
 
 
 

 

博士論文 
 

 

A comprehensive evaluation of 

methods for differential expression 

analysis on multi-group RNA-seq 

count data 

 

（RNA-seqの多群間比較用カウントデータ

に基づく発現変動解析手法の評価） 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
湯 敏 

 



 2 

 

Contents 

Chapter 1 Introduction 6 
1.1 Microarray 7 
1.2 NGS and RNA-seq 11 
1.3 Normalization of read counts 21 
1.4 Statistical modeling of read counts 26 
1.5 DEG identification 29 
1.6 The purpose of this study 31 

Chapter 2 Analysis methods for RNA-seq data analysis 33 
2.1 DE analysis methods investigated in the present study 34 
2.2 DE analysis using individual packages 40 
2.3 ROC curve and AUC value 44 
2.4 Computer environment 47 

Chapter 3 Simulation study 49 
3.1 Generation of simulation data 50 
3.2 Results from simulation data with replicates 53 
3.3 Results from simulation data without replicates 59 
3.4 Results from simulation data with other multiple groups 62 

Chapter 4 Real data study 65 
4.1 Real data with replicates 66 
4.2 Data analysis 68 

Chapter 5 Conclusion 76 

Chapter 6 Future prospect 79 

Additional files 82 

Index 96 

Acknowledgements 97 

References 98 
 
 

 

 

 

 

 



 3 

 

List of Figures 
 

Figure 1 - Modern history of sequencing development in genetics ............................. 14 

Figure 2 - A typical wet RNA-seq experiment ............................................................ 15 

Figure 3 - An illustration for read mapping in RNA-seq data ..................................... 16 

Figure 4 - A world map for the distribution of high-throughput sequencers ............... 19 

Figure 5 - From count data to DEG identification in RNA-seq data analysis ............. 25 

Figure 6 - Traditional two step procedure for RNA-seq data analysis ........................ 37 

Figure 7 - DE analysis pipeline with DEGES-based normalization method ............... 38 

Figure 8 - ROC curve plotting and its characteristics .................................................. 46 

Figure 9 - Three-group simulation data with equal number of replicates .................... 52 

Figure 10 - Dendrogram of average-linkage hierarchical clustering for the 

Blekhman’s count data ......................................................................................... 67 

Figure 11 - Overall similarity of 12 ranked gene lists applied for Blekhman’s count 

data ....................................................................................................................... 72 

Figure 12 - Number of genes found to be significantly DE among the three species in 

the Blekhman’s count data ................................................................................... 73 

Figure 13 - Reproducibility between ranked gene lists ............................................... 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 4 

 

List of Tables 
 

Table 1 - The advantages and disadvantages of Microarray ........................................ 10 

Table 2 - The advantages and disadvantages of RNA-seq .......................................... 20 

Table 3 - Methods for calling DEGs in RNA-seq data analysis .................................. 32 

Table 4 - Information about all of the pipelines involved in this study ....................... 39 

Table 5 - Average AUC values for simulation data with various options ................... 43 

Table 6 - Average AUC values for three-group simulation data with replicates ......... 55 

Table 7 - Effect of different choices for the possible pipelines in TCC ...................... 58 

Table 8 - Average AUC values for three-group simulation data without replicates ... 61 

Table 9 - Average AUC values for four-group simulation data with replicates .......... 63 

Table 10 - Average AUC values for five-group simulation data with replicates ........ 64 

Table 11 - Classification of expression patterns for DEGs .......................................... 74 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 5 

 

List of Additional files 
 

Additional file 1 - Average AUC values for simulation data with 6 BRs ................... 83 

Additional file 2 - Average AUC values for simulation data with 9 BRs ................... 84 

Additional file 3 - Average computation times (in seconds) of 20 trials. .................... 85 

Additional file 4 - Average partial AUC values of 20 trails with (1 – specificity) < 0.1

.............................................................................................................................. 86 

Additional file 5 - Comparison of DEGs obtained from individual pipelines for the 

Blekhman’s count data ......................................................................................... 87 

Additional file 6 - Jaccard coefficients from the comparison of DEGs obtained from 

individual pipelines for the Blekhman’s count data ............................................ 88 

Additional file 7 - Classification of expression patterns for DEGs (based on EBSeq)89 

Additional file 8 - The top 20 DEGs detected by the 12 pipelines .............................. 90 

Additional file 9 - Dendrogram of average-linkage hierarchical clustering for 12 

ranked gene lists ................................................................................................... 91 

Additional file 10 - Overlaps among the four sets of DEGs among the three species 92 

Additional file 11 - Percentages of Overlapping Genes (POGs) among ranked gene 

lists for EEE-E, DDD-D, SSS-S, and E-E (edgeR) .............................................. 93 

Additional file 12 - Percentages of Overlapping Genes (POGs) among ranked gene 

lists for edgeR_robust, D-D (DESeq), S-S (DESeq2) and voom ......................... 94 

Additional file 13 - Percentages of Overlapping Genes (POGs) among ranked gene 

lists for SAMseq, PoissonSeq, baySeq and EBSeq ............................................. 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1 Introduction 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

1.1 Microarray 

Since the discovery, in 1952, that DNA is genetic material, its exploration 

has never stopped. Nowadays, it is well known that biodiversity derives 

from genetic diversity. Differences in the information encoded in the 

genome shapes the thousands and thousands of species, which have 

completely different phonotypes, behavior characteristics, and metabolism. 

In the past century, one of the main interests in the genetic community has 

been the comparative analysis of genetic structure and DNA sequences in 

closely related species with the hope of revealing the fundamental cause 

of completely different species with very similar genomes. In the past 

decades, scientists have elucidated the cellular functions of many genes 

from experiments on model organisms (i.e., mouse, fruit fly, and thale 

cress) [1]. The standard biological technologies are gene knockout (KO) 

and transgenesis. The biggest advantage of these technologies is that the 

experimental results can be easily observed from the difference between 

the mutant and normal individuals. However, these technologies usually 

involve long periods of work, high workload, huge financial budget,  and 

limited data yield. As a result, they have been limitedly used in some big 

laboratories. Moreover, there is little possibility to simultaneously analyze 

several interesting gene loci at the tissue or cellular level.  

When microarray technology arrived  in 1983, it became possible for 

the first time to analyze the mechanisms of each gene in the actual sense 

[2]. In 1995, Schena and Shalon developed a high-capacity system using 

microarrays to monitor the expression of several genes in parallel. In that 

system, a microarray is prepared by high-speed robotic printing of 

complementary DNA sequences on glass slides after chemical and heat 

treatments. Fluorescent probes are prepared from two mRNA sources by a 

single round of reverse transcription in the presence of fluorescein - or 

lissamine-labeled nucleotide analogs. Then, the two probes are mixed in 

equal proportions, hybridized to the microarray, and separately scanned 

for fluorescein and lissamine emission after the independent excitation of 

the two fluorophores. The two kinds of gene-specific color scanning 
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densities can determine the difference in the gene’s expression in two 

individual spots [3]. 

After steady improvement over the past 30 years, microarrays now 

allow the monitoring of expression levels of thousands to tens of 

thousands of targets simultaneously in a single sample [4, 5]. Depending 

on the experimental needs, the targets can be oligonucleotide, cDNA, 

protein, SNP, even BAC, and others. With the establishment of companies 

such as Affymetrix, Agilent, Applied Microarrays, Arrayit, and Illumina, 

microarrays have become widely used as the technology of choice for 

high-throughput transcript profiling and have built an excellent public 

reputation. As a result, numerous microarray platforms have been invented 

and used, and concerns about their reliability and consistency have been 

raised. Several comparison studies have been published with contradictory 

results. Some have reported agreement in conclusions across different 

platforms while others have not [6-15]. Irizarry et al. [16] also 

demonstrated the existence of relative large differences in data obtained 

across different labs using the same platforms. To corroborate the 

reliability of the technology, the US Food and Drug Administration (FDA) 

and National Institutes of Health (NIH) launched the first MicroArray 

Quality Control (MAQC) project in 2006. The MAQC Consortium 

demonstrated intraplatform consistency for various microarray-based and 

alternative technologies across several test sites as w ell as a high level of 

interplatform concordance in terms of genes identified as differentially 

expressed and confirmed that microarrays can reliably identify 

differentially expressed genes (DEGs) between sample classes or 

populations [17]. Moreover, the MAQC microarray data set was positively 

validated by quantitative gene expression technologies, which support the 

use of microarray platforms for the quantitative characterizat ion of gene 

expression [18]. Therefore, it is still mainly used on a large scale around 

the world and many studies using microarray data have been published.  

However, there are several inherent limitations to this good 

technology. The issues of hybridization, cross-hybridization, dye-based 

detection, and design constraints that preclude or seriously limit the 

detection of splice patterns and unknown previously unmapped genes 



 9 

make microarrays difficult to use in standard array designs to provide full 

sequence and transcriptome comprehensiveness [19-21]. Its advantages 

and disadvantages are summarized in Table 1.  

Although the expression level of each gene is estimated as the 

logarithm of fluorescence density in the microarray screenshot, it is also 

possible, by means of transcriptome profiling, to detect  differential 

expression (DE) of specific genes between different samples using this 

early high-throughput methodology. There were many challenges facing 

the analysis of microarray data initially. For instance, because of the high 

cost, only few replicates  could be made. In addition, DE was determined 

by simplistic statistics, such as fold change. Advanced statistical testing 

procedures, such as those based on modified t-tests, have been used after 

the variability over replicates became apparent [22]. 
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Table 1 - The advantages and disadvantages of Microarray 

T
a
b

le
 1

 -
 A

d
v
a
n

ta
g
es

 a
n

d
 d

is
a
d

v
a
n

ta
g
es

 o
f 

M
ic

ro
a
r
ra

y
 

D
is

a
d

v
a

n
ta

g
es

 

N
ee

d
 p

ri
o
r 

se
q
u
en

ce
 k

n
o

w
le

d
g
e
 

C
an

 n
o
t 

d
et

ec
t 

st
ru

ct
u
ra

l 
v
ar

ia
ti

o
n
s 

C
an

 n
o
t 

d
et

ec
t 

is
o
fo

rm
s 

H
y
b
ri

d
iz

at
io

n
 a

n
d
 s

am
p
le

 l
ab

el
in

g
 b

ia
se

s 

N
o
t 

an
 a

b
so

lu
te

 q
u
an

ti
ta

ti
o
n
 m

et
h
o
d

 

  

A
d

v
a

n
ta

g
es

 

R
o
b
u
st

, 
re

li
ab

le
 m

et
h
o
d
, 
p
ro

v
en

 o
v
er

 d
ec

ad
es

 o
f 

u
se

 

H
ig

h
 t

h
ro

u
g
h
p
u
t 

m
et

h
o
d
 

S
tr

ea
m

li
n
ed

 h
an

d
in

g
 -

 c
an

 b
e 

ea
si

ly
 a

u
to

m
at

ed
 

S
tr

ai
g
h
tf

o
rw

ar
d
 d

at
a 

an
al

y
si

s 

S
h
o
rt

 t
u
rn

 a
ro

u
n
d
 t

im
e 

L
o
w

 c
o
st

 

 

 
 

 

 

 

 



 11 

1.2 NGS and RNA-seq 

Nucleic acid sequencing is a methodology for determining the exact order 

of nucleotides present in a given DNA or RNA molecule and can unfold 

the complex information in the genome. As we all know, Edward Sanger 

developed the first-generation sequencing in 1975 [23]. Although this 

technology had been adopted for almost 20 years, the requirement for the 

construction of clone libraries has limited its widespread use. It was 

mainly utilized to complete international or national vast project s (e.g., 

the Human Genome Project in 2003). The purpose of these projects was to 

construct full-length gene structures of model organisms. Because the 

technology is very expensive and time-consuming, these projects had to be 

conducted by the collaboration of several countries and completed by 

many workers. However, the demand for cheaper and faster sequencing 

methods has greatly increased. In 1998, the speed of sequencing made 

rapid progress as a result of a big revolution in the industry. The new 

technology has been called high-throughput sequencing (HTS) or next-

generation sequencing (NGS). NGS performs massively parallel 

sequencing, during which millions of fragments of DNA from a single 

sample are sequenced in a single run. NGS allows an entire genome to  be 

sequenced in a matter of days and at a small fraction of the cost of the 

above projects.  

Based on its strong capability of sequencing large amounts of DNA 

fragments simultaneously, NGS has been used in a range of quantitative 

assays. In particular, it became possible to sequence cDNA reversed from 

RNA of cells or tissues, which is a well -known process termed RNA 

sequencing (RNA-seq). To be exact, the term RNA-seq refers to a wet-lab 

experimental procedure that generates short DNA sequence reads derived 

from the entire set of RNA molecules present at a featured biological 

stage [24-33]. In recent years, RNA-seq has become one of the important 

and classic applications of NGS technology. In the preliminary era of 

RNA sequencing, 454 technology of the Roche Corporation, Solexa 

technology of Illumina Corporation, and SOLiD technology of ABI 

Corporation were the most representative NGS platforms, with new 
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platforms continuously being launched (Figure 1). In recent years, a wide 

range of novel applications have been added to RNA-seq, including 

genome-guided or de novo assembly of transcripts, the discovery of new 

fusion genes in cancer, transcript identification, and the quantification of 

alternative splicing in tissues, populations, and diseases  [24, 25, 33-40]. 

With continuing technical improvements and decreasing costs, it has 

become a more and more popular choice for transcriptome studies, and 

many large projects have been completed, such as the Encyclopedia of 

DNA Elements, The Cancer Genome Atlas, and projects of the 

International Cancer Genome Consortium [35, 37, 39]. As in phase I of the 

MAQC  project, which tested the intra- and interplatform and across-site 

agreement for gene expression microarrays, the FDA launched the 

Sequencing Quality Control (SEQC/MAQC-) project, in which the 

performance of RNA-seq across laboratory sites is assessed while many 

types of sequencing platforms and data analysis pipelines are tested. As a 

result, the measurements of relative expressions have been demonstrated 

to be accurate and reproducible across sites and platforms [41]. 

Collaborating in the MAQC projects, the Association of Biomolecular 

Resource Facilities NGS (ABRF-NGS) study in 2014 provided a broad 

guideline for cross-platform standardization, evaluation, and improvement 

of RNA-seq [42]. 

As a matter of fact, RNA-seq is one type of frequently used 

quantitative assay with the capability of high-throughput sequencing of 

DNA fragments. In some sense, the large amounts of DNA fragments can 

reflect a biological system’s repertoire of RNA molecules.  In a common 

RNA-seq process, the first step is the extraction of RNA transcripts from 

tissues or cells. The extraction contains all species of RNA transcripts, 

including messenger RNA (mRNA), non-coding RNA, and small RNA. 

However, unlike small RNAs [microRNA (miRNA), Piwi -interacting RNA 

(piRNA), short interfering RNA (siRNA), and many others], which can be 

directly sequenced after adapter ligation, larger RNA (i.e., mRNA) 

molecules must be fragmented into smaller pieces (200–500 bp) to be 

compatible with the most deep-sequencing technologies. Because only 
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mRNA has much biological variation, while the others are conserved, we 

simply refer to mRNA as all RNA transcripts for convenience. After 

fragmentation, the mRNA fragments are reversely transcribed to cDNA, 

and a cDNA library is constructed. After adapter ligation to each cDNA, 

the library is fast-sequenced on a NGS platform. The process is 

summarized in Figure 2. 

In contrast to the analog-style signals obtained from fluorescent-dye-

based microarrays, the NGS platforms produce discrete digital counts of 

the number of detected transcripts, which are called “read counts.” 

