博士論文

論文題目 高原子価コバルト触媒を用いた C-H 官能基化反応の開発

氏名 鈴木 雄大

高原子価コバルト触媒を用いた C-H 官能基化反応の開発

Development of Cp*Co(III)-Catalyzed

C-H Bond Functionalization

鈴木 雄大

謝辞

本研究の遂行に際し御指導御鞭撻を賜りました、東京大学大学院薬学系研究 科 金井求教授に心より御礼を申し上げます。

学部・修士・博士を通して直接御指導頂き、研究をはじめ様々な面でお世話 になりました、現北海道大学大学院薬学研究院 松永茂樹教授に心より感謝致 します。

本研究の遂行に当たり、反応経路に関する DFT 計算を行ってくださった、星 薬科大学薬学部 坂田健准教授に心より感謝致します。

研究を行うにあたり適切な助言を頂きました、東京大学大学院薬学系研究科 生長幸之助助教、清水洋平助教、現北海道大学大学院薬学研究院 吉野達彦助 教に心より感謝致します。

研究室で日々お世話になりました、東京大学大学院薬学系研究科有機合成化 学教室の皆様に心より感謝致します。

最後に私が研究生活を応援して下さった父、母に心より感謝致します。

目次

略語表	1
<u>I. 序論</u>	3
<u>II. C-H 官能基化反応における Cp*Co(CO)I2</u> 触媒の有用性の検証	15
<u>II-1 研究戦略</u>	15
<u>II-2 アルキンを用いた酸化的環化反応の開発</u> II-2-1 反応条件の最適化 II-2-2 考察	17 17 21
 II-3 アクリレートを用いた酸化的アルケニル化反応の開発 II-3-1 反応条件の最適化 II-3-2 基質一般性 II-3-3 反応機構 	23 23 26 29
<u>II-4 アルキンを用いたアルケニル化反応の開発</u> II-4-1 反応条件の最適化 II-4-2 基質一般性	30 30 34
<u>II-5 小括</u>	36
III. Cp*Co(III)触媒特有の反応の開発	37
<u>III-1 背景</u>	37
<u>III-2 アリルアルコールを用いたアリル化反応の開発</u> III-2-1 背景 III-2-2 研究戦略 III-2-3 反応条件の最適化 III-2-4 基質一般性 III-2-5 反応機構	40 40 43 45 49 53
<u>III-3 小括</u>	57
<u>IV. 総括</u>	58

<u>V. 実験項</u>

略語表

便宜上、本論文の全般において以下の略語を用いた。

Ac	acetyl
acac	acetylacetonate
<i>t</i> -Amyl	2-methylbutyl
Ar	aryl
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
BQ	benzpquinone
<i>n</i> -Bu	butyl
<i>t</i> -Bu	<i>tert</i> -butyl
CMD	concerted metalation-deprotonation
Ср	cyclopentadienyl
Cp*	pentamethylcyclopentadienyl
DCE	1,2-dichloroethane
DG	directing group
DCM	dichloromethane
DMF	<i>N</i> , <i>N</i> -dimethylformamide
EDG	electron donating group
equiv.	equivalent(s)
Et	ethyl
FG	functional group
h	hour(s)
IPr·HCl	1,3-diisopropylimidazolium chloride
Me	methyl
PG	protecting group
Ph	phenyl
phen	phenanthroline
Piv	pivaloyl
PMP	4-methoxyphenyl
<i>p</i> -Ns	4-nitrobenzenesulfonyl
pym	pyrimidyl

rt	room temperature
S _E Ar	electrophilic aromatic substitution
S_N	nucleophilic substitution
ТВНР	tert-butyl hydroperoxide
temp.	temperature
Tf	trifluoromethanesulfonyl
THF	tetrahydrofuran
Ts	<i>p</i> -toluenesulfonyl

I. 序論

現代の生活において、医薬品は必要不可欠な存在である。実際、医薬品市場の規模は着 実に成長しており、2013年時点で2009年の約1.2倍の9,800億ドルにまで市場規模が拡大 している¹。近年の医薬品開発では、抗体医薬、核酸医薬、中分子医薬品、再生医療などの 研究が精力的に行われているが、これらの治療薬は患者の経済的負担が大きい。そのた め、経済的負担が小さく、貧富問わず数多くの人々の生活を豊かにできる低分子医薬品は 未だ多くの需要がある。

この低分子医薬品の骨格を構築するうえで、炭素-炭素結合形成反応は炭素骨格が生物活 性を決定づける主要要素であるが故に重要であり、これまで多くの研究がなされてきた。 パラジウムなどの遷移金属を触媒として用いたクロスカップリング反応はその代表的な反 応の一つであり、このクロスカップリング反応の開発が精力的に行われてきたことによ り、多くの炭素-炭素結合形成反応が実現した。その結果、数多くの低分子医薬品を開発で きるに至った。

