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Chapter 1

Introduction

The electronic structure of solids governs almost all physical phenomena. An electron possess

three degrees of freedom: charge, spin, and orbital. These degrees of freedom result in various

electronic structures and physical phenomena through competition and/or cooperation among

the degrees of freedom in the solid. Among the three degrees of freedom, the spin and orbital

degrees of freedom interplay with each other even in a single-electron problem such as a hydrogen-

like atom [1]. This is because spin-orbit interaction, which is derived from Dirac equation

in the relativistic quantum mechanics [2–5], universally works around a nucleus. Since the

energy of spin-orbit interaction on a peripheral electron can be ∼ 1 eV in a heavy atom, the

electronic structure and physical phenomena of a lot of materials are mainly governed by spin-

orbit interaction; other interactions play a minor role in comparison. In particular, one of

the characteristic effects of spin-orbit interaction is that it enables the electronic structure to

host a spontaneous spin polarization in momentum space, even in nonmagnetic materials [6, 7].

Recently, such spin-momentum-locked electronic structures were energetically investigated in the

context of the rapidly growing field of spintronics, because they can give rise to novel involving

electric and magnetic cooperation phenomena.

It superficially seems a competing problem that the spin-orbit interaction mainly working

around nuclei can modify band dispersions formed by electrons spreading over the crystal struc-

ture. In order to deal with this problem, we should pay attention to the symmetries of wave

functions by taking account of the crystal symmetry without prejudice. Looking back into

4



1.1. SPIN-ORBIT INTERACTION 5

history, the effect of spin-orbit interaction on band dispersions has been investigated in semi-

conductors since the 1950s. At that time, researchers used group theoretical analyses [6–11]

combined with band calculations during development [12–15] and several state-of-the-art exper-

imental techniques (e.g. electron paramagnetic resonance [16], cyclotron resonance [17] etc.) as

research methods. However, it is not appropriate to apply these methods comprehensively for

materials with strong spin-orbit interaction, because spin-orbit interaction had been treated as

perturbations in early times.

In this thesis, to investigate the electronic structure of strongly spin-orbit coupled materials,

we have carried out angle-resolved photoemission spectroscopy (ARPES) measurement and spin-

resolved ARPES measurement, which are modern state-of-the-art experimental techniques for

directly observing band dispersions and its spin polarization in solids [18–21]. Experimentally

observed electronic structures have been compared with the band dispersions obtained through

a first-principles calculation based on the density functional theory [22,23] to discuss the effects

of spin-orbit interaction. Thus, in this thesis, we investigate the electronic structure in novel

strongly spin-orbit coupled materials by using state-of-the-art experimental and computational

techniques combined with the knowledge on the symmetries of wave functions accumulated since

the 1950s.

1.1 Spin-orbit interaction

Maxwell’s equations suggest that the electric field transforms the magnetic field, and vice versa,

in a moving frame. An electron in an atom feels an effective magnetic field because of its own

orbital motion, consequently giving rise to the spin-orbit interaction between the spin magnetic

moment and the effective magnetic field. Figure 1.1 shows schematics of the semiclassical picture

of the spin-orbit interaction in an atom. An electron feels the effective magnetic field generated

by the electron’s orbital motion around the nucleus in Fig. 1.1(a). In the co-moving frame of

the electron in Fig. 1.1(b), the origin of the effective magnetic field is comprehended as a ring

current of the orbital motion of the nucleus with positive charges.

In quantum mechanics, the relativistic formalization of the spin-orbit interaction operator
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Figure 1.1: Schematics of the semiclassical picture of spin-orbit interaction in an atom. An
electron rotating around a nucleus in the rest frame (a) and in the moving electron frame (b).
The electron sees the effective magnetic field as represented in (b).

as a correction term for the Schrödinger equation is obtained from the Dirac equation [2] in a

static electromagnetic field by using the Foldy-Wouthuysen-Tani transformation [3, 4],

HSOI = − eh̄

4m2c2
σ · [E× (p− e

c
A)], (1.1)

where e is the elementary charge, h̄ is the Planck constant divided by 2π, m is the mass of an

electron, c is the velocity of light, σ denotes the Pauli matrices, E is the static electric field, p

is the momentum of an electron, and A is the magnetic vector potential. The magnetic vector

potential and electric field in the nonmagnetic and central-force-field system are given by

A = 0, E = −r

r

dϕ

dr
, (1.2)

where ϕ is the scalar potential. Then, the spin-orbit interaction operator is represented by

HSOI =
eh̄

4m2c2
1

r

dϕ

dr
σ · l. (1.3)

This formulation differs by a factor of 1/2 from that obtained by considering the ring current

of the nuclear charge in classical mechanics. By applying a correction for the accelerated frame,

the same formulation is obtained even in classical mechanics [1, 5].

We should note that eq. (1.3) represents an operator: hence, the energy of spin-orbit interac-

tion depends not only on the potential but also on the wave functions [24–27]. For example, even



1.2. BAND STRUCTURE WITH SPIN-ORBIT INTERACTION 7

in a heavy atom with a large atomic number, the s-electron does not show spin-orbit coupling,

because of the l = 0 orbital angular momentum. We also note that the spin-orbit interaction

works near the nucleus. Since the non-relativistic wave function near the nucleus behaves ∝ rl,

the spin-orbit interaction of the p-electron should be stronger than that of the d-electron, if both

have same atomic number.

1.2 Band structure with spin-orbit interaction

The spin-orbit interaction modifies valence band dispersions as well as the energies of core levels

in solids. The electrons forming valence bands spread over the crystal structure; this behavior

seems to contradict the spin-orbit interaction working near the atomic nucleus [24]. To treat

the band dispersions with spin-orbit interaction in solids, one of the guidelines was proposed in

1954 by R. J. Elliot [8, 9]. Elliot combined the spin-orbit interaction effect [8, 9] with the group

theoretical approach to band dispersions [6, 28], by taking the diamond-type crystal structures

(space group Fd3̄m) as examples, with the help of band calculation [12, 13, 15]. Figures 1.2(a)

and (b) show the schematics of band dispersions with and without spin-orbit interaction in the

Figure 1.2: (a),(b) Schematics of the band dispersions of diamond with and without spin-
orbit interaction, adapted from ref. [8]. The band dispersions without spin-orbit interaction
are based on Herman’s calculation [13, 14]. (c) A schematic of band dispersion for a zinc-
blende type structure modification of boron nitride based on Herman’s calculation for diamond
[13, 14], adapted from ref. [7]. The spin-orbit splittings are highly exaggerated for the purpose
of illustration. The levels marked with 0 have zero slope along that axis.



8 CHAPTER 1. INTRODUCTION

diamond adapted from ref. [8]. Despite a small contribution compared to the energy scale of the

bandwidth, the spin-orbit interaction modifies band dispersions and lifts the band degeneracy

around the band gap [e.g., the energy level of the Γ15 state in Fig. 1.2(a) splits into two energy

levels, Γ−
8 and Γ−

6 states, represented by irreducible representations of the double group [9] in

Fig. 1.2(b)]. In 1955, G. Dresselhaus proposed the k ·p perturbation theory including spin-orbit

interaction [6,7] to deal with band dispersions of zinc-blende-type crystal structures (space group

F4̄3m). The k · p Hamiltonian at k = k0 + q, given q is small, including spin-orbit interaction

is given by

H(k) =

[
p2

2m
+ V +

h̄

4m2c2
(∇V × p) · σ

]
+

h̄2q2

2m
+

h̄

m
q · p + H(1) + H(2) (1.4)

where

H(1) =
h̄2

4mc2
(∇V × q) · σ, H(2) =

h̄2

4mc2
(∇V × p) · σ, (1.5)

V is the crystal potential, m is the mass of the electron, c is the velocity of light, p is the

momentum operator, and σ denotes Pauli matrices, respectively. Given the solutions at k0, the

first term on the left side of eq. (1.4) represents the unperturbed Hamiltonian as

H0 =
p2

2m
+ V +

h̄

4m2c2
(∇V × p) · σ (1.6)

In the following terms, the contribution of H(1) to band modification is negligible compared

with H(2) because the crystal momentum q is considered to be much smaller than the actual

momentum p. Thus, the perturbation Hamiltonian is given by

H ′ =
h̄

m
q · p +

h̄2

4mc2
(∇V × p) · σ (1.7)

Then, the energy at k for a nondegenerate level is obtained as

Ek = Ek0 +
h̄2q2

2m
+

⟨
unk

∣∣H ′∣∣unk⟩ +
h̄

m

∑
m̸=n

⟨unk |H ′|umk ⟩ ⟨umk |H ′|unk⟩
εn − εm

+ · · ·, (1.8)

where n and m denote the band indices. The group theoretical approach is useful to evaluate

those matrix elements. Dresselhaus succeeded in parameterizing the band dispersions in the

zinc-blends-type crystal structure byusing several parameters, and provided a schematic of the
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Figure 1.3: (a),(b),(c) Diamond-type, zinc-blende-type and wurtzite-type crystal structures.
Zinc-blende-type and wurtzite-type crystal structures lack the inversion symmetry because of
the three-fold rotational symmetry and polar structure, respectively.

band dispersions with the help of band calculation, as shown in Figs. 1.2(c) [7, 13, 14]. The

k ·p perturbation theory suggests that the spin-orbit interaction derived from the atomic orbital

motion in eq. (1.7) still plays an essential role in the band dispersions in solids.

Let us focus on the difference between the diamond-type and zinc-blende-type crystal struc-

tures from the view point of crystal symmetry. The zinc-blende-type crystal structure with a

three-fold rotational symmetry axis lacks space inversion symmetry, in contrast to the diamond-

type crystal structure, as shown in Figs. 1.3(a) and (b). In the centrosymmetric crystal struc-

ture, the Kramers’ theorem E(k, ↑) = E(−k, ↓) and inversion symmetry E(k, ↑) = E(−k, ↑)

require the doubly degenerate band dispersion over the entire Brillouin zone, as represented by

E(k, ↑) = E(−k, ↑). (1.9)

In other words, the absence of inversion symmetry allows the lifting of spin degeneracy in

momentum space, as discussed in ref. [7] [which does not appear in Fig. 1.2(c)], except for

the time-reversal invariant momenta k ≡ −k (mod G), where G is the reciprocal vector. The

spin-split band dispersions in the noncentrosymmetric crystal structure is also discussed for the

wurtzite type crystal structure (space group P63mc) in Fig. 1.3(c) by E. I. Rashba [10, 11] and

R. C. Casella [29,30]. The wurtzite-type crystal structure has a polar axis along the main axis.

Roughly speaking, since the spin-orbit interaction works vertical to the potential gradient, the
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Figure 1.4: (a) Schematic of the spin-split band dispersions at kz = 0 in the wurtzite type crystal
structure. (b), (c) Schematics of constant energy surfaces below [green line in (a)] and above
[green line in (a)] the band crossing point at kx = ky = 0.

in-plane spin polarization is obtained in the polar crystal structure. (The microscopic origin

of the spin-split band dispersions are discussed in detail in ref. [26, 27]) Figure. 1.4(a) shows a

schematic of the spin-split band dispersions at kz = 0, which are characterized by the k-linear

spin-split bands with the in-plane spin-polarizations [10,11,29,30]. The constant energy surface

below (above) the band crossing point at kx = ky = 0 has the toroidal (double elipses) structure

as shown in Fig. 1.4(b) [(c)].

Those symmetry analyses on semiconductors became the basis for the electronics sustaining

today’s society. However, the effect of the spin-orbit interaction had been omitted in realistic

device applications owing to its small energy scale.

1.3 Spin-momentum locked electronic structures

The discovery of the giant magneto resistance effect [31] in 1989 and the proposal of the spin

FET transistor [32] in 1990 ushered in a new era of applications utilizing the spin degree of

freedom. Consequently, the spin-momentum locked electronic structure such as those of zinc-

blende and wurtzite has reattracted attention within the emergent field of spintronics. The

main concept of spintronics is the control of magnetization (spin) by an electronic field / current
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with the use of the electron’s charge and spin coupling. For example, the current of spin angular

momentum (called spin current) can be generated by the intrinsic spin Hall effect [33–35] without

using magnetic materials, and it can switch the magnetization [36–38]. Since the spin-split

band dispersions driven by the spin-orbit interaction in momentum space have the potential to

generate spin current universally, the band dispersions in various semiconductors and metals with

strong spin-orbit interaction are energetically investigated by using angle-resolved photoemission

spectroscopy (ARPES) [18–21], which enables the direct observation of the band dispersions and

its spin polarization. Here, we briefly introduce the spin-momentum locked electronic structure

of the polar semiconductor BiTeI and a topological insulator.

1.3.1 Rashba-type spin-splitting in polar semiconductor BiTeI

The crystal structure of polar semiconductor BiTeI (space group P3m1) is characterized by the

piling up of Te-, Bi-, and I-triangle lattice in order, generating the electric polarization in a

unit cell, as shown in Fig. 1.5(a). It gives rise to the huge Rashba-type spin-split conduction

bands in bulk and those localized in a surface-confinement potential; they have been observed

by ARPES and spin-resolved ARPES [39–44], as shown in Figs. 1.5(b) and (c). Figure. 1.5(d)

shows the characteristic Rashba-type band dispersions of the k-liner spin-split parabolic band

dispersions, as represented by

E±(k) =
h̄2k2

2m∗
± αR |k| , (1.10)

where m∗ is the effective mass of an electron and αR is the Rashba parameter [10, 11, 45]

characterizing the spin-splitting. The Rashba spin-splitting of BiTeI (αR = 3.8 eVÅ [39]) is

one or more orders of magnitude greater than those observed in the surface states of Au(111)

(αR = 0.33 eVÅ [46,47]), Bi(111) (αR = 0.55 eVÅ [48]), and interface states of InGaAs/InAlAs

(αR = 0.07 eVÅ [49]), and it is comparable to the gigantic Rashba-type spin-splitting observed

on the surface alloy Bi/Ag(111) (αR = 3.05 eVÅ [50]). Those investigations imply that the huge

atomic spin-orbit interaction of the Bi atom (> 1 eV) is not only the necessary condition for the

huge k-linear band splitting.

M. S. Bahramy, R. Arita, and N. Nagaosa have revealed the origins of the giant Rashba-type

spin-split in bulk BiTeI by using the k·p perturbation theory including the spin-orbit interaction
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Figure 1.5: (a) Crystal structure of BiTeI. (b) Rashba-type spin-split conduction bands observed
by angle-resolved photoemission spectroscopy (ARPES). (c) Spin-resolved ARPES image of the
Rashba-type spin-splitting. (d) Schematic of the Rashba-type spin-split band dispersions. All
images are adopted from ref. [44]

with the help of a first-principles calculation [51]. The second-order perturbation [as discussed

in section 1.2] contributing to the k-linear spin-splitting is represented by

∆εn(k) =
h̄

m

∑
m̸=n

⟨
unk

∣∣H(2)

∣∣umk ⟩
⟨umk |q · p|unk⟩ + c.c.

εn − εm
, (1.11)

where c.c. stands for complex conjugation. In BiTeI, since the eigenstates across the band gap

have the same symmetries owing to the opposing crystal fields between Bi and Te atoms, non-

zero matrix elements
⟨
unk

∣∣H(2)

∣∣umk ⟩
are obtained with the help of group theoretical analysis [51].

They proposed three conditions for the huge Rashba-type spin splitting in bulk: (I) the strong

atomic spin-orbit interaction, (II) the narrow energy difference between the neighboring states

m and n, and (III) the symmetry characters of their corresponding eigenstates. Those factors

share a common basis with the early studies on the zinc-blende and wurtzite. Experimentally,

the observed spin-splitting in BiTeX (X =I, Br, and Cl) roughly scales with the inverse of

the band-gap size in BiTeX [43, 44]. Regarding the application possibility, owing to the Fermi

surface with huge spin-splitting in bulk, BiTeI has the potential to generate the highly efficient

spin-torque proposed theoretically [52].
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1.3.2 Spin-polarized Dirac cone on Z2 topological insulator

A topological insulator is a nonmagnetic phase theoretically proposed in 2005 by C. L. Kane and

E. J. Mele [53–55]. The topological insulator has a band gap in bulk, but a robust metallic state

exists at edges for two-dimensional systems or on the surface of three-dimensional system, as

schematically shown in Figs. 1.6(b). The difference between a topological insulator and normal

insulator is characterized by the Z2 topological invariant [53,56–58]. Its physical meaning is that

there exist an odd number of inverted band structures, which cannot be dissolved by continuous

adiabatic deformation, across the Fermi level in the momentum space of the topological insulator,

as schematically shown in Figs. 1.6(a) and (b), and they generate an odd number of metallic

surface states across the bulk band gap.

Experimentally, a two-dimensional topological insulator has been confirmed in the HgTe

quantum-well system by detecting the quantized resistance derived from the edge metallic state

in 2007 [59]. Regarding three dimensional systems, an ARPES study on the Bi-Sb alloy system

has revealed an odd number of surface states in 2008 [60]. The metallic surface state lying in

the bulk band gap is simply described by the cone-like band dispersion called Dirac cone with

Figure 1.6: (a), (b) Schematics of the electronic structure of normal insulator and topological
insulator. In the topological insulator, odd number of the inverted band dispersions exist in
momentum space. (c) Metallic surface states with linear dispersions lying in bulk band gap
with helical spin-polarization texture.
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Figure 1.7: Schematics of representative electronic structures of topological materials: topo-
logical insulator (a), topological crystalline insulator (b), topological superconductor (c), Dirac
semimetal (d) and Weyl semimetal (e). Bulk electronic structures are denoted by black color.

a helical spin-polarization texture as schematically shown in Fig. 1.6(c). In layered materials

bismuth chalcogenides Bi2X3 (X = Se, Te), an simple Dirac cone as described in Fig. 1.6(c)

has been realized [61–65]. Since topological insulators are the nonmagnetic materials, the spin

polarization of the surface Dirac cone originates from the spin-orbit interaction. Usually, topo-

logical insulators tend to be realized in materials including heavy atoms with strong spin-orbit

interaction, because the spin-orbit interaction can play an important role in modifying those

band dispersion in bulk from the normal insulator phase into the topological insulator phase (as

discussed in Chapter 5).

Starting from the discovery of the topological insulator, topological materials, which are

characterized by some kinds of topological invariants, are theoretically and experimentally in-

vestigated energetically. Figures 1.7(a)-(e) show schematics of the representative electronic

structures of the topological insulator, topological crystalline insulator [66–68], topological su-

perconductor [69–72], Dirac semimetal [73–75], and Wyle semmetal [76–85], respectively. The

topological crystalline insulator has an even number of Dirac cones, in contrast to the topological

insulator, but they are symmetrically protected by the crystal mirror plane. The topological su-
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perconductor has a topological surface state in the superconducting gap, in analogy to the band

gap of the topological insulator. The Dirac / Weyl semimetal does not have the energy gap, but

it has topological surface states connecting the crossing points of the Dirac-cone-type bulk band

dispersions. The Weyl semimetal is realized in the time-reversal symmetry broken system [76,79]

or the space inversion symmetry broken system [77, 78, 80–85], and it forms unclosed arc-type

surface states with the spin polarization, as shown in Figure 1.7(e).

1.4 Motivation

As discussed in section 1.2, the spin-orbit interaction had been considered as a subsidiary effect

on the band dispersions in solids, as it was treated as a perturbation in k ·p theory. In contrast,

the spin-orbit interaction plays an essential role in the band dispersions in recently investigated

materials such as BiTeI and topological insulators, attracting much attention because of possible

applications and the own characteristic electronic structure. Since the energy of the electron

disperses in momentum space owing to the kinetic energy and ligand field, the effect of spin-orbit

interaction also depends on them at each k-point. In this thesis, to clarify the effect of the spin-

orbit interaction in band dispersions, we experimentally investigate the electronic structure of

materials with strong spin-orbit interaction by using angle-resolved spectroscopy (ARPES) and

spin-resolved ARPES with the help of a first-principles calculations based on density functional

theory [22, 23]. ARPES and spin-resolved ARPES can directly observe the band dispersions

and spin polarization in solids. The first-principles calculations can provide information on the

Wannier function in comparison with the observed band dispersions. To understand the effect

of the spin-orbit interaction, as discussed in the case of BiTeI using the k · p theory, we should

focus on not only the energy levels at each k-point but also the symmetry of wave function.

This thesis consists of 8 chapters. In Chapter 2, the principles of ARPES and spin-resolved

ARPES are explained. In Chapter 3, we present the laser ARPES system developed using

commercial nonlinear optical crystals in Ishizaka laboratory, which enables the precise measure-

ment of the band dispersions near the Fermi level. In Chapter 4 ∼ 6, we present ARPES and

spin-resolved ARPES studies on materials hosting spin-momentum locked electronic structures.
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In Chapter 4, we discuss the electronic structure of 3R-MoS2, which has a noncentrosymm-

teric crystal structure due to the three-fold rotational symmetry. We reveal the origin of the

observed out-of-plane full spin polarization by focusing on the wave function symmetry of the

spin-polarized band dispersions. In Chapter 5, we present a study on the electronic structure of

the centrosymmetric superconductor β-PdBi2. Though β-PdBi2 is a metal in the normal state,

its topological surface sates with spin polarization are observed to be similar to those of Z2

topological insulators. The origins of topological surface states are revealed by considering the

parity eigenvalues of corresponding eigenstates in analogy to topological insulators. In Chapter

6, we discuss the electronic structure of polar semimetal orthorhombic MoTe2. The unclosed

topological surface states similar to those of the Weyl semimetal, which are derived from the

combined noncentosymmetric crystal structure and topological electronic structure, are directly

observed by laser ARPES measurements. In Chapter 7, we present a general discussion on

the effect of the spin-orbit interaction on the band dispersions in solids. Chapter 8 presents a

summary of this thesis.



