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ABSTRACT

Abstract

Extreme weather events have been the leading cause of disasters and damage all

over the world. Recent events have led to mass displacement, loss of income, and

hampered access to clean water and health to many. The primary ingredient to these

disasters especially floods is rainfall which over the years, despite advances in modeling,

computing power and use of new data and technologies, has proven to be difficult

to predict. Numerical weather prediction (NWP) and climate models using global

forecasts and emission scenarios as initial and boundary conditions have provided short

to midterm forecasts and climate projections in many parts of the world. The Lake

Victoria Basin (LVB) in East Africa supports over three million livelihoods and hosts

the world record for elaboration of vertebrate species diversity, species extinctions,

and exotic species invasions. The second largest freshwater lake in the world is a

valuable resource to five East African countries as a source of water and means of

transport. However, with a Mesoscale climate regime driven by land and lake dynamics,

extreme Mesoscale events have been prevalent and the region has been on the receiving

end during anomalously wet years in the region. This has resulted in loss of lives,

displacements, and food insecurity. As an essential aspect of early warning there is a

need to strengthen adaptation through improved prediction of rainfall and floods.

It is now more evident than ever that climate change will have adverse impacts on

the global population in coming years. Since the release of Intergovernmental Panel

on Climate Change (IPCC) Fourth Assessment Report: Climate Change 2007 (AR4)

in 2007, it has been shown that impacts of climate change are already being felt, with

increases in sea level rise, retreating glaciers and more frequent weather extremes. In

the LVB, the effects of climate change are increasingly being recognized as a significant

contributor to poverty, by its linkage to agriculture, food security and water resources.

One aspect that is investigated widely with respect to climate change is the impacts

it will have on extreme weather events. There is a general consensus that changes in

frequency and intensity of extreme weather and climate events will have adverse effects

on both humanity and nature.

Adaptation to climate change needs an understanding of climate change impacts
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at local scales. There is a need to connect the global scale projections with impacts

it may have on people through downscaling and other means. The LVB is a regional

basin with multiple land uses and water resource needs. In addition, it is one of the

basins that have been heavily affected by extreme weather, especially storm-induced

floods. Of particular importance are the likely impacts of climate change in frequency

and intensity of extreme events. To tackle this aspect, this study adopted an integrated

regional, mesoscale and basin scale approach to climate change assessment. The study

investigated the projected changes in mean climate over East Africa, diagnosed the

signals of climate change in the atmosphere, and transferred this understanding to

mesoscale and basin scale. Changes in rainfall were analyzed and similar to the IPCC

AR4 report, the selected three General Circulation Models (GCMs) project a wetter

East Africa with intermittent dry periods in June-August.

The highest projected changes are in the October-December season whose variability

is closely linked to inter-annual variability of sea surface temperature anomalies in the

Indian Ocean. Weakening of the Walker circulation, anomalous monsoons, and moisture

advection into East Africa in the two seasons are some of the phenomena associated with

increased rainfall. Investigation on the Niño3 sea surface temperature (SST) anomaly

index reveals an increasing trend with the selected target period of study projected to

experience increased frequency of El–Niño/La–Niña events. GCMs projections for the

past (1981-2000) and future (2045-2065) were bias corrected and projected changes at

a river basin scale investigated. In the Nyando river basin, a perennial flood basin, the

selected three GCMs project a wetter future with extreme events occurring almost two

times the magnitude of the past climate. The trend by the three GCMs is the same;

increased flood probability in the future and about 10-20% increase in mean discharge.

In addition to climate change assessment; the study also focused on short-term

weather forecasting as a step towards adapting to a changing climate. This involved

dynamic downscaling of global weather forecasts to high resolution with a special focus

on extreme events. The skill of operational weather forecasts has increased over the last

five decades. This improvement has taken place gradually and relatively steadily; driven

by advances in scientific understanding of physical processes and rapidly increasing

ii
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computational resource developments. The last decade has seen remarkable progress in

exploring satellite observations especially microwave measurements and the launching

of new platforms. Numerical weather prediction and assimilation satellite data in the

microwave band has been shown to improve predictability. In this tropical inland lake

basin with a sizeable water body and locally controlled Mesoscale weather system; an

improved prediction would be greatly useful for flood early warning and water resources

management.

By utilizing complex model dynamics, the system was able to reproduce the Mesoscale

dynamics well, simulated the land/lake breeze and diurnal pattern but was inadequate

in some aspects. The quantitative prediction of rainfall was inaccurate with overes-

timation and misplacement but with reasonable occurrence. This was a remarkable

improvement compared to the coarse resolution of 100km which had not factored in

local scale dynamics induced by the land-lake interaction and low-high altitude con-

trast in this region. To address these shortcomings this thesis investigated the value

added by assimilating Advanced Microwave Scanning Radiometer (AMSR-E) bright-

ness temperature during the event. By assimilating 23GHz (sensitive to water) and

89GHz (sensitive to cloud) frequency brightness temperature; the predictability of an

extreme rain weather event was investigated. The assimilation of AMSR-E bright-

ness temperature through a Cloud Microphysics Data Assimilation (CMDAS) into the

weather prediction model considerably improved the spatial distribution of this event.

Data assimilation improved the simulation of the rain event by more than 50% with

the spatial location of maxima at 00hrs and 03hrs after assimilation matching Tropical

Rainfall Measuring Mission (TRMM). In addition, overestimation of rainfall predicted

by the NWP (without data assimilation) was reduced considerably. The assimilation

of brightness temperature is implemented through a Radiative transfer model (RTM).

The RTM involves the calculation of the surface emissions, scattering and absorption of

passive microwave energy on soil, land surface and the atmosphere. A key component

of this determination is the computation of surface emissivity which is derived from

surface temperature. Results in this region showed that the NWP had a tendency

to overestimate surface temperature which in turn affected the assimilated brightness

iii
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temperature. This had the negative impact of reduced water vapor in the system and

the model could not keep the induced model state for long. Sensitivity experiments

conducted by subtracting 2-10K from the surface temperature at the assimilation time

showed that changes in the amount of water vapor corresponded to the magnitude

of temperature change. This highlighted the uncertainty in water vapor assimilation

due to model errors in estimation of surface temperature. This study identified this

challenge and proposes a major validation / improvement of the RTM.

The downscaled/predicted quantitative rainfall was then assessed for its suitability

as an input to a decision making process with respect to floods. Hydrological modeling

using the QPF from the NWP showed promising flood simulation results even though

there was a tendency to overestimate flow. Nonetheless, it shows a potential for future

application as an input to an early warning system.

iv
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Chapter 1

Introduction

1.1 Background and overview

Extreme weather and climate events interacting with exposed and vulnerable human and

natural systems can lead to disasters (Field et al., 2012). Some types of extreme weather

and climate events have increased in frequency or magnitude, but populations and assets

at risk have also increased, with consequences for disaster risk. According to recent studies

(Easterling and Evans, 2000; Rahmstorf and Coumou, 2011; Coumou and Rahmstorf, 2012),

it has been shown that extreme weather events have increased in the past century. There

have been statistically significant trends in the number of heavy precipitation events in some

regions and it is likely that more of these regions have experienced increases than decreases,

although there are strong regional and sub-regional variations in these trends. Regional

and global analyses of temperature extremes on land show recent changes consistent with a

warming climate at the global scale(Treut et al., 2007). While some of these changes can be

attributed to natural climate variability; a bulk of them tends to be associated with global

warming caused by anthropogenic emissions. A changing climate leads to changes in the

frequency, intensity, spatial extent, duration, and timing of extreme weather and climate

events(Field et al., 2012).

The climate system is a complex, interactive system consisting of the atmosphere, land
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surface, snow and ice, oceans and other bodies of water, and living things. According to the

Intergovernmental panel on climate change (IPCC) climate change refers to a change in the

state of the climate that can be identified (e.g., using statistical tests) by changes in the mean

and/or the variability of its properties, and that persists for an extended period, typically

decades or longer (Treut et al., 2007). These changes may be caused by internal processes as

well as external forcing. Some of these are natural e.g. solar radiation and volcanic activity

whilst others (like changes in the atmospheric composition that started during the industrial

revolution), are as a result of human activities. Changes in the radiation balance can be

achieved by changing incoming solar radiation, changing the earth’s albedo or by altering

the longwave radiation from Earth back towards space (e.g., by changing greenhouse gas

concentrations). Climate, in turn, responds directly to such changes, as well as indirectly,

through a variety of feedback mechanisms.

One aspect that has been investigated widely with respect to climate change is the im-

pacts of extreme weather events. There is a general consensus that changes in frequency

and intensity of extreme weather and climate events will have adverse effects on both hu-

manity and nature. A major concern with climate change is that future extreme events

will increase(Easterling et al., 2000). Recent extreme events all over the world have caused

untold suffering to many people and caused major damages to economies. Extreme rainfall

and associated floods have been the leading disasters globally with more than six million

lives lost between 1900-2012 (Table 1.1). According to the International Disaster Database

(EM-DAT), on average USD 65B dollars of global GDP is lost annually due to floods/storms

related to extreme weather.

While some of these flood events can be attributed to man-made disasters; majority of

global natural disasters is due to extreme weather. For example, the 2010 Thailand floods

are estimated to have led to massive loss of jobs and damage of about USD 3B of Thailand’s

national income. The 2010 floods in China are reported to affect over 135m people, left over

3000 people dead, and led to over USD 51B damages. In 2010, extreme floods in Pakistan

displaced many households with damages totaling about USD 41B. The Pakistan floods were
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linked to the Russian heat wave and blocking in the extra tropics (Houze et al., 2011; Reale

et al., 2012).

Table 1.1: Hydrological disasters from 1900 to 2012.

Continent # Events # Deaths Damage (000 US$)

Africa 799 24,134 6,437,949

Americas 944 103,635 95,407,840

Asia 1,645 6,792,031 337,594,378

Europe 499 8,867 105,983,664

Oceania 125 500 13,826,875

Precipitation is a critical component of the global hydrologic cycle. Rainfall is essential

for providing fresh water that sustains life; hence the water cycle and future availability of

fresh water resources are big concerns globally. In developing countries, accurate forecasts of

rainfall are critical as they can make or break these fragile economies, as by nature most of

them are agricultural, relying heavily on rain-fed farming.

1.2 Problem statement

Mean changes in climate usually have catastrophic effects on our environment and ultimately

human life. According to the IPCC, the temperature rise will likely lead to a sea level rise,

changed rainfall patterns as well as extreme weather induced disasters. To address this,

research has been conducted on how best to adapt (Smith and Lenhart, 1996; Lobell et al.,

2008; Nordhaus, 2007; IPCC, 2007) and even how to reverse greenhouse gas emissions (e.g.

(Trexler and Kosloff, 1998; Oberthür and Ott, 1999; Palm et al., 2004; Schils et al., 2005;

DeFries et al., 2006)). While these attempts have been noble, well-coordinated and timely,

some of the approaches have been thematic, science-driven and specific to regions. Few
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attempts have been done to unify short term and long term climate studies as well as basin

scale and regional or synoptic scales.

1.2.1 Extreme weather events

Extreme rainfall events usually have devastating effects on communities especially those living

in developing countries. Floods, infrastructure damage, loss of lives and destruction of crops

are some of the adverse effects associated with extreme rainfall. To mitigate, prevent, or even

anticipate these natural disasters, it is important to have a reliable weather prediction system

that provides timely and life/property saving early warnings. Numerical weather prediction

models, regional and global weather forecasting systems are some of the integrated systems

used to provide timely early warning systems. In Africa as well as other developing regions;

the utilization of these tools and knowledge are still limited. Faced with a changing climate

coupled with recurrent floods, there has been a continuous loss of property and lives.

The primary ingredient to these disasters (especially floods) is rainfall, which over the

years, despite advances in modeling, computing power and use of new data and technologies,

has proven to be difficult to predict. Numerical weather prediction (NWP) models using

global forecasts as initial and boundary conditions have been used to provide short to mid-

term forecasts globally. The prediction of landfall for cyclones, hurricanes, and typhoons has

benefited greatly from the advanced regional and global forecast models. In addition, satellite

data have provided immense improvement in prediction of extreme events. Through data

assimilation of visible and microwave satellite data, the prediction of frequency and intensity

of rainfall events has seen great improvement. Assimilation of weather variable retrievals

(Andersson et al., 1994; Reichle, 2004; Phalippou, 1996) from satellite data as well as the

raw radiances (Eyre et al., 1993; Rossow and Garder, 1993; Saunders et al., 1999; Dee and

Uppala, 2009; Aravéquia et al., 2011) has produced improvements.

Despite this, Quantitative precipitation forecast (QPF) remains the most challenging

tasks of weather prediction (Kuligowski and Barros, 1998; Bousquet et al., 2006; Lu et al.,

2010) which has not yet been satisfactorily resolved in the numerical weather prediction
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(NWP) models. Global weather forecasts have been used widely in many applications like

hydrological flood modeling, crop monitoring, and disaster management. One challenge that

has been hindering advancement in this field is the inability of the global and regional weather

prediction models to represent local short term weather patterns in an accurate way. Global

forecasts are coarse in nature, cannot represent local weather patterns well, and thus limits

their application to global scales. However, since the development of the weather satellite

technology, important improvements have been achieved. Using regional scale models, global

forecasts can be downscaled to basin scales. In addition, through data assimilation, the

prediction of extreme weather events has improved. Such improvements have been useful

in regions that usually experience extreme weather; mostly in developed countries. The

most vulnerable and usually agriculture-driven economies have been at a loss when these

events occur. This is because the utilization of such advanced technologies is limited and the

technical know-how is still at low levels. This study seeks to develop a framework through

which extreme rainfall event forecasting in the LVB can be improved.

1.2.2 Climate change

There is a general lack of integrated climate change studies with more regional and basin scale

studies having a weak link between the temporal, spatial and thematic dimensions. Few multi-

dimensional holistic studies exist and these provide useful guidelines for application (Black

et al., 2011; Jarvis et al., 2011; Arndt et al., 2010; Vuuren et al., 2009). Africa has been

identified as one of the most vulnerable continents to climate change and climate variability,

a situation aggravated by the interaction of ”multiple stresses”, occurring at various levels,

and low adaptive capacity (Boko M et al., 2007). East Africa has been classified as one of

the regions likely to experience adverse climate changes. Being a predominantly agricultural

region, the economic and social impacts in this region will negatively affect the rapidly

increasing population. For example, whilst some farmers have developed several adaptation

options to cope with current climate variability, such adaptations may not be sufficient for

future changes of climate. Thus, it is important to understand the likely variability of extreme
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climate events (e.g. floods) which destroy households, infrastructure, and leads to loss of

life/crops. GCM projections based on several climate change scenarios have been useful

inputs for these kinds of studies. However, their spatial resolutions have been a limiting

factor to local scale investigations. To achieve this, there is a need to downscale these into

higher spatial and temporal resolutions.

The LVB is classified as one of the regions likely to experience adverse climate changes

(IPCC, 2007; LVBC, 2011). It is one of the basins that have been heavily affected by extreme

weather and especially storm-induced floods; and an understanding of the likely impacts of

climate change in frequency and intensity of extreme events is important. Waako et al.

(2009); Beyene et al. (2009) recently investigated the potential effect of climate change in the

Nile basin and suggested increasing mean runoff and extreme peak flows. Taye et al. (2011)

focused on impacts of extremes on floods in Nyando catchment (within LVB) for the 2050s,

but the associated mechanisms for these extremes were not clarified. Sang (2005) evaluated

the impact of changes in land cover, climate, and reservoir storage on flooding in the Nyando

river basin using synthetic climate change and suggested afforestation and dam structures as

some of the possible adaptation mechanisms. Regionally, Shongwe et al. (2011) investigated

changes in mean and extreme precipitation in EA under global warming and suggested a

change in the structure of the eastern hemisphere Walker circulation as being consistent with

an increase in EA precipitation. Williams and Funk (2011) focused on regional dynamics of

projected changes in climate in the EA region using long term observations and suggested a

westward extension of the Walker circulation as causing the drying up in EA.

These previous studies can be grouped into two broad categories: regional and local (river

scale) analysis. The linkage between global/regional dynamics and local impacts on smaller

scales in this region is lacking. In addition, the use of synthetic climate change, randomly

selected GCMs and basic statistical downscaling approaches add to the already established

uncertainties associated with GCM projections.

Numerical modeling using GCMs is one of the most used approaches to study and project

future climate change based on various emission scenarios. Some of the challenges associated
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with use of climate projections for local scale impact analysis are 1) coarse resolution; 2)

inability to represent local phenomena due to lack of parameterization; and 3) their general

biases. That notwithstanding, with appropriate statistical and/or dynamic downscaling,

reasonable impact studies can be carried out as a guide or as a framework for policy and

integrated resource management systems. For example, Githui et al. (2009) used the ”delta-

method” of statistical downscaling in this region while Elshamy et al. (2009) applied the

cumulative distribution function (CDF) matching approach downscaling proposed by Ines

and Hansen (2006) to investigate impacts on the Blue Nile. However, one weakness in these

approaches is the generalization of the precipitation field. Without bias correction of extreme

rainfall independently; the outcome from these bias corrections can provide conflicting results.

In this thesis for local scale analysis, we use an improved approach proposed by Nyunt et al.

(2013) where rainfall is divided into three components and bias-corrected independently to

preserve seasonality, frequency and intensity of extreme events. This bias-corrected rainfall

is then used to force a hydrological model to investigate the likely changes in floods under

climate change. We extended our study to Meso and regional scales to investigate the related

regional scale disturbances in EA as a whole. This includes changes in regional mean climate,

circulation patterns, and extremes by use of indices.

1.3 Research framework

Climate change and impact studies are usually geared towards enhancing adaptability, reduc-

ing vulnerability, and harnessing these changes in positive ways. The likely increase in floods,

prolonged droughts, and changed rainfall patterns will lead to food insecurity, displacements,

and loss of livelihoods. To prepare and counter these changes, there is a need for an integrated

approach to study climate change. It is beneficial to factor in the competing and conflicting

dimensions of climate change as well as balancing benefits and losses in designing adaptation

policies. This can only be achieved through an integrated approach, combining the various

aspects of weather forecasting and climate projection.
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In the past, climate change studies have been fragmented and focused on specific inter-

ests. For example: hydrologists might be interested on climate change impacts on water

resources and flood management; Ecologists might be interested in the impacts of climate

change on species characteristics health; scientists and global development agencies might be

interested in the future prevalence of diseases as well as human development indices; climate

scientists and meteorologists are interested in regional changes in circulations and synoptic

scale phenomenon like ENSO, IOD and monsoons. While each of these aspects is important

and critical, their integration and interdependence has not been investigated fully. The re-

spective studies vary with respect to scales (10 to 1000 of km), scope and interest, as well as

technological (thematic vs. circulation models). To be able to utilize the available resources

efficiently and draw conclusive decisions, there is a need to integrate by creating a common

reference point with shared knowledge, skill and tools.

This study provides a holistic approach to climate change assessment with different di-

mensions. Specifically this thesis answers three questions: 1) What are the projected local

changes in extreme rainfall and floods in the Nyando river basin? 2) What are the pro-

jected changes in Meso and regional scale changes and how does it link with these local scale

changes? 3) What are the physical and dynamic characteristics of these extreme events?

We use a systematic approach by selecting ” the best (least biased)” GCMs for this region,

perform a statistical downscaling, and analyze the regional dynamics associated with these

changes. We demonstrate an integrated modeling framework that helps us translate regional

climate projections into river basin scales. Finally, we explore numerical weather prediction

coupled with land data assimilation as one of the options for adapting to adverse climate

change.

Because climate change involves a wide range of interlinked problems; solutions must be

pursued in an interdisciplinary manner. This study focuses on a few selected dimensions

significant in the LVB East Africa. Figure 1.1 summarizes the various components and

dimensions; temporal and spatial dependence, data and tools integration as well as short

to long term investigation. The objectives and plans for each of these components are as

8



CHAPTER 1. INTRODUCTION

4 

Reanalysis & 
Observations 

20th Century 
GCM 

Regional and 
Synoptic Changes 

in Climate 

Future projections 

Select GCMs 

Numerical  
modeling 

Global Weather 
Forecasts 

Ground-based 
Observations 

Downscaling  
& 

Bias correction 

Current 
Floods 

Flood Forecasting 
Adaptation 

Future 
Floods 

Downscaled Climate 
Variables 

Understanding of 
Local Circulation 

Mechanisms 

Inter-annual 
variability 

Basin scale |           Mesoscale                  |    Regional scale 

FU
TU

R
E 

PA
ST / P

R
ESEN

T 

Flood modeling 
WEB-DHM 

Satellite Data 
Assimilation 

11/8/2012 Figure 1.1: Research framework.

discussed in the succeeding sections.

1.3.1 Spatial and temporal dimensions

Different studies have focused on temporal and spatial scales relevant to their interests.

Climate studies mainly focus on regional scales (1000 km) while hydrological models focus

on higher resolutions (10 km). Temporally, this also differs from hundreds of years for climate

studies to hours/days in cases of flash floods. This study seeks to bridge these gaps by:

• investigating regional changes of mean and extreme weather events using GCM

projections

• investigating projected changes in mean and extreme precipitation and flow regimes
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at a basin scale through statistical downscaling. The transfer of knowledge and

understanding from the regional scale is key to interpreting projected changes at

the basin scale.

At the mesoscale and regional scales, climatic changes in Mesoscale dynamics especially

locally induced phenomena like terrain based convection rainfall, land and lake breezes is

desirable. This can be adequately addressed through dynamic downscaling using regional

climate models.

1.3.2 Time-scale interdependence

Weather refers to short timescales with events lasting from hours to several days. Climate on

the other hand is the long-term mean weather conditions over a region. Knowledge and un-

derstanding of the short-term mesoscale dynamics are always valuable to understanding long

term climatic conditions and ultimately climate change. For example, improved knowledge

of extreme storms in the short-term is useful as a baseline for investigating the likelihood of

the same type of events in the future. To add value to this dimension, this study attempts

to improve the understanding of storm events in the LVB region through downscaling of the

Global Forecast System (GFS) model forecasts, a similar approach to dynamic downscaling

of climate projections. The study also seeks to investigate the usability of downscaled vari-

ables as forcing for hydrological models with a view of improving flash floods predictability.

Gaps and areas needing improvement in numerical modeling are also identified.

1.3.3 Data, tools and analytical integration

Integrated modeling is a novel approach to couple knowledge and models from different

disciplines and research fields and to use their potential in the strategic planning of water

management at the river basin scale(Gaiser et al., 2008). Numerical models have found

central significance in modern day science. Climatologists and climate change scientists

use GCMs to understand and project future climates while hydrologists use hydrological
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models to investigate water resources, flow regimes, flood recurrence, and as inputs to early

warning systems. Coupling of models has previously been conducted but with respect to

comprehensive integrated basin scale, mesoscale, and regional, application case studies are

few. We demonstrated a comprehensive approach in which value from GCMs and global

forecasts is translated to small scale using regional and basin scale models through an offline

approach. Specifically, this study also seeks to:

• Downscale GCM projections for basin scale investigation of future floods

• Downscale GFS forecasts using a regional mesoscale model for flood prediction

In addition, satellite data is used to investigate value added to downscaling/forecasting of an

extreme weather event in the LVB. In this approach we integrate statistical and numerical

methods, local regional and global models as well as ground-based observations with global

satellite data.

1.3.4 Key objectives

In summary, the study seeks to provide a holistic approach to weather and climate integration,

giving a comprehensive view on the key aspects as a step towards disaster management. In

principle, the study focuses on climate change assessment at multiple spatial and temporal

scales as well as first steps towards adaptation to extreme events under the current climate.

Specifically, the objectives of this study are:

• To investigate projected changes in rainfall at river basin scale through down-

scaling of Coupled Model Inter-comparison Project Phase (CMIP3) GCMs pro-

jections

• To investigate projected changes in flow regimes in the Nyando river basin (within

LVB) under climate change
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• To investigate projected regional climatic changes using CMIP3 GCM and the

mechanisms of extreme events

With respect to extreme weather adaptation under the current climate, the study seeks

to:

• dynamically downscale global weather forecasts and improve extreme rainfall

event prediction in the LVB through data assimilation

• investigate the applicability of downscaled forecasts as forcing for hydrological

flood simulation

1.4 Research strategy

Being a multi-dimensional study, this study attempts to investigate to reasonable depths

the interaction and significance of each of the aforementioned themes. Several tools and

datasets at disposal have been used to achieve this. At the regional scale, global data sets

i.e. reanalysis, climatologies, and climate projections have been used to analyze East African

climate: past climatology, future projections as well as projected changes. In addition,

projected changes in the synoptic scale phenomenon and known climate drivers like the

Indian Ocean SST anomalies have been investigated. To retain some objectivity and reduce

uncertainty in the GCMs, screening of the available GCMs was carried out and only the

least biased three were used. In the future, considerations to use higher spatial and temporal

resolutions from the Coupled Model Inter-comparison Project Phase 5 (CMIP5) will be looked

at.

At the mesoscale dimension, our focus was on how to improve short term weather forecasts

through dynamic downscaling. This was achieved by using the Advanced Regional Prediction

(ARPS), a mesoscale storm model that has been used widely to study storms, extreme

weather events and downscaling of forecasts. To add value to downscaling and address some

of the challenges associated with downscaling, a Coupled atmosphere land data assimilation
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system (CALDAS) was used to improve prediction of extreme events with a focus on the LVB.

