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Chapter 1  

 

 

General Introduction 

 

 

1.1 Background 

 Polymer electrolyte fuel cell (PEFC) has many advantages to zero emission vehicles 

and potable batteries due to high efficiency, no harmful gas emission, and low operation 

temperature, which have attracted much attention as a promising energy conversion 

system suitable for the sustainable society. In general, Pt-based catalysts are utilized as 

cathode catalysts to accelerate the sluggish oxygen reduction reaction (ORR) in the 

present PEFC system [1]. Since Pt is expensive and limited material, alternative Pt-free 

or low-Pt-loading ORR catalysts are required to spread the PEFC system in the society. 

Recently, carbon-based catalysts such as carbon alloy catalyst (CAC) [2] are considered 

to be a candidate to replace the Pt-based catalysts. CACs are graphite base carbon 

materials modified by light elements (i.e. N, B, O, P, and S) and 3d transition metals. 

The most critical problem of CACs possess that the ORR activity of CACs does not 

surpass that of Pt-based catalysts. Although many groups have been trying to improve 

the ORR activity, the roles of light elements and transition metals on the ORR activity 

are not clarified yet. Thus, it is necessary to elucidate the ORR active sites of CACs to 

improve the ORR activity. In this study, I focus on the nitrogen components of CACs 

without transition metals to investigate the role of light elements.  

 

1.2 Polymer electrolyte fuel cell 

1.2.1 Principles of PEFC 

 Figure 1.1 shows a schematic image of PEFC. The membrane electrode assembly 

(MEA) is composed of proton conductive ionomers (membrane), catalysts, and gas 

diffusion layers [3]. Reactions at anode and cathode electrodes are shown in the 
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following equations: 

Anode: H2  →  2H+ + 2e−   ··· (1.1) 

Cathode: O2 + 4H+ + 4e− →  2H2O  ··· (1.2) 

Total reaction: H2 + 1 2⁄ O2  →  H2O.   ··· (1.3) 

At the anode electrode, introduced hydrogen fuel gas reacts on the catalysts, which 

produces protons and electrons through hydrogen oxidation reaction (1.1). While 

protons are carried to pass the membrane and react with introduced oxygen gas at the 

cathode electrode through ORR (1.2), the electrons are flowed to pass an external circuit 

and then generate the electricity. The product is only water in total reaction (1.3). PEFC 

generates the electricity by a direct conversion of chemicals to electrical energy without 

a conversion of chemicals to heat. Therefore, PEFC is a clean and high efficient energy 

conversion system.  

The standard cell voltage E0 of PEFC can be obtained by the Gibbs free energy change 

(∆G0) for the difference of the electrode potential of the anode and the cathode through 

the following equation: 

E0 = –∆G0 / nF = 1.23 V  ··· (1.4) 

where n is the number of electrons transferred and F is Faraday’s constant. 

 

Figure 1.1 A schematic image of PEFC system. 
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1.2.2 Oxygen reduction reaction in PFEC 

 ORR is composed of several elementary processes as shown in Fig. 1.2. Oxygen is 

adsorbed on the catalyst surface, and subsequently two ORR processes proceed mainly 

at the cathode of PEFC through the following equations; 

k1: O2 + 4H+ + 4e− →  2H2O  (E0: 1.23 V)  ··· (1.5) 

k2: O2 + 2H+ + 2e− →  H2O2  (E0: 0.68 V)  ··· (1.6) 

k3: H2O2 + 2H+ + 2e− →  H2O (E0: 1.77 V)  ··· (1.7) 

One step 4-electron reaction (1.5) is the ideal reaction to generate the electricity. It is, 

however, known that the onset electrode voltage usually decreases below 1 V in the 

PEFC system due to the overvoltage. In contrast, two steps 4 (2 + 2)-electron reaction 

generates H2O2 and H2O in combination with (1.6) and (1.7), where the standard cell 

voltage is 0.68 V (1.6). Thus this reaction (1.6) results in the decrease of the onset 

electrode voltage. In addition, powerful oxidizing agent H2O2 reacts with a Fe ion 

through the Fenton reaction [4] and generates OH radical species through the following 

equations; 

Fe2+ + H2O2  →  Fe3+ + HO ∙  + OH−   ··· (1.8) 

H2O2 + HO ∙ →  HO2 ∙  + H2O.    ··· (1.9) 

The generated radical species would decompose the membrane and lead to the 

degradation of durability in PEFC system. Therefore, the requirement for the efficient 

fuel cell catalysts is the high selectivity to the 4-electorn process with low Fe impurities. 

 

Fig. 1.2. Elementary processes of ORR process. 
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1.3 Oxygen reduction catalysts for cathode electrode 

 As PEFC can operate at lower temperature, such as 80 °C, than the other types of fuel 

cells, PEFC system shows excellent performance in start-up properties and has been 

utilized for the automobile, household fuel cell system, and mobile applications. 

However, reaction rates at electrodes slow down at such a low temperature. In order to 

accelerate the reaction rate, Pt-based catalysts are widely utilized. 

 

1.3.1 Pt-based cathode catalysts 

 Pt efficiently catalyzes the ORR at the cathode. Accelerating ORR reaction is essential 

for the PEFC system since ORR is known as the cause of the most of overpotential [1]. 

Recently, alternative cathode catalysts have been required to develop the low-cost PEFC 

system due to the precious and expensive Pt metal. Many research groups approach to 

reduce the use of Pt amount and enhance the ORR activity on the cathode for example; 

Pt-M alloys (M: 3d transition metal) [5,6], surface modified M-Pt3Ni [7], 

three-dimensional open-framework structure of Pt3Ni  [8], structure controlled 

nanocage Pt [9], and dispersed single Pt atom on catalyst supports [10]. PtCo catalysts 

have been already utilized practically in the state-of-the-art fuel cell vehicle (MIRAI, 

Toyota motor corp.) [11]. 

 

1.3.2 Carbon-based cathode catalysts 

 Pt-free catalysts have been also intensely investigated for the last several decades. 

Among alternative Pt-free catalysts, carbon-based cathode catalysts have attracted much 

attention due to their relatively high ORR activity. Since Jasinski reported the catalytic 

activity of Co phthalocyanine for ORR in 1964 [12] and Jahnke et al. discovered the 

activity improvement of Co TAA (Co dibenzotetraazaannulene) through the heat 

treatment in 1976 [13], there have been numerous attempts to develop 

precious-metal-free carbo-based cathode catalysts. These materials such as CAC are a 

mixture of carbon materials with light elements (i.e. N, B, O, P, and S) and 3d transition 

metals. In general, they are synthesized by pyrolysis of mixtures of macrocyclic 

complexes such as phthalocyanine and porphyrin with Fe-N4 and Co-N4, and carbon 

compounds under inert gas. In addition, Gupta et al. reported more simple synthesis 

method without macrocyclic complexes by pyrolysis of mixture of carbon precursors 
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with nitrogen species and metal salts in 1989 [14], whose method can be applied to a 

large variety of compounds. Thereafter, the competition in research and development of 

carbon based cathode catalysts has been more and more intense.  

Figure 1.3 shows the changes of PEFC performance using carbon-based cathode 

catalysts [15–34]. In particular, Dodelet and Zelenay groups have been extensively 

developing ORR catalysts. Sun et al. reported that the ORR activity of the most active 

catalyst, which is composed of dual doped nitrogen and sulfur components [33], reaches 

to approximately 80% of that of Pt-based catalysts. The colored markers in Fig. 1.3 

indicate the metal-containing ORR catalysts. Recently, however, transition metal-free 

ORR catalysts has been also developed (black cross marker). In order to surpass the 

ORR activity of Pt-based catalysts, it is required to reveal ORR active sites of these 

carbon-based cathode catalysts. Several research groups reported the two major 

candidates for the ORR active sites: (1) metal-Nx sites and (2) nitrogen doped carbon 

sites. These metal-Nx sites may be derived from macrocyclic complexes or formed 

during the pyrolysis step [20,35], which accelerate the ORR via side-on or end-on 

adsorption of O2 molecule. Besides the candidate for the ORR active sites, other 

possible roles of transition metal may be the formation of the highly graphitized carbon 

structures during the pyrolysis step rather than the improvement of the ORR activity 

since the ORR activity remains nearly constant and the residual metals exist inside 

carbon nanoshell structures after HCl acid treatments to remove the most of the 

metals [36]. Secondly, as the candidate without metal species, nitrogen itself may 

improve the ORR activity because some carbon-based cathode catalysts without 

metal-containing precursors exhibit the ORR activities in the recent works [27,34,37–

39]. Several research groups reported the possible ORR mechanism with pyridinic 

nitrogen [40], graphitic nitrogen [41], other nitrogen species, and carbon sites in the 

vicinity of the doped nitrogen [42–44]. However, the role of the nitrogen in ORR 

activity has not clarified yet.  

Among the catalyst derived from Fe phthalocyanine and phenolic resin with different 

pyrolysis temperature [45], the ORR activity rapidly increases over 550 °C and becomes 

maximum at 600 °C with the decomposition of macrocyclic precursors and 

graphitization of carbon precursors. Subsequently, it decreases in the high temperature 

region. However, the most active catalyst at 600 °C has poor graphitized carbon 
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structures which result in the lower durability. In order to be compatible with the ORR 

activity and the durability, catalysts have been synthesized with highly graphitized 

carbon structures in the high temperature region where the structure of metal-containing 

macrocyclic precursors is perfectly decomposed. From this result, it is probable that the 

highly active and durable ORR active sites are originated from the nitrogen species 

doped into carbon matrix. In this study, therefore, I only focus on the role of nitrogen 

without metals to exclude the effects of metal species.  

 

Fig. 1.3 Changes in the power density at 0.6 V in MEA condition for PEFC with 

carbon-based cathode catalysts. Cathode – O2: 0.1-0.2 MPa. Temperature: 80°C. 

 

 

1.3.3 ORR mechanism for carbon-based cathode catalysts 

 Several elementary processes occur during the ORR as shown in Fig. 1.2. 

Carbon-based cathode catalysts have lower ORR activity and lower selectivity of 

4-electron process than that of Pt-based catalysts [46], indicating that the ORR activity 

of the carbon-based cathode catalysts would results from the different ORR processes 

compared to that of the Pt-based catalysts. Elementary reactions on the Pt surface are 

extensively investigated for several decades [47]. The hybridized electronic structure of 
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O2 and Pt promote the O2 adsorption with the side-on configuration, and dissociative 

reaction of an activated O2 occurs to form Pt-O configuration. Similarly, the elementary 

processes should be investigated on the carbon-based cathode catalysts to elucidate the 

ORR mechanism and the role of nitrogen. In this study, therefore, in situ spectroscopic 

measurements are performed to observe the change of the electronic structure of each 

element. 

 

1.4 Nitrogen doped graphite/graphene model catalysts 

1.4.1 Nitrogen doped model catalysts synthesis 

In general, powder samples for carbon-based cathode catalysts were investigated in the 

previous studies [48]. However, it is difficult to determine the detailed ORR active sites 

because the powder catalysts possess the various chemical states of carbon, nitrogen, 

and oxygen. It is necessary therefore, for an effective breakthrough, to synthesize a 

well-defined nitrogen doped carbon model catalyst such as graphene and graphite with 

controlling the chemical states of nitrogen species. In this model system, the selective 

nitrogen components can be generated while morphology, surface are, and crystallinity 

remain almost constant. Therefore, this model catalyst can be compared to the 

carbon-based catalyst in the high temperature region [45] due to the highly graphitized 

and nitrogen-doped carbon structure in this catalyst, which reveals the relationship 

between the nitrogen species and the ORR activity. Several methods are proposed to 

synthesize the nitrogen doped graphite and graphene, for example, nitrogen ions 

sputtering [49], pyrolysis under NH3 gas [50], chemical vapor deposition growth under 

NH3 gas [51] or with pyridine precursors [52]. In this study, highly oriented pyrolytic 

graphite (HOPG) is used as carbon substrate and doping through nitrogen ion sputtering 

is utilized, since the amount of ions can be controlled well using this method. 

 

1.4.2 Property of doped nitrogen in the model catalyst  

  Recently, Kondo et al. reported the local electronic states in detail for the doped 

nitrogen and the surrounding carbon using scanning tunneling microscope (STM) and 

scanning tunneling spectroscopy (STS) as shown in Fig 1.4 [49]. The localized 

electronic structure was observed above the Fermi level in graphitic N, while below the 

Fermi level in pyridinic N. The modified electronic structures near the Fermi level 
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would hybridize with that of O2 molecules and have the potential to catalyze ORR 

process. Therefore, it is necessary to investigate the interaction between the electronic 

states of catalysts and reactant. As for the first step of ORR, O2 is adsorbed on the 

catalytic active sites. Since the ORR proceeds with electrons from the substrate as 

shown in equations 1.5 and 1.6, these catalytic active sites would be the electron rich 

sites that donate electrons to the adsorbates. In another word, the site can be express as a 

Lewis base site. In general, the existence of Lewis base sites can be proved by the CO2 

adsorption [53,54]. In this study, therefore, CO2 adsorption method is applied to the 

model catalyst to elucidate the Lewis basicity of the nitrogen doped graphite substrate.  

 

Fig. 1.4. Schematic images, STM images, and STS spectra of (a) graphitic nitrogen and 

(b) pyridinic nitrogen [49]. 
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1.5 Purpose of this study 

 The purpose of this study is to reveal the role of nitrogen toward the ORR activity of 

the carbon-based cathode catalysts. In order to investigate the O2 adsorption sites on the 

nitrogen-containing metal-free CACs, the electronic structure of each element was 

investigated before and after the O2 adsorption using in situ X-ray photoelectron 

spectroscopy. In order to synthesize model catalyst with the kind and amount of 

nitrogen species in a controlled manner, the nitrogen doped graphite model catalyst was 

synthesized via low energy nitrogen ion sputtering to the HOPG surface. I investigated 

the characterization of the doped nitrogen using soft X-ray spectroscopy. I discussed the 

nitrogen doping mechanism and observed the development of the ORR activity. 

