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Preface   
 

 

This thesis marks the compilation of my studies under the supervision of Professor 

Masaharu Oshima from 2007 to 2009 and that of Professor Hiroshi Fujioka and Professor 

Hiroshi Kumigashira from 2013 to 2016 as a student of the Department of Applied Chemistry, 

Graduate School of Engineering, the University of Tokyo. 

 This thesis is organized in the main 8 chapters. Chapter 1 presents the general 

introduction to novel interfacial magnetism emerging at the oxide heterointerfaces caused by the 

charge distribution, and the purpose and strategy of this study on the relationship between 

charge transfer phenomena and interfacial ferromagnetism. The experimental methods of thin 

film growth and synchrotron radiation spectroscopy are described in Chapter 2. In Chapter 3, 

optimization of growth conditions of double perovskite La2NiMnO6 (LNMO) is described. I 

described the element-selective study of the electronic and magnetic states of LNMO in Chapter 

4. In Chapter 5, the charge transfer phenomenon, especially its spatial distribution at LaNiO3 

(LNO)/LaMnO3 (LMO) heterointerface is investigated. Chapter 6 presents the element-selective 

study of interfacial ferromagnetism at LNO/LMO hetrointerface. In Chapter 7, the electronic 

states at the LMO/Nb:SrTiO3 heterointerface are investigated by determining the band diagram. 

Finally, Chapter 8 is devoted to summary and future prospects.  

 

 

February, 2016 

Miho KITAMURA 
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Chapter 1   
General introduction 

 

 

1.1 Background 

 

Perovskite transition-metal oxides exhibit a wide variety of unique properties such as 

the high TC superconductivity [1], metal-insulator transitions [2], colossal magnetoresistance [3], 

and multiferroics [4]. These properties originate from complex interactions involving the spin, 

charge, and orbital degrees of freedom of the strongly correlated electrons [2] Recently, 

well-defined oxide heterointerfaces and superstructures have been accomplished due to the 

rapid progress of the growth techniques. The developments of a pulsed laser deposition, a 

molecular beam epitaxy and a sputtering method, as well as the monitoring system using the 

reflection high-energy electron diffraction (RHEED) during the thin film growth, enable us to 

fabricate high quality oxide heterointerfaces in an atomic scale. The perovskite oxide 

heterointerface, which is composed of two different isostructural materials with a chemical 

formula of ABO3, produces distinctive interfacial electronic and/or magnetic properties not 

present in the bulk constituents [5, 6, 7]. These unusual properties have been of considerable 

interest because of the potential applications of the heterostructure in future electronic devices 

with multifunctional properties. Extensive studies on the behavior of oxide heterojunctions have 

revealed that these properties can be tuned through the interfacial charge transfer 

(redistribution) and the resulting reconstruction of the spin and orbital states. For example, the 

metallic conductivity due to the charge modulation has been reported at the interface between 

Mott insulator LaTiO3 and band insulator SrTiO3 [8], furthermore, the metallic state and then 

the superconductivity appear at the interface between two insulators LaAlO3 and SrTiO3 [9, 10]. 
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One particularly interesting aspect of these heterostructures seems to be the appearance of 

ferromagnetism at the interface between non-ferromagnetic oxides. For example, superlattices 

(heterointerfaces) composed of antiferromagnetic insulator layers of LaCrO3-LaFeO3 [11, 12] 

and LaMnO3 (LMO)-SrMnO3 [13, 14] are ferromagnetic. Similar behavior is also seen in 

lattices consisting of the antiferromagnetic insulator CaMnO3 and paramagnetic metal CaRuO3 

[15, 16, 17] or LaNiO3 (LNO) [18].  

LaMnO3 (LMO)-SrMnO3 system is the most intensively studied. LaMn3+O3 

possesses one eg electron per Mn site, wheres there has no eg electron in SrMn4+O3, resulting in 

the difference of chemical potential at the interface which promotes the charge (hole) transfer 

from an LMO layer to an SrMnO3 layer. As a result, the transition takes place from 

antiferromagnetic insulators LMO and SrMnO3 to ferromagnetic metal La1-xSrxMnO3 around the 

interfacial region because mixed valence Mn3+/Mn4+ state favors double-exchange 

ferromagnetism. Koida and coworkers investigated magnetic and transport properties of 

(LMO)m(SrMnO3)m superlattices with varying the periodicity m [13], as shown in Fig. 1.1. The 

shorter-period superlattices than the critical number related to the charge distribution showed 

homogeneous ferromagnetic metallic properties, whereas the longer-period ones exhibited a 

phase separation consists of interface region and bulk inside and significant suppression of the 

ferromagnetism and the metallicity. For LMO-SrMnO3 system, the distances of charge 

distribution have been evaluated to be some monolayer (ML): 2-4 ML from transport and 

magnetization measurements [13, 19] and about 3 ML from polarized neutron reflectivity 

measurements [20]. 
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Figure 1.1: Temperature dependence of (a) magnetization, (b) resistivity, and (c) 

magnetoresistance of (LaMnO3)m(SrMnO3)m superlattices. (d) The schematic images of the hole 

distribution. The dark color region has higher hole concentration than than the light region [13]. 

 

 

As for CaMnO3-CaRuO3 and CaMnO3-LNO supperlattices, the inherent electron 

penetration occurs from the paramagnetic metal CaRuO3 or LNO layer to the antiferromagnetic 

insulator CaMnO3 layer resulting in the ferromagnetism in the interface region of the CaMnO3 

layer [15, 16, 17, 18]. Figure 1.2 depicts x-ray magnetic circular dichroism (XMCD) spectra of 

Mn and Ru for CaMnO3-CaRuO3 superlattices measured by Freeland et al. [16]. XMCD signals 

are clearly observed in Mn XMCD spectram and not in Ru one, indicating the presence of 

magnetic moments only in CaMnO3 layer. 

Furthermore, the charge transfer also plays an important role for the exotic interfacial 

magnetism of the heterostructures which consist of ferromagnetic materials. The novel 

exchange bias was observed in the heterostructures of La0.75Sr0.25MnO3/LNO [21] and 

La0.7Ca0.3MnO3/LNO [22], where the charge transfer between Ni and Mn ions (Ni3+ + Mn3+→ 

Ni2+ + Mn4+) was confirmed by x-ray absorption spectroscopy and x-ray photoemission 

(d)
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spectroscopy. For La2/3Ca1/3MnO3-YBa2Cu3O7 superlattices, electron-transfer from Mn ion to 

Cu ion suppresses ferromagnetism in manganite and induces a spin-polarized layer in cuprate 

about a few nanometers from the heterointerface (Fig. 1.3) [23].  

 

 

 

Figure 1.2: X-ray absorption spectra and x-ray magnetic circular dichroism spectra of (a) Mn-L3 

edge and (b) Ru-L3 edge of CaMnO3-CaRuO3 superlattice [16]. 

 

 

 

 

Figure 1.3: (a) Atomic stacking sequence and arrangement of the atoms of 

La2/3Ca1/3MnO3/YBa2Cu3O7 interface. The arrows show the possible magnetic moments. (b) 

X-ray magnetic circular dichroism spectra of Mn-L2,3 edge and Cu-L2,3 edge of 

La2/3Ca1/3MnO3-YBa2Cu3O7 superlattice [23]. 

(a) (b)
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1.2 Purpose of this study 

 

As described above, the heterointerfaces which consist of perovskite transition-metal 

oxides show a lot of interesting interfacial magnetism. For these novel phenomena, the charge 

transfer (charge redistribution) at the interface is considered to play a significant role. Spin and 

orbital states of the transition metal ions around the interface region are modulated by the 

charge transfer, resulting in the change of magnetic exchange coupling between transition metal 

ions. In order to understand and control the interfacial magnetism, it is inevitable to decide the 

valence change and its spatial distribution and the relationship between the charge distribution 

and interfacial magnetism.  

In this thesis, I have studied two different perovskite heterointerfaces. One is the 

heterointerface between a paramagnetic metal LaNiO3 (LNO) and an antiferromagnetic (bulk) 

/ferromagnetic (film) insulator LaMnO3 (LMO), and the other is the heterointerface between a 

Mott insulator LMO and a band insulator Nb-doped SrTiO3 (Nb:STO). For the both 

heterostructures, it has been reported that ferromagnetism in supperlattices [24, 25] and exotic 

magnetic properties such as a ferromagnetic modulation [26] and an exchange bias effect [27] 

(For the detail, see Chapter 5 and 7). However, there is a difference between two 

heterointerface: Considering the redox potentials of B-site ions coordinated by six oxygen ions 

(Fig. 1.4) [28, 29], the charge transfer is expected for an LNO/LMO interface, whereas not 

expected for an LMO/Nb:STO one. For these contrasting heterointerfaces, I have elucidated the 

charge transfer phenomena, especially the spatial distribution of the transferred charge, and 

investigated the relationship between the charge transfer and the interfacial ferromagnetism. 

The strategy of this study is depicted in Fig.1.5. I have fabricated two kinds of heterointerfaces 

by a pulsed laser deposition method and characterized by synchrotron radiation spectroscopy, 

utilizing its elemental selectivity and surface (buried interface) sensitivity. In order to study an 

LNO/LMO interface, as a first step, I have grown and characterized a double perovskite 
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La2NiMnO6 (LNMO) film. LNMO can be regarded as a “natural superlattice”, in which LNO 

and LMO layers alternately stack along the [111] direction resulting in the rock-salt-type 

ordering of Ni and Mn ions. Then I have investigated LNO/LMO heterostructures with a 

well-defined interface accomplished by monitoring the intensity oscillation of RHEED during 

the growth in order to the spatial distribution of the charge transfer. 

 

 

Figure 1.4: Redox potentials between (a) Ni and Mn, and (b) Ti and Mn [28, 29]. 

 

 

 

 

Figure 1.5: Strategy of this study. 
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This thesis is organized as follows. Chapter 1 describes the general background to 

introduce the studies on interfacial magnetism of oxide heterostructures, and the strategies and 

the purpose of the present study on the relationship between charge distribution and interfacial 

ferromagnetism at perovskite oxide heterointerfaces using synchrotron radiation spectroscopy. 

The experimental methods of thin film growth, characterization of a film, and synchrotron 

radiation spectroscopy are briefly described in Chapter 2. I present growth condition 

dependence of ferromagnetic properties of a “natural superlattice” LNMO thin film in Chapter 3. 

By strictly controlling the growth temperature and oxygen pressure to stabilize Ni2+-O-Mn4+ 

superexchange ferromagnetic interaction, LNMO film was obtained that shows higher 

ferromagnetic transition temperature and higher magnetic moment. In chapter 4, electronic and 

magnetic states of the LNMO film grown under the optimized condition have been investigated 

using synchrotron radiation spectroscopy. The charge transfer (Ni3+ + Mn3+→ Ni2+ + Mn4+) 

occurs in LNMO and the magnetism residing Ni and Mn ions are coupled ferromagnetically. I 

have verified that the ferromagnetism of LNMO is derived from Ni2+-O-Mn4+ ferromagnetic 

superexchange interaction. In Chapter 5 and Chapter 6, I develop a “natural superlattice” 

LNMO to the well-controlled LMO/LMO heterointerfaces. The charge transfer between LNO 

and LMO and the spatial distribution of the transferred charge characterized by x-ray absorption 

spectroscopy are presented in Chapter 5 and the interfacial ferromagnetic states evaluated by 

x-ray magnetic circular dichroism are described in Chapter 6. The similar charge transfer to 

LNMO occurs at the interface between LNO and LMO, and it has been concluded that its 

spatial distribution is different between two layers. Magnetization are induced in Ni2+ ion in the 

vicinity of the interface, where the valence changes from 3+ to 2+ due to the charge transfer, 

and coupled ferromagnetically to Mn spins. The photoemission study of the other interface 

LMO/Nb:STO is written in Chapter 7. In contrast to the LNO/LMO interface, the charge 

transfer do not occur between Ti and Mn ions and LMO/Nb:STO heterojunctions can be 
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described on the basis of the p-n junction model for conventional semiconductors. Finally 

Chapter 8 is devoted to summary of this thesis and future prospects.   

 



Chapter 2 Experimental Methods 

 9 

Chapter 2   

Experimental Methods 
 

 

2.1 Thin film growth 

 

2.1.1 Pulsed laser deposition 

 

Pulsed laser deposition (PLD) is a physical vapor deposition (PVD) technique 

especially useful for growing high quality oxide thin films. PLD has advanced since research on 

high temperature superconductive cuprates began, and has dramatically developed since the 

introduction of the excimer laser to thin film growth. Figure 2.1 shows a schematic image of the 

PLD process. In PLD, a high-power-laser pulse irradiates a sintered target and the material of 

the target melts, evaporates, and ionizes in the luminous pillar, called the plasma plume, owing 

to the rapid increase in the temperature of the target surface. The atoms and ions of the target 

material in the plume are deposited and migrate on the surface of the substrate, and a thin film 

grows on the surface. In most cases, ultraviolet pulse lasers are used for ablation, such as ArF 

(193 nm), KrF (248 nm), and XeCl (308 nm) excimer lasers and 3rd- (355 nm) and 4th- (266 

nm) harmonic generation YAG solid-state lasers. To activate the surface migration of adatoms, 

the temperature of the substrate is typically kept high using a heater, ramp, and focused infrared 

lasers. The ablated species in the plume interact with background gases such as oxygen, ozone, 
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nitrogen, and argon, and it is important to control the plume conditions to achieve the desired 

film quality. It is possible to control the film thickness on an atomic scale by incorporating 

reflection high-energy electron diffraction measurements during the growth process. This 

system is called “laser molecular beam epitaxy (Laser MBE)”. 

 

 

 

Figure 2.1: A schematic image of the PLD process 

 

Advantages of PLD: 

1) Materials with high melting point can be deposited given they absorb the ablation laser.   

2) The composition of a target may be transferred to that of the deposited film because the 

ablation laser instantly exfoliates only the surface of the target. 

3) Use of a high pressure of background gas is possible. 

4) It is possible to digitally control the thin film growth. 
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5) Because PLD is a nonequilibrium process, it is possible to grow thin films of materials 

otherwise attainable under thermodynamic conditions.  

6) PLD is a less contaminating process than other PVD processes because the ablation source is 

located outside the chamber. 

Disadvantages of PLD: 

1) Some particles of submicron size are often generated on the film surface. 

2) It is difficult to obtain large areas with homogeneous composition and thickness. 

3) Polishing of the surface of a target is needed to prevent the plume from leaning. 

 

 

2.2 Characterization of thin films 

 

2.2.1 Reflection high-energy electron diffraction 

 

Reflection high-energy electron diffraction (RHHED) is commonly used to 

characterize surface morphology and crystallization. An electron beam accelerated by a high 

voltage (10–50 keV) enters the surface of the sample at a small incidence angle (1–3°). The 

incident electrons are reflected by the atoms of the surface and form diffraction patterns on the 

fluorescent screen. Owing to the small incidence angle, RHEED is a surface sensitive method 

despite the high energy of the electron beam, and so it is possible to use it to monitor the 

process of thin film growth in the molecular beam apparatus. In RHEED measurements, 

diffraction patterns are observed as the crosspoint between the Ewald’s sphere defined by the 
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electron energy and reciprocal rods, as shown in Fig 2.2, because the surface can be regarded as 

a two-dimensional lattice owing to the oblique incidence angle. 

 

 

 

Figure 2.2: A schematic image of the principle of reflection high-energy electron diffraction 
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beam. If the surface is very flat on the atomic scale, the diffraction pattern appears as a bright 
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radius becomes larger. Spot patterns appear if the surface is rough because the surface acts as a 
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crystal quality of the surface. Spot and/or streak patterns are obtained from single crystal 
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surfaces. Ring patterns and hollows (no pattern) are observed when the surface is 

polycrystalline and amorphous, respectively. 

RHEED can be used for another purpose during thin film growth. Figure 2.3 shows 

the relationship between RHEED oscillation and growth state. By monitoring the intensity of 

the diffraction spot, it is possible to obtain information on the growth mode and estimate the 

growth rate. The intensity of the spot decreases with the creation of two-dimensional islands, 

and recovers as the density of islands increases. As a result, the intensity oscillates, 

synchronizing with the growth of each new layer with one-unit-cell height. In this thesis, this 

RHEED oscillation was used to control film thickness during heterostructure fabrication. 

 

 

 

Figure 2.3: The relationship between surface morphology (left) and RHEED oscillation (right) 

during 1-monolayer (ML) this film growth. (a) Before deposition, (b) Right after starting 

deposition, (c) At 0.5-ML deposition, and (d) After 1-ML deposition. 

Time

In
te

ns
ity

Time

In
te

ns
ity

Time

In
te

ns
ity

Time

In
te

ns
ity

(a)

(b)

(c)

(d)



Chapter 2 Experimental Methods 

 14 

2.2.2 Atomic force microscopy 

 

The characterization of surface morphology was performed using atomic force 

microscopy (AFM; Nanoscope 3A, Veeco). AFM is a powerful tool for evaluating 

three-dimensional information on a film surface with a very high vertical resolution of 

sub-nanometers. In AFM measurements, atomic forces between a cantilever and the sample 

surface are measured to characterize the surface morphology. The tapping mode was used in 

this work, where the cantilever vibrates in a resonant frequency and scans over the surface with 

tapping. The change in the frequency and amplitude of vibration caused by the atomic force is 

measured through laser irradiation of the cantilever and is controlled to maintain constant 

vibration using a feedback mechanism, as shown in Fig. 2.4. Information on the surface 

morphology is obtained from the feedback signal. This mode can realize higher resolution and 

lower damage to the sample. 

 

 

 

Figure 2.4: A Schematic diagram of atomic force microscopy. 
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2.2.3 X-ray diffraction 

 

X-ray diffraction is commonly used to investigate the crystal structure of a material. 

This technique is based on the elastic scattering of x-ray from ordered structures. The obtained 

diffraction pattern is governed by Bragg’s equation, 

                                  (2.1) 

where dhkl, θ, and λ are the length of the (hkl) plane period, incident angle, and x-ray 

wavelength, respectively. The intensity of a diffraction peak is determined by S・S, where S is a 

structure-factor given by, 

   (2.2) 

 

where fj is the atomic-scattering-factor. 

The lattice parameters perpendicular to the surface of a sample can be obtained using a 

2θ /θ scan because the crosspoints between reciprocal points of the Miller planes perpendicular 

to the surface and Ewald’s sphere exit along the line of the 2θ /θ scan. Reciprocal space 

mappings, shown in Fig. 2.5, were also measured to obtain information on the in-plane 

orientation between film and substrate. The relationships between (2θ,ω) and coordinates in 

reciprocal space (QIP, QOP) are given by,  

 

   (2.3) 

 

where R is the radius of Ewald’s sphere. The plane intervals dIP and dOP are expressed by, 
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   (2.4) 

 

where n is an integer related to the Miller indices and λ is the x-ray wavelength.  

In this thesis, a RINT 2400 (RIGAKU) and RINT ATX-G (RIGAKU) with Cu Kα 

source were used. Diffractometer type 5250 (Huber) equipped with BL-4C, KEK-PF and 

SmartLab (RIGAKU) at BL-7C, KEK-PF were also utilized for synchrotron radiation x-ray 

diffraction measurements. 

 

 

Figure 2.5: A Schematic diagram of geometry of x-ray diffraction measurement. Reciprocal 

points of a film and a substrate are shown in the case of coherent growth. 

 

 

2.2.4 Characterization of magnetic properties 

 

The magnetic properties of the thin films were characterized by using a magnetic 

properties measurement system (MPMS, Quantum Design) equipped with a superconducting 
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quantum interference device (SQUID). This apparatus can detect very small magnetization to a 

sensitivity of 108 emu. The temperature dependence of magnetization was measured to evaluate 

the Curie temperature of the films. The magnetic field dependence of the magnetization 

measurements was evaluated to obtain the saturated magnetization and the coercive field. The 

magnetic field was applied along the [100] axis parallel to the film surface. 

 

2.2.5 Optical conductivity measurements 

 

Optical constants, such as complex refractive index and complex dielectric constant, 

are commonly obtained by measuring absorption and/or reflectivity spectra. When the sample is 

thin and/or absorption coefficient α is small, one can estimate α by absorption spectrum, and 

then the extinction index κ(ω) can be calculated by, 

 (2.5) 

 

However, this method is sometimes complex because of reflection at the surface as 

well as interference and multiple reflection inside the sample. The calculation of complex 

refractive index and complex dielectric constant from reflectivity spectra is widely adopted as 

an alternative method. In this method, the phase factor θ(ω), the change in the phase of the light 

caused by reflection on the surface, is calculated using the Kramers-Kronig relation from the 

measured reflectivity spectrum R(ω). The refractive index n(ω) and the extinction index κ(ω) 

are estimated using the following equations. 
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           (2.6) 

 

In this study, reflectivity and transmittance spectra were measured to obtain optical 

constants. Reflectivity R(ω) and transmittance T(ω) are functions of the wavelength of the 

incident light, the thickness of the film and substrate, the refractive index of the substrate, and 

the refractive index and extinction index of the film. [30]. The refractive index and extinction 

index are numerically calculated using the successive approximation called the 

Newton-Raphson method. Figure 2.6 shows a flow of the Newton-Raphson method. M. 

Matsunami of RIKEN, SPring-8 aided with the numerical calculations of n(ω) and κ(ω). Optical 

conductivity σ (ω) is given by,  

𝜎 𝜔 = 𝜔𝑛 𝜔 𝜅 𝜔 2𝜋 (2.7). 

             

 

 

Figure 2.6: Flow of Newton-Raphson method 
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2.3 Synchrotron radiation spectroscopy 

 

2.3.1 Photoemission spectroscopy 

 

Figure 2.7 shows a schematic image of the principle of photoemission spectroscopy 

[31]. When an electron in a solid absorbs a photon with energy of hν, it may be excited to a 

higher electronic state. If the energy of the excited electron exceeds the work function, φ, of the 

material it is emitted from the material. This is called photoemission, and the emitted electrons 

are called photoelectrons. Following the law of energy conservation, the kinetic energy of the 

photoelectron is given by, 

 

𝐸!"#!"# = ℎ𝜈 − 𝜙 − 𝐸! (2.8) 

 

where Ekin
vac is the kinetic energy of the photoelectron based on the vacuum level (Evac), and EB

 

is the binding energy based on the Fermi level (EF). In real experiments, the kinetic energy (Ekin) 

measured from EF rather than from Evac is directly observed. Then, the following equation is 

convenient to use, 

 

𝐸!"# = ℎ𝜈 − 𝐸! (2.9) 
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Figure 2.7: A schematic image of the principle of photoemission spectroscopy [31]. 

 

Photoemission spectroscopy is a surface-sensitive technique. Electrons are 

inelastically scattered by electron–electron and electron–phonon interactions before they are 

emitted from the material. This scattering determines the escape depth of the photoelectrons. 

Escape depth experimentally measured as a function of photoelectron kinetic energy is called 

“the universal curve”, and is a very general indication of behavior that is material-independent, 

shown in Fig. 2.8 [31].  

