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ABSTRACT 

 

Remote sensing technology is a promising technology for many forestry applications 

such as aboveground biomass measurement, forest biophysical characteristics estimation, 

forest monitoring system and biodiversity assessment. Two major advantages of using remote 

sensing technology are the capability for large spatial and multi-temporal assessment.  

Generally, three dimensional dataset of the earth surface can be derived from three main 

types of remote sensing technology; i.e. airborne laser scanning (ALS) system, synthetic 

aperture radar (SAR) and stereo imageries, where each type of dataset provide different 

information and resolution depending on sensors’ type and altitude. Aerial photogrammetry 

have the advantages on the low cost data acquisition, higher availability and unique 

reflectance information compared to ALS and SAR dataset, thus making photogrammetry to 

remain as important dataset in addressing global challenges such as forest carbon monitoring 

under the reducing emission from deforestation and forest degradation (REDD-plus) 

mechanism. In the monitoring, reporting and verification (MRV) of REDD-plus, a reliable and 

alternative method is needed.  The main objective of this research study is to evaluate and 

demonstrate the capability of digital aerial photogrammetry for forestry applications in tropical 

montane forest environment. Analyses are divided into three main parts; performance of 

photogrammetric digital surface model (DSM), above ground biomass estimation, and forest 

biophysical characteristics estimation.  Chapter 4 explains the dataset used in this research 

study. The study area is located in Ulu Padas forest area (approximately 4°26’N, 115°45’E) of 

Northern Borneo, Malaysia, inside the Heart of Borneo initiative area with elevation ranges 

from 900 m to 2,000 m and consists of several forest types with different forest degradation 

levels. The remote sensing dataset were acquired during a flight mission in October 2012 

using Riegl LMS-Q560 for LiDAR data and Canon 1D-Mark III for aerial photographs attached 

to a helicopter platform. Field works were conducted between 2011 and 2014 using different 

plot sizes (30 m × 30 m; 20 m × 20 m; and 90 m × 90 m) and tree information of DBH, tree 

height, tree crown, and species were recorded for each plot.  Processing of aerial photographs 

were performed using structure-from-motion (SfM) software, Agisoft PhotoScan Pro version 

1.0.3 to produce photogrammetric point cloud. In addition, ortho-photo was generated using 

the same software and digital surface model was derived from the photogrammetric point 

cloud.  Chapter 5 explains the evaluation performance of photogrammetric DSM (photo-DSM). 

Photo-DSM of 1 m resolution was derived from photogrammetric point cloud and its 

performance of DSM was assessed using ALS dataset as the reference. Image matching was 

successfully performed of which 86.1% of the aerial photographs used. The result 

demonstrated that different forest structures characterized by mean and standard deviation of 

ALS-CHM (ALS canopy height model) influenced the root-mean-square-error (RMSE) values 
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(RMSE = 1.01 – 4.19 m) of photogrammetric DSM. Compared with other canopy surface area, 

RMSE values on steeper canopy slope and darker area were found higher with values of 8.6 

m and 5.8 m, respectively. No-data constituted about 3.3% within the forest blocks. Chapter 6 

explains the aboveground biomass (AGB) estimation using aerial photographs and ALS 

datasets. In this research component, photogrammetric and ALS point clouds were used to 

develop model for the AGB estimation. MRV (measurement, reporting and verification) under 

REDD-plus requires cost effectiveness with accurate result, and aerial photographs can 

potentially be an alternative for this purpose under the condition if country-wide aerial 

photography mapping program is available. AGB estimations were evaluated using different 

prediction methods (i.e. linear regression and random forest model), sets of ground sample 

plots, ALS and SfM datasets, and allometric equations. Chapter 7 explains the forest 

biophysical characteristics estimation where forest inventory information is important both for 

scientific and forest management purposes. The result of forest biophysical characteristics 

estimation using SfM is similar with the estimation from ALS (i.e. the difference of relative 

RMSE values were less than 2.6% when using Random Forest). The RMSE values for mean 

diameter, dominant tree height and Lorey’s height are less than 15%, while basal area and 

tree density within 22−37%. The key points of this research study demonstrated the capability 

of aerial photogrammetry for forestry applications specifically on AGB estimation and forest 

biophysical characteristics estimation; (1) The performance on photogrammetric DSM 

analysis showed that accuracies were influenced by mean and standard deviation of ALS-

CHM, dark area and steep slope. This suggests note must be taken when using 

photogrammetric DSM for certain applications such as monitoring forest dynamics especially 

on highly heterogeneous forest type, (2) AGB estimation result from aerial photogrammetry is 

potentially used for MRV in REDD-plus once a detailed digital terrain model is available from 

ALS, (3) forest biophysical characteristics can be estimated using SfM and the result are 

similar with estimation from ALS. There is a potential of its applications to forestry if a routine 

national aerial photography program is available and potential use with unmanned aerial 

system (UAS) for small scale project, and (4) the full applications of aerial photogrammetry in 

forest environment can be achieved once a high accurate digital terrain model from ALS is 

available. 
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Chapter 1 : Introduction 

 

1.1. Research background 

Tropical montane forest is very unique ecosystem and provides diverse multiple 

ecosystem benefits. An estimate of 980 thousand square kilometers or less than 1% of total 

land area consist of the global tropical (and sub-tropical) moist forest across Tropical Andes, 

Central America, East Africa, Madagascar and Southeast Asia (MEA, 2005). In Borneo Island, 

the land area with elevation above 1,000 m is estimated at only 5% of the total area or 38 

thousands square kilometers. Mountain region has been recognized as a major contributor to 

river systems and plays an important role in maintaining hydrological cycles. In addition to that, 

mountainous region in humid tropics is important biodiversity hotspot where as high as 5,000 

spp. per 10,000 km2 of vascular plants were reported (Barthlott et al., 2005). This forest 

ecosystem has been continuously threatened to degradation and non-sustainable 

development which may result irreversible environmental damage.  

Addressing sustainable development of tropical montane forest requires both national 

and international commitment and effort. At international level, several mechanisms to 

address the global challenges have been initiated such as the carbon sequestration 

mechanism of reducing emission from deforestation and forest degradation, and the role of 

conservation, sustainable management of forests and enhancement of forest carbon stocks 

in developing countries (REDD-plus) and the biodiversity protection of Aichi Biodiversity 

Targets. The REDD-plus aims to provide monetary incentive to the participating countries in 

protecting biomass stored in the forest. To implement such policies, a robust and transparent 

monitoring system and assessment along with cost effective system is required. For this, the 

use of remote sensing technology is recognized because it has the capability of large spatial 

and temporal assessment. However, finding the best cost effective method would be 

challenging as there is always trade-offs between costs and accuracy. 

Apart from that, the timely and accurate information derived from remote sensing 

technology can be used for estimation of forest biophysical characteristics. Information of 

forest biophysical characteristics (e.g. mean diameter, volume, basal area, stand height and 

tree density) are important for both scientific and forest management purposes. In forest 

management, the main requirement are quantification of volumetric product yield and 

structural composition of the forest (Scott and Gove, 2002). Scientifically, forest biophysical 

characteristics information is mainly used for ecological studies such as study of forest 

structure between different forest types (e.g. Ostertag et al., 2014) and structure analysis of 

forest degradation (e.g. Njepang, 2015).  
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Remote sensing technology is a promising technology for variety of forest applications 

with the main advantages of large spatial and multi temporal assessment. There are various 

types of remote sensing dataset with different types of information and resolution which can 

be influenced by both sensor type and platform. For sensor type, it can be categorized either 

into passive system of optical sensor or active system of light detection and ranging (LiDAR) 

and synthetic aperture radar (SAR) sensors. The sensor system can be either attached to 

airborne or space-borne platform. Space-borne platform have an advantage especially for 

larger area assessment however with limitation of reduced accuracy in many applications due 

to its lower resolution compared to airborne platform. Airborne platform permits higher 

resolution when higher accuracy is needed for certain applications. Height information have 

been found to be superior in estimating height related variables such as stand height and 

biomass (e.g. Gobakken et al., 2015; Nurminen et al., 2013). Height information can be 

derived from all three type of sensors (i.e. optical, Lidar and SAR). The latter two use active 

system which directly derive the height information by emitting its own energy whereas the 

former is an indirect technique which depend on stereoscopic coverage for the height 

derivation. Technological development from analytical photogrammetry (where height is 

derived manually) to digital photogrammetry permitted a fully automated process to derive 

height in very dense point cloud.  

This digital photogrammetry technology is based on the image matching algorithm 

developed in computer vision field or often called structure from motion (SfM) technique.  SfM 

technique aims to simultaneously reconstruct three-dimensional scene structure, camera 

positions and orientations from a set of overlapping photographs (e.g. Snavely et al., 2008). 

Many different techniques have evolved since then which can be categorized into three basic 

matching techniques; (a) intensity-based, (b) feature-based, and (c) relational (Gruen, 2012). 

Semi global matching (SGM), developed by Hirschmuller (2005, 2006), has been found to 

achieve good overall image-matching results (e.g. Ginzler and Hobi, 2015) although higher 

computation time is needed.  

Aerial photographs will be advantageous in a certain context especially it can be cost 

effective in comparison to Airborne Laser Scanner (ALS) dataset (e.g. Leberl et al., 2010), 

thus the potential use is for large scale forest monitoring application. In addition to that, the 

unique reflectance information can be further applied for certain application such as species 

identification (e.g. Garzon-Lopez et al., 2013; Valérie and Marie-Pierre, 2006) used for 

biodiversity assessment or wildlife surveys (e.g. Van Gemert et al., 2014; Vermeulen et al., 

2013). With the combination of low data acquisition cost in comparison to ALS and automated 

process, aerial photographs will be an important remote sensing dataset for certain forest 

monitoring applications such as aboveground biomass estimation.  
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1.2. Research justification 

Structure from motion (SfM) dataset have found to be useful in deriving canopy height 

(e.g. Baltsavias et al., 2008; Ginzler and Hobi, 2012). However the detailed accuracy and 

performance assessment in forest environment is lacking. Certain forestry application may 

require this type of information such as forest dynamic study. Research development in the 

evaluation of the accuracy of photogrammetric digital surface model (photo-DSM) will provide 

a clear understanding of its properties so that the potential and limitations are known (Gruen, 

2012). In this study, the height accuracy of photo-DSM is evaluated by using canopy slope 

and dark area.  

Robust assessment along with cost-effective system is crucial in measurement, 

reporting and verification (MRV) system of REDD-plus. Since the SfM dataset can be cost 

effective compared to ALS dataset (e.g. White et al., 2013), the accuracy should be evaluated 

and compared against ALS dataset where many studies already have demonstrated the 

superiority of ALS dataset for biomass estimation (e.g. Ioki et al., 2014; Fassnacht et al., 2014). 

ALS dataset can be differed in terms of number of returns between discrete return (DR) and 

full-waveform (FW) system. However the “first”, “single” and “last” returns are conceptually 

similar. Prediction methods and number of ground samples for the aboveground biomass 

estimation have been found to be important factors affecting the accuracy (e.g. Fassnacht et 

al., 2014). In addition to that, there are wide range of allometric equations for biomass 

estimation with different estimation values, where it can be categorized into generic or 

regional-specific models. Evaluation on these factors will be important so that understanding 

of the potential and limitations can be gained, thus contribute to the robustness of biomass 

estimation using remote sensing dataset for large scale application.  

Forest biophysical characteristics estimation has been lacking in tropical forest 

ecosystem where this information can be useful for both scientific and forest management 

purposes. Further evaluation using both SfM dataset and ALS dataset were explored to 

understand the capability and limitations of estimating forest biophysical characteristics in 

tropical rainforest ecosystem.  

Several limitations are stated here namely; (1) the use of reflectance information will 

not be fully explored; (2) allometric equation using wood-specific gravity will not evaluated; (3) 

operational ground sampling distance (GSD) of 25 cm or 50 cm were not tested. Although the 

study is carried out in tropical montane forest environment, the result of the study may also 

applicable to other forest ecosystem because the study area consisted high heterogeneity of 

forest structure (e.g. tree height is up to almost 60 meter) and different forest degradation 

levels. 
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1.3. Research objective 

The main objective of this research study is to evaluate and demonstrate the capability 

of digital aerial photogrammetry along with airborne laser scanner (ALS) dataset with 

combination of ground survey to support sustainable forest management activities specific for 

forest monitoring purpose in tropical montane forest environment. Specifically; 

In Chapter 5, the accuracy of photogrammetric digital surface model (photo-DSM) at 

pixel resolution was evaluated by using ALS dataset as reference. The performance of photo-

DSM was investigated using canopy height metrics derived from ALS-dataset, canopy slope 

(derived both from SfM and ALS dataset), dark areas (derived from ortho-photo) and 

evaluating the no-data area of photo-DSM. 

In Chapter 6, the capability and limitations of SfM dataset in estimating aboveground 

biomass (AGB) were explored. The performance of AGB estimations were investigated by 

using different allometric equations, ground sample plots, remote sensing datasets and 

prediction methods. The main aim is to gain improved understanding for large scale 

applications used in MRV of REDD-plus. 

In Chapter 7, the capability and limitations of SfM dataset were further explored in 

estimating forest biophysical characteristics; namely dominant height, Lorey’s mean height, 

mean diameter, basal area and tree density. The performance of estimations were also 

investigated by using different ground sample plots, remote sensing datasets, and prediction 

methods. 

In addition to the discussion on the limitations and contribution of SfM dataset used in 

forest environment, several technical issues for large scale applications and further research 

development to increase the optimization of aerial photographs dataset were also discussed 

in Chapter 8. 
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Chapter 2 : Literature Review 

 

2.1. Global challenges and forestry 

Water and food security, biodiversity loss and global warming are global challenges 

that affecting livelihood of every people. The water resource projection in 2050 will be sufficient 

to produce food, however many regions will face water shortage (FAO & WWC, 2015). An 

estimated annual loss of 13 million hectares of the world’s forests by deforestation was 

reported in Global Forest Resources Assessment (FAO, 2010) was an alarming information 

that biodiversity resources have been directly threatened. According to IPCC’s fifth 

assessment report, it is now 95 percent certain that global warming is caused by human with 

the projection of four degree temperature increase by 2100 relative to pre-industrial levels in 

business as usual (IPCC, 2014). 

Forest ecosystem provides range of services such as biodiversity, water protection, 

resources for human (e.g. fuelwood, raw materials), soil protection, sociocultural values 

carbon sequestration (MEA, 2005). Thus, the forest ecosystem is directly related with the 

global challenges of water and food security, biodiversity loss and global warming. Forests are 

key determinants of water supply including both quality and quantity, and the importance of 

forests as watersheds may increase substantially in the next few decades, as freshwater 

resources become increasing its scarcity (Bates et al., 2008). Vegetation can influence the 

water quality and quantity flow into the river. For example, Greenwood et al. (1985) reported 

that newly planted forests use more water (by transpiration and interception) than the annual 

rainfall, by mining stored underground water. The important role of forests in protecting 

watershed was recognized (MEA, 2005), thus many countries have a framework of planning 

and management of forest area to sustain economic, social and environmental uses such as 

the Sabah Water Resources Master Plan (1994). Tropical forests harbor between 50% and 

90% of Earth’s terrestrial species although they only cover less than 10% of the total global 

land area (WRI et al., 1992). An example of Bornean forest, one of the hot spots for plant 

biodiversity, an estimated of 15,000 species of flowering plants was reported by MacKinnon 

et al. (1996) which include 1,700 species of orchid and 3,000 tree species with high endemism 

of approximately one third of the flowering species. The importance of forest ecosystem, 

covering 4.17 billion hectares of the earth, as a carbon pool have been recognized where 337 

billion tons of carbon is estimated to store in vegetation and 787 billion tons in the top 1 meter 

layer of soils (IPCC, 2001). MEA (2005) reported the estimation range between 335-365 billion 

tons of carbon pooled in biomass based on several global carbon analysis (i.e. Brown, 1998; 

Dixon et al. (1994); FAO, 2001; Houghton (1999); Kauppi, 2003; Saugier et al. 2001). IPCC 
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(2014) reported that agriculture, forestry and other land use (AFOLU) account for 24 % of the 

global greenhouse gas (GHG) emissions in 2010, second highest after energy sector (35%). 

The forest carbon is important contributor to global GHG emission which causing the global 

warming. The most visible evidence is the decrease of the annual mean ice cover extent loss 

in the arctic region in the range of 3.5 to 4.1% per decade between the period of 1979 (after 

the satellite observations initiated) to 2012 and the global mean sea level rose by 19 ±2 cm 

over the period of 1901 to 2010. In the IPCC’s Fifth Assessment Report (AR5), scientific 

analysis showed that the total anthropogenic GHG emissions have continued to increase 

during 1970 to 2010 and aggravated for the period between 2000 to 2010 with total GHG 

emissions in 2010 reached 49 GtCO2 -eq/yr which was almost twice the amount in 1970 (i.e. 

27 GtCO2 -eq/yr). Carbon dioxide emitted from forestry and other land use (FOLU) was 

estimated at 5.4 GtCO2 -eq/yr in 2010 or approximately 11% of the total GHG emissions in 

that year (IPCC, 2014). 

 Recognizing the importance of developing countries along with industrialized countries 

for the total emission reductions from all major sources, the timely proposal of reducing 

emission from deforestation was presented by the governments of Costa Rica and Papua New 

Guinea during the 11th session of Conference of Parties (COP)  to the United Nations 

Framework Convention on Climate Change (UNFCCC) in Montreal, 2005 (UNFCCC, 

2005).Two years later in the COP 13,  the proposal of “reducing emissions from deforestation 

in developing countries: approaches to stimulate action” was adopted in Decision 2/CP.13. In 

the same COP 13, recognizing the important of co-benefits of protecting forest carbon, the 

REDD was further developed to REDD-plus (reducing emissions from deforestation and forest 

degradation and the role of conservation, sustainable management of forests an enhancement 

of forest carbon stocks in developing countries) which was adopted as a part of the Bali Action 

Plan (Decision 1/CP.13) (UNFCCC, 2007). The success of addressing this issue by protecting 

many of forest ecosystems will certainly bring simultaneous multiple benefits including water 

and biodiversity protection. Remote sensing technology with combination of ground-based 

forest carbon inventory approaches for estimating forest carbon stocks and forest area 

changes was accepted in the methodological guidance for activities relating to REDD-plus 

which will contribute to the robust and transparent forest monitoring system or known as MRV 

(measurement, reporting and verification) system (Decision 4/CP. 15). 
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2.2. Photogrammetry and remote sensing technology to support forestry 

activities 

Aerial photogrammetry was the earliest method to collect information from above the 

earth surface. The term photogrammetry has been used since 1867 (Torlegård, 1987). Since 

surveillance and environmental study from aircraft and satellite with sensors operate in 

different part of electromagnetic spectrum (Torlegård, 1987), the term remote sensing was 

introduced and it was officially used in 1962 at “Symposium on Environmental Remote 

Sensing” in USA (Zhizhou, 1989). Since new method beyond the traditional black and white 

aerial photograph was developed, the term remote sensing have been introduced.  

Remote sensing technology has seen tremendous developments with many sensor 

types which can collect a vast range of information using the vast range of electromagnetic 

spectrum including other measuring instruments such as Electrostatic Gravity Gradiometer 

(EGG) used in GOCE satellite. In many forestry applications, it takes an advantage of three 

main sensor types, namely optical sensor, LiDAR, synthetic aperture radar (SAR) which all 

can be deployed either space-borne or airborne platform with different types of information 

and resolutions.  

Optical satellite sensor system is the earliest system deployed in space for military 

purpose (e.g. Corona with 7.5 m resolution). The resolution can be discussed into five, namely 

spatial, spectral, temporal, radiometric and geometric (e.g. Campbell, 2002). Many forestry 

applications rely heavily on all this resolutions. Optical sensors basically fall into either 

multispectral or hyperspectral sensor. One of the latest commercial satellites of GeoEye1 has 

a ground sampling distance (GSD) of 0.41m. Among many of the satellite optical systems, the 

LANDSAT program started in 1972 as the largest program for acquisition of imagery of Earth. 

The latest LANDSAT program is LANDSAT 8 launched in 2013. Although the LANDSAT data 

have been demonstrated to be superior especially in detecting land use change, the limitation 

lies on the coarser resolution of 30 meter which impeded many other forestry applications. 

Synthetic aperture radar have been demonstrated to be superior in deriving height 

information with limitation of lower resolution. The first global topographic dataset with high 

consistency was derived from the SRTM dataset acquire in 2000. The Shuttle Radar 

Topography Mission (SRTM) use the C-band (5.3 cm) to derive the 80% of global earth 

surface height. The current popular SAR satellites are TANDEM and ALOS-PALSAR. 

LiDAR technology is the state-of-the-art technology to derive height information in 

accuracy of tens of centimeters and the capability in deriving the terrain model in forest 

environment. However, the use of this sensor in space-borne platform is currently limited. 

ICESAT GLAS had the LiDAR sensor on board however the footprint was large about 70 

meter in diameter and nearly 170 m between the footprints. 
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All the technologies have been used in many forestry applications both with 

advantages and disadvantages depending on the type of analysis. For example for timber 

volume estimation (Rahlf et al., 2014), the most accurate estimation was using ALS dataset, 

followed by aerial photogrammetry, interferometry SAR and radargrammetry. Aerial 

photogrammetry and ALS dataset provide very high resolution in tens of centimeter and the 

superiority have been demonstrated in several forestry applications especially for estimation 

forest variables related to stand or tree height.  

 

 

2.3. Photogrammetry for forestry applications 

Historical development of photogrammetry 

The invention of photography in 1839 gave birth of the photogrammetry field. 

Photogrammetry dates back to the 1900s with invention of the stereocomparator for 

measuring parallax for photogrammetric purposes (e.g. Harley, 1962), and its application in 

forestry can be traced back to 1920s, when tree heights were computed by using tree shadows 

from aerial photographs (Seely, 1929). The use of photogrammetry technique was primarily 

to plot contour lines. Analogue methods were used until early 1980s. Most widely used 

instrument was Kelsh Plotter. It required high skill and expertise to use this instrument. 

The analogue film had been the standard in aerial photogrammetry before the 

innovation of digital photography. The standard width of the aerial photograph was 9 inches. 

Among the available sensor for analogue photography, Leica RC and Zeiss LMK2000 were 

among the popular instrument. The technology used film, therefore the film must be developed 

after shots. 

The innovation of computers made a way for the development of analytical 

photogrammetry (Ghosh, 1992) in which height information is represented in digital format, 

known as a digital elevation model (DEM) or digital surface model (DSM), by which various 

spatial analyses can be computationally performed for applications in forest environment such 

as forest and topographical mapping (Gruen and Murai, 2002; Lisein et al., 2013), hydrological 

and geomorphological modelling (e.g. Moore et al., 1991; Murphy et al., 2008), viewshed 

analysis (Wong and Phua., 2011), ecological canopy assessment (Fujita et al., 2003a; Okuda 

et al., 2003), species conservation assessment (e.g. Maycock et al., 2012), species habitat or 

suitability modelling (e.g. Suhardiman et al., 2013; Syartinilia and Tsuyuki, 2008), forest class 

discrimination (e.g. Kamlun et al., 2012; Langner et al., 2007), species composition or 

vegetation mapping (e.g. Matsuura and Suzuki, 2012; Tatsuhara and Antatsu, 2010), and air 

flow simulation modelling in forest canopies (Tsuyuki et al., 2011). In analytical 
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photogrammetry, the height information is derived manually by using an analytical stereo-

plotter to measure the elevation in each cell of an operational grid—typically 2.5 m (e.g. Fujita 

et al., 2003a; Okuda et al., 2004) or 5 m (e.g. Nakashizuka et al., 1995)—constructed over the 

image. This technique is resource intensive, and this drawback has impeded the use of 

photogrammetry for large-scale operations in forest areas. Some example of analytical 

photogrammetry are Alpha 2000 and Zeiss Planicomp P3, and AVIOLYT BC-1. The most 

recent innovation in photogrammetry technology was digital photogrammetry, in which height 

elevation can be derived fully automatically.  

Digital photogrammetry technology is made possible by the development of image-

matching algorithms, integrated GNSS/IMU navigation system, graphic processing units 

(GPUs), and digital photography (e.g. Leberl et al., 2010). In addition to the ability to derive 

height information from stereo-pair images, aerial photographs also provide a range of unique 

fundamental characteristics such as color, tone, and texture from the reflectance information 

(Morgan et al., 2010) with high geometric resolution (Kardoš, 2013) and at relatively low cost.  

 

Photogrammetry Concept 

Overlap of photographs is important to permit all mapping and many of image analyses. 

The photographs must overlap in two direction, called forward overlap and side-lap to ensure 

stereoscopic coverage for the entire site.  Forward overlap is the overlap of photographs along 

the flight line with an average of 60% overlap for traditional analogue method while side-lap is 

the overlap of the photographs between flight lines with an average of 30% (Figure 2.1). Flight 

height aboveground level along with the focal length are important information to determine 

the scale or the resolution (in digital photography format) of the aerial photographs. Base-

height ratio, the distance of the ground between the principal points of the overlapping 

photographs divided by aircraft above ground level, is used to determine vertical exaggeration. 

However, its significance in digital photogrammetry is reduced and it is not the only factor with 

respect to vertical height accuracy (Skaw, 2014). Flight line design is important in getting the 

desired aerial photographs product and calculating the flight cost. In the digital 

photogrammetry, a sidelap of 50% is recommended for operation (e.g. Switzerland flight 

program by Swiss Federal Office of Topography), to optimize the flight mission by reducing 

the area without cloud or haze cover.  
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Figure 2.1: The diagram shows the flight line of aerial photograph data acquisition with side and 
forward overlap for stereoscopic coverage. 

 

Digital Photogrammetry Concept 

The digital photogrammetry concept uses many of the fundamental concepts of 

traditional photogrammetry in addition to many new innovation developments in various field. 

The significant improvement was the elimination of photograph development used in the 

analogue film camera system which enabled cost saving for the film, photolab and scanner 

(e.g. Balenović et al., 2012). The development of CCD (charge-coupled device) and CMOS 

(complementary metal-oxide semiconductor) sensors had enabled the innovation of digital 

photography and outperform the analogue film in term of spatial resolution. The camera 

system for aerial photogrammetry generally can be categorized into three; small format, 

medium format and large format system. The small format camera system, which are the 

consumer grade of either digital single-lens reflex (DSLR) or compact camera produce an 

image with typical less than 12 Mpixel. The medium format camera system (e.g. 

PhaseOneIXa), usually provides an image with the range of 22 to 39 Mpixel and usually used 

together with ALS system or for low-budget project. The state-of-the-art aerial camera system 

is the large format camera system with image size range from 80 to 250 Mpixel. The large 

format system can now be subcategorized into two; frame system (e.g. UltraCam and Z/I 

DMC) and pushbroom system. The development of GNSS/IMU system had significantly 

contributed the position and orientation accuracy. GNSS system or Global Navigation Satellite 

System can produce position accuracy in centimeters when differential technique or DGNSS 

is applied. Currently the popular GNSS system are GPS and GLONASS system. IMU (Inertial 

measurement unit) provides high accuracy of orientation with the information of the kappa, 

omega and khi derived from the heading/yaw, pitch and roll information. The introduction of 

graphic processing unit (GPU) in 1999 has significantly increased the computational capability 

especially in graphics processing.  



11 
 

Structure from Motion (SfM) technique aims to simultaneously reconstruct three-

dimensional scene structure, camera positions and orientations from a set of overlapping 

photographs (e.g. Snavely et al., 2008). The SfM theorem was proposed by Ullman (1979), 

where given three distinct orthographic projections of four non-coplanar points in rigid 

configuration, the structure and motion compatible with the three views are uniquely 

determined up to a reflection about the image plane, and assuming a correspondece between 

the projections has already been established. Currently, SfM technique incorporated the 

image matching algorithm where it has been a major research issue in computer vision and 

digital photogrammetry. Many different techniques have evolved since then which can be 

categorized into three basic matching techniques; (a) intensity-based, (b) feature-based, and 

(c) relational (Gruen, 2012). In intensity based matching or area-based matching, image data 

is used in the form of a matrix of grey values where cross correlation and least squares 

matching are the main methods (Gruen, 2012). The popular scale-invariant feature transform 

(SIFT) belong to feature-based matching and consists of two main processing phases; 

keypoint extraction and keypoint matching (Lowe, 2004). Relational matching uses both 

geometric or other relations between features and structures. Semi global matching (SGM) 

has been found to achieve good overall image-matching results (e.g. Ginzler and Hobi, 2015). 

SGM method is proposed and developed by Hirschmuller (2005, 2006) where it performs 

pixel-wise matching based on Mutual Information and the approximation of a global 

smoothness constraint, occlusion are detected and disparities determined with sub-pixel 

accuracy. In addition to this, this method is fast as intensity based matching with more tolerant 

to illumination sensitivity. Currently there are many software packages available in the 

consumer market such as Agisoft PhotoScan (Agisoft LLC, St. Petersburg, Russia), Trimble 

Match-T, Leica Xpro, Racurs PhotoMod (Racurs, Moscow, Russia) and Pix4Dmapper (Pix4D 

SA, Lausanne, Switzerland).  

Structure from motion (SfM) technique consists of several importance processes, 

namely; feature detection and matching, triangulation and bundle adjustment. The first step is 

to find feature points in each image that can be detected in other images such as edges, 

corners etc. Then, for each pair of images, the corresponding points in two images are 

searched and matched. Feature matching techniques may be divided into two categories: 

narrow- and wide-baseline (Robertson and Cipolla, 2009). Keypoint detection and keypoint 

matching method are often developed simultaneously such as the SIFT. Not all features will 

be matched correctly and this can be filtered out by algorithm such as RANSAC (Random 

Sample Consensus). Then both camera positions and 3D point position are intersected using 

triangulation technique. Triangulation attempt to determine a point’s 3D position that lies 

closest to all of the optical rays from a set of corresponding image locations and known camera 
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positions (Szeliski, 2010). This process is not always straight forward as it has to deal with 

various types of noise such as geometric noise. Finally, the bundle adjustment is implemented 

of the 3D reconstruction algorithm. Bundle adjustment is the problem of refining a visual 

reconstruction to produce jointly optimal 3D structure and viewing parameter (camera pose 

and/or calibration) estimates (Triggs et al., 2000), thus reducing the reprojection error. Several 

techniques such as Levenberg-Maquardt and Gauss-Newton methods have been used in 

bundle adjustment.  

 

Application of aerial photographs in forestry  

The forestry field has taken advantage of the photogrammetry since its development 

in earlier years. Aerial photography has the ability to collect the same set of data three times 

as efficiently in terms of person-hours than the conventional field approach (Brown et al., 2005). 

This leads to more precise analysis of forest structure (Bongers, 2001) and aerial photography 

is thus used for various forestry applications such as key data sources for forest inventory and 

land cover classification of accuracy assessment  (Imai et al., 2009; Phua and Saito, 2003; 

Phua et al., 2008; White et al., 2013), vegetation classification (e.g. Paijmans, 1966), wildlife 

survey (Van Gemert et al., 2014; Vermeulen et al., 2013), and stand parameter estimation 

(Awaya et al., 2000), including manual stand delineation and visual interpretation of species 

(e.g. Garzon-Lopez et al., 2013; Valérie & Marie-Pierre, 2006; González-Orozco et al., 2010) 

or semi-automatically when using multi-spectral imagery (e.g. Hirata et al., 2014). It is currently 

not possible to conduct these types of analyses by InSAR or airborne laser scanning (ALS). 

With the height information, further applications are possible such as forest dynamic study 

(e.g. Fujita et al. 2003b; Lucas et al., 2002) and estimating height related variables such as 

stand height, biomass and volume (e.g. Okuda et al., 2004; Straub et al., 2013a; Stepper et 

al., 2015). The use of digital photogrammetry have gained attention in recent years as many 

studies were conducted especially in temperate or boreal forests (e.g. Bohlin et al., 2012; 

Gobakken et al., 2015; Järnstedt et al., 2012; Naesset, 2002; Nurminen et al., 2013; 

Vastaranta et al., 2013). 

 Several technical issues related to the digital photogrammetry for forestry applications 

are (1) effect of ground sampling distance (GSD) to the accuracy; (2) use of satellite imagery; 

(3) use of archive analogue aerial photographs; (4) evaluation and optimizing performance in 

different forest types; (5) automated process for large scale application; and (6) development 

of other forest information. Several studies found that even using lower resolution with lower 

overlap they produce satisfactorily results of tree height estimations for vegetation mapping 

(e.g. Granholm et al., 2015). However, the GSD issue must be addressed to specific analyses 

such as biomass estimation. The use of both satellite imagery (e.g. Straub et al., 2013b) and 
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archived aerial photographs (e.g. Nurminen et al., 2015) with stereoscopic coverage have 

been attempted and resulted by reduced accuracy compared to using airborne digital 

photographs due to lower resolution in satellite imagery or poor image quality in aerial 

photographs. However, the use of archived aerial photograph is important especially in the 

study of vegetation dynamic of the past since aerial photographs store many information 

(Kadmon and Harari-Kremer, 1999). When forest type is identifiable,  it is better to describe 

the accuracy level using the information of stratification (e.g. Gobakken et al., 2015; Straub et 

al., 2013a). However tropical forest might pose a challenge for stratification compared to more 

simple forest type in found in temperate or boreal forests where the vegetation could be 

classified into coniferous and deciduous forests and often the information of the growing stage 

is available. Performance evaluation in different forest types is crucial as this may efffect the 

accuracy and more evaluation need to be carried out especially in complex forest environment 

such as tropical forest (White et al., 2013). Manual interpretation is impeded for large scale 

application and the result variation may arise according to different interpreter (e.g. Miller, 

1960). Thus, the development of automated process is necessary for deriving digital surface 

model in nationwide scale successfully (e.g. Ginzler and Hobi, 2015). Further development in 

deriving forest information especially delineating tree crown (e.g. Dalponte et al., 2014) and 

species identification will certainly contribute to the enrichment of forest information. Deriving 

these two informations in tropical rainforest (e.g. Tochon et al., 2015)  at the time being is 

challenging task as the species diversity is high and canopy structure is heterogenous. One 

of the main limitation is deriving the digital terrain model in dense forest such as tropical 

rainforest although success to a certain accuracy have been achieved in less dense forest 

type (e.g. Gil et al., 2013).  In addition to that, understanding of the metrics from the point 

cloud should be explored to understand the limiting factors of photogrammetric point cloud, 

where it primary characterize the outer canopy (White et al., 2013). 

Aerial photograph dataset is relatively low cost compared to ALS dataset (e.g. Leberl 

et al., 2010; White et al., 2013). In addition to the recent development of digital 

photogrammetry where three-dimensional surface now can be derived automatically, aerial 

photographs datasets will be useful and feasible for certain forest applications such as forest 

stand age classification (e.g. Vastaranta et al., 2016), mapping of vegetation spectral 

dynamics (e.g. Dandois and Ellis, 2013) and estimation of forest biophysical characteristics 

(e.g. Gobakken et al., 2015).  
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2.4. LiDAR for forestry applications 

Airborne laser scanning (ALS) system had significantly changed the accuracy of 

topographical mapping applications and accuracy of 10−20 cm are often reported (e.g. 

Hyyppä et al., 2000) depending on environment or surface types. In addition to that, the 

superiority of ALS dataset is shown in forest environment where a detailed digital terrain model 

now can be derived. This innovation lead to many DSM applications in forestry where the 

forestry field longed for its large scale application. Because traditional ground survey to 

acquire DSM information was difficult to apply in a large scale, also when using aerial 

photogrammetry the accuracy become reduced especially in dense forest environment where 

the ground is not visible (e.g. Lefsky et al., 2002). 

ALS system is an active sensing system using a laser beam with combination of 

GNSS/IMU technology to generate highly accurate 3D point cloud (x, y, and z). In addition, 

some portion of the laser beam can penetrate down to the forest floor and reflected back, thus 

generating a highly detailed digital terrain model (DTM) in forest environment with standard 

error of 15 cm in flat forest area and error increased to value of about 40 cm at a slope of 40% 

(Hyyppä et al., 2000). 

 

Innovation development  

The rapid development of ALS had seen in late 1990s (e.g. Baltsavias, 1999) and 

enhanced in mid-2000s where big advances had been achieved (Petrie, 2011). The 

development can be attributed to the component development of; (1) sensor; and (2) 

GNSS/IMU system. 

The ALS sensors of small footprint have been found to be useful for many applications 

in comparison to the large footprint dataset (e.g. GLAS and LVIS), and the scanning LiDAR 

returns (Figure 2.2C & Figure 2.3) is found to be superior in deriving dense point cloud in 

comparison to profiling LiDAR returns (Figure 2.2D). The development of the multi-pulse 

technology has enabled the intensification of pulse rate frequency (PRF) beyond limitation of 

150 kHz at 1 km flying height (Petrie, 2011) with the maximum pulse rate reached to 200 kHz 

and beyond. Many of the laser scanners either use oscillating mirrors controlled by 

galvanometers or servo motors (e.g. Leica and Optech system), continuously rotating optical 

polygon (e.g. Riegl system) to provide uni-directional scan or nutating mirror (e.g. TopEye Mk 

II, AHAB DragonEye). The development of GNSS/IMU system is one of the fundamental 

innovation to enable the total development of ALS system where the position and orientation 

can be measured real-time in great accuracy. 
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Figure 2.2: Illustration of differing lidar sensors, presenting the relationship between footprint size and 
general recording mode (e.g., waveform or discrete return). A) spaceborne lidar footprint (e.g., GLAS, 

~ 60 m in diameter) and waveform; (B) airborne large-footprint waveform-recording lidar footprints 
(e.g., LVIS, ~ 20 m in diameter) and multiple waveforms; (C) small footprint, discrete-return scanning 
lidar returns and point cloud; and (D) small footprint, discrete-return profiling lidar returns and data. 
The base image is a 0.50 m true color digital aerial image of a forest stand taken in central British 
Columbia, Canada. (Source; Wulder et al. 2012; doi:10.1016/j.rse.2012.02.001; CC BY NC ND). 

 

 

 

Figure 2.3: Illustration of ALS scanning. In addition to the sensor, the system requires GNSS/IMU 

system for the position and orientation data. 

 

Concept of ALS 

 The concept of ALS system is that, a pulse is emitted at known position (x, y, z) and 

the orientation (khi, kappa, omega) recorded by the GNSS/IMU system along with the slant 

range values using the precise clock, and by recording the time difference of the reflected 

pulses. The distance between the sensor and target can be calculated by the half of the 
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elapsed time between the emitted and reflected pulse. By multiplying the half elapsed time 

and speed of light, the distance between the sensor and target can be determined. As the 

direction of reflected pulse is known from GNSS/IMU and slant range value, the position of 

the target surface can be determined. 

 

Figure 2.4: Conceptual of ALS discrete return and full waveform. The sensor emits a pulse and some 
of the energy is reflected back to the sensor and recorded. 

 

 The information derived from the ALS system can be categorized into two, discrete 

and full waveform information (Figure 2.4). In discrete return (DR) system (e.g. OPTECH 

system), a typical 4 returns along with the intensity value are provided. The bright returns will 

be interpreted as discrete objects (e.g. Wulder et al., 2012) by the data recorder. In the full 

wave-form (FW) system (e.g. Riegl system), the information of the full waveform can be used 

to derive discrete returns up to 7 returns when using LAS 1.2 format (ASPRS, 2008). Both 

discrete return and full wave-form information have been explored in forestry studies, however 

the choice between DR and FW system is found to be rather not important (e.g. Sumnall et 

al., 2016). Since the returns from DR system and FW system are varied, using uniformed 

returns should be studied especially for model development such as biomass estimation.   

 ALS dataset is subjected to certain degree of error from various sources. The errors 

can be attributed to the system errors, data acquisition parameters, data-processing or target 

characteristics, of which these errors may propagate when combined. In addition, errors in 

ALS can be classified into four groups based on LiDAR processing methods and algorithms; 

error per block, error per trip, error per GNSS observation, and error per point (ASPRS, 2005). 

System errors can be attributed to range measurement, laser beam divergence and scan 
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angle errors (e.g. May and Toth, 2007). Offsets between laser sensor, GNSS/IMU and aircraft 

platform and electro-optical parts of the laser sensor are also known as source of errors 

(ASPRS, 2005). Current ALS system can achieved range accuracy of few centimeters. For 

example, Riegl LMS-Q560 system can achieved 2 cm or better range accuracy at 250 m test 

conditions (Riegl, 2010). GNSS/IMU component has been also recognized as major impact 

on accuracy (e.g. ASPRS, 2005; Ussyshkin et al., 2008b). Errors of ALS can increased with 

combination of higher scan angle and flight height. Deterioration of data accuracy around the 

scan edges have been reported (e.g. Ussyshkin et al., 2008b). For example, Leica ALS60 

system showed a vertical accuracy deteriorated from less than 10 cm at 1,000 m flying height 

to about 20 cm at 5,000 m flying height assuming a 40-degree FOV (field of view) and a 

nominal 5 cm GNSS error (Leica Geosystems AG, 2008a). Errors in position and orientation 

system (POS) data may further propagate the errors at large scan angles (Ussyshkin et al., 

2008a). Csanyi and Toth (2006) demonstrated that different PRF (pulse repetition frequency) 

settings also influence the accuracy with smaller error is observed when using lower value of 

PRF. Lower point density may also increase the mean absolute error (e.g. Montealegre et al., 

2015). Ussyshkin et al. (2008b) suggested that post processing algorithms applied to the raw 

LiDAR dataset may introduce or reduce errors, where an improvement by 10-30% can be 

achieved by using different processing algorithms. In addition, the processing of positon and 

orientation data (POS) data is crucial as well (e.g. Boba et al., 2008).  Surface slope and type 

are known to influence the ALS errors. For example, the errors can be influenced by the 

target’s reflectivity value. Using an example of deciduous and coniferous trees which have 

different reflectivity of 30% and 15%, respectively, flying at 1,000 m using 50 kHz of PRF may 

detect the deciduous trees but not coniferous trees (Riegl, 2010). This is caused by different 

PRF may result different maximum measurement range, i.e. 1,000 m for deciduous trees and 

800 m for coniferous trees in 100 kHz or 1,200 m for deciduous trees and 900 m for coniferous 

trees in 50 kHz. 

 

Applications in forestry 

In general, ALS dataset is found to be most superior in forestry application, followed 

by SfM, InSAR (interferometric synthetic aperture radar) and radargrammetry (e.g. Rahlf et al., 

2014). The use of LiDAR remote sensing in ecology can be categorized into (1) remote 

sensing of ground topography, (2) measurement of the three-dimensional structure and 

function of vegetation canopies, and (3) prediction of forest stand structure attributes (Lefsky 

et al., 2002). A range of applications using ALS dataset for forestry purposes can be found 

(e.g. Fassnatch et al., 2014; Hosoi et al., 2010; Gobakken et al., 2015; Ioki et al., 2016; 

Nurminen et al., 2013).  
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However the use of ALS dataset is impeded by the cost. Improving the cost 

effectiveness can be done by optimizing the technical issue with pulse density or development 

of hardware component especially on laser rangefinder (LRF), where maximum measurement 

range may be increased. When the maximum measurement range is increased, higher 

operational flying height is feasible, thus widen the swath.  
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Chapter 3 : General research experimental workflow 

 

The general research experimental workflow can be explained in four section; (1) field 

data and flight mission; (2) performance of photogrammetric digital surface model; (3) 

aboveground biomass estimation, and; (4) forest biophysical characteristics estimations. Here 

a brief explanation of the experimental workflow is described. More details can be found in the 

subsequent chapters.  

 

 

Figure 3.1: General research experimental workflow 
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Field data and Flight mission 

Field data were collected from 2011 to 2014 by the research team comprising 

members from the University of Tokyo, Forestry and Forest Product Research Institute Japan 

and Universiti Malaysia Sabah (UMS) in eight field survey missions (see Appendix 3.1). A total 

of 45 plots in site 1 were used for the analyses with plot size of 30 m x 30 m (n=38), 20 m x 

20 m (n=6) and 50 m x 50 m (n=1). Tree information of diameter breast height (DBH), tree 

height, specimen and crown were measured. 

The flight mission was conducted in October 2012 using helicopter platform with LSI 

matrix system using Riegl LMS-Q560 and Canon 1D Mark-III. The ALS dataset were delivered 

in LAS 1.2 format with points classified as ground and non-ground. The aerial photographs 

were delivered in JPEG large format together with GNSS/IMU information. Detail information 

can be found in Chapter 4: Materials. 

 

Performance of Photogrammetric DSM 

The performance of photogrammetric digital surface model of Chapter 5 were 

evaluated using ALS dataset as reference. In this Chapter, SfM dataset were derived using 

Agisoft PhotoScan Pro software. The accuracy of photogrammetric DSM were demonstrated 

both in global and local level and tested using canopy slope and dark area. The SfM dataset 

derived in this chapter was further used in Chapter 6 and Chapter 7. 

 

AGB Estimation  

The capability of SfM dataset to estimate aboveground biomass were evaluated 

against ALS dataset in Chapter 6. In addition to that, biomass estimation using different 

allometric equation, set of ground samples and prediction method were compared. ALS 

dataset was further derived into two combination sets by eliminating the intermediate returns. 

 

Forest biophysical characteristics estimations.  

 In Chapter 7, the capability of SfM dataset was further tested and demonstrated by 

estimating forest biophysical characteristics, namely dominant tree height, Lorey’s mean 

height, basal area, mean diameter and tree density. 



21 
 

Chapter 4 : Materials 

 

4.1. Study area 

The study area is located in Ulu Padas forest area (approximately 4°26’N, 115°45’E; 

Figure 4.1) of Northern Borneo, Malaysia, inside the Heart of Borneo Initiative area which 

forms part of an important mountain eco-region representation of Borneo together with Pulong 

Tau National park in Sarawak and Kayan Mentarang National Park in Kalimantan, Indonesia. 

Ulu Padas forest area is approximately 155,000 hectare in the South-western tip of Sabah 

which is bordered with North Kalimantan and Sarawak. The area is covered by rugged terrain 

ranges approximately between 1,000 m to almost 2,000 m in altitude (i.e. Bukit Rimau at 

1,908m) while the vegetation of this region consists of several types  (i.e. dominant montane 

oak/chestnut forest with Agathis, hill dipterocarp forest, stunted montane mossy forest and 

high-level swamp forest; SBCP, 1998). The land use consists of both small and big scale 

logging activities as well as small-scale farming activities by the local people with some portion 

remaining as old growth forest. The study area is divided into two sites, site 1 (2,122 hectare) 

and site 2 (1,509 hectare) based on the coverage of the reference LiDAR dataset. The 

elevation ranges from 961 meter to 1,895 meter with slope average of 18.6° and 25.1° for site 

1 and site 2, respectively. The area is generally covered by vegetation with mean canopy 

height model (CHM) of 22.5 m and 23.9 m for both sites. There is no weather station located 

in the study, however the rainfall is suggested to be ranging from 1,500 mm – 2,300 mm (Sinun 

& Suhaimi, 1997).  

 

Figure 4.1: The location of study area inside the mountain region of Borneo Island. 
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Large part of Ulu Padas area is designated as Commercial Forest Reserve, about 

107,000 hactare of the Ulu Sungai Padas Forest Reserve and Sipitang Forest Reserve (FR). 

The total protected area is just less than 10,000 hactare (Maligan, Basio and Agathis Forest 

Reserve). Apart of that, an area of 12,300 ha is state land and land with title situated in the 

middle of Ulu Padas forest area and surrounded by the Ulu Sungai Padas FR and Sipitang 

FR. The Main Lun Dayeh villages are Long Pasia and Long Mio with estimated population 

500-600 people (SBCP, 1998). This area is now accessible by logging road about 150 km 

from Sipitang Town.  

 

4.1.1. Ulu Padas Forest as important site of Mountain eco-regional representation of 

Borneo 

This study has been regarded as important for forest area especially for its functions 

as water catchment area and biologically unique not found elsewhere in other part of Sabah 

state forest. In 1992, Ulu Padas region was included in the area deserving protection in the 

Sabah Conservation Strategy. Sabah Water Resources Master Plan (1994) prioritized the 

Padas River headwaters for water catchment protection.  The most comprehensive study was 

carried out under the Sabah Biodiversity Conservation Project – Identification of Potential 

Protected Areas Component (SBCP-IPPA 1997-1998) as a follow up for the Sabah 

Conservation Strategy 1992. SBCP-IPPA assessment include the scopes of botany, 

hydrology and geomorphology, soil, community and economy. Ulu Padas also being regarded 

as important potential tourism development site in National Ecotourism Plan (1995) and Sabah 

Tourism Masterplan (1996) (WWF, 2001). 

The SBCP-IPPA report was constructed based on several studies such as the 

Planning workshop report by IPPA Team (1998), Othman (1998) on economic assessment, 

Paramanathan (1998) on soils, Phillipps and Lamb (1997) on the botanical richness, Towell 

(1997) on local people participation, and Sinun and Suhaimi (1997) on hydrology and 

geomorphology. The key findings showed that Ulu Padas is deserving a protection because 

of its values as an important biological site and water catchment for west coast of Sabah. Ulu 

Padas is important water catchment area because it is the largest drainage system in the 

western side of Sabah which is important for generating the hydro power plant station at Pangi, 

Tenom and water resources for agricultural, industrial, commercial and household 

consumption in districts of Tenom, Beaufort, and Labuan. The cloud forests at the elevation 

of 4,000 feet (or 1,219 m) and above are believed to play a special role in the seasonal water 

regime of the Padas River (SBCP, 1998) which is the second largest river system in Sabah 

state. This area is sensitive to soil erosion because of combination of steep terrain, soil 
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structure, drainage patterns and high rainfall (SBCP, 1998). Large scale activities from logging 

in any part of Ulu Padas by conventional methods and practices is expected to lead to an 

increase in severity and frequency of flooding in the downstream areas because the soil 

erosion and siltation will raise the level of the riverbed (SBCP, 1998). Thus SBCP report 

recommended that all areas above the altitude of 3,500 feet should be given full protections 

similar to that accorded to the headwaters of other major rivers in Sabah. 

 Ulu Padas harbors a unique tropical montane forest characteristics and high richness 

of flora species in Borneo. Borneo, second world largest tropical island after New Guinea, is 

reported to hold possibly up to 15,000 different plant species including c. 3,000 species of tree 

(MacKinnon et al., 1996 in Slik et al., 2003) with many of the endemic species are found in 

montane area with at least 8 types of forest (SBCP, 1998). Bornean montane area forms about 

5.1% (elevation above 1000 m) or 9.1% (elevation above 800 m) of Borneo’s total land area; 

1,000 m – 2,000 m (5.074% or 37,480 km2), 2,000m-3,000m (0.023% or 171 km2), above 

3,000m (0.004% or 30 km2) (these information were derived from SRTM dataset). All area 

with 3,000 m elevation and above is located in northern part of Borneo which forms the 

majestic Mount Kinabalu with the highest peak reaches 4,095 m in elevation. The larger 

montane area is formed in the central Borneo which includes the Ulu Padas forest area, 

Pulong Tau National Park and Kayan Mentarang National Park. The Ulu Padas has been 

proposed to be gazetted as total protected area by SBCP-IPPA for its unique characteristics 

with major functions as water catchment (Sinun and Suhaimi, 1998) and biodiversity 

conservation (Payne, 1990).  In mountainous regions such as Ulu Padas, the environmental 

benefits such as water supply, soil erosion prevention, flood mitigation and supporting the 

generation of hydroelectric power should be given high consideration other than just a sources 

of marketable commodities or raw materials (SBCP, 1998). For example, the cloud forest is 

capable to strip out water up to 15 liters per square meter and is important in increasing 

streamflow (Zadroga et al., 1981 in Sinun and Suhaimi, 1998).  

Recognizing the importance for sustainable use of forest and uniqueness of Borneo’s 

rain forest, Heart of Borneo Initiative (HoB) initiated by WWF was launched in 2007 and signed 

by three countries Indonesia, Malaysia and Brunei. The main objective of HoB declaration 

commits the three countries to a common conservation vision to ensure the effective 

management of forest resources and the creation of a network of protected areas, sustainably 

managed forest and land-use zones across the 22 million hectares which constitute the Heart 

of Borneo – an area which covers almost one third of the whole island. Almost all montane 

area (i.e. 1,000 m and above in elevation) is included inside HoB. An approximately 90% of 

the montane ecosystems remained intact in 2013 inside the HoB area. However, Upper Padas 

area needs attention as rather large areas of montane forests were removed (WWF, 2014). 
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Small-scale conversion need to be monitored both for species conservation and avoiding 

erosion problem. In addition, Ulu Padas is also listed in WWF’s Global 200 priority eco-region 

for conservation. Enhancing the upland reserves will have strong benefits to the conservation 

facing challenges from land change and climate (Struebig et al., 2015). 

 

4.1.2. Vegetation 

The vegetation in this area is unique from other part of Sabah State (SBCP, 1998) of 

which the flora has a strong Sarawak element in Kelabit highland (i.e. Pulang Tau National 

Park) and Kayan Mentarang National Park. The most comprehensive botanical study in Ulu 

Padas have been carried out during the IPPA-SBCP in 1997 and 1998 by botanists Phillipps 

and Lamb (1997).  

Borneo is one of the hotspots for plant diversity (Barthlott et al., 1996) with 15,000 

species (MacKinnon et al., 1996) of flowering plants which include 1,700 species of orchid and 

3,000 species of tree. One third of the flowering species is endemic to the island (Wilson, 

1994) with some group species the endemicity could be 58% for species in family 

Dipterocarpaceae (Ashton, 1982). Quantitative assessment of botanical richness and 

endemicity based on field data in Borneo-wide scale was provided by Raes et al. (2009). The 

Borneo’s central mountain range generally forms an effective dispersal barrier for the lowland 

tree flora (Slik et al., 2003) which caused five main floristics regions within the lowland 

dipterocarp rain forests of Borneo.  

The standard description of forest type in tropical montane forest is difficult to be 

established. Vegetation zones are complex: inconsistencies in designating zones can be 

found even in the same mountain (Kitayama, 1992), notwithstanding the Massenerhebung 

effect (Grubb, 1971) in which altitudinal limits can vary with the type of mountain in similar 

regions, and patchiness can be found in transitional zones (e.g. Pearce, 2006). Pearce (2006) 

found patches of lower montane forest occurring at altitudes of 950 to 1,750 m, while patches 

of upper montane forest could occur at low altitudes of 1,300 m up to summits in similar eco-

regional areas. The description of forest type or vegetation zone can be attributed to species 

composition (e.g. Pearce, 2006) as well as to soil type (Kitayama, 1992). Distribution of 

species abundant in montane area is controlled by soil nutrient rather than temperature 

(Kitayama et al., 2011). Collectors often described the vegetation variously as lower and upper 

montane forest, mossy forest, sub montane forest and montane forest, upper mixed 

dipterocarp forest and hill mixed dipterocarp forest. Whitmore’s (1984) forest type 

classification was mainly based on structure and physiognomy. Lower montane rainforest are 

distinguished by Fagaceae and Lauraceae while upper montane forest is characterized by 
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Conifereae, Ericaceae and Myrtaceae. Altitude is not a satisfactory determinant for vegetation 

types. Pearce (2006) raised an issue of the term oak-laurel forest, often used for lower 

montane forest, does not seem appropriate, as only one Lithorcarpus and five Lauraceae 

species are represented in the lower montane forest on clay or clay loam soil. 