Furthermore, the property of CO2 adsorption on the model catalyst was investigated to 

evaluate the Lewis basicity of a nitrogen-doped graphite substrate as an indicator of the 

ORR activity. Therefore, I clarified the role of nitrogen in the carbon-based cathode 

catalysts in combination with both the current catalyst (top down study) and the model 

catalyst (bottom up study). 
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Chapter 2  

 

 

Experimental methods 

 

 

2.1 Sample preparation 

2.1.1 Carbon alloy catalysts (CACs) 

The CACs were prepared by pyrolyzing poly meta-phenylene isophthalamide 

(denoted as polyamide), which contains no metal species with nitrogen species. The 

synthesis of the polyamide is shown in the previous report [38]. The polyamide was 

pyrolyzed at 600 °C for 1 h under N2 flow, followed by ball milling with 5 min × 17 

times at 750 rpm. Finally, the sample was pyrolyed again at 600 °C for 4 h under N2 

flow. The product will be referred to as PA. As a reference, a catalyst without nitrogen 

and metal species was prepared by pyrolyzing phenolic resin (PSK-2320, Gunei 

Chimical Co.) in the same synthesis manner. The product will be referred to as PhRs. 

 

2.1.2 Nitrogen doped graphite (N-HOPG) 

 The model N-HOPG catalysts was synthesized at BL07LSU in SPring-8 in 

collaboration with Prof. Junji Nakamura’s laboratory of Tsukuba University. The 

N-HOPG preparation chamber was constructed for this study. This chamber was 

composed of the sample introducing chamber (LL) and the sample preparation chamber 

(Prep.). Typical base pressures of LL and Prep. chambers were 5 × 10
-6

 and <5 × 10
-7

 Pa, 

respectively. The Prep. chamber was equipped with an ion gun (OMI-0730, Omegatron 

Co., Ltd.), a back surface electron bombardment heating apparatus (AVC Co., Ltd), an 

electric feed through to measure the compensating current, and a micro-channel plate 

(MCP) (Hamamatsu Photonics K.K.) analyzer, as shown in Fig. 2.1. The number of the 

sputtered ions was calculated by measuring the compensating current caused by the 

impinging ions. In order to control the number of sputtered ions accurately, the 

mechanical shutter was mounted. The ion beam was scanned vertically and horizontally 
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using the multifunction synthesizer (WF1944B, NF Corp.) to prepare the homogeneous 

doping of nitrogen species on the N-HOPG. Molybdenum sample holders were 

designed to anneal the samples more than 1000 K. The sample temperature (>600 K) 

was monitored by the fiber-type radiation thermometers (FTK9-P300A-30L21, Japan 

Sensor Corp.) with the emissivity of 0.85 and was constant throughout the sample 

surface. This chamber is designed to perform the X-ray absorption spectroscopy by 

using MCP when the chamber is connected to the beamline of BL07LSU in SPring-8. 

 

Fig. 2.1. The N-HOPG preparation chamber at BL07LSU in SPring-8. 

 

 

A highly oriented pyrolytic graphite (HOPG) (PGCSTM, Panasonic Corp.) was 

cleaved in air using adhesive tape, and set in an ultra-high vacuum chamber (<5 × 10
-7
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Pa). The substrate was then annealed at 1000 K for 30 min, and sputtered with nitrogen 

ions (N2
+
) at 300 K using the ion gun. The ion acceleration voltage was set to low 

energy as 200 eV in order to dope nitrogen atoms near the surface without disturbing the 

graphene lattice [49]. Finally, the samples were annealed at 1000 K for 1h for surface 

cleaning and to recover the crystallinity. These samples will be referred to as N-HOPG 

hereafter. 

 

2.2 Electrochemical measurements 

 Electrochemical measurements are essential methods to evaluate the catalytic activity 

of electrode catalysts such as Pt and Au nanoparticles. In general, rotating ring disk 

electrode (RRDE) voltammetry is applied to investigate the number of transferred 

electrons n as well as the electrochemical activity [55]. In this study, this method was 

applied to evaluate the electrochemical characteristics of the CAC powders. However, 

this method cannot be applied to the plate-like N-HOPG since a suspension mixed with 

catalyst powder and Nafion is required to deposit it on the disk electrode. N-HOPG 

electrode was prepared directly instead as follow; attaching the iron wire with a 

conductive adhesive, pasting an inert polymer around the wire and adhesive, and drying 

in air. The detailed experimental setup and condition are described in the each following 

section. 

 

2.2.1 Principles of RRDE voltammetry 

 Figure 2.2 shows a schematic image of RRDE measurements. The suspension mixed 

with the catalyst powder and Nafion is coated on the disk electrode. A voltage in the 

disk electrode (working electrode) relative to a reference electrode is swept while a 

constant voltage (~1.2 V) is applied in the ring electrode during rotating the electrode 

complexes. The mixed 4-electron and 2-electron oxygen reduction reactions, which 

generate H2O and H2O2, respectively, occur on the disk electrode in the O2 saturated 

liquid electrolyte. 

O2 + 4H
+
 + 4e

-
 → 2H2O 

O2 + 2H
+
 + 2e

-
 → H2O2 

 The part of the generated H2O2 is reoxidized to the H2O on the ring electrode with the 

constant voltage, while the other parts diffuse to the bulk electrolyte.  
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H2O2 → O2 + 2H
+
 + 2e

-
 

The ratio of H2O2 collected in the ring electrode (collection efficiency: N) is 

theoretically determined by the size of the disk and ring electrodes. However, since the 

collection efficiency changes by the surface roughness of the electrode, the collection 

efficiency in real is estimated by measuring a reversible reaction such as [Fe(CN)6]
4-

/ 

[Fe(CN)6]
3-

 and Br
-
/ Br

3-
. The collection efficiency is 0.372 in this study. Therefore, the 

number of transferred electrons n and the yield of peroxide on the disk electrode can be 

calculated form the following equation. 

n = 4 × Idisk / (Idisk + (Iring / N)) 

%(H2O2) = 200 × Iring / (N × Idisk + Iring) 

where Idisk and Iring are the Faradaic current at the disk and ring, respectively. The 

current density (A cm
-2

) is calculated from the Idisk divided by the disk electrode area 

(0.2828 cm
2
). 

 

Fig. 2.2. A schematic image of RRDE measurements. Oxygen and hydrogen atoms 

correspond to red and white balls, respectively. 
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2.3 X-ray photoelectron spectroscopy (XPS) 

 X-ray photoelectron spectroscopy (XPS) is one of the most extensively used 

techniques to investigate the compositions and oxidation state of the sample. It is highly 

informative and semi-quantitative based on the well-developed theories, and is 

particularly useful in studies of solid surfaces and adsorption. In general, the 

characteristic X-ray (Al K and Mg K) and the synchrotron radiation source are 

widely used as light sources. In this study, synchrotron radiation light source was used 

for the chemical composition analysis of the small amount of doped nitrogen species 

embedded in the carbon network. 

 

2.3.1 Principles of XPS 

 Figure 2.3 shows a schematic diagram of photoemission process. When an electron in 

a material is excited by a photon whose energy (hv) is higher than the sum of the 

binding energy of the electron and the work function, it is emitted as a photoelectron. 

The binding energy EB can be calculated from the following equation 

𝐸𝐵 =  ℎ𝑣 − 𝐸𝑘𝑖𝑛
𝑉 −  𝜑 

where 𝐸𝑘𝑖𝑛
𝑉  is the kinetic energy of the photoelectron relative to the vacuum level, φ is 

the work function of the material. In order to compare the binding energy among 

different materials, it is convenient to use the kinetic energy Ek of the photoelectron 

relative to the Fermi level. Then, the binding energy can be simply expressed by the 

following equation 

𝐸𝐵 = ℎ𝑣 −  𝐸𝑘. 

The energy distribution of the observed photoelectron has information about the core 

level and valence band of materials, and is proportional to the density of state of the 

occupied electronic structure. Therefore the identification of elements can be easily 

conducted due to the different binding energy of the core level of each element. 

 

2.3.2 Chemical states analyses 

 The amount of each element is calculated from the ratio of area intensities divided by 

cross section of each element. The observed XPS spectra are fitted with several Voigt 

functions by the least square line to analyze the chemical states of materials. The 

position and the integrated intensity of each peak represent the oxidation state and the 
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amount of each element, respectively. The Voigt function is the convolution of 

Lorentzian and Gaussian functions. The full width half maximum (FWHM) of each 

peak is determined by both Lorentzian width WL and Gaussian width WG. The 

Lorentzian width is determined by the lifetime of the core hole generated by the 

photoelectron emission, which depends on the elements and the orbital characters. The 

Lorentzian width for N 1s and O 1s are 0.25 eV and 0.30 eV in this study, respectively. 

While the Gaussian width depends on the extent of the core orbital, the main factors to 

decide the Gaussian width are the energy resolutions of the light source and the 

photoelectron detector. The Shirley method is often used for the background 

subtraction. 
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Fig. 2.3. A schematic diagram of photoemission spectroscopy [56]. 
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2.4 X-ray absorption spectroscopy (XAS) 

 When the X-ray energy is scanned across the binding energy of a core level of a 

particular element and if X-ray absorption is plotted as a function of the excitation 

energy, one can probe X-ray absorption spectroscopy (XAS) which reflects element 

specific electronic structures of the unoccupied state [57]. The N and O 1s XAS 

measurements were performed in this study. 

  

2.4.1 Principles of XAS 

 Figure 2.4 shows a schematic diagram of X-ray absorption process. An incident X-ray 

excites the electron in a core level into an unoccupied valence state. Then, this 

electron-hole state decays via fluorescence X-ray, photoelectron, Auger electron, and 

low energy secondary electron emissions. The X-ray transmission process also occurs 

depending on the energy of the incident X-ray or the thickness of materials. The 

transition probability I (hv) of X-ray absorption is described by applying Fermi’s golden 

rule and dipole approximation. I (hv) is given by the following equation 

𝐼 (ℎ𝑣) =  ∑|〈𝑓|𝑒̂ ∙ 𝑟|𝑖〉|2𝛿(𝐸𝑖  −  𝐸𝑓 − ℎ𝑣)

𝑓

 

where |〈𝑓|𝑒̂ ∙ 𝑟|𝑖〉| is the dipole matrix element, f and i are wave functions of the final 

(energy Ef) and initial (energy Ei) states. The delta function δ(Ei – Ef – hv) takes care of 

the energy conservation. As an example for K-shell excitation of O2 with the σ* and π* 

orbital, each transition moment is directed to the parallel and the perpendicular to the 

molecular axis, respectively. The polarization dependence of the total matrix element 

can be expressed as a function of the angle θ between the directions of the electric field 

vector and the largest amplitude of the final state orbital by the following equation 

𝐼 (ℎ𝑣) ∝ 𝑐𝑜𝑠2𝜃. 

Therefore the polarization dependence of σ* and π* peaks reveals the orientation of the 

adsorbed molecule on the surface. 
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Fig. 2.4. A schematic diagram of X-ray absorption process. 

 

 

2.4.2 Detection of XAS 

 There are several detection methods such as transmission, fluorescence yield, and 

electron yield. The X-ray transmission rarely occurs in the soft X-ray region due to the 

short penetration depth (~1 μm). As shown in Fig. 2.4, a generated core hole decays by 

either fluorescence channel or by the Auger channel. The electron yield is classified into 

a total electron yield (TEY) and a partial electron yield (PEY). In the TEY method, all 

electrons that emerge from the sample surface are detected, while in the PEY method, 

Auger electrons of a specific element are detected using a gold mesh with certain 

negative bias in order to remove the excess low energy secondary electrons, resulting in 

the better S/B ratio. The probing depths of TEY and PEY are approximately 3-10 nm 

and <3 nm, respectively, in the soft X-ray region. The PEY method was used in this 

study since it is suitable for measuring elements localized on the surface and the 

adsorbed molecules on the surface. In the PEY measurements a MCP analyzer 

(F2221-31S, Hamamatsu Photonics K.K.) was used. 
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2.4.3 XAS spectra fitting 

 The N 1s XAS analyses were performed by curve fitting in this study. Details of the 

analyses have been previously summarized by J. Stöhr [57]. The XAS spectra were 

fitted by Gaussian functions for each σ* and π* state, and step functions convoluted by 

an error function and an exponential decay function for the continuum states in each σ* 

and π* region. The error step function (𝐼𝑠𝑡𝑒𝑝) and multiplied exponential decay step 

function (exp[−𝑑(𝐸 − 𝐸𝑠 − 𝑊𝑠)]) in the following equations are used. 

𝐼𝑠𝑡𝑒𝑝 = 𝐻 [
1

2
+

1

2
𝑒𝑟𝑓 (

𝐸 − 𝐸𝑠

𝑊𝑠 𝑐∗⁄
) ] 

𝐼𝑠𝑡𝑒𝑝
𝑒𝑥𝑝 = 𝐼𝑠𝑡𝑒𝑝,                        E ≤ Es + Ws , 

𝐼𝑠𝑡𝑒𝑝
𝑒𝑥𝑝 = 𝐼𝑠𝑡𝑒𝑝 ∙ exp[−𝑑(𝐸 − 𝐸𝑠 − 𝑊𝑠)],   E ≥ Es + Ws , 

where Es is the positon of the inflection point of the step function, H is the height of the 

function above the step, Ws is the FWHM of the step function, d is the exponential 

decay coefficient, E is the independent variable energy, and c* = 2√ln2. 

 

2.5 Raman spectroscopy 

 Raman spectroscopy monitors a vibrational signal for specific chemical bonds 

including defect sites and is a versatile tool for studying the characteristics of 

carbon-based materials [58]. In this study, it is used to evaluate the amount of defects in 

carbon structures of the CACs and the N-HOPG. 

 

2.5.1 Raman scattering process 

 Raman scattering is an inelastic scattering phenomena of photons by phonons, as 

shown in Fig. 2.5. In the Raman process, an incident photon with frequency v0 reaches 

the material and is scattered, resulting in the elastic scattering photon v0 (Rayleigh 

scattering light) and the weak inelastic scattering photon v0 ± vi (Raman scattering light) 

with the small frequency shift. The Stokes light and the anti-Stokes light correspond to 

v0 – vi and v0 + vi, respectively. The intensities of the Stokes light (Raman shift) are 

plotted as a function of the difference between incident and scattered energy in the 

Raman spectra. Raman shift corresponds to the energy of a vibration mode, which gives 

similar energy to the IR spectroscopy.  
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Fig. 2.5. A schematic diagram of Raman scattering process. 

