博士論文

Studies on the ability of the Asian corn borer Ostrinia furnacalis to catabolize DIMBOA，a host antibiotic
 （アワノメイガ Ostrinia furnacalis の DIMBOA 異化代謝能に関する研究）

TRAN THI THU PHUONG
トラ
ティ
トゥ
フーン

Studies on the ability of the Asian corn borer Ostrinia furnacalis to catabolize DIMBOA，a host antibiotic

（アワノメイガ Ostrinia furnacalis の DIMBOA 異化代謝能に関する研究）

TRAN THI THU PHUONG トラン ティ トゥ フーン

Graduate school of Agricultural and Life Sciences
The University of Tokyo

ACKNOWLEDGEMENTS

To complete my doctoral course and dissertation, I received great supports from many individuals and organizations.

First of all, I would like to express greatest appreciation to my supervisor, Professor Yukio Ishikawa, for his endless supports, valuable guidance, encouragements and provide accessibility to the best facilities to perform excellent research. I would like to thank Associate Professor Takashi Matsuo for his comments and supports for my research. I would like to thank Dr. Masabonu Yamamoto and Takeshi Fujii for technical training, their cooperation and conducting experiments, their valuable suggestions and comments from which this thesis would be possible. I would like to thank Mr. Yu Rong for his technical supports at laboratory and his help in my life in Tokyo. I appreciate very much assistance from all of lab members of Laboratory of Applied Entomology, Graduate school of Agricultural and Life Sciences, The University of Tokyo.

My kindest gratitude of Prof. Tran Duc Vien, the President of Vietnam National University of Agriculture, and Prof. Nguyen Van Dinh, Dean of Graduate School, Vietnam National University of Agriculture for giving me the opportunity and support me during my doctoral course in Japan.

I also take this opportunity to grateful the financial support from the Japanese Government for providing MEXT scholarship during 3 years (2012-2015).

Last but not least, I would like to devote this successful dissertation to my daughter and son, Vo Thi Phuong Linh and Vo Huu Quan, my husband, Vo Huu Cong, for their inspiration, supports, and encouragements, and especially, my parents, my sister and brother for all kinds of supports for me.

LIST OF CONTENTS

Acknowledgements i
List of contents ii
GENERAL INTRODUCTION 1
Chapter 1: COMPARISON OF THE ABILITY TO CATABOLIZE DIMBOA, A MAIZE ANTIBIOTIC, BETWEEN Ostrinia furnacalis AND Ostrinia scapulalis, WITH REFERENCE TO THEIR HYBRIDS
1.1. Introduction 5
1.2. Materials and methods 5
1.3. Results 13
1.4. Discussion 26
Chapter 2: MOLECULAR CLONING OF A CANDIDATE UGT GENE INVOLVED IN DIMBOA CATABOLISM
2.1. Introduction 29
2.2. Materials and methods 33
2.3. Results 36
2.4. Discussion 61
GENERAL DISCUSSION 64
THESIS SUMMARY 66
REFERENCES 70
APPENDIX 75

GENERAL INTRODUCTION

In nature, insect herbivores and plants are involved in complex biochemical and ecological interaction networks (Fürstenberg-Hägg et al., 2013). In the course of evolution, plants developed a diverse array of chemical defenses in order to protect themselves from herbivores (Berenbaum, 1995; Fürstenberg-Hägg et al., 2013; Schoonhoven et al., 2005). Many secondary metabolites of plants are known to work as feeding deterrents, growth inhibitors, or toxins against insects (Fürstenberg-Hägg et al., 2013; Hartmann, 2004; Howe and Jander, 2008). To overcome these defenses, herbivorous insects have evolved countermeasures such as modified feeding behavior, physiology, and metabolism (Després et al., 2007; Pentzold et al., 2014). These reciprocal processes between insect herbivores and their hosts are considered to have driven coevolution (Ehrlich and Raven, 1964).

Cyclic hydroxamic acids (cHx) are known as secondary metabolites in several Poaceae plants such as maize and wheat (Cambier et al., 1999; Hofman and Hofmanová, 1969; Niemeyer, 1988; Tipton et al., 1967). cHx are biosynthesized during the first 10 days after seed germination and then decrease as plant ages, and thus the concentration of cHx is highest in youngest leaf tissue (Cambier et al., 2000). The main cHx in maize is 2,4 -dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which is stored in plant tissues as non-toxic glucoside (Cambier et al., 1999; Hofman and Hofmanová, 1969). Upon disruption of tissues, DIMBOA and other aglucones are released by the action of plant β-glucosidase (Niemeyer, 1988; Woodward et al., 1978).

DIMBOA is known to work as feeding deterrent and growth inhibitor against many insects. This compound has been reported to decrease the growth,
development, and the survival rate of various insects, such as the European corn borer Ostrinia nubilalis (Hübner) (Campos et al., 1989; Feng et al., 1992), Asian corn borer Ostrinia furnacalis (Guenée) (Yan et al. 1999), corn stalk borer Sesamia nonagrioides (Lefebvre) (Ortego et al. 1998), and the bird cherry-oat aphid Rhopalosiphum padi (Linnaeus) (Mukanganyama et al., 2003). In addition, this allelochemical has been demonstrated to influence the activities of various enzymes, for instance, nervous system enzymes, digestive proteases, and detoxification enzymes of insects (Mukanganyama et al., 2003; Ortego et al., 1998; Yan et al., 1995). DIMBOA inhibits the activities of carboxypeptidases, aminopeptidases, glutathione S-transferase and esterases in S. nonagrioides (Ortego et al., 1998) and R. padi (Mukanganyama et al., 2003). Besides that, this compound has been shown to inhibit the activities of acetylcholinesterase and general esterase of O. furnacalis larvae (Yan et al., 1995).

Many herbivores have developed physiological and metabolic adaptations to overcome toxins in the host plants (Després et al., 2007; Pentzold et al., 2014). Detoxification enzymes such as cytochrome P450 monooxygenases, glutathione Stransferases, and UDP-glucosyltransferases (UGTs) play important roles in these adaptations (Ahmad and Hopkins, 1993a; Després et al., 2007; Pentzold et al., 2014). Insect UGTs catalyze glucosylation of small lipophilic compounds by using UDP-glucose as the main donor of glucose (Ahmad and Hopkins, 1993b, 1992; Ahn et al., 2012). Many UGT genes have been found in a single insect species, and form a large multiple gene family (Ahn et al., 2012). UGTs have been suggested to play an important role in detoxification of DIMBOA in several lepidopteran species, such as Spodoptera littoralis (Boisduval), Spodoptera frugiperda (Smith), and Mythimna separate (Walker) (Maag et al., 2014; Sasai et al., 2009; Wouters et
al., 2014). Interestingly, DIMBOA-glucoside found in the frass of insects was an epimer of plant DIMBOA-glucoside, indicating the occurrence of stereoselective reglucosylation of DIMBOA in herbivorous insects (Wouters et al., 2014).

In addition to detoxification of toxic compounds by enzymatic activities, alkalinity in the gut lumen of lepidopteran insects has been shown to inhibit the activities of ingested plant β-glucosidase, hence contributing to the reduction of toxic aglucones (Pentzold et al., 2014). Larvae of some insect species have highly alkaline pH conditions in the midgut lumen, which may inhibit plant β-glucosidases and prevent activation of ingested defense compounds. A direct link between an alkaline midgut and reduced plant β-glucosidases activity towards benzoxazinoid glucosides was reported in the generalist fall armyworm S. frugiperda (Pentzold et al., 2014). The larval midgut lumen with a pH of 10 was shown to reduce plant β glucosidases activity by more than 80%, which strongly reduced the release of toxic aglucones (review by Pentzold et al., 2014). Insect herbivores with an alkaline midgut may have been pre-adapted to feed on plants protected by allelochemicals. Thus, both detoxification enzymes and alkalinity of gut lumen are considered to be the measures to counter plant chemical defenses.

The Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) is an important pest of maize in the Asia (Ishikawa et al., 1999; Mutuura and Munroe, 1970). Although nine Ostrinia species are reported to inhabit Japan, O. furnacalis is the only Ostrinia species in Japan that feeds on maize (Ishikawa et al., 1999; Mutuura and Munroe, 1970). Among the sympatric congeners, the adzuki bean borer Ostrinia scapulalis (Walker) is particularly interesting in terms of host plant usage, because this species, despite very polyphagous, does not utilize maize as a host (Ishikawa et al., 1999). Comparison of the two congeners, O. furnacalis
and O. scapulalis, may shed light on the mechanisms of the differentiation of host plant usage, sympatric speciation that may have occurred after this differentiation, and many other aspects of evolutionary biology.

In the previous study (Kojima et al., 2010), O. furnacalis was shown to be better adapted to maize chemical defense than the congener adzuki bean borer O. scapulalis. The homogenate of digestive tract of O. furnacalis degraded cHx more rapidly than the O. scapulalis counterpart. The degradation of cHx by O. furnacalis was considered to involve UGT; however, the glucosylation product of cHx was not detected in the previous study (Kojima et al., 2010). The objectives of my research are to clarify the genetic background (inheritance) of the tolerance of the Asian corn borer Ostrinia furnacalis to cyclic hydroxamic acids (cHx), evaluation of the contribution of UDP-glucosyltransferase (UGT) to the detoxification of cHx , cloning of genes encoding UGT from O. furnacalis, and to perform functional assays of these genes.

CHAPTER 1:

COMPARISON OF THE ABILITY TO CATABOLIZE DIMBOA,

A MAIZE ANTIBIOTIC, BETWEEN Ostrinia furnacalis AND Ostrinia scapulalis, WITH REFERENCE TO THEIR HYBRIDS

1.1. Introduction

In this chapter, I aimed to further clarify the mode of detoxification of DIMBOA by O. furnacalis upon the basis of the results of previous studies conducted in our laboratory (Kojima et al., 2010). I first reinvestigated the resistance of O. furnacalis to DIMBOA in detail. I examined the growth and survival of O. furnacalis, O. scapulalis, and hybrids of these two species on an artificial diet containing DIMBOA in order to obtain information on the genetic background of this resistance. I subsequently evaluated the contribution of UDPglucosyltransferase (UGT) to the catabolism of DIMBOA in vitro using digestive tract homogenates.

1.2. Materials and methods

1.2.1. Laboratory culture of Ostrinia

Wild female moths of the genus Ostrinia, mostly O. furnacalis (Fur) and O. scapulalis (Sca), were collected at Mastudo, Japan ($35.5^{\circ} \mathrm{N}, 139.6^{\circ} \mathrm{E}$) in June 2014. They were brought to the laboratory, and maintained singly in $430-\mathrm{ml}$ plastic cups in order to allow them to lay eggs. Their offspring were reared by family on an artificial diet (Silkmate 2M, Nosan, Corp., Yokohama, Japan) under a photoperiod of $16 \mathrm{~L}: 8 \mathrm{D}$ at $25^{\circ} \mathrm{C}$ and $60-70 \%$ relative humidity. Since female moths of the Ostrinia species are very similar, species identification of the collected female
moths was impractical. Therefore, the species of each family was identified by the sex pheromone of the virgin females (Fig. 1.1) and thickness of the midlegs of male moths. The female sex pheromone of O. furnacalis is a blend of $(Z)-12-$ and $(E)-$ 12-tetradecenyl acetates, whereas that of O. scapulalis is a blend of (Z)-11- and (E) -11-tetradecenyl acetates (Ishikawa et al. 1999). The midleg of male O. furnacalis is thin, whereas that of O. scapulalis is thick (Mutura and Munroe, 1970).

1.2.2. Sex pheromone analysis

The pheromone glands of 10 virgin females were collected and female sex pheromone components were analyzed using a gas chromatograph coupled to a mass spectrometer (QP2010 SE GC-MS, Shimadzu) equipped with a capillary column (DB-Wax, 0.25 mm i.d. $\times 30 \mathrm{~m}$; Agilent Technologies, Santa Clara, CA). The initial column oven temperature of $80^{\circ} \mathrm{C}$ was maintained for 2 min , then raised at $8^{\circ} \mathrm{C} / \mathrm{min}$ to $240^{\circ} \mathrm{C}$, and maintained at this temperature for 4 min . The flow rate of the carrier gas (He) was $1.0 \mathrm{ml} / \mathrm{min}$.

1.2.3. Crossing

In order to obtain F_{1} hybrids (Fur $\times \mathrm{Sca}$), 20 virgin females of O. furnacalis and 25 males of O. scapulalis ($2-3$ days old) were housed in a mesh cage (20×20 $\times 20 \mathrm{~cm}$) for 7 days. Reciprocal crossing ($\mathrm{Sca} \times$ Fur) was conducted in a similar manner. F_{1} eggs were collected every 24 h and reared as described above. The female sex pheromones of F_{1} hybrids (Fur \times Sca and Sca \times Fur) used in the feeding test were analyzed to confirm their hybrid status (Sakai et al., 2009). F F_{1} females of the both reciprocal crosses produced the sex pheromone components of both parents, namely, (Z)-11-, (E)-11-, (Z)-12-, and (E)-12-tetradecenyl acetates (Fig. 1.1). Male
hybrid moths are expected to have the thick midlegs of O. scapulalis (Frolov et al. 2012). We confirmed that male hybrids had thick midlegs (data not shown).

1.2.4. Maize

The seeds of dent corn Zea mays (variety KD640) were obtained from Kaneko Seeds Co., Ltd., Gunma, Japan. Maize seedlings were grown on moist paper towels in a plastic tray $(30 \mathrm{~cm} \times 23 \mathrm{~cm} \times 4.5 \mathrm{~cm})$, and kept in the dark at $25-28^{\circ} \mathrm{C}$. Seedlings were cut 7 days after germination and stored frozen at $-20^{\circ} \mathrm{C}$. Maize plants were cultivated in the field under natural conditions in July and August 2014 at the Yayoi Campus of the University of Tokyo, Japan. Maize plants were harvested 35 days after germination.

1.2.5. Purification of DIMBOA, DIMBOA-2-glucoside, and MBOA

DIMBOA-2-glucoside and DIMBOA were extracted from 7-day-old maize seedlings by the method of Lyons et al. (1988) and Larsen and Christensen (2000), respectively, and purified by high-performance liquid chromatography (HPLC; LC9A, Shimadzu, Kyoto, Japan) equipped with an ODS column ($10 \mathrm{~mm} \times 250 \mathrm{~mm}$; YMC-Pack Pro C18, YMC Co., Ltd., Kyoto, Japan). The mobile phase for HPLC was as described by Lyons et al. (1988). The flow rate of the mobile phase was 2.0 $\mathrm{ml} / \mathrm{min}$ and the eluates were monitored by UV absorption at 254 nm . 6-Methoxy-2-benzoxazolinone (MBOA) was obtained in the previous study (Kojima et al., 2010). Purified DIMBOA-glucoside, DIMBOA, and MBOA were analyzed by NMR $\left({ }^{1} \mathrm{H}\right)$ spectroscopy (ECA-II 500 MHz , JEOL RESONANCE Inc., Tokyo, Japan) in order to verify their chemical structures (Table 1.1).

The third-instar larvae of O. furnacalis were fed on an artificial diet containing $0,0.3,0.5$, and 0.7 mg of DIMBOA $/ \mathrm{g}$ according to the method of Kojima et al. (2010). The effects of DIMBOA on the growth of O. scapulalis, F_{1} (Fur $\times \mathrm{Sca}$), and F_{1} (Sca \times Fur) were only examined at 0 and 0.3 mg of DIMBOA/g. The duration of larval development, growth rate, pupal weight, and survival rate were used to evaluate the effects of DIMBOA on larvae.

1.2.7. In vitro assays

We slightly modified the method of Kojima et al. (2010) for in vitro enzymatic assays. The digestive tracts of larvae were isolated and washed in phosphatebuffered saline [PBS (+), $2,5 \mathrm{mM} \mathrm{KCl}, 141 \mathrm{mM} \mathrm{NaCl}, 8.1 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and 2.5 $\mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}(\mathrm{pH} 7.8)$, with $0.9 \mathrm{mM} \mathrm{CaCl} 2,0.03 \mathrm{mM} \mathrm{MgCl} 2$]. Twenty digestive tracts were homogenized in 6 volumes (V/W) of PBS $(+)$ and used as the enzyme solution. Reaction mixtures consisted of PBS (+), 0.3 mM DIMBOA, 0.6 mM UDP-glucose, and enzyme solution in a final incubation volume of 0.3 ml . In the control experiments, UDP-glucose was removed from the reaction mixture or the enzyme solutions were boiled for 15 min before the enzyme assay. After being incubated at $37^{\circ} \mathrm{C}$ for 90 min , the reaction was stopped by the addition of methanol $(0.1 \mathrm{ml})$ and centrifuged at $20,000 \mathrm{~g}$ for 15 min . The supernatants were analyzed by HPLC (ODS $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ column, GL science, Tokyo, Japan). The flow rate of the mobile phase was $1.0 \mathrm{ml} / \mathrm{min}$. After a 5-min isocratic elution at $5 \% \mathbf{A}$ (acetonitrile), 95% B (0.1% formic acid in water), the column was eluted with a linear gradient to $20 \% \mathbf{A}, 80 \% \mathbf{B}$ over 25 min followed by a second linear gradient to 100% A over 20 min . The eluates were monitored by UV absorption at 254 nm .

Calibration curves for DIMBOA-glucoside and DIMBOA were obtained using the standards prepared as described above.

1.2.8. Effects of pH on the catabolism of DIMBOA

In order to determine the effects of pH on the catabolism of DIMBOA, the digestive tracts of O. furnacalis were homogenized in 6 volumes (V/W) of PBS (-) [$2,5 \mathrm{mM} \mathrm{KCl}, 141 \mathrm{mM} \mathrm{NaCl}, 8.1 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4}$, and $2.5 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$] at four different pH values: 5.3, 7.2, 7.8, and 9.1. The enzyme solutions, reaction mixtures, and method applied for the analysis were the same as those described above.

1.2.9. Gut pH measurement

The midgut was quickly dissected out from a fifth-instar larva of O. furnacalis, and placed on the flatbed sensor of pH meter B-71X (Horiba, Kyoto, Japan). The measurement of pH was repeated three times using different samples.

1.2.10. Statistical analysis

Statistical analyses were performed using IBM SPSS software (version 22.0). An analysis of variance (ANOVA) or generalized linear model (GLM) was employed to analyze the effects of DIMBOA on the developmental time, growth rate, and pupal weight of O. furnacalis, O. scapulalis, and their F_{1} hybrids. Comparisons between the treatment and control were made separately for O. furnacalis, O. scapulalis, and F_{1} hybrids. The survival curves of O. furnacalis, O. scapulalis, and F_{1} were analyzed by Kaplan-Meier estimates and the Log-rank test. The catabolism of DIMBOA in in vitro enzymatic assays was analyzed by ANOVA.

In all experiments, differences between treatments were compared using Tukey's multiple comparison test.

Figure 1.1. Typical GC-MS chromatograms of female sex pheromone gland extracts of (A) O. furnacalis, (B) O. scapulalis, (C) F_{1} (Fur $\times \mathrm{Sca}$), and (D) $\mathrm{F}_{1}(\mathrm{Sca} \times \mathrm{Fur})$. Consistent with the findings of Sakai et al. (Insect Biochem. Mol. Biol. 39: 62-7, 2009), in addition to the pheromone components of both parents, an extremely large amount of 14:OAc was detected in hybrids. Retention time of female sex pheromone components: E11: $16.44 \mathrm{~min}, \mathrm{Z} 11: 16.57 \mathrm{~min}$; E12: $16.70 \mathrm{~min}, \mathrm{Z} 12: 16.93 \mathrm{~min}$, and saturated OAc: 15.99 min .

Table 1.1. ${ }^{1} \mathrm{H}$ NMR data of DIMBOA, DIMBOA-glucoside, and MBOA

Position	δ_{H} (multiplicity, J)		
	DIMBOA	DIMBOA-glucoside from maize seedlings	MBOA
2	5.72 (s)	5.93 (s)	
4			7.02 (d, J = 8.6)
5	7.25 (d, J = 8.8)	7.27 (d, J = 8.7)	6.74 (dd, J = 2.8, 8.4)
6	6.68 (dd, J = 2.7, 8.8)	6.70 (d, J = 8.7)	
7			6.9 (d, J = 2.4)
8	6.61 (d, J = 2.7)	6.74 (d, J = 2.2)	
10			3.80 (s)
11	3.78 (s)	3.79 (s)	
1 '		4.79 (d, J = 7.5)	
2 '		3.18 (s)	
3'		3.41 (dd, J = 8.5, 10.5)	
4		3.22 (dd, J = 8.4, 8.8)	
5 '		3.41-3.45 (m)	
6'a		3.89 (d, J = 10.7)	
6'b		3.68 (dd, J = 5.1, 11.2)	

11

DIMBOA

DIMBOA-glucoside

MBOA

DIMBOA: 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one
DIMBOA-glucoside: 2- β-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one
MBOA: 6-methoxy-2-benzoxazolinone

1.3. Results

1.3.1. Feeding tests

In the no-choice feeding test, O. furnacalis and its F_{1} hybrids were affected less by DIMBOA than O. scapulalis in terms of the growth rate, duration of larval development, and pupal weight (Table 1.2 and Fig. 1.2). The survival rate of O. scapulalis were significantly decreased when fed on a diet containing $0.3 \mathrm{mg} / \mathrm{g}$ of DIMBOA, whereas the decrease observed in the survival rate of O. furnacalis became significant when larvae were fed on a diet containing higher concentrations (0.5 and $0.7 \mathrm{mg} / \mathrm{g}$) of DIMBOA (Table 1.2). The degree of retardation of development in O. furnacalis fed on $0.7 \mathrm{mg} / \mathrm{g}$ of DIMBOA was similar to that in O. scapulalis fed on a diet containing $0.3 \mathrm{mg} / \mathrm{g}$ of DIMBOA. The growth and survival rate of $\mathrm{F}_{1}($ Fur $\times \mathrm{Sca})$ and $\mathrm{F}_{1}(\mathrm{Sca} \times \mathrm{Fur})$ on diet containing $0.3 \mathrm{mg} / \mathrm{g}$ of DIMBOA were similar to those of O. furnacalis (Table1.2 and Fig. 1.2).

1.3.2. Catabolism of DIMBOA in vitro

The involvement of UGT in the catabolism of DIMBOA in O. furnacalis was reinvestigated. DIMBOA was decreased when it was incubated with the homogenate of the digestive tract of O. furnacalis in the presence of, but not in the absence of, UDP-glucose (Fig. 1.3 B, C). Thus the involvement of UGT was also suggested in the present study; however, consistent with previous findings (Kojima et al. 2010), no peak corresponding to DIMBOA-glucoside, the expected glucosylation product, was observed (Fig. 1.3). Although DIMBOA is known to spontaneously degrade into MBOA under alkaline conditions (Woodward et al., 1978), no significant amount of MBOA was detected in in vitro enzyme assays (Fig. $1.3 \mathrm{~B}, \mathrm{C})$.

1.3.3. Fate of DIMBOA

In the above enzyme assays, a few new peaks, which are likely to be catabolites of DIMBOA, appeared close to DIMBOA and DIMBOA-glucoside as DIMBOA was catabolized (Fig. 1.3C). Among these compounds, my preliminary ${ }^{1} \mathrm{H}$ NMR analyses suggested that product 1 and product 2 in Fig. 1.3C are lactam-glucoside (Fig. 1.4) and lactam (Fig. 1.5), respectively. Since the presence of lactamglucoside is the evidence of UDP-dependent glucosylation activities in the enzyme assay system, we considered a possibility that DIMBOA-glucoside is once produced but immediately disappeared because it was subject to further degradation. To test this possibility, I added DIMBOA-glucoside in place of DIMBOA in the enzyme assay (Fig. 1.6). Interestingly, DIMBOA-glucoside was rapidly degraded by the homogenate of the digestive tract of O. furnacalis not only in the presence of, but also in the absence of, UDP-glucose (Fig. 1.6). These results clearly indicated that in addition of UGT, other unidentified detoxification enzymes, which degrade DIMBOA-glucoside but not DIMBOA, are involved in the catabolism of DIMBOA in O. furnacalis (Fig. 1.7).

1.3.4. Optimum pH and tissue distribution of DIMBOA-catabolizing activity

I hereafter refer to the enzymatic activity that decreases DIMBOA as UDP-glucose-dependent DIMBOA-catabolizing activity. The optimum pH for the catabolism of DIMBOA lay between 7.2 and 7.8 (Fig. 1.8), slightly lower than the pH within the digestive tract of O. furnacalis, 8.3-8.8. Among the tissues of O. furnacalis larvae tested, a high UDP-glucose-dependent DIMBOA-catabolizing activity was observed in the midgut and Malpighian tubules (Fig. 1.9).
1.3.5. UDP-glucose-dependent DIMBOA-catabolizing activities of F_{1} hybrids

We determined whether the mode of inheritance of UDP-glucose-dependent DIMBOA-catabolizing activity in Ostrinia was consistent with that of tolerance to DIMBOA. The UDP-glucose-dependent DIMBOA-catabolizing activities of F_{1} (Fur $\times \mathrm{Sca}$) and F_{1} (Sca \times Fur) were not significantly different from that of O. furnacalis, whereas that of O. scapulalis was very low (Fig 1.10A). These results were consistent with the assumption that tolerance to DIMBOA in O. furnacalis was conferred by genes dominant to those of O. scapulalis.

