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Ab   antibody 

Ag   antigen 

AhR   aryl hydrocarbon receptor 

AID   activation-induced cytidine deaminase 

APRIL   a proliferation-inducing ligand 

BAFF   B cell activating factor 

BCR   B cell receptor 

CaeP   caecal patch 

CDR   complementarity-determining region 

CFSE   5(6)-Carboxyfluorescein N-hydroxysuccinimidyl ester 

CoP   colonic patch 

CSR   class-switch recombination 

DC   dendritic cell 

DMSO   dimethyl sulfoxide 

FcεR   Fcε receptor 

FCS   fetal calf serum 

FDC   follicular dendritic cell 

GALT   gut-associated lymphoid tissue 

GC   germinal center 

GF   germ-free 

GLT   germ line transcript 

GM-CSF   granulocyte macrophage colony-stimulating factor 

IDO   indoleamine 2,3-dioxygenase 

IFN   interferon 

Ig   immunoglobulin 

IL   interleukin 

ILC   innate lymphoid cell 

ILCN   group N innate lymphoid cell (N: a natural number) 

Int.   intermediate 

Lin.   lineage markers 

LN   lymph node 

LP   lamina propria 

LTi cell   lymphoid tissue inducer cell 

MHC   major histocompatibility complex 

MHC X   major histocompatibility complex class X (X = I, II) 
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MLN   mesenteric lymph node 

NK cell   natural killer cell 

OVA   ovalbumin 

OVAp   ovalbumin peptide 

PP   Peyer’s patch 

PST   post-switch transcript 

pTreg cell   peripherally derived regulatory T cell 

RA   retinoic acid 

RALDH   retinal dehydrogenase 

SFB   segmented filamentous bacteria 

SHM   somatic hyper-mutation 

SPF   specific pathogen-free 

SPL   spleen 

TCR   T cell receptor 

TFH cell   T follicular helper cell 

TFR cell   follicular regulatory T cell 

TGF   transforming growth factor 

THN cell   T helper N cells (N: a natural number) 

TLR   Toll-like receptor 

TNF   tumor necrosis factor 

Treg cell   regulatory T cell 

TSLP   thymic stromal lymphopoietin  

tTreg cell   thymus-derived regulatory T cell 
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Chapter 1  

General Introduction 

 

§1.1 Preface 

 

The present studies focused on cells in the intestinal immune system (Fig. 1-1). The intestine is an important immune 

organ because it is exposed to many pathogens invading orally with food intake every day. The intestinal immune 

system should eliminate these pathogens. At the same time, the intestine needs to efficiently acquire nutrients from 

the foods. Further, the intestine harbors trillions of commensal microbes, which have beneficial functions to the host, 

e.g. digesting foods, eliminating pathogens, and even preventing diseases (1, 2). The intestinal immune system 

should be regulated not to attack these beneficial substances and organisms. Deficiency in the regulation probably 

lead to detrimental abnormalities, such as food allergy and inflammatory bowel diseases. Thus, the intestinal 

immune system has to induce the opposite responses to different targets at the same place. Huge numbers of studies 

have intensely investigated into the intestinal immune system. However, we have not obtained the whole picture of 

the complex system.  

 The immune system is a complex and ingenious multi-cellular system. Various immune cells in the 

system function in a complex cell-cell network to satisfy the requirements for the system. In subsequent sections, 

the author will discuss about regulation of the immune responses and characteristics of the intestinal immune 

system. Such discussion is expected to present an overview of a cellular network in the immune regulation 

revealed by previous studies. 
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§1.2 Immune Responses to Various Agents 

 

§1.2.1 The immune system distinguishes self and non-self. 

 

We, living individuals, are separated physically from the external environment by epithelium at the skin and mucosal 

sites, which functions as a primary barrier to exogenous pathogens, such as bacteria and viruses. However, some 

pathogens could pass through this primal barrier taking advantage of physical injury or developing their own 

strategy to break down the barrier function. Such invading pathogens should be eliminated. For the elimination, 

mammals have evolved their immune system, which attacks the pathogens. To efficiently eliminate pathogens, the 

immune system should attack the pathogens specifically. Such specific elimination requires recognition of the 

exogenous pathogens. To accomplish this, the immune system utilizes self components to distinguish non-self 

pathogens, i.e. the system attacks non-self agents as pathogens.   

 

§1.2.2 T cells play a pivotal role in recognizing specificity.  

 

To distinguish self and non-self, the immune systems should be equipped with a mechanism to recognize specificity 

of various substances and organisms including exogenous non-self components and endogenous self components. 

This is accomplished by T cells. T cells express T cell receptors (TCRs) which recognize a specific sequence of 

peptides presented on major histocompatibility complex (MHC) molecules (Fig. 1-2A). Proteins which include such 

TCR-recognizable peptide sequences (epitopes) are called antigens (Ags). There are innumerable Ags derived from 

self and non-self.  

 T cells experience genomic diversification of genes encoding TCRα- and TCRβ-chains, called V(D)J 

recombination (3, 4). This process produces diverse T cell clones, each of which express different TCRs recognizing 

different epitopes (Fig. 1-2B). Thus, T cells could distinguish diverse Ag-specificity as a whole. Theoretical study 

has estimated that the VDJ recombination process in a TCRβ gene can produce about 1014 different nucleotide 

sequences (5). In combination with TCRα, a diversity of TCRαβ repertoire is estimated to be about 1020 (6). Namely, 

each individual could contain 1020 different T cell clones potentially. The diversified T cells subsequently experience 

positive and negative selection in the thymus (7, 8). Here, the author briefly describes a conceptual overview of the 

processes below (Fig. 1-3A).  

 The selection process is largely dependent on a reactivity of expressed TCRs on T cell precursors to self-

peptide-MHC complex on Ag-presenting cells in the thymus. Each TCR chain contains three variable domains 

called complementarity-determining regions (CDRs), which are different among different T cell clones. The CDRs 

are involved in interaction of TCRs with not only Ag epitopes but also MHC molecules which have genetic 

polymorphism (9). Therefore, individuals require T cells expressing TCRs which can interact with their self MHC 

molecules. Such self-MHC-recognizing T cells are selected by positive selection. T cells require interaction of their 

TCRs with peptide-MHC for survival, and TCRs without any signals from peptide-MHC complex in the thymus 

lead the T cells to undergo apoptotic processes.  

 To prevent detrimental auto-immune responses, a negative selection process deletes T cell clones which 
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have TCRs strongly recognizing self-peptide on MHCs. This process is also known as clonal deletion. Among T 

cells having lower affinity to self-peptide-MHC complex, those with intermediate affinity to self-peptide-MHC 

probably undergo differentiation to immunosuppressive regulatory T (Treg) cells. Indeed, it has been reported that 

TCR affinity strength correlates with Treg cell generation in the thymus (10). The remaining T cells with low affinity 

to self-peptide-MHCs differentiated into naïve T cells, which survey all through the body to find invading foreign 

Ags. These T cells are composed of MHC class I (MHC I) - restricted CD8+ cytotoxic T cells and MHC class II 

(MHC II) - restricted CD4+ helper T cells. Cytotoxic T cells eliminate pathogens by induce death of infected cells 

whereas helper T cells help other immune cells, mainly through cytokine secretion, to eliminate pathogens.  