 

 

2.5.2 Raman shift in carbon-based materials 

 Carbon-based materials except diamond show the strong absorption in the visible light 

region, resulting in the shallow probing depth about several 10 nm [59]. The Raman 

spectroscopy is practically surface analyses method. The double degenerate E2g mode is 

the Raman active in the sp
2
 hybridized graphite structure and observed in ~1580 cm

-1
. A 

defect structure induced in the graphite activates the A1g mode in ~1350 cm
-1

 and 1620 

cm
-1

 due to the breathing modes of six-membered rings. The former is called G-band, 

and the latter is called D-band and D’-band. The relative intensity ratio (ID/IG ratio) was 

used to evaluate the amount of defects in this work [58]. 

 

 

  



21 

 

Chapter 3 
 

 

O2 adsorption property on nitrogen-doped 

metal-free carbon-based catalysts 

 

 

3.1 Introduction 

In order to develop PEFC in a large variety field for global environmental problems, 

the alternative cathode catalysts without expensive Pt are required. Several groups have 

reported that non-precious metal carbon-based materials such as CACs show high ORR 

activity [15–34]. CACs are composed of carbon-based substrates, transition metal and 

light elements. In the past several years, these materials are intensively investigated to 

achieve high activity comparable with Pt-based catalysts. However, the role of transition 

metal and light elements on the ORR activity has yet been dissolved. In the previous 

report, ORR activity was correlated with the nitrogen content among CACs derived 

from nitrogen-containing rigid-rot polymers [38]. Niwa et al. reported that graphite-like 

nitrogen is responsible for the ORR activity [60]. Ikeda et al. suggested by first 

principles calculation that the graphite-like nitrogen incorporated into the zigzag edge 

lowers the energy barrier for O2 adsorption [42]. This means that nitrogen components 

which exist on a particular site enhance O2 adsorption. In order to discuss the role of 

light elements on the ORR activity, it is necessary to study CACs without metal species 

since metal species would directly and indirectly contribute to the ORR 

activity [20,24,61]. 

I studied the characteristics of O2 adsorption on CACs which containing light elements 

(carbon, nitrogen, and oxygen species) without metal species. A possible oxygen 

reduction site was discussed using O2 adsorption isotherms, RRDE voltammetry, Raman 

spectroscopy, and in situ XPS. Since O2 adsorption is the first step of ORR, the 

mechanism of oxygen reduction process on these systems will be further considered. 
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3.2 Experimental methods 

The catalysts were prepared by pyrolysis of poly meta-phenylene isophthalamide and 

phenolic resin as a reference described in Chapter 2.1.1. The terminology of these 

catalysts is defined as PA and PhRs. 

The oxygen reduction activity was evaluated by RRDE voltammetry at room 

temperature in a 0.5 M H2SO4 electrolyte solution. The electrodes were prepared by 

mixing 5 mg of the catalyst with 50 µl Nafion solution (Sigma-Aldrich Co. LLC.), 150 

µl Millipore water and 150 µl ethanol, followed by sonication. Subsequently, 4 µl of the 

catalyst ink was deposited on a circular glassy carbon electrode and dried under 

atmosphere. The voltages were swept with respect to a reversible hydrogen electrode 

(RHE). Linear sweep voltammograms were recorded using an electrochemical 

equipment (ALS 2323, ALS Co. Ltd.), by rotating the electrode at 1500 rpm and 

sweeping the potential from 1.2 to 0 V (vs. RHE) at 5 mV s
-1

 in the saturated N2 or O2 

gas electrolyte. The N2 data were then subtracted from the O2 data. The selectivity to 

H2O2 formation and the average number of transferred electrons n were calculated from 

the ring currents in Chapter 2.2.1. 

In order to evaluate the degree of structural defects in PA and PhRs, Raman 

spectroscopy was carried out. Raman spectra were collected with a micro-Raman 

spectrometer (NR-1800, JASCO Corp.) with an excitation wavelength of 532 nm. 

Spectra for catalysts were acquired by performing two scans, each lasting 30 sec, from 

700 to 2000 cm
−1

. The wave length resolution is 2.6 cm
-1

. 

Gas adsorption isotherm measurements were performed for O2 and N2 gases at 298 K 

(Belsorp II mini, Bel Japan Corp.). The samples were pre-annealed at 500 °C for 1 h in 

vacuum in order to remove adsorbed water and oxygen before gas adsorption. Brunauer, 

Emmett, and Teller (BET) specific surface area was measured via N2 adsorption at 77K. 

XPS were performed using non-monochromatic Mg-K source (JPS-9010MC, JEOL 

Ltd.). The effects of O2 adsorption to the electronic structures of O 1s and N 1s were 

investigated in detail, while C 1s spectra were recorded to calculate the composition 

ratio of the sample. XPS spectra were recorded for three phases of PA and PhRs; before 

and after O2 adsorption and after re-annealing to remove the adsorbed oxygen. Firstly 

the samples were annealed at 500 °C for 1 h in vacuum (<10
-4

 Pa) for the initial XPS 

spectra in order to remove the initially adsorbed gas under atmosphere. Secondly the 
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samples were exposed to 1 atm O2 gas at 300 K for 1 h. Finally the samples were 

annealed at 500 °C for 1 h in vacuum (<10
-4

 Pa) again. Backgrounds of the core level 

spectra were subtracted by the Shirley method. Each spectrum was fitted with Voigt 

functions (N 1s: 1.6 eV Gaussian width and 0.25 eV Lorentzian width, O 1s: 2.0 eV 

Gaussian width and 0.3 eV Lorentzian width).  

 

3.3 Results and discussion 

3.3.1 RRDE voltammogram 

Figure 3.1 shows RRDE voltammogram, H2O2 yield, and number of electrons in PA, 

PhRs, and Pt (50 wt%). The electrochemical properties of CACs are summarized in 

Table 3.1. The nitrogen-containing PA exhibits higher ORR activity (EO2
: 0.79 V) than 

the nitrogen-free PhRs (EO2
: 0.60 V) while the Pt (50 wt%) exhibits much higher 

activity (EO2
: 0.98 V) and selectivity of a 4-electron ORR process (H2O2 yield: ~100% 

and number of electrons: ~4.0). The H2O2 yield and number of electrons in PhRs are 

55% and 2.9, however, those in PA are 70% and 2.6, respectively. The increased 

selectively of a 2-electorn ORR process in PA is driven by the formation of ORR active 

sites which accelerate the 2-electron ORR process, indicating that nitrogen incorporated 

into PA mostly contributes to the increase of 2-electron ORR active sites. 

 

 

Table 3.1. Electrochemical activities, H2O2 yield, and number of electrons for ORR in 

PA and PhRs 

Sample EO2

a
 / V vs. RHE H2O2 yield

b
 / %  Number of electrons

b
 

PA 

PhRs 

0.79 

0.60 

70 

55 

2.6 

2.9 

a
 Oxygen reduction potential defined as the voltage at which a reduction current density 

of -10 A cm
-2

 is reached. 

b
 H2O2 yield and number of electrons at 0.30 V vs. RHE. 
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Fig. 3.1. (A) H2O2 yield and number of electrons and (B) RRDE voltammogram for 

ORR in PA (red), PhRs (blue), and Pt (50 wt%) (green). 
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3.3.2 Raman spectroscopy 

Figure 3.2 shows Raman spectra of PA and PhRs. The D-band around 1340 cm
-1

 and 

the G-band around 1590 cm
-1

 are appeared, which are derived from carbon defects and 

hexagonal graphitic carbon structures, respectively. The peak height intensity ratio of 

the D-band to G-band, ID/IG, provides information about the degree of amorphous 

carbon and/or the amount of structural defects. The ID/IG ratio in PA was 1.06, larger 

than 0.93 observed in PhRs, indicating introduction of more amorphous carbon, 

structural defects, edges or other disordered structures caused by heterogeneous 

nitrogen atoms incorporated into PA [62,63]. 

 

Fig. 3.2. Raman spectra of PA and PhRs 

 

 

3.3.3 O2 and N2 adsorption isotherms 

Figure 3.3 shows O2 and N2 adsorption isotherms of PA and PhRs at 298 K. The O2 

adsorption isotherm of both PA and PhRs shows two-step behavior, i.e. the amount of 

the adsorbed O2 drastically increases with increasing the pressure in the low-pressure 

region below 0.1 kPa, while it shows a moderate linear increase in the subsequent 

high-pressure region [64]. However, the N2 adsorption isotherms show no drastic 
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increase and little amount of the adsorbed N2. The amount of the adsorbed O2 is much 

higher than that of the adsorbed N2 in both PA and PhRs, indicating that the O2 

adsorption is not physisorption but chemisorption process. The amount of the adsorbed 

N2 is almost the same for both PA and PhRs, however that of the adsorbed O2 is 1.0 mg 

g
-1

 for nitrogen-containing PA and 0.4 mg g
-1

 for nitrogen-free PhRs at 0.1 kPa. BET 

surface areas of PA and PhRs shown in table 3.2 are almost the same; 456 m
2
 g

-1
 and 

523 m
2
 g

-1
, respectively. If O2 molecules equally interact with and adsorb on the catalyst 

surfaces, the amount of adsorbed oxygen should be identical among materials with the 

same BET surface. However, it is different that the amount of the adsorbed O2 of PA and 

PhRs, indicating that nitrogen components incorporated into PA enhance the O2 

adsorption. Pollak et al. reported that the O2 adsorption on the carbon surface at 523K is 

more pronounced when nitrogen atoms are introduced in the carbon structure [65]. Thus 

nitrogen atoms would contribute to alter the property of carbon materials to enhance the 

O2 adsorption. 

 

Fig. 3.3. The adsorption isotherms for O2 and N2 gas on PA and PhRs at 298 K. Full red 

circle and full blue squares denote the O2 adsorption on the fresh PA and PhRs samples, 

respectively. Open red circles and open blue squares are for the N2 adsorption on the 

fresh PA and PhRs. 
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Table 3.2. The BET specific surface area and the amount of adsorbed O2 in PA and 

PhRs 

Sample SBET
a
 / m

2
 g

-1
 O2, ads amount

b
 / mg g

-1
 

PA 456 1.0 

PhRs 523 0.4 
a
 BET specific surface area.

 

b
 The amount of adsorbed O2 on the sample at 0.1 kPa. 

 

 

3.3.4 In situ XPS analyses 

The composition ratios of PA and PhRs estimated from XPS spectra are summarized in 

Table 3.3. The initial XPS spectra before oxygen adsorption of PA and PhRs are simply 

labeled as PA and PhRs, respectively. Subsequently, the second and final XPS spectra 

after oxygen adsorption and desorption by re-annealing are labeled as PA_O2, PhRs_O2, 

and PA_O2_an.  

 

 

Table 3.3. The composition ratio for PA and PhRs estimated from the XPS spectra. “O2” 

and “an” extensions indicate “O2 adsorption” and “annealing”, respectively 

Sample C / at.% N / at.% O / at.% 

PA 93 5.5 1.1 

PA _O2 92 5.5 2.7 

PA _O2_an 93 5.5 1.3 

PhRs 99 0.2 1.3 

PhRs _O2 98 0.0 2.3 
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As shown in Table 3.3, the amount of the adsorbed oxygen is 1.6 at.% for PA and 1.0 

at.% for PhRs. The increase in the amount of the adsorbed oxygen detected by in situ 

XPS for PA compared to PhRs is consistent with that estimated by the O2 adsorption 

isotherms. Figure 3.4 shows O 1s XPS spectra of PA and PhRs before and after O2 

adsorption and after O2 desorption. The spectra are normalized to the atomic ratio of 

each sample as shown in Table 3.3. The O 1s XPS spectra are decomposed into three 

peaks (OP1-OP3) corresponding to different chemical states of oxygen; the C=O group 

appears around 531.2-531.6 eV (OP1), the C-OH and C-O-C groups around 532.2-533.4 

eV (OP2), and chemisorbed oxygen or water around 534.6-535.4 eV (OP3) [66,67]. 

Table 3.3 shows the atomic ratios and the relative composition ratios of the adsorbed 

oxygen extracted by comparing the XPS spectra before and after O2 adsorption. It is 

revealed that the relative composition ratio of the adsorbed C=O component (OP1) are 

57% in PA and 41% in PhRs, indicating that C=O components are likely to be 

incorporated into PA which has high selectivity of a 2-electron ORR process. In Fig. 3.4, 

the O 1s spectral profiles of (a) PA and (b) PA_O2_an are similar, suggesting the 

reversible reaction of O2 adsorption/ desorption. 

 

 

Table 3.4. The atomic ratio of the adsorbed oxygen components and the relative 

composition ratios of three oxygen components calculated from XPS fitting results, 

which are estimated by subtracting oxygen atomic ratio of the annealed sample from 

that of the O2 adsorbed sample 

Precursor 

material 

Atomic ratio  

/ at.% 

Relative composition ratios  

of the adsorbed oxygen / % 

 
Adsorbed O C=O 

C-OH,  

C-O-C 

Chemisorbed 

H2O 

PA sample 1.6 57 40 4 

PhRs sample 1.0 41 51 8 
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Fig. 3.4. O 1s XPS spectra of (I) PA and (II) PhRs. (a) and (d) show annealed samples 

before O2 adsorption. (b) and (e) show O2 adsorbed samples. (c) shows reannealed 

sample after O2 adsorption. Gray open circle and black line represent raw data and 

fitting results. Red, blue, and green lines are C=O groups (OP1); C-OH and C-O-C 

groups (OP2); and chemisorbed oxygen or water (OP3) components, respectively. 
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Figure 3.5 shows N 1s XPS spectra of PA and PhRs before O2 adsorption, after O2 

adsorption, and after O2 desorption. The spectra are normalized to the atomic ratio of 

each sample shown in Table 3.3. The N 1s XPS spectra are decomposed into four peaks 

(NP1-NP4) and their atomic ratio N/C as well as relative composition ratio is 

summarized in Table 3.5. The terminology of nitrogen components used hereafter is 

shown in Fig. 3.6. Peak NP1 around 398.3-398.5 eV is pyridinic N bonded to two 

carbon atoms in a graphitic sp
2
 network [68,69]. Peak NP2 around 399.9-400.2 eV is a 

mixture of pyrrolic N formed in a five-membered ring [68] and amide N that contains 

a functional group consisting of a carbonyl group (R-C=O) linked to a nitrogen 

atom [70]. Peak NP3 around 401.0-401.2 eV is assigned to the graphitic N which is 

hybridized with three carbon atoms in the sp
2
 network [69,71,72]. Peak NP4 around 

402.9-403.8 eV is assumed to the Oxide N which bonds to an oxygen atom [68]. 