 IPPA’s botanical study is among the most comprehensive to be carried out in Ulu 

Padas forest area (SBCP, 1998). The botanical study has reported records of rare 

rhododendrons, gingers and pitcher-plant among many others where many of these species 

can be found nowhere else in Sabah of which several are endemic. For example, of the 35 

rhododendron species found in Sabah, 17 are found in Ulu Padas with four are endemic to 

this area while the orchids, the Bulbophyllum genus, 115 of the 220 Bornean Species can be 

found in Ulu Padas with 8 species are endemic. The findings suggest that Ulu Padas is an 

important site of plant biodiversity in Sabah and recognized as a biodiversity hotspot in Borneo 

and can be considered second only to Mt. Kinabalu. Ulu Padas forest are composed by a 

variety of forest types, including hill dipterocarp forest, montane/oak chestnut forest with 

Agathis, stunted montane mossy forest and an unusual high-level swamp forest. The oak 

chestnut forest is dominant and is estimated to cover about 70% of the area and several sub-

types of this forest occur depending of species composition.  

 A number of botanical studies have been carried out in this mountain eco-regional site 

where Ulu Padas forest area border shares with Pulong Tau National Park in Sarawak State 

and Kayan Mentarang National Park in Kalimantan Indonesia. In Pulong Tau National Park, 

plant survey was conducted by Malaysia Nature Society in 1998 during 9 days tracking from 

Bario to Ba Kelalalan and 5 types of primary forest were encountered; heath forest (Kerangas), 

upper mixed dipterocarp forest, oak-laurel forest , mossy elfin forest, and summit heath. Oak-

laurel forest consists of Lithorcarpus, Garcinia and Callophylum species while mixed 

dipterocarp species consists of Shorea species and Agathis. Mountain heath vegetation were 

mainly rhododendron and the forests repeatedly changed from elfin to oak-laurel (Harrison 

and Shanahan, 1998). One of the most comprehensive botanical studies was carried out 

under ITTO project (report published in Pearce, 2006) for a total field work duration of two 

months. This project of ecological studies indicated additional 342 named species occured in 

the park. Pearce (2006) reported five major vegetation types were found to occur in Pulong 

Tau National Park; Mixed Dipterocarp Forest, Lower Montane Forest on clay soil; Upland 

Kerangas; Upper montane forest (Tall=mossy forest) and Upper Montane forest 

(Short=Ericaceous scrub). Agathis together with Dacrycarpus, Dacrydium and Phyllocladus 

were the most economically significant species. Three Agathis species were recorded in the 

Park (i.e. A. endertii, A. Kinabaluensis and A. lenticular).  Mixed dipterocarps species occurred 

at lowland site from about 530 m altitude with Shorea species, Lower montane forest occured 
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in patches from about 1,000 m to 1,750 m on the way to Gunung Murud. The canopy were 

either closed to broken to open about 20-35 m tall with main canopy species is Agathis with 

DBH up to 160 cm. Upland Kerangas occured on coarse siliceous deposits which gave rise to 

podzolised soils, which is so infertile. The canopy opened moderately, 7- 18 m tall with dense 

polesize trees to about 60 cm, most 30 −35 cm DBH. Alluvial vegetation was characterized 

by soil alluvial sometimes with shallow peat layer with canopy height about 20 – 25 m. 

Tristanopsis and Dacrydium can reach up to 6 cm DBH and Agathis about 100cm. Upper 

montane forest occurred just below exposed summits to 2,058 m and on lower summit from 

1,300m. Soils were soil peatry with canopy open about 7 to 25 m and DBH <30cm.  Species 

composition were composed by syzygium, Theaceae and also Phyllocladus hyphophylla. 

Upper montane forest (short) occured at summits, summit ridges and slopes and in exposed 

location below summits from 1,800m with soils of sandstone rocks, thick humus over 

sandstone and peat over roots and between sandstone. In addition to that, the botanical study 

in Kayan Mentarang National Park which shares border with Ulu Padas forest area can be 

found in several papers (e.g. Diway and Kuda 2003; Sidiyasa et al., 2003; Wulfraat et al., 

2003).  

 

4.1.3. Anthropogenic activity 

Most of the Ulu Padas forest area is subject for commercial logging activities and also 

small-scale agricultural activities in the settlement area of Kampung Long Mio and Kampung 

Long Pasia.  

Sabah Forest Industries (SFI) was licensed to manage FMU 7 with an area of 104,822 

ha under the natural forest management system (JP (KSG) 108/96 (C)) in addition to the 

171,471 ha of industrial tree plantation (ITP) in the northern site with license validity until 2095. 

SFI has also pledged to protect areas with high conservation values (HCV). An assessment 

of HCV Forests was performed in 2011 under the RAFT programme (Responsible Asian 

Forest Trade) with the cooperation of WWF Malaysia to identify the priority area for total 

protection. Some area in the NFM have been set aside as a conservation site. SFI policy aims 

to obtain forest certification before the end of 2014. Currently, SFI has FSC-CW certification 

for its Natural Forest Management License Area (SW-CW/FM-004018 valid until 22 Feb 2015) 

and has met the Rainforest Alliance Verified Legal Compliance (VLC) standard. 

  Ulu Padas community mainly reside in two villages, Long Pasia and Long Mio, located 

along the riverside of Padas tributaries inside the stateland area surrounded by SFI area. Lun 

Dayeh ethnic group made up the community in this area and the combined population of both 

villages is estimated at 500 to 600 people with 76 households (SBCP, 1998). Often, young 
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people migrate out from the villages for work or study and retirees and young families return 

to settle in the area and this stabilize the population. A logging road was extended up to Long 

Pasia in 1997 by SFI’s logging contractor and since then, the accessibility have been improved 

although it could be impassable in heavy rains or flooding especially at the bridge. In previous 

days when there was no road, the people had to walk for days to the Sipitang Town to get 

supply or trade their products. They could also travel by regular small aircraft where there was 

small airport in Long Pasia area until the flight service stopped. The villagers in the Ulu Padas 

villages rely on the subsistence farming combination of both wet and dry rice faming, maize 

and vegetables. Coffee and tobacco are also planted as cash crops. The upland agriculture 

practice use the cycling fallow field system by allowing fields to return as secondary forest for 

an optimum 10 -15 years or more so that the fertility of the land is renewed. Apart of the 

farming activities, the villagers also depend on collecting forest resources such as wild meat, 

fish, edible plants, medicines, firewood and timber for boat and house construction. These 

forest resources are used for own consumption and sometimes also being marketed in towns 

(SBCP, 1998). For example, the wild meat is estimated values at RM187,000 per year sold at 

Sipitang Prices (Othman, 1998). 
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Figure 4.2: Forest area are being cleared for cultivation activities (upper). View from Bukit Rimau 
showing the settlement area of Kampung Long Mio surrounded by forest area (bottom). 
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4.2. Aerial photograph & LiDAR data set 

Aerial photographs and LiDAR dataset were acquired through SatAirTrop Project or 

“Advanced carbon monitoring in Asian tropical forest by high precision remote sensing 

technologies”, one of the AFFRC-commissioned project and funded by Ministry of Agriculture, 

Fishery and Forestry (MAFF), Japan. The main objective of SatAirTrop project is to develop 

technology for accurate and precise estimation of aboveground carbon stocks collating 

satellite images and aerial data. Accordingly for the aerial data, the flight mission was 

conducted in October 2012 using a helicopter platform to acquire lidar and aerial photographs. 

Lidar dataset was acquired using Riegl LMS-Q560 sensor with the capability of 240 kHz pulse 

repetition rate while the aerial photographs was acquired using small-format camera of Canon 

EOS-1D Mark III.  

4.2.1. Flight mission 

The survey area comprised of 2 sites in Ulu Padas forest area, Sipitang (Figure 4.1), 

site 1 and site 2 with approximately 2,400 hectare and 1,800 hectare, respectively. The flight 

mission was carried out using Bell 206B3 JetRanger with LSI’s MATRIX System attached to 

the left side of the aircraft (Figure 4.3). Typical hardware configuration of the LSI’s MATRIX 

System includes a digital waveform scanning laser, an Inertial Measurement Unit (IMU) for 

real time attitude determination, and a downward pointing high resolution digital camera for 

surface feature mapping and ortho-photo production (www.lidarservices.ca). The system used 

in the flight mission consist of Reigl LMS-Q560 sensor, Canon 1D Mark III Camera, and GPS 

antenna located at the rear tail of the aircraft collected with 1 Hertz data collection rate.  

 

Figure 4.3: The Bell 206B3 Jet Ranger with LSI MATRIX system. The system use Riegl LMS-Q560 
and Canon EOS-1D Mark III camera 

 

The flight lines were designed at a flying height of 400 m above ground level (AGL) 

with a swath angle of 45° to produce a ground swath width of approximately 330 m. Initial flight 



30 
 

lines were designed with 30% side overlap. However after first day flight mission, side overlap 

was increased to 50% since flying with 30% side overlap caused more data holes due to the 

challenging terrain.  

Flight mission was executed in 4 days from 5th− 8th October 2012 to scan the area. 

The weather condition was reported hazy with strong wind and heavy rain in some of the flight 

days. The time of flight mission was between 11am to 2pm for all days except 2:30pm to 

4:40pm on the third days. The operating capability of Bell 206B3 Jet Ranger is approximately 

3 hours. Due to the ruggedness of terrain, the aircraft was not able to maintain exactly 400m 

AGL at all time. The flying altitude AGL was calculated ranging from as low as 73 m to 791 m 

with average of 390 m. Two GPS static survey or base stations were set at near Lawas airport 

(GDS04) and another near the project area (M516) with 1 Hz data collection rate (Figure 4.4).  
 

 

 

Figure 4.4: One of the base station used for control points, Base station M516 located in Kampung 
Long Pasia (Photo: SatAirTrop Project). 

 

4.2.2. Aerial photographs 

The aerial photographs were acquired simultaneously in the same flight mission with 

the airborne laser scanner (ALS) acquisition by using small format digital single lens reflex 

camera (DSLR) Canon EOS-1D Mark III (Figure 4.3). The camera was fitted with lens of 28 

mm focal length and the cross-track field-of-view and along-track field-of-view are 52.9° and 

36.6°, respectively. Flying with the average speed of 100 km/h and exposure interval of 3.5 

seconds resulted in 55−70% of forward overlap while the side lap was approximately 45%. 

Camera settings were set with exposure time of 1/2,500 s, ISO-speed of 1,250, and aperture 

range from f/1.8 to f/10. A total of 2,400 aerial photographs for site 1 were delivered in 24 bit 

sRGB large-size format of JPEG (3888 × 2592) with average GSD (ground sampling distance) 

of approximately 10 cm together with GNSS/IMU data information. These dataset were 

processed to produce photogrammetric point cloud and then analysed which is described in 

Chapter 5. 
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4.2.3. LiDAR 

The ALS data was acquired from a flight mission in October 2012 using airborne laser 

scanner Riegl LMS-Q560 (Riegl LMS GmbH, Horn, Austria). The ALS system was attached 

to helicopter platform, Bell 206B3 Jet Ranger Helicopter (Figure 4.3) and the flight mission 

was conducted in four days with flying altitude of approximately 400 m above ground level. 

However, due to the terrain ruggedness and also strong wind on the data acquisition days, 

the pilot had difficulty in maintaining the pre-planned flying altitude of 400 m above ground 

level during the entire flight mission. The system was operated with 45° of field of view and 

240 kHz of pulse repetition rate with beam divergence of less than 0.5 mrad. The side overlap 

were within 30–50%. The raw lidar data was processed using several softwares. Waypoint 

GrafNet version 8.4 (NovAtel Inc., Alberta, Canada) was used for GPS static processing, Terra 

Match software (Terrasolid Ltd, Helsinki, Finland) was used to improve the accuracy and 

quality of the raw LiDAR data. The Lidar point clouds classification into ground and non-ground 

were processed using TerraScan (version 12.020). The ALS data were processed by PASCO 

Corporation (Meguro-ku, Tokyo, Japan). 

The processed data were delivered in the coordinate system of the WGS84 UTM Zone 

50N / WGS84 ellipsoid in the LAS 1.2 format (for processing information, see Ioki et al., 2014), 

and the point cloud, comprising 832 million points with an approximate density of 14.9 

pulses/m2, was classified into ground and non-ground class using TerraScan software 

(Soininen, 2010). The vertical accuracy (RMSE) of the points in the ALS point cloud was 

estimated to be within 25 cm. 

Digital terrain model (DTM) was generated using the ground class of point cloud data 

(32 million points or 4.0% of the total point cloud). To generate the DTM, triangulation with 

natural neighbor interpolation was used with spatial resolution of 1 meter. 

 

4.3. Ground data (Plots) 

The ground data was collected by SatAirTrop Project from 2011 to 2014 in 8 field 

surveys consisted of members from the University of Tokyo, Universiti Malaysia Sabah (UMS) 

and Forestry and Forest Products Research Institute of Japan (FFPRI) with the support and 

assistance from local villagers of Kampung Long Mio and field staffs of Sabah Forest 

Industries (SFI) Sdn. Bhd. A total of 63 plots were sampled over different forest types from 

elevation of 1,000 m to 1,700 m.  
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4.3.1. Field measurement 

Sample plots collected during the fieldwork were distributed in site 1 and site 2 (Figure 

4.1). Among the main challenges in reaching to the plot location included the road condition 

to the sample plots, remoteness for Bukit Rimau area (i.e. setting base camp was necessary 

with 5 hours hike from the logging road), river crossing by kayak and scaling steep area. 

Location of plots was determined with the aid of Pan-sharpened IKONOS imagery or 

information of field staff of SFI to locate the sample plot over different forest type and 

degradation level. In Bukit Rimau Area, the locations of plots were pre-determined in the 

laboratory by interpreting the ALS-CHM image to capture different vegetation in upper 

montane forest.  

A fixed coordinate was transferred from Bench Mark located at nearby village of Long 

Pasia (approximately 6km straight line) to a temporary bench mark (TBM) base station fixed 

inside Site 1 for the convenient of setting up (Figure 4.5). Ashtech GPS was used for both 

base station while JAVAD Triumph-1 (JAVAD GNSS Inc., California, USA) and Ashtech 

ProMark™ 100 (Spectra Precision, Westminster, CO, USA) were used as rover stations at 

each plot center or sometimes at plot vertex depending on the canopy openness. The GNSS 

receiver data collection was set with 1 hertz rate for 1 to 2 hours at each plot location. The 

GNSS data from JAVAD were converted to RINEX format for DGNSS processing. 

 

   

Figure 4.5:(a) GNSS base station at TBM1 (b) GNSS rover station at plot center with Ashtech 
Promark 100 (c) GNSS rover station at plot center with JAVAD Triumph-1. 

 

The plot boundary was aligned with North-South direction using a magnetic compass 

(Figure 4.6). We used the squared plot size of 900 m2 (30 m x 30 m) or 8,100 m2 (90 m x 90 

m) or 400 m2 (20 m x 20 m). The plot was further subdivided into four subplots for plot 900 m2 

and 400 m2 (Figure 4.6). One of the subplots were sampled with tree DBH larger than 5 cm in 
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some of 900 m2 plots. The plot design for 8,100 m2 was consisted of 9 blocks of plot design of 

900 m2 arranged into square form (3 by 3).  

Each individual tree within the plot area with diameter breast height (DBH) of 10 cm 

and above were measured using DBH tape and labelled. In certain plots, trees with 5 cm−10 

cm DBH were also tallied from one of the subplots. Tree height, tree species and position 

information were collected.  

 

 

Figure 4.6: Plot design of 900 m2 or 400 m2 with four subplots. One of the subplot used to sample tree 
with DBH>5cm for some of the plot in the study. 

 

Tree height was measured using hypsometer TruPulse® 360 Laser RangeFinder with 

foliage filter (Laser Technology Inc., Colorado, USA) or Haglöf Vertex IV (Haglöf Sweden AB, 

Västernorrland, Sweden) of ultrasound technology. The distance accuracy for TruPulse® 360 

Laser RangeFinder and Haglöf Vertex IV are ± 30 cm (high quality targets) and ≤ 1%, 

respectively. Both the foliage filter and ultrasound technology make height measurement 

feasible under forest environment where there is often obstruction in sight-of-view between 

hypsometer and target tree mainly from small seedlings, branches and leaves. The foliage 

filter can filter out foliage and only detect pules returned from a reflective target. The Vertex 

uses ultra sonic signals to determine distances. The ultrasound technology use the shortest 

route around vegetation to the reference point of T3 Transponder with ultrasonic frequency of 

25 kHz. T3 transponder is an ultrasonic transmitter/ receiver that communicates with the 

Vertex. The transponder operational distance from vertex is 30 m or better in good condition. 

The tree height is measured with the distance more than half of the length of tree height 

between the target tree and hypsometer and from upper slope for better measurement. Tree 

with 20 cm DBH or below would be shacked to determine the target tree top especially for 

intermingled canopies.  

Tree species were collected and labelled with local name with the assistance of field 

staff of SFI. The species were then preserved and sent to Forestry Research Institute of Sabah 

20 m or 30 m 

20 m or 30 m 
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Forestry Department in Sandakan, Sabah for further identification and verification. More than 

300 species were recorded such as Bischofia sp. (Euphorbiaceae), Trema sp. (Ulmaceae), 

Lithocarpus sp. (Fagaceae), Litsea sp. (Lauraceae) and Tristaniopsis sp. (Myrtaceae).   

Tree position were measured using Leica DISTO™ (Leica Geosystems AG, St. Gallen, 

Switzerland) from the boundary lines of plot and subplot using horizontal distance and 

perpendicular technique. We then converted the field data to XY position (WGS84 50N) by 

using the plot center GNSS position. 

Additional tree crown diameter were measured by measuring the radius from the tree 

trunk center to the edge of the crown at North, East, South and West direction using Leica 

DISTO™. Only dominant tree crown diameter were measured at different threshold of DBH 

and tree height.  

Field interviews were conducted to collect the information of past activities in the study 

area with the SFI field staffs for SFI area and villagers of Kampung Long Mio for the activities 

in the state land.  

 

4.3.2. Plot data analysis 

A total of 6,665 tree were measured in 63 plots within site 1 and site 2 area (see Figure 

4.8 for the plot location in site 1). 87.0% or 5,798 of the total number of measured trees are 

with >10 cm DBH. Thirty-four missing tree height was computed by allometric equation 

developed using the field data (see appendix 4.1 for the computation of missing tree height). 

Figure 4.7 shows the distribution of trees by DBH and height classes. 

 

 

Figure 4.7: Number of tree by DBH (left) and tree height class (right). 
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 Because of the high success in site 1 and poor result in site 2 of aerial photograph 

processing, the plots of site 2 were filtered out for the analysis in chapter 6 and 7. In total, 

forty-five plots in site 1 (hereafter called as all plots of site 1) were used for the analysis in 

Chapter 6 and Chapter 7. Another ground sample set was derived by excluding plots from 

Bukit Rimau area and one 50 m x 50 m plot size (here after called as lower montane forest 

plots) (Figure 4.8). Table 4.1 shows the statistics of plots summary for all plots of site 1 and 

lower montane forest. 

 

 

Figure 4.8: Location of plots in site 1 area.  

 

Table 4.1: Statistics of plots summary for all plots of site 1 and lower montane forest. 

 Min Max Avg SD 

All plots (n=45) 
Mean DBH (D), cm 12.80 28.53 19.90 4.29 
Basal Area (G), m2/ha 8.94 68.62 29.61 13.08 
Tree density (N), ha-1 300 1456 750 271 

     

Lower montane (n=35) 
Mean DBH (D), cm 12.80 28.53 19.87 4.19 
Basal Area (G), m2/ha 8.94 47.75 26.57 9.90 
Tree density (N), ha-1 300 1278 690 223 
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Chapter 5 : Performance of photogrammetric digital elevation 

model in tropical montane forest environment 

 

5.1. Research Background 

The forest canopy is an important subcomponent of the forest ecosystem and plays a 

major role in many forest processes and functions. For example, it is the interface between 

the forest and the atmosphere (e.g. Parker et al., 1992), an area of major photosynthetic 

activity (e.g. Carswell et al., 2000), a biotic habitat (e.g. Erwin, 1983; Kays and Allison, 2001), 

and a site of ecological interaction within the forest ecosystem (e.g. Nadkarni, 1994). The 

complexity of forest canopy lies not only its structure but in the various ways to conceptualize 

and describe it (e.g. Bongers, 2001; Parker and Brown, 2000). One definition of the canopy is 

the outermost representation of the canopy surface (Bongers, 2001). In the past, three-

dimensional descriptions of the forest canopy were the main challenge, especially in terms of 

physical access (Barker and Pinard, 2001; Barker and Sutton, 1997; Lowman and Wittman, 

1996) and resource intensiveness of reconstructing a 3-dimensional representation (Bongers, 

2001). The advancement of remote sensing technologies (i.e. LiDAR, InSAR [interferometric 

synthetic aperture radar], and photogrammetry) has enabled fully automated reconstruction of 

the forest canopy surface over large spatial areas with high accuracy and highly detailed 

information, depending on the sensor type and flight parameters (e.g. acquisition height and 

speed). Among the three techniques available for forest canopy reconstruction, 

photogrammetry has several advantages, especially in terms of its low cost and the presence 

of reflectance information (Leberl et al., 2010). However, the main advantage of 

photogrammetry technique is the incapability to reconstruct the digital terrain model (DTM) in 

dense forest environment, thus DTM derived from ALS or SAR is required for many 

applications. 

Photogrammetry dates back to the 1900s with the invention of the stereocomparator 

for measuring parallax for photogrammetric purposes (e.g. Harley, 1962), and its application 

in forestry can be traced back to the 1920s, when tree heights were computed by using tree 

shadows from aerial photographs (Seely, 1929). The innovation of computers made way for 

the development of analytical photogrammetry (Ghosh, 1992) in which height information is 

represented in digital format, known as a digital elevation model (DEM) or digital surface model 

(DSM), by which various spatial analyses can be computationally performed for applications 

in forest environment such as forest and topographical mapping (Gruen and Murai, 2002; 

Lisein et al., 2013), hydrological and geomorphological modelling (e.g. Moore et al., 1991), 

viewshed analysis (Wong and Phua, 2011), ecological canopy assessment (Fujita et al., 
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2003a; Okuda et al., 2003), species conservation assessment (e.g. Maycock et al., 2012), 

species habitat or suitability modelling (e.g. Suhardiman et al., 2013; Syartinilia & Tsuyuki, 

2008), forest class correction and discrimination (e.g. Kamlun et al., 2012; Langner et al., 

2007), species composition or vegetation mapping (e.g. Matsuura and Suzuki, 2012; 

Tatsuhara and Antatsu, 2010),and air flow simulation modelling in forest canopies (Tsuyuki et 

al., 2011). 

In analytical photogrammetry, the height information is derived manually by using an 

analytical stereo-plotter to measure the elevation in each cell of an operational grid—typically 

2.5 m (e.g. Fujita et al., 2003a; Okuda et al., 2004) or 5 m (e.g. Nakashizuka et al., 1995)—

constructed over the image. This technique is resource intensive, and this drawback has 

impeded the use of photogrammetry for large-scale operations in forest areas. The most 

recent innovation in photogrammetry technology is digital photogrammetry, in which height 

elevation can be derived fully automatically. Digital photogrammetry technology was made 

possible by the development of image-matching algorithms, integrated GNSS/IMU navigation 

system, graphics processing units (GPUs), and digital photography (e.g. Leberl et al., 2010). 

In addition to the ability to derive height information from stereo-pair images, aerial 

photographs also provide a range of unique fundamental characteristics such as color, tone, 

and texture from the reflectance information (Morgan et al., 2010) with high geometric 

resolution (Kardoš, 2013) and at relatively low cost. Aerial photography also has the ability to 

collect the same set of data three times as efficiently in terms of person-hours than the 

conventional field approach (Brown et al., 2005). This leads to more precise analysis of forest 

structure (Bongers, 2001) and aerial photography is thus used for various forestry applications 

such as key data sources for forest inventory and land cover classification of accuracy 

assessment  (Imai et al., 2009; Phua and Saito, 2003; Phua et al., 2008; White et al., 2013), 

wildlife survey (Van Gemert et al., 2014; Vermeulen et al., 2013), and stand parameter 

estimation (Awaya et al., 2000), including manual stand delineation and visual interpretation 

of species (e.g. Garzon-Lopez et al., 2013; Valérie & Marie-Pierre, 2006) or semi-automatically 

when using multi-spectral imagery (e.g. Hirata et al., 2014). It is currently not possible to 

conduct these types of analyses by InSAR or airborne laser scanning (ALS). 

Numerous studies have taken advantage of digital photogrammetry in forestry 

applications, especially in the estimation of forest variables such as diameter at breast height, 

tree height, basal area, and volume per hectare using photogrammetric height metrics (e.g. 

Bohlin et al., 2012; Järnstedt et al., 2012; Nurminen et al., 2013; Straub et al., 2013a; Wong 

et al., 2015), and its use is reported to rank second after airborne laser scanner (ALS) (Rahlf 

et al., 2014). However, the success of using height metrics in plot-based for those purposes 

does not representing the performance and accuracy of photogrammetric DEMs at pixel 
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resolution level, where this type of information would be important for other detailed studies 

such as monitoring forest dynamics or forest gap study (e.g. Bongers, 2001; Fujita et al., 

2003b). Although several studies have attempted to evaluate photogrammetric DEMs in 

different environments such as in mountain environments (e.g. Müller et al., 2014), our 

understanding of the performance of photogrammetric DEMs in forest environments, 

especially in tropical rainforests, remains poor (Miller et al., 2000; Vastaranta et al., 2013; 

White et al., 2013) and more studies are needed to contribute to the robustness of digital 

photogrammetry technology for forestry applications. Slope (e.g. Müller et al., 2014) and 

shade (Halbritter et al., 2000) are reported to affect the performance of digital photogrammetry, 

and those characteristics often exist in forest environments, especially in the heterogeneous 

forest structures of primary rainforest. 

The main purpose of this study is to contribute to the understanding of the accuracy of 

forest canopy structure reconstructed from images. In this study, I investigated the 

performance of a photogrammetric DSM (photo-DSM) in the forest environment of a tropical 

montane forest by using canopy height metrics (i.e. mean and standard deviation [SD] of 

canopy height in the ALS-derived canopy height model [ALS-CHM]), by using canopy slope 

and dark areas and by evaluating the relationship between no-data areas of the photo-DSM 

and both slope and dark-area class. I also discussed the advantages, limitations, and issues 

of digital photogrammetry in forestry applications.  

 

5.2. Methodology 

5.2.1. Image-matching process 

The aerial photographs were processed with a digital photogrammetry software 

package employing the structure from motion (SfM) technique (Agisoft Photoscan Pro 1.0.3; 

Agisoft, St. Petersburg, Russia). SfM technique aims to simultaneously reconstruct 3D scene 

structure, camera positions and orientations from a set of overlapping photographs (Snavely 

et al., 2008). I evaluated two photogrammetric software Agisoft PhotoScan Pro and 

Pix4Dmapper (Pix4D SA., Lausanne, Switzerland). I found that using Agisoft PhotoScan Pro 

performed better digital surface model for our dataset (see Table 5.1 or Appendix 5.4 for full 

evaluation result). The workflow required to produce a dense photogrammetric point cloud 

using Agisoft PhotoScan Pro consists of two stages (Agisoft, 2014). The first stage is camera 

alignment, in which image matching is executed to create a sparse point cloud model by 

searching for common points on the photographs as well as the position of each photograph, 

and using this information to refine camera calibration parameters (Figure 5.1). In this process, 

I used 2,400 aerial photographs and the GNSS/IMU data to generate a sparse point cloud of 
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3,172,874 points covering an area of about 2300 ha. The GNSS dataset collected with 1 hertz 

was post-processed using differential GNSS technique (Waypoint GrafNet version 8.4; 

NovAtel Inc., Alberta, Canada). Of the 2,400 photographs, 2,067 (86.1%) were successfully 

aligned. The reported average camera location errors in the x, y, and z directions were 1.82, 

0.69, and 0.55 m, respectively, and the total error was 2.03 m. The x, y, and z errors were 

calculated as root mean square error for the coordinate for all the cameras of x, y and z 

coordinate, respectively. Total error was calculated as root mean square error for x, y, z 

coordinates for all the cameras (Agisoft, 2016). The second stage is building a dense point 

cloud, where the Photoscan software calculates depth information for each photographs and, 

based on the estimated camera positions, combines all of the point cloud into a single dense 

point cloud. In this study, the entire area needed to be divided into two blocks (each approx. 

1,000 ha) because of the limits of the workstation’s processing capability. A dense point cloud 

with a total of 935 million points was generated, and then converted to LAS format for further 

processing (Figure 5.2). The total processing time was approximately 13 hours by using a 

workstation with the following specifications: Intel Core i5-4670 CPU at 3.40 GHz, 16.0 GB 

installed memory (RAM), 64-bit OS, and NVIDIA Quadro K2000 GPU. 

Table 5.1: Comparison of accuracy within ±1 m, ±2 m and ±3 m from ALS-DSM for Pix4DMapper and 
Agisoft software. 

∆𝒉𝒊 
(Photo-DSM – ALS-DSM) 

Pix4DMapper Agisoft 

±1m 49.1% 59.9% 

±2m 70.8% 77.3% 

±3m 79.5% 83.3% 

 

 
Figure 5.1: Photogrammetric points and the aerial photographs orientation derived in AgiSoft 

PhotoScan Pro software for small part of site 1. 
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Figure 5.2: Cross sectional profile (1 m × 100 m) illustrating the photogrammetric and ALS point 
cloud. 

 

The whole process was performed in full automation, by setting only the initial software 

parameters. For the camera alignment stage, I used the following parameters: high image 

matching, point limit of 40,000, and with ground control (i.e. GNSS/IMU data), together with 

optimization of fit aspect, skew transformation coefficient, focal length, principal point 

coordinates (cx, cy), radial distortion coefficient (k1, k2, k3), and tangential distortion 

coefficient (p1, p2). For the point cloud densification stage, I used the following parameters: 

quality of ‘high’ with advanced option of ‘mild’. The settings for these built-in parameters were 

decided based on evaluation analysis employing forward sequential selection (e.g. Bühler et 

al., 2012) to determine the best settings in a 100 ha test area. In this study, 19 combinations 

was evaluated (Table 5.2) starting with optimization stage and followed by general alignment 

and point limit for stage 1, quality and advanced option for stage two (see Appendix 5.1 for 

the full evaluation result). The parameter settings evaluation is important; otherwise even a 

robust matching method would produce an unsatisfactory three-dimensional reconstruction 

(Remondino et al., 2014). Visual inspection for horizontal accuracy was performed and a 

satisfactory match between photogrammetric DSM and ALS-DSM was observed (Figure 5.3). 

Table 5.2: The parameters evaluation setting. 

Stage 1: Alignment Optimization 
Stage 

Stage 2: Build Dense Cloud 

General Point Limit Quality Advanced 

H-High 20 K Non U- Ultra High Mi – Mild 

M-Medium 40 K Normal H- High Mo – Moderate 

L-Low 60 K With K4 M- Medium Ag - Aggressive 

 80 K  L- Low  

 100 K  O- Lowest  

Note: Full Evaluation (3x5x3x5x3) would require 675 combinations. Forward sequential selection 

reduced the combinations to 19. All options are closed option except point limit which is open option 

with default value of 40,000.  

 

 

 

 

 

 

c 
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           Photo-point cloud 
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ALS-DSM Photo-DSM 

  

  
Figure 5.3: Example of visual inpection for horizontal accuracy on tree canopy (above) and building 

(below). The polygon (red) was digitized using reference dataset from ALS-DSM. 

 
 Prior to selecting the PhotoScan Pro software and the final parameter setting, several 

evaluations were performed namely; (1) spatial resolution of DSM (i.e. 0.5 m and 1 m), (2) 

photogrammetric softwares of Pix4D Mapper and Agisoft PhotoScan Pro, and (3) different 

versions of the photogrammetric software (see Appendix 5.2, 5.3 & 5.4). This is important as 

image matching algorithm is an indirect method to derive the digital surface model, thus the 

algorithm must be able to adapt the height’s steepness and variation in forest environment 

(e.g. Gobakken et al., 2015).  

 
5.2.2. DSM, digital terrain model, and CHM generation 

A photogrammetric digital surface model (photo-DSM) of 1-m pixel resolution was 

derived by using LAS Dataset Tools in the ArcGIS 10.1 software package (ESRI Inc., 

Redlands, CA, USA). The maximum value in the point cloud in each 1 m × 1 m pixel grid was 

used to compute the photo-DSM height (Figure 5.4). The same procedure was applied to 

derive the digital surface model of the reference dataset (ALS-DSM). ALS points of ground 

class were used to generate the digital terrain model (ALS-DTM) by using triangulation with 

natural neighbor interpolation. Then, canopy height models (ALS-CHM and photo-CHM) were 

derived by subtracting the ALS-DTM from the respective ALS-DSM and photo-DSM. A spatial 

resolution of 1 m was used because it has been tested and shown to produce high-
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performance results (Table 5.3) in the same study area (Wong et al., 2014) and also because 

it has been used in several other studies (e.g. Bühler et al., 2012; Hese and Lehmann, 2000; 

Hobi and Ginzler, 2012). I manually masked out problematic areas (264.29 ha) where the 

aerial photographs did not successfully align during image matching. 

 

Figure 5.4: (a) Photogrammetric digital surface model (1-m pixel resolution); (b) ALS digital surface 
model (1-m pixel resolution); 

 

Table 5.3: The evaluation of photogrammetric DSM derived from GIS software (DSMmax) and AgiSoft 
software (DSMAgi) with different pixel resolution of 1 m and 0.5m.  

Description DSMmax 
50cm 

DSMmax 
1m 

DSMAgi 
50cm 

DSMAgi 
1m 

Accuracy within ± 3m 79.0% 83.5% 75.4% 78.1% 

Underestimate (< -3m) 6.5% 7.5% 8.6% 12.8% 

Overestimate (>3m) 14.4% 8.9% 13.7% 6% 

No Data 0% 0% 2.1% 2% 

Total 100% 100% 100% 100% 

 

5.2.3. Canopy height characterization 

Forest canopies are extremely complex, and forest canopy descriptions are difficult to 

conceptualize (e.g. Parker and Brown, 2000). In this study, I used mean and SD of canopy 

height (e.g. Hawbaker et al., 2009; Pascual et al., 2010) from the ALS-CHM to characterize 

the forest canopy structure. Vegetation zones are also complex: inconsistencies in designating 

zones can be found even in the same mountain (Kitayama, 1992), notwithstanding the 

Massenerhebung effect (Grubb, 1971) in which altitudinal limits can vary with the type of 

mountain in similar regions, and patchiness can be found in transitional zones (e.g. Pearce, 

2006). Pearce (2006) found patches of lower montane forest occurring at altitudes of 950 to 

1,750 m, while patches of upper montane forest could occur at low altitudes of 1,300 m up to 

summits in similar ecoregional areas. The description of forest type or vegetation zone can be 

attributed to species composition (e.g. Pearce, 2006) as well as to soil type (Kitayama, 1992). 

 1 

 2 

c 

ALS-point cloud 
(non-ground) 
 
ALS-point cloud   
(ground) 
 
Photo-point cloud 
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Therefore, due to the limited information of species composition and soil type in categorizing 

forest type in this area, I arbitrarily defined 1,600 m as the altitudinal line separating upper 

montane primary forest (PU) and lower montane primary forest (PL), and I designated 

regenerating logged areas and areas of abandoned shifting cultivation as secondary forest 

(SF) (Figure 5.5). By visual observation of the ALS-CHM, I created 32 forest blocks (Figure 

5.5) of 1 ha each (except for one block which was 0.25 ha), each representing a different mean 

and SD for ALS-derived canopy height. Upper montane forest in the study site typically 

consisted of vegetation with a lower mean canopy height (average=21.2 m) and lower SD 

(average=4.1 m) in the ALS-CHM, whereas lower montane forest had a higher mean canopy 

height (average=32.3 m) and higher SD (average=6.9 m) in the ALS-CHM (Figure 5.6). I 

identified secondary forests caused by shifting cultivation and logging activities based on 

fieldwork observations in combination with visual interpretation of the geometrically corrected 

aerial photo (ortho-photo) and the ALS-CHM. The mean canopy height in each block ranged 

from 8.4 to 41.1 m and SD ranged from 2.0 to 9.8 m. I also generated evaluation blocks (n=4) 

from the observation of the ALS-CHM and/or orthophoto for non-forest areas consisting of 

roads and bare areas of paddy field (yellow squares in Figure 5.5), so that comparable 

evaluation with other studies in non-forest areas could be performed. These non-forested 

evaluation blocks were smaller and varied in size (0.05 to 0.54 ha) because the study area is 

dominated by vegetation cover. 

 

 

 
Figure 5.5: ALS-derived canopy height in some representative blocks (100 m × 100 m each): (a) 

Block 16, (b) Block 2, (c) Block 3, (d) Block 6, (e) Block 19, and (f) Block 24. The bottom figure (g) 
shows the distribution of all the blocks categorized by the four classes of upper montane forest (green 
squares), lower montane forest (red squares), secondary forest (blue squares), and non-forest areas 

(yellow polygons). 

(b) (c) 

 

(d) 

 

(e) 

 

(g) 

(f) 

 

(a) 
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Figure 5.6: (a) Forest canopy characterization using SD of canopy height against mean canopy height 
(ALS-CHM). (b) Altitudinal location of the blocks based on mean ALS-CHM and forest type category. 

PU, upper montane primary forest; PL, lower montane primary forest; SF, secondary forest 

 

5.2.4. Canopy slope and dark areas 

I derived canopy slope for each pixel from the ALS-DSM, ALS-CHM, and photo-DSM, 

and classified them in 10° bins (Figure 5.7 & Figure 5.8b) using ArcGIS 10.1 software package. 

The Slope Tool calculates the maximum rate of change between each cell and its neighboring 

cells. Because the slope was derived from the canopy top surface instead of using a digital 

terrain model, I termed it as ‘canopy slope’. Canopy slope derived from an ALS-CHM (also 

referred as a normalized DSM [nDSM]) can be influenced by the steepness of the terrain and 

the crown shape (Khosravipour et al., 2015); therefore, it is recommended to use an ALS-

DSM or photo-DSM to derive canopy slope. I generated a RGB color orthophoto mosaic from 

the aerial photographs with a spatial resolution of 25 cm using Agisoft Photoscan Pro 1.0.3. 

(Figure 5.8a). The blending mode of mosaic was used to export the map into TIFF format 

where it provides higher quality for ortho-photo and texture atlas (Agisoft, 2014). I then 

performed PCA transformation of the orthophoto using ArcGIS 10.1., and manually 

determined the threshold digital number (DN) of PCA component 1 (hereafter PCA1) to 

differentiate bright areas (PCA1 DN > 205) and dark areas (PCA1 DN ≤ 205). Dark areas were 

categorized into 7 classes (Figure 5.8c). The cumulative contribution of PCA1 was 94.19% 

and the coefficient for R, G and B were 0.673, 0.596 and 0.439, respectively. 
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Figure 5.7: Frequency of canopy slope derived from photo-DSM, ALS-DSM, and ALS-CHM. 

 

 

Figure 5.8: (a) RGB color orthophoto of Block 4, (b) canopy slope derived from the ALS-DSM, and (c) 
the same area categorized by brightness class (PCA1 DN value) derived from the orthophoto. Dotted 

green represent the no-data area of the photo-DSM. 

 

5.2.5. Height accuracy assessment 

Height accuracy was assessed by calculating the difference in z-value (∆ℎ𝑖) between 

the photo-DSM and corresponding reference data of the ALS-DSM, and then calculating the 

following statistics at global (overall) and local (block) level: 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝐴𝑀𝐸) =
1

𝑛
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𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐸) =
1

𝑛
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𝑛
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸%) = 100 ×
𝑅𝑀𝑆𝐸

𝑦̅
 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷) = √
1

(𝑛 − 1)
∑(∆ℎ𝑖 − 𝑀𝐸)2

𝑛

𝑖=1

) 

where n is the number of samples; and 𝑦̅ is the mean of canopy height in the ALS-CHM.  

I further analyzed the relationship between RMSE values and both canopy slope class 

derived from the ALS-DSM (and also photo-DSM) and dark-area class (PCA1 DN value) in 

the region of the 32 blocks by using formulae similar to those described above. 

 

5.2.6. No-data areas 

I examined the no-data areas in each of the 32 blocks. A no-data area is where no 

photogrammetric point cloud occured in a 1 m × 1 m pixel of the photo-DSM (Figure 5.8). I 

analyzed the relationship between the no-data areas and both the canopy slope class derived 

from the ALS-DSM and the dark-area class (PCA1 DN value) derived from the orthophoto. 

 

5.3. Results 

5.3.1. Overall performance of photogrammetric DSM in forest and non-forest areas 

The global performance of the photo-DSM over the whole study site revealed that 

61.1% of the height values fell within ±1 m of the corresponding reference data of the ALS-

DSM, 81.9% fell within ±2 m, and 88.7% within ±3 m (Table 5.4). Overestimation errors of 

greater than +3.0 m were at 6.7%, whereas underestimation errors less than −3.0 m were at 

4.6%. The mean error, RMSE, and AME was 0.0058 m, 3.003 m, and 1.516 m, respectively. 

Evaluation of local accuracy in the forest blocks revealed the mean error, RMSE, and AME to 

be −0.089 m, 2.547 m, and 1.329 m, respectively. The study area is predominantly covered 

by forest; however, the presence of a small portion of non-forest area enabled the evaluation 

of accuracy to be performed for non-forest areas. The overall RMSE in the four non-forest 

blocks (i.e. bare land of roads and paddy fields) was found to be 0.393 m with mean error of 

−0.315 m. 
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Table 5.4: Accuracy evaluation statistics for the photo-DSM 
 Global Forest blocks Non-forest blocks 

Mean Error 0.0058 m −0.0891 m −0.3152 m 

RMSE 3.0032 m 2.5473 m 0.3928 m 

AME 1.5160 m 1.3291 m 0.3207 m 

Number of pixels (1 m resolution) 18,349,288 302,184 5243 

∆ℎ𝑖    

 ±1 m 61.09% 63.19% 98.89% 

 ±2 m (1 to 2 m or -2 to -1 m) 81.93% (20.84%) 84.44% (21.25%) 99.71% (0.82%) 

 ±3 m (2 to 3 m or -3 to -2 m) 88.73% (6.80%) 90.77% (6.33%) 99.85% (0.14%) 

 <−3 m 4.56% 3.97% 0.15% 

 >3 m 6.71% 5.26% 0% 

RMSE, root mean square error; AME, absolute mean error; Δhi, difference in z-value between the 

photo-DSM and corresponding reference data of the ALS-DSM 

 

5.3.2. Performance of photogrammetric DSM in forest blocks 

The average percentage of error within ±1 m, ±2 m, and ±3 m was 72.0%, 87.6%, and 

91.6% respectively for lower montane forest blocks; 54.9%, 81.5%, and 89.8% respectively 

for upper montane forest blocks; and 65.0%, 84.8%, and 91.0% respectively for secondary 

forest blocks (Figure 5.9). Overestimation greater than 3 m was observed to be highest in 

lower montane forest blocks (average=5.9%; max=10.1%), whereas underestimation lower 

than −3 m was observed to be highest in upper montane forest blocks (average=5.2%; 

max=12.9%). RMSE, AME, ME, and SD of the photo-DSM accuracy in each of the blocks 

ranged from 1.01 to 4.19 m, 0.71 to 2.09 m, −1.11 to 1.01 m, and 0.97 to 4.08 m, respectively.  

 

Figure 5.9: Errors within ±1 m, ±2 m, and ±3 m at block level over different forest categories. Error ±1 
m, errors within −1 to 1 m; error ±2 m, errors within −2 to 2 m excluding error ±1 m; error ±3 m, errors 

within −3 to 3 m excluding error ±2 m. 
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5.3.2.1. Effect of ALS-CHM metrics on RMSE 

My results revealed a linear relationship between RMSE for a block and both the ALS-

CHM mean (R2=0.295) and the ALS-CHM SD (R2=0.786) for the corresponding block (Figure 

5.10a & 5.10b). Higher RMSE of >3 m was typically observed in blocks with a complex canopy 

height structure, where ALS-CHM mean and SD of canopy height were greater than 30 m and 

5 m, respectively. RMSE% ranged from 6.0% to 27.0%, and higher values were typically found 

in upper montane forest blocks as well as in young secondary forest blocks due to the lower 

canopy height (Figure 5.10c, d). RMSE% was lower in primary lower montane forest blocks 

due to the higher mean canopy height, although the RMSE in primary lower montane forest 

blocks was higher (up to 4.19 m). 

  

  

Figure 5.10: (a) RMSE vs. mean of ALS-derived canopy height (m); (b) RMSE vs. SD of ALS-derived 
canopy height (m); (c) RMSE% vs. mean of ALS-derived canopy height; (d) RMSE% vs. SD of ALS-

derived canopy height. 
 

5.3.2.2. Effect of canopy slope and dark areas on RMSE 

I tested the relationship between RMSE and the canopy slope classes derived from 

both the ALS-DSM and the photo-DSM. With canopy slope derived from the ALS-DSM, the 
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RMSE calculated for pixels in each canopy slope class in the blocks exhibited an exponential 

relationship with slope class, ranging from 1.14 m on the gentlest canopy slopes (0–10°) up 

to 8.63 m on the steepest canopy slopes (81°–90°) (Figure 5.11a). With canopy slope derived 

from the photo-DSM, the effect of on RMSE was very similar, with the effect of photo-DSM 

canopy slope exhibiting an only slightly higher RMSE value not exceeding 0.8 m for canopy 

slope classes of <80° and a RMSE of 0.1 m lower in the 81–90° canopy slope class. The 

disparity between the RMSE values in terms of ALS-DSM canopy slope and photo-DSM 

canopy slope arises because of the discrepancy in the distribution of canopy of slope classes 

between these two DSMs (Figure 5.7). These results demonstrated that it is possible to use 

the information from canopy slope of photo-DSM in the absence of an ALS dataset to provide 

accuracy information of photo-DSM. A significant positive relationship between RMSE and 

canopy slope was observed (Table 5.5), with the strongest correlation occurring at the >70° 

threshold (r= 0.924, P<0.001). 

The correlation between dark-area pixels and RMSE for those pixels showed that 

RMSE was highest for the darkest class (RMSE=5.8 m) and decreased linearly with the 

brightness class category (RMSE=2 m for the brightest class) (Figure 5.11b).  

Table 5.5: Pearson correlation between RMSE and canopy slope. 

Canopy slope 

threshold 

Pearson correlation coefficient 

ALS-DSM Photo-DSM 

>10° 0.6596** 0.4694* 

>20° 0.7101** 0.5772** 

>30° 0.7750** 0.6419** 

>40° 0.8338** 0.7137** 

>50° 0.8713** 0.7690** 

>60° 0.9028** 0.7875** 

>70° 0.9244** 0.7862** 

>80° 0.8948** 0.7240** 

n  32 

*P-value<0.01; **P-value<0.001. 
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Figure 5.11: Relationship between RMSE and (a) canopy slope class and (b) brightness class (PCA1 
DN values). 

 

5.3.2.3. Underestimation and overestimation 

Overestimation and underestimation in the photo-DSM were observed to be influenced 

by the ALS-CHM metrics. Underestimation in the photo-DSM tended to occur in the upper 

montane forest (where mean and SD of the ALS-CHM were lower), whereas overestimation 

tended to occur in the lower montane forest (where mean and SD of the ALS-CHM were 

higher) (Figure 5.12). The underestimation probably could be influenced by the increased 

homogenous texture in upper montane forest (Figure 5.13a). Overestimation was observed to 

occur with higher prevalence in lower montane forest as shown in the scatter plot and cross-

sectional profile of a representative lower montane block (Figure 5.13c). This was largely 

contributed by the limitation of the photo-DSM in identifying forest gaps. Underestimation was 

observed with higher prevalence in upper montane forest (Figure 5.13a), where trees could 

be missed by the photo-DSM. 

 

Figure 5.12: Mean error (ME) plotted against (a) mean canopy height and (b) SD of the ALS-CHM. 
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(a) Block No. 16 (Upper montane) (b) Block No. 31 (secondary forest) (c) Block No. 7 (lower montane) 

   

   

   

   
Figure 5.13: Color RGB ortho-photo (row 1), difference between photo-DSM and ALS-DSM (row 2), 

cross-sectional profile along the line shown in row 2 (row 3), and scatter plot (row 4) in three selected 
blocks. In the cross-sectional profile, a tree (A) was missed in the upper montane forest while a forest 

gap (B) was missed in the lower montane forest. Black dots in row 2 are no-data areas. 
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Further detailed analysis of the relationship between canopy slope and mean error in 

each block demonstrated that underestimation of <−0.5 m tended to occur in blocks with a 

higher proportion of gentler canopy slopes, whereas overestimation of >0.5 m tended to occur 

in blocks with a higher proportion of steeper canopy slopes (Figure 5.14a). Averages of the 

mean error were underestimated in gentle canopy slopes as compared to steeper canopy 

slopes (Figure 5.14b). Standard deviation and range of mean error were higher in steeper 

canopy slopes, particularly those above 60°.  

 

Figure 5.14: (a) Average proportion of canopy slope classes (%) in blocks categorized by four mean 
error classes (<−0.5 m, n=7; −0.5 to 0 m, n=11; >0 to 0.5 m, n=12; >0.5 m, n=2). (b) Averages of 

mean error are plotted as circles, boxes are SDs about the mean error, and range of mean error is 
defined by the line indicating the minimum value at the bottom and the maximum value at top (for 

each canopy slope class, n=32 except for 81°–90°, n=30). 
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5.3.3. No-data areas 

No-data pixels accounted for 3.24% (n=10,136) of the total area of the 32 blocks. At a 

block level, the percentage of no-data pixels ranged from 0.01% to 9.18%, except for one 

block (i.e. block no. 17)  in which the percentage was exceptionally high (20.91%). I found a 

moderate correlation between the percentage of no-data pixels (%) and both ALS-CHM mean 

(R2=0.197) and ALS-CHM SD (R2=0.359) (Figure 5.15). 

  

Figure 5.15: (a) Percentage of no-data pixels (%) vs. mean canopy height of the ALS-CHM. (b) No-
data pixels (%) vs. SD of the canopy height of the ALS-CHM (n=32). 

 

5.3.3.1. Effect of canopy slope and brightness values on no-data pixels 

The proportion of no-data pixels was plotted against ALS-DSM canopy slope class 

(Figure 5.16a) and against brightness class of the PCA1 component derived from the 

orthophoto (Figure 5.16b). The steepest canopy slope class and the darkest class (0–115 DN) 

had the largest proportion of no data at 20.17% and 23.58%, respectively. No-data pixels in 

the photo-DSM constituted 40.79% of the no-data pixels in the ALS-DSM. Figure 5.17 shows 

the cross tabulation of no-data pixels (n=10,136) between canopy slope and dark area. Of the 

no-data pixels in the gentlest and steepest canopy slope classes, 26.67% and 82.70% were 

of the dark class category (≤205 DN), respectively (Figure 5.17a). Of the no-data pixels in the 

darkest and brightest classes of PCA1 DN values, 69.6% and 38.7% were on high canopy 

slopes (>70°), respectively (Figure 5.17b). 
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Figure 5.16: Proportion (%) of no-data pixels (left y-axis) for the particular class based on (a) ALS-
DSM canopy slope class and (b) brightness class (PCA1 DN value). Both right y-axes represent the 

frequency of no-data pixels in each class. 
 

 

Figure 5.17:A 100% stacked bar chart of cross tabulation for no-data areas between brightness class 
(PCA1 DN value) and ALS-DSM canopy slope class. (a) Proportion of PCA1 DN value class by 

different ALS-DSM canopy slope class. (b) Proportion of ALS-DSM canopy slope 
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5.4. Discussion 

5.4.1. Comparable studies in forest and non-forest areas 

My present study offers new insights into the performance of photo-DSMs derived from 

digital photogrammetry over different forest types in tropical montane forest characterized by 

canopy height metrics, canopy slope, and dark areas. To the best of my knowledge, this 

research is the first rigorous evaluation of a photo-DSM in tropical rainforest biome, although 

recently such evaluations are increasing in forest environments especially in temperate forest 

biomes (e.g. Baltsavias et al., 2008; Hese and Lehmann, 2000; Hobi and Ginzler, 2012; 

Næsset, 2002). The limited availability of simultaneous data acquisition by LiDAR and aerial 

photographs, especially in forest environments, is a major drawback to such rigorous 

evaluation (e.g. Lisein et al., 2013). Evaluation using LiDAR as a reference dataset allows a 

full evaluation and is greatly advantageous in remote areas and forest environments in which 

it is not practical to use ground-based measurements over large areas. In this study, I was 

able to evaluate approximately 18 million pixels (1,800 ha) across an area where carrying out 

ground-based measurements would have been resource intensive and would also have 

caused a clustering effect (e.g. Müller et al., 2014). 

The largest vertical errors in photo-DSMs are usually observed in forested areas 

(Bühler et al. 2012; Hobi and Ginzler, 2012), and such errors can be attributed to several 

factors such as vegetation complexity (Gil et al., 2013), canopy class (Miller et al., 2000), forest 

type (Hese and Lehmann, 2000) as well as image scale, image texture, imaging geometry, 

and compactness of the tree canopy definition (Baltsavias et al., 2008). I characterized the 

forest canopy structure by using the mean and SD of canopy height derived from the ALS 

dataset because these metrics have been shown to describe forest types in a forest 

environment (e.g. Pascual et al., 2010). RMSEs for individual forest blocks in this study varied 

from 1.01 to 4.19 m, where the variation could be explained by 78.6% of the variation could 

be explained by the SD of canopy height. Hobi and Ginzler (2012) found that RMSE was as 

high as 7.06 m for a forested area in eastern Switzerland, whereas Næsset (2002) reported 

that mean tree heights were seriously underestimated by -5.2 to -5.7 m compared to the true 

mean tree heights of forest stands assessed using ground measurements as a reference 

dataset over different forest types characterized by age class (i.e. very young, young, mature) 

and species type (i.e. spruce, pine, mixed). Hese and Lehmann (2000) reported that a photo-

DSM was found to perform better in areas of beech species (ME=1.45 m; R2=0.974) than in 

areas of spruce species (ME=3.29 m; R2=0.756). Photo-DSMs have also been found to be 

successfully derived from satellite imagery in forest environments, where larger errors would 

be normally observed mainly due to lower spatial resolution as compared to aerial 
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photographs, as demonstrated by Baltsavias et al. (2008) using IKONOS images (RMSE=6.61 

m) and Hobi and Ginzler (2012) using WorldView2 (RMSE=8.02 m) (Table 5.6). 