1.3.6. Induction of UDP-glucose-dependent DIMBOA-catabolizing activities

We examined the induction of UDP-glucose-dependent DIMBOAcatabolizing activities by the previous ingestion of DIMBOA. The catabolism of DIMBOA in O. furnacalis that had been fed for 5 days on a diet containing 0.1 mg / g or maize plants, which contained $0.19 \mathrm{mg} / \mathrm{g}$ fresh weight, occurred significantly more rapidly than that in larvae fed on a control diet (Fig. 1.10B). In contrast, such an enhancement in the UDP-glucose-dependent catabolism of DIMBOA was not observed in O. scapulalis (Fig. 1.10B).

Table 1.2. Growth indices of O. furnacalis, O. scapulalis, and their F_{1} Hybrids fed on an artificial diet containing DIMBOA

Species	DIMBOA concentration (mg/g diet)	Growth rate ${ }^{1}$ (mg/2day)	$\begin{gathered} \text { Duration of larval } \\ \text { development }{ }^{2} \\ \text { (days) } \\ \hline \end{gathered}$	Pupal weight ${ }^{3}$ (mg)	Survival rate ${ }^{4}$ (\%)
O. furnacalis	0	$2.46 \pm 0.09 \mathrm{a}(\mathrm{n}=50)$	$14.7 \pm 0.4 \mathrm{a}(\mathrm{n}=42)$	$60.3 \pm 2.5 \mathrm{a}(\mathrm{n}=35)$	$76.5 \mathrm{~d}(\mathrm{n}=98)$
	0.3	$2.10 \pm 0.06 \mathrm{~b}(\mathrm{n}=53)$	$15.7 \pm 0.5 \mathrm{a}(\mathrm{n}=43)$	$51.9 \pm 1.6 \mathrm{~b}(\mathrm{n}=43)$	$74.2 \mathrm{~cd}(\mathrm{n}=97)$
	0.5	$1.99 \pm 0.05 b(n=41)$	$17.7 \pm 0.5 \mathrm{~b}(\mathrm{n}=31)$	$45.3 \pm 1.2 \mathrm{c}(\mathrm{n}=30)$	$46.3 \mathrm{ab}(\mathrm{n}=95)$
	0.7	$1.72 \pm 0.04 \mathrm{c}(\mathrm{n}=43)$	$18.4 \pm 0.7 \mathrm{~b}(\mathrm{n}=31)$	$38.7 \pm 0.8 \mathrm{~d}(\mathrm{n}=31)$	$40.2 \mathrm{ab}(\mathrm{n}=102)$
O. scapulalis	0	$2.17 \pm 0.06 \mathrm{a}(\mathrm{n}=50)$	$15.8 \pm 0.5 \mathrm{a}(\mathrm{n}=55)$	$56.0 \pm 1.3 \mathrm{a}(\mathrm{n}=34)$	$76.1 \mathrm{~d}(\mathrm{n}=109)$
	0.3	$1.44 \pm 0.03 \mathrm{c}(\mathrm{n}=52)$	$18.1 \pm 0.9 \mathrm{~b}(\mathrm{n}=22)$	$40.9 \pm 1.1 \mathrm{c}(\mathrm{n}=22)$	$30.0 \mathrm{a}(\mathrm{n}=110)$
$\mathrm{F}_{1}($ Fur $q \times \mathrm{Sca} \overbrace{}^{\top})$	0	$2.18 \pm 0.04 \mathrm{a}(\mathrm{n}=49)$	$15.7 \pm 0.4 \mathrm{a}(\mathrm{n}=46)$	$56.4 \pm 1.4 \mathrm{a}(\mathrm{n}=39)$	$75.4 \mathrm{~cd}(\mathrm{n}=61)$
	0.3	$1.88 \pm 0.05 b \quad(\mathrm{n}=47)$	$16.1 \pm 0.6 \mathrm{a}(\mathrm{n}=38)$	$48.9 \pm 1.0 \mathrm{~b}(\mathrm{n}=37)$	$59.4 \mathrm{bcd}(\mathrm{n}=64)$
$\mathrm{F}_{1}\left(\mathrm{Sca} q \times\right.$ Fur ${ }^{\text {J }}$)	0	$1.97 \pm 0.04 \mathrm{a}(\mathrm{n}=46)$	$15.5 \pm 0.4 \mathrm{a}(\mathrm{n}=46)$	$54.9 \pm 1.2 \mathrm{a}(\mathrm{n}=39)$	$77.4 \mathrm{~cd}(\mathrm{n}=62)$
	0.3	$1.75 \pm 0.06 \mathrm{~b}(\mathrm{n}=40)$	$16.4 \pm 0.4 \mathrm{a}(\mathrm{n}=34)$	$47.1 \pm 1.2 \mathrm{~b}(\mathrm{n}=27)$	$53.1 \mathrm{bc}(\mathrm{n}=64)$

Means in the same column with the same letter are not significantly different at $p<0.05$. Data are the mean \pm standard error.
Tukey's multiple comparison test for proportions was used for the analysis of the survival.
${ }^{1}$ Larval weight post 48 -h feeding/initial larval weight. Third-instar larvae weighting $14-16 \mathrm{mg}$ were inoculated.
${ }^{2}$ Days from the start of the treatment with DIMBOA to pupation.
${ }^{3}$ Weight of pupae within 48 h of pupation.
${ }^{4}$ The percentage of larvae that pupated successfully.

Figure 1.2. Survival curves of O. furnacalis, O. scapulalis, and their F_{1} hybrids in the no-choice feeding test on an artificial diet containing $0.3 \mathrm{mg} / \mathrm{g}$ of DIMBOA. The survival curve of O. scapulalis was significantly different from those of O. furnacalis and F_{1} hybrids at $p<0.05$ by the Log-rank test. Unfed larvae of O. furnacalis and O. scapulalis died within 5 and 6 days, respectively ($\mathrm{n}=30$).

Figure 1.3. An HPLC chromatogram showing DIMBOA-glucoside (32.69 min), DIMBOA (37.65 min), and MBOA (42.03 min) standards prepared from maize seedlings (A). HPLC chromatograms of products after the incubation of DIMBOA with the homogenate of the digestive tract of O. furnacalis in the absence (\mathbf{B}) and presence (C) of UDP-glucose. In the presence of UDP-glucose, a few peaks appeared close to that of DIMBOA and DIMBOA-glucoside (see text).

2-O-8-glucopyranosyloxy-7,8-dimethoxy-2H-1,4-benzoxazin-3(4H)-one (HM_{2} BOA-Glc)

Figure 1.4. ${ }^{1} \mathrm{H}$ NMR spectra of product $1\left(\mathrm{HM}_{2} \mathrm{BOA}\right.$-glucoside) in in vitro enzymatic assays.

2-hydroxy-7,8-dimethoxy-1,4-benzoxazin-3(4H)-one ($\mathrm{HM}_{2} \mathrm{BOA}$)

Figure 1.5. ${ }^{1} \mathrm{H}$ NMR spectra of product $2\left(\mathrm{HM}_{2} \mathrm{BOA}\right)$ in in vitro enzymatic assays.

Figure 1.6. HPLC chromatograms of the catabolites of DIMBOA-glucoside in the enzyme assay. DIMBOA-glucoside was added to the homogenate of digestive tract of O. furnacalis with (+) or without (-) UDP-glucose. (A) No incubation (reaction was immediately stopped by adding MeOH), + UDP-glucose. (B) After incubation for 30 min , - UDP-glucose. (C) After incubation for 30 min , + UDP-glucose.

Figure 1.7. Possible fate of DIMBOA in vitro. In addition of UGT, other unidentified detoxification enzymes, which degrade DIMBOA-glucoside but not DIMBOA, are involved in the catabolism of DIMBOA in O. furnacalis.

Figure 1.8. Effects of pH on the catabolism of DIMBOA by the homogenate of the digestive tract of O. furnacalis. Bars with the same letter are not significantly different at $p<0.01$. Data are means $\pm \mathrm{SE}(\mathrm{n}=3)$.

Fig. 1.9. Comparison of UDP-glucose-dependent catabolism of DIMBOA in various tissues of O. furnacalis larvae. Data are means $\pm \mathrm{SE}(\mathrm{n}=3)$.

Figure 1.10. (A) UDP-glucose-dependent catabolism of DIMBOA by the digestive tracts of O. furnacalis, O. scapulalis, and F_{1} hybrids. The homogenates of the digestive tract of fifth-instar larvae fed on maize plants for 5 days were used as the enzyme solution. Bars with the same letter are not significantly different at $p<0.05$. Data are means $\pm \mathrm{SE}(\mathrm{n} \geq 3)$. (B) UDP-glucose-dependent catabolism of O. furnacalis and O. scapulalis larvae that had been fed on an artificial diet containing DIMBOA or maize. The homogenates of the digestive tracts of the fifth-instar larvae of two species fed on an artificial diet containing no or $0.1 \mathrm{mg} / \mathrm{ml}$ of DIMBOA, or maize plant, which contained approximately $0.19 \mathrm{mg} / \mathrm{g}$ FW of DIMBOA, for 5 days were used as the enzyme solution. Bars representing the same species with the same letter are not significantly different at $p<0.05$. Asterisks indicate significant differences between species $(* * * p<0.001)$. Data are means \pm SE ($n \geq 3$).

1.4. Discussion

The larvae of O. furnacalis, a maize feeder, tolerated higher concentrations of DIMBOA than its congener O. scapulalis, which does not feed on maize in nature. The European corn borer Ostrinia nubilalis, another congener feeding on maize in Europe and USA, also shows tolerance to DIMBOA; the survival rate of O. nubilalis that fed on a 0.5 mg DIMBOA $/ \mathrm{g}$ diet (49.2\%; Campos et al., 1989) is similar to that of O. furnacalis (46.3%; the present study). These results suggest that adaptation to the toxicity of DIMBOA is a prerequisite for insect herbivores to be able to utilize maize as their host plant. However, maize defenses against herbivores are not limited to DIMBOA. The major chemical and physiological defenses of maize include, in addition to DIMBOA, flavonoids such as maysin and chlorogenic acid, terpenoids such as (E) - β-caryophyllene, and protease inhibitors (Meihls et al., 2012). Comparisons of the abilities of O. furnacalis and O. scapulalis to cope with these defenses may lead to a better understanding of the coevolution of maize and the maize feeder O. furnacalis.

In the present study, we for the first time examined the effects of DIMBOA on the F_{1} hybrids of O. furnacalis and O. scapulalis. The larvae of F_{1} hybrids, both Fur \times Sca and Sca \times Fur, showed tolerance to DIMBOA, similar to that of O. furnacalis. The biological significance of this result is considered next. Since the male moths of O. scapulalis as well as its hybrid with O. furnacalis bear thick midlegs (Phuong, pers. obs.), they are easily distinguished from the male moths of O. furnacalis, which bear thin midlegs (Mutuura and Munroe, 1970). Therefore, the presence of hybrids in maize fields should be very rare because only males with thin midlegs have been recognized in maize fields in Japan (Hattori and Mutuura,
1987). Three possibilities can be considered for this rarity. One is that even though O. furnacalis and O. scapulalis mated easily when they were confined in a cage under laboratory conditions, natural hybridization rarely occurs because highly species-specific sex pheromones assure the attraction of conspecific mates only. Furthermore, even though hybrids are produced at a low rate in nature, the hybrid female may have difficulty in attracting mates because of its unusual sex pheromone. In addition, oviposition of female hybrid moths may not be tuned for maize, and, accordingly, they may lay eggs on plants other than maize. The last two possibilities need to be examined both under laboratory and field conditions because we currently have no information.

Our study reconfirmed the involvement of enzyme(s) that require UDP-glucose as a co-factor, most likely UDP-glucosyltransferase (UGT), in the catabolism of DIMBOA; however, we have consistently been unable to detect the glucosylation product of DIMBOA, DIMBOA-2-glucoside, in in vitro assays. Regarding the peak (retention time $\approx 36.8 \mathrm{~min}$) that appeared as DIMBOA diminished in in vitro assay (Fig. 1.3C), this compound is probably not the sole catabolite of DIMBOA since the peak was considerably small as compared with that of added DIMBOA. Further efforts are required to identify all the catabolites of DIMBOA. Alternatively, identification of the UGT gene and its silencing by RNAi or other methods may provide an insight into catabolism of DIMBOA in O. furnacalis.

In our preliminary observations, the larvae of O. furnacalis and F_{1} hybrids rapidly consumed the stems of 35 -day-old maize, which contained approximately $0.19 \mathrm{mg} / \mathrm{g}$ fresh weigh of DIMBOA, while the larvae of O. scapulalis consumed much less. Therefore, DIMBOA may function as a feeding deterrent to O.
scapulalis, and, hence, the growth retardation of O. scapulalis larvae feeding on a diet containing DIMBOA may be partly attributed to reduced food intakes. However, since O. scapulalis larvae fed on a diet containing DIMBOA survived significantly longer than those completely starved in the no-choice feeding test (Fig. 1.2), it is clear that DIMBOA did not totally inhibit the food intake of larvae. In order to evaluate the feeding deterrence of DIMBOA, we need to develop a method that estimates the amount of food ingested by larvae.

CHAPTER 2:

MOLECULAR CLONING OF A CANDIDATE UGT GENE INVOLVED IN DIMBOA CATABOLISM

2.1. Introduction

<UDP-glucosyltransferase>
Sequences of over 310 putative UDP-glucosyltransferase (UGT) genes have been reported from nine different insect species: Helicoverpa armigera, Bombyx mori, Drosophila melanogaster, Anopheles gambiae, Aedes aegypti, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Acyrthosiphon pisum (Ahn et al., 2012; Huang et al., 2008; Luque and O'Reilly, 2002; Luque et al., 2002). The silkworm B. mori possesses 45 UGT genes (Table 2), which is the largest number among the species investigated to date (Ahn et al., 2012; Huang et al., 2008). Lepidopteran UGTs are conventionally classified into 13 families, i.e., UGT33, UGT34, UGT39-44, UGT46-48, UGT50, and UGT340 (Ahn et al., 2012). Molecular cloning and functional characterization of UGTs of B. mori (BmUGT1 and BmUGT10286) and D. melanogaster (DmUgt37a1) have been reported (Daimon et al., 2010; Luque and O'Reilly, 2002; Luque et al., 2002). The full lengths of BmUGT1, BmUGT10286, and DmUgt37al are 1.60, 1.60, and 1.65 kb , and the predicted protein comprises 520, 520, and 525 amino acids, respectively. BmUGT1 (=UGT40A1) and DmUgt37a1 proteins were shown to catalyze glucosylation of a wide range of phenolic and phenol-derived compounds, in addition to flavonoids, coumarins, and terpenoids (Luque and O'Reilly, 2002; Luque et al., 2002). In contrast, BmUGT10286 (=UGT40K1) was shown to be
responsible for green b locus, which is involved in the formation of green cocoon, and BmUGT10286 protein is virtually the sole source of UGT activity toward the $5-O$ position of quercetin, one of flavonoids in mulberry leaves (Daimon et al., 2010). These results are consistent with the presumed role of UGTs in detoxification processes, such as minimizing the harmful effects of ingested plant allelochemicals. However, the substrate specificities of UGTs have been studied in only a few insect species, and very few reports have been published on the detoxification functions of insect UGTs.

Re-glucosylation of ingested DIMBOA, which is produced via hydrolysis of DIMBOA-2-O-glucoside by plant β-glucosidase, was reported in a few insect species, e.g., Spodoptera spp. (Wouters et al., 2014) and Mythimna separata (Sasai et al., 2009); however there was no report about the molecular cloning and functional characterization of UGT genes, which are presumed to be involved in the glucosylation of DIMBOA. In chapter 1, I obtained a line of evidence demonstrating the involvement of UGT in the catabolism of DIMBOA in O. furnacalis; however, I was not able to detect the expected product, DIMBOA-2-Oglucoside in the in vitro assay. Moreover, I was also not able to detect this product in the frass of O. furnacalis in a preliminary study using HPLC-MS (data not shown). This may appear inconsistent with the involvement of UGT in the catabolism of DIMBOA. It is interesting to know whether DIMBOA-2-Oglucoside is produced by the heterologously expressed O. furnacalis UGTs. In this chapter, I aimed to perform molecular cloning and functional characterization of UGTs expressed in the midgut and Malpighian tubules of O. furnacalis.
<Strategy of research>
In our laboratory, a comprehensive analysis of genes expressed in the pheromone gland of the butterbur borer Ostrinia zaguliaevi, a congener of O. furnacalis, has been conducted by using RNA-sequencing. With the availability of RNA-seq data for O. zaguliaevi, I thought of the utilization of these data for the analysis of UGT genes in O. furnacalis, because sequences of homologous genes in the genus Ostrinia generally show very high similarity at the nucleotide level, and thus PCR primers designed based on the sequences of O. zaguliaevi are expected to work for the amplification of homologous genes in O. furnacalis.

Regarding the lepidopteran UGT genes involved in glycosylation of allelochemicals, Daimon et al. (2010), as mentioned above, had shown that a UGT gene, Bm-UGT10286 (= UGT40K1) catalyzes glucosylation of a flavonoid, quercetin, which is contained in the mulberry. In this chapter, I focused on Ostrinia UGT genes that have a relatively close relationship to Bm-UGT10286. I found that a homolog of O. zaguliaevi contig comp37547 is highly expressed in the midgut tissues of O. furnacalis. Therefore, I subsequently cloned this gene from O. furnacalis and aimed to perform functional assays of the protein encoded by this gene.

Table 2
Summary of B. mori UGT sequences.

	Name	GenBank Accession	BGI number	Length (aa)	No. exons	Chr.
	UGT33D1	JQ070229	BmUGT013830*	513	4	28
	UGT33D2	JQ070230	BmUGT013831*	515	4	28
	UGT33D3	JQ070231	BmUGT013833*	515	4	28
	UGT33D4	JQ070232	BmUGT013859	520	4	28
	UGT33D5	JQ070233	BmUGT013860-1*	520	4	28
	UGT33D6	JQ070234	BmUGT013860-2*	515	4	28
	UGT33D7	JQ070235	BmUGT013861*	515	4	28
	UGT33D8	JQ070236	BmUGT013829	514	4	28
	UGT33K1	JQ070237	BmUGT013836-2P*	516	4	28
	UGT33N1	JQ070238	BmUGT013836-1*	519	4	28
	UGT33Q1	JQ070239	BmUGT013858*	(419)	4(3)	28
	UGT33R1	JQ070240	BmUGT007327*	504	4	3
	UGT33R2	JQ070241	BmUGT009788P*	510	4	2
	BmUGT009787P*		BmUGT009787P*	(271)	4(2)	2
	UGT340C1	JQ070242	BmUGT013834-2*	521	4	28
	UGT340C2	JQ070243	BmUGT013834-1*	524	4	28
	UGT34A2	JQ070244	BmUGT004965	525	4	25
	UGT39B1	JQ070245	BmUGT005443*	520	4	8
	UGT39C1	JQ070246	BmUGT005442*	525	4	8
BmUGT1	UGT40A1	JQ070247	BmUGT010294	520	8	7
	UGT40B1	JQ070248	BmUGT010098*	(499)	8(7)	7
	UGT40B2P	JQ070249	BmUGT010099-1*	518	8	7
	UGT40B3	JQ070250	BmUGT010099-2P*	(474)	8(7)	7
	UGT40B4	JQ070251	BmUGT010295*	518	8	7
	UGT40G1	JQ070252	BmUGT010287-1	514	8	7
	UGT40G2	JQ070253	BmUGT010287-2P	514	8	7
	UGT40H1	JQ070254	BmUGT010289-1	516	8	7
BmUGT10286	UGT40K1	JQ070255	BmUGT010286	522	8	7
	UGT40N1	JQ070256	BmUGT010100	519	8	7
	UGT40P1	JQ070257	BmUGT010288	519	8	7
	UGT40S1	JQ070258	BmUGT010289-2	516	8	7
	UGT41A1	JQ070259	BmUGT001338*	518	9	24
	UGT41A2	JQ070260	BmUGT003817*	517	9	24
	UGT41A3	JQ070261	BmUGT003835*	516	9	24
	UGT42A1	JQ070262	BmUGT008508-3*	512	4	18
	UGT42A2	JQ070263	BmUGT014622*	509	4	Un.
	UGT42B1	JQ070264	BmUGT008508-2*	508	4	18
	UGT43B1	JQ070265	BmUGT008508-1*	516	4	18
	UGT44A1	JQ070266	BmUGT008508-4*	525	4	18
	UGT46A1	JQ070267	BmUGT010432*	527	4	12
	UGT46A2	JQ070268	BmUGT010433*	525	4	12
	UGT46C2	JQ070269	BmUGT083789*	(448)	4(3)	12
	UGT47A1	JQ070270	BmUGT005046*	536	6	25
	UGT48C1	JQ070271	BmUGT002854*	506	8	10
	UGT50A1	JQ070272	BmUGT008381*	540	6	18
	Total 45					

Asterisks denote genes that are corrected from the BGI automatic annotation. Parentheses indicate partial sequences, or partially identified exon numbers.

2.2. Materials and methods

2.2.1. RNA-seq data for the pheromone gland of Ostrinia zaguliaevi

I utilized the results of de novo RNA-seq analysis of the pheromone gland of O. zaguliaevi, a congener of O. furnacalis, which were available in our laboratory. Total RNA had been extracted from the pheromone gland of virgin O. zaguliaevi females by Dr. Fujii of our laboratory, and all the processes of RNA-seq analysis, i.e., preprocessing of RNA, sequencing using HiSeq 2000, de novo assembling of short reads to construct contigs, and annotations of inferred genes, had been performed by Takara-Bio (Kusatsu, Japan).

2.2.2. Isolation of total RNA

Tissues of interest were dissected from the fifth instar larvae of O. furnacalis (or O. scapulalis) in phosphate-buffered saline [PBS (-), $2.5 \mathrm{mM} \mathrm{KCl}, 141 \mathrm{mM}$ $\mathrm{NaCl}, 8.1 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and $\left.2.5 \mathrm{mM} \mathrm{KH} 2 \mathrm{PO}_{4}(\mathrm{pH} 7.4)\right]$. Total RNA was prepared from these tissues using RNAiso (Takara Bio) and DNase I (Takara Bio) according to the instructions of the manufacturer.

2.2.3. Screening of candidate UGT genes

Total RNA $(16 \mu \mathrm{~g})$ prepared from the midgut of O. furnacalis was reversetranscribed with an oligo-dT adaptor primer using a PrimeScript ${ }^{\mathrm{TM}}$ II First Strand cDNA synthesis Kit (Takara Bio) under the following conditions: $65^{\circ} \mathrm{C}$ for 5 min , $30^{\circ} \mathrm{C}$ for $10 \mathrm{~min}, 42^{\circ} \mathrm{C}$ for 60 min , and $95^{\circ} \mathrm{C}$ for 5 min . Four pairs of primers were designed to amplify partial sequences of O. zaguliaevi contigs, comp36666, comp37547, comp36019, and comp37715 (Table 2.1) by using Primer3plus
(http://www.bioinformatics.nl/ cgi-bin/primer3plus/primer3plus.cgi), and their sequences are listed in Table 2.2. PCR was conducted under the following conditions: $94^{\circ} \mathrm{C}$ for $3 \mathrm{~min}, 30$ cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for 2 min , and finally $72^{\circ} \mathrm{C}$ for 10 min .

2.2.4. Cloning of UGT candidate genes

PCR fragments of comp3666 and comp37547 homologs were ligated into pGEM-T easy vector, and cloned using competent cell E. coli DH5 α via a conventional method. Sequencing of the PCR fragments was conducted by FASMAC Co. Ltd (Kanagawa, Japan). After confirming that these fragments were O. furnacalis homologs of comp3666 and comp37547, we aimed to directly obtain the "coding DNA sequences (CDS)" of both genes by using primers designed to amplify them (Table 2.2). The PCR conditions used to amplify UGT "CDS"s were as follows: $94^{\circ} \mathrm{C}$ for $3 \mathrm{~min}, 30$ cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 52^{\circ} \mathrm{C}$ for 30 s , and $68^{\circ} \mathrm{C}$ for 2 min, and finally $72^{\circ} \mathrm{C}$ for 10 min . UGTs amplified using "CDS"-primers were cloned and sequences were analyzed by the same method described above.
2.2.5. Tissue distribution of O. furnacalis homolog of comp37547

Total RNAs extracted from midgut, fat body, and Malpighian tubules of fifthinstar larvae of O. furnacalis and O. scapulalis, and reverse transcribed as described above (2.2.3). RT-PCR analysis for UGT expression was performed using primers listed in Table 2.2. PCR conditions were as follows: $94^{\circ} \mathrm{C}$ for $3 \mathrm{~min}, 30$ cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 50^{\circ} \mathrm{C}$ for $30 \mathrm{~s}, 68^{\circ} \mathrm{C}$ for 3 min , and finally $72^{\circ} \mathrm{C}$ for 10 min .
2.2.6. Phylogenetic analysis

Amino acid sequences of interest were aligned using CLUSTAL W (Thompson et al., 1994) and phylogenetic tree was constructed either by the neighbor-joining method or maximum-likelihood method using MEGA6 (Tamura et al., 2013).

