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Abstract

This thesis presents photometric stereo with auto-radiometric calibration to esti-
mate surface orientations from a sequence of object images taken under different
lighting directions with a radiometrically uncalibrated camera. The original photo-
metric stereo assumes the images are captured by a camera with a linear response
function. However, cameras often have a non-linear response function, and thus,
the radiometric calibration is required to cancel the effect of nonlinear response
function before taking images which are later used for physics-based analysis of the
scene. Unfortunately, the radiometric calibration is a time-consuming pre-process
requiring many additional images.

The goal of this study is to achieve photometric stereo with auto-radiometric
calibration that can estimate surface orientations from radiometrically uncalibrated
images with no additional image required. With this method, one can apply photo-
metric stereo with images taken by a camera whose response function is unknown.

The key idea behind this work is to make use of the consistency between the
irradiance converted from the inverse response function and the irradiance esti-
mated from a reflection model, more specifically, Lambertian model in this work.
Consequently, a linear optimization problem can be formulated to estimate the
surface normals of a Lambertian surface and the response function simultaneously.
To handle non-Lambertian surfaces, the proposed method is further extended for
discarding specular highlights with a RANSAC-like approach where surface ori-
entations and a camera response function can be estimated simultaneously in the
face of specular highlights.

Experiments were conducted using both synthetic objects and real objects,
demonstrating the effectiveness of the proposed method successfully.
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Chapter 1

Introduction

Scene reconstruction is one of the fundamental problems in computer vision. Many
methods have been proposed to recover the geometry of a scene, such as time-of-
flight cameras, laser range scanners and multi-view stereo. Photometric stereo is a
technique for recovering surface orientations from multiple images of a stationery
object taken under different lightings. Its advantage over the other shape recon-
struction methods is the ability to recover surface orientations accurately using an
ordinary camera.

The basic photometric stereo assumes that a static object follows the Lam-
bertian reflection model and that the directions and intensities of directional light
sources are known a priori. These assumptions limit photometric stereo from being
carried out in uncontrolled environments. Therefore, the research trend in photo-
metric stereo can be seen in two directions: the generalization of materials and the
generalization of light sources.

This thesis addresses another common assumption in many computer vision
algorithms, including photometric stereo, that is image intensity is proportional to
the radiance of the corresponding light falling onto a camera sensor, e.g ., images
are captured by a camera with linear response. Unfortunately, ordinary cameras
often have nonlinear response functions, and such cameras are indeed intention-
ally designed to have non-linear response in order to compress dynamic range of
scenes, to simulate the characteristic of film imaging systems or to compensate for
the nonlinearity of display systems. Although it benefits to display systems, this
nonlinearity may lead to unsatisfactory corrupted results in many computer vision
methods which assume a linear camera response function. Thus, a calibration of
radiometric response of a camera is required to cancel the effect of the non-linearity
before being used for photometric analysis.

Most of the radiometric calibration techniques make use of an image sequence of
a static scene taken under varying exposure times. The ratio between the exposure
times and the observed image intensities are used to estimate a response function.
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Figure 1.1: Photometric stereo with auto-radiometric calibration using irradiance
consistency. The irradiance estimated from surface property (top) must equal to
the irradiance estimated from the inverse response function (bottom).

Because these methods require a number of additional images, they are often time-
consuming and cumbersome.

We present a novel method that avoids radiometric calibration preprocessing
from photometric stereo. Our proposed method simultaneously estimates the sur-
face normals of the target object and an inverse radiometric response function,
which maps a pixel value to an image irradiance value. The key idea of our method
is to make use of the consistency between the inverse radiometric response func-
tions and the surface normals; the irradiance values converted from the inverse
radiometric response function should equal to the corresponding irradiance values
calculated from the surface normals (figure 1.1). In other words, we take advan-
tage of such a clue, which is inherent in the physical model of reflectance itself, to
estimate surface normals as well as inverse radiometric response functions.

The remainder of this thesis is organized as follows: Chapter 2 introduces some
related works in the radiometric calibration and the photometric stereo. In Chapter
3, we describe the photometric stereo with auto-radiometric calibration by using
irradiance consistency and the experimental results. We present the extension for
non-Lambertian materials in Chapter 4, and concluding remarks in Chapter 5.
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Chapter 2

Related Work

This chapter explains some related work in the photometric stereo and the radio-
metric calibration. The relationship of our proposed method to the previous works
is also described.

2.1 Radiometric Calibration

Radiometric calibration is a process to estimate a response function of a camera in
order to subsume irradiance values from image intensities. The most widely used
approach assumes scene radiance remains unchanged along an image sequence.
Hence, sensor irradiance becomes proportional to exposure times so that it allows
the estimation of the response function without prior information regarding the
scene radiance.

The pioneering work on the linearity of response function can be seen in the
work proposed by Mann and Picard [19]. They proposed a method that uses
two images of a static scene taken under different known exposures to compute a
parametric response function in a form of gamma curve. Given the ratio of the
exposure between the first and the second image R, an unknown measurement I
at a pixel p0 of the first image leads to the measurement RI at the pixel p0 of
the second image. Then, the pixel p1 with the measurement RI at the first image
is sought and leads the measurement R2I in the second image at the pixel p1.
The search continues to obtain the series of measurement I0, RI0, R

2I, R3I, . . . .
Regression is applied to find the parameters for the response function. Devebec
and Malik[5] use a smoothness constraint to estimate a non-parametric response
function. In contrast to [19], this method uses the entire images instead of some
parts of the images, and achieves better accuracy. However, it needs precisely
measured exposure ratios.