 

Figure 2.8: Mean free path of a photoelectron in various materials as a function of its kinetic 

energy [31]. 
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2.3.2 Resonant photoemission spectroscopy 

 

Synchrotron radiation has an advantage that photon energy is valuable. By utiliting 

this feature, one can measure the resonant photoemission spectrum. A schematic diagram of the 

resonant photoemission spectroscopy process is shown in Fig. 2.9. When the incident photon 

energy is equal to the energy difference between the p core level and the d valence states of the 

material, not only the direct photoemission process of a d electron in the valence states, 

 

𝑝!𝑑! + ℎ𝜐 → 𝑝!𝑑!!! + 𝑒! (2.10) 

 

but also the photoabsorption of a core p electron and subsequent Auger-type decay, called 

Coster-Krönig decay, 

 

𝑝!𝑑! + ℎ𝜐 → 𝑝!𝑑!!! + 𝑒! → 𝑝!𝑑!!! + 𝑒!   (2.11), 

 

occur. These two processes have the same electron configuration in both the initial and final 

state, and therefore quantum-mechanical interference comes about. Thus, the intensity of the 

photoemission spectrum is resonantly enhanced and shows a so-called Fano profile [Fano 

PR124]. Because this enhancement occurs only for the emission of d electrons, it is possible to 

obtain the d partial density of states (DOS) in a material. 
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Figure 2.9: A schematic diagram of the principle of resonant photoemission spectroscopy. 

 

2.3.3 X-ray absorption spectroscopy 

 

X-ray absorption spectroscopy (XAS) is the measurement of photo-absorption 

following the excitation of a core electron into an unoccupied state as a function of photon 

energy. Utilizing the characteristic of synchrotron radiation that photon energy is valuable, one 

can obtain absorption spectra. According to the Fermi golden rule, the absorption intensity is 

given by, 

𝐼 ℎ𝜈 = 𝑓 𝑇 𝑖 !𝛿(𝐸!! − 𝐸! − ℎ𝜈) (2.12) 
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where T is the dipole transition operator, and i and f represent initial and final state, respectively. 

In the dipole transition, the change in the angular momentum is limited to ±1. The O-K XAS 

spectrum, which involves excitation from O 1s to 2p orbitals, represents the unoccupied O 2p 

states. When O 2p orbitals are hybridized with other orbitals, O-K XAS spectra enable us to 

obtain information on the unoccupied states. In 3d transition-metal (TM) compounds, TM 

L2,3-XAS spectra, which involves excitation from TM 2p1/2 and 2p3/2 to 3d orbitals, reflect the 3d 

states, such as the valence, spin states and crystal-field splitting. There are two kinds of modes 

for XAS measurement, transmission mode and yield mode. Transmission mode is standard for 

hard x-rays. In this mode, the intensities in front of and behind the sample are measured and 

then the amount of transmitted x-rays is calculated. However, this mode is not suitable for soft 

x-rays because of the strongly interact with the sample. 

As the alternative to transmission mode, the yield mode is standard for soft x-rays. In 

yield mode, products which are generated in the decay process of core holes created by 

absorption are measured, and it can be classified into Auger-electron-yield, total-electron-yield 

and total-fluorescence-yield methods. The Auger-electron-yield method is the measurement of 

Auger electrons of specific energy emitted during the decay process. This method has the least 

ambiguity and relatively high surface sensitivity. The total-electron-yield method is the most 

widely used of the yield modes. although it has not been fully understood yet. In this method, all 

electrons escaping from a sample during the decay process are counted by measuring the 

compensation current from the earth to the sample. The signals obtained are dominated by 

secondary electrons generated in the cascade process of the Auger decay electrons. This is the 

most convenient method because of the ease of measurements and the strongest signals. The 
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total-electron-yield method was used throughout this study. In the total-fluorescence-yield 

method, the fluorescent decay to core holes is measured. Because fluorescence has a large 

probing depth (> 1 µm), this method has a higher bulk sensitivity than that of the 

total-electron-yield method. However, the signal intensity is weak and this method suffers from 

self-absorption effects, resulting in the complication of the data analysis. 

 

2.3.4 X-ray magnetic circular dichroism 

 

When a sample with magnetization (paramagnetic, ferromagnetic, and ferromagnetic 

materials) is irradiated with circular polarized x-rays, the resultant XAS spectra of the 

right-handed (σ+) and left-handed (σ-) circular polarized light, as shown in Fig. 2.10, are 

different because of the difference in transition matrix elements. X-ray magnetic circular 

dichroism (XMCD) is defined as the difference between the absorption spectra of x-rays of 

parallel and antiparallel polarity to the magnetization direction of the sample material. XMCD is 

an element specific measurement because the absorption process is originates from core 

electron excitation and its line shapes reflect the electronic structure related to the magnetism. In 

addition, XMCD sum rules enable us to estimate element-specific spin and orbital magnetic 

moments separately from the integrated intensities of the XAS and XMCD spectra. Typical 

XMCD spectra of iron reported by Chen et al. are shown in Fig. 2.11 [32]. 
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Figure 2.10: A schematic diagram of x-ray magnetic circular dichroism. 

 

 

 

 

Figure 2.11: (b) Fe L2,3 XAS spectra of measured by right-handed and left-handed circularly 

polarized x-rays. (c) Fe L2,3 XMCD spectrum and its integration (dashed line). (d) Summed 

XAS spectrum and its integration (dashed line) [32]. 
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For instance, let me consider L2,3 XMCD (transition from 2p to 3d). Figure 2.12 

shows the transition matrix elements of 2p → 3d absorption of σ+ and σ- for spin-down states. 

σ+ (σ-) increases (decreases) the z component of the orbital moment by 1. In the case that the 

majority spin states (spin-up) are fully occupied and the transition occurs only for minority spin 

(spin-down), the difference in intensity between σ+ and σ- are described by  

 

𝐿! ∶  Δ𝐼! ∝ 6ℎ!! + 6ℎ!! + 3 − 1 ℎ! − 6ℎ!! − 18ℎ!! 

𝐿! ∶  Δ𝐼! ∝ 12ℎ!! + 3ℎ!! − 2ℎ! − 3ℎ!! (2.13) 

 

where hmd is the hole number of each 3d state and its subscription md is the magnetic quantum 

number. Then, the orbital magnetic moment is proportional to the sum of the intensities as 

follows: 

 

∆𝐼! + ∆𝐼! ∝ 18ℎ!! + 9ℎ!! − 9ℎ!! − 18ℎ!! 

= 9(2ℎ!! + ℎ!! − ℎ!! − 2ℎ!!) 

= 𝑚!ℎ!"
!!

 

∝ 𝐿! . (2.14) 
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Figure 2.12: Transition matrix elements of 2p → 3d absorption with circularly polarized x-rays 

for spin-down states 

 

The spin magnetic moment is also estimated in the same manner. Thus, the orbital 

magnetic moment (Morb) and the spin magnetic moment (Mspin) in units of µB/atom can be 

calculated by XMCD sum rules [33, 34] as follows: 

𝑀!"# = −
2
3

𝜇! − 𝜇! 𝑑𝐸!!!!!
𝜇! + 𝜇!

2!!!!!
𝑑𝐸

(10 − 𝑁!) 

𝑀!"#$
!"" = 𝑀𝑠𝑝𝑖𝑛 + 7𝑀! = −

3 𝜇! − 𝜇! 𝑑𝐸 − 2!!
𝜇! − 𝜇! 𝑑𝐸!!!!!

𝜇! + 𝜇!
2!!!!!

𝑑𝐸
(10 − 𝑁!) 

(2.15) 
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 where µ+ and µ- are the absorption intensities of σ+ and σ-, respectively, and Nd is the number 

of d electrons of the specific atom. MT is the magnetic dipole moment, which is small in the case 

of a high local symmetry of the transition-metal atomic site, and can be neglected in the case of 

perovskite oxides with cubic symmetry with respect to Mspin.  

 

2.4 Experimental setup 

 

2.4.1 Continuous composition spread-pulsed laser deposition 

system 

 

 In this work, a continuous composition spread-pulsed laser deposition (CCS-PLD) 

system was designed and fabricated to overcome the difficulty of obtaining a large area with 

homogeneous composition and thickness, which is a disadvantage of PLD. Figure 2.13 shows a 

schematic image of the CCS-PLD system. In PLD, the film thickness is distributed with a 

maximum just above the plume plasma. In the case of a 20 mmφ circular target and a distance 

between the substrate and the target of 7 cm, the homogeneous thickness area is limited to less 

than 10 mm × 10 mm because the position of the plume is fixed. On the other hand, the 

developed CCS-PLD makes it possible to obtain an area of homogeneous thickness as large as 

20 mm × 20 mm owing to the variation in plume position achieved by scanning the ablation 

laser, shown in Fig. 2.14. A film with a larger composition spread area enables the composition 

dependence of the physical properties of the film to be evaluated with a higher composition 

resolution. One can also fabricate films on several different substrates at a time. A KrF excimer 
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laser (248 nm) was used for target ablation. A Pt heater and the composite material heater with a 

carbon fiber core were adopted for sample heating and could heat samples to ~800 °C. The 

apparatus had no RHEED instrument. The developed CCD-PLD apparatus was used to fabricate 

La2NiMnO6 films. 

 

Figure 2.13: A schematic image of the CCS-PLD process. Plume position varies synchronizing 

the scans of the ablation laser on the surface of the target. 

 

 

 

Figure 2.14: Comparison of homogeneous thickness area between a conventional PLD and the 

CCS-PLD. 
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2.4.2 In situ photoemission spectroscopy and laser molecular 

beam epitaxy system  

 

Photoemission spectroscopy and x-ray absorption spectroscopy were performed 

using the in situ photoemission spectroscopy and laser MBE system [35] located at the 

undulator beamline of BL-2C [36] and Beamline MUSASHI (BL-2A) of KEK-PF. BL-2C had 

one undulator for soft x-rays (SX; 250–1400 eV). Beamline MUSASHI has two different 

undulators in a tandem configuration: One for vacuum ultra-violet (VUV) (30–300 eV) and the 

other for SX (250–2000 eV). The spot size at the sample position was 0.1 mm (vertical) × 0.5 

mm (horizontal). The E/ΔE energy resolution is over 20,000 and over 10,000 for about 65 eV 

and from 250 eV to 900 eV, respectively. In VUV mode, vertical and horizontal linearly 

polarized radiation as well as left and right handed circularly polarized radiation can be used. 

High-energy resolution and high flux beam are supplied for the 30 eV to 250 eV energy range at 

Beamline MUSASHI. It was possible to easily switch between VUV and SX mode for different 

purposes. As shown in Figs. 2.15, the system consists of four chambers separated from each 

other by gate valves to maintain ultrahigh vacuum; (1) load lock chamber, (2) preparation 

chamber, (3) photoemission and x-ray absorption chamber, and (4) Laser MBE chamber. 

Samples are transferred under the ultrahigh vacuum condition using two sample banks and three 

transfer rods connected between (1) and (2), (2) and (3), and (2) and (4).  

(1) Load lock chamber 

The chamber for sample installation. 

(2) Preparation chamber 
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In this chamber, samples are stored and low-energy electron diffraction (LEED) and Auger 

measurements are performed. 

(3) Photoemission and x-ray absorption chamber 

Gummadata Scienta SES-100 and SES-2002 electron energy analyzers are used at BL-2C and 

Beamline MUSASHI, respectively. X-ray absorption spectroscopy is carried out by measuring 

the compensation currents toward the sample holder from the earth. The chamber is equipped 

with a five-axis (x, y, z, θ and tilt) manipulator, called i-Gonio, which has liquid-He cryo and Si 

heating systems for temperature dependence measurements.  

(4) Laser MBE chamber 

A combinatorial laser MBE system (Mobile combi-PLD, PASCAL) has been designed with 

some smaller components for use in the limited space around the beamlines of KEK-PF. A 

3rd-harmonic generation Nd-YAG solid-state laser (355 nm) is used for target ablation and its 

maximum power is about 100 mJ. A smaller continuous-wave semiconductor laser (808 nm) 

was used for sample heating, and its maximum output is about 100 W. This system can heat 

samples up to ~1200 °C. The RHEED instrument has a differential pumping system to make the 

monitoring during the high-pressure (~10−3 Torr) growth possible. LabVIEW programs are used 

to control all operations. The apparatus was used to fabricate LaNiO3-LaMnO3 and 

LaMnO3-SrTiO3 heterostructures. 
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Figure 2.15: A schematic image of in situ photoemission spectroscopy and laser MBE system 

 

 

2.4.3 X-ray magnetic circular dichroism measurement  

 

X-ray magnetic circular dichroism measurement (XMCD) was performed using 

XMCD apparatus equipped with normal conducting coil magnets at the undulator beamline of 

BL-16A, KEK-PF. This apparatus can apply a maximum magnetic field of 1.2 T. It is equipped 

with a four-axis (x, y, z, θ) manipulator with a liquid-He cryostat for low temperature 

measurements. It is possible to use the total-electron-yield mode and total-fluorescence-yield 

mode with a microchannel plate detector. In this work, the total-electron-yield mode was used, 

in which the compensation currents to the sample were measured. BL-16A supplies not only 

vertical and horizontal linearly polarized radiations but also right-handed and left-handed 
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circular and elliptically polarized radiations in an energy range from 250 eV to 1500 eV [37]. In 

BL-16A, twin APPLE-II type undulators have been installed in a tandem configuration and the 

polarized radiation is switched at a frequency of 10 Hz by kicker magnets [38], resulting in the 

measurement of very small XMCD and XMLD signals. This yields a noise level of much less 

than 0.1 % in XMCD, as well as real-time observations of the changes in the dichroic signal 

[39]. The degree of circular polarization is ±95 % ±4 %. 

 

2.4.4 Synchrotron radiation 

 

When charged particles, particularly electrons, are accelerated close to the speed of 

light by a linear accelerator (Linac) and circular accelerator (Synchrotron) and bended by some 

magnets, photons are emitted in a narrow cone along the forward direction, called “synchrotron 

radiation”. The brilliance and directionality of synchrotron radiation improve with increasing 

electron speed and the degree of bending. Synchrotron radiation is characterized by high 

brilliance, high polarization, high directivity, short pulse, and wide energy spectrum. To 

generate the synchrotron radiation, three types of magnets are commonly used, bending, 

undulator insertion device, and wiggler insertion device. Bending magnets are used in the 

storage ring and synchrotron radiation generated by bending magnets has vertical directivity but 

horizontal isotropicity. It is white light with a peak in intensity at certain energy and is less 

bright than that generated by insertion devices. Insertion devices, in which electrons oscillate in 

a periodic magnetic field produced by a series of magnets, can generate brighter light. The light 

emitted by each serpentine motion are coherently added in the undulator insertion device, 



Chapter 2 Experimental Methods 

 34 

whereas incoherently in the wiggler insertion device. Synchrotron radiation generated by the 

undulator has a sharp directionality and is a quasi-monochromatic with higher order light. In 

contrast, that generated by the wiggler is white light with higher brilliance.  

In this work, undulator beamline BL-2C, MUSASHI (BL-2A) of KEK-PF was used for 

photoemission spectroscopy and x-ray absorption spectroscopy measurements, and BL-16A of 

KEK-PF was used for x-ray magnetic circular dichroism measurements. Bending beamlines 

BL-4C and BL-7C of KEK-PF were used for x-ray diffraction measurements. 
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Chapter 3   

Optimization of growth condition of double 

perovskite oxides La2NiMnO6 
 

 

3.1 Introduction 

 

3.1.1 Double perovskite 

 

Perovskite oxides have the chemical formula ABO3, which contain a framework of 

corner-shared BO6 octahedra and A cations in 12-coorinate sites. Double perovskite oxides has 

two different A and/or B cations which form superstructures by some kinds of A and/or B 

cation ordering, resulting in that their unit cell is twice that of a perovskite. CaCu3Ti4O12 is one 

of the examples of A-site ordering double perovskite, in which Ca2+ and Cu2+ ions form an 

ordered structure [40] due to the nature of the Jahn-Teller Cu2+ ion. On the other hand, double 

perovskite oxides, which contain two kinds of B site cations, are described by the chemical 

formula A2BB’O6 and there are three different types of BO6 octahedral arrangement: Random 

distribution, layered type ordering, and rock-salt type ordering as shown in Fig. 3.1. The 

spontaneous ordering of BO6 and B’O6 octahedra requires a larger difference in ionic radius and 

the formal valence between B and B” ions [41]. Disordering easily occurs in the case that the 

formal valence difference is less than 3 or ionic radius difference is less than 0.2 Å between B 



Chapter 3 Optimization of growth condition of double perovskite oxides La2NiMnO6 

 

 36 

and B” ions. For example, La2FeCrO6 and Bi2FeCrO6 have a random arrangement of FeO6 and 

CrO6 octahedra in bulk phase, because both Cr and Fe ions are trivalent [42, 43, 44]. A rare 

example exhibiting layered typeordering is Ca2CuSnO6. The layer of Jahn-Teller ion Cu2+ (d9) 

and that of non Jahn-teller ion Sn4+ (d10) stack alternatively along (001) direction, which is 

observed by a transmission electron microscope (TEM) (Fig. 3.2) [45]. In rock-salt type double 

perovskite oxides, BO6 and B’O6 octahedra arrange alternatively in all direction, resulting in the 

formation of B-O-B’ bonds in all direction. This structure can be a (111)-oriented “natural 

superlattice” in which 1-monolayer (ML) ABO3 and 1-ML AB’O3 stack alternatively along 

(111) direction, as shown in Fig. 3.1. The most studied double perovskite oxide with rock-salt 

type ordering is Sr2FeMoO6. It is a half-metallic material exhibiting a magnetoresistance [46]. 

La2NiMnO6 (LNMO) is also a rock-salt type double perovskite oxide with NiO6 and MnO6 

arrangement. 

 

 

 

Figure 3.1: Three types of double perovskite oxides A2BB’O6 (red: BO6, blue: B’O6) 
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Figure 3.2: A scanning-TEM image of layered type double perovskite oxide Ca2CuSnO6 films 

[45]. 

 

 

3.1.2 Previous studies of La2NiMnO6 

 

LNMO is a ferromagnetic semiconductor with rock-salt type ordering of NiO6 and 

MnO6 octahedra. It has a ferromagnetic transition temperature (TC) near room temperature (~ 

280 K) and saturated magnetic moment of 4 ~ 5 µB/f.u., while LaMnO3 (LMO) is an 

antiferromagnetic insulator in stoichiometric bulk phase and LaNiO3 (LNO) is a paramagnetic 

metal. LNMO shows a great advantage compared with other ferromagnetic semiconductor 

exhibiting a ferromagnetic ordering at very low temperature [e.g., EuO (TC = 77 K) [47], 

CdCr2Se4 (TC = 130 K) [48], SeCuO3 (TC = 25K) [49], and BiMnO3 (TC = 100 K) [50]. It also 

has a superiority over diluted ferromagnetic semiconductors such as (Ga,Mn)As (TC <= 160 K) 
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[51, 52], Co:ZnO (TC = 300 K) [53], Co:TiO2 (TC > 400 K) [54, 55], and Co:SnO2-δ (TC = 650 

K) [56] in terms of its intensity of the saturated magnetization. Moreover, as shown in Fig. 3.3, 

large magnetocapacitance and magnetoresistance effects of single-phase bulk LNMO have been 

reported near room temperature [57], suggesting that the possibility of application of LNMO for 

realistic devices used with solid-state thermoelectric (Peltier) coolers. It has also reported that 

ferromagnetic semiconductor LNMO has applied as a barrier in a spin-filter tunneling junction 

[58] and a spin-pumping insulator for generating spin-current [59]. 

 

 

Figure 3.3: Temperature dependence of the dielectric constant of LNMO. The inset shows the 

magnetocapacitance effect [57]. 

 

 

Bulk LNMO has been studied over years in order to obtain better understandings of 

the magnetic exchange interaction in this compound. As for its spin states and magnetic 
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interactions, there are some controversies concerning the nature of magnetic coupling. In the 

earliest study, LNMO showed a relative conduction and no sign of B-site ion ordering. Thus, 

the observed ferromagnetic behavior was considered to be due to the vibronic ferromagnetic 

superexchange interaction between two Jahn-Teller ions of Ni3+ (t2g
6eg

1) and Mn3+ (t2g
3eg

1) [60, 

61]. On the other hand, Blasse et al., argued that ferromagnetism of LNMO is attributed to Ni2+ 

(t2g
6eg

2)-O-Mn4+ (t2g
3eg

0) superexchange interaction based on their magnetic susceptibility data 

[62]. Since then, number of reports, including magnetic studies, 55Mn NMR [63, 64], and x-ray 

absorption near-edge spectroscopy (XANES) [65] have supported that the superexchange 

interaction between Ni2+ and Mn4+ ions is the origin of ferromagnetic nature of LNMO, while 

two neutron diffraction studies reported disagree the oxidation states of Ni and Mn ions: Blasco 

et al., the formal valences of Ni and Mn are 2+ and 4+ respectively [66], whereas Bull et al., 

Ni3+ and Mn3+ Jahn-Teller ions are present in LNMO [67].  

As for the crystal structure, LNMO with random distribution of NiO6 and MnO6 

octahedra shows biphasic with orthorhombic Pbnm phase at low temperature that transforms to 

rhombohedral R3-C phase at high temperature. Rock-salt-type ordering of Ni and Mn ions 

transforms the orthorhombic Pbnm to the monoclinic P21/n and the rhombohedral R3-C to R3-m 

or R3-. Both monoclinic and rhombohedral ordered phases show ferromagnetic properties with 

comparable values of TC ~ 280 K [68]. High temperature rhombohedral phase and low 

temperature orthorhombic/monoclinic one coexist over a wide temperature range, including 

room temperature. 

Synthesis conditions of LNMO have a large influence on its magnetic properties. As 

shown in Fig. 3.4 and Fig. 3.5, ordered LNMO grown under the carefully controlled condition 
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show a single ferromagnetic-paramagnetic transition temperature of about 280 K and saturated 

magnetic moment of 4~5 µB/f.u. [57, 69].  

 

 

 

Figure 3.4: Temperature (T) dependence of magnetic susceptibility (χ) of LNMO. The inset 

shows 1/χ-T plot (lower left) and field dependent of magnetization (upper right) [57]. 

 

 

 

Figure 3.5: Temperature dependence of magnetization of LNMO epitaxial thin films. [69]. 
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On the other hand, Joly et al., showed two different TC derived from different combinations of 

Ni and Mn spin states: Low-TC phase is due to Ni2+ and Mn4+ and high TC phase contains Ni3+ 

and Mn3+, as shown in Fig. 3.6 [70]. Dass et al., reported various temperature dependence of 

magnetization curves of bulk LNMO synthesized under difference conditions, shown in Fig. 3.7 

and argued that low-TC and high-TC phase contain Ni3+-Mn3+ and Ni2+-Mn4+, respectively [68], 

which is supported by studies of LNMO film [71]. As shown in Figs. 3.8 and 3.9, oxygen 

pressures during the deposition of LNMO film greatly affected its saturated magnetic moments 

and high oxygen pressure is necessary to attain the value close to spin-only ones (5 µB/f.u.) [69, 

72]. 

 

 

 

 

Figure 3.6: Temperature dependence of magnetization curves of LaNi0.5Mn0.5O3 bulk samples 

annealed under the various temperatures [70]. 
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Figure 3.7: Temperature dependence of magnetization curves of LNMO bulk samples 

synthesized under the various conditions [68]. 
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Figure 3.8: Saturation magnetizations measured in the field of 1 T at 5 K of LNMO films grown 

under the various oxygen pressure [69]. 

 

 

 

 

 

Figure 3.9: Hysteresis curves of LNMO films grown under the various oxygen pressure [72]. 