Chapter 2

Experimental methods

In this chapter, we briefly introduce the principle of angle-resolved photoemission spectroscopy

(ARPES) measurement and the spin polarimeter used in spin-resolved ARPES measurement.

Photoemission spectroscopy is a powerful tool to investigate the electronic structures of solids.

The photoemission spectrum of electrons emitted from the solid by the photoelectric effect [86,87]

gives much information about the electronic structure of a sample of interest by detecting the

electron’s kinetic energy, direction of emission, spin polarization, and their dependence on photon

energy and polarization. Nowadays, ARPES using vacuum ultraviolet light with a sufficiently

narrow line width has achieved great success and become popular as a direct experimental

technique to observe the band dispersions in solids, and there are many textbooks [18, 19] and

review articles [20, 21] focusing on this technique. In this chapter, we briefly introduce the

principle of ARPES measurement and of the spin polarimeter used in spin-resolved ARPES

measurement.

2.1 Angle-resolved photoemission spectroscopy (ARPES)

2.1.1 Three-step model and sudden approximation

The photoemission process consists of the photo-excitation process and the transport to and

through the sample surface. Though it can be treated as a single coherent process (called the

one-step model) as shown in ref. [18], such a treatment is very difficult to handle. Instead,

the ARPES measurement is often explained using the three step model, which is suitable for

17
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various realistic situations [21, 88–90]. The three steps consist of 1. photo-excitation process,

2. transport to the sample surface, and 3. escape into vacuum. Here, we briefly explain these

processes based on ref. [21].

The first step is described as the optical excitation process between the final state and initial

state of N electrons. The translation probability wfi is obtained by the Fermi’s golden rule as

wfi =
2π

h̄

∣∣⟨ΨN
f |Hint|ΨN

i

⟩∣∣2 δ(EN
f − EN

i − hν), (2.1)

where ΨN
i and ΨN

f are the initial and final states of the N -particle system, respectively, and EN
f

and EN
i are the energy of the final and initial states, respectively. The interaction of a photon

and an electron is treated as a perturbation given by

Hint = − e

2mc
(A · p + p ·A) = − e

mc
A · p, (2.2)

where A is the vector potential and p is the electronic momentum operator. In eq.(2.1), we

use the relation [p,A] = −ih̄∇ ·A and the dipole approximation. To evaluate a photoelectron

in eq. (2.1.1), the N -particle final state is treated as

ΨN
f = Aϕk

fΨN−1
f , (2.3)

where A is the antisymmetric operator and ϕk
f is the single-particle wave function of the final

state with momentum k. Its physical meaning is that the (N − 1)-particle system is not relaxed

within the photoemission process (sudden approximation). For the initial state, we assume the

Hartree-Fock formalization given by

ΨN
i = Aϕk

i ΨN−1
i . (2.4)

Then, we can rewrite the matrix element in eq. (2.1) as⟨
ΨN

f |Hint|ΨN
i

⟩
=

⟨
ϕk
f |Hint|ϕk

i

⟩⟨
ΨN−1

m |ΨN−1
i

⟩
, (2.5)

where we can define the single-electron dipole matrix element
⟨
ϕf

k |Hint|ϕk
i

⟩
≡ M k

f,i, and we

sum over all possible excited states m for the total transition probability. As a result, the total

photoemission intensity I(k, Ekin) =
∑

f,iwf,i measured as a function of Ekin and k is given by

I(k, Ekin) ∝
∑
f,i

∣∣∣M k
f,i

∣∣∣2∑
m

|cm,i|2 δ(Ekin + EN−1
m − EN

i − hν), (2.6)
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where |cm,i|2 =
⟨

ΨN−1
m |ΨN−1

i

⟩
is the probability that removing the electron from the N -electron

state i will result in the excited state m of the (N − 1)-particle system. In the non-interacting

system, only one state of m has non-zero |cm,i|2; consequently, the ARPES spectrum as a function

of momentum k will be given by a delta function at the Hartree-Fock orbital energy Ek
B = −εk.

To treat strongly correlated materials, the Green’s-function formalization is useful [21]. Since

we treat only weakly correlated materials in this thesis, the formalizations for non-interacting

systems describe well the experimental results in the following chapters.

The second step (transport process to the surface surface) is characterized by an effective

mean free path of the excited electron. In this process, the inelastic electron scattering gener-

ates continuous backgrounds of photoelectrons. The final step (escape process into vacuum) is

described by the transmission probability depending on the energy of the excited electron as

well as the material work function W .

2.1.2 Energy conservation

The kinetic energy (Ekin) of a photoelectron possesses the information of binding energy (EB) in

the initial state (corresponding to the Hartree-Fock orbital energy as discussed in the previous

section). The energy diagram of photoemission measurement is summarized in Fig. 2.1. The

spectral broadenings due to the lifetimes of the initial and the final states, the correlation effect,

and the background electrons due to inelastic scattering are omitted for simplicity. Owing to

energy conservation, the binding energy EB, which is negative relative to the Fermi level (EF),

is given by

EB = hν − Ekin −W, (2.7)

where W is the work function of material (typically 4 ∼ 5 eV) and hν is the incident photon

energy. In the actual experiment, the Fermi level (EF) of a sample is usually referred to that

of the polycrystalline Au electrically connected to it. As a result, the kinetic energy of a

photoelectron relative to EF + hν −W directly gives the binding energy.



20 CHAPTER 2. EXPERIMENTAL METHODS

Figure 2.1: The energy-level diagram of a photoemission measurement. Ef and Ei are the
energies of the final and initial state of a single electron, respectively; Evac is the vacuum level;
EF is the Fermi level; Ekin is the kinetic energy of the photoelectron; W is the work function;
EB is the binding energy; and hν is the photon energy. Here, the spectral broadenings and
secondary electrons are omitted for simplicity.

2.1.3 Momentum conservation

The momentum of the photoelectron reflects the crystal momentum of the initial state in solids.

As shown in Fig. 2.2, translation symmetry exists along the surface direction; thus, the in-plane

component of momentum is conserved within the translation process from solid into vacuum as

h̄K|| = h̄k||, (2.8)
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where h̄K|| and h̄k|| are the in-plane components of the momentum of the photoelectron and

the crystal momentum of the final state, respectively. Usually, the momentum of the incident

photon is negligible compared with the momentum of the photoelectron. By detecting the

emission angle (θ) and kinetic energy (Ekin) of the photoelectron, the in-plane component of the

crystal momentum of the initial state is given by

k|| =

√
2m

h̄

√
Ekinsinθ, (2.9)

where m is the mass of the electron. In principle, the two-dimensional electronic structure

is identified completely by this equation. On the other hand, the out-of-plane momentum

component is not conserved. Then, a parameter V0 called inner potential is used to evaluate the

out-of-plane components of the crystal momentum as

k⊥ =

√
2m

h̄

√
(Ekin)cos2θ + V0. (2.10)

The physical meaning of this equation is that the final state dispersions are approximated as

parabolic free-electrons. V0 is equal to the energy between the vacuum level and the bottom of

the approximated free-electron dispersions. Experimentally, V0 can be determined by varying

the photon energy to fit the observed k⊥band dispersions to the known Brillouin zone periodicity.

V0 is typically in the range of 0 ∼ 20 eV.

Figure 2.2: Schematic of the in-plane momentum conservation for the electron translation pro-
cess from solid (lower) into vacuum (upper). K and k denote the momentum of the photoelectron
and the crystal momentum of the final state, respectively.
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2.2 Spin-resolved ARPES

2.2.1 VLEED spin polarimeter

Spin-resolved ARPES can detect the photoelectron’s spin polarization. For spin-resolved ARPES,

two types of spin polarimeters are widely used. The one of them is the Mott-type spin polarime-

ter [91–99], which utilizes the Mott scattering [100] of a heavy metal target. In Mott scattering,

transversely polarized electrons accelerated by a high voltage are scattered by a target with

strong spin-orbit coupling, which generates left-right asymmetry of the scattering intensities.

The other is the Very Low Energy Electron Diffraction (VLEED) spin polarimeter [101–107].

In the VLEED detector, the spin-exchange interaction of the electron is utilized to measure the

spin polarization [108,109], instead of the spin-orbit interaction in the case of the Mott detector.

Figure 2.3 shows a schematic of the spin-dependent electron reflection process of very low energy

(a few eV to a few tens of eV) electrons at a magnetized ferromagnetic target. It utilizes the

difference of diffraction process depending on the photoelectron’s spin being parallel or anti-

parallel to the target magnetization. In our study, we performed the spin-polarized ARPES

measurements at the beam line BL-9B in the Hiroshima Synchrotron Radiation Center (HSRC)

[106, 107] and at the BL19A in photon factory, KEK [103]. Both of them use Fe(001)p(1×1)-O

films fabricated on MgO(001) substrate as VLEED targets. A layer of oxygen protects irons

Figure 2.3: Schematic of Very Low Energy Electron Diffraction (VLEED) spin polarimeter
utilizing the Fe(001)p1×1-O target. Photoelectrons with spin represented by red and blue arrows
are injected into the Fe(001)p1×1-O target with magnetization M and reflected by the target.
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from oxidization [103]. Since Fe(001) has a four-fold rotational axis, two directions of spin

polarizations can be detected.

2.2.2 Experiment of spin-resolved ARPES

Figures 2.4(a) and (b) show schematics of the spin-resolved ARPES experimental geometry at

the Efficient SPin REsolved SpectroScOpy (ESPRESSO) end station attached to the APPLE-II

type variable polarization undulator beam line (BL-9B) at the Hiroshima Synchrotron Radiation

Center (HSRC) [106,107] and at BL19A in the photon factory, KEK [103].

The ESPRESSO machine has two VLEED detectors [107], which enable the detection of

the three-dimensional spin-polarization components of photoelectrons. The geometry of the

experiment is shown in Fig. 2.4(a). Here, x, y, z represent the axes of the sample, whereas

X, Y , Z are the coordinate system fixed at the spin detector system. The magnetization of

the targets in the two VLEED spin detectors can be selectively aligned along X, Z and Y , Z,

respectively by using electric coils. The acquisition of the spin polarization along the sample

Figure 2.4: (a)Schematic of the experimental geometry of spin- and angle-resolved photoemission
spectroscopy at the Efficient SPin REsolved SpectroScOpy (ESPRESSO) end station attached
to the APPLE-II type variable polarization undulator beam line (BL-9B) at the Hiroshima
Synchrotron Radiation Center (HSRC) [106, 107] using the HeIα light source (21.2 eV), the
synchrotron light source and the VLEED spin detectors. (b) Schematic of the spin-resolved
ARPES experimental geometry at BL19A in the photon factory, KEK [103].
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axes, x, y, z, is enabled through the following procedures.

The spin polarization of the electron at the spin detector (PX for X-direction), is obtained

by

PX =
1

Seff

I+X − I−X
I+X + I−X

, (2.11)

where Seff = 0.32 is the effective Sherman function (Seff = 0.30 for BL19A in the photon

factory, KEK), and I+X , I−X are the raw spin-resolved ARPES spectra recorded with the target

magnetization of plus and minus along the X-direction. PY and PZ are similarly obtained from

I+,−
Y and I+,−

Z respectively. The spin-up and spin-down spin-resolved spectra I↑,↓X , I↑,↓Y , I↑,↓Z are

calculated by

I↑,↓X = (1 ± PX)
I+X + I−X

2
, (2.12)

and so on.

To detect the spin polarization at all k-point except the Γ point, we should rotate a sample

with the corresponding angle θ in Fig. 2.4. Thus, the spin polarization Px, Py, Pz projected

along the x, y, z sample crystal axes are related to PX , PY , PZ byPx

Py

Pz

 =

1 0 0
0 cosθ sinθ
0 −sinθ cosθ

PX

PY

PZ

 . (2.13)

Using Px, Py, Pz, the spin-resolved ARPES spectra for x, y, z are calculated as

I↑,↓x = (1 ± Px)
Itot
2

, (2.14)

and so on, where Itot is expressed by Itot = I+X + I−X = I+Y + I−Y = I+Z + I−Z . The spin-resolved

ARPES spectra for the x-, y-components at BL19A in the photon factory, KEK are obtained in

a similar manner. In this thesis, I↑,↓x , I↑,↓y , I↑,↓z and Px, Py, Pz are mainly shown as spin-resolved

ARPES results.



Chapter 3

Development of laser ARPES system

3.1 Introduction

Angle-resolved photoemission spectroscopy (ARPES) is a powerful experimental technique to

observe band dispersions directly. Especially, a laser light source is very useful for a precise

measurement of the electronic structure near the Fermi level [110–114]. In this chapter, we

present the laser ARPES system developed in Ishizaka laboratory with commercial nonlinear

optical crystals.

3.1.1 Advantages of laser ARPES

A laser light source for the ARPES measurement has several advantages compared with a He

discharge lamp (hν = 21.2 and 40.8 eV), which is a typical light source used in a laboratory

system. The first advantage is its power density. A laser enables a smaller spot size and higher

photon flux (typically ϕ ∼ 0.1 mm, ∼ 1015 photons/s) than those of the He discharge lamp

(ϕ ∼ 2 mm, ∼ 1013 photons/s). This high power density of a laser makes the measurement

time short. The second advantage is its high energy and momentum resolutions. The narrow

natural linewidth of the laser can provide the ARPES system with an energy resolution better

than ∆E < 1 meV [110–113, 115]. In addition, the low energy and directivity of the laser

resulted in high momentum resolution. The third advantage is the easy polarization control of

photons. Since ARPES is an electron excitation process occurring through photon absorption,

as expressed in eq. (2.2), a polarized laser light source can give information about the symmetry
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of the initial state [18,116,117].

3.1.2 Nonlinear optical crystals

In order to use a laser light source for the ARPES measurement, the photon energy must be

greater than the work functions of materials (typically 4 ∼ 5 eV). One of the strategies is to

utilize high harmonic generation by using a nonlinear optical crystal.

Figure 3.1 adopted from ref. [112] shows typical nonlinear optical crystals used to generate

ultraviolet laser light with the second harmonic generation (SHG) limits, the fifth harmonic

generation limits and the absorption edges. The KBe2BO3F2 (KBBF) crystal [118, 119] can

generate the shortest SHG < 200 nm (> 6.2 eV). Actually, the vacuum ultraviolet laser light

generated by the KBBF crystal is utilized for several laser ARPES systems [112–114].

Figure 3.1: A collection of some typical nonlinear optical crystals and their second harmonic
generation (SHG) limit, fifth harmonic generation limit, and absorption edge. The KBe2BO3F2

(KBBF) crystal shows the shortest SHG wavelength (the highest SHG energy) among all the
available nonlinear optical crystals. This graph is adopted from ref. [112].

However, the KBBF crystals are noncommercial. In our study, we use commercial β-BiB2O4

(BBO) crystals to obtain the ultraviolet laser light generated by the fourth harmonic generations

(FHG: 2ω + 2ω or 3ω + ω). Because the atmospheric absorption starts from the wavelength
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of ∼ 190 nm, we choose the wavelength of 193 nm of FHG (3ω + ω) for the basic setup. At

the wavelength of 193 nm, many optical components are commercially available because the

ArF-excimer laser generates the same energy.

3.2 Developed optical system

The developed optical system is schematically shown in Fig. 3.2. To obtain the FHG at 193

nm, a mode-locked Ti:sapphire laser (Verdi and Mira, Coherent ) is used as the fundamental

light source (772 nm). This Ti:sapphire laser has a high repetition rate (73 MHz) and long pulse

duration (10 ps) that help to suppress the space charge effect [120, 121], which broadens the

photoemission spectra owing to the Coulomb repulsions of emitted electrons. The wavelength

tunability of the Ti:sapphire laser (from 660 nm to 1050 nm) is also useful for the ARPES

measurements [114]. In the developed optics, two optical passes for the FHGs (2ω + 2ω or

Figure 3.2: Schematic of optical systems. L1: f = 100, L2: f = 100, L3: f = 100, L4: f = 300,
Cyl(y)1: f = 80, Cyl(y)2: f = 300. Two optical passes for FHGs (2ω + 2ω or 3ω + ω) can be
switched by using flipper mounts with a mirror and a Pellin-Broca prism.
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3ω +ω) can be easily switched by using flipper mounts with a mirror and a Pellin-Broca prism,

as the situation demands. For the 2ω + 2ω FHG, the second harmonic light is generated by a

BiB3O6 (BiBO) crystal with high durability. Fourth harmonic light of ∼ 10 mW at 210 nm is

obtained using the BBO crystal with the input of fundamental light (840 nm) of 3.0 W [122].

For the 3ω + ω FHG, fourth harmonic light of ∼ 0.2 mW at 193 nm is obtained by using a

commercial FHG unit (HarmoniXX, A·P·E) with the input of 3.0 W at 772 nm. This optical

system is in a clean booth with a temperature stabilized at T = 24.5 ± 0.1◦C.

The FHG laser light enters the vacuum chamber with an incident angle 45 degree as schemati-

cally shown in Fig. 3.3(a). To measure the laser spot size just on a sample position, we performed

the knife-edge measurement utilizing a copper block edge as schematically shown in Fig. 3.3(b).

Figure 3.3: (a) Schematic topview geometry of the ARPES system developed in Ishizaka labora-
tory. (b) Schematic of the knife-edge measurement for the laser spot size just on a measurement
sample position in vacuum. (c), (d) Results of the laser spot-size measurements (photoelectron
intesity vs. sample relative position) for the horizontal and vertical direction, respectively.
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The spot size is evaluated to be 0.12 mm (horizontal) × 0.09 mm (vertical) as shown in Figs.

3.3(c) and (d) at the measurement position in vacuum, respectively. The theoretical limit of the

smallest beam (r) is estimated by

r ≈ M2fλ

πr0
(3.1)

where M2 is the beam quality factor, f is the focal length of the lens, λ is the wave length and

r0 is the radii of incident light. The diameter limit is ∼ 0.08 mm estimated by the current setup

(r0 = 1 mm, M2 ∼ 1.1 and f = 300 mm). The achieved value (vertical direction: 0.09 mm) has

room for improvement.

3.3 Optimization of angle-resolved mode of electron analyzer

In addition to preparing the laser light source, fine optimization of electron lenses in the electron

analyzer is required for the laser-ARPES measurements because the emitted photoelectrons with

a low kinetic energy are easily affected by the inaccurate electric fields [123].

Here, we made a angular device [a photograph is shown in Fig. 3.4(a)] to optimize four

Figure 3.4: (a) Photograph of the homemade angular device. (b) Schematic of the photoelectrons
emitted from the angular device. (c) Obtained ARPES image of the angular device after the
optimization of the electron lenses.
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lens parameters in the electron analyzer (VG Scienta, R4000). As schematically shown in Fig.

3.4(b), the emitted photoelectrons should be observed at intervals of 2 degrees, regardless of

the photon energy. After the optimization, the ARPES image of parallel photoelectron signals

at intervals of 2 degrees is obtained [Fig. 3.4(c)]. Though the electron analyzer is fine tuned,

we should still pay attention to the fact that the emitted photoelectron is easily effected by the

environment around the sample (e.g., work function difference between a sample and a sample

mounting, sample shape, etc.) [123,124].

3.4 Evaluation of energy and momentum resolution

To evaluate the energy resolution of the developed laser ARPES system, we carried out angle-

integrated photoemission measurement on the Au polycrystal at the lowest temperature (T = 7.4

K in the current setup). Figure 3.5 shows the Fermi-edge spectrum of Au taken at T = 7.4 K. The

fitting function is the Fermi-Dirac distribution function convolved by the Gaussian of FWHM

= 0.6 meV. Taking account of the temperature error of the sample, we conclude that a total

energy resolution of < 0.9 meV is achieved.

Figure 3.5: Angle-integrated photoemission spectrum of Au at T = 7.4 K together with the
Fermi-Dirac distribution function convolved by a Gaussian with FWHM of 0.6 meV.

The designed energy resolution ∆E of the hemispherical electron analyzer is given by

∆E =
wE0

2R
(3.2)

where w is the slit size, E0 is the pass energy and R is the radius of electron pass in the analyzer.
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The expected value of energy resolution of the current setup with w = 0.2 mm, E0 = 1 eV,

and laser light linewidth of 0.34 meV [122] at λ = 210 nm (hν = 5.90 eV) is ∆E = 0.60 meV.

The fitting function of Gaussian width of 0.6 meV in Fig. 3.5 is in good agreement with the

expected energy resolution. Since kBT at T = 7.4 meV is 0.64 meV, which is comparable to

the evaluated energy resolution, a lower-temperature setup is required to evaluate the energy

resolution precisely.

Figure 3.6: (a) Dependence of Fermi-edge spectra of Au polycrystal at T = 8.0 K on the incident
laser light power. (b) Dependence of the energy resolution (blue) and Fermi-edge position (green)
on the incident laser power relative to that taken with 0.3 µW. Incident light power of 30 µW
is the limit of the fluorescent screen in the photoelectron analyzer.

To check the suppression of space charge effect [120,121], the dependence of the Fermi-edge

spectra of Au polycrystal at T = 8.0 K on the incident laser light power is shown in Fig. 3.8(a).

Here, the Fermi level is defined by the Fermi-edge position with the incident power of 0.3 µW. The

spectra is fitted by the Fermi-Dirac distribution function at T = 8.0 K convolved by a Gaussian

of FWHM as a free parameter. On increasing the incident light power, the Fermi edge shifts

to higher energies and broadens owing to the Coulomb repulsion of photoelectrons [120, 121],

as shown in Fig. 3.8(b). The incident power of 30 µW is the limit of the fluorescent screen in

the photoelectron detector. The space charge effect is confirmed to be suppressed well (energy

resolution < 1 meV) for the range of usual operation (incident light power < 3 µW).