One of the most widely used methods is the work by Mitsunaga and Nayar [20].
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Figure 2.1: Radiometric calibration using multiple images with varying
exposures.[20]

They use a rough estimation of exposure ratios to approximate a response function
with polynomials. However, these methods are limited in that they require many
additional images for radiometric calibration.

Lin et al. [17] avoid using multiple images by using color mixtures of edge
areas between two regions to perform radiometric calibration. Under the effect
of a nonlinear response function, the image irradiances at the edge area are no
longer linear combinations of the image irradiance of those regions. Therefore, the
function that recovers the linearity of the color mixtures is the nonlinear response
function. The method proposed in [18] uses similar approach to determine the
response function from a single grayscale image.

There are some methods that allow movement of the camera. Wilburn et
al. [27] conduct radiometric calibration on the basis of motion blur in a single
image. They make use of temporal irradiance mixtures instead of spatial ones.
Kim and Pollefeys [15] estimate a radiometric response function from an image
sequence taken with a moving camera by computing pixel correspondences across
the image frames. Grossberg and Nayar [10] show that radiometric calibration
can be done by using the intensity histograms of two image frames without exact
registration.

The recent work by Lee et al. [16] formulates the radiometric calibration as a
rank minimization problem. It arranges the observations, e.g. an image sequence
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Chapter 2. Related Work 5

taken under different exposures, in a matrix form so that a column vector corre-
sponds to an observation vector. This observation vector can be both the observa-
tions from multiple images taken under multiple exposures, or the color mixtures
around the edge area. Because the observation vectors should be linearly depen-
dent, the inverse response function can be estimated as an element-wise function
that minimizes the rank of the observation matrix.

Shi et al. [25] proposed a radiometric calibration technique which uses images
that taken under varying light sources e.g. input images for photometric stereo.
They investigate a color profile, i.e. the set of RGB values at a certain pixel
under different light sources, and demonstrate that input images to photometric
stereo can be used also for radiometric calibration. Their method is based on the
observation that a color profile draws a straight line (curve) in RGB space when
a radiometric response function is linear (nonlinear). Therefore, they estimate a
radiometric response function as a function that linearizes the color profiles.

2.2 Photometric Stereo for Non-Lambertian Sur-

faces

As previously mentioned, the classic photometric stereo[28] is a technique to es-
timate the surface normals of an object from a sequence of images captured by a
fixed camera. It assumes the object is illuminated under varying light sources and,
importantly, obeys the Lambertian model.

However, specular highlights observed in a wide range of real-world materials
such as ceramics and plastics violate the Lambertian reflection property, and as a
result, the estimated surfaces are distorted by specular highlights.

Therefore, there are a lot of photometric stereo techniques have been proposed
to estimate the surface normals of such materials. The techniques for photometric
stereo for non-Lambertian surfaces can be classified in two categories, modeling
approach and statistical approach.

The modeling approach assumes target objects follows a specific reflection
model, and then estimates parameters of the reflectance model along with the
surface normals. The examples of this approach can be seen in [23, 26, 9, 8]. Nayer
et al. [23] assume a hybrid reflectance model that is a linear combination of Lam-
bertian and specular components. Tagare and de Figueiredo [26] consider diffuse
non-Lambertian surfaces and solve the problem using an m-lobed reflectance map.
Goldman et al. [9] assume a material can be composed of multiple fundamental
materials, each described with a parametric Bidirectional reflectance distribution
function (BRDF) model. Therefore, we can estimate the surface made of the
mixture of fundamental materials if we know the reflectance parameters of each

5
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(a) (b)

Figure 2.2: The surface normals recovered from four triplets of light sources
(a) when no specularity is observed. (b) when specularity is observed.

fundamental materials. Georghiades [8] considers both diffuse and specular re-
flections and estimates surface normals as well as reflectance parameters based on
the Torrance-Sparrow model with unknown light directions. This approach is ef-
ficient when the BRDF reflection model is precisely assumed. More importantly,
it is difficult to estimate the BRDF parameters accurately with a few numbers of
observations.

The statistical approach regards specular pixels, shadows as well as other cor-
rupted measurements as outliers and excludes them from the surface estimation.
For example, Coleman and Jain[14] proposed a photometric stereo technique for
non-Lambertian surface using four light sources. They detect highlights by using
the recovered albedos, i.e., the reflectance factors. Specifically, they estimated four
candidate albedos at a certain location from four possible triplets selected from four
light sources. If all of the candidate albedos do not coincide, it is regarded due
to specularity, and the smallest albedo is used for surface estimation. Barsky and
Petrou[2] extended the method to detect highlight and shadow regions. Because
four light sources are linearly dependent if they are not in the same plane, they
treat highlights and shadows as outliers that violate a linear model derived from
the Lambertian model and linear dependency of the light sources.