しかしながらこのクロスカップリング反応では、炭素-水素結合(以下 C-H 結合)をハロゲ ンやトリフラート基といった置換基へ事前に変換することで活性化しておく必要がある。 また、反応を行うに際して、ハロゲンやトリフラート基が化学量論量の廃棄物として生じ るため、原子効率の低下を招き、余分な工程数や生産コストがかかるといった問題や、環 境配慮の欠如といった問題が残されている(Figure 1-1-a)。

近年、これらの問題の解決策として、C-H 結合を事前に活性化することなく、直接遷移 金属触媒を用いて官能基化する"C-H 官能基化反応"の研究が盛んに行われ、数多くの反応 が報告されている²。このC-H 官能基化反応を低分子医薬品の開発といった精密合成に利

¹ 日本製薬協会 「DATE BOOK 2015」

² Recent reviews on C-H bond functionalization: (a) *C-H Activation, Topics in Current Chemistry*, vol. 292, Eds. by Yu, J.-Q.; Shi, Z.-J., Springer, 2010. (b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. *Chem. Rev.* 2010, *110*, 624. (c) Mkhalid, I. A. I.; Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. *Chem. Rev.* 2010, *110*, 890. (d) Lyons, T. W.; Sanford, M. S. *Chem. Rev.* 2010, *110*, 1147. (e) Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. *Chem. Soc. Rev.* 2011, *40*, 4740. (f) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S. *Chem. Soc. Rev.* 2011, *40*, 5068. (g) Ackermann, L. *Chem. Rev.* 2011, *111*, 1315. (h) Zhu, C.; Wang, R.; Falck, J. R. *Chem. Asian J.* 2012, *7*, 1502. (i) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.; Glorius, F. *Angew. Chem. Int. Ed.* 2012, *51*, 10236. (j) Engle, K. M.; Mei, T.-S.; Wasa, M.; Yu, J.-Q. *Acc. Chem. Res.* 2012, *45*, 788. (k) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. *Angew. Chem. Int. Ed.* 2012, *51*, 8960. (l) Li, B.-J.; Shi, Z.-J. *Chem. Soc. Rev.* 2012, *41*, 5588. (m) Beatrice Arockiam, P.; Bruneau, C.; Dixneuf, P. H. *Chem. Rev.* 2012, *112*, 5879. (n) Wencel-Delord, J.; Glorius, F. *Nature Chem.* 2013, *5*, 369. (o) Rouquet, G.;

用するためには、有機化合物の中に数多く存在する C-H 結合のうち、特定の C-H 結合を選 択的に官能基化する必要がある。この選択的な官能基化を実現するために、ピリミジル基 やカルボニル基といった配位性官能基(配向基: DG)が利用される。配向基は遷移金属触媒 と配位結合することで金属触媒を特定の位置に誘導し、金属触媒が近傍にある C-H 結合を 選択的に活性化することを可能にする(Figure 1-1-b)。

(a) Conventional Cross Coupling Reaction with Pd catalysis

(b) Directing Group Assisted C-H Functionalization

DG = directing group

Figure 1-1. Functionalization of C-H bond

配向基を用いた C-H 結合活性化は、1963 年に Kleiman、Dubeck によって初めて観測された。彼らはニッケル触媒を用いることで、アゾベンゼンの ortho 位の C-H 結合を活性化し、オルト-ニッケル錯体を得ることに成功した(Sheme 1-1)³。この ortho 位 C-H 結合活性化は、化学量論量の金属錯体を用いる必要がある。この報告以降、C-H 結合活性化の研究が行われ始めた。

Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.

Scheme 1-1. Stoichiometric cleavage of ortho C-H bond by Nickel complex

Chatani, N. Angew. Chem. Int. Ed. **2013**, 52, 11726. (p) Zhang, B.; Spring, D. R. Chem. Soc. Rev., **2014**, 43, 6906. (q) Huang, Z.; Lim, H. N.; Mo, F.; Young M. C.; Dong, G. Chem. Soc. Rev. **2015**, 44, 7764. (r) Daugulis, O.; Roane, J.; Tram, L. D. Acc. Chem. Res. **2015**, 48, 1053. (s) Yang, L.; Huang, H. Chem. Rev. **2015**, 115, 3468.

³ Kleiman, J. P.; Dubeck, M. J. Am. Chem. Soc. 1963, 85, 1544.

配向基を用いた C-H 結合活性化が報告されて約 20 年後の 1986 年に、触媒的 C-H 官能基 化反応が Lewis らによって報告された(Scheme 1-2)⁴。彼らは、エチレン雰囲気下、ortho-メ タル化されたルテニウム触媒を用いることで、フェノールの ortho 位選択的な C-H アルキ ル化に成功した。

Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728.

