博士論文

メダカの脳と下垂体における

神経伝達物質・神経修飾物質関連遺伝子の性差

川幡 由希香

東京大学 大学院農学生命科学研究科 水圈生物科学専攻 水族生理学研究室

目次
序論
第1章 神経伝達物質・神経修飾物質関連ファミリー遺伝子の性差
諸言
材料と方法
結果
考察
図表
第2章 vtのオス特異的発現をもたらすメカニズムとその生理的意義
諸言
材料と方法
結果
考察
図表
第3章 tph1のオスに偏った発現をもたらすメカニズムとその生理的意義
諸言
材料と方法
結果
考察
図表
総合考察
要旨
謝辞
引用文献

序論

脊椎動物ではごく一般的に、形態や色彩、攻撃行動や性行動などの行動パターン、性 成熟、成長、ストレス応答などに関わる内分泌パターンに顕著な性差が認められる。例えば、 ほとんどの動物種でオスの方がメスよりも圧倒的に高い攻撃性を示すほか、性成熟や成長 のスピードが雌雄で異なっている動物種も多くみられる。また、環境ストレスは性行動や性成 熟を抑制するが、その効果は一般にオスよりもメスで大きいこともよく知られている(つまり、 オスは多少不適切な環境であっても性成熟し、性行動を行うことができるが、メスは適切な 環境でないと性成熟や性行動が抑制されるケースが多い)。これらの形質にみられる性差の 多くは、行動を直接支配するとともに内分泌系の最上位に位置する器官である脳や下垂体 に存在する何らかの性差に起因すると考えられる(Baron-Cohen *et al.*, 2005; McCarthy and Arnold, 2011; McCarthy *et al.*, 2012; Bale and Epperson, 2015)。しかし、魚類においては、 脳や下垂体にどのような性差が存在し、その性差がどのような形質の性差をもたらすのかに ついての研究は、まだ始まったばかりであり、ごく断片的な知見しか得られていない。

一方、魚類の脳内で発現量に性差を示す遺伝子が、これまでにいくつか見つかってい る。その中には、性差を伴う上記の形質に寄与している可能性が高いと考えられる神経伝達 物質・神経修飾物質に関連する4種類のファミリーに属する遺伝子が含まれている(Godwin, 2010; Le Page et al., 2010; Forlano and Bass, 2011)。攻撃行動や性行動への関与が示され ているバソトシン(VT; vasotocin)/イソトシン(IT; isotosin)神経ペプチドファミリー(Grober and Sunobe, 1996; Foran and Bass, 1998; Godwin et al., 2000; Grober et al., 2002; Black et al., 2004; Ohya and Hayashi, 2006; Maruska et al., 2007; Maruska, 2009)、性成熟や性行動を促 進することが知られているゴナドトロピン放出ホルモン(GnRH; gonadotropin-releasing) hormone) ファミリー (Elofsson *et al.*, 1997, 1999; Ishizaki *et al.*, 2004; Maruska *et al.*, 2007; Kuramochi et al., 2011)、そして、様々な行動や生殖内分泌系を支配する生体アミン系ホル モンの生合成に関わるチロシン水酸化酵素(TH; tyrosine hydroxylase)ファミリー(Chaube and Joy, 2003)と、トリプトファン水酸化酵素 (TPH; tryptophan hydroxylase) ファミリー (Sudhakumari et al., 2010)である。しかし、魚類において、これらの神経伝達物質・神経修 飾物質関連ファミリー遺伝子が、どの神経核や部位でどの程度の性差を示すのか、また、そ の性差がどのようなメカニズムで生じ、最終的にどのような形質に寄与しているのかについて は、これまで体系立った解析がなされてこなかった。

そこで本研究では、これらのファミリーの発現の性差が、魚類の各種形質に性差をもたら

2

しているのではないかとの推測のもと、それらの遺伝子発現の性差を詳細に解析し、顕著な 性差が確認されれば、その性差の形成メカニズムと生理学的意義を明らかにすることを目指 すこととした。本研究では、メダカ(*Oryzias latipes*)をモデル魚に用いて解析を進めることとし た。メダカは、形態(ヒレの形状)や色彩、攻撃行動や性行動のパターンなどに明瞭な性差 を示すとともに、性決定遺伝子が明らかとなっている数少ない魚種の一つであり、性差を研 究するための優れたモデル魚である(Matsuda *et al.*, 2002; Nanda *et al.*, 2002; Okuyama *et al.*, 2014; Ogino *et al.*, 2014; Katsumura *et al.*, 2014; Yokoi *et al.*, 2015)。また、丈夫で世代 時間が短く、省スペース、省コストで飼育・継代できることに加え、クオリティの高いゲノムデ ータベースや expressed sequence tag(EST)データベースが整備されていること、トランスジェ ニックや遺伝子の機能阻害に必要な種々のツールが揃っていることから、モデル生物として の利点も多く兼ね備えている(Wittbrodt *et al.*, 2002; Kasahara *et al.*, 2007; Takeda and Shimada, 2010; Sasado *et al.*, 2010; Kirchmaier *et al.*, 2015)。

本研究論文は3章構成とした。まず第1章では、メダカにおける上記の神経伝達物質・ 神経修飾物質関連ファミリー(VT/ITファミリー、GnRHファミリー、THファミリー、TPHファミリ ー)遺伝子をクローニングし、脳と下垂体におけるそれらの発現の性差を包括的に解析する こととした。

第2章では、第1章によって最も顕著な性差(視床下部内の神経核でのオス特異的な発 現)が認められた VT 遺伝子(w)に注目し、その性差がどのようなメカニズムによってもたらさ れ、どのような表現型に関与するのかについて解析を進めることとした。いくつかの魚種にお けるこれまでの研究によって、VT は攻撃行動に関与することが報告されている(Goodson, 2008; Goodson and Thompson, 2010; Goncalve and Oliveira, 2010; Yokoi *et al.*, 2015)。一方、 上述のように、多くの魚種を含め、脊椎動物では一般にオスの方がメスよりもはるかに高い 攻撃性を示すが、攻撃性を高める主因子はアンドロゲンであることが知られている(Francis *et al.*, 1992; Sato *et al.*, 2004; Goncalves and Oliveira, 2010)。アンドロゲンはその受容体 (AR; androgen receptor)と結合することで転写因子として機能するので、アンドロゲンによっ て、脳内で何らかの遺伝子の発現が促進あるいは抑制され、その結果、攻撃性が高まるも のと考えられる。これらのことから本研究では、「アンドロゲンの転写促進作用によって、VT の発現が視床下部内の神経核でオス特異的に誘導され、そこで産生された VT がオス特異 的に攻撃行動を誘導する」という作業仮説を立て、その検証を行うこととした。

引き続く第3章では、第1章で見出された下垂体におけるほぼオス特異的なTPH1遺伝子(*tph1*)の発現に焦点を当て、解析を進めることとした。TPH1 は様々な行動や内分泌系を

3

制御する生体アミン系ホルモンであるセロトニン(5-HT; 5-hydroxytryptamine)やメラトニン (MT; melatonin)の生合成に深く関わる酵素である(Hull and Rodríguez-Manzo, 2009)。した がって、主要な内分泌器官である下垂体での *tph1*発現の性差は、5-HT あるいは MT の産 生の性差を介して、何らかの内分泌パターンに性差をもたらしていると推察される。そこでこ の考えをもとに、下垂体におけるオスに偏った *tph1*発現がどのようなメカニズムによって生じ、 下垂体ホルモンにどのような影響を及ぼすのかを解析することとした。

第1章 神経伝達物質・神経修飾物質関連ファミリー遺伝子の性差

1-1. 諸言

序論で述べたように、いくつかの魚種におけるこれまでの研究で、攻撃行動や性行動、 性成熟などに関わるとされる4種類の神経伝達物質・神経修飾物質関連ファミリーの遺伝子 が、魚類の脳内で発現に性差を示すことが報告されている。VT/IT、GnRH、TH、そして TPH のファミリーである(Godwin, 2010; Le Page *et al.*, 2010; Forlano and Bass, 2011)。

VTとITは、バソプレッシン(VP; vasopressin)/オキシトシン(OXT; oxytocin)ファミリーに 属するノナペプチドで、それぞれ哺乳類の VP とOXT に対する魚類オーソログであると考え られている(Larhammar et al., 2009)。主として哺乳類での研究から、VP/OXT ファミリーに属 するペプチドは、攻撃行動、ストレス応答、求愛行動を含む性行動、つがいの絆の形成、他 個体との友好関係、父性行動、そして下垂体後葉ホルモンの分泌に関与することが報告さ れている(Balment et al., 2006; Insel, 2010; Abel and Rissman, 2011)。 魚類においても、 VT が攻撃行動や性行動、ストレス応答に関与することが示されている(Balment et al., 2006; Goodson, 2008; Goodson and Thompson, 2010; Goncalve and Oliveira, 2010)。哺乳類の VP と OXT はともに、視床下部の室傍核 (PVN; periventricular nucleus) と視索上核 (SON; supraoptic nucleus) で産生されるが、VP はこれらの神経核に加え、視交叉上核 (SCN; suprachiasmatic nucleus)、分界条床核(BNST; bed nucleus of the stria terminalis)、内側扁 桃体(MeA; medial amygdala)でも産生される(Abel and Rissman, 2011)。 魚類においては、 VTとIT はともに視索前野内のいくつかの神経核で産生されることが、いくつかの種で報告 されている (Grober and Sunobe, 1996; Foran and Bass, 1998; Godwin et al., 2000; Grober et al., 2002; Black et al., 2004; Ohya and Hayashi, 2006; Maruska et al., 2007; Maruska, 2009)

GnRH は、下垂体前葉から2 種類の生殖腺刺激ホルモン(GTH; gonadotropin)である濾 胞刺激ホルモン(FSH; follicle stimulating hormone)と黄体形成ホルモン(LH; luteinizing hormone)を分泌させ、配偶子形成を促進することで知られるデカペプチドである(Maeda *et al.*, 2010)。さらに GnRH は魚類を含む脊椎動物全般で、性行動や摂食行動を調節すること も報告されている(Yamamoto *et al.*, 1997; Volkoff and Peter, 1999; Ogawa *et al.*, 2006; Matsuda *et al.*, 2008; Okuyama *et al.*, 2014)。マウスやラットをはじめとする多くの哺乳類が1 種類の GnRH 遺伝子しかもたないのに対し、メダカを含むいくつかの魚種は gnrh1、gnrh2、

5

gnrh3 の 3 種類の GnRH パラログ遺伝子をもつ。それらの魚種では、*gnrh1* 発現ニューロン は終脳腹側部から視索前野、視床下部にかけて、*gnrh2* 発現ニューロンは中脳被蓋に、 *gnrh3* 発現ニューロンは終神経節から視索前野にかけて分布する(Okubo and Nagahama, 2008; Oka, 2010; Karigo and Oka, 2013)。

THとTPH は芳香族アミノ酸水酸化酵素スーパーファミリーに属し、攻撃行動、性行動、 不安行動を含む様々な行動や内分泌系を支配する生体アミン系ホルモンの生合成に関わ る酵素である(Hull and Rodríguez-Manzo, 2009)。TH はチロシン由来のカテコールアミン類 であるドーパミン、ノルエピネフリン、エピネフリン産生、TPH はトリプトファン由来のトリプタミ ン類であるセロトニン(5-HT)やメラトニン(MT)産生の律速酵素であり、TH はチロシンをジヒ ドロキシフェニルアラニン(DOPA)に、TPH はトリプトファンを 5-ヒドロキシトリプトファンに変換 する。哺乳類において、TH 産生ニューロンは黒質(substantia nigra)、腹側被蓋野(ventral tegmental area)、前腹側脳室周囲核(AVPV; anteroventral periventrical nucleus)に存在し、 脳内に広く投射する(Abel and Rissman, 2011)。哺乳類を含めた四肢動物が1種類のTH 遺伝子をもつのに対し、魚類は2種類のTHパラログ遺伝子(th1とth2)をもち、th1発現ニ ューロンは嗅球、視索前野、視床下部に、th2発現ニューロンは視索前野と視床下部に存在 することが報告されている(Yamamoto et al., 2010)。一方、全ての脊椎動物は2種類のTPH パラログ遺伝子(tph1とtph2)をもち、哺乳類において、Tph1は主に松果体で、Tph2は主に 縫線核で発現することが報告されている(Matthes et al., 2010)。 魚類においては、 tph1 は主 に松果体で、tph2 は嗅球、視索前野、視蓋、視床下部、小脳、縫線核を含む延髄で高く発 現していることが報告されている(Bellipanni et al., 2002; Sudhakumari et al., 2010; Raghuveer *et al.*, 2011)

詳しくは後の考察で述べるように、近年になって魚類の脳におけるこれらの遺伝子の発 現に性差が存在することが報告されてきた。しかし、それぞれの遺伝子が、どの神経核や部 位でどの程度の性差を示すのか、また、その性差がどのようなメカニズムで生じ、最終的に どのような形質に寄与しているのかについては、これまで体系立った解析がなされてこなか った。そこで、まずは本章で、メダカの脳と下垂体におけるこれらの遺伝子の発現の性差を 包括的に解析することとした。はじめに、これまでにメダカで同定されていなかった VT、IT、 TH、TPH の各遺伝子を単離・同定した。その結果、メダカは 1 種類の VT 遺伝子(*vt*)と IT 遺伝子(*it*)、2 種類の TH 遺伝子(*th1、th2*)と TPH 遺伝子(*tph1、tph2*)をもつことが分かった。 そこで、すでに同定されていた 3 種類の GnRH 遺伝子(*gnrh1、gnrh2、gnrh3*)(Okubo *et al.*, 2000; Okubo and Nagahama, 2008)を含め、計 9 種類の遺伝子について、メダカの脳と下垂 体での発現の性差を解析した。その結果、新規の性差も含め、これらの遺伝子の脳と下垂 体における発現の性差が明らかとなった。

1-2. 材料と方法

1-2-1. 実験魚

本章の全ての実験には、水温 28°C、14 時間明期(9 時から 23 時まで)/10 時間暗期(23 時から 9 時まで)で飼育した 3-4 カ月齢の性成熟した雌雄のメダカ(d-rR 系統)を用いた(実験毎に同じ月齢の個体を用いた)。餌はブラインシュリンプ幼生、または市販の固形飼料(おとひめ; 日清丸紅飼料, Tokyo, Japan)を1日3、4回与えた。脳のサンプリングは明期開始後 1-2.5 時間の間に行った。

1-2-2. メダカの VT/IT、TH、TPH ファミリー遺伝子の単離・同定

メダカの脳由来の完全長 cDNA ライブラリーからランダムに 32000 クローンをピックアップ し、EST 解析を行うことで構築したデータベース (Okubo *et al.*, 2011)を検索したところ、*vtとit* の EST がそれぞれ 6 クローンと 11 クローン含まれていた。*vtとit* の EST をそれぞれ 1 クロ ーンずつ選び、BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA)を用いて全長をシークエンシングし、全塩基配列を決定した。

*th1、th2、tph1、tph2*の cDNA は、メダカの脳由来の mRNA をもとに Marathon cDNA Amplification Kit(Takara Bio, Shiga, Japan)を用いて合成した cDNA プール (Okubo *et al.*, 2006)を鋳型にして、rapid amplification of cDNA ends (RACE)を行うことでクローニングした。 PCR 産物は pGEM-Teasy ベクター (Promega, Madison, WI, USA) にライゲーションし、上記 と同様の方法でシークエンシングした。

得られた配列が真のメダカの vt、it、th1、th2、tph1、tph2 であることを確認するために、系 統樹解析を行った。得られた塩基配列から演繹されるアミノ酸配列を、他の動物種の既知の VT、IT、TH、TPH のアミノ酸配列と Clustal W プログラムによってアラインし、近隣結合法を 用いて系統樹を作成した(http://clustalw.ddbj.nig.ac.jp/index.php?lang=ja)。系統樹の作成 に用いた既知の配列(括弧内は GenBank のアクセッション番号)は以下の通りである。ヒト VP(NP_000481)、マウス VP(NP_033862)、ラット VP(NP_058688)、ウシ VP(NP_789824)、 ニワトリ Vt(NP_990516)、カエル Vt(AAA48556)、サケ Vt(BAA01739)、ゼブラフィッシュ Vt(NP 840078)、フグ Vt(AAC60293)、ヒトOXT(NP 000906)、マウス OXT(NP 035155)、 ラット OXT (NP_037128)、ウシ OXT (NP_789825)、ニワトリメソトシン (Mt) (XP_001231492)、 カエル Mt (AAA48555)、サケ It (BAA01738)、ゼブラフィッシュ It (NP_840076)、フグ It (AAC60289)、ヒト TH (NP_954987)、マウス TH (NP_033403)、ラット TH (NP_036872)、ニワ トリ TH (NP_990136)、ゼノパス Th (NP_001091392)、ゼブラフィッシュ Th1 (NP_571224)、ゼ ブラフィッシュ Th2 (NP_001001829)、ヒト TPH1 (NP_004170)、マウス TPH1 (NP_033440)、 ラット TPH1 (NP_001094104)、ニワトリ Tph1 (AAC60036)、ゼノパス Tph1 (NP_001080923)、 ゼブラフィッシュ Tph1a (NP_840091)、ゼブラフィッシュ Tph1b (NP_001001843)、ヒト TPH2 (NP_775489)、マウス TPH2 (NP_775567)、ラット TPH2 (NP_776211)、ニワトリ Tph2 (NP_001001301)、ゼブラフィッシュ Tph2 (NP_999960)。

1-2-3. VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現の性差の脳領域レベルでの解析

以下に記した方法にしたがって、雌雄のメダカの脳を 3 つの領域に分割し、それぞれの 脳領域における vt、it、gnrh1、gnrh2、gnrh3、th1、th2、tph1、tph2 の発現量を real-time PCR によって解析した。

性成熟した雌雄のメダカ(それぞれ n = 6)の脳を摘出し、(1)嗅球(OB; olfactory bulb)、 終脳(Tel; telencephalon)、間脳(Die; diencephalon)、視蓋を除く中脳(Mes; mesencephalon) (以下、OB/Tel/Die/Mesと略す)、(2)視蓋(OT; optic tectum)、(3)小脳(Cb; cerebellum)、 延髄(MO; medulla oblongata)(以下、Cb/MO と略す)の 3 つの領域に分割した。RNeasy Lipid Tissue Mini Kit(Qiagen, Hilgen, Germany)を用いて、分割したそれぞれの脳領域から 全 RNA を抽出し、抽出の途中に DNase I(Qiagen)処理を行うことで、ゲノム DNA のコンタミ を防いだ。その後、SuperScript VILO cDNA Synthesis Kit(Invitrogen, Carlsbad, CA, USA) を用いて逆転写を行い、cDNA を合成した。real-time PCR は、LightCycler 480 SYBR Green I Master (Roche Diagnostics, Basel, Switzerland)を用いて、LightCycler 480 System II (Roche Diagnostics)上で行った。PCR に用いたプライマーを表 1-1 に示した。得られた各遺 伝子の発現量は β アクチン遺伝子(*actb*)の発現量で補正し、オスの全脳での値を 1 とした 場合の相対値で示した。

1-2-4. VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現の性差の神経核・細胞レベルでの 解析

以下に記した方法にしたがって、雌雄のメダカの脳と下垂体における vt、it、gnrh1、 gnrh2、gnrh3、th1、th2、tph1、tph2 の発現を in situ hybridization(ISH)によって神経核・細 胞レベルで解析した。

1-2-2 で用いたメダカの脳由来の cDNA プール (Okubo et al., 2006) を鋳型として、表 1-1 に示したプライマーで PCR を行うことで、vt(845 bp)、it(738 bp)、gnrh1(428 bp)、gnrh2 (605 bp)、gnrh3(736 bp)、th1(569 bp)、th2(1520 bp)、tph1(1850 bp)、および tph2(1787 bp)のDNA断片を得た。PCRエラーによる塩基置換や挿入欠失変異を防ぐために、PCRに はハイフィデリティの DNA ポリメラーゼである PrimeSTAR GXL DNA Polymerase (Takara Bio) を用いた。PCR 後の反応液を 1.5%アガロースゲルによる電気泳動に供した後、Wizard SV Gel and PCR Clean-Up System (Promega)を用いて、得られた DNA 断片をゲルから精製した。 続いて、rTaq DNA Polymerase (Takara Bio)を用いて、DNA 断片の両端に TA クローニング のための dATP を付加し、pGEM-Teasy ベクター (Promega) へのライゲーション、大腸菌のト ランスフォーメーションを行った。コロニーPCR によって目的のインサートを含むプラスミドを 有することが明らかとなったコロニーを培養し、QIAprep Spin Miniprep Kit(Qiagen)を用い てプラスミドを精製した後、シークエンシングを行った。配列解析によって正しい塩基配列を 有することが確認されたクローンの菌体を再び培養し、QIAfilter Plasmid Midiprep Kit (Qiagen)を用いてプラスミドを大量精製した。プラスミドを Spel 処理によって直鎖化した後、 それを鋳型として T7 RNA Polymerase (Roche Diagnostics)と Digoxigenin RNA Labeling Mix (Roche Diagnostics)で転写反応を行い、ジゴキシゲニン(DIG; digoxigenin)で標識され た ISH 用の cRNA プローブを合成した。

性成熟した雌雄のメダカ(それぞれ n = 5)の脳と下垂体を摘出し、4%パラホルムアルデ ヒド(PFA)/リン酸緩衝液(PBS; 137 mM NaCl、8.10 mM Na₂HPO₄、2.68 mM KCl、1.47 mM KH₂PO₄)で7時間固定した後、パラフィン(Paraplast; Sigma-Aldrich, St. Louis, MO, USA) に包埋した。ミクロトーム(RM2255; Leica Microsystems, Wetzlar, Germany)を用いて、厚さ 10 μm の脳と下垂体の連続コロナル切片を作製し、スライドガラス(MAS-GP type A; Matsunami, Tokyo, Japan)上にマウントした。

脱パラフィンした切片を、2 μg/mlの proteinase K (Wako Pure Chemical Industries, Osaka, Japan)/PBS で 37°C、15 分間処理した後、4% PFA/PBS で室温にて 10 分間再固定した。次 に、アセチル化バッファー (100 mM triethanolamine、21 mM HCl、23 mM acetic anhydride) により 15 分間アセチル化処理を行った。PBS および 5× saline-sodium citrate (SSC; 150 mM NaCl、15 mM trisodium citrate dihydrate (C₆H₅O₇Na₃·2H₂O))/50%ホルムアミドで洗浄した 後、ハイブリダイゼーションバッファー (50%ホルムアミド、5× SSC、5× Denhardt's solution (Wako Pure Chemical Industries)、2 μg/ml yeast RNA (Roche Diagnostics)、30 μg/ml calf

thymus DNA (Invitrogen))中で、55°C、2 時間のプレハイブリダイゼーションを行った。その 後、DIG で標識した各 cRNA プローブ(終濃度 0.15 µg/ml)を加え、55°C で一晩ハイブリダ イゼーションを行った。55°C の 5× SSC/50%ホルムアミド、および 2× SSC で洗浄した切片を、 1.5% blocking reagent (Roche Diagnostics)/Tris-buffered saline (TBS; 150 mM NaCl、100 mM Tris)中で室温にて1時間インキュベートした後、同溶液で2000 倍希釈したアルカリホス ファターゼ(AP)標識ヒツジ抗 DIG 抗体 (Roche Diagnostics)と 4°C で一晩反応させた。TBS で洗浄後、AP バッファー(100 mM NaCl、100 mM Tris-HCl(pH 9.5)、50 mM MgCl₂)に溶 解した 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium (BCIP/NBT) (Roche Diagnostic)を用いて、遮光条件下で5時間(vt, it)、7時間(gnrh1)、4時間(gnrh2)、2時間 (gnrh3)、および 15時間(th1, th2, tph1, tph2)それぞれ発色させた。発色後、PBS での洗 浄、4% PFA/PBS による後固定処理、再び PBS での洗浄を行い、VectaMount AQ Aqueos Mounting Medium(Vector Laboratories, Burlingame, CA, USA)を用いて切片を封入した。

1-2-5. 顕微鏡観察および撮影

試料標本の観察および撮影は、正立顕微鏡(BX53; Olympus, Tokyo, Japan)とデジタル カメラ(DP73; Olympus)、および写真撮影のためのソフトウェア(cellSens; Olympus)を用い て行った。撮影した画像は Photoshop CS5(Adobe Systems, San Jose, CA, USA)でモノクロ2 階調化し、ImageJ(http://rsbweb.nih.gov/ij/)を用いてシグナルの面積を測定した。シグナル の面積に性差が認められた遺伝子・神経核については、神経核におけるシグナル陽性ニュ ーロンの数を、正立顕微鏡(BX53)下でマニュアルにてカウントした。

神経核の同定は、メダカの脳アトラス(Anken and Bourrat, 1998; Ishikawa *et al.*, 1999; http://www.shigen.nig.ac.jp/medaka/ medaka_atlas/)、および自身で作製したメダカの脳のニ ッスル染色標本を参照して行った。ニッスル染色は以下の手順で行った。摘出した雌雄のメ ダカの脳を 4% PFA/PBS にて 7 時間固定した後、パラフィン (Paraplast; Sigma-Aldrich) に包 埋した。ミクロトーム (RM2255; Leica Microsystems)を用いて、厚さ 10 μm の連続切片を作 製し、スライドガラス (MAS-GP type A; Matsunami) 上にマウントした。脱パラフィンした切片 をクレシルバイオレット中で 15 分間インキュベートし、透徹後、Permount (Fisher Scientific, Itasca, IL, USA)を用いて封入した。

1-2-6. 統計処理

グラフで示した全てのデータは、平均値±標準誤差(SEM; standard error of the mean)

で示した。

Microsoft Excel (Microsoft, Redmond, WA, USA)を用いて統計処理を行った。real-time PCR および ISH で得られた全てのデータを雌雄間で比較し、Student's *t*-test (非対応、両方 向の Student's *t*-test、有意水準 5%)によって有意差を検定した。

1-3. 結果

1-3-1. メダカの VT/IT、TH、TPH ファミリー遺伝子の単離・同定

完全長 cDNA ライブラリーのスクリーニングおよび RACE 法によって、メダカの VT/IT、 TH、TPH ファミリー候補遺伝子の cDNA をクローニングした。系統樹解析の結果、得られた 配列は全て、オーソログであることが期待される他魚種の配列と同じクラスターに分類された (図 1-1)。したがって、今回クローニングされた cDNA は、真のメダカの vt、it、th1、th2、tph1、 tph2 であることが確認された。これらの cDNA を GenBank に登録した(それぞれのアクセッ ション番号は以下の通り)。vt AB691137、it AB691138、th1 AB691139、th2 AB691140、tph1 AB691141、tph2 AB691142。

1-3-2. VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現の性差(発現の脳領域レベルでの 性差)

real-time PCR によって、3 分割したメダカの脳((1) OB/Tel/Die/Mes、(2) OT、(3) Cb/MO) における vt、it、gnrh1、gnrh2、gnrh3、th1、th2、tph1、tph2 の発現量の性差を解析した(図 1-2)。vtとit は両者とも OB/Tel/Die/Mes のみで発現が認められたが、vt はオスで、it は逆に メスで有意に高い発現を示した。gnrh3 も OB/Tel/Die/Mes のみで発現が認められ、メスの方 がわずかに高い発現を示した。th2 は 3 分割した全ての脳領域で発現が認められ、OT にお いてオスがわずかに高い発現を示した。一方、gnrh1、gnrh2、th1、tph1、tph2 の発現に性差 は認められなかった。

1-3-3. VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現の性差(発現の神経核・細胞レベ ルでの性差)

ISH によって、メダカの脳と下垂体における vt、it、gnrh1、gnrh2、gnrh3、th1、th2、tph1、 tph2の発現を神経核・細胞レベルで解析した。vt、it、gnrh1、gnrh2、gnrh3の発現ニューロン の分布を図 1-3 に、th1、th2、tph1、tph2の発現ニューロンの分布を図 1-4 にまとめて記した。 各遺伝子の発現が認められた神経核の名称と略称は表 1-2 にまとめて記した。

vt は、視索前野の神経核 PMp/PPa/PMm/Pmg、および視床下部の神経核 SC/aNVT、 NAT、NPT、pNVT で発現が認められた。その中で、NPT と pNVT における発現は、オスの みで認められた(図 1-5)。it は、終脳の Vd/Vs/Vp、および視索前野の PMp/PPa/PMm/Pmg で発現が認められたが、いずれの神経核においても有意な性差は認められなかった(図 1-5)。

gnrh1は、終脳のVv、Dl、Vs/Vp、視索前野のPblとPPa、そして視床下部のaNVTで発現しており、Vs/Vpにおいては、メスよりもオスでシグナルの面積が有意に大きかった。また、Vs/Vpでのgnrh1発現ニューロンの数をカウントした結果、有意差は検出されなかったが、シグナル面積と同様に、オスで多い傾向が認められた(p=0.057)(図1-6)。一方、gnrh2は、主に中脳被蓋のMR/IQにおいて発現しており、オスよりもメスでわずかに高い発現が認められた。しかし、ニューロン数に性差はなかった(図1-6)。gnrh3は、主に終神経節(TN)で発現がみられ、その他に終脳のVi、視床のVMでも発現していたが、いずれの神経核においても性差は認められなかった(図1-6)。

th1 は嗅球から終脳にかけての ICL/Vv/Vd/Dc、視索前野の Pbl、pMp、PPa/aPPp、視床の VL と PPv、視床下部の aNVT、NAT/NPT、pNVT、そして延髄の NVm で発現が認められた。一方、*th2* は視索前野の PMp、左右両側の手綱核 (rHd and lHd)、視床の pPPp、視床下部の NAT/NPT/pNVT/NRL、NRP で発現が認められた。しかし、*th1* と *th2* は両者ともに、いずれの神経核においても有意な性差を示さなかった(図 1-7)。

tph1 の発現は、終脳の Dm、視索前野の Pbl/PPa、松果体(EP)、左手綱核(IHd)、視床 下部の pPPp、NAT/NPT/pNVT/NRL、NRP で明瞭に認められたほか、終脳の Vd/VsとVv、 そして右手綱核(rHd)においても、ごくわずかに認められた。Dmにおける*tph1* 発現は、シグ ナルの面積、発現ニューロンの数ともに、オスで有意に高い数値を示した(図 1-8)。*tph2*は、 視床の DP と延髄の gc/ra、aMO において広くまばらに発現しており、DP において、シグナ ルの面積、発現ニューロンの数ともに、オスで高い値を示した(図 1-8)。また、*tph1* の発現は 下垂体においても認められたが、そこでの発現はほぼオス特異的であった(図 1-9)。

1-4. 考察

本章では、魚類の攻撃行動や性行動、性成熟などに関わるとされる 4 種類の神経伝達物質・神経修飾物質関連ファミリー遺伝子の発現の性差を、メダカの脳と下垂体において解