 



Chapter 3 Optimization of growth condition of double perovskite oxides La2NiMnO6 

 

 44 

3.1.4 Purpose of this study 

 

In order to investigate the interface between LNO and LMO, I have focused on double 

perovskite LNMO, which can be regarded as a “natural superlattice” of LNO and LMO, as a 

first step. As mentioned above, synthesis conditions of LNMO largely affect on its magnetic 

properties since the origin of ferromagnetism can be explained by the ferromagnetic 

superexchange interaction between Ni and Mn ions through oxygen. Defects, cation valencies 

and arrangement of B-site ions largely depending on synthesis conditions strongly influence on 

magnetic properties. Besides, it is necessary to fabricate it in thin film form for applying as 

spintronics devices. For device applications as well as a fundamental understanding of magnetic 

exchange interactions in LNMO, systematical understanding of the relationship between LNMO 

epitaxial thin film growth conditions and its magnetic properties is significantly important. In 

this study, I have investigated the dependence of magnetic properties on growth conditions, 

especially growth temperature and oxygen pressure. I have optimized the growth conditions of 

LNMO film that shows higher ferromagnetic transition temperature and higher magnetic 

moment.  

 

 

3.2 Experiments 

 

LNMO films were grown on (001) SrTiO3 (STO) substrates by pulsed laser deposition 

(PLD) techniques in a continuous composition spread (CCS) - PLD chamber. A polycrystalline 
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stoichiometric LNMO target fabricated with conventional solid state reactions was ablated by 

KrF excimer laser (λ = 248 nm) with a repetition rate of 5 Hz. During deposition, STO 

substrates were kept in the 600 - 750 °C temperature range and pure oxygen gas of 10 - 1100 

mTorr was continuously supplied into the growth chamber. Laser powers of the ablation are 0.5 

J/cm2 and 0.3 J/cm2 under the oxygen pressure more than 180 mTorr and less than 50 mTorr, 

respectively. After thin film growth, films were cooled down to 500 °C with the rate of 15 °C 

/min. Then, the growth chamber was filled with 760 Torr pure oxygen gas and subsequently 

films were cooled down to room temperature. Out-of-plane lattice parameters and crystalline 

qualities were evaluated by x-ray diffraction (XRD). A Quantum Design, superconducting 

quantum interference device (SQUID) magnetometer was used to investigate magnetic 

properties of LNMO films. The compositions of the films were determined by x-ray 

fluorescence (XRF) (µEDX-1300, Shimazu) using a stoichiometric LNMO target as a reference. 

Synchrotron-radiation x-ray diffraction (SR-XRD) was carried out at BL-4C of KEK-PF. 

 

 

3.3 Results and Discussion 

 

In an attempt to explain the influence of growth conditions simply, I focus on x-ray 

diffraction patterns and magnetic properties of representative LNMO films grown under four 

different conditions of growth temperature and oxygen pressure, 700 °C, 500 mTorr for sample 

A, 750 °C, 1100 mTorr for B, 600 °C, 500 mTorr for C, 700 °C, 190 mTorr for D, respectively, 

as summerized in Table 3.1. 
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  Table 3.1: Growth conditions of samples A - D 

 A B C D 

Temperature (°C) 700 750 600 700 

Oxygen pressure (mTorr) 500 1100 500 190 

 

3.3.1 Crystalinity of La2NiMnO6 

 

Crystal structures of LNMO films were characterized by XRD. Figure 3.10 shows 

XRD 2θ/θ patterns of LNMO films grown under the four different growth conditions (A-D).  

 

 

Figure 3.10: 2θ/θ XRD patterns for LNMO films grown on (001) SrTiO3 substrates under four 

different growth conditions. The insets show 2θ/θ XRD patterns of secondary phases. XRD 

patterns are for (a) sample A, (b) sample B, (c) sample C, (d) sample D, respectively. 
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Sharp (00l) diffraction peaks of LNMO were clearly observed in samples A and D, indicating 

that LNMO films were epitaxially grown on (001) STO substrates. XRD superstructure peaks of 

double perovskite unit cell (00l) with l of odd numbers, are not seen because of the extinction 

rule of face-centered symmetry [73]. The full widths at half maximum (FWHM) of rocking 

curves for LNMO (004) diffraction peaks are 0.058 ° and 0.053 ° for sample A and D, 

respectively. These FWHMs are almost equal to those of STO substrates (0.053 ° - 0.055 °), 

indicating that LNMO films have high crystalline qualities. High crystalline qualities of samples 

A and D are also confirmed by the fact that observed (00l) peaks have doublet structures due to 

Cu Kα1 and Kα2 of x-ray source. Out-of-plane lattice parameters are 3.85 Å for samples A and D, 

which is a slightly smaller value than the pseudo-cubic perovskite lattice parameter of bulk 

LNMO (3.879 Å) reported by Rogado et al. [57]. This difference may be caused by the tensile 

strain in lateral direction from STO substrates (3.905 Å). In order to evaluate the in-plane 

orientation between LNMO film and the STO substrate, reciprocal space mapping of sample A 

was performed using SR-XRD. Figure 3.11 shows a reciprocal space mapping around (103) 

reciprocal point, where the reciprocal-space coordinates correspond to the cubic STO substrate. 

Both diffraction peaks of a STO substrate and the LNMO film clearly observed at the same H, 

which means the LNMO film coherently grows on STO substrate with the in-plane lattice 

constant matching that of a STO substrate. For samples B and C, LNMO diffraction peaks are 

not observed. Beside, there is a secondary peak probably assigned as NiO and/or La2NiO4 only 

in the sample B diffraction pattern. Since the existence of this secondary phase in sample B 

makes the crystalline quality of LNMO worse, LNMO peaks are not observed in the diffraction 

pattern. On the other hand, for sample C, the absence of LNMO peaks may be due to poor 
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crystalline quality because of low growth temperature. Comparing A and D to C, it would be 

suggested that higher growth temperature is essential for good crystalline films. A series of 

(002) XRD patterns shown in Fig. 3.12 and the map summarized of 19 XRD patterns grown 

under the various temperature and oxygen pressure, as shown in Fig. 3.13, also suggest the 

same trend.  

 

 

 

 

Figure 3.11: Reciprocal space mapping around (103) reflection for sample A. The 

reciprocal-space coordinates correspond to the cubic STO substrate. 
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Figure 3.12: 2θ/θ XRD patterns around (002) reflection for LNMO films grown under the 

various growth conditions. 
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Figure 3.13: Map of crystal qualities depending on growth temperature and oxygen pressure. 

Each symbol represents the crystallinity of LNMO films. High and moderate crystal qualities 

were denoted by circle and square symbols, respectively. Highly crystalline LNMO films show 

doublet (004) peaks owing to Cu Kα1 and Kα2 radiations in XRD patterns. Films having no 

LNMO diffraction peaks were displayed by triangle. Films with (filled) and without (open) 

secondary phases are also shown.  
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Various magnetic properties were observed for LNMO films which show different 

XRD patterns. Temperature and magnetic field dependences of the magnetization (M-T and 
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field conditions exhibiting maximum magnetic moments in raw M-H hysterisis curves are 

employed for M-T measurements in order to minimize the demagnetizing effects, as shown in 

the inset of Fig. 3.14.  

 

 

 

Figure 3.14: Temperature (T) and magnetic field (H) dependences of the magnetization (M) 

for LNMO films. (a) M-T curves under field cool for samples A through D. The inset displays 

the raw M-H curve of sample A measured at 8 K. Applied magnetic fields (denoted by the 

allow) for M-T measurements were determined based on the raw M-H curves, 7500 Oe for 

sample A, 2000 Oe for B, 4000 Oe for C and 200 Oe for D, respectively.▼ for each sample 

was determined by the cross point of the extrapolating line at the transition edge and a 

background one. (b) M-T curves around TC for samples C and D. 
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Figure 3.15: M-H hysterisis curves measured at 8 K of (a) sample A, (b) sample B, (c) sample 

C, and (d) sample D, respectively. 
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increase of temperature and obscure transition was observed at about 280 K. Comparing 

samples A and B, sharp ferromagnetic transition around 290 K was observed in sample A 

which has a high crystalline quality phase and no secondary phases. On the other hand, 

obscure transition in M-T curve of sample B could be caused by the existence of secondary 

phases (NiO and/or La2NiO4) exhibiting antiferromagnetism. Sample C shows two different 

values for TC of about 130 K and 290 K. Two different values for TC may reflect the different 

ferromagnetic phases. Sample D has very small magnetic moment and TC of about 280 K. 

Saturated magnetic moments and coercive fields measured at 8 K, and transition temperatures 

for samples A to D are summarized in Table 3.2.  

 

 

                 Table 3.2: Magnetic properties of samples A - D 

 A B C D 

Saturated magnetization (µB/B-ion) 2.2 1.4 0.42 0.064 

Coercive field (Oe)  500 400 1600 380 

Transition temperature (°C) 290 280 130, 290 280 

  

 

Figure 3.16 depicts crystalline qualities and magnetic properties mapped in a growth 

temperature - oxygen pressure diagram on the basis of 10 M-T curves and 19 XRD patterns of 

LNMO films grown under the various growth temperature and oxygen pressure.  
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Figure 3.16: Map of crystal qualities and magnetic properties depending on growth temperature 

and oxygen pressure. Each symbol represents the crystallinity of LNMO films. Symbols are 

same with those in Fig. 3.12. High and moderate crystal qualities were denoted by circle and 

square symbols, respectively. Films having no LNMO diffraction peaks were displayed by 

triangle. Films with (filled) and without (open) secondary phases are also shown. LNMO films 

can be classified into four regions, (I) through (IV). 
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evaluated by XRF measurements. La deficiencies may be induced by oxygen excess in LNMO 

due to high oxygen pressure in this region. Because it is difficult to introduce the oxygen 

interstitial into the perovskite structure, the excess oxygen tends to be accommodated by 

creating cation vacancies [74, 75]. It has been reported that oxygen excess is accommodated by 

vacancies preferentially on La site in LaMnO3+δ [76]. In LNMO, it has also been reported that 

the excess oxygen has a preference for creations of La vacancies over those of Ni and Mn 

vacancies and these La deficiencies may induce the formation of secondary phases [68].  

 

        Table 3.3: Cation ratio of samples A - D evaluated by XRF measurement 

 A 
With secondary 

phases 
C D 

ideal 
 700 °C 700 °C 700 °C 700 °C 
 500 mTorr 1100 mTorr 500 mTorr 190 mTorr 

Ni mol % 25.7±0.2 34.2±1.1 26.3±0.2 24.5±0.3 25 

Mn mol % 25.3±0.2 26.7±1.1 26.1±0.3 24.0±0.6 25 

La mol % 49.0±0.2 39.1±1.1 47.0±0.3 51.5±0.8 50 

A-site/B-site 0.96±0.01 0.64±0.03 0.91±0.01 1.06±0.03 1 

Ni/Mn 1.02±0.01 1.28±0.08 1.01±0.02 1.02±0.02 1 

 

 

In the blue region (region (III)) where growth temperature is low and oxygen pressure is 

relatively high, LNMO films have two different ferromagnetic phases. Minor ferromagnetic 

phase observed around 290 K can be explained by Ni2+-O-Mn4+ superexchange ferromagnetic 

interaction [57], while other interactions may contribute to majority ferromagnetic phase 

exhibiting TC of about 130 K. In this region, growth temperature may not be sufficient to 
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promote the rock salt type ordering of Ni and Mn ions. In order to evaluate the B-site ion 

ordering, the θ/2θ XRD measurements along (lll) direction were performed for samples A and C 

[77]. The (lll) diffraction peals with l of odd number, which are derived from the superstructure 

due to B-site ion ordering, were suppressed for sample C while they were clearly observed for 

sample A [77, 78], indicating B-site ion ordering has not developed in sample C compared to 

sample A exhibiting good ferromagnetism. In suppressed B-site ion ordering, there might be not 

only Ni-O-Mn ordering but also locally Ni-O-Ni and Mn-O-Mn arrangements. In this local 

Mn-O-Mn arrangement, there is a possibility that Mn exists in not only Mn4+ but also Mn3+ 

states resulting in the local ferromagnetic states as observed in Ca1-xLaxMnO3
 [79] and 

ferromagnetic interaction LaMnO3+δ prepared under the oxidized conditions [80, 81], as shown 

in Figs. 3.17 and 3.18. In fact, Ca1-xLaxMnO3 show TC of about 130 K [79] and semiconducting 

LaMnO3+δ show TC of about 110 - 160 K [80], which are close to the value observed for 

majority ferromagnetic phases of sample C. Singh et al., reported two ferromagnetic phases: A 

clear magnetic transition at 270 ~ 295 K as well as a minor transition at about 140 K ~ 150 K in 

the LNMO flim with absence of Ni/Mn long range ordering, as shown in Figs. 3.19 and 3.20 

[71, 82]. They have demonstrated that Ni3+-O-Mn3+ superexchange interaction is responsible for 

the low TC phase, while Ni2+-O-Mn4+ superexchange interaction is for the high TC phase. 

However, Ni3+-O-Mn3+ superexchange interaction is less likely to occur because my XAS 

results suggested that Ni2+ and Mn4+ are dominant on sample B and their amounts are almost the 

same with sample A exhibiting good ferromagnetic properties due to Ni2+-O-Mn4+ 

superexchange interaction. A tiny amount of Mn3+ in the Mn4+ matrix due to the local disorder 

causes ferromagnetic phases like Ca1-xLaxMnO3 [79], as mentions above. 
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Figure 3.17: Magnetic properties of electron-doped CaMnO3 (Ca1-xLaxMnO3) [79]. 

 

 

 

 

 

Figure 3.18: Temperature dependence of magnetization of LaMnO3.15 [80]. 
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Figure 3.19: Temperature dependence of magnetization of LNMO film with absence long-range 

Ni/Mn ordering [71]. 

 

 

 

 

Figure 3.20: Temperature dependence of magnetization of disordered, admixture, and ordered 

LNMO films [82]. 
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In the region (IV), LNMO exhibit weak ferromagnetism or no ferromagnetism. Oxygen 

vacancies due to low oxygen pressure during growth and structural distortions induced by the 

generation of oxygen vacancies could prevent the Ni-O-Mn superexchange ferromagnetic 

interaction. Structural distortions lead to change the bond angle and bond length having a strong 

influence on superexchange interaction. Guo et al., reported magnetic properties of LNMO 

films grown under the various oxygen pressures. In their work, the saturation magnetic moment 

degrades with decreasing the oxygen pressure, while the TC essentially remains unchanged (270 

- 290 K) [72], which is consistent with my results.  

Synchrotron-radiation x-ray absorption spectroscopy (XAS) to evaluate valence states 

of Ni and Mn ions has been carried out at BL-2C of KEK-PF. The experimental detail are 

described in Chapter 4. Figure 3.21 shows Mn-L3 and Ni-L2 XAS spectra of samples A, C, and 

D. Regardless of oxygen pressure and growth temperature during thin film growth, XAS spectra 

reveal that Ni2+ and Mn4+ states are dominant for all samples A, C and D. A tiny amount of Ni3+ 

and Mn3+ states less quantifiable from our XAS spectra could be locally formed in the 

disordering and around oxygen vacancies of LNMO films grown under the inadequate 

conditions. In order to obtain LNMO films exhibiting good ferromagnetism in region (I), it is 

necessary to suppress the formation of Ni and Mn ions disordering and oxygen vacancies.  
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Figure 3.21: (a) Mn-L3 XAS and (b) Ni-L2 XAS spectra of samples A, C, and D. 

 

 

In region (I), highly Ni2+-O-Mn4+ ordering could be accomplished since LNMO shows TC of ~ 

290 K and ~ 2.2 µB/B-site ion magnetic moment as shown in Figs. 3.14 (a) and 3.15 (a). In fact, 

suggestive results of the Ni/Mn ordering have been obtained by θ/2θ XRD scan along (lll) 

direction [77] and my SR-XRD measurements. Figure 3.22 (a) and (b) show the results of 

SR-XRD measurements, in which not only the (222) peak derived from fundamental reflection 

of LNMO but also the additional (113) peak derived from the superstructure due to the ordering 

are clearly observed. It can be concluded that these growth conditions could stabilize 

Ni2+-O-Mn4+ superexchange ferromagnetic interaction, leading to good ferromagnetism. 
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Figure 3.22: SR-XRD patterns of sample A around (a) (222) fundamental reflection and (b) 

(113) additional reflection derived from superstructure. 

 

Finally I discuss the strain effect on magnetic properties of LNMO. Lattice parameter 

of pseudocubic bulk LNMO is 3.88 Å. The respective lattice constants of STO, LaAlO3 (LAO), 

and (LaAlO3)0.3-(SrAl0.5Ta0.5O3)0.7 (LSAT) substrates are 3.905 Å, 3.870 Å, and 3.792 Å, and 

the strains from the substrates are +0.64 %, -0.26 %, and -2.32 % for STO, LAO, and LSAT, 

respectively. Guo et al., reported that thickness dependence of magnetic properties of LNMO 

film grown on an LAO substrate and concluded that the strain effects on the magnetic properties 

are quite small, as depicted in Fig. 3.23 [72]. Compared between LNMO films on an STO 

substrate and on an LSAT substrate grown under respective optimized conditions, very similar 

ferromagnetic properties were obtained for both substrates, indicating that strain from a 
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substrate has little effect on its ferromagnetic properties [83]. This may be because energy 

stabilization of 3d orbitals due to the strain does not largely change occupied spin states of Ni 

and Mn ions because Ni2+(3d t2g
6eg

2) and Mn4+(3d t2g
3eg

0) in LNMO are isotropic orbitals. 

 

 

 

 

Figure 3.23: Hysteresis curves of LNMO films with the various thicknesses. The critical 

thickness of strain relaxation in the films is about 40-80 nm. However, Both strained and 

partially relaxed films show the same saturation magnetization [72]. 

 

 

 



Chapter 3 Optimization of growth condition of double perovskite oxides La2NiMnO6 

 

 63 

3.4 Conclusion 

 

  In order to systematically investigate the relationship between the growth conditions 

of an LNMO thin film and its ferromagnetic properties, I have fabricated LNMO films under 

the various growth conditions and performed the characterizations of their crystal structures and 

ferromagnetic properties. It is found that ferromagnetisms are significantly influenced by 

growth temperature and oxygen pressure. Secondary phases caused by La vacancies due to too 

high oxygen pressure, disordering of Ni and Mn ions derived from not high enough of growth 

temperature, and oxygen vacancies due to low oxygen pressure could degrade ferromagnetic 

properties of LNMO. LNMO exhibiting ferromagnetism comparable to that of bulk LNMO can 

be obtained under the growth conditions where stable Ni2+-O-Mn4+ superexchange interaction is 

accomplished. 
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Chapter 4   
Electronic and magnetic states of double 
perovskite oxides La2NiMnO6 

 

 

4.1 Purpose of this study 

 

As mentioned in Chapter 3, the ferromagnetism of LNMO is considered to be 

Ni-O-Mn ferromagnetic superexchange interaction. In order to verify the origin of 

ferromagnetism of LNMO, I performed x-ray absorption spectroscopy (XAS) for evaluation of 

the valences of Ni and Mn ions, as well as x-ray magnetic circular dichroism (XMCD) for 

investigation of element-specific magnetic states. 

LNMO has attracted attention because of not only its rich physics but also prospects 

for technological applications. Since LNMO has an advantage of its ferromagnetic transition 

temperature near room temperature [57, 68, 84, 69, 72], it is the one of the leading candidates 

amongst ferromagnetic semiconductors for spintronic device applications. However, there are 

only few theoretical and experimental reports on electronic structures of LNMO necessary for 

device applications. Fundamental properties, such as the band gap, electronic structure have not 

been elucidated yet. In this study, I used synchrotron-radiation photoemission spectroscopy 

(SR-PES) and XAS in order to study electronic structures of the valence band and conduction 

band for the LNMO film. The optical gap was evaluated using transmittance and reflectivity 

measurements. 
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4.2 Experiments 

 

Epitaxial LNMO thin films exhibiting ferromagnetic properties comparable to bulk 

LNMO were grown on (100) SrTiO3 (STO) and 0.05 wt. % Nb-doped (100) STO (Nb:STO) 

substrates by a pulsed laser deposition. The conductive Nb:STO substrates were necessary for 

preventing the charging effect in the photoemission and x-ray absorption measurements. As 

described in the previous chapter, LNMO thin films, which show that the ferromagnetic 

transition temperature of epitaxial LNMO thin films is around 280 K, with a saturated 

magnetization of about 2.2 µB/B-site ion (Sample A), were fabricated at the growth temperature 

of 700 °C and under an oxygen pressure of 500 mTorr. 

Electronic structures of the valence band were studied using SR-PES and Mn 2p - 3d 

resonant PES using a Gummadata Scienta SES-100 electron energy analyzer. XAS spectra were 

measured by the total-electron-yield method to investigate the valences of Ni and Mn ions 

(Ni-L2,3 and Mn-L2,3 XAS) and conduction band structures (O-K XAS). PES, resonant PES and 

XAS were performed at the BL-2C of KEK-PF. Transmittance and reflectivity measurements in 

the energy range of 0.35 ~ 2.5 eV were carried out to evaluate the optical gap using a 

Fourier-transform interferometer (Bruker, IFS120HR/X) at BL43IR of SPring-8. A tungsten 

ramp source and an InSb detector were used for the energy region of 0.35 ~ 1.5 eV and a 

tungsten ramp source and Si photo detector were used for the energy region of 1.0 ~ 2.5 eV. As 

a reference of reflectivity, a gold or silver film deposited on the sample surface was utilized. 

PES, XAS, transmittance, and reflectivity spectra were taken at room temperature. 

XMCD measurements were performed at BL-16A of KEK-PF. The magnetic field of 

about 1 T was applied 30 ° from the sample surface and parallel to the incident beam. The 

helicity of the incident beam was fixed, while the direction of the magnetic field was reversed to 

measure XMCD. The XMCD spectra were taken in a total-electron-yield mode at 30 K. 
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4.3 Results and Discussion 

 

4.3.1 Study of valence of B-site ions 

 

Figures 4.1 (a) and (b) depict the Ni-L2,3 and Mn-L2,3 XAS spectra measured in order 

to evaluate the respective valence states of Ni and Mn ions. Ni-L2,3 (Mn-L2,3) XAS spectra is 

derived from the transition from Ni (Mn) 2p to 3d following the absorption of x-ray and are 

composed of two peak reflecting the split of Ni (Mn) 2p states due to the spin-orbital coupling. 