Table 5.6: Performance of photogrammetric DSMs over different forest and non-forest environments  
Study  Sensor (spatial 

resolution) 
Reference dataset Forest accuracy / 

type of forest 
Non-forest accuracy 
/ environment 

Baltsavias et al. 
(2008) 
 

IKONOS Pan (1 m) ALS  6.61 m (RMSE) / 
Deciduous (80%) and 
coniferous (20%) 
forest 

2.05 m (RMSE)/ 
excluding forest area 
1.41 m (RMSE)/ bare 
ground 

Bühler et al. (2012) ADS80 (25 cm) ALS 2.55 m (RMSE)/ larch 
forest 

0.82 m (RMSE)/ all 
0.5 m (RMSE)/ 
grassland 

Hese & Lehmann 
(2000) 

HRSC-A (30 cm) 
 

Ground measurement 
(Dendrometer) 
 

1.45 m (ME) 0.974 
(R2)/ beech 
3.29 m (ME) 0.756 
(R2)/ spruce 

— 

Hobi & Ginzler (2012) WorldView-2 (PAN: 
0.5 m/ MS: 1.84 m) 
ADS80 (25 cm) 
 

ALS 7.06 m (RMSE) for 
ADS80 
8.02 m(RMSE) for 
WV2/ 
eastern Swiss plateau 

0.85 m (RMSE) / 
grass and herb 
vegetation 
 

Mills et al. (2006) 
 

ADS40 (15, 20, 25, 
30 cm) 
 

ALS — 0.58 (RMS)/ flat 
0.60 (RMS)/ hilly 
1.66 (RMS)/ urban 

Müller et al. (2014) HRSC-A (~10 cm) 
RC30 (~40 cm) 
ADS40 (~50 cm) 
ADS80 (~50 cm) 

ALS & 
Geodetic survey 

— 1 to 1.3 m (RMSE) 
/mountain 
environment 

Næsset (2002) Agfa Aviphot Pan 200 
PE1 (19 cm) 

Ground measurement 
 

−5.42 m (ME)/ all 
−5.68 m (ME)/ spruce, 
−5.20 m(ME)/ pine 
−5.31 m(ME)/ mixed 
forest 

— 

Tonkin et al. (2014) 
 

Canon EOS-M 18 MP 
in Uas (<3 cm) 

Geodetic (Total 
station) 

— 0.517 m (RMSE)/ 
moraine-mound 
complex 

Note: Agfa Aviphot Pan 200 PE1 and RC30 are analogue camera system; HRSC-A, ADS40 and ADS80 are 
multi-sensor pushbroom instrument; Canon EOS-M is a small-format consumer digital camera; WorldView-2 and 
IKONOS are satellite sensors. 

 

Photogrammetric DSMs can overestimate and underestimate height at individual tree 

level. In tropical rainforest, the highly heterogeneous vertical structure increases the 

complexity of the problem. However, my results demonstrated that SD of ALS-CHM, canopy 

slope, and dark area can all affect the performance of photogrammetric DSMs. Canopy slope 

was found to influence the RMSE in steeper areas where a small horizontal distance between 

two points can result in a very high vertical difference. My RMSE of less than 2 m for canopy 

slopes below approximately 50° was similar to the result reported by Müller et al. (2014). 

RMSE on the steepest slopes could increase to 4 times (Müller et al., 2014) or 4.5 times 

(Bühler et al., 2012) that of the RMSE on flat areas. My RMSE was found to increase by almost 

8 times from flattest to the steepest canopy slope. My study revealed that underestimation 

tended to occur in gentle canopy slopes, where systematic errors could occur during image-

matching process even after co-registration (Müller et al., 2014). The variation of the mean 

error for the photogrammetric DSM can either be observed when using same software 
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package on different datasets (Müller et al., 2014) or using different software packages on 

same dataset (Remondino et al., 2014; Sona et al., 2014). 

For non-forest areas (i.e. bare land and paddy fields), the RMSE did not exceed the 

value of 0.3928 m and the accuracies were comparable to those found in several other studies 

(Table 5.6), indicating the consistency of the performance of the photogrammetric point cloud. 

All the RMSEs in those studies (i.e. Hobi and Ginzler, 2012; Müller et al., 2014; Tonkin et al., 

2014) did not exceed 1 m for flat and non-forest areas when using very high resolution aerial 

photographs (GSD<50 cm). 

 

5.4.2. Limitations of digital photogrammetry and factors influencing accuracy 

Digital photogrammetry is an indirect technique that derives photogrammetric point-

clouds by using the image data taken from passive sensors, unlike the direct height 

measurements of active sensors (i.e. those emitting and receiving their own energy) such 

used with LiDAR and InSAR technology. Therefore, successfully deriving high-accuracy 

photogrammetric point clouds depends on several factors: (1) image-matching algorithm, (2) 

type of camera/sensor, (3) camera and flight parameter settings, (4) overlap rate, (5) 

environmental conditions, and (6) object characteristics. Remondino et al. (2014) evaluated 

four image-matching algorithms and concluded that no algorithm ranked higher than any of 

the others. This is a topic of ongoing research, and notwithstanding the variability of parameter 

settings, new developments are continuously being implemented. Selection of parameter 

settings must be attended to because even the best image-matching algorithm will produce 

unsatisfactory results if unsuitable parameters are used (e.g. Remondino et al., 2014). 

Therefore, I evaluated the parameter settings using a sequential forward selection method 

(also in Järnstedt et al. 2012; Müller et al., 2014). The type of camera or sensor can also 

influence the result; for example, Müller et al. (2014) found that the ADS80 sensor with higher 

radiometric resolution (i.e. 12 bit) performed better than the HRSC-A, RC30, or ADS40. 

Camera settings should be configured to capture sharp images by setting a high aperture, low 

ISO, and fast exposure time (Agisoft, 2014). Flight altitude is a key flight parameter because 

it can significantly influence the flight cost and the image quality (i.e. spatial resolution) where 

flying higher will increase the swath width, thus result to a reduced flying times (i.e. lower cost 

for flight mission) but increased GSD for a given area. Quality of the photography is influenced 

by combination of sensor type and camera settings. Mills et al. (2006) showed that flying height 

increased the RMSE as the GSD increases, and there is always tradeoff between cost and 

accuracy. In addition to the important of spatial resolution, gap observation is also the major 

property to be considered for the acquisition of aerial photographs. For example, Nurminen et 
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al. (2013) found that the degree of overlap influences the performance of photogrammetric 

DSMs, where 80% forward overlap has been found to better detect forest gaps than 60% 

forward overlap. In my study, the forward overlap was approximately 60% ±10%. Apart from 

that, environmental conditions such as illumination changes due to different acquisition times 

(Nex and Remondino, 2014) may also affect DSM generation. Object characteristics such as 

shadows caused by tree crowns (Halbritter, 2000), sharp discontinuities, small structures 

(Remondino et al., 2014), steep slopes (Gil et al., 2013), corrugated surfaces, presence of 

vegetation (Fabris and Pesci, 2011), as well as the size and spacing of the trees, tree shape 

and species can also cause problems for dense matching algorithms. Additionally, quality of 

the ground control data (Miller et al., 2000) can also cause problems for dense matching 

algorithms. A combination of these factors could have influenced the results of image matching 

in our study site, where 13.9% of the aerial photographs failed in the camera alignment 

process. One feasible suggestion to improve the performance is evaluating whether increased 

forward overlap of up to 90% (although many recommendations suggest 80% forward overlap) 

could improve image-matching success and accuracy in forest environment. 

The type of reference dataset used may also affect the accuracy measure. ALS is the 

best available reference dataset used in forest ecosystem due to its non-clustering effect 

(Müller et al., 2014) unlike when using ground reference data from DGPS (differential global 

positioning system) and surveying instrument of total station (e.g. Tonkin et al., 2014). ALS is 

very accurate to within tens of centimeters; for example, Hyyppä et al. (2000) reported that a 

standard error of 15 cm could be obtained for flat forest areas and that error increased with 

increasing terrain slope to a value of about 40 cm at a slope of 40% for a DTM (see Section 

2.4 for description of ALS error). 

 

5.4.3. Potential in forestry applications 

The main advantage of the transition from analytical photogrammetry to digital 

photogrammetry is the capability to derive height in a dense point-cloud form by a fully 

automated process. Analytical photogrammetry has been used with success in forestry 

applications; however, its major drawback is its limited capability to cover large areas of forest 

where height must be manually digitized — on typical grid of 2.5 to 5 m this is a highly 

resource-intensive task with areas typically limited to 10 to 100 ha (e.g. Fujita et al., 2003a; 

Itaya et al., 2004; Henbo et al., 2004; Tanaka and Nakashizuka, 1997; Torimaru et al., 2012). 

For example, deriving height with a spatial resolution of 2.5 m requires digitization of the height 

at about 1,600 points/ha: Fujita et al. (2003a) required approximately 16,000 points to 

manually digitize 10 ha on a 2.5-m grid, whereas Okuda et al. (2004) required approximately 
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80,000 points for 50 ha on a similar grid size. Our study area (2,000 ha) is around 200 times 

the size of those studies, and by using digital photogrammetry, 935 million points were 

automatically generated. The advancement of GNSS/IMU has decreased the need for ground-

control points in areas where it is not feasible to collect them, such as in forest environments. 

Photogrammetric blocks flown with GNSS/IMU systems can reduce the need to only a few 

control points (Kersten and Stallman, 1995). 

Digital photogrammetry is relatively cost-effective in comparison with ALS or InSAR 

technology. Leberl et al. (2010) reported that the effective strip width for aerial photography is 

up to 5 times the effective strip width for ALS, and that aircraft can be flown at 2.5 times the 

speed. This means that aerial photography requires only 8% of the time that LiDAR needs to 

cover an area of similar size. The advancement of unmanned aerial vehicles, commonly 

known as drones, allows cameras to be installed and used for small-scale projects, which will 

significantly reduce costs of such projects (e.g. Lisein et al., 2013; Tonkin et al., 2014). 

However, one of the major concern when using photogrammetry technique is the incapability 

to detect forest floor or DTM especially in dense forest such as in tropical rainforest. 

The very high resolution of the reflectance information (within tens of centimeters) 

permits various detailed forest applications such as wildlife surveys (Van Germet et al., 2014) 

and species identification (Garzon-Lopez et al., 2013; Valérie and Marie-Pierre, 2006) that 

cannot be provided by ALS or InSAR technology at this moment. The three-dimensional 

information derived from aerial photographs offers huge potential, especially when a high-

quality digital terrain model derived from ALS is available. This three-dimensional information 

can be utilized in many applications such as estimating forest attributes of basal area, volume, 

and biomass (e.g. Bohlin et al., 2012; Järnstedt et al., 2012; Gobakken et al., 2015; Nurminen 

et al., 2013; Straub et al., 2013a; Vastaranta et al., 2013), estimating changes in forest canopy 

height over past decades (Fujita et al., 2003b; St-Onge and Achaichia, 2001; Vega and St-

Onge, 2008). Photogrammetric height is ranked second after ALS and better than InSAR and 

radargrammetry for estimation of forest attributes (Rahlf et al., 2014). 

The major limitation to use of digital photogrammetry for forestry applications can be 

attributed to the image-matching success, height accuracy including forest gap detection, and 

that the DEM is only limited to the outer forest canopy. Issues of image-matching and height 

accuracy have been discussed in previous sections with several recommendations (e.g. 

increase overlap percentage to 90% in tropical forest environments, which has only a minimal 

impact on cost of acquisition on hard disk storage). Due to the limited availability of high-

accuracy topographical maps derived from ALS or airborne InSAR in tropical forests, possible 

topics of further research would include attempting DEM correction using properties from the 
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aerial photographs (e.g. crown size). Gil et al. (2013) attempted to derive a DTM from 

photogrammetry but had poor results due to the high vegetation complexity while correction 

for gaps could be performed by a gap-finding algorithm (e.g. Betts et al., 2005). 

 

5.5. Summary 

I examined the performance of our photo-DSM in forest area. The RMSE and mean 

error of our photo-DSM were influenced by metrics of the ALS-CHM (i.e. SD and mean), 

canopy slope, and dark-area class (derived from PCA of the orthophoto). Standard deviation 

of the ALS-CHM explained the variance in RMSE by 78.62%. In areas of higher canopy slope, 

the RMSE increased to 8.63 m, with highest correlation between canopy slope and RMSE 

occurring at a threshold value of >70°. The RMSE in dark areas increased to 5.8 m. No-data 

areas were also influenced by higher ALS-DSM canopy slope and dark-area class. 

My findings will be useful when accurate local information is required in forestry 

applications such as forest dynamics studies, where understanding the degree of 

overestimation and underestimation is important. However, further research on integrating the 

photo-DSM with delineation of individual tree crowns will be needed to assess the accuracy 

at the single-tree level. The 86.1% success rate of fully automatic image matching achieved 

in my study offers great potential for conducting operational tasks at relatively low cost in large 

forest areas when digital terrain model is available, such as in monitoring forest carbon under 

REDD+ (reducing emissions from deforestation and forest degradation). 

To further develop photogrammetric DEMs for forestry applications and to increase the 

robustness of this technology, continuous research is needed over several broad topics 

including study of flight parameters for achieving cost-effective and optimum accuracy, gap 

detection and height correction, DTM correction, improvement in estimations of forest 

variables, as well as continuous evaluation in different forest types. 
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Chapter 6 : Evaluation of aboveground biomass estimation using 

airborne laser system (ALS) and structure from motion (SfM) 

dataset  

 

6.1 Introduction 

Global warming is now ninety-five percent certain caused by human activities (IPCC, 

2014) and stabilizing temperature increase will require commitment from the global community. 

The most visible evidence is the decrease in the annual mean ice extent cover in artic region 

in the range of 3.5 to 4.1% per decade between the period of 1979 (after the satellite 

observations initiated) to 2012 and the global mean sea level rose by 19 ±2 cm  over the period 

of 1901 to 2010. In the IPCC’s Fifth Assessment Report (AR5), scientific analysis showed that 

the total anthropogenic greenhouse gases (GHG) emissions have continued to increase over 

1970 to 2010 and aggravated for the period between 2000 to 2010 with total GHG emissions 

in 2010 reached 49 GtCO2 -eq/yr, almost twice the amount in 1970 (i.e. 27 GtCO2 -eq/yr). 

Carbon dioxide emitted from forestry and other land use (FOLU) was estimated at 5.4 GtCO2 

-eq/yr in 2010 or approximately 11% of the total GHG emissions for that year (IPCC, 2014). 

Kyoto Protocol provided no opportunity for the engagement among developing 

countries which reduce emission through reducing deforestation rates. Recognizing the 

importance of developing countries along with industrialized countries for the total emission 

reduction from all major sources, the timely proposal of reducing emission from deforestation 

was presented by the government of Costa Rica and Papua New Guinea during the 11th 

session of Conference of Parties (COP)  to the United Nations Framework Convention on 

Climate Change (UNFCCC) in Montreal, 2005 (UNFCCC, 2005).Two years later in COP 13,  

the proposal of “reducing emissions from deforestation in developing countries: approaches 

to stimulate action” was adopted in Decision 2/CP.13. In the same COP 13, recognizing the 

important of co-benefits of protecting forest carbon, the REDD was further developed to 

REDD-plus (reducing emissions from deforestation and forest degradation and the role of 

conservation, sustainable management of forests an enhancement of forest carbon stocks in 

developing countries) which was adopted as part of the Bali Action Plan (Decision 1/CP.13) 

(UNFCCC, 2007). SBSTA (Subsidiary Body for Scientific and Technological Advice), one of 

the permanent subsidiary bodies to the Convention established by the COP/CMP, was 

assigned to address many scientific and technical issues related to the REDD-plus.  

Remote sensing technology with combination of ground-based forest carbon inventory 

approaches for estimating forest carbon stocks and forest area changes was accepted in the 
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methodological guidance for activities relating to REDD-plus which contribute to the robust 

and transparent forest monitoring system or known as MRV (measurement, reporting and 

verification) system (Decision 4/CP. 15). MRV’s main objective is to estimate and report the 

national-scale forest emissions and removals based on the three main components (1) 

satellite land monitoring system, (2) the national forest Inventory, and (3) the national GHG 

inventory (UN-REDD, 2013) which contribute to the robust national monitoring system with 

data and information that are transparent, consistent over time, and are suitable for the 

measuring, reporting and verifying anthropogenic forest-related emissions by sources and 

removals by sinks, forest carbon stocks, and forest carbon stock and forest-area changes 

(Decision 11/ CP. 19).  

Remote sensing dataset varied in terms of the type of information and accuracy 

depending on the sensor type and altitude or distance from the land surface. Basically, 

categorization can be grouped by sensor type (i.e. optical, LiDAR or SAR) or platform (i.e. 

space-borne or airborne). Application in forest biomass estimation have been attempted using 

variety of remote sensing dataset of optical system (e.g. Hirata et al., 2014; Rahman et al. 

2008), LiDAR (e.g. Ioki et al., 2014; Fassnacht et al., 2015) and SAR (e.g. Dobson et al., 1992). 

The limited use of space-borne dataset is largely due to cloud cover and poor correlation 

between spectral information and biomass especially in high biomass of forest (Koch, 2010). 

The cloud cover for tropic area was estimated at 58 to 70% according to the International 

Satellite Cloud Climatology Project (ISCCP). Space-borne LiDAR such as the ICESat/GLAS 

with large footprint of 70 m was still limited due to the laser spots separated by nearly 170 m 

along the satellite’s ground track while the space-borne radar faced by saturation problem 

(Koch, 2010). Height information which derived from the airborne platform has been 

demonstrated to be superior in estimating forest variables related to height such as volume, 

tree height and biomass (e.g. Nurminen et al., 2013; Rahfl et al., 2014; Vastaranta et al., 2013). 

Among the type of remote sensing dataset, airborne laser scanner (ALS) dataset was found 

to rank first, followed by SfM dataset, interferometry SAR and radargrammetry in estimating 

stem volume (e.g. Rahfl et al., 2014). 

Technical issues related to REDD-plus are still undergoing continuous technical 

development especially on finding the cost effective method and producing the high accuracy 

forest biomass estimation in the diverse forest types and ecosystems. Estimation of 

aboveground biomass using ALS dataset have demonstrated to be superior in estimating 

forest variables. However, in recent time, the development of digital photogrammetry where 

dense point cloud now can be derived fully automatically using image matching algorithm 

provide a potential opportunity especially in forest monitoring application due to its main 

advantage of relatively low cost data acquisition compared to ALS dataset (e.g. Leberl et al., 
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2010). Continuous comparative studies (e.g. using different predictive method, number of 

ground samples and type of remote sensing dataset) is needed to establish robust best-

practice recommendations for improving both regional and global biomass estimates using 

remote sensing dataset (Fassnacht et al., 2014). The main objective of this chapter is to 

evaluate the performance of aboveground biomass (AGB) estimation using different remote 

sensing datasets, allometric equations of AGB, prediction methods, and number of samples. 

Specifically, the evaluation includes; (1) performance of AGB estimation using different 

allometric equation of generic allometric models (Brown Model and Pearson Model) and 

regional allometric models (Yamakura Model and Basuki Model); (2) the number of sample 

plots using plots in lower montane forest (n=35) and all plots of site 1 (n=45) (Figure 4.9); (3) 

two type dataset of SfM and ALS with additional derivation of the original ALS dataset of all 

returns with ALS first of many returns and single returns (ALS-FS) and ALS first of many 

returns, last of many returns and single returns (ALS-FLS); and (4) different prediction 

methods of linear regression model and random forest. 

 

6.2. Methodology 

6.2.1. Tree biomass calculation 

Four above ground biomass (AGB) allometric equations were applied to the plot data, 

namely, Yamakura et al. (1986) (hereafter Yamakura Model), Brown et al. (1997) (hereafter 

Brown Model), Pearson et al. (2005) (hereafter Pearson Model) and Basuki et al. (2009) 

(hereafter Basuki Model).  

Yamakura Model was developed in lowland tropical rainforest dominated by 

Dipterocarpaceae of East Kalimantan, Indonesia. The one hectare plots were consisted with 

four main tree layers with emergent trees (60-70 m) tall, second layer (30-55 m tall), third layer 

up to 30 m and low stories. The biomass per tree was calculated by summing up the stem dry 

weight per tree (𝑤𝑠 ), branch dry weight (𝑤𝐵 ) and leaf dry weight (𝑤𝐿 ). The equations are as 

follows;  

 

𝑤𝑠 = 2.903 ×  10−2(𝐷𝐵𝐻2𝐻)0.9813 

𝑤𝐵 = 0.1192 (𝑤𝑆)1.059 

𝑤𝐿 = 9.146 ×  10−2(𝑤𝑆 + 𝑤𝐵)0.7266 
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where DBH is the diameter at breast height in cm, H is the total tree height in m, 𝑤𝑇𝐶  is the 

sum of stem dry weight and branch dry weight per tree in kg. 

Brown et al. (1997) presented five allometric equations for estimating biomass of 

tropical trees based on three climatic zone; dry (<1,500 mm rain/year and a dry season of 

several months), moist (e.g. 1,500-4,000 mm rain/year and short dry season to no dry season), 

and wet (>4,000 mm rain/year and no dry season). I used the allometric equation developed 

for moist climatic zone which is a revision of equation in Brown et al. (1989). The model with 

highest adjusted r2 value was selected for AGB calculation in this study;  

 

ln (𝐴𝐺𝐵) = −2.134 + 2.530 ln 𝐷𝐵𝐻 

 

 

where DBH is diameter at breast height in cm. 

The Brown Model was further updated in Pearson et al. (2005). Generally, there is a 

slight decrease of AGB estimation in Pearson Model in comparison to Brown Model (Figure 

6.1).  The following equation of Pearson Model is as follows;  

 

ln (𝐴𝐺𝐵) = −2.289 + 2.649 × ln𝐷𝐵𝐻 − 0.021 × ln𝐷𝐵𝐻2 

 

 

where dbh is DBH in cm.  

Basuki Model was developed using inventory data collected in mixed Dipterocarp 

forest in East Kalimantan, Indonesia with DBH ranging from 6 to 200 cm. In Basuki Model, the 

allometric equations were grouped by species of four dominant species (Dipterocarpus, 

Hopea, Palaquium and Shorea), commercial species and mixed species. I used the allometric 

equation of mixed species for AGB calculation as follows; 

 

ln(𝐴𝐺𝐵) = −1.201 + 2.196 × ln (𝐷𝐵𝐻) 

 

 

For Brown Model, Pearson Model and Basuki Model, only DBH information of each 

tree was used to calculate the biomass per tree. Yamakura Model used both DBH and tree 

height information for the biomass calculation. Figure 6.1 shows the line graph of AGB against 

DBH from Brown, Pearson and Basuki Model. The Basuki Model biomass estimate is relatively 

lower compared to Brown and Pearson Model where the estimation was reduced by half when 

calculated using DBH value of 165 cm. Pearson Model, an updated model from Brown et al. 
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(1997), demonstrated slight decrease in the biomass estimation. Yamakura Model biomass 

estimate generally fitted in between the biomass estimate from Pearson and Basuki models. 

 

Figure 6.1: Line graph of AGB against DBH using three different allometric models of Brown et al. 
(1997), Pearson et al. (2005) and Basuki et al. (2009). The X marks represent the AGB derived from 

Yamakura et al. (1986) using the field data. 

 

I calculated the AGB for each tree in a plot using the four models with the tree 

information of DBH or tree height. Then I summed up the AGB for a plot and converted to the 

unit of Mg/ha by dividing with the plot size (in square meter) and multiply with 10,000. The 

statistical summary of the AGB estimation was presented in Table 6.1. Yamakura, Brown and 

Pearson Models resulted the highest estimate of AGB among the models with the value of 

856 Mg/ha (Figure 6.2). Basuki Model demonstrated lowest estimate compared to other three 

models (meanallplots=226.1 Mg/ha; meanlower montane=200.6 Mg/ha).  

Table 6.1: Summary of AGB estimation for plots using different allometric equation in different set of 
ground samples.  

 
Yamakura (1986) 

(Mg/ha) 
Brown (1997) 

(Mg/ha) 
Pearson (2005) 

(Mg/ha) 
Basuki (2009) 

(Mg/ha) 

All plots site 1 (n=45)   

Average 275.77 299.63 296.15 226.08 

Min 37.98 55.86 56.53 57.85 

Max 831.95 856.20 834.22 567.50 

SD 179.93 192.68 185.14 114.93 

Lower Montane (n=35)   

Average 246.31 258.76 257.17 200.61 

Min 47.55 55.86 56.53 57.85 

Max 622.79 580.88 567.63 391.32 

SD 133.40 135.19 132.11 85.47 

Note: See Appendix 6.2 for AGB value of each plot. 
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Figure 6.2: AGB for each plot and sorted from smallest to largest AGB estimation of Yamakura 
(1986).  

 

6.2.2. ALS processing 

I derived two additional ALS dataset from the original dataset of ALS which contain all 

returns (ALS-All), namely; (1) first of many returns and single returns (ALS-FS), and (2) first, 

last and single returns (ALS-FLS). The main reason to filter out the intermediate returns is to 

derive uniform ALS dataset in terms of returns which can be acquired similarly either by full 

waveform (FW) or discrete return (DR) system (Figure 6.3). For example, OPTECH and Leica 

sensors provide only up to 4 discrete returns. The dataset used in the study was acquired by 

full waveform system (Riegl LMS-Q560) where the points (up to seven returns per laser pulse) 

were derived using RiAnalyze software (see Appendix 6.3 for summary statistic of ALS 

returns). To derive a model which can be applicable for both DR and FW system, FW LiDAR 

metrics were not used although there is a study suggested the usefulness of DR and FW 

combination for biomass estimation (Cao et al. 2014). Figure 6.4 shows the number of points 

by type of returns while Figure 6.5 shows cross profile example of different set of ALS returns. 

Of the total points, 30.6% (n=254,298,091), 20.0% (n=166,226,512), 30.6% (n=254,295,115) 

and 18.9% (n=157,615,243) are first of many returns, single returns, last of many returns and 

intermediate returns, respectively. The new derived ALS datasets were processed using 

LAStools (rapidlasso GmBH, Gilching, Germany). Due to the large dataset (approximately 

22.2 GB in 32 LAS files), tile-based processing have to be implemented using 900 m by 900 

m tile with 30 m buffer (for derivation of predictor metrics in 30 m pixel resolution). All the 

processed data using LAStools were saved in LAZ format (loosely compressed format) which 

have significant reduction in the file size in comparison to LAS 1.2 format. For example, the 
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ALS points in Site 1 can be compressed from 22.2 GB to 4.68 GB (approximately 5 times 

smaller). Finally, the points were normalized from the ground using “lasheight” of the LAStools 

software (Figure 6.6).   

 

Figure 6.3: Conceptual of ALS discrete return and full waveform. Different system derive different 
number of points. Conceptually, similar points can be obtained by removing the intermediate points. 

 

 
Figure 6.4: Number of points with different type of return.  

  

 

 

Figure 6.5: Example of cross profile of different ALS returns; ALS-All (left), ALS-FS(middle) and ALS-
FLS (right) (colors are compatible with figure 6.4). 
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Figure 6.6: ALS point cloud after different processing steps. (a) The original point cloud, (b) profile 
view of normalized point cloud with classification of canopy echo ≥2 m (green), (c) Canopy echoes 

clipped at plot level and used for Lidar metrics derivation. 

 

6.2.3. SfM Processing 

The SfM points processed in Chapter 5 were used in the following data processing. In 

addition to that, another data processing was carried out to cover small area of Bukit Rimau 

where there were no or incomplete points present. The data processing was performed using 

the same parameters settings as described in Chapter 5. Then, the SfM points were merged 

with ground points from the ALS dataset using LAStools software. Similarly to the ALS points 

processing, the SfM points were processed using the “lastile” of LAStools with the tile size of 

900 m by 900 m plus buffer of 30 m. Then, the SfM points were normalized using the ground 

points from ALS dataset and canopy echoes (i.e. ≥ 2m) were classified using “lasheight” of 

LAStools.  

 

6.2.4. Model development. 

The AGB models were developed using linear regression and random forest models. 

For each model, four different AGB allometric equations and four types of dataset were used. 

The evaluation was also separated into two; All plots in site 1 (n=45) and only plots in lower 

montane forest area (n=35).  Extraction of predictor variables was performed before the model 

development. 

 

Extraction of predictor variables 

The ALS points and SfM points were extracted for each plot using. I used the canopy 

points height of 2 m and above (i.e. removing the effect of shrubs, stones, etc. (Næsset, 1997)) 

(Figure 6.6c) to compute the predictor variables (e.g. Nurminen et al., 2013) by deriving 16 

height variables and 9 canopy cover percentile variables (Figure 6.7). I used height variables 

of maximum (hmax), minimum (hmin), mean (hmean), standard deviation (hstd), percentiles at 10% 

intervals (h10, h20, …, h90) and percentile at 25% (h25), 75% (h75) and 95% (h95). Canopy cover 
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percentile was computed as the proportion of returns below certain percentage of total height 

with 10% interval (d10, d20, …, d90). I also performed log transformation to all the predictor 

variables and thus doubled the number of predictor variables.  

 

 

Figure 6.7: Illustrates the several predictor variable values of height (left) and canopy cover percentile 

(right). 

 

Linear regression analysis and LOOCV 

The predictor variables from each of ALS and SfM dataset were related to the 

corresponding surveyed reference values of each plot using linear regression analysis. In the 

regression analysis, I modeled the AGB using both original scale and log-transformed values 

as the response variables. I selected the model with the highest coefficient of determination 

(R2) value (see Appendix 6.4 & 6.5). In total, 3,200 linear regression were performed to obtain 

the R2 over the analysis.  

Forward stepwise linear regression were used for the multiplicative model 

development on all plots ground sample using Yamakura and Basuki Models both on ALS-

FLS and SfM datasets. Stepwise linear regression using Akaike information criterion (AIC) to 

select the final model with lowest AIC value and was performed in R software ver.3.1.0 (R 

Development Core Team, Vienna, Austria). Multicollinearity of the predictor variables were 

examined using variance inflation factor (VIF). For each model, stepwise linear regression 

were performed separetely using four equation types as shown below; 

 

𝐴𝐺𝐵 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

𝐴𝐺𝐵 = 𝛽0 + 𝛽1Ln(𝑋1) + 𝛽2Ln(𝑋2) + ⋯ + 𝛽𝑛Ln(𝑋𝑛) 

Ln(𝐴𝐺𝐵) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑛𝑋𝑛 

Ln(𝐴𝐺𝐵) = 𝛽0 + 𝛽1Ln(𝑋1) + 𝛽2Ln(𝑋2) + ⋯ + 𝛽𝑛Ln(𝑋𝑛) 
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where AGB is the response variable of aboveground biomass, 𝛽 is the coefficient and 𝑋 is the 

predictor variables. 

Cross-validation was performed to assess the accuracy of the AGB estimation using 

leave-one-out-cross-validation (LOOCV) for all the 32 models and multiplicative models. 

LOOCV technique requires one of the training plots to be removed from the dataset at a time, 

while the remaining plots (n-1) to be fitted using the selected model of AGB. The estimated 

AGB were then predicted for the removed plot. This procedure was repeated until all estimated 

values were obtained for all plots. The accuracy of the estimations was assesed by the root 

mean square error (RMSE) and relative RMSE (RMSE%) using the orginal scale values: 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1       (1) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸%) = 100 ×
𝑅𝑀𝑆𝐸

𝑦̅
          (2) 

 

where 𝑦𝑖  is the surveyed reference value for plot I, 𝑦̂𝑖 is the remote-sensing based prediction, 

𝑦̅ is the arithmetic mean of the surveyed aboveground biomass, n is the number of the plot.  

  

Random forest 

Random Forest (RF) regression, one of the non-parametric regression methods, was 

used to model the aboveground biomass. The RF alogrithm, a machine learning algorithm, 

was first developed by Breiman (2001) and this technique is robust to noise with internal 

estimates monitor error, strength, and correlation using the out-of-bag (OOB) error estimate 

where cross-validation or separate test set is not required to obtain an unbiased esimate of 

the test set error. However, the main limitation of RF model is likely to overestimate small 

value and underestimate high value (e.g. Baccini et al., 2004).     

Random forest have been used in various fields of study including forestry (e.g. 

Immitzer et al., 2016; Mascaro et al. 2014; Nurminen et al., 2013; Stepper et al., 2015; 

Vijayakumar et al., 2016; Yu et al., 2011) and was reported to be superior in estimating forest 

biomass (e.g. Fassnacht et al., 2014). Different parameters were tested using different number 

of trees (i.e. 500, 1,000 and 2,000) and number of predictors (i.e. 4, 8 and 16) (see Appendix 

6.6). The square root of the total number of predictors was recommended to select the number 

of predictors. In this study, 32 height predictors variables including the log-transformation 

values were used, but the canopy cover percentile variables were excluded for the RF 

regression model. In this analysis, the parameters for number of predictors and number of 

trees are 6 and 2,000, respectively were decided.  
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6.3. Results 

6.3.1. Linear regression model 

Tables 6.2 and 6.3 shows the model of the single linear regression analysis selected 

based on the highest R2 value. All predictor variables are significant at P<0.001 (see Appendix 

6.4 & 6.5). Predictor variables either percentile height of 60% (h60) or 50% (h50) were found to 

be effective in all the linear regression models. Most of the percentile height of 50% was found 

effective for model development on SfM dataset. I also performed the linear regression using 

canopy cover percentile and the highest R2 only resulted with a value not exceeding 0.4. Log 

transformation was found effective in all models developed using plots in lower montane area. 

When using dataset of all plots, the predictor variables with original scale were found to result 

highest R2. The response variable of aboveground biomass is also found to be useful when 

transformed to natural logarithm for the model development except for model development 

using Basuki Model using all plots in site 1. Figure 6.8 shows the estimated aboveground 

biomass against predicted aboveground biomass using all plots sample (n=45). 

The result of cross-validation with the RMSE and RMSE% values were demonstrated 

in Table 6.2 and 6.3. The result showed clear difference of RMSE value of model developed 

using different set of ground samples of all plots and lower montane forest area, where the 

RMSE value for all plots is approximately 1.5 times higher than RMSE value for lower montane 

forest. The RMSE value for all plots ranged from 74 Mg/ha to 134 Mg/ha while for lower 

montane forest as low as 54 Mg/ha and up to 88 Mg/ha. This is due to the inclusion of 

additional high biomass plots dataset mostly from Bukit Rimau area, where there are four plots 

with at least 400 Mg/ha estimated by using all allometric equations with maximum value of 

856.2 Mg/ha (Pearson Model on plot no. 60). The average AGB in lower montane forest is 

relatively lower than AGB in all plots by 25 to 41 Mg/ha (see Table 6.1).   

The result also demonstrated that using different allometric equations resulted in 

different values of RMSE and relative RMSE (RMSE%). Among the four AGB allometric 

equations used in this study, Basuki model yielded the lowest value of RMSE (74−76 Mg/ha) 

and RMSE% (33.0%−33.8%) for all plots. The RMSE and RMSE% for lower montane forests 

were 54.4−55.9 Mg/ha and 27.1−27.8%, respectively. The model which yielded the second 

lowest RMSE and RMSE% was Yamakura model. The updated Pearson model from Brown 

model demonstrated a slight improvement by lowering the RMSE and RMSE% value.  
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Table 6.2: AGB Model derived from linear regression analysis using different allometric equation and 
dataset tested with different set of ground samples.  

All plots (n=45) 
RMSE 
(Mg/ha) 

RMSE% R2 

Yamakura    

ALS-All Ln(AGB)=0.083*(h60)+3.618 110.09 39.92 0.7633 

ALS-FS Ln(AGB)=0.08*(h60)+3.528 120.61 43.74 0.7613 

ALS-FLS Ln(AGB)=0.084*(h60)+3.549 118.38 42.93 0.7669 

SfM Ln(AGB)=0.076*(h60)+3.603 125.22 45.41 0.7486 

     

Brown     

ALS-All Ln(AGB)=0.073*(h60)+3.917 124.59 41.58 0.6763 

ALS-FS Ln(AGB)=0.074*(h50)+3.858 133.12 44.43 0.6709 

ALS-FLS Ln(AGB)=0.074*(h60)+3.857 129.26 43.14 0.6779 

SfM Ln(AGB)=0.067*(h60)+3.919 133.95 44.70 0.6495 

     

Pearson     

ALS-All Ln(AGB)=0.072*(h60)+3.947 118.96 40.17 0.6724 

ALS-FS Ln(AGB)=0.072*(h50)+3.889 127.09 42.91 0.6673 

ALS-FLS Ln(AGB)=0.073*(h60)+3.888 123.34 41.65 0.6742 

SfM Ln(AGB)=0.067*(h50)+3.967 132.21 44.64 0.6458 

     

Basuki     

ALS-All AGB=12.491*(h50)-23.349 74.82 33.10 0.6174 

ALS-FS AGB =12.056*(h50)-41.799 74.61 33.00 0.6198 

ALS-FLS AGB=12.103*(h60)-40.123 74.77 33.07 0.6178 

SfM AGB =11.273*(h50)-28.944 76.52 33.85 0.6008 

 

Three different set of ALS dataset were evaluated by using (1) all returns (ALS-All), (2) 

first of many returns and single returns (ALS-FS), (3) first and last of many returns plus single 

returns (ALS-FLS). The performance using three ALS dataset were similar and it can be 

concluded that there was no consistent ranking of superiority among ALS dataset. The 

maximum difference of RMSE% for all plots and lower montane were between 3.82% and 

1.47%, respectively. This suggests that the model can be applied to other type of ALS dataset 

acquired using different type of sensor, both discrete system and full waveform system when 

using similar point density. 

The key result in this analysis aroused from the comparative aboveground biomass 

estimation between ALS and SfM dataset. The performance of AGB estimation in lower 

montane forest area using both SfM and ALS dataset were almost similar with maximum 

difference of RMSE% at 1.51%. Generally, ALS dataset performed slightly better than SfM 
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dataset except in Yamakura Model where the SfM estimation was slightly better than ALS with 

a lower value of RMSE% by 0.52%. When evaluating the performance in all plots data, ALS 

estimation were better than SfM estimation with the maximum difference of RMSE% at 5.49%, 

except in Basuki Model where only 0.85% of the RMSE% difference value was observed. This 

result suggests that there is huge potential of using SfM dataset derived from aerial 

photographs for AGB estimation once the ALS digital terrain model is available for the area.  

 

Table 6.3: Summary of Linear regression analysis in estimating aboveground biomass 

Lower Montane (n=35) 
RMSE 
(Mg/ha) 

RMSE% R2 

Yamakura    

ALS-All Ln(AGB)=1.956*Ln(h60)-0.59 73.92 30.01 0.8075 

ALS-FS Ln(AGB)=2.136*Ln(h60)-1.335 70.29 28.54 0.8152 

ALS-FLS Ln(AGB)=2.078*Ln(h60)-1.019 73.16 29.70 0.8159 

SfM Ln(AGB)=2.145*Ln(h60)-1.388 71.88 29.18 0.8222 

     

Brown     

ALS-All Ln(AGB)=1.834*Ln(h60)-0.158 84.35 32.60 0.7764 

ALS-FS Ln(AGB)=1.994*Ln(h60)-0.831 85.72 33.13 0.7774 

ALS-FLS Ln(AGB)=1.949*Ln(h60)-0.562 84.27 32.57 0.7850 

SfM Ln(AGB)=2.005*Ln(h50)-0.799 88.19 34.08 0.7829 

     

Pearson     

ALS-All Ln(AGB)=1.805*Ln(h60)-0.07 82.33 32.01 0.7749 

ALS-FS Ln(AGB)=1.963*Ln(h60)-0.733 83.68 32.54 0.7760 

ALS-FLS Ln(AGB)=1.918*Ln(h60)-0.468 82.25 31.98 0.7835 

SfM Ln(AGB)=1.974*Ln(h50)-0.704 86.05 33.46 0.7821 

     

Basuki     

ALS-All Ln(AGB)=1.415*Ln(h60)+0.911 54.68 27.25 0.7223 

ALS-FS Ln(AGB)=1.55*Ln(h50)+0.442 55.33 27.58 0.7320 

ALS-FLS Ln(AGB)=1.506*Ln(h60)+0.592 54.44 27.14 0.7326 

SfM Ln(AGB)=1.56*Ln(h50)+0.376 55.89 27.86 0.7407 

Note: ALS-All,all returns; ALS-FS,ALS first of many returns and single returns; ALS-FLS,ALS First and 

last of many returns, and single returns; SfM,SfM points. 

 

Stepwise linear regression as employed and tested for AGB estimation using 

Yamakura Model and all plots sample both on ALS-FLS and SfM datasets. In the AGB 

estimation using ALS-FLS dataset, a combination of height variable (i.e. h60) and canopy cover 

percentile variables (i.e. d10 and d70) improved the model performance by 29 Mg/ha and 
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10.52% for the RMSE and RMSE% values, respectively (Table 6.4). AGB estimation using 

SfM dataset also demonstrated improvement on model performance by 28.47 Mg/ha and 

10.32% for RMSE and RMSE% values, respectively. By comparing the RMSE values 

separately in 4 equation types instead of selecting the model based on the highest R2, using 

a combination of AGB as response variable and h60  as predictor variable reduced the RMSE 

values by 28.47 Mg/ha compared to variable combination of Ln(AGB) and h60 (i.e. highest R2) 

(Table 6.4). The average VIF values were not exceed more than 2 and it was suggested that 

there were no severe multicollinearity between variables for each model (e.g. Eckert, 2012; 

Thapa et al. 2015). However, negative value of AGB is approximately 100 Mg/ha in Bukit 

Rimau area, occurred in one plot using ALS-FLS dataset and two plots using SfM dataset. 

 

Table 6.4: Multiplicative model using Yamakura allometric equation on ALS-FLS and SfM dataset and 

all plots sample (n=45). 

MODELS  
RMSE 

(Mg/ha) 
RMSE% R2 VIF AIC 

ALS-FLS      

AGB=24.866*(h60)-49.279*(d10)+2.192*(d70)-365.517 89.38 32.41 0.7923 1.801 404.59 

AGB=342.925*Ln(hmean)-36.823*Ln(d20)-681.095 124.20 45.04 0.6348 1.070 428.00 

Ln(AGB)=0.09167*(h60)+0.02696*(d90)+0.8108 146.93 53.28 0.7783 1.596 -92.09 

Ln(AGB)=1.5967*Ln(h60)+0.5644 93.21 33.80 0.7591 1.000 -90.35 

      

SfM      

AGB=19.643*(h50)-168.599 96.75 35.09 0.7442 1.000 409.98 

AGB=271.459*Ln(h50)-521.994*Ln(d90)+1804.30 131.40 47.65 0.6182 1.550 430.00 

Ln(AGB)=0.0758*(h60)+3.603 125.22 45.41 0.7486 1.000 -88.43 

Ln(AGB)=1.4846*Ln(h60)+0.0806 98.17 35.60 0.7213 1.000 -83.79 
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 Figure 6.8: Scatter plots of predicted AGB versus surveyed AGB from selected models. Linear 

regression (a) Yamakura and ALS-FLS; (b) Yamakura and SfM; (c) Basuki ALS-FLS; (d) Basuki 

and SfM; Multiplicative model (e) Yamakura ALS-FLS; (f) Yamakura SfM. All figures shown using 

all plots sample (n=45). 



78 
 

6.3.2. Random Forest 

Table 6.5 shows the results of RMSE, RMSE% and R2 value of AGB estimation using 

four different allometric equation, each evaluated with four sets of dataset and performed over 

different set of ground samples. The variable importance in Random Forest analyses were 

shown in Appendix 6.7. Basuki Model was found to result the lowest RMSE values among the 

four AGB allometric equations, follow by Yamakura Model, Pearson Model and Brown Model. 

However, the relative RMSE for Basuki Model when tested in all plots of site 1 was slightly 

higher than the RMSE% value in Yamakura Model. This is due to the difference of mean AGB 

derived using two different models, where the average model of Yamakura Model and Basuki 

Model were 275.8 Mg/ha and 226.1 Mg/ha, respectively. The updated version of Brown Model, 

the Pearson Model, showed an improvement in the accuracy performance.  

Table 6.5: AGB Estimation in Long Mio, Sabah: Summary of Random Forest analysis.  
 All site 1 (n=45)  Lower Montane (n=35) 

 RMSE  
(Mg/ha) 

RMSE% R2 RMSE 
(Mg/ha) 

RMSE% R2 

Yamakura       

ALS-All 
101.01 36.63 0.6848 81.88 33.24 0.6233 

ALS-FS 
103.00 37.35 0.6723 81.05 32.91 0.6309 

ALS-FLS 
102.23 37.07 0.6772 81.99 33.29 0.6222 

SfM 
106.83 38.74 0.6475 87.49 35.52 0.5699 

       

Brown       

ALS-All 134.03 44.73 0.5161 81.87 31.64 0.6332 
ALS-FS 

139.81 46.66 0.4735 82.96 32.06 0.6234 
ALS-FLS 

134.63 44.93 0.5118 82.87 32.03 0.6242 
SfM 

140.88 47.02 0.4654 92.24 35.65 0.5345 
       

Pearson       

ALS-All 
128.81 43.50 0.5159 81.63 31.74 0.6182 

ALS-FS 
133.22 44.98 0.4822 81.52 31.70 0.6192 

ALS-FLS 
129.99 43.89 0.5070 81.38 31.64 0.6205 

SfM 
135.33 45.70 0.4656 89.31 34.73 0.5430 

       

Basuki       

ALS-All 
84.16 37.23 0.4637 55.02 27.43 0.5856 

ALS-FS 
86.33 38.19 0.4357 55.43 27.63 0.5795 

ALS-FLS 
84.44 37.35 0.4602 54.17 27.00 0.5984 

SfM 
89.00 39.37 0.4003 59.45 29.64 0.5161 

 Note: ALS-FS=ALS First and single returns, ALS-FLS=ALS first, single and last returns. 
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The estimations using different derivation of ALS dataset were similar, when the 

difference of lowest and highest RMSE% value were less than 1.93%. There was no 

consistent pattern to rank the best derivation of ALS dataset, however, using All returns result 

the lowest RMSE% value in 5 out of 8. ALS-FLS scored better performance in 7 out of 8 when 

compared to ALS-FS. When comparing the estimation performance of ALS dataset with SfM 

dataset, ALS dataset always had higher performance where the RMSE% always lower by 

2.11−4.01%.  

The result of RMSE% in lower montane always had lower value in comparison of 

RMSE% of all plots of site 1 by 3.22%-14.60%. The lowest difference of RMSE% was 

demonstrated in Yamakura Model. This is due to the additional four plots with high biomass 

which is more than 400 Mg/ha in all plots of site 1 compared to lower montane forest site.  

 

6.3.3. Model comparison 

The result for Basuki Model was selected to compare the results between linear 

regression and Random Forest regression analyses. The result of RMSE% using linear 

regression was always lower when compared to the estimation using Random Forest by 

0.05% to 5.52% except the estimation using ALS-FLS in lower montane forest (Table 6.6).  

Linear regression model only uses one of the best predictor variables selected from the linear 

regression analysis with highest R2. The application is straight-forward once the equation was 

developed unlike the Random Forest where it uses many predictor variables during the 

machine learning process. The result demonstrated that using linear regression analysis 

yielded the lowest RMSE and RMSE% values in comparison to Random Forest regression. 

RMSE value for linear Regression model was lower compared to RMSE value of random 

forest model by 9.3 – 12.5 Mg/ha when using ground samples from all plots. 

Figures 6.9, 6.10, 6.12, and 6.13 show the map of aboveground biomass estimation 

both using linear regression analysis and Random Forest regression developed using both 

different set of ground samples of all plots of site 1 and lower montane forest site. Only one 

height variable (either h50 or h60) was used at one time and applied to the raster calculation 

using the formula obtained in the regression analysis accordingly. Since random forest used 

all the selected predictor variables (i.e. only height predictors) in the development model, all 

of the predictor variables were utilized to predict the biomass for each pixel of 30 × 30 meter. 

The computation time for creating the AGB map either using random forest or linear regression 

is almost similar for the area of approximately 2,000 hactare.  
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Table 6.6: Comparison of RMSE, RMSE% and R2 value using different model of linear regression and 
random forest regression.  

 All site 1 (n=45)  Lower Montane (n=35)  

 RMSE  
(Mg/ha) 

RMSE% R2 RMSE  
(Mg/ha) 

RMSE% R2 

Linear regression       

ALS-All 74.82 33.10 0.6174 54.68 27.25 0.7223 

ALS-FS 74.61 33.00 0.6198 55.33 27.58 0.732 

ALS-FLS 74.77 33.07 0.6178 54.44 27.14 0.7326 

SfM 76.52 33.85 0.6008 55.89 27.86 0.7407 

       

Random Forest       

ALS-All 84.16 37.23 0.4637 55.02 27.43 0.5856 

ALS-FS 86.33 38.19 0.4357 55.43 27.63 0.5795 

ALS-FLS 84.44 37.35 0.4602 54.17 27 0.5984 

SfM 89.00 39.37 0.4003 59.45 29.64 0.5161 

 

Figures 6.9 and 6.10 show the AGB map estimated using linear regression model while 

Figures 6.12 and 6.13 show the AGB map estimated using Random Forest regression. The 

maximum estimations using the linear regression model were between 531 Mg/ha to 645 

Mg/ha. There are higher biomass estimation when using all plots of site 1 dataset in 

comparison to lower montane forest ground sample with majority pixel value of 25 – 50 Mg/ha 

(Figure 6.11). The maximum values of AGB developed using Random Forest were between 

312 to 483 Mg/ha. Large maximum value differences of AGB were observed when using set 

of ground samples in lower montane forest where the maximum value by Random Forest 

estimation was lowered by approximately half compared to estimations using linear regression. 

However, when larger number of sample plots were used, the maximum value estimation 

differences were reduced to approximately one tenth (Figure 6.13 and 6.14). This suggests 

that the Random Forest would benefit when using larger number of dataset with larger 

biomass plot dataset for the machine learning process.  The maximum values by linear 

regression also reduced when using larger number of ground samples from 645 to 531 Mg/ha. 

Figure 6.15 shows the differences between biomass estimated using linear regression 

and random forest model. In general the estimations are relatively different with the value of 

±50 Mg/ha from each other. 

One major limitation of the AGB map when derived using SfM dataset is no data area. 

In this study, only 86.1% of aerial photographs were aligned during the single image matching 

process using 2,400 aerial photographs. This non-aligned photographs (13.9%) basically 

create the large no data areas which were observed in the North-West, South-West and 

South-East area. However, several possible solutions for this challenge can be proposed and 

will be discussed in the discussion section. 
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Figure 6.9:AGB Map estimated (SLR Model) using lower montane forest dataset (n=35) using Basuki 

Model from ALS-FLS dataset (top) and SfM dataset (middle). Grey color represent no-data area. 
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Figure 6.10: AGB Map estimated (SLR Model) using all plots of site 1 (n=45) using Basuki Model from 
ALS-FLS dataset (above) and SfM dataset (below). (Bottom) Difference between ALS-FLS and SfM 

estimated from all plots and linear regression analysis. Grey color represent no-data area. 

 

 
Figure 6.11:Difference between all plots of site 1 (Figure 6.8. (top)) and lower montane (Figure 6.7. 

(top)) estimated from ALS-FLS dataset and linear regression analysis.  
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Figure 6.12: AGB Map estimated (RF Model) using lower montane forest dataset (n=35) using Basuki 

Model from ALS-FLS dataset (above) and SfM dataset (below). Grey color represent no-data area.  

 

 

 
Figure 6.13: AGB Map estimated (RF Model) using all plots of site 1 (n=45) using Basuki Model from 
ALS-FLS dataset (top) and SfM dataset (middle). (Bottom) Difference between top and middle. Grey 

color represent no-data area.  
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Figure 6.14: Difference between all plots of site 1 and lower montane estimated from ALS-FLS 

dataset and Random Forest model.  

 

 

 
Figure 6.15: (Top) Difference between Linear regression and random forest estimated from ALS-FLS 

dataset; (Bottom) Difference between Linear regression and random forest estimated from SfM 
dataset.  
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6.4 Discussion 

Allometric equations 

The estimation of AGB using remote sensing technology rely heavily on the selection 

of allometric equation of aboveground biomass. Many allometric equations has been proposed 

in different type of forests and growth environments and can be categorized into generic 

models (e.g. Brown et al., 1997; Chave et al., 2014; Pearson et al. 2005) or regional models 

(e.g. Basuki et al., 2008; Yamakura et al., 1986). The aboveground biomass can be influenced 

by forest changes and species composition (e.g. Culmsee et al., 2010). Thus, it is 

recommended to evaluate the estimation error of each allometric equation if there are two or 

more applicable equations available (e.g. Hirata et al., 2012), which may reduce uncertainties 

in biomass assessment (e.g. Rutishauser et al., 2013). 

Collecting a complete species information in tropical forest can be a daunting task as 

the tree species can be as high as 3,000 in Borneo Island (MacKinnon et al., 1996).  In this 

study at least 300 species from 60 families were present during the field survey. However, 

species information was not completely identified and this impeded the use of allometric 

equation which require wood specific gravity as input (e.g Chave et al., 2014) where this type 

of models have been reported to result good estimation (e.g. Rutishauser et al., 2013; 

Vieilledent et al., 2012). Although default value of 0.57 g/cm3 was proposed for Asian region 

(e.g Brown and Lugo, 1984; Reyes et al., 1992), the variation of wood specific gravity could 

be diverse. For example, the value of wood specific gravity for some of the species found in 

this study are 0.40 g/cm3, 0.44 g/cm3, 0.6 g/cm3 and 0.81 g/cm3 for Litsea spp. Agathis spp. 

Lithorcarpus spp  and Diospyros pilosanthera, respectively (Brown, 1997). In addition to that, 

there is significant decrease in wood density with increasing altitude for neotropical tree 

species (Chave et al., 2006). However, an opposite finding by Culmsee et al. (2010) conducted 

in Sulawesi (adjacent to Borneo), showed that wood specific gravity increased when canopy 

height decreased. Thus, applying the proposed default value is not a straight forward process 

for the study site where the range of elevation was from 1,000 to 1,908 m. Group of species 

also have been found in the contribution of total aboveground biomass at different zone, for 

example magnoliids accounted for most of AGB at submontane forest while eurosids I 

(including Facgaceae) contributed considerable aboveground biomass at all elevations (i.e. 

1,000 m to 2,400 m).  

Basuki Model was found to yield lowest RMSE value among other AGB models in this 

study. A similar finding was also demonstrated by Rutishauser et al. (2013) that the regional 

model (i.e. Basuki model) underestimated individual tree biomass, resulting in very low 

aggregated biomass estimates at the plot level carried out in unmanaged lowland dipterocarp 
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forest in Sumatra and East Kalimantan, Indonesia. Including tree height information for 

biomass estimation can reduce overestimation especially for large tree (Rutishauser et al., 

2013). 

Further improvement of performance of biomass estimation can be achieved when 

using forest type-specific models (Cao et al., 2014) or based on eco-region model (Sato et al., 

2015) in comparison to generic allometric model. In addition to that, one of the consideration 

when applying for large scale application is the use of the metrics, as relationships between 

LiDAR metrics and AGB were found significantly different between two study areas conducted 

in Panama and Costa Rica when using different allometric equation (Drake et al., 2003).  

 

Type of dataset and prediction method 

RMSE values are depending on the set of dataset used. In the study, when additional 

high biomass plots were included (i.e. plots with value more than 400 Mg/ha), the RMSE 

values increased in comparison to the values only using set of ground samples of lower 

montane forest. Studies with lower mean AGB value showed reduced RMSE values. For 

example, in a study done in Eucalyptus plantation in Brazil, the RMSE value was 18.9 t/ha 

(R2=0.92) with maximum range of predicted biomass and measured biomass were 200 t/ha 

and 250 t/ha (Baghdadi et al., 2014) or in Cambodian seasonal tropical forest RMSE was at 

29 Mg/ha (Ota et al., 2015). Biomass estimation using ALS dataset in the same study site 

showed a comparable RMSE value of 64.26 Mg/ha (Ioki et al., 2014) when comparing using 

the same allometric equation of Yamakura model and ground sample from lower montane 

forest area. RMSE difference of 6 Mg/ha was observed due to 15 plots from site 2 were filtered 

out in this study and variant of the linear regression model. However, RMSE value increased 

to 110 Mg/ha when using different set of ground samples where high biomass plots were 

included. Fassnacht et al. (2014) reported that number of sample size is important after 

prediction method and data type for biomass estimation. This suggests that precaution must 

be taken when reporting and comparing the RMSE in different areas. Fasnacht et al. (2014) 

recommended not using correlation between prediction and observations as the sole indicator 

of performance. Apart of number of sample size to improve prediction accuracy, increasing 

the plot size would also contribute to better performance (Mauya et al., 2015).  