析した。

最も顕著な性差はwで認められ、同遺伝子の発現は、視床下部の後部の2つの神経核 NPTとpNVTにおいて完全にオス特異的であった。視索前野と視床下部の前部における vt の発現には性差が認められなかったことから、脳領域レベルで検出された性差は、NPTおよ びpNVTの性差に由来すると考えられる。これまでにいくつかの魚種において、視索前野の PMp/PPa/PMm/PMg において vt の発現に性差が存在することが報告されている(Grober and Sunobe, 1996; Foran and Bass, 1998; Godwin et al., 2000; Grober et al., 2002; Ohya and Hayashi, 2006; Maruska et al., 2007; Maruska, 2009)が、視床下部における性差はこれまで に報告がなかった。魚類の NPT と NVT はそれぞれ、哺乳類の黒質(substantia nigra) (Reiner et al., 1998; Forlano and Bass, 2011)および弓状核(arcuate)/脳室周囲核 (periventricular nucleus) (Forlano et al., 2005; Forlano and Bass, 2011)と相同な神経核であ ると考えられている。哺乳類におけるこれらの神経核は種々の行動や生理機能に関与する ことが知られているとともに、VT は多岐にわたる機能をもつ (Greenwood et al., 2008; Filby et al., 2010)。したがって、現段階では、NPT および pNVT における vt のオス特異的発現がも つ意義を推測することは困難である。しかし、直接的な証明はなされていないが、他の魚 種においてオスに偏った視索前野の vt 発現は、オス型の性行動や攻撃行動を促進すると 考えられており(Semsar et al., 2001; Salek et al., 2002; Santangelo and Bass, 2010)、メダカに おける vt のオス特異的発現も、これらの行動を促進する役割をもつ可能性が考えられる。

it の発現は、OB/Tel/Die/Mes においてメスの方がオスよりも高いことが明らかとなったが、 ISH による解析では性差が認められなかった。視索前野における it の発現は 4 つの神経核 PMp/PPa/PMm/PMg にまたがって連続的に観察されたため、今回の ISH による解析では、 これらの神経核での発現を区別して解析することができなかった。これらの神経核のいずれ かにおいて性差が存在するが、その性差を検出できなかった可能性がある。あるいは、シグ ナル強度が飽和状態に達しており、性差が検出されなかったのかもしれない。今回のメダカ での結果と同様に、bluebanded goby (*Lythrypnus dalli*)では、視索前野での IT 免疫陽性ニ ューロンの数が、オスよりもメスで多いことが報告されている (Black *et al.*, 2004)。IT のオーソ ログである OXT とMT が、母性行動や性的受容性といった、いくつかのメス特有の行動や排 卵への関与が示唆されていること (Goodson, 2008; Goodson and Thompson, 2010; Insel, 2010)を考えると、魚類におけるメスに偏った *it* の発現も何らかのメス特有の行動、あるいは 排卵に関与しているかもしれない。

gnrh1 は終脳の Vs/Vp において、オスに偏った発現が認められた。以下に記すように、

13

視索前野での GnRH 免疫陽性ニューロン(ニューロンの位置情報から GnRH1 ニューロンで あると推察される)の数に性差が存在することが、他の魚種において報告されているが、終 脳腹側部における GnRH 発現の性差はこれまで報告がなかった。dusky anemonefish (Amphiprion melanopus) (Elofsson et al., 1997)、および ballan wrasse(Labrus berggylta) (Elofsson et al., 1999)で、Pbl/PPaに相当する神経核におけるGnRH免疫陽性ニューロンの 数がオスで多いことが報告されている。また、dwarf gourami(Colisa lalia)(Ishizaki et al., 2004)でも、PPaに相当する神経核においてGnRH免疫陽性ニューロンの数がオスで多いこ とが報告されている。逆に、halfspotted goby (Asterropteryx semipunctata)の視索前野では、 GnRH 免疫陽性ニューロンがメスで多いことが報告されている(Maruska et al., 2007)。これら の過去の報告は全て、下垂体に投射し、FSHとLHを分泌させる GnRH ニューロンにおける 性差であるが、今回メダカで性差が認められた神経核 Vs/Vpの GnRH ニューロンは下垂体 には投射していないことが明らかとなっている(Karigo et al., 2012)。キンギョ(Carassius auratus)における脳の局所破壊実験などによって、魚類の Vs/Vp はオスの性行動に関与す ることが示されている(Kyle and Peter, 1982; Koyama et al., 1984; Satou et al., 1984)。また、 Vs/Vp は哺乳類の内側扁桃体(MeA)/分界条床核(BNST)に相同な神経核であると考えら れており(Northcutt, 1995; O'conell and Hofmann, 2012; Goodson and Kingsbury, 2013)、 BNST はオスの性行動に重要であることが知られている(Claro et al., 1995; Liu et al., 1997)。 哺乳類においてGnRH1は性行動を促進すること(Schiml and Rissman, 2000; Kauffman and Rissman, 2004)を考え合わせると、メダカのVs/Vpにおけるオスに偏ったgnrhl発現は、オス の性行動の促進に関与しているのかもしれない。

中脳被蓋の MR/IQ における gnrh2 の発現シグナルの面積は、わずかにメスよりもオスで 高いことが分かった。しかし、gnrh2 が発現する神経核は MR/IQ に限定されているにもかか わらず、OB/Tel/Die/Mes における脳領域レベルでの gnrh2 発現量には有意な性差が検出 されなかった。したがって、メダカの脳における gnrh2 発現の性差は、存在するとしてもごくわ ずかであると考えられる。一方で、halfspotted goby の被蓋における gnrh2 発現では、メスに 偏った性差が報告されており (Maruska et al., 2007)、今後、より多くの魚種での解析が待た れる。

OB/Tel/Die/Mes においてメスに偏った gnrh3 の発現が認められたが、神経核レベルでの性差は確認されなかった。halfspotted goby の TN において GnRH 免疫陽性ニューロンがメスで多いという同様の結果が得られている(Maruska et al., 2007)。対照的に、Mozambique tilapia(*Oreochromis mossambicus*)では GnRH3 免疫陽性ニューロンがオスで多いことが報

告されており(Kuramochi *et al.*, 2011)、これは GnRH3 がオスの性行動に関与するという報告(Yamamoto *et al.*, 1997; Volkoff and Peter, 1999; Ogawa *et al.*, 2006)と合致する。一方、 dusky anemonefish とキンギョでは、GnRH3 の発現に有意な性差はないことが示されており (Elofsson *et al.*, 1997, 1999; Parhar *et al.*, 2001)、GnRH3 発現の性差のパターンは魚種によって異なっていることが考えられる。それぞれの魚種における繁殖戦略や社会構造を反映しているのかもしれない。

メダカの脳における th1とth2 の発現ニューロンの分布は、ゼブラフィッシュでの報告とほ ぼ一致していた(Yamamoto et al., 2010)。しかし、Indian catfish(*Heteropneustes fossilis*)に おいて、生殖周期にかかわらず TH 活性がオスの脳で高いことが報告されていた(Chaube and Joy, 2003)ため、メダカの脳において th 発現に性差が見られなかったことは意外であっ た。ラットやマウスにおいては、前腹側脳室周囲核(AVPV)におけるドーパミン作動性の TH 発現ニューロンの細胞数が、オスよりもメスで多いということが知られている(Simerly et al., 1985, 1997)。メダカでも、AVPV と相同であると推定されている PPa(Forlano et al., 2005)に おいて th1 発現ニューロンが認められたが、そこに性差は認められなかった。まだ直接的な 証拠は得られていないが、げっ歯類の AVPV におけるメスに偏った TH 発現ニューロンは、 メス特有の排卵前期の LH サージを起こす作用をもつと推測されている(Semaan and Kauffman, 2010)。AVPV における TH 発現の性差が、LH サージの有無の性差をもたらして いるという考えである。一方、魚類においては、メスだけでなく、産卵前のオスでもLH サージ が起こることが報告されている(Munakata and Kobayashi, 2010)。PPa における th1 発現に性 差が存在しないために、魚類ではオスとメスの両者で LH サージが起こるのかもしれない。

tph1 は、Dm においてオスに偏った発現を示した。Dm は哺乳類の情動を司る領域であ る扁桃体に相当すると考えられており(Braford, 1995; Forlano et al., 2005)、扁桃体は雄性 行動の調節に関与することが示されている(Hull and Rodríguez-Manzo, 2009)。さらに、性転 換魚である saddleback wrasse (*Thalassoma dupperrey*)では、Dm におけるセロトニン活性が メスからオスへの性転換によって上昇することが報告されている(Larson et al., 2003)。した がって、Dm におけるオスに偏った tph1 の発現は、縄張り行動、攻撃行動、求愛行動あるい は性行動といったオスに典型的な行動パターンに関与している可能性が考えられる。下垂 体においても tph1 の発現が認められたが、そこでの発現はほぼオス特異的であった。脊椎 動物全体を通して、下垂体における TPH 発現の性差は今回が初めての報告であり、その意 義については定かではない。このオス特異的な tph1 発現は、その位置を考えると、下垂体 前葉主部あるいは中葉の細胞での発現であると考えられる。これまでに、TPH によって生合 成される 5-HT が LH の分泌パターンに影響を及ぼすこと(Schneider and McCann, 1970; Somoza and Peter, 1991; Khan and Thomas, 1992; Kah *et al.*, 1993; Senthilkumaran *et al.*, 2001)、GTH や成長ホルモンの放出に関与すること(Somoza and Peter, 1991)、プロオピオメ ラノコルチンの発現調節に関与すること(Winberg and Lepage, 1998)などが報告されている。 また、当研究室の先行研究によって、メダカの各種下垂体ホルモンの発現には性差が存在 すること(大久保ら、未発表データ)を考えると、このオス特異的な *tph1* 発現は、性依存的な 下垂体ホルモンの分泌パターンに関与している可能性が考えられる。

また、*tph2*の発現は DP においてメスよりもオスで高いことがわかった。DP は視蓋からの 入力を受ける領域で、哺乳類において感覚運動の調整に関与する上丘(superior colliculus) と相同である(Butler, 2008)。よって、DP におけるオスに偏った *tph2* 発現は、感覚刺激に応 答して起こる性依存的な行動への関与が考えられる。興味深いことに、セロトニン作動性の *tph2* 発現ニューロンは、オスのマウスの性的嗜好性に関与することが示されている(Liu *et al.*, 2011)。African catfish(*Clarias gariepinus*)では、生殖腺の性分化期における脳内の *tph2* 発現がオスで有意に高いが、性成熟後の個体ではその性差が消失することが報告されてい る(Raghuveer *et al.*, 2011)。同様に、Nile tilapia(*O. niloticus*)の脳においても、生殖腺の性 分化期に TPH 発現がオスで高いことが示されている(Sudhakumari *et al.*, 2010)が、これらの 魚種においては神経核レベルの解析はなされていない。性的二型が現れる時期は異なっ ているが、これらの魚種でもメダカと同様に、DP に *tph2* 発現の性差が存在する可能性が考 えられる。

以上の研究により、メダカの脳と下垂体における VT/IT、GnRH、TH および TPH ファミリ ー遺伝子の発現の性差を体系立って把握することができた。今回見出された性差のいくつ かは、他の動物種で報告されていない新規のものであった。性差が認められた遺伝子の機 能に関するこれまでの知見や、発現に性差が認められた神経核や部位の機能を考え合わ せると、今回明らかとなった発現の性差のいくつかは、攻撃行動や性行動などの行動パター ンや生殖内分泌パターンの性差に関与している可能性が十分にあり得ると考えられた。

表 1-1. 第1章で使用したプライマー

名称	塩基配列(5′-3′)
vt-Fw-RT	CCGCCTGTTACATCCAGAACT
vt-Rev-RT	GGGCCACAAGACATGCACT
<i>it</i> -Fw-RT	GGGACTTTGCTGTGATGCAG
<i>it</i> -Rev-RT	CCTGAGGAGGATGTCAGCAG
gnrh1-Fw-RT	AGACTCCTTAACAGCAATACAC
gnrh1-Rev-RT	GCTTCAGTTACACTCCCAAGA
gnrh2-Fw-RT	TTAGCACCTGATCGACTT
gnrh2-Rev-RT	ACCAGCCGAGACATTACCTT
gnrh3-Fw-RT	CGTGAGCAGCAAAGTTGT
gnrh3-Rev-RT	TTCCTGTGCCCATCATCCT
<i>th1</i> -Fw-RT	GCGCTGCTGAACATCTTCTT
th1-Rev-RT	GTCTCCAGGTGTCGGATGAC
<i>th2</i> -Fw-RT	GGATTCTTCAAAGCAGGGAAA
th2-Rev-RT	CGTTGTTCTTCCACTTCCTACC
<i>tph1-</i> Fw-RT	GAGAACTTGAGCATGTACTCAAACA
<i>tph1</i> -Rev-RT	TCAATTTTGTTGAAGGTTGATTTGT
<i>tph2</i> -Fw-RT	ACAACGTGCAACCAAGAGTGT
<i>tph2</i> -Rev-RT	TGGACGCTTAATTGTCTTTGC
vt-Fw-ISH	AGACGTCCACACCGACAGCCT
vt-Rev-ISH	GGCTGTGATGAGACATTCTGTATTTTC
it-Fw-ISH	ACAGGGACCTCAGAAGTCACAAGG
it-Rev-ISH	TTTATTTCAGCATGCAGATTTCTGGATGAT
gnrh1-Fw-ISH	CAGAATTCAGAGAACAGCAAACTGGAG
gnrh1-Rev-ISH	CAGAAGAAACAGCTTTTATTCACGATTTGC
gnrh2-Fw-ISH	CTGTGAGAAACAGTAAAACACTTTAGCAC
gnrh2-Rev-ISH	AATCACCAAAGCAACTTAAACAATGAACTC
gnrh3-Fw-ISH	CTAATGGACGTGAGCAGCAAAGTTGTG

表 1-1. 第1章で使用したプライマー(続き)

名称	塩基配列(5′-3′)
gnrh3-Rev-ISH	GGGACTAATCAACAACAATGTATATGAGC
th1-Fw-ISH	GACCAGAACTACCAGCCCGTCTACT
th1-Rev-ISH	GTCAAACCGGATTAACTGAATCTCACAC
th2-Fw-ISH	GGCCACATCCCCATGCTGGCGAAT
th2-Rev-ISH	CGCCGTCTCTTCAGAGAATCCTCAT
tph1-Fw-ISH	GGGAGGACTTGTGAAAGCACTCAAACT
tph1-Rev-ISH	GGCCAGATCTGTCACAATCAGTCATGA
tph2-Fw-ISH	CACCAACACTCCAGCACACGTGTG
tph2-Rev-ISH	GGTTCATCTCAGGTCTGATTGACAGC

プライマーの名称は、標的遺伝子、方向(Fw はフォワード、Rev はリバース)、使用目的(RT は real-time PCR、ISH は *in situ* hybridization のプローブ作製)を示す。

表 1-2. 神経核の名称および略称

略称	名称
aMO	anterior part of the medulla oblongata (a wide area but not a single nucleus)
aNVT	anterior part of ucleus ventral tuberis
aPPp	anterior part of posterior parvocellular preoptic nucleus
Dc	central nucleus of the dorsal telencephalic area
Dl	lateral nucleus of the dorsal telencephalic area
Dm	medial nucleus of the dorsal telencephalic area
DP	dorsal posterior nucleus of thalamus
EP	pineal gland
gc	central gray
ICL	internal cellular layer of olfactory bulb
IQ	inferior oblique of the oculomotor nerve nucleus
lHd	left dorsal habenula
MR	medial rectus of the oculomotor nerve nucleus
NAT	nucleus anterior tuberis
NPT	nucleus posterior tuberis
NRL	lateral recess nucleus
NRP	posterior recess nucleus
NVm	motor nucleus of trigeminal nerve
NVT	nucleus ventral tuberis
Pbl	basal lateral preoptic nucleus
PMg	gigantocellular portion of the magnocellular preoptic nucleus
PMm	magnocellular portion of the magnocellular preoptic nucleus
PMp	parvocellular portion of the magnocellular preoptic nucleus
pNVT	posterior part of ucleus ventral tuberis
PPa	anterior parvocellular preoptic nucleus
PPp	posterior parvocellular preoptic nucleus
pPPp	posterior part of posterior parvocellular preoptic nucleus

略称	名称
PPv	ventral part of pretectal periventricular nucleus
ra	nucleus raphe
rHd	right dorsal habenula
SC	suprachiasmatic nucleus
TN	terminal nerve ganglion
Vd	dorsal nucleus of the ventral telencephalic area
Vi	intermediate nucleus of the ventral telencephalic area
VL	ventrolateral nucleus of thalamus
VM	ventromedial nucleus of thalamus
Vp	posterior nucleus of the ventral telencephalic area
Vs	supracommissural nucleus of the ventral telencephalic area
Vv	ventral nucleus of the ventral telencephalic area

表 1-2. 神経核の名称および略称(続き)

図 1-1. メダカを含めた脊椎動物における VT/IT ファミリー、TH ファミリー、TPH ファミリー の系統樹解析

(A) 脊椎動物における VT ファミリーの系統樹解析。(B) 脊椎動物における IT ファミリーの系統樹解析。(C) 脊椎動物における TH ファミリー、TPH ファミリーの系統樹解析。各分岐点の 数字はブートストラップ値を示す。また、スケールバーは推定の進化距離を示す。本研究で 単離・同定したメダカの配列を四角で囲んで示した。

図 1-2. 3 分割した脳領域における VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現量の 性差

メダカの脳を(1)嗅球(OB)、終脳(Tel)、間脳(Die)、および視蓋を除いた中脳(Mes)、(2) 視蓋(OT)、(3)小脳(Cb)および延髄(MO)に分割し、それぞれの脳領域での vt、it、gnrh1、 gnrh2、gnrh3、th1、th2、tph1、tph2 の発現量を real-time PCR によって解析した。縦軸は相 対発現量、横軸は脳領域を示す。黒のカラムはオスを、白のカラムはメスを示す。それぞれ の遺伝子、脳領域における雌雄間での発現量の有意差を、*p < 0.05、**p < 0.01、***p < 0.001で示した。

図 1-3. vt、it、gnrh1、gnrh2、gnrh3 の発現ニューロンの分布

(A) メダカの脳を側面から見た模式図。左が吻側、右が尾側、上が背側、下が腹側。B-L の ラインで切った断面をパネル B-L に示す。Cb は小脳、Die は間脳、MO は延髄、OB は嗅球、 OpN は視神経、OT は視蓋、Tel は終脳を示す。(B-L) 各パネルの右半分の線画は、vt(\oplus)、 $it(\bigcirc)$ 、 $gnrh1(\bigstar)$ 、 $gnrh2(\bigstar)$ 、 $gnrh3(\diamondsuit)$ 発現ニューロンの分布を示す。左半分の写真は、 その断面のニッスル染色像を示す。スケールバーは全て 200 μ m。各神経核の略称につい ては表 1-2 を参照のこと。

図 1-4. th1、th2、tph1、tph2 の発現ニューロンの分布

(A)メダカの脳を側面から見た模式図。左が吻側、右が尾側、上が背側、下が腹側。B-P の ラインで切った断面をパネル B-P に示す。Cb は小脳、Die は間脳、MO は延髄、OB は嗅球、 OpN は視神経、OT は視蓋、Tel は終脳を示す。(B-P)各パネルの右半分の線画は、th1 (\blacktriangle)、th2(\bigtriangleup)、tph1(\blacksquare)、tph2(\Box)発現ニューロンの分布を示す。左半分の写真は、その 断面のニッスル染色像を示す。スケールバーは全て 200 μ m。各神経核の略称については 表 1-2 を参照のこと。

図 1-5. 神経核・細胞レベルでの VT/IT ファミリー遺伝子の発現の性差

(A)各神経核における*vt*の ISH シグナルの面積。(B)各神経核における*it*の ISH シグナル の面積。縦軸は ISH シグナルの面積、横軸は神経核の名称を示す。黒のカラムはオスを、 白のカラムはメスを示す。それぞれの遺伝子、神経核における雌雄間での有意差を、* *p* < 0.05、*** *p* < 0.001 で示した。(C–J) 雌雄の各神経核における*vt* 発現の代表的な写真。(K– O) 雌雄の各神経核における *it* 発現の代表的な写真。スケールバーは全て 50 μ m。各神経 核の略称については表 1-2 を参照のこと。

図 1-6. 神経核/細胞レベルでの GnRH ファミリー遺伝子の発現の性差

(A)各神経核における gnrh1 の ISH シグナルの面積。(B)MR/IQ における gnrh2 の ISH シ グナルの面積。(C)各神経核における gnrh3 の ISH シグナルの面積。(D)Vs/Vp における gnrh1 発現ニューロンの数。(E)MR/IQ における gnrh2 発現ニューロンの数。それぞれのグ ラフの横軸は神経核の名称を示す。黒のカラムはオスを、白のカラムはメスを示す。それぞ れの遺伝子、神経核における雌雄間での有意差を、* p < 0.05で示した。(F–K)雌雄の各 神経核における gnrh1 発現の代表的な写真。(L)雌雄の MR/IQ における gnrh2 発現の代 表的な写真。(M–O)雌雄の各神経核における gnrh3 発現の代表的な写真。スケールバー は全て 50 μ m。各神経核の略称については表 1-2 を参照のこと。

図 1-7. 神経核・細胞レベルでの TH ファミリー遺伝子の発現の性差

(A)各神経核における th1 の ISH シグナルの面積。(B)各神経核における th2 の ISH シグ ナルの面積。縦軸は ISH シグナルの面積、横軸は神経核の名称を示す。黒のカラムはオス を、白のカラムはメスを示す。(C-M)雌雄の各神経核における th1 発現の代表的な写真。 (N-R)雌雄の各神経核における th2 発現の代表的な写真。スケールバーは全て 50 µm。各 神経核の略称については表 1-2 を参照のこと。

図 1-8. 神経核・細胞レベルでの TPH ファミリー遺伝子の発現の性差

(A, B)各神経核における *tph1* の ISH シグナルの面積。(C)各神経核における *tph2* の ISH シグナルの面積。(D)Dm における *tph1* 発現ニューロンの数。(E)DP における *tph2* 発現ニューロンの数。それぞれのグラフの横軸は神経核の名称を示す。黒のカラムはオスを、白のカラムはメスを示す。それぞれの遺伝子、神経核における雌雄間での有意差を、*p < 0.05、** p < 0.01 で示した。(F–N)雌雄の各神経核における *tph1* 発現の代表的な写真。(O–Q) 雌雄の各神経核における *tph2* 発現の代表的な写真。スケールバーは全て 50 μ m。各神経核の略称については表 1-2 を参照のこと。

図 1-9. 下垂体における tph1 発現の性差

雌雄のメダカの下垂体における *tph1* 発現の代表的な写真を示した。スケールバーは 50 μm。

第2章 vtのオス特異的発現をもたらすメカニズムと その生理的意義

2-1. 諸言

本章では、第1章での解析によって明らかとなった最も顕著な性差である視床下部での オス特異的なバソトシン遺伝子(vt)の発現に焦点を絞り、その発現が、どのようなメカニズム によってもたらされ、どのような表現型に関与するのかについて解析を進めることとした。

いくつかの魚種におけるこれまでの研究によって、VTは概日リズムやストレス応答、代謝、 血管収縮作用、浸透圧調節など、様々な生理機能に関わる他、攻撃行動にも関与すること が報告されている(Balment et al., 2006; Goodson, 2008; Goodson and Thompson, 2010; Goncalve and Oliveira, 2010; Yokoi et al., 2015)。メダカも含め、脊椎動物では一般に、オス の方がメスよりもはるかに高い攻撃性を示すが、これまでの研究によって、魚類を含め、脊椎 動物の攻撃性を高める主因子はアンドロゲンであることが明らかとなっている(Francis et al., 1992; Sato et al., 2004; Goncalves and Oliveira, 2010)。生殖腺から放出されたアンドロゲン が脳に作用し、脳内で何らかのイベントが起こった結果、攻撃行動が引き起こされるものと考 えられるが、卵巣よりも精巣の方が多量のアンドロゲンを放出するため、メスよりもオスの方で 攻撃性が高くなるわけである。しかし、精巣から放出されたアンドロゲンによって、魚類の脳 内でどのようなイベントが起こり、オスの攻撃性が高まるのかについては全く明らかとなって いない。ただ、アンドロゲンはその受容体である AR と結合した後、標的遺伝子近傍のアンド ロゲン応答配列(ARE; and rogen-responsive element)と結合することで転写因子としてはたら く(Glass and Rosenfeld, 2000; Claessens et al., 2008)ので、アンドロゲンによって、脳内で何 らかの遺伝子の転写がオス特異的に活性化あるいは抑制され、その結果、オスの攻撃性が 高まると推測することができる。このアンドロゲンと攻撃性を仲介する脳内の遺伝子発現こそ が、第1章によって明らかとなった視床下部における vt のオス特異的な発現であってもおか しくない。この考えは、攻撃性を支配する中枢が視床下部内に存在するという知見(Lin et al., 2011; Goodson et al., 2012)や、視床下部でのvt 発現量は、社会的に優位で高い攻撃 性を示す(dominant な)オス個体で高いという最近の pupfish(Cyprinodon nevadensis)での 報告 (Lema et al., 2015)とも合致する。また、Vt の哺乳類オーソログである VP は、ラットの BNST と MeA においてオスに偏った発現を示すが、その性差は精巣由来のテストステロン に起因するという報告(de Vries, 2008; Dumais and Veenema, 2015)があることからも、この考

えの妥当性は高いと考えられる。

以上の考えや知見を総合すると、「アンドロゲンの転写促進作用によって、れの発現が視 床下部でオス特異的に誘導され、そこで産生された Vt がオス特異的に攻撃行動を誘導す る」という作業仮説を立てることができる。そこで本章では、この作業仮説をもとに、視床下部 でのオス特異的なvt発現の形成メカニズムと生理的意義を解析することとした。まずは、アン ドロゲンによってオス特異的な vt の発現がもたらされている可能性を検証するために、性成 熟に伴うオス特異的なwt発現の変動、および、生殖腺除去と各種性ステロイドの投与がオス 特異的な vt 発現に及ぼす影響を解析した。続いて、オス特異的な vt 発現ニューロンにおけ る AR 発現の有無を解析するとともに、アンドロゲンが vt の転写活性を直接的に制御し得る かどうかを解析した。とトやマウスを含め、多くの脊椎動物は1種類のARしかもたないが、真 骨魚類は、進化の過程で独自の全ゲノム重複を経験しており、AraとArbという2種類のAR をもつことが知られている(Ogino et al, 2016)。したがって、本研究ではこれらの両 AR につ いて解析を行うこととした。さらに、アンドロゲンが vt の転写を活性化する際に機能するシス エレメントを同定することも試みた。次に、Vt 受容体の発現部位、およびオス特異的な vt 発 現ニューロンの投射パターンを解析し、オス特異的に発現する Vt の作用部位を明らかにす ることを試みた。そして、オス特異的に発現する vt の生理的意義、および vt とアンドロゲン、 攻撃行動との関係性を明らかにするために、アンドロゲンや AR アンタゴニスト、Vt ペプチド をメダカに投与し、その際の攻撃行動やvt発現を解析した。また、vtノックアウトメダカにアン ドロゲンを投与し、その際の行動を解析した。

2-2. 材料と方法

2-2-1. 実験魚

本章の全ての実験には、水温 28°C、14 時間明期(9 時から 23 時まで)/10 時間暗期(23 時から 9 時まで)で飼育した雌雄のメダカ(d-rR 系統)を用いた。2-2-2 の月齢別の発現変動 解析には、1 カ月齢(二次性徴が出現し始めたステージ)、2 カ月齢(性成熟を開始したもの の、産卵までには至っていないステージ)、3 カ月齢(完全に性成熟し、産卵を開始したステ ージ)、および 7 カ月齢(性成熟のピークを超え、生殖能力が衰えたステージ)の個体を用い、 それ以外の実験には、3-6 カ月齢の成熟個体を用いた(実験毎に同じ月齢の個体を用い た)。餌はブラインシュリンプ幼生、または市販の固形飼料(おとひめ; 日清丸紅飼料)を 1 日 3、4 回与えた。脳のサンプリングは明期開始後 1-2.5 時間の間に行った。

2-2-2. 性成熟に伴う各神経核における vt 発現の変動の解析

1、2、3、7カ月齢の雌雄のメダカ(それぞれ n = 5)から脳を摘出し、4% PFA/PBS で 7時 間固定後、パラフィン(paraplast; Sigma-Aldrich)に包埋した。ミクロトーム(RM2255; Leica Microsystems)を用いて、厚さ10 μmの連続コロナル切片を作製し、スライドガラス(MAS-GP type A; Matsunami)上にマウントした。その後、1-2-4 に記載した方法に従って vt の ISH を行 った。proteinase K 処理での proteinase K の濃度は 2 μg/ml、DIG 標識 cRNA プローブの終 濃度は 0.2 μg/ml、AP 標識抗 DIG 抗体の希釈率は 2000 倍、NBT/BCIP の発色は遮光条 件下で 5 時間とした。発色後、4% PFA/PBS による後固定処理、Aqua-Poly/Mount (Polysciences, Warrington, PA, USA)を用いた封入を経て、1-2-5 に記載した方法で発現シ グナルの面積を定量した。

2-2-3. 各神経核における vt 発現に対する生殖腺除去と性ステロイド投与の影響の解析

以下に記した方法に従って、生殖腺の除去手術、および手術後の飼育と性ステロイド処 理を行った。

性成熟した雌雄のメダカを ethys 3-aminobenzoate methane sulfonate salt (MS-222; Sigma-Aldrich)で麻酔した後、総排泄孔から頭部側へ約1 mm の位置にある肋骨間のセグメントに、肋骨と平行にカミソリで切れ込みを入れた。その切れ込みをピンセットで広げ、中から生殖腺(精巣あるいは卵巣)をつまみ出した。生殖腺の摘出後、切れ込みの両隣のセグメントに医療用の縫合糸(No. 8-0; Natsume Seisakusho, Tokyo, Japan)を通し、縫合を行った。コントロール群に施した偽手術では、切開の後、生殖腺を摘出せずに縫合を行った。

手術後、0.9%の生理食塩水中で2日間(オスを用いた実験の場合)、もしくは3日間(メ スを用いた実験の場合)飼育して手術のダメージから回復させた後、実験群毎に各種の薬 剤を5日間(オスを用いた実験の場合)、もしくは6日間(メスを用いた実験の場合)投与した。 実験群としては、(1)偽手術を行い、性ステロイドの溶媒であるエタノールのみを投与した群 (オスの実験ではn=7、メスの実験ではn=5)、(2)生殖腺を除去し、エタノールのみを投与 した群(オスの実験ではn=7、メスの実験ではn=5)、(3)生殖腺を除去し、エストロゲン (estradiol-17 β (E2); Sigma-Aldrich)を投与した群(オスの実験ではn=3、メスの実験ではn = 5)、(4)生殖腺を除去し、アンドロゲン(魚類の主要なアンドロゲンである 11-ketotestosterone(11KT); Cosmo Bio, Tokyo, Japan)を投与した群(オスの実験ではn=3、 メスの実験ではn=5)の計4群を設定した。各種薬剤の投与は、その薬剤を含む0.9%の生 理食塩水中でメダカを飼育することで行い、E2と11KTの終濃度はいずれも100 ng/mlとした。メダカは容量2Lのタンクに、オスの実験ではオス5匹とメス1匹、メスの実験ではメス5匹とオス1匹を一緒に入れて飼育し、実験期間中は毎日2回、全量の換水を行った。

各種の薬剤処理の後、脳をサンプリングし、2-2-2 に記した方法に従って ISH を行い、 1-2-5 に記した方法に従って発現シグナルの定量を行った。

2-2-4. オス特異的な vt 発現ニューロンでの AR の共発現解析

以下に記した方法に従って、視床下部におけるオス特異的 vt 発現ニューロンにおける 各種 AR 遺伝子(ara および arb)の発現を蛍光二重 ISH によって解析し、同ニューロンが AR を発現しているかを調べた。

オスのメダカ (*ara* および *arb* の解析用にそれぞれ n = 5)から摘出した脳を 4% PFA/PBS で 3 時間固定した後、4°C にて PBS で 30 分間、10%スクロース/PBS 溶液で 30 分間、20% スクロース/PBS 溶液で 1 時間、30%スクロース/PBS 溶液で 3-4 時間、順次インキュベートし た。5%アガロース/20%スクロース/PBS 中に包埋後、-80°C のへキサン中で急速凍結させ、 切片化するまで-80°C で保管した。クライオスタット (Microm HM550; Thermo Scientific, Waltham, MA, USA)を用いて作製した厚さ 20 μ m の連続コロナル切片をスライドガラス (MAS-GP type A; Matsunami)上にマウントし、蛍光二重 ISH に使用するまで-80°C で保管し た。

解凍した凍結切片を乾燥させ、PBS 中で 10 分間インキュベートした後、0.6% H₂O₂/PBS 中で 30 分間インキュベートすることで、内在性のペルオキシダーゼを失活させた。これを PBS で洗浄後、アセチル化バッファー(100 mM triethanolamine、21 mM HCl、23 mM acetic anhydride) 中にて 15 分間アセチル化処理を行った。PBS および 5× SSC/50%ホルムアミドで の洗浄に引き続き、ハイブリダイゼーションバッファー(50%ホルムアミド、5× SSC、5× Denhardt's solution (Wako Pure Chemical Industries)、2 μ g/ml yeast RNA (Roche Diagnostics)、30 μ g/ml calf thymus DNA (Invitrogen))中で、55°C で 2 時間のプレハイブリ ダイゼーションを行った後、Fluoresceinで標識した*vt*の cRNA プローブ(終濃度 0.2 μ g/ml)、 および DIG で標識した *ara* あるいは *arb* の cRNA プローブ (Hiraki *et al.*, 2012) (終濃度 0.5 μ g/ml)を加え、55°C で一晩ハイブリダイゼーションを行った。プローブの Fluorescein 標識に は Fluorescein RNA Labeling Mix (Roche Diagnostics)を用い、DIG 標識には Digoxigenin RNA Labeling Mix (Roche Diagnostics)を用いた。ハイブリダイゼーション後の切片を 55°C の 5× SSC/50%ホルムアミドおよび 2× SSC で洗浄した後、1.5% Blocking Reagent(Roche Diagnostics)/TBS 中で室温にて 1 時間インキュベートすることでブロッキングを行った。その 後、同溶液で 1000 倍に希釈したホースラディッシュペルオキシダーゼ (HRP) 標識したヒツジ 由来抗 Fluorescein 抗体 (PerkinElmer, Waltham, MA, USA)、1000 倍に希釈した AP 標識し たヒツジ由来抗 DIG 抗体 (Roche Diagnostics)、および終濃度 5 μ g/ml に調整した 4′,6-diamidino-2-phenylindole (DAPI)と 4°C で一晩反応させた。0.05% Tween 20 (MPOA Biomedicals、Santa Ana、CA、USA)/TBS (TBST) で洗浄した後、HRP 標識の抗 Fluorescein 抗体 (Fluorescein 標識の vt プローブ)を検出するために、Tyramide Signal Amplification (TSA) Plus Fluorescein Kit (PerkinElmer)を用いて遮光条件下で 1 時間発色させた。TBST での洗浄と AP バッファー (120 mM NaCl、120 mM Tris-HCl (pH8.0)、60 mM MgCl₂)での 平衡化を行った後、AP 標識の抗 DIG 抗体 (DIG 標識の ara プローブあるいは arb プローブ) を検出するために、Fast Red Tablets (Roche Diagnostics)を用いて遮光条件下で 7 時間 30 分 (ara プローブ)、あるいは 3 時間 (arb プローブ)発色させた。PBS で洗浄後、Vectashield Hard Set Mounting Medium (Vector Laboratories)を用いて切片を封入した。

2-2-5. メダカゲノム中の vt 近傍領域の配列解析

アンドロゲンが vt の転写活性に与える影響を解析するための第一段階として、まずはメ ダカゲノム中の vt 近傍領域の配列を解析した。Ensembl のメダカゲノムデータベース (http://asia.ensembl.org/index.html)、および National Bio Resorce Project Medaka(NBRP Medaka) (https://www.shigen.nig.ac.jp/medaka/)から入手した vt ローカスを含むメダカの bacterial artificial chromosome (BAC)クローン (クローン ID: ola1-127B15)を独自にシーク エンシングして得られた配列データから、vt 近傍のゲノム配列情報を得た。その後、オンライ ンの転写因子結合配列検索ツールである Transfac (Match) (http://www.gene-regulation. com/index.html)、および Jaspar (http://jaspar.genereg.net/)を用いて、得られたゲノム配列中 に ARE 様の配列が存在するかを解析した。

2-2-6. メダカの AR の発現コンストラクトの作製

次に、以下に述べる方法に従って、メダカがもつ2種類のAR(Ara、Arb)のそれぞれを 培養細胞中で強制発現させるためのコンストラクトを作製した。

表 2-1 に示したプライマーを用いて PCR を行うことで、*araと arb*の cDNA の翻訳領域全 長を増幅した。PCR エラーによる塩基置換や挿入欠失変異を防ぐために、PCR にはハイフィ デリティの DNA ポリメラーゼである KAPA HiFi Hot Start DNA Polymerase (Kapa Biosystems, Wilmington, MA, USA)を用いた。なお、フォワードプライマーである ara-ORF-kozak-F2 およ び arb-ORF-kozak-F1 は、翻訳開始コドンを含む領域でデザインし、培養細胞中での翻訳効 率を高めるため、その内部に Kozak 配列(Kozak *et al.*, 1981; 1984)を付加した。*arb* を増幅 するための鋳型には、NBRP Medakaから入手した EST クローン(クローン ID: ovano36_n18) を用い、*ara*を増幅するための鋳型には、メダカの脳から抽出した polyA RNA 由来の cDNA プールを用いた(NBRP Medaka の EST データベース中に *ara* のクローンが見当たらなかっ たため)。この cDNA プールの作製には、ISOGEN(Nippon Gene, Tokyo, Japan)、 Oligotex-dT30 mRNA Purification Kit (Takara Bio)、PrimeScript II 1st strand cDNA Synthesis Kit (Takara Bio)を用いた。

PCR 後の反応液を 1.5%アガロースゲルによる電気泳動に供した後、Wizard SV Gel and PCR Clean-Up System (Promega)を用いて、得られた DNA 断片をゲルから精製した。*arb*の 増幅産物については、EST クローンのプラスミドを鋳型としたため、ゲル精製産物を DpnI 処 理し、Wizard SV Gel and PCR Clean-Up System (Promega)を用いて再び精製を行った。続 いて、rTaq DNA Polymerase (Takara Bio)を用いて、DNA 断片の両端に TA クローニングの ための dATP を付加した。pcDNA 3.1/V5-His TOPO TA Expression Kit (Invitrogen)を用いて、 DNA 断片を pcDNA 3.1/V5-His TOPO ベクターにライゲーションした後、大腸菌 (HST08 Premium Competent Cells (Takara Bio))をトランスフォーメーションした。表 2-1 に示したプラ イマーを用いて行ったコロニーPCR によって目的のインサートを含むプラスミドを有すること が明らかとなったコロニーを培養し、QIAprep Spin Miniprep Kit (Qiagen)を用いてプラスミド を精製した後、表 2-1 に示したプライマーを用いてシークエンシングを行った。配列解析によ って正しい塩基配列を有することが確認されたクローンの菌体を再び培養し、QIAfilter Plasmid Midiprep Kit (Qiagen)を用いてプラスミドを大量精製した。

2-2-7. vt のレポーターコンストラクトの作製

以下に述べる方法に従って、5′側から順に、メダカの vt の 5′上流領域、ルシフェラーゼ をコードする配列、メダカの vt の 3′下流領域という構造を有するレポーターコンストラクトを作 製した。

vt ローカスを含むメダカの BAC クローン (クローン ID: ola1-127B15)を NBRP Medaka から入手し、QIAprep Spin Miniprep Kit (Qiagen)を用いて精製した。ただし、BAC は 100 kb 前後の非常に大きい DNA であるので、P1、P2、P3 Buffer は通常の 2 倍量使用するとともに、 70°C に加温した EB Buffer を用いて DNA の溶出を行う変更を加えた。精製した BAC を鋳
型として、表 2-2 に示すプライマーを用いて PCR を行い、vtの翻訳開始点の 5'上流 2677 bp とストップコドンの 3'下流 1469 bp の DNA 断片を増幅した(これらの DNA 断片が 2-2-5 で 同定された ARE 様配列を含むようにプライマーをデザインした)。なお、後のステップで、 In-Fusion HD Cloning Kit(Takara Bio)を用いて、これらの DNA 断片を pGL4.10 ベクター (Promega)の *Nhe*I サイトおよび *Xba*I サイトにライゲーションすることを考慮し、5'上流領域の 増幅に用いたプライマーには、同ベクターの *Nhe*I サイトに相同な 15 塩基を、3'下流領域の 増幅に用いたプライマーには、同ベクターの *Xba*I サイトに相同な 15 塩基を付加した。PCR 反応には KAPA HiFi Hot Start DNA Polymerase(Kapa Biosystems)を用い、PCR 後のゲル 精製には Wizard SV Gel and PCR Clean-Up System(Promega)を用いた。

次に、XbaI 処理によって直鎖化し、両端を脱リン酸化した pGL4.10 ベクター (Promega) と上記の 3'下流領域の DNA 断片を、In-Fusion HD Cloning Kit(Takara Bio)を用いて結合 した。In-Fusion 反応は 50℃で 20 分間とした。大腸菌のトランスフォーメーションの後、表 2-2 に示したプライマーを用いて行ったコロニーPCR によって目的のインサートを含むプラスミド を有することが明らかとなったコロニーを培養し、QIAprep Spin Miniprep Kit(Qiagen)を用い てプラスミドを精製した。表 2-2 に示したプライマーを用いてシークエンシングを行い、塩基 置換や挿入欠失変異などがないことを確認した。続いて、このプラスミドを NheI 処理によっ て直鎖化し、両端を脱リン酸化した後、In-Fusion HD Cloning Kit(Takara Bio)を用いて、上 記の5'上流領域のDNA 断片をライゲーションした。In-Fusion 反応は 50℃で 20 分間とした。 その後、上記と同様に、大腸菌のトランスフォーメーション、コロニーPCR、プラスミド精製、シ ークエンシングを行った。配列解析によって正しい塩基配列を有することが確認されたクロ ーンの菌体を再び培養し、QIAfilter Plasmid Midiprep Kit(Qiagen)を用いてプラスミドを大 量精製した。以上の行程によって、pGL4.10 ベクター (Promega)の NheI サイトに vt の 5'上流 領域、XbaI サイトに vt の 3'下流領域が組み込まれたレポーターコンストラクトが完成した。

また、以下の方法に従って、pGL4.10ベクター(Promega)にvtの5'上流領域のみを組み 込んだ(vtの3'下流領域は組み込まない)レポーターコンストラクトも作製した。*Nhe*I処理に よって直鎖化し、両端を脱リン酸化した pGL4.10ベクター(Promega)と上記の5'上流領域の DNA 断片を、In-Fusion HD Cloning Kit(Takara Bio)を用いて結合した。In-Fusion 反応は 50℃で20分間とした。その後、上記と同様に、大腸菌のトランスフォーメーション、コロニー PCR、プラスミド精製、シークエンシング、およびプラスミド精製(大量精製)を行った。

2-2-8. vt のレポーターコンストラクトへの変異の導入

2-2-7 で作製した2種類のレポーターコンストラクトを用いた実験の結果から、wの3'下流 領域に機能的な ARE が存在することが明らかとなった。そこで、以下の方法に従って、3'下 流領域に存在する9 つの ARE 様配列のそれぞれに変異を導入したレポーターコンストラク トを作製した。

ストップコドンの下流 171 bp、328 bp、332 bp、440 bp、674 bp、875 bp、1242 bp、1403 bp、 1427 bp の位置に存在する 9 つの ARE 様配列のそれぞれについて、PrimeSTAR Mutagenesis Basal Kit (Takara Bio)を用いて、変異を導入した。ARE は 6 塩基から成るハー フサイトが3塩基のスペーサー配列を挟んで2つ並んだ構造を有するが、両ハーフサイトを HindIII の認識配列(AAGCTT)に置換することとした。2-2-7 で作製した vt の 5'上流領域と 3'下流領域が組み込まれたレポーターコンストラクトを鋳型として、表2-2に示したプライマー で PCR を行い、変異を導入した。Wizard SV Gel and PCR Clean-Up System (Promega)を用 いて、得られた増幅産物をゲルから精製し、大腸菌(HST08 Premium Competent Cells; Takara Bio)をトランスフォーメーションした。形質転換体のスクリーニングは、菌体のコロニー を鋳型として、表 2-2 に示したプライマーで PCR を行うことで得られた DNA 断片(それぞれ の ARE 様配列を含む DNA 断片)を *Hind*III で消化(37℃ で 1-2 時間)し、消化の有無を 1.5%アガロースゲルの電気泳動で確認することで行った。スクリーニングによって目的のイ ンサートを含むプラスミドを有することが明らかとなったコロニーを培養し、QIAprep Spin Miniprep Kit(Qiagen)を用いてプラスミドを精製した後、表 2-2 に示したプライマーを用いて シークエンシングを行った。配列解析によって正しく変異が導入されていることが確認された クローンの菌体を再び培養し、QIA filter Plasmid Midiprep Kit (Qiagen)を用いてプラスミドを 大量精製した。

2-2-9. プロモーターアッセイ

アフリカミドリザルの腎臓由来の細胞株 COS-7(東京大学大学院理学系研究科の朴民 根准教授から譲渡していただいた)を、37℃、CO2濃度を5.0%に設定した CO2インキュベー ター(Sanyo Electric, Osaka, Japan)中で、5%のウシ胎児血清(FBS; fetal bovine serum) (Gibco, Carlsbad, CA, USA)と50 µg/mlのゲンタマイシン(Gibco)を含む培地 Dulbecco's Modified Eagle Medium (DMEM) (Gibco)で培養した。ただし、通常のFBS 中には多量のス テロイドホルモンが含まれていること、培地中のフェノールレッドが AR に結合する可能性が あることを考慮し、トランスフェクション以降の培養には、5%の活性炭処理済み FBS(Gibco) と 50 µg/ml のゲンタマイシンを含むフェノールレッド不含の DMEM(Gibco)を用いた。FBS は使用前に56℃で30分間のインキュベーションによって非働化した。

トランスフェクション前日に、80%コンフルエント程度に達した 100 mm ディッシュ (BD Primaria; Becton, Dickinson and Company, Franklin Lakes, NJ, USA) 中の細胞を、フェノー ルレッド不含の 0.05% Trypsin-EDTA (Gibco)/Hank's Balanced Salt Solution (HBSS) (Gibco) で剥がし、フェノールレッド不含の DMEM (Gibco) で希釈した後、24 ウェルプレート (Becton, Dickinson and Company)の各ウェルに 0.5 ml ずつ分注し、一晩培養した。

トランスフェクションは、Lipofectamin LTX (Invitrogen)を用いて以下のように行った。ま ず、上記で作製した AR 発現コンストラクト、レポーターコンストラクト、および内部標準ベクタ ーpGL4.74 (Promega)を混合した DNA 溶液(1ウェル当たり 500 ng の DNA を含む)に、1ウ ェル当たり 180 µl のフェノールレッド不含 Opti-MEM (Gibco)、0.5 µl の Plus 試薬 (Invitrogen)を加え、5 分間インキュベートした。さらに、1 ウェルあたり 1.5 µl の Lipofectamin LTX (Invitrogen)を加え、30 分間インキュベートした後、培地を取り除いた 24 ウェルプレート 中の細胞に投与した。AR 発現コンストラクト、レポーターコンストラクト、および内部標準ベク ターの混合比は、0.45:9.5:0.05 とした。CO₂ インキュベーター中で 6 時間インキュベートした 後、0 M、10⁻¹⁰ M、10⁻⁸ M、10⁻⁶ M (*vt* の 5' 上流領域のみを組み込んだレポーターコンストラク トや変異を導入したレポーターコンストラクトを用いたアッセイでは 10⁻⁶ M のみ)の 11KT (Cosmo Bio)を含む 500 µl のフェノールレッド不含 DMEM (Gibco)を加え、再び CO₂ インキ ュベーター内で 18 時間インキュベートした。その後、1 ウェル当たり 100 µl の 1x Passive Lysis Buffer (Promega)を加え、室温で 40 分間シェイクした後、細胞懸濁液を作製した。さら にこの懸濁液を 10 秒間程度ボルテックスすることで、細胞を完全に破砕した。

ルシフェラーゼ活性の測定は、Dual-Luciferase Reporter Assay System (Promega)を用い て、GloMax 20/20n Luminometer (Promega)上で行った。1 サンプルの測定あたり、上記の 細胞懸濁液 6 µlを用い、レポーターコンストラクト由来のルシフェラーゼ(ホタルルシフェラー ゼ)の基質として 30 µl の Luciferase Assay Reagent II (Promega)を、内部標準ベクター由来 のルシフェラーゼ(ウミシイタケルシフェラーゼ)の基質として 30 µl の Stop and Glo Reagent (Promega)を加えた後、10 秒間のルシフェラーゼ発光を計測した。全てのアッセイは duplicate で行い、3 回繰り返した。

2-2-10. 脳内の Vt 受容体の発現部位の同定

メダカは5種類のVt受容体(v1a1、v1a2、v2a1、v2a2、v2b)をもつ(Konno et al., 2010; Yamaguchi et al., 2012; 富山大学理学部の今野紀文講師、私信; 大久保ら、未発表デー タ)。これらの受容体のうち、PCR を用いた予備実験により脳内で発現することが確認された vla1、vla2、v2a2、v2b の 4 種類の受容体について、ISH を用いて脳内での発現を解析した。

1-2-2 で用いたメダカの脳由来の cDNA プール (Okubo et al., 2006)を鋳型として、表 2-3 に示したプライマーで PCR を行うことで、vla1 (1675 bp)、vla2 (1329 bp)、v2a2 (1264 bp)、 および v2b (1410 bp) の DNA 断片を得た。PCR エラーによる塩基置換や挿入欠失変異を防 ぐために、PCR にはハイフィデリティの DNA ポリメラーゼである PrimeSTAR GXL DNA Polymerase (Takara Bio)を用いた。その後、1-2-4と同様の方法で、ゲルからの切り出し精製、 pGEM-Teasy ベクター (Promega) へのライゲーション、大腸菌のトランスフォーメーション、プ ラスミド精製、シークエンシング、およびプラスミド精製 (大量精製)を行った。vla1 の DNA 断 片を含むプラスミドは NcoI 処理によって、vla2、v2a2、v2b の DNA 断片を含むプラスミドは Spel 処理によって直鎖化した。その後、NcoI により直鎖化したプラスミドを鋳型とした場合は SP6 RNA Polymerase (Roche Diagnostics)を、Digoxigenin RNA Labeling Mix (Roche Diagnostics)と組み合わせて用いることで、DIG で標識された cRNA プローブを合成した。

雌雄のメダカ(それぞれ各受容体につき n = 2–5)から摘出した脳を、4% PFA/PBS で 7 時間固定し、パラフィン(Paraplast; Sigma-Aldrich)に包埋した。ミクロトーム(RM2255; Leica Microsystems)を用いて、厚さ10 µm の連続コロナル切片を作製し、スライドガラス(MAS-GP type A; Matsunami)上にマウントした。その後、1-2-4 に記した方法に従って、*v1a1、v1a2、 v2a2、v2b* の ISH を行った。proteinase K 処理での proteinase K の濃度は 7 µg/ml、DIG 標 識 cRNA プローブの終濃度は 0.35 µg/ml、AP 標識抗 DIG 抗体の希釈率は 1000 倍、 NBT/BCIP の発色は遮光条件下で24 時間とした。発色後、4% PFA/PBS による後固定処理 を行い、VectaMount AQ Aqueos Mounting Medium(Vector Laboratories)を用いて封入し た。

2-2-11. オス特異的に産生される Vt ペプチドの作用部位の解析

視床下部でオス特異的に産生される Vt の作用部位を明らかにすることを目的として、メ ダカの脳において Vt の免疫組織化学を行い、オス特異的 Vt 発現ニューロンの軸索走行を 解析した。

雌雄のメダカ(それぞれ n = 3)の脳を摘出し、ブアン氏液にて 24 時間固定後、パラフィンに包埋した。ミクロトーム(RM2255; Leica Microsystems)を用いて、厚さ 10 μmの連続コロ

ナル切片を作製し、スライドガラス(MAS-GP type A; Matsunami)上にマウントした。

免疫組織化学は、VECTASTAIN Elite ABC Kit(Rabbit IgG Kit) (Vector Laboratories) を用いて、以下の手順で行った。切片を 0.6% H₂O₂/PBS 中で 30 分間インキュベートし、内 在性のペルオキシダーゼを失活させた。PBS でのリンス、キット中のヤギ血清溶液での 20 分 間のブロッキング処理、PBS での再洗浄後、切片を、抗体希釈液で 10000 倍希釈した一次 抗体(ウサギ抗 VP 抗体;東京大学大気海洋研究所の兵藤晋准教授より譲渡していただい た)と 4°C で一晩反応させた。抗体希釈液の組成は、2%ヤギ血清 (Vector Laboratories)、 0.1%ウシ血清アルブミン(BSA; bovine serum albmin) (Sigma-Aldrich)、0.02%スカシガイへ モシアニン(KLH; keyhole limpet hemocyanin) (Sigma-Aldrich)、0.01% NaN₃を含む PBS と した。PBS で洗浄した後、キット中の二次抗体を室温で1時間反応させた。再び PBS で洗浄 した後、キットに含まれる ABC 試薬を室温で1 時間反応させた。3,3'-Diaminobenzidine (DAB) (Sigma-Aldrich)で発色後、Permount(Fisher Scientific)を用いて封入した。

2-2-12. アンドロゲンおよび AR アンタゴニスト投与による攻撃行動とvt 発現の変化の解析

以下に記した方法に従って、オスのメダカにARのアンタゴニストを、メスのメダカにアンド ロゲンを投与し、その際の攻撃行動の変化とpNVTにおける vt 発現の変化を解析した。

インタクトな精巣をもつオス (n = 6)を 250 ng/mlの AR アンタゴニスト (cyproterone acetate; LKT Laboratories, St. Paul, MN, USA)を含む飼育水で 8 日間飼育した。同様に、インタクト な卵巣をもつメス (n = 6)を 100 ng/mlの 11KT (Cosmo Bio)を含む飼育水で 8 日間飼育した。 AR アンタゴニスト投与の場合は、容量 2 L のタンクにオス 6 匹とメス 2 匹を、11KT 投与の場 合は、容量 2 L のタンクにメス 6 匹とオス 2 匹を一緒に入れて飼育し、これを 4 セット用意し た。実験期間中は毎日 2 回、全量の換水を行った。AR アンタゴニストあるいは 11KT の投与 開始日の投与直前 (0 日目)から 8 日目までの 9 日間、攻撃行動を毎日 1 回解析した。

行動解析は以下の方法により行った。4 つのタンクからオス(AR アンタゴニスト投与の場合)あるいはメス(11KT 投与の場合)をランダムに1匹ずつ取り出し、計4匹を1 つのタンク に入れた、10時から14時の間に30分間、これらの個体(全て同性の個体となる)の間での 行動の様子をビデオカメラ(HF S11と HF S21; Canon, Tokyo, Japan、および GZ-G5-B; JVC Kenwood Corporation, Kanagawa, Japan)で撮影した。これを6回繰り返し、n=6とした。メダ カにおける攻撃行動は、以下の5つの要素に分けることができる(岩松, 2006)。(1)尾ビレで の打撃、(2)体の向きが逆さになって並ぶ平行定位(巴型定位ともよばれる)、(3)つつき、(4)追いかけ、(5)個体同士が並走する威嚇である。そこで、これらの5つの要素のそれぞれ

について、30分間にタンク中の4匹の間で行われた回数をカウントした。

また、上記と同条件でオス(n = 5)に AR アンタゴニストを、メス(n = 5)に 11KT を 9 日間 投与し、その後、脳をサンプリングし、ISH に供することで vt の発現解析を行った。コントロー ル群(雌雄それぞれ n = 5)には、溶媒のエタノールのみを 9 日間投与した。ISH は 2-2-2 と 同様の方法で行い、ISH で得られたシグナルの定量は 1-2-5 と同様の方法で行った。

2-2-13. Vt ペプチド投与による攻撃行動の変化の解析

以下に記した方法に従って、メスのメダカに Vt ペプチドを投与し、その際の攻撃行動の 変化を解析した。メスに 0.02 µg/g 体重の Vt ペプチド((Arg8)-Vasotocin; Wako Pure Chemical Industries)、あるいは溶媒の生理食塩水のみを腹腔内投与し(それぞれ n = 6)、 投与 2 時間後に行動解析を開始した。投与済みのメダカを 4 つのタンクからランダムに 1 匹 ずつ取り出し、計 4 匹を一つのタンクに入れ、12 時から 14 時の間に 30 分間行動の様子を ビデオカメラで撮影した。これを 6 回繰り返し、n = 6 とした。2-2-12 と同様に攻撃行動を 5 つ の要素に分け、それぞれの要素について、タンク中の 4 匹の間で行われた回数をカウントし た。

2-2-14. アンドロゲン投与による vt ノックアウトメスの行動の変化の解析

以下の方法に従って、vt のホモノックアウトメダカ(vt -/-)、ヘテロノックアウトメダカ(vt +/-)、野生型メダカ(vt +/+)の成熟メスに 11KT を投与し、その際の攻撃行動の変化を解析した。本解析に用いた vt のノックアウトメダカ(東京大学大学院理学系研究科の岡良隆教授、神田真司准教授より譲渡していただいた)はゲノム編集の一種である transcription activator-like effector nuclease (TALEN)法を用いて作出されたもので、成熟 Vt ペプチドをコードするゲノム配列に 10 bp の欠損を有しており、成熟 Vt ペプチドを作ることができないと考えられる(図 2-1)。

vt-/-、vt+/-、vt+/+の各実験群につき容量2Lのタンクを4セットずつ用意し、各タンク に、それらの実験群のメス 5-6 匹と野生型のオス2匹を入れた。通常の飼育水で7日間飼 育した後、100 ng/mlの11KT (Cosmo Bio)を含む飼育水で9日間飼育することで、11KT処 理を行った。実験期間中は毎日2回、全量の換水を行った。11KTの投与開始前をイニシャ ルコントロール(0日目)とし、0日目、5日目、9日目の3日間、攻撃行動を解析した。行動解 析は以下の方法により行った。4つのタンクからメスをランダムに1匹ずつ取り出し、計4匹を 1 つのタンクに入れ、10時から14時の間に30分間、メスどうしの間での行動の様子をビデ オカメラで撮影した。これを6回繰り返し、n = 6(vt -/-群のみ、5回繰り返し n = 5)とした。 2-2-12 と同様に攻撃行動を5つの要素に分け、それぞれの要素について、タンク中の4匹の間で行われた行動の回数をカウントした。

また、行動解析を進める中で、11KT を投与されたメスが、本来は決して行わないオス型の性行動の各要素(追尾や求愛ダンス)を行うこと、そしてその頻度が vt -/-、vt +/-、vt +/+の群間で異なりそうなことに気が付いた。そこで、攻撃行動の各要素に加え、追尾と求愛ダンスの回数もカウントした。

2-2-15. 顕微鏡観察および撮影

2-2-4 で得られた蛍光試料標本は、共焦点レーザースキャン顕微鏡 Digital Eclipse C1 (Nikon, Tokyo, Japan)あるいは TCS SP8 (Leica microsystems)を用いて観察および撮影した。Digital Eclipse C1 での Fluorescein の検出には 488 nm の励起光と 515/30 nm のエミッションフィルターを、Fast Red の検出には 543 nm の励起光と 605/75 nm のエミッションフィル ターを、DAPI の検出には 405 nm の励起光と 450/35 nm のエミッションフィルターを用いた。 TCS SP8 での Fluorescein の検出には 488 nm の励起光と 495–545 nm の蛍光検出波長域 を、Fast Red の検出には 552 nm の励起光と 565–700 nm の蛍光検出波長域を、DAPI の検 出には 405 nm の励起光と 410–480 nm の蛍光検出波長域を用いた。

また、雌雄それぞれについて代表的な写真を撮影し、Photoshop CS5(Adobe Systems) を用いてコントラストと明度を調節した。

2-2-2、2-2-3、2-2-5、および 2-2-6 で得られた試料標本は、正立顕微鏡(BX53; Olympus) とデジタルカメラ(DP73; Olympus)、および写真撮影のためのソフトウェア(cellSens; Olympus)を用いて観察、撮影した。

2-2-16. 統計処理

グラフで示した全てのデータは、平均値±標準誤差(SEM)で示した。

2-2-2の ISH で得られたデータ(2 群間の比較) については、Microsoft Excel (Microsoft) を用いて Student's *t*-test (非対応、両方向の Student's *t*-test、有意水準 5%) により雌雄間で の有意差を検定した。2-2-3 以降の解析で得られたデータ(3 群以上の比較) については、 GraphPad Prism (GraphPad Software, San Diego, CA, USA)を用いて統計処理を行った。 Bartlett's test と Brown-Forsythe test によって実験群間の分散の均一性を検証した後、等分 散性が認められた場合は、一元配置分散分析 (one-way ANOVA; one-way analysis of

42

variance)を行った。その後、任意の実験群間で比較を行う場合は、Bonferoni あるいは Tukeyの post hoc test を用いて群間の有意差(有意水準 5%)を検定した。特定のコントロー ル群との比較を行う場合は、Dunnettの post hoc test を用いて有意差(有意水準 5%)を検定 した。実験群間の等分散性が認められなかった場合は、データを対数変換し、等分散性を 確認した後、上記と同様の統計処理を行った。

2-3. 結果

2-3-1. 性成熟に伴う各神経核における vt 発現の変動

ISH を用いて、性成熟に伴う各神経核での vt 発現の変動を解析し、各成熟ステージでの性差を調べた(図 2-2)。その結果、成熟個体でみられた NPT と pNVT でのオス特異的な発現は、第二次性徴が出現し始めた 1 カ月齢の段階でもすでに認められるが、その量はごくわずかであり、性成熟が進行する 2 カ月齢以降に急激に増加することが明らかとなった。PMp/PPa/PMm/Pmg における発現も、性成熟の進行に伴って増加することが分かったが、3 カ月齢でオスの方がわずかに高い発現を示した以外には有意な性差は検出されなかった。SC/aNVT と NAT における発現はともに、2 カ月齢にピークを迎え、有意差は認められなかったものの、ピークの値はメスで高い傾向がみられた(SC/aNVT で p = 0.058、NAT で p = 0.119)。

2-3-2. 各神経核における vt 発現に対する生殖腺除去と性ステロイド投与の影響

精巣除去手術を施したオスのメダカにエストロゲンの E2、またはアンドロゲンの 11KT を 投与し、ISH によって各神経核における vt の発現を解析した。その結果、オス特異的に vt が発現する神経核の一つである pNVT において、発現が精巣除去によって著しく低下し、 11KT 投与によって回復することが分かった(図 2-3)。一方、E2 投与にはそのような効果は なかった。その他の神経核においては、精巣除去や性ステロイド投与の影響はみられなか った。同様に、卵巣を除去したメスのメダカに E2 または 11KT を投与し、ISH によって各神経 核における vt の発現を解析した。その結果、本来はメスでは発現が認められない pNVT に おいて、11KT 投与によって発現が誘導されることが分かった(図 2-4)。一方、卵巣除去や E2 にはそのような効果はなかった。その他の神経核においては、いずれの処理も有意な影 響を示さなかった。

2-3-3. オス特異的な vt 発現ニューロンでの AR の発現

アンドロゲンが pNVT のオス特異的、かつアンドロゲン依存性の vt 発現ニューロンに直接作用する可能性を検証する目的で、同神経核における vt と2 種類の AR 遺伝子(ara と arb)の発現の共局在を二重 ISH によって解析した。その結果、vtと ara との共発現は認められなかった(図 2-5A)が、arb はほぼ全ての vt 発現ニューロンにおいて発現していることが明らかとなった(図 2-5B)。

2-3-4. アンドロゲンによる vt の転写促進

メダカゲノム中の vt 近傍領域の配列を解析したところ、ARE 様の配列が複数見出された。 このことから、vt の転写活性がアンドロゲンによって直接的に活性化される可能性が考えら れた。そこではじめに、同定された ARE 様配列を含むようなレポーターコンストラクトを作製 し、各種 AR の存在下でレポーター活性がアンドロゲンに反応して上昇するかを検証した (図 2-6)。その結果、Ara と Arb いずれの AR を介した場合も、投与したアンドロゲンの濃度 依存的にレポーター活性が上昇することが明らかとなった。活性の上昇の程度は、Ara を介 した場合よりも Arb を介した場合の方が顕著であった。

次に、アンドロゲンが vt の転写を活性化する際に機能する ARE を同定することを目的と して、まずは機能的な ARE が 5'上流領域と3'下流領域のどちらに存在するか解析した。5' 上流領域と3'下流領域の両者を含むレポーターコンストラクト、および 5'上流領域のみを含 むコンストラクトを用いたアッセイの結果、後者のコンストラクトでは、前者のコンストラクトでみ られたアンドロゲンによる転写活性の上昇が起こらなかった(図 2-7A)。このことから、機能的 な ARE は 3'下流領域に存在すると考えられた。そこで、3'下流領域に見出された 9 つの ARE 様配列(ストップコドンから下流 171 bp、328 bp、332 bp、440 bp、674 bp、875 bp、1242 bp、1403 bp、1427 bpの位置に存在する)のそれぞれに変異を導入し、アンドロゲンによる転 写活性の上昇がみられなくなるかを解析した。しかし、変異を導入したいずれのコンストラク トにおいても、変異を導入していないコンストラクトと同等の活性の上昇がみられ(図 2-7B)、 機能的な ARE を同定するまでには至らなかった。

2-3-5. 脳内の Vt 受容体の発現部位

メダカがもつ 5 種類の Vt 受容体(vla1、vla2、v2a1、v2a2、v2b) のうち、4 種類の受容体 (vla1、vla2、v2a2、v2b)の脳内での発現を ISH によって解析した。各受容体の発現が認め られた神経核の名称と略称については表 2-4 を参照のこと。 vla1 は、嗅球と終脳の ICL、Dm、Dl、Vl、Vv/Vs/Vp、視索前野の PMp/PPa/PMm/PPp、 VM、松果体(EP)、左右手綱核(IHd、rHd)、視床の SC/TL、VM/VL、NC、NDIL/NDTL、 NGp/PGm、pPPp/PPv、視床下部の aNVT、NAT、NPT/pNVT/NRL、NRP、視蓋の PGZ、Tl、 中脳被蓋の MR/IQ、小脳の Cb、VC、LC、および延髄の gc/ra、NVm/RS、NVIIs、NFS/LX で発現が認められた(図 2-8)。また、脳だけでなく下垂体においてもvla1の発現が認められ た(図 2-8H)。vla2 は、終脳の Vd/Vv/Vs/Vp、視索前野の PMp/PPa/aPPp、VM 視床の VM/VL、DP、視床下部の aNVT、NPT/pNVT/NRL、NRP、視蓋の PGZ、中脳被蓋の MR/IQ、および延髄の aMO、gc/ra、NVm/RS、NFS/LX で発現が認められた(図 2-9)。V2a2 は、終脳の Vs/Vp、V1、視索前野の aPPp、視床の SC/TL、NGp/PGm、視床下部の pNVT/NRL、小脳の LC、および延髄の NFS/LX で発現が認められた(図 2-10, A–I)。v2b は、終脳の Vs/Vp、および視索前野の PPa、VM で発現が認められた(図 2-10, J–L)。なお、 これら4 種類の Vt 受容体のいずれの発現においても、明瞭な性差は認められなかった。

2-3-6. オス特異的に産生される Vt ペプチドの作用部位

pNVT においてオス特異的に産生される Vt がどこに運ばれ、どこで作用するのかを明らかにするために、Vtペプチドの免疫組織化学を行い、pNVTの Vt 発現ニューロンの軸索走行を解析した。その結果、pNVT において、主として前後軸方向に沿って走るオス特異的なVt免疫陽性の軸索が観察された(図2-11)。しかし、その軸索が最終的にどの脳部位まで投射しているかまでは確認することができなかった。

2-3-7. アンドロゲンおよび AR アンタゴニスト投与による攻撃行動と vt 発現の誘導

VT とアンドロゲン、攻撃性との関係を明らかにする第一歩として、オスに AR アンタゴニ ストを、また、メスに 11KT を投与し、その際の攻撃行動の変化と pNVT での vt 発現の変化 を解析した。

オスにARアンタゴニストを投与し、アンドロゲンの作用を阻害すると、攻撃行動の減少が 認められた(図 2-12A)。ARアンタゴニストの投与開始から1日目もしくは3日目以降に、平 行定位、つつき、追いかけ、並走威嚇の回数が有意に減少したほか、尾ビレでの打撃の回 数も、有意差は検出されなかったものの、減少傾向を示した。5種類全ての攻撃行動の要素 の回数を合計した場合も、減少傾向がみられ、投与開始から3日目以降で有意差が認めら れた。また、ARアンタゴニストの投与に伴って、pNVTでのvt発現が低下することが明らかと なった(図 2-12B, C)。pNVT 以外の神経核での発現には、ARアンタゴニスト投与による有 意な変化は認められなかった。

一方、メスは普段ほとんど攻撃行動を示さないが、11KT を投与すると、メスどうしでも頻 繁な攻撃行動がみられるようになった(図 2-13A)。11KT の投与開始から4 日目以降に、追 いかけと並走威嚇の回数が 11KT 投与前と比べて有意に増加したほか、それ以外の尾ビレ での打撃、平行定位、つつきの回数についても、有意差は検出されなかったものの、増加 傾向がみられた。5 種類全ての攻撃行動の要素の回数を合計した場合も、増加傾向がみら れ、投与開始から4 日目以降で有意差が認められた。なお、行動解析時以外は雌雄の個体 を同じタンクで飼育していたが、その際にはメスからオスへの攻撃行動も観察された。また、 ISH による発現解析の結果、本来はオス特異的な pNVT での vt 発現が、11KT 投与によっ てメスでも誘導されることが明らかとなった(図 2-13B, C)。pNVT 以外の神経核での発現に は、11KT 投与による有意な変化は認められなかった。

2-3-8. Vt ペプチド投与による攻撃行動の変化

次に、メスに Vt ペプチドを投与し、その際の攻撃行動の変化を解析した。メスへの Vt ペ プチドの単回投与によって、普段はほとんど攻撃行動を示さないメスどうしでも、頻繁に攻撃 行動がみられるようになった(図 2-14)。尾ビレでの打撃は誘導されなかったが、つつき、追 いかけ、並走威嚇の回数が有意に増加した。有意差は検出されなかったものの、Vt ペプチ ド投与前では観察されなかった平行定位も観察された。5 種類全ての攻撃行動の要素の回 数を合計した場合も、Vt ペプチド投与によって有意な増加が認められた。

2-3-9. アンドロゲン投与による vt ノックアウトメスの行動の変化

ここまでの解析の結果は全て、「アンドロゲンの転写促進作用によって、vt の発現が視床 下部でオス特異的に誘導され、そこで産生された Vt がオス特異的に攻撃行動を誘導する」 という当初の作業仮説を支持するものであった。そこで、この仮説をより直接的に検証するこ とを目的として、vt のホモノックアウト(vt -/-)、ヘテロノックアウト(vt +/-)、野生型(vt +/+)の メスに11KTを投与し、その際の攻撃行動の変化を群間で比較した。上記の仮説が正しけれ ば、vt +/+に11KTを投与すると攻撃行動が誘導されるのに対し、vt -/-に11KTを投与して も攻撃行動の誘導がみられないはずである。ところがその予想に反して、いずれの攻撃行 動の要素についても、vt -/-、vt +/-、vt +/+の実験群間で有意な差は認められなかった(図 2-15)。

その一方、行動解析を進める中で、11KTを投与されたメスが、本来はオスしか行わない

46

追尾や求愛ダンスを行うことに気が付いた。そこで追尾と求愛ダンスの回数もカウントしてみたところ、有意差は検出されなかったものの、vt +/+に比べて、vt +/-や vt -/-では、11KT 投与後の追尾と求愛ダンスの回数が低い傾向がみられた。

2-4. 考察

第1章での解析によって、vt がメダカの視床下部内の神経核 NPT と pNVT でオス特異 的に発現していることが明らかとなった。本章では、このオス特異的な vt 発現に関して、「ア ンドロゲンの転写促進作用によって、vt の発現が視床下部でオス特異的に誘導され、そこで 産生された Vt がオス特異的に攻撃行動を誘導する」という作業仮説を立て、その検証を行う こととした。

この仮説が正しければ、このオス特異的な vt 発現は、アンドロゲンの主要な生産源であ る精巣の発達とともに出現し、性成熟に伴って、より顕著になっていくはずである。そこでま ずは、性成熟に伴う脳内の vt 発現の変動を解析した。その結果、NPT と pNVT でのオス特 異的な発現は、第二次性徴が出現し始めた 1 カ月齢の段階でもすでに認められるが、第二 次性徴が明瞭になり、精子形成も進行する2カ月齢以降に、より顕著になることが明らかとな った。メダカの第二次性徴として現れるオスの背ビレと尻ビレの形状の変化はアンドロゲンに 依存して形成されることが知られている(Ogino et al., 2014)。その第二次性徴の形成と同期 して vt のオス特異的発現も形成されると解釈できるこの結果は、上記の仮説に合致しており、 vt のオス特異的発現がアンドロゲンによってもたらされていることを示唆するものであった。

そこで次に、生殖腺除去と性ステロイド投与の実験によって、この考えをダイレクトに検証した。その結果、pNVTでのw発現は精巣除去によって著しく減少し、アンドロゲン投与によって回復することが分かった。このことから、pNVTでのオス特異的なw発現は、精巣由来のアンドロゲンによってもたらされていることが明らかとなった。なお、NPTでの発現については、もともと発現量が少ない上にデータのばらつきが大きく、明瞭な結果が得られなかった。同実験ではさらに、メスの卵巣を除去し、アンドロゲンを投与すると、本来はオス特異的である pNVTのw発現がメスにおいても誘導されることが分かった。この結果は、pNVTでのw発現がアンドロゲンによってもたらされているという結論を再確認させるともに、その発現の有無が、ホルモン環境の改変によって、性成熟後でも雌雄で逆転し得ることを示した。この点については後で議論することとする。pNVTでのオス特異的なwt発現をもたらすメカニズムとして、卵巣由来のエストロゲンがメスにおいてpNVTのwt発現を抑制しているということも

考えられたが、同実験でオスにエストロゲンを投与した場合も、メスの卵巣を除去した場合も vt の発現に変化がみられなかったことから、このようなメカニズムはないものと考えられる。一 方、脳内で最もメジャーな vt の発現部位である視索前野の PMp/PPa/PMm/PMg をはじめ、 pNVT 以外の神経核においては、生殖腺除去と性ステロイド投与の影響はみられなかった。 この結果は、前章で視索前野の vt 発現に性差が認められなかったことと合致するとともに、 精巣を除去してもオスの視索前野での vt の mRNA 量は変化せず、11KT を投与してもメス の視索前野の vt mRNA 量やVt 発現ニューロンのサイズも変化しないという bluehead wrasse (*Thalassoma bifasciatum*)における報告(Semsar and Godwin, 2003)とも一致する。

ここまでの解析によって、pNVT でのオス特異的なvt発現は、精巣由来のアンドロゲンに よってもたらされていることが明らかとなったが、そうすると次の疑問は、アンドロゲンがどのよ うな経路を介して、pNVT での vt の発現を誘導するのかということになる。そこでまずは、 pNVT のオス特異的な vt 発現ニューロンがアンドロゲンを直接受容できるのかを調べるため に、それらのニューロンでの AR の発現を解析した。その結果、pNVT におけるほぼ全ての vt発現ニューロンが arbを発現していることが明らかとなった。一方、このニューロンにおいて ara の発現はみられなかった。このことから、アンドロゲンは pNVT の vt 発現ニューロンに直 接作用し、arb を介して、同ニューロンにおける vt 発現を誘導する可能性が考えられた。一 般に、アンドロゲンによって発現が制御される遺伝子は、その制御領域中にアンドロゲン応 答配列 ARE をもつことが多い。ARE には、グルココルチコイド応答配列(GRE; glucocorticoid response element)と共通の配列である 5'-AGAACA-3'のインバートリピート構 造(AGAACAnnnTGTTCT)をもち、ARだけでなく、グルココルチコイド受容体、ミネラルコル チコイド受容体、プロゲスチン受容体も結合できる canonical ARE (あるいは classical ARE)と よばれるタイプと、5'-AGAACA-3'のダイレクトリピート構造(AGAACAnnnAGAACA)をも地、 AR のみが結合できる selective ARE とよばれるタイプがある (Verrijdt et al., 2003; Shaffer et al., 2004; Verrijdt et al., 2006; Claessens et al., 2008; Denayer et al., 2010; Pihlajamaa et al., 2015)。メダカの vt の近傍ゲノム配列中に ARE 様の配列が存在するのかを探索したところ、 vtの5'上流領域、3'下流領域に複数の canonical ARE 様配列、および selective ARE 様配 列が確認された。このことから、アンドロゲンはこれらの ARE 様配列のいずれかを介して、vt の転写を直接的に活性化する可能性が考えられた。そこで、ルシフェラーゼレポーター遺伝 子を用いた in vitro のアッセイ系によってこの可能性を検証したところ、予想通り、アンドロゲ ンは vt の転写を直接的に活性化し得ることが明らかとなった。また、その際のアンドロゲンの 効果は、Arb を介した場合の方が Ara を介した場合よりもはるかに強いことが分かった。

mosquitofish (Gambusia affinis)において、Ara よりも Arb の方が 11KT への親和性が高いこ とが報告されていることから(Ogino et al., 2009)、メダカにおいても Arb の方が 11KT への親 和性が高いことが予想され、この結果は、この親和性の違いを反映しているものと考えられる (メダカと mosquitofish では、Ara と Arb の呼び名が逆になっており、Ogino et al., 2009 中で は、Arb よりも Ara の方が 11KT への親和性が高いと記されている)。以上の結果を、pNVT の vt 発現ニューロンで発現している AR 遺伝子は arb であることと考え合わせると、アンドロ ゲンは、やはり Arb を介して、vt の転写を直接的に活性化していると推察される。さらに、変 異導入実験によって、アンドロゲンに応答性を示す機能的な ARE を同定することを試みた が、3'下流領域に機能的な ARE が存在することが明らかとなったものの、いずれの ARE 様 配列に変異を導入しても転写活性に変化はみられず、機能的な配列を同定するまでには 至らなかった。最近、アンドロゲンが標的遺伝子 Mafb の 3'下流領域に存在する2 つの ARE を介して、その転写を制御する例が示された(Matsushita et al., 2016)。vt も同様の機構によ ってアンドロゲンによる転写制御を受けていると推察される。今回変異を導入しなかった部 位に機能的な ARE が存在する可能性、あるいは、いくつかの AREが協働して転写を調節し ている可能性が考えられ、その検証が今後の課題として残った。

ラットにおいても、Vtの哺乳類オーソログである VPの BNSTとMeA での発現に性差が あり、オスはメスの約2倍のVP発現ニューロンをもつことが報告されている(van Leeuwen et al., 1985; Miller et al., 1989)。また、本研究のメダカでの結果と同様に、ラットの成熟オスの BNSTとMeA での VP 発現は精巣除去で減少し、テストステロン投与で回復することも、繰り 返し報告されている(de Vries, 2008; Dumais and Veenema, 2015)。しかし、その際に大部分 のテストステロンはアロマターゼによって E2 に変換されてから、エストロゲン受容体を介して 作用することが示されており(de Vries, 2008; Auger et al., 2011)、その点は、アロマターゼに よって E2 に変換されない 11KT が AR を介して作用するメダカとは異なるようである。また、 ラットの成熟オスの BNST での VP 発現に対する精巣除去やテストステロン投与の影響はそ れほど大きくなく、BNSTのVP発現ニューロンにみられる性差は、出生期までに性ステロイド の organizational effects、あるいは性染色構成によって、ある程度不可逆的に固定されると 考えられている(de Vries et al., 2002; Auger et al., 2011)。この点も、vt 発現の性差がほぼ完 全に逆転するメダカとは異なるようである。哺乳類とは異なり、魚類の脳は生涯にわたって性 的な可逆性を保持しており、種々の要因によって、その性が容易に逆転し得る(Godwin, 2010; Munakata and Kobayashi, 2010)。vt 発現の性差にみられた逆転は、その事実と合致 するようで興味深い。

次に、Vt 受容体の発現分布とオス特異的 Vt 発現ニューロンの軸索走行を解析し、その 結果を考え合わせることで、オス特異的に産生されるVtがどのタイプのVt受容体を介して、 どこで作用するのかを明らかにすることを試みた。Vt 受容体の発現の脳内分布はいくつか の魚種において報告されている。bluehead wrasse では vla1、vla2 の 2 種類の Vt 受容体が 同定されており、vlal は終脳、視索前野、視蓋、小脳で、vla2 は視床下部と小脳で発現が 高いこと(Lema et al., 2012)、rock hind grouper(Epinephelus adscensionis)と African cichlid fish (Astatotilapia burtoni) では、v1a2 が脳内で広範囲に発現することが示されている (Kline et al., 2011; Huffman et al., 2012)。また、pupfish では、v1a1、v1a2、v2a、v2b が終脳、視床 下部、後脳と、脳内で広範囲に発現することが示されている(Lema et al., 2015)。メダカで Vt 受容体の発現を解析したところ、これらの先行研究と同様に、脳内の様々な領域で発現が 認められた。また、4 種類の Vt 受容体のいずれの発現についても、明瞭な性差は見られな かった。bluehead wrasseの全脳、あるいは視床下部において、vla2がメス、あるいは未熟な initial phase オスに比べて、成熟した terminal phase オスで高いこと(Lema et al., 2012)や、 pupfish において、視床下部と終脳の vla2 の mRNA 量が dominant のオスで高いことが報 告されている(Lema et al., 2015)。脳における Vt 受容体の性差の有無は魚種間で異なって いる可能性が考えられるが、メダカでも、今回の ISH による解析では検出できない程度の発 現の性差が存在する可能性も否定できない。続いて、オス特異的 Vt 発現ニューロンの軸索 走行を解析したところ、同ニューロンが存在する pNVT でオス特異的な軸索が確認されたも のの、この軸索が最終的にどこに投射しているかまでは確認できなかった。したがって、オス 特異的に産生される Vt がどのタイプの Vt 受容体を介して、どこで作用するのかについては 答えを得ることができなかった。ただ、神経ペプチドは一般に、軸索末端からだけでなく、軸 索上のバリコシティからも放出されることが知られており、pNVT で産生されたオス特異的な Vt がその場でオートクライン・パラクライン的に作用している可能性も考えられる。その場合 は、pNVTで発現が認められた vlal とvla2 のいずれか、あるいは両方の受容体を介すると 想定される。

次に、当初の作業仮説の後半部分であるアンドロゲンの作用によってオス特異的に産 生された Vt が攻撃行動を誘導する可能性について検証を進めた。脊椎動物全般において、 個体の攻撃性を高める主因子はアンドロゲンであることが知られている(Sato *et al.*, 2004)。 魚類においても、African cichlid (*Haplochromis burtoni*)などのいくつかの魚種で、精巣を除 去するとオスの攻撃性が減少することが示されている(Francis *et al.*, 1992; Goncalves and Oliveira, 2010)。一方で、魚種によっては精巣を除去しても攻撃性が変化しないケースや、

50

条件によっては逆に攻撃性が上昇するケースも報告されており(Goncalves and Oliveira, 2010)、魚類におけるアンドロゲンと攻撃性の関係については、まだ不確かな部分も残され ているのも事実である。そこでまずは、メダカにおいても、アンドロゲンが攻撃性を高めること を確認するために、オスのメダカに AR アンタゴニストを投与し、その際の攻撃行動を解析し た。その結果、AR アンタゴニスト投与によって攻撃行動が減少し、メダカにおいても実際に アンドロゲンが攻撃性を高めることが確認された。また、その際の脳内の vt 発現を解析したと ころ、pNVT での vt 発現が低下していることが確認された。Vt が攻撃行動に関わること (Goodson, 2008; Goodson and Thompson, 2010; Goncalve and Oliveira, 2010)や、脊椎動物 全般において、攻撃性を支配する中枢は視床下部内に存在すること(Lin et al., 2011; Goodson et al., 2012)に加えて、この結果が得られたことで、作業仮説の妥当性が高まった。 一方、先の解析で、メスにアンドロゲンを投与すると、本来はオス特異的である pNVT の vt 発現がメスにおいても誘導されることが見出された。この発見から、「オス特異的な pNVT で のvt発現が攻撃行動を引き起こすのであれば、普段はほとんど攻撃行動を示さないメスでも、 アンドロゲンを投与することで、オス並みの攻撃行動を誘導できるはず」との発想を得た。そ こで、メスにアンドロゲンを投与し、その際の攻撃行動を解析したところ、期待通り、アンドロ ゲン投与によって、メスでも攻撃行動が誘導された。その際の pNVT での vt 発現も誘導され ていたことから、作業仮説の妥当性がさらに高まった。メスでもアンドロゲン投与によって攻 撃性が高まるという現象は、魚類ではこれまでに報告がないが、マウスでは報告があり (Svare et al., 1974; Simon et al., 1985)、種を超えた普遍的な現象であると推察される。

次に、VTと攻撃行動の関係を解析した。Vt が攻撃行動に関与するという他魚種での報告がメダカにも当てはまるのかを確認するために、メスのメダカに Vt ペプチドを投与し、その際の攻撃行動を解析した。すると、Vt ペプチド投与によって、メスでも攻撃行動が誘導されることが分かった。Vt ペプチドの投与で攻撃行動が増加し、V1a 受容体のアンタゴニストである manning compound の投与で攻撃行動が減少するという damselfish (*Stegastes leucostictus*)や bluehead wrasse での報告 (Semsar *et al.*, 2001)と同様の結果であり、メダカにおいても VT が攻撃行動に関与していることが示された。

ここまでの結果から、アンドロゲンが vt の発現を誘導すること、アンドロゲンには攻撃行動 を誘起する作用があること、Vt にも攻撃行動を誘起する作用があることが明らかとなった。こ れらの事実はいずれも、「アンドロゲンの転写促進作用によって、vt の発現が視床下部でオ ス特異的に誘導され、そこで産生された Vt がオス特異的に攻撃行動を誘導する」という当初 の作業仮説と合致するものであった。そこで最後に、アンドロゲンによる攻撃行動の誘起が

51

Vtを介する証拠を得ることで、この作業仮説を証明することを試みた。「アンドロゲンによる攻撃行動の誘起が Vt を介するのであれば、vt を欠損したメスのメダカにアンドロゲンを投与し ても攻撃行動が誘起されないはずである」との発想のもと、メスのvt ノックアウトメダカにアンド ロゲンを投与し、その際の攻撃行動を解析した。ところが予想に反して、アンドロゲンを投与 されたノックアウト個体でも野生型個体と同程度の攻撃行動が誘起され、当初の作業仮説と は合致しない結果となった。

この結果の解釈としては以下の3つが考えられる。当然ながら一つ目は、当初の作業仮 説が誤りで、アンドロゲンによる攻撃行動の誘起は Vtを介さないという考えである。2 つ目は、 パラログによる機能補償が起こった可能性である。魚類は進化の過程で四肢動物と分岐後、 独自の全ゲノム重複を経験しており、一つの遺伝子に対して複数のパラログを有することが ある(Amores et al., 1998)。それにより、一つの遺伝子をノックアウトしても、残ったパラログ遺 伝子による補償作用がはたらくことで、表現型が現れないことがある。しかしながら、今回解 析した vt にパラログが存在するという報告はなく、残ったパラログ遺伝子による補償作用が はたらいた可能性は極めて低いと考えられる。3つ目は、vt に近縁なイソトシン遺伝子(it)が vtの機能を補償した可能性である。Vtとltは互いの受容体にもある程度結合できることが報 告されていることに加え、脳内で産生された It の一部が、オス特異的な Vt と作用部位を共 有していることも考えられる。itの発現ニューロンはオス特異的なvt発現ニューロンが存在す る pNVT にはみられないので、別の神経核の it 発現ニューロンが、オス特異的な vt 発現ニ ューロンと同じ脳領域に投射しているかもしれないという考えである。もしもそうだとすれば、 ノックアウトされた vt の機能を、残っている it が補うことは十分に可能となる。この考えを検証 するためには、vtとitのダブルノックアウト個体を作製し、その行動を解析する必要があるが、 ごく最近、targeting induced local lesions in genomes (TILLING) 法によって vt にミスセンス変 異(開始メチオニンがアルギニンに置換されている)が導入されたオスメダカが野生型と変わ らない攻撃行動を示すことが報告された(Yokoi et al., 2015)。今回のメダカでの結果を含め、 これまでに報告されたいくつかの魚種における Vt ペプチドの投与実験の結果から、Vt には 攻撃行動を誘起する作用があると考えるのが妥当であるにも関わらず、その変異体が通常 通りの攻撃性を有するという解釈の難しい結果である。また、同報告(Yokoi et al., 2015)で は、同じく TILLING 法で作製された vla2 のミスセンス変異体メダカ (68 番目のアスパラギン がイソロイシンに置換されている)のオスの攻撃行動は低下することが示されており、上記の vt変異体の結果は、このvla2変異体の結果ともつじつまが合わないように思える。しかし、こ こでも、It が V1a2 を介して Vt の機能を補っていると考えれば、これらの矛盾にも納得がい

く。

一方で、現段階では、アンドロゲンによる攻撃行動の誘起はVtを介さない可能性を過小 評価せず、作業仮説の修正を視野に入れることも必要であろう。この方向で検討を進めるに 当たって、ノックアウト個体の行動解析中に、アンドロゲンを投与されたメスが、普段は決して 行わないオス型の性行動である追尾や求愛ダンスを行うことに気が付いた。そこでこれらの 行動について解析したところ、有意差は検出されなかったものの、野生型の個体に比べて、 ノックアウト個体では、アンドロゲン投与後の追尾と求愛ダンスの回数が低い傾向がみられた。 サンプル数を増やせば、あるいは、性行動の解析に特化した実験デザインでもう一度やり直 せば、有意差が検出されるかもしれないと思われた。もしもそうなれば、vt は攻撃行動に対 するアンドロゲンの作用を仲介するのではなく、オス型の性行動に対するアンドロゲンの作 用を仲介していることになる。このアイデアと一致するように、上記のごく最近の報告(Yokoi et al., 2015)では、vtやvla2の変異体メダカのオスの性的モチベーションが低下していること も示されている。また、これまでにいくつかの魚種でアンドロゲン投与によってメスで性行動 が誘導されることが報告されている(Wai and Hoar, 1963; Stacey and Kobayashi, 1996; Semsar and Godwin, 2004; Pradhan and Olsson, 2015)。 例えば、 bluehead wrasse において、 卵巣を除去したメスにアンドロゲンを投与すると、攻撃行動には変化が認められないが、オ ス型の性行動が誘導されることが示されている(Semsar and Godwin, 2004)。これまでは、オ ス特異的な vt 発現のアウトプットとして、攻撃行動だけを考えてきたが、今後は性行動も考 慮に入れ、検証を進めていきたいと考えている。

表 2-1. AR 発現コンストラクトの作製に用いたプライマー

名称	使用目的	塩基配列(5′-3′)
ARa-ORF-Kozak-F2	PCR	TTC <u>G</u> C <u>C</u> G <u>CC</u> ATGGGCCAAACCAGCCGCCAGT
ARa-ORF-Kozak-R2	PCR	GATCTACTTGTGAAACAAAATTGGCTTTG
ARa-ORF-F1	Seq	AGCAGCGTGGATGCTCATGCT
ARa-ORF-F2	Seq	ACGGCGTCAGAGTCAAATGCGA
ARa-ORF-F3	Seq	CGAGCAAGAACGACTGCACGAT
ARa-ORF-F4	Seq	AAGAACGTCAACGGCAGAATGCT
ARa-ORF-R1	CP, Seq	CTCGGTCAGGACACCTGTACT
ARa-ORF-R2	Seq	GCGTCCTGGGAGTTCACGCA
ARa-ORF-R3	Seq	CTTCTGAGGTTTTCTGCTGTCCA
ARa-ORF-R4	Seq	CCTCCTGGGTGATCTGCAGCA
ARb-ORF-Kozak-F1	PCR	$GAG\underline{G}C\underline{C}A\underline{C}CATGGCCTTTCGCTCCAGCTTGGCG$
ARb-ORF-Kozak-R1	PCR	TGTCTAGGCTGTGTTGTGGAAAAGGATGGGC
ARb-ORF-F1	Seq	CGGAAGGAAATGGACTTGTCCTA
ARb-ORF-F2	Seq	GTCCAGACAGGAATGCAACTGT
ARb-ORF-F3	Seq	CCGTTTGAAGAGGTGCTTCATGT
ARb-ORF-F4	Seq	CTCTCACCAACTGCTCCATGCT
ARb-ORF-R1	CP, Seq	GGATCCTTGCAGATGAATCTGGA
ARb-ORF-R2	Seq	ACTGAAGGTTCGGTCTTGATGGT
ARb-ORF-R3	Seq	GTGGAAGCCATGTTTCCAGGCT
ARb-ORF-R4	Seq	CGAGGAGCTTCATCCTCACGCA
pcDNA3.1/V5-His-F	CP, Seq	TACGACTCACTATAGGGAGAC
pcDNA3.1/V5-His-R	CP, Seq	GTTAGGGATAGGCTTACCTTC

名称カラム中の-F はフォワードプライマー、-R はリバースプライマーを示す。使用目的カラム 中の PCR は翻訳領域全長の増幅、Seq はシークエンシング、CP はコロニーPCR を示す。塩 基配列カラム中の下線は Kozak 配列付加による変異導入部位を示す。

表 2-2. vt レポーターコンストラクトの作製に用いたプライマー

名称	使用目的	塩基配列(5′-3′)
VT-InFusion-F1	5IF	ACCTGAGCTCGCTAGCTCGTGTTTGCTTCTGTTGTCCG
VT-InFusion-F2	3IF	GTGTAATAATTCTAGAAACCTGGATCTGCAGCAGACACGAC
VT-InFusion-R1	5IF	TATCCTCGAGGCTAGCCGCTGCAGGCTGTCGGTGTGGA
VT-InFusion-R2	3IF	CCGCCCCGACTCTAGAAAGTTTACAAGGCCTTCAATTTT
VT-5flank-F1	Seq	TGTGACCCTGGAGCTTCTGC
VT-5flank-F2	Seq	GGCAGATGACAGCAGAGGAAGA
VT-5flank-F3	Seq	AGAAAGGGTGGCAAAACTGT
VT-5flank-F4	Seq	AGAGGACCTTGAGGCATATA
VT-5flank-R1	CP, Seq	AATGCTGAAGCGCTGAAAGGGA
VT-5flank-R2	Seq	CTGCCGCATGCTTTGAGTCAG
VT-5flank-R3	Seq	TATGACAGGACATTCCACTG
VT-5flank-R4	Seq	TGCCGTTTCACAGAGCGGTAC
VT-3flank-F1	Seq	GCTATCAATGCGTTCAGACTG
VT-3flank-F2	Seq	GCGATGACTGAAGGCTGGGTT
VT-3flank-R1	CP, Seq	GAAAGAAAGACCACCTAAAGAG
VT-3flank-R2	Seq	TTGATACACAGCTGGTAGAGAG
pGL4-NheI-F1	CP, Seq	AACTAGCAAAATAGGCTGTCC
pGL4-NheI-R1	CP, Seq	TGGCATCTTCCATGGTGGCT
pGL4-XbaI-F1	CP, Seq	AGTTGGACGCCCGCAAGATC
pGL4-XbaI-R1	CP, Seq	GCATTCTAGTTGTGGTTTGTCC
VT-3fl-Mut171-F1	Mut	AAGCTTTATAAGCTTCAAATTCAGAGCCTCTGTT
VT-3fl-Mut171-R1	Mut	AAGCTTATAAAGCTTGTCATATGTACATTTCTT
VT-3fl-Mut328-F1	Mut	AAGCTTTACAAGCTTTCTCATCACAGCCAAAAC
VT-3fl-Mut328-R1	Mut	AAGCTTGTAAAGCTTCTTGTTTTCAATCTACAG
VT-3fl-Mut440-F1	Mut	AAGCTTAAAAAGCTTTTGAGCGATCTCAGAGAT
VT-3fl-Mut440-R1	Mut	AAGCTTTTTAAGCTTTTTTCACACAAATTCTCA
VT-3fl-Mut674-F1	Mut	AAGCTTATGAAGCTTAAGACGGTTTGTCTTTTA

表 2-2. vt レポーターコンストラクトの作製に用いたプライマー(続き)

名称	使用目的	塩基配列(5′-3′)
VT-3fl-Mut674-R1	Mut	AAGCTTCATAAGCTTCACGTAACCCAGCCTTCA
VT-3fl-Mut875-F1	Mut	AAGCTTACAAAGCTTGGATGTCCACACACATTC
VT-3fl-Mut875-R1	Mut	AAGCTTTGTAAGCTTCAAGGGGGGCCGAAGAAGCT
VT-3fl-Mut1242-F1	Mut	AAGCTTCTGAAGCTTACAACTATTTGTGAAAGA
VT-3fl-Mut1242-R1	Mut	AAGCTTCAGAAGCTTTGCCTGAGTGCTTGATTT
VT-3fl-Mut1403-F1	Mut	AAGCTTAAAAAGCTTAGTTTGGGAACAACAGCA
VT-3fl-Mut1403-R1	Mut	AAGCTTTTTAAGCTTTTGTGGAGCTGACAATTGA
VT-3fl-Mut1427-F1	Mut	AAGCTTGCAAAGCTTCCATAAAATTGAAGGCCT
VT-3fl-Mut1427-R1	Mut	AAGCTTTGCAAGCTTTCCCAAACTCTTCCATTT

名称カラム中の-Fはフォワードプライマー、-Rはリバースプライマーを示す。使用目的カラム 中の5IFは5'上流領域のためのIn-Fusion PCR、3IFは3'下流領域のためのIn-Fusion PCR、 Seq はシークエンシング、CP はコロニーPCR、Mut は変異を導入するための PCR を示す。 塩基配列カラム中の下線はARE 様配列のハーフサイトを *Hind*III の配列に置き換えた部位 を示す。

標的遺伝子	名称	塩基配列(5′-3′)
vlal	v1ar1-Fw-ISH	GTCGCACCATGCTCTTCCCGT
	v1ar1-Rev-ISH	CCAGAGTTTCGTTCTGGCTGCT
v1a2	v1ar2-Fw -ISH	GGGCAGTGCCATGTACACTCT
	v1ar2-Rev-ISH	GAGTGATTCTGTAAAATCAGGGAAA
v2a2	v2r1-Fw -ISH	TAGTGCTCAGCATACCTCAGGTG
	v2r1-Rev-ISH	ATGTTTTTCTACGAGATGTCTTGCAT
v2b	v3r-Fw -ISH	CTCCCTGACACGTTTACAAGTCT
	v3r-Rev -ISH	AAACAGTCTTCCTTTATCTAAAGTGATA

表 2-3. Vt 受容体遺伝子の ISH プローブの作製に用いたプライマー

名称カラム中の-Fw はフォワードプライマー、-Rev はリバースプライマーを示す。

表 2-4. 神経核の名称および略称

	略称	名称
_	aMO	anterior part of the medulla oblongata (a wide area but not a single nucleus)
	aNVT	anterior part of nucleus ventral tuberis
	aPPp	anterior part of posterior parvocellular preoptic nucleus
	Cb	corpus cerebelli
	Dl	lateral nucleus of the dorsal telencephalic area
	Dm	medial nucleus of the dorsal telencephalic area
	DP	dorsal posterior nucleus of thalamus
	EP	pineal gland
	gc	central gray
	ICL	internal cellular layer of olfactory bulb
	IQ	inferior oblique of the oculomotor nerve nucleus
	LC	lobus caudalis of corpus cerebelli
	lHd	left dorsal habenula
	MR	medial rectus of the oculomotor nerve nucleus
	NAT	nucleus anterior tuberis
	NC	nucleus corticalis
	NDIL	nucleus diffusus of lobus inferioris
	NDTL	nucleus diffusus of torus lateralis
	NFS/LX	nucleus of fasciculus solitaries/lobus vagus
	NGp	nucleus glomerulosus posterioris
	NPT	nucleus posterior tuberis
	NRL	lateral recess nucleus
	NRP	posterior recess nucleus
	NVIIs	nucleus sensorius of nervus facialis
	NVm	motor nucleus of trigeminal nerve
	NVT	nucleus ventral tuberis
_	PGm	nucleus preglomerulosus medialis

表 2-4. 神経核の名称および略称(続き)

略称	名称
PGZ	periventricular gray zone
PMg	gigantocellular portion of the magnocellular preoptic nucleus
PMm	magnocellular portion of the magnocellular preoptic nucleus
PMp	parvocellular portion of the magnocellular preoptic nucleus
pNVT	posterior part of nucleus ventral tuberis
PPa	anterior parvocellular preoptic nucleus
PPp	posterior parvocellular preoptic nucleus
pPPp	posterior part of posterior parvocellular preoptic nucleus
PPv	ventral part of pretectal periventricular nucleus
ra	nucleus raphe
rHd	right dorsal habenula
RS	nucleus reticularis superioris
SC	suprachiasmatic nucleus
TL	nucleus lateral tuberis
T1	torus longitudinalis
VC	valvula cerebelli
Vd	dorsal nucleus of the ventral telencephalic area
VL	ventrolateral nucleus of thalamus
Vl	lateral nucleus of the ventral telencephalic area
VM	ventromedial nucleus of thalamus
Vp	posterior nucleus of the ventral telencephalic area
Vs	supracommissural nucleus of the ventral telencephalic area
Vv	ventral nucleus of the ventral telencephalic area

Wild-type	ATGCATCCCTCCCTGCTCAGCCTGTGCGCCCTGGGATTCCTCGCTCTGTCCTCCGCC <u>TGTTACATCCAGAACTGCCCCCGAGGA</u>
	GGGAAGCGAGCATTGCCGGAGGCTGGGATCAGACAGTGCATGTCTTGTGGCCCTGGGGAACGGGGCCGCTGCTTCGGCCCCAGT
	ATCTGCTGCGGCGAGGGCTTCGGCTGCCTGGGGCTCCCCAGAATCAGCTCAGTGTGGAGGAGAACTACCTTCTCACCCCC
	TGTCAGACAGGAGGAGGCCCTGTGGATCAGAGGGAGGACGCTGTGCTGCTGCTGCTGCTGCTGTAACTCTGAGGGCTGTGTG
	GTGGACTCTGACTGCCTCGTGGAGACGGAGGTTATAGACCCATCCCATGGCTCTGCCAGAAGCTCGCCTGCAGAGCTGCTGCTG
	CGTCTCCTACACGTCGCCAGCAGAGGACAGAACGAATACTGA
vt -/-	ATGCATCCCTCCCTGCTCAGCCTGTGCGCCCTGGGATTCCTCGCTCTGTCCTCCGCCAGAACTGCCCCCGAGGA
	GGGAAGCGAGCATTGCCGGAGGCTGGGATCAGACAGTGCATGTCTTGTGGCCCTGGGGAACGGGGCCGCTGCTTCGGCCCCAGT
	ATCTGCTGCGGCGAGGGCTTCGGCTGCCTGGGGCTCCCCAGAATCAGCTCAGTGTGGAGGAGAACTACCTTCTCACCCCC
	TGTCAGACAGGAGGAGGCCCTGTGGATCAGAGGGAGGACGCTGTGCTGCTGCTGCTGCTGCTGTAACTCTGAGGGCTGTGTG
	GTGGACTCTGACTGCCTCGTGGAGACGGAGGTTATAGACCCATCCCATGGCTCTGCCAGAAGCTCGCCTGCAGAGCTGCTGCTG
	CGTCTCCTACACGTCGCCAGCAGAGGACAGAACGAATACTGA
Р	
В	
Wild-type	${\tt MHPSLLSLCALGFLALSSACYIQNCPRGGKRALPEAGIRQCMSCGPGERGRCFGPSICCGEGFGCLLGSPESAQCVEENYLLTP}$
	CQTGGRPCGSEGGRCAASGLCCNSEGCVVDSDCLVETEVIDPSHGSARSSPAELLLRLLHVASRGQNEY*
vt –/–	MHPSLLSLCALGFLALSSARTAPEEGSEHCRRLGSDSACLVALGNGAAASAPVSAAARASAACWAPQNQLSVWRRTTFSPPVRQ
	EGGPVDQREDAVLLPDSAVTLRAVWWTLTASWRRRL*

図 2-1. 本研究に使用した vt ノックアウトメダカの配列情報

А

野生型(Wild-type)および vt ノックアウト系統(vt –/–)の vt cDNA の塩基配列と演繹アミノ酸 配列の比較。(A)塩基配列の比較。成熟 Vtペプチドをコードする領域を下線で示し、ホモノ ックアウトが欠損している塩基をハイフンで示した。(B)演繹アミノ酸配列の比較。野生型の 配列中の下線は、成熟 Vtペプチド部分を示す。ホモノックアウトの配列中の網掛け部分は、 塩基欠損の結果、野生型とは異なるアミノ酸配列となった部分を示す。*はストップコドンを 示す。

図 2-2. 性成熟に伴う各神経核における vt 発現の変動

各神経核における月齢別の vt 発現のシグナル面積を示した。縦軸は ISH によって得られた 発現シグナルの面積を、横軸は月齢 (mpf; month post fertilization)を示す。黒のカラムはオ スを、白のカラムはメスを示す。それぞれの月齢における雌雄間での有意差を、* p < 0.05、 ** p < 0.01、*** p < 0.001 で示した。各神経核の略称については表 2-4 を参照のこと。

図 2-3. オスの各神経核における vt 発現に対する精巣除去と性ステロイド投与の影響 (A) ISH によって得られた各神経核における vt 発現のシグナル面積。縦軸は発現シグナル の面積を、横軸は実験群を示す。sham は偽手術群、TEX は精巣除去群、TEX+E2 は精巣 除去の後、E2 を投与した群、TEX+11KT は精巣除去の後、11KT を投与した群を示す。 sham と TEX の間、TEX と TEX+E2 の間、TEX と TEX+11KT の間で post hoc test を行い、 有意差を、** p < 0.01、*** p < 0.001 で示した。(B) pNVT における vt 発現の代表的な写真。 スケールバーは全て 50 μ m。各神経核の略称については表 2-4 を参照のこと。

図 2-4. メスの各神経核における vt 発現に対する卵巣除去と性ステロイド投与の影響 (A) ISH によって得られた各神経核における vt 発現のシグナル面積。縦軸は発現シグナル の面積を、横軸は実験群を示す。sham は偽手術群、OVX は卵巣除去群、OVX+E2 は卵巣 除去の後、E2 を投与した群、OVX+11KT は卵巣除去の後、11KT を投与した群を示す。 sham と OVX の間、OVX と OVX +E2 の間、OVX と OVX +11KT の間で post hoc test を行 い、有意差を*** p < 0.001 で示した。(B) pNVT における vt 発現の代表的な写真。スケール バーは全て 50 μm。各神経核の略称については表 2-4 を参照のこと。

図 2-5. pNVT におけるオス特異的な vt 発現ニューロンでの AR の発現

(A) pNVT における vt(緑色、上段のパネル)と ara(赤色、中段のパネル)の発現。青色は DAPI による核染色。下段のパネルは両遺伝子の発現をマージしたもの。左側のパネルは オスを、右側のパネルはメスを示す。(B) pNVT における vt(緑色、上段のパネル)と arb(赤 色、中段のパネル)の発現。青色は DAPI による核染色。下段のパネルは両遺伝子の発現 をマージしたもの。左側と中央のパネルはオスを、右側のパネルはメスを示す。中央のオス のパネルは発現ニューロンの拡大写真。スケールバーは 50 µm(拡大写真中のものは 10 µm)。

図 2-6. アンドロゲンによる vt の転写促進

vtの5'上流領域2677 bp および3'下流領域1469 bp をルシフェラーゼ遺伝子に結合したレ ポーターコンストラクトを用いたプロモーターアッセイによって、アンドロゲンによるvtの転写 促進作用を解析した。Ara(左のグラフ)あるいはArb(右のグラフ)の存在下で異なる濃度の 11KTを投与した際のレポーター活性を測定した。縦軸は11KT 未処理群での値を1とした 場合のレポーター活性の相対値を、横軸は11KTの投与濃度(log M)を示す。各カラムに 付けられたアルファベットは統計処理の結果を示しており、アルファベットがオーバーラップ しないカラムの間には有意差があることを意味する。

図 2-7. アンドロゲンが vt の転写を促進する際に機能する ARE の探索

(A) w の 5' 上流領域 2677 bp および 3'下流領域 1469 bp を含むレポーターコンストラクト (WT)、および w の 5' 上流領域 2677 bp のみを含むレポーターコンストラクト(5fl only)を用 いて、アンドロゲンによる w の転写促進作用を解析した。Ara(左のグラフ)あるいは Arb(右 のグラフ)の存在下で 10⁻⁶ M の 11KT を投与した際のレポーター活性を測定した。縦軸は WT の 11KT 未処理群での値を 1 とした場合のレポーター活性の相対値を、横軸は用いた コンストラクトの種類を示す。白のカラムは 11KT 未処理群を、黒のカラムは 11KT 処理群を 示す。各カラムに付けられたアルファベットは統計処理の結果を示しており、アルファベット がオーバーラップしないカラムの間には有意差があることを意味する。(B)3'下流領域 1469 bp 中の ARE 様配列のそれぞれに変異を導入したレポーターコンストラクトを用いて、アンド ロゲンによる w の転写促進作用を解析した。Ara(左のグラフ)あるいは Arb(右のグラフ)の 存在下で 10⁻⁶ M の 11KT を投与した際のレポーター活性を測定した。縦軸は、WT での 11KT によるレポーター活性のインダクション率(11KT 処理群での値/11KT 未処理群での値) を 1 とした場合の各変異コンストラクトでのインダクション率の相対値を示す。横軸は、ストッ プコドンから何 bp 離れた ARE 様配列に変異を導入したかを示す。いずれの変異コンストラ クトも WT との間に有意差を示さなかった。

図 2-8. 脳および下垂体における v1a1 の発現部位

各神経核や脳領域、下垂体における v1a1 発現の代表的な写真を示した。それぞれのパネ ルが示す神経核や部位は以下の通り。(A) ICL、(B) Dm、(C) Vv/Vs/Vp、(D, E) PMp/PPa/PMm/PPp、(F) SC/TL、(G) 松果体、手綱核、VM、(H) 下垂体、(I) NDIL/NDTL、 (J) NPT/pNVT/NRL、(K) NGp/PGm、(L) PGZ、(M) Tl および中脳被蓋、(N) NRL/NRP、 (O) Cb、(P) gc/ra、NVm。スケールバーは全て 50 µm。各神経核の略称については表 2-4を 参照のこと。

図 2-9. 脳内の v1a2 の発現部位

各神経核や脳領域における v1a2 発現の代表的な写真を示した。それぞれのパネルが示す 神経核や脳領域は以下の通り。(A) Vd/Vv/Vs/Vp、(B) PMp、(C) PPa、(D) VM、(E) pPPp/aNVT、(F) NPT/pNVT/NRL、(G) pNVT、(H) NRP、(I) PGZ、(J) 中脳被蓋、(K) gc/ra、 (L) NVm。スケールバーは全て 50 µm。各神経核の略称については表 2-4 を参照のこと。

図 2-10. 脳内の v2a2 と v2b の発現部位

各神経核や脳領域における *v2a2*(A–I)と *v2b*(J–L)の発現の代表的な写真を示した。それ ぞれのパネルが示す神経核や脳領域は以下の通り。(A) V1、(B) Vs/Vp、(C) aPPp、(D) SC/TL、(E) NGp/PGm、(F) pNVT/NRL、(G) NVm、(H, I) LC での *v2a2* の発現。(J) Vs/Vp、 (K) PPa、(L) VM での *v2b* の発現。スケールバーは全て 50 μm。各神経核の略称について は表 2-4 を参照のこと。

図 2-11. pNVT のオス特異的 Vt 発現ニューロンの軸索走行

免疫組織化学によって、pNVTのオス特異的 Vt 発現ニューロンの軸索走行を解析したところ、同神経核にオス特異的な Vt 免疫陽性の軸索が認められたが、その終末までは追跡できなかった。スケールバーは 50 μm。

図 2-12. AR アンタゴニスト投与によるオスでの攻撃行動と vt 発現の減少

(A)オスに AR アンタゴニストを投与した際の攻撃行動の各要素(尾ビレでの打撃(Fight)、 平行定位(Frontal-lateral display)、つつき(Bite)、追いかけ(Chase)、並走威嚇(Swimming parallel)の回数の変化、および、それら全ての要素の合計回数(Total))の変化。縦軸は 30 分間での攻撃行動の各要素の回数を、横軸は AR アンタゴニストの処理日数を示す。AR ア ンタゴニスト投与前(0日目)との有意差を、*p<0.05、**p<0.01、***p<0.001で示した。 (B)オスに AR アンタゴニストを投与した際の各神経核における vt 発現の変化。縦軸は ISH によって得られた vt 発現のシグナル面積を、横軸は各神経核を示し、黒のカラムは溶媒の みを投与したコントロール群を、白のカラムは AR アンタゴニスト投与群を示す。それぞれの 神経核におけるコントロール群とAR アンタゴニスト投与群の間の有意差を、***p<0.001で 示した。各神経核の略称については表 2-4 を参照のこと。(C)コントロール群(Control)およ び AR アンタゴニスト投与群(AR antagonist)における pNVT での vt 発現の代表的な写真。 スケールバーはいずれも 50 µm。

図 2-13. アンドロゲン投与によるメスでの攻撃行動とvt 発現の誘導

(A) メスに 11KT を投与した際の攻撃行動の各要素 (尾ビレでの打撃 (Fight)、平行定位 (Frontal-lateral display)、つつき (Bite)、追いかけ (Chase)、並走威嚇 (Swimming parallel) の回数の変化、および、それら全ての要素の合計回数 (Total))の変化。縦軸は 30分間での 攻撃行動の各要素の回数を、横軸は 11KT の処理日数を示す。11KT 投与前 (0 日目)との 有意差を、*p < 0.05、**p < 0.01 で示した。(B) メスに 11KT を投与した際の各神経核にお ける vt 発現の変化。縦軸は ISH によって得られた vt 発現のシグナル面積を、横軸は各神経 核を示し、黒のカラムは溶媒のみを投与したコントロール群を、白のカラムは 11KT 投与群を 示す。それぞれの神経核におけるコントロール群と 11KT 投与群の間の有意差を、*** p < 0.001 で示した。各神経核の略称については表 2-4 を参照のこと。(C) コントロール群 (Control) および 11KT 投与群 (11KT) における pNVT での vt 発現の代表的な写真。スケー ルバーはいずれも 50 µm。

図 2-14. Vt ペプチド投与による攻撃行動の変化

メスに Vt ペプチドを投与した際の攻撃行動の各要素(尾ビレでの打撃(Fight)、平行定位 (Frontal-lateral display)、つつき(Bite)、追いかけ(Chase)、並走威嚇(Swimming parallel) の回数の変化、および、それら全ての要素の合計回数(Total))の変化。縦軸は30分間での 攻撃行動の各要素の回数を示す。白のカラムは Vt ペプチドを投与していないコントロール 群(Control)を、白のカラムはVtペプチドを投与した群(Vt)を示す。両実験群間の有意差を、 **p < 0.01、***p < 0.001で示した。

*vt ノック*アウトのメスに 11KT を投与した際の攻撃行動の各要素(尾ビレでの打撃(Fight)、平行定位(Frontal-lateral display)、つつき(Bite)、追いかけ(Chase)、並走威嚇(Swimming parallel)、それら全ての要素の合計(Total of aggression))と性行動の各要素(追尾(Courtship following)、求愛ダンス(Courtship dance))の回数の変化。縦軸は 30 分間での各要素の回数を、横軸は 11KT の処理日数を示す。白のカラムは野生型(vt+/+)を、グレーのカラムはヘテロノックアウト(vt+/-)を、黒のカラムはホモノックアウト(vt-/-)を示す。いずれの要素においても群間の有意差は検出されなかった。

第3章 tph1のオスに偏った発現をもたらすメカニズムと その生理的意義

3-1. 諸言

第1章での性差の探索によって、トリプトファン水酸化酵素をコードする遺伝子 *tph1* が下 垂体においてほぼオス特異的な発現を示すことが明らかとなった。そこで本章では、この下 垂体における *tph1* 発現の性差に焦点を当て、その性差が、どのようなメカニズムによっても たらされ、どのような表現型に関与するのかについて解析を進めることとした。

TPH は様々な行動や内分泌系に関わることが報告されている生体アミン系ホルモンであ るセロトニン(5-HT)やメラトニン(MT)の生合成に関わる(Hull and Rodríguez-Manzo, 2009)。 5-HT と MT の生合成経路は以下のとおりである。まず、トリプトファンが TPH によって 5-ヒド ロキシトリプトファン(5-HTP; 5-hydroxytryptophan)に変換され、次に芳香族アミノ酸脱炭酸 酵素(AADC; aromatic amino acid decarboxylase)によって 5-HT に変換される (Grahame-Smith, 1964; Lovenberg *et al.*, 1967)。5-HT はその後、アリルアリキルアミン *N*-ア セチル基転移酵素(AANAT; arylalkylamine *N*-acetyltransferase)によって *N*-アセチルセロト ニン(NAS; *N*-Acetylserotonin)に変換され、さらに、ヒドロキシインドール *O*-メチル基転移酵 素(HIOMT; hydroxyindole *O*-methyltransferase)によって MT に変換される(Axelrod and Weissbach, 1960; Weissbach *et al.*, 1961)。5-HT とMT の生合成には、このように4つの酵素 が関わっており、TPH と AANAT がそれぞれ、5-HT 産生とMT 産生の律速酵素である。

TPH や AANAT が脳で発現していることは広く知られているが、哺乳類において、TPH1 と TPH2 の mRNA (Saland *et al.*, 1993; Zill *et al.*, 2009)、および AANAT の mRNA (Coon *et al.*, 1995; 1996; Fleming *et al.*, 1999)が下垂体でも発現していることが報告されている。魚類 においても、Atlantic croaker (*Micropogonias undulatus*)の下垂体で TPH1 と TPH2 の mRNA (Rahman and Thomas, 2009)、および chum salmon (*Oncorhynchus keta*)の下垂体で AANAT の mRNA (Shi *et al.*, 2004)が発現していることが報告されている。これらの報告は、 脳だけではなく下垂体においても 5-HT や MT が合成されており、その現象は脊椎動物に広 くみられることを示唆している。下垂体が内分泌に特化した器官であることを考え合わせると、 そこで合成された 5-HT や MT は、何らかの内分泌系に影響を与えていると考えられる。

第1章によって下垂体での tph1 発現に顕著な性差が存在することが明らかとなったが、 tph1 の性差についてはこれまでに、マウスの三叉神経節での Tph1 発現が若齢個体におい

75

てオスで高いこと、また、性成熟した個体においてはメスでエストロゲンによって Tph1 発現が 上昇することが示されている(Asghari et al., 2011)が、下垂体における TPH1の性差につい ては、私が知る限り報告がない。また、TPH の制御メカニズムについても、哺乳類において TPH2 がエストロゲン応答配列(ERE; estrogen-responsive element)を介してエストロゲンの制 御を受けることが報告されているのみ(Hiroi and Handa, 2013)であり、TPH の制御メカニズ ムや下垂体における tph1 発現の性差の意義については明らかとなっていない。

第2章で、vtのオス特異的な発現がアンドロゲンによる直接的な転写活性化に起因する ことが明らかとなったことから、tph1のオスに偏った発現についてもアンドロゲンによる同様の 制御メカニズムが存在するのではないかと考えられる。そして上に述べたように、下垂体で のオスに偏った tph1の発現によって、何らかの内分泌パターンに性差がもたらされているの ではないかと考えられる。

そこで本章では、これらの考えをもとに、まずは下垂体におけるオスに偏った tph1 の発 現がどのようなメカニズムによってもたらされているのかを明らかにするために、メスのメダカ にアンドロゲンを、オスのメダカに AR アンタゴニストを投与し、その際の下垂体での tph1 の 発現を解析した。この解析によって、下垂体でのオスに偏った tph1 の発現は、やはりアンド ロゲンによってもたらされていることが明らかとなったので、次に、このアンドロゲンの作用が 直接的なものかどうかを検証するために、下垂体での tph1とAR の共発現の有無を調べた。 続いて、実際にアンドロゲンが tph1 の転写を直接的に活性化し得るかどうかを解析し、その 際に機能する ARE を同定することも試みた。最後に、tph1 をほぼオス特異的に発現する下 垂体細胞種を特定するとともに、そこでの tph1 発現の生理学的意義を明らかにするため、 tph1 によって下垂体でほぼオス特異的に合成されると考えられる 5-HT と MT が、各種下垂 体ホルモン遺伝子の発現パターンにどのような影響を及ぼすのかを検証した。

3-2. 材料と方法

3-2-1. 実験魚

本章の全ての実験には、水温 28°C、14 時間明期(9 時から 23 時まで)/10 時間暗期(23 時から 9 時まで)で飼育した雌雄のメダカ(d-rR 系統)を用いた。3-2-2 の月齢別の発現変動 解析には、1 カ月齢(二次性徴が出現し始めたステージ)、2 カ月齢(性成熟を開始したものの、産卵までには至っていないステージ)、3 カ月齢(完全に性成熟し、産卵を開始したステージ)、および 7 カ月齢(性成熟のピークを超え、生殖能力が衰えたステージ)の個体を用い、

それ以外の実験には、3-5 カ月齢の成熟個体を用いた(実験毎に同じ月齢の個体を用いた)。餌はブラインシュリンプ幼生、または市販の固形飼料(おとひめ;日清丸紅飼料)を1 日3、4回与えた。下垂体のサンプリングは明期開始後1-2.5時間の間に行った。

3-2-2. 性成熟に伴う下垂体での tph1 発現の変動の解析

1、2、3、7カ月齢の雌雄のメダカ(それぞれ n = 5)から、脳と結合した状態で下垂体を摘 出し、4% PFA/PBS で 7時間固定後、パラフィン(paraplast; Sigma-Aldrich)に包埋した。ミク ロトーム(RM2255; Leica Microsystems)を用いて、厚さ 10 µm の連続コロナル切片を作製し、 スライドガラス(MAS-GP type A; Matsunami)上にマウントした。その後、1-2-4 に記載した方 法に従って *tph1* の ISH を行った。proteinase K 処理での proteinase K の濃度は 1 µg/ml、 DIG 標識 cRNA プローブの終濃度は 0.2 µg/ml、AP 標識抗 DIG 抗体の希釈率は 2000 倍、 NBT/BCIP の発色は遮光条件下で 12時間とした。発色後、4% PFA/PBS による後固定処理、 Aqua-Poly/Mount (Polysciences)を用いた封入を経て、1-2-5 に記載した方法で発現シグナ ルの面積を定量した。

3-2-3. 下垂体における *tph1* 発現に対するアンドロゲンおよび AR アンタゴニスト投与の影響の解析

以下に記した方法に従って、メスのメダカにアンドロゲンを、オスのメダカに AR アンタゴ ニストを投与し、その際の下垂体における *tph1* 発現の変化を解析した。

インタクトな卵巣をもつメスを 100 ng/ml の 11KT (Cosmo Bio)、あるいは溶媒のエタノー ルのみを含む飼育水で 9 日間飼育した。同様に、オスを 250 ng/ml の AR アンタゴニスト (cyproterone acetate; LKT Laboratories)、あるいは溶媒のエタノールのみを含む飼育水で 9 日間飼育した。いずれの実験群もn=5とした。実験期間中は、容量2Lのタンクにオス6匹 とメス2匹を一緒に入れて飼育し、毎日2回、全量の換水を行った。その後、3-2-2に記載し た方法で ISH を行い、1-2-5 に記載した方法で発現シグナルの面積を定量した。

3-2-4. 下垂体の tph1 発現細胞での AR の共発現解析

以下に記した方法に従って、下垂体におけるほぼオス特異的な tph1 発現細胞における 各種 AR 遺伝子(ara および arb)の発現を蛍光二重 ISH によって解析し、同細胞が AR を 発現しているかを調べた。

オスのメダカ(ara および arb の解析用にそれぞれ n = 3)から摘出した下垂体を 4%

PFA/PBS で 3 時間固定した後、2-2-4 と同様の方法で厚さ 20 µm の連続コロナル切片を作 製し、蛍光二重 ISH に供した。なお、*tph1* プローブを Fluorescein で、*ara と arb* のプローブ (Hiraki *et al.*, 2012)を DIG で標識し、それらの終濃度はいずれも 0.5 µg/ml とした。HRP 標 識ヒツジ由来抗 Fluoresein 抗体 (PerkinElmer) および AP 標識ヒツジ由来抗 DIG 抗体 (Roche Diagnostics)の希釈率はいずれも 1000 倍とした。また、Fluorescein 標識した *tph1* プローブを 検出するための TSA Plus Fluorescein Kit (PerkinElmer)、および DIG 標識した *ara* あるいは *arb* のプローブを検出するための Fast Red Tablets (Roche Diagnostics) での発色時間は、 *tph1 と ara* の二重 ISH ではそれぞれ 1 時間 20 分と3 時間、*tph1 と arb* の二重 ISH ではそ れぞれ 3 時間と2 時間 30 分とした。

3-2-5. メダカゲノム中の tph1 近傍領域の配列解析

アンドロゲンが *tph1* の転写活性に与える影響を解析するための第一段階として、まずは メダカゲノム中の *tph1* 近傍領域の配列を解析した。Ensembl のメダカゲノムデータベース、 および NBRP Medaka から入手した *tph1* ローカスを含むメダカの BAC クローン (クローン ID: ola1-104G05)を独自にシークエンシングして得られた配列データから、*tph1* 近傍のゲノム配 列情報を得た。その後、オンラインの転写因子結合配列検索ツールである Transfac (Match) (http://www.gene-regulation.com/index.html)、および Jaspar (http://jaspar.genereg.net/)を用 いて、得られたゲノム配列中に ARE 様の配列が存在するかを解析した。

3-2-6. tph1 のレポーターコンストラクトの作製

以下に述べる方法に従って、メダカの *tph1* の 5′上流領域とルシフェラーゼをコードする 配列を結合したレポーターコンストラクトを作製した。

tph1ローカスを含むメダカのBACクローン(クローンID: ola1-104G05)をNBRP Medaka から入手し、2-2-7 に記した方法に従って、QIAprep Spin Miniprep Kit(Qiagen)を用いて精 製した。精製した BAC を鋳型として、表 3-1 に示すプライマーを用いて PCR を行い、tph1 の翻訳開始点の5′上流3898 bpと1613 bpの2種類のDNA 断片(共通の3′末端をもち、5′ 側の長さが異なる2種類のDNA 断片)を増幅した。3898 bpのDNA 断片は、3-2-5 で同定 された7 つの ARE 様配列を含み、1613 bpのDNA 断片は5 つの ARE 様配列を含む。な お、後のステップで、In-Fusion HD Cloning Kit(Takara Bio)を用いて、これらのDNA 断片を pGL4.10ベクター(Promega)の HindIII サイトにライゲーションすることを考慮し、PCR に用い たプライマーには、同ベクターの HindIII サイトに相同な15 塩基を付加した。PCR 反応には KAPA HiFi Hot Start DNA Polymerase (Kapa Biosystems)を用い、PCR 後のゲル精製には Wizard SV Gel and PCR Clean-Up System (Promega)を用いた。

次に、*Hind*III 処理によって直鎖化し、両端を脱リン酸化した pGL4.10 ベクター (Promega) と上記の DNA 断片を、In-Fusion HD Cloning Kit (Takara Bio)を用いて結合した。In-Fusion 反応は 50℃で 20 分間とした。大腸菌のトランスフォーメーションの後、表 3-1 に示したプライ マーを用いて行ったコロニーPCR によって目的のインサートを含むプラスミドを有することが 明らかとなったコロニーを培養し、QIAprep Spin Miniprep Kit (Qiagen)を用いてプラスミドを 精製した。表 3-1 に示したプライマーを用いてシークエンシングを行い、塩基置換や挿入欠 失変異などの有無を確認した。正しい塩基配列を有することが確認されたクローンの菌体を 再び培養し、QIAfilter Plasmid Midiprep Kit (Qiagen)を用いてプラスミドを大量精製した。以 上の行程によって、pGL4.10 ベクター (Promega)の *Hind*III サイトに *tph1* の 5'上流領域が組 み込まれたレポーターコンストラクトが完成した。

3-2-7. tph1 レポーターコンストラクトのデリーション

以下に述べる方法に従って、3-2-6 で作製した短い方のレポーターコンストラクト(組み込んだ *tph1* の 5'上流領域の長さが 1613 bp の方)よりもさらに短い 2 種類のレポーターコンストラクト(*tph1* の 5'上流領域の長さが 1000 bp および 500 bp)を作製した。なお、3-2-5 の解析によって、翻訳開始点上流 1000 bp 以内には計 3 つの ARE 様配列が存在(翻訳開始点から上流に-888 bp、-743 bp、-653 bp の位置に存在)することが明らかとなったので、1000 bp のコンストラクトは 3 つの ARE 様配列を含み、500 bp のコンストラクトは ARE 様配列を一つも含まない。

3-2-6 で作製した 1613 bp の 5'上流領域を含むレポーターコンストラクトを鋳型として、表 3-1 に示すプライマーを用いて PCR を行い、*tph1*の翻訳開始点の5'上流領域 1000 bpと500 bp をそれぞれ増幅した。後のステップで、In-Fusion HD Cloning Kit (Takara Bio)を用いて、 これらの DNA 断片を pGL4.10 ベクター (Promega)の *Hind*III サイトにライゲーションすること を考慮し、PCR に用いたプライマーには、同ベクターの *Hind*III サイトに相同な 15 塩基を付 加した。PCR 反応には KAPA HiFi Hot Start DNA Polymerase (Kapa Biosystems)を用い、 PCR 後のゲル精製には Wizard SV Gel and PCR Clean-Up System (Promega)を用いた。そ の後、3-2-7と同様の方法で、pGL4.10 ベクター (Promega) へのライゲーション、大腸菌のトラ ンスフォーメーション、コロニーPCR、プラスミド精製、シークエンシング、およびプラスミド精 製(大量精製)を行った。

3-2-8. tph1 のレポーターコンストラクトへの変異の導入

3-2-6、3-2-7 で作製した各種のレポーターコンストラクトを用いた実験の結果から、*tph1*の翻訳開始点から1613 bpから1000 bp上流のゲノム領域中に機能的な ARE が存在することが明らかとなった。そこで、以下の方法に従って、そのゲノム領域に存在する 2 つの ARE 様配列(翻訳開始点から上流に-1379 bp と-1116 bp の位置に存在)のそれぞれに変異を導入したレポーターコンストラクトを作製した。

ARE は6塩基から成るハーフサイトが3塩基のスペーサー配列を挟んで2つ並んだ構 造を有するが、片側のハーフサイトだけでもアンドロゲンに応答することが報告されている (Pihlajamaa et al., 2015)。そこで、-1379 bp と-1116 bp の位置に存在する ARE 様配列のそ れぞれについて、その 5'側(左側)のハーフサイトのみに変異を導入したもの、3'側(右側) のハーフサイトのみに変異を導入したもの、そして両側のハーフサイトに変異を導入したもの の計 3 種類のミューテーションコンストラクトを作製した。変異の導入には PimeSTAR Mutagenesis Basal Kit (Takara Bio)を用い、各ハーフサイトを HindIII の認識配列 (AAGCTT) に置換することとした。3-2-6で作製した1613 bpの5'上流領域を含むレポーターコンストラク トを鋳型として、表 3-1 に示したプライマーで PCR を行い、変異を導入した。Wizard SV Gel and PCR Clean-Up System (Promega)を用いて、得られた増幅産物をゲルから精製し、大腸 菌 (HST08 Premium Competent Cells; Takara Bio)をトランスフォーメーションした。形質転換 体のスクリーニングは、菌体のコロニーを鋳型として、表 3-1 に示したプライマーで PCR を行 うことで得られた DNA 断片(それぞれの ARE 様配列を含む DNA 断片)を HindIII で消化 (37℃で1-2時間)し、消化の有無を1.5%アガロースゲルの電気泳動で確認することで行っ た。スクリーニングによって目的のインサートを含むプラスミドを有することが明らかとなったコ ロニーを培養し、QIAprep Spin Miniprep Kit(Qiagen)を用いてプラスミドを精製した後、表 3-1 に示したプライマーを用いてシークエンシングを行った。配列解析によって正しく変異が 導入されていることが確認されたクローンの菌体を再び培養し、QIAfilter Plasmid Midiprep Kit(Qiagen)を用いてプラスミドを大量精製した。

3-2-9. プロモーターアッセイ

2-2-6で作製したARの発現コンストラクトを用いて、2-2-9と同様の方法でプロモーターア ッセイを行った。全てのアッセイを duplicate で行い、3 回繰り返した。

3-2-10. tph1 をほぼオス特異的に発現する下垂体細胞種の特定

下垂体においてほぼオス特異的に*tph1*を発現する細胞の種類を特定するために、以下 に記した方法に従って、*tph1*と7種類の下垂体ホルモン遺伝子(プロオピオメラノコルチン遺 伝子(*pomc*; proopiomelanocortin)、ソマトラクチン遺伝子(*sl*; somatolactin)、プロラクチン遺 伝子(*prl*; prolactin)、甲状腺刺激ホルモン β 鎖遺伝子(*tshb*; thyroid-stimulating hormone β subunit)、濾胞刺激ホルモン β 鎖遺伝子(*fshb*; follicle-stimulating hormone β subunit)、黄 体形成ホルモン β 鎖遺伝子(*lhb*; luteinizing hormone β subunit)、成長ホルモン遺伝子(*gh*; growth hormone))の発現の共局在の有無を、蛍光二重 ISH によって解析した。

オスのメダカ (*ara* および *arb* の解析用にそれぞれ n = 3)から摘出した下垂体を 4% PFA/PBS で 3 時間固定した後、2-2-4 と同様の方法で厚さ 20 µm の連続コロナル切片を作 製し、蛍光二重 ISH に供した。なお、各種下垂体ホルモン遺伝子のプローブを Fluorescein で、*tph1* のプローブを DIG で標識し、ハイブリダイゼーション時の終濃度はそれぞれ 0.2 µg/ml および 0.5 µg/ml とした。HRP 標識ヒツジ由来抗 Fluoresein 抗体 (PerkinElmer)およ び AP 標識ヒツジ由来抗 DIG 抗体 (Roche Diagnostics)の希釈率はそれぞれ、2500 倍およ び 1000 倍とした。DIG 標識した *tph1* のプローブを検出するための Fast Red Tablets (Roche Diagnostics) での発色時間は1時間とした。一方、Fluorescein 標識した各種下垂体ホルモン 遺伝子のプローブを検出するための TSA Plus Fluorescein Kit (PerkinElmer) での発色時間 は、*pomc* では 10 分間、*sl、prl、gh* では 20 分間、*tshb、fshb、lhb* では 1 時間 20 分とした。

3-2-11. 下垂体における AANAT の発現解析

下垂体での*tph1*発現によって下垂体内で合成されると考えられる 5-HT が MT まで変換 される可能性を検証するために、以下に述べる方法に従って、MT 合成の律速酵素である AANAT の発現を下垂体で解析した。

メダカは 3 種類の AANAT 遺伝子をもつことが報告されている(Takeuchi *et al.*, 2014, Cazaméa-Catalan *et al.*, 2014)。National Center for Biotechnology Information(NCBI)のデ ータベースに登録されているそれら 3 種類の AANAT (*aanat1a*(アクセッション番号 NM_001104832)、*aanat1b*(アクセッション番号 NM_001104860)、*aanat2*(アクセッション番 号 NM_001104846))の配列情報をもとにして、表 3-2 に示したプライマーをデザインした。 2-2-6 で作製したメダカの脳由来の cDNA プールを鋳型にして、これらのプライマーで PCR を行い、*aanat1a*(773 bp)、*aanat1b*(750 bp)、*aanat2*(726 bp)の cDNA 断片を得た。PCR に は KAPA HiFi Hot Start DNA Polymerase(Kapa Biosystems)を用いた。PCR 後の反応液を 1.5%アガロースゲルによる電気泳動に供した後、Wizard SV Gel and PCR Clean-Up System (Promega)を用いて、得られた DNA 断片をゲルから精製した。続いて、rTaq DNA Polymerase(Takara Bio)を用いて、DNA 断片の両端に TA クローニングのための dATP を付 加し、pGEM-Teasy ベクター(Promega)へのライゲーション、大腸菌のトランスフォーメーショ ンを行った。コロニーPCR によって目的のインサートを含むプラスミドを有することが明らかと なったコロニーを培養し、QIAprep Spin Miniprep Kit(Qiagen)を用いてプラスミドを精製した 後、シークエンシングを行った。配列解析によって正しい塩基配列を有することが確認され たクローンの菌体を再び培養し、QIAfilter Plasmid Midiprep Kit(Qiagen)を用いてプラスミド を大量精製した。プラスミドを SpeI 処理によって直鎖化した後、それを鋳型として T7 RNA Polymerase (Roche Diagnostics)と Digoxigenin RNA Labeling Mix (Roche Diagnostics)で転 写反応を行い、DIG で標識された cRNA プローブを合成した。

オスのメダカ (aanatla、aanatlb、aanat2 の解析用にそれぞれ n = 3)から摘出した下垂 体を 4% PFA/PBS で 3 時間固定した後、2-2-4 と同様の方法で厚さ 20 µm の連続コロナル 切片を作製し、蛍光二重 ISH に供した。なお、tph1 のプローブを Fluorescein で、各種 AANAT 遺伝子のプローブを DIG で標識し、ハイブリダイゼーション時の終濃度はいずれも 0.5 µg/ml とした。HRP 標識ヒツジ由来抗 Fluoresein 抗体 (PerkinElmer) および AP 標識ヒツ ジ由来抗 DIG 抗体 (Roche Diagnostics)の希釈率はいずれも 1000 倍とした。Fluorescein 標 識した tph1 のプローブを検出するための TSA Plus Fluorescein Kit (PerkinElmer) での発色 時間は 5 時間とし、DIG 標識した tph1 のプローブを検出するための Fast Red Tablets (Roche Diagnostics) での発色時間は 3 時間とした。

3-2-12. in vitro 下垂体培養系を用いた各種下垂体ホルモン遺伝子の発現に対する 5-HT および MT の影響の解析

メスのメダカから下垂体を摘出し、L-15 培地(Gibco)(コントロール群)、10⁻⁵ M の 5-HT (Wako Pure Chemical Industries)を添加したL-15 培地(5-HT 添加群)、10⁻⁵ M の MT(Wako Pure Chemical Industries)を添加したL-15 培地(MT 添加群)で、25°C で 6 時間あるいは 24 時間培養した。その後、以下に記した方法に従って、各種下垂体ホルモン遺伝子の発現の 変化を real-time PCR によって調べた。

培養終了後の下垂体(3 個体の下垂体をプールしたものを 1n とし、各群 n = 4 とした)か ら、RNeasy Micro Kit (Qiagen)を用いて全 RNA を抽出し、SuperScript VILO cDNA Synthesis Kit (Invitrogen)を用いた逆転写により cDNA を合成した。real-time PCR は、

82

LightCycler 480 SYBR Green I Master (Roche Diagnostics)を用いて、LightCycler 480 System II (Roche Diagnostics)上で行った。PCR には、表 3-3 に示したプライマーを用いた。 得られた各遺伝子の発現量は *actb* の発現量で補正し、培養前のメスの下垂体での値を1とした場合の相対値で示した。

3-2-13. 顕微鏡観察および撮影

3-2-2 と 3-2-3 で得られた試料標本の観察および撮影は、正立顕微鏡 (BX53; Olympus) とデジタルカメラ (DP73; Olympus)、および写真撮影のためのソフトウェア (cellSens; Olympus)を用いて行った。3-2-4、3-2-10、3-2-11 で得られた蛍光試料標本の観察および撮 影は、共焦点レーザースキャン顕微鏡 (TCS SP8; Leica Microsystems)を用いて行った。 TCS SP8 での Fluorescein の検出には 488 nm の励起光と 495–545 nm の蛍光検出波長域 を、Fast Red の検出には 552 nm の励起光と 565–700 nm の蛍光検出波長域を、DAPI の検 出には 405 nm の励起光と 410–480 nm の蛍光検出波長域を用いた。撮影した画像のコント ラストと明度を、Photoshop CS5 (Adobe Systems)を用いて調整した。

3-2-14. 統計処理

グラフで示した全てのデータは、平均値±標準誤差(SEM)で示した。

3-2-2 と 3-2-3 の ISH で得られたデータ(2 群間の比較)については、Microsoft Excel (Microsoft)を用いて Student's *t*-test (非対応、両方向の Student's *t*-test、有意水準 5%)によ り雌雄間での有意差を検定した。3-2-9 のプロモーターアッセイ、および 3-2-12 の real-time PCR で得られたデータ(3 群以上の比較)については、GraphPad Prism (GraphPad Software)を用いて統計処理を行った。Bartlett's test と Brown-Forsythe test によって実験群間の分散 の均一性を検証した後、等分散性が認められた場合は、一元配置分散分析 (one-way ANOVA; one-way analysis of variance)を行った。その後、任意の実験群間で比較を行う場合は、Tukey の *post hoc* test を用いて群間の有意差(有意水準 5%)を検定した。コントロール群との比較を行う場合は、Dunnett の *post hoc* test を用いて有意差(有意水準 5%)を検定した。実験群間の等分散性が認められなかった場合は、データを対数変換し、等分散性を確認した後、上記と同様の統計処理を行った。

3-3. 結果

3-3-1. 性成熟に伴う下垂体での tph1 発現の変動

ISH を用いて、性成熟に伴う下垂体での tph1 発現の変動を解析し、各成熟ステージでの性差を調べた(図 3-1)。その結果、成熟個体で見出されたほぼオス特異的な発現は、第二次性徴が出現し始めた1カ月齢の段階でもすでに認められ、その後、性成熟の進行に伴ってオスでの発現が急激に増加していくことが明らかとなった。メスでも性成熟に伴って発現が増加するが、オスと比べるとごくわずかなものであった。

3-3-2. 下垂体における tph1 発現に対するアンドロゲンおよび AR アンタゴニスト投与の影響

下垂体における *tph1* の発現がアンドロゲンによって促進されるかを調べるために、メスに 11KTを投与し、ISH によって下垂体での *tph1* 発現を解析した。その結果、メスでも11KT 投 与によって *tph1* の顕著な発現が誘導された(図 3-2A, B)。一方、オスに AR アンタゴニスト を投与することでアンドロゲンの作用を阻害したところ、下垂体での *tph1* 発現が著しく減少し た(図 3-2 C, D)。

3-3-3. 下垂体の tph1 発現細胞での AR の共発現

下垂体の *tph1* 発現細胞がアンドロゲンを直接受容できるのかを検証する目的で、それらの細胞における *tph1* と2 種類の AR (*ara*、*arb*)の発現の共局在を二重 ISH によって解析した。その結果、*ara* と *arb* のいずれについても、一部の *tph1* 発現細胞で発現していることが明らかとなった(図 3-3)。

3-3-4. アンドロゲンによる tph1 の転写促進

メダカゲノム中の *tph1* 近傍領域の配列を解析したところ、5′上流領域に 7 個の ARE 様 配列が同定された。このことから、このうちのいずれかの配列を介して、アンドロゲンが *tph1* の転写活性を直接的に活性化している可能性が考えられた。そこでこの可能性を検証する ために、それらの ARE 様配列を含む 5′上流領域を用いてレポーターコンストラクトを作製し、 各種 AR の存在下でレポーター活性がアンドロゲンに反応して上昇するかを検証した。

まずは、3898 bp の 5'上流領域を含む(同定された 7 個の ARE 様配列の全てを含む)レ ポーターコンストラクトと、それよりも短い 1613 bp の 5'上流領域を含む(3'下流側の 5 個の ARE 様配列を含む)レポーターコンストラクトを用いて、アッセイを行った。その結果、3898 bp のレポーターコンストラクトでは、Ara と Arb いずれの AR を介した場合も、投与したアンド ロゲンの濃度依存的にレポーター活性が上昇することが明らかとなった(図 3-4A)。活性の 上昇の程度は、Ara を介した場合よりも Arb を介した場合の方が顕著であった。一方、1613 bp のレポーターコンストラクトでは、Ara を介したレポーター活性の上昇はみられなかったも のの、Arb を介した場合は、3898 bp のレポーターコンストラクトと同程度の顕著なレポーター 活性の上昇がみられた(図 3-4B)。この結果から、アンドロゲンは *tph1* の転写を直接的に活 性化し得ること、また、その際に機能する ARE は翻訳開始点から上流 1613 bp の中に含ま れていること(つまり、その中に含まれる 5 個の ARE 様配列のうちのいずれかが機能的な ARE であること)が明らかとなった。

3-3-5. アンドロゲンが tph1 の転写を活性化する際に機能する ARE の同定

次に、アッセイに用いる 5'上流領域を 5'側から短くしていき、どこまで短くするとアンドロ ゲンによる転写活性の上昇がみられなくなるかを解析した。1613 bp の 5'上流領域を 1000 bp まで短くした場合と、さらに 500 bp まで短くした場合で解析した結果、5'上流領域を 1000 bpまで短くした段階で、アンドロゲンによる転写活性の上昇がみられなくなった。このことから、 翻訳開始点から 1613 bp 上流から 1000 bp 上流の間に機能的な ARE が存在する(つまり、 翻訳開始点から 1379 bp 上流に位置する ARE 様配列と 1116 bp 上流に位置する ARE 様 配列のいずれかが機能的な ARE である)と考えられた(図 3-5 A, B)。

そこで、それら2つの ARE 様配列に変異を導入し、アンドロゲンによる転写活性の上昇 がみられなくなるかを解析した。その結果、変異を導入していない場合にみられたアンドロゲ ンによる転写活性のインダクションは、一つの ARE 様配列に変異を導入してもある程度残る ものの、両方の配列に変異を導入すると完全に消失した(図 3-5 C)。この結果から、これら2 つの ARE 様配列はいずれも機能的な ARE であると考えられた。なお、1116 bp 上流の ARE に変異を導入した場合の方が大きなインダクションの低下がみられたことから、1116 bp 上流 の ARE の方が主要な ARE であると考えられた。また、1379 bp 上流の ARE については、右 側のハーフサイトに変異を導入すると、両側のハーフサイトに変異を導入した場合と同程度 にアンドロゲンによる転写活性のインダクションが低下したが、左側のハーフサイトに変異を 導入してもインダクションが低下はみられなかった。一方、1116 bp 上流の ARE については、 左側のハーフサイトに変異を導入すると、両側のハーフサイトに変異を導入した場合と同様 にアンドロゲンによる転写活性のインダクションが低下したが、左側のハーフサ イトに変異を導入しても有意なインダクションが残った。これらのことから、1379 bp 上流の ARE については右側のハーフサイトが、1116 bp 上流の ARE については左側のハーフサイ トが重要であると考えられた。

3-3-6. tph1 をほぼオス特異的に発現する下垂体細胞種の特定

下垂体においてほぼオス特異的に tph1 を発現する細胞の種類を特定するために、tph1 と各種下垂体ホルモン遺伝子の二重 ISH を行った(図 3-6)。その結果、tph1 の発現は中葉 での pomc の発現とほぼ完全に一致することが分かった。pomc の発現は中葉だけでなく前 葉でもみられたが、前葉の pomc 発現細胞での tph1 の共発現はほとんどの個体でみられな かった。一方、sl、prl、tshb、fshb、lhb、gh と tph1 の共発現は認められなかった。以上の結果 から、tph1 を発現しているのは中葉の POMC 産生細胞であることが明らかとなった。

3-3-7. 下垂体における AANAT の発現

下垂体での*tph1*発現によって下垂体内で合成されると考えられる 5-HT が MT まで変換 される可能性を検証するために、5-HT を MT に変換する段階の律速酵素である AANAT 遺 伝子(*aanat1a*、*aanat1b*、*aanat2*)の発現を下垂体で解析し、発現部位を*tph1*と比較した。そ の結果、3 種類の AANAT 遺伝子のうち、*aanat1b* が下垂体において *tph1* 発現細胞で共発 現していることが分かった(図 3-7)。*aanat1a* と *aanat2* については、下垂体での発現が認め られなかった。

3-3-8. 各種下垂体ホルモン遺伝子の発現に対する 5-HT および MT の影響

*tph1*によって下垂体でほぼオス特異的に合成されると考えられる5-HTとMTが、各種下 垂体ホルモン遺伝子の発現パターンにどのような影響を及ぼすのかを、*in vitro*下垂体培養 系を用いて検証した。内因性の 5-HT や MT がほとんどないと考えられるメスの下垂体を、 5-HT か MT を添加した培地で、6 時間あるいは 24 時間培養後、各種下垂体ホルモン遺伝 子の発現量の変化を real-time PCR によって調べた。その結果、5-HT を投与した場合は、6 時間培養でも 24 時間培養でも、いずれの下垂体ホルモン遺伝子の発現量に有意な変化は みられなかった。一方、MT を投与した場合は、24 時間培養後に *gh*と*sl*の発現量が有意に 低下した(図 3-8)。

3-4. 考察

第1章での解析によって、下垂体で tph1 がほぼオス特異的に発現していることが明らか

となった。そこで本章では、この下垂体での*tph1*発現の性差に焦点を当て、その性差がどのようなメカニズムによってもたらされ、どのような生理的意義をもつのかについて解析を行った。

はじめに、下垂体での tph1 発現の性差がどのようなメカニズムによってもたらされている かについて解析を進めることとした。第2章で、vtのオス特異的な発現がアンドロゲンによる 直接的な転写活性化に起因することが明らかとなったことから、tph1のオスに偏った発現に ついても、アンドロゲンによる同様の制御メカニズムが存在するのではないかと考えた。そこ でまずは、性成熟に伴う下垂体での tph1発現の変動を解析した。その結果、tph1発現の性 差は、第2章での vt発現の性差と同様、第二次性徴が出現し始めた1カ月齢の段階でも すでに認められるが、第二次性徴が明瞭になり、配偶子形成も進行する2カ月齢以降に、よ り顕著になることが明らかとなった。メダカの第二次性徴(オスの背ビレと尻ビレの形状の変 化)はアンドロゲンに依存して形成されることが知られている(Ogino et al., 2014)。その第二 次性徴の形成と同期して tph1発現の性差も顕著になっていくことを示したこの結果は、tph1 発現の性差がアンドロゲンによってもたらされているのではないか、という予測に合致するも のであった。

そこで次に、この考えをダイレクトに検証するために、メスにアンドロゲンを、オスに AR ア ンタゴニストを投与し、下垂体での tph1 発現を解析した。その結果、メスにアンドロゲンを投 与すると、tph1 の発現はオスとほぼ同等のレベルまで増加し、オスに AR アンタゴニストを投 与すると、その発現はメスレベルまで低下することが分かった。これらの結果から、下垂体で のオスに偏った tph1 発現の性差は、アンドロゲンによる tph1 の発現促進作用に起因するこ とが明らかとなった。また、これらの結果は、ホルモン環境の改変によって、下垂体での tph1 発現の性差が性成熟後でも雌雄で逆転し得ることも示している。魚類は一般に、性成熟後 でも完全な性的可逆性を保持しており、性転換を行う魚種はもちろんのこと、メダカを含めた 自発的には性転換しない魚種でも、生涯にわたって個体レベルの性転換を行うポテンシャ ルを有する(Paul-Prasanth et al., 2013; Takatsu et al., 2013)。性成熟後の下垂体での tph1 発現にも完全な性的可逆性がみられたことは、この事実と合致するようで、興味深い。

では、アンドロゲンはどのような経路を介して、下垂体での tph1 発現を誘導するのだろう か。まずは下垂体の tph1 発現細胞がアンドロゲンを直接受容できるのかを調べるために、そ れらの細胞での AR の発現を解析した。その結果、下垂体の tph1 発現細胞の一部が ara と arb の両 AR 遺伝子を発現していることが明らかとなった。このことから、アンドロゲンは下垂 体の tph1 発現細胞に直接作用し、ara と arb のいずれか、もしくは両者を介して、同細胞に

87

おける tph1 発現を誘導する可能性が考えられた。続いて、メダカゲノム中の tph1 ローカスの 塩基配列を解析したところ、tph1 の5'上流領域に多くの ARE 様配列が見出された。このこと から、アンドロゲンはこれらの ARE 様配列のいずれかを介して、tph1 の転写を直接的に活性 化する可能性が考えられた。そこで、ルシフェラーゼレポーター遺伝子を用いた in vitro のプ ロモーターアッセイ系によってこの可能性を検証したところ、予想通り、アンドロゲンは tph1 の転写を直接的に活性化し得ることが明らかとなった。また、その際のアンドロゲンは tph1 の転写を直接的に活性化し得ることが明らかとなった。また、その際のアンドロゲンの効果は、 Ara を介した場合には統計的に検出できるかできないか程度に過ぎなかったが、Arb を介し た場合には非常に顕著であった。この結果は、第2章でアンドロゲンによる vtの転写活性化 を解析した際と同様の結果であり、やはり、mosquitofishでの報告 (Ogino et al., 2009)と同様 に、メダカでも Arbの方がリガンドへの親和性が高いものと推察される。以上の結果を考え合 わせると、アンドロゲンは Arb を介して、下垂体での tph1 の転写を直接的に活性化している と考えられる。

続いて、変異導入実験によって、アンドロゲンに応答性を示す機能的な ARE を同定す ることを試みた。その結果、tph1の転写開始点から1379 bpと1116 bp上流に位置する2つ の ARE 様配列が機能的な ARE であり、アンドロゲンが tph1 の転写を活性化する際には、 それらの ARE が協調してはたらくことが明らかとなった。複数の ARE が協調してはたらくこと は哺乳類の他の遺伝子で複数報告されており(Garafer and Halvorson, 2013)、それほど特 殊なことではないようだ。変異導入実験ではさらに、1379 bp 上流の ARE については右側の ハーフサイトが、1116 bp 上流の ARE については左側のハーフサイトが重要であり、両 ARE の反対側のハーフサイトは機能発揮に必須ではないことが明らかとなった。ARE にはインバ ートリピート構造(AGAACAnnnTGTTCT)、あるいはダイレクトリピート構造 (AGAACAnnnAGAACA)を有する完全な形で機能するものと、ハーフサイトだけで機能す るものがあると考えられているが (Zhang et al. 2012; Pihlajamaa et al., 2015)、今回同定され た2 つの ARE はいずれも、ハーフサイトだけで機能するタイプの ARE であると推察される。 あるいは、両 ARE は 263 bp 離れているが、in vivo ではクロマチンがとる立体構造の影響で 3 次元的に近接しており、2 つで一つの完全な ARE として機能するのかもしれない。また、 多少議論の本筋からは外れるが、1116 bp の ARE に変異を導入すると、平常状態の(アンド ロゲンがない状態での)転写活性が上昇する現象がみられた。その ARE とオーバーラップ する形で何らかの抑制性のシスエレメントが存在し、ARE に変異を導入したことで、その抑 制性のシスエレメントの配列も変わった可能性、あるいは、変異の導入によってレポーターコ ンストラクトの立体構造が大きく変化した可能性が考えられる。

以上の解析結果から、アンドロゲンは Arb と結合した後、tph1 の 5'上流領域に存在する 2つのAREを介してtph1の転写を直接的に活性化していると結論付けられた。そこで次に、 下垂体でのオスに偏った tph1 の発現の生理的意義について解析を進めることとした。下垂 体はホルモン分泌に特化した器官であるため、そこでの性差は、何らかの内分泌パターン の性差につながることが予想される。tph1 をほぼオス特異的に発現する細胞も当然、何らか の下垂体ホルモンを産生する細胞であると考えられるので、まずは、tph1発現細胞の正体を 特定することとした。解析の結果、tph1を発現しているのは、下垂体中葉のPOMC 産生細胞 であることが明らかとなった。tph1の発現細胞と下垂体中葉の pomc 発現細胞はほぼ完全に 一致しており、それ以外の細胞種での tph1 の発現は全くみられなかった。下垂体中には 2 種類の POMC 産生細胞が存在する。一つは上記の下垂体中葉の POMC 産生細胞で、黒 色素胞刺激ホルモン(MSH, melanophore-stimulating hormone)を産生する細胞として知ら れている。もう一つは前葉の POMC 産生細胞で、副腎皮質刺激ホルモン (ACTH, adrenocorticotropic hormone もしくは corticotropin)を産生する細胞として知られている。した がって、tph1 は MSH の産生細胞で特異的に発現していることになる。下垂体のホルモン産 生細胞は、それぞれのホルモンを合成・放出することに特化した、いわば高度に分化を遂げ た細胞集団であり、遺伝子発現も細胞種間で大きく異なる。tph1 発現の厳密な細胞特異性 も、このような高度な細胞分化に伴って、もたらされているものと考えられる。なお、メダカの tph1 発現細胞(MSH 産生細胞)で AR の発現が認められた本研究の結果とは異なり、Nile tilapiaの下垂体中葉のMSH 産生細胞では、ARの発現が検出されなかったとの報告がある (Kitahashi et al., 2007)。本研究で得られた AR の発現シグナルは決して強いものではなか ったため、実験的な検出感度の違いがこのような相違を生み出したと考えられる。

下垂体中葉の POMC 産生細胞での *tph1* のオス特異的な発現によって、同細胞内で 5-HT がほぼオス特異的に合成されると考えられるが、その後、5-HT は MT まで変換される 可能性も考えられる。そこで、5-HT を MT に変換する段階の律速酵素である AANAT 遺伝 子の発現を下垂体で解析したところ、*tph1* の発現細胞は AANAT 遺伝子の一種である *aanat1b* も発現していることが分かった。このことから、下垂体中葉の POMC 産生細胞で合 成された 5-HT は、同細胞内で MT まで変換され得ること、つまり、同細胞内で 5-HT の合成 から MT への変換までが完結することが明らかとなった。また、AANAT 遺伝子の発現は、 POMC 産生細胞の周りにある一部の細胞でもみられたことから、POMC 産生細胞で合成さ れた 5-HT がパラクライン的に別の下垂体ホルモン産生細胞へと分泌され、そこで MT に変 換される可能性も考えられた。

では、下垂体でオス特異的に合成される 5-HT や MT は、どのような生理的役割を担っ ているのだろうか。5-HT には pomc の発現量を増加させる効果があることが、ニジマスの下 垂体で報告されている(Winberg and Lepage, 1998)。また、メダカの下垂体における pomcの 発現はメスよりもオスで高いことが当研究室での先行研究によって明らかとなっている(大久 保ら、未発表データ)。これらの情報を考え合わせ、下垂体中葉の POMC 産生細胞でオス 特異的に合成される 5-HT あるいは MT は、オートクライン的にはたらき、pomc の発現量を 増加させるのではないかと予想を立てた。その予想のもとで、下垂体培養系を用いて、各種 の下垂体ホルモン遺伝子の発現に対する5-HTやMTの影響を解析したところ、予想に反し て、pomcの発現は、5-HTとMTのいずれによっても有意な影響を受けないことが分かった。 そのかわりに、MT には、ghとsl の発現量を低下させる効果があることが明らかとなった。サ ル(Papio anubis)では、MTの投与によってGHとPRLの放出量およびmRNA量が増加す ることが報告されている(Ibáñez-Costa et al., 2015)。一方、ニジマスでもGHとPRLの放出が MT によって調節されるが、促進されるか抑制されるかは、MT の濃度によって異なることが 報告されている(Falcón et al., 2003)。したがって、単一の濃度でMTを投与した今回の下垂 体培養系の実験から結論を導くのはやや尚早な感もあるが、MT が ghとsl の発現に影響を 及ぼすことは事実であると考えてよいだろう。また、魚類において、5-HTがLHの分泌パター ンに影響を及ぼすことが繰り返し報告されてきた(Schneider and McCann, 1970; Somoza and Peter, 1991; Khan and Thomas, 1992; Kah et al., 1993; Senthilkumaran et al., 2001)。同様に、 5-HT が魚類の GH の放出にも関与することも報告されている(Somoza and Peter, 1991)。こ れらのことから、5-HT や MT は、遺伝子レベルではなく、タンパク質レベルで下垂体ホルモ ンの制御に関わっている可能性も考えられる。今回は下垂体ホルモンの遺伝子発現のみを 解析したが、将来的には、下垂体ホルモンの放出なども解析する必要がある。ただ、そのよ うな解析をメダカで行うことは種々の制約上不可能であるので、より下垂体が大きく、各種の 下垂体ホルモンに対する抗体が入手できる動物種で解析を行うなどの方策が必要であろ う。

以上の結果から、下垂体でのオスに偏った *tph1* 発現の生理的意義に関して、以下のようなモデルが考えられる。下垂体中葉の POMC 産生細胞では、*tph1* がオスでより多く発現しており、それによって、オスの同細胞内でより多くの MT が合成される。そして、その MT がパラクライン的に GH や SL の産生細胞に作用することで、それらのホルモンの遺伝子発現をオスで抑制する、というモデルである。この考えを支持するデータとして、メダカの下垂体における gh と sl の発現量は、いずれもオスよりもメスで高いことが当研究室の先行研究によっ

90

て示されている(大久保ら、未発表データ)。また、本研究での二重 ISH の写真からもわかる ように、POMC 産生細胞(*tph1* 発現細胞)とSL の産生細胞はモザイク状に隣り合って存在し ているため、POMC 産生細胞で産生された MT が SL 産生細胞にパラクライン的に作用して いてもおかしくはない。

GHやSLは、ともに成長ホルモンファミリーに属するタンパク質で、魚類の成長や体色に 関わることが知られている(SL は魚類特有の下垂体ホルモンである)(Fukada *et al.*, 2005; Canosa *et al.*, 2007; Fukamachi *et al.*, 2009)。改めて考えてみると、メダカの成長や体色には 性差が認められる。したがって、今回解析した下垂体でのほぼオス特異的な *tph1* 発現が、 それらの性差に寄与している可能性も十分に考えられる。今後、遺伝子改変メダカを用いた 解析などによって、その可能性を検証することが必要であろう。

表 3-1. tph1 レポーターコンストラクトの作製に用いたプライマー

名称	使用目的	塩基配列(5′-3′)
TPH1-InFusion-F5	IF	CTCGGCGGCCAAGCTTGTCTATGCAAGGATGGAGTCAT
TPH1-InFusion-F6	IF	CTCGGCGGCCAAGCTTCATCTGTAGCAAAATGAGGTGGAG
TPH1-InFusion-R4	IF, Del	CCGGATTGCCAAGCTTGCTCAAGTTCTCCAGCTTGACTTC
TPH1-5flank-F3	Seq	CGGCAGGAGCCACTGAGAGC
TPH1-5flank-F4	CP, Seq	CGTGCGCAATGCTGCTCGATTT
TPH1-5flank-R2	Seq	CCCAAACAAAATCCAATTGGACC
TPH1-5flank-R3	Seq	CAACTTCATAACCCAACTACAGA
TPH1-5flank-R4	Seq	CTAAACGTGAGCATCTGTTCTG
TPH1-Del-1000bp-F1	Del	CTCGGCGGCCAAGCTTAATGAGGCCTCTGGGGGGCTCAG
TPH1-Del-500bp-F1	Del	CTCGGCGGCCAAGCTTTTCGTTGATTATGAAGTTATAGGA
TPH-5fl-MB1379-F1	Mut	AAGCTTTTCAAGCTTCTGTCACTGATGTACCAC
TPH-5fl-MB1379-R1	Mut	AAGCTTGAAAAGCTTCTGAGTAAAAATAATAAA
TPH-5fl-ML1379-F1	Mut	CTCAG <u>AAGCTT</u> TTCTGCTTCCTGTCACTG
TPH-5fl-ML1379-R1	Mut	CAGAA <u>AAGCTT</u> CTGAGTAAAAATAATAAA
TPH-5fl-MR1379-F1	Mut	CATTC <u>AAGCTT</u> CTGTCACTGATGTACCAC
TPH-5fl-MR1379-R1	Mut	GACAG <u>AAGCTT</u> GAATGTGCTCTGAGTAAA
TPH-5fl-MB1116-F2	Mut	TCATC <u>AAGCTT</u> TAC <u>AAGCTT</u> TCCCTGCACGATA
TPH-5fl-MB1116-R2	Mut	AGGGA <u>AAGCTT</u> GTA <u>AAGCTT</u> GATGATTCACACT
TPH-5fl-ML1116-F1	Mut	TCATCAAGCTTTACAGTGTATCCCTGCAC
TPH-5fl-ML1116-R1	Mut	CTGTA <u>AAGCTT</u> GATGATTCACACTCTGCT
TPH-5fl-MR1116-F1	Mut	CATAC <u>AAGCTT</u> TCCCTGCACGATAGCTTT
TPH-5fl-MR1116-R1	Mut	AGGGA <u>AAGCTT</u> GTATGTACTGATGATTCA
pGL4-HindIII-F1	CP, Seq	TCCCCAGTGCAAGTGCAGGT
pGL4-HindIII-R1	CP, Seq	TCCCGTCTTCGAGTGGGTAG

名称カラム中の-F はフォワードプライマー、-R はリバースプライマーを示す。使用目的カラム 中の IF は In-Fusion PCR、Del はデリーションのための PCR、Seq はシークエンシング、CP はコロニーPCR、Mut は変異を導入するための PCR を示す。塩基配列カラム中の下線は ARE 様配列のハーフサイトを *Hind*III の配列に置き換えた部位を示す。

標的遺伝子	名称	塩基配列(5′-3′)
aanatla	AANAT1a-F1	AGGTTTGTGATATTTACCCAGGC
	AANAT1a-R2	TGACGTTCCTCCTCAGCGGAT
aanat1b	AANAT1b-F2	AGAAGAGTTTTTCGTGTAGCGGAT
	AANAT1b-R1	GGAGGAAAACGTCCTGCGGT
aanat2	AANAT2-F1	GAATCAGAAAGGACCACAGAATCA
	AANAT2-R1	TCATGGGTGAATAACTGAAGCCG

表 3-2. AANAT 遺伝子の ISH プローブの作製に用いたプライマー

名称カラム中の-Fはフォワードプライマー、-Rはリバースプライマーを示す。

標的遺伝子	名称	塩基配列(5′-3′)
ротс	POMC-qF3	AGCAGCATGACGGAGT
	POMC-qR3	GGAGAGATGAAAGAGAAGGGA
sl	SL-qF1	GCATCACCAAAGCATTACC
	SL-qR1	ATGCAGCAGCCATTTATCAGA
prl	PRL-qPCR-F4	TCCTGTCCAACTCTGCAAACTC
	PRL-qPCR-R4	CAGGTTCCTGGAATGCTCCT
tshb	TSHb-qPCR-F6	TTACCTACCCGTGGCACTC
	TSHb-qPCR-R6	TGCGTGCACTCATCACTGTC
fshb	FSHb-qF5	GACTGGTCCTACGAAGTTA
	FSHb-qR5	TGTGGTTCTTGTGTTGCATGT
lhb	LHb-qPCR-F8	GTGGATCCGTCAGTCACATACC
	LHb-qPCR-R8	GTGCAGTCAGACGCGTTCAT
gh	GH-qF2	CTTTTCTCTGACTTTGAGAGTT
	GH-qR2	GTGCTTGTCTAATGGGCTGATG
actb	bACTIN-qPCR-F2	CCCCACCCAAAGTTTAG
	bACTIN-qPCR-R2	CAACGATGGAGGGAAAGACA

表 3-3. 下垂体ホルモン遺伝子の Real-time PCR に用いたプライマー

名称カラム中の-Fはフォワードプライマー、-Rはリバースプライマーを示す。

図 3-1. 性成熟に伴う下垂体での tph1 発現の変動

(A) 月齢別の下垂体における *tph1* 発現の性差。縦軸は ISH によって得られた発現シグナルの面積を、横軸は月齢 (mpf; month post fertilization)を示す。黒のカラムはオスを、白のカラムはメスを示す。それぞれの月齢における雌雄間での有意差を、*p < 0.05、**p < 0.01 で示した。(B) 各月齢の雌雄の下垂体における *tph1* 発現の代表的な写真。スケールバーは全て 50 μ m。

図 3-2. 下垂体における tph1 発現に対するアンドロゲンおよび AR アンタゴニスト投与の影響

(A) メスに 11KT を投与した際の下垂体における *tph1* 発現の変化。縦軸は ISH によって得られた *tph1* 発現のシグナル面積を、横軸は実験群を示す。EtOH は溶媒のエタノールのみを投与したコントロール群、11KT は 11KT を投与した群を示す。実験群間の有意差を、*** p < 0.001 で示した。(B) コントロール群(EtOH) および 11KT 投与群(11KT) (いずれもメス) における下垂体での *tph1* 発現の代表的な写真。スケールバーはいずれも 50 µm。(C) オス に AR アンタゴニストを投与した際の下垂体における *tph1* 発現の変化。縦軸は ISH によって 得られた *tph1* 発現のシグナル面積を、横軸は実験群を示す。EtOH は溶媒のエタノールの みを投与したコントロール群、ARant は AR アンタゴニストを投与した群を示す。実験群間の 有意差を、*** p < 0.001 で示した。(D) コントロール群 (EtOH) および AR アンタゴニスト投与 群 (ARant) (いずれもオス)における下垂体での *tph1* 発現の代表的な写真。スケールバーは いずれも 50 µm。 Α

図 3-3. 下垂体の tph1 発現細胞での AR の共発現

(A)下垂体における *tph1*(緑色、左側のパネル)と*ara*(マゼンタ、中央のパネル)の発現。青色は DAPI による核染色。右側のパネルは両遺伝子の発現をマージしたもの。(B)下垂体 における *tph1*(緑色、左側のパネル)と *arb*(マゼンタ、中央のパネル)の発現。青色は DAPI による核染色。右側のパネルは両遺伝子の発現をマージしたもの。スケールバーは全て 5 µm。

図 3-4. アンドロゲンによる tph1 の転写促進作用

*tph1*の5'上流領域をルシフェラーゼ遺伝子に結合したレポーターコンストラクトを用いたレポ ーターアッセイによって、アンドロゲンによる*tph1*の転写促進作用を解析した。(A)*tph1*の5' 上流領域 3898 bpを含むレポーターコンストラクトを用いた場合の結果。(B)*tph1*の5'上流 領域 1613 bpを含むレポーターコンストラクトを用いた場合の結果。Ara(左のグラフ)あるい は Arb(右のグラフ)の存在下で異なる濃度の11KT で処理した際のレポーター活性を測定 した。縦軸は 11KT 未処理群での値を1 とした場合のレポーター活性の相対値を、横軸は 11KT の投与濃度(log M)を示す。各カラムに付けられたアルファベットは統計処理の結果 を示しており、アルファベットがオーバーラップしないカラムの間には有意差があることを意 味する。

図 3-5. アンドロゲンが tph1 の転写を活性化する際に機能する ARE の同定

(A)メダカゲノム中の *tph1* ローカスの模式図。プロモーターアッセイに用いた *tph1* の 5'上流 領域 1613 bp の範囲内には 5 つの ARE 様配列(白抜きの丸印)が存在することを示した。 転写開始点から1379 bp(AGCACAttcTGCTTC)、1116 bp(AGTACAtacAGTGTA)、888 bp (AAAAACatg ATGATT)、743 bp(GGAACAtgaTGTAGT)、653 bp(AGGTACagcATATTT)

上流の 5 つの ARE 様配列である(ARE のコンセンサス配列は AGAACA のインバートリピ ート、あるいはダイレクトリピート)。ボックスは tph1 のエキソンを表し、白抜きの領域は非翻訳 領域を、黒く塗りつぶした領域は翻訳領域を表す。(B) tph1 の 5'上流領域 1614 bp(5 つの ARE 様配列を含む)、1000 bp(3 つの ARE 様配列を含む)、もしくは 500 bp(ARE 様配列を 含まない)を含むレポーターコンストラクトを用いて、Ara(左のグラフ)あるいは Arb(右のグラ フ)の存在下で 11KT 処理(10⁻⁶ M)した際のレポーター活性を測定した。 縦軸は 11KT 未処 理群での値を1とした場合のレポーター活性の相対値を、横軸はレポーターコンストラクトに 含めた5′上流領域の長さを示す。白のカラムは11KT未処理群を、黒のカラムは11KT処理 群を表す。各カラムに付けられたアルファベットは統計処理の結果を示しており、アルファベ ットがオーバーラップしないカラムの間には有意差があることを意味する。(C) tph1 の転写開 始点から 1379 bp と 1116 bp 上流に位置する ARE 様配列に変異を導入したレポーターコン ストラクトを用いて、Ara(上段のグラフ)あるいは Arb(下段のグラフ)の存在下で 11KT 処理 (10⁻⁶ M)した際のレポーター活性を測定した。縦軸は変異を導入していない 11KT 未処理 群での値を1とした場合のレポーター活性の相対値を、横軸は導入した変異の種類を示す。 Wild は変異を導入していないこと、MB は両側のハーフサイトに変異を導入したこと、ML は 左側のハーフサイトに変異を導入したこと、MR は右側のハーフサイトに変異を導入したこと を示す。DM は 1379 bp 上流と 1116 bp 上流の両 ARE 様配列の両側のハーフサイトに変異 を導入したことを示す。白のカラムは11KT未処理群を、黒のカラムは11KT処理群を表す。 各カラムに付けられたアルファベットは統計処理の結果を示しており、アルファベットがオー バーラップしないカラムの間には有意差があることを意味する。

図 3-6. tph1 をほぼオス特異的に発現する下垂体細胞種の特定

下垂体における各種下垂体ホルモン遺伝子(緑色、左側のパネル)と *tph1*(マゼンタ、中央のパネル)の発現。青色は DAPI による核染色。右側のパネルは各種下垂体ホルモン遺伝 子と *tph1* の発現をマージしたもの。スケールバーは全て 10 μm。

図 3-7. 下垂体における tph1と AANAT 遺伝子の共発現

下垂体における*tph1*(緑色、左側のパネル)と*aanat1b*(マゼンタ、中央のパネル)の発現。青 色は DAPI による核染色。右側のパネルは両遺伝子の発現をマージしたもの。スケールバ ーは全て 10 μm。

in vitro 下垂体培養系を用いて、各種下垂体ホルモン遺伝子(pomc、sl、prl、tshb、fshb、 lhb、gh)の発現量に対する 5-HT および MT の影響を解析した。縦軸は各遺伝子の相対発 現量を、横軸は培養時間を示す。白のカラムはコントロール群、グレーのカラムは 5-HT 投与 群、黒のカラムは MT 投与群を示す。コントロール群との有意差を、*p<0.05 で示した。

総合考察

脊椎動物ではごく一般的に、形態や色彩、各種の行動パターンや内分泌パターンなどの 形質に明瞭な性差がみられる。本研究では、それらの形質に寄与している可能性が高いと 考えられる神経伝達物質・神経修飾物質関連ファミリー(VT/IT、GnRH、TH、TPH ファミリー) に着目し、それらの発現の性差が、各種の形質に性差をもたらしているのではないかとの推 測のもとで解析を進めた。形態や色彩、各種の行動パターンや内分泌パターンなどの形質 に関わる脳内メカニズムに対して、性差という切り口からアプローチした研究は、少なくとも魚 類ではこれまでに例がなく、本研究によって、実際にいくつかのユニークな知見を得ることが できたと考えている。

まず第1章では、メダカの脳における VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現 の性差を解析した。その結果、これまでに報告されていない、いくつかの新規の性差が明ら かとなった。特筆すべき新規の性差は、視床下部の2つの神経核 NPTとpNVT において、 バソトシンをコードする遺伝子 wt がオス特異的に発現していたことであった。これまでにも、 他の魚種において、オスに偏った vt の脳内発現が報告されているが、いずれも比較的程度 の小さい性差であり、かつ、視索前野内での性差であった(Semsar et al., 2001; Salek et al., 2002; Santangelo and Bass, 2010)。様々な動物種において、VT やその哺乳類オーソログで ある VP が、性行動や攻撃行動を支配することが示されている(Goodson and Bass, 2001; Goodson, 2008; Goodson and Thompson, 2010; Goncalve and Oliveira, 2010; Insel, 2010; Abel and Rissman, 2011; Boyd, 2012)。このことから、メダカの NPT と pNVT におけるオス特 異的な vt 発現は、オス型の攻撃行動や性行動を促進する役割をもつことが推察された。特 に魚類においては、VT と攻撃性との関連を示す報告が比較的多く存在する上、攻撃性を 支配する中枢は視床下部内に存在するという報告もあること(Lin et al., 2011; Goodson et al., 2012)や、逆に、魚類におけるオスの性行動の中枢は、終脳腹側部あるいは視索前野に存 在することが示されていること(Kyle and Peter, 1982; Koyama et al., 1984; Satou et al., 1984) から、今回見出された視床下部でのオス特異的な vt 発現は、攻撃行動を促進している可能 性が高いとの見通しを立てた。

この見通しのもと、第2章では、「アンドロゲンの転写促進作用によって、vtの発現が視床 下部でオス特異的に誘導され、そこで産生された Vt がオス特異的に攻撃行動を誘導する」 という作業仮説を立て、その仮説に沿って、vt のオス特異的発現をもたらすメカニズムとその 生理的意義について解析した。その結果、精巣由来のアンドロゲンが、アンドロゲン受容体

104

*arb*を介して、視床下部の pNVT におけるオス特異的な *wt* の発現(転写)を、直接的に誘導 することが示された。オスラットの BNST (メダカの Vs/Vp に相当する神経核)における Vp の オスに偏った発現も、精巣由来のアンドロゲンによってもたらされていることが知られている が(de Vries, 2008; Dumais and Veenema, 2015)、メダカでは、アンドロゲンはアンドロゲンの まま AR を介して発現を促進することや、発現の性差を精巣由来のアンドロゲンのみで説明 できることなどがラットとは異なり、動物種間での多様性が明らかとなった。ラットでは、アンド ロゲンが Vp の発現を制御する際には、Vp のプロモーター領域に存在する CpG アイランド の DNA メチル化パターンの変化を伴うことが報告されている(Auger *et al.*, 2011)。メダカで もこのような制御機構が存在するのかに興味がもたれる。今後は、今回の解析では同定でき なかった *vt* 近傍の機能的な ARE を明らかにするとともに、アンドロゲンによる *vt* の転写制御 機構を詳細に解析したいと考えている。

また、今回の結果からは、オス特異的に産生された Vt がどの受容体を介して、どこで作 用するのかまでは特定できなかった。vt 発現ニューロンを蛍光タンパク質で可視化したトラン スジェニックメダカを作出し、オス特異的な vt 発現ニューロンの投射様式を解析することによ り、オス特異的に産生された Vt がどこに運ばれ、どこで作用するのかを明らかにしたいと考 えている。そこで得られる知見は、オス特異的な vt 発現の生理学的意義を考える上で、大き なヒントとなるであろう。

今回の結果から、ほとんど攻撃性を示さないメスのメダカであっても、アンドロゲンで処理 することによって攻撃行動が誘導されること、それと同時に、本来はオス特異的な pNVT で のw発現も誘導されること、また、Vtペプチドの投与でも攻撃行動が誘導されることが明らか となった。これにより、「アンドロゲンによって誘導される視床下部での w 発現が攻撃性を高 めている」という仮説の妥当性が高まったため、より直接的な証拠を得るために、w ノックアウ トメダカのメスにアンドロゲンを投与し、その際に攻撃行動が誘導されないことの確認を試み た。しかし、予想に反して、ノックアウト個体でも野生型個体と同様に攻撃行動が誘導された。 その一方で、アンドロゲンを投与されたメスが、普段は決して行わないオス型の性行動(追 尾と求愛ダンス)を行うこと、また、有意差は検出されなかったものの、野生型の個体に比べ て、ノックアウト個体では、アンドロゲン投与後の追尾と求愛ダンスの回数が少ない傾向にあ ることに気が付いた。本研究ではこれまで、オス特異的な w 発現の生理的意義として、攻撃 行動だけを考えてきたが、今後はオス型の性行動も考慮に入れ、解析を進めていきたいと 考えている。哺乳類では VPと V1A 受容体が社会性認知行動の調節に関わることが報告さ れていること(Dumais and Veenema, 2015)を考えると、Vt はオス型の性行動のアクションそ

105

のものというよりは、異性(メス)の個体認識、あるいは性指向に関わっているのかもしれない。 そのことを検証できるような実験を組むことができればと考えている。

一方、*tph1* が下垂体において、やはりほぼオス特異的に発現していたことも、全く予想していなかった結果である。*tph1*は5-HTやMTの生合成に関わる酵素をコードする遺伝子であり、その発現の性差は、それらの生体アミン系ホルモン合成の性差につながるはずである。 そして、魚類を含む様々な動物種で、これらの生体アミン系ホルモンが各種の下垂体ホルモンの分泌パターンに影響を与えることが報告されている(Schneider and McCann, 1970; Somoza and Peter, 1991; Khan and Thomas, 1992; Kah *et al.*, 1993; Winberg and Lepage, 1998; Senthilkumaran *et al.*, 2001)。これらのことを考え合わせ、下垂体でのオスに偏った *tph1*発現は、そこでのオスに偏った 5-HT や MT の合成を介して、最終的に、何らかの下垂 体ホルモンの分泌パターンに性差をもたらしている可能性が考えられた。そのような見通しのもと、第3章では下垂体での*tph1*発現に性差をもたらすメカニズムと、その生理的意義について解析した。

解析の結果、視床下部でのオス特異的な vt 発現と同様に、下垂体でのほぼオス特異的な tph1 発現も、やはり Arb を介したアンドロゲンの直接的な転写促進作用によってもたらされていることが分かった。また、その際に機能する ARE を同定することができた。しかし、今回は in vitro での実験であり、培養細胞に導入するメダカゲノム配列は限られたごく一部の配列であったため、多くの転写因子が協働し、大規模なゲノムの構造変化やエピジェネティックな修飾の変化を伴う生体内での転写調節はうまく再現できていない可能性もある。そこで今後は、ゲノム編集を用いた遺伝学的アプローチによって、本研究で同定した機能的なARE を改変したメダカを作出し、アンドロゲンによる tph1 の転写調節メカニズムを in vivo で解析したいと考えている。また、tph1 が下垂体中葉の POMC 産生細胞でオスに偏った発現を示すことを明らかにしたのも、動物種を問わず、本研究が初めてである。この現象がどの程度、動物種間で保存されているのかに興味がもたれる。

本研究では最後に、Tph1 によって合成されると考えられる 5-HT あるいは MT が、いず れかの下垂体ホルモンの発現を調節するとの推測のもと、下垂体培養系にそれらの生体ア ミン系ホルモンを添加し、各種下垂体ホルモン遺伝子の発現を解析した。その結果、5-HT はいずれの遺伝子の発現にも有意な影響を及ぼさなかったが、MT は成長ホルモン遺伝子 (gh)とソマトラクチン遺伝子(sl)の発現量を低下させることが分かった。メダカの下垂体にお けるghとslの発現量は、いずれもオスよりもメスで高いこと(大久保ら、未発表データ)を考え 合わせ、以下のようなモデルが考えられた。下垂体中葉の POMC 産生細胞では、tph1 がオ スでより多く発現しており、それによって、オスの同細胞内でより多くの MT が合成される。そ して、その MT がパラクライン的に GH や SL の産生細胞に作用することで、それらのホルモ ンの遺伝子発現をオスで抑制する、というモデルである。GH や SL は、ともに成長ホルモン ファミリーに属するタンパク質で、魚類の成長や体色に関わることが知られている(Fukada *et al.*, 2005; Canosa *et al.*, 2007; Fukamachi *et al.*, 2009)。メダカの成長や体色には性差が認 められるため、下垂体でのほぼオス特異的な *tph1* 発現が、それらの性差に寄与している可 能性は十分に考えられる。ゲノム編集を用いた遺伝学的アプローチによって、この可能性を 検証することが、直近の最も重要な課題の一つであろう。

本研究のように、VT/IT、GnRH、TH、TPH ファミリー遺伝子の発現の性差を、魚類で包括的に解析した例はこれまでなかった。したがって、本研究が記載した各種の性差はこれまで見過ごされてきた可能性があるが、それらの遺伝子の発現の性差のパターンは魚種によって異なっており、そのためにこれまで報告がなかったと考えることもできる。実際に、今回、いくつかの遺伝子や神経核については、他の魚種で報告されている性差がメダカでは検出されなかった。魚類は種の多様性を大きな特徴としてもつ分類群であり、多様な生息環境に応じて、多様な社会構造や繁殖戦略、成長戦略を有する。したがって、それらの事象と直接的に関係すると考えられる神経伝達物質・神経修飾物質関連遺伝子の発現に種間の多様性があっても、なんら不思議ではない。これらの遺伝子の発現パターンの種間の違いと、社会構造や繁殖戦略、成長戦略の種間の違いを結び付けて議論できるようになれば、種の多様性について、今までとは違った角度から、より深く理解することも可能になるはずである。

例えば、VT/VP は様々な動物種で社会性行動に関わることが報告されている。ハタネズ ミのオスでは、VP 受容体(V1A 受容体)の分布の違いによって一夫一妻制か一婦多妻制の 交配システムの違いが引き起こされていることが知られており、ソングバードのオスでは、単 独性の種は VT が攻撃性を促進し、群居性の種は VT が攻撃性を抑制することが知られて いる(Goodson and Bass, 2001)。このように社会構造が異なる種間で、VT/VP の脳内の分布 や機能が異なっており、その作用の方向性にも違いがみられる。脳内の分布や機能の違い と魚類の多様な社会構造や繁殖様式の違いとの関連を明らかにするためには、今回メダカ で認められたオス特異的な発現が、他の魚種でもみられるか、そしてその発現がどのような 形質に関わっているのかを解析していくことが必要である。

また、本研究では、今回見出された性差の中でも特に顕著な、視床下部 pNVT における オス特異的な vt 発現と、下垂体 POMC 細胞におけるほぼオス特異的な tph1 発現をもたら すメカニズムを明らかにすることができた。それらの性差の生理的意義についても、解明へ

107
の道筋がみえてきた。本研究をさらに発展させることで、近い将来、それらの性差がどのよう な形質に寄与しているかを理解できるようになると期待される。その成果は、動物のオスとメ スの種々の形質がなぜこれほど違うのか、という古くから多くの関心が寄せられてきた問いに 対する解答の一端となり得るだろう。

要旨

魚類を含め、脊椎動物ではごく一般的に、形態や色彩、攻撃行動や性行動などの行動 パターン、性成熟、成長、ストレス応答などに関わる内分泌パターンに顕著な性差が認めら れる。これらの形質にみられる性差の多くは、脳内や下垂体に存在する何らかの性差に起 因すると考えられる。しかし、魚類の脳内や下垂体に存在するどのような性差が、これらの形 質に性差をもたらしているのかは明らかとなっていない。

一方、いくつかの魚種におけるこれまでの研究で、上記の形質との関連が示されている 4 種類の神経伝達物質・神経修飾物質関連ファミリーの脳内での発現に、性差が存在する ことが報告されている。攻撃行動や性行動への関与が示されているバソトシン(VT)・イソトシ ン(IT)神経ペプチドファミリー、性成熟や性行動を促進することが知られているゴナドトロピ ン放出ホルモン(GnRH)ファミリー、そして、様々な行動や内分泌系に関わることが報告され ている生体アミン系ホルモンを合成するチロシン水酸化酵素(TH)ファミリーとトリプトファン 水酸化酵素(TPH)ファミリーである。しかし、これらの神経伝達物質・神経修飾物質関連ファ ミリーの性差についての知見はいずれも断片的なものであり、これまで体系立った解析がな されてこなかった。

そこで本研究では、これらのファミリーの発現の性差が、魚類の各種形質に性差をもたら しているのではないかとの推測のもと、メダカをモデル魚に用いて、まずはそれらの遺伝子 の発現を詳細に解析することとした。その結果、VT遺伝子とTPH遺伝子の発現に特に顕著 な性差が認められたので、次に、その性差がどのようなメカニズムによってもたらされ、どのよ うな形質に寄与するのかを解析することとした。

第1章 神経伝達物質・神経修飾物質関連ファミリー遺伝子の性差

まずは、これまでにメダカで同定されていなかった VT、IT、TH、TPH をコードする各遺 伝子を単離・同定した。その結果、メダカは 1 種類の VT 遺伝子(*vt*)と IT 遺伝子(*it*)、2 種 類の TH 遺伝子(*th1* および *th2*)と TPH 遺伝子(*tph1* および *tph2*)をもつことが明らかとなっ た。そこで、すでに同定されていた 3 種類の GnRH 遺伝子(*gnrh1、gnrh2、gnrh3*)を含め、 全 9 種類の遺伝子について、メダカの脳と下垂体での発現の性差を解析することとした。

解析の結果、vt で最も顕著な性差が認められ、その発現は視床下部の神経核 pNVT および NPT においてオス特異的であった。また、tph1 も下垂体においてほぼオス特異的な発現を示した。オスに偏った性差は、gnrh1、tph1、tph2 の一部の神経核での発現においても

認められた。それに対し、*it と gnrh3* では、全脳レベルでの発現量がメスで高いことが分かった。一方、*gnrh2、th1、th2* の発現には目立った性差は認められなかった。以上の結果を、これらの遺伝子の機能に関するこれまでの知見や、発現に性差が認められた神経核や部位の機能と考え合わせると、今回明らかとなった発現の性差が、攻撃行動や性行動などの行動パターンや何らかの内分泌パターンの性差に関与している可能性は十分にあり得ると考えられた。

第2章 vtのオス特異的発現をもたらすメカニズムとその生理的意義

続いて、最も顕著な性差が認められた wt について解析を進めることとした。多くの魚種で はオスの方がメスよりもはるかに高い攻撃性を示すが、攻撃性を高める主因子はアンドロゲ ンであること、VT が攻撃行動に関与することがこれまでに報告されている。また、アンドロゲ ンとその受容体の複合体は転写因子として機能することが知られている。そこで、第1章の 結果とこれらの知見を考え合わせ、「精巣から放出されたアンドロゲンの転写促進作用によ って、VT の発現が pNVT および NPT でオス特異的に誘導され、そこで産生された VT がオ ス特異的に攻撃行動を誘導する」という作業仮説を立てた。

その作業仮説のもと、まずは、オス特異的な vt の発現がアンドロゲンによって誘導される かを検証した。精巣を除去した成熟オスにアンドロゲンを投与し、vt の発現を解析した結果、 pNVT における vt 発現は精巣除去によって著しく低下し、アンドロゲン投与によって回復す ることが分かった。次に、アンドロゲンが vt 発現ニューロンに直接作用し得るかを検証するた めに、vt とアンドロゲン受容体の共発現の有無を解析した。その結果、pNVT の vt 発現ニュ ーロンは、2 種類のアンドロゲン受容体遺伝子 (ara および arb)のうちの arb を共発現してい ることが分かった。また、in vitro でのプロモーターアッセイによって、アンドロゲンが vt の転写 活性に与える影響を解析したところ、アンドロゲンが作用するシスエレメントを同定するまで には至らなかったが、アンドロゲンは Arb を介して vt の転写を大きく活性化し得ることが明ら かとなった。以上の結果から、精巣由来のアンドロゲンが Arb を介して pNVT におけるオス 特異的な vt 発現を直接的に誘導することが示唆された。

次に、オス特異的に産生された VT の作用部位を明らかにするために、Vt ペプチドの脳 内局在を解析した。その結果、pNVT においてオス特異的な Vt 陽性の軸索がみられたが、 その投射先までは確認できなかった。一方、各種 Vt 受容体の発現解析を行った結果、Vt 受容体遺伝子は脳内で広く発現しており、どの Vt 受容体も発現に性差を示さないことが分 かった。このことから、Vt の作用の性差はリガンド依存的に決まると考えられた。また、VT と

110

アンドロゲン、攻撃行動との関係を明らかにするために、メスのメダカにアンドロゲンや Vt ペ プチドを投与し、その際の攻撃行動や vt 発現を解析した。その結果、メスでもアンドロゲン投 与によって攻撃行動が誘導され、それと同時に、本来はオス特有である pNVT での vt 発現 が誘導されること、また、Vt ペプチド単独の投与でも攻撃行動が誘導されることが明らかとな り、「アンドロゲンによって誘導された pNVT でのオス特異的な vt 発現が攻撃行動を誘導す る」という作業仮説が支持された。そこで、より直接的な証拠を得るために、vt ノックアウトメダ カのメスにアンドロゲンを投与しても攻撃行動が誘導されないことの確認を試みたが、予想 に反して、ノックアウト個体でも野生型個体と同様に攻撃行動が誘導された。この結果は作 業仮説とは合致しないものであるため、オス特異的な vt 発現の生理的意義については、作 業仮説の修正が必要であると考えられた。

第3章 tph1のオスに偏った発現をもたらすメカニズムとその生理的意義

本章では、下垂体でのほぼオス特異的な *tph1* 発現に着目し、解析を進めることとした。 TPH1 は、様々な内分泌系を制御する生体アミン系ホルモン(セロトニン(5-HT)およびメラト ニン(MT))の生合成に関わるため、下垂体におけるその発現の性差は、何らかの内分泌パ ターンの性差を生み出すと推察される。そこで、オスに偏った *tph1* の発現がどのようなメカニ ズムによって生じ、下垂体ホルモンにどのような影響を及ぼすのかを解析した。

まずは、下垂体における tph1 の発現も vt と同様、アンドロゲンによって促進されるとの推 測のもと、メスのメダカにアンドロゲンを投与し、下垂体での tph1 発現を解析した。その結果、 メスでもアンドロゲン投与によって tph1 の発現が誘導された。逆に、オスのメダカにアンドロ ゲン受容体のアンタゴニストを投与すると、tph1 の発現が減少した。次に、このアンドロゲン の作用が直接的なものかどうかを検証するため、下垂体での tph1 とアンドロゲン受容体の共 発現の有無を解析した。その結果、ara と arb のいずれも tph1 発現細胞で発現していること が分かった。さらに、in vitro でのプロモーターアッセイによって、アンドロゲンは Arb を介して tph1 の転写を大きく活性化し得ることが明らかとなった。またその際には、アンドロゲンが tph1 のプロモーター領域に存在する二つのアンドロゲン応答配列が協調して機能すること が明らかとなった。以上の結果から、下垂体におけるほぼオス特異的な tph1 の発現もやはり、 Arb を介したアンドロゲンの直接的な転写促進作用によってもたらされていることが示唆され た。一方、tph1 を発現する下垂体細胞種を特定するために、tph1 と各種下垂体ホルモン遺 伝子との共発現を解析した結果、tph1 を発現しているのは、プロオピオメラノコルチン (POMC)産生細胞であることが分かった。 オスに偏った tph1 の発現は、オスに偏った 5-HT あるいは MT の生合成をもたらすと考 えられる。そこで、下垂体におけるこれら生体アミン系ホルモンの作用を調べることで、tph1 発現の性差の生理的意義を解析することとした。5-HT あるいは MT がいずれかの下垂体ホ ルモンの発現を調節するとの推測のもと、下垂体培養系にそれらの生体アミン系ホルモンを 添加し、各種下垂体ホルモン遺伝子の発現量を測定した。その結果、5-HT はいずれの遺 伝子の発現にも有意な影響を及ぼさなかったが、MT は成長ホルモン遺伝子(gh)とソマトラ クチン遺伝子(sl)の発現量を低下させることが分かった。メダカの下垂体における gh と sl の 発現量は、いずれもオスよりもメスで高いことが知られているが、オスの POMC 産生細胞で 発現する tph1 によって産生された MT がパラクライン的に作用することで、gh と sl の発現量 がオスで抑制されることが、その一因となっている可能性が考えられた。また、成長ホルモン とソマトラクチンはともに、成長ホルモンファミリーに属し、成長や体色に関わることが報告さ れている。メダカではそれらの形質に性差が認められるので、下垂体でのほぼオス特異的な tph1 発現は、それらの性差に寄与しているのかもしれないと考えられた。

以上の研究によって、メダカの脳と下垂体における神経伝達物質・神経修飾物質関連 遺伝子の発現の性差を包括的に把握するとともに、視床下部 pNVT におけるオス特異的な vt 発現と、下垂体 POMC 細胞におけるほぼオス特異的な tph1 発現をもたらすメカニズムを 明らかにすることができた。それらの性差の生理的意義についても、解明への道筋がみえて きた。本研究を発展させることで、近い将来、それらの性差がどのような形質に寄与するかが 明らかになると期待される。

謝辞

東京大学大学院農学生命科学研究科水圏生物科学専攻水族生理学研究室の大久保 範聡准教授には、本研究全般にわたって、終始適切なご助言をいただいたとともに、研究 の方向付けから実験手法、論文執筆に至るまで、懇切丁寧なご指導をいただいた。心より 感謝を申し上げる。また、同研究室の金子豊二教授には、本研究の機会を与えていただい たとともに、組織学実験をはじめとする多くの実験のご指導をいただいた。深く感謝申し上げ る。実験に関する有益なご助言をくださった同研究室の渡邊壮一助教授にも深く謝意を表 す。

本論文を査読してくださった金子豊二教授、東京大学理学系研究科生物科学専攻生 体情報学研究室の岡良隆教授、東京大学大学院農学生命科学研究科獣医学専攻獣医繁 殖育種学教室の前多敬一郎教授、東京大学大気海洋研究所海洋生命科学部門生理学分 野の兵藤晋准教授に感謝の意を表する。

兵藤晋准教授には、免疫組織化学で用いた抗体を譲渡していただき、多くの有益なご 助言もいただいた。行動実験で用いた vt ノックアウトメダカは、岡良隆教授、同研究室の神 田真司准教授のご厚意により、また、プロモーターアッセイで用いた細胞株は同研究室の朴 民根准教授のご厚意により譲渡していただいたものである。厚く御礼申し上げる。

本研究を実施する上で、長期にわたり幾度となく実験手法のご指導やご助言をくださっ た梶山(平木)十和子氏、竹内研生氏に深く感謝申し上げる。生殖腺摘出手術実験に協力 してくださった妻木孝泰氏にも深く感謝申し上げる。また、宮西弘氏、寺西慶太郎氏、古川 史也氏、進士淳平氏、井ノロ繭氏、徐美暎氏、前廣清香氏には実験を行う上で様々なアド バイスをいただいた。心より御礼申し上げる。共に研究に励んだ同期の仲宗根潔氏、相馬 智史氏、籠島彰宏氏から多くの助言や知見をいただいたおかげで、ここまで研究を進めるこ とができた。心から感謝している。

多大なご迷惑をお掛けしたにもかかわらず、様々な場面で多くのご助言、ご協力をいた だいた水族生理学研究室の皆様、実験データを提供してくれたメダカたち、そして博士課 程まで進学させてくれた両親に深く感謝を申し上げる。

113

引用文献

- 1. Abel JL, Rissman EF (2012) Location, location, location: genetic regulation of neural sex differences. *Rev Endocr Metab Disord* 13:151–161.
- Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M, Ekker M, Postlethwait JH (1998) Zebrafish *hox* clusters and vertebrate genome evolution. *Science* 282:1711–1714.
- 3. Anken R, Bourrat F (1998) Brain atlas of the medakafish. INRA Editions, Paris, France.
- Asghari R, Lung MS, Pilowsky PM, Connor M (2011) Sex differences in the expression of serotonin-synthesizing enzymes in mouse trigeminal ganglia. *Neuroscience* 199:429–437.
- Auger CJ, Coss D, Auger AP, Forbes-Lorman RM (2011) Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. *Proc Natl Acad Sci USA* 108:4242–4247.
- Axelrod J and Weissbach H (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin. *Science* 131:1312.
- Bale TL, Epperson CN (2015) Sex differences and stress across the lifespan. Nat Neurosci 18:1413–1420.
- 8. **Balment RJ, Lu W, Weybourne E, Warne JM** (2006) Arginine vasotocin a key hormone in fish physiology and behaviour: a review with insights from mammalian models. *Gen Comp Endocrinol* 147:9–16.
- Baron-Cohen S, Knickmeyer RC, Belmonte MK (2005) Sex differences in the brain: implications for explaining autism. *Science* 310:819–823.
- Bellipanni G, Rink E, Bally-Cuif L (2002) Cloning of two tryptophan hydroxylase genes expressed in the diencephalon of the developing zebrafish brain. *Mech Dev* 119:S215–S220.
- 11. Black MP, Reavis RH, Grober MS (2004) Socially induced sex change regulates forebrain isotocin in *Lythrypnus dalli*. *Neuroreport* 15:185–189.
- Boyd SK (2013) Vasotocin modulation of social behaviors in amphibians. In: Oxytocin, Vasopressin and Related Peptides in the Regulation of Behavior (Choleris E, Pfaff D,

Kavaliers M, eds), Cambridge University Press, Cambridge, UK, pp97-100.

- Braford MR Jr (1995) Comparative aspects of forebrain organization in the ray-finned fishes: touchstones or not? *Brain Behav Evol* 46:259–274.
- Butler AB (2008) Evolution of the thalamus: a morphological and functional review. *Thalamus Relat Syst* 4:35–58.
- Canosa LF, Chang JP, Peter RE (2007) Neuroendocrine control of growth hormone in fish. *Gen Comp Endocrinol* 151:1–26.
- Cazaméa-Catalan D, Besseau L, Falcón J, Magnanou E (2014) The timing of Timezyme diversification in vertebrates. *PLoS One* 9:e112380.
- Chaube R, Joy KP (2003) Brain tyrosine hydroxylase in the catfish *Heteropneustes fossilis*: annual and circadian variations, and sex and regional differences in enzyme activity and some kinetic properties. *Gen Comp Endocrinol* 130:29–40.
- Claessens F, Denayer S, Van Tilborgh N, Kerkhofs S, Helsen C, Haelens A (2008) Diverse roles of androgen receptor (AR) domains in AR-mediated signaling. *Nucl Recept Signal.* 6:e008.
- Claro F, Segovia S, Guilamón A, Del Abril A (1995) Lesions in the medial posterior region of the BST impair sexual behavior in sexually experienced and inexperienced male rats. *Brain Res Bull* 36:1–10.
- Coon SL, Roseboom PH, Baler R, Weller JL, Namboodri MA, Koonin EV, Klein DC (1995) Pineal serotonin *N*-acetyltransferase: expression cloning and molecular analysis. *Scinece* 270:1681–1683.
- 21. Coon SL, Mazuruk K, Bernard M, Roseboom PH, Klein DC, Rodriguez IR (1996) The human serotonin *N*-acetyltransferase (EC 2.3.1.87) gene (AANAT): structure, chromosomal localization, and tissue expression. *Genomics* 34:76–84.
- 22. Denayer S, Helsen C, Thorrez L, Haelens A, Claessens F (2010) The rules of DNA recognition by the androgen receptor. *Mol Endocrinol* 24:898–913.
- de Vries GJ (2008) Sex differences in vasopressin and oxytocin innervation of the brain.
 Prog Brain Res 170:17–27.
- 24. de Vries GJ, Rissman EF, Simerly RB, Yang LY, Scordalakes EM, Auger CJ, Swain A, Lovell-Badge R, Burgoyne PS, Arnold AP (2002) A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. *J Neurosci*

22:9005-9014.

- 25. **Dumais KM, Veenema AH** (2016) Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior. *Front Neuroendocrinol* 40:1–23.
- 26. Elofsson U, Winberg S, Francis RC (1997) Number of preoptic GnRH-immunoreactive cells correlates with sexual phase in a protandrously hermaphroditic fish, the dusky anemonefish (*Amphiprion melanopus*). *J Comp Physiol A* 181:484–492.
- Elofsson U, Winberg S, Nilsson GE (1999) Relationships between sex and the size and number of forebrain gonadotropin-releasing hormone-immunoreactive neurones in the ballan wrasse (*Labrus berggylta*), a protogynous hermaphrodite. *J Comp Neurol* 410:158–170.
- Falcón J, Besseau L, Fazzari D, Attia J, Gaildrat P, Beauchaud M, Boeuf G (2003) Melatonin modulates secretion of growth hormone and prolactin by trout pituitary glands and cells in culture. *Endocrinology* 144:4648–4658.
- 29. Filby AL, Paull GC, Hickmore TF, Tyler CR (2010) Unravelling the neurophysiological basis of aggression in a fish model. *BMC Genomics* 11:498.
- Fleming JV, Barrett P, Coon SL, Klein DC, Morgan PJ (1999) Ovine arylalkylamine N-acetyltransferase in the pineal and pituitary glands: differences in function and regulation. *Endocrinology* 140:972–978.
- 31. Foran CM, Bass AH (1998) Preoptic AVT immunoreactive neurons of a teleost fish with alternative reproductive tactics. *Gen Comp Endocrinol* 111:271–282.
- 32. Forlano PM, Bass AH (2011) Neural and hormonal mechanisms of reproductive-related arousal in fishes. *Horm Behav* 59:616–629.
- 33. Forlano PM, Deitcher DL, Bass AH (2005) Distribution of estrogen receptor alpha mRNA in the brain and inner ear of a vocal fish with comparisons to sites of aromatase expression. *J Comp Neurol* 483:91–113.
- Francis RC, Jacobson B, Wingfield, JC, Fernald RD (1992) Castration lowers aggression but not social dominance in male *Haplochromis burtoni* (Cichlidae). *Ethology* 90:247–255.
- 35. Fukada H, Ozaki Y, Pierce AL, Adachi S, Yamauchi K, Hara A, Swanson P,

Dickhoff WW (2005) Identification of the salmon somatolactin receptor, a new member of the cytokine receptor family. *Endocrinology* 146:2354–2361.

- 36. Fukamachi S, Kinoshita M, Aizawa K, Oda S, Meyer A, & Mitani H (2009) Dual control by a single gene of secondary sexual characters and mating preferences in medaka. *BMC Biol* 7:64.
- 37. Glass CK, Rosenfeld MG (2000) The coregulator exchange in the transcriptional functions of nuclear receptors. *Genes Dev* 14:121–141.
- Godwin J (2010) Neuroendocrinology of sexual plasticity in teleost fishes. Front Neuroendocrinol 31:203–216.
- 39. Godwin J, Sawby R, Warner RR, Crews D, Grober MS (2000) Hypothalamic arginine vasotocin mRNA abundance variation across sexes and with sex change in a coral reef fish. *Brain Behav Evol* 55:77–84.
- Goncalves DM, Oliveira RF (2010) Hormones and sexual behavior of teleost fishes. In: Hormones and Reproduction of Vertebrates: Fishes (Norris DO, Lopez KH, eds), Academic Press/Elsevier, San Diego, USA, pp119–147.
- 41. **Goodson JL** (2008) Nonapeptides and the evolutionary patterning of sociality. *Prog Brain Res* 170:3–15.
- 42. Goodson JL, Bass AH. (2001) Social behavior functions related anatomical characteristics of vasotocin/vasopressin system in vertebrates. *Brain Res Brain Res Rev* 35:246–265.
- Goodson JL, Kelly AM, Kingsbury MA, Thompson RR (2012) An aggression-specific cell type in anterior hypothalamus of finches. *Proc Natl Acad Sci USA* 109:13847–13852.
- 44. **Goodson JL, Kingsbury MA** (2013) What's in a name? Considerations of homologies and nomenclature for vertebrate social behavior networks. *Horm Behav* 64: 103–112.
- 45. Goodson JL, Thompson RR (2010) Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. *Curr Opin Neurobiol* 20:784–794.
- Grafer CM, Halvorson LM (2013) Androgen receptor drives transcription of rat PACAP in gonadotrope cells. *Mol Endocrinol* 27:1343–1356.
- 47. Grahame-Smith DG (1964) Tryptophan hydroxylation in brain. *Biochem Biophys Res Commun* 16:586–592.

- 48. **Greenwood AK, Wark AR, Fernald RD, Hofmann HA** (2008) Expression of arginine vasotocin in distinct preoptic regions is associated with dominant and subordinate behaviour in an African cichlid fish. *Proc R Soc B* 275:2393–2402.
- Grober MS, George AA, Watkins KK, Carneiro LA, Oliveira RF (2002) Forebrain AVT and courtship in a fish with male alternative reproductive tactics. *Brain Res Bull* 57:423–425.
- 50. Grober MS, Sunobe T (1996) Serial adult sex change involves rapid and reversible changes in forebrain neurochemistry. *Neuroreport* 7:2945–2949.
- Hiraki T, Takeuchi A, Tsumaki T, Zempo B, Kanda S, Oka Y, Nagahama Y, Okubo K (2012) Female-specific target sites for both oestrogen and androgen in the teleost brain. *Proc Biol Sci* 279:5014–5023.
- 52. Hiroi R, Handa RJ (2013) Estrogen receptor-β regulates human tryptophan hydroxylase-2 through an estrogen response element in the 5' untranslated region. J Neurochem 127:487–495.
- 53. Huffman LS, O'Connell LA, Kenkel CD, Kline RJ, Khan IA, Hofmann HA (2012) Distributon of nonapeptide systems in the forebrain of an African cichlid fish, *Astatotilapia burtoni*. J Chem Neuroanat 44:86–97.
- Hull EM, Rodríguez-Manzo G (2009) Male sexual behavior. In: Hormones, Brain and Behavior (Second Edition) (Pfaff DW, Arnold AP, Fahrbach SE, Etgen AM, Rubin RT, eds), Academic Press/Elsevier, San Diego, USA, pp5–65.
- 55. Ibáñez-Costa A, Córdoba-Chacón J, Gahete MD, Kineman RD, Castaño JP, Luque RM (2015) Melatonin regulates somatotrope and lactotrope function through common and distinct signaling pathways in cultured primary pituitary cells from female primates. *Endocrinology* 156:1100–1110.
- 56. **Insel TR** (2010) The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. *Neuron* 65:768–779.
- 57. Ishikawa Y, Yoshimoto M, Ito H (1999) A brain atlas of a wild-type inbred strain of the medaka, *Oryzias latipes*. *Fish Biol J Medaka* 10:1–26.
- 58. Ishizaki M, Iigo M, Yamamoto N, Oka Y (2004) Different modes of gonadotropin-releasing hormone (GnRH) release from multiple GnRH systems as revealed by radioimmunoassay using brain slices of a teleost, the dwarf gourami (*Colisa*)

lalia). Endocrinology 145:2092–2103.

- 59. 岩松鷹司 (2006) 新版メダカ学全書. 大学教育出版, 岡山市.
- 60. Kah O, Anglade I, Lepretre E, Dubourg P, de Monbrison D (1993) The reproductive brain in fish. *Fish Physiol Biochem* 11:85–98.
- 61. Karigo T, Kanda S, Takahashi A, Abe H, Okubo K, Oka Y (2012) Time-of-day-dependent changes in GnRH1 neuronal activities and gonadotropin mRNA expression in a daily spawning fish, medaka. *Endocrinology* 153:3394–3404.
- 62. **Karigo T, Oka Y** (2013) Neurobiological study of fish brains gives insights into the nature of gonadotropin-releasing hormone 1-3 neurons. *Front Endocrinol* 4:177.
- 63. Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, Yamada T, Nagayasu Y, Doi K, Kasai Y, Jindo T, Kobayashi D, Shimada A, Toyoda A, Kuroki Y, Fujiyama A, Sasaki T, Shimizu A, Asakawa S, Shimizu N, Hashimoto S, Yang J, Lee Y, Matsushima K, Sugano S, Sakaizumi M, Narita T, Ohishi K, Haga S, Ohta F, Nomoto H, Nogata K, Morishita T, Endo T, Shin-I T, Takeda H, Morishita S, Kohara Y (2007) The medaka draft genome and insights into vertebrate genome evolution. *Nature* 447:714–719.
- Katsumura T, Oda S, Nakagome S, Hanihara T, Kataoka H, Mitani H, Kawamura S, Oota H (2014) Natural allelic variations of xenobiotic-metabolizing enzymes affect sexual dimorphism in *Oryzias latipes*. *Proc Biol Sci* 281:20142259.
- 65. **Kauffman AS, Rissman EF** (2004) A critical role for the evolutionarily conserved gonadotropin-releasing hormone II: mediation of energy status and female sexual behaviour. *Endocrinology* 145:3639–3646.
- Khan IA, Thomas P (1992) Stimulatory effects of serotonin on maturational gonadotropin release in the Atlantic croaker, *Micropogonias undulatus. Gen Comp Endocrinol* 88:388–396.
- 67. Kirchmaier S, Naruse K, Wittbrodt J, Loosli F (2015) The genomic and genetic toolbox of the teleost medaka (*Oryzias latipes*). *Genetics* 199: 905–918.
- Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar IS (2007) Sexual maturation modulates expression of nuclear receptor types in laser-captured single cells of the cichlid (*Oreochromis niloticus*) pituitary. *Endocrinology* 148:5822–5830.
- 69. Kline RJ, O'Connell LA, Hofmann HA, Holt GJ, Khan IA (2011) The distribution of

an AVT V1a receptor in the brain of a sex changing fish, *Epinephelus adscensionis*. J Chem Neuroanat 42:72–88.

- Konno N, Kurosawa M, Kaiya H, Miyazato M, Matsuda K, Uchiyama M (2010) Molecular cloning and characterization of V2-type receptor in two ray-finned fish, gray bichir, *Polypterus senegalus* and medaka, *Oryzias latipes*. *Peptides* 31:1273–1279.
- 71. Koyama Y, Satou M, Oka Y, Ueda K (1984) Involvement of the telencephalic hemispheres and the preoptic area in sexual behavior of the male goldfish, *Carassius auratus*: a brain-lesion study. *Behav Neural Biol* 40:70–86.
- 72. Kuramochi A, Tsutiya A, Kaneko T, Ohtani-Kaneko R. (2011) Sexual dimorphism of gonadotropin-releasing hormone type-III (GnRH3) neurons and hormonal sex reversal of male reproductive behavior in Mozambique tilapia. *Zool Sci* 28:733–739.
- Kyle AL, Peter RE. (1982) Effects of forebrain lesions on spawning behaviour in the male goldfish. *Physiol Behav* 28:1103–1109.
- 74. Larhammar D, Sundström G, Dreborg S, Daza DO, Larsson TA (2009) Major genomic events and their consequences for vertebrate evolution and endocrinology. *Ann NY Acad Sci* 1163: 201–208.
- 75. Larson ET, Norris DO, Summers CH. (2003) Monoaminergic changes associated with socially induced sex reversal in the saddleback wrasse. *Neuroscience* 119:251–263.
- 76. Le Page Y, Diotel N, Vaillant C, Pellegrini E, Anglade I, Mérot Y, Kah O (2010) Aromatase, brain sexualization and plasticity: the fish paradigm. *Eur J Neurosci* 32:2105–2115.
- 77. Lema SC, Slane MA, Salvesen KE, Godwin J (2012) Variation in gene transcript profiles of two V1a-type arginine vasotocin receptors among sexual phases of bluehead wrasse (*Thalassoma bifasciatum*). *Gen Comp Endocrinol* 179:451–464.
- Lema SC, Sander KE, Walti KA (2015) Arginine vasotocin, isotocin and nonapeptide receptor gene expression link to social status and aggression in sex-dependent patterns. J Neuroendocrinol 27:142–157.
- 79. Lin D, Boyle MP, Dollar P, Lee H, Lein ES, Perona P, Anderson DJ (2011) Functional identification of an aggression locus in the mouse hypothalamus. *Nature* 470:221–226.
- 80. Liu Y, Jiang Y, Si Y, Kim JY, Chen ZF, Rao Y (2011) Molecular regulation of sexual

preference revealed by genetic studies of 5-HT in the brains of male mice. *Nature* 472:95–99.

- Liu YC, Salamone JD, Sachs BD (1997) Lesions in medial preoptic area and bed nucleus of stria terminalis: differential effects on copulatory behavior and noncontact erection in male rats. *J Neurosci* 17:5245–5253.
- 82. Lovenberg W, Jequier E, Sjoerdsma A (1967) Tryptophan hydroxylation: measurement in pineal gland, brainstem, and carcinoid tumor. *Science* 155:217–219.
- 83. Maeda K, Ohkura S, Uenoyama Y, Wakabayashi Y, Oka Y, Tsukamura H, Okamura H (2010) Neurobiological mechanisms underlying GnRH pulse generation by the hypothalamus. *Brain Res* 1364:103–115.
- 84. **Maruska KP** (2009) Sex and temporal variations of the vasotocin neuronal system in the damselfish brain. *Gen Comp Endocrinol* 160:194–204.
- 85. Maruska KP, Mizobe MH, Tricas TC (2007) Sex and seasonal co-variation of arginine vasotocin (AVT) and gonadotropin-releasing hormone (GnRH) neurons in the brain of the halfspotted goby. *Comp Biochem Physiol A Mol Integr Physiol* 147:129– 144.
- 86. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. *Nature* 417:559–563.
- 87. Matsuda K, Nakamura K, Shimakura S, Miura T, Kageyama H, Uchiyama M, Shioda S, Ando H (2008) Inhibitory effect of chicken gonadotropin-releasing hormone II on food intake in the goldfish, *Carassius auratus*. *Horm Behav* 54:83–89.
- 88. Matsushita S, Suzuki K, Ogino Y, Hino S, Sato T, Suyama M, Matsumoto T, Omori A, Inoue S, Yamada G (2016) Androgen regulates *Mafb* expression through its 3'UTR during mouse urethral masculinization. *Endocrinology* 157:844–857.
- Matthes S, Mosienko V, Bashammakh S, Alenina N, Bader M (2010) Tryptophan hydroxylase as novel target for the treatment of depressive disorders. *Pharmacology* 85:95–109.
- McCarthy MM, Arnold AP (2011) Reframing sexual differentiation of the brain. *Nat Neurosci* 14:677–683.

- 91. McCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ (2012) Sex differences in the brain: the not so inconvenient truth. *J Neurosci* 32: 2241–2247.
- 92. Miller MA, Vician L, Clifton DK, Dorsa DM (1989) Sex differences in vasopressin neurons in the bed nucleus of the stria terminalis by *in situ* hybridization. *Peptides* 10:615–619.
- 93. Munakata A, Kobayashi M (2010) Endocrine control of sexual behavior in teleost fish. Gen Comp Endocrinol 165:456–468.
- 94. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, *Oryzias latipes. Proc Natl Acad Sci USA* 99:11778–11783.
- 95. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. *Brain Behav Evol* 46:275–318.
- O'Connell LA, Hofmann HA (2012) Evolution of a vertebrate social decision-making network. *Science* 336:1154–1157.
- 97. Ogawa S, Akiyama G, Kato S, Soga T, Sakuma Y, Parhar IS (2006) Immunoneutralization of gonadotropin-releasing hormone type-III suppresses male reproductive behavior of cichlids. *Neurosci Lett* 403:201–205.
- 98. **Ogino Y, Katoh H, Kuraku S, Yamada G** (2009) Evolutionary history and functional characterization of androgen receptor genes in jawed vertebrates. *Endocrinology* 150:5415–5427.
- 99. Ogino Y, Kuraku S, Ishibashi H, Miyakawa H, Sumiya E, Miyagawa S, Matsubara H, Yamada G, Baker ME, Iguchi T (2016) Neofunctionalization of androgen receptor by gain-of-function mutations in teleost fish lineage. *Mol Biol Evol* 33:228–244.
- 100. Ogino Y, Hirakawa I, Inohaya K, Sumiya E, Miyagawa S, Denslow N, Yamada G, Tatarazako N, Iguchi T (2014) Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka. *Endocrinology* 155:449–462.
- 101. Ohya T, Hayashi S (2006) Vasotocin/isotocin-immunoreactive neurons in the medaka fish brain are sexually dimorphic and their numbers decrease after spawning in the female. *Zool Sci* 23:23–29.

- 102. Oka Y (2010) Electrophysiological characteristics of gonadotrophin-releasing hormone
 1-3 neurones: insights from a study of fish brains. *J Neuroendocrinol* 22:659–663.
- 103. Okubo K, Amano M, Yoshiura Y, Suetake H, Aida K (2000) A novel form of gonadotropin-releasing hormone in the medaka, *Oryzias latipes*. *Biochem Biophys Res Commun* 276:298–303.
- 104. **Okubo K, Nagahama Y** (2008) Structural and functional evolution of gonadotropin-releasing hormone in vertebrates. *Acta Physiol* 193:3–15.
- 105. Okubo K, Sakai F, Lau EL, Yoshizaki G, Takeuchi Y, Naruse K, Aida K, Nagahama Y. (2006) Forebrain gonadotropin-releasing hormone neuronal development: insights from transgenic medaka and the relevance to X-linked Kallmann syndrome. *Endocrinology* 147:1076–1084.
- 106. Okubo K, Takeuchi A, Chaube R, Paul-Prasanth B, Kanda S, Oka Y, Nagahama Y (2011) Sex differences in aromatase gene expression in the medaka brain. J Neuroendocrinol 23:412–423.
- 107. Okuyama T, Yokoi S, Abe H, Isoe Y, Suehiro Y, Imada H, Tanaka M, Kawasaki T, Yuba S, Taniguchi Y, Kamei Y, Okubo K, Shimada A, Naruse K, Takeda H, Oka Y, Kubo T, Takeuchi H (2014) A neural mechanism underlying mating preferences for familiar individuals in medaka fish. *Science* 343: 91–94.
- 108. Parhar IS, Tosaki H, Sakuma Y, Kobayashi M (2001) Sex differences in the brain of goldfish: gonadotropin-releasing hormone and vasotocinergic neurons. *Neuroscience* 104:1099–1110.
- 109. Paul-Prasanth B, Bhandari RK, Kobayashi T, Horiguchi R, Kobayashi Y, Nakamoto M, Shibata Y, Sakai F, Nakamura M, Nagahama Y (2013) Estrogen oversees the maintenance of the female genetic program in terminally differentiated gonochorists. *Sci Rep* 3:2862.
- 110. Pihlajamaa P, Sahu B, Jänne OA (2015) Determinants of receptor- and tissue-specific actions in androgen signaling. *Endocr Rev* 36:357–384.
- 111. **Pradhan A, Olsson PE** (2015) Zebrafish sexual behavior: role of sex steroid hormones and prostaglandins. *Behav Brain Funct* 11:23.
- 112. Raghuveer K, Sudhakumari CC, Senthilkumaran B, Kagawa H, Dutta-Gupta A, Nagahama Y (2011) Gender differences in tryptophan hydroxylase-2 mRNA, serotonin,

and 5-hydroxytryptophan levels in the brain of catfish, *Clarias gariepinus*, during sex differentiation. *Gen Comp Endocrinol* 171:94–104.

- 113. Rahman MS, Thomas P (2009) Molecular cloning, characterization and expression of two tryptophan hydroxylase (TPH-1 and TPH-2) genes in the hypothalamus of Atlantic croaker: down-regulation after chronic exposure to hypoxia. *Neuroscience* 158:751–765.
- 114. **Reiner A, Medina L, Veenman CL** (1998) Structural and functional evolution of the basal ganglia in vertebrates. *Brain Res Brain Res Rev* 28:235–285.
- 115. Saland LC, Samora A, Sanchez P, Chavez (1993) Immunocytochemical studies of tryptophan hydroxylase, tyrosine hydroxylase, and serotonin innervation in the aging rat neurointermediate pituitary. *Exp Neurol* 121:119–126
- 116. Salek SJ, Sullivan CV, Godwin J (2002) Arginine vasotocin effects on courtship behavior in male white perch (*Morone americana*). *Behav Brain Res* 133:177–183.
- 117. Santangelo N, Bass AH (2006) New insights into neuropeptide modulation of aggression: field studies of arginine vasotocin in a territorial tropical damselfish. *Proc Biol Sci* 273:3085–3092.
- 118. Santangelo N, Bass AH (2010) Individual behavioral and neuronal phenotypes for arginine vasotocin mediated courtship and aggression in a territorial teleost. *Brain Behav Evol* 75:282–291.
- 119. Sasado T, Tanaka M, Kobayashi K, Sato T, Sakaizumi M, Naruse K (2010) The National BioResource Project Medaka (NBRP Medaka): an integrated bioresource for biological and biomedical sciences. *Exp Anim* 59:13–23.
- 120. Sato T, Matsumoto T, Kawano H, Watanabe T, Uematsu Y, Sekine K, Fukuda T, Aihara K, Krust A, Yamada T, Nakamichi Y, Yamamoto Y, Nakamura T, Yoshimura K, Yoshizawa T, Metzger D, Chambon P, Kato S. (2004) Brain masculinization requires androgen receptor function. *Proc Natl Acad Sci USA* 101:1673–1678.
- 121. Satou M, Oka Y, Kusunoki M, Matsushima T, Kato M, Fujita I, Ueda K (1984) Telencephalic and preoptic areas integrate sexual behavior in hime salmon (landlocked red salmon, *Oncorhynchus nerka*): results of electrical brain stimulation experiments. *Physiol Behav* 33:441–447.
- 122. Schiml PA, Rissman EF (2000) Effects of gonadotropin-releasing hormones,

corticotropin -releasing hormone, and vasopressin on female sexual behavior. *Horm Behav* 37:212–220.

- 123. Schneider HPG, McCann SM (1970) Mono- and indolamines and control of LH secretion. *Endocrinology* 86:1127–1133.
- 124. Semaan SJ, Kauffman AS (2010) Sexual differentiation and development of forebrain reproductive circuits. *Curr Opin Neurobiol* 20:424–431.
- 125. Semsar K, Godwin J (2003) Social influences on the arginine vasiotocin system are independent of gonads in a sex-changing fish. *J Neurosci* 23:4386–4393.
- 126. Semsar K, Godwin J (2004) Multiple mechanisms of phenotype development in the bluehead wrasse. *Horm Behav* 45:345–353.
- 127. Semsar K, Kandel FLM, Godwin J (2001) Manipulations of the AVT system shift social status and related courtship and aggressive behavior in the bluehead wrasse. *Horm Behav* 40:21–31.
- 128. Senthilkumaran B, Okuzawa K, Gen K, Kagawa H (2001) Effects of serotonin, GABA and neuropeptide Y on seabream gonadotropin releasing hormone release *in vitro* from preoptic-anterior hypothalamus and pituitary of red seabream, *Pagrus major*. *J Neuroendocrinol* 13:395–400.
- 129. Shaffer PL, Jivan A, Dollins DE, Claessens F, Gewirth DT (2004) Structural basis of androgen receptor binding to selective androgen response elements. *Proc Natl Acad Sci* USA 101:4758–4763.
- 130. Shi Q, Ando H, Coon SL, Sato S, Ban M, Urano A (2004) Embryonic and post-embryonic expression of arylalkylamine *N*-acetyltransferase and melatonin receptor genes in the eye and brain of chum salmon (*Oncorhynchus keta*). *Gen Comp Endocrinol* 136:311–321.
- 131. Simerly RB, Swanson LW, Gorski RA (1985) The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. *Brain Res* 330:55–64.
- 132. Simerly RB, Zee MC, Pendleton JW, Lubahn DB, Korach KS (1997) Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. *Proc Natl Acad Sci USA* 94:14077–14082.

- 133. Simon NG, Whalen RE, Tate MP (1985) Induction of male-typical aggression by androgens but not estrogens in adult female mice. *Horm Behav* 19:204–212.
- 134. Somoza GM, Peter RE (1991) Effects of serotonin on gonadotropin and growth hormone release from *in vitro* perifused goldfish pituitary fragments. *Gen Comp Endocrinol* 82:103–110.
- Stacey N, Kobayashi M (1996) Androgen induction of male sexual behaviors in female goldfish. *Horm Behav* 30:434–445.
- 136. Sudhakumari CC, Senthilkumaran B, Raghuveer K, Wang DS, Kobayashi T, Kagawa H, Krishnaiah Ch, Dutta-Gupta A, Nagahama Y (2010) Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. *Gen Comp Endocrinol* 166:320–329.
- 137. Svare B, Davis PG, Gandelman R (1974) Fighting behavior female mice following chronic androgen treatment during adulthood. *Physiol Behav* 12:399–403.
- 138. Takatsu K, Miyaoku K, Roy SR, Murono Y, Sago T, Itagaki H, Nakamura M, Tokumoto T (2013) Induction of female-to-male sex change in adult zebrafish by aromatase inhibitor treatment. *Sci Rep* 3:3400.
- 139. Takeda H, Shimada A (2010) The art of medaka genetics and genomics: what makes them so unique? *Annu Rev Genet* 44: 217–241.
- 140. Takeuchi Y, Imamura S, Sawada Y, Hur SP, Takemura A (2014) Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish. *Gen Comp Endocrinol* 204:158–165.
- 141. van Leeuwen FW, Caffe AR, De Vries GJ (1985) Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens. *Brain Res* 325:391–394.
- 142. Verrijdt G, Haelens A, Claessens F (2003) Selective DNA recognition by the androgen receptor as a mechanism for hormone-specific regulation of gene expression. *Mol Genet Metab* 78:175–185.
- 143. Verrijdt G, Tanner T, Moehren U, Callewaert L, Haelens A, Claessens F (2006) The androgen receptor DNA-binding domain determines androgen selectivity of transcriptional response. *Biochem Soc Trans* 34:1089–1094.
- 144. Volkoff H, Peter RE (1999) Actions of two forms of gonadotropin releasing hormone

and a GnRH antagonist on spawning behavior of the goldfish *Carassius auratus*. *Gen Comp Endocrinol* 116:347–355.

- 145. Wai EH, Hoar WS (1963) The secondary sex characters and reproductive behavior of gonadectomized sticklebacks treated with methyl testosterone. *Can J Zool* 41:611–628.
- 146. Weissbach H, Redfield BG, Axelrod J (1961) The enzymic acetylation of serotonin and other naturally occurring amines. *Biochim Biophys Acta* 54:190–192.
- 147. **Winberg S, Lepage O** (1998) Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. *Am J Physiol* 274:R645–654.
- 148. Wittbrodt J, Shima A, Schartl M (2002) Medaka a model organism from the far East. Nat Rev Genet 3:53–64.
- 149. Yamaguchi Y, Kaiya H, Konno N, Iwata E, Miyazato M, Uchiyama M, Bell JD, Toop T, Donald JA, Brenner S, Venkatesh B, Hyodo S (2012) The fifth neurohypophysial hormone receptor is structurally related to the V2-type receptor but functionally similar to V1-type receptors. *Gen Comp Endocrinol* 178:519–528.
- 150. Yamamoto K, Ruuskanen JO, Wullimann MF, Vernier P (2010) Two tyrosine hydroxylase genes in vertebrates: new dopaminergic territories revealed in the zebrafish brain. *Mol Cell Neurosci* 43:394–402.
- 151. Yamamoto N, Oka Y, Kawashima S (1997) Lesions of gonadotropin-releasing hormone- immunoreactive terminal nerve cells effects on the reproductive behavior of male dwarf gouramis. *Neuroendocrinol* 65:403–412.
- 152. Yokoi S, Okuyama T, Kamei Y, Naruse K, Taniguchi Y, Ansai S, Kinoshita M, Young LJ, Takemori N, Kubo T, Takeuchi H (2015) An essential role of the arginine vasotocin system in mate-guarding behaviors in triadic relationships of medaka fish (*Oryzias latipes*). *PLoS Genet* 11:e1005009.
- 153. Zhang Y, Zhang S, Zhou W, Ye X, Ge W, Cheng CH, Lin H, Zhang W, Zhang L (2012) Androgen rather than estrogen up-regulates brain-type cytochrome P450 aromatase (*cyp19a1b*) gene via tissue-specific promoters in the hermaphrodite teleost ricefield eel *Monopterus albus*. *Mol Cell Endocrinol* 350:125–135.
- 154. Zill P, Büttner A, Eisenmenger W, Müller J, Möller HJ, Bondy B (2009) Predominant expression of tryptophan hydroxylase 1 mRNA in the pituitary: A postmortem study in human brain. *Neuroscience* 159:1274–1282.