no correlation. For the highest turbulent Mach number case Mt0 = 1.0,

then, shows negative correlation. Correlation coefficients in Tab. 4.2 also show the trend

where the lower turbulent Mach numbers show poisitive correlation, whereas the higher

turbulent Mach numbers show negative correlation. The reason why the trend is changed

depending on the turbulent Mach number is that eddy shocklets become important sound

sources for the higher turbulent Mach numbers in addition to vortices. The remaining

relationships regarding the viscous term are also considered. JPDF of the viscous term
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Figure 4.7: log10PDF(SRe/SRe rms, Sen/Sen rms) for (a) Mt0 = 0.2, (b) Mt0 = 0.4, (c)
Mt0 = 0.6, (d) Mt0 = 0.8 and (e) Mt0 = 1.0 at Rλ0 = 130: Contour lines are —, 10−2;
− · −, 10−4; ·· ··, 10−6; – –, 10−8.
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and the Reynolds stress term is shown in Fig. 4.8, and that of the viscous term and the

entropy term is shown in Fig. 4.9. Note that the only higher turbulent Mach number

cases are shown in Figs. 4.8 and 4.9, because the viscous term is negligible in the lower

turbulent Mach number cases. Figures do not show clear correlation differently from

Fig. 4.7 (a) or Fig. 4.7 (e). Correlation coefficients (Tab. 4.2) also confirm that there is

no clear correlation between the viscous term and the remaining terms. To summarize,

the results show the different sound source characteristics between the lower turbulent

Mach number and higher turbulent Mach number flows. In the next section, the sound

source characteristics in the lower turbulent Mach numbers are discussed in detail. After

the discussion, detail investigation of the higher turbulent Mach numbers is conducted.
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Figure 4.8: log10PDF(SRe/SRe rms, Svis/Svis rms) for (a) Mt0 = 0.8, (b) Mt0 = 1.0 for
Rλ0 = 130: Contour lines are —, 10−2; − · −, 10−4; ·· ··, 10−6; – –, 10−8.
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Figure 4.9: log10PDF(Sen/Sen rms, Svis/Svis rms) for (a) Mt0 = 0.8, (b) Mt0 = 1.0 for
Rλ0 = 130: Contour lines are —, 10−2; − · −, 10−4; ·· ··, 10−6; – –, 10−8.
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4.3 Sound sources in low turbulent Mach numbers

In this subsection, we use Mt0 = 0.2 as the representative of low turbulent Mach number

cases. Fig. 4.4 showed that the Reynolds stress term and the entropy term are two main

sound sources in the lower turbulent Mach numbers, so that those terms are analyzed.

Firstly, we discuss the Reynolds stress term by focusing on the similarity with the second

invariant of the velocity gradient tensor. The second invariant of the velocity gradient

tensor is defined as;

Q = ξ1ξ2 + ξ2ξ3 + ξ3ξ1 =
1

2
(P 2 − SijSij + ΩijΩij), (4.7)

where P = − (ξ1 + ξ2 + ξ3) = − ∂ui/∂xi = − θ, Sij = 1/2 (∂ui/∂xj + ∂uj/∂xi)

and Ωij = 1/2 (∂ui/∂xj − ∂ui/∂xj) are the first invariant of the velocity gradient tensor

(negative dilatation), the strain rate tensor and the rotation rate tensor, respectively, and

ξi are the three eigenvalues of the velocity gradient tensor. In the nearly incompressible

regime, P is negligibly small due to almost divergence free flow field; thus, (Eq. 4.7) can

be written as follows:

Q = Qinc =
1

2
(−SijSij + ΩijΩij) = −1

2

∂ui

∂xj

∂uj

∂xi

. (4.8)

Thus, the Reynolds stress term in nearly incompressible regime is considered as well.

Assuming constant density, the Reynolds stress term is written as;

SRe inc = ρ0
∂2(uiuj)

∂xi∂xj

= ρ0
∂

∂xj

(∂uiuj

∂xi

)
= ρ0

∂

∂xj

(
ui
∂uj

∂xi

+ uj
∂ui

∂xi

)
= ρ0

∂

∂xj

(
ui
∂uj

∂xi

)
= ρ0

∂ui

∂xj

∂uj

∂xi

+ ui
∂

∂xi

(∂uj

∂xj

)
= ρ0

∂ui

∂uj

∂uj

∂xi

, (4.9)

where ∂xk/∂uk ≃ 0 is used to have 4th and 6th equality. (Eq. 4.8) and (Eq. 4.9)

show that the second invariant and the Reynolds stress term indicate almost the same

distribution (but signs are opposite) in low Mach number flows[60]. The Reynolds stress
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(a)

(b)

Figure 4.10: Cross section of (a) normalized Reynolds stress term SRe/SRe rms and (b)
normalized negative second invariant −Q/Qrms at z/2π=0.5.

term and the negative second invariant of the velocity gradient tensor for Mt0 = 0.2

is shown in Fig. 4.10. Those show almost the same distributions as expected, so that

vortices are one of the main sound sources in the lower turbulent Mach number cases.

From the results of Fig. 4.4, the assumption of isentropic flow is not applicable due to

the existence of the entropy term. To understand the reason, we consider the following

entropy equation:

ρT
(∂s
∂t

+ (∇ · u)s
)
= κ∇2T + ε, (4.10)

where κ is the thermal conductivity and ε is the dissipation. Entropy equation shows that
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Corr(|Sen|, |κ∇2T |) Corr(|Sen|, |ε|)
0.81 0.44

Table 4.3: Correlation coefficients between the magnitude of the entropy term Sen and
the right-hand side terms of entropy equation (κ∇2T and ε) for Mt0 = 0.2, Rλ0 = 130
where ε is the dissipation and κ∇2T is the temperature contribution.

non-uniformity of the entropy is caused by κ∇2T (called as temperature contribution)

and the dissipation ε, because the flow is nearly incompressible i.e. ∇ · u ≃ 0. Those

terms and the entropy term are shown in Fig. 4.11 with contour lines of the positive

values of the second invariant Q which represents vortices. The entropy term and the

temperature contribution have similar distributions around vortices. Also, some strong

dissipation regions around vortices correspond to the entropy term existence regions.

Those two terms are related with the diffusion process, so that those leads the smaller

scales in the entropy term. Thus, the spectrum of the entropy term shows the peak

at the higher wave number than that of the Reynolds stress term (Fig. 4.6 (a)). In

addition, the correlation coefficients of the magnitude of the entropy term and those of

right-hand side terms of the entropy equation in Tab. 4.3 indicate that the production

of the entropy term is affected more by the temperature contribution κ∇2T than the

dissipation ε. Note that both the temperature contribution κ∇2T and the dissipation ε

are related with temperature, because the dissipation is related with the thermal energy.

Thus, the change in temperature is the key to determine the distributions of the entropy

term. In order to study how the change in temperature affects the entropy term, the

entropy term (Eq. 4.6) is divided into two terms as follows:

Sen = ∇2p− c20∇2ρ

Senp = ∇2p

Senρ = c20∇2ρ, (4.11)

where Senp is the pressure contribution of the entropy term and Senρ is the density

contribution. The cross section of the entropy term Sen, those of the pressure contribution

Senp and the negative density contribution Senρ are shown in Fig. 4.12. Note that the

value of the density contribution is set to be negative for visibility. The distributions

of the pressure contribution and the negative density contribution are similar, but the

magnitude is larger for the density contribution than that for the pressure contribution.

Thus, the distributions of the total entropy term become more like those of the negative
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(a)

(b)

(c)

Figure 4.11: Cross section of (a) normalized entropy term Sen/Senrms and (b) normalized
temperature contribution κ∇2T/(κ∇2T )rms and (c) normalized dissipation ε/εrms with
contour lines of normalized second invariant of the velocity gradient tensor Q/Qrms at
z/2π=0.5. The range of contour lines is 0 ≤ Q/Qrms ≤ 2.
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Corr(Senp , Q) Corr(Senρ , Q)

0.99 0.88

Table 4.4: Correlation coefficients between divided entropy term (Senp and Senρ) and
second invariant of the velocity gradient tensor Q for Mt0 = 0.2, Rλ0 = 130.

density contribution. One possible explanation for them is that only density is affected

by temperature, whereas the pressure is determined by the velocity field in the form of

Poisson equation in nearly incompressible flows. In incompressible flows, the pressure

contribution ∇2p is exactly the same as the second invariant of the velocity gradient

tensor Q, so that the correlation coefficients between ∇2p and Q in Tab. 4.4 supports

the discussion. The value of Corr(Senp , Q) is almost unity, whereas Corr(Senρ , Q) is

below 0.9. Thus, only density is affected by temperature. To summarize, the entropy

term is generated by the temperature contribution κ∇2T and the dissipation ε of the

entropy equation which are both related with change in temperature. Only the density

contribution of the entropy term is affected by the change in temperature. Those lead

to the larger magnitude in the density contribution of the entropy term. It is worth

noting that the pressure contribution of the entropy term (which have almost the same

distributions as Q, and so, as −SRe) and the density contribution show, basically, similar

distributions, but the magnitude of the density contribution become larger affected by

temperature, so that the total entropy term partly shows similar distributions with SRe

(−Q). Thus, the Reynolds stress term and the entropy term are partially intensified

each other.

As the final topic of this subsection, the Reynolds number dependence is discussed.

The change in the characteristics depending on the Reynolds number are explained by

using sound source spectra for three different Reynolds number cases (Fig. 4.13). Note

that the viscous term is not shown here due to its negligible value. The larger peak values

and higher wave number components appear with increasing the Reynolds number, but

the basic shape of spectra does not change for all terms. Those results are acceptable,

because the characteristics are corresponding to those of higher Reynolds number flows.

Note, however, that the contribution of the entropy term should be carefully discussed.

This is because the entropy term is generated by the diffusion process (κ∇2T and ε),

so that the effects would be smaller with increasing the Reynolds number due to the

smaller values of thermal conductivity κ and viscosity µ in the higher Reynolds number

flows, though the trend was not observed in the present range of the Reynolds number.
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(a)

(b)

(c)

Figure 4.12: Cross section of (a)normalized entropy termSen/Sen rms and (b)normalized
pressure contribution of entropy term ∇2p/(∇2p)rms and (c) normalized negative density
contribution of entropy term −c20∇2ρ/(c20∇2ρ)rms with contour lines of normalized second
invariant of the velocity gradient tensor Q/Qrms at z/2π=0.5. The range of contour lines
is 0 ≤ Q/Qrms ≤ 2.
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Figure 4.13: Reynolds number dependence on sound source spectra of (a) term total Sall,
(b) Reynolds stress term SRe and (c) entropy term Sen for Mt0 = 0.2: —, Rλ0 = 130; · · ·,
Rλ0 = 100; − · −, Rλ0 = 70.