The AMSR-E passive microwave data which is sensitive to water vapor and cloud water was

used for this purpose. Improvements in QPF and the value added by the introduction of

satellite observations are investigated and key issues needing further development identified.

It is expected that mesoscale models are able to represent mesoscale/local weather dy-

namics, which are the key drivers of activities and interactions at the basin scale. With this in

mind, the downscaled meteorological variables from the regional model are used to drive the

Water and Energy Budget-Based Distributed Hydrological Model (WEB-DHM) and study

suitability as inputs for an early warning system for floods in the Nyando river basin, located

in the greater LVB.

1.5 Justification of the study

Lake Victoria and its catchment support millions of people in agriculture, transport, and

fishing. It provides food (fish), hydropower, transport and communication, tourism, water

for domestic agricultural and industrial use, wastewater disposal, and recreation. In addition,

this basin is the main source of the Nile river . Extreme weather-induced disasters like

droughts and floods have been prevalent and this has affected farming widely, the main

subsistence economic activity in the basin. Perennial floods have led to loss of lives, property

and incomes and so it is important to understand the likely changes in climate dynamics

(especially rainfall) since this will have major impacts in the region. Improving predictability

of short term extreme rainfall is also important as this can form the backbone of early warning

systems in the flood zone areas.

According to the Lake Victoria Basin Commission(LVBC), Lake Victoria is one of the

most dangerous waterways in the world (LVBC, 2012). Each year 4,000-5,000 people die

in the lake due to drowning, pirate attacks, and accidents . Most of the victims are fisher-

men who leave behind an average of 8 dependents and hence the hazard affects over 30,000

people annually. It is not clear what portion is caused by human error or weather, but the
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likelihood of an extreme event would only exacerbate the situation. In addition, areas bor-

dering Lake Victoria also experience the highest number of thunderstorms (more than 200

a year) associated with nocturnal convection over the Lake (Fraedrich, 1972; Anyah et al.,

2006). Land-breeze convergence over the lake during the night releases latent instability of

the moist lower layers of air over the lake which participate in the land breeze circulation,

resulting in the development of cumulonimbus clouds and thunderstorms over the lake most

nights of the year (Lumb, 1970). An understanding of the likelihood of increases or de-

creases in these events would be helpful in supporting early flood warning systems, extreme

weather monitoring for maritime safety systems such as LVBC (2012) and general safety and

sustainability in the lake basin.

In a feasibility study Semazzi et al. (2011) commissioned by the LVBC, several aspects

associated with extreme climate were reviewed through interviews, modeling, desk reviews

and consultations with stakeholders in the LVB. They identified extreme weather as a big

challenge to transportation in the LVB. The study included assessment of atmospheric and

marine, monitoring and modeling requirements from which a Plan for a Navigation Early

Warning System (NEWS) (CTOR1, CTOR3, and CTOR4) was one of the proposed interven-

tions. This is in addition to a plan for a Hotspots Atlas (CTOR2), Marine and Atmospheric

Observational Network and Water/Air Quality (CTOR3) and a plan for the Consultant’s

Proposal for a Centre for Meteorological Services (CMS) for the LVB (CTOR5).

One key finding from this study was that there was a general lack of reliable and useful

weather forecasts: ”The final daily forecast in each country is largely based on the analy-

sis of output from a handful of regional mesoscale models run daily in Nairobi and Dar es

Salaam. These numerical weather prediction systems are initialized using the analyzed out-

put from global models such as the Global Forecast System (GFS) or the European Centre for

Medium-Range Weather Forecasts (ECMWF). Numerical models can provide useful guidance

for forecasters concerned with severe storms, but their usefulness is conditioned on their abil-

ity to interpret the current weather scenarios and integrate the patterns forward in time. In

the future, mesoscale models for the LVB region would be well served to utilize the surface
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data being collected to improve the initial conditions in the model. Additionally, any future

radar or buoy data collected could be assimilated into the models to improve their predictive

capabilities. ”

Even though our study is not part of this project; this is one aspect we seek to provide

an input into improving weather prediction in the LVBC.

1.6 Dissertation outline

Chapter one of this thesis addresses the problem statement, the issue of climate change,

and current challenges of numerical weather prediction toward extreme events. Chapter 2

discusses the concept of holistic approach to climate change for flood monitoring with a

focus on extreme events. The results of climate change assessment of the Nyando river basin

scale are presented. Chapter three builds on Chapter 2’s findings; the associated changes in

regional and synoptic systems are discussed. In addition, the possible mechanisms of extreme

events under CMIP3 are discussed.

Chapter four presents an overview of numerical weather prediction of extreme events. The

concepts of dynamic downscaling and data assimilation are briefly discussed. The results of

numerical weather prediction and dynamic downscaling of global weather forecast experi-

ments at the LVB are presented. The assessment of performance of ARPS in representing

a selected extreme event is analyzed and strengths and deficiencies identified. The value

added by assimilation is discussed as well as the performance of the system. Extra sensitiv-

ity experiments on aspects that need improvement are presented and key issues identified.

Finally, chapter five presents the key findings, conclusions and recommendations for future

improvement.
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Chapter 2

Climate change: Expected changes in

rainfall and flow Regimes in Nyando

river basin

2.1 Climate change overview

The importance of climate change has been highlighted in many studies. In developing

early warning systems in relationship to health (Patz et al., 2005) emphasized on the need

for factoring climate change. In developing a framework for community interactions under

climate change, Gilman et al. (2010) showed that species interactions can dramatically alter

species responses to climate change. In their study, Fankhauser and S.J. Tol (2005) drew

attention to the fact that the direct impact of climate change on the economy is not the

only way in which global warming affects the future welfare but also the prospect of future

damages (or benefits) also affects capital accumulation and people’s propensity to save, and

hence the rate of economic growth.

Water is the key to life and its availability, quantity, and quality is important for human-

ity. It has been suggested that ”if there is going to be a World War III, it will be fought over

water”. It is therefore of greater importance to consider the water issue both for sustain-
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ability. The impacts of climate change (both natural and anthropogenic) on water resources

have been investigated widely and there is an almost consensual agreement on the need for

sustainable management of the available water resources and strategic planning for future

generations, both nationally and globally (Bates et al., 2008; Piao et al., 2010; Delpla et al.,

2009; Whitehead et al., 2009). Sustainable use of the available water resources as well as

sound future planning based on the most likely scenarios of future climate is very important

both at the regional and local planning levels. In designing policies and strategic manage-

ment plans, it is imperative and almost a requirement to consider climate change impact

possibilities.

One of the adverse effects of climate change as identified in the AR4 report is the likelihood

of a global increase in extreme weather events. These events, whose recurrence cannot be

wholly attributed to climate change, tend to have more negative impacts. It is thus essential

and important to understand the probabilities of such events in the future not only at global

and regional scales but also at smaller scales (e.g. river basin scale). This chapter presents the

results of such an investigation at Nyando river basin (NRB) a part of LVB characterized by

perennial floods occasioned by extreme rainfall. The CMIP3 GCM output is analyzed with

1981-2000 chosen as the base period and 2045-2065 as the future. Through bias correction

and downscaling, precipitation from the coarse GCMs was transferred to the basin scale

and changes between the past and future investigated. The impact of changes in mean and

extreme rainfall in flood simulation was done using WEB-DHM. The mechanisms of changes

in extreme events are discussed in chapter 3.

2.1.1 History of climate change

The climate system is a complex, interactive system consisting of the atmosphere, land

surface, snow and ice, oceans and other bodies of water, and living things. Weather and

climate are an essential aspect of the climate system. They are part of the daily experience

of human beings, and are essential for health, food production and well-being. If one wishes

to understand, detect and eventually predict the human influence on climate, one needs, to
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understand the system that determines the climate of the Earth and of the processes that lead

to climate change (Baede et al., 2001). ”Weather”, as we experience it, is the fluctuating state

of the atmosphere around us, characterized by temperature, wind, precipitation, clouds and

other weather elements. Weather is the result of rapidly developing and decaying systems

(such as mid-latitude low and high pressure systems) with their associated frontal zones,

showers, and tropical cyclones.

Weather has limited predictability with mesoscale convective activity lasting only a few

hours while synoptic scale cyclones may be predictable over a period of several days to a

week. Beyond a week or two individual weather systems are unpredictable. Climate, on the

other hand climate refers to the average weather, the mean and variability over a certain

time-span and a certain area. Classical climatology provides a classification and description

of the various climate regimes found on the Earth. The climate varies from place to place,

depending on latitude, distance to the sea, vegetation, the presence or absence of mountains

or other geographical factors. Climate varies also in time, from season to season, year to

year, decade to decade or on much longer time-scales, such as the Ice Ages.

The study of climate change study can be traced back to the 19th century where in

1890’s and 1900’s Samuel Pierpoint Langley, Arvid Hgbom and Svante Arrhenius working

independently tried to quantify the amount of carbon dioxide in the atmosphere as well as

its sources. It was possible during these early stages of climate change science to hypothesize

that an increase in carbon dioxide would lead to eventual warming of the climates. However,

with only rudimentary observations and low emission rates those times, it was impossible

to quantify the trends and many thought any reasonable warming would take thousands of

years and even be beneficial to humanity (Weart, 2003).

2.1.2 The IPCC

The advent of computers and advancement in the understanding of the atmospheric dynamics

led scientists and meteorologists to give Svante Arrhenius arguments more weight and several

studies were conducted. Better understanding of ocean chemistry led to a realization that
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the ocean surface layer had limited ability to absorb carbon dioxide. By the late 1950s,

more scientists were arguing that carbon dioxide emissions could be a problem, with some

projecting in 1959 that CO2 would rise 25% by the year 2000, with potentially ”radical”

effects on climate (Weart, 2003). By 1970’s global warming studies had taken center stage

and many scientists were involved in modeling of current and historical climate.

The Intergovernmental Panel on Climate Change (IPCC) was created in 1988. It was set

up by the World Meteorological Organization (WMO) and the United Nations Environment

Program (UNEP) as an effort by the United Nations to provide the governments of the world

with a clear scientific view of what is happening to the climate. The initial task for the IPCC

as outlined in the UN General Assembly Resolution 43/53 in December, 1988 was to prepare

a comprehensive review and recommendations with respect to the state of knowledge of the

science of climate change, social and economic impact of climate change, possible response

strategies and elements for inclusion in a possible future international convention on climate.

Today this also aims

”...to assess on a comprehensive, objective, open and transparent basis the scientific, tech-

nical and socioeconomic information relevant to understanding the scientific basis of risk of

human-induced climate change, its potential impacts and options for adaptation and mitiga-

tion. IPCC reports should be neutral with respect to policy, although they may need to deal

objectively with scientific, technical and socioeconomic factors relevant to the application of

particular policies.”

Released in 1990, the first IPCC Report concluded that the world had indeed been warm-

ing.

”...Global mean surface air temperature has increased by 0.3 to 0.60C over the last 100 years,

with the five global-average warmest years being in the 1980’s. Over the same period, global

sea-level increased by 10 to 20 cm. These increases were not smooth in time, or uniform over

the globe...”(IPCC, 1990)

The report further predicted an average rate of increase of global mean temperature
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during the next century of about 0.30C per decade (with an uncertainty range of 0.2–0.50C

per decade) assuming the IPCC Scenario A (Business-as-Usual) emissions of greenhouse

gases. The IPCC Second Assessment Report (1995) provided key input for the adoption of

the Kyoto Protocol in 1997. The Third Assessment Report came out in 2001 and the Fourth

in the course of 2007. ”Climate Change 2007”, clearly brought to the attention of the world

the scientific understanding of the present changes in our climate and led the organization to

be honored with the Nobel Peace Prize at the end of that same year (IPCC, 2007). A fifth

assessment report is scheduled to be released in 2013/2014. The reports have given scientists

and policymakers, a platform not only for information on climate change but also for debate,

and a main reference point for evaluation of climate change.

2.2 Modeling of climate change

Concern about potential human impacts on the climate system has generated interest in

predicting future climate and focused public attention on climate models-the tools used to

make such predictions (Keefe and Kueter, 2004). Scientific models, which are mathematical

descriptions of behaviors of natural systems including climate, allow scientists to study the

cause-effect relationships between the phenomena and systems. Climate models are based on

well-established physical principles and have been demonstrated to reproduce observed fea-

tures of recent climate and past climate changes (Randall et al., 2007). There is considerable

confidence that Atmosphere-Ocean General Circulation Models (AOGCMs) provide credible

quantitative estimates of future climate change, particularly at continental and larger scales.

Confidence in these estimates is higher for some climate variables (e.g. Temperature) than

for others (e.g., precipitation).

However, there remains a big challenge in addressing the uncertainties between the differ-

ent models, the trends and future projections which on many occasions have been conflicting.

The term ”projections” is commonly used in climate modeling partly due to uncertainty in

drawing strong conclusions from model outputs. According to the IPCC AR3 report:
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..Climate projection is the response of the climate system to emission or concentration

scenarios of greenhouse gases and aerosols, or radiative forcing scenarios, often based upon

simulations by climate models. Climate projections are distinguished from climate predictions

to emphasize that climate projections depend upon the emission/concentration/ radiative forc-

ing scenario used, which are based on assumptions, concerning, (e.g., future socioeconomic

and technological developments), that may or may not be realized, and are therefore subject

to substantial uncertainty..(Baede et al., 2001).

As noted in Randall et al. (2007), there has been significant improvements in climate

modeling notably: 1) coordinated international efforts and scrutiny of climate models, 2) The

ability of AOGCMs to simulate extreme events, especially hot and cold spells, has improved

and 3) the possibility that metrics based on observations might be used to constrain models

projections of climate change has been explored for the first time, through the analysis

of ensembles of model simulations. This has been achieved through coordinated modeling

efforts.

2.2.1 CMIP3 - Coupled Model Inter-comparison Project Phase 3

Climate change modeling was first characterized in the 1980s by a number of distinct groups

developing, running, and analyzing model output from their own models with little oppor-

tunity for anyone outside of those groups to have access to the model data (Meehl et al.,

2007). In the mid 1990’s the World Climate Research Program (WCRP) committee organized

the first global coupled climate model inter-comparison (CMIP) exercise whereby modeling

groups performed control runs and idealized 1% CO2 increase experiments and made the

data available to researchers outside the modeling group. This was later followed by CMIP2

and CMIP3 with more variables and scenarios. This model data was collected and archived

at the Program for Climate Model Diagnosis and Inter-comparison (PCMDI) and is currently

available to the public through a registered download (WRCP CMIP3 Multi-Model Data).

The data were meant to serve IPCC’s Working Group 1, which focused on the physical

climate system – the atmosphere, land surface, ocean and sea ice – and the choice of variables
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archived at the PCMDI reflects this focus. Currently, a total of 17 modeling groups from 12

countries participate with 24 models. Considerable resources (human and computing) were

devoted to this project (Meehl et al., 2007). Data from the CMIP3 archive has been used

widely in climate change studies all over the world as listed on the PCMDI website.

2.2.2 CMIP5 - Coupled Model Inter-comparison Project Phase 5

After the success of CMIP3, a group of 20 climate modeling groups from around the world, the

WCRP’s Working Group on Coupled Modeling (WGCM), with input from the International

Geosphere-Biosphere Programme’s (IGBP) Analysis, Integration and Modeling of the Earth

System (AIMES) project agreed to promote a new set of coordinated climate model experi-

ments. These experiments comprise the fifth phase of the Coupled Model Inter-comparison

Project (CMIP5) (Taylor et al., 2012).

CMIP5 will provide a multi-model context for 1) assessing the mechanisms responsible

for model differences in poorly understood feedbacks associated with the carbon cycle and

with clouds, 2) examining climate ”predictability” and exploring the ability of models to

predict climate on decadal time scales, and, more generally, 3) determining why similarly

forced models produce a range of responses. The CMIP5 project is expected to address some

of the questions that arose from the Fourth Assessment Report (AR4) and provide a valuable

input into the Fifth Assessment Report (AR5), scheduled for publication in late 2013.

2.3 Extreme weather

An extreme (weather or climate) event is generally defined as the occurrence of a value

of a weather or climate variable above (or below) a threshold value near the upper (or

lower) ends (’tails’) of the range of observed values of the variable. Some climate extremes

(e.g., droughts, floods) may be the result of an accumulation of weather or climate events

that are, individually, not extreme themselves (though their accumulation is extreme)(Field

et al., 2012). Extreme weather events include spells of very high temperature, torrential
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rains, and droughts. Under an enhanced greenhouse effect, changes can occur in both mean

climate parameters and the frequency of extreme meteorological events. Small changes in

mean temperature can result in disproportionately large changes in the frequency of extreme

events(Rosenzweig et al., 2001). Many weather and climate extremes are due to climate’s

natural variability including synoptic phenomena such as El–Niño/La–Niña .

A changing climate leads to changes in the frequency, intensity, spatial extent, duration,

and timing of weather and climate extremes, and can result in unprecedented extremes.

Conversely, not all extremes necessarily lead to serious impacts (Seneviratne et al., 2012).

In Field et al. (2012) and references therein, observations since 1950, observations suggest

statistically significant increases in the number of heavy precipitation events (e.g., 95th per-

centile) in more regions than there have been statistically significant decreases, but there are

strong regional and sub-regional variations in the trends. There is medium confidence that

since the 1950’s some regions have experienced a trend of more intense and longer droughts,

in particular in southern Europe and West Africa, but in some regions droughts have become

less frequent, less intense, or shorter, for example, in central North America and northwest-

ern Australia. Some of these extremes have been attributed to anthropogenic influences,

including increases in atmospheric concentrations of greenhouse gases. Subsequently, most

models project substantial warming in temperature extremes of the 21st century and that

it is likely that the frequency of heavy precipitation or the proportion of total rainfall from

heavy rainfalls will increase in the 21st century over many areas of the globe. This implies

that the likelihood of extreme floods in many parts of the globe remains high. However,

uncertainties in projections of large-scale patterns of natural variability remain large.

2.3.1 Extreme weather indices

Extreme indices have been widely used in the study of extreme weather events with respect

to climate change. Typical indices include the number, percentage, or fraction of days with

maximum temperature (Tmax) or minimum temperature (Tmin), below the 1st, 5th, or 10th

percentile, or above the 90th, 95th, or 99th percentile, generally defined for a reference time
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period. Extreme Value Theory is also an approach used for the estimation of extreme values

(e.g.(Coles and Davison, 2008)) to derive a complete probability distribution for such low-

probability events, which can also help analyze the probability of occurrence of events that

are outside of the observed data range.

Tebaldi et al. (2006) analyzed historical and future simulations of 10 such indicators as

derived from an ensemble of 9 GCMs contributing to the IPCC-AR4 report. Under a range

of emissions scenarios, he showed an agreement in greater temperature extremes consistent

with a warmer climate. Peterson (2002) demonstrated that extreme precipitation showed an

increasing trend since the 1950’s in the Caribbean while the measure of dry conditions, the

maximum number of consecutive dry days, showed a decreasing trend. At regional scales,

these indices provide a first step analysis of the likely patterns of extremes at local scales.

2.3.2 Extreme weather impacts

Increasing exposure of people and economic assets is the major cause of long-term increases

in economic losses from weather- and climate-related disasters (Handmer et al., 2012). Trans-

port infrastructure is vulnerable to extremes in temperature, precipitation/river floods, and

storm surges, which can lead to damage in road, rail, airports, and ports, and electricity

transmission infrastructure is also vulnerable to extreme storm events. The tourism sector is

sensitive to climate since the climate is the principal driver of global seasonality in tourism

demand. Most economies in the developing world are dependent on agriculture. Droughts in

Africa, especially since the end of the 1960’s, have impacted agriculture, resulting to substan-

tial famine. In many regions, the main drivers of future increases in economic losses due to

some climate extremes will be socioeconomic in nature. Developing countries are more likely

to suffer from future disasters than developed countries, especially in relation to extreme

impacts.

24



CHAPTER 2. CLIMATE CHANGE: EXPECTED CHANGES IN RAINFALL AND FLOW
REGIMES IN NYANDO RIVER BASIN

2.4 Study area: Nyando river basin

Knowledge in hydrological response to climate change in a particular basin is important not

only for operational purposes like dam control and irrigation but also for policy planning of

disaster management, early warning, and preparedness. Thus investigation of likely impacts

of climate change on a basin scale is important, though there are limitations attributed to

the spatial resolution and uncertainties in the use of GCM projections. These uncertainties

still remain to be a limiting factor as well as the multiple future water uses not accounted

for in future projections. Downscaling is one way in which GCM projections are used to

investigate climate change at the basin scale. Two downscaling approaches are typically

available; statistical downscaling and dynamical downscaling. Dynamic downscaling involves

the use of finer resolution numerical weather prediction models with GCM output as initial

and boundary conditions. Statistical downscaling involves the use of statistical relationships

to convert the large-scale projections from a GCM to finer spatial resolutions. The statistical

downscaling approach was used.

Nyando river basin (Figure 2.1) is on the western parts of Kenya and is within the greater

LVB. It is geographically located along the equator bounded by latitudes 0o 7’ N and 0o

24’S; longitudes 34o 25’ E and 35o43’E . It covers an area of about 3500 km2 and experiences

some of the most severe problems of agricultural stagnation, environmental degradation, and

deepening poverty found anywhere in Kenya (Githui, 2008). The Nyando River drains into

the Winam Gulf of Lake Victoria and is a major contributor of sediment and phosphorus

to Lake Victoria. Annual flooding resulting to loss of lives, crops, and housing is one of the

major challenges in this basin. About 750,000 persons reside within the Nyando basin, most

of whom live in Nyando District in Nyanza Province, Nandi and Kericho districts in Rift

Valley Province (LVBC, 2007).

Rainfall in this region is mainly influenced by the migration of the Intertropical Conver-

gence zone (ITCZ) and exhibits a bi-modal pattern with peaks in March-April-May (MAM)

and October-November-December (OND) known as long rains and short rains respectively.
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Figure 2.1: Nyando river basin.

In addition to the observed bimodal pattern, a replica of the regional seasonal march, this

region has an additional peak in August. The mean annual rainfall ranges from 800 mm in

the lowlands to about 1600 mm in the highlands. Regional and synoptic scale phenomena

like the Indian Ocean Dipole have been shown to influence the East African climate as whole

(Nicholson, 1996; McHugh, 2006; Black, 2005; Hastenrath, 2007; Latif and Dommenget, 1999;

Indeje et al., 2000). Floods on the lower Kano plains occur frequently and this has affected

the livelihoods of about 1.1 million people (Sang, 2005; Swallow et al., 2009; Mutua et al.,

2012b).

2.5 GCM projections

Testing models’ ability to simulate ”present climate” (including variability and extremes)

is an important part of model evaluation (Solomon et al., 2007). However, there is no

universal methodology in selecting GCMs for climate projections (Overland et al., 2011).

One of the criteria that is often used is the ability of the GCM to simulate present day

climate (IPCC, 2007). This is based on the assumption that GCMs that present climate
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well are likely to simulate more plausible future climates. While this assumption may be

insufficient in some aspects, combining the approach with how well the GCM represents the

interannual variability can reduce the uncertainty. We therefore select the GCMs based on

their representation of the East African climatology for 1981-2000 under the 20th Century

experiment. We focus on the spatial pattern and bias as compared to Global Precipitation

Climatology Project (GPCP) for precipitation, reanalysis data for humidity, zonal wind, and

Geopotential height.

We used JRA-25 reanalysis as ”proxy” observations since long term reliable meteorological

observations in this region are usually unavailable. Even though the reanalysis has a weak

representation of trends in observations caused by different sources of satellite data for JRA25

and large temperature bias in the stratosphere, its advantages outweigh the disadvantages.

For example, the performance of the long time series of the global precipitation is the best

among the other reanalysis. JRA-25 is also the first reanalysis to assimilate wind profiles,

and also low-level cloud along the subtropical western coast of continents is well simulated

(Onogi et al., 2007).

Table 2.1: Selected GCMs used in this study.

Institute GCM Acronym

Max Planck Institute for Meteorology, Germany ingv echam4 ingv

Max Planck Institute for Meteorology, Germany mpi echam5 mpi

Meteorological Research Institute, Japan mri cgcm2 3 2a mri

2.6 Projected changes in the Nyando river basin

Climate change and its variability will continue to exert additional pressure on the already

strained water resources in the East African region. Previous analysis of climate change

(Arnell, 2004; Thieme et al., 2010; Arnell, 1999) and its effect on water resources in Africa
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shows a likely increase in the number of people experiencing water scarcity by 2055. In their

investigation of climate change in this basin, Gathenya et al. (2011) showed that temperature

change had a relatively minor effect on streamflow and sediment yield compared to change

in rainfall and land surface condition. They suggested that improvements in the land surface

condition that result to higher infiltration are an effective adaptation strategy to minimize

the effects of climate change on supply of watershed services.

2.6.1 Methods

Figure 2.2 summarizes the framework used at the basin scale investigation on the impact of

climate change on floods in the Nyando river basin. This comprises of: GCM selection (based

on seasonality and bias), bias correction and downscaling of GCM outputs, flood simulation

for the past, and likely flood scenario in the future.