Typically, these read counts are assigned to a class based on the common 

mapped region (i.e., gene, exon, or genomic loci) of a genome or a 

reference transcriptome (Figure 3). This alignment process is called “read 

mapping” and is achieved by computational tools, such as Tophat  [43], 

Bowtie [44], BWA [45, 46], and HTSeq [47]. In RNA-seq, the 

number of reads in a class is an important summary statistic, and these 

read counts have been found as a good approximation to be linearly 

related to the abundance of the target transcript [28]. Collectively, here 

we refer to the class as a gene, although a class may also refer to, for 

example, a transcription factor binding site. Therefore, if the RNA 

(particularly mRNA) of a sample is thoroughly extracted, the abundance 

of the mapped reads or number of read counts can approximately reflect 

the real expression level of the corresponding gene to a very high 

accuracy. As a result of  the above wet RNA-seq experiment, researchers 

can start the downstream analysis with a so -called “count matrix” or 

“count data,” where each row indicates the gene, each column indicates 

the sample, and each cell indicates the number of count reads mapped to 

the gene in the sample [28]. Computer tools, such as BEDTools [48], 

featureCounts [49], or Cufflinks [50], can be used to produce the so-called 

count data. In general, the analysis procedure involves the following three 

steps: normalization of raw count data, statistical modeling of gene 

expression, and test for DE. In general, the second and thi rd steps are 

wrapped into one method. Therefore, the analysis procedure is recognized 

by most people as the following two steps: data normalization and DEG 

identification. 
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Figure 1 - Modern history of sequencing development in genetics 

The lawngreen boxes show the achievements of Sanger sequencing. The deeppink 

boxes show the representative platforms of  NGS. The yellow boxes show the 

representative platforms of third generation sequencing. The purple boxes show th e 

early development of microarray.  
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Figure 2 - A typical wet RNA-seq experiment 

Briefly, the extracted long RNAs from cells or tissues are first converted into a library 

of cDNA fragments.  Adaptors are subsequently added to each cDNA fragment and a 

short sequence is obtained from each cDNA using NGS technology. 
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Figure 3 - An illustration for read mapping in RNA-seq data 

The resulting sequence reads are aligned to the reference genome. Raw count data will 

be summarized in a table, where each row indicates the gene (or transcript) . Each 

column indicates the sample (or library), and each cell indicates the number of reads 

that are mapped to the gene in the sample.  
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Compared with microarrays, RNA-seq offers several key advantages. 

First, unlike hybridization-based microarrays, RNA-seq is not limited to 

detecting transcripts corresponding to existing genomic sequences. A 

second advantage of RNA-seq relative to microarrays is that it has a very 

low background signal as DNA sequences can be unambiguously mapped 

to unique regions of the genome. Further, it does not have an upper limit 

for quantification, which correlates with the number of sequences obtained. 

Third, RNA-seq has a large dynamic range of expression levels over 

which the vast majority of gene expressions can be detected. Finally, 

without cloning or amplification steps, RNA-seq requires less RNA 

sample [51, 52]. With the decreasing cost in recent years, more and more 

researchers prefer RNA-seq as the first option to perform a transcriptome 

study. As the most cutting-edge technology for bioinformation studies, 

more and more sequence centers with multiple NGS machines are being 

set up worldwide (Figure 4). Most of the centers are concentrated in the 

USA and Western Europe. In Asia, China and Japan take the lead in the 

RNA-seq field. 

However, RNA-seq is a technology under active development, and 

there remain several challenges. First, although the price of a single run 

continues to be low, it is still a big financial impediment in case many 

replicates need to sequenced. Second, gene expression spans several 

orders of magnitude, with some genes represented by only a few reads. 

Third, reads originate from mature mRNA (exons only) as well as from 

incompletely spliced precursor RNA (containing intronic sequences), 

making it difficult to identify the mature transcripts. And last but not the 

least, reads are short and genes can have many isoforms as a result of 

alternative splicing events, which makes it challenging to determine which 

isoform produced each read. The detailed advantages and disadvantages of 

RNA-seq are summarized in Table 2.  

Because the final aims of microarrays and RNA-seq are the same, and 

microarrays will still be used on a large scale for a long time in the future, 

it is required to check the two technologies for consistency. Bottomly et al. 

[53] compared RNA-seq (Illumina GA IIx) with two microarray platforms 

(Illumina MouseRef-8 v2.0 and Affymetrix MOE 430 2.0) to detect 
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striatal gene expression between B6 and D2 inbred mouse strains. The 

overlaps show great concordance (Figure 2 of [53]). Marioni et al. [30] 

estimated gene expression differences between the liver and kidney RNA 

samples using multiple biological replicates and compared the results 

from the two different platforms (RNA-seq and microarray). They 

demonstrated that the RNA-seq platform can detect 81% of DEGs from the 

microarray platform, and the Spearman correlation coefficient of fold 

change ratios between them was 0.73, which is higher than that across 

different microarray platforms in the MAQC I project [17, 30]. 
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Figure 4 - A world map for the distribution of high-throughput sequencers 

The numbers in the cycles indicates the number of sequencers. The platforms include 

455, Hiseq, HiSeq X Ten, Illumina GA2, Ion Torrent, MiSeq, MinION, NextSeq, 

PacBio, Polonator, Proton, and SOLiD. The figure was a screen shot from 

http://omicsmaps.com/ on Nov.11, 2015.  
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Table 2 - The advantages and disadvantages of RNA-seq 

T
a
b

le
 2

 -
 A

d
v
a
n

ta
g
es

 a
n

d
 d

is
a
d

v
a
n

ta
g
es

 o
f 

R
N

A
-s

eq
 

D
is

a
d

v
a

n
ta

g
e 

T
ec

h
n
o
lo

g
y
 i

s 
n
ew

 t
o
 m

o
st

 r
es

ea
rc

h
er

s 

D
at

a 
st

o
ra

g
e 

is
 m

o
re

 c
h

al
le

n
g
in

g
 

A
n
al

y
si

s 
is

 m
o
re

 c
o
m

p
le

x
, 

n
o
 s

ta
n
d
ar

d
 p

ro
to

co
l 

E
x
p
en

si
v
e
 

S
p
ec

ia
li

ze
d
 c

o
m

p
u
ti

n
g
 i

n
fr

as
tr

u
ct

u
re

 a
n
d
 p

er
so

n
n
el

 a
re

 r
eq

u
ir

ed
 

        

A
d

v
a

n
ta

g
e 

P
ro

v
id

es
 a

 c
o
m

p
re

h
en

si
v
e 

v
ie

w
 o

f 
th

e 
tr

an
sc

ri
p
to

m
e 

N
o
t 

d
ep

en
d
en

t 
o
n
 a

n
y
 p

ri
o
r 

se
q
u
en

ce
 k

n
o
w

le
d
g

e
 

In
cr

ea
si

n
g
 d

y
n
am

ic
 r

an
g

e 
an

d
 t

u
rn

ta
b
le

 s
en

si
ti

v
it

y
 

C
an

 d
et

ec
t 

st
ru

ct
u
ra

l 
v
ar

ia
ti

o
n

 

 A
 t

ru
ly

 d
ig

it
al

 s
o
lu

ti
o
n
 (

ab
so

lu
te

 a
b
u
n
d
an

ce
) 

 

 



 21 

1.3 Normalization of read counts 

One of the final analysis goals of microarrays and RNA-seq is to identify 

DE in different samples. Prior to this, however, the variability among the 

samples should be normalized because it has been demonstrated many 

times that the normalization procedure has great impact on the inference 

of DEGs [53-55]. In microarray data analysis, the comparisons of 

expression levels can be made more reliable by normalizing for systematic 

biases, such as dye effect and hybridization artifacts. Although these 

inherent technical biases of microarrays do not exist in RNA -seq 

experiments, two main sources of systematic va riability have been 

reported in addition to the ones derived from different platforms or sites. 

The first is within-sample gene-specific effects, such as GC-content biases 

and gene length. The former shows strong sample -specific effects on 

RNA-seq; the latter represents a trend that longer genes obtain more reads 

in the read mapping process [56]. To remove these technical variations, 

several methods have been proposed [54, 57]. However, in DE analysis, 

where the genes are individually tested for expression differences between 

samples, such within-sample biases are usually ignored because they 

probably contribute equally to all samples. The second variation is 

between-sample distribution differences in read counts, such as 

differences in total counts (i.e., sequencing depth or library size). As 

mentioned above, the gene-specific reads approximate the expression level 

of the gene. In other words, the sum of the reads in a sample indicates the 

full expression level of all genes. Therefore, normalization by library size 

is particularly important for DEG detection in different samples because 

different samples generally have dif ferent library sizes. Most 

normalization methods are developed to address this issue.  

The most straightforward way to adjust for the variation of library 

sizes is to simply rescale or resample the read counts of all samples to be 

equal. However, such a normalization neglects the fact that read counts 

inherently represent the relative expression level of genes. Consider, for 

example, a situation in which two library sizes are the same but the reads 

in one sample are evenly distributed while the reads in the other sample 
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are not, resulting in more falsely called DEGs [53]. To account for this 

issue and make the counts comparable across samples, inter -sample 

normalization is achieved by scaling the raw read counts in each sample 

by a single sample-specific factor reflecting its library size, which is also 

called the normalization factor . In recent years, numerous methods have 

been proposed for calculating these scaling factors.  

To begin with, the famous proposal by Mortazavi et al. [28] is to 

divide the number of reads C i from a specific gene i with a L i gene length 

simply by the total number of reads (N = ∑ 𝐶i𝑖 ) in each library. This 

normalization procedure is named reads per kilobase of exon model per 

million mapped reads (RPKM i), which can be viewed as the normalized 

read count of gene i:  

 

𝑅𝑃𝐾𝑀i =  
𝑟𝑎𝑤 𝑟𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡𝑠 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖 (𝐶𝑖)

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑁) ×  𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑔𝑒𝑛𝑒 𝑖 (𝐿i)
 

 

A variation is fragments per kilobase of exon model per million 

mapped fragments (FPKM) [40]. FPKM corrects differences in both 

library size and gene length by normalizing the number of reads from a 

specific gene by both its length and the total number of mapped reads in 

the sample. 

 

𝐹𝑃𝐾𝑀 =  
𝑡𝑜𝑡𝑎𝑙 𝑔𝑒𝑛𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠)  ×  𝑔𝑒𝑛𝑒 𝑙𝑒𝑛𝑔𝑡ℎ (𝐾𝐵)
 

 

The difference between RPKM and FPKM is the counting object. The 

former involves mapped reads, whereas the latter involves mapped 

fragments. Hence, the formulas are slightly different. When raw data 

originate from paired-end sequencing, fragments are sequenced from both 

ends, providing two reads for each fragment. However, in the scheme of 

these two approaches, the proportional representation of each gene is not 

independent from the expression levels of  all other genes. Often large 

proportions of the reads are mapped onto a small fraction of highly 

expressed genes, for which small expression changes will skew the counts 

of lowly expressed genes. As a result, erroneous DE from lowly expressed 
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genes is easily inferred. Therefore, RPKM and FPKM mitigate but do not 

completely eliminate the bias derived from gene length [58]. 

Per-sample total read count (TC) is a variant of RPKM. Of a fixed 

count for all samples, TC scales each sample to the average total count per 

sample. More specifically, gene counts are divided by the library size 

associated with their sample and multiplied by the mean total count from 

the whole count data.  

A quartile of the per-sample count distribution (e.g., upper quartile, 

UQ) is similar to TC in principle. The difference is that UQ scales the 

expression level at the 75 th percentile of each sample to the average of all 

samples [59]. 

Median (Med) is also similar to TC in principle. The difference is that 

gene counts are divided by the median counts associated with their sample 

[59]. 

The normalization factors computed from the above methods are 

permanent across all samples. Alternatively, the following two methods 

turn out robust summaries including sample-specific normalization factors 

by relating each sample to a pre-defined reference sample.  

The trimmed means of M values (TMM) normalization method was 

proposed by Robinson and Oshlack [60] and originally implemented in the 

edgeR Bioconductor package [61]. TMM has been implemented in many 

other packages. Its assumption is that most genes are non-DEGs. In 

executing this method, one sample is considered the  reference sample and 

the others are the test samples. The TMM factor is computed as the 

weighted mean of log ratios between the reference and test samples, after 

the exclusion of the most expressed genes, not expressed genes, and genes 

with the biggest log ratios. According to the above hypothesis, this TMM 

should be close to 1. If not, an estimate of the correction factor wi ll be 

provided by the value to adjust the library size [60]. 

The DESeq normalization method is implemented in the DESeq 

Bioconductor package [62] and is based on the hypothesis that most of the 

genes are not DEGs, but non-DEGs. It computes a scaling factor for a 

given sample by computing the median of the ratio, for each gene, of its 

read count over its geometric mean across all samples. Because most 
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genes are assumed to be non-DEGs, they should have similar read counts  

across samples, which results in a ratio of 1. The median ratio for each 

sample can be used to generate a correction factor that should be applied 

to all read counts for this sample to fulfill the hypothesis.  

In addition, there are other methods to calcul ate statistics similar to 

normalization factors.  

Quantile (Q) normalization was initially proposed for microarray data. 

Now, it can also be used to deal with RNA-seq count data. Q sorts the 

counts from each sample and sets the values to be equal to the qua ntile 

mean from all samples to make the counts across all samples have the 

same distribution. It can be implemented in the limma Bioconductor 

package by calling the “normalize.quantiles” function. Recently, a new 

normalization function termed voom, designed specifically for RNA-seq 

data, was added to the limma package. It performs a locally weighted 

scatterplot smoothing (LOWESS) regression to estimate the mean –

variance relationship and transforms the read counts to the appropriate log 

form for linear modeling [60, 63].  

The PoissonSeq Bioconductor package [64] defines a gene set that is 

least differentiated between two conditions using a goodness -of-fit 

estimate, which is then used to compute library normalization factors.  

Although several systematical comparison studies have been reported, 

this important step of RNA-seq analysis is still not resolved and 

completely investigated because of unknown nuisance technical effects 

[53, 55, 65]. In particular, more complex experiments are usually 

accompanied more strongly by these unknown effects. In a recent study, 

Risso et al. [29] described a new normalization strategy named remove 

unwanted variant using pilot data from the SEQC  project, which can  

remove the unwanted variation as much as possible from RNA-seq data. 
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Figure 5 - From count data to DEG identification in RNA-seq data analysis 

There are two main steps in the RNA-seq data analysis: normalization and 

identification. The purpose of normalization is to reduce the systematic variability .  

After the normalization step, the expression levels from an individual gene between 

different samples can be compared . Usually, every gene will be distributed a p  value or 

posterior probability, which indicates the signifi cance of DE. A user-defined threshold 

will be set to cut the genes into DEGs and non-DEGs groups.  
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1.4 Statistical modeling of read counts 

Over the past decades, various statistical methods  have been developed for 

analyze expression profiling data generated by microarrays. Up to now, 

we can note that the data from microarray and RNA-seq are inherently 

different. As mentioned earlier, microarray data is “analog” since 

expression levels are represented as continuous hybridization signal 

intensities. In contrast, RNA-Seq data is “digital”, representing expression 

levels as discrete counts. This inherent difference leads to the difference 

in the parametric statistical methods that since they often depend on the 

assumptions of the random mechanism that generates the data. For 

example, the normal distribution is a common distribution for statistical 

comparisons involving continuous data. It is generally assumed that the 

log intensities (or expression levels) in a microarray experiment are 

approximately normally distributed. However, this kind of distribution 

cannot be directly applied to model the read counts in an RNA-seq 

experiment without first examining the underlying distributions.  

In contrast, there are several kinds of count-based distribution suitable 

for modeling discrete read counts. Since the short sequence reads were 

independent samples from a population with given, fixed fractions of 

genes, the read counts would follow a multinomial distr ibution, which can 

be approximated by the Poisson distribution  [30, 53]. An essential 

property of Poisson distribution is that the mean (𝜇) equals to variance (𝑣). 

Therefore, read counts across technical replicates derived from a single 

source fit well to a Poisson distribution. However, most of the time, the 

variance of gene expression on biological replicates (BRs) derived from 

different individuals is larger than its mean expression values. In other 

words, the assumption of Poisson distribution is too restrictive as it 

predicts smaller variations than that is seen in the data with BRs. 

To address this so-called over-dispersion problem, for data with BRs 

derived from different individuals, the read counts well fit to an over -
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dispersed Poisson distribution such as negative binomial distribution (NB) 

[61, 62, 66], beta-binomial (BB) model [67, 68], Poisson-Tweedie model 

[69] and so on. In particular, the Poisson-Tweedie model well captures the 

biological variation (especially for zero-inflation and heavy tail behavior, 

for details see [69]) when many BRs are available. As an increase in 

sample size (i.e.,  the number of BRs) precedes an increase in sequencing 

depth (i.e., the number of sequenced reads) [70-72], a more complex 

model such as Poisson-Tweedie may be the first choice for count data with 

many BRs. However, as many replicates are still difficult to take due to 

sequencing cost and the small amount of the target RNA sample, RNA -seq 

data with few BRs have mainly been stored.  As a result, the methods 

based on the NB model have been widely used as a common choice for DE 

analysis of RNA-seq data with few BRs [61, 62, 73, 74].  

