# 博士論文

# 論文題目 Imaging intraorganellar Ca<sup>2+</sup> dynamics at subcellular resolution using genetically encoded fluorescent Ca<sup>2+</sup> indicators

(タンパク質型 Ca<sup>2+</sup>インジケーターを用いた 細胞小器官 Ca<sup>2+</sup>動態の可視化と機能解析)

氏名 鈴木 純二

Imaging intraorganellar Ca<sup>2+</sup> dynamics at subcellular resolution using genetically encoded fluorescent Ca<sup>2+</sup> indicators

> (タンパク質型 Ca<sup>2+</sup>インジケーターを用いた 細胞小器官 Ca<sup>2+</sup>動態の可視化と機能解析)

東京大学大学院医学系研究科 機能生物学専攻 細胞分子薬理学

# 鈴木 純二

## Contents

| Summary               | 3  |
|-----------------------|----|
| Introduction          | 4  |
| Materials and Methods | 9  |
| Results               | 20 |
| Discussion            |    |
| References            | 40 |
| Acknowledgements      | 55 |
| Figure Legends        | 56 |
| Tables                | 74 |
| Figures               | 77 |

#### Summary

The endoplasmic reticulum (ER) and mitochondria accumulate  $Ca^{2+}$  within their lumens to regulate numerous cell functions. However, determining the dynamics of intraorganellar  $Ca^{2+}$ has proven to be difficult. Here, I describe a family of genetically-encoded  $Ca^{2+}$  indicators, named calcium-measuring organelle-entrapped protein indicators (CEPIA), which can be utilized for intra-organellar  $Ca^{2+}$  imaging. CEPIA, which emit green, red or blue/green fluorescence, are engineered to bind  $Ca^{2+}$  at intra-organellar  $Ca^{2+}$  concentrations. They can be targeted to different organelles and may be used alongside other fluorescent molecular markers, expanding the range of cell functions that can be simultaneously analyzed. The spatiotemporal resolution of CEPIA makes it possible to resolve  $Ca^{2+}$  import into individual mitochondria while simultaneously measuring ER and cytosolic  $Ca^{2+}$ . These imaging capabilities were used to reveal differential  $Ca^{2+}$  handling in individual mitochondria. CEPIA imaging is a useful new tool to further the understanding of organellar functions.

## Introduction

Ca<sup>2+</sup> is an important second messenger that regulates numerous cellular functions including contraction, fertilization, proliferation and synaptic plasticity (1). The versatility of Ca<sup>2+</sup> signals principally relies on the capacity of various types of cells to control spatiotemporal distribution of cytosolic  $Ca^{2+}$  levels to fit their physiology (2). In the resting state,  $Ca^{2+}$ concentration in the cytosol is kept below 100 nM, which is three to four orders of magnitude lower than that in the extracellular space or intracellular Ca<sup>2+</sup> stores. In response to  $Ca^{2+}$ -mobilizing stimulation, the cytosolic  $Ca^{2+}$  concentration rises up to 1000 nM or higher and may fluctuate in a time dependent manner. Cytosolic  $Ca^{2+}$  signals are generated by two distinct pathways;  $Ca^{2+}$  influx from the extracellular space and  $Ca^{2+}$  release from the intracellular Ca<sup>2+</sup> store, and there is a complex crosstalk between these two pathways. Furthermore, in response to cytosolic  $Ca^{2+}$  signaling,  $Ca^{2+}$  concentrations in the intracellular organelles such as mitochondria and nuclei also increase (3,4). To understand these complex signaling processes, optical  $Ca^{2+}$  imaging using  $Ca^{2+}$  indicators, which alter their spectral properties depending on their surrounding  $Ca^{2+}$  concentration, is a powerful and useful method. Indeed, optical  $Ca^{2+}$  imaging techniques have been successfully used to decipher spatiotemporal dynamics and physiological functions of cytosolic Ca<sup>2+</sup> signals in cells in culture, in ex vivo samples and in living animals (5). In contrast to the success of cytosolic Ca<sup>2+</sup> imaging techniques, there are several limitations in the existing methods available for

monitoring  $Ca^{2+}$  dynamics in the organelles such as the endoplasmic reticulum (ER) and mitochondria.

The ER and mitochondria are membrane-bound intracellular organelles in eukaryotic cells that carry out vital functions. Both ER and mitochondrial membranes display  $Ca^{2+}$ -transporting molecules whose function is to import  $Ca^{2+}$  into the lumen against the concentration gradient. This uphill  $Ca^{2+}$  transport is mediated in the ER membrane by sarco(endo)plasmic reticulum  $Ca^{2+}$  ATPase (SERCA) (6) and in the inner mitochondrial membrane by the mitochondrial  $Ca^{2+}$  uniporter (MCU) (3). The organellar membranes also feature molecules that allow  $Ca^{2+}$  to exit from the organelles to the cytosol: inositol 1,4,5-trisphosphate receptor (IP<sub>3</sub>R) and ryanodine receptor (RyR) in the ER, and the Na<sup>+</sup>/Ca<sup>2+</sup> and  $H^+/Ca^{2+}$  exchanger in mitochondria (3,7). Thus, the intraluminal  $Ca^{2+}$  concentration in the organelles is tightly regulated, and may exceed that of cytosol by a large factor. Ca<sup>2+</sup> levels within the ER profoundly affect organelle functions, and overload or depletion causes ER stress (8). Within the mitochondrial matrix,  $Ca^{2+}$  concentration regulates the rate of ATP production, and abnormal concentrations can lead to cell death or autophagic degradation of the mitochondria (3).

ER and mitochondrial structures are constantly being reorganized and close contacts form between the two types of organelles. These contact sites have recently been shown to be involved in diverse functions, including lipid biosynthesis, mitochondrial biogenesis and the transfer of  $Ca^{2+}$  (9-12). Both types of organelle are also involved in the regulation of cytosolic Ca<sup>2+</sup> concentration. Release of Ca<sup>2+</sup> from the ER regulates contraction, fertilization, development, secretion, and synaptic plasticity (7). In addition, the ER luminal Ca<sup>2+</sup> concentration regulates Ca<sup>2+</sup> influx across the plasma membrane. Following a release of Ca<sup>2+</sup> from the ER, stromal interaction molecule 1 (STIM1), which is present in the ER membrane, functions as a Ca<sup>2+</sup> transducer; it signals to the plasma membrane to activate the store-operated Ca<sup>2+</sup> entry mechanism (SOCE) (13,14). SOCE is mediated by the molecular complex that includes Orai1, a Ca<sup>2+</sup> channel on the plasma membrane, and is important for the activation of various cell functions, the best-studied example of which is the immune responses (13). In contrast to the active role of the ER in Ca<sup>2+</sup> signaling, mitochondria have been considered to act as a passive Ca<sup>2+</sup> buffer (3). However, recent results suggest that they may also have an active role as a source of Ca<sup>2+</sup> in the regulation of cytosolic Ca<sup>2+</sup> concentration (15).

Although the importance of the ER and mitochondria as  $Ca^{2+}$ -handling organelles is unequivocal, the mechanism by which organellar  $Ca^{2+}$  concentrations regulate cellular processes remains elusive. New methods to dissect organellar  $Ca^{2+}$  dynamics are expected to facilitate such studies. While small molecular  $Ca^{2+}$  indicators cannot be precisely targeted to the organelles, limiting their use in living cells, genetically-encoded  $Ca^{2+}$  indicators (GECIs) can be targeted to organelles with the addition of appropriate tags (16). Making use of this capability, GFP-based GECIs (10,11,15,17-48) and aequorin (a  $Ca^{2+}$ -sensitive photoprotein) (49) have been used to measure intraorganellar  $Ca^{2+}$  concentrations. FRET-type GFP-based GECIs were first used to measure intraluminal  $Ca^{2+}$  concentration in the ER and were applied to different cell types (15,17,22,23,25-28,30-32,36,47,48). This type of indicators uses wide visible wavelength bands for excitation and emission, often limiting the simultaneous use of other fluorescent molecules (50,51). Subsequently, innovative modifications of the GFP molecule have yielded single-wavelength-excitation GECIs with various affinities to  $Ca^{2+}$  for ER and mitochondrial  $Ca^{2+}$  imaging (18-21,24,33-35,39,41,42,45,46). Aequorin emits dim light, and simultaneous measurement with brighter fluorescence signals is not possible with most fluorescence microscopes. Although there are a wide variety of indicators, simultaneous  $Ca^{2+}$  imaging of the ER and mitochondria has not been carried out, and improvement in the spatiotemporal resolution of organellar  $Ca^{2+}$  is expected to enhance our understanding of intraorganellar  $Ca^{2+}$  dynamics. For these reasons, and to study the functional interaction between the ER and mitochondria, a new type of GECIs with higher spatiotemporal resolution was required.

This study reports on the generation of new organellar  $Ca^{2+}$  indicators that allow simultaneous imaging of two subcellular compartments with high spatiotemporal resolution. They are optimized in terms of  $Ca^{2+}$  affinity and dynamic range for organellar  $Ca^{2+}$  imaging and come in color variants for simultaneous measurement of multiple signals when they are used in appropriate combinations. Using them, intraorganellar  $Ca^{2+}$  concentrations can be imaged at unprecedented spatiotemporal resolution. To illustrate the utility of the approach, I demonstrate high spatiotemporal resolution imaging of ER and mitochondrial  $Ca^{2+}$  dynamics in living cells; I show the quantitative relationship between the ER  $Ca^{2+}$  concentration and the extent of STIM1 puncta formation in the regulation of SOCE; and I show that inhomogeneity in mitochondrial  $Ca^{2+}$  responses can be observed during apparently homogenous ER and cytosolic  $Ca^{2+}$  changes, which suggests that there is a mechanism to regulate the influx of  $Ca^{2+}$  into mitochondria. The new indicators described in this work will be valuable for further study of the roles of the ER and mitochondria, and of their functional interactions.

## **Materials and Methods**

#### Gene construction

For creating a CEPIA library, cfGCaMP2 (GCaMP2 with amino acid substitutions of M36L in CaM, and N105Y and E124V in circular permutated enhanced GFP (cpEGFP)) with ER retention signal sequence (SEKDEL) was cloned into a bacterial expression vector, pET19b (Novagen, USA), using primers 1 and 2 (Table 3). G-GECO1.1, R-GECO1 and GEM-GECO1 were also cloned into pET19b using primers 3 and 4. The CaM sequences in cfGCaMP2 variants were replaced with those in G-GECO1.1, R-GECO1 or GEM-GECO1 using primers 4–7. Site-directed mutagenesis was performed by PCR using primers 8–36.

For mammalian expression of CEPIA variants in the ER and mitochondria, CEPIA variants were cloned into pCMV/myc/ER and pCMV/myc/mito vector (Invitrogen, USA) using primers 3, 4 and 37–39. For mitochondrial Ca<sup>2+</sup> imaging, the specificity of mitochondrial localization was enhanced by attaching the mitochondria targeting sequences in tandem (29) to CEPIA2–4*mt*, R-GECO1*mt* and GEM-GECO1*mt* using primers 40–47. To enhance protein expression, GEM-CEPIA1*er* was cloned into the CAG promoter-containing vector, pCIS, using primers 48 and 49. To express G-CEPIA1*er* in the Purkinje cells, G-CEPIA1*er* was cloned into pSinRep5 (Invitrogen) using primers 50–53. To localize EGFP and mCherry in the ER, EGFP and mCherry were cloned into the pcDNA3 D1ER (23) to attach calreticulin signal sequence and ER retention signal (KDEL) using primers 54–59. To

construct EYFP-*er*, EYFP was cloned from pcDNA3-YC4er (17) into pCMV/myc/ER vector using primers 60 and 61. To construct SypHer-dmito, an amino acid substitution of C199S (52) was added in pHyper-dmito (Evrogen, Russia) using primers 62 and 63. To construct mCherry-STIM1, STIM1 was cloned from pApuro-GFP-STIM1 (53) into pShuttle2 vector using primers 60 and 64–66.

#### Bacterial expression and in vitro spectroscopy

BL21-CodonPlus(DE3)-RIL bacteria (Stratagene, USA) was transformed with the plasmids and incubated for 16–36 h at 37°C in 2×YT medium containing ampicillin and chloramphenicol (20  $\mu$ g ml<sup>-1</sup>). The cells were resuspended in KCl/MOPS buffer (130 mM KCl, 50 mM MOPS, pH 7.2). After cell lysis with sonication, recombinant proteins were purified using TALON metal affinity resin (Clontech, USA) and dialyzed with Slide-A-Lyzer Dialysis Cassettes, 10K MWCO (Thermo Fisher Scientific, USA).

 $Ca^{2+}$  and  $Mg^{2+}$  titration curves of CEPIA variants were obtained by adding small aliquots of  $CaCl_2$  or  $MgCl_2$  to the recombinant indicators in a KCl/MOPS buffer containing 0 or 1 mM EGTA at pH 7.2. The  $Ca^{2+}$  concentration carried over from the recombinant protein samples was estimated as 2  $\mu$ M. In the presence of 1 mM EGTA, the  $[Ca^{2+}]_{free}$  at pH 7.2 was calculated as follows:

$$[Ca^{2+}]_{\text{free}} = [D + (4 \times K_{\text{d}} \times [Ca^{2+}]_{\text{total}} + D^2)^{1/2}] / 2,$$
$$D = [Ca^{2+}]_{\text{total}} - [EGTA]_{\text{total}} - K_{\text{d}},$$

$$K_{\rm d} = [\text{EGTA}]_{\rm free} \times [\text{Ca}^{2+}]_{\rm free} / [\text{Ca}\text{EGTA}] = 150.5 \text{ nM},$$

where  $K_d$  is the dissociation constant of CaEGTA (54). To estimate properties of CEPIA variants in mitochondria, titration experiments were performed in a KCl/HEPES buffer at pH 8.0 to mimic the mitochondrial environment (55), containing 1 mM BAPTA assuming a  $K_d$  of 0.1 µM. Fluorescence intensity was measured with a spectrofluorometer (FP-750, Jasco, Japan) for each protein at excitation/emission wavelength; 488/512 nm for cfGCaMP2 and G-GECO1.1 variants, 562/584 nm for R-GECO1 variants, and 395/460 nm and 395/510 nm for GEM-GECO1 variants. The obtained Ca<sup>2+</sup>-fluorescence intensity relationships were fitted by the following Hill equations using a least-square method in the Kaleidagraph software (Synergy Software, USA). For cfGCaMP2, G-GECO1.1 and R-GECO1 variants,

$$F = F_{\min} + (F_{\max} - F_{\min}) \times ([Ca^{2^+}]_{\text{free}})^n / [([Ca^{2^+}]_{\text{free}})^n + (K_d)^n].$$

For GEM-GECO1 variants,

$$R = R_{\min} + (R_{\max} - R_{\min}) \times ([Ca^{2+}]_{\text{free}})^n / [([Ca^{2+}]_{\text{free}})^n + (K_d)^n],$$

where R = (F at 460 nm) / (F at 510 nm).  $K_d$  represents an apparent dissociation constant, or the Ca<sup>2+</sup> concentration at which half of the indicator molecules bind to Ca<sup>2+</sup>. *n* represents Hill coefficient. The dynamic range of the indicator was calculated as the ratio of maximum and minimum fluorescence intensity or ratio ( $F_{\text{max}}/F_{\text{min}}$  or  $R_{\text{max}}/R_{\text{min}}$ ). Fluorescence intensity at various Ca<sup>2+</sup> concentrations was standardized by the following equation:

$$\theta = (F - F_{\min}) / (F_{\max} - F_{\min})$$
 or  $(R - R_{\min}) / (R_{\max} - R_{\min})$ .

The absorbance spectra were measured with a spectrophotometer (DU-640 UV/VIS, Beckman, USA). To determine the molar extinction coefficient ( $\varepsilon$ ), absorbance spectrum was measured first for each protein in KCl/MOPS buffer with or without 5 mM CaCl<sub>2</sub>. The extinction coefficient was calculated by dividing the peak absorbance by protein concentration. The protein concentrations for G-CEPIA1*er*, GEM-CEPIA1*er*, G-GECO1.1 and GEM-GECO1 were calculated by measuring the absorbance following alkaline denaturation, assuming  $\varepsilon$  = 44,000 M<sup>-1</sup> cm<sup>-1</sup> at 446 nm. For R-CEPIA1*er* and R-GECO1,  $\varepsilon$  = 38,000 M<sup>-1</sup> cm<sup>-1</sup> at 455 nm (24). Quantum yields ( $\Phi$ ) of CEPIA*er* were calculated by using G-GECO1.1, R-GECO1 and GEM-GECO1 as standards (24).

#### **Animal experiments**

All animal experiments were carried out in accordance with the regulations and guidelines for Institutional Animal Care and Use Committee at the University of Tokyo and were approved by the institutional review committees of the Graduate School of Medicine, the University of Tokyo.

#### **Cell culture**

HeLa cells, HEK293A cells, BHK cells and astrocytes were cultured on collagen-coated dishes in DMEM supplemented with 10% fetal bovine serum, penicillin (100 U ml<sup>-1</sup>) and streptomycin (100 U ml<sup>-1</sup>). Jurkat T cells (E6-1) were maintained in RPMI medium (Gibco,

USA) supplemented with 10% fetal bovine serum. An astrocytic culture with >95% purity was prepared by several replatings of the brain cell culture which was obtained by 2.5% trypsin treatment and gentle trituration of the neocortices or the hippocampi of embryonic day 18–19 or postnatal day 1–3 Sprague–Dawley rat fetuses (56). For Ca<sup>2+</sup> imaging, the cells were plated on collagen type-I-coated glass-bottom dishes (MatTek, USA) or Cell-Tak-coated dishes (Corning, USA) before imaging.

## Time-lapse Ca<sup>2+</sup> imaging

Cultured cells were transfected using Lipofectamine 2000 (Invitrogen) two or three days before imaging. Jurkat T cells were electroporated using a MicroPorator (MP-100, Digital Bio, Korea) one day before imaging. For cytosolic  $Ca^{2+}$  imaging using fura-2, cells were loaded with 5  $\mu$ M fura-2 AM (Molecular Probes, USA) at room temperature (RT; 22–24°C) for 40–60 min in 0.1% BSA-supplemented physiological salt solution (PSS) containing (in mM) 150 NaCl, 4 KCl, 2 CaCl<sub>2</sub>, 1 MgCl<sub>2</sub>, 5.6 glucose, and 25 HEPES (pH 7.4). Prior to imaging, the loading solution was replaced with PSS without BSA. The images were captured using an inverted microscope (IX81, Olympus, Japan) equipped with a 20× objective (numerical aperture (NA) = 0.75, UPlanSApo, Olympus) or a 40× objective (NA 0.90, UApo/340, Olympus), an electron multiplying cooled-coupled device (EM-CCD) camera (ImagEM, Hamamatsu photonics, Japan), a filter wheel (Lambda 10-3, Sutter Instrument, USA), a xenon lamp (ebx75) and a metal halide lamp (EL6000, Leica, Germany) at a rate of one frame per 2 or 3 s with the following excitation/emission filter settings:  $472 \pm 15 \text{ nm}/520 \pm 17.5 \text{ nm}$  for CEPIA1*er*, G-CEPIA1*er*, CEPIA2–4*mt*, EYFP-*er* and G-GECO1.1, ; 562 ± 20 nm/641 ± 37.5 nm for R-CEPIA1*er*, R-GECO1 and mCherry-STIM1; 377 ± 25 nm/466 ± 20 nm and 377 ± 25 nm/520 ± 17.5 nm for GEM-CEPIA1*er* and GEM-GECO1; 340 ± 13 nm/510 ± 42 nm and 365 ± 6 nm/510 ± 42 nm for fura-2; 440 ± 10.5 nm/480 ± 15 nm and 440 ± 10.5 nm/535 ± 13 nm for D1ER (23,24). For analysis of the ratiometric indicators, the fluorescence ratio (*F*<sub>466</sub>/*F*<sub>520</sub> for GEM-GECO1 and GEM-CEPIA1*er*; *F*<sub>340</sub>/*F*<sub>365</sub> for fura-2; *F*<sub>535</sub>/*F*<sub>480</sub> for D1ER) was calculated. Photobleaching was corrected for using a linear fit to the fluorescence intensity change before agonist stimulation. All images were analyzed with ImageJ software.

To image subcellular ER Ca<sup>2+</sup> dynamics during agonist-induced Ca<sup>2+</sup> wave formation, HeLa cells expressing either G-CEPIA1*er* or R-CEPIA1*er* were used. Images were captured at a rate of one frame per 30–100 ms using a 60× objective (NA 1.45, PlanApo TIRF, Olympus) and the metal halide lamp or an LED lamp (pE-100, CoolLED, UK). To evaluate  $Ca^{2+}$  wave velocity in the ER and cytosol, images were normalized by the resting intensity, and a linear region of interest (ROI) was defined along the direction of wave propagation. A line-scan image was created by averaging 30 adjacent linear ROIs parallel to the original ROI, and time derivative was obtained to detect the time point which showed maximal change during the scan duration. Then the time points were plotted against the pixel, and the wave velocity was estimated by the slope of the least-squares regression line. For mitochondrial Ca<sup>2+</sup> imaging with ER and cytosolic Ca<sup>2+</sup>, mitochondrial inner membrane potential or mitochondrial pH at subcellular resolution, HeLa cells were imaged with a confocal microscope (TCS SP8, Leica) equipped with a 63× objective (NA 1.40, HC PL APO, Leica) at a rate of one frame per 2 or 3 s with the following excitation/emission spectra: R-GECO1*mt* (552 nm/560– nm), G-CEPIA1*er* (488 nm/500–550 nm) and GEM-GECO1 (405 nm/500–550 nm); GEM-GECO1*mt* (405 nm/500–550 nm) and JC-1 (488 nm/500–550 nm and 488 nm/560– nm); R-GECO1*mt* (552 nm/560– nm) and SypHer-dmito (405 nm/500–550 nm and 488 nm/500–550 nm). For analysis of JC-1 and SypHer-dmito, the fluorescence ratio (488 nm/560– nm over 488 nm/500–550 nm for JC-1 (57); 488 nm/500–550 nm over 405 nm/500–550 nm for SypHer-dmito (52)) was calculated.