The upper limit of momentum resolution is evaluated by the spectrum of orthorhombic
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Figure 3.7: Laser ARPES image of β-MoTe2 (as discussed in Chapter 6) at T = 15 K with the
photon energy of hν = 6.43 eV. The spectrum width of the S1 surface band is evaluated to be
0.2 degree along the momentum direction.

MoTe2 (as discussed in Chapter 6) at T = 15 K as shown in Fig, 3.8. The spectrum width of

sharp intensity of the S1 surface state (denoted by red arrow) along the momentum direction

is 0.2 degree at the Fermi level fitted by the Gauss function. Since the lifetime of this band

dispersion is not taken into account, it gives the upper limit of momentum resolution. The

measured upper limit value of 0.2 deg is comparable to the catalog spec of 0.1 deg (VG Scienta,

R4000).

3.5 Measurement examples

In this section, we present examples of ARPES images obtained by using the developed laser-

ARPES system.

3.5.1 Polar semiconductor BiTeBr

BiTeBr is a polar semiconductor in which the Rashba-type spin-split bands in bulk have been

realized [43]. On surface, the ladders of two-dimensional Rashba-type spin-split conduction

bands confined in the surface potential have been observed in a previous laser-ARPES study [43].

Here, we show the ARPES image of BiTeBr obtained by using the laser-ARPES system

developed in Ishizaka laboratory in Fig. 3.8(a). The ladders of Rashba-type spin-split conduction

bands are clearly observed. They are in good agreement with the calculation result obtained
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Figure 3.8: (a) Laser-ARPES image of polar semiconductor BiTeBr. The ladders of Rashba-
type spin-split bands confined in the surface potential are clearly observed. (b) Calculated
subband structures obtained by the Poisson-Schrödinger method [43]. (c) ARPES image of
BiTeBr obtained using a He discharge lamp. (d) A photograph of the measurement sample.
(e) Schematic of the rough surface of BiTeBr and a comparison between the spot sizes of the
incident laser (∼ 0.1 mm) and He discharge lamp (∼ 2.0 mm).

using the Poisson-Schrödinger method [43], as shown in Fig. 3.8(b). On the other hand, with

the use of a He discharge lamp, the ARPES cannot detect such a ladder of spin-split bands, as

shown in Fig. 3.8(c),

The most important reason why the clear image is obtained only when using the laser light

source is the spot size of incident light. A photograph of the sample after ARPES measurement
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is shown in Fig. 3.8(d). It indicates that the cleavage surface is rough and the scale size of the

flat part is about 0.3 mm, as schematically shown in Fig. 3.8(e). The smaller spot size (∼ 0.1

mm) of laser ARPES is superior for investigating materials with such a rough surface or small

sample in comparison with the He discharge lamp.

3.5.2 Iron-based superconductor FeSe

FeSe is an iron-based superconductor. It shows structural and superconducting transitions at

TS ≃ 90 K and Tc ≃ 9 K, respectively, without any magnetic order [125]. Recent ARPES

studies have reported a lifting of degeneracy in dzx/dyz orbitals at the Γ and M point, which

appear at low temperature [126–129]. Polarization-dependent ARPES utilizing the polarization

of incident laser light enables us to determine the symmetry of the wave function of the initial

state [18,130], taking account of the measurement geometry and the mirror plane of the crystal

structure. In our study, we reveal the sign change of orbital polarization between the Γ and M

Figure 3.9: (a) Experimental geometry for polarization-dependent laser ARPES. The purple
plane represents a mirror plane of the orthorhombic lattice. Observable orbital characters are
also shown for each polarization. (b), (c) E-k image divided by the Fermi-Dirac distribution
function and its second E derivative detected in Geometry 1 at 30 K, respectively. The left
(right) panels are E-k images obtained by s (p) polarization. (e) Schematic band dispersions
and their orbital characters. Band dispersions colored in green, red, and blue are composed of
dzx, dyz and dxy orbitals, respectively. The black curves are guides for the eyes. All images are
adopted from [117]
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points by the polarization-dependent ARPES [117].

The polarization ARPES image and its second derivative along the kx direction are shown in

Figs. 3.9(b) and (c), respectively. The left (right) panel is obtained by using s (p) polarization,

and the measurement geometry is shown in Fig. 3.9(a). Light polarization > 99% is confirmed

from the power of reflected light by Brewster’s angle. The ARPES intensity changes drastically

by changing the incident light polarization, reflecting the symmetry of eigenstates through the

interaction between a photon and an electron in eq. (2.2). In particular, the eigenvalues of

mirror operation for the dzx orbital and s-polarization light are +1 and −1, respectively. Their

products, observed through the photoexcitation process, should be +1. Thus, the ARPES

intensity mainly derived from dzx by using s polarization is suppressed, as shown in the left

panel of Figs. 3.9 (b)-(d). The experimentally obtained orbital characters around the Γ point

[as schematically shown in Fig. 3.9 (c)] clarify the opposite sign of orbital polarization compared

to the M point [117]. The easy control of laser polarization by using wave plates is a powerful

tool to detect the wave function symmetries.

3.6 Summary

In Chapter 3, we have presented the developed laser ARPES system with commercial nonlinear

optical crystals. The achieved values are listed in Table 3.6.

Table 3.1: Achieved values of laser ARPES system developed in Ishizaka laboratory.

Photon energy 5.90 ∼ 6.43 eV
Lowest temperature ∼ 8 K
Energy resolution < 0.9 meV
Momentum resolution < 0.2 deg. (∼ 0.002 Å−1)
Spot size 0.12 mm (horizontal) × 0.09 mm (vertical)
Light polarization > 99%

The high intensity of laser light coexisting with the good energy resolution of < 1 meV

enables quick and precise measurements near the Fermi level. In addition, utilizing the small spot

size and polarization of laser widens the range of target materials of the ARPES measurement
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in a laboratory system. The combined ARPES system with the laser and He discharge lamp

developed in Ishizaka laboratory will clarify various materials’ electronic structures and unknown

physical phenomena.



Chapter 4

Spin-valley coupling in 3R-polytype
MoS2

4.1 Introduction

The spin-momentum locked electronic structure is realized in bulk band dispersions of a non-

centrosymmetric crystal structure. In this chapter, we present the results of an angle-resolved

photoemission spectroscopy (ARPES) study on noncentrosymmetric transition metal dichalco-

genide 3R-MoS2 with three-fold rotational symmetry [131].

4.1.1 Spontaneous spin polarization in system with three-fold rotational sym-
metry

In nonmagnetic materials, the spin polarization in momentum space is achieved by the spin-

orbit interaction (SOI). The effect of SOI in momentum space is understood as an interplay

between the spin magnetic moment and orbital magnetic moment at each k-point. In the polar

crystal structure [10,11,29,30,39–43,45–47,49,50], the non-zero y-component of orbital magnetic

moment along the kx direction can contribute to the helical spin texture in Rashba-type spin-

splitting as schematically shown in Fig. 4.1(a) [26,27,132]. In particular, the orbital component

of (pz + ipx) [denoted by a blue maker (⊗) in Fig. 4.1(a)] along the kx direction is necessary for

the Rashba-type spin-splitting in the p-electron polar system. It suggests that the polar system

includes a dilemma in obtaining a large spin-splitting inherently because the orbital magnetic

moment vertical to the crystal momentum vector should vanish at the Brillouin zone boundary

37
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Figure 4.1: Schematic of orbital magnetic moments in k-space in the polar system (a) and
system with three-fold rotational symmetry (b). The orientation of orbital magnetic moments
are represented by a blue mark ⊗ (along +ky direction) and blue arrows (along +kz direction).
Blue solid circles indicate the vanished orbital magnetic moments at the Brillouin zone center
and/or boundary.

and center, which are represented by blue solid circles in Fig. 4.1(a). In other words, the non-

zero magnetic quantum number ly (lx) along the kx (ky) direction cannot be a good quantum

number even at the high symmetrical points in momentum space. It suppresses the energy of

spin-splitting compared with the energy of atomic SOI over the entire Brillouin zone.

On the other hand, in the system with three-fold rotational symmetry, the non-zero magnetic

quantum number can be a good quantum number at Brillouin zone corners as schematically

shown in Fig. 4.1(b). For example, a band dispersion consisting of only a (dx2−y2 + idxy)

orbital component with the magnetic quantum number lz = −2 can exist at the Brillouin zone

corner. The well-defined non-zero integer magnetic quantum number lz at the Brillouin zone

corner yields the spin-polarization along the z direction with the large spin-splitting directly

reflecting the strength of atomic SOI. In addition, such out-of-plane spin polarizations at the

Brillouin zone corners are useful for spintronics function. It is known that the D’yakonov-Perel

spin relaxation [133, 134], which is one of the spin-scattering mechanisms, is suppressed in the

two-dimensional electrons system with the out-of-plane spin polarizations, resulting in the long

lifetime of spin [135].
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Figure 4.2: (a) Top and side view of crystal structure of monolayer MoS2. Molybdenum (sulfur)
atoms are denoted by red (blue) circles. (b) Schematic spin-valley coupled electronic structure
in the momentum space in monolayer MoS2 adopted from ref. [139]. Red and blue parabolic
band dispersions at Brillouin zone corners (K̄ and −K̄ points) indicate the spin-splitting with
the out-of-plane spin polarization.

4.1.2 Spin-valley coupling in monolayer transition metal dichalcogenide

Monolayer transition metal dichalcogenide (TMDC) MX2 (M = Mo or W, X =S, Se) [136]

has attracted attention as a candidate material for spintronics and valleytronics [6, 137] de-

vices theoretically proposed in ref. [138, 139]. The top view of the monolayer MoS2 shows the

honeycomb-like crystal structure consisting of a molybdenum layer sandwiched by sulfur lay-

ers with three-fold rotational symmetry, as shown in Fig. 4.2(a). This three-fold rotational

symmetry combined with the SOI of the Mo 4d orbital provides spin-polarized multi-valley

electronic structures [138–140], which are defined as energetically degenerate band dispersions

distinguished in momentum space, at the Brillouin zone corners in Fig. 4.2(b) adopted from

ref. [139]. The valley degree of freedom as seen in silicon [141], diamond [142], AlAs [143–145],

bismuth [146] and graphene [147–150], can be manipulated as an information carrier in the

optical or transport experiments. For monolayer MoS2, the photoluminescence circular dichro-

ism [151–153] and the valley hall effect [154] reflecting the direct band gap at the inequivalent

Brillouin zone corners have been experimentally confirmed. However, the direct observation or

detection of the characteristic spin-valley coupled function in the group of monolayer TMDC has

not occurred because of the difficulty in the fabrication of large area monolayer TMDC. Recently,

CVD-grown [155] or MBE grown [156, 157] samples have enabled the in situ measurement to
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observe its band dispersions by using ARPES and spin-resolved ARPES. This fabrication dif-

ficulty of monolayer TMDC still restricts the kinds of physical property measurements for the

spin-valley coupled electronic structures and/or physical phenomena.

4.2 Rich polytypism in MoS2

In this study, we have noted the rich polytypism in layered TMDCs. Usually, the monolayer

MoS2 is obtained by simple mechanical cleaving [the so-called scotch tape method [158]] from

Figure 4.3: (a)-(c) Crystal structures of monolayer MoS2, 2H-MoS2 and 3R-MoS2, respectively.
(d)-(f) Schematics of the crystal symmetries in monolayer MoS2, 2H-MoS2 and 3R-MoS2, re-
spectively. A light-blue triangle represents the sulfur triangle lattice as denoted in (a). Purple
planes or lines represent the crystal mirror planes parallel to the z axis. (g) First Brillouin zone
of 3R-MoS2. Blue flames represent the two dimensionally projected Brillouin zone with high
symmetrical points (Γ̄, K̄ and K̄′).
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the stable bulk phase 2H-MoS2 represented by the orange rectangle in Fig. 4.3(b). Crystal

structures of the monlayer MoS2 and 2H-MoS2 are shown in Figs. 4.2(a) and (b), respectively. In

Figs. 4.3(d) and (e), those crystal symmetries are schematically represented by using light-blue

triangles indicating the sulfur triangle lattice denoted in Fig. 4.2(a). As discussed in the earlier

section, the monolayer MoS2 has a noncentrosymmetric crystal structure reflecting the three-fold

rotational symmetry. On the other hand, the 2H-MoS2 (belonging to space group P63/mmc)

consisting of stacked monolayers has an inversion center with a six-fold rotational axis as shown

in Fig. 4.2(e). Though it seems to lack inversion symmetry locally when observing the half unit

cell represented by an orange rectangle in Fig. 4.3(b), such local inversion symmetry breaking

reflecting the nonsymmorphic operations (glide mirrors or screw rotations) cannot generate net

spin polarization in bulk [6, 25,159,160].

In MoS2, as well as the most stable 2H-phase, the 3R-phase is known to exist as another

stable phase [161–163]. The crystal structure and schematic of its symmetry are shown in Figs.

4.3(c) and (f) in the same manner as for the monolayer MoS2 and 2H-MoS2. The 3R-MoS2 has

a rhombohedral Bravais lattice (space group R3m), and its unit cell is composed of a trilayer (S-

Mo-S) stacked in such a way that the three fold rotational symmetry is kept in the bulk form in

Figure 4.4: (a), (b) Optical micrographs of the surface of 2H-MoS2 and 3R-MoS2 crystals,
respectively, showing contrasting screw dislocations reflecting the crystal symmetry. The images
are provided by Mr. Suzuki (Iwasa group, Dept. of Appl. Physics, the University of Tokyo).
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contrast to 2H-MoS2 as schematically shown in Fig. 4.3(f). We note that the rhombohedral unit

cell of 3R-MoS2 includes only one Mo atom and two S atoms, giving simple band dispersions.

The first Brillouin zone is shown in Fig. 4.3(g). Hereafter, for simply describing the ARPES

results, we use the two-dimensionally projected Brillouin zone depicted by blue frames with

two-dimensional high-symmetry points (Γ̄, K̄, and K̄′). In the 3R-MoS2, the spin-valley coupled

electronic structure in bulk is expected to be similar to the monolayer MoS2 reflecting the Van

der Waals stacking nature of the TMDCs.

The large single crystal of 3R-MoS2 (> 1 mm × 1 mm) and 2H-MoS2 as a reference sample

are provided by Mr. Suzuki (Iwasa group, Department of Applied Physics, the University of

Tokyo). These samples are grown by using a chemical vapor transport technique, with Cl2 and

I2 as carrier gases, respectively [162,164]. Figures 4.4(a) and (b) present optical micrographs of

typical surfaces of the 2H and 3R single crystals, respectively. The screw dislocations observed

in these two forms of crystals have hexagonal and trigonal structures [163], respectively, clearly

reflecting their crystal symmetries, as shown in Figs. 4.3(e) and (f).

4.3 Experimental setup and calculation condition

ARPES measurements (hν = 21.2 and 40.8 eV) were performed at the Department of Ap-

plied Physics, the University of Tokyo, by using a VUV5000 He-discharge lamp and an R4000

hemispherical electron analyser (VG-Scienta). The total energy resolution was set to 10 meV

and 20 meV for hν = 21.2 and 40.8 eV, respectively. Samples were cleaved in situ near room

temperature and measured at 15 K.

Spin-resolved ARPES measurement utilizing the synchrotron beam (hν = 20 eV, p-polarized

light) was performed at the Efficient SPin REsolved SpectroScOpy (ESPRESSO) end station

attached to the APPLE-II type variable polarization undulator beam line (BL-9B) at the Hi-

roshima Synchrotron Radiation Centre (HSRC) [106]. The angular resolution was set to ±0.75◦

and the total energy resolution was set to 25 - 50 meV. Samples were cleaved insitu near room

temperature and measured at 20 K.

SARPES with a HeI light source (hν = 21.2 eV) was performed at BL19A in the photon



4.4. BAND DISPERSIONS OBTAINED BY ARPES AND CALCULATION 43

factory, KEK [103]. The spin analyzer in this system consists of a single VLEED spin detector.

The angular resolution was set to ±1◦, and the total energy resolution was set to 100 meV.

Samples were cleaved in situ near room temperature and measured at 110 K.

Band calculations were made by Dr. Akashi (Department of physics, the University of Tokyo)

and Prof. Arita (RIKEN). The first-principles calculations for bulk systems were performed

with the full-potential linearized augmented plane wave code WIEN2k [165]. We employed

the generalized gradient approximation for the exchange-correlation functional [166]. For the

input atomic configurations, we referred to previous experimental observations for the crystals

[167, 168]. The muffin-tin radii for Mo and S atoms rMo and rS were set to 2.40 and 2.13,

respectively, and the maximum modulus for the reciprocal vectors Kmax was chosen so that

rS ×Kmax = 7.00.

4.4 Band dispersions obtained by ARPES and calculation

First, to figure out the whole band dispersions, we performed the ARPES measurement on

3R-MoS2. The obtained ARPES image (E − EF vs. momentum) of 3R-MoS2 along the Γ̄-K̄

line clearly shows the valence band dispersions spreading down to E − EF = -8 eV in Fig.

4.5(a). Comparing the left panel (obtained by hν = 40.8 eV) and the right panel (obtained

by hν = 21.2 eV), slight differences are observed at the top of the valence band at the Γ̄

point. This photon energy dependence suggests that the corresponding band disperses three

dimensionally (as explained in section 2.1.3). In the 3R-MoS2, the maximum of valence bands

(VBM) is located at the Γ̄ point, in contrast to that of monolayer MoS2 located at Brillouin zone

corners. On the other hand, the top of valence bands at the K̄ point, which is very similar to

that of monolayer MoS2, shows no photon-energy dependence, indicating its two-dimensionality.

These dimensionalities of valence bands are consistent with the electronic structure of monolayer

MoS2 [136,138,139,155].

Focusing on the ARPES intensity near the Fermi-level multiplied by a factor of 100 in Fig.

4.5(a), energetically degenerate conduction band edges are faintly observed at the K̄ point and

the middle point on the Γ̄-K̄ line. The ARPES intensity mapping obtained by the photon energy
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Figure 4.5: (a) ARPES image of 3R-MoS2 along Γ̄-K̄ with hν = 40.8 (left) and 21.2 (right)
eV The intensity near the Fermi level is multiplied by a factor of 100. (b) ARPES intensity
mapping at the Fermi level with the energy window of 16 meV. White frames represent the
two-dimensional Brillouin zone with the high symmetrical points.

hν = 21.2 eV at the Fermi level with the energy window of ±16 meV is shown in Fig. 4.5(b)

with the two dimensional Brillouin zone (white). It clearly indicates the multi-valley conduction

band structure (K̄ point, K̄′ point, and the middle points on the Γ̄-K̄ and Γ̄-K̄′ lines) as well as

the valence band structure in the n-type semiconductor 3R-MoS2. The indirect band-gap size

between the VBM and Fermi level is evaluated to be 1.3 eV, and the direct energy gap at the

Brillouin zone corners is evaluated to be 2.0 eV. Those parameters are comparable to those in

2H-MoS2 [155,169], reflecting the van der Waals stacking nature of MoS2. To evaluate the energy

gaps of 3R-MoS2 precisely, we should take account of the exciton effect on the conduction band

edges at the Brillouin zone corners [131,164,170] and the band gap shrinkage effect observed on

the surface of 2H-WSe2 [171].

To discuss the characteristic electronic structure of 3R-MoS2, bulk band dispersions of 3R-

MoS2 and 2H-MoS2 along K̄′-Γ̄-K̄ obtained by the first principles calculations and corresponding

ARPES results along Γ̄-K̄ are shown in Figs. 4.6(a)-(d), respectively. The energy axes of the
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Figure 4.6: (a) ARPES image of the valence band structure of 3R-MoS2 recorded along Γ̄-K̄
with hν = 40.8 eV (left) and 21.2 eV. (b) Bulk band structure of 3R-MoS2 along ky obtained
by the first-principles calculations. The band dispersions for various kz, indicated by the inset
color scale, are overlapped. The energy axis is shifted to match the top of the valence band at
the K̄ point to the ARPES result. (c), (d) Band structures of 2H-MoS2 obtained by ARPES
and calculation, as in (a), (b).
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calculated results in Figs. 4.6(b) and (d) are shifted to match the energies of the top of valence

band at K̄ point with the ARPES results. The band dispersions for various kz are overlapped

with corresponding colors indicated by the inset color-scale. Given that the ARPES images in

Figs. 4.6(a) and (c) include the projection of finite kz-dispersions, they are in good agreement

with the calculated band dispersions in Figs. 4.6(b) and (d), respectively. The overall band

dispersions of 3R- and 2H-MoS2 are found to be very similar, reflecting the van der Waals

stacking nature of TMDCs. On closely observing the detailed band dispersions, however, small

but contrasting differences between the ARPES images of 3R- and 2H-MoS2 can be observed.

For example, near the K̄ point at E − EF ∼ −6 eV represented by red circles in Figs. 4.6(a)

and (c), bands are crossed in 2H-MoS2 but not in 3R-MoS2. Corresponding behaviors are also

observed in the calculated results in Figs. 4.6(b) and (d). They suggest that the metastable

phase of 3R-MoS2 are separately synthesized from the 2H-phase.

4.5 Valence band top at K̄ point compared with 2H-MoS2

Another difference between 3R- and 2H-MoS2 can be seen at the top of the valence band at

the K̄ point. Figures 4.7(a) and (c) show close-up views near the valence band top at the K̄

point for 3R-MoS2 and 2H-MoS2, respectively, and the measurement regions are denoted by

green rectangles in Figs. 4.6(a) and (c). Corresponding calculation results are shown in Figs.

4.6(b) and (d), which indicate that those bands mainly consist of Mo orbitals. In both 3R- and

2H-MoS2, similar band splittings at the Brillouin zone corners are observed in Figs. 4.6(a) and

(c), respectively. The values of splitting (∼ 0.14 eV for 3R and ∼ 0.17 eV for 2H) agree well

with those calculated as shown in Figs. 4.7(b) and (d), although there remains some ambiguity

arising from the kz-dependent dispersion.