2.2.7. Expression of recombinant OfurUGT1

The CDS of OfurUGT1 gene with His-tag was cloned into $\mathrm{pFastBac}{ }^{\mathrm{TM}} 1$. The recombinant vector $\mathrm{pFastBact-OfurUGT1}$ was transformed into MAX Efficiency ${ }^{\circledR}$ DH10Bac ${ }^{\mathrm{TM}}$ according to the manufacturer's protocol of Bac-to- Bac^{\circledR} Baculovirus Expression System (Invitrogen). The recombinant bacmid OfurUGT1 was isolated and analyzed by PCR using pUC/M13 primers. The recombinant bacmid OfurUGT1 was transfected into insect cells $\operatorname{Sf} 9$ cultured in $60-\mathrm{mm}$ dishes using Cellfectin II reagent. After incubation at $27^{\circ} \mathrm{C}$ for 72 hours, P1 baculoviral stock was collected and kept at $4^{\circ} \mathrm{C}$. P2 viral stock was obtained by infection of insect cell with $100 \mu \mathrm{P} 1$ and incubation at $27^{\circ} \mathrm{C}$ for 72 hours. P2 baculoviral stock was applied to the Sf9 infect insect cells, and subsequently assayed for the expression of recombinant OfurUGT1 protein. Total proteins of insect cells infected with UGT recombinant virus were collected and analyzed by SDS/PAGE and Western Blotting. The samples were separated on 10% gels by SDS/PAGE, and transferred to polyvinylidene fluoride membranes (Immobilon-P; Millipore). Expression of the recombinant UGT in Sf9 cells was detected with a monoclonal antibody Anti-His-tag (Medical \& Biological Laboratories Co., Ltd, Nagoya, Japan).
2.2.8. Extraction of total protein from midgut of O. furnacalis

Midguts of O. furnacalis fed on a normal artificial diet and diet containing 0.5 mg / g of DIMBOA were dissected in PBS (-) buffer as described. Five midguts were homogenized in $50 \mu \mathrm{l}$ cell lysis buffer pH 7.8 containing complete mini $(1 \times)$ proteinase inhibitors. After incubation on ice for 60 min , the homogenates were centrifuged at $20,400 \times g$ at $4^{\circ} \mathrm{C}$ for 5 min . The supernatants were added $50 \mu \mathrm{l} 2 \times$ SDS sample buffer and boiled for 5 min . The samples were centrifuged again for 2 min and the supernatants were applied for SDS/PAGE to analyze the presence of protein bands specifically induced by the ingestion of DIMBOA.

2.3. Results

2.3.1. Screening of UGT gene candidates responsible for DIMBOA catabolism

The above mentioned RNA-seq data suggested that at least 18 UGT genes (comp15776-comp38172, see APPENDIX for their sequences) are expressed in the pheromone gland of O. zaguliaevi. To characterize these UGT genes, their deduced amino acid sequences were aligned with those of representative lepidopteran UGT genes retrieved from the public data bases (UGT33D1-UGT340C1, see APPENDIX for their sequences), and provisional phylogenetic tree was constructed by the neighbor joining method (Fig. 2.1). It was found that the UGT genes expressed in the pheromone gland represent a wide range of UGT families reported for lepidopteran species (Fig. 2.1).

Among the 18 UGT genes expressed in Ostrinia, we tentatively focused on comp3666, comp37547, comp36019, and comp37715 (Fig. 2.1; Table 2.1), because these genes are relatively closely related to Bm-UGT10280 (UGT40K1), which has been identified from the silkmoth Bombyx mori and demonstrated to
exhibit UGT activity against quercetin, a flavonoid allelochemical contained in the mulberry leaves (Daimon et al., 2010). Among the genes tested, fragments of comp36666 and comp37547 were specifically amplified by the PCR experiments of the cDNA prepared from the midgut of O. furnacalis, although an extra band was also observed for comp36666 (Fig. 2.2). Subsequently, we examined the expression levels of comp36666 and comp37547 in the midgut and fat body of O. furnacalis larvae that had fed on artificial diet and corn by using the primer pairs designed to amplify the "CDS" of comp3666 and comp37547 (Tables 2.1, 2.2). Although the "CDS" of comp37547 was successfully amplified, that of comp3666 was not (Fig. 2.3). Interestingly, the expression levels of comp37547 "CDS" in both midgut and fat body were elevated in the larvae that had fed on corn as compared with those fed on a normal artificial diet lacking DIMBOA (Fig. 2.3). I therefore considered that comp37547 is a good candidate of UGT responsible for the catabolism of DIMBOA.
2.3.2. Determination of the full sequence of OfurUGT1, the O. furnacalis homolog of comp37547

Our quick investigation using additional primers designed in the middle of comp36666 suggested that 5^{\prime} '-end sequence of comp36666 is not representing true sequence due to inaccurate de novo assembling (data not shown). Accordingly, I hereafter focused only on the O. furnacalis homolog of comp37547, and I referred to this homolog as OfurUGT1 in this thesis. Because the predicted "CDS" of comp37547 was substantially shorter than that of known UGTs, we suspected that the 5 '-end sequence of comp37547 is also not perfectly accurate. We therefore performed RACE experiments to determine the full length sequence of OfurUGT1
gene. The full length OfurUGT1 sequence was found to comprise 1733 bp with a CDS of 1563 bp encoding a protein of 520 amino acids (Fig. 2.4). The predicted molecular mass of OfurUGT1 protein is approximately 58.23 kDa . As we suspected, the N terminal of the amino acid sequence of comp37547 protein is truncated as compared with that of OfurUGT1 (Fig. 2.5). Comparison of the nucleotide sequences of OfurUGT1 and comp37547 indicated that an erroneous frame shift, which caused erroneous estimation of the CDS, occurred due to inaccurate de novo assembling of the sequence of comp37547 (Fig. 2.6).

2.3.3. Tissue distribution pattern of OfurUGT1

The expression levels of OfurUGT1 (1575 bp) in various tissues of O. furnacalis larvae were compared by semi-quantitative RT-PCR (Fig. 2.7). Among the tissues examined, OfurUGT1 was most highly expressed in the midgut. Relatively high levels of expression were also observed in the Malpighian tubules and fat body.
2.3.4. Comparison of the expression levels of OfurUGT1 in O. furnacalis and O. scapulalis

The expression levels of OfurUGT1 and its O. scapulalis homolog (referred to as UGT1 for brevity) in the midgut, fat body, and Malpighian tubules were compared between the two species, O. furnacalis and O. scapulalis (Fig. 2.8). The expression levels of UGT1 in the midgut and Malpighian tubules of O. furnacalis were higher than the levels in the corresponding tissues of O. scapulalis (Fig. 2.8). In particular, the expression level of UGT1 in the midgut of O. furnacalis was
remarkably higher than the level of UGT1 in the midgut of O. scapulalis. These results suggest that OfurUGT1 in O. furnacalis may be responsible for the catabolism of maize allelochemicals in this species.

Figure 2.1. Neighbor-Joining tree of amino acid sequences of Ostrinia zaguliaevi UGT proteins (comp15776-comp38172) and those of representative lepidopteran UGT proteins obtained from public databases (UGT33D1-UGT340C1). Red rectangle indicates the gene known to catalyze glucosylation of quercetin. Blue rectangles indicate genes I focused on in this thesis. Refer to the APPENDIX for the sequences and GenBank Accession Numbers of the referenced genes.

Table 2.1. Sequences of Ostrinia zaguliaevi UGT contigs obtained by RNA-seq analysis, homologs of which may be involved in the catabolism of DIMBOA in O. furnacalis.

```
>comp36019
    1 ~ A T G G A T C T A A ~ C A A A A C T A T T ~ G T T T C T T C T A ~ T T G T T T G G G T ~ T T T C A A G T G C ~
    5 1 ~ G T A C A A A A T A ~ C T A G T G G T G T ~ T T C C G T A C C C ~ A G G G A A A A G C ~ C A T A C G A T C C ~
    1 0 1 ~ T G G G T G A G G G ~ A T T T G T G A A A ~ C A T C T C G T G A ~ G G G C T G G A C A ~ T G A G G T C A C A ~
    1 5 1 ~ T A C A T A A C T C ~ C G A T A C C G A T ~ A A A C A A T C C G ~ C C T A A A G G G C ~ T T C G A C A A A T ~
    201 TGATGTGTCA AGCAATATCA AAACATTTGA ATCAATGTCT TCTTCATTAA
    2 5 1 ~ G T T T T A A A A C ~ G G T G T T A A A C ~ A A A G A A G C A G ~ A C C T A A A G G A ~ C A C A A G A G C A ~
    3 0 1 ~ T G G G T G G G C G ~ T C A T A A A C A A ~ C A T C G C C A A C ~ C A A A C G A T A T ~ G G C A C C A T A A ~
    3 5 1 ~ C G T T C A G A A G ~ C T G A T G T A T G ~ A C G A C A A T G A ~ G G A G T T T G A C ~ C T G G T G A T C G
    4 0 1 ~ C A G A G T G G C T ~ G T A T A C G G A A ~ C T T T A T T G T G ~ G A T T C G C A G C ~ C G T C T T C A A C ~
    4 5 1 ~ T G C C C G T T T A ~ T A T G G T C T T C ~ C T C C A T C G A C ~ C C C C A C G G G C ~ T A G T C T T A G G ~
    5 0 1 ~ G C T G A T C G A T ~ G A G G A A C C C A ~ A C C C G G C C T A ~ C A C A G C C A A C ~ C A C A T G T C G T ~
    5 5 1 ~ C C T T T G A G G C ~ A C C C T T C A C A ~ T T C T C A C A G C ~ G G C T C G A A G A ~ A C T G T G G G A A ~
    6 0 1 ~ G T G A T C T A C T ~ T G A A G T A C A T ~ G A A A T G G G C A ~ A T A T A C G A C C ~ A T G A A A A C C G ~
    6 5 1 ~ T A T T T T C C A A ~ G A G G G G T A T G ~ G T C C A G C T G T ~ A G C C A A A A G A ~ G G T C G A A C A A ~
    7 0 1 ~ T T C C C T C A C T ~ G T A T G A A G T C ~ A G C C A T A A C G ~ C T T C T C T A A T ~ G T T C G G G A A C ~
    7 5 1 ~ T C G C A C T T C T ~ C G T C T G G T A G ~ A C C A G T G A G G ~ T T G C C G C A G A ~ A T T A T A T C C C ~
    8 0 1 ~ A A T A G C T G G A ~ T A T C A T A T T G ~ A T G A A G A G G T ~ T G A C A A A C C A ~ T T G C C A A C G G ~
    81 ATATTCAAAA GATAATGAAT AACGCGCAAC ACGGCGTCAT ATACTTCAGC
    9 0 1 ~ A T G G G A T C C A ~ T G A T C A G G A G ~ C A G C T C C A T G ~ C C T G A T G G A A ~ T A A A G C A A G G ~
    9 5 1 ~ G T T C C T G A A A ~ A T G T T C G G C A ~ G T C T C A A G C A ~ A A C T G T C A T C ~ T G G A A G T T C G ~
1001 AGGAAGTATT GCCAAATCTG CCCAAAAACG TGCACATCCT GAAATGGGCT
1051 CCTCAGCAAA GTATTTTAGC TCATCCCAAC TGCCTCGTAT TCATCTCCCA
1101 CGGGGGCCTG CTCTCAACCT CCGAGGCGCT TCACTACGGC GTGCCCATCA
1151 TTGGGATCCC AATGTTCGCG GACCAGTTTA TCAATGTGGA TCGCGCCATG
1 2 0 1 ~ A A G A A A G G C T ~ T C G C C C T A A A ~ G G T C G A C A T C ~ G C A G A A G A C A ~ T G A C A G T T C A ~
1251 CTTGAAAGCA GCGATTGAAG AGATTTTGGG AAACCCCAGA TACCATGAGC
1301 GGATGAAGGA ACTGTCATTT ATCTATCACC ACCGCACTAC GACTCCTGGG
1351 CAAGAGATTC TGCACTGGGT GGACCACGTC GTCAAGACAA GAGGTGCCTT
1401 GCACCTTCGG TCTCCAGCAC TGGACGTGCC CTTCTACCAG AAGATATACC
1451 TGGATCTGAT AACTTTGATA GCTGTCGCAA CTATTGTACT GTTTAGAATT
1501 GCGAAAAGAC TGGTTTGTAA AAGTGCGGTG ACGAAGAAAG TTAAGAAGAA
1551 TTAAACAAAG
>comp37715
            1 ATGCTCGCTC GCGCAGTGGT CCTATACTTG GTGTGCGCAG GCGCAAGTGC
    5 1 \text { CCTGCGCCTG CTGCTGGTGT TTCCAGTACC GGGACCCAGC CACGCCATCC}
    1 0 1 ~ T G G C T G G G G G ~ G C T C A G C A A G ~ C A C T T G A T T G ~ G G G C T G G A C A ~ T G A G A T C A C A ~
    151 TGCATCACCC CGCTCCCAAG CAAAAACGCC TCGAAGAACC TCCGTCAAGT
    201 CGATATTTCA GCAAACTTCC AACTCGTCCC ATTGGGAGAT GTCCTTCAAC
    251 TCGAGAAGAT AATGTCAAAG GAAATAAACA TGAAAGATTT GGCGTTCATA
    3 0 1 ~ A A A T C G C T G A ~ T G A T T T C C C T ~ C G C C A A C G C C ~ A C T C T G A C C A ~ A T C C G A A C G T ~
    3 5 1 ~ C A A G A G G C T G ~ A T G G A A G A C C ~ C G G C T G A A C G ~ C T T C G A C G C T ~ G T C A T T G C T G ~
    4 0 1 ~ A G T G G A T G T A ~ C A C T G A A C T T ~ T T C G C T G G A A ~ T C T C A G C C G T ~ C T T C A A C T G C ~
    4 5 1 ~ C C C C T A A T C T ~ G G T T T T C C T C ~ C A T G G A C C C C ~ C A A G C T C T G G ~ T C C T T C G T C T ~
    5 0 1 ~ G A T C G A C G G G ~ A C C C C C A G C C ~ C G G C G T A C T T ~ C G C C G A C C C A ~ A T G T C T G C A G ~
    5 5 1 ~ A A C A C C C T C C ~ T T T T G A C T T C ~ T G G C A G A G A A ~ T A A A A G G A C T ~ C T G G C T T C T T ~
    6 0 1 ~ T T T C G A A G G A ~ T G A A G C T G G A ~ A T G G T C T A C A ~ A G A A G C A T T G ~ A A G A C T C A A T ~
    6 5 1 ~ C T A C A A C T C A ~ G A A T A T G G A C ~ C A G T A G C G G C ~ C G T A C G A G G T ~ A T C A C C C T T C ~
    7 0 1 ~ C C C C T C T A A C ~ G G T G A T G A G G ~ T A C A A C G C T T ~ C C C T C A T G C T ~ G G G G A A C T C C ~
    7 5 1 ~ C A C A T A T C C A ~ T G G G A C A G T C ~ C A T C A G T C T G ~ C C G C A A A A T T ~ A T A A A G A A A T ~
    8 0 1 ~ A C T C G G G T A C ~ C A C A T A G C G G ~ A T A A G G T G C A ~ G C C G T T G C C T ~ G A T A A C A T C A ~
```

851 AAAAGATAAT GGACGAAGCG AAACATGGCG TGATATACTT CAGCATGGGG 901 TCCATGCTTA AAAGCACAAC GTTCCCCGAA GCGCTGAAGA GGGAACTCTT 951 AGACATGTTC CGAGGTCTCA AGCAGACTGT TCTCTGGAAA TTCGAGGACG 1001 TACCACCGAA ATTGCCTGCG AACGTCCATG TTGTCAAGTG GGCTCCACAG 1051 CAAGACGTTT TGGCTCATCC CAATTGTGTG CTGTTCATCA CCCACGGAGG 1101 TCTTCTGTCC ATCACTGAGG CGATTCATCA CGCGGTCCCC ATCATAGGGA 1151 TCCCGATGTT CGCAGACCAG TTCCTGAACA TCAATCGCGC GGTCAGAAAG 1201 GGGTTCGGGA TCAAGGTCAG CCTGGACTGG GATTTGACGA AGAATTTGAA 1251 GTCGGCTATT GAAGAAATAT TTCGGAACTT TAGCTACCAA GAGAAAGTGA 1301 AGGAGGTTTC ATTTGTCTAC CACCACCGTC CAGCGCCACC TGGTGCAGAA 1351 CTCGTGCACT GGATAGAACA CGTGGTCAAA ACCCGCGGGG CGTTGCATCT 1401 GAGGTCTCCA GCACTGAACG TAGCGTTCTA CCAGAAGATG TACCTAGATC 1451 TAGCAGCAGT AGTGGTGGTA GTTCTTGTAG TGGTAGTAAA AGTTGTAAAG 1501 AgTATTCTGA AGTCGAAGAA AGGAAGTGAG AAATCGAAGG AGAAACAGAG 1551 ATGA
>comp36666
1 ATGTCTCCGC CAATTTCGTC TTCTTGCAAA CTAAAGAAAT TTTCAATCGT 51 ATGTCTACTG CTGGCATCCC TCCAAGTAGG GTTTGCCTAC AAGATCCTCG 101 TGGTGTTCCC GATGCCAGGG AAGAGCCACA CAATCCTTGG GGAAGGAGTC 151 GTCCGACACT TGGCAAATGC TCAGCATGAT GTTACATATA TAACTCCAAT 201 TCTTCTGAAA TCTCCGCCGA AAAATGTGAG ACAAATAGAT GTAACTTCCA 251 ATTTCGACTT CATGAAAAGC AATGATATGT TGAATCTCAA GACTCACATG 301 GACAATAATG GTGAAATGGA TTTGACCATG GTCTTCAACA TGATGATGCA 351 AATCCACAAC ATGACGTACC ACAACCCGAA CGTGCAGAAA CTGCTGTCAG 401 ACACTAGCGA GCAGTTCGAC GTCGTCGTCG CTGAGTGGAT GTTCAGTGAA 451 CTGTACTCTG GATTCTCAGC AATTTTCAAC GTTCCACTCA TCTGGGTGTC 501 CACCATCGAA CCCCACTGGC TGGTGCTGCG CCTGATGGAC GAAGTCTGTA 551 ACCCTGCTTA CACTTCGGAT ACACTGTCCG CCAATATTCC TCCTTTCTCA 601 TTCATTACTC GGCTTCAACA ACTCGGAAGC CAAATATTTG GATTTGGTTT 651 AAAGAAATTT CTTATAGAAG GCTTCGAGGA GAAGGCATAC GCTGAACTCA 701 CTCCATATTT CAAAATGAGA GGTCGAGAGG CTCCAGCATT TAAAGAGCTG 751 GCGTTCAACG CTTCTCTCAT GCTTGGAAAT TCCCACGTGT CATTAGGCCA 801 GCCTATGTCG TTGCCACAGA GCTACATAAA CGTTGGTGGA TACCATATTG 851 AGACGAACTT GGCACCTCTT CCTAAGGACT TACAGATCCT GATGGACAAC 901 GCCAAGCACG GCGTCATATA CTTCAGCTTG GGGTCCAACA TCCAAAGTAA 951 GGACTTGCCG GACGAACTGA AGCAGAGTCT CCTGAAGATG TTCGGAGAAC 1001 TAAAACACAC AGTTATTTGG AAATTCGAAG AGACGTTGCC TGGACTGCCG 1051 AGCAACGTGC ATATCCTTAA ATGGGCTCCT CAGCCTAGCA TCTTGGCGCA 1101 CCCCAACTGT ATCCTTTTCA TCACGCACGG TGGTCTCCTC TCCACCACCG 1151 AGACCATCCA CTTTGGAAAG CCGATCATTG GAATTCCAGT GTTCGCCGAT 1201 CAGTTCGTCA ACGTGAACAG AGCCGTAGCA AAGGGATTTG CCAAGAGAGT 1251 CGACCTGTCC TACGGCATGG CCCCCGAGCT TGGAGCAGCC ATCAAGGATA 1301 TTATCGGGGA TCCAAAATAC TCCAACAACG TGAAACAACT ATCACTGATA 1351 TACCACGACC GCCCAGTGCC TCCTGGTAAG GAGCTGGTGC ACTGGGTGGA 1401 GCACGTGGTC AAGACTAACG GCGCCCCCCA TCTTCGCTCA CCAGCATTAA 1451 GCGTACCTTT CTACCAGAAA ATGTACCTCG ATCTCCTTGC CTTGATAGTA 1501 GTTATCTTAC TAGGAATAAG AGCAATATTT AGAAGAATAT TCAAGAAGAA 1551 ATCAAGTAAA GTAAAGAAAG AGTGA
>comp37547
1 CTTTAGTAGA TAGTGCGTTG CGGTGCGTGG TGTAAAAAAC ACGCGTGTCC 51 ACAGCTGTCG TGATAAGAAC TGTAATCAGT AACTTTTATT AATAGAGTTC 101 AAAAAGAATC AGTAATAAAG GATTGTGTGT GACTAATGTT TGTTGGGTGT 151 CGATGGTGTT GAAGTGTGAA GTGATGATAT TTGAGGATTA TTATTAATAA 201 CAAAGTATTC ACATCAACGC GTCGTGTTTT GTATTTACTT ATATAATGAA 251 TCTTCTAGGA AAATTCCTGC TAAGTGCAGC TTTATGCTGG AGTATCAGCG 301 AGGCGTATAA GATTCTGGTG GTGTTCCCTC TACCAGGCCC GAGCCACGGC 351 ATCCTGGGAG AAGGCGTGGT GCGGCATCTG CTGAATGCTG GACATGAGGT

```
    4 0 1 ~ C A C T T A C G T C ~ A C T C C T T T C C ~ C G A A A G A C A G ~ C A A G A A T C C G ~ A A G T T G A A G C ~
    4 5 1 ~ A G A T A G A T G T ~ C T C A G T C G A T ~ G A G G C A G C T A ~ T G C C T A A G A T ~ G A A C C T C A A G ~
    5 0 1 ~ G A C A T A T T G A ~ A C A A G G A G C A ~ G A G C G C G T T T ~ G A T C C G A A C A ~ A A T T C T T C G A ~
    5 5 1 ~ T T T C A C C A T T ~ G G G A C G C A C C ~ A A A G G G C T A T ~ A C A G A A T G A A ~ A A C A T G C A G A ~
    6 0 1 ~ A G A T A C T G A A ~ T G A T C C T C A A ~ C A G A C G A G G T ~ G G T G G T G G C T ~ G A G T G G A T G G ~
    6 5 1 ~ T G T G C G A A C T ~ C T A C A C T G G G ~ C T C G C G G C T T ~ T C T A C G G C T G ~ T C C C T T C A T C ~
    7 0 1 ~ T G G G T A T C A A ~ C T A T T G A G C C ~ T C A C T C C A C A ~ A T C C T G T C A T ~ T G A T C G A C G A ~
    7 5 1 ~ C A G C T T G A A C ~ C C A G C T T A C A ~ A C C C T G G C C T ~ A T T C T C C A A T ~ A C T A T T C C T C ~
    8 0 1 ~ C A T A C A A C T T ~ T G T G G A G C G C ~ G C G A A G G A A T ~ T G T T A A T G T C ~ C G T C G C A A A T ~
    8 5 1 ~ G T T G T G T T G A ~ A A G A T G T G G T ~ C T T A G T C A C A ~ T A T T A C G A G C ~ A A G C A G C G T A ~
    901 CGACGAATTG TACGTGCCTC TTTTGAAGAA GAAGGGCCGT CCTGTCCTCA
    9 5 1 ~ C A T A C G A A G A ~ A G T G A G G T A C ~ A A C G T G T C G C ~ T G G T T T T G G G ~ C A A C T C G C A C ~
1001 GTATCCTTGG GCCAGGCCAC CAGGCTGCCG CAGAACTACA AACCCATTGG
1051 TGGATATCAT ATTGACACTA ATTTCAAACC GCTACCCGAG GATCTAAAAA
1 1 0 1 ~ A T C T G C T A G A ~ T A A T G C T A A A ~ A A T G G C G T A A ~ T A T A C T T C A G ~ C A T G G G A T C C ~
1 1 5 1 ~ A A T A T A A A G A ~ G T A A G G A C A T ~ G C C A G A G G A A ~ C T G A A G A G G A ~ G C C T C C T C A A ~
1201 AATGTTTTCT GGACTCAAGC AGACGGTCTT GTGGAAGTTC GAAGAAGTCC
1251 TGACAGATTT GCCCGAAAAT GTGCACATAG TGAAATGGGC GCCGCAGCCT
1301 GCCATCCTTT CGCATCCAAA CTGCATCCTC TTTATAACGC ACGGTGGTCT
1 3 5 1 ~ C C T T T C G T A C ~ A C T G A A G C A G ~ T C C A T T T C G G ~ G A A G C C C A C A ~ G T T G G G A T T C ~
1 4 0 1 ~ C A G T A T T C G C ~ C G A T C A G T T C ~ C T C A A C G T G G ~ A G C G A A T T G G ~ G A A G A A A G G C ~
1451 TTGGGGAAGA GAGTAGACCT TTCTTATACA ATGGCTGATG ATTTGAAGAT
1501 CGCTATTAAC GAAGTCCTTT CCAATCCAAG CTACATGACC AAAGCGAAGG
1 5 5 1 ~ A А С T C T C C C T ~ G A T C T A C C A C ~ G A C C G G C C A A ~ C G C C C C C T G G ~ T G G A G A G T T A ~
1601 GTACACTGGG TGGAGCACGT CATCAAGACT GCTGGCGCCC CCCACCTGAG
1651 GTCACCTGCT TTAAACGTGC CCTTCTACCA GAAAATGTAC CTGGACCTAG
1701 CAGCCTTAGT AGTTGTAGTT ATTATTACCC TTAGATTAAT TGTGAAACGT
1751 CTGTGCAATA GTTGTAGGAA AAAGAAAATA AGCAGCGAAA AGAAAAATAA
1801 GTGAATAGTT AATGTTGGTG ATACTCGTAT CATGGTGATA TTGTGATATG
1 8 5 1 ~ A T T T T G T A C A ~ A T A A A A T T A A ~ A T A A T G T A G G ~ A T A T T G T T G T ~ T T A A A A A T A A ~
1901 AC
```