 Naïve T cells in individuals include various clones with diverse specificity. These T cells go through 

clonal selection in immune responses (11)(Fig. 1-3B). When foreign substances and organisms invade, naïve T cell 

clones expressing reactive TCRs to the Ags of the foreign agents are selected to respond to and eliminate the Ags.  

 Activated naïve T cells differentiate into effector T cells or long-lived memory T cells. Effector cytotoxic 

T cells secrete interferon (IFN) -γ, tumor necrosis factor (TNF) -α, perforin, and granzyme to kill infected cells (12). 

Although these effector cytotoxic T cells exhibit some heterogeneity in functional property and phenotype, such 

effector cells are principally directed to kill other cells (13). In contrast, effector helper T cells contain several 

subsets which have distinct functions. Well-known effector helper T cells include T helper (TH) 1 cells, TH2 cells, 

and TH17 cells. These TH cells express and secrete their characteristic transcription factors and cytokines: TH1 cells 

express T-bet and secrete IFN-γ; TH2 cells express GATA3 and secrete interleukin (IL) -4, IL-5, and IL-13; TH17 

cells express RORγt and secrete IL-17A and IL-22. In addition, Treg cells, which express a transcription factor Foxp3, 

can be induced from naïve T cells in periphery. Such Treg cells are distinguished from thymic Treg cells mentioned 

above, and these Treg cells are named as peripherally derived Treg (pTreg) cells (also called as induced Treg cells) and 

thymus-derived Treg (tTreg) cells (also called as naturally occurring Treg cells) (14). Differentiation of naïve CD4+ T 

cells into these subsets is biased by environmental factors (15, 16). For instance, differentiation into TH1 cells, TH2 

cells, TH17 cells, and pTreg cells are induced by IL-12, IL-4, IL-6 with transforming growth factor (TGF) -β, and 

TGF-β, respectively. Such environmentally biased regulation enabled helper T cells to enhance a suitable immune 

response to each infection. In addition, it has been reported that TCR specificity itself could affect helper T cell 

differentiation fate (17).  

 

§1.2.3 Lymphoid tissues function as a unit for immune responses.  

 

Ag-presentation to naïve T cells mainly occurs in secondary lymphoid tissues, such as lymph nodes (LNs) and a 

spleen (SPL). The lymphoid tissues function as a site for naïve T cell priming. Naïve T cells, after positive and 

negative selection in the thymus, migrate blood, lymphoid tissue, and efferent lymph, and then recirculate into blood 

through thoracic duct (18, 19)(Fig. 1-4A). LNs drain Ag-presenting cells from periphery (Fig. 1-4B). One peripheral 

region has its specific draining LN, i.e. Ags in the region is always carried to the region-specific LN (18–20). Thus, 

lymphoid tissues probably function as a unit for the immune system. Such region-specific immune unit enable the 

immune system to induce a suitable response to the region where Ags are derived from, i.e. immune responses to 

the intestinal Ags and to the skin Ags can be different, even though they are the same Ags.  
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 To induce T cell responses in lymphoid tissues, Ags need to be carried into the lymphoid tissue. This is 

accomplished by Ag-presenting cells immigrating to the LN from periphery through afferent lymph. An important 

Ag-presenting cell type is dendritic cells (DCs; discussed later in §1.5). DCs take up Ags in periphery, migrate into 

LNs, and present the Ag to naïve T cells inducing T cell subset differentiation. Lymphoid tissues have different 

mechanisms of Ag acquisition. In SPL, Ags in blood are obtained by marginal zone DCs and macrophages, i.e. Ag 

acquisition occurs in the lymphoid tissue (21). Another type of lymphoid tissues is mucosa-associated lymphoid 

tissues, which is located in mucosal sites. This type of lymphoid tissues has no afferent lymph and directly acquire 

exogenous Ags through epithelium on the tissues.  

 In the intestine, there are several lymphoid tissues which survey exogenous Ags (Fig. 1-5). These 

lymphoid tissues include both of LNs and mucosa-associated lymphoid tissue, the latter is called gut-associated 

lymphoid tissue (GALT) (20, 22, 23). GALTs include Peyer’s patches (PPs), caecal patches (CaePs), and colonic 

patches (CoPs) in the small intestine, the caecum, and the large intestine, respectively. The GALT capture Ags from 

the intestinal lumen through epithelial cells on it and thus have no afferent lymph (24). The intestinal LNs include 

mesenteric LNs (MLNs) draining Ags from both of the small and large intestines and caudal LNs draining Ags from 

the large intestine. Therefore, these lymphoid tissues probably play a pivotal role in regulating Ag-specific immune 

responses in the intestine.  

 

§1.2.4 Short summary 

 

The immune responses to various Ags are regulated by T cells, which express Ag-specific TCRs. The TCR 

specificity has broad spectrum, resulted from V(D)J recombination process, and each T cells can respond to specific 

Ag inducing a suitable response specifically to the Ag. T cells recognize their Ags presented on MHC molecules of 

Ag-presenting cells in lymphoid tissues, which function as a unit of the immune system. In the intestine, MLNs, 

caudal LNs, and GALT including PP, CaeP, and CoP are probably important sites for immune regulation.  
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§1.3 Effector Functions of T Cells 

 

§1.3.1 Helper T cell subsets induce various responses.  

 

Naïve CD4+ helper T cells are activated by their specific Ag-presenting MHC II and differentiate into several subsets, 

which have distinct functions as mentioned in §1.2.2. The fate of T cell differentiation is largely dependent on 

environmental factors at the activation. This enabled T cells to induce a suitable response to the circumstance around 

the Ag. The differentiated TH cell subsets, including TH1, TH2, and TH17 cells, secrete their specialized cytokines to 

induce subset-specific response (25, 26)(Fig. 1-6).  

 Naïve T cells differentiate into TH1 cells, which highly produce IFN-γ to eliminate intracellular pathogens. 

This cytokine activates macrophages and cytotoxic T cells to kill the pathogens and infected cells, respectively. 

Reponses induced by TH2 cells are toward helminth infection. These responses are mediated by IL-4, IL-5, and IL-

13. Secreted IL-4 stimulates B cells to produce immunoglobulin (Ig) G1 and IgE antibodies (Abs; discussed later in 

§1.4) and macrophages to promote tissue repair (27). Ab secretion is also enhanced by IL-5, which promotes 

differentiation of Ab-secreting cells from B cells (28). The other TH2 cytokine, IL-13, promote mucin production 

by goblet cells, one of epithelial cells in mucosal sites. TH17 cells secrete IL-17A, IL-17F, IL-22, granulocyte 

macrophage colony-stimulating factor (GM-CSF), and TNF-α. This T cell subset induces protective responses to 

extracellular pathogens through activating neutrophils (29). In addition, IL-17A, IL-17F, and IL-22 can promote 

antimicrobial peptides secretion from mucosal epithelium (30).  