Given the crystal symmetry of 3R- and 2H-MoS2, it is found that these similar band splittings

have different origins. As for the 2H-MoS2, the band splitting consists of four bands with spin

degeneracy due to the space inversion symmetry. These two sets of two bands are considered to

be the bonding and anti-bonding state derived from two S-Mo-S layers in a unit cell. Without

SOI, the 63 screw axis makes them stick on the kz = π/c plane [6] in the Brillouin zone. Then,
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Figure 4.7: (a), (b) ARPES image and corresponding calculation, respectively, focusing on the
region near the valence band top at the K̄ point for 3R-MoS2. (c), (d) ARPES image and
corresponding calculation for 2H-MoS2, respectively. The measurement regions for (a) and (c)
correspond to the green rectangles in Figs. 4.6(a) and (c), respectively.

the SOI can lift this band degeneracy resulting in the layer-locked staggered spin-polarization

in bulk [160]. Except at kz = π/c, this band splitting occurs owing to the coexistence of SOI

splitting and the bonding and anti-bonding band splitting. These effects give the slight kz

dependence of the top of the valence band in 2H-MoS2 as shown in Fig. 4.7(d).

On the other hand, the top of the valence band at the K̄ point of 3R-MoS2 seems non-

dispersive along the kz direction. Because there is one Mo atom in a unit cell of 3R-MoS2, this

band splitting is not derived from the bonding and anti-bonding states. The band splittings

in 3R-MoS2 likely correspond to the spin-split band dispersions similar to those in monolayer
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MoS2 [138,139] at Brillouin zone corners.

4.6 Spin-valley coupling at K̄ and K̄′ point

To detect spin-polarization on the top of the valence band, we carried out spin-resolved ARPES

measurement for the noncentrosymmetric 3R-MoS2 and centrosymmetric 2H-polytypes as ref-

erences. By utilizing a three-dimensional spin polarimeter [106] (as shown in section. 2.2), spin

polarizations along the x, y and z directions (Px , Py and Pz) can be measured. Figure 4.8(a)

shows the ARPES intensity mapping of 3R-MoS2 at E − EK̄ = −0.3 eV, where E − EK̄ repre-

sents the energy level relative to the valence band maximum at the K̄ point. The experimentally

obtained images indicate the existence of hole-like equi-energy surfaces around the Γ̄, K̄ and K̄′

points. Upon closely examining the experimental images at the K̄ and K̄′ points, it is found that

the hole-like equi-energy surfaces form double contours reflecting the band splitting as shown in

Fig. 4.7(a). These are in good agreement with the calculated equi-energy contours which are

colored by red and blue corresponding to the sign of Pz > 0 and < 0, respectively. As indicated

by spin-resolved calculations as the red (spin-up) and blue (spin-down) curves in Fig. 4.8(g),

the top of the valence band at the K̄ point is expected to show large SOI-induced Zeeman-type

band splitting [172] with inverted spin polarization at the K̄′ point (Pz ∼ ±1). Indeed, this

was confirmed by the spin-resolved ARPES spectra in Fig. 4.8(b). The red (blue) curves in-

dicate the intensity of spin-up (spin-down) components obtained at the K̄ point. The spectra

for z-oriented spin sz clearly show that the upper (lower) band at the K̄ point top is spin-up

(spin-down) polarized, whereas the in-plane sx and sy components have nearly equivalent inten-

sities. Figure 4.8(c) indeed shows almost full polarization along the z-direction (Pz ∼ ±1), in

contrast to the very small in-plane Px, Py. Furthermore, the spin-resolved ARPES sz spectra for

the K̄ and K̄′ points as shown in Fig. 4.8(d), clearly indicate the inversion of spin polarization

for both upper and lower bands. It thus offers direct evidence of the valley/spin coupled state

realized in bulk 3R-MoS2, a counterpart of the recently reported Tl/Si(111) surface state [173].

In marked contrast, the valence band tops at the K̄ point for 2H-MoS2 and 2H-WSe2 are much

less polarized, with negligible inequivalency of the spin-up and spin-down components in Fig.
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Figure 4.8: (a) Intensity mapping at 0.3 eV relative to the top of the valence band at the
K̄ point (E − EK̄ = −0.3 eV) obtained by ARPES (hν = 21.2 eV) and the calculated equi-
energy surfaces at kz = π/c) overlaid on the two-dimensional first Brillouin zone. Hereafter,
red and blue indicate spin-up and spin-down components, respectively. (b), (c) Spin-resolved
energy distribution curves [EDCs, (b)] at the K̄ point and the corresponding spin polarization
with statistical errors of photoelectron counting [(c)] for 3R-MoS2, obtained by spin-resolved
ARPES. Here, the quantization axes of spin are along the x, y and z crystal axes defined in Fig.
4.3(g). (d) Spin-resolved EDCs for spin along the z axis, recorded at the inequivalent valleys
of the K̄ and K̄′ points. (e) Spin-resolved EDCs at the K̄ point from the centrosymmetric
materials 2H-MoS2 and 2H-WSe2. (f) Spin-resolved ARPES image obtained by subtraction of
the spin-resolved ARPES intensities for z-oriented spin-up and spin-down (∆I) recorded along
ky. (g) Calculated spin polarizations Pz of the valence bands along (0, ky, 0) for 3R-MoS2.
(h) Calculated total spin polarization of the valence bands along (0, ky, 0) for centrosymmetric
2H-MoS2.
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4.8(e), as expected theoretically in Fig. 4.8(h). It suggests that the effect of inversion symmetry

breaking at the surface can be ruled out as the origin of the huge spin splitting emerging in

the 3R system. We should note that the net spin-polarization of ∼ 100% is not derived from

the local inversion symmetry breaking in 2H polytype [160] unless an atomically flat cleavage

surface with a comparable size to the spot size of incident light is obtained. To demonstrate the

spin-dependent valence band dispersion of 3R-MoS2, the difference in sz spin-up and spin-down

spin-resolved ARPES intensities is shown in Fig. 4.8(f). This provides a firm and clear image

of the out-of-plane spin polarization at the valence band top of the K̄ point, in agreement with

the calculation in Fig. 4.8(g).

4.7 Discussion: Interlayer hopping at Brillouin zone corners

The experimentally observed full spin-polarized (Pz ∼ ±1) band dispersions at the Brillouin

zone corners in 3R-MoS2 are very similar to theoretically proposed ones of the monolayer

MoS2 [138, 139], even though they have different dimensions and crystal symmetries. This

similarity is also confirmed in other experiments. Figure 4.9 adopted from ref. [131] shows the

circular photoluminescence measurement result on the layer number (N) dependence of circular

Figure 4.9: Layer number (N) dependence of circular polarization (ρ) obtained by the photo-
luminescence measurement for 2H- and 3R-stackings with error bars of experimental standard
deviation for several samples. This image is adopted from ref. [131].
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polarization (ρ) for 2H- and 3R-stackings. The observed polarization of the 3R-type stacking

does not decrease with the stacking of S-Mo-S layers in contrast to 2H-type stacking. It exper-

imentally supports that the 3R-MoS2 possesses the same electronic structure at the Brillouin

zone corners as with monolayer MoS2. In this section, we discuss and evaluate this similarity

by considering interlayer hoppings at the Brillouin zone corners in 3R-MoS2 based on ref. [170].

To evaluate the interlayer hopping, we consider accompanied phases by three-fold rotational

operation (C3:
2
3π rotation). Figures 4.10(a)-(c) are adopted from ref. [170]. There are three

different three fold rotational symmetry axes, α, β, and γ, on the monolayer MoS2 as denoted in

Fig. 4.10(a). The 3R-type stacking with the three-fold axes α, β, and γ for each S-Mo-S layer is

schematically shown in Fig. 4.10(b). It indicates that the α, β, and γ axes are overlapped for the

3R-type stacking. The three-fold rotations around those axes are defined as C3;j ≡ RPj (j = α,

β, and γ,), where R is a simple rotational operator described as exp(iθlz) (θ = 2/3π, lz is the

orbital magnetic moment) and Pj is the site permutation, which is schematically shown in Fig.

4.10(c) for the case of the α axis. Since the top of valence bands at the K̄ point mainly consist

of Mo d orbitals with lz = −2 [139], the acquired phase from the 2/3π rotation is exp(i23π).

Furthermore, the contribution of site permutations to the phase around α, β, and γ axes are

exp(i43π), exp(i23π), and 1, respectively.

The interlayer hopping amplitude (t) is defined by

t ≡ ⟨ΨK,1|H |ΨK,2⟩ . (4.1)

Here, |ΨK,L⟩ denotes the K̄ point Bloch functions at the Lth layer, and H is the total Hamiltonian

of the bulk crystal. Suppose C3 denotes a certain three fold rotation under which H is invariant.

Then,

⟨ΨK,1|H |ΨK,2⟩ = ⟨ΨK,1|C−1
3 C3HC−1

3 C3|ΨK,2⟩ (4.2)

= (⟨ΨK,1|C−1
3;j )H |(C3;j′ΨK,2⟩) (4.3)

= exp[−2πi∆12;jj′ ]⟨ΨK,1|H |ΨK,2⟩ (4.4)

where ∆12;jj′ is the phase acquired from the 2/3π rotation around the j and j′-axis for the

Lth layer, respectively. In 3R-stacking, (j, j′) = (α, β), (β, γ), and (γ, α) only appear for the
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Figure 4.10: (a) Top-view of the monolayer MoS2, where the trigonal prisms as shown in Fig.
4.3(a) are denoted by shaded triangles. α, β and γ represent inequivalent 3-fold rotational axes.
a1 and a2 are primitive lattice vectors. (b) Side view (top) and top view (bottom) of the 3R-type
stackings. The three fold rotational axes for each S-Mo-S layer are also indicated. (c) Schematic
of the phase change due to site permutation around the α-axis. Real-space configuration of
the phase of the K̄ point Bloch state [exp(ik · r)] is represented, where the circle, triangle, and
square represent the three phase values 1, ei(2π/3) and ei(4π/3), respectively. All images are
adopted from [170]

nearest-neighbor and next-nearest-neighbor interlayer hoppings as shown in 4.10(b). Since α, β,

and γ axes yield the phases exp(i43π), exp(i23π), and 1 respectively, the non-zero phase term of

∆12;jj′ forces the interlayer hopping amplitude t to be zero.

This vanishing of interlayer hopping gives theoretical assurance of the spin-valley coupled

electronic structure in bulk 3R-MoS2, which is the same as that in monolayer MoS2. Conversely,

the experimentally observed multi-valley electronic structure with the full spin polarizations of

Pz ∼ ±100% on 3R-MoS2 gives experimental support to the spin-valley coupling in monolayer

MoS2.

4.8 Summary

We have investigated the electronic structure of the n-type semiconductor 3R-MoS2 by using

ARPES and spin-resolved ARPES. Valence band dispersions down to E−EF ∼ 8 eV are clearly
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observed on the single crystal of 3R-MoS2. The valence band maximum is located at E−EF ∼ 1.3

eV at the Brillouin zone center (Γ point), and nearly degenerate bottoms of conduction bands

touching the Fermi level are located at the Brillouin corners and the middle point between the

Brillouin zone center and corners, forming the multi-valley electronic structure. They provide

the indirect gap of ∼ 1.3 eV in bulk 3R-MoS2, in contrast to monolayer MoS2 with the direct

band gap of ∼ 2.0 eV at the Brillouin zone corners.

The band dispersions of 3R-MoS2 are very similar to centrosymmetric 2H-MoS2, reflecting

the van der Walls stacking. With the use of spin-resolved ARPES, the difference between them

becomes clear. Only 3R-MoS2 shows band splitting with net spin polarizations at the Brillouin

zone corners owing to the three-fold rotational symmetry. It shows the full spin polarizations

along the z-direction of Pz ∼ ±1 at the inequivalent valleys (K̄ and K̄′ points), respectively.

These results provide experimental evidence for the spin-valley coupled electronic structure in

the noncentrosymmetric 3R-MoS2, similar to those in the monolayer MoS2.

The circular dichroic photoluminescence [131] and the first-principles calculation results

[131, 170] suggest that the electronic structures at the Brillouin zone corners in the 3R-MoS2

are two-dimensionally localized with the lack of interlayer hopping. Based on the group theo-

retical analysis on the 3R-MoS2 [170], the nearest-neighbor and next-nearest-neighbor interlayer

hopping are evaluated to be exactly zero. This clearly supports the out-of-plane full spin polar-

izations observed in the 3R-MoS2, which are the same as those in the monolayer MoS2 proposed

theoretically [139].

The spin polarization at the high symmetrical point, where the non-zero orbital magnetic

moment at each k-point can be a good quantum number, is realized in 3R-MoS2. It is worth

noting that the two-dimensional electronic structures are built in a three-dimensional crystal

structure in 3R-MoS2,providing the additional function as seen in circular dichroic photolumi-

nescence. This study clarifies that the three fold rotational symmetrical system has an advantage

for obtaining large spin-split band dispersions over the polar system.



Chapter 5

Topological surface states on
superconductor β-PdBi2

5.1 Introduction

The spin-momentum locked electronic structure emerges not only in bulk band dispersions of

the noncentrosymmetric materials but also on the surface of materials. For example, the surface

states of heavy metals [46,48] show k-linear spin-splitting known as the Bychkov-Rashba effect

[45]. Another example is a topological insulator, which is a new class of materials theoretically

proposed by Kane and Mele [53], hosting the metallic spin-polarized surface states described by

the massless Dirac fermion, as described in section 1.3. In this chapter, we present the electronic

structure of superconductor β-PdBi2 [174–176] in the normal state by using ARPES and spin-

resolved ARPES. In the β-PdBi2, topologically protected spin-polarized surface states similar

to the topological insulator are realized in metallic band dispersions. At the end of this chapter,

we discuss the origins of those topologically protected surface states.

5.1.1 Effect of spin-orbit interaction on Z2 topological insulator’s band dis-
persions

A topological insulator hosting the spin-momentum locked electronic structure has been realized

in both two-dimensional [53–55,59] and three-dimensional [57,58,60,61] materials, regardless of

the existence of space inversion symmetry breaking. The three-dimensional topological insulators

are characterized by the four topological invariants as shown in ref. [56, 179]. One of those

54
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Figure 5.1: (a) Schematic energy level diagram of the evolution from the atomic orbitals (px, py
and pz) of bismuth and selenium into the conduction and valence bands of Bi2Se3 at the Γ point.
The three different stages (I), (II), and (III) represent the effect of turning on chemical bonding,
crystal-field splitting, and spin-orbit coupling, respectively. The blue dashed line represents
the Fermi energy. (b) The energy levels |P1+Z ⟩ and |P2−Z ⟩ of Bi2Se3 at the Γ point versus an
artificially rescaled atomic spin-orbit coupling λ(Bi) = xλ0(Bi) , λ(Se) = λ0(Se). Here, λ0

denotes the bear atomic spin-orbit coupling constant of bismuth (λ0 = 1.25 eV) and selenium
(λ0 = 0.22 eV). A level crossing occurs between these two states at x = xc ≃ 0.6. These graphs
are adopted from ref. [62].

topological invariants, ν0, indicates whether the system is a strong topological insulator (ν0 = 1),

the topologically protected metallic surface states of which exist on all faces, or not (ν0 = 0).

The physical meaning of ν0 = 1 is that an odd number of parity inversions across the band gap

at the time-reversal invariant momenta [k ≡ −k (modG)] is necessary for the strong topological

insulator with the inversion symmetry (as discussed in section 1.3.2). Spin-orbit interaction

(SOI) can play an important role in the parity inversion in topological insulators. For typical

strong topological insulators Bi2Se3 and Bi2Te3 [63–65] hosting the single Dirac cone surface

states around the Brillouin zone center, parity inversion at the Γ point, driven by the spin-orbit

interaction, occurs. A schematic of the energy levels at the Γ point for Bi2Se3 is shown in Fig.

5.1(a), which is adopted from ref. [62]. The three different stages (I), (II), and (III) represent the

effect of turning on chemical bonding, crystal-field splitting and spin-orbit coupling, respectively.

Without spin-orbit coupling (stage II), the conduction bands above (valence bands below) the

Fermi level (represented by a blue broken line) mainly consist of Bi 6p (Se 4p) orbitals. The
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SOI decreases the energy level of the Bi 6pz bonding state with even parity owing to mixing

with in-plane orbital components, resulting in the parity inversion between the Se 4pz anti-

bonding state (stage III). Figure 5.1(b) adopted from [62] shows the energy-level dependence

of the artificially rescaled SOI λ(Bi) = xλ0(Bi) and λ(Se) = xλ0(Se). Here, λ0(Bi) = 1.25 eV

and λ0 (Se) = 0.22 eV are the realistic values of Bi and Se atomic spin-orbit coupling constants,

respectively [174]. This indicates that the topological transition from the normal insulator into

the topological insulator occurs at x = xc ≃ 0.6.

As seen above, the SOI can trigger band inversion; then, the electronic structure in bulk is dis-

tinguished as the topologically non-trivial phase. In addiction to topological insulators, related

topological materials such as topological crystalline insulators [66–68], Dirac/Weyl semimet-

als [73–83] and topological superconductors [69–72] are similarly characterized by the band

inversions. Here, we introduce a superconductor β-PdBi2 with a centrosymmetric tetragonal

crystal structure [174–176]. Since the band dispersions of β-PdBi2 consist of Pd 4d and Bi 6p

orbitals, parity inversion is likely to occur between them at the boundary of the Pd 4d and Bi

6p local density of states. In addition, the strong atomic spin-orbit interaction of Bi 6p orbitals

(λ > 1 eV) provides a drastic band modification suitable for the topologically non-trivial band

dispersions.

5.2 Crystal structure and physical properties

The body-centered tetragonal crystal structure of β-PdBi2(space group I4/mmm) with the lat-

tice constants a = 3.362 Å and c = 12.983 Å [175] is shown in Fig. 5.2(a). Pd atoms, each

located at the centre of a square prism of eight Bi atoms, form the layered crystal structure.

PdBi2 layers are stacked in the van der Waals nature, making it a feasible compound for cleav-

ing. In this chapter, the x, y, and z axes are taken along the tetragonal crystal structure as

shown in Fig. 5.2(a). The first Brillouin zone with the high-symmetry points (Γ, Z, N, X and

M) is shown in Fig. 5.2(b). For simply describing the (S)ARPES results, hereafter, we use the

projected two-dimensional (2D) surface Brillouin zone with 2D high-symmetry points (Γ̄, K̄ and

M̄) depicted in Fig. 5.2(b) by a green square.
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Figure 5.2: (a) Crystal structure of superconductor β-PdBi2. x, y, and z axes are taken along
the body-centered tetragonal crystal orientation. (b) The blue solid line (green plane) indicates
the three (two)-dimensional Brillouin zone with high-symmetry points Γ, Z, N, X, and M (Γ̄,
M̄, and X̄) (c) In-plane electrical resistivity (ρab) as a function of temperature (T ). The inset
shows ρab near the critical temperature (5.3 K). (d) Magnetic susceptibility (χ) as a function
of T, recorded under the field-cooled (FC) and zero-field-cooled (ZFC) conditions. A magnetic
field of 10 Oe was applied along the c-axis direction.

The in-plane electric resistivity measured using a large single-crystalline β-PdBi2 of good

quality exhibits a high residual resistivity ratio (∼ 14) and a clear superconducting transition

at Tc = 5.3 K as shown in Fig. 5.2(c). The magnetic susceptibility of the sample also shows

a clear sharp superconducting transition in bulk in Fig. 5.2(d). The single crystal of β-PdBi2

(∼ 1 cm × 1 cm) grown by a melt growth method and the transport measurement data were

provided by Mr. Okawa (Sasagawa group, Materials and Structures Laboratory, Tokyo Institute

of Technology).
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5.3 Experimental setup and calculation condition

The ARPES measurement with the HeIα light source (21.2 eV) was performed at the Department

of Applied Physics, The University of Tokyo, by using a VUV5000 He-discharge lamp and an

R4000 hemispherical electron analyzer (VG Scienta). The total energy resolution was set to 10

meV. Samples were cleaved in situ at around room temperature and measured at 20 K.

Spin-resolved ARPES with the HeIα light source (21.2 eV) was performed at the Efcient

SPin Resolved SpectroScOpy (ESPRESSO) end station attached to the APPLE-II-type vari-

able polarization undulator beamline (BL-9B) at the Hiroshima Synchrotron Radiation Center

(HSRC) [106]. The angular resolution was set to ±1.5◦, and the total energy resolution was set

to 35 meV. Samples were cleaved in situ at around room temperature and measured at 20 K.

First-principles electronic structure calculations within the framework of the density func-

tional theory were performed by Prof. Sasagawa (Materials and Structures Laboratory, Tokyo

Institute of Technology) using the full-potential linearized augmented plane-wave method as

implemented in the WIEN2k code [165], with the generalized gradient approximation of the

Perdew, Burke, and Ernzerhof exchange-correlation function [166]. SOI was included as a sec-

ond variational step with a basis of scalar-relativistic eigenfunctions. The experimental crystal

data (a = 3.362 Å, c = 12.983 Å, z(Bi) = 0.363) were used for the bulk calculations. The (001)

surface was simulated by a slab model: a stacking of 11 PdBi2 -triple layers along the c axis

with a 15 Å of vacuum layer, forming a tetragonal crystal structure of space group P4/mmm

with the lattice constants of a = 3.362 Å and c = 83.423 Å. The plane-wave cutoff energy was

set to RMTKmax, where the muffin tin radii are RMT = 2.5 a.u. for both Bi and Pd. The

Brillouin zone was sampled with the Monkhorst-Pack scheme [177] with momentum grids finer

than ∆k = 0.02 Å−1(for example, a Γ-centred 38× 38× 38 k-point mesh was used for the Fermi

surface visualization, corresponding to ∆k = 0.009 Å−1).