Table 2.2. List of primer sequences used in this study

Primer Name	Nucleotide sequence (5' to 3 ' end)	expected product size
		bp
comp36019F2	TCCTTTGAGGCACCCTTCACA	233
comp36019R2	AACCTCACTGGTCTACCAGAC	
comp37715F2	TGCAGAACACCCTCCTTTTGAC	234
comp37715R2	AGACTGATGGACTGTCCCATG	
comp36666F2	AACGTGAACAGGGCCGTAGC	189
comp36666R2	ACCCAGTGCACCAGCTCCTT	
comp37547F1	CAACGTGGAGCGAATTGGAAAG	191
comp37547R1	CCACCCAGTGTACTAACTCTCC	
UGT36666-"CDS"-F1	ACGCCGATACCTCTGAAAACTC	1624
UGT36666-"CDS"-R1	CCGATGTGTCAAGTTCGTTCAC	
UGT37547-"CDS"-F1	ACGCACCAAAGGGCTATACAG	1203
UGT37547-"CDS"-R1	ACAACTATTGCACAGACGTTTCAC	
UGT-RACE-5'	CCTCGGGTAGCGGTTTGAAATTAG	
UGT-RACE-5' nested	CTTCGCGCGCTCCACAAAGTTGTAT	
UGT-RACE-3'	GGGCCGTCCAGTCCTCACTTATGA	
UGT-RACE-3'nested	CAAGCAGACGGTCTTGTGGAAGTT	
pFB-OfurUGT1-F1	CTCGAGATGAATCTTTTAGGAAAATTCCTGCTAAGTGC	
pFB-OfurUGT1-R1	GGTACCCTATTCACTTATTCTTCTTCTCACTGC	
pFB-OfurUGT1-R2	GGTACCTCAGTGATGGTGATGGTGATGCTTATTCTTCT TCTCACTGC	
Actin F1	GAGGCCCAGAGCAAGAGAGGTAT	784
Actin R1	GTGATTTCCTTCTGCATACGGTC	
Actin F2	CCCGCCATGTACGTCGCCATCCA	565

PCR conditions:	
$10 \times$ buffer:	1
dNTP:	1
Primer F	0.5
Primer R	0.5
Ex Taq	0.1
cDNA template	0.5
mQ (DW):	6.5
Total:	$\mathbf{1 0 . 1} \boldsymbol{\mu} \mathbf{l}$

Temperature cycling:

	1 cycle	30 cycles			1 cycle
Temperature:	$94^{\circ} \mathrm{C}$	$94^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{C}$	$72^{\circ} \mathrm{C} \quad 4^{\circ} \mathrm{C}$
Time:	3 min	30 s	30 s	2 min	$10 \mathrm{~min} \infty$

Figure 2.2. Results of PCR using cDNA prepared from the midgut of O. furnacalis and four primer pairs designed to amplify partial sequences of comp36019 (233 bp), comp37715 (234 bp), comp36666 (189 bp), and comp37547 (191 bp) (A). Numbers in parentheses indicate expected size of the PCR products. Actin was used as a control (784 bp) (B)

Figure 2.3. Expression of comp36666 "CDS" (1624bp) (A) and comp37547 "CDS" $(1203 \mathrm{bp})(\mathbf{B})$ in the fat body and midgut tissues of O. furnacalis larvae that had fed on artificial diet and corn. Actin used as a control (784 bp) (C).

```
    1 \mp@code { G A A A A T T A A A G G A T T G T G A C T A A T G T T T G T T G G G T G T C G A T T G T G T T G A A G T T T G A A G T G }
    61 ATGATATTTTAGGATTATTTATGTAATAACAAAGTATTCTCATCAACGCGTAGTGTTTTG
121 TATTTAAATATAATGAATCTTTTAGGAAAATTCCTGCTAAGTGCAGCTCTATGCTTGAGT
    M N L L G K K F L L L L S A A A A L C C L
        ATCAGCGAGGCGTATAAGATTCTGGTGGTGTTCCCTCTACCAGGCCCGAGCCACGGCATC
        I S E A Y K I L V V F F P L L P F G P S H H G I
        CTGGGAGATGGCGTGGTGCGGCATCTGCTGAATGCTGGACATGAGGTCACTTACGTCACT
        L G D G V V R R H L L N N A G H E E V T Y V V T
        CCGTTCCCGAAAGACAGCAAGAATCCGAAGTTGAAGCAGATAGATGTGTCAGTCGACGAT
        P
        GCAGCCATGCCTAAGATGAACCTCAAGGACATATTGAACAAGGAGCAGAGCGCGTTTGAT
```



```
        CCGAACAAATTCTTCGATTTCACCATTGGGACGCACCAAAGGGCTATACAGAATGAGAAC
        P
4 8 1 ~ A T G C A G A A G A T A C T G A A T G A T C C T C A A C A G A C C T T C G A C G T G G T G G T G G C T G A G T G G A T G ~
```



```
541 GTGTGCGAACTCTACACTGGGCTCGCGGCTTTCTACGGCTGTCCCTTCATCTGGGTATCA
    V C E L Y T G L A A F Y G C C P F F I N V V S S 156
601 ACCGTTGAGCCTCACTCTACAATCCTGTCATTGATCGATGACAGCTTGAACCCAGCTTAC
    T V E P H S w T I L S S L I I D D D D S L L N P
661 AACCCTGGCCTATTCTCCACTACTATTCCTCCATACAACTTTGTGGAGCGCGCGAAGGAA
    N Pllllllllllllllllllllllllllll
721 TTGTTACTGTCCGTCGCAAATGTTGTGTTGAAAGATGTGGTCTTAGTCAGATATTACGAG
    L L L S V A N V V L K D D V V L L V N R Y Y E N 216
    81 CAAGCAGCGTACGACGAATTGTACGTACCACTTTTGAAGAAGAAGGGCCGTCCAGTCCTC
```



```
841 ACTTATGAAGAAGTGAGGTACAACGTGTCGCTGGTTTTGGGCAACTCGCACGTATCCTTG
```



```
    GGCCAGGCCACCAGGCTGCCGCAGAACTACAAACCCATTGGTGGATATCATATTGACACT
    G Q A T T R L L P O N N Y K K Prlllllllllllllll
    AATTTCAAACCGCTACCCGAGGATCTAAAAAATCTGCTAGATAATGCTAAAAATGGCGTA
    N
1021 ATATACTTCAGCATGGGATCCAATATAAAGAGTAAGGACATGCCAGAGGAACTCAAGAGG
    I M F F S M M G S N N I Klllllllllllllllll
1081 AGCCTCCTCAAAATGTTTTCTGGACTCAAGCAGACGGTCTTGTGGAAGTTCGAAGAAGTC
    S Lllllllllllllllllllllllllll
1141 CTGACAGATTTGCCCAAAAATGTGCACATAGTGAAATGGGCGCCGCAACCTGCTATCCTT
```



```
1201 TCGCATCCTAACTGCATCCTGTTTATAACGCACGGCGGTCTCCTTTCGTACACTGAAGCA
```



```
1261 GTCCATTTCGGGAAGCCCACAGTTGGGATCCCAGTGTTCGCCGATCAGTTCCTTAACGTG
```



```
1321 GAGAGGATTGGAAAGAAGGGCTTGGGGAAGAGAGTAGACCTTTCGTACACAATGGCTGAT
    E R I G K K G L G K R R V D D L S S Y N T M A N D D 416
1 3 8 1 \text { GATTTGAAGATCGCTATTAACGACGTCCTTTCCAATCCAAGCTACATGACCAAAGCGAAG}
```



```
1 4 4 1 ~ G A A C T C T C C C T G A T C T A C C A C G A C C G G C C A A C G C C C C C T G G T G G A G A G T T A G T A C A C T G G ~
```



```
1 5 0 1 ~ G T G G A G C A C G T C A T C A A G A C T G G T G G C G C C C C C C A C C T G C G G T C T C C C G C T T T A A A C G T G ~
    V E H V I K T F G G A Prrllllllllllllllllll
1561 CCCTTCTACCAGAAGATGTACCTGGACTTAGCAGCCTTAGTAGTTGTAGTTATTATTGCC
    P
1621 CTTAAATTAATTGTGAAGCGTGTGTGCAACAGTTGTAGGAAAAAGAAAGTAAGCAGTGAG
    L K L I I V K K R V V Cllllllllllllllllllllllll
1681 AAGAAGAATAAGTGAATAGTTATAATATGTTGGTGATACTCGTATCATGGTGA
    K K N K * 5 5 5 
```

Figure 2.4. Nucleotide sequence of OfurUGT1 (1733bp) and its predicted amino acid sequence (520 aa). Underlines indicate the positions of primers (UGT-"CDS": Red; UGT-RACE- 5' and UGT-RACE-5' nested: Purple; UGT-RACE- 3 ' and UGT-RACE-3' nested: Green), which were used for sequencing the full length of OfurUGTl.

Figure 2.5. Comparison of the predicted amino acid sequences of OfurUGT1 and comp37547. The N terminal of the amino acid sequence of comp37547 is truncated as compared with that of OfurUGT1.

Figure 2.6. Comparison of the nucleotide sequences of OfurUGT1 and comp37547. An erroneous frame shift, which had occurred due to inaccurate de novo assembling of comp37547, was found to have caused erroneous estimation of its CDS.

Figure 2.7. A) Semi-quantitative RT-PCR analysis of the expression of OfurUGT1 (1575 bp) in various tissues of O. furnacalis larvae. B) Actin was used as a control (565 bp).

Figure 2.8. (A) Comparison the expression levels of OfurUGT1 (1575 bp) in the midgut, fat body, and Malpighian tubules of O. furnacalis (Fur) and O. scapulalis (Sca) using semi-quantitative RT-PCR. B) Actin was used as a control (784 bp).

2.3.5. Phylogenetic analysis of OfurUGT1

Maximum-likelihood tree constructed using amino acid sequences of OfurUGT1 and representative lepidopteran UGTs belonging to the family UGT40 has shown that OfurUGT1 is relatively closely related to UGT40R or UGT40Q (Fig. 2.9). However, belonging of OfurUGT1 to either UGT40R or UGT40Q subclasses cannot be concluded only from this result. Actually, it appears that OfurUGT1 does not form compact clade with neither UGT40R nor UGT40Q. Therefore, OfurUGT1 may form another clade together with unreported UGTs in other lepidopteran species. Further studies are required to clarify the phylogenetic origin of OfurUGT1.

2.3.6. Primary structure of O. furnacalis UGT protein

To characterize the primary structure of OfurUGT1 protein, amino acid sequences of lepidopteran (B. mori, H. armigera, and S. littoralis) UGTs belonging to UGT40 family and human UGT2B7, which were retrieved from public databases, were aligned with OfurUGT1 by CLUSTAL W (Fig. 2.10). Human UGT2B7 was included as a reference because crystal structure and functional analyses of all regions of UGT was determined using this UGT (Miley et al., 2007; RadominskaPandya et al., 2010).

OfurUGT1 protein had both N -terminal substrate binding domain and the C terminal sugar-donor binding domain. The C-terminal UDP-glucose binding domains of insect UGTs were more highly conserved than the N -terminal substrate binding domain. In N-terminal substrate binding domain, the signal peptide cleavage sites and catalytic residue were detected (Fig. 2.10). The catalytic residue
of OfurUGT1 was the same with that of UGTs from B. mori, H. armigera, S. littoralis, and human UGT2B7. In the C-terminal sugar-donor binding domain, the UGT signature motif and donor binding region 1 (DBR1) and donor binding region 2 (DBR2) were identified in the OfurUGT1. These regions in UGTs were highly conserved in different insect species. The catalytic residues in DBR1 and DBR2 of insect UGT were the same as human UGT2B7 (Fig. 2.10).

2.3.7. Heterologous expression of OfurUGT1

UGT gene was amplified by RT-PCR using cDNA isolated from midgut of O. furnacalis and a pair of primers for $\mathrm{pFastBact1}$ transformation, which are listed in Table 2.2. UGT gene was isolated from electrophoresed gel (Fig. 2.11A). After UGT gene was cloned successfully into pFastBac1 (Fig. 2.11B), recombinant pFastBac-UGT plasmids were continuous transformed into DH10Bac competent E. coli to obtain recombinant Bac-UGT (Fig. 2.11C). Recombinant Bac-UGT was applied for transfection into insect cells to obtain recombinant baculovirus stock P1 and then P2. Recombinant baculovirus stock P2 was applied for infecting insect cells to determine UGT protein expression with His-tag. The recombinant UGT protein was analyzed by SDS/PAGE and immunoblot (Fig. 2.11D). The molecular mass of expressed UGT protein was estimated to be 58.33 kDa , which is in good agreement with the value estimated from the predicted amino acid sequence.
2.3.8. Proteins differentially expressed in the midgut of O. furnacalis larvae that had fed on an artificial diet with and without addition of DIMBOA

Total protein extracted from midgut of O. furnacalis that had fed on a normal artificial diet and a diet containing $0.5 \mathrm{mg} / \mathrm{g}$ of DIMBOA for 24 hours were
separated by SDS/PAGE on 10% gel and stained by Coomassie Blue (Fig. 2.11E). A band with a size of approximately 58.7 kDa , which coincides with the molecular mass of OfurUGT1, was observed when the larvae of O. furnacalis were fed on diet containing $0.5 \mathrm{mg} / \mathrm{g}$ of DIMBOA while it was not observed in the larvae fed on diet only. This finding is consistent with our results of RT-PCR experiments, i.e., transcription of OfurUGT1 is stimulated by the ingestion of DIMBOA (Fig. 2.3).

Figure 2.9. Maximum-likelihood tree of amino acid sequences of OfurUGT1, UGTs of UGT40 family, and UGT41A2 (outgroup) proteins from B. mori, H. armigera, and S. littoralis obtained from public databases. Refer to the APPENDIX for the sequences and GenBank Accession Numbers of the referenced genes.

OFur_UGT BmUGT 40 H 1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur_UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur_UGT BmUGT 40 H 1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur_UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

MNLLGKFLLSAALCLSIS-EAYKILVVFPLPGPSHGILGDGVVRHLLNAGHEVTYVTP-F 58 --MIRRLTIAIAVCFCLGVDAYKILTVFPVPGRSHGILGDAVVRHLLEAGHEVTHITP-F 57 -MSKSLIKFLCIASLLCFCDAYKVLVVFSLSGKSHSILGYGIVKHLLKAGHEVTYITA-F 58 -MTK-WILFLCVTSLLCTCDAYKVLVVFSMPGKSHSILGYGIVKHLLKRGHEVTYITP-F 57 -MFKLTFLVCCILATQSVSDA|YKILVVFPMPGKSHSILGYSVVKHLLKAGHEVTYVTP-F 58 --MALAILLFLGLLLSSSCEAYKALVVFGMPSTSHFHLGNGVVRNLLRDGHEVTYITP-I 57 --MALAICLFF-LLLSSSCEAYKALVVFGMPATSHSNLGRGVVRNLLKDGHEVTFITP-I 56 --MAAATYFLLFSLLSLSSEASKILVVVTMPSRSHGNLGNGVVRELLKGGHEVTYIRI-F 57 -MEKMKICWVLFSIMLAIGDASKILVVYPFPSRSHANLGDGIVRNMLKAGHEVTYITP-F 58 -MEKTKICWVLFSIMLAIGDASKILVVYPLPSRSHANLGDGIVRNMLKAGHEVTYITP-Y 58 -MGKLNLILLSILLSSCLCDGYRILAVFPTPSVSHGILADNFVKTLLNAGHEVVYISP-F 58 MSVKWTSVILLIQLSFCFSSGNCGKVLVWAAEYSHWMNIKTILDELIQRGHEVTVLASSA 60

PKDSKNPKLKQIDVSVDDAAMPK-----MNLKDILNKE-QSAFDPNKFFDFTIGTHQRAI 112 PKKEPPPNLVQIDVAANKAAFNED---YIDIKALMTKE-FNLKDKNVLFSLMNNISSSTI 113 PEESSDPNLTQIDVSSNMVALPKSYKESLNLKAVLEGK-AIPLDFDIIHNLMNAVEMNTY 117 PVDNADPKLKQIDVSSNIDILPKT---SLNLNVILEGK-VPKVDHGGIHLVMNAVEMNTY 113 VEDNHHPNLTQVDVSSNMRLIPKG---GLDLKRVLDKE-VNVIDNGFMFYFMKQIQEATL 114 EYKNPPPNLRQIDVSSNFDVLPTY---QINLKHLMEAP-KPSGHRNFVKLMLINLVMKTL 113 PIKDPPPNLHQIDVSSNFELLPLD---LMKIERFLGPNSMPALPRFFVKMMMMNLVSKTM 113 EYKNPPPNLRQIDVSSNIDLMPKG---IMNIKKIMDKD-VAANDHITVKMMMLELATKTI 113 EFKNAPPSLRQIDVSNLIDLMPKG---LLTIKALMDGN-NISLNIAFMTYMVTEIFKGMI 114 EYKNAPSALRQIDVSSLLDLLPKD---LMTLKSLMEGK-NMSLHALFMSYMMTEMSKAMI 114 KNVN-HPKLEITDVSQNVELFSDN----IDVKEVMNGS-LDLLDTKVLFEIITTITDVTL 112 SILFDPNNSSALKIEIYPTSLTKTELENFIMQQIKRWSDLPKDTFWLYFSQVQEIMSIFG 120 .: : : :

Catalytic residue

\checkmark

QNE--------NMQKILND-PQQTFDVVVAEWMVCELYTGLAAFYGCPFIWVSTVEPHST 163 LNE--------NVQRLLRDQSREQFDVIIAEWMFSDLYASFHAVLDCPLIWFSTIEPHWM 165 QIE--------NVSKLLND-PEQKFDVVIAEWMFTEICVGYAAIFNAPLIWFSSVQTHWI 168 NNE--------NVSRLIND-PKQKFDIVIAEWMFTEICASYAAIFNAPLIWVSSIQTHWM 164 EHE--------QVKKLLED-PNKTFDIVIVEWMYCELGASYAAVFDVPLIWLSTMEPHWL 165 EHE--------NVQRLLND-TNEHFDVVIVEHMMSDLSASYATIFDCPLIWVSPVEVNAL 164 EHE--------NVQKLLND-TIAHFDVVIVEWMFTSLSAGYATIFDCPLIWLIPVEVNSM 164 EHQ--------NVKKLLED-PSEHFDLVIVDWMLADVPAGLATVFGCPLVWLSPMEVNSL 164 LNE--------NVQKILTD-PNEKFDLVIAEWMMSEIPAGIGAVYDCPFIWISSVEIHWI 165 KNE--------NVQKILSD-PNEKFDLVIAEWMMSEIPAGFAAVYDCPLIWISSVEIHWM 165 ANP--------SVQKLLRD-PNQKFDVIVAEYFFNNIYSALSAIYDAPFIWFLTIVPHSM 163 DITRKFCKDVVSNKKFMKKVQESRFDVIFADAIFP-CSELLAELFNIPFVYSLSFSPGYT 179
. .::: . **::..: : . . *:: : .

ILSLIDDSLNP-AYNPGLFSTTIPPYNFVERAKELLLSVANVVLKDVVLVRYYEQAAYDE 222 VLRLIDEYPNP-AYTSHFQDSFEVPFTFVER-MSVLSSQLTWSLSLNTWVYDLEKYIYDN 223 ITKLIDESLHP-AYNADAIAHSIPPFNFFQR-AHNLWTQLQV---FYHLTKGRQETLYAN 223 VTRLIDEALHP-AYNTDVVGRNIPPFNFFQR-VQNLWILLRT---LYQVKNSGQEDFYNI 219 VTRLIDGNLNP-AYNGDSMSSSIPPFTFLQR-VKELWIQIHT---SFILLNDDQERSYDR 220 SIGLIDVLPNP-AYTTDTMALYTAPFTFLER-LEELWMRISDSYNDYMVYEPTEEAEYQR 222 TIGLVDAVPHP-AYSTDPLSSYLPPFSFLER-ATEIWTRLQESVLGFLYYESKDAANYER 222 DISLIDGAPHL-AYSTGAFSSNMPPFNFLQR-AQELWTRIKARYYELKHFDRMELDAYER 222 LLRFIDQAPNP-AFTVDIMTTYTPPLNFVQR-AIELWNQVKLTVLNYVILDRIQDNVYST 223 LLQYIDQPSNP-AFTVDIMSPYTPPLNFIQR-ASELWTQIKHMVLNYLILDRIQDYVYSS 223 ILDQIHGPMNP-AYSSDYIEARIAPYSFAER-VRGLYFTLSLLYNLHVSFPPVEEAIYHK 221 FEKHSGGFIFPPSYVPVVMSELTDQMTFMER-VKNMIYVLYFDFWFEIFDMKKWDQFYSE 238 : :
.* :* :

N -terminal domain

LYVPLLKKKGRPVLTYEEVRYNVSLVLGNSHVSLGQATRLPQNYKPIGGYHIDTNFKPLP 282 NIAPIIKKNGKPVPNYDEVRYNGSLLLGNSHVSLGDAIKVPINYKAIGGYHIDGKVKELP 283 EIVPIIKKRGLVPPSFNDLLYNSSLVLSNTHVSYAAATRLPQNYKPIGGFHIDEEVKPLP 283 AVVPVIEKRGLVPPTFEDVQFNGSLVLSNSHLSYAPAVRLPQNYKTVGGFHVEEKVEPLP 279 LVRPLIEKKGRKAPSFEDLKFNASLVLGNSHVSLGEATGTPQSYKPIAGYHIEEVVKPLP 280 LIVPQLQKRGRQVPPYSEVRYNATLVLGNSHVSTGIPLGFPQNYKSMGGYHIEEEVKPLP 282 IVVPQVQKRGRQAPPLSEVQYNASLVLGNSHVSMGLPLSLPQNYKPVGGYHIEEEVKPLP 282 LIVPYVEKRGRQAPSFYDVRYNASLILGNSHVSMGQALALPQNYKPIGGYHIDEDVKPLP 282 YLAPIVEKRGRKAPTLDELRYNVSMIFSNAYVDTSSALSLPQSHKYIGGYHIDEKVKPLP 283 YLAPFVEQRGRKAPTLHELRYNVSMIFSNAYVDTSSALSLPQNHKYIGGYHIDEKVKPLP 283 HIPTILKSLGKPIADYKVLTYNVSMVLGNSQVAIESAVPLPPNFKHIGGYHIDDDVKPLP 281 VLG--------RPTTLSETMGKADVWLIRNSWNFQFPYPLLPNVDFVGGLHCKP-AKPLP 289 ..* * . **

C-terminal domain \longrightarrow

DBR2

OFur_UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur UGT BmUGT̄40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur UGT BmUGT 40 H 1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

OFur_UGT BmUGT40H1 BmUGT40G2 BmUGT40G1 BmUGT40K1 SlitUGT40R2 SlitUGT40R3 HaUGT40R1 HaUGT40D1 HaUGT40D2 HaUGT40F1 HumanUGT2B7

EDLKNLLDNA-KNGVIYFSMGSNIKSKDMPEELKRSLLKMFSGLKQTVLWKFEEVLTD-L 340 PDLQKIMNES-KHGVIYFSMGSNLKSKDLPKEIKEGLLKMFSQLKQTVLWKFEENLSP-L 341 EDLKKVMDGA-SNGVIYFSMGSNLKSKEMPDLLKKELIKMFSDLKYTVLWKFEEEFFD-L 341 EDLKKVLDSA-STGVIYFSMGSNLKSKEMPDRLRKSLIKLFSGLKYTVIWKFEEEFSG-L 337 ADLKEIMENA-KHGVIYFISMGSNLKSTEMPDEMKQNLVKMFGELKQTIIWKFEEDFPN-L 338 EDLEKIMMNS-KNGVIYFISMGSNLKSKDWPEDIKRDLLKLFGELKQTVIWKFEEELPN-V 340 EDLEKIMMNS-KNGVIYFISMGSNLKSKDWPEEIKRDLLKLFGELKQTVLWKFEEELPN-V 340 EDLENIMMSA-KNGVIYFISMGSIHLKSKDWPEKVKRDLLNMFGQLKHTVLWKFEEDLPN-L 340 EDLQKLMDGA-KNGVIYF:SMGSINLKSADMPDELKASLVEMFGSLPYTVLWKFEEVLPN-L 341 EDLQKLMDGA-KNGVIYF,SMGSINLKSADMPDELKASLVKMFGSLKYTVLWKFEEVLPN-L 341 ENLKKIFDNA-KNGVVFFSLGSNLRSKDLPEDMKQGILKVLGGLKQTVIWKFEESLPN-T 339 KEMEDFVQSSGENGVVVFSLGSMVSN--MTEERANVIASALAQIPQKVLWRFDGNKPDTL 347

```
    :::.. : . **: **:** : . .. : . :. : .: :*:*
```