 Although these helper T cell subsets promote protective responses to infection, they could have 

destructive effects on the host by excessive responses (31). Excess TH1 and TH17 cell responses could trigger 

autoimmune diseases whereas excess TH2 cell responses could induce allergy and asthma. Therefore, the immune 

system should precisely regulate these responses. Such regulation is partly accomplished by Treg cells, which 

suppress effector T cell responses (32–36). Suppressive effects of Treg cells work on effector T cells, mediated by 

cell cycle arrest through suppressor cytokines including IL-10, IL-35, and TGF-β and apoptosis induction through 

IL-2 consumption and cytolysis, and on Ag-presenting cells, mediated by inhibiting Ag-presentation and co-

stimulation molecules on the Ag-presenting cells (37, 38). The immune suppressive ability is acquired by expression 

of a transcription factor Foxp3, which is considered as a master regulator for Treg cells (39, 40). Similarly, effector 

T cells are regulated by their master regulator transcription factors, namely T-bet, GATA3, and RORγt for TH1, TH2, 

and TH17 cells, respectively. These transcription factors regulate genes involved in their functions and localization. 

Thus, Treg cells also express these TH cell master regulators to localize with the effector subsets and suppress their 

responses (34, 36).  

 Effector T cells activated and differentiated in lymphoid tissues should migrate to the periphery where 

Ags are derived. The directional migration is accomplished by regionally specific homing receptors. The homing 

receptors expressed on activated T cells are regulated by environmental factors in lymphoid tissues. Homing to the 

small intestine requires expression of integrin α4β7 and chemokine receptor CCR9 (18, 41). Expression of these 

homing receptors is induced by retinoic acid (RA) in the intestinal lymphoid tissues (42). RA is a metabolite of 

vitamin A (retinol) via retinal. This metabolism process is largely dependent on retinal dehydrogenase (RALDH) 
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enzymes. In the intestinal lymphoid tissues, RALDHs are highly expressed on DCs and non-hematopoietic stromal 

cells (42, 43).  

 

§1.3.2 Regulation of intestinal T cells is affected by commensal microbiota.  

 

Among T cell subsets, TH17 cells and Treg cells are abundant in the intestine (44–46). The abundance of these T cells 

is dependent on specific commensal microbiota. In the case of TH17 cells, segmented filamentous bacteria (SFB) 

are required for induction of small intestinal TH17 cells (47, 48). These bacteria adhere to intestinal epithelial cells, 

and this adherence is critical for the TH17 cell induction (49). Ags derived from the SFB are presented to T cells by 

DCs, and this Ag-presentation is also indispensable for SFB-dependent TH17 cell induction (50). Indeed, TH17 cells 

in the intestine express TCRs specific to SFB-derived Ags (51). In addition to the SFB-dependent mechanisms, 

TH17 cells has been reported to be induced by ATP and DNA derived from commensal bacteria (45, 52). Activated 

TH17 cells are involved in autoimmune diseases, and SFB colonization has been reported to exacerbate the 

pathological score of autoimmune disease model of mice (53). Therefore, the intestinal immune regulation by 

microbiota could have effects on extra-intestinal homeostasis.  

 In the intestine, TH17 cell population is regulated in balance with that of Treg cells (45, 54). The intestinal 

Treg cells, especially in the large intestine, are also dependent on microbiota. A series of outstanding studies has 

revealed that the large intestinal Treg cells are induced by colonization of Clostridium bacteria derived from mice 

and humans (46, 55). This is mediated by the bacteria-derived butyrate (56, 57). Another bacterial strain involved 

in Treg cell induction is Bacteroides fragilis which express surface polysaccharide A (58). The induced Treg cells 

suppress TH17 cell differentiation through IL-10 production (59). Thus, the Treg cells induced by commensal bacteria 

contribute to preventing excess TH17 cell responses in the intestine. These Treg cells have been reported to express 

commensal bacteria-specific TCRs and to be pTreg cells, i.e. they are induced in the intestinal immune system rather 

than the thymus (60). Such commensal-specific Treg cells probably tolerate immune responses to these commensal 

bacteria and contribute to their stable colonization.  

 Collectively, some species in commensal microbiota have a potential to induce TH17 cells in Ag-specific 

and non-specific manners, which could be detrimental for the host when excess. Then, other species can induce Treg 

cells in the intestinal immune system, which in turn induce immune tolerance toward the bacteria. Further, these 

Treg cells suppress TH17 cells probably contributing to an appropriate equilibrium between these T cell subsets in 

the intestine.  

 

§1.3.3 Regulatory T cells are involved in oral tolerance.  

 

In addition to commensal microbiota, the intestinal immune system also should regulate its responses to food 

components, which may also be beneficial to the host. Most of food-derived proteins are digested into di- or tri-

peptides which TCRs cannot recognize (61). But some proteins are actively sampled by the intestinal immune 

system through several pathways (discussed later in §1.5.4). Immune responses to these Ags are set to be tolerogenic 

as default in the intestine (61–63). The intestine is rich in immunosuppressive factors, such as TGF-β and RA, which 
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are involved in Treg cell differentiation. These Treg cells could contribute to suppressing immune responses toward 

the Ags not only in the intestine but also in the systemic immune system. This phenomenon is called oral tolerance.  

 Oral tolerance is defined as a systemic hyporesponsiveness toward Ags administrated through the oral 

route (61, 62, 64). Dysregulation of oral tolerance could cause food allergy. Thus, to establish preventive and 

therapeutic strategies for food allergy, the mechanism underlying oral tolerance should be revealed. Furthermore, 

oral tolerance is probably a useful way as prevention or treatment for systemic diseases caused by immunological 

pathogenesis. Indeed, some studies have reported that autoimmune disease model is ameliorated by oral 

administration of the model Ag (65, 66). Likewise, oral administration of transgenic rice expressing cedar pollen-

derived epitope has been reported to induce tolerance for hay fever in mouse model (67). Further, therapeutic use 

of oral tolerance for food allergy has been started in clinical studies (68–70).  

 In oral tolerance, Treg cells play a pivotal role (Fig. 1-7). Especially, pTreg cells, but not tTreg cells, are 

indispensable for oral tolerance (71). These Treg cells are probably induced mainly in MLNs because surgical 

removal of MLNs abolished oral tolerance induction in mice (72). In contrast, oral tolerance has been induced in 

PP-depleted mice (73–75). These studies support the idea that a site for inducing oral tolerance is MLNs, although 

it should be noted that another group has reported that PP-depletion abolishes oral tolerance, which suggests that 

PPs may contribute to oral tolerance in some condition (76). Oral tolerance also requires expression of gut-homing 

receptors, CCR9 and α4β7, on Treg cells (77, 78). These studies have suggested that induced Treg cells migrate into 

the intestinal lamina propria (LP) and further differentiate to tolerogenic IL-10-producing Treg cells in response to 

IL-10 secreted by LP CX3CR1+ macrophages. Collectively, the intestinal immune system is required to induce 

CCR9+α4β7
+ Treg cells specific to food-derived Ags, and this induction probably occurs in MLNs.  