In additional to the four-source photometric stereo techniques, there are several
outliers removal techniques that treat specular highlights as sparse errors. Wu
et al. [29] casts the photometric stereo problem as a problem of completing and
recovery of a low-rank matrix. Suppose only a small fractions of the pixels in
each image are specular highlights and most of pixels are illuminated by the light
source, we can decompose an observation matrix O into a summation of a low-rank
matrix D, which represent an ideal diffusive irradiance, and a sparse error matrix
E which represents the deviation due to the specularity, shadows, as well as other
corrupted measurements. Then, find the sparse matrix E that minimizes the rank
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Chapter 2. Related Work 7

of D. With known light source directions and intensities, the surface normals
can be estimated from the low-rank matrix D. Instead of using robust principle
component analysis as in [29], Ikehata et al . [13] use a hierarchical Bayesian model
derived from a sparse Bayesian learning framework.

Unfortunately, these techniques assume input images are captured by a camera
with a linear response function. Therefore, we cannot directly use these techniques
in our case due to nonlinearity of a response function.

2.3 Relation to the Previous Works

In this thesis, we present our photometric stereo with auto-radiometric calibration.
Although we can use an existing radiometric calibration technique as a completely
independent preprocess, the calibration techniques are often cumbersome and usu-
ally require additional images. Unlike the other radiometric calibration techniques,
our proposed method requires no additional images used for radiometric calibra-
tion. More importantly, our method is based on a different clue; we take advantage
of the physical model of reflectance for radiometric calibration.

Our technique is similar as Shi et al .[25] that is the input images are captured
under varying illuminations by a fixed camera. However, their method is still
considered as a preprocessing, requires nonlinear optimization and the input images
must be color images. More importantly, their method cannot handle a certain class
of radiometric response functions such as a polynomial and gray objects which
the color profiles remain straight lines even the radiometric response function is
nonlinear.

As for the extension to handle the non-Lambertian surfaces, we integrate a
RANSAC-like robust estimation [7] to our framework to determine specular region
and estimate response function by maximizing the inlier pixels to the Lambertian
model. RANSAC has been used by several works to handle specular highlights in
face recognition task [24] and to remove specularity from non-Lambertian surfaces
in photometric stereo [12] [11]. Mukaigawa et al [22] use RANSAC to classify
diffuse and specular region using images taken under different light sources.

As far as we know, ours is the only method that can estimate surface nor-
mals and a radiometric response function simultaneously. In addition, our method
does not require nonlinear optimization and color images, and it can also handle
polynomial response functions and gray objects.

7



Chapter 3

Photometric Stereo with
Auto-Radiometric Calibration

3.1 Background

To avoid the radiometric calibration, we present a novel method to perform pho-
tometric stereo with auto-radiometric calibration. The key idea of our method is
to make use of the consistency between an inverse radiometric response function
and surface normals; the irradiance values converted from pixel values by using
the inverse radiometric response function should be equal to the corresponding
irradiance values calculated from the surface normals. The experiments show our
photometric stereo with auto-radiometric calibration can estimate the surface ac-
curately regardless the nonlinearity of the response function.

3.2 Proposed Method

3.2.1 Lambertian Reflection Model

This section briefly explains the models used to describe the reflection on matte
surfaces, the Lambertian reflection model.

The reflectivity of the object depends on its microstructure, orientation, and
spatial and spectral distribution, and state of polarization of the incident illumina-
tion [28]. For the materials such as chalk or stone, their surface in micro level is,
in fact, rough so that the reflected lights scatter in many directions. This is called
diffuse reflection. If roughness of the surface is uniformly distributed so reflected
lights scatter in every direction equally, brightness at a certain point remains same
regardless the observer’s angle of view. We call this surface has Lambertian re-

8
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(a) (b)

Figure 3.1: (a) Lambertian reflection. The light reflected equally in all direction
regardless the viewing direction. Normally, diffuse reflection is modeled as Lamber-
tian reflection. (b) Specular reflection. The incoming light reflects in a particular
direction.

flectance property (figure 3.1(a)). The intensity of the reflected light E is,

Epd = (αpnp)
⊺ · (sdld). (3.1)

where αp is the reflection coefficient or albedo at point p, np is surface normal of
that point, sd is the intensity and ld is a vector represents the direction of incoming
light d1 .

However, bright spots seen on a shiny surface are described by another reflection
models. In such surfaces, light reflects off the surface in a particular direction
depends on the surface normals and the incoming light direction. This kind of
reflection is called specular reflection. Though it is possible to find the objects
with only diffuse reflection or only specular reflection, most of objects consist of
both diffuse reflection and specular reflection.

3.2.2 Photometric Stereo

This section briefly explains the photometric stereo. The classic photometric stereo
is a technique to recover the object’s geometry and reflectance properties from
multiple images under varying known distant light sources [28]. The reflectance
characteristics of a surface can be expressed as a reflectance function ϕ of three
parameters: surface normal np, light source direction ld and viewer’s direction v.
The image intensity Epd can be expressed in reflectance function form as

Epd = sdϕ(np, ld,v). (3.2)

Here, sd denotes the light intensity of light source d. Assuming camera fixed at
point [0, 0, z] has orthographic projection, the viewing direction becomes constant

1The lighting direction vectors point from the surface of the object to the light source.

9



Chapter 3. Photometric Stereo with Auto-Radiometric Calibration 10

along the scene. If we know the direction and intensity of at least three light
sources that do not lie on the same plane, we can estimate the surface normals by
using linear least square method.