To perform in situ Ca<sup>2+</sup> titration of CEPIA, the plasma membrane of HeLa cells was permeabilized with 150  $\mu$ M  $\beta$ -escin (Nacalai Tesque, Japan) in a solution containing (in mM) 140 KCl, 10 NaCl, 1 MgCl<sub>2</sub> and 20 HEPES (pH 7.2). After 4 min treatment with  $\beta$ -escin, various Ca<sup>2+</sup> concentrations were applied in the presence of 3  $\mu$ M ionomycin and 3  $\mu$ M thapsigargin, and estimated the maximum and minimum fluorescent intensity ( $R_{max}$  and  $R_{min}$ ), dynamic range ( $R_{max} / R_{min}$ ),  $K_d$  and n.

For the estimation of  $[Ca^{2+}]_{ER}$  based on the ratiometric measurement using GEM-CEPIA1*er* (Figures 7c, 7d, 12f and 16),  $[Ca^{2+}]_{ER}$  was obtained by the following equation:

$$[\mathrm{Ca}^{2+}]_{\mathrm{free}} = [(R - R_{\mathrm{min}}) / (R_{\mathrm{max}} - R)]^{1/n} \times K_{\mathrm{d}},$$

where R = (F at 466 nm)/(F at 510 nm), n = 1.37 and  $K_d = 558 \mu$ M.

To evaluate pH dynamics in the ER (Figures 9a–d), HeLa cells expressing EYFP-*er* were first stimulated with histamine. Subsequently the cells were stimulated in a PSS (adjusted to pH 6.8) containing monensin (10  $\mu$ M, Wako, Japan) and nigericin (10  $\mu$ M, Wako). Then, the cells were alkalinized with a solution containing (in mM) 120 NaCl, 30 NH<sub>4</sub>Cl, 4 KCl, 2 CaCl<sub>2</sub>, 1 MgCl<sub>2</sub>, 5 HEPES and 5.6 Glucose (pH 7.4) (58).

#### Analysis of STIM1 dynamics

STIM1 dynamics were analyzed using the ImageJ software. To extract STIM1 puncta, the captured images were binarized after filtering (Gaussian Blur or Unsharp Mask). Then, particles greater than 2 pixels (corresponding to ~1.2  $\mu$ m<sup>2</sup>) were counted using the "Analyze Particles" tool in the ImageJ. The counts were normalized by the maximum values ( $N_{puncta}$ ) and plotted against the ER Ca<sup>2+</sup> levels (ERCa<sup>2+</sup>) ([Ca<sup>2+</sup>]<sub>ER</sub> for GEM-CEPIA1*er* and *F*/*F*<sub>0</sub> for G-CEPIA1*er*). Curve fitting was performed using the following Hill equation:

$$N_{\text{puncta}} = 1 - (\text{ERCa}^{2+})^n / [(\text{ERCa}^{2+})^n + (K_{1/2})^n],$$

where  $K_{1/2}$  indicates the ER Ca<sup>2+</sup> level at half maximal puncta formation and *n* represents Hill coefficient (59).

#### Imaging of subcellular localization of CEPIA

All images were captured with a confocal microscope (TCS SP8) equipped with a 63× objective at the following excitation/emission wavelengths: CEPIA1*er*, G-CEPIA1*er*, CEPIA2*mt*, EGFP-*er* and EYFP-*er* (488 nm/500–550 nm), R-CEPIA1*er*, mCherry-*er* and MitoTracker Red (Invitrogen) (552 nm/560– nm) and GEM-CEPIA1*er* (405 nm/420–550 nm). The obtained images were merged with ImageJ software.

## ER Ca<sup>2+</sup> imaging in cerebellar slices

For Purkinje cell-specific expression of G-CEPIA1*er*, a Sindbis virus vector (pSinRep5) encoding G-CEPIA1*er* was produced. The pSinRep5-G-CEPIA1*er* vector was then used as the template for in vitro transcription using SP6 RNA polymerase (Ambion, USA). The RNA transcript and the helper RNA from DH(26S) cDNA template (Invitrogen) were cotransfected into BHK cells by electroporation. Twenty-four hours after transfection, the culture medium containing the infectious particles was harvested. Sindbis virus vector encoding EYFP-*er* was also produced with the same procedure. C57BL/6 mice (postnatal day 21–27) were deeply anesthetized with pentobarbital, and the surface of cerebellar lobule 6 beside the midline was exposed by removing the cranium and dura. The tip of a glass pipette was backfilled with the viral solution. The glass pipette was then inserted into the cerebellum and 1  $\mu$ L of viral solution was delivered at a rate of 200 nl min<sup>-1</sup> using a micropump (Legato 130, KD scientific, USA). Twenty-four hours after virus injection, parasagittal cerebellar slices (250  $\mu$ m thickness) were prepared (60). Mice were anesthetized with diethyl ether and decapitated. The brain was removed and placed in ice-cold artificial cerebrospinal fluid (ACSF). Slices were cut using a microslicer (PRO 7, Dosaka EM, Japan). The slices were incubated in a holding chamber containing ACSF at 35°C for 1 h and then returned to 23°C. Slices were transferred to a recording chamber under microscope and continuously perfused with ACSF supplemented with 10  $\mu$ M bicuculline (Tocris Bioscience, UK) and 10  $\mu$ M NBQX (Tocris Bioscience) to block inhibitory postsynaptic potentials and accompanying Ca<sup>2+</sup> influxes. ACSF contained (in mM) 125 NaCl, 2.5 KCl, 2 CaCl<sub>2</sub>, 1 MgSO<sub>4</sub>, 1.25 NaH<sub>2</sub>PO<sub>4</sub>, 26 NaHCO<sub>3</sub>, and 20 glucose, and was bubbled with 95% O<sub>2</sub> and 5% CO<sub>2</sub>.

Imaging was carried out with a two-photon microscope (TSC MP5, Leica) equipped with a water-immersion objective (25×, NA 0.95, HCS IR APO, Leica) and a Ti:sapphire laser (MaiTai DeepSee; Spectra Physics, USA). Excitation wavelength was 900–920 nm for both G-CEPIA1*er* and EYFP-*er*. Data were acquired with time-lapse XY-scan mode (8 Hz) and analyzed using ImageJ software. Fluorescence intensities were corrected for background fluorescence by measuring a non-fluorescent area. When necessary, photobleaching was corrected for using a linear fit to the fluorescence intensity change. For the focal stimulation of parallel fibers, square pulses (0.1 ms) were applied through stimulation pipettes (3–6  $\mu$ m tip diameter) filled with ACSF. The stimulation intensity was adjusted within 4–5 V to induce G-CEPIA1*er* signals with a range of ~20  $\mu$ m in diameter. For EYFP-*er*, the stimulation intensity was fixed at 5V. Experiments were carried out at RT.

## Statistics

Two-tailed Student's t-tests were performed to determine the significance if not stated

otherwise.

## Results

## **Development of ER Ca<sup>2+</sup> indicator**

I began measuring ER Ca<sup>2+</sup> dynamics based on a lead variant of GCaMP2 (cfGCaMP2, see Materials and Methods), whereby fluorescence intensity increased 5.1-fold upon binding of Ca<sup>2+</sup> with an apparent dissociation constant ( $K_d$ ) of 0.67 µM (Table 1a). Since ER Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>ER</sub>) is assumed to reach the sub-millimolar range, cfGCaMP2 was engineered to reduce its Ca<sup>2+</sup> binding affinity by a factor of ~1,000. I searched for low Ca<sup>2+</sup> affinity variants guided by extensive structure-function analyses based on site-directed mutagenesis in the calmodulin (CaM) domain of cfGCaMP2.

Ca<sup>2+</sup> affinity of cfGCaMP2 is primarily determined by CaM, which has four EF-hand motifs. I first tried the amino acid substitutions that were used to reduce Ca<sup>2+</sup> affinity of the FRET-type ER Ca<sup>2+</sup> indicator, D1ER (23), but the  $K_d$  of cfGCaMP2 increased only to 14.5  $\mu$ M (Figure 1a, gray circle). Amino acid substitutions at -Z position (12th amino acid residue) of the EF-hand motifs were previously shown to reduce the Ca<sup>2+</sup> affinity of GFP-based Ca<sup>2+</sup> indicators (15,17). When a non-acidic substitution (E31Q) at -Z in site I was introduced to cfGCaMP2, the  $K_d$  increased to 64.9  $\mu$ M. However, its dynamic range ( $F_{max}/F_{min}$ ) was reduced to 2.5 (Figure 1a, green circle). Another non-acidic substitution (E104Q) at -Z in site III produced no effect on the Ca<sup>2+</sup> affinity (Figure 1a, light green circle). On the other hand, conservative E31D substitution in site I increased the  $K_d$  to 14.5  $\mu$ M without reducing the dynamic range. Therefore, I next systematically altered the glutamate residue at -Z positions (E31, E67, E104, and E140) to aspartate. The E67D variant had a  $K_d$  of 9.2 µM, while E104D and E140D variants had  $K_d$ s of 1.0 and 2.1 µM, respectively (Figure 1a, cyan circles). I then examined if combinations of multiple -Z substitutions would synergistically reduce the Ca<sup>2+</sup> affinity. The  $K_d$  of E31D/E67D variant was strikingly increased to 470 µM, but its dynamic range was reduced to 2.6. Variants with other combinations of double substitutions had a  $K_d$  of ~25 µM, and retained a high dynamic range. Combinations of three -Z substitutions, (E31D or E67D)/E104D/E140D, produced variants with a  $K_d$  of some 130 µM (Figure 1a, blue circles). Thus I concluded that a different strategy for further improvement of the indicator was required.

Previous reports have shown that a combination of F92W/D133E substitutions can inhibit Ca<sup>2+</sup> binding at site IV of CaM (61,62). Based on these reports, I found that a cfGCaMP2 variant with F92W/D133E substitutions had a  $K_d$  of 10.3 µM and a high dynamic range (Figure 1a, orange circles). I next examined whether combinations of F92W/D133E and -Z substitutions would synergistically reduce Ca<sup>2+</sup> affinity. Indeed, combinations of F92W/D133E and one of the -Z substitutions generated variants with a  $K_d$  of 67–130 µM (Figure 1a, magenta circles). I further combined the F92W/D133E substitutions with double -Z substitutions, (E31D or E67D) plus (E104D or E140D), and obtained variants with a  $K_d$  of ~400 µM (Figure 1a, magenta circles). From among the 58 variants that were generated in this search, I finally selected one with E31D/F92W/E104D/D133E substitutions that had a low  $Ca^{2+}$  affinity ( $K_d = 368 \mu M$ ) and a large dynamic range ( $F_{max}/F_{min} = 4.2$ ) (Table 1, Figures 1a and 1b). After attaching ER localization and retention signal sequences (Figure 1c), the low  $Ca^{2+}$  affinity variant was expressed in HeLa cells. The engineered indicator protein co-localized with an ER marker (63) (Figure 1d). Upon addition of thapsigargin, an inhibitor of SERCA, a large reduction in fluorescence intensity was noted (Figure 1e). Also, oscillatory fluorescence intensity was observed in response to histamine, which generates cytosolic  $Ca^{2+}$ oscillations due to release of  $Ca^{2+}$  from the ER via IP<sub>3</sub>Rs (Figure 1f). Thus, the indicator successfully reports  $[Ca^{2+}]_{ER}$  dynamics. I designated it <u>C</u>alcium-measuring organelle-<u>E</u>ntrapped <u>P</u>rotein Indic<u>A</u>tor 1 in the ER (CEPIA1*er*).

#### **Multi-coloring of CEPIA**

I next generated color variants of CEPIA, based on recently developed cytosolic Ca<sup>2+</sup> indicators: R-GECO1 (red fluorescence), G-GECO1.1 (green fluorescence) and GEM-GECO1 (ratiometric blue/green fluorescence) (24). I first replaced the entire CaM domain of R-GECO1 with that of CEPIA1*er*, and obtained a variant with a  $K_d$  of 70.9 µM (Table 1b). Introduction of an additional –*Z* substitution (E67D) resulted in a variant with an optimal Ca<sup>2+</sup> affinity ( $K_d$  = 565 µM) and a high dynamic range (8.8) (Table 1b and Figure 2a), which I designated R-CEPIA1*er*. Using the same strategy, I replaced the CaM domain of G-GECO1.1 with that of CEPIA1*er*, and obtained a variant with a  $K_d$  of 672 µM and a dynamic range of 4.7. This variant was designated as G-CEPIA1*er* (Table 1c and Figure 2a). I next tried the same strategy in GEM-GECO1, but found that the dynamic range of the resulting indicator was markedly reduced ( $R_{max}/R_{min} = 1.1$ ; Table 1d). Because several amino acid substitutions had been introduced to the CaM of GEM-GECO1 as compared with cfGCaMP2 (Figure 3), I concluded that these additional substitutions are essential. Accordingly, I created a variant where I reintroduced the GEM-GECO1 substitutions while maintaining the E31D/F92W/E104D/D133E substitutions, creating a variant with a low Ca<sup>2+</sup> affinity and an increased dynamic range ( $K_d = 225 \mu$ M,  $R_{max}/R_{min} = 8.1$ ; Table 1e). I further engineered the –*Z* positions, thus creating a variant with E31D/F92W/D133E/E140D substitutions with an optimal Ca<sup>2+</sup> affinity and a high dynamic range ( $K_d = 558 \mu$ M,  $R_{max}/R_{min} = 21.7$ ; Table 1e and Figure 2a). I designated this variant GEM-CEPIA1*er*. Substituted amino acids in each CEPIA*er* and genealogy of CEPIA variants were summarized in Figures 3 and 4, respectively. Spectral properties and in vitro characteristics of CEPIA*er*, compared with those of original GECO, were summarized in Table 2, Figures 5 and 6.

I expressed the color variants of CEPIA fused with ER-targeting signal sequences in HeLa cells. They localized to the ER (63,64) (Figures 2b–d), and detected ER Ca<sup>2+</sup> signals including agonist-induced Ca<sup>2+</sup> oscillation with a high signal-to-noise ratio (Figures 7a and 7b). In HeLa cells, G-CEPIA1*er* showed superior performance in signal amplitude over CEPIA1*er* (Figures 7a and 7b). To measure the Ca<sup>2+</sup> affinity of CEPIA variants within the ER, I carried out Ca<sup>2+</sup> titration experiments in permeabilized HeLa cells. Stepwise changes in Ca<sup>2+</sup> concentration elicited dose-dependent fluorescence intensity changes in the presence of ionomycin to make the ER membrane permeable to  $Ca^{2+}$  (Figure 8a). The  $K_d$  values determined within the ER were almost equivalent to those measured in vitro (Figure 8b). To examine whether pH changes had any effect on the signal of CEPIA indicators (Figure 6a), I monitored pH dynamics in the ER using a pH sensor, enhanced yellow fluorescent protein (EYFP, p $K_a = 6.9$ ) (65,66), because the pH value in the ER is estimated as 7.2 (55). There was no significant change in the fluorescence intensity of ER-localized EYFP (Figures 9a–d), verifying that the CEPIA responses are not due to pH changes in the ER. Thus, I succeeded in expanding the hues of CEPIA variants.

## Estimation of [Ca<sup>2+</sup>]<sub>ER</sub>

Using ratiometric measurement with GEM-CEPIA1*er*, I estimated  $[Ca^{2+}]_{ER}$  in intact resting cells as varying between 620 and 860 µM in HeLa cells, HEK293A cells, BHK cells and cultured astrocytes; these decreased to 310–570 µM upon stimulation with agonists (Figure 7d). The range of  $[Ca^{2+}]_{ER}$  underlines the need to increase the indicator's  $K_d$  to >100 µM to provide faithful measurements of ER Ca<sup>2+</sup> dynamics, and explains the difficulty in imaging ER Ca<sup>2+</sup> dynamics using D1ER, which has a  $K_d$  of ~60 µM (23) (Figures 2a, 7a and 7b). Although CEPIA indicators had relatively high Hill coefficients (n = 1.4–2.0, Table 2), the relationship between  $\Delta F/F_{max}$  (or  $\Delta R/R_{max}$ ) and changes in  $[Ca^{2+}]$  is not highly distorted within the physiological  $[Ca^{2+}]_{ER}$  range (Figure 6c).

## Subcellular ER Ca<sup>2+</sup> dynamics visualized with CEPIA

I next examined whether CEPIA indicators are capable of detecting ER Ca<sup>2+</sup> dynamics at subcellular resolution. Agonists often induce Ca<sup>2+</sup> waves, which propagate throughout the cell after initiation in focal regions (1,67). The wave is generated by the regenerative release of Ca<sup>2+</sup> from the ER, and it has been predicted that this mechanism creates an "inverse Ca<sup>2+</sup> wave" within the ER. However, this prediction has not been tested using GECIs in live cells. I used G-CEPIA1*er* imaging at a high frame rate (10–30 frames s<sup>-1</sup>) to visualize inverse Ca<sup>2+</sup> waves in the ER. Local decreases in  $[Ca^{2+}]_{ER}$  were observed, initiating at the tips and propagating to the perinuclear region in HeLa cells (Figure 10a). The time courses measured at two subcellular locations indicated a wave-like propagation of decreasing  $[Ca^{2+}]_{ER}$  (Figures 10b and 10c). The speed of these waves was  $60.8 \pm 3.2 \ \mu m \ s^{-1}$  (mean  $\pm s.e.m.$ ), which matches cytosolic Ca<sup>2+</sup> waves with or without CEPIA expression (Figure 10d). Similar observations were made with R-CEPIA1*er* (Figure 10d). Thus, CEPIA indicators have high spatiotemporal resolution.

Next, it was examined whether CEPIA can be applied to intact tissue preparations. To do so, Ca<sup>2+</sup> dynamics were elucidated in the neuronal ER in response to synaptic inputs to Purkinje cell dendrites in cerebellar slice preparations. G-CEPIA1*er* was expressed in Purkinje cells by Sindbis virus and was imaged with a two-photon microscope. G-CEPIA1*er* expression was observed throughout the dendrites and into spines, matching the distribution of the ER in Purkinje cells (Figure 11a). In response to parallel fiber (PF) stimulation, which induces  $Ca^{2+}$  release from the ER through IP<sub>3</sub>R by activating the metabotropic glutamate receptor 1 (mGluR1) (68), a long-lasting decrease in G-CEPIA1*er* fluorescence intensity was observed (Figure 11b). The ER  $Ca^{2+}$  dynamics could be visualized at the level of single spines (Figure 11c). This response was blocked by the application of LY367385, an mGluR1 antagonist (Figures 11d and 11e, blue), but not by the application of NBQX, an AMPA receptor antagonist (Figures 11d and 11e, magenta). The application of CPA, a SERCA inhibitor, induced slow depletion of ER  $Ca^{2+}$  (Figure 11f), followed by abolishment of the G-CEPIA1*er* response to PF stimulation (Figures 11d and 11e, orange). This response was not due to any pH change in the ER, because the PF stimulation had no effect on pH within the ER measured by ER-targeted EYFP (Figures 9e–g) (65,66). Thus, subcellular ER  $Ca^{2+}$ imaging using CEPIA is applicable to tissue preparations that have retained three-dimensional structure, which often requires two-photon excitation.

## Simultaneous imaging of Ca<sup>2+</sup> dynamics in the ER and cytosol

For simultaneous imaging of Ca<sup>2+</sup> dynamics in the ER and cytosol, the ratiometric small-molecule Ca<sup>2+</sup> indicator, fura-2 (excitation: 340–380 nm) was used together with G-CEPIA1*er* or R-CEPIA1*er*. ER Ca<sup>2+</sup> signals were mirror images of the cytosolic Ca<sup>2+</sup> oscillations (Figures 12a and 12b). Although G-CEPIA1*er* and R-CEPIA1*er* are weakly excited at the excitation wavelengths of fura-2 (Figures 5a and 13a), they had very little effect on the fura-2 fluorescence ratio (Figure 13b). Thus, it is possible to use G-CEPIA1*er* and R-CEPIA1*er* with fura-2. Either G-CEPIA1*er* or GEM-CEPIA1*er* can be co-expressed with R-GECO1 for simultaneous imaging of the ER and cytosolic  $Ca^{2+}$  dynamics (Figures 12c–f). Reversal of the colors is also possible, and ER  $Ca^{2+}$  imaging using R-CEPIA1*er* can be simultaneously carried out with cytosolic  $Ca^{2+}$  imaging using G-GECO1.1 or GEM-GECO1 (Figures 12g and 12h). Spectral bleed-through was minimal (<3%, Figure 13a). These results show the versatility of CEPIA as ER  $Ca^{2+}$  indicators.

## Imaging of store-operated Ca<sup>2+</sup> entry

Store-operated  $Ca^{2+}$  entry (SOCE) is a ubiquitous process to replenish ER  $Ca^{2+}$  by inducing  $Ca^{2+}$  influx from the extracellular space (14), and has been shown to play an important role in the activation of immune cells (13). SOCE has been previously analyzed by measuring the increase in cytosolic  $Ca^{2+}$  concentration ( $[Ca^{2+}]_{cyt}$ ) after store depletion by SERCA inhibitors, such as thapsigargin and cyclopiazonic acid (CPA). However, it remains unclear whether SOCE induces an increase in  $[Ca^{2+}]_{cyt}$  under physiological conditions (69,70). Simultaneous  $Ca^{2+}$  imaging in the ER and cytosol using G-CEPIA1*er* and fura-2, respectively, provides a direct means to analyze  $Ca^{2+}$  dynamics during SOCE.