The N/C ratio of PA before O2 adsorption, after O2 adsorption, and after O2 desorption 

is 0.059, 0.060, and 0.059, respectively, shown in Table 3.3, indicating that nitrogen 

incorporated into PA doesn’t decrease from 56% to 47% through O2 adsorption and 

desorption. However, the relative composition ratio significantly changes before and 

after O2 adsorption in PA. The relative ratio of graphitic N (NP3) decreased and that of 

pyridinic N (NP1) and pyrrolic/amide-like (NP2) N increased, while that of oxide N 

was almost constant. The similar change in the nitrogen composition is found in a CNx 

film etched by the oxygen ion beam [73,74]. They reported that the amount of the oxide 

N did not increase through O2 ion beam etching, indicating that O2 does not directly 

reacts with nitrogen atoms. Therefore, O2 would be adsorbed on a particular site close to 

the graphitic N and indirectly change the chemical state of the graphitic N. The relative 

composition ratio of the graphitic N increased from 47 % to 53 % after O2 desorption 

while the total nitrogen content remained unchanged, suggesting that graphitic N was 

reproduced by reannealing. Thus the nitrogen-containing O2 adsorption sites in PA have 

reversible characteristics for O2 adsorption and desorption. 

http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Carbonyl
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Fig. 3.5. N 1s XPS spectra of PA (a) before and (b) after O2 adsorption. (c) shows 

reannealed sample after O2 adsorption. Gray open circle and black line represent raw 

data and fitting results. Purple, blue, green, and orange solid lines are pyridinic N 

(NP1); pyrrolic and amide-like N (NP2); graphitic N (NP3); and oxide N (NP4) 

components, respectively. 
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Fig. 3.6. Local geometry for various nitrogen components in graphite. Gray, blue, red, 

and white balls represent carbon, nitrogen, oxygen, and hydrogen atoms, respectively. 

 

 

Table 3.5 The N/C ratio and the relative composition ratio of four nitrogen components 

calculated form XPS fitting results in each sample 

Sample N/C ratio Relative composition ratio / % 

   
Pyridinic N 

Pyrrolic N 

Amide-like N 
Graphitic N Oxide N 

PA 0.059 

0.060 
 

36 1 56 8 

PA _O2 

PA _O2_an 
 

42 6 47 5 

0.059 
 

37 2 53 7 
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Figure 3.7 shows C 1s XPS spectra of PA before O2 adsorption, after O2 adsorption, 

and after O2 desorption. The spectra are normalized to the peak area. The each dotted 

line (CP1-4) denotes the carbon functional groups. Peak CP1 around 286.2 ± 0.1 eV is 

derived from carbon atoms present in alcohol C-OH, phenolic, ether C-O-C or C=N 

groups. Peak CP2 around 287.4 ± 0.2 eV is derived from carbon atoms present in 

carbonyl or quione >C=O groups. Peak CP3 around 288.6 ± 0.3 eV is derived from 

carbon atoms present in carboxylate –C(=O)OH or ester O-C(=O)-R groups. Peak CP4 

around 290.6 ± 0.2 eV is derived from carbon atoms present in carbonate O-C(=O)-O 

groups, CO, and CO2 [67]. Although the amount of the adsorbed O2 increased by 1.6 

at.% and the relative ratio of the C=O component increased preferentially after O2 

adsorption, it is difficult to detect the little change of C 1s spectra profiles since this 

change is expected to about 2% at maximum. Similar results are also observed in PhRs. 

This changeless C 1s profiles indicate most of the carbon structure in PA and PhRs does 

not change dramatically after O2 adsorption. 

 

Fig. 3.7. C 1s XPS spectra of PA. PA, PA_O2, and PA_O2_an denote PA before O2 

adsorption, after O2 adsorption, and after reannealing, respectively. 
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3.3.5 Oxygen adsorption sites and related ORR mechanism 

The decrease in the relative amount of graphitic N has been observed while little 

change in oxide N after O2 adsorption to PA, indicating that O2 adsorbs on carbon atoms 

close to the graphitic N. Since PA has high selectivity to the 2-electron ORR, the 

graphitic N may contribute to the 2-electron ORR process. Sidik et al. have suggested 

that carbon radical sites formed adjacent to graphitic N in the basal plane are active for 

O2 reduction to H2O2 in acid electrolyte and the adsorbed O2 could also be reduced to 

H2O by the 4-electron ORR [41]. Therefore their model seems to support the observed 

change in the N 1s XPS spectra. However, Ikeda et al. suggested by first principles 

calculation that O2 adsorption energy for a carbon atom next to the graphitic N in the 

basal plane is quite high (~330 kJ mol
-1

) [42]. The preferential production of carbonyl 

(C=O) group after O2 adsorption to PA has been observed. It is well known that 

functional groups on a carbon surface, such as quinone/hydroquinone and 

carbonyl/hydroxyl groups, enhance electrochemical reactions mainly related to the 

2-electron ORR process [75,76]. Thus the created carbonyl group in PA would be active 

for the 2-electron ORR process.  

Several groups have suggested that the incorporated nitrogen atoms reduce potential 

barrier to make various defect sites  [62,77] (such as ad-dimer defect [78,79], 

Stone-Wales defect [80], mono-vacancy [81], divacancy [82], edge [42,83] and so on), 

which would enhance O2 adsorption and the subsequent ORR processes. Ghaderi et al. 

calculated that the Stone-Wales defect, which is composed by two pairs of a 

five-membered ring and a seven-membered ring in Fig. 3.8 (a), stabilized the hydroxyl 

group OH [80]. In addition, Terakura et al. reported by molecular dynamics (MD) 

calculation that O2 adsorption in the Stone-Wales defects with graphitic N at a specific 

site induces the C-N bond breaking and the adsorbed O2 exists in the form of C-O-O 

structure in Fig. 3.8 [84]. In other carbon defects such as the ad-dimer (inverse 

Stone-Wales) defect, which is also composed by the different type of two pairs of a 

five-membered ring and a seven-membered ring in Fig. 3.9, Horner et al. calculated that 

the adsorbed O2 on this defect is stabilized [79]. Moreover, Terakura et al. also reported 

by MD calculation that the ad-dimer defect with graphitic N at a specific site can adsorb 

an O2 molecule and the subsequent C-N bond breaking generates the pyridinic N, 

epoxide, and carbonyl groups in Fig 3.9 [84]. From the above theoretical calculations, it 
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would be expected in current catalyst that the O2 adsorption causes the C-N bond 

breaking between the graphitic N and the carbon atom incorporated into the carbon 

defect structure due to the O2 adsorption. 

Therefore, the whole mechanism expected from the in situ XPS analyses is as follows; 

among the incorporated nitrogen in PA, the graphitic N located in the defect sites 

enhances O2 adsorption to PA and the adsorbed oxygen itself is incorporated in the form 

of carbonyl group, which may become active sites for the 2-electeorn ORR. Note that 

there is also another possible mechanism that the first adsorbed oxygen (C=O) species 

itself is reduced to H2O2. This is the first XPS result of O2 adsorption to CACs and the 

technique is applicable to any other ORR catalysts. 

 

 

Fig. 3.8. Schematic images of (a) Stone-wales defect and Stone-Wales defect with a 

nitrogen atom (b) before and (a) after O2 adsorption. 

 



36 

 

Fig. 3.9. Schematic images of (a) ad-dimer defect and ad-dimer defect with a nitrogen 

atom (b) before and (a) after O2 adsorption. 

 

 

3.4 Conclusions 

The characteristics of O2 adsorption on nitrogen-containing metal-free CACs were 

investigated and the possible ORR mechanism was elucidated using RRDE, Raman 

spectroscopy, O2 adsorption isotherm and in situ XPS. RRDE measurements and Raman 

spectroscopy showed that nitrogen-containing PA has higher ORR activity, higher 

selectivity of the 2-electron ORR process, and more carbon defect sites than 

nitrogen-free PhRs. O2 adsorption isotherm revealed the O2 chemisorbed on CACs and 

the doped nitrogen components enhance O2 adsorption. N 1s in situ XPS results showed 

that the graphitic N contributes to the O2 adsorption process, which is the first step of 

ORR, with the C-N bond breaking. O 1s in situ XPS results showed the adsorbed 

oxygen are dominantly C=O components in PA. These results indicate that the graphitic 

N in the defect sites enhances O2 adsorption and two possible 2-electron ORR 

processes; i.e. reduction of the adsorbed O2 to H2O2 or the adsorbed oxygen itself, 

which forms quinone or carbonyl groups, becomes active sites for 2-electron ORR. 
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Chapter 4 

 

 

Characterization of nitrogen-doped graphite 

using low energy nitrogen ion sputtering 

 

 

4.1 Introduction 

Nitrogen doping of carbon-based materials such as graphene, carbon nanotubes, and 

graphite is an effective way to tailor their electronic, chemical, optical, and magnetic 

properties. In particular, carbon-based oxygen reduction catalysts are expected to be 

alternatives to high cost Pt-based cathode catalysts for PEFCs [20,24,29,30,85–88]. In 

the last decade, there are various theoretical [42–44] and experimental [89–91] studies 

on the roles of pyridinic and graphitic nitrogen in ORR activity. In a diverse range of 

nitrogen-doping methods, including chemical vapor deposition [85,86], pyrolysis of 

nitrogen containing polymers [20,24,87], pyrolysis of the nitrogen source 

mixture [20,24,29,30,87,88,91], and nitrogen ion sputtering [92], a complicated 

relationship exists nitrogen doping and ORR activity because many parameters, such as 

morphology, surface area, and crystallinity, are involved. It is therefore essential to 

prepare a well-defined reference system exhibiting not only high crystallinity and 

surface morphology, but also possessing select nitrogen species in order to determine 

the relationship between nitrogen configuration and ORR activity. In this respect, highly 

oriented pyrolytic graphite (HOPG) is expected to provide a well-defined surface due to 

its ordered sp
2
-carbon network.  

The low energy nitrogen ion sputtering (8-4000 × 10
13

 ions cm
-2

) to HOPG was 

performed in order to realize effective nitrogen doping (N = 0.4-8.4 at.%) while 

retaining the flatness of the surface sp
2
-carbon structure. The chemical states of the 

doped nitrogen will be controlled by altering the amount of impinging nitrogen ions and 

the nitrogen species was clarified using a combination of X-ray and Raman 
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spectroscopic analyses. The characterized N-HOPG was investigated the 

electrochemical properties in order to discuss the possible ORR active site. 

 

4.2 Experimental methods 

The detailed preparation of N-HOPG was described in Chapter 2.1.2. The typical 

amounts of dosed nitrogen ions were calculated to be 8 × 10
13

, 8 × 10
14

 and 4 × 

10
16

 ions cm
-2

, equivalent to 2%, 21%, and 1030% nitrogen ions, respectively, with 

respect to surface carbon atoms. 

XPS was performed at BL27SU in SPring-8 using a photoelectron analyzer 

(PHOIBOS 150, SPECS GmbH), with 850 eV incident photon energy. Backgrounds of 

the core level spectra were subtracted using the Shirley method. The N 1s XPS spectra 

were fitted with Voigt functions (0.98 eV Gaussian width and 0.25 eV Lorentzian width). 

The energy resolution of XPS at BL27SU was 170 meV. Conventional laboratory-based 

XPS was also performed using a monochromatic and a non-monochromatic Al-K 

source (JPS-9010, JEOL Ltd.) with energy resolutions of 0.7-0.8 eV and 1.1-1.3 eV, 

respectively. XAS spectra were measured by the PEY mode in order to increase surface 

sensitivity. XAS spectra were obtained at BL27SU and BL07LSU in SPring-8 by setting 

θ to 0°, 45°, 60°, or 70°. The angle, θ, is defined as the angle between the incident X-ray 

beam axis and the surface normal. The spectra were fitted with six Gauss functions for 

the π* and σ* states, and two step functions convoluted by error function and 

exponential decay function for the continuum states in the π* and σ* regions [57]. The 

detailed fitting method was described in Chapter 2.4.3. The energy resolution of XAS 

had a lower limit below 100 meV. The samples were annealed at 900 K for 30 min to 

remove the initially adsorbed gas before XPS and XAS measurements were carried out. 

For each sample, the nitrogen content remained constant both before and after annealing, 

while the oxygen contamination percentage decreased dramatically (<0.15 at.%) after 

annealing.  

Raman spectroscopy was performed using a micro-Raman spectrometer (NR-1800, 

JASCO Corp.) with an excitation wavelength of 532 nm. The Raman spectral resolution 

was 2.6 cm
-1

.  

A Monte Carlo simulation tool, Stopping and Range of Ions in Matter (SRIM) [93], 

was used to estimate the depth profile of doped nitrogen ions in HOPG sputtered with 
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N2
+
 ions. This simulation tool yields the distribution of implanted ions, vacancies, and 

sputtered ions, along with surface defects. In this sputtering process, the initial kinetic 

energy (200 eV) was equally distributed among the N2
+
 ions [94]. Ion energy, lattice 

binding energy [95], surface binding energy [96], and displacement energy [96] were set 

at 100 eV, 3 eV, 7.41 eV, and 35 eV, respectively. In this case, ion energy is the incident 

energy of a nitrogen atom, and the lattice binding energy is the minimum energy 

required to remove an atom from its lattice site. In addition, the surface binding energy 

is the energy required to remove an atom at the target surface, and can be estimated 

from the heat of sublimation. Finally, the displacement energy is the minimum energy 

required to knock a target atom from its lattice site. 