Let N = [n1, . . . ,np, . . . ,nP ] and L = [l1, . . . , ld, . . . , lD]. If the target object
has Lambertian reflectance property, the reflected light Epd depends on only its
orientation np, αp is the albedo at the point p, the direction of the light is ld with
intensity sd. With known light directions, and light sources are not on the same
plane, the inverse light source matrix L−1 is exist. Surface normals and its albedo
can be recovered as

αp =

∥∥Epd ·L−1
d

∥∥
sd

, (3.3)

n̂p =
1

αp

Epd ·L−1
d . (3.4)

This is equivalent to

n̂p = argmin
np

L∑
l=1

(
Epd − nT

p ld
)2

. (3.5)

3.2.3 Radiometric Response Function

Typically, image irradiance falling onto an imaging sensor inside a camera is pro-
cessed through many steps such as white balance, noise reduction, and gamut map-
ping, etc. We can think of these steps as a function, called radiometric response
function that maps an irradiance value E into a pixel value I.

Since the radiometric response function is a monotonically increasing function,
there is a unique inverse function g = f−1 which maps a pixel value I to an
irradiance value E.

Hereafter, we normalize the ranges of pixel values and irradiance values to [0, 1]
without loss of generality.

In a similar manner to the existing technique [20], we represent the inverse
radiometric response function by using polynomials:

E = g(I) =
K∑
k=0

ckI
k, (3.6)

where ck is the coefficient of the k-th polynomial.
Since the inverse radiometric response function g is also a monotonically in-

creasing function with respect to a pixel value I, the coefficients {ck} satisfy the

10
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monotonicity constraint:

dg(I)

dI
=

K∑
k=1

kckI
k−1 > 0, (3.7)

when I > 0. In addition, since the ranges of pixel values and irradiance values are
normalized, the coefficients {ck} satisfy the boundary conditions:

g(0) = c0 = 0, g(1) =
K∑
k=0

ck = 1. (3.8)

3.2.4 The Simultaneous Estimation

Our proposed method estimates both the surface normals np (p = 1, 2, ..., P ) and
the coefficients of the inverse radiometric response function ck (k = 1, 2, ..., K) at
the same time.

We assume the response function can be approximated with k-order polyno-
mials as shown in eq.(3.6). Substituting the boundary condition (eq.(3.8)) into
eq.(3.6) and eliminating c1, an irradiance E is described by using a pixel value I
as

E = c1I +
K∑
k=2

ckI
k

= I +
K∑
k=2

ck
(
Ik − I

)
. (3.9)

Therefore, in a similar manner to eq.(3.5), the estimates of the surface normals
{n̂p} and the coefficients of the inverse radiometric response function {ĉk} are
given by

({n̂p}, {ĉk}) = arg min
({np},{ck})

P∑
p=1

D∑
d=1

[
Epd − nT

pEd +
K∑
k=2

ck
(
Ek

pd − Ipd
)]2

, (3.10)

Here, the third term in the bracket acts as a correction term for compensating a
nonlinear radiometric response function.

As to the monotonicity constraint, substituting eq.(3.8) into eq.(3.7), we obtain

K∑
k=2

ck(1− kIk−1) < 1. (3.11)

11
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Therefore, the coefficients have to satisfy this inequality for arbitrary pixel values,
e.g. I = i/255 (i = 1, 2, ..., 254) for 8 bit images.

Thus, the simultaneous estimation of the surface normals and the inverse ra-
diometric response function results in the linear least-square problem in eq.(3.10)
with the linear constraints in eq.(3.11). Since this problem is a convex quadratic
programming, we can find the globally optimal solution if the number of observa-
tions (DP ) is larger than the number of unknowns (3P + K). Suppose that the
number of pixels P is larger than the number of polynomials K, we can estimate
the surface normals and the inverse radiometric response function from four images
at least (D ≥ 3 +K/P ).

When the radiometric response function is linear, we can estimate a surface
normal at each surface point independently as shown in eq.(3.5). On the other
hand, when it is nonlinear, we cannot deal with each surface point independently
as shown in eq.(3.10). Therefore, the naive optimization of eq.(3.10) subject to the
constraints of eq.(3.11) is computationally expensive when the number of pixels in-
creases. To reduce the computational cost, we can estimate the inverse radiometric
response function (and the surface normals) by using a small number of randomly
sampled pixels, and then convert pixel values to irradiance values, and finally esti-
mate the surface normals by using eq.(3.5). Although we did not mention for the
sake of simplicity, we detect outliers, i.e. shadowed or saturated pixels by using
thresholds and remove them from the summations in eq.(3.5) and eq.(3.10).

3.3 Experiments

We used MATLAB implementation of the trust region reflective quadratic pro-
gramming for optimization. The whole process took about 2.5 seconds for syn-
thetic images and about 7.5 seconds for real images on average by using an Intel
Core i7-2600 3.4GHz CPU.

3.3.1 Synthetic Images

We compared the performance of our proposed method with that of the classic
photometric stereo [28] by using synthetic images. The target objects are a sphere
with uniform albedo and a face with relatively complex shape and non-uniform
albedo shown in figure 3.2. The number of images is 16, and the numbers of
foreground pixels of the sphere and face are 3228 and 2776 respectively. We used
two radiometric response functions: one is the Agfapan APX 400CD and the other
is the polynomial f = E0.4. We empirically set the number of polynomials in
eq.(3.6) as K = 6.