In fact, the NB distribution describes a failure distribution (y) of one 

event, whose incidence (p) is permanent in a Bernoulli’s experiment. In 

that experiment, the event comes out r times. The conclusive parameter 

(Y) indicating the probability of all failures will be calculated by the 

following formula.  

𝑓(𝑦; 𝑝, 𝑟) = 𝑃(𝑌 = 𝑦) =
Γ(𝑦)

Γ(𝑟)Γ(𝑦 − 𝑟 + 1)
𝑝𝑟(1 − 𝑝)𝑦−𝑟 

 

However, to read counts, the expected value and dispersion is very 

important. Assuming the expected value is 𝜇 and the dispersion value is 𝜙 

(𝜙 > 0), the p and r will be replaced like in the following equations.  

 

𝑝 =
1

1 + 𝜇𝜙
 

 

𝑟 = 𝜙−1 

After the replacement, the distribution parameters ( 𝜇  and 𝜙 ) will 

change the above the formula.  

𝑓(𝑦; 𝜇, 𝜙) = 𝑃(𝑌 = 𝑦) =
Γ(𝑦 + 𝜙−1)

Γ(𝜙−1)Γ(𝑦 + 1)
(

1

1 + 𝜇𝜙
)

𝜙−1

(
𝜇

𝜙−1 + 𝜇
)

𝑦

 

 

Then the expected value and variance will be described like in the 

following formulas. 

𝐸(𝑌) = 𝜇 
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𝑉(𝑌) = 𝜇 + 𝜙𝜇2 
 

In other words, when NB distribution is used to model the read counts, 

the NB distribution has parameters, which are uniquely determined by 

mean  𝜇 and variance 𝑣. Their relation is defined as 𝑣 = 𝜇 +  𝜙𝜇2, where 𝜙 

is the dispersion factor.  This conversion was first introduced by Robinson 

et al. [61] and was expanded in some other studies. 
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1.5 DEG identification 
As mentioned above, the relative expression level of genes can be 

quantified by the read counts using RNA-seq technology. Based on its 

high throughput, RNA-seq can capture the expression of almost all genes 

in a specific sample. The set of gene-wise counts makes up the expression 

profile for the sample, in which the expression level of unknown genes 

can also be seen. After the normalization of raw read counts, it becomes 

possible to find the causes of different physiological characteristics 

between samples by testing DE. As a result, it becomes easier for 

researchers to analyze the differences between samples at a higher 

resolution, particularly to identify potential DEGs. M ost of the popular 

normalization methods are model-based, as described in Section 1.3. 

Usually, the test is performed after the estimation of the parameters for 

the appropriate statistical model.  

Take the detection of DEGs from two samples as an example. The raw 

data are normalized with various normalization methods. After that, or at 

the same time, the parameters of the statistical model fitted for this data 

are estimated before testing DE. As a result, a p value will be calculated 

for each gene. A low p value suggests that the possibility that the 

expression levels of a specific gene across samples are occasionally the 

same is very low. Conversely, the possibility that the gene is differentially 

expressed in the samples is high. To address the multiplicit y problem of p 

values for multiple genes, the false discovery rate (FDR) controlling 

approach proposed by Benjamini and Hochberg is adopted. The genes are 

subsequently listed by ascending order of their FDRs. Given a threshold, 

the genes whose FDRs are smaller than the threshold will be identified as 

DEGs, while the others are identified as non-DEGs. In other words, in the 

new list, DEGs are top-ranked while non-DEGs are bottom-ranked and 

their order results from the significance of DE.  

A variation of Fisher’s exact test is used in both the edgeR and DESeq 

packages. It is adopted for NB distribution, and the returned  p values are 

calculated from the derived probabilities [61, 62]. 

Limma uses a moderated t-statistic to compute p values in which both 

the standard error and the degrees of freedom are modified. The standard 
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error is moderated across genes with a shrinkage factor, which effectively 

borrows information from all genes to improve the inference on any single 

gene. The degrees of freedom are also adjusted by a term that represents 

the a priori number of degrees of freedom for the model [75].  

The baySeq approach estimates two models (DEG and non-DEG) for 

every gene. The posterior likelihood of the model for DEG, given the 

observed data, is used [66].  

In the PoissonSeq method, the test for DE is simply a test for the 

significance of the gi  term (i.e., the correlation of gene i expression with 

the two conditions), which is evaluated by score statistics. By simulation 

experiments, it was shown that these score statistics follow a chi-squared 

distribution, which is used to derive p values for DE [64]. 

 The test statistics T = E[log(x)]/Var[log(x)] is employed by Cuffdiff, 

where x is the ratio of the normalized counts between two conditions and 

this ratio approximately follows a normal distribution; therefore , a t-test is 

used to calculate the p value for DE.  

All methods use standard approaches for multiple hypothesis 

correction (i.e., Benjamin–Hochberg) except for PoissonSeq, which 

implements a novel estimation of FDR for count data that is based on 

permutation.  
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1.6 The purpose of this study 

Since 2005, the RNA-seq technology has been more and more popular in 

many biological fields. However, lacking of effective and robust analysis 

methods limits the researchers to obtain reliable bioinformation. Although 

there are many well-established methods available for DE analysis in 

microarray, they cannot be immediately transferable to the analysis of 

RNA-seq data since the radical difference between the two kinds of digital 

data. Therefore, in the past decade, the bioinformatics community is 

continuously launching methods for analysis of RNA-seq count data 

(Table 3). Meanwhile, several methods for microarray data analysis have 

been adapted to RNA-seq count data and it was demonstrated that  the 

adapted methods perform comparably to the methods designed for RNA-

seq [75]. In order to compare these methods comprehensively, several 

evaluation studies have also been reported  [71, 76]. However, these 

evaluations are limited the two-group comparisons (i.e., two cellular 

conditions or phenotypes). On the other hand, with the ongoing update, 

more and more methods start to have the capability of dealing with multi -

group (>2) or multi-factored RNA-seq experiments where multiple 

biological conditions and different sequencing protocols are included  [61, 

62]. Therefore, accumulations of comparative studies for multi -group data 

are also desired. 

In this study, we elaborate the exact usages of the state-of-the-art 

methods, which have the capability of dealing with multi-group RNA-seq 

count data. We also compare 12 pipelines available in nine R packages for 

detecting DE from multi-group RNA-seq count data, focusing on three-

group data with or without replicates. We evaluate those pipelines on the 

basis of both simulation data and real count data  [77]. 
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Table 3 - Methods for calling DEGs in RNA-seq data analysis 

Method 
Proposed 

Year  

 Statistical  

Model 

Multiple 

Group  

Programming  

 Language 
Reference 

DESeq 2010 NB Yes R [62] 

edgeR 2010 NB Yes R [61] 

DEGseq 2010 NB No R [78] 

baySeq 2010 NB Yes R [66] 

GPseq 2010 Poisson No R [79] 

ASC 2010 NB No R [80] 

NOIseq 2011 NULL No R [81] 

TSPM 2011 Poisson No R [82] 

NBPSeq 2011 NB No R [83] 

PoissonSeq 2012 Poisson Yes R [64] 

BitSeq 2012 NB No C/C++ [84] 

QuasiSeq 2012 NB No R [85] 

GFOLD 2012 Poisson No C/C++ [86] 

TCC 2013 NB Yes R [87] 

Cuffdiff2 2013 NB No C/C++ [88] 

SAMseq 2013 NULL Yes R [89] 

EBSeq 2013 NB Yes R [90] 

DSS 2013 NB No R [91] 

ShrinkSeq 2013 NB No R [92] 

NPEBseq 2013 NB No R [93] 

DESeq2 2014 NB Yes R [94] 

voom 2014 NB Yes R [75] 

BADGE 2014 NB No Matlab [95] 

edgeR_robu
st 

2014 NB Yes R 
[96] 

This table lists 24 methods for DE detection (ascending order by the publication), most of which can be 

implemented by installing the R packages from Bioconductor or CRAN website. Null in statistical 

model column means the methods are non-parametrical. 
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Chapter 2 Analysis methods for RNA-seq data 

analysis 
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2.1 DE analysis methods investigated in the present study 

In the above chapter, we have illustrated the two steps for analyzing two-group RNA-

seq count data in detail: one step for normalizing raw count data and the other step for 

identifying DEGs. In our previous studies [87, 97], we regarded the two steps as X for 

data normalization and Y for DEG identification. Therefore, we refer X-Y pipeline to 

describe the analysis procedure of RNA-seq count data. In most of the public R 

packages in Bioconductor and CRAN websites, each of the R packages has its own 

methods for the elements of X-Y pipeline.  

Here we take the most frequently used edgeR as examples to roughly illustrate 

our analysis design. The edgeR manipulates the raw RNA-seq count data as input. It 

first calculates normalization factors (or size factors) for individual sample as X, then 

construct the model (i.e., estimate the parameters on the model in which the 

calculated normalization factors are used to re-scale the raw counts), and calculate p 

values (i.e., perform the statistical test using the model) as Y. Previous studies have 

demonstrated that X has more impact than Y on the ranked gene list [97-99], the 

normalization method TMM (Trimmed Means of M values) and the identification 

method adapted Fisher’s exact Test implemented in edgeR for two-group data 

comparison generally give satisfactory results [55]. When comparing multi-group 

data, the default normalization method is also TMM while the default DEG 

identification method is the likelihood ratio test based on generalized linear models 

(GLM) whose error structure follows the negative binomial distribution. One of the 

models corresponds to alternative hypothesis and the other corresponds to null 

hypothesis. In this study, we termed the default pipelines X-Y for edgeR as "edgeR - 

edgeR (or E-E)" (Figure 6). Accordingly, the default procedures in DESeq and 

DESeq2 can also be described as D-D and S-S. 

In section 1.3, we discussed that a more accurate normalization factor can 

estimate the gene expression more precisely. For this purpose, we previously designed 

a robust multi-step normalization procedure called TbT [97]. According to the above 

suggested theory, TbT consists of three steps: X using TMM (step 1), Y using an 

empirical Bayesian method implemented in the baySeq package [66] (step 2), and X 

using TMM after elimination of the estimated DEGs (step 3) comprising the TMM-

baySeq-TMM normalization pipeline. The key concept is to alleviate the negative 

effect of potential DEGs before calculating the normalization factor in step 3. As 
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mentioned previously [97], the DEG elimination strategy (called DEGES) can be 

repeated until the calculated normalization factors converge. The iterative TbT can be 

described as a TMM-(baySeq-TMM)n procedure. Accordingly, a generalized pipeline 

with the multi-step normalization can be described as X-(Y-X)n-Y in which the X-(Y-

X)n with n >= 2 corresponds to the iterative DEGES-based normalization (Figure 7). 

Our TCC package [87] implements the proposed pipeline X-(Y-X)n-Y. 

Recommendations are made from an extensive simulation analysis: (1) edgeR-

(edgeR-edgeR)3-edgeR on two-group RNA-seq data with few replicates and (2) 

DESeq-(DESeq-DESeq)3-DESeq on two-group data without replicates [12]. However, 

similar to many other studies [70-73, 76, 99, 100], the performance evaluations were 

limited to a two-group comparison. While many R packages as well as TCC can 

perform DE analysis on more complex experimental designs [66, 67, 74, 94, 96, 101, 

102], there have been few evaluation studies on RNA-seq data three-group data.  

To investigate the performance of DE pipelines for a multi-group comparison, a 

total of 12 pipelines available in nine packages were mainly evaluated in this study: 

TCC (ver. 1.7.15) [87], edgeR (ver. 3.8.5) [61], DESeq (ver. 1.18.0) [62], DESeq2 

(ver. 1.6.3) [94], voom [38] in limma (ver. 3.22.1) [75], SAMseq [89] in samr (ver. 

2.0), PoissonSeq (ver. 1.1.2) [64], baySeq (ver. 2.0.50) [66], and EBSeq (ver. 1.6.0) 

[90].  

The initial aim of current study was to evaluate 12 pipelines available in nine R 

packages when analyzing multi-group RNA-seq data. In particular, our primary 

interest is to investigate the effectiveness of the DEGES-based pipeline in TCC under 

such more complex designs. We report pipelines suitable for multi-group comparison. 

Note that TCC can perform several combinations for the DE pipeline X-(Y-X)n-Y with 

n = 3 as recommended [87]. We sometimes refer to this DEGES-based pipeline as 

XYX-Y with the fixed number of n for short. We basically confine individual methods 

(X and Y) in each pipeline to functions provided by the same packages (i.e., edgeR or 

DESeq2) for simplicity. That is, the edgeR-related pipeline is "edgeR-(edgeR-

edgeR)3-edgeR", where X = TMM and Y = DEG identification method, implemented 

in edgeR. Although we previously termed this pipeline "iDEGES/edgeR-edgeR" [87], 

here we abbreviate it to EEE-E for convenience. Similarly, the "DESeq-(DESeq-

DESeq)3-DESeq" pipeline can be shortened to DDD-D. This is because (1) users can 

select, for example, different DEG identification methods Y for steps 2 and 4 and (2) 

we will discuss some possible combinations such as DED-S for the "DESeq-(edgeR-
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DESeq)3-DESeq2" pipeline. In this sense, the DEGES-based pipeline can also be 

denoted as X-(Y-X)n-Z or XYX-Z. For convenience, we summarized the information of 

all pipelines in Table 3. 
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Figure 6 - Traditional two step procedure for RNA-seq data analysis 

In this present study, we refer to the two steps as X for data normalization and Y for DEG identification. 

Taking edgeR package as an example, TMM is for X, an adapted Fisher’s exact test for Y in two-group 

comparison and a statistical test in GLM model for Y in multi-group comparison. 
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Figure 7 - DE analysis pipeline with DEGES-based normalization method 

A generalized pipeline with the multi-step normalization can be described as X-(Y-X)n-Y in which the 

X-(Y-X)n with n >= 2 corresponds to the iterative DEGES-based normalization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

 

Table 4 - Information about all of the pipelines involved in this study 

Pipeline Abbreviation Package Version 
DEGES 

-based 

Bayesian 

-based 

voom voom limma v3.22.1 - - 

SAMseq SAMseq samr v2.0 - - 

PoissonSeq PoissonSeq PoissonSeq v1.1.2 - - 

baySeq baySeq baySeq v2.0.50 - + 

EBSeq EBSeq EBSeq v1.6.0 - + 

edgeR-edgeR E-E (edgeR) TCC v1.7.15 - - 

edgeR_robust edgeR_robust edgeR v3.8.5 - - 

DESeq-DESeq  D-D (DESeq) TCC v1.7.15 - - 

DESeq2-DESeq2 S-S (DESeq2) TCC v1.7.15 - - 

edgeR-(edgeR-edgeR)3-edgeR EEE-E (TCC) TCC v1.7.15 + - 

DESeq-(DESeq-DESeq)3-DESeq DDD-D (TCC) TCC v1.7.15 + - 

DESeq2-(DESeq2-DESeq2)3-DESe2  SSS-S (TCC) TCC v1.7.15 + - 

edgeR-DESeq E-D TCC v1.7.15 - - 

DESeq-edgeR D-E TCC v1.7.15 - - 

edgeR-DESeq2 E-S TCC v1.7.15 - - 

DESeq-DESeq2 D-S TCC v1.7.15 - - 

DESeq-(edgeR-DESeq)3-edgeR DED-E TCC v1.7.15 + - 

edgeR-(DESeq-edgeR)3-edgeR EDE-E TCC v1.7.15 + - 

DESeq-(DESeq-DESeq)3-edgeR DDD-E TCC v1.7.15 + - 

edgeR-(edgeR-edgeR)3-DESeq EEE-D TCC v1.7.15 + - 

edgeR-(DESeq-edgeR)3-DESeq EDE-D TCC v1.7.15 + - 

DESeq-(edgeR-DESeq)3-DESeq DED-D TCC v1.7.15 + - 

edgeR-(edgeR-edgeR)3-DESeq2 EEE-S TCC v1.7.15 + - 

DESeq-(edgeR-DESeq)3-DESeq2 DED-S TCC v1.7.15 + - 

edgeR-(DESeq-edgeR)3-DESeq2 EDE-S TCC v1.7.15 + - 

DESeq-(DESeq-DESeq)3-DESeq2 DDD-S TCC v1.7.15 + - 

Information for all pipelines involved in this thesis. The pipelines with “-” symbol in abbreviation are 

constructed in TCC package. Note that the pipelines in edgeR, DESeq and DESeq2 packages are 

originally inherited in TCC package. Normalization and identification methods of the above 12 

pipelines in Table 4a are from individual package while the bottom 14 pipelines in Table 4b are from 

two different packages.  
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2.2 DE analysis using individual packages 

As shown in Table 3, all the DEGES-based pipelines X-(Y-X)n-Z or 

XYX-Z were performed using the TCC package. This kind of pipeline 

includes EEE-E, DED-E, EDE-E, DDD-E, EEE-D, DED-D, EDE-D, DDD-

D, SSS-S, EEE-S, DED-S, EDE-S, and DDD-S. Four other pipelines (D-E, 

E-D, E-S, and D-S) were also performed using this package, since hey 

were the hybrid ones originally implemented in different packages  and 

only can be performed via TCC package. These DEGES-based and non-

DEGES-based pipelines were performed using two functions 

("calcNormFactors" and "estimateDE") in the package. The genes were 

ranked in ascending order of the p values. The p value adjustment for the 

multiple-testing problem was performed using the "p.adjust" function with 

method="BH" option (Benjamin-Hochberg FDR calculation).  