Statistical Downscaling  Statistical Downscaling  

Select GCMs  

Input: Framework for 
adaptation  

PAST 
20cm GCM 
1981- 2000 

FUTURE 
A1B, Forcing 
2045 – 2065   

DISCHARGE 
Change = Future - Past 

Hydrological 
Modeling 

Hydrological 
Modeling 

Extreme Floods 
Return periods 

Downscaling 
Statistical  
• No-rain days : frequency 
• Normal Rain : Gamma CDF 
• Extreme : Extreme 

distribution functions 
 

GCM Acronym
ingv_echam4 ingv

mpi_echam5 mpi

mri_cgcm2_3_2a mri

Model Selection 
GCM Vs. Reanalysis 
Statistics: 
• Minimum RMSE 
• High spatial correlation 

with obs. 
• Good seasonality 
• Minimum bias 
 

Figure 2.2: Framework: Basin scale flood simulation under climate change.
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2.6.1.1 Downscaling and bias correction

At the basin scale, the statistical downscaling approach developed by Nyunt et al. (2013)

was used in this thesis for its simplicity, computation cost and applicability to other regions.

This was carried out for each station to capture heterogeneities that may be inherent in

in-situ observations due to localized mechanisms. The rainfall bias correction was split into

three separate parts: 1)no-rain days, 2)extreme rainfall, and 3)normal rainfall. A common

characteristic of all GCMs is unrealistically high number of wet days. Most of this is repre-

sented as drizzle and it can be attributed to coarse resolution and lack of parameterization

in GCMs. GCM data were extracted for all grids matching the stations within and around

Nyando basin. The general procedure is detailed below:

1. Both GCMs and observations were ranked

2. A threshold of 0.1mm/day was considered for no-rain day in the observations. The

equivalent rank of this threshold in the GCM was then used to define the amount

below which it was considered no-rain

3. The same threshold in the past was used in the future since the assumption is that

systematic bias in the GCMs remains same

Most of the GCMs have a tendency to underestimate extreme rainfall compared to ob-

servations. The General Parreto Distribution (GPD) was used for extreme rainfall bias

correction. Annual maximum rainfall was selected for each year in the observed dataset

(1981-2000) and the lowest value of the annual maxima selected as the threshold for extreme

events. The same numbers of extremes were then set for the past GCMs and the GPD

parameters (shape, scale, and location) determined using the Methods of Moments (MOM).

GCM extremes for future projections were extracted and a transfer function of the past GCM

extremes correction was applied.

For all values greater than a threshold u, the distribution of excess x is defined by
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Fu(y) = [X − u ≤ x|X ≥ u] =
F (x)− F (u)

1− F (u)
(2.1)

With the Generalized Pareto Distribution given by :

G(x;K,α, u) =

 1− [1−K x−u
α

]
1
ξ if ξ 6= 0

1− e
−(x−u)

δ if ξ = 0
(2.2)

Where K = 0 is the exponential distribution, K < 0 is the Pareto distribution and K > 0

is the Pareto II type distribution and

α =
1

2
u[
u2

δ2
+ 1] (2.3)

K =
1

2
u[
u2

δ2
− 1] (2.4)

with u sample mean and δ2 variance.

Normal rainfall was defined as the range between zero rainfall and the extreme rainfall.

Correction in this band is based on the gamma distribution function. The assumption is that

both GCM and observed rainfall fit a gamma distribution function. Both past and future

GCM cumulative distribution functions (CDF) were mapped onto the observed CDF and a

transfer function used for future correction. The gamma function is defined by-:

F (x) =
λβxβ−1e−λx

Γ(β)
(2.5)

λ =
x̄

s2x
(2.6)

β =
x̄2

s2x
(2.7)

Where x̄ is the mean of the sample, s2x is the variance of the sample and Γ() the gamma

function. The inverse of the gamma distribution of past observed rainfall is used to correct

30



CHAPTER 2. CLIMATE CHANGE: EXPECTED CHANGES IN RAINFALL AND FLOW
REGIMES IN NYANDO RIVER BASIN

for past GCM rainfall. This is then used as a transfer function for the future normal rainfall

correction.

x′gcm fut = F−1obs(Fgcm past(xgcm fut)) (2.8)

Where x′gcm fut is the future bias corrected rainfall, F−1 is the gamma inverse function,

and xgcm fut raw future GCM CDF.

2.6.1.2 Temporal downscaling of temperature

Since no temperature observations were available, an empirical temporal downscaling ap-

proach developed by Cesaraccio et al. (2001) was used. This uses the daily minimum and

maximum to regenerate the diurnal pattern which is necessary for hydrological modeling.

2.6.2 Changes in precipitation at basin scale

To facilitate downscaling, daily GCM data were downloaded for the three selected GCMs from

the DIAS system, University of Tokyo, for the periods 1981-2000 and 2045-2065 corresponding

to the past and future respectively. Extraction of daily data was based on spatial location

of the 21 gauge stations within and around the basin. Downscaling and bias correction was

then carried out on a station by station basis. Figures 2.3(a) and (b) shows the raw GCM

rainfall for the base and future periods. The performance of the GCMs in representing this

basin’s climatology was very similar in the past and future. The models are heavily biased

for the months of June to September, which coincides with the drier periods in this basin.

The GCMs show peaks in March-May and October-December which correspond to the long

and short rain seasons in this region but fail to replicate the third weak season in August

partly because of the coarse resolution and parameterization weakness in the GCMs.
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2.6.2.1 Changes in mean rainfall

Figures 2.3(c) and (d) show the bias corrected rainfall for the past and future respectively

and seasonality is introduced after bias correction for both the past and future. The bias

correction method reproduces a good match between the observed and the downscale pre-

cipitation. Table 2.2 summarizes the projected basin average changes. There is a projected

increase in both seasons with all the three models agreeing to an increase in February, March,

September, October, November and a decrease in July and August. The three selected mod-

els project a 7% increase (2046-2065) in annual precipitation over the basin with the largest

annual increase of 9% represented by the ingv model. The other two models project a 6.8%

increase.

The three models agree on seasonal increase but differ in magnitudes. The ingv GCM

projects an increase of about 11% in MAM and about 21% in OND, the mri, and mpi GCMs

project less than 5% increase in MAM and about 15% in OND. At the monthly scale, the

three models agree to a decrease in the months of July and August, an increase in February,

March, September and November. The magnitude of change in all months varies widely. For

example, in May, ingv projects a 15% increase and mri a 17% decrease. But this is just part

of GCMs uncertainties inherent in the use of GCM data.
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Figure 2.3: Raw GCM data (a, b) and bias corrected/downscaled rainfall GCM rainfall (c,

d) for 1981-2000 and 2045-2065 respectively.

Table 2.2: Projected change in rainfall and discharge, Nyando river basin (%).

GCM Season Rainfall Discharge

ingv MAM 11.3 66.0

OND 20.5 89.0

mri MAM 4.0 -25.0

OND 15.5 37.0

mpi MAM 1.7 -4.0

OND 17.0 18.0

Annual 7.0 15.5

MAM Mar- May

OND Oct - Dec
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2.6.2.2 Changes in extreme rainfall

As highlighted in the previous section, the assessment of extreme events and future likelihood

of floods is important. Most extreme floods in this basin is as a result of individual extreme

mesoscale rainfall events related to synoptic changes in atmospheric conditions as well as

locally induced convection. According to the IPCC AR4 report; the global projection of

extreme weather events in East Africa is likely to increase. This study investigated the likely

changes of extremes at a basin scale which can be used for informing decision makers in

designing policies and adaptation mechanisms for strengthening the resilience of Nyando’s

population towards climate change.

A two-pronged analytical approach was used to cater for GCM bias in extreme event

representation.

• Statistical downscaling using the generalized Pareto distribution (GPD) by Nyunt

et al. (2013) for the past (1981-2000) and future (2045-2065) at basin scale

• Regionally, the signal identified at the basin scale was investigated by analyzing

the statistical and dynamic characteristics of 30 extreme events as projected by

the three selected GCMs. This is discussed more in chapter 3.

Figure 2.4 shows the top 20 extreme events in three selected rain gauges in the basin for

observed rainfall and past/future GCM rainfall after bias correction. The pattern of the past

GCM closely follows that of the observation with the exception of a few stations. The three

GCMs show an increasing trend in future extremes with some stations having more than 50%

increase in intensity. This is an indicator that this basin is very likely to suffer more floods

as a result of extreme rainfall.
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Figure 2.4: Extreme rainfall bias correction for top 20 extreme events (selected stations)

2.6.3 Changes in flow regimes

This section presents the methodology and results on climate change impacts on mean flow

and flood extremes in the Nyando river basin.

2.6.3.1 Hydrological model

Watershed models are powerful tools for water resources planning and management. Models

are used to predict how conditions are expected to change over time, to understand the nature

and scope of a problem or to evaluate alternative management options. The Water and
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Energy Budget-Based Distributed Hydrological Model (WEB-DHM)(Wang et al., 2009) is a

distributed biosphere hydrological model developed by coupling the Simple Biosphere Model

2(SiB2)(Sellers et al., 1996) with a geomorphology-based hydrological model(GBHM)(Yang

et al., 1998). The model is capable of providing at a basin scale, the spatial description of

water, energy and CO2 fluxes. The structure and framework are as shown in figure 2.5. More

details on WEB-DHM can be found in Wang et al. (2009).
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Figure 2.5: The WEB-DHM.

2.6.3.2 Model forcing data

To investigate the likely changes in flow regimes in this basin, the hydrological model was

forced with rainfall, temperature, wind and other meteorological variables from the respective

GCMs. Rainfall data were acquired from the Kenya Meteorological department and the JICA

Kisumu field office. River discharge was acquired from the Water Resource Management

Authority (WRMA). Since most of the rainfall data had missing values (approximately 25%)

geostatistical approximation proposed by Mutua (2012) in the Nyando basin was used. In
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addition, since some meteorological variables (e.g. Air temperature, wind and pressure) were

not available in in-situ observations, the JRA25 reanalysis datasets were used and it was

demonstrated to be a good proxy (Mutua et al., 2012b).

Figure 2.6: Nyando River basin, Kenya. a) Sub basins, b) Rain-gauge stations, c) Soil types,

and d) Land use.

Figure 2.6 shows the locations of the river gauges with the most downstream gauge

(1GD03) used for calibration, validation, and assessment of floods because it had the most

complete data. Also included in this figure is the distribution of the rain gauges, with most

of the stations located upstream. This basin is predominantly agricultural with most of the

domain having loamy sandy soils.
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2.6.3.3 Changes in mean discharge

The WEB-DHM was calibrated for the year 1988 and validated for 1989-1990. Saturated

hydraulic conductivity for the soil surface (KS), anisotropy ratio (Anik), and hydraulic con-

ductivity decay factor (f), as well as the maximum surface water detention parameters were

calibrated by matching simulated and observed discharges. Visual interpretation, percent-

age bias (PBIAS) and Nash coefficient (Nash and Sutcliffe, 1970) were used in adjusting

these parameters. The results presented here are for the upstream of the discharge gauge

1GD03. Figure 2.7 shows the daily hydrograph for both the calibration and validation peri-

ods. Though calibration produced higher values of the Nash coefficient (0.7), the validation

period produced a weaker measure (0.30) attributable to rainfall data gaps.
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Figure 2.7: Calibration and validation, WEB-DHM.

0

10

20

30

40

50

60

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

m
3
 /

 s
e

c 
 

Mean discharge (1981-2000) : GCMs 

Qbs

ingv_20c

mri_20c

mpi_20c

a) 

0

10

20

30

40

50

60

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

m
3
 /

 s
e

c 
 

Mean discharge (2045-2065) : GCMs 

Qbs (81-00)

ingv_a1b

mri_a1b

mpi_a1b

b) 

Figure 2.8: Discharge for 1981-2000 (a) and 2045-2065 (b).
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Evaluation for discharge is based on baseline simulated discharge using bias corrected

GCM rainfall for 1981-2000 to eliminate any systematic model bias. A simple future minus

past calculation was used to calculate changes in the mean flow and averaged over 12 months.

In addition, a flood exceedance probability was done to investigate flood recurrence in the

future. The selected models project an annual increase of 46%( ingv) and 15%( mpi) respec-

tively with the mri model predicting a decrease of 2%. On the seasonal scale the GCM mean

projects an increase of 13% in the MAM season and 49% in the OND season. November and

December are projected to experience the largest increase of about 58% and 45% respectively

while August is projected to decrease by 2%. This follows the rainfall pattern with the OND

season projected to experience more rainfall.

2.6.3.4 Probability of flood

The study also investigated the flood extreme probabilities and figure 2.9 shows the simulated

future and past discharge extremes based on GCM simulations. The probability of 10 and

100-year flood is very likely for all the GCMs even though the ingv projects higher rate of

increase compared to the others.

39



CHAPTER 2. CLIMATE CHANGE: EXPECTED CHANGES IN RAINFALL AND FLOW
REGIMES IN NYANDO RIVER BASIN

10

100

1000

10000

1 10 100
D

is
ch

ar
ge

 (
m

3
) 

Return Period (years) 

Frequency analysis : Ingv GCM 

Obs

ingv_20c

ingv_a1b

a) 

10

100

1000

10000

1 10 100

D
is

ch
ar

ge
 (

m
3
) 

Return Period (years) 

Frequency analysis : mpi GCM 

Obs

mpi_20c

mpi_a1b

b) 

1

10

100

1000

10000

1 10 100

D
is

ch
ar

ge
 (

m
3
) 

Return Period (years) 

Frequency analysis : mri GCM 

Obs

mri_20c

mri_a1b

c) 

Figure 2.9: Flood exceedance frequency analysis of (a) ingv, (b) mpi and (c) mri.

2.7 Summary

This chapter introduced the concept of climate change, IPCC projections on extreme events,

and the necessity to factor in climate change in development. Preliminary climate change

assessment study in the Nyando river basin was carried out. Frequency and intensity of

extreme rainfall were bias corrected and downscaled to the basin scale. The three selected

GCMs project a water basin in the future, which is in line with the regional projected increase

40



CHAPTER 2. CLIMATE CHANGE: EXPECTED CHANGES IN RAINFALL AND FLOW
REGIMES IN NYANDO RIVER BASIN

in mean rainfall in East Africa by the IPCC AR4 report. Of particular importance is the

projected increase in the intensity of extreme events with an almost consensual agreement

of more than 50% increase by the three GCMs. Through hydrological modeling, the three

selected GCMs project a wetter basin with a likelihood of increase in mean discharge with all

GCMs projecting an increase in the peak floods, almost two times historical floods. A sta-

tistical and dynamic analysis of these extreme events as projected by the GCMs is discussed

in detail in chapter three.
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Chapter 3

Climate change: Projected changes in

climate in the LVB, East Africa

3.1 Introduction

In Chapter two, we focused on basin scale analysis of climate change through downscaling and

flood projections based on CMIP3 SRESA1B. The three selected models project an increase

in both mean rainfall and intensity of extremes. This chapter builds on these findings and

investigates projections at the regional scale. Statistical analysis of these events is done and

preliminary dynamics of the highest 30 extremes in April and November are analyzed. In

addition, East Africa’s mean climatology is introduced together with a review of established

synoptic mechanisms.

3.2 East Africa climate characteristics

The East African region meteorologically is one of the most complex sectors of the African

continent (Nicholson, 1996). Major convergence zones, superimposed regional factors with

lakes, topography, and maritime influence are some of the complex tropical influences. Sea-

sonality changes dramatically in the region, sometimes in the order of tens of kilometers.
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Some regions have one, or multiple seasonal maxima. There is usually a stark contrast

with the transition from deserts with rainfall less than 200mm a year to tropical rainforests

exceeding 2000mm a year, and usually over short distances.

Nevertheless, the climate in this region is more regionally controlled and generalities can

be drawn. The wind and circulations governing this region include three major streams and

three convergence zones. These are: the Congo air mass (westerly and south westerly), the

northeast monsoons, and the southeast monsoons. Both monsoons are relatively dry while

the Congo air mass is humid, convergent and thermally unstable. The two monsoons are

separated by the inter-tropical convergence zone (ITCZ). Several aspects of the climate in

this region are still poorly understood especially the cause of the dry air and the shallow

moist air streams.

Localized systems have been suggested to play a critical role. Nicholson (1996) suggesting

that the highlands act to block the moist westerly Congo flow from reaching the coastal areas

and some parts of Ethiopia and Somalia. Kinuthia (1992) suggested a low-level Turkana jet

which produces a pattern of descending air that enhances aridity over the northeastern sides

of the region. The Somali jet (Krishnamurti et al., 1976), a part of the South East monsoon

flows parallel to the coast inducing subsidence and divergent flows also enhancing aridity. The

true cause of rainfall is not yet fully clarified but in general the incursion of humid westerly

Congo air mass brings rainfall in the region. Further it has been shown that the rainfall

pattern also closely follows the migration of the ITCZ (Ogallo, 1988; Mutai and Ward, 2000;

Nicholson, 2009; Suzuki, 2010).

3.2.1 Climatology

Figure 3.1 shows the mean annual rainfall for the period 1981-2000 from the Global Pre-

cipitation Climatology Project (GPCP). Regions receiving the highest amounts of rainfall

are also the same that have longer seasons and highest relief (e.g. Mt. Kenya, Mt. Kili-

manjaro, northwest of Lake Victoria, and the Ethiopian highlands). The driest areas are to

the northeast of the region with northeastern districts of Kenya, Somalia and south, south-
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west of Ethiopia is the driest, receiving about 400 mm a year. Most of the region receives a

bimodal rainfall pattern with maxima occurring during the transitions between the two mon-

soons (Nicholson, 1996; Ogallo, 1988; Mutai and Ward, 2000; Nicholson, 2009). In Kenya

and other regions there is a third maximum in July-august especially over the Lake Victoria

region. In the northern and southern parts of the region, rainfall is mainly unimodal with

maxima occurring during the peak of the ITCZ.

Figure 3.1: Rainfall climatology (1981-2000).

Figure 3.2 shows the latitudinal migration of rainfall maxima in the region for (Lat:10S-5N

and Lon: 30E-40E) as defined in Indeje et al. (2000). The dominant pattern is the South-

North-South migration as a main consequence of the ITCZ. High amounts of rainfall in the

southern hemisphere occur from December to April while in the north the maximum occurs

during March-May and again in October-December. Between June and September, most
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of the region is dry except for some areas northwest of Lake Victoria. This region receives

rainfall nearly all year round. The March-April-May (MAM) season is usually referred to

as the long rains season while the October-November-December (OND) is referred to as the

short rains season. The long rains are more economic importance to the region and also

associated with floods and related disasters.

Figure 3.2: The North-South rainfall climatology (1979-2000).

3.2.2 Variability

Despite the inhomogeneity of the regional mean rainfall conditions, the variability in the

region is quite coherent. This implies that the primary factors that govern variability are

large scale and affect the region the same way (Nicholson, 1996). The short rains tend to

have stronger Inter-annual variability, stronger spatial coherence of rainfall anomalies across
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a large part of the region, and a substantial association with El-Niño Southern Oscillation

(ENSO)(Mutai and Ward, 2000).

3.2.3 Rainfall, ENSO, and IOD

The ENSO is a quasi-global climatic fluctuation related to an asymmetric east-west tropical

circulation limited to the subtropical highs (Nicholson, 1996). It is marked by a weakening

of the global Walker circulation (Bjerknes, 1969). ENSO is monitored using the Southern

Oscillation Index, defined by pressure differences in Tahiti and Darwin. The ENSO period is

characterized by above average rainfall (El–Niño) in most of the regions and drought during

the next year (La–Niña).

The Indian Ocean Dipole Mode (IOD) (Saji et al., 1999), an irregular oscillation of sea-

surface temperatures in which the western Indian Ocean becomes alternately warmer and

then colder than the eastern part of the ocean, the ENSO cycle and SST anomalies have been

shown to influence the inter-annual variability in this region. Black (2005) used observations

to investigate the relationship between ENSO, IOD, and East African short rains. She

concluded that heavy rainfall is strongly associated with strong warming in the pacific and

the western Indian Ocean and cooling in the East Indian Ocean. Recent studies (Indeje et al.,

2000; Mutai and Ward, 2000; Nicholson, 1996) analyzed this variability and demonstrated

some interesting associations with the atmosphere and ocean phenomena. Indeje et al. (2000)

suggested a strong relationship between the ENSO and East African rainfall but the SST

anomalies even have strong associations with SST in both Atlantic and Indian oceans (Latif

and Dommenget, 1999).
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Figure 3.3: MAM seasonal rainfall correlation with (a) IOD and (b) Niño3.

Figure 3.3 shows the spatial correlation between the long rains (MAM), IOD, and Niño3(ENSO).

As it can be seen the MAM rainfall is weakly related to the IOD mode which is a direct reflec-

tion of the SST anomalies in the Indian Ocean. Consequently, the relationship between MAM

rains and ENSO is also weak and has been a subject of intense research without conclusive

explanation of the mechanisms of inter-annual variability.

Figure 3.4: OND seasonal rainfall correlation with (a) IOD and (b) Niño3.

Figure 3.4 shows the spatial correlation between the short rains (OND), IOD, and Niño3(ENSO).

As it can be seen the OND rainfall is strongly correlated to the IOD mode which is a direct

reflection of the SST anomalies in the Indian Ocean. Consequently, the relationship between
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OND rains and ENSO is also strong. Mutai and Ward (2000) evaluated the atmospheric

teleconnections giving rise to the SST correlations, the circulation anomalies associated with

East African rainfall using National Centers for Environmental Prediction National Cen-

ter for Atmospheric Research(NCEP-NCAR) reanalysis data and, as a proxy for large-scale

tropical convection anomalies, outgoing longwave radiation (OLR). They concluded that in

the seasonal OND mean, a sequence of three horseshoe structures is evident in the OLR

anomalies, with an anomaly sign in phase over the central Pacific and East Africa, and out

of phase over the Maritime Continent. This gives rise to the positive ENSO association with

East African rainfall. The horseshoe structures in the Indian Ocean are absent in September

and through much of the long rains in March-May, though weakly evident again in May. It

is suggested that the presence or absence of this teleconnections structure is related to the

state of the background annual cycle. Generally, warm (cold) ENSO events are associated

with enhanced (suppressed) rainfall in this region.

The response of these Mesoscale systems with respect to climate change is important for

it will have a direct impact on rainfall in this region. In their study Conway et al. (2007),

used GCM simulations to study the simulated ENSO and IOD systems and concluded that,

using the available GCMS, it is not possible to clarify the likely changes in the future. It is on

the basis of this basic understanding that this study attempts to investigate at a preliminary

stage, the projected changes in rainfall and these teleconnections.

3.3 Data and methodology

Global datasets were used to investigate projected climatic changes in this region in the future

due to lack of ground based observations. The base period was chosen to coincide with the

basin scale data available for the river basin. Figure 3.5 summarizes the regional analysis

framework for climate change in the LVB. The same GCMs selected in chapter 2 were used

in this section. Changes in regional extreme rainfall (without bias correction) and analysis

of the extreme event characteristics and mechanisms are the key focus for this chapter.
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Figure 3.5: Framework : Regional analysis of scale climate change.

3.3.1 Rainfall

At the regional scale, the GPCP climatology (Adler et al., 2003) was selected as the reference

for past rainfall. GPCP data, which is a combination of observations and satellite estimates

has been used successfully in other studies and has been suggested to be of reasonable quality.

The GPCP data has already been found capable of revealing changes in observed precipitation

on seasonal to inter-annual time scales and in validating model generated precipitation from

reanalysis systems, such as those from NCEP/NCAR and ECMWF (Gruber, 2008).
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3.3.2 Other meteorological variables

Air temperature, zonal and meridional wind as well as pressure and other meteorological

variables were acquired from the Japanese 25-year Reanalysis (JRA-25) project (Onogi et al.,

2007). The JRA-25 model and data assimilation is from the operational system in April

2004. It was the first reanalysis to assimilate wind profiles around tropical cyclones deduced

from best-track data, resulting in improved tropical cyclone analysis in a global context. In

addition, low-level (stratus) cloud decks along the western subtropical coasts of continents

are also better simulated, improving radiation budgets in these regions. A primary goal of

JRA-25 is to provide a consistent and high-quality reanalysis dataset for climate research,

monitoring, and operational forecasts, especially by improving the coverage and quality of

analysis in the Asian region. However, it has also been found useful in hydrological studies

of river basins without adequate ground-based observations such as Mutua et al. (2012b);

Jaranilla-sanchez et al. (2010).

3.4 Projected regional changes in rainfall

Precipitation and zonal wind (U-850hPa) variables were analyzed from the three selected

GCMs. Investigations were done at a regional scale to determine the qualitative projected

changes relative to the 1981-2000 baseline. Figure 3.6 shows annual mean precipitation

(GPCP), zonal wind (JRA25), and the three GCMs for the period 1981-2000. The correlation

factors for the three models are greater than 0.8 with an average Root Mean Square Error

(RMSE) less than 2.6. The three selected models represent the regional climatology well

though the mpi model seems to underestimate precipitation.
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Figure 3.6: Annual mean precipitation (a) GPCP, (c) MRI, (e) INGV, (g) MPI and annual

mean zonal wind (b) JRA, (d) MRI, (f) INGV, (h) MPI .