I found that stimulation of HeLa cells with histamine in the absence of extracellular  $Ca^{2+}$  induced an increase in  $[Ca^{2+}]_{cyt}$  and concomitant partial depletion of  $[Ca^{2+}]_{ER}$  (Figure 14a, black lines). Removal of histamine resulted in a shift of  $[Ca^{2+}]_{cyt}$  to  $[Ca^{2+}]_{ER}$  in the continued absence of extracellular  $Ca^{2+}$ . When  $Ca^{2+}$  was reintroduced to the extracellular space ("Ca<sup>2+</sup>

add back"), a recovery of  $[Ca^{2+}]_{ER}$  toward the pre-stimulation level was seen. During ER refilling with Ca<sup>2+</sup>, the increase in  $[Ca^{2+}]_{cvt}$  was extremely small ( $\Delta [Ca^{2+}]_{cvt} = 4.8 \pm 0.6$  nM, Figures 14b–d) as compared with the large  $[Ca^{2+}]_{cyt}$  increase (241 ± 14 nM) observed after SERCA blockade by CPA or thapsigargin (Figures 14a and 14e). ER refilling was blocked by Gd<sup>3+</sup> an Orai1 inhibitor (71) (Figure 14b, magenta lines). When STIM1 was extrinsically expressed in HeLa cells, the  $[Ca^{2+}]_{cvt}$  and ER  $Ca^{2+}$  recovery rate during "Ca<sup>2+</sup> add back" were significantly elevated (Figures 15a and 15d). These results indicate that, in HeLa cells, Ca<sup>2+</sup> influx via SOCE is rapidly taken up by SERCA without forming a high-amplitude cytosolic Ca<sup>2+</sup> signal unless STIM1 is overexpressed. I next examined Jurkat T cells stimulated with T cell receptor activation. In these cells, although  $Ca^{2+}$  influx via SOCE is partly taken up by SERCA as shown by the increase in  $[Ca^{2+}]_{ER}$ , there was a significant increase in the cytoplasmic Ca<sup>2+</sup> concentration ( $\Delta$ [Ca<sup>2+</sup>]<sub>cvt</sub> = 539 ± 38 nM, Figure 14f). Thus, unlike in HeLa cells, the rate of  $Ca^{2+}$  influx via SOCE surpasses the ER  $Ca^{2+}$  uptake rate in Jurkat T cells, and SOCE is capable of inducing an increase in  $[Ca^{2+}]_{cvt}$ .

#### **CEPIA** imaging simultaneous with other fluorescent molecules

Simultaneous time-lapse imaging of  $[Ca^{2+}]_{ER}$  and other cellular processes should provide valuable information. I examined the possibility of simultaneously measuring  $[Ca^{2+}]_{ER}$  and the subcellular distribution of STIM1, which senses the ER luminal  $Ca^{2+}$  concentration and, upon ER  $Ca^{2+}$  depletion, translocates to the subplasma membrane region to oligomerize (14). Accumulating evidence suggests that the oligomerization of STIM1, which appears as a punctate structure of fluorescent protein-tagged STIM1, is a key determinant of SOCE (72).

I measured  $[Ca^{2+}]_{ER}$  using GEM-CEPIA1*er* and simultaneously imaged STIM1 dynamics using mCherry-STIM1 (Figures 16a and 16b). Upon addition of histamine in the absence of extracellular  $Ca^{2+}$ ,  $[Ca^{2+}]_{ER}$  began to decrease in an almost linear fashion. The formation of STIM1 puncta was considerably delayed, being observed only after  $[Ca^{2+}]_{ER}$  fell below 600 µM. Thereafter, puncta formation proceeded alongside further decreases in [Ca<sup>2+</sup>]<sub>ER</sub>. When Ca<sup>2+</sup> was added back to the extracellular solution after histamine washout, [Ca<sup>2+</sup>]<sub>ER</sub> refilling began and the mCherry-STIM1 puncta decomposed. The relationship between  $[Ca^{2+}]_{FR}$  and puncta formation could be fitted by Hill plot, with a Hill coefficient of 7.9 and a  $K_{1/2}$  of 350 µM for puncta formation, and 9.7 and 530 µM for dissociation (Figure 16c). Thus, the relationship between  $[Ca^{2+}]_{ER}$  and puncta formation/dissociation exhibits considerable hysteresis. The difference of  $K_{1/2}$  between puncta formation and dissociation was also observed using G-CEPIA1er and mCherry-STIM1 (Figures 15a-c). These observations indicate that, as far as  $[Ca^{2+}]_{ER}$ -dependent puncta formation of STIM1 is concerned, there is a threshold-like behavior, and suggest the existence of a mechanism that produces the delay in the dissociation of STIM1 puncta. Thus, CEPIA enables quantitative analysis of relationship between  $[Ca^{2+}]_{ER}$  and STIM1 dynamics.

## Intercellular heterogeneity of mitochondrial Ca<sup>2+</sup> signaling

I examined whether CEPIA indicators can be utilized for  $Ca^{2+}$  imaging in mitochondria. To cover the broad range of mitochondrial  $Ca^{2+}$  concentrations (0.05–300 µM) (22,28,73), three CEPIA variants with different  $Ca^{2+}$  affinities were selected from the library: CEPIA2 ( $K_d = 0.16 \mu$ M), CEPIA3 (11 µM), and CEPIA4 (59 µM) (Table 1a, Figures 6d and 17a). These indicators were expressed in HeLa cells by adding the mitochondrial localization signal sequence (29) (CEPIA2*mt*, CEPIA3*mt* and CEPIA4*mt*) to their coding sequences. The expression colocalized with MitoTracker Red and was distinct from the ER (Figure 17b).

Histamine application to mobilize ER  $Ca^{2+}$  induced a rapid increase in mitochondrial  $Ca^{2+}$  levels followed by a slow decay (Figures 17c and 17d). This mitochondrial  $Ca^{2+}$  signal was abolished when the mitochondrial membrane potential was dissipated by carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (Figures 17c and 17d).

Only a subpopulation of cells showed a mitochondrial  $Ca^{2+}$  response, and the fraction of responding cells decreased with the decreasing affinities of the CEPIA*mt* (Figures 17e–g). Enhancement of mitochondrial  $Ca^{2+}$ , either by extrinsic expression of MCU or by suppression of Na<sup>+</sup>/Ca<sup>2+</sup> exchanger-mediated mitochondrial Ca<sup>2+</sup> clearance by CGP-37157, resulted in a striking increase in the fraction of cells displaying Ca<sup>2+</sup> signals. Under these conditions, sustained or oscillatory mitochondrial responses were observed in a large fraction of cells, and obvious saturation of CEPIA*mt* was observed in many cells (Figures 17e and 17g). I concluded that CEPIA*mt* successfully reports mitochondrial Ca<sup>2+</sup> signals, and that mitochondrial Ca<sup>2+</sup> dynamics during agonist stimulation have considerable cell-to-cell variation.

## Subcellular heterogeneity of mitochondrial Ca<sup>2+</sup> response

In a fraction of cells, agonist stimulation elicited a mitochondrial  $Ca^{2+}$  response throughout the cell. In the remaining cells, only a subpopulation of mitochondria responded with a  $Ca^{2+}$ increase. For example, in the cell shown in Figures 18a–c, mitochondrial  $Ca^{2+}$  concentration ([ $Ca^{2+}$ ]<sub>mt</sub>) measured with CEPIA3mt increased in region 2; the size of the increase was three times greater than that averaged over the entire cell. In contrast, there was no increase in [ $Ca^{2+}$ ]<sub>mt</sub> in region 1. To exclude the possibility of regional variation in the CEPIA3mt response, I applied a  $Ca^{2+}$  ionophore, ionomycin. The same response was observed in both regions 1 and 2. Subcellular heterogeneity in mitochondrial  $Ca^{2+}$  dynamics was also visualized by CEPIA2mt (Figures 18d–f). These results indicate that there is a considerable subcellular variation in the capacity of mitochondria to take up  $Ca^{2+}$ .

I tested a possible role for the ER in this inhomogeneous mitochondrial  $Ca^{2+}$ response, since it has been postulated that ER  $Ca^{2+}$  release is important for mitochondrial  $Ca^{2+}$ responses (9). To this end, simultaneous  $Ca^{2+}$  imaging of the cytosol, ER and mitochondria was performed using GEM-GECO1, G-CEPIA1*er* and R-GECO1*mt*, respectively. Agonist stimulation induced a marked increase in  $[Ca^{2+}]_{mt}$  in region 2 but not in adjacent mitochondria, including those in region 1. In contrast to the inhomogeneous mitochondrial response,  $[Ca^{2+}]_{ER}$  and  $[Ca^{2+}]_{cyt}$  showed similar responses in regions 1 and 2 (Figure 19). I also examined the subcellular heterogeneity in mitochondrial pH or membrane potentials ( $\Psi_m$ ) as a potential mechanism of heterogeneous mitochondrial  $Ca^{2+}$  responses (74-76). Simultaneous measurement of  $[Ca^{2+}]_{mt}$  and pH<sub>mt</sub> indicated that inhomogeneous  $Ca^{2+}$  responses are not due to pH changes (Figures 20a–d). Neither did I find any heterogeneity in  $\Psi_m$ , corresponding to mitochondrial  $Ca^{2+}$  responses (Figures 20e–f). These results suggest that the inhomogeneous mitochondrial  $Ca^{2+}$  response is generated by heterogeneity in the strength of ER-mitochondrial coupling or in the regulation of  $Ca^{2+}$  uptake protein rather than in the amount of  $Ca^{2+}$  released from the local ER or in pH or  $\Psi_m$ .

## Discussion

 $Ca^{2+}$  concentrations within the ER and mitochondria control cytosolic  $Ca^{2+}$  dynamics and regulate cell functions including ER stress and cell death (3,8). Methods such as CEPIA that obtain direct information about intraorganellar Ca<sup>2+</sup> dynamics are, therefore, of great importance. The merits of CEPIA indicators for imaging ER or mitochondrial Ca<sup>2+</sup> concentrations can be summarized as follows. First, they have very high dynamic range and spatiotemporal resolution. This has allowed, for instance, the first imaging of an inverse Ca<sup>2+</sup> wave and synaptic activity-dependent ER Ca<sup>2+</sup> dynamics in neurons. Second, CEPIA allows simultaneous Ca<sup>2+</sup> imaging in the ER, mitochondria and cytosol with subcellular resolution. Third, CEPIA indicators are applicable to many cell types including intact neurons. Fourth, ratiometric measurement is possible with GEM-CEPIA1er, whereby intraorganellar Ca<sup>2+</sup> concentrations can be determined independent of the indicator's expression level. Fifth, the high signal-to-noise ratio and one-wave length measurement with G-CEPIA1er and R-CEPIA1er reduce the technical difficulty of organellar Ca<sup>2+</sup> imaging and obviate the requirement for a special imaging apparatus. Thus, CEPIA-mediated imaging methods should have broad utility in many cell biological studies. Indeed, work described in this paper addresses important cell functions. Furthermore, in a recent study CEPIA is successfully used to prove that abnormal ER Ca<sup>2+</sup> handling is associated with disease-related mutations of the RyR (77).

Influx of  $Ca^{2+}$  from the extracellular space to the cytoplasm through SOCE is found in many types of cells (13,78). The inhibition of SERCA (an ER  $Ca^{2+}$  pump) by pharmacological means, such as thapsigargin and CPA, to deplete ER  $Ca^{2+}$  has been the standard method to study the SOCE mechanism (13). Now, using CEPIA, I have studied SOCE under physiological conditions, without SERCA inhibition. This revealed that  $[Ca^{2+}]_{cyt}$ is held constant during SOCE activation in HeLa cells, although  $[Ca^{2+}]_{ER}$  is sufficiently low to induce significant  $[Ca^{2+}]_{cyt}$  increase when SERCA is inhibited. These results indicate that the balance between the SOCE and SERCA activities is important for the capacity of SOCE to induce sustained increase in  $[Ca^{2+}]_{cyt}$ . In HeLa cells, SERCA activity is sufficiently high to take up  $Ca^{2+}$  influx through SOCE. However, the balance can differ between cell types, and if it favors  $Ca^{2+}$  influx there may be a large increase in  $[Ca^{2+}]_{cyt}$  during SOCE activation. Indeed, I found that the balance favors  $Ca^{2+}$  influx in Jurkat T cells, being consistent with the importance of SOCE in immune cells (13).

SOCE is a remarkable mechanism, in which  $[Ca^{2+}]_{ER}$  regulates the  $Ca^{2+}$ permeability in the plasma membrane. The ER  $Ca^{2+}$  transducer of SOCE is STIM1, which senses  $[Ca^{2+}]_{ER}$  and translocates to the subplasmalemmal ER domain to form punctate structures and recruit Orai1 for  $Ca^{2+}$  influx through the plasma membrane. The steady-state  $[Ca^{2+}]_{ER}$  dependence of the amplitude of ionic current carried by SOCE ( $I_{CRAC}$ ) and the subplasmalemmal translocation of STIM1 has been quantified (79).  $I_{CRAC}$  and STIM1 translocation were found to be nonlinear functions of  $[Ca^{2+}]_{ER}$  with a Hill coefficient of ~4 and a  $K_{1/2}$  of ~200  $\mu$ M. This is consistent with the dissociation constant of the Ca<sup>2+</sup>-binding domain (EF-SAM) of STIM1 measured with a  ${}^{45}Ca^{2+}$  binding assay ( $K_d = \sim 250 \mu M$ ) (80). STIM1 deoligomerization for the termination of SOCE is thought to be mediated by ER Ca<sup>2+</sup> refilling (14). Comparisons of the  $[Ca^{2+}]_{ER}$  dependence of STIM1 puncta formation and dissociation have shown that the  $K_{1/2}$  of STIM1 puncta dissociation is lower than that of formation (81,82). However, in these studies, STIM1 dynamics and  $[Ca^{2+}]_{ER}$  had to be measured in separate cells, because both signals were measured using FRET between YFP and CFP. I found that extrinsic expression of STIM1 significantly increases both [Ca<sup>2+</sup>]<sub>cvt</sub> and ER  $Ca^{2+}$  refilling rate during SOCE. Thus, the comparison between cells with and without STIM1 expression requires caution. To circumvent this problem, I simultaneously measured STIM1 puncta formation/dissociation and  $[Ca^{2+}]_{ER}$  in the same cells. Both STIM1 puncta formation and dissociation were highly nonlinear functions of  $[Ca^{2+}]_{ER}$ . Furthermore, the  $K_{1/2}$ of  $[Ca^{2+}]_{ER}$  for puncta dissociation was greater than that for formation (530 and 350  $\mu$ M for dissociation and formation, respectively). These results indicate that the STIM1 deoligomerization process is not a simple reversal reaction of STIM1 oligomerization.

Within neurons the ER forms a continuous network throughout the cell (described as "a neuron within a neuron" (2,83)) that produces slowly-propagating regenerative  $Ca^{2+}$ signals using a conduction system based on IP<sub>3</sub>R and RyR. However, neuronal ER  $Ca^{2+}$ dynamics have previously been estimated only indirectly, by cytosolic  $Ca^{2+}$  imaging. In this study, G-CEPIA1*er* was successfully used to visualize  $Ca^{2+}$  dynamics in the neuronal ER, in response to synaptic inputs to Purkinje cell dendrites in cerebellar slice preparations. Subsequent study using G-CEPIA1*er* indicated that Ca<sup>2+</sup> diffusion within the ER (Ca<sup>2+</sup> tunneling) is critical for the replenishment of ER Ca<sup>2+</sup> after synaptic inputs in cerebellar Purkinje cells (84). Neuronal ER Ca<sup>2+</sup> dynamics are important for physiological functions such as synaptic plasticity (83), but also for pathophysiological states including neurodegenerative diseases (8,85). Thus, the application of CEPIA to intact neurons should provide a new imaging modality to analyze brain function.

Accumulating evidence suggests that  $Ca^{2+}$  dynamics in mitochondria are involved in the regulation of cell physiology and pathology, including autophagy, cell death, ATP synthesis, mitochondrial morphology and neurodegenerative diseases (3,12). Mitochondria constantly undergo fusion and fission for the maintenance of functions (86). Thus, subcellular inhomogeneity in mitochondrial functions is of great importance. Intracellular inhomogeneity in mitochondrial  $Ca^{2+}$  dynamics was first proposed based on mitochondria-targeted aequorin measurements (87), although these measurements did not have spatial resolution, and the inhomogeneity was inferred from the partial consumption of aequorin. Later, mitochondria-targeted GECIs were used to image the subcellular mitochondrial  $Ca^{2+}$  response following agonist-induced ER  $Ca^{2+}$  release (21,22,26). These studies revealed that, after a rapid increase in  $[Ca^{2+}]_{mt}$  in response to agonist stimulation, there is a considerable variation in the decay timecourse among the subpopulation of mitochondria within the cell, and a few minutes after the agonist stimulation only a minor subpopulation of mitochondria retained the increase in  $[Ca^{2+}]_{mt}$  (21,22,26). The results obtained in this study showed that there is considerable intercellular and intracellular inhomogeneity in mitochondrial Ca<sup>2+</sup> responses after agonist-induced Ca<sup>2+</sup> release from the ER through IP<sub>3</sub>Rs, despite the fact that consistent cytosolic  $Ca^{2+}$  increases were observed. These results are consistent with the observation using a small molecular  $Ca^{2+}$  indicator (88). Furthermore, simultaneous  $Ca^{2+}$  imaging of the ER and mitochondria did not show any inhomogeneous ER Ca<sup>2+</sup> release. The inhomogeneity of the resting  $\Psi_m$  did also not correlate with the inhomogeneity of  $Ca^{2+}$  signal. These findings indicate that mitochondrial Ca<sup>2+</sup> responses involve more than simple, passive uptake of cytosolic  $Ca^{2+}$ ; there must be a regulatory mechanism for  $Ca^{2+}$  uptake. One possibility is that recently-identified MCU (3,89,90) and its associate proteins such as mitochondrial calcium uptake 1 (MICU1) (57), Mitochondrial Calcium Uniporter Regulator 1 (MCUR1) (91), MCU regulatory subunit (MCUb) (92), and essential MCU regulator (EMRE) (93) as well as  $H^+/Ca^{2+}$  exchanger,  $Na^+/Ca^{2+}$  exchanger (3) are regulated in a subcellular region-specific manner. Another possibility is that ER-mitochondria tethering proteins such as mitofusin 2 (12) are inhomogeneously distributed allowing region-specific transfer of  $Ca^{2+}$  from the ER to mitochondria at the ER-mitochondrial junction (10,11). Further studies using CEPIA will provide clues to the mechanism coupling between the ER and mitochondria.

I created fifty-eight variants of cfGCaMP2 and studied how their fluorescence intensity related to Ca<sup>2+</sup> levels. This work shed light on the structure-function relationship of CaM-based indicators. Previous studies have reported that highly conserved glutamate residues at -Z position in each EF-hand motif are key determinants of the Ca<sup>2+</sup> sensitivity of CaM-based  $Ca^{2+}$  indicators (15,17,94). Here I further established that the substitution of glutamate with a non-acidic amino acid (E31A or E31Q) reduces not only the Ca<sup>2+</sup> binding affinity but also the dynamic range of the indicator. In contrast, conservative substitutions to aspartate reduced the Ca<sup>2+</sup> binding affinity, while maintaining the dynamic range. In line with this observation, a previous report showed that charge-reversing substitutions (E31K or E67K) resulted in a reduction of the dynamic range of GCaMP (94). These results suggest that the acidic residue in -Z position is not only the key determinant of Ca<sup>2+</sup> binding affinity, but is also important for the efficient conformational change upon  $Ca^{2+}$  binding (62). F92W and D133E substitutions that reduce  $Ca^{2+}$  binding affinity without affecting the dynamic range have been previously reported for proteins possessing CaM-dependent enzymatic activity (61). Combining these two types of substitutions synergistically reduced  $Ca^{2+}$  binding affinity, which led to the generation of CEPIA indicators. This strategy may be applicable for the generation of ER and mitochondrial  $Ca^{2+}$  indicators based on other CaM-based indicators.

Other groups also developed ER-targeted GECIs on the basis of GCaMP or GECO with amino acids substitutions different from CEPIA. ER-LAR-GECO1 was generated by combined strategies of random and site-directed mutagenesis on the CaM-M13 interaction sites in R-GECO1 (34). GCaMPer (10.19) was created by introducing multiple mutations in the Ca<sup>2+</sup> binding sites of GCaMP3 (35). Both indicators are successfully used to detect ER Ca<sup>2+</sup> signals similar with CEPIA. The amino acid substitutions used in these indicators may have a potential to be used for further improvement of CEPIA by combined with mutations in CEPIA library.

In summary, CEPIA-based imaging will contribute to the understanding of intraorganellar dynamics of  $Ca^{2+}$ , and thus to elucidation of the functions of the ER and mitochondria in a variety of cells.

### References

- 1. Berridge, M.J., Lipp, P. & Bootman, M.D. The versatility and universality of calcium signalling. *Nat. Rev. Mol. Cell Biol.* **1**, 11-21 (2000).
- Berridge, M.J., Bootman, M.D. & Lipp, P. Calcium–a life and death signal. *Nature* 395, 645-648 (1998).
- 3. Rizzuto, R., De Stefani, D., Raffaello, A. & Mammucari, C. Mitochondria as sensors and regulators of calcium signalling. *Nat. Rev. Mol. Cell Biol.* **13**, 566-578 (2012).
- Alonso, M.T. & Garcia-Sancho, J. Nuclear Ca<sup>2+</sup> signalling. *Cell Calcium* 49, 280-289 (2011).
- 5. Miyawaki, A. & Niino, Y. Molecular spies for bioimaging—fluorescent protein-based probes. *Mol. Cell* **58**, 632-643 (2015).
- Brini, M. & Carafoli, E. Calcium pumps in health and disease. *Physiol. Rev.* 89, 1341-1378 (2009).
- Berridge, M.J., Bootman, M.D. & Roderick, H.L. Calcium signalling: dynamics, homeostasis and remodelling. *Nat. Rev. Mol. Cell Biol.* 4, 517-529 (2003).
- Mekahli, D., Bultynck, G., Parys, J.B., De Smedt, H. & Missiaen, L.
   Endoplasmic-reticulum calcium depletion and disease. *Cold Spring Harb. Perspect. Biol.* 3 (2011).

- 9. Rowland, A.A. & Voeltz, G.K. Endoplasmic reticulum-mitochondria contacts: function of the junction. *Nat. Rev. Mol. Cell Biol.* **13**, 607-625 (2012).
- Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T.G., Balla, T. & Hajnoczky, G. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. *Mol. Cell* **39**, 121-132 (2010).
- Giacomello, M., Drago, I., Bortolozzi, M., Scorzeto, M., Gianelle, A., Pizzo, P. &
   Pozzan, T. Ca<sup>2+</sup> hot spots on the mitochondrial surface are generated by Ca<sup>2+</sup>
   mobilization from stores, but not by activation of store-operated Ca<sup>2+</sup> channels. *Mol. Cell* 38, 280-290 (2010).
- 12. de Brito, O.M. & Scorrano, L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. *Nature* **456**, 605-610 (2008).
- 13. Hogan, P.G., Lewis, R.S. & Rao, A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. *Annu. Rev. Immunol.* **28**, 491-533 (2010).
- 14. Soboloff, J., Rothberg, B.S., Madesh, M. & Gill, D.L. STIM proteins: dynamic calcium signal transducers. *Nat. Rev. Mol. Cell Biol.* **13**, 549-565 (2012).
- Ishii, K., Hirose, K. & Iino, M. Ca<sup>2+</sup> shuttling between endoplasmic reticulum and mitochondria underlying Ca<sup>2+</sup> oscillations. *EMBO Rep.* 7, 390-396 (2006).
- 16. Palmer, A.E., Qin, Y., Park, J.G. & McCombs, J.E. Design and application of genetically encoded biosensors. *Trends Biotechnol.* **29**, 144-152 (2011).

- Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M. & Tsien,
   R.Y. Fluorescent indicators for Ca<sup>2+</sup> based on green fluorescent proteins and
   calmodulin. *Nature* 388, 882-887 (1997).
- Tang, S., Wong, H.C., Wang, Z.M., Huang, Y., Zou, J., Zhuo, Y., Pennati, A., Gadda,
  G., Delbono, O. & Yang, J.J. Design and application of a class of sensors to monitor
  Ca<sup>2+</sup> dynamics in high Ca<sup>2+</sup> concentration cellular compartments. *Proc. Natl. Acad. Sci. USA* 108, 16265-16270 (2011).
- Rodriguez-Garcia, A., Rojo-Ruiz, J., Navas-Navarro, P., Aulestia, F.J., Gallego-Sandin,
   S., Garcia-Sancho, J. & Alonso, M.T. GAP, an aequorin-based fluorescent indicator
   for imaging Ca<sup>2+</sup> in organelles. *Proc. Natl. Acad. Sci. USA* 111, 2584-2589 (2014).
- Zou, J., Hofer, A.M., Lurtz, M.M., Gadda, G., Ellis, A.L., Chen, N., Huang, Y., Holder, A., Ye, Y., Louis, C.F., Welshhans, K., Rehder, V. & Yang, J.J. Developing sensors for real-time measurement of high Ca<sup>2+</sup> concentrations. *Biochemistry* 46, 12275-12288 (2007).
- Nagai, T., Sawano, A., Park, E.S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca<sup>2+</sup>. *Proc. Natl. Acad. Sci. USA* 98, 3197-3202 (2001).
- Palmer, A.E., Giacomello, M., Kortemme, T., Hires, S.A., Lev-Ram, V., Baker, D. & Tsien, R.Y. Ca<sup>2+</sup> indicators based on computationally redesigned calmodulin-peptide pairs. *Chem. Biol.* 13, 521-530 (2006).

- Palmer, A.E., Jin, C., Reed, J.C. & Tsien, R.Y. Bcl-2-mediated alterations in endoplasmic reticulum Ca<sup>2+</sup> analyzed with an improved genetically encoded fluorescent sensor. *Proc. Natl. Acad. Sci. USA* 101, 17404-17409 (2004).
- Zhao, Y., Araki, S., Wu, J., Teramoto, T., Chang, Y.F., Nakano, M., Abdelfattah, A.S.,
  Fujiwara, M., Ishihara, T., Nagai, T. & Campbell, R.E. An expanded palette of genetically encoded Ca<sup>2+</sup> indicators. *Science* 333, 1888-1891 (2011).
- 25. Rudolf, R., Magalhaes, P.J. & Pozzan, T. Direct in vivo monitoring of sarcoplasmic reticulum Ca<sup>2+</sup> and cytosolic cAMP dynamics in mouse skeletal muscle. *J. Cell Biol.*173, 187-193 (2006).
- Filippin, L., Magalhaes, P.J., Di Benedetto, G., Colella, M. & Pozzan, T. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. *J. Biol. Chem.* 278, 39224-39234 (2003).
- 27. Griesbeck, O., Baird, G.S., Campbell, R.E., Zacharias, D.A. & Tsien, R.Y. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. *J. Biol. Chem.* **276**, 29188-29194 (2001).
- Arnaudeau, S., Kelley, W.L., Walsh, J.V., Jr. & Demaurex, N. Mitochondria recycle
   Ca<sup>2+</sup> to the endoplasmic reticulum and prevent the depletion of neighboring
   endoplasmic reticulum regions. *J. Biol. Chem.* 276, 29430-29439 (2001).

- Filippin, L., Abad, M.C., Gastaldello, S., Magalhaes, P.J., Sandona, D. & Pozzan, T. Improved strategies for the delivery of GFP-based Ca<sup>2+</sup> sensors into the mitochondrial matrix. *Cell Calcium* 37, 129-136 (2005).
- 30. Osibow, K., Malli, R., Kostner, G.M. & Graier, W.F. A new type of non-Ca<sup>2+</sup>-buffering Apo(a)-based fluorescent indicator for intraluminal Ca<sup>2+</sup> in the endoplasmic reticulum.
   *J. Biol. Chem.* 281, 5017-5025 (2006).
- Ravier, M.A., Daro, D., Roma, L.P., Jonas, J.C., Cheng-Xue, R., Schuit, F.C. & Gilon,
  P. Mechanisms of control of the free Ca<sup>2+</sup> concentration in the endoplasmic reticulum of mouse pancreatic beta-cells: interplay with cell metabolism and [Ca<sup>2+</sup>]<sub>c</sub> and role of SERCA2b and SERCA3. *Diabetes* 60, 2533-2545 (2011).
- 32. Ai, H.W., Henderson, J.N., Remington, S.J. & Campbell, R.E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. *Biochem. J.* 400, 531-540 (2006).
- 33. Haviland, S., Cleemann, L., Kettlewell, S., Smith, G.L. & Morad, M. Diversity of mitochondrial Ca<sup>2+</sup> signaling in rat neonatal cardiomyocytes: evidence from a genetically directed Ca<sup>2+</sup> probe, mitycam-E31Q. *Cell Calcium* 56, 133-146 (2014).
- 34. Wu, J., Prole, D.L., Shen, Y., Lin, Z., Gnanasekaran, A., Liu, Y., Chen, L., Zhou, H., Chen, S.R., Usachev, Y.M., Taylor, C.W. & Campbell, R.E. Red fluorescent

genetically encoded Ca<sup>2+</sup> indicators for use in mitochondria and endoplasmic reticulum. *Biochem. J.* **464**, 13-22 (2014).

- 35. Henderson, M.J., Baldwin, H.A., Werley, C.A., Boccardo, S., Whitaker, L.R., Yan, X., Holt, G.T., Schreiter, E.R., Looger, L.L., Cohen, A.E., Kim, D.S. & Harvey, B.K. A Low Affinity GCaMP3 Variant (GCaMPer) for Imaging the Endoplasmic Reticulum Calcium Store. *PloS one* 10, e0139273 (2015).
- 36. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. *Nat. Ptoroc.* **1**, 1057-1065 (2006).
- Zampese, E., Fasolato, C., Kipanyula, M.J., Bortolozzi, M., Pozzan, T. & Pizzo, P.
   Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca<sup>2+</sup> cross-talk. *Proc. Natl. Acad. Sci. USA* 108, 2777-2782 (2011).
- 38. Waldeck-Weiermair, M., Alam, M.R., Khan, M.J., Deak, A.T., Vishnu, N., Karsten, F., Imamura, H., Graier, W.F. & Malli, R. Spatiotemporal correlations between cytosolic and mitochondrial Ca<sup>2+</sup> signals using a novel red-shifted mitochondrial targeted cameleon. *PloS one* 7, e45917 (2012).
- Iguchi, M., Kato, M., Nakai, J., Takeda, T., Matsumoto-Ida, M., Kita, T., Kimura, T. & Akao, M. Direct monitoring of mitochondrial calcium levels in cultured cardiac myocytes using a novel fluorescent indicator protein, GCaMP2-mt. *Int. J. Cardiol.* 158, 225-234 (2012).

- Isshiki, M., Nishimoto, M., Mizuno, R. & Fujita, T. FRET-based sensor analysis reveals caveolae are spatially distinct Ca<sup>2+</sup> stores in endothelial cells. *Cell Calcium* 54, 395-403 (2013).
- Li, H., Wang, X., Zhang, N., Gottipati, M.K., Parpura, V. & Ding, S. Imaging of mitochondrial Ca<sup>2+</sup> dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca<sup>2+</sup> uptake and cytosolic Ca<sup>2+</sup> availability via the endoplasmic reticulum store. *Cell Calcium* 56, 457-466 (2014).
- Logan, C.V., Szabadkai, G., Sharpe, J.A., Parry, D.A., Torelli, S., Childs, A.M., Kriek, M., Phadke, R., Johnson, C.A., Roberts, N.Y., Bonthron, D.T., Pysden, K.A., Whyte, T., Munteanu, I., Foley, A.R., Wheway, G., Szymanska, K., Natarajan, S., Abdelhamed, Z.A., Morgan, J.E., Roper, H., Santen, G.W., Niks, E.H., van der Pol, W.L., Lindhout, D., Raffaello, A., De Stefani, D., den Dunnen, J.T., Sun, Y., Ginjaar, I., Sewry, C.A., Hurles, M., Rizzuto, R., Consortium, U.K., Duchen, M.R., Muntoni, F. & Sheridan, E. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. *Nat. Genet.* 46, 188-193 (2014).
- 43. Lynes, E.M., Raturi, A., Shenkman, M., Ortiz Sandoval, C., Yap, M.C., Wu, J.,
  Janowicz, A., Myhill, N., Benson, M.D., Campbell, R.E., Berthiaume, L.G.,
  Lederkremer, G.Z. & Simmen, T. Palmitoylation is the switch that assigns calnexin to
  quality control or ER Ca<sup>2+</sup> signaling. *J. Cell Sci.* **126**, 3893-3903 (2013).

- 44. Frieden, M., James, D., Castelbou, C., Danckaert, A., Martinou, J.C. & Demaurex, N.
   Ca<sup>2+</sup> homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. *J. Biol. Chem.* 279, 22704-22714 (2004).
- 45. Kettlewell, S., Cabrero, P., Nicklin, S.A., Dow, J.A., Davies, S. & Smith, G.L.
  Changes of intra-mitochondrial Ca<sup>2+</sup> in adult ventricular cardiomyocytes examined using a novel fluorescent Ca<sup>2+</sup> indicator targeted to mitochondria. *J. Mol. Cell. Cardiol.*46, 891-901 (2009).
- 46. Chang, K.T., Niescier, R.F. & Min, K.T. Mitochondrial matrix Ca<sup>2+</sup> as an intrinsic signal regulating mitochondrial motility in axons. *Proc. Natl. Acad. Sci. USA* 108, 15456-15461 (2011).
- Waldeck-Weiermair, M., Bischof, H., Blass, S., Deak, A.T., Klec, C., Graier, T., Roller, C., Rost, R., Eroglu, E., Gottschalk, B., Hofmann, N.A., Graier, W.F. & Malli, R.
  Generation of Red-Shifted Cameleons for Imaging Ca<sup>2+</sup> Dynamics of the Endoplasmic Reticulum. *Sensors (Basel)* 15, 13052-13068 (2015).
- Tsai, F.C., Seki, A., Yang, H.W., Hayer, A., Carrasco, S., Malmersjo, S. & Meyer, T. A polarized Ca<sup>2+</sup>, diacylglycerol and STIM1 signalling system regulates directed cell migration. *Nat. Cell Biol.* 16, 133-144 (2014).
- 49. Bonora, M., Giorgi, C., Bononi, A., Marchi, S., Patergnani, S., Rimessi, A., Rizzuto, R.
  & Pinton, P. Subcellular calcium measurements in mammalian cells using jellyfish photoprotein aequorin-based probes. *Nat. Ptoroc.* 8, 2105-2118 (2013).

- 50. Carlson, H.J. & Campbell, R.E. Genetically encoded FRET-based biosensors for multiparameter fluorescence imaging. *Curr. Opin. Biotechnol.* **20**, 19-27 (2009).
- 51. Wier, W.G., Rizzo, M.A., Raina, H. & Zacharia, J. A technique for simultaneous measurement of Ca<sup>2+</sup>, FRET fluorescence and force in intact mouse small arteries. *J. Physiol.* 586, 2437-2443 (2008).
- Poburko, D., Santo-Domingo, J. & Demaurex, N. Dynamic regulation of the mitochondrial proton gradient during cytosolic calcium elevations. *J. Biol. Chem.* 286, 11672-11684 (2011).
- 53. Baba, Y., Hayashi, K., Fujii, Y., Mizushima, A., Watarai, H., Wakamori, M., Numaga, T., Mori, Y., Iino, M., Hikida, M. & Kurosaki, T. Coupling of STIM1 to store-operated Ca<sup>2+</sup> entry through its constitutive and inducible movement in the endoplasmic reticulum. *Proc. Natl. Acad. Sci. USA* 103, 16704-16709 (2006).
- 54. Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca<sup>2+</sup> with quin2. *Methods Enzymol.* 172, 230-262 (1989).
- Casey, J.R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH.
   *Nat. Rev. Mol. Cell Biol.* 11, 50-61 (2010).
- 56. Kanemaru, K., Okubo, Y., Hirose, K. & Iino, M. Regulation of neurite growth by spontaneous Ca<sup>2+</sup> oscillations in astrocytes. *J. Neurosci.* **27**, 8957-8966 (2007).

- 57. Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E. & Mootha, V.K. MICU1 encodes a mitochondrial EF hand protein required for Ca<sup>2+</sup> uptake. *Nature* 467, 291-296 (2010).
- 58. Kneen, M., Farinas, J., Li, Y. & Verkman, A.S. Green fluorescent protein as a noninvasive intracellular pH indicator. *Biophys. J.* **74**, 1591-1599 (1998).
- Brandman, O., Liou, J., Park, W.S. & Meyer, T. STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca<sup>2+</sup> levels. *Cell* 131, 1327-1339 (2007).
- Edwards, F.A., Konnerth, A., Sakmann, B. & Takahashi, T. A thin slice preparation for patch clamp recordings from neurones of the mammalian central nervous system.
   *Pflugers Arch.* 414, 600-612 (1989).
- 61. Wu, X. & Reid, R.E. Conservative D133E mutation of calmodulin site IV drastically alters calcium binding and phosphodiesterase regulation. *Biochemistry* 36, 3608-3616 (1997).
- 62. Yang, J.J., Gawthrop, A. & Ye, Y. Obtaining site-specific calcium-binding affinities of calmodulin. *Protein Peptide Lett.* **10**, 331-345 (2003).
- 63. Alford, S.C., Ding, Y., Simmen, T. & Campbell, R.E. Dimerization-dependent green and yellow fluorescent proteins. *ACS Synth. Biol.* **1**, 569-575 (2012).
- 64. Calloway, N., Vig, M., Kinet, J.P., Holowka, D. & Baird, B. Molecular clustering of STIM1 with Orai1/CRACM1 at the plasma membrane depends dynamically on

depletion of Ca<sup>2+</sup> stores and on electrostatic interactions. *Mol. Biol. Cell* **20**, 389-399 (2009).

- Miyawaki, A., Griesbeck, O., Heim, R. & Tsien, R.Y. Dynamic and quantitative Ca<sup>2+</sup> measurements using improved cameleons. *Proc. Natl. Acad. Sci. USA* 96, 2135-2140 (1999).
- 66. Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N. & Krause, K.H. Bcl-2 decreases the free Ca<sup>2+</sup> concentration within the endoplasmic reticulum. *Proc. Natl. Acad. Sci. USA* 97, 5723-5728 (2000).
- 67. Bootman, M.D., Berridge, M.J. & Lipp, P. Cooking with calcium: the recipes for composing global signals from elementary events. *Cell* **91**, 367-373 (1997).
- Okubo, Y., Kakizawa, S., Hirose, K. & Iino, M. Cross talk between metabotropic and ionotropic glutamate receptor-mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. *J. Neurosci.* 24, 9513-9520 (2004).
- 69. Grimaldi, M. Astrocytes refill intracellular Ca<sup>2+</sup> stores in the absence of cytoplasmic [Ca<sup>2+</sup>] elevation: a functional rather than a structural ability. *J. Neurosci. Res.* 84, 1738-1749 (2006).
- 70. Hofer, A.M., Landolfi, B., Debellis, L., Pozzan, T. & Curci, S. Free [Ca<sup>2+</sup>] dynamics measured in agonist-sensitive stores of single living intact cells: a new look at the refilling process. *EMBO J.* **17**, 1986-1995 (1998).

- 71. Zhang, S.L., Yeromin, A.V., Hu, J., Amcheslavsky, A., Zheng, H. & Cahalan, M.D.
  Mutations in Orai1 transmembrane segment 1 cause STIM1-independent activation of
  Orai1 channels at glycine 98 and channel closure at arginine 91. *Proc. Natl. Acad. Sci.*USA 108, 17838-17843 (2011).
- 72. Cahalan, M.D. STIMulating store-operated Ca<sup>2+</sup> entry. *Nat. Cell Biol.* 11, 669-677 (2009).
- Montero, M., Alonso, M.T., Carnicero, E., Cuchillo-Ibanez, I., Albillos, A., Garcia, A.G., Garcia-Sancho, J. & Alvarez, J. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca<sup>2+</sup> transients that modulate secretion. *Nat. Cell Biol.* 2, 57-61 (2000).
- 74. Santo-Domingo, J., Giacomello, M., Poburko, D., Scorrano, L. & Demaurex, N. OPA1 promotes pH flashes that spread between contiguous mitochondria without matrix protein exchange. *EMBO J.* **32**, 1927-1940 (2013).
- 75. Buckman, J.F. & Reynolds, I.J. Spontaneous changes in mitochondrial membrane potential in cultured neurons. *J. Neurosci.* **21**, 5054-5065 (2001).
- Collins, T.J., Berridge, M.J., Lipp, P. & Bootman, M.D. Mitochondria are morphologically and functionally heterogeneous within cells. *EMBO J.* 21, 1616-1627 (2002).
- Murayama, T., Kurebayashi, N., Yamazawa, T., Oyamada, H., Suzuki, J., Kanemaru,K., Oguchi, K., Iino, M. & Sakurai, T. Divergent Activity Profiles of Type 1

Ryanodine Receptor Channels Carrying Malignant Hyperthermia and Central Core Disease Mutations in the Amino-Terminal Region. *PloS one* **10**, e0130606 (2015).

- 78. Lewis, R.S. Store-operated calcium channels: new perspectives on mechanism and function. *Cold Spring Harb. Perspect. Biol.* **3** (2011).
- Luik, R.M., Wang, B., Prakriya, M., Wu, M.M. & Lewis, R.S. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. *Nature* 454, 538-542 (2008).
- Stathopulos, P.B., Zheng, L., Li, G.Y., Plevin, M.J. & Ikura, M. Structural and mechanistic insights into STIM1-mediated initiation of store-operated calcium entry. *Cell* 135, 110-122 (2008).
- Malli, R., Naghdi, S., Romanin, C. & Graier, W.F. Cytosolic Ca<sup>2+</sup> prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca<sup>2+</sup> overload. *J. Cell Sci.* 121, 3133-3139 (2008).
- 82. Shen, W.W., Frieden, M. & Demaurex, N. Local cytosolic Ca<sup>2+</sup> elevations are required for stromal interaction molecule 1 (STIM1) de-oligomerization and termination of store-operated Ca<sup>2+</sup> entry. *J. Biol. Chem.* **286**, 36448-36459 (2011).
- Ross, W.N. Understanding calcium waves and sparks in central neurons. *Nat. Rev. Neurosci.* 13, 157-168 (2012).

- 84. Okubo, Y., Suzuki, J., Kanemaru, K., Nakamura, N., Shibata, T. & Iino, M.
   Visualization of Ca<sup>2+</sup> Filling Mechanisms upon Synaptic Inputs in the Endoplasmic Reticulum of Cerebellar Purkinje Cells. *J. Neurosci.* 35, 15837-15846 (2015).
- 85. Stutzmann, G.E. & Mattson, M.P. Endoplasmic reticulum Ca<sup>2+</sup> handling in excitable cells in health and disease. *Pharmacol. Rev.* **63**, 700-727 (2011).
- Westermann, B. Mitochondrial fusion and fission in cell life and death. *Nat. Rev. Mol. Cell Biol.* 11, 872-884 (2010).
- 87. Rizzuto, R., Bastianutto, C., Brini, M., Murgia, M. & Pozzan, T. Mitochondrial Ca<sup>2+</sup>
  homeostasis in intact cells. *J. Cell Biol.* **126**, 1183-1194 (1994).
- 88. Collins, T.J., Lipp, P., Berridge, M.J. & Bootman, M.D. Mitochondrial Ca<sup>2+</sup> uptake depends on the spatial and temporal profile of cytosolic Ca<sup>2+</sup> signals. *J. Biol. Chem.*276, 26411-26420 (2001).
- Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme, C.A.,
  Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., Koteliansky, V.
  & Mootha, V.K. Integrative genomics identifies MCU as an essential component of
  the mitochondrial calcium uniporter. *Nature* 476, 341-345 (2011).
- 90. De Stefani, D., Raffaello, A., Teardo, E., Szabo, I. & Rizzuto, R. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. *Nature* 476, 336-340 (2011).

- 91. Mallilankaraman, K., Cardenas, C., Doonan, P.J., Chandramoorthy, H.C., Irrinki, K.M., Golenar, T., Csordas, G., Madireddi, P., Yang, J., Muller, M., Miller, R., Kolesar, J.E., Molgo, J., Kaufman, B., Hajnoczky, G., Foskett, J.K. & Madesh, M. MCUR1 is an essential component of mitochondrial Ca<sup>2+</sup> uptake that regulates cellular metabolism. *Nat. Cell Biol.* 14, 1336-1343 (2012).
- 92. Raffaello, A., De Stefani, D., Sabbadin, D., Teardo, E., Merli, G., Picard, A.,
  Checchetto, V., Moro, S., Szabo, I. & Rizzuto, R. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. *EMBO J.* 32, 2362-2376 (2013).
- 93. Sancak, Y., Markhard, A.L., Kitami, T., Kovacs-Bogdan, E., Kamer, K.J., Udeshi,
  N.D., Carr, S.A., Chaudhuri, D., Clapham, D.E., Li, A.A., Calvo, S.E., Goldberger, O.
  & Mootha, V.K. EMRE is an essential component of the mitochondrial calcium
  uniporter complex. *Science* 342, 1379-1382 (2013).
- 94. Ohkura, M., Matsuzaki, M., Kasai, H., Imoto, K. & Nakai, J. Genetically encoded bright Ca<sup>2+</sup> probe applicable for dynamic Ca<sup>2+</sup> imaging of dendritic spines. *Anal. Chem.* 77, 5861-5869 (2005).