5.4 Band dispersions: ARPES vs. calculation

The electronic structure of β-PdBi2 observed using ARPES is shown in Figs. 5.3(c) and (d). The

calculated Fermi surfaces as shown in Fig. 5.3(a), indicate the three-dimensionally dispersive
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Figure 5.3: (a) Calculated Fermi surfaces shown with the first Brillouin zone. (b) Image of Fermi
surfaces projected along the kz direction. Two electron-like and two hole-like Fermi surfaces are
denoted by α, β and γ, δ, respectively. Green broken contour line indicates the Fermi contour of
δ at kz = 0. (c) Four-fold symmetrized Fermi surface image recorded by ARPES. The image is
obtained by integrating intensities in the energy window of ±8 meV at the Fermi level. The color
scale indicates the intensity. Surface state with sharp intensity denoted by the green broken line
is discussed in detail in section 5.7. (d) ARPES image recorded along X̄-Γ̄ and Γ̄-M̄ cuts, shown
as the light blue and pink lines in (c), respectively. The color scale indicates the intensity. (e)
Calculated bulk band dispersions projected onto 2D surface Brillouin zone. Blue (Red) curves
correspond to kz = 0 (2π/c). (f) Surface band dispersions obtained by slab calculation of 11
PdBi2-layers. Orange rectangles in (d)-(f) indicate the region where the surface Dirac cone
appears.
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electronic structure of β-PdBi2. Considering that the ARPES intensity includes the integration

of finite kz-dispersions due to the surface sensitivity, the experimental Fermi surface mapping

in Fig. 5.3(c) agrees well with the 2D projection of the calculated bulk Fermi surfaces [Fig.

5.3(b)]. The ARPES image in Fig. 5.3(d) is recorded along X̄-Γ̄ and Γ̄-M̄. Bands crossing the

Fermi level EF are predominantly derived from Bi 6p components with large dispersions from

EB ∼ 6 eV to above EF. On the other hand, bands mainly consisting of Pd 4d orbitals are

located around EB = 2.5 ∼ 5 eV with rather small dispersions. Reflecting the difference of

the photo-absorption cross sections of Bi 6p and Pd 4d orbitals (1 : 9.6 at 21.2 eV), the band

dispersions mainly consisting of Pd 4d orbitals are comparatively brighter than those of Bi 6p

in the ARPES image. Upon examining the region near EF, two hole-like band dispersions (α,

β) and one electron-like band dispersions (γ) are observed along Γ̄-M̄. For X̄-Γ̄, an electron-like

band dispersion (δ) with a sharp ARPES intensity is additionally observed.

For comparison with ARPES, the calculation of bulk band dispersions projected onto the

2D Brillouin zone is shown in Fig. 5.3(e). Considering that the ARPES intensity includes the

integration of finite kz-dispersions due to the surface sensitivity, the overall electronic structure

is in good agreement with the calculation. Two hole-like band dispersions (α and β) and two

electron-like band dispersions (γ and δ) are well reproduced. Nevertheless, several differences

can be noticed. The most prominent one appears in the orange rectangles in Figs. 5.3(d) and (e).

A sharp Dirac-cone-like band dispersion is experimentally observed where the calculated bulk

bands form a gap of ∼ 0.55 eV around the Γ̄ point. To confirm its origin, we performed a slab

calculation for 11 PdBi2 layers [Fig. 5.3(e)]. Apparently, a Dirac-cone-type dispersion appears

in the gapped bulk states, showing a striking similarity to ARPES [Fig. 5.3(d)]. The observed

Dirac-cone-like band dispersion is considered to be a two-dimensionally localized surface state.

5.5 Spin-polarized surface Dirac-cone band

Now, we focus on the observed surface Dirac-cone band. A close-up of the surface Dirac cone is

shown in Fig. 5.4(a), indicating its crossing point at EB= ED = 2.41 eV (ED : the energy of the

Dirac point where the bands cross each other). Such a clear Dirac-cone-shaped band strongly
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Figure 5.4: (a) Close-up of the observed surface Dirac-cone dispersions. (b) Constant energy cuts
of surface Dirac cone at EB = ED+0.8 eV, ED+0.4 eV and ED (= 2.41 eV), respectively, where
ED is the band-crossing point of the surface Dirac cone. The color scale indicates the intensity.
(c) Schematic of spin- and angular-resolved photoemission spectroscopy (SARPES) experimen-
tal geometry using the HeIα light source (21.2 eV) and very-low-energy electron diffraction
(VLEED) spin detectors. (d) Intensity image of the surface Dirac cone along Γ̄-M̄. The color
scale indicates the intensity. Grey broken lines (# 1-11) represent the measurement cuts for
energy distribution curves (EDC) shown in (f). (e) Spin-resolved image of the surface Dirac-
cone dispersions for spin y-component. The color scale indicates the spin polarization Py, from
Py = −1 (blue) to Py = +1 (red). (f) Spin-resolved EDCs for momenta # 111 as shown in d.

Red (blue) curves show the spin-up (spin-down) component of the intensity, I↑y (I↓y ). The black
markers denote the peak positions of the EDC in (d).
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reminds us of the helical edge states in three-dimensional (3D) strong topological insulators.

We can see the very isotropic character of the surface Dirac cone in its constant-energy cuts

[Fig. 5.4(b)], appearing as a perfectly circular contour even at EB= ED − 0.8 eV with a large

momentum radius of 0.3 Å−1. It reflects the C4v point group symmetry on the surface, in contrast

to the warping effect often appearing in trigonal strong topological insulators [178]. The spin

polarization of the surface Dirac cone is also directly confirmed by SARPES experiments as

depicted in Fig. 5.4(c) [106]. Figures 5.4(e) and (f) show the results for the y-component spin,

measured along kx (Γ̄M̄). Because of C4v symmetry, x-and z-components are forbidden. The

red (blue) curves in Fig. 5.4(f), indicating the energy distribution curves of spin-up (-down)

components, clearly show the spin-polarized band dispersions. As easily seen in the SARPES

image (Fig. 5.4(e)), spin polarization with spin-up (spin-down) for negative (positive) dispersion

of the surface Dirac cone is confirmed. The observed spin-polarized surface Dirac cone thus

presents a strong resemblance to the helical surface state in strong topological insulators.

5.6 Parity analysis for Z2 topological invariant

To evaluate whether the observed surface state is topologically non-trivial, we derive the Z2

invariant ν0 for β-PdBi2, in analogy to 3D strong topological insulators [57, 179]. For 3D band

insulators with inversion symmetry, the ν0 obtained from the parity eigenvalues of filled valence

bands at eight time-reversal invariant momenta (TRIM) [where k ≡ −k (mod G), G is the

reciprocal vector] indicates whether it is a strong topological insulator (ν0 = 1) or not (ν0 = 0).

The bulk β-PdBi2 is apparently a metal; nevertheless, here we define a gap in which there is no

crossing of the bulk band dispersions through the entire Brillouin zone as schematically shown

in Fig. 5.5(e). By considering this gap, we discuss its topological aspect by calculating ν0.

The calculated bulk band structure without and with SOI are shown in Figs. 5.5(a) and (b),

respectively. The valence bands are identified by numbers (from 1st to 10th), as indicated on the

right side of respective graphs. The bands are numbered by the energy (E) at the Z point. Note

that all bands are doubly spin-degenerate owing to the space inversion symmetry. By comparing

Fig. 5.5(a) and (b), we notice that many anti-crossings are introduced by spin-orbit interaction,
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Figure 5.5: (a) (b) First-principles band calculations without and with spin-orbit interaction
(SOI), respectively. Valence bands are numbered by the energy (E) at the Z point, as shown
in the right side of panels. The green rectangles indicate the energy region where the surface
Dirac-cone appears. The pink (blue) shaded area in (b) shows gap 7-6 (gap 9-8) induced by
SOI. (c) (d) Lists of the topological invariant ν0 and the symmetries of wave-functions at the Γ
and Z points without and with SOI, respectively. The left end columns (#) indicate the number
of the valence bands as given in (a) and (b). The symmetries indicated with red (black) have
the odd- (even-) parity. ν0 = 1 indicates the topologically nontrivial band-inverted state. The
pink (blue) line in (d) denotes gap 7-6 (gap 9-8). (e) Schematic of the definition of gap 7-6. (f)
The distribution of the direct gap (Eg) for gap 7-6 showing the minimum direct gap of 0.105 eV
(0.109 eV) by k sampling of 393 (333) obtained by the band calculation. (g) The distribution of
the direct gap (Eg) for gap 9-8 showing the minimum direct gap of 0.123 eV by k sampling of
393 obtained by the band calculation.
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including the ∼ 0.55 eV gap opening in the green rectangular region, where the surface Dirac

cone appears. Here, we focus on the gap between the 7th and 6th bulk bands, namely gap 7-6,

shaded by pink in Fig. 5.5(b). The distribution of the direct gap between the 7th and 6th bands

can be evaluated by the joint density of states as a function of the gap energy Eg, defined as

ρ(eg) =
∑
k

δ(Eg − [E7(k) − E6(k)]). (5.1)

The result for gap 7-6 is shown in Fig. 5.3(f), which guarantees minimum value of 0.105 eV for

the gap opening between the 7th and 6th bands through the entire Brillouin zone.

By considering the obtained gap, we discuss its topological aspect by calculating ν0 in analogy

to 3D strong topological insulators. As shown in Fig. 5.2(b), the eight TRIM in the Brillouin

zone of β-PdBi2 with I4/mmm symmetry are Γ, Z, two X, and four N points. Considering these

TRIM, the Z2 invariant for the gap between the (N+1)-th and N -th bulk bands, ν0(N), can be

calculated by

(−1)ν0(N) =

8∏
i=1

N∏
m=1

ξm(Γi), (5.2)

where ξm(Γi) represents the parity eigenvalue (±1) of the m-th band at the i-th TRIM. Note

that, since there are even numbers of X and N points, only Γi = Γ and Z contribute to the

calculation of ν0 (N); that is,

(−1)ν0(N) =
N∏

m=1

ξm(Γ)ξm(Z). (5.3)

Thus, ν0 can be calculated by considering solely the Γ and Z point, the symmetries of wave

functions of which are listed in Fig. 5.5(d) for respective bands. Those indicated by red (black)

are of odd (even) parity. We find that gap 7-6 is characterized by ν0(6) = 1, indicating its

analogy to 3D strong topological insulators. This requires an odd number of surface states

connecting the 7th and 6th bands to topologically link the bulk β-PdBi2 and vacuum. The

observation of a spin-helical surface Dirac cone in gap 7-6 clearly represents the characters of

such topologically protected surface states.
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5.7 Topologically protected surface state near Fermi level

By further examining the list of ν0 in Fig. 5.5(d), we notice ν0(8) = 1 for gap 9-8 shaded by

blue in Fig. 5.5(b), which has the minimum gap of 0.127 eV, as confirmed by the calculation

[Fig. 5.5(g)]. It suggests that topological surface states connecting the 9th and 8th bands must

exist, where we may observe the effect of superconductivity if located sufficiently close to EF.

To clarify this possibility, a close-up of the ARPES image near EF is shown with the calculation

in Figs. 5.6(b) and (c). The green curves in Fig. 5.6(c) indicate the calculated surface states

crossing EF separately from the 2D projected bulk bands shaded by gray. They appear at the

smaller-kx side of β (8th) and γ (9th) bands. Experimentally, the sharp peaks indicative of 2D

surface states are observed in the momentum distribution curve at EF, as denoted by S1 and

S2 in Fig. 5.6(a). As can be seen in the list of ν0 in Fig. 5.5(d), S2 should be the topological

surface state connecting the 9th and 8th bands (ν0(8) = 1), whereas S1 appearing in gap 8-7

must be trivial (ν0(7) = 0).

The spin polarization of the topological surface state S2 as well as the trivial surface state S1

is also confirmed experimentally. As shown in Fig. 5.6(d), the y-oriented spin polarizations of S1

(#2−5) and S2 (#7−10) along kx (Γ̄-M̄) are clearly observed in the spin-resolved spectra. Here,

the peak positions for S1 and S2 (bulk β) bands are depicted by green circles (black squares).

We can see that S1 and S2 are both spin polarized with spin-up for kx > 0, whereas they get

inverted for kx < 0 [Figs. 5.6(e) and (f)], as required by the time-reversal symmetry. These

clearly indicate that both topological and trivial surface states crossing EF possess the in-plane

spin polarizations.

The Z2 invariant analysis shows that an odd number of gapless surface states in gap 9-8,

connecting the 9th and 8th bands, must exist between Γ̄-M̄. To confirm whether the experimen-

tally observed S2 indeed corresponds to this topological surface state, we need to examine the

slab calculation carefully since S2 crosses EF and extends to the unoccupied state. By tracking

the calculated data from M̄ towards Γ̄ [Fig. 5.7(a)], we first notice that S2 is derived from

the local minimum of the 9th (γ) band. S2 then crosses EF and reaches up to E−EF= 2 eV

without merging into the bulk states. At Γ̄, although it gets overlapped with 2D projected bulk
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Figure 5.6: (a)-(c) Momentum-distribution curve obtained by integrating the intensity in the
energy window of ±10 meV at the Fermi level, the intensity image, and the calculation, re-
spectively, shown along Γ̄-M̄ The black arrows in (a) indicate the intensities from two different
surface bands denoted by S1 and S2. Green circles (black squares) depicted in (b) are the
peak positions of energy- and momentum- distribution curves for surface (bulk) bands. In (c),
surface band dispersions (green) are overlaid to two-dimensional projected bulk bands (gray),
namely the 7th (α), 8th (β), and 9th (γ) bands. (d) Spin-resolved spectra recorded at momenta
#1 ∼ #12, as shown in (b). (e), (f) Spin-resolved spectra for S1 at momenta #4 and #4′ in
(b), and for S2 at momenta #9 and #9′ in (b), respectively. Red (blue) curves in df show the

spin-up (spin-down) component of the intensity for spin-y, I↑y (I↓y ). Green circles (black squares)
depicted in (d)-(f) are identical to those in (b).

bands, we can distinguish S2 forming a Rashba-like crossing point at E−EF= 2.4 eV. After

the crossing, the S2 band eventually gets merged into the 8th (β) band. It thus shows that S2

indeed connects the 9th and 8th bands. The crossing of the S2 surface band at Γ̄ is more clearly

seen by comparing the 2D projected bulk [Fig. 5.7(b)] and the slab [Fig. 5.7(c)] calculations

magnified near the crossing point. The crossing of the S2 surface band at Γ̄ is distinguished
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Figure 5.7: (a) Two-dimensional projected bulk bands and the surface state bands obtained by
the calculation. The energy (E) relative to the Fermi level (EF) is plotted along X̄-Γ̄ and Γ̄-M̄.
Those crossing the Fermi level are painted by colors; yellow for 7th (α), blue for 8th (β), pink
for 9th (γ), and green for the 10th (δ) bands. The surface-state bands crossing the Fermi level
are depicted by the red curves. (b), (c) The calculated band dispersions for the bulk PdBi2 and
for the slab of 11 PdBi2 layers, respectively, magnified near the band crossing point. E−EF for
respective bands are plotted as a function of momentum k. The bands at the topmost surface
are highlighted by red markers in (c).

in Fig. 5.7(c) by following the eigenenergies highlighted with the red markers. Note that no

such crossing exists for the calculation of bulk in Fig. 5.7(b). S2 thus possesses a similarity to

the Dirac cone that connects the gap with the crossing at Γ̄, and it is indeed a topologically

protected surface state.

5.8 Discussion: Origins of parity inversions

The spin polarization in the topological surface states originate from SOI, but SOI is not nec-

essary for the parity-inverted band structure realized in gap 7-6 as shown in Fig. 5.4(d). Here,

we discuss how the parity inversion occurs with and without the help of SOI for gap 9-8 and

gap 7-6 by considering the energy levels of the related molecular orbitals [180,181] at the Γ and

Z points.
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5.8.1 Parity inversion for gap 9-8

For the case of S2 in gap 9-8, we can see ν0 changing to 1 through SOI, as shown in Figs. 5.5(c)

and (d). Figures 5.8(a) and (b) show close-up views of calculated band dispersions along the

Γ-Z line without and with SOI, respectively. The band indices and irreducible representations

in the graphs correspond to those in Figs. 5.5(c) and (d), respectively. The band dispersions

with odd (even) parity at the high symmetry points (Γ and Z points) are denoted by red (black)

circles. They indicate that band inversion occurs at the Γ point between E1/2g and {E1/2u and

E3/2u} states with the help of SOI as represented by black and red arrows in Figs. 5.8(a) and

(b). Since the band dispersions above the Fermi level mainly consist of Bi 6p orbitals, these

drastic band modifications reflect the strong atomic SOI of the Bi atom. Roughly speaking, the

origin of this band inversion can be understood as the strength of SOI overcomes the energy

gap between the bonding (Eu) and the anti-bonding state (Eg) of Bi {6px, 6py} orbitals at only

the Γ point. Usually, the energy difference between the anti-bonding state and bonding states

becomes minimum at Brillouin zone boundaries, in contrast to the current case. The energy

levels of Bi {6px, 6py} states in a body-centered unit cell are understood by using the schematics

of molecular orbitals, as shown in Figs. 5.9(b)-(d). These correspond to the wave function of

Figure 5.8: (a), (b) Calculated band dispersion along Γ-Z above the Fermi level without and
with SOI. The band indices #7 ∼ #11 and irreducible representations corresponding to Figs.
5.5(a)-(d) are represented in graphs. The band dispersions with odd (even) parity at the high
symmetry points (Γ and Z points) are denoted by the red (black) circles. The parity inverted
gap 9-8 is shaded by blue in (b).
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Figure 5.9: (a) Body-centered tetragonal crystal structure of β-PdBi2. (b)-(d) Schematics of the
molecular orbitals of Bi 6p orbitals for the anti-bonding state (Eg) and bonding state (Eu) at
the Γ and Z point in the absence of SOI. A tetragonal parallelepiped represents the square prism
of eight Bi atoms, as denoted by a green circle in (a). Red and blue colors denote the phases of
wave functions of 0 and π, respectively. Here, only Bi 6px orbitals are illustrated without loss
of generality.

#8, 9 (bonding states) and #10, 11 (anti-bonding states) at the Γ and Z points, respectively.

Here, a ribbon-like shape represents the spreading of the Bi 6px orbital, and red and blue colors

represent the phases of the Bloch function of 0 and π. Without loss of generality, only Bi 6px

orbitals are illustrated on the corners of the square prism of eight Bi atoms represented in Fig.

5.9(a). The more same-colored orbitals overlap, the lower the energy level is located. This

indicates that the bonding state (Eu) at the Z point [Fig. 5.9(e)] has the lowest energy among

them in Figs. 5.9(a)-(d). Likewise, the anti-bonding state (Eg) [Fig. 5.9(d)] at the Z point has

the highest energy. Thus, the energy difference of the anti-bonding and bonding states becomes

minimum at the Brillouin zone center.
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As a result, the energy-level difference between Eg and Eu at the Γ point (Z point) is smaller

(larger) than the band modification induced by the SOI of the Bi atom (∼ 1 eV); thus a

topologically non-trivial electronic structure similar to the strong three-dimensional topological

insulator is achieved in β-PdBi2. We should note that, if the energy level of the Bi 6pz anti-

bonding state were far from that of the Bi {6px, 6py} bonding state, the band inversion between

E1/2u and E1/2g (#8 and #9 at the Γ point) could not occur. For the Bi 6pz orbitals, the largest

energy difference between the bonding and anti-bonding state at the Γ point is understood in

the same manner as for the Bi {6px, 6py} orbitals.

5.8.2 Parity inversion for gap 7-6

For gap 7-6 where the surface Dirac cone lies, the parity inversion is realized already in the

non-relativistic case as shown in Fig. 5.5(c), in contrast to gap 9-8. Figures 5.10(a) and (b)

schematically show the energy levels of Bi 6pz and Pd 4dz2 orbitals contributing to the parity

inversion at the Z and Γ points without SOI. For the Bi 6pz anti-bonding and bonding states,

those energy levels are close (far) at the Z point (Γ point), as understood in the same manner

as in the case of the {6px, 6py} states shown in Fig. 5.9. At the Γ point, the band inversion

between the A1g and A2u states is introduced by the mixing of Bi 6pz and Pd 4dz2 because

the Bi 6pz bonding state has the same symmetry as in the Pd 4dz2 orbital represented by A1g,

forming two A1g states as shown in Fig. 5.10(c). On the other hand, the Bi 6pz anti-bonding

state with odd parity cannot mix with the Pd 4d orbitals with even parity. Consequently, the

Bi 6pz bonding state energetically overcomes the Bi 6pz anti-bonding state with the help of the

Pd 4dz2 orbital only at the Γ point, leading to the topologically non-trivial electronic structure

in the absence of SOI.

Furthermore, the energy levels of the A1g and A2u state at the Z point, as shown in Figs.

5.5(a) and (b) and denoted by green rectangles, are nearly unchanged by SOI. This suggests

that those electrons cannot rotate around atoms but stretch straight forward owing to the lack

of the transverse component of orbital angular momentum (i.e. pz and dz2 orbitals; lz = 0).