 

§1.3.4 T follicular helper cells help B cell responses in germinal center.  

 

As mentioned in §1.3.1, CD4+ helper T cells differentiate into several types of effector subsets. Recently, a new 

subset, T follicular helper (TFH) cells, has been established (79, 80). This helper T cell subset functions in germinal 

center (GC) responses, which are involved in Ab production of B cells (discussed later in §1.4). Although first 

studies on TFH cells were reported in early 2000s, it had been barely regarded as an established helper T cell subset 

due to a lack of a lineage-defining transcription factor (81–83). In 2009, Bcl6 was identified as the transcription 

factor required for TFH cell commitment, and then TFH cells were broadly accepted as a helper T cell subset (84–86). 

This transcription factor functions reciprocally to Blimp1, i.e. TFH cell commitment proceeds with Bcl6 up-

regulation and Blimp1 down-regulation.  

 As well as other helper T cell subsets, TFH cells have a signature phenotype. They secrete IL-4 and IL-21, 

and highly express co-stimulatory receptors, ICOS and PD-1, and a chemokine receptor, CXCR5. The cytokines, 

IL-4 and IL-21, are involved in class-switch recombination (CSR) and somatic hyper-mutation (SHM) of B cells 

(discussed later in §1.4). Expression of ICOS on TFH cells is required for development of TFH cells and interaction 

between TFH cells and B cells in GCs whereas PD-1 represses TFH cell responses probably in order to prevent 

production of auto-reactive Abs (87–90). CXCR5 is a receptor for chemokine CXCL13, which is produced by GC 

stromal cells named follicular dendritic cells (FDCs). Thus, CXCR5-CXCL13 axis leads to TFH cell localization 
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into GCs in corporation with down-regulation of CCR7, which mediates localization to T cell zone in lymphoid 

tissues (91).  

 In addition to TFH cells, Foxp3+ Treg cells are also observed in GCs. These Treg cells express TFH cell-

signature surface molecules such as CXCR5, PD-1, and ICOS, but not IL-21, and named as follicular regulatory T 

(TFR) cells (92, 93). Follicular regulatory T cells suppress TFH cell function and GC reaction probably to prevent 

auto-reactive Ab production. Indeed, TFR cells differentiate from tTreg cells, which express TCRs specific to self-

peptides (92–94).  

 In the intestine, properties of TFH cells have been studied intensely in PPs (95). A notable characteristic 

of PP TFH cells is their origin. PP TFH cells could be generated not only from naïve T cells but also from other T cell 

subsets, Foxp3+ Treg cells and TH17 cells (96, 97). Germinal centers in PPs are largely dependent on microbiota, i.e. 

germ-free (GF) mice have no or very few GCs in PPs (22). Thus, PP GCs are probably important for microbiota-

specific Ab production. As mentioned in §1.3.2, intestinal Treg cells and TH17 cells are induced by some specific 

bacteria. This raise a possibility that conversion of Treg cells and TH17 cells into TFH cells in PP GCs helps production 

of Abs toward such commensal bacteria (95). In addition, it has been reported that TFR cells also function to regulate 

microbiota (98).  

 

§1.3.5 Short summary  

 

Naïve T cells which recognize their specific Ags differentiate into a suitable subset for the environment. In the 

intestine, several characteristic subsets are involved in regulation of immune responses to foods and commensal 

bacteria, namely Treg cells, TH17 cells, and TFH cells. Treg cells and TH 17 cells are regulated in the host-commensal 

interaction. Further, Treg cells are mainly induced in MLNs and play a pivotal role in oral tolerance whereas TFH 

cells are observed in PPs and control microbiota through regulation of Ab-producing GC reaction.  
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§1.4 Antibody Production by B Cells 

 

§1.4.1 Antibodies also have antigen-specificity through genetic diversification.  

 

As well as T cells, B cells express Ag-specific receptors which are processed through somatic gene rearrangement, 

named B cell receptors (BCRs). BCRs are secreted as Abs from terminally differentiated B cells, named plasma 

cells. Abs are composed of two immunoglobulin (Ig) heavy chains and two Ig light chains connected by disulphide 

bonds (99, 100). Both chains have variable and constant regions, and the variable regions of two chains recognize 

Ags. The variable region of the Ig chains are genetically diversified by VDJ recombination like TCRs (101–104). 

Thus, each Ab binds to its specific Ag. Further, BCR genes are processed by somatic manipulation, CSR and SHM, 

after the VDJ recombination. CSR occurs in constant regions of heavy chains and leads to a functional switching 

whereas SHM occurs in variable regions of both chains and increases affinity of the Ab to its Ag. These processes 

are induced by a common enzyme, activation-induced cytidine deaminase (AID). This enzyme mediates conversion 

of cytidine to uridine, which in turn leads to DNA repair process resulting in genetic recombination and mutation. 

Detailed molecular mechanism underlying AID activity is reviewed in elsewhere (105, 106).  

 

§1.4.2 Class-switch recombination results in distinct immunoglobulin-class antibodies with functional 

difference.  

 

The constant regions of Ig heavy chain has several classes. Available classes are somewhat different between species. 

Humans have IgA1, IgA2, IgD, IgE, IgG1, IgG2, IgG3, IgG4, and IgM whereas mice have IgA, IgD, IgE, IgG1, 

IgG2a, IgG2b, IgG3, and IgM (106, 107). These classes are encoded by Ig gene exons, such as Cα, Cδ, Cε, Cγ, and 

Cμ. The exons encoding Ig classes are sequentially ordered, starting with Cμ to downstream other exons (Fig. 1-8). 

Upstream of Cα, Cε, Cγ, and Cμ contains switch regions, namely Sα, Sε, Sγ, and Sμ respectively whereas Cδ exon 

exists in immediate downstream of Cμ without S region. Such ordered exons play a pivotal role in Ig class expression 

on B cells. Naïve B cells express IgD and IgM as BCRs, which are encoded by upstream Cδ and Cμ genes, 

respectively. These genes of Ig class is switched to other classes through recombination between Sμ and one of other 

S regions by AID-dependent mechanism. The recombination results in replacement of targeted C region to 

immediate downstream of variable region with depletion of any other upstream C regions including Cδ and Cμ 

genes. This leads to transcription of variable region followed by the switched C region, i.e. switched Ig class Ab 

with the same specificity as pre-CSR IgD and IgM. Target class of CSR is controlled by environmental factors 

around the B cell.  

 Class-switched Abs, such as IgA, IgE, and IgGs, have specific effector functions and localization 

properties (108). For example, IgE constant regions are recognized by Fcε receptors (FcεRs) on mast cells leading 

to secretion of inflammatory mediators in allergic pathology. Meanwhile, constant regions of IgGs highly activate 

the complementary system, which helps, e.g., phagocytosis of macrophages.  

