博士論文

論文題目 歯状核赤核・淡蒼球ルイ体萎縮症タンパク質 (DRPLA protein)の転写調節標的遺伝子の探索

氏 名 波多野敬子

要旨	2
略語集	3
URL 集	5
序章	6
1. DRPLAとは	6
2. DRPLA 遺伝子・DRPLAp について	9
3. DRPLA の病態機序に関する先行研究 1	1
4. 本研究の目的1	7
第1章 DRPLApの転写 co-regulator としての標的遺伝子の RNA-seq による解析1	8
材料と方法2	1
1. 実験系の構築2	1
2. RNA-seq	8
3. RNA-seq の解析	2
結果	8
1. 実験系の構築	8
2. RNA-seq	3
3. RNA-seq の解析の全体像	8
4. Q19 Dox (+) vs Dox (-) の比較	7
5. Q88 Dox (+) vs Dox (-) の比較	3
第2章 考察	2
第3章 結語と今後の課題	9
謝辞	0
参考文献	1

歯状核赤核・淡蒼球ルイ体萎縮症(DRPLA)は、*DRPLA*遺伝子の CAG リピートの異常 伸長による常染色体優性遺伝の脊髄小脳変性症である。DRPLA タンパク質は転写 coregulator として働くが、その標的遺伝子は未同定であった。今回 DRPLA タンパク質を 定常発現する培養細胞を用いた RNA sequence により、DRPLA タンパク質の強制発現に より、qRT-PCR で validate された発現変動遺伝子を 11 個、mutant DRPLA タンパク質 の強制発現により、発現変動を認める遺伝子 10 個を同定した。標的遺伝子の有力な候補 であり病態解明・治療法開発にあたり有用な知見と考えた。

略語集

bp; base pair BSA; bovine serum albumin CPM; count per million CTP; cytidine triphosphate DEGs; differentially expressed genes D-MEM; Dulbecco's Modified Eagle Medium Dox; doxycycline DRPLA; Dentatorubral-Pallidoluysian Atrophy DRPLAp; Dentatorubral-Pallidoluysian Atrophy protein ds cDNA; double strand cDNA FC; fold change FPKM; Fragments Per Kilobase of exon per Million mapped fragments FRDA; Freidreich's ataxia FRT; Flp recombination target site FU; arbitrary fluorescent unit FXTAS; fragile X associated tremor/ataxia syndrome gDNA; genomic DNA GO; Gene Ontology GTEx; Genotype-Tissue Expression HDL2; Huntington's disease-like 2 LDS; lithium dodecyl sulfate MJD; Machado-Joseph disease MMLV-RT; Moloney murine leukemia virus reverse transcriptase nt; nucleotide OMIM; Online Mendelian Inheritance in Man PVDF; polyvinylidene difluoride qRT-PCR; quantitative reverse transcription-PCR RIN; RNA integrity number RPKM; Reads Per Kilobase of transcript per Million mapped reads RPM; read per million mapped read rRNA; ribosomal RNA SBMA; spinal and bulbar muscular atrophy SCA; spinocerebellar ataxia SDS; sodium dodecyl sulfate TAF; TATA-binding protein-associated factor TBS; Tris buffered saline

Tet; tetracycline

URL 集

OMIM; http://www.omim.org GTEx; http://www.gtexportal.org/home/

序章

1. DRPLAとは

DRPLA (Dentatorubral-Pallidoluysian Atrophy, 歯状核赤核・淡蒼球ルイ体萎縮症、 OMIM (Online Mendelian Inheritance in Man) #125370) は常染色体優性遺伝性の脊 髄小脳変性症であり、12p13.31 における *DRPLA* 遺伝子 (*ATNI*) exon5 の CAG リピー ト数の異常伸長を病因とする^[1, 2]。CAG リピートは DRPLAp (atrophin 1) のグルタミ ン鎖をコードしており (図 1)、正常では 3~36 回であるところ、DRPLA 患者において は 49~88 回と伸長を認める。CAG リピートの異常伸長は伸長ポリグルタミン鎖をコー ドすることから、DRPLA は spinal and bulbar muscular atrophy (SBMA)^[3]、ハンチ ントン病^[4]、脊髄小脳変性症 1型 (spinocerebellar ataxia type 1: SCA1)^[5]、マシャド・ ジョセフ病 (Machado-Joseph disease, MJD/SCA3)^[6]、SCA2^[7:9]、SCA6^[10]、SCA7^[11]、SCA17^[12, 13] と共にポリグルタミン病に分類される。 図1. リピート配列の異常伸長による神経変性疾患

DRPLA は翻訳領域における CAG リピート伸長によるポリグルタミン病である。 FXTAS; fragile X associated tremor/ataxia syndrome DM; myotonic dystrophy ALS/FTLD; amyotrophic lateral sclerosis/frontotemporal lobar degeneration FRDA; Freidreich's ataxia HDL2; Huntington's disease-like 2

DRPLAの発症の平均年齢は 47.3 歳で、世代を経る毎に発症年齢が早まるという特徴 がある。臨床症状は、若年発症型(20 歳未満)では主に進行性ミオクローヌスてんかん の病像を呈することが多く、遅発成人発症型(40 歳以上)は小脳性運動失調に加えて舞 踏運動などの不随意運動が主体である。若年成人型(20 歳以上 40 歳未満)は遅発成人発 症型と若年成人型の中間型を示す^[14]。 1994 年に Koide ら、Nagafuchi らによって、*DRPLA* 遺伝子の CAG リピート伸長が DRPLA の原因であることが報告され、CAG リピート長は発症年齢と逆相関を呈し、世 代とともに CAG リピート長が伸長する現象が確かめられ、特に父系遺伝において顕著で あることが判明した^[1,2]。つまり、DRPLA において、世代を経る毎に発症年齢が早まる 表現促進現象は、このリピート不安定性によるものであることが明らかとなっている

DRPLA は本邦において頻度の高い疾患であり、常染色体優性脊髄小脳変性症の中で MJD、SCA6、SCA31 に次ぎ4番目に多い。実際、当教室において遺伝子診断を施行し た 507 家系の常染色体優性脊髄小脳変性症の 12.6%で診断されている。2008 年の報告 ^[15] より本邦では 0.48 人/100,000 人の有病率と見積もられ、有病者は約 600 人と推定さ れる。

アメリカで Haw River syndrome と呼ばれていた疾患^[16] が、*DRPLA* 遺伝子の同定 後に、*DRPLA* 遺伝子の CAG リピート伸長が認められ同一疾患であることが判明したと いう例^[17]、イギリスにおける集積地の発見^[18, 19] については有名であるが、基本的には 世界的に非常に希な疾患である^[20]。アメリカ以外には、マルタ島^[18]、韓国^[21, 22]、ポル トガル^[23, 24]、デンマーク^[25]、イタリア^[26-28]、マケドニア^[29]、ベネズエラ^[30]、ハン ガリー^[31]などで少数例が報告されるにとどまり、一方中国^[32]、タイ^[33]、ブラジル ^[34]、フランス^[35] からの報告では DRPLA が見いだせなかったとされ、DRPLA は本邦に おいて特異的に頻度が高い疾患であると言える。

2. DRPLA 遺伝子・DRPLAp について

図 2. DRPLA 遺伝子の模式図

DRPLA 遺伝子は約 20 kb で 10 個の exon からなる。DRPLA 遺伝子がコードする
 DRPLA protein (DRPLAp) は、1185 アミノ酸から成り、488 番目のアミノ酸残基から
 ポリグルタミン鎖が存在する (図 2)。

DRPLAp は細胞内で、核と細胞質に存在することが知られている^[36-40]。DRPLAp に は、ポリグルタミン以外にも、serine-rich region, polyproline tract など反復配列を多く 含むことが知られている^[40]。また、N 末端側の 16-32 番目のアミノ酸と、C 末端側の 1033-1041 番目のアミノ酸からなる領域が、それぞれ nuclear localization signal (NLS) と nuclear export signal (NES) であると予測されており、Nucifora らは、Neuro2a を用 いた検討で、これらが実際に機能的であることを示している^[40]。

Onodera らは northern blot による分析で、wild type DRPLA mRNA、mutant DRPLA mRNA 共に、脳の他、心臓・肺・腎臓・胎盤・骨格筋・肝臓にも分布し、脳に

おいては、歯状核赤核・淡蒼球ルイ体系のみでなく、扁桃体、尾状核、脳梁、海馬、視床 下部、黒質、視床下核、視床に幅広く分布すると報告している^[41]。 3. DRPLA の病態機序に関する先行研究

DRPLAの病態機序の検討にあたり、本来、DRPLApの細胞内の局在、processing、生 理機能などを十分に明らかにすることが、分子病態機序研究、治療法開発でも必要であ る。ここでは、DRPLApの機能に関する先行研究を述べる。

DRPLA の剖検脳における病理所見は、小脳歯状核遠心系、淡蒼球ルイ体系の系統変性 が主体であり、同部位の神経細胞脱落を呈する。歯状核赤核・淡蒼球ルイ体において mutant DRPLAp を含む核内封入体が確認されている^[42]。Sato らは全長 mutant DRPLA遺伝子のトランスジェニックマウスを報告しQ129マウスにおいては運動失調と てんかん、ミオクローヌスを呈し、DRPLA と類似した病態を示していることを明らかと した^[43]。Q129 マウスにおいては、進行性の脳萎縮を認めるものの、明らかな神経細胞 の消失は認めず、spineの数の減少・萎縮性変化、神経細胞の細胞体・神経突起の萎縮を 認めた。神経細胞の核内には封入体形成が認められた。一方、DRPLA のノックアウトマ ウスでは、体重は野生型よりも小さいが、明らかな運動失調や痙攣などは認めず、脳の病 理学的検索においても明らかな神経細胞の脱落や変性は認めていない^[44]。剖検脳、トラ ンスジェニックマウスにおいて DRPLAp を含む核内封入体が認められること、トランス ジェニックマウスにおいてヒトと類似した症状を認めたことから mutant DRPLAp が核 において何らかの機能障害を呈する gain-of-toxic function 機序が病態に関与しているこ とが推測されてきた。

培養細胞を用いて細胞死と封入体形成について検討した研究では、全長 DRPLAp を、

神経細胞に分化させた PC12 細胞・fibroblast ^[39]、Neuro2a 細胞 ^[40] に発現させた系に おいては、正常ポリグルタミン鎖長の DRPLAp・伸長ポリグルタミン鎖長の DRPLAp の 両者で、明らかな細胞死は誘導されなかった。凝集体については、正常ポリグルタミン鎖 長または伸長ポリグルタミン鎖長の DRPLAp を発現させた、Neuro2a 細胞では観察され なかったが ^[40]、truncated *DRPLA* (Q82) 遺伝子(伸長ポリグルタミン鎖(Q82))を 発現させた際に、神経細胞に分化させた PC12 細胞では核に、fibroblast においては細胞 質に凝集体が観察されている ^[39]。Sato らは、伸長ポリグルタミン鎖を有する truncated DRPLAp を発現させることで、細胞毒性が出現し、凝集体が多く観察されることを示し ている ^[39]。また Nucifora らも同様の結果を得ており、DRPLAp が細胞内でプロセッシ ングを受ける過程で、C 末端の NES が消失することで核への局在が増えることが細胞毒 性の原因ではないかと推測している ^[40]。

DRPLAp の核における機能については、転写 co-regulator であることが複数の研究で 示されている。*Drosophila* において *DRPLA* 遺伝子の相同体 Atrophin (Atro) は、Evenskipped (Eve) タンパク質と直接的に結合し、Atro が Eve の co-repressor であることが 示されている^[45]。他にも wild type mouse DRPLAp の GAL4 luciferase reporter assay を用いた報告では、HEK293 細胞では転写活性化^[46]、Neuro2a 細胞においては用量依 存性に転写抑制を行うこと^[47] が示されている。

Shimohata T. らは、yeast two hybrid assay により、TAF II 130 (TATA-binding protein-associated factor) と polyQ 鎖 (Q19 or Q82)の結合を見出した^[48]。COS-7 細

胞においても、polyQ 鎖(Q57)が TAF II 130 と結合することを、polyQ 鎖の tag に対 する抗体を用いた co-precipitation により示し、細胞内の共局在を、polyQ 鎖に結合した GFP の蛍光と TAF II 130 に対する免疫蛍光染色の overlay による観察により確認した ^[48]。DRPLA 剖検脳の神経細胞核内封入体においても、wild type DRPLAp または mutant DRPLAp と CREB · TAF II 130 が共局在し、wild type DRPLAp と mutant DRPLApの両者と結合していることが確認された^[48]。TAF II 130 は CREB (cAMP response element binding protein) 依存性転写調節機構において転写共役因子として機 能するタンパク質である^[49,50]ことから、DRPLApが TAF II 130 を介して、CREB 依 存性転写調節を行うとする仮説が立てられた(図3)。実際、in vitro reporter assay を用 いて伸長 polyQ 鎖のみを発現させたところ、luciferase の転写が抑制されるが、伸長 polyQ 鎖と TAF II 130 を同時に発現させると転写活性については rescue されることが示 された。このことより、伸長 polyQ 鎖が、CREB 依存性転写活性化を阻害する可能性が 示された。また、Shimohata M. らは、DRPLAp (Q0, Q19, Q57) を発現させた Neuro2a 細胞において、リン酸化 CREB 依存性の *c-fos* の転写が polyQ 鎖長依存性に抑制される と報告している^[47]。これらの研究から、DRPLAp は少なくとも CREB に関連した系に おいて転写の co-regulator として働いていると考えられた。

DRPLA における遺伝子発現プロファイル解析として、マウスモデルを用いた2つの研究がある。赤岩らは、DRPLA 遺伝子ノックアウトマウスと wild type マウスとの間で、同じ日齢において有意に発現変動する遺伝子をマイクロアレイを用いて解析した^[44]。胎

生14日・生後1日、42日の各日齢における、ノックアウトマウスと wild type マウスの 全脳から抽出した total RNA を用いることで、それぞれ 63 遺伝子、5 遺伝子、3 遺伝子 に変動が見られることを示している。Suzuki らは全長の *DRPLA* 遺伝子を導入したトラ ンスジェニックマウスの大脳・小脳から抽出した RNA を用い、polyQ 鎖数・出生後週数 依存性に発現が変動する遺伝子を探索した^[44]。両研究とも神経細胞を用いた貴重な知見 である一方で、個体の脳組織由来の RNA を用いていることによる検体間のばらつきや、 混在した細胞種の homogenate を用いているという点は考慮する必要がある。

前述のように、DRPLApの機能解析において用いられる DRPLA 遺伝子のコンストラ クトは、全長 DRPLA 遺伝子ではなく truncated DRPLA 遺伝子や polyQ 鎖のみであるこ とが多い^[39, 40, 46, 48, 51]。Truncated DRPLAp の方が polyQ 鎖伸長による毒性を観察しや すい傾向があるため研究に用いられることが多いが、DRPLAp の機能を解明するために は、全長 DRPLAp を用いた研究を行うことが望ましいと考えられる。

同じくポリグルタミン病である SBMA は、AR(androgen receptor)内の CAG リピー ト伸長が原因であるが、機能獲得によると思われる前角細胞におけるポリグルタミンの凝 集が認められる一方、アンドロゲン不応に対応する女性化乳房、睾丸萎縮、乏精子症など の症状も呈することが知られている^[3, 53]。

以上のことから、DRPLA の病態機序を理解するためには、全長の DRPLAp につい て、その生理的な役割を明らかにした上で、伸長ポリグルタミン鎖がその生理的機能にど のように影響を与えるのか、さらに, gain-of-toxic function 機序と loss-of-function 機序 の両方の観点から解明することが重要であると考えられ、本疾患の治療戦略を立てる上で も重要と考えられる。 図 3. TAF II 130 の CREB 介在性転写調節機構における転写共役因子としての機能概略