Two pipelines, E-E (the same as the default edgeR procedure) and 

edgeR_robust, were performed using the edgeR package. The E-E pipeline 

for analyzing count data with replicates was performed using the 

following functions: "DGEList", "calcNormFactors", 

"estimateGLMCommonDisp" with default options, 

"estimateGLMTrendedDisp", "estimateGLMTagwiseDisp", "glmFit", and 

"glmLRT." When analyzing count data without replicates, the 

"estimateGLMCommonDisp" function with three options 

(method="deviance" , robust=TRUE, and subset=NULL) was used and two 

functions ("estimateGLMTrendedDisp" and "estimateGLMTagwiseDisp") 

were not used, as suggested. The edgeR_robust method was performed 

using the following functions: "DGEList", "calcNormFactors", 

"estimateGLMRobustDisp", "glmFit", and "glmLRT." The gene ranking 

and p value adjustment procedure were performed in the same way as 

described above. 

The pipeline D-D in the DESeq package was performed using the 

following functions: "newCountDataSet", "estimateSizeFactors", 

"estimateDispersions" with default options for analyzing data with 

replicates, and "fitNbinomGLMs." For analyzing data without replicates, 

the "estimateDispersions" function with following options was used as 
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suggested: method="blind"  and sharingMode="fit-only." The genes were 

ranked in ascending order of the p values. The p value adjustment for the 

multiple-testing problem was performed using the "p.adjust" function with 

method="BH"  option (Benjamin-Hochberg FDR calculation).  

The pipeline S-S in the DESeq2 package was performed using the 

following functions: "DESeqDataSetFromMatrix", "estimateSizeFactors", 

"estimateDispersions", and "nbinomLRT."  The genes were ranked in 

ascending order of the p values. Since this package provides adjusted p 

values, the number of DEGs satisfying the 5% FDR threshold was 

obtained using the values.  

The pipeline voom in the limma package was performed using the 

following functions: "DGEList", "calcNormFactors" in edgeR, "voom", 

"lmFit", "eBayes", and "topTable". The gene ranking was performed using 

the resultant p values. Since this package provides adjusted p values, the 

number of DEGs satisfying the 5% FDR threshold was obtained using the 

values.  

The pipeline SAMseq in the samr package was performed using the 

"SAMseq" function with following options: nperms=100, nresamp=20, 

resp.type="Multiclass", and fdr.output=1.0. Since this package only 

provides adjusted p values, the gene ranking was performed using the 

adjusted p values. 

The pipeline PoissonSeq was performed the "PS.Main" function with 

npermu=500 option. The gene ranking was performed using the resultant p 

values. Since this package provides adjusted p values, the number of 

DEGs satisfying the 5% FDR threshold was obtained using the values.  

The pipeline baySeq was performed using the following functions: 

"new", "getLibsizes" with estimationType="edgeR"  option, "getPriors.NB" 

with samplesize=5000 and estimation="QL" options, "getLikelihoods" 

with pET="BIC" option, and "topCounts." Since this package only 

provides adjusted p values, the gene ranking was performed using the 

values. The ordering information in the output of the "topCounts" function 

was used for classifying the expression patterns of genes.  

The pipeline EBSeq was performed using the following functions: 

"GetPatterns", "MedianNorm", "EBMultiTest" with three options 
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(maxround=5, Qtrm=1.0, and QtrmCut=-1), and "GetMultiPP." There are 

five expression patterns to consider when comparing three -group data. The 

"EBMultiTest" function was performed with the consideration of all the 

five possible patterns. The posterior probability obtained from the "non -

DEG" pattern was used as a surrogate estimate for the adjusted p values. 

The gene ranking was performed using the values. The MAP information 

in the output of the "GetMultiPP" function was used for classifying the 

expression patterns of genes.  Most of the above mentioned options were 

tested in a small scale in order to obtain the optimum paramters or the 

optimized option combination in one package. For example, we changed 

the maxit parameter of edgeR_robust from 5 to 12 and 24. Or we test 

different combinations with three options of DESeq package , “method”, 

“sharingMode”, and “fitType” in “estimateDispersions” function. Table 5 

summarizes the functions and options interrogated in this study.  
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Table 5 - Average AUC values for simulation data with various options  

Pipeline E-E (edgeR)     

Simulation condition PDEG = 5%, (0.5, 0.4, 0.1) for (PG1, PG2, PG3), and Nrep = 3   

calcNormFactors glmLRT AUC 

method="TMM" test = "chisq" 
 

91.47 

method="RLE" test = "chisq" 
 

91.46 

method="upperquartile" test = "chisq" 
 

91.40 

method="none" test = "chisq" 
 

91.19 

method="TMM" test = "F" 
 

91.47 

method="RLE" test = "F" 
 

91.46 

method="upperquartile" test = "F" 
 

91.40 

method="none" test = "F" 
 

91.19 

Pipeline D-D (DESeq)     

Simulation condition PDEG = 5%, (0.5, 0.4, 0.1) for (PG1, PG2, PG3), and Nrep = 3   

estimateDispersions AUC 

method="pooled" sharingMode = "maximum" fitType = "parametric" 90.60 

method="pooled-CR" sharingMode = "maximum" fitType = "parametric" 90.43 

method="blind" sharingMode = "maximum" fitType = "parametric" 90.47 

method="pooled" sharingMode = "fit-only" fitType = "parametric" 90.95 

method="pooled-CR" sharingMode = "fit-only" fitType = "parametric" 90.78 

method="blind" sharingMode = "fit-only" fitType = "parametric" 91.46 

method="pooled" sharingMode = "gene-est-only" fitType = "parametric" 86.79 

method="pooled-CR" sharingMode = "gene-est-only" fitType = "parametric" 87.18 

method="blind" sharingMode = "gene-est-only" fitType = "parametric" 85.57 

method="pooled" sharingMode = "maximum" fitType = "local" 90.78 

method="pooled-CR" sharingMode = "maximum" fitType = "local" 87.11 

method="blind" sharingMode = "maximum" fitType = "local" 90.24 

method="pooled" sharingMode = "fit-only" fitType = "local" 91.40 

method="pooled-CR" sharingMode = "fit-only" fitType = "local" 85.56 

method="blind" sharingMode = "fit-only" fitType = "local" 91.69 

method="pooled" sharingMode = "gene-est-only" fitType = "local" 86.79 

method="pooled-CR" sharingMode = "gene-est-only" fitType = "local" 87.18 

method="blind" sharingMode = "gene-est-only" fitType = "local" 85.57 

Pipeline S-S (DESeq2)     

Simulation condition PDEG = 25%, (0.5, 0.4, 0.1) for (PG1, PG2, PG3), and Nrep = 1 

estimateSizeFactors estimateDispersions   

type="ratio" fitType="parametric" 
 

82.01 

type="iterate" fitType="parametric" 
 

81.91 

type="ratio" fitType="local" 
 

81.53 

type="iterate" fitType="local" 
 

81.31 

type="ratio" fitType="mean" 
 

76.02 

type="iterate" fitType="mean" 
 

75.84 

Average AUC values of 100 trails are shown. The suggested (or default) options and the highest AUC 

values are in bold. 
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2.3 ROC curve and AUC value 

As mentioned above, in terms of hypothesis tests  in DEG identification 

step, each gene will be predicted as DEG or non-DEG according to a 

specific threshold. In a simulation trial,  all of the genes are preset to 

DEGs or non-DEGs, which can be regarded as real DEGs and real non -

DEGs. If a real DEG is predicted as a DEG., we call the prediction is True 

Positive (TP); on the contrary, if the gene is predicted as a non-DEG, we 

call the prediction is False Negative (FN). Similarly, if a real non-DEG is 

predicted as a DEG, the prediction is False Positive (FP); the gene is 

predicted as non-DEG, the prediction is True Negative (TN). The true 

positive rate (TPR) and the true positive rate (TPR) can be calculated by 

the two following formulas.  

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

The TPR is also known as sensitivity corresponding to Type I error 

while the FPR is also known as fall -out and can be calculated as (1 - 

specificity). In statistics, a  receiver operating characteristic (ROC), or 

ROC curve, is a graphical plot that illustrates the performance of a  binary 

classifier system as its discrimination threshold is varied. The curve is  

created by plotting TPR against FPR at various threshold settings.  The 

area under the ROC curve (i.e., AUC) values is used for evaluating 

individual combinations based on sensitivity and specificity 

simultaneously. A good combination should therefore have a high AUC 

value, which indicates high sensitivity and specificity. In this study, all of 

the AUC values are expressed in three or four digital  percentage. 

In practice, gene list ranked in accordance with the level of DE are 

pre-required for calculating AUC values.  According to the level (i.e., p 

value  (1)), a list of scores will be generated and the genes are ranked 

by the scores. Take the table of Figure 8 as an example, the larger ranking 

number indicates bigger probability of DE. A variable is set to decrease 
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progressively from 10000 to 1 with the interval of 1. In a trial, the genes 

with larger ranking number than the specific value of the variable is 

predicted as DEG, the others are predicted as non-DEGs. Then TPR and 

FPR can be calculated and used as a couple of coordinates for plotting a 

dot. Accordingly, there will be more and more dots in the plotting board 

with the decreasing of the variable. As a result, 10000 dots are linearly 

bound up to a line named ROC curve. The area under the curve is 

calculated as AUC value. Therefore, if the scores are distributed to the 

DEGs and non-DEGs randomly, the AUC value of the line connecting the 

start point (0, 0) and end pint (1, 1) is approximately 0.5  (green line in 

Figure 8). In case of DEGs with high scores and non-DEGs with low 

scores, the AUC value will reach 1 (red line in figure 8). In the opposite 

case, the AUC value will decline to 0. 

To the wet lab biologists, in the process of biological data analysis, 

they just focus on the top significant differentially expressed genes  (e.g., 

10000 * 1% = 100). In this situation, the variable will be changed from 

10000 to 9900. The computed AUC value from this is called partial AUC 

value, versus the full AUC values introduced above.  In this study, we use 

“pAUC” function in pROC CRAN package to calculate partial AUC values.  
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Figure 8 - ROC curve plotting and its characteristics 

ROC curve is one kind of approach for evaluating the DEG detecting power by comparing the DEG 

information from predicted results and fact. It is plotted by true positive rate (TPR) against false 

positive rate (FPR). If the prediction results are generated randomly, the curve (green line) is close to 

the grey diagonal line. If most of the predicated DEGs hit, the curve (red line) approaches the left-up 

corner.  The area between the curve and x-axis can be computed and the resulting value is quantified as 

AUC value (area under the curve). In sum, the AUC value indicates the performance of one prediction 

trial. The larger the AUC value is, the better the prediction is. 
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2.4 Computer environment 
All analyses were performed using R (ver. 3.2.0 pre-release) and 

Bioconductor [103]. The following is the displayed information about 

the computer environment for this study after entering the “sessionInfo()” 

command in the R user interface. 

> sessionInfo() 

R version 3.2.0 pre-release (2015-04-16) 

Platform: x86_64-unknown-linux-gnu (64-bit) 

Running under: CentOS release 6.2 (Final) 

 

locale: 

 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C 

 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8 

 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8 

 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C 

 [9] LC_ADDRESS=C               LC_TELEPHONE=C 

[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C 

 

attached base packages: 

 [1] splines   stats4    parallel  stats     graphics  grDevices utils 

 [8] datasets  methods   base 

 

other attached packages: 

 [1] EBSeq_1.6.0             gplots_2.17.0           blockmodeling_0.1.8 

 [4] PoissonSeq_1.1.2        combinat_0.0-8          samr_2.0 

 [7] matrixStats_0.14.2      impute_1.42.0           TCC_1.7.15 

[10] ROC_1.44.0              baySeq_2.0.50            perm_1.0-0.0 

[13] abind_1.4-3             edgeR_3.8.5            limma_3.22.1 

[16] DESeq2_1.6.3            RcppArmadillo_0.5.300.4 Rcpp_0.12.0 

[19] GenomicRanges_1.20.5    GenomeInfoDb_1.4.1      IRanges_2.2.7 

[22] S4Vectors_0.6.3         DESeq_1.18.0            lattice_0.20-33 

[25] locfit_1.5-9.1          Biobase_2.28.0          BiocGenerics_0.14.0 

 

loaded via a namespace (and not attached): 

 [1] gtools_3.5.0         digest_0.6.8         plyr_1.8.3 

 [4] futile.options_1.0.0 acepack_1.3-3.3      RSQLite_1.0.0 

 [7] ggplot2_1.0.1        gdata_2.17.0         annotate_1.46.1 

[10] rpart_4.1-10         proto_0.3-10         BiocParallel_1.2.20 

[13] geneplotter_1.46.0   stringr_1.0.0        foreign_0.8-65 

[16] munsell_0.4.2        nnet_7.3-10          gridExtra_2.0.0 

[19] Hmisc_3.16-0         XML_3.98-1.3         bitops_1.0-6 

[22] MASS_7.3-43          grid_3.2.0           xtable_1.7-4 

[25] gtable_0.1.2         DBI_0.3.1            magrittr_1.5 

[28] scales_0.2.5         KernSmooth_2.23-15   stringi_0.5-5 

[31] XVector_0.8.0        reshape2_1.4.1       genefilter_1.50.0 

[34] latticeExtra_0.6-26  futile.logger_1.4.1  Formula_1.2-1 

[37] lambda.r_1.1.7       RColorBrewer_1.1-2   tools_3.2.0 
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[40] survival_2.38-3      AnnotationDbi_1.30.1 colorspace_1.2-6 

[43] cluster_2.0.3        caTools_1.17.1 
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Chapter 3 Simulation study 
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3.1 Generation of simulation data 

There are several approaches developed for generating simulation data. 

However, most of them are completed by several codes, which are deeply 

hidden in the vignettes of these approaches. To the best of our knowledge, 

only the compcodeR package proposed by Soneson, C [104] and the TCC 

package proposed by Sun et al. [87] can generate simulation count data 

with one function very easily. compcodeR provides an interface for users 

to several popular methods for DE analysis of RNA-seq data and contains 

functionality for comparing the analysis results from several methods  

[104]. In particular, it can introduce outliers into the simulation data. 

However, it is restricted to generate two-group data and an extension will 

be needed for multi-group data simulation. On the other hand, TCC can 

generate the multi-group simulation data and can meet our requirements. 

So, in our study, all of the count data are come out from the TCC data 

simulation framework [105]. 

In TCC, the three-group simulation data were produced using the 

"simulateReadCounts" function. The variance (𝜈) of the negative binomial 

(NB) distribution can generally be modeled as 𝜈 =  𝜇 +  𝜙𝜇2. The empirical 

distribution of read counts for producing the mean (  ) and dispersion ( ) 

parameters of the NB model was obtained from Arabidopsis  data (three 

BRs for both the treated and non-treated samples) in [51]. The output of 

the "simulateReadCounts" function is stored in the TCC class object with 

information about the simulation conditions and is therefore ready-to-

analyze. 