In biomass estimation, linear model is the most popular (i.e. more than 50%) among 

others such as support vector machine (SVM), nearest neighbor-based methods (KNN), 

Random Forest and Gaussian processes (GP) (Fassnacht et al., 2014) when evaluated over 

113 studies. Fassnacht et al. (2014) evaluated five prediction methods of linear model, 

Random Forest, SVM, KNN and GP. The result showed that Random Forest had the highest 
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R2 value followed by linear models when using ALS dataset. The RMSE values were also the 

lowest for Random Forest and second lowest value when using linear models. Fassnacht et 

al.  (2014) concluded that the prediction method had a considerable impact on the accuracy 

of AGB estimate, nearly equally important as data type, and more important than sample size. 

Random Forest model is likely to overestimate small value and underestimate high value (e.g. 

Baccini et al., 2004; Chen, 2015) which was observed similarly in this study, where Random 

Forest AGB estimation ranged from 79 to 483 Mg/ha in comparison to AGB value of ground 

sample Random Forest AGB range from 57 to 567 Mg/ha. Random Forest have been found 

to be strongly benefitted by larger sample size (e.g. Fassnacht et al., 2014). When larger 

sample size was used, the range increased by approximately 160 Mg/ha especially on the 

maximum value. Although Random Forest was found to be superior in producing lower RMSE 

value in comparison with linear model which was demonstrated in this study but also in other 

studies (e.g. Fassnacht et al., 2014; Stepper et al., 2015), it worked opposite when Random 

Forest was used for coniferous forest reported by Chen (2015). 

ALS dataset is currently the main dataset used in forest biomass estimation studies 

(Fassnatch et al., 2014) due to its high accurate points with tens of centimeters accuracy in 

forest environment (e.g. Hyyppä et al, 2000), which yields best accuracy in many forestry 

applications (e.g. Nurminen et al., 2013; Gobakken et al., 2015; Järnstedt et al., 2012). There 

are many ALS sensors in the market which either be categorized as discrete returns (DR) or 

full waveform (FW) system. The maximum number of returns from a single laser shot of the 

full waveform system can reach up to 7 returns in LAS 1.2 format whereas in DR system, a 

typical 4 returns were recorded (i.e. 1st, 2nd, 3rd and last). It means that there is a technical 

issue to be addressed on the variance of the returns between DR and FW system if the 

biomass model is to be applied for large scale operation as certainly different ALS sensors will 

be employed in such as case. Conceptually, the first returns, single returns and last returns 

should be similar in both system of DR and FW. Thus, when deriving ALS dataset, namely 

using some combination of “first”, “single” and “last” returns are most important to be tested 

even when there is FW dataset for the study site. The result of this study demonstrated that 

the estimation using different sets of ALS dataset were similar (i.e. maximum RMSE% 

difference was 3.82%), with generally, using all returns yielded higher accuracy, followed by 

ALS-FLS (first, single and last returns) and ALS-FS (first and single returns). Thus, the AGB 

model developed using ALS-FLS rather than ALS-FS is recommended for application and the 

choice between DR and FW system is found to be rather not important (e.g. Sumnall et al., 

2016). In this study, the use of intensity and echo-width information from the full waveform 

ALS dataset were not explored although some study showed the usefulness of intensity-based 

models which yielded higher accurate predictions of biomass fractions (e.g. García et al., 
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2010). The echo-width variables from the Lidar data was found to be relatively unimportant 

(Summall et al., 2015) beside the variables are not applicable to the DR system.  

Technical issue of effect of pulse density was addressed in a study by Hansen et al. 

(2015). In the study conducted in Tanzanian tropical rainforest (200−1,200 m above sea level), 

they found that random variation in DTM and canopy metrics decreased with increased pulse 

density. In addition, variation in canopy metrics was reduced with increased plot size. Pulse 

densities > 0.5 pulses/m2 at plot size of 0.7 ha were reliable. Although the percentile height 

50% and 60% were not assessed (that were used in their linear models), the result on the 

mean height metrics (i.e. close to h50 or h60 value) showed a good reliability ratio with Pulse 

densities > 0.5 pulses/m2. 

 

Potential application of aerial photographs for forest monitoring 

The key result of this chapter demonstrated that the estimation performance using 

aerial photographs is almost similar to the ALS dataset. Many of the advantages as well as 

limitations of SfM dataset have been discussed in Chapter 5. Here, I will discuss issues 

specifically related on the potential of using aerial photographs for biomass estimation for 

forest monitoring program such as MRV system of REDD-plus. While, there is ongoing 

development to reduce the cost of ALS dataset by the technical research on optimal reduced 

point density for biomass assessment and also by development of the hardware, aerial 

photographs could remain better alternative for cost effective system compared to ALS at least 

for now because aerial photographs have the advantages of larger effective swath (i.e. up to 

5 times) and the flight mission can be performed faster up to 2.5 times in comparison to ALS 

data acquisition (Leberl et al., 2010). It means that the flying time or cost can be reduced 

significantly up to 8 percent.  

Several technical issues when applying the SfM dataset for large scale operational 

application can be discussed as follows; (1) availability of ALS dataset for digital terrain model; 

(2) no data area; (3) camera system; (4) resolution of aerial photograph; and (5) image 

matching processing.   

ALS dataset in national scale is still limited to several countries for example Sweden, 

Denmark, Switzerland, and Finland (Ginzler and Hobi, 2015). In South-East Asia, Philippines 

is one of the leading countries for LiDAR national program where up to November 2014, 

approximately 93,000 km2 or one-third of the total land area have been covered under the 

Disaster Risk and Exposure Assessment for Mitigation (DREAM) Program started in 2011. In 

many cases, the product of digital terrain model is delivered in raster format with typical 



89 
 

resolution of 2 meter or larger (e.g. Gibzler and Hobi, 2015; Vesakoski et al., 2014). Using the 

same dataset, I found that the difference between the metrics derived directly using LAStools 

(where points was normalized using the TIN) and rasterized DTM of 1 meter were minima (see 

appendix 6.8). In the case where coarser ALS-DTM was provided (e.g. 2m or 5 m), resampling 

to lower resolution could reduce the error of normalized point especially in steeper area either 

by resampling using cubic convolution or bilinear interpolation (e.g. Wong et al., 2014).  

Further development of study related with using different accuracy or resolution of ALS-DTM 

for biomass estimation in different environment (e.g. forest type and slope gradient) would be 

an important issue to be addressed.  

 The no data area can be improved significantly with combination of better dataset of 

aerial photographs and image matching strategy. The use of aerial photograph with higher 

radiometric resolution and overlap (both forward and sidelap) may contribute to the image 

matching success (e.g. Ginzler and Hobi, 2015). Nurminen et al. (2013) showed that using 

higher forward overlap of 80% can result to higher detection of forest gap. The forward overlap 

and sidelap in this study was estimated at between 55 to 70% and 45 %, respectively. Ginzler 

and Hobi (2015) demonstrated a success of creating digital surface model with a resolution of 

1 m for the entire country of Switzerland, a first to be performed in countrywide scale with 

97.9% completeness using push-broom camera of ADS40/ADS80. 

In this study, higher aerial photograph resolution of 10 cm was used which is higher 

than the conventional resolution used for national aerial photographs acquisition with typical 

resolution of 25 cm or 50 cm (e.g. Ginzler and Hobi, 2015). National flight programs take 

advantage of the large camera system where the swath width can reach up to 6 km when 

using ADS80 system for 50 cm resolution aerial photographs with flying height about 4,800m 

above ground level. Flying in the mountain area would require the aircraft to fly higher and this 

would add to another challenge of cloud or haze condition. Nurminen et al. (2013) 

demonstrated that there is no significant effect on estimation accuracy of forest variables when 

the off-nadir increase from 0 to 20°. Using different GSD (i.e. 12 cm and 48 cm) resulted in 

almost similar estimations when tested for forest biophysical characteristics estimation (Bohlin 

et al. 2012).  

SfM dataset is derived indirectly using image matching software (e.g. Photoscan Pro 

and Pix4Dmapper) unlike the ALS dataset which is derived directly from the laser pulse. The 

transition from analytical photogrammetry to fully digital photogrammetry have significantly 

increased the capability in deriving detailed digital surface model as the process is fully 

automated. One of the major issue for large scale operation would be the processing capability. 

The first countrywide DSM published by Ginzler and Hobi (2015) for the entire country of 
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Switzerland (which is relatively small country with land area about 4 million hactares) was 

completed in 320 days using two workstations with 16 parallel processes. The Socet NGATE 

by BAE Systems was used for the processing entire Switzerland. Other semi-global matching 

software (e.g. Trimble Match-T) resulted to higher processing times up to 4 times. A 

combination of ongoing developments of image matching technology in computer vision field 

and computer hardware will certainly result a continuous increase in computation capability 

for forest monitoring using aerial photographs in large scale operation.  

In addition to that, if a flight program is not feasible to be implemented in national scale 

due to limited resources, the methodology and result can be used as verification purpose. ALS 

dataset can be further used for upscale the aboveground biomass predictions with the 

combination of satellite imageries such as Moderate Resolution Imaging Spectroradiometer 

(MODIS) and Landsat datasets (e.g. Asner et al. 2012; Li et al., 2015). 

 

6.5. Summary 

Basuki Model was found to result the lowest RMSE among the four allometric 

equations tested in this study. Different RMSE values was observed when using different 

number of ground samples, where higher RMSE was observed using plots with higher 

biomass. It seems that Random Forest model was benefited by using higher number of sample 

plots. Prediction method using random forest in comparison with linear regression model 

demonstrated both lower (for Yamakura model) and higher RMSE values (for Brown, Pearson 

and Basuki models). ALS dataset of ALS-FLS (“first”, “single” and “last” returns) resulted 

slightly higher performance when compared to ALS-FS (“first” and “single” returns). Biomass 

estimation using aerial photograph yielded almost similar performance with estimation from 

ALS dataset. Thus, there is a great potential of using aerial photographs for carbon monitoring 

purpose under the REDD-plus scheme for a relatively low cost in comparison to ALS dataset 

once a detail digital terrain model from ALS dataset is available in national or subnational level. 

However, further research on the effect of using operational spatial resolution of 25 cm or 50 

cm in estimating aboveground biomass should be investigated. In addition to the height 

information used for biomass estimations, aerial photographs also provide a unique 

information of reflectance which can be potentially used for canopy species assessment, 

where biodiversity assessment may be included together in the total forest assessment.  
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Chapter 7 : Forest biophysical characteristics estimation 

 

7.1. Research background 

Forest inventory is important to derive information of forest biophysical characteristics 

(e.g. mean diameter, volume, basal area, stand height and tree density) both for scientific and 

forest management purposes. The primary needs in forest management are quantification of 

volumetric product yield and structural composition of the forest where the information can be 

used for various forestry applications such as silvicultural prescriptions, regeneration surveys, 

harvest or operational inventory, appraisal surveys, strategic inventories and regional and 

national surveys (Scott and Gove, 2002). Scientifically, forest biophysical characteristics 

information is mainly used for ecological studies such as the study of forest structure between 

different forest types (e.g. Ostertag et al., 2014) and structure analysis of forest degradation 

(e.g. Njepang, 2015). Collecting forest inventory information using ground measurement is 

highly resource intensive especially for remote forest area. Remote sensing technology offers 

a great opportunity especially on the advantages of large spatial and multi temporal 

assessment.  

In general, airborne laser scanner (ALS) dataset is found to be most superior in forestry 

application, followed by SfM (structure from motion), InSAR (interferometric synthetic aperture 

radar) and radargrammetry (e.g. Rahlf et al., 2014). Both ALS and SfM datasets have been 

used to estimate forest biophysical characteristics such as tree density, basal area, volume, 

mean diameter or tree height especially in boreal or temperate forests (e.g. Bohlin et al., 2012; 

Gobakken et al., 2015; Järnstedt et al., 2012; Nurminen et al., 2013; Vastaranta et al., 2013). 

Nurminen et al. (2013) found that using higher forward overlap produced only slightly better 

results in the estimation of biophysical characteristics and estimation accuracy was not 

significantly impacted by the increase in the off-nadir angle. The increase in ground sample 

distance (GSD) by lower flight altitude do not significantly improve the estimation accuracy 

(Bohlin et al., 2012). In addition to biophysical characteristics estimation, Vastaranta et al. 

(2013) also studied change detection between two time series dataset. While there are good 

results reported for boreal or temperate forest, it is interesting study to use ALS and SfM 

dataset for the structurally diverse forest in tropical rainforest.   

In this study, the capability of the photogrammetric point cloud in estimating forest 

biophysical characteristics was further tested. I evaluated and compared the forest biophysical 

characteristics estimated using ALS (including two additional derived ALS dataset of ALS-FLS 

and ALS-FL; see Chapter 6 for the details) and SfM dataset. I tested the dominant height 
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(Hdom), Lorey’s mean height (HL), basal area (G), mean diameter (D), and tree density (N) in 

tropical montane forest environment. Different prediction method of linear regression and 

random forest were tested on two different set of ground samples (i.e. all plots of site 1 and 

lower montane). I also discussed the performance of the estimation in tropical forest in 

comparison to other studies. 

 

7.2. Methodology 

7.2.1. Field Data 

Field data consisted of individual tree information which were measured between 2011 

and 2012. I used 45 plots located in site 1, with each plot size of 900 m2 (30 m × 30 m; n=38) 

or 400 m2 (20 m × 20 m; n=6) or 2500 m2 (50 x 50 m; n=1). The position of each individual 

plot was determined using DGNSS (differential global navigation satellite system) receivers of 

Ashtech ProMark 100 (Spectra Precision, Westminster, CO, USA) and JAVAD Triumph-1 

(JAVAD GNSS Inc., CA, USA). Diameter at breast height (DBH) and tree height within the plot 

area were recorded for all trees with DBH ≥10 cm. Tree height was measured using electronic 

hypsometer of TruPulse® 360 Laser RangeFinder with foliage filter (Laser Technology Inc., 

Colorado, USA) or Haglöf Vertex IV (Haglöf Sweden AB, Västernorrland, Sweden).  

 

  Table 7.1: Statistics of forest biophysical characteristics from surveyed field plots.   

 Min Max Avg SD 

All plots (n=45) 
Dominant height (hdom), m 16.78 49.51 28.04 6.99 
Lorey’s mean height (HL), m 10.68 42.41 23.63 7.12 
Mean DBH (D), cm 12.80 28.53 19.90 4.29 
Basal Area (G), m2/ha 8.94 68.62 29.61 13.08 
Tree density (N), ha-1 300 1456 750 271 

     

Lower montane (n=35) 
Dominant height (hdom), m 16.78 49.51 28.32 6.57 
Lorey’s mean height (HL), m 13.87 42.41 23.93 6.30 
Mean DBH (D), cm 12.80 28.53 19.87 4.19 
Basal Area (G), m2/ha 8.94 47.75 26.57 9.90 
Tree density (N), ha-1 300 1278 690 223 

Note: Refer to Appendix 7.1 for the FBC values in each plot. 

 

 Five biophysical characteristics were derived for each individual plot using the field 

data using all plots of site 1 and lower montane ground samples.  Dominant height (Hdom) was 

computed as arithmetic mean height of the 100 tallest trees per hectare within the plot. Mean 
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height for each plot was computed as Lorey’s mean height (HL), i.e. mean height weighted by 

basal area (see Appendix 7.2). Basal area (G), tree density (N) and mean DBH (D) were also 

computed for each individual plot (Table 7.1).  

 

7.2.2. Predicting Forest Biophysical Characteristics 

The ALS points and SfM points were extracted for each plot using LAStools (rapidlasso 

GmBH, Gilching, Germany). Then, the points were normalised by using the ALS ground points. 

I used the canopy points height of 2 m and above to compute the predictor variables (e.g. 

Nurminen et al., 2013) by deriving 16 height variables and 9 canopy cover percentile variables 

(see Figure 6.7).  The height variables were maximum height (hmax), minimum height (hmin), 

mean height (hmean), standard deviation of height (hstd), percentiles at 10% intervals (h10, h20, 

…, h90) and percentile at 25% (h25), 75% (h75) and 95% (h95). Canopy cover percentile was 

computed as the proportion of returns below certain percentage of total height with 10% 

interval (d10, d20, …, d90). I performed log transformation to all the predictor variables and thus 

double the number of predictor variables.  

 

Linear regression model 

The predictor variables from each of ALS and SfM dataset were related to the 

corresponding surveyed reference values of each plot using linear regression analysis. In the 

regression analysis, I modeled each of the biophysical characteristics (Hdom, HL, G, D and N) 

using both original scale and log-transformed values as the response variables. I selected the 

model with the highest coefficient of determination (R2) value (see Appendix 7.3 & 7.4). In total, 

4,000 linear regression were performed to obtain the R2 over the analysis. 

Cross-validation was performed to assess the accuracy of the AGB estimation using 

leave-one-out-cross-validation (LOOCV) for all the 40 models. LOOCV technique requires one 

of the training plots to be removed from the dataset at a time, while the remaining plots (n-1) 

to be fitted using the selected model of AGB. The estimated AGB were then predicted for the 

removed plot. This procedure was repeated until all estimated values were obtained for all 

plots. The accuracy of the estimations was assesed by the root mean square error (RMSE) 

and relative RMSE (RMSE%) using the orginal scale values: 

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1       (1) 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸%) = 100 ×
𝑅𝑀𝑆𝐸

𝑦̅
          (2) 
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where 𝑦𝑖  is the surveyed reference value for plot i; 𝑦̂𝑖 is the remote-sensing based prediction; 

𝑦̅ is the arithmetic mean of the surveyed biophysical characteristics; n is the number of the 

plot.  

 In addition, different DBH thresholds of 20 cm and 30 cm were tested for Lorey’s mean 

height, mean DBH, basal area and tree density estimation (Appendix 7.1). For threshold 

values of 20 cm and 30 cm, only individual trees with DBH greater or equal than 20 cm and 

30 cm were used, respectively. The models were selected with the highest coefficient of 

determination (R2) values (Appendix 7.5 & 7.6). 

 

Random Forest model 

Random Forest (RF) regression, one of the non-parametric regression methods, was 

used to model the aboveground biomass. The RF alogrithm, a machine learning algorithm, 

was first developed by Breiman (2001) and this technique is robust to noise with internal 

estimates monitor error, strength, and correlation using the out-of-bag (OOB) error estimate 

where cross-validation or separate test set is not required to obtain an unbiased esimate of 

the test set error. However, the main limitation of RF model is likely to overestimate small 

value and underestimate high value (e.g. Baccini et al., 2004).     

Random forest have been used in various fields of study including forestry (e.g. 

Immitzer et al., 2016; Mascaro et al. 2014; Nurminen et al., 2013; Stepper et al., 2015; 

Vijayakumar et al., 2016; Yu et al., 2011) and was reported to be superior in estimating forest 

biomass (e.g. Fassnacht et al. 2014). Different parameters were tested using different number 

of trees (i.e. 500, 1,000 and 2,000) and number of predictors (i.e. 4, 8 and 16) (see Appendix 

6.6). The square root of the total number of predictors was recommended to select the number 

of predictors. In this study, 32 height predictors variables including the log-transformation 

values were used, but the canopy cover percentile variables were excluded for the RF 

regression model. In this analysis, the parameters for number of predictors and number of 

trees are 6 and 2,000, respectively were decided.  

 

7.3. Results 

7.3.1. Linear Regression model 

The results for biophysical characteristics estimation are summarized in Table 7.2, 

Table 7.3, Figure 7.1 and Figure 7.2. Tables 7.2 and 7.3 show the ALS and SfM models for 

biophysical characteristics estimation from linear regression analysis with the respective 

RMSE and relative RMSE values. All models were best developed using one of height 

variables of height percentile 40% and above (h40) for dominant height, basal area, Lorey’s 
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mean height, and mean diameter, and standard deviation of height (hstd) for tree density. It 

was found that all height variables were best to develop the model using log-transformed 

height variables except for tree density estimation of ALS and Lorey’s mean height of SfM 

where the predictive models used the original scale of height metrics. There was no single 

canopy cover percentile variables used to develop the final model. I tested both original scale 

and log-transformed response variables and I found all the models were best developed using 

log-transformed values.  

 

Table 7.2: Result of single linear regression analysis in lower montane dataset. 

Lower Montane (n=35) RMSE RMSE% R2 

Dominant Height    

ALS-All Ln(Hdom)=0.763*Ln(h70)+0.948 3.386 11.96 0.8276 

ALS-FS Ln(Hdom)=0.813*Ln(h70)+0.73 3.224 11.38 0.8372 
ALS-
FLS Ln(Hdom)=0.8*Ln(h75)+0.787 3.399 12.00 0.8266 

SfM Ln(Hdom)=0.792*Ln(h70)+0.792 3.335 11.77 0.8285 

     

Lorey's Height    

ALS-All Ln(HL)=0.915*Ln(h95)+0.116 2.863 11.97 0.8641 

ALS-FS Ln(HL)=0.918*Ln(h90)+0.116 2.803 11.72 0.8677 
ALS-
FLS Ln(HL)=0.918*Ln(h90)+0.142 2.863 11.96 0.8615 

SfM Ln(HL)=0.039*(h70)+2.162 2.702 11.29 0.8582 

     

DBH     

ALS-All Ln(D)=0.724*Ln(h70)+0.719 1.764 8.88 0.8649 

ALS-FS Ln(D)=0.765*Ln(h70)+0.534 1.798 9.05 0.8598 
ALS-
FLS Ln(D)=0.76*Ln(h70)+0.589 1.766 8.89 0.8660 

SfM Ln(D)=0.774*Ln(h60)+0.539 1.811 9.11 0.8549 

     

Basal Area    

ALS-All Ln(G)=1.18*Ln(h60)-0.374 6.649 25.02 0.6647 

ALS-FS Ln(G)=1.302*Ln(h50)-0.794 6.637 24.98 0.6833 
ALS-
FLS Ln(G)=1.258*Ln(h60)-0.646 6.608 24.87 0.6761 

SfM Ln(G)=1.31*Ln(h50)-0.848 6.693 25.19 0.6912 

     

Tree Density    

ALS-All Ln(N)=-0.131*(hstd)+7.322 167.5 24.26 0.5938 

ALS-FS Ln(N)=-0.112*(hstd)+7.074 173.5 25.13 0.5475 
ALS-
FLS Ln(N)=-0.133*(hstd)+7.297 167.9 24.31 0.5892 

SfM Ln(N)=-0.465*Ln(hstd)+7.071 174.8 25.32 0.5040 
aHdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

bValue was calculated using the original scale value. 
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In the estimation using ground sample of lower montane (Table 7.2), coefficient of 

determination (R2) were above 0.8 for the predictive models of dominant height, Lorey’s mean 

height and mean diameter. The value of R2
 were between 0.67 and 0.69 for the predictive 

models of basal area whereas predictive model of tree density exhibited the lowest R2
 value 

which did not exceed 0.6.  RMSE  estimated using ALS dataset (ALS-All) for dominant height, 

Lorey’s mean height, basal area, diameter, and tree density were 3.387 m, 2.863 m, 6.649 

m2/ha, 1.764 cm and 167.5 trees per ha, respectively. For the estimation using SfM, the 

corresponding RMSE were 3.335 m, 2.702 m, 6.693 m2/ha, 1.811 cm and 174.8 per ha. The 

relative RMSE were below 12% for dominant height, Lorey’s mean height and mean diameter 

estimated using both SfM and ALS dataset. Relative RMSE were larger for basal area and 

tree density where the relative RMSE values were between 24 − 26%. The estimated 

biophysical characteristics are generally equally underestimated and overestimated (Figures 

7.1 and 7.2).  ALS was found to perform slightly better than SfM on estimation of basal area, 

mean diameter and tree density, while SfM was slightly better for dominant height and Lorey’s 

mean height. However the difference of relative RMSE values did not exceed 1.1% between 

ALS and SfM.  

The RMSE% values were always higher for estimation using all plots of site 1 (Table 

7.3) in comparison to lower montane ground samples. The RMSE% values differed by up to 

2% for mean DBH (D) and dominant height (Hdom), up to 4.2% for Lorey’s height (HL), and 

between 5 −9% for basal area (G) and tree density (N). There is limit of estimation for tree 

density (N) after 1,000 tree ha-1. 

 Different set of ALS datasets yielded similar estimation where the RMSE% values did 

not exceed 1% for most cases except estimation of Lorey’s height and Tree density (i.e. 

difference of RMSE% values up to 3.2%).  ALS-FS was found to yield better estimation in 

comparison to ALS-FLS for dominant height and Lorey’s mean height estimations, while ALS-

FLS was found to yield higher estimation for mean DBH estimation.   

Further evaluation of forest biophysical characteristic estimations using different DBH 

threshold values of 20 cm and 30 cm were performed. The result showed that the RMSE% 

values decreased by 1.6%−3.8% for Lorey’s mean height estimation (Table 7.4). The R2 

values increased by 0.11−0.22 for basal area and tree density estimations when using DBH 

threshold of 30 cm. However, the relative RMSE values increased by 3.3−6.6% compared to 

RMSE% values of DBH threshold of 10 cm. 
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Table 7.3: Result of single linear regression analysis in all plots of site 1 dataset. 

All Plots (n=45) RMSE RMSE% R2 

Dominant Height    

ALS-All Ln(Hdom)=0.029*(h75)+2.617 3.631 12.95 0.8208 

ALS-FS Ln(Hdom)=0.029*(h70)+2.594 3.548 12.65 0.8273 
ALS-
FLS Ln(Hdom)=0.029*(h75)+2.599 3.649 13.02 0.8204 

SfM Ln(Hdom)=0.027*(h70)+2.632 3.676 13.11 0.8139 

     

Lorey's Height    

ALS-All Ln(HL)=0.761*Ln(h80)+0.727 2.835 12.00 0.8765 

ALS-FS Ln(HL)=0.035*(h75)+2.218 3.551 15.03 0.8735 
ALS-
FLS Ln(HL)=0.036*(h80)+2.218 3.570 15.11 0.8751 

SfM Ln(HL)=0.034*(h70)+2.26 3.662 15.49 0.8741 

     

DBH     

ALS-All D=0.484*(h70)+8.745 2.021 10.15 0.7977 

ALS-FS D=0.469*(h70)+8.336 2.054 10.32 0.7912 
ALS-
FLS D=0.487*(h70)+8.451 2.049 10.30 0.7925 

SfM D=0.392*(h95)+8.77 2.155 10.83 0.7709 

     

Basal Area    

ALS-All G=1.414*(h40)+3.736 9.080 30.66 0.5644 

ALS-FS G=1.37*(h40)+0.815 9.020 30.46 0.5699 
ALS-
FLS G=1.378*(h50)+1.192 9.077 30.66 0.5642 

SfM G=1.225*(h50)+1.904 9.258 31.27 0.5478 

     

Tree Density    

ALS-All Ln(N)=-0.098(hstd)+7.178 247.0 32.94 0.3663 

ALS-FS Ln(N)=-0.101(hstd)+7.082 235.8 31.44 0.4021 
ALS-
FLS Ln(N)=-0.099(hstd)+7.16 247.4 33.00 0.3554 

SfM Ln(N)=-0.114(hstd)+6.99 228.9 30.53 0.4180 
aHdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

bValue was calculated using the original scale value. 
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Table 7.4: Result of single linear regression analysis in all plots of site 1 dataset with different DBH 
threshold values. 

All Plots (n=45) RMSE RMSE% R2 

DBH Threshold (≥20 cm)    

Lorey's Height    

ALS-FLS Ln(HL)=0.029*(h80)+2.503 3.537 13.48 0.8056 

SfM Ln(HL)=0.716*(h70)+8.47 3.223 12.28 0.8063 

     

DBH     

ALS-FLS Ln(D)=0.559*(hmax)+13.343 3.256 10.41 0.7449 

SfM Ln(D)=0.539*(hmax)+14.376 3.391 10.85 0.723 

     

Basal Area    

ALS-FLS G=1.616*(h60)+-13.908 8.116 37.52 0.711 

SfM G=1.503*(h50)+-12.361 8.425 38.95 0.6893 

     

Tree Density    

ALS-FLS Ln(N) =0.889*Ln(h30)+2.788 91.45 41.55 0.3754 

SfM Ln(N)=0.88*Ln(h50)+2.566 93.096 42.3 0.3476 

     

DBH Threshold (≥30 cm)    

Lorey's Height    

ALS-FLS Ln(HL)=0.763*Ln(hmax)+0.701 3.581 11.84 0.7492 

SfM Ln(HL)=0.691*Ln(hmax)+0.976 3.547 11.72 0.741 

     

DBH     

ALS-FLS Ln(D)=0.014*(h95)+3.337 5.012 11.58 0.475 

SfM Ln(D)=0.013*(h95)+3.369 5.065 11.7 0.4563 

     

Basal Area    

ALS-FLS G=1.605*(h60)+-19.459 6.993 37.17 0.7063 

SfM G=1.45*(h60)+-18.263 7.131 37.91 0.6946 

     

Tree Density    

ALS-FLS Ln(N)=1.569*Ln(h60)+-0.416 38.436 36.33 0.5605 

SfM Ln(N)=1.455*Ln(h50)+-0.09 38.816 36.69 0.5347 
aHL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

bValue was calculated using the original scale value. 

See Appendix 7.6 and 7.5 for the all R2 values. 
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Figure 7.1: Cross-validation results estimated using ALS for dominant height, basal area, tree density, 
Lorey’s mean height and mean diameter for all plots sample (n=45).  

 

   

  

 

Figure 7.2: Cross-validation results estimated using SfM for dominant height, Lorey’s mean height, 
basal area, mean diameter and tree density for all plots sample (n=45). 
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7.3.2. Random Forest 

 RMSE% values for estimations using all plots ground samples in comparison to 

estimation of lower montane ground samples were better by up to 3% for dominant height and 

Lorey’s height (Table 7.5). In mean DBH estimation, the RMSE% values were slightly higher 

by maximum value 0.6%. The RMSE% for tree density and basal area for estimations using 

all plots were higher by 3.3 – 10.1%. There was no consistency of ALS dataset’s ranking for 

the estimation can be concluded. The relative difference (maximum and minimum values) of 

RMSE% values did not exceed 1.3%. 

 

Table 7.5: Result of forest biophysical characteristics estimation using Random Forest. 

 All Site 1 (n=45)  Lower Montane (n=35) 

 RMSE RMSE% R2 RMSE RMSE% R2 

Dominant Height      

ALS-All 3.241 11.56 0.7848 4.02 14.19 0.6256 

ALS-FS 3.066 10.93 0.8073 3.937 13.90 0.6408 

ALS-FLS 3.132 11.17 0.799 3.97 14.02 0.6347 

SfM 3.264 11.64 0.7816 4.02 14.19 0.6254 

       

Lorey’s Height       

ALS-All 3.285 13.90 0.7869 3.449 14.41 0.7006 

ALS-FS 3.138 13.28 0.8056 3.535 14.77 0.6853 

ALS-FLS 3.176 13.44 0.8008 3.433 14.35 0.7032 

SfM 3.139 13.28 0.8054 3.462 14.47 0.6983 

       

Mean DBH      

ALS-All 1.831 9.20 0.8175 1.707 8.59 0.8336 

ALS-FS 1.849 9.29 0.8141 1.783 8.97 0.8185 

ALS-FLS 1.758 8.83 0.8318 1.713 8.62 0.8325 

SfM 1.877 9.43 0.8084 1.77 8.91 0.8212 

       

Basal Area      

ALS-All 10.216 34.50 0.3896 6.715 25.27 0.5402 

ALS-FS 10.354 34.97 0.373 6.744 25.38 0.5362 

ALS-FLS 10.341 34.92 0.3746 6.591 24.81 0.557 

SfM 10.981 37.09 0.2948 7.207 27.12 0.4703 

       

Tree density      

ALS-All 206.95 27.59 0.417 153.19 22.20 0.5265 

ALS-FS 201.26 26.83 0.4486 161.81 23.45 0.4718 

ALS-FLS 201.43 26.86 0.4476 160.34 23.24 0.4813 

SfM 211.96 28.26 0.3884 153.18 22.20 0.5266 
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The estimations between ALS and SfM datasets were almost similar where the 

difference of RMSE% values did not exceed 2.6%. This result demonstrated that the SfM 

dataset can be used for temporal assessment of forest biophysical characteristics once digital 

terrain model from ALS dataset is available. The variable importance in Random Forest 

analyses are shown in Appendix 7.7. 

 

7.3.3. Model comparison 

There was no consistent ranking of ALS dataset can be concluded. For systematic 

comparison, estimations from ALS-All dataset were selected to compare each forest 

biophysical characteristics (Table 7.6). In general, the estimations for dominant height, Lorey’s 

height (except for ALS-All), mean DBH and tree density were better using random forest 

compared to linear regression, where the difference of RMSE% values differed between 0.95 

– 5.4%. Linear regression model estimation was found to yielde lower RMSE% value for basal 

area when compared to random forest estimation by up to 5.8%. Figures 7.3 and 7.4 show 

the forest biophysical characteristics’ map derived from ALS-All and SfM dataset, respectively. 

Figure 7.5 shows the relative difference of ALS-All estimation from SfM estimation. 

 

Table 7.6: Comparison between estimation using Random Forest and Linear Regression. 

 Random Forest (All) Linear regression (All) 

 RMSE RMSE% RMSE RMSE% 

Dominant Height    

ALS-All 3.241 11.56 3.631 12.95 

SfM 3.264 11.64 3.676 13.11 

     

Lorey’s Height     

ALS-All 3.285 13.90 2.835 12.00 

SfM 3.139 13.28 3.662 15.49 

     

Mean DBH     

ALS-All 1.831 9.20 2.021 10.15 

SfM 1.877 9.43 2.155 10.83 

     

Basal Area     

ALS-All 10.216 34.50 9.08 30.66 

SfM 10.981 37.09 9.258 31.27 

     

Tree density     

ALS-All 206.95 27.59 247 32.94 

SfM 211.96 28.26 228.9 30.53 
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Figure 7.3: Forest biophysical characteristics’ estimation maps using ALS-all dataset, all plots of site 1 

and random forest. 
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Figure 7.4: Forest biophysical characteristics’ estimation maps using SfM dataset, all plots of site 1 

and random forest. Grey color represents no-data area.  
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Figure 7.5: Relative difference of forest biophysical characteristic estimation using ALS-All dataset 

from SfM dataset.  
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7.4. Discussion 

Several technical issues on ALS dataset, ground plot samples and prediction methods 

had been discussed in Chapter 6. 

I compared my results with studies performed in mostly even-aged temperate forest or 

boreal forest due to the lack of studies of biophysical characteristics estimation using ALS and 

SfM in tropical rainforest environment (Table 7.7). For dominant height, my result of relative 

RMSE were within 5% compared to the results found in other studies. The relative RMSE for 

basal area were also found higher than other studies from 15% to 36% (cf. approximately 

30 − 37% in our study) and the RMSE values in my study was found to be highest, 

approximately 10 m2/ha estimated using ALS and SfM dataset. In this study, the tree density 

estimations using Random Forest were found better than in the study found in Gobakken et 

al. (2015) by at least 8% of the relative RMSE values. For Lorey’s mean height estimation, the 

result found in Gobakken et al. (2015) was better than this research by not exceeding 7%.  My 

result estimation for mean diameter was found to be lowest for both the RMSE and relative 

RMSE values. It should be noted that the models used in those studies were varied from 

Random Forest, multiplicative model and k-nearest neighbor apart from different plot sizes, 

DBH threshold values, and number of plots. In addition, dataset specification also varied such 

as different pulse densities in ALS dataset, overlap information, sensor type and image 

matching algorithm in SfM dataset. However, using different pulse densities of ALS was found 

to have only minimal effect to the estimation accuracy unless it was reduced to very low 

(Magnusson et al., 2007b). Increased forward overlap from 60% to 80% improved the 

estimation accuracy only slightly (Nurminen et al., 2013) while using different GSD (i.e. 12 cm 

and 48cm) resulted in almost similar estimations (Bohlin et al., 2012). Best estimation was 

found in study of Nurminen et al. (2013) using Random Forest as the model with 89 training 

plots, and aerial photographs up to 80% forward overlap. Although ALS has been reported to 

be more superior compared to SfM in estimating forest biophysical characteristics (e.g. 

Nurminen et al., 2013; Rahlf et al., 2014), several recent findings showed that the superiority 

of ALS dataset to SfM dataset only exhibiting small differences and in certain cases, SfM can 

be found to be slightly better than ALS (e.g. Gobakken et al., 2015). 

My study site is located in forest management unit (FMU) and state-land which can be 

categorized into two main types of primary forest and degraded forest. Mean DBH, dominant 

height and Lorey’s mean height showed good estimations (i.e. RMSE% is less than 16%) even 

though without separating the estimation based on different forest types or classes as done in 

several studies (e.g. Gobakken et al., 2015). This information can be further utilized for forest 

management decision or forest structure analyses.  
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Table 7.7: RMSE and relative RMSE of biophysical characteristics estimation in different studies. 
 Hdom (m) HL (m) D (cm) G (m2/ha) N (number/ha) Remarks 
 ALS SfM ALS SfM ALS SfM ALS SfM ALS SfM 

Bohlin et al. 
(2012) 

- 

1.4a 
(8.1%) 

1.6b 
(8.8%) 

- - - - - 

3.4a 
(12.6%) 

4.0b 
(14.9%) 

- - 

Managed timber 
production forest 

(Spruce-Pine) 
DMC system Pan-
sharpened 0.12 m 

and 0.48 m        

Gobakken et 
al. (2015) c 

 
(7.8%) 

 
(9.2%) 

 
(7.5%) 

 
(10.2%) 

 
(14.5%) 

 
(18.7%) 

 
(15.4%) 

 
(18.3%) 

 
(35.1%) 

 
(43.7%) 

Managed timber 
production forest 

(Boreal) 
UltraCamXP 16-
bit Pan 0.17 m 

Järnstedt et 
al. (2012) 

2.27 
(11.8%) 

3.48 
(18.2%) 

- - 
4.45 

(25.3%) 
5.93 

(33.7%) 
4.59 

(27.9%) 
5.97 

(36.2%) 
- - 

Homogenous 
stand (boreal) 

UltraCamXP 8-bit 
Green, Red & NIR 

0.25 m 

Nurminen et 
al. (2013) 

- - 
0.97* 

(6.6%) 

1.0d* 
(6.8%) 
1.1e* 

(7.6%) 

2.16 
(11.4%) 

2.27d 
(12.0%) 

2.31e 
(12.2%) 

- - - - 

Boreal forest 
UltraCamD 16-bit 

Pan 0.15 m 

Vastaranta et 
al. (2013) 

- - 
1.47* 

(7.8%) 
2.13* 

(11.2%) 
4.51 

(19.1%) 
5.13 

(21.7%) 
3.65 

(17.8%) 
4.86 

(23.6%) 
- - 

Homogenous 
stand (boreal) 

UltraCamXP 16-
bit RGB & CIR 

composite 0.25 m 

This studyf 

3.65 
(13.0%) 

 
3.13 

(11.2%) 

3.68 
(13.1%) 

 
3.26 

(11.6%) 

3.57 
(15.1%) 

 
3.18 

(13.4%) 

3.66 
(15.5%) 

 
3.14 

(13.3%) 

2.05 
(10.3%) 

 
1.76 

(8.8%) 

2.16 
(10.8%) 

 
1.88 

(9.4%) 

9.08 
(30.7%) 

 
10.34 

(34.9%) 

9.26 
(31.3%) 

 
10.98 

(37.1%) 

247 
(33.0%) 

 
201 

(26.9%) 

229 
(30.5%) 

 
212 

(28.3%) 

Tropical 
montane forest 

(natural & 
degraded) 

Canon EOS 1D 
Mark III 24 bit 
sRGB 0.1 m 

The first value is the RMSE value in respective unit of biophysical characteristics and the values in parenthesis is 
the relative RMSE.  
Hdom=dominant height, HL= Lorey’s mean height, G= basal area, D=mean diameter, N=tree density.  
*Mean height estimation instead of Lorey’s mean height estimation. 
aResult based on dataset 1200m 80%/60% overlap. 
bResult based on dataset 4800m 60%/30% overlap.  

cResult based on plot-level cross validation and mature forest on good sites. 
dResult based on photogrammetric point cloud with 80% forward overlap. 
eResult based on photogrammetric point cloud with 60% forward overlap. 
fResult of first row represents the value estimated using linear regression and second row using random forest 
prediction method.  

 

ALS dataset is capable to provide point cloud data from canopy top to forest floor. On 

the other hand, SfM point cloud is limited to the outermost canopy layer. Thus, the application 

of SfM is highly dependent to the availability of digital terrain model from ALS dataset. The 

DTM derived from ALS is very accurate and the accuracies were reported to be 15 cm in flat 

area and the error increased to 40 cm in steep area (Hyyppä et al., 2000). The accuracy of 

SfM which is derived using passive sensing system can be influenced by several factors such 

as image matching algorithm, environmental condition, type of camera, overlap information, 

flight and camera parameter setting, and object characteristics. For example, Nex and 

Remondino (2014) suggested that environmental conditions such as illumination changes due 

to different acquisition time may affect DSM generation. SfM dataset could be offered by 
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relatively low data acquisition cost compared to ALS and the cost have been reported to be 

one-half to one-third of the cost of ALS dataset (White et al., 2013). This is mainly due to the 

capability of aerial photographs with up to 5 times larger effective swath width and the flight 

speed can be 2.5 times faster in comparison with ALS data acquisition (Leberl et al., 2010). It 

means aerial photographs requires less flying hours compared to ALS for a given same size 

of area and thus decreases the operation cost of flight mission. In addition, the aerial 

photographs have unique information of reflectance information which is not available by ALS. 

Reflectance information (e.g. texture and tone), which is unique to aerial photograph, is useful 

for certain forestry applications such as species identification (e.g. Garzon-Lopez et al., 2012) 

and land cover classification accuracy assessment (e.g. Phua et al., 2008). The advancement 

of unmanned aerial vehicle (UAV) permits the use of similar technique with much lower cost 

on small scale project (e.g. Lisein et al., 2013).  

 

7.5. Summary 

The forest biophysical characteristics of dominant height, Lorey’s mean height and 

mean diameter were better estimated compared to tree density and basal area. Estimation 

using ALS and SfM only exhibited small difference where relative RMSE not exceeding greater 

than 2.6% when using Random Forest model. Using different prediction methods resulted 

difference in RMSE% values up to 5.8%, with Random Forest generally found superior in 

estimating Lorey’s mean height, dominant height, mean DBH and tree density whereas linear 

regression was superior in estimating basal area. Using larger number of sample plots yielded 

improved estimation in terms of RMSE% for Lorey’s mean height and dominant height. There 

was no consistent ranking of ALS dataset for forest biophysical characteristic estimation.  

Considering the estimation performance using SfM similar to those obtained with ALS 

dataset, aerial photographs has significant application potential in forestry because of its main 

advantages of relative low cost and the potential using with UAV for small scale project, once 

an accurate digital terrain model is available. 
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Chapter 8 : General Discussion 

 

Contribution and general limitation of study  

The main contribution of the study in Chapter 5 showed that darker area and higher 

slope increased the RMSE values of the photogrammetric digital surface model. The slope 

increased the RMSE value up to 8.6 meter while on dark area, the RMSE value increased up 

to 5.8 meter. I used the canopy slope and dark area to attribute the performance where these 

information can be used to improve forest dynamics assessment at pixel level such done in 

analytical photogrammetry (e.g. Fujita et al., 2003b). Since the larger error occurs in the dark 

area and steep slope, further exploration how to fully optimize the information would be a great 

important study. The result showed that using SfM dataset alone can predict DSM at gentle 

slope at approximately 2 meter accuracy.  The variance of RMSE can be explained by mean 

and standard deviation of ALS-CHM. Forest gap was not well captured in the analysis thus 

some of the overestimation was observed in the forest gap along with the steeper area. Both 

underestimation and overestimation were observed, where occasionally trees could be missed 

to be detected during the image matching process and overestimated points in forest gap. An 

exploration to understand the performance can be done by using higher overlapped 

stereoscopic coverage, as Nurminen et al. (2013) showed that better gap detection when 

using forward overlap of 80% compared to 60%. This may contribute to the improvement of 

the estimation error of photogrammetric DSM.  

Chapter 6 demonstrated the potential opportunity using SfM dataset for forest 

monitoring of aboveground biomass in tropical montane forest. Developing highly accurate 

small monitoring areas is crucial step to develop a monitoring system of larger areas (Okuda 

et al., 2004). To my best knowledge, this the first study attempted using SfM dataset to 

estimate forest biomass in tropical rainforest. A study using the analytical approach in 

estimating forest biomass in tropical rainforest was performed by Okuda et al. (2004). The 

analytical photogrammetry technique is impeded for large applications since each individual 

height of grid (e.g. grid size of 2.5m) have to be digitized manually where 80,000 points were 

required to produce the digital surface model over an area of 50 ha study site. In addition to 

that challenge, the terrain were surveyed manually because it was prerequisite to derive the 

CHM. The advancement from analytical photogrammetry to digital photogrammetry have 

made a great improvement where DSM can be derived in full automation process. The 

combination of ALS and SfM dataset have demonstrated the strength in estimating forest 

biomass with high accuracy (e.g. Ota et al., 2015). One of the important technical issues to be 

addressed is the effect of GSD on the biomass estimation error when GSD increased to a 

typical operational GSD of 25 cm or 50 cm (e.g. Ginzler and Hobi, 2015) for large scale 
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application. Although Bohlin et al. (2012) demonstrated that using different GSD (i.e. 12 cm 

and 48 cm) did not improve the estimation accuracy in estimating biophysical characteristics 

in coniferous hemi-boreal forest, it is absolutely important to evaluate the performance for 

biomass estimation purpose as necessary for the robust assessment in MRV of REDD-plus. 

Including forest type could improve biomass estimation (e.g. Chen et al., 2012; Ota et al., 

2015) where the vegetation type can be derived from aerial photography (e.g. Chen et al., 

2012).  

Chapter 7 further demonstrated the strength of SfM dataset for other forest application 

of forest biophysical characteristic estimation. Tree height, mean diameter, tree density and 

basal area, all can be estimated with different level of accuracy. Tree height and mean 

diameter estimation yielded the lowest relative RMSE values (i.e. < 14%) while basal area and 

tree density estimation yielded larger RMSE% of 22−37%.  

Many of the limitations have been explicitly described in the discussion section of 

Chapter 5, 6 and 7. To recall several of them, the accuracy in deriving photogrammetric point 

clouds can be influenced by several factors; (1) image matching algorithm, (2) type of 

camera/sensor, (3) camera and flight parameter settings, (4) overlap rate, (5) environmental 

conditions, and (6) object characteristics. Continuous evaluation on using different generic 

allometric equation, prediction method, dataset type, plot size among different forest types will 

continue to increase the robustness of biomass estimation.  

 

Guidance for Applications in nationwide scale for forest monitoring and UAS 

for small scale applications 

Guidance recommendations for large scale application will be discussed in the 

following; (1) availability of ALS-DTM; (2) data acquisition of aerial photographs, and; (3) aerial 

photograph processing.  

SfM dataset have demonstrated the advantage in forestry applications. However, the 

application is limited to the area where highly accurate digital terrain model (DTM) is available. 

At the time being, ALS-dataset is only dataset with capability to provide highly accurate DTM 

with RMSE value of 20−30 cm or better in forest environment (e.g. Hyyppä et al., 2000). 

Although global topographic data of Shuttle Radar Topography Mission (SRTM) and ASTER 

Global Digital Elevation Model (GDEM) are available, they only provide height information as 

digital surface model (DSM), not the DTM (Figure 8.1) (see Wong et al., 2014). In many 

instances, ALS-DTM is delivered in raster format. The accuracy of the dataset largely depend 

on ALS data acquisition density especially in rugged terrain area. Hyyppä et al. (2000) for 

example demonstrated that gradient could significantly affect the accuracy in steep area. 

Meanwhile, Hansen et al. (2015) have demonstrated that the use of pulse density larger than 
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0.5 pulses per m2 have showed good reliability in deriving canopy metrics. Further 

development on ALS-DTM in different gradients or terrains and forest types are important to 

be addressed for fully optimized and cost-effective approach in deriving ALS-DTM. 

 

 

Figure 8.1: Example of cross-sectional profile showing original SRTM 90m (cyan), GDEM2 30m 
(yellow), LiDAR-DEM (black) and LiDAR-DSM (blue). SRTM height was found to be highly 

overestimated over the recent burnt area (X) (Wong et al., 2014).  

 
Large format camera system is the main option when developing a large scale forest 

monitoring system. Large format camera can be categorized into two; push-broom system 

(e.g. Leica ADS40/80) and frame system (e.g.  Vexcel UltraCam, Z/I Imaging DMC). Each 

system have been reported to have advantages against each other (see Leberl and Gruber, 

2007; Passini and Jacobsen 2008). Large format camera system have been used in various 

forestry studies such as dataset of Z/I Imaging DMC (e.g. Granholm et al., 2015; Honkavaara 

et al., 2011; Magnusson et al., 2007a; Olofsson et al., 2006), Velxel UltraCam (e.g. Erfanifard 

et al., 2014; Gobakken et al., 2015; Hirschmugl et al., 2007; Honkavaara et al., 2013; 

Nurminen et al., 2013; Straub et al., 2013a) or ADS 40/80 (e.g. Bühler et al., 2012; Ginzler & 

Hobi, 2015; Waser et al., 2011). For conservative comparison, older model large format 

camera system is compared instead of the latest model, as many of the older models are still 

in use for aerial photograph data acquisition by mapping agency or corporation. The camera 

system ADS 80 for push-broom system, and DMC II 250 and Ultracam-D for frame system 

were compared. Currently in the market, the latest model of push-broom ADS 100 by Leica 

while for frame system DMC III by Leica and UltraCam Eagle by Vexcel are the state-of-the-

art products offered by the imaging company (Table 8.1). 
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Table 8.1: The specifications of large format camera of ADS 80, UltraCam-D and DMC II 250.  

 Push-broom Frame  
 ADS 40/80 Vexcel UltraCam-D DMC II 250 

Field of view (FoV) 
across track 

64° 55° 46.6° 

Pixel across track CCD lines with 12,000 
pixels each 

CCD-Pan with 11,500 
pixels 

CCD-Pan with 17,216 
pixels 

Swath at 1000 m 
aboveground level 
(km) / resolution (cm) 

1,249 m 
~10 cm 

1,041 m 
~ 9 cm 

861 m 
~ 5 cm 

Pixel resolution of 50 
cm (swath (km)/ flying 
height AGL) 

Swath 6 km/ 
4,801 m AGL 
 

5.75 km/ 
5,522 m AGL 

Swath 8.6 km 
9,993 m AGL 

Frame rate ≥ 1 ms per line < 1 sec 1.7 sec 

Note: Panchromatic image were chosen as successfully used by Nurminen et al. (2013) for SfM 
derivation. 

 
For a conceptual example, an area with 1 million hectare square sized area, getting a 

50 cm resolution with 50% sidelap will require total flight line length of 3,333km for ADS80, 

3,478 km for UltraCam-D and 2,325 km for DMC II 250 (note: aircraft turning distance to 

subsequent flight line were not accounted). The aircraft maximum altitude must be considered 

when designing the flight plan. Although DMC II 250 requires the least flying length, to reduce 

the cost, it needs to fly at about 10,000 meter aboveground where typical surveying aircraft 

might have lower maximum altitude of 8,800 m for example for Beechcraft King Air 200. Figure 

8.2 shows the national flight mission of aerial photograph for Switzerland by Swiss Federal 

Office of Topography with 6 years interval aerial photographs acquisition and GSD of 0.25 or 

0.5 meter.  

 

 

Figure 8.2: An example of the flight coverage of image data used in Ginzler and Hobi (2015). (Left) 
Coverage of ADS40/ADS80 images acquired in 2007–2012, (Right) flight lines for the image 

acquisition for the entire of Switzerland. The imagery was acquired with a GSD of 0.25 m at lower 
altitudes (denser flight lines) and a GSD of 0.50 m at higher altitudes in the mountainous regions (less 

dense flight lines). (doi:10.3390/rs70404343  (CC BY))   
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Quality of the orientation is important where it depends on the mission parameters and 

application of precise ephemeris data. On the highest external orientation quality for ADS80 

system,  the use of GNSS data with phase differential, GNSS ground reference data and aerial 

triangulation with GCPs will result an absolute quality of 0.5 pixel (e.g. < 6 cm on 10cm GSD 

or <10 cm on 20 cm GSD) (Leica Geosystem AG, 2011b). 

Flying time should be planned in noon time to maximize the sunlit surface by selecting 

the best combination of season and time of day, where shadow area can be reduced. However, 

a care must be taken to prevent overexposed areas known as hotspot which contributes a 

loss of photographic detail. In addition to that, weather is equally important as cloudy day could 

also contribute the loss of information when flying above the cloud. However, higher altitude 

cloud sometimes makes better quality photograph especially on the overexposed areas by 

dimming the sunlit. What makes the condition worst is haze problem from the forest fire which 

sometimes affect the tropical country such as Indonesia and Malaysia, and it will impede the 

data acquisition mission. The haze affects the image quality by degrading the photographic 

resolution and contrast, and this effect can be minimized to certain degree by using haze-filter 

(e.g. Arnold, 1969). Large camera system often offers features such as model-based 

radiometric correction for hotspot, atmospheric effects, and haze to deliver high quality results 

(e.g. Wiechert et al., 2011). 

 

 

Incorporation spatial valuation for multiple benefits of forest ecosystem  

 Integrating ecosystem services with remote sensing technologies is important in the 

conservation and sustainable use of the natural resources (e.g. Barbosa et al., 2015). By 

interpreting the aboveground biomass estimation map (Figure 8.3), the area of Bukit Rimau 

may yields low value for the carbon market. However, this area is a pristine forest which 

harbors many unique montane species such as Nepenthes spp., Vaccinium spp., Agathis spp. 

Leptospermum spp. and Rhododendron spp. Integration of species composition study such 

as community composition of tree assemblages can provides information of anthropogenic 

disturbances (e.g. Ioki et al., 2016). 

In recent times, spatial quantification of ecosystem services for ecosystem service 

management have gained momentum (e.g. Eade and Moran, 1996; Feng et al., 2010). 

Barbosa et al. (2015) reviewed 211 studies using remote sensing assessment and valuation 

of ecosystem services. In total 23 ecosystem services can be categorized into four according 

to Millennium Ecosystem Assessment (MEA, 2005); namely provision (e.g. food, genetic 

resources and water provision), regulation (e.g. climate, water and erosion regulation), 

habitat/support (e.g. nutrient cycling and soil formation) and cultural (e.g. recreation). Eade 

and Moran (1996) proposed that “strength” and “quality” of the natural capital asset should be 
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mapped first before re-calibration of benefit estimates from other sites. In addition to that, 

improved understanding of spatial relationships between service production areas and service 

benefit areas (e.g. human welfare) may be critical for wide range of decision making process 

(Figure 8.4) (Fisher et al., 2009). 

 

    

 
Figure 8.3: (Top) several of the photographs taken in Bukit Rimau area (elevation above 1,600 m); 

(Bottom) the aboveground biomass map estimated using Random forest and ALS dataset.  

 

 
Figure 8.4: Possible spatial relationships between service production areas (P) and service benefit 

areas (B). In panel 1, both the service provision and benefit occur at the same location (e.g. soil 
formation, provision of raw materials). In panel 2 the service is provided omni-directionally and 

benefits the surrounding landscape (e.g. pollination, carbon sequestration). Panels 3 and 4 
demonstrate services that have specific directional benefits. In panel 3, down slope units benefit from 
services provided in uphill areas, for example water regulation services provided by forested slopes. 