 Whereas blood is rich in IgG, mucosal sites, including the intestine, contain large quantity of IgA. These 

IgA are produced by plasma cells in the LP and are secreted into the lumen across a epithelial layer through 
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transcytosis (109). Such secretory IgA are mainly in dimeric form. These properties of mucosal IgA are due to 

constant region property. In dimeric IgA produced by plasma cells, constant regions of two IgA monomers are linked 

to each other through joining protein called J chain (110). Such IgA-J chain-IgA complex is taken up by epithelial 

cells through poly Ig receptors expressed on basal side of the epithelial cells (111). The polymeric Ig receptors bind 

to IgA dimers through the J chain. Subsequently, IgA dimer is secreted into luminal side with an ectodomain 

fragment of polymeric Ig receptor called secretory component. Secreted IgA functions to neutralize pathogens and 

regulate commensal bacteria (discussed in §1.4.4).  

 Many factors in the intestine are involved in CSR to IgA. Early studies have revealed that TGF-β induce 

IgA production from B cells (112, 113). This factor directly stimulate B cells through TGF-β receptor to express Iα-

Sα-Cα mRNA, which is required for CSR to IgA (114–116). The effect of TGF-β is supported by IL-21 (116–119). 

In addition, TNF superfamily members, B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL), 

are involved in IgA CSR (120–124).  

 The site for IgA CSR in the intestine are probably lymphoid tissues, such as GALT and MLNs, although 

it is still in controversy (107, 125). Some groups have reported IgA CSR in LP as well as GALT (126–128). In 

contrast, other groups have reported that IgA CSR is limited in lymphoid tissues including PPs and isolated 

lymphoid follicles (129–132). This discrepancy may be due to difficulty in isolating LP cells without lymphoid 

tissue contamination. It has been reported that careful exclusion of lymphoid contamination resulted in no CSR 

detection in LP (131, 132). Further, B cell proliferation, which is required for CSR, is not detected in the intestinal 

LP (125).  

 

§1.4.3 Somatic hyper-mutation increase affinity of antibodies.  

 

Whereas CSR occurs in constant regions of Abs, SHM induces mutation in gene loci encoding variable regions, 

which determine specificity of Abs (Fig. 1-9A). Somatic hyper-mutation is induced by AID-dependent conversion 

of cytidine to uridine and subsequent error-prone DNA repair (105, 106). The gene mutation in variable regions 

occurs with frequency of 10-4-10-3 per base (133). Accumulation of SHM-induced mutation is involved in improving 

the affinity of Ab to its Ag, called affinity maturation. This process takes place in GCs in B cell follicles of secondary 

lymphoid tissues. In the steady state, GC structure is not observed in the systemic immune system. Upon infection, 

the structure is formed dynamically in an Ag-dependent manner (134, 135).  

 The process of the GC reaction is a miniature of Darwinian evolution, characterized by random mutation 

and subsequent selection of high affinity B cells (Fig. 1-9B). Structure of GCs includes two regions called light 

zone and dark zone. B cells in the GCs circulate these two regions in affinity maturation process. In the light zone, 

high affinity Ab-expressing B cells are selected and SHM is induced whereas the dark zone is a site for proliferation 

of the selected B cells (136). The proliferated B cells are processed by the selection, and some of the selected cells 

recirculate into the dark zone and the others emigrate from the GC to differentiate memory B cells or plasma cells.  

 Light zones contain two characteristic cell types involved in affinity maturation, i.e. TFH cells and FDCs. 

These cells play critical roles in affinity-dependent B cell selection. B cells in the light zone capture Ags presented 

on FDCs in an affinity-dependent manner (137, 138). The number of Ags on FDCs is limited, and thus B cells with 
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low affinity BCRs cannot capture the Ags. Subsequently, the Ag-bearing B cells present the Ags to TFH cells. In 

response to the Ag-presentation, TFH cells offer help signals to the B cells, such as CD40 ligand, IL-21, and IL-4, 

which induce SHM in BCR of the B cell. Therefore, B cells with Ags, which is due to their high affinity BCRs, can 

receive the help signals from TFH cells and proliferate in a dark zone (136). B cells experience this dynamical process 

repeatedly, which results in generating and selecting B cells producing high affinity Abs.  

 

§1.4.4 Host-microbe interaction through immunoglobulin A in the intestine.  

 

The intestine is frequently exposed to harmful pathogenic microbes invading with foods. To prevent infection of 

such microbes, the intestinal immune system intensely secretes IgA Abs into the lumen. Indeed, polymeric Ig 

receptor-deficient mice is more susceptible to Salmonella infection in the intestine (139). Further, IgA-deficiency 

in human may causes gastroenteritis and Helicobacter infection (140).  

 In addition to pathogenic microbes, >1015 non-harmful commensal bacteria, including >103 species, exist 

in the intestinal lumen (141, 142). Further, some of them inhabit the inside of GALTs (143). Dysregulation of the 

intestinal microbiota, called dysbiosis, has harmful effects on the host, such as inflammatory bowel diseases and 

probably extra-intestinal diseases (1, 144). Thus, the intestinal immune system should precisely regulate the 

microbiota. This regulation is largely dependent on IgA functions (125, 145). Commensal microbes in the intestine 

are coated with IgA (146, 147). In some case, IgA binding causes changes in gene expression of the bacteria (148). 

Further, deficiency in AID, which results in defect of CSR and SHM, causes dysbiosis (149, 150). These findings 

suggest that IgA is required for appropriate regulation of the intestinal microbiota.  

 The intestinal IgA conceptually contains Ag-specific ‘classical high-affinity IgA’ and poly-reactive 

‘natural low-affinity IgA’ (125). In parallel, IgA can be induced by two distinct pathways, namely T cell-dependent 

and -independent pathways (107). T cell-dependent pathway literally means IgA induction through T cell help, 

especially from TFH cells in GCs, whereas T cell-independent pathway is IgA induction without T cells and GCs. 

Sequencing experiments have revealed that most of human intestinal plasma cells have highly mutated variable 

region gene probably processed by SHM, which means most IgA Abs in the intestine are induced through T cell-

dependent pathway in GCs (151, 152). The number of mutation in intestinal plasma cells in mice has been reported 

to be much lower (153). However, experiments usually use laboratory-reared mice in a strictly-controlled 

environment with specific pathogen-free (SPF) equipment, controlled and constant diets and drinking water. Such 

sanitary condition may effect on the homeostasis of intestinal immune system. Indeed, compared with laboratory-

reared mice, wild-living mice have larger GCs in GALT, which suggests that, in wild-living mice, GC-dependent 

highly mutated IgA probably plays more dominant roles in the intestine like humans (107). In addition, AIDG23S-

mutated mice, which lack SHM but not CSR activity of AID, spontaneously develop dysbiosis (154). Collectively, 

SHM-dependent highly-mutated IgA is important in regulation of the intestinal microbes.  

 As mentioned above, IgA is conceptually classified into Ag-specific ‘classical IgA’ and poly-reactive 

‘natural IgA’. One plausible explanation for entities of these conceptual IgA groups is that classical IgA is T cell-

dependent and natural one is T cell-independent. Considering a dominant role of T cell-dependent pathway as 

discussed above, classical IgA, recognizing specific Ags, is abundant in the intestine. However, this is against the 
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observation that most bacteria are coated by IgA even in the human intestine (146, 147). Such discrepancy could be 

explained by Ag-binding through other than variable region and cross-reactivity of Abs (125). Secretory IgA can 

bind to many bacteria through secretory components mediated by modulated carbohydrate moiety (155, 156). 