Following our previous study [87, 97], we here demonstrate the 

performance of these pipelines mainly based on the same evaluation 

metric and simulation framework. In the simulation study, we use the 

AUC value as a main measure for comparison, which evaluates both 

sensitivity and specificity of the pipelines simultaneously [76, 104, 106-

110]. To perform the multi-group comparison as simply as possible, here 

we firstly focus on the three-group data (i.e., G1 vs. G2 vs. G3) with equal 

numbers of BRs (i.e., 1, 3, 6, and 9 replicates per group; Nrep = 1, 3, 6, 

and 9). The gene ranking was performed on the basis of an ANOVA -like p 
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value or the derivatives, where a low p value for a gene indicates a high 

degree of DE in at least one of the groups compared . The simulation 

conditions are as follows: the total number of genes is 10,000 (Ngene = 

10000), 5 or 25% of the genes are DEGs (P DEG = 5 or 25%), the levels of 

DE are four-fold in individual groups, and the proportions of DEGs up -

regulated in individual groups (PG1, PG2, PG3) are (1/3, 1/3, 1/3), (0.5, 0.3, 

0.2), (0.5, 0.4, 0.1), (0.6, 0.2, 0.2), (0.6, 0.3, 0.1), (0.7, 0.2, 0.1), and (0.8, 

0.1, 0.1). Figure 9 shows an exact sample for three-group count data. 

Among the 10000 genes, there are 1000, 800 and 200 up-regulated genes 

distributed in group 1 (G1), group 2 (G2), and group 3 (G3) separately. 

The expression levels of up-regulated genes are obviously higher in the 

designated group than in the other two groups.  
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Figure 9 - Three-group simulation data with equal number of replicates 

The simulation condition is as follows: the total number of genes is 10,000 (Ngene = 10000), the 

number of replicates is 3 (Nrep = 3), 20% of the genes are DEGs (PDEG = 20%), the level of DE is four-

fold in individual groups, and the proportions of DEGs up-regulated in individual groups (PG1, PG2, 

PG3) are (0.5, 0.4, 0.1) which means that there are 1000, 800 and 200 up-regulated genes in G1, G2 and 

G3 separately. 
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3.2 Results from simulation data with replicates 

We first assessed the performances of a total of 12 pipelines: three 

pipelines in TCC (i.e., EEE-E, DDD-D, and SSS-S), edgeR, edgeR_robust, 

DESeq, DESeq2, voom, SAMseq, PoissonSeq, baySeq, and EBSeq. Table 

6 lists the average AUC values of 100 trials  between the ranked gene lists 

and the truth for various simulation conditions with Nrep = 3. Overall, the 

AUC values for the EEE-E pipeline were the highest and similar across 

the seven different proportions of DEGs up-regulated in individual groups 

(PG1, PG2, PG3). The edgeR (i.e., the pipeline E-E) performed the second 

best overall. EEE-E and edgeR performed comparably under the unbiased 

proportion of DEGs in individual groups (1/3, 1/3, 1/3). This is quite 

reasonable because the EEE-E can be viewed as an iterative edgeR 

pipeline: their theoretical performances are the same under the unbiased 

condition [12]. Similar to the relationship between EEE-E and edgeR, the 

DDD-D (or SSS-S) can be viewed as an iterative DESeq (or DESeq2) 

pipeline. As expected, DDD-D (or SSS-S) consistently outperformed 

DESeq (or DESeq2) in all simulation conditions except for the unbiased 

situations. 

We observed similar AUC values across the seven different 

proportions of DEGs for individual pipelines at P DEG = 5% (Table 6a). 

When a higher amount of DEGs was introduced (i.e., P DEG = 25%; Table 

6b), the performances generally worsened in accordance with  the 

increased degrees of biases (i.e., from left to right in Table 6). For 

example, the AUC values for voom under the unbiased (1/3, 1/3, 1/3) and 

most biased (0.8, 0.1, 0.1) proportions decreased from 87.08% to 84.56%. 

We observed relatively poor performances for EBSeq and voom. This is 

consistent with a previous simulation study on two-group data with a low 

number of BRs (Nrep = 2) [28]. A possible explanation of these results is 

that EBSeq was originally developed to detect differential  isoforms (not 

DEGs) [41] and the large body of methodology in voom is for microarray 

data (not RNA-seq count data) [38]. Our current evaluation focuses on the 

gene-level RNA-seq count data and does not address the problem of such a 

detailed resolution of the analysis. SAMseq and PoissonSeq performed 



 54 

stably across different proportions. This is probably because both methods 

are non-parametric ones that do not assume any particular distribution for 

the data and that are generally robust against such biased situation  (Table 

3). These methods, however, performed poorly overall.  
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Table 6 - Average AUC values for three-group simulation data with replicates 

PG1 33% 50% 50% 60% 60% 70% 80% 

PG2 33% 30% 40% 20% 30% 20% 10% 

PG3 33% 20% 10% 20% 10% 10% 10% 

(a) PDEG = 5%        

EEE-E (TCC) 91.57  91.50  91.50  91.43  91.42  91.45  91.46  

DDD-D (TCC) 90.70  90.62  90.64  90.54  90.55  90.59  90.62  

SSS-S (TCC) 88.34  88.33  88.30  88.24  88.23  88.21  88.30  

E-E (edgeR) 91.58  91.48  91.47  91.38  91.37  91.38  91.34  

edgeR_robust 90.95  90.86  90.85  90.75  90.74  90.74  90.73  

D-D (DESeq) 90.71  90.60  90.60  90.50  90.49  90.50  90.48  

S-S (DESeq2) 88.34  88.31  88.26  88.19  88.17  88.11  88.14  

voom 87.16  87.01  86.99  86.88  86.91  86.88  86.86  

SAMseq 85.04  84.97  84.93  84.83  84.88  84.88  84.91  

PoissonSeq 87.31  87.25  87.25  87.19  87.17  87.22  87.23  

baySeq 90.24  90.21  90.21  90.22  90.17  90.13  90.07  

EBSeq 85.77  85.85  85.78  85.81  85.73  85.71  85.77  

(b) PDEG = 25%        

EEE-E (TCC) 91.47  91.46  91.45  91.45  91.43  91.42  91.37  

DDD-D (TCC) 90.77  90.73  90.72  90.70  90.68  90.65  90.57  

SSS-S (TCC) 88.13  88.11  88.13  88.14  88.12  88.09  88.06  

E-E (edgeR) 91.47  91.30  91.18  91.06  90.98  90.62  89.97  

edgeR_robust 90.89  90.69  90.57  90.43  90.34  89.97  89.27  

D-D (DESeq) 90.77  90.54  90.37  90.25  90.15  89.73  89.04  

S-S (DESeq2) 88.12  87.83  87.62  87.49  87.36  86.79  85.92  

voom 87.08  86.71  86.52  86.29  86.18  85.60  84.56  

SAMseq 84.95  84.82  84.82  84.77  84.75  84.72  84.63  

PoissonSeq 87.22  87.18  87.14  87.13  87.11  87.06  86.97  

baySeq 90.34  90.13  90.07  89.92  89.83  89.52  88.86  

EBSeq 85.82  85.61  85.49  85.34  85.30  84.74  84.02  

Average AUC values (%) of 100 trials for each simulation condition are shown: (a) PDEG = 5% and (b) 

PDEG = 25%. Simulation data contain a total of 10,000 genes: PDEG % of genes is for DEGs, PG1 % of 

PDEG in G1 is higher than in the other groups, and each group has three BRs (Nrep = 3). Seven 

conditions are shown in total. The highest AUC value for each condition is in bold. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 56 

 

The AUC values of all pipelines become larger when the number of 

BRs per group increases from 3 to 9 (Additional files 1 and Additional file 

2), which is consistent to several previous studies . It should be noted that 

the relative performances for EBSeq tend to better as the number of 

replicates per group increases. In particular, EBSeq consis tently 

outperformed the others when Nrep = 9 and PDEG = 5% (Additional file 2), 

suggesting that the DEGES-based pipeline based on EBSeq could produce 

a more accurate ranked gene list. However, as previously discussed for the 

DEGES-based pipeline based on baySeq [66], bayesian methods (EBSeq 

and baySeq) generally require huge computation time (Additional file 3). 

Accordingly, the implementation of DEGES for EBSeq might be 

unrealistic.  

As shown in Table 3, TCC can perform various combinations for the 

DEGES-based DE pipeline X-(Y-X)n-Z or XYX-Z, where Y and Z are the 

DEG identification methods and X is the normalization method. We 

investigated the effect of the individual methods (used as X, Y, and Z) by 

analyzing a total of 12 pipelines (eight DEGES-based pipelines and four 

non-DEGES-based pipelines). Table 7 shows the average AUC values for 

these pipelines. Note that the values in Table 6 and Table 7 are 

comparable and that those for four pipelines (EEE-E, DDD-D, E-E, and D-

D; gray colored in Table 7) are provided in both tables. It is clear that the 

choice of Z has more impact than the choice of Y on the gene ranking 

accuracy and that the use of the DEG identification method provided in 

edgeR in both Y and Z can be recommended. In comparison with the two 

normalization methods in X in the eight DEGES-based pipelines, the 

method in DESeq (denoted as "D") gave slightly higher AUC values than 

the TMM normalization method in edgeR (denoted as "E"). However, the 

superiority of DESeq in X was not observed when four non-DEGES-based 

pipelines X-Z  were compared, where edgeR (i.e., the TMM normalization 

method) outperformed DESeq. In any case, the different choices in X have 

less impact than the choices in Y and Z.  

It is supersized that the best pipeline was DED-E, followed by EEE-E 

and DDD-E (Table 7b). The DED-E and DDD-E pipelines consist of 
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methods provided by different packages. For example, DED-E (DESeq-

(edgeR-DESeq)3-edgeR) pipeline, consists of the normalization method in 

DESeq as X and the DEG identification method in edgeR as Y and Z. 

These results suggest that in some cases, the suitab le choices of the best 

pipeline may slightly improve the sensitivity and specificity of DE results . 

We should note that the current simulation data are generated by the 

"simulateReadCounts" function in TCC. This is simply because, to the 

best of our knowledge, TCC only provides the R function that can 

generate multi-group simulation count data. TCC simulates all counts 

using NB distributions, suggesting that this simulation framework 

advantageously acts on the classical R packages such as edgeR and DESeq. 

This is probably the main reason for inferior  performances of two recently 

published packages (edgeR_robust and DESeq2; Table 6); those are the 

advanced versions for edgeR and DESeq, respectively, and are robust 

against count outliers such as abnormally high counts (for details, see [94, 

96]).  
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Table 7 - Effect of different choices for the possible pipelines in TCC 

PG1 33% 50% 50% 60% 60% 70% 80% 

PG2 33% 30% 40% 20% 30% 20% 10% 

PG3 33% 20% 10% 20% 10% 10% 10% 

(a) PDEG = 5%        

EEE-E 91.57  91.50  91.50  91.43  91.42  91.45  91.46  

DED-E 91.57  91.50  91.50  91.43  91.42  91.46  91.47  

EDE-E 91.57  91.50  91.50  91.43  91.42  91.45  91.46  

DDD-E 91.57  91.50  91.50  91.43  91.42  91.45  91.46  

EEE-D 90.70  90.62  90.64  90.54  90.55  90.58  90.62  

DED-D 90.71  90.62  90.64  90.54  90.55  90.59  90.62  

EDE-D 90.70  90.62  90.64  90.54  90.55  90.58  90.62  

DDD-D 90.70  90.62  90.64  90.54  90.55  90.59  90.62  

E-E (edgeR) 91.58  91.48  91.47  91.38  91.37  91.38  91.34  

D-E 91.58  91.48  91.46  91.38  91.36  91.36  91.32  

E-D 90.70  90.61  90.61  90.50  90.50  90.51  90.50  

D-D (DESeq) 90.71  90.60  90.60  90.50  90.49  90.50  90.48  

(b) PDEG = 25%        

EEE-E 91.47  91.46  91.45  91.45  91.43  91.42  91.37  

DED-E 91.47  91.46  91.47  91.47  91.45  91.45  91.43  

EDE-E 91.47  91.43  91.41  91.40  91.36  91.30  91.19  

DDD-E 91.47  91.44  91.43  91.42  91.39  91.36  91.29  

EEE-D 90.77  90.74  90.74  90.73  90.71  90.71  90.65  

DED-D 90.77  90.74  90.76  90.75  90.73  90.74  90.71  

EDE-D 90.77  90.71  90.70  90.68  90.64  90.60  90.47  

DDD-D 90.77  90.73  90.72  90.70  90.68  90.65  90.57  

E-E (edgeR) 91.47  91.30  91.18  91.06  90.98  90.62  89.97  

D-E 91.48  91.25  91.08  90.96  90.86  90.44  89.75  

E-D 90.77  90.59  90.48  90.35  90.26  89.92  89.25  

D-D (DESeq) 90.77  90.54  90.37  90.25  90.15  89.73  89.04  
Legends are basically the same as in Table 6 . Results of a total of 12 pipelines  are 

shown. The AUC values for four pipelines (EEE-E ,  DDD-D,  E-E , and D-D) colored in 

gray are also shown in Table 6. The DED-E  pipeline outperforms the others overa ll.  
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3.3 Results from simulation data without replicates 

Several studies [71, 76, 111] and our above results (Table 6, Additional 

files 1 and 2) have demonstrated biological replicate size can greatly 

improve the accuracy of parameter estimation in the statistical parametric 

model. However, unlike (multi-group) count data with replicates,  there are 

a few packages that can manipulate count data without replicates, such as 

TCC, edgeR, DESeq, DESeq2 and so on. We here evaluated a total of 20 

pipelines (13 DEGES-based pipelines and seven non-DEGES-based 

pipelines). Table 8 shows the results for simulation data without replicates 

under PDEG = 25%. When three original non-DEGES-based pipelines X-Z 

are compared, S-S (i.e., DESeq2) performed the best, followed by D-D and 

E-E. This is completely different from Table 6. When 13 DEGES-based 

pipelines  XYX-Z are compared, the choice of Z for the DEGES-based 

pipeline has more impact than the choice of Y on the gene ranking 

accuracy (similar to Table 7) and using the DEG identification method 

provided in DESeq2 (i.e., S) can be recommended as Z. This result may 

possibly be explained by the removal of outliers that do not fit the 

distributional assumptions of the model [89]: DESeq2 [94] implements a 

functionality of outlier detection and the removal on t he basis of Cook’s 

distance [112]. In the situation of count data without replicates, DEGs 

tend to be flagged as outliers: Cook’s distances for DEGs are generally 

greater than those for non-DEGs. Therefore, the negative effect of 25% 

DEGs introduced in this simulation framework could be weakened. 

In addition to the model construction only with non-outliers in the Z 

step, the DEGES-based normalization in the XYX step also slightly but 

reliably improves ranked gene lists. That is, the AUC values for SSS-S are 

higher than those for S-S (i.e., DESeq2) because the former pipeline is by 

virtue of that kind of multi-step normalization strategy original ly 

proposed by Kadota et al . [97]. However, as also discussed in the TCC 

paper [87], DESeq and DESeq2 generally estimate FDR more 

conservatively than the others [74]. Indeed, we observed that the numbers 

of potential DEGs satisfying 10% FDR in step 2 (i.e., the Y step) in the 

SSS-S pipeline were nearly zero (i.e., the estimated PDEG values were 0%) 
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in all simulations, although the actual PDEG values were 25%. This is 

reasonable because any attempt to work without replicates will lead to 

very limited reliability [87]. TCC employs a predefined floor PDEG value 

(= 5%) to obtain certain differences between the DEGES-based approach 

SSS-S and non-DEGES-based approach S-S: at least 5% of the top-ranked 

genes were not used when the normalization factors  were calculated at 

step 3 in XYX. As an estimated PDEG value of x% tends to work better 

when simulation data with the same PDEG value is analyzed, the accurate 

estimation is the next important task.  

For simulation results, some people may argue about the area under 

the ROC curve calculated for the AUC values. Since in reality they care 

more about the early behavior (left part) of the ROC curve, they think that 

calculating the whole area under the ROC curve  (full AUC) might not be 

informative and calculating part of the area by controlling (1 – specificity) 

< 0.1 (partial AUC) is a better choice. Note that, we took both full and 

partial AUC values into account in this study because the full AUC values 

have been used widely as an important metric as well as partial AUC 

values [113] and we added the suggested information in Additional file 4. 