Background of XAS spectra at the both Mn-L2,3 and Ni-L2,3 edge were assumed to be hyperbolic 

tangent functions. In Fig. 4.1 (a), the peak around 852-858 eV is derived from the transition of 

Ni 2p3/2 → 3d, called Ni-L3 XAS, and that around 868-874 eV is from the transition of Ni 2p1/2 

→ 3d, called Ni-L2 XAS. As the Ni-L3 XAS partially overlaps the very strong La-M4 absorption 

edge due to the close proximity of the two energy levels, Ni-L2 XAS was focused on in order to 

assess the valence state of Ni in the LNMO film. Figure 4.2 show the references of Ni-L2,3 XAS 

for Ni3+ and Ni2+ states in Ni2+O, PrNi3+O3, and NdNi3+O3 [85]. The single peak structure in the 

Ni-L2 XAS is reported for Ni3+, while Ni2+ state shows two-peak structure appearing at the 

lower photon energy. The same trends are also reported for Bi1-xLaxNiO3 [86]. Compared the 

Ni-L2 absorption peak of LNMO with reported ones of Ni3+ and Ni2+ [85, 86], the doublet-peak 

shape similarity of the XAS peaks in Ni-L2 XAS of LNMO and in Ni2+ implies that the Ni2+ 

state is dominant in the LNMO film. This demonstrates that the valence of Ni changes from 3+ 

in the bulk phase to 2+ in LNMO. As for the valence of Mn ions, the peak around 640-650 eV is 

derived from the transition of Mn 2p3/2 → 3d, called Mn-L3 XAS, and that around 651-658 eV is 

from the transition of Mn 2p1/2 → 3d, called Mn-L2 XAS, shown in Fig. 4.1 (b). As a reference, 

Fig. 4.3 shows the Mn-L2,3 XAS for La1-xSrxMnO3[87]. The spectral shapes clearly change 

following the valence change from Mn3+ to Mn4+ with increasing x. Especially, the shapes of 

Mn-L3 XAS is greatly differenet between Mn3+ and Mn4+. The Mn-L3 XAS peak is broader for 
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Mn3+ than that for Mn4+ and the energy of the peak top shifted to the higher photon energy with 

the valence change form Mn3+ to Mn4+. The same trend also reported for LaMn3+O3 and Mn4+O2 

by Mitra et al. (Fig. 4.4) [88]. By comparing the Mn-L3 absorption peak of LNMO with 

reported ones of Mn3+ and Mn4+, the sharp shoulder structure and doublet-peak shape of LNMO 

and in Mn4+ implies that the Mn4+ state is dominant in the LNMO thin film, indicating that the 

Mn valence changes from 3+ in the bulk phase to 4+ in LNMO. Based on these results, it is 

concluded that the charge transfer of Ni3+ + Mn3+ → Ni2+ + Mn4+ occurs in LNMO, which is 

consistent with the result expected from the redox potential as mentioned in Chapter 1 [28].  

 

 

 

 

 

Figure 4.1: (a) Ni-L2,3 XAS spectrum of an LNMO epitaxial thin film. The inset is the expanded 

spectrum around L2 edge. Ni-L3 XAS partially overlaps the La-M4 absorption edge (dashed line). 

(b) Mn-L2,3 XAS spectrum of an LNMO epitaxial thin film.  
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Figure 4.2: Ni-L2,3 XAS spectra of NdNi3+O3, PrNi3+O3 and Ni2+O [85]. 

 

 
 

Figure 4.3: Mn-L2,3 XAS spectra of La1-xSrxMnO3 [87]. 
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Figure 4.4: Mn-L2,3 XAS spectra of Mn4+O2, LaMn3+O3 and Mn2+O [88]. 

 

 

4.3.2 X-ray magnetic circular dichroism study of magnetic 

states 

 

 In order to evaluate the element-specific magnetic states of Ni and Mn ions in 

LNMO, XMCD measurements were carried out. Figures 4.5 (a) and (b) shows Ni-L2,3 and 

Mn-L2,3 XAS spectra measured under the positive and negative magnetic bias of 1 T and 

temperature of 30 K. The Ni-L2,3 XAS spectra have been extracted by subtracting the XAS 

spectrum of an LMO film representative of the La-M4 edge from the corresponding raw XAS 

spectra of LNMO. The Ni-L2,3 and Mn-L2,3 XMCD spectra were obtained by the subtraction of a 

positive bias XAS and a negative bias XAS spectra, as depicted in Fig. 4.5 (c) and (d). Mn-L2,3 
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XAS and XMCD spectra were normalized by the area intensity of Mn-L2,3 XAS, while Ni-L2,3 

XAS and XMCD spectra were normalized by area intensity of Ni-L2 XAS because Ni-L3 XAS 

partially overlaps the very strong La-M4 absorption edge as mentioned above. XMCD signals 

are clearly observed at both Ni and Mn absorption edges, indicating both Ni and Mn ion are 

magnetized in LNMO. The strong negative signs in the L3 edge of both Ni and Mn XMCD 

spectra demonstrate that Ni 3d and Mn 3d spins align parallel to the magnetic field. Observed 

XMCD spectra are quite similar to those reported for LNMO [89, 90], as shown in Fig. 4.6 [89], 

and Mn4+ XMCD spectra reported by Burnus et al. [91]. The same sign of XMCD signals 

between Ni and Mn is an evidence of the Ni spins and Mn spins couple ferromagnetically. The 

effective spin moments of Ni and Mn were calculated by using XMCD sum rules to be 1.6 µB 

for Ni and 2.8 µB for Mn, respectively. These values are close to the spin only moments 

expected by spin structures of Ni2+(t2g
6eg

2) and Mn4+(t2g
6eg

2) and average spin moment of 2.2 

µB/B-site ion is almost the same with saturated magnetic moment evaluated by SQUID 

measurements. Considering that XAS measurements demonstrate that Ni2+ and Mn4+ are 

dominant in LNMO, the origin of ferromagnetism in LNMO is confirmed to be Ni2+-O-Mn4+ 

ferromagnetic superexchange interaction obeying Kanamori-Goodenough rule. These results 

indicate that charge transfer between Ni and Mn ions plays a crucial role for emergent of 

ferromagnetism in LNMO. 
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Figure 4.5: (a) Ni-L2,3 and (b) Mn-L2,3 XAS spectra of an LNMO epitaxial thin film obtained 

under the positive and negative magnetic bias of 1 T and temperature of 30 K. (c) Ni-L2,3 and 

(d) Mn-L2,3 XMCD spectra of an LNMO epitaxial thin film. 

 

 
 

Figure 4.6: (a) Mn-L2,3 and (b) Ni-L2,3 XAS spectra of an LNMO epitaxial thin film obtained by 

the different polarization of x-rays. Solid curves are XAS spectra I+ and dashed curves are XAS 

spectra I-. (c) Mn-L2,3 and (d) Ni-L2,3 XMCD spectra ΔI = I+- I- of an LNMO epitaxial thin film 

[89]. 
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4.3.3 Photoemission study of valence band states 

 

In order to clarify the components of the valence band, the valence band PES and Mn 

2p - 3d resonant PES measurements were performed. Figure 4.7 shows Mn 2p - 3d on- and 

off-resonance PES spectra as well as the valence band PES spectrum of the LNMO thin film. 

The on- and off-resonance PES spectra were taken at respective photon energies of 642.6 eV 

and 634.6 eV, determined from the Mn-L2,3 XAS spectrum. Beacuse the photoionization 

cross-section of Mn 3d states is strongly enhanced (suppressed) in the Mn 2p - 3d on- (off-) 

resonant PES measurements, the Mn 3d derived states are selectively obtained in the differential 

between on- and off-spectra. Since no spectral weight is observed at the Fermi level, the LNMO 

thin film can be regarded as a semiconductor. The valence band of LNMO is inferred to consist 

of a combination of O 2p, Ni 3d, Mn 3d states in addition to their hybridizations. Beacuse 

features A, B and C depicted in Fig. 4.7 are resonantly enhanced in the on-resonance PES 

spectrum, they are related to Mn 3d states, with feature A attributed mainly to the Mn 3d eg state. 

Although the Mn-L2,3 XAS spectrum indicates that the Mn4+ state is dominant in the LNMO 

film, a small but non negligible amount of the Mn3+ state could also exist in the LNMO thin 

film. Small spectral weight derived from the Mn 3d eg state observed in feature A is due to this 

residual Mn3+ (3d eg
1t2g

3) state. Feature B is due to the Mn 3d t2g state, while feature C originates 

from a strongly mixed combination of O 2p and Mn 3d states [92]. We note that the three peaks 

present in the valence band PES spectrum (α, β and γ) are not observed in the on-resonance 

PES spectrum. However, since these features are also seen in the off-resonance PES spectrum 

where Mn 3d states are resonantly suppressed, we infer that peak α may originate from the 

contribution of the Ni 3d state, while β and γ are due to the O 2p dominant states [93, 94]. The 

expanded spectra near the Fermi level are shown in the inset of Fig. 4.7. Spectral weight is 

clearly observed in the on-resonance PES spectrum near the Fermi level, while it is mostly 

suppressed in the off-resonance PES spectrum. This indicates that the electronic state located at 
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the valence band maximum (VBM) for LNMO might be the state derived from Mn 3d. 

 

 

 

 
 

Figure 4.7: Valence band and Mn 2p - 3d on- and off-resonance PES spectra for an epitaxial 

LNMO thin film. On-resonance (black solid), off-resonance (dash) and valence band (pink) PES 

spectra were measured at respective photon energies of 642.6, 634.6 and 600 eV. An expanded 

image of the spectra near the Fermi level is shown in the inset. 

 

 

4.3.4 Study of band gap 

 

In order to evaluate the optical gap of LNMO, the transmittance and reflectivity 

measurements were carried out. The transmittance and reflectivity spectra are shown in Fig. 4.8 

(a). The transmittance is multiplied by 1-Rs(ω) (Rs: reflectivity of the substrate). The refractive 

index n(ω) and the extinction coefficient κ(ω) were numerically derived using the 
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Newton-Raphson method [30], shown in Fig. 4.8 (b). The thickness of an LNMO film for 

calculations of the optical conductivity was evaluated by a surface roughness profiler (Veeco, 

Dektak6M) to be about 1000 Å. Figure 4.9 shows the optical conductivity σ(ω) obtained by the 

following equation.  

 

𝜎 𝜔 = 𝜔𝑛(𝜔)𝜅(𝜔)/2𝜋           (4.1) 

 

 

Energy of the optical gap can be observed as a gradual onset of the spectral intensity 

rather than a peak structure as reported for LaMO3 (M: 3d transition metal), shown in Fig. 

4.10[95Fig1] [95]. Therefore, the optical gap of LNMO was determined through linear 

interpolation of a sharp rise of the spectral intensity (dashed line in Fig. 4.9).  The optical 

conductivity spectrum allows us to conclude that LNMO is a semiconductor with an optical gap 

of about 1.5 eV. 

 

 

Figure 4.8: (a) Transmittance and reflectivity spectra and (b) refractive index n(ω) and the 

extinction coefficient κ(ω) spectra of an LNMO epitaxial thin film. 
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Figure 4.9: Optical conductivity spectrum of an LNMO epitaxial thin film. The optical gap was 

determined by linear interpolation of the green dashed line. 

 

 

 

Figure 4.10: Optical conductivity spectra of LaMO3 (M = Sc - Cu). The optical gap was 

determined by linear interpolation of the dashed line [95]. 
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4.3.5 X-ray absorption study of conduction band states 

 

The conduction band structure is investigated using the O-K XAS spectra, as 

depicted in Fig. 4.11. O-K XAS spectra, absorption spectra due to O 1s → 2p transition, reflect 

the unoccupied states of metal ions strongly hybridized with oxygen because O 2p states and 

metal states hybridize resulting in an unoccupied band beyond the Fermi level. Therefore, states 

of the conduction can be obtained by studying O-K XAS spectra. The broad peak II centered at 

536 eV can be mainly associated to the La 5d-O 2p state and the two peaks III around 538-549 

eV to be derived from hybridized states of Ni 4sp, Mn 4sp and O 2p. This interpretation is 

consistent with O-K XAS spectra of LaNiO3 and LaMnO3 [96, 97]. Figure 4.12 shows changes 

of O-K XAS spectra of LaNiO3-δ with the valence change between Ni3+ and Ni2+ reported by 

Abbate et al. [96]. The peak around 528.5 eV corresponds to the Ni3+-O 2p state in LaNiO3 and 

this peak shifts to a higher photon energy and is hidden by the stronger peak derived from La 5d 

for Ni2+-O 2p in LaNiO2.5. Kuiper et al. also reported the same trends for La2-xSrxNiO4+δ [98]. 

On the other hand, as for the Mn 3d-O 2p states, the position of the absorption edge is almost 

the same between Mn3+ and Mn4+ shown in Fig. 4.13 [87, 97]. Because the valence states of 

B-site ions in an LNMO film are Ni2+ and Mn4+ as mentioned before, the Ni2+ 3d-O 2p state in 

the XAS spectrum can occur at a higher photon energy than the absorption edge, which is 

hidden by the stronger La 5d-O 2p state (structure II) and peak I corresponds to the Mn4+ 3d-O 

2p state. These results suggest that the conduction band minimum (CBM) might be derived 

mostly from the Mn 3d state. 
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Figure 4.11: O-K XAS spectrum of an LNMO epitaxial thin film. 

 

 

 

Figure 4.12: O-K XAS spectrum of LaNiO3-δ (dots) compared to the cluster-model-calculation 

(solid lines) [96] 
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Figure 4.13: O-K XAS spectrum of LaMnO3+δ [97]. 

 

 

4.3.6 Electronic structure of valence band and conduction 

band 

 

 Based on the aforementioned results, we constructed the energy band diagram of the 

valence band and the conduction band for LNMO. Figure 4.14 shows combined spectra of the 

valence band and the conduction band as measured by the valence band PES and O-K XAS. 

The optical gap (~ 1.5 eV) extrapolated from optical conductivity measurements was used to 

normalize the PES and XAS spectra. Valence band maximum is located 0.3 eV below the Fermi 

level evaluated by the intersection point between the extrapolation of the linear portion of the 

leading edge and the background level in valence band spectra. Therefore, LNMO could be 

regarded as a p-type semiconductor according the energy of the Fermi level in the band gap of 

about 1.5 eV. It was confirmed that LNMO films show a p-type conduction by Seebeck 
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measurements [99]. Figure 4.15 are also the schematic image of the partial density of states for 

the valence band and conduction band for LNMO obtained resonance valence band spectra and 

O-K XAS spectra. Valence band is composed of Ni 3d, Mn 3d, O 2p states, and their 

hybridization. As mentioned before the VBM is derived from Mn 3d eg states due to the small 

amount of residual Mn3+. As for the conduction band, it consists of the hybridization of O 2p 

state and Mn 3d, Ni 3d, La 5d, and Ni 4sp, and Mn 4sp state. The CBM is also composed of Mn 

3d state.  

 

 

 

 

 

Figure 4.14: Electronic structure of valence band and conduction band of a LNMO epitaxial 

thin film derived from valence band PES and O-K XAS. The energy of the XAS spectrum was 

determined on the basis of the optical gap (~ 1.5 eV). Mn 2p - 3d on- and off-resonance spectra 

are also shown. 

 

 

Relative energy to EF (eV)
0510 -5 -15-10 -20

In
te

ns
ity

 (a
rb

. u
ni

ts) PES O K XASon

Val

off



Chapter 4 Electronic and magnetic states of double perovskite oxides La2NiMnO6 

 

 80 

 

 

Figure 4.15: A schematic image of the electronic structure of valence band and conduction band 

of a LNMO epitaxial thin film obtained valence band PES and O-K XAS. 

 

 

 

Figures 4.16 and 4.17 shows the results of first-principles density functional 

calculations reported Das et al. and Mater et al. [100, 101]. Both reports demonstrate that the 

ferromagnetic insulating state is the most stable in LNMO, which is consistent with 

experimental results. In these calculations, Ni 3d eg, Ni 3d t2g, Ni 3d t2g, and O 2p states are 

observed in the valence band, while Ni 3d eg, Mn 3d eg, and Mn 3d t2g states are located in the 

conduction band, indicating that nominal valences of Ni an Mn ions are Ni2+ (3d t2g
6eg

2) and 

Mn4+ (3d t2g
3eg

0), respectively. It is noted that Das et al. and Mater et al. reported the VBM for 

LNMO consists of the Ni 3d state based on the calculation, while the Mn 3d state was observed 

at the VBM from the resonant and the valence band PES. The disagreement can be attributed to 

the existence of a small amount of the Mn3+ (3d t2g
3eg

1) state believed to be caused by the local 

Ni/Mn disordering as well as by oxygen vacancies in epitaxial LNMO thin films. Indeed, the 

Mn3+ ion has a 3d eg electron, as opposed to the Mn4+ ion which has no eg electron. Thus, if all 

Mn ions in the LNMO film are in the 4+ state, no Mn 3d eg state at the VBM will be observed. 
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Instead, the Ni 3d state will appear at the VBM, which will be agreement with the reported 

calculations. As for the conduction band, the CBM of the LNMO is due to the Ni2+ 3d state, as 

per the first-principle density functional calculation. However, the O-K XAS spectrum indicates 

that the Ni2+ 3d state is located at higher photon energy than the absorption edge. Moreover, the 

CBM of the LNMO film is inferred from the Mn4+ 3d-O 2p state, which is inconsistent with the 

results obtained using the first-principle density functional calculation. Clearly, further 

investigation on the electronic band structure of LNMO from the both experimental and 

theoretical scope is needed. 

 

 

 
 

Figure 4.16: Density of state of LNMO in geometry optimized rhombohedral and monoclinic 

phases calculated by GGA [100]. 
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Figure 4.17: Site and spin-projected density of state of Mn and Ni in LNMO calculated by GGA 

or LSDA [101]. 

 

 

4.4 Conclusion 

 

In order to study the charge transfer phenomena between Ni and Mn ions and verify the origin 

of the ferromagnetism in LNMO, I have investigated the valence states of Ni and Mn ions and 

their magnetic coupling by XAS and XMCD. Based on the Ni-L2,3 and Mn-L2,3 XAS 

measurements, Ni2+ and Mn4+ states are dominant in epitaxial LNMO thin film. Ni-L2,3 and 

Mn-L2,3 XMCD measurements indicate that spins in Ni2+ and Mn4+ ions are coupled 

ferromagnetically. Therefore, it is concluded that a Ni2+−O−Mn4+ ferromagnetic superexchange 

interaction is the origin of ferromagnetism in LNMO. The charge transfer between Ni and Mn 

ions play an important role for the ferromagnetism in LNMO. The electronic structures of the 

valence band and the conduction band in LNMO films were evaluated using SR-PES, XAS as 

well as optical spectroscopy. The Mn 2p – 3d resonant and valence band PES spectra allow us 

to infer that the electronic state located at the VBM for LNMO mainly consists of the Mn 3d 

state, while O-K XAS measurements reveal that the CBM is composed mostly of the Mn 3d-O 

Ni PDOS Mn PDOS
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2p hybridized state. The optical gap is estimated to be about 1.5 eV based on the optical 

conductivity derived from optical spectra. 
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Chapter 5   
Charge transfer across the heterointerface 
between perovskite oxides LaNiO3 and LaMnO3 

 

 

5.1 Introduction 

 

5.1.1 Previous studies of charge transfer and interfacial 

magnetism in LaNiO3-LaMnO3 heterostructures 

 

 In stoichiometric bulk form, LaMnO3 (LMO) is an A-type antiferromagnetic 

insulator with Neel temperature of about 140 K. At low temperature, spins align 

ferromagnetically in-plane, while antiferromangetically inter-plane. On the contrary, LMO thin 

film often shows ferromagnetism due to oxygen excess and/or cation vacancy or strain effects 

from a substrate. LaNiO3 (LNO) is a prototype of a paramagnetic metal. Recently, the 

heterointerface between LNO and LMO has been particularly studied as a typical example of 

interfacial magnetism. Gibert and coworkers have reported the appearance of novel interfacial 

magnetic interaction in LNO-LMO superlattices depending on the orientations [27]: An unusual 

spin order occurs in the paramagnetic LNO layer in the interface region which is in contact with 

the “ferromagnetic” LMO layer, resulting in the appearance of a certain exchange bias between 

the two oxides. Interestingly, this exchange bias was observed only for (111) superlattices, but 

was absence for (001)-orientation, as shown in Fig. 5.1. Very recently, x-ray magnetic circular 

dichroim (XMCD) measurements have confirmed that magnetic moment reside in an LNO 
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which should be paramagnetic in the bulk phase and the induced net spins of Ni and Mn ions in 

(111)-oriented LNO-LMO superlattices couple ferromagnetically [102]. 

 

 

 

Figure 5.1: (a) Schematic images of the atomic planes near an interface of (111)-oriented 

LNO-LMO superlattice. Hysteresis curves of (a) (111)-oriented [(LNO)7/(LMO)7]15 superlattice 

and (b) (001)-oriented [(LNO)7/(LMO)7]8 superlattice [27]. 

 

 

As for (001)-oriented LNO-LMO supperlattices, a recent study has also demonstrated 

the occurrence of ferromagnetism in the interface region, as shown in Fig. 5.2 [25, 102]. Let me 

compare the LNO-LMO heterostructures to double-perovskite La2NiMnO6 (LNMO). The 

double-perovskite LNMO exhibits ferromagnetic behavior, in which LNO and LMO layers 

alternately stack along the [111] direction resulting in the rock-salt-type ordering of Ni and Mn 

ions. That is, LNMO can be regarded as a (111)-oriented (LNO)1-(LMO)1 “natural” superlattice. 

As mentioned in Chapter 2 and 3, first, as a result of charge transfer between the Ni and Mn 

(a)

(b) (c)



Chapter 5 Charge transfer across the heterointerface between perovskite oxides LaNiO3 
and LaMnO3 

 86 

ions, the formal valence change Ni3+ + Mn3+ → Ni2+ + Mn4+ takes place. Then, the rock-salt 

type ordering of the Ni and Mn ions induces ferromagnetism owing to the ferromagnetic 

superexchange interaction expected by the Kanamori-Goodenough rule in all directions along 

the nearest neighboring ions [57, 68]. On the other hand, in the case of (001)-oriented 

superlatteces, the stabilization of interfacial ferromagnetism derived from superexchange 

interaction obeying Kanamori-Goodenough rule is geometrically not expected: Inter-plane spins 

(Ni-O-Mn bonds) are coupled ferromagntically as an analogy of LNMO, while 

antiferromagnetic coupling are expected in in-plane Ni-O-Ni and Mn-O-Mn bonds. Thus, the 

ferromagnetism observed (001)-oriented superlattices cannot be explained only by 

ferromagnetic superexchange interaction like that in LNMO. 

 

 

 

Figure 5.2: (a) Temperature dependence of magnetization and (b) Remanent magnetization 

(open symbols) and saturation magnetization (filled symbols), and (c) Coercive field as a 

function of LNO thickness for (001)-oriented [(LNO)n/(LMO)2]m superlattice [25]. 
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5.1.2 Purpose of this study 

 

The novel physical properties that emerge at such heterointerfaces may significantly 

depend on the charge redistribution near the heterointerfaces, in particular the resultant spatial 

distribution across the interface. For LNO/LMO superlattices, it has been previously 

demonstrated by spectroscopic measurements that the charge transfer between the Ni and Mn 

ions (Ni3+ + Mn3+ → Ni2+ + Mn4+, as in the case of La2NiMnO6) occurs across the interface, but 

no spatially (depth) resolved measurements were provided in these works [25, 102]. Thus, to 

understand and control the exotic magnetic properties emerging at the heterointerface, it is 

necessary to elucidate not only the valence change due to the charge transfer but also the spatial 

distribution of the transferred charge across the interface of LNO/LMO. 

I have investigated the interfacial electronic structure of LNO/LMO heterostructures 

using in situ x-ray absorption spectroscopy (XAS). In particular, by utilizing the elemental 

selectivity of XAS, I have determined the changes in the formal valences of the Ni and Mn ions 

at the interface caused by the charge transfer. Furthermore, the spatial distributions of 

transferred charges in the LNO and the LMO layers were investigated by systematic 

thickness-dependent XAS measurements. It has been found that the spatial distribution is 

different between two layers. I discussed a possible origin of this difference in the spatial 

distribution of the transferred charges in terms of the charge spreading model, which treats the 

transfer integral between neighboring transition metal ions and the Coulomb interaction [103]. 

 

5.2 Experiments 

 

Digitally controlled LNO/LMO and LMO/LNO bilayer structures were fabricated onto 

0.1 at. % Nb-doped SrTiO3 (STO) (001) substrates in a laser molecular-beam epitaxy chamber 
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connected to a photoelectron spectroscopic system at beamline BL-2A MUSASHI of KEK-PF. 