In panel 4, the service provision unit could be coastal wetlands providing storm and flood protection to 
a coastline (Source: Fisher et al., 2009; doi:10.1016/j.ecolecon.2008.09.014).  

Bukit Rimau 
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Goldman et al. (2008) reported that ecosystem service projects which include wider 

variety of places, people, policies, and financial resources in conservation resulted four times 

as much funding than the traditional biodiversity projects. Integrating multiple ecosystem 

services in valuation may enhance conservation activities and sustainable use of natural 

resources. Another field of study is to project economic returns over a time period. For 

example, Polglase et al. (2011) calculated economic returns over a 40-year period for 

environmental carbon planting using 105 scenarios (i.e. encompassing 3 discount rates, 

carbon prices, cost for plantings’ establishment and rates of carbon sequestration). Effective 

mapping of the full range of ecosystem services is currently beyond the capabilities of remote 

sensing alone, therefore further researches are required to overcome these limitations 

(Barbosa et al., 2015) 

 

 

Further development of research using reflectance information 

 

In this study, the use of reflectance information had been limited to the analysis of 

photogrammetric digital surface model by deriving dark area in Chapter 5. Aerial photographs 

provide very high pixel resolution (i.e. tens of centimeters) that permits detailed analysis of 

individual tree crown delineation (e.g. Tochon et al., 2015) and manual species identification 

(e.g. Garzon-Lopez et al., 2013; Valérie and Marie-Pierre, 2006; González-Orozco et al., 

2010) or semi-automatically when multi-spectral imagery is used (e.g. Hirata et al., 2014). 

  

    

Figure 8.5: Individual tree crown delineation of; (a) detected tree; (b) under-segmented; (c) over-
segmented; and (d) missed-tree (Wong & Tsuyuki, 2015).  

 

For individual tree crown delineation, higher accuracy were usually found in temperate 

or boreal forest (e.g. Ke and Quackenbush, 2007; Yin et al., 2015), where the canopy structure 

(e.g. tree size, shape and height) and species are less heterogeneous compared to tropical 

forest. Recent achievement on crown delineation in tropical forest was achieved by Tochon et 

al. (2015) by their proposed Binary Partition Tree (BPT) method, with success rate was up to 

68%. In a preliminary study conducted in North Borneo (same site and dataset of this 
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research) using object-based image analysis (OBIA), average accuracy of 61.9%, 51.7% and 

27.6% were achieved for dominant, co-dominant, and intermediate tree, respectively (Wong 

and Tsuyuki, 2015). Further development to reduce the under-segmented, over-segmented 

and missed tree can be performed (Figure 8.5) with a consideration of a method development 

which can adapt to high variability combination of object characteristics and illumination 

condition (e.g. Guo et al., 2013; Tochon et al., 2015). Continuous development on individual 

tree crown delineation and species identification will certainly contribute for improved spatial 

information in tropical forest. For example, the information could be useful for the assessment 

of endangered or threatened tree canopy species under the requirement of IUCN Red List of 

Threatened species.  
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Chapter 9 : Conclusion 

 

Aerial photographs have been an important dataset for forestry applications since the 

development of aerial photogrammetry (e.g. Seely, 1929). Various technology developments 

have been contributing to the overall development of aerial photogrammetry such as the 

development of camera system or photography, positioning of GNSS/IMU system, computer’s 

graphic processing unit (GPU) and image matching algorithm (e.g. Leberl et al., 2010). Many 

forestry applications such as biomass estimation, species identification and forest dynamics 

study now can be performed with improved accuracy. The development of structure from 

motion (SfM), where aerial photographs now can be used to derive three-dimensional dataset 

fully automatically was a milestone development from the previous technology of analytical 

photogrammetry where the height were derived manually. This offered an opportunity for large 

scale application since height information has been demonstrated to be superior information 

especially with height related variables such as biomass estimation.  

The results from this research study will surely further contribute to the knowledge and 

application development of aerial photogrammetry specifically when using SfM dataset for 

forestry purposes. The result of chapter 5 demonstrated that the accuracy of the 

photogrammetric digital surface model can be attributed to canopy slope and dark area, where 

the RMSE values increase with steeper canopy slope and darker area. This information would 

be useful when accuracy information of photogrammetric DSM at pixel resolution level is 

needed for detailed studies such as monitoring forest dynamics or forest gap study, where 

understanding the degree of overestimation and underestimation is important. The result of 

Chapter 6 demonstrated the capability of SfM dataset for biomass estimation, where SfM 

dataset yielded almost similar accuracy with estimation using ALS dataset. Thus, this strongly 

suggests the use of aerial photographs for the forest monitoring system such as the REDD-

plus program in subnational or national level, due to its cost effective advantage in comparison 

with ALS dataset (e.g. Leberl et al., 2010; White et al., 2013) once a detailed digital terrain 

model is available. An important caveat on the use of aerial photographs for aboveground 

biomass estimation alone for the REDD-plus program is that it will be expensive unless there 

is a routine national aerial photography program. Additional uses of aerial photographs such 

as species diversity evaluation for Convention on Biological Diversity (CBD) probably will 

justify the implementation of aerial photography program in country-wide scale. In addition to 

that, the result also demonstrated the different performances yielded using different allometric 

equations, set of ground samples and prediction methods, therefore precaution must be taken 

when reporting the accuracy. The result of chapter 7 further demonstrated the capability of 
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SfM dataset for other forestry application in estimating forest biophysical characteristics (i.e. 

dominant tree height, Lorey’s mean height, mean diameter, basal area and tree density). The 

result demonstrated that mean diameter, Lorey’s mean height and dominant height can be 

estimated with RMSE% less than 15% while basal area and tree density estimation at 22−37%. 

In this research study, very high resolution aerial photograph (i.e. 10 cm) and ALS 

density dataset (i.e. 15 pulses/m2) were used where such resolution will not be feasible for 

large scale operation at the time being. Therefore, a research study to find the optimum ground 

sampling distance (GSD) and ALS density for derivation of digital terrain model will be crucial 

for a cost-effective system in large scale operation. There is always a trade-off between GSD 

or ALS pulse density and accuracy. Consistent analysis using different type of sensors may 

also add the robustness of forest monitoring program as there are many sensors in operation.  

The use of reflectance information which is unique to aerial photograph and satellite 

imagery, was not fully explored in this research study. For example, reflectance information 

has been found useful as key sources for forest inventory (e.g. Brown et al., 2005), crown 

delineation (e.g. Tochon et al., 2015; Wong and Tsuyuki, 2015) and species identification 

either performed manually (e.g. Garzon-Lopez et al., 2013) or semi-automatically using multi-

spectral imagery (e.g. Hirata et al., 2014). Achievement in tree delineation and species 

identification in tropical rain forest is still limited due to high heterogeneity of crown and species 

diversity compared to other forest types. Further development in this field will provide useful 

information in addressing global environmental challenges of biodiversity assessment to 

support the progress monitoring of Aichi Biodiversity Targets (e.g. O’Connor et al. 2015; 

Petrou et al., 2014) or canopy species assessment for the IUCN Red List of Threatened 

Species. Advanced integration of the multiple benefits of forest ecosystem in addition to the 

carbon sequestration benefit will strengthen the policy making on sustainable use of natural 

resources.  

SfM dataset from aerial photographs have been demonstrated to be superior as ALS 

dataset for forestry applications in estimating forest biomass and biophysical characteristics. 

Every country should start or continue the existing nationwide aerial photograph data 

acquisition program. It seems that SfM dataset along with other sensor type will continue to 

play an important role in many applications in forestry and addressing global environmental 

challenges. 
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Figures reprinted with permission 

 

Figure 2.2 is reprinted from Remote Sensing of Environment, Volume 121, Michael A. Wulder,Joanne 

C. White,Ross F. Nelson,Erik Næsset,Hans Ole Ørka,Nicholas C. Coops,Thomas Hilker,Christopher 

W. Bater and Terje Gobakken, Lidar sampling for large-area forest characterization: A review, Pages 

196-209, Copyright (2012) Published by Elsevier Inc. This article is published under the terms of the 

Creative Commons Attribution-NonCommercial-No Derivatives License (CC BY NC ND) 

(doi:10.1016/j.rse.2012.02.001)  

 

Figure 8.2 is reprinted from Remote Sensing, Volume 7(4), Christian Ginzler and Martina L. Hobi, 

Countrywide Stereo-Image Matching for Updating Digital Surface Models in the Framework of the 

Swiss National Forest Inventory, Pages 4343-4370,  an open access article distributed under the 

Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and 

reproduction in any medium, provided the original work is properly cited (doi:10.3390/rs70404343). 

 

Figure 8.4 is reprinted from Publication title Ecological Economics, Vol 68/Issue 3, Brendan Fisher, R. 

Kerry Turner and Paul Morling, Defining and classifying ecosystem services for decision making, 

Pages No. 643-653, Copyright (2009), with permission from Elsevier. 
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Appendix 

 

Appendix 3.1: List of field works. 

No. Date Remarks 

1 26th to 4th November 2011 15 plots (30 x 30 m) 

2 7th to 13th February 2012 10 plots (30 x 30 m) 

3 15th to 21st July 2012 10 plots (30 x 30 m) 

4 7th to 13th October 2012 15 plots (30 x 30 m) 

5 17th to 23rd February 2013 2 plots (90 x 90 m) 

6 19th to 25th September 2013 2 plots (90 x 90 m)  
1 plot (50x50m) 

7 19th to 24th February 2014 3 plots (Bukit Rimau area) 

8 15th to 20th September 2014 6 plots (Bukit Rimau area) 
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Appendix 4.1. Missing tree height computation. 

 

Table (below): The height-DBH allometric equation developed using the field data. 

 Height-DBH allometry R R2 

1 Y=aLnX+b 0.817634 0.668526 

2 LnY=aLnX+b 0.803163 0.645071 

3 Y=aX+b 0.791976 0.627226 

4 1/H=a*1/D^1.5+1/b 0.737812 0.544366 

 Count 6631  
 

  

 

Figure (above): The height-DBH allometric equation developed using the field data. 
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Table (below): Information of the individual tree and the estimated tree height. 

PLOT 
TREE 

NUMBER 
DBH 
(cm) 

HEIGHT 
(m) 

8 57 10.6 12.78959 

9 47 41.7 26.95311 

9 52 11.3 13.45088 

38 50 10.9 13.0782 

43 21 20 19.35487 

51F 6 23.5 21.02254 

55 10 29.5 23.37398 

55 21 7.1 8.64534 

55 25 12.5 14.49456 

55 26 16.5 17.36555 

55 32 6.4 7.571978 

55 55 6.5 7.732306 

55 56 7.3 8.932609 

55 64 6.9 8.349863 

55 66 5.3 5.621756 

55 67 6.3 7.409124 

55 82 6.5 7.732306 

55 85 7.1 8.64534 

55 95 5.8 6.554009 

55 104 9.1 11.21177 

55 50b 9.8 11.97812 

55 52b 6.1 7.075514 

55 5b 6 6.904585 

55 65b 5.8 6.554009 

57 95 22.7 20.66438 

57 10b 14.1 15.74009 

57 32b 7.2 8.789972 

57 39b 6 6.904585 

57 76b 13.5 15.29041 

57 76c 11 13.17264 

57 76d 16.5 17.36555 

61 149 5.5 6.0048 

61 150 7.9 9.749428 

61 151 7.9 9.749428 
Estimated using the following equation; H = 10.341*Ln(DBH) - 11.624 (R2=.6685) 
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Appendix 4.2: Several photographs during the field survey activities in Long Mio. 

 

  

  

  

  

Photo: SatAirTrop (2011−2014) 
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Photo: SatAirTrop (2011−2014) 
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Appendix 5.1: Evaluation of built-in parameter settings of agisoft photoscan pro (ver 1.0.3)   

 

Date: 9th to 22th April 2014 

 

1. PARAMETER VARIABLES 

Stage 1: Alignment Optimization 
Stage 

Stage 2: Build Dense Cloud 

General Point Limit Quality Advanced 

H-High 20K Non U- Ultra 
High 

Mi – Mild 

M-Medium 40K Normal H- High Mo – Moderate 

L-Low 60K With K4 M- Medium Ag - Aggressive 

 80K  L- Low  

 100K  O- Lowest  

Full Evaluation (3x5x5x3) = 225 combinations 

Forward sequential selection = 19 combinations 

 

Test site Info (PU3) 

Location  : UTM016 -100ha  

Number of Photos : 119 

 

2. RESULTS  

Optimization stage 

    

 

 

 

 

 

 

 

 

 

DiffDSM 
class H40_HMi H40_MMi H40_LMi 

±1m 62.50 54.64 43.83 

±2m 79.23 77.87 67.25 

±3m 85.38 84.95 76.63 

>3m 
8.14 7.46 8.73 

<3m 
6.47 7.59 14.64 

 

 

 

 

 

DiffDSM 
class Opt_Non Opt_wK4 Opt_normal 

±1m 29.04 61.99 62.46 

±2m 58.93 79.04 79.39 

±3m 73.69 85.27 85.49 

>3m 
18.36 8.12 8.00 

<3m 
7.94 6.61 6.51 

Opt_withK4                

Opt_Normal (Default)    

Opt_Non  
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Parameters in Stage 1/Point Limit (20K, 40K, 60K, 80K, 100K) 

DiffDSM class H20_HMi H40_HMi H60_HMi H80_HMi H100_HMi 

±1m 58.18 62.50 60.83 58.72 54.97 
±2m 78.27 79.23 78.89 78.11 77.75 
±3m 84.98 85.38 85.25 84.75 84.83 
>3m 7.78 8.14 7.89 7.76 7.46 
<3m 7.24 6.47 6.86 7.49 7.71 

 

 

Parameters in Stage 2/ Quality (Ultra High(U), High(H), Medium (M), Low(L), Lowest(O)) 
 
 
 
 
 
 
 
  
 

Parameters in Stage 2/Advanced (Mild(Mi), Moderate(Mo), Aggressive(Ag)) 

DiffDSM class H40_HAg H40_HMi H40_HMo 

±1m 59.9% 62.9% 61.9% 

±2m 77.1% 79.5% 79.3% 

±3m 83.4% 85.6% 85.6% 

>3m 10.2% 8.0% 8.8% 

<3m 6.4% 6.4% 5.6% 

R (Pearson’s r) - 0.9948 - 

RMSE (m) - 3.672 - 

RMSE (m) –filter 1%  2.967  

RMSE (m) –filter 5%  1.859  

 

                  
                                                         DSM-LiDAR (m) 

Note: The processing time to generate dense cloud using Agisoft PS Pro for the test site (PU3/UTM016) of 

approximately 100 ha is 28.2 minutes. The recommended parameter settings to reconstruct DSM for 

forest area from this dataset is using ‘High’ and ‘40K point limit’ in the alignment stage; running 

optimization (without K4); and using ‘High’ and ‘Mild’ in building dense cloud stage.  

 

Prepared by; Wilson W. (22/4/2014) 

DiffDSM class H40_UMi H40_HMi H40_MMi H40_LMi H40_OMi 

±1m 60.38 62.50 55.87 40.50 27.31 

±2m 75.92 79.23 77.52 66.47 49.26 

±3m 82.14 85.38 85.29 79.70 65.39 

>3m 10.09 8.14 8.22 11.03 18.55 

<3m 
7.76 6.47 6.50 9.26 16.06 

DSM-AP (m) 
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Appendix 5.2. Evaluation of photogrammetric DSM using different parameter settings and 

spatial resolution (Report done on Dec 27, 2013). 

 

1. Experimental framework 
 

 
………………………………………………………………………………… 

 
Figure above: Location of Ground Control Points (Left) and Location of Evaluation Site (90ha) 

in ‘Long Mio Site 1’ (Right) 

 

 

 

DSM-AP DERIVATION  

With GCP (DSM-Lidar as reference) 

 

Without GCP 

Point cloud 
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PC_1m 
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GS_1m 

DSM_woGC_
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_GS_1m 

Geometry-

Sharp 
Point cloud Geometry-

Sharp 

DSM-Lidar (1m) 

DSM-Lidar (0.5m) 

Result 1a Result 1b Result 1c Result 1d 

Result 2a Result 2b Result 2c Result 2d 

DSM_wGCP_
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DSM_wGCP_
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ArcGIS 
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based (9 plots 
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Point Cloud Statistic 

Description With GCP Without GCP LIDAR (1st 
Return) 

Point count 134,974,256 136,940,824 12,811,363 

Min Z (m) 973.41 1,004.80 1,020.33* 

Max Z (m) 1,203.21 1,216.91 1,185.13* 

*DSM-Lidar 50cm information 

 

 

DSM Statistic  

Area : 90.09 ha 

 Resolution Mean (m) Max(m) Min(m) SD(m) 

DSM-Lidar  50cm 1093.87 1185.13 1020.33 31.31 

 1m 1095.00 1185.13 1020.34 31.31 

DSM-AP (wGCP) PC  1m 1098.95 1180.85 1013.94 30.70 

 50cm 1098.27 1180.85 1011.23 30.79 

DSM-AP (wGCP) GS 1m 1095.94 1178.92 1011.90 31.20 

 50cm 1095.95 1179.54 1011.90 31.22 

DSM-AP (woGCP) 
PC  

1m 1098.48 1186.10 1010.10 30.54 

 50cm 1097.88 1186.10 1009.52 30.61 

DSM-AP (woGCP) 
GS  

1m 1096.78 1184.99 1013.68 30.94 

 50cm 1096.78 1096.78 1013.68 30.95 

Note: GS-Geometry Sharp generated by Agisoft; PC- Point Cloud generated by Agisoft and 

then DSM generated by using ArcGIS 10.1 

 

 
Figure above: Location of 9 plots for DSM plot-based evaluation 
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Result 1a Result 2a 

  
Result 1b Result 2b 

  
Result 1c Result 2c 

  
Result 1d Result 2d 
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2. Result 

2.1. Evaluation of Test Site (90ha) 

 

 
 

LABEL (m) 1A  1B 1C 1D 2A 2B 2C 2D 

-56.76 - -12 2.29 4.26 0.28 0.77 2.21 3.69 0.32 0.53 

-11.99 - -10 0.50 0.97 0.14 0.44 0.46 0.82 0.16 0.29 

-9.99 - -8 0.63 1.34 0.20 0.68 0.57 1.05 0.24 0.43 

-7.99 - -6 0.96 2.28 0.26 1.09 0.88 1.73 0.35 0.70 

-5.99 - -4 2.08 4.36 0.40 2.08 1.83 3.29 0.56 1.29 

-3.99 - -2 4.52 7.82 0.79 4.68 4.12 6.39 1.16 2.89 

-1.99 - 0 8.67 13.40 3.11 13.73 7.71 11.13 4.23 9.39 

0 - 2 14.71 20.65 29.81 34.97 13.61 18.80 25.42 30.99 

2.01 - 4 17.62 18.41 41.19 25.41 17.73 18.80 36.29 29.84 

4.01 - 6 16.29 12.84 9.70 6.76 16.97 15.03 12.29 9.43 

6.01 - 8 11.32 6.36 4.25 3.09 12.10 8.09 5.79 4.57 

8.01 - 10 6.42 2.72 2.64 1.84 6.56 3.82 3.57 2.78 

10.01 - 12 4.30 1.51 1.93 1.29 4.48 2.26 2.56 1.95 

12.01 - 76.24 9.69 3.09 5.30 3.19 10.76 5.11 7.05 4.93 

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

Cumulative  
0-4 m 32.32 39.05 71.00 60.37 31.33 37.59 61.70 60.83 

 

1. Results show DSM derived from AP (1C, 1D, 2C, 2D) without ground control points provide 

better result.  

2.  DSM derived from point cloud (aerial photo) – (1C & 2C) demonstrate better result compare 

to DSM generated by using Geometry Sharp using Agisoft PhotoScan (1D & 2D). 

3. DSM-AP (Point Cloud) 1 meter resolution (1C) is better compared to 0.5m resolution (2C) 

2.2. DSM Evaluation on 9 plots. 
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Figure above: Histogram of subtraction of DSM-AP with DSM-LIDAR of selected Result 1a, 

1b, 1c and 1d. 
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Figure above: Histogram of DSM-AP and DSM-LIdar difference on 9 plots. 

 

Evaluation of DSM within 4m difference (0 to 4 meter) 

 
 

 PLOT1 PLOT7 PLOT8 PLOT9 PLOT10 PLOT11 PLOT12 PLOT13 PLOT35 Ave_Plot 90 ha 

1C 83.22 63.11 75.11 97.22 84.56 64.56 63.00 69.00 51.44 72.36 71.00 

1D 63.22 47.89 40.11 84.33 63.67 58.67 37.89 60.67 41.33 55.31 60.37 

2C 64.81 54.89 69.08 92.25 76.81 56.50 46.97 55.72 42.61 62.18 61.70 

2D 64.31 51.53 49.19 88.08 70.92 56.89 37.06 57.67 42.47 57.57 60.83 

1A 8.44 12.89 42.44 0.00 3.67 2.89 5.56 59.33 56.67 21.32 32.32 

1B 30.89 39.00 70.22 72.89 24.00 34.44 2.89 8.67 46.33 36.59 39.05 

2A 1.64 8.22 41.14 0.00 1.06 3.00 5.22 67.50 59.31 20.79 31.33 

2B 11.11 25.50 58.03 59.64 6.61 31.28 3.25 11.08 51.81 28.70 37.59 

 

1. DSM-AP Point Cloud 1m performance (72.36%) in the plot-based evaluation is 

consistent with the performance of DSM evaluation for 90 ha Test Site (71%). 
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3. Discussion (Challenges & Limitation) & Summary 

a. Ground Control Points 

 GCPs are difficult to be marked using natural features (tree) in this site. 

 Man-made features is limited. 

 Dependence on DSM-LIDAR caused problem in marking the GCP. This 

might be improved/solved if the GCPs are collected using DGPS from the 

ground survey.  

 The Agisoft PhotoScan recommendation is to use at least 10 GCPs for good 

accuracy. However, it is not clear if processing with thousands of photos (3,582 

photos for site 1 and site 2- 4,200 ha) will also produce such accuracy.  

 

 
Figure above: Example of Ground Control Point (P7) marked and used in the processing. 

 

 

b. Evaluation of DSM-AP 

i. With GCP vs Without GCP 

The DSM evaluation found that the performance of DSM-AP without GCPs is better 

compared to when using GCPs (contradict with the concept). This is caused by factors 

discussed above. 

 

ii. PC vs Geometry Sharp 

DSM derived using Lidar Processing Tool in ArcGIS 10.1 from the Point Cloud 

generated by Agisoft is better than using the DSM derived directly from Geometry 

Sharp in Agisoft PhotoScan. 

 

iii. Resolution 1m vs 0.5 m  

DSM-AP Point Cloud 1 m (71%) is the best performance in this evaluation. 
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c. Plot-based Evaluation (9 plots) 

 The performance of DSM-AP Point Cloud 1 m (1C) ranges from 51.4% to 97.2% with 

average of 72.3% based on selected 9 plots evaluation.  

 When the Plot 35 (lowest accuracy) was checked, it is found that there is bigger 

forest gap. The DSM derived from the Aerial Photo is disadvantage when there is forest 

gap. 

 

 

 

 

 

 

 

 

 

OrthoPhoto                 DSM-AP 1m       DSM-Lidar 1m   DSM-AP minus DSM-LIDAR 

 

 When the Plot 9 (highest accuracy) was checked, it is found that there is lesser 

forest gap. The DSM derived from the Aerial Photo is advantage when there is less forest 

gap. 

 

 

 

 

 

 

 

 

 

OrthoPhoto                 DSM-AP 1m       DSM-Lidar 1m   DSM-AP minus DSM-LIDAR 

 

Prepared by; Wilson W (26th Dec 2013) 
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Underestimation of photo-DSM 
 

AP-LIDAR ORTHOPHOTO DSM-AP (xGCP) 
PC 1M 

DSM-LIDAR 1m DCHM-Lidar 
(50cm) 

 

    

     

 
    

     

     
Figure above: Visual inspection on DSM-Lidar higher than DSM-AP (Green color).  

 

 1A 1B 1C 1D 2A 2B 2C 2D 

<0m (%) 19.66 34.43 5.18 23.46 17.78 28.09 7.03 15.52 
Table above: Percntage of (Difference of DSM-AP & DSM_Lidar Value smaller than 0m) 

 

1.  It is found that, the Agisoft Photo Scan software sometime produce lower estimate of 

DSM model. However this condition is minima (5.18%) on DSM-AP 1C.  
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Overestimation of Photo-DSM 

 
 

 

 

 

 

 

 

 

 

 

 

 

(DSM-AP – DSM-LIDAR)               Ortho-photo               Point Cloud (from Aerial Photo) 

 

1. Using visual inspection, it is found that DSM-AP is higher (Red Color) than DSM-

Lidar where there are (1) forest gap or (2) shaded area in aerial photo. 

2. In this evaluation, it is found that the aerial photos is not sufficient in detecting 

sharp decline in surface elevation. 
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Appendix 5.3: Evaluation of photogrammetric DSM using different version of Agisoft 

Photoscan Pro.  

 

1. Software versions 

 

Version Setting Time 

1.0.4 H40_HMi 29.8 min 

1.0.3 H40_HMi 28.2 min 

1.0.0 H40_HMi 29.4 min 

0.9.1 H40_SharpMild 39.3 min 

 

 

Test site Info: PU3  

Location  : UTM016 -100ha  

Number of Photos : 119 

 

2. RESULTS  

 

 ver091 ver100 Ver103 ver104 
(+-)1m 60.31 57.69 62.50 60.95 

(+-)2m 77.30 77.71 79.23 78.33 

(+-)3m 83.91 84.52 85.38 84.73 

>3m 12.15 8.01 8.14 8.38 

<3m 3.94 7.46 6.47 6.89 

R (Pearson’s r) 0.9943 0.9946 0.9948 0.9946 

RMSE (m) 3.910 3.756 3.672 3.725 

 

April 22, 2014 
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Appendix 5.4: Evaluation of Pix4D Mapper software to derive photogrammetric DSM. 

 

Objective: To evaluate the performance of DSM-AP derived by using Pix4D in comparison with 

Agisoft PhotoScan software (9-14 April 2014) 

 

1. Material information 

Evaluation site  : PU3 (UTM016) 

Software package : Pix4D Mapper 1.0 and Agisoft Photoscan Pro 1.0.3 

 

2. VARIANTS FOR EVALUATION 

 

Variants for rematch & non-rematch (alignment stage) 

i. Non-rematch – PU3_nonrematch_14_original 

ii. Re-match – PU3 _14_Original (this parameter allows the user to compute more matches between 

the images) 

  

Variants for feature extraction (alignment stage) 

i. PU3_14_double – for small images (e.g. 640 x320 pixels) 

ii. PU3_14_original –recommended image scale value 

iii. PU3_14_half – for very large projects with high overlap – slightly reduced accuracy but speed up 

processing 

iv. PU3_14_quarter - for very large projects with high overlap – slightly reduced accuracy but speed 

up processing 

 

 

Variants for image scale (point densification) 

i. PU3_1/2_Original – This is the recommended image scale 

ii. PU3_1/4_Original – This scale is recommended for projects with vegetation 

iii. PU3_1/8_Original – This scale is recommended for projects with vegetation 

 

Variant (PU3_’image scale for point 
densification’_’feature extraction’) 

Alignment Point Cloud 
(million) 

PU3_1/4_double (1) 84.9% 4.10 

PU3_1/4_original (2) 94.1% 4.60 

PU3_1/4_half (3) 94.9% 4.70 

PU3_1/4_quarter  69.7% none 

PU3_1/2_Original (4) 94.1% 20.3 

PU3_1/8_Original (5) 94.1% 0.98 

PU3_nonrematch_14_Original (6) 94.1% 4.56 
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3. RESULTS  

 

DiffDSM 1m class 
(meter) 

1_QD 2_QO 3_QH 4_HO 5_EO 6_NQO 

-1,185.47 0.0 0.0 0.0 0.0 0.0 0.0 

-1,185.46 - -5 57.2 4.5 4.0 3.5 5.1 3.3 

-4.99 - -4 2.9 1.2 1.3 0.9 1.5 0.6 

-3.99 - -3 2.6 1.8 2.2 1.3 2.2 0.7 

-2.99 - -2 2.3 2.8 4.7 2.0 3.6 0.8 

-1.99 - -1 2.2 4.8 13.7 3.6 6.3 1.0 

-0.99 - 0 2.2 9.9 27.8 7.6 11.4 1.2 

0.01 - 1 2.2 18.0 21.3 16.0 17.4 1.4 

1.01 - 2 2.3 18.6 8.0 19.9 16.5 1.7 

2.01 - 3 2.2 12.0 4.0 13.4 11.1 2.0 

3.01 - 4 2.4 7.9 2.8 9.4 7.3 2.3 

4.01 - 5 2.5 4.9 2.2 6.0 4.6 2.6 

5.01 - 300 18.9 13.6 8.0 16.3 13.0 82.5 

TOTAL 100.0 100.0 100.0 100.0 100.0 100.0 

 

DSM-AP compared 
to DSM-LiDAR 1_QD 2_QO 3_QH 4_HO 5_EO 6_NQO 

±1m 4.4 27.9 49.1 23.6 28.7 2.7 

±2m 8.9 51.4 70.8 47.1 51.6 5.3 

±3m 13.5 66.2 79.5 62.5 66.2 8.1 

 

A. Variants for rematch & non-rematch (alignment stage) 

DSM-AP compared 
to DSM-LiDAR 2_QO 6_NQO 

±1m 27.9 2.7 

±2m 51.4 5.3 

±3m 66.2 8.1 

‘Re-match’ option during the alignment process could improve alignment significantly.  

 

B. Variants for feature extraction (alignment stage) 

DSM-AP compared 
to DSM-LiDAR 1_QD 2_QO 3_QH 

±1m 4.4 27.9 49.1 

±2m 8.9 51.4 70.8 

±3m 13.5 66.2 79.5 

Using ‘half’ for feature extraction option could improve the DSM result.  

 

C. Variants for image scale (point densification) 

DSM-AP compared 
to DSM-LiDAR 4_HO 2_QO 5_EO 

±1m 23.6 27.9 28.7 

±2m 47.1 51.4 51.6 

±3m 62.5 66.2 66.2 

Using ‘1/8’ and ‘1/4’ for image scale option could improve DSM result as recommended by Pix4D 

software for project with vegetation. 
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RESULT (1M CLASS HISTOGRAM & DiffDSM Map) 

PU3_1/4_double (1) 

  

PU3_1/4_original (2) 

  

PU3_1/4_half (3) 

  

PU3_1/2_Original (4) 

  

PU3_1/8_Original (5) 

 
 

PU3_nonrematch_14_Original (6) 
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Comparison of BEST Variant from this Pix4D Evaluation with Agisoft PhotoScan Pro 

 

DiffDSM 1m 
class (meter) 

3_QH 
(%) 

Agisoft 
(%) 

-1,185.47 0.0 0.0 

-1,185.46 - -5 4.0 3.8 

-4.99 - -4 1.3 0.9 

-3.99 - -3 2.2 1.5 

-2.99 - -2 4.7 3.2 

-1.99 - -1 13.7 11.0 

-0.99 - 0 27.8 39.0 

0.01 - 1 21.3 20.9 

1.01 - 2 8.0 6.4 

2.01 - 3 4.0 2.9 

3.01 - 4 2.8 1.7 

4.01 - 5 2.2 1.3 

5.01 - 300 8.0 7.4 

TOTAL 100.0 100.0 

 

DSM-AP compared 
to DSM-LiDAR 

3_QH 
(%) 

Agisoft 
(%) 

±1m 49.1 59.9 

±2m 70.8 77.3 

±3m 79.5 83.3 

 

 

 

CONCLUSION 

The Agisoft Photoscan Pro could be better compared to Pix4D in reconstructing Digital Surface Model 

(DSM). However, further analysis to use the best setting (Alignment/Feature extraction option –half; 

Point densification/ image scale – 1/8) of Pix4D found in this evaluation need to be carried out for 

conclusive result.  

 

It must be noted that the alignment percentage from using Pix4D mapper is 94.9% whilst Agisoft 

PhotoScan Pro is 100% (from 119 photographs). The evaluation site was reduced to 80 ha instead of 

100ha. 

 

Prepared by,  

Wilson W 

April 14, 2014 
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Objective: To evaluate the performance of DSM-AP derived by using Pix4D Mapper version 1.1 

 

1. Material information 

Evaluation site  : PU3 (UTM016) 

Software package : Pix4D Mapper 1.0, Pix4D Mapper 1.1  and Agisoft Photoscan Pro 1.0.3 

 

2. VARIANTS FOR EVALUATION 

 

i. Variants for omega, phi, kappa (OPK) information 

 -  using with and without OPK information. 

 

ii. Variants for alternative processing mode option 

- Using with and without alternative processing mode option 

 

Variants  Alignment Point Cloud (million) 

1_wAPM_wOPK 95.7% 
(114 photos) 

3.75 M 

2_wAPM_xOPK 95.7%  
(114 photos) 

3.76 M 

3_xAPM_wOPK 87.4 % 
(194 photos) 

3.45 M 

4_xAPM_xOPK 87.4 % 
(194 photos) 

3.45 M 

Note: w=with; x=without; APM=Alternative processing mode; OPK=Omega, Phi, Kappa 

 

3. RESULTS  

3.1. Variants for OPK and APM 

DSMAP-DSMidar 

(interval class) 1_wAwO (%) 2_wAxO (%) 3_xAwO (%) 4_xAxO (%) 

±1m 30.07 29.38 25.30 25.30 

±2m 57.19 56.42 46.51 46.54 

±3m 72.25 71.94 61.96 62.00 

Underestimate 
(<-3m) 14.13 14.42 9.02 9.03 

Overestimate 
(<+3m) 13.62 13.64 29.02 28.98 

Note: Parameter constants: (1) Initial processing (Feature extraction=half image size, 

optimization=externals and all internals); (2) Point cloud densification (Image scale= eighth image size, 

point density=high, min number of matches=2, Point cloud filters= All enabled) 

 

Four variants were evaluated with alternative processing mode option and Omega, Phi, Kappa 

information. The variant 1_wAwO (with APM & with OPK) perform the best in this evaluation.  

 

 

 

 

 

 

 

 

 

 

 

 

 



160 
 

3.2. Alignment 

 

 Agisoft 
PhotoScan 
1.0.3 

Pix4DMapper 
1.0 

Pix4DMapper Ver 
1.1. 

Alignment 
photos 

666 514 617 

% Alignment 97.9% 75.5% 90.7% 

Class ±1m (DSMAP-
DSMLidar) 53.1% 

- 

19.47% 

Class ±2m 
(DSMAP-DSMLidar) - 

- 

37.21% 

Class ±3m 
(DSMAP-DSMLidar) 

83.4% - 

51.16% 
 

The alignment processing for Pix4DMapper ver 1.1 is better compared to previous version by about 

15% for 800 ha test area (PU1). However, the accuracy is not satisfactory compared to Point clouds 

derived from Agisoft Photoscan 1.0.3. 

 

4. DISCUSSION 

 

DSM-AP compared 
to DSM-LiDAR 

1_wAwO 
(Pix4d 
Mapper 
v1.1) 

3_QH 
(Pix4D 
Mapper 
v1.0) 

Agisoft 

±1m 30.07 49.1 59.9 

±2m 57.19 70.8 77.3 

±3m 72.25 79.5 83.3 

Photo Alignment % 95.7% 94.9% 100% 

 

 

The result from this version (ver 1.1) performed less better than the previous version (ver 1.0) although 

this might influenced by point cloud filters in the point cloud densification stage (e.g. densification area, 

annotations, noise filtering and surface smoothing) where these parameters were not tested in this 

evaluation 

 

 

4. CONCLUSION 

The new version of Pix4Dmapper (ver 1.1) did not perform better from the previous version by using 

the parameters tested in this evaluation. However, the photo alignment was slightly improved by 0.8% 

(for test site in PU3 / GDS098UTM016).  

 

  

Prepared by,  

Wilson W 

May 10, 2014 
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Appendix 6.1: Tile of 900m x 900 m with buffer of 60 m were prepared for the tile-based 

processing using LAStools.  
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Appendix 6.2: AGB estimation in plot using different allometric equations. 

 

Plot 
Number 

Yamakura 
(1986) 

Brown 
(1997 

Pearson 
(2005) 

Basuki 
(2009) 

 Plot 
Number 

Yamakura 
(1986) 

Brown 
(1997 

Pearson 
(2005) 

Basuki 
(2009) 

1 207.46 211.44 212.38 174.10  33 378.98 478.92 461.65 304.16 
2 622.79 500.34 489.96 337.92  34 143.68 154.95 156.43 142.16 
3 415.84 437.61 433.31 323.24  35 221.47 226.46 226.26 178.13 
4 53.08 59.37 59.95 59.23  36 156.43 157.89 158.56 132.92 
5 97.57 122.86 124.38 123.33  37 166.97 170.02 171.41 149.77 
6 163.02 168.67 170.55 160.12  38 227.86 271.21 269.18 212.67 
7 268.25 281.97 280.62 215.97  39 195.02 234.75 235.74 204.20 
8 395.90 421.88 418.41 311.59  40 224.95 250.71 252.94 219.93 
9 182.85 192.84 193.66 160.31  41 166.25 202.51 204.11 181.90 

10 435.19 580.88 567.63 391.32  42 116.09 124.04 125.53 127.21 
11 353.12 376.23 372.43 271.72  43 374.01 402.64 393.82 273.10 
12 204.71 184.02 181.60 131.40  44 113.16 121.88 122.70 108.56 
13 227.34 257.38 255.79 194.43  45 138.21 137.23 138.90 132.65 
14 350.36 330.07 328.66 253.04  46 57.51 64.56 65.31 67.18 
15 280.82 317.08 314.91 240.69  47 136.00 151.70 152.11 125.51 
16 179.58 229.45 228.74 182.33  48 435.18 428.48 425.73 320.07 
17 382.59 464.06 458.89 341.19  49 309.31 367.24 363.73 267.72 
18 100.69 129.82 130.05 106.02  50 344.28 378.00 373.05 267.06 
19 345.69 424.42 423.10 333.43  51 237.46 273.06 271.86 213.36 
20 443.34 452.98 449.48 333.34  52 274.84 291.41 289.66 221.42 
21 342.63 377.17 372.53 271.84  53 354.85 396.27 397.53 326.57 
22 242.27 251.14 251.37 201.76  54 654.92 674.13 656.48 438.32 
23 185.85 202.58 203.24 167.88  55 37.98 64.41 65.11 63.17 
24 135.12 159.17 160.50 149.06  56 296.20 370.55 371.68 315.19 
25 259.06 252.39 249.48 182.60  57 119.30 192.32 193.99 176.66 
26 230.20 218.97 221.03 194.94  58 595.74 701.48 680.95 453.72 
27 229.11 221.79 223.22 189.92  59 647.64 817.50 767.28 466.86 
28 120.19 133.95 135.44 126.04  60 831.95 856.20 834.22 567.50 
29 138.71 147.08 148.64 138.11  61 285.28 318.51 320.12 277.98 
30 100.80 115.73 117.12 116.12  62 133.36 158.33 160.25 156.57 
31 47.55 55.86 56.53 57.85  63 186.22 273.68 275.70 236.22 
32 243.39 287.37 285.30 216.34       

Note: Including plots in site 2. (Filename: Final_inventoryData) 
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Appendix 6.3. Summary of ALS returns statistics 

 

Return Point count  % Z min Z max 

1st 420,524,603 50.52 996.05 1967.03 

2nd 254,283,022 30.55 995.61 1965.71 

3rd 112,015,636 13.46 996.09 1964.73 

4th 35,584,844 4.27 995.78 1962.47 

5th 8,325,140 1.00 997.8 1960.92 

6th 1,473,433 0.18 1001.85 1959.15 

7th 228,283 0.03 1002.66 1954.35 

Last 420,521,627 50.52 995.61 1967.03 

Single 166,226,512 19.97 996.05 1967.03 

First of Many 254,298,091 30.55 997.32 1966.94 

Last of Many 254,295,115 30.55 995.61 1695.56 

All 832,434,961 100.00 995.61 1967.03 

     

Classification Point count  % Z min Z max 

0 Never classified 1 0.00 1792.15 1792.15 

1 Unassigned 799,474,604 96.04 995.69 1967.03 

2 Ground 32,957,381 3.96 995.61 1957.72 

7 Noise 2,802 0.00 997.2 1906.73 

9 Water 173 0.00 1035.56 1040.43 
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Appendix 6.4: Single linear regression for AGB estimation for All plots (1/2) 

  ALS_All    ALS_FS    

Response  
Variable 

Predictor  
variables Yamakura Brown Pearson Basuki Yamakura Brown Pearson Basuki 

Y min 0.16** 0.116* 0.118* 0.112* 0.083 0.072 0.075 0.076 
 max 0.614*** 0.515*** 0.52*** 0.482*** 0.633*** 0.529*** 0.534*** 0.495*** 
 avg 0.747*** 0.634*** 0.639*** 0.603*** 0.743*** 0.626*** 0.631*** 0.599*** 
 std 0.371*** 0.311*** 0.313*** 0.275*** 0.245*** 0.209** 0.21** 0.176** 
 p10 0.697*** 0.583*** 0.588*** 0.568*** 0.62*** 0.508*** 0.514*** 0.512*** 
 p20 0.697*** 0.588*** 0.595*** 0.575*** 0.69*** 0.591*** 0.596*** 0.583*** 
 p25 0.708*** 0.603*** 0.609*** 0.588*** 0.714*** 0.615*** 0.62*** 0.601*** 
 p30 0.721*** 0.618*** 0.624*** 0.601*** 0.724*** 0.625*** 0.63*** 0.608*** 
 p40 0.74*** 0.638*** 0.644*** 0.614*** 0.743*** 0.64*** 0.645*** 0.618*** 
 p50 0.749*** 0.646*** 0.651*** 0.617*** 0.754*** 0.646*** 0.652*** 0.62*** 
 p60 0.751*** 0.646*** 0.652*** 0.616*** 0.746*** 0.635*** 0.64*** 0.605*** 
 p70 0.723*** 0.614*** 0.619*** 0.578*** 0.706*** 0.591*** 0.595*** 0.554*** 
 p75 0.706*** 0.597*** 0.601*** 0.559*** 0.688*** 0.574*** 0.579*** 0.537*** 
 p80 0.685*** 0.576*** 0.58*** 0.537*** 0.675*** 0.563*** 0.567*** 0.525*** 
 p90 0.659*** 0.551*** 0.556*** 0.512*** 0.659*** 0.548*** 0.553*** 0.511*** 
 p95 0.652*** 0.545*** 0.549*** 0.506*** 0.655*** 0.548*** 0.553*** 0.512*** 
 b10 0.004 0.002 0.002 0.001 0.002 0.003 0.003 0.006 
 b20 0.096* 0.081 0.08 0.078 0.036 0.032 0.032 0.039 
 b30 0.201** 0.175** 0.177** 0.185** 0.063 0.059 0.06 0.075 
 b40 0.26*** 0.222** 0.225** 0.237*** 0.086* 0.075 0.076 0.091* 
 b50 0.282*** 0.238*** 0.242*** 0.257*** 0.106* 0.086 0.087* 0.106* 
 b60 0.281*** 0.235*** 0.238*** 0.246*** 0.116* 0.094* 0.095* 0.114* 
 b70 0.269*** 0.231*** 0.232*** 0.223** 0.125* 0.106* 0.107* 0.112* 
 b80 0.26*** 0.23*** 0.228*** 0.206** 0.129* 0.108* 0.107* 0.098* 
 b90 0.245*** 0.197** 0.197** 0.168** 0.161** 0.127* 0.128* 0.111* 
 Ln_min 0.161** 0.116* 0.118* 0.112* 0.099* 0.086 0.089* 0.091* 
 Ln_max 0.532*** 0.449*** 0.455*** 0.432*** 0.55*** 0.462*** 0.468*** 0.444*** 
 Ln_avg 0.619*** 0.523*** 0.529*** 0.51*** 0.608*** 0.511*** 0.517*** 0.503*** 
 Ln_std 0.387*** 0.33*** 0.334*** 0.312*** 0.314*** 0.279*** 0.282*** 0.254*** 
 Ln_p10 0.606*** 0.508*** 0.514*** 0.499*** 0.518*** 0.43*** 0.436*** 0.445*** 
 Ln_p20 0.604*** 0.512*** 0.518*** 0.51*** 0.574*** 0.492*** 0.499*** 0.502*** 
 Ln_p25 0.61*** 0.519*** 0.526*** 0.518*** 0.589*** 0.505*** 0.512*** 0.51*** 
 Ln_p30 0.614*** 0.525*** 0.532*** 0.524*** 0.596*** 0.511*** 0.518*** 0.514*** 
 Ln_p40 0.617*** 0.529*** 0.535*** 0.523*** 0.605*** 0.516*** 0.523*** 0.514*** 
 Ln_p50 0.615*** 0.525*** 0.532*** 0.516*** 0.61*** 0.519*** 0.525*** 0.513*** 
 Ln_p60 0.613*** 0.523*** 0.529*** 0.512*** 0.606*** 0.512*** 0.518*** 0.502*** 
 Ln_p70 0.593*** 0.5*** 0.506*** 0.485*** 0.582*** 0.486*** 0.492*** 0.47*** 
 Ln_p75 0.583*** 0.49*** 0.496*** 0.473*** 0.576*** 0.481*** 0.487*** 0.465*** 
 Ln_p80 0.572*** 0.479*** 0.485*** 0.461*** 0.572*** 0.478*** 0.484*** 0.462*** 
 Ln_p90 0.563*** 0.472*** 0.477*** 0.453*** 0.567*** 0.473*** 0.479*** 0.456*** 
 Ln_p95 0.562*** 0.471*** 0.477*** 0.452*** 0.568*** 0.478*** 0.484*** 0.461*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.311*** 0.258*** 0.26*** 0.264*** 0.126* 0.083 0.084 0.091* 
 Ln_b40 0.334*** 0.275*** 0.278*** 0.286*** 0.113* 0.074 0.074 0.084 
 Ln_b50 0.317*** 0.257*** 0.261*** 0.272*** 0.092* 0.055 0.057 0.07 
 Ln_b60 0.282*** 0.229*** 0.231*** 0.234*** 0.071 0.046 0.047 0.058 
 Ln_b70 0.254*** 0.22** 0.22** 0.209** 0.084 0.071 0.071 0.073 
 Ln_b80 0.256*** 0.228*** 0.227*** 0.204** 0.113* 0.096* 0.094* 0.085 
 Ln_b90 0.242*** 0.195** 0.194** 0.166** 0.155** 0.121* 0.122* 0.106* 
Ln_Y min 0.15** 0.131* 0.13* 0.116* 0.107* 0.101* 0.101* 0.093* 
 max 0.675*** 0.583*** 0.578*** 0.504*** 0.685*** 0.591*** 0.587*** 0.513*** 
 avg 0.756*** 0.664*** 0.66*** 0.599*** 0.754*** 0.658*** 0.654*** 0.597*** 
 std 0.467*** 0.391*** 0.387*** 0.316*** 0.32*** 0.273*** 0.269*** 0.206** 
 p10 0.618*** 0.548*** 0.546*** 0.515*** 0.586*** 0.508*** 0.507*** 0.492*** 
 p20 0.669*** 0.595*** 0.593*** 0.556*** 0.663*** 0.591*** 0.589*** 0.564*** 
 p25 0.69*** 0.616*** 0.614*** 0.574*** 0.697*** 0.622*** 0.619*** 0.585*** 
 p30 0.708*** 0.634*** 0.631*** 0.589*** 0.716*** 0.638*** 0.636*** 0.597*** 
 p40 0.737*** 0.659*** 0.656*** 0.605*** 0.746*** 0.661*** 0.658*** 0.611*** 
 p50 0.756*** 0.672*** 0.668*** 0.612*** 0.76*** 0.671*** 0.667*** 0.615*** 
 p60 0.763*** 0.676*** 0.672*** 0.613*** 0.761*** 0.668*** 0.664*** 0.606*** 
 p70 0.753*** 0.656*** 0.652*** 0.582*** 0.741*** 0.638*** 0.634*** 0.564*** 
 p75 0.743*** 0.644*** 0.639*** 0.567*** 0.729*** 0.627*** 0.623*** 0.55*** 
 p80 0.728*** 0.628*** 0.623*** 0.549*** 0.717*** 0.618*** 0.613*** 0.539*** 
 p90 0.706*** 0.608*** 0.603*** 0.527*** 0.703*** 0.604*** 0.599*** 0.524*** 
 p95 0.7*** 0.603*** 0.598*** 0.522*** 0.7*** 0.606*** 0.602*** 0.527*** 
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 b10 0.044 0.031 0.03 0.015 0.002 0.001 0.001 0 
 b20 0.038 0.034 0.034 0.039 0.005 0.005 0.006 0.014 
 b30 0.166** 0.145** 0.146** 0.16** 0.034 0.032 0.033 0.052 
 b40 0.263*** 0.222** 0.222** 0.236*** 0.068 0.053 0.054 0.075 
 b50 0.308*** 0.26*** 0.261*** 0.275*** 0.107* 0.081 0.082 0.106* 
 b60 0.309*** 0.261*** 0.261*** 0.27*** 0.136* 0.105* 0.107* 0.132* 
 b70 0.288*** 0.245*** 0.244*** 0.237*** 0.138* 0.11* 0.11* 0.12* 
 b80 0.256*** 0.228*** 0.225** 0.205** 0.137* 0.113* 0.112* 0.107* 
 b90 0.23*** 0.198** 0.195** 0.159** 0.173** 0.148** 0.146** 0.12* 
 Ln_min 0.151** 0.131* 0.13* 0.116* 0.124* 0.116* 0.116* 0.108* 
 Ln_max 0.686*** 0.576*** 0.573*** 0.509*** 0.698*** 0.585*** 0.583*** 0.517*** 
 Ln_avg 0.759*** 0.637*** 0.635*** 0.581*** 0.749*** 0.623*** 0.621*** 0.574*** 
 Ln_std 0.568*** 0.469*** 0.466*** 0.404*** 0.452*** 0.393*** 0.39*** 0.323*** 
 Ln_p10 0.644*** 0.546*** 0.544*** 0.511*** 0.587*** 0.485*** 0.485*** 0.479*** 
 Ln_p20 0.699*** 0.595*** 0.594*** 0.559*** 0.672*** 0.568*** 0.568*** 0.552*** 
 Ln_p25 0.718*** 0.612*** 0.611*** 0.575*** 0.702*** 0.593*** 0.592*** 0.568*** 
 Ln_p30 0.732*** 0.624*** 0.623*** 0.586*** 0.719*** 0.607*** 0.606*** 0.577*** 
 Ln_p40 0.749*** 0.635*** 0.634*** 0.591*** 0.741*** 0.622*** 0.621*** 0.584*** 
 Ln_p50 0.756*** 0.638*** 0.636*** 0.588*** 0.751*** 0.628*** 0.627*** 0.585*** 
 Ln_p60 0.759*** 0.639*** 0.637*** 0.587*** 0.751*** 0.626*** 0.625*** 0.577*** 
 Ln_p70 0.749*** 0.623*** 0.621*** 0.563*** 0.738*** 0.609*** 0.606*** 0.549*** 
 Ln_p75 0.741*** 0.615*** 0.612*** 0.553*** 0.735*** 0.608*** 0.606*** 0.546*** 
 Ln_p80 0.732*** 0.606*** 0.603*** 0.541*** 0.731*** 0.607*** 0.605*** 0.543*** 
 Ln_p90 0.723*** 0.6*** 0.597*** 0.533*** 0.722*** 0.6*** 0.597*** 0.533*** 
 Ln_p95 0.719*** 0.599*** 0.596*** 0.531*** 0.722*** 0.607*** 0.605*** 0.54*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.256*** 0.225** 0.225** 0.232*** 0.084 0.059 0.06 0.072 
 Ln_b40 0.314*** 0.27*** 0.271*** 0.278*** 0.089* 0.061 0.062 0.076 
 Ln_b50 0.314*** 0.267*** 0.268*** 0.276*** 0.086 0.057 0.058 0.073 
 Ln_b60 0.289*** 0.246*** 0.246*** 0.247*** 0.078 0.054 0.054 0.068 
 Ln_b70 0.264*** 0.23*** 0.229*** 0.219** 0.093* 0.074 0.074 0.079 
 Ln_b80 0.248*** 0.223** 0.22** 0.199** 0.121* 0.102* 0.101* 0.095* 
 Ln_b90 0.227*** 0.196** 0.192** 0.157** 0.168** 0.143* 0.141* 0.116* 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 6.4: Single linear regression for AGB estimation for All plots (2/2) 

  ALS_FLS    SfM    

Response  
Variable 

Predictor  
variables Yamakura Brown Pearson Basuki Yamakura Brown Pearson Basuki 