### Acknowledgements

Foremost, I would like to express my gratitude to my advisor, Prof. Masamitsu lino for the continuous support and kind encouragement throughout my Ph.D. study. Besides my advisor, I am grateful to Dr. Kazunori Kanemaru and Dr. Yohei Okubo for their constructive comments and continuous support on my work. Also I would like to express my thanks to my laboratory colleagues for their technical support and stimulating discussion. I thank the following researchers for providing the plasmid vectors: Dr. Daisuke Ino for pCIS and MCU; Dr. Masamichi Ohkura and Dr. Kuniaki Ishii for cfGCaMP2; Dr. Takeharu Nagai for G-GECO1.1, R-GECO1 and GEM-GECO1; and Dr. Roger Tsien for D1ER. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Takeda Science Foundation. Most part of the work in this thesis has been published in *Nature Communications* (doi: 10.1038/ncomms5153) or in *The Journal of Neuroscience* (doi: 10.1523/JNEUROSCI.3487-15.2015).

### **Figure Legends**

### Figure 1. Construction of CEPIA1er.

(a) Scatter chart of cfGCaMP2 variants with respect to Ca<sup>2+</sup> affinity ( $K_d$ ) and dynamic range ( $F_{max}/F_{min}$ ). Introduced amino acid substitutions are categorized by color: original cfGCaMP2 (black), substitutions of previously reported ER Ca<sup>2+</sup> indicators (gray, green and light green), a substitution at single –*Z* position (cyan), substitutions in multiple –*Z* positions (blue), substitutions at F92W and/or D133E (orange), combinational substitutions at –*Z* positions and F92W/D133E (magenta). Data point for CEPIA1*er* is indicated by an arrow. Putative range of Ca<sup>2+</sup> concentration in the ER is indicated (gray box).

(**b**) In vitro  $Ca^{2+}$  titration curves of the recombinant proteins of the original cfGCaMP2 (black) and its variants (gray or green, n = 58). For clarity, only the fitted Hill plot curves were shown except for CEPIA1*er*. Putative ranges of  $Ca^{2+}$  concentration in the cytosol and ER are indicated (gray boxes).

(c) Schematic domain structure of CEPIA1*er*. Four amino acid substitutions (E31D, F92W, E104D and D133E) were introduced to the CaM of cfGCaMP2 (black). ER signal sequence from immunoglobulin heavy-chain variable regions of the mouse and ER retention signal (SEKDEL) were attached at the N and C termini, respectively (gray).

(d) Subcellular distribution of CEPIA1*er* and ER-targeted mCherry (with calreticulin signal sequence) in a HeLa cell. Note that the ER-signal sequence in CEPIA1*er* is different from that of mCherry-*er*. The images within the white boxes were expanded.

(e) ER  $Ca^{2+}$  depletion induced by 3 µM thapsigargin in HeLa cells visualized with CEPIA1*er*. The fluorescence intensity was normalized by the resting value. Representative trace of 20 cells.

(f) Oscillatory ER  $Ca^{2+}$  dynamics in response to 10  $\mu$ M histamine stimulation in HeLa cells visualized with CEPIA1*er*. The fluorescence intensity was normalized by the resting value. Representative trace of 49 cells.

### Figure 2. Characterization of CEPIAer.

(a) In vitro Ca<sup>2+</sup> titration curves of CEPIA1*er* (black solid), G-CEPIA1*er* (green solid),
R-CEPIA1*er* (magenta solid), GEM-CEPIA1*er* (blue solid) compared with cfGCaMP2 (black dotted), G-GECO1.1 (green dotted), R-GECO1 (magenta dotted), GEM-GECO1 (blue dotted) and D1ER (orange). Fitted Hill plot curves are shown. Putative ranges of Ca<sup>2+</sup> concentration in the cytosol and ER are indicated (gray boxes).

(**b**–**d**) Representative images of HeLa cells expressing G-CEPIA1*er* (**b**), R-CEPIA1*er* (**c**) or GEM-CEPIA1*er* (**b**). Images were compared with the co-expressed ER-targeted mCherry (**b** and **d**) or EGFP (**c**), which were targeted to the ER with calreticulin signal sequence and ER

retention signal. Note that the ER signal sequence in CEPIAer is different from that of mCherry-er and EGFP-er. The images within the white boxes were expanded.

# Figure 3. Comparison of amino acid sequences in the CaM domains of CEPIA*er* with those of GCaMP2, cfGCaMP2 and GECOs.

CaM domains of GCaMP2, cfGCaMP2, CEPIA1*er*, G-GECO1.1, G-CEPIA1*er*, R-GECO1, R-CEPIA1*er*, GEM-GECO1 and GEM-CEPIA1*er* were described. The gray boxes indicate the four Ca<sup>2+</sup> binding loops in the CaM. Amino acids substituted from GCaMP2 are highlighted with colors (magenta, substitutions at –*Z* positions of Ca<sup>2+</sup> binding loops; orange, F92W or D133E substitutions; blue, substitutions to generate cfGCaMP2; green, substitutions to generate GECOs).

### Figure 4. Genealogy of CEPIA variants.

CEPIA1*er*, CEPIA3*mt* and CEPIA4*mt* were generated by introducing amino acid substitutions into the CaM domain of cfGCaMP2. G-CEPIA1*er* was generated by replacing the CaM domain of G-GECO1.1 with that of CEPIA1*er*. For the generation of R-CEPIA1*er*, the CaM domain of R-GECO1 was first replaced with those of cfGCaMP2 variants, and subsequently amino acid substitutions were introduced into the CaM domains of the R-GECO1 variants. GEM-CEPIA1*er* was created by introducing amino acid substitutions into the CaM domain of GEM-GECO1.

### Figure 5. Spectral properties of CEPIAer.

(a) Spectral titration curves of CEPIAer at various Ca<sup>2+</sup> concentrations. The fluorescence intensity was normalized by the maximum intensity. For emission spectra, G-CEPIA1er, R-CEPIA1er and GEM-CEPIA1er were excited at 488, 562 and 395 nm, respectively. For excitation spectra, fluorescence intensity at 512 and 584 nm was obtained for G-CEPIA1er and R-CEPIA1er, respectively, and at 460 and 510 nm for GEM-CEPIA1er.
(b) Absorbance spectra of CEPIAer (upper panels) and original GECO (lower panels) in

 $Ca^{2+}$ -containing (5 mM, magenta) or  $Ca^{2+}$ -free (1 mM EGTA, black) solution.

### Figure 6. In vitro properties of CEPIAer.

(a) pH titration curves of CEPIA*er*. The fluorescence intensity or ratio was normalized within the maximum and minimum values.  $pK_a$  was evaluated by the pH titration in Ca<sup>2+</sup>-containing (magenta) or Ca<sup>2+</sup>-free (black) solution. The plots of G-CEPIA1*er*, G-GECO1.1 and R-GECO1 were fitted by a single Hill plot equation. The plots of R-CEPIA1*er*, GEM-CEPIA1*er* and GEM-GECO1 were fitted by a double Hill plot equation. All the extracted parameters are summarized in Table 2.

(**b**)  $Mg^{2+}$  titration curves of CEPIA*er* (magenta) compared with  $Ca^{2+}$  titration curves (black). The fluorescence intensity was normalized by the values in  $Mg^{2+}$  and  $Ca^{2+}$  free solution. (c)  $Ca^{2+}$  titration of G-CEPIA1*er* (green), R-CEPIA1*er* (magenta) and GEM-CEPIA1*er* (blue) plotted against linear  $[Ca^{2+}]_{ER}$  scale. Fitted Hill plot curves are also shown. Putative range of  $Ca^{2+}$  concentration in the ER is indicated (gray box).

(d)  $Ca^{2+}$  titration of CEPIA2–4*mt* plotted against linear  $Ca^{2+}$  concentration scale. Fitted Hill plot curves are also shown.

# Figure 7. Visualization of ER Ca<sup>2+</sup> dynamics using CEPIAer.

(a) Comparison of the responses of CEPIA1*er*, G-CEPIA1*er*, R-CEPIA1*er*, GEM-CEPIA1*er* and D1ER to thapsigargin (3  $\mu$ M)-induced depletion of ER Ca<sup>2+</sup> in HeLa cells (mean  $\pm$  s.e.m., 12–31 cells; \*\*\*, *P* < 0.001). Amplitude is defined as the extent of maximum decrease in the fluorescence intensity or ratio after thapsigargin application normalized by the resting value ( $\Delta F/F_0$  or  $\Delta R/R_0$ ). For comparison, the response of CEPIA1*er* displayed in Figure 1e is shown (gray).

(b) ER  $Ca^{2+}$  dynamics in response to histamine (10  $\mu$ M) measured with CEPIA1*er*,

G-CEPIA1*er*, R-CEPIA1*er*, GEM-CEPIA1*er* and D1ER (mean  $\pm$  s.e.m., 14–103 cells; \*\*\*, *P* < 0.001). Amplitude is defined as the maximum decrease in  $\Delta F/F_0$  or  $\Delta R/R_0$  within 30-s time window after histamine application. For comparison, the response of CEPIA1*er* displayed in Figure 1f is shown (gray).

(c) Representative traces of the histamine-induced ER  $Ca^{2+}$  dynamics visualized with GEM-CEPIA1*er* in HeLa cells. Absolute  $[Ca^{2+}]_{ER}$  (upper) was estimated from the ratio of the green to blue fluorescence intensities (middle and bottom).

(d) Cell type-specific variations of absolute  $[Ca^{2+}]_{ER}$  measured with GEM-CEPIA1*er*. Box plots for  $[Ca^{2+}]_{ER}$  in a variety of cell types before and after agonist stimulation (10  $\mu$ M histamine for HeLa cells, 30  $\mu$ M ATP for HEK cells and cultured astrocytes, and 100 nM bradykinin for BHK cells; 4–19 cells) were shown.  $[Ca^{2+}]_{ER}$  after agonist stimulation indicated the minimum value reached within 30 s after agonist application. The horizontal line within the box represents the median value, the upper and lower edges of the box represent 75% and 25% values and the whiskers represent the total range.

## Figure 8. in situ Ca<sup>2+</sup> titration of CEPIAer.

(**a** and **b**) To determine the Ca<sup>2+</sup> affinity of CEPIA*er* within the ER, HeLa cells expressing one of CEPIA*er* (G-CEPIA1*er*, R-CEPIA1*er* or GEM-CEPIA1*er*) were permeabilized with 150  $\mu$ M  $\beta$ -escin in a solution containing 3  $\mu$ M thapsigargin and 3  $\mu$ M ionomycin. Then Ca<sup>2+</sup> concentration in the bathing solution was increased in a stepwise manner. Plots are fitted with a Hill equation. For comparison, the in vitro properties of CEPIA*er* displayed in Table 2 are shown.

#### Figure 9. CEPIAer responses are independent of ER pH dynamics.

(a) Representative images of HeLa cells expressing EYFP-*er* (upper), R-CEPIA1*er* (middle) and the merged image (lower). The images within the white boxes were expanded.

(**b**) Simultaneous measurement of EYFP-*er* (green) and R-CEPIA1*er* (gray) in HeLa cells stimulated with 10 μM histamine.

(c) pH-dependent change of EYFP-*er* fluorescence intensity in HeLa cells. The cells were first bathed in an acidic solution (pH 6.8) containing monensin (10  $\mu$ M) and nigericin (10  $\mu$ M), and subsequently in an alkalinization solution (30 mM NH<sub>4</sub>Cl).

(d) Summary of EYFP-*er* and R-CEPIA1*er* responses (mean ± s.e.m., 14 cells).

(e) Dendrites of EYFP-*er*-expressing Purkinje cells. The magenta circle (10  $\mu$ m diameter, under the stimulation pipette) indicates the region of interest for panel **f**.

(**f**) The time course of fluorescence intensity change of EYFP-*er* (green) upon PF inputs (ten stimuli at 100 Hz, gray vertical line). For comparison, the fluorescence intensity change of G-CEPIA1*er* displayed in Figure 11b is shown (gray).

(g) Summary of PF-induced responses of G-CEPIA1*er* and EYFP-*er*. Amplitude is defined as the maximum decrease in  $\Delta F/F_0$  within the 3-s time window after PF stimulation (mean ± s.e.m., eight cells for both G-CEPIA1*er* and EYFP-*er*).

### Figure 10. Wave-like propagation of ER Ca<sup>2+</sup> release visualized with G-CEPIA1*er*.

(a) Time-lapse images of wave-like decrease in the ER  $Ca^{2+}$  concentration visualized with G-CEPIA1*er*. Perfusion of 10  $\mu$ M histamine was started at 0 s.

(**b**) Time course of ER  $Ca^{2+}$  dynamics along the white line in **a**.

(c) Comparison of ER  $Ca^{2+}$  dynamics in two regions of interest indicated in **a**. The

fluorescence intensity was normalized by the initial intensity. Black line: region 1; green line: region 2.

(d) The velocity of ER Ca<sup>2+</sup> wave measured with G-CEPIA1*er* (mean  $\pm$  s.e.m., 23 cells) or R-CEPIA1*er* (20 cells). For comparison, the velocity of cytosolic Ca<sup>2+</sup> wave measured with fluo-4 in cells without (Fluo-4; eight cells) or with R-CEPIA1*er* expression (Fluo-4 + R-CEPIA1*er*; six cells). There was no significant statistical difference among these values (*P* = 0.93, one-way ANOVA).

# Figure 11. Activity-dependent ER Ca<sup>2+</sup> dynamics in cerebellar Purkinje cells visualized with G-CEPIA1*er*.

(a) Representative images of G-CEPIA1*er*-expressing Purkinje cells in the cerebellar slice. (b) PF-induced ER Ca<sup>2+</sup> dynamics in the dendrites of Purkinje cells. Representative time course of mean  $\Delta F/F_0$  within the white circle (indicated in the left image) indicates fluorescence decrease upon PF inputs (ten stimuli at 100 Hz, gray vertical line). The pseudo-color image that is the average of 10 consecutive frames (indicated as magenta in the time course of  $\Delta F/F_0$ ) shows local dynamics of luminal Ca<sup>2+</sup>.

(c) PF-induced response in a single spine of Purkinje cells. Representative time course of  $\Delta F/F_0$  within a spine indicated by the arrow. PF inputs (ten stimuli at 100 Hz, gray vertical line) elicited ER Ca<sup>2+</sup> release within the spine.

(d) Pharmacological characterization of PF-induced ER Ca<sup>2+</sup> dynamics. G-CEPIA1*er* responses are shown upon PF inputs (five stimuli at 100 Hz, gray vertical line) in the control condition (black); in the presence of LY367385 (100  $\mu$ M, blue) or NBQX (10  $\mu$ M, magenta); or after the ER Ca<sup>2+</sup> depletion with CPA (50  $\mu$ M, orange).

(e) Summary of PF-induced ER Ca<sup>2+</sup> dynamics. Amplitude is defined as the maximum decrease in  $\Delta F/F_0$  within the 3-s time window after PF stimulation (mean ± s.e.m., 7–12 cells).

(f) CPA-induced ER Ca<sup>2+</sup> depletion. The application of 50  $\mu$ M CPA decreased G-CEPIA1*er* fluorescence with the  $\Delta F/F_0$  amplitude of 0.43  $\pm$  0.021 (mean  $\pm$  s.e.m., six cells).

# Figure 12. Simultaneous measurement of $Ca^{2+}$ signals in the ER and cytosol using CEPIA*er* and cytosolic $Ca^{2+}$ indicators.

(**a** and **b**) Simultaneous measurement of  $Ca^{2+}$  signals in the ER (G-CEPIA1*er* or R-CEPIA1*er*) and cytosol (fura-2) in HeLa cells stimulated with 10  $\mu$ M histamine.

(**c**–**f**) Simultaneous Ca<sup>2+</sup> imaging in the ER (G-CEPIA1*er* or GEM-CEPIA1*er*) and cytosol (R-GECO1) in a HeLa cell (**c**), an astrocyte (**d**), a BHK cell (**e**) or a HEK293A cell (**f**), stimulated with 10  $\mu$ M histamine (**c**), 30  $\mu$ M ATP (**d** and **f**) or 100 nM bradykinin (**e**), respectively.

(g and h) Simultaneous Ca<sup>2+</sup> imaging in the ER (R-CEPIA1*er*) and cytosol using G-GECO1.1
(g) or GEM-GECO1 (h) in HeLa cells stimulated with 10 μM histamine.

#### Figure 13. Evaluation of bleed-through of CEPIA, GECO and fura-2.

(a) Representative traces of fluorescence intensity changes in response to histamine
application at six pairs of excitation and emission wavelengths (472/520, 562/641, 377/466, 377/520, 340/510 and 365/510 nm) in HeLa cells expressing one of the genetically encoded indicators or loaded with fura-2. Autofluorescence was subtracted.

(**b**) Comparisons of the resting and agonist-induced peak fura-2 ratios among the cells expressing G-CEPIA1*er* (green; mean  $\pm$  s.e.m., 18 cells), R-CEPIA1*er* (magenta; 25 cells), CEPIA2*mt* (light green; 16 cells) and cells without CEPIA expression (gray; 68 cells). There were no significant differences in the resting and peak fura-2 ratios. *P* = 0.51 and 0.40, one-way ANOVA.

# Figure 14. Visualization of ER and cytosolic Ca<sup>2+</sup> dynamics during store-operated Ca<sup>2+</sup> entry (SOCE).

(**a** and **b**)  $Ca^{2+}$  dynamics in the ER (lower panels) and cytosol (upper panels) during SOCE. After histamine (10 µM)-induced  $Ca^{2+}$  release in the absence of extracellular  $Ca^{2+}$ , SOCE was induced by "Ca<sup>2+</sup> add back", the reintroduction of  $Ca^{2+}$  in the extracellular solution (black). To evaluate the contribution of SERCA-dependent  $Ca^{2+}$  uptake by the ER, CPA was applied as indicated to the extracellular solution (**a**, magenta). The ER  $Ca^{2+}$  refilling was inhibited by  $Gd^{3+}$  (10 µM), an inhibitor of Orai1, during "Ca<sup>2+</sup> add back" (**b**, magenta).

(c) Magnified  $[Ca^{2+}]_{cyt}$  traces during "Ca<sup>2+</sup> add back" in the upper panel of **b**.

(d) Changes in the ER Ca<sup>2+</sup> refilling rate and  $[Ca^{2+}]_{cyt}$  in response to "Ca<sup>2+</sup> add back" with or without Gd<sup>3+</sup> application. Left, the slope of linear fitting to the G-CEPIA1*er* fluorescence change during the intervals  $T_1$  to  $T_3$  in **b** (lower panel) was obtained, and the indicated differences are shown. Right, the average  $[Ca^{2+}]_{cyt}$  during the intervals  $T_1$  to  $T_3$  in **b** (upper panel) and **c** was obtained, and the indicated differences are shown (mean ± s.e.m., 35 cells for control and 42 cells for Gd<sup>3+</sup>; \*\*\*, P < 0.001.)

(e) Time courses of cytosolic (upper panel) and ER (lower panel)  $Ca^{2+}$  responses to thapsigargin (3  $\mu$ M) treatment in HeLa cells in the absence of extracellular  $Ca^{2+}$ , and to subsequent " $Ca^{2+}$  add back" in the extracellular solution.

(**f**) Time courses of cytosolic (upper panel) and ER (lower panel)  $Ca^{2+}$  responses to anti-human CD3 $\epsilon$  monoclonal antibody (1 µg/ml, R&D systems, USA) treatment in Jurkat T cells in the absence of extracellular  $Ca^{2+}$ , and to subsequent " $Ca^{2+}$  add back" in the extracellular solution.

# Figure 15. Simultaneous imaging of STIM1 localization and Ca<sup>2+</sup> concentration in the ER and cytosol.

(a) Simultaneous imaging of STIM1 dynamics, ER Ca<sup>2+</sup> level and cytosolic Ca<sup>2+</sup> concentration using mCherry-STIM1, G-CEPIA1*er* and fura-2, respectively. Time courses of cytosolic Ca<sup>2+</sup> concentration (blue), ER Ca<sup>2+</sup> dynamics (green) and the number of mCherry-STIM1 puncta normalized with the minimum and maximum (magenta). As  $[Ca^{2+}]_{ER}$  was depleted with histamine stimulation in the Ca<sup>2+</sup>-free solution, mCherry-STIM1 formed puncta. After Ca<sup>2+</sup> addback in the external solution,  $[Ca^{2+}]_{ER}$  gradually recovered and mCherry-STIM1 puncta disappeared. The slope of linear fitting to the G-CEPIA1*er* fluorescence change and the average  $[Ca^{2+}]_{cyt}$  change during the time interval between  $T_1$  to  $T_2$  (shown in **a**) were calculated.

(**b**) The images of fura-2 (upper), G-CEPIA1*er* (middle) and mCherry-STIM1 (lower) at four time points indicated in **a** as gray dotted lines. The expanded images of mCherry-STIM1within the white boxes were shown.

(c) The normalized number of mCherry-STIM1 puncta was plotted against normalized G-CEPIA1*er* fluorescence ( $F/F_0$ ) during puncta formation (black) and dissociation (magenta). The relationship between  $[Ca^{2+}]_{ER}$  and puncta formation can be fitted by a Hill equation with

a Hill coefficient of 8.7 ± 1.1 and a  $K_{1/2}$  of 0.37 ± 1.1 for puncta formation, and 6.8 ± 0.6 and 0.60 ± 0.04 for puncta dissociation (mean ± s.e.m., six cells).

(d) Comparison of the ER Ca<sup>2+</sup> refilling rate and  $[Ca^{2+}]_{cyt}$  in response to "Ca<sup>2+</sup> add back" between STIM1-expressing cells and control cells. Left, the slope of linear fitting to the G-CEPIA1*er* fluorescence change during the time interval between  $T_1$  to  $T_2$  in **a** (middle panel) was shown. Right, the average  $[Ca^{2+}]_{cyt}$  change during the time interval between  $T_1$  to  $T_2$  in **a** (upper panel) was shown. Mean  $\pm$  s.e.m., 35 cells for control and six cells for STIM1-expressing cells; \*\*\*, P < 0.001.