The ORR activity of N-HOPG was evaluated at room temperature in a 0.1 M H2SO4 

electrolyte solution. The preparation method of the N-HOPG electrode was described in 

Chapter 2.2. The working electrode, counter electrode, and reference electrode were 

N-HOPG, Pt wire, and a reversible hydrogen electrode, respectively. Linear sweep 

voltammograms (LSV) were recorded by sweeping the potential from 1.1 V to -0.05 V 

(vs. RHE) at 5 mV s
−1

 in a saturated N2 or O2 gas electrolyte. The ORR current was 

determined by subtracting the N2 data from the O2 data. Current density was obtained as 

measured current divided by the electrode HOPG surface area (e.g. ~0.15 cm
2
) rather 

than actual surface area, as the surfaces of all N-HOPG samples were flat, with no clear 

difference being observed based on the atomic force microscopy (AFM) analysis in Fig. 

3.7. 
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4.3 Results and discussion 

4.3.1 Chemical states of doped nitrogen in N-HOPG 

Using the SRIM Monte Carlo simulation tool [93], we found that the doped nitrogen 

atoms were distributed near the surface region of HOPG as shown in Fig. 4.1 (projected 

range up to 2 nm). It was observed that the accelerated nitrogen ions create a 2-3 nm 

thick nitrogen-doped region at the surface of the HOPG substrate. Since the nitrogen 

doped region is thinner than the probing depth of XPS and XAS with PEY, all doped 

nitrogen can be detected by both XPS and XAS.  

 

 

Fig.4.1. The simulated depth profile of doped nitrogen atoms on HOPG. 
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From the XPS spectra, the amount of surface nitrogen (X) was estimated to be 0.4, 2.3, 

and 8.4 at.% for N-HOPG samples prepared by doping with 2, 21, and 1030% nitrogen 

ions, respectively. Kondo et al. previously reported the N 1s XPS spectrum of N-HOPG 

produced by low energy (200 eV) nitrogen ion sputtering [49]. In this case, nitrogen 

content was 2.7 at.%, and the profile of N 1s spectra was similar to that of N-HOPG 

with X = 2.3 (at.%) in this manuscript. The amount of dosed nitrogen ions in the 

previous work was not measured but thus can be estimated around 80 × 10
13

 ions cm
-2

. 

On the other hand, the total ion doses were lower than 0.2 × 10
13

 ions cm
-2

 for the 

STM measurements. Therefore, we have for the first time reported the ion dose effects 

between 0.2 and 80 × 10
13

 ions cm
-2

; in particular emphasis is on 8 × 10
13

 ions cm
-2

. 

The higher ion dose effect for 4000 × 10
13

 ions cm
-2

 was also reported. 

Figure 4.2 shows the N 1s XPS spectra of N-HOPG with X = 0.4, 2.3, and 8.4. In 

addition, the N 1s XPS spectra at low nitrogen content region with low energy 

resolution (ΔE = 1.1-1.3 eV) are shown in Fig. 4.3. All spectra were normalized by the 

integrated intensity. As can be seen, the spectra are fitted with five Voigt functions, 

denoted as NP1 (398.0-398.5 eV), NP2 (399.9 eV), NP3 (400.9 eV), NP4 (401.9 eV), 

and NP5 (403.5 eV). The binding energy was treated as a fixed parameter except for 

NP1. The terminology of nitrogen components used hereafter is defined in Fig. 4.4.  

NP1 represents pyridinic N where one nitrogen atom is connected with two carbon 

atoms. The peak positions at X = 0.4 and 2.3 are 398.0 eV and slightly lower than the 

reported one (398.5-398.9 eV) [86]. Although pyridinic N usually exists in the graphite 

edge, the majority of pyridinic N atoms in N-HOPG exist in the vicinity of in-plane 

defects at the beginning of nitrogen ion sputtering due to the small amount of graphite 

edge in HOPG. The difference between in-plane pyridinic N and pyridinic N in edges 

would induce the chemical shift. On the other hand, the peak position of pyridinic N at 

X = 8.4 is 398.5 eV [86]. The agreement with the previous report would results from the 

dominant number of pyridinic N at edges created by the large number of sputtering ions. 

NP2 represents cyanide N, where a triple bond is formed between a nitrogen and a 

carbon atom [70], or pyrrolic N where one nitrogen atom is connected with two carbon 

atoms and one hydrogen atom in a five-membered ring [68]. NP3 corresponds to 

graphitic N in the basal plane [69], which substitutes the carbon site in the graphite 

basal plane, forming a nitrogen site bonded to three carbon atoms. NP4 would be valley 
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N where one nitrogen atom substitutes the carbon site in the zigzag edge and/or vacancy 

sites in Fig. 4.4 [91,97]. From the theoretical reports, Casanovas et al. used cluster 

calculations to suggest that the peak position of graphitic N in the zigzag edge shifts to 

higher binding energy by approximately +1.0 eV compared to that of the in-plane 

graphitic N [69]. Wang et al. also estimated the binding energy separation of the same 

chemical components to be approximately +0.6 eV [98]. From the experimental results, 

the presence of the zigzag edge even in HOPG has been reported by STM [99], with 

step densities of 0.09-2.2% being recorded for a variety of HOPG grades using 

AFM [100]. The nitrogen sputtering process not only causes nitrogen doping but also 

creates carbon vacancies. Such carbon vacancies can contribute to the formation of 

pyridinic N and valley N. For a graphene on Ir (111) with 25 eV N
+
 plasma treatment, 

Orlando et al. observed a peak around 401.9 eV and assigned it to valley N based on the 

XPD study [101]. Because graphene on a metal substrate forms a Moire structure by the 

mutual interaction, there was another possibility that the peak around 401.9 eV results 

from the chemical shift of graphitc N (400.9 eV). However, Orlando et al. excluded the 

possibility because the interaction between graphene and Ir(111) was weak [102], thus 

supporting my assignment. The more detailed doping dependence of N 1s XPS spectra 

was shown in Fig. 4.3 and confirmed the existence of NP4 peak at low nitrogen content. 

From these theoretical and experimental results, it seems therefore most plausible to 

assign NP4 to valley N. It should be noted that there is not yet strong evidence to 

visualize the local atomic structure of valley N using atomic scale microscopy such as 

STM and AFM and the assignment is not conclusive. Finally, NP5 represents oxide N, 

which forms direct bonds with oxygen atoms.  
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Fig. 4.2. (a) N 1s XPS spectra of N-HOPG (X = 0.4, 2.3, and 8.4). The energy 

resolution was 0.17 eV in N-HOPG with X =0.4 and 2.3, however, 0.7-0.8 eV in 

N-HOPG with X = 8.4. Purple, blue, green, red, and orange lines correspond to NP1 

(pyridinic N), NP2 (cyanide N or pyrrolic N), NP3 (graphitic N), NP4 (valley N), and 

NP5 (oxide N), respectively. Gray and black lines represent raw and fitting results, 

respectively. 

 

Table 4.1. Nitrogen atomic ratio of each nitrogen component in N-HOPG (X = 0.4, 2.3, 

and 8.4) 

N content  

(X = N at.%) 

Atomic ratio of each N component / at.% 

Pyridinic N Pyrrolic N Graphitic N Valley N Oxide N 

X = 0.4 0.04 0.0 0.14 0.14 0.03 

X = 2.3 

X = 8.4 

0.48 0.13 1.23 0.29 0.10 

3.78 0.91 2.88 0.65 0.17 
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Fig. 4.3. (a) N 1s XPS spectra of N-HOPG measured with a non-monochromatic Al-Kα 

source and calculated fitting results in Fig. 4.2 (X = 0.4 and 2.3) using comparable 

Gaussian width. Closed circles, solid lines, and open circles present raw data, fitting 

results, and calculated fitting results, respectively. (b) The amounts of individual 

nitrogen components as a function of total nitrogen content. 

 

Fig. 4.4. A schematic representation of the nitrogen components. Hydrogen, carbon, 

nitrogen, and oxygen atoms correspond to white, black, blue and red balls, respectively. 
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Graphitic N (NP3) and valley N (NP4) components were found to be dominant in 

N-HOPG with X = 0.4 and X = 2.3, which correspond to more than 70% of the total 

nitrogen content. Pyridinic N was the next common component. It was found that the 

relative ratio of pyridinic N gradually increased with increasing total amount of doped 

nitrogen, i.e. 13% in N-HOPG with X = 0.4, 21% in N-HOPG with X = 2.3, and >40% 

in N-HOPG with X = 8.4. In graphene sputtered with nitrogen ions, a continuous 

increase in pyridinic N correlates to a greater amount of defects and some carbon 

loss [103]. Thus, it was clear that the formation of the defects in graphite is suppressed 

by the low nitrogen concentration. The amount of pyridinic N, graphitic N, and 

graphitic N increases in proportion to the total nitrogen content under X = 0.6, however, 

that of valley N increases a little over X = 0.9 in Fig. 4.3 (b). The relative ratio of valley 

N in Fig. 4.2 also decreased from 39% in N-HOPG with X = 0.4 to 13% in N-HOPG 

with X = 2.3. This counterintuitive feature of valley N can probably be explained as 

follows. Graphite retains flat surface under N-HOPG with X = 0.6 as later mentioned at 

4.3.3. Above N-HOPG with X = 2.3, however, the carbon network was strongly 

disturbed and amorphized. At the low nitrogen doing region, the sputtering creates 

defects, such as zigzag edges and point vacancies, whereas at the high nitrogen doping 

region, the sputtering creates more defects resulting in disorder of several carbon layers, 

that is, amorphous carbon as discussed in the previous study of Ar
+
 sputtering to single- 

and few-layer graphenes [104]. The zigzag edges and point vacancies contribute to the 

formation of both pyridinic N and valley N. Therefore, at the low doping region, the 

absolute amount of pyridinic N and valley N increases in proportion to the total ion dose 

(Fig. 4.3 (b)). At the high doping region, however, the evolution of the amorphous 

carbon (Fig. 4.8) prevents the formation of valley N (Fig. 4.3 (b)). Therefore, it was 

amorphization of carbon that drastically reduced the proportion of valley N at high 

doping region. 
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4.3.2 Configuration of doped nitrogen in N-HOPG 

The configuration of doped nitrogen in N-HOPG was analyzed by angle-dependent N 

1s XAS in Figs. 4.5 and 4.6. The spectra were normalized according to intensity at 

430 eV, taking an average between 390-395 eV as background. Out-of-plane (θ = 90°) 

unoccupied states of nitrogen were extracted by taking into account their contribution to 

the obtained (θ= 0°, 45°, 60°, or 70°) spectra (Fig. 4.5). Figure 4.6 shows the in-plane 

(θ = 0°) and the extracted out-of-plane (θ = 90°) N 1s XAS spectra. Three sharp peaks 

in the π* region can be assigned to (A) pyridinic N, (B) cyanide N, and (C) graphitic N 

sites [51,60,105], respectively, where the presence of pyrrolic N could be excluded by 

XAS rather than XPS because the peak position of the pyrrolic N was calculated as 

~402 eV [106]. In addition, peak D corresponds to the σ* states. The intensities of 

pyridinic N (A) and graphitic N (C) for the low nitrogen content (N-HOPG with X = 0.4 

and 2.3) strongly depend on the X-ray incident angle. Since the similar angle 

dependence is observed in the carbon π* state of HOPG (C 1s XAS) [107], those 

nitrogen species are incorporated into the graphite basal plane to give a planar N-HOPG 

structure under low nitrogen doping conditions. The simulation of both in-plane 

and-out-of-plane XAS spectra has been reported by Hou et al. using density functional 

theory (DFT) calculations [108]. They reported that both a graphitic N in perfect 

graphene, and a pyridinic N with a monovacancy show perfect polarization dependence 

for π* and σ* components. Therefore, graphitic N and pyridinic N are doped into the 

planar graphene lattice via substitution. In this N-HOPG preparation method, two main 

factors can facilitate the formation of the planar structure. Firstly, the low acceleration 

voltage of ions (200 eV) maintains the nitrogen ions at the surface of the graphite layer 

and reduces the collapse of the graphite basal plane by recoil effects. Secondly, the 

post-annealing step at 1000 K reduces defects and removes excess nitrogen from the 

N-HOPG.  

However, in highly nitrogen-doped systems (N-HOPG with X = 8.4), this polarization 

dependence is less distinct when the same preparation method is used. The decrease in 

polarization dependence is clearly shown in Table 1, where the degrees of the 

orientation of each nitrogen component are expressed by the intensity ratio [π*/σ* (at θ 

= 90°)]/[π*/σ* (at θ = 0°) ] where π* and σ* represent the integrated intensity of the 

Gaussian functions for the π* (A, B, C) and σ* (D) components, respectively. In the 
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case of pyridinic N (A), the intensity ratios were >100 for X = 0.4 and 2.3, while a 

smaller ratio of ~10 was observed for X = 8.4. Similarly, the intensity ratios of graphitic 

N (C) decrease with increasing amount of nitrogen, i.e., 290 for X = 0.4, 110 for X = 2.3, 

and 9 for X = 8.4. Thus, by increasing the amount of nitrogen ion sputtering, the number 

of nitrogen atoms incorporated in such defective and non-planar structures increases. 

This results in a lesser polarization dependence in the N 1s XAS spectra. The 

orientation of nitrogen sites is therefore gradually randomized from N-HOPG with X = 

0.4 to N-HOPG with X = 8.4. It has also been reported by simulations that excessively 

high nitrogen content in the graphite lattice (X >20 at.%) can result in loss of the planar 

structure [109]. However, a small polarization dependence is still present, even in the 

doped nitrogen saturated N-HOPG where X = 8.4, suggesting that each doped nitrogen 

may be incorporated into the relatively flat N-HOPG surface. In contrast to pyridinic N 

and graphitic N, cyanide N (C) shows less polarization dependence with all N-HOPG 

samples, since it is not implemented in the graphite basal plane [105]. 