A Nd-doped yttrium-aluminum-garnet laser in the frequency-triplet mode (λ = 355 nm) at a 

repetition rate of 1 Hz was used for ablation. A sintered LNO and LMO pellets were used as the 

targets. The TiO2-terminated Nb:STO substrates were annealed at 1050 °C under an oxygen 

pressure of 1×10-7 Torr to obtain atomically flat and chemically clean surfaces. During LNO 

and LMO deposition, the substrate was kept at temperatures of 450–500°C and 600–700°C, 

respectively, and the oxygen pressure was maintained at 1 × 10−3 Torr.  The thicknesses of the 

LNO and the LMO films were precisely controlled by monitoring the intensity oscillation of the 

specular spot with reflection high-energy electron diffraction (RHEED) during the growth. For 

the LNO/LMO (LMO/LNO) bilayers, the overlayer LNO (LMO) thickness of n (m) was varied 

from 0 monolayer (ML) to 5 ML and 20 ML, while the bottom LMO (LNO) thickness was 

fixed at 20 ML. The heterostructures were subsequently annealed at 400°C for 45 min under an 

atmospheric pressure of oxygen to fill residual oxygen vacancies. After cooling to below 100°C, 

the samples were transferred into the analysis chamber under an ultrahigh vacuum of 10−10 Torr. 

XAS spectra were acquired at room temperature by measuring the sample drain current. 

Background of XAS spectra at the both Mn-L2,3 and Ni-L2,3 edge were assumed to be hyperbolic 

tangent functions. Ni- L2,3 XAS and Mn-L2,3 XAS spectra were normalized by the area intensity 

of Ni- L2,3 XAS and Mn-L2,3 XAS, respectively. I also confirmed the formation of a chemically 

abrupt interface of LMO/LNO (LNO/LMO) by high-angle annular dark-field scanning 

transmission-electron microscopy (HAADF-STEM) and atomically resolved electron 

energy-loss spectroscopy (EELS) measurements have been performed using an FEI Titan 

Cubed aberration-corrected transmission electron microscope operated at 300 kV, as well as in 

situ photoemission spectroscopy (PES) measurements using a Scienta SES2002 analyzer. 

Photon energies and binding energies were calibrated by measuring a gold film electrically 

connected to the samples. 
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The surface morphology of the measured films was analyzed by ex situ atomic force 

microscopy in air. The crystal structure was characterized by synchrotron-based x-ray 

diffraction (SR-XRD) measurements performed at the BL-4C beamline of KEK-PF.  

 

 

5.3 Results and Discussion 

 

7.3.1 Growth and characterization of LaNiO3-LaMnO3 

bilayers 

 

 The typical intensity oscillations of the specular spot with RHEED used for 

thickness control is depicted in Fig. 5.3. Figures 5.4 (a) and (b) show RHEED patterns of 

20-ML LNO/LMO and 20-ML LMO/LNO, respectively. Clear streak patterns indicate that 

single crystal and flat surfaces are obtained for both LNO/LMO and LMO/LNO bilayers. AFM 

images of 20-ML LNO/LMO and 20-ML LMO/LNO, which are the thickest bilayers, are 

depicted in Figs. 5.5 (a) and (b), respectively. Atomically flat surfaces with step-and-terrace 

structures, which reflect the morphology of the Nb:STO substrate, are clearly observed for not 

only the thickest bilayers but also all the measured samples, indicating that not only the surface 

as well as the buried interfaces are atomically flat for all samples. In order to evaluate the 

in-plane orientation between LNO/LMO and LMO/LNO bilayers, and Nb:STO substrate, 

reciprocal space mappings were carried out using SR-XRD. Figure 5.6 shows a reciprocal space 

mappings around (103) reciprocal point of 20-ML LNO/LMO and 20-ML LMO/LNO bilayers, 

where the reciprocal-space coordinates correspond to the cubic Nb:STO substrate. For both 

bilyaers, complex diffraction pattern derived from bilayer (Asterisk in Fig. 5.6), which is the 

combination of the diffraction peaks of an LNO and an LMO layer in addition to Laue’s 
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intensity oscillations, is clearly observed along the same H value with the Nb:STO diffraction 

peak. This indicates both LNO/LMO and LMO/LNO bilayers coherently grows on Nb:STO 

substrate with the same in-plane lattice constant with a Nb:STO substrate. 

 

 

 

 

Figure 5.3: Intensity oscillations of the specular spot of RHEED pattern during the 20-ML 

LNO/20-ML LMO bilayer growth and RHEED patterns after each layer growth.  
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Figure 5.4: RHEED patterns of (a) 20-ML LNO/20-ML LMO bilayer and (b) 20-ML 

LMO/20-ML LNO bilayer. 

 

 

 

 
 

 

Figure 5.5: AFM images of (a) 20-ML LNO/20-ML LMO bilayer and (b) 20-ML LMO/20-ML 

LNO bilayer. 
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Figure 5.6: Reciprocal space mappings around (103) reflection of (a) 20-ML LNO/LMO and (b) 

20-ML LMO/LNO bilayers. Asterisk (*) represents the diffraction patterns of combination of an 

LNO and an LMO layer, and Laue’s intensity oscillations. The reciprocal-space coordinates 

correspond to the cubic STO substrate. 

 

5.3.2 Confirmation of chemical abruptness at the interface 

 

In order to evaluate the interface roughness of the LNO/LMO and LMO/LNO 

bilayers, HAADF-STEM and atomically resolved EELS measurements have been performed.  

Figure 5.7 shows HAADF-STEM images and EELS maps of constituent elements for both the 

bilayers, together with the intensity plots of corresponding Ni and Mn atoms. Integrated 

intensity plots of La-M4,5 and Ni-L2,3 edge, and Mn-L2,3 edge along growth direction are depicted 

in Fig. 5.8. In HAADF-STEM images, because the intensity is roughly scaled by Z~1.7, where Z 
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is the value of atomic number, the brighter spots correspond to the position of La (Z = 57) 

atoms and weaker spots with similar intensity between correspond to Ni (Z = 28) and Mn (Z = 

25) atoms. Owing to energy proximity of La and Ni edge, and La EELS peaks are strong in their 

intensity, only Ni spectra cannot be extracted from La-M4,5 and Ni-L2,3 EELS spectra. The bright 

circular spots in the image of each EELS map, which are depicted by open circle symbols, 

indicate that the existence of the atoms. However, I cannot decide the presence or absence of the 

atoms by blurred images depicted by circle symbols with dashed line in the 1 ML interface 

regions of both La-M4,5 and Ni-L2,3 map, and Mn-L2,3 one. Because the integrated intensity value 

of EELS spectra in itself shown in Fig. 5.8 has the uncertainness of the background derived 

from delocalization effects in TEM measurements, I plot the intensity difference between the 

peak and the valley of spectra in order to assign the presence or absence of atoms, as shown in 

rightmost graphs of Fig. 5.7 (a) and (b). As for Ni atoms, the small difference between the peak 

and the valley indicates the existence of Ni atom whereas the large difference means the 

absence of Ni atom because the peaks of the integrated intensity of La-M4,5 and Ni-L2,3 EELS 

spectra are derived from La atoms while Ni atoms are located at the position with intensity 

valley. On the other hand, as for Mn atoms, the large intensity difference of peak-to-valley 

suggests the presence of Mn atoms because intergrated intensity peaks of Mn-L2,3 EELS spectra 

are derived from Mn atoms. As can be seen in Fig. 5.7, it is evident that the chemically abrupt 

interfaces are formed for both LNO/LMO and LMO/LNO bilayers: The spatially resolved 

EELS elemental maps demonstrate that the interface roughness due to possible intermixing of 

Ni and Mn ions is less than 1 ML for the both bilayers.  Furthermore, there is no detectable 

structural difference between LNO/LMO and LMO/LNO interfaces irrespective of the growth 

order.  
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Figure 5.7: Cross-sectional HAADF-STEM images and atomically resolved EELS maps for (a) 

LNO/LMO and (b) LMO/LNO bilayers, together with the intensity plots of corresponding Ni 

(blue data markers) and Mn (red data markers) atoms. EELS maps are ordered from left to right 

for Ni-L2,3 and La-M4,5 edge, Mn-L2,3 edge, and the sum of these EELS images with Ni&La in 

blue and Mn in red. The bright spots in the EELS maps are corresponding to each atom: Atomic 

positions of La, Ni, and Mn are depicted by green, white, and yellow open circles, respectively.  

In the intensity plot, the signals from Ni and Mn atoms are extracted from the EELS maps, and 

plotted as a function of atomic position. Black dashed line indicates the interface between the 

two constituent oxides. 
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Figure 5.8: Integrated intensity plot of Ni-L2,3 and La-M4,5 edge (blue), and Mn-L2,3 edge (red) 

for (a) LNO/LMO and (b) LMO/LNO bilayers. 

 

 

The formation of chemically abrupt interfaces has been further confirmed by 

comparing the relative intensities of core levels as a function of overlayer thickness with a 

simulated photoelectron attenuation function. Figures 5.9 (a) and (b) show the core-level spectra 

of LNO/LMO bilayers with varying LNO overlayer thickness of n and LMO/LNO bilayers with 

varying LMO overlayer thickness of m, respectively. With increasing the thickness of the LNO 

(LMO) overlayer, the intensity of the Ni-3p (Mn-3p) core-level peak emitted from the overlayer 

increases, while that of Mn-3p (Ni-3p) derived from the underlayer exponentially smears. These 

behaviors of the core-level intensity as a function of overlayer thickness strongly suggest the 

formation of chemically abrupt interfaces in both bilayers.  

   

60x103

50

40

30

20

10

In
te

ns
ity

 o
f L

a 
an

d 
N

i (
co

un
ts)

543210
Position (mm)

16x103

14

12

10

8

6

4

2

0

Intensity of M
n (counts)

LMO on LNO

55

50

45

40In
te

ns
ity

 o
f L

a 
an

d 
N

i (
co

un
ts)

543210
Position (mm)

14x103

12

10

8

6

4

2

0

Intensity of M
n (counts)LNO on LMO

60x103

(a) (b)



Chapter 5 Charge transfer across the heterointerface between perovskite oxides LaNiO3 
and LaMnO3 

 96 

 

 

Figure 5.9: Core-level spectra of LNO (n ML) /LMO (a) and LMO (m ML)/LNO (b) with 

varying overlayer thickness of n and m. 

 

To evaluate this abruptness quantitatively, I plotted the core-level intensity ratio of 

underlayer to overlayer in Fig. 5.10 as a function of overlayer thickness. Furthermore, I 

compared the results with a simulation based on the photoelectron attenuation function. 

Assuming a chemically abrupt interface, the core-level intensity ratio (Iunderlayer/ Ioverlayer) is given 

by the following equation; 
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Here, a is the lattice constant, n is the number of the overlayer, and λ is the mean free 

path of photoelectrons. The mean free path of photoelectrons in LNO and LMO layer is 

estimated to be 1.90 nm and 1.98 nm, respectively, according to the TPP-2M code [104]. The 

value of a is assumed to be equal to the c-axis lattice parameter of strained LNO film (3.81 Å) 

and LMO film (3.95 Å) grown on Nb:STO substrates, which are evaluated by 2θ/θ scans of 

100-ML LNO and 100-ML LMO films in XRD measurements, respectively. The good 

agreement between the experimental and calculated results clearly indicates that a chemically 

abrupt interface is formed for both LNO/LMO and LMO/LNO heterostructures within the 

experimental margins.  

 

 

 

 

 

Figure 5.10: Plots of the intensity ratio of core levels as a function of the overlayer thickness 

(closed circles with error bars), with the simulated curve based on Eq. 5.1 (black line). (a) Ratio 

of Mn 3p to Ni 3p core-level intensity for LNO/LMO bilayers. (b) Ratio of Ni 3p to Mn 3p 

core-level intensity for LMO/LNO. 
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May et al. have reported that structural asymmetry of interfacial roughness in 

LMO-SrMnO3 (SMO) superlattices: LMO/SMO interface is atomically smooth within 1 ML, 

while SMO/LMO interface has plateaus and valley with height of 2 ML [105]. As for 

LNO/LMO heterostructures, it has been also reported in very recent studies [106] that there is a 

structural interface asymmetry in these systems: The LNO/LMO interface displayed 2–3 ML 

roughness in contrast to a sharp LMO/LNO interface. However, in this study, from the STEM 

observations and the analysis of core-level intensity, it has been confirmed that the chemically 

abrupt interfaces are formed at both present LMO/LNO and LNO/LMO heterojunctions, 

although it is difficult to eliminate the possibility of the existence of local roughness at the 

interface completely from these analyses. 

 

 

5.3.3 Valence change due to the charge transfer 

 

Figure 5.11 shows the Ni-L2,3 (Mn-L2,3) XAS spectrum, Ni (Mn) 2p → 3d transition, 

of the LNO (LMO) overlayer of an LNO/LMO (LMO/LNO) bilayer with the LNO (LMO) 

overlayer thickness of n (m) = 1, together with that of an LNO (LMO) film as a reference for the 

Ni3+ (Mn3+) state. Because the Ni-L3 edge structure partially overlaps with the La-M4 edge 

owing to the close proximity of the two energy levels, the Ni-L2,3 XAS spectra were extracted 

by subtracting the contribution of the La-M4 edge from the raw spectra, as shown in the inset of 

Fig. 5.11 (a). For both the LNO and LMO layers, the spectral shapes of the single-layer and the 

bilayer films exhibit considerable differences.  

Comparing the Ni-L2,3 spectra with those of RNiO3 [R: rare earth] (Ni3+) and NiO 

(Ni2+) in previous reports [85] (see Fig. 4.2), the formal valence of the Ni ions is changed from 

3+ in the original LNO film to almost 2+ in the LNO overlayer. This result strongly suggests 

that electrons are transferred from the LMO layer to the LNO layer in the interface region. The 
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occurrence of electron transfer from Mn to Ni ions is further supported by the fact that spectral 

changes indicative of such a formal valence modulation have not been observed in 

thickness-dependent XAS measurements of LNO/LaAlO3 interfaces, as depicted in Fig.5.12, 

because the valence of Al ion is robust [107]. 

 

 

 

 

 

 

Figure 5.11: (a) Ni-L2,3 XAS spectra of an LNO film and the 1-ML LNO overlayer of an 

LNO/LMO bilayer structure. The inset shows the XAS spectra taken around the Ni-L2,3 and 

La-M4 edges for LNO and LMO films. The Ni-L2,3 XAS spectra have been extracted by 

subtracting the XAS spectrum of an LMO film representative of the La-M4 edge from the 

corresponding raw XAS spectra of LNO. (b) Mn-L2,3 XAS spectra of an LMO film and the 

1-ML LMO overlayer of an LMO/LNO bilayer structure. 
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Figure 5.12: Ni-L2 XAS spectra of LNO films on LaAlO3 substrates [107]. 

 

As for the counterpart LMO layers, the Mn-L2,3 XAS spectra in Fig. 5.11 (b) show the 

simultaneous occurrence of hole doping in LMO layers as expected. An additional sharp 

pre-edge structure appears at around 641.3 eV and the position of the most prominent peak 

shifts towards higher photon energies by about 1.6 eV. This is the same spectral change from 

Mn3+ to Mn4+ proposed by Abbate et al. (See Fig. 4.3) [87] and this result indicates significant 

evolution of the Mn4+ states in the LMO overlayer of the LMO/LNO bilayers from the Mn3+ 

states in the original LMO films. 

Because the constituent perovskite oxide layers of my samples have the common 

A-site composition of an LaO atomic layer, the MnO2 and NiO2 atomic layers are not subjected 

to chemical carrier-concentration modulation at the interface caused by the intermixing of 

A-site cations, which has been shown to lead to inadvertent doping. Thus, these results clearly 

demonstrate the occurrence of electron transfer from Mn ions to Ni ions across the interface. It 
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should be noted that almost the same results were obtained for the sandwiched structures of 

LNO/LMO/LNO for LMO layers, as well as LMO/LNO/LMO for LNO layers. The observed 

trend of interfacial charge transfer of Ni3+ + Mn3+ → Ni2+ + Mn4+ is consistent with results 

reported for LNO/LMO superlattices [25, 102] and La0.75Sr0.25MnO3/LNO bilayers [21], as well 

as for double perovskite La2NiMnO6 [57, 68] and agreement with the trend expected from the 

redox potential as mentioned in Chapter 1 [28]. 

In order to further consider the origin of the charge transfer, I have investigated the 

electronic structure of the valence band at the heterojunction. Figure 5.13 shows the electronic 

structures predicted at the LNO/LMO heterointerface. The left side is the valence band spectra 

of LNO and LMO obtained by PES measurements. The valence band of LNO (LMO) are 

considered to consists of O 2p and Ni (Mn) 3d states, as well as their hybridization. As depicted 

in Fig. 5.13, each structure in the valence band of LNO (LMO) can be assigned as the Ni (Mn) 

3d eg, Ni (Mn) 3d t2g, O 2p and hybridization of Ni (Mn) 3d and O 2p states, respectively [92, 

93] and the schematic images of the valence band structure are illustrated on the right side of 

Fig. 5.13. When an LNO/LMO heterojunction is formed, the same oxygen ion located at the 

interface is shared by both LNO and LMO. And then the electronic structures are realigned with 

the same energy position of each O 2p states, resulting in the difference of chemical potentials 

between the LNO and LMO side, shown in the right side of Fig. 5.14 In order to make a 

settlement of this difference, it is inferred that electron transfer occurs [108] from the Mn 3d 

state to the Ni 3d state though the shared oxygen ion at the heterointerface. 
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Figure 5.13: (Left) Valence band spectra of LNO and LMO measured by in situ PES. (Right) 

Schematic images of valence band of LNO and LMO. 
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Figure 5.14: The electronic structures predicted at the LNO/LMO interface. In order to make a 

settlement of the difference of the chemical potentials between LNO and LMO, the electron 

transfer from Mn to Ni are expected to occur. 
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5.3.4 Approach for evaluation of the spatial distribution of 

charge transfer 

 

The next crucial issue is how the charges are spatially distributed across the 

heterointerface. In general, the spatial (depth) distribution of formal valence states in 

heterostructures is addressed by measuring the thickness dependence of the overlayer, as shown 

in Fig. 5.15 (a)–(c). The overlayer thickness is controlled by the deposition time [Fig. 5.15 

(a)→(c)] or the etching time of sputtering [Fig. 5.15 (c)→(a)]. However, owing to the surface 

sensitivity of photoelectron measurements, the analysis of these measurements usually suffers 

from spurious surface-derived states and a complicated analytical procedure due to 

photoelectron attenuation [22]. In order to overcome these difficulties, I propose an analytical 

procedure that enables the spatial distribution of the interfacial charge transfer to be determined 

utilizing the elemental selectivity of XAS: Probe the change in the electronic structure of the 

underlayer (buried interface) as a function of overlayer thickness, as shown in Fig. 5.15 (d)–(g). 

When a junction is formed, the spectral shape of the underlayer (original film) changes, 

reflecting the occurrence of the interfacial charge transfer [Fig. 5.15 (d) and (e)]. With 

increasing overlayer thickness, the spectral shape of the underlayer continuously changes as 

long as the overlayer thickness is less than the characteristic length scale of charge transfer [Fig. 

5.15 (e)→(f)]. Once the overlayer thickness is comparable to the characteristic length, i.e., the 

interfacial charge transfer is completed after the deposition of an overlayer with a certain 

thickness, the spectral change of the underlayer should be saturated [Fig. 5.15 (f)→(g)]. Thus, 

one can determine the length scale of the charge transfer in the overlayer oxides by measuring 

the saturation of spectral change in the underlayer oxides. 

Although it is difficult to evaluate the amount of transferred charges itself, the present 

analytical procedure has several advantages in comparison with the conventional method. First, 
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owing to the elemental selectivity of XAS, the interface of the underlayer with the overlayers is 

defined as the “surface” of the underlayer [21]. Namely, changes in the interfacial electronic 

structure on the underlayer side are detected from the interface side. Second, as a result of the 

elemental selectivity, information on the buried material is obtained separately without 

influence from surface-derived states (i.e., surface reconstruction and/or off-stoichiometry due 

to preferential sputtering effect) of the overlayer material. Third, because changes in the XAS 

spectra of the underlayer are used as an “indicator” of charge transfer, it is not necessary to 

consider the photoelectron attenuation (probing depth) of XAS measurements and the 

associated complicated analytical procedure at each overlayer thickness to determine the charge 

transfer length. 
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Figure 5.15: Schematic images of the conventional method (a)–(c) and the proposed approach in 

the present study (d)–(g) used to investigate the interfacial charge transfer phenomena. In the 

conventional method, the change in the electronic structure of the overlayer is investigated as a 

function of overlayer thickness. In the proposed method, the change in the electronic structure 

of the underlayer (buried interface) is evaluated as a function of overlayer thickness using the 

elemental selectivity of XAS measurements. 
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5.3.5 Spatial distribution of the transferred charge 

 

Figure 5.16 (a) shows the Mn-L2,3 XAS spectra of the LMO underlayer of LNO/LMO 

bilayers with varying LNO overlayer thickness n. In order to show the variation more clearly, 

Figure 5.17 (a) depicts a comparison of the Mn-L3 XAS spectra of LNO/LMO bilayers with that 

of the 1-ML LMO overlayer grown on LNO shown in the bottom panel of Fig. 5.11 (b) used as 

the reference XAS spectrum for Mn4+ states. When 1-ML LNO is deposited, the spectra exhibit 

small but distinct changes: An additional shoulder structure appears at the photon energy of 

~643.7 eV, which is attributed to the evolution of additional Mn4+ state in the interface region of 

the LMO underlayer as a result of charge transfer. As the overlayer thickness is increased from 

1 ML, the spectra remain unchanged within the experimental accuracy (shown in Fig. 5.18 (a)), 

suggesting that charge transfer between LNO and LMO layer comes to equilibrium at only 

1-ML LNO deposition. This result indicates that the transferred electrons from the LMO side 

are confined in the interface region of the 1-ML LNO layer. 

In the case of counterpart hole distribution in the LMO layers, the similar thickness 

dependence is observed in the Ni-L2,3 XAS spectra of the LNO underlayer of LMO/LNO 

bilayers as a function of LMO overlayer thickness, as shown in Fig. 5.16 (b). Fig. 5.17 (b) 

shows a comparison of Ni-L2 XAS spectra of the LMO/LNO bilayer with the 1-ML LNO 

overlayer grown on LMO in the bottom panel of Fig. 5.11 (a) used as the reference for Ni2+ 

states because the Ni-L3 edge can be more influenced by the subtraction process of La-M4 edge. 

When the LMO layers are deposited, a sharp peak structure characteristic of Ni2+ states 

gradually appears at ~853.6 eV in Ni-L3 edge and shoulder structure evolves at ~870.5 eV in 

Ni-L2 edge. The sharp peak and additional shoulder structure evolve as the LMO overlayer 

thickness is increased to 3–4 ML, reflecting the increase in the amount of extra Ni2+ states in the 

LNO underlayer near the interface. Judging from the saturation of the spectral changes in the 

Ni-L2,3 XAS spectra (shown in Fig. 5.18 (b)), the induced holes in the LMO caused by the 
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charge transfer are distributed in the region 3–4 ML from the interface. By combining the 

results of the XAS measurements of LNO/LMO and LMO/LNO bilayers, it is clear that the 

interfacial region subject to the charge transfer is different for each of the two constituent 

layers: Extra electrons are accommodated in 1 ML of the LNO layers, while extra holes are 

distributed over 3–4 ML in the counterpart LMO layer.	