Meanwhile, the intestinal IgA contains poly-reactive Abs, which can recognize several Ags (157, 158). Poly-reactive 

Abs probably recognize a common Ag among microbes. Such Abs can be selected and maturated through sequential 

exposure to several microbes in GCs (159). In the intestine, it has been reported that individual B cells circulate into 

several distinct GCs repeatedly (160). This process may contribute to the poly-reactive IgA through SHM-dependent 

pathway. These mechanisms enable the intestinal T cell-dependent IgA to recognize broad spectrum of bacteria.  

 To regulate the intestinal microbes, the immune system should constantly survey microbial contents in 

the intestine. Therefore, GALT and MLN take up Ags from the lumen and induce IgA (22). Especially, GALT 

constantly includes GC structure, which is dependent on microbiota (107, 149, 161). The microbial composition is 

gradually changing along the intestinal parts, i.e. from duodenum to colon, a diversity and the number of bacteria is 

explosively increasing (162). Further, dominant microbial species also differ among the regions. Corresponding to 

such microbial difference, the intestine changes some of its properties among regions. One of the differences is in 

mucus layer (163). The small intestine has thinner mono-layer whereas the large intestine has thick two mucus 

layers. An inner layer of the large intestinal mucosa excludes bacteria (164). Another difference is in IgA repertoire. 

The small and large intestines have different IgA repertoire (153). This may reflect the microbial difference. Recently, 

it has been reported that plasma cells in these sites could have different sources. B cells in PPs migrate to the small 

intestine, whereas CaeP B cells migrate to the large intestine (165).  

 

§1.4.5 Short summary.  

 

As well as T cells, B cells have a receptor, which is genetically rearranged, with diverse Ag-specificity. This BCR 

is finally secreted as Abs. B cells pass through specific processes, namely CSR and SHM. CSR manipulates effector 

function of Abs, and SHM improves Ab affinity to its Ags. These processes are probably located in lymphoid tissues 

and their GCs depending on help from TFH cells. The intestine is rich in secretory IgA in the lumen, which not only 

prevents infection but also regulates the commensal microbiota. The intestinal IgA is probably induced by GC 

reactions located in GALTs.  
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§1.5 Priming Immune Responses by Dendritic Cells 

 

§1.5.1 Dendritic cells initiate antigen-specific immune responses.  

 

As discussed above, T cells and B cells play pivotal roles in Ag-specific immune responses. These cells are activated 

in lymphoid tissues. Therefore, to prime immune responses, Ags should be carried into lymphoid tissues from 

periphery and be presented to T cells through peptide-MHC-TCR interaction. Such immune priming is dependent 

on Ag-presenting cells, especially DCs. A kind of DCs, Langerhans cells in skin, was firstly observed by Paul 

Langerhans in the 19th century (166). At the time, the cells were considered to have functions in the nerve system. 

In 1973, Ralph Steinmann identified DCs in lymphoid tissues (167, 168). Later, Steinmann et al. have reported that 

DCs can highly prime immune responses (169). Then, other innumerable studies have revealed that DCs are 

professional Ag-presenting cells.  

 Generally, DCs capture Ags in periphery, migrate into LNs, and then present the Ags to T cells in the LNs 

(Fig. 1-10). To prime immune responses efficiently, DCs are equipped with several characteristic features. They 

highly express MHC II molecules on their surface, which may contribute to high potency to priming T cells. In 

addition, DCs can retain phagocytosed Ags for a long time because they have proteases of low activity (170). Further, 

DCs can present exogenous Ags on MHC I to CD8+ T cells, called cross-presentation as reviewed in elsewhere 

(171).  

 Mononuclear phagocytes includes DCs and macrophages. These cells have marked heterogeneity and are 

classified into detailed subsets using expression of surface marker molecules (172). Although DCs and macrophages 

had been historically considered as distinctive cell types, it has been revealed that these cells have some overlaps in 

phenotypic and functional properties (172–174). There have been proposed a nomenclature based on the ontogeny 

(174). In the present studies, the author uses the nomenclature as much as possible.  

 The intestine harbors several types of DCs, usually classified based on expression of CD11b, CD103, 

CD8α, and other markers (175, 176). Subset composition of DCs are locally different throughout the intestine. For 

example, small intestinal LP contains CD11b+CD103+CX3CR1- and CD11b+CD103-CX3CR1+ subsets whereas PPs 

contain CD11b-CD103+ and CD11b+CD103- subsets (177, 178).  

 

§1.5.2 Dendritic cells can initiate a suitable immune response sensing environmental factors.  

 

To induce a suitable immune response to the environment, DCs can receive the environmental factors. Such 

environmental sensing is mediated, at least partly, by innate immune receptors, such as Toll-like receptors (TLRs), 

RIG-I-like receptors, and NOD-like receptors. These receptors recognize ligands conserved among many microbes, 

called microbe-associate molecular patterns. Among the receptors, TLRs, including several subtypes, are located 

on membranes and recognize ligands derived from microbes existing in topologically outer of the cells, i.e. ligands 

out of the plasma membrane and in the lysosomes. In contrast, RIG-I-like receptors and NOD-like receptors are in 

cytoplasm to recognize intracellular bacteria and viruses, and are reviewed in elsewhere (179, 180).  

 Many studies have focused on TLRs from identification in the late 1990s (181). This type of innate 
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immune receptors are expressed on various cell types; DCs, macrophages, B cells, T cells, epithelial cells, and so 

on. As mentioned above, TLRs include several subtypes, TLR1 - TLR11 (182). Especially, TLR1 - TLR9 were 

identified earlier and thus have been well studied. These receptor molecules form homo- or hetero-dimers to sense 

their specific ligands (Table 1-1). Among TLRs, TLR2/1, 2/6, 4, and 5 are located in plasma membrane and 

recognize surface molecules of microbes whereas TLR3, 7, 8, and 9 are in endosome membrane and recognize 

nucleic acids. All subtypes consist of three domains, namely ligand-recognizing extracellular domain, 

transmembrane domain, and signal-transducing intracellular domain (183). The extracellular domains are different 

among the subtypes to recognize different ligands as shown in Table 1-1 (184–190). In contrast to the extracellular 

domain, the intracellular domains of TLR family are relatively conserved to transduce signals to shared adaptor 

molecules, MyD88 and/or TRIF (191–198). These signals result in activation of NF-κB, MAP kinases, and IRFs.  