Similar to the results with full AUC values, we observed the overall 

superiority for the EEE-E pipeline provided in TCC. In conclusion, 

choosing full or partial AUC values does not have much impact on the 

results in the current evaluation study.  
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Table 8 - Average AUC values for three-group simulation data without replicates 

PG1 33% 50% 50% 60% 60% 70% 80% 

PG2 33% 30% 40% 20% 30% 20% 10% 

PG3 33% 20% 10% 20% 10% 10% 10% 

EEE-E 77.15  76.88  76.78  76.63  76.88  76.15  75.48  

DED-E 77.15  76.86  76.73  76.59  76.86  76.08  75.41  

EDE-E 77.15  76.88  76.79  76.64  76.88  76.19  75.57  

DDD-E 77.15  76.87  76.75  76.61  76.87  76.13  75.50  

EEE-D 81.51  81.14  81.28  80.93  81.14  80.51  79.97  

DED-D 81.52  81.14  81.25  80.90  81.14  80.45  79.90  

EDE-D 81.49  81.14  81.28  80.94  81.14  80.55  80.05  

DDD-D 81.51  81.15  81.26  80.91  81.15  80.49  79.98  

E-E (edgeR) 77.15  76.87  76.76  76.60  76.87  76.10  75.36  

D-E 77.15  76.86  76.71  76.57  76.86  76.04  75.35  

E-D 81.49  81.13  81.27  80.91  81.13  80.46  79.86  

D-D (DESeq) 81.53  81.12  81.23  80.88  81.12  80.41  79.84  

SSS-S 82.46  82.18  82.08  81.98  82.18  81.52  80.97  

EEE-S 82.46  82.18  82.08  81.98  82.18  81.50  80.89  

DED-S 82.46  82.17  82.04  81.95  82.17  81.43  80.81  

EDE-S 82.46  82.18  82.09  82.00  82.18  81.54  80.97  

DDD-S 82.46  82.17  82.06  81.97  82.17  81.48  80.90  

S-S (DESeq2) 82.46  82.16  82.01  81.92  82.16  81.38  80.73  

E-S 82.46  82.17  82.07  81.96  82.17  81.45  80.76  

D-S 82.46  82.16  82.02  81.93  82.16  81.39  80.74  
Legends are basically the same as in Table 6 . Results of a total of 20 pipelines  

under PDE G = 25% are shown. The EDE-S  pipeline outperforms the others overall.  
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3.4 Results from simulation data with other multiple groups 
In order to verify the consistent of results from count data with different 

groups, we also investigate the performance of DE pipelines for four-

group comparison. The simulation conditions are as follows: the total 

number of genes is 10,000 (Ngene = 10000), 5 or 25% o f the genes are 

DEGs (PDEG = 5 or 25%), the levels of DE are four-fold in individual 

groups, and the proportions of DEGs up-regulated in individual groups 

(PG1, PG2, PG3, PG4) are (0.25, 0.25, 0.25, 0.25), (0.4, 0.4, 0.1, 0.1), (0.5, 

0.3, 0.1, 0.1), (0.5, 0.2, 0.2, 0.1), (0.6, 0.2, 0.1, 0.1), (0.7, 0.1, 0.1, 0.1). 

Since SAMseq cannot handle several simulation count data because of an 

unclear error, Table 9 lists the average AUC values of 100 trails for 11 

pipelines. Again, the AUC values for the EEE-E pipeline were the highest 

and similar across the six different proportions of DEGs up-regulated in 

individual groups (PG1, PG2, PG3, PG4). The edgeR (i.e., E-E) performed the 

second best. The other results are almost the same as the results of Table 5. 

In addition, we also produced five-group simulation data under the 

following conditions: the total number of genes is 10,000 (Ngene = 10000), 

5 or 25% of the genes are DEGs (P DEG = 5 or 25%), the levels of DE are 

four-fold in individual groups, and the proportions of DEGs up -regulated 

in individual groups (PG1, PG2, PG3, PG4) are (0.25, 0.25, 0.25, 0.25), (0.4, 

0.4, 0.1, 0.1), (0.5, 0.3, 0.1, 0.1), (0.5, 0.2, 0.2, 0.1), (0.6, 0.2,  0.1, 0.1), 

and (0.7, 0.1, 0.1, 0.1).  
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Table 9 - Average AUC values for four-group simulation data with replicates 

PG1 25% 40% 50% 50% 60% 70% 

PG2 25% 40% 20% 30% 20% 10% 

PG3 25% 10% 20% 10% 10% 10% 

PG4 25% 10% 10% 10% 10% 10% 

(a) PDEG = 5%             

EEE-E(TCC) 91.46 91.42 91.38 91.38 91.39 91.49 

DDD-D(TCC) 90.51 90.39 90.39 90.39 90.38 90.49 

SSS-S(TCC) 88.87 88.74 88.66 88.66 88.73 88.82 

E-E(edgeR) 91.46 91.39 91.36 91.36 91.33 91.41 

edgeR_robust 90.88 90.82 90.79 90.79 90.74 90.78 

D-D(DESeq) 90.51 90.36 90.35 90.35 90.32 90.40 

S-S(DESeq2) 88.87 88.71 88.62 88.62 88.66 88.71 

voom 86.95 86.74 86.65 86.65 86.67 86.73 

PoissonSeq 86.40 86.40 86.36 86.36 86.27 86.41 

baySeq 90.18 90.00 90.01 90.01 90.13 90.14 

EBSeq 84.93 84.92 85.06 85.06 85.10 84.90 

(b) PDEG = 25%             

EEE-E(TCC) 91.61 91.61 91.57 91.61 91.62 91.57 

DDD-D(TCC) 90.69 90.69 90.63 90.66 90.69 90.60 

SSS-S(TCC) 88.89 88.89 88.87 88.91 88.84 88.81 

E-E(edgeR) 91.61 91.61 91.33 91.31 91.11 90.70 

edgeR_robust 90.98 90.98 90.65 90.67 90.47 90.03 

D-D(DESeq) 90.69 90.69 90.37 90.34 90.18 89.74 

S-S(DESeq2) 88.89 88.89 88.46 88.41 88.02 87.47 

voom 86.93 86.93 86.42 86.45 86.03 85.37 

PoissonSeq 86.54 86.54 86.39 86.43 86.37 86.25 

baySeq 90.41 90.41 90.06 90.06 89.88 89.48 

EBSeq 85.27 85.27 84.93 84.76 84.74 84.37 

Average AUC values (%) of 100 trials for each simulation condition are shown: (a) PDEG = 5% and (b) 

PDEG = 25%. Simulation data contain a total of 10,000 genes: PDEG % of genes is for DEGs, PG1 % of 

PDEG in G1 is higher than in the other groups, and each group has three BRs (Nrep = 3). Six conditions 

are shown in total. The highest AUC value for each condition is in bold. 
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Table 10 - Average AUC values for five-group simulation data with replicates 

PG1 20% 30% 40% 50% 60% 

PG2 20% 30% 20% 20% 10% 

PG3 20% 20% 20% 10% 10% 

PG4 20% 10% 10% 10% 10% 

PG5 20% 10% 10% 10% 10% 

(a) PDEG = 5%           

EEE-E(TCC) 91.48 91.39 91.59 91.45 91.53 

DDD-D(TCC) 90.23 90.20 90.34 90.20 90.31 

SSS-S(TCC) 88.73 88.63 88.82 88.62 88.76 

E-E(edgeR) 91.47 91.38 91.57 91.41 91.47 

edgeR_robust 90.84 90.75 90.97 90.82 90.80 

D-D(DESeq) 90.23 90.19 90.33 90.17 90.26 

S-S(DESeq2) 88.75 88.62 88.81 88.57 88.69 

voom 86.83 86.65 86.82 86.69 86.57 

PoissonSeq 85.71 85.78 85.90 85.80 85.87 

baySeq 90.07 89.79 89.96 89.82 89.95 

EBSeq 86.64 86.45 86.68 86.50 86.70 

(b) PDEG = 25%           

EEE-E(TCC) 91.55 91.61 91.52 91.57 91.56 

DDD-D(TCC) 90.46 90.47 90.40 90.39 90.41 

SSS-S(TCC) 88.75 88.79 88.73 88.78 88.73 

E-E(edgeR) 91.55 91.51 91.38 91.27 91.03 

edgeR_robust 90.91 90.90 90.75 90.59 90.36 

D-D(DESeq) 90.46 90.38 90.27 90.12 89.92 

S-S(DESeq2) 88.75 88.65 88.50 88.32 87.92 

voom 86.82 86.71 86.50 86.20 85.74 

PoissonSeq 85.78 85.86 85.76 85.71 85.66 

baySeq 90.29 90.10 90.07 89.92 89.64 

EBSeq 86.38 86.48 86.20 86.00 85.82 
Average AUC values (%) of 100 trials for each simulation condition are shown: (a) PDEG = 5% and (b) 

PDEG = 25%. Simulation data contain a total of 10,000 genes: PDEG % of genes is for DEGs, PG1 % of 

PDEG in G1 is higher than in the other groups, and each group has three BRs (Nrep = 3). Five conditions 

are shown in total. The highest AUC value for each condition is in bold. 
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Chapter 4 Real data study 
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4.1 Real data with replicates 

In addition to the simulation analysis, we also analyzed a real RNA -seq 

count dataset on three species: humans (HS), chimpanzees (PT), and 

rhesus macaques (RM) [50]. The original count dataset ("suppTable1.xls") 

can be downloaded from the supplementary website of [39]. Briefly 

speaking about the study, Blekhman et al. studied expression levels of 

liver samples from three males (M1, M2, and M3) and three females (F1, 

F2, and F3) from each species, giving a total of six different individuals  

(i.e., six BRs) for each species. Since they performed duplicate 

experiments for each individual (i.e., two technical replicates), the 

publicly available raw count matrix consists of 20,689 genes × 36 samples 

(= 3 species × 2 sexes × 3 BRs × 2 technical replicates). To correctly 

estimate the biological variation and to make the assumed structure of 

input data, we summed and collapsed the count data of technical replicates, 

giving a reduced number of columns in the count matrix (i.e., 18 sa mples; 

3 species × 2 sexes × 3 BRs). The sex (i.e., males or females) was ignored 

in the three-group comparison of this dataset (i.e., 18 samples; 3 species × 

6 BRs). The relationship of sample names between the original and current 

study can be seen in Figure 10. 

We here compared a total of 12 pipelines in light of the overall 

similarity of ranked gene lists, the number of shared DEGs satisfying an 

FDR threshold, and so on. To compare these pipelines as simply as 

possible, we regarded this dataset as single -factor experimental design of  

three species where each has six BRs (i.e., HS_rep1-6 vs. PT_rep1-6 vs. 

RM_rep1-6).  
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Figure 10 - Dendrogram of average-linkage hierarchical clustering for the 

Blekhman’s count data 

Results of sample clustering are shown: (a) a raw count dataset consisting of 36 samples, (b) a 

collapsed data consisting of 18 samples, and (c) the same data as (b) but with different sample labels. 

The clustering was performed using the “clusterSample” function with default options provided in 

TCC.  
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4.2 Data analysis  

Figure 11 shows the dendrogram of average-linkage clustering for the 12 

ranked gene lists. Seven pipelines located in the center (from SSS-S to D-

D) show similar ranked gene lists. This is mainly because the seven 

pipelines from four packages (TCC, edgeR, DESeq, and DESeq2) 

commonly employ a GLM framework. Indeed, the minimum value of 

Spearman’s correlation coefficients (r) among the seven pipelines was 

0.9240. It is also noteworthy that ranked gene lists produced f rom TCC’s 

iterative strategies and the corresponding original non -iterative strategies 

are particularly similar. For example, the r between EEE-E from TCC and 

E-E from edgeR was 0.9999, implying that this data is not extremely 

biased in light of the proportions of DEGs up- and/or down-regulated in 

individual groups (PG1, PG2, PG3). That is, the proportions of DEGs in this 

data (PG1, PG2, PG3) are rather closer to (1/3, 1/3, 1/3) than, for example, 

(0.8, 0.1, 0.1) or (0.0, 0.9, 0.1).  

Note that the dendrogram shown in Figure 11 does not necessarily 

indicate the superiority of the seven GLM-based pipelines over the others 

such as EBSeq and baySeq. For example, EBSeq employs an empirical 

Bayesian framework that returns the posterior probabilities for each of the  

five possible expression patterns (or models) to each gene. We here used 

the posterior probability obtained from the "non-DEG" pattern as a 

surrogate estimate for the adjusted p values and ranked genes in ascending 

order of the values. Probably, this is the main reason for EBSeq having 

lower similarity than the others. We also confirmed this trend with some 

simulation data. As in Additional file 2, EBSeq showed the highest 

average AUC values in the simulation condition: P DEG = 5%, (0.5, 0.4, 

0.1) for (PG1, PG2, PG3), and Nrep = 9. A typical dendrogram of 12 ranked 

gene lists obtained from this simulation condition is given in Additional 

file 9. In this trial, while EBSeq and baySeq formed one of the two major 

clusters, those AUC values were not at the top two: the ranks for EBSeq 

and baySeq were the 1st and 6th, respectively. These results indicate that 

the low similarities of ranked gene lists between Bayesian pipelines (such 

as EBSeq and baySeq) and the GLM-based pipelines do not matter. 
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Figure 12 shows the numbers of DEGs obtained from individual 

pipelines. We found that different pipelines could produce considerably 

different numbers of DEGs. Indeed, the numbers widely ranged from 

3,832 (18.5% of all genes; DESeq) to 9,453 (45.7%; SAMseq). This trend 

is consistent with that in a previous comparative study [76]. We also 

compared the overlaps between all pairs of pipelines ( Additional file 5). 

As expected from Figure 11, we observed similar numbers of DEGs 

between the three DEGES-based pipelines (EEE-E, DDD-D, and SSS-S) 

and the corresponding non-DEGES-based ones (E-E, D-D, and S-S) 

(Additional file 10). The Jaccard coefficients, defined as "intersection / 

union" for two sets of DEGs, for the three pairs (EEE-E vs. E-E, DDD-D 

vs. D-D, and SSS-S vs. S-S) were top-ranked among a total of 66 possible 

pairs (Additional file 6). For example, both EEE-E in TCC and E-E in 

edgeR reported the same numbers of DEGs (= 7,247). Of these, 7,208 

DEGs (99.46%) were common, and the Jaccard coeffici ent was 7,208 / 

7,286 = 0.9893. The overall number of common genes across the twelve 

sets of DEGs was 2,376 genes. Since individual sets were identified under 

the 5% FDR threshold, 95% of the 2,376 common DEGs can statistically 

be regarded as confident. 

We next classified the expression patterns of the DEGs obtained from 

the 12 pipelines (Table 11). We here assigned individual DEGs to one of 

the ten possible patterns defined in baySeq [66]; this package returns one 

of these patterns to each gene. The background information for this data is 

shown in the "all_genes" row in Table 11. The "common" row indicates 

the percentages of individual expression patterns for the 2,376 common 

DEGs. The remaining rows (from EEE-E to EBSeq) show the distributions 

for each of the pipelines. It is reasonable that no DEGs identified by 

individual pipelines are assigned as a flat expression pattern (i.e., 

G1=G2=G3) for the HS (G1) vs. PT (G2) vs. RM (G3) comparison. We 

found that most DEGs were assigned preferably to one of four patterns 

(G1>G2>G3, G2>G1>G3, G3>G1>G2, and G3>G2>G1) and unpreferably 

to one of two patterns (G1>G3>G2 and G2>G3>G1). That is, up- (or 

down-) regulation in G1 for DEGs tends to coincide with G2 more than G3. 

This can also be seen in the results from sample clustering for raw count 
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data (Figure 10), implying that we can roughly predict the DE result s such 

as those shown in Table 11 from the overall similarities of samples on raw 

count data. 

When comparing the distributions of patterns for DEGs between 

pipelines, we saw high similarities overall. If anything, baySeq showed a 

distribution relatively different from the others in light of the higher 

percentages for three patterns (G1>G2=G3, G2>G1=G3, and G3>G1=G2). 

This kind of classification can also be performed using EBSeq [90]. 

EBSeq defines a total of five possible patterns when comparing three 

groups: Pattern 1 for non-DEG (i.e., G1=G2=G3), Pattern 2 for DE in G3 

(G1=G2<G3 and G1=G2>G3), Pattern 3 for DE in G2 (G2>G1=G3 and 

G2<G1=G3), Pattern4 for DE in G1 (G1>G2=G3 and G1<G2 =G3), and 

Pattern 5 for DE among all groups. Similar to baySeq, EBSeq also returns 

one of these patterns to each gene. The results of classification based on 

EBSeq are given in Additional file 7. Similar to the results from baySeq 

(Table 11), we observed that nearly half the DEGs were assigned to 

Pattern 2, where the expression patterns between G1 and G2 tend to be 

more similar than for G3. We also observed that the distribution for 

baySeq is relatively different from the others, e.g., lower percentages in 

Patterns 3 and 4 and a higher percentage in Pattern 5.  