In the XAS spectra atθ = 90°, the intensity ratio of pyridinic N (A) to graphitic N (C) 

increased from 0.37 (X = 0.4) to 0.53 (X = 2.3), which is the same trend as the intensity 

ratio of pyridinic N (NP1) to graphitic N and valley N (NP3 + NP4), with an increase 

from 0.16 (X = 0.4) to 0.32 (X = 2.3) in the XPS spectra. However, it should be noted 

that the valley N peak could not be identified in the XAS spectra, possibly due to 

overlap with the graphitic N (C) peak, while in the XPS spectra a different peak position 

allowed the two environments to be distinguished. As discussed for the pyrrolic N in 

this manuscript, the chemical shifts in XAS and XPS are not necessarily the same [106]. 

The assignment of the valley N species in the XAS spectra will therefore be 

investigated in a future study. 
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Fig. 4.5. N 1s XAS spectra of N-HOPG (X = 0.4, 2.3, and 8.4). Red, blue, orange, and 

green lines correspond to the spectra obtained with incident angles θ = 0°, 45°, 60°, and 

70°. 

 

Table 4.2. The degrees of the orientation of each π* peak (pyridinic N, cyanide N, and 

graphitic N) estimated by [π*/σ*] (at θ = 90°) / [π*/σ*] (at θ = 0°) 

N content 

(X = N at.%) 

[π*/σ*] (at θ = 90°) / [π*/σ*] (at θ = 0°) 

Pyridinic N Cyanide N Graphitic N 

X = 0.4 130 21 292 

X = 2.3 120 5 112 

X = 8.4 10 4 9 
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Fig. 4.6. N 1s XAS spectra of N-HOPG (X = 0.4, 2.3, and 8.4). The spectra at θ = 90° 

and 0° are shown on the left and right hand panels, respectively. Purple, blue, and green 

lines correspond to pyridinic N (A), cyanide N (B), and graphitic N (C) in the π* region, 

respectively. Orange line exhibits the lowest energy σ* peak (D). An additional 

Gaussian function for the higher energy σ* component is not shown here. Dashed lines 

represent step functions which correspond to continuum states of π* and σ* regions. 

Gray and black lines represent raw data and fitting results, respectively. 
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4.3.3 Surface morphology and defect sites 

 Figure 4.7 shows AFM images of the N-HOPG to investigate the surface morphology 

difference. The surfaces of the N-HOPG samples were flat with no distinct differences, 

implying that the nitrogen doping followed by an annealing process did not significantly 

affect the specific surface areas of the prepared samples. 

 

 

Fig. 4.7. AFM images of the N-HOPG (X = 0.4 (a), 2.3 (b), and 8.4 (c)) and clean 

HOPG (d). 

 

 

Raman scattering measurements provide additional information regarding the disorder 

in the carbon structure. Figure 4.8 shows Raman spectra of each N-HOPG and clean 

HOPG (X = 0.0) as reference. The spectra were normalized according to peak height at 

1585 cm
-1

. The G-band at approximately 1585 cm
-1

 is derived from the graphite basal 

plane, while the D-band at ~1360 cm
-1

 corresponds to defect sites in the graphite 

plane [104,110,111]. A wide profile across the G- and D-bands appears at higher 

disorder levels corresponding to the graphite phonon density of states (PDOS-like 

background) [112]. The presence of this profile indicates the appearance of 

amorphization in the graphite layers [111]. However, separation of the PDOS-like 

background from other bands is problematic due to its rather broad profile. In addition, 

a large G-band is always observed due to the presence of pristine graphite layers below 

the nitrogen ion sputtered surface. 
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Fig. 4.8. Raman spectra of each N-HOPG and clean HOPG. 

 

 

The sharp D-band in N-HOPG below X = 0.4 corresponds to the formation of defects 

with or without the doped nitrogen. The absence of the PDOS-like background indicates 

almost no disturbance of the surface graphite layers by nitrogen ion sputtering. The 

broad D-band and PDOS-like background were found to increase with the nitrogen 

content (X = 2.3, and 8.4), indicating the increase in amorphization of graphite due to 

the collapse of nitrogen ions partially penetrating into several graphite layers. These 

results suggest that the controlled nitrogen doping of HOPG with minimal disturbance 

to the graphite layer can only be realized under the appropriate conditions, such as < 8 

×  10
13

 ions cm
-2

 (N-HOPG with X =0.4) nitrogen ion sputtering. The Raman 

scattering results are not necessarily consistent with the XAS results, which 

demonstrated the high orientation of the doped nitrogen components even at N-HOPG 

with X = 2.3 in Figs. 4.5 and 4.6. While N 1s XAS only probes the doped nitrogen, the 

Raman spectroscopy evaluates not only carbon sites close to the doped nitrogen but also 

the amorphous carbon and the bulk graphite. From the high polarization dependence of 

graphitic N and pyridinic N in N 1s XAS, these nitrogen species could be preferably 

doped into a flat graphite surface region rather than an amorphous carbon region, while 

the absence of polarization dependence of cyanide N can also exist in the amorphous 
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carbon region. 

From the XAS, XPS, and Raman spectroscopy results, the HOPG doping mechanism 

of nitrogen ions can be summarized as follows; nitrogen atoms are preferably doped in 

the form of graphitic N and valley N in N-HOPG with X = 0.4. In N-HOPG with X = 

2.3, the defective and amorphous regions increase in size. However, pyridinic N and 

graphitic N are likely to be doped into the flat in-plane graphite region, rather than into 

the amorphous region. As the amount of doped nitrogen increases in N-HOPG with X = 

8.4, the majority of flat graphite layers convert into defective and amorphous regions, 

resulting in lower orientation of the doped nitrogen.  

 

 

4.3.4 Possible nitrogen contribution to ORR of N-HOPG 

The ORR activity measurements of N-HOPG were performed to discuss the possible 

contribution of nitrogen to ORR as shown in Fig. 4.9. The N-HOPG with X = 0.4 and 

2.3 at low nitrogen concentrations exhibited higher ORR activity than the clean HOPG 

(EO2 = 0.05 V at −2 μA cm
−2

). In particular, the N-HOPG with X = 0.4 at the lowest 

nitrogen doping level shows the highest ORR activity (EO2
 = 0.36 V at −2 μA cm

−2
) 

among the three N-HOPGs. As the total amount of nitrogen increases, the ORR activity 

of N-HOPG with X = 8.4 decreases, and eventually drops below the activity of clean 

HOPG, likely due to the presence of amorphous regions that significantly reduce 

electron conductivity. Therefore, it is difficult to determine the relationship with ORR 

activity and each nitrogen component as shown in Fig. 4.9 (b). The possible nitrogen 

components to ORR are considered to be valley N and pyridinic N. This is because the 

relative ratio of valley N is high in N-HOPG with X = 0.4 which shows the highest 

ORR activity and pyridinic N is one of the probable ORR active nitrogen species in the 

previous reports [40,113]. 
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Fig. 4.9. (a) LSV voltammogram for ORR of each N-HOPG (X = 0.4, 2.3, and 8.4) and 

clean HOPG. (b) Electrochemical activities (the voltage at which a reduction current 

density of -10 A cm
-2

) and individual nitrogen content in N 1s XPS as a function of 

total nitrogen content. 

 

 

With regards to the active site created by doped nitrogen on N-HOPG, it has been 

theoretically predicted that carbon atoms adjacent to both (1) valley N atoms at the 

zigzag edge [42–44] and (2) pyridinic N [114] atoms could be active sites for ORR, as 

they form occupied localized electronic states near the Fermi level at the carbon atoms. 

In addition, STS measurements and DFT calculations demonstrated that the carbon 

atoms in the vicinity of pyridinic N with a mono-vacancy create occupied localized 

electronic states near the Fermi level [49]. Therefore, these carbon atoms would be the 
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candidates for ORR active sites. In the possibility of the valley N, highly oriented valley 

N sites are selectively formed and the ORR activity is high under the low nitrogen 

doping conditions (X = 0.4). If it is assumed that valley N at vacancy sites can also 

modify the local electronic structure of neighboring carbon atoms in the same manner as 

at zigzag edges, N-HOPG with X = 0.4 can be considered to have such a 

theoretically-predicted ORR active site. This prediction supports the graphite based 

catalyst containing valley N sites shows high ORR activity. However, despite the 

three-fold increase in the absolute number of valley N sites, at higher nitrogen doping 

(N-HOPG with X = 2.3), the ORR activity decreases likely due to the significant change 

in electron conductivity. In contrast, the relative ratio of pyridinic N gradually increases 

with the total nitrogen content, while the ORR activity gradually decreases. As 

mentioned above, the amorphous carbon may affect the ORR activity at higher nitrogen 

doping conditions (N-HOPG with X = 2.3 or 8.4). Although the active sites for ORR in 

N-HOPG cannot be firmly concluded, it was important to prepare and examine the 

well-defined nitrogen structures.  

Comparison of the graphite model with current catalysts synthesized from organic 

precursors is also of interest. In a standard synthetic protocol, such catalysts are 

subjected to heat treatment that converts an amorphous carbon structure into an ordered 

graphite structure. Above a critical temperature, their ORR activity dramatically 

improves, mainly due to a sharp increase in electron conductivity [115]. In addition, at 

higher pyrolysis temperatures, the ordered carbon structure excludes impurities such as 

nitrogen atoms, and the remaining nitrogen species dominate as in-plane graphitic N 

and/or pyridinic N [113,116]. In the study reported herein, N-HOPG with X = 0.4 under 

the lowest nitrogen doping conditions corresponds to this high temperature pyrolysis 

region of the current catalysts in terms of catalytic activity and electron conductivity. 

This N-HOPG preferably contains graphitic N and valley N due to the optimized low 

energy nitrogen ion sputtering and annealing conditions. The higher nitrogen doping 

thus produces an amorphous carbon structure on the surface of HOPG containing a 

variety of nitrogen species, comparable to that observed below the critical pyrolysis 

temperature of the current catalysts with high nitrogen concentrations. Thus, detailed 

studies on the properties of model N-HOPG catalysts under similar electron 

conductivity conditions (e.g., similar density of amorphous carbon) will provide further 
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insight into the ORR active site. The highly oriented N-HOPG is expected to be a 

reference system for studying the orientation of nitrogen sites and the role of oxygen 

adsorption as the first step in the ORR [117] in carbon-based fuel cell cathode catalysts. 

The adsorbed O2 configuration is expected to be critical with regards to the recently 

debated 2-electron or 4-electron mechanisms for the ORR [118,119].  

 

4.4 Conclusions 

The characteristics of nitrogen doped highly ordered pyrolytic graphite (N-HOPG) 

using the low energy nitrogen ion sputtering (200 eV) were investigated by X-ray 

photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and Raman 

spectroscopy in combination with electrochemical measurements. Under low nitrogen 

doping conditions (N-HOPG with X = 0.4), the doped nitrogen is well oriented in the 

graphite basal plane, substituting the graphite lattice to form the graphitic N and 

pyridinic N sites. On increasing the nitrogen dose the in-plane orientation of the 

incorporated nitrogen species become less remarkable, and under high nitrogen doping 

conditions (N-HOPG with X = 8.4) defective and non-planar structures become 

dominant. Raman spectra exhibit a similar trend. However, in the case of N-HOPG with 

X = 2.3, XAS revealed a highly oriented doped nitrogen character, while an 

amorphous-like signature was observed in the Raman spectrum. It is therefore thought 

that nitrogen atoms in N-HOPG with X = 2.3 are likely to be doped into the flat graphite 

region rather than into the amorphous region. Moreover, an additional peak was 

observed at higher binding energy of 401.9 eV than 400.9 eV for graphitic N in the 

basal plane in N 1s XPS. According to the previous theoretical and experimental reports, 

it seems to be most plausible to assign the peak to valley N (graphitic N in the zigzag 

edge and/or vacancy sites). The graphitic N and valley N were preferably formed when 

the amount of doped nitrogen was small (N-HOPG with X = 0.4), while the graphitic N 

was more abundant at higher nitrogen doping levels (N-HOPG with X = 2.3). The ORR 

activity measurements of N-HOPG were performed and the N-HOPG with X = 0.4 at 

the lowest nitrogen doping level showed the highest ORR activity among the three 

N-HOPG. Applying this preparation and characterization methods of model N-HOPG 

catalysts is a novel and promising way to reveal the nitrogen doped carbon-based 

catalysts. 
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Chapter 5 

 

 

Lewis basicity of nitrogen-doped graphite 

observed by CO2 adsorption 

 

 

5.1 Introduction 

Nitrogen doping to carbon-based catalysts modifies the electronic structure of carbon 

substrate. Recent STS measurements have revealed the localized electronic structures 

on the nitrogen doped graphite surface as shown in Fig. 1.4 [49]. The modified 

electronic structures near the Fermi level would hybridize with that of O2 molecules, 

which is important to enhance the catalytic activity. As for the first step of ORR, O2 is 

adsorbed on the surface and reduction reaction proceeds with electron donation from the 

catalytic active sites. Thus, the electron-donating property (Lewis basicity) would be 

important to reduce the O2 molecules. The Lewis basicity of catalysts is usually 

investigated by the CO2 adsorption. Since CO2 molecule is a weak Lewis acid with an 

electropositive carbon atom [53,54], the carbon atom can detect the nitrogen-induced 

Lewis basic sites in the carbon-based catalysts; this detection is classified as Lewis 

acid/base reaction. Experimentally, Moroboshi et al. reported that the amount of the 

adsorbed CO2 is proportional to the ORR activity of the nitrogen doped graphene [120]. 

Therefore, the detailed experimental information regarding the chemical state and 

geometry of adsorbed CO2 on nitrogen-doped carbon-based catalysts is required to 

clarify the degree of Lewis basicity, which is useful to fine-tune the Lewis basicity 

toward ORR. The synthesized N-HOPG in the chapter 4 is suitable for revealing the 

Lewis basicity of carbon-based catalysts since it possesses the well-defined and 

electrochemical-active carbon structure with the doped nitrogen. 

In this study, the Lewis basicity and the adsorption property of CO2 of N-HOPG, 

synthesized by low-energy nitrogen-ion sputtering, were investigated using XPS, 
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angle-dependent XAS, and infrared reflection absorption spectroscopy (IRRAS). Using 

the highly graphitized model N-HOPG with selective nitrogen doping, the possible 

contribution of nitrogen components to the formation of Lewis base sites on N-HOPG 

will be discussed.  