However, as mentioned at the beginning of this section, SOI should still play an essential role

in the anti-crossing gap around the Z point and in providing the spin polarization on the Dirac
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Figure 5.10: (a), (b) Schematics of the energy levels consisting of Bi 6pz and Pd 4dz2 orbitals
contributing to the parity-inverted band structure in gap 7-6 realized in the absence of SOI at
the Γ and Z points. Energy levels having odd parity is denoted by red. (c) Schematic of the
molecular orbitals of two A1g (anti-bonding and bonding) states and A2u state consisting of the
Bi 6pz and Pd 4dz2 orbitals at the Γ and Z points. The A2u state having odd parity cannot
mix with the Pd 4d orbitals having even parity at the Γ and Z points represented by a contour
shaped as a 4dz2 orbital indicated by a broken line.

cone band dispersions, as shown in the green rectangle in Fig. 5.5(b).

It is worth noting that the anti-bonding and bonding states are helpful for the parity inversion

in the case of both gap 9-8 and gap 7-6 because two Bi atoms in a body-centered tetragonal

unit cell form a small energy difference between two eigenstates having odd and even parity.

Such materials including several atoms in a unit cell can be candidates for not only topological

insulators but also other topological materials.
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5.9 Summary

We have investigated the electronic structure in the normal state of a centrosymmetric supercon-

ductor β-PdBi2 by using ARPES and spin-resolved ARPES. In addiction to the spin-degenerate

bulk bands, several surface band dispersions (surface Dirac cone, S1, and S2) with in-plane spin

polarizations are additionally observed. Those bulk and surface band dispersions are in good

agreement with the calculated band dispersions obtained by first-principles band calculations

for bulk bands and the slab calculation for surface states. Since the slab calculations do not

account for any surface reconstruction and relaxations of atoms, the surface Dirac cone band

dispersion with spin polarization evokes that of topological insulators.

To discuss the topological nature of bulk band dispersions, we have evaluated the Z2 invariant

derivation in analogy to three dimensional strong topological insulators. In the centrosymmetric

tetragonal body-centered crystal structure β-PdBi2, the parity eigenvalues at Γ and Z points

dominate the Z2 topological invariant ν0(N), where N is the band index. The parity analysis

reveals that the surface Dirac cone [ν0(6) = 1, lying in defined gap 7-6] and the S2 [ν0(8) = 1,

lying in defined gap 9-8 across the Fermi level] are topologically protected surface states.

The parity inversions of gap 7-6 and gap 9-8 have different origins. For gap 7-6, ν0(6) = 1 is

realized already in the non-relativistic band dispersions. It is derived from the band inversions

between A1g and A2u bands introduced by the Bi 6p and Pd 4d mixing. In that case, the spin-

orbit interaction does not modify the energy levels of related band dispersions at the Z point,

but it still plays an essential role in gap-opening around the Z point and in providing the spin

polarizations for the surface states. For gap 9-8, the strong spin-orbit interaction of Bi 6px,

6py orbitals realize the parity inversion at the Γ point above the Fermi level. The {6px, 6py}

anti-bonding (Eg) and bonding (Eu) states derived from the two Bi atoms in a unit cell provide

a good condition for the parity-inverted topologically nontrivial band structure.

To search for new topological materials such as Dirac/Weyl semimetals and topological su-

perconductors, it is useful to pay attention to materials not only including heavy atoms with

strong spin-orbit interaction but also including two or more of the same atoms in a unit cell.

For example, in analogy with β-PdBi2, there would be many uninvestigated materials in which
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a superconducting state and topological surface states coexist without any chemical doping at

ambient pressure. For the β-PdBi2, the next step should be the direct elucidation of the super-

conducting state. There may be a chance to observe non-trivial superconducting excitations, in

which Majorana fermions emerge as theoretically suggested [182–185].



Chapter 6

Topological surface states on polar
semimetal MoTe2

6.1 Introduction: Weyl semimetal with time-reversal symmetry

The Weyl semimetal is one of the topological materials [76], in which pairs of crossed linear

band dispersions (Weyl cones) located off the high symmetrical line in momentum space form

a gapless bulk band structure. The effective Hamiltonian for the band crossings obeys the

Weyl equation [186] referred to in particle physics that approximately describes the chiral and

massless behavior of neutrinos. In solids, the Weyl cones always appear in pairs, and those band

crossing points (Weyl nodes) act as a source or sink of Berry curvature [137,187] in momentum

space. This peculiar bulk electronic structure in the Weyl semimetal exhibits exotic transport

phenomena such as the chiral anomaly [188–192]. Those Weyl nodes are not protected by any

symmetries, but their existence somewhere in the Brillouin zone is topologically guaranteed. The

topologically protected appearance of accidental band degeneracies can be realized in the time

reversal symmetry broken system [76, 78] or the space inversion symmetry broken system [77].

Topological surface states accompanied by this topological nature are characterized as arc-like

unclosed Fermi surfaces (called Fermi arcs) connecting two Weyl nodes with opposite chiralities.

Recently, on the magnetic compound YbMn2Bi2 [79] and the noncentrosymmetric compounds

TaAs and related materials [80–85], Fermi arcs have been clearly observed by using angle-resolved

photoesmission spectroscopy (ARPES), providing the first evidences of the Weyl semimetallic

74
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Figure 6.1: Schematics of the phase transition from the normal insulator (a) to the Weyl
semimetal (b),(c) in three dimensions. Here, the anisotropic Rashba-type spin-split band dis-
persions (red and blue lines) both above and below the Fermi level are assumed, given the SOI
increasing as a parameter from (a) to (c). Purple arrows indicate the gap closing or opening.
The Fermi surface with moving Weyl nodes (green points) and evolving Fermi arcs (pink lines)
are shown in the lower panels.

electronic structure realized in real materials.

The Weyl semimetal phase in three dimensions with space inversion symmetry universally

exists in the phase transition from a normal insulator into a topological insulator [77]. Tracking

the evolution of the Fermi arcs in the phase transition [77, 193–195] is helpful to understand

the electronic structure of the Weyl semimetal and the role of spin-orbit interaction (SOI) in it.

In Figs. 6.1(a)-(c), the phase transition from the normal insulator (a) to the Weyl semimetal

(b), (c) on anisotropic Rashba-type spin-splitting in bulk is schematically shown, given the SOI

increasing from (a) to (c). In the first step in Fig. 6.1(a), we assume a gap along the kx direction

narrower than that along the ky direction owing to the difference of the spin-splitting. With

increasing SOI (i.e., energies of spin-splittings), the gap closes on the ky-axis, and Weyl nodes
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Figure 6.2: Schematics of a Type-I Weyl node with a point-like Fermi surface (a) and a type-II
Weyl node appearing as the contact point between electron and hole pockets (b). These graphs
are adopted from ref. [196].

(denoted by green markers in the lower panel) are formed at the critical point in Fig. 6.1(b).

When the SOI increases further, the energy gap is opening on the ky-axis; in contrast, it is still

closing on the kx-axis. Furthermore, the generated Weyl nodes are traveling toward the ky axis

as represented by pink arrows in Fig. 6.1(c). This situation indicates that the Weyl cones must

exist between the kx-axis and ky-axis, accompanied by the Fermi arcs (denoted by pink lines

in the lower panel). The Weyl semimetallic electronic structure is translated as partly band-

inverted band dispersions in momentum space. Finally, after the Weyl nodes touch the ky-axis,

the system changes into the topological insulator phase in the space inversion symmetry broken

system. As seen above, the spin-split band dispersions derived from the SOI play essential roles

in the Weyl semimetal phase, and such a situation is realized in pressured BiTeI [193,194] with

the giant Rashba-type spin-splitting, as shown in section 1.3.1.

Very recently, Soluyanov et al. theoretically proposed another type of Weyl semimetal called

type-II Weyl semimetal [196], in which Weyl nodes appear as the contact point between electron

and hole pockets, as shown in Fig. 6.2(b), and its physcal properties are different from those of

normal (type-I) Weyl semimetals with the point-like Fermi surface in Fig. 6.2(a). The type-II

Weyl node corresponds to sufficiently tilted type-I Weyl nodes [196]. One of the candidates for

type-II Weyl semimetal is the polar semimetal MTe2 (M = Mo, W) [196–203, 210] consisting

of electron- and hole-like Fermi surfaces. In this chapter, we investigate the electronic struc-



6.2. EXPERIMENTAL SETUP AND CALCULATION CONDITION 77

ture of the polar semimetal MoTe2, which is theoretically proposed to have Weyl nodes in the

unoccupied band structure [200,201].

6.2 Experimental setup and calculation condition

Single-crystalline samples grown by the chemical vapor transport method were provided by Mr.

Ikeura (Ishiwata group, Department of Applied Physics, The University of Tokyo).

ARPES measurement with an s-polarized laser light source (6.43 eV) at 25 K was performed

at the Department of Applied Physics, The University of Tokyo (as discussed in Chapter .3),

using an R4000 hemispherical electron analyzer (VG Scienta). The total energy resolution was

set to 1 meV. Samples were cleaved in situ at 25 K. ARPES measurement with an s-polarized

laser light source (6.994 eV) at 25 K and 100 K was performed at Shin group, ISSP, The

University of Tokyo, using an DA30 hemispherical electron analyzer (VG Scienta). The total

energy resolution was set to 7 meV to prioritize the photoemission intensity. Samples were

cleaved in situ at 25 K.

Electronic structure calculations were performed by Dr. M. S. Bahramy (Department of

Applied Physics, The University of Tokyo) within the context of density functional theory (DFT)

using the Perdew-Burke-Ernzerhof correlation functional as implemented in the VASP program

[204]. Relativistic effects, including spinorbit coupling, were fully included. The Brillouin zone

was sampled by a 20 × 10 × 5 k-mesh. For the orbital and layer projection calculation, a tight

binding Hamiltonian for the bulk band structure was constructed by downfolding the DFT

results using maximally localized Wannier functions [205], employing Mo 4d and 4s orbitals and

S 3p and 3s orbitals as a basis.

6.3 Crystal structure and electronic structure

The layered transition metal dichalcogenide MoTe2 shows a structural transition at TC = 240

K from the high-temperature monoclinic phase [Fig. 6.3(a)] to low-temperature orthorhombic

phase[Fig. 6.3(b)] [206–209]. The crystal structure of the high-temperature phase has space

inversion symmetry （space group P21/m), while that of the low-temperature phase lacks an
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Figure 6.3: (a)(b) Crystal structures of high-temperature monoclinic phase (space group P21/m)
and low-temperature orthorhombic (Pnm21) phase. (c)Brillouin zone of the orthorhombic crystal
structure. Γ, Z, X, U, Y, and T are the high-symmetry points. The blue rectangle represents
the projected two-dimensional Brillouin zone with the two-dimensional high-symmetry points
(Γ̄, X̄, and Ȳ).

inversion center (Pnm21). The lattice constants for the low-temperature phase are a = 3.477 Å,

b = 6.335 Å, and c = 13.883 Å, which are obtained by an X-ray diffraction study at 120 K [200].

The strong atomic SOIs of Te 5p and Mo 4d orbitals greater than 0.1 eV leads to Rashba-type

spin-split band dispersions in the polar crystal structure of orthorhombic MoTe2. These satisfy

the necessary conditions to realize the Weyl semimetallic electronic structure.

The Fermi surfaces of orthorhombic MoTe2 consist of electron-like and hole-like surfaces

[200, 201, 210]. The surface electronic structure obtained by the band calculation is shown in

Fig. 6.4, which is adopted from ref. [200]. The corresponding two dimensionally projected

Brillouin zone is shown in Fig. 6.3(c) (blue rectangle) with the orthogonal momentum axes

kx, ky, and kz. The hatched area represents the two-dimensionally projected bulk electronic

structure, and sharp linear contours and band dispersions correspond to surface states which

can be merged into bulk band dispersions. Figure 6.4(i) shows the electron-like and hole-like

band dispersions along Ȳ − Γ̄− X̄. The hole-like surfaces around the Γ̄ point (electron surfaces)

becomes smaller (bigger) with increasing energy, as shown in the electronic structure at constant

energies of EF + 6 meV in Fig. 6.4(a) and at EF + 59 meV in Fig. 6.4(b). In the type-II Weyl
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Figure 6.4: (a)-(c) Calculated constant-energy surface at EF +6 meV where the Weyl nodes
(W1) are located. (d) Schematic illustration of Fermi arc at EF +6 meV. (e)-(g) Calculated
constant energy surface at EF +59 meV where the Weyl nodes (W2) are located. (h) Schematic
illustration of Fermi arc at EF +59 meV. (i) Surface energy dispersion along the high symmetry
lines of Ȳ-Γ̄-X̄. (j) Surface energy dispersion along the Σ-Σ

′
crossing Weyl nodes. The exact

projections of W1 and W2 are denoted as solid gray and green dots. The end points of Fermi
arcs are marked as open circles. The Fermi arcs are highlighted by dashed lines in (b) and (f).
All images are adopted from ref. [200].

semimetal, Weyl nodes accompanying Fermi arcs appear at the boundary of the electron and

hole pockets [196]. The calculated results show the two different kinds of Weyl nodes (W1 and

W2) located at different energies of EF+6 meV and EF+59 meV. The Fermi arcs connecting
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W1 and W2 are clearly seen in the close-up view of Figs. 6.4(b),(c),(f), and (g), and they are

schematically summarized in Figs. 6.4(d) and (h). Since the line connecting W1-W2 is almost

parallel to the ky axis, Fig. 6.4(j) presents the Fermi arc surface states along the Σ-Σ
′

crossing

W1 and W2, as denoted in Fig. 6.4(e). Meanwhile, another recent first-principles calculation

study on MoTe2 with the lattice parameter experimentally obtained at 100 K [201] suggests

only four Weyl nodes of W2. This implies that the band dispersions are very sensitive to the

small difference of the lattice parameters [200, 201] and/or the precise treatment of the band

calculations. In addiction to the Fermi arcs, several surface states, which do not reflect the Weyl

smimetallic electronic structure but possibly some kind of topological electronic structure, are

observed at the boundary of the electron and hole pockets. For example, we find a characteristic

surface state connecting the bottom of electron pocket and hole bands along Γ̄-X̄, as shown in

the lower part in the close-up view of Fig. 6.4(i). Here, we should recollect that the Fermi arc

appears only between the Weyl nodes with opposite chiralities and connects them.

6.4 Different surface states depending on surface terminations

To investigate the electronic structure near the Fermi level precisely, we carried out the laser

ARPES measurement on orthorhombic MoTe2 at T = 25 K. At a cleavage surface, two different

kinds of ARPES images along Γ̄-X̄ are obtained, as shown in Figs. 6.5(a) and (b). Though

the obtained laser ARPES images are very complicated, we can see hole-like electronic states

around the Brillouin zone center and electron-like states located at kx < −0.2 Å−1 both in Figs.

6.5(a) and (b), similar to the results of the previous first-principles calculation study [200,201].

By comparing two ARPES images, one of the contrasting differences is the sharp intensities

denoted by pink arrows. Those band dispersions likely correspond to surface states connecting

the electron and hole pockets, as discussed in the previous section. Taking note of the difference

between these ARPES intensities, the surface state observed in Fig. 6.5(a) disperses at a shal-

lower energy relative to the Fermi level than that in Fig. 6.5(b), in contrast to the bulk electron

pockets located at the same energy and indicated by yellow broken lines in Figs. 6.5(a) and (b).

In addition, a characteristic band-repulsion-like behavior indicated by a purple arrow is only
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Figure 6.5: (a), (b) Laser ARPES images along the kx direction on the side A and B. The
yellow broken line indicates the electron pocket across EF. S1 and S2 are surface states lying
at the boundary between the electron pocket and the hole pocket. (c), (d) Surface electronic
structure on side A (00-1) and side B (001) surfaces obtained by the slab calculation. Hatched
areas correspond to the bulk band dispersions projected onto the Γ̄-X̄ line.

observed in Fig. 6.5(a). To clarify the origin of the two different ARPES images, we calculate

surface electronic structures on (00-1) and (001) surfaces as shown in Figs 6.5(c) and (d). The

calculated results reproduce well the difference of the surface band dispersions (represented by

pink arrows), and the repulsive behavior (represented by purple arrows) depending on the sur-

face terminations. This suggests that the different surface-termination domains (larger than the

laser spot size of ∼ 0.1 mm) mix on a cleavage surface reflecting the bulk polar crystal structure.
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Hereafter, we define the (00-1) surface as side A [Figs. 6.5(a),(c)] and the (001) surface as side B

[Figs. 6.5(a),(c)]. Judging from the behavior of the surface state, the previous studies [200,201]

correspond to those on side B.

The calculation results on side B in Fig. 6.5(c) correspond to previous band-calculation

results [200,201]. On side B, as suggested in the previous theoretical study [200,201], two surfaces

states lying at the boundary between the hole and electron pockets are observed (denoted by

S1 and S2) in Fig. 6.5(b), and the S2 surface state corresponds to the bulk merged surface

states forming the Fermi arc off the kx axis. Similar ARPES intensities as denoted by S1 and

S2 are also observed on side A in Fig. 6.5(a), and the S2 surface state seems to be merged

into the bulk band dispersions in the calculated result in Fig. 6.5(c) as well. We note that

the observed energy difference of the surface states between sides A and B is larger than the

calculated results. It likely depends on realistic surface conditions (e.g. atomic relaxations

and/or surface reconstructions) omitted in calculation. Comparing between calculation and

experimental results, the observed bulk electron pockets in both Figs. 6.5(a) and (b) are located

at slightly lower energy (∼ 0.02 eV) compared to calculated ones in Figs. 6.5(c) and (d) because

of the non-stoichiometry.

6.5 Fermi arc like surface states

Now, we focus on constant-energy ARPES intensity mappings on respective surfaces to detect

signatures of the Fermi arcs in Weyl semimetallic electronic structures. Figures 6.6(a) and (d)

show the constant energy ARPES intensity mappings at the Fermi level (E = EF) on side A and

B, respectively. At the Fermi level, the electron pocket [denoted by circle with yellow broken line

in Fig. 6.6(a)] and a part of the hole pockets around the Γ̄ point forming the semimetallic Fermi

surfaces are clearly observed. The sharp intensities lying at the boundary of the electron and

hole pockets represent the surface states S1 and S2 denoted by red and blue arrows, respectively.

As discussed in the previous section, the S2 surface state on side B is merged into the bulk band

dispersions on the kx axis. Similarly, the observed contour of S2 at the Fermi level on side B

in Fig. 6.6(d) shows a characteristic intensity contrast between on and off the kx axis. This
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Figure 6.6: (a)-(c) Constant-energy ARPES intensity mapping on side A at T = 25 K for E =
EF, EF+5, and EF+10 meV. (d)-(f) That on side B at T = 25 K for E = EF, EF +5, and
EF+10 meV. (g)-(i) That on side A at T = 100 K for E = EF, EF +30, and EF+50 meV. (j)-(l)
That on side B at T = 100 K for E = EF and EF +30, and EF+50 meV.
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intensity contrast becomes drastic at E −EF = 5 meV in Fig. 6.6(e), and the ARPES intensity

is almost invisible on the kx axis, resulting in arc-like segments remaining off the kx axis. This

characteristic behavior is not seen at E − EF = 10 meV in Fig. 6.6(f). These arc-type surface

states agree well with the calculated topological Fermi arcs connecting W1 and W2 Weyl nodes

in Fig. 6.4 [200].

In contrast to side B, such an intensity contrast is not seen in the intensity mapping on

side A at E − EF = 0 (Fermi level), 5, and 10 meV in Fig. 6.6(a)-(c); both the S1 and S2

surface states appear to be continuous even on the kx axis. To search for the Fermi arc on

side A, we performed laser ARPES measurement at T = 100 K, which enables us to obtain

the ARPES intensity of unoccupied bands owing to the thermal excitation. Figures 6.6(g)-(i)

show the ARPES intensity mappings at E − EF = 0 (Fermi level), 5, and 10 meV on side A

at T = 100 K with the independently defined color scale for respective images. Though those

ARPES images are indistinct compared with those taken at T = 25 K, an arc-like segment of

ARPES intensities on the kx axis is certainly observed only at E − EF = 30 meV. Such Fermi-

arc-like segment is not observed on side B at T = 100 K, as shown in Figs. 6.6(j)-(k). The

shape of the observed arc-like intensity segment in Fig. 6.5(h) appears to compensate for the

intensity lacking observed in Fig. 6.5(e); that is, it seems to connect the W1 Weyl nodes across

the ky= 0 momentum cut.

To confirm the surface band dispersions forming the Fermi arcs on side A, we present ARPES

images (E − EF vs. kx) along momentum cuts ♯1 - ♯3 (ky = 0, 0.15 and 0.30 Å−1) [Figs.

6.7(b)-(d)], as indicated on the constant energy intensity mapping in Fig. 6.7(a). In order to

observe the unoccupied electronic structure clearly, these ARPES images are divided by the

Fermi-Dirac distribution function convolved by Gauss function with FWHM = 7 meV along the

energy direction. As clearly shown in Figs. 6.7(a)-(c), the sharp intensity across E = EF +30

meV is suppressed at ky = 0.30 Å −1 (off the Fermi-arc) as represented by orange broken lines

in Figs. 6.7(a)-(c), respectively. This represents the characteristic behavior of the topological

surface states in the Weyl semimetal phase, connecting the W1 Weyl nodes across the kx axis.

As might be expected, contrasting behaviors are observed on side B. ARPES images in Figs.