  

 
 

Figure 5.16: (a) Mn-L2,3 XAS spectra of the LMO underlayer of LNO/LMO bilayers with 

varying LNO overlayer thickness n. (b) Ni-L2,3 XAS spectra of the LNO underlayer of 

LMO/LNO bilayers with varying LMO overlayer thickness m. The contribution of the La-M4 

edge has been subtracted. The triangular arrows indicate the representative changes due to the 

interfacial charge transfer. 
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Figure 5.17: (a) Mn-L3 XAS spectra of the LMO underlayer of LNO/LMO bilayers with 

varying LNO overlayer thickness n, in comparison with that of the 1-ML LMO overlayer grown 

on LNO. The shoulder structures at the photon energy of ~643.7 eV that are attributed to Mn4+ 

states are indicated by arrows. (b) Ni-L2 XAS spectra of the LNO underlayer of LMO/LNO 

bilayers with varying LMO overlayer thickness m, in comparison with that of the 1-ML LNO 

overlayer grown on LMO. The shoulder structures derived from Ni2+ states are indicated by 

arrows. 
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Figure 5.18: Piled XAS spectra for a clear display of the spectral change with the variation of 

overlayer thickness. (a) Mn-L2,3 XAS spectra of the LMO underlayer of LNO/LMO bilayers 

with varying LNO overlayer thickness n. (b) Ni-L2,3 XAS spectra of the LNO underlayer of 

LMO/LNO bilayers with varying LMO overlayer thickness m. 
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bilayers with varying LNO overlayer thickness. As mentioned above, the formal valence of 

1-ML LNO is almost 2+ relative to Ni3+ states in 20-ML LNO overlayer, which is the same with 

that of bulk LNO. It has been confirmed that Ni3+ states systematically evolve in the LNO 

overlayer with increasing the thickness of LNO. This result indicates that the region of valence 

change from Ni3+ to Ni2+ is confined close to the LNO/LMO interface and Ni is trivalent far 

from the interface. In the case of counterpart Mn valence, Fig. 5.19 (b) shows Mn-L2,3 XAS 

spectra of the LMO overlayer of LMO/LNO bilayers. The Mn4+ is dominant in 1-ML LMO, 

while the formal valence of Mn is 3+ in 20-ML LMO overlayer. Mn-L2,3 XAS spectra 

demonstrate that the ratio of Mn3+ to Mn4+ gradually increases with following the increase of the 

LMO ovelayer thickness, which enables me to conclude that the region of valence change from 

Ni3+ to Ni4+ is located near the heterointerface and the valence of Mn is 3+ far from the interface. 

Although spectral changes of the overlayer XAS are more apparent than those of the underlayer, 

characterizations of the valence in the overlayer make it difficult to evaluate the spatial 

distribution of the transferred charge for some reasons. First, the XAS spectra of the overlayer 

may be influenced from surface-derived states. Second, especially for Mn-L2,3 XAS, it is hard to 

reproduce the mixed valence spectra by a linear combination of Mn3+ and Mn4+ XAS spectrum, 

which is sometimes used to evaluate the ratio of the valence states in mixed valence compounds 

[8] 
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Figure 5.19: (a) Ni-L2,3 XAS spectra of the LNO overlayer of LNO/LMO bilayers with varying 

LNO overlayer thickness n. (b) Mn-L2,3 XAS spectra of the LMO overlayer of LMO/LNO 

bilayers with varying LMO overlayer thickness m.  
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of charge distribution have been evaluated from transport and magnetization measurements (2–4 

ML) [13, 19] and polarized neutron reflectivity measurements (~3 ML) [20]. Surprisingly, this 

length is also similar for conducting manganite: ~4 ML for La0.8Sr0.2MnO3/ La0.2Sr0.8MnO3 

superlattices [13] and YBa2Cu3O7-δ/La0.7Ca0.3MnO3 superlattices [109], and ~3 ML for 

YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices [23]. It should be noted that a characteristic length 

scale of charge redistribution in perovskite manganite do not depend on its conductivity and the 

present value of 3–4 ML is a good agreement with those reported for other perovsktie 

manganites.	

I discuss a possible origin of the difference in the length scale of charge transfer 

between LNO and LMO. First, the Thomas–Fermi (TF) screening length, LTF, for the 

heterostructure was considered. LTF is given by the following equations [110]:  

 

 (5.2) 

 

 

where, ε is the dielectric constant, ħ is the Planck constant, m* is the effective mass, n0 is the 

carrier density, and e is the elementary charge. Using the range of reported values for LNO (ε of 

11.29-13.75ε0 [111], m* of 10.3m0 [112], and n0 estimated by 1 electron per unit cell) and LMO 

[ε of 50ε0 [113], m* of 15.6m0 [114, 115], n0 of 6×1020 cm-3 as described in Chapter 7], where ε0 

is for vacuum and m0 is for free electrons, LTF is evaluated to be 0.07–0.08 nm (0.2 ML) and 

0.20–0.25 nm (0.5–0.6 ML), respectively. Although these LTF values approximately correspond 

to the experimental results for metallic LNO, there is a considerable difference for LMO. As 

mentioned above, because the charge transfer of perovskite manganites shows a common 

screening length of 3–5 ML irrespective of their ground states, namely the difference in their 

carrier concentrations, which range from 1018 cm−3 to 1022 cm−3, it has been suggested that the 

TF screening model is not a good approximation for describing the charge transfer phenomena 
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occurring at the oxide heterointerfaces. This is simply because the TF approximation only 

considers the screening of charge in uniform electron gas, where carriers are assumed to be 

uniformly distributed in space and freely move. The resultant LTF then strongly depends on the 

carrier concentration. Thus, a theoretical model with a more realistic treatment of the nature of 

oxide heterostructures, such as the strong on-site Coulomb interactions and the localized 

character of conduction electrons in 3d orbitals, is necessary to describe the difference in 

screening length. 

In order to discuss the microscopic origin of the difference in charge distribution 

between LNO and LMO, we adopt a more realistic model that treats the Coulomb interaction 

and electron hopping between transition metal sites. Lin and coworkers [103] have calculated 

the charge density across an oxide heterostructure based on dynamic mean field theory, and 

found that the strength of electron hopping among B-site ions, t, relative to the Coulomb 

interaction, e2/εa, is a fundamental parameter that expresses charge spreading in constituent 

oxides, where t is the transfer integral, and a is the lattice parameter. According to the model, 

the charge screening length, LCS, is defined as,  

 

LCS = εta2/e2    (5.3).   

 

Here, we evaluate this screening length in the present case of LNO/LMO 

heterointerfaces. Parameter t is given by,  

 

t ≈ (pdσ)2/Δeff	 (5.4)  

 

where (pdσ) is the Slater–Koster parameter [116] and Δeff the effective charge transfer energy 

[2]. Hence, t is calculated to be 1.0 eV (0.8 eV) using (pdσ) of −1.57 eV (−1.99 eV) [117] and 

Δeff of 2.4 eV [93] (4.9 eV [92, 95]) for LNO (LMO), where Δeff is evaluated from the energy 
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difference between an occupied non-bonding O 2p state and an unoccupied Ni (Mn) 3d state [2]. 

The value of a is assumed to be equal to the c-axis lattice parameter of strained LNO film (3.81 

Å) and LMO film (3.95 Å) grown on Nb:STO substrates, as mentioned above. Using these 

parameters, LCS is estimated to be 1.4 nm (3.7 ML) for the LNO side and 4.4 nm (11.1 ML) for 

the LMO side. Although these estimated values are approximately three times larger than the 

experimental values, which may caused by the overestimation of value of transfer integtral t due 

to not considering the anisotropic hopping of charge, and the spin ordering effect, the ratio of 

charge spreading length between the two oxides itself (about 3.2) is in good agreement with the 

present experimental results. In the charge spreading model, the localized electrons hop between 

transition-metal sites through O 2p states and the electron hopping is described by the energy 

balance between the transfer integral between sites and the Coulomb repulsion. Thus, by 

considering the case of heterointerface, the charge discretely redistributes from layer (NiO2 or 

MnO2 atomic layer in the present case) to layer. This is a reason of why the charge screening 

length, LCS, includes the lattice constant “a” of a constituent oxide as a parameter. In other 

words, the unit of screening length in the charge spreading model is a lattice constant 

[corresponding to one monolayer] of a constituent perovskite oxide. This simple theoretical 

prediction may describe the spatial distribution of the strongly correlated electrons observed at 

the interfaces of the transition metal oxides rather than the TF screening model, and thus 

suggests that the strength of the transfer integral relative to the Coulomb interaction is key to 

describing the difference in charge spreading length between LNO and LMO. For a quantitative 

description of the screening length, a more realistic treatment of the electronic structures of the 

constituent oxides is necessary. 
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5.4 Conclusion 

 

The charge transfer phenomena across the LNO/LMO heterointerface have been 

investigated by in situ XAS measurements. Ni-L2,3 and Mn-L2,3 XAS spectra clearly show the 

occurrence of electron transfer from Mn to Ni ions in the interface region. I have determined the 

spatial distribution of the transferred charge between the two constituent oxides using the 

elemental selectivity of the XAS measurements. Analysis of a thickness series of the XAS 

spectra for LNO/LMO and LMO/LNO bilayers reveals that the spatial distribution of the 

transferred charges is significantly different between the two constituent layers: 1 ML for LNO 

and 3–4 ML for LMO. Comparing the theoretical predictions, the observed spatial distribution 

may be described by the charge spreading model, which takes the transfer integral between 

neighboring transition metal ions and the Coulomb interaction into account.   
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Chapter 6   
Interfacial ferromagnetism at the heterointerface 
between perovskite oxides LaNiO3 and LaMnO3 

 

 

6.1. Purpose of this study 

 

In Chapter 5, in situ x-ray absorption spectroscopy (XAS) has carried out to study the 

charge transfer at the LaNiO3 (LNO)/ LaMnO3 (LMO) hetrointerface. It is found that the 

electron transfer occurs from Mn to Ni ions and its spatial distribution is significantly different 

between the two constituent layers: 1 monolayer (ML) for LNO and 3–4 ML for LMO. In order 

to investigate the relationship between the charge transfer phenomena and the interfacial 

ferromagnetism, I have performed x-ray magnetic circular dichroism (XMCD) measurements of 

LNO/LMO heterostructures. I have obtained the magnetic states of Ni and Mn ions by utilizing 

the elemental selectivity of XMCD.  

 

 

6.2 Experiments 

 

Digitally controlled LMO/LNO/LMO and LNO/LMO/LNO trilayer structures were 

fabricated onto 0.1 at. % Nb-doped SrTiO3 (STO) (001) substrates in a laser molecular-beam 

epitaxy chamber connected to a photoelectron spectroscopic system at beamline BL-2A 

MUSASHI of KEK-PF. The detailed growth conditions of an LNO and an LMO thin film are 

already described in Chapter 5. The thicknesses of the LNO and the LMO layers were precisely 
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controlled by monitoring the intensity oscillation of the specular spot with reflection 

high-energy electron diffraction (RHEED) during the growth. For the LMO/LNO/LMO 

trilayers, the middlelayer LNO thickness of n was varied from 2 ML to 5 ML, while the top and 

bottom LMO thicknesses were fixed at 5 ML and 20 ML, respectively. For the LNO/LMO/LNO 

trilayers, the middlelayer LMO thickness of m was varied from 2 ML, 6 ML, to 12 ML, whereas 

the top and bottom LNO thicknesses were fixed at 5 ML and 20 ML, respectively. 

The surface morphology of the measured trilayers was characterized by atomic force 

microscopy in air. XMCD and XAS spectra were measured at BL-16A of KEK-PF. The 

magnetic field of about 1 T was applied 30 ° from the sample surface and parallel to the incident 

beam. The helicity of the incident beam was fixed, while the direction of the magnetic field was 

switched parallel and antiparallel to it. The XMCD spectra were taken in a total-electron-yield 

mode at 15 K. 

 
 

6.3 Results and Discussion 

 

6.3.1 Growth and characterization of LaNiO3/LaMnO3 

trilayers 
 

The typical intensity oscillations of the specular spot with RHEED of a trilayer 

structure used for thickness control is depicted in Fig. 6.1. Figures 6.2 (a) and (b) show RHEED 

patterns of LMO/5-ML LNO/LMO and LNO/12-ML LMO/LNO, respectively. Clear streak 

patterns indicate that single crystal and flat surfaces are obtained for both LMO/LNO/LMO and 

LNO/LMO/LNO trilayers. Figures 6.3 (a) and (b) depict AFM images of LMO/5-ML 

LNO/LMO and LNO/12-ML LMO/LNO, which are the thickest trilayers, respectively. 

Atomically flat surfaces with step-and-terrace structures reflecting the morphology of the 
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Nb:STO substrate are clearly observed for not only the thickest trilayers but also all the 

measured samples, indicating that the surface as well as the buried interfaces are atomically flat 

for all samples. These high-quality trilayers have been investigated by XAS and XMCD. 

 

 

 

 

Figure 6.1: Intensity oscillations of the specular spot of RHEED pattern during the 5-ML 

LNO/12-ML LMO/20-ML LNO trilayer growth and RHEED patterns after each layer growth. 
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Figure 6.2: RHEED patterns of (a) 20-ML LMO/5-ML LNO/20-ML LMO trilayer and (b) 

5-ML LNO/12-ML LMO/20-ML LNO trilayer. 

 

 

 

 

Figure 6.3: AFM images of (a) 20-ML LMO/5-ML LNO/20-ML LMO trilayer and (b) 5-ML 

LNO/12-ML LMO/20-ML LNO trilayer. 

 

 

6.3.2 X-ray magnetic circular dichroism study of interfacial 

ferromagnetism 
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LNO-LMO trilayers, XMCD spectra were measured. XAS and XMCD spectra were obtained 

by the average and the subtraction of a positive magnetic bias XAS and a negative magnetic 

bias XAS spectrum, respectively. Because the Ni-L3 edge structure partially overlaps with the 

very strong La-M4 absorption edge owing to the close proximity of the two energy levels, the 

Ni-L2,3 XAS spectra were extracted by subtracting the XAS spectrum of an LMO film 

representative of the La-M4 edge from the corresponding raw XAS spectra. Background of XAS 

spectra at the both Mn-L2,3 and Ni-L2,3 edge were assumed to be hyperbolic tangent functions. 

Mn-L2,3 XAS and XMCD spectra were normalized by the area intensity of Mn-L2,3 XAS, 

whereas Ni-L2,3 XAS and XMCD spectra were normalized by area intensity of Ni-L2 XAS 

because Ni-L3 XAS partially overlaps La-M4 absorption edge and it has a somewhat large 

analytical error. Figures 6.4 (a) and (b) show Ni-L2,3 XAS and XMCD spectra of 

LMO/LNO/LMO trilayer structures and a 20-ML LNO single-layer film measured under the 

positive and negative magnetic bias of 1 T and temperature of 15 K. The expanded XAS and 

XMCD spectra around Ni-L2 absorption edge are depicted in Fig. 6.5. With increasing the 

thickness of an LNO layer, a sharp peak structure characteristic of Ni2+ states gradually 

attenuate at about 852.5 eV in Ni-L3 edge and doublet structure changes into single-peak 

structure in Ni-L2 edge, which means the evolution of Ni3+ states in an LNO layer with 

increasing n. This is consistent with the results described in Chapter 5: The electron transfer 

occurs from Mn to Ni and the transferred electron is confined in 1-ML LNO at the interface. It 

should be noted that the difference of Ni-L2,3 XAS spectra between LMO/LNO (2 ML)/LMO in 

Fig. 6.4 (a) and LNO (1 ML)/LMO in Fig. 5.11 (a) of Chapter 5, although Ni2+ states are 

dominant in the both structures, may come from the difference of measurement temperature and 

helicity in the incident beam. The former spectrum was measured at 15 K by circularly 

polarized x-rays, whereas the latter one was obtained at room temperature by a horizontal 

linearly polarized beam. Figure 6.6 shows the Ni-L2,3 XAS spectra of LMO/LNO/LMO trilayer 

(the same samples in Fig. 6.4) measured at room temperature by a horizontal linearly polarized 
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x-ray at Beamline MUSASHI (BL-2A) of KEK-PF, in which the very similar XAS spectrum is  

obtained for LMO/LNO (2 ML)/LMO trilayer to that of LNO (1 ML)/LMO in Fig. 5.11 (a) of 

Chapter 5.  

 

 

 

 

Figure 6.4: (a) Ni-L2,3 XAS and (b) Ni-L2,3 XMCD spectra of LMO/LNO/LMO trilayers with 

varying LNO middlelayer thickness n measured together with LNO under the magnetic bias of 

1 T and temperature of 15 K. The contribution of the La-M4 edge has been subtracted from XAS 

spectra. 
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Figure 6.5: Expanded (a) Ni-L2 XAS and (b) Ni-L2 XMCD spectra of LMO/LNO/LMO trilayers 

with varying LNO middlelayer thickness n together with LNO measured under the magnetic 

bias of 1 T and temperature of 15 K.  

 

 
Figure 6.6: Ni-L2,3 XAS spectra of LMO/LNO/LMO trilayers with varying LNO middlelayer 

thickness n measured by a horizontally polarized x-ray at room temperature. 
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Although no XMCD signal is observed in LNO reflecting its paramagnetic property, XMCD 

signals are clearly observed for all LMO/LNO/LMO trilayers. Thus, it can be concluded that the 

magnetization is induced in Ni ions by fabricating the heterojunction to a LMO layer. By 

comparing XMCD spectra among trilayers of the different LNO thickness, it is found that the 

intensity of XMCD spectra monotonically decreases with increasing n, as summerized in Fig. 

6.7. That is, the net spin moments per Ni ion decrease following the increase of an LNO 

middlelayer thickness. Furthermore, the electronic states of Ni ions contributing to XMCD 

signals have been investigated. Figure 6.8 shows the normalized Ni-L2 XMCD spectra by a 

maximum intensity for a clear display of the spectral shape. Importantly, the spectral shape 

remains mostly the same within the experimental accuracy for all LMO/LNO/LMO trilayers, 

which in turn is very similar to a Ni2+ XMCD spectrum, observed in LNMO films, as shown in 

Fig. 4.5 (c) and Fig. 4.6 (d) of Chapter 4 [89]. Considering that Ni2+ states exist in the 1-ML 

LNO at the interface as mentioned in Chapter 5 and the decrease of the net moments with 

increasing an LNO thickness, it can be demonstrated that magnetizations reside only in Ni2+ 

ions of 1-ML LNO at the hetrointerface. I calculated the effective spin moments by XMCD sum 

rules [33, 34], as shown in Fig. 6.9. Although it should be noted that the calculated values have 

large analytical errors due to the strong La M4-absorption and small Ni L2,3-XAS and XMCD 

signals, the spin moments are much smaller than that of LNMO and spin only values expected 

from Ni2+(t2g
6eg

2) electronic configuration. It may be caused by instability of ferromagnetism in 

(001)-oriented LMO/LNO/LMO trilayers because magnetic interaction of Ni2+-O-Ni2+ is 

expected to be antiferromagnetic by Kanamori-Goodenough rules while the strong 

ferromagnetic Ni2+-O-Mn4+ superexchange interaction develops for all directions in La2NiMnO6 

(LNMO).  
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Figure 6.7: Plots of the area intensity ratio of Ni-L2 XMCD as a function of the LNO 

middlelayer thickness. 

 

 

 

 

 

Figure 6.8:  Normalized Ni-L2 XMCD spectra of LMO/LNO/LMO trilayers with varying LNO 

middlelayer thickness n by a maximum intensity of each spectrum.  
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Figure 6.9: Effective spin moments of Ni calculated using sum rules for LMO/LNO/LMO 

trilayers and LNMO as a function of the LNO middlelayer thickness. 
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the magnetism induced in Mn ions of LMO/LNO/LMO trilayers than an LMO single film. The 

XMCD spectra of LMO/LNO/LMO trilayers are similar in line shape to that of La1-xSrxMnO3 

[118, 119, 120], as shown in Fig. 6.11 [118], demonstrating that not only Mn4+ ions generated 

by the charge transfer but also Mn3+ ions contribute the magnetization. The strong negative 

signs in the Ni-L3 and Mn-L3 XMCD spectra demonstrate that Ni 3d and Mn 3d spins align 

parallel to the magnetic field. Furthermore, the same sign of XMCD signals between Ni-L2,3 and 

Mn-L2,3 edge is an evidence that the Ni spins and Mn spins align ferromagnetically.  

 

 

 

 

Figure 6.10: (a) Mn-L2,3 XAS and (b) Mn-L2,3 XMCD spectra of LMO/LNO/LMO trilayers with 

varying LNO middlelayer thickness n together with LMO measured under the magnetic bias of 
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1 T and temperature of 15 K. 

 

 

 

 

Figure 6.11: Mn-L2,3 XMCD spectra of of La1-xSrxMnO3 under the magnetic bias of 2 T and 

temperature of 20 K [118]. 