In figure 3.3, we show the qualitative results for the sphere. We show the

12



Chapter 3. Photometric Stereo with Auto-Radiometric Calibration 13

Figure 3.2: Synthetic images of sphere and face with different radiometric response
functions.

Table 3.1: Average errors of estimated surface normals and RMS errors of estimated
inverse radiometric response functions: synthetic images.

Surface Surface Inverse
normal normal response
(classic) (ours) function

Sphere(Agfapan) 23.6◦ 1.6◦ 0.0056
Sphere(polynomial) 18.7◦ 1.9◦ 0.0004
Face(Agfapan) 17.8◦ 1.7◦ 0.0068
Face(polynomial) 15.1◦ 1.7◦ 0.0004

color coded surface normals2: (a) the ground truth, (b) the estimated ones by
using the classic photometric stereo, (c) the estimated ones by using our proposed
method, and (f) the inverse radiometric response functions: the solid line stands
for the ground truth and the dashed line stands for the estimated one. One can
see that the estimated surface normals by using our method looks similar to the
ground truth while the estimated surface normals by using the classic photometric
stereo are significantly distorted. Moreover, one can see that the estimated inverse
radiometric response function is almost the same as the ground truth. We show
the results for images with the other radiometric response function in (d), (e), and
(g). One can see that those results are consistent with (b), (c), and (f).

In figure 3.4, we show the qualitative results for the face. Similar to the exper-
imental results for the sphere, one can see that the estimated surface normals by
using our proposed method, i.e. (c) and (e) are clearly better than the estimated
surface normals by using the classic photometric stereo, i.e. (b) and (d). In ad-
dition, one can see that the estimated inverse radiometric response functions are
almost the same as the ground truths.

Table 3.1 shows the quantitative results: the mean angular errors of the esti-

2x, y, and z components (∈ [−1, 1]) are linearly mapped to RGB.

13
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Figure 3.3: Results using synthetic images: sphere. (a) the ground truth, (b)
the estimated surface normals by using the classic photometric stereo, (c) the
estimated ones by using our proposed method, and (f) the inverse radiometric
response functions: the solid line stands for the ground truth and the dashed line
stands for the estimated one. (d), (e), and (g) are the results for images with the
other radiometric response function.
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Figure 3.4: Results using synthetic images: face.
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Chapter 3. Photometric Stereo with Auto-Radiometric Calibration 16

mated surface normals and the RMS errors of the estimated inverse radiometric
response functions. One can see that the average angular errors of the estimated
surface normals are drastically decreased by simultaneously estimating surface nor-
mals and a radiometric response function. Moreover, one can see that our proposed
method can accurately estimate the inverse radiometric response functions as a by-
product.

3.3.2 Real Images

We compared the performance of our proposed method with that of the classic pho-
tometric stereo by using real images. The target objects are a sphere and a statue
shown in figure 3.5. We captured 10 images by using a Point Grey Chameleon
camera with different gamma settings: g(I) = I2.0 and g(I) = I0.5. The numbers
of foreground pixels of the sphere and statue are 7063 and 23115 respectively. We
computed the ground truth for the surface normals of the sphere on the basis of its
silhouette image. As to the statue, we considered the surface normals estimated
by using the classic photometric stereo from images with a linear response function
as the ground truth.

In figure 3.6 and figure 3.7, we show the qualitative results for the sphere and the
statue. Similar to the experimental results using synthetic images, one can see that
the estimated surface normals by using our proposed method, i.e., (c) and (e) are
better than the estimated surface normals by using the classic photometric stereo,
i.e., (b) and (d). In addition, one can see that the estimated inverse radiometric
response function (the dashed line) is close to the ground truth (the solid line).
Here, we plot the estimated radiometric response function within the range which
covers observed pixel values. The estimated radiometric response function is not
necessarily accurate out of the range because there is no observation.

Table 3.2 shows the quantitative results: the average errors of the estimated
surface normals and the RMS errors of the estimated inverse radiometric response
functions. Similar to the experimental results using synthetic images, one can see
that the mean errors of the estimated surface normals are decreased by simultane-
ously estimating surface normals and a radiometric response function. Moreover,
one can see that our proposed method can accurately estimate the inverse radio-
metric response functions.
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Chapter 3. Photometric Stereo with Auto-Radiometric Calibration 17

Figure 3.5: Real images of sphere and statue with different radiometric response
functions.

Table 3.2: Average errors of estimated surface normals and RMS errors of estimated
inverse radiometric response functions: real images.

Surface Surface Inverse
normal normal response
(classic) (ours) function

Sphere(2.0) 11.3◦ 2.3◦ 0.027
Sphere(0.5) 13.1◦ 3.1◦ 0.015
Statue(2.0) 11.6◦ 2.1◦ 0,021
Statue(0.5) 13.0◦ 2.6◦ 0.015
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Figure 3.6: Results using real images: sphere.
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Figure 3.7: Results using real images: statue.
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Chapter 4

Extension for Non-Lambertian
Materials

Our photometric stereo with auto-radiometric calibration assumes an object with
an ideal Lambertian surface, and as a result, the estimated shape and response
function are distorted by specular highlights observed in non-Lambertian surfaces.
In this chapter, we introduce the extension for non-Lambertian surface to estimate
the surfaces of such materials.