Y min 0.1* 0.058 0.059 0.053 0.461*** 0.351*** 0.358*** 0.376*** 
 max 0.614*** 0.515*** 0.52*** 0.482*** 0.6*** 0.495*** 0.499*** 0.457*** 
 avg 0.743*** 0.627*** 0.633*** 0.599*** 0.722*** 0.602*** 0.607*** 0.573*** 
 std 0.366*** 0.311*** 0.313*** 0.274*** 0.204** 0.167** 0.166** 0.13* 
 p10 0.669*** 0.55*** 0.555*** 0.539*** 0.652*** 0.54*** 0.547*** 0.534*** 
 p20 0.692*** 0.58*** 0.586*** 0.57*** 0.679*** 0.576*** 0.581*** 0.559*** 
 p25 0.703*** 0.595*** 0.601*** 0.583*** 0.693*** 0.59*** 0.595*** 0.571*** 
 p30 0.719*** 0.613*** 0.62*** 0.599*** 0.711*** 0.603*** 0.609*** 0.583*** 
 p40 0.735*** 0.631*** 0.637*** 0.609*** 0.734*** 0.621*** 0.626*** 0.595*** 
 p50 0.747*** 0.642*** 0.648*** 0.616*** 0.744*** 0.63*** 0.635*** 0.601*** 
 p60 0.752*** 0.646*** 0.651*** 0.618*** 0.739*** 0.623*** 0.628*** 0.59*** 
 p70 0.723*** 0.613*** 0.618*** 0.577*** 0.689*** 0.57*** 0.574*** 0.53*** 
 p75 0.706*** 0.595*** 0.599*** 0.557*** 0.673*** 0.555*** 0.559*** 0.515*** 
 p80 0.685*** 0.575*** 0.579*** 0.536*** 0.664*** 0.546*** 0.55*** 0.506*** 
 p90 0.659*** 0.551*** 0.555*** 0.512*** 0.651*** 0.537*** 0.541*** 0.497*** 
 p95 0.652*** 0.545*** 0.55*** 0.508*** 0.649*** 0.538*** 0.543*** 0.499*** 
 b10 0.002 0.001 0.001 0 0.013 0.016 0.016 0.019 
 b20 0.074 0.06 0.06 0.057 0.01 0.016 0.016 0.025 
 b30 0.147** 0.126* 0.128* 0.136* 0.013 0.019 0.019 0.029 
 b40 0.192** 0.161** 0.164** 0.176** 0.031 0.032 0.033 0.042 
 b50 0.214** 0.176** 0.18** 0.197** 0.049 0.042 0.043 0.053 
 b60 0.209** 0.171** 0.174** 0.188** 0.125* 0.098* 0.101* 0.125* 
 b70 0.2** 0.169** 0.169** 0.168** 0.157** 0.128* 0.13* 0.149** 
 b80 0.207** 0.181** 0.179** 0.164** 0.231*** 0.19** 0.189** 0.183** 
 b90 0.221** 0.177** 0.176** 0.15** 0.377*** 0.312*** 0.311*** 0.279*** 
 Ln_min 0.1* 0.058 0.059 0.053 0.38*** 0.303*** 0.309*** 0.332*** 
 Ln_max 0.532*** 0.449*** 0.455*** 0.432*** 0.508*** 0.421*** 0.426*** 0.401*** 
 Ln_avg 0.612*** 0.515*** 0.522*** 0.504*** 0.568*** 0.471*** 0.477*** 0.461*** 
 Ln_std 0.388*** 0.335*** 0.339*** 0.316*** 0.3*** 0.261*** 0.262*** 0.223** 
 Ln_p10 0.572*** 0.473*** 0.478*** 0.467*** 0.532*** 0.442*** 0.449*** 0.45*** 
 Ln_p20 0.592*** 0.499*** 0.506*** 0.5*** 0.55*** 0.463*** 0.47*** 0.465*** 
 Ln_p25 0.598*** 0.506*** 0.514*** 0.508*** 0.558*** 0.47*** 0.477*** 0.47*** 
 Ln_p30 0.605*** 0.515*** 0.522*** 0.516*** 0.566*** 0.476*** 0.482*** 0.474*** 
 Ln_p40 0.608*** 0.519*** 0.525*** 0.514*** 0.577*** 0.482*** 0.488*** 0.476*** 
 Ln_p50 0.609*** 0.519*** 0.526*** 0.512*** 0.581*** 0.486*** 0.492*** 0.478*** 
 Ln_p60 0.61*** 0.52*** 0.527*** 0.512*** 0.575*** 0.48*** 0.485*** 0.468*** 
 Ln_p70 0.591*** 0.498*** 0.504*** 0.483*** 0.545*** 0.449*** 0.454*** 0.432*** 
 Ln_p75 0.581*** 0.488*** 0.493*** 0.471*** 0.538*** 0.443*** 0.448*** 0.425*** 
 Ln_p80 0.571*** 0.478*** 0.484*** 0.46*** 0.537*** 0.441*** 0.446*** 0.424*** 
 Ln_p90 0.562*** 0.471*** 0.476*** 0.452*** 0.532*** 0.44*** 0.445*** 0.422*** 
 Ln_p95 0.563*** 0.473*** 0.479*** 0.455*** 0.535*** 0.444*** 0.45*** 0.426*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.228*** 0.18** 0.182** 0.188** 0 0 0 0 
 Ln_b40 0.253*** 0.199** 0.202** 0.212** 0 0 0 0 
 Ln_b50 0.239*** 0.185** 0.189** 0.204** 0 0 0 0 
 Ln_b60 0.205** 0.159** 0.161** 0.171** 0 0 0 0 
 Ln_b70 0.184** 0.155** 0.155** 0.152** 0.033 0.021 0.022 0.03 
 Ln_b80 0.203** 0.179** 0.177** 0.161** 0.201** 0.167** 0.166** 0.158** 
 Ln_b90 0.219** 0.175** 0.174** 0.148** 0.371*** 0.306*** 0.305*** 0.274*** 
Ln_Y min 0.079 0.061 0.06 0.053 0.412*** 0.348*** 0.35*** 0.36*** 
 max 0.675*** 0.583*** 0.578*** 0.504*** 0.647*** 0.547*** 0.543*** 0.47*** 
 avg 0.756*** 0.661*** 0.658*** 0.597*** 0.731*** 0.63*** 0.627*** 0.569*** 
 std 0.453*** 0.383*** 0.379*** 0.309*** 0.261*** 0.209** 0.205** 0.145** 
 p10 0.614*** 0.536*** 0.534*** 0.504*** 0.627*** 0.547*** 0.546*** 0.519*** 
 p20 0.673*** 0.595*** 0.593*** 0.557*** 0.667*** 0.587*** 0.585*** 0.549*** 
 p25 0.693*** 0.615*** 0.613*** 0.574*** 0.685*** 0.602*** 0.6*** 0.56*** 
 p30 0.711*** 0.633*** 0.631*** 0.589*** 0.706*** 0.619*** 0.616*** 0.573*** 
 p40 0.737*** 0.655*** 0.652*** 0.602*** 0.731*** 0.638*** 0.635*** 0.585*** 
 p50 0.759*** 0.672*** 0.669*** 0.613*** 0.744*** 0.649*** 0.646*** 0.592*** 
 p60 0.767*** 0.678*** 0.674*** 0.616*** 0.749*** 0.65*** 0.645*** 0.586*** 
 p70 0.754*** 0.655*** 0.65*** 0.582*** 0.717*** 0.608*** 0.604*** 0.533*** 
 p75 0.742*** 0.641*** 0.636*** 0.565*** 0.703*** 0.595*** 0.591*** 0.519*** 
 p80 0.727*** 0.626*** 0.622*** 0.548*** 0.694*** 0.588*** 0.583*** 0.51*** 
 p90 0.704*** 0.605*** 0.6*** 0.524*** 0.687*** 0.583*** 0.578*** 0.504*** 
 p95 0.7*** 0.604*** 0.6*** 0.524*** 0.688*** 0.586*** 0.582*** 0.507*** 
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 b10 0.03 0.021 0.021 0.01 0.006 0.01 0.01 0.014 
 b20 0.024 0.019 0.019 0.024 0.003 0.008 0.008 0.019 
 b30 0.108* 0.093* 0.094* 0.108* 0.003 0.009 0.009 0.021 
 b40 0.182** 0.149** 0.15** 0.166** 0.015 0.015 0.015 0.027 
 b50 0.229*** 0.188** 0.189** 0.208** 0.034 0.025 0.025 0.039 
 b60 0.232*** 0.191** 0.193** 0.209** 0.153** 0.117* 0.119* 0.149** 
 b70 0.218** 0.181** 0.18** 0.183** 0.22** 0.177** 0.179** 0.203** 
 b80 0.204** 0.179** 0.177** 0.165** 0.255*** 0.211** 0.21** 0.205** 
 b90 0.203** 0.174** 0.171** 0.141* 0.326*** 0.289*** 0.285*** 0.25*** 
 Ln_min 0.079 0.061 0.06 0.053 0.398*** 0.331*** 0.332*** 0.349*** 
 Ln_max 0.686*** 0.576*** 0.573*** 0.509*** 0.653*** 0.532*** 0.529*** 0.467*** 
 Ln_avg 0.754*** 0.63*** 0.628*** 0.575*** 0.713*** 0.58*** 0.578*** 0.533*** 
 Ln_std 0.56*** 0.467*** 0.464*** 0.402*** 0.402*** 0.336*** 0.332*** 0.263*** 
 Ln_p10 0.625*** 0.522*** 0.52*** 0.489*** 0.632*** 0.521*** 0.521*** 0.504*** 
 Ln_p20 0.693*** 0.585*** 0.585*** 0.552*** 0.668*** 0.553*** 0.552*** 0.526*** 
 Ln_p25 0.713*** 0.603*** 0.602*** 0.569*** 0.682*** 0.563*** 0.563*** 0.534*** 
 Ln_p30 0.726*** 0.614*** 0.613*** 0.579*** 0.697*** 0.573*** 0.572*** 0.54*** 
 Ln_p40 0.74*** 0.624*** 0.623*** 0.582*** 0.714*** 0.584*** 0.583*** 0.544*** 
 Ln_p50 0.753*** 0.633*** 0.631*** 0.585*** 0.721*** 0.592*** 0.59*** 0.548*** 
 Ln_p60 0.759*** 0.637*** 0.636*** 0.588*** 0.721*** 0.589*** 0.588*** 0.541*** 
 Ln_p70 0.746*** 0.619*** 0.617*** 0.56*** 0.7*** 0.564*** 0.561*** 0.506*** 
 Ln_p75 0.738*** 0.611*** 0.608*** 0.549*** 0.692*** 0.558*** 0.556*** 0.499*** 
 Ln_p80 0.73*** 0.603*** 0.601*** 0.54*** 0.691*** 0.558*** 0.556*** 0.498*** 
 Ln_p90 0.718*** 0.596*** 0.593*** 0.529*** 0.687*** 0.558*** 0.555*** 0.496*** 
 Ln_p95 0.72*** 0.602*** 0.599*** 0.534*** 0.689*** 0.561*** 0.558*** 0.498*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.179** 0.152** 0.152** 0.161** 0 0 0 0 
 Ln_b40 0.233*** 0.193** 0.194** 0.205** 0 0 0 0 
 Ln_b50 0.238*** 0.196** 0.197** 0.21** 0 0 0 0 
 Ln_b60 0.215** 0.176** 0.177** 0.186** 0 0 0 0 
 Ln_b70 0.197** 0.166** 0.166** 0.165** 0.064 0.044 0.045 0.057 
 Ln_b80 0.196** 0.174** 0.172** 0.16** 0.212** 0.18** 0.179** 0.173** 
 Ln_b90 0.201** 0.172** 0.169** 0.139* 0.314*** 0.278*** 0.274*** 0.241*** 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 6.5: Single linear regression for AGB estimation for Lower Montane forest (n=35) 

(1/2) 

  ALS_All    ALS_FS    

Response  
Variable 

Predictor  
variables Yamakura Brown Pearson Basuki Yamakura Brown Pearson Basuki 

Y min 0.233** 0.197** 0.196** 0.183* 0.183* 0.195** 0.195** 0.194** 
 max 0.571*** 0.51*** 0.511*** 0.467*** 0.597*** 0.523*** 0.524*** 0.481*** 
 avg 0.735*** 0.653*** 0.655*** 0.627*** 0.742*** 0.643*** 0.645*** 0.62*** 
 std 0.243** 0.219** 0.219** 0.179* 0.137* 0.129* 0.128* 0.097 
 p10 0.646*** 0.554*** 0.556*** 0.561*** 0.526*** 0.436*** 0.438*** 0.45*** 
 p20 0.646*** 0.571*** 0.573*** 0.572*** 0.597*** 0.525*** 0.528*** 0.531*** 
 p25 0.657*** 0.589*** 0.591*** 0.586*** 0.64*** 0.567*** 0.569*** 0.564*** 
 p30 0.668*** 0.602*** 0.604*** 0.596*** 0.667*** 0.594*** 0.597*** 0.589*** 
 p40 0.7*** 0.634*** 0.636*** 0.619*** 0.721*** 0.646*** 0.648*** 0.634*** 
 p50 0.723*** 0.658*** 0.66*** 0.635*** 0.751*** 0.668*** 0.67*** 0.649*** 
 p60 0.735*** 0.668*** 0.669*** 0.642*** 0.757*** 0.668*** 0.669*** 0.644*** 
 p70 0.698*** 0.622*** 0.622*** 0.584*** 0.702*** 0.605*** 0.605*** 0.566*** 
 p75 0.675*** 0.598*** 0.598*** 0.559*** 0.67*** 0.575*** 0.575*** 0.534*** 
 p80 0.648*** 0.57*** 0.57*** 0.529*** 0.645*** 0.553*** 0.553*** 0.511*** 
 p90 0.615*** 0.54*** 0.54*** 0.496*** 0.626*** 0.538*** 0.538*** 0.494*** 
 p95 0.612*** 0.537*** 0.537*** 0.491*** 0.617*** 0.534*** 0.534*** 0.489*** 
 b10 0.005 0.004 0.004 0.001 0.007 0.005 0.005 0.011 
 b20 0.073 0.075 0.076 0.105 0.018 0.018 0.019 0.034 
 b30 0.151* 0.155* 0.158* 0.195** 0.024 0.028 0.029 0.049 
 b40 0.222** 0.216** 0.219** 0.258** 0.029 0.03 0.031 0.05 
 b50 0.224** 0.207** 0.209** 0.24** 0.041 0.036 0.037 0.055 
 b60 0.21** 0.182* 0.183* 0.202** 0.051 0.038 0.039 0.054 
 b70 0.193** 0.172* 0.173* 0.178* 0.061 0.052 0.052 0.06 
 b80 0.164* 0.143* 0.143* 0.135* 0.094 0.074 0.073 0.07 
 b90 0.159* 0.127* 0.125* 0.103 0.125* 0.101 0.1 0.081 
 Ln_min 0.234** 0.197** 0.196** 0.183* 0.207** 0.218** 0.218** 0.219** 
 Ln_max 0.559*** 0.512*** 0.513*** 0.476*** 0.581*** 0.525*** 0.526*** 0.49*** 
 Ln_avg 0.706*** 0.648*** 0.651*** 0.631*** 0.716*** 0.642*** 0.645*** 0.628*** 
 Ln_std 0.332*** 0.312*** 0.312*** 0.272** 0.233** 0.232** 0.231** 0.195** 
 Ln_p10 0.626*** 0.569*** 0.573*** 0.589*** 0.495*** 0.436*** 0.44*** 0.462*** 
 Ln_p20 0.644*** 0.599*** 0.603*** 0.613*** 0.594*** 0.546*** 0.55*** 0.564*** 
 Ln_p25 0.657*** 0.616*** 0.62*** 0.626*** 0.638*** 0.587*** 0.591*** 0.597*** 
 Ln_p30 0.667*** 0.625*** 0.629*** 0.631*** 0.663*** 0.612*** 0.616*** 0.618*** 
 Ln_p40 0.689*** 0.645*** 0.648*** 0.64*** 0.706*** 0.651*** 0.655*** 0.65*** 
 Ln_p50 0.701*** 0.656*** 0.659*** 0.643*** 0.724*** 0.664*** 0.668*** 0.657*** 
 Ln_p60 0.704*** 0.658*** 0.661*** 0.643*** 0.722*** 0.659*** 0.662*** 0.646*** 
 Ln_p70 0.669*** 0.614*** 0.616*** 0.589*** 0.675*** 0.603*** 0.605*** 0.576*** 
 Ln_p75 0.653*** 0.596*** 0.598*** 0.569*** 0.653*** 0.582*** 0.584*** 0.553*** 
 Ln_p80 0.633*** 0.576*** 0.578*** 0.547*** 0.637*** 0.568*** 0.57*** 0.537*** 
 Ln_p90 0.614*** 0.558*** 0.559*** 0.524*** 0.626*** 0.56*** 0.561*** 0.524*** 
 Ln_p95 0.612*** 0.555*** 0.557*** 0.518*** 0.615*** 0.552*** 0.554*** 0.517*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0.168* 0.146* 0.147* 0.175* 0 0 0 0 
 Ln_b30 0.264** 0.23** 0.231** 0.26** 0.106 0.064 0.065 0.079 
 Ln_b40 0.296*** 0.254** 0.256** 0.284** 0.092 0.054 0.054 0.068 
 Ln_b50 0.252** 0.213** 0.215** 0.236** 0.066 0.035 0.035 0.047 
 Ln_b60 0.222** 0.182* 0.183* 0.194** 0.045 0.025 0.025 0.034 
 Ln_b70 0.184* 0.166* 0.166* 0.166* 0.048 0.042 0.042 0.046 
 Ln_b80 0.159* 0.141* 0.141* 0.131* 0.092 0.075 0.074 0.07 
 Ln_b90 0.157* 0.126* 0.124* 0.101 0.122* 0.099 0.097 0.079 
Ln_Y min 0.176* 0.172* 0.17* 0.161* 0.157* 0.166* 0.165* 0.164* 
 max 0.646*** 0.6*** 0.595*** 0.513*** 0.662*** 0.611*** 0.607*** 0.527*** 
 avg 0.755*** 0.713*** 0.711*** 0.658*** 0.747*** 0.698*** 0.696*** 0.647*** 
 std 0.355*** 0.32*** 0.316*** 0.239** 0.224** 0.202** 0.198** 0.137* 
 p10 0.559*** 0.526*** 0.526*** 0.526*** 0.448*** 0.419*** 0.419*** 0.43*** 
 p20 0.605*** 0.579*** 0.579*** 0.569*** 0.549*** 0.528*** 0.528*** 0.526*** 
 p25 0.629*** 0.606*** 0.606*** 0.59*** 0.61*** 0.586*** 0.586*** 0.572*** 
 p30 0.651*** 0.628*** 0.627*** 0.607*** 0.65*** 0.625*** 0.624*** 0.604*** 
 p40 0.702*** 0.675*** 0.674*** 0.64*** 0.722*** 0.691*** 0.689*** 0.658*** 
 p50 0.743*** 0.713*** 0.711*** 0.665*** 0.759*** 0.722*** 0.72*** 0.68*** 
 p60 0.768*** 0.734*** 0.732*** 0.68*** 0.776*** 0.733*** 0.731*** 0.681*** 
 p70 0.759*** 0.71*** 0.707*** 0.635*** 0.747*** 0.688*** 0.684*** 0.613*** 
 p75 0.744*** 0.693*** 0.689*** 0.614*** 0.723*** 0.662*** 0.658*** 0.583*** 
 p80 0.722*** 0.669*** 0.665*** 0.587*** 0.703*** 0.643*** 0.639*** 0.562*** 
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 p90 0.69*** 0.637*** 0.632*** 0.551*** 0.684*** 0.626*** 0.621*** 0.54*** 
 p95 0.684*** 0.63*** 0.626*** 0.542*** 0.676*** 0.62*** 0.616*** 0.535*** 
 b10 0.041 0.033 0.032 0.013 0.001 0 0 0.001 
 b20 0.033 0.042 0.044 0.076 0 0.001 0.002 0.013 
 b30 0.108 0.124* 0.127* 0.173* 0.003 0.007 0.008 0.026 
 b40 0.187** 0.2** 0.203** 0.249** 0.005 0.009 0.01 0.029 
 b50 0.214** 0.215** 0.218** 0.254** 0.019 0.022 0.024 0.047 
 b60 0.207** 0.198** 0.2** 0.223** 0.04 0.037 0.039 0.06 
 b70 0.201** 0.193** 0.193** 0.2** 0.054 0.051 0.052 0.064 
 b80 0.179* 0.171* 0.171* 0.16* 0.086 0.079 0.079 0.079 
 b90 0.161* 0.147* 0.145* 0.116* 0.129* 0.118* 0.116* 0.093 
 Ln_min 0.177* 0.172* 0.171* 0.162* 0.176* 0.186** 0.185** 0.185* 
 Ln_max 0.668*** 0.626*** 0.622*** 0.541*** 0.687*** 0.641*** 0.637*** 0.558*** 
 Ln_avg 0.801*** 0.762*** 0.76*** 0.705*** 0.793*** 0.748*** 0.747*** 0.696*** 
 Ln_std 0.473*** 0.44*** 0.436*** 0.352*** 0.345*** 0.328*** 0.324*** 0.251** 
 Ln_p10 0.614*** 0.59*** 0.591*** 0.595*** 0.458*** 0.441*** 0.443*** 0.462*** 
 Ln_p20 0.677*** 0.66*** 0.661*** 0.652*** 0.595*** 0.582*** 0.584*** 0.588*** 
 Ln_p25 0.701*** 0.686*** 0.686*** 0.672*** 0.666*** 0.648*** 0.649*** 0.639*** 
 Ln_p30 0.722*** 0.705*** 0.705*** 0.685*** 0.707*** 0.687*** 0.687*** 0.67*** 
 Ln_p40 0.762*** 0.739*** 0.738*** 0.703*** 0.775*** 0.748*** 0.747*** 0.717*** 
 Ln_p50 0.791*** 0.763*** 0.762*** 0.714*** 0.807*** 0.774*** 0.773*** 0.732*** 
 Ln_p60 0.808*** 0.776*** 0.775*** 0.722*** 0.815*** 0.777*** 0.776*** 0.727*** 
 Ln_p70 0.794*** 0.75*** 0.747*** 0.679*** 0.785*** 0.733*** 0.73*** 0.66*** 
 Ln_p75 0.782*** 0.736*** 0.733*** 0.662*** 0.767*** 0.713*** 0.71*** 0.637*** 
 Ln_p80 0.765*** 0.718*** 0.714*** 0.64*** 0.753*** 0.699*** 0.696*** 0.621*** 
 Ln_p90 0.74*** 0.692*** 0.689*** 0.609*** 0.736*** 0.683*** 0.68*** 0.599*** 
 Ln_p95 0.731*** 0.682*** 0.679*** 0.596*** 0.724*** 0.674*** 0.67*** 0.589*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0.104 0.105 0.106 0.14* 0 0 0 0 
 Ln_b30 0.194** 0.193** 0.195** 0.23** 0.039 0.032 0.033 0.052 
 Ln_b40 0.239** 0.232** 0.234** 0.266** 0.036 0.029 0.029 0.047 
 Ln_b50 0.226** 0.214** 0.216** 0.241** 0.033 0.025 0.026 0.041 
 Ln_b60 0.205** 0.191** 0.192** 0.207** 0.03 0.023 0.024 0.036 
 Ln_b70 0.188** 0.182* 0.182* 0.184* 0.042 0.04 0.04 0.048 
 Ln_b80 0.172* 0.167* 0.166* 0.153* 0.084 0.079 0.079 0.077 
 Ln_b90 0.159* 0.146* 0.144* 0.114* 0.127* 0.116* 0.114* 0.091 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 6.5: Single linear regression for AGB estimation for Lower Montane forest (n=35) 

(2/2) 

  ALS_FLS    SfM    

Response  
Variable 

Predictor  
variables Yamakura Brown Pearson Basuki Yamakura Brown Pearson Basuki 

Y min 0.18* 0.131* 0.129* 0.117* 0.338*** 0.243** 0.247** 0.28** 
 max 0.571*** 0.51*** 0.511*** 0.467*** 0.554*** 0.483*** 0.483*** 0.439*** 
 avg 0.738*** 0.654*** 0.655*** 0.628*** 0.721*** 0.626*** 0.627*** 0.601*** 
 std 0.222** 0.2** 0.2** 0.161* 0.12* 0.103 0.102 0.072 
 p10 0.632*** 0.539*** 0.541*** 0.549*** 0.564*** 0.484*** 0.487*** 0.491*** 
 p20 0.647*** 0.572*** 0.575*** 0.574*** 0.609*** 0.538*** 0.54*** 0.536*** 
 p25 0.655*** 0.585*** 0.587*** 0.582*** 0.636*** 0.565*** 0.567*** 0.561*** 
 p30 0.67*** 0.601*** 0.603*** 0.595*** 0.676*** 0.601*** 0.603*** 0.596*** 
 p40 0.699*** 0.632*** 0.634*** 0.616*** 0.726*** 0.642*** 0.644*** 0.629*** 
 p50 0.728*** 0.661*** 0.663*** 0.639*** 0.747*** 0.661*** 0.663*** 0.644*** 
 p60 0.742*** 0.673*** 0.674*** 0.649*** 0.747*** 0.657*** 0.659*** 0.633*** 
 p70 0.703*** 0.624*** 0.624*** 0.587*** 0.663*** 0.566*** 0.567*** 0.527*** 
 p75 0.678*** 0.597*** 0.598*** 0.558*** 0.636*** 0.542*** 0.543*** 0.501*** 
 p80 0.65*** 0.569*** 0.57*** 0.528*** 0.618*** 0.524*** 0.524*** 0.482*** 
 p90 0.615*** 0.537*** 0.537*** 0.492*** 0.603*** 0.516*** 0.515*** 0.469*** 
 p95 0.611*** 0.535*** 0.535*** 0.489*** 0.611*** 0.531*** 0.531*** 0.484*** 
 b10 0 0 0 0.001 0.015 0.017 0.017 0.02 
 b20 0.053 0.054 0.056 0.081 0.006 0.014 0.014 0.026 
 b30 0.097 0.102 0.104 0.137* 0.007 0.015 0.015 0.028 
 b40 0.147* 0.145* 0.147* 0.181* 0.005 0.011 0.011 0.023 
 b50 0.154* 0.141* 0.143* 0.172* 0.005 0.006 0.006 0.014 
 b60 0.141* 0.119* 0.12* 0.14* 0.055 0.043 0.045 0.068 
 b70 0.129* 0.113* 0.113* 0.122* 0.093 0.078 0.08 0.108 
 b80 0.121* 0.103 0.103 0.099 0.154* 0.125* 0.126* 0.134* 
 b90 0.133* 0.103 0.102 0.083 0.223** 0.166* 0.165* 0.141* 
 Ln_min 0.179* 0.13* 0.128* 0.116* 0.27** 0.213** 0.216** 0.249** 
 Ln_max 0.559*** 0.512*** 0.513*** 0.476*** 0.55*** 0.495*** 0.496*** 0.456*** 
 Ln_avg 0.711*** 0.65*** 0.653*** 0.634*** 0.698*** 0.626*** 0.629*** 0.611*** 
 Ln_std 0.311*** 0.292*** 0.292*** 0.252** 0.226** 0.216** 0.215** 0.172* 
 Ln_p10 0.61*** 0.552*** 0.556*** 0.575*** 0.557*** 0.501*** 0.505*** 0.519*** 
 Ln_p20 0.644*** 0.598*** 0.602*** 0.612*** 0.608*** 0.557*** 0.562*** 0.568*** 
 Ln_p25 0.656*** 0.611*** 0.615*** 0.62*** 0.636*** 0.584*** 0.588*** 0.593*** 
 Ln_p30 0.67*** 0.624*** 0.628*** 0.628*** 0.672*** 0.616*** 0.62*** 0.622*** 
 Ln_p40 0.691*** 0.644*** 0.647*** 0.637*** 0.71*** 0.647*** 0.651*** 0.645*** 
 Ln_p50 0.707*** 0.66*** 0.663*** 0.648*** 0.722*** 0.659*** 0.663*** 0.654*** 
 Ln_p60 0.712*** 0.664*** 0.667*** 0.65*** 0.712*** 0.647*** 0.65*** 0.634*** 
 Ln_p70 0.675*** 0.617*** 0.619*** 0.592*** 0.645*** 0.573*** 0.575*** 0.546*** 
 Ln_p75 0.656*** 0.596*** 0.598*** 0.568*** 0.625*** 0.555*** 0.557*** 0.526*** 
 Ln_p80 0.636*** 0.576*** 0.578*** 0.546*** 0.612*** 0.541*** 0.543*** 0.51*** 
 Ln_p90 0.616*** 0.556*** 0.558*** 0.52*** 0.604*** 0.538*** 0.539*** 0.501*** 
 Ln_p95 0.611*** 0.554*** 0.555*** 0.517*** 0.612*** 0.551*** 0.552*** 0.513*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0.127* 0.108 0.109 0.134* 0 0 0 0 
 Ln_b30 0.195** 0.167* 0.168* 0.196** 0 0 0 0 
 Ln_b40 0.225** 0.187** 0.189** 0.216** 0 0 0 0 
 Ln_b50 0.183* 0.149* 0.151* 0.173* 0 0 0 0 
 Ln_b60 0.155* 0.12* 0.121* 0.135* 0 0 0 0 
 Ln_b70 0.126* 0.111 0.111 0.115* 0.023 0.014 0.015 0.028 
 Ln_b80 0.118* 0.103 0.102 0.097 0.132* 0.109 0.11 0.112* 
 Ln_b90 0.133* 0.102 0.101 0.082 0.215** 0.159* 0.157* 0.134* 
Ln_Y min 0.099 0.094 0.093 0.09 0.281** 0.244** 0.246** 0.274** 
 max 0.646*** 0.6*** 0.595*** 0.513*** 0.617*** 0.566*** 0.561*** 0.48*** 
 avg 0.758*** 0.715*** 0.712*** 0.66*** 0.751*** 0.702*** 0.699*** 0.646*** 
 std 0.328*** 0.295*** 0.29*** 0.216** 0.175* 0.15* 0.146* 0.094 
 p10 0.556*** 0.523*** 0.523*** 0.525*** 0.537*** 0.51*** 0.511*** 0.506*** 
 p20 0.609*** 0.585*** 0.585*** 0.574*** 0.606*** 0.583*** 0.582*** 0.565*** 
 p25 0.63*** 0.606*** 0.606*** 0.589*** 0.642*** 0.616*** 0.616*** 0.595*** 
 p30 0.652*** 0.628*** 0.627*** 0.606*** 0.69*** 0.659*** 0.659*** 0.633*** 
 p40 0.702*** 0.675*** 0.674*** 0.638*** 0.747*** 0.708*** 0.706*** 0.669*** 
 p50 0.75*** 0.719*** 0.717*** 0.671*** 0.77*** 0.73*** 0.728*** 0.685*** 
 p60 0.776*** 0.742*** 0.74*** 0.689*** 0.784*** 0.738*** 0.736*** 0.682*** 
 p70 0.763*** 0.714*** 0.71*** 0.64*** 0.722*** 0.659*** 0.655*** 0.581*** 
 p75 0.744*** 0.692*** 0.688*** 0.613*** 0.698*** 0.637*** 0.633*** 0.556*** 
 p80 0.721*** 0.667*** 0.662*** 0.585*** 0.68*** 0.619*** 0.615*** 0.537*** 
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p90 0.684*** 0.63*** 0.625*** 0.543*** 0.664*** 0.606*** 0.602*** 0.52*** 

 p95 0.681*** 0.628*** 0.623*** 0.54*** 0.669*** 0.615*** 0.611*** 0.529*** 
 b10 0.019 0.015 0.015 0.003 0.006 0.008 0.008 0.011 
 b20 0.016 0.023 0.025 0.051 0 0.005 0.005 0.018 
 b30 0.054 0.068 0.071 0.109 0 0.005 0.005 0.019 
 b40 0.103 0.117* 0.119* 0.161* 0 0.001 0.002 0.012 
 b50 0.133* 0.137* 0.14* 0.176* 0 0 0 0.006 
 b60 0.131* 0.127* 0.128* 0.154* 0.047 0.048 0.05 0.08 
 b70 0.131* 0.126* 0.127* 0.139* 0.131* 0.124* 0.127* 0.161* 
 b80 0.13* 0.125* 0.124* 0.12* 0.181* 0.167* 0.168* 0.174* 
 b90 0.129* 0.119* 0.117* 0.093 0.215** 0.191** 0.189** 0.16* 
 Ln_min 0.098 0.093 0.092 0.089 0.237** 0.218** 0.22** 0.251** 
 Ln_max 0.668*** 0.626*** 0.622*** 0.541*** 0.647*** 0.6*** 0.596*** 0.516*** 
 Ln_avg 0.802*** 0.763*** 0.762*** 0.707*** 0.798*** 0.752*** 0.75*** 0.696*** 
 Ln_std 0.444*** 0.412*** 0.407*** 0.326*** 0.293*** 0.274** 0.27** 0.201** 
 Ln_p10 0.602*** 0.581*** 0.582*** 0.588*** 0.577*** 0.561*** 0.562*** 0.564*** 
 Ln_p20 0.673*** 0.658*** 0.659*** 0.65*** 0.661*** 0.644*** 0.645*** 0.633*** 
 Ln_p25 0.696*** 0.679*** 0.68*** 0.665*** 0.702*** 0.681*** 0.682*** 0.665*** 
 Ln_p30 0.716*** 0.698*** 0.698*** 0.677*** 0.751*** 0.724*** 0.725*** 0.701*** 
 Ln_p40 0.759*** 0.735*** 0.734*** 0.697*** 0.803*** 0.767*** 0.766*** 0.73*** 
 Ln_p50 0.797*** 0.769*** 0.767*** 0.72*** 0.819*** 0.783*** 0.782*** 0.741*** 
 Ln_p60 0.816*** 0.785*** 0.784*** 0.733*** 0.822*** 0.781*** 0.779*** 0.727*** 
 Ln_p70 0.798*** 0.753*** 0.751*** 0.683*** 0.766*** 0.711*** 0.708*** 0.637*** 
 Ln_p75 0.781*** 0.735*** 0.732*** 0.66*** 0.746*** 0.692*** 0.689*** 0.615*** 
 Ln_p80 0.763*** 0.714*** 0.711*** 0.636*** 0.731*** 0.677*** 0.674*** 0.598*** 
 Ln_p90 0.733*** 0.684*** 0.681*** 0.6*** 0.715*** 0.663*** 0.66*** 0.579*** 
 Ln_p95 0.728*** 0.68*** 0.676*** 0.594*** 0.715*** 0.667*** 0.663*** 0.581*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0.065 0.067 0.068 0.098 0 0 0 0 
 Ln_b30 0.126* 0.128* 0.13* 0.164* 0 0 0 0 
 Ln_b40 0.164* 0.16* 0.162* 0.195** 0 0 0 0 
 Ln_b50 0.155* 0.147* 0.149* 0.175* 0 0 0 0 
 Ln_b60 0.137* 0.126* 0.127* 0.145* 0 0 0 0 
 Ln_b70 0.127* 0.123* 0.123* 0.131* 0.048 0.038 0.04 0.056 
 Ln_b80 0.126* 0.123* 0.122* 0.117* 0.151* 0.141* 0.142* 0.144* 
 Ln_b90 0.129* 0.118* 0.116* 0.093 0.204** 0.182* 0.179* 0.151* 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

Appendix 6.6: Random forest evaluation of parameters 

 

1. Parameters check in random forest (Number of tree and number of predictors) 

Train dataset: Response: Yamakura (1986) Predictors: Lower montane All returns 

Area: GDS098 UTM 015 (Long Mio, Sabah) 

 No of  Trees   

 500 1000 2000 

Lower montane 
(NoP=8) 

RMSE = 79.98 
R2=64.05% 

RMSE =78.47  
R2=65.39% 

RMSE = 78.20 
R2= 65.63% 

 

 No. of Predictors   

 4 8 16 

Lower montane 
(No. of Trees=1000) 

RMSE = 78.61 
R2= 0.6528 

RMSE =78.47  
R2= 0.6539 

RMSE = 77.20 
R2= 66.51 

 

RF Results 7 - Balanced Error Rate 

 

 

2. Comparing Random forest and Single Linear regression  

 Random Forest (NoP=8, NoT=2000) Linear regression 

All plots (n=45) RMSE = 101.56 
R2= 0.6814 

RMSE = 110.09 
R2=0.763 

   

Lower montane (n=35) RMSE = 78.20 
R2= 0.6563 

RMSE = 65.19 
R2=0.808 
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3. Comparison using Salford’s SPM and R stat 

 

 SPM R stat 

All plots RMSE =101.25  
R2=0.6834 

RMSE =100.53  
R2=0.6878 

   
Lower montane RMSE =78.47  

R2=0.6539 
RMSE =77.01  
R2=0.6668 

   

NoP=8, ntree=1000 

 

4. Evaluation of 25 predictors vs 50 predictors (include Log transform) 

 

 25 predictors 50 predictors 

All plots RMSE =102.33 
R2=0.6765 

RMSE = 101.51 
R2= 0.6817 

   
Lower montane RMSE = 78.88 

R2= 0.6504 
RMSE =78.61 
R2=0.6528 

   

 

 

5. Evaluation using all predictor variables and excluding canopy cover percentile. 

 All predictors Only height predictors 

All plots RMSE =102.33 
R2=0.6765 

RMSE =101.01 
R2=0.6848 

   
Lower montane RMSE = 78.88 

R2= 0.6504 
RMSE = 82.49 
R2= 0.6176 

   
 Include Ln 

RMSE = 78.61 
R2= 0.6528 

RMSE =82.07 
R2=0.6214 

NoP=sqrt of total number of variables ,nTree=2000 

 

Note: Use all predictors plus log-transformed value (nPredictor=50).  

 

 

Wilson (-:  [Nov 27, 2015]    

File Name: RandomForestReport.docx 
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Appendix 6.7: Variable importance in Random Forest analysis 

 

ALS-All    ALS-FLS    

Basuki Brown Pearson Yamakura Basuki Brown Pearson Yamakura 

LN_STD(100) LN_P90(100) P90(100) P10(100) STD(100) LN_STD(100) STD(100) LN_P90(100) 

STD(95.4) P90(87.8) LN_P90(93.9) LN_P60(92.1) LN_STD(75.8) LN_P90(84.5) LN_STD(71.6) P90(79.2) 

P90(31.3) STD(72.9) LN_STD(89.8) LN_P90(77.5) P90(22.3) P90(63.4) P90(57.7) LN_P60(78.7) 

LN_P90(26.8) LN_STD(64.8) LN_P95(88.1) P90(72.8) P30(12.9) STD(56.4) P95(38.4) LN_P20(71.7) 

LN_P10(14.8) P95(50.9) STD(84.9) P95(62.6) MIN(7.6) LN_P95(54) LN_P90(36.7) P80(64.3) 

P30(12.4) LN_P95(44.6) LN_P50(60.9) LN_P10(59.1) LN_P95(4.6) P95(37.4) LN_P95(19.1) LN_P95(54.3) 

MAX(10.7) MAX(21.9) P95(46.6) P70(53.5) LN_P90(2.6) LN_P30(35.3) LN_P10(12.1) P60(52.6) 

P95(7.8) LN_P80(19.7) P50(26) STD(48.8) LN_MIN(0.8) P25(11.7) LN_MIN(3.7) P20(51.9) 

LN_MIN(2.6) LN_P75(17.7) P40(22.9) LN_STD(46.1) LN_MAX(0.5) LN_MIN(9.9) LN_P25(1.2) P70(44.1) 

LN_MAX(0.6) P50(14.8) LN_P10(20.1) P60(45.3)  LN_MAX(9.8)  LN_P10(40.8) 

 P25(14.3) LN_P80(18) LN_P50(44.7)  P80(7.1)  P95(40.6) 

 P40(14) MIN(13.6) LN_P80(42.2)  LN_P20(4.5)  P30(40.5) 

 LN_MAX(12.5) P10(5.7) LN_P95(41.1)  P60(1.7)  LN_STD(39.8) 

 P30(9.6)  LN_P75(36.9)    LN_P80(36.1) 

 P75(8.7)  LN_AVG(31.5)    STD(32.4) 

 P10(6.7)  P80(30.5)    LN_P70(30.9) 

 P70(6.6)  AVG(29.4)    LN_P30(30.6) 

 P80(5.7)  LN_P40(24.4)    P75(30.2) 

 LN_P30(5.4)  MAX(24.3)    LN_P75(26) 

 LN_P25(4.6)  LN_P70(22.7)    LN_P25(25.6) 

 LN_P10(4.4)  P50(21.4)    AVG(22.1) 

 LN_P60(3.7)  P75(20.8)    MAX(21.1) 

 LN_AVG(3)  P40(19.7)    LN_P50(18.6) 

 LN_P40(2.9)  LN_P20(19.4)    P50(18) 

 LN_P20(0.7)  P20(17.9)    P10(16.8) 

   LN_MAX(14.3)    LN_MAX(16.2) 

   P30(13.2)    LN_AVG(14.5) 

   LN_P25(12)    MIN(13.8) 

   LN_P30(10.6)    LN_P40(5.9) 

   MIN(10.1)    P40(4.3) 

   LN_MIN(9.1)    P25(2.7) 

   P25(6.9)     

Note: All plots sample (n=45). The variables importance are sorted from highest to lowest. The value in bracket 

gives the percentage value of the variable importance. 
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ALS-FS    SfM    

Basuki Brown Pearson Yamakura Basuki Brown Pearson Yamakura 

LN_STD(100) LN_STD(100) LN_STD(100) P60(100) LN_STD(100) P50(100) STD(100) P50(100) 

STD(63.7) LN_P95(51.5) STD(55.1) LN_P40(99.8) STD(83.5) STD(80) LN_P60(78.4) P60(93.5) 

LN_P20(41.1) P90(50.4) LN_P95(52.1) P20(82.1) LN_P50(29.8) LN_STD(57.9) LN_P50(57) LN_P50(92.1) 

LN_P95(24.1) STD(42.7) P95(49.8) LN_P95(80.8)  LN_P40(55.3) LN_P10(26.4) LN_P60(83.1) 

P20(21.7) P95(41.6) LN_P20(48.3) LN_P60(64)  LN_P50(41.4) P50(26.4) LN_P10(73) 

P95(15.3) MAX(23.1) P90(20.4) STD(62.6)  P10(22.1) LN_STD(24.9) LN_P40(72.4) 

 P20(20.2) P20(17.1) LN_MAX(54)  LN_P10(21.5) P10(17.7) STD(62.2) 

  LN_MAX(14) LN_P50(51.9)  LN_P60(12) LN_P40(9.9) P10(55.2) 

  LN_P90(6) P80(51.5)  LN_MAX(2.3) LN_MAX(2.6) LN_P80(50.5) 

   P95(47)    LN_STD(47.7) 

   LN_P80(46.7)    P40(41.3) 

   LN_STD(46.7)    LN_MAX(29.8) 

   MAX(46)    P75(29.3) 

   LN_P75(44.7)    MAX(23.3) 

   P50(41.4)    LN_P70(18.8) 

   P90(35.2)    P70(15) 

   AVG(33.5)    LN_P90(5.7) 

   LN_P20(30)    LN_AVG(2.4) 

   P75(28.5)    P95(2.1) 

   LN_P90(24.3)    P80(1.8) 

   LN_AVG(23.1)    LN_P75(1.6) 

   P25(15.1)    P90(0.4) 

   LN_P25(4.5)     

   P70(1.7)     

   LN_P30(1.6)     

Note: All plots sample (n=45). The variables importance are sorted from highest to lowest. The value in bracket 

gives the percentage value of the variable importance. 
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ALS-All    ALS-FLS    

Basuki Brown Pearson Yamakura Basuki Brown Pearson Yamakura 

LN_P90(100) LN_P90(100) P90(100) LN_P90(100) LN_P90(100) P90(100) P90(100) LN_P90(100) 

LN_STD(82.6) P90(87.8) LN_P90(99.4) P95(96.8) P90(91.8) LN_P90(71.9) LN_P90(76.6) P90(87) 

STD(78.8) STD(72.9) STD(77.8) P90(94.7) LN_STD(87) STD(70.8) STD(59.2) LN_P80(59) 

P95(69.4) LN_STD(64.8) P95(62.7) LN_STD(63.4) STD(84.3) LN_STD(68.5) P95(46) LN_STD(48) 

P90(56.2) P95(50.9) LN_STD(57.4) P75(48.9) P25(65) LN_P95(39.9) LN_STD(44.4) STD(43) 

LN_P95(39) LN_P95(44.6) LN_P95(48.1) LN_P95(48.4) LN_P25(59.6) P95(37) LN_P30(40.6) P75(27.6) 

P25(16.7) MAX(21.9) LN_P75(29.6) STD(48.3) LN_P30(28.2) P50(29.4) P30(30) LN_P75(26.3) 

MAX(13) LN_P80(19.7) P40(28) LN_MAX(45) P20(27.8) LN_P25(22) P80(29) P95(23.5) 

P40(11.2) LN_P75(17.7) P80(21.5) LN_P10(44.1) LN_P95(25.8) LN_P20(19.5) LN_P75(22.8) MAX(22.8) 

LN_P40(11) P50(14.8) P75(16) LN_P80(42.1) LN_P40(22.1) P20(19.5) LN_P25(21.8) LN_MAX(22.6) 

P50(11) P25(14.3) LN_P80(15.5) P50(40.4) P30(21.8) LN_MAX(18.7) LN_P95(17.6) LN_P95(20.3) 

LN_MAX(6.3) P40(14) LN_AVG(13.4) MAX(39.7) P95(15) LN_P75(17.5) P20(17.3) P20(19.1) 

LN_P75(5.5) LN_MAX(12.5) LN_P25(13.1) P70(39.6) MAX(12.9) MAX(14.9) P75(16) LN_P30(16) 

P70(1.8) P30(9.6) P70(8.9) LN_P75(37) LN_P75(10.4) P25(13.9) LN_MAX(14.1) LN_P70(14.7) 

LN_P50(1.3) P75(8.7) P25(8.8) P80(25.9) LN_P20(8.1) P30(13.3) MAX(12.1) LN_P60(13.3) 

P75(0.2) P10(6.7) P50(8.3) LN_P70(21.2) P75(7.3) LN_P40(11.2) LN_P40(10) MIN(12.5) 

 P70(6.6) MAX(7.2) P10(19.3) P40(5.2) P70(9.5) P60(7.2) P80(9.4) 

 P80(5.7) LN_P10(6.1) LN_P50(14.9) P50(5.2) LN_P80(9.2) P70(6.4) P70(3.8) 

 LN_P30(5.4) LN_P50(5.1) P60(8.3) LN_MAX(2.5) P60(8.7) P50(6.3) LN_P50(3.4) 

 LN_P25(4.6) LN_MAX(4.1) LN_P60(6.9) LN_P60(1.6) LN_P50(6.8) LN_P20(3.7) LN_MIN(3.2) 

 LN_P10(4.4) P60(4) AVG(5.4) P70(1) P10(6.5) P40(3) LN_P10(2.5) 

 LN_P60(3.7) LN_P40(3) MIN(2.2)  P75(5.9) P10(2.9) P30(1.3) 

 LN_AVG(3) P30(1.5)   P80(5) P25(2.2)  

 LN_P40(2.9)    LN_P30(3.2) LN_P80(2.2)  

 LN_P20(0.7)     LN_P60(0.5)  

Note: Lower montane ground sample (n=35). The variables importance are sorted from highest to lowest. The 

value in bracket gives the percentage value of the variable importance. 
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ALS-FS    SfM    

Basuki Brown Pearson Yamakura Basuki Brown Pearson Yamakura 

LN_STD(100) LN_MIN(100) STD(100) LN_MIN(100) LN_P50(100) P50(100) LN_P50(100) LN_MIN(100) 

LN_MIN(89.1) STD(94.5) MIN(92.6) MIN(86.1) P50(80.2) LN_P40(77.8) P50(93.2) MIN(91.4) 

STD(83.2) LN_STD(84) LN_MIN(76.2) LN_AVG(57.7) P40(79.5) LN_P10(52.8) P10(85.1) LN_P40(78.7) 

MIN(72.2) LN_P95(73.1) LN_STD(70.7) P60(53.1) P30(77.3) LN_P50(51) LN_P40(78.8) P50(74.2) 

P80(43.2) MIN(69.8) P95(62.5) AVG(44.8) MIN(63.5) P40(43.6) P40(66) LN_P50(62.1) 

LN_P95(35.9) P90(65.4) P90(56.9) P70(41.9) LN_MIN(59.5) STD(42.1) LN_P10(52.7) MAX(49.6) 

P95(31.9) LN_P90(59.1) LN_P95(54.6) LN_STD(40.9) LN_P10(57.9) MAX(37.9) LN_MAX(52.2) LN_MAX(49.4) 

P70(26.2) P95(50.2) LN_P90(49.3) LN_P90(40.2) LN_P30(54.3) P10(37.3) LN_P60(49.5) P10(48.4) 

P20(25.6) LN_P80(47.5) P80(44.4) P95(38.4) LN_P40(45) LN_P60(34.5) LN_P30(46.5) P60(43.6) 

P50(25.4) P80(39.6) LN_P80(41.1) STD(36) LN_P25(30.4) MIN(33.2) P30(41.3) P40(33.7) 

P90(24.6) P75(28.6) LN_P30(32) LN_P60(33.2) P20(30) P30(29.2) MAX(35.6) P70(30.3) 

LN_P20(24.5) LN_P70(26.5) AVG(31.9) LN_P70(32.9) P10(24.4) LN_P90(28) MIN(34.9) LN_P70(28.9) 

LN_P90(23.9) LN_AVG(24.9) LN_P70(30.1) P75(27) LN_STD(23.6) P90(25.8) LN_MIN(34.8) P30(28.4) 

LN_P70(22.4) LN_MAX(20.4) LN_AVG(28.3) LN_P95(25.1) LN_P20(22.9) P20(21.3) P25(34.5) P20(18.6) 

LN_P80(21.2) P60(19.4) LN_P60(24.9) LN_P75(24.4) LN_P60(22.1) LN_MIN(17.9) LN_P20(33) AVG(17.7) 

LN_P50(20) LN_P75(18.7) P20(23.7) P80(20.9) LN_AVG(19) LN_MAX(14.3) LN_P25(32.1) P25(16.1) 

P60(18.8) LN_P20(18.2) LN_P75(20.3) LN_P50(19) MAX(18.3) P25(11.7) P20(28.4) LN_P60(14.3) 

P75(18.7) LN_P60(17.7) P70(18.9) LN_P80(17.4) P25(16) P80(9.6) LN_STD(26.5) LN_P10(11.9) 

LN_P60(18.1) P70(16.3) LN_P10(17) MAX(17.4) P95(11.6) LN_P30(9.5) P75(19.9) LN_AVG(8.3) 

LN_P75(17.1) LN_P25(14.5) P50(13.5) P50(15.7) AVG(9.4) LN_STD(5.2) STD(19.7) P75(8) 

MAX(15.1) LN_P30(13.6) P75(13.3) LN_MAX(14.8) LN_P90(8.9) P75(4.5) AVG(17) LN_P30(6.3) 

LN_MAX(10.5) LN_P50(13.2) LN_P50(12.1) P90(4.3) LN_MAX(2.7) LN_P75(1.1) LN_P90(15.1) P80(2.1) 

AVG(9.6) P20(12.7) MAX(10.4) P30(4.3) STD(2) LN_P20(0.7) LN_AVG(12)  

LN_P25(3.6) P25(12) LN_P25(10.2)   LN_P25(0.2) LN_P95(11.1)  

P30(2.5) AVG(11.8) LN_P20(9.2)    LN_P75(9.5)  

 P40(8.8) P10(8.8)    P60(9.4)  

 MAX(7) LN_MAX(8.6)    LN_P80(7)  

 P10(3.5) LN_P40(8.4)    P70(6.8)  

 LN_P10(1.8) P60(4.9)    P90(0.9)  

  P25(4.8)      

  P30(2.2)      

Note: Lower montane ground sample (n=35). The variables importance are sorted from highest to lowest. The 

value in bracket gives the percentage value of the variable importance. 
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Appendix 6.8: The difference of predictor variables derived using 1 meter DTM and using Lastools 

Plot No min max avg std p10 p20 p25 p30 p40 p50 p60 p70 p75 p80 p90 p95 b10 b20 b30 b40 b50 b60 b70 b80 b90 

1 0.00 0.05 0.00 0.00 0.02 0.02 0.00 0.00 -0.01 -0.01 0.00 0.01 -0.02 0.01 -0.01 -0.01 -0.02 -0.04 0.01 0.05 0.19 0.28 0.36 0.29 0.17 

2 -0.02 -0.02 0.00 0.00 0.00 0.01 0.00 0.01 -0.01 -0.01 -0.01 -0.01 0.01 0.00 0.00 0.01 -0.02 -0.01 -0.02 -0.01 -0.01 0.03 -0.16 -0.06 -0.05 

3 0.01 -0.03 0.00 0.01 -0.04 0.00 0.01 0.00 -0.02 -0.01 0.00 0.01 0.00 0.00 0.02 0.04 0.02 -0.02 0.04 0.02 -0.02 -0.03 -0.15 -0.09 -0.12 

4 0.01 -0.16 0.00 0.00 -0.02 -0.01 0.00 0.01 0.01 0.01 0.01 -0.01 0.00 -0.02 -0.01 -0.02 0.02 -0.19 -0.21 -0.40 -1.14 -0.52 -0.28 -0.11 -0.08 

5 0.00 0.15 0.00 0.01 -0.01 -0.01 -0.01 0.00 0.01 0.01 0.00 -0.03 -0.01 0.00 -0.01 0.00 0.03 0.20 0.37 0.50 0.48 0.62 0.70 1.27 0.44 

6 0.01 0.03 0.01 0.00 -0.01 0.02 -0.01 -0.02 -0.01 0.02 0.01 -0.03 0.00 0.01 -0.01 -0.01 0.05 -0.01 0.12 0.09 0.09 0.12 0.25 0.05 -0.01 

7 0.00 0.03 -0.01 0.00 0.02 0.04 -0.01 0.00 0.00 -0.02 0.00 -0.01 0.01 -0.03 0.03 -0.03 -0.03 0.03 -0.07 -0.11 0.09 -0.04 0.44 0.11 -0.01 

8 0.01 0.19 0.00 0.00 0.00 0.01 -0.01 0.00 -0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.02 -0.03 0.03 0.12 0.20 0.62 0.45 0.69 1.15 0.37 

9 0.00 -0.05 0.00 0.01 0.03 0.02 -0.01 -0.02 0.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.05 -0.03 0.03 -0.07 -0.12 -0.38 -0.12 

10 0.01 0.23 -0.01 0.01 -0.01 -0.01 0.00 -0.02 0.01 0.00 -0.01 0.00 -0.01 0.00 -0.03 0.02 -0.03 0.04 0.10 0.28 0.55 0.81 1.51 0.54 0.21 

11 0.00 0.02 0.00 0.00 0.01 -0.02 0.01 0.00 0.01 0.01 -0.01 -0.01 0.01 -0.03 -0.03 0.03 0.02 -0.05 0.13 0.00 0.13 0.06 0.07 0.08 0.03 

12 0.00 0.07 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 -0.01 -0.01 0.01 0.01 0.00 0.02 0.00 0.01 0.04 0.06 0.10 0.09 0.02 0.07 0.12 0.27 

13 0.00 0.06 0.00 0.00 -0.01 0.01 -0.03 0.00 0.01 -0.01 0.02 0.00 -0.02 -0.02 -0.01 -0.01 -0.02 0.04 0.09 0.05 0.11 0.08 0.23 0.15 0.17 

14 0.01 -0.02 0.00 0.00 0.02 -0.01 0.00 0.00 0.01 0.01 0.00 0.00 -0.01 0.01 0.01 0.00 0.00 0.04 -0.03 0.04 -0.04 0.00 -0.06 -0.10 0.02 

15 0.00 -0.04 0.01 0.01 0.00 0.01 -0.01 0.02 0.01 0.01 0.00 0.00 0.03 0.02 0.01 0.05 -0.03 -0.07 -0.07 -0.09 -0.09 -0.11 -0.07 -0.14 -0.18 

20 -0.02 0.13 -0.01 0.00 -0.04 -0.01 -0.01 0.00 -0.01 -0.01 0.02 -0.01 0.00 -0.02 -0.02 -0.01 -0.02 0.01 0.04 0.12 0.23 0.74 0.38 0.51 -0.01 

21 0.00 -0.01 0.00 0.01 -0.02 -0.02 0.00 -0.01 -0.01 -0.01 0.00 0.01 0.00 0.01 0.01 -0.01 -0.02 0.00 -0.01 0.02 0.07 0.09 -0.09 0.00 -0.01 

23 -0.03 -0.03 -0.01 0.00 -0.02 -0.02 -0.01 0.00 -0.02 0.00 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 0.08 0.06 -0.02 0.08 0.04 -0.02 -0.13 -0.07 -0.15 

24 0.00 0.00 0.00 0.00 0.03 0.00 -0.01 -0.01 0.01 0.01 0.00 0.01 0.00 -0.01 0.00 0.02 -0.07 0.02 0.07 0.05 -0.02 0.12 -0.08 0.03 -0.04 

25 0.01 -0.02 0.00 0.00 0.01 0.00 0.00 -0.02 0.00 0.02 0.00 0.00 -0.02 0.00 0.00 0.01 0.01 0.01 -0.05 0.01 0.01 -0.02 -0.04 0.03 0.03 

26 0.00 -0.06 0.00 0.00 0.01 0.01 -0.02 0.00 -0.01 0.00 0.00 0.01 0.00 0.00 0.00 -0.02 0.04 -0.04 -0.04 0.02 -0.01 -0.19 -0.42 -0.34 -0.10 

27 0.02 0.29 0.00 0.00 -0.05 0.01 -0.01 0.00 -0.01 0.01 -0.03 -0.01 -0.01 -0.01 -0.04 0.02 0.07 0.11 0.20 0.25 0.59 1.15 2.12 1.21 0.32 

30 -0.01 0.20 0.00 0.01 -0.01 -0.01 -0.02 -0.01 0.00 0.00 0.00 -0.02 -0.02 -0.02 0.00 0.02 0.05 0.06 0.23 0.54 0.66 1.00 1.34 0.58 0.04 

31 0.00 0.00 0.00 0.00 0.01 -0.01 0.01 -0.01 0.01 0.01 -0.01 0.00 0.00 0.01 -0.01 0.01 0.00 -0.02 0.13 0.08 0.09 0.08 -0.04 0.05 0.03 

34 0.00 0.04 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.01 0.01 -0.03 0.01 0.03 0.04 0.15 0.20 0.35 0.48 0.21 

35 -0.01 -0.11 0.01 0.00 0.01 -0.02 -0.03 0.02 0.01 0.01 -0.01 0.00 0.01 0.04 0.01 0.02 -0.08 -0.07 -0.05 -0.03 -0.21 -0.28 -0.32 -0.34 -0.23 

42 0.00 0.07 0.00 -0.01 0.02 0.00 0.00 0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.01 -0.01 0.00 -0.01 0.07 0.13 0.15 0.38 0.77 0.65 0.23 

43 -0.05 0.00 -0.01 0.01 0.00 -0.01 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 -0.02 -0.02 -0.01 0.00 0.06 0.02 0.01 0.07 0.06 0.06 0.02 0.03 

44 -0.01 -0.02 0.01 -0.02 0.03 0.03 0.02 0.01 0.00 0.02 -0.01 -0.02 0.02 -0.02 -0.01 0.03 -0.05 -0.16 -0.19 -0.05 -0.19 -0.03 -0.05 0.02 0.00 

45 0.00 0.08 0.00 0.00 0.00 -0.01 -0.01 -0.01 0.01 -0.01 -0.01 -0.01 0.01 -0.01 0.00 0.01 0.04 0.02 0.16 0.17 0.32 0.35 0.33 0.55 0.18 

46 0.00 -0.01 0.00 0.00 -0.01 0.00 -0.01 0.00 0.01 0.01 -0.01 0.00 -0.01 0.00 0.00 -0.01 0.00 -0.03 -0.03 0.00 0.04 0.07 0.08 -0.04 -0.08 

47 -0.01 -0.05 -0.02 0.00 -0.02 -0.04 -0.01 -0.01 -0.02 0.00 -0.01 -0.02 -0.07 -0.03 0.01 -0.06 0.06 0.05 0.15 0.01 0.02 0.03 -0.01 0.11 -0.02 

48 -0.02 -0.03 0.01 0.00 -0.03 0.00 -0.03 -0.01 -0.05 0.01 0.00 0.00 0.00 -0.01 -0.01 -0.02 -0.03 0.06 -0.08 0.09 -0.04 -0.35 -0.37 -0.26 0.11 

49 0.01 0.08 0.00 0.00 0.00 0.00 0.00 -0.03 -0.02 -0.01 0.00 -0.01 -0.02 0.00 0.00 0.03 0.03 0.01 0.04 0.06 0.05 0.33 0.64 0.56 0.13 

50 -0.01 -0.06 0.00 -0.02 0.01 -0.02 -0.02 -0.05 -0.01 0.00 -0.03 0.00 -0.01 -0.03 0.00 -0.04 -0.02 -0.03 -0.07 -0.10 -0.02 -0.14 -0.06 -0.10 -0.26 

Note: The height variable unit is in meter while the canopy cover percentile is in percentage (%). The 
value was calculated by subtracting predictor variables derived using LAStools from the predictor 
variables derived using raster DTM (1 m). 
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Appendix 7.1: Forest biophysical characteristic values for each individual plots (DBH≥10cm). 