Rainfall maxima is recorded south of the region in the observations but rather biased
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in the GCMs. The northern parts are dry in the observations and the GCMs were able

to reproduce this pattern. The GCMs seem to have a positive bias over the LVB with

observations-GCM difference of about 3mm/day. Figure 3.7 shows the mean annual bias for

the three GCMs. There is a tendency of positive bias on the wet regions (e.g the Congo

basin and Western Indian Ocean) by the GCMs. The driest regions e.g. Northern Kenya,

Southern Ethiopia, and Somalia are negatively biased by the GCMs. The selected GCMs

represent this climatology well and thus are suitable for further regional analysis.

Figure 3.7: Mean GCM annual bias (1981-2000).

Figure 3.8 shows the respective mean MAM and OND GCM bias. The models are more

biased towards the MAM season than the OND season. During the MAM season, they are

unable to reproduce matching climatology which is strongly related to the presence of the

ITCZ and this serves to highlight the challenge of explaining the long season’s variability.
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Figure 3.8: Mean GCM seasonal bias (1981-2000) (a) MAM season and (b) OND season.

Figure 3.9 and figure 3.10 show the projected mean seasonal variation of precipitation (a,

c, e) and zonal wind (b, d, f), GCM baselines and projected future anomalies (2040-2065) for

MAM and OND respectively. There is a general agreement between the three GCMs favoring

an increase in precipitation. During the MAM season (Figure 3.9), the GCM ensemble mean

projects positive anomalies all over the region with the LVB projected to experience more

rainfall with notable increases over the lake area. The northern parts of Kenya, Somalia

and northeastern parts of Ethiopia are projected to experience reduced rainfall. Increase in

the southern parts of the East African region and decrease in the northern parts highlight

that these changes are in line with the S-N-S migration of the ITCZ with regions that are

predominantly wet having more rainfall and the drier parts getting drier. This indirectly

suggests the strengthening of the ITCZ during this season. Zonal wind anomalies over the

central Indian ocean suggest a weakening of the westerlies and this is closely associated

with increased rainfall in the central Indian ocean, extending to the East African coast as

previously shown by Hastenrath (2007).
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Figure 3.9: Mean seasonal (MAM) precipitation (a) past, (c) future, (e) change, and mean

zonal wind (b) past, (d) future and (f) change .

Although a similar trend is observed during the OND season (Figure 3.10), it is more

pronounced over the western, northern parts and the coastal areas. The intensity is almost

two times the MAM season and this period coincides with the north segment of the ITCZ.

The Ethiopian highlands, western Kenya and the LVB basin are projected to have enhanced

rainfall in the future. The southern parts of Africa around 150S are projected to have reduced

rainfall. This season is also associated with weakened westerlies extending all the way to
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central Kenya around the equator.

Figure 3.10: Mean seasonal (OND) precipitation (a) past, (c) future, (e) change, and mean

zonal wind (b) past, (d) future and (f) change.

3.5 Synoptic scale correlations

We carried out a preliminary check on the correlation signal between the OND seasonal

rainfall and West Indian Ocean SST dynamics. Figure 3.11 shows the IOD and ENSO

correlations with the east African OND season for 2045-2065. Compared to the past, the
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correlation between OND rainfall is suggested to weaken over most of the east African region.

The GCM suggests a weaker (0.2) correlation over the Congo basin. A similar trend is

observed for OND-ENSO correlations but widely overshadowed by the GCM bias. Based on

this, it is not possible to conclusively suggest the likely changes in ENSO and IOD influences

in this region. However, diagnostic investigation of the likely pattern of ENSO suggests

a more likely El–Niño/La–Niña events in the future (figure 3.12). The period of study is

projected to experience more ENSO-like events compared to the period 1981-2000.

Figure 3.11: OND seasonal rainfall correlation with (a) IOD and (b) ENSO for (2045-2065).
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Figure 3.12: Niño3 SST index Anomalies (base period : 1981-2000).

3.6 Changes in Regional Scale Dynamics

Previous studies by Hastenrath (2007) and Lyon and DeWitt (2012) identified a strong corre-

lation between the western Indian Ocean zonal wind anomalies (westerlies) and precipitation

over EA. Also, SST anomalies are closely linked to EA precipitation especially during the
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Figure 3.13: Projected seasonal changes in SST (a) MAM season and (b) OND season.

OND season (Nicholson, 1996; Latif and Dommenget, 1999; Black, 2005). We investigated

changes in these patterns in addition to changes in precipitation.

3.6.1 Sea Surface Temperature (SST) Anomalies

Shongwe et al. (2011) analyzed SST-rainfall link in the CMIP3 GCMs using an ensemble of

12 models and showed that the models were able to simulate this link well. We extended a

similar approach focusing on the selected GCMs (since two were not included in that study)

and investigated this pattern. The mean of the three GCMs shows a trend consistent with

1-2 K warming all over the Indian Ocean(Figure 3.13). It is more pronounced on the western

than the eastern regions. The warming also depicts a South-North gradient with regions east

of the Somalia coast having a 1.4K increase compared to the east of Madagascar (1.7K). This

anomalous warming of the western Indian ocean has been shown to be strongly correlated

with extreme rainfall over EA (Okoola et al., 2008; Lyon and DeWitt, 2012) and has been

previously demonstrated through a coupled modeling framework by Latif and Dommenget

(1999).
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Figure 3.14: Projected seasonal changes in ω averaged over 10S-5N for (a) MAM season and

(b) OND season.

3.6.2 Projected regional changes in circulations

Recently, Tierney et al. (2013) showed that in addition to the SST anomaly influence on EA

rainfall, the Indian ocean drives the EA variability by altering the Walker circulation and

showed that a moist EA coast is associated with cool SSTs over the eastern Indian ocean and

an ascending motion over EA further strengthening the role of Indian ocean for multi-decadal

scales. Changes in the zonal SST gradient in the Indian Ocean coupled with a reversal of

the reversal of the Walker circulation typically cause anomalous convergence and rainfall in

the western Indian Ocean extending into easternmost Africa (Tierney et al., 2011). These

changes in zonal circulation can be caused by anomalously warm SSTs in the western Indian

Ocean.

Our investigations on SST anomalies(Figure 3.13) reveal this warming pattern on west-

ern Indian Ocean consistent with increased precipitation. Also the ω anomalies suggest a

strengthening of the ascending motions implying a weaker Walker circulation (Figure 3.14b).

The GCMs project a weakening of the Congo ascending cell which is consistent with reduced

rainfall while on the EA front, the models suggest a strengthening of the ascending cell ( 40E)

and the associated descending motion. The weakening of this descending motion is closely
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linked with enhanced precipitation consistent with Shongwe et al. (2011) and Vecchi et al.

(2006).

3.7 Projected regional changes in extreme weather events

Projection of changes in climate extremes is critical in assessing the potential impacts of

climate change on human and natural systems (Tebaldi et al., 2006). We used an approach

first proposed by Peterson (2002) and later used on a global scale by Tebaldi et al. (2006).

In this method, climate extreme indices are defined and evaluated based on thresholds and

climatology of the past. These include: total number of frost days, growing season length,

heat wave duration index, maximum 5-day precipitation total, etc.. In this region, located at

the equator, not all indices are relevant and this study focused on rainfall indices only. The

following indices were defined as outlined in Tebaldi et al. (2006).

• Number of days with precipitation greater than 40mm (ECAR40MM)

• Simple daily intensity index (ECASDII)

• Fraction of total precipitation due to events exceeding the 90th percentile of the

climatological distribution for wet day amounts

• Fraction of total precipitation due to events exceeding the 99th percentile of the

climatological distribution for wet day amounts

The threshold of 40mm was selected as extreme since the LVB has a localized Mesoscale

climate and tends to be wet almost all year round. Also, rainfall events above this in obser-

vations are common. In addition, since most GCMs cannot represent extreme events well,

40mm was identified as a reasonable threshold.

(a) Fraction of total precipitation due to events exceeding the 90th and 99th percentile of

the climatological distribution for wet day amounts
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Figure 3.15: Change in fraction of total precipitation due to events exceeding (a) the 90th

and (b) the 99th percentile of the climatological distribution for wet day amounts.

Figure 3.15 shows that under SRESA1B scenario, the number of wet days exceeding the

90% threshold of 1981-2000 is likely to increase by 20-30 % in the whole region. An increase

of about 5-20% is projected in the LVB and the Congo basin with the highest changes of

about more than 30% being projected for the Kenyan-Somali coast. This is also reflected in

the number of wet days exceeding the 99% threshold with about 1-8% projected increase.

(b) Number of days with precipitation greater than 40mm (ECAR40MM)

Figure 3.16 shows the total number of days exceeding 40mm/day in the LVB for the

past and future as well as the projected changes. Regions bordering the Lake to the east

are likely to suffer more extremes with the majority of the events centered on the Kenyan

highlands. This increasing trend is also projected over central Kenya, Northern Tanzania

and parts of Ethiopia and Somalia. However, the largest increase is projected east of Lake

Victoria centered over the Nandi Hills.
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Figure 3.16: Number of days exceeding 40mm/day (a) Past, (b) future and (c) projected

change (%)

(c) The Simple daily precipitation intensity index (ECASDII)

The Simple precipitation intensity index (ECASDII) describes the mean daily precipita-

tion amount during a time period. Figure 3.17 represents the projected change (in %) of

the Simple Daily Intensity Index (ECASDII) by the three GCMs for 2045-2065 compared to

1981-2000. The daily precipitation intensity index increases over East Africa. According to

these results, if rainfall occurs in the future its intensity will be higher than in the past. This

intensification is about 10% for Central Kenya, however, it is only less than 10% for regions

west of Lake Victoria, similar to frequency of extreme days .

61



CHAPTER 3. CLIMATE CHANGE: PROJECTED CHANGES IN CLIMATE IN THE
LVB, EAST AFRICA

Figure 3.17: Simple precipitation intensity index (ECASDII) (a) Past, (b) future and (c)

projected change (%)

3.7.1 Mechanisms of Extreme Events

Precipitation variability in this region is heavily influenced by changes in the Indian Ocean

dynamics. For areas receiving precipitation from the Congo Air Boundary (CAB), inter-

annual changes in the Atlantic Ocean sea surface temperatures (SSTs) and SST gradients

can modulate the strength of the trade winds and the advection of moisture into equatorial

Africa (Tierney et al., 2011). We selected the highest 30 events in April and November

(2045-2065) over LVB and analyzed the regional dynamic characteristics of surface pressure,

circulation patterns as well as moisture advection. Since these two months represent the
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peaks of the MAM and OND season respectively, their characteristics can be assumed to

be representative of the seasonal trend. April events(Figure 3.18 c-d) are characterized by

above normal precipitation south of the equator and stronger anomalies on the southwestern

Indian Ocean. Northern parts of the EA are consequently projected to receive less than

normal precipitation during these times.

In November (Figure 3.18 f-h), the northwestern parts of the EA are wetter with positive

anomalies concentrated over the LVB extending westwards. NW Indian ocean at this time

is projected to experience above normal precipitation while the Somali coast is projected

to receive less precipitation (but only a weak signal in mpi and mri). Southern Africa

is projected to experience less precipitation during these events. The mri and mpi show

stronger signals compared to the ingv.

3.7.1.1 Mean Sea Level Pressure (SLP) and Wind Anomalies

SLP anomalies were computed as departures from the 1981-2000 base period and this was

done for each GCM independently. Investigations suggest anomalous low pressure over the

region during April (Figure 3.19 b-d) for the three GCMs. The low pressure system is present

all over EA extending from the south-west Indian Ocean to Central Africa. In addition, the

easterly flows which transport moisture to EA during this time are projected to be anoma-

lously strong. Over the central Indian Ocean, easterlies develop and these are associated

with weakening of the Walker circulation cell associated with anomalous precipitation.

The low pressure system simulated by the GCMs south of EA is associated with weakened

trade-winds and this are strongly linked to enhanced convergence along the CAB(Tierney

et al., 2011). This enhanced convergence over the CAB is responsible for the increased pre-

cipitation on the western branch of the EA rift valley as previously shown through numerical

modeling by Tierney et al. (2011).

In November (Figure 3.19 f-h), a high pressure pattern is projected in southern parts of

Africa by ingv and mpi and centered over Madagascar. However, for mri this high pressure

system is more inland and extends to southern EA covering some parts of the LVB. Concur-

63



CHAPTER 3. CLIMATE CHANGE: PROJECTED CHANGES IN CLIMATE IN THE
LVB, EAST AFRICA

Figure 3.18: a) Mean precipitation climatology for the EA region based on NCEP reanalysis

for April and b) November for ingv. c) Mean anomaly for the highest 30 events in April and

d) November. Similarly e,f) for mpi and g,h) for mri.
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rently, a low pressure system is projected by all the GCMs covering the horn of Africa and

parts of Ethiopia. The high pressure zones are associated with reduced precipitation dur-

ing the OND season (Figure 3.18e) while the low pressure systems show more precipitation.

During this time, the surface wind speeds decrease over the western Indian Ocean reducing

evaporation and feeding into the development of warm SST anomaly which reduces the SST

gradient. This weakens the Walker circulation causing a large increase in convection over the

western Indian Ocean extending to EA.

3.7.1.2 Moisture Flux Anomalies

Figure 3.20 shows moisture advection anomalies as projected by ingv and mpi. In April, the

models show positive moisture anomalies over EA, consistent with increased precipitation.

Surface wind anomalies suggest advection from the NE Indian ocean and Arabian sea and

this is more pronounced for the ingv model in April. In November, a similar pattern of

positive advection is present all over EA and this is reflected by the heavy precipitation.

Anomalously strong SE flows transport more moisture into the EA region evident in both

models. The positive advection in the region is projected to intensify with anomalous flow

from the western Indian ocean expected to transport more moisture inland and this is closely

linked to enhanced precipitation.
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Figure 3.19: a) Mean PSL and surface wind climatology for the EA region based on NCEP

reanalysis for April and b) November for ingv c) Mean anomaly for top 30 events in April

and d) November. Similarly, e, f) for mpi and g, h) for mri.
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Figure 3.20: a) Moisture advection climatology for the EA region based on NCEP reanalysis

for April and b) November. c) Mean anomaly for top 30 events in April and d) November

for ingv and similarly; e, f) for mpi. Mri was excluded since the model does not have specific

humidity at the surface (1000hPa) in this region.
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3.8 Summary

This chapter analyzed the projected regional changes in rainfall and associated circulation

patterns. It also focused on extreme weather projections by use of extreme weather indices.

Under the SRES A1B scenario, the mean of the three selected GCMs project an increase in

rainfall in the LVB and East Africa as a whole. Analysis at the seasonal scale shows a similar

increasing trend but more pronounced during the October-December season. Over the LVB,

both seasons are suggested to experience an almost equal increase. The GCM projected

anomalies show a pattern very similar to the seasonal migration of the ITCZ with regions

that usually experience peak rainfall having more enhanced anomalies. It has previously been

shown that westerly anomalies in the central western Indian Ocean have a strong correlation

with East Africa’s rainfall. Investigations reveal that, these westerly anomalies are projected

to weaken in the future, a scenario associated with anomalously high rainfall in the region.

Extreme weather indices support Chapter 2’s findings, that this region is likely to experi-

ence more extreme events. The mean of the three GCMs suggests more than 100% increase

in days with amounts more than 40mm/day and a 2-20% increase in the intensity.

3.8.1 Projections of extreme events under climate change

Under the SRESA1B scenario, the number of wet days exceeding the 90% percentile of

1981-2000 is likely to increase by 20-40% in the whole region. An increase of about 5-20%

is projected to occur in the LVB and the Congo basin with the highest changes of about

more than 30% being projected for the Kenyan-Somali coast. This is also reflected in the

number of wet days exceeding the 99% threshold with about 1-8% projected increase. This

is accompanied by more than 100% increase on days with rainfall over 40mm east of Lake

Victoria and central Kenya and 10% increase in the simple daily intensity index.
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3.8.2 Mechanisms of extreme events under climate change

Anomalies from the 1981-2000 climatology show a pattern very similar to the seasonal migra-

tion of the ITCZ with peaks north of the equator. Investigations on mean sea level pressure

and wind anomalies suggest anomalous low pressure over the region during these two seasons.

For events occurring in MAM, a low pressure system is present all over East Africa extending

from the South-west Indian Ocean to Central Africa. Moisture flux convergence during the

two seasons remains high with the Indian Ocean providing the bulk during the MAM season.

Mean sea level pressure anomalies for these events suggest an anomalously high pressure over

the Madagascar (Mascarene high), strongly linked to stronger than usual southwest mon-

soons during the OND season. This, combined with above normal SST anomalies, provide

favorable conditions for stronger than normal precipitation. On the MAM season when the

NE monsoons dominate, a higher pressure gradient is suggested between the northern and

southern hemispheres. A lined-up precipitation anomaly follows a belt of low pressure ex-

tending from the SW Indian Ocean to NE of central Africa. In both seasons, the anomalous

easterly flow from the central Indian Ocean towards East Africa weakens the usual westerlies

associated with subsidence in East Africa. Weakened westerlies, anomalous SST anomalies

and a weakened Walker circulation cell over East Africa is associated with extreme rainfall

in the region.
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Chapter 4

NWP and downscaling of weather

forecasts in the LVB

In a feasibility study commissioned by the LVBC (Semazzi et al., 2011), several aspects associ-

ated with extreme climate were reviewed through interviews, modeling, desk reviews and con-

sultations with stakeholders in the LVB. They identified extreme weather as a big challenge

to transportation in the LVB. The study included assessment of atmospheric and marine,

monitoring and modeling requirements from which a Plan for a Navigation Early Warning

System (NEWS) (CTOR1, CTOR3, and CTOR4) was one of the proposed interventions.

This is in addition to a plan for a Hotspots Atlas (CTOR2), Marine and Atmospheric Obser-

vational Network and Water/Air Quality (CTOR3) and a plan for the Consultant’s Proposal

for a Centre for Meteorological Services (CMS) for the Lake Victoria Basin (CTOR5).

One key finding from this study was that there was a general lack of reliable and useful

weather forecasts.

”The final daily forecast in each country is largely based on the analysis of output from a

handful of regional Mesoscale models run daily in Nairobi and Dar es Salaam. These NWP

systems are initialized using the analyzed output from global models such as the Global Forecast

System (GFS) or the European Centre for Medium-Range Weather Forecasts (ECMWF).

Numerical models can provide useful guidance for forecasters concerned with severe storms,
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but their usefulness is conditioned on their ability to interpret the current weather scenarios

and integrate the patterns forward in time. In the future, mesoscale models for the LVB region

would be well served to utilize the surface data being collected to improve the initial conditions

in the model. Additionally, any future radar or buoy data collected could be assimilated into

the models to improve their predictive capabilities. ” (Semazzi et al., 2011)

Some of the study recommendations are highlighted below :

1. Project 1 : Navigation Early Warning System (NEWS) Pilot Project: The objective

of this project is to test a pilot system for the provision of early warning alerts for

fishermen navigational needs, based on the prediction of severe weather and hazardous

marine conditions over Lake Victoria.

2. Project 2 : Hotspots Atlas: Weather and climate information required for decision-

makers and management of leading socioeconomic sectors in the EAC region is not

currently available at any single collection center.

3. Project 3 : Marine and Atmospheric Special Observing Period (SOP) for LVB: The

results of the feasibility study have indicated the need for a major upgrade in the

observational network for the marine and the meteorological conditions over the LVB.

Even though our study is not part of this project, improved weather prediction is one

aspect we seek to provide an input in the LVB. In this chapter, we will introduce the concept

of NWP, downscaling of weather forecasts and challenges therein, and evaluate the value

added by data assimilation in simulating extreme weather in the LVB. Finally, we identify

the current numerical weather needs that need improvement and suggest ways forward.

4.1 NWP: An historical overview

Humankind has always been fascinated by nature and how things work around him. For

millennia people have tried to forecast the weather. As early as 650 BC, the Babylonians

predicted the weather from cloud patterns as well as astrology. At the time of great scientific

71



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

evolution and study of the solar system, the Greek philosophers had much to say about

meteorology, and many who subsequently engaged in weather forecasting no doubt made use

of their ideas. Unfortunately, they probably made many bad forecasts, because Aristotle,

who was the most influential, did not believe that wind is air in motion. He did believe,

however, that west winds are cold because they blow from the sunset.

Scientific study of meteorology however did not develop much until the invention of the

barometer and thermometer in the mid-17th century. A succession of notable achievements

by chemists and physicists of the 17th and 18th centuries contributed significantly to mete-

orological research. The formulation of the laws of gas pressure, temperature, and density

by Robert Boyle and Jacques-Alexandre-Csar Charles, the development of calculus by Isaac

Newton and Gottfried Wilhelm Leibniz, the development of the law of partial pressures of

mixed gases by John Dalton, and the formulation of the doctrine of latent heat (i.e., heat

release by condensation or freezing) by Joseph Black are just a few of the major scientific

breakthroughs of the period that made it possible to measure and better understand hereto-

fore unknown aspects of the atmosphere and its behavior. During the 19th century, all of

these brilliant ideas began to produce results in terms of useful weather forecasts.

The development of the electric telegraph in 1837 by Samuel F.B. Morse of the United

States revolutionized weather data sharing. By 1849 Joseph Henry of the Smithsonian Insti-

tution in Washington, D.C., was plotting daily weather maps based on telegraphic reports,

and in 1869 Cleveland Abbe at the Cincinnati Observatory began to provide regular weather

forecasts using data received telegraphically. As early as 1814, U.S. Army Medical Corps

personnel were ordered to record weather data at their posts, this activity was subsequently

expanded and made more systematic. Actual weather-station networks were established in

the United States by New York University, the Franklin Institute, and the Smithsonian In-

stitution during the early decades of the 19th century. Within the next few decades, national

meteorological services were established in such countries as the United Kingdom, Japan,

India, and Brazil. The importance of international cooperation in weather prognostication

was recognized by the directors of such national services and by 1880 they had formed the
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International Meteorological Organization (IMO).

4.1.1 Numerical methods of weather prediction

The fundamental notions of NWP were first stated by Vilhelm Bjerknes as early as 1904.

Shortly after the First World War, the first notable attempt at numerical experiment to

predict weather was done. A British scientist named Lewis F. Richardson completed such

a forecast that he had been working on for years by tedious and difficult hand calculations.

Although the forecast proved to be incorrect, Richardson’s general approach was accepted

decades later when the electronic computer became available. He used a horizontal grid of

about 200 km, and four vertical layers of approximately 200 hPa, centered over Germany.

Using the observations at 7 UTC (Universal Coordinate Time) on 20 May 1910, he computed

the time derivative of the pressure in central Germany between 4 and 10 UTC. The predicted

6-h change was 146 hPa, whereas in reality there was essentially no change observed in the

surface pressure. This huge error was discouraging, but it was due mostly to the fact that

the initial conditions were not balanced, and therefore included fast-moving gravity waves

which masked the initial rate of change of the meteorological signal in the forecast (Kalnay,

2003). Richardson’s attempt formed the basis for future numerical predictions

Charney et al. (1950) computed historic first one-day weather forecast using a barotropic

(one-layer) filtered model. The work took place in 1948-9. They used one of the first elec-

tronic computers (the Electronic Numerical Integrator and Computer, ENIAC), housed at

the Aberdeen Proving Grounds of the US Army in Maryland. Their results were quite re-

markable. The 24-h forecast, though largely meteorological produced a reasonable pattern

correlation between the predicted and the observed pressure field. In a later study, Char-

ney (1962) observed that the filtered (quasi-geostrophic) equations, although very useful for

understanding of the large-scale extra-tropical dynamics of the atmosphere, were not accu-

rate enough to allow continued progress in NWP, and were eventually replaced by primitive

equation models.

The primitive equations are conservation laws applied to individual parcels of air: con-
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servation of the three-dimensional momentum (equations of motion), conservation of energy

(first law of thermodynamics), conservation of dry air mass (continuity equation), and equa-

tions for the conservation of moisture in all its phases, as well as the equation of state for

perfect gases (Kalnay, 2003). For example, in the earth’s atmosphere, mass is assumed to

have neither sinks nor sources. Stated another way, this concept requires that the mass into

and out of an infinitesimal box must be equal to the change of mass in the box. This is the

conservation of mass. The continuous equations of motions are solved by discretization in

space and in time using, for example, finite differences. The resolution of the model is directly

related to the accuracy of the forecasts. Higher resolution models tend to produce better pre-

dictions. However, increasing the resolution of any numerical model calls for more computing

power and this yet remains to be one of the key challenges facing weather modelers.

4.1.1.1 Numerical models for weather prediction

Among the most significant scientific advances of the past century is our ability to simulate

complex physical systems using numerical models and therewith to predict their evolution.

One outstanding example is the development of general circulation models (GCMs) of the

atmosphere and ocean, which have brought two great advantages: We can now predict the

weather for several days in advance with a high degree of confidence, and we are gaining great

insight into the factors causing changes in our climate, and their likely timing and severity

(Lynch, 2008).Two types of models are in use for NWP: global and regional models.

(a) General circulation models (GCM)

A general circulation model (GCM) is a mathematical model of the general circulation of a

planetary atmosphere or ocean and based on the Navier-Stokes equations on a rotating sphere

with thermodynamic terms of various energy sources (radiation, latent heat). Figure 4.1

shows a schematic of a GCM. Atmospheric and oceanic GCMs (AGCM and OGCM) are

key components of global climate models along with sea ice and land-surface components.