4.1 Background

Generally, specular highlights can be easily detected and removed using various
techniques such as four-light sources [14, 2], RANSAC [22], or low-rank minimiza-
tion [29]. However, these methods assume input images are captured by a camera
with a linear response function, which is not always true in our case. Therefore,
we cannot use these techniques to remove specular highlights in straightforward
manner due to nonlinearity of a response function.

Many non-Lambertian surfaces appear as a Lambertian surface except a small
area where specular highlights exist, we can treat highlight pixels as outliers which
deviate from the Lambert model. Therefore, it would be possible to simultaneously
estimate the shape of a non-Lambertian surface and the response function of a
camera by incorporating a robust estimation technique such as RANSAC [7] into
the auto-radiometric calibration technique.

We conducted a number of experiments on both synthetic and real objects
to demonstrate that our proposed method can accurately estimate the surface of
given objects with non-Lambertian surface regardless the nonlinearity of response
function.
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4.2 Proposed Method

As the entire image sequence is affected by the same response function, we can
estimate the inverse response function from a small subset of pixel intensities if we
assume that number of images is greater than number of unknown coefficients. We
apply RANSAC-like algorithm to iteratively determine response function and sur-
face normals by maximizing number of supporting inliers of the estimated inverse
response function and surface normals.

For each iteration, s random pixels are sampled and t pixel values that are in the
same pixel as each sampled pixel are selected. Then, the selected pixel values are
used to estimate a candidate inverse response function. Then, we use the estimated
inverse response function to convert the input images into their irradiance form.

Here, assuming the response function is accurately estimated, we remove the
outliers once again by applying RANSAC. Then, the diffuse pixel intensities are
used to estimate surface normals and, consequently, the irradiance values are es-
timated according to the Lambertian model. If the inverse response function and
the diffuse regions are accurately determined, the estimated irradiance values must
equal to the observed irradiance values converted by the inverse response function.
Then, the goodness of the estimated inverse response function is determined as the
number of inliers, i.e., the number of the estimated irradiance values that equal
to the observed irradiance values. These processes are repeated again for some
iteration, the diffuse areas from the iteration with the most number of inliers are
used to reestimate the response function and surface normals.

The detailed algorithms are given as following.

Step 1. Pixels Random Selection

We select a number of pixel values to estimate a candidate inverse response func-
tion. Given the whole set of images are affected by the same response function, we
can use only a small subset of pixel intensities to estimate the response function.
Let K denotes the degree of polynomials. Firstly, s pixels are randomly selected.
Then, the number of required pixel intensities t for a selected pixel p is determined.
Since there are 3 unknowns for surface normals for each pixel selected, namely npx,
npy, and npz, plus K−1 unknowns for the coefficients of inverse response function,
therefore t can be determined as,

t =

⌈
3× s+K − 1

s

⌉
. (4.1)

For each selected pixel, t pixel intensities from the same pixel along the set of
images are randomly selected.
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Chapter 4. Extension for Non-Lambertian Materials 23

Although we did not mention for the sake of simplicity, shadows and saturated
pixel intensities are removed from the estimation by thresholding. The pixels which
have number of pixel intensities less than three after the removal are also excluded
from the selection.

Step 2. Estimation of a Candidate Inverse Response Func-
tion

A candidate inverse response function g is estimated using the selected pixel inten-
sities. If all of the selected pixel intensities do not consist of specular component,
we can determine an inverse response function with eq.(3.10) subjects to the con-
straint eq.(3.7). Then, the input images are mapped by the estimated inverse
response function g into the irradiance Eobserved.

Step 3. Specular Region Detection and Removal

The specular regions are detected and removed in this step. We utilize a simple
pixel intensity comparison which is similar to the one in Barsky [2]. Given specular
region is observed within some limited light directions, we can regard a specular
pixel intensity as an outlier that does not satisfy the Lambertian model. We apply
RANSAC here to iteratively determine the largest subset of pixel intensities that
with no specular highlights. Then the appropriate surface normals are estimated
from the diffuse pixel intensities.

Assume that the set of images is radiometrically calibrated and converted into
their corresponding irradiance E. For each point p, three irradiance values, Epi,
Epj, and Epk where 1 ≤ i, j, k ≤ D, are randomly selected. If the selected irradiance
values contain only diffuse component, this becomes the classic photometric stereo
case. A unique surface normals np can be determined by eq.(3.5). Consequently, we
can estimate the irradiance Eestimated

pd from the d-th light source ld and the estimated
surface normals np; the estimated irradiance must be equals to its corresponding
observed irradiance Eobserved

pd . On the other hand, if the selected irradiance values
contain a specular component, the estimated surface normals becomes distorted
and the Eestimated

pd becomes inconsistent to the Eobserved
pd . Therefore we measure the

goodness of the estimated surface normals by the number of inliers whose estimated
irradiance equals to the observed one. The irradiance Eobserved

pd is considered an
inlier if following condition is satisfied,

|Eestimated
pd − Eobserved

pd | ≤ τsE
observed
pd , (4.2)

where τs is a threshold.
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The combinations of three irradiance values, Epi, Epj, and Epk, are selected
iteratively to obtain a distribution of surface normals. Then, the surface normals
np is estimated from the inliers of the iteration with highest number of inliers. The
specular detection and surface estimation are performed on every foreground pixel
to acquire the surface normals n.