CREB 依存性転写調節機構では、標的遺伝子のプロモーター領域にある CRE (cyclic AMP responsive element) 応答配列に結合した CREB がリン酸化されると、CREB と CBP (CREB binding protein) によって TAF II 130 が活性化される。活性化された TAF II 130 により、TBP (TATA-binding protein) がプロモーター領域の TATA-box (図中 TATA) に誘導され、RNA polymerase II により標的遺伝子の転写調節がなされ る。DRPLAp は TAF II 130 を介して、CREB 依存性転写調節を行うとする仮説が立てら れた。

4. 本研究の目的

本研究では、DRPLApの転写の co-regulator としての機能に着目し、全長 DRPLAp を テトラサイクリンの添加による発現を誘導できる培養細胞系(HEK293 細胞)を用いて, RNA-seq 解析によりトランスクリプトーム解析を行い、wild type DRPLAp、mutant DRPLAp の発現により発現変動する遺伝子を網羅的に同定し、DRPLAp の転写の coregulator としての生理的機能を明らかにすることを目的とした(図 4)。

図 4. 転写の co-regulator としての DRPLAp の機能

DRPLAp は共役因子と共に転写の co-regulator として働き、標的遺伝子の転写調節を行う。標的遺伝子を網羅的に探索することにより、DRPLAp の生理的機能を明らかにする。

第1章 DRPLApの転写 co-regulator としての標的遺伝子の RNA-seq による解析

現在までの研究では、DRPLAp は転写の co-regulator として働くことが示唆されてい るため、本研究においては、DRPLAp の標的遺伝子を解明することを目的に、全長 DRPLA (Q19 or Q88)遺伝子 を,テトラサイクリン依存性に発現誘導できる培養細胞 を用いて RNA-seq^[54]を行い、標的遺伝子を網羅的に探索することとした。

RNA-seq とは、total RNA から逆転写酵素により作成したシーケンスライブラリの塩 基配列を次世代シーケンサーで解析し、塩基配列決定の後、得られた塩基配列をヒトゲノ ムの参照配列(リファレンスゲノム)に一致する部分に alignment(マップ)し、参照配 列上の遺伝子に alignment された read の数の分布を元に、遺伝子の発現量を推定する方 法である。RNA-seq を用いる利点として、既存の方法であるマイクロアレイによる解析 と比較して、(a) 十分な全 read 数の確保により、より広いダイナミック・レンジ が得ら れ、マイクロアレイよりも少ない発現量の遺伝子の検出が可能である点、(b) 遺伝子発現 量の相対的定量がより正確に可能である点、(c) 今回は直接の目的とはしていないが、新 規遺伝子配列の予測、splice variant の探索が可能である点が挙げられる。

今回、TruSeq Stranded total RNA with RiboZero Gold のプロトコールを用いて RNAseq 用のライブラリを用いた。このプロトコールを選択した理由は、total RNA の約 98%は rRNA であるが、rRNA の depletion により効率よくシーケンスを行えるように するためである。また、このプロトコールでは、second strand cDNA 合成の際、dTTP (deoxythymidine 5'-triphosphate)の代わりに dUTP (2'-deoxyuridine 5'-

triphosphate)を組み込み、PCR 増幅前に uracil-DNA gylcosylase で second strand cDNA 鎖からは増幅できないようにする。このことにより first strand cDNA 鎖と second strand cDNA 鎖とを区別してシーケンスすることが可能になり、転写の方向性について の情報が保持されるという利点がある。

本研究においては、Tet-On system (Tet; tetracycline)^[55] 制御下で *GFP-full length DRPLA*融合遺伝子を定常発現する HEK293 細胞株由来の Flp-InTM T·RExTM 293 細胞を 用いた (Invitrogen® by Thermo Fisher Scientific, Inc.)。Tet-On system とは tetracycline (Tet) を添加することで細胞に目的遺伝子を発現させる系である。本研究で は半減期が Tet より長い Tet の誘導体である doxycycline (Dox) を添加した (Dox (+))。Flp-InTM T·RExTM 293 細胞を用いた理由は、Flp-InTM T·RExTM 293 host cell line のゲノムには FRT (Flp recombination target site) が一箇所固定した位置に存在するた め、マルチクローニングサイトに今回の目的遺伝子である *GFP-full length DRPLA* (Q19 or Q88) 融合遺伝子が挿入された pcDNA5TM/FR/TO (Invitrogen® by Thermo

Fisher Scientific, Inc., Waltham, MA USA) と Flp recombinase を発現する pOG44

(Invitrogen® by Thermo Fisher Scientific, Inc.) とを co-transfection することで、

FRT との相同組み換えが生じ、ゲノムに一箇所固定した位置に目的とする GFP-DRPLA 融合遺伝子が組み込むことができ、結果として、Tet-On (Dox (+)) によりライン間で均一 な発現環境で GFP-full length DRPLA (Q19 or Q88) 融合遺伝子を stable に発現させる

ことが可能になるからである。再現性の高い転写プロファイリングデータが得られること が期待されたため、この細胞を用いる方針とした。

材料と方法

実験系の構築

(1) Tet-On system 制御下 GFP-full length DRPLA 遺伝子定常発現株
 (Flp-InTM T-RExTM 293 細胞)の作成

本研究においては、Tet-On system 制御下で *GFP-full length DRPLA* (Q19 or Q88) 融合遺伝子を定常発現する Flp-InTM T-RExTM 293 細胞を用いた(以下 Q19、Q88、共同 研究者東京大学伊達英俊博士より供与)(図 5)。

具体的には、マルチクローニングサイトの BamHI と XhoI site に、今回の目的遺伝子 である *GFP-full length DRPLA* (Q19 or Q88) 融合遺伝子が挿入された

pcDNA5TM/FR/TO(Invitrogen® by Thermo Fisher Scientific, Inc.)を準備し、Flp recombinase を発現する pOG44 とこのベクターを Flp-InTM T-RExTM 293 細胞に transfection し、hygromycin で selection を行うことで、定常発現細胞を得た。

作成された細胞の培養は、10% Fetal Bovine Serum(Gibco® by Thermo Fisher Scientific, Inc., 12483-020)、100 µg/ml Hygromycin B(Wako Pure Chemical Industries, Ltd, Osaka, Japan, 084-07681)、15 µg/ml Blasticidin(Thermo Fisher Scientific, Inc., R210-01)を含む Dulbecco's Modified Eagle Medium(D-MEM)培地

(Wako Pure Chemical Industries, Ltd, 044-29765)を用い、37℃、5%CO2にて行った。

図 5. Tet-On system 制御下 *GFP-full length DRPLA* 遺伝子定常発現株 (Flp-InTM T-RExTM 293 細胞)の作成

Flp-In[™] T-REx[™] 293 細胞のゲノム(①) に、*GFP- full length DRPLA* 融合遺伝子が、 一箇所固定した FRT (Flp recombination target site) に導入された状態(②) を示す。 Tet-On (Dox (+)) によりライン間で均一な発現環境で *GFP-DRPLA* 融合遺伝子を発現さ せることができる。

(2) *GFP-DRPLA* 融合遺伝子の mRNA とタンパク質の発現量の測定 細胞培養と mRNA、タンパク質抽出

RNA-seq の対象とするタイムウィンドウの検討のため、quantitative reverse transcription-PCR (qRT-PCR) と Western blot を行った。qRT-PCR は Q19 と Q88 を 用いて Tet-On 0・12・24・48・72 時間後のタイミングで行い、Western blot は Q19 を用い て Tet-On 24・48・72 時間後、Q88 を用いて Tet-On 24 時間後のタイミングで行った。細 胞培養は total RNA 抽出時は 6 well plate を用いて約 3.0×10⁶ cells/well、前述と同様の 10% Fetal Bovine Serum を含む D-MEM 培地 (Wako Pure Chemical Industries, Ltd, 044・29765) 3 ml/well の条件下で行った。タンパク質抽出時は 6 cm dish を用いて約 5.0 ×10⁶ cells/dish、前述と同様の 10% Fetal Bovine Serum を含む D-MEM 培地 3 ml/dish の条件下で行った。発現誘導は Dox (LKT Laboratories, Inc., St. Paul, MN, USA, D5897) を 1 µg/µl の stock solution を用いて 1 µg/培地 1 ml の濃度で添加して行い、24 時間以上 Tet-On とする場合は 24 時間毎に培地交換と Dox 添加を行った。

(i) GFP-DRPLA 融合遺伝子の mRNA 発現の qRT-PCR による定量

細胞からの total RNA 抽出は RNeasy Plus Mini kit (Qiagen, N.V., Venlo,

Netherlands) により行い、Agilent RNA 6000 Nano kit(Agilent Technologies, Inc., Santa Clara, CA, USA) と Bioanalyzer(Agilent Technologies, Inc.)を用いて RNA の 質の評価を行った。RNA integrity number(RIN) ≧ 9(最高 10)であるサンプルのみ を使用した。

100 ng - 500 ng の total RNA を鋳型とし、Rever Tra Ace® qRT-PCR RT Master Mix with gDNA Remover(TOYOBO CO., LTD, Osaka, Japan)の 4×DN Master Mix

(RNase inhibitor、反応 buffer、2 v/v% gDNA remover(DNase I))2 µl、nucleasefree water とが計 8 µl となるよう調製し、37℃ 5 分間 incubate し gDNA を除去した。 次に 5×RT Master Mix II(逆転写酵素、random primer、oligo dT primer、反応バッフ アー、dNTPs)2 µl を添加し計 10 µl とし、37℃ 15 分間・50℃ 5 分間の逆転写反応、 98℃ 5 分間の酵素失活反応を行い、gDNA 除去済 cDNA を生成した。

gDNA 除去済 cDNA を用い、target を DRPLA 遺伝子、endogenous control を ACTB 遺伝子として qRT-PCR を行った。Forward primer ・reverse primer 入り配列特異的蛍 光標識プローブを用い、target (Applied Biosystems® by Thermo Fisher Scientific, Inc., TaqMan® Gene Expression Assays, FAM-MGB (minor groove binder), Hs 00157312_m1) と endogenous control (Applied Biosystems® by Thermo Fisher Scientific, Inc., VIC-MGB, 4326315E) とを各1µl ずつ、THUNDERBIRD® Probe qPCR Mix (TOYOBO CO., LTD, Japan) probe (Taq DNA polymerase) 10µl、50X ROX 0.4µl、distilled water 6.6µl の組成で計 20µl の反応液とした。PCR は (1) 95℃1 分間の DNA 変性、(2) 95℃15 秒間のアニーリング、(3) 65℃1 分間の伸長反応 の (1) ~ (3) を 40 サイクル繰り返し、ABI PRISM 7900 HT (Applied Biosystems® by Thermo Fisher Scientific, Inc.)を用いて比較定量法により行った。

比較定量法においては、内在性コントロール遺伝子と目的遺伝子の増幅効率が同じで、 全てのサンプルの鋳型 DNA において、内在性コントロール遺伝子が一定の割合で発現 し、PCR n cycle 後の DNA 量 = (初期鋳型量 I) ×2ⁿ が成り立つと仮定する。Ct とは 一定の PCR 産物量 (DNA 量) に達するために必要な threshold cycle 数であり、以下の 式から、endogenous control (EC) 遺伝子発現量で補正した target 遺伝子の Dox (+) 時と Dox (-) 時の初期鋳型量比 ($I_{target 遺伝子 (Dox (+))}/I_{target 遺伝子 (Dox (-))}$) を算出した。

$$= 2^{-\Delta Ct (Dox (+))} / 2^{-\Delta Ct (Dox (-))}$$

= $2^{-(\Delta Ct (Dox (+)) - \Delta Ct (Dox (-)))}$

 $= 2^{-\Delta\Delta Ct}$

ーつの RNA サンプルから独立して 3 つの cDNA を作成し、一回の qRT-PCR により Δ Ct 値を 3 サンプルの平均値として算出した。一回の実験の Δ Ct 値については、標準偏 差が 1 未満の時のみ、有効な結果として用いた。有効な実験の Dox (+) と Dox (-) の 比較より、 - Δ ACt 値を計算した。 qRT-PCR は合計 9 回施行し、9 回の実験の - Δ ACt の 平均値、 - Δ ACt の標準誤差から、初期鋳型量比を算出した。 (ii) GFP-DRPLA 融合タンパク質の発現の Western blot による解析
GFP-DRPLA (Q19 or Q88) 融合タンパク質の GFP の蛍光を、Q19 は Tet-On 24・48・
72 時間後、Q88 は Tet-On 24 時間後の細胞回収時に倒立蛍光顕微鏡により倍率 100 倍で
観察した後、タンパク質を抽出した。

Total protein 抽出は、最初に細胞と lysis buffer(Tris HCl pH 7.6 50 mM、NaCl 150 mM、NP40 1.0%、DOC 0.5%、SDS 2%)を、6.0×10⁶ cells/ml の濃度で 1.5 ml eppendorf tube 内において vortex により混和し、次に shearing を 1 ml シリンジと注 射針(18 G→22 G→25 G 各径 5 回ずつ)で行い、さらに sonication を SONIFIER250

(Branson Ultrasonics Corporation, Danbury, CT, USA) にて output 1 にて 10 秒間 /tube 行い、2 時間室温で静置して行った。5% 2-hydroxy-1-ethanethiol を加えた Laemmli sample buffer (Tris-HCl pH 6.8 277.8 mM, glycerol 44.4% (v/v), LDS

(lithium dodecyl sulfate) 4.4%, bromophenol blue 0.02%; BioRad Laboratories, Inc.
Hercules, California, USA, 1610737) と、細胞を溶解した lysis buffer 溶液(Tris-HCl pH 7.6 50 mM, NaCl 150 mM, NP40 1.0%, DOC(sodium deoxycholate) 0.5%, SDS (sodium dodecyl sulfate) 2%)を等量混合し、80°C 1分間で incubate の後、氷冷し、total protein 溶液とした。

10%ポリアクリルアミドゲル(ATTO Corporation, Tokyo, Japan, E-T1020L)を running buffer(Tris-HCl pH 7.4 0.83 M, glycine 6.4 M, SDS 0.12 M)中にて、total protein 溶液を 40 µl/well、マーカーとして Precision Plus ProteinTM Standards Dual Color (BioRad Laboratories, Inc., 161-0374) を 10 µl/well 入れ、20 mA/ゲルで 80 分 間電気泳動した。

Transfer buffer (Tris-HCl pH 7.4 0.1 M, glycine 1.9 M, methanol 20%) 内で、メタノ ールに 1 分間浸した PVDF (polyvinylidene difluoride) 膜 Immobilon-P^{SQ} (Merck Millipore Corporation, Darmstadt, Germany, ISEQ00010) に 0.2 A、8 時間で転写し た。PVDF 膜を TBS-T (Tris buffered saline; Tris-HCl pH 7.4 0.05 M, NaCl 0.138 M, KCl 0.0027 M, 0.05% Tween 20) に 1 回浸した後、EzBlock CAS (Tris-HCl, 牛由来カ ゼイン, Tween 20 (ATTO Corporation, Tokyo, Japan, AE-1477)) に PVDF 膜を 1 時間 30 分振盪しブロッキングを行った。