 

5.2 Experimental methods 

The detailed preparation of N-HOPG was described in Chapter 2.1.2. The amounts of 

dosed nitrogen ions were calculated to be 8 × 10
13

 ions cm
-2

, which is the same 

condition to synthesis N-HOPG with X = 0.4 as discussed in the chapter 4. 

XPS measurements were performed at BL27SU in SPring-8 using a photoelectron 

analyzer (PHOIBOS 150, SPECS GmbH). The typical base pressures for the 

measurement and preparation chambers were 4 × 10
-8

 and 3 × 10
-7

 Pa, respectively. 

The incident photon energy and the photoemission angle were 850 eV and 45°, 

repectively. The total energy resolution of the XPS was 230 meV. Samples were 

scanned with the incident photon beam at a rate of 0.4 m/s to reduce the radiation 

damage to the adsorbed molecules. The binding energies were calibrated using the Au 4f 

7/2 (binding energy = 84.0 eV) peak of an evaporated gold as a reference. The N 1s 

spectra were fitted with the Voigt function (1.2 and 0.25 eV Gaussian and Lorentzian 

widths, respectively) as well as background subtraction using the Shirley method. N 1s 

and O 1s XAS spectra were measured by the PEY mode at BL27SU. The XAS spectra 

were collected by setting the angle θ between the incident X-ray beam axis and the 

surface normal to 0°, 45°, and 70°. The energy resolution of XAS had a lower limit 

below 100 meV.  

The N-HOPG was annealed at 1000 K for 30 min in the preparation chamber to 

remove the initially adsorbed gas before the XPS and XAS measurements were 

performed. The sample was exposed to CO2 at 300 K for 2500 s at 5.3 × 10
-4

 Pa, 

corresponding to 10000 L in volume. 

IRRAS measurements were performed in grazing-angle reflection geometry both 

before and after CO2 adsorption at 300 K to investigate the configuration of the 

adsorbed CO2. In order to estimate the amount of the adsorbed CO2 

temperature-programmed desorption (TPD) was performed between 300 K and 700 K, 

with CO2 adsorption at 300 K. Both the IRRAS and TPD experiments were performed 
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in the same UHV (3 × 10
-8

 Pa) chamber. 

 

5.3 Results and discussion 

5.3.1 Characterization of N-HOPG before CO2 adsorption 

The N-HOPG was synthesized in the same procedure described in the chapter 4.2. 

Figure 5.1 (a) shows the C 1s XPS spectra of HOPG and N-HOPG. The spectral 

intensities are normalized to the peak areas. The nitrogen ion sputtering causes the C 1s 

peak to broaden and introduces the C=N bond peak at 285.6 eV [121]. Figure 5.1 (b) 

shows the N 1s XPS spectrum of N-HOPG. The nitrogen content (ratio of N/C) is 

calculated from the XPS results to be 0.42 at.%. The spectrum is fitted with four Voigt 

functions corresponding to each nitrogen component, denoted as pyridinic N (NP1: 

398.0 eV), cyanide N (NP2: 399.9 eV), graphitic N (NP3: 401.0 eV), and valley N 

(NP4: 401.9 eV) [122]. The terminology of each nitrogen component used hereafter is 

represented in Fig. 5.2. The detailed nitrogen configurations and peak assignment of 

each components has been already discussed in the chapter 4.3.1. The pyrrolic N can be 

excluded from NP2 since no XAS peak corresponding to the pyrrolic N was observed in 

chapter 4.3.2. The estimated amount of each nitrogen component from the fitting results 

is similar to that of N-HOPG with X = 0.4 in the chapter 4.3.1; graphitic N is the most 

prevalent, followed by valley N and pyridinic N.  
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Fig. 5.1. XPS spectra of HOPG and N-HOPG before CO2 adsorption: (a) C 1s XPS and 

(b) N 1s XPS. Gray open circle and black line represent raw data and fitting results. 

Purple, blue, green, and red solid lines are pyridinic N (NP1), cyanide N (NP2), 

graphitic N (NP3), and valley N (NP4) components, respectively. 

 

Fig. 5.2. A schematic image of each nitrogen component observed in N-HOPG (N/C = 

0.42 at.%). Hydrogen, carbon, and nitrogen atoms correspond to white, black, and blue 

balls, respectively. 
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5.3.2 CO2-TPD measurements of N-HOPG 

 Figure 5.3 (a) shows the TPD spectra of mass 44 (CO2) on N-HOPG. The exposure 

amount of CO2 is changed from 0 L to 10000 L at 300 K. The spectra are raw data 

without normalization. A similar CO2 desorption peak is observed between 320 K and 

400 K with the different CO2 exposure amount, indicating the CO2 desorption on 

N-HOPG is a first order. The first order desorption is an evidence of associative 

adsorption of CO2 on N-HOPG since a second order reaction (CO + Oads → CO2,ads → 

CO2,des) should be expected if the dissociative adsorption occurs. The reproducibility of 

the TPD measurements was confirmed by 5000 L CO2 exposure using the same 

N-HOPG, indicating the CO2 adsorption sites are not poisoned with CO2 and restored 

after annealing to 600 K. Furthermore, the peak top of CO2 desorption is almost 

constant at approximately 345 K with the different CO2 exposure amount although it 

should be noted to underestimate the absolute temperature due to the insufficient 

temperature calibration. The activation energy for CO2 desorption can be estimated 

simply through Redhead equation (5.1) [123] using the observed peak top temperature 

Tpeak (K) and temperature raising rate β (K s
-1

) 

𝐸𝑎 = 𝑅𝑇𝑝𝑒𝑎𝑘 (𝑙𝑛 (
𝑣𝑇𝑝𝑒𝑎𝑘

𝛽
) − 3.64)  ··· (5.1) 

where Ea is an activation energy of desorption (J mol
-1

), R is a gas constant (J K
-1

 mol
-1

), 

and v is a pre-exponential factor (s
-1

). The activation energy for CO2 desorption Ea is 

obtained as 92 kJ mol
-1

 where β = 0.6 K s
-1

, Tpeak = 435 K, and v = 1.0 × 10
13

 s
-1

. The 

CO2 adsorption is proved to be a chemisorption process since the adsorption energy 

exceeds 40 kJ mol
-1

. In contrast, only physisorbed CO2 was reported on HOPG, where it 

desorbed at 83 K with the desorption energy of 20 kJ mol
-1

 [124]. According to these 

results, nitrogen doping to HOPG induces a new adsorption sites for CO2 to chemisorb 

at 300 K. 

Figure 5.3 (b) shows the integrated area intensity of the mass 44 (CO2) peak as a 

function of CO2 exposure amount obtained by the TPD measurements. The saturation 

amount of adsorbed CO2 on N-HOPG is near 10000 L: this amount was used for the 

XPS and XAS measurements. The fact that the saturation coverage was not obtained 

under 10000 L is the reflection that the probability of CO2 adsorption at 300 K is 

significantly low. However, it is difficult to reveal the precise mechanism only in this 

study. 
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Fig. 5.3. (a) TPD spectra of N-HOPG with the different CO2 exposure amount. (b) The 

area intensity of the mass 44 (CO2) peak as a function of the CO2 exposure amount. 
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5.3.3 Chemical states of adsorbed CO2 on N-HOPG 

 Figure 5.4 shows O 1s XPS spectra of (a) HOPG and (b) N-HOPG before and after 

CO2 adsorption. A very small amount of oxygen species (O/C = 0.040 at.%) exists in 

N-HOPG before CO2 adsorption, as shown in Fig. 5.4 (b), which are not fully removed 

by annealing at 1000 K for 30 min. The difference spectrum in Fig. 5.4 (b) shows an O 

1s peak centered at approximately 533 eV caused by CO2 adsorption on N-HOPG. The 

difference in the oxygen content (ratio of O/C) is 0.023 at.% based on the XPS fitting 

results. Since CO2 molecule is composed of one carbon atom and two oxygen atoms, 

the total number of CO2 is 0.012 at. %. The quantitative discussion about interaction 

between CO2 molecules and the adsorption sites will be shown in the chapter 5.3.5. 

However, the difference spectrum in Fig 5.4 (a) of HOPG at 300K shows no peak 

related to adsorbed CO2. Table 5.1 summarizes the O 1s binding energies for 

physisorbed and chemisorbed CO2 on various substrates [125–131]; for physisorbed 

CO2, the binding energy is distributed from 534.0 eV to 535.8 eV, while for 

chemisorbed CO2 it ranges from 530.6 eV to 533 eV. The observed binding energy at 

533 eV on N-HOPG is below that of physisorbed CO2 but within the range of 

chemisorption. The interaction strength of CO2 directly estimates the degree of Lewis 

basicity of the N-HOPG substrate. To determine the origin of this binding energy, the 

electronic structure of CO2 as presented by a Walsh diagram in Fig. 5.5 is 

considered [132]. The lowest unoccupied molecular orbital (LUMO) of 2πu is 

degenerated in the linear configuration while it splits into 2b1 (perpendicular to the CO2 

plane) and 6a1 (parallel to the CO2 plane) orbitals in the bent configuration. In particular, 

the energy position of 6a1 orbital sharply decreases upon bending. In the bent 

configuration, this low-energy 6a1 orbital is occupied by electrons charge-transferred 

from the substrate and stabilizes the adsorbed CO2 molecules on N-HOPG. Thus, the 

charge transfer from the substrate to the 6a1 orbital in the bent configuration weakens 

the strength of CO bonds, causing the O 1s core level shift of CO2 to the lower binding 

energy at approximately 533 eV. This result also provides evidence for the presence of 

Lewis base sites in the graphite system caused by the doped nitrogen. 
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Fig. 5.4. O 1s XPS spectra of (a) HOPG and (b) N-HOPG before and after CO2 

adsorption. Gray and black lines correspond to difference spectra through CO2 

adsorption and fitting result, respectively. 

 

 

Table 5.1. O 1s binding energies for physisorbed and chemisorbed CO2 on various 

substrates 

Substrate 
O 1s Binding Energy / eV 

Ref. 
Physisorption (CO2) Chemisorption (CO2

δ-
) 

Ni(110) 534.7 531.1  [125] 

Ni(110) 534 530.6  [126] 

Fe(poly) 535 531  [125] 

Cr2O3(0001) - 532.5  [127,128] 

K doped Rh(111) 534.7 532.8  [129] 

K doped Mo2C 535.8 533  [130] 

Graphene/SiC(0001) 534.8 -  [131] 

N doped HOPG - 533 This work 
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Fig. 5.5. (a) A schematic image of the Walsh diagram of CO2 orbital energies in linear 

and bent geometries [132]. (b) The enlarged Walsh diagram near HOMO (red) and 

LUMO (blue) levels of CO2. 

 

 

5.3.4 Configuration of adsorbed CO2 on N-HOPG 

 In order to reveal the orientation of the adsorbed CO2 on N-HOPG, angle-dependent 

XAS was performed. Figure 5.6 (a) shows the O 1s XAS spectra of N-HOPG after CO2 

adsorption for different X-ray incident angles θ, where the background XAS profile 

obtained before CO2 adsorption is subtracted. The σ* (540 eV) and π* (532 eV) peaks 

are enhanced at surface normal (0°) and grazing (70°) incidence, respectively. Since the 

similar angle dependence is observed in the carbon π* state of HOPG (C 1s XAS) [107], 

this polarization dependence of O 1s XAS indicates that the CO2 molecules are lying 

flat on the N-HOPG surface. Although the energy position of the 6a1 orbital sharply 

decreases upon bending, the energy position of the 2b1 orbital remains nearly constant 

relative to that of the 2πu orbital, as shown in Fig. 5.5. Therefore, the observed π* 

orbital would be derived from the 2b1 orbital (perpendicular to the CO2 plane) caused by 

the splitting of CO2 LUMO orbitals. The observed π* peak is ~2.8 eV lower than the π* 

peak (2πu orbital) for the gas-phase linear CO2 at 534.8 eV [133], mainly because of the 
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observed chemical shift of the O 1s core level in XPS (~533 eV) as shown in Fig 5.6 (b), 

as discussed in the chapter 5.3.3. 

 

Fig. 5.6. (a) O 1s XAS spectra of N-HOPG after CO2 adsorption. Red and green lines 

correspond to the spectra obtained with X-ray incident angles θ = 0° and 70°. (b) A 

schematic diagram of O 1s X-ray absorption process of CO2/N-HOPG (this work) and 

CO2 gas [133].  
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The IRRAS spectrum in Fig. 5.7 also supports the above CO2 configuration; 

considering the selection rule of IRRAS, the absence of peaks at approximately 

1200-1300 cm
-1

 and 1600 cm
-1

, which are expected for the symmetric and asymmetric 

OCO-stretching modes of the bent CO2
δ-

 carboxylate with its molecular plane 

perpendicular to the surface [128], suggests the CO2 to be lying flat on the surface. Both 

the O 1s XAS spectra and the IRRAS spectrum of the N-HOPG support this 

configuration of the adsorbed CO2 lying flat on the N-HOPG surface. 

 

Fig. 5.7. IRRAS spectrum of N-HOPG with 5000 L CO2 exposure. 
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5.3.5 Possible CO2 adsorption sites on N-HOPG 

 To discuss the possible CO2 adsorption sites derived from the doped nitrogen, 

angle-dependent N 1s XAS was performed before and after CO2 adsorption. Figure 5.8 

(a) shows the N 1s XAS spectra in the π* region of the N-HOPG before and after CO2 

adsorption for different X-ray incident angles of 0°, 45°, and 70°. The spectra before 

CO2 adsorption are normalized according to the intensity at 430 eV. In contrast, the 

spectra after CO2 adsorption are normalized according to the integrated peak area 

corresponding to each X-ray incident angle before CO2 adsorption. Three sharp peaks in 

the π* region can be assigned to pyridinic N (A), cyanide N (B), and graphitic N 

(graphitic N and valley N) (C) [51]. The intensities of the pyridinic and graphitic N 

change with the X-ray incident angles, indicating that these components are 

incorporated into the planar graphite lattice via substitution [105] as discussed in the 

chapter 4.3.2. Since the adsorbed CO2 also shows a highly oriented (lying flat) 

configuration, CO2 adsorption sites should be introduced in the vicinity of the highly 

oriented (A) pyridinic and (B) graphitic N (graphitic N and valley N).  