DBR1 Signature motif
PKNVHIVKWAPQPAILSHPNCILFITHGGLLSYTEAVHFGKPTVGIPVFADGFLNVERIG 400 PENVHLLKWAPQQSILAHPNCILFITHGGLLSTTEAVHFGKPIIGIPVFAD dFGNVNRAV 401 PENVHMVKWAPQHSILAHPNCVLFITHGGLLSTIESIHFGVPIIAIPVFGDGFINVEWSV 401 PKNIHVVKWAPQQSILAHPNCVLFITHGGLLSTIESVHFGVPIITIPVFADGFMNAERSA 397 PKNVHIVNWAPQPSILSHPNCVLFITHGGLLSTTESVHFGVPIVGIPVFGDGFINVQRAV 398 PKNVHILKWAPQPSILAHPKCVLFITHGGLLSTTETIHYGVPTIAIPVFGDGFINVKKAV 400 PKNVHILKHWAPQPSILAHPKCVLFITHGGLLSTTETIHFGVPTIAIPVFGDGIFINVKKSV 400 PKNVHILHWAPQASILSHPKCVPFITHGGLLSTTETIHYGVPIIGIPAFGDQFINVKRAI 400 PSNIHILHWAPQQSILAHPNLRVFITHGGLLSTTETVHFGVPIIGIPVFADQFINVHRAE 401 HSNLHIIAWWAPQQSILAHPNLRVFITHGGLLSTTEAVHFGVPIIGIPVFGDQFVNVHRTE 401 PKNVHIVQ́WAPQQSILAQPKLVLFVTHGGLLSTTEAVHFGVPLVVIPVFGDQFMNAHLVE 399 GLNTRLYKWIPQNDLLGHPKTRAFITHGGANGIYEAIYHGIPMVGIPLFADAPDNIAHMK 407

KKGLGKRVDLSYTMADDLKIAINDVLSNPSYMTKAKELSLIYHDRPTPPGGELVHWVEHV 460 QKGIARRVDLSFTMVRDLEEAVAEMINNSRYIEKIKELSLIYHDRPVSPGAELVHWVEHV 461 RKGFGKRVDLSYTLAEDLKVAIEEVFANPRYKEIAKETSLIYHDRPVSPGAELVHWVEHV 461 RVGFGKIVYLSYTMADDLKVAIEEIFSNPRYKEIAKETSLIYHDRPVSPGAELVHWVEHV 457 KRGFAKKVDFSYSMVGELKVAIQEILSDSSYRTRIKELSLIYHDRPVSPGAELVHWVEHV 458 ARGYALEVKLSHSIAAELKVAIQEMLNNPKYRQRVKELSYIYHDRPVKPGAELRHWVQHV 460 ARGFTLQVDLSYKLAADLKVAIEEMLSNPKYRQRVKELSYIYHDRPVKPGAELRHWVQHV 460 NKGFALEVKLSYTVAADLKAAIEEILHNPKYRQKVKELSFIYHDRIAKPGEELLHWVHHV 460 IRGFAKRVDLSYTMAGELKKAILEVVTDKRYAEKAKELSVIHHDRPVKPGDELIHWVNHV 461 IRGFARKVDLSYTMTDELKKTILEVVDDKRYAEKAKELAVIHHDRPVKPGDELIHWVNHV 461 KKGIAVQVKLSYTMYNELKVAMDTVLGDTKYATNAKALSAAFHDLEMKPKVALNFWVEHV 459 ARGAAVRVDFNTMSSTDLLNALKRVINDPSYKENVMKLSRIQHDQPVKPLDRAVFWIEFV 467

Negatively charged

IKTGGAPHLRSPALNVPFYQKMYLDLAALVVVVIIALKL---IVKRV-CNSCRKKKVSSE 516 VKTKGALHLRSPALHVPFYQKLYLDLLAIVLVTSIVLRF---IFKNIHCNVQFKDKIQ-- 516 VKTRGALHLRSPALFVPLYQKLYLDVLAVILAFLIVLYK-------TARCLFLKERITNK 514 VKTRGALHLRSPALQMPLYQKLYLDLLTVVLVLLIVIYK-------IVRCLFSRISVTSN 510 ARTRGALHLRSPALHVPFYQKLYLDLLAVVLIISLIFYRKICLIKNLLLSFFQTNEIKKK 518 VNTRGAPHLRSPALQVPLYQRLYLDLAALLLVVILVLKL---LLKNLYHRIRPKKTNVNI 517 VNTRGASHLRSPALQVPLYORLYLDLVAFLSVAFIVLYM---LIKKLYSRVRSKK-IVNN 516 INTNGAPHLRSPALHIPLYQRLYLDLLGLISVVILVFFI---LLRVLCKLVCSKK---QK 514 IRTRGARHLRSPALGVPFYQKMFLDLAVVLTIVLTLAYI---LLKRAWRYFRSGKSKSSK 518 LRTRGAPHLRSPALGVPFYQKMFLDLAVVLTIVLTLSYI---LLKRAWRYYRSGKSKSSK 518 VRTRGAPHLRSVAVDIPLYQRVYLDLLALILLTPVVLLL-------VLKRFCCKKSDSQK 512 MRHKGAKHLRVAAHDLTWFQYHSLDVIGFLLVCVATVIF--IVTKCCLFCFWKFARKAKK 525

KKNK--- 520
KKNN--- 518
KKTN--- 514
KKRN--- 522
KKKDKKN 524
KKRN--- 520
EIRV--- 518
KNN---- 521
KNN---- 521
VKRS--- 516
GKND--- 529

Figure 2.10. Multiple alignment of OfurUGT1 protein and ten UGT proteins from
B. mori, H. armigera, S. littoralis, and human UGT2B7.

Figure 2.11. Expression of OfurUGT1 protein. A) CDS of OfurUGT1 gene amplified by RT-PCR. B) Recombinant pFastBac1-UGT. C) Recombinant Bacmid-UGT. D) Result of Western blot analysis of total proteins extracted from Sf9 infected with Bac-OfurUGT1for 72 hours. The molecular size of recombinant protein OfurUGT1 is estimated as 58.33 kDa .

Figure 2.12. SDS/PAGE (10% separating gel) analysis of total protein extracted from midgut of O. furnacalis that had fed on an artificial diet with and without 0.5 mg / g of DIMBOA for 24 hours.

2.4. Discussion

<Is OfurUGT1 responsible for the catabolism of DIMBOA?>

At present, I have not yet succeeded to observe any activities of OfurUGT1 toward DIMBOA. Addition of DIMBOA to the homogenate of Sf9 cells expressing OfurUGT1 did not decrease the amount of DIMBOA and no formation of DIMBOA-2-O-glucoside was observed (data not shown). Many factors, for example, optimization of the production of recombinant OfurOGT1, localization and solubility of the expressed OfurUGT1, have to be considered before drawing any conclusion about the activity of OfurUGT1. Although the catalytic activity of OfurUGT1 is yet to be proven, it has many characteristics that a UGT responsible for the catabolism of DIMBOA or other maize allelochemicals should possess. Those are, 1) high expression levels in the midgut and Malpighian tubules, 2) its expression level in these tissues is increased in the larvae that had fed on corn or an artificial diet containing DIMBOA, and 3) higher expression level in O. furnacalis as compared with the non-maize feeder O. scapulalis. Therefore, at present, OfurUGT1 remains to be the first UGT whose function has to be investigated.

Induction of a 58.7 kDa protein, whose molecular mass coincided with that of UGTs in general, was clearly observed in the midgut of O. furnacalis larvae that had fed on an artificial diet containing DIMBOA (Fig. 2.12). This finding suggests the induction of UGT protein(s), although it may not be OfurUGT1 itself, by the ingestion of DIMBOA. Further studies are required to characterize all UGTs involved in the catabolism of maize allelochemicals.

<Utilization of RNA-seq data>

I utilized RNA-seq data obtained for a tissue and species different from the ones I am interested in. As I expected, since species in the genus Ostrinia are extremely closely related, RNA-seq data for another species provided ample information useful for my study. However, probably because many UGT genes, similar in sequences, are expressed in a single species, inaccurate de novo assembling of short reads appeared to have occurred frequently. Actually, the sequences of two contigs I focused on, comp36666 and comp37547, were both not accurate.

In this thesis, due to limitation of the time, I disregarded comp36666 at the very early stage of the investigation. Since partial sequence of comp36666 was also amplified by PCR when cDNA prepared from the midgut of O. furnacalis was used as template, sequencing and characterization of comp36666 should be conducted in the future. Moreover, at least all UGT genes in the UGT40 family, which are known to be highly expressed in the midgut and Malpighian tubules, are worth examining for their activity.

<Primary structure of UGTs>

OfurUGT1 protein comprises 520 amino acids and the molecular mass is approximately 58 kDa , which is similar to UGT37a1 of D. melanogaster, and UGT40A1 and UGT40K1 of B. mori (Luque and O'Reilly, 2002; Luque et al., 2002; Xu et al., 2013). OfurUGT1 belongs to family UGT40, the second largest family of insect UGTs identified to date. UGTs belonging to this family were reported to have 7 introns and highly expressed in the midgut and fat body (Ahn et
al., 2012). The amino acid sequences of insect UGT proteins are highly variable in the N -terminal substrate binding domain while conserved in the C -terminal UDPglucose binding domain. Actually, the UGT signature motif was identified in the C-terminal. These characteristics in the primary structure of UGT are considered to explain the diversity of substrates of UGT while the sugar donor is fixed to UDPglucose.

GENERAL DISCUSSION

Catabolism of DIMBOA in Ostrinia furnacalis

Increased tolerance of herbivorous insects against ingested toxic plant secondary compounds can be achieved not only by enhanced detoxification but also by several other mechanisms such as non-absorption of toxins from the digestive tract, degradation of toxins within the digestive tract, enhanced excretion from the body, and insensitivity of target molecules with which toxins interact (Després et al., 2007; Pentzold et al., 2014). In the case of tolerance against DIMBOA, maize feeders such as Spodoptera and Mythimna are known to tolerate DIMBOA by enhancing its excretion by re-glucosylation of it via the function of UGT (Sasai et al., 2009; Wouters et al., 2014). Actually, in these species, DIMBOA-glucoside is found in their frass. Although involvement of UGT is also indicated in O. furnacalis, no DIMBOA-glucoside was found in the in vitro enzyme assay using the homogenate of O. furnacalis digestive tract (section 1.3.2). Using DIMBOAglucoside in place of DIMBOA in the same enzyme assay system, I have shown that DIMBOA-glucoside can be rapidly broken down, probably into smaller compounds, by unknown enzymes in the assay system (Fig. 1.7). These results strongly suggested that O. furnacalis copes with DIMBOA not by excreting DIMBOA in the form of its glucoside in the frass but by degrading it into very small compounds. Actually, my preliminary HPLC-MS analyses of the frass of O. furnacalis consistently failed to detect DIMBOA and its direct derivatives (data not shown). The final forms of DIMBOA catabolites and the enzymes involved in the degradation are of great interest, and must be identified in future studies.

Furthermore, from the standpoint of evolution, it is very interesting to know why and how this unique strategy to tolerate DIMBOA, which is different from other maize feeders, was adopted in O. furnacalis.

Mechanism of increased UGT activity in O. furnacalis

An increase in the UGT activity was found in O. furnacalis in comparison with its congener O. scapulalis. The increase can be achieved, in general, via the following three mechanisms.
a. Increased transcription of the UGT gene
b. Multiplication of the UGT gene
c. Mutation of the UGT gene

The data obtained in the present study are consistent with the hypothesis that the increased DIMBOA catabolizing activity in O. furnacalis is achieved through increased transcription of the relevant UGT gene, UGT1. Both O. furnacalis and O. scapulalis have UGT1 genes, OfurUGT1 in O. furnacalis and OscaUGT1 in O. scapulalis, but UGT1 is expressed at a greatly higher level in O. furnacalis than in O. scapulalis. An increase in the transcription of OfurUGT1 in the O. furnacalis larvae that had fed on artificial diet containing DIMBOA further supports this hypothesis. However, it must be noted that the possibility of the involvement of mechanism \mathbf{b} or \mathbf{c} cannot be completely excluded from the data obtained in the present study. It is necessary to clone OfurUGT1 and OscaUGT1 and compare their enzymatic activity by in vitro functional assays. The possibility of multiplication of UGT1 must be checked by quantitative PCR using genomic DNAs of O. furnacalis and O. scapulalis.

THESIS SUMMARY

Tran Thi Thu Phuong
March 2016

Studies on the ability of the Asian corn borer Ostrinia furnacalis to catabolize DIMBOA, a host antibiotic

Maize contains an allelochemical, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), which functions as a feeding deterrent, growth inhibitor, and toxin against many herbivorous insects. Therefore, insects that feed on maize are considered to have developed adaptive mechanisms to cope with this compound. The adaptations of insects to toxic compounds involve modified feeding behavior, physiology, and metabolism. The Asian corn borer Ostrinia furnacalis (Guenée) (Lepidoptera: Crambidae) is an important pest of maize in the Asia. Although nine Ostrinia species are reported to inhabit Japan, O. furnacalis is the only Ostrinia species in the Asia that feeds on maize. Among the sympatric congeners, the adzuki bean borer Ostrinia scapulalis (Walker) is particularly interesting in terms of host plant usage, because this species, although very polyphagous, does not utilize maize as a host. Comparison of the two congeners, O. furnacalis and O. scapulalis, may shed light on the mechanisms of the differentiation of host plant usage, sympatric speciation that may have occurred after this differentiation, and many other aspects of evolutionary biology.

Previous studies in our laboratory suggested that UDP-glucosyltransferase (UGT), which catalyzes glucosylation of lipophilic compounds and thereby
expediting its excretion from insect body, is involved in the catabolism of DIMBOA; however, the glucosylation product of DIMBOA was not detected. In this thesis, I aimed to further clarify the physiological adaptations of O. furnacalis to its host, by focusing on the genetic basis of its ability to catabolize DIMBOA and, subsequently, on the UGT enzyme involved in the catabolism of this allelochemical. This dissertation consists of two chapters.

In Chapter 1, I compared the ability of O. furnacalis and its congener O. scapulalis to tolerate DIMBOA, with reference to the tolerance of their hybrids. The tolerance of O. furnacalis, O. scapulalis, and their F 1 hybrids to DIMBOA was evaluated by the growth, development, and survival rate of larvae that were fed on an artificial diet containing DIMBOA. In laboratory assays, the addition of 0.3 mg / g of DIMBOA to an artificial diet markedly affected the survival of O. scapulalis larvae, but not that of O. furnacalis larvae. Besides the survival rate, the growth and development of O. scapulalis larvae were significantly retarded as compared with those of O. furnacalis. Hybrids of O. furnacalis and O. scapulalis, crossed in both directions, tolerated DIMBOA to the same extent as O. furnacalis, indicating that this tolerance was conferred by a single or a few autosomal genes that are dominant to those of O. scapulalis.

Subsequently, I investigated the contribution of UGT to the catabolism of DIMBOA in Ostrinia furnacalis. In vitro, DIMBOA was rapidly catabolized when incubated with the homogenate of the digestive tract of O. furnacalis in the presence of UDP-glucose. The UDP-glucose-dependent DIMBOA-catabolizing activities of the homogenate of the digestive tracts of O. scapulalis and hybrids correlated with their tolerance; low in O. scapulalis and high in the hybrids. These results
reconfirmed that UGT or other UDP-dependent enzymes are involved in the catabolism of DIMBOA in O. furnacalis; however, consistent with our previous findings, DIMBOA-2-O-glucoside, the expected product of UGT, was not detected in the products of in vitro assays. This study reconfirmed the contribution of UGT in the catabolism of DIMBOA, but the whole picture of DIMBOA catabolism in O. furnacalis remains to be clarified.

In Chapter 2, I aimed to identify O. furnacalis UGT responsible for the catabolism of ingested DIMBOA. Based on RNA-seq analysis of genes expressed in the pheromone gland of Ostrinia zaguliaevi, another congener of O. furnacalis, I selected four UGT gene candidates that may be responsible for the catabolism of DIMBOA (comp3666, comp37547, comp36019, and comp37715). Among these genes, RT-PCR experiments using the midgut of O. furnacalis larvae have shown that O. furnacalis homolog of comp37547 possessed characteristics required for the genes involved in the catabolism of maize allelochemicals. Those are, 1) high expression levels in the midgut and Malpighian tubules, 2) its expression level in these tissues is increased in the larvae that had fed on corn or artificial diet containing DIMBOA, and 3) higher expression level in O. furnacalis as compared with the non-maize feeder O. scapulalis. Accordingly, I cloned this gene and named it OfurUGT1. The full length OfurUGT1 comprised 1733 bp with an open reading frame of 1563 bp encoding a protein of 520 amino acids. The molecular mass of OfurUGT1 protein was estimated as 58.33 kDa . OfurUGT1 belongs to insect UGT40 family, and primary structure analysis has shown that OfurUGT1 protein all structures characteristic of UGT. For example, OfurUGT1 had Nterminal substrate binding domain and the C -terminal sugar-donor binding domain.

In N -terminal, the signal peptide cleavage sites and catalytic residue were identified. In C-terminal, the UGT signature motif, donor binding region 1 (DBR1), donor binding region 2 (DBR2), and negatively charged region were identified.

Phylogenetic analysis of the amino acid sequences of OfruUGT1 and other UGTs belonging to insect UGT40 family suggested that OfruUGT1 is relatively closely related to UGT40R and UGT40Q. However, since OfurUGT1 does not form a compact clade neither with UGT40R nor UGT40Q, OfurUGT1 may belong to a yet undescribed subclass of UGT40 family.

I subsequently aimed to perform functional assay of OfurUGT1 heterologously expressed in Sf9 insect cells using Baculovirus expression system. Although I confirmed the expression of OfurUGT1 protein in Sf9 cells, enzymatic activity of this protein toward DIMBOA has not yet been demonstrated. Optimization of recombinant protein expression and improvements in the design of functional assay are required before drawing any conclusion about the activity of OfurUGT1.

In conclusion, I obtained further evidence that UGT is involved in the enhanced tolerance of the larvae of O. furnacalis to DIMBOA. The nucleotide and amino acid sequences of OfurUGT1, which is a good candidate of UGT responsible for the catabolism of DIMBOA in O. furnacalis, were disclosed for the first time.

REFERENCES

Ahmad, S.A., Hopkins, T.L., 1992. Phenol β-glucosyltransferase and β glucosidase activities in the tobacco hornworm larva Manduca sexta (L.): Properties and tissue localization. Arch. Insect Biochem. Physiol. 224, 207224.

Ahmad, S.A., Hopkins, T.L., 1993a. Phenol β-glucosyltransferases in six species of insects: properties and tissue localization. Comp. Biochem. Physiol. Part B Comp. Biochem. 104B, 515-519. doi:10.1016/0305-0491(93)90276-B

Ahmad, S.A., Hopkins, T.L., 1993b. β-Glucosylation of plant phenolics by phenol β-glucosyltransferase in larval tissues of the tobacco hornworm, Manduca sexta (L.). Insect Biochem. Mol. Biol. 23, 581-589. doi:10.1016/0965-1748(93)90031-M

Ahn, S.-J., Vogel, H., Heckel, D.G., 2012. Comparative analysis of the UDPglycosyltransferase multigene family in insects. Insect Biochem. Mol. Biol. 42, 133-147. doi:10.1016/j.ibmb.2011.11.006

Berenbaum, M.R., 1995. The chemistry of defense: theory and practice. Proc. Natl. Acad. Sci. U. S. A. 92, 2-8. doi:10.1073/pnas.92.1.2

Cambier, V., Hance, T., de Hoffmann, E., 1999. Non-injured maize contains several 1, 4-benzoxazin-3-one related compounds but only as glucoconjugates. Phytochem. Anal. 10, 119-126.

Cambier, V., Hance, T., de Hoffmann, E., 2000. Variation of DIMBOA and related compounds content in relation to the age and plant organ in maize. Phytochemistry 53, 223-229.

Campos, F., Atkinson, J., Arnson, J.T., Philogène, B.J.R., Morand, P., Werstiuk, N.H., Timmins, G., 1989. Toxicokinetics of 2, 4-dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA) in the European corn borer, Ostrinia nubilalis (Hübner). J. Chem. Ecol. 15, 1989-2001.

Daimon, T., Hirayama, C., Kanai, M., Ruike, Y., Meng, Y., Kosegawa, E., Nakamura, M., Tsujimoto, G., Katsuma, S., Shimada, T., 2010. The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that
produces green cocoons with UV-shielding properties. Proc. Natl. Acad. Sci. U. S. A. 107, 11471-6. doi:10.1073/pnas. 1000479107

Després, L., David, J.P., Gallet, C., 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307. doi:10.1016/j.tree.2007.02.010

Ehrlich, P.R.., Raven, P.H.., 1964. Butterflies and Plants : A Study in Coevolution. Evolution (N. Y). 18, 586-608.

Feng, R., Houseman, J.G., Downe, a. E.R., Atkinson, J., Arnason, J. t., 1992. Effects of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-methoxybenzoxazolinone (MBOA) on the detoxification processes in the larval midgut of the European corn borer. Pestic. Biochem. Physiol. 44, 147154. doi:10.1016/0048-3575(92)90112-D

Fürstenberg-Hägg, J., Zagrobelny, M., Bak, S., 2013. Plant defense against insect herbivores, International Journal of Molecular Sciences. doi:10.3390/ijms 140510242

Hartmann, T., 2004. Plant-derived secondary metabolites as defensive chemicals in herbivorous insects: A case study in chemical ecology. Planta 219, 1-4. doi:10.1007/s00425-004-1249-y

Hofman, J., Hofmanová, O., 1969. 1,4-Benzoxazine derivatives in plants. Eur. J. Biochem. 8, 109-112. doi:10.1016/S0040-4039(01)88868-7

Howe, G. a, Jander, G., 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59, 41-66. doi:10.1146/annurev.arplant.59.032607.092825

Huang, F.-F., Chai, C.-L., Zhang, Z., Liu, Z.-H., Dai, F.-Y., Lu, C., Xiang, Z.-H., 2008. The UDP-glucosyltransferase multigene family in Bombyx mori. BMC Genomics 9, 563. doi:10.1186/1471-2164-9-563

Ishikawa, Y., Takanashi, T., Kim, C.G., Hoshizaki, S., Tatsuki, S., Huang, Y., 1999. Ostrinia spp. in Japan: Their host plants and sex pheromones. Entomol. Exp. Appl. 91, 237-244. doi:10.1023/A:1003601407578

Kojima, W., Fujii, T., Suwa, M., Miyazawa, M., Ishikawa, Y., 2010.

Physiological adaptation of the Asian corn borer Ostrinia furnacalis to chemical defenses of its host plant, maize. J. Insect Physiol. 56, 1349-55. doi:10.1016/j.jinsphys.2010.04.021

Larsen, E., Christensen, L.P., 2000. Simple method for large scale isolation of the cyclic arylhydroxamic acid DIMBOA from maize (Zea mays L.). J. Agric. Food Chem. 48, 2556-2558.

Luque, T., O’Reilly, D.R., 2002. Functional and phylogenetic analyses of a putative Drosophila melanogaster UDP-glycosyltransferase gene. Insect Biochem. Mol. Biol. 32, 1597-1604. doi:10.1016/S0965-1748(02)00080-2

Luque, T., Okano, K., O'Reilly, D.R., 2002. Characterization of a novel silkworm (Bombyx mori) phenol UDP-glucosyltransferase. Eur. J. Biochem. 269, 819825.

Maag, D., Dalvit, C., Thevenet, D., Köhler, A., Wouters, F.C., Vassão, D.G., Gershenzon, J., Wolfender, J.L., Turlings, T.C.J., Erb, M., Glauser, G., 2014. 3- β-d-Glucopyranosyl-6-methoxy-2-benzoxazolinone (MBOA-N-Glc) is an insect detoxification product of maize 1,4-benzoxazin-3-ones. Phytochemistry 102, 97-105. doi:10.1016/j.phytochem.2014.03.018

Meihls, L.N., Kaur, H., Jander, G., 2012. Natural variation in maize defense against insect herbivores. Cold Spring Harb. Symp. Quant. Biol. 77, 269-83. doi:10.1101/sqb.2012.77.014662

Miley, M.J., Zielinska, A.K., Keenan, J.E., Bratton, S.M., Radominska-Pandya, A., Redinbo, M.R., 2007. Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J. Mol. Biol. 369, 498-511. doi:10.1016/j.jmb.2007.03.066

Mukanganyama, S., Figueroa, C.., Hasler, J.., Niemeyer, H.., 2003. Effects of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: aphididae). J. Insect Physiol. 49, 223-229. doi:10.1016/S0022-1910(02)00269-X

Mutuura, A., Munroe, E., 1970. Taxonomy and distribution of the European corn borer and allied species: genus Ostrinia (Lepidoptera: Pyralidae). Mem.