一次抗体反応は、別々の PVDF 膜に 1% BSA(bovine serum albumin)を用いて抗 GFP rabbit polyclonal 抗体 (MBL Co., Ltd., Aichi, Japan, GFP 598, 1: 500) と抗βactin C4 mouse monoclonal 抗体 (Santa Cruz Biotechnology, Inc., Dallas, Texas, USA, sc-47778, 1:1000)を用いて 4[°]C overnight で行った。PVDF 膜は TBS- T に 1 回浸した 後、20 分間×3 回洗浄し、二次抗体反応は 1% BSA を用いて anti rabbit IgG (GE Healthcare UK Ltd, Buckinghamshire, England, NA 934V, 1:5000)もしくは anti mouse IgG (Santa Cruz Biotechnology, Inc., sc-2005, 1:5000)を用いて 1 時間振盪して 行った。PVDF 膜は TBS-T に 1 回浸した後、40 分間×3 回洗浄の後、WSE-7120S EzWest Lumi plus (ATTO Corporation)で化学発光を行い、LAS 3000 Mini (Fujifilm Corporation, Tokyo, Japan)で撮影した。 なお、positive control として、Flp-In[™] T-REx[™] 293 細胞に、*GFP-DRPLA* 融合遺 伝子の代わりに *GFP-GR (glucocorticoid receptor)* 融合遺伝子が導入された GFP-GR 細 胞を用いた。GFP-GR 細胞も、*GFP-DRPLA* 融合遺伝子を発現する細胞と同様の方法 で、Tet-On 24・48 時間後に GFP の蛍光の確認をし、Western blot を行った。

2. RNA-seq

(1) RNA-seq に用いるための RNA サンプル抽出

Q19、Q88の細胞は 6 well plate で約 3.0×10⁶ cells/well、培地 3 ml/well として前述の ように培養した。Dox 添加する際の濃度 は 1 µg/培地 1ml とした。Dox (+) 24 時間後に 培養細胞から total RNA を抽出した。

Q19・Q88の、各々Dox(+) or Dox(-)の2条件について、同時並行に3つの well を用いて培養し、1 set で 12 サンプルとした。実験日と細胞の継代数を変えて合計4 set、計48 サンプルから total RNA を抽出した(図 6)。 図 6. RNA-seq に用いるための total RNA の抽出

今回の RNA-seq のためのサンプル処理の概略を示す。1回のセットで、培養細胞を3
 well ずつ培養し、Dox(+) 24 時間後に RNA 抽出を行った。Q19・Q88 の細胞について、Dox(+) or Dox(-)の2条件について RNA 抽出を行うことを、合計4 set 独立して行った。得られた 48 サンプルについて RNA-seq を行った。

(2) シーケンスライブラリ調製

RNA-seq のためのシーケンスライブラリ調製は、細胞から RNeasy Plus Mini kit を用 いて抽出した total RNA 1µg を用い、TruSeq Stranded Total RNA with Ribo Zero Gold Kit (Illumina, Inc., San Diego, CA, USA)のプロトコールにより行った(図7)。具体的 には、total RNA に対し種特異的 ribosomal RNA(rRNA)probe を加え 68℃ 5 分間で total RNA を denature した後、probe と hybridization させ、マグネットビーズを加えて rRNA を除去した。Bioanalyzer と Agilent RNA 6000 pico kit (Agilent Technologies, Inc.) を用いて rRNA が除去されていることを確認した。2 価陽イオン (Elute, Prime, Fragment High Mix) と共に 94°C 8分間 incubate し、insert length (adapter 間の DNA 長)が 120-210 bp(base pair)となるように断片化した。断片化 RNA に対し、 random primer と逆転写酵素 (SuperScript® II Reverse Transcriptase (Invitrogen®) by Thermo Fisher Scientific, Inc.)) を用いて double strand (ds) cDNA ライブラリを 調製した。さらにシーケンサーのフローセル(スライドガラス)にハイブリダイゼーショ ンするため、ds cDNA ライブラリ の両端に indexing adapter 配列(ライブラリを識別 するための6塩基のインデックスのついたアダプター)をligateした。最後にPCRを15 サイクル行い、シーケンスライブラリを作成した。Bioanalyzer と Agilent DNA1000 を 用い、最終産物がおよそ260 bp となることを確認した。

(3) RNA-seq

大規模シーケンスは、HiSeq 2500 を用いて、101 塩基長のペアエンド法を用いて行っ

た。各レーンに投入時、各サンプルは2nMの濃度とした。

図 7. Total RNA から index adapter 付加シーケンスライブラリの調製

培養細胞から抽出した total RNA 1 µg を input とし、strand specific シーケンスライブ ラリ調製を行った。total RNA より rRNA (ribosomal RNA) を除去し rRNA depleted RNA とした。random primer と逆転写酵素を用いてシーケンスライブラリを調製し HiSeq 2500 でペアエンド RNA-seq を行った。 3. RNA-seqの解析

(1) シーケンスデータの alignment と 2 つのソフトウェアを用いた遺伝子 発現量算出

シーケンスデータ (FASTQ ファイル) のヒトリファレンスゲノム (UCSC human genome 19, hg19) に対する alignment は TopHat 2 (v2.0.8b^[56]) - Bowtie 2 (v2.1.0 ^[57]) を用いて行った。遺伝子発現量については、Cufflinks 2 (v2.1.1^[58]) と edgeR (v3.6.8^[59]) の 2 つのソフトウェアを用いて算出した。edgeR による処理の前に HTSeq (v0.6.1^[60]) を用い、alignment データである bam ファイルから edgeR における遺伝子 発現量算出に必要なカウントデータを算出した (図 8)。

なおソフトウェアの相違点は、Cufflinks 2 はカウントデータの単位が fragment(ペア エンド法で得られたリードを同一の DNA 分子由来のデータと考え、一つとしてカウント する単位)であり、alignment された 1 ライブラリ の全 fragment 数を 100 万 fragment とした場合の各遺伝子の相対的発現量を算出した後、遺伝子配列長で補正し、 FPKM(Fragments Per Kilobase of exon per Million mapped fragments)という単位で 各遺伝子の発現量を算出する。一方で edgeR はカウントデータの単位が read(ペアエン ド法で得られたリードを独立にカウントする単位)であり、alignment された 1 ライブ ラリ の全 read 数を 100 万 read とした場合の各遺伝子の相対的発現量(RPM: read per million mapped read)を算出した後、遺伝子長による補正は行わない代わりに、TMM 補正(trimmed mean of M: RPM 値が突出して多い・または少ない遺伝子による、同一 サンプル内の他遺伝子のリード数の過小・または過大評価を補正することで発現変動遺伝 子の偽陽性・偽陰性を減少する統計学的手法)を行い、各遺伝子の発現量として CPM (count per million) 値を算出した(表 1)。

表 1. Cufflinks 2 と edgeR の主な相違点

	Cufflinks 2	edgeR
遺伝子発現量の単位	FPKM	СРМ
遺伝子発現量の 元となるカウントデータ	fragment	read
遺伝子長による補正	有り	無し

なお、*DRPLA* 遺伝子の発現量を検討する際に、内在性の *DRPLA* と、導入コンスト ラクト由来の *GFP-DRPLA* 遺伝子の発現量について比較するため、以下の解析を行っ た。内在性 *DRPLA* 遺伝子の cDNA のスタートコドンの最初の A の上流・下流 100 塩基 (c.-100_100 の 200 塩基) の配列及び、*GFP-DRPLA* 遺伝子コンストラクトのスタート コドンの最初の A の上流・下流 100 塩基からなる 200 塩基 (c.-100_100) の 2 つの配列 を準備した。BWA (v0.7.12^[61])を用いて得られた ショートリードをこの 2 つの配列に alignment し、中央 (c.-1) にマップされたリードの数を以て、内因性 *DRPLA* 遺伝子由 来の発現と *GFP-DRPLA* 融合遺伝子由来の発現を検討した。

(2) 発現変動遺伝子の抽出

各setにおいて、Dox (+) の3 サンプルとDox (-) の3サンプルを比較することで、発 現変動遺伝子 (differentially expressed genes, DEGs) と遺伝子発現量比 (fold change) を算出した。統計学的な検定は、Cufflinks 2はt検定、edgeRはフィッシャーの 正確検定により行い、false discovery rateにより多重比較の補正を行ったq値を算出し た。有意水準はq<0.05とした。

(3) 1st step-DEGs の抽出

可能な限り再現性のある結果を得るため、Cufflinks 2 によって解析した全 set で共通 して有意に発現変動する遺伝子、edgeR によって解析した全 set で共通して有意に発現変 動する遺伝子をそれぞれ 1st step⁻DEGs と定義した。遺伝子発現量の比である fold change が、1 以上の場合 up-regulated DEGs、1 未満の場合 down-regulated DEGs に分 類した。

(4) 1st step-DEGs を用いた Gene Ontology 解析

1st step-DEGs を対象に、各遺伝子に付与された Gene Ontology term^[62]の特徴抽出 を、DAVID Bioinformatics Resources 6.7^[63]を用いて行った。

なお Gene Ontology (GO) とは生物学的概念を記述するために種を超えた共通の語彙 の策定をすることを指し、biological process (BP)、cellular component (CC)、 molecular function (MF) につき、様々な具体性の程度の語彙が含められている。具体 性の程度については今回は FAT (具体性が低すぎる GO に対し filter をかけた後の適度 に具体的な GO) を選択した。

DAVID は Fisher 正確検定により、帰無仮説「ある GO term が、入力した Gene list に付与されている頻度と、Genome 全体の遺伝子に付与されている頻度に差がない」の 下にp値を算出する。多重比較検定の補正値q値は Benjamini-Hochberg 法により求め た。Clustering については、1st step-DEGs の特徴を捉えるため、p<0.05 を満たす GO term に対して行った。なおこの GO 解析における clustering とは入力した遺伝子に付与 される GO の中で、複数の遺伝子に共通して付与され、かつ意味が類似しているとされた GO term の群を指す。

(5) 2nd step-DEGs の抽出

Cufflinks2、edgeR を用いて得られた 1st step-DEGs について、両ソフトウェアで共通 して有意に変動する遺伝子を、2nd step-DEGs と定義した。

(6) 2nd step-DEGs に対する qRT-PCR による validation

2nd step-DEGs の validation のため、qRT-PCR を行った。発現変動の方向性が同一で あることを以て validate されたとした。

Q19 Dox (+) vs Dox (-)の11 遺伝子、Q88 Dox (+) vs Dox (-)の遺伝子の13 遺伝子
に対して、TaqMan® Gene Expression Assays (Applied Biosystems® by Thermo Fisher Scientific, Inc.)を用いて比較定量法により行った。qRT-PCR における相対的発 現量比は、同一セットの中から Dox (+) vs Dox (-)の組を合計3組用い、計3回の実験 の $-\Delta\Delta$ Ct の平均から算出した。計3回の実験における標準誤差は、 $-\Delta\Delta$ Ct の標準誤差 を用いた。

RNA-seq における相対的発現量比は、set 毎の FPKM 値の、(Dox (+)の発現量の平 均)/(Dox (-)の発現量の平均)を用い、解析した全 set における平均値と標準誤差を算 出した。DEGs 抽出から 2nd step-DEGs の validation までの解析概略を図 8 に示した。 図 8. シーケンスデータの取得から 2nd step-DEGs の validation までの解析概略

シーケンスデータを用いて TopHat 2 によりリファレンスゲノム (hg19) に alignment した。Cufflinks 2 と edgeR を用いて、遺伝子発現量の算出を行い、各 set において Dox (+)の3サンプルと Dox (-)の3サンプルの比較を行い、有意 (q<0.05) に発現変動する 遺伝子 (DEGs)の抽出を行った。1st step-DEGs とは解析した全 set で共通して有意に 変動する遺伝子と定義し、Gene Ontology 解析を行った。1st step-DEGs のうち両ソフト ウェアで共通して有意に変動する遺伝子を 2nd step-DEGs と定義し、qRT-PCR により validation を行った。

結果

実験系の構築

Tet-On による *GFP-DRPLA* 融合遺伝子の mRNA とタンパク質の発現の時 間経過に関する検討

Tet-On による *GFP-DRPLA* 融合遺伝子の mRNA 発現の時間経過の観察を qRT-PCR により行った。qRT-PCR では、Tet-On 0・12・24・48・72 時間後までの観察を行った。 Q19・Q88 共に、*DRPLA* 遺伝子の相対的発現量は Tet-On 12・24 時間後にプラトーに達 した (図 9)。

Tet-On 24 時間後における GFP-DRPLA (Q19 or Q88) 融合タンパク質の発現を、蛍光 顕微鏡と(図10)、Western blot により確認した(図11)。また GFP-DRPLA (Q19) 融 合タンパク質発現の時間経過を、Western blot により観察した(図12)。Tet-On 24 時間 後から 72 時間後までの観察において、GFP-DRPLA (Q19) 融合タンパク質の発現量は Tet-On 24 時間後に最大であった。

以上より、*DRPLA* 遺伝子の転写がプラトーに達し、GFP-DRPLA (Q19) 融合タンパク 質の発現量が最大であった、Tet-On 24 時間後の total RNA を用いて RNAseq を行う方 針とした。

38

図 9. *GFP-DRPLA* (Q19 or Q88) 融合遺伝子の mRNA 発現の時間経過の qRT-PCR による観察

縦軸は endogenous control 遺伝子で補正した target 遺伝子の Dox (+) 時と Dox (-) 時 の初期鋳型量比 (2^{-ΔΔCt}) である。横軸は Tet-On 後の時間(h) を示す。エラーバーは-ΔΔCt の標準誤差より算出した。Tet-On 0·12·24·48·72 時間後の観察を行い、Q19・Q88 共に、*DRPLA* 遺伝子の相対的発現量は Tet-On 12・24 時間後にプラトーに達した。実験 回数は Q19・Q88 共に、各タイミングにつき 9 回である。 図 10. Tet-On 24 時間後の GFP- DRPLA (Q19 or Q88) 融合タンパク質の GFP の蛍光の 観察

A. Q19 Dox (-)

C. Q88 Dox (-)

B. Q19 Dox (+)

D. Q88 Dox (+)

Tet-On 24 時間後の GFP-DRPLA (Q19 or Q88) 融合タンパク質の GFP の蛍光を、倒立 蛍光顕微鏡により倍率 100 倍で確認した。A が Q19 Dox (-)、B が Q19 Dox (+)、C が Q88 Dox (-)、D が Q88 Dox (+) である。Scale bar は 100 μm である。 図 11. Tet-On 24 時間後の GFP-DRPLA (Q19 or Q88) 融合タンパク質発現の Western blot による観察

Tet-On 24 時間後に Q19 または Q88 から抽出したタンパク質を用いた。GFP-DRPLA 融 合タンパク質を抗 GFP 抗体を用いて、β-actin を抗β-actin 抗体を用いて標識した。 Positive control は Tet-On 48 時間後の GFP-GR 細胞から抽出したタンパク質である。抗 GFP 抗体により 100 kDa から 250 kDa の間に 3 本のバンドが標識され、分子量が最大 のバンドは GFP-full length DRPLA 融合タンパク質、その他のバンドは核移行の際に C 末端側が切断された GFP-truncated DRPLA 融合タンパク質であると考えられている。 図 12. Tet-On による GFP-DRPLA (Q19) 融合タンパク質発現の時間経過の Western blot による観察

Tet-On 24・48・72 時間後に Q19 から抽出したタンパク質を用いた。GFP-DRPLA 融合 タンパク質を抗 GFP 抗体を用いて、β-actin を抗β-actin 抗体を用いて標識した。 Positive control は Tet-On 24 時間後の GFP-GR 細胞から抽出したタンパク質である。抗 GFP 抗体により 100 kDa から 250 kDa の間に 2 本または 3 本(Dox(+)24 時間後の右 側のレーン)のバンドが標識され、分子量が最大のバンドは GFP-full length DRPLA 融 合タンパク質、その他の分子量が小さいバンドは核移行の際に C 末端側が切断された GFP-truncated DRPLA 融合タンパク質と考えられる。GFP-DRPLA (Q19) 融合タンパ ク質の発現量は Tet-On 24 時間後が最大であった。