# Figure 16. Simultaneous imaging of STIM1 localization and absolute ER Ca<sup>2+</sup> concentration.

(a) The images of GEM-CEPIA1*er* (upper) and mCherry-STIM1 (middle) at three time points indicated in **b** as gray dotted lines ( $T_1$ ,  $T_2$  and  $T_3$ ). The expanded images of mCherry-STIM1 within the white boxes were shown in the lower panels.

(**b**) Time courses of ER Ca<sup>2+</sup> concentration (blue) and the number of mCherry-STIM1 puncta normalized with the minimum and maximum (magenta). As  $[Ca^{2+}]_{ER}$  was depleted with histamine stimulation in the Ca<sup>2+</sup>-free solution, mCherry-STIM1 formed puncta ( $T_2$ ). After Ca<sup>2+</sup> addback in the external solution,  $[Ca^{2+}]_{ER}$  gradually recovered and mCherry-STIM1 puncta disappeared ( $T_3$ ).

(c) The normalized number of mCherry-STIM1 puncta was plotted against ER Ca<sup>2+</sup> concentration during puncta formation (black) and dissociation (magenta). The plots obtained from three independent experiments were overlaid. The relationship between  $[Ca^{2+}]_{ER}$  and puncta formation can be fitted by a Hill equation with a Hill coefficient of 7.9 and a  $K_{1/2}$  of 350 µM for puncta formation, and 9.7 and 530 µM for puncta dissociation.

# Figure 17. Intercellular heterogeneity of mitochondrial Ca<sup>2+</sup> signal visualized with CEPIA.

(a)  $Ca^{2+}$  titration curves of three mitochondria-targeted CEPIA variants (CEPIA2*mt*,  $K_d = 160$  nM,  $F_{max}/F_{min} = 1.7$ ; CEPIA3*mt*, 11 µM, 1.6; CEPIA4*mt*, 56 µM, 1.5). The measurements were performed at pH 8.0.

(**b**) Representative images of HeLa cells expressing CEPIA2*mt* (left) co-stained with MitoTracker Red (middle). The merged images are shown in the right panels. The areas within the white boxes were expanded (lower).

(c) Representative traces of CEPIA2*mt* fluorescence upon histamine (10  $\mu$ M) application in HeLa cells pre-stimulated with DMSO (gray) or FCCP (magenta, 500 nM; Abcam, USA). (d) Summary of CEPIA2*mt* response. Amplitude is defined as the extent of maximum increase in the fluorescence intensity after histamine application normalized by the resting value ( $\Delta F/F_0$ ). Mean ± s.e.m.; 11 cells for vehicle only (DMSO) and 15 cells for FCCP. (e) Representative traces of mitochondrial  $Ca^{2+}$  dynamics upon stimulation with histamine (10  $\mu$ M) in HeLa cells. To enhance mitochondrial  $Ca^{2+}$  signal, rat MCU was extrinsically expressed (+MCU, blue), or the inhibitor of Na<sup>+</sup>/Ca<sup>2+</sup> exchanger CGP-37157 (10  $\mu$ M; Enzo Life Sciences, USA) was applied (+CGP, magenta).

(f) The percentage of cells showing mitochondrial  $Ca^{2+}$  responses upon histamine application measured with CEPIA2–4*mt* among control HeLa cells, MCU-expressing cells (+MCU) and CGP-37157-pretreated cells (+CGP).

(g) Mitochondrial Ca<sup>2+</sup> responses measured with CEPIA2–4*mt* during histamine (10  $\mu$ M) stimulation were compared among control HeLa cells (67, 45 and 35 cells), MCU-expressing cells (26, 28 and 22 cells) and CGP-37157-pretreated cells (19, 24 and 16 cells). The response patterns were classified into five groups: rapid increase followed by slow decay (green), saturated response (magenta), sustained increase without saturation (orange), oscillatory response (blue) and no response (gray).

# Figure 18. Subcellular heterogeneity of mitochondrial Ca<sup>2+</sup> signal visualized with CEPIA*mt*.

Mitochondrial Ca<sup>2+</sup> signals visualized with subcellular resolution using CEPIA3*mt* (**a**–**c**) or CEPIA2*mt* (**d**–**f**). (**a** and **d**) Upper, fluorescence images of HeLa cell expressing CEPIA3*mt* (**a**) or CEPIA2*mt* (**d**). Lower, the areas within the white boxes were expanded.

(**b** and **e**) Time courses of mitochondrial  $Ca^{2+}$  signal during histamine (10 µM) application and subsequent ionomycin (3 µM) stimulation within the two regions of interest shown in **a** and **d**. Time courses averaged over the entire cell were also shown (Global). (**c** and **f**) Upper, averaged fluorescence images at resting state (left), after histamine application (middle) and after ionomycin application (right) were indicated. Lower, time-dependent changes in the fluorescence intensity were shown in pseudo-color.

# Figure 19. Simultaneous Ca<sup>2+</sup> imaging in the ER, mitochondria and cytosol during heterogeneous mitochondrial Ca<sup>2+</sup> signal.

(a) Fluorescence images of a HeLa cell expressing G-CEPIA1*er* (green) and mitochondria-localized R-GECO1 (R-GECO1*mt*, magenta). The area within the white box was expanded (right).

(**b**) Time courses of  $Ca^{2+}$  signal in the mitochondria, ER and cytosol in a HeLa cell stimulated with 10  $\mu$ M histamine within the two regions of interest indicated in **a**. Time courses averaged over the entire cell were also shown (Global).

(c) The images of R-GECO1*mt* (magenta) and G-CEPIA1*er* (green) at three time points were shown. Perfusion of 10  $\mu$ M histamine was started at 0 s. Representative images of six cells.

# Figure 20. Evaluation of heterogeneity in mitochondrial matrix pH and mitochondrial inner membrane potential during heterogeneous mitochondrial Ca<sup>2+</sup> signal.

(a) Representative images of HeLa cells expressing R-GECO1*mt* (upper) and a mitochondria-targeted pH indicator SypHer-dmito (lower). The regions within the white boxes were expanded (right).

(**b**) Time courses of R-GECO1*mt* (upper) and SypHer-dmito (lower) upon histamine (10  $\mu$ M) stimulation within the two regions of interest indicated in **a**.

(c) Representative trace of pH dependent change of SypHer-dmito fluorescence ratio in the region 1 indicated in **a**. The cells expressing SypHer-dmito were alkalinized with a solution containing 30 mM NH<sub>4</sub>Cl.

(d) Summary of SypHer-dmito responses. Mitochondria showing  $Ca^{2+}$  signal upon histamine stimulation were analyzed.  $\Delta R/R_0$  after histamine and NH<sub>4</sub>Cl stimulation were indicated (mean ± s.e.m., 89 and 365 mitochondria, respectively).

(e) Representative images of HeLa cells expressing mitochondria-localized GEM-GECO1 (GEM-GECO1*mt*, upper) co-stained with JC-1 (Cayman Chemical, UK), an indicator of mitochondrial membrane potential (lower). The regions within the white boxes were expanded (right).

(f) Time courses of GEM-GECO1*mt* (upper) and JC-1 (lower) upon histamine (10  $\mu$ M) stimulation within the two regions of interest indicated in e.

(g) Summary of JC-1 ratio in the mitochondria responding with (mean  $\pm$  s.d., 69 mitochondria) or without (327 mitochondria) an increase in Ca<sup>2+</sup> concentration upon histamine stimulation. The values within 6-s time window before (gray, Resting) and after (black, +His) histamine application were analyzed.

### Table 1. CEPIA library.

#### a. cfGCaMP2 variants

| Mutated amino acids                                             | Dynamic<br>range | Hill<br>coeff. | $K_{\rm d}  (\mu {\rm M})$ |
|-----------------------------------------------------------------|------------------|----------------|----------------------------|
| Original (CEPIA2mt)                                             | 5.1              | 2.5            | 0.67                       |
| Substitutions used in previously reported E                     |                  |                |                            |
| E11K/E84R/E87K (D1ER)                                           | 2.6              | 0.9            | 14.5                       |
| E31Q (YC4er)<br>E104Q (YC3er)                                   | 2.5<br>3.4       | 0.5<br>3.7     | 64.9<br>1.2                |
| Single substitution at $-Z$ position                            | 3.4              | 3.7            | 1.2                        |
| E31D (split-YC7.3er, CEPIA3 <i>mt</i> )                         | 5.0              | 1.5            | 14.5                       |
| E67D                                                            | 4.7              | 1.4            | 9.2                        |
| E104D                                                           | 3.8              | 4.2            | 0.99                       |
| E140D                                                           | 4.4              | 3.7            | 2.1                        |
| Double substitutions at –Z positions                            |                  |                | 150                        |
| E31D/E67D                                                       | 2.6              | 1.3            | 470                        |
| E31D/E104D<br>E31D/E140D                                        | 4.1<br>4.7       | 1.5<br>2.0     | 20.7<br>23.5               |
| E67D/E104D                                                      | 4.7              | 1.5            | 17.9                       |
| E67D/E140D                                                      | 4.7              | 2.1            | 23.9                       |
| E104D/E140D                                                     | 4.2              | 1.2            | 24.4                       |
| Triple substitutions at $-Z$ positions                          |                  |                |                            |
| E31D/E104D/E140D                                                | 3.2              | 1.9            | 135                        |
| E67D/E104D/E140D                                                | 3.6              | 2.2            | 129                        |
| Substitutions at F92W and/or D133E                              |                  |                |                            |
| F92W<br>D133E                                                   | 4.5              | 3.3            | 0.90                       |
| F92W/D133E                                                      | 4.3<br>4.6       | 4.7<br>3.0     | 2.1<br>10.3                |
| <b>F92W/D133E</b> and single substitutions at $-Z$              |                  | 5.0            | 10.5                       |
| E31D/F92W/D133E (CEPIA4 <i>mt</i> )                             | 4.9              | 1.7            | 90.2                       |
| E67D/F92W/D133E                                                 | 4.9              | 2.3            | 75.2                       |
| F92W/E104D/D133E                                                | 3.5              | 1.3            | 130                        |
| F92W/D133E/E140D                                                | 4.5              | 0.9            | 67.4                       |
| F92W/D133E and double substitutions at -2                       | -                |                |                            |
| E31D/F92W/E104D/D133E (CEPIA1 <i>er</i> )                       | 4.2              | 1.3            | 368                        |
| E31D/F92W/D133E/E140D                                           | 3.5              | 1.8            | 411                        |
| E67D/F92W/D104D/D133E<br>E67D/F92W/D133E/D140D                  | 4.1<br>4.4       | 1.9<br>1.7     | 344<br>276                 |
| F92W/E104D/D133E/E140D*                                         | 1.3,2.7          |                | 3.7, 1,540                 |
| D133E and single substitutions at -Z position                   |                  | 1.9, 1.4       | 5.7, 1,540                 |
| E31D/D133E                                                      | 5.0              | 2.2            | 33.2                       |
| E67D/D133E                                                      | 5.0              | 2.4            | 31.1                       |
| E104D/D133E                                                     | 3.5              | 1.2            | 43.8                       |
| D133E/E140D                                                     | 4.5              | 2.2            | 8.2                        |
| D133E and double substitutions at -Z positi<br>E21D/E104D/D122E |                  | 2.0            | 201                        |
| E31D/E104D/D133E<br>E31D/D133E/E140D                            | 4.2<br>4.7       | 2.0<br>1.8     | 201<br>92.2                |
| E67D/E104D/D133E                                                | 4.7              | 2.2            | 154                        |
| E67D/D133E/E140D                                                | 4.4              | 1.9            | 93.4                       |
| E104D/D133E/E140D*                                              | 1.3, 3.1         | 1.7, 1.3       | 4.8, 661                   |
| Other substitutions                                             |                  |                |                            |
| E11K                                                            | 2.1              | 3.6            | 1.4                        |
| E84R/E87K                                                       | 3.3              | 2.8            | 1.2                        |
| E31A                                                            | 1.9              | 0.8            | 15.2                       |
| E31Q/D133E                                                      | 2.2              | 0.6            | 109                        |
| E67D/E104Q<br>E104Q/E140D                                       | 4.2<br>3.1       | 1.4<br>0.8     | 43.7<br>23.8               |
| E31Q/F92W/D133E                                                 | 2.1              | 0.3            | 1,730                      |
| F92W/E104Q/D133E*                                               | 1.5, 1.4         | 2.0, 0.9       |                            |
| E31D/F92W/E104Q/D133E                                           | 1.8              | 0.6            | 13,400                     |
| E67D/F92W/E104Q/D133E                                           | 2.4              | 0.7            | 2,330                      |
| F92W/S101D/D133E                                                | 5.1              | 3.2            | 7.0                        |
| F92W/D95N/N97D/D133E                                            | 4.9              | 3.2            | 8.2                        |
| F92W/D95N/S101D/D133E                                           | 4.3              | 2.7            | 11.1                       |
| E31D/L36M<br>E31D/L36M/E67D                                     | 4.0              | 1.1            | 22.4                       |
| E31D/L36M/E67D<br>E31D/L36M/E104D                               | 2.8<br>4.0       | 1.2<br>1.5     | 873<br>25.0                |
| E31D/L36M/E104D<br>E31D/L36M/E140D                              | 4.0<br>4.9       | 2.0            | 25.0<br>26.1               |
| E31D/L36M/E140D<br>E31D/L36M/E104Q                              | 3.8              | 1.5            | 45.2                       |
| T26G/E31D/L36M                                                  | 4.6              | 0.9            | 2.4                        |
| E31D/L36M/Q41L                                                  | 3.9              | 1.3            | 15.1                       |
| E31D/L36M/K75I                                                  | 3.7              | 1.2            | 9.2                        |
| E31D/L36M/Q41L/K75I                                             | 3.1              | 1.1            | 8.9                        |

#### b. R-GECO1 variants with cfGCaMP2 CaM

| Mutated amino acids                     | Dynamic<br>range | Hill<br>coeff. | $K_{\rm d}(\mu{ m M})$ |
|-----------------------------------------|------------------|----------------|------------------------|
| E31D/E67D                               | 17.6             | 1.2            | 152                    |
| E31D/F92W/D133E                         | 21.9             | 2.3            | 16.6                   |
| E31D/E104D/D133E                        | 19.8             | 2.7            | 26.3                   |
| E104D/D133E/E140D                       | 12.5             | 1.4            | 50.8                   |
| E31D/E67D/F92W/D133E                    | 17.2             | 1.2            | 211                    |
| E31D/F92W/E104D/D133E                   | 16.9             | 2.3            | 70.9                   |
| E67D/F92W/D133E/E140D                   | 17.6             | 2.1            | 20.0                   |
| F92W/E104D/D133E/E140D                  | 14.9             | 1.0            | 123                    |
| E31D/E67D/F92W/E104D/D133E (R-CEPIA1er) | 8.8              | 1.7            | 565                    |

#### c. G-GECO1.1 variants with cfGCaMP2 CaM

| Mutated amino acids                | Dynamic<br>range | Hill<br>coeff. | $K_{\rm d}$ ( $\mu$ M) |
|------------------------------------|------------------|----------------|------------------------|
| E31D/F92W/D133E                    | 10.2             | 1.5            | 209                    |
| E31D/F92W/E104D/D133E (G-CEPIA1er) | 4.7              | 1.9            | 672                    |
| E31D/E67D/F92W/E104D/D133E         | 3.8              | 0.5            | 3,860                  |

#### d. GEM-GECO1 variants with cfGCaMP2 CaM

| Mutated amino acids        | Dynamic<br>range | Hill<br>coeff. | $K_{\rm d}$ (µM) |
|----------------------------|------------------|----------------|------------------|
| E31D/F92W/E104D/D133E      | 1.1              | n.d.           | n.d.             |
| E31D/E67D/F92W/E104D/D133E | 1.2              | n.d.           | n.d.             |

#### e. GEM-GECO1 variants with original CaM

| Mutated amino acids                  | Dynamic<br>range | Hill<br>coeff. | $K_{\rm d}(\mu{\rm M})$ |
|--------------------------------------|------------------|----------------|-------------------------|
| Original                             | 67.5             | 2.6            | 0.31                    |
| E31D                                 | 23.7             | 1.2            | 7.2                     |
| E31D/E67D                            | 13.0             | 1.2            | 97.1                    |
| E31D/D133E                           | 41.3             | 2.4            | 36.4                    |
| E31D/E140D                           | 43.6             | 2.2            | 24.2                    |
| E31D/F92W/D133E                      | 11.2             | 1.9            | 90.0                    |
| E31D/E104D/D133E                     | 20.8             | 1.7            | 89.7                    |
| E31D/D133E/E140D                     | 24.8             | 1.6            | 147                     |
| E31D/F92W/E104D/D133E                | 8.1              | 2.1            | 225                     |
| E31D/F92W/D133E/E140D (GEM-CEPIA1er) | 21.7             | 1.4            | 558                     |
| E31D/E104D/D133E/E140D               | 34.8             | 1.5            | 483                     |
| E31D/E67D/F92W/D133E/E140D           | 1.4              | 1.1            | 602                     |
| E31D/F92W/E104D/D133E/E140D          | 2.3              | 1.0            | 2,010                   |

CEPIA library generated in the present study. The properties of CEPIA variants that were used in the intraorganellar  $Ca^{2+}$  imaging are highlighted (magenta). cDNAs were confirmed by sequencing. \* $Ca^{2+}$  titration curves were obtained by fitting with a double Hill plot equation.

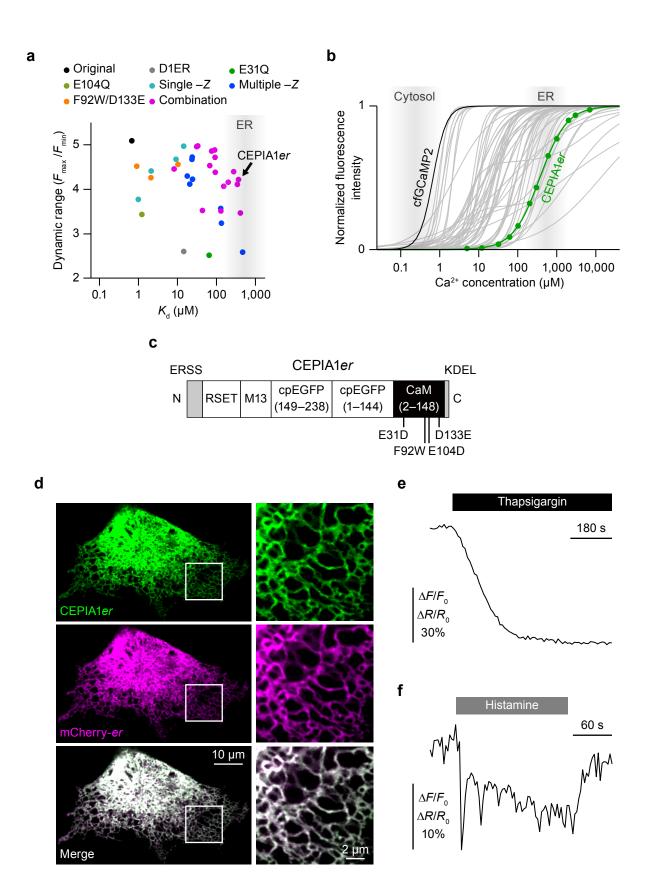
| Probe        | Ca <sup>2+</sup> | $\varepsilon  \left(\mathrm{mM}^{-1}\mathrm{cm}^{-1}\right) \left(\lambda_{\mathrm{ABS}}^{*}\right)$ | $\lambda_{_{\mathrm{Ex}}}^{}^{*}$ | $\varPhi\left(\lambda_{_{\mathrm{Em}}}^{}^{*} ight)$ | Brightness <sup>†</sup><br>(mM <sup>-1</sup> cm <sup>-1</sup> ) | pK <sub>a</sub> ‡ | Dynamic<br>range <sup>§</sup> | $K_{\rm d}$ for Ca <sup>2+</sup> | Hill coefficient        |
|--------------|------------------|------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------|-----------------------------------------------------------------|-------------------|-------------------------------|----------------------------------|-------------------------|
| G-CEPIA1er   | -                | 36 (402), 3 (498)                                                                                    | 499                               | 0.19 (512)                                           | 0.5                                                             | 8.7               | $4.7 \pm 0.3^{  }$            | $672 \pm 23 \ \mu M^{\parallel}$ | $1.95 \pm 0.07$         |
| 0-CLI IAIer  | +                | 33 (401), 10 (497)                                                                                   | 498                               | 0.40 (511)                                           | 3.4                                                             | 8.0               | $-1.7 \pm 0.5^{\circ}$        | $0/2 \pm 23 \mu W$               | $1.93 \pm 0.07^{\circ}$ |
| G-GECO1.1    | _                | 35 (401), 2 (500)                                                                                    | 499                               | 0.20 (514)                                           | 0.4                                                             | 8.8               | $14.7 \pm 1.6$                | $363 \pm 4 \text{ nM}$           | $3.38 \pm 0.10$         |
|              | +                | 24 (397), 26 (497)                                                                                   | 498                               | 0.46 (513)                                           | 10.5                                                            | 7.4               | $14.7 \pm 1.0$                | $303 \pm 4$ IIM                  | $5.58 \pm 0.10$         |
|              | _                | 25 (445), 5 (576)                                                                                    | 570                               | 0.09 (593)                                           | 0.5                                                             | 8.9               | $8.8 \pm 0.7$                 | 565 ± 58 µM                      | 1 70 + 0.04             |
| R-CEPIA1er   | +                | 15 (448), 35 (562)                                                                                   | 561                               | 0.18 (584)                                           | 6.2                                                             | 6.5, 9.0          | $0.0 \pm 0.7$                 | $303 \pm 38 \mu\text{M}$         | $1.70 \pm 0.04$         |
| R-GECO1      | _                | 27 (445), 7 (576)                                                                                    | 565                               | 0.06 (594)                                           | 0.4                                                             | 8.9               | $15.6 \pm 4.1$                | $142 \pm 17 \text{ nM}$          | $2.05 \pm 0.12$         |
| R-OECOI      | +                | 58 (562)                                                                                             | 560                               | 0.20 (584)                                           | 11.6                                                            | 6.4               | $13.0 \pm 4.1$                | $142 \pm 17$ 111v1               | $2.03 \pm 0.12$         |
| CEM CEDIA1-  |                  | 36 (401)                                                                                             | 381, 395                          | 0.26 (510)                                           | 9.4                                                             | 6.1               | 21.7 ± 0.6                    | 559 + 14M                        | 1 27 + 0.01             |
| GEM-CEPIA1er | +                | 36 (391)                                                                                             | 381, 394                          | 0.21 (462)                                           | 7.6                                                             | 6.5, 10.6         | $21.7 \pm 0.0$                | $558 \pm 14 \ \mu M$             | $1.37 \pm 0.01$         |
| CEM CECOL    | _                | 34 (395)                                                                                             | 387, 395                          | 0.31 (510)                                           | 10.7                                                            | 6.1               | $(7.5 \pm 10.0)$              | $206 \pm 0.4$ mM                 | 2.55 + 0.02             |
| GEM-GECO1    | +                | 35 (391)                                                                                             | 387, 390                          | 0.18 (462)                                           | 6.2                                                             | 6.1, 10.1         | $0/.3 \pm 10.9$               | $306 \pm 0.4$ nM                 | $2.55 \pm 0.02$         |

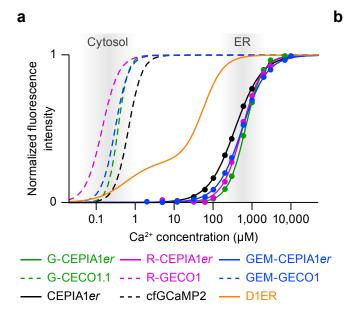
Table 2. Properties of CEPIA variants.