 In response to TLR stimulation, DCs are activated to prime T cell responses. Such activated DCs highly 

express MHC II and co-stimulatory molecules such as CD80 and CD86. Further, TLR stimulation has DCs secrete 

cytokines, such as IL-6, IL-12, and IL-23, to bias differentiation of T cell subsets (199). To control a suitable T cell 

differentiation, TLR-induced cytokines should change according to environmental cues. For example, IFN-γ and 

CD40 stimulation enhance TLR-induced IL-12 whereas IL-10, thymic stromal lymphopoietin (TSLP), and 

prostaglandin E2 have been reported to suppress TLR-induced IL-12 (200–205). In addition to the environmental 

factors, TLR subtypes could affect subsequent responses. It has been reported that specific response can be induced 

by specific TLR subtype, such as TLR2/1, but not other TLRs, induces RALDH2 gene expression whereas TLR9, 

but not others, induces IL-12 production (206, 207). Collectively, in response to TLR stimulation, DCs efficiently 

present Ags to Ag-specific T cells under specific cytokine milieu resulting in a suitable T cell responses to the 

environment.  

 

§1.5.3 The intestinal dendritic cells regulate the intestinal immune system through their characteristic 

properties.  

 

To regulate the intestinal immune system, the intestinal DCs have several characteristics. Especially in T cell 

responses, the intestinal CD103+ DCs tend to induce Treg cells and TH17 cells (52, 208–215). This is largely 

dependent on TGF-β, which are produced and activated by the DCs. In addition, Treg cells are also induced through 

RA production by DCs. The intestinal DCs, especially CD103+ DCs, highly express RALDH2 (208, 216). This also 

enhances T cell homing to the intestine through induction of CCR9 and α4β7 expression on T cells (208, 212, 217, 

218). These properties can be obtained by the environmental factors. For example, stimulation on TLR2/1, which 

could occur frequently in the intestine from commensal bacteria, induces RALDH2 gene expression in DCs (206). 

Further, mucus components enhance TGF-β production and RALDH activity in the intestinal DCs (219). The 

intestinal DCs regulate T cell responses through these characteristic properties.  

 

§1.5.4 The intestinal dendritic cells capture antigens from the lumen.  

 

To prime T cell responses, DCs should take up Ags. At the infection, DCs can contact with invaded pathogens in 
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the tissue and blood. In contrast, luminal bacteria and foods are separated by epithelial layer in the steady state 

intestine. Thus, the intestinal DCs have some specialized pathways to obtain the luminal Ags (24).  

 One characteristic pathway is through GALT (see Fig. 1-5). These tissues are more accessible by luminal 

Ags than other sites in the intestine due to several properties of epithelial cells on them (24, 220). The epithelium 

has thinner mucus, expresses less polymeric Ig receptors resulting in less secretory IgA around the tissues, secretes 

less anti-microbial peptides, and contains specialized cells transporting Ags from lumen, named M cells. M cells 

take up Ags through transcytosis. The transcytosed Ags are internalized by antigen-presenting cells under the M 

cells. Further, PP DCs have been reported to obtain Ags directly from the lumen extending their dendrites across M 

cells (221).  

 As well as in GALT, Ags are obtained by DCs in the intestinal LP through several pathways. Goblet cells, 

a kind of epithelial cells, hand over Ags to CD103+ DCs (222). Further, CD103+ DCs can obtain Ags directly from 

the lumen through their dendrites (223). CX3CR1+ macrophages can also internalize the luminal Ags through trans-

epithelial dendrites (224). CX3CR1+ macrophages hand over obtained Ags to CD103+ DCs (225). Through these 

pathways, DCs obtain Ags from the intestinal lumen and present the Ags to T cells in lymphoid tissues.  

 

§1.5.5 Antigen-bearing dendritic cells migrate to lymphoid tissues from periphery.  

 

To present Ags efficiently to naïve T cells, Ag-bearing DCs should migrate to lymphoid tissues. From the small and 

large intestinal LP, DCs mainly migrate to T cell zone of MLNs (20, 226). Main migratory DCs have CD103+ 

phenotype (217). But migration of CD103- subsets to MLNs are also detected (227, 228). In PPs, DCs migrate to T 

cell zone in the PP from region under epithelium called sub-epithelium dome (229). In addition, PP DCs also migrate 

to MLNs (230). In all of these reports, such migration is dependent on CCR7 expression on the DCs. This chemokine 

receptor induces migration toward chemokines, CCL19 and CCL21, which are secreted from T cell zone stromal 

cells, fibroblastic reticular cells (231, 232). Naïve T cells also express CCR7 and migrate toward such chemokines 

(18). Thus, both Ag-bearing DCs and naïve T cells migrate toward the same chemokines. This mediates co-

localization of these cells for efficient Ag-presentation from DCs to T cells.  

 In T cell zone of lymphoid tissues, fibroblastic reticular cells organize a scaffold network, along which 

DCs and T cells can move (233, 234). In the T cell zone DCs are in close contact with each other (235). In some 

case, migratory DCs hand over Ags obtained in periphery to LN resident subsets (236). Naïve T cells move to search 

on DCs for MHC presenting their specific Ags (237). Once T cells contact with the Ag-bearing DCs, they decrease 

their mobility and contact with the DCs for long time to receive signals. Then, activated T cells re-circulate into 

blood and migrate to peripheral tissues depending on expression of homing receptors.  

 

§1.5.6 Short summary  

 

Mononuclear phagocytes, including DCs and macrophages, can be classified into several subsets based on surface 

markers. In the intestine, CD103+ DCs play a pivotal role in regulating the intestine-specific immune responses, 

such as Treg cells and TH17 cells induction. These properties are largely dependent on TGF-β and RA. The intestinal 
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DCs capture the luminal Ags through direct or indirect pathways and migrate to T cell zone in lymphoid tissues in 

a CCR7-dependent manner and present the Ags to naïve T cells there.  
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§1.6 Innate Lymphoid Cells in Mucosal Immune System 

 

§1.6.1 Innate lymphoid cells are newly established immune cells.  

 

One of the most remarkable current topics in immunology is establishment of a new lymphocyte lineage – innate 

lymphoid cells (ILCs). This cell type is now defined as lymphoid cells, i.e. derived from a common lymphoid 

progenitor, expressing no lineage markers of other immune cells including T cells, B cells, DCs, macrophages and 

so on (238–240)(Table 1-2). In 2010, three independent studies have reported that lineage markers- (Lin.-) lymphoid 

cells in various tissues secrete TH2 cytokines such as IL-5 and IL-13 (241–243). These discoveries were followed 

by many studies which have investigated in properties of Lin.- lymphoid cells, such as developmental processes and 

physiological functions. Then, a concept of ILCs has been generally accepted. In addition to newly identified cells, 

classically known Lin.- cells such as natural killer (NK) cells and lymphoid tissue inducer (LTi) cells are also 

categorized into ILCs.  

 ILCs are classified into several subsets based on transcription factor dependency, cytokine production, 

and effector function (Fig. 1-11). As mentioned below, ILCs have many similarities to T cells in transcription factors 

and cytokines, and classification of ILC subsets mirrors that of T cell subsets resulting in one cytotoxic subset and 

three groups of helper type subsets (239). The cytotoxic one is NK cells, which is a counterpart of CD8+ T cells. 