6.7(f)-(h) are obtained in the same manner as side A in Figs. 6.7(b)-(d), except that a Gauss
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Figure 6.7: (a) The ARPES intensity mapping at E = EF +30 meV on side A. (b)-(d) ARPES
images divided by the Fermi-Dirac distribution function convolved by a Gauss function with
FWHM = 7 meV along momentum cut ♯1 - ♯3 (ky = 0, 0.15 and 0.30 Å−1) as indicated in
(a). (e) The ARPES intensity mapping at E = EF +5 meV on side B. (b)-(d) ARPES images
divided by the Fermi-Dirac distribution function convolved by a Gauss function with FWHM
= 1 meV along momentum cut ♯1 - ♯3 (ky = 0, 0.15 and 0.30 Å−1), as indicated in (e). Off the
Fermi arcs [(d) on side A, (f) and (g) on side B], the surface states are merged into bulk band
dispersions as represented by orange broken lines in (a)-(h).

function with FWHM = 1 meV was used. Corresponding momentum cuts are denoted on the

constant-energy intensity mapping in Fig. 6.7(e). The momentum cut ♯1 (ky = 0.30 Å −1) on

the Fermi arc in Fig. 6.7(h) shows the sharp intensities of S1 and S2 lasting to the unoccupied

side. Contrastingly, on cuts ♯1 and ♯2 in Figs. 6.7(f) and (g), the S2 intensities are suddenly

suppressed above the Fermi-level. These intensities form the separated surface states across the
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kx axis connecting the W1 and W2 Weyl nodes.

6.6 Discussion: Fermi arcs on side A and B

Laser ARPES results show the signature of Fermi arcs both on side A and B, reflecting the

type-II Weyl semimetal electronic structure in orthorhombic MoTe2. Experimentally, the W1

Weyl nodes are located at different energies between side A (E − EF ∼ 5 meV) and side B

(E − EF ∼ 5 meV). In addition, the connectivity of the Fermi arcs also depends on the surface

terminations: W1-W1 on side A and W1-W2 on side B. In this section, we discuss the calculated

Fermi arcs on side A and B and compare them with the experimental results.

In principle, the Weyl nodes should be located at the same energy on both side A and

B because they reflect the accidental band degeneracy points in bulk band dispersions. The

calculated results should accord with this principle taken for granted, unless different atomic

configurations in bulk are used. Figures 6.8(a) and (b) [(c) and (d)] show calculated surface

electronic structures around the boundary of the electron and hole pockets on side A and B

at the constant energy E = EF +7 meV [E = EF +57 meV], where the W1 [W2] Weyl nodes

represented by a blue (green) open circle are located. For side B, the obtained electronic structure

hosting the W1 and W2 Weyl nodes is quantitatively similar to that of obtained with the previous

study in ref. [200]. The accompanied Fermi arcs connecting W1 and W2 (represented by yellow

arrows) and additional surface states (represented by light blue arrows) are clearly reproduced.

On the other hand, a remarkably different surface electronic structure is obtained on side A in

Fig. 6.8(a). We can find the Fermi arc connecting W1 Weyl nodes across the kx axis on side

A (represented by a yellow arrow), which are very similar to that experimentally observed in

Fig. 6.6(h). On examining the calculated surface band dispersions along the ky direction at

kx = −0.186 Å−1 in Figs. 6.8(e) and (f), where the W1 Weyl nodes are located, the different

connectivities on the Fermi arcs (represented by yellow arrows) on side A (W1-W1) and B

(W2-W2) are clearly comprehensible.

These calculated results strongly suggest that the experimentally observed connectivity

changing of the Fermi arcs between side A and B in Figs. 6.6(h) and (e) are derived from
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Figure 6.8: (a), (b) Calculated surface electronic structures on side A [(00-1) surface] and B
[(001) surface] at the constant energy E = EF +7 meV where the W1 Weyl nodes (one of them
denoted by a blue open circle) are located. (c), (d) Calculated surface electronic structures on
side A and B at the constant energy E = EF +57 meV where the W2 Weyl nodes (one of them
denoted by a blue open circle) are located. (e), (f) Calculated surface band dispersions on side
A and B along the ky direction at kx = −0.186 Å−1, where the W1 Weyl nodes are located.

the surface termination dependence, and also provide the clear evidence of the Weyl semimetal

phase realized in orthorhombic MoTe2. The experimentally obtained energy-level difference of

the W1 Weyl nodes between side A and B possibly originates from the realistic atomic config-

uration near the surface (i.e. atomic relaxations and/or reconstructions). It is not unrelated to
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the fact that the W1 Weyl nodes are very sensitive to the lattice parameter, as discussed in the

band calculation studies [200, 201]. For the connectivity changing of the Fermi arcs depending

on surface terminations, a similar behavior is observed in the calculated results for TaAs [211],

which are not experimentally confirmed yet. In the case of MoxW1−xTe2, it is theoretically

proposed that the connectivity depends on the surface potential energy [202]. In order for seides

A and B to share the same topology of the electronic structure in orthorhombic MoTe2, an

additional Fermi arc is required (e.g. a Fermi arc connecting W2-W2 on side A). We note that

the Fermi arcs in type II Weyl semimetal can be hidden within the projection of the bulk band

dispersions [196]. To identify the whole band topology on both side A and B experimentally,

further experimental investigations should be carried out on an electron-doped and/or alkali-

atoms evaporated MoTe2 to enable a precise ARPES measurement while maintaining a low

temperature; the realistic atomic considerations near the surfaces should be carefully accounted

for.

6.7 Summary

We have investigated the electronic structure of the polar semimetal orthorhombic MoTe2, which

is one of the candidates of the type-II Weyl semimetal, by using laser ARPES. At a cleavage

surface, two types of ARPES images are obtained. Since the only surface states disperse dif-

ferently from bulk band dispersions, these different ARPES images are supposed to be derived

from the different surface terminations reflecting the polar crystal structure. These ARPES

images are in good agreement with the surface electronic structures calculated on a different

terminated surface. We classify the ARPES images as the electronic structures on the side A

[00-1 surface] and B [001 surface], respectively, and the results for side B agree well with the

previous first-principles calculation study [200, 201]. The ARPES intensity mapping on side B

is also in agreement with the previous study, and the Fermi arcs connecting the Weyl nodes

W1 and W2 are clearly observed at E − EF ∼ 5 meV. In contrast, the ARPES intensity map-

ping on side A taken at T = 100 K shows a Fermi arc connecting the W1 Weyl nodes across

the kx axis locating at E − EF ∼ 30 meV. The calculated results reproduce this connectivity
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changing of the Fermi arcs in agreement with the experiment, though the energy difference of

the W1 Weyl nodes on side A and B are not taken into account. Our study has revealed that

the Weyl semimetallic electronic structure is realized in orthorhombic MoTe2 through the direct

observation of the Fermi arcs depending on the surface terminations.



Chapter 7

Discussion: The role of spin-orbit
interaction

As we have seen in earlier chapters, spin-orbit interaction (SOI) can play an essential role in

electronic structures and physical phenomena. In this chapter, we comprehensively discuss the

effect of SOI on band dispersions in bulk.

7.1 Band dispersions with and without spin-orbit interaction

It is often said that the strong SOI of a heavy atom drastically modifies the band structure.

This is partly correct. In Figs 7.1 (a) and (b), we present the bulk band structures of 3R-MoS2

and β-PdBi2 with (red) and without (blue) SOI along the high symmetry lines obtained by the

first principles calculation. Corresponding Brillouin zones are shown in Figs. 7.1(c) and (d) with

high symmetry points. For the 3R-MoS2, in order to clearly describe the two dimensionality

at Brillouin zone corners in 3R-MoS2 as discussed in section 4.6, the reduced Brillouin zone is

depicted by the black solid line. We can see drastic band modifications only in β-PdBi2 due

to the strong atomic SOI of Bi 6p orbitals compared with 3R-MoS2. However, the bottoms of

valence bands of β-PdBi2 represented by the green rectangle which is mainly derived from the

Bi 6pz bonding sates are not changed in spite of the strong atomic SOI (∼ 1 eV) of Bi atoms. In

order to understand the role of SOI in band dispersions correctly, it is necessary to consider the

symmetry of Bloch functions at each k-point for the band modification as suggested in Chapter

1.

90
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Figure 7.1: (a), (b) Calculated band dispersions with (red) and without (blue) spin-orbit in-
teraction in bulk 3R-MoS2 (a) and β-PdBi2 (b). (c), (d) First Brillouin zones of 3R-MoS2 (a)
and β-PdBi2 with the high symmetry points. Black (blue) solid lines represent the reduced
(primitive) Brillouin zone of 3R-MoS2 in (c).

To consider the effect of SOI in band dispersions qualitatively, it is useful to treat the SOI

operator as

λl · s = λ[lzsz +
1

2
(l+s− + l−s+)], (7.1)

where λ represents the coupling constant, l is the orbital angular momentum, s is the spin

angular momentum, lz and sz are z components of the orbital and spin angular momentum,

and l+, l−, s+ and s− are the raising and lowering operators of the orbital momentum and

spin angular momentum, respectively. The z-axis is as the main axis of the crystal structure.

This formulation is suitable to describe the electron’s orbital motion around the z-axis. Precise

treatments of the k · p perturbation theory for band dispersions with SOI are given in ref.

[6, 7]. Hereafter, we quantitatively discuss the role of eq.(7.1) in band dispersions along the

characteristic k-path of 3R-MoS2, β-PdBi2, and orthorhombic MoTe2.



92 CHAPTER 7. DISCUSSION: THE ROLE OF SPIN-ORBIT INTERACTION

7.1.1 Band modification at Brillouin zone corner of 3R-MoS2

Figure 7.2 shows band dispersions in 3R-MoS2 near the Fermi level with (red solid line) and

without (blue broken line) SOI along A-Γ-K-H. The vertical axis is the energy relative to the

valence band maximum located at the A point. Except for the spin-valley coupled valence

band (denoted as VB top) with spin-splitting ∼ 0.14 eV as discussed in Chap. 5, there is

little difference between the band dispersions with and without SOI. For example, along the

K-H line, the conduction band bottom (denoted as CB bottom) and the valence band lying at

E − EVBM ∼ −3 eV (denoted as VB 2nd) are not split in contrast to the VB top. To discuss

their matrix elements, the orbital components of Mo and S atoms at the K point are listed in

Table 7.1. It is not a bad approximation that the basis functions at the K point in 3R-MoS2

are equal to those in monolayer MoS2 [139, 140], because the interlayer hopping is suppressed

as discussed in section 4.6. The dominant components are written in bold, and the subindices

indicate the orbital magnetic momentum (magnetic quantum number). Since energy differences

between the nearest neighbor bands (∆E ≃ 2 eV) for the VB top are greater than the SOI

Figure 7.2: Band dispersions with (red solid line) and without (blue broken line) SOI along
A-Γ-K-H line.
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coupling constant (λ) of molybdenum (∼ 0.1 eV) and sulfur (∼ 0.05 eV) atoms [24–27] as shown

in Fig. 7.2, these band dispersions at the K point near the Fermi level can be treated as the

non-degenerate system.

Table 7.1: Orbital components of band dispersions near the Fermi level at the K point in
3R-MoS2. The dominant components are written in bold. d±2 = 1√

2
(dx2−y2 ∓ idxy), d±1 =

1√
2
(dzx ∓ idyz), d0 = dz2 , p±1 = 1√

2
(px ∓ ipy), p0 = pz.

Band index Mo orbital S orbital

CB bottom d0 p+1

VB top d−2 p−1

VB 2nd d−1 p0

In the non-degenerate system, the first (second) term on the right side of eq. 7.1 can be

treated as the first (second) -order perturbation. The first term lzsz gives the spin-splitting on

bands having a non-zero z-component of the angular orbital momentum. It can explain that

the SOI generates the band splitting with spin polarization of the VB top (d−2 is dominant,

lz = −2), in contrast to the CB bottom (d0 is dominant, lz = 0) and VB 2nd (p0 is dominant,

lz = 0). We note that band dispersions in the noncentrosymmetric system can possess a non-zero

angular momentum at each k-point. The second term (l+s− + l−s+) can mix orbitals owing

to l+ and l− operators with the suppression of spin polarization owing to s+ and s− operators.

The mixing between the VB top and CB bottom is forbidden because the corresponding matrix

element between d0 and d−2 is zero. Though the mixing between the VB top and the VB 2nd

is allowed, it is negligible because the orbital mixing roughly scales the energy ratio ∼ λ
∆E

(λ ∼ 0.1 eV, ∆E ∼ 3 eV). Thus, as a consequence of the non-zero magnetic quantum number

and the suppression of second order perturbation, the spin-valley coupled valence band with

100% z-oriented spin polarization is realized at the Brillouin zone corners in 3R-MoS2.

7.1.2 Energy levels at Γ and Z points in β-PdBi2

Next, we discuss the bulk band structure on β-PdBi2, especially focusing on the high symmetry

line along Γ-Z. The band dispersions without (with) SOI along Γ-Z are shown in Fig. 7.3(a) and
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Figure 7.3: Band dispersions with (red solid curves) and without (blue broken curves) SOI in
β-PdBi2 along Γ-Z obtained by first-principles calculations. (b), (c) The energy levels at Γ
and Z point mainly derived from bismuth 6p orbitals without (left) and with (right) SOI. The
irreducible representations of point group D4h are given for each level. Broken lines between the
energy levels with and without SOI represent the orbital modifications due to SOI.

are represented by blue broken (red solid) curves. As discussed in Chap. 5, the Pd 4d orbitals

are energetically localized around E − EF ∼ −3 eV, and the only 4dz2 orbital at the Z-point

mixes with the Bi 6pz bonding state. The simple crystal structure and the high symmetry at Γ

and Z points provide the one-to-one correspondence for the energy levels to the orbital character

explicitly. To evaluate the effect of the strong SOI of the Bi atom (λ > 1 eV), the energy levels

mainly derived from the Bi orbitals with and without SOI at the Γ and Z points are extracted

in Figs. 7.3(b) and (c). At the Z point, the A1g states are derived from the mixing between the

Pd 4dz2 orbital and the Bi 6pz bonding state. Broken lines connecting the energy levels with

and without SOI represent the band modifications obtained from eq. (7.1).

First, we focus on the bands nearly unchanged by the strong SOI (λ > 1 eV), as referred

to at the beginning of this chapter. Their energy levels are denoted by green rectangles drawn

with broken lines. In the same manner as for 3R-MoS2 in section 7.1.1, it is explained by the
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first and second term in the right side of eq. (7.1). That is, the orbital mixing derived from the

second order perturbation in eq. (7.1) is sufficiently suppressed because those lz = 0 orbitals are

energetically isolated from the lz = ±1 orbitals. In other words, electrons stretching straight

toward neighbor atoms (i.e., the wave functions with lz = 0 on the Γ-Z line) hardly rotate

around the nuclei so that those are not modified by spin-orbit coupling.

Next, we focus on the role of the second term of eq. (7.1) in the non-degenerate system.

Similarly to the spin-valley coupled valence band top in 3R-MoS2, energetically isolated bands

at the Z point with the orbital magnetic moment lz = ±1 along the z axis split into two pairs

of bands, as denoted by the purple rectangle drawn with broken lines. We should note that

the spin polarization at each k-point vanishes in the noncentrosymmetric system because of the

equal contribution of lz = +1 and lz = −1. The energy of band-splitting > 1 eV reflects the

strong atomic SOI of Bi 6p orbitals. Electrons in those bands with the transverse components

of orbital angular momentum can be energetically stabilized or destabilized by rotating around

the nuclei owing to the spin-orbit coupling.

Finally, we examine the orange rectangle drawn with broken lines in Fig. 7.3(b). Since

the energy differences between energy levels at the Γ point are comparable to the energy of

the atomic SOI of Bi 6p orbitals (λ > 1 eV), they should be treated as the nearly degenerate

system with the strong SOI as necessary. Though both of the terms in eq. (7.1) can comparably

contribute to modify the band dispersions, for convenience, we first consider the role of the first

term (lzsz) in eq. (7.1). The anti-bonding states without SOI of Bi {6px, 6py} represented by

Eg can mix with the Bi 6pz bonding state represented by A1g, but they are energetically too far

apart to mix with each other. Thus, the Eg states split into E3/2g and E1/2g states, as with those

at the Z point. On the other hand, the bonding states without SOI of Bi {6px, 6py} represented

by Eu mix with the Bi 6pz anti-bonding state represented by A2u. Consequently, in addition

to the band splitting due to the first term (lzsz) in eq. (7.1), the second term (l+s− + l−s+)

expresses two E1/2u states mixing with each other. The energy difference between the Eg and

Eu states at the Γ point are smaller than the energy of atomic SOI, in contrast to that at the Z

point. It triggers the parity inversion between the E3/2u and E1/2g states due to SOI. We note

that the crossing of these band dispersions are protected by the C4v rotational symmetry along
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Γ-Z, in common with the Dirac semimetal Cd3As2 [73–75]. In the case of the parity inversion

between the E1/2u and E1/2g states, the orbital mixing plays an important role to push the E1/2u

state up above the E1/2g state.

7.1.3 Anti-symmetric spin-orbit coupling in orthorhombic MoTe2

The Weyl semimetal phase with inversion symmetry breaking is necessarily accompanied by the

spin-split band dispersions. Here, we discuss the effect of SOI for the spin-split band dispersions,

which is called anti-symmetric spin-orbit coupling [26, 27, 212], in orthorhombic MoTe2. In the

case of 3R-MoS2, the spin-splitting is understood by considering the magnetic orbital moment

at each k-point in the band dispersions without SOI. This method is suitable only for a case

Figure 7.4: (a), (b) Calculated band dispersions along the Γ-X line in the monoclinic phase
and the orthorhombic phase. The maximally localized Wannier functions are represented by
different colors defined above. The spin-splitting derived from the polar crystal structure for the
orthorhombic phase and the spin-orbit interaction are denoted by green arrows in (b).
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in which the band dispersions are not significantly changed by SOI, except the corresponding

spin-splitting, because the orbital components are usually mixed by SOI as per the second term

in eq. (7.1), as seen in β-PdBi2.

Band dispersions in the monoclinic and orthorhombic phase of MoTe2 are shown in Figs.

7.4(a) and (b), respectively. Compared with 3R-MoS2 and β-PdBi2, significantly complicated

band dispersions are obtained, reflecting the 12 atoms in a unit cell. Within the structural

transition from the centrosymmetric monoclinic phase to the polar orthorhombic phase, the

overall band structures are not significantly changed. This implies that the surface state (not

contributing to the Fermi arcs) connecting the electron-like and hole-like bands observed in

Figs. 6.5(a) and (b) survives still in the orthorhombic phase. Since this surface state lies

in the boundary between the d-orbital electron-like and p-orbital hole-like band dispersions,

it is probably topologically protected reflecting the d-p electron’s band inversion. Small but

remarkable differences in the spin-split band dispersions are observed near the Fermi level,

as denoted by green arrows in Fig. 7.4(b). The origins of the Weyl nodes W1 and W2 are

translated as the band inversions between an electron-like spin-split band above the Fermi level

and two hole bands with slight spin-splitting [200]. The calculated results indicate that the spin-

split band dispersions are mainly derived from the px and/or py orbitals. Since the non-zero

orbital magnetic moment ly consisting of the pz and px orbitals are necessary to generate the

spin-splitting along the kx direction in the polar system (Rashba-type spin-splitting), the main

Wannier function of the corresponding band dispersion is probably the px orbital. Harima and

Yanase [26, 27] suggest that the microscopic origin of the anti-symmetric spin-orbit coupling is

translated as the inter-site hopping with spin-flipping through the inter-site parity mixing in the

tight binding model. For the orthorhombic MoTe2, this implies that not only the p-orbitals but

also d-orbitals play essential roles in the spin-splitting.

7.2 Parity inversion for topological insulator/metal

The parity-inverted band dispersions in the centrosymmetric topological insulators or metals

are often accompanied by the band modification owing to the strong SOI. One of the exceptions



98 CHAPTER 7. DISCUSSION: THE ROLE OF SPIN-ORBIT INTERACTION

is realized in β-PdBi2 in which the parity inversion exists in band dispersions without SOI as

discussed in section 5.8.2. Here, we summarize typical parity inversions based on the knowledge

obtained through our studies as follows.

Case 1: Band modification owing to SOI

Figure 7.5(a) shows the simplest case of the parity inversion owing to SOI. We assume that

eigenstates derived from the p-orbital lie above (below) the band gap and an eigenstate having

even parity (e.g. s, d orbital) lies below the band gap in band dispersions without SOI. Here, the

eigenstates with odd parity are depicted in red. It is given that the p orbitals with odd parity

have strong SOI, while the eigenstate with even parity does not. The strong SOI (e.g., bismuth

6p orbitals λ > 1 eV) energetically stabilizes the eigenstates mainly derived from the pz orbital

drastically, leading to the band inversion between the eigenstates with odd and even parity.

Such situations are widely seen in realistic topological insulators (e.g., in Bi2Se3, the bonding

state of Bi atoms and the anti-bonding state of Se atoms [62]). The even- and odd- parity states

can also be created by the bonding and anti-bonding states derived from two same atoms in a

unit cell. If the energy of SOI overcomes the energy difference between those states, the parity

inversion is obtained as shown in Fig. 7.5(b). For example, in the crystals including more than

two Bi atoms, such band inversions should be commonly realized as in β-PdBi2. Actually, such

a parity inversion seems to be realized in the unoccupied band dispersions in Bi2Se3 [213, 214].

We should note that the energy difference between the {px, py} and pz [{px, py} anti-bonding

and {px, py} bonding] states in Fig. 7.5(a) [Fig. 7.5(b)] varies in momentum space. It offers a

good condition for strong topological insulators or metals, e.g., corresponding bands are inverted

at the Γ point but not at the Z point as seen in β-PdBi2.

Case 2: Chemical bonding

The parity-inverted band structure can be obtained without spin-orbit interaction, as seen in

β-PdBi2. The simplest way is to utilize the difference of the parity of peripheral electrons such

as in the case for the p-d electron system shown in Fig. 7.5(c). This condition depends on

various parameters (such as chemical bondings in the provided crystal structure, bandwidth of
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Figure 7.5: (a), (b) Schematics of energy levels related to the parity inversions derived from the
band modifications due to SOI. (c) Parity inversion due to the chemical bonding in the case of
β-PdBi2. Eigenstates with odd parity are indicated in red.

corresponding orbitals, energy of peripheral electrons, etc.). Such a situation is likely realized

in semimetal MoTe2 consisting of the Mo d-orbital and Te p-orbital.