GCMs and global climate models are widely applied for weather forecasting, understanding

the climate, and projecting climate change. The most complete models of the climate system
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are constructed by discretizing and then solving equations which represent the basic laws that

govern the behavior of the atmosphere, ocean and land surface (McGuffie and Henderson-

Sellers, 2005).

Figure 4.1: GCM Schematic, National Oceanic and Atmospheric Administration (NOAA).

In GCMs, three-dimensional, time-dependent equations govern the rate of change of the

six basic model variables: surface pressure, two horizontal wind components, temperature,

moisture and Geopotential height. The six basic equations solved to derive these variables

are, the hydrostatic equation, two equations for horizontal motion, and the thermodynamic

water vapor and mass continuity equations. Global models are generally used for guidance

in medium-range forecasts (more than 2 days), and for climate simulations. Due to domain

size and their global nature, global models can only be run at coarse scales.

(b) Regional climate models (RCM)

Regional models provide forecasts at a shorter range (1-3) days and due to their regionalized

domains, they are run at two or more times higher resolutions than the global models. Due
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to this, regional models provide more accurate forecasts and are able to reproduce small phe-

nomena such as fronts, squall lines, and much better orographic forcing than global models.

Unlike global models which are ”self-contained”, regional models require boundary conditions

from the global models. These boundary conditions must be as accurate as possible, because

otherwise the interior solution of the regional models quickly deteriorates. To counter this

challenge it is universally accepted to ”nest” a regional model with a coarser model, prefer-

ably a general circulation model (GCM). The GCM provides the boundary conditions and in

the absence of observations, the initial conditions. This limits regional models to short term

forecasts only.

(c) Non-hydrostatic models

The resolution of regional models has increased to just a few kilometers in order to resolve

better storm-scale phenomena in recent years. Storm-resolving models such as the Advanced

Regional Prediction System (ARPS) cannot use the hydrostatic approximation which ceases

to be accurate for horizontal scales of the order of 10 km or smaller. At the National Center

for Atmospheric Research (NCAR), the Weather Research and Forecasting (WRF) Model, a

next-generation mesoscale NWP system designed to serve both operational forecasting and

atmospheric research needs has been developed in the last decade. It features multiple dy-

namical cores, a 3-dimensional Variational (3DVAR) data assimilation system, and a software

architecture allowing for computational parallelism and system extensibility. There is a ten-

dency towards the use of nonhydrostatic models that can be used globally as well (Kalnay,

2003).

To meet expectations of predicting local meteorology, horizontal resolutions of operational

mesoscale models in the world forecast centers have been becoming higher, approaching a few

kilometers; the limit of validity of the hydrostatic approximation (Saito et al., 2007). Initially

developed for small scale phenomena such as convection and nonlinear mountain waves, non-

hydrostatic models have been advanced and used for operational weather forecasting. Several

types of non-hydrostatic models exist; usually classified according to the treatment of the
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basic equations and the continuity equation (e.g. the Anelastic (AE) model) which removes

sound waves from solutions in the equation system by a scale analysis; the quasi-compressible

model which considers the compressibility of air and predicts the pressure from divergence,

while the reference density is used for momentum equations; and the fully compressible

model that uses the compressible continuity equation without linearization with the reference

atmosphere.

Generally, the state of dry air can be expressed by temperature T , pressure p, density ρ, and

three components of wind u, v, w. As the physical laws, momentum equations in the three

directions, the continuity equation, the thermodynamic equation and the state equation

compose six basic equations corresponding to the six variables. Neglecting the Coriolis force

and terms relating to the earth’s curvature and diffusion, they are written as

dv

dt
= −1

ρ
5p− gk (4.1)

dρ

dt
= −ρ5.v (4.2)

dθ

dt
=
Q

ρ
Cpπ (4.3)

P = ρRT (4.4)

Where v is the wind vector, g the gravity acceleration, R the gas constant for dry air, Q the

Adiabatic heating, Cp = 7R/2 the specific heat of dry air at constant pressure, and k denotes

a unit vector in the vertical direction. The Exner function π and the potential temperature

θ are defined as

π = (
p

p0
)
R
Cp (4.5)

77



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

θ =
T

π
(4.6)

Where p0 is the reference pressure (normally 1000 hPa) The momentum equation may be

rewritten in the following form

dv

dt
= −Cpθ5π − gk (4.7)

The continuity equation 4.2 and the total differentiation can be written in the flux form as

dρ

dt
+5.ρv = 0 (4.8)

ρ
dA

dt
=
dρA

dt
+5.(ρAv) (4.9)

Also, the momentum equation 4.10 can be written in flux form as

dρv

dt
+ adv +5p = −ρgk (4.10)

Where adv is the advection in the flux form.

4.1.1.2 Numerical model physical processes

The physical processes in GCMs and RCMs typically include the radiation scheme, the

boundary layer scheme, the surface parameterization scheme, the convection scheme (includ-

ing convective precipitation and clouds) and the large-scale precipitation scheme. All of these

schemes, with the possible exception of the radiation scheme, are used at each location and

each time step. The radiation schemes in GCMs usually incorporate both daily and annual

solar cycles. Shortwave and longwave fluxes are usually treated separately. The solar radi-

ation is absorbed and scattered by atmospheric gases, clouds and the Earths surface. Most
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AGCMs have shortwave radiation schemes which explicitly consider scattering and absorption

by clouds as a function of zenith angle (McGuffie and Henderson-Sellers, 2005).

The atmospheric boundary layer is the region in which surface friction has a large effect

on the flow, typically a few kilometers above the surface. This layer suffers from fluctuations

in temperature and humidity and its depth changes with the diurnal cycle. These features

cannot be fully represented in most GCMs, primarily because the vertical resolution is inad-

equate and parameterization schemes are used to produce approximations of the processes

involved. The cloud amount is important to the radiation scheme, but there is no single, sim-

ple law that governs the formation of clouds (McGuffie and Henderson-Sellers, 2005). Modern

climate models diagnose the cloud amount and type from other model variables. Most models

have schemes which differentiate between convective clouds and stratiform clouds, relating

predictions of the former to the result of the convection scheme and the latter to large-scale

condensation. For example Gu et al. (2011) introduced an improved radiation parameter-

ization and showed that WRF is capable of generating reasonable cirrus cloud fields, their

movement and dissipation processes.

A major challenge in NWP is the representation of convective processes. The major dif-

ficulty in modeling the result of this process is parameterizing the sub-grid scale nature of

convection. Cumulus parameterization schemes have been the only way these sub-grid pro-

cesses can be represented in GCMs, RCMs and hydrostatic models. Such schemes include:

the Kuo scheme, Kessler warm rain microphysics, Kain and Fritsch cumulus parameteriza-

tion and WRF Betts-Miller-Janjic cumulus parameterization. Precipitation (rain or snow)

occurs as a function of the available moisture in the model atmosphere. Much of the climate

model parameterization of precipitation is based on careful observation and modeling of the

microphysical behavior of clouds. Factors such as the availability of condensation nuclei and

the rate at which droplets coalesce must be parameterized or specified.
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4.1.2 Data assimilation

Data assimilation is an analysis technique in which observed information is accumulated in

the model state by taking advantage of consistency constraints with the laws of time evolution

and physical properties (Bouttier and Courtier, 1999). There are two basic approaches to data

assimilation: sequential assimilation, that only considers observation made in the past until

the time of analysis, which is the case of real-time assimilation systems, and non-sequential,

or retrospective assimilation, where observation from the future can be used, for instance

in a reanalysis exercise. The four basic types of assimilation are depicted schematically in

figure 4.14 (Bouttier and Courtier, 1999) .
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Figure 4.2: The four basic strategies for data assimilation, as a function of time.

NWP is an initial-value problem (Kalnay, 2003), given an estimate of the present state of

the atmosphere, the model simulates (forecasts) its evolution. The problem of determination

of the initial conditions for a forecast model is very important and complex, and has become
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a science in itself. Several methods have been proposed and used for this purpose. These

include successive correction method or SCM, optimal interpolation (OI), variational methods

in three and four dimensions, 3D-Var and 4D-Var, and Kalman filtering (KF). In early

experiments, the estimation of the initial conditions was done by hand and was rather time

consuming.

With time, the need for objectivity became apparent and thus interpolation methods fit-

ting data to grids were developed. These however could not solve the need for data adequacy

i.e., there were never enough data to initialize the NPWs. It therefore became apparent that

it was necessary to use additional information (background/first guess/prior information) to

prepare the initial conditions before forecasting. In the early stages, climatology was used,

but as the forecasts became better, a short-range forecast was chosen as the first guess in the

operational data assimilation systems or ”analysis cycles”(Kalnay, 2003). Since then several

data assimilation schemes have been developed and used for many years. In this section a

few selected of these are briefly highlighted.

4.1.2.1 Empirical analysis schemes

(a) Nudging

This is an empirical method of data assimilation first proposed by Kistler (1974), It consists of

adding to the prognostic equations a term that nudges the solution towards the observations.

This involves the selection of a relaxation term (nudging coefficient) based on empirical

considerations and the variable. This method is not widely used for large-scale assimilation

though some groups use it for small-scale observations (Kalnay, 2003).

In nudging, the model is pushed gently towards observed values or a gridded analysis in such

a way that gravity wave noise is minimized. For example, let a be some prognostic variable

of the model. The prognostic equation may be written as

da

dt
= F (a, t) +G(t)

N∑
i

wi(ai − a) (4.11)
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Where the term on the left hand side of the equation is the model tendency, F (a, t) is the

model forcing, and the final term in the nudging term. G(t) is the nudging coefficient, wI is

an analysis weight, aI is an observed value, and a is the interpolated model’s value.

(b) Successive corrections method

In the successive correction method (SCM), the field variables are modified by the observa-

tions in an iterative manner. A pass is made through every grid point, updating the variable

at each grid point based on first guess field and the observations surrounding that grid point.

After one pass is made through the domain, another pass is made, again modifying the field

at each grid point based on the observations surrounding the grid point. There are two

commonly used successive correction methods; the Cressman scheme and the Barnes scheme.

(c) Optimal interpolation (OI) analysis

The most common least squares method of data assimilation is the optimal interpolation (OI).

Least squares methods differ from successive correction methods and nudging methods in that

the observations are weighted according to some known or estimated statistics regarding

their errors, rather than just by empirical values. Thus, observations from different sources

can be weighted differently based on known instrument and other errors. For example,

radiosonde measurements of temperature can be given a greater weight than satellite derived

temperatures. The optimal interpolation method attempts to minimize the total error of

all the observations to come up with an ”ideal” weighting for the observations. With eight

different variables and thousands of model grids and observations, the process can become

quite complex.

4.1.2.2 Variational Methods

The variational methods have become the most commonly used data assimilation techniques

in modern NWP models. This is due to the advantage of allowing one to eliminate the ini-

tialization step. Given a set of observations from satellites, radiosonde, and ground-based

measurements, a 3D or 4D variational system can produce a ”best” analysis of the atmo-
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spheric state at desired resolutions in a statistically ”optimal” way by assimilating them into

an NWP model (Kalnay, 2003; Yan and Weng, 2011). The assumption in the variational

approach is that 1) the observation errors are non-biased and 2) they follow Gaussian dis-

tributions. The best state of the atmosphere (analysis X) is computed by minimizing a cost

function of J (X);

J(X) = (X −Xb)
TB−1(X −Xb) + [H(X)− Y0]T (E + F )−1[H(X)− Y0] + Jc (4.12)

Where Xb is the background, B is the background error covariance matrix, H the forward

model (e.g., a radiative transfer model), Y0 is the observations, E is the instrument error co-

variance matrix, F is the error covariance matrix, and the constraint term. In an assimilation

window, the background field is a previous model forecast. To obtain the background or first

guess ”observations”, the model forecast is interpolated to the observation location, and if

they are different, converted from the model variables to observed variables (such as satellite

radiances, brightness temperature or radar reflectivity) through an appropriate operator, like

the Radiative Transfer Model.

The difference between the observations and the first guess is known as the innovations

/ observational increments. The analysis is calculated by adding the innovations to the

model forecast (first guess) with weights determined based on the estimated statistical error

covariance of the forecast and the observations. In the 3D-Var approach, a cost function

is defined proportional to the square of the distance between the analysis and both the

background and the observations. The minimum of the cost function is obtained for which is

defined as the analysis. An analysis is the production of an accurate image of the true state of

the atmosphere at a given time, represented in a model as a collection of numbers. An analysis

can be useful in itself as a comprehensive and self-consistent diagnostic of the atmosphere. It

can also be used as input data to another operation, notably as the initial state for a numerical

weather forecast, or as a data retrieval to be used as a pseudo-observation(Bouttier and

Courtier, 1999). It can provide a reference against which to check the quality of observations.

84



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

(a) Three-dimensional variational analysis (3D-Var)

The principle of 3D-Var is to avoid the computation of the gain completely by looking for

the analysis as an approximate solution to the equivalent minimization problem defined by

the cost function. The solution is sought iteratively by performing several evaluations of the

cost function. The popularity of 3D-Var stems from its conceptual simplicity and from the

ease with which complex observation operators can be used, since only the operators and the

adjoints of their tangent linear need to be provided. Weakly non-linear observation operators

can be used, with a small loss in the optimality of the result. As long as is strictly convex,

there is still one and only one analysis.

(b) Four-dimensional variational assimilation (4D-Var)

4D-Var is a simple generalization of 3D-Var for observations that are distributed in time.

The equations are the same, provided the observation operators are generalized to include a

forecast model that will allow a comparison between the model state and the observations at

the appropriate time (Bouttier and Courtier, 1999).

4.1.2.3 The ensemble Kalman Filter assimilation

In the 1960’s, Rudolf Kalman developed a theory of how to optimally combine measurements

and modeling forecasts together to give the best estimate of a systems state. This was

motivated by the need to estimate the location of the rocket during the Apollo moon landing

project. Kalman produced the mathematical theory on how to combine radar measurements

and the predicted estimate of position together to give the best location of the rocket at

any given time. His methodology and theory was found useful not only in that project

but also in weather forecasting. The Ensemble Kalman Filter is a Monte-Carlo optimal

data assimilation method originally proposed by Evensen (2003). The advantage is mainly

computational, in that the calculation and storage of large covariance matrices are not needed

- they are approximated by running a large number of calculations simultaneously.
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4.1.3 Ensemble forecasting

Quantitative precipitation forecast (QPF) is one of the more difficult tasks in the weather

forecasts, and any attempt in evaluating the uncertainty of the precipitation forecast con-

tributes to a better characterization of the weather effects on the territory (Cane and Milelli,

2010). Uncertainties in QPF usually propagate to the intended local scale application like

hydrological modeling. To reduce this uncertainty, ensemble forecasting is used. Ensemble

forecasting is a numerical prediction method that is used to attempt to generate a repre-

sentative sample of the possible future states of a dynamical system. The ultimate goal of

ensemble forecasting is to predict quantitatively the probability density of the state of the

atmosphere at a future time (Leutbecher and Palmer, 2008). Usually, ensemble forecasts

consist of multiple integrations of NWP models, different configurations and even different

initial conditions.

Ensemble forecasting methods differ mostly in the way the initial perturbations are gen-

erated, and can be classified into essentially two classes: those that have random initial

perturbations and those where the perturbations depend on the dynamics of the underly-

ing flow (Kalnay, 2003). Those using random perturbations are referred as Monte Carlo

forecasting and the initial perturbations are chosen to be ”realistic”. They have horizon-

tal and vertical structures statistically similar to forecast errors, and amplitudes compatible

with the estimated analysis uncertainty. The amplitudes are realistic but the perturbations

themselves are chosen randomly, without regard to the ”dynamics of the day”. The second

class methods include errors of the day and have been developed, tested, and implemented

at several operational centers. These methods include the ”breeding” and ”singular vector”

methods which are characterized by including in the initial perturbations growing errors that

depend on the evolving underlying atmospheric flow.
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4.1.4 Downscaling of weather forecasts

One goal of weather forecasting is to provide input for early warning systems especially

extreme weather-related events. One application that weather forecasts have been found very

useful is the prediction and adaptation to floods. It is typical that the resolution of present

day operational weather and climate prediction models is much coarser than that required for

hydrological and water resources applications. Output from these coarse resolutions must be

interpreted at a finer resolutions and local schools through downscaling. Downscaling is the

process of deriving finer resolution information from larger scale weather or climate model

output for use in applications (e.g., hydrological modeling and water resources management).

There are primarily two kinds of downscaling methods: statistical and dynamical downscaling

methods.

Statistical downscaling methods use historical data and archived forecasts to produce

downscaled information from large scale forecasts. These methods may be based on para-

metric regressions or on nonparametric probabilistic formulations. Their advantage is that

they are simple to implement and use and, for regions with large data sets, they produce

unbiased and reliable estimates for periods similar to those used for their calibration. How-

ever, they require large historical data sets for calibration and that their ability to reproduce

the relationships between large and small scales diminish as the future weather and climate

conditions change with respect to those used for calibration.

Dynamical downscaling methods involve the use dynamical models of the atmosphere

nested within the grids of the large-scale forecast models. Typically, one way nested limited

area weather or regional climate models are implemented to produce a finer resolution grid-

ded information for applications, with coarse resolution models providing initial and lateral

boundary conditions. The advantage of using dynamic downscaling is that the physics of

the models provides justification for their application under a variety of weather and climate

conditions in a changing climate, especially for situations with strong boundary forcing. How-

ever, they are expensive in terms of computational time and data requirements, they require
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three dimensional boundary and initial conditions, and in most cases they require output

bias adjustment procedures for good reproduction of the conditions at higher resolution.

4.2 Short-term mesoscale extreme event downscaling

and forecasting

Global weather forecasts are usually provided at coarse scales (25-100km); local features

(e.g. Land/lake breezes and localized convectional rainfall), that determine the weather

of a place are not well represented in the GCMs. It becomes therefore necessary for any

application where reasonable accuracy is desired, to downscale QPF forecasts for localized

application. This is achieved through downscaling. The term ”downscaling” refers to the

use of either fine spatial-scale numerical atmospheric models (dynamical downscaling), or

statistical relationship (statistical downscaling) in order to achieve detailed regional and local

atmospheric data (Castro, 2005). Downscaling global weather prediction model outputs to

individual locations or local scales is a common practice for operational weather forecast in

order to correct the model outputs at sub grid scales (Do Hoai et al., 2011).

The primary goal of downscaling is to create local scale forecasts aimed at applications

at fine scales and also creating forecasts that are realistic and representative of the area

of interest. One application that needs reliable and localized forecasts is flood monitoring.

Reliable QPF forecasts when used to force hydrological models can provide timely flood

forecasts and hence form part and parcel of a flood early warning system. Regional climate

models, limited area models and mesoscale models are some of the systems that are you

used to achieve dynamic downscaling. Dynamic downscaling is advantageous in that, local

effects of terrain and other land surfaces are factored in the model parameterization. Usually,

initial and boundary conditions are provided by the mother GCM (global forecast). Castro

(2005) reviewed the value of dynamical downscaling using a Regional Atmospheric Modeling

System (RAMS) and concluded that the value added is the resolution of the small-scale
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features which have a greater dependence on the surface boundary. Similar studies using

Mesoscale scale models have also provided useful inputs for practical applications. However,

model parameterization, computational needs and predictability of the weather limits use of

these models for a few hours and this also dependents on the weather phenomena.

ARPS, a mesoscale model, was applied to downscale global forecasts from 100Km to

5km to assess the applicability of the model output (especially QPF) for hydrological flood

monitoring in the LVB.

4.2.1 Methodology and tools

4.2.1.1 ARPS mesoscale model

The simulations were made using the Advanced Regional Prediction (ARPS) (Xue et al., 2000,

2001, 2003; Gao et al., 2004) developed by the Center for Analysis and Prediction of Storms

(CAPS), University of Oklahoma. ARPS is a non-hydrostatic atmospheric prediction model

and is appropriate for use on scales ranging from a few meters to hundreds of kilometers. It

is based on compressible Navier-Stokes equations describing the atmospheric flow, and uses

a generalized terrain-following coordinate system. The ARPS model has been used widely in

storm studies all over the world including (Vaidya et al., 2004; Sun, 2005; Collischonn et al.,

2005; Srivastava et al., 2010; Schenkman et al., 2011; Clark et al., 2011; Jung et al., 2012).

(a) The model base state

In ARPS, wind components and the state variables are defined as the sums of base-state

variables and the deviations from the base state. The base state is assumed to be horizontally

homogeneous, time invariant and hydrostatically balanced. For this reason, the base-state

mass and wind fields are, in general, not in a geostrophic balance, except when the base-state

winds are zero. In the model, the base state can be initialized using prescribed analytical

functions or an external sounding. The simulations used NCEP FNL (Final) Operational

Global Analysis data (http://rda.ucar.edu/datasets/ds083.2/). The base state is usually

constructed as the horizontal domain average.
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u(x, y, z, t) = u(z) + u′(x, y, z, t) (4.13)

v(x, y, z, t) = v(z) + v′(x, y, z, t) (4.14)

θ(x, y, z, t) = θ(z) + θ′(x, y, z, t) (4.15)

w(x, y, z, t) = w′(x, y, z, t) (4.16)

p(x, y, z, t) = p(z) + p′(x, y, z, t) (4.17)

ρ(x, y, z, t) = ρ(z) + ρ′(x, y, z, t) (4.18)

qv(x, y, z, t) = qv(z) + qv′(x, y, z, t) (4.19)

qli(x, y, z, t) = qli′(x, y, z, t) (4.20)

Where u, v, and w, are the Cartesian components of velocity (momentum), θ the potential

temperature, p, the pressure, ρ the density, qv, the water vapor mixing ratio, and qli, one

of the hydrometer categories. The over-barred variables represent the base state and the

primed variables are the deviations. The base state for w, and qli, is assumed zero.

In the transformed coordinate system,

u(ξ, η, ζ, t) = u(ξ, η, ζ) + u′(ξ, η, ζ, t) (4.21)
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v(ξ, η, ζ, t) = v(ξ, η, ζ) + v′(ξ, η, ζ, t) (4.22)

w(ξ, η, ζ, t) = w′(ξ, η, ζ, t) (4.23)

θ(ξ, η, ζ, t) = θ(ξ, η, ζ) + θ′(ξ, η, ζ, t) (4.24)

p(ξ, η, ζ, t) = p(ξ, η, ζ) + p′(ξ, η, ζ, t) (4.25)

ρ(ξ, η, ζ, t) = ρ(ξ, η, ζ) + ρ′(ξ, η, ζ, t) (4.26)

qv(ξ, η, ζ, t) = qv(ξ, η, ζ) + qv′(ξ, η, ζ, t) (4.27)

qli(ξ, η, ζ, t) = qli′(ξ, η, ζ, t) (4.28)

(b) The governing equations

ARPS solves prognostic equations for u, v,w,θ′, ρ′and qψ, which are, respectively, the x,

y and z components of the Cartesian velocity, the perturbation potential temperature and

perturbation pressure, and the six categories of water substance (water vapor, cloud water,

rainwater, cloud ice, snow, and hail). Among the three state variables (density, temperature

and pressure), two should be predicted and the other diagnosed. Since the pressure is directly

responsible for the mass balance in the system through the pressure gradient forces in the

momentum equations, ARPS computes pressure. The pressure equation is obtained by taking

the material derivative of the equation of state and replacing the time derivative of the

density by velocity divergence. The continuous equations are solved numerically using finite

difference methods on a rectangular computational grid. The model variables are staggered
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on an Arakawa C-grid, with scalars defined at the center of the grid boxes and the normal

velocity components defined in the corresponding box faces. The coordinate variables x, y

and z are also staggered and are defined at the u, v and w points, respectively.

Since the model atmosphere described by the governing equations is compressible, meteo-

rologically unimportant acoustic waves are also supported by the model. The presence of

acoustic waves severely limits the time step size of explicit time integration schemes. To im-

prove the model efficiency, the mode-splitting time integration technique is employed. This

technique divides a big integration time step into a number of computationally inexpensive

small time steps and updates the acoustically active terms every small time step while com-

puting all the other terms only once every big time step. Consequently, only the small time

step size is limited by the acoustic wave speed.

For each big time step, the u, v,w,θ′,and p′ equations are integrated forward from t−∆t and

t+ ∆t during ns number of small time steps, where ∆t is the big time step size. The small

time step size, ∆τ , satisfies equation 2∆t = ns∆τ . The superscripts t and τ indicate the

time level at which the terms are evaluated. The terms with superscript τ or τ + ∆τ are

evaluated every small time step and those with superscript t are evaluated once every big

time step and kept fixed throughout the small steps.

(c) Subgrid scale turbulence closure

Turbulence parameterization, the closure linking the resolved scales and the unresolved

subgrid-scale (SGS), is critical to the successful simulation of many flows. Three available

options in ARPS for parameterizing the subgrid scale turbulence - the Smagorisky, 1.5 order

turbulent kinetic energy (TKE) and Germano dynamic subgrid-scale (SGS) closure schemes.

The Smagorinsky scheme is a special case of the TKE equation. The Germano dynamic SGS

closure converts previously prescribed SGS model coefficients to self-determined parameters

that vary with time and space.