 

 

The other structures, LNO/LMO/LNO trilayers, have also been investigated by XAS 

and XMCD measurements. I have selected LMO middlelayers with three different thicknesses 

based on the spatial distribution of the transferred charge in an LMO layer, which is 3-4 ML 

from the interface. First is a 2-ML LMO layer, which consists of the interfaces toward LNO 

alone. Second is a 6-ML LMO layer, where all regions are related to the charge transfer. Last is 

a 12-ML LMO layer, which has a layer with thickness of 4-6 ML not related to the charge 

transfer in the middle. Figures 6.12 (a) and (b) show Mn-L2,3 XAS and XMCD spectra of 

LNO/LMO/LNO trilayer structures and a 20-ML LMO single-layer film as a reference. Mn-L2,3 

XAS spectrum of m = 2 resembles to a typical Mn4+ spectrum and the position of the most 
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prominent peak of XAS shifts towards lower photon energies with increasing the thickness of 

an LMO middlelayer, indicating the Mn3+ states evolves in the LMO layer following the 

increase of the thickness not related to the charge transfer. As for Mn-L2,3 XMCD spectra, the 

spectrum of the trilayer of m = 2 is similar to a Mn4+ XMCD spectrum, as shown in Fig. 4.5 (d) 

and Fig. 4.6 (c) of Chapter 4 [89]. This result demonstrates that Mn4+ spins, which come from 

the charge transfer, dominantly contribute the magnetization in the trilayer of 2-ML LMO. On 

the other hand, the spectral shapes and the intensities of the trilayers of 6-ML LMO and 12-ML 

LMO are significantly different from 2-ML LMO and rather close to an LMO single layer. In 

addition, compared to the XMCD spectrum of LMO single film, they have an additional 

structure derived from Mn4+ state around 635.6 eV. This result indicated that Mn spins reside in 

both Mn3+ and Mn4+ ions and the magnetized region is not constricted in 1-ML LMO at the 

interface but spreads through some monolayers from the interface, which is contrast to the result 

of the LNO side. The effective spin moments of Mn are calculated by XMCD sum rules [33, 

34], as shown in Fig. 6.13. The net magnetization of Mn ions in trilayer of 2-ML LMO is 

significantly smaller than 6-ML LMO and 12-ML LMO, even if it is assumed that the Mn4+ (S = 

3/2) states are dominant in 2-ML LMO, while 6-ML LMO and 12-ML LMO have both Mn4+ (S 

= 3/2) and Mn3+(S = 2) states. One possible reason is that the magnetic field of 1 T is not high 

enough to saturate the magnetization of Mn4+ spins at the interface. Other reason is that 

ferromagnetism in 2-ML LMO layer is less stable than in thicker LMO due to the 

antiferromagnetic superexchange interaction between Mn4+-O-Mn4+, whereas ferromagnetic 

doubleexchange interactions derived from not only Mn4+ but also Mn3+ resulting from the 

charge spreading more stabilized ferromagnetism in an LMO layer with the thickness of 6-ML 

and 12-ML. 
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Figure 6.12: (a) Mn-L2,3 XAS and (b) Mn-L2,3 XMCD spectra of LNO/LMO/LMO trilayers with 

varying LMO middlelayer thickness m together with LMO measured under the magnetic bias of 

1 T and temperature of 15 K. 
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Figure 6.13: Effective spin moments of Mn calculated using sum rules for LNO/LMO/LNO 

trilayers, LMO and LNMO as a function of the LMO middlelayer thickness. 
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Figure 6.14: (a) Ni-L2,3 XAS and (b) Ni-L2,3 XMCD spectra of LNO/LMO/LMO trilayers with 

varying LMO middlelayer thickness m together with LNO measured under the magnetic bias of 

1 T and temperature of 15 K. Ni-L2,3 XMCD spectrum of LNO/2-ML LMO/LMO trilayer is 

amplified by a factor of five. 
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Mn4+ ions at the interface. Based on the superexchange interaction, in the (001)-oriented 

LNO/LMO heterointerface, the spins of Mn and Ni ions in the out-of-plane Ni2+(d8)-O-Mn4+(d3) 

bonds that are across the interface can couple ferromagnetically, as in La2Ni2+Mn4+O6 (TC ~ 280 

K), while those in in-plane Ni2+(d8)-O-Ni2+(d8) and Mn4+(d3)-O-Mn4+(d3) bonds couple 

antiferromagnetically, as in Ni2+O (TN ~ 525 K), SrMn4+O3 (TN ~ 260 K), and CaMn4+O3 (TN ~ 

130 K). As a result, net magnetization residing in Ni and Mn ions are expected to become zero 

at the interface, as shown in Fig. 6.15(a). However, in this study, I have clearly observed net 

magnetic moments in both Ni and Mn ions of (001)-oriented LNO/LMO trilayers by XMCD 

measurements. There is a possible explanation for the observed interfacial ferromagnetism. In 

the LMO layer around the interface, Mn4+ state is dominant but small amounts of Mn3+ ions also 

exist due to the 3-4 ML charge spreading, resulting in the ferromagnetism observed in slightly 

electron-doped CaMn4+O3 [79]. Then, if a Ni2+(d8)-O-Mn4+(d3) ferromagnetic superexchange 

interaction through the interface is stronger than Ni2+(d8)-O-Ni2+(d8) antiferromagnetic 

superexchange interaction in-plane of an LNO layer, one can obtain net magnetizations coupled 

ferromagnetically in both Ni and Mn ions, as shown in Fig. 6.15(b). It plays an important role 

for interfacial ferromagnetism at the heterointerface between LNO and LMO that the transferred 

charges are not confined in 1 ML at the interface but spreads through 3-4 ML in an LMO layer 

and resultant Mn3+ states.  
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Figure 6.15: A schematic image of the magnetic structure expected in the cases that (a) 

the transferred charges are confined in both 1-ML LNO and LMO at the heterointerface and (b) 

the charges spread through some monolayers in LMO. 
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LNO and LMO. Systematical analysis of a thickness series of the XMCD spectra for 

LMO/LNO/LMO trilayers reveals that the net spins reside in Ni2+ ions at 1-ML LNO at the 

interface, which come from the charge transfer between LNO and LMO. On the other hand, 

both Mn3+ and Mn4+ states contribute the magnetization in an LMO layer and the magnetized 

region spreads though some monolayers from the heterointerface. The same sign of Ni-L2,3 and 

Mn-L2,3 XMCD signals indicates that the net spins residing in Ni2+ and Mn4+ ions at the interface 

align ferromagnetically. Thus, the charge transfer between Ni and Mn ions plays an important 

role for the interfacial ferromagnetism in LNO/LMO hetrostructures.  
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Chapter 7   
Determination of band diagram for p-n junction 
between Mott insulator LaMnO3 and band 
insulator Nb:SrTiO3 

 

 

7.1 Introduction 

 

7.1.1 Previous studies of novel magnetic properties of 

LaMnO3-SrTiO3 superlattices 

 

As mentioned in Chapter 5, LaMnO3 (LMO) is a Mott insulator exhibiting A-type 

antiferromagnetic spin order at low temperature in stoichiometric bulk phase, while LMO thin 

film often shows ferromagnetism due to oxygen excess and/or cation vacancy or strain effects. 

The heterostructures between LMO and band insulator SrTiO3 (STO) exhibit interesting aspects 

reflecting the strongly correlated nature of LMO. Recently, Choi et al., have reported that 

LMO-STO superlattices exhibit weak ferromagnetic properties although LMO is an 

antiferromagnetic and STO is a non-magnetic, as shown in Fig. 7.1 [24]. Garcia-Barriocanal et 

al. have reported that LMO-STO superlattices exhibit ferromagnetic properties different from 

an LMO film and they can be modulated with change of the periods of superlattices, as depicted 

in Fig. 7.2 [26, 121]. These ferromagnetic modulations were also reported although there were 

some inconsistencies about the relationships between the superlattice period and 

enhancement/suppression of ferromagnetism [24, 122]. The emergence of interfacial 

ferromagnetism with high-mobility carriers has also been predicted by a recent first-principle 
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calculation [123]. Furthermore, the occurrence of a certain charge leakage process, probably due 

to the polar discontinuity at the interface and the strain effects, has been suggested by recent 

scanning transmission electron microscopy (TEM) studies [26, 124, 125]. However, the 

variations of Mn and Ti valences are very small, which may not be enough to cause the 

observed large modifications of magnetic properties. And thus, the origin of these novel 

magnetic properties remains unclear at the moment. 

 

 
Figure 7.1: (a) Temperature dependence of magnetization and (b) Magnetic field dependence of 

magnetization of [(LaMnO3)n/(SrTiO3)8]20 superlattices [24]. 

 

 

Figure 7.2: (a) Magnetic properties and (b) Transport properties of [(LaMnO3)M/(SrTiO3)N]8 

superlattices [26]. 
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7.1.2 Previous studies of p-n junction between LaMnO3 and 

SrTiO3 

 

In contrast to the exotic ferromagnetic properties observed in LMO-STO superlattices, 

LMO/STO heterointerfaces have been studied as a p-n junction. The p-n junction of 

conventional semiconductors is one of the most fundamental elements of electronic devices, 

which has made a great contribution to the development of modern information technology. 

Thus far, various “p-n junctions” based on perovskite oxides have been evaluated for their 

characteristics [126, 127].  Among them, the p-n junction composed of the “p-type” Mott 

insulator LMO [81] and the n-type oxide semiconductor STO [128] has been intensively studied 

as a prototypical example [129, 113].  Despite the Mott insulating ground states in LMO [2], it 

has been reported that clear rectification properties of p-n junctions are obtained in 

LMO/Nb:STO heterointerfaces, as depicted in Figs. 7.3 and 7.4 [129, 113].  These results 

suggest that the p-n junction characteristics observed in LMO/Nb:STO heterostructures are 

dominated by the “practical” carrier concentration in LMO and designed by the analogy of 

conventional semiconductor technology: the carrier density estimated from thermodynamic 

measurements, such as a photocurrent measurement (4×1019 cm-3 [113]), directly corresponds to 

the practical carrier concentration Np in LMO, while one hole per unit cell is expected from the 

chemical formula (1.7×1022 cm-3). 

 

Figure 7.3: Transport properties of LaMnO3/Nb:SrTiO3 heterojunction [129]. 
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Figure 7.4: Transport properties of LaMnO3/Nb:SrTiO3 heterojunction [113]. 

 

 

7.1.3 Purpose of this study 

 

As mentioned in the introduction, LMO/STO heterointerfaces are studied in the 

two contrast points of view: One is derived from Mott insulating character of LMO, the other is 

an analogy of p-n junction of conventional semiconductors. In this study, at first, in order to 

clarify the relationships between the charge transfer and novel magnetic properties, I 

investigated whether the charge transfer occurs or not between LMO and STO using x-ray 

absorption spectroscopy (XAS). Furthermore, in order to obtain the information of the 

electronic structure at the heterointerface, I determined the band diagram of LMO/Nb:STO p-n 

junctions and its carrier concentration dependence by using x-ray photoemission spectroscopy 

(XPS). LMO/Nb:STO heterojunctions were fabricated by epitaxial growth of LMO films on 

Nb:STO substrates. I obtained the amount of band bending on Nb:STO side, which is 

correspond to the built-in potentials in Nb:STO, by evaluating the core-level peak shifts of 

Nb:STO following the deposition of LMO. By studying the variation of built-in potentials in 

Nb:STO side with the change of carrier concentration of Nb:STO, I calculated the band diagram 

of LMO/Nb:STO heterojuction. 
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7.2 Experiments 

 

Epitaxial LMO films with various thicknesses were grown on 0.1 at. % and 1.0 at. % 

Nb-doped (100) STO single-crystal substrates by laser molecular beam epitaxy (Laser MBE). A 

Nd-doped yttrium-aluminum-garnet laser in the frequency-triplet mode (λ = 355 nm) at a 

repetition rate of 1 Hz was used for ablation. A sintered LMO pellet was used as the target. The 

TiO2-terminated Nb:STO substrates were annealed at 1050 °C under an oxygen pressure of 

1×10-7 Torr to obtain atomically flat and chemically clean surfaces. During the LMO deposition, 

the substrate was kept at the temperature of 800 °C and the oxygen pressure was maintained at 

1×10-3 Torr. The thickness of the LMO films was precisely controlled by monitoring the 

intensity oscillation of the specular spot with reflection high-energy electron diffraction 

(RHEED) during the growth. After the LMO film growth, the samples were transported to an 

XPS chamber without air exposure using a home-built “vacuum suitcase”. XPS measurements 

were performed using a VG-Scienta R3000 analyzer with a monochromatized Al Kα x-ray 

source (hν = 1486.6 eV). Binding energies were calibrated by measuring a gold film electrically 

connected to the samples. All spectra were acquired at room temperature with a total energy 

resolution of 500 meV.  

XAS measurements were performed at BL-16A of KEK-PF. The magnetic field of 

about 1 T was applied 30 ° from the sample surface and parallel to the incident beam. The 

direction of the magnetic field was field, while the helicity of the incident beam was switched in 

10 Hz. The XAS spectra were taken in a total-electron-yield mode at 15 K. 

The surface morphology of the measured films was analyzed by ex-situ atomic force 

microscopy in air. The crystal structure was characterized by cross-sectional TEM and 

synchrotron-based x-ray diffraction (SR-XRD) measurements performed at the BL-4C beamline 

of KEK-PF.  
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7.3 Results and Discussion 

 

7.3.1 Growth and characterization of LaMnO3 films 

 

Figure 7.5 shows a RHEED pattern after 100-monolayer (ML) LMO deposition and 

an intensity oscillation of the specular spot of RHEED pattern during the 5-ML and 10-ML 

LMO deposition. Clear streak patterns indicate that single crystal and flat surface is obtained. 

The period of RHEED oscillation corresponds to the 1-ML LMO deposition and strict control of 

film deposition with intentional thickness was attained. In order to characterize the surface 

morphology of a film, AFM measurements were carried out. As shown in Fig. 7.6, a 100-ML 

LMO film has an atomically flat surface with step-and-terrace structures reflecting the surface 

of Nb:STO substrate, indicating that not only the surface but also the buried interfaces were 

atomically flat. Figure 7.7 depicts a reciprocal space mapping around (114) reflection and 2θ/ω 

scan around (002) of 100-ML LMO film on an Nb:STO substrate by SR-XRD measurements, 

where the reciprocal-space coordinates correspond to the cubic Nb:STO substrate. The (114) 

diffraction peak of LMO film has the same H value with that of Nb:STO substrate, indicating 

that an LMO film grows with keeping the in-plane crystal coherency to a Nb:STO substrate at 

least up to 100-ML thickness. The crystal structure of an LMO film is modified to tetragonal 

with suppression in a lateral plane to match a Nb:STO substrate and resultant expansion along a 

vertical direction. The coherent growth of LMO on Nb:STO was also confirmed by the 

high-angle annular dark-field scanning TEM (HAADF-STEM). The lattice parameters 

estimated by a (002) diffraction peak were 3.95 Å, which is approximately the same as those 

stated in a previous report [19].  
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Figure 7.5: (a) RHEED pattern of 100-ML LMO film. (b) Intensity oscillations of the specular 

spot of RHEED pattern during the 5-ML and 10-ML LMO growth. 

 

 

 

 

 

Figure 7.6: AFM image of 100-ML LMO film. 
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Figure 7.7: (a) A reciprocal space mapping around (114) reflection and (b) 2θ/ω scan around 

(002) reflection of 100-ML LMO film. 

 

 

7.3.2 Confirmation of chemical abruptness at the interface 

 

I provide experimental evidence for the formation of a chemically abrupt interface 

between the LMO and STO. Figure 7.8 (a) shows the Sr 3d core-level spectra of the buried STO 

for a junction between an LMO film and a 0.1 at. % Nb-doped STO substrate, where the top 

layer is that of the LMO with variable thickness. The intensity of the core level rapidly 

attenuates with increasing the LMO overlayer thickness and completely disappears at 30 ML. 

Almost the same spectral attenuation is observed in the Ti 2p core-level spectra (Fig. 7.8 (b)), as 

well as the other junction between LMO and 1.0 at. % Nb-doped STO, as shown in Fig. 7.9. In 

order to evaluate the abruptness at the interface, the intensities of the Sr 3d and Ti 2p core levels 

are plotted in Fig. 7.10 for both junctions as a function of the LMO overlayer thickness. The 

exponential reduction in core-level intensity with increasing the LMO overlayer thickness 

indicates the formation of a chemically abrupt interface between the LMO film and the Nb:STO 

subtrate. This formation is further confirmed by HAADF-STEM image shown in Fig. 7.11. 
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Figure 7.8: (a) Sr 3d core-level spectra and (b) Ti 2p core-level spectra for 0.1 at. % Nb-doped 

STO covered by LMO overlayers. 

 

 

 

 

Figure 7.9: (a) Sr 3d core-level spectra and (b) Ti 2p core-level spectra for 1.0 at. % Nb-doped 

STO covered by LMO overlayers 
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Figure 7.10: Plot of the intensity of the Sr 3d and Ti 2p core levels as a function of LMO 

overlayer thickness for 0.1 at. % and 1.0 at. % Nb-doped STO substrates. The dashed and solid 

lines represent the fitted results by photoelectron attenuation functions for the Sr 3d and Ti 2p 

core levels, respectively. 

 

 

 

 

Figure 7.11: HAADF-STEM image at the interface of LMO and 0.1 at. % Nb-doped STO. 
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7.3.3 Verification of the charge transfer 

 

In order to investigate the charge transfer between LMO and STO, Ti-L2,3 (Ti 2p → 

3d excitation) XAS measurements were performed. Figure 7.12 shows Ti-L2,3 XAS spectra of a 

0.1 at. % Nb-doped STO substrate and a 5-ML LMO/Nb:STO heterostructure measured under 

magnetic field of 1T and temperature of 15 K. These spectra were obtained as an average of 

XAS spectra taken by an incident beam of right-handed helicity and left-handed one. The peak 

around 458.5-462.7 eV is called Ti-L3 XAS, and that around 462.7-470 eV is called Ti-L2 XAS. 

The spectral shapes and peak positions of obtained XAS spectra of a substrate and a 

heterostructure are quite similar to each other and reported Ti4+ XAS spectra, as shown in Figs. 

7.13 and 7.14 [130, 131], implying that the valences of Ti do not change between a Nb:STO 

substrate and an LMO/Nb:STO heterostructure. This result indicates that the charge transfer 

does not occur between Ti and Mn ions, which is consistent with the result expected from the 

redox potential as mentioned in Chapter 1 [29, 28]. Furthermore, the difference of chemical 

potentials between the LMO and Nb:STO at the interface does not support the occurrence of the 

charge transfer. Figure 7.15 illustrates the electronic structures predicted at the LMO/Nb:STO 

interface: The valence bands of LMO and Nb:STO are realigned with the same energy position 

of each O 2p states because LMO and Nb:STO share the same oxygen ion at the interface, as is 

the case in the LNO/LMO heterojunction. In this alignment, because the unoccupied Ti 3d state 

is located at the higher energy position than the occupied Mn 3d state, it may be impossible to 

occur the electron transfer from Mn to Ti ions.  
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Figure 7.12: Ti-L2,3 XAS spectra of a 0.1 at. % Nb-doped STO substrate and a 5-ML 

LMO/Nb:STO heterostructure. 

 

 

 

 

Figure 7.13: Ti-L2,3 XAS spectra of La1-xSrxTiO3 [130]. 
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Figure 7.14: Ti-L2,3 XAS spectra of SrTi4+O3 and LaTi3+O3 [131]. 

 

 
 

Figure 7.15: The electronic structures predicted at the LMO/Nb:STO interface. Based on the 

difference of the chemical potentials between LMO and Nb:STO, the charge transfer are not 

expected to occur. 
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Thus, other mechanisms than the charge transfer between B-site ions may induce the 

novel magnetic properties reported in LMO-STO superlattices. One possibility is that the MnO6 

octahedral rotation in an LMO layer caused by the strain from an STO is linked to the 

modification of ferromagnetism in LMO-STO superlattices, as recently reported by Zhai et al. 

[132]. The bond angle of Mn-O-Mn is changed with following MnO6 octahedral rotation, 

resulting that the double exchange interaction in LMO is strengthened or weakened and 

resultant modification of ferromagnetism.   

 

7.3.4 Valence band spectra 

 

Figure 7.16 shows the valence band spectra for the constituent oxides: a thick LMO 

film (100 ML) and Nb:STO substrates with different Nb concentrations. An extrapolation of the 

linear portion of the leading edge to the energy axis (the background level) yields a valence 

band maximum (VBM) for the constituent oxides. The values of VBM were estimated to be 

-0.02±0.06 eV for the 100-ML LMO films, 3.13±0.05 eV for the 0.1 at. % Nb-doped STO 

substrates, and 3.20±0.05 eV for the 1.0 at. % Nb-doped STO substrates. Taking into account 

the band gap of 1.1 eV for LMO [95], the obtained value of VBM suggests that the LMO film 

can be considered to be a degenerate p-type semiconductor without a surface depletion layer. 

The comparison of the VBM value with those obtained by previous studies, where the VBM of 

LMO was located at about 0.3-0.4 eV [133, 92], implies that the present LMO films contain 

much higher carrier concentrations. The difference may be caused by larger amount of oxygen 

excess and/or cation deficiency in the present LMO film. The p-type degenerate semiconductive 

nature of the present LMO film enables me to determine the band lineup more accurately owing 

to the formation of a flatband at the surface of the LMO film. On the other hand, the VBM of 

Nb:STO shows almost the same value of ~3.2 eV between the two substrates, irrespective of 

their difference in donor concentration. This result is consistent with the fact that STO with a 
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Nb-doping level higher than 0.1 at. % is an n-type degenerate semiconductor [134] because the 

band gap of STO is 3.2±0.1 eV at room temperature [135]. 

 

 
 

Figure 7.16: Valence-band photoemission spectra of a 100-ML LMO film, a 0.1 at. % Nb-doped 

STO substrate, and a 1.0 at. % Nb-doped STO substrate.  The triangles indicate the VBM of 

the respective surfaces, estimated from the intersection point between the extrapolation of the 

linear portion of the leading edge and the background signal level. 

 

 

7.3.5 Peak shift of core level spectra 

 

In order to determine the built-in potential in the Nb:STO side directly, I replotted the 

Ti 2p and Sr 3d core-level spectra. Figures 7.17 (a) and (b) show the Ti 2p core-level spectra of 

the buried Nb:STO layer for an LMO/Nb:STO junction with a donor concentration of 0.1 at. % 

and 1.0 at. %, respectively.  The spectra are normalized by the maximum intensities of the 
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peaks for a clearer display of the peak shift. For both junctions, a peak shift toward lower 

binding energies is clearly observed with increasing overlayer LMO thickness and it seems to 

be saturated at 5-ML LMO deposition. Owing to the short electron escape depth of a few nm in 

the XPS measurement, the obtained energy shifts of the Ti 2p core-level peaks predominantly 

reflect the potentials in the thin interface region on the Nb:STO side only. It should be noted 

that almost the same energy shifts were observed in the Sr 3d core-level peaks, indicating that 

the shifts were caused by the band bending of Nb:STO at the interface with LMO: The energy 

shifts of core-level peaks of Nb:STO to a lower binding energy mean the energy bands of 

Nb:STO bend to a lower binding energy at the interface with LMO. In other words, by 

determining the core-level peak shifts of Nb:STO following the deposition of LMO, it is 

possible to obtain the amount of band bending on the Nb:STO side experimentally. The energy 

shifts of the Ti 2p and Sr 3d core-level peaks are summarized in Fig. 7.17 (c).  Considering 

their saturation levels, the energy shifts can be estimated to be 0.55±0.05 eV for the 0.1 at. % 

and 0.25±0.05 eV for the 1.0 at. % Nb concentration. Since a flatband is formed at the surface 

of Nb:STO [134], these shifts directly correspond to the built-in potentials in Nb:STO at the 

LMO/Nb:STO junctions. 
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Figure 7.17: Shifts of the core level for Nb:STO. Ti 2p core-level spectra of (a) 0.1 at. % and (b) 

1.0 at. % Nb-doped STO covered by LMO films with various thicknesses. (c) Plot of the energy 

shifts of the Ti-2p and Sr-3d core-level peaks as a function of LMO overlayer thickness.  The 

dashed lines are guides for the eyes. 

 

 

7.3.6 Band alignment of LaMnO3/SrTiO3 heterojunction 
 

In general, the relationships between the built-in potentials and carrier concentrations 

for p-n junctions of conventional semiconductors are given by the following equations [136]: 
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Here, Vbtot is the total build-in potential formed at the interface of the p-n junction, 

while Vbn and Vbp are the potentials distributed on the n-type and p-type semiconductor sides, 

correspondingly. Nn (Np) and εn (εp) are the donor (acceptor) density and relative permittivity in 

the n-type (p-type) semiconductor, respectively. In the present LMO/Nb:STO case, the Vbn 

values of 0.55±0.05 eV for the 0.1 at. % and 0.25±0.05 eV for 1.0 at. % Nb-doped STO sides 

are directly determined by XPS measurements. Assuming that (i) Vbtot, εn, εp, and Np remain 

unchanged for the two heterojunctions with the different Nb-doping concentrations; (ii) Nn and 

Np remain unchanged near the boundaries of the junctions; and (iii) the dopant Nb atoms are 

fully activated in STO (namely, Nn = 1.7×1019 cm-3 for the 0.1 at. % and Nn = 1.7×1020 cm-3 for 

the 1.0 at. % Nb-doped STO), the value of Vbtot can be estimated as follows.  

The subscript of “1” is the notation for the heterojunction between LaMnO3 (LMO) 

and 0.1 at. % Nb-doped SrTiO3 (STO), while “2” for the heterojunction between LMO and 1.0 

at. % Nb-doped STO. Assuming that the values of Vbtot, εn, εp, and Np are independent to the 

difference of Nb-doping level in STO ((i)), the following equations are obtained. 