2. RNA-seq

(1) RNA 抽出とシーケンスライブラリ調製

Total RNA からシーケンスライブラリを調製するため、約 1.0×10^6 cell の培養細胞から 約 15 µg の total RNA を抽出し、Bioanalyzer と Agilent RNA 6000 Nano kit を用いて 質の評価を行い RNA integrity number (RIN) が 9 以上であることを確認した (図 13)。さらに、total RNA に対し種特異的 ribosomal RNA probe とマグネットビーズによ り ribosomal RNA を除去することで、total RNA から ribosomal RNA が除去されたこ とを、Bioanalyzer と Agilent RNA 6000 pico kit を用いて確認した (図 14)。Input の total RNA を 1 µg とした場合、ribosomal RNA depleted RNA は 0.5-5 ng と、0.05~ 0.5%の量に減少した。シーケンスライブラリ調製後、Bioanalyzer と Agilent DNA1000 を用いて最終産物がおよそ 260 bp となることを確認した (図 15)。Total RNA の質、 ribosomal RNA の depletion の状況、シーケンスライブラリの長さの確認は、RNA-seq を行った 48 サンプル全てに対して行った。

図 13. Total RNA の質の評価

抽出した total RNA の質の評価の一例を示す、Bioanalyzer と Agilent RNA 6000 nano kit による結果である。A がバーチャル電気泳動、B は横軸を nt (nucleotide)、縦軸を FU (arbitrary fluorescent unit; 蛍光色素で標識された total RNA 量)としてグラフ化 したものである。概ね 2000 nt、4000 nt に、18S rRNA、28S rRNA に相当するピーク が観察された。本サンプルにおいては RIN (RNA integrity number) は 9.8 であった。

図 14. Total RNA から ribosomal RNA が除去されたことの確認

Total RNA から ribosomal RNA が除去されたことを、Bioanalyzer と Agilent RNA6000 pico kit を用いて確認した 1 例を示した。A がバーチャル電気泳動、B は横軸 を nt、縦軸を FU としてグラフ化したものである。Total RNA において、概ね 2000 nt、 4000 nt に観察された、18S rRNA、28S rRNA に相当するピークの消失を確認した。

図 15. シーケンスライブラリの長さの確認

シーケンスライブラリが概ね 260 bp のバンドとなることを、Bioanalyzer と Agilent DNA1000 とを用いて確認した 1 例を示した。A がバーチャル電気泳動、B は A を横軸を bp、縦軸を FU としてグラフ化したものである。B における 150 bp-200 bp、400 bp-500 bp の間のグレーの 2 本の縦線は、バーチャル電気泳動におけるバンドの範囲を手動で設 定したものである。このサンプルにおいては、グレーの 2 本の縦線と、赤のグラフの曲線 と、FU=0 のベースラインで囲まれた範囲のシーケンスライブラリのサイズは、平均 290 bp (範囲; 184 bp-467 bp) と算出された。

(2) RNA-seq

HiSeq2500 を用いて RNA-seq を行った。同一の set は同じフローセルでシーケンスし た。Q88 の set 2 の Dox (+) の 3 サンプルは read 数のばらつきが大きかったため、Q88 の set 2 を解析から除外し、Q19 は 4 set、Q88 は 3 set 分の解析を行った。各サンプルに おいて平均 60 (範囲: 33-93) ×10⁶/sample の read が得られ、TopHat 2 による alignment の結果、平均 30 (範囲: 11-53) ×10⁶/sample の read が参照配列に alignment された (表 2)。

set 実験条件 総read数 alignmentされた read数 alignment 率 総read数 alignment read数 本 Q19 Off 44,735,211 28,393,438 63% 46,467,795 31,077,661 67% Q19 Off 38,408,202 24,300,869 63% 39,916,769 26,696,335 67% 82,135,066 48,780,016 59% 82,183,757 48,869,435 59% Q19 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,071,21 59% Q88 Off 48,583,626 20,0171,445 60% 34,943,093 22,094,518 63% Q88 Off 36,62,728 20,171,445 60% 34,943,093 22,094,518 63% Q19 Off 65,873,370 35,380,587<				sense鎖		antisense鎖				
1 総read致 read致 率 総read致 read致 率 Q19 Off 38,408,202 24,300,869 63% 39,916,769 26,696,335 67% S8,070,735 34,615,965 60% 58,071,211 35,469,896 61% Q19 Onf 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% Q88 Onf 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% Q88 Onf 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Onf 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% Q19 Onf 65,663,946 37,953,761 58% 65,667,172	set	実験条件		alignmentされた	alignment		alignmentされた	alignment		
2 44,735,211 28,393,438 63% 46,467,795 31,077,661 67% Q19 Off 38,408,202 24,300,869 63% 39,916,769 26,696,335 67% 58,070,735 34,615,965 60% 58,071,211 35,469,896 61% 82,135,066 48,780,016 59% 82,188,757 48,869,435 59% Q19 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q19 Off 65,873,370 35,380,587 54% 66,877,372			総read釵	read数	率	総read釵	read数	率		
Q 19 Off 38,408,202 24,300,869 63% 39,916,769 26,696,335 67% 1 58,070,735 34,615,965 60% 58,071,211 35,469,896 61% 219 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% 488 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% 66,090,183 38,021,682 58% 66,088,421 38,807,121 59% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737			44,735,211	28,393,438	63%	46,467,795	31,077,661	67%		
1 58,070,735 34,615,965 60% 58,071,211 35,469,896 61% Q19 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% 69,827,207 28,573,293 41% 69,826,763 29,145,691 42% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% Q88 Orf 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,63,946 37,953,761 58% 65,667,172 35,382,573 54% 65,667,172 38,034,426 58% Q19 Orf 65,613,946 37,953,761		Q19 Off	38,408,202	24,300,869	63%	39,916,769	26,696,335	67%		
A 82,135,066 48,780,016 59% 82,188,757 48,869,435 59% Q19 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 1 69,827,207 28,573,293 41% 69,826,763 29,145,691 42% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 919 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,6			58,070,735	34,615,965	60%	58,071,211	35,469,896	61%		
Q19 On 32,780,710 15,518,388 47% 32,801,638 15,557,817 47% 1 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% 69,827,207 28,573,293 41% 69,826,763 29,145,691 42% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% 66,090,183 38,021,682 58% 66,088,421 38,807,121 59% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,667,172 38,034,426 58% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426			82,135,066	48,780,016	59%	82,188,757	48,869,435	59%		
1 45,724,993 22,606,437 49% 45,754,044 22,684,855 50% 1 69,827,207 28,573,293 41% 69,826,763 29,145,691 42% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% 66,090,183 38,021,682 58% 66,088,421 38,807,121 59% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57		Q19 On	32,780,710	15,518,388	47%	32,801,638	15,557,817	47%		
1 69,827,207 28,573,293 41% 69,826,763 29,145,691 42% Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% Q19 Off 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 94,09 Off 65,148,381 37,503,149 58%			45,724,993	22,606,437	49%	45,754,044	22,684,855	50%		
Q88 Off 48,583,626 26,084,549 54% 50,589,158 28,471,578 56% 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 <t< td=""><td>1</td><td></td><td>69,827,207</td><td>28,573,293</td><td>41%</td><td>69,826,763</td><td>29,145,691</td><td>42%</td></t<>	1		69,827,207	28,573,293	41%	69,826,763	29,145,691	42%		
2 41,486,486 25,825,338 62% 43,083,691 28,038,866 65% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 72,179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57%		Q88 Off	48,583,626	26,084,549	54%	50,589,158	28,471,578	56%		
Q88 On 66,090,183 38,021,682 58% 66,088,421 38,807,121 59% Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% 66,100,210 28,555,007 51% 56,111,276 29,015,141 52% Q19 On 71,869,951 17,981,862 25% 71,			41,486,486	25,825,338	62%	43,083,691	28.038.866	65%		
Q88 On 33,652,728 20,171,445 60% 34,943,093 22,094,518 63% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% Q19 Off 66,307,265 42,509,588 64% 66,316,803 41,004,665 62% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 <t< td=""><td></td><td></td><td>66,090,183</td><td>38,021,682</td><td>58%</td><td>66,088,421</td><td>38,807,121</td><td>59%</td></t<>			66,090,183	38,021,682	58%	66,088,421	38,807,121	59%		
マユ:179,979 42,485,136 59% 72,178,906 43,393,958 60% 平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% 2 66,829,041 41,594,395 62% 66,834,803 41,604,665 62% 419 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316		Q88 On	33.652.728	20,171,445	60%	34,943,093	22.094.518	63%		
平均 52,806,261 29,614,713 56% 53,492,521 30,858,978 58% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% 2 66,829,041 41,594,395 62% 66,834,803 41,604,665 62% 419 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 On 71,869,951 17,981,862 25%			72,179,979	42.485.136	59%	72.178.906	43,393,958	60%		
2 47,629,534 28,110,951 59% 47,625,158 28,403,644 60% 2 Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% 66,829,041 41,594,395 62% 66,834,803 41,604,665 62% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 56,111,276 29,015,141 52% Q19 On 71,869,951 17,981,862<		平均	52.806.261	29.614.713	56%	53,492,521	30.858.978	58%		
Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,873,370 35,380,587 54% 65,877,372 35,382,737 54% Q19 Off 65,663,946 37,953,761 58% 65,667,172 38,034,426 58% Q19 On 51,692,815 28,611,973 55% 51,696,107 28,624,134 55% 93,201,580 53,367,225 57% 93,206,226 53,435,129 57% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% Q19 Off 52,882,634 21,010,270 40% 52,892,123 21,066,933 40% Q19 On 71,869,951 17,981,862			47.629.534	28,110,951	59%	47.625.158	28,403,644	60%		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Q19 Off	65 873 370	35 380 587	54%	65 877 372	35 382 737	54%		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		QIU UN	66 829 041	41 594 395	62%	66 834 803	41 604 665	62%		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	Q19 On	65 663 946	37 953 761	58%	65 667 172	38 034 426	58%		
平均 51,002,010 23,011,010 50% 51,000,101 22,021,101 50% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% 平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% 56,100,210 28,555,007 51% 56,111,276 29,015,141 52% Q19 Off 52,882,634 21,010,270 40% 52,892,123 21,066,933 40% Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%			51 692 815	28 611 973	55%	51 696 107	28 624 134	55%		
平均 65,148,381 37,503,149 58% 65,151,140 37,580,789 58% Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% S6,100,210 28,555,007 51% 56,111,276 29,015,141 52% Q19 Off 52,882,634 21,010,270 40% 52,892,123 21,066,933 40% Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%			93 201 580	53 367 225	57%	93 206 226	53 435 129	57%		
01115 00,110,001 01,000,110 00,000 00,101,110 01,000,100 00,000 Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% 56,100,210 28,555,007 51% 56,111,276 29,015,141 52% 52,882,634 21,010,270 40% 52,892,123 21,066,933 40% Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%		平均	65 148 381	37 503 149	58%	65 151 140	37 580 789	58%		
Q19 Off 66,307,265 42,509,588 64% 66,316,884 42,734,600 64% S6,100,210 28,555,007 51% 56,111,276 29,015,141 52% S2,882,634 21,010,270 40% 52,892,123 21,066,933 40% Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%		1	54 642 166	40.058.172	73%	54 645 506	40 120 731	73%		
Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%		Q19 Off	66 307 265	42 509 588	64%	66 316 884	42 734 600	64%		
010 010,100,210 20,000,007 01% 00,111,270 20,010,111 02% Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%			56 100 210	28 555 007	51%	56 111 276	29 015 141	52%		
Q19 On 71,869,951 17,981,862 25% 71,882,980 18,085,758 25% 3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%		Q19 On	52 882 634	21 010 270	40%	52 892 123	21,066,933	40%		
3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%			71 869 951	17 981 862	25%	71 882 980	18 085 758	25%		
3 62,340,264 41,942,530 67% 62,354,041 42,020,388 67%			54 541 125	32 048 365	59%	54 550 590	32 163 028	59%		
	3	Q88 Off	62 340 264	41 942 530	67%	62 354 041	42 020 388	67%		
Q88 Off 55 315 946 30 130 596 54% 55 328 473 30 159 551 55%	Ū		55 315 946	30 130 596	54%	55 328 473	30 159 551	55%		
67 745 860 46 128 156 68% 67 761 004 46 206 229 68%			67 745 860	46 128 156	68%	67 761 004	46 206 229	68%		
58 206 534 33 474 578 58% 58 222 564 33 588 597 58%			58 206 534	33 474 578	58%	58 222 564	33 588 597	58%		
Q88 On 55 320 966 24 999 545 45% 55 336 750 25 117 351 45%		Q88 On	55 320 966	24 999 545	45%	55 336 750	25 117 351	45%		
80 476 597 47 996 242 60% 80 506 447 49 865 693 62%		000 011	80 476 597	47 996 242	60%	80 506 447	49 865 693	62%		
平均 61.312.460 33.902.909 55% 61.325.720 34.178.667 56%		平均	61 312 460	33,902,909	55%	61 325 720	34 178 667	56%		
58,419,174 24,366,637 42% 58,431,495 24,471,110 42%		1 5	58 419 174	24,366,637	42%	58 431 495	24,471 110	42%		
Q19 Off 61 163 377 38 049 737 62% 61 163 377 38 208 762 62%		Q19 Off	61 163 377	38 049 737	62%	61 163 377	38 208 762	62%		
52 882 318 22 929 773 43% 52 882 318 23 886 943 45%		4.0 011	52 882 318	22 929 773	43%	52 882 318	23 886 943	45%		
60 479 046 39 650 063 66% 60 479 046 39 891 979 66%			60 479 046	39 650 063	66%	60 479 046	39 891 979	66%		
Q19 On 74 613 466 23 771 850 32% 74 613 466 24 040 459 32%		Q19 On	74 613 466	23 771 850	32%	74 613 466	24 040 459	32%		
71,074,035 33,113,393 47% 71,074,035 33,419,011 47%			71,074,035	33 113 393	47%	71 074 035	33 419 011	47%		
4 67 030 953 15 376 901 23% 67 030 953 15 484 150 23%	4		67 030 953	15 376 901	23%	67 030 953	15 484 150	23%		
Q88 Off 69 456 211 13 995 427 20% 69 456 211 14 085 720 20%	·	Q88 Off	69 456 211	13 995 427	20%	69 456 211	14 085 720	20%		
56 474 466 17 682 155 31% 56 474 466 17 766 867 31%			56 474 466	17 682 155	31%	56 474 466	17 766 867	31%		
76 697 281 11 427 895 15% 76 697 281 11 519 932 15%			76 697 281	11 427 895	1.5%	76 697 281	11 519 932	1.5%		
Q88 On 64 787 561 25 377 288 39% 64 787 561 25 455 033 30%		Q88 On	64 787 561	25 377 288	39%	64 787 561	25 455 033	39%		
53 783 642 21 104 701 39% 53 783 642 21 465 052 40%			53 783 642	21 104 701	39%	53 783 642	21 465 052	40%		
平均 63 905 128 23 903 818 38% 63 906 154 24 141 251 39%		平均	63 905 128	23 903 818	38%	63 906 154	24 141 251	39%		

表 2. 計 42 サンプルの総 read 数と alignment された read 数

3. RNA-seq の解析の全体像

(1) 各 set の各条件毎の RNA-seg から得られた発現量の再現性

各 set の各条件の 3 サンプル同士の遺伝子発現量の再現性を、Cufflinks 2 によって算 出した FPKM 値を用いて検討した。各 set の 3 サンプルの FPKM 値が全て 0 である遺 伝子を除外したところ、観察対象となった遺伝子数は表 3 に示した通りであった。観察対 象とした遺伝子に対して、縦軸・横軸を共に log₂ (FPKM) とする散布図 (図 16)を作 成したところ、低発現量の遺伝子 (log₂ (FPKM) <0) においてばらつきが大きい傾向 はあるものの、概ね y = x の直線上に分布した。各 set の各条件の中の 3 サンプルにつ き、再現性を Spearman's correlation coefficient ρ (表 4) で検討したところ、全サンプ ルにおいて ρ >0.98 であった。

表 3. 各 set の 3 サンプル同士の FPKM 値の再現性の観察対象とした遺伝子数

set	Q19	Q88
1	13544	13613
2	13971	—
3	13715	13952
4	13891	13244

縦軸・横軸共に \log_2 (FPKM) であり、散布図上の直線は y = 0、x = 0、y = x である。 各遺伝子を示す各プロットは、いずれの組においても概ね y = xの直線上にプロットされた。