We next assessed the reproducibility of ranked gene lists.  Remember 

that the real dataset we analyzed here consists of three groups, each of 

which has six BRs (we denote this dataset as "rep1-6"). In addition to the 

original three-group comparison with six replicates (i.e., HS_rep1 -6 vs. 

PT_rep1-6 vs. RM_rep1-6), we also performed three three-group 

comparisons by dividing the original dataset into three; individu al subsets 

consist of two BRs for each group. For example, the first subset (say 

"rep1-2") consists of a total of six samples for comparing HS_rep1 -2, 

PT_rep1-2, and RM_rep1-2. Likewise, the third subset ("rep5-6") is for 

comparing "HS_rep5-6 vs. PT_rep5-6 vs. RM_rep5-6." After performing 

the DE analysis for the three subsets (i.e., rep1-2, rep3-4, and rep5-6), we 

obtained three ranked gene lists for these subsets. Accordingly, there are a 

total of four ranked gene lists (rep1-2, rep3-4, rep5-6, and rep1-6) for 

each pipeline. We evaluated the reproducibility of ranked gene lists (i) for 
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each subset to the original dataset (i.e., rep1-6 vs. rep1-2, rep1-6 vs. rep3-

4, and rep1-6 vs. rep5-6) and (ii) among the three subsets (i.e., rep1-2 vs. 

rep3-4 vs. rep5-6). 

Figure 13 shows the numbers of common genes between the compared 

sets of top-ranked genes for individual pipelines: (a) for the top 100 and 

(b) for the top 1,000. For example, there were 66 common genes when 

comparing the two sets (rep1-6 and rep5-6) of the 100 top-ranked genes 

obtained from the EEE-E pipeline (see the leftmost blue bar in Figure 13a). 

As shown in Table 6 and Additional files 1 and 2, the more BRs we use, 

and the more accurate the ranked gene lists we can obtain. Accordingly, 

the evaluation based on the reproducibility of ranked gene lists is 

analogous to a performance comparison when the available count data has 

only two BRs. Overall, we see high reproducibility for three edgeR -related 

pipelines (EEE-E, E-E, and edgeR_robust) and low reproducibility for two 

pipelines (SAMseq and EBSeq). This trend is consistent with the 

simulation results shown in Table 6 (i.e., three-group data with three BRs) 

and previous simulation results for two-group data with two BRs [76]. 

Although PoissonSeq showed the highest reproducibility when the 1,000 

top-ranked genes were evaluated (Figure 13b), the performance seems 

unstable, especially on < 200 top-ranked genes. This is mainly due to low 

reproducibility of the ranked gene list for rep1-2 to the list for rep1-6. 

Although we saw a plausible outlying sample (RMM2 or RM_rep5) in the 

dendrogram of sample clustering for the raw count data, it would not be 

related to the dissimilarity of ranked gene lists betwe en rep1-2 and rep1-6. 

The percentages of overlapping/common genes (POGs) for any numbers of 

top-ranked genes are given in Additional files 11, 12 and 13. 

For biologists, we also list the top 20 genes with the biggest 

significance for DE from the analysis results of 12 pipelines, which can be 

validated by RT-PCR in a small scale (Additional file 8). 

 

 

 

 

 

 

 



 72 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 - Overall similarity of 12 ranked gene lists applied for Blekhman’s 

count data 

The dendrogram of average-linkage clustering is shown. Spearman’s rank correlation coefficient (r) is 

used as a similarity metric; left-hand scale represents (1 – r). 
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Figure 12 - Number of genes found to be significantly DE among the three 

species in the Blekhman’s count data 
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Table 11 - Classification of expression patterns for DEGs 
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=
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G

1
>

G
2
 

G
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>
G
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>

G
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T
o

ta
l 

all_genes 13.5  2.2  15.1  8.7  2.3  15.9  9.4  2.9  15.1  14.8  20689 

common 0.0  0.1  23.2  5.8  0.2  26.4  5.7  0.7  18.6  19.2  2376 

EEE-E 0.0  0.6  20.7  7.4  0.7  21.9  8.1  1.6  19.9  19.2  7247 

DDD-D 0.0  0.4  25.0  7.3  0.6  25.0  6.0  1.4  17.3  17.1  3850 

SSS-S 0.0  0.2  19.3  7.1  0.3  21.7  9.4  0.9  19.9  21.2  7295 

E-E (edgeR) 0.0  0.6  20.4  7.3  0.7  22.1  8.3  1.6  19.7  19.3  7247 

edgeR_robust 0.0  0.3  20.6  8.4  0.5  22.0  8.8  1.2  19.1  18.9  8076 

D-D (DESeq) 0.0  0.4  24.3  7.2  0.6  24.2  6.0  1.4  17.8  18.1  3832 

S-S (DESeq2) 0.0  0.2  20.4  8.0  0.3  21.8  8.9  0.8  19.7  19.9  7585 

voom 0.0  0.7  21.3  7.7  0.7  22.5  8.2  1.3  18.7  19.0  7016 

SAMseq 0.0  0.2  20.9  9.7  0.3  21.8  9.2  0.8  18.9  18.3  9453 

PoissonSeq 0.0  0.0  19.5  8.9  0.1  22.2  9.4  0.3  20.3  19.3  6613 

baySeq 0.0  0.8  21.0  5.5  1.3  23.7  6.3  2.8  19.0  19.6  3975 

EBSeq 0.0  0.0  21.0  7.0  0.1  23.7  7.1  0.3  20.8  19.9  5699 

Percentages of genes assigned to each of the ten possible patterns defined as baySeq. 

Numbers in the "Total" column indicate the numbers of gene s. For example, 13.5% of 

20,689 genes in baySeq are assigned as "G1=G2=G3". 
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Figure 13 - Reproducibility between ranked gene lists 

Numbers of common genes between top-ranked genes for individual pipelines are shown: (a) results 

for 100 top-ranked gene lists and (b) results for 1000 top-ranked gene lists. Bars in black (rep1-6 vs. 

rep1-2), gray (rep1-6 vs. rep3-4), and blue (rep1-6 vs. rep5-6) in Figure 13a indicate the numbers of 

common genes between the two sets of 100 top-ranked genes obtained from the individual pipelines. 

For example, the gray bar (rep1-6 vs. rep3-4) for DDD-D in Figure 13a indicates that there were 46 

common genes when the 100 top-ranked genes from the dataset rep1-6 are compared with the 100 top-

ranked genes from the dataset rep3-4. Analogously, bars in red (rep1-2 vs. rep3-4 vs. rep5-6) in Figure 

14b indicate the numbers of common genes between the three sets of 1000 top-ranked genes for the 

three datasets (rep1-2, rep3-4, and rep5-6). For example, the red bar for EEE-E in Figure 13b indicates 

that there were 397 common genes (39.7 % of overlapping genes) when the three sets of gene lists 

(each of which contains 1000 top-ranked genes) obtained from the pipeline EEE-E for the three 

datasets were compared.  
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In this study, we evaluated 12 pipelines for DE analysis of multi-group 

RNA-seq count data. Arguably, this experimental design has been 

performed well in practice.  To our knowledge, this evaluation is the first 

comprehensive study on multi-group count data. Our main findings can be 

summarized as follows: 

First, the idea of DEGES implemented in TCC can be applied to multi -

group data. We confirmed that the AUC values for the three DEGES -based 

pipelines (EEE-E, DDD-D, and SSS-S) were higher overall than the 

corresponding non-DEGES-based pipelines, E-E (edgeR), D-D (DESeq), 

and S-S (DESeq2), respectively (Table 6). 

Second, the choice of DEG identification method  Z in the DEGES-

based pipeline XYX-Z is critical for obtaining good DE results. For Z in 

the pipeline XYX-Z, using E (the DEG identification method provided in 

edgeR; Table 6) and S (provided in DESeq2; Table 8) when analyzing 

three-group data with and without replicates, respectively, gave higher 

AUC values than the others.  

Third, to analyze three-group data with replicates, we obtained the 

results that either DED-E or EEE-E outperforms the others. We 

recommend these pipelines for this case (Tables 6 and 7). Both pipelines 

can easily be performed by using the TCC package. While DED-E showed 

the highest AUC values under the interrogated pipelines and simulation 

conditions, the difference between DED-E and the second best pipeline 

EEE-E can practically be negligible. Since EEE-E is the natural extension 

of a DEGES-based pipeline for edgeR, using EEE-E would be the best 

practice. However, note that two Bayesian pipelines (baySeq and EBSeq) 

perform comparably to or better than the GLM-based pipelines (edgeR, 

DESeq, and DESeq2) when a number of replicates are available 

(Additional file 1 and Additional file 2). In particular, EBSeq consistently 

outperformed EEE-E under some simulation conditions (Nrep = 9 and 

PDEG = 5%; Additional file 2), suggesting that the DEGES-based pipeline 

based on EBSeq could produce a more accurate ranked gene list.  Although 

these Bayesian pipelines tend to come at the cost of a huge computation 

time, their implementation and evaluation are the next important tasks.  



 78 

Fourth, to analyze three-group data without replicates, we obtained the 

results that eight EDE-S or SSS-S outperforms the others (Table 8). Both 

pipelines can easily be performed by using the TCC package. While EDE-

S showed the highest AUC values under the interrogated pipelines and 

simulation conditions, the difference between EDE-S and the second best 

pipeline SSS-S can practically be negligible. Since SSS-S is the natural 

extension of a DEGES-based pipeline for DESeq2, using SSS-S would be 

the best practice. Note that our previous recommendation for analyzing 

two-group data without replicates was to use DDD-D and that this 

conclusion was obtained only by evaluating a total of eight competing 

pipelines (D-D, DDD-D, EDE-D, EbE-D, D-b, DDD-b, EDE-b, and EbE-b, 

where "b" denotes baySeq). We expect the DESeq2-related pipelines (i.e., 

EDE-S and SSS-S) would be recommended for analyzing two-group data 

without replicates as an updated guideline. The comprehensive evaluation 

should, of course, be performed as a next task.  

Fifth, the results of DE analysis (including existence or non -existence 

of DEGs) can roughly be estimated by the hierarchical dendrogram of 

sample clustering for the raw count data (Table 11; Figure 10; Additional 

files 5-7). The dendrogram of sample clustering shows some useful 

information about the DE results. The real count data we used here has 

18.5% - 45.7% of DEGs at the 5% FDR threshold (Additional file 5). In 

our experience, such results (i.e., existence of large numbers of DEGs) 

have frequently been obtained when individual groups (G1, G2, and G3) 

form distinct sub-clusters where each sub-cluster consists only of 

members in each group (Figure 10). In other words, if members in each 

sub-cluster originate from plural groups, no or few DEGs would be 

obtained as the DE result for such indistinct data. Of course, it is crit ical 

to employ appropriate choices for distance metric and filtering of low 

count data for obtaining a robust dendrogram. While we employed the 

default options ("1 – Spearman correlation coefficient" as a distance and 

the use of unique expression patterns as an objective filtering) in the 

clustering function ("clusterSample") provided in TCC, further evaluation 

should also be performed.  
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In modern biological study, a variety of "omics" have come forth, 

transcriptomics has become the indispensable way for researchers to 

understand vast quantities of bioinformation. Researchers have developed 

a number of methodologies in order to study one specific transcriptome 

profiling deeply and comprehensively. Methods based on hybridization 

(i.e., microarray) and NGS (i.e., RNA-seq) are two main methodologies.  

Depending on the price advantage and the ongoing techn ical improvement, 

microarrays will be still the mainstream products of the transcriptomics 

market in the short future. With the decreasing price and clear advantages 

over microarray, RNA-seq has been becoming the technology of choice 

and will replace microarray totally sooner or later in the market. 

Based on its high accuracy and data yield, RNA-seq is an easier way 

to interpret the functional elements of the genome and reveal the 

molecular constituents of the cells and tissues. Therefore, it  is now being 

adopted for clinic use (i.e., clinical diagnostic, personalized medicine)  

[36], especially for the studies relative to cancer and other disease  [114]. 

For example, RNA-seq can facilitate the development of cancer database 

for gene mutations. Based on the DE information of mutant gene, the 

associated biomolecule or/and molecular complexes can be easily detected. 

Then the specific medicines for these targets can be designed. As a result, 

the medicine screening process for cancers will be more effective. 

Moreover, because of the existing of tissue-specificity and person-

specificity, RNA-seq has become an important means in the project of 

“person medicine” or “accurate medicine”.  

To date, NGS requires orders of magnitude more starting materials 

than those are found in an individual cell . However, in some cases such as 

circulating tumor cells (CTCs), stem cells and other rare populations, 

sufficient material cannot be extracted for downstream analysis  on such a 

scale. Moreover, handing such small quantities mean that sample loss, 

degradation and contamination can have a pronounced effect on sequence 

robust and quality. Moreover, the materials in RNA-seq are based on a 

large population of cells, in which the relative proportions of 

differentially expressed transcripts in a transcriptome show highly 

variable [115]. Heavy amplification in large collaborative projects also 
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propagates errors and biases, which can lead to uneven coverage, unknown 

nuisance technical effects and inaccurate quantification.  Therefore, there 

is much extensive space for NGS amplification, such as single-cell 

sequencing-based technologies. With the rapid progress in sequencing 

technologies, single-cell sequencing has been preliminary applied for 

some studies in which the capability of traditional NGS is weak. 

On the other hand, in the process of RNA-seq data analysis, although a 

number of methods have been proposed, there are no well-approved 

methods for data normalization or DEG identification in the RNA-seq 

community. Further, most of the methods were developed for single-factor 

or two-group experiments. Since there will be more and more multi-group 

or multi-factored experiments, many efforts for the complexity studies 

like our work should be done.  
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Additional file 1 - Average AUC values for simulation data with 6 BRs 

PG1 33% 50% 50% 60% 60% 70% 80% 

PG2 33% 30% 40% 20% 30% 20% 10% 

PG3 33% 20% 10% 20% 10% 10% 10% 

PDEG = 5% 
       

EEE-E (TCC) 94.94 95.00 94.91 95.01 95.00 94.98 94.93 

DDD-D (TCC) 94.65 94.68 94.63 94.73 94.72 94.69 94.65 

SSS-S (TCC) 93.35 93.42 93.31 93.43 93.46 93.40 93.36 

E-E (edgeR) 94.94 94.98 94.88 94.98 94.95 94.90 94.81 

edgeR_robust 94.18 94.21 94.14 94.21 94.23 94.16 94.13 

D-D (DESeq) 94.65 94.66 94.59 94.69 94.67 94.60 94.52 

S-S (DESeq2) 93.35 93.39 93.26 93.37 93.39 93.27 93.16 

voom 91.36 91.36 91.29 91.34 91.36 91.25 91.15 

SAMseq 90.66 90.75 90.67 90.75 90.75 90.73 90.75 

PoissonSeq 91.73 91.75 91.71 91.80 91.76 91.73 91.71 

baySeq 94.40 94.43 94.41 94.45 94.44 94.32 94.34 

EBSeq 93.91 93.90 93.97 94.03 94.03 94.04 94.00 

PDEG = 25% 
       

EEE-E (TCC) 94.94 94.96 94.94 94.95 94.93 94.91 94.88 

DDD-D (TCC) 94.75 94.79 94.77 94.77 94.74 94.74 94.72 

SSS-S (TCC) 93.31 93.34 93.30 93.32 93.28 93.29 93.25 

E-E (edgeR) 94.94 94.78 94.63 94.51 94.41 93.97 93.21 

edgeR_robust 94.22 94.05 93.92 93.76 93.65 93.21 92.47 

D-D (DESeq) 94.75 94.58 94.38 94.26 94.14 93.70 92.98 

S-S (DESeq2) 93.31 92.94 92.57 92.38 92.18 91.44 90.24 

voom 91.33 90.98 90.68 90.41 90.21 89.39 88.08 

SAMseq 90.67 90.63 90.57 90.55 90.49 90.42 90.33 

PoissonSeq 91.67 91.67 91.64 91.61 91.58 91.53 91.41 

baySeq 94.56 94.43 94.29 94.20 94.11 93.80 93.22 

EBSeq 93.90 93.73 93.61 93.40 93.32 92.74 91.84 
Results are shown for a total of 12 pipelines for three-group simulation data, where each group has six 