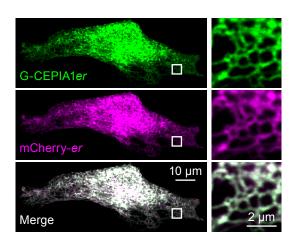
 $^*\lambda_{ABS}, \lambda_{Ex}, \lambda_{Em}$  are the maximum wavelength of absorption, fluorescence excitation and fluorescence emission spectra, respectively.

<sup>†</sup>Brightness is the product of molar extinction coefficient ( $\varepsilon$ ) and quantum yield ( $\Phi$ ).

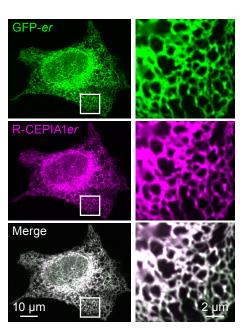
 ${}^{*}pK_{a}$  is determined as the pH at half-maximal fluorescence intensity calculated by fitting each plots to Hill equations. As for R-CEPIA1*er*, GEM-GECO1 and GEM-CEPIA1*er*,  $pK_{a}$  is calculated by a double Hill equation (See Materials and Methods).


<sup>§</sup>Dynamic range indicates the ratio of the maximum to minimum fluorescence intensity  $(F_{\text{max}}/F_{\text{min}})$  or fluorescence ratio  $(R_{\text{max}}/R_{\text{min}})$  (See Materials and Methods).


 $Mean \pm s.e.m.$ 


## Table 3. The list of primers and oligonucleotides.

| Primer number  | Sequence                                                                 |
|----------------|--------------------------------------------------------------------------|
| 1              | ATAAGCATATGCAGGTCCAACTGCAGGGAT                                           |
| 2              | ATTAGATCTCTACAGCTCGTCCTTCTCGCT                                           |
| 3              | AGAGGATCCATGGTCGACTCTTCACGTCGT                                           |
| 4              | TAGCGGCCGCCTTCGCTGTCATCATTTGTA                                           |
| 5              | GAGACCAACTGACTGAAGAGCAGATCGCAG                                           |
| 6              | GAGTAGCCTCCCAGCCCATGGTCTTCTTCT                                           |
| 7              | GCAACACTCGAGACCAACTGACTGAAGAGC                                           |
| 8 (E11K)       | GCTGACTGAAGAGCAGATCGCAAAATTTAA                                           |
| 9 (E11K)       | TGGTCACGCGTGTTGTACTCCAGCTT                                               |
| 10 (E31D)      | GGGCAGAACCCCACAGAAGCAGAGCTCCAG                                           |
| 11 (E31D)      | CAGAGACCGCAGCACCGTCCCCAGATCCTT                                           |
| 12 (E31D)      | CAGAGACCGCATCACCGTCCCCAGATCCTT                                           |
| 13 (E31Q)      | CTGGGGACGGTGCTGCGGTCTCT                                                  |
| 14 (E31Q)      | CTGCTTGGTTGTTATTGTCCCATCCCCGTC                                           |
| 15 (E67D)      | GACAATGATGGCAAGAAAAATGAAAGACAC                                           |
| 16 (E67D)      | GACGATGATGGCAAGAAAAATGAATGACAC                                           |
| 17 (E67D)      | GACAATGATGGCACCTAAAATGCAGGACAC                                           |
| 18 (E67D)      | AGGAAATCAGGGAAGTCGATTGTGCCATTA                                           |
| 19 (E67D)      | AGGAAATCAGGGAAGTCGAAGGTACCGTCA                                           |
| 20 (E67D)      | AGGAAATCAGGGAAGTCGATGGTACCGTCA                                           |
| 21 (E84R/E87K) | AATTCGAAAAGCGTTCCGTGTGTGTTTGATAA                                         |
| 22 (E84R/E87K) | CTTTCTTCACTGTCTGTGTCTTTCATTTTT                                           |
| 23 (F92W)      | GGGATAAGGATGGCAATGGCTACATCAGT                                            |
| 24 (F92W)      | ACACACGGAACGCTTCGCGAATTTCTTCT                                            |
| 25 (F92W)      | GGGATAAGGATGGCAATGGCTACATCGGC                                            |
| 26 (E104D)     | AGCAGACCTTCGCCACGTGATGACAAACCT                                           |
| 27 (E104D)     | AGCAGATCTTCGCCACGTGATGACAAACCT                                           |
| 28 (E104D)     | AGCAGATCTTCGCCACGTGATGACAGACCT                                           |
| 29 (E104D)     | GCGCCGATGTAGCCATTGCCGTCCTTATC                                            |
| 30 (E104Q)     | GCAGAGATGTAGCCATTGCCATCCTTATC                                            |
| 31 (E104Q)     | AGCACAGCTTCGCCACGTGATGACAAACCT                                           |
| 32 (D133E)     | ATCGATGGAGAAGGTCAGGTAAACTACGAA                                           |
| 33 (D133E)     | ATCTGCTTCCCTGATCATTTCATCAACCTC                                           |
| 34 (D133E)     | GTCTGCTACCCTGATCATTTCATCAACCTC                                           |
| 35 (E140D)     | ATGATGACAGCGAAGGCGGCCGCAGAACAA                                           |
| 36 (E140D)     | TTGTACAAAGTCTTCGTAGTTTACCTGACC                                           |
| 37             | AGGGATCCATGCGGGGGTTCTCATCATCATC                                          |
| 38             | GGGATCCATCATCATCG                                                        |
| 39             | TCGACGATGATGATGATGGATCCCTGCA                                             |
| 40             | CGCGCCAAAATTCATTCACTGGGGGGACCCC                                          |
| 41             | ATGAGCGTGCTCACCCCACTCCTGCTGCGGGGGGCTGACCG                                |
| 42             | GCAGCGCTAGGCGGCTGCCAGTCCCGCGG                                            |
| 43             | GCCAAGATCCACAGTCTCGGCGATCCCG                                             |
| 44             | TCATGGGGTCCCCCAGTGAATGAATTTTGG                                           |
| 45             | CTGCCGGTCAGCCCCGCAGCAGGAGTGGGGTGAGCACGC<br>TGGCCCGCGGGACTGGCAGCCGCCTAGCG |
| 46             |                                                                          |
| 47             | GATCCGGGATCGCCGAGACTGTGGATCT                                             |
| 48             | ATAAGCTTGCCACCATGGGATGGAGCTGTA                                           |
| 49             | AGAACTAGTCTACAGCTCGTCCTTCTCGCT<br>GATCCATGCTGCTGCCCGTCCCCCTGCTGC         |
| 50             |                                                                          |
| 51<br>52       | TGGGCCTGCTGGGCGCCGCCGCCGACATGG                                           |
|                | CCCAGCAGCAGGGGGACGGGCAGCAGCATG                                           |
| 53<br>54       | TCGACCATGTCGGCGGCGGCGCCCAGCAGG<br>AAACCGCGGACATGGTGAGCAAGGGCGAGG         |
|                | GACGAATTCTTACAGCTCGTCCTTCTTGTACAGCTCGTCCATGC                             |
| 55             |                                                                          |
| 56             | AAGCCGCGGACATGGTGAGCAAGGGCGAGG                                           |
| 57             | GCCGAATTCTTACAGCTCGTCCTTCTTGTACAGCTCGTCCATGC                             |
| 58             | CCGGGCGAATTCGGCAGATATCCATCACAC                                           |
| 59             | GATGATGATGGGATCCTCTCATGTCCGCGG                                           |
| 60             | CTCGGATCCATGGTGAGCAAGGGCGAGGAG                                           |
| 61             | TTAATGCGGCCGCCGAGAGTGATCCCGG                                             |
| 62             | TGTCTGCAGGCTACAACAGCGACAACGTCT                                           |
| 63             | TTGCCTGATCGCGCAAAGAGTGACCATCTT                                           |
| 64             | ATATCTAGAGCCACCATGGATGTGTGCGCC                                           |
| 65<br>66       | CGCCTCTAGACTACTTCTTAAGAGGCTTCT                                           |
|                | CTTGTACAGCTCGTCCATGCCGCCGGTGGA                                           |


The primers and oligonucleotides used in the present study are listed. For the primers used for site-directed mutagenesis, the target mutation sites are indicated in parentheses.

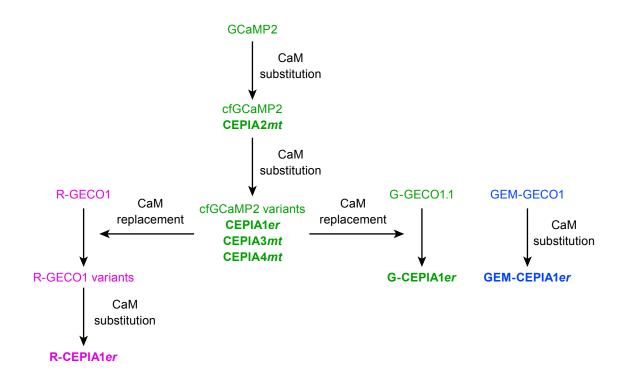






С




GEM-CEPIA1er

## Figure 2

d

Substitutions at –Z positions F92W/D133E substitutions 🔲 Derived from cfGCaMP2 📃 Derived from GECOs

|              |         |         |          |         |          |         |          |         |          |       |                  |          |                        |           |     |          |     |          |          |          |     |          | C   | nding    |         | рI       | V                             |          |       |     |  |  |  |  |
|--------------|---------|---------|----------|---------|----------|---------|----------|---------|----------|-------|------------------|----------|------------------------|-----------|-----|----------|-----|----------|----------|----------|-----|----------|-----|----------|---------|----------|-------------------------------|----------|-------|-----|--|--|--|--|
|              | 1       | 2       | 3        | 4       | 5        | 6       | 7        | 8       | 9        | 10    | 11               | 12       | 13                     | 14        | 15  | 16       | 17  | 18       | 19       | +X<br>20 | 21  | +Y<br>22 | 23  | +Z<br>24 | 25      | -Y<br>26 | 27                            | -X<br>28 | 29    | 30  |  |  |  |  |
| GCaMP2       |         | D       | Q        |         | T        | E       | E        | Q       | 1        | A     | E                | F        | K                      | E         | A   | F        | s   | L        | F        | <br>D    | K   | D        | G   | <br>D    | G       | <br>T    | 1                             | <br>T    | <br>T | ĸ   |  |  |  |  |
| cfGCaMP2     |         | D       | Q        | L       | Т        | E       | E        | Q       | I        | A     | E                | F        | к                      | E         | A   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | i.                            | Т        | Т     | к   |  |  |  |  |
| CEPIA1er     |         | D       | Q        | L       | т        | Е       | Е        | Q       | Т        | А     | Е                | F        | к                      | Е         | А   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | т        | т     | к   |  |  |  |  |
| G-GECO1.1    |         | D       | Q        | L       | т        | Е       | Е        | Q       | Т        | А     | Е                | F        | к                      | Е         | А   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | т        | т     | к   |  |  |  |  |
| G-CEPIA1er   |         | D       | Q        | L       | т        | Е       | Е        | Q       | Т        | А     | Е                | F        | к                      | Е         | А   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | т        | т     | к   |  |  |  |  |
| R-GECO1      |         | D       | Q        | L       | т        | Е       | Е        | Q       | Т        | А     | Е                | F        | к                      | Е         | А   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | т        | т     | к   |  |  |  |  |
| R-CEPIA1er   |         | D       | Q        | L       | т        | Е       | Е        | Q       | Т        | А     | Е                | F        | К                      | Е         | А   | F        | s   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | т        | Т     | к   |  |  |  |  |
| GEM-GECO1    |         | D       | Q        | L       | Т        | Е       | Е        | Q       | Т        | А     | Е                | F        | К                      | Е         | А   | F        | S   | L        | F        | D        | к   | D        | G   | D        | G       | т        | Т                             | Т        | т     | к   |  |  |  |  |
| GEM-CEPIA1er |         | D       | Q        | L       | Т        | Е       | Е        | Q       | Т        | А     | Е                | F        | к                      | Е         | А   | F        | S   | L        | F        | D        | К   | D        | G   | D        | G       | т        | Т                             | Т        | Т     | к   |  |  |  |  |
|              |         |         |          |         |          |         |          |         |          |       |                  |          |                        |           |     |          |     |          |          |          |     |          |     |          |         | Ca       | Ca <sup>2+</sup> binding Loop |          |       |     |  |  |  |  |
|              | -Z      |         |          |         |          |         |          |         |          |       |                  |          |                        |           |     |          |     |          |          |          |     |          |     |          |         | +X       |                               | +Y       |       | +Z  |  |  |  |  |
|              | 31      | 32      | 33       | 34      | 35       | 36      | 37       | 38      | 39       | 40    | 41               | 42       | 43                     | 44        | 45  | 46       | 47  | 48       | 49       | 50       | 51  | 52       | 53  | 54       | 55      | 56       | 57                            | 58       | 59    | 60  |  |  |  |  |
| GCaMP2       | E       |         | G        | Т       | V        | м       | R        | S       | L        | G     | Q                | N        | Р                      | T<br>T    | E   | A        | E   | L        | Q        | D        | M   | 1        | N   | E        | V       | D        | A                             | D        | G     | N   |  |  |  |  |
| cfGCaMP2     | E       |         | G        | Т       | V        | L       | R        | S       | L        | G     | Q                | N        | P                      | Т         | E   | A        | E   | L        | Q        | D        | M   |          | N   | E        | V       | D        | A                             | D        | G     | N   |  |  |  |  |
| CEPIA1er     | D       | L.      | G        | Т       | V        | L       | R        | S       | L        | G     | Q                | N        | P<br>P                 | Т         | E   | A        | E   | L        | Q        | D        | M   |          | N   | E        | V       | D        | A                             | D        | G     | N   |  |  |  |  |
| G-GECO1.1    | E       | L       | G        | Т       | V        | м       | R        | S       | L        | G     | Q                | N        |                        | Т         | E   | A        | E   | L        | Q        | D        | M   | 1        | N   | E        | V       | D        | A                             | D        | G     | D   |  |  |  |  |
| G-CEPIA1er   | D       | L .     | G        | т       | V        | L       | R        | S       | L        | G     | Q                | N        | P                      | Т         | E   | A        | E   | L .      | Q        | D        | M   |          | N   | E        | V       | D        | A                             | D        | G     | N   |  |  |  |  |
| R-GECO1      | E       | L       | G        | Т       | V        | M       | R        | S       | L        | G     | Q                | N        | P                      | Т         | E   | A        | E   | L        | Q        | D        | M   |          | N   | E        | V       | D        | A                             | D        | G     | D   |  |  |  |  |
| R-CEPIA1er   | D       | L       | G        | Т       | V        | L       | R        | S       | L        | G     | Q                | N        | P                      | Т         | E   | A        | E   | L        | Q        | D        | M   | 1        | N   | E        | V       | D        | A                             | D        | G     | N   |  |  |  |  |
| GEM-GECO1    | E       | L       | G        | Т       | V        | M       | R        | S       | L        | G     | Q                | N        | P                      | Т         | E   | A        | E   | L        | Q        | D        | M   |          | N   | E        | V       | D        | A                             | D        | G     | D   |  |  |  |  |
| GEM-CEPIA1er | D       | L       | G        | Т       | V        | М       | R        | S       | L        | G     | Q                | N        | Р                      | Т         | E   | A        | E   | L        | Q        | D        | М   | I        | N   | E        | V       | D        | A                             | D        | G     | D   |  |  |  |  |
|              |         | -Y      |          | -X      |          |         | -Z       |         |          |       |                  |          |                        |           |     |          |     |          |          |          |     |          |     |          |         |          |                               |          |       |     |  |  |  |  |
|              | 61      | 62      | 63       | 64      | 65       | 66      | 67       | 68      | 69       | 70    | 71               | 72       | 73                     | 74        | 75  | 76       | 77  | 78       | 79       | 80       | 81  | 82       | 83  | 84       | 85      | 86       | 87                            | 88       | 89    | 90  |  |  |  |  |
| GCaMP2       | G       | Т       | Т        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | К   | М        | К   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| cfGCaMP2     | G       | Т       | 1        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | к   | М        | К   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| CEPIA1er     | G       | Т       | 1        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | к   | М        | К   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| G-GECO1.1    | G       | Т       | 1        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | к   | М        | Ν   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| G-CEPIA1er   | G       | Т       | Т        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | к   | Μ        | К   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| R-GECO1      | G       | Т       | F        | D       | F        | Ρ       | Е        | F       | L        | Т     | М                | М        | А                      | R         | к   | Μ        | Ν   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| R-CEPIA1er   | G       | Т       | Т        | D       | F        | Ρ       | D        | F       | L        | т     | М                | М        | А                      | R         | к   | М        | К   | D        | Т        | D        | s   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| GEM-GECO1    | G       | Т       | 1        | D       | F        | Ρ       | Е        | F       | L        | т     | М                | М        | А                      | Р         | к   | М        | Q   | D        | Т        | D        | S   | Е        | Е   | Е        | Т       | R        | Е                             | А        | F     | R   |  |  |  |  |
| GEM-CEPIA1er | G       | Т       | Т        | D       | F        | Ρ       | Е        | F       | L        | т     | М                | М        | А                      | Ρ         | к   | М        | Q   | D        | Т        | D        | s   | Е        | Е   | Е        | Т       | R        | Е                             | Α        | F     | R   |  |  |  |  |
|              |         |         |          |         |          |         |          | bindi   | -        | op II |                  |          |                        | _         |     |          |     |          |          |          |     |          |     |          |         |          |                               |          |       |     |  |  |  |  |
|              | 91      | 92      | +X<br>93 | 94      | +Y<br>95 | 96      | +Z<br>97 | 98      | -Y<br>99 | 100   | <i>–X</i><br>101 | 102      | 103                    | -Z<br>104 | 105 | 106      | 107 | 108      | 109      | 110      | 111 | 112      | 113 | 114      | 115     | 116      | 117                           | 118      | 119   | 120 |  |  |  |  |
| GCaMP2       | 91<br>V | 92<br>F | 93<br>D  | 94<br>K | 95<br>D  | 96<br>G | 97<br>N  | 98<br>G | 99<br>Y  | 100   | S                | 102<br>A | 103<br>A               | 104<br>E  | 105 | 106<br>R | H   | 108<br>V | 109<br>M | T        | N   | L        | G   | E        | н5<br>К | 110      | T                             | D        | E     | E   |  |  |  |  |
| cfGCaMP2     | v       | F       | D        | к       | D        | G       | N        | G       | Y        | ÷     | s                | A        | A                      | E         | L   | R        | н   | v        | M        | т        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| CEPIA1er     | v       | W       | D        | к       | D        | G       | N        | G       | Y        | ÷     | s                | A        | A                      | D         |     | R        | н   | v        | M        | T        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| G-GECO1.1    | v       | F       | D        | к       | D        | G       | N        | G       | Y        | ÷     | G                |          | A                      | E         | L   | R        | н   | v        | M        | т        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| G-CEPIA1er   | v       | W       | D        | к       | D        | G       | N        | G       | Y        | ÷     | s                | A        | A                      | D         | L   | R        | н   | v        | м        | т        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| R-GEC01      | v       | F       | D        | к       | D        | G       | N        | G       | Ŷ        | ÷     | G                | A        | A                      | E         | L   | R        | н   | v        | м        | T        | D   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| R-CEPIA1er   | v       | W       | D        | к       | D        | G       | N        | G       | Y        | ÷     | s                | A        | A                      | D         | L   | R        | н   | v        | м        | т        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
| GEM-GECO1    | v       | F       | D        | ĸ       | D        | G       | N        | G       | Y        |       | G                | A        | A                      | E         | L   | R        | н   | v        | M        | т        | N   | L        | G   | E        | ĸ       | L        | T                             | D        | E     | E   |  |  |  |  |
| GEM-CEPIA1er | v       | W       | D        | ĸ       | D        | G       | N        | G       | Y        | i     | G                | A        | A                      | E         | L   | R        | н   | v        | м        | т        | N   | L        | G   | E        | ĸ       | L        | т                             | D        | E     | E   |  |  |  |  |
|              |         |         |          |         |          |         |          |         |          |       |                  |          |                        |           | -   |          |     |          |          |          |     |          |     |          |         |          |                               |          |       |     |  |  |  |  |
|              |         |         |          |         |          |         |          |         | +X       |       | +Y               |          | Ca <sup>2+</sup><br>+Z | DITIO     | -Y  | юрт      |     |          |          | -Z       |     |          |     |          |         |          |                               |          |       |     |  |  |  |  |
|              | 121     |         |          |         | 125      |         | 127      |         | 129      |       |                  | 132      |                        |           |     |          |     |          |          |          |     |          |     |          | 145     |          |                               |          |       |     |  |  |  |  |
| GCaMP2       | V       | D       | E        | M       | 1        | R       | E        | A       | D        |       | D                | G        | D                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | М       | T        | A                             | K        |       |     |  |  |  |  |
| cfGCaMP2     | V       | D       | E        | M       | 1        | R       | E        | A       | D        | 1     | D                | G        | D                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | М       | T        | A                             | K        |       |     |  |  |  |  |
| CEPIA1er     | V       | D       | E        | M       | 1        | R       | E        | A       | D        |       | D                | G        | E                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | М       | T        | A                             | K        |       |     |  |  |  |  |
| G-GECO1.1    | V       | D       | E        | M       | 1        | R       | V        | A       | D        | 1     | D                | G        | D                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | M       | T        | A                             | K        |       |     |  |  |  |  |
| G-CEPIA1er   | V       | D       | E        | M       | 1        | R       | E        | A       | D        | 1     | D                | G        | E                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | М       | T        | A                             | K        |       |     |  |  |  |  |
| R-GECO1      | V       | D       | E        | M       | 1        | R       | V        | A       | D        | I     | D                | G        | D                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | M        | M       | T        | A                             | K        |       |     |  |  |  |  |
| R-CEPIA1er   | V       | D       | E        | M       | 1        | R       | E        | A       | D        | I     | D                | G        | E                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | М        | M       | T        | A                             | K        |       |     |  |  |  |  |
| GEM-GECO1    | V       | D       | E        | M       | 1        | R       | V        | A       | D        | I     | D                | G        | D                      | G         | Q   | V        | N   | Y        | E        | E        | F   | V        | Q   | М        | M       | T        | A                             | ĸ        |       |     |  |  |  |  |
| GEM-CEPIA1er | V       | D       | Е        | М       | I        | R       | V        | A       | D        | I     | D                | G        | E                      | G         | Q   | V        | N   | Y        | E        | D        | F   | V        | Q   | М        | М       | Т        | A                             | К        |       |     |  |  |  |  |