	実験条件		Triplicate内の組					
set			1 vs 2	2 vs 3	3 vs 1			
	010	Off	0.997	0.996	0.996			
4	Q19	On	0.996	0.996	0.997			
	000	Off	0.992	0.997	0.992			
	Q88	On	0.996	0.996	0.998			
0	Q19	Off	0.996	0.998	0.996			
Z		On	0.997	0.997	0.998			
	010	Off	0.995	0.997	0.992			
2	QI9	On	0.996	0.995	0.997			
3	000	Off	0.997	0.998	0.998			
	Q88	On	0.997	0.997	0.997			
	010	Off	0.997	0.997	0.997			
4	Q19	On	0.997	0.996	0.996			
4	000	Off	0.997	0.996	0.997			
	488	On	0.996	0.997	0.996			

表 4. 各 set の各条件における 3 サンプル同士の Spearman's correlation coefficient ρ

(2) DRPLA 遺伝子の発現誘導と DEGs 数の確認

DRPLA 遺伝子が Tet-On により誘導されていることを示すために、Cufflinks 2、

edgeR を用いた *DRPLA* 遺伝子の FPKM 値、CPM 値から、Q19 Dox (+) vs Dox (-)・ Q88 Dox (+) vs Dox (-) の比較における fold change を算出した (表 5)。*DRPLA* 遺伝子 は2つのソフトウェアによる解析で、全ての set において有意 (q<0.05) に発現誘導さ れていることが確認された。

また、内在性の DRPLA 遺伝子と、GFP-DRPLA 融合遺伝子の発現量について検討を 行った結果を図 17 に示す。この検討から、Dox (・)の条件下でも GFP-DRPLA 融合遺伝 子は少量発現しており、Dox 添加により発現量が増加することが示された。

Set 毎に、2 つのソフトウェアにより Q19 Dox (+) vs Dox (-)・Q88 Dox (+) vs Dox (-)

の比較における発現変動遺伝子(DEGs)を抽出した。DEGs数は用いたソフトウェア間で異なり、edgeRで多く認められる傾向があった(表 6)。

			Cufflinks 2							edgeR			
	set	fold change	q值	F E 3サ	FPKN Dox (- -ンプ	1 ・) リレ	SD	H し 3サ	FPKN)ox (+ トンプ	1 -) リレ	SD	fold change	q値
	1	5.2	0.0003	4	4	5	0.6	18	33	19	8.5	9.4	0.00325
Q19	2	2.1	0.0068	7	9	9	0.9	20	18	14	3.3	3.4	3.07E-38
Dox (+) vs Dox (-)	3	4.1	0.0146	3	5	6	1.2	20	28	10	9.1	10.8	8.75E-39
	4	2.8	0.0116	9	7	8	1.4	10	37	20	13.4	5.8	3.13E-47
Q88 Dox (+) vs Dox (-)	1	2.4	0.0004	11	4	3	4.5	17	11	16	2.9	2.8	2.09E-57
	3	1.9	0.0034	6	7	6	0.7	12	14	9	2.8	4.8	4.70E-23
	4	3.2	0.0099	13	15	10	2.3	45	43	32	6.7	4.9	1.26E-08

表 6.2 つのソフトウェアによる各 set における DEGs 数

	set	Cufflinks 2	edgeR
	1	6498	7995
Q19	2	172	899
Dox (+) vs Dox (-)	3	62	34
	4	88	218
000	1	2686	2810
	3	536	1964
Dox (+) vs Dox (-)	4	101	531

内在性 *DRPLA* 遺伝子と *GFP-DRPLA* 融合遺伝子の発現量について検討を行った。縦軸 は、どちらかのシーケンスに alignment されたリードの数を million mapped reads 数で 各々正規化した後、set 内の3サンプルで平均した値を示す。Dox (+) により、*GFP-DRPLA* 遺伝子の発現が増加していることが確認された。

4. Q19 Dox (+) vs Dox (-) の比較

ここではまず、wild type DRPLAp の転写の標的遺伝子を同定することを目的に、Q19の Dox (+) vs Dox (-) の比較について検討した。

(1) 1st step-DEGs、2nd step-DEGs 数と遺伝子名

DEGs の数には、set 間で大きく異なることが判明したため、再現性のある結果を得るために、set 間で共通する発現変動遺伝子(1st step-DEGs)を抽出した。次に、Cufflinks 2 と edgeR とで共通に有意に発現変動する遺伝子(2nd step-DEGs)を抽出したところ、 up-regulated DEGs が 9 遺伝子、down-regulated DEGs が 7 遺伝子であった。1st step-DEGs、2nd step-DEGs の数と遺伝子名を図 18 と表 7 に示した。

Cufflinks 2 edgeR set 4 set 1 set 2 set 3 set 1 set 2 set 3 set 4 DEGs 6498 7995 218 172 62 88 899 34 1st step-DEGs 11 9 12 10 (Gene Ontology解析 の対象) UP DOWN. UP DOWN

図 18. Q19 Dox (+) vs Dox (-) における 1st step-DEGs と 2nd step-DEGs の数

1st step-DEGs は、Cufflinks 2 による up-regulated DEGs が 11 遺伝子、downregulated DEGs が 9 遺伝子、edgeR による up-regulated DEGs が 12 遺伝子、downregulated DEGs が 10 遺伝子であった。2nd step-DEGs は、up-regulated DEGs が 9 遺 伝子、down-regulated DEGs が 7 遺伝子であった。

9

UP

DOWN

表 7. Q19 Dox (+) vs Dox (-) O 1st step-DEGs と 2nd step-DEGs

2nd step-DEGs

	1 st ster	2 nd step	D-DEGs		
Cuffl	inks 2	edį	geR		
up- regulated 11遺伝子	down- regulated 9遺伝子	up- regulated 12遺伝子	down- regulated 10遺伝子	up− regulated 9遺伝子	down- regulated 7遺伝子
ARID5B AMOT ARID5		ARID5B	ΑΜΟΤ	ARID5B	AMOT
ATN1	ANXA1	ATN1	ANXA1	ATN1	ANXA1
DDIT4	CCT4	DDIT4	CCT4	DDIT4	CCT4
FOXB1	KAL1	EMP1	GLO1	FOXB1	KAL1
HOXD11	PPP2R2A	FOXB1	FOXB1 KAL1		PYGL
HOXD9	PYGL	HOXC6	MID1	ITGA8	RHOU
ITGA8	RHOU	HOXD11	PYGL	PRSS12	TSC22D3
MTRNR2L8	MTRNR2L8 TMEM45A ITGA8		RHOU	RASL11A	
PRSS12	RSS12 TSC22D3 PRSS12		THAP9-AS1	SEMA3C	
RASL11A		RASL11A	TSC22D3		
SEMA3C		RNLS			
		SEMA3C			

(2) 1st step-DEGs を用いた Gene Ontology 解析

Q19 Dox (+) vs Dox (·) の比較における、1st step-DEGs(ソフトウェアごとに、4 つの set で共通して有意に変動する遺伝子)につき、各遺伝子に付与された Gene Ontology term の特徴抽出を、DAVID Bioinformatics Resources 6.7 を用いて行った。Cufflinks 2、edgeR のそれぞれにおいて up-regulate された 1st step-DEGs について(表 8)は、 Cufflinks 2、edgeR 両者とも、骨格の発生、転写調節、RNA 代謝に関する GO term が cluster を形成した。Cufflinks 2 と edgeR のそれぞれにおいて down-regulate された 1st step-DEGs は、Cufflinks 2、edgeR 両者とも、cluster を形成しなかった。

表 8. Q19 Dox (+) vs Dox (-) の比較において up-regulate された 1st step-DEGs (Cufflinks 2 による 11 遺伝子、edgeR による 12 遺伝子)

Cuttlinks 2による 口退伝ナによるAnnotation Cluster
--

Category	Term	PValue	Benjamini	Genes
GOTERM_BP_FAT	skeletal system morphogenesis	0.002	0.129	HOXD9, ARID5B, HOXD11
GOTERM_MF_FAT	transcription regulator activity	0.009	0.270	HOXD9, ATN1, ARID5B, FOXB1, HOXD11
GOTERM_BP_FAT	skeletal system development	0.018	0.470	HOXD9, ARID5B, HOXD11
GOTERM_BP_FAT	regulation of transcription, DNA-dependent	0.021	0.471	HOXD9, ATN1, ARID5B, FOXB1, HOXD11
GOTERM_BP_FAT	regulation of RNA metabolic process	0.023	0.445	HOXD9, ATN1, ARID5B, FOXB1, HOXD11
SP_PIR_KEYWORDS	dna-binding	0.049	0.606	HOXD9, ARID5B, FOXB1, HOXD11

<u>edgeRによる 12遺伝子によるAnnotation Cluster</u>

Category	Term	PValue	Benjamini	Genes
GOTERM_MF_FAT	transcription regulator activity	0.009	0.257	HOXC6, ATN1, ARID5B, FOXB1, HOXD11
GOTERM_MF_FAT	transcription repressor activity	0.015	0.227	HOXC6, ATN1, ARID5B
GOTERM_BP_FAT	skeletal system development	0.026	0.647	HOXC6, ARID5B, HOXD11
GOTERM_BP_FAT	regulation of transcription, DNA-dependent	0.045	0.763	HOXC6, ATN1, ARID5B, FOXB1, HOXD11
GOTERM_BP_FAT	regulation of RNA metabolic process	0.049	0.725	HOXC6, ATN1, ARID5B, FOXB1, HOXD11

(3) qRT-PCR による validation

Q19 Dox (+) vs Dox (-) の 2nd step-DEGs のうち 11 遺伝子に対して qRT-PCR による

validation を行った。11 遺伝子の gene symbol と probe の Assay ID を示した(表 9)。

ここで解析した 11 遺伝子については、RNA-seq と qRT-PCR における regulation が同方

向であることを確認した(図 19)。qRT-PCR により validate された発現変動遺伝子 11

遺伝子とそのディスクリプションを示した(表10)。

表 9. qRT-PCR による validation を行った 2nd step-DEGs 11 遺伝子と Assay ID

gene symbol	Assay ID
ARID5B	Hs01382781_m1
DDIT4	Hs01111686_g1
FOXB1	Hs00247213_s1
PRSS12	Hs00186221_m1
AMOT	Hs00611096_m1
ANXA1	Hs00167549_m1
CCT4	Hs00272345_m1
KAL1	Hs01085107_m1
PYGL	Hs00958087_m1
RHOU	Hs00221873_m1
TSC22D3	Hs00272345_m1

図 19. 2nd step-DEGs のうち 11 遺伝子に対する qRT-PCR による validation

 log_2 (fold change)

縦軸は Q19 Dox (+) vs Dox (-) の相対的発現量比の底を 2 とする対数軸である。RNA-seq における相対的発現量比は、set 毎の FPKM 値の、(Dox (+) の発現量の平均) / (Dox (-) の発現量の平均) の 4 set における平均値であり、エラーバーは (Dox (+)の発現量の平 均) / (Dox (-) の発現量の平均) の 4 set における標準誤差より算出した。qRT-PCR にお ける相対的発現量比は 3 回の実験の $-\Delta\Delta$ Ct の平均から算出した ($-\Delta\Delta$ Ct=log₂ (2^{- Δ Ct} ave.))。qRT-PCR のエラーバーは $-\Delta\Delta$ Ct の標準誤差である。ここに挙げた 11 遺伝子は、 RNA-seq と qRT-PCR における regulation が同方向であることを確認した。 表 10. qRT-PCR により validate された 11 遺伝子とそのディスクリプション

Gene symbol	Description					
up-regulated 4遺伝子						
ARID5B	AT-rich interaction domain 5B					
DDIT4	DNA damage inducible transcript 4					
FOXB1	forkhead box B1					
PRSS12	protease, serine 12					
down-regulated 7遺伝子						
ΑΜΟΤ	angiomotin					
ANXA1	annexin A1					
CCT4	chaperonin containing TCP1, subunit 4 (delta)					
KAL1	Kallmann syndrome 1 sequence					
PYGL	phosphorylase, glycogen, liver					
RHOU	ras homolog family member U					
TSC22D3	TSC22 domain family member 3					

5. Q88 Dox (+) vs Dox (-) の比較

Mutant DRPLAp の転写調節標的遺伝子の同定のため、同じ set 内の Q88 の Dox (+) vs Dox (-) の 3 サンプルについて比較を行った結果を以下に示す。

(1) 1st step-DEGs、2nd step-DEGs 数と遺伝子名

Q88 Dox (+) vs Dox (-) の解析により、up-regulated DEGs が 17 遺伝子、downregulated DEGs が 22 遺伝子が抽出された。1st step-DEGs、2nd step-DEGs の数と遺伝 子名を図 20 と表 11 に示した。

図 20. Q88 Dox (+) vs Dox (-) における 1st step-DEGs と 2nd step-DEGs の数

1st step-DEGs は、Cufflinks 2 による up-regulated DEGs が 17 遺伝子、downregulated DEGs が 24 遺伝子、edgeR による up-regulated DEGs が 60 遺伝子、 down-regulated DEGs が 61 遺伝子であった。2nd step-DEGs は、up-regulated DEGs が 17 遺伝子、down-regulated DEGs が 22 遺伝子であった。

表 11. Q88 Dox (+) vs Dox (-) \mathcal{O} 1st step-DEGs と 2nd step-DEGs

1 st step-DEGs								2 nd step-DEGs	
Cuff	links 2			ec	lgeR				
up− regulated 17遺伝子	down- regulated 24遺伝子	up-regulated 60遺伝子			down-regulated 61遺伝子			up- regulated 17遺伝子	down- regulated 22遺伝子
ARID5B ATN1 CDKN2C DDIT4 EMP1 FOXB1 H1F0 HOXD10 HOXD10 HOXD11 HOXD13 ITGA8 NTS PRSS12 RASL11A SEMA3C VAT1L WNT16	ACAD11 AKIRIN2 AMOT ANXA1 BDNF CSNK1E EDEM1 EIF4G3 GBE1 KAL1 KCNJ8 LOC100506548 LOX MID1 NHS PCDH19 PPP2R2A PYGL RHOU SLC9A2 SMS STC1 THAP9-AS1	AGPAT9 ALDH1A2 ALYREF ANXA2 ARID5B ATN1 ATP6AP1 C11orf48 CDKN2C CNPY2 CRELD2 DDIT4 EMP1 FOXB1 FRZB FSTL1 GALNS GAMT GAS1 GRN H1F0 HOXB-AS3 HOXC6	HOXD11 HOXD13 HOXD9 HSD17B10 ID3 IMPDH2 INPP5K ITGA8 LAGE3 MCM5 MYL6 NDUFB10 NEU1 NTS OST4 POLR2F PRSS12 PSAP RASL11A RNLS SCAMP3 SELENBP1	SH3BGRL3 SLC12A9 SRP14 SSR2 SSR4 STRA13 SURF1 TES TSPAN12 VAT1L WNT16 ZNF608	AKIRIN2 AMOT ANXA1 CCT4 CCT7 CSNK1E CXorf57 DCAF17 E2F3 EDEM1 EIF4G3 ENPP2 ERAP2 FAT4 GBE1 GK GLO1 KAL1 KCNJ8 KIAA2022 LIMA1 LOC1005065 LOX	MEF2C MID1 MID2 NHS NUP62CL OTUD1 PCDH19 PDK1 PDK3 PIGA PLOD2 PPP2R2A PYGL RAB9A RHOU RPL22L1 RPL24 RPL34 RPL34 RPL6 RPL34 RPL6 RPL7L1 RPS6KA3 54 SAMD9 SCML1	SLC4A7 SLC9A2 SMS SNTB1 SPEN STC1 SYTL5 THAP9-AS1 TMEM45A WAC-AS1 XK ZBTB21 ZNF711	ARID5B ATN1 CDKN2C DDIT4 EMP1 FOXB1 H1F0 H0XD10 H0XD10 H0XD11 H0XD13 ITGA8 NTS PRSS12 RASL11A SEMA3C VAT1L WNT16	AKIRIN2 AMOT ANXA1 CSNK1E EDEM1 EIF4G3 GBE1 KAL1 KCNJ8 LOC100506548 LOX MID1 NHS PCDH19 PPP2R2A PYGL RHOU SLC9A2 SMS STC1 THAP9-AS1 TMEM45A