 

 

   (7.2) 

 

  Using these equations, Eqs. (7.1) can be converted to following equations for the 

respective junctions: 

 

              (7.3) 

 

 

Thus, the following relation is obtained using the values of Nn1 (1.7×1019 cm-3) and 

Nn2 (1.7×1020 cm-3) that are calculated from the Nb concentration in respective Nb-doped STO. 
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  	 (7.4) 

 

When I plug the values of Vbn1 = 0.55±0.05 eV and Vbn2 = 0.25±0.05 eV that are 

determined from XPS in the Eq. (7.4), Vbtot were calculated to be 0.66±0.12 eV. 

  Because Eqs. (7.1) represent the distribution ratio of Vbtot between the n-type and 

p-type semiconductor sides, the values of Vbp are calculated from these obtained potential values 

to be 0.11±0.07 eV for LMO/Nb:STO p-n junctions with the donor concentration of 0.1 at. % 

and 0.41±0.17 eV for those with the donor concentration of 1.0 at. %. The estimated value of 

Vbtot is in good agreement with those evaluated from transport measurements, 0.64 eV [129] and 

0.77 eV [113]. This agreement suggests that the junction properties of an LMO/Nb:STO 

heterointerface can be described in the framework of the conventional p-n junction model. [136] 

From the values estimated from the conventional p-n junction model, I deduced the 

band diagrams of the two LMO/Nb:STO junctions with different donor concentrations, 

illustrated in Fig. 7.18. As mentioned before, since the VBM of the present LMO film is located 

around the Fermi level (see Fig. 7.16), the flat-band condition may also be fulfilled at the 

surface of the LMO film. Therefore, the band lineup between the two oxides can be evaluated 

accurately in the present case. Because Eqs. (7.1) represent the distribution ratio of Vbtot between 

the n-type and p-type semiconductor sides, the built-in potential on the Nb:STO (LMO) side 

decreases (increases) from 0.55±0.05 eV (0.11±0.07 eV) to 0.25±0.05 eV (0.41±0.17 eV) by 

changing the donor concentration in STO from 0.1 at. % to 1.0 at. %. As can be seen in Fig. 

7.18, the donor concentration dependence of the built-in potential formed at the interface 

between the Mott insulator LMO and the band insulator Nb:STO is well described by the 

conventional semiconductor theory. 
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Figure 7.18: Band diagrams of LMO/Nb:STO heterojunctions deduced from the present XPS 

measurements for (a) 0.1 at. % and (b) 1.0 at. % Nb-doped STO.  The band gaps of STO and 

LMO are 3.2 eV [135] and 1.1 eV [95], respectively. 

 

 

In addition, I estimated the carrier density for the LMO side from Eqs. (7.1) based on 

the conventional p-n junction model. Using the relative permittivity of LMO (εp = 50 [113]) and 

STO (εn = 300), and the donor concentration Nn of the respective Nb:STO, Np was calculated to 

be about 6×1020 cm-3. This value means that only 0.04 holes per Mn site are activated, whereas 

one hole per Mn ion is expected in the case where LMO is not a Mott insulator. Although the 

estimated value is one order of magnitude larger than that obtained with photocurrent 

measurements, where Np was found to be about 4×1019 cm-3 [113], the higher value of Np is 

consistent with the observed positions of VBM in Fig. 7.16, indicating that the present LMO 

films are p-type degenerate semiconductors, probably because of oxygen excess and/or cation 

deficiency [81]. 

Based on the conventional p-n junction model, the thicknesses of the depletion layer 

for both junctions were estimated using the following equations [136]: 

 

0.07 eV
3.13 eV

1.1 eV
0.11 eV

0.55 eV
EF

Nb:SrTiO3 LaMnO3

(a)

(Nb: 0.1 at. %)

3.20 eV

1.1 eV0.41 eV
0.25 eV

Nb:SrTiO3 LaMnO3

EF

(b)

(Nb: 1.0 at. %)
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                        (7.5) 

 

 

where Wn and Wp are the thicknesses of the depletion layer in Nb:STO and LMO layer, 

respectively. Using the calculated values of Vbtot and Np, the reported εp [113], and physical 

properties of Nb:STO (Nn and εn), Wn and Wp are estimated to be 33 nm and 0.9 nm for a 1.0 

at. % Nb-doped STO junction, and 7.2 nm and 1.8 nm for a 1.0 at. % Nb-doped STO junction, 

respectively.  

 

 

7.4 Conclusion 

The existence of the charge transfer was investigated by XAS measurement for 

LMO/Nb:STO heterointerfaces. Ti-L2,3 XAS spectra clearly show that the valence of Ti ion does 

not change between before and after contact, demonstrating that the charge transfer does not 

take place at an LMO/Nb:STO heterointerface. I have determined the band diagrams of 

LMO/Nb:STO heterojunctions and their dependence on donor concentration using XPS. The 

built-in potentials on the Nb:STO sides were experimentally determined by investigating the 

peak shifts of the Ti 2p and Sr 3d core level with LMO deposition. As the Nb-doping 

concentration increased from 0.1 at. % to 1.0 at. %, the built-in potentials in the Nb:STO sides 

were reduced from 0.55±0.05 eV to 0.25±0.05 eV, in accordance with the conventional p-n 

junction theory. This result demonstrates that LMO/Nb:STO heterojunctions can be described 

on the basis of the p-n junction model for conventional semiconductors irrespective of the 

strongly correlated electron nature of LMO. Not the charge transfer but the depletion of the 

“practical” carrier compensates the built-in potential at the heterointerface. Other mechanisms 

than the charge transfer may cause the exotic interfacial magnetism observed LMO-STO 
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superlattices. 
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Chapter 8   
Summary and Future prospects 
 

In the preceding chapters, the charge transfer phenomena and interfacial 

ferromagnetic states at the heterointerface of perovskite transition-metal oxides studied by 

synchrotron radiation spectroscopy were described. The heterointerfaces were grown by a 

pulsed laser deposition method. I have evaluated the two contrast heterointerfaces, LaNiO3 

(LNO) /LaMnO3 (LMO) and LMO/Nb-doped SrTiO3 (STO). Although both heterosturctures 

has been observed exotic interfacial magnetism, the charge transfer between B-site ions are 

expected for LNO/LMO, whereas not for LMO/Nb:STO in terms of their redox potential. As for 

LNO/LMO interface, first, I have investigated double perovskite La2NiMnO6 (LNMO) which 

can be regarded as a “natural superlattice” of LNO/LMO. And next, I developed LNMO to 

artificially fabricated LNO/LMO heterostuructures. 

In Chapter 3, I have optimized the growth condition of LNMO thin films by pulsed 

laser deposition method. The film growth conditions were found to significantly affect the 

magnetic moment and ferromagnetic transition temperature of LNMO films. Epitaxial LNMO 

films exhibiting the ferromagnetism equivalent to that of bulk polycrystal were successfully 

grown only in such a narrow region of growth temperature and oxygen pressure that stabilized 

Ni2+-O-Mn4+ superexchange ferromagnetic interaction. Out of this narrow region, the 

ferromagnetism is significantly suppressed by the appearance of secondary phases, locally 

disordered Ni and Mn ions and oxygen vacancies. Strict control of growth conditions is 

inevitable to obtain an LNMO film exhibiting a higher ferromagnetic transition temperature and 

a higher magnetic moment. 

  In Chapter 4, I have evaluated the charge transfer between Ni and Mn ions and 

verified the origin of ferromagnetism in LNMO using Ni-L2,3and Mn-L2,3-x-ray absorption 
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spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). The valence change due 

to charge transfer from Mn to Ni (Ni3+ + Mn3+ → Ni2+ + Mn4+) occurs in LNMO and 

magnetizations residing in Ni2+ and Mn4+ ions align ferromagnetically. These results indicate 

that the ferromagnetism of LNMO are explained by a Ni2+ − O −Mn4+ ferromagnetic 

superexchange interaction obeying a Kanamori-Goodenough rule. The charge transfer between 

Ni and Mn ions has a large influence on the ferromagnetism in LNMO. Electronic structures he 

valence band and the conduction band in LNMO films are also characterized using synchrotron 

radiation photoemission spectroscopy, O-K XAS, and optical spectroscopy. The electronic 

structure at the valence band maximum is mainly derived from the Mn 3d state. The conduction 

band minimum is composed mostly of the Mn 3d-O 2p hybridized state. The optical gap is 

estimated to be about 1.5 eV based on the optical conductivity derived from optical spectra. 

In Chapter 5, in order to investigate the charge transfer phenomena at the 

heterointerface between LNO and LMO, I have performed in situ XAS measurements on 

artificially fabricated LNO/LMO multilayers. The Ni-L2,3 and Mn-L2,3 XAS spectra clearly show 

the occurrence of electron transfer from Mn to Ni ions in the interface region. Detailed analysis 

of the thickness dependence of these XAS spectra has revealed that the spatial distribution of 

the transferred charges across the interface is significantly different between LNO and LMO: 1 

ML for LNO and 3-4 ML for LMO. The difference of the observed spatial distribution is 

presumably described by the charge spreading model that treats the transfer integral between 

neighboring transition metal ions and the Coulomb interaction, rather than the Thomas–Fermi 

screening model [103]. 

In Chapter 6, in order to investigate the relationship between the charge transfer and 

the interfacial ferromagnetism of LNO/LMO heterostructures, I have carried out XMCD 

measurements on LNO/LMO trilayer structures. The Ni-L2,3 XMCD spectra of trilayers reveal 

that the net magnetization is induced in Ni ions in an LNO layer which is paramagnetic in bulk 

phase and it is constricted in Ni2+ ions at 1-ML LNO at the interface which is related to the 

charge transfer. On the other hand, the net spins in an LMO layer reside in both Mn3+ and Mn4+ 
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ions which are located in some monolayers from the interface. The same sign of XMCD signals 

between Ni-L2,3 and Mn-L2,3 edge indicates that the Ni spins and Mn spins couple 

ferromagnetically across the interface. It is concluded that the charge transfer between Ni and 

Mn ions is a key for the interfacial ferromagnetism in LNO/LMO heterostructures.  

In Chapter 7, I have performed XAS measurement in order to investigate the existence 

of the charge transfer at an LMO/Nb:STO heterointerface. Ti-L2,3 XAS spectra clearly show not 

occurrence of the charge transfer between Ti and Mn ions in contrast to an LNO/LMO 

heterointerface Therefore, I have evaluated interfacial electronic structure by determining the 

band diagram of LMO/Nb:STO heterojunctions using x-ray photoemission spectroscopy. By 

changing the donor concentration in Nb:STO from 0.1 at. % to 1.0 at. %, the value of the 

built-in potential for the Nb:STO side (Vbn) is reduced from 0.55±0.05 eV to 0.25±0.05 eV. The 

modulation of Vbn is well described in the framework of the conventional p-n junction model, 

suggesting that the built-in potential at the heterointerface is compensated not by the charge 

transfer between B-site ions but by the depletion of the “practical” carrier. These results imply 

that the novel interfacial magnetism observed in LMO-STO superlattices are caused by other 

mechanisms than the charge transfer. 

In this thesis, the charge transfer phenomena, the valence change and its spatial 

distribution, and the interfacial ferromagnetism related to the charge transfer have been 

investigated by synchrotron radiation spectroscopy utilizing its elemental selectivity and surface 

(interface) sensitivity. In order to clarify the origin of the novel ferromagnetism observed at the 

interface of transition metal oxides, it should be important to obtain the knowledge of the 

interfacial charge transfer. Based on the knowledge obtained in this study, fabrication of the 

appropriate interface and then control of the charge distribution at the heterointerface are 

considered to lead to the design and control the beneficial magnetic properties emerging at the 

interface of transition metal oxides. 



Chapter 8 Summary and Future prospects 

 161 

One approach to modulate the interfacial charge transfer is the control of the 

interfacial structure. The stacking orientation is an important parameter to decide the charge 

transfer phenomena. For (001)/(011)/(111)-stacking of ABO3/AB’O3 heterointerfaces, as shown 

in Fig. 8.1, there are one/two/three B-O-B’ bond, while five/four/three B-O-B’ bond. Therefore, 

it is expected that the amount of the charge transfer is largest (smallest) for the (111)-orientation 

((001)-orientation) because (111)-staking ((001)-orientation) has the most (the least) B-O-B’ 

bonds. This trend has been observed in XAS studies by Piamonteze and coworkers [102]. 

However, Dong and coworkers reported the totally inverse trend predicted by the tight-binding 

calculation [137]. Furthermore, as for the relationship between the charge transfer and induced 

interfacial ferromagnetism, there are two opposite calculation results: Dong and coworkers have 

demonstrated that the amounts of the charge transfer is not related to the strength of interfacial 

ferromagnetism [137], while Lee and coworkers have concluded that induced magnetic moment 

is proportional to the amount of the charge transfer [138]. It will be necessary to systematically 

understanding the relationship between the stacking orientation, the charge transfer, and the 

interfacial magnetism. The present approach using the elementally selective spectroscopic 

measurements is considered to be a powerful tool to experimentally elucidate this relationship. 

 

 

 

 

Figure 8.1: The images of various oriented interfaces. (a) (001), (b) (110), and (c) 

(111)-orientation. 

 

(a) (b) (c)
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Another structural modulation at the interface is obtained by utilizing layered 

perovskite structures. Figure 8.2 shows Ruddeleson-Popper (RP) type and Dion-Jacobson (DJ) 

type interfaces. In RP type interface, perovskite slabs are offset by a (1/2, 1/2) translation and 

DJ type interface has alkali metals as the separating motif, resulting in the suppression of the 

charge transfer. 

 

 

 
 

Figure 8.2: The images of various perivskite-based interfaces. (a) perovskite-type, (b) 

Ruddeleson-Popper type, and (c) Dion-Jacobson type interface. 

 

 

  Interfacial ferromagnetism are affected by not only the charge transfer phenomena, 

but also other parameters, such as the strain and structural coupling, and orbital polarization, 

and so on. Furthermore, the external electric or magnetic field could alter the interfacial charge 

transfer and/or orbital reconstruction. There may be fruitful area of a fundamental research as 

well as a path for device application at the heterointerfaces between transition metal oxides.   

 
 

(a) (b) (c)
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Appendix B   

 

Summary in Japanese 
 

 

 

 

 

 

 

論文の内容の要旨 

 

論文題目:	 放射光分光による酸化物へテロ界面の電荷分布と 
界面強磁性に関する研究 

Charge distribution and ferromagnetism at oxide heterointerfaces 
 studied by synchrotron radiation spectroscopy 

 

氏名	 北村	 未歩 
 

	 本論文は、遷移金属酸化物へテロ界面の電荷分布と界面強磁性との相関関係について、

放射光分光による電子状態、磁化状態観測の観点から述べたものである。ペロブスカイ

ト型遷移金属酸化物からなるヘテロ接合では、その界面において特異な磁気特性が発現

する。その界面磁性発現要因の１つとして界面における電荷移動が挙げられる。このよ

うな界面磁性を理解、制御するためには、価数変化とその深さ分布を決定し、その電荷

移動と界面強磁性との相関関係を明らかにする必要がある。本研究では、界面電荷移動

の発現の有無が予想される 2種類の対照的な界面 (LaNiO3 (LNO) /LaMnO3 (LMO) へテ

ロ界面、LaMnO3 (LMO) /Nb:SrTiO3 (STO)へテロ界面 ) を中心に据え、放射光の持つ元

素選択性と界面 (表面) 敏感性を利用して、界面における電荷分布と界面磁化状態を実

験的に直接決定した。 
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	 本論文は、以下の 8章に大別して論じている。 

	 第 1章では、本研究の背景を述べている。遷移金属酸化物ヘテロ接合とその界面で発

現する特異な磁気特性を例示し、界面強磁性の起源解明のための界面電荷移動の理解の

重要性について述べている。 

	 第 2章では、本研究で用いた実験手法とその原理について述べている。本研究は、パ

ルスレーザー堆積法 (PLD) による酸化物へテロ界面の作製と高エネルギー加速器研究

機構放射光研究施設 (PF) アンジュレータービームライン BL-2C、MUSASHI (BL-2A)、

及び BL-16Aを用いた放射光光電子分光 (PES) 、X線吸収分光 (XAS) 、X線磁気円二

色性 (XMCD)により行った。作製した薄膜は、反射高速電子線回折 (RHEED)、原子間

力顕微鏡 (AFM)、X 線回折 (XRD)、透過型電子顕微鏡 (TEM)、透過率−反射率測定、

電気抵抗測定、超伝導量子干渉計 (SQUID)を用いて評価を行った。 

	 第 3章では、ダブルペロブスカイト型酸化物 La2NiMnO6 (LNMO) の作製条件最適化

について述べている。LNMOは約 280 Kという室温に近い強磁性転移温度 (TC) を有す

る強磁性半導体である。LNMOの強磁性の起源は Ni−O−Mnの強磁性的超交換相互作用

とされている。LNMO の薄膜作製条件と、その結晶性及び強磁性特性との関係を調べ

ることで、良好な強磁性特性を有する LNMO 薄膜の作製条件を確立した。低酸素分圧	

(700 ºC, 190 mTorr) で作製した LNMO薄膜は、酸素欠損による超交換相互作用の阻害

が原因と考えられる非常に小さな磁化を示した。また、低温成長(600 ºC, 500 mTorr) で

は、2 種類の強磁性秩序の存在を示す２つの異なる TCが観察された。これは、成長温

度の不十分さに起因した局所的な Disorderが原因であると考えられる。さらに、高温・

高酸素分圧成長 (700 ºC, 1100 mTorr)では、過剰酸素由来の La欠損が原因と考えられる

異相の発生が確認された。異相や酸素欠損の発生を防ぎ、Ni イオンと Mn イオンの秩

序構造を促進する適切な酸素分圧、成長温度 (700 ºC, 500 mTorr) に制御することで、

バルクに匹敵する強磁性特性を有する LNMO薄膜の作製に成功した。 

	 第 4 章では、LNMO の電子状態と磁化状態について述べている。LNMO の強磁性の

起源を検証するために、Ni イオン及び Mn イオンの価数とその磁化状態について評価

を行った。Ni、Mn L2,3 XASスペクトルにより、LNO、LMO中では Niイオン、Mnイ

オンは共に 3 価で存在するのに対し、LNMO 中では B サイトイオン間の電荷移動が 

(Ni3+ + Mn3+ → Ni2+ + Mn4+) が起こり、Niイオンはほぼ 2価、Mnイオンはほぼ 4価に

価数変化していることが明らかとなった。また、Ni、Mn L2,3 XMCDによる磁化状態の

評価から、Ni2+ と Mn4+は強磁性的に結合していることが分かった。このことから、

LNMOの強磁性の起源は、Ni2+−O−Mn4+の強磁性的超交換相互作用であり、Niイオンと

Mn イオン間の電荷移動が強磁性発現に大きく寄与していると結論付けた。さらに、
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LNMO の価電子帯、伝導帯の電子構造についても評価を行った。価電子帯光電子スペ

クトル、共鳴光電子スペクトル、及び O K XASスペクトルから、LNMOの価電子帯上

端と伝導帯下端は共に Mn 3d 由来の状態で構成されていることが明らかとなった。光

学伝導度測定からバンドギャップは約 1.5 eV と見積もられた。価電子帯上端がフェル

ミ準位まで約 0.3 eV離れていることを考慮すると、LNMO薄膜は p型半導体であると

考えられ、Mn由来のホールが多数キャリアとして伝導していることが示唆された。 

	 第 5章では、LNO/LMOへテロ構造における界面の電荷移動とその空間分布について

述べている。「自然超格子」LNMOでは、LNOと LMO層が (111) 方向に 1層ずつ交互

に積層していると見なせるため、移動した電荷の空間分布を評価することができない。

そこで、界面を厳密に定義した LNO/LMOへテロ構造での評価を行った。Ni、Mn L2,3 XAS

スペクトルにより、LNMOと同様にヘテロ界面においても Niイオンと Mnイオンの価

数がバルクの 3+からそれぞれ Ni2+と Mn4+に変化しており、界面を通じて Mnイオンか

ら Ni イオンに電子が移動していることが裏付けられた。また、その膜厚依存性から、

移動した電荷の空間分布について評価した。その結果、移動した電荷の空間分布は LNO

側と LMO 側で差があり、LNO では界面 1 ML に閉じ込められているのに対し、LMO

では 3-4 MLの領域に広がっていることが明らかとなった。この差を記述するのに、電

荷のホッピングを表すトランスファー積分とクーロン相互作用を扱った微視的なモデ

ルが妥当であると結論付けた。 

	 第 6 章では、XMCD による LNO/LMO へテロ界面における界面強磁性の観測と、界

面強磁性と界面電荷移動との相関関係について述べている。Ni L2,3 XMCD測定では、常

磁性の LNO薄膜には XMCD信号が観測されないのに対し、LNO/LMOサンドイッチ構

造では明瞭な XMCDシグナルが観察されることから、LMO と接合することで Niイオ

ンに磁化が誘起されることが明らかになった。また、その LNO 膜厚の増加に伴い、

XMCD信号形状は変化せず、XMCD信号強度、即ち Niイオン当たりの平均磁化の大き

さが減少することが分かった。このことから、Ni イオンに誘起された強磁性成分は界

面の Ni2+由来であると結論付けた。一方で、LMO側では、その界面において Mn4+由来

の XMCD信号が観測された。これらの XMCD信号の方向を比較することで、界面にお

いて Ni2+とMn4+が強磁性的に結合していることが明らかとなった。第 5章の結果から、

電荷移動により界面の Ni イオンと Mn イオンの価数が変化していると考えられ、この

価数変化したイオン同士が強磁性的に結合していることから、LNO/LMOへテロ構造に

おいては、界面電荷移動が界面強磁性を誘起する鍵であると結論付けた。 

	 第 7章では、モット絶縁体 LMO/バンド絶縁体 Nb:STO p-n接合界面のバンドダイア

グラム決定について述べている。LMO-STO超格子で報告されている特異な強磁性と界
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面電荷移動との関係を明らかにするため、まず、XAS により電荷移動の有無について

評価を行った。Ti L2,3 XASスペクトルから、接合前後で Tiの価数は共に 4価であり、

Mnイオンと Tiイオンの間で電荷移動が生じていないことが明らかとなった。そこで、

特異な強磁性の知見を得るため、界面の電子状態を解明することを目的として PES を

用いてバンドダイアグラムの決定を行った。Nb:STO 基板に LMO 薄膜を堆積して接合

を形成すると、Ti 2p内殻光電子スペクトルは低結合エネルギー側にシフトした。この

シフト量は Nb:STO 側に形成されるビルトインポテンシャルに対応していると考えら

れ、Nb:STO基板の 0.1 at. %から 1.0 at. %への Nbドープ量増加に伴うキャリア量の増加

に応じて、0.55±0.05 eVから 0.25±0.05 eVへと減少した。このシフト量から半導体の p-n

接合理論を用いて界面に生じるビルトインポテンシャル (Vb) は 0.66±0.12 eVと算出さ

れ、LMO/Nb:STO 接合のバンドダイアグラムを描くことに成功した。これらの結果か

ら、LMO/Nb:STO の接合は、Vbを B サイトイオン間の電荷移動によって遮蔽するので

はなく伝導キャリアの空乏化によって遮蔽する、通常の半導体における p-n接合理論の

枠内で記述できると結論付けた。このことから、LMO-STO超格子における特異な強磁

性は、電荷移動以外の要因で発現していることが示唆された。 

	 第 8章では、本論文のまとめ及び今後の展開を述べている。 

 

	 以上のように本論文は、2種類の異なるヘテロ界面に対して、界面における電荷分布

と界面磁化状態の相関関係を放射光の元素選択性を用いて明らかにしたものである。本

研究で得られた知見に基づき適切な界面を作製して界面電荷分布を制御することで、界

面強磁性の設計・制御につながると考えられる。 
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