Entomol. soc. Can. 1-112.
Niemeyer, H., 1988. Hydroxamic acids (4-hydroxy-1, 4-benzoxazin-3-ones), defence chemicals in the Gramineae. Phytochemistry 27, 3349-3358.

Ortego, F., Ruíz, M., Castañera, P., 1998. Effect of DIMBOA on growth and digestive physiology of Sesamia nonagrioides (Lepidoptera: noctuidae) larvae. J. Insect Physiol. 44, 95-101. doi:10.1016/S0022-1910(97)00103-0

Pentzold, S., Zagrobelny, M., Rook, F., Bak, S., 2014. How insects overcome two-component plant chemical defence: plant β-glucosidases as the main target for herbivore adaptation. Biol. Rev. 89, 531-551. doi:10.1111/brv. 12066

Radominska-Pandya, A., Bratton, S.M., Redinbo, M.R., Miley, M.J., 2010. The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Drug Metab. Rev. 42, 133-44. doi:10.3109/03602530903209049

Sakai, R., Fukuzawa, M., Nakano, R., Tatsuki, S., Ishikawa, Y., 2009. Alternative suppression of transcription from two desaturase genes is the key for speciesspecific sex pheromone biosynthesis in two Ostrinia moths. Insect Biochem. Mol. Biol. 39, 62-7. doi:10.1016/j.ibmb.2008.10.001

Sasai, H., Ishida, M., Murakami, K., Tadokoro, N., Ishihara, A., Nishida, R., Mori, N., 2009. Species-specific glucosylation of DIMBOA in larvae of the rice Armyworm. Biosci. Biotechnol. Biochem. 73, 1333-8. doi:10.1271/bbb. 80903

Tamura, K., Stecher, G., Peterson, D., Filipski, A., Kumar, S., 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725-2729. doi:10.1093/molbev/mst197

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. doi:10.1093/nar/22.22.4673

Tipton, C.L., Klun, J.A., Husted, R.R., Pierson, M.D., 1967. Cyclic hydroxamic acids and related compounds from Maize. Isolation and characterization. Biochemistry 6, 2866-2870.

Woodward, M.D., Corcuera, L.J., Helgeson, J.P., Upper, C.D., 1978.
Decomposition of 2, 4-dihydroxy-7-methoxy-2H-1, 4-benzoxazin-3 (4H)one in aqueous solutions. Plant Physiol. 61, 796-802.

Wouters, F.C., Reichelt, M., Glauser, G., Bauer, E., Erb, M., Gershenzon, J., Vassão, D.G., 2014. Reglucosylation of the Benzoxazinoid DIMBOA with Inversion of Stereochemical Configuration is a Detoxification Strategy in Lepidopteran Herbivores. Angew. Chemie Int. Ed. 53, 11320-11324. doi:10.1002/anie. 201406643

Xu, X., Wang, M., Wang, Y., Sima, Y., Zhang, D., Li, J., Yin, W., Xu, S., 2013. Green cocoons in silkworm Bombyx mori resulting from the quercetin 5-Oglucosyltransferase of UGT86, is an evolved response to dietary toxins. Mol. Biol. Rep. 40, 3631-9. doi:10.1007/s1 1033-012-2437-7

Yan, F., Liang, X., Zhu, X., 1999. The role of DIMBOA on the feeding of Asian corn borer, Ostrinia furnacalis (Guenee)(Lep., Pyralidae). J. Appl. Entomol. 123, 49-53.

Yan, F., Xu, C., Li, S., Lin, C., Li, J., 1995. Effects of DIMBOA on several enzymatic systems in Asian corn borer, Ostrinia furnacalis (Guenee). J. Chem. Ecol. 21, 2047-2056.

APPENDIX. Amino acid sequences used for construction of the phylogenetic tree of Ostrinia zaguliaevi UGTs (comp15776-comp38172) and representative lepidopteran UGTs retrieved from public databases (UGT33D1-UGT340C1,
*Numbers in parentheses indicate GenBank Accession Numbers).

```
>comp15776
    1 MQSSTILVLI SMILMNSVNC ARILGIFPMP SRSHQIVFQS YTKELAKRGH
    5 1 ~ E L V V V S P D P F ~ P P D T R P E N L T ~ D I D V S F S Y Q V ~ M K N L F T A N L L ~ D L K Q G V I M D I ~
    101 DAIIAGNLYE KIVYAYVDQM NHPPVRKLIN DKNQRFDLVV VEGFLDYHLM
    151 FTEIFKAPVI MFPSFMGFAE QYEMLGGIGR HPILYPHLHR NKFDDLNLFE
    201 WAKELYYEYR MYAMFERLEH KQNELLKENF GANAPTVNEL RENIDLLLLN
    251 SYADFANNRP VPPNIIYLGA VQLQPVKEIP KDLKDYLDGS SRGVIYVSFG
    3 0 1 ~ S N I M P S R M S K ~ E L L G A I L E A F ~ E K L P Y D I L W K ~ F D G D N L E N V P ~ K N V K Y M K W F P ~
    351 QRDLLFHPNI KAFVTQCGLQ STDEAIDAAV PLVGIPMMAE QAYNAKKYKD
    4 0 1 ~ F G I G V K L D P M ~ A L T A D D F V N G ~ V N T V V E D I S Y ~ K N N I L R L K K I ~ H Q D Q P Q S P L E ~
    4 5 1 ~ R A V W W T E Y V I ~ R H S G S R H M R S ~ P A A N M P W H K Y ~ Y M L D I L L P L L ~ G L F I T V L I V V ~
    501 ATLLRFVFNI IGVFGGKEKV KQK
>comp16953
    1 \text { MLWYCMGVIF LSICSECANI LYVVPFTSKS HYIMLKPIGL ELAKRGHNVT}
    5 1 ~ V I T G H K T D V N ~ L T N Y H Q V M V D ~ D K E I W E L T G M ~ K R P N V F T M V N ~ I S A E E F H D I I ~
    101 LWRGGLGHTE VTLQSPQVKH FLANDNKFDL VISEQFFQEA MFTLAHKYNA
    151 PLVLITTYGN CMRHNIVSRN PLQLATVVSE FLDVKDPTSF WGRLRNLYFT
    201 VYEYVWWKYW YLEKQEEFVR KYLLNLPQPV PSLYELQKNA ALILINSHFS
    251 FDGPVAYLPN IVEVGGLHLT RSTSKLPQDL QKLLDESKHG VVYVNFGSNV
    3 0 1 ~ R S S E M P P E K K ~ L A F V K I F S E L ~ K Q T V F W K W E D ~ D N F D I E T N N V ~ V I R K W F P Q K D ~
    351 VLSHPNVKVF ISHGGLIGTQ EAIFHGVPII GVPIYADQYN NLLQAQKLGF
    4 0 1 ~ G K I L Q Y R D I N ~ E D T I R K N L H E ~ V L K D D S Y K N K ~ A Q E M S K R F K D ~ R P M P A L D T A M ~
    451 YWIEYVIRNK GADFIKNPAH ELSWFANNML DVFAFLLLSF IVSAYVVFIV
    501 VRALIIIAQS SSTNKSKKIK TK
```

>comp26748
1 MAQNIALVFY FVAAIYTTTS YRILGIFPSL DRNNYLTYKS LFFELANRNH
51 DVTLVSHFSQ PDAPATYKEV LLSENQLVYK GLSYESVIVN EVSRVPFETL
101 VATKAGNDDC KTLMNNHYVL HMIRTRPRFD VIVVESYNSD CALALAANLS
151 APYIAFSPQP IQPWQYNRLG IGFNSAYVTQ AGLPYGKEPW FFDRLKSYVL
201 YHVTNWVYYV GSQVTDHVYL YKYLGDSLPS LESIASNASL MFVNTHPSIF
251 GGVARPDNVI DIGGIHVRPP KVIPTEIERF INEAEHGVIY VNLGSTVKDS
301 TLPKDKLQEM LSAFSKLPLR VLWKWDGGSL ELPRNVMTMR WFPQYDILKH
351 DNVKVFISHT GILSTIEAVD AGIPVVAIPL FGDQYGNAAV LQDAGIASIV
401 SYQDLKKNYL LDAINEVLDP TFQQRAKQVS RIWHDRTISP LENAIYWTEY
451 VARYRGAPNL RTPSADLPLY QQLQLDVLAF IALVLYILCY VFYKILSVLC
501 CCCCQNEQEI QTSSEERRSK RVKFE
>comp27021 (5' partial)
1 QAARLLVVLP TNTRSHYAMY GRLVEALARK NHHLTVISHF PMKIRPPNVE
51 EISLAGTIPD IYNNLTEQHY SLKPDFVHNL EQIMAECVHA CDMVSRMPAV
101 KALLNSTVTY DLVIVEVFGT ECFLPLGERF KAPVVGLLSS VPLPWFNEQL
151 GNPEATAYVP AYMTGFGQHM NLIERLSNTI SVLWAKILYR YKSQIPSQAI
201 ADRLFGYGTK LDKLAQNYSL VLSNSHFTIN EVRPLVPALV EVGGLHLDES
251 QKLSGELKTL LDASTDGIIY WSFGSMSKIE TIPSEKLAQI FAVISELSQT
301 VLVKMNRMRL STNLTVPDNI YTMDWIPQYA TLCHPNVKVF ISHGGLLGTQ
351 EAVACGVPML TVPLYADQAL NARAMADRGV SKTITLKNTN KHTWKQALHE
401 LLTDARYKDN MLKLRNVFLD RPMPPLDTGI YWIEYVLRHK GAPHLRSPAL

451 DLSVVQYLLL DVVVLSIAIA ITTIYILHIL FRYLCTRCIK WWPKEKRVFE 501 KRLFRNFSVF LCLLWRYKAK AN

```
>comp32482
    1 \text { MAKAQIILCV LGVICCADAY KILVVFPFPI RSLNNLGEGY VRHLLKAGHE}
    5 1 ~ V T F I T A F P L K ~ N E K N E K L R Q I ~ D I S S N Q Q L M V ~ S G D T T F S I K S ~ V M D G Q I P M N D ~
    101 VKMMQEFGLY SSIMMFEHEN VKKFLEDPSQ QFDAVIVDLY ETEIYSGLSA
    151 LYNCPMIWSY SMGAHWLVLR LIDEPTNPAY SADYLSSNVL PFTFKQRLEE
    201 LWAQILWTWT KWTSTMPKEK EAFAKYFKPL LEKGGRTSPD YDQLIYNASL
    251 IFGNEHHAFG NIPRTPQNFK FIGGFHIETP AKPLPKDLQT LMDDSKDGVI
    3 0 1 ~ Y F S M G S A W N S ~ K D L P E S V V D G ~ L V K M F G E L K Q ~ T V I W K F E A D L ~ P N L P K N L H I T ~
    3 5 1 ~ K W A P Q P S I L A ~ H P N C L F F I T H ~ G G H L S S T E A I ~ H F G V P I I G V P ~ I F F D Q F I N I N ~
    401 KALSKGYALK VNLNYDLPRN LKAAIQTMLS DSKYRKQAEE LSAIYHHRPV
    451 PPGQEMVHWV THVIRTGGAP HLRSPALNMA FYQKMYLDFA ALVAAVVVAV
    501 VLVVKKLCGG RKAGMKEKKN
```

>comp33154

1 MSTPMLTALL LLLFASQAWS YNVLCIFPTP SKSHNHLGKG IVDALLDAGH 51 QVTWGTPFPS KTLNNNLRMI DLSGTVALSE AIDMTQPRFR NAGPDFVRSF 101 ARNISISALS SQELRDALTK QQFDAVVTEW FFSDYDCGYA AVQQAPWILL 151 SGMTMHPHLE MLVDEVRSIQ THPLLFNDFP VPMTLWORMI NSFIFGMMTI 201 SNWRDQSDND AYYQSAYGPL AKARGLSLPA YQDALYNVSI LFVNTDPAVD 251 RPRSVPANVI SIAGYHIDAN PGPLPKDLQT ILDSSSKGVI YFSMGSVLKS 301 SAFPENLIAD LLKLFGELPY TVLWKFEKEL TGAPKNVHVR AWFPQASILA 351 HPNVKLFITH GGLLSTLEAA NAGVPILAVP MFGDQPSNAA RSVRAGVARK 401 VDFSHHMADE LRKELNEMLS NDNYLKTAQS VSKLFRKRPV APSKLISHYV 451 EVAIESKGAY HLRSPSKLYA WYERYMLDQL AIVGAILYLI VKLIMTAVNV 501 IKRKVSGGKK QKRS
>comp33913
1 MRSSTSQVCL KKTPVPNLTE IDLSSIEEAF KQDKESNEHF KLKNLVGQKN 51 FGDSIFFLYL SYEINKVSME HEAVQTFLAD PKQKFDAVIL EWFFSDFIAG 101 IAPLFNAPLI WMGSTEAHWQ VLKLVDEIPN PAYSVDLFSV KRPPLTFWER 151 MVELWTLAKR YVIINAVVVP FEKRLYNIIF PELAAKRGVT MPGYDDAVYN 201 ASLMYLYSHP SIGTPFRLSQ NAKYVGGYHV DTEVRALPKD LQKIMDEAKD 251 GVIYFSMGSN LKSVDMTENM RNSLLKMFSK LKQKVIWKFE EDLQNVPKNI 301 HLVKWAPQQS ILAHPNLRMF ITHGGQLSTT EAIHFGVPVV GIPVFGDQYV 351 NTKSAVDKGF CISVTLAEDM ADDIYAAVQE ILRNPAYKTK AKELSAIFHD 401 RPMKPGEELV YWLEYVVRTH GAKHLRSPAV NVPMYQKLFL DLLLIVVVGO 451 YVLCKIKQKV FGRRKADKPA KSGKKTKTN
>comp34920
1 MLRPASARPA GKLCRRAARA HLFRTMRYHF LTTLCLLAYT TNAIKILGIF
51 PYDGKSHFIV IKVLLEELAR RGHDVTVISH FPDDNPPKNY HDVSLFIPKL 101 NNDSVEDAVK IERSYFGVFE VGVYLALSGK NDCEVMLANK DVQKLVNRKD 151 KYDLVLTEQF NSDCSLGIAY KLGAPVVGIT THILMPWHYK RLGIPNNPSY 201 VSFHFLEGGT KPTLFQRVER VFFDAYFKTL YYLISQRSNQ NELAKYYDDI 251 PPLEDLAGQI KFLLLNHHYV LTGSTLYPAN VVEIGGFHVG KPNPLSGELK 301 IFVEQAEHGV IFLSFGTTVS LSLTSVEKIQ AILDTIEELP QRFIWRWDKK 351 TTLDKKPFNQ LSKKHLDLLA NKKKIYIGNW LPQVDILGHP KVVAFISHGG 401 MGGTTEAIHF AVPIVAMPIT GDQPANAAAI EESGFGVHOP INSLTKEDLV 451 ASLRKVLDPK FREQVKLRSK AWHDRPVSPM NSAVYWIEYA ARNGNFTFRT 501 PAATVPLYQY LYLDTMAVYA VFFTAVFLLF KAFCCTSSRK ETKTPMNNKK 551 KKQN

```
>comp35471
    1 MEMLRRILCL FCVFSSIEGY KVLVAFPLPV RSLNLLGEGL VRHLLNAGHE
    5 1 ~ V T Y I T A Y P F K ~ D P P K K N F R Q I ~ D L S S V K S V F A ~ N Q N K L N T G Y I ~ M M N N R H T N N I ~
    101 YYVQELALNC AKATFADQNL QKLLQDTSES FDVIIADLLE TEIYAGLAAV
    151 YDCPMVWLYS MGAHSVALRL VDQPANPAYA SDYLTGHIPP LTFIQRVEQL
    201 WAHVEWYFLK WFFIQPEEKT LYQHTFGPLL SKRGRSLPDY QELIYNVSLM
    251 FSNEHNALGN VPAIPQNFKF VGGFHIDDPP KALPKDLQAI MDSSKHGVIY
    3 0 1 ~ F S M G S T W Q S K ~ D I P E S V T R G L ~ L N M F G E L K E T ~ V L W K Y E E N L Q ~ N L P P N V K I V H ~
    3 5 1 \text { WAPOHSILAH PNLRMFISHG GLLSSTEALH FGVPTIGIPV MFDQYINVNK}
    401 AVSSGYALSA ELSDDLPNTL RPLIREMLDN PKYRQKAKQS SMIYHDRPAT
    451 AGQELVHWTE HVIKTKGAPH LRSPALRMPV YQKLYLDFVA CCCSFAIYL
>comp36019
            1 \text { MDLTKLLFLL LFGFSSAYKI LVVFPYPGKS HTILGEGFVK HLVRAGHEVT}
    5 1 ~ Y I T P I P I N N P ~ P K G L R Q I D V S ~ S N I K T F E S M S ~ S S L S F K T V L N ~ K E A D L K D T R A ~
    101 WVGVINNIAN QTIWHHNVOK LMYDDNEEFD LVIAEWLYTE LYCGFAAVFN
    151 CPFIWSSSID PHGLVLGLID EEPNPAYTAN HMSSFEAPFT FSQRLEELWE
    201 VIYLKYMKWA IYDHENRIFQ EGYGPAVAKR GRTIPSLYEV SHNASLMFGN
    251 SHFSSGRPVR LPQNYIPIAG YHIDEEVDKP LPTDIOKIMN NAQHGVIYFS
    3 0 1 ~ M G S M I R S S S M ~ P D G I K Q G F L K ~ M F G S L K Q T V I ~ W K F E E V L P N L ~ P K N V H I L K W A ~
    3 5 1 ~ P Q Q S I L A H P N ~ C L V F I S H G G L ~ L S T S E A L H Y G ~ V P I I G I P M F A ~ D Q F I N V D R A M ~
    4 0 1 ~ K K G F A L K V D I ~ A E D M T V H L K A ~ A I E E I L G N P R ~ Y H E R M K E L S F ~ I Y H H R T T T P G ~
    4 5 1 ~ Q E I L H W V D H V ~ V K T R G A L H L R ~ S P A L D V P F Y Q ~ K I Y L D L I T L I ~ A V A T I V L F R I ~
    5 0 1 ~ A K R L V C K S A V ~ T K K V K K N ~
>comp36231
    1 MLRGRVKHLL HCVSFLSFIF FFLVFAGAIN VNDEQKEIVD PWEAYGIYGT
    5 1 ~ I I L Y V L R L L T ~ L L T I P Q V L C N ~ F A G L I F F N A F ~ P G K V K L K G S P ~ L L A P F I C I R V ~
    101 VTRGDFPKLV KENVTKNMNL CLDAGMENFM VEVVTDKAIN LPKHRRVREV
    151 VVPSEYKTKT GALFKSRALQ YCLEDSVNIL AGTDWIVHLD EETLLTENSI
    201 RGILNFVLDG QHOFGQGLIT YANENIINWV TTLADSFRVA DDMGKLRFQF
    251 YLFHKPLFSW KGSYVVTQVS AERKVSFDNG LDGSVAEDCY FAMKAYMEGY
    3 0 1 ~ S F N F V E G E M W ~ E K S P F T L W D F ~ I Q Q R K R W I Q G ~ I L L V V H S K E I ~ P L V N K I F L A I ~
    351 SCYSWVTLPL STSNVLLAAL CPIPCPTLLD IVGGFIGAVN IYMYIFGVIK
    4 0 1 ~ S F P I Y R F G P L ~ K F F L F I G G A L ~ A T I P F N I V I E ~ N I A V V W G V L G ~ K K H K F Y I V N K ~
    451 EVKIPVTV
>comp36263
1 MRALLTVFSL ATVLTLDDAN AARVLGLFPH TGKSHQMVFD PLLRTLAERG
    5 1 ~ H H V T V V S F F P ~ V K N P P E N Y T D ~ V S L E G I A G L G ~ L E V I D L G M Y E ~ N G N V L L K M L G ~
    101 LDNIARQLLD FEPLAEMALD VCSKLVSFPP LAEVLRKDYD VILVENFNSD
    151 CMLGLSHVYG KKVPVIGLLT SSLMOWSADR IGVTDNPAFV PVLSAHYTSR
    201 MNFYERLENT FLNVYFKVWF RYNIQLKEQE IIERHFGRRI PDLRDLAKNT
    251 TLLLANVFHS LNGVRPLIPG LVEVGGMHLN HKRTVVPPYI ERFMNESDHG
    3 0 1 ~ V V L L S F G S L I ~ K T S T M P E Y K E ~ R M I I S A L S R L ~ K Q R V I W K F E E ~ S E E E G T L E G N ~
    3 5 1 ~ V M K V R W I P Q Y ~ D L L R H K K V L A ~ F I G H G G L L G M ~ T E A I S A G K P M ~ V V V P F F G D Q P ~
    4 0 1 ~ Y N A A M A E E V G ~ L G V Q L P Y E Q L ~ T E E S L L K A V Q ~ T V L S A E M R L S ~ A R R I S K I W H D ~
    4 5 1 ~ R E A K P L D T A V ~ Y W T E R V I R W G ~ Y H D K L Y S A A R ~ D L N F I E H N L L ~ D V A A A F V L A I ~
    501 IVLVLIAKLL LTAVLKIFKA SISGKDKEKL H
```

```
>comp36666
    1 MSPPISSSCK LKKFSIVCLL LASLQVGFAY KILVVFPMPG KSHTILGEGV
    5 1 ~ V R H L A N A Q H D ~ V T Y I T P I L L K ~ S P P K N V R Q I D ~ V T S N F D F M K S ~ N D M L N L K T H M ~
    101 DNNGEMDLTM VFNMMMQIHN MTYHNPNVQK LLSDTSEOFD VVVAEWMFSE
    151 LYSGFSAIFN VPLIWVSTIE PHWLVLRLMD EVCNPAYTSD TLSANIPPFS
    201 FITRLQQLGS QIFGFGLKKF LIEGFEEKAY AELTPYFKMR GREAPAFKEL
    251 AFNASLMLGN SHVSLGQPMS LPQSYINVGG YHIETNLAPL PKDLQILMDN
    3 0 1 ~ A K H G V I Y F S L ~ G S N I Q S K D L P ~ D E L K Q S L L K M ~ F G E L K H T V I W ~ K F E E T L P G L P ~
    3 5 1 ~ S N V H I L K W A P ~ Q P S I L A H P N C ~ I L F I T H G G L L ~ S T T E T I H F G K ~ P I I G I P V F A D ~
    4 0 1 ~ Q F V N V N R A V A ~ K G F A K R V D L S ~ Y G M A P E L G A A ~ I K D I I G D P K Y ~ S N N V K Q L S L I ~
    451 YHDRPVPPGK ELVHWVEHVV KTNGAPHLRS PALSVPFYQK MYLDLLALIV
    501 VILLGIRAIF RRIFKKKSSK VKKE
>comp36903
    1 MRLFLICLLL ASAVNLEAYK VLLCFPFPAR SMNSLGDGYA RHLIDAGHEV
    5 1 ~ T F I T A I P K K Q ~ N I P N L R E I D V ~ S D N Y E I I A N E ~ N F N N I S F I L E ~ N I L D L S S D V E ~
    101 FLQRLTLDIA LKTLENKDVK ALMGNPKETF DVFIADLLET ELYAGFAALY
    151 NCPLVWAYSM GAHWVAMRLI DDPTNPAYSS DYFTTPIAPF SFTDRFRVLW
    201 ENVKWRYAKI FITQPKEEAA YISIFFPEFK KRGMIMPDYD DLIYNASLVL
    251 SNDHHASGNT PKTPQNWKFV GGFHIEEPVK LLPETLKTTM DNAVHGVIYF
    3 0 1 ~ S M G S V W N S E L ~ I P K Q I T D G L L ~ K T F G E L K A T V ~ I W K Y E G N L P N ~ V P K N V H L I K W ~
    3 5 1 ~ V P Q Q S I L A H P ~ N C K L F I T H G G ~ L L S S T E A L H F ~ G V P I I G V P I S ~ Y D Q F L N I E K A ~
    401 VTRGYALQVA LSYNLPDELR SAIDVVFDNP KYRDQVKKLS KIYHDRPIAP
    451 GKELVHWIEH VIRTQGAPHL RSPANLVPFY QKAYLDILVI AIAVVALVIY
    501 LKNLMFGESN KROSKKKYKR N
>comp37547
    1 \mp@code { M V C E L Y T G L A ~ A F Y G C P F I W V ~ S T I E P H S T I L ~ S L I D D S L N P A ~ Y N P G L F S N T I }
    5 1 ~ P P Y N F V E R A K ~ E L L M S V A N V V ~ L K D V V L V T Y Y ~ E Q A A Y D E L Y V ~ P L L K K K G R P V ~
    101 LTYEEVRYNV SLVLGNSHVS LGQATRLPQN YKPIGGYHID TNFKPLPEDL
    151 KNLLDNAKNG VIYFSMGSNI KSKDMPEELK RSLLKMFSGL KQTVLWKFEE
    2 0 1 ~ V L T D L P E N V H ~ I V K W A P Q P A I ~ L S H P N C I L F I ~ T H G G L L S Y T E ~ A V H F G K P T V G ~
    251 IPVFADOFLN VERIGKKGLG KRVDLSYTMA DDLKIAINEV LSNPSYMTKA
    3 0 1 ~ K E L S L I Y H D R ~ P T P P G G E L V H ~ W V E H V I K T A G ~ A P H L R S P A L N ~ V P F Y Q K M Y L D ~
    351 LAALVVVVII TLRLIVKRLC NSCRKKKISS EKKNK
>comp37715
    1 MLARAVVLYL VCAGASALRL LLVFPVPGPS HAILAGGLSK HLIGAGHEIT
    5 1 ~ C I T P L P S K N A ~ S K N L R Q V D I S ~ A N F Q L V P L G D ~ V L Q L E K I M S K ~ E I N M K D L A F I ~
    101 KSLMISLANA TLTNPNVKRL MEDPAERFDA VIAEWMYTEL FAGISAVFNC
    151 PLIWFSSMDP QALVLRLIDG TPSPAYFADP MSAEHPPFDF WQRIKGLWLL
    201 FRRMKLEWST RSIEDSIYNS EYGPVAAVRG ITLPPLTVMR YNASLMLGNS
    251 HISMGQSISL PQNYKEILGY HIADKVQPLP DNIKKIMDEA KHGVIYFSMG
    3 0 1 ~ S M L K S T T F P E ~ A L K R E L L D M F ~ R G L K Q T V L W K ~ F E D V P P K L P A ~ N V H V V K W A P Q ~
    3 5 1 ~ Q D V L A H P N C V ~ L F I T H G G L L S ~ I T E A I H H A V P ~ I I G I P M F A D Q ~ F L N I N R A V R K
    401 GFGIKVSLDW DLTKNLKSAI EEIFRNFSYQ EKVKEVSFVY HHRPAPPGAE
    451 LVHWIEHVVK TRGALHLRSP ALNVAFYQKM YLDLAAVVVV VLVVVVKVVK
    5 0 1 ~ S I L K S K K G S E ~ K S K E K Q R ~
```

```
>comp37971
    1 MKLPVTIITI LTTIFINEVT PLNILGVFPY QGRSHFFVFE PYLRELAARG
    5 1 ~ H N V T V I T H F P ~ Q K T P V K N Y Q D ~ I S L A G T S I Q V ~ E G L I P V E K S Y ~ F T L I M I G V Y L ~
    101 IGTGTDNCKA LLADDNVQKL WKSEAKFDVV LVEOFNSDCS LGLAHKLGAP
    151 VIGLTSHTLM PWQYNRFGVE FNPSYVSTQF LSGGTKPSLF ERVERVIVYN
    2 0 1 ~ I F N T A F K Y A C ~ Q R T D E S T L R E ~ Y F D V V P P L E E ~ L A Q N I R V Q L V ~ Y T H H T L S G V Y ~
    251 LYPPKIVEVN GYHVAKPKPL PEKLKKFIDE AEHGVIYVSF GSMLKAASTP
    3 0 1 ~ R D K L E A I T K A ~ L S Q L P Q R V I F ~ K W E E K T L P G D ~ Y K N I Y I S D W L ~ P Q N D I L A H P N ~
    3 5 1 ~ V V A F Y S H C G L ~ L G T T E A I Y H G ~ V P I V G M P I F G ~ D Q P S N A A A M E ~ E G G M G V Q I Q T ~
    4 0 1 ~ T E L T T E K L L E ~ K F K I V L D P Q F ~ R A N V K R L S K V ~ W H D R P S S P M D ~ T A I Y W T E Y V A ~
    451 RNPNFTFVPP TVHVPFYQFW CLDVLAVCIL ITLISFYVLK FLCCLVCRRK
    5 0 1 ~ S K E V V K I A N T ~ E K K S K K D N ~
>comp38172
    1 MPDVTFLLIA LCLSCAGSEA ARILAYFPTP SISHQVVFRS LMQELAKRGH
    5 1 ~ E V T V L T T D P V ~ F T K T P A P P N L ~ K E V D L H D L S Y ~ K T W R E E F I Q R ~ S S A N K D D I V S ~
    1 0 1 ~ Q M K I L L K L L N ~ D I M E K Q L L S A ~ E V K N V I D V K K ~ N K Y D L V I V E A ~ Y A R Q L M V L S H ~
    151 LFKTPLIQFS SLGGTFDTFS TVGAPIQELL YPSNVROKLY NLTMWDKVTE
    201 LAKFYQMKYY YDTQVEEENA MLERVFGDVP SINELSNNVD LLFLNIHPIW
    251 EGSRPVPPNV IHIHGIHEKP QRDLPNDLKT YLDSSKHGVI YISFGTNVKP
    3 0 1 ~ S L L P P E K I K I ~ M V N V M S K L K F ~ D V L W K W D K E V ~ M E G K S E N I K L ~ A K W L P Q S D L L ~
    3 5 1 ~ R H P N I K L F I T ~ Q G G L Q S T D E A ~ I N A G V P L I G I ~ P M L G D O W Y N V ~ E N Y V H H K I G L ~
    4 0 1 ~ R I N M D T M S E E ~ S L R E A V K K V T ~ E D Q S Y R Q N I V ~ R L R S L M K D Q R ~ D T P L E R A V W w ~
    4 5 1 ~ T E Y V L R H S G A ~ R H L R S P S A N M ~ P W H Q Y F E L E L ~ I S T V L G V I F V ~ C L I V V V I A L V ~
    5 0 1 ~ K L V K G L K I V L ~ G L Q V K V K R S ~
```