(2) 1st step-DEGs を用いた Gene Ontology 解析

Q88 Dox (+) vs Dox (-) の比較における、1st step-DEGs につき、各遺伝子に付与された Gene Ontology (GO) term の特徴抽出を、DAVID Bioinformatics Resources 6.7を 用いて行い、p<0.05を満たす GO term が形成する cluster を観察した。

Cufflinks 2 と edgeR のそれぞれの解析において up-regulate された 1st step-DEGs に ついては (表 12、表 13)、Q19 Dox (+) vs Dox (-) の比較において up-regulate された 1st step-DEGs と類似して、主に四肢・骨格の発生に関する GO term が cluster を形成し た。

Cufflinks 2 の解析において down-regulate された 1st step-DEGs からは p<0.05 を満た す GO term は得られなかった。edgeR の解析において down-regulate された 1st step-DEGs から得られた p<0.05 を満たす GO term は、細胞質タンパク質、糖代謝に関する cluster を形成した (表 14)。

表 12. Q88 Dox (+) vs Dox (-) で up-regulate された 1st step-DEGs (Cufflinks 2 による 17 凄伝ス)

17 遺伝子)

Annotation Cluster				
Category	Term	PValue	Benjamini	Genes
GOTERM_BP_FAT	urogenital system development	0.0003	0.0673	ITGA8, ARID5B, HOXD13, HOXD11
SP_PIR_KEYWORDS	DNA binding	0.0026	0.1281	H1F0, HOXD13, HOXD10, HOXD11
SP_PIR_KEYWORDS	developmental protein	0.0033	0.0836	WNT16, ITGA8, HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic limb morphogenesis	0.0046	0.4490	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic appendage morphogenesis	0.0046	0.4490	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic morphogenesis	0.0052	0.3605	ITGA8, HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	skeletal system development	0.0058	0.2581	ARID5B, HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	appendage morphogenesis	0.0060	0.2256	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	limb morphogenesis	0.0060	0.2256	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	appendage development	0.0064	0.2108	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	limb development	0.0064	0.2108	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	skeletal system morphogenesis	0.0076	0.2163	ARID5B, HOXD10, HOXD11
UP_SEQ_FEATURE	DNA-binding region:Homeobox	0.0108	0.5362	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	anterior/posterior pattern formation	0.0116	0.2834	HOXD13, HOXD10, HOXD11
SP_PIR_KEYWORDS	dna-binding	0.0151	0.2352	H1F0, ARID5B, HOXD13, FOXB1, HOXD10, HOXD11
SP_PIR_KEYWORDS	Homeobox	0.0168	0.2015	HOXD13, HOXD10, HOXD11
GOTERM_MF_FAT	transcription regulator activity	0.0173	0.5815	ATN1, ARID5B, HOXD13, FOXB1, HOXD10, HOXD11
INTERPRO	IPR017970:Homeobox, conserved site	0.0204	0.6201	HOXD13, HOXD10, HOXD11
INTERPRO	IPR001356:Homeobox	0.0209	0.3909	HOXD13, HOXD10, HOXD11
INTERPRO	IPR012287:Homeodomain-related	0.0214	0.2872	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	regionalization	0.0221	0.4073	HOXD13, HOXD10, HOXD11
GOTERM_MF_FAT	sequence-specific DNA binding	0.0252	0.4713	HOXD13, FOXB1, HOXD10, HOXD11
SMART	SM00389:HOX	0.0262	0.2917	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	pattern specification process	0.0388	0.5717	HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	regulation of transcription, DNA-dependent	0.0484	0.6253	ATN1, ARID5B, HOXD13, FOXB1, HOXD10, HOXD11

66

表 13. Q88 Dox (+) vs Dox (-) で up-regulate された 1st step-DEGs (edgeR による 60

遺伝子

Annotation Cluster 1				
Category	Term	PValue	Bonferroni	Genes
GOTERM_BP_FAT	skeletal system development	0.00001	0.0059	HOXD9, HOXC6, ARID5B, HOXD13, GAS1, FRZB, HOXD10, HOXD11, ANXA2
GOTERM_BP_FAT	embryonic limb morphogenesis	0.00001	0.0061	HOXD9, ALDH1A2, HOXD13,GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic appendage morphogenesis	0.00001	0.0061	HOXD9, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	limb morphogenesis	0.00002	0.0115	HOXD9, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	appendage morphogenesis	0.00002	0.0115	HOXD9, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	appendage development	0.00002	0.0139	HOXD9, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	limb development	0.00002	0.0139	HOXD9, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	regionalization	0.00005	0.0283	HOXD9, HOXC6, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	proximal/distal pattern formation	0.00006	0.0344	HOXD9, ALDH1A2, HOXD10, HOXD11
GOTERM_BP_FAT	anterior/posterior pattern formation	0.00011	0.0588	HOXD9, HOXC6, ALDH1A2, HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	pattern specification process	0.00027	0.1410	HOXD9, HOXC6, ALDH1A2, HOXD13, GAS1, HOXD10, HOXD11
SP_PIR_KEYWORDS	DNA binding	0.00050	0.0652	HOXD9, HOXC6, H1F0, HOXD13, HOXD10, HOXD11, NR2F1
GOTERM_BP_FAT	urogenital system development	0.00052	0.2535	ALDH1A2, ITGA8, ARID5B, HOXD13, HOXD11
GOTERM_BP_FAT	skeletal system morphogenesis	0.00056	0.2687	HOXD9, ARID5B, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic morphogenesis	0.00057	0.2735	HOXD9, ALDH1A2, ITGA8, HOXD13, GAS1, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic skeletal system development	0.00226	0.7198	HOXD9, HOXC6, GAS1, HOXD10
UP_SEQ_FEATURE	DNA-binding region:Homeobox	0.00248	0.4016	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
GOTERM_BP_FAT	forelimb morphogenesis	0.00250	0.7560	HOXD9, ALDH1A2, HOXD10
GOTERM_BP_FAT	embryonic organ development	0.00272	0.7838	HOXD9, ALDH1A2, ITGA8, GAS1, HOXD10
GOTERM_BP_FAT	embryonic digit morphogenesis	0.00323	0.8381	HOXD13, GAS1, HOXD11
GOTERM_BP_FAT	kidney development	0.00422	0.9073	ALDH1A2, ITGA8, ARID5B, HOXD11
GOTERM_BP_FAT	chordate embryonic development	0.00513	0.9446	HOXD9, HOXC6, ALDH1A2, GRN, GAS1, HOXD10
COTERM BR EAT	embryonic development ending	0.00532	0 9505	HOYDA HOYCE ALDHIA? CRN CASI HOYDIA
	in birth or egg hatching	0.00002	0.3303	10XD3, 110X00, ALDITIAZ, UNIN, UAST, 110XD10
SMART	SM00389:HOX	0.00550	0.1754	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
SP_PIR_KEYWORDS	Homeobox	0.00573	0.5423	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
INTERPRO	IPR017970:Homeobox, conserved site	0.00717	0.6454	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
INTERPRO	IPR001356:Homeobox	0.00750	0.6618	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
INTERPRO	IPR012287:Homeodomain-related	0.00784	0.6779	HOXD9, HOXC6, HOXD13, HOXD10, HOXD11
SP_PIR_KEYWORDS	developmental protein	0.00791	0.6603	HOXD9, HOXC6, WNT16, ITGA8, HOXD13, FRZB, HOXD10, HOXD11
GOTERM_BP_FAT	embryonic organ morphogenesis	0.01036	0.9972	HOXD9, ITGA8, GAS1, HOXD10
UP_SEQ_FEATURE	compositionally biased region:Poly-Gly	0.01042	0.8856	HOXD9, HOXC6, GAS1, HOXD11, NR2F1
GOTERM_BP_FAT	embryonic skeletal system morphogenesis	0.01603	0.9999	HOXD9, GAS1, HOXD10
GOTERM_MF_FAT	sequence-specific DNA binding	0.02145	0.9732	HOXD9, HOXC6, HOXD13, FOXB1, HOXD10, HOXD11, NR2F1
COTEDM PD EAT	regulation of transcription	0.02542	1 0000	
	from RNA polymerase II promoter	0.03043	1.0000	10708, 10708, ATNI, 107013, 103, 107010, NRZET
	dna-hinding	0.04619	0 0004	HOXD9, HOXC6, H1F0, STRA13, ARID5B, HOXD13,
SF_FIN_NETWORDS		0.04018	0.9964	FOXB1, HOXD10, MCM5, HOXD11, NR2F1

Annotation Cluster 2					
Category	Term	PValue	Bonferroni	Genes	
SP_PIR_KEYWORDS	nad	0.01853	0.9214	HSD17B10, ALDH1A2, NDUFB10, IMPDH2	
GOTERM_BP_FAT	oxidation reduction	0.02036	1.0000	HSD17B10, RNLS, VAT1L, ALDH1A2, NDUFB10, SURF1, IMPDH2	
UP_SEQ_FEATURE	nucleotide phosphate-binding region:NAD	0.02163	0.9892	HSD17B10, ALDH1A2, IMPDH2	
SP_PIR_KEYWORDS	oxidoreductase	0.02519	0.9689	HSD17B10, RNLS, VAT1L, ALDH1A2, NDUFB10, IMPDH2	

Annotation Cluster 3						
Category	Term	PValue	Bonferroni	Genes		
GOTERM_BP_FAT	skeletal muscle tissue development	0.02114	1.0000	MYL6, HOXD9, HOXD10		
GOTERM_BP_FAT	skeletal muscle organ development	0.02114	1.0000	MYL6, HOXD9, HOXD10		
GOTERM_BP_FAT	muscle organ development	0.03476	1.0000	MYL6, HOXD9, ARID5B, HOXD10		

Annotation Cluster	4			
Category	Term	PValue	Bonferroni	Genes
GOTERM_BP_FAT	positive regulation of epithelial cell proliferation	0.00853	0.9919	ATP6AP1, GRN, GAS1
GOTERM_BP_FAT	regulation of epithelial cell proliferation	0.02423	1.0000	ATP6AP1, GRN, GAS1

Annotation Cluster 5					
Category	Term	PValue	Bonferroni	Genes	
KEGG_PATHWAY	hsa04142:Lysosome	0.01017	0.3356	PSAP, ATP6AP1, GALNS, NEU1	
GOTERM_CC_FAT	vacuole	0.04111	0.9952	PSAP, ATP6AP1, GALNS, NEU1	
SP_PIR_KEYWORDS	lysosome	0.07217	1.0000	PSAP, GALNS, NEU1	

Annotation Cluster 6	3			
Category	Term	PValue	Bonferroni	Genes
SP_PIR_KEYWORDS	signal	0.01100	0.7779	RNLS, WNT16, CRELD2, PSAP, ATP6AP1, CNPY2, FSTL1, GAS1, FRZB, NTS, ITGA8, GRN, GALNS, SEMA3C, NEU1, SSR4, SSR2, PRSS12
UP_SEQ_FEATURE	signal peptide	0.01170	0.9126	RNLS, WNT16, CRELD2, PSAP, ATP6AP1, CNPY2, FSTL1, GAS1, FRZB, NTS, ITGA8, GRN, GALNS, SEMA3C, NEU1, SSR4, SSR2, PRSS12

Annotation Cluster 7	1			
Category	Term	PValue	Bonferroni	Genes
GOTERM_BP_FAT	oxidation reduction	0.02036	1.0000	HSD17B10, RNLS, VAT1L, ALDH1A2, NDUFB10, SURF1, IMPDH2

表 14. Q88 Dox (+) vs Dox (-) で down-regulate された 1st step-DEGs (edgeR による

61 遺伝子)

Annotation Cluster 1				
Category	Term	PValue	Benjamini	Genes
GOTERM_CC_FAT	large ribosomal subunit	0.002	0.252	RPL6, RPL34, RPL7L1, RPL24
SP_PIR_KEYWORDS	ribosomal protein	0.002	0.162	RPL6, RPL34, RPL7L1, RPL24, RPL22L1
GOTERM_CC_FAT	cytosolic part	0.003	0.167	CCT7, CCT4, RPL6, RPL34, RPL24
GOTERM_MF_FAT	structural constituent of ribosome	0.004	0.497	RPL6, RPL34, RPL7L1, RPL24, RPL22L1
KEGG_PATHWAY	hsa03010:Ribosome	0.004	0.156	RPL6, RPL34, RPL24, RPL22L1
GOTERM_BP_FAT	translation	0.007	0.958	EIF4G3, RPL6, RPL34, RPL7L1, RPL24, RPL22L1
SP_PIR_KEYWORDS	ribonucleoprotein	0.009	0.301	RPL6, RPL34, RPL7L1, RPL24, RPL22L1
GOTERM_CC_FAT	ribosome	0.009	0.340	RPL6, RPL34, RPL7L1, RPL24, RPL22L1
	atmustured male sule estivity	0.000	0 502	RPL6, RPL34, KAL1, RPL7L1, ANXA1, NUP62CL, RPL24,
GUTERM_MF_FAT	structural molecule activity	0.009	0.382	RPL22L1
GOTERM_CC_FAT	cytosolic large ribosomal subunit	0.009	0.271	RPL6, RPL34, RPL24
GOTERM_CC_FAT	ribosomal subunit	0.013	0.298	RPL6, RPL34, RPL7L1, RPL24
GOTERM_CC_FAT	cytosolic ribosome	0.038	0.589	RPL6, RPL34, RPL24
GOTERM_CC_FAT GOTERM_CC_FAT	ribosomal subunit cytosolic ribosome	0.013 0.038	0.298 0.589	RPL6, RPL34, RPL7L1, RPL24 RPL6, RPL34, RPL24

Annotation Cluster 2	2			
Category	Term	PValue	Benjamini	Genes
GOTERM_BP_FAT	glucose metabolic process	0.018	0.986	PDK1, GBE1, PYGL, PDK3
SP_PIR_KEYWORDS	carbohydrate metabolism	0.021	0.383	PDK1, PYGL, PDK3
GOTERM_BP_FAT	hexose metabolic process	0.032	0.994	PDK1, GBE1, PYGL, PDK3
GOTERM_BP_FAT	monosaccharide metabolic process	0.046	0.996	PDK1, GBE1, PYGL, PDK3
SP_PIR_KEYWORDS	transferase	0.048	0.585	PDK1, RPS6KA3, GBE1, PYGL, CSNK1E, PDK3, GK, SMS, PIGA

Annotation Cluster 3					
Category	Term	PValue	Benjamini	Genes	
SP_PIR_KEYWORDS	phosphotransferase	0.021	0.346	PDK1, RPS6KA3, PDK3, GK	
SP_PIR_KEYWORDS	transferase	0.048	0.585	PDK1, RPS6KA3, GBE1, PYGL, CSNK1E, PDK3, GK, SMS, PIGA	
SP_PIR_KEYWORDS	nucleotide-binding	0.053	0.589	PDK1, CCT7, RPS6KA3, CCT4, RAB9A, PYGL, CSNK1E, PDK3, GK, RHOU	