In order to find the parity-inverted band structure from a strategic perspective, it is a good

strategy to focus on the bonding and anti-bonding states, similar to the case in Fig. 7.5(b).

Basically, the anti-bonding state is located at an energy higher than (or equal to) the bonding
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state over the entire Brillouin zone. As a conspicuous example, the bonding and anti-bonding

states in the nonsymmorphic crystal structure stick at the Brillouin zone boundary [6]. By

reducing the nonsymmorphic symmetry (i.e., ordinary conditions of two or more atoms in unit

cell), this band sticking is lifted, resulting in the small energy gap between the bonding and

anti-bonding states at the zone boundary. Such a small energy gap can trigger the parity-

inverted band dispersions through mixing with another atom’s orbital. The corresponding case

in β-PdBi2 is presented in Fig. 7.5(d). It suggests that the Bi 6pz bonding state (represented

by the A1g) overcomes the Bi 6pz anti-bonding state (A2u) by mixing with the Pd 4dz2 orbital

(A1g) (as precisely discussed in section. 6.7). Though it has not attracted attention yet, this

type of parity inversion is considered to exist widely in the s-p or p-d electron systems such as

transition metal dichalcogenides.

In summary, the good conditions for the parity-inverted band structure are listed as follows.

The crystal structure includes

· Atoms with strong spin-orbit interaction

· Different-parity atoms (i.e. p-d, s-p electron system)

· Two (or more) of the same atoms in a unit cell (even/odd parity by bonding/anti-bonding

state)

The parity inversion occurs in a topological insulator / metal with space inversion symmetry.

For the Weyl semimetal with space inversion symmetry breaking, its electronic structure can be

understood by the intermediate state of the normal insulator and topological insulator because

corresponding bands are inverted partly in momentum space. Even in such a system with broken

space inversion symmetry, those conditions still play significant roles in the band inversion

observed along a high-symmetry line in momentum space.



Chapter 8

Conclusion

In this thesis, we have experimentally investigated the role of spin-orbit interaction in the band

structures of strongly spin-orbit coupled materials hosting the spin-momentum locked electronic

structure by using the state-of-art angle-resolved photoemission spectroscopy (ARPES) mea-

surement and spin-resolved ARPES measurement with the help of first-principles calculations.

Both in the noncentrosymmetric materials and topological materials, which are the target ma-

terials in this thesis, we reveal that the spin-orbit interaction plays an essential role in the bulk

electronic structures through the orbital degree of freedom on the band dispersions. We already

summarized the main results at the end of each chapter. In the following, we present conclusions

and future prospects from a general viewpoint.

Chapter 3. Development of laser ARPES system

We have developed the laser ARPES system using the Ti:sapphire laser with commercial

nonlinear optical crystals. Advantages of using a laser light source (narrow line width, high

intensity and small spot size) have enabled precise measurement with good momentum (∆k <

0.002 Å−1) and energy resolution (∆E < 0.9 meV) for the polar semiconductor BiTeBr, iron

superconductor FeSe and polar semimetal orthorhombic MoTe2. Especially, the small spot size

(∼ 0.1 mm) was very useful to distinguish domains in the polar semimetal orthorhombic MoTe2.

The easily realized sub-mm scale spot size in a laboratory system comparable to a synchrotron

light source has a profound significance. In this thesis, the orbital component of band dispersion

is mainly determined with the help of first-principles calculation. To use circularly polarized
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light, there is a possibility to detect the orbital magnetic moment contributing to the spin-orbit

interaction experimentally, by taking account of the matrix elements in the photoexcitation

process.

Chapter 4. Spin-valley coupling in 3R-polytype MoS2

We have revealed the spin-valley coupled electronic structure in bulk 3R-MoS2. The top

of the valence bands at the inequivalent valleys are mainly derived from Mo 4d orbitals with

lz = +2 or −2, and they give rise to the spin-splitting ∼ 0.17 eV with the out-of-plane full

spin polarizations. Those spin-valley coupled band structures at the Brillouin zone corners are

evaluated to be the same as those on monolayer MoS2 because the nearest- and next-nearest-

neighbor interlayer hopping in 3R-MoS2 are symmetrically forbidden. It is worth noting that the

two-dimensionally localized electronic structures are built in the three-dimensional bulk crystal

and provides the novel functions. As well as the circular dichroic photoluminescence observed in

3R-MoS2, the pump-probe ARPES measurement using the circularly polarized laser light source

will reveal the spin and valley coupled relaxation process in photo-excited states.

Chapter 5. Topological surface states on superconductor β-PdBi2

The topologically protected surface states in β-PdBi2 lying at E − EF ∼ 2.4 eV and across

the Fermi level have been directly observed. Those surface states are characterized by the Z2

topological invariant in analogy to the centrosymmetric topological insulator. Their origins are

revealed by considering the chemical bonding of two Bi atoms, which form the bonding and

anti-bonding states with odd and even parity, in a body-centered unit cell. One of the parity

inverted band dispersions in β-PdBi2 is realized by Bi 6p-Pd 4d mixing without the help of spin-

orbit interaction. The other originates from the strong spin-orbit coupling of the Bi {6px, 6py}

(lz = ±1) orbital (> 1 eV). Through this investigation, we have found three good conditions for

the topological insulator / metal realized in solids as follows; (I) atoms with strong spin-orbit

interaction, (II) different-parity atoms (i.e. p-d, s-p electron system), and (III) two (or more) of

the same atoms in a unit cell (even/odd parity by bonding/anti-bonding state). Our findings will

stimulate investigations on the topological surface states coexisting with other unconventional
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electronic states (e.g., superconductivity, magnetism etc.) in metallic band dispersions.

Chapter 6. Topological surface states on polar semimetal MoTe2

Weyl semimetallic electronic structure in polar semimetal orthorhombic MoTe2 is experi-

mentally confirmed through the direct observation on the Fermi-arcs. The electronic structure

near the Fermi level in MoTe2 consists of the Mo 4d orbitals and Te 5p orbitals, and those

form the type-II Weyl semimetallic electronic structure accompanying the Fermi-arcs lying at

the boundary of the electron and hole pockets. The shapes of Fermi-arcs depend on the surface

termination [connecting W1-W1 Weyl nodes on (00-1) surface, and W1-W2 Weyl nodes on (001)

surface], selectively observed by using the laser ARPES system with the small spot size (∼ 0.1

mm). Even in the complicated band dispersions with the low crystal symmetry, considering the

dominant orbital component in bands is helpful to understand the effect of spin-orbit interaction

and topologically nontrivial electronic structure.

We have revealed the origins of band shift and band splitting due to the spin-orbit interaction

in solids, through investigations on the noncentrosymmetric materials and topological materials

by using ARPES and spin-resolved ARPES. Considering the band structure’s energy levels

(depending on the ligand field, kinetic energy, etc.) and orbital characters at each k-point,

the role of spin-orbit interaction in the band dispersions can be understood. The ARPES

measurement combined with computational band calculation is a powerful method because it

can provide both the band dispersions and its orbital character. We believe that this study

contributes to the basis for next generation electronics sustaining future society.



References

[1] 朝永振一郎、「新版　スピンはめぐる」　 (みすず書房、2008)

[2] P. A. M. Dirac The quantum theory of the electron, Proc. R. Soc. A 117, 610-624 (1928).

[3] L. L. Foldy and S. A. Wouthuysen On the Dirac Theory of Spin 1/2 Particles and Its

Non-Relativistic Limit, Phys. Rev. 78, 29-36 (1950).

[4] S. Tani, Connection between Particle Models and Field Theories, I The Case Spin 1/2,

Prog. of Theor. Phys. 6, 267-285 (1951).

[5] L. H. Thomas, The motion of the spinning electron, Nature (London) 117, 514 (1926).

[6] M. S. Dresselhaus, G. Dresselhaus and A. Jorio, Group Theory: Application to the Physics

of Condensed Matter (Springer, 2008).

[7] G. Dresselhaus, Spin-Orbit Coupling Effects in Zinc Blende Structures, Phys. Rev. 100,

580-586 (1955).

[8] R. J. Elliott, Theory of the Effect of Spin-Orbit Coupling on Magnetic Resonance in Some

Semiconductors, Phys. Rev. 96, 266-279 (1954).

[9] R. J. Elliott, Spin-Orbit Coupling in Band Theory Character Tables for Some Double Space

Groups , Phys. Rev. 96, 280-287 (1954)

[10] E. I. Rashba Simmetriya energeticheskikh zon v kristallakh tipa vyurtsita. I. Simmetriya

zon bez ucheta spin-orbital ’nogo vzaimodeistviya, Fiz. Tverd. Tela 1, 407-421 (1959). [E.

104



REFERENCES 105

I. Rashba, Symmetry of bands in wurzite-type crystals. 1. Symmetry of bands disregarding

spin-orbit interaction, Sov. Phys. Solid. State 1, 368 (1959)]

[11] E. I. Rashba and V. I. Sheka, immetriya energeticheskikh zon v kristallakh tipa vyurtsita. II.

Simmetriya zon s uchyotom spinovykh vzaimodeistvii, Fiz. Tverd. Tela 1, 162-176 (1959).

[12] C. Herring, A New Method for Calculating Wave Functions in Crystals, Phys. Rev. 57,

1169-1177 (1940).

[13] F. Herman, Electronic Structure of the Diamond Crystal, Phys. Rev. 88, 1210-1211 (1952).

[14] F. Herman, Thesis, Columbia University, (1953). unpublished.

[15] F. Herman, Calculation of the Energy Band Structures of the Diamond and Germanium

Crystals by the Method of Orthogonalized Plane Waves, Phys. Rev. 93, 1214-1225 (1954).

[16] E. Zavoisky, Relaxation of liquid solutions for perpendicular fields, J. Phys. USSR 9 211-216

(1945).

[17] G. Dresselhaus, A. F. Kip, and C. Kittel, Cyclotron Resonance of Electrons and Holes in

Silicon and Germanium Crystals, Phys. Rev. 98, 368-384 (1955).
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and M. Grioni, Giant Spin Splitting through Surface Alloying, Phys. Rev. Lett. 98, 186807

(2007).



REFERENCES 109

[51] M. S. Bahramy, R. Arita and N. Nagaosa, Origin of giant bulk Rashba splitting: Application

to BiTeI, Phys. Rev. B 84, 041202(R) (2011)

[52] K. Tsutsui and S. Murakami Spin-torque efciency enhanced by Rashba spin splitting in three

dimensions, Phys. Rev. B 86, 115201 (2012).

[53] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene Phys. Rev. Lett. 95,

146802 (2005).

[54] C. L. Kane and E. J. Mele, Z2 Topological Order and the Quantum Spin Hall Effect, Phys.

Rev. Lett. 95, 226801 (2005).

[55] B. A. Bernevig and S.-C. Zhang, Quantum Spin Hall Effect, Phys. Rev. Lett. 96, 106802

(2006).

[56] L. Fu and C. L. Kane Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev.

B 74, 195312 (2006).

[57] L. Fu, C. L. Kane and E. J. Mele, Topological Insulators in Three Dimensions Phys. Rev.

Lett. 98, 106803 (2007).

[58] J. E. Moore and L. Balents, Topological invariants of time-reversal-invariant band struc-

tures, Phys. Rev B 75, 121306(R) (2007).
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[87] A. Einstein, Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuris-

tischen Gesichtspunkt, Ann. Phys. (Leipzig) 322, 132-148 (1905).

[88] H. Y. Fan, Theory of Photoelectric Emission from Metals, Phys. Rev. 68, 43-52 (1945).

[89] C. N. Berglund and W. E. Spicer, Photoemission Studies of Copper and Silver: Theory,

Phys. Rev. 136, A1030-1044 (1964).

[90] P. J. Feibelman and D. E. Eastman, Photoemission spectroscopy―Correspondence between

quantum theory and experimental phenomenology, Phys. Rev. B 10, 4932-4947 (1974).

[91] E. Kisker, R. Clauberg and W. Gudat, Electron spectrometer for spin‐ polarized angle‐ and

energy‐ resolved photoemission from ferromagnets, Rev. Sci. Instrum. 53, 1137-1144 (1982).

[92] M. Getzlaff, B. Heidemann, J. Bansmann, C. Westphal and G. Schönhensee, A variable-

angle electron spin polarization detection system, Rev. Sci. Instrum. 69, 3913-3923 (1998).

[93] G. C. Burnett, T. J. Monroe and F. B. Dunning, High‐ efficiency retarding‐ potential Mott

polarization analyzer, Rev. Sci. Instrum. 65, 1893-1896 (1994).

[94] S. Qiao, A. Kimura, A. Harasawa, M. Sawada, J.-G. Chung and A. Kakizaki, A new compact

electron spin polarimeter with a high efficiency, Rev. Sci. Instrum. 68, 4390-4395 (1997).

[95] G. Ghiringhelli, K. Larsson and N. B. Brookes, High-efficiency spin-resolved and spin-

integrated electron detection: Parallel mounting on a hemispherical analyzer, Rev. Sci. In-

strum. 70, 4225-4230 (1999).

[96] M. Hoesch, T. Greber, V. N. Petrov, M. Muntwiler, M. Hengsberger, W. Auwrter and J.

Osterwalder, Spin-polarized Fermi surface mapping, J. Electron Spectrosc. Relat. Phenom.

124, 263-279 (2002).

[97] V. N. Petrov, V. V. Grebenshikov, B. D. Grachev and A. S. Kamochkin, New compact

classical 40 kV Mott polarimeter, Rev. Sci. Instrum. 74, 1278-1281 (2003).



114 REFERENCES

[98] C. M. Cacho, S. Vlaic, M. Malvestuto, B. Ressel, E. A. Seddon and F. Parmigiani, Absolute

spin calibration of an electron spin polarimeter by spin-resolved photoemission from the

Au(111) surface states, Rev. Sci. Instrum. 80, 043904 (2009).

[99] S. Souma, A. Takayama, K. Sugawara, T. Sato and T. Takahashi Ultrahigh-resolution spin-

resolved photoemission spectrometer with a mini Mott detector Rev. Sci. Instrum. 81, 095101

(2010).

[100] J. Kessler, Polarized Electrons, 2nd ed, (Springer, Berlin, 1985).

[101] R. Jungblut, C. Roth, F. U. Hillebrecht, and E. Kisker, Spin-polarized electron spectroscopy

as a combined chemical and magnetic probe, Surf. Sci. 615, 269270 (1992).

[102] R. Bertacco, M. Merano and F. Ciccacci, Spin dependent electron absorption in Fe(001)-

p(1×1)O: A new candidate for a stable and efficient electron polarization analyzer, Appl.

Phys. Lett. 72, 2050-2052 (1998).

[103] T. Okuda, Y. Takeichi, Y. Maeda, A. Harasawa, I. Matsuda, T. Kinoshita and A. Kak-

izaki, A new spin-polarized photoemission spectrometer with very high efficiency and energy

resolution, Rev. Sci. Instrum. 79, 123117 (2008).

[104] A. Winkelmann, D. Hartung, H. Engelhard, C.-T. Chiang and J. Kirschner, High efficiency

electron spin polarization analyzer based on exchange scattering at FeW(001), Rev. Sci.

Instrum. 79, 083303 (2008).

[105] C. Jozwiak, J. Graf, G. Lebedev, N. Andresen, A. K. Schmid, A. V. Fedorov, F. El Gabaly,

W. Wan, A. Lanzara and Z. Hussain A high-efficiency spin-resolved photoemission spectrom-

eter combining time-of-flight spectroscopy with exchange-scattering polarimetry, Rev. Sci.

Instrum. 81, 053904 (2010).

[106] T. Okuda, K. Miyamoto, H. Miyahara, K. Kuroda, A. Kimura, H. Namatame and M.

Taniguchi, Efficient spin resolved spectroscopy observation machine at Hiroshima Syn-

chrotron Radiation Center, Rev. Sci. Instrum. 82, 103302 (2011).



REFERENCES 115

[107] T. Okuda, K. Miyamoto, A. Kimura, H. Namatame and M. Taniguchi, A double VLEED

spin detector for high-resolution three dimensional spin vectorial analysis of anisotropic

Rashba spin splitting, J. Electron Spectrosc. Relat. Phenomena 201, 23-29 (2015).

[108] J. Kirschner Polarized Electrons at Surface, (Springer-Verlag, Berlin, 1985).

[109] D. Tillmann, R. Thiel and E. Kisker Very-low-energy spin-polarized electron diffraction

from Fe(001), Z. Phys. B 77, 1-2 (1989).

[110] T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi,

C. Zhang, C. T. Chen and S. Watanabe, Photoemission Spectroscopic Evidence of Gap

Anisotropy in an f-Electron Superconductor, Phys. Rev. Lett. 94 057001 (2005).

[111] J. D. Koralek, J. F. Douglas, N. C. Plumb, Z. Sun, A. V. Fedorov, M. M. Murnane, H.

C. Kapteyn, S. T. Cundiff, Y. Aiura, K. Oka, H. Eisaki and D. S. Dessau, Laser Based

Angle-Resolved Photoemission, the Sudden Approximation, and Quasiparticle-Like Spectral

Peaks in Bi2Sr2CaCu2O8+δ, Phys. Rev. Lett. 96, 017005 (2006).

[112] G. Liu, G. Wang, Y. Zhu, H. Zhang, G. Zhang, X. Wang, Y. Zhou, W. Zhang, H. Liu, L.

Zhao, J. Meng, X. Dong, C. Chen, Z. Xu and X. J. Zhou, Development of a vacuum ul-

traviolet laser-based angle-resolved photoemission system with a superhigh energy resolution

better than 1 meV, Rev. Sci. Instrum. 79, 023105 (2008).

[113] T. Kiss, T. Shimojima, K. Ishizaka, A. Chainani, T. Togashi, T. Kanai, X. Y. Wang,

C. T. Chen, S. Watanabe and S. Shin, A versatile system for ultrahigh resolution, low

temperature, and polarization dependent Laser-angle-resolved photoemission spectroscopy,

Rev. Sci. Instrum. 79, 023106 (2008).

[114] R. Jiang, D. Mou, Y. Wu, L. Huang, C. D. McMillen, J. Kolis, H. G. I. Giesber, J. J. Egan

and A. Kaminski, Tunable vacuum ultraviolet laser based spectrometer for angle resolved

photoemission spectroscopy, Rev. Sci. Instrum. 85, 033902 (2014).

[115] K. Okazaki, Y. Ota, Y. Kotani, W. Malaeb, Y. Ishida, T. Shimojima, T. Kiss, S. Watanabe,

C.-T. Chen, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, T. Saito, H. Fukazawa, Y. Kohori, K.



116 REFERENCES

Hashimoto, T. Shibauchi, Y. Matsuda, H. Ikeda, H. Miyahara, R. Arita, A. Chainani and S.

Shin, Octet-Line Node Structure of Superconducting Order Parameter in KFe2As2, Science

337, 1314 (2012).

[116] T. Shimojima, K. Ishizaka, Y. Ishida, N. Katayama, K. Ohgushi, T. Kiss, M. Okawa, T.

Togashi, X.-Y. Wang, C.-T. Chen, S. Watanabe, R. Kadota, T. Oguchi, A. Chainani and S.

Shin, Orbital-Dependent Modifications of Electronic Structure across the Magnetostructural

Transition in BaFe2As2, Phys. Rev. Lett. 104, 057002 (2010).

[117] Y. Suzuki, T. Shimojima, T. Sonobe, A. Nakamura, M. Sakano, H. Tsuji, J. Omachi, K.

Yoshioka, M. Kuwata-Gonokami, T. Watashige, R. Kobayashi, S. Kasahara, T. Shibauchi,

Y. Matsuda, Y. Yamakawa, H. Kontani and K. Ishizaka, Momentum-dependent sign inver-

sion of orbital order in superconducting FeSe, Phys. Rev. B 92, 205117 (2015).

[118] C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, G. K. L. Wong, B. C. Wu, N. Ye and

D. Y. Tang, The vacuum ultraviolet phase‐ matching characteristics of nonlinear optical

KBe2BO3F2 crystal, Appl. Phys. Lett. 68, 2930-2932 (1996).

[119] C. T. Chen, J. H. Lu, T. Togashi, T. Suganuma, T. Sekikawa, S. Watanabe, Z. Y. Xu and

J. Y. Wang, Second-harmonic generation from a KBe2BO3F2 crystal in the deep ultraviolet,

Opt. Lett. 27, 637-639 (2002).

[120] X. J. Zhou, B. Wannberg, W. L. Yanga, V. Broueta, Z. Sun, J. F. Douglas, D. Dessau,

Z. Hussain and Z.-X. Shen, Space charge effect and mirror charge effect in photoemission

spectroscopy, J. Electron Spectrosc. Relat. Phenom. 142, 27-38 (2005).

[121] S. Hellmann, K. Rossnagel, M. Marczynski-Bühlow and L. Kipp, Vacuum space-charge

effects in solid-state photoemission, Phys. Rev. B 79, 035402 (2009).

[122] J. Omachi, K. Yoshioka and M. Kuwata-Gonokami, High-power, narrow-band, high-

repetition-rate, 5.9 eV coherent light source using passive optical cavity for laser-based

angle-resolved photoelectron spectroscopy, Optics Express 20, 23542-23552 (2012).



REFERENCES 117

[123] A. Fero, C. L. Smallwood, G. Affeldt and A. Lanzara, Impact of Work Function Induced

Electric Fields on Laser-based Angle-resolved Photoemission Spectroscopy J. Electron Spec-

trosc. Relat. Phenom. 195, 247-243 (2014)

[124] Y. Arashida, personal communication.
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