Step 4 Evaluation of the Candidate Inverse Response Func-
tion

The accuracy of the estimated inverse response function is evaluated. If the inverse
response function g and the surface normals n are accurately estimated, the irra-
diance Eobserved which mapped by the inverse response g must consistent with the
irradiance calculated from the surface property. Hence, we calculate the irradiance
Eestimated with the surface normals n. We determine the supporting inliers with
the same criterion to the specular detection. The irradiance Eobserved

dp supports the
estimated inverse response function if it satisfies eq.(4.2).

The step 1 to step 4 are repeated for many iterations to get a numbers of
candidate inverse response functions. The inliers for the inverse response function
with the largest number of supports are considered diffuse pixel intensities by
consensus.

Step 5 Estimation of the response function and surface shape

In this step, the diffuse pixels are used to estimate the inverse response function
and the surface normals. The eq.(3.10) and (3.7) are used once again to reestimate
the coefficients of the inverse response function ĉk and the surface normals n̂ from
the diffuse pixel intensities.

4.3 Experiments

We verified our proposed method by experiments using both synthetic images and
real objects. We used MATLAB implementation of the trust region reflective
quadratic programming for the optimization. We decide the number of iterations
for surface estimation and response function estimation as suggested for RANSAC
algorithm[7],

number of iterations =

⌈
log(1− ρ)

log(1− wn)

⌉
, (4.3)

where ρ is probability that all selected pixel intensities are inliers at least once, w
is probability that a selected pixel intensity is an inlier and n denotes sampling
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Figure 4.2: Response functions used in the experiments. (left) Agfapan-apx-400CD
(right) Agfa-scala-200xCDStandard

size. we set w = 0.8 empirically and n = ts for the estimation of response function,
we set w = 3/D and n = 3 for the specular detection. We set ρ = 0.99, τ = 0.06,
s = 1, and degree of polynomials K = 6 are selected empirically for both synthetic
images and real objects cases.

4.3.1 Synthetic Images

We evaluate the performance of the extension for non-Lambertian surfaces by com-
paring the result with that of the classic photometric stereo[28] and result from
auto-radiometric calibration photometric stereo for Lambertian surface[21] using
synthetic images. The synthetic images were a sphere with uniform albedo and
specular factor. We randomly picked ten light directions around the object. We
applied two response functions, namely agfa-scala-200xCDStandard1 and agfapan-
apx-400CD, from the DoRF database[10] to the rendered images to emulate the
effect of nonlinear response function.

Figure 4.4 shows the color coded normal map for the ground truth (a), the
estimated ones from the extension for non-Lambertian surfaces (b), the estimated
ones from the auto-radiometric calibration photometric stereo without specular
detection (d), and the estimated ones from classic photometric stereo (f). Although
the estimated surface from the auto-radiometric calibration photometric stereo
without specular detection is similar to the ground truth, the distorted areas due
to specularity can be easily spotted in the disparity map (e). Figure 4.5 shows the
result from the images taken with a different response function.

We plotted the estimated inverse response function in figure 4.6. The plotted
function and RMS error were computed using the pixels with intensities less than
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Figure 4.3: Synthetic images: Sphere

Table 4.1: The estimation results for the synthetic sphere. The mean angular
errors of the estimated normal maps, and the RMS errors of the estimated response
functions.

Surface Surface Surface Inverse
normal normal normal response
(classic) (auto-calibrate[21]) (the extension) function

Sphere(agfapan) 15.3◦ 0.6◦ 0.2◦ 0.001
Sphere(agfascala) 4.24◦ 0.7◦ 0.3◦ 0.004

the ninetieth percentile of the largest pixel intensities. This is because the number
of bright diffuse pixels is small due to specularity so the estimated function where
the pixel intensity is near 1 cannot be constrained well and therefore is not accurate.
Moreover, the error propagates to the scale of the estimated response function
because we formulate the relationship between an irradiance and a pixel intensity
with the boundary conditions g(0) = 0 and g(1) = 1. Therefore, our algorithm has
a kind of ambiguity in the scale of the estimated response function. This ambiguity
does not affect the estimated surface normals but it affects the overall scale of the
estimated albedos instead.

4.1 shows quantitative results: the mean angular errors of the estimated normals
maps compared to the ground truth, and the root mean square error of the scaled
estimated functions compared to the ground truth. The errors from the surface
estimated by the extension to non-Lambertian surfacess are decreased as there is no
distortion due to specularity. The root mean square errors show that our method
can accurately estimate the shape of the inverse radiometric response function.
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Figure 4.4: The estimated normal map of the synthetic images: sphere (agfapan).
(a) ground truth, (b) the normal map estimated from our proposed method and
its different to the ground truth, (d) the normal map estimated from the auto-
radiometric calibration photometric stereo without specular removal, (f) the nor-
mal map estimated by the classic photometric stereo. (c) (e) (g) show the angular
differences between the estimated normal maps to the ground truth.
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Figure 4.5: The estimated normal maps of the synthetic images: sphere (agfascala).
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Figure 4.6: The estimated inverse response functions. The graphs were plotted
using the first ninetieth percentile of pixel intensities. (a) agfapan-apx-400CD (b)
agfa-scala-200xCDStandard.