(3) qRT-PCR による validation

Q88 Dox (+) vs Dox (-) の 2nd step-DEGs のうち 13 遺伝子に対して qRT-PCR による発 現変動の確認を行った。13 遺伝子の gene symbol と probe の Assay ID を示した (表 15)。解析した 13 遺伝子のうち、*PRSS12、ARID5B、ANXA1* を除く 10 遺伝子は、 RNA-seq と qRT-PCR は発現変動の方向が同じであり validate されたと考えた。 *PRSS12、ARID5B、ANXA1* の 3 遺伝子は、RNA-seq の発現変動と、qRT-PCR による 発現変動の平均値は同一の方向性を示したが、qRT-PCR においては 3 回の実験で毎回同 一方向という結果が得られなかったこともあり、今回の検討では validate されたとは考 えなかった (図 21)。qRT-PCR により validate された発現変動遺伝子 10 遺伝子とその ディスクリプションを示した (表 16)。

表 15. qRT-PCR による発現変動の確認を行った 2nd step-DEGs 13 遺伝子と probe Assay ID

Gene symbol	Assay ID
ARID5B	Hs01382781_m1
EMP1	Hs00608055_m1
FOXB1	Hs00247213_s1
PRSS12	Hs00186221_m1
VAT1L	Hs00326103_m1
ΑΜΟΤ	Hs00611096_m1
ANXA1	Hs00167549_m1
KAL1	Hs01085107_m1
KCNJ8	Hs00958961_m1
PCDH19	Hs00403382_m1
PPP2R2A	Hs00953658_m1
PYGL	Hs00958087_m1
RHOU	Hs00221873 m1

log_2 (fold change)

縦軸は Q88 Dox (+) vs Dox (-) の相対的発現量比の底を 2 とする対数軸である。RNA-seq における相対的発現量比は、set 毎の FPKM 値の、(Dox (+)の発現量の平均) / (Dox (-) の発現量の平均) の 3 set における平均値であり、エラーバーは (Dox (+) の発現量の平 均) / (Dox (-) の発現量の平均) の 3 set における標準誤差より算出した。qRT-PCR に おける相対的発現量比は 3 回の実験の $-\Delta\Delta$ Ct の平均から算出した (log₂ (2^{- $\Delta\Delta$ Ct ave.</sub>))。 qRT-PCR のエラーバーは $-\Delta\Delta$ Ct の標準誤差である。ここに挙げた 13 遺伝子のうち、 *PRSS12、ARID5B、ANXA1* を除く 10 遺伝子は、RNA-seq と qRT-PCR は発現変動の 方向が同じであり validate されたと考えた。*PRSS12、ARID5B、ANXA1* の 3 遺伝子 は、3 回中 2 回 RNA-seq と同じ方向に発現変動が観察された。} 表 16. qRT-PCR により validate された 10 遺伝子とそのディスクリプション

Gene symbol	Description
up-regulated 3遺伝子	
EMP1	epithelial membrane protein 1
FOXB1	forkhead box B1
VAT1L	vesicle amine transport 1-like
down-regulated 7遺伝子	
AMOT	angiomotin
KAL1	Kallmann syndrome 1 sequence
KCNJ8	potassium channel, inwardly rectifying subfamily J, member 8
PCDH19	protocadherin 19
PPP2R2A	protein phosphatase 2 regulatory subunit B, alpha
PYGL	phosphorylase, glycogen, liver
RHOU	ras homolog family member U
第2章 考察

本研究では、DRPLA の転写の co-regulator としての標的遺伝子を同定することを目的 に、*GFP-DRPLA* 遺伝子定常発現 HEK293 細胞を用い、RNA-seq による網羅的な解析を 行った。実験間における再現性を最優先し、qRT-PCR において validate された遺伝子と して、wild type DRPLAp (Q19)の強制発現により 11 個の遺伝子を見いだすことができ た。同様の方法で、mutant DRPLAp (Q88)の強制発現により 10 個の遺伝子を見いだ した。

本研究においては、HEK293 細胞由来の Flp-InTM T·RExTM 293 細胞を用いて、発現変 動遺伝子を検討した。剖検脳やモデルマウスの脳を用いた解析では検体間のばらつきによ る再現性を得ることの難しさ、混在した細胞種の homogenate を用いた研究にならざるを 得ないことなどの問題点があり、また RNA-seq 自体の手法の頑健性の問題についてまず は検討する必要があると考えられたことから、今回は培養細胞を用いて検討する方針とし た。ライン間のばらつきを取り除くため、Flp-InTM T·RExTM 293 細胞の FRT 部位に Q19 もしくは Q88 の全長 *GFP-DRPLA* 遺伝子を導入した定常発現細胞を構築したことに より、一定の条件下で Q19 もしくは Q88 を定常発現させて RNA-seq を検討することが 可能となった。

RNA-seqの再現性という点で、同一条件で培養した、同一セットに属する3サンプルのシーケンスによる遺伝子の発現量を検討したところ、Spearman's correlation coefficient が 0.98 以上となる、高い再現性を得られることが判明した(図 16)。

発現変動遺伝子の抽出にあたり、今回 Cufflinks 2 と edgeR という 2 つのソフトウェア を用いて解析を行い、最終的に両者で有意に変動する遺伝子として得られたものを選択し た。Cufflinks 2 と edgeR は各々遺伝子の発現量として FPKM 値、CPM 値を用いてお り、おのおの算出方法が異なるが、Zhang らは同一 RNA サンプルを用いた RNA-seq 解 析で両者のパイプラインを比較しており、発現変動遺伝子は edgeR でより多く検出され ることを報告している ^[64]。今回の解析でも同様に、egdeR の方が Cufflinks 2 より多 く、有意に変動する発現変動遺伝子を検出する結果となった。

1st step-DEGs に対しては、Gene Ontology 解析を行った。Q19、Q88 において upregulate された 1st step-DEGs については、共通して、骨格の発生に関する GO term が 観察された(表 8、表 12、表 13)。これについては、1st step-DEGs において共通してホ メオボックス遺伝子(*HOXC6, HOXD9, HOXD11*)が含まれたためと考えられた。

今回、Cufflinks2 と edgeR の両方のパイプラインで、Q19 では 4 set、Q88 では 3 set で常に有意に変動する発現変動遺伝子を抽出した (2nd step-DEGs)。このように再現性に 重点を置いて抽出された遺伝子については、qRT-PCR の解析を行った。qRT-PCR 解析で 算出された fold change の平均値については、解析した 24 遺伝子全てで RNA-seq と同一 の方向であることが示され、中でも 21 遺伝子については 3 組の RNA サンプルで一貫し て同一方向へ変動していることが確認されたため、本研究ではこの 21 遺伝子を validate されたと考えた。また、この 21 遺伝子のうち、20 遺伝子については、RNA-seq で算出 された fold change と qRT-PCR で算出された fold change の差が 2 倍以下に収まってお り、RNA-seq の定量性を支持するものと考えた。Q19の解析における AMOT 遺伝子の み、RNA-seq と qRT-PCR のデータが大きくずれたが、発現量が少ない(FPKM 値 <10)ことが影響していたのではないかと考えられた。

次に、DRPLAp(Q19)の強制発現により発現変動した遺伝子について述べる。今回の 検討から、11 個の遺伝子を見いだし、そのうち4 個は up-regulate、7 個は downregulate されていることが判明した。なお、序章で述べた通り、赤岩らは、wild type マ ウスに比して DRPLA ノックアウトマウスの全脳で発現変動する遺伝子を見いだしている が、今回の DRPLAp(Q19)の強制発現により発現変動する遺伝子として見いだされた 11 個の遺伝子とはオーバーラップは認めなかったが、発現変動遺伝子の抽出に関する統計学 的な条件が異なっていること、マウスの脳の homogenate とヒト由来培養細胞と種や細胞 種が異なること、DRPLA 遺伝子の減少による変化と強制発現による変化という、比較対 象の違いによるものと考えられた。将来的に、統計学的な解析条件を一致させた解析をす ることやヒト由来培養細胞の系においても DRPLA 遺伝子のノックアウト もしくはノッ クダウンによる発現変動遺伝子を検討することは有意義と考えられる。

今回 DRPLAp(Q19)の強制発現により発現変動した 11 遺伝子が、病態にどのように 関わっているかについては、今後の検討が必要であるが、DRPLApの生理機能について は不明な点が多く、これらの遺伝子は非常に興味深いと言える。今回の結果を基に、モデ ルマウスやヒト剖検脳を用いた分析を行っていく必要があると考えられる。

74

DRPLAp (Q88) の強制発現により、本研究では 10 個の発現変動遺伝子を見いだした。 この 10 個の遺伝子から、脳での発現量が GTEx (Genotype-Tissue Expression) データ ベース^[65] 上で RPKM (Reads Per Kilobase of transcript per Million mapped reads) 値が 1 以上となり、また FPKM 値より算出した遺伝子発現量比 (fold change) が、 |log₂ (fold change)| ≧0.5 となる遺伝子を抽出したところ、5 個の遺伝子が得られた。内 訳は、up-regulation された遺伝子が VAT1L, EMP1 の 2 個、down-regulation された遺 伝子が PPP2R2A, KCNJ8, PCDH19 の 3 個である。

このうち、PCDH19はカルシウム依存性細胞間接着分子であるプロトカドへリン19を コードし、EFMR (epilepsy and mental retardation restricted to females)の原因遺伝 子とされている^[66]。臨床像は heterogenous であるが、生後 6 ヶ月から 36 ヶ月の女児の 発熱を契機としたてんかん発作の群発と精神発達遅滞を主徴とし、自閉症を伴う場合があ る。変異の約半数は、ナンセンス変異やフレームシフト変異などの機能喪失性変異であ り、残りの半数のミスセンス変異も、プロトカドヘリン 19 のオルソログやパラログとも 相同性の高い細胞外ドメインに存在することがほとんどとされている^[67]。これらの知見 からは、EFMR は PCDH19 の loss-of-function による疾患であることが強く示唆され る。*KCNJ8* は内向き整流カリウムチャネル (KATP) サブユニット Kir6.1 をコードす る。*KCNJ8* 遺伝子変異が Brugada syndrome、early repolarization syndrome といっ た突然死の原因となる疾患において、疾患感受性遺伝子であることが示唆されている^[68, 69]。これらの疾患では中枢神経症状は指摘されていないが、*KCNJ8*は中枢神経における 発現は確認されている。DRPLAは、特に幼少時~若年成人発症においてはてんかんを合併することが多いが、てんかんを起こす機序については不明な点が多い。本研究から、 Flp-InTMT·RExTM 293 細胞において mutant DRPLAp の強制発現により、てんかんを起 こしうる病因遺伝子の一つである PCDH19と、カリウムチャネルのサブユニットである KCNJ8 の発現変動が認められるという結果が得られたことは、てんかんの病態を考える 上で興味深い知見と言えるかもしれない。

なお、Q19 と Q88 の 各 set における Dox (+) vs Dox (-)の比較における発現変動遺伝子 数については、set 毎のばらつきが観察された。Tet-On system を RNA-seq により定量 評価した報告はないが、この理由として、細胞培養時の confluency など、完全にはコン トロールしきれない培養条件による違いなどが影響している可能性がある。また、発現量 の差の検定の際に、replicate 数が 3 と多くはないことから、母分散がたまたま小さく見 積もられた時、検定において帰無仮説が棄却される遺伝子数が増えるといったことが影響 している可能性も考えられた。そのため、本研究においては、Q19 は 4 set、Q88 は 3 set において共通する再現性の高い発現変動遺伝子を抽出する方針としたが、qRT-PCR によ って大部分が validate されたことからは、今回の方針は真の発現変動遺伝子を抽出する ための一つの手法であると考えられた。

最後に、polyQ 鎖長の伸長に伴う発現変動遺伝子の探索のため、Q88 Dox (+)と Q19 Dox (+)の比較を、前述と同様に分析した。比較可能な、set 1, 3, 4 において共通して発現 変動する遺伝子 (1st step-DEGs)を抽出した後、Cufflinks 2 と edgeR で共通して発現変 動するとされる遺伝子を抽出したところ、再現性を持って有意に変動する遺伝子は認めな いという結果となった。実際両者に、今回の実験回数や、再現性に重視した解析方法では 有意となる程の大きな差がない可能性も考えられるが、そもそも今回の RNA-seg の解析 では、Q88 Dox (+) と Q19 Dox (+) の DRPLA 遺伝子の発現量に差があること(Set 1 で は Cufflinks 2 と edgeR の両者で、set 3 と set 4 では Cufflinks 2 で q<0.05) も観察され ており、このように単純に比較することが、polyQ 鎖長の伸長に伴う発現変動遺伝子を探 索するには適切な設定ではない可能性も考えられ、結果については慎重な解釈が必要と思 われた。さらに、ポリグルタミン病の病態機序においては、伸長ポリグルタミン鎖を有す る変異タンパクの核内集積が重要であると考られている。本実験は、24時間という短時 間の遺伝子発現の変化に焦点を絞って解析していることから、ポリグルタミン病の病態機 序を解析するためには、伸長ポリグルタミン鎖を有する変異タンパクが十分に核内集積す るような実験系を用いる必要があると考えられる。DRPLAp の生理機能という点では、 本実験条件の範囲においては、Q19,Q88のポリグルタミン鎖の鎖長の違いは大きな変化 を示さないと考えられる。

本研究における1つのlimitationとして、今回の検討では、wild type DRPLAp、 mutant DRPLAp を強制発現させた時に発現変動する遺伝子を同定したが、これらの遺伝 子転写制御に直接 DRPLAp が影響を及ぼしていることまでは示せていないことが挙げら れる。TAF II 130 以外に DRPLAp と共役する転写因子を同定し、共役する転写因子に対 する抗体を用いたクロマチン免疫沈降 - 大量並列シークエンシング(chromatin-

immunoprecipitation followed by massively parallel sequencing (ChIP-seq))^[70]により、 共役因子がクロマチンに結合する部位と、今回見いだされた遺伝子との関係を検討し、 DRPLAp が直接制御しているのか否かを解明することが今後の課題と考えられる。もう 一つは、ヒト脳における DRPLAp の生理的機能、伸長 polyQ による病態生理について今 後さらに検討を行う必要があることである。RNA-seq の解析手法については、今回の検 討からその定量性が示されたこともあり、今後ヒト脳組織を用いた RNA-seq を行うこと で発現変動遺伝子を探索することが可能であろう。

第3章 結語と今後の課題

DRPLA の病態を考える上で、DRPLA 遺伝子の機能について検討することが必要であ るが未解明の点が多かった。これまで、DRPLAp は転写 co-regulator として働くことが 示唆されているものの、DRPLAp の生理的な標的遺伝子については明らかではなかっ た。そこで、DRPLAp の転写 co-regulator としての標的遺伝子を同定することを目的と し、再現性に重点をおいて RNA-seq を行ったところ、wild type DRPLAp (Q19)の強制 発現により、11 個の発現変動遺伝子を明らかにした。また、mutant DRPLAp (Q88)の 強制発現により、10 個の発現変動遺伝子を明らかにした。この中にはヒトでてんかんを 起こす病因遺伝子が含まれており、DRPLA の病態を考える上で興味深い知見と思われ た。

今後の課題は、DRPLAの病態への関与についての検討である。今回同定した 21 個の 発現変動遺伝子が、実際に DRPLAp の転写 co-regulator としての標的遺伝子であること を確認すること、polyQ 鎖長の異常伸長による発現変動遺伝子の変化を、解析方法の検討 により探索すること、本研究で見いだされた 21 個の発現変動遺伝子の *in vivo* における 検証を行うことが必要である。今回見出した 21 遺伝子が病態に関わっていることが判明 すれば、治療介入のシーズになる可能性があり、注目すべきである。

謝辞

本稿を終えるにあたり、東京大学大学院医学系研究科脳神経医学専攻神経内科学教室 辻 省次 教授、石浦浩之 助教、伊達英俊 学術支援専門職員、三井純 助教、田中真生 特 任臨床医、国際医療福祉大学三田病院神経内科 後藤 順 教授、東京大学大学院新領域学 術創成科学研究科情報生命科学専攻 森下真一 教授、土井晃一郎 特任講師、吉村淳 特 任助教をはじめとする教室員各位の皆様に深謝申し上げます。