Plot No. HL (m) Hdom (m) Hmean (m) N (no./ha) G (m2/ha) D  (cm) 
1 24.05 30.16 18.91 566.7 23.62 20.82 
2 42.41 49.51 28.95 455.6 41.14 28.53 
3 27.71 32.01 20.08 788.9 41.52 22.04 
4 15.73 18.40 13.54 625.0 9.01 12.80 
5 13.87 16.78 13.08 1075.0 18.72 14.46 
6 18.61 24.77 16.32 1088.9 23.57 15.79 
7 26.18 31.01 19.07 600.0 28.26 21.10 
8 27.47 32.32 19.35 688.9 39.90 23.21 
9 22.80 28.78 19.10 577.8 21.91 19.88 

10 25.30 29.37 20.02 633.3 47.75 25.37 
11 28.59 33.49 19.35 522.2 34.29 24.32 
12 34.48 32.18 19.29 300.0 16.54 21.45 
13 24.84 28.01 18.45 477.8 25.24 22.51 
14 29.22 35.98 21.67 655.6 33.10 22.18 
15 24.62 28.86 18.78 688.9 31.41 20.66 
16 20.10 24.87 15.47 644.4 24.45 19.38 
17 24.15 28.96 17.44 855.6 43.77 21.59 
18 19.10 23.79 16.65 355.6 14.37 20.56 
19 21.37 29.64 16.48 1077.8 44.34 20.02 
20 28.88 34.72 21.30 666.7 42.51 24.52 
21 27.61 32.51 19.05 588.9 34.40 22.85 
22 24.57 30.42 18.76 622.2 27.07 21.12 
23 22.13 27.76 17.62 644.4 22.94 19.04 
24 16.57 20.63 14.78 1144.4 21.89 14.49 
25 31.07 33.34 20.44 422.2 23.15 21.81 
26 22.62 30.66 19.80 900.0 27.64 18.59 
27 23.69 30.94 19.76 755.6 26.38 19.50 
28 17.51 22.68 15.79 811.1 18.46 16.16 
29 18.47 23.80 17.03 866.7 20.21 16.48 
30 15.23 19.94 14.42 1044.4 17.64 14.18 
31 14.11 17.49 13.16 622.2 8.94 13.14 
32 23.93 27.09 16.86 555.6 28.07 21.88 
33 29.33 28.64 18.46 511.1 36.16 23.21 
34 18.86 22.24 17.26 844.4 20.55 16.50 
35 25.82 29.24 20.00 477.8 23.60 22.51 
36 23.31 28.62 18.32 555.6 18.33 18.48 
37 21.45 27.77 17.97 711.1 21.14 18.00 
38 21.91 25.62 16.98 866.7 28.48 17.62 
39 18.37 22.81 15.40 1044.4 28.78 17.21 
40 19.74 25.17 17.98 900.0 30.90 19.75 
41 17.23 22.14 15.59 1022.2 26.02 16.68 
42 15.79 19.56 15.02 1277.8 19.56 13.58 
43 31.18 32.44 19.31 522.2 33.48 22.61 
44 19.84 26.38 14.90 655.6 15.49 15.76 
45 18.84 23.02 17.36 933.3 19.70 15.80 
46 14.64 17.67 14.07 733.3 10.42 13.13 
47 21.70 26.96 15.28 500.0 17.15 18.58 
48 29.23 34.92 21.45 711.1 41.20 23.47 
49 25.14 27.84 20.26 511.1 33.99 25.18 
50 28.71 31.39 20.81 466.7 33.30 25.16 
51 23.04 27.47 17.54 688.9 28.32 19.96 
52 26.26 30.97 19.35 600.0 28.87 21.28 
53 21.82 28.82 18.55 1092.6 44.42 20.76 
54 35.16 39.88 22.69 540.0 52.19 28.13 
55 10.68 16.80 8.18 550.0 9.49 14.10 
56 18.32 25.40 16.37 1455.6 43.86 17.81 
57 12.51 19.06 10.86 1100.0 25.60 16.14 
58 30.74 34.96 21.13 722.2 54.15 23.81 
59 34.54 31.92 20.24 733.3 52.88 22.07 
60 33.93 38.57 22.17 833.3 68.62 26.39 
61 19.73 24.58 17.33 1388.9 39.21 17.52 
62 15.10 20.60 14.23 1275.0 23.57 14.83 
63 15.30 18.70 13.67 975.0 32.93 19.14 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

Including plots in site 2. 
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Appendix 7.1: Forest biophysical characteristic values for each individual plots (DBH≥20 cm 

and DBH≥30 cm) 

PlotNo 
DBH ≥ 20 cm  DBH ≥ 30 cm 

HL (m) D  (cm) G (m2/ha N (no./ha) HL (m) D  (cm) G (m2/ha N (no./ha) 

1 25.92 30.45 19.42 255.56 29.16 36.33 11.68 111.11 
2 43.97 36.97 38.5 288.89 48.22 51.07 30.83 133.33 
3 30.64 35.61 32.56 277.78 31.99 44.96 27.08 155.56 
4 21.5 26.5 2.81 50 23.9 30.2 1.79 25 
5 15.52 22.08 3.85 100 - - - - 
6 22.65 23.86 10.66 233.33 26.18 31.43 2.59 33.33 
7 28.65 33.24 22.91 233.33 30.92 44.11 16.2 100 
8 29.61 34.76 34.17 311.11 31.32 43.76 28.69 177.78 
9 24.44 30.36 16.16 211.11 25.83 38.01 9.04 77.78 

10 26.35 36.72 42.31 311.11 27.35 48.42 36.11 166.67 
11 30.57 39.23 29.92 222.22 31.78 44.74 26.26 155.56 
12 38.62 38.48 13.8 100 41.45 49.6 11.67 55.56 
13 26.81 32.74 21.37 222.22 28.23 42.13 15.25 100 
14 31.7 32.73 27.38 288.89 34.97 42.69 18.79 122.22 
15 26.99 32.65 24.28 244.44 29.66 50.73 16.48 77.78 
20 30.75 35.91 37.06 322.22 31.89 43.52 31.72 200 
21 30.2 38.03 28.06 211.11 31.43 45.66 24.24 133.33 
23 24.74 29.85 16.79 222.22 25.96 38.64 10.71 88.89 
24 19.88 28.61 8.25 122.22 20.33 36.15 4.61 44.44 
25 34.05 36.35 19.27 155.56 36.35 49.01 15.81 77.78 
26 24.83 26.16 18.94 344.44 29.07 32.58 4.65 55.56 
27 26.43 27.6 18.35 288.89 28.53 36.59 9.49 88.89 
30 17.16 22.37 4.42 111.11 - - - - 
31 16.66 21.03 1.55 44.44 - - - - 
34 20.4 25.28 11 211.11 22.2 41.8 1.52 11.11 
35 27.95 30.56 19.24 233.33 31.44 43.86 12.14 77.78 
42 18.46 22.09 3.01 77.78 - - - - 
43 33.78 40.93 28.6 177.78 35.43 50.38 25.23 111.11 
44 26.77 32.46 7.53 88.89 28.84 34.87 6.42 66.67 
45 21.57 22.35 8.36 211.11 - - - - 
46 17.16 22.93 1.4 33.33 - - - - 
47 25.63 32.23 11.64 133.33 28 38.07 9.08 77.78 
48 31.26 35.14 35.2 322.22 33.39 43.4 28.02 177.78 
49 26.53 37.28 28.87 233.33 27.21 42.69 25.87 166.67 
50 30.38 39.13 29.41 211.11 31.58 45.44 25.99 144.44 
54 37.04 43.99 47.41 252 38.45 53.87 42.84 164 
55 17.7 26.15 2.73 50 - - - - 
56 19.79 27.57 27.18 411.11 20.85 42.23 11.72 77.78 
57 14.95 25.37 12.11 225 21.4 42.5 3.55 25 
58 32.54 40.52 47.74 277.78 33.99 60.57 40.18 122.22 
59 37.27 34.92 45.3 277.78 40.65 58.5 36.73 88.89 
60 35.62 38.72 62.31 422.22 37.43 47.12 54.98 266.67 
61 22.17 27.17 21.19 333.33 26.31 40.72 7.89 55.56 
62 18.87 23.08 5.32 125 - - - - 
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Appendix 7.2: Line graph showing the difference of Lorey’s mean height, dominant height and 

average height at plot level. 
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Appendix 7.3: Single linear regression of forest biophysical characteristics estimation for all 

plots (n=45) (1/2) 

 

Response  
Variable 

 ALS_All     ALS_FS     

Predictor  
variables Hdom HL D G N Hdom HL D G N 

Y min 0.183** 0.184** 0.156** 0.101* 0.061 0.09* 0.092* 0.085 0.073 0.027 
 max 0.776*** 0.806*** 0.752*** 0.427*** 0.275*** 0.795*** 0.821*** 0.759*** 0.439*** 0.272*** 
 avg 0.805*** 0.816*** 0.782*** 0.548*** 0.21** 0.806*** 0.809*** 0.761*** 0.547*** 0.186** 
 std 0.547*** 0.66*** 0.599*** 0.23*** 0.305*** 0.398*** 0.513*** 0.481*** 0.138* 0.328*** 
 p10 0.658*** 0.611*** 0.564*** 0.529*** 0.101* 0.609*** 0.537*** 0.5*** 0.49*** 0.053 
 p20 0.696*** 0.652*** 0.649*** 0.536*** 0.129* 0.65*** 0.607*** 0.601*** 0.55*** 0.083 
 p25 0.709*** 0.671*** 0.678*** 0.546*** 0.138* 0.687*** 0.658*** 0.647*** 0.561*** 0.105* 
 p30 0.721*** 0.691*** 0.702*** 0.556*** 0.145** 0.709*** 0.686*** 0.678*** 0.565*** 0.121* 
 p40 0.752*** 0.738*** 0.74*** 0.564*** 0.167** 0.752*** 0.741*** 0.726*** 0.57*** 0.148** 
 p50 0.776*** 0.78*** 0.772*** 0.564*** 0.19** 0.782*** 0.78*** 0.755*** 0.568*** 0.169** 
 p60 0.789*** 0.801*** 0.786*** 0.561*** 0.2** 0.804*** 0.809*** 0.778*** 0.55*** 0.195** 
 p70 0.807*** 0.853*** 0.798*** 0.519*** 0.238*** 0.82*** 0.863*** 0.791*** 0.496*** 0.244*** 
 p75 0.805*** 0.859*** 0.795*** 0.499*** 0.25*** 0.815*** 0.865*** 0.79*** 0.478*** 0.257*** 
 p80 0.802*** 0.861*** 0.79*** 0.478*** 0.264*** 0.806*** 0.859*** 0.787*** 0.467*** 0.264*** 
 p90 0.792*** 0.855*** 0.788*** 0.453*** 0.281*** 0.802*** 0.853*** 0.786*** 0.453*** 0.275*** 
 p95 0.794*** 0.851*** 0.79*** 0.448*** 0.286*** 0.799*** 0.843*** 0.784*** 0.454*** 0.273*** 
 b10 0.085 0.116* 0.112* 0 0.154** 0.018 0.03 0.046 0.011 0.139* 
 b20 0.044 0.018 0.02 0.074 0 0.001 0.006 0.004 0.046 0.063 
 b30 0.128* 0.085 0.099* 0.186** 0 0.009 0 0.001 0.088* 0.069 
 b40 0.196** 0.162** 0.164** 0.24*** 0 0.027 0.009 0.009 0.104* 0.056 
 b50 0.231*** 0.2** 0.206** 0.262*** 0 0.05 0.031 0.028 0.121* 0.048 
 b60 0.243*** 0.23*** 0.22** 0.246*** 0.003 0.069 0.054 0.045 0.129* 0.043 
 b70 0.237*** 0.265*** 0.233*** 0.209** 0.023 0.085 0.093* 0.07 0.113* 0.003 
 b80 0.212** 0.282*** 0.245*** 0.181** 0.06 0.103* 0.146** 0.113* 0.088* 0.013 
 b90 0.254*** 0.354*** 0.296*** 0.138* 0.155** 0.185** 0.26*** 0.247*** 0.092* 0.118* 
 Ln_min 0.184** 0.185** 0.157** 0.101* 0.061 0.108* 0.106* 0.1* 0.087* 0.03 
 Ln_max 0.732*** 0.76*** 0.689*** 0.392*** 0.218** 0.751*** 0.777*** 0.699*** 0.403*** 0.219** 
 Ln_avg 0.76*** 0.78*** 0.713*** 0.471*** 0.172** 0.742*** 0.756*** 0.677*** 0.468*** 0.141* 
 Ln_std 0.578*** 0.667*** 0.603*** 0.278*** 0.214** 0.478*** 0.572*** 0.562*** 0.217** 0.273*** 
 Ln_p10 0.666*** 0.623*** 0.564*** 0.466*** 0.112* 0.547*** 0.492*** 0.436*** 0.435*** 0.03 
 Ln_p20 0.684*** 0.649*** 0.624*** 0.481*** 0.116* 0.601*** 0.568*** 0.534*** 0.484*** 0.052 
 Ln_p25 0.692*** 0.663*** 0.641*** 0.489*** 0.116* 0.637*** 0.618*** 0.576*** 0.488*** 0.071 
 Ln_p30 0.698*** 0.677*** 0.656*** 0.494*** 0.118* 0.658*** 0.646*** 0.604*** 0.489*** 0.083 
 Ln_p40 0.718*** 0.713*** 0.678*** 0.49*** 0.132* 0.695*** 0.695*** 0.642*** 0.485*** 0.106* 
 Ln_p50 0.73*** 0.743*** 0.696*** 0.481*** 0.149** 0.718*** 0.728*** 0.666*** 0.48*** 0.125* 
 Ln_p60 0.738*** 0.756*** 0.703*** 0.476*** 0.155** 0.737*** 0.752*** 0.687*** 0.467*** 0.147** 
 Ln_p70 0.749*** 0.794*** 0.711*** 0.445*** 0.181** 0.752*** 0.796*** 0.702*** 0.431*** 0.182** 
 Ln_p75 0.748*** 0.798*** 0.71*** 0.433*** 0.189** 0.754*** 0.801*** 0.709*** 0.425*** 0.192** 
 Ln_p80 0.747*** 0.8*** 0.709*** 0.42*** 0.199** 0.753*** 0.801*** 0.713*** 0.421*** 0.198** 
 Ln_p90 0.748*** 0.802*** 0.718*** 0.411*** 0.215** 0.756*** 0.803*** 0.718*** 0.414*** 0.212** 
 Ln_p95 0.751*** 0.802*** 0.723*** 0.41*** 0.222** 0.757*** 0.797*** 0.722*** 0.419*** 0.213** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 0 0 
 Ln_b30 0.237*** 0.192** 0.172** 0.258*** 0.005 0.1* 0.061 0.026 0.095* 0.01 
 Ln_b40 0.276*** 0.237*** 0.213** 0.284*** 0.004 0.091* 0.059 0.025 0.091* 0.019 
 Ln_b50 0.273*** 0.235*** 0.225*** 0.273*** 0.004 0.082 0.049 0.027 0.081 0.024 
 Ln_b60 0.259*** 0.242*** 0.222** 0.229*** 0.01 0.063 0.043 0.026 0.066 0.02 
 Ln_b70 0.222** 0.251*** 0.223** 0.193** 0.029 0.059 0.065 0.048 0.073 0.001 
 Ln_b80 0.202** 0.273*** 0.238*** 0.179** 0.061 0.09* 0.132* 0.104* 0.075 0.015 
 Ln_b90 0.251*** 0.351*** 0.292*** 0.136* 0.154** 0.18** 0.255*** 0.243*** 0.087* 0.12* 
Ln_Y min 0.172** 0.174** 0.152** 0.102* 0.048 0.099* 0.101* 0.092* 0.085 0.015 
 max 0.802*** 0.83*** 0.743*** 0.436*** 0.282*** 0.814*** 0.84*** 0.748*** 0.444*** 0.278*** 
 avg 0.81*** 0.829*** 0.762*** 0.536*** 0.195** 0.805*** 0.819*** 0.739*** 0.538*** 0.174** 
 std 0.586*** 0.683*** 0.601*** 0.255*** 0.366*** 0.433*** 0.526*** 0.486*** 0.155** 0.402*** 
 p10 0.635*** 0.602*** 0.541*** 0.478*** 0.071 0.587*** 0.541*** 0.477*** 0.469*** 0.035 
 p20 0.686*** 0.659*** 0.627*** 0.513*** 0.101* 0.639*** 0.617*** 0.575*** 0.529*** 0.062 
 p25 0.703*** 0.682*** 0.655*** 0.528*** 0.111* 0.68*** 0.67*** 0.622*** 0.544*** 0.084 
 p30 0.718*** 0.704*** 0.678*** 0.541*** 0.12* 0.706*** 0.701*** 0.654*** 0.551*** 0.1* 
 p40 0.754*** 0.754*** 0.718*** 0.551*** 0.145** 0.753*** 0.758*** 0.703*** 0.56*** 0.129* 
 p50 0.783*** 0.798*** 0.751*** 0.552*** 0.172** 0.782*** 0.795*** 0.732*** 0.558*** 0.152** 
 p60 0.798*** 0.818*** 0.765*** 0.551*** 0.185** 0.806*** 0.823*** 0.756*** 0.545*** 0.181** 
 p70 0.82*** 0.868*** 0.782*** 0.513*** 0.237*** 0.827*** 0.872*** 0.774*** 0.496*** 0.246*** 
 p75 0.821*** 0.874*** 0.781*** 0.497*** 0.253*** 0.824*** 0.873*** 0.776*** 0.481*** 0.263*** 
 p80 0.819*** 0.876*** 0.778*** 0.478*** 0.27*** 0.816*** 0.867*** 0.774*** 0.47*** 0.273*** 
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 p90 0.809*** 0.868*** 0.777*** 0.456*** 0.292*** 0.812*** 0.862*** 0.772*** 0.454*** 0.287*** 
 p95 0.81*** 0.864*** 0.778*** 0.451*** 0.298*** 0.81*** 0.85*** 0.77*** 0.456*** 0.284*** 
 b10 0.115* 0.139* 0.131* 0.007 0.233*** 0.03 0.043 0.053 0.003 0.19** 
 b20 0.035 0.019 0.014 0.043 0.01 0 0.006 0.008 0.023 0.134* 
 b30 0.122* 0.102* 0.09* 0.168** 0.009 0.006 0 0 0.069 0.142* 
 b40 0.197** 0.191** 0.157** 0.243*** 0.003 0.024 0.018 0.006 0.093* 0.104* 
 b50 0.233*** 0.228*** 0.202** 0.281*** 0 0.047 0.044 0.024 0.126* 0.075 
 b60 0.243*** 0.247*** 0.216** 0.27*** 0.001 0.066 0.066 0.043 0.15** 0.054 
 b70 0.239*** 0.274*** 0.229*** 0.225** 0.018 0.085 0.101* 0.068 0.126* 0.005 
 b80 0.213** 0.278*** 0.243*** 0.183** 0.058 0.098* 0.141* 0.11* 0.101* 0.012 
 b90 0.246*** 0.331*** 0.29*** 0.128* 0.174** 0.18** 0.245*** 0.242*** 0.098* 0.144* 
 Ln_min 0.173** 0.174** 0.153** 0.102* 0.048 0.117* 0.117* 0.107* 0.099* 0.017 
 Ln_max 0.789*** 0.832*** 0.701*** 0.447*** 0.222** 0.804*** 0.846*** 0.709*** 0.455*** 0.223** 
 Ln_avg 0.809*** 0.854*** 0.719*** 0.525*** 0.163** 0.785*** 0.83*** 0.681*** 0.524*** 0.134* 
 Ln_std 0.642*** 0.742*** 0.621*** 0.347*** 0.25*** 0.532*** 0.618*** 0.579*** 0.266*** 0.317*** 
 Ln_p10 0.685*** 0.671*** 0.557*** 0.473*** 0.081 0.564*** 0.55*** 0.428*** 0.463*** 0.017 
 Ln_p20 0.719*** 0.717*** 0.623*** 0.519*** 0.091* 0.629*** 0.637*** 0.528*** 0.526*** 0.037 
 Ln_p25 0.73*** 0.735*** 0.641*** 0.534*** 0.094* 0.671*** 0.692*** 0.574*** 0.536*** 0.056 
 Ln_p30 0.739*** 0.753*** 0.656*** 0.544*** 0.098* 0.696*** 0.722*** 0.603*** 0.541*** 0.069 
 Ln_p40 0.763*** 0.791*** 0.68*** 0.544*** 0.117* 0.737*** 0.775*** 0.644*** 0.542*** 0.094* 
 Ln_p50 0.779*** 0.823*** 0.7*** 0.536*** 0.138* 0.762*** 0.807*** 0.669*** 0.538*** 0.114* 
 Ln_p60 0.788*** 0.837*** 0.708*** 0.534*** 0.146** 0.783*** 0.831*** 0.69*** 0.526*** 0.137* 
 Ln_p70 0.803*** 0.872*** 0.72*** 0.505*** 0.182** 0.802*** 0.869*** 0.71*** 0.491*** 0.184** 
 Ln_p75 0.803*** 0.875*** 0.72*** 0.493*** 0.192** 0.804*** 0.872*** 0.718*** 0.487*** 0.196** 
 Ln_p80 0.803*** 0.876*** 0.72*** 0.481*** 0.204** 0.803*** 0.87*** 0.723*** 0.483*** 0.204** 
 Ln_p90 0.802*** 0.874*** 0.73*** 0.471*** 0.222** 0.805*** 0.872*** 0.728*** 0.472*** 0.219** 
 Ln_p95 0.804*** 0.873*** 0.734*** 0.468*** 0.229*** 0.806*** 0.861*** 0.732*** 0.477*** 0.22** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 0 0 
 Ln_b30 0.219** 0.194** 0.162** 0.232*** 0 0.075 0.055 0.021 0.08 0.029 
 Ln_b40 0.264*** 0.246*** 0.205** 0.278*** 0 0.071 0.057 0.021 0.086* 0.037 
 Ln_b50 0.266*** 0.247*** 0.22** 0.276*** 0.001 0.068 0.051 0.024 0.086 0.037 
 Ln_b60 0.252*** 0.248*** 0.217** 0.242*** 0.005 0.057 0.047 0.025 0.078 0.027 
 Ln_b70 0.224** 0.256*** 0.218** 0.205** 0.024 0.06 0.071 0.047 0.082 0.002 
 Ln_b80 0.204** 0.267*** 0.235*** 0.178** 0.058 0.086 0.126* 0.101* 0.088* 0.015 
 Ln_b90 0.244*** 0.328*** 0.287*** 0.127* 0.173** 0.176** 0.24*** 0.238*** 0.094* 0.146** 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 7.3: Single linear regression of forest biophysical characteristics estimation for all 

plots (n=45) (2/2) 

 

Response  
Variable 

 ALS-FLS     SfM     

Predictor  
variables Hdom HL D G N Hdom HL D G N 

Y min 0.139* 0.131* 0.086 0.045 0.037 0.432*** 0.343*** 0.322*** 0.377*** 0.007 
 max 0.776*** 0.806*** 0.752*** 0.427*** 0.275*** 0.762*** 0.807*** 0.735*** 0.401*** 0.288*** 
 avg 0.805*** 0.816*** 0.779*** 0.544*** 0.206** 0.786*** 0.802*** 0.757*** 0.52*** 0.199** 
 std 0.525*** 0.641*** 0.581*** 0.229*** 0.293*** 0.37*** 0.509*** 0.381*** 0.095* 0.341*** 
 p10 0.665*** 0.611*** 0.567*** 0.504*** 0.105* 0.64*** 0.598*** 0.601*** 0.502*** 0.094* 
 p20 0.7*** 0.655*** 0.652*** 0.532*** 0.127* 0.675*** 0.651*** 0.65*** 0.518*** 0.123* 
 p25 0.711*** 0.673*** 0.679*** 0.542*** 0.134* 0.693*** 0.674*** 0.672*** 0.527*** 0.132* 
 p30 0.722*** 0.693*** 0.699*** 0.556*** 0.139* 0.719*** 0.706*** 0.697*** 0.537*** 0.144* 
 p40 0.75*** 0.741*** 0.738*** 0.56*** 0.164** 0.759*** 0.76*** 0.734*** 0.545*** 0.167** 
 p50 0.775*** 0.781*** 0.769*** 0.564*** 0.182** 0.778*** 0.785*** 0.754*** 0.548*** 0.181** 
 p60 0.788*** 0.798*** 0.782*** 0.564*** 0.19** 0.796*** 0.817*** 0.77*** 0.534*** 0.205** 
 p70 0.805*** 0.852*** 0.792*** 0.519*** 0.232*** 0.805*** 0.864*** 0.77*** 0.471*** 0.252*** 
 p75 0.806*** 0.859*** 0.79*** 0.498*** 0.247*** 0.797*** 0.858*** 0.768*** 0.456*** 0.263*** 
 p80 0.802*** 0.861*** 0.788*** 0.477*** 0.261*** 0.794*** 0.856*** 0.766*** 0.447*** 0.269*** 
 p90 0.792*** 0.855*** 0.785*** 0.452*** 0.279*** 0.786*** 0.852*** 0.766*** 0.438*** 0.275*** 
 p95 0.791*** 0.847*** 0.789*** 0.45*** 0.281*** 0.783*** 0.847*** 0.771*** 0.44*** 0.278*** 
 b10 0.061 0.083 0.089* 0 0.136* 0 0 0 0.022 0.025 
 b20 0.032 0.011 0.01 0.054 0 0.003 0.033 0.001 0.033 0.056 
 b30 0.078 0.044 0.054 0.139* 0.002 0.003 0.032 0 0.038 0.063 
 b40 0.126* 0.098* 0.098* 0.181** 0.001 0 0.003 0.001 0.05 0.042 
 b50 0.157** 0.13* 0.134* 0.206** 0.002 0.007 0.002 0.005 0.062 0.043 
 b60 0.164** 0.149** 0.142* 0.195** 0.001 0.07 0.054 0.047 0.145** 0.063 
 b70 0.164** 0.182** 0.154** 0.162** 0.004 0.131* 0.117* 0.09* 0.163** 0.026 
 b80 0.156** 0.214** 0.179** 0.147** 0.03 0.209** 0.24*** 0.188** 0.173** 0.012 
 b90 0.219** 0.311*** 0.256*** 0.124* 0.125* 0.354*** 0.421*** 0.338*** 0.244*** 0.103* 
 Ln_min 0.139* 0.131* 0.085 0.045 0.037 0.337*** 0.289*** 0.248*** 0.341*** 0 
 Ln_max 0.732*** 0.76*** 0.689*** 0.392*** 0.218** 0.704*** 0.75*** 0.657*** 0.361*** 0.22** 
 Ln_avg 0.752*** 0.773*** 0.702*** 0.467*** 0.164** 0.706*** 0.736*** 0.648*** 0.428*** 0.143* 
 Ln_std 0.564*** 0.656*** 0.596*** 0.281*** 0.21** 0.473*** 0.585*** 0.497*** 0.182** 0.318*** 
 Ln_p10 0.646*** 0.607*** 0.542*** 0.438*** 0.106* 0.581*** 0.556*** 0.521*** 0.433*** 0.06 
 Ln_p20 0.673*** 0.642*** 0.609*** 0.473*** 0.107* 0.619*** 0.607*** 0.564*** 0.441*** 0.082 
 Ln_p25 0.678*** 0.654*** 0.627*** 0.482*** 0.105* 0.635*** 0.63*** 0.582*** 0.445*** 0.089* 
 Ln_p30 0.686*** 0.668*** 0.639*** 0.489*** 0.107* 0.657*** 0.659*** 0.601*** 0.447*** 0.1* 
 Ln_p40 0.705*** 0.707*** 0.665*** 0.482*** 0.126* 0.687*** 0.704*** 0.629*** 0.446*** 0.12* 
 Ln_p50 0.72*** 0.735*** 0.684*** 0.479*** 0.138* 0.698*** 0.719*** 0.644*** 0.445*** 0.13* 
 Ln_p60 0.729*** 0.749*** 0.693*** 0.478*** 0.143* 0.71*** 0.742*** 0.655*** 0.433*** 0.147** 
 Ln_p70 0.743*** 0.79*** 0.703*** 0.444*** 0.175** 0.717*** 0.774*** 0.658*** 0.394*** 0.178** 
 Ln_p75 0.745*** 0.795*** 0.704*** 0.431*** 0.186** 0.716*** 0.773*** 0.661*** 0.387*** 0.187** 
 Ln_p80 0.745*** 0.798*** 0.706*** 0.42*** 0.196** 0.718*** 0.775*** 0.666*** 0.385*** 0.192** 
 Ln_p90 0.745*** 0.801*** 0.714*** 0.41*** 0.214** 0.713*** 0.774*** 0.668*** 0.383*** 0.196** 
 Ln_p95 0.749*** 0.798*** 0.723*** 0.413*** 0.217** 0.714*** 0.775*** 0.674*** 0.386*** 0.201** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 0 0 
 Ln_b30 0.17** 0.129* 0.109* 0.186** 0.001 0 0 0 0 0 
 Ln_b40 0.205** 0.167** 0.143* 0.215** 0 0 0 0 0 0 
 Ln_b50 0.202** 0.164** 0.154** 0.21** 0 0 0 0 0 0 
 Ln_b60 0.184** 0.162** 0.145** 0.173** 0 0 0 0 0 0 
 Ln_b70 0.154** 0.171** 0.146** 0.145** 0.008 0.049 0.026 0.017 0.037 0.022 
 Ln_b80 0.148** 0.206** 0.174** 0.144* 0.031 0.176** 0.206** 0.17** 0.147** 0.016 
 Ln_b90 0.217** 0.309*** 0.253*** 0.122* 0.124* 0.344*** 0.408*** 0.327*** 0.24*** 0.1* 
Ln_Y min 0.112* 0.109* 0.074 0.045 0.028 0.394*** 0.33*** 0.301*** 0.359*** 0.002 
 max 0.802*** 0.83*** 0.743*** 0.436*** 0.282*** 0.782*** 0.829*** 0.722*** 0.403*** 0.296*** 
 avg 0.81*** 0.83*** 0.759*** 0.535*** 0.192** 0.788*** 0.817*** 0.733*** 0.51*** 0.189** 
 std 0.563*** 0.66*** 0.583*** 0.25*** 0.355*** 0.4*** 0.511*** 0.393*** 0.101* 0.418*** 
 p10 0.644*** 0.609*** 0.544*** 0.468*** 0.075 0.627*** 0.609*** 0.57*** 0.486*** 0.075 
 p20 0.691*** 0.667*** 0.629*** 0.515*** 0.1* 0.672*** 0.668*** 0.622*** 0.506*** 0.103* 
 p25 0.705*** 0.687*** 0.655*** 0.53*** 0.109* 0.691*** 0.692*** 0.644*** 0.515*** 0.112* 
 p30 0.719*** 0.707*** 0.675*** 0.542*** 0.115* 0.72*** 0.725*** 0.67*** 0.525*** 0.125* 
 p40 0.753*** 0.758*** 0.715*** 0.548*** 0.144* 0.759*** 0.776*** 0.707*** 0.531*** 0.15** 
 p50 0.781*** 0.799*** 0.747*** 0.555*** 0.166** 0.778*** 0.8*** 0.728*** 0.535*** 0.165** 
 p60 0.796*** 0.817*** 0.761*** 0.556*** 0.176** 0.8*** 0.832*** 0.747*** 0.524*** 0.192** 
 p70 0.818*** 0.866*** 0.776*** 0.514*** 0.231*** 0.814*** 0.874*** 0.753*** 0.465*** 0.258*** 
 p75 0.82*** 0.874*** 0.776*** 0.496*** 0.25*** 0.807*** 0.868*** 0.751*** 0.45*** 0.271*** 
 p80 0.818*** 0.875*** 0.775*** 0.478*** 0.267*** 0.803*** 0.864*** 0.75*** 0.442*** 0.279*** 
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 p90 0.807*** 0.867*** 0.773*** 0.453*** 0.29*** 0.798*** 0.862*** 0.751*** 0.435*** 0.288*** 
 p95 0.806*** 0.858*** 0.776*** 0.453*** 0.293*** 0.796*** 0.86*** 0.755*** 0.438*** 0.29*** 
 b10 0.086 0.103* 0.105* 0.003 0.201** 0.001 0 0 0.017 0.026 
 b20 0.023 0.012 0.006 0.027 0.011 0.004 0.023 0.001 0.031 0.126* 
 b30 0.071 0.056 0.046 0.118* 0.02 0.005 0.023 0.001 0.034 0.137* 
 b40 0.123* 0.121* 0.09* 0.175** 0.012 0 0.001 0 0.038 0.09* 
 b50 0.156** 0.153** 0.129* 0.22** 0.009 0.005 0.006 0.002 0.051 0.072 
 b60 0.161** 0.164** 0.137* 0.217** 0.004 0.069 0.07 0.043 0.173** 0.075 
 b70 0.164** 0.191** 0.15** 0.179** 0.002 0.14* 0.137* 0.092* 0.219** 0.029 
 b80 0.154** 0.209** 0.177** 0.152** 0.028 0.211** 0.246*** 0.187** 0.196** 0.01 
 b90 0.208** 0.287*** 0.249*** 0.115* 0.142* 0.333*** 0.389*** 0.327*** 0.217** 0.11* 
 Ln_min 0.112* 0.109* 0.073 0.045 0.028 0.324*** 0.306*** 0.239*** 0.355*** 0.001 
 Ln_max 0.789*** 0.832*** 0.701*** 0.447*** 0.222** 0.757*** 0.826*** 0.664*** 0.409*** 0.224** 
 Ln_avg 0.799*** 0.848*** 0.707*** 0.521*** 0.156** 0.753*** 0.819*** 0.65*** 0.484*** 0.138* 
 Ln_std 0.626*** 0.724*** 0.614*** 0.345*** 0.247*** 0.519*** 0.625*** 0.513*** 0.207** 0.351*** 
 Ln_p10 0.667*** 0.661*** 0.537*** 0.454*** 0.078 0.608*** 0.63*** 0.513*** 0.478*** 0.046 
 Ln_p20 0.707*** 0.713*** 0.607*** 0.514*** 0.084 0.656*** 0.689*** 0.56*** 0.493*** 0.067 
 Ln_p25 0.715*** 0.729*** 0.625*** 0.53*** 0.086 0.675*** 0.713*** 0.579*** 0.499*** 0.076 
 Ln_p30 0.725*** 0.745*** 0.638*** 0.539*** 0.09* 0.7*** 0.744*** 0.6*** 0.502*** 0.087* 
 Ln_p40 0.749*** 0.786*** 0.666*** 0.536*** 0.112* 0.731*** 0.788*** 0.629*** 0.5*** 0.109* 
 Ln_p50 0.768*** 0.816*** 0.687*** 0.536*** 0.128* 0.743*** 0.803*** 0.645*** 0.502*** 0.12* 
 Ln_p60 0.779*** 0.83*** 0.698*** 0.537*** 0.135* 0.758*** 0.826*** 0.658*** 0.491*** 0.14* 
 Ln_p70 0.796*** 0.867*** 0.711*** 0.503*** 0.176** 0.769*** 0.854*** 0.665*** 0.451*** 0.182** 
 Ln_p75 0.799*** 0.872*** 0.713*** 0.491*** 0.189** 0.768*** 0.853*** 0.668*** 0.443*** 0.191** 
 Ln_p80 0.799*** 0.873*** 0.716*** 0.48*** 0.201** 0.769*** 0.853*** 0.674*** 0.441*** 0.198** 
 Ln_p90 0.798*** 0.873*** 0.724*** 0.467*** 0.221** 0.765*** 0.851*** 0.676*** 0.438*** 0.204** 
 Ln_p95 0.801*** 0.867*** 0.734*** 0.472*** 0.225** 0.766*** 0.852*** 0.681*** 0.44*** 0.208** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 0 0 
 Ln_b30 0.151** 0.131* 0.1* 0.164** 0.002 0 0 0 0 0 
 Ln_b40 0.19** 0.175** 0.136* 0.21** 0.002 0 0 0 0 0 
 Ln_b50 0.193** 0.176** 0.149** 0.217** 0.002 0 0 0 0 0 
 Ln_b60 0.175** 0.168** 0.14* 0.189** 0 0 0 0 0 0 
 Ln_b70 0.154** 0.177** 0.143* 0.16** 0.005 0.057 0.036 0.019 0.067 0.027 
 Ln_b80 0.147** 0.2** 0.171** 0.146** 0.029 0.177** 0.207** 0.167** 0.163** 0.014 
 Ln_b90 0.206** 0.285*** 0.247*** 0.113* 0.141* 0.322*** 0.373*** 0.315*** 0.209** 0.106* 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 7.4: Single linear regression of forest biophysical characteristics estimation for lower 

montane forest (n=35) (1/2) 

  ALS_All     ALS_FS     

Response  
Variable 

Predictor  
variables Hdom HL D G N Hdom HL D G N 

Y min 0.166* 0.175* 0.147* 0.169* 0.043 0.086 0.097 0.092 0.19** 0.011 
 max 0.722*** 0.761*** 0.736*** 0.416*** 0.441*** 0.752*** 0.784*** 0.748*** 0.431*** 0.426*** 
 avg 0.754*** 0.738*** 0.791*** 0.586*** 0.296*** 0.769*** 0.739*** 0.772*** 0.582*** 0.275** 
 std 0.408*** 0.57*** 0.511*** 0.141* 0.504*** 0.263** 0.417*** 0.367*** 0.069 0.447*** 
 p10 0.555*** 0.449*** 0.479*** 0.552*** 0.07 0.455*** 0.34*** 0.376*** 0.449*** 0.041 
 p20 0.578*** 0.486*** 0.57*** 0.556*** 0.12* 0.514*** 0.419*** 0.502*** 0.52*** 0.091 
 p25 0.592*** 0.507*** 0.608*** 0.568*** 0.142* 0.578*** 0.495*** 0.58*** 0.546*** 0.133* 
 p30 0.612*** 0.535*** 0.644*** 0.573*** 0.166* 0.614*** 0.539*** 0.634*** 0.567*** 0.161* 
 p40 0.668*** 0.61*** 0.717*** 0.588*** 0.222** 0.69*** 0.628*** 0.723*** 0.605*** 0.211** 
 p50 0.713*** 0.68*** 0.78*** 0.598*** 0.274** 0.743*** 0.696*** 0.778*** 0.614*** 0.25** 
 p60 0.743*** 0.72*** 0.813*** 0.602*** 0.3*** 0.777*** 0.743*** 0.816*** 0.604*** 0.291*** 
 p70 0.768*** 0.812*** 0.833*** 0.535*** 0.376*** 0.792*** 0.837*** 0.825*** 0.517*** 0.381*** 
 p75 0.762*** 0.82*** 0.824*** 0.509*** 0.392*** 0.777*** 0.84*** 0.811*** 0.484*** 0.401*** 
 p80 0.751*** 0.822*** 0.81*** 0.478*** 0.41*** 0.761*** 0.833*** 0.799*** 0.46*** 0.414*** 
 p90 0.734*** 0.818*** 0.794*** 0.444*** 0.437*** 0.754*** 0.83*** 0.79*** 0.442*** 0.435*** 
 p95 0.74*** 0.821*** 0.795*** 0.438*** 0.454*** 0.751*** 0.818*** 0.78*** 0.437*** 0.436*** 
 b10 0.075 0.137* 0.11 0 0.297*** 0.007 0.022 0.034 0.019 0.182* 
 b20 0.006 0.009 0.002 0.134* 0.136* 0.003 0.056 0.018 0.052 0.208** 
 b30 0.041 0.002 0.043 0.229** 0.067 0.002 0.052 0.006 0.07 0.187** 
 b40 0.095 0.034 0.107 0.288*** 0.024 0.001 0.036 0.003 0.071 0.177* 
 b50 0.127* 0.07 0.146* 0.263** 0.005 0.002 0.007 0.001 0.075 0.12* 
 b60 0.139* 0.104 0.157* 0.216** 0 0.014 0.002 0.012 0.069 0.059 
 b70 0.132* 0.139* 0.177* 0.179* 0.013 0.022 0.019 0.034 0.067 0.005 
 b80 0.126* 0.178* 0.203** 0.124* 0.068 0.055 0.085 0.097 0.066 0.02 
 b90 0.158* 0.265** 0.229** 0.082 0.177* 0.119* 0.211** 0.207** 0.065 0.159* 
 Ln_min 0.167* 0.175* 0.148* 0.169* 0.043 0.101 0.109 0.105 0.215** 0.011 
 Ln_max 0.724*** 0.74*** 0.738*** 0.429*** 0.429*** 0.747*** 0.758*** 0.749*** 0.444*** 0.412*** 
 Ln_avg 0.767*** 0.736*** 0.815*** 0.596*** 0.301*** 0.777*** 0.737*** 0.797*** 0.595*** 0.282** 
 Ln_std 0.503*** 0.628*** 0.619*** 0.229** 0.504*** 0.359*** 0.484*** 0.487*** 0.158* 0.452*** 
 Ln_p10 0.561*** 0.431*** 0.513*** 0.588*** 0.07 0.417*** 0.287*** 0.362*** 0.471*** 0.027 
 Ln_p20 0.6*** 0.484*** 0.616*** 0.605*** 0.121* 0.519*** 0.399*** 0.522*** 0.562*** 0.081 
 Ln_p25 0.618*** 0.51*** 0.654*** 0.614*** 0.144* 0.593*** 0.487*** 0.611*** 0.586*** 0.128* 
 Ln_p30 0.642*** 0.543*** 0.69*** 0.615*** 0.17* 0.633*** 0.536*** 0.666*** 0.603*** 0.158* 
 Ln_p40 0.695*** 0.618*** 0.755*** 0.615*** 0.228** 0.707*** 0.629*** 0.753*** 0.628*** 0.211** 
 Ln_p50 0.732*** 0.683*** 0.805*** 0.611*** 0.278** 0.75*** 0.69*** 0.8*** 0.628*** 0.248** 
 Ln_p60 0.752*** 0.714*** 0.827*** 0.608*** 0.297*** 0.775*** 0.729*** 0.829*** 0.613*** 0.287*** 
 Ln_p70 0.767*** 0.785*** 0.836*** 0.548*** 0.355*** 0.786*** 0.808*** 0.833*** 0.533*** 0.365*** 
 Ln_p75 0.762*** 0.791*** 0.829*** 0.527*** 0.368*** 0.778*** 0.813*** 0.825*** 0.509*** 0.384*** 
 Ln_p80 0.756*** 0.794*** 0.821*** 0.503*** 0.384*** 0.768*** 0.811*** 0.818*** 0.492*** 0.396*** 
 Ln_p90 0.748*** 0.798*** 0.814*** 0.478*** 0.416*** 0.769*** 0.815*** 0.814*** 0.477*** 0.424*** 
 Ln_p95 0.756*** 0.805*** 0.815*** 0.47*** 0.44*** 0.764*** 0.802*** 0.801*** 0.469*** 0.425*** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0.066 0.019 0.031 0.199** 0.054 0 0 0 0 0 
 Ln_b30 0.138* 0.071 0.104 0.282** 0.013 0.047 0.009 0.005 0.094 0.065 
 Ln_b40 0.178* 0.108 0.149* 0.304*** 0.003 0.042 0.009 0.006 0.081 0.06 
 Ln_b50 0.173* 0.116* 0.158* 0.252** 0 0.037 0.008 0.008 0.059 0.043 
 Ln_b60 0.165* 0.132* 0.16* 0.2** 0.003 0.026 0.008 0.009 0.043 0.024 
 Ln_b70 0.129* 0.14* 0.17* 0.162* 0.021 0.018 0.018 0.027 0.049 0.001 
 Ln_b80 0.12* 0.172* 0.197** 0.119* 0.071 0.053 0.084 0.096 0.064 0.024 
 Ln_b90 0.157* 0.264** 0.226** 0.081 0.176* 0.116* 0.208** 0.205** 0.063 0.159* 
Ln_Y min 0.152* 0.161* 0.141* 0.15* 0.032 0.094 0.104 0.097 0.16* 0.003 
 max 0.772*** 0.807*** 0.754*** 0.439*** 0.448*** 0.792*** 0.821*** 0.763*** 0.453*** 0.437*** 
 avg 0.77*** 0.765*** 0.792*** 0.6*** 0.276** 0.771*** 0.755*** 0.77*** 0.594*** 0.255** 
 std 0.466*** 0.608*** 0.539*** 0.178* 0.594*** 0.313*** 0.451*** 0.389*** 0.092 0.548*** 
 p10 0.526*** 0.445*** 0.463*** 0.515*** 0.047 0.422*** 0.332*** 0.361*** 0.429*** 0.022 
 p20 0.568*** 0.499*** 0.559*** 0.547*** 0.09 0.499*** 0.428*** 0.49*** 0.512*** 0.061 
 p25 0.588*** 0.527*** 0.597*** 0.564*** 0.11 0.57*** 0.509*** 0.571*** 0.548*** 0.101 
 p30 0.614*** 0.559*** 0.635*** 0.576*** 0.132* 0.611*** 0.558*** 0.626*** 0.574*** 0.127* 
 p40 0.678*** 0.639*** 0.712*** 0.599*** 0.187** 0.695*** 0.653*** 0.719*** 0.618*** 0.178* 
 p50 0.731*** 0.714*** 0.778*** 0.613*** 0.245** 0.749*** 0.719*** 0.775*** 0.631*** 0.222** 
 p60 0.765*** 0.756*** 0.814*** 0.623*** 0.275** 0.785*** 0.768*** 0.814*** 0.626*** 0.267** 
 p70 0.799*** 0.843*** 0.841*** 0.565*** 0.379*** 0.809*** 0.855*** 0.83*** 0.543*** 0.389*** 
 p75 0.795*** 0.85*** 0.835*** 0.542*** 0.403*** 0.798*** 0.858*** 0.82*** 0.511*** 0.418*** 
 p80 0.786*** 0.852*** 0.824*** 0.513*** 0.427*** 0.785*** 0.853*** 0.809*** 0.489*** 0.435*** 
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p90 0.771*** 0.848*** 0.81*** 0.475*** 0.461*** 0.781*** 0.851*** 0.801*** 0.466*** 0.459*** 

 p95 0.777*** 0.852*** 0.81*** 0.465*** 0.477*** 0.781*** 0.842*** 0.791*** 0.46*** 0.458*** 
 b10 0.11 0.168* 0.133* 0.003 0.366*** 0.017 0.036 0.043 0.006 0.22** 
 b20 0.002 0.009 0.001 0.109 0.222** 0.011 0.061 0.025 0.029 0.324*** 
 b30 0.032 0.003 0.037 0.213** 0.126* 0.008 0.053 0.01 0.049 0.302*** 
 b40 0.083 0.037 0.1 0.285*** 0.053 0.005 0.04 0.007 0.052 0.273** 
 b50 0.117* 0.074 0.142* 0.28** 0.013 0 0.01 0 0.071 0.174* 
 b60 0.128* 0.103 0.153* 0.238** 0 0.007 0.001 0.01 0.08 0.077 
 b70 0.126* 0.137* 0.175* 0.201** 0.011 0.016 0.016 0.033 0.074 0.008 
 b80 0.124* 0.174* 0.203** 0.146* 0.074 0.044 0.073 0.093 0.076 0.02 
 b90 0.153* 0.246** 0.228** 0.091 0.21** 0.114* 0.197** 0.203** 0.073 0.189** 
 Ln_min 0.153* 0.162* 0.141* 0.15* 0.032 0.109 0.116* 0.11 0.181* 0.003 
 Ln_max 0.797*** 0.808*** 0.769*** 0.467*** 0.427*** 0.814*** 0.82*** 0.777*** 0.484*** 0.414*** 
 Ln_avg 0.818*** 0.795*** 0.837*** 0.646*** 0.28** 0.815*** 0.784*** 0.816*** 0.641*** 0.261** 
 Ln_std 0.579*** 0.688*** 0.657*** 0.282** 0.558*** 0.424*** 0.538*** 0.515*** 0.193** 0.512*** 
 Ln_p10 0.568*** 0.459*** 0.514*** 0.586*** 0.044 0.406*** 0.3*** 0.357*** 0.468*** 0.01 
 Ln_p20 0.625*** 0.529*** 0.623*** 0.632*** 0.088 0.527*** 0.43*** 0.523*** 0.579*** 0.049 
 Ln_p25 0.649*** 0.561*** 0.662*** 0.647*** 0.108 0.611*** 0.526*** 0.617*** 0.617*** 0.092 
 Ln_p30 0.677*** 0.598*** 0.7*** 0.654*** 0.133* 0.658*** 0.581*** 0.675*** 0.642*** 0.121* 
 Ln_p40 0.737*** 0.678*** 0.769*** 0.66*** 0.191** 0.743*** 0.682*** 0.768*** 0.676*** 0.177* 
 Ln_p50 0.782*** 0.746*** 0.824*** 0.661*** 0.248** 0.79*** 0.743*** 0.818*** 0.683*** 0.22** 
 Ln_p60 0.807*** 0.778*** 0.85*** 0.665*** 0.272** 0.818*** 0.784*** 0.85*** 0.671*** 0.262** 
 Ln_p70 0.828*** 0.844*** 0.865*** 0.61*** 0.354*** 0.837*** 0.858*** 0.86*** 0.591*** 0.367*** 
 Ln_p75 0.824*** 0.85*** 0.86*** 0.592*** 0.371*** 0.831*** 0.862*** 0.853*** 0.565*** 0.391*** 
 Ln_p80 0.82*** 0.853*** 0.853*** 0.568*** 0.392*** 0.824*** 0.862*** 0.847*** 0.548*** 0.406*** 
 Ln_p90 0.813*** 0.857*** 0.847*** 0.534*** 0.427*** 0.826*** 0.868*** 0.842*** 0.524*** 0.435*** 
 Ln_p95 0.82*** 0.864*** 0.846*** 0.519*** 0.449*** 0.823*** 0.857*** 0.829*** 0.514*** 0.434*** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0.048 0.015 0.026 0.168* 0.093 0 0 0 0 0 
 Ln_b30 0.114* 0.064 0.095 0.257** 0.032 0.021 0.002 0.002 0.07 0.098 
 Ln_b40 0.155* 0.103 0.141* 0.289*** 0.012 0.019 0.002 0.003 0.064 0.087 
 Ln_b50 0.159* 0.115* 0.153* 0.257** 0.002 0.02 0.003 0.005 0.055 0.061 
 Ln_b60 0.15* 0.127* 0.156* 0.214** 0.001 0.017 0.005 0.008 0.047 0.035 
 Ln_b70 0.125* 0.139* 0.167* 0.18* 0.018 0.015 0.016 0.027 0.053 0.002 
 Ln_b80 0.119* 0.169* 0.196** 0.139* 0.076 0.044 0.073 0.092 0.074 0.024 
 Ln_b90 0.151* 0.245** 0.225** 0.09 0.209** 0.112* 0.195** 0.201** 0.071 0.189** 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 7.4: Single linear regression of forest biophysical characteristics estimation for lower 

montane forest (n=35) (2/2) 