The other three groups are named as group 1 ILC, group 2 ILC, and group 3 ILC (ILC1, ILC2, and ILC3). Roughly, 

ILC1s express T-bet and produce IFN-γ like TH1 cells, ILC2s express GATA3 and produce IL-5 and IL-13 like TH2 

cells, and ILC3s express RORγt and produce IL-22 like TH17 cells. Although such similarities, ILCs express no Ag-

specific receptor like TCRs and BCRs. Instead, ILCs express cytokine receptors, such as receptors for IL-2, IL-7, 

IL-12, IL-23, IL-25, IL-33 and so on. Distinct ILC groups express different patterns of such receptors and regulate 

immune responses through cytokine secretion according to the environment. Further, some ILCs express MHC II 

and could directly regulate T cell responses (50, 244–246).  

 

§1.6.2 Functions of innate lymphoid cells in health and disease.  

 

Although ILCs are very rare population, <1% of whole lymphocytes, they are largely involved in various 

physiological functions and pathological conditions. In response to viral infection, NK cells protect the host by 

killing the infected cells through granzyme and perforin and by secreting IFN-γ (247). Protective responses to 

infection are also regulated by other ILCs. ILC1s highly produce IFN-γ and TNF to provide protection from 

infection (248, 249). Such ILC1s exist in intraepithelial region and LP in the intestine. ILC3s produce IL-22 in 

response to inflammatory cytokines such as IL-1β and IL-23 (250–253). IL-22 from ILC3s is in turn received by 

intestinal epithelial cells resulting in secretion of antimicrobial peptide and fucosylation of the epithelial cells to 

prevent infection of pathogens (254–257). Further, a subset of ILC3s can be converted to ILC1-like phenotype such 

as T-bet+ and producing IFN-γ, which contributes to protecting the host from infection (258–260). These ILC1s and 

ILC3s also exacerbate inflammation in some contexts (248, 252, 258, 260–262).  

 Whereas ILC1s and ILC3s protect against viral and bacterial infection, ILC2s contribute to expulsion of 



§1 General Introduction 

29 

 

helminths through TH2 cytokines (241–243). ILC2s require GATA3 expression for their maintenance and function 

although this transcription factor is indispensable for development of all ILC subsets (263–265). Many studies have 

revealed that ILC2s can highly produce IL-5, IL-9, and IL-13 in response to IL-2, IL-4, IL-25, IL-33, TSLP, and 

TLA1, a TNF family member (264, 266–272). These cytokines secreted from ILC2s induce mucus production and 

tissue repair in the lung and intestine, resulting in helminth expulsion. Meanwhile, ILC2s exacerbate allergic 

pathologies through TH2 cytokine production in the lung and skin (266, 269, 270, 273–275).  

 In addition to such immunological functions, ILCs are also involved in regulation of non-immunological 

homeostasis. LTi cells, a subset of ILC3s, are required for organization and remodeling of lymphoid tissues (276–

279). ILC2s also restore epithelium after infection in the lung through amphiregulin, an epidermal growth factor, 

production (280). In addition, ILC2s have been reported to be involved in metabolic regulation in adipose tissues. 

IL-5 and IL-13 secreted from ILC2s promote eosinophil accumulation and subsequent macrophage activation in an 

adipose tissue resulting in protection from obesity (281–283). ILC2s also reduce obesity through production of a 

peptide which promotes adipose tissue beiging (284). Further, ILC2s can sense nutrient conditions, such as vitamin 

A deficiency and malnutrition (285, 286). Vitamin A deficiency induces ILC2 increase and ILC3 decrease. Dietary 

components also affect ILC3 homeostasis through an aryl hydrocarbon receptor (AhR) (287).  

 

§1.6.3 Innate lymphoid cells regulate the host-commensal interaction.  

 

In the intestine, ILCs participate in homeostatic control of the interaction between the host and commensal 

microbiota. Especially, IL-22 production by ILC3s are largely involved in such regulation. As mentioned above, IL-

22 enhance antimicrobial peptides secretion from intestinal epithelial cells (254–256). Such antimicrobial peptides 

probably suppresses overgrowth of commensal microbes. IL-22 from ILC3s also prevents PP-resident commensal 

bacteria from spreading systemically and confines the bacteria to the site (288). Further, ILC3-derived IL-22 

promotes fucosylation on luminal side of intestinal epithelial cells, which protect the host from infection (257). 

Fucosylated moiety on intestinal epithelial cells also functions as an environmental niche for commensal bacteria 

(289). Thus, such ILC3-mediated fucosylation may promote commensal colonization. Conversely, ILC3s are 

regulated by the intestinal microbiota. The microbiota reduces IL-22 production from ILC3s indirectly through T 

cell responses (290, 291). Further, aryl hydrocarbon receptor-deficient ILC3s have impaired IL-22 production, 

which suggests that food components could modulate commensal bacteria through ILC3 function (287, 292).  

 ILC3s can regulate commensal bacteria also through Ag-presentation to T cells. ILC3s express MHC II 

and present commensal bacteria-derived Ags to T cells (50, 245, 246). ILC3s in the intestinal LP inhibits T cell 

responses through the Ag-presentation. Such suppression is due to the absence of co-stimulatory molecules on the 

ILCs, and may contribute to selection of commensal bacteria (246). The inhibitory state of ILC3s can be reversed 

in some context through IL-1β (293).  

 Some studies have revealed that ILCs regulate IgA production. ILC3s induce IgA production through 

lymphotoxins activating T cell-dependent and -independent pathways (294). In addition, SPL ILC3s enhance IgA 

production through BAFF, CD40 ligand, and Notch ligand (295). Further, IL-5, highly produced by ILC2s, promotes 

B cell differentiation to Ab-secreting cells (28). Thus, ILC2s could enhance IgA secretion (241).  
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§1.6.4 Short summary  

 

Lin- lymphoid cells, ILCs, are a newly established cell type and have been intensely studied in recent years. These 

cells express no Ag-specific receptors and secrete various cytokines in response to environmental factors. ILCs are 

further classified into several subsets, i.e. NK cells, ILC1s, ILC2s, and ILC3s. Each subsets exhibit similarities to T 

cell subsets in transcription factor dependency and cytokine production. ILCs are involved in a broad spectrum of 

functions including immunological and non-immunological ones. In the intestine, ILCs regulate homeostasis in the 

host-commensal interaction through many pathways.  
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§1.7 Summary 

 

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。 
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Chapter 2  

 

本章の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。 
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Chapter 3  

 

§3.1 Introduction 

 

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。  
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§3.2 Materials and Methods 

 

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。   
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§3.3 Results 

 

§3.3.1  

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。 

 

 

§3.3.2 

本項の内容は学術論文雑誌に掲載されており、出版社との契約条件によって公開できない。本稿の内容

は Immunobiology vol. 220, No. 6, pp. 734-743 に掲載されている。 

 

§3.3.3, 3.3.4, 3.3.5 

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。   
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§3.4 Discussion 

 

本項の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。 
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Chapter 4  

 

本章の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。
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Chapter 5  

Overall Discussion 

 

本章の内容は学術論文雑誌として出版する計画があるため公表できない。5年以内に出版予定。
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