実験の補助をして頂きました竹山未央様、平山圭子様に深謝申し上げます。

参考文献

- Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Takahashi H, Kondo R, Ishikawa A, Hayashi T, Saito M, Tomoda A, Miike T, Naito H, Ikuta F, Tsuji S, Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA). Nature Genetics, 6, 9-13, 1994
- 2. Nagahuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, Takeda T, Tadokoro K, Kondo I, Murayama N, Tanaka Y, Kikushima H, Umino K, Kurosawa H, Furukawa T, Nihei K, Inoue T, Sano A, Komure O, Takahashi M, Yoshizawa T, Kanazawa I, Yamada M, Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nature Genetics, 6, 14-18, 1994
- La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH, Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature, 352, 77-79, 1991
- The Huntington's Disease Collaborative Research Group, A Novel Gene Containing a Trinucleotide Repeat That is Expanded and Unstable on Huntington's Disease Chromosomes. Cell, 72, 971-963, 1993
- Orr HT, Chung MY, Banfi S, Kwiatkowski TJ Jr, Servadio A, Beaudet AL, McCall AE, Duvick LA, Ranum LP, Zoghbi HY, Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nature Genetics, 4, 221-226, 1993
- Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I, Kimura J, Narumiya S, Kakizuka A, CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nature Genetics, 8, 221-228, 1994

- 7. Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, Weber C, Mandel JL, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A, Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genetics, 14, 285-291, 1996
- Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, Pearlman S, Starkman S, Orozco-Diaz G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S, Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genetics, 14, 269-276, 1996
- 9. Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S, Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nature Genetics, 14, 277-284,1996
- Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, Dobyns WB, Subramony SH, Zoghbi HY, Lee CC, Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nature Genetics, 15, 62-69, 1997
- David G, Abbas N, Stevanin G, Dürr A, Yvert G, Cancel G, Weber C, Imbert G, Saudou F, Antoniou E, Drabkin H, Gemmill R, Giunti P, Benomar A, Wood N, Ruberg M, Agid Y, Mandel JL, Brice A, Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nature Genetics, 17, 65-70, 1997
- 12. Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S, A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Hum Mol Genet, 8, 2047-2053, 1999

- Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I, SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet, 10, 1441-1448, 2001
- Naito H, Oyanagi S, Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology, 32, 798-807, 1982
- 15. Tsuji S, Onodera O, Kanazawa I, Mizusawa H, Hattori T, Sobue G, Yamada M, Kuroiwa Y, Kakizuka A, Takeda A, Hasegawa K, Yuasa T, Kanda T, Yoshida K, Kachi T, Nakajima T, Osame M, Kuno S, Nakajima K, Kawakami H, Nagai Y, Nishizawa M, Sporadic ataxias in Japan--a population-based epidemiological study. Cerebellum, 7, 189-197, 2008
- Farmer TW, Wingfield MS, Lynch SA, Vogel FS, Hulette C, Katchinoff B, Jacobson PL, Ataxia, chorea, seizures, and dementia: pathologic features of a newly defined familial disorder. Arch Neurol, 46, 774-779, 1989
- Burke JR, Wingfield MS, Lewis KE, Roses AD, Lee JE, Hulette C, Pericak-Vance MA, Vance JM, The Haw River syndrome: dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nature Genetics, 7, 521-524, 1994
- Warner T T, Williams L, Harding AE, DRPLA in Europe. (Letter) Nature Genet, 6, 225, 1994
- Connarty M, Dennis N R, Patch C, Macpherson JN, Harvey JF, Molecular reinvestigation of patients with Huntington's disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy. Hum Genet, 97, 76-78, 1996
- 20. Takano H, Onodera O, Takahashi H, Igarashi S, Yamada M, Oyake M, Ikeuchi T, Koide R, Tanaka H, Iwabuchi K, Tsuji S, Somatic Mosaicism of Expanded

CAG Repeats in Brains of Patients with Dentatorubral-Pallidoluysian Atrophy: Cellular Population-Dependent Dynamics of Mitotic Instability. Am J Hum Genet, 58, 1212-1222, 1996

- 21. Kim HJ, Jeon BS, Lee WY, Chung SJ, Yong SW, Kang JH, Lee SH, Park KW, Park MY, Kim BC, Kim JW, Kim HT, Ha CK, Koh SB, Kim JM, Choi KD, Sung YH, Ahn TB, Lee GH, Lee JH, Lee HW, Kim SJ, Park JH, Kwon DY, Kim MJ, Kim YJ, Kim JS, Cho J, Kwon JH, Kim EJ, Kim JH, Sung KB, Song IU, Oh HG, Lee SB, Lee SH, Lee JY, Lee TK, Cho AH, Yoon WT, Kim SR, Kim HJ, SCA in Korea and its regional distribution: a multicenter analysis. Parkinsonism Relat Disord, 17, 72-75, 2011
- 22. Jin DK, Oh MR, Song SM, Koh SW, Lee M, Kim GM, Lee WY, Chung CS, Lee KH, Im JH, Lee MJ, Kim JW, Lee MS, Frequency of spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral pallidoluysian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol, 246, 207-210, 1999
- 23. Silveira I, Miranda C, Guimarães L, Moreira MC, Alonso I, Mendonça P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januário C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J, Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol, 59, 623-629, 2002
- 24. Martins S, Matama T, Guimara L, Vale J, Guimarães J, Ramos L, Coutinho P, Sequeiros J, Silveira I, Portuguese families with dentatorubropallidoluysianatrophy (DRPLA) share a common haplotype of Asian origin. European Journal of Human Genetics, 11, 808-811, 2003
- 25. Nørremølle A, Nielsen JE, Sørensen SA, Hasholt L, Elongated CAG repeats of the B37 gene in a Danish family with dentato-rubro-pallido-luysian atrophy. Hum Genet, 95, 313-318, 1995

- 26. Brusco A, Gellera C, Cagnoli C, Saluto A, Castucci A, Michielotto C, Fetoni V, Mariotti C, Migone N, Di Donato S, Taroni F, Molecular Genetics of Hereditary Spinocerebellar Ataxia: Mutation Analysis of Spinocerebellar Ataxia Genes and CAG/CTG Repeat Expansion Detection in 225 Italian Families. Arch Neurol, 61, 727-733, 2004
- 27. Le Ber I, Camuzat A, Castelnovo G, Azulay JP, Genton P, Gastaut JL, Broglin D, Labauge P, Brice A, Durr A, Prevalence of dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol 60, 1097-1099, 2003
- 28. Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, Pareyson D, Gellera C, Di Donato S, Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidoluysian atrophy in 116 Italian families. Eur Neurol, 44, 31-36, 2000
- 29. Vinton A, Fahey MC, O'Brien TJ, Shaw J, Storey E, Gardner RJ, Mitchell PJ, Du Sart D, King JO, Dentatorubral-pallidoluysian atrophy in three generations, with clinical courses from nearly asymptomatic elderly to severe juvenile, in an Australian family of Macedonian descent. Am J Med Genet A, 136, 201-204, 2005
- Paradisi I, Ikonomu V, Arias S, Spinocerebellar ataxias in Venezuela: genetic epidemiology and their most likely ethnic descent. Journal of Human Genetics, 1-8, 2015
- 31. Zádori D, Tánczos T, Jakab K, Vécsei L, Klivényi P, The first identified Central-Eastern European patient with genetically confirmed dentatorubralpallidoluysian atrophy. Ideggyogy Sz. 68, 68-71, 2015
- 32. Tang B, Liu C, Shen L, Dai H, Pan Q, Jing L, Ouyang S, Xia J, Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat

expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol, 57, 540-544, 2000

- 33. Sura T, Eu-ahsunthornwattana J, Youngcharoen S, Busabaratana M, Dejsuphong D, Trachoo O, Theerasasawat S, Tunteeratum A, Noparutchanodom C, Tunlayadechanont S, Frequencies of spinocerebellar ataxia subtypes in Thailand: window to the population history? J Hum Genet, 54, 284-288, 2009
- 34. Cintra VP, Lourenço CM, Marques SE, de Oliveira LM, Tumas V, Marques W Jr, Mutational screening of 320 Brazilian patients with autosomal dominant spinocerebellar ataxia. J Neurol Sci, 15, 375-379, 2014
- Dubourg O, Dürr A, Chneiweiss H, Does the ataxo-choreic form of DRPLA exist in Europe? Search of mutation in 120 families. Rev Neurol (Paris), 11, 657-660, 1995
- 36. Yazawa I, Nukina N, Hashida H, Goto J, Yamada M, Kanazawa I, Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nature Genetics, 10, 99-103, 1995
- 37. Yazawa I, Nukina N, Goto J, Kurisaki H, Hebisawa A, Kanazawa I, Expression of dentatorubral-pallidoluysian atrophy (DRPLA) proteins in patients. Neurosci Lett, 225, 53-56, 1997
- 38. Knight SP, Richardson MM, Osmand AP, Stakkestad A, Potter NT, Expression and distribution of the dentatorubral-pallidoluysian atrophy gene product (atrophin-1/drplap) in neuronal and non-neuronal tissues. J Neurol Sci, 146, 19-26, 1997
- 39. Sato A, Shimohata T, Koide R, Takano H, Sato T, Oyake M, Igarashi S, Tanaka K, Inuzuka T, Nawa H, Tsuji S, Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally

differentiated PC12 cells. Preferential intranuclear aggregate formation and apoptosis. Hum Mol Genet, 8, 997-1006, 1999

- 40. Nucifora FC Jr, Ellerby LM, Wellington CL, Wood JD, Herring WJ, Sawa A, Hayden MR, Dawson VL, Dawson TM, Ross CA, Nuclear Localization of a Non-caspase Truncation Product of Atrophin-1, with an Expanded Polyglutamine Repeat, Increases Cellular Toxicity. J Biol Chem, 278, 13047-13055, 2003
- Onodera O, Oyake M, Takano H, Ikeuchi T, Igarashi S, Tsuji S, Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet, 57, 1050-1060, 1995
- 42. Yamada M, Wood JD, Shimohata T, Hayashi S, Tsuji S, Ross CA, Takahashi H, Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann Neurol, 49, 14-23, 2001
- 43. Sato T, Miura M, Yamada M, Yoshida T, Wood JD, Yazawa I, Masuda M, Suzuki T, Shin RM, Yau HJ, Liu FC, Shimohata T, Onodera O, Ross CA, Katsuki M, Takahashi H, Kano M, Aosaki T, Tsuji S, Severe neurological phenotypes of Q129 DRPLA transgenic mice serendipitously created by en masse expansion of CAG repeats in Q76 DRPLA mice. Hum Mol Genet, 18, 723-7736, 2009
- 44. 赤岩靖久, DRPLA ノックアウトマウスにおける遺伝子発現プロファイリング, 新 潟医学会雑誌, 119, 672-682, 2005
- Zhang S, Xu L, Lee J, Xu T, Drosophila Atrophin Homolog Functions as a Transcriptional Corepressor in Multiple Developmental Processes. Cell, 108, 45-56, 2002

- 46. Shen Y, Lee G, Choe Y, Zoltewicz JS, Peterson AS, Functional architecture of atrophins. J Biol Chem, 282, 5037-5044, 2007
- 47. Wood JD, Nucifora FC Jr, Duan K, Zhang C, Wang J, Kim Y, Schilling G, Sacchi N, Liu JM, Ross CA, Atrophin-1, the dentato-rubral and pallidoluysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription. J Cell Biol, 150, 939-948, 2000
- 48. Shimohata T, Nakajima T, Yamada M, Uchida C, Onodera O, Naruse S, Kimura T, Koide R, Nozaki K, Sano Y, Ishiguro H, Sakoe K, Ooshima T, Sato A, Ikeuchi T, Oyake M, Sato T, Aoyagi Y, Hozumi I, Nagatsu T, Takiyama Y, Nishizawa M, Goto J, Kanazawa I, Davidson I, Tanese N, Takahashi H, Tsuji S, Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nature Genetics, 26, 29-36, 2000
- 49. Felinski EA, Quinn PG. The CREB constitutive activation domain interacts with TATA-binding protein-associated factor 110 (TAF110) through specific hydrophobic residues in one of the three subdomains required for both activation and TAF110 binding. J Biol Chem, 274, 11672-11678, 1999
- 50. Nakajima T, Uchida C, Anderson SF, Parvin JD, Montminy M, Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev, 11, 738-47, 1997
- 51. Shimohata M, Shimohata T, Igarashi S, Naruse S, Tsuji S, Interference of CREB-dependent transcriptional activation by expanded polyglutamine stretches – augmentation of transcriptional activation as a potential therapeutic strategy for polyglutamine diseases. Journal of Neurochemistry, 93, 654-663, 2005
- 52. Suzuki K, Zhou J, Sato T, Takao K, Miyagawa T, Oyake M, Yamada M, Takahashi H, Takahashi Y, Goto J, Tsuji S, DRPLA transgenic mouse

substrains carrying single copy of full-length mutant human DRPLA gene with variable sizes of expanded CAG repeats exhibit CAG repeat length- and age-dependent changes in behavioral abnormalities and gene expression profiles. Neurobiol Dis, 46, 336-350, 2012

- Pinsky L, Kaufman M, Levitsky LL, Partial androgen resistance due to a distinctive qualitative defect of the androgen receptor. Am J Med Genet, 27, 459-466, 1987
- 54. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10, 57-63, 2009
- Gossen M, Bujard H, Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA, 89, 5547-5551, 1992
- 56. Trapnell C, Pachter L, Salzberg SL, TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111, 2009
- Langmead B, Salzberg SL, Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359, 2012
- 58. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protoc, 7, 562-578, 2012
- Robinson MD, McCarthy DJ, Smyth GK, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140, 2010
- 60. Anders A, Pyl PT, Huber W, HTSeq A Python framework to work with highthroughput sequencing data. Bioinformatics, 31, 166-169, 2015

- 61. Li H, Durbin R, Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 15, 1754-1760, 2009
- 62. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Gene Ontology: tool for the unification of biology. Nature Genetics, 25, 25-29, 2000
- Huang DW, Sherman BT, Lempicki RA, Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nature Protoc, 4, 44-57, 2009
- 64. Zhang ZH, Jhaveri DJ, Marshall VM, Bauer DC, Edson J, Narayanan RK, Robinson GJ, Lundberg AE, Bartlett PF, Wray NR, Zhao QY, A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One, 9, e103207, 2014
- The GTEx Consortium, The Genotype-Tissue Expression (GTEx) project.
 Nature Genetics, 45, 580-585, 2013
- Dibbens LM, Tarpey PS, Hynes K, X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nature Genetics, 40, 776-781, 2008
- 67. Depienne C, Trouillard O, Bouteiller D, Gourfinkel-An I, Poirier K, Rivier F, Berquin P, Nabbout R, Chaigne D, Steschenko D, Gautier A, Hoffman-Zacharska D, Lannuzel A, Lackmy-Port-Lis M, Maurey H, Dusser A, Bru M, Gilbert-Dussardier B, Roubertie A, Kaminska A, Whalen S, Mignot C, Baulac S, Lesca G, Arzimanoglou A, LeGuern E, Mutations and deletions in PCDH19 account for various familial or isolated epilepsies in females. Hum Mutat, 32, E1959-1975, 2011

- 68. Barajas-Martínez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, Boyle M, Surman T, Urrutia J, Veltmann C, Schimpf R, Borggrefe M, Wolpert C, Ibrahim BB, Sánchez-Chapula JA, Winters S, Haïssaguerre M, Antzelevitch C, Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm, 9, 548-555, 2012
- 69. Veeramah KR, Karafet TM, Wolf D, Samson RA, Hammer MF, The KCNJ8-S422L variant previously associated with J-wave syndromes is found at an increased frequency in Ashkenazi Jews. Eur J Hum Genet, 22, 94-98, 2014
- Johnson DS, Mortazavi A, Myers RM, Wold B, Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497-1502, 2007