(d) Grid structure and boundary conditions

In a regional atmospheric model, only the lower boundary is physical. The boundaries at
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the top and sides are usually artificial. ARPS permits the user to choose different types

of boundary conditions for the lateral, top and bottom boundaries. Five types of lateral

boundary conditions are available in ARPS: rigid wall, periodic, zero normal gradient, wave-

radiating open boundary, and externally specified boundary conditions. All five options can

be specified independently for each lateral boundary. Three types of boundary conditions are

available at the top and bottom boundaries: rigid top lid (impermeable ground), periodic,

and zero-normal gradient. Wave reflection from the rigid top boundary can be suppressed

by use of a Rayleigh damping layer near the top boundary. The periodic boundary condition

assumes that the solution outside the computational domain replicates itself indefinitely. The

solution at a distance d to the left of the computational domain boundary equals the solution

a distance d to the left of the right boundary.

4.2.2 Study area

The LVB has a size of 194,000 km2, with the Lake surface covering an area of about 68,800

km2, (Figure 4.3). The Basin area is shared between riparian states of Tanzania (44%),

Kenya (22%), Uganda (16%), Burundi (7%) and Rwanda (11%). The LVB holds world

leading status for freshwater lake size, elaboration of vertebrate species diversity, species

extinctions, exotic species invasions, and freshwater fishery production(LVBC, 2007). The

Lake is high in elevation, mostly enclosed by highlands and mountain ranges.

4.2.3 Model data

The National Center for Environmental Prediction (NCEP) Global Forecast System (GFS)

final (FNL) gridded analysis dataset is used both for initial and boundary conditions. The

Tropical Rainfall Measuring Mission (TRMM) 3-hourly rainfall dataset is used for valida-

tion partly due to lack of adequate observations in this region. The Globally-merged, full-

resolution ( 4 km) IR data((Janowiak et al., 2001)) formed from the 11 micron IR channels

aboard the GMS-5, GOES-8, Goes-10, Meteosat-7 and Meteosat-5 geostationary satellites
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Figure 4.3: Lake Victoria basin, East Africa: adapted from Strategic Action Plan (SAP) for

the LVB.

available every 1/2 hour was used to validate cloud top temperature as well as simulated

integrated condensate. For land use, terrain and soil we used the 30s USGS global data set.

4.2.4 Numerical experiment

This study sought to downscale the global weather forecasts from GCM scale to hydrological

scales (100km to 5km). This is targeted to provide fine resolution meteorological variables

that can be used as forcing for hydrological models for flood warning systems. In addition,

AMSR-E satellite data assimilation was done to improve the prediction. Three factors were

taken into consideration in selecting the extreme event to investigate. 1) AMSR-E coverage;

being located at the equator the coverage is limited to once in a few days for full domain, 2)

A recorded coincidence of rainfall covering at least a quarter of the basin with maxima over
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the lake or adjacent areas and 3) a day(s) with continuous mesoscale cloud system lasting

at least 6 hours. The Globally-merged, full-resolution (4km) infrared (IR) data set was used

for this purpose. Based on this and extensive screening, 4th April, 2004 was selected for the

numerical experiment. The accumulated daily rainfall for this day at Kitale station (35E, 1N)

exceeded 85mm. This is above the 99th percentile (71.70 mm/day) for the period 1973-2004

and also the 26th highest amount recorded at this station for the same period. This is also

the highest rainfall recorded at this station for 2004.

4.2.4.1 Model and domain setup

A nested model set up approach was employed with the outer domain of 30km, a second

domain of 10km and a finer domain of 5km. Nesting of NWP models has been shown to

produce better forecasts (e.g (Koch and Mcqueen, 1987; Rasmy et al., 2012; Talbot et al.,

2012)). Figure 4.4 shows the location and domain setup. The mesoscale model was configured

with 1.5 TKE-based closure system, SiB2(Sellers et al., 1996) land surface scheme, turbulent

mixing, Lin ice microphysics scheme and cumulus parameterization for Grid1 and Grid2. The

simulation was initiated at 06UTC on 4th for the outer grid, 12UTC for the second grid and

18UTC for the fine grid. In the successive nesting, the boundary conditions were provided

by the preceding grids and the initial conditions interpolated at the start of integration time

corresponding to the preceding grid also.

4.2.5 Validation of QPFs

In the assessment of quantitative precipitation forecasts, point validations are far more com-

mon than validation relying on values integrated in space. Point validations merely compare

the values measured at the locations of the rain gauges to the values simulated at the near-

est grid element (Yates et al., 2006). The concept of ”super-observations” has also been

introduced in previous studies (e.g. (Cherubini et al., 2002)) where the observations are

”up scaled” to the model scales and the observations are interpolated to each model grid
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Figure 4.4: Nested domain set up (30 Km, 10 Km, and 5 Km).

box. Validationwas conducted using continuous statistics as well as contingency tables since

ground based data was not available.

It is complemented by the use of scatter diagrams, maps, and correlation charts. The

comparison is reduced to bulk scores, such as the root mean square error (RMSE) (respec-

tively the mean and the root of the quadratic mean of the differences between observed and

simulated values) or the square of the correlation coefficient (R2 ). We use binary criteria

relying on contingency a table established for a given threshold, following the format given

in table 4.1 in a similar fashion as Yates et al. (2006).
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Table 4.1: Contingency score table, ”obs” stands for observations.

Forecast < threshold Forecast ≥ threshold

Obs. < threshold a b

Obs. ≥ threshold c d

In Table 4.1 a is the number of points where both the reference and the simulation are

under the threshold; b is the number of points where the forecast is above but the reference

is under the threshold; c is the number of points where the forecast is under whereas the

reference is above the threshold; d is the number of points where both the reference and

the forecast are above the threshold. From the contingency table, the following measures

were computed: Forecast accuracy (ACC), frequency bias (FBIAS), probability of detection

(POD), false alarm ratio (FAR), threat score (TS) and Heidke skill score (HSS). To match

temporal resolution of TRMM, we aggregated forecasted precipitation into 3-hourly rates as

well as cumulative rates for the 12 hours under investigation. Statistics are presented for

21Z, 00Z, 03Z and 06Z.

• POD gives the rate of well-predicted locations among the locations where the

reference is over the threshold; a perfect forecast has POD=1

• FAR gives the rate of ill-predicted locations among the locations where the fore-

cast is over the threshold; a perfect forecast has FAR=0.

• ACC gives the rate of all well-predicted locations with respect to the threshold;

a perfect forecast has ACC=1. The POD, FAR and ACC scores need generally

to be examined together

• TS gives the rate of well-predicted locations among the locations where the ref-

erence or the simulation is above the threshold. A perfect forecast has TS=1.
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• HSS measures the ability to predict precipitation above a given threshold at a

specific location; a perfect prediction has HSS=1, a random prediction has this

score equal to zero

These scores are computed as shown below:

POD =
d

c+ d
(4.29)

FAR =
b

b+ d
(4.30)

ACC =
a+ d

a+ b+ c+ d
(4.31)

FBIAS =
b+ d

c+ d
(4.32)

TS =
d

b+ c+ d
(4.33)

HSS =
a+ d− T

a+ b+ c+ d− T
(4.34)

With ;

T =
(a+ b)(a+ c) + (b+ d)(c+ d)

a+ b+ c+ d
(4.35)

4.2.6 Downscaling: Results and discussions

This section presents the results of the downscaling experiment. The results for data assim-

ilation are presented in section 4.3.2.
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4.2.6.1 Synoptic conditions, 4th April, 2004

Figure 4.5 shows the observed cloud top temperature from 21UTC 4th to 00UTC 5th April.

A strong Mesoscale system existed over the lake region and this is strongly related to the

synoptic pattern of the migration of the ITCZ.

Figure 4.5: Observed cloud top temperature (a) 21UTC, (b) 18UTC, (c) 00UTC (5th April).

A low pressure system existed in the region (Figure 4.6), the Ethiopian highlands, the

Nandi Hills (East of Lake Victoria) and western sides of the lake. This twin pressure system

continued strengthening at about 18UTC. Also, a synoptic scale surface convergence (not

shown) was present from about 12UTC and continued over the lake until about 12UTC on

5th April when the circulation developed into a predominantly southeasterly flow around the

Ethiopian highlands.
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Figure 4.6: Surface pressure (a) 21UTC , (b) 18UTC , (c) 00UTC (5th April).

4.2.6.2 Simulation of rainfall

Figure 4.7 shows the simulated 3-hour accumulated rainfall for the this experiment as com-

pared to TRMM. This ARPS downscaling experiment was able to reproduce this extreme

event to some degree of accuracy. At 21UTC, the ARPS run simulated rainfall northwest

(NW) of the domain. The TRMM observations recorded rainfall over the lake at 00UTC

(5th April) and this event continued for about six hours. During this time, the ARPS run

was not able to produce this pattern well and was characterized by excess rainfall NW of

the domain. However, at 03UTC on 5th, the system was able to reproduce some rainfall

though the regions of maxima are further north compared to TRMM. In addition, the semi-

autonomous event at around (35E,1N) was absent in this run. The lined up pattern evident

in the TRMM observations was reproduced in this experiment albeit with about 200km

displacement westwards.
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Figure 4.7: Comparison between ARPS simulated 3-hourly rainfall and TRMM estimates

over LVB (a)21UTC TRMM ,(b) 00UTC TRMM(5th April) ,(c) 03UTC TRMM, (d) 21UTC

ARPS ,(e) 00UTC ARPS ,(f) 03UTC ARPS

(a) Continuous statistics

Table 4.2 shows the comparison of the predicted versus observed mean precipitation for the

first 12 hours under investigation. On average the model overestimates QPF by more than

100% with a basin average of 3.2mm at 03UTC compared to TRMM’s 0.5mm. Though some

aspects of this prediction at specific times is presented reasonably, the spatial correlation

between the predicted and observed is very weak (-0.02) with only prediction at 06UTC 5th

reaching a coefficient of 0.02.
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Table 4.2: Comparison of statistics.

Statistic 3-hour 6-hour 12-hour

Mean Observation 0.50 0.50 0.25

Forecast 3.15 2.93 0.90

Standard Dev. Observation – – 0.60

Forecast – – 2.83

R2 - -0.02 -0.07 0.02

Figure 4.8 shows the scatter diagrams for the selected analysis times. The scatter diagrams

show complex patterns with the displayed lines of fit far from representative. Overall, the

simulated rainfall is too weak (bias 5̃mm/hr).
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Figure 4.8: Scatter plots for the ARPS experiment (a) 21UTC, (b) 00UTC, (c) 03UTC (5th

April), and (d) 06UTC.

(b) Scores computed based on the contingency table

Generally, there are no rules with regard to thresholds in contingency tables. Previous

studies have used 70,80 and 90 percentiles to evaluate the probabilities. We applied a slightly

different approach by using thresholds selected between 2-7 mm since the observation rarely

exceeds 10mm/hour in the observations. Further, this range is representative of most of

the possibilities of prediction and observation. Figure 4.9 shows the scores based on the

contingency table. High thresholds are characterized by below average scores on POD, (e.g.
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at 0.3 for 2 mm/hr and almost zero for 7 mm/hr). However, forecast accuracy is slightly

better for lower thresholds. FBIAS is also higher for large thresholds with about 30mm/hr

for 7mm/hr threshold. The false alarm ratio (FAR), an indicator for ill-predictions, is very

high for all the thresholds. FAR is almost 1.0 for 7mm/hr threshold, 0.9 for 3mm/hr and

only about 0.8 for 2mm/hr. This shows the model performance is very poor.

The model scores poorly on HSS (not shown) indicating failure to predict rainfall amounts

higher than the average threshold. The performance of the model varies with time, three

hours after integration, the POD and ACC are very low and this could be attributed to

model spin up. At 03UTC, the model performs slightly better and the maps (figure 4.7 )

show a reasonable pattern. This performance deteriorates with time and the scores of POD

reduces to almost zero after 12 hours of integration. It is worth noting that, for this event,

dissipation starts after about 03UTC and this could partly explain the degradation of the

scores.

104



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

4/4 21:00 5/4 03:00 5/4 09:00 5/4 15:00 5/4 21:00
P

O
D

 

Time 

ARPS : Probability of Detection (POD) 

2 mm

3 mm

4 mm

5 mm

6 mm

7 mm

a) 

0.60

0.70

0.80

0.90

1.00

4/4 21:00 4/5 03:00 4/5 09:00 4/5 15:00 4/5 21:00

A
C

C
 

Time 

ARPS : Forecast Accuracy (ACC) 

2 mm

3 mm

4 mm

5 mm

6 mm

7 mm

b) 

0

10

20

30

40

4/4 21:00 4/5 03:00 4/5 09:00 4/5 15:00 4/5 21:00

FB
IA

S 

Time 

ARPS: Frequency bias (FBIAS) 

2 mm

3 mm

4 mm

5 mm

6 mm

7 mm

c) 

0.60

0.70

0.80

0.90

1.00

4/4 21:00 4/5 03:00 4/5 09:00 4/5 15:00 4/5 21:00

FA
R

 

Time 

ARPS: False Alarm Ration (FAR) 

2 mm

3 mm

4 mm

5 mm

6 mm

7 mm

d) 

Figure 4.9: Scores computed based on the contingency table for the simulation. Each 3-hour

accumulation is presented by one value; a) POD b) ACC, c) FBIAS and c) FAR.
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4.2.6.3 Simulated cloud pattern

Since precipitation validation in this experiment was limited to TRMM, this study also eval-

uated the simulated cloud pattern against observed cloud top temperature pattern by the

globally merged Infra-Red (IR) hourly product. IR cloud top temperature can be used to

identify the spatial distribution of clouds with regions of dense clouds having lower temper-

atures. We compared the pattern as well as the coefficient of correlation and figure 4.10

summarizes the findings. In a similar fashion to the simulated rainfall, the model was able

to reproduce a reasonable cloud pattern for this event with the lined up cloud pattern in the

observations showing some signal in the ARPS results at 00UTC on 5th. However, over the

lake, there appears to have weak or no cloud simulated at all.
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Figure 4.10: Comparison between simulated and observed cloud top temperature (a) 21UTC

IR, (b) 00UTC IR, (c) 03UTC IR (5th April), (d) 21UTC ARPS, (f) 00UTC ARPS, (f)

03UTC ARPS (5th April) .

We also computed the temporal evolution of correlation between the simulated and ob-

served cloud top temperature and figure 4.11 summarizes the findings. Up to about 4 to 6

hours after integration, the model simulates a weak cloud pattern and it closely resembles

the observed pattern with a correlation coefficient of about 0.1. However, the performance

deteriorates afterwards and the model further diverts away from the observation. After ten

hours, the event has dried up and the model is able to recreate a dry LVB. This is reflected

by the positive strong correlation from 12 to 36 hours. However, since the focus of this study

is extreme events, this may not be very relevant as assessment of skill. Reasonable analysis
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is limited to the first twelve hours of integration (duration of the extreme event).

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

1 6 11 16 21 26 31 36 41 46 51 56

Sp
at

ia
l C

o
rr

e
la

ti
o

n
 c

o
ef

f.
 

Hours (Integration Time) 

Spatial Correlation : Simulated CTOP V.s IR [K] 

Figure 4.11: Temporal evolution of simulated vs. observed ARPS cloud top temperature

from 18:00 hours on 4th April, 2004.

Figure 4.12 shows the spatial evolution of integrated cloud condensate with time and

how it compares with the observed cloud pattern by IR cloud top temperature. From about

21UTC on 4th, the concentration of integrated cloud water starts to develop over the north-

eastern parts of the lake which also coincides with region of rainfall maxima. This system

continues to develop but does not reach full potential even after 3 hours. The continuous

cloud system development in this region leads to the release of latent energy by conversion of

water vapor to cloud water. Conversely, this leads to strengthening of updraft and convection

occurs.
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Figure 4.12: Comparison between simulated integrated cloud condensate and observed cloud

top temperature (a) 21UTC IR,(b) 00UTC IR,(c) 03UTC IR(5th April),(d) 21UTC ARPS,(e)

00UTC ARPS, (f)03UTC ARPS .

4.3 Data assimilation and wind bogussing for extreme

event forecasting

In the previous sections, we investigated the merits and limitations of downscaling only

(ARPS) by using the mesoscale model only. As an initial step to approach the problem

gradually, we further extended our modeling framework to assimilate the passive microwave

higher frequency observations that contain atmospheric moisture information over land sur-

face as well as over water (in this case Lake Victoria). This is achieved by coupling land data

assimilation at the lower frequencies with cloud assimilation at higher frequencies (sensitive
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to water vapor and cloud water).

The Coupled atmosphere and land data assimilation system (CALDAS)(Rasmy et al.,

2012) is an integrated system of a Mesoscale storm model (ARPS), a Land data assimilation

system(LDAS-A)(Rasmy et al., 2011) and a cloud microphysics data assimilation system

(CMDAS) (Mirza et al., 2008). The Land data assimilation system (LDAS-A) component

consists of a mesoscale atmospheric model, a land surface model (SiB2) that acts as a land

surface driver for the atmospheric model and as a model operator of the assimilation system,

a microwave Radiative Transfer Model (RTM) as an observation operator, and an ensemble

Kalman filter (EnKF) as an assimilation algorithm. The LDAS-A was developed to improve

the surface moisture heterogeneity through the assimilation of lower frequency satellite pas-

sive microwave observations such as those at 6.9 and 10.65GHz. On the other hand the

CMDAS component assimilates microwave satellite data at the 23GHZ (sensitive to water

vapor) and 89GHZ for the cloud. Brightness temperature from the AMSR-E microwave sen-

sor is used in the CALDAS system. The AMSR-E is a twelve-channel, six-frequency, total

power passive-microwave radiometer system. It measures brightness temperatures at 6.925,

10.65, 18.7, 23.8, 36.5, and 89.0GHz. Vertically and horizontally polarized measurements are

taken at all channels.

Since LDAS-A can reasonably represent the land surface emission using lower frequency

passive microwave observations (Rasmy et al., 2012), the atmospheric contributions in the

satellite microwave higher frequency observations can be computed separately. To accom-

plish the atmospheric observation over the land surface, LDAS-A system incorporates pas-

sive microwave higher frequency (23 and 89GHz) observations to bridge the AMSR-E lower

frequency (land surface) information with same footprint higher frequency observations to

obtain the atmospheric information, while data assimilation components of land and atmo-

sphere maintain the consistency between model variables and assimilated variables. This is

done through the coupled atmosphere and land data assimilation system.

In this way, a synchronized land–atmosphere initialization can be performed in a land-

atmosphere coupled model and can eliminate the biased forcing to the land surface or vice
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versa. The concurrent and near-real time initialization of both land and atmosphere in-

troduces the near-real time condition of both land and atmosphere in numerical weather

forecast, and therefore is a promising method to improve the future predictability of land

and atmospheric water and energy budgets.

4.3.1 System overview

A brief overview of the CALDAS is given in this section. More detailed information can

be found in Rasmy et al. (2012). Figure 4.13 illustrates the schematic diagram of the CAL-

DAS, its principal components and the connections between individual sub-components. The

CALDAS has fundamentally three sub-systems : (1) a land–atmosphere coupled mesoscale

model (ARPS), (2) a land data assimilation system (LDAS), and (3) a cloud microphysics

data assimilation system (CMDAS).

Figure 4.13: CALDAS on and its main components.
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The LDAS comprises a land surface scheme as a model operator, a RTM for land surface,

an observation operator, and a sequential assimilation algorithm to directly assimilate 6.9

and 10.6 GHz of AMSR-E brightness temperature observations. The CMDAS consists of the

cloud microphysics scheme as a model operator, a RTM for both land and atmosphere as

observation operator, and a minimization scheme to assimilate 23 and 89 GHz of AMSR-E

brightness temperature observations.

CALDAS utilizes the improved land surface emission by LDAS as the lower boundary

conditions and thereby improves the atmospheric moisture heterogeneities including those of

water vapor, cloud liquid water, hail, rain, snow. The land-atmosphere coupled mesoscale

model operates as an atmospheric driver, simulates the evolution of land and atmospheric

states and provides initial and boundary conditions that are required for LDAS and CMDAS

for each layer of soil and atmosphere, while the model operators in both LDAS and CMDAS

maintain the consistency between assimilated variables and model variables. The model

operators (i.e., land surface model and cloud microphysics scheme) are kept common between

land-atmosphere mesoscale model and the assimilation systems to maintain the consistency

between assimilated variables and model variables. As CALDAS is on-line based system, the

assimilated variables are immediately fed back to the land-atmosphere mesoscale model. With

the improved land and atmospheric conditions, the mesoscale model is integrated forward in

time for prediction of land and atmospheric evolution.

4.3.1.1 Cloud Microphysics Data Assimilation System (CMDAS)

The earlier version of Cloud Microphysics Data Assimilation System (CMDAS) that was

referred to as 1-Dimensional variational (1D-Var) Ice Cloud Microphysics Data Assimilation

System (IMDAS) was initially developed by Mirza et al. (2006) to improve the atmospheric

conditions over ocean and sea surface using AMSR-E 23 and 89 GHz frequency brightness

temperatures. IMDAS had only considered Water Vapor (WV) and Cloud Liquid Water

Content (CLWC) as assimilation parameters. However, due to the nature of cloud systems,

clouds are generally in mixed-phase that composed of a mixture of cloud droplets and ice
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crystals. The partitioning of condensed water into liquid droplets and ice crystals in clouds

varies throughout the life cycle of clouds, with droplets forming initially but crystals domi-

nating later as ice forms first by crystal nucleation and then by vapor deposition. To account

for better precipitation estimation and to include the effect of the liquid and solid phase of

the cloud on microwave frequency (89 GHz), Kuria et al. (2007) modified the CMDAS to

allow direct estimation of snow and rain rate as additional assimilation variables.

(a) Cloud Microphysics Scheme

In the NWP, the portion of precipitation from a prognostic cloud and its precipitation pro-

cesses is regarded as grid-resolvable precipitation. The other portion is from sub-grid scale

precipitation and it is due to parameterized cloud and precipitation processes from the cu-

mulus parameterization scheme. Various parameterizations have been developed to represent

microphysical properties of the clouds and precipitation. A bulk parameterization of cloud

particles and precipitation drops is primarily based on the works of Lin et al. (1983) and

it has been a core part of representing cloud and precipitation processes in both GCM and

mesoscale models. In this research, we adopted Lin’s ice microphysics scheme as a model

operator for atmospheric data assimilation to represent the formation, growth and sedimen-

tation of liquid and solid particles.

(b) Microwave Radiative Transfer model

The AMSR-E microwave sensor does not observe soil moisture, water vapor, rain water or

cloud water. There is a need for a transformation between observed brightness temperature

and these variables. Based on the emission behavior of dry soil and liquid water in the

microwave region, a radiative transfer algorithm, allowing the estimation of soil moisture

from the land surface, was considered. This model is characterized by its low computational

cost and physically based formulation which are convenient specificities for an assimilation

system. Based on the soil moisture values derived from SiB2, the radiative transfer model

(RTM), as the observation operator, estimates the brightness temperature, which is then

compared with the satellite observation through a cost function. Due to the applicability of
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RTM for wider frequency range, the same RTM that was used to calculate the surface emission

and scattering effect of upwelling radiation at lower frequencies, was used to estimate the the

surface emission and scattering effect of upwelling radiation at higher frequencies.

To estimate the atmospheric emission and scattering effect of upwelling radiation at higher

microwave frequencies, GUOSHENG (1998) proposed a model referred to as 4-stream fast

model. In the 4-stream fast model, radiances at any direction were expressed by formal

solution while the scattering source term was determined by a 4-stream discrete ordinate

solution using Henyey-Greenstein scattering phase function. They showed that the model was

fast and accurate enough for practical use in microwave remote sensing and data assimilation,

where many model simulations are required, and the error being less than 3K compared to

the accurate polarized 32-stream model. They further compared with a 2-stream Eddington

model and the results showed that it was more accurate than the Eddington model, especially

for ice cloud conditions(Rasmy et al., 2012).

(c) Minimization scheme

For atmospheric data assimilation (CMDAS), a minimization scheme (Shuffled Complex Evo-

lution (SCE) Method) that was developed by Duan et al. (1993) was chosen to minimize the

cost function between model brightness temperatures and observed brightness temperatures

of AMSR-E at 23 and 89GHz. The SCE method is a global optimization strategy that com-

bines the best features of multiple complex shuffling and competitive evolution. This method

is capable of finding the global optimum and does not rely on the availability of an explicit

expression of the objective function or the derivatives. For complete information, please refer

to Duan et al. (1993).

4.3.1.2 Datasets and methods

(a) Initial and boundary conditions

For this is the extension of the first downscaling experiment, the same model domain, initial

and boundary conditions were used.

114



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

(b) Advanced Microwave Scanning Radiometer (AMSR-E)

CALDAS utilizes the AMSR-E higher frequency brightness temperature observations at 23

and 89 GHz for assimilation. AMSR-E is a twelve-channel, six-frequency, passive-microwave

radiometer system. It measures horizontally and vertically polarized brightness temperatures

at 6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz. Spatial resolution of

the individual measurements varies from 5.4 km at 89 GHz to 56 km at 6.9 GHz. AMSR-E

is developed and provided by the Japan Aerospace Exploration Agency (JAXA, Contrac-

tor: Mitsubishi Electric Corporation) with close cooperation of U.S. and Japanese scientists.