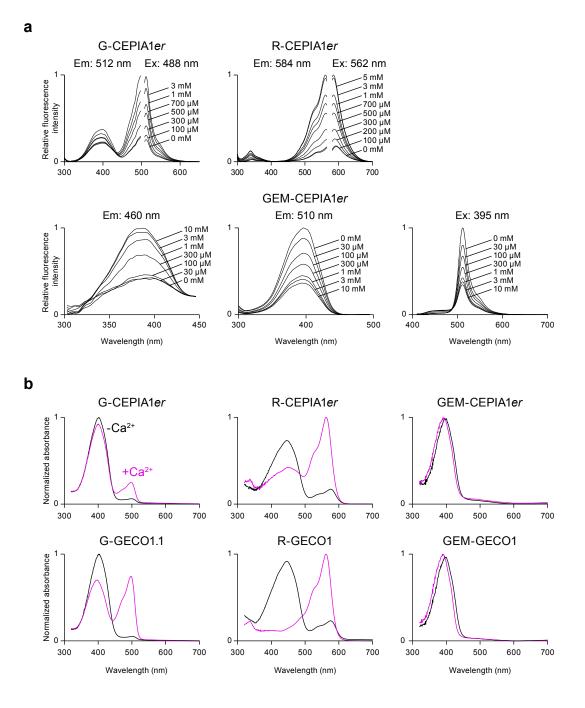



Figure 5

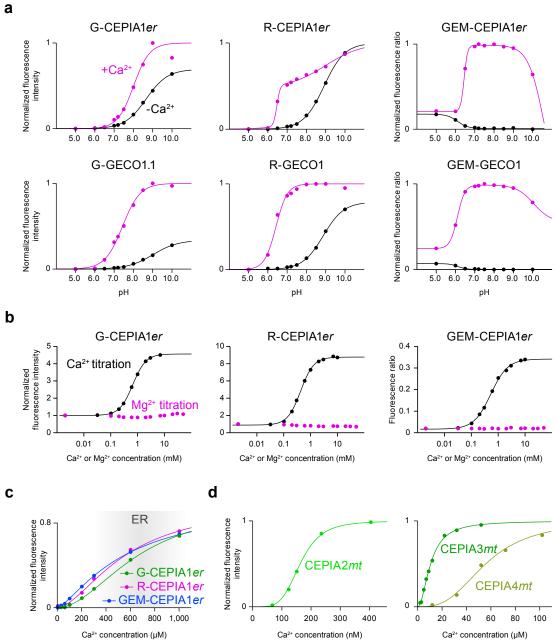
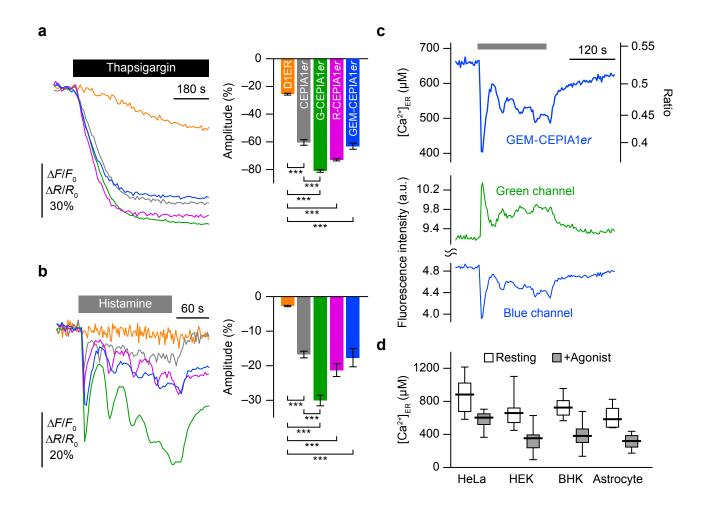
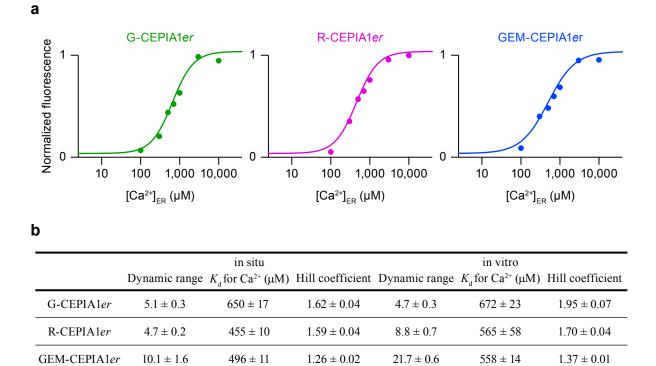
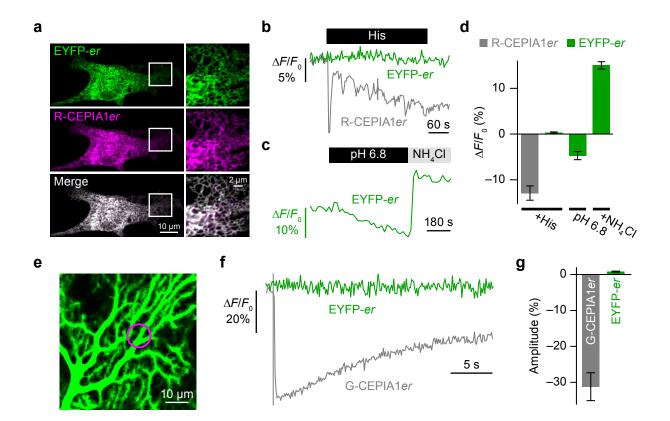






Figure 6







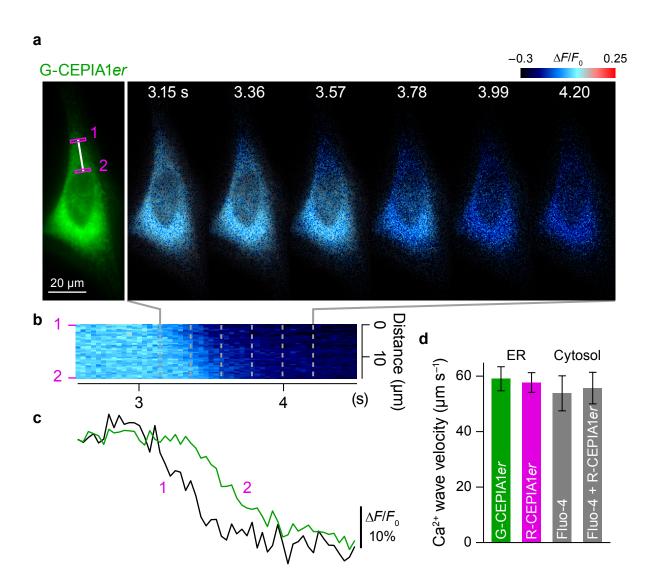
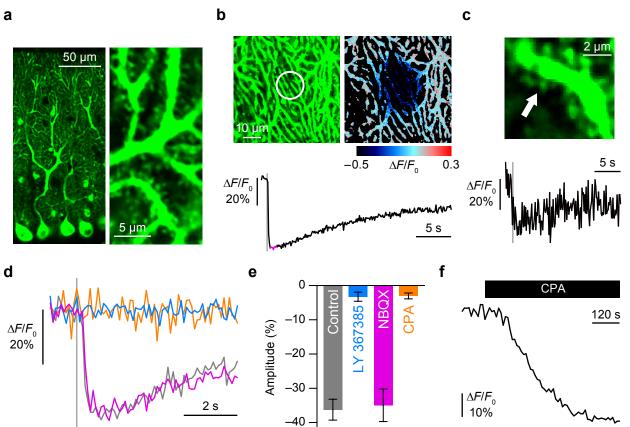




Figure 10



-40 --

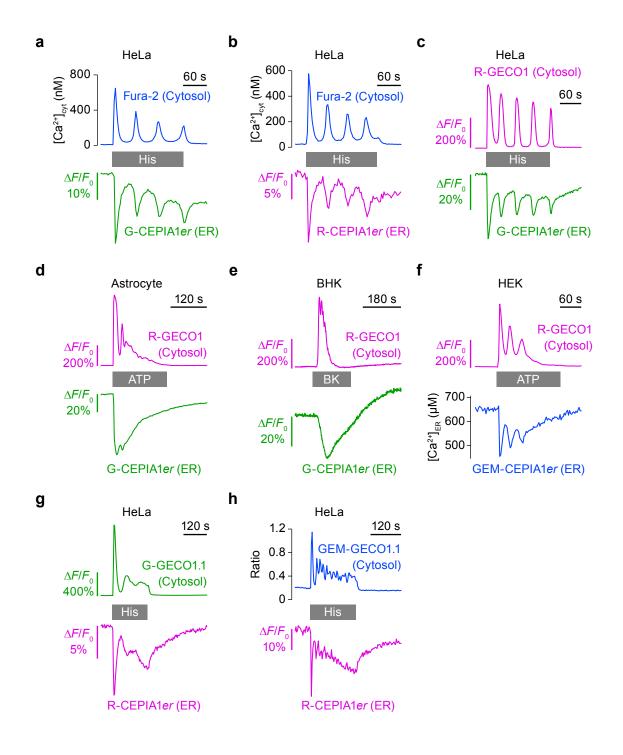
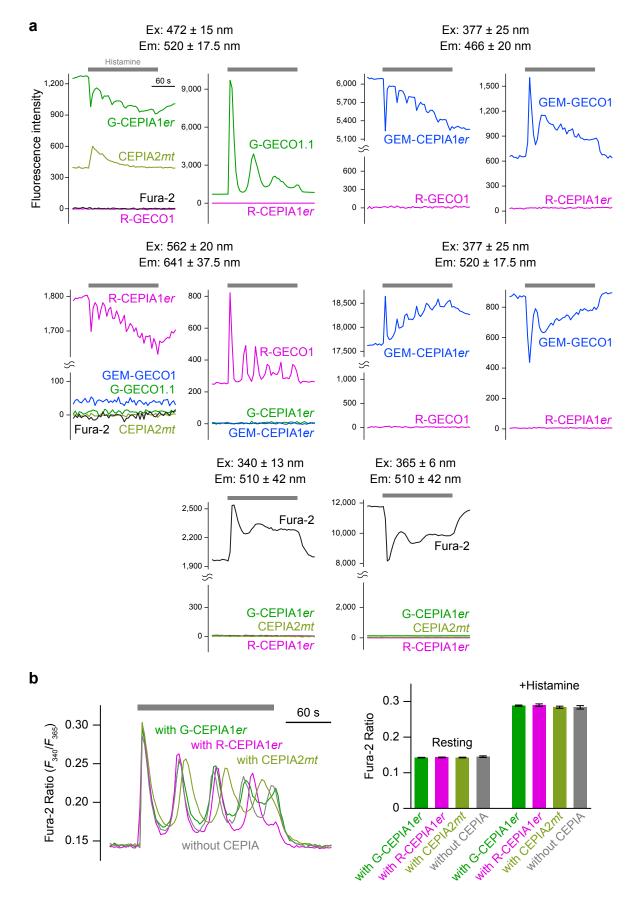




Figure 12



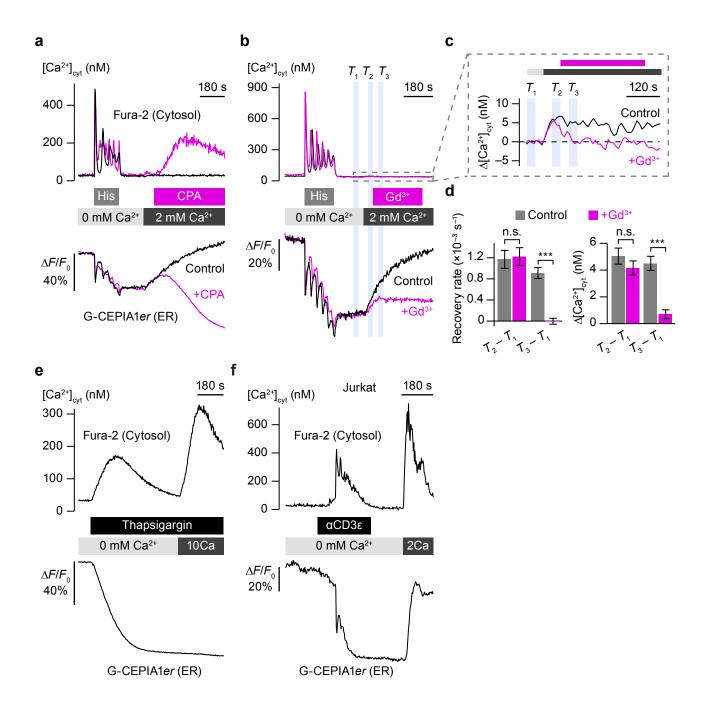
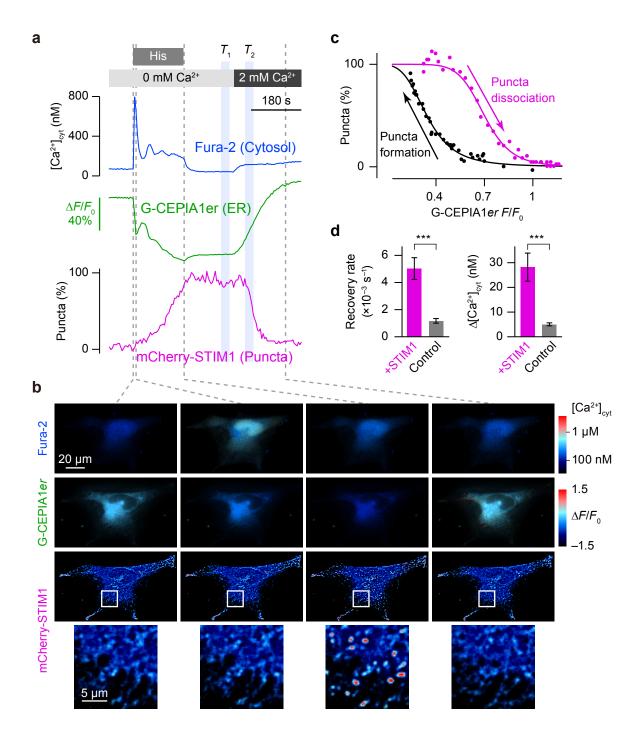
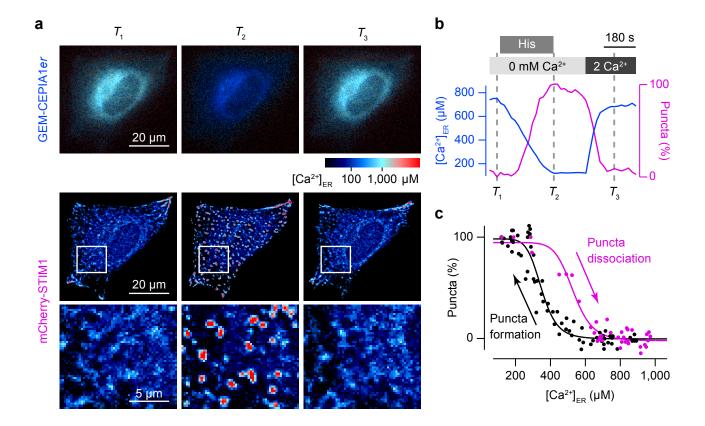
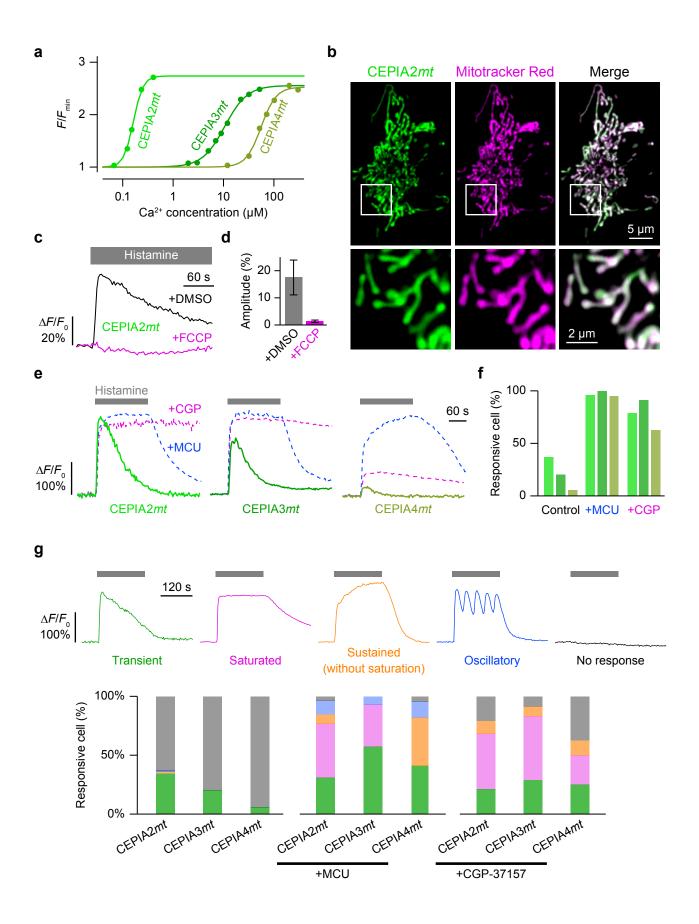
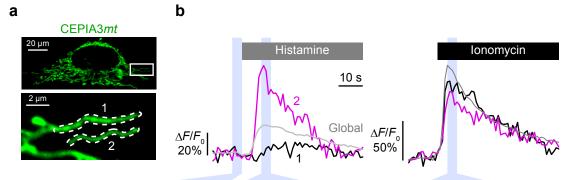
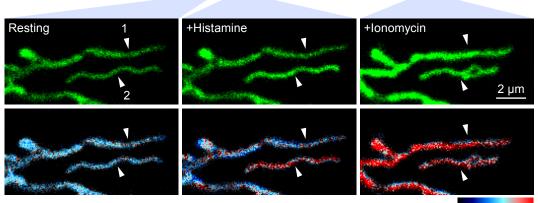
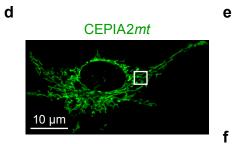


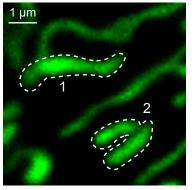

Figure 14

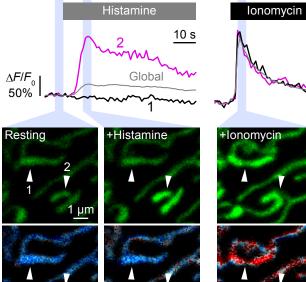





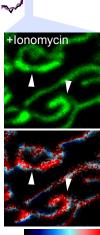


Figure 15





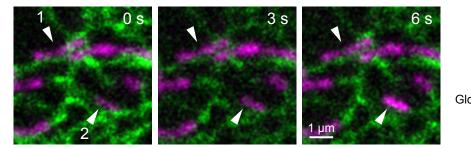


С

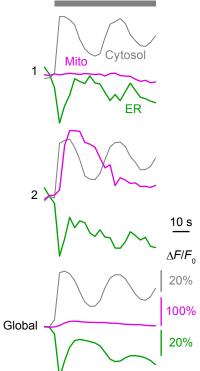


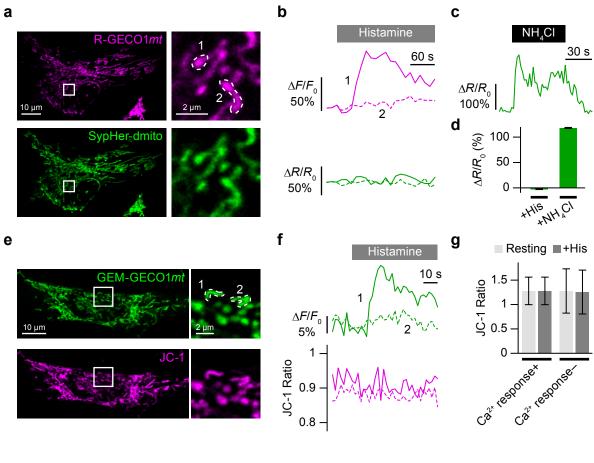

 $-1.0 \quad \Delta F/F_0 = 0.8$ 









–1.0 *∆F/F*<sub>0</sub> 1.5

С

 • OFPIA1er R-GECO1mt
 Image: Construction of the second second