64
CHAPTER 4. SOUND SOURCE CHARACTERISTICS IN ISOTROPIC

COMPRESSIBLE TURBULENCE

θ/θrms [−∞,−2.0] [−2.0,−1.0] [−1.0, 0.0] [ 0.0, 1.0] [ 1.0, 2.0] [ 2.0, ∞]

Fractions of S2
all[%] 26.4 10.0 24.4 29.0 8.0 2.2

Fractions of S2
Re[%] 48.7 9.5 17.0 18.0 5.2 1.6

Fractions of S2
en[%] 30.1 8.4 23.2 29.0 7.5 1.8

Fractions of S2
vis[%] 75.7 5.0 5.2 5.0 3.9 5.2

Table 4.5: Percentage of sound source strength in flow regions with various dilatation
levels for Mt0 = 1.0.

4.4 Sound sources in high turbulent Mach numbers

JPDF of the Reynolds stress term and the entropy term in the higher turbulent Mach

numbers show negative correlation, whereas it shows positive correlation in the lower

turbulent Mach numbers (Fig. 4.7). An important difference between the lower turbu-

lent Mach numbers and higher turbulent Mach numbers is the level of dilatation. For the

higher turbulent Mach numbers, the level of dilatation increases due to the compressibil-

ity. Previous studies[83, 52, 84] conducted conditional sampling by the local dilatation

level and showed that the statistical properties in strong compression region are changed

significantly due to the existence of shocklets. We follow their analysis and apply to the

analysis of sound sources. Fig. 4.14 shows JPDF of the Reynolds stress term and the

entropy term conditioned on various dilation levels. The results clearly showed that the

negative correlation is shown in the strong compression region θ/θrms ≤ −2. Also, the

compression region is one of the most contributer to the overall sound source strength

for all terms (Tab. 4.5). Those results suggest the appearance of the important sound

sources in strong compression region. For visualization, we show the iso-surface of dila-

tion at θ/θrms = −3 colored by the Reynolds stress term and the entropy term in Fig.

4.15. Iso-surface of dilatation shows sheet-like structures which are similar to the re-

ported structures of shocklets[52]. Also, both terms show large values on the iso-surface

of dilatation. In addition, the distributions of the Reynolds stress term and the entropy

term show opposite signs. Therefore, shocklets in strong compression region are strong

sound sources and lead canceling out of the Reynolds stress term and the entropy term.
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Figure 4.14: log10PDF(SRe/SRe rms, Sen/Sen rms) for Mt0 = 1.0, Rλ0 = 130 at (a) θ/θrms ≤
−2, (b) −2 ≤ θ/θrms ≤ −1, (c) −1 ≤ θ/θrms ≤ 0, (d) 0 ≤ θ/θrms ≤ 1, (e) 1 ≤ θ/θrms ≤
2 and (f) θ/θrms ≥ 2: Contour lines are —, 10−2; − · −, 10−4; ·· ··, 10−6; – –, 10−8.
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(a)

(b)

Figure 4.15: Distributions of (a) normalized Reynolds stress term SRe/SRe rms and (b)
normalized entropy term Sen/Sen rms on the iso-surface of normalized dilatation θ/θrms =
−3.
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To discuss in detail, shocklets extraction is conducted. The method used here is

similar to the previous studies[5, 51, 70]. The brief procedure to extract shocklets are as

follows:

1. The local minimum of dilatation at θ/θrms ≤ −3 is detected.

2. The shock normal direction is determined by ∇p/|∇p|.

3. The physical values (including pressure and density) in lines of shock normal di-

rection is calculated using tri-linear interpolation.

4. If the pressure ratio pr and the density ratio ρr between upstream and downstream

(pr − 1)(ρr − 1) < 0, the extracted shocklets is not used.

5. If the pressure ratio pr < 1, invert the pressure ratio to 1/pr and the density ratio

to 1/ρr.

6. The reference values of pressure ratio pr and density ratio ρr are determined from

the computed values on the shock normal lines by minimizing following function

based on the ideal Rankine-Hugoniot condition:

C =
∣∣∣ρr − (γ + 1)pr + γ − 1

(γ − 1)pr + γ + 1

∣∣∣, (4.12)

where C = 0 means that the values satisfy the Rankine-Hugoniot condition exactly.

Fig. 4.16 shows the distributions of dilatation across shocklets for Mt0 = 1.0, Rλ = 130

where d is the distance from the shock and η is the Kolmogorov length scale. The

positive d and the negative d show the upstream and the downstream of shocklets. The

shape of dilatation shows very good agreement with that of the extracted shocklets in the

previous study[51]. The computed reference values of the pressure ratio pr and density

ratio ρr are shown in Fig 4.17 as scatter plots. The plots are also very good agreement

with the ideal Rankine-Hugoniot condition represented by the solid line.
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Figure 4.16: Distribution of normalized dilatation θ/θrms across shocklets for Mt0 =
1.0, Rλ0 = 130. Distance d is normalized by the Kolmogorov length scale η. The positive
d and the negative d show the upstream and the downstream of shocklets.
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Figure 4.17: Pressure ratio pr v.s. density ratio ρr in the normal direction to the extracted
shocklets forMt0 = 1.0, Rλ0 = 130. Roughly 22000 points are used for the scattered plots.
The solid line represents the ideal Rankine-Hugoniot relation.
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Then, we discuss the sound sources around shocklets. Fig. 4.18 shows the sound

source distributions across shocklets for Rλ0 = 130,Mt0 = 1.0. All terms have large

values near shocklets. The term total Sall and the Reynolds stress term SRe have similar

shape (positive peak at the back and negative peak at the front of shocklets), so that

the Reynolds stress term is the main sound sources across shocklets. The entropy term

also has two peaks across shocklets, but the sign is opposite to that of the Reynolds

stress term. The results confirm that the Reynolds stress term and the entropy term are

canceled out each other across shocklets. The viscous term, on the other hand, has dif-

ferent trend which has strong negative peak at the position of shocklets and two positive

peaks at the front and back of shocklets. The reason why the Reynolds stress term and

the entropy term are canceled out each other and the viscous term shows different trend

are explained using one-dimensional shock relation with the Lighthill’s turbulent stress

tensor (Eq. 4.5). Let (1) be the upstream value and (2) be the downstream value of the

shock (Fig. 4.19). In one dimension, the Reynolds stress component of the Lighthill’s

turbulent stress tensor is written as ρu2. The mass conservation law ρ(1)u(1) = ρ(2)u(2)

leads to a conclusion that the ratio of the Reynolds stress components across shock is the

same as that of the velocity. Also, the ratio of the entropy components of the Lighthill’s

turbulent stress tensor across shock is determined by the pressure ratio and the density

ratio. The shock relation of density, velocity and pressure are written as follows:

ρ(2)
ρ(1)

=
(γ + 1)M2

(1)

(γ − 1)M2
(1) + 2

=
u(1)

u(2)

,

p(2)
p(1)

=
2γM2

(1) − (γ − 1)

γ + 1
. (4.13)

As p(2)/p(1) > ρ(2)/ρ(1) > 1, the change direction across shock of the entropy components

((p − p0) − c20(ρ − ρ0)) is the same as that of density (or pressure). (Eq. 4.13) shows

that the change direction of density across shock is the opposite to that of velocity.

Therefore, the change direction across shock of the Reynolds stress component (same

as velocity) is opposite to that of the entropy component (same as density), then each

term is canceled out each other across shock. In addition, the viscous component in one-

dimension is written as µ∂u/∂x. As the change in µ across shocklets is small compared

to that of the first derivative of velocity, the viscosity is assumed to be constant across

shock. Thus, the distribution of viscous component corresponds to that of the first

derivative of velocity. The discussion above showed that the ratio of the Reynolds stress

component across shock is the same as that of velocity. Thus, the first derivative of the

Reynolds stress term distribution in Fig. 4.18 should correspond to that of the viscous
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Figure 4.18: Sound source distributions across shocklets for Mt0 = 1.0, Rλ0 = 130: —,
term total Sall; · · ·, Reynolds stress term SRe; − · −, entropy term Sen; ·· ··, viscous term
Svis. The values are normalized by rms value of term total Sall rms. The positive d and
the negative d show the upstream and the downstream of shocklets.

term distribution. The positive slope at the front and back of shocklets and the negative

slope near shocklets are observed in the distribution of the Reynolds stress term. If the

first derivative of the distribution is considered, two positive peaks at the front and back

of shocklets and one negative peak at near the center of shocklets are derived for the

viscous term distribution. The distribution of the viscous term in Fig. 4.18 supports the

explanation above.
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Figure 4.19: Schematic of physical quantities across one-dimensional shock. (1) is for
the upstream value and (2) is that for the downstream.
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Finally, the Mach number and the Reynolds number dependence on sound sources

across shocklets are investigated. Fig. 4.20 shows that the sound source distributions

across shocklets with five different turbulent Mach numbers. All terms show larger values

with increasing the Mach number due to the appearance of stronger shocklets for the

higher turbulent Mach number cases. The Reynolds number dependence is also shown in

Fig. 4.21. The trend is the same as that of the turbulent Mach number. Larger Reynolds

number shows larger values of sound sources. Lee et al.[48] showed that higher Reynolds

number leads to more frequent large compression events of shocklets. Therefore, the

higher Reynolds numbers also cause stronger shocklets, and then, the stronger sound

sources are created. Note that the contribution of the viscous term would become smaller

for the higher Reynolds number flows due to the smaller viscosity µ, though, the trend

was not observed in the present range of the Reynolds number.
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Figure 4.20: Turbulent Mach number dependence on sound sources across shocklets for
Rλ0 = 130: —, Mt0 = 1.0; · · ·, Mt0 = 0.9; − ·−, Mt0 = 0.8; ·· ··, Mt0 = 0.7; – –, Mt0 = 0.6.
(a) Term total Sall, (b) Reynolds stress term SRe, (c) entropy term Sen and (d) viscous
term Svis. The values are normalized by rms value of term total Sall rms. The positive d
and the negative d show the upstream and the downstream of shocklets.
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Figure 4.21: Reynolds number dependence on sound sources across shocklets for Mt0 =
1.0: —, Rλ0 = 130; · · ·, Rλ0 = 100; −·−, Rλ0 = 70. (a) Term total Sall, (b) Reynolds stress
term SRe, (c) entropy term Sen and (d) viscous term Svis. The values are normalized by
rms value of term total Sall rms. The positive d and the negative d show the upstream
and the downstream of shocklets.
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4.5 Summary of this chapter

In this chapter, sound source characteristics in the isotropic compressible turbulence

were analyzed to understand the effects of the turbulent Mach numbers. It was shown

that two sound sources appear depending on the turbulent Mach numbers.