4.3.2 Real Images

We evaluate the performance of our extension to non-Lambertian surfaces by com-
paring the result with that of the classic photometric stereo[28] and result from
auto-radiometric calibration photometric stereo for Lambertian surface[21] using
the images of real objects. The target objects are SEAL, GHOST, TOMATO, and
FISH. They are made from ceramics, painted ceramics, shiny plastic, and ceramic
with glossy paint respectively. We captured 20 images of each object by using
a Point Grey’s Flea camera with two nonlinear response functions, namely, agfa-
scala-200xCDStandard and agfapan-apx-400CD. We computed the ground truth
by using the classic photometric stereo with RANSAC-based specular removal tech-
nique on the images captured by the camera with a linear response function.

Same as the synthetic images, we show the RGB color coded normal maps
of the surfaces, estimated by our extension to non-Lambertian surfaces, the auto-
radiometric calibration photometric stereo with no outliers removal, and the classic
photometric stereo method. Our proposed method can remove the specular regions
and estimate the surface shape that similar to the ground truth. Moreover, the
holes in the bottom part of FISH were estimated correctly (figure 4.14) compared
to the result from the classic photometric stereo (f) and the auto-radiometric cali-
bration photometric stereo (d). In addition, our proposed method can estimate the
inverse response functions that were similar to the ground truth (fig. 4.16). Simi-
lar to the experiments with synthetic images, the estimated functions contained a
kind of ambiguity in scale.

Table 4.2 shows quantitative results: the average of the angular error of es-
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(a) (b)

(c) (d)

Figure 4.7: Real images: (a) SEAL (b) GHOST (c) TOMATO (d) FISH

timated normals maps compared to the ground truth, and the root mean square
error of the scaled estimated functions. Similar to the experiments with synthetic
images, the angular errors slightly decreased for our proposed method compared to
the auto-radiometric calibration photometric stereo without outlier removal. The
root mean square errors show that our proposed method can estimate the shape of
the inverse response function accurately even though the observed intensities cover
only a part of intensity range.
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Table 4.2: The estimation results for the real images sphere when τs = 0.6. The
average of the angular errors of estimated normal map, and the RMS errors of
estimated response function.

Surface Surface Surface Inverse
normal normal normal response
(classic) (auto-calibrate (the extension) function

[21])
FISH(agfapan) 17.90◦ 3.89◦ 2.22◦ 0.0063
FISH(agfascala) 6.91◦ 3.13◦ 2.40◦ 0.0055
GHOST(agfapan) 15.35◦ 3.25◦ 1.18◦ 0.0409
GHOST(agfascala) 4.27◦ 1.97◦ 1.56◦ 0.018
SEAL(agfapan) 14.10◦ 4.51◦ 1.78◦ 0.0053
SEAL(agfascala) 6.23◦ 3.48◦ 2.94◦ 0.0090
TOMATO(agfapan) 17.90◦ 2.77◦ 1.80◦ 0.0075
TOMATO(agfascala) 5.56◦ 1.76◦ 1.69◦ 0.0086
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Figure 4.8: The estimated normal maps of the real images: SEAL (agfascala).
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Figure 4.9: The estimated normal maps of the real images: SEAL (agfapan).
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Figure 4.10: The estimated normal maps of the real images: GHOST (agfascala).
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Figure 4.11: The estimated normal maps of the real images: GHOST (agfapan).
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Figure 4.12: The estimated normal maps of the real images: TOMATO (agfapan).
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Figure 4.13: The estimated normal maps of the real images: TOMATO (agfascala).
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Figure 4.14: The estimated normal maps of the real images: FISH (agfapan).
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Figure 4.15: The estimated normal maps of the real images: FISH (agfascala).
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Figure 4.16: The estimated response functions for SEAL, GHOST, TOMATO and
FISH.
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Conclusions

This thesis introduces a novel photometric stereo method to recover surface orien-
tations from images captured by a camera with an unknown non-linear response
function. The proposed method makes use of the consistency of the irradiance
calculated from a reflection model and the irradiance calculated from an inverse
response function. Using the proposed method, one can perform photometric stereo
with no additional image required for radiometric calibration.

This thesis also proposes the extension for the case of non-Lambertian surfaces
with specular hightlights. The extended method treats specular highlights as out-
liers that deviate from the Lambertian reflection model. The proposed method
uses RANSAC-like robust estimations to determine surface normals and a camera
response function from pixel intensities that satisfy the Lambertian model.

Future Works

Thus far, the study in this thesis is focused on the case where the directions and
the intensities of light sources are known. In order to estimate the surface normals
of objects in uncontrolled environments, we need to extend our method for the
cases that the directions and the intensities of light sources are unknown, i.e.,
uncalibrated photometric stereo.

The major problem in uncalibrated photometric stereo is ambiguity of the es-
timated light sources and the estimated surfaces. Given input images of an object
taken from a fixed viewpoint, there are a lot of possible lighting and surfaces com-
binations that correspond to the input images (figure 5.1). Previous studies made
an attempt to solve the ambiguity by using some additional clues, such as distri-
butions of albedos [1], specularities [6, 8], or interreflections [4] that reside in the
images. In the future, we hope to integrate such techniques to extend our method
for the uncalibrated photometric stereo.
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Figure 5.1: This figure illustrates the examples of generalized bas-relief ambiguity.
The left two columns are the Lambertian head figures rendered from two different
viewpoints. The first row shows the rendered head figures of the true surface and
light configuration. The next three rows show the rendered head figures under
different GBR transformations. [3]
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