>UGT33D1 (JQ070229)
MLLITILQGTKAARILGVFPTPSISHQVVFRRLTLELHKRGHELVIVTTDPMYQKGEAPQNYTEIDVHDISYTTWRNDFMKLSRGSSD
DLFEQSAVILELTTNLFEMQLKSKEVQALIKVKDAKKFDLLLLEACIRPAI ILTHVFDAPAIL
VSSFGGVEYVFRILGVPTHPVLYPPPLHQRIFNLTFWEKTHEIFTHYYLEYLFWKAEYKVDEM
VKRIFGPSTPTVRDTYKNVEMILLNAYAVWENNTPVPPNVIYVGGLHOKPEKDLPGDLKEYLD
SSKHGVVYISFGTNVEPSLLPPERIQLLIKVFSELPYDVLWKWDQDELPGKSENIKIAKWLPQ
SDLLRHPKIKVFITQGGLQSTEEAITAGVPLIGIPMLMDQWYNVEKYVQLNIGLKLDLGSITE
DSFRNAINTVTGDESYRQNVARLRSQVFDQPQGPLERAVWWTEHVLRHGGATHLRAAGALKSW
TEYFELNLIAVLLVSFLIAIAFIVTLISSLMTSLKMYFNYDDKIKKH
>UGT34A2 (JQ070244)
mWLKFFYFFSLVLCPCYAAQGASILAVFSSLSYSDHLVFRGYVSLLAQRGHSVVVMTPYPGEFQYPEVENIIELDVSQESAPFWEEYK
RLMTNTDDYYPRLKALNELSLKIAIAQLKSKQMTALLINPNVKFDLVITEADVPLLYALADKY
QTPHITISTFNGKIHQYEAKGNPIHPILYPDVNSLNYGNLTRWOKIIEFYRHIQTKTEFYNNY
LPLCDVAAKKILGLKRDLQEVEYDIDMLFIASNPLLIGNRPVVPAIQFVDRMHIKPRMSLPQN
LQSLLDSQTKGVIYFSLGTLQEAEKLSVKTLQVFADAFRELPFTVLWKIGKMSTLKLSDNVIT
DVWFPQQQLLAHKNVRAFITHGGPRSLEEALFYEVPI IGFPLITSRKIFIRELTKYGAGEILD
PLHIDKQTLKQVISTVATDEKYKKAI IKLKGMVVDPLISGPDNAVWWTEYVLRNRGAOHLRSP
VVGVTFIKYYMLDILTYILAVVLFLLYLTFLVLKCIYRRLRARFVLRTGQGPEGKFKAL
>UGT39B1 (JQ070245)
MFNSF IFLFVVVTGLCESANILYVMPFTSKSHHIMLKPIGLELARRGHNVTVITGFRDKNAPANYRQIQVDQKEIWDVIGTKRPNVFD MVGVSTEEFHNMILWRGGLGFTNLTLNSAEVKSFLAEDNKFDLVICEOFFQEAMNILAHKYKA PLVLVTTFGNCMRHNIMI RNPLQLATVISEFLEVRNPTSFFARLRNVYFTVYEYVWWRYWYLE EQEKLVKKYIPNLEEPVPTLLEMQKNASLILINGHFSFDTPAAYLPNI IEIGGVHLSKSDTKL PADLQNILDEAKHGVIYINFGSNVRSAELPLEKRNVFLNVIKKLKQTVVWKWEDDSLDKMDNL VVRKWLPQKEILSHPNIKVF ISHGGLIGTQEAIFHGVPI IGVPIYADQYNNLLQAEEIGFGKI LEFKDIREQNLDNYLRELLTNNTYRDKAKEMSIRFKDRPTTALDTAMYWIEYI IRHNGASFMK NPARKLHWIQYAMLDVYGFILAVVLTIFYTIYKLSSFILHKLKAPERLIRKKFD
>UGT40A1 (JQ070247)
MLRAI ILCLILVTCSAYKLLAVFPFPGKSHMILGEGYVRLLLEANHDVTYLTPAPLKIGHPKLRQIDVSSTEKGFDFDGLFNFKKLIN KEVDLSDTNHKYIVMQYVTESLLMHPNVQKLLLDTDQTFDAVIVEWMYSDLYSGFSTVFNCPF IWSSSLEPHPMILRLIDSLPNPAYFPDHTSSLEPPYTFLERVEQLWNIAKTLYNRWRLKEKEE SIYENAFGPAVKKRNRVLPPYNEVKYNGSLILGNSHVSTGVAFSLPQNYKAISGYYIPKKIPQ LPDKIKNIMDKAENGVIYFSMGTMVKSKTLPEELKRNLVDMFGNLKQTVIWKFEEDLDGLPNN VHIVSWAPQQSILAHPNCVLFITHGGLLSTTEALHYGVPIIGIPVFADQFLNIKRATTKGFAL EVDINYETPGNLKLAIDEILNSPKYRENIKQLSLVYHDRPVSPGAELVHWVEHVVKTKGALHL RSPALHVPFYQKLYLDLFAVILMMPLVLCILLRYMKNKLFGVIKKKGKKTKKNQ
>UGT40B1 (JQ070248)
NIFKSFIDTANDTVANAEVQQLVLDPQTHFDVVIAEWMVTEIFSGFSEIFNCPLIWASSMEPHSVILRLIDEXPHPAYSSNMLGIFEP PYNFVQRAINTSLEIALKVIKWFISLIEERIYKEGFAAAFKAKGLVQPSLEELRYSVALVLGN SHVSSGAPLKLPQNYKAIGGYHIAEQSKPLPKEFKNILDNSKHGVIYFSLGSVVSSKSMPAAI KNGLFEMFRSLKYTVIWKFEDEFQNVPDNVHIVKWAPQQSILAHPNCILFITHGGLLSTTETL HYGVPI IGIPLFGDQTMNIKKAVYKGIGLEVKLNFDTPKNLKAAINEVLSNOKYRDRVKELSM I YHDRPVSPGAELVHWVEHVVKTKGALHLRSQALHVPLYQKLLLDLIFVSLLLFLGFVFFVKF MVTRCLKKKTDIRKKTL
>UGT40B2P (JQ070249)
KAGHELTYITPYPKTPAPNLRVIQIAEHAFEEKMNSMFTIEKLIDNTFALKEMFSILKSFIDTANDTVSNTEVQQLMLDPQTHFDVVI AEWMLTEIFSGFSTIFNCPLIWSSSMEPHSPILQLIDEMVHPAYSSNMLGLFEPPYNFFQRAI NTLIEIGLKVAKWFSALIEEQIYKEAFAAAFKAKDLVQPSLEELRYSAALVLGNSHVSSGAPL KLPQNYKAIGGYHIDEQSKPLPKEFKNILDNSKHGVIYFSLGSIVPSKSMPAEIKNGLFEMFR NLKYTVIWKFEDEFQNVPDNVHIVKWAPQQSILAHPNCILFITHGGLLSTTETLHHGVPI IGM PIFGDQAMNVKKAVHKGI GLEVKFDSDTPKNLKAAINEVLSNOKYRDRVKELSLIYHDRPVSP GAELVHWVEHVVQTKGALHLRSPALHVPLYOKLLLDI IFVSLLLFLGFVFFVKFMLTRYLKKK TDIRKKTL
>UGT40B3 (JQ070250)
MNFQTIHLLVLSALACDAYKILLVFPFPSKSHAILGEGYVRNLLKAGHEVTYI TPYPRDPAPNLRI IQVSQHDFEEKINSTLTIEKLI DYSFTVMEMFNITKSFIYTANDTVANTEVQQLMLDPQTHFDVVVAEWMITEIFSGFSVIFNCP LIWSSSMEPHSWILPLIDEIPHPAYSSNILGLFEPPYNFVQRAINTSLEIALKVIKWLVTLIE EQIYKEGFAAAFKAKGLIQPSLEELRYSAALVLGNSHISSGAPLKLPQNYKAIGGYHIDEQSK PLPKDFKNILDNSKHGVIYFSLGSMAPSKSMPAAIKNGLFEMFRSLKYTVIWKFEDEFQNVPD NVHIVKWAPQQSILAHPNCILFITHGGLLSTTETLHYGVPI IGMPMFGDQVMNIKKAVHKGFG LEVKLNFDTPKNLKAAINEVLSNOKYRDRVKELSLIYHDRPVSPGAELVHWVEHVVKTKGALH LRSQALHVPLYQKLLLDI IFVSLLLFLGFVFFIKYMVTRCLKKKIDIRKKTL
>UGT4OB4 (NM_001257036)
MNVQTIHLLVLSALACDAYKILLVFPYVSKSHAILGEGYVRNLLKAGHEVTYITPYPKDPAPNLRVIQIAQHALEEKMNSTFTIEKLM HKTHAGMEMFKLVKSFINTANDTVSNTEVQQLMLDPQTHFDVVIAEWMVTEIFSGFGKIFNCP FIWSSSMEAHSLILRLIDEIPHPAYSSNTLGLFEPPYNFFQRAINTLMEIGLKVAKWFSISIE EHIYKEGFAAAFKAKGLVQPSLEELRYSAALVLGNSHVSSGAPLTLPQNYKAIGGYHIDEQSK PLPKEFKNILDNSKHGVIYFSLGSVVSSKSMPAAIKTGLFEMFRSLKYTVIWKFEDDFQNIPD NVHVVKWAPQQSILAHPNCILFITHGGLLSTTETLHYGVPI IGIPIFGDQVMNIKKAVHKGIG LEVKLDLDTPKNLKAA INEVLSNOKYRDRVKELSLVYHDRPVTPGAELVHWVEHVVKTKGALH LRSQGLLVPLYQKLLLDI IFVSLLLFLGFVFFVKFMVTRYLKKKIDIRKKTL
>UGT40D1 (JQ070207)
MEKMKICWVLFSIMLAIGDASKILVVYPFPSRSHANLGDGIVRNMLKAGHEVTYITPFEFKNAPPSLRQIDVSNLIDLMPKGLLTIKA LMDGNNISLNIAFMTYMVTEIFKGMILNENVOKILTDPNEKFDLVIAEWMMSEIPAGIGAVYD CPFIWISSVEIHWILLRFIDQAPNPAFTVDIMTTYTPPLNFVQRAIELWNQVKLTVLNYVILD RIQDNVYSTYLAPIVEKRGRKAPTLDELRYNVSMIFSNAYVDTSSALSLPQSHKYIGGYHIDE KVKPLPEDLQKLMDGAKNGVIYFSMGSNLKSADMPDELKASLVEMFGSLPYTVLWKFEEVLPN LPSNIHILKWAPQQSILAHPNLRVFITHGGLLSTTETVHFGVPIIGIPVFADOFINVHRAEIR GFAKRVDLSYTMAGELKKAILEVVTDKRYAEKAKELSVIHHDRPVKPGDELIHWVNHVIRTRG ARHLRSPALGVPFYQKMFLDLAVVLTIVLTLAYILLKRAWRYFRSGKSKSSKKNN
>UGT40D2 (JQ070208)
MEKTKICWVLFSIMLAIGDASKILVVYPLPSRSHANLGDGIVRNMLKAGHEVTYITPYEYKNAPSALRQIDVSSLLDLLPKDLMTLKS LMEGKNMSLHALFMSYMMTEMSKAMIKNENVQKILSDPNEKFDLVIAEWMMSEIPAGFAAVYD CPLIWISSVEIHWMLLQYIDQPSNPAFTVDIMSPYTPPLNFIQRASELWTQIKHMVLNYLILD RIQDYVYSSYLAPFVEQRGRKAPTLHELRYNVSMIFSNAYVDTSSALSLPQNHKYIGGYHIDE KVKPLPEDLQKLMDGAKNGVIYFSMGSNLKSADMPDELKASLVKMFGSLKYTVLWKFEEVLPN LHSNLHI IKWAPQQSILAHPNLRVFITHGGLLSTTEAVHFGVPIIGIPVFGDQFVNVHRTEIR GFARKVDLSYTMTDELKKTILEVVDDKRYAEKAKELAVIHHDRPVKPGDEL IHWVNHVLRTRG APHLRSPALGVPFYOKMFLDLAVVLTIVLTLSYILLKRAWRYYRSGKSKSSKKNN
>UGT4OF1 (JQ070209)
MGKLNLILLSILLSSCLCDGYRILAVFPTPSVSHGILADNFVKTLLNAGHEVVYISPFKNVNHPKLEITDVSONVELFSDNIDVKEVM NGSLDLLDTKVLFEIITTITDVTLANPSVQKLLRDPNOKFDVIVAEYFFNNI YSALSAIYDAP FIWFLTIVPHSMILDQIHGPMNPAYSSDYIEARIAPYSFAERVRGLYFTLSLLYNLHVSFPPV EEAIYHKHIPTILKSLGKPIADYKVLTYNVSMVLGNSQVAIESAVPLPPNFKHIGGYHIDDDV KPLPENLKKIFDNAKNGVVFFSLGSNLRSKDLPEDMKQGILKVLGGLKQTVIWKFEESLPNTP KNVHIVQWAPQQSILAQPKLVLFVTHGGLLSTTEAVHFGVPLVVIPVFGDQFMNAHLVEKKGI AVQVKLSYTMYNELKVAMDTVLGDTKYATNAKALSAAFHDLEMKPKVALNFWVEHVVRTRGAP HLRSVAVDIPLYQRVYLDLLALILLTPVVLLLVLKRFCCKKSDSQKVKRS
>UGT4OF2 (JQ070210)
MEKLKMWLFGILLCSCLCDGLKILTVFPVPSPSHGILGDNMVKHLLNGGHEVTYITPFKNKNPHPKLHIIDVSANMKLFDPNMLDVKK IMDGDKYMQDNALLFVLMNSIASSTLGNPNVQKMLKDPNTKFDVI IGEFMFSDLYSALPAVLQ CPFIWFSTIEAHSMILNQVHGPLNPAYTADYLVARVPPFSFYGRVHELWTLLVGLYHHNFDYH AKEVSDYETLIAPIAREQGKPVPDFNVLKYNASLLLGNTHVAISNAVPLPPCYKHIGGYHIDE EVKPLPEDLQKIMDSAKHGV IYFSMGSNLKSKDLPDELKQGLLKVFGGLKQTVIWKFEENLPN TPKNVHIVQWAPQQSILAHKNLVLFVTHGGLLSITEAVHFGVPLIAIPVFADQYLNANRIEKK GFAIKVDLSRTMDKDLKVALQEVLGNKKYAETAKALSIAYHDRPQKPKDALNFWVEHVVRTRG APHLRSVAVDIPLYQRVYLDLLALILLALVVLLVVVKKIVGLLTSKKSVKQKKN
>UGT40G1 (JQ070252)
MTKWILFLCVTSLLCTCDAYKVLVVFSMPGKSHSILGYGIVKHLLKRGHEVTYITPFPVDNADPKLKQIDVSSNIDILPKTSLNLNVI LEGKVPKVDHGGIHLVMNAVEMNTYNNENVSRLINDPKOKFDIVIAEWMFTEICASYAAIFNA PLIWVSSIQTHWMVTRLIDEALHPAYNTDVVGRNIPPFNFFQRVQNLWILLRTLYQVKNSGOE DFYNIAVVPVIEKRGLVPPTFEDVOFNGSLVLSNSHLSYAPAVRLPQNYKTVGGFHVEEKVEP LPEDLKKVLDSASTGVIYFSMGSNLKSKEMPDRLRKSLIKLFSGLKYTVIWKFEEEFSGLPKN IHVVKWAPQQSILAHPNCVLFITHGGLLSTIESVHFGVPIITIPVFADQFMNAERSARVGFGK IVYLSYTMADDLKVAIEEIFSNPRYKEIAKETSLIYHDRPVSPGAELVHWVEHVVKTRGALHL RSPALQMPLYQKLYLDLLTVVLVLLIVIYKIVRCLFSRISVTSNKKTN
>UGT4OG2 (JQ070253)
MSKSLIKFLCIASLLCFCDAYKVLVVFSLSGKSHSILGYGIVKHLLKAGHEVTYITAFPEESSDPNLTQIDVSSNMVALPKSYKESLN LKAVLEGKAIPLDFDI IHNLMNAVEMNTYQIENVSKLLNDPEQKFDVVIAEWMFTEICVGYAA IFNAPLIWFSSVQTHWII TKLIDESLHPAYNADAIAHSIPPFNFFQRAHNLWTQLQVFYHLTK GRQETLYANEIVPI IKKRGLVPPSFNDLLYNSSLVLSNTHVSYAAATRLPQNYKPIGGFHIDE EVKPLPEDLKKVMDGASNGVIYFSMGSNLKSKEMPDLLKKELIKMFSDLKYTVLWKFEEEFFD LPENVHMVKWAPOHSILAHPNCVLFITHGGLLSTIESIHFGVPIIAIPVFGDQFINVEWSVRK GFGKRVDLSYTLAEDLKVAIEEVFANPRYKEI AKETSLIYHDRPVSPGAELVHWVEHVVKTRG ALHLRSPALFVPLYQKLYLDVLAVILAFLIVLYKTARCLFLKERITNKKKNN
>UGT4OH1 (JQ070254)
MIRRLTIAIAVCFCLGVDAYKILTVFPVPGRSHGILGDAVVRHLLEAGHEVTHITPFPKKEPPPNLVQIDVAANKAAFNEDYIDIKAL MTKEFNLKDKNVLFSLMNNISSSTILNENVQRLLRDQSREQFDVI IAEWMFSDLYASFHAVLD CPLIWFSTIEPHWMVLRLIDEYPNPAYTSHFQDSFEVPFTFVERMSVLSSQLTWSLSLNTWVY DLEKYIYDNNIAPI IKKNGKPVPNYDEVRYNGSLLLGNSHVSLGDAIKVPINYKAIGGYHIDG KVKELPPDLQKIMNESKHGV IYFSMGSNLKSKDLPKEIKEGLLKMFSQLKQTVLWKFEENLSP LPENVHLLKWAPQQSILAHPNCILFITHGGLLSTTEAVHFGKPI IGIPVFADQFGNVNRAVQK GIARRVDLSFTMVRDLEEAVAEMINNSRYIEKIKELSLIYHDRPVSPGAELVHWVEHVVKTKG ALHLRSPALHVPFYQKLYLDLLAIVLVTSIVLRFIFKNIHCNVOFKDKIQ
>UGT4OK1 (JQ070255) = BmUGT10286
MFKLTFLVCCILATQSISDAYKILVVFPMPGKSHSILGYSVVKHLLKAGHEVTYVTPFVEDNHHPKLTQVDVSSNMRLIPKGGLDLKR VLDKEVNVIDNGFMFYFMKQIQEATLEHEQVKKLLEDPNKTFDIVIVEWMYCELGASYAAVFD VPLIWLSTMEPHWLVTRLIDGNLNPAYNGDSMSSSIPPFTFLQRVKELWIQIHTSFILLNDDQ ERSYDRLVRPLIEKKGRKAPSFEDLKFNASLVLGNSHVSLGEATGTPQSYKPIAGYHIEEVVK PLPADLKEIMENAKHGVIYFSMGSNLKSTEMPDEMKQNLVKIFGELKQTIIWKFEEDFPNLPK NVHIVNWAPQPSILSHPNCVLFITHGGLLSTTESVHFGVPIVGIPVFGDQFINVQRAVKRGFA KKVDFSYSMVGELKVAIQEILSDSSYRTRIKELSLIYHDRPVSPGAELVHWVEHVARTRGALH LRSPALHVPFYOKLYLDLLAVVLIISLIFYRIICLIKNLLLSFFQTNEIKKKKKRN
>UGT40L1 (JQ070211)
MSHKTAGLLLLSLLVSSEALRILVCFPMTSKSHSILGHGYANRLLEAGHEVVHITSYPSKRIVQNLTEIDISYLQDFFKEQTMNDDAF KLKNMI GKKNFEESVFFFYFVFTMHKNFLTDPNVVKLLSDPKEKFDAVVLEWFFTEITAGIPA LLECPL IWACSTEPHWQALRLIDEISNPAYTLDLFSHNRIPLTFWQRAEGLWKVVKRNVQLAI YYPFEKWAYNSIYPEIAAKRGVTMPSYEEAMYNGSFMLLNAHPSIGGSMKLPQNAANIAGYHI ETTKPLPKDLQKLMDEAKHGVIYFSMGSIVQSDGMSEEMKKSLLDMFSKYEQTVIWKFESDLT DVPKNVHLVKWAPQPSILAHPNLKLFITHGGQLSTSEAIHYGVPLVGLPVMADOHYNMISVEA KGFGIKVTLAEDMVPELDAAVRKILTDETYTNRAKELSALFHDREMPPGVALTHWVELVVRNR GAPHLRSPAIAVPLYOKLYLDLGVVLAIIIGLILKVVKYVLNRRSNKQSKEKSS
>UGT4OL2 (KF777114)
MKYKIVTSIFLLSLLVSSEALRILVCYPMTSKSHSILGHGIVNRLLEAGHEVVHITSFPNGKVLPNLTEVNVSSIAEVFTKDVDGVEQ FKLKNLIGKGNFGDSALFMYYVYI IHRNFLEEPSVVKLFSDPKEKFDAVVLEWFFTEMNAGIP ALFNCPLIWVCSTEPHWQSMRVMDGI TNPAYTLDIFTHNKLPLNFWQRAEGLWKVVKKAVQVL ILNQFEKWSYYSIYPEIAAKRGVTMPSYEEAVYNGSFMLINAHPSIGGAIKLPQNSANIAGYH IDKVKPLPKDLQKIMDEAKNGVIYFSMGSIVQSDGMSEQMQKSILNMFSKYKQTVIWKFESDM KDNIPSNVHLVKWAPQQSILAHPNLKLFITHGGQLSTSEAIHYGIPLVGIPVMADQVLNMISV ENKGFGIKVTLSEDMIPELNAAIKKVLTDDAYRKKAKEISALFHDRVMTPGAAVPYWIEYVVR TRGAPHLRSPALDVPLYQKLYLDLAAFIAVVEIVLKKVVKYLRKREVIKRRRAKNL
>UGT4OM1 (JQ070212)
MKLLVLFSLFFVLCSVESLKVLVLFHMPVKSLSILGTGVVRHLLNAGHEVTYVTVYPLKNPPTKNFRQIDISKNVELVAYDETLTMGY VLEHQIEKNGAYQIQVFSQENARQTFQNENLKKLIQDPNEHFDVVFSDLLESEVYAGLAVLYD CPMIWLYSMGAHWQVLRLIDHGSNPAFTPDYLSPNKLPLSLFERVEELWARVRWOFLKTFITQ PEERKIYEETFGPLLAQRGRTLPDYEEVMYNASLIFANEHHAIRDRPATPQNFKYVGGFHIED PVQPLPKHFQELIENSKHGVIYFSMGSFLKSNSLPKKLVQELLNMFGQLKQTVIWKFETNLPD VPKNVHIVHWAPQPSILAHPNVKIFITHGGLLSSMEAIHFGVPI IGVPVFFDQFTNINKAVIN GYALRVNLNYDLPKGLSAAIDVMLNDDKYSKKVKEMSAIYHDSLTKPGDEIVHWVEHVVRTRG ARHLRSPAFNVPLYQRLYLDVLAI ILAVVYLVKYI IASFDTKKAKKQSQKKKN
>UGT4ON1 (JQ070256)
MRSVLGLCLIFLANQVQGYTVLVITALPFRSLNILGASVVSHLLNAGHEVTYITTSPLKEKPKKNYREIDVSANTEIFKGEEMIDIAC LMDNKVEMNHIFDLQNITIANALMTFENEDVKKLIQNTNESFDVVIADYIDTEVYAAFSALYG CPLIWLSSLRTNWQTLRLIDEPTNPAYTVSSISMNYPPLNFKQRIEELWAQWKWQIVKRLYIV SQEEKIYDNHFVPF IRKRGIKPPNYEDLIYNASLVLANDHHSLGNLPKTPQNFKQVGGFHISS VVKPLDKVLQNIMDSSKDGVVYFSMGSAWQSKDIPEHIVNELLKVFGNLKQTVIWKFEKNLND LPKNVHIVQWAPQTSILAHPNCLLFISHGGLLSSTEAIHFGVPIIGIPIFYDQFVNIQKAVIS GYGIQVKLNYELPKSLEKALGEMLSDKKYREKAKQLSLIFHDRPVSPGAELVHWVEHVVKTRG ALHLRSPALHVPFYOKLYLDLLAAIAMTLLMIKLVIEKTLSSFYKKTLKRKED
>UGT4OP1 (JQ070257)
MPLWILVVLLTFSYSGAHKILVVFPLPEQSHGILGARFVRHLLNYGHEVTYITPFIEKYTHPNQQQVDVSRNLKLIPENPVNLSSLIS KEVSAPGFTETMNFMNLVAVQTLENENVOKLLKNPNLEFDLVILEWNFSELLAGIAAVFDVPY IWVSNLEPHWLI ARLAGESFNPIFNSNILSPYIPPLNLYQRVEELWTQI TFHFHMYWYNDRIQ RNDYERFFGDI I RMKGRESPLFEELKRNGSFVLGNSHLALGHEMRFPNNYKNVGGYHVDEEVK PLSPKLEKLMNNAADGVI YFSMGSKLKSEDLPVDIKKGLMKMFGELKQTVLWKLDDKSIDPPS NVHIFKRVPQQSLLAHSKCVLFITHGGILSTIEAVHYGVPI IGIPAYGDQFLNIERLVRKDQA KRVDLSHSLVADLKYAIDELLNTKRYNDTAKNNSF IFTHRTVNAGAEIVHWVEHVILTKGAKY LRTENLDLHWYQKLYLDLGLLLISAFLFLTYTCKLFLIFISKTRKVDVKKKKK