In the lower turbulent Mach number flows, vortices are the main sound sources, so

that the Reynolds stress term is one of the main sound sources in the lower turbulent

Mach numbers as expected. In addition, the entropy term cannot be negligible even in

the lower turbulent Mach numbers. This is because the terms (κ∇2T and ε) related

with the diffusion processes (and so temperature) cause non-uniform entropy field. Only

density is affected by the change in temperature, because the pressure contribution of

the entropy term is determined by velocity field in the form of Poisson equation in nearly

incompressible flows. As the distributions of density contributions of the entropy term

and the Reynolds stress term become partially similar, the Reynolds stress term and the

entropy term are partially intensified each other. Note, however, that the contributions

of the entropy term would become smaller for the higher Reynolds number flows due to

the smaller values of the thermal conductivity and the viscosity, though the trend was

not observed in the present range of the Reynolds number. Also, the smaller scales and

larger peak values in sound sources appear with increasing the Reynolds number due to

more active turbulent motion.

In the higher turbulent Mach numbers, on the other hand, eddy-shocklets become

important sound sources in addition to vortices. All source terms show strong values

across or on shocklets. It is, however, noted that the contribution of the viscous term

for the higher Reynolds number would become smaller, because of the smaller viscosity,

though the trend also did not appear in the range of the present Reynolds number. The

Reynolds stress term and the entropy term are canceled out each other near shocklets

region. By using one-dimensional shock relation, the reason why the canceling out of

those two terms were explained. In addition, the distribution of the viscous term across

shocklets were explained as well. The higher turbulent Mach number and the Reynolds

number lead to the stronger shocklets, and then stronger sound sources.





Chapter 5

Sound source characteristics in

temporally evolving compressible

mixing layer

In this chapter, the convective Mach number and the density (temperature) ratio de-

pendence on sound sources and generated acoustic wave characteristics are investigated

by DNS of the temporally evolving compressible mixing layer. Simulation parameters

are shown in Tab. 5.1. We compute total 7 cases. The series TA corresponds to the

isothermal mixing layer in which densities at the upper and lower streams are the same,

whereas the series TB is for the variable density ratio cases. The case TB03 is used

for the purpose of validation. The normalization is conducted by the averaged value of

density ρave = 1/2(ρ1 + ρ2), the velocity difference ∆u and the momentum thickness δθ,

unless otherwise noted.

5.1 Validation

In the temporally evolving compressible mixing layer simulations, the validation study

was conducted by using nearly incompressible cases[6, 72, 85, 8] due to the existence

of some DNS databases and the corresponding experiments. We also follow the way to

validate the present computation. Fig. 5.1 shows the time history of the momentum

thickness (Eq. 2.16) for the validation case of TA03. The time is normalized by the

velocity difference ∆u and the initial momentum thickness δθ0. After a transient, the

plot shows almost linear growth at δθ/δθ0 = 6 − 11. The linear growth indicates that

the flow reaches the self-similar state, so that the validation study is conducted using

77
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Case Mc s Mt Reθ Lx × Ly × Lz Nx ×Ny ×Nz η/∆x

TA03 0.3 1 0.13 1741 343× 692× 86 512× 1025× 128 0.27
TA12 1.2 1 0.37 3106 343× 692× 86 512× 1025× 128 0.42
TA15 1.5 1 0.53 3150 343× 692× 86 512× 1025× 128 0.45
TA18 1.8 1 0.56 3167 343× 692× 86 512× 1025× 128 0.59
TB02 1.5 2 0.48 3116 343× 692× 86 512× 1025× 128 0.55
TB04 1.5 4 0.37 3073 343× 692× 86 512× 1025× 128 0.71
TB08 1.5 8 0.37 2651 343× 692× 86 512× 1025× 128 0.77

Table 5.1: Parameters used in the direct numerical simulation. Mc is the convective
Mach number, s is the density ratio, Mt is the turbulent Mach number computed at the
center of the mixing layer, Lx×Ly×Lz is the computational domain based on the initial
momentum thickness δθ0, Nx×Ny ×Nz is the resolution, ∆x is the grid spacing in the x
direction, and η is the Kolomogorov length scale. Values for the Reynolds number based
on the momentum thickness Reθ, the turbulent Mach number Mt, and the resolution
parameter η/∆x are those at the final time of the computations.

the averaged values at the time period. The mean streamwise velocity with previous

DNS data and an experimental data are shown in Fig. 5.2. The result of the present

DNS shows very good agreement with the previous works. To discuss the validity for the

turbulent statistics, the Reynolds stress is considered. The Reynolds stress is defined as

follows:

Rij =
ρu′′

i u
′′
j

ρ̄
, (5.1)

where ()′′ denotes the Favre fluctuation. In Fig. 5.3 and Fig. 5.4, various components of

the Reynolds stress are shown with the previous studies. Again, the trend and the peak

values in the present DNS are in good agreement with the previous studies. Also, the

resolution parameter defined by the grid spacing and the Kolmogorov length scale η/∆x

is the order of unity for all cases, so that the criteria of the DNS simulation is satisfied

in the present computation. Therefore, the present computation is well validated.



5.1. VALIDATION 79

 0

 2

 4

 6

 8

 10

 12

 0  200  400  600  800  1000

δ θ
 / 

δ θ
0

t∆u / δθ0

Figure 5.1: Time history of the momentum thickness for TA03.
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Figure 5.2: Normalized mean streamwise velocity u/∆u for TA03: —, present DNS;
⃝, previous DNS by Pantano and Sarkar[6]; �, previous DNS by Vaghefi et al.[8]; △,
previous experiment by Spencer and Jones[9].



80
CHAPTER 5. SOUND SOURCE CHARACTERISTICS IN TEMPORALLY

EVOLVING COMPRESSIBLE MIXING LAYER

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-1.5 -1 -0.5  0  0.5  1  1.5

(R
11

)1/
2  / 

∆u

y / δθ

Present DNS
Pantano(2002)
Vaghefi(2013)
Spencer(1971)

(b)

 0

 0.05

 0.1

 0.15

 0.2

-1.5 -1 -0.5  0  0.5  1  1.5

(R
22

)1/
2  / 

∆u

y / δθ

Present DNS
Pantano(2002)
Vaghefi(2013)
Spencer(1971)

Figure 5.3: Normalized Reynolds stress components of (a)
√
R11/∆u and (b)

√
R22/∆u

for TA03: —, present DNS; ⃝, previous DNS by Pantano and Sarkar[6]; �, previous
DNS by Vaghefi et al.[8]; △, previous experiment by Spencer and Jones[9].
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Figure 5.4: Normalized Reynolds stress components of (a)
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R33/∆u and (b)

√
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for TA03: —, present DNS; ⃝, previous DNS by Pantano and Sarkar[6]; �, previous
DNS by Vaghefi et al.[8]; △, previous experiment by Spencer and Jones[9].
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5.2 Convective Mach number dependence on sound

sources

In this subsection, the convective Mach number dependence is analyzed. As the first

topic of this subsection, the development flow is discussed. Fig. 5.5 shows the time

history of the momentum thickness for the isothermal mixing layer. The lines show

almost linear trend after δθ/δθ0 = 14 which implies flow reaches a quasi-steady state.

Flow visualization also confirms the fact (Fig 5.6). In this figure, we show the iso-

surface of the second invariant of the velocity gradient tensor and a cross section of

the dilatation at δθ/δθ0 = 6, 8, 16. Note that the incompressible version of the second

invariant of the velocity gradient tensor (Eq. 4.8) is used to extract only the strong

rotational motion of fluids. This configuration can remove the uncertainties to extract

the highly compression (i.e. shocklets) or expansion of fluids by the original version (Eq.

4.7), so that it enables us to focus only on the vortical structure. Although, the time of

transient has some dependence on cases, the results show that the turbulent transition

occur at around δθ/δθ0 = 6 − 8 for all cases, and then the flows become fully turbulent

state. At the fully turbulent state, some differences are observed. For flow field, vortices

become sparser with increasing the convective Mach number. For acoustic waves, two

remarkable differences are observed. One is the weaker acoustic waves at the far field with

increasing the convective Mach number. The other is is that the near field dilatation for

Mc = 1.5, 1.8 shows rather fluctuated properties than the case of Mc = 1.2. The detail

discussion for the difference is conducted in the following. Firstly, the characteristics

of flow field is analyzed by the energy spectra, and then, the characteristics of sound

sources and the generated acoustic waves are investigated.

5.2.1 Energy spectra

Fig. 5.6 showed that vortices become sparser with increasing the convective Mach num-

ber. Here, the flow field is analyzed by the energy spectra. The spectra are computed

at the center of the mixing layer and averaged at the time period δθ/δθ0 = 14− 20. Note

that the center of the mixing layer is defined as the position of u1 = 0. Fig. 5.7 (a) shows

the streamwise energy spectra normalized by the momentum thickness. The spectra at

the higher wave numbers do not collapse between cases. Kleinman et al.[65] showed that

the energy spectra of different Reynolds number cases collapse well with the scaling of

the Taylor micro scale (see App. C for the derivation of the Taylor micro scale) in their

Mc = 0.45 simulation. The same scaling is conducted here. The Taylor micro scale in
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Figure 5.5: Time history of momentum thickness for isothermal mixing layer:—, TA12;
· · ·, TA15; − · −, TA18.

the x direction is defined as;

λx =

√√√√ u′′
1u

′′
1

∂u′′
1

∂x1

∂u′′
1

∂x1

, (5.2)

and in the z direction is defined as;

λz =

√√√√ u′′
3u

′′
3

∂u′′
3

∂x3

∂u′′
3

∂x3

. (5.3)

The streamwise energy spectra scaled with the Taylor micro scale are shown in Fig. 5.7

(b). The spectra collapse well between cases, so that the scaling with the Taylor micro

scale is also applicable for the scaling of the different convective Mach number cases.