Response 
Variable 

Predictor 
variables 

ALS-FLS     SfM     

Hdom HL D G N Hdom HL D G N 

Y min 0.125* 0.121* 0.077 0.106 0.01 0.289*** 0.184* 0.181* 0.303*** 0 
 max 0.722*** 0.761*** 0.736*** 0.416*** 0.441*** 0.707*** 0.763*** 0.723*** 0.387*** 0.447*** 
 avg 0.758*** 0.742*** 0.792*** 0.587*** 0.294*** 0.765*** 0.752*** 0.794*** 0.562*** 0.299*** 
 std 0.383*** 0.545*** 0.482*** 0.125* 0.498*** 0.247** 0.403*** 0.279** 0.048 0.396*** 
 p10 0.55*** 0.441*** 0.475*** 0.543*** 0.068 0.514*** 0.424*** 0.508*** 0.481*** 0.099 
 p20 0.577*** 0.487*** 0.572*** 0.559*** 0.121* 0.572*** 0.493*** 0.597*** 0.518*** 0.149* 
 p25 0.593*** 0.512*** 0.609*** 0.563*** 0.146* 0.604*** 0.529*** 0.64*** 0.541*** 0.166* 
 p30 0.615*** 0.54*** 0.645*** 0.572*** 0.169* 0.651*** 0.583*** 0.688*** 0.572*** 0.188** 
 p40 0.669*** 0.618*** 0.719*** 0.584*** 0.227** 0.72*** 0.674*** 0.757*** 0.598*** 0.23** 
 p50 0.717*** 0.687*** 0.784*** 0.602*** 0.272** 0.749*** 0.71*** 0.792*** 0.609*** 0.254** 
 p60 0.747*** 0.724*** 0.815*** 0.609*** 0.293*** 0.779*** 0.767*** 0.822*** 0.593*** 0.298*** 
 p70 0.771*** 0.816*** 0.832*** 0.539*** 0.37*** 0.776*** 0.843*** 0.801*** 0.478*** 0.388*** 
 p75 0.766*** 0.825*** 0.822*** 0.508*** 0.392*** 0.76*** 0.833*** 0.79*** 0.451*** 0.406*** 
 p80 0.754*** 0.826*** 0.809*** 0.478*** 0.41*** 0.752*** 0.829*** 0.781*** 0.432*** 0.419*** 
 p90 0.736*** 0.822*** 0.792*** 0.439*** 0.442*** 0.738*** 0.825*** 0.776*** 0.417*** 0.442*** 
 p95 0.739*** 0.819*** 0.792*** 0.436*** 0.452*** 0.732*** 0.816*** 0.782*** 0.431*** 0.443*** 
 b10 0.047 0.087 0.078 0.005 0.272** 0 0 0 0.023 0.024 
 b20 0.001 0.019 0 0.107 0.169* 0.009 0.075 0.003 0.039 0.101 
 b30 0.011 0.003 0.012 0.167* 0.107 0.011 0.08 0.003 0.043 0.115* 
 b40 0.037 0.004 0.044 0.211** 0.06 0.019 0.094 0.008 0.037 0.152* 
 b50 0.064 0.024 0.076 0.196** 0.025 0.016 0.062 0.008 0.024 0.136* 
 b60 0.075 0.048 0.086 0.156* 0.008 0.008 0 0.009 0.091 0.117* 
 b70 0.073 0.075 0.103 0.127* 0 0.05 0.03 0.048 0.133* 0.054 
 b80 0.081 0.121* 0.142* 0.094 0.034 0.124* 0.133* 0.15* 0.138* 0.008 
 b90 0.127* 0.219** 0.19** 0.066 0.145* 0.259** 0.323*** 0.271** 0.118* 0.17* 
 Ln_min 0.124* 0.12* 0.077 0.105 0.01 0.194** 0.122* 0.131* 0.273** 0.005 
 Ln_max 0.724*** 0.74*** 0.738*** 0.429*** 0.429*** 0.715*** 0.746*** 0.735*** 0.408*** 0.439*** 
 Ln_avg 0.769*** 0.741*** 0.816*** 0.598*** 0.3*** 0.774*** 0.749*** 0.815*** 0.578*** 0.297*** 
 Ln_std 0.478*** 0.603*** 0.591*** 0.21** 0.501*** 0.35*** 0.475*** 0.42*** 0.133* 0.452*** 
 Ln_p10 0.544*** 0.417*** 0.498*** 0.577*** 0.063 0.511*** 0.396*** 0.524*** 0.517*** 0.088 
 Ln_p20 0.593*** 0.482*** 0.611*** 0.604*** 0.121* 0.587*** 0.481*** 0.623*** 0.558*** 0.138* 
 Ln_p25 0.616*** 0.515*** 0.652*** 0.607*** 0.148* 0.625*** 0.525*** 0.67*** 0.58*** 0.157* 
 Ln_p30 0.641*** 0.547*** 0.687*** 0.611*** 0.175* 0.675*** 0.586*** 0.72*** 0.606*** 0.182* 
 Ln_p40 0.694*** 0.627*** 0.756*** 0.61*** 0.234** 0.737*** 0.676*** 0.784*** 0.621*** 0.226** 
 Ln_p50 0.733*** 0.689*** 0.808*** 0.616*** 0.274** 0.756*** 0.704*** 0.811*** 0.627*** 0.247** 
 Ln_p60 0.754*** 0.717*** 0.829*** 0.617*** 0.288*** 0.776*** 0.749*** 0.831*** 0.602*** 0.287*** 
 Ln_p70 0.769*** 0.789*** 0.837*** 0.551*** 0.351*** 0.774*** 0.809*** 0.813*** 0.504*** 0.363*** 
 Ln_p75 0.766*** 0.797*** 0.829*** 0.526*** 0.371*** 0.763*** 0.802*** 0.805*** 0.483*** 0.381*** 
 Ln_p80 0.759*** 0.8*** 0.821*** 0.502*** 0.388*** 0.757*** 0.8*** 0.799*** 0.466*** 0.395*** 
 Ln_p90 0.752*** 0.805*** 0.814*** 0.473*** 0.428*** 0.751*** 0.804*** 0.799*** 0.454*** 0.426*** 
 Ln_p95 0.755*** 0.804*** 0.813*** 0.468*** 0.439*** 0.748*** 0.801*** 0.805*** 0.463*** 0.435*** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0.035 0.005 0.01 0.157* 0.084 0 0 0 0 0 
 Ln_b30 0.08 0.031 0.053 0.219** 0.036 0 0 0 0 0 
 Ln_b40 0.115* 0.059 0.087 0.238** 0.017 0 0 0 0 0 
 Ln_b50 0.112* 0.064 0.094 0.191** 0.006 0 0 0 0 0 
 Ln_b60 0.104 0.074 0.094 0.145* 0.001 0 0 0 0 0 
 Ln_b70 0.076 0.081 0.103 0.116* 0.004 0.028 0.007 0.01 0.041 0.036 
 Ln_b80 0.078 0.118* 0.139* 0.09 0.038 0.106 0.119* 0.138* 0.112* 0.015 
 Ln_b90 0.126* 0.218** 0.188** 0.066 0.144* 0.252** 0.314*** 0.261** 0.112* 0.165* 
Ln_Y min 0.09 0.088 0.063 0.085 0.007 0.254** 0.174* 0.176* 0.292*** 0.002 
 max 0.772*** 0.807*** 0.754*** 0.439*** 0.448*** 0.749*** 0.796*** 0.737*** 0.407*** 0.465*** 
 avg 0.771*** 0.767*** 0.792*** 0.603*** 0.275** 0.777*** 0.775*** 0.795*** 0.588*** 0.287*** 
 std 0.44*** 0.581*** 0.51*** 0.158* 0.589*** 0.28** 0.411*** 0.297*** 0.058 0.496*** 
 p10 0.522*** 0.438*** 0.462*** 0.515*** 0.045 0.502*** 0.435*** 0.497*** 0.49*** 0.074 
 p20 0.567*** 0.501*** 0.561*** 0.553*** 0.09 0.575*** 0.517*** 0.591*** 0.538*** 0.12* 
 p25 0.588*** 0.531*** 0.599*** 0.563*** 0.113* 0.61*** 0.556*** 0.634*** 0.565*** 0.137* 
 p30 0.615*** 0.562*** 0.636*** 0.575*** 0.134* 0.661*** 0.612*** 0.685*** 0.598*** 0.159* 
 p40 0.677*** 0.646*** 0.714*** 0.595*** 0.194** 0.73*** 0.701*** 0.755*** 0.624*** 0.208** 
 p50 0.733*** 0.719*** 0.783*** 0.619*** 0.244** 0.758*** 0.736*** 0.789*** 0.636*** 0.232** 
 p60 0.767*** 0.758*** 0.817*** 0.633*** 0.268** 0.794*** 0.793*** 0.824*** 0.624*** 0.284*** 
 p70 0.799*** 0.844*** 0.841*** 0.57*** 0.374*** 0.798*** 0.858*** 0.81*** 0.509*** 0.411*** 
 p75 0.797*** 0.853*** 0.834*** 0.541*** 0.402*** 0.785*** 0.85*** 0.8*** 0.483*** 0.433*** 
 p80 0.787*** 0.853*** 0.822*** 0.511*** 0.427*** 0.777*** 0.846*** 0.792*** 0.463*** 0.448*** 
 p90 0.77*** 0.849*** 0.806*** 0.467*** 0.466*** 0.765*** 0.843*** 0.787*** 0.445*** 0.473*** 
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p95 0.774*** 0.849*** 0.807*** 0.463*** 0.475*** 0.761*** 0.838*** 0.792*** 0.453*** 0.47*** 

 b10 0.077 0.115* 0.098 0 0.326*** 0 0 0 0.014 0.022 
 b20 0 0.022 0.001 0.08 0.26** 0.012 0.061 0.005 0.034 0.198** 
 b30 0.005 0.003 0.008 0.145* 0.181* 0.015 0.066 0.005 0.036 0.217** 
 b40 0.027 0.004 0.037 0.197** 0.106 0.028 0.087 0.013 0.027 0.256** 
 b50 0.053 0.024 0.071 0.204** 0.044 0.029 0.068 0.013 0.016 0.201** 
 b60 0.063 0.044 0.082 0.173* 0.014 0.003 0 0.007 0.108 0.136* 
 b70 0.065 0.07 0.101 0.146* 0 0.049 0.032 0.053 0.188** 0.055 
 b80 0.076 0.113* 0.142* 0.114* 0.037 0.118* 0.13* 0.153* 0.175* 0.009 
 b90 0.117* 0.197** 0.188** 0.073 0.172* 0.237** 0.295*** 0.265** 0.133* 0.186** 
 Ln_min 0.09 0.087 0.062 0.085 0.007 0.171* 0.116* 0.129* 0.273** 0.012 
 Ln_max 0.797*** 0.808*** 0.769*** 0.467*** 0.427*** 0.779*** 0.802*** 0.761*** 0.443*** 0.445*** 
 Ln_avg 0.817*** 0.796*** 0.837*** 0.647*** 0.28** 0.821*** 0.801*** 0.838*** 0.638*** 0.285*** 
 Ln_std 0.552*** 0.661*** 0.626*** 0.258** 0.555*** 0.397*** 0.504*** 0.441*** 0.147* 0.504*** 
 Ln_p10 0.548*** 0.443*** 0.5*** 0.58*** 0.039 0.52*** 0.43*** 0.526*** 0.552*** 0.059 
 Ln_p20 0.614*** 0.526*** 0.618*** 0.629*** 0.087 0.615*** 0.529*** 0.633*** 0.609*** 0.105 
 Ln_p25 0.643*** 0.563*** 0.659*** 0.638*** 0.111 0.658*** 0.577*** 0.682*** 0.638*** 0.125* 
 Ln_p30 0.672*** 0.598*** 0.696*** 0.645*** 0.136* 0.714*** 0.642*** 0.736*** 0.667*** 0.152* 
 Ln_p40 0.733*** 0.682*** 0.769*** 0.653*** 0.198** 0.779*** 0.731*** 0.803*** 0.685*** 0.203** 
 Ln_p50 0.781*** 0.748*** 0.828*** 0.667*** 0.246** 0.799*** 0.759*** 0.831*** 0.691*** 0.225** 
 Ln_p60 0.806*** 0.778*** 0.852*** 0.676*** 0.264** 0.826*** 0.805*** 0.855*** 0.669*** 0.273** 
 Ln_p70 0.826*** 0.846*** 0.866*** 0.615*** 0.35*** 0.828*** 0.857*** 0.842*** 0.567*** 0.377*** 
 Ln_p75 0.827*** 0.854*** 0.86*** 0.589*** 0.374*** 0.819*** 0.852*** 0.835*** 0.544*** 0.396*** 
 Ln_p80 0.821*** 0.856*** 0.853*** 0.564*** 0.396*** 0.813*** 0.849*** 0.83*** 0.526*** 0.411*** 
 Ln_p90 0.814*** 0.862*** 0.845*** 0.524*** 0.439*** 0.807*** 0.853*** 0.828*** 0.504*** 0.443*** 
 Ln_p95 0.817*** 0.861*** 0.844*** 0.517*** 0.448*** 0.803*** 0.851*** 0.831*** 0.505*** 0.447*** 
 Ln_b10 0 0 0 0 0 0 0 0 0 0 
 Ln_b20 0.02 0.002 0.007 0.125* 0.128* 0 0 0 0 0 
 Ln_b30 0.058 0.025 0.046 0.191** 0.064 0 0 0 0 0 
 Ln_b40 0.091 0.052 0.079 0.22** 0.034 0 0 0 0 0 
 Ln_b50 0.096 0.061 0.09 0.195** 0.014 0 0 0 0 0 
 Ln_b60 0.089 0.067 0.091 0.157* 0.002 0 0 0 0 0 
 Ln_b70 0.07 0.077 0.102 0.133* 0.002 0.033 0.011 0.014 0.07 0.041 
 Ln_b80 0.074 0.112* 0.138* 0.109 0.04 0.102 0.116* 0.138* 0.142* 0.016 
 Ln_b90 0.116* 0.197** 0.186** 0.073 0.171* 0.229** 0.285*** 0.253** 0.126* 0.181* 

Hdom=dominant height; HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 
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Appendix 7.5: Single linear regression of forest biophysical characteristics estimation for all 

plots sample (n=45) for threshold >20cm DBH. 

  ALS-FLS    SfM    
Response  
Variable 

Predictor  
variables HL D G N HL D G N 

Y min 0.128* 0.117* 0.066 0.002 0.284*** 0.192** 0.383*** 0.242*** 
 max 0.773*** 0.745*** 0.598*** 0.181** 0.773*** 0.723*** 0.573*** 0.16** 
 avg 0.744*** 0.685*** 0.7*** 0.247*** 0.731*** 0.662*** 0.668*** 0.226** 
 std 0.625*** 0.611*** 0.363*** 0.074 0.536*** 0.459*** 0.205** 0.019 
 p10 0.548*** 0.448*** 0.61*** 0.265*** 0.52*** 0.484*** 0.59*** 0.237*** 
 p20 0.578*** 0.53*** 0.65*** 0.274*** 0.574*** 0.55*** 0.623*** 0.23*** 
 p25 0.594*** 0.56*** 0.663*** 0.27*** 0.596*** 0.568*** 0.639*** 0.235*** 
 p30 0.612*** 0.581*** 0.679*** 0.272*** 0.629*** 0.591*** 0.656*** 0.24*** 
 p40 0.66*** 0.633*** 0.695*** 0.258*** 0.684*** 0.627*** 0.679*** 0.241*** 
 p50 0.701*** 0.664*** 0.708*** 0.257*** 0.708*** 0.645*** 0.689*** 0.24*** 
 p60 0.721*** 0.681*** 0.711*** 0.253*** 0.744*** 0.671*** 0.686*** 0.229*** 
 p70 0.785*** 0.72*** 0.68*** 0.22** 0.806*** 0.705*** 0.637*** 0.193** 
 p75 0.797*** 0.726*** 0.664*** 0.21** 0.803*** 0.704*** 0.624*** 0.186** 
 p80 0.803*** 0.728*** 0.647*** 0.2** 0.802*** 0.701*** 0.617*** 0.183** 
 p90 0.802*** 0.728*** 0.627*** 0.191** 0.799*** 0.708*** 0.61*** 0.18** 
 p95 0.795*** 0.739*** 0.625*** 0.19** 0.795*** 0.721*** 0.613*** 0.178** 
 b10 0.095* 0.115* 0.007 0 0.001 0 0.011 0.009 
 b20 0.008 0.001 0.055 0.018 0.054 0.025 0.014 0.041 
 b30 0.024 0.014 0.128* 0.086 0.055 0.027 0.016 0.045 
 b40 0.059 0.032 0.167** 0.124* 0.014 0.01 0.028 0.042 
 b50 0.075 0.043 0.186** 0.154** 0.001 0.003 0.035 0.044 
 b60 0.088* 0.047 0.175** 0.14* 0.018 0.002 0.089* 0.116* 
 b70 0.123* 0.079 0.162** 0.077 0.07 0.026 0.116* 0.116* 
 b80 0.165** 0.113* 0.168** 0.049 0.188** 0.101* 0.182** 0.089* 
 b90 0.281*** 0.219** 0.185** 0.028 0.386*** 0.272*** 0.318*** 0.095* 
 Ln_min 0.128* 0.117* 0.067 0.002 0.215** 0.14* 0.323*** 0.233*** 
 Ln_max 0.704*** 0.655*** 0.539*** 0.215** 0.687*** 0.613*** 0.504*** 0.189** 
 Ln_avg 0.679*** 0.597*** 0.597*** 0.26*** 0.64*** 0.539*** 0.542*** 0.236*** 
 Ln_std 0.601*** 0.565*** 0.4*** 0.142* 0.574*** 0.526*** 0.319*** 0.07 
 Ln_p10 0.529*** 0.436*** 0.543*** 0.258*** 0.456*** 0.393*** 0.497*** 0.252*** 
 Ln_p20 0.547*** 0.487*** 0.577*** 0.285*** 0.508*** 0.446*** 0.52*** 0.249*** 
 Ln_p25 0.555*** 0.5*** 0.583*** 0.287*** 0.53*** 0.46*** 0.529*** 0.251*** 
 Ln_p30 0.567*** 0.511*** 0.591*** 0.288*** 0.56*** 0.48*** 0.538*** 0.253*** 
 Ln_p40 0.605*** 0.546*** 0.593*** 0.274*** 0.604*** 0.51*** 0.549*** 0.248*** 
 Ln_p50 0.634*** 0.566*** 0.594*** 0.269*** 0.62*** 0.523*** 0.554*** 0.246*** 
 Ln_p60 0.649*** 0.577*** 0.595*** 0.266*** 0.646*** 0.543*** 0.549*** 0.235*** 
 Ln_p70 0.699*** 0.608*** 0.574*** 0.237*** 0.688*** 0.568*** 0.522*** 0.21** 
 Ln_p75 0.708*** 0.614*** 0.565*** 0.23*** 0.688*** 0.572*** 0.518*** 0.206** 
 Ln_p80 0.713*** 0.619*** 0.558*** 0.224** 0.691*** 0.575*** 0.518*** 0.206** 
 Ln_p90 0.721*** 0.631*** 0.555*** 0.222** 0.691*** 0.583*** 0.518*** 0.208** 
 Ln_p95 0.719*** 0.646*** 0.561*** 0.225** 0.693*** 0.597*** 0.524*** 0.205** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.095* 0.053 0.188** 0.105* 0 0 0 0 
 Ln_b40 0.12* 0.063 0.211** 0.146* 0 0 0 0 
 Ln_b50 0.111* 0.065 0.203** 0.16** 0 0 0 0 
 Ln_b60 0.108* 0.062 0.168** 0.123* 0 0 0 0 
 Ln_b70 0.121* 0.09* 0.151** 0.063 0.014 0 0.022 0.069 
 Ln_b80 0.161** 0.119* 0.165** 0.044 0.164** 0.102* 0.16** 0.068 
 Ln_b90 0.28*** 0.218** 0.183** 0.027 0.375*** 0.263*** 0.312*** 0.092* 
Ln_Y min 0.111* 0.11* 0.048 0.008 0.272*** 0.178** 0.292*** 0.244*** 
 max 0.785*** 0.732*** 0.596*** 0.268*** 0.782*** 0.705*** 0.55*** 0.235*** 
 avg 0.751*** 0.667*** 0.622*** 0.32*** 0.736*** 0.637*** 0.587*** 0.299*** 
 std 0.626*** 0.591*** 0.407*** 0.144* 0.527*** 0.458*** 0.248*** 0.054 
 p10 0.55*** 0.442*** 0.486*** 0.293*** 0.526*** 0.46*** 0.483*** 0.284*** 
 p20 0.591*** 0.52*** 0.549*** 0.323*** 0.586*** 0.524*** 0.525*** 0.293*** 
 p25 0.607*** 0.546*** 0.565*** 0.325*** 0.609*** 0.541*** 0.541*** 0.3*** 
 p30 0.624*** 0.565*** 0.578*** 0.328*** 0.642*** 0.565*** 0.559*** 0.307*** 
 p40 0.672*** 0.614*** 0.599*** 0.323*** 0.693*** 0.601*** 0.581*** 0.31*** 
 p50 0.712*** 0.645*** 0.619*** 0.327*** 0.716*** 0.62*** 0.594*** 0.313*** 
 p60 0.732*** 0.66*** 0.627*** 0.328*** 0.751*** 0.647*** 0.601*** 0.306*** 
 p70 0.79*** 0.698*** 0.619*** 0.299*** 0.805*** 0.682*** 0.581*** 0.27*** 
 p75 0.801*** 0.705*** 0.613*** 0.291*** 0.802*** 0.681*** 0.574*** 0.263*** 
 p80 0.806*** 0.708*** 0.606*** 0.283*** 0.8*** 0.68*** 0.57*** 0.26*** 
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p90 0.803*** 0.709*** 0.596*** 0.272*** 0.799*** 0.687*** 0.571*** 0.257*** 

 p95 0.795*** 0.72*** 0.599*** 0.273*** 0.797*** 0.7*** 0.573*** 0.255*** 
 b10 0.109* 0.126* 0.065 0.017 0.004 0 0.001 0.004 
 b20 0.012 0.001 0.005 0.005 0.038 0.024 0.001 0.028 
 b30 0.034 0.013 0.054 0.065 0.039 0.026 0.001 0.029 
 b40 0.074 0.031 0.097* 0.106* 0.006 0.012 0.002 0.021 
 b50 0.086 0.04 0.128* 0.144* 0 0.005 0.005 0.023 
 b60 0.091* 0.042 0.129* 0.14* 0.021 0.001 0.061 0.116* 
 b70 0.122* 0.07 0.12* 0.095* 0.077 0.022 0.125* 0.168** 
 b80 0.156** 0.102* 0.128* 0.077 0.188** 0.093* 0.167** 0.135* 
 b90 0.257*** 0.209** 0.147** 0.048 0.358*** 0.264*** 0.25*** 0.118* 
 Ln_min 0.111* 0.11* 0.048 0.008 0.218** 0.128* 0.264*** 0.247*** 
 Ln_max 0.737*** 0.655*** 0.615*** 0.328*** 0.718*** 0.607*** 0.555*** 0.286*** 
 Ln_avg 0.714*** 0.59*** 0.62*** 0.364*** 0.675*** 0.527*** 0.564*** 0.337*** 
 Ln_std 0.622*** 0.556*** 0.498*** 0.249*** 0.584*** 0.528*** 0.384*** 0.144* 
 Ln_p10 0.563*** 0.435*** 0.501*** 0.318*** 0.491*** 0.381*** 0.475*** 0.325*** 
 Ln_p20 0.59*** 0.485*** 0.565*** 0.365*** 0.549*** 0.433*** 0.514*** 0.337*** 
 Ln_p25 0.597*** 0.496*** 0.577*** 0.372*** 0.571*** 0.448*** 0.528*** 0.344*** 
 Ln_p30 0.608*** 0.506*** 0.586*** 0.375*** 0.601*** 0.467*** 0.541*** 0.347*** 
 Ln_p40 0.645*** 0.539*** 0.596*** 0.366*** 0.643*** 0.497*** 0.556*** 0.346*** 
 Ln_p50 0.673*** 0.558*** 0.609*** 0.369*** 0.657*** 0.511*** 0.566*** 0.348*** 
 Ln_p60 0.687*** 0.568*** 0.616*** 0.372*** 0.682*** 0.531*** 0.571*** 0.341*** 
 Ln_p70 0.732*** 0.598*** 0.61*** 0.347*** 0.719*** 0.557*** 0.561*** 0.314*** 
 Ln_p75 0.74*** 0.605*** 0.609*** 0.341*** 0.719*** 0.562*** 0.56*** 0.311*** 
 Ln_p80 0.744*** 0.611*** 0.607*** 0.337*** 0.72*** 0.566*** 0.563*** 0.313*** 
 Ln_p90 0.75*** 0.624*** 0.611*** 0.334*** 0.72*** 0.575*** 0.567*** 0.312*** 
 Ln_p95 0.745*** 0.64*** 0.622*** 0.339*** 0.723*** 0.588*** 0.569*** 0.308*** 
 Ln_b10 0 0 0 0 0 0 0 0 
 Ln_b20 0 0 0 0 0 0 0 0 
 Ln_b30 0.098* 0.052 0.106* 0.095* 0 0 0 0 
 Ln_b40 0.125* 0.063 0.144* 0.138* 0 0 0 0 
 Ln_b50 0.116* 0.063 0.15** 0.153** 0 0 0 0 
 Ln_b60 0.109* 0.058 0.131* 0.127* 0 0 0 0 
 Ln_b70 0.121* 0.081 0.116* 0.083 0.02 0 0.041 0.088* 
 Ln_b80 0.153** 0.108* 0.125* 0.071 0.163** 0.094* 0.143* 0.105* 
 Ln_b90 0.256*** 0.208** 0.146* 0.047 0.346*** 0.255*** 0.24*** 0.113* 

HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 7.6: Single linear regression of forest biophysical characteristics estimation for all 

plots sample (n=45) for threshold >30cm DBH. 

  ALS-FLS    SfM    
Response  
Variable 

Predictor  
variables HL D G N HL D G N 

Y min 0.128* 0.031 0.102 0.113* 0.201** 0.08 0.305*** 0.276*** 
 max 0.66*** 0.433*** 0.58*** 0.414*** 0.664*** 0.405*** 0.563*** 0.412*** 
 avg 0.595*** 0.403*** 0.688*** 0.525*** 0.588*** 0.383*** 0.662*** 0.498*** 
 std 0.483*** 0.385*** 0.296*** 0.17* 0.433*** 0.286*** 0.14* 0.067 
 p10 0.403*** 0.192** 0.542*** 0.471*** 0.352*** 0.227** 0.54*** 0.435*** 
 p20 0.401*** 0.246** 0.582*** 0.489*** 0.398*** 0.282*** 0.587*** 0.447*** 
 p25 0.413*** 0.275*** 0.604*** 0.494*** 0.422*** 0.297*** 0.609*** 0.463*** 
 p30 0.432*** 0.302*** 0.628*** 0.501*** 0.459*** 0.313*** 0.636*** 0.489*** 
 p40 0.485*** 0.358*** 0.667*** 0.514*** 0.526*** 0.351*** 0.673*** 0.516*** 
 p50 0.537*** 0.391*** 0.695*** 0.532*** 0.558*** 0.379*** 0.692*** 0.525*** 
 p60 0.563*** 0.409*** 0.706*** 0.536*** 0.607*** 0.408*** 0.695*** 0.521*** 
 p70 0.652*** 0.458*** 0.681*** 0.498*** 0.695*** 0.439*** 0.636*** 0.461*** 
 p75 0.67*** 0.463*** 0.663*** 0.483*** 0.692*** 0.437*** 0.618*** 0.446*** 
 p80 0.68*** 0.468*** 0.641*** 0.463*** 0.694*** 0.442*** 0.605*** 0.431*** 
 p90 0.684*** 0.467*** 0.61*** 0.431*** 0.693*** 0.449*** 0.592*** 0.414*** 
 p95 0.677*** 0.469*** 0.605*** 0.427*** 0.684*** 0.453*** 0.6*** 0.425*** 
 b10 0.026 0.022 0.011 0.018 0 0.011 0.026 0.019 
 b20 0.017 0 0.126* 0.149* 0.063 0.015 0.023 0.045 
 b30 0.013 0.003 0.151* 0.186** 0.062 0.016 0.028 0.053 
 b40 0.031 0.012 0.169* 0.204** 0.015 0.007 0.06 0.09 
 b50 0.045 0.026 0.181** 0.216** 0.001 0.002 0.078 0.112* 
 b60 0.068 0.049 0.168* 0.171* 0.014 0.012 0.108* 0.125* 
 b70 0.112* 0.1 0.19** 0.156* 0.048 0.043 0.106* 0.082 
 b80 0.169* 0.159* 0.221** 0.159* 0.163* 0.112* 0.176** 0.119* 
 b90 0.255** 0.188** 0.193** 0.124* 0.311*** 0.221** 0.271** 0.157* 
 Ln_min 0.127* 0.031 0.102 0.114* 0.139* 0.074 0.265** 0.24** 
 Ln_max 0.687*** 0.419*** 0.554*** 0.418*** 0.682*** 0.38*** 0.534*** 0.42*** 
 Ln_avg 0.593*** 0.369*** 0.613*** 0.503*** 0.584*** 0.339*** 0.582*** 0.478*** 
 Ln_std 0.53*** 0.419*** 0.356*** 0.238** 0.482*** 0.356*** 0.252** 0.154* 
 Ln_p10 0.381*** 0.17* 0.481*** 0.435*** 0.317*** 0.186** 0.481*** 0.424*** 
 Ln_p20 0.379*** 0.216** 0.522*** 0.468*** 0.374*** 0.23** 0.521*** 0.442*** 
 Ln_p25 0.393*** 0.242** 0.544*** 0.481*** 0.405*** 0.245** 0.54*** 0.457*** 
 Ln_p30 0.414*** 0.266** 0.565*** 0.489*** 0.448*** 0.264** 0.56*** 0.477*** 
 Ln_p40 0.475*** 0.317*** 0.596*** 0.501*** 0.516*** 0.3*** 0.584*** 0.492*** 
 Ln_p50 0.528*** 0.348*** 0.613*** 0.511*** 0.543*** 0.325*** 0.598*** 0.498*** 
 Ln_p60 0.554*** 0.366*** 0.622*** 0.513*** 0.591*** 0.354*** 0.598*** 0.49*** 
 Ln_p70 0.635*** 0.409*** 0.6*** 0.478*** 0.665*** 0.382*** 0.556*** 0.442*** 
 Ln_p75 0.653*** 0.418*** 0.59*** 0.467*** 0.667*** 0.385*** 0.547*** 0.433*** 
 Ln_p80 0.667*** 0.428*** 0.579*** 0.454*** 0.678*** 0.398*** 0.546*** 0.426*** 
 Ln_p90 0.688*** 0.44*** 0.572*** 0.438*** 0.689*** 0.41*** 0.546*** 0.418*** 
 Ln_p95 0.691*** 0.454*** 0.577*** 0.438*** 0.687*** 0.416*** 0.557*** 0.429*** 
 Ln_b10 0.035 0.041 0.002 0.003 0 0 0 0 
 Ln_b20 0.068 0.015 0.167* 0.165* 0 0 0 0 
 Ln_b30 0.071 0.025 0.188** 0.2** 0 0 0 0 
 Ln_b40 0.075 0.025 0.175* 0.193** 0 0 0 0 
 Ln_b50 0.066 0.022 0.16* 0.187** 0 0 0 0 
 Ln_b60 0.076 0.037 0.137* 0.134* 0 0 0 0 
 Ln_b70 0.099 0.083 0.163* 0.131* 0.006 0.004 0.002 0.002 
 Ln_b80 0.158* 0.15* 0.213** 0.153* 0.132* 0.089 0.15* 0.102 
 Ln_b90 0.252** 0.185** 0.189** 0.121* 0.3*** 0.207** 0.267** 0.158* 
Ln_Y min 0.116* 0.035 0.096 0.097 0.197** 0.079 0.216** 0.212** 
 max 0.7*** 0.436*** 0.584*** 0.441*** 0.701*** 0.406*** 0.569*** 0.439*** 
 avg 0.621*** 0.404*** 0.64*** 0.515*** 0.613*** 0.382*** 0.606*** 0.487*** 
 std 0.504*** 0.394*** 0.361*** 0.219** 0.445*** 0.295*** 0.205** 0.1 
 p10 0.417*** 0.19** 0.438*** 0.404*** 0.368*** 0.223** 0.449*** 0.4*** 
 p20 0.423*** 0.245** 0.503*** 0.449*** 0.421*** 0.276*** 0.506*** 0.431*** 
 p25 0.435*** 0.274*** 0.53*** 0.464*** 0.446*** 0.291*** 0.528*** 0.447*** 
 p30 0.454*** 0.3*** 0.556*** 0.477*** 0.485*** 0.309*** 0.556*** 0.47*** 
 p40 0.511*** 0.356*** 0.607*** 0.502*** 0.552*** 0.348*** 0.595*** 0.493*** 
 p50 0.565*** 0.391*** 0.642*** 0.523*** 0.584*** 0.377*** 0.619*** 0.504*** 
 p60 0.592*** 0.41*** 0.655*** 0.527*** 0.635*** 0.407*** 0.637*** 0.507*** 
 p70 0.679*** 0.46*** 0.657*** 0.503*** 0.718*** 0.44*** 0.613*** 0.464*** 
 p75 0.697*** 0.466*** 0.651*** 0.493*** 0.715*** 0.439*** 0.602*** 0.453*** 
 p80 0.707*** 0.472*** 0.638*** 0.477*** 0.717*** 0.445*** 0.594*** 0.443*** 
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p90 0.71*** 0.472*** 0.612*** 0.45*** 0.717*** 0.452*** 0.59*** 0.434*** 

 p95 0.703*** 0.475*** 0.609*** 0.446*** 0.711*** 0.456*** 0.599*** 0.443*** 
 b10 0.034 0.029 0.002 0 0.001 0.01 0.01 0.005 
 b20 0.025 0 0.066 0.108* 0.049 0.017 0.009 0.035 
 b30 0.019 0.002 0.106* 0.156* 0.049 0.017 0.011 0.04 
 b40 0.037 0.012 0.146* 0.189** 0.01 0.01 0.035 0.083 
 b50 0.049 0.028 0.173* 0.205** 0.001 0.002 0.052 0.1 
 b60 0.067 0.053 0.16* 0.159* 0.013 0.014 0.089 0.105 
 b70 0.112* 0.104 0.175* 0.139* 0.049 0.044 0.085 0.07 
 b80 0.166* 0.165* 0.195** 0.127* 0.164* 0.114* 0.133* 0.084 
 b90 0.245** 0.199** 0.191** 0.113* 0.292*** 0.225** 0.227** 0.132* 
 Ln_min 0.116* 0.034 0.096 0.098 0.14* 0.072 0.204** 0.198** 
 Ln_max 0.749*** 0.425*** 0.615*** 0.482*** 0.741*** 0.385*** 0.6*** 0.488*** 
 Ln_avg 0.643*** 0.376*** 0.65*** 0.545*** 0.633*** 0.343*** 0.614*** 0.522*** 
 Ln_std 0.57*** 0.435*** 0.469*** 0.316*** 0.518*** 0.368*** 0.339*** 0.205** 
 Ln_p10 0.423*** 0.17* 0.434*** 0.415*** 0.349*** 0.185** 0.456*** 0.436*** 
 Ln_p20 0.422*** 0.218** 0.507*** 0.475*** 0.415*** 0.228** 0.513*** 0.474*** 
 Ln_p25 0.436*** 0.245** 0.54*** 0.498*** 0.448*** 0.244** 0.536*** 0.491*** 
 Ln_p30 0.457*** 0.269** 0.569*** 0.515*** 0.494*** 0.264** 0.564*** 0.512*** 
 Ln_p40 0.521*** 0.322*** 0.618*** 0.54*** 0.564*** 0.302*** 0.597*** 0.527*** 
 Ln_p50 0.577*** 0.355*** 0.65*** 0.557*** 0.593*** 0.329*** 0.618*** 0.535*** 
 Ln_p60 0.605*** 0.374*** 0.662*** 0.56*** 0.643*** 0.358*** 0.632*** 0.533*** 
 Ln_p70 0.684*** 0.418*** 0.662*** 0.534*** 0.714*** 0.389*** 0.614*** 0.495*** 
 Ln_p75 0.703*** 0.428*** 0.659*** 0.526*** 0.717*** 0.393*** 0.611*** 0.491*** 
 Ln_p80 0.718*** 0.439*** 0.653*** 0.514*** 0.728*** 0.407*** 0.612*** 0.485*** 
 Ln_p90 0.738*** 0.451*** 0.643*** 0.497*** 0.74*** 0.419*** 0.615*** 0.483*** 
 Ln_p95 0.741*** 0.467*** 0.648*** 0.497*** 0.741*** 0.424*** 0.624*** 0.49*** 
 Ln_b10 0.046 0.053 0.024 0.01 0 0 0 0 
 Ln_b20 0.075 0.013 0.09 0.105 0 0 0 0 
 Ln_b30 0.075 0.025 0.134* 0.152* 0 0 0 0 
 Ln_b40 0.075 0.026 0.14* 0.159* 0 0 0 0 
 Ln_b50 0.067 0.023 0.134* 0.157* 0 0 0 0 
 Ln_b60 0.073 0.039 0.119* 0.118* 0 0 0 0 
 Ln_b70 0.099 0.086 0.145* 0.114* 0.009 0.006 0 0.002 
 Ln_b80 0.157* 0.156* 0.185** 0.119* 0.133* 0.09 0.108* 0.068 
 Ln_b90 0.242** 0.196** 0.187** 0.111* 0.28*** 0.211** 0.219** 0.13* 

HL=Lorey’s mean height; G=basal area; D=mean diameter; N=tree density. 

*p<0.05; **p<0.01; ***p<0.001. 
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Appendix 7.7: Variable importance in Random Forest analysis. 

ALS-All     ALS-FLS     

Basal Area DBH Hdom Hlorey Density Basal Area DBH Hdom Hlorey Density 

LN_STD(100) LN_P75(100) LN_MAX(100) P80(100) LN_STD(100) LN_STD(100) LN_P90(100) LN_P80(100) LN_P90(100) STD(100) 

STD(94) LN_P80(91.7) LN_P95(72.2) LN_P95(98.5) STD(60.7) STD(82) P75(89.1) LN_P75(81.2) P95(94.6) LN_STD(71) 

LN_MIN(23.7) P80(89.5) P75(68.1) P95(92.8) P50(53.3) LN_P95(9.8) LN_P80(88.7) LN_AVG(80.8) LN_P95(92) P75(59.8) 

LN_P90(14.5) P75(86.6) LN_P80(67.5) LN_P80(91.9) P90(44.7) MAX(5.4) LN_P75(85.3) P70(80.6) LN_P80(80.9) AVG(46.1) 

P90(13.6) P90(85.3) LN_P50(64) LN_P75(75.1) LN_P70(9.9) P95(3) LN_STD(74.2) LN_P70(76) P80(80.1) LN_P75(44) 

LN_P10(5.4) LN_P90(82.6) LN_P60(61.8) P75(70.3) LN_AVG(4.6)  P90(71.9) P75(71.2) P90(77.1) LN_P90(31.5) 

 LN_P95(68.3) LN_P90(59.9) P90(69.8)   P80(65.1) LN_MAX(70.1) LN_P75(72.2) LN_P60(31.4) 

 STD(65.1) P70(58.8) LN_P90(63.5)   LN_P95(55.9) MAX(63.2) P75(72.1) P90(24.4) 

 LN_STD(55.5) P80(56.8) P70(38)   STD(54.5) P80(62.8) LN_P70(65.2) P70(20.7) 

 P95(41) LN_P70(55.6) STD(30.9)   P95(53.2) LN_P60(57.4) P70(49.1) P50(10.8) 

 LN_P70(38.5) MAX(53.7) LN_P70(26.3)   P70(34) P50(55.6) P60(42.4) LN_AVG(2.5) 

 LN_P50(31.7) LN_P75(51.2) LN_STD(25.4)   P60(28.5) LN_P90(49.2) LN_P60(31.1)  

 P25(25.9) P95(50.4) AVG(22.9)   LN_P70(22.7) STD(48.9) LN_AVG(28)  

 P70(23.1) LN_STD(46.9) P60(21.7)   LN_P60(20.7) AVG(47.3) P50(27.7)  

 LN_MAX(21.7) LN_AVG(45.3) LN_P50(20.2)   P50(20.5) LN_P50(47.2) AVG(26)  

 LN_P25(21.1) AVG(44.5) LN_AVG(15)   LN_P25(19.9) LN_P95(46.1) LN_MAX(25.6)  

 P50(20.9) P60(42) P50(14.2)   P30(18.7) P95(46.1) STD(18.7)  

 P60(17.8) P50(40.2) LN_P30(4.7)   MAX(17.8) P90(40.9) LN_P50(14.4)  

 AVG(17.3) STD(38) MAX(4.3)   P20(16.2) LN_STD(38.2) LN_STD(11.7)  

 MAX(17.1) P90(34.9) LN_MAX(4)   LN_P20(14.8) P60(35.7) MAX(10.6)  

 LN_AVG(14.4) P40(7.9) LN_P60(3.2)   LN_AVG(14.2) LN_P30(16.7) LN_P30(3.1)  

 LN_P60(10.9) MIN(5.3)    LN_P30(13.8) MIN(8.4) MIN(1.3)  

 P40(10.2) LN_P30(2.4)    P25(12.9) LN_MIN(7.4)   

 LN_P30(10.1) P10(2.1)    LN_P50(12.3) P25(7.1)   

 P30(10.1)     LN_MAX(10.1) P30(6)   

 LN_P40(5.6)     AVG(10) P20(5.1)   

 P20(2.5)     LN_P40(6.8) P10(0.9)   

 MIN(0.7)     P40(6.6) P40(0.8)   

 LN_P20(0.5)     LN_MIN(1.6)    

      P10(0.2)    

Note: All plots sample (n=45). The variables importance are sorted from highest to lowest. The value in bracket 

gives the percentage value of the variable importance. 
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ALS-FS     SfM     

Basal Area DBH Hdom Hlorey Density Basal Area DBH Hdom Hlorey Density 

STD(100) LN_P80(100) LN_AVG(100) LN_P80(100) LN_STD(100) STD(100) P70(100) LN_AVG(100) LN_P90(100) MIN(100) 

LN_STD(89.4) LN_P75(99.9) AVG(90) LN_P90(73.9) STD(51.2) LN_MIN(51.9) P75(92.5) P60(78.4) LN_P95(91.8) LN_MIN(74) 

P20(82.7) P75(97.4) P70(75) LN_P75(71.7) P60(29.5)  LN_P70(82.8) LN_P95(77.4) P95(91.7)  

LN_P20(60.4) LN_P70(95.9) LN_P60(66.1) P75(68.7) LN_P70(16.5)  MAX(79.6) LN_MAX(75.9) LN_P70(84.7)  

P95(25) P70(92.2) LN_P50(53.6) P80(64.8) LN_P95(9.7)  LN_MAX(78.8) AVG(67.7) P80(81)  

MAX(8.5) P80(74.2) LN_P70(53.5) AVG(58) LN_AVG(5.9)  LN_P80(69.1) LN_P70(65.4) P70(79.6)  

 STD(64.2) LN_P80(52.3) LN_P95(57.6)   P60(62.3) MAX(59.8) P90(78.9)  

 LN_STD(55.9) LN_P75(48.5) P90(56.7)   LN_P60(59.9) LN_P60(58.4) P75(74.8)  

 P95(50.9) P75(43.2) P70(52.8)   LN_P75(59.7) P70(58.2) P60(74.8)  

 LN_P95(50.5) P60(42.9) LN_P70(49.7)   P80(51.7) LN_P75(57.7) LN_P75(72.5)  

 LN_P90(46.1) LN_P95(41.2) LN_AVG(47.3)   LN_P90(42) LN_P80(57.6) LN_P80(72.3)  

 LN_AVG(39.4) MAX(40.7) MAX(43.5)   P90(41.5) LN_P40(54.1) LN_P60(56.4)  

 P90(38.5) P80(39.6) P95(41.5)   P95(41.3) P95(52.9) LN_AVG(46.3)  

 P50(34) P90(37.6) P50(29.9)   AVG(37.1) P75(48.2) LN_MAX(40.7)  

 AVG(33.3) LN_MAX(35.1) LN_P60(25.2)   P50(36.1) P50(46.6) LN_P40(36.2)  

 P40(26.5) P50(32.1) P60(17.6)   LN_P10(34.3) P80(45.3) AVG(35.6)  

 LN_P60(23.8) P95(32) LN_MAX(15)   LN_AVG(33.9) LN_P50(37.9) MAX(34.3)  

 P20(19.8) LN_P90(31.4) P40(14.5)   LN_P20(28.9) LN_P90(33.2) LN_P50(31.8)  

 LN_P40(17.6) LN_P40(14.2) LN_P50(13.6)   STD(27.9) P90(24.7) P50(22.5)  

 LN_P20(17) P30(12.8) LN_P10(12.4)   P10(26.6) LN_P20(12.4) P40(12.1)  

 LN_P50(17) P40(7.3) LN_P40(11.4)   LN_P40(24.4) P40(11.4) P30(11.9)  

 P60(14.6) LN_MIN(2.9) P10(8.1)   LN_P95(21.5) LN_MIN(7.7) LN_P30(10.4)  

 MAX(13.8) MIN(2.2) P30(7.8)   P40(20.6) MIN(4.9) P20(5.1)  

 LN_P25(12.8) LN_P30(0.4) LN_P30(6.4)   P25(20.5) LN_STD(2.8)   

 LN_P30(8.5) P25(0.2) STD(4.3)   LN_MIN(17.1) P20(0.6)   

 P25(7.7)  LN_P25(2.6)   LN_P50(17)    

 P10(6.6)  P25(2.5)   P20(12.5)    

 LN_P10(4.3)  P20(1.2)   MIN(10.9)    

 P30(3.8)     LN_P25(9.5)    

 LN_MAX(2)     LN_STD(9)    

      P30(0.5)    

Note: All plots sample (n=45). The variables importance are sorted from highest to lowest. The value in bracket 

gives the percentage value of the variable importance. 
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ALS-All     ALS-FLS     

Basal Area DBH Hdom Hlorey Density Basal Area DBH Hdom Hlorey Density 

P90(100) P75(100) MAX(100) LN_P75(100) P90(100) LN_STD(100) LN_P80(100) LN_P80(100) LN_P80(100) P90(100) 

LN_P90(86.8) LN_P90(95.2) LN_MAX(89.5) LN_P80(90.3) LN_P90(66.1) P90(93.7) P90(81.8) AVG(95.9) LN_P75(82.8) LN_P90(98.6) 

STD(84.3) LN_P75(93.7) LN_AVG(85.4) P95(88.7) STD(63.5) STD(92.1) P75(80.2) LN_P70(79.4) P90(76.2) LN_P75(74.2) 

LN_P25(75) P90(91.1) P80(84.9) P75(84.6) LN_P80(61.2) P25(82.8) P80(76.8) LN_AVG(72.6) P80(74) P60(61.5) 

LN_P95(59.8) LN_P80(81.4) LN_P70(82.6) P80(78.5) LN_STD(58.3) LN_P90(77.4) LN_P75(66.5) P75(70) P95(72.3) P75(58.6) 

P95(54.5) P80(72.5) P95(71.2) P90(78) P80(56.3) LN_P25(46.6) LN_P90(64.9) MAX(69.4) LN_P90(65.9) P70(58.5) 

P30(47.8) LN_P70(58.1) AVG(65.8) LN_P70(71.1) P95(46) P20(42.9) P70(60.9) LN_MAX(64.6) P70(65.8) LN_AVG(57.4) 

LN_STD(43.7) P95(51.3) LN_P95(62.4) LN_P90(70.2) LN_P70(42.9) LN_MAX(42.9) P95(59.3) LN_P95(49.9) P75(64.9) P80(53.9) 

P25(40.5) P70(51) P75(56.2) LN_P95(64.3) P70(41.5) LN_P20(39.2) LN_P70(53.2) P70(42) LN_P95(64.4) LN_P80(53.5) 

LN_P30(16.3) LN_P95(50.9) LN_P75(54.9) P70(57.4) LN_AVG(36.6) LN_P95(32.7) P50(41.8) P80(41.5) LN_P70(61.7) LN_P50(44.6) 

LN_MAX(16.1) P50(46) LN_P90(46.6) LN_AVG(43) P75(36.4) MAX(30.4) LN_P60(40.9) P95(41.2) LN_P60(31.7) P95(39.8) 

MAX(9) STD(37) LN_P80(46.4) AVG(27) LN_P75(32.9) P40(13) LN_P95(38.4) STD(30.7) MAX(31) AVG(39.5) 

LN_P75(8.5) LN_STD(36.3) P70(45.1) P50(24) P60(28.5) LN_P40(8.3) P60(32.1) P90(28.9) LN_MAX(26.3) LN_P95(38.8) 

LN_P80(5.8) LN_P50(33.7) LN_STD(36) MAX(20.9) LN_P95(27.7) P60(7.1) LN_P50(31.1) LN_P75(25) LN_MIN(25.1) P50(35.9) 

LN_P10(4.8) P60(32.8) STD(30.9) LN_P50(20.8) AVG(23.9) LN_P30(2.9) STD(25.4) MIN(20.1) P50(23.4) LN_P70(35.6) 

LN_MIN(2.6) LN_P60(31.9) MIN(23.7) LN_P60(20.8) LN_P60(22.1)  LN_AVG(20.8) LN_P10(19.6) LN_AVG(23.2) LN_P25(27.1) 

 AVG(17.6) P90(22.6) P60(19.2) P50(21.3)  LN_STD(19.6) LN_STD(13.4) P60(23) LN_P60(26.6) 

 MAX(16.7) P10(12.1) LN_MAX(17.1) LN_MAX(16.8)  AVG(18.5) LN_MIN(11.9) LN_P50(21.8) LN_STD(24.9) 

 P30(15.1) LN_P50(10.8) STD(13.7) LN_P50(15.7)  LN_P40(17.8) P50(8.7) MIN(21.2) STD(17.6) 

 LN_MAX(14.7) P60(8.9) LN_P10(13.1) LN_P25(14)  LN_P30(15) LN_P90(7.5) AVG(18.7) LN_MAX(7.7) 

 P40(12.9) LN_P40(8) MIN(11.9) P25(13.8)  LN_MAX(14.9) LN_P60(3.4) LN_P10(7.3) LN_P30(7.2) 

 LN_P30(12)  LN_STD(9.8) LN_P20(9.8)  MAX(14) P20(2.5) P10(3.9) P25(4.6) 

 LN_P25(9.7)  LN_MIN(8.7) P40(2.6)  P25(13.1) P60(1.5) LN_STD(3.6) P30(1.5) 

 P20(9.3)  LN_P20(8.3) LN_P30(2.3)  P40(11.7) LN_P30(0.2) STD(3.5) MAX(0.2) 

 P25(8.4)  P10(4.9) MAX(1.8)  LN_P25(11.2)  LN_P20(0.5)  

 LN_P40(8.2)   P20(1)  P30(10.8)  P20(0.1)  

 LN_AVG(5.8)   LN_P40(0.4)  P20(4.3)    

 LN_MIN(5.3)     LN_P20(2.9)    

 LN_P20(4.9)     LN_MIN(1.1)    

 MIN(4.4)         

Note: Lower montane ground sample (n=35). The variables importance are sorted from highest to lowest. The 

value in bracket gives the percentage value of the variable importance. 
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ALS-FS     SfM     

Basal Area DBH Hdom Hlorey Density Basal Area DBH Hdom Hlorey Density 

MIN(100) P75(100) LN_AVG(100) LN_P75(100) STD(100) MIN(100) LN_P75(100) LN_AVG(100) P75(100) LN_MIN(100) 

LN_MIN(89.8) LN_P70(95.8) AVG(66.6) P75(95) LN_P70(97.5) P50(82.7) P70(92.9) P70(78) LN_P80(87.8) MIN(91.2) 

LN_STD(83.8) LN_P75(95.7) P60(66.5) P80(82.7) LN_STD(93.2) LN_MIN(77.4) LN_P70(91.8) AVG(74.5) LN_P70(82.3) LN_P75(64.4) 

STD(70.8) P70(80) LN_MAX(65.7) LN_P95(69.4) P95(88.8) LN_P40(64.8) P75(87.6) LN_MAX(61.3) P70(80.2) P80(53.9) 

P20(57.1) P80(70.4) MAX(63.5) LN_P70(68.9) P75(83.4) P25(63.2) LN_P60(76.3) LN_P70(61.3) LN_P75(78.3) LN_P70(51.2) 

LN_P20(42.3) LN_P80(68.7) P70(59.5) LN_P80(66.4) LN_P95(82.7) LN_P10(47.2) LN_P50(75.5) MAX(50.6) P90(75.8) P75(48.9) 

P95(25.5) LN_AVG(55.5) LN_P70(51.8) P70(64.9) LN_P80(80.2) P30(40.4) LN_P80(72.2) P95(44.4) LN_P90(67.7) LN_P90(45) 

LN_P95(22.5) P60(52.8) P75(49.1) LN_AVG(63.5) LN_P75(77.6) P40(40.4) P95(66.4) LN_P75(33.2) LN_P95(66.2) LN_P80(40.1) 

LN_P90(21.4) LN_P60(51.4) LN_P75(46.1) P90(61.4) P90(74) LN_P50(37) P60(65.3) P75(32.6) P95(58.4) MAX(31.4) 

LN_P50(20.2) P50(45.8) LN_P60(42.8) P95(48.5) P80(71.6) P10(22) P50(61.3) P40(31.3) P80(56.2) P90(28.1) 

LN_P40(17.3) AVG(43.9) P50(41.4) AVG(45.3) P70(47.6) LN_P25(13.6) P80(58.8) LN_P80(19.8) LN_AVG(51.9) AVG(22.4) 

P60(13.8) LN_STD(35.7) LN_P90(33.2) LN_P90(35.1) P60(47) LN_P80(11.7) LN_P95(58.3) P60(14.5) P60(46.8) P70(21.3) 

P90(13.1) LN_P50(35.7) LN_MIN(29.6) LN_P60(34.5) LN_P90(39.3) LN_P30(11) LN_AVG(54.6) MIN(14.5) LN_P60(44.9) LN_MAX(20.7) 

P50(11.5) STD(35.1) LN_P80(28.8) LN_MAX(32.1) MAX(23) MAX(10.1) LN_P40(52.8) LN_P40(14.4) MAX(42.9) P10(18.4) 

LN_P80(11.2) LN_P40(30.5) P80(27.1) MAX(30.2) LN_AVG(20.2) P20(8.2) P90(49.8) LN_P60(11.1) AVG(40) LN_P40(16.9) 

LN_P75(11) P40(26.8) P95(25.7) P60(28.2) LN_P40(17.8)  LN_P10(39.4) LN_P90(11) LN_MAX(38.9) LN_AVG(16.2) 

P80(10.8) LN_P90(26.3) LN_P95(23.4) P50(19.3) P40(14.4)  AVG(38.5) P90(10.9) LN_P40(26) LN_P95(16.1) 

P75(7.3) LN_P95(25.4) P90(22.2) MIN(9.4) LN_P60(9)  LN_P90(37.7) LN_P50(10) P50(25.2) LN_P60(15.8) 

MAX(6.5) P90(25.1) LN_P50(20) LN_P40(4.2) P10(6.4)  MAX(35.1) LN_MIN(10) P40(16.6) P50(10.1) 

LN_P60(6.2) P95(23.3) MIN(12.6) LN_P50(4)   P40(34.4) LN_P95(9.6) LN_P50(14.6) P40(9.5) 

P70(4.7) LN_P30(12.5) LN_STD(8) LN_MIN(3.9)   P10(32.8) LN_STD(8.4) STD(8.2) LN_P50(7.9) 

LN_P70(4.3) LN_P20(9.4) LN_P10(6.5) P40(2.8)   LN_MAX(25.3) P80(8.3) LN_STD(5.8) LN_P20(5.8) 

LN_MAX(1.7) MAX(9.2) STD(0.3) LN_P30(2.5)   P20(20.4) STD(2.8) P20(4.3) P95(5.4) 

AVG(0.5) LN_P25(8.4)  P25(1.1)   LN_P30(20.1)  P25(4.2) LN_P10(4.6) 

 P30(5.6)  LN_P25(1)   LN_P20(16.9)  LN_P25(3.9) P20(2) 

 LN_MAX(3.3)  P10(0.5)   LN_P25(16.9)   P30(1.2) 

 P20(2.1)     LN_STD(16.6)   P25(0.3) 

 P25(0.6)     STD(15.3)   LN_P30(0.3) 

      P30(11.3)    

      P25(7)    

Note: Lower montane ground sample (n=35). The variables importance are sorted from highest to lowest. The 

value in bracket gives the percentage value of the variable importance. 

 