Scheme 1-2. Ortho C-H alkylation of phenol by Ruthenium catalyst

1993年には、村井らによっても触媒的 C-H 官能基化反応が報告されている。彼らはルテ ニウム触媒を用いることで ortho 位選択的なアルキル化に成功している(Scheme 1-3)⁵。この 反応では、カルボニル基が配向基の役割を担い、ルテニウム触媒と配位結合することで、 ルテニウム触媒の ortho 位 C-H 結合選択的な酸化的付加を実現している。そして、生じた ortho-ルテニウム錯体がオレフィンと反応することで ortho-アルキル化体が得られている。

Murai, S. et al. Nature, 1993, 369, 529.

Scheme 1-3. Ketone-directed C-H alkylation with alkenes by Ruthenium catalyst

上記2つの反応は、C-H 結合を直接官能基化しており、事前にC-H 結合を活性化する必要がないため、従来のクロスカップリング反応やSnieckus 反応といった反応と比較して、

⁴ Lewis, L. N.; Smith, J. F. J. Am. Chem. Soc. 1986, 108, 2728.

⁵ Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. *Nature*, **1993**, *369*, 529.

原子効率が高く、アトムエコノミー・ステップエコノミーに優れた反応となっている。こ れらの反応の報告以降、様々な遷移金属触媒、配向基を用いた C-H 官能基化反応の研究が 精力的に行われ、アルケンやアルキンといった非極性官能基への付加反応以外にも、イミ ンやアルデヒドといった極性官能基への求核付加反応や酸化的カップリング反応など、 様々な形式の反応が報告されてきた。

数ある遷移金属触媒の中で、近年 Cp*Rh(III)触媒(Cp* = pentamethylcyclopentadienyl)を用 いた C-H 官能基化反応の開発が盛んに行われている⁶。この Rh(III)触媒は、佐藤、三浦ら によって初めて C-H 官能基化反応に用いられた(Scheme 1-4-a)⁷。彼らは、安息香酸を基質 として用い、カルボン酸 ortho 位選択的な C-H 結合の活性化を実現している。そして、こ の C-H 結合活性化を利用して酸化的環化反応を行うことで、イソクマリン骨格を構築する ことに成功している。この反応は C-H/O-H 結合を同時に活性化し、二つの C-C 結合を構築 できる優れた反応である。酸性 N-H 結合を有する配向基を用いることも可能で、C-H/N-H 結合を同時に活性化し、酸化的環化反応を行うことで、様々な環化体を得ることができ る。例えば、2010 年に Rovis らは、ベンズアミドのオルト位選択的な C-H 結合活性化を利 用することで、アルキンを用いたイソキノリン骨格の構築に成功している(Scheme 1-4a)⁸。さらに、求電子剤としてオレフィンを用いることで、酸化的 Heck 反応を行うことも 可能である。Glorius らは、アセトアニリドを求核剤、スチレンもしくはアクリレートを求 電子剤とすることで、様々な酸化的アルケニル化体を得ることに成功している(Scheme 1-4b)⁹。この反応では、ロジウム触媒と銀塩を反応させて、カチオン性の Cp*Rh(III)触媒を系 中で生み出すことで、反応性が向上している。

⁶ Reviews on Cp*Rh^{III} catalysis: (a) Satoh, T.; Miura, M. *Chem. Eur. J.* 2010, *16*, 11212. (b) Patureau, F.
W.; Wencel-Delord, J.; Glorius, F. *Aldrichimica Acta* 2012, *45*, 31. (c) Song, G.; Wang, F.; Li, X. *Chem. Soc. Rev.* 2012, *41*, 3651. (d) Chiba, S. *Chem. Lett.* 2012, *41*, 1554. (e) Kuhl, N.; Schroeder, N.; Glorius, F. *Adv. Synth. Catal.* 2014, *356*, 1443. (f) Song, G.; Li, X. *Acc. Chem. Res.*, 2015, *48*, 1007.

⁷ Ueura, K.; Satoh, T.; Miura, M. J. Org. Chem., **2007**, 72, 5362.

⁸ Hyster, T. K.; Rovis, T. J. Am. Chem. Soc., **2010**, 132, 10565.

⁹ Patureau, F. W.; Glorius, F. J. Am. Chem. Soc. 2010, 132, 9982.

Satoh, T.; Miura, M. et al. J. Org. Chem. 2007, 72, 5362.

Glorius, F. et al. J. Am. Chem. Soc. 2010, 132, 9982.

Scheme 1-4. Oxidative C-H functionalization by Cp*Rh(III) catalyst

その後、Cp*Rh(III)触媒に関する研究が進み、酸化的 C-H 官能基化反応だけでなく、そ の他の C-H 官能基化反応にも利用することが可能となった(Scheme 1-5)。2011 年に、 Bergman、Ellman らは[Cp*RhCl₂]₂ と AgSbF₆を系中で反応させて生じたカチオン性の Cp*Rh(III)を用いることで、2-フェニルピリジンの ortho 位選択的