The spanwise energy spectra show the same trend as that of the streamwise spectra

(Fig. 5.8).
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(a)Mc = 1.2 (b)Mc = 1.5 (c)Mc = 1.8

Figure 5.6: Normalized iso-surface of incompressible second invariant of the velocity
gradient tensor Qinc/∆u2×δ2θ = 0.05 and normalized dilatation ∇·u/∆u×δθ at z = zmax

for (a) TA12, (b) TA15 and (c) TA18. The contour range of dilatation is from -0.1 to 0.1.
The corresponding times from top to bottom are δθ/δθ0 = 6, δθ/δθ0 = 8 and δθ/δθ0 = 16,
respectively.
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Figure 5.7: Scaled streamwise energy spectra at the center of mixing layer:—, TA12; · · ·,
TA15; − · −, TA18. The spectra are scaled with (a) momentum thickness and (b) Taylor
micro scale.
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Figure 5.8: Scaled spanwise energy spectra at the center of mixing layer:—, TA12; · · ·,
TA15; − · −, TA18. The spectra are scaled with (a) momentum thickness and (b) Taylor
micro scale.
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5.2.2 Acoustic waves and sound sources

The visualization in Fig. 5.6 showed highly fluctuated dilatation at the near field for

Mc ≥ 1.5. Also, the weaker dilatation level at the far field was observed with increasing

the convective Mach number. In this subsection, the characteristics of acoustic waves

are analyzed with the source terms of the Lighthill equation. The source terms of the

Lighthill equation in the isothermal mixing layer is written as;

SRe =
∂ρuiuj

∂xi∂xj

,

Sen =
∂(δij[p− pave − c2ave(ρ− ρave)])

∂xi∂xj

,

Svis =

∂

(
µ
(

∂ui

∂xj

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

))
∂xi∂xj

,

Sall = SRe + Sen + Svis, (5.4)

where ()ave denotes the averaged value of the upper and lower streams. Before the

discussion of the sound sources, we show the averaged pressure fluctuations with three

different Mach number cases in Fig. 5.9. Far field acoustic waves become weaker with

increasing the Mach number. The trend of the overall sound sources (Fig. 5.10), the

Reynolds stress term (Fig.5.11 (a)) and the entropy term (Fig. 5.11 (b)) is the same

as that of far field pressure. Note that the viscous term is omitted due to its negligible

value. The results imply that the decrease of sound source strength is a cause for the

weaker far field acoustic waves.

One reason for the weaker sound source strength with increasing the convective Mach

number would be caused by the change in vortices. The visualization in Fig. 5.6 showed

that vortices become sparser structures with increasing the convective Mach number.

For the statistics, Fig. 5.12 shows that the rms values of the incompressible second

invariant of the velocity gradient tensor. The trend is the same as that of sound sources

in which the values become smaller with increasing the convective Mach number. Thus,

the suppression of the vortices with increasing the convective Mach number is a cause

for the weaker sound sources, and then weaker far field acoustic waves. Note that the

slight difference near zero position between the incompressible second invariant and the

source terms is observed. This is because the density at the center of the mixing layer

becomes smaller with increasing the convective Mach number.

After understanding the acoustic wave strength, we focus on the characteristics of

spectra. The averaged far field spectra obtained at y/δθ0 = ±346 are used for the
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Figure 5.9: Averaged pressure fluctuations in the y direction for three different convective
Mach numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8. The values are obtained by
averaging the values of both upper and lower directions.
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Figure 5.10: Averaged overall sound source strength in the y direction for three different
convective Mach numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8.
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Figure 5.11: Averaged sound source strength of (a) Reynolds stress term and (b) entropy
term in the y direction for three different convective Mach numbers:—, Mc = 1.2; · · ·,
Mc = 1.5; − · −, Mc = 1.8.
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Figure 5.12: Averaged incompressible second invariant of the velocity gradient tensor in
the y direction for three different convective Mach numbers:—, Mc = 1.2; · · ·, Mc = 1.5;
− · −, Mc = 1.8.

discussion. How the averaging is conducted is briefly mentioned here. The averaged

values of spectra are obtained by averaging the acoustic waves generated after δθ/δθ0 = 10

by considering the retarded time. Here, the similar scalings of the energy spectra with the

momentum thickness and the Taylor micro scale are also applied to the pressure spectra.

Fig. 5.13 shows the scaled far field pressure spectra with the momentum thickness and

the Taylor micro scale. The scaling with the Taylor micro scale also collapse well in

a wide range of wave numbers. However, some differences appear in the higher wave

numbers in Fig. 5.13 (b) for Mc ≥ 1.5, so that the smaller scale acoustic waves (based

on the Taylor micro scale) appear in those cases. The same trend also appears for the

spanwise pressure spectra (Fig. 5.14). There are two possible reasons for the higher wave

number components to appear in the far field pressure spectra. One is the non-linear

propagation effects, and the other is the appearance of the smaller scale sound sources.

The former needs some distance for affecting the spectra significantly[57, 38, 66], so that

the significant effects by the non-linear propagation could not be possible due to the

limited computational domain of the present simulation. Thus, we focus on the other

possibility of the change in the scales of sound sources. Figs. 5.15 and 5.16 show sound

source spectra scaled with the Taylor micro scale in the streamwise and the spanwise

directions, respectively. The smaller wave number components clearly appear in almost

all figures. Only the spanwise spectra of the term total and the entropy term do not

show clear smaller wave number components. The trend, however, is very similar to the
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flows with shocklets in the isotropic compressible turbulence (Fig. 4.5). The spectra

of the term total and the entropy term are less affected by shocklets than that of the

Reynolds stress term and the viscous term. Thus, the effects of shocklets would be

a possible explanation for the change in the acoustic wave characteristics. One of the

important characteristics of sound sources by shocklets is that the canceling out between

the Reynolds stress term and the entropy term. To analyze it, the averaged values of

the term total in sound source strength are obtained by the integration of the profiles of

Fig. 5.10. In a similar way, we have the the strength of the other terms. By using the

obtained sound source strength, the contribution of the each term to the overall sound

source strength is shown in Fig. 5.17. The contribution of the Reynolds stress term for

Mc = 1.8 reaches almost unity. This implies that the canceling out between the Reynolds

stress term and the entropy term for the case, because the value of the entropy term

contribution has non-negligible value and the contribution of viscous term is negligible.

This results support that, at least, the case Mc = 1.8 shows the characteristics of sound

sources by shocklets (Fig. 4.2). The averaged rms of dilatation (Fig. 5.18) with three

different convective Mach numbers also shows the trend of the occurrence of shocklets.

The results clearly show that the higher values of dilation for Mc ≥ 1.5. The scaled

(with Taylor micro scale) streamwise and spanwise spectra of dilatation at the center

of the mixing layer (Fig. 5.19) show that the higher wave number components for the

higher convective Mach numbers. These also suggest that the occurrence of shocklets in

the flow field for the higher convective Mach numbers.
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Figure 5.13: Scaled streamwise pressure spectra at y/δθ0 = ±346 for three different
convective Mach numbers:—, TA12; · · ·, TA15; − · −, TA18. The values are scaled with
(a) momentum thickness and (b) Taylor micro scale.
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Figure 5.14: Scaled spanwise pressure spectra at y/δθ0 = ±346 for three different con-
vective Mach numbers:—, TA12; · · ·, TA15; − · −, TA18. The spectra are scaled with (a)
momentum thickness and (b) Taylor micro scale.
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Figure 5.15: Scaled streamwise spectra of (a) term total, (b) Reynolds stress term, (c)
entropy term and (d) viscous term at the center of the mixing layer for three different
convective Mach numbers:—, TA12; · · ·, TA15; − · −, TA18. The spectra are scaled with
the Taylor micro scale.
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Figure 5.16: Scaled spanwise spectra of (a) term total, (b) Reynolds stress term, (c)
entropy term and (d) viscous term at the center of the mixing layer for three different
convective Mach numbers:—, TA12; · · ·, TA15; − · −, TA18. The spectra are scaled with
the Taylor micro scale.
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Figure 5.18: Averaged dilatation in the y direction for three different convective Mach
numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8.
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Figure 5.19: Scaled spectra of dilatation in (a) streamwise direction and (b) spanwise
direction at the center of mixing layer for three different convective Mach numbers:—,
TA12; · · ·, TA15; − · −, TA18. The spectra are scaled with the Taylor micro scale.
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Figure 5.20: Averaged turbulent Mach number in the y direction for three different
convective Mach numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8..

The turbulent Mach number is one of the indicators for the occurrence of shocklets[48],

so that the difference in the turbulent Mach number between cases is analyzed here. The

turbulent Mach number in the compressible mixing layer is computed as follows:

Mt =

√
u′′
i u

′′
i

< c >
. (5.5)

Fig. 5.20 shows the averaged turbulent Mach number distributions for three different

Mach number cases. In the previous chapter, the higher turbulent Mach number cases

Mt0 = 0.8 − 1.0 (corresponding to the steady state turbulent Mach number Mt steady =

0.42− 0.48 (Tab. 4.1)) showed that non-negligible effects of schoklets on sound sources.

Especially, the highest turbulent Mach number case Mt0 = 1.0 (Mt steady = 0.48) showed

the significant effects by shocklets. Cases Mc ≥ 1.5 exceed the values in a wide range of

flows, so that it is expected that the relatively large number of shocklets occur and affect

the sound sources and the generated acoustic waves. The occurrence of shocklets could

be possible also for Mc = 1.2 due to the maximum turbulent Mach number exceeds 0.42,

but the regions of exceeding the threshold are very limited compared with the higher

convective Mach number cases. Thus, even if shocklets could occur, the effects should

be very limited.

It has been shown that shocklets in the higher convective Mach numbers seem to

change the characteristics of far field pressure spectra. Here, the effects on the directivity
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are investigated. The Mach angle can be calculated using the value of pressure gradient

∇p which corresponds to the normal direction of Mach waves (Fig. 5.21). The angle ϕ

is computed in the following steps[20]. The unit vector of the shock normal direction n

is computed as follows:

n =
∇p

|∇p|
. (5.6)

The angle ϕ between the y axis and the unit vector is calculated by;

ϕ = cos−1(ny), (5.7)

where ny is the component in the y direction of the unit vector n. The angle is sampled

conditionally using the following relation:

(∇ · u)δθ
∆u

< dc, (5.8)

where dc is set to be −0.0125 which is the same value as in the previous study[20]. Fig.

5.22 shows the averaged Mach angle distributions in the y direction for three different

Mach numbers. The angle decreases with increasing the Mach number as expected. Also,

the values are not saturated for the higher Mach numbers of Mc ≥ 1.5. Note that the

value should be saturated if the characteristics are governed by only the Mach waves.

In addition, the same plots with standard deviation show that the deviation become

larger with increasing the Mach number (Fig. 5.23). Note that the standard deviation

is computed based on the spatially averaged values in which those are values for before

ensemble averaging in time. Those suggest that the sound generation by shocklets would

change the properties of directivity.