MNNWTLFLLSSICLSHVCAYKILVVFPYPGTSHSILGEGYVRHLLRAGHQVTYLTAIPYKKPHPNLKQVVVASVVEKFEFFKTLDFEK FISKEVDLTDMQVMYETMITVANRSLTHENIQKFLMDTNEKYDLVVAEWLYHHLYSGFAAIYN CPYVWSSSMEPHTAVLSLIDEPGNPAYFPDHMSPVSPPLTFSORAYELYYLFYLRRVLWSIRG LEQKTYEEVFGPAAAKRGITLPTLEEVKYNSSLMFGNSHISSGDPQRLPINHIPIAGYHIQDV VPALPENLQKIMDEAPYGVI YFSMGSMMKSSTMPTKLKRDFLDVFGTLKETVIWKLEEELTDV PKNV IMVKWAPQPSILAHPNCKLFVTHGGLLSTTETIHYGVPI IGIPLFADQFINVMRAVRKG FALQVDLGYDTPANLKVAIEEIVSNPKYTQKVKDLSFIYHHRETKPGHTLVHWIEHVIETNGA PHLRSPALHMPFYQKMYLDLLGIVLLGLIVLIKAVQILLRLAKKSDVKKKRS
>UGT4OR1 (JQ070214)
MAAATYFLLFSLLSLSSEASKILVVVTMPSRSHGNLGNGVVRELLKGGHEVTYIRIFEYKNPPPNLRQIDVSSNIDLMPKGIMNIKKI MDKDVAANDHI TVKMMMLELATKTIEHONVKKLLEDPSEHFDLVIVDWMLADVPAGLATVFGC PLVWLSPMEVNSLDISLIDGAPHLAYSTGAFSSNMPPFNFLQRAQELWTRIKARYYELKHFDR MELDAYERLIVPYVEKRGRQAPSFYDVRYNASLILGNSHVSMGQALALPQNYKPIGGYHIDED VKPLPEDLENIMMSAKNGVIYFSMGSHLKSKDWPEKVKRDLLNMFGQLKHTVLWKFEEDLPNL PKNVHILKWAPQASILSHPKCVPFITHGGLLSTTETIHYGVPI IGIPAFGDQFINVKRAINKG FALEVKLSYTVAADLKAAIEEILHNPKYROKVKELSFIYHDRIAKPGEELLHWVHHVINTNGA PHLRSPALHIPLYQRLYLDLLGLISVVILVFFILLRVLCKLVCSKKOKEIRV
>UGT4OR2 (KF777116)
MALAILLFLGLLLSSSCEAYKALVVFGMPSTSHFHLGNGVVRNLLRDGHEVTYITPIEYKNPPPNLRQIDVSSNFDVLPTYQINLKHL MEAPKPSGHRNFVKLMLINLVMKTLEHENVQRLLNDTNEHFDVVIVEHMMSDLSASYATIFDC PLIWVSPVEVNALSIGLIDVLPNPAYTTDTMALYTAPFTFLERLEELWMRISDSYNDYMVYEP TEEAEYQRLIVPQLQKRGRQVPPYSEVRYNATLVLGNSHVSTGIPLGFPQNYKSMGGYHIEEE VKPLPEDLEKIMMNSKNGVIYFSMGSNLKSKDWPEDIKRDLLKLFGELKQTVIWKFEEELPNV PKNVHILKWAPQPSILAHPKCVLFITHGGLLSTTETIHYGVPTIAIPVFGDQFINVKKAVARG YALEVKLSHSIAAELKVAIQEMLNNPKYRORVKELSYIYHDRPVKPGAELRHWVOHVVNTRGA PHLRSPALQVPLYQRLYLDLAALLLVVILVLKLLLKNLYHRIRPKKTNVNIKKKDKKN
>UGT4OR3 (KF777115)
MALAICLFFLLLSSSCEAYKALVVFGMPATSHSNLGRGVVRNLLKDGHEVTFITPIPIKDPPPNLHQIDVSSNFELLPLDLMKIERFL GPNSMPALPRFFVKMMMMNLVSKTMEHENVOKLLNDTIAHFDVVIVEWMFTSLSAGYATIFDC PLIWLIPVEVNSMT IGLVDAVPHPAYSTDPLSSYLPPFSFLERATEIWTRLQESVLGFLYYES KDAANYERIVVPQVQKRGRQAPPLSEVQYNASLVLGNSHVSMGLPLSLPQNYKPVGGYHIEEE VKPLPEDLEK IMMNSKNGVI YFSMGSNLKSKDWPEEIKRDLLKLFGELKQTVLWKFEEELPNV PKNVHILKWAPQPSILAHPKCVLFITHGGLLSTTETIHFGVPTIAIPVFGDQF INVKKSVARG FTLQVDLSYKLAADLKVAIEEMLSNPKYRQRVKELSYIYHDRPVKPGAELRHWVQHVVNTRGA SHLRSPALQVPLYQRLYLDLVAFLSVAFIVLYMLIKKLYSRVRSKKIVNNKKRN
>UGT4OS1 (JQ070258)
MNIKLLISLFSFVLTCDCYKILIVFTTPMKSHNILGEAAAELLLNAGHEVTYVTPFPKESVPDKMRQVDVTYIGKIGLFDLKGYLKND TVKPMSLRKISYFMHDVNVKAIQNENLQQLLNDPSQRFDAVIVDWLFSEIFVGLASLYDCPLI WMSTMDPHWQILRLVDEMPNPVFLGRCFLDRIVPFRFWERTQELLYQISSLFFKDIEFFSEED AAFKRLLGPVFARKKKPLPSFNAVRYNASLVLSNSHHSIGYPVKLPPNFISIGGFFIDDKKQR LSLDLQT IMDNAKHGVILFSLGSNLKSKDMPEHLVRSLLNVFSELKQIVIWKVEEQIADLPQN VHVLKWLPQQSILAHSNCILFITHGGLLSITEAYHHGVPLIGIPVFADQFKNVNLVSKKGFAK KVDLTYNLPGDLKHAINE ILHNKRYLEQAKLWSEIFHHRSVNPRKELVHWVEHVIHTRGATYL RSPALDVPLYQKMYLDLLGLVMLVLMALTFLIKNVIKLFMVRGIVHEKME
>UGT40U1 (KF777113)
MERIQTFWLALSVLLVCAEASKVLVVFPLPSRSHANLGDGIVRHLLNAGHEVTYITPFVYKNAPPNLRTIDVSSNFDVWPAHLITIKS I IEDPDAFANMNMMAFLVTT IMNHTYENEAVAALLNDSKEHFDAVIVEWIFNEAIGGIATIFD CPLIWMSSVEVHWKLLSLIDQPSNPAYSVDMTSSNQPPLSFTERVSELWTQIQISILSYFIFD KMQDETYQKYVVPAITKRGRDAPSFYEMKYNASLILANAYVSTAIPQTMPQSHKYIGGYHVDE VVKPLLEDKKLIESSKDGVIYFSLGSNLKSKDLPEEIRVSLLKMFGTLKQTVLWKFEANMTDL PPNVHILEWAPQQAILSHPKLAVFITHGGLLSTIESVHFGIPI IGIPVLADQHMNIKKAVRNG FALKVDLSYTMADQLKKAII EVTSNSKYAQKAKELSFIHHDRPVKPGVELVHWVNHVINTHGA PHLRSPALHVPFYQKMYLDLAAVLI ILFLAGRLLLKKAYAAVFSKSKSNKKKTH
>UGT41A1 (JQ070259)
MRCLGLLFFLVCVVTSARAYHVLCVFPIPSRSHNSLGKGIVDALLEAGHEVTWVTPYPPSELAKGLKIVDVSATVSISKTVDMHEQRN SNTGVSFVKALAENITRVSLATPALQQAIVQGKYDAVITETFFNDAEAGYGAVLQVPWILMSS I AMMPQLEAIVDEVRSVTTIPLLFNNAPTPMGFWDRLKNVFLHSVMVISDWLDRPKTVAFYES LFAPLATARGVALPPFEEALYNVSVLLVNSHPAFAPPLSLPPNVVEIAGYHIDPKTPPLPKDL QSILDSSPQGVVYFSMGSVLKSSKLSEQTRRELLDVFGSIPQTVLWKFEEDLQDLPKNVHIRS WMPQSSILAHPNMKVFITHGGLLSILETLHYGVPILAVPVFGDQPSNANSAVRNGFAKSIEYK PDMAKDMKVALNEMLSDDSYYKRARYLSKIFGDKLVPPAKVISHYVKVAIETNGAYHLRSKSL LYPWYQRWLVDI IAALLLACLAVYVVARRVLCYLYTSVTGGGCNRSVKVKKN
>UGT41A2 (JQ070260)
MRCLQLLLFLVCVVTSARAYHVLCVFPI PSRSHNSLGKGIVEALLGAGHEVTWATPFPPKESTKGLKI IDVSATASVSEMIDMNDQRN ADAGIALIRTFAANITRLSLSVPALQQAIVSGKYDAVVTESFFNDAEAGYGAVLQVPWILLSS VSIMPHLEAI IDEVRSITTIPLLFNNAPTPMGFWDRLTNIFIYSAMTISNWLERPNTVAFYES LFAPLAAARGIALPPFEEALYNVSVLLVNSHPAFAPPMSLPPNVVEIGGYHINPETPPLPKDL QHILDSSPQGVVYFSMGSVLKSSRLSERTRREILEVFGSLSQTVLWKFEEELKDLPKNVIVRP WMPQSSILAHPNVKVFITHGGLLSTLETLHYGVPILAVPVFGDQPSNADRAVRHGFAKSIQYK PDMANDMKVALNEMLSNDSYYTRARYLSKIFGDKLVPPAKLISHYVKVAIETNGAYHLRSKSL LYPWYQRWLVDI IAALLLACLAVYVAARRVLCYLWSSVNGGDCNRIKVKKN
>UGT42A1 (JQ070262)
MAKQTKIKLLLLTFIMSGVHTLNILGVFPYQGRSHFFVFQPYLEELARRGHSVTVISHFPQTKALKNYRDISLANTTKIMENAFSVER SYKSLIEVSFYLMNTGVENCKIMLANKEVQDLWKNKIHFDVAVVEQFNSDCALGLAYKLGIPV VGTNSHVLMPYQYERFGIHYNPSYMTFQFLEGGTKPTLFQRIERTIFHHYYNFIFEYLSQRTN QNTLAQYFDDIPPLNELAREIKIMLFYHNFVLSGPNILPSNVKEVGGYHVAQPKELRPDVKKF IEESEHGI IYISFGSMLKAAATSLDKIEAILGAVAELPQRVIWKWEEGTLPGNPKNIFISNWL PQNDILAHPKVLAFYSHCGQLGTTEAIYHGVPVVGMPVFGDQPANAAAVEESGLGVQIOIEDL TKENLLGKLRTVLNPEFRKRVKFISKAWNDRPVKAMDSA IFWTEFAAKYSNITFRSRSVDVPL YQYLVLDVIAVLGSISVISVFVVFKLLGRLCTSKRENDKKNKLKRK
>UGT43B1 (JQ070265)
MNFSLLGLFVFVNQCVSYKILAVFPYNGRSHHNLFSTLVEELALRDHSVTVVNYFPMKNISKLRQIPLEYKVSGSDVVDIDDTLKNLP GILVNFHKALDTARAFKNLANSNCNKLMSNKEIQGI ISSKTKFDLVIVEOFVTDCGLAVAFKL NAPIVGITAHILMPWTYSRLGALNHPAYVPNHFIGSGTKPGFWDKIQSALINIAFNIYFKYVI QKSDQMI INSVFEDVPDLDEIGKNISLILLNQYFPLTGSRLYGANVIEVGGLHIKENTTIDDE EIKSFIDKAESDVIYISFGTVASNFPDRI IKEI INFI TKSSVKVLWKIDNVGNLNLPKNVLIR KWFPQTAVLCHPKVKAFI THSGMLSSIEAMHCGVPVISVPLFGDQFANAAAATEIGLGVTIDV STMNERKINQALKTVMQDSYQIRAQNLSALWRDRPVSPLNLAIFWIEYVIRHKGNVELRPPTV DLGFYELLMLDVCGMAIGILISFCLFFSIIISLIRFIRRRHINPNKTKTQ
>UGT44A1 (JQ070266)
MTKRTIVCIFVTIILTTDCYKILGIFPSLDRTNYLTYRDLFKELANRNNDVTLISHFPMSDAPASYRDILLSDRHVYKGLSFESVIAS EVSRVPFETLVATKAGNDDCKTLMNNNQVLHLIRTRPQYDVVLVESFNSDCGIALAANLSAPY IALNPKPLQPWHYNRLGINFNAAYVTQTGLSYGKNPWFLDRVRGYILYHITNWVYYVGSQITD HVYLYKYLGDNLPSLETLASNASLVFVNTHQSVFGGISRPDNVIDIGGIHVRPPKIIPTEIER FINEAQHGVVYVNLGSTVKDSTLPAEKLAELLLTFRKLPHRVLWKWDGAAIQNLPRNVMTMKW LPQYDILKHKNVKALITHAGILSTIEAIDAGIPVVAIPLFGDQYGNAAAMQDAGMATIVHYQD LNKEHLLGAVNEVLDAKRQQQAKLTSRLWHDRSLSPLENA IYWTEYVARYQGAPNLQPLSSQA PLYQQLQLDVLLFVAIVVYILFYALYKILRTLCCCCCRADSGNGDDVGDTRKRKRVKFE
>UGT46A1 (JQ070267)
MRAVPFHYILLVFIKDVLPARILGLFPHIGKSHQMAYDPLLRRLAERGHDVTAVTFFPLKDPPEHYRAVSLEGLTEIRVESINMSIYE GHNVFLRLTGLDRIRSHI SEIHPLADFALDTCSKLVSFKPLSELLRKEYDVILTENFNSDCML GLANVYGQKAPIVYLSSCTAMYWALDRFGVTDNPSYVPLVSSIFTTPMTFLQRLENAVLNVYF KVWFRYAIQLKEQKI IEEHFGRKIPDLQEMAKNVSLMLVNAHHSLNGVRPLIPGIVEVGGMHL DKTRRPISOFFERFLNDSEHGVVLFSFGSLIKTSTLPKYKEDI IMKTLSQLKQRVIWKYEDSA EEGTLVGNVLKVKWIPQYDLLOHSKI IAFVGHGGLLGMTESISAGKPMLVIPFFGDQHLNGAQ AEKIGFGKVVSYADLSEKTFLDGLQSVLSPEMRLSARRASNIWSDRQADPLDTAVYWTERVIR WGHRAPLHSPARDLPLHQYLLLDVAAAILVAILVLIAILRLIVVLI IRFFSGSVTAKEKLH
>UGT47A1 (JQ070270)
MRVAWLLWLATVARAARLLVVLPTNTKSHYAMYSRLIEALAKRDHQLTVITHFPVDAPQPNINQISLAGTIPEI TNNLTRKYDSLKPN FIRNLEQI ISECVNACETVVQQDSFKELLNSTASFDLIIVEVFGSDCFLPLGHRFRAPVVGLL SSVPLPWVNDYLGNPETASYIPSYMMGYGOHMSLWERLSNTIAIILAKILYTYKSRIPSQVIV DRVFGHGNNLQKLAKNYSVILSNSHFSINEVRPLVPGLVEVGGLHLDHSQTLPKNMKKLLDAS TDGVIYWSFGSMSRIETIPSEKLSGIFEAISELPQLVFVKMDRRRLTKNITVPDNVYTMDWIP QYATLCHPNVKLFISHGGLLGTQEAVACGVPMLMVPLYADQALNSQSMFDKNVARILDLHEAD KYEWKRALHDLLSNKKYRENSKTLKEIFLDRPINPLDMGVYWIEYVLRYRGAPHMRSPALDLS LSQYLLFDVIIINITITIVSVFILHALFKYLCTKCIKWCPKEKIVIEKRLFKNNVTLFVCLLR KCKVKIN
>UGT48C1 (JQ070271)
MSYRMMFGTVLFFCAVCLCWGSRVLVVSPVPSRSHQQLTDSIVKTLLDAGHEVTYINRLTEMKRKRLKVI TVRPEDGOELDVNDLIER HHTSHKTIELGVVLAKQVIKNEKVRELLQDNQETFDTVI AEWYYTRLLAPLAAVFECPLIWYT ACDASWMTSQLMLEQTSPVYSTDLLSSEAALPPYGFRERVMRLARQVYLSGWITYMIHYVESP AYYELYQSVLQHRGLSPSQYERVLYKASLLLINSDPEIGQILPLPPNTKYVGGHHIELPSKAL PQNLQDLLDNAKHGAILFSADSKILPWYVKRTLLHVFSQFDQI TMWETGEQLTDIPDNVYVFK QLPRLRILNHNNTVLLITNGGTTSLLEAAYFGVPVIGIPLYQDQFVTMDLAHARRRGIKVKFS EHIAHKIKDSVNKILSNNSYHKNAEKVSIYLQSTLEPQRQILHWIELVIKTGGAPQLRSPALL QLTTLQMLNIDVLLLLFMFVWFLSKVLKVIQVHWRADVLDNKKND
>UGT50A1 (JQ070272)
MWAGTRWPI IGLPILLVASVCGSDILMI TMGGTKSHKIPFWSLAGGLTRRGHNI TFISAFPPDFHIAGLEEI APEGLVSYVKSYMSWD LVGARMRGEEPLPAFDILRYGYEACDALLKDYEMRSFLQSGRTYDLIIIDGTYPECALGITYK MKVPFMYINTVGFYSMPLSNAGNPAPYSVTPFFGRAFTDNMGI IERAMNSAWQIGAMALHGVS MT ILQGVLRRHFGSQMPHVYDMSKNVSFILQNAHYTVSYPRPYLPNVAEIACIHCIEPKRLDP EIEEWISGAGDTGFVYVSMGSSVKTSKMPLTAHRMLINALGRLPQRVLWKQDAVQNMTDIPSN VKLLKWSPQQDLLGHPKIKAFITHGGLLSMFETVYHGVPIVTIPVFCDHDANAAKAEVDGYAK KLEFQYLTSDKLHEAIQEVINNPKYRREVKYRQNLLRDQKESPLDRAVYWTEYVIRHKGAYHL QSPAKDLTFIQYYLLDVAMLFVISALAFYALISFAIRSSFQRLAVFIQNRQMKMLFDNSTGLI GNSLMEOKKKL
>UGT340C1 (JQ070242)
MNIVVFSLLCVATVEPARILGVFPMPSI SHQVVFRALTLELAKRGHELVVITTNPVTKGNPIANLTEIDISESYDLIKTLFELCKDMN QLKRGVISDIETMVHSRSTEGMFFLMAHMFKNDEVKKLMHDKTQKFDLVIAEAILHTHLVFGK IFNAPI ILFSSLSGFPEVFDIMGAATRHPFIYPSIFRNKFSNLTLLEKLREIYYEYKLTSLYW HMEQLENQMLQEMLGDGAPTVNDLKOHI SMLFLNTFPIFDNNRPVPPSIVYLGALHLQPVKEL PVDLKQYLDNSKRGVIFVSLGTNVIPALMEKDLLDAFRKAFEILPYDILWKLNGVKLENVSSN VRIQEWFPQRDLLFHPNIKLFVTQGGLQSTDEAIDAGVPLVGIPMLGDQWYNVNKYVELGVGV QVDSLTMKAEDLVEAVKTVLSNDRYRENIMKLKAVMYDQPQKPMDRAVWWTEHVLRHGGAKHL TSPAANMPWTKYFMLDVLGLVLTALVAILVTAIFAIYLIHRIFKTLSKVNKLKMQ