 The difference spectra were taking by subtracting the spectra before CO2 adsorption 

from the spectra after CO2 adsorption (Fig. 5.8 (b)). The change ratios were taking by 

dividing the spectra in Fig. 5.8 (b) by the experimental spectra after CO2 adsorption (Fig. 

5.8 (c)) to remove the intensity difference of each nitrogen component. Since the 

positive and negative values in Fig. 5.8 (b), (c) mean the increased and decreased peaks 

after CO2 adsorption, respectively, the change ratios would show the negative values if 

the CO2 bonds directly to the nitrogen sites and causes the change of the electronic 

structure of nitrogen. For example, Tao et al. reported that the large positive chemical 

shift (~+1.9 eV) is observed in pyridine on Si bonded via lone pair compared to 

physisorbed pyridine on Si [134]. However, the change ratios around the peak A, B, C 

are quite low below ~10%. As already investigated in chapter 5.3.1 and 5.3.3, the 

number of the adsorbed CO2 molecules and the ratios of the CO2 molecules to each 

nitrogen component are summarized in Table 5.2, indicating that the maximum change 

ratios are expected to be 14%, 142%, 7%, and 8% for peak A, B, C, and C, respectively. 

From these results, it is discussed whether CO2 directly bonds to the nitrogen sites or 

not as follow. Firstly, the cyanide N can be excluded since it shows the smaller change 

ratio (~10%) than the expected one (142%). In addition, the graphitic N and valley N 
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can be excluded due to the positive values of change ratio. The pyridinic N would be 

also excluded because the change ratio of pyridinic N (~5-9 %) is below the expected 

one (14%) although it should be noted that the expected one (14%) is similar to that of 

the S/N level. Therefore, CO2 adsorption sites would be not nitrogen sites but carbon 

sites in the vicinity of nitrogen. 
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Fig. 5.8. N 1s XAS spectra of N-HOPG before and after CO2 adsorption: (a) 

experimental spectra, (b) difference spectra calculated by subtracting (N-HOPG) from 

(CO2/N-HOPG), (c) change ratios calculated by dividing (b) by the spectra after CO2 

adsorption. Red, blue, and green lines correspond to the spectra obtained with X-ray 

incident angles θ = 0°, 45°, and 70°. The dotted black line represents the spectra of each 

X-ray incident angle after CO2 adsorption.  

 

Table 5.2. The number of the adsorbed CO2 molecules (CO2, ads) and the ratios of the 

CO2 molecules to each nitrogen component (Ratiox, X = pyridinic, cyanide, graphitic 

and valley N) 

 CO2, ads / at.% 
CO2, ads / Ratiox / % 

 
Pyridinic N Cyanide N Graphitic N Valley N 

N-HOPG 0.012 14 142 7 8 

 

 

Based on the Lewis acid/base interaction picture, the possible CO2 adsorption process 

via a localized electronic structure of the graphite surface modified by the doped 

nitrogen [49,81,83,135] are discussed as follow: carbon sites in the vicinity of (1) 

pyridinic N, (2) valley N, (3) graphitic N, and (4) defect sites.  

(1) Carbon sites in the vicinity of pyridinic N 

 Recently, Kondo et al. reported the localized electronic structure at ~‒370 meV below 

the Fermi level was observed in several carbon atoms near pyridinic N with a 

monovacancy [49]. The carbon sites possessing this electronic structure would act as 

Lewis base sites and interact with CO2 through charge transfer from the localized 

electronic structure. However, CO2 would not be adsorbed on carbon atoms next to 

pyridinic N since the expected change ratio of pyridinic N is not observed in Fig. 5.8 (c). 

For example, the large positive chemical shift (~+1.5 eV) was observed in the pyridonic 

N which is pyridinic N with an electron-with drawing hydroxyl group at the ortho 

carbon atom [68]. Therefore, the several carbon atoms near the pyridinic N are probable 

for the active sites for CO2 adsorption.  

(2) Carbon sites in the vicinity of valley N 

The observed valley N in XPS results is also expected to modify the electronic 

structure of the surrounding carbon atoms, and induce a localized density of states at ~–
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200-400 meV below the Fermi level [83] , which may also provide CO2 adsorption sites. 

The localized electronic structure was theoretically induced at two carbon atoms next to 

the valley N in the zigzag edge, which are probable for the active sites for CO2 

adsorption. However, since the local electronic structure of valley N has not been 

observed experimentally yet, further study by STM and STS measurements will be 

necessary to discuss the electronic structure of valley N. The possibility of nitrogen sites 

can be excluded due to the more positively charged valley N (401.9 eV) than the 

pyridinic N (398.0 eV) as shown in Fig. 5.1 (b).  

(3) Carbon sites in the vicinity of graphitic N 

Kondo et al. reported that the graphitic N in the basal plane also modifies the 

electronic structure of surrounding several carbon atoms [49]. However, they form a 

localized electronic structure at ~+500 meV above the Fermi level, which would act as 

Lewis acid sites. Therefore, CO2 cannot be adsorbed near the graphitic N. The 

possibility of nitrogen sites can be also excluded due to the more positively charged 

graphitic N (401.0 eV) than the pyridinic N (398.0 eV) as shown in Fig. 5.1 (b). 

(4) Carbon sites in the vicinity of defect sites 

A localized electronic structure at ~+170 meV above the Fermi level was observed in 

the vicinity of a monovacancy by STS measurements [81], which is similar to that of 

graphitic N. Therefore, CO2 cannot be adsorbed near the monovacancy sites.  

 

 From these considerations, the interaction sites with CO2 in N-HOPG would be 

provided by the localized π states just below the Fermi level induced by the pyridinic N 

and/or valley N. CO2 adsorption sites would be the surrounding several carbon atoms in 

the vicinity of the pyridinic N and/or valley N. It is important to note that the Lewis acid 

site derived from a monovacancy changes to the Lewis base site through the doping of 

pyridinic N, suggesting that nitrogen with defect engineering is crucial to modify the 

electronic structure of carbon-based catalyst.   

The clear evidence of the charge transfer from the substrate and the new information 

on the molecular orientations of both CO2 and nitrogen moieties on the graphite 

substrate provide great insight into the CO2 adsorption and the Lewis basicity of 

nitrogen-doped graphite.  
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5.4 Conclusions 

The adsorbed CO2 at 300 K on N-HOPG was investigated by XPS, angle-dependent 

XAS, and IRRAS using N-HOPG model catalysts. The O 1s binding energy of the 

adsorbed CO2 at 300 K, located at 533 eV, showed clear evidence of the Lewis basicity 

of N-HOPG caused by the nitrogen doped in the graphite system. The polarization 

dependence of the σ* and π* peaks in the O 1s XAS spectra, as well as the absence of 

expected IRRAS signals, clearly indicate that the adsorbed CO2 lies flat on the graphite 

surface. The possible CO2 adsorption sites with pyridinic N and valley N are discussed. 

Therefore, these results indicate that the Lewis base sites are induced by the 

incorporation of nitrogen in electrochemical active N-HOPG. 
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Chapter 6 

 

 

Summary and future prospects 

 

 

6.1 Summary 

 In this thesis, I have presented soft X-ray spectroscopy studies on the properties of O2 

and CO2 adsorption in nitrogen-doped carbon-based catalysts to elucidate the role of the 

nitrogen toward the catalytic active sites. To reveal the element specific characteristics, I 

have measured the electronic structure using soft X-ray and used the powder catalyst 

and the nitrogen-doped graphite model catalyst (N-HOPG). Firstly, I have investigated 

the O2 adsorption property of the nitrogen-containing metal-free powder catalyst and 

discussed the possible ORR mechanism. Secondly, I have synthesized the N-HOPG via 

low energy nitrogen ion implantation in a controlled manner and observed the 

development of the ORR activity. Then I have investigated the CO2 adsorption property 

of N-HOPG to elucidate the Lewis basicity of the nitrogen-doped graphite surface.  

 In Chapter 1, I have outlined the present PEFC system and the current development of 

the cathode catalysts. It is required to develop the cathode catalysts without expensive 

and rare Pt in order to spread PEFC system widely. The carbon-based catalysts, which 

are modified by light elements and 3d transition metals, have attracted much attention 

due to the relatively high ORR activity; however, the lower ORR activity than Pt-based 

catalysts. Therefore, it is necessary for the carbon-based catalysts to elucidate the ORR 

active sites. To understand roles of each element, I have focused on the nitrogen 

components without transition metals and attempted to reveal the role of nitrogen. 

 In Chapter 3, I have investigated the O2 adsorption property of nitrogen-containing 

metal-free CACs using in situ XPS, Raman spectroscopy, O2 adsorption isotherm, and 

electrochemical measurements. The ORR activity, the selectivity of 2-electron ORR, 

and the amount of defect sites were increased in CACs compared to the nitrogen-free 

carbon materials. The chemisorbed O2 was revealed by the adsorption isotherm and 
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mainly composed of C=O components (57%). In addition, the change of electronic 

structures of nitrogen before and after O2 adsorption indicates a 3-fold coordinated 

graphitic N changes to a 2-fold coordinated pyridinic N. From these results, it is 

indicated that the graphitic N in the vicinity of defect sites enhances the O2 adsorption 

with the C-N bond breaking. Furthermore, the adsorbed C=O components would form 

possible 2-electron ORR sites. Thus it is considered that nitrogen itself is contributed to 

not the ORR activity but the formation of ORR active sites.   

 In Chapter 4, I have investigated the characteristics of N-HOPG via low energy 

nitrogen ion sputtering at 200 eV using XPS, angle-dependent XAS, Raman 

spectroscopy in combination with electrochemical measurements. The doped graphitic 

and pyridinic N were substituted in the graphite basal plane under low nitrogen doping 

condition (N-HOPG with X = 0.4 at.%). The valley N (graphitic N in the zigzag edge 

and/or vacancy sites) was also observed preferably under the same condition. The 

orientation of the doped nitrogen is less remarkable and the amount of amorphous 

carbon structure increased on increasing the doped nitrogen content (N-HOPG with X = 

8.4 at.%). Therefore, the flat N-HOPG with the controlled nitrogen species was 

synthesized under the appropriate conditions, such as < 8 × 10
13

 ions cm
-2

 (N-HOPG 

with X = 0.4 at.%) nitrogen ion sputtering at 200 eV. The highest ORR activity was 

observed in N-HOPGs (N-HOPG with X = 0.4 at.%) among the three N-HOPG 

(N-HOPG with X = 0.4, 2.3, and 8.4 at.%). Thus it was clarified that the doped nitrogen 

in the well-defined flat graphene lattice is contributed to improve the ORR activity. 

 In Chapter 5, I have investigated the CO2 adsorption property and the electronic 

structure of N-HOPG (N-HOPG with X = 0.4 at.%) using XPS, angle-dependent XAS 

and IRRAS to elucidate the Lewis basicity of the nitrogen-doped graphite surface as an 

indicator of the ORR activity. The adsorbed CO2 at 300 K was stabilized by a charge 

transfer from the substrate and showed approximately 2 eV lower O 1s binding energy, 

located at 533 eV, than that of the physisorbed CO2. It was clear evidence of the Lewis 

basicity of N-HOPG caused by the nitrogen doped in the graphite. The high polarization 

dependence of O 1s XAS indicates the adsorbed CO2 lies flat on the graphite surface. 

The N 1s XAS and XPS results indicate the possible CO2 adsorption sites would be 

responsible for the carbon sites in the vicinity of the pyridinic and valley N, 

respectively.  
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 Finally, I have summarized the role of nitrogen in carbon-based cathode catalysts.  

(1) The graphitic N enhanced the O2 adsorption and would cause the formation of the 

active sites derived from the C=O components. (Chapter 3) 

(2) The doped nitrogen with the well-defined flat graphene lattice was contributed to 

improve the ORR activity. (Chapter 4) 

(3) The Lewis basicity sites would be induced by the presence of the pyridinic N and 

valley N of the graphite surface. (Chapter 5) 

These results show the O2 and CO2 adsorption sites are formed by not the nitrogen 

atoms but the carbon atoms next to or in the vicinity of the nitrogen atoms and suggests 

that the electronic structure modification of carbon atoms through hetero atom doping 

contributes to enhance the oxygen reduction activity. 

 

6.2 Future prospects 

 In the future, it is required to reveal the structure of the adsorbed CO2 on the 

nitrogen-doped graphite and estimate the Lewis basicity of CO2 adsorption sites 

supported by the first principles calculation since the degree of the Lewis basicity is 

important for determining the interaction strength of CO2 and the reaction rate of ORR. 

It is also useful to experimentally visualize the local atomic structure of the adsorbed 

CO2 using STM or AFM for revealing the Lewis base sites. For example, some recent 

reports mentioned that the adsorbed CO2 on Ni(110) [126] or Ru(0001) [136] is partially 

tilted to the substrate surface, which is similar configuration on N-HOPG in this study. 

The valley N sites were believed to be one of the important nitrogen components for 

the formation of ORR active sites in the last decade [83]. I have observed the valley N 

using spectroscopic method in combination with first principles calculation, however, 

any group does not observe an atomic structure of the valley N experimentally. 

Therefore it is also required to visualize the local atomic and electronic structures of the 

valley N using STM and STS, respectively, since the detailed electronic structure of the 

valley N is crucial to control the property of the nitrogen-doped graphite. 

The activity of these carbon-based materials indicates the potential to fine-tune the 

activity to use the degree of Lewis basicity of the graphite substrate as a standard. The 

Lewis basicity would be fine-tuned by controlling the prevalence of nitrogen species 

focused to the appropriate interaction strength for ORR. The properties of fine-tuned 
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Lewis basicity in carbon-based materials can be applied to the variety field of catalysis, 

including the use of the materials as CO2 reduction reaction or hydrogen evolution 

reaction sites.  Furthermore, the electronic structure modification of carbon atoms 

controlled by other chemical or mechanical method would also contribute to enhance 

the catalytic activity, suggesting the new development of the catalyst other than 

conventional method such as nitrogen doping.  
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