AMSR-E was modified for Aqua from the design used for AMSR, which is onboard, the

Japanese ADEOS-2 satellite. The AMSR-E radiometer is an advancement of previous mi-

crowave radiometers. The spatial resolution is twice better that of Scanning Multichannel

Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) data. Ad-

ditionally, AMSR-E combines several channels together that were used individually like in

the SMMR and SSM/I satellites.

AMSR-E uses an offset parabolic reflector, 1.6 m in diameter, to focus Earth-emitted mi-

crowave radiation into an array of six feedhorns, which then feed the radiation to the de-

tectors. The AMSR-E instrument rotates continuously about an axis parallel to the Aqua

satellite at 40 RPM. At an altitude of 705 km, it measures the Upwelling scene brightness

temperatures over an angular sector of 61 about the sub-satellite track, resulting in a swath

width of 1445 km. AMSR-E records active scene measurements at equal intervals of 10 km (5

km for the 89 GHz channels) along the scan. The reflector is fixed at a 47.4 degree half-cone

angle, which results in an Earth incidence angle of 55.

The AMSR-E instrument measures geophysical variables related to the earth’s water cycle,

including: precipitation rate, cloud water, water vapor, sea surface winds, sea surface tem-

perature, sea ice concentration, snow water equivalent, and soil moisture. The AMSR-E

antenna stopped spinning at 0726GMT 4th October, 2011 most likely due to aging lubricant

in the mechanism. AMSR-E currently is not producing any data and has been replaced with
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AMSR-2 launched on 18th May, 2012. The Advanced Microwave Scanning Radiometer 2

(AMSR2) on-board the GCOM-W1 satellite is a remote sensing instrument for measuring

weak microwave emission from the surface and the atmosphere of the Earth. From about

700 km above the Earth, AMSR2 will provide highly accurate measurements of the intensity

of microwave emission and scattering. The antenna of AMSR2 rotates once per 1.5 seconds

and obtains data over a 1450 km swath. This conical scan mechanism enables AMSR2 to

acquire a set of daytime and nighttime data with more than 99% coverage of the Earth every

2 days.

4.3.2 Assimilation: Numerical experiment

Two numerical experiments were considered: (1) ARPS run (in section 4.2.4),one-way nesting

procedure employing the land–atmosphere mesoscale model without any assimilation, and (2)

CALDAS run, in which ARPS runs accompanied by a sequential land data and a cloud mi-

crophysics data assimilation. The study domain was kept same as described in section 4.2.4.

In addition a set of seven more experiments was set up to investigate the assimilation of

water vapor and the challenges therein.

4.3.3 Model configuration and parameter settings

The model configuration and parameter settings for ARPS and SiB2 were kept same as for the

ARPS experiment as described in section 4.2.4. In the following section, the model settings

for CMDAS are as outlined.

4.3.3.1 Assimilation Parameters

Four atmospheric moisture variables; cloud liquid water, water vapor, rain water, and snow

water were used as the assimilation parameters. To assimilate those parameters, lower and

upper limits of vertically integrated values of cloud liquid water (ICLW), water vapor (IWV),

rain water (IRW), and snow water (ISW) have to be defined explicitly. Though there were
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no direct measurements available for these parameters, consideration was done to give more

room since this region is predominantly wet. For example, 80kgm−2 was set as the maximum

range for integrated water vapor. The lower and upper bound of the cloud liquid water

content were obtained from literature and for different types of clouds, such as those given

at (http : //www − das.uwyo.edu/ geerts/cwx/notes/chap08/moistcloud.html).

The upper bound for other parameters (IRW and ISW) was selected arbitrarily since no

information was available. The accurate representation of upper bound of each parameter

can only be selected based on thorough detailed field campaign, which will be the future

target for the extended model validation. Table 4.3 summarizes the ranges of parameters

used in CMDAS.

Table 4.3: Upper and lower bounds of assimilation parameters.

Parameter Unit Lower limit Upper Limit

Integrated Water Vapor (IWV) kgm−2 4.0 80.0

Integrated Cloud Liquid Water (ICLW) kgm−2 0.0 3.5

Integrated Rain Water (IRW) kgm−2 0.0 5.5

Integrated Snow Water (ISW) kgm−2 0.0 2.0

4.3.3.2 Cloud bottom and cloud top

CMDAS was formulated to consider only one layer of clouds. The cloud depth is defined

by a cloud bottom and a cloud top height, relative to the ground elevation and it has to be

specified explicitly before the assimilation takes place. Due to the unavailability of radiosonde

observations in this region, empirical cloud height values were used. The cloud bottom was

assumed to be at 1,600m above the surface and cloud top at 6,000m.
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4.3.3.3 Profiles of assimilation parameters

ICLW was transformed to the parabolic distribution with maximum cloud content at the

center of the cloud and has zero values above the top and below bottom of the cloud layer.

For integrated water vapor, a (SCE/model) IWV factor was computed and applied to the

model profile to retain model consistency. Further experiments of saturation instead of factor

method were also considered.

The profiles of rain and snow follow a skewed profile and begin to form at the cloud top

and reaching a maximum at the cloud bottom, after that it decreases due to evaporation and

breakup of raindrop or snowflakes. Kuria et al. (2007) added a constraint for qr and qs in the

following form. It is assumed that for temperatures colder than -20o C, only snow exists, and

for temperatures above 4o C, only rain exists. For temperatures between these two extremes,

we assume a linear conversion function of precipitation to rain and snow, according to the

equation given below

qp =

 Tu−T
Tu−Tl

q snow

T−Tl
Tu−Tl

q rain

Where T is the temperature of a layer, Tu is an upper temperature threshold ( 4o C), Tl is

a lower temperature threshold (-20o C), qp is respective precipitation variable and q is total

precipitation in the layer. Using this strategy the retrieved profiles can be made physically

consistent. Cloud ice and hail are not explicitly assimilated, but those are the by-products

of the assimilation exercise (by-products from Lin’s Microphysics). However, both ice and

hail will have to be considered in the future modeling framework for accurate assimilation.

4.3.4 Cost function

The SCE algorithm is based on an iterative method, where a cost function is minimized by

adjusting the state vector or assimilation parameters. The cost function J (X) is given by

J(X) =Jb(X) + J0(X)

=
1

2

[
(Xb −X)TB−1(Xb −X) + [Y0 −H(X)]TR−1[(Y0 −H(X)]

]
(4.36)
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Where, the subscripts b and 0 denotes the background and observation respectively. B is the

background error covariance matrix and R is the observation error covariance matrix.

Mirza et al. (2008) assumed that the background error term (Jb) is equal to zero since the

information of the background error covariance matrix (B) is unknown. A further assumption

was made for observations, where all the observations have same error and that is equal to a

unit matrix (R = I). Considering these assumptions, the cost function can be written as

J(X) =
1

2

N∑
i=1

[Y0 −H(Xi)]
T [Y0 −H(Xi)] (4.37)

Xi =M(Xo) (4.38)

Where Yo is the observations (23.8 and 89 GHz), N is the number of brightness temperature

observations, H is the radiative transfer model that represents land and the atmosphere, M is

Lin’s ice microphysical scheme, and X is the atmospheric states. J is minimized using SCE-

UA method that guarantees asymptotic convergence to the global minimum (or optimum).

4.3.5 Assimilation: Results and discussion

Due to the large size of the LVB (194,000 km2) there was a limitation on the available

AMSR-E passes (data). Assimilation was only possible at 23:10 pm on 4th April, 2004.

Figure 4.14 shows the observed TRMM rainfall, observed IR cloud top temperature and

AMSR-E brightness temperature for this day. The AMSR-E observation shows a lined up

pattern of low brightness temperature values indicating the presence of deep clouds, which

by using CMDAS would be assimilated into the NWP and possibly produce better forecasts.

Also, part of the clouds exist over the lake and a small portion on land which provided a

good test-bed for the validation of the LDAS-A over wet and humid areas.

The CALDAS run was initiated in a similar way to the ARPS experiment. It was started

at 06UTC 4th for the outer grid (grid1), 12UTC for second nesting grid (grid2) and 18UTC

for the inner nest (grid3) on which data assimilation was done. Assimilation occurred at

23:10 UTC followed by a forecast run lasting 36 hours.

119



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

Figure 4.14: (a) Observed rainfall (TRMM), (b) observed cloud top temperature (IR), and

(c) AMSR-E brightness temperature at 00UTC (5th April).

Figure 4.15 shows the observed and the assimilated brightness temperature and the dif-

ferences. The CALDAS system was able to assimilate AMSR-E observations successfully and

the assimilated brightness temperature closely resembles observations. However, CALDAS

assimilates higher brightness temperature compared the observed at 23GHz frequency. Sen-

sitivity experiments were conducted to investigate this occurrence and will be highlighted

in the next section. The assimilation of lower brightness temperature over the lake by the

23GHz shows that CALDAS was able to introduce clouds and to an extent, overestimated

the cloud activity over the lake.
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Figure 4.15: Brightness temperature (a) Observed 89GHz, (b) assimilated 89GHz, (c)

89GHz assimilated-obs difference, (d) Observed 23GHz, (e) assimilated 23GHz, (f) 23GHz

assimilated-obs difference

To investigate the value added by assimilation, the performance of CALDAS and ARPS

run was validated against TRMM rainfall and observed cloud top temperature. Figure 4.16

shows the simulated pattern of cloud top temperature as compared to observed IR.
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Figure 4.16: Comparison of simulated against observed cloud top temperature (a) 21UTC IR,

(b) 00UTC IR(5th April), (c) 03UTC IR, (d) 21UTC ARPS, (e) 00UTC ARPS, (f) 03UTC

ARPS, (g) 21UTC CALDAS, (h) 00UTC CALDAS, (i) 03UTC CALDAS
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After assimilation at 23:10 UTC, the performance of CALDAS improves considerably and

this is demonstrated by the simulation of cloud top temperature very similar to observations

(R2 = 0.3). In particular the lined up pattern is introduced into the system and also an

intensification of clouds over the lake. However, the simulated cloud is rather spotty and

inhomogeneous compared to observations. Three hours after assimilation the cloud system

is still present over the lake and though weaker than observations, it is far much better than

the ARPS run. This shows that assimilation of AMSR-E improves the simulation of cloud

water.

4.3.5.1 Representation of rainfall

The ARPS downscaling experiment is able to reproduce this extreme event to some degree

of accuracy. The TRMM observations recorded rainfall over the lake at 00UTC (5th April)

and this event continued for about six hours. During this time, the ARPS run is not able to

produce this pattern well and is characterized by excess rainfall NW of the domain. However,

at 03UTC on 5th, the system is able to reproduce some rainfall though the regions of maxima

are further north compared to TRMM. In addition, the semi-autonomous event at around

(35E, 1N) is absent.
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Figure 4.17: Comparison of 3-hourly simulated against observed rainfall (a)21UTC TRMM,

(b) 00UTC TRMM(5th April), (c) 03UTC TRMM, (d) 21UTC ARPS, (e) 00UTC ARPS, (f)

03UTC ARPS, (g) 21UTC CALDAS,(h) 00UTC CALDAS, (i)03UTC CALDAS

.
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With improvement in cloud activity simulation, the CALDAS prediction of this rainfall

event shows better performance compared to the ARPS experiment (Figure 4.17). The

CALDAS run produces slightly improved results after the assimilation of AMSR-E data

at 23:10 UTC on 4th April. In particular, the performance is considerably improved at

00UTC on 5th. This run was able to introduce the semi-autonomous event at around (35E,

1N). In addition, the lined up pattern in the TRMM observation is reproduced weakly in

this run. The model is not able to sustain this event and at 03UTC, we only see some

”over the lake” Erainfall with the overestimation NW of the domain seen in the ARPS run

reduced. The regions of maxima in this run match closely that of TRMM but characterized

by overestimation at 00UTC and almost no rainfall at 03UTC.

The peak of the event at 03UTC on 5th was not well simulated by both experiments.

Despite the improvement by CALDAS, the NWP was not able to sustain the induced model

state for long. Investigations revealed that the assimilated water vapor dried up immediately

after assimilation. Figure 4.18 shows the integrated water vapor for the ARPS and CALDAS

experiments. The spatial distribution of IWV in the CALDAS shows some strange pattern

with higher amounts of water vapor assimilated over the land-lake boundary as well as re-

duction of water vapor in the North-East and South-West parts of the domain. This leads to

dry air mass which when it converges over the lake produces no rainfall. This explains the

drier state of the model at 03UTC.

The lake boundary problem is associated with mixed pixels (land/water) as a result of the

coarse resolution of AMSR-E footprint and at the moment a solution has not been formulated.
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Figure 4.18: Comparison of integrated water vapor (a) 21UTC ARPS,(b) 00UTC ARPS,(c)

03UTC ARPS, (d) 21UTC CALDAS, (e) 00UTC CALDAS, (f) 03UTC CALDAS

4.4 Water vapor assimilation: CMDAS and RTM sen-

sitivity experiments

Since LVB lacks high resolution soil moisture data, we assume that assimilation of soil mois-

ture is correct and focus only on the atmosphere component. In addition, we choose to apply

these experiments for an extreme event in which surface fluxes may not play a very impor-

tant role in atmospheric modulation. Our experiments mainly focus on CMDAS (set #1,

2) assimilation and the radiative transfer model (set #3) used in CALDAS. These focused
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on the significance and the approaches to assimilation of water vapor and the relevance of

rain water as well as the sensitivity of the RTM to variations in surface temperature and

soil moisture. The experiments were designed to identify the reason why the induced model

state was not being kept for long. This involved testing the relevance of the assimilation of

all CALDAS hydrometers and the general approach to the assimilation of cloud water and

water vapor. By default, water vapor assimilation uses a factor approach between the model

and SCE-UA IWV so as to retain the model state integrity and stability. Rainwater, cloud

water and snow water are also assimilated in CALDAS default settings. The impact of each

of these was investigated and Table 4.4 summarize these experiments.

Table 4.4: Set 1 : Water Vapor saturation and bogus assimilation experiments.

Experiment Settings

CALDAS The default run; rain water, cloud water, snowater and water vapor vari-

ables are assimilated

QVSAT Water vapor was not assimilated, rather saturated whenever a cloud is

found in the NWP

BOGUS Wind modification on the lower and upper model levels to enhance con-

vection

4.4.1 Water vapor saturation experiment (QVSAT)

The QVSAT experiment hypothesizes that to ensure consistency in energy and model state,

integrated water vapor should not be assimilated through the shuffled evolution complex

used in CMDAS. Instead, the vertical profile of the grid should be saturated whenever a

cloud is found. This was achieved by setting a threshold of 1.2 kgm−2 in integrated cloud

condensate, then saturating model water vapor profile between the cloud top and cloud

bottom whenever this threshold is exceeded. This would ensure model state integrity and

conservation of energy. It is hypothesized that introducing high relative humidity might
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help induce condensation processes which in turn would produce latent heat release (adding

buoyancy) in addition to the creation of cloud and rain water.

Figure 4.19: Integrated water vapor for QVSAT (a) 21UTC, (b) 00UTC, (c) 03UTC

Figure 4.19 shows the integrated water vapor for the QVSAT experiment at 21UTC,

00UTC and 03UTC. The drying up evidenced in the CALDAS run has disappeared and

the model water vapor seems uniform and heterogeneous. Over the lake AMSR-E observed

a dense cloud pattern (figure 4.15)and this is reflected by the high amounts of water va-

por around (33E,1S). However, the regions NW of the lake has more moisture assimilated

compared to the ARPS experiment while there is no discernible change NE of the domain.
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Figure 4.20: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC TRMM,

(b) 00UTC TRMM(5th April), (c) 03UTC TRMM, (d) 21UTC QVSAT, (e) 00UTC QVSAT,

(f) 03UTC QVSAT

The performance of CALDAS improves considerably with the QVSAT experiment. Rain-

fall at 00UTC is more homogenous and well spread over the lake. The experiment produces

the lined up pattern as observed in TRMM but also characterized by overestimation NW of

the domain in a similar pattern to the ARPS experiment (figure 4.17). The experiment is

however missing the semi-autonomous event NE of the lake. This implies that there is not

much improvement over land. The moisture provided through saturation is able to feed into

the clouds leading to the rainfall increase over the lake. However, at 03UTC the simulated

rainfall over the lake does not occur and the overestimation present at 00UTC is carried over.
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4.4.2 Wind modification on the lower and upper model levels (BO-

GUS)

The use of ”bogus wind” in NWP is not a new concept. The study and prediction of cyclones

and hurricanes have benefited widely by the use of wind and pressure modification to estimate

the path and intensity (e.g (Xiao et al., 2000; Kleist, 2011; Wang et al., 2011; Barker et al.,

2012)). This involves modifying wind pattern and pressure at the eye of the storm based

on observed patterns, radius and intensity by use of weather satellites. Since this has been

quite successful in many studies, the applicability of a roughly same idea of non-cyclones

have not been tested. This experiment sought to test the hypothesis that; by modifying

and strengthening weak convergence induced by CMDAS, better rainfall forecasts can be

obtained.

The same setup was applied as previous experiments and since the lined up cloud pattern

had been identified by TRMM and AMSR-E, modification was done in roughly 1 degree

offset. Weak surface convergence had been identified in the CALDAS run and the lower

surface level wind was multiplied by a factor of 1.5 as well the upper level. This modification

was only done at the assimilation time for one time step and the NWP model left to evolve.

This would strengthen the convergence and enhance convective activity.
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Figure 4.21: Integrated water vapor for BOGUS experiment (a) 21UTC, (b) 00UTC, (c)

03UTC

Figure 4.21 shows the integrated water vapor for the BOGUS experiment. It is clear that

modification of surface wind does not solve the problem of water vapor assimilation. In fact,

the integrated water vapor reduces greatly as compared to the default CALDAS experiment.

This is because accelerating surface convergence and hence the induced convection activity

increases the conversion of water vapor to cloud water and rainfall. This is followed by

an influx of dry air which soon extinguishes the convective activity. This is confirmed by

the almost no rainfall simulation at 03UTC. Nevertheless, the BOGUS experiment produces

slightly better results (figure 4.22) compared to the other experiments at 00UTC. The model

simulates rainfall over the lake as well as the semi-autonomous event NE of the domain. The

regions of maxima over the lake match that of TRMM though with overestimation. A very

clear band of rainfall is simulated which closely follows TRMM pattern. In addition, the

lake-boundary simulated rainfall is absent in this run. This implies that the strengthening

of the induced convective activity through wind enhanced precipitation. However, similar to

the CALDAS experiment, the model state could not be kept for long and the model performs

poorly at 03UTC and this is caused by the drying up of the water vapor as previously shown

in the CALDAS experiment.
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Figure 4.22: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC TRMM,

(b) 00UTC TRMM (5th April), (c) 03UTC TRMM, (d) 21UTC BOGUS, (e) 00UTC BOGUS,

(f) 03UTC BOGUS

These first set of experiments (Table 4.4) focused on the contribution of water vapor

saturation or the strengthening of induced convection by assimilation to a better forecast.

Experiments QVSAT and BOGUS demonstrated that, the reason for the water vapor disap-

pearance was not related to surface convergence or saturation, other factors were in play. We

hypothesized that; the assimilation of rain water might be the hindrance to cloud generation

and sustenance. The assimilation of the raindrop does not involve the change of matter state

through conversion from water vapor to cloud water and there is no release of energy. In

addition the contribution of rain water in the radiative transfer equation through the emis-
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sion or scattering is minimal. So, assimilation of rain water may not be needed. To test this

hypothesis, we set up three more experiments without rain water assimilation. This is as

given in Table 4.5.

Table 4.5: Set 2 : Without rain water assimilation experiments.

Experiment Settings

QVSAT-QR Assimilation with saturation of water vapor

BOGUS-QR Assimilation with introduction of bogus wind modification

NOSAT-QR Assimilation without saturation of water vapor

4.4.3 Water vapor saturation without rain water (QVSAT-QR)

With a slight improvement in prediction of precipitation by saturation of water vapor, this

experiment (QVSAT-QR) sought to investigate the effects of rain water. Rain water assimi-

lation was switched off but saturation of water vapor retained. Limits for cloud water were as

set same as the CALDAS experiment using the shuffled evolution complex. Figure 4.23 shows

the simulated rainfall for this experiment. There is a remarkable improvement compared to

the previous experiments. Rainfall is simulated at 00UTC and the system is maintained till

03UTC when rainfall over the lake is simulated in a pattern that closely resembles TRMM.

This implies that the assimilation rain water in this case is not beneficial. By assimilating

rain water we are simply adding rain, which falls down almost immediately. Since there is

no conversion of form by condensation, it means that little or no energy is released. The

convective system introduced by the cloud water to rainwater conversion is subdued and the

system shortly collapses. The risk of adding rainwater is that the vertical velocities initialized

at the location where rainwater is added will not support the rainfall; hence the model may

create a downdraft (due to the weight of the rainwater) in an area where positive vertical

velocity likely exists.
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Figure 4.23: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC

TRMM,(b) 00UTC TRMM(5th April), (c) 03UTC TRMM, (d) 21UTC QVSAT-QR,(e)

00UTC QVSAT-QR, (f) 03UTC QVSAT-QR

4.4.4 Bogus Wind without water vapor saturation (BOGUS-QR)

The same setup was applied as the previous BOGUS experiment only this time without rain

water assimilation.
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Figure 4.24: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC TRMM,

(b) 00UTC TRMM (5th April), (c) 03UTC TRMM, (d) 21UTC BOGUS-QR, (e) 00UTC

BOGUS-QR, (f) 03UTC BOGUS-QR

The BOGUS experiment produces slightly better results (figure 4.24) compared to the

other experiments. At 00UTC, the model simulates rainfall over the lake as well as the semi-

autonomous event NE of the domain. The region of maxima over the lake matches that of

TRMM though with overestimation. The prediction improves the forecast for 03UTC with

the rainfall system being maintained over that period. The simulated rainfall closely matches

TRMM at this time and this presents a major improvement. The strengthening of surface

convergence enhances convection over the domain. However, overestimation evidenced in

other experiments is still present and this is tied to water vapor assimilation.
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4.4.5 Without rain water and water vapor saturation (NOSAT-

QR)

Since the BOGUS-QR had produced remarkable results, this experiment checked the sig-

nificance of using BOGUS wind. In this experiment, both water vapor saturation and rain

water assimilation were switched off and there is no modification of wind. Figure 4.25 shows

the comparison of TRMM and the simulated rainfall. There is a remarkable improvement in

the simulated rainfall for 00UTC and also at 03UTC. The overestimation NW of the domain

evident on the other runs has been eliminated. This presents the ”best” results and was

adopted as standard CALDAS run. Statistical and correlation validations are based on this

run.
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Figure 4.25: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC

TRMM,(b) 00UTC TRMM(5th April), (c) 03UTC TRMM, (d) 21UTC NOSAT-QR,(e)

00UTC NOSAT-QR, (f) 03UTC NOSAT-QR

The integrated cloud condensate predicted by the CALDAS assimilation system also

showed some good comparisons against the cloud top temperature as a proxy for cloud

activity. Figure 4.26 shows that the CALDAS simulation at 03UTC was able to recreate

the dense cloud and rainfall over Lake Victoria. However, though the intensity is similar to

the observed, the overall pattern over the whole domain was rather different. The spatial

correlation of 0.3 was reasonable. Additionally, the intensity of the simulated rainfall was

more than 50% compared to TRMM. However, accurate comparisons cannot be made since

TRMM is based on satellite observations and 100% coverage is not guaranteed. TRMM’s
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inadequacies have also been identified (e.g. Tsujimoto and Koike (2011)) and these results

were considered reasonable.

Figure 4.26: Comparison of simulated against observed cloud top temperature(a) 21UTC

IR,(b) 00UTC IR(5th April), (c) 03UTC IR, (d) 21UTC CALDAS(best),(e) 00UTC CALDAS,

(f) 03UTC CALDAS

4.5 Accuracy assessment

Figure 4.27 shows the spatial correlation between TRMM and model simulated 3-hour pre-

cipitation starting at 21UTC to midday the following day. This period marks the duration of

the extreme event recorded over the LVB. The summary shows that the poorest experiment

compared to TRMM is ARPS with a very weak correlation of less than R2=0. 1 and at times
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Figure 4.27: Temporal evolution of simulated precipitation Vs. TRMM from 21UTC on 4th

April, 2004.
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Figure 4.28: Temporal evolution of simulated Vs. observed Cloud-top temperature from

20UTC on 4th April, 2004.

negative correlation. The BOGUS, BOGUS-QR and NOSAT-QR perform better after assim-

ilation. The correlation coefficient for these experiments is greater than R2=0. 2 especially

when QR is not assimilated. This shows that the removal of rainwater assimilation leads

to a better forecast. The CALDAS experiment is not any better, the correlation coefficient

stays below R2=0. 2. Inspecting the RMSE for these experiments we see that the BOGUS

experiment has the lowest RMSE followed by CALDAS at 03UTC. The experiments with

better spatial correlation also tend to have a higher RMSE. This means that even though

the pattern is slightly improved, the quantitative forecast is overestimated.
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Since precipitation validation in this experiment was limited to TRMM for rainfall, this

study also evaluated the simulated cloud pattern against observed cloud top temperature

pattern by the globally merged Infra-Red (IR) hourly product. IR cloud top temperature can

be used to identify the spatial distribution of clouds with regions of dense clouds having lower

cloud top temperatures. We compared the pattern as well as the coefficient of correlation.