(Nrep = 6) BRs. Legends are the same as in Table 6. 
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Additional file 2 - Average AUC values for simulation data with 9 BRs 

PG1 33% 50% 50% 60% 60% 70% 80% 

PG2 33% 30% 40% 20% 30% 20% 10% 

PG3 33% 20% 10% 20% 10% 10% 10% 

PDEG = 5% 
       

EEE-E (TCC) 96.65  96.62  96.67  96.73  96.63  96.69  96.68  

DDD-D (TCC) 96.49  96.48  96.52  96.56  96.47  96.54  96.52  

SSS-S (TCC) 95.46  95.48  95.45  95.55  95.43  95.51  95.50  

E-E (edgeR) 96.65  96.61  96.64  96.69  96.59  96.62  96.57  

edgeR_robust 95.79  95.81  95.79  95.86  95.77  95.81  95.79  

D-D (DESeq) 96.49  96.46  96.49  96.52  96.43  96.46  96.40  

S-S (DESeq2) 95.46  95.45  95.40  95.49  95.36  95.38  95.32  

voom 93.71  93.70  93.67  93.74  93.63  93.60  93.51  

SAMseq 93.20  93.26  93.25  93.34  93.26  93.30  93.28  

PoissonSeq 93.92  93.92  93.96  94.01  93.92  93.96  93.94  

baySeq 96.33  96.33  96.29  96.36  96.28  96.29  96.22  

EBSeq 96.83  96.89  96.90  96.97  96.93  96.96  96.91  

PDEG = 25% 
       

EEE-E (TCC) 96.72  96.73  96.74  96.72  96.74  96.72  96.70  

DDD-D (TCC) 96.64  96.65  96.66  96.63  96.65  96.64  96.63  

SSS-S (TCC) 95.48  95.46  95.50  95.46  95.48  95.48  95.44  

E-E (edgeR) 96.72  96.54  96.41  96.27  96.19  95.73  94.88  

edgeR_robust 95.91  95.70  95.55  95.43  95.32  94.86  94.00  

D-D (DESeq) 96.64  96.44  96.28  96.14  96.07  95.64  94.91  

S-S (DESeq2) 95.48  95.03  94.70  94.46  94.30  93.49  92.17  

voom 93.79  93.35  93.05  92.76  92.56  91.61  90.00  

SAMseq 93.30  93.22  93.21  93.23  93.17  93.11  93.00  

PoissonSeq 93.95  93.94  93.92  93.89  93.89  93.81  93.70  

baySeq 96.46  96.33  96.25  96.16  96.11  95.82  95.18  

EBSeq 96.86  96.70  96.61  96.38  96.38  95.85  94.85  
Results are shown for a total of 12 pipelines for three-group simulation data, where each group has nine 

(Nrep = 9) BRs. Legends are the same as in Table 6. 
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Additional file 3 - Average computation times (in seconds) of 20 trials. 

  Nrep = 3 Nrep = 6 Nrep = 9 

PG1 33% 80% 33% 80% 33% 80% 

PG2 33% 10% 33% 10% 33% 10% 

PG3 33% 10% 33% 10% 33% 10% 

PDEG = 5% 
      

EEE-E (TCC) 18.3 17.7 29.8 29.6 41.6 41.3 

DDD-D (TCC) 223.4 219 212.5 212.7 218.9 217.2 

SSS-S (TCC) 29.7 29.2 42.2 42.2 59.2 58.4 

E-E (edgeR) 4.5 4.4 7.2 7.2 10.2 10 

edgeR_robust 22.4 22 35.2 35.1 48.6 48 

D-D (DESeq) 55.3 54.5 52.9 52.9 54.3 53.9 

S-S (DESeq2) 7.3 7.1 10.3 10.3 14.4 14.4 

voom 1.6 1.6 1.7 1.7 2 2 

SAMseq 14.3 13.7 19.7 19.6 24.9 24.9 

PoissonSeq 5.5 5.4 5.1 5.1 5.3 5.3 

baySeq 1008.6 988.5 1554.2 1557.2 2128.6 2125.5 

EBSeq 456.3 455.8 797.2 853.6 1110.5 1219.4 

Average computational times of 20 trials cost by 12 pipelines are shown. The simulations are under six 

different settings. 
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Additional file 4 - Average partial AUC values of 20 trails with (1 – specificity) < 

0.1 

  Nrep = 3 Nrep = 6 Nrep = 9 

PG1 33% 80% 33% 80% 33% 80% 

PG2 33% 10% 33% 10% 33% 10% 

PG3 33% 10% 33% 10% 33% 10% 

PDEG = 5% 
      

EEE-E (TCC) 6.94 6.93 8.11 8.12 8.67 8.65 

DDD-D (TCC) 6.62 6.61 7.84 7.87 8.41 8.43 

SSS-S (TCC) 6.72 6.69 7.87 7.89 8.44 8.43 

E-E (edgeR) 6.94 6.89 8.11 8.09 8.67 8.62 

edgeR_robust 6.82 6.79 7.91 7.93 8.44 8.41 

D-D (DESeq) 6.62 6.57 7.84 7.84 8.41 8.4 

S-S (DESeq2) 6.73 6.65 7.87 7.84 8.44 8.38 

voom 6.27 6.21 7.38 7.4 7.95 7.88 

SAMseq 5.82 5.83 7.31 7.36 7.88 7.89 

PoissonSeq 5.6 5.6 6.6 6.6 7.16 7.16 

baySeq 6.53 6.47 7.84 7.83 8.44 8.39 

EBSeq 6.12 6.09 7.92 7.94 8.68 8.71 

Results are shown for a total of 12 pipelines for three-group simulation data under three different BRs 

(i.e., 3, 6, 9) with PDEG = 5%.  Legends are the same as in Table 6. 
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Additional file 5 - Comparison of DEGs obtained from individual pipelines for 

the Blekhman’s count data 
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Additional file 6 - Jaccard coefficients from the comparison of DEGs obtained 

from individual pipelines for the Blekhman’s count data 
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Additional file 7 - Classification of expression patterns for DEGs (based on 

EBSeq) 

  Pattern1 Pattern2 Pattern3 Pattern4 Pattern5 Total 

all_genes 46.17% 36.73% 7.30% 6.42% 3.38% 20689 

common 0.00% 54.04% 11.53% 10.86% 23.57% 2376 

EEE-E 15.23% 46.90% 14.88% 13.37% 9.62% 7247 

DDD-D 9.84% 49.17% 12.65% 12.55% 15.79% 3850 

SSS-S 11.21% 48.54% 16.08% 14.74% 9.43% 7295 

E-E(edgeR) 15.33% 46.87% 14.94% 13.23% 9.62% 7247 

edgeR_robust 15.96% 46.24% 15.39% 13.82% 8.59% 8076 

D-D(DESeq) 9.97% 49.16% 12.55% 12.37% 15.94% 3832 

S-S(DESeq2) 11.52% 48.27% 16.22% 14.92% 9.07% 7585 

voom 13.61% 47.25% 15.34% 14.07% 9.73% 7016 

SAMseq 19.72% 44.47% 14.96% 13.50% 7.35% 9453 

PoissonSeq 18.10% 45.61% 14.06% 12.19% 10.04% 6613 

baySeq 16.08% 46.84% 10.92% 9.84% 16.33% 3975 

EBSeq 0.00% 56.97% 16.42% 14.34% 12.27% 5699 

EBSeq defines a total of five possible patterns (Patterns 1 ~ 5). DEGs (satisfying 5% FDR threshold) 

identified by individual pipelines were assigned to one of the five possible patterns. 
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Additional file 8 - The top 20 DEGs detected by the 12 pipelines 

E-E(edgeR) EEE-E D-D (DESeq) DDD-D S-S(DESeq2) SSS-S 

ENSG00000000003 ENSG00000000003 ENSG00000000971 ENSG00000000971 ENSG00000000003 ENSG00000000003 

ENSG00000000457 ENSG00000000457 ENSG00000001461 ENSG00000001461 ENSG00000000457 ENSG00000000457 

ENSG00000000460 ENSG00000000460 ENSG00000001561 ENSG00000001561 ENSG00000000460 ENSG00000000460 

ENSG00000000971 ENSG00000000971 ENSG00000001617 ENSG00000001617 ENSG00000000971 ENSG00000000971 

ENSG00000001084 ENSG00000001084 ENSG00000001630 ENSG00000001630 ENSG00000001036 ENSG00000001084 

ENSG00000001461 ENSG00000001461 ENSG00000002330 ENSG00000002330 ENSG00000001084 ENSG00000001167 

ENSG00000001561 ENSG00000001561 ENSG00000002549 ENSG00000002549 ENSG00000001167 ENSG00000001461 

ENSG00000001617 ENSG00000001617 ENSG00000002587 ENSG00000002587 ENSG00000001461 ENSG00000001561 

ENSG00000001629 ENSG00000001629 ENSG00000002726 ENSG00000002726 ENSG00000001561 ENSG00000001617 

ENSG00000001630 ENSG00000001630 ENSG00000002745 ENSG00000002745 ENSG00000001617 ENSG00000001629 

ENSG00000001631 ENSG00000001631 ENSG00000002933 ENSG00000002933 ENSG00000001629 ENSG00000001630 

ENSG00000002330 ENSG00000002330 ENSG00000003989 ENSG00000003989 ENSG00000001630 ENSG00000001631 

ENSG00000002549 ENSG00000002549 ENSG00000004139 ENSG00000004139 ENSG00000001631 ENSG00000002330 

ENSG00000002586 ENSG00000002586 ENSG00000004534 ENSG00000004534 ENSG00000002330 ENSG00000002549 

ENSG00000002587 ENSG00000002587 ENSG00000004779 ENSG00000004779 ENSG00000002549 ENSG00000002586 

ENSG00000002726 ENSG00000002726 ENSG00000004799 ENSG00000004799 ENSG00000002586 ENSG00000002587 

ENSG00000002745 ENSG00000002745 ENSG00000005020 ENSG00000005020 ENSG00000002587 ENSG00000002726 

ENSG00000002919 ENSG00000002919 ENSG00000005102 ENSG00000005102 ENSG00000002726 ENSG00000002745 

ENSG00000002933 ENSG00000002933 ENSG00000005108 ENSG00000005108 ENSG00000002745 ENSG00000002919 

ENSG00000003056 ENSG00000003056 ENSG00000005379 ENSG00000005379 ENSG00000002919 ENSG00000002933 

edgeR_robust voom SAMseq PoissonSeq baySeq EBSeq 

ENSG00000000457 ENSG00000000457 ENSG00000000003 ENSG00000000003 ENSG00000001461 ENSG00000000460 

ENSG00000000460 ENSG00000000460 ENSG00000000457 ENSG00000000457 ENSG00000001561 ENSG00000000971 

ENSG00000000971 ENSG00000000971 ENSG00000000460 ENSG00000000938 ENSG00000001617 ENSG00000001461 

ENSG00000001036 ENSG00000001084 ENSG00000000971 ENSG00000000971 ENSG00000002330 ENSG00000001561 

ENSG00000001084 ENSG00000001461 ENSG00000001036 ENSG00000001036 ENSG00000002549 ENSG00000001617 

ENSG00000001167 ENSG00000001561 ENSG00000001084 ENSG00000001084 ENSG00000002726 ENSG00000001629 

ENSG00000001461 ENSG00000001617 ENSG00000001167 ENSG00000001461 ENSG00000002745 ENSG00000001630 

ENSG00000001561 ENSG00000001626 ENSG00000001461 ENSG00000001561 ENSG00000002933 ENSG00000001631 

ENSG00000001617 ENSG00000001629 ENSG00000001561 ENSG00000001617 ENSG00000003056 ENSG00000002330 

ENSG00000001626 ENSG00000001630 ENSG00000001617 ENSG00000001626 ENSG00000003400 ENSG00000002549 

ENSG00000001629 ENSG00000001631 ENSG00000001626 ENSG00000001629 ENSG00000003509 ENSG00000002586 

ENSG00000001630 ENSG00000002330 ENSG00000001629 ENSG00000001630 ENSG00000004059 ENSG00000002587 

ENSG00000001631 ENSG00000002549 ENSG00000001630 ENSG00000001631 ENSG00000004139 ENSG00000002726 

ENSG00000002330 ENSG00000002586 ENSG00000001631 ENSG00000002330 ENSG00000004468 ENSG00000002919 

ENSG00000002549 ENSG00000002587 ENSG00000002330 ENSG00000002549 ENSG00000004534 ENSG00000002933 

ENSG00000002586 ENSG00000002726 ENSG00000002549 ENSG00000002586 ENSG00000004766 ENSG00000003056 

ENSG00000002587 ENSG00000002745 ENSG00000002586 ENSG00000002726 ENSG00000004779 ENSG00000003400 

ENSG00000002726 ENSG00000002919 ENSG00000002587 ENSG00000002919 ENSG00000005020 ENSG00000004059 

ENSG00000002745 ENSG00000002933 ENSG00000002726 ENSG00000002933 ENSG00000005102 ENSG00000004139 

ENSG00000002919 ENSG00000003056 ENSG00000002745 ENSG00000003056 ENSG00000005379 ENSG00000004534 

There are 38 kinds of DEGs in the top 20 genes of 12 short gene lists. The genes at the 10 top of the 

ranking according to the appearance frequency are in bold. 
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Additional file 9 - Dendrogram of average-linkage hierarchical clustering for 12 

ranked gene lists 

 
Twelve ranked gene lists used for constructing the dendrogram were obtained from the analysis of the 

simulation data under the following conditions: PDEG = 5 %, (0.5, 0.4, 0.1) for (PG1, PG2, PG3), and 

Nrep = 9. The clustering was performed using the “clusterSample” function with distances defined as 

(1 – Spearman’s rank correlation coefficient). EBSeq showed the highest AUC values (= 96.83 %) in 

this simulation trial, followed by EEE-E (96.45 %), E-E (96.42 %), DDD-D (96.35 %), D-D (96.31 %), 

baySeq (96.21 %), edgeR_robust (95.13 %), S-S (94.54 %), SSS-S (94.43 %), PoissonSeq (94.07 %), 

voom (92.70 %), and SAMseq (92.23 %).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 92 

 

Additional file 10 - Overlaps among the four sets of DEGs among the three 

species 

 
Venn diagram shows the overlaps among four pipelines. In (a) and (b), the three pairs (EEE-E vs. E-E, 

DDD-D vs. D-D, and SSS-S vs. S-S) show great consistent (also can be seen in Additional 6). Note that, 

although the number of DEGs in the first pair is same, these are still 39 genes are not in each other’s 

DEG list. In addition, comparing pipelines EEE-E (DEGES-based edgeR) and edgeR_robust (the 

advanced version of edgeR), the vast majority of DEGs (99.59%) in the latter are included by the 

former. The SSS-S (7295) is more conservative than S-S (7585). Most of the DEGs (96.33%) in EBSeq 

are included by baySeq. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93 

 

 

 

 

 

Additional file 11 - Percentages of Overlapping Genes (POGs) among ranked 

gene lists for EEE-E, DDD-D, SSS-S, and E-E (edgeR) 

 
POG values for any numbers of top-ranked genes for four individual pipelines are shown. Legends are 

basically the same as in Figure 13.  
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Additional file 12 - Percentages of Overlapping Genes (POGs) among ranked 

gene lists for edgeR_robust, D-D (DESeq), S-S (DESeq2) and voom 

 
POG values for any numbers of top-ranked genes for four individual pipelines are shown. Legends are 

basically the same as in Figure 13.  
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Additional file 13 - Percentages of Overlapping Genes (POGs) among ranked 

gene lists for SAMseq, PoissonSeq, baySeq and EBSeq 

 
POG values for any numbers of top-ranked genes for four individual pipelines are shown. Legends are 

basically the same as in Figure 13.  
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Index 
 

AUC: the area under the curve 

BB: beta-binomial (distribution or model)  

BR: biological replicate  

DE: differential expression 

DEG: differentially expressed genes 

DEGES: DEG elimination strategy 

FDR: false discovery rate 

GLM: generalized linear model  

NB: negative-binomial (distribution or model)  

POG: percentages of overlapping genes  

HS: Homo sapiens  

PT: Pan troglodytes  

RM: Rhesus macaques  

TMM: trimmed mean of M values (method)  

TbT: the TMM-baySeq-TMM pipeline 

TCC: Tag Count Comparison 

RPKM: reads per kilobase of exon model per million mapped reads 

FPKM: fragments per kilobase of exon model per million mapped fragments 
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