The other measure of the properties of the acoustic waves is the deviation from the

assumed isentropic pressure fluctuation p′s=0[20]:

p′s=0 =
γρ′p̄

ρ̄
. (5.9)

Fig. 5.24 shows the deviation of pressure fluctuation from the isentropic pressure with

three different convective Mach numbers. The trend is changed at between Mc = 1.2 and

Mc ≥ 1.5 (in which occurrence of relatively large amount of shocklets is expected), so

that the results suggest that shocklets increase the non-linearity of the acoustic waves.

Note, however, that the values are still small, and the non-linearity is not significant

even in Mc ≥ 1.5.
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Figure 5.21: Schematic of computed Mach angle.
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Figure 5.22: Averaged Mach angle in the y direction for three different convective Mach
numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8. The values are obtained by
averaging the values of both upper and lower directions.
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Figure 5.23: Averaged Mach angle with standard deviation (pale color) in the y direction
for (a) Mc = 1.2, (b) Mc = 1.5 and (c) Mc = 1.8. The values are obtained by averaging
the values of both upper and lower directions.
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Figure 5.24: Deviation from the isentropic pressure fluctuation p′s=0 in the y direction
for three different convective Mach numbers:—, Mc = 1.2; · · ·, Mc = 1.5; − · −, Mc = 1.8.
Note that < · > denotes the averaged values at the plane. The values are obtained by
averaging the values of both upper and lower directions.
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Figure 5.25: Time history of momentum thickness for the variable density mixing layer:—
, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.

5.3 Density ratio dependence on sound sources

In this subsection, density ratio dependence is investigated by fixing the convective Mach

number to be 1.5. Four different density ratios s = 1, 2, 4, 8 are compared. Fig. 5.25

shows the time history of the momentum thickness for the variable density ratio cases.

After the turbulent transition, the momentum thickness shows the linear, self-similar

growth. The linear growth starts at δθ/δθ0 = 14 for s = 1, 2, 8 and at δθ/δθ0 = 16

for s = 4, so that the averaging for the most statistics are conducted after the times.

Fig. 5.26 also confirms that the flows become fully turbulent state at δθ/δθ0 = 16. At

the fully turbulent state, the properties of the flow structures and the acoustic waves

between cases are significantly different. The turbulent structures become sparser with

increasing the density ratio. Also, the turbulent structures at the lower density side

(upper side) show larger structures than the other side for the higher density ratio cases.

For the acoustic waves, the weaker fluctuation of dilatation is observed for both the

upper and lower sides with increasing the density ratio. We focus on the acoustic wave

characteristics at the higher density side in the following discussion due to the importance

of the higher density side (corresponding to the outer side in hot jets). The discussion in

this subsection proceeds in the same way as in the previous subsection for the convective

Mach number dependence. The energy spectra are used for discussing the change in

flow structures. After that the characteristics of sound sources and acoustic waves are

analyzed.
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Figure 5.26: Normalized iso-surface of incompressible second invariant of the velocity
gradient tensor Qinc/∆u2×δ2θ = 0.05 and normalized dilatation ∇·u/∆u×δθ at z = zmax

for (a) TA15, (b) TB02, (c) TB04 and (d) TB08. The contour range of dilatation is from
-0.1 to 0.1. The corresponding times from top to bottom are δθ/δθ0 = 6, δθ/δθ0 = 8 and
δθ/δθ0 = 16, respectively.
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5.3.1 Energy spectra

In the previous subsection, the energy spectra of different convective Mach numbers

were scaled well with the Taylor micro scale. We also apply the Taylor micro scaling

to the energy spectra in this subsection. The streamwise energy spectra scaled with the

momentum thickness and the Taylor micro scale are shown in Figs.5.27 (a) and 5.27 (b),

respectively. The energy spectra also collapse well with the Taylor micro scale. Note,

however, that only the highest density ratio case s = 8 decays a little faster even after

the Taylor micro scaling. This is due to the limited range of the inertial range for the

case and implies that the flows behave as more like lower Reynolds number than the

remaining cases. The trend is the same also for the spanwise spectra (Fig. 5.28). In

addition, the different scales of structure are observed between the upper and lower sides

for the variable density ratio cases (Fig. 5.26) and the trend is observed most clearly in

case s = 8. Thus, the characteristics of the energy spectra at the different positions are

investigated using case s = 8. Two planes are selected as the representative planes. One

is y/δθ = −1 and the other is y/δθ = 3 where y/δθ = 3 is near the center of the mixing

layer. Those planes are visualized in Fig. 5.29. We show the averaged streamwise energy

spectra at two different planes scaled with the momentum thickness and the Taylor micro

scale in Fig. 5.30. Although the spectra collapse better with the Taylor micro scale than

the momentum thickness, the deviation still exists at the lower wave numbers. The same

trend is observed in the spanwise spectra (Fig. 5.31). To understand the characteristics

further, an additional scaling is conducted for the spectra using the Kolmogorov length

scale η = (ν3/ε)1/4, the energy dissipation ε, and the kinematic viscosity ν. Note that

the dissipation in the temporally evolving compressible mixing layer is defined by;

ε =
1

ρ̄

(
τ ′jk

∂u′′
i

∂xk

+ τ ′ik
∂u′′

j

∂xk

)
, (5.10)

where

τ ′ij = µ
(∂u′

i

∂xj

+
∂u′

j

∂xi

− δij
2

3
µ
∂u′

k

∂xk

)
. (5.11)

Here, ()′, ()′′ and (̄) denote the Reynolds fluctuation, the Favre fluctuation and the

Reynolds average. It is well known that the scaling with those quantities collapse lines

of energy spectra between the different Reynolds number turbulent flows. The spectra

with those quantities in both streamwise and spanwise directions are shown in Fig. 5.32.

The spectra collapse well and the spectra at y/δθ = 3 shifts to the higher wave number
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side. These results show that the change in flow structures is caused by the different

Reynolds number. Note that the scaled spectra with the momentum thickness decay

faster at y/δθ = 3 than at y/δθ = −1 indicate that the flows at y/δθ = 3 behaves

more like the lower Reynolds number flow than those at y/δθ = −1. Also, the results

indicate that the flows even at the lower Reynolds number side y/δθ = 3 still keep the

properties of turbulence. The change of the Reynolds number should be affected by the

temperature difference (and so viscosity) across the mixing layer. Fig. 5.33 shows the

averaged viscosity for the four different density ratio cases. The values are scaled with

the average viscosity between two streams µave = (µ1 + µ2)/2. The highest density ratio

case shows around four times difference in the viscosity between two streams. Thus, the

Reynolds number at the lower density side is four times smaller than that at the higher

density side. The difference in the Reynolds number across the mixing layer leads to the

different scales of flow structure between lower and higher density sides.



5.3. DENSITY RATIO DEPENDENCE ON SOUND SOURCES 107

(a)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

101 102 103 104

E
u(

k x
) 
/ (

∆u
2  δ

θ)

kx δθ

s=1
s=2
s=4
s=8

(b)

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

101 102 103 104

E
u(

k x
) 
/ (

∆u
2  λ

x)

kx λx

s=1
s=2
s=4
s=8

Figure 5.27: Scaled streamwise energy spectra at the center of mixing layer:—, TA15;
· · ·, TB02; − · −, TB04; ·· ··, TB08. The spectra are scaled with (a) momentum thickness
and (b) Taylor micro scale
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Figure 5.28: Scaled spanwise energy spectra at the center of mixing layer:—, TA15; · · ·,
TB02; −·−, TB04; ·· ··, TB08. The spectra are scaled with (a) momentum thickness and
(b) Taylor micro scale.
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Figure 5.29: The computed planes for comparing the energy spectra at the different
positions. The upper plane is y/δθ = 3, and the lower plane is y/δθ = −1.
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Figure 5.30: Scaled streamwise energy spectra for s = 8 at :—, y/δθ = −1; · · ·, y/δθ = 3.
The values are scaled with (a) momentum thickness and (b) Taylor micro scale.
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Figure 5.31: Scaled spanwise energy spectra for s = 8 at :—, y/δθ = −1; · · ·, y/δθ = 3.
The values are scaled with (a) momentum thickness and (b) Taylor micro scale.
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Figure 5.32: Scaled energy spectra in (a) streamwise direction and (b) spanwise direction
for s = 8 at :—, y/δθ = −1; · · ·, y/δθ = 3. The values are scaled with Kolmogorov length
scale η, energy dissipation ε, and kinematic viscosity ν.
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Figure 5.33: Averaged viscosity in the y direction for four different density ratios:—,
TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08. Note that the values are normalized by the
averaged values of upper and lower streams.
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5.3.2 Acoustic waves and sound sources

It has been shown that the flow structures are changed significantly for the variable

density ratio cases. In this subsection, how those change in flows affect the characteristics

of sound sources and acoustic waves are analyzed. Note, again that our focus is on the

higher density side due to the importance for the application of hot jets, so that the

discussion is conducted for that side hereafter. (See App. B for lower density side.)

The Lighthill equation in the variable density ratio cases needs careful treatment of the

constant values of density and the speed of sound, because the entropy term is highly

affected by the selection of the constant values. Our focus is the higher density side,

so that the constant values at the higher density side should be used. Note that, for

the normalization, density at the higher density side is used for the same reason above.

Then, we introduce the source terms of the Lighthill equation for the higher density side

as follows:

SRe =
∂ρuiuj

∂xi∂xj

,

Sen =
∂(δij[p− pave − c22(ρ− ρ2)])

∂xi∂xj

,

Svis =

∂

(
µ
(

∂ui

∂xj

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

))
∂xi∂xj

,

Sall = SRe + Sen + Svis, (5.12)

where ()2 denotes the values of the higher density side. Before the discussion of the sound

source characteristics, we discuss the averaged rms values of the pressure fluctuations

(Fig. 5.34). Note again that the values are for the higher density side. The acoustic

waves at the far field become weaker with increasing the density ratio. The trend is the

same as that of overall sound sources (Fig. 5.35). In addition, the mean density difference

also affects the source positions. The source positions move to the higher density side.

On the other hand, the maximum positions of vortices move to the different side with

increasing the density ratio (Fig. 5.36) as is reported in the previous study[6]. Thus,

the other phenomena than vortices should affect the source position in the variable

density ratio cases. To understand the reasons, the averaged density distributions are

shown in Fig. 5.37. The maximum source positions correspond to the positions where

the mean density is reaching to the values of the higher density side. This is due to

the form of the source terms of the Lighthill equation. Both the Reynolds stress term

and the entropy term have the contributions of density (Eq. 5.12), so that the source
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terms are affected significantly by the mean density profile. Thus, the higher density

increases the level of source terms of the Reynolds stress term and the entropy term,

and then, the values of sound sources at the higher density side become larger. The

discussion above is supported by the similar maximum positions of the overall sound

source (Fig. 5.35), the Reynolds stress term (Fig. 5.38 (a)) and the entropy term (Fig.

5.38 (b)). To summarize, the values of sound sources are highly affected by the mean

density profile due to the existence of the density contribution in the source terms, so

that the maximum source positions move to the higher density side. Next, we discuss

the term to term relationship. Bodony and Lele [29] suggested that the canceling out

of the Reynolds stress term and the entropy term would be a cause of weaker acoustic

waves in heated jets. We check whether the canceling out exists or not in the present

computation in the following analysis. To analyze it, the ratio of sound source strength

of each term to the overall sound source is discussed. Those sound source strength are

obtained by the integral of the profiles of Figs. 5.35 (for overall sound source) and

5.38 (for the Reynolds stress term and the entropy term). Note that the strength of

the viscous term is obtained in the similar way. The ratio of each term to the overall

sound source strength is shown in Fig. 5.39. The results show that the contributions

of the Reynolds stress term exceeds unity for s > 1, so that it leads to the canceling

out of the Reynolds stress term and the entropy term. This is because the entropy term

shows non-negligible value, whereas the viscous term is negligible. The canceling out

can be explained by the simple discussion of the mean profiles of the Reynolds stress

contribution (ρuiuj) and the entropy contribution (p−pave−c22(ρ−ρ2)) of the Lighthill’s

turbulent stress tensor. Those profiles are also highly affected by the mean profile of

density. As the effects of mean pressure is small compared with density, the effect of

pressure can be neglected. Thus, we focus only on the mean profile of density for the

discussion of the entropy contribution of the Lighthill’s turbulent stress tensor. The

averaged distribution of ρuiuj in the y direction is shown in Fig. 5.40. The distributions

for the higher density ratio cases are very similar with that of averaged density (related

to the entropy contribution) in Fig. 5.37. The fact that ρuiuj and ρ take similar profiles

for the higher density side leads to the canceling out of the Reynolds stress term and the

entropy term. This is because the Reynolds stress contribution (ρuiuj) and the density

contribution of the entropy term (−c22(ρ − ρ2) ∝ −ρ) show opposite signs (Eq. 5.12).

Note again that the effects of pressure contribution is ignored. Then, we explain the

reason why ρuiuj and ρ show similar profiles. The mean distributions are determined

by almost one-dimensionally, because the free stream goes to one direction (x direction).

Thus, we consider only the component of ρu2
1 for the discussion. u2

1 shows the similar
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Figure 5.34: Averaged rms values of pressure fluctuation in the y direction for four
different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.

profile of the case s = 1 in Fig. 5.40 (The parabola like profile which has the peak at

the center of the mixing layer). The profile of u2
1 for the higher density side shows the

similar profile of density ρ, so that ρu2
1 also shows the similar profile of density. On the

other hand, as the density is lower for the lower density side, the multiplication of u2
1

and ρ leads to the smaller values compared with the higher density side. Therefore, the

shape of the profile of ρu2
1 is approaching to that of density ρ for larger density ratio

cases. That is the simple reason that ρuiuj and ρ have similar profiles and lead to the

canceling out of the Reynolds stress term and the entropy term for the variable density

ratio cases.
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Figure 5.35: Averaged overall sound sources in the y direction for four different density
ratio cases:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.
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Figure 5.36: Averaged incompressible second invariant of the velocity gradient tensor in
the y direction for four different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··,
TB08.
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Figure 5.37: Averaged density distributions in the y direction for four different density
ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.
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Figure 5.38: Averaged source terms of (a) Reynolds stress term and (b) entropy term
in the y direction for four different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··,
TB08.
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Figure 5.39: The ratio of each term to the overall sound source in the sound source
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Figure 5.40: Averaged distributions of Reynolds stress component of the Lighthill’s
turbulent stress tensor ρuiuj in the y direction for four different density ratios:—, TA15;
· · ·, TB02; − · −, TB04; ·· ··, TB08.
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Then, we move on the characteristics of the acoustic waves. The scaling of the far

field pressure spectra are also investigated in this subsection. Again, the values of spectra

are obtained by averaging the acoustic waves generated after δθ/δθ0 = 10 by considering

the retarded time. Note that the time δθ/δθ0 = 10 is selected, because all cases have

passed the clear transition at that time. Fig. 5.41 shows the pressure spectra scaled

with the momentum thickness and the Taylor micro scale. Note that the Taylor micro

scale is computed at the maximum sound source position. The spectra do not collapse

well with the Taylor micro scale except for the higher wave numbers the trend of which

is different from that of the convective Mach number dependence. The trend is the

same also for the spanwise spectra (Fig. 5.42). The difference in the far field pressure

spectra between the variable density ratio cases and the isothermal cases would be due

to the different sound source characteristics of them. In the isothermal cases, the sound

source is basically determined by the turbulent motion (including shocklets). On the

other hand, in the variable density ratio cases, the mean density profile largely affects

the sound source characteristics.
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Figure 5.41: Scaled streamwise pressure spectra at y/δθ0 = ±346:—, TA15; · · ·, TB02;
− · −, TB04; ·· ··, TB08. The spectra are scaled with (a) momentum thickness and (b)
Taylor micro scale. Taylor micro scale is computed at the maximum source strength
position.
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Figure 5.42: Scaled spanwise pressure spectra at y/δθ0 = ±346:—, TA15; · · ·, TB02; −·−,
TB04; ·· ··, TB08. The spectra are scaled with (a) momentum thickness and (b) Taylor
micro scale. Taylor micro scale is computed at the maximum source strength position.
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Finally, other properties of the acoustic waves are analyzed. The density ratio de-

pendence on the Mach angle (computed by Eq. 5.7) is shown in Fig. 5.43. For s = 1, 2,

the wave angle is saturated to the similar values, but, the higher density ratios s = 4, 8

show different development. In the development process, the angle shows local mini-

mum at the near field for the higher density ratios (s = 4, 8). Also, the Mach angle with

standard deviation in Figs. 5.44 (s = 1, 2) and 5.45 (s = 4, 8). The results show that

the deviation become larger with increasing the density ratio. Thus, the randomness of

the acoustic waves increases with increasing the density ratio. The results would suggest

that the existence of various modes of instability wave moving with different convective

Mach number for the higher density ratio cases. Because of the temperature difference

over the mixing layer, the speed of sound is also changed across the mixing layer. Thus,

the explanation of the existence of the various modes moving with different convective

Mach number could be possible. The other probability is that the existence of many

different scales in flows due to the different Reynolds number over the mixing layer for

the variable density ratio cases as discussed in Sec. 5.3.1. Those scales of turbulence

could generate the different acoustic waves. Note, however, that the effect is expected

to be smaller in sufficiently high Reynolds number flows, because the Reynolds num-

ber difference between upper and lower streams become relatively smaller (based on the

Reynolds number of the mixing layer) compared with the lower Reynolds number flows.

Fig. 5.46 shows the deviation of the pressure fluctuations from the isentropic pressure

(Eq. 5.9). There are not much difference between cases and the values are still small.

Thus, the larger density ratio does not increase the non-linearity significantly at least in

the present computational range of the density ratio and the convective Mach number,

though the sound source characteristics have some difference between cases as discussed

above.
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Figure 5.43: Averaged Mach angle in the y direction for four different density ratios:—,
TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.
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Figure 5.44: Averaged Mach angle with standard deviation (pale color) in the y direction
for (a) TA15 (s = 1), (b) TB02 (s = 2).



5.3. DENSITY RATIO DEPENDENCE ON SOUND SOURCES 127

(a) 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16

φ 
[d

eg
.]

|y| / δθ

± σ

(b) 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16

φ 
[d

eg
.]

|y| / δθ

± σ

Figure 5.45: Averaged Mach angle with standard deviation (pale color) in the y direction
for (a) TB04 (s = 4), (b) TB08 (s = 8).
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Figure 5.46: Deviation from the isentropic pressure fluctuation p′s=0 in the y direction
for four different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08. Note that
< · > denotes the averaged values at the plane.
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5.4 Summary of this chapter

In this chapter, the convective Mach number and the density (temperature) ratio depen-

dence on the sound source and acoustic wave characteristics were analyzed by the direct

numerical simulation of the temporally evolving compressible mixing layer.

For the convective Mach number dependence, the strength of the acoustic waves

are weakened with increasing the Mach number. This is due to the suppression of the

vortices (as important sound sources) by the compressibility. In addition, the far field

pressure spectra are scaled well with the Taylor micro scale except for the higher and

lower wave numbers. Note that the energy spectra are scaled very well with the Taylor

micro scale at the entire wave number range. The results showed that the difference at

the higher wave numbers of the scaled far field pressure spectra is due to the appearance

of shocklets in flow fields for the higher convective Mach numbers Mc ≥ 1.5. Those

cases show the higher turbulent Mach number compared with the case Mc = 1.2. The

existence of shocklets in flow fields would affect the acoustic wave characteristics. The

non-linearity of the acoustic waves increases for the higher convective Mach numbers

(but the degree of the non-linearity is still small). In addition, shocklets would affect

the Mach angle, and lead to the more fluctuated characteristics for the Mach angle with

increasing the convective Mach number.

For the density (temperature) ratio dependence, the acoustic waves are weakened with

increasing the density ratio. There are two possible reasons. One is that the strength of

vortices are weakened with increasing the density ratio. The other is the canceling out of

the Reynolds stress term and the entropy term for the variable density ratio cases. The

combination of those possible reasons leads to the weaker acoustic waves for the higher

density ratio cases. The far field pressure spectra are not scaled well with the Taylor

micro scale at the maximum sound source position differently from the isothermal case.

This would be due to the different sound source characteristics in the variable density

ratio cases, which are largely affected by the mean density profile, whereas the sound

sources are basically determined by the turbulent motion (including shocklets) in the

isothermal mixing layer. Note that the energy spectra are scaled well with the Taylor

micro scale at the entire range of wave number except for the small difference at the

higher wave numbers. In addition, the randomness of the Mach angle increases with

increasing the density ratio. The results would suggest that the existence of various

modes of instability wave moving with different convective Mach number and generate

different Mach waves. The other possibility is that the appearance of a lot of different

scales in flows due to the locally different Reynolds number (affected by the temperature
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difference) between upper and lower streams. These different scale of turbulence would

generate different acoustic waves. Note, however, that the latter effect should become

smaller in sufficiently high Reynolds number flows, because the difference in the Reynolds

number between the upper and lower streams become relatively smaller (based on the

Reynolds number of the mixing layer) than that in the low Reynolds number flows. Also,

regardless of the different sound source characteristics between cases, density ratio does

not affect the nonlinearity of acoustic waves significantly at least in the present range of

density ratio and the convective Mach number.



Chapter 6

Concluding Remarks

In this thesis, the important parameters of the Mach number and the temperature ratio

dependence on the sound sources and generated acoustic waves were investigated toward

the accurate prediction of the supersonic jet noise. Direct numerical simulations (DNS)

of the isotropic compressible turbulence and the temporally evolving compressible mixing

layer were conducted. The former simulation was used to understand the effects of the

turbulent Mach number which is closely related with the smaller scale turbulent motion.

The latter was used to analyze the convective Mach number and density (temperature)

ratio dependence on the sound source and acoustic wave characteristics. To understand

the relationship between the change in flows and the sound sources, the source terms

of the Lighthill equation which are numerically obtained by DNS results were analyzed.

The obtained results for those parameter dependence on the sound source and acoustic

wave characteristics are described as follows.

Turbulent Mach number dependence

It was found that two main sound sources are generated by turbulent fluctuations depend-

ing on the turbulent Mach number in the isotropic compressible turbulent simulation.

One is vortex which exists in all range of turbulent Mach numbers, and the other is eddy

shocklet generated only in the higher turbulent Mach numbers. The detail characteris-

tics of sound sources originated by vortices were investigated by using the result of low

turbulent Mach number. On the other hand, sound sources generated by shocklets were

investigated by extracting shocklets.

The characteristics of sound sources by vortices are as follows:

• The Reynolds stress term is the most contributer to the overall sound sources,

because the term is the most affected by vortices. In incompressible flows, the
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Reynolds stress term shows the exactly the same distribution as the second invari-

ant of the velocity gradient tensor which is often used to extract vortical structures.

• The entropy term is generated by two terms related with diffusion (and so tem-

perature) in the entropy equation. Only the density contribution of the entropy

term is affected by the temperature difference, because the pressure contribution

is determined by velocity in nearly incompressible flows. The signs of the density

contribution of the entropy term and the Reynolds stress term are the same. Thus,

the Reynolds stress term and the entropy term are partially intensified each other.

Note, however, that the contribution of the entropy term would become smaller

with increasing the Reynolds number due to the smaller thermal conductivity and

viscosity for the higher Reynolds numbers, though, the trend was not observed in

the present range of the Reynolds numbers.

• Viscous term is negligible.

• For the Reynolds number dependence, the smaller scale and larger peak values

appear with increasing the Reynold number, because the turbulent motion become

more active for the higher Reynold numbers.

The characteristics of sound sources by eddy shocklets are as follows:

• All source terms of the Lighthill equation show larger values across or on shocklets.

Note, however, that the contribution of the viscous term would become smaller

for the higher Reynolds numbers because of the smaller viscosity for those flows,

though, the trend was not observed in the present range of the Reynolds numbers.

• The Reynolds stress term and the entropy term are canceled out each other across

shocklets. This is because, those terms show different jump directions across shock-

lets.

• Sound sources by shocklets become stronger with increasing the turbulent Mach

number and the Reynolds number, because those parameters increase the proba-

bility of the occurrence of shocklets and their strength.

• The effects of shocklets are also observed in the isothermal mixing layer simula-

tion for Mc ≥ 1.5, and show similar characteristics with the sound sources in the

isotropic compressible turbulent simulation. The cases affected by shocklets show

larger turbulent Mach number than the remaining case.
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Convective Mach number dependence

The acoustic waves become weaker with increasing the convective Mach number in

the temporally evolving compressible mixing layer simulation. One reason is that the

strength of vortices (as important sound sources) decreases with increasing the convec-

tive Mach number by the compressibility effects. In addition, the results of the higher

convective Mach number cases (Mc ≥ 1.5) suggested that the shocklets (as the other

sound sources) in flows affects the acoustic wave characteristics. The sound source char-

acteristics for those cases are basically the same as those in the isotropic compressible

turbulent simulation with shocklets. Note also that those cases showed that the turbu-

lent Mach number is high enough to generate shocklets. The effects of shocklets on the

acoustic wave characteristics are suggested in the following:

• Acoustic waves by shocklets increases the non-linearity of the acoustic weaves (but

the degree of non-linearity is still small).

• Shocklets increases the randomness of the Mach angle.

Density (temperature) ratio dependence

In the temporally evolving compressible mixing layer simulation, the effects of density

(temperature) ratio were also investigated. The results showed that the acoustic waves

become weaker with increasing the density ratio. There are two possible reasons. One

is that vortices are weakened with increasing the density ratio. The other is that the

occurrence of the canceling out of the Reynolds stress term and the entropy term for the

variable density ratio cases. This is because the profile of the Reynolds stress is affected

by the mean density profile significantly, so that it leads to the similar profiles (but the

signs are opposite) of the Reynolds stress component and the entropy component of the

Lighhill’s turbulent stress tensor and canceling out of the Reynolds stress term and the

entropy term. The combination of the two reasons (weaker vortices and the canceling

out of the source terms) cause the weaker acoustic waves with increasing the density

ratio. In addition, the effects of the density ratio on the acoustic wave characteristics

are as follows:

• The non-linearity of the acoustic waves are not affected significantly by the density

ratio at least in the present range of the density ratio and the convective Mach

number.
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• The results of the computed Mach angle showed that the different development of

the acoustic waves depending on the density ratio. In addition, the deviation of

the Mach angle from the averaged value increases with increasing the density ratio.

The different development and the larger deviation of the Mach angle for the variable

density ratio cases suggest the two possible reasons. One is that the appearance of the

various modes of instability wave moving with different convective Mach number which

generates different Mach wave. This would be due to the temperature difference over

the mixing layer which changes the speed of sound, and so, the local Mach number.

The other possibility is that the appearance of the different scales of turbulence over the

mixing layer due to the locally different Reynolds number affected by the temperature

difference. The created different scales of turbulence would generate different acoustic

waves and affects the acoustic wave characteristics. Note, however, that the latter effect

(the appearance of difference scales over the mixing layer) would be smaller for the higher

Reynolds number flows as explained in the following.

Toward the prediction for the actual jets

For the final topic of this thesis, the applicability of the knowledge obtained by this thesis

to the actual supersonic jets are discussed. The main discussion is proceeded by focus-

ing on the relationship between the conditions of the temporally evolving compressible

mixing layer and the actual jets. A relationship between the convective Mach number

Mc and the jet Mach number MJ is considered[71]:

Mc =
MJ

√
Tratio

1 +
√
Tratio

, (6.1)

where Tratio is the temperature ratio between the jet and the atmosphere. In the tempo-

rally evolving compressible mixing layer, the temperature ratio Tratio is the same as the

density ratio s. Thus, we use the relation in the following:

Mc =
MJ

√
s

1 +
√
s
. (6.2)

Note that the discussion above is only applicable to the cases of the isothermal or hot

jets. The cold jets can be considered in a similar way, but they are not considered here.

Tab. 6.1 shows the corresponding jet conditions of the temporally evolving compressible

mixing layer. Firstly, the knowledge which would be independent of the Reynolds number

is discussed. After the discussion, the knowledge could be affected by the Reynolds
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number is mentioned.

For the Mach number effects, generation of shocklets is one of the important effects,

because the results showed that it would affect the acoustic wave characteristics signif-

icantly: Increases the non-linearity of the acoustic waves; the larger deviation of the

Mach angle; the appearance of the smaller scale acoustic waves (based on the scale of

vortices). The effects become larger for Mc > 1.5, so that shocklets would take the

important role for Mj > 3.0 jets. The other important effect is that the weaker acoustic

waves with increasing the Mach number. In our simulation results, the degree of the

effects seems not to be dependent on the Mach number significantly, so that the effects

should be considered equally in all range of the Mach number at least in the range of

the computed convective Mach numbers.

For the temperature effects, the acoustic waves are weakened with increasing the

temperature (density) ratio. There are two possible reasons. One is the canceling out of

the Reynolds stress term and the entropy term for hot jets. The other is the strength

of vortices are weakened with increasing the temperature ratio. Those would occur

independent of the Reynolds number, so that they should be considered in hot jets. Also,

the increase of the randomness of the Mach angle with increasing the temperature ratio

would be taken in account. This is because one possible reason is that the appearance

of the several unsteady modes moving with different convective Mach number which

generates different Mach wave. The effects of temperature discussed above are very

crucial for the highest temperature ratio case of Tratio(= s) = 8. If the condition of a

liquid rocket motor Tratio = 6.48[3] is recalled, those effects should be very important for

the applications of rockets.

Effects of Reynolds number

Finally, the obtained results which could (would) be affected by the Reynolds number are

discussed. Here we discuss based on the each computation of the isotropic compressible

turbulence and the temporally evolving compressible mixing layer.

In the isotropic compressible turbulent simulation, the entropy term for the lower

turbulent Mach numbers should be carefully treated. The generation of the entropy

term in the lower turbulent Mach number flows is caused by the diffusion process. This

would be smaller for the higher Reynolds number flows due to the smaller viscosity

and thermal conductivity, though the trend was not observed in the present range of

the Reynolds number. In addition, the viscous term generated by shocklets for the

higher turbulent Mach numbers showed non-negligible contribution. This could also
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Case Mc s = Tratio MJ

TA12 1.2 1 2.4
TA15 1.5 1 3.0
TA18 1.8 1 3.6
TB02 1.5 2 2.56
TB04 1.5 4 2.25
TB08 1.5 8 2.03

Table 6.1: The relationship between the conditions of the temporally evolving compress-
ible mixing layer and actual jet condition. Mc is the convective Mach number, MJ is the
jet Mach number and Tratio is the temperature ratio.

be due to the limited Reynolds number in the present computation. As the viscosity

become smaller, the contribution of the viscous term generated by shocklets could become

smaller in the higher Reynolds numbers. However, the trend was not also observed in

the present range of the Reynolds number. Note that the contribution of the viscous

term is negligible in the temporally evolving compressible mixing layer with shocklets,

so that the contribution of the viscous term by shocklets is expected to be negligible

in the mixing layer (in which large scale structures exist) even in not so high Reynolds

number flows.

The temporally evolving compressible mixing layer computation showed that different

structures of turbulence over the mixing layer for the higher density (temperature) ratio

cases. This is due to the different Reynolds number over the mixing layer. Although the

effects are large in the present Reynolds number, the effects would be smaller for the

higher Reynolds number. This is because, if we consider the limit of zero viscosity, the

effects should be negligible. Thus, the degree of the deviation of the Mach angle from

the averaged value for variable density ratio cases could be affected by the Reynolds

number.



Appendix A

Velocity dependence on sound

source strength in isotropic

compressible turbulence

Proposed velocity dependence on the acoustic power has taken an important role, es-

pecially, in jet noise research. Firstly, Lighthill[12] showed that the acoustic power is

proportional to the 8th power of jet velocity U8
J for sub-sonic jets. Proundman[59]

showed that the power law is changed to the 5th power in isotropic turbulence. Later,

Williams[13] derived the 3rd power law U3
J for supersonic jets by applying the Lighthill’s

idea to the supersonic context. In this appendix, the velocity dependence on the sound

source strength (defined by the square of sound sources) is investigated by following those

previous studies. Fig A.1 shows that the velocity dependence on sound source strength

for all terms. Note that the values are spatially averaged. Three individual source terms

indicate that the power law is changed to the higher values for larger velocities (corre-

sponds to the higher turbulent Mach numbers). Term total, however, the slope becomes

rather shallower. Those behavior could be explained by the change of the mechanism

between the lower turbulent Mach numbers and the higher turbulent Mach numbers

as discussed in Chap. 4. In the lower turbulent Mach number flows, only vortices are

sound sources, but, in the higher turbulent Mach number flows, eddy shocklets become

the other important sound sources. This would lead to change the exponent of the slope

in the three individual source terms. The reason why the term total show shallower

slope for the higher velocities (turbulent Mach numbers) would be the canceling out of

the Reynolds stress term and the entropy term across shocklets in the higher turbulent

Mach numbers.
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Figure A.1: Velocity dependence on sound sources of (a) term total Sall, (b) Reynolds
stress term SRe, (c) entropy term Sen and (d) viscous term Svis for Rλ0 = 130.



Appendix B

Sound sources for lower density side

in temporally evolving compressible

mixing layer

In Chap. 5, we focused on the acoustic waves in the higher density side because of the

importance in hot jets. In this appendix, the higher density side which is important in

cold jets is discussed. The speed of sound and density at the lower density side is used

for the constant values in the source terms of the Lighthill equation. The source terms

in the variable density mixing layer for the lower density side is written as;

SRe =
∂ρuiuj

∂xi∂xj

,

Sen =
∂(δij[p− pave − c21(ρ− ρ1)])

∂xi∂xj

,

Svis =

∂

(
µ
(

∂ui

∂xj

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

))
∂xi∂xj

,

Sall = SRe + Sen + Svis, (B.1)

where ()1 denotes the values of the lower density side. Fig. B.1 shows that the averaged

distribution of term total in the y direction. Note that the density at the lower density

side ρ1 is used for the normalization. The sound source strength becomes larger with

increasing the density ratio the trend of which is opposite in the discussion of the higher

density side (Fig. 5.35). Similar trend except the highest density ratio case s = 8 is

observed in the far field pressure (Fig. B.2). The results suggest that the discussion

of the sound sources still could be a key to understand the far field acoustic waves.
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Figure B.1: Averaged overall sound sources for higher density side in the y direction for
four different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.

However, the careful discussion of the difference in trend between the sound sources and

the acoustic waves for the highest density ratio case s = 8 is necessary. One possible

reason for the different trend of the far field pressure with sound source for s = 8 could

be affected by the flow field, because the flow spreads to the lower density side much

further than the other cases. The effects need to be checked by the computation with

sufficient computational range to understand the relationship between the sound sources

and the acoustic waves for that side correctly. The Reynolds stress term and the entropy

term also show different trend with those for the higher density side. Those strength

decreases monotonically with increasing the density ratio (cf. Fig. 5.38).

Finally, the contribution of each source term to the overall sound sources are dis-

cussed. The sound source strength is computed by the integral of the averaged distribu-

tions of term total (Fig. B.1) and the Reynolds stress term and the entropy term (Fig.

B.3). The strength of the viscous term is also computed similarly. The results are shown

in Fig. B.4. For s > 1, the most contributer to the overall sound sources is the entropy

term, whereas it was the Reynolds stress term for the sound sources of the higher density

side (Fig. 5.39). On the other hand, the canceling out of the Reynolds stress term and

the entropy term for the variable density ratio cases remains, because it is determined

only by the mean density profile (Sec. 5.3.2).
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Figure B.2: Averaged rms values of pressure fluctuation for higher density side in the y
direction for four different density ratios:—, TA15; · · ·, TB02; − · −, TB04; ·· ··, TB08.
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Figure B.3: Averaged source terms for higher density side of (a) Reynolds stress term
and (b) entropy term in the y direction for four different density ratios:—, TA15; · · ·,
TB02; − · −, TB04; ·· ··, TB08.
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Appendix C

Taylor micro scale

In the present study, the Taylor micro scale takes an important role in the analysis,

so that the derivation of the Taylor micro scale is briefly described by following the

explanation of Pope[10]. The Taylor micro scale is related to the two-point correlation

of velocity. The integral scale is also related to the two-point correlation. Thus, both

the Taylor micro scale and the integral scale are explained together. Here, isotropic

homogeneous turbulence is considered.

We start with two-point correlation of velocity Bij:

Bij(r) = < ui(x+ r)uj(x) >,

Bij(0) = < ui(x)uj(x) >= δiju
2
rms, (C.1)

where urms =
√
< u2

i /3 > is the root mean square of the velocity and < · > denotes

the spatial average. Note that Bij is independent of x. In isotropic turbulence, Bij is

written with two scalar functions f and g as follows:

Bij = u2
rms

(
δijg(r) + (f(r)− g(r))

rirj
r2

)
, (C.2)

where r is the distance from the origin. If r = re1, f and g is written as;

f(r) =
< u1(x+ e1r)u1(r) >

< u2
1 >

=
B11

u2
rms

,

g(r) =
< u2(x+ e1r)u1(r) >

< u2
2 >

=
B22

u2
rms

, (C.3)

where B33 = B22 and Bij = 0 for i ̸= j. From (Eq. C.3), f and g are called as the

longitudinal and transverse functions, respectively. Note that f(0) = g(0) = 1 are given

for the normalization.
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From the correlation functions of f and g, two length scales of the integral scale and the

Taylor micro scale are derived. Firstly, the integral scale is introduced. The longitudinal

and the transverse integral scales are defined by the integral of the correlation functions:

Lf =

∫ ∞

0

fdr,

Lg =

∫ ∞

0

gdr, (C.4)

where Lg = Lf/2 in isotropic turbulence. The integral scales are taken as the represen-

tative scale for the large scale of turbulence.

The second length scale derived by the correlation functions is the Taylor micro scale.

The longitudinal Taylor micro scale λf derived by f is considered here. As f is an even

function of r, the first derivative at the origin is zero ∂f/(∂r)(0) = 0. On the other hand,

the second derivative ∂2f/(∂r2)(0) is negative. Thus, the Taylor micro scale is defined

using the second derivative as:

λf =
1√

−1
2
∂2f
∂r2

(0)
. (C.5)

To understand the meaning, a parabolic function p(r) which osculates f at the origin

(Fig. C.1) is considered:

p(r) = 1 +
1

2

∂2f

∂r2
(0)r2,

= 1− r2

λ2
f

. (C.6)

Thus, λf is the length scale at which the osculating parabolic function intersects the hor-

izontal axis (Fig. C.1). The Taylor micro scale is always smaller than the integral scale,

so that the scale is used as the representative scale for the smaller scales of turbulence.

After some manipulation, the Taylor micro scale is shown to be related with the velocity

derivative (See [10] in detail):

2
u2
rms

λ2
f

= −u2
rms

∂2f

∂r2
(0) = −u2

rms lim
r→0

∂2f

∂r2
(r),

= − lim
r→0

∂2

∂r2
< u1(x+ re1)u1(x)) >,

...

=
⟨(∂u1

∂x1

)2⟩
. (C.7)
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Figure C.1: Definition of the longitudinal Taylor micro scale λf . f and p are the longi-
tudinal auto correlation function and the osculating parabola function, respectively[10].

Therefore, the longitudinal Taylor micro scale is written as;

λf =

√
2u2

rms
∂u1

∂x1

. (C.8)

The transverse Taylor micro scale is also defined as:

λg =
1√

−1
2
∂2g
∂r2

(0)
, (C.9)

where λg = λf/
√
2 in isotropic turbulence. Thus, the transverse Taylor micro scale is

written as;

λg =

√
u2
rms
∂u1

∂x1

. (C.10)
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[85] Hadjadj, A., Yee, H. C., and Sjögreen, B., “LES of temporally evolving mixing layers

by an eighth-order filter scheme,” International Journal for Numerical Methods in

Fluids , Vol. 70, No. 11, 2012, pp. 1405–1427.


	Acknowledgements
	1 Introduction
	1.1 Supersonic Jet Noise
	1.2 Computational Prediction of Supersonic Jet Noise
	1.3 Previous Studies of Compressible Turbulent Flows
	1.3.1 Turbulent structures
	1.3.2 Acoustic waves generated from compressible turbulence

	1.4 Objectives
	1.5 Outline of this thesis

	2 Problem Settings
	2.1 Isotropic compressible turbulence
	2.1.1 Turbulent Mach number and Taylor micro scale Reynolds number
	2.1.2 Initial condition

	2.2 Temporally evolving compressible mixing layer
	2.2.1 Convective Mach number, density ratio and Reynolds number
	2.2.2 Initial condition


	3 Numerical Methods
	3.1 Governing Equation
	3.1.1 Non-dimensionalization of Navier-Stokes Equations

	3.2 Numerical Schemes
	3.2.1 Spacial Difference Scheme
	3.2.2 Time integration scheme
	3.2.3 Boundary Conditions


	4 Sound source characteristics in isotropic compressible turbulence
	4.1 Development of flow and grid sensitivity
	4.2 Mach number dependence on sound sources
	4.3 Sound sources in low turbulent Mach numbers
	4.4 Sound sources in high turbulent Mach numbers
	4.5 Summary of this chapter

	5 Sound source characteristics in temporally evolving compressible mixing layer
	5.1 Validation
	5.2 Convective Mach number dependence on sound sources
	5.2.1 Energy spectra
	5.2.2 Acoustic waves and sound sources

	5.3 Density ratio dependence on sound sources
	5.3.1 Energy spectra
	5.3.2 Acoustic waves and sound sources

	5.4 Summary of this chapter

	6 Concluding Remarks
	A Velocity dependence on sound source strength in isotropic compressible turbulence
	B Sound sources for lower density side in temporally evolving compressible mixing layer
	C Taylor micro scale
	References