Figure 4.28 shows the temporal evolution of simulated cloud-top temperature compared to

the observed IR for these experiments. The ARPS, CALDAS and BOGUS experiments

show the lowest correlation. Since there is no assimilation in the ARPS experiment, the

spatial pattern is never close to observation. The case for the BOGUS is slightly different,

accelerating convection by strengthening surface convergence and upper level divergence there

is consumption of water vapor and cloud-water is quickly converted to rainwater in the

convection process. This hinders the cloud development which can only be sustained by a

constant supply of water vapor.

The saturation experiments i.e (QVSAT and QVSAT-QR) produce the best of cloud

patterns and this is sustained above R2=0. 3 for more than 12 hours. This means that the

saturation of water vapor in the cloud column enhances the cloud activity and this induced

system is kept for a longer time compared to other experiments. The NOSAT-QR simulation

performs well too but deteriorates after about 6 hours where the pattern correlation falls

below R2=0. 2. Figure 4.29 shows the scatter diagrams for 21UTC, 00UTC and 03UTC for

the CALDAS(”best”)experiment. Compared to Figure 4.8, the prediction improves though

quantitatively overestimated. This is shown by clustering along the prediction axis.

140



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

Figure 4.29: Scatter plots for the CALDAS experiment (a) 21UTC, (b) 00UTC, (c) 03UTC

(5th April) and (d) 06UTC.

Figure 4.30 shows the probability of detection (POD), false alarm ratio and accuracy of

the prediction. The POD increases to about 0.5 after the assimilation and this is far much

better than the ARPS experiment where POD stays below 0.2 for the whole of the simulation

time. This improvement is noted for all the thresholds meaning prediction improves for all
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rainfall amounts. ACC improves for all thresholds to an average of about 0.9 compared

to ARPS 0.7. This implies that the rate of all well-predicted locations with respect to the

thresholds improves after assimilation.
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Figure 4.30: Scores computed based on the contingency table for the simulation. Each 3-hour

accumulation is presented by one value; a) POD b) ACC, c) FBIAS and c) FAR.

143



CHAPTER 4. NWP AND DOWNSCALING OF WEATHER FORECASTS IN THE LVB

4.6 Radiative transfer model sensitivity experiments

Kuria (2007) performed sensitivity experiments on the radiative transfer model with respect

to different soil moisture conditions. They concluded that for the moist case soil moisture,

under-prediction gives high brightness temperature (TB) values, while over-prediction lowers

TB values. For the moderate moist case, sensitivity reduces with increase in frequency.

For low moisture condition, at 36 GHz the difference in vertical polarization shows a large

impact of moisture overestimation. We extended the sensitivity experiments not only on soil

moisture but also surface temperature which is used in the computation of surface emission.

Table (4.6) summarizes these experiments.

Table 4.6: Set 3: Surface temperature/RTM sensitivity experiments.

Experiment Settings

CALDAS-2K 2K subtracted from surface temperature

CALDAS-7K 7K subtracted from surface temperature

CALDAS-10K 10K subtracted from surface temperature

4.6.1 Sensitivity to Surface Temperature

The four stream fast model used in CALDAS computes the contribution of water vapor and

cloud-water to emission and scattering. By considering the surface emission as the lower

boundary condition and top of the atmosphere brightness temperature the algorithm is able

to deduce the amount of water vapor and cloud water in the atmosphere. Since surface

emission is a function of surface temperature and soil moisture, these experiments sought

to investigate the significance in water vapor assimilation if there are errors in the surface

estimation. This was motivated by the recurrent ”drying up” witnessed in all previous runs

except the ”water vapor” experiments.

The CALDAS experiment without saturation and without rainwater produced the best
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forecast at least for six hours. However, the initial problem of water vapor drying up was

not eliminated completely by switching off rainwater. This was manifested when comparing

the assimilated and observed brightness temperature at 23GHZ. It was found out that the

RTM has a tendency to assimilate higher brightness temperature for 23GHZ channel which

is sensitive to water vapor (figure 4.31). The assimilated brightness temperature NW and

SE of the domain was overestimated by about 5-15K. Surface temperature and soil water

moisture are the key variables for computation of emissivity which is used by the RTM to

obtain surface emission.

Since the results from the first set of experiments showed underestimation of water vapor

during the assimilation time and assimilation of higher than observed brightness tempera-

tures; we set up the #set 2 experiments by gradually subtracting 2, 7, and 10k from the

surface temperature (only at the assimilation time for one time step) on the domain West

of 33oE. We then investigated the impact on assimilated water vapor and the forecasted

precipitation.

Figure 4.31: 23GHz Brightness temperature (a) Observed (AMSR-E), (b) assimilated.

Figure 4.33 shows the simulated IWV for these experiments as compared to the ”best”
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run. Specifically, water vapor that dried up in the previous experiments did not occur in

the #set 2 experiments. Lower surface temperatures during assimilation meant that lower

surface emission was calculated from the surface. Lowering the surface temperature by more

than 5K on the western part of the domain led to the assimilation of more water vapor.

Higher top of the atmosphere brightness temperature as observed by AMSR-E (TBtoa) and

lower surface emission (TBsfc) is an indicator that atmospheric emission is dominant and

thus associated with abundant water vapor in the atmosphere. As it can be seen from

figure 4.33, the parts of the domain that experienced drying up in the previous experiments

now have more water vapor coherent with the rest of the domain and this is also reflected

in the simulated precipitation (figure 4.32). Subtracting >5K from the surface temperature

during assimilation leads to improved precipitation west of the lake.

The microwave RTM used in CALDAS exploits the short window between surface and

atmospheric emission. The AMSR-E 23GHz channel is sensitive to water vapor and the dif-

ference between atmospheric and the surface emissions is an indicator of water vapor quantity

in the atmosphere. This implies that accurate estimation of surface emission is very impor-

tant. The RTM sensitivity experiments reinforce the fact that for proper assimilation of water

vapor, there is a need to estimate surface temperature accurately. On the CALDAS surface

forward model, surface temperature at the assimilation time is used to compute surface emis-

sion which when compared against satellite observed emissions to give an indication of the

amount of water vapor in the atmosphere. CALDAS-2K, CALDAS-7K and CALDAS-10K

experiments have demonstrated the need for accurate surface temperature. To be able to get

better estimates and ultimately better forecasts, it is important to improve the RTM model

to reduce some of the uncertainty associated with model estimation of surface temperature.

This study proposes a thorough validation and improvement of the RTM surface emission

model through ground-based observations.
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Figure 4.32: Comparison of 3-hourly simulated against observed rainfall (a) 21UTC

TRMM,(b) 00UTC TRMM(5th April), (c) 03UTC TRMM, (d) 21UTC -2K, (e) 00UTC -

2K, (f) 03UTC -2K, (g) 21UTC -7K, (h) 00UTC -7K, (i) 03UTC -7K, (j) 21UTC -10K, (k)

00UTC -10K, (l) 03UTC -10K,
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Figure 4.33: Comparison integrated water vapor (a) 21UTC CALDAS(best),(b) 00UTC

CALDAS(best)(5th April) CALDAS(best), (c) 03UTC CALDAS(best), (d) 21UTC -2K, (e)

00UTC -2K, (f) 03UTC -2K, (g) 21UTC -7K, (h) 00UTC -7K, (i) 03UTC -7K, (j) 21UTC

-10K, (k) 00UTC -10K, (l) 03UTC -10K,
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4.6.2 Sensitivity to Soil Moisture

In a similar method to Kuria (2007), we performed six additional water vapor assimilation

experiments based on different soil moisture conditions. We introduced additive and sub-

tractive 5%, 10% and 20% to soil moisture and this was only applied at the assimilation

time step only. Assimilated water vapor and precipitation at 00UTC and 03UTC was then

evaluated for homogeneity and continuity. Evaluation of the assimilated water vapor and

predicted precipitation (not shown) showed that regardless of the introduced error to soil

moisture, the resulting assimilated water vapor and predicted precipitation was almost the

same. There was no remarkable difference in these two variables between the extreme errors

in soil moisture. This implies that, unlike Kuria (2007) this experiment shows the insen-

sitivity to soil moisture conditions and the biggest uncertainty / error is associated with

estimation of surface emission which is heavily influenced by surface temperature.

4.7 Flood simulation by CALDAS forecasts

One objective of this thesis is to investigate the applicability of downscaled forecasts in

an early flood warning system. The study sought to investigate the performance of WEB-

DHM in simulating discharge for 4th April, 2004 by using CALDAS meteorological forecasts.

Quantitative precipitation forecast and other WEB-DHM forcing were extracted from the

LVB domain used in the downscaling experiment and used to drive the model. Due to lack

of ground-based rainfall observations and hourly discharge data from the Nyando river basin,

only CALDAS results are presented here without any validation. There are five discharge

gauges in this basin and the simulated discharge is presented in figure 4.34.
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Figure 4.34: Simulated discharge based on CALDAS downscaled meteorological forcing.

Due to the overestimation of rainfall from the NWP the simulated discharge in the Nyando

river basin is overestimated compared to daily recorded floods (30m3) at the downstream

gauge GD03. However, the flood peaks for 7th-12th exceed (200m3) and this is an indicator

that with continuous data assimilation, better flood forecasts can be made. That notwith-

standing, this study serves as a major milestone towards forecast-based future flood control

interventions.

4.8 Summary

This chapter introduced the concept of NWP and challenges of quantitative precipitation

prediction. We sought to improve the prediction of such an event in the LVB. Using TRMM

and observed cloud top temperature from geostationary satellites, 4th April, 2004 was se-

lected for further investigation. This event was characterized by a low pressure system over

Lake Victoria which started about midday on 4th and ended almost midday the following

day. This provided a good opportunity to test predictability, identify deficiencies in the
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ARPS/CALDAS prediction system and validate the assimilation system (Section 4.3.2). A

nested downscaling approach was used with cumulus parameterization on the outer two grids

and switched off for the inner domain.

4.8.1 Downscaling only experiment

The ARPS downscaling numerical experiment performs poorly and though there is some

prediction of rainfall in the greater LVB, validating the simulated rainfall against TRMM

shows that a low skill was achieved by this experiment and there is a need to improve

the prediction. Further, comparison of simulated cloud top temperature against observations

showed that there is only some improvement for the first six hours then the skill reduces after

ten hours. This was also confirmed by measures of skill based on the binary contingency table

statistics.

4.8.2 Downscaling with assimilation experiments

Section 4.3.2 extended the experiments of section 4.2.4 with an aim of improving extreme

rainfall predictions through satellite data assimilation. Due to its higher spatial resolution

and sensitivity to cloud water and water vapor in the atmosphere, AMSR-E satellite data

were used to improve model state. A set of experiments was set up to investigate the 4th

April, 2004 event over Lake Victoria and some parts over land. Compared to the ARPS

experiment, the CALDAS experiment gave better results with rainfall simulated at 03UTC

having a pattern very similar to TRMM. This was reflected by a higher spatial correlation

between TRMM and simulated cloud-top temperature. The prediction of the extreme rainfall

was consistent with the observation with good results achieved for at least six hours.

4.8.3 Assimilation and RTM sensitivity experiments

These experiments also sought to validate the CALDAS system in a wet humid region. The

default CALDAS systems allow for the assimilation of water vapor, rainwater, snow water
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and cloud water. Just after assimilation all CALDAS experiments gave better results for

about one hour but soon dissipated. Further experiments identified two key issues; 1) the

assimilation of rainwater through the shuffled complex evolution was not required. This is

because rainwater would not enhance instability but would rather suppress any updrafts

introduced by condensation of cloud water. Also, assimilating rainwater does not lead to

release of latent heat which initiates convection. 2) Water vapor in all the experiments

seemed to dry up even after excluding rainwater assimilation. Further checks revealed that

the CALDAS RTM seemed to assimilate higher brightness temperatures compared to AMSR-

E observations. This led to assimilation of less water vapor into the NWP model state. While

this affected the two channels of AMSR-E; it seemed to affect the 23GHz, sensitive to water

vapor.

Experiments were done to check for sensitivity and it was revealed that; changes in

surface temperature led to significant changes in assimilated water vapor. Subtracting 2K,7K

and 10K from the surface temperature (assimilation time only) led to an increase in the

assimilated water vapor. Thus for the best results, the uncertainty in the calculation of

surface emission must be solved. Since temperature is key for the RTM, there is a need to

improve the treatment of surface temperature during assimilation and get better estimates

of surface temperature. This study proposes thorough validation and improvement of the

RTM through ground-based observations.
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Chapter 5

Conclusions and Recommendations

This thesis sought to demonstrate a comprehensive integrated approach to climate change

assessment in the LVB. Identified as one of the most vulnerable(LVBC, 2007, 2011) regions

to adverse effects of climate change (IPCC, 2007; Seneviratne et al., 2012), it is essential to

have a deeper understanding of projected changes in mean climate as well as extreme weather

events. This was achieved through a multi-dimensional approach combining different spatial,

numerical and temporal dimensions. Basin scale analysis of climate change and its impacts

on flow regimes was done in the Nyando river basin as well regional analysis of the mean

climate in the greater LVB and East Africa.

In addition, as a step towards adaptation to extreme weather events, the study sought to

improve extreme weather predictability under the current climate through NWP and down-

scaling. Additionally, satellite data assimilation was introduced to improve the forecast.

Higher resolution output from the NWP model was used to test the applicability in flood

prediction by simulating the recorded flood event at the simulation time and comparing

against observations. The following sub-sections summarize the key findings and recommen-

dations for future work.
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5.1 Climate change: Nyando river basin

Nyando basin is a predominantly flood basin within the greater LVB. Loss of livelihoods,

housing and life has been common occurrence almost on a yearly basis. The likelihood of

these events recurring in the future under SRESA1B climate change scenario was investigated.

Through statistical bias correction and downscaling of GCM projections, the likely changes in

basin rainfall and future flood frequency and intensity were determined in the basin. In line

with the IPCC AR4 report which suggested that most of East Africa is likely to experience

more rainfall, the bias corrected rainfall in this river basin shows the same trend. There

is a high probability that the frequency and intensity of extreme events will increase in the

future. This is reflected well by the three selected GCMs, showing a positive trend in extreme

rainfall. In tandem with rainfall, the likelihood of an increase in floods in the same basin is

projected by the three GCMs.

5.2 Regional changes in climate the LVB

Chapter 2 analyzed the projected regional changes in rainfall and associated circulation

patterns. It also focused on extreme weather projections by use of extreme weather indices.

Under the SRES A1B scenario, the mean of the three selected GCMs project an increase in

rainfall in the LVB and East Africa as a whole. Analysis at the seasonal scale shows a similar

increasing trend but more pronounced during the October-December season. Over the LVB

both seasons are suggested to experience an almost equal increase. The GCM projected

anomalies show a pattern very similar to the seasonal migration of the ITCZ with regions

that usually experience peak rainfall having more enhanced anomalies. It has been shown

that westerly anomalies in the central western Indian Ocean have a strong correlation with

East Africa’s rainfall. Investigations reveal that, these westerly anomalies are projected to

weaken in the future; a scenario associated with a weaker Walker (or even reversal) circulation

cell over the central Indian Ocean and anomalously high rainfall in the region.
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5.2.1 Projections of extreme events

Extreme weather indices used support Chapter 2’s findings; that this region is likely to

experience more extreme events. Under the SRESA1B scenario, the number of wet days

exceeding the 90% percentile of 1981-2000 is likely to increase by 20-40% in the whole region.

An increase of about 5-20% is projected to occur in the LVB and the Congo basin with the

highest changes of about more than 30% being projected for the Kenyan-Somali coast. This

is also reflected in the number of wet days exceeding the 99% threshold with about 1-8%

projected increase. This is accompanied by more than 100% increase on days with rainfall

over 40mm east of Lake Victoria and central Kenya and 10% increase in the simple daily

intensity index.

5.2.2 Mechanisms of extreme events

We explored the likely mechanisms associated with the projected changes and focused on

regional and synoptic systems which have previously been shown to control extreme rainfall

in the region like SST anomalies and Walker circulation. Investigations suggest that westerly

anomalies are projected to weaken in the future; a scenario associated with a weaker Walker

(or even reversal) circulation cell over the central Indian Ocean and anomalously high rainfall

in the region.

Investigations of the selected 30 future events in the LVB reveal that moisture flux con-

vergence during the two seasons will likely remain high with the Indian Ocean providing the

bulk during the two seasons. Mean sea level pressure anomalies for these events suggest an

anomalously low pressure over the region; and this is common during the two months rep-

resenting the two seasons. Weakening of the Walker circulation and warmer western Indian

Ocean SST anomalies are some of the projected synoptic system changes that are likely to

be associated with increased precipitation in the EA region.

In general, dynamic and synoptic mechanisms support the projected changes in mean and

extreme rainfall in this region. This is clear for the OND season but for MAM the regional
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synoptic changes in relating regional / basin scale change in extreme rainfall is not clear and

more research and modeling framework especially for this season is suggested.

5.3 Numerical downscaling of weather forecasts

Chapter 4 introduced the concept of NWP and challenges of quantitative precipitation pre-

diction. The chapter sought to improve the prediction of such an event in the LVB. Using

TRMM and observed cloud top temperature from geostationary satellites on 4th April, 2004

was selected for further investigation. This event was characterized by a low pressure sys-

tem over Lake Victoria which started about midday on 4th and ended almost midday the

following day. This provided a good opportunity to test predictability, identify deficiencies

in the ARPS/CALDAS prediction system and validate the assimilation system (Chapter 4).

A nested downscaling approach was used with cumulus parameterization on the outer two

grids and switched off for the inner domain.

The ”ARPS downscaling only” numerical experiment performs reasonably well and there

were some prediction of rainfall in the greater LVB. Validating the simulated rainfall against

TRMM shows that a low skill was achieved by this experiment and there is a need to improve

the prediction. Further, comparison of simulated cloud top temperature against observations

showed that there is some improvement for the first six hours then the skill reduces after ten

hours. This was also confirmed by measures of skill based on the binary contingency table

statistics.

5.4 Data assimilation and extreme event forecasting

Due to its higher spatial resolution and sensitivity to cloud water and water vapor in the

atmosphere, AMSR-E satellite data were used to improve the model state of the NWP model

(i.e. ARPS). A set of experiments was set up to investigate the 4th April, 2004 event over

Lake Victoria and some parts over land. Compared to the ARPS experiment, the CALDAS
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experiment gave better results with rainfall simulated at 03UTC having a pattern weakly

similar to TRMM. This was reflected by a higher spatial correlation between TRMM and

simulated rainfall as well cloud-top temperature against observed IR.

5.4.1 Assimilation of rain water

The default CALDAS system allows for the assimilation of water vapor, rainwater, snow

water and cloud water. Just after assimilation all CALDAS experiments gave better results

for about one hour but soon dissipated. Further experiments identified two key issues; 1) the

assimilation of rain water through the shuffled complex evolution was not required because

rainwater would not enhance instability but would rather suppress any updrafts introduced by

condensation of cloud water. Also, assimilating rain water does not lead to release of latent

heat which initiates convection. 2) Water vapor in all the experiments seemed to dry up

even after excluding rainwater assimilation. Further checks revealed that the CALDAS RTM

seemed to assimilate higher brightness temperatures compared to AMSR-E observations.

This led to assimilation of less water vapor into the NWP model state. While this affected

the two channels of AMSR-E; it seemed to affect the 23GHz which is sensitive to water vapor.

5.4.2 Surface temperature sensitivity

Experiments were done to check for sensitivity and it was revealed that; changes in surface

temperature led to significant changes in assimilated water vapor. Subtracting 2K,7K and

10K from the surface temperature (assimilation time only) led to an increase in the assim-

ilated water vapor. Thus for the best results, the uncertainty in the calculation of surface

emission must be solved. Since temperature is key for the RTM, there is a need to improve

the treatment of surface temperature during assimilation and get better estimates of surface

temperature. This study proposes thorough validation and improvement of the RTM through

ground-based observations.

157



CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS

5.5 Recommendations

We demonstrated a multi-dimensional approach to integrating climate change assessment

and extreme weather forecasting as a step towards extreme weather adaptation. While it

is virtually impossible to link a specific event to climate change, knowledge of the likely

intensity or frequency is key to adaptation and resilience building. This study has done a

preliminary investigation of the likely changes at basin and regional scales of extreme events

and the study suggests a likely increase. That notwithstanding, there is a need for an in-

depth analysis, more model and analytical integration. To comprehensively address the issue

of climate change and extreme events in this region, this study recommends the following:

(a) GCM projections downscaling approach : To address some of the documented uncertainties

and challenges of statistical downscaling, a dynamic approach is encouraged to provide a

clearer picture of the extreme weather projection under climate change in this region

(b) CMIP5: CMIP5 will hopefully address some of the challenges and uncertainties especially

in the East African region. Consideration should made to investigate the projections of

extreme events at a higher spatial and temporal resolutions offered by CMIP5

(c) Extreme event forecasting : forecasting was limited to one event only, partly due to data

limitations. It is recommended that more similar experiments even at smaller domains be

investigated in the future to validate these findings

(d) Assimilation of rain water : this study suggests that it may not be necessary to assimilate

rain water in CALDAS. There is a need to validate this finding with other events and possibly

in other regions

(e) Sensitivity of surface temperature : this study identified the need to improve the RTM

with respect to assimilation of water vapor. It was suggested that accurate estimation of

surface temperature is needed. This study proposes more ground based re-calibration and

validation of the RTM
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(f) QPF for flood forecasts : one of the objectives of the study was to evaluate the perfor-

mance of the QPF in flood prediction. Despite the improvements in spatial distribution of

precipitation, the predicted flood was too high. Nevertheless, data unavailability and daily

time scale limited the validation. In addition, though it has been shown that QPF prediction

is one of the most challenging tasks of weather prediction, we suggest bias correction of QPFs

as an immediate solution to over-prediction.

5.6 Scientific contribution

This research integrated climate change assessment and improved tools and aids to adapt

to extreme weather in the LVB and this involved analysis of extreme weather events at

both local and regional scales. It was confirmed that in line with the IPCC AR4 report,

the projected changes in precipitation; both mean and extremes are likely to increase in

the region. Concurrently, the likelihood of increased floods in the Nyando river basin is

high. Investigations at the regional scale revealed a similar trend with a likelihood of more

extreme days in the region with the eastern parts of LVB being more likely to experience

these as projected by CMIP3 GCMs. Analysis of the mechanisms reveal a trend similar to

historical extreme events: weaker Walker circulation, anomalous moisture flux and stronger

than normal Somali jet.

In order to support adaptation to extreme events even under the current climate, we

demonstrated the applicability of a coupled atmosphere and land data assimilation NWP. It

is possible to provide better forecasts by assimilating AMSR-E data in this region though

there are some specifics of the system that need improvement. Firstly, Kuria et al. (2007)

introduced the assimilation of rain water into the CALDAS system. However, investigations

revealed that this may not be necessary especially in regions with abundant water vapor in

the atmosphere.

Secondly, the current RTM used in the CALDAS system was found to overestimate as-

similated brightness temperature. Investigations and sensitivity studies traced the issue to
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estimation of surface temperature which ultimately affected the water vapor assimilation

through the computation of surface emission. While the performance under the current

system can be considered satisfactory, this study identified the need to revise the RTM to

provide a better estimation of surface emission. Lastly, an attempt was made to evaluate

the performance of the QPF as an input for flood simulation. This was a first step and even

though the floods were overestimated, it provided a good starting point for extension of this

study
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Table A.1: Nyando river basin rain gauge stations.

ID STATION LATITUDE LONGITUDE

8935001 Kabagendui Kibet Farm 0.0333 35.3000

8935013 Nandi, Koisagat Tea Estate 0.0833 35.2667

8935033 Nandi Hills, Savani Estate 0.0500 35.1000

8935067 Kaptagat S.F.T. Estate 0.4000 35.4833

8935086 Eldoret Municipal Council 0.5167 35.2667

8935117 Kipkabus Forest Station 0.3167 35.5167

8935148 Kipkurere Forest Station 0.0833 35.4167

8935159 Cerengoni Forest Station 0.1167 35.3667

8935161 Nandi Hills, Kibweri Tea Estate 0.0833 35.1500

8935164 Kaptagat, Sabor Forest Station 0.5000 35.4833

9034009 Miwani Sugar The Hill. -0.0500 34.9500

9034025 Kisumu Meteorological Station -0.1000 34.7500

9034086 Ahero Irrig. Research Station -0.1333 34.9333

9035002 Londiani Forest Station -0.1500 35.6000

9035020 Kipkelion Railway Station -0.2000 35.4667

9035042 Equator Barguat Estate -0.0167 35.4000

9035046 Chemelil Plantation -0.0667 35.1500

9035068 Kipkelion Morau Company Ltd. -0.1333 35.4500

9035075 Kaisugu House, Kericho -0.3167 35.3667

9035102 S. Kalya’S Farm, Kedowa -0.2667 35.5167

9035148 Koru Bible School -0.2000 35.2667

9035150 Tinderet Estate -0.1333 35.3833

9035199 Ainamoi Chiefs Camp, Kericho -0.3000 35.2667

9035240 Keresoi Forest Station, Londiani -0.2833 35.5333

9035256 Maragat Forest Station -0.0500 35.4667

9035279 Hail Research Station, Kericho -0.3667 35.2667
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