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Introduction 
 

 
The thesis presented herein describes a series of studies aimed at understanding how 

the marine diatom Rhizosolenia seitgera biosynthesizes the unique highly branched isoprenoid 
(HBI) hydrocarbons that have been previously characterized from this and other species of 
diatoms. In particular, the studies focus on determining the possible biological functions of 
these HBIs, elucidating the potential precursors and enzymes involved in HBI biosynthesis, 
and defining further the underlying mechanisms for HBI biosynthesis. Overviews on 
terpenoids, the enzymes involved in their biosynthesis, and previous studies on R. setigera and 
the HBIs they produce will provide a background for the overall aims and scope of the current 
study. 

 

Terpenoids 

  Among all known and characterized natural products, it has been estimated that 
terpenoids make up an astounding 60% (Firn, 2010). This group of natural products structurally 
consist of distinctive C5 isoprene units that occur in variable yet defined multiples. It is because 
of this feature that terpenoids are also commonly referred to as isoprenoids and the two terms 
are used interchangeably within this study. 
 Terpenoids occur universally in all living organisms where they play a myriad of 
physiological and ecological functions (Gershenzon & Dudareva, 2007). Due to the diverse 
natural functions and physical properties that terpenoids exhibit, humans have also found a 
variety of applications for these compounds dating as far back as the earliest of civilizations 
(Firn, 2010). In more recent history, a significant amount of focus has been given on their 
potential applications in pharmaceuticals and renewable energy (Gross & Konig, 2006; 
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Bohlmann & Keeling, 2008; Melis, 2012). The rapidly expanding applications for terpenoids 
now push the envelope for understanding how these compounds are biosynthesized and 
harnessing this information to provide innovations in fields such as biotechnology and 
synthetic biology. 
  

Terpenoid biosynthesis 

The amazing structural diversity among terpenoids stems from the wide variety of 
enzymes involved in their biosynthesis. Despite this diversity, all terpenoids originate from the 
fundamental C5 phosphorylated isoprene unit isopentenyl pyrophosphate (IPP), and its isomer 
dimethylallyl pyrophosphate (DMAPP). These C5 isoprenoid units are derived from either of 
two distinct biosynthetic pathways: the mevalonate (MVA) pathway and the alternative 
methylerythritol 4-phosphate (MEP) pathway. The MVA pathway is widely present in 
eukaryotes, archaea, and some bacteria (Buhaescu & Izzedine, 2007) while the MEP pathway 
is present only in plants, prokaryotes, and some protozoa (Rohmer, 1999; Wiemer et al., 2010). 
In terms of localization within the cell in plants, the MVA pathway occurs in the cytosol while 
the MEP pathway occurs in plastids. It has generally been accepted that the cytosolic pool of 
IPP derived from the MVA pathway is used for the biosynthesis of sesqui- (C15), tri- (C30), and 
polyterpenes (C45 and higher) while MEP-derived IPP is used for the biosynthesis of mono- 
(C10), di- (C20), and tetraterpenes (C40) (Bohlmann et al., 1998) but more recent studies have 
revealed the possibility of the two pathways interacting with each other (Dudareva et al., 2005). 

Downstream from the MVA and MEP pathways, the formation of larger (C10 and 
higher) terpenoids requires the head to tail condensation of IPP and DMAPP into longer chain 
prenyl pyrophosphates such as geranyl pyrophosphate (C10, GPP), farnesyl pyrophosphate 
(C15, FPP), and geranylgeranyl pyrophosphate (C20, GGPP). These linear polyprenyl 
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pyrophosphates are subsequently used as direct precursors for terpenoid biosynthesis through 
enzymes broadly classified as terpene synthases (TPSs) which generally catalyse condensation, 
cyclization, or more complex modification reactions (Christianson, 2008).  

The enzymes responsible for the formation of these precursor polyprenyl 
pyrophosphates are broadly classified as prenyltransferases and are also known as prenyl 
pyrophosphate synthases (PPPSs). These PPPSs could be further categorized as either trans- 
or cis-prenyltransferases and are classified as such based on the resulting geometric orientation 
of the constituent IPP units (Takahashi & Koyama, 2006) although both typically catalyze 
chain elongation reactions. This chain elongation reaction is carried out by PPPSs via the initial 
formation of an allylic carbocation (i.e. from DMAPP) through the dissociation of the 
pyrophosphate group and the subsequent addition of IPP via the stereospecific elimination of 
a proton at C-2 of the IPP moiety (Christianson, 2008). 

One of the most studied examples of trans-prenyltranserases (TPTs) is farnesyl 
pyrophosphate synthase (FPPS), which catalyses the formation of farnesyl pyrophosphate 
(FPP), the primary precursor for sequi- and triterpenes. In brief, FPPS initially catalyses the 
head to tail condensation of DMAPP and IPP after which, another IPP molecule is added to 
form a C15 prenyl pyrophosphate in an all-trans-configuration (Reed & Rilling, 1975). All 
TPTs share a high degree of homology and are characterized by the presence of two conserved 
aspartate-rich motifs (DDXX(XX)D) that serve as binding sites for IPP and DMAPP 
(Christianson, 2008). The length of the resulting polyprenyl pyrophohsphate products are 
determined by amino acid residues found upstream of the first aspartate-rich motif (Ohnuma 
et al., 1996; Tarshis et al., 1996). 

Unlike the more well studied TPTs, cis-prenyltransferases (CPTs) have only recently 
gained considerable research interest in part due to the fact that most terpenoids characterized 
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so far arise from polyprenyl pyrophosphate precursors produced by TPTs. As their name 
suggests, CPTs carry out the chain elongation of allylic prenyl pyrophosphates by the 
subsequent addition of IPP molecules in the cis-configuration. Although both cis- and trans-
prenyltransferases typically carry out chain elongation reactions involving similar substrates, 
they share very little in terms of amino acid sequence homology and in fact have widely 
different three-dimensional structures (Takahashi & Koyama, 2006). One of the most studied 
CPTs is undecaprenyl pyrophosphate synthase (UPPS) which carries out the formation of the 
C55 undecaprenyl pyrophosphate (UPP) by the addition of 8 more IPP molecules in the cis- 
configuration to an FPP molecule (Allen, 1985). Unlike the well-defined aspartate-rich motifs 
in TPTs, substrate binding in CPTs appears to be mediated by a flexible P-loop located in the 
conserved Region III (Ko et al., 2001) and binding of allylic substrates leads to a 
conformational change in the enzyme (Guo et al., 2005). Product chain length in CPTs has 
been postulated to be determined by a series of charged residues found at the hinge of helix-3 
(Takahashi & Koyama, 2006).  

Until recently, nearly all TPTs and CPTs that have been isolated and characterized only 
catalyze the formation of linear polyprenyl pyrophosphates but studies conducted just within 
the last decade or so have uncovered examples of TPTs and CPTs that do not catalyze chain 
elongation reactions but instead carry out unconventional branching and cyclopropanation 
reactions. Hemmerlin and co-workers (2003) were able to isolate the cDNA of an FPPS 
homolog in Artemisia tridentata (which they denoted as FDS-5) that catalysed the formation 
of both chrysanthemyl pyrophosphate (CPP) and lavandulyl pyrophosphate (LPP) as its main 
products. More recently, Demissie and co-workers (2013) were able to isolate the gene that 
encoded for a CPT homolog, lavandulyl pyrophosphate synthase (LPPS) from the lavender 
plant. Furthermore, Ozaki and co-workers (2014) discovered the gene for a unique CPT 
homolog that catalyzed the formation of cyclolavandulyl pyrophosphate. It is interesting to 
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note that all the enzymes characterized in these studies required only DMAPP as the sole 
substrate. Such enzymes, especially those that carry out branching reactions, served as 
interesting precedents for the current study since the branched structure in lavandulyl 
pyrophosphate closely resembles the branched conjugation found in marine-derived highly 
branched isoprenoid hydrocarbons. 

 

Highly branched isoprenoids and their occurrence in R. setigera 

Highly branched isoprenoid (HBI) hydrocarbons are a unique group of C20, C25, and 
C30 isoprenoids that contain a distinctive branched conjugation at C-7 of their parent carbon 
skeletons (Figure 1). Interest in these HBIs stems mainly from their widespread occurrence in 
the marine environment, with C20 HBI alkanes being a major component in some crude oils 
(Yon et al., 1982), and C25 and C30 HBI alkenes being ubiquitously present in seawater and 
marine sediments (Rowland & Robson, 1990). The relatively wide distribution of C25 and C30 
HBIs has made them ideal geochemical markers for a marine environment since it was further 
established that the biological source of these HBIs were diatoms (Volkman et al., 1994, 
Wraige et al., 1999). Aside from their role as geochemical markers, some isomers of C25 HBIs 
have also been found to exhibit cytostatic activity against certain lung cancer cell lines thus 
giving them the potential for applications in medicine as well (Rowland et al., 2001a). 
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Figure 1: Representative saturated carbon skeletons of C20, C25, and C30 HBIs isolated from crude oils, seawater,   
                marine sediments, and diatom cultures. Numbering of carbon atoms was based on structures described    
                by Wraige et al. (1999) and Masse et al. (2004a)  

Diatoms are one of the most diverse groups of marine microalgae with estimates of as 
high as 100,000 probable species (Mann & Vanormelingen, 2013). Within this extensively 
diverse group, only a handful are known to produce structurally unique HBI hydrocarbons and 
among these, the marine diatom Rhizosolenia setigera is the only one documented to produce 
both C25 and C30 HBIs. Experiments using stable isotope labelling and specific inhibitors for 
biosynthetic pathways of isoprenoid precursors have revealed that HBIs produced by R. 
setigera are biosynthesized via the mevalonate-based isoprenoid pathway (Masse et al., 
2004a). Based on this and other structural studies, it has been proposed that the distinctive 
branched structure in these HBIs is formed by the coupling of either a C10 or C15 prenyl chain 
at C-6 of another C15 prenyl chain to give rise to C25 or C30 HBIs, respectively (Figure 2) (Masse 
et al., 2004b; Belt et al., 2006). Although sufficient evidence have already been presented 
regarding the involvement of the mevalonate pathway in producing the basic C5 isoprenoid unit 
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that is eventually incorporated into these HBIs, more downstream processes such as the actual 
coupling reaction for the distinctive branched conjugation and the direct precursors involved 
in such a reaction still remain to be elucidated. The purpose therefore of the current endeavor 
was to focus on the intermediate and final steps in the biosynthesis of these HBIs in order to 
help complete the picture of a potentially unique biosynthetic mechanism. 

 

 

 
Figure 2: Simplified hypothetical biosynthetic pathway for the formation of representative C25 and C30 HBIs 

produced by R. setigera. 
 

 

The current study 

Given that the biological role of these HBIs has yet to be determined, initial 
investigations comprising Chapter I of this study were conducted to shed light on the 
production rates of these compounds throughout a single culture cycle, and to verify previous 
observations (Belt et al., 2002; Masse, 2003) regarding the predominance of either C25 or C30 
HBIs in relation to the diatom’s stage in its life cycle.  

Like all other unicellular organisms, a diatom’s growth cycle in batch cultures can be 
divided into four phases, namely the lag, exponential, stationary, and death phases (Figure 3). 
Preliminary studies were done in order to determine the duration of each phase in the context 
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of R. setigera and to further correlate these phases with the amount of total HBIs present per 
cell at pre-determined intervals.  

 

Figure 3: Typical growth curve of microalgae in a single batch culture cycle (adopted from Coutteau, 1996). 
 

The unique morphology of diatoms such as R. setigera lies in the presence of a rigid 
outer silica shell or frustule composed of two overlapping valves with one smaller than the 
other. With every round of cell division, the two valves are divided among the resulting 
daughter cells and new valves are subsequently biosynthesized to complete a new silica shell 
(Figure 4). Throughout this process, one of the resulting daughter cells will be a fraction smaller 
up until they reach a critical minimum size. Upon reaching this critical minimum size, cells 
undergo auxosporulation – a type of sexual reproduction specific for diatoms – in order to 
produce daughter cells that are of their original size. Based on this life cycle, it has also been 
observed that the HBI profile of R. setigera changes, with variations in the predominance of 
either C25 or C30 HBIs throughout the life cycle. To verify this previous observation in a 
different strain, R. setigera CCMP 1694 was continuously cultured over 55 culture cycles 
spanning a period of approximately 2 years and the HBI profile of these were analyzed at the 
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end of each culture cycle. Results of these studies have thus provided a glimpse of the dynamics 
of HBI biosynthesis in R. setigera that hint at the possible biological role of these unique 
compounds. 

 

Figure 4: Simplified representation of how diatom size decreases with each successive generation of daughter 
cells. 

 

In line with the previously hypothesized biosynthetic route for the formation of HBIs, 
Chapter II of this study revolves around a series of in vivo feeding experiments using labelled 
and unlabeled farnesol (FOH), an alcohol derivative of the C15 isoprenoid unit farnesyl 
pyrophosphate (FPP) in order to investigate its effects on HBI production in R. setigera. 
Previous studies in both higher plants and green algae have demonstrated that FOH can be 
taken up by cells and phosphorylated into FPP, which is then utilized in the biosynthesis of 
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other more complex isoprenoids (Thai et al., 1999; Inoue et al., 1994). In general, the current 
feeding experiments revealed that treatments with FOH increased the overall HBI content of 
R. setigera cells and indicated that this most likely occurs through the incorporation of FOH 
via the same pathway that has been previously demonstrated for other plants. It therefore 
directed the course of the succeeding studies towards determining the role of FPP in HBI 
biosynthesis. 

Armed with the assumption that FPP serves as a precursor for the biosynthesis of HBIs, 
Chapter III focuses on efforts that were made to isolate and clone a cDNA encoding a putative 
FPP synthase (FPPS) from R. setigera and to characterize the coded enzyme through 
heterologous expression in Escherichia coli. In vitro enzyme assays using the purified RsFPPS 
enzyme revealed that it was a functional FPPS. A series of in vivo inhibition experiments using 
risedronate further suggested that RsFPPS provided substrates for HBI biosynthesis. 
Expression levels of RsFPPS were also monitored using qRT-PCR in a bid to determine 
whether this enzyme played a role in the regulation of the types of HBIs biosynthesized by R. 
setigera. 

In order to determine the final steps in HBI biosynthesis in R. setigera and confirm the 
role of FPP as a precursor to these unique compounds, a series of cell-free enzyme assays using 
radiolabeled substrates were conducted and comprise Chapter IV of this study. Crude cell 
homogenates were used to characterize HBI synthesis activity in terms of the time-dependent 
formation of products, the possible involvement of other prenyl pyrophosphate precursors aside 
from FPP, and the tentative requirement for a divalent metal cation for enzyme activity. In all 
the assays conducted, the formation of HBIs from labeled precursors were observed and this 
was the first instance that HBI synthesis activity from R. setigera or any other diatom has been 
demonstrated in vitro. As such, the findings of these experiments can be considered a major 
turning point in research regarding HBI biosynthesis. The possible mechanisms for the final 
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steps in the formation of HBIs deduced from these studies thus help in postulating a new 
biosynthetic pathway for these unique compounds. 

The final section of this thesis summarizes all these results and provides possible 
directions for future work on HBI biosynthesis. 
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Chapter I 
 
As the contents of this chapter are anticipated to be published in a paper in a scholarly journal, 
they cannot be published online. The paper is scheduled to be published in 4 years. 
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Chapter II 
 
As the contents of this chapter are anticipated to be published in a paper in a scholarly journal, 
they cannot be published online. The paper is scheduled to be published in 4 years. 
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Chapter III 
The contents of this chapter have been published in a jointly authored paper in a scholarly 
journal and as the permission of all collaborating authors has not been granted, they cannot be 
published online. The contents of this chapter are detailed in Scientific Reports Vol. 5, Article 
number 10246. 
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Chapter IV 
 
As the contents of this chapter are anticipated to be published in a paper in a scholarly journal, 
they cannot be published online. The paper is scheduled to be published in 4 years. 
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Summary 
 

The marine diatom Rhizosolenia setigera presents itself as a fascinating subject for 
research due to its ability to produce structurally unique C25 and C30 highly branched 
isoprenoids. Aside from the captivating structure of these HBIs, the potential ecological and 
pharmacological applications of these compounds serve as sufficient incentives to invest efforts 
in elucidating their biosynthetic pathway. This thesis therefore endeavored to provide new 
insights into how HBIs are biosynthesized through a series of biological, biochemical, and 
genetic experiments. 

In a bid to determine the possible biological function of these HBIs, a study on the 
relative abundance of HBIs per cell revealed that the rate of HBI biosynthesis appeared to be 
constant during phases of exponential growth. Analysis of changes in HBI composition 
throughout R. setigera’s life cycle further showed that the onset of auxosporulation had a 
dramatic effect in the shift between C25 and C30 HBIs. The dynamics observed for HBIs in 
these experiments followed similar patterns of membrane lipids in other organisms and thus 
points to the possibility of HBIs having membrane associated functions. 

As a preliminary step to picture out possible precursors for HBI biosynthesis, feeding 
experiments with FOH were conducted. Experiments using unlabeled FOH showed the 
accumulation of the more unsaturated C25 HBI isomers. Analysis of total HBI content per cell 
further revealed a dose dependent increase of HBIs hinting that FOH could be contributing to 
HBI biosynthesis. Using 14C-FOH confirmed the incorporation of a C15 prenyl chain into HBIs 
and the incorporation of 14C-FOH into squalene implied that 14C-FOH is initially converted 
into 14C-FPP before subsequently being used for further terpenoid biosynthesis. 

With FPP designated as a tentative substrate for HBI biosynthesis, efforts were made 
to isolate a cDNA encoding for FPPS. A putatitve FPPS cDNA was successfully cloned and 
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characterized and revealed that it did encode for a functional FPPS. Analysis of relative 
expression levels for RsFPPS showed no correlation with the changes in HBI profile 
throughout R. setigera’s life cycle although expression levels coincided with relative growth 
rates. Inhibition of RsFPPS using risedronate showed a dose-dependent decrease in HBI 
content per cell indicating that this enzyme most likely provides precursors for HBI 
biosynthesis. 

Finally, cell-free enzyme assays were able to demonstrate HBI synthesis activity in 
vitro for the first time ever. Using combinations of radiolabeled substrates further revealed that 
DMAPP may be directly involved in HBI biosynthesis through the formation of the distinctive 
branched conjugation found in HBIs and through a potentially novel and unprecedented 
mechanism for prenyl chain elongation. The results of these experiments thus provided new 
information in order to revise the previously hypothesized biosynthetic route for HBI 
formation.  

Taken together, the lines of evidence presented in this study provide additional 
information to support the hypothesis on the biological importance of these HBIs, reveals the 
integral role of FPP in their biosynthesis, and offers a more defined picture of how these unique 
compounds are biosynthesized. From the information gathered in this study, future work on R. 
setigera and overall understanding of HBI biosynthesis should now be focused on areas such 
as elucidating the actual localization of HBIs in cells and isolating and characterizing the 
specific genes involved in the final steps in HBI biosynthesis. 
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Appendix 
 
 
Table S1: 13C NMR analysis of C25 triene (VI) from R. setigera compared to a C25 triene 
characterized by Belt et al. (2000) from Pleurosigma intermedium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
                              * Structure number is based on cited paper.  
 
 
 
 
 
 
 

 13C (δ ppm) 
Carbon number VI (this study) XIII* (Belt et al., 2000) 

23 144.6 144.6 7 143.0 143.0 10 136.1 136.1 9 123.7 123.7 20 122.8 122.9 24 112.1 112.1 3 39.3 39.3 13 39.0 39.0 22 38.2 38.2 5 35.3 35.3 21 34.4 34.4 6 34.3 34.3 11 31.8 31.8 8 29.0 29.0 2, 14 27.9 27.9 12 25.8 25.8 4 25.7 25.7 18 23.5 23.5 1, 15, 16, 19 22.6 22.6 17 19.6 19.6 25 19.5 19.5 
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Figure S1: Mass spectra of C25 and C30 HBIs isolated from R. setigera CCMP 1694. 
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Figure S1: continued… 
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Table S2: Retention indices of HBIs. 
 
 
 
 
 
 
 
 
 
                                                         
                                                        * using MS-1 column 
                                                        a Belt et al. (2000); HP-1 column 
                                                        b Belt et al. (2001); HP-1 column 
                                                        c Masse et al. (2004c); HP-1 column 
                                     † based on structures in Figure 4 and Figure S1  
 
 
 
 
 
 
 
 
 
 
 
 
 

Retention Index (RI) Corresponding HBI 
structure† This study* Previous worka,b,c 

2043 2042a VI 
2074 2074a V 
2087 2087a III 
2089 2089c XI 
2113 2112a IV 
2120 2121a II 
2160 2159a I 
2504 2505b X 
2544 2545b IX 
2548 2548c XIII 
2558 2558b VIII 
2578 2579c XII 
2595 2596b VII 
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 Figure S2: Mass spectra of two unidentified putative C25 tetraenes from R. setigera fed with FOH. 

* 

* 

1 

2 


