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Abstract

Conceptual design studies of reusable launch vehicles (RLVs) for future space transportation are essen-

tial for clarifying their technological goals and associated issues. In this dissertation, multi-objective,

multidisciplinary design optimization (MDO) of two-stage-to-orbit RLVs with airbreathing engines is

conducted in order to obtain promising conceptual design options and to reveal tradeoff relations be-

tween mission requirements, technological constraints, and the resulting vehicle scale. To this end,

research efforts are devoted to three subjects below.

First, a novel multi-objective optimization method that can well handle optimal control problems is

developed. The proposed method is based on the successive search of Pareto optimal solutions using

the combination of a gradient-based optimizer, min-max goal programming, and farther-point sampling

on Pareto manifolds. The farther point from existing solutions is found via the lower-dimensional map-

ping of the solutions and a Voronoi-diagram-based search. Then, the goal-programming parameters are

determined so that the resulting solution will be located near the acquired farthest point. Numerical

experiments for a test optimal control problem demonstrate that the present technique outperforms a

multi-objective genetic algorithm in terms of optimality, constraint residual, and diversity of the solu-

tions. Another advantage of the developed method is that it can provide as many solutions as needed

independently of the solution quality, which is desirable in practical usages.

Second, so as to incorporate thermal protection system (TPS) analysis into MDO frameworks of

RLVs, a transient heat-constrained optimal control method is investigated. PDE-expressed thermal be-

havior inside a TPS material is spatially discretized and transcribed into a set ODEs, and it is then dealt

along with ODEs-expressed vehicle dynamics. This spatial discretization is achieved by a pseudospectral

scheme with a procedure that makes boundary conditions satisfied automatically. Superior convergence

of the proposed technique to previous methods is shown through solving a test problem.

Finally, multi-objective MDO of two kinds of RLVs with airbreathing engines is performed employ-

ing the techniques developed above. Numerical frameworks consisting of vehicle geometry definition,

mass property estimation, aerodynamic computation, airframe-propulsion integrated analysis, TPS anal-

ysis, and flight trajectory calculation, are constructed. In the TPS analysis, the required thickness of

insulation tiles is calculated with the aforementioned method. Then, MDO problems are formulated as

forms of augmented multi-objective optimal control problems with the following objectives: maximiza-

tion of the payload mass to the orbit, minimization of the vehicle gross mass, and minimization of the

horizontal takeoff velocity. By solving them using the proposed multi-objective optimizer, Pareto opti-

mal solutions with good spread are successfully obtained, which elucidate the tradeoff sensitivity among

objectives. After some inspections are given on selected representative solutions, generic knowledge is

extracted from all the obtained solutions via data mining techniques. The results provide insights into

the influences of the mission requirement and the technological constraint on the optimal RLV design.
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Chapter 1

Introduction

1.1 Research Background: Future Space Transportation Systems

Huge improvement to space transportation systems must be achieved in terms of cost efficiency, reli-

ability, operability, and flexibility in order to attract potential users of outer space and to promote the

growth of the space transportation market. For instance, Andrews [1] analyzed data from the Commercial

Space Transportation Study (CSTS) [2], and stated that space transportation market is divided into a por-

tion whose demand is almost independent from the transportation cost and another portion that is highly

elastic to the cost. Then, he pointed out that a key factor for realizing commercially viable space trans-

portation systems is the elastic part which exists when the transportation cost to orbit is approximately

less than $600 per kilogram. Since there is a limit in the improvement of expendable launch vehicles, it

is dubious that this critical target cost is achieved by the expendable launch vehicles. To make matters

worse, cost reduction efforts above this price can result in the reduction of the total yearly revenue, as

the increase of flight rate does not overweigh the reduced revenue per flight. Therefore, reusable launch

vehicles (RLVs) or space planes are expected to satisfy the severe requirements for future commercial

space transportation systems, and they have been studied for years. Recent research activities on several

key technologies required for next-generation RLVs (e.g., reusable propulsion systems, high-temperature

materials, and guidance algorithms) in Japan are well summarized in Ref. 3.

An essential effort for realizing RLVs other than the component technology researches is to perform

their conceptual design studies early in order to clarify technology goals and to facilitate the development

of key technologies accordingly. In fact, basic plan on space policy, established by strategic headquarters

for space policy in the government of Japan in 2013 [4], has the following statement:

Comprehensive discussion centered on our space transportation system, including [...] reusable

rocket, etc., should take place immediately from a medium- and long-term viewpoint. Mea-

sures should be taken based on the result of the discussion.

The latest plan released in 2015 [5] also mentions that the research and development on RLVs should

be promoted in Japan. In response to this plan, the Japan Aerospace Exploration Agency (JAXA) has

recently investigated the feasibility of fully-reusable two-stage-to-orbit (TSTO) RLVs as long-term goals
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(2030s or later) [3]. The transportation of eight persons or an 800 kg payload into a low Earth orbit is

assumed as a tentative mission plan, and conceptual design studies on two types of booster-stage vehicles

with different propulsion systems are conducted: one with rocket engines and the other with airbreathing

engines. Overview of the research and development activities on the rocket-powered RLVs can be found

in Ref. 6.

This dissertation focuses on a horizontal takeoff and landing RLV with airbreathing engines, which is

one of the ideal space transportation systems that would achieve aircraft-like reliability and operability.

In Japan, mainly two kinds of hypersonic airbreathing engines are currently developed. One of them is

a rocket-based combined cycle (RBCC) engine [7,8], which is composed of a dual-mode ramjet/scramjet

flow-pass with rocket engines embedded in it, and it attains superior performance to conventional rocket

engines. Primary characteristics of the RBCC-powered TSTO system concept considered in JAXA are

summarized as follows:

1) Ethanol fuel or hydrocarbon fuel is employed instead of cryogenic liquid hydrogen (LH2), aiming

at a compact and easily-handled system that contributes to operating cost reduction.

2) The propulsion system is designed with relatively low combustion pressure so as to realize high

reliability and to prolong the operational life of the engine.

3) Deterioration of engine specific impulse due to the use of hydrocarbon fuel and low propulsion-

system pressure is compensated by an airbreathing technology (i.e., the utilization of atmospheric

oxygen).

4) A horizontal takeoff and landing operation is adopted, leading to improved operability and abort

capability compared with a vertical launch option.

Another airbreathing propulsion system is a pre-cooled turbojet (PCTJ) engine [9,10]. The PCTJ engine

possesses pre-cooling system using liquid fuel prior to its core engine, and it can be operated up to

about Mach 6 with high specific impulse, in contrast that the Mach number limit of convectional turbojet

engines is around Mach 3.5. Since the precooling effect can be maximized by using LH2 as coolant, the

application of LH2-fueled PCTJ engines to TSTO RLVs is a promising option.

1.2 Previous Works and Research Issues in this Dissertation

1.2.1 Multidisciplinary Design Optimization of RLVs

Conceptual design studies on the TSTO RLVs equipped with ethanol-fueled RBCC engines or with

LH2-fueled PCTJ engines are challenging tasks. In the related studies that are currently underway [11,12],

a satisfactory design solution that can transport a payload into the orbit is not obtained. General issues

in the design studies of RLVs with airbreathing engines are as follows:

1) Difficulty in achieving a feasible design:

RLVs with airbreathing engines can be feasible only by integrating advanced element technologies

in each design discipline effectively.
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2) Nonlinear engine characteristics:

Due to the highly nonlinear characteristics of airbreathing engines with respect to operating con-

ditions, a simple vehicle sizing analysis based on the velocity increment is not suitable, in contrast

to conventional expendable rockets.

3) Interactions between design disciplines:

There are several design elements that interact with each other in a complicated manner. First, the

most significant interaction is the coupling between vehicle design and flight trajectory design. A

notable difference from a conventional aircraft design problem is that launch vehicles do not have

a cruising state. Therefore, a steady-state design point for the vehicle and the engine cannot be de-

fined. This makes the design study of such RLVs a challenging task from the viewpoints of solution

algorithms and computational cost. Second example of interdisciplinary interdependences is the

interaction between aerodynamics and propulsion. Hypersonic airbreathing propulsion systems

are typically designed by taking advantage of the interaction with the vehicle airframe. Therefore,

the performance of the airbreathing engines cannot be evaluated accurately without considering its

interaction with the vehicle aerodynamics (especially ramjet and scramjet). Third, it is also known

that thermal state of the vehicle surface and the skin friction coefficient are highly correlated in

hypersonic flight [13].

In order to handle these difficulties, the application of multidisciplinary design optimization (MDO) to

RLVs or hypersonic vehicles has been studied actively [10,14–25]. MDO is a design optimization frame-

work where numerical optimization techniques are applied to the design problem of systems consisting

of multiple interacting disciplines or components [26]. In the case of RLVs, the design disciplines may

include vehicle geometry, vehicle main structure, propulsion system, aerodynamics, thermal protection

system (TPS), guidance and control, manufacturing and operating cost, and so forth. MDO is a promis-

ing methodology for performing conceptual design studies of RLVs while considering interdisciplinary

interactions explained above. Previous studies on MDO of RLVs can be primarily distinguished from

each other in terms of the employed architecture and the fidelity of the design problem as follows:

• MDO architecture:

A variety of MDO approaches have been developed as summarized in Ref. 26. Among them, the

simplest one is the “all-at-once” (AAO) approach. In the AAO method, system-level variables,

system-level objectives, system-level constraints, local-disciplinary variables, local-disciplinary

objectives, and local-disciplinary constraints are simultaneously handled by a single optimizer,

and hence there is no internal iteration loop. In the other MDO approaches, some formulations

such that decompose the original problem into smaller problems are applied, in order to reduce

the size of a single problem and to enhance the versatility. Performance comparisons of MDO

approaches based on simple test problems [27] and on an RLV design problem [19] have revealed

that the AAO formulation has stable and rapid convergence, and it is free from convergence errors

caused by coupling variables between disciplines. The application of the AAO approach to MDO

of RLVs had successful results in previous researches [14–16,21,25]. As stated in Ref. 14, the MDO
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problem of RLVs arising from the AAO formulation can be regarded as an augmented optimal

control problem. In short, variables and constraints concerning the vehicle design are appended to

an optimal control problem in the forms of static variables and static constraints, and the concurrent

optimization of vehicle design and flight trajectory design is achieved. A drawback of the AAO

approach is that, it becomes more difficult to implement the MDO framework as the disciplinary

design models get more elaborate and more complicated.

• Design fidelity:

In newer studies on MDO of RLVs, the fidelity of the numerical models is improved, and more

detailed design is carried out. For example, high-fidelity CFD analysis [23,25], FEM-based structure

analysis [10,22,23], and TPS analysis [20,23] are implemented.

Another concern in investigating conceptual design of RLVs is that there are substantial uncertainties

in mission requirements and in future technological developments, when the targeted RLV is a long-term

goal [28]. Previous MDO studies on RLVs are, to the best knowledge of the author, devoted to finding

an optimal design based on a single design criterion (e.g., payload-mass maximization or vehicle-mass

minimization) with predetermined technological constraints. When considering the future uncertainties,

on the other hand, it is worth revealing how the change of mission requirements and the relaxation of

technological constraints have the influence on the optimal design solution. In other words, in the context

of optimization, we want to know 1) tradeoff relations between design objectives, or more generally,

tradeoffs between objectives and constraints, and 2) sensitivity between the design preference and the

resulting optimal solution.

1.2.2 Synergy of Multi-Objective Optimization and Data Mining

So as to meet the above demand, the present study focuses on the synergy of multi-objective design op-

timization and data mining. A knowledge-discovery framework combining multi-objective optimization

and data mining is sometimes called “multi-objective design exploration” [29,30]. The overview of its pro-

cedures is shown in Fig. 1.1. Since a practical design optimization problem has multiple objectives that

are competing with other, it is well formulated as a multi-objective optimization problem. The formu-

lated multi-objective optimization problem is solved numerically, and a set of Pareto optimal solutions,

which reflect the tradeoff relation between objectives, is obtained. A Pareto optimal solution is defined

as a solution whose improvement in an objective can only be achieved by deteriorating at least one other

objective. Because the set of Pareto optimal solutions is composed of a large number of solutions, and

is difficult to interpret directly, data mining or multi-variate analysis is applied. This procedure yields

information such as tradeoff, clusters, sensitivity, and trends, which serve as generic knowledge on the

design problem at hand. Previous application fields of multi-objective design exploration include aero-

dynamic shape [29,31], airbreathing propulsion system [32,33], distributed satellite system [34], supersonic

aircraft [35], satellite trajectory [36,37], and flow shop scheduling [38]. It is worth noting now that multi-

objective evolutionary algorithms [39,40] are employed as a multi-objective optimizer in these previous

researches.
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Fig. 1.1 A schematic diagram of the synergy of multi-objective optimization and data mining.

In this dissertation, the multi-objective design exploration is applied to the conceptual design of

RLVs, and its multi-objective MDO will be executed. Design objectives are as follows: maximization

of the payload transportation capability into a low Earth orbit, minimization of the vehicle gross mass,

and minimization of the horizontal takeoff velocity. The takeoff velocity is selected as a design criterion,

because it is a major constraint in designing booster vehicles of TSTO RLVs, and the development of

landing gear that can withstand high-load and high-speed takeoff would be a challenging technological

problem. The derived design knowledge will be helpful not only for establishing design guidelines of

this kind of TSTO RLVs but also for conducting future detailed design studies.

1.2.3 Multi-Objective Optimal Control

In order to conduct multi-objective MDO of RLVs efficiently, a methodology for multi-objective optimal

control is indispensable. As explained above, the most efficient MDO approach for RLVs is to formulate

the MDO problem as an augmented optimal control problem. Distinctive difficulties in solving optimal

control problems lie in the fact that they are governed by dynamic variables (i.e., state variables and

control variables), ordinary differential equations (ODEs) (i.e., equations of motion), continuous-time

constraints (i.e., path constraints), and boundary conditions (i.e., initial and terminal conditions). In

this subsection, previous works and issues on numerical methods for multi-objective optimal control are

described.

Optimization is a methodology for identifying the best state of a mathematically-expressed sys-

tem such that minimizes or maximizes a prescribed performance index, or an objective. Among them,

methodologies for dealing with dynamic systems governed by differential algebraic equations are called
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optimal control or trajectory optimization. Thus far, a variety of numerical methods for optimal control

have been developed as detailed in Appendix A.1. The most popular family of methods, which are called

direct methods, find numerical solutions at discrete times by transcribing the original continuous-time

problem into its finite dimensional approximation or a nonlinear programming (NLP) problem [41,42]. The

NLP problem is typically solved using a gradient-based optimization method (e.g., sequential quadratic

programming [43] or an interior point method [44]). Direct methods are further divided into shooting and

collocation methods. In the direct shooting methods, time histories of control variables are parame-

terized, and the state variables at each time instance are calculated by simulating equations of motion

explicitly [45]. In the direct collocation methods, state variables are parameterized as well [46]. Then, dif-

ferential algebraic equations are implicitly imposed at a finite number of collocation points, and these

time-dependent equations are transcribed into static constraints. These previous methods are devoted to

solving a single-objective optimal control problem and to obtaining its single solution.

In the field of static optimization, on the other hand, more than one objective is frequently con-

sidered, which is termed multi-objective optimization. In the case of multi-objective optimization, the

desired output is not a single optimal solution but a collection of Pareto optimal solutions. A goal in

numerically solving multi-objective optimization problems is to obtain solutions that are close to the

true Pareto front (convergence) and are uniformly distributed (diversity). Mainly employed numerical

solution approaches are population-based meta-heuristics, where a large number of candidate solutions

stochastically explore the solution space while interacting with each other. Such methodologies are

called multi-objective evolutionary algorithms (MOEAs) [39,40], and multi-objective genetic algorithms

(MOGAs) are their typical examples.

There are a lot of situations where multiple performance indices should be considered in optimal

control problems as well. In recent years, several researches on multi-objective optimal control have

been performed. Prats et al. [48] tackled the departure trajectory optimization problem of jet airliners aim-

ing at minimizing fuel consumption, minimizing flight duration, and minimizing noise exposure on the

ground. The employed technique is the combination of lexicographic method[39, pp. 72–73] and a gradient-

based optimization method. Using the lexicographic method, a multi-objective optimization problem

is solved by considering each objective sequentially. Even when the priority order of objectives is al-

tered, optimal solutions that are not located on the boundaries of Pareto front cannot be found. Oyama

et al. [37] conducted multi-objective trajectory optimization of a solar observatory satellite using a hybrid

approach of an MOGA and a gradient-based optimizer. This consists of an outer loop where the MOGA

optimizes significant design variables (e.g., initial azimuth angle) and an inner loop where the gradient-

based method optimizes thrust profile of electric propulsion system. Since only a single objective is

considered during the inner-loop optimization, the resulting solutions are nothing more than approxi-

mate Pareto optimal solutions. Jiao et al. [49] solved multi-objective reentry trajectory optimization of

hypersonic vehicles using the goal-attainment method and ant colony optimization. This approach only

provides a Pareto optimal solution depending on the relative importance of objectives specified by the

user beforehand. Summarizing the above, these existing methods have some limitations.

In addition, it is also questionable that MOEAs are suited to optimal control problems in the sim-
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Table 1.1 Characteristics of static optimization problems and optimal control problems.

Problem Employed parameterization Typical difficulties

Static optimization problem – Expensive functions (e.g., CFD)

Optimal control problem Direct shooting Numerical instability [42],
Equality boundary conditions

Optimal control problem Direct collocation Large number (>102) of variables
and constraints

ilar way to static optimization problems. In order to discuss this issue, the differences between static

optimization problems and optimal control problems are presented below (see also Table 1.1):

• Static optimization problem:

Static optimization problems often considered in the aerospace field include aerodynamic shape

optimization and structure optimization. In these applications, a small number of inequality design

constraints are imposed if any. A typical difficulty is that its function evaluation is very expensive

when high-fidelity CFD computations or FEM-based structure analyses are conducted.

• Optimal control problem with direct shooting methods:

The NLP problem arising from an optimal control problem via the direct shooting methods is

smaller in size compared to the problem resulting from the direct collocation methods. How-

ever, sensitivities between the parameterized control variables and the objective are quite different

from each other, and this sometimes leads to numerical instability of gradient-based optimizers [42].

MOEAs cannot necessarily solve this NLP problem efficiently either. Optimal control problems

are typically formulated with equality boundary conditions. Since these equality constraints are

directly or indirectly dependent on all the parameterized control variables, they must be varied

simultaneously in a coordinated manner in order to keep the constraints being satisfied. In the

literature, it is reported that MOEAs have some weaknesses in solving such optimization prob-

lems [50,51]. As a result, the solutions obtained with MOEAs can suffer from poor convergence,

large constraint violation, and unsatisfactory diversity. Although a modified GA for optimal con-

trol problems was proposed in Ref. 52, thousands of generations in the GA optimization are still

required before the population gets converged. While such a large number of iterations may be

acceptable in the case of optimal control problems, it matters in an MDO problem whose function

evaluation in each iteration is far more computationally expensive.

• Optimal control problem with direct collocation methods:

Since the direct collocation methods transcribe an optimal control problem into a large-scale NLP

problem (the numbers of variables and constraints are hundreds at least), it becomes intractable

for MOEAs. Instead, the NLP problem can be solved efficiently using gradient-based optimization

methods by exploiting the sparsity of the problem [42]. A remaining issue is that gradient-based

optimization methods cannot deal with multi-objective problems directly.
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Considering all the discussions in this subsection, a novel numerical method for obtaining Pareto

optimal solutions of multi-objective optimal control problems will be developed in the present study.

The applicability of gradient-based optimization methods to multi-objective NLP problems arising from

multi-objective optimal control problems via the direct collocation methods will be investigated. Espe-

cially, an algorithm for finding a set of Pareto optimal solutions with the uniform distribution will be

proposed in order to obtain diverse solutions.

1.2.4 Thermal Protection System Design for RLVs

Another critical subject in the MDO of RLVs is the improvement of the model fidelity of the design

problem. Among design disciplines of RLVs, this dissertation focuses on the passive (i.e., nonablative)

TPS such as ceramic insulation tiles. In this subsection, previous works and remaining issues on the TPS

analysis in the MDO of RLVs are explained.

TPS is one of the significant design disciplines of an RLV, and it has a major impact on the payload-

mass fraction, reliability, and operability of the launch system. It is noted that the TPS mass accounts

for ten and several percent of the vehicle dry mass in some RLVs [53]. In previous MDO studies on

RLVs [15,16,19,25] or on hypersonic aircraft [21,22,24], the TPS mass is estimated by assuming TPS materials

and their thickness beforehand based on some historical data [54]. Cowart and Olds [53] called such an

approach “offline” or “static”, and they stated the necessity of an “online” or “dynamic” approach where

TPS design is performed while considering the actual thermal environment resulting from vehicle shape

design and flight trajectory design.

When the trajectory design of expandable reentry vehicles is conducted, it is a common practice to

impose a constraint on the stagnation point heat flux [55–58]. This constraint is equivalent to an upper limit

on the TPS surface temperature at the stagnation point, when radiative equilibrium is assumed. Given

the long flight duration of airbreather-powered RLV booster or hypersonic aircraft, on the other hand,

the following design criterion for the passive TPS must be considered as well: TPS backface (an inside

surface attached to the vehicle main structures) must not exceed the operating temperature limits of the

material used for the main structure throughout the flight [53,59]. This means, instationary or transient

thermal states inside TPS materials during the flight have to be considered.

In response to the demand for the conceptual-level analysis and design of TPS for RLVs, several com-

putational tools have been developed [53,59]. In these tools, a heat transfer problem inside TPS materials in

the depth direction is numerically solved after the time history of flight conditions and vehicle geometry

are supplied. In other words, the one-dimensional heat equation, which is expressed as a second-order

partial differential equation (PDE), is solved. Then, the minimum thickness of a TPS layer is determined

under the restriction that the backface temperature limit is satisfied.

In some recent MDO studies on RLVs, such TPS sizing tools are incorporated into the MDO archi-

tectures in the following way [20,23]: Inner optimization loops for the trajectory design and for the TPS

sizing are wrapped with the outer loop where the overall convergence is sought. This MDO formulation

with the nested structure, however, is typically known to be computationally less efficient than the AAO

approach as explained in Section 1.2.1. When we want to incorporate high-fidelity analysis tools into
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the AAO-based MDO frameworks, surrogate-modeling techniques can reduce computational burden and

relieve difficulty in the implementation, as discussed in Ref. 14. However, the construction of a surrogate

model for the TPS analysis is infeasible, because the number of inputs is huge (time history of flight con-

ditions). Instead, an alternative approach will be developed in this dissertation, where the MDO problem

is formulated in the form of an augmented PDE-ODE coupled optimal control problem. Here, the PDE

stands for the heat equation inside the TPS material, and the ODE means vehicle dynamics. This new

type of optimal control problem arising from the presence of the transient heat constraint has been in-

vestigated recently [60–62]. In Refs. 61 and 62, the flight trajectory of hypersonic aircraft was optimized

considering the TPS backface temperature limit. The formulated PDE-ODE coupled optimal control

problem was numerically solved via discretizing the PDE using a finite volume method. In Ref. 60,

the instationary heat-constrained optimal control problem of a rocket-powered ground vehicle was in-

troduced, and it was solved using a finite difference scheme. When the large-scale MDO problem of

the whole RLV system is considered, the PDE discretization based on these previous methods can easily

lead to a huge and numerically intractable optimization problem. In order to overcome this challenge and

to incorporate the online TPS analysis into the MDO of RLVs, an efficient method for solving transient

heat-constrained optimal control problems will be developed in the present study.

1.3 Research Objectives

Considering the research issues described in Section 1.2, research objectives of the present study are

established as follows:

1) Development of a numerical method for solving multi-objective optimal control problems:

Considering the trajectory-driven nature of the MDO problem of RLVs, a multi-objective opti-

mal control technique is required. The applicability of gradient-based optimization methods to

multi-objective NLP problems arising from multi-objective optimal control problems via the di-

rect collocation methods will be investigated. A novel algorithm such that successively searches

Pareto optimal solutions so that the diversity of the solutions is enhanced, will be proposed.

2) Development of a transient heat-constrained optimal control method:

In order to incorporate the TPS analysis into MDO of RLVs in an efficient manner, a numerical

method for solving transient heat-constrained optimal control problems will be developed. Since it

is formulated as a PDE-ODE coupled optimal control problem, an efficient discretization scheme

for transcribing the PDE in a set of ODEs will be examined.

3) Multi-objective design exploration of TSTO RLVs with airbreathing engines:

Conceptual design studies on a fully-reusable TSTO RLV with LH2-fueled PCTJ engines and that

with ethanol-fueled RBCC engines will be performed. Numerical models of the design problems,

including TPS analysis, are constructed, and multi-objective MDO problems will be formulated.

Multi-objective optimization will be executed using the novel method, and promising conceptual

design options will be obtained. Then, the influences of mission requirement and technological
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constraint on the optimal RLV design will be revealed via data mining techniques.

1.4 Contests of this Dissertation

This dissertation is organized as follows:

Chapter 1 introduced research background and research issues that have not been addressed suffi-

ciently in previous researches. Then, research objectives of the present study were defined.

A novel numerical technique for multi-objective optimal control is proposed in Chapter 2. After

its algorithm is described, performance comparison with an MOGA is performed. Additionally, the

applicability of the proposed method to a practical problem is demonstrated.

In Chapter 3, a heat-constrained optimal control method is developed for conducting the instationary

TPS analysis in the MDO of RLVs. An efficient numerical scheme is presented, and its validity is

illustrated through solving an example problem.

Subsequently, conceptual design studies on TSTO RLVs with airbreathing engines are conducted

based on a multi-objective design exploration framework. The multi-objective MDO problems are solved

using a novel method developed in Chapter 2. Design knowledge is extracted via applying data mining

techniques to the obtained Pareto optimal solutions. A TSTO RLV with PCTJ engines and that with

RBCC engines are considered in Chapter 4 and in Chapter 5, respectively.

Finally, results of the present study are summarized, and some recommendations for future work are

presented in Chapter 6.

In Appendices A–F, additional explanations are provided on optimization methods and analysis mod-

els.

1.5 Mathematical Notations

In this dissertation, vector-valued variables and functions are written with bold upright fonts, and scalar-

valued variables and functions are described using italic type, in order to distinguish them. Vector-valued

variables and functions are defined as column vectors unless otherwise noted.
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Chapter 2

Successive Solution Search Method for
Multi-Objective Optimal Control

In this chapter, a novel algorithm for obtaining Pareto optimal solutions to multi-objective optimal

control problems is presented. The proposed method is based on the successive search of Pareto optimal

solutions using the combination of 1) a gradient-based optimization method, 2) min-max goal program-

ming, and 3) Pareto manifold sampling. The transformation of a multi-objective optimal control problem

into its relevant single-objective NLP problem is described in Section 2.1. Section 2.2 details the suc-

cessive procedures for calculating parameters used in the transformation so that the resulting solution

will be located near the farthest point from the existing solutions. Validity and efficiency of the proposed

algorithm are shown in Section 2.3 by conducting the performance comparison to an MOGA on a test

problem. In Section 2.4, applicability of the proposed algorithm to a practical problem is demonstrated

through solving a Space Shuttle reentry problem. Finally, Section 2.5 provides concluding remarks.

2.1 Transformation into Single-Objective NLP Problems

Consider the following generalized continuous-time optimal control problem with M objectives:

Problem P



find x(t), u(t), t0, tf , p
min. F1

..= Φ1[x(t0), t0, x(tf), tf ,p]

+

∫ tf

t0
g1[x(t), u(t), t, p] dt,

...

FM
..= ΦM[x(t0), t0, x(tf), tf ,p]

+

∫ tf

t0
gM[x(t), u(t), t, p] dt

s.t.
dx
dt
= f[x(t), u(t), t, p],

C[x(t),u(t), t,p] ≤ 0,
Ψ[x(t0), t0, x(tf), tf ,p] ≤ 0,

(2.1)
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where t ∈ [t0, tf], x(t) : [t0, tf] → Rnx , u(t) : [t0, tf] → Rnu , and p ∈ Rnp are time, state variables, control

variables, and static parameters, respectively. The ith objective function, Fi, is composed of the Mayer

term, Φi, and the Lagrange term, gi, (see Appendix A for more details). t0 and tf denote the initial time

and the terminal time, respectively. All the functions involved (i.e., {Φi}Mi=1, {gi}Mi=1, f, C, and Ψ) are

nonlinear and continuously differentiable. It is noted that any equality constraint can be expressed by

simply using two inequality constraints.

Suppose now that we consider the m-element subset out of M objectives, and their indices are denoted

by I (=.. [I1, . . . , Im]T ∈ Nm). Here, it is assumed that more than one objective are selected, namely, m ≥ 2.

By applying min-max goal programming [63] to these selected m objectives, the following single-objective

problem is obtained:

Problem
P̃(I,wi, F∗i )



find q, x(t), u(t), t0, tf , p
min. q

s.t. FI1 − w1 · q ≤ F∗1,
...

FIm − wm · q ≤ F∗m,
dx
dt
= f[x(t), u(t), t, p],

C[x(t),u(t), t,p] ≤ 0,
Ψ[x(t0), t0, x(tf), tf , p] ≤ 0,

(2.2)

where wi (∈ R>) is the weight of the Iith objective, and F∗i (∈ R) is the target value of the Iith objec-

tive. They are independent parameters in the goal-programming method that are specified by the user.

When smaller wi is employed, Problem P̃(I,wi, F∗i ) gives a solution such that puts larger significance

on the Iith objective. In Eq. (2.2), the minimization of m objectives problem is expressed by the min-

imization of q (∈ R) and newly introduced inequality constraints. Note that optimal q can be written

as q = max
i∈{1,...,m}

[(
FIi − F∗i

)
/wi

]
, which means that q indicates the maximum weighted deviation of ob-

jective values from their corresponding targets. In addition, this is the reason why this procedure for

transforming a multi-objective problem into its relevant single-objective problem is called “min-max”

goal programming.

Subsequently, Problem P̃(I,wi, F∗i ) is transcribed into a single-objective NLP problem using any

direct collocation method for optimal control (see Appendix A for more details). Throughout this disser-

tation, a Legendre-Gauss pseudospectral method [64,65] with adaptive mesh refinement [66,67] is employed.

This mesh refinement algorithm automatically and iteratively provides discretization meshes which im-

prove computational efficiency and robustness of pseudospectral methods. The resulting NLP problem

consists of large numbers of design variables and constraints when it becomes a good approximation to

the original continuous-time problem. A set of parameters concerning the discretization mesh used in

the direct collocation method is collectively represented by N for the simplicity of notation. The NLP

12



2.2. Successive Search of Optimal Solutions on a Pareto Front Manifold

problem can be briefly written as follows:

Problem P̃N(I,wi, F∗i )


find q, z
min. q

s.t. GN(q, z) ≤ 0,
(2.3)

where z is NLP decision variables that are composed of the parameterized state, the parameterized con-

trol, t0, tf , and p. GN denotes a set of constraint functions derived by applying the direct collocation

method to Problem P̃(I,wi, F∗i ).

Next, let us consider the case where m = 1 and only the ith objective, Fi, is extracted. In this

instance, Problem P can be directly transcribed into the following single-objective NLP problem without

employing goal programming:

Problem PN(i)


find z

min. FN
i (z)

s.t. HN(z) ≤ 0,
(2.4)

where FN
i (z) and HN(z) are the direct collocation transcriptions of the ith objective and constraint func-

tions in Problem P, respectively.

2.2 Successive Search of Optimal Solutions on a Pareto Front Manifold

2.2.1 Preliminaries

In the previous section, a single-objective NLP problem is uniquely obtained in Eq. (2.3) by specifying

a set of parameters, {I,wi, F∗i ,N}. Additionally, the case of m = 1 leads to Problem PN(i) by determining

{i,N}. These NLP problems can be efficiently solved using a gradient-based optimizer [43,44], and a

solution depending on these independent parameters is obtained. Hereafter, let us call these parameters

goal-programming parameters. In min-max goal programming, it is possible to find every Pareto optimal

solution by properly changing weight and target [63]. It should be noted that a well-known weighted

sum method [39], on the other hand, fails to capture solutions located on the concave region of the Pareto

front. Therefore, the remaining problem is how to determine {I,wi, F∗i }, since N is a set of parameters

automatically provided by the mesh refinement algorithm. In addition to the convergence to the Pareto

optimal sets, it is also desired that a multi-objective optimizer finds a set of solutions with a good spread

(i.e., obtaining solutions that span the Pareto front entirely and uniformly) [39]. A successive and adaptive

algorithm for determining goal-programming parameters such that achieve this goal is developed under

the following assumptions on the problem at hand:

Assumption 1 The Pareto front is compact, that is, bounded and closed.

Assumption 2 The Pareto front is not disconnected.

13
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Fig. 2.1 Schematic drawings of Assumption 1.
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Fig. 2.2 Schematic drawings of Assumption 2.

Figures 2.1a and 2.1b present example cases where Assumption 1 is satisfied and is not satisfied, re-

spectively. When the Pareto front of the multi-objective optimization problem at hand is unbounded and

does not have a boundary, a possible corrective action is to impose upper bounds on objective functions

as shown in Fig. 2.1c. For engineering purposes, it is rational to introduce this kind of upper bounds,

because there are usually allowable compromise limits on objectives values. Figure 2.2 presents the

schematic drawings of connected and disconnected Pareto fronts.

Next, let us introduce the following general property of Pareto optimal solutions on which the pro-

posed algorithm is based:

Theorem 1 Under mild regularity conditions, the set of Pareto optimal solutions of an m-objective

optimization problem defines a piecewise continuous (m-1)-dimensional manifold.

Proof. See pp. 163–165 of Ref. 68.

2.2.2 Method Outline

On the basis of the assumptions and the theorem mentioned above, an algorithm is developed as out-

lined in Algorithm 1. Its basic idea is to successively determine the goal-programming parameters so

that the resulting solution will lie at the location where the already obtained solutions are most scarcely

located. The first step is to solve NLP problems derived from single-objective problems (i.e., Prob-
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2.2. Successive Search of Optimal Solutions on a Pareto Front Manifold

Algorithm 1 The outline of the proposed multi-objective optimization algorithm.
1. // Solve single-objective problems (m = 1)
2. for i = 1, . . . , M do
3. Solve an NLP problem, PN(i)
4. end for
5. // Solve m-objective problems (m = 2, . . . , M)
6. for m = 2, . . . , M do
7. for j = 1, . . . ,

(
M
m

)
do

8. I← {indices of m objectives in the jth case out of
(

M
m

)
variations}

9. repeat
10. Dimensionality reduction of the solutions obtained so far (Section 2.2.3)
11. Find the farthest point via a Voronoi diagram (Section 2.2.4)
12. Calculation of {wi, F∗i } (Section 2.2.5)
13. Solve an NLP problem, P̃N(I,wi, F∗i )
14. until Termination condition, Eq. (2.6), is met
15. end for
16. end for

lem PN(i), i = 1, . . . , M). This corresponds to Lines 2–4 in Algorithm 1. In these procedures, goal

programming parameters are not required, and M solutions are produced in the M-dimensional objective

space as shown in Fig. 2.3a.

Subsequently, problems with the sequentially increasing number of objective functions are solved.

When m-objective problems are considered, there are
(

M
m

)
variations in choosing m elements out of M

objectives. Let the geometry constructed by solutions of the problem with the I (∈ Nm)th objectives be

denoted byMI. This represents a locally linear approximation of the true Pareto front (see Fig. 2.3). The

boundary of the Pareto front can be built from some Pareto fronts of lower-dimensional problems, that is

∂MI =
∪
I′⊂ I
MI′ , (2.5)

where ∂MI means the boundary of the bounded Pareto frontMI. If a termination condition is satisfied at

Line 14 for all of the
(

M
m

)
variations, the process goes on to higher-dimensional problems: m ← m + 1.

Figure 2.3 illustrates these procedures in the case of M = 3. White markers represent the solutions

obtained in the present step, and black markers describe the solutions found in previous step(s). The

spread of each Pareto front in m = 2 is constrained by the solutions in m = 1. Likewise, Pareto fronts

found in m = 2 define the boundary of the Pareto front manifold in m = 3. A similar multi-objective

optimization procedure, where the number of objective functions is successively increased, can be found

in Ref. 69.

In the proposed algorithm, the termination condition at Line 14 is given as follows:

dmax
..= max

r∈MI

[
min

i

[
dgeo(r, si)

]]
≤ dtol. (2.6)

dgeo(·, ·) : RM×RM → R represents a geodesic distance between two points alongMI. r (∈ RM) indicates
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Fig. 2.3 Procedures for obtaining a set of solutions in the M-dimensional objective space in the case of
M = 3.

the coordinates of a point in the M-dimensional objective space. si (∈ RM) is the coordinates of the ith

solution on MI in the objective space, and its elements are denoted by si =
.. [s1 i, . . . , sM i]T. Eq. (2.6)

means that the geodesic distance to its nearest solution onMI must not exceed the user-supplied tolerance,

dtol (∈ R>), for any point onMI. Let a point with the maximum geodesic distance to its nearest solution

be referred to as the farthest point, and be specially denoted by r̂ =.. [r̂1, . . . , r̂M]T ∈ RM. In applying goal

programming method at Line 13, the employed goal-programming parameters are determined so that the

resulting solution will be located at this farthest point. When Eq. (2.6) is finally satisfied for m = M, we

have a set of solutions to the original problem, Eq. (2.1). In the subsequent subsections, the procedures

for finding the farthest point and those for calculating goal programming parameters are explained.

2.2.3 Dimensionality Reduction Mapping of the Existing Solutions

In seeking the farthest point, the degree of proximity between two points cannot be measured in terms of

a Euclidean distance in the M-dimensional objective space. Instead, the appropriate metric is a geodesic

distance along the surface on which these points are located. Due to Theorem 1, this constrained surface

is equivalent to an (m − 1)-dimensional manifold,MI, as depicted in Fig. 2.4a. The (m − 1)-dimensional

manifold is intuitively defined as a geometry that can be locally described by an (m − 1)-dimensional

Euclidean space. Considering this property, Pareto optimal solutions can be mapped into the (m − 1)-

dimensional Euclidean space while substantially preserving local distances using dimensionality reduc-

tion techniques as shown in Fig. 2.4b. As a consequence of this dimensionality reduction, the geodesic

distance along MI can be approximated by a Euclidean distance in this (m − 1)-dimensional Euclidean

space.

Dimensionality reduction methods are classified into two categories: linear techniques and nonlinear

techniques. Although nonlinear techniques can handle nonlinear geometries, data points have to be

distributed somewhat uniformly in order to unfold a manifold successfully [70]. For this reason, either

linear or nonlinear technique is employed depending on the distribution of the solutions obtained so far
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Fig. 2.4 Strategies for finding the farthest point from existing solutions in the case of [M,m] = [3, 3].

as follows:  Isomap [71] if dmax ≤ 2dtol,

Linear local tangent space alignment (LLTSA) [72] otherwise.
(2.7)

It is noted that Pareto fronts do not have drastically nonlinear shapes like a Swiss roll as can be seen

in Ref. 71. Therefore, linear techniques do not fail even though the mapping accuracy is deteriorated.

Eq. (2.7) means that LLTSA is employed first, and Isomap is used after a sufficient number of solutions

are found. Isomap is a nonlinear manifold learning algorithm that is designed to find a lower-dimensional

embedding that best preserves interpoint geodesic distances. This property makes Isomap a suitable

method to the present purpose. A neighborhood size parameter for Isomap, which is the number of

neighbors within which Euclidean distances are regarded as geodesic distances, is set to 12. LLTSA

is a linear method, where a lower-dimensional mapping is obtained via aligning local tangent spaces

constructed from neighbors of each data point.

When m = 2, the corresponding Pareto front is a one-dimensional geometry, that is, a curve. There-

fore, the above-mentioned dimensionality reduction procedure is not required. Instead, an angular coor-

dinate, θ, of a polar coordinate system, [r, θ]T, can be regarded as a local coordinate on this Pareto front

manifold based on the following definition:sI1, i

sI2, i

 =
r cos θ

r sin θ

 +O, (2.8)

where O ..= [O1,O2]T is the coordinate of a polar defined as

Ok = 1.1 min
j

[
sIk, j

]
− 0.1 max

j

[
sIk , j

]
, k = 1, 2. (2.9)
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2.2.4 Farthest-Point Finding via a Voronoi Diagram

Once the solutions are mapped into the (m − 1)-dimensional Euclidean space, the farthest (in terms of

a Euclidean distance) point from these embedded solution points can be found using a Voronoi diagram

(see Fig. 2.4c). A Voronoi diagram is a way of dividing space into a number of cells so that each cell

contains all the spots which are closer to a corresponding point than any other points. In Fig. 2.4c, can-

didates for the farthest point are 1) Voronoi vertices in an area surrounded by the boundary of the Pareto

front (shown by square markers) and 2) intersections of Voronoi edges and the boundary (depicted by

triangular markers). The boundary is already constructed in previous steps in Algorithm 1 as explained in

Section 2.2.2. Furthermore, solutions are located so densely on this boundary as to satisfy the termination

condition, Eq. (2.6). Therefore, the latter candidates for the farthest point can be excluded.

A point in the former candidates such that has the largest Euclidean distance to its nearest solution

is defined as the farthest point. Then, the farthest point is mapped back into the original M-dimensional

space, and it gives a good approximation to the farthest (in terms of a geodesic distance) point onMI as

illustrated in Fig. 2.4d. This inverse mapping is achieved by calculating the circumcenter of a triangle

in the M-dimensional objective space constructed by nearby solutions of the farthest point. In Figs. 2.4c

and d, white markers represent the farthest point.

When m = 2, the Voronoi diagram-based search is unnecessary, since one-dimensional embeddings

of the corresponding solutions lie on a straight line. The farthest point can be obtained as the middle

point of adjacent two solution points with the largest distance along this line.

2.2.5 Calculation of Goal Programming Parameters

The goal-programming parameters, {wi, F∗i }, are calculated so that the solution of Problem P̃N(I,wi, F∗i )

will be located in the vicinity of the acquired farthest point. The target values, F∗i , i = 1, . . . ,m, are

determined as follows:

F∗i = (1 + α) min
j

[
sIi j

]
− αmax

j

[
sIi j

]
for i = 1, . . . ,m, (2.10)

where α represents a margin for placing the target point, and α = 0.2 in this dissertation. When α = 0,

[F∗1, . . . , F
∗
M] gives the coordinate of the so-called ideal point or utopia point found in the literature on

multi-objective optimization.

Subsequently, the weights, wi, i = 1, . . . ,m, are calculated in the following manner:

wi = r̂Ii − F∗i for i = 1, . . . ,m. (2.11)

After the set of weights is obtained, it is normalized so that
∥∥∥ [w1, . . . ,wm]T

∥∥∥
2 = 1 in order to enhance

the stability of numerical optimization.

Figure 2.5a illustrates these calculation procedures when [M,m] = [2, 2]. The target is located at the

point where no objectives are attainable with the relative margin of α. The weight vector, [w1,w2]T, is

determined so that it points to the farthest point from the target. When Problem P̃N(I,wi, F∗i ) is solved

18



2.2. Successive Search of Optimal Solutions on a Pareto Front Manifold

M
in

im
iz

e
  

 

Minimize   F1

F
2

Target, [F∗1, F
∗
2]T

Weight vector,
[w1,w2]T

The farthest point, r̂

M{1,2}

-

(a) Calculation of goal-programming parame-
ters.

M
in

im
iz

e
  

 

Minimize   F1

F
2

Feasible region

New solution

Larg
er q

q =
0

-

(b) Newly obtained solution when the cal-
culated goal-programming parameters are
used.

Fig. 2.5 Procedures for finding a solution close to the farthest point in the case of [M,m] = [2, 2].

with the goal-programming parameters obtained in accordance with the procedures above, the resulting

solution is located at the point on the feasible region that minimizes q as shown in Fig. 2.5b. Dashed

lines in the figure depict contour lines of q. As MI becomes a better approximation to the true Pareto

front, the new solution is obtained closer to the intended point (i.e., the farthest point).

2.2.6 Advantages and Limitations

Primary advantages of the proposed approach over multi-objective evolutionary algorithms are given as

follows:

1) The search direction of a solution in the objective space can be explicitly specified by the goal-

programming parameters, which leads to a uniform distribution of the solutions.

2) An optimization problem with the huge-dimensional decision space and a tiny feasible region can

be solved efficiently.

3) It is mathematically guaranteed that all the obtained solutions have local Pareto optimality exclud-

ing tiny numerical errors (i.e., a truncation error and a round-off error).

4) The obtained Pareto front manifold and its mapping into the lower-dimensional Euclidean space

can be utilized in extracting useful knowledge from the solutions. By using the proposed algorithm,

a post-processing procedure for constructing the continuous representation of a Pareto front from

the obtained Pareto optimal solutions, such as Ref. 73, is not required.

5) Computational complexity is proportional to the number of Pareto optimal solutions we want to

find, and it is not influenced by the number of objectives.

It is also noted that the solution time of Problem P̃N(I,wi, F∗i ) can be reduced by determining initial

guesses of its decision variables from the previously obtained solution that is closest to the current farthest

point.
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2. Successive Solution Search Method for Multi-Objective Optimal Control

The proposed method has some limitations. First, the global optimal solution cannot be necessar-

ily found in a multi-modal problem, since the transformed single-objective problem is solved with a

gradient-based optimizer. Besides, the multi-modality of objective functions can give rise to holes in the

resulting Pareto front, and it makes Assumption 2 on p. 13 violated. Secondly, functions which com-

prise the problem must be continuously differentiable and must be rather computationally cheap to be

evaluated. The second drawback can often be circumvented by replacing undesirable functions by their

smooth surrogate models such as polynomial response surfaces, radial basis function network models,

and Kriging approximations [74–76].

2.3 Performance Comparison to a Multi-Objective Genetic Algorithm

In this section, a test problem for multi-objective optimal control is described first. Then, the combina-

tion of the direct shooting method and a multi-objective genetic algorithm (MOGA) is introduced as a

compared method. Finally, computational performance comparisons between the proposed method and

the compared method are conducted.

2.3.1 Descriptions of a Test Problem: Rocket Launch Problem

Let us consider the ascent trajectory optimization problem of a rocket launcher [77], which is a well-

known nonlinear optimal control problem whose analytic solution is known. This problem is to find

optimal thrust angle on the vertical plane from the static condition until the vehicle is inserted into a

horizontal trajectory at a targeted altitude. The gravitational force and the decrease of vehicle mass due

to fuel consumption are ignored. A schematic drawing of the problem is presented in Fig. 2.6.

The original problem found in Ref. 77 is devoted to maximizing the final velocity under the given

final altitude and the predetermined duration. In this disseration, this problem is extended to a three-

objective problem, and the targeted attitude and the flight duration are introduced as additional objective

functions. The resulting multi-objective problem is formulated as follows:

find
[
x, y, u, v

]T
=.. x(t) : [t0, tf]→ R4, (2.12)

 

 

x
t = t0

t = tf

y

Velocity ..= [u, v]

Thrust direction

β

O

Fig. 2.6 Schematic drawing of the rocket launch problem.
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β =.. u(t) : [t0, tf]→ [−π/2, π/2], (2.13)

t0 ∈ R, (2.14)

tf ∈ R. (2.15)

min. F1
..= −u(tf), (2.16)

F2
..= −y(tf)/10, (2.17)

F3
..= 2 tf . (2.18)

s.t.
dx
dt
= u, (2.19)

dy
dt
= v, (2.20)

du
dt
= cos β, (2.21)

dv
dt
= sin β. (2.22)

x(t0)= 0, y(t0)= 0, u(t0)= 0,

v(t0)= 0, t0 = 0,

v(tf)= 0, tf > 0.

(2.23)

Since the Pareto front of this problem is unbounded toward the upper side of F3 in the objective space,

the following upper limit on F3 is introduced in order to make Assumption 1 satisfied:

F3 ≤ 100. (2.24)

In addition, a numerical singularity at [tf , u(tf)] = (0, 0) is eliminated by imposing constraints on the

other objective functions as follows:

F1 ≤ −5, (2.25)

F2 ≤ −5. (2.26)

The scaling of objective values in Eqs. (2.16–2.18) stretches the axes of the objective space. With these

bounds on objectives, the Pareto front becomes the following two-dimensional compact manifold in the

objective space, [F1, F2, F3]T, as shown in Fig. 2.7:

[F1, F2, F3]T = [ f (p, q), g(p, q), 2q]T, (2.27)

f (p, q) ..= − log
(
sec p + tan p
sec p − tan p

) /
2 tan p

q
, (2.28)

g(p, q) ..=
q2

40

[
−1

sin p
+ log

(
sec p + tan p
sec p − tan p

) /
(2 tan2 p)

]
, (2.29)

where p and q are scalar parameters that satisfy q ≤ 50, f (p, q) ≤ −5, and g(p, q) ≤ −5. It is noted that

the Pareto front is described using these two parameters while it is embedded in the three-dimensional

21



2. Successive Solution Search Method for Multi-Objective Optimal Control

20

40

60

80

100

−60
−40

−20
0

−60

−45

−30

−15

0

F3F2

F
1

q=50 q=40 q=30 q=20

p=
0.2

p=
0.6

p=1.0

p=1.4

Fig. 2.7 Pareto front of the rocket launch problem.

Euclidean space. As Figure 2.7 illustrates, its shape is nonlinear and non-convex.

2.3.2 Compared Method: Direct Shooting + NSGA-II

Next, the procedure for solving a multi-objective optimal control problem using the combination of a

direct shooting method [41,45] and an MOGA is explained so as to conduct the performance comparison in

Section 2.3.4. In short, the original multi-objective optimal control problem is transformed into a multi-

objective NLP problem by the direct shooting method, and its Pareto optimal solutions are obtained

with a population-based search of the MOGA. The direct shooting method parameterizes the control

variable, u(t), at a set of discrete times, and the time histories of the state variables, x(t), are calculated

by solving the initial value problem of state equations explicitly. Numerical instabilities due to this

explicit integration [42] make the direct shooting method less popular than direct collocation methods,

when they are employed with gradient-based optimization methods. However, an NLP problem arising

from the direct shooting transcription is smaller in size and has fewer equality constraints if any, which

are desirable properties in applying MOGAs.

The control variable is parameterized by the values at the initial time, t = 0, the terminal time, t = tf ,

and the equispaced eight points between them. The continuous-time representation of the control is

constructed by interpolating these parameters using natural cubic spline. The explicit simulation of state

equations is performed using the classic fourth-order Runge-Kutta scheme with 300 uniformly distributed

nodes. It is confirmed that absolute and relative errors in the terminal values of the state variables become

less than 10−5 when 300 nodes is used. As a consequence of the direct shooting parameterization, the

original multi-objective optimal control problem in Eqs. (2.12–2.26) is converted into an NLP problem

consisting of eleven decision variables (ten parameterized βs and tf), three objective functions, and four

constraints [Eqs. (2.24–2.26) and v(tf) = 0].

The derived multi-objective NLP problem is solved via NSGA-II [47], a real-coded MOGA. Since

NSGA-II is widely applied to practical problems, and many evolutionary algorithms have computational

frameworks that are partly similar to NSGA-II [40], NSGA-II is adopted as a reference method in the
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present study. Genetic algorithms (GAs) are the collection of numerical optimization techniques that

mimic the mechanism of natural selection. The search of an optimal solution is achieved by simulating

the revolution of a larger number of populations (i.e., candidate solutions) over generations by employing

genetic operators. Information of an individual population is coded on chromosome, and GAs are clas-

sified into binary-coded GAs or real-coded GAs based on whether the chromosome coding is performed

with binary numbers or real numbers. While there are substantial differences among varieties of GAs, in

each generation, the following genetic operations are typically applied in this order:

Crossover: New populations (offsprings) are produced via combining the chromosomes of popula-

tions survived from the previous generation.

Mutation: Parts of chromosomes of some populations are randomly altered.

Selection: Populations that survive to the next generation are selected according to certain criteria.

MOGAs are the extensions of GAs that enable the solution of multi-objective optimization problems.

Primary goals of multi-objective optimization are to make solutions converged to true Pareto optimal

sets, and to enhance the diversity among the solutions. In order to achieve these goals, a special sorting

operation is implemented in NSGA-II, where the populations are sorted depending on their objective

function values and dissimilarities from their neighboring populations. After performing this operation

called “the nondominate sort”, a population with a higher score is favored in the selection step. For more

details on GAs, MOGAs, and NSGA-II, see Refs. 39, 40, and 47, for example.

In the present study, simulated binary crossover (SBX) [39] and polynomial mutation [39] are imple-

mented. Chromosomes of the populations in the first generation are generated within the bounds of the

decision variables using a uniform pseudorandom number generator. Other parameters for NSGA-II are

presented in Table 2.1. There are several ways to handle equality/inequality constraints in NSGA-II as

shown below:

Penalty-function method:

Penalties based on the constraint residuals are appended to objective functions. In the present

case, objective values are deteriorated by

Fi ← Fi + ρ · v(tf)2, i = 1, 2, 3, (2.30)

Table 2.1 Parameter setting of NSGA-II.

Parameter Value

Tournament size 2
Crossover probability 0.9
Mutation probability 0.091
Population size 250, 500, 1000
Number of generations 500, 1000, 2000, 4000
Crossover distribution index, ηc 20
Mutation distribution index, ηm 20
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2. Successive Solution Search Method for Multi-Objective Optimal Control

where ρ ∈ R> denotes the weight of the penalty term.

Constrained-dominance method [47]:

Magnitudes of constraint violations are considered as a criterion in the nondominate sort of

populations. In the present case, a population that does not satisfy |v(tf)| ≤ 0.01 is determined

to be infeasible. Then, the infeasible populations are always scored lower than any feasible

solutions in the sorting procedure, so that the infeasible ones are unlikely to survive during the

selection step.

Violation-minimization method:

Residuals of constraints are regarded as additional objective functions, and their minimization

is carried out along with the original objectives. In the present case, F4
..= |v(tf)|.

In this dissertation, the penalty-function method and the constrained-dominance method are adopted, and

the comparisons between NSGA-II with these constraint-handling approaches and the proposed method

are conducted.

The constraints other than v(tf) = 0 [i.e., Eqs. (2.24–2.26)] are automatically satisfied by repeating

the generation of initial populations and offspring populations until all the produced populations meet

these constraints.

2.3.3 Quantitative Metrics on the Solution Quality

There are a variety of measures for quantifying the quality of a set of solutions obtained with multi-

objective optimization algorithms as well summarized in Ref. 40. Among them, a convergence measure

Υ and a diversity measure ∆ developed in Ref. 47 are employed with some modifications. The con-

vergence indicates how close the solutions are to the true Pareto front, and the diversity refers to how

extensively and uniformly the solutions are distributed on the Pareto front. Each metric gives a non-

negative real value, and a smaller value suggests better quality in terms of the corresponding criterion.

Let us suppose that N solutions are obtained in the m-dimensional objective space. Then, Υ is defined

as the averaged Euclidean distance in the objective space between the numerical solutions and a known

true Pareto front, and it is calculated by

Υ ..=
1
N

N∑
i=1

di, (2.31)

where di is the Euclidean distance between the ith solution and the true Pareto front. In the original work

of Ref. 47, Υ is approximately computed by discretizing the Pareto front into a finite number of Pareto

optimal solutions and regarding the distance between the ith numerical solution and the nearest Pareto

optimal solution as di. In order to evaluate the convergence errors of highly accurate solutions obtained

using the proposed method more properly, the procedure for computing di is improved as follows: The

distance between the ith numerical solution and a local plane of the true Pareto front at a point is calcu-

lated analytically. The minimum distance between the solution and such planes is searched by varying
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the point via a gradient-based optimizer, and it gives di.

On the other hand, ∆ is calculated from 1) the distance between each solution and its nearest neighbor

and 2) the distance between the boundary of the true Pareto front and its nearest solution. Since the

original definition of ∆ in Ref. 47 is applicable only to bi-objective problems, it is modified as follows:

∆ ..=

∑
j∈ J

eb j +

N∑
i=1

|ei − ē|∑
j∈ J

eb j + Nē
. (2.32)

Here, eb j is the minimum Euclidean distance between the jth solution and the boundary of the Pareto

front. J is the set of indices of the solutions that satisfy the following condition: there exists some part of

the Pareto front boundary that is closer to the solution than any other solutions. ei is the distance between

the ith solution and its nearest solution, and ē is its mean value over i = 1, . . . ,N. It is noted that the

penalty term in Eq. (2.30) is eliminated when Υ and ∆ are evaluated.

2.3.4 Result and Discussion

All the numerical computations in this subsection are executed using a Windows 7 TM laptop with an

Intel TM CoreR⃝ i5-3360M 2.80 GHz CPU and 8 GB RAM. Computational procedures are implemented in

MATLABR⃝ 2007b, and single-objective NLP problems are solved using SNOPT, an off-the-shelf solver

based on a sequential quadratic programing (SQP) algorithm [43,78]. The optimality tolerance and the

feasibility tolerance of the solver are 1 × 10−6 and 1 × 10−8, respectively. The convergence tolerance

of the adaptive mesh refinement algorithm [67] for the pseudospectral transcription of continuous-time

optimal control problems is 1 × 10−6.

When NSGA-II is used as an optimizer, all the populations in the last generation do not always satisfy

the constraints sufficiently. Therefore, the final populations whose constraint residuals are more than 0.01

are regarded as invalid solutions, and they are removed. In addition, dominated solutions∗ are omitted as

well.

Computational performances of the proposed method and NSGA-II for the rocket launch problem

are shown in Table 2.2. As NSGA-II is a probabilistic algorithm, the averaged values of ten runs are

presented in the table. As for the proposed method, the value of dtol is varied in each case. The popu-

lation size, the number of generations, and the constraint-handling method are different from one case

to another when NSGA-II is used. Since MATLABR⃝ would not be the best computational platform for

executing GAs†, a performance comparison in terms of the CPU time is rather meaningless. Instead,

it is noted that the proposed method provides solutions with considerably smaller Υ and ∆ in compari-

∗A solution is called “dominated” when there is another solution that is superior or equal to the considered solution in
terms of all the objective values, and is superior in at least one objective.

†Of course, computational procedures of the proposed method and those of the MOGA are implemented in MATLAB R⃝ in
a better way as possible (e.g., vectorization of loops and memory pre-allocation).
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Table 2.2 Computational performance comparison in the rocket launch problem.
(a) The proposed method.

Pr
op

os
ed

m
et

ho
d dtol NS∗ CT† [s] Υ‡ ∆§

9.0 44 65.8 3.83 × 10−7 0.162
5.0 131 105.1 6.83 × 10−7 0.197
3.0 325 220.2 8.95 × 10−7 0.197
2.0 683 592.8 7.83 × 10−7 0.197
1.5 1046 1334.0 8.71 × 10−7 0.191

Values in Table (b) are averages of ten runs.
∗ Number of nondominated the solutions ob-

tained.
† Total computation time.
‡ Convergence measure of obtained solutions.
§ Diversity measure of obtained solutions.
¶ Population size in NSGA-II.
∥ Number of generations in NSGA-II.

(b) The direct shooting method with NSGA-II.

Sh
oo

tin
g
+

N
SG

A
-II

w
ith

Pe
na

lty
co

ns
t.

ha
nd

lin
g

(ρ
=

10
0)

PS¶ NG∥ NS CT [s] Υ ∆

250 500 95 34.5 2.72 × 10−0 0.936
250 1000 97 68.7 1.82 × 10−0 0.943
250 2000 87 136.9 1.02 × 10−0 0.908
250 4000 87 273.0 4.46 × 10−1 0.910
500 500 204 87.0 2.13 × 10−0 0.940
500 1000 198 173.3 1.35 × 10−0 0.934
500 2000 189 346.0 7.04 × 10−1 0.913
500 4000 189 691.2 2.67 × 10−1 0.907

1000 500 434 244.7 1.52 × 10−0 0.909
1000 1000 419 488.2 9.10 × 10−1 0.887
1000 2000 404 974.6 3.92 × 10−1 0.874
1000 4000 401 1947.4 1.71 × 10−1 0.869

Sh
oo

tin
g
+

N
SG

A
-II

w
ith

Pe
na

lty
co

ns
t.

ha
nd

lin
g

(ρ
=

10
00

)

PS NG NS CT [s] Υ ∆

250 500 226 37.1 3.70 × 10−0 0.986
250 1000 228 73.8 3.08 × 10−0 0.995
250 2000 226 147.4 2.27 × 10−0 1.000
250 4000 217 294.9 1.44 × 10−0 0.980
500 500 465 85.4 2.78 × 10−0 0.973
500 1000 468 170.2 2.16 × 10−0 0.984
500 2000 458 340.8 1.51 × 10−0 0.976
500 4000 448 679.6 1.02 × 10−0 0.964

1000 500 933 247.5 3.02 × 10−0 0.916
1000 1000 930 493.7 2.25 × 10−0 0.932
1000 2000 928 983.9 1.44 × 10−0 0.940
1000 4000 923 1962.3 7.09 × 10−1 0.925

Sh
oo

tin
g
+

N
SG

A
-II

w
ith

C
on

st
.-d

om
in

an
ce

co
ns

t.
ha

nd
lin

g

PS NG NS CT [s] Υ ∆

250 500 250 26.9 4.41 × 10−0 0.988
250 1000 250 53.7 3.56 × 10−0 1.003
250 2000 250 108.1 2.75 × 10−0 1.001
250 4000 250 217.1 2.11 × 10−0 0.970
500 500 500 60.7 4.45 × 10−0 0.961
500 1000 500 122.5 3.48 × 10−0 0.970
500 2000 500 245.0 2.49 × 10−0 0.983
500 4000 500 493.4 1.61 × 10−0 0.977

1000 500 1000 142.8 3.51 × 10−0 0.942
1000 1000 1000 287.5 2.55 × 10−0 0.943
1000 2000 1000 580.2 1.71 × 10−0 0.958
1000 4000 1000 1165.6 9.56 × 10−1 0.946
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son with the combination of the direct shooting method and NSGA-II. When NSGA-II is used with the

penalty-function constraint handling (ρ = 100), the number of valid solutions finally obtained is less than

half of the population size. Furthermore, the number of the valid solutions decreases as the number of

generations is increased. This is attributed to the fact that the improvements in the objective values in

Eq. (2.30) can result in the violation of the constraint of v(tf) = 0. This tradeoff issue between the con-

vergence and the constraint satisfaction is alleviated by increasing the value of ρ. In this case, however,

the quality of the obtained solutions is deteriorated from the viewpoints of both Υ and ∆ as shown in the

table.

Since NSGA-II, or more generally most EAs, is a population-based search strategy, a quit large

number of populations are required for finding solutions with sufficient quality. In contrast, the proposed

method is based on a successive search, and there is no relation between the number of obtained solutions

and their quality. Therefore, the proposed method can provide as many solutions as needed, which is an

advantageous property in practical usages.

Distributions of the obtained nondominated solutions in the objective space are shown in Fig. 2.8. By

using the proposed method, the distribution density of solutions can be explicitly adjusted via changing

dtol, and a set of solutions with a good spread is found independently of its value (see Figs. 2.8a, 2.8b).

On the other hand, sets of the solutions obtained by NSGA-II are less uniformly distributed, and there is

some anisotropy in the solution distribution. A reason for this anisotropy can be revealed by inspecting

Fig. 2.11. This figure shows an overlay of the solutions obtained using NSGA-II and the true Pareto front.

It is noted that the anisotropy of the solution distribution follows the contour lines of a parameter p on the

Pareto front. NSGA-II explores solutions through genetic operations (i.e., crossover and mutation) based

on pseudorandom numbers. Let us consider a population that satisfies the terminal constraint v(tf) = 0

sufficiently, and an element of its chromosome that corresponds to the decision variable tf is altered via

the genetic operations. It directly results in the change of q, and the satisfaction of the terminal constraint

is maintained. On the other hand, multiple variables must be varied in a coordinated manner for achieving

a search in the p direction while meeting the terminal constraint. Summarizing the above, there is some

difference in the ease of solution searches between along the p-contour and along the q-contour, and

it leads to the anisotropy of the obtained solution distribution. Note that a set of solutions obtained

using NSGA-II with the constrained-dominance constraint handling (Fig. 2.8f) is inferior to solution sets

obtained by NSGA-II with the penalty-function constraint handling (Figs. 2.8c–2.8e) in terms of the

uniformness of the solution distribution. This is because, the constrained-dominance method gives, so to

speak, death penalties to populations whose constraint violations exceed the threshold, and it makes the

search in the p direction more difficult. A larger penalty weight, ρ, in the penalty-function method brings

about a similar effect, and it degrades the diversity of the solutions (compare Fig. 2.8d and Fig. 2.8e).

The weaknesses of MOGAs in handling optimization problems with parameter interactions are stated

in the literature [47,50,51]. Numerical experiments in this dissertation revealed that this kind of difficulties

can arise in a multi-objective optimal control problem with multi-point boundary conditions as well.

Although the following modifications of crossover operations are investigated in some researches so as

to overcome this drawback, they are still underway [51]: 1) a crossover operation is modified so that it
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(a) The proposed method with dtol = 5: 131 nondom-
inated solutions, ∆ = 0.197.
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(b) The proposed method with dtol = 1.5: 1046 non-
dominated solutions, ∆ = 0.191.
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(c) NSGA-II with penalty-function constraint han-
dling (ρ = 100), population size 250，and gen-
erations 4000: 93 nondominated solutions, ∆ =
0.935.
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(d) NSGA-II with penalty-function constraint han-
dling (ρ = 100), population size 1000，and gen-
erations 4000: 436 nondominated solutions, ∆ =
0.875.
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(e) NSGA-II with penalty-function constraint han-
dling (ρ = 1000), population size 1000，and
generations 4000: 912 nondominated solutions,
∆ = 0.916.
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(f) NSGA-II with constrained-dominance constraint
handling, population size 1000, and generations
4000: 1000 nondominated solutions, ∆ = 0.948.

Fig. 2.8 Distribution of nondominated solutions in the objective space.
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is applied to multiple decision variables simultaneously instead of to each variable independently; 2) a

crossover operator is replaced with a differential evolution algorithm. Many major issues still remain

unsolved for the successful application of MOGAs to the numerical solution of multi-objective optimal

control problems.

The solution process of the proposed method when dtol = 1.5 is illustrated in Fig. 2.9. Figure 2.9a

presents the convergence of dmax defined in Eq. (2.6) as the number of obtained solutions increases.

By definition, dmax is responsible for determining the employed dimensionality reduction technique in

Section 2.2.3, and for deciding the termination of the overall algorithm in Section 2.2.2. According

to the figure, dmax almost monotonically decreases as expected. Figures 2.9b–2.9d show the tentative

solutions at representative steps. Along with the solutions in the objective space, their mapping in the

lower-dimensional Euclidean space with a Voronoi diagram is presented. It is noted that 105 solutions

0 200 400 600 800 1000 1200
0

5

10

15

20

25

30

Number of solutions obtained so far, n
sol

d
m

ax

Dimensionality reduction technique

LLTSA Isomap

2 d
tol

d
tol(d)

(c)

(b)

(a) Convergence of dmax.

20
40

60
80

100

−60
−40

−20
0

−60

−45

−30

−15

0

F3F2

F
1

 60 40 20  0−20−40

 40

 20

  0

−20

−40

(b) nsol = 150.
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(c) nsol = 350.
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Fig. 2.9 Solution process of the proposed method during m = 3 when dtol = 1.5.
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Fig. 2.10 CPU times of procedures in the proposed method in the rocket launch problem.

are already obtained on the boundary of the Pareto front when the step of m = 3 begins. As a new

solution is properly added in the interior surface of the Pareto front, dmax gets smaller. Slight oscillation

of dmax in Fig. 2.9a is owing to that the addition of a new solution can cause the topological change of

the Voronoi diagram. This results in the transformation of the structure of M{1,2,3} (see Fig. 2.3c), and

hence affects the value of dmax.

Computational time of the proposed method is divided into the times needed in the following three

procedures, and they are plotted in Fig. 2.10 as the functions of the number of obtained solutions:

1) Solution of NLP problems (Line 3 or 13 in Algorithm 1)

2) Lower-dimensional mapping of solutions (Line 10 in Algorithm 1)

3) Voronoi diagram-based search for the farthest point (Line 11 in Algorithm 1)

As the number of solutions is increased, or equivalently smaller dtol is adopted, computational time

accompanied with the lower-dimensional mapping occupies larger fraction in the whole procedures.

When the number of solutions is more than one thousand, it accounts for more than half of the total

solution time. In practical purposes, however, it is highly probable that such an excessive number of

solutions is not required. In addition, it typically takes much more time to solve practical NLP problems

in comparison with the present simple test problem. Therefore, the additional computational burden

associated with the adaptive determination of goal-programming parameters is relatively low.

Figure 2.12 presents normalized time histories of the control variable β in all the obtained nondom-

inated solutions. The normalized time is obtained by linearly transformating t ∈ [t0(= 0), tf] of each

solution into τ ∈ [−1, 1]. Using τ, the analytic solution of the rocket launch problem is written as [77]

β(τ) = tan−1 (−τ tan p ) , (2.33)

where p is a parameter of the Pareto front that appeared in Eqs. (2.27–2.29). Figure 2.12 reveals that β(τ)
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Fig. 2.11 Overlay of numerical solutions via NSGA-II and the true Pareto front.
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(b) NSGA-II with penalty-function constraint han-
dling (ρ = 100), population size 1000, and gener-
ations 4000: Υ = 1.55 × 10−1.

Fig. 2.12 Normalized time versus the control variable β (overlay of all the nondominated solutions).

of the nondominated solutions via the proposed method have properly converged to the corresponding

exact solutions independently of the value of p. On the other hand, the time histories of the control

variable via NSGA-II have not adequately converged. This is a reason why numerical solutions obtained

using the proposed method have much smaller Υ in Table 2.2 compared with NSGA-II.

In the present test problem, optimal time histories of the control variable exhibit rather simple be-

haviors as described in Eq. (2.33). Therefore, the control variable can be represented using a small

number of parameters (ten parameters). When more parameters are required for the sufficient control

approximation, the resulting optimization problem has an increased number of decision variables, and

it rapidly becomes more difficult to obtain satisfactory solutions using MOGAs [51]. When the proposed

technique is employed, a set of solutions with high local optimality and diversity can be found even in

such a challenging case.
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2.4 Application Example

2.4.1 Multi-Objective Optimization of Space Shuttle Reentry Trajectory

In this section, a multi-objective optimal control problem concerning the reentry of the U. S. Space Shut-

tle is solved using the proposed technique in order to demonstrate its applicability to a practical problem.

Suppose that we wish to design the flight trajectory from the beginning of the reentry to the terminal area

energy management (TAEM) interface that 1) maximizes the down-range, 2) maximizes the cross-range,

and 3) minimizes the maximum aerodynamic heat flux as illustrated in Fig. 2.13. The motivation of

this design problem is to obtain a trajectory in the return flight with a higher range capability and a less

thermal load. By increasing the range capability, the flexibility in the selection of the de-orbit conditions

is improved, and the diversion capability in the case of emergency is enhanced. It is noted that unpow-

ered flight of a lifting-body orbiter similar to the Space Shuttle orbiter is considered to be a promising

methodology for returning to the ground safely in next-generation space transportation systems [3]. On

the basis of the variable definitions provided in Table 2.3, the problem is formulated as follows:

find

x(t) ..=
[
h, ϕ, θ, v, γ, ψ

]T : [0, tf]→ R6, (2.34)

u(t) ..= [α, σ]T : [0, tf]→ R2, (2.35)

tf ∈ R, (2.36)

p ..= Qu ∈ R (2.37)

that minimize

F1
..= −ϕ(tf), (2.38)

F2
..= −θ(tf), (2.39)

F3
..= Qu/1.1356 (2.40)

subject to equations of motion of the vehicle,

dh
dt
= v sin γ, (2.41)

dϕ
dt
=

v
r

cos γ sinψ/ cos θ, (2.42)

dθ
dt
=

v
r

cos γ cosψ, (2.43)

dv
dt
= −D

m
− µ

r2 sin γ, (2.44)

dγ
dt
=

L
mv

cosσ +
(v
r
− µ

vr2

)
cos γ, (2.45)

dψ
dt
=

L
mv

sinσ/ cos γ +
v
r

cos γ sinψ tan θ, (2.46)
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TAEM interface

Maximize
cross-range

Maximize
down-range

Beginning of the
reentry             

Minimize
max. heating

(t = 0)

(t = tf)

Fig. 2.13 Schematic description of the Space Shuttle reentry problem.

Table 2.3 Variable definitions in the Space Shuttle reentry problem.

Symbol Description

t Elapsed time from the beginning of the reentry [s]
h Altitude [m]
ϕ Longitude [rad]
θ Latitude [rad]
v Velocity [m/s]
γ Flight path angle [rad]
ψ Azimuth angle [rad]
α Angle of attack [rad]
σ Bank angle [rad]
r Elevation from the center of the Earth [m]
L Lift force [N]
D Drag force [N]
CL Lift coefficient
CD Drag coefficient
ρ Atmospheric density [kg/m3]
Q Aerodynamic heat flux on the wing leading edge [MW/m2]
Qu Maximum value of Q during the reentry [MW/m2]
m Constant vehicle mass (= 92, 080 kg)
µ Standard gravitational parameter of the Earth (= 3.986 × 1014 m3/s2)
Re Radius of the Earth (= 6.378 × 106 m)
S Aerodynamic reference area of the vehicle (= 249.9 m2)
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a limit on the aerodynamic heat flux,

Q ≤ Qu, (2.47)

and boundary conditions,

h(0)= 79.25 km, ϕ(0)= 0 deg,

θ(0)= 0 deg, v(0)= 7.803 km/s,

γ(0)= −1 deg, ψ(0)= 90 deg,

tf > 0 s, h(tf)= 24.38 km,

ϕ(tf)≥ 135 deg, v(tf)= 0.7620 km/s,

γ(tf)= −5 deg.

(2.48)

This formulation is a multi-objective extension of a well-known classical optimal control problem [42],

where only the maximization of the cross-range is considered subject to the predetermined upper bound

on the heat flux. Down-range maximization and cross-range maximization are equivalently defined as

the maximization of the final longitude and that of the final latitude, respectively. Additionally, an upper

bound on Qu is imposed in the following manner in order to assume a realistic value of Qu.

Qu ≤ 1.1356 MW/m2 (= 100 Btu/ft2·s). (2.49)

It is noted that Qu = max
t∈[0, tf ]

Q(t) because of Eq. (2.47). L and D are defined as the functions of α,

L =
1
2
ρv2CLS =

1
2
ρv2 (a0 + a1α̂) S , (2.50)

D =
1
2
ρv2CDS =

1
2
ρv2

(
b0 + b1α̂ + b2α̂

2
)

S , (2.51)

α̂ =
180
π
α, (2.52)

and Q is empirically expressed by α, v, and ρ as follows:

Q =
1
2

QaQr, (2.53)

Qa = c0 + c1α̂ + c2α̂
2 + c3α̂

3 (2.54)

Qr = 17700
√
ρ
( v
10000

)3.07
(2.55)

Atmospheric density is modeled by the following exponential function:

ρ = ρ0 exp(−h/hr). (2.56)
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Elevation from the center of the Earth, r, is given by

r = h + Re. (2.57)

Parameter values in the above numerical model are as follows:

a0 = −0.20704, a1 = 0.029244, b0 = 0.07854

b1 = −0.61592 × 10−2, b2 = 0.621408 × 10−3, c0 = 1.0672181

c1 = −0.19213774 × 10−1, c2 = 0.21286289 × 10−3, c3 = −0.10117249 × 10−5

ρ0 = 1.226 kg/m3, hr = 7254 m.

(2.58)

This problem is a two-point boundary value problem where altitude, velocity, and flight path angle are

specified at the beginning and at the end of the trajectory.

The computational performance of the proposed method for various values of dtol is summarized in

Table 2.4. The employed computational environment is almost same as that in Section 2.3.4. The only

exception is that the accuracy tolerance in the adaptive mesh refinement process [67] for the pseudospectral

transcription of optimal control problems is relaxed to 5 × 10−4, which is adequate for engineering

purposes. The number of solutions and computation time required to satisfy the termination condition,

Eq. (2.6), increase in a quadratic way with respect to the inverse of dtol. The NLP problems arising from

the transcription of the optimal control problems have huge numbers of variables and constraints when

they become good approximations to the original continuous-time problems.

Figure 2.14 shows the obtained solutions for dtol = 0.05 in the objective space. F1 and F2 are

expressed in terms of distances instead of angles for the ease of comprehension. The result indicates

that these three objectives are conflicting with each other. Note also that all the obtained solutions

are nondominated, and they successfully spread uniformly on their underlying manifold. Figure 2.15

presents time histories of trajectories in the representative Pareto optimal solutions indicated in Fig. 2.14.

There is high diversity in the obtained Pareto optimal trajectories.

Table 2.4 Computational performance of the proposed method in the Space Shuttle reentry
problem.

dtol
Number of
solutions

CPU
time [s]

Number of
decision variables∗

Number of
equality constraints∗

Number of
inequality constraints∗

0.15 41 371 1845 1412 214.4
0.125 51 476 1799 1376 208.8
0.1 73 705 1734 1326 201.5
0.075 110 993 1751 1338 204.1
0.05 232 1990 1668 1275 194.2
0.025 873 8250 1600 1222 186.6

∗ Averages in the obtained solutions.
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Fig. 2.14 Obtained Pareto optimal solutions in the objective space when dtol = 0.05 for the Space Shuttle
reentry problem.

2.4.2 Data Mining from Pareto Optimal Trajectories

In this subsection, some useful and generic knowledge is extracted from the Pareto optimal trajectories

by applying proper orthogonal decomposition (POD). Let us analyze control histories (i.e., angle of

attack and bank angle) of the obtained 232optimal trajectories when dtol = 0.05. Detailed procedures for

performing POD are explained in Appendix F.2. Using POD, a control history of the ith solution, denoted

by xi, is decomposed into that of a representative solution, x0, and the deviation from it as follows:

xi(τ) = x0(τ) +
232∑
j=1

a( j)
i · x̃

( j)(τ), i = 1, . . . , 232, (2.59)

where the deviation is expressed by the linear combination of 232 modes. τ denotes the time that is

normalized from t ∈ [0, tf] to τ ∈ [−1, 1]. Solution No. 4 is selected as the representative solution. Let

us refer to a( j)
i as the coefficient of the jth mode, and x̃( j) as the basis of the jth mode.

Figure 2.16 shows the result of the POD of angle of attack histories. Mode 1 and mode 2 occupy

90.5% and 6.85% of the whole energy, respectively. As these modes account for almost all the devia-

tion in terms of the energy content, the variety of Pareto optimal trajectories can be extracted through

inspecting these dominant modes only. Figure 2.16 suggests the following knowledge:

• In all the optimal solutions, the angle of attack stays on the same value in the last quarter of the

trajectory. This angle is equivalent to the angle that maximizes the range, it is maintained after the

heating constraint, Eq. (2.47), becomes inactive.

• Angle of attack histories are governed by the value of F3 (i.e., the maximum heat flux). This

is attributed to the fact that α has considerable and direct influence on the value of Q as shown

in Eqs. (2.53–2.55). Mode 1 describes that the optimal angle of attack becomes smaller in the
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Fig. 2.15 Representative optimal solutions for the Space Shuttle reentry problem.

beginning and the middle of the trajectory when F3 gets larger. The opposite is also true. Mode

2 indicates that there are secondary fluctuations which behave in the same manner between when

F3 is small and when F3 is sufficiently large.

The result of POD for bank angle histories is presented in Fig. 2.17. In this case, mode 1 and mode 2

occupy 89.8% and 9.12% of the whole energy, respectively. From this figure, the following information

is obtained:
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Fig. 2.16 Proper orthogonal decomposition of angle of attack histories.

• Mode 1 explains that the optimal bank angle becomes larger in negative when the relative signifi-

cance of the maximization of cross-range gets greater, and vice versa. This deviation is large only

in the middle of the flight duration, and the angles near the initial and terminal times are almost

the same among all the solutions.

• Mode 2 illustrates fluctuations whose coefficients depend on the preference between down-range

maximization and cross-range maximization. These fluctuations of optimal bank angles have the

opposite sign between in the former half of the flight and in the latter half of the flight.

2.5 Conclusion of this Chapter

In this chapter, a novel numerical approach for efficiently solving multi-objective optimal control prob-

lems is presented. In the proposed algorithm, a Pareto optimal solution is successively searched by

solving a single-objective NLP problems derived from the original problem via min-max goal program-

ming and a direct collocation method. The farthest point from the existing solutions on the Pareto front

in terms of a geodesic distance is determined, and goal-programming parameters are determined so that
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Fig. 2.17 Proper orthogonal decomposition of bank angle histories.

the resulting solution will be located near the farthest point. These successive procedures finally pro-

vide a set of solutions with a good convergence and a uniform distribution, which is a desired property

for multi-objective optimization algorithms. A numerical experiment using a test problem with multi-

point boundary conditions demonstrated that the proposed technique is superior to the combination of an

MOGA and a direct shooting method from the viewpoints of optimality, constraint residual, and diversity

of the obtained solutions. Additionally, a multi-objective reentry trajectory optimization problem of the

Space Shuttle was solved as an application example with practical interests. The proposed technique is

particularly advantageous when a moderate number of accurate solutions are desired.
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Chapter 3

Transient Heat-Constrained Optimal
Control for TPS Design

In this chapter, a novel transient heat-constrained optimal control method for analyzing and designing

passive TPS of RLVs is developed. The formulation of an example problem for heat-constrained optimal

control is given in Section 3.1. In Section 3.2, previous techniques and the proposed method are explained

based on the test problem. The efficiency of the proposed method is demonstrated through conducting

numerical experiments in Section 3.3. Finally, Section 3.4 provides concluding remarks of this chapter.

3.1 Formulation of Transient Heat-Constrained Optimal Control

For the sake of simplicity, numerical methods for optimal control of a vehicle with transient heat con-

straints are explained based on a specific but illustrative example problem. In this dissertation, “the

transient heat constraint” means a constraint relating an unsteady thermal state of a vehicle that depends

on its flight trajectory not only at present but also in the past. Consider the following test problem for-

mulated as a PDE-ODE coupled optimal control problem whose schematics are shown in Fig. 3.1:

Fig. 3.1 Schematic description of an example problem of transient heat-constrained optimal control.
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find

x1(t) : [0, tf]→ R, (3.1)

x2(t) : [0, tf]→ R, (3.2)

u(t) : [0, tf]→ R, (3.3)

T (y, t) : [y0, yf] × [0, tf]→ R, (3.4)

tf ∈ R (3.5)

with simple bounds

x2(t) ≥ 0, (3.6)

−umax ≤ u(t) ≤ umax, (3.7)

tf ≥ 0 (3.8)

that minimize cost functional

J ..= tf +
1
2

∫ tf

0

(
u

umax

)2

dt (3.9)

subject to dynamic constraints based on ODEs,

dx1

dt
= x2, (3.10)

dx2

dt
= u, (3.11)

a path constraint concerning the temperature limit at the backface of the TPS insulation tile,

T (yf , t) ≤ Tmax, (3.12)

and initial and terminal conditions,

x1(0)= x0, x2(0)= 0,

T (y, 0)= T0, for y ∈ [y0, yf],

x1(tf)= 0, x2(tf)= 0.

(3.13)

Here, x1, x2, and u denote the position, the velocity, and the acceleration of the vehicle, respectively. y is

the coordinate inside the tile in the depth direction. T (y, t) indicates the temperature of the tile at position

y and time t.

Additionally, the one-dimensional transient heat transfer inside the tile in the depth direction is gov-
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3. Transient Heat-Constrained Optimal Control for TPS Design

erned by the following PDE:

∂T
∂t
=

K
ρCp

∂2T
∂y2 , (3.14)

with boundary conditions

∂T
∂y

∣∣∣∣∣
y=y0

=
Q0

K
=

1
K

(Qrad − Qconv), (3.15)

∂T
∂y

∣∣∣∣∣
y=yf

=
Qf

K
= 0, (3.16)

where K, ρ, and Cp are the thermal conductivity, density, and isobaric heat capacity of the tile. Eq. (3.15)

accounts for surface heat flux, Q0, that consists of a thermal radiation term,

Qrad = ϵ σ
[
T (0, t)4 − T0

4
]

(3.17)

and a convective heating term,

Qconv = Cconv x2
3. (3.18)

Since Eq. (3.18) is a quite simplified model, Qconv has to be evaluated using more appropriate models

(e.g., Ref. 79) in real applications. Eq. (3.16) represents an adiabatic backface boundary condition where

the backface heat flux, Qf , equals to zero. Imposing the adiabatic condition on the TPS backface is a

safe-sided treatment, because it premises that heat does not flow into vehicle main structures behind it.

The adiabatic backface condition in the analysis and design of TPS is often used in literature [53,59,80]. In

the context of PDEs, Eqs. (3.15, 3.16) are categorized as the Neumann boundary condition, where the

derivative of the solution is specified on the boundary of its domain. Another type of boundary condition

is the Dirichlet condition, and the value of the solution itself is specified on the boundary. It is noted that,

when the Lagrange term in the cost functional and temperature constraint, Eq. (3.12), are removed, The

problem reduces to a well-known double integrator problem whose solution is bang-bang control [77].

Values of constants are gathered below:

y0 = 0, yf = 0.0254, umax = 1.0,

Tmax = 450, x0 = −2.5 × 106, T0 = 300,

K = 0.048461, ρ = 192.22, Cp = 962.95,

ϵ = 0.97, σ = 5.6704 × 10−8, Cconv = 7.8498 × 10−6. (3.19)
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3.2 Discretization of the PDE and Treatment of its Boundary Conditions

It is possible to discretize the PDE, Eq. (3.14), in both y and t using a technique such as the Crank-

Nicolson finite difference scheme [81], and to obtain algebraic equations. This is a numerical solution

approach used in Ref. 60. In this case, the PDE-ODE coupled optimal control problem are directly

transcribed into an NLP problem that can be solved using an off-the-shelf solver (e.g., Refs. 43 and

44). The application of the Crank-Nicolson scheme is equivalent to applying a second order central

difference formula and the trapezoidal rule to y and t, respectively. A drawback of this approach is that

the transcription of optimal control problems via the trapezoidal rule is known to be inferior in accuracy

compared with other methods.

Instead, a more practically convenient and versatile way to handle the PDE-ODE coupled optimal

control problem is to discretize the PDE in y only, and to solve the resulting ODE-expressed optimal

control problem as usual optimal control problems (see Fig. 3.2). This makes it possible to use more

accurate Hermite-Simpson transcription [42] or pseudospectral methods [64,82,83] for optimal control. In

the context of the numerical solution of initial-boundary value problems of PDEs, such an approach

is called the method of lines[84, p. 55], where the PDEs are discretized in spatial coordinates only, and

the discretized system is solved using an existing ODE solver. In previous researches, a finite volume

scheme is employed in Ref. 61 and Ref. 62 in order to convert PDE-ODE-coupled optimal control prob-

lems into ODE-expressed ones. In this dissertation, more computationally efficient schemes based on a

pseudospectral method with some enhancement is proposed. For the sake of completeness, the finite vol-

ume scheme and a finite difference scheme are explained below, and subsequently the proposed method

is described.

3.2.1 Finite Volume Discretization

Let us divide the y-space into ny grid cells whose size are equally h [= (yf − y0)/ny]. The time history of

the tile temperature on the ith cell is denoted by Ti(t) for i = 1, . . . , ny. A schematic of this procedure is

PDE
(Heat equation)

ODEs
(Vehicle dynamics)

Spatially

discretized A set of ODEs
(Discretized heat equation)

This can be solved as usual optimal control problem

Boundary conditions
(Surface/backface heat transfer)

Path constraints
(Surface/backface heat transfer)

ODEs
(Vehicle dynamics)

Only when pure pseudospectral

scheme is employed

Coupling Coupling

Unchanged

Original problem Transformed problem

Fig. 3.2 Outline of the solution procedure of a PDE-ODE coupled optimal control problem.
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Fig. 3.5 Pseudospectral discretization.

shown in Fig. 3.3.

By employing a second-order midpoint approximation to the heat fluxes between three adjacent

interior cells, we have

dTi

dt
=

K
ρCp

Ti+1 − 2Ti + Ti−1

h2 , i = 2, . . . , ny − 1. (3.20)

Next, the same second-order approximation is applied to a boundary cell (i.e., i = 1, ny), and the flux

outside of the domain is evaluated by the boundary condition. It leads to

dT1

dt
=

1
ρCp

(−Q0/K) h + (T2 − T1)K
h2 , (3.21)

dTny

dt
=

1
ρCp

(−Qf/K) h + (Tny−1 − Tny)K
h2 . (3.22)

Eqs. (3.20-3.22) define the discretization scheme used in Ref. 62.

As a consequence, we obtain an ODE-expressed optimal control problem whose state variables and
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control variable are

[x1(t), x2(t), T1(t), . . . , Tny(t)]T =.. x(t) : [0, tf]→ Rny+2, (3.23)

[u(t)] =.. u(t) : [0, tf]→ R. (3.24)

Eqs. (3.14–3.16) are replaced with ny dynamic constraints of Eqs. (3.20–3.22). In addition, Eq. (3.12) is

replaced by

Tny(t) ≤ Tmax. (3.25)

The initial condition on T in Eq. (3.13) is transformed into

Ti(0) = T0, for i = 1, . . . , ny. (3.26)

3.2.2 Finite Difference Discretization

Let us distribute ny grid nodes uniformly in the y-space. The distances between pairs of adjacent nodes

are all h [= (yf − y0)/(ny − 1)]. The time history of the tile temperature at the ith node is denoted by Ti(t)

for i = 1, . . . , ny. A schematic of this procedure is presented in Fig. 3.4.

By applying a second-order central difference approximation to ∂2Ti/∂y2 at interior nodes, Eq. (3.14)

becomes

dTi

dt
=

K
ρCp

Ti+1 − 2Ti + Ti−1

h2 , i = 2, . . . , ny − 1. (3.27)

On the other hand, a first-order one-sided difference approximation to ∂2Ti/∂y2 is used at boundary

nodes, and the following ODEs are derived:

dT1

dt
=

2
ρCp

(−Q0/K) h + (T2 − T1)K
h2 , (3.28)

dTny

dt
=

2
ρCp

(−Qf/K) h + (Tny−1 − Tny)K
h2 . (3.29)

Finally, we have an ODE-expressed optimal control problem whose state variables and control vari-

able are

[x1(t), x2(t), T1(t), . . . , Tny(t)]T =.. x(t) : [0, tf]→ Rny+2, (3.30)

[u(t)] =.. u(t) : [0, tf]→ R. (3.31)

ny dynamic constraints shown in Eqs. (3.27–3.29) are substituted for Eqs. (3.14–3.16). Eq. (3.12) is
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replaced with

Tny(t) ≤ Tmax. (3.32)

Besides, the initial condition on T in Eq. (3.13) becomes

Ti(0) = T0, for i = 1, . . . , ny. (3.33)

3.2.3 Pseudospectral Discretization

Let us first transform y ∈ [y0, yf] into z ∈ [−1, 1] using the following affine transformation:

y =
yf − y0

2
z +

yf + y0

2
. (3.34)

Accordingly, ∂T/∂y and ∂2T/∂y2 are replaced by [2/(yf − y0)] ∂T/∂z and [2/(yf − y0)]2 ∂2T/∂z2, re-

spectively. Then, ny Legendre-Gauss-Lobatto (LGL) nodes [85] that all lie on the interval [−1, 1] are

introduced. The ith LGL node, zi, is the ith zero of (1 − z2)P′ny(z), where P′ny(·) denotes the first deriva-

tive of the nyth-order Legendre orthogonal polynomial. LGL nodes can be explicitly computed using

Golub’s algorithm [86], while an iterative procedure is widely used as well [85]. The time history of the

tile temperature at zi is denoted by Ti(t) for i = 1, . . . , ny. A schematic of this procedure is illustrated in

Fig. 3.5.

Next, T (z, t) is approximated using an (ny − 1)th-order polynomial of z in the following manner:

T (z, t) ≈
ny∑
i=1

T (zi, t) · ψi(z) =
ny∑
i=1

Ti(t) · ψi(z), (3.35)

where ψi(z) is the Lagrange basis polynomial that is defined as

ψi(z) ..=

ny∏
j=1
j,i

z − z j

zi − z j
. (3.36)

The LGL nodes (or more generally, orthogonal nodes) prevents the Runge phenomenon in the polynomial

interpolation from occurring. By differentiating Eq. (3.35) with respect to z and evaluating the derivative

at zℓ, we obtain

∂T (z, t)
∂z

∣∣∣∣∣
z=zℓ
≈

ny∑
i=1

∂ψi(z)
∂z

∣∣∣∣∣
z=zℓ
· Ti(t)

=

ny∑
i=1

Dℓ, i · Ti(t), ℓ = 1, . . . , ny, (3.37)
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where Dℓ, i is the (ℓ, i)th element of the differentiation matrix, D. Dℓ, i is calculated as follows [85] :

Dℓ, i =



Pny(zℓ)
Pny(zi)

1
zℓ − zi

ℓ , i

(ny + 1)ny
4

ℓ = i = 0

− (ny + 1)ny
4

ℓ = i = ny

0 otherwise.

(3.38)

When Eq. (3.37) is collectively written in a matrix form, it becomes



∂T/∂z
∣∣∣
z=z1

∂T/∂z
∣∣∣
z=z2

...

∂T/∂z
∣∣∣
z=zny−1

∂T/∂z
∣∣∣
z=zny


=


D





T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


. (3.39)

For the second-order partial derivative, the corresponding differentiation matrix is derived by simply

multiplying D by itself, that is



∂2T/∂z2
∣∣∣
z=z1

∂2T/∂z2
∣∣∣
z=z2

...

∂2T/∂z2
∣∣∣
z=zny−1

∂2T/∂z2
∣∣∣
z=zny


=


D(2)





T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


, where D(2) ..= D2. (3.40)

It is stated in Ref. 87 that, there are two basic approaches for handling boundary conditions in spectral

methods ∗:

Approach 1: to use such an interpolant that satisfies boundary conditions

Approach 2: to impose additional constraints derived from boundary conditions without paying spe-

cial attention to interpolants.

When Approach 2 is used, differential equations are not enforced at the boundary nodes on which the

boundary conditions are imposed instead. It is noted that the larger number of constraints than unknowns

results in an ill-conditioned problem. Approach 2 is commonly used in pseudospectral methods due to its

flexibility. However, as pointed out in Ref. 88, its drawback is that differential equations are not satisfied

at points arbitrarily close to the boundary.

∗A class of spectral methods consists of pseudospectral (or collocation) methods, Galerkin methods, and Tau methods.
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To begin with, let us try Approach 2. By collocating the PDE, Eq. (3.14), at interior LGL nodes (i.e.,

z2, . . . , zny−1) using Eq. (3.40), it gives

d
dt


T2(t)
...

Tny−1(t)

 = K
ρCp

(
2

yf − y0

)2


D(2)

2,1 D(2)
2,2 · · · D(2)

2,ny−1 D(2)
2,ny

...
...

. . .
...

...

D(2)
ny−1,1 D(2)

ny−1,2 · · · D(2)
ny−1,ny−1 D(2)

ny−1,ny





T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


. (3.41)

Next, algebraic equations arising from boundary conditions are obtained via applying Eq. (3.39) to

Eqs. (3.15, 3.16):

2
yf − y0

 D1, 1 D1, 2 · · · D1, ny−1 D1, ny

Dny, 1 Dny, 2 · · · Dny, ny−1 Dny, ny




T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=

Q0/K

Qf/K

 . (3.42)

Finally, we obtain an ODE-expressed optimal control problem whose state variables and control

variable are

[x1(t), x2(t), T2(t), . . . , Tny−1(t)]T =.. x(t) : [0, tf]→ Rny, (3.43)

[u(t), T1(t), Tny(t)]T =.. u(t) : [0, tf]→ R3. (3.44)

Eq. (3.14) is replaced with (ny − 2) dynamic constraints of Eq. (3.41). Eqs. (3.15, 3.16) are transformed

into two path constraints shown in Eq. (3.42). Eq. (3.12) is rewritten as

Tny(t) ≤ Tmax. (3.45)

The initial condition on T in Eq. (3.13) is expressed by

Ti(0) = T0, for i = 2, . . . , ny − 1. (3.46)

Note that T1(t) and Tny(t) are included not in state variables but in control variables in contrast to the

finite-volume discretization and the finite-difference discretization.

3.2.4 Incorporation of Boundary Conditions

Although Approach 2 for the boundary-condition handling is straightforward to be implemented, it can

deteriorate the solution accuracy, because the governing equation of the tile temperature is not satisfied

at the locations where boundary conditions accounting for aerodynamic heating are specified. In order
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to overcome this drawback, Funaro and Gottieb [88] proposed an idea of imposing the combination of

boundary conditions and the equation itself at the boundary nodes in the case of hyperbolic PDEs∗, and

they discussed its advantages. Another attempt is the fictitious point method developed by Fornberg [89],

and the method is adopted in this dissertation. The proposed approach is useful when a Neumann bound-

ary condition is imposed as in the case of Eqs. (3.15, 3.16). When a Dirichlet boundary condition is

involved, it can be implemented by removing the boundary point from the collocation points and simply

substituting the specified boundary value of T .

Let us introduce additional two grid nodes denoted by zfp1 and zfp2 at any arbitrary locations. These

added nodes are called fictitious points, and they can be placed either inside or outside of the do-

main of z (i.e., [−1, 1]). The time history of the tile temperature at zfp1 and that at zfp2 are denoted

by Tfp1(t) and Tfp2(t), respectively. Then, the corresponding differentiation matrix for a set of nodes,

{zfp1, zfp2, z1, . . . , zny}, is calculated using an algorithm for generating differentiation matrices for arbitrar-

ily distributed nodes [90]. Let the obtained first- and second-order differentiation matrices be denoted by

D̂ and D̂(2)(= D̂2), respectively. Elements of these differentiation matrices are defined as follows:

D̂ ..=



D̂fp1, fp1 D̂fp1, fp2 D̂fp1, 1 D̂fp1, 2 · · · D̂fp1, ny−1 D̂fp1, ny

D̂fp2, fp1 D̂fp2, fp2 D̂fp2, 1 D̂fp2, 2 · · · D̂fp2, ny−1 D̂fp2, ny

D̂1, fp1 D̂1, fp2 D̂1, 1 D̂1, 2 · · · D̂1, ny−1 D̂1, ny

D̂2, fp1 D̂2, fp2 D̂2, 1 D̂2, 2 · · · D̂2, ny−1 D̂2, ny
...

...
...

...
. . .

...
...

D̂ny−1, fp1 D̂ny−1, fp2 D̂ny−1, 1 D̂ny−1, 2 · · · D̂ny−1, ny−1 D̂ny−1, ny

D̂ny, fp1 D̂ny, fp2 D̂ny, 1 D̂ny, 2 · · · D̂ny, ny−1 D̂ny, ny


, (3.47)

D̂(2) ..=



D̂(2)
fp1, fp1 D̂(2)

fp1, fp2 D̂(2)
fp1, 1 D̂(2)

fp1, 2 · · · D̂(2)
fp1, ny−1 D̂(2)

fp1, ny

D̂(2)
fp2, fp1 D̂(2)

fp2, fp2 D̂(2)
fp2, 1 D̂(2)

fp2, 2 · · · D̂(2)
fp2, ny−1 D̂(2)

fp2, ny

D̂(2)
1, fp1 D̂(2)

1, fp2 D̂(2)
1, 1 D̂(2)

1, 2 · · · D̂(2)
1, ny−1 D̂(2)

1, ny

D̂(2)
2, fp1 D̂(2)

2, fp2 D̂(2)
2, 1 D̂(2)

2, 2 · · · D̂(2)
2, ny−1 D̂(2)

2, ny
...

...
...

...
. . .

...
...

D̂(2)
ny−1, fp1 D̂(2)

ny−1, fp2 D̂(2)
ny−1, 1 D̂(2)

ny−1, 2 · · · D̂(2)
ny−1, ny−1 D̂(2)

ny−1, ny

D̂(2)
ny, fp1 D̂(2)

ny, fp2 D̂(2)
ny, 1 D̂(2)

ny, 2 · · · D̂(2)
ny, ny−1 D̂(2)

ny, ny


. (3.48)

∗Note that the heat equation is a parabolic PDE.
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By collocating the PDE, Eq. (3.14), at all the LGL nodes and the fictitious points, we obtain

d
dt



Tfp1(t)

Tfp2(t)

T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=

K
ρCp

(
2

yf − y0

)2


D̂(2)





Tfp1(t)

Tfp2(t)

T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


. (3.49)

Boundary conditions presented in Eqs. (3.15, 3.16) are transcribed in the following way:

2
yf − y0

 D̂1, fp1 D̂1, fp2 D̂1, 1 D̂1, 2 · · · D̂1, ny−1 D̂1, ny

D̂ny, fp1 D̂ny, fp2 D̂ny, 1 D̂ny, 2 · · · D̂ny, ny−1 D̂ny, ny

︸                                                                       ︷︷                                                                       ︸
..= D̂(bc)



Tfp1(t)

Tfp2(t)

T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=

Q0/K

Qf/K

 , (3.50)

The next and most important step is to eliminate the influences of Tfp1(t) and Tfp2(t) in Eq. (3.49) using

Eq. (3.50). This goal is achieved through matrix operations such that make the first and second columns

of D̂(2) zero, and it results in the following relation:

d
dt



Tfp1(t)

Tfp2(t)

T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=

K
ρCp

(
2

yf − y0

)2



0 0
Ẽ

0 0

0 0

0 0
...

... E
0 0

0 0





Tfp1(t)

Tfp2(t)

T1(t)

T2(t)
...

Tny−1(t)

Tny(t)



+
K
ρCp

2
yf − y0



F̃

F



Q0

K
+

K
ρCp

2
yf − y0



G̃

G



Qf

K
, (3.51)

50



3.2. Discretization of the PDE and Treatment of its Boundary Conditions

where 

0 0
Ẽ

0 0

0 0
...

... E

0 0


= D̂(2) −



D̂(2)
fp1, fp1 D̂(2)

fp1, fp2

D̂(2)
fp2, fp1 D̂(2)

fp2, fp2

D̂(2)
1, fp1 D̂(2)

1, fp2
...

...

D̂(2)
ny, fp1 D̂(2)

ny, fp2


 D̂1, fp1 D̂1, fp2

D̂ny, fp1 D̂ny, fp2


−1

D̂(bc), (3.52)



F̃ G̃

F G


=



D̂(2)
fp1, fp1 D̂(2)

fp1, fp2

D̂(2)
fp2, fp1 D̂(2)

fp2, fp2

D̂(2)
1, fp1 D̂(2)

1, fp2
...

...

D̂(2)
ny, fp1 D̂(2)

ny, fp2


 D̂1, fp1 D̂1, fp2

D̂ny, fp1 D̂ny, fp2


−1

. (3.53)

In Eq. (3.51), the influence of the fictitious points on dynamics of {T1, . . . ,Tny} vanishes except round-off

errors. Therefore, the first and second rows in Eq. (3.51) can be removed, and we eventually have the

following set of ODEs originating from Eqs. (3.14–3.16):

d
dt



T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=

K
ρCp

(
2

yf − y0

)2


E





T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


+

K
ρCp

2
yf − y0


F


Q0

K
+

K
ρCp

2
yf − y0


G


Qf

K

(3.54)

As a consequence, we obtain an ODE-expressed optimal control problem whose state variables and

control variable are

[x1(t), x2(t), T1(t), . . . , Tny(t)]T =.. x(t) : [0, tf]→ Rny+2, (3.55)

[u(t)] =.. u(t) : [0, tf]→ R. (3.56)

Eqs. (3.14–3.16) are replaced by ny dynamic constraints in Eq. (3.54). In addition, Eq. (3.12) becomes

Tny(t) ≤ Tmax. (3.57)

The initial condition on T in Eq. (3.13) is transcribed into

Ti(0) = T0, for i = 1, . . . , ny. (3.58)

Thermal properties of most TPS materials have considerable dependence on temperature, T , and
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surrounding static pressure, p. For example, in a TPS material datasheet [98], K is presented as a function

of T and p, and Cp is given as a function of T . When such dependence is considered, Eq. (3.54) should

be replaced with

d
dt



T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


=


C




(

2
yf − y0

)2


H





T1(t)

T2(t)
...

Tny−1(t)

Tny(t)


+

2
yf − y0


I


Q0 +

2
yf − y0


J


Qf


,

(3.59)

where C is given by

C ..= diag
[

1
ρCp[T1(t)]

1
ρCp[T2(t)]

. . .
1

ρCp[Tny−1(t)]
1

ρCp[Tny(t)]

]
. (3.60)

Here, H, I, and J are equivalent to E, F, and G, respectively, when D̂(2) in Eqs. (3.52, 3.53) is replaced

by

diag(K) D̂(2) + diag(D̂ KT) D̂, (3.61)

where

K ..=
[

K[Tfp1(t), p] K[Tfp2(t), p] K[T1(t), p] · · · K[Tny(t), p]
]
. (3.62)

At each iteration step in the numerical solution of the resulting optimal control problem, K[Tfp1(t), p] and

K[Tfp2(t), p] are evaluated from {K[T1(t), p], . . . ,K[Tny(t), p]} using Lagrange interpolation. Although

H, I, and J are no longer constant matrices, they are still independent of the choices for the abscissas of

fictitious points.

3.3 Numerical Experiment

3.3.1 Experiment Procedure

In this section, the accuracies of discretization schemes presented above are compared through solv-

ing the transient heat-constrained optimal control problem in Section 3.1. The PDE and its boundary

conditions are transcribed into ODEs using

1) Legendre pseudospectral (PS) method in Section 3.2.3,

2) fictitious-point Legendre PS method in Section 3.2.4,

3) finite volume method in Section 3.2.1, and
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4) finite difference method in Section 3.2.2,

with changing the value of ny. The derived ODE-expressed optimal control problems are solved using the

Legendre-Gauss pseudospectral method [64,65] as in the case of usual optimal control problems. In all the

cases, 100 collocation points are used in the Legendre-Gauss pseudospectral method, that is, the number

of temporal discretization nodes is fixed. The resulting NLP problems are solved with SNOPT [43,78],

an off-the-shelf solver based on sequential quadratic programming. Because the highly accuracy pseu-

dospectral method for optimal control is used with the sufficiently large number of collocation points, it

is assumed that numerical errors in the obtained solutions are all attributed to spatial discretization errors

of the PDE into ODEs. A common initial guess for the solution is properly prepared and provided in all

the computations.

3.3.2 Result and Discussion

Cost functional values for various choices of discretization schemes and ny are shown in Figs. 3.6 and

3.7. Figure 3.7 is the enlarged view of the gray region in Fig. 3.6. As the value of ny is increased,

cost values of solutions with different PDE discretization schemes have converged similar values around

5035.31(=.. J̃∗) except the finite volume method. Seemingly, the solution via the finite volume method

has not fully converged even when ny = 128. Since the analytic solution of this example problem is not

available∗, we postulate that the actual J in the optimal solution of the original continuous-time/space

problem is quite close to J̃∗

Poor accuracy of the finite volume scheme would be due to its treatment of boundary conditions.

When using the finite volume discretization, Tny(t) refers to the temperature averaged over the boundary

cell, while Tny(t) denotes the exactly surface temperature in the other methods (see Figs. 3.3–3.5). This
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Fig. 3.6 Convergence comparison of PDE dis-
cretization schemes in heat-constrained
optimal control.
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Fig. 3.7 Enlarged view of the gray region in
Fig. 3.6.

∗Only a partially analytic solution has been revealed even in the simplest transient heat-constrained optimal control prob-
lem [60].
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Fig. 3.8 Obtained solution using the fictitious-point Legendre pseudospectral method with ny = 5.

means that the path constraint, Tny(t) ≤ Tmax, becomes an inaccurate approximation of the original

backface temperature limit, T (yf , t) ≤ Tmax, when the finite volume scheme is used with small ny.

While the accuracy of the pure Legendre pseudospectral method is inferior to that of the finite dif-

ference scheme when ny is very small∗, the solution via the pseudospectral discretization gets converged

exponentially as ny is increased. By applying the fictitious point method, the fictitious-point Legendre

pseudospectral method achieves superior accuracy over all ranges of ny. The J value with the Legendre

PS method and that with the fictitious-point Legendre PS method coincide with each other up to the first

ten digits when ny = 16.

Although the application of the fictitious point method enables the slight reduction of the acceptable

value of ny (e.g., from 7 to 5) only, it leads to considerable reduction of the size of the NLP problem

to be solved. It is because that the required number of temporal collocation points is typically dozens

or hundreds in order to obtain satisfactory solution in practical problems. Therefore, the numbers of

decision variables and constraints in the NLP problem can be reduced by hundreds via reducing ny a

∗It is noted that the PDE is imposed at one location of y only, when the pure pseudospectral method is used with ny = 3.
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little.

Figure 3.8 shows the solution obtained using the fictitious-point Legendre pseudospectral method

with ny = 5. As the velocity, x2, increases, the temperature on the surface, T1, rises, which is followed by

the increase of the internal temperature. An overshoot of x2 is observed before it enters into a “cruising”

state around 2600 ≤ t ≤ 3600. Owing to this overshoot, T1 once goes above the backface temperature

limit, Tmax. Then, T1 decreases and follows Tmax after t ≈ 2600. Subsequently, T1 leaves the limit at

t ≈ 3600, and T2, . . . , T5 pursue it. The backface temperature limit, Eq. (3.12), is active approximately

in 2600 ≤ t ≤ 4000, and the thermal environment inside the tile is stationary only in 2600 ≤ t ≤ 3600.

At the final time, terminal conditions including x2 = 0 are satisfied. It is noted that T1(tf) , T1(0) even

though x2(tf) = x2(0). This is a consequence of, so to speak, memory effect [60] because of the heat stored

inside the TPS material. Such a behavior of the temperature cannot be determined when only a stationary

heat analysis is conducted.

3.4 Conclusion of this Chapter

The thermal behavior of passive TPS for hypersonic vehicles (e.g., insulation tiles) is governed by a

PDE-expressed heat equation inside the material. Therefore, when the simultaneous design optimization

problem of the flight trajectory and the TPS is formulated, it becomes a PDE-ODE coupled optimal

control problem. In order to solve this problem in a numerically efficient manner, a transformation

method of the PDE into a set of ODEs is investigated. In this method, a pseudospectral discretization

scheme is applied to the spatial coordinate only, and boundary conditions at the TPS surface and backface

are handled by the fictitious point method. Then, the resulting ODE-expressed optimal control problem

can be solved using a conventional optimal control software. The efficiency of the proposed technique is

demonstrated through conducting numerical experiments based on a test problem. The result indicates

that the proposed method has a faster convergence rate in comparison with finite volume, finite difference,

and pure pseudospectral schemes.
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Chapter 4

Multi-Objective, Multidisciplinary Design
Optimization of a TSTO RLV with PCTJ
Engines

In this chapter, a conceptual design study of a horizontal takeoff TSTO RLV with pre-cooled turbojet

(PCTJ) engines is conducted via multi-objective optimization. The PCTJ engine is a sort of hypersonic

airbreathing engines, and it can be operated with high specific impulse value up to Mach 6.0 owing

to the precooling system located prior to its core engine. Multi-objective MDO is executed on vehicle

design and flight trajectory simultaneously with the aim of maximizing the payload mass, minimizing the

mated vehicle gross mass, and minimizing the takeoff velocity. After inspecting representative solutions

selected from the obtained Pareto optimal solutions, generic knowledge is extracted by applying data

mining techniques.

4.1 Overview of Multi-Objective MDO

Figure 4.1 shows the outline of a multi-objective MDO framework for the TSTO RLV with PCTJ en-

gines. This numerical framework consists of the following analysis disciplines: vehicle geometry and

mass property, aerodynamics, propulsion, and flight trajectory. The assumed mission is the manned

transportation of a payload into a low Earth orbit at 350 km above sea level. Static design variables are

gathered in Table 4.1. Besides, state variables, control variables, and phase-switching times for optimal

control of the vehicle are included in the design variables of the MDO problem in order to enable concur-

rent optimization of vehicle design and trajectory design. This point will be detailed later in Section 4.3.

For an optimizer, a multi-objective optimization method developed in Chapter 2 is employed. The op-

timizer varies each of the design variables and passes them to the analysis disciplines. Subsequently, a

numerical model in each discipline calculates output values from the design variables and/or input values

from other disciplines. As a consequence, objective values and constraint values are computed, and they

are fedback to the optimizer. No internal iteration loop exists, and all the objectives and constraints are
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Fig. 4.1 Overview of a multi-objective MDO framework for the TSTO RLV with PCTJ engines.

managed by the single system-level optimizer. Such an MDO approach is called an all-at-once approach

as mentioned in Section 1.2.1, which is known to have stable and rapid convergence, and be free from

convergence errors between coupling variables in different disciplines [19,27].

Design objectives considered here are 1) maximization of the payload mass, mpay, 2) minimization

of the gross mass of the mated vehicle, mgross(= m(b)
gross + m(o)

gross), and 3) minimization of the horizontal

takeoff velocity, vto. The takeoff velocity is selected as one of the design criteria, because it is a major

technological constraint in designing booster vehicles of TSTO RLVs. It is noted that the takeoff velocity

not only determines initial velocity in trajectory computation, but also puts a significant constraint on

vehicle design [see Eq. (4.27)]. In order to limit the design search region to an interesting area and

to make the resulting Pareto front bounded (see Assumption 1 in p. 13), the following constraints are

imposed on the objective values:

mpay ≥ 500 kg, (4.1)

mgross ≤ 700 t, (4.2)

vto ≤ 180 m/s. (4.3)

4.2 Design Assumptions and Numerical Models

In this section, design assumptions are presented, and a numerical model of each analysis discipline is

explained.
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Table 4.1 Static design variables of the TSTO RLV with PCTJ engines.

Parameter Unit Associated constraints

V
eh

ic
le

de
si

gn

Booster Length of the fuselage, bl m 30 ≤ bl ≤ 80
Height of the upper fuselage, bh m 0.01 ≤ bh/bl ≤ 0.05
Length of the forebody, blf m 0.3 ≤ blf/bl ≤ 0.6
Width of the forebody tip, bwf m 0.5 ≤ bwf/(6eh) ≤ 1.0
Root chord length of the exposed wing, wchrd m 0.1 ≤ wchrd/bl ≤ 0.5
Sweepback of the wing leading edge, wΛ deg 45 ≤ wΛ ≤ 70
(Forward, Backward) end of the LOX tank, (tlo0, tlof) m 5.0 ≤ tlo0 ≤ tlof

(Forward, Backward) end of the LH2 tank, (tlh0, tlhf) m tlof + 0.5 ≤ tlh0 ≤ tlhf ≤ bl − 0.5
Height of PCTJ engines, eh m 0.2 ≤ (8eh + 1)/bl ≤ 0.5
LH2/LOX rocket engine vacuum thrust per unit, Trclh,v kN –

Orbiter Length of the fuselage, ol m 10 ≤ ol ≤ 30
Backward end of the cabin, cbf m 0.25 ≤ cbf/ol ≤ 0.9
Ethanol/LOX rocket engine vacuum thrust, Trcea,v kN –

V
eh

ic
le

pe
rf

or
m

an
ce

Booster Maximum axial acceleration, aa(b)
max G –

Maximum normal load factor, l f (b)
max G –

Maximum dynamic pressure, q(b)
max kPa q(b)

max ≤ 50
Maximum exerted thrust, T (b)

max kN –
Gross mass, m(b)

gross t –

Orbiter Maximum axial acceleration, aa(o)
max G –

Maximum normal load factor, l f (o)
max G 2.5 ≤ l f (o)

max

Maximum dynamic pressure, q(o)
max kPa q(o)

max ≤ 50
Maximum exerted thrust, T (o)

max kN –
Gross mass, m(o)

gross t –

4.2.1 Vehicle Geometry Definition and Mass Property Analysis

In this analysis discipline, geometric design of the booster and the orbiter is defined by some design

variables. Then, the dry mass of the vehicles, volume of the tanks, and center of mass of the vehicles and

propellants are calculated.

Figure 4.2 presents basic configurations of the vehicles and describes how geometries of the air-

frame, tanks, and engines are specified by the design variables. In addition to the constraints enumerated

in Table 4.1, some inequality constraints are imposed so that the vehicle geometries are determined suc-

cessfully. The booster has a lifting-body configuration with six PCTJ engines installed on its fuselage

undersurface. Airfoils of main wing and tail wings are NACA0005, and the taper ratio of the main wing

is fixed at 0.15. 90 % exposed span from the wing tips and 30 % chord from the trailing edge of the main

wing are used as elevons. Right and left elevons are deflected in the same direction and angle (positive

downward) to serve as elevators. Platforms of the tail wings are scaled so that their total area equals to

10 % of the main wing area. An integral tank of liquid oxygen (LOX) and that of liquid hydrogen (LH2)
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LOX tank LH2 tank

(a) Booster.

LOX
tank

Ethanol
tankCabin

(b) Orbiter.

Fig. 4.2 Basic configuration and design parameters of vehicles.

are inside the fuselage. The total inlet flow capture area of the PCTJ engines is given by

Scapt = 6eh
2. (4.4)

As for the orbiter, the vehicle shape is adopted based on Ref. 3 as shown in Fig. 4.2b. Airframe

geometry optimization is not conducted, and rather, only scaling is performed. The orbiter is loaded onto

the uppersurface of the booster fuselage at such a position that the center of the mass does not move in

the axial direction between just before and just after the staging. A constraint on the width of the booster

fuselage and that of the orbiter is enforced in order to guarantee the mountability of the orbiter.

Mass property of the vehicles, tank volumes, and accomodated payload mass are computed based on

the procedures explained in Appendix E. Inputs to the mass-property model include vehicle geometric

parameters such as wetted area, maximum loads such as maximum dynamic pressure during the flight,

and gross mass. These input values are present in or calculated from the design variables. The resultant

gross mass (i.e., the summation of the calculated dry mass and propellant mass before takeoff) must be

consistent with the corresponding gross mass value included in the design variables. This consistency is

enforced as one of the constraints in the MDO problem.

4.2.2 Aerodynamic Analysis

In this analysis discipline, aerodynamic characteristics of the booster, the orbiter, and their mated con-

figuration are calculated when a vehicle shape and flight conditions are specified.

Engineering-level CFD methods explained in Appendix C are utilized. In this section, the interaction

between airframe and propulsion is ignored, and hence the aerodynamic coeffcients are calculated with-

out considering external nozzle effects. A rationale for neglecting the airframe-propulsion interaction is

59



4. Multi-Objective, Multidisciplinary Design Optimization of a TSTO RLV with PCTJ Engines

that, the effects of the forebody pre-compression and the external nozzle are relatively small in the PCTJ

engines compared to ramjet or scramjet engines.

Surrogate models for the aerodynamic analysis of the booster are constructed, and they are substituted

for the original analysis during optimization computation in order to mitigate the computational burden

and to enhance the numerical stability. The surrogate model is also known as a metamodel or a response

surface, and it imitates the input-output relation of the original analysis model by means of relatively

simple functions. First, let the lift coefficient, CLb, the drag coefficient, CDb, and the pitching moment

coefficient around the reference point, CMb, be approximated as second-order polynomials in terms of

angle of attack, α, and elevon deflection angle, δ, as follows:

CLb = a(0,0)
L + a(1,0)

L α + a(2,0)
L α2 + a(0,1)

L δ + a(0,2)
L δ2, (4.5)

CDb = a(0,0)
D + a(1,0)

D α + a(2,0)
D α2 + a(0,1)

D δ + a(0,2)
D δ2, (4.6)

CMb = a(0,0)
M + a(1,0)

M α + a(2,0)
M α2 + a(0,1)

M δ + a(0,2)
M δ2. (4.7)

These polynomial response surfaces are constructed using the least squares fit of the responses at the

representative combinations of α and δ (5 cases) shown in Table 4.2. Here, the polynomial coefficients,

a(0,0)
{·} , . . . , a(0,2)

{·} , are the functions of flight Mach number and vehicle design variables concerning aerody-

namics. Surrogate models of these coefficients are created using radial basic function (RBF) networks [76]

with multiquadric basis for Mach number and with Gaussian basis for the vehicle design variables. In or-

der to train the RBF network surrogate models, 200 sample points are made via a design-of-experiments

algorithm developed in Ref. 14. This is a variant of space-filling designs, and it generates sample points

that uniformly fill the constrained design space. In addition to these sample points, 200 test points for

the cross-validation are prepared using random sampling. Fitting parameters in the surrogate models are

optimized based on the input/response relations at the sample and test points using simulated annealing.

These procedures yield surrogate models whose coefficients of determination are 0.9918 on average and

0.9481 in the worst case, which is an acceptable prediction error. The coefficient of determination is de-

fined by the mean square error of the surrogate model at test points normalized by the response variance,

subtracted from unity or 1.

Table 4.2 Flow conditions in aerodynamic analysis.

Parameter(s) Sample values Unit

Mach number 0.2, 0.6, 0.9, 1.2, 3.0, 5.0, 7.0, 10.0, 15.0 –
(α∗, δ†) (0, 0), (5, 0), (10, 0), (5, -10), (5, 10) (deg, deg)
∗ Angle of attack.
† Elevon deflection as an elevator (positive downward).
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4.2.3 Propulsion Analysis

In the propulsion analysis, thrust and specific impulse of PCTJ engines and those of rocket engines are

calculated when the engine design and flight conditions are provided.

LH2-fueled PCTJ engines, whose images are illustrated in Fig. 4.3, are installed on the booster. The

performance of the PCTJ engines is evaluated based on tabular data provided by JAXA [9]. In this tabular

data, thrust magnitude per unit inlet area, CT,pctj, and specific impulse, Isppctj, are defined as the functions

of flight altitude and Mach number. On the basis of it, the following polynomial approximation models

are constructed:

CT,pctj = exp [c1(Ma) · h + c2(Ma)], (4.8)

Isppctj = d1(h) · Ma + d2(h), (4.9)

where h indicates flight altitude, and Ma denotes flight Mach number. c1(·), c2(·), d1(·), and d2(·) are

univariate RBF network models with multiquadric basis, and they are built based on the tabular data.

The outputs of these approximation models are presented in Fig. 4.4. The total thrust of the PCTJ

engines, Tpctj, is given by

Tpctj = CT,pctj Scapt. (4.10)

It is assumed that the PCTJ engines are operated from the takeoff run, and the operation is stopped

before arriving at the Mach number limit of 6.0. Then, six rocket engines with LH2/LOX propellants

mounted on the fuselage base of the booster are ignited immediately. Their vacuum specific impulse,

Isprclh,v, and oxidizer-to-fuel mass mixture ratio, (O/F)rclh, are 440 s and 6.03, respectively. Effective

thrust, Trclh, and effective specific impulse, Isprclh, of the rocket engines are computed considering the

effect of atmospheric pressure as follows[14, pp. 84, 85]:

Trclh = Trclh,v (1 − 1.9372 × 10−6 p), (4.11)

Isprclh = Isprclh,v (1 − 1.9372 × 10−6 p), (4.12)

where p is the atmospheric pressure at the flight altitude in Pa. Optimization of the size of the rocket

Variable-geometry

air inlet Precooling system

Core turbojet engine Variable-geometry

exhaust nozzleAfterburner

Fig. 4.3 Images of a PCTJ engine (from Ref. 10 with some modifications).
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Fig. 4.4 Performance model of the PCTJ engine.

engines are performed considering their geometric mountability on the fuselage base in the following

way[14, p. 85]:

(Width of the fuselage base) ≥ Drc Nrclh, (4.13)

(Height of the fuselage base) ≥ Drc, (4.14)

where Nrclh denotes the number of the engine units, and Drc is the diameter of the engine unit given by

Drc =

√
2.771 × 10−3 4

π
Trclh,v [kN] [m]. (4.15)

After the staging, the orbiter is propelled by a rocket engine installed on its fuselage base. Ethanol

fuel and LOX are employed, and vacuum specific impulse, Isprcea,v, and oxidizer-to-fuel mass mixture

ratio, (O/F)rcea, are 320 s and 1.6, respectively [3]. Effective thrust and effective specific impulse of the

rocket engine (Trcea and Isprcea) are computed using Eqs. (4.11, 4.12) as well. It is assumed that the

thrust of the rocket engines on the booster and the orbiter can be throttled between 50 % and 100 %

without affecting their specific impulse values.

4.2.4 Flight Trajectory Analysis

System Dynamics

In the flight trajectory analysis, it is assumed that the trajectory is restricted to a vertical plane, and

2-degree-of-freedom vehicle dynamics is employed. The influence of the rotation of the Earth is not

considered for the sake of simplicity. On the basis of the variable definitions provided in Table 4.3, the

state equations are described as follows:

For the mated vehicle
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v̇ =
(Tpctj + TrclhNrclhτ cos δr) cosα − (Dm + TrclhNrclhτ sin δr sinα)

m
− µ

r2 sin γ, (4.16)

γ̇ =
(Lm + TrclhNrclhτ sin δr cosα) + (Tpctj + TrclhNrclhτ cos δr) sinα

mv
+

(v
r
− µ

vr2

)
cos γ, (4.17)

ḣ = v sin γ, (4.18)

ṁlh = −
Tpctj

g0Isppctj
− TrclhNrclhτ

g0Isprclh

1
(O/F)rclh + 1

, (4.19)

ṁlo = −
TrclhNrclhτ

g0Isprclh

(O/F)rclh

(O/F)rclh + 1
, (4.20)

For the orbiter

v̇ =
Trceaτ cosα − Do

m
− µ

r2 sin γ, (4.21)

γ̇ =
Lo + Trceaτ sinα

mv
+

(v
r
− µ

vr2

)
cos γ, (4.22)

ḣ = v sin γ, (4.23)

ṁea = −
Trceaτ

g0Isprcea

1
(O/F)rcea + 1

, (4.24)

ṁlo = −
Trceaτ

g0Isprcea

(O/F)rcea

(O/F)rcea + 1
, (4.25)

where

r = h + Re. (4.26)

It is noted that subscripts (·)m and (·)o indicate that the attached variables are aerodynamic forces of the

mated vehicle and those of the orbiter alone, respectively, as explained in Appendix C.2.

Atmosphere Model

A static atmosphere model is built based on U. S. standard atmosphere 1976 [91]. A set of relations

for calculating various atmospheric quantities is presented for each atmospheric layer in the standard

atmosphere model. Since these sets of relations are not necessarily smoothly connected at the interfaces

of adjacent layers, smooth models are constructed by interpolating the values at some sampled altitudes

using natural cubic spline. The constructed models are shown in Fig. 4.5.

Flight Plan

Flight phases on which the trajectory analysis is conducted are as follows:

1) Horizontal takeoff phase

The mated vehicle takes off horizontally from a runway at sea level. No particular launch site is
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Table 4.3 Variables and constants used in the trajectory analysis.

Symbol Description

h Altitude
v Velocity
γ Flight path angle
m Vehicle mass
mlh Mass of remaining liquid hydrogen
mlo Mass of remaining liquid oxygen
meaf Mass of remaining ethanol in the booster fore tank
meaa Mass of remaining ethanol in the booster after tank
mea Mass of remaining ethanol in the orbiter tank
ṁdump Mass rate of dumped ethanol
α Angle of attack
δr Thrust deflection angle of the rocket gimbal
τ Throttling parameter
η Consumption ratio of the fore ethanol fuel tank
r Distance from the center of the Earth
Re Radius of the Earth (= 6.378 × 106 m)
µ Standard gravitational parameter of the Earth (= 3.986 × 1014 m3/s2)
g0 Gravitational acceleration at mean sea level (= 9.80665 m/s2)

assumed in the present study. The takeoff is conducted with full-throttled PCTJ engines and 15 deg

angle of attack. The following takeoff analysis[92, 14, pp. 158, 159] is conducted, and takeoff velocity,

vto, takeoff distance (ground roll), lto, and the mass of propellants consumed during the takeoff

phase, mprop,to, are computed:

γ̇ =
Lm + T sin(15π/180)
(mgross − mprop,to) vto

+

(
vto

r
− g0

vto

)
cos γ ≥ 0, (4.27)

lto = −
1

2ka
log

(
1 − ka

kt
v2

to

)
+ 3vto, (4.28)

mprop,to =
Tacc

Ispacc g0

1
2
√

kt ka
log

( √
kt +
√

kavto√
kt −
√

kavto

)
, (4.29)

where

kt =
Tacc

mgross
− 0.03 g0, (4.30)

ka =
Dm,acc

mgross v2
acc
. (4.31)

Here, vacc indicates the representative takeoff-roll speed defined as vacc = vto/
√

2. Tacc and Dm,acc
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Fig. 4.5 Static atmosphere model.

refer to thrust and drag force acting on the mated vehicle when v = vacc, respectively.

2) Mated vehicle ascent phase

The mated vehicle is accelerated by PCTJ engines after the takeoff, and they are taken over by

LH2/LOX rocket engines on the booster below Mach 6.0. The rocket engine mounted on the

orbiter is not used in this phase. Angle of attack, elevon deflection angle, and thrust deflection

angle of the rocket engines are bounded as follows:

−5 deg ≤ α ≤ 15 deg, (4.32)

−10 deg ≤ δ ≤ 10 deg, (4.33)

−15 deg ≤ δr ≤ 15 deg. (4.34)

Elevon deflection angle is limited, because a large deflection can lead to flow separation and re-

attachment, causing locally high heat flux and elevon effectiveness loss. Axial acceleration, normal

load factor, dynamic pressure, and exerted thrust must not exceed the corresponding design limits

(see Table 4.1), that is

aa(t) ≤ aa(b)
max and aa(t) ≤ aa(o)

max, (4.35)
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l f (t) ≤ l f (b)
max and l f (t) ≤ l f (o)

max, (4.36)
1
2
ρv2 ≤ q(b)

max and
1
2
ρv2 ≤ q(o)

max, (4.37)

Tpctj + Trclh Nrclh ≤ T (b)
max, (4.38)

where aa(·) and l f (·) denote the axial acceleration and normal load factor, respectively. Since a

manned vehicle is assumed, total acceleration
[
=
√

aa(t)2 + l f (t)2
]

is restricted up to 4.0 G maxi-

mum. At the terminus of this flight phase, the orbiter is separated from the booster.

3) Orbiter ascent phase

The ethanol/LOX rocket engine on the orbiter is ignited immediately after the staging. Angle of

attack is bounded as follows:

0 deg ≤ α ≤ 30 deg. (4.39)

Axial acceleration, normal load factor, dynamic pressure, and thrust must not exceed their corre-

sponding design limits for the orbiter:

aa(t) ≤ aa(o)
max, (4.40)

l f (t) ≤ l f (o)
max, (4.41)

1
2
ρv2 ≤ q(o)

max, (4.42)

Trcea ≤ T (o)
max. (4.43)

The total acceleration is limited to no more than 4.0 G.

The trajectory computation based on the equations of motion is not performed after the orbiter

reaches an altitude of 100 km or higher and the engine is cut off. The subsequent coasting trajec-

tory is simulated via elliptic orbit equations (refer to, for example, Ref. 93) as follows:

rapo = a (1 + e), (4.44)

vapo =

√
µ/rapo (1 − e), (4.45)

where

H = rf vf cos γf , (4.46)

E = v2
f /2 − µ/rf , (4.47)

e =
√

2 E H2/µ2 + 1, (4.48)

a = −µ/(2 E). (4.49)

The subscript (·)f denotes the final value in the trajectory computation based on the equations of
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motion, and rapo and vapo refer to the apogee elevation from the center of the Earth and the velocity

at the apogee point, respectively. At the apogee of the coasting trajectory, the orbiter is accelerated

again, and it is injected into a circular orbit at 350 km above sea level. The propellant mass needed

for this apogee acceleration is calculated by approximating it as an impulsive acceleration whose

specific impulse is 320 s. In addition to the propellant consumed during the orbit insertion, some

propellant is reserved for an on-orbit operation and a de-orbit operation. The reserved propellant

mass is calculated by assuming that the required velocity change in these operations is 250 m/s in

total.

The return trajectory of the booster after the staging and that of the orbiter after de-orbit are not consid-

ered in this dissertation.

Rigid Body Characteristics of the Vehicle

During the mated vehicle ascent phase, a pitching trim condition and a longitudinal static stability con-

dition are imposed in order to ensure the flyability of the vehicle. The trim condition is expressed as

follows:

Mtot
..= Marfr + Mpctj + Mrclh = 0. (4.50)

Here,

Marfr = Mm + (Lm cosα + Dm sinα) (xcg − xrefb) + (Lm sinα − Dm cosα) (zcg − zrefb), (4.51)

Mpctj = Tpctj (zcg − zpctj), (4.52)

Mrclh = Trclh
[
(zcg − zrclh) cos δr + (xcg − xrclh) sin δr

]
(4.53)

are the pitching moment produced by the airframe, that by the PCTJ engines, and that by the LH2/LOX

rocket engines, respectively. xcg is the axial position of the center of mass, and zcg denotes the height

of the center of mass. It should be noted that the pitching moment in the above equations is calculated

about the center of mass, which moves during the flight. It is assumed that thrust of the PCTJ engines and

that of the rocket engines are exerted at the center of mass of the corresponding engines (see Table E.2

in Appendix E.2). The pitching trim is attained by controlling elevon deflection angle during the PCTJ

operation, and by changing thrust deflection angle during the rocket operation. In addition to the trim,

the following longitudinal static stability condition is imposed until reaching Mach 8.0:

xcg ≤ xnp, (4.54)

where xnp denotes the axial position of the longitudinal stability neutral point calculated in Appendix C.2.
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4.3 Formulation of the Optimization Problem

On the basis of the above numerical models, the multi-objective MDO problem of the TSTO RLV with

PCTJ engines is established. As mentioned in Section 1.2.1 and originally stated in Ref. 14, such an

MDO architecture as shown in Fig. 4.1 can be formulated as an augmented optimal control problem. In

order to describe the flight plan presented in Section 4.2.4, the optimal control problem is divided into

five phases shown in Table 4.4. As a consequence, the multi-objective MDO problem is formulated as

follows:

find state variables, x(1), . . . , x(5), (4.55)

control variables, u(1), . . . , u(5), (4.56)

initial and terminal times, t(1)
0 , t(1)

f , . . . , t(5)
0 , t(5)

f (4.57)

static variables shown in Table 4.1, p (4.58)

min. F1
..= −0.02 mpay [kg] (4.59)

F2
..= 0.1 mgross [t] (4.60)

F3
..= 0.25 vto [m/s] (4.61)

s.t. simple bounds on objective values, Eqs. (4.1–4.3), (4.62)

constraints on static variables presented in Table 4.1, (4.63)

consistency condition on the vehicle gross mass explained in Section 4.2.1, (4.64)

state equations, Eqs. (4.16–4.20) for Phase 1–4, (4.65)

state equations, Eqs. (4.21–4.25) for Phase 5, (4.66)

path constraints presented in Section 4.2.4, (4.67)

initial and terminal conditions explained in Section 4.2.4, (4.68)

static pitching trim condition, Eq. (4.50) for Phase 1–4, (4.69)

longitudinal static stability condition, Eq. (4.54) for Phase 1–3, (4.70)

moutability of rocket engines on the booster base, Eqs. (4.13, 4.14), (4.71)

linkage conditions for the continuity of the state variables between adjacent phases. (4.72)

The formulated multi-objective optimal control problem is solved using a numerical method devel-

oped in Chapter 2 with dtol = 2.0. Numerical models in the MDO problem and the multi-objective op-

timization methodology are implemented in MATLABR⃝ 2007b with some time-consuming components

(e.g., surrogate model evaluation) being coded in C++MEX. For solving NLP problems, SNOPT [43,78],

an off-the-shelf solver based on a sequential quadratic programming algorithm, is employed. The op-

timality tolerance (the allowed residual of the optimality condition) and the feasibility tolerance (the

maximum allowed residual of constraints) are 10−6 and 10−8, respectively. Computations are performed

on a WindowsR⃝ 7 machine with an IntelR⃝ Core TM i7-4930K CPU and 32 GB RAM.
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Table 4.4 Definitions of optimal control phases in the MDO problem of the TSTO RLV with PCTJ
engines.

Item Phase 1 Phase 2

Flight phase Mated vehicle ascent Mated vehicle ascent
Propulsion PCTJ engine PCTJ engine
Flight Mach number, Ma Ma ≤ 3.0 3.0 ≤ Ma ≤ 6.0
Mated vehicle’s aero. model Model 1 (Fig. C.1a) Model 2 (Fig. C.1b)
State, x x(1) = [h, v, γ,mlh] x(2) = [h, v, γ,mlh]
Control, u u(1) = [α, δ] u(2) = [α, δ]

Item Phase 3 Phase 4

Flight phase Mated vehicle ascent Mated vehicle ascent
Propulsion LH2/LOX rocket LH2/LOX rocket
Flight Mach number, Ma Ma ≤ 8.0 8.0 ≤ Ma
Mated vehicle’s aero. model Model 2 (Fig. C.1b) Model 2 (Fig. C.1b)
State, x x(3) = [h, v, γ,mlo,mlh] x(4) = [h, v, γ,mlo,mlh]
Control, u u(3) = [α, δr, τ] u(4) = [α, δr, τ]

Item Phase 5

Flight phase Orbiter ascent
Propulsion Ethanol/LOX rocket
Flight Mach number, Ma –
Mated vehicle’s aero. model –
State, x x(5) = [h, v, γ,mlo,mea]
Control, u u(5) = [α, τ]

4.4 Pareto Optimal Solutions

The specified termination condition of the multi-objective optimizer is satisfied after approximately 12-

hour computation, and 260 solutions are obtained. Figures 4.6a and 4.6b depict these solutions in the

three-dimensional objective space and their two-dimensional projection, respectively. In these figures,

four representative Pareto optimal solutions are shown with emphasis: three extreme solutions and one

intermediate solution. The validity of the employed multi-objective optimization technique is demon-

strated by the fact that the obtained solutions are uniformly distributed on the bounded Pareto front, and

that all the obtained solutions are nondominated. From Fig. 4.6a, it is qualitatively revealed that the three

design objectives are conflicting with each other. Figure 4.6b visually explains that vehicle gross mass

and payload mass are almost linearly correlated when the takeoff velocity is fixed. The payload mass

fraction is increased by relaxing the takeoff-velocity constraint.
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Specifications of the representative Pareto optimal solutions are summarized in Table 4.5. When

the solution No. 4 is referred, its gross mass before the takeoff run is 412 t, and it is smaller than the

maximum takeoff mass of An-225 aircraft∗ (600 t [94]). It may indicate that there is a realistic possibility

in the horizontal takeoff of RLVs of this scale. Compared with historical supersonic aircraft, takeoffmass

and takeoff velocity of the solution No. 4 are both larger than those of Concorde (181 t and 111 m/s,

respectively [95]). It is also worth mentioning that a fully-reusable TSTO launch vehicle with ethanol-

fueled rocket engines is currently investigated in JAXA, and its vertical lift-off mass is 788 t when

the mission requirement is the transportation of an 800 kg payload [3]. Therefore, the PCTJ-powered

RLV designed in the present study has a smaller gross mass. Of course, a simple comparison is rather

meaningless since the underlying design assumptions and numerical models differ substantially.

Among the components of the booster vehicle, the PCTJ engines occupies the largest mass portion,

followed by the landing gear and the fuselage. The optimized design limit of maximum dynamic pressure

during the flight (i.e., q(b)
max and q(o)

max) is 50 kPa, and it is on its allowable upper bound. It is because the

improvement of the performance of the PCTJ engines due to higher dynamic pressure overweighs the

resulting increase of the airframe mass.

Details of the vehicle design of the representative solutions are presented in Fig. 4.7 and Table 4.6.

The solutions No. 1 and No. 2 are mainly distinguished by their payload mass and vehicle gross mass.

Major differences in their optimal vehicle shapes are as follows:

1) The size of the orbiter relative to that of the booster is larger in the solution No. 1.

2) Larger PCTJ engines relative to the size of the booster are installed in the solution No. 1. As a

consequence, the width-to-length ratio of the booster fuselage is larger in the solution No. 1.

A large main wing and a wide fuselage of the booster in the solution No. 3 enable the lowest takeoff

velocity. Solution No. 4 is located somewhat near the center of the solution distribution, and it has
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Fig. 4.6 Obtained solutions in the objective space.

∗Antonov An-225 Mriya is the heaviest existing aircraft.
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Table 4.5 Specifications of the representative Pareto optimal solutions.

Parameter Unit
Solution No. 1 Solution No. 2 Solution No. 3 Solution No. 4

Booster Orbiter Booster Orbiter Booster Orbiter Booster Orbiter

Payload mass kg 2878.0 500.0 500.0 810.2
Mated vehicle gross mass t 700.0 335.5 700.0 412.4
Takeoff velocity m/s 159.0 159.2 71.3 129.1

Maximum axial acceleration G 2.0 2.0 2.2 2.2 2.1 2.1 2.2 2.2
Maximum load factor G 1.0 2.5 1.0 2.5 1.0 2.5 1.0 2.5
Maximum dynamic pressure kPa 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Maximum exerted thrust kN 6794.8 839.6 3677.5 342.2 8707.0 623.1 4716.8 468.8

Mass Fuselage t 30.0 6.0 18.4 2.4 41.2 3.1 19.1 3.1
Main wing t 14.9 0.0 7.1 0.0 45.9 0.0 11.3 0.0
Tail wing t 2.7 1.3 1.5 0.5 10.7 0.6 2.5 0.6
Tanks t 0.0 1.5 0.0 0.5 0.0 0.9 0.0 0.7
Thermal protection system t 11.2 4.7 6.7 2.0 24.0 2.5 8.1 2.5
Landing gear t 37.5 0.9 16.4 0.3 37.5 0.4 20.7 0.4
PCTJ engines t 91.2 0.0 49.9 0.0 106.6 0.0 63.3 0.0
Rocket engines t 11.4 1.1 6.1 0.5 14.5 0.8 7.9 0.6
Thrust structure t 4.4 2.1 2.4 0.9 5.6 1.6 3.0 1.2
The others t 12.1 4.3 7.4 2.3 13.0 3.1 8.4 2.8

Dry gross t 215.3 24.7 116.0 9.8 299.0 13.6 144.3 12.9

LH2 t 156.9 0.0 72.8 0.0 161.9 0.0 85.5 0.0
Ethanol t 0.0 31.0 0.0 12.7 0.0 23.2 0.0 17.6
LOX t 222.4 49.6 103.9 20.3 165.2 37.0 124.0 28.1

Gross t 594.6 105.4 292.7 42.8 626.2 73.8 353.8 58.6

Table 4.6 Vehicle design of the representative Pareto optimal solutions.

Parameter Unit Solution No. 1 Solution No. 2 Solution No. 3 Solution No. 4

Booster Fuselage length m 65.0 54.9 75.5 51.9
Fuselage upper height m 1.6 1.1 2.0 1.4
Forebody length m 33.9 30.5 41.0 26.5
Forebody tip width m 14.6 9.8 10.8 11.2
Exposed wing root chord length m 16.9 13.7 37.7 18.4
Wing leading edge sweepback deg 50.9 55.2 45.0 54.7
LOX tank ends (forward, backward) m (5.0, 15.9) (5.0, 14.2) (17.1, 21.5) (5.0, 13.2)
LH2 tank ends (forward, backward) m (16.4, 64.5) (14.7, 54.4) (45.4, 75.0) (13.7, 51.4)
Height of PCTJ engines m 2.5 1.8 2.8 2.1
Total rocket vacuum thrust kN 6812.0 3686.2 8720.5 4726.9

Orbiter Fuselage length m 26.7 17.3 19.7 19.7
Backward end of the cabin m 17.7 9.3 9.0 11.0
Rocket vacuum thrust kN 839.6 342.2 623.1 468.8
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(a) Solution No. 1. (b) Solution No. 2.

(c) Solution No. 3. (d) Solution No. 4.

Fig. 4.7 Vehicle shape of the representative Pareto optimal solutions.

intermediate characteristics between extreme solutions (i.e., solutions Nos. 1–3).

Time histories of the flight trajectories in the solutions Nos. 1–4 are shown in Figs. 4.8, 4.10, 4.12,

and 4.14, respectively. The behavior of the trajectory in the solution No. 4 is explained in detail below.

Vehicle thrust-to-mass ratio is 0.64 at the moment of takeoff. Flight path angle increases rapidly due

to large angle of attack soon after the takeoff. Subsequently, the angle of attack becomes smaller, and

flight path angle is decreased to a negative value. Such a dive maneuver often exits in an optimal flight

trajectory of an RLV with airbreathing engines in order to overcome transonic drag rise efficiently, as

reported in Ref. 16. After dynamic pressure reaches its upper bound, the angle of attack increases

gradually so as to fly along the bound. The operation of the PCTJ engines stops at Mach 6.0, and then

the rocket engines on the booster are ignited. During the rocket engine operation, the mated vehicle

begins to climb steeply by increasing its angle of attack. When the orbiter is separated from the booster,

Mach number and dynamic pressure are 11.7 and 2.5 kPa, respectively. The orbiter alone continues the

steep climb and reaches an altitude above 100 km, which is followed by a slight descent. The rocket

engines on the booster and on the orbiter are not throttled except a faint throttling around 930 s in order

to prevent excessive acceleration. At the terminal time of the trajectory shown in Fig. 4.14, the orbiter

is inserted into a coasting trajectory whose apogee altitude is 350 km above sea level. Flight trajectories
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of angle of attack.
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(f) Time history of elevon deflection angle.
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(h) Time history of thrust deflection angle.

Fig. 4.8 Flight trajectory of the solution No. 1.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of center of mass and neutral point.

Fig. 4.9 Propulsion efficiency and rigid body characteristics of the solution No. 1.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of angle of attack.
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(f) Time history of elevon deflection angle.
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(g) Time history of thrust throttling parameter.
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(h) Time history of thrust deflection angle.

Fig. 4.10 Flight trajectory of the solution No. 2.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of center of mass and neutral point.

Fig. 4.11 Propulsion efficiency and rigid body characteristics of the solution No. 2.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of angle of attack.
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(f) Time history of elevon deflection angle.
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(g) Time history of thrust throttling parameter.
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(h) Time history of thrust deflection angle.

Fig. 4.12 Flight trajectory of the solution No. 3.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of center of mass and neutral point.

Fig. 4.13 Propulsion efficiency and rigid body characteristics of the solution No. 3.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of angle of attack.
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(f) Time history of elevon deflection angle.
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(g) Time history of thrust throttling parameter.
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(h) Time history of thrust deflection angle.

Fig. 4.14 Flight trajectory of the solution No. 4.

0 200 400 600 800 1000 1200 1400
0

2

4

6

Time [s]

T
h

ru
st

 [
M

N
]

(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of center of mass and neutral point.

Fig. 4.15 Propulsion efficiency and rigid body characteristics of the solution No. 4.
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of the other Pareto optimal solutions are qualitatively similar to that of the solution No. 4, while their

details are substantially different.

The performance of the propulsion system and the rigid body characteristics of the vehicle during

the mated vehicle ascent phase in the solution No. 4 are shown in Fig. 4.15. Total thrust magnitude of the

PCTJ engines decreases from 70 s to 200 s after the takeoff due to low dynamic pressure. Even though

the thrust and specific impulse of the PCTJ engines are gradually deteriorated in higher Mach number,

the optimal switchover Mach number to the rocket operation is 6.0, and it is the operating limit of the

PCTJ engines. In Fig. 4.14c, pitching moment around the center of mass produced by the airframe, that

by the PCTJ engines, and that by the rocket engines are shown, and it can be seen that the summation of

them equals to zero. As for the longitudinal static stability, the center of mass is not located backward

of the stability neutral point before 870 s or below Mach 8.0, and this means that the stability is ensured.

The results in the solutions Nos. 1–3 are presented in Figs. 4.9, 4.11, and 4.13, respectively, and they

have similar characteristics to that of the solution No. 4. In all the Pareto optimal solutions, optimal

Mach number where the operation of the PCTJ engines stops is 6.0, which means that the PCTJ engines

should be operated as long as possible.

4.5 Knowledge Discovery in Pareto Optimal Solutions Using Data Mining
Techniques

In the preceding section, only four representative solutions are selected from the obtained Pareto optimal

solutions, and observations are made on them. In this section, generic and comprehensible knowledge

is extracted from all the solutions by applying data mining techniques. The results provide insights

into how the variations of the payload requirement and the takeoff constraint have the influence on the

resulting optimal design of the TSTO RLV with PCTJ engines.

4.5.1 Data Mining from Optimal Vehicle Designs

Figure 4.16 is the scatter plot matrix of objective values and notable vehicle design parameters. Details

on scatter plot matrices are described in Appendix F.1. The following information is extracted from

Fig. 4.16:

1) Optimal solutions can be classified into the following two groups with different characteristics:

solutions whose takeoff velocity is more than 80 m/s, and those whose takeoff velocity is no more

than 80 m/s. Since such low takeoff velocity is not indispensable for RLVs, the former group

includes suitable design solutions.

2) Since the mated vehicle horizontally takes off a runway, the takeoff velocity and the wing loading

at the moment of takeoff are highly associated. Because lower takeoff velocity inevitably leads to

a larger and heavier booster, less velocity increment should be assigned to the booster.

3) In the Pareto optimal booster designs, the decrease of the wing loading is primarily achieved by
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enlarging the exposed wing and by increasing fuselage width-to-length ratio. Optimal fuselage

length is not highly related to the wing loading when the takeoff velocity is higher than 80 m/s,

and it has a considerable relation with the vehicle gross mass instead.

4) Optimal design of the propulsion system of the booster (i.e., the total inlet area of the PCTJ engines

and the total vacuum thrust of the LH2/LOX rocket engines) is primarily determined by the gross

mass of the mated vehicle. In addition, these propulsion design parameters are almost linearly

correlated.

5) Optimal orbiter size relative to the booster length and vacuum thrust of the orbiter rocket are

heavily associated with the payload mass. The orbiter design does not have a significant influence

on the takeoff velocity.

6) Optimal dynamic pressure at the moment of staging is distributed in [1.7, 5.1] kPa, and it is signif-

icantly related to the takeoff-velocity requirement.

7) Optimal vehicle thrust-to-mass ratio at the takeoff falls within a narrow range [0.56, 0.67], and the

ratio has some correlation with the payload mass.

4.5.2 Data Mining from Optimal Flight Trajectories

Proper orthogonal decomposition (POD), whose procedure is presented in Appendix F.2, is applied to

angle-of-attack history during the mated vehicle ascent phase. It is because the mated vehicle ascent

phase is the most distinctive flight phase of the TSTO RLV with PCTJ engines, and angle of attack is

a primary control variable in this phase. Since a flight trajectory in each solution has different duration,

it is rather meaningless to compare time histories of angle of attack directly. Instead, optimal angle of

attack as a function of flight Mach number, α(Ma), is computed beforehand, and the comparison is made

on the angle of attack at each Mach number. Using POD, the angle-of-attack history of the ith Pareto

optimal solution, αi(Ma), is expressed by the summation of that of a nominal solution, α0(Ma), and the

deviation from it in the following manner:

αi(Ma) = α0(Ma) + c(1)
i · α̃

(1)(Ma) + c(2)
i · α̃

(2)(Ma) + · · · + c(260)
i · α̃(260)(Ma), i = 1, . . . , 260, (4.73)

where the deviation is further decomposed into a series of POD modes. The coefficient and the basis of

the jth mode are denoted by c( j)
i and α̃( j)(·), respectively. The solution No. 4 is adopted as the nominal

solution, and therefore α0(Ma) is calculated from Figs. 4.14b and 4.14e.

In the present case, 72.1 % of the whole energy content is occupied by the first POD mode, and its

coefficient and basis are shown in Fig. 4.17. The following observations are obtained:

1) The coefficient depends mainly on the takeoff velocity. This indicates that optimal angle of attack

at each Mach number is primarily associated with the takeoff velocity, or equivalently wing loading

of the vehicle. The coefficient has minor dependence on the payload mass as well.
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Fig. 4.17 Proper orthogonal decomposition (POD) of angle-of-attack histories of the Pareto optimal
solutions.

2) The basis describes how the optimal angle of attack during the flight is deviated when the takeoff-

velocity requirement is varied. As the takeoff velocity becomes higher, larger angle of attack is

required in the subsonic region in order to achieve initial climb (see, for example, before 90 s

in Fig. 4.14c) properly. On the other hand, optimal angle of attack is decreased more drastically

during the dive maneuver around Mach 1.0 in solutions with higher takeoff velocity. During the

flight when Mach number is within [1, 6], optimal angle of attack takes on a positive correlation

with the takeoff velocity again. When Mach number goes above 6, and the vehicle is propelled

by the LH2/LOX rocket engines, the positive sensitivity between optimal angle of attack and the

takeoff velocity becomes low.
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Chapter 5

Multi-Objective, Multidisciplinary Design
Optimization of a TSTO RLV with RBCC
Engines

In this chapter, a multidisciplinary conceptual design study is performed on a horizontal takeoff TSTO

RLV with rocket-based combined-cycle (RBCC) engines. The RBCC engine is composed of a dual-

mode ramjet/scramjet flow-pass and rocket engines embedded in it, and it attains superior performance

to conventional rocket engines. In comparison with the design study of a PCTJ-powered RLV in Chap-

ter 4, airframe-propulsion integration and TPS analysis are newly considered. Multi-objective MDO is

conducted aiming to maximize the payload mass, minimize the mated vehicle gross mass, and minimize

the takeoff velocity using the numerical method developed in Chapter 2. After some inspections are made

on representative Pareto optimal solutions, data mining techniques are employed in order to extract more

generic and insightful knowledge from all the obtained solutions. Since some descriptions that overlap

with the contents of Chapter 4 are removed in the present chapter, refer to the previous chapter for the

duplicate part.

5.1 Overview of Multi-Objective MDO

Figure 5.1 gives the outline of a multi-objective MDO framework for the TSTO RLV propelled by RBCC

engines. This numerical framework consists of analysis disciplines of vehicle geometry and mass prop-

erty, aerodynamics, propulsion, flight trajectory, and TPS. Among design variables in the MDO frame-

work, static variables are presented in Table 5.1. State variables, control variables, and phase-switching

times are also included in the design variables, as will be detailed in Section 5.3. Design objectives

considered here are 1) maximization of the payload mass, mpay, 2) minimization of the gross mass of the

mated vehicle (booster and orbiter), mgross(= m(b)
gross + m(o)

gross), and 3) minimization of horizontal takeoff

velocity, vto. The following bounds are introduced in order to confine the search region of the design
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Fig. 5.1 Overview of a multi-objective MDO framework for the TSTO RLV with RBCC engines.

space to an interesting area and to make the resulting Pareto front bounded (see Assumption 1 in p. 13):

mpay ≥ 200 kg (5.1)

mgross ≤ 800 t (5.2)

vto ≤ 200 m/s. (5.3)

5.2 Design Assumptions and Numerical Models

5.2.1 Vehicle Geometry Definition and Mass Property Analysis

The basic configuration of the booster is depicted in Fig. 5.2a. Design variables determine geometries of

the airframe, tanks, and engines. In addition to the constraints presented in Table 5.1, some inequality

constraints are imposed in order to ensure that the vehicle geometries are determined by the design

variables successfully. Five RBCC engines are installed on the undersurface of the fuselage. The total

inlet flow capture area of the RBCC engines is given by

Scapt =
5

1.81
e2

h. (5.4)

The flat undersurface of the forebody is employed to supply the uniformly pre-compressed airflow into

the engines, and that of the afterbody acts as an external nozzle. The external nozzle considered in

the present study is also called a single expansion ramp nozzle, and it is frequently used in hypersonic

airbreathing propulsion systems (e.g., NASA X43 experimental vehicle [96]). The airfoils of the main

wing and the vertical tail wings are NACA0005, and the taper ratio of the main wing is fixed at 0.15.

90 % exposed span from the wing tips and 30 % chord from the trailing edge of the main wing are used
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5.2. Design Assumptions and Numerical Models

Table 5.1 Static design variables of the TSTO RLV with RBCC engines.

Parameter Unit Associated constraints

V
eh

ic
le

de
si

gn

Booster Length of the fuselage, bl m 30 ≤ bl ≤ 60
Height of the upper fuselage, bh m 0.01 ≤ bh/bl ≤ 0.05
Inclination of the forebody undersurface, bwed deg 3.0 ≤ bwed ≤ 8.0
Angle of the external nozzle, bext deg 3.0 ≤ bext ≤ 20.0
Length of the forebody, blf m 0.3 ≤ blf/bl ≤ 0.6
Width of the forebody tip, bwf m 0.5 ≤ bwf/[(5/1.81)eh] ≤ 0.8
Leading edge position of the exposed wing, w0 m 0.25 ≤ w0/bl ≤ 0.75
Root chord length of the exposed wing, wchrd m 0.25 ≤ wchrd/bl ≤ 0.75
Sweepback of the wing leading edge, wΛ deg 45 ≤ wΛ ≤ 70
(Forward, Backward) end of the fore ethanol tank, (teaf0, teaff) m 5.0 ≤ teaf0 ≤ teaff

(Forward, Backward) end of the LOX tank, (tlo0, tlof) m teaff + 0.5 ≤ tlo0 ≤ tlof

(Forward, Backward) end of the aft ethanol tank, (teaa0, teaaf) m tlof + 0.5 ≤ teaa0 ≤ teaaf ≤ bl − 0.5
Thickness of the ceramic tile TPS on the undersurface, htps m –
Height of RBCC engines, eh m 0.2 ≤ 5.96eh/bl ≤ 0.5
Maximum thrust of RBCC embedded rocket engines, TR,max kN 100 ≤ TR,max/Scapt [kN/m2] ≤ 400

Orbiter Length of the fuselage, ol m 10 ≤ ol ≤ 30
Backward end of the cabin, cbf m 0.25 ≤ cbf/ol ≤ 0.9
Ethanol/LOX rocket engine vacuum thrust, Trcea,v kN –

V
eh

ic
le

pe
rf

or
m

an
ce

Booster Maximum axial acceleration, aa(b)
max G –

Maximum normal load factor, l f (b)
max G –

Maximum dynamic pressure, q(b)
max kPa q(b)

max ≤ 50
Maximum exerted thrust, T (b)

max kN –
Gross mass, m(b)

gross t –

Orbiter Maximum axial acceleration, aa(o)
max G –

Maximum normal load factor, l f (o)
max G 2.5 ≤ l f (o)

max

Maximum dynamic pressure, q(o)
max kPa q(o)

max ≤ 50
Maximum exerted thrust, T (o)

max kN –
Gross mass, m(o)

gross t –

as elevons. The tail wings are scaled so that their total area equals 10 % of the main wing area. Two

integral tanks of ethanol fuel (fore and aft) and cylindrical tanks of LOX are located inside the fuselage.

Some control over the position of the center of mass is possible during the flight by adjusting the ratio of

consumption of ethanol fuel between the fore and aft tanks.

As for the orbiter, a lifting body configuration shown in Fig. 5.2b is adopted based on Ref. 3, and its

scaling is conducted. Since the orbiter is loaded onto the uppersurface of the booster, the orbiter width

must not be larger than the distance between tail wings of the booster.

Mass property of the vehicles, tank volumes, and accommodated payload mass are computed based

on the procedures explained in Appendix E. The consistency condition on the vehicle gross mass is

introduced in the identical way to Section 4.2.1.
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LOX tanks
Ethanol tankEthanol tank

(a) Booster.

LOX
tank

Ethanol
tankCabin

(b) Orbiter.

Fig. 5.2 Basic configuration and design parameters of vehicles.

5.2.2 Aerodynamic Analysis

The aerodynamic analysis models are described in Appendix C. The external nozzle ramp is excluded

when computing aerodynamic coefficients of the booster, because the forces acting on the ramp are

considered in the airframe-propulsion integrated analysis in Section 5.2.3 instead.

During the optimization computation, these aerodynamic analyses are replaced by their surrogate

models. The procedures for constructing the surrogate models are same as those in Section 4.2.2. As a

result, adequate surrogate models, whose coefficient of determination is 0.9883 on average and 0.9682

in the worst case, are obtained.

5.2.3 Airframe-Propulsion Integrated Analysis

In this analysis discipline, thrust, specific impulse, oxidizer-to-fuel mass mixture ratio, and external

nozzle performance are calculated when the engine design, the booster airframe, and flight conditions

are provided.

Ethanol-fueled RBCC engines, whose conceptual image is illustrated in Fig. 5.3, are installed on

the booster. RBCC engines are capable of being operated in ejector-jet (i.e., ducted rocket), ramjet, and

scramjet modes, successively in that order. Ejector-jet and scramjet modes are operated by keeping the

output of embedded rockets high (rocket chamber pressure is 6 MPa). In ramjet mode, on the other hand,

Fig. 5.3 A conceptual image of an RBCC engine [11].
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5.2. Design Assumptions and Numerical Models

Geometry of

ext. nozzle

RBCC engine 
model

External nozzle 
flow simulation

(a) During the operation in ejector-jet mode.

Geometry of

ext. nozzle

Oblique shock 
equation

RBCC engine 
model

External nozzle 
flow simulation

(b) During the operation in ramjet mode or scramjet mode.

Fig. 5.4 Overview of airframe-propulsion integrated analysis for the RBCC propulsion system.

the rocket chamber pressure is reduced to 0.6 MPa in order to attain higher specific impulse owing to

airbreathing effects. The best acceleration performance is achieved by properly switching these operating

modes depending on flight conditions.

The detailed geometry of the engine flow-pass is fixed (the overall length-to-height and height-to-

width ratios of an engine unit are 5.96 and 1.81, respectively, and a throat-to-inlet area ratio is 0.2 [97]),

and the flow-pass is scaled based on a design variable, eh. In addition, the maximum thrust of the em-

bedded rockets, TR,max, is also variable. An airframe-propulsion integrated analysis, whose overview is

shown in Fig. 5.4, is conducted to evaluate the performance of the RBCC engine considering interactions

between airframe and propulsion. For simplicity, influence of engine operation on the flow field around

the airframe during the subsonic ejector-jet mode is neglected. The analysis is composed of three calcula-

tion steps: pre-compression calculation, RBCC engine model evaluation, and external nozzle simulation.

Procedures in these steps are explained below.

1) Pre-compression analysis

A shock wave generated from the booster nose prior to the undersurface is equivalent to an oblique

shock wave past a two-dimensional wedge whose angle is (α+ bwed). Approximating polynomials

for the oblique shock equations shown in Eqs. (C.30–C.34) are employed, and inlet inflow con-

ditions to RBCC engines (i.e., Mach number, Main, and dynamic pressure, qin) are obtained. In

ejector-jet mode, the pre-compression analysis is not conducted, and the inlet inflow conditions
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Fig. 5.5 Effects of TR/Scapt on the RBCC engine performance.

are approximated to be identical to the free-stream flow conditions.

2) RBCC engine analysis

The performance dataset of the RBCC engine at a set of representative inflow conditions (Main

and qin) and TR/Scapt is prepared using a quasi-one-dimensional analytical engine model [97] in

advance. Here, TR denotes the total thrust magnitude produced by the rocket engines embedded

in the RBCC engines. The outputs of the engine analysis include ram thrust coefficient, CT,rbcc,

specific impulse, Isprbcc, oxidizer-to-fuel mass mixture ratio, (O/F)rbcc, and engine exhaust flow

conditions, {Mae, pe, γe}. Constraints on the inlet inflow conditions are as follows:

0.0 ≤ Main ≤ 3.5 and 1 kPa ≤ qin ≤ 100 kPa for ejector-jet mode, (5.5)

3.0 ≤ Main ≤ 6.0 and 30 kPa ≤ qin ≤ 100 kPa for ramjet mode, (5.6)

3.5 ≤ Main and 1 kPa ≤ qin ≤ 100 kPa for scramjet mode. (5.7)

It is noted that ramjet mode is available when the engine inflow Mach number is 3.0 (the designed

start Mach number of the inlet) or higher. In order to examine the effects of TR/Scapt on the

RBCC engine performance, the engine thrust-to-mass ratio in a static condition and Isprbcc in

some operating conditions are presented as functions of TR/Scapt in Fig. 5.5. This figure illustrates

that a larger embedded rocket relative to the engine flow-pass gives a higher thrust-to-mass ratio

of the engine, while it leads to decrease of Isprbcc except in scramjet mode.

Surrogate models of the engine-model responses [i.e., CT,rbcc, Isprbcc, (O/F)rbcc, Mae, pe, and

γe] for each engine mode are constructed using the combination of polynomial fitting and RBF

networks as follows:

CT,rbcc = d(0,0)(Main) + d(1,0)(Main) qin + d(0,1)(Main) TR/Scapt

+ d(2,0)(Main) qin
2 + d(0,2)(Main)

(
TR/Scapt

)2
+ d(1,1)(Main) qin TR/Scapt, (5.8)
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Isprbcc = e(0,0)(Main) + e(1,0)(Main) qin + e(0,1)(Main) TR/Scapt

+ e(2,0)(Main) qin
2 + e(0,2)(Main)

(
TR/Scapt

)2
+ e(1,1)(Main) qin TR/Scapt, (5.9)

(O/F)rbcc = f (0,0)(Main) + f (1,0)(Main) qin + f (0,1)(Main) TR/Scapt

+ f (2,0)(Main) qin
2 + f (0,2)(Main)

(
TR/Scapt

)2
+ f (1,1)(Main) qin TR/Scapt, (5.10)

Mae = g(0,0)(Main) + g(1,0)(Main) qin + g(0,1)(Main) TR/Scapt

+ g(2,0)(Main) qin
2 + g(0,2)(Main)

(
TR/Scapt

)2
+ g(1,1)(Main) qin TR/Scapt, (5.11)

pe = h(0,0)(Main) + h(1,0)(Main) qin + h(0,1)(Main) TR/Scapt

+ h(2,0)(Main) qin
2 + h(0,2)(Main)

(
TR/Scapt

)2
+ h(1,1)(Main) qin TR/Scapt, (5.12)

γe = i(0,0)(Main) + i(1,0)(Main) qin + i(0,1)(Main) TR/Scapt

+ i(2,0)(Main) qin
2 + i(0,2)(Main)

(
TR/Scapt

)2
+ i(1,1)(Main) qin TR/Scapt, (5.13)

where d(·,·)(·), e(·,·)(·), f (·,·)(·), g(·,·)(·), h(·,·)(·), and i(·,·)(·) are the RBF networks with multiquadric

basis [76].

In ejector-jet and scramjet modes, thrust of the RBCC engines alone (i.e., without external nozzle

effects), denoted by Trbcc, is calculated in the following manner:

Trbcc = CT,rbcc Scapt + TR, (5.14)

where

TR = TR,max τ. (5.15)

Throttling parameter, τ, is allowed to vary within the range [0.5, 1] in scramjet mode, and τ = 1

otherwise. In ramjet mode, thrust is given by

Trbcc = CT,rbcc Scapt. (5.16)

The responses of the constructed performance models of the engine alone at a typical engine

design point are shown in Fig. 5.6. Figures 5.6a and 5.6b show thrust magnitude and specific

impulse, respectively, provided that total embedded rocket thrust is 4482.7 kN and the total inlet

flow capture area is 22.2 m2. These figures correspond to the case where the engine is switched to

ramjet mode and scramjet mode when Min = 3.0 and Min = 5.5, respectively.

3) External nozzle analysis

The external nozzle performance is computed based on a two-dimensional external nozzle flow

model developed in Appendix B. Engine exhaust conditions required in the nozzle flow model are

evaluated using Eqs. (5.11–5.13). The outputs of the model are Fext and Mext, which denote the
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Fig. 5.6 The performance of RBCC engines when TR = 4482.7 kN and Scapt = 22.2 m2.

force and the pitching moment acting on the external nozzle ramp per unit ramp width times unit

engine height, respectively. It is noted that surrogate models of Fext and Mext built in Appendix B.3

are employed during optimization computation instead of the original external nozzle flow model.

Since the ramp width is (5/1.81)eh, and the engine height is eh, the actually exerted force and

moment are given by (5/1.81)Fext eh
2 and (5/1.81)Mext eh

2, respectively.

The orbiter is propelled by an ethanol/LOX rocket engine mounted on its fuselage base. Refer to

Section 4.2.3 for its specifications.

5.2.4 TPS Analysis

In the TPS analysis, thermal balance of the active cooling system is evaluated, and the required thickness

of passive TPS is calculated. It is noted that the TPS analysis is performed only on the booster vehicle.

Thermal Protection System Concept of the Booster Vehicle

A thermal protection strategy for the booster vehicle is as follows:

• Embedded rockets and flow-passes of RBCC engines

Regenerative cooling using ethanol fuel is applied to embedded rockets, inlet, and combustor of

the RBCC engines. The usage of LOX as coolant is not considered due to safety issues of the

manned vehicle in the present study.

• Leading edges of nose, main wing, and engine cowls

Optimal staging Mach number of TSTO RLVs with RBCC engines is generally between 10 and 12,

and then the radiative equilibrium temperature on leading edges with 0.1 m radii typically reaches

above 3000 K. Therefore, active cooling using ethanol fuel is employed as a thermal protection

strategy.
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5.2. Design Assumptions and Numerical Models

• Vehicle undersurface

Ceramic insulation tiles are installed on the undersurface in order to prevent the aerodynamic

heating at the surface from reaching the main metal structures whose operating temperature limit

is low.

Stationary Thermal Balance Analysis of Active Cooling System

To the actively cooled parts of the booster vehicle (i.e., RBCC engines and leading edges of nose, main

wing, and engine cowls), a stationary thermal analysis is performed as explained in Appendices D.1 and

D.2. When the mass flow rate of the ethanol fuel consumed in the RBCC combustor is not less than that

of the ethanol employed as coolant, total thermal balance is achieved. When the cooling requirement

is excessive, on the other hand, some ethanol is dumped into the atmosphere without consumed in the

engines after it flows in cooling pipes. The dumped ethanol mass rate, ṁdump, is calculated by

ṁdump = max[(ṁcool,eng + ṁcool,le − ṁfuel), 0], (5.17)

where ṁcool,eng and ṁcool,le are the required mass rates of the ethanol coolant for RBCC engines and

leading edges, respectively. They are obtained via the aerodynamic heating models explained in Appen-

dices D.1 and D.2. ṁfuel indicates the consumption mass rate of the ethanol fuel in the RBCC combustors,

which is given by

ṁfuel =
Trbcc

g0Isprbcc

1
(O/F)rbcc + 1

. (5.18)

The dumping of ethanol fuel can be apparently regarded as the decrease of specific impulse of the en-

gines. Since the max(·, ·) function cannot be handled by gradient-based optimization methods due to its

lack of smoothness, Eq. (5.17) is transformed into the following alternative form:

ṁdump ≥ ṁcool,eng + ṁcool,le − ṁfuel, (5.19)

ṁdump ≥ 0. (5.20)

It is noted that either Eq. (5.19) or Eq. (5.20) becomes active after optimization is properly performed.

Instationary Thermal Analysis of Ceramic Tiles on the Booster Undersurface

For the undersurface of the booster vehicle, aerodynamic heat flux is computed from flight conditions

and vehicle geometry using the procedures in Appendix D.3. Then, the convective heat flux at the

surface, Qconv, and thermal radiation flux at the surface, Qrad, at each time are obtained. HTP-12 [98]

ceramic tile is adopted as the passive TPS material on the booster undersurface. This choice is due to

the fact that ceramic TPS with a similar material (composition of SiO2 and Al2O3) was developed in

Japan [99], and physical and thermal properties of HTP-12 are available in open literature [98]. Since the

thermal characteristics are dependent on temperature and ambient pressure, they are approximated with
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(b) Isobaric heat capacity, Cp(T ).

Fig. 5.7 Thermal properties of HTP-12 ceramic tile.

polynomials as follows:

K(T, p) = −0.02615 − 2.355 × 10−5T + 3.187 × 10−8T 2 + 0.02937 log10 p

− 3.603 × 10−3(log10 p)2 + 2.149 × 10−5T log10 p, (5.21)

Cp(T ) = 33.76 + 3.001T − 2.921 × 10−3T 2 + 1.027 × 10−6T 3, (5.22)

where K is the thermal conductivity [W/(m K)], Cp is the isobaric heat capacity [J/(kg K)], T is the

temperature [K], and p is the surrounding static pressure [Pa]. The constructed polynomial models are

shown in Fig. 5.7.

One-dimensional thermal analysis inside the ceramic tile in the depth direction is conducted based on

the procedures explained in Chapter 3. The governing equations are described by the following second-

order PDE with boundary conditions:

∂T (y, t)
∂t

=
K(T, pe)
ρCp(T )

∂2T (y, t)
∂y2 , (5.23)

∂T (y, t)
∂y

∣∣∣∣∣
y=0
=

1
K(T, pe)

(Qrad − Qconv), (5.24)

∂T (y, t)
∂y

∣∣∣∣∣
y=htps

= 0, (5.25)

where T (y, t) : [0, htps] × [0, tf] → R is the temperature of the ceramic tile at the distance of y from the

surface and time t. pe indicates the static pressure of the airflow at the outer edge of the boundary layer

around the vehicle undersurface, and it is calculated in Appendix D.3. ρ denotes the density of HTP-12

(= 192.22 kg/m3). The criterion of the TPS design is to ensure that the backface temperature, T (htps, t),

does not exceed the operating limit of the material used in the vehicle main structure, Tmax, during the

flight. In this dissertation, it is assumed that the main structure is made from an aluminum alloy, and

Tmax = 450 K. Before the takeoff run, the tile temperature is identical to the atmospheric temperature at
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sea level.

Eqs. (5.23–5.25) are transformed into the following set of ODEs using the fictitious-point Legendre

pseudospectral method [89]:

d
dt



T1(t)

T2(t)

T3(t)

T4(t)

T5(t)


=


C




(

2
htps

)2


H





T1(t)

T2(t)

T3(t)

T4(t)

T5(t)


+

2
htps


I


(Qconv − Qrad)


, (5.26)

where C, H, and I are computed based on the procedures in Section 3.2.4. Here, the number of spatial

discretization nodes is 5, and T1, . . . ,T5 denote the tile temperatures at these discrete depths. T1 refers

to the temperature on the surface, and T5 indicates that on the backface bonded to the vehicle main

structure. The constraint on the backface temperature limit can be written as∗

T5(t) ≤ 450 K. (5.27)

Initial conditions on the tile temperature are as follows:

T1(0) = T2(0) = T3(0) = T4(0) = T5(0) = 290 K. (5.28)

5.2.5 Flight Trajectory Analysis

System Dynamics

In the flight trajectory analysis, the following 2-degree-of-freedom vehicle dynamics on a vertical plane

is employed:

For the mated vehicle

v̇ =
Trbcc cosα − [Dm − 5

1.81 Fext eh
2 sin(bext − α)]

m
− µ

r2 sin γ, (5.29)

γ̇ =
[Lm +

5
1.81 Fext eh

2 cos(bext − α)] + Trbcc sinα
mv

+

(v
r
− µ

vr2

)
cos γ, (5.30)

ḣ = v sin γ, (5.31)

˙meaf = −
Trbcc

g0Isprbcc

η

(O/F)rbcc + 1
− ṁdumpη, (5.32)

˙meaa = −
Trbcc

g0Isprbcc

1 − η
(O/F)rbcc + 1

− ṁdump(1 − η), (5.33)

ṁlo = −
Trbcc

g0Isprbcc

(O/F)rbcc

(O/F)rbcc + 1
, (5.34)

For the orbiter

∗450 K is a typical operating temperature limit of aluminium alloys.
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v̇ =
Trceaτ cosα − Do

m
− µ

r2 sin γ, (5.35)

γ̇ =
Lo + Trceaτ sinα

mv
+

(v
r
− µ

vr2

)
cos γ, (5.36)

ḣ = v sin γ, (5.37)

ṁea = −
Trceaτ

g0Isprcea

1
(O/F)rcea + 1

, (5.38)

ṁlo = −
Trceaτ

g0Isprcea

(O/F)rcea

(O/F)rcea + 1
, (5.39)

where

r = h + Re. (5.40)

Variable definitions are presented in Table 4.3. The static atmosphere model developed in Section 4.2.4

is employed.

Flight Plan

A flight plan considered in the present study is described by the following three phases:

1) Takeoff phase

The mated vehicle takes off horizontally from a runway at sea level. The maximum RBCC engine

thrust is exerted, and angle of attack for liftoff is 15 deg. A horizontal takeoff analysis identical to

that in Section 4.2.4 is conducted, and takeoff velocity, vto, takeoff distance (ground roll), lto, and

propellant consumption during the takeoff phase, mprop,to, are evaluated.

2) Mated vehicle ascent phase

The mated vehicle is accelerated by the RBCC engines. The rocket engine mounted on the orbiter

is not used. Angle of attack and elevon deflection angle are bounded as follows:

−5 deg ≤ α ≤ 15 deg, (5.41)

−10 deg ≤ δ ≤ 10 deg. (5.42)

Constraints on axial acceleration, normal load factor, dynamic pressure, exerted thrust, and total

acceleration are imposed in the same way as Section 4.2.4. At the terminus of this phase, the

orbiter is separated from the booster.

This flight phase is further divided into three sub-phases where the RBCC engines are operated in

different modes (ejector-jet, ramjet, and scramjet modes in this order). Switchover times between

engine operating modes are included in the design variables of the MDO problem, and they are

optimized to achieve the best acceleration performance.

3) Orbiter ascent phase
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The orbiter is accelerated by the ethanol/LOX rocket engine ignited immediately after the staging.

Angle of attack is bounded as follows:

0 deg ≤ α ≤ 30 deg. (5.43)

Flight conditions are constrained in the identical manner to Section 4.2.4.

After the orbiter reaches an altitude of 100 km or higher, and the rocket engine is cut off, the tra-

jectory computation is performed based on elliptic orbit equations instead of equations of motion.

At the apogee of this coasting trajectory, the orbiter is accelerated again, and it is injected into a

circular orbit that is 350 km above sea level. Propellants required for the apogee acceleration, an

on-orbit operation, and de-orbit are calculated and reserved at the moment of the engine cut-off, as

detailed in Section 4.2.4.

Return trajectories of the booster and the orbiter to landing sites are not considered.

Rigid Body Characteristics of the Vehicle

During the mated vehicle ascent phase, a static pitching trim condition is enforced as follows:

Mtot
..= Marfr + Mrbcc + Mextn = 0. (5.44)

Here,

Marfr = Mm + (Lm cosα + Dm sinα) (xcg − xrefb) + (Lm sinα − Dm cosα) (zcg − zrefb), (5.45)

Mrbcc = Trbcc(zcg − zrbcc), (5.46)

Mextn =
5

1.81
Mext eh

2 +
5

1.81
Fext eh

2
[
(zcg − zext) sin bext + (xcg − xext) cos bext

]
(5.47)

are the pitching moment generated by the airframe, that by the RBCC engines, and that by the exter-

nal nozzle, respectively. Additionally, the following equation describes non-negative longitudinal static

stability:

∂Mtot

∂α
=
∂Marfr

∂α
+
∂Mrbcc

∂α
+
∂Mextn

∂α
≤ 0. (5.48)

In order to calculate the value of ∂Mtot/∂α accurately, the following procedures are employed:

1) The relation between α and Mtot is described by 1) the pre-compression equations, 2) the RBCC

engine model, 3) the external nozzle model, 4) the aerodynamic model, and 5) Eqs. (5.44–5.47).

2) ∂Mtot/∂α is decomposed into the partial derivatives of these component functions (e.g., ∂Fext/∂pe)

using the chain rule in calculus.
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3) Exact partial derivatives of the component functions are available by using an analytical relation

for RBF network surrogate models shown in Eq. (B.27), or by using an automatic differentiation

algorithm [100].

5.3 Formulation of the Optimization Problem

On the basis of the above numerical models, the multi-objective MDO problem of the TSTO RLV with

RBCC engines is established. The MDO architecture illustrated in Fig. 5.1 is formulated as an augmented

optimal control problem. In order to express the flight plan in Section 5.2.5, the optimal control problem

is composed of six phases described in Table 5.2. As a consequence, the multi-objective MDO problem

is written as follows:

find state variables, x(1), . . . , x(6), (5.49)

control variables, u(1), . . . , u(6), (5.50)

initial and terminal times, t(1)
0 , t(1)

f , . . . , t(6)
0 , t(6)

f (5.51)

static variables shown in Table 5.1, p (5.52)

min. F1
..= −0.04 mpay [kg] (5.53)

F2
..= 0.1 mgross [t] (5.54)

F3
..= 0.25 vto [m/s] (5.55)

s.t. simple bounds on objective values, Eqs. (5.1–5.3), (5.56)

constraints on static variables presented in Table 5.1, (5.57)

consistency condition on the vehicle gross mass explained in Section 5.2.1, (5.58)

constraints on the inflow conditions to RBCC engines, Eqs. (5.5–5.7), (5.59)

thermal balance conditions for active cooling system, Eqs. (5.19, 5.20) for Phase 1–5, (5.60)

discretized thermal eq. and associated constraints, Eqs. (5.26–5.28) for Phase 1–5, (5.61)

state equations, Eqs. (5.29–5.34) for Phase 1–5, (5.62)

state equations, Eqs. (5.35–5.39) for Phase 6, (5.63)

path constraints presented in Section 5.2.5, (5.64)

initial and terminal conditions explained in Section 5.2.5, (5.65)

static pitching trim condition, Eq. (5.44) for Phase 1–5, (5.66)

longitudinal static stability condition, Eq. (5.48) for Phase 1–5, (5.67)

linkage conditions for the continuity of the state variables between adjacent phases. (5.68)

The formulated multi-objective optimal control problem is solved using a numerical method pro-

posed in Chapter 2 with dtol = 3.0. Computational environments are same as the descriptions in Sec-

tion 4.3.
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Table 5.2 Definitions of optimal control phases in the MDO problem of the TSTO RLV with RBCC
engines.

Item Phase 1 Phase 2

Flight phase Mated vehicle ascent Mated vehicle ascent
Propulsion RBCC engine (ejector-jet) RBCC engine (ejector-jet)
Flight Mach number, Ma Ma ≤ 1.8 Ma ≤ 1.8
Mated vehicle’s aero. model Model 1 (Fig. C.1a) Model 1 (Fig. C.1a)
External nozzle conditions Type 1 [Eq. (B.14)] Type 2 [Eq. (B.15)]
State, x x(1) = [h, v, γ,mlo,meaf ,meaa, x(2) = [h, v, γ,mlo,meaf ,meaa,

T1, T2, T3, T4,T5] T1, T2, T3, T4, T5]
Control, u u(1) = [α, δ, η, ṁdump] u(2) = [α, δ, η, ṁdump]

Item Phase 3 Phase 4

Flight phase Mated vehicle ascent Mated vehicle ascent
Propulsion RBCC engine (ejector-jet) RBCC engine (ramjet)
Flight Mach number, Ma 1.8 ≤ Ma –
Mated vehicle’s aero. model Model 1 (Fig. C.1a) Model 2 (Fig. C.1b)
External nozzle conditions Type 3 [Eq. (B.16)] Type 4 [Eq. (B.17)]
State, x x(3) = [h, v, γ,mlo,meaf ,meaa, x(4) = [h, v, γ,mlo,meaf ,meaa,

T1, T2, T3, T4,T5] T1, T2, T3, T4, T5]
Control, u u(3) = [α, δ, η, ṁdump] u(4) = [α, δ, η, ṁdump]

Item Phase 5 Phase 6

Flight phase Mated vehicle ascent Orbiter ascent
Propulsion RBCC engine (scramjet) Ethanol/LOX rocket
Flight Mach number, Ma – –
Mated vehicle’s aero. model Model 2 (Fig. C.1b) –
External nozzle conditions Type 3 [Eq. (B.16)] –
State, x x(5) = [h, v, γ,mlo,meaf ,meaa, x(6) = [h, v, γ,mlo,mea]

T1, T2, T3, T4,T5]
Control, u u(5) = [α, δ, τ, η, ṁdump] u(6) = [α, τ]

5.4 Pareto Optimal Solutions

A set of 168 solutions is found through the optimization computation in about 36 hours. The obtained

solutions are displayed in the objective space in Fig. 5.8. The distribution of the solutions indicates

that the three objectives are conflicting with each other. Figure 5.8b suggests that the mated gross mass

changes almost linearly with respect to the payload mass when the takeoff velocity is fixed. The payload

mass fraction becomes smaller when lower takeoff velocity is required.
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Fig. 5.8 Obtained solutions in the objective space.

Table 5.3 presents specifications of four representative solutions indicated in Fig. 5.8. When the

solution No. 4 of the RBCC-powered system is compared with the solution No. 4 of the PCTJ-powered

system presented in Section 4.4, The RBCC-powered system is inferior in term of the objective values.

Of course, a simple comparison is rather meaningless since the underlying design assumptions, especially

the employed kinds of fuel, are different. A distinctive difference between the PCTJ-powered system

and the RBCC-powered system is that it is more difficult to realize low takeoff velocity in the RBCC-

powered system. This is because ethanol whose density is much higher than liquid hydrogen is applied

to the propellant of RBCC engines aiming to reduce the vehicle size. However, the small but heavy

vehicle suffers from higher takeoff velocity unless the vehicle has larger wings. The gross mass of the

solution No. 4 of the RBCC-powered system is larger than the maximum takeoffmass of An-225 aircraft

(600 t [94]), and further design improvements are required. Among the components of the booster vehicle,

the mass of the landing gear occupies the largest portion, followed by that of the RBCC engines.

Details of the vehicle design in the representative optimal solutions are shown in Table 5.4 and

Fig. 5.9. The booster fuselage has the minimum width required to load the orbiter on its uppersurface.

The fuselage base of the booster is fully used as the external nozzle in solutions No. 1 and No. 2. Optimal

inclination angle of the forebody undersurface is large, and this means that the improvement of the

propulsive efficiency due to stronger pre-compression outweighs the increase in the drag of the airframe.

The main wing is located at the rear end of the fuselage. This moves the neutral point for longitudinal

static stability of the airframe rearward, and it is advantageous from the stability point of view. As for

the RBCC engine design, TR,max/Scapt of the solution No. 4 is 290.9 kN/m2. Solution No. 1 and solution

No. 2 differ in their payload mass and vehicle gross mass with regard to objective values. The consequent

differences in vehicle design mainly exist in the fuselage width of the booster, sweepback angle of the

main wing, relative size of RBCC engines, and relative size of the orbiter. Solution No. 3 achieves the

lowest takeoff velocity, but it inevitably results in large wings and heavier RBCC engines. Solution No. 4

has intermediate characteristics between the extreme solutions.
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Table 5.3 Specifications of the representative Pareto optimal solutions.

Parameter Unit
Solution No. 1 Solution No. 2 Solution No. 3 Solution No. 4

Booster Orbiter Booster Orbiter Booster Orbiter Booster Orbiter

Payload mass kg 1230.1 200.0 200.0 771.8
Mated vehicle gross mass t 800.0 359.8 800.0 651.6
Takeoff velocity m/s 200.0 200.0 92.0 175.4

Maximum axial acceleration G 3.1 3.1 3.6 3.6 3.8 3.8 3.2 3.2
Maximum load factor G 1.2 2.5 1.3 2.5 1.3 2.5 1.2 2.5
Maximum dynamic pressure kPa 43.2 43.2 42.2 42.2 33.1 33.1 41.9 41.9
Maximum exerted thrust kN 6030.0 515.8 2925.7 187.3 9564.8 445.9 4908.4 368.1

Mass Fuselage t 11.0 3.7 6.6 1.5 16.7 2.2 9.1 2.8
Main wing t 9.4 0.0 4.0 0.0 24.3 0.0 8.1 0.0
Tail wing t 2.1 0.8 1.1 0.3 5.9 0.5 1.9 0.6
Tanks t 3.2 0.9 1.4 0.3 3.5 0.6 2.6 0.6
Thermal protection system t 2.7 3.0 1.5 1.3 4.2 1.9 2.4 2.3
Landing gear t 43.6 0.5 17.8 0.2 43.6 0.3 34.6 0.4
RBCC engines t 19.1 0.0 8.8 0.0 33.6 0.0 15.8 0.0
Rocket engines t 0.0 0.7 0.0 0.3 0.0 0.6 0.0 0.5
Thrust structure t 3.9 1.3 1.9 0.5 6.1 1.1 3.2 0.9
The others t 13.6 3.1 7.8 1.7 14.0 2.6 11.7 2.6

Dry gross t 108.6 15.2 50.8 6.2 152.0 10.1 89.6 11.5

Ethanol t 271.2 20.1 124.0 7.4 248.7 17.7 223.6 14.4
LOX t 352.7 32.2 159.5 11.9 343.3 28.3 289.6 23.1

Gross t 732.4 67.6 334.3 25.5 743.9 56.1 602.7 48.9

Table 5.4 Vehicle design of the representative Pareto optimal solutions.

Parameter Unit Solution No. 1 Solution No. 2 Solution No. 3 Solution No. 4

Booster Fuselage length m 41.1 34.3 50.2 37.6
Fuselage upper height m 1.1 0.9 1.7 1.0
Forebody undersurface inclination deg 8.0 8.0 6.9 8.0
External nozzle angle deg 15.1 13.7 11.1 15.0
Forebody length m 15.0 13.3 21.0 14.7
Forebody tip width m 4.2 3.0 8.1 3.9
Exposed wing leading edge position m 21.5 18.9 18.6 18.8
Exposed wing root chord length m 19.6 15.4 31.5 18.7
Wing leading edge sweepback deg 53.0 58.7 47.4 51.1
Fore ethanol tank ends (forward, backward) m (5.0, 17.2) (5.0, 16.0) (5.0, 12.3) (5.0, 15.4)
LOX tank ends (forward, backward) m (17.7, 32.4) (16.5, 29.0) (21.0, 29.4) (15.9, 29.9)
Aft ethanol tank ends (forward, backward) m (32.9, 40.6) (29.5, 33.8) (45.4, 49.7) (30.4, 37.1)
Ceramic tile thickness on undersurface mm 20.4 20.4 15.0 21.0
Height of RBCC engines m 2.4 1.7 3.2 2.3
RBCC embedded rocket thrust kN 5024.5 2390.9 8048.2 4068.3

Orbiter Fuselage length m 21.5 13.9 17.2 18.9
Backward end of the cabin m 12.9 6.7 6.6 11.0
Rocket thrust kN 515.8 187.3 445.9 368.1
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(a) Solution No. 1. (b) Solution No. 2.

(c) Solution No. 3. (d) Solution No. 4.

Fig. 5.9 Vehicle shape of the representative Pareto optimal solutions.

The flight trajectories of the solutions Nos. 1–4 are shown in Figs. 5.10, 5.14, 5.18, and 5.22, respec-

tively. The behavior of the trajectory in the solution No. 4 is detailed below. After the horizontal takeoff,

the mated vehicle accelerates and climbs with a large angle of attack. Since the vehicle thrust-to-weight

ratio at takeoff is 0.638, which is less than 1, the lift force must play a major role in the takeoff. During

ejector-jet mode operation, flight dynamic pressure increases, decreases, and increases again. Instead of

flying with the maximum dynamic pressure, this maneuver is intended to increase the altitude rapidly

and to enhance the performance of the external nozzle. Figure 5.22c indicates that the optimal flight

trajectory does not have a dive phase in the transonic region, in contrast to the TSTO RLV with the PCTJ

engines studied in Chapter 4, This dissimilarity can be attributed to the fact that the thrust-to-mass ratio

of the RBCC engine is higher than that of the hypersonic turbojet engine. Therefore, the optimal RBCC-

powered vehicle has enough thrust performance to pass the transonic drag rise without a dive maneuver.

The engine operating mode is switched over to ramjet mode at a flight Mach number of 3.8. This corre-

sponds to the condition where the engine inflow Mach number, Main, reaches 3.0 and therefore ramjet

mode becomes available. Ramjet mode is operated at the maximum dynamic pressure prior to 370 s, at

which point the dynamic pressure begins decreasing. Subsequently, the RBCC engines are switched to

scramjet mode when the vehicle reaches Mach 5.9. During the acceleration in the scramjet mode, the
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engines are gradually throttled down. Finally, the vehicle begins a steep climb by raising its angle of

attack.

When the propellant in the booster is used up, the orbiter is separated from the booster. At that

moment, Mach number and dynamic pressure are 11.9 and 4.8 kPa, respectively. The rocket engine on

the orbiter is ignited and operated at full throttle. The orbiter ascends quickly to an altitude of 100 km

and then continues to accelerate while descending slightly. At the terminal time, the orbiter is on an

elliptic orbit with an apogee of 350 km above sea level.

Figure 5.22f indicates that the thermal balance of the active cooling system is achieved without dump-

ing the ethanol. It is also noted that most of the ethanol coolant is used for cooling the RBCC engines.

Since the path constraint in Eq. (5.19) becomes active around 450 s, the thermal-balance requirements

actually have influences on the system design. Until 90 s after the takeoff, ethanol fuel is mainly con-

sumed from the aft tank, followed by the consumption only from the fore tank until 360 s. After there is

an oscillating behavior between 360 s and 450 s, the fuel is expended only from the aft tank again. This

switching strategy in the fuel consumption maximizes the effectiveness of the elevons while attaining

non-negative static stability.

Time histories of the performance of the RBCC engines and the rigid body characteristics of the

vehicle in solution No. 4 are given in Fig. 5.24. Note that the performance of the total RBCC propulsion

system including the external nozzle is defined as follows:

Ttot = Trbcc +
5

1.81
Fext eh

2 sin bext, (5.69)

Isptot = Isprbcc

(
1 +

5
1.81

Fext eh
2 sin bext

Trbcc

)
, (5.70)

where the subscript (·)tot indicates that the attached variable indicates the quantity of the total RBCC

propulsion system. In the early part of the flight (prior to 140 s), the external nozzle generates negative

thrust, namely, drag. This is due to the fact that the nozzle is in an over-expansion condition or in a slight

under-expansion condition, and the mean ramp pressure becomes lower than the ambient-flow pressure.

It is noted that the external nozzle also decreases lift force when it is in such a condition. After the

nozzle expansion condition becomes an under expansion (i.e., pe > pa in Fig. 5.4b), thrust and specific

impulse are augmented. Flow fields in the external nozzle at some representative times are presented

in Fig. 5.24. At 65 s, the external nozzle is in an optimum-expansion condition (i.e., pe = pa), and the

thrust augmentation by the nozzle becomes largest in negative. Around 35 s, the magnitude of thrust

augmentation is almost zero, even though the nozzle is in a strong over-expansion condition. This is

because, in an excessively over-expanded nozzle, the pressure of exhaust flow increases as it interacts

with the ambient flow (see Fig. B.5a). In Fig. 5.24b and Fig. 5.24c, the ramp pressure monotonically

decreases as it goes downstream. This rate of decrease becomes higher after expansion waves generated

at the cowl lip arrive on the ramp wall. A triangular high-pressure area located soon after the combustor

exit is called the potential core of the exhaust. During ramjet mode, the exhaust Mach number becomes

lower, since the chamber pressure of the embedded rockets is reduced. This results in shorter potential
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(a) Time history of altitude.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of remaining propellant mass.
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(f) Time history of thermal balance in active cooling.
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(g) Time history of angle of attack.
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(h) Time history of elevon deflection angle.
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(i) Time history of thrust throttling parameter.
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(j) Time history of the usage ratio of the fore ethanol tank.

Fig. 5.10 Flight trajectory of the solution No. 1.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of longitudinal stability derivative.

Fig. 5.11 Propulsion efficiency and rigid body characteristics of the solution No. 1.
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Fig. 5.12 External nozzle flow of the RBCC engines in the solution No. 1.
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Fig. 5.13 Time history of ceramic tile temperature on the booster undersurface in the solution No. 1.
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(a) Time history of altitude.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of remaining propellant mass.
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(f) Time history of thermal balance in active cooling.
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(g) Time history of angle of attack.
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(h) Time history of elevon deflection angle.
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(i) Time history of thrust throttling parameter.
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(j) Time history of the usage ratio of the fore ethanol tank.

Fig. 5.14 Flight trajectory of the solution No. 2.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of longitudinal stability derivative.

Fig. 5.15 Propulsion efficiency and rigid body characteristics of the solution No. 2.
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Fig. 5.16 External nozzle flow of the RBCC engines in the solution No. 2.
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Fig. 5.17 Time history of ceramic tile temperature on the booster undersurface in the solution No. 2.
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(a) Time history of altitude.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.
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(e) Time history of remaining propellant mass.

0 100 200 300 400 500 600 700
−0.5

0

0.5

1

1.5

Time [s]

C
o

o
la

n
t 

et
h

an
o

l 
m

as
s 

ra
te

 [
t/

s]

 

 

LE cooling

RBCC cooling

Fuel consume

Dumped

(f) Time history of thermal balance in active cooling.
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(g) Time history of angle of attack.
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(h) Time history of elevon deflection angle.
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(i) Time history of thrust throttling parameter.
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(j) Time history of the usage ratio of the fore ethanol tank.

Fig. 5.18 Flight trajectory of the solution No. 3.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of longitudinal stability derivative.

Fig. 5.19 Propulsion efficiency and rigid body characteristics of the solution No. 3.
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Fig. 5.20 External nozzle flow of the RBCC engines in the solution No. 3.

0 100 200 300 400 500 600 700
200

300

400

500

600

700

800

Time [s]

T
P

S
 t

em
p

er
at

u
re

 [
K

]

 

 

y / h
tps

 = 0 (surface)

y / h
tps

 = 0.173

y / h
tps

 = 0.5

y / h
tps

 = 0.827

y / h
tps

 = 1 (backface)

h
tps

 = 15 mm

Fig. 5.21 Time history of ceramic tile temperature on the booster undersurface in the solution No. 3.
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(a) Time history of altitude.
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(b) Time history of Mach number.
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(c) Time history of flight path angle.
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(d) Time history of dynamic pressure.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Time [s]

P
ro

p
el

la
n
t 

m
as

s 
[t

]

 

 

Fore ethanol

Aft ethanol

LO2

Orbiter total

(e) Time history of remaining propellant mass.
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(f) Time history of thermal balance in active cooling.

0 100 200 300 400 500 600 700 800 900 1000

0

10

20

Time [s]

A
n

g
le

 o
f 

at
ta

ck
 [

d
eg

]

(g) Time history of angle of attack.
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(h) Time history of elevon deflection angle.
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(i) Time history of thrust throttling parameter.
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(j) Time history of the usage ratio of the fore ethanol tank.

Fig. 5.22 Flight trajectory of the solution No. 4.
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(a) Time history of thrust magnitude.
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(b) Time history of specific impulse.
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(c) Time history of pitching moment.
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(d) Time history of longitudinal stability derivative.

Fig. 5.23 Propulsion efficiency and rigid body characteristics of the solution No. 4.
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Fig. 5.24 External nozzle flow of the RBCC engines in the solution No. 4.
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Fig. 5.25 Time history of ceramic tile temperature on the booster undersurface in the solution No. 4.
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core in ramjet mode compared with that in scramjet mode. As a consequence of slower exhaust flow in

ramjet mode, expansion waves generated at the cowl lip reach the ramp wall at more upstream locations,

and the wall pressure decreases more sharply.

Figure 5.23c shows that there are large differences of pitching moments generated by RBCC engines

and the external nozzle between different engine operating modes. The requirement of maintaining

pitching trim throughout multiple engine modes results in the saturation of the elevon deflection angle

even though the vehicle has large elevons. If the propulsion system has a gimbal or a thrust vectoring

mechanism as in the case of Ref. 15, this problem would be solved. As for the longitudinal static stability,

the stability of the airframe alone is lost (∂Marfr/∂α > 0) after 255 s or above Mach 4.3. In addition,

since ∂Mrbcc/∂α > 0, the moment produced by the RBCC engines slightly deteriorates the stability. It

is because, a larger angle of attack makes the pre-compression prior to the inlet stronger, and it leads to

larger thrust and a larger positive pitching moment produced by the RBCC engines. These instabilities are

compensated by the moment induced by the external nozzle. A larger angle of attack increases pressure

on the external nozzle ramp, and this results in a larger negative pitching moment (i.e., ∂Mextn/∂α < 0).

In total, non-negative stability is attained throughout the ascent flight.

As a consequence of TPS design, the required thickness of the ceramic tile TPS installed on the

booster undersurface, htps, in solution No. 4 is 21.0 mm. Figure 5.25 shows the time history of the tile

temperature. It is noted that the temperature on the backface that is bonded to the vehicle main structure

does not exceed the upper bound, 450 K, during the ascent flight. In calculating aerodynamic heat flux

on the vehicle surface, a shock wave or an expansion fan generated at the booster nose is taken into

account. Therefore, the temperature at the surface changes rapidly in response to abrupt changes of

angle of attack around 400 s. In actual flight, the tile temperature on the backface continues to increase

in the return flight. Therefore, the truly needed tile thickness would be larger than 21.0 mm.

Optimal flight trajectories of the other solutions have basic features similar to that of solution No. 4,

while their details are substantially different among solutions.

5.5 Knowledge Discovery in Pareto Optimal Solutions Using Data Mining
Techniques

It is troublesome or impossible to examine all the obtained solutions one by one. In order to extract

comprehensive knowledge from the solutions, data mining techniques are employed in this section.

5.5.1 Data Mining from Optimal Vehicle Designs

The scatter plot matrix of objective values and some notable parameters is given in Fig. 5.26. See

Appendix F.1 for details on scatter plot matrices. The following observations can be made:

1) Optimal velocity increment allocation to the booster is distributed between 3.1 km/s to 4.0 km/s,

or from Mach 9.5 to Mach 12.4, and it is highly associated with the takeoff-velocity requirement.
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When lower takeoff velocity is enforced, the increase of the booster dry mass is inevitable, and

hence less velocity increment should be assigned to the booster.

2) In Pareto optimal booster designs, the decrease of the takeoff velocity is primarily achieved by

enlarging the exposed wing and by increasing fuselage width-to-length ratio. Optimal fuselage

length is related to the takeoff velocity only when it is lower than 130 m/s.

3) Optimal external nozzle ramp angle of the RBCC engines has a strong relation with the takeoff-

velocity requirement. Smaller ramp angle alleviates the over-expansion of the external nozzle in

low altitude, and it is favorable in terms of takeoff performance. Since hypersonic acceleration

performance is deteriorated by reducing the ramp angle, this tradeoff relation must be considered

in designing the external nozzle.

4) The embedded rocket thrust and the total inlet area of RBCC engines are in a strong linear relation.

It is also noted that these design parameters of RBCC engines and the vehicle gross mass are

correlated.

5) The payload mass and length of the orbiter are highly associated, implying that a larger orbiter

vehicle is required for transporting more payload. Optimal vacuum thrust of the orbiter rocket

engine is determined by the orbiter size. Not surprisingly, optimal orbiter design does not depend

on the takeoff-velocity requirement.

6) Optimal flight Mach numbers at which ramjet mode is started can be clustered into two groups:

ramjet mode is employed as soon as possible when it becomes available (Min = 0), or not. In the

former group, ramjet start Mach number is around 3.7. When the external nozzle angle is reduced

considering the takeoff performance, ramjet mode is not operated in low Mach number where it

suffers from low thrust (see Fig. 5.6a).

7) Flight dynamic pressure at the moment of staging differs among solutions within the range of

[4.4, 6.6] kPa, and it has no significant correlation with the other parameters. Compared to the

TSTO RLV with PCTJ engines, the optimal staging dynamic pressure in the present case is higher.

8) The optimal thrust-to-mass ratio at takeoff is within [0.62, 1.1], and it has a significant correlation

with the takeoff velocity. This suggests that the design of the TSTO RLV with RBCC engines

is strongly constrained by the takeoff-performance requirement. Realizing a low takeoff velocity

around 100 m/s is not realistic, since the thrust-to-mass ratio becomes more than one. It is noted

that the optimal thrust-to-mass ratio of the PCTJ-powered vehicle is around 0.6, and the ratio is

almost independently from the takeoff velocity (see Section 4.5.1).

5.5.2 Data Mining from Optimal Flight Trajectories

Proper orthogonal decomposition (POD) is employed in the same way as Section 4.5.2. The flight

trajectory of solution No. 4 is selected as a nominal trajectory. In the present case, the first POD mode
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Fig. 5.27 Proper orthogonal decomposition (POD) of angle-of-attack histories of the Pareto optimal
solutions.

accounts for 87.8 % of the whole deviations from the nominal trajectory in terms of the energy content.

Figures 5.27a and 5.27b show the coefficient and basis of the first mode, respectively. The following

knowledge is acquired:

1) Figure 5.27a indicates that the coefficient depends mainly on the takeoff velocity. This means that

optimal angle of attack at each Mach number is principally associated with the takeoff velocity, or

equivalently, wing loading.

2) The deviation of optimal angle of attack resulting from the variation of the takeoff velocity can be

described using the basis shown in Fig. 5.27b. As the takeoff velocity becomes higher, optimal

angle of attack gets larger when Mach number is less than 3.5. The sensitivity between the optimal

angle of attack and the takeoff velocity becomes lower as the Mach number increases. Rapid

change of the basis value around Mach 4 is due to the fact that ramjet mode is started at a different

Mach number around 4 in each Pareto optimal trajectory. During the ramjet mode operation, angle

of attack is less sensitive to the takeoff velocity. The positive basis value above Mach 7 indicates

the tendency that the beginning of the steep climb before the staging is delayed as the takeoff

velocity is higher. This observation is consistent with the positive correlation between the optimal

staging velocity and takeoff velocity revealed in the scatter plot matrix.
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Chapter 6

Summary

6.1 Conclusion

In order to promote the commercial usage of outer space, there is an increasing need for reusable launch

vehicles (RLVs). In particular, RLVs with airbreathing engines are expected to reduce the transportation

cost into the orbit by more than an order of magnitude and to have aircraft-like operability and reliability.

An essential effort for realizing such RLVs is to conduct their conceptual design studies early so as to

clarify technology goals and to facilitate the development of key technologies accordingly. A major

concern in designing RLVs with airbreathing engines is the existence of complex interactions between

design disciplines. A notable difference from design problems of aircraft is that RLVs do not have a

cruising state, and the interaction between vehicle design and flight trajectory design must be considered.

Therefore, multidisciplinary design optimization (MDO), where design optimization and optimal control

of the vehicle are coupled, is indispensable for carrying out RLV design effectively. Another issue is

that, it is preferable to perform the conceptual design studies while considering uncertainties in mission

requirements and future technological developments, since the targeted RLVs are long-term goals. In

order to handle these difficulties and demands, the present study focused on a knowledge-discovery

framework based on the synergy of multi-objective optimization and data mining. Proposals were mainly

given regarding the following two challenging subjects for performing multi-objective MDO of RLVs

efficiently: a multi-objective optimization method suited to optimal control problems, and a numerical

technique for integrating thermal protection system (TPS) into the MDO of RLVs.

First, a novel optimization method for efficiently obtaining Pareto optimal solutions to multi-objective

optimal control problems was developed in Chapter 2. On the basis of the insight that multi-objective

evolutionary algorithms have some weaknesses in handling parameter interactions and equality con-

straints that are inherent in optimal control problems, the proposed method successively searches a

Pareto optimal solution using a gradient-based optimizer. Since gradient-based optimization methods

cannot solve a multi-objective problem directly, the original problem is transformed into a relevant

single-objective one by means of min-max goal programming. Parameters used in the min-max goal

programming are specified adaptively so that the resulting solution will be located near the farthest point

from the solutions obtained so far in the objective space. The farthest point is determined by exploiting
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the property that the Pareto front of a multi-objective optimization problem defines a manifold whose di-

mension is lower than the number of objectives by one. Existing solutions on the Pareto-front manifold

are mapped into a lower dimensional Euclidean space using linear or nonlinear dimensionality reduc-

tion technique depending on the uniformness of the solution distribution. Then, the farthest point in this

Euclidean space is searched via a Voronoi diagram. Next, the found point is mapped back to the orig-

inal objective space, and it gives the farthest point from the existing solutions in terms of the geodesic

distance along the Pareto front. By successively employing gradient-based optimization, min-max goal

programming, and the Pareto manifold sampling, a set of Pareto optimal solutions with a good spread is

finally obtained. Performances of the present method and a multi-objective genetic algorithm (MOGA)

were compared by conducting numerical experiments using a test problem with a terminal equality con-

straint. The result revealed that the proposed technique outperforms the MOGA in terms of optimality,

constraint residual, and diversity of the obtained solutions. In addition, the applicability of the developed

method to a more complex and practical problem was demonstrated through solving a space-shuttle

reentry problem.

Second, a numerical method for conducting the passive TPS design in the MDO of RLVs was de-

veloped in Chapter 3. While the TPS is a significant design discipline in RLVs, it has been seldom

considered in previous studies on the MDO of RLVs. A primary design criterion of passive TPS is to

ensure that the temperature of its backface bonded to the vehicle’s main structure does not exceeds the

specified limit throughout the flight. The simultaneous design optimization problem of flight trajectory

and TPS is formulated as a transient heat-constrained optimal control problem, where ODE-expressed

vehicle dynamics and PDE-expressed thermal behavior are coupled. So as to solve the formulated prob-

lem efficiently, the discretization of the PDE in the spatial coordinate using a Legendre pseudospectral

method with the special treatment of boundary conditions was proposed. The boundary condition at the

TPS surface is described by aerodynamic heating and thermal radiation, and that at the TPS backface

is defined as the adiabatic condition. Using the developed method, pseudospectral discretization that

automatically satisfies these boundary conditions is obtained. The discretized PDE gives a set of ODEs,

and they are solved using a conventional optimal control software along with the vehicle dynamics. As a

result, the flight trajectory is optimized while satisfying the backface temperature limit of TPS. Numeri-

cal experiments showed that the proposed technique has a faster convergence rate compared to previous

approaches.

In Chapter 4, multi-objective MDO of a two-stage-to-orbit (TSTO) RLV with pre-cooled turbojet

(PCTJ) engines was conducted using the multi-objective optimization method developed above. A fully

reusable system with a horizontal takeoff and landing capability was considered. The booster vehicle is

propelled by LH2-fueled PCTJ engines and LH2/LOX rocket engines, and the orbiter vehicle is accel-

erated by an ethanol/LOX rocket engine. The transportation of a payload into a circular low Earth orbit

whose altitude is 350 km above sea level was defined as a mission. An MDO framework consisting of

vehicle geometry definition, mass property estimation, aerodynamic computation, propulsion analysis,

and trajectory calculation was constructed. The estimation of the vehicle’s mass property was based

on a statistical relation. For the aerodynamic analysis, engineering-level CFD methods were employed.
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Propulsion performance was evaluated using tabular data derived from analytical models. In the flight

trajectory computation, pitching trim and longitudinal static stability were taken into account in addition

to the point-mass dynamics. Surrogate modeling techniques were applied to the aerodynamic compu-

tation and the propulsion analysis in order to mitigate their computational burden and to enhance the

numerical stability of gradient-based optimization. Design objectives considered were 1) maximization

of the payload mass, 2) minimization of the gross mass of the mated vehicle, and 3) minimization of

the horizontal takeoff velocity. The takeoff velocity was selected as a design criterion, because it is a

major constraint in designing booster vehicles of TSTO RLVs. The multi-objective MDO problem was

formulated as a multi-objective optimal control problem whose static parameters contain vehicle design

variables. While the formulated problem was composed of thousands of variables and constraints after

dynamic variables in optimal control are parameterized, it was successfully solved using the developed

multi-objective optimization method.

As a result, uniformly distributed Pareto optimal solutions were obtained. The Pareto optimal so-

lutions include a solution which weights 412 t, transports an 810 kg payload, and has 129-m/s takeoff

velocity, for instance. First, tradeoff relations among design objectives were qualitatively shown. Vehi-

cle gross mass and payload mass are almost linearly correlated when the takeoff velocity is fixed. The

payload mass fraction is increased by relaxing the takeoff-velocity constraint. Next, some inspections

were made on the vehicle design and flight trajectory of four representative solutions. In all the obtained

Pareto optimal solutions, the mated vehicle is accelerated by the PCTJ engines up to the operating limit,

Mach 6.0. Then, data mining techniques were employed in order to extract more generic and insightful

knowledge from the solutions. A scatter plot matrix was used to visualize the correlations of the pairs of

design objective values and notable vehicle design parameters. Proper orthogonal decomposition (POD)

was applied to the angle-of-attack history of Pareto optimal trajectories. This revealed that the optimal

angle of attack during the ascent flight is primarily associated with the designed takeoff velocity, or

equivalently wing loading of the vehicle.

In Chapter 5, multi-objective MDO of a TSTO RLV with rocket-based combined cycle (RBCC)

engines was performed. The booster vehicle is propelled by ethanol/LOX RBCC engines, and the or-

biter vehicle is accelerated by an ethanol/LOX rocket engine. In addition to the MDO framework built

in Chapter 4, airframe-propulsion integrated analysis and thermal analysis were implemented as well.

In the airframe-propulsion integrated analysis, inlet inflow conditions during ramjet mode and scramjet

mode are given by a pre-compression calculation. The flow field in an external nozzle behind the com-

bustor exist is simulated using a two-dimensional enhanced method of characteristics for supersonic flow.

Thermal analysis was performed on 1) active cooling system for the RBCC engines and vehicle leading

edges, and 2) ceramic tile TPS on the booster under-surface. In the passive TPS analysis, a numerical

technique developed in Chapter 3 was employed, and the required thickness of the tile was determined

in the MDO. Design objectives identical to those in Chapter 4 were considered. Although the formulated

multi-objective MDO problem is larger and more complex than the problem derived in Chapter 4, it was

satisfactorily solved using the proposed multi-objective optimization method.

A set of Pareto optimal solutions with a good diversity in the objective space was obtained. The trade-
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off relation among design objectives was qualitatively same as the relation in the TSTO RLV with PCTJ

engines. A distinctive difference between the PCTJ-powered system and the RBCC-powered system is

that it is more difficult to realize low takeoff velocity in the RBCC-powered system. This is because

ethanol whose density is higher than liquid hydrogen is applied to the propellant of RBCC engines aim-

ing to reduce the vehicle size. However, a small but heavy vehicle suffers from higher takeoff velocity

unless the vehicle has larger wings. Specifications of a representative Pareto optimal solution are as fol-

lows: gross mass is 652 t, payload mass is 772 kg, and takeoff velocity is 175 m/s. The PCTJ-powered

system is superior to the RBCC-powered system in term of the objective values, while simple comparison

is rather meaningless since the underlying design assumptions are somewhat different. A notable knowl-

edge indicated in a scatter plot matrix is that the optimal external nozzle angle is highly related to the

takeoff-velocity requirement. Smaller nozzle angle makes the expansion of engine exhaust weaker, and

it is favorable for performing takeoff. This can be regarded as an outcome of tradeoff relations between

takeoff performance and hypersonic acceleration performance. According to the knowledge extraction

using POD, the optimal ascent trajectory of the TSTO RLV with RBCC engines is determined by the

designed takeoff velocity, which is similar to the PCTJ-powered vehicle.

By performing multi-objective MDO of RLVs, this dissertation provided some insight into the cou-

pling structure between the preference in design objectives and the resulting optimal design of the RLVs.

The discovered knowledge will serve as a guideline for conducting more detailed design studies or for

creating novel RLV concepts.

6.2 Novelties of the Present Research

For the sake of clarity, major novelties in the present research (i.e., the attempts that cannot be found in

previous researches) are enumerated below:

1) An algorithm for successively determining goal-programming parameters was developed in order

to find uniformly spread Pareto optimal solutions to multi-objective optimization problems.

2) The validity and efficiency of the fictitious-point pseudospectral method in PDE-ODE coupled

optimal control were investigated.

3) The MDO problem of an RLV with TPS analysis was formulated as an augmented PDE-ODE

coupled optimal control problem.

4) Multi-objective MDO of RLVs were conducted.

5) As the outputs of multi-objective optimization of RLVs, tradeoff relations among payload capabil-

ity, vehicle gross mass, and takeoff-velocity requirement were obtained. In addition, the influence

of a preference in the tradeoff relationship on the optimal RLV design (i.e., optimal values for

design variables) were revealed.

6) Proper orthogonal decomposition was applied to time-history data in Pareto optimal solutions.
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6.3 Recommendations for Future Work

In future studies, the work carried out in this dissertation would be improved or utilized in terms of the

following aspects:

1) Application of the developed multi-objective optimizer to trajectory-driven design problems

An advantage of the multi-objective optimization method proposed in Chapter 2 is that highly

accurate and uniformly distributed solutions are obtained as many as needed. This property is de-

sirable in practical usages, and the method is well applicable to varieties of trajectory-driven design

optimization problems (e.g., trajectory planning of airliners and trajectory design of spacecraft).

2) Integrated design of flight trajectory and TPS in hypersonic experimental vehicles

An efficient technique for the simultaneous optimization of flight trajectory and passive TPS in-

vestigated in Chapter 3 can become a useful tool for designing hypersonic experimental vehicles.

Since trajectory design and TPS design are usually conducted independently now, the integration

of these design efforts can accelerate the design process and can enhance the vehicle performance.

Note that hypersonic flight experiment projects are currently active around the world [101–104].

3) Improvements in numerical models of RLV design problems

Improvements in the fidelity of numerical models are indispensable for obtaining more reliable

design solutions and for acquiring more insightful design knowledge. Particularly, attention should

be paid to the following topics with high priority because of the current low fidelity and a large

impact on the system performance:

• Implementation of FEM-based mass property estimation of the vehicle

• Investigation of the fly-forward/back trajectory of the booster after staging

4) Parallelization of the proposed multi-objective optimization algorithm

The multi-objective optimization technique developed in Chapter 2 is a successive search algo-

rithm, where goal-programming parameters are determined based on all the Pareto optimal so-

lutions found so far. In other words, a new solution obtained at an iteration step depends on the

solutions in previous steps. Such a situation is called “loop-carried dependence”, and it hinders the

solution procedure from being parallelized. This can be a drawback considering the recent progress

of parallel computing capabilities such as multi-processor machines and multi-core CPUs.

Fortunately, however, this issue can be solved by the following simple but ingenious modifications

of the algorithm. Its outline is illustrated in Fig. 6.1. Suppose that the parallel computing architec-

ture is composed of multiple processes (or multiple threads) and data shared by them. The shared

data contains all the solutions obtained so far and all the current farthest points in the objective

space, and it is accessed by a single process at a time. In the figure, the existing solutions and far-

thest points are depicted with black dots and white triangles, respectively. When a single-objective

problem arising from the goal-programming transformation is solved in a process, the correspond-

ing farthest point point in the shared data is removed, and the newly obtained solution is stored
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Fig. 6.1 Schematic drawing of the parallel-computing strategy for the multi-objective optimization al-
gorithm in Chapter 2.

instead. Then the next farthest point and resulting goal-programming parameters are determined

using the algorithm in Section 2.2. During this step, farthest points in other processes stored in the

shared data are treated as if they are already-obtained solutions. As a consequence, the optimiza-

tion computations in different processes can be performed asynchronously. The rationale of this

approach is that the positions of a farthest point (denoted by △ in the figure) and the resulting new

solution (by ◦) are not so different in the objective space. The above parallel-computing strategy

is superior in terms of the following viewpoints:

• Granularity

The granularity in parallel computing is defined as the amount of computation relative to

that of communication. When the granularity is small, the overhead associated with the

communication deteriorates the overall computational performance. In the present method,

all the data required to be communicated is the objective values of existing solutions and the

coordinates of farthest points. Computation performed per each communication is equivalent

to the solution of an optimization problem, and it takes more than one minute in practical

problems. Therefore, its granularity is very large.

• Load balance

If the computational load is not equally allocated to each process, it leads to some dead

time of computational resources. Such a load imbalance is caused by a situation where the

data synchronization between processes is needed. When the optimization computation is

involved, the concern for the load imbalance becomes critical, because the required solution

times in similar optimization problems can be very different due to its iterative nature. The

present parallelization algorithm is, on the other hand, based on the asynchronous communi-

cation between a process and the shared data, and it is free from the load imbalance.

Implementation of the above parallel-computing strategy and the verification of its efficiency are

interesting research topics.
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Appendix A

Pseudospectral Methods for Nonlinear
Optimal Control

In this appendix chapter, existing numerical methods for nonlinear optimal control problems, especially

a family of pseudospectral methods, are described briefly first. Then, the formulation of the Legendre-

Gauss pseudospectral method with segment decomposition is shown, which is employed throughout the

present study.

A.1 Numerical Methods for Nonlinear Optimal Control

Missions in the aerospace field typically involve severe requirements or constraints on time, energy

consumption, the operational performance, and so on. This has motivated the development of optimal

control theories since 1950s. Since it is usually difficult to analytically find the solution to a general

nonlinear optimal control problem, a variety of numerical solution techniques have been developed.

Numerical methods for nonlinear optimal control are broken up into two primary categories: direct

methods and indirect methods [41], as shown in Fig. A.1. Figure A.1 is drawn so that the descriptions

around Legendre pseudospectral methods are particularly detailed.

When the indirect methods are employed, calculus of variations is first applied to the time-continuous

optimal control problem, and the first-order necessary condition for optimality is derived. The optimality

condition is expressed as a form of multi-point boundary value problem of Hamiltonian, and it is numeri-

cally solved after performing discretization. Therefore, the indirect methods are sometimes called a “first

optimize then discretize” approach. Although indirect methods have the advantage of high accuracy in

their solution, they suffer from small radii of convergence and the necessity of 1) analytical derivation of

the optimality criteria, 2) nonintuitive initial guesses for the costate, and 3) the prior establishment of the

constrained and unconstrained arcs of inequality path constraints.

When the direct methods are used, on the other hand, the original problem is first transcribed into its

finite-dimensional approximation or a nonlinear programming (NLP) problem. Then, the solution such

that satisfies its first-order necessary conditions for optimality, which is known as Karush-Kuhn-Tucker
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• indirect methods [77]

• indirect shooting

• indirect collocation

• direct methods



• direct shooting [42,45]

• direct collocation



• fixed-degree Runge-Kutta [42,46,105]

• pseudospectral methods



• Jacobi

• Chebyshev [106,107]

• Legendre [65]


• Legendre-Gauss-Lobatto [82]

• Legendre-Gauss [64]

• Legendre-Gauss-Radau [83]

Fig. A.1 Classification of numerical methods for nonlinear optimal control.

(KKT) conditions, is obtained using NLP algorithms. Therefore, the direct methods are sometimes called

a “first discretize then optimize” approach. Direct methods are free from aforementioned drawbacks of

the indirect methods, and they have gained popularity. Direct methods are further divided into the shoot-

ing method and the collocation methods. The direct shooting method parameterizes control variables

at a set of discrete times, and the state variables are then obtained by solving the initial value problem

of ordinary differential equations explicitly. Numerical instabilities due to this explicit integration [42]

make the direct shooting method less popular than the direct collocation methods. The direct collocation

method parameterizes both state variables and the control variables, and differential-algebraic equations

are imposed at finite number of nodes (collocation points). The direct collocation methods are probably

most widely used today for their computational stability and versatility. In traditional direct collocation

parameterization, the problem domain is divided into a large number of subintervals, and differential

equations are implicitly enforced using a fixed low-order Runge-Kutta scheme (e.g, the trapezoidal rule

or the Hermite-Simpson rule) in each interval. As the number of subintervals is increased, the accuracy

of the resulting solution is improved.

A.2 Pseudospectral Methods

Meanwhile, the application of pseudospectral methods to the direct collocation approach for optimal con-

trol has been actively studied in recent years [64,82,83,106]. The pseudospectral method is originally used in

the numerical solution of partial differential equations [84,87]. In the pseudospectral method, sophisticat-

edly distributed Gaussian quadrature nodes [108] are employed as the colocation points without dividing

the whole domain into subintervals, and the derivatives of the state variables at the collocation points are

approximated with the derivatives of the interpolants. When the order of the approximating polynomial

is raised, the numerical solution gradually converges to the solution of the original continuous-time op-

timal control problem. In other words, the pseudospectral methods adopt a variable high-order global

polynomial as a basis function (Fig. A.2b) in contrast to a fixed low-order piecewise polynomial used
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(a) Fixed-order Runge-Kutta method.
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(b) Pseudospectral method.

Fig. A.2 Examples of discretization mesh used in direct collocation methods.

in the conventional direct collocation methods (Fig. A.2a). The Runge phenomenon∗ is prevented by

employing the Gaussian quadrature nodes as data points for interpolation. Primary advantages of the

pseudospectral method over the traditional direct collocation methods based on fixed-order Runge-Kutta

schemes are as follows:

1) Exponential convergence rate of the obtained solution [65,109]

The error between the numerical solution and the continuous-time solution decreases exponentially

with respect to the increase in the number of collocation points. This rate is much faster than the

polynomial-order convergence achieved by Runge-Kutta schemes. This results in considerable

reductions of the CPU time and memory resources required to obtain the solution with the desired

accuracy level.

2) Highly accurate mapping between the KKT multiplier and costate variables [64,65]

Costate variables of the optimal control problem can be accurately computed from the KKT mul-

tipliers. It is noted that the KKT multipliers are provided by NLP solvers after the optimization

computation is finished. The calculated costate values enables the optimality validation of the

obtained numerical solution on the basis of the Pontryagin’s maximum (or minimum) principle.

There are a variety of Gaussian quadrature nodes, and they directly leads to various types of pseu-

dospectral methods. Performance comparisons between different pseudospectral methods can be found

in literature [83,109]. While Ref. 109 states that the Legendre-Gauss (LG) pseudospectral method [64] fails

to work properly in some cases, its convergence rate is generally superior to that of the other Legendre

pseudospectral methods [83]. Therefore, the LG pseudospectral method and the Legendre-Gauss-Lobatto

(LGL) pseudospectral method [82] are both implemented in the present study. Then, the LGL pseudospec-

tral method is employed only when the LG pseudospectral method does not work well.

Major limitations of the pseudospectral methods are

∗A fictitious oscillation of an interpolant observed in high-order polynomial approximation.
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Fig. A.3 Schematic of the discretization mesh generated by an adaptive mesh refinement algorithm for
the pseudospectral methods [67].

1) Deterioration of the convergence rate when the solution is not sufficiently smooth

When a nonsmooth function is approximated using a global polynomial interpolation, the resulting

interpolant suffers from oscillating behaviors known as the Gibbs phenomenon. In addition to this

spurious oscillation, the convergence rate of the numerical solution to the continuous-time solution

is substantially degraded.

2) Significant increase of the computational burden when increasing the approximation order

Since the pseudospectral methods use a single approximating polynomial in the whole problem

domain, the NLP problem to be solved has a denser constraint Jacobian matrix in comparison with

conventional direct collocation methods. Given that the number of collocation points is denoted

by N, the number of nonzero elements in the Jacobian arising from the pseudospectral methods

is the order of O(N2), while that resulting from the trapezoidal rule is the order of O(N). This

means that the pseudospectral methods incur higher computation cost when the same number of

collocation points are used, while the exponential convergence rate of the pseudospectral methods

usually overweighs this problem. This drawback becomes apparent when a problem with a highly

nonlinear or nonsmooth solution must be solved with high accuracy, because an intractable NLP

problem is produced when the required number of collocation points is used.

In order to overcome these drawbacks, the segment decomposition approach [110] is employed in the

present study, and the time domain is divided into a small number of segments where different approxi-

mating polynomials are used. Since the appropriate segmentation cannot be known a prior, an adaptive

mesh refinement algorithm [66,67] is used to automatically determine the number of segments, locations

of the segments, and the number of collocation points in each segment. This mesh refinement algorithm

conducts segmentations only around the difficulties in the polynomial approximation (e.g., smoothness

irregularities and high nonlinearities of the solution) as shown in Fig. A.3. This enables the enhanced

approximation accuracy and the relief of computational cost.
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A.3 The Legendre-Gauss Pseudospectral Method with Segment Decom-
position

In this section, the transcription of a nonlinear optimal control problem into a nonlinear programming

problem using the Legendre-Gauss pseudospectral method with segment decomposition is explained.

While some part of the contents can be found in Section 2 of Ref. 66, it is reviewed for the completeness

of this dissertation. It should be noted that the descriptions in this section can be extended to other pseu-

dospectral methods by introducing some slight modifications. Let us consider the following generalized

continuous-time nonlinear optimal control problem with cost functional in a Bolza form:

find x(t) : [t0, tf]→ Rnx , u(t) : [t0, tf]→ Rnu , t0 ∈ R, tf ∈ R, p ∈ Rnp , (A.1)

min. J ..= Φ[x(t0), t0, x(tf), tf , p] +
∫ tf

t0
g[x(t), u(t), t, p] dt ∈ R (Cost functional), (A.2)

s.t.
dx
dt
= f[x(t), u(t), t, p] ∈ Rnx (Dynamic constraints), (A.3)

C[x(t),u(t), t,p] ≤ 0 ∈ Rnc (Path constraints), (A.4)

Ψ[x(t0), t0, x(tf), tf , p] ≤ 0 ∈ Rnψ (Boundary conditions∗), (A.5)

where x(t), u(t), t0, tf , and p are typically called state variables, control variables, initial time, terminal

time, and static variables. t is a independent variable, and it denoted time in the most cases. When a

cost functional is defied by the summation of a term relating initial/terminal states, Φ, and a term about

a running cost,
∫ tf

t0
g dt, it is in a Bolza form. The others are a Mayer form with Φ only and a Lagrange

form with
∫ tf

t0
g dt only.

A pair, {x(t), u(t), t0, tf ,p}, that satisfies at least the constraints [Eq. (A.3–A.5)] is called a feasible

solution. Among a set of feasible solutions, a solution with the minimum cost is called the (globally)

optimal solution. It is known that the globally optimal solution is very difficult to find, and therefore solu-

tions that are locally optimal in the corresponding neighborhoods are sometimes searched instead. While

general nonlinear functions can be handled in the nonlinear optimal control problem, it is preferable to

formulate the problem so that all the included functions are continuously differentiable. This regularity

condition is required for treating the problem analytically and for applying gradient-based optimization

methods. In order to satisfy this qualification, a multi-phase formulation is often used in practical and

complex optimal control problems as follows: the problems domain is divided into several phases, and

different functions are used to express the problem in each phase. Then, the constraints concerning the

relations among phases, called linkage conditions, are imposed. In this section, a single-phase problem

is considered for the briefness of the description.

Let us divide the domain [t0, tf] into Ns segments whose ith interval is distributed in [t(i)
0 , t

(i)
f ]. Su-

perscripts in parentheses indicate the index of the segment to which the variable or function belongs.

∗The boundary conditions include constraints on static variables, p, in addition to the constraints on the initial and terminal
state of the dynamic system.
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Segments are aligned consecutively, that is

t0 = t(1)
0 < t(1)

f = t(2)
0 < · · · < t(Ns−1)

f = t(Ns)
0 < t(Ns)

f = tf , (A.6)

and state variables must be C0 continuous at the interfaces of the adjacent segments. Then, the indepen-

dent variable in the ith segment is converted from t ∈ [t(i)
0 , t

(i)
f ] to τ ∈ [−1, 1] using the following affine

transformation:

t(i)(τ) ..=
t(i)
f − t(i)

0

2
τ +

t(i)
f + t(i)

0

2
. (A.7)

This transformation is required because the Gaussian quadrature nodes, on which the Legendre-Gauss

pseudospectral methods are based, are located in [−1, 1].

As a result of this segment decomposition and interval normalization, the original problem in Eq. (A.1–

A.5) is rewritten as follows:

find {x(i)(t)}Ns
i=1, {u

(i)(t)}Ns
i=1, t0, tf , p, (A.8)

min. J ..= Φ[x(1)(−1), t0, x(Ns)(+1), tf , p]

+

Ns∑
i=1

t(i)
f − t(i)

0

2

∫ +1

−1
g[x(i)(τ), u(i)(τ), t(i)(τ), p] dτ, (A.9)

s.t.
dx(i)

dτ
=

t(i)
f − t(i)

0

2
f[x(i)(τ), u(i)(τ), t(i)(τ),p], for i = 1, . . . ,Ns (A.10)

C[x(i)(τ),u(i)(τ), t(i)(τ),p] ≤ 0, for i = 1 . . . ,Ns (A.11)

Ψ[x(1)(−1), t0, x(Ns)(+1), tf , p] ≤ 0 (A.12)

x(i)(+1) = x(i+1)(−1), for i = 1 . . . ,Ns − 1. (A.13)

Here, x(i)(τ) and u(i)(τ) are the shorthand of x(i)
[
t(i)(τ)

]
and that of u(i)

[
t(i)(τ)

]
, respectively.

Using pseudospectral methods, continuous-time constraints are collocated at the corresponding quadra-

ture nodes [e.g, the Legendre-Gauss (LG) nodes for the LG pseudospectral method]. Suppose that N(i)

LG nodes are used in the ith segment, and their abscissas are denoted by τ(i)
1 , . . . , τ

(i)
N(i) . Here, τ(i)

l is defined

as the lth root of the N(i)th-order Legendre orthogonal polynomial [108], and all the nodes are located onto

the open interval (−1,+1). The computation of the LG nodes can be performed using the Golub-Welsh

algorithm [111] instead of finding the roots directly. The total number of collocation points, N, is given by

N ..=

Ns∑
i=1

N(i). (A.14)

It is noted that the initial point, τ(i)
0

..= −1, and the terminal point, τ(i)
N(i)+1

..= +1, in each segment do not

belong to collocation points of the LG pseudospectral method. Instead, these end points are introduced

as additional discretization points for state variables.

123



A. Pseudospectral Methods for Nonlinear Optimal Control

The relative locations of the segment interfaces can be either fixed or moveable in the interval of

[t0, tf]. In the present study, let us suppose that the ith segment occupies the predetermined fixed fraction,

t(i)
frac[..= (t(i)

f − t(i)
0 )/(tf − t0)], based on the discussion in Section 2.3 of Ref. 66. Therefore, the following

relations hold:

t(i)
0 = t0 + (tf − t0)

i−1∑
l=1

t(l)
frac, (A.15)

t(i)
f = t0 + (tf − t0)

i∑
l=1

t(l)
frac, (A.16)

t(i)
k =

tf − t0
2

t(i)
frac

(
τ(i)

k + 1
)
+ t0 + (tf − t0)

i−1∑
l=1

t(l)
frac, (A.17)

t(i)
f − t(i)

0

2
=

tf − t0
2

t(i)
frac. (A.18)

As a consequence, the discretization mesh for the Legendre-Gauss pseudospectral method with segment

decomposition can be specified by the following set of parameters:

1) The number of segments, Ns

2) The fraction of each segment in the problem domain,
{
t(i)
frac

}Ns

i=1

3) The number of LG nodes in each segment,
{
N(i)

}Ns

i=1

These parameters are automatically determined by the mesh refinement algorithm [67], and they are col-

lectively denoted by N in Section 2.1.

Next, state variables expressed as continuous-time functions, x(i)(τ), are replaced with their N(i)th-

order approximating polynomials, x̃(i)(τ), as follows:

x(i)(τ) ≈ x̃(i)(τ) =
N(i)∑
l=0

x̃(i)(τ(i)
l ) · L(i)

l (τ), (A.19)

where {L(i)
l (τ)}N(i)

i=1 is a set of Lagrange basis functions defined by

L(i)
l (τ) ..=

N(i)∏
m=0
m,l

τ − τ(i)
m

τ(i)
l − τ

(i)
m

, for i = 1, . . . ,N(i). (A.20)

The Lagrange basis polynomials satisfy the following relation:

L(i)
l (τ(i)

k ) = δlk, for k = 0, . . . ,N(i), (A.21)

where δlk refers the Kronecker delta. This means that the resulting approximating polynomial can be pa-

rameterized by their values at the discrete points τ(i)
0 , . . . , τ

(i)
N(i) . Similarly, let the approximating function
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of the control variables in the ith segment be denoted by ũ(i)(τ). The state variables at the terminal point

of each segment can be derived as follows:

x̃(i)(+1) = x̃(i)(−1) +
∫ +1

−1

dx̃(i)

dτ
dτ. (A.22)

By differentiating Eq. (A.19) with respect to τ and evaluating the first derivative at LG nodes, gradient

of the approximating polynomial of the state variable is obtained as follows:

dx̃(i)

dτ

∣∣∣∣∣∣
τ(i)

k

=

N(i)∑
l=0

x̃(i)(τ(i)
l ) ·

dL(i)
l (τ)

dτ

∣∣∣∣∣∣∣
τ(i)

k

=..

N(i)∑
l=0

D(i)
k, l+1 · x̃

(i)(τ(i)
l ). (A.23)

D(i)
k, l+1 is the (k, l+ 1)th element of the pseudospectral differentiation matrix [85] in the ith segment, D(i) ∈
RN(i)×(N(i)+1). The differentiation matrix for the Legendre-Gauss pseudospectral method is computed

by [64,65]

D(i)
k, l+1

..=
dL(i)

l (τ)

dτ

∣∣∣∣∣∣∣
τ(i)

k

=



N(i)∑
m=0
m,k

1

τ(i)
k − τ

(i)
m

, if k = l

1

τ(i)
l − τ

(i)
k

N(i)∏
m=0
m,l,k

τ(i)
k − τ

(i)
m

τ(i)
l − τ

(i)
m

, if k , l.

(A.24)

Definite integrals in the cost functional, Eq. (A.9), and the terminal-state constraint, Eq. (A.22), are

replaced by their Legendre-Gauss quadrature approximations [108,111], and they become

∫ +1

−1
g[x(i)(τ), u(i)(τ), t(i)(τ), p] dτ ≈

∫ +1

−1
g[x̃(i)(τ), ũ(i)(τ), t(i)(τ),p] dτ

=

N(i)∑
k=1

w(i)
k · g[x̃(i)(τ(i)

k ), ũ(i)(τ(i)
k ), t(i)(τ(i)

k ), p], (A.25)

∫ +1

−1

dx̃(i)

dτ
dτ =

N(i)∑
k=1

w(i)
k ·

dx̃(i)

dτ

∣∣∣∣∣∣
τ(i)

k

, (A.26)

where w(i)
1 , . . . ,w

(i)
N(i) are the weights of the Legendre-Gauss quadrature computed using the Golub-Welsh
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algorithm [111]. As a result, Eq. (A.22) is transformed by employing Eq. (A.26) and Eq. (A.23) as follows:

x(i)(1) ≈ x̃(i)(1) = x̃(i)(−1) +
N(i)∑
k=1

w(i)
k ·

N(i)∑
l=0

D(i)
k l+1 · x̃

(i)(τ(i)
l )


= x̃(i)(−1) +

N(i)∑
l=0

x̃(i)(τ(i)
l ) ·

N(i)∑
k=1

w(i)
k · D

(i)
k l+1

 . (A.27)

Next, new variables are introduced with the following definitions:

X(i)
k

..= x̃(i)(τ(i)
k ) ∈ Rnx for i = 1, . . . ,Ns, k = 0, . . . ,N(i) + 1, (A.28)

U(i)
k

..= ũ(i)(τ(i)
k ) ∈ Rnu for i = 1, . . . ,Ns, k = 1, . . . ,N(i). (A.29)

Let us impose the differential-algebraic equations [Eqs. (A.10, A.11)] at the LG nodes using Eq. (A.23),

and then, Eqs. (A.8–A.13, A.27) are transcribed as follows:

find {X(i)
k }i∈{1,...,Ns}, k∈{0,...,N(i)+1} (Parameterized state variables)

{U(i)
k }i∈{1,...,Ns}, k∈{1,...,N(i)} (Parameterized control variables)

t0 (Initial time)

tf (Terminal time)

p (Static variables)

(A.30)

min. J ..= Φ[X(1)
0 , t0,X(Ns)

N(Ns)+1
, tf ,p]

+

Ns∑
i=1

tf − t0
2

t(i)
frac

N(i)∑
k=1

w(i)
k · g[X(i)

k ,U
(i)
k , t

(i)(τ(i)
k ),p] (A.31)

s.t.
N(i)∑
l=0

D(i)
k, l+1 · X

(i)
l −

tf − t0
2

t(i)
fracf[X(i)

k ,U
(i)
k , t

(i)(τ(i)
k ), p] = 0,

for k = 1, . . . ,N(i), i = 1, . . . ,Ns (A.32)

C[X(i)
k ,U

(i)
k , t

(i)(τ(i)
k ), p] ≤ 0, for k = 1, . . . ,N(i), i = 1, . . . ,Ns (A.33)

Ψ[X(1)
0 , t0,X(Ns)

N(Ns)+1
, tf , p] ≤ 0 (A.34)

X(i)
N(i)+1

− X(i+1)
0 = 0, for i = 1, . . . ,Ns − 1, (A.35)

X(i)
N(i)+1

− X(i)
0 −

N(i)∑
l=0

X(i)
l ·

N(i)∑
k=1

w(i)
k · D

(i)
k, l+1

 = 0, for i = 1, . . . ,Ns − 1. (A.36)

It is noted that, {τ(i)
k }i=1,...,Ns, k=1,...,N(i) is completely determined from t0 and tf using Eq. (A.18). Since the

interfaces between adjacent segments, initial time, and terminal time are not collocation points, dynamic

constraints and path constraints are not imposed on them. By assigning the same variable both to X(i)
N(i)+1

and to X(i+1)
0 in the computational implementation, Eq. (A.35) can be removed. Eqs. (A.30–A.36) consti-

tute an NLP problem that can be regarded as a discretization or a finite-dimensional approximation of the
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original continuous-time optimal control problem, Eqs. (A.1–A.5). When gradient-based optimization

methods are applied to the derived NLP problem, sparsity of the problem can be exploited in computing

its gradient information. For more details on the gradient calculation, see Appendix A.3 in Ref. 66 or

Ref. 112.
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Appendix B

External Nozzle Model for RBCC Engines

This appendix chapter discusses how to implement the influence of an external nozzle in evaluating the

performance of RBCC engines in an MDO framework. A numerical model of the external nozzle flow is

presented, and procedures for constructing its surrogate model are developed.

B.1 Quasi-One-Dimensional Model

In some previous researches on the conceptual design of TSTO RLVs with RBCC engines [97], a quasi-

one-dimensional model of the external nozzle flow is used. The pressure on the nozzle ramp surface is

estimated based on the following assumptions:

• In proper/under expansion condition (Fig. B.1a):

The exhaust gas of the engine is expanded quasi-one-dimensionally along a flow-pass surrounded

by the nozzle ramp and an extended line from the engine cowl (the dashed line shown in the figure)

in an isentropic manner.

Geometry of
ext. nozzle

Force and moment 
acting on the nozzle

Quasi-1D 
isentropic flow

(a) In proper/under expansion condition (pe ≥ pa).

Flow with 
pressure = pa

Geometry of
ext. nozzle

Force and moment 
acting on the nozzle

(b) In over expansion condition (pe < pa).

Fig. B.1 Overview of a quasi-one-dimensional model for the external nozzle flow.
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• In over-expansion condition (Fig. B.1b):

The exhaust flow goes along the nozzle ramp with static pressure identical to the free-stream pres-

sure.

The force and pitching moment acting on the external nozzle are obtained by integrating the calculated

flow pressure over the entire ramp surface after the free-stream pressure is subtracted. While this model

is simple and easy to use, the thrust augmentation by the external nozzle tends to be overestimated [113]. It

is noted that this numerical model of the external nozzle always produces non-negative thrust. In reality,

however, the nozzle can produce negative thrust in an over-expansion condition as experimentally shown

in Ref. 113. It is due to the fact that flight conditions, or ambient flow conditions, are not properly

considered, and generation and interaction of pressure waves (shock wave, compression wave, expansion

wave) are neglected in this model.

B.2 Two-Dimensional Model

In this section, a two-dimensional model based on an enhanced method of characteristics∗ is presented.

This model is adopted from Ref. 115 with some modifications.

B.2.1 Model Description

A numerical model that overcomes defects of the quasi-one-dimensional model, produces more accurate

results, and still has reasonably low computational cost is required. While the method of character-

istics [114] is a powerful tool for such purposes, it is applicable to isentropic flows only, since it takes

advantage of the Riemann invariants of hyperbolic PDEs for supersonic fluid. In order to extend the

applicability of the method to the flow with shock waves, a computational algorithm was developed in

Ref. 115. However, Ref. 115 focuses on the experimental system where the RBCC combustor is replaced

with a supersonic bell nozzle, meaning that the top-surface inclination of the combustor (see Fig. 5.3) is

ignored. In addition, an isentropic expansion fan is represented by a single wave, and this can lead to large

errors in under-expanded nozzle conditions. Therefore, in this dissertation, the algorithm in Ref. 115 is

modified so that it considers top-surface inclination of the combustor and approximates the expansion

fan by more than one wave. These procedures are described in the remainder of this subsection.

Initial Conditions

As a perturbation in a supersonic flow field propagates unidirectionally from upstream to downstream,

the flow computation is also performed alike. Initial conditions of this flow propagation are specified as

shown in Fig. B.3a. This figure illustrates the side view of the booster rearbody. Ma, p, γ, and θ denote

Mach number, static pressure, heat capacity ratio, and flow angle, respectively. Hereafter, quantities

with the subscript (·)a indicate ambient or environment flow conditions, and those with the subscript (·)e

∗Strictly speaking, the present method is classified into a method of waves instead of a method of characteristics [114], while
these terminologies are often used without being distinguished.
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Ambient

Combustor

Booster fuselage

Computational domain
Cowl lip

Initial expansion

Fig. B.2 Initial conditions of the flow computation using the two-dimensional method of characteristics.

represent engine-exhaust conditions. It should be noted that the top-surface inclination of the combustor

of the RBCC engines considered in the present study is 10 deg. Therefore, the exhaust flow field at the

combustor exit is discretized into small cells, and an appropriate flow angle is assigned to each cell.

Initial Expansion

The exhaust gass goes through an initial expansion via an infinite number of Mach waves generated at

the beginning point of the external nozzle ramp. The infinite number of Mach waves are replaced with a

finite number of pressure waves, and the directions of these pressure waves are arranged equiangularly.

Flow conditions after a single pressure wave are calculated using the following isentropic equations when

the deflection angle, θδ, is specified:

Ma2 = {Ma | ν(Ma, γ) − ν(Ma1, γ) − θδ = 0} , (B.1)

p2 = p1

1 + γ−1
2 Ma2

2

1 + γ−1
2 Ma1

2


−γ
γ−1

, (B.2)

θ2 = θ1 + θδ, (B.3)

where

ν(Ma, γ) =

√
γ + 1
γ − 1

arctan

√
γ − 1
γ + 1

(Ma2 − 1) − arctan
√

Ma2 − 1 (B.4)

is a Prandtl-Meyer function. Here, (·)1 and (·)2 indicate flow conditions before the wave and after the

wave, respectively. θδ is predetermined so that the flow after the initial expansion goes along the nozzle

ramp, Eq. (B.1) is solved using fsolve, a nonlinear equation solver in MATLABR⃝.
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B.2. Two-Dimensional Model

Wave Generation at the Cowl Lip

At the cowl lip, different types of pressure waves are generated based on a nozzle expansion condition.

Figure B.3 shows the four cases distinguished by ambient flow Mach number and the expansion condi-

tion. A superscript with a parenthesis indicates a serial number assigned to each flow-field cell. {Ma(1)
e ,

p(1)
e , θ(1)

e } and {Ma(1)
a , p(1)

a , θ(1)
a } are already known as explained in Fig. B.2. In all the cases shown in

Fig. B.2, static pressure and flow angle must be identical across a slip line (supersonic) or across a free

boundary (subsonic or transonic). The iterative algorithm developed in Ref. 115 is employed in order to

find downstream flow conditions that satisfy this constraint. Its procedure is explained below using the

case of Fig. B.3a as an example. Hereafter, γe denotes the heat capacity ratio of the engine exhaust, and

γa indicates that of the ambient flow.

1) The value of p(4)
e = p(2)

a is assumed.

2) Ma(4)
e and θ(4)

e are computed using the following isentropic flow equations:

Ma(4)
e =

√√√√√(
p(4)

e /p(1)
e

) γe−1
−γe ·

(
1 + γe−1

2 Ma(1)
e

2
)
− 1

(γe − 1)/2
, (B.5)

θ(4)
e = θ

(1)
e −

[
ν(Ma(4)

e , γe) − ν(Ma(1)
e , γe)

]
. (B.6)

3) Ma(2)
a and θ(2)

a are calculated based on the following two-dimensional oblique shock equations:

θs = arcsin

√√
p(2)

a /p(1)
a (γa + 1) + (γa − 1)

2γa Ma(1)
a

2 , (B.7)

θδ = arccot


 (γa + 1)Ma(1)

a
2

2
(
Ma(1)

a
2

sin2 θs − 1
) − 1

 tan θs

 , (B.8)

Ma(2)
a =

√√√√√√ (γa − 1) Ma(1)
a

2
sin2 θs + 2[

2γaMa(1)
a

2
sin2 θs − (γa − 1)

]
sin2(θs − θδ)

, (B.9)

θ(2)
a = θ

(1)
a − θδ. (B.10)

4) θ(4)
e = θ(2)

a must be satisfied. The value of p(4)
e = p(2)

a such that meets this condition is searched

using fzero, a nonlinear root finding algorithm in MATLABR⃝, which is based on a bisection

method. When oblique shocks are involved, it is recommended to use fzero instead of fsolve.

It is noted that a nonlinear oblique shock equation has two solutions, one of which represents a

physically appropriate weak shock. The desired solution can always be obtained when a bisection

method is employed with a properly chosen initial interval.

5) When θ(4)
e = θ

(2)
a is satisfied, we finally have downstream flow conditions (i.e., {Ma(4)

e , p(4)
e , θ(4)

e }
and {Ma(2)

a , p(2)
a , θ(2)

a }).
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Cowl

Shock wave

Expansion wave

Slip line

(a) When Ma(1)
a ≥ 1.8 and p(1)

e ≥ p(1)
a (proper/under

expansion).

Cowl

Shock wave

Expansion wave

Slip line

(b) When Ma(1)
a ≥ 1.8 and p(1)

e < p(1)
a (over expansion).

Cowl

Fictitious boundary

Expansion wave

Free boundary

(c) When Ma(1)
a < 1.8 and p(1)

e ≥ p(1)
a (proper/under

expansion).

Cowl

Fictitious boundary

Shock wave

Free boundary

(d) When Ma(1)
a < 1.8 and p(1)

e < p(1)
a (over expansion).

Fig. B.3 Schematic descriptions of the wave generation at the cowl lip.

When ambient flow is subsonic or transonic (see Figs. B.3c and B.3d), the ambient flow is approxi-

mated to be static, and it is assumed that the following relations hold:

Ma(1)
a = Ma(2)

a = 0, (B.11)

p(1)
a = p(2)

a . (B.12)

Wave Interaction

After the initial expansion and the wave generation at the cowl lip are simulated, the computation step

successively proceeds from upstream to downstream by 1) detecting the intersection of pressure waves

and then 2) computing flow conditions behind the wave intersection. Figure B.4 shows a schematic

description for the calculation of the wave interaction. After detecting the intersection of two waves,

the types of new waves shaped from the intersection point can be identified from the intersected wave

types. Wave types include shock wave, expansion wave, compression wave, slip line, and free boundary.

For example, when the wave 1 and wave 2 are an expansion wave and a shock wave, respectively, the

wave 3 is a shock wave, and wave 4 is an expansion wave. Subsequently, the value of p(i+1)
{e,a} = p( j+1)

{e,a}
such that leads to θ(i+1)

{e,a} = θ
( j+1)
{e,a} is iteratively found using the above-mentioned algorithm. As a result,

downstream flow conditions (i.e., {Ma(i+1)
{e,a} , p(i+1)

{e,a} , θ
(i+1)
{e,a} } and {Ma( j+1)

{e,a} , p( j+1)
{e,a} , θ

( j+1)
{e,a} }) and directions of

newly-generated waves are obtained.
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Pressure wave 1

Pressure wave 2

Pressure wave 3

Pressure wave 4

Fig. B.4 Schematic description of the wave interaction.

Wave Reflection on the Nozzle Ramp

When a pressure wave meets the external nozzle ramp surface, the wave is reflected. Flow conditions

behind the reflection are calculated with the regular-reflection relations.

Termination of the Computation

Computational domain needed for calculating the pressure distribution on the entire nozzle ramp is shown

in Fig. B.2. The force and pitching moment acting on the external nozzle are computed by integrating

the pressure distribution over the entire ramp surface after the free-stream pressure is subtracted. The

pitching moment is calculated around the center of the nozzle ramp. The force and moment per “unit

ramp width times unit engine height” are denoted by Fext and Mext, respectively.

B.2.2 Model Validation

The accuracy of the two-dimensional external nozzle model built in Section B.2.1 is verified by compar-

ing its results with CFD simulations. As test cases, the nozzle geometry and flow conditions are selected

as presented in Table B.1 and Table B.2, respectively. CFD setups are shown in Table B.3.

The forces acting on the external nozzle ramp per unit width are calculated via two-dimensional

models (the present enhanced model and the model in Ref. 115) and the CFD simulations, and the

results are summarized in Table B.4. The results of CFD computations are provided by Mr. Mikoshiba

and Prof. Matsuo at Department of Mechanical Engineering, Keio University. Differences between the

model outputs and the CFD results are presented by normalizing them by the CFD results. Due to the

time constraints, the CFD simulations in Case 1 and Case 2 are not performed yet. When ambient flow is

Table B.1 Nozzle geometry for the validation of the two-dimensional external nozzle flow model.

Parameter Value

Combustor exit height [m] 2.005
Combustor ramp inclination angle [deg] 10.00
External nozzle ramp inclination angle [deg] 15.20
External nozzle expansion ratio 2.436
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Table B.2 Flow conditions for the validation of the two-dimensional external nozzle flow model.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Combustor exhaust Mach number 2.347 2.553 2.725 2.377 1.464 2.526
Static pressure [Pa] 58291 49838 43118 56153 74779 69959
Heat capacity ratio 1.233 1.237 1.240 1.161 1.247 1.151
Gas constant [J/(K kg)] 342.28 349.86 353.98 328.51 299.81 303.99
Temperature [K] 1938.0 1827.9 1725.3 2336.5 2130.1 2336.8
Molar fraction of N2 0.2022 0.1615 0.1359 0.2108 0.6393 0.3587

O2 0.0210 0.0230 0.0271 0.0000 0.0075 0.0172
H2O 0.3632 0.3730 0.3780 0.4116 0.1908 0.3513
CO2 0.1329 0.1297 0.1269 0.1850 0.1129 0.1973
CO 0.1642 0.1826 0.1935 0.1275 0.0214 0.0480
H2 0.0591 0.0700 0.0750 0.0491 0.0058 0.0120

Ambient flow Mach number 0.802 0.915 1.240 2.874 4.991 8.268
Static pressure [Pa] 84716 48913 23734 6862 2684 740
Heat capacity ratio 1.402 1.402 1.402 1.402 1.402 1.402
Gas constant [J/(K kg)] 288.68 288.68 288.68 288.68 288.68 288.68
Temperature [K] 276.9 249.4 218.7 215.3 219.9 230.1

Description Subsonic Subsonic Transonic Supersonic Supersonic Supersonic

Ejector-jet Ejector-jet Ejector-jet Ejector-jet Ramjet Scramjet

Over-exp. Over-exp. Under-exp. Under-exp. Under-exp. Under-exp.

Table B.3 Governing equations and computational schemes in CFD computations.

Item Description

Governing equations Two-dim. compressive Navier-Stokes equations
The ideal gas law
Conservation law of chemical species

Chemical species N2, O2, H2O, CO2, CO, H2

Discretization of convection term Yee’s non-MUSCL type 2nd-order TVD
Discretization of viscos term 2nd-order central difference
Time integration method Implicit LU-ADI
Turbulence model RANS (k-ω model)
The number of grid points 500,000 (in Case 3), 300,000 (in Cases 4–6)
Minimum grid size 10 × 10−6 m
Boundary condition on the ramp wall No slip condition
Outflow boundary condition Zeroth-order extrapolation
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B.3. Surrogate Modeling of 2D External Nozzle Model

Table B.4 The force acting on the external nozzle per unit width calculated by two-dimensional models
and the CFD simulations

Test case
2D model [kN/m]

CFD [kN/m]
Deviation from CFD [%]

Enhanced Ref. 115 Enhanced Ref. 115

Case 1 244.44 209.15 – – –
Case 2 71.09 52.50 – – –
Case 3 53.71 43.42 54.39 1.250 20.169
Case 4 70.23 67.93 69.15 1.562 1.764
Case 5 65.42 77.00 65.70 0.426 17.199
Case 6 90.03 81.82 87.91 2.412 6.928

supersonic or hypersonic, the results obtained using the enhanced two-dimensional model coincide with

the CFD results well, and it is superior to the accuracy of the model in Ref. 115.

Flow fields and ramp-pressure distributions obtained by the enhanced two-dimensional model and

those provided by CFD simulations are shown in Fig. B.5 and Fig. B.6, respectively. Because the no-slip

condition is imposed on the nozzle ramp in the CFD simulations, the ramp pressure somewhat increases

around the beginning of the nozzle ramp. Except Case 3, the flow fields from the model and those from

the CFD simulation are in good agreement. As for the Case 3, ambient flow is approximated to be static

in the two-dimensional model, and this results in the dissimilarity of the ambient flow fields. However,

since the subsonic ambient flow has no influence on the ramp pressure when the external nozzle is an

under-expanded condition, the ramp pressure distributions in the model and in CFD are almost the same.

In over-expanded nozzles，on the other hand, there are strong interactions between the exhaust flow

and the ambient flow. According to the two-dimensional model, a diamond shock pattern is generated

in Case 1 as a result of the flow interaction. In Case 2, the ramp pressure increases from upstream to

downstream after compression waves reflected from the jet free boundary reach the nozzle ramp. The

accuracy validation of the two-dimensional model in Case 1 and 2 should be conducted in the future

work.

It is noted that the effective force produced by the external nozzle is computed by subtracting the

ambient pressure force from the values shown in Table B.4. Actually, negative force is acting on the

external nozzle in over-expansion cases (i.e., Case 1 and 2), and it is equivalent to the decreases of thrust

and lift.

B.3 Surrogate Modeling of 2D External Nozzle Model

In order to avoid iterative and costly evaluations of the two-dimensional external nozzle model during the

optimization computation, surrogate models for Fext and Mext are constructed beforehand. Procedures

for constructing a surrogate model consists of three steps: conducting design of experiments, training the

surrogate model, and validating the obtained surrogate model. Input variables to the two-dimensional
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Fig. B.5 Outputs of the two-dimensional external nozzle flow model.
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Fig. B.6 Outputs of the two-dimensional Navier-Stokes CFD simulations for the external nozzle flow.
Provided by Mr. Mikoshiba and Prof. Matsuo at Department of Mechanical Engineering, Keio
University.

model are composed of

Mae, pe, γe, Maa, pa, γa, bext, lext/eh. (B.13)

A straightforward approach in the design of experiments is to specify lower/upper bounds of these inputs

and to generate sample points that cover the rectangular space defined by these bounds.

In the present case, however, some region of the rectangular input space represents unrealistic input

conditions. It is because, Mae, pe, and γe are the outputs of the RBCC engine simulation, and they are

correlated with each other. For example, Fig. B.7 shows all the pairs of Mae and pe in the tabular data of

the engine performance. In order to construct surrogate models with such constrained inputs efficiently,

an adaptive sampling algorithm is developed as shown in Fig. B.8.

Step 1: First, a targeted value of the coefficient of determination is specified by the user, and it is de-
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Fig. B.7 All the pairs of Mae and pe in the RBCC engine performance dataset.

noted by R2
tgt. The coefficient of determination is employed as an accuracy measure of surrogate

models, and the surrogate models are constructed so that the specified targeted value is satisfied.

In the present study, R2
tgt = 0.99.

Step 2: Next, an operating mode of RBCC engines (ramjet mode or ejector-jet/scramjet mode) is speci-

fied. Additionally, an expansion condition of the external nozzle is chosen. In the present study,

surrogate models for Fext and Mext are constructed in the following types of conditions:

Type 1: Ma∞ < 1.8, ejector-jet/scramjet, over-expansion. (B.14)

Type 2: Ma∞ < 1.8, ejector-jet/scramjet, under-expansion. (B.15)

Type 3: Ma∞ ≥ 1.8, ejector-jet/scramjet, under-expansion. (B.16)

Type 4: Ma∞ ≥ 1.8, ramjet, under-expansion. (B.17)

The other conditions (e.g., the combination of ramjet mode and over-expansion) do not exist in

optimized flight trajectories.

Step 3: Value ranges of Ma∞, (α + bwed), (TR/Scapt), bext, (lext/eh), and q∞ are specified. These vari-

ables uniquely determine nozzle geometry, combustor exit flow conditions, and ambient flow

conditions (see Chapter 5 for details). Ma∞, (α + bwed) and q∞ are selected as input variables

for representing free-stream flow conditions, because flight trajectories are typically constrained

based on these variables (e.g., q∞ ≤ 50 kPa). In the present study, the following value ranges are

used:

(α + bwed) ∈ [0, 23] deg, TR/Scapt ∈ [100, 400] kN/m2,

bext ∈ [10, 20] deg, (lext/eh) ∈ [2.3, 5.4]
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2) Specify an expansion condition

(over or under-expansion)

and an engine operating mode

(ramjet or non-ramjet)

4) Generate initial sample points, 

{si}, using Sobol sequences

5) Generate test points, {ti},

using random sampling

1) Specify R2
tgt

3) Specify ranges of

6) [{��i}, {Fsi}, {Msi}] = 
CalcExtNozzle({si})

7) [{�̃i}, {Fti}, {Mti}] = 
CalcExtNozzle({ti})

Start

8) Construct surrogate models based 

on ({��i}, {Fsi}) and ({��i}, {Msi}) 

9) Evaluate surrogate models at test 

point, {�̃i}, and calculate R2
F and R2

M

10) R2
F �	R

2
tgt

and R2
M � R2

tgt

Finish

11) Select additional sample points, 

{���i}, and corresponding responses, 

{Fsai} and {Msi}, from test points

12) {��i} ← [{��i} {���i}],

{Fsi} ← [{Fsi} {Fsai}], 

and {Msi} ← [{Msi} {Msai}]

13) Update the test points, {ti}, using 

random sampling

14) [{�̃i}, {Fti}, {Mti}] = 
CalcExtNozzle({ti})

No

Yes

Iterations for adaptive sampling, 

training, and validation

15) Surrogate models are 

obtained

S1) Calculate p
∞
, and discard data 

points whose p
∞

> 101.3 kPa

S2) Calculate engine exit conditions 

for each data point

S3) Discard data points that do not 

satisfy engine operating constraints

S4) 

S5) Calculate Fi and Mi at ��i using 

2D external nozzle model for all i

CalcExtNozzle({xi})

Return({��i}, {Fi}, {Mi})

Fig. B.8 Flowchart for constructing surrogate models of external nozzle simulations.
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and 

Ma∞ ∈ [0.2, 1.2], q∞ ∈ [1, 50] kPa, for Type 1.

Ma∞ ∈ [0.2, 1.8], q∞ ∈ [1, 50] kPa, for Type 2.

Ma∞ ∈ [1.8, 15], q∞ ∈ [1, 50] kPa, for Type 3.

Ma∞ ∈ [3.0, 6.0], q∞ ∈ [10, 50] kPa, for Type 4.

(B.18)

Step 4: Initial sample points are generated using a quasi-random sampling strategy based on Sobol se-

quences [116]. Uniformly distributed points in a unit cube whose dimension is 6 (the number of

input variables described in Step 3) are produced by a Sobol sequence generator implemented

by Fox [117]. Then, they are scaled so that the value range of each dimension coincides with the

corresponding value bound specified in Step 3. The obtained sample points are denoted by

si
..= [Ma∞i, (α + bwed)i, (TR/Scapt)i, bexti, (lext/eh)i, q∞i], i = 1, . . . , ns, (B.19)

where ns is the number of initial sample points. By using low discrepancy sequences such as

Sobol sequences, more uniformly distributed sample points can be obtained compared to con-

ventional pseudo-random generators, especially when the number of sample points is small [116].

Step 5: Test points are created in a similar way to Step 4, but using a random sampling based on a pseudo-

random number generator. The obtained test points are denoted by {ti}nt
i=1 where nt indicates the

number of test points. Data points that are used for training the parameters of a surrogate model

are called sample points. On the other hand, test points are employed to validate the accuracy of

the trained surrogate model.

Step 6: A set of input variables to the external nozzle model is prepared at each sample point, si, for

i = 1, . . . , ns, and it is denoted by s̃i. Then, the force, Fsi, and the pitching moment, Msi, exerted

on the external nozzle ramp per “unit ramp width times unit engine height” are calculated using

the two-dimensional model in Section B.2. The calculation procedures are encapsulated in a

subroutine CalcExtNozzle() as follows:

An input to CalcExtNozzle() is a set of data points, xi
..= [Ma∞i, (α + bwed)i, (TR/Scapt)i,

bexti, (lext/eh)i, q∞i], i = 1, . . . , nd. Then, it returns {x̃i}, {Fi}, and {Mi}.

Step S1: For the ith data point, static pressure of the ambient flow is computed from Ma∞i

and q∞i, and it is denoted by p∞i. Data points whose pi values exceed 101.3 kPa are

discarded, since they represent unrealistic flight conditions below sea level.

Step S2: Combustor exit flow conditions for each data point are calculated via procedures ex-

plained in Section 5.2.3, and {Maei, γei, pei} is obtained for all i.

Step S3: Data points that do not satisfy the following constraints on the engine operating con-
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B.3. Surrogate Modeling of 2D External Nozzle Model

ditions are removed:

1 kPa ≤ qin ≤ 100 kPa if ejector-jet or scramjet (B.20)

30 kPa ≤ qin ≤ 100 kPa and 3.0 ≤ Main ≤ 6.0 if ramjet (B.21)

pe ≥ pa if proper/under expansion (B.22)

pe < pa if over expansion (B.23)

Step S4: A set of input variables to the external nozzle flow model is obtained:

x̃i
..= [Ma∞i, (lext/eh)i, bexti, p∞i, Maei, γei, pei]. (B.24)

Step S5: The values of Fext and Mext are evaluated for all x̃i using the numerical model in

Section B.2, and they are denoted by Fi and Mi.

Step 7: Inputs and responses of the external nozzle model are evaluated at test points, {ti}. As a result,

{t̃i}, {Fti}, and {Mti} are obtained.

Step 8: Surrogate models of Fext and Mext are constructed based on the input/output values of sample

points ({s̃i, Fsi} and {s̃i, Msi}). Among a variety of surrogate modeling techniques [76], a radial

basic function network (RBFN) is employed. For a set of sample input vectors, {Xi}ni=1 (∈
{Rnx}), and corresponding response scalar values, {Yi}ni=1 (∈ {R}), the RBFN surrogate model,

fsur : Rnx → R, is written as follows:

fsur(x) =
n∑

j=1

λ j ϕ(||x − X j||2), (B.25)

where x (∈ Rnx) is the input vector, λ1, . . . , λn are the weights, || · ||2 denotes the Euclidean norm,

and ϕ : R≥ → R is a radial basis function. Typical choices of the radial basis function include

ϕ(r) =



exp(−r2/β2) Gaussian.

r2 log(r) thin plate spline.

(r2 + β2)1/2 multiquadric.

(r2 + β2)−1/2 inverse multiquadric.

(B.26)

In the present study, the multiquadric basis with β = 0.01 is adopted. The weights are determined

by solving linear equations arising from least-squares fit. The resultant surrogate functions for

predicting Fext and Mext are denoted by Fsur and Msur, respectively.

For evaluating longitudinal static stability of the vehicle in Section 5.2.5, partial derivative val-

ues of the external nozzle performance with respect to angle of attack are required. The simplest

way for computing the derivative of a function is to adopt its finite difference approximation.
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The numerical differentiation, however, yields numerical errors, and can results in slow con-

vergence in gradient-based optimization. To overcome this difficulty, analytic differentiation

of the RBFN surrogate model is implemented. When the multiquadric basis is considered, the

following relation holds:

∂ fsur(x)
∂xk

=

n∑
j=1

λ j
xk − X jk(

||x − X j||22 + β2
) 1

2

, for k = 1, . . . , nx, (B.27)

where xk is the kth element of x, and X jk indicates the kth element of X j.

Step 9: The obtained surrogate models are evaluated at test points, and subsequently, the coefficients of

determination are calculated as follows:

R2
F = 1 −

∑
i

[
Fti − Fsur(t̃i)

]2


/ ∑i

Fti −
1
nt

nt∑
j

Ft j


2 , (B.28)

R2
M = 1 −

∑
i

[
Mti − Msur(t̃i)

]2


/ ∑i

Mti −
1
nt

nt∑
j

Mt j


2 . (B.29)

Step 10: Whether adaptive sampling iterations are terminated or not is determined. The stopping criterion

is that both R2
F ≥ R2

tgt and R2
M ≥ R2

tgt are satisfied. Even though this condition is successfully

met, the iterations are stopped when the number of iterations reaches the predefined maximum

number, which is 10 in the present study.

Step 11: When the stopping criterion is not satisfied, new sample points are added to existing ones so

as to achieve better accuracy. The additional sample points are selected from the test points at

which the larger errors between surrogate predictions and actual responses are observed. the

input vectors of these additional sample points are denoted by {s̃ai}, and the resulting response

scalars are written as {Fsai} and {Msai}. The number of additional sample points is 30. This

adaptive sampling strategy is based on a simple idea that more sample points are required at the

locations where the prediction accuracy was found to be poor.

Step 12: The additional sample points are combined with the existing ones in the following way:

{s̃} ← [{s̃} {s̃a}], (B.30)

{Fsi} ← [{Fsi} {Fsai}], (B.31)

{Msi} ← [{Msi} {Msai}]. (B.32)

Step 13: Since test points used in the previous iteration overlap with the updated sample points, the old

test points are no longer valid. Therefore, test points are regenerated using random sampling,

and they are denoted by {ti}.
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Fig. B.9 Accuracies of surrogate models for the output Fext of the two-dim. external nozzle model.

Step 14: The updated test points are evaluated via CalcExtNozzle(), and it gives {t̃i}, {Fti}, and {Mti}.

Step 15: Procedures from Step 8 to Step 14 are repeated until the termination criterion is satisfied in

Step 10. When the criterion is successfully met, surrogate models of Fext and Mext whose R2

values are larger than R2
tgt are obtained.

Accuracies of the constructed surrogate models for the outputs, Fext and Mext, are presented in

Fig. B.9 and Fig. B.10, respectively. Scatter plots between the original-model outputs and the surrogate-

model outputs are depicted, and their R2 values are shown as well. While the R2 values of the surrogate

models in Type 1 are less than the targeted value, R2
tgt = 0.99, the approximation accuracies are satisfac-

tory overall.
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Fig. B.10 Accuracies of surrogate models for the output Mext of the two-dim. external nozzle model.
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Appendix C

Aerodynamic Analysis Model

In this chapter, the employed CFD methods for the aerodynamic analysis are briefly described first. Then,

the procedures for predicting the aerodynamic characteristics of the mated configuration (the booster and

the orbiter) are developed.

C.1 Overview of Employed CFD Methods

Computing the trajectory of a launch vehicle requires the aerodynamic properties of the vehicle for

a wide range of flight conditions. This is different from the case of aircraft design problems, where

a cruise condition may be defined as an aerodynamic design point. Therefore, the extensive use of

state-of-the-art computational fluid dynamics (CFD) simulations, where governing equations of fluid are

solved numerically, in large-scale MDO problems of RLVs is challenging ∗, even though the available

computational capabilities are increasing in recent years. It is also noted that, detailed investigations of

the flow field around the vehicle (e.g., boundary layer) are not targeted in the present conceptual design

study in contrast to scientific researches. Considering these, the following two types of engineering-level

CFD methods are utilized depending on the flow speed: A502 PAN AIR code [118] and local surface

inclination methods. These CFD calculation can be executed by preparing a set of vehicle surface panels

without generating a mesh surrounding them. A computer program for automatically producing such

panels based on the vehicle design variables developed mainly in Ref. 14 is employed in the present

study with modifications.

In subsonic or transonic conditions, the A502 PAN AIR code [118] is employed. This is a linear po-

tential flow solver using panel methods with a first-order compressibility correction. The PAN AIR code

is applied when free-stream Mach number is less than 2.0, because the accuracy of the compressibility

correction is deteriorated in higher Mach number.

In supersonic conditions (when free-stream Mach number is not less than 2.0), local surface incli-

nation methods are used. A collection of methods for calculating vehicle surface pressure distribution

∗In Ref. 25, where Euler CFD analysis was applied to the MDO of an RLV, the number of geometry parameters varied in
the optimization was only four. In addition, control-surface deflection was not considered.
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based only on the inclination angle between the local surface and the free-stream velocity vector is called

local surface inclination methods. While the Newtonian method for hypersonic flow would be the most

well-known local surface inclination method, its appropriate application condition is high hypersonic

whose Mach number is typically more than 20 [18]. Instead, a tangent cone method [119] and the Prandtl-

Meyer expansion flow theory are applied to the windward and the leeward regions, respectively. In the

tangent cone method, it is assumed that the local three-dimensional geometry of the vehicle is replaced

with the equivalent cone. The pressure on the local surface is then given by static pressure behind an

oblique shock wave caused by the cone. Another and probably more common approach for estimating

windward pressure is the combination of the tangent wedge method and the tangent cone method. In

this case, vehicle surface is divided several parts with two-dimensional or three dimensional surrounding

flow, and the tangent wedge method or the tangent cone method are applied, respectively [18,103]. How-

ever, the tangent cone method alone has superior accuracy to the tangent wedge/cone method when they

are applied to vehicle configurations such as those considered in the present study [14,119].

The above methods are not valid for estimating the pressure on the vehicle surface where flow sep-

aration occurs. Since such situations are observed in the fuselage base, the base pressure is estimated

with empirical equations[120, p. 58] instead. In addition, the skin friction coefficient on each panel is calcu-

lated using the van Driest’s II formula [121] assuming that the boundary layer is turbulent over the entire

vehicle surface. This conservative turbulent assumption is adopted due to the difficulty in predicting the

boundary layer transition in hypersonic flow [13]. Flow conditions at the outer edge of the boundary layer

necessary in the van Driest’s formula are obtained from the PAN AIR code or from the local surface

inclination methods.

Lift coefficient, drag coefficient, and pitching moment coefficient around the predetermined reference

point are obtained by integrating the pressure coefficient and the friction coefficient over the vehicle

surface panels. When the airframe-propulsion integrated analysis for the RBCC propulsion system is

conducted in Chapter 5, the external nozzle ramp is excluded from this pressure integration, because the

force acting on the ramp is computed using the external nozzle model instead.

C.2 Aerodynamic Characterization of the Mated Vehicle Configuration

The above CFD methods are applicable to separated vehicles (i.e., the booster alone or the orbiter alone).

In the mated vehicle configuration, where the orbiter is loaded onto the uppersurface of the booster

fuselage, it is assumed that the airflow hits the orbiter along its body axis after the flow passes by the

booster’s nose as shown in Fig. C.1. In this figure, Ma, q, α, L, D, M, and (xref , zref) denote Mach

number, dynamic pressure, angle of attack, lift force, drag force, pitching moment, and the position of a

reference point around which the aerodynamic moment is calculated, respectively. In addition, S f and cf

are the reference area and the reference length, respectively. Subscripts (·)∞, (·)o, and (·)b mean that the

attached variables indicate the corresponding quantities of free-stream, orbiter, and booster, respectively.
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Under this assumption, aerodynamic forces and moment of the mated vehicle are calculated by

Lm = Lb + Lo cosα − Do sinα

= q∞ S refb CLb + qo S refo (CLo cosα −CDo sinα) , (C.1)

Dm = Db + Lo sinα + Do cosα

= q∞ S refb CDb + qo S refo (CLo sinα +CDo cosα) , (C.2)

Mm = Mb + Mm − Lo (xrefo − xrefb) + Do (zrefo − zrefb)

= q∞ S refb crefb CMb + qo S refo
[
CMocrefo −CLo (xrefo − xrefb) +CDo (zrefo − zrefb)

]
, (C.3)

where variables with the subscript (·)m denote the corresponding quantities of the mated vehicle. Here,

the reference point of the mated vehicle is defined as identical to that of the booster.

Flow conditions against the orbiter are computed based on two-dimensional flow approximations. In

Model 1 (when flight speed is subsonic or low-supersonic), the flow conditions are assumed to be same

as the free-stream conditions. Procedures for computing Mao and qo in Model 2 (high-supersonic or

hypersonic case) consist of two steps: 1) shock or expansion-wave calculation at the booster nose and 2)

expansion-wave computation along the booster forebody uppersurface. In each optimal-control phase in

MDO problems, the employed model (whether Model 1 or Model 2) is specified as shown in Table 4.4

and 5.2. In the following subsections, the detail of each step is explained.

C.2.1 Shock or Expansion-Wave Calculation at the Booster Nose

The inclination angle of the booster forebody uppersurface at the nose tip, which is denoted by θn, is

calculated from the forebody length, blf , and the forebody upper height, bh, as follows:

θn = arctan
2bh

blf
. (C.4)

It is noted that the shape of the forebody uppersurface is defined as a quadratic function. The flow angle

deflected by the pressure wave generated at the nose tip, θδ, is written as

θδ = θn − α. (C.5)

Therefore, an oblique shock wave is generated when θδ is positive, and expansion waves are generated

when it is negative.

An explicit relation for a two-dimensional oblique shock wave[122, 120, pp. 119–122] gives a shock-wave

angle, θs, as follows:

θs = arcsin
√

y2 − b/3, (C.6)
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Orbiter aero-
dynamic model

(a) Model 1: Subsonic or low-supersonic case.

Shock & exp. 
wave equations

Orbiter aero-
dynamic model

(b) Model 2: High-supersonic or hypersonic case.

Fig. C.1 Model overview for calculating aerodynamic characteristics of the mated vehicle configuration.

where

y2 = −2

√
−p
3

cos
(w

3
+
π

3

)
, (C.7)

w = arccos

−q
2

(
3
−p

) 3
2
 , (C.8)

p = −b2

3
+ c, (C.9)

q = 2
(
b
3

)3

− bc
3
+ d, (C.10)

b = −Ma1
2 + 2

Ma1
2 − γ sin2 θδ, (C.11)

c =
2Ma1

2 + 1
Ma1

4 +

[
(γ + 1)2

4
+
γ − 1
Ma1

2

]
sin2 θδ, (C.12)

d = −cos2 θδ

Ma1
4 . (C.13)

Here, γ is the specific heat ratio of the airflow, which equals to 1.4. Subscripts (·)1 and (·)2 mean that the
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attached variables indicate the corresponding quantities before and after the shock wave, respectively.

Then, the change ratios of flow conditions across the shock wave are calculated as follows:

Ma2 =

√√
(γ − 1)Ma1

2 sin2 θs + 2[
2γMa1

2 sin2 θs − (γ − 1)
]

sin2(θs − θδ)
, (C.14)

q2

q1
=

2γM1
2 sin2 θs − (γ − 1)

γ + 1

(
Ma2

Ma1

)2

, (C.15)

p2

p1
=

2γM1
2 sin2 θs − (γ − 1)

γ + 1
, (C.16)

ρ2

ρ1
=

(γ + 1)Ma1
2 sin2 θs

(γ − 1)Ma1
2 sin2 θs + 2

, (C.17)

T2

T1
=

[
2γMa1

2 sin2 θs − (γ − 1)
] (γ − 1)Ma1

2 sin2 θs + 2
(γ + 1)2Ma1

2 sin2 θs
, (C.18)

where ρ and T denote density and temperature, respectively.

Isentropic Prandtl-Meyer flow relations, on the other hand, can be written using an approximate

inverse Prandtl-Meyer function [123] in the following manner:

Ma2 =
1 + d1y + d2y2 + d3y3

1 + e1y + e2y2 , (C.19)

q2

q1
=

1 + γ−1
2 Ma2

1

1 + γ−1
2 Ma2

2


γ
γ−1 (

Ma2

Ma1

)2

, (C.20)

p2

p1
=

1 + γ−1
2 Ma2

1

1 + γ−1
2 Ma2

2


γ
γ−1

, (C.21)

ρ2

ρ1
=

1 + γ−1
2 Ma2

1

1 + γ−1
2 Ma2

2


1
γ−1

, (C.22)

T2

T1
=

1 + γ−1
2 Ma2

1

1 + γ−1
2 Ma2

2

, (C.23)

where

y =
(
ν2

ν∞

) 2
3

, (C.24)

ν∞ =
π

2

(
1
λ
− 1

)
, (C.25)

ν1 = ν(Ma1, γ), (C.26)

ν(Ma, γ) =

√
γ + 1
γ − 1

arctan

√
γ − 1
γ + 1

(Ma2 − 1) − arctan
√

Ma2 − 1, (C.27)

ν2 = −θδ + ν1, (C.28)
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and

a1 =
1
2
η∞, a2 =

3 + 8λ2

40
η∞

2, a3 =
−1 + 328λ2 + 104λ4

2800
η3
∞,

d1 = a1 − 1 − a3 − K
a2 − K

, d2 = a2 − a1 −
(a1 − 1)(a3 − K)

a2 − K
, d3 =

(a3 − K)(a1 − K)
a2 − K

− a2 + K,

e1 = −1 − a3 − K
a2 − K

, e2 = −e1 − 1,

λ =

√
γ − 1
γ + 1

, K =
4

3π

(
1 +

1
λ

)
, η∞ =

[
3π

2λ(1 + λ)

] 2
3

. (C.29)

While an exact inverse of the Prandtl-Meyer function is not known, Eqs. (C.19–C.29) give its approxi-

mation whose error is less than 0.05 % over all the possible flow conditions [123].

During the flight, the value of θδ can become either positive or negative depending on the angle

of attack and the booster nose geometry. This means that a single set of equations cannot describe the

relations of the pressure wave(s) generated at the nose. In order to solve this problem, the following fifth-

order polynomial models that approximate both the shock and expansion-wave equations are constructed:

M2

M1
= exp


∑

i≥0, j≥0,
i+ j≤5

a(i, j) M1
i θδ

j

 , (C.30)

q2

q1
= exp


∑

i≥0, j≥0,
i+ j≤5

b(i, j) M1
i θδ

j

 , (C.31)

p2

p1
= exp


∑

i≥0, j≥0,
i+ j≤5

c(i, j) M1
i θδ

j

 , (C.32)

ρ2

ρ1
= exp


∑

i≥0, j≥0,
i+ j≤5

d(i, j) M1
i θδ

j

 , (C.33)

T2

T1
= exp


∑

i≥0, j≥0,
i+ j≤5

e(i, j) M1
i θδ

j

 . (C.34)

The polynomial coefficients [{a(i, j)}, . . . , {e(i, j)}] are determined by least square fits with the following

input variable ranges: M1 ∈ [2, 15] and θδ ∈ [−10, 20] deg. The accuracies of the constructed approxi-

mating models are shown in Fig. C.2.
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(b) q2/q1 (maximum error is 4.6 %).
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(c) p2/p1 (maximum error is 4.3 %).
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(d) ρ2/ρ1 (maximum error is 3.7 %).
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(e) T2/T1 (maximum error is 2.5 %).

Fig. C.2 Errors of approximating models for the shock and expansion-wave relations, in percentage.
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C. Aerodynamic Analysis Model

C.2.2 Expansion-Wave Computation along the Booster Forebody Uppersurface

Behind the oblique shock or expansion waves at the booster nose tip, the airflow expands isentropically

along the forebody uppersurface of the booster. The flow turn angle is given by θn, and it does not depend

on angle of attack. The flow conditions after this turn are computed using Eqs. (C.19–C.29), and they

define the conditions of airflow that hits the orbiter.
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Appendix D

Aerodynamic Heating and Active Cooling
Model

In this chapter, numerical models for aerodynamic heating and active cooling analysis are described. In

the heating analysis model, heat fluxes on the vehicle surface and RBCC engines are computed when the

vehicle shape, engine design, flight conditions, and surface temperature are specified. The obtained heat

flux value and coolant mass rates are used in a TPS thermal analysis conducted in Chapter 3.

D.1 Heating and Cooling Model for RBCC Engines

When the performance of RBCC engines are calculated from TR/Scapt value and inlet inflow conditions

in Eqs. (5.8–5.13), the following amounts of heat transferred per unit time are also evaluated:

Qrckt/TR = a(0,0)(Main) + a(1,0)(Main) qin + a(0,1)(Main) TR/Scapt

+ a(2,0)(Main) qin
2 + a(0,2)(Main)

(
TR/Scapt

)2
+ a(1,1)(Main) qin TR/Scapt, (D.1)

Qin/Scapt = b(0,0)(Main) + b(1,0)(Main) qin + b(0,1)(Main) TR/Scapt

+ b(2,0)(Main) qin
2 + b(0,2)(Main)

(
TR/Scapt

)2
+ b(1,1)(Main) qin TR/Scapt, (D.2)

Qcmb/Scapt = c(0,0)(Main) + c(1,0)(Main) qin + c(0,1)(Main) TR/Scapt

+ c(2,0)(Main) qin
2 + c(0,2)(Main)

(
TR/Scapt

)2
+ c(1,1)(Main) qin TR/Scapt, (D.3)

where Qrckt [kW], Qin [kW], and Qcmb [kW] denote heating rates of the embedded rockets, inlet, and

combustor, respectively. a(·,·) : R → R, b(·,·) : R → R, and c(·,·) : R → R are fitted based on the tabular

data provided by JAXA [97]. It is noted that Qrckt, Qin, and Qcmb are proportional to the rocket thrust, the

squared size of the flow-passes, and the squared size of the flow-passes, respectively.

The thermal state of the RBCC engines during the flight is approximated to be steady, and it gives

153



D. Aerodynamic Heating and Active Cooling Model

the required mass rate of the ethanol coolant, ṁcool,eng [kg/s], as follows:

ṁcool,eng =
Qrckt + Qin + Qcmb

794
, (D.4)

where 794 kJ/kg is the cooling capacity achieved by raising the temperature of the ethanol from 280 K

to 500 K.

D.2 Heating and Cooling Model for Leading Edges of the Booster

The aerodynamic heat flux on the leading edge of nose, main wing, or RBCC engine cowls is given as

Q = Qheat − Qrad, (D.5)

where Qheat and Qrad denote the heat transfer rate and the thermal radiation rate, respectively. The heat

transfer rate on the leading edge is computed using the following Detra-Kemp-Riddell’s formula for

stagnation points [124]:

Qheat = 110 × 103
(
ρ

ρsRn

)0.5 (
v
vc

)3.15 h0 − h300

hw − h300
[kW/m2], (D.6)

where ρ is the air density at flight altitude [kg/m3], ρs is the air density at sea level (= 1.225 kg/m3), Rn

is the radius of curvature at the leading edge [m], v is the flight velocity [m/s], vc is the reference velocity

(=7925 m/s), h0 is the enthalpy of the air at the stagnation point, h300 is the enthalpy of the air at 300 K,

and hw is the enthalpy of the air at the wall temperature. The enthalpy values are calculated by

h0 = Cp Tstag +
v2

2
sin2(π/2 − Λ), (D.7)

h300 = Cp · 300.0, (D.8)

hw = Cp Tw, (D.9)

where Λ denotes the sweepback angle of the leading edge against the free-stream, and Cp is the isobaric

specific heat of the air, which is approximated to be 1010.4 J/(kg K) constant. Tstag and Tw indicate the

temperature at the stagnation point and on the wall, respectively. The thermal radiation rate is evaluated,

on the other hand, by the Stefan-Boltzmann law as follows:

Qrad =
σϵ

1000

(
Tstag

4 − T∞4
)

[kW/m2], (D.10)

where σ is the Stefan-Boltzmann constant [= 5.67 × 10−8W/(m2K4)], and ϵ is the surface emissivity,

whose value is assumed to be 0.8 [59].

Cooling pipes are installed behind the leading edges, and their surfaces are actively cooled by in-

creasing the temperature of ethanol in the pipes from 280 K to 500 K. It is assumed that the steady
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D.3. Heating Model for the Booster Undersurface

Table D.1 Geometries of leading edges of the booster.

Component
Radius of curvature, Sweepback angle, Total length,

Rn [m] Λ [deg] lle [m]

Fuselage nose 0.1 0.0 bwn

Main wing 1.1019 wtc(t/c)2 ∗ wΛ 2 wsp/ cos wΛπ
180

Sidewalls of RBCC engine cowls 0.1 73.0 − bwed
(Nrbcc+1) eh

cos (73.0−bwed) π
180

Bottom wall of RBCC engine cowls 0.1 0.0 Nrbcc/1.81 eh

∗ Based on the relation for symmetrical 4-digit NACA airfoils [125].

bwn: Nose tip width.

wtc: Chord length at 50 % exposed semi-span.

(t/c): Maximum thickness-to-chord-length ratio.

wΛ: Sweepback angle at the leading edge.

wsp: Exposed semi-span length.

bwed: Inclination angle of forebody undersurface.

Nrbcc: Number of engine units.

eh: Engine height at inlet.

thermal state of the surface with 600 K (the summation of 500 K and the temperature increment inside

insulation material located outside the cooling pipes) is achieved as a consequence of the active cooling.

Therefore, the stagnation point temperature, Tstag, and the wall temperature, Tw, are 600 K. The area of

a leading edge that receives the heat flux of Q is defined as

A = πRn lle, (D.11)

where lle is the total length of the corresponding leading edge. The values of Rn, Λ, and lle for each

leading edge are presented in Table D.1.

Finally, the total required mass rate of the ethanol coolant, ṁcool,le, is obtained by equating the in-

coming and outgoing amounts of heat:

ṁcool,le =
QnAn + QwAw + QcsAcs + QcbAcb

794
[kg/s], (D.12)

where the subscript (·)n, (·)w, (·)cs, and (·)cb denote the quantities of the fuselage nose, main wing, side-

walls of engine cowls, bottom wall of engine cowls, respectively. The cooling capacity of the ethanol

coolant is assumed to be 794 kJ/kg as in the case of regenerative cooling of RBCC engines.

D.3 Heating Model for the Booster Undersurface

The stationary thermal analysis introduced in Appendices D.1 and D.2 is not suitable to the undersurface

of the booster, since passive thermal protection is installed there. Instead, an unsteady or transient ther-

mal analysis is performed on the vehicle undersurface. Numerical methods for conducting the thermal

analysis inside ceramic insulation tiles and for coupling it with the trajectory design are developed in

Chapter 3. The surface heat flux required in the analysis is computed using 1) the shock or expansion-

wave relations and 2) the reference temperature method [126,127]. Throughout this model, the air is con-
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D. Aerodynamic Heating and Active Cooling Model

sidered as a mixture of ideal gases.

For the simplicity of the calculation, let the shape of the booster vehicle be approximated as a flat

plate. Then, the relation for an oblique shock wave or that for expansion waves are applied to the booster

undersurface when angle of attack is positive and when it is negative, respectively. The polynomial

models that approximate both these shock and expansion-wave relations, shown in Eqs. (C.30–C.34), are

employed. As a result, the following flow conditions at the outer edge of the boundary layer aroound the

vehicle undersurface are obtained: Mach number, Mae, temperature, Te, density, ρe, and static pressure,

pe. Flow speed, ue, is given as

ue = Mae
√
γR Te, (D.13)

where γ is the heat capacity ratio of the air (= 1.4), and R is the specific gas constant of the air [=

288.7 J/(kg K)]. Taw denotes the recovery temperature that is written as

Taw = Te

1 + 0.71
1
3

2
(γ − 1)Mae

2

 . (D.14)

Let the reference temperature, T ∗, be defined as

T ∗ =
Te + Tw

2
+ 0.22

ue
2

2 Cp
, (D.15)

where, Tw is the wall temperature, which depends on the thermal state experienced so far. Cp denotes the

isobaric specific heat of the air [= 1010.4 J/(kg K)]. In the reference temperature method, the following

relation holds for the compressive turbulent flow over a flat plate [126,127]:

CH
∗ =

0.037
(ReL

∗)0.2 (Pr∗)−2/3. (D.16)

Here, the averaged heat-transfer coefficient, CH
∗, Reynolds number, ReL

∗, and Prandtl number, Pr∗, are

evaluated at the reference temperature, T ∗. This means that

CH
∗ =

Qconv

ρ∗ueCp(Taw − Tw)
, (D.17)

ReL
∗ =

ρ∗ueL
µ∗

, (D.18)

Pr∗ =
µ∗Cp

λ∗
, (D.19)

where ρ∗, µ∗, and λ∗ are the values at a temperature of T ∗. The characteristic length for calculating the

Reynolds number, denoted by L, is the length of the booster fuselage, namely, bl. The viscosity of air at

the reference temperature, µ∗, is computed based on the Sutherland’s formula as follows:

µ∗ = 1.458 × 10−6 (T ∗)3/2

T ∗ + 110.4
[kg/(m s)]. (D.20)
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D.3. Heating Model for the Booster Undersurface

λ∗ refers to the thermal conductivity of the air at the reference temperature, and it is given as

λ∗ = 2.648 × 10−3 (T ∗)3/2

T ∗ + 245.4 × 10 (−12/T ∗) [kW/(m K)]. (D.21)

Qconv in Eq. (D.17) denotes the convective heat flux on the vehicle undersurface, and it is used in the

TPS analysis. Thermal radiation from the surface, Qrad, is estimated as follows:

Qrad = σϵ
(
Tw

4 − Te
4
)
, (D.22)

where the surface emissivity, ϵ, is 0.8 [59].

In reality, the value of heat-transfer coefficient varies locally depending on the local Reynolds number

in the following manner:

CH
∗(x) =

0.0296
[Re∗(x)]0.2 (Pr∗)−2/3, (D.23)

Re∗(x) =
ρ∗uex
µ∗

, (D.24)

where x is the distance downstream from the leading edge of the plate. The value of Qconv derived from

Eq. (D.17) is the average of a locally varying heat flux value.
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Appendix E

Mass-Property Estimation Model

In this appendix chapter, a numerical model for predicting the mass of reusable launch vehicles and its

central position is described.

E.1 Statistical Vehicle Mass Model

Among several mass models applicable to reusable launch vehicles [54,128,129], HASA (Hypersonic Aerospace

Sizing Analysis) developed by Harloff and Berkowitz [129] is employed with some modifications in the

present study. HASA is based on historical data of U. S. Space Shuttle and hypersonic vehicles, where

cold main structures with metal materials (mainly, aluminum alloys) are assumed. Modifying factor,

m f , that is used to take into account technological progress is 1.0 in this dissertation. Using HASA,

each component mass of a vehicle (i.e., booster or orbiter) is computed from the parameters gathered in

Table E.1. These variables are present in or calculated from design variables of MDO problems.

• Fuselage of the booster or the orbiter: mb [kg]

mb = 1.455
(
bl l futl

Dbe

)0.15 ( qmax

9.807

)0.16
bwa

1.05, (E.1)

where Dbe is the body equivalent diameter, which is given as

Dbe =

√
4 bvol

bl π ηvol
(E.2)

assuming that the vehicle volumetric efficiency, ηvol, is 0.7. In the case of the booster, the mass

of integral tanks is included in mb. Therefore, the ultimate load factor, l futl, which is defined as

1.5 aamax in the original HASA, is replaced with 1.5
√

l f 2
max + aa2

max, based on the discussion in

p. 163 of Ref. 14.
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E.1. Statistical Vehicle Mass Model

Table E.1 Input variables to the vehicle mass estimation using HASA [129].

Symbol Description

mto Vehicle takeoff mass = Gross mass of the mated vehicle (booster and orbiter) [kg]
mgross Gross mass of the separated vehicle (booster or orbiter) [kg]
mdry Dry mass of the separated vehicle (booster or orbiter) [kg]
bl Length of the fuselage [m]
bwa Wetted area of the fuselage [m2]
bvol Volume of the fuselage [m3]
wλ Taper ratio of the main wing
wtr Maximum thickness-to-chord-length ratio
wΛ Sweepback angle of the main wing at the mid chord [rad]
wA Aspect ratio of the main wing
wspn Span width of the main wing [m]
S ref Reference area of the main wing [m2]
S tail Platform area of the tail wing [m2]
S tps,b Area covered by the ceramic tile TPS (HTP-12 [98]) of the booster [m2]
htps,b Thickness of the ceramic tile TPS (HTP-12 [98]) of the booster [m]
S tps1,o Area covered by the C/C composite TPS of the orbiter (leading edges) [m2]
S tps2,o Area covered by the ceramic tile TPS of the orbiter (the other surface) [m2]
Vcabin Cabin volume of the orbiter [m3]

qmax Maximum dynamic pressure [Pa]
l fmax Maximum load factor [G]
aamax Maximum axial acceleration [G]
Ta,max Maximum exerted airbreathing thrust [N]
Tr,max Maximum exerted rocket thrust [N]
Neng Number of airbreathing engine units
Scapt Frontal projected area of the inlet per engine unit [m2]
Tembr Thrust of RBCC embedded rocket engines per RBCC engine unit [N]
Trcea,v Vacuum thrust of an ethanol/LOX rocket engine [N]
Trclh,v Vacuum thrust of an LH2/LOX rocket engine [N]
Nrclh Number of LH2/LOX rocket engines installed on the booster

• Main wing of the booster: mw [kg]

mw = 1.106

(mdry l futl/1000
)0.52

S ref
0.7wA0.47

(
1 + wλ

wtr

)0.4 (
0.3 +

0.7
cos wΛ

)1.017

. (E.3)

• Tail wings of the booster (two total): mt [kg]

mt = 2 × 30.23 S tail
1.09. (E.4)
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E. Mass-Property Estimation Model

• Propellant tank of the booster and the orbiter: mtnk [kg]

Cylindrical tanks are employed to load LOX in the booster fuselage of the TSTO RLV with RBCC

engines. Cylindrical tanks are also applied to the ethanol tank and the LOX tank in the orbiter.

The total mass of tanks is calculated based on the analytical stress analysis for a thin cylinder with

hemispherical shells as follows:

mtnk =
∑

all tanks

2.0 × ρ π dtnk
(
tcyl ltnk + them dtnk

)
, (E.5)

where tcyl and them denote the required thickness [m] of the cylinder and the hemisphere, respec-

tively, which are calculated by

tcyl = s f
p dtnk

2σuts
, (E.6)

them = s f
p dtnk

4σuts
. (E.7)

Length of the tank, ltnk, is computed from the locations of tank ends. Diameter of the tank, dtnk, and

the number of tanks placed side by side are calculated so that the tanks are accommodated inside

the fuselage with the margin of 2.5% fuselage width. As for the constants, p (= 245.2 kPa) is the

internal pressure of the tank, s f (= 2.0) is the safety factor. In addition, ρ (= 2.83 × 103 kg/m3)

and σuts (= 588.4 MPa) denote the density and the ultimate tensile strength of the tank material

(an aluminum alloy), respectively. Cabin mass of the orbiter is estimated in the similar manner as

well.

• Landing gear of the booster and the orbiter: mgear [kg]

mgear =

 0.0101 mto
1.124 for the booster.

0.0101 mdry
1.124 for the orbiter.

(E.8)

It is noted that the gear mass of the orbiter is calculated based on the dry mass of the orbiter alone,

while that of the booster depends on the takeoff mass of the mated vehicle.

• Airbreathing thrust structure of the booster: mthrua [kg]

mthrua = 0.00625
Ta,max

9.807
+ 31.3. (E.9)

• Rocket engine thrust structure of the orbiter: mthrur [kg]

mthrur = 0.0025
Tr,max

9.807
. (E.10)
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E.1. Statistical Vehicle Mass Model

• Thermal protection system (TPS) of the booster and the orbiter: mtps [kg]

mtps =

 ρtps,b htps,b S tps,b for the booster,

ρA,tps1,o S tps1,o + ρA,tps2,o S tps2,o for the orbiter,
(E.11)

where ρtps,b is the density of the HTP-12 ceramic tile, 192.2 kg/m3 [98]. In the PCTJ-powered

TSTO, it is assumed that htps,b = 20.8 mm. ρA,tps1,o(= 40.0 kg/m2) and ρA,tps2,o(= 4.0 kg/m2)

denote the areal density of the orbiter TPS for leading edges and that for the other surface, respec-

tively.

• Hydraulics system of the booster and the orbiter: mhyd [kg]

mhyd = 2.825
(S ref + S tail

1000
qmax

9.807

)0.334 (
bl + wspn

)0.5
(E.12)

• Electronics of the booster and the orbiter: melect [kg]

melect = 1.058 mgross
0.5 bl

0.25. (E.13)

• Avionics of the booster and the orbiter: mtavcs [kg]

mtavcs = 40.04 mgross
0.361. (E.14)

• Onboard equipment of the booster and the orbiter: mequip [kg]

mequip = 0.01 mgross. (E.15)

• Payload of the orbiter: mpay [kg]

mpay =
100
4.3

Vcabin. (E.16)

• RBCC engine of the booster: mrbcc [kg]

mrbcc = Neng

 1
50

Tembr

9.8︸    ︷︷    ︸
Embedded rockets

+ 351.7 Scapt + 109.4 Scapt
3
2︸                          ︷︷                          ︸

Dual-mode ramjet/scramjet flow-pass

 . (E.17)

The mass of an RBCC engine unit is calculated by adding the embedded rocket mass (thrust-to-

mass ratio is 50 including fuel feeding system) and dual-mode flow-pass structure mass. The flow-

pass mass is computed with a polynomial model fitted by finite-element structural analyses [97].
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E. Mass-Property Estimation Model

• PCTJ engine of the booster: mpctj [kg]

mpctj = Neng

 1044 Scapt
0.5834︸            ︷︷            ︸

Inlet duct

+ 171.8 Scapt
0.294︸            ︷︷            ︸

Variable-geometry inlet ramp

+ 136.3 Scapt
0.985︸            ︷︷            ︸

Variable-geometry nozzle

+ 765.6 Scapt︸      ︷︷      ︸
Pre-cooler

+ 928.6 Scapt︸      ︷︷      ︸
Core engine

 . (E.18)

The mass of inlet duct, variable-geometry inlet ramp, and variable-geometry nozzle are estimated

on the basis of WATTS [128], another vehicle mass model than HASA, assuming the following

design parameters: number of inlet flow-passes per an engine unit is 2, maximum total pressure

at the inlet is 937.0 kPa, shape parameter of inlet flow-pass is 1.33, design Mach number is 5.0,

nominal thrust per unit flow-capture area is 87.7 kN/m2, and maximum nozzle inflow pressure is

772.2 kPa. The mass of pre-cooling system is calculated from the geometry of cooling pipes. The

mass of a core engine is estimated using a statistical relation based on data of existing turbojet

engines.

• Rocket engines of the booster or that of the orbiter: mrckt [kg]

mrckt =


1

61.2
Trclh,vNrclh

9.8
for LH2/LOX rockets of the PCTJ-booster.

1
75

Trcea,v

9.8
for an ethanol/LOX rocket of the orbiter.

(E.19)

The thrust-to-mass ratio of the ethanol/LOX rocket engine is 75 based on Ref. 3. That of the

LH2/LOX rocket engine is assumed to be 75 in reference to the value of LE-7A, a Japanese

LH2/LOX rocket engine.

• Propellant of the booster and the orbiter: mea [kg] (ethanol), mlo [kg] (LOX), and mlh [kg] (LH2)

Propellant mass during the flight are computed by multiplying remaining volumes in tanks and

their density (789 kg/m3 for ethanol, 1140 kg/m3 for LOX, and 70.85 kg/m3 for LH2). The pro-

pellant volume before the takeoff run is limited up to the total volume of the corresponding tanks.

The volume of an integral tank is calculated by integrating the fuselage cross section between the

forward end and the rear end, and multiplying it by a volume efficiency constant of 80 %.

E.2 Estimation of the Center of Mass

Centers of mass for vehicle components are located as shown in Table E.2, from which the position of

the center of overall vehicle mass is derived. Table E.2 is largely based on p. 168 of Ref. 14. The orbiter

is loaded onto the uppersurface of the booster at such a position that the center of mass does not move

in the axial direction just before and just after the separation of the orbiter. This is equivalent to that the

center of mass of the booster at the moment of staging is identical to that of the orbiter whose propellant
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E.2. Estimation of the Center of Mass

Table E.2 Position of center of mass for each vehicle component.

Component
Position of corresponding center of mass

X coordinate (axial) Z coordinate (height)

Fuselage Center of fuselage surface panels
Main wing Center of main wing surface panels
Tail wings Center of tail wings surface panels
Propellant tank Center of tank volume Center of cross sec. at 50 % tank length
Cabin Center of cabin volume Center of cross sec. at 50 % cabin length
Landing gear Center of vehicle dry mass 0.5 m above fuselage undersurface
Airbreathing thrust structure 50 % engine length 50 % engine height
Rocket engine thrust structure Backward end of fuselage Center of fuselage base
Thermal protection system Center of thermal protection system panels
Hydraulics system Center of main wing and tail wings mass
Electronic 10 % fuselage length Center of mass of fuselage
Avionics 10 % fuselage length Center of mass of fuselage
Onboard equipment 50 % fuselage length Center of mass of fuselage
Payload Center of cabin volume Center of cross sec. at 50 % cabin length
RBCC engine 50 % engine length 50 % engine height
PCTJ engine 50 % engine length 50 % engine height
Rocket engine Backward end of fuselage Center of fuselage base
Propellant Center of corresponding tank volume

tanks are full.
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Appendix F

Data Mining Techniques

A Pareto optimal solution of a complex multi-objective optimization problem contains high-dimensional

information. As a result, the set of Pareto optimal solutions can be regarded as a large-scale and high-

dimensional dataset, which is difficult to interpret directly. It is troublesome or infeasible to discover

generic findings via inspecting each solution one by one. Therefore, the applications of data mining

techniques and multivariate analysis to Pareto optimal solutions have been studied recently in order to

extract comprehensive and useful knowledge.

The most widely used technique would be a scatter plot matrix [35–37]. Other than that, Jilla et al. [34]

conducted analysis of variance (ANOVA) of the obtained Pareto optimal satellite designs. Jeong et al. [29]

applied surrogate-assisted ANOVA and self-organizing maps to some aerodynamic design problems.

Oyama et al. [31] proposed the application of proper orthogonal decomposition (POD) to Pareto optimal

airfoil shapes. The overview of related previous researches can be found in Ref. 30.

F.1 Scatter Plot Matrix

In the present study, scatter plot matrices are employed for visualizing the relations between pairs of

static variables (i.e., vehicle design parameters). Figure F.1 presents an example of a scatter plot ma-

trix where three variables are involved. In the scatter plot matrix, diagonal elements indicate names of

the parameters investigated, upper triangular elements illustrate scatter plots of corresponding pairs of

parameters, and lower triangular elements show the Pearson product-moment correlation coefficients be-

tween them. The correlation coefficient is shown with a font size depending on its absolute value in order

to improve visibility. The Pearson correlation coefficient, P, between pairs of parameters {si, ti}Nsol
i=1
∗ is

∗It should be noted that the number of pairs is defined as the number of Pareto optimal solutions examined.
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F.2. Proper Orthogonal Decomposition

Name of
the 3rd parameter−0.930.43

Name of
the 2nd parameter

−0.058

Name of
the 1st parameter

Scatter plot of
1st and 2nd param.

Scatter plot of
1st and 3rd param.

Correlation coeff. of
2nd and 3rd param.

Correlation coeff. of
1st and 3rd param.

Correlation coeff. of
1st and 2nd param.

Scatter plot of
2nd and 3rd param.

Fig. F.1 An example of a scatter plot matrix.

defined as

P ..=

Nsol∑
i=1

(si − s̄)(ti − t̄)√√√Nsol∑
i=1

(si − s̄)2

√√√Nsol∑
i=1

(ti − t̄)2

, (F.1)

where s̄ is the mean of {si}Nsol
i=1 , t̄ is the mean of {ti}Nsol

i=1 , and Nsol denotes the number of Pareto optimal

solutions. The Pearson product-moment correlation coefficient is a measure of linear correlation that

gives a value in [−1, 1], where a larger positive value indicates stronger positive correlation, and a larger

negative value suggests stronger negative correlation. Since the Pearson correlation coefficient cannot

detect nonlinear associations, it is important to inspect the relevant scatter plot together. It is also noted

that a significant correlation coefficient does not always means that there is the relation of cause and

effect between the involved pair of parameters.

F.2 Proper Orthogonal Decomposition

In this dissertation, the snapshot POD is used for extracting knowledge from flight trajectories of Pareto

optimal solutions. POD is also known as principal component analysis in statistics, and Karhunen-Loève

expansion in signal processing. Suppose that we want to analyze a set of discrete “snapshot” vectors

{xi(τk)}Nsnap

k=1 , i = 1, . . . ,Nsol, (F.2)

where xi(τk) is the snapshot value of a dependent variable x of the ith Pareto optimal solution that is

taken when an independent variable τ equals to τk. In the present study, the independent variable may be
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F. Data Mining Techniques

time, flight Mach number, or others. Nsol and Nsnap are the number of Pareto optimal solutions and the

number of discrete snapshots with respect to τ, respectively.

First, let us define the following snapshot matrix:

S =



x1(τ1) x2(τ1) · · · xNsol−1(τ1) xNsol(τ1)

x1(τ2) x2(τ2) · · · xNsol−1(τ2) xNsol(τ2)
...

...
. . .

...
...

x1(τNsnap−1) x2(τNsnap−1) · · · xNsol−1(τNsnap−1) xNsol(τNsnap−1)

x1(τNsnap) x2(τNsnap) · · · xNsol−1(τNsnap) xNsol(τNsnap)


. (F.3)

Since we are interested in the differences among solutions, the deviations from the nominal data,

{x0(τk)}Nsnap

k=1 , (F.4)

are computed as follows:

S̃ = S −



x0(τ1) x0(τ1) · · · x0(τ1) x0(τ1)

x0(τ2) x0(τ2) · · · x0(τ2) x0(τ2)
...

...
. . .

...
...

x0(τNsnap−1) x0(τNsnap−1) · · · x0(τNsnap−1) x0(τNsnap−1)

x0(τNsnap) x0(τNsnap) · · · x0(τNsnap) x0(τNsnap)


. (F.5)

The nominal data is specified by the user. When POD is used for the model reduction in fluid mechanics,

a mean flow field is usually employed as the nominal data [130]. However, when POD is applied to Pareto

optimal solutions of a multi-objective optimization problem, the mean value of x in the solutions does

not have a physical meaning [31]. Therefore, the value of x in a representative solution is used as the

nominal data in the present study.

The snapshot POD is obtained by solving the following eigenvalue problem:

Rψi = λiψi, i = 1, . . . ,Nsol, (F.6)

where R = S̃T S̃, λi (∈ R) is the ith eigenvalue, and ψi (..= [ψi,1 · · ·ψi,Nsol]
T ∈ RNsol) denotes the corre-

sponding eigenvector. Here, it is assumed that eigenvalues are sorted in descending order, that is,

λ1 ≥ λ2 ≥ · · · ≥ λNsol−1 ≥ λNsol . (F.7)

As a consequence, x of each solution is decomposed into that of the representative solution and the

deviation from it as follows:

xi(τk) = x0(τk) +
Nsol∑
j=1

a( j)
i · x̃

( j)(τk), i = 1, . . . ,Nsol. (F.8)
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F.2. Proper Orthogonal Decomposition

where the deviation is expressed by the linear combination of orthogonal base vectors, {x̃i(τk)}Nsol
k=1, i =

1, . . . ,Nsol. a( j)
i is given as

a( j)
i = ψ j,i, (F.9)

and {x̃( j)(τk)}Nsol
k=1 is computed by



x̃( j)(τ1)

x̃( j)(τ2)
...

x̃( j)(τNsol−1)

x̃( j)(τNsol)


= S̃ (ψ j

T)−1, for j = 1, . . . ,Nsol. (F.10)

Or, Eq. (F.10) can be collectively written as follows:



x̃(1)(τ1) x̃(2)(τ1) · · · x̃(Nsol−1)(τ1) x̃(Nsol)(τ1)

x̃(1)(τ2) x̃(2)(τ2) · · · x̃(Nsol−1)(τ2) x̃(Nsol)(τ2)
...

...
. . .

...
...

x̃(1)(τNsol−1) x̃(2)(τNsol−1) · · · x̃(Nsol−1)(τNsol−1) x̃(Nsol)(τNsol−1)

x̃(1)(τNsol) x̃(2)(τNsol) · · · x̃(Nsol−1)(τNsol) x̃(Nsol)(τNsol)


= S̃



ψ1
T

ψ2
T

...

ψNsol−1
T

ψNsol
T



−1

. (F.11)

Due to the optimality of POD, a couple of principal modes typically dominate almost all the energy

content. Here, the energy content of the jth mode, E j, is defined as

E j
..=

Nsnap∑
k=1

[
x̃( j)(τk)

]2
, j = 1, . . . ,Nsol. (F.12)

As the energy contribution of a mode relates to the magnitude of its base vector, the variety of Pareto op-

timal trajectories can be found through inspecting dominant modes only. It is noted that the eigenvectors

are normalized, that is, ∥∥∥∥ [a( j)
1 · · · a

( j)
Nsol

]T
∥∥∥∥

2
= 1, j = 1, . . . ,Nsol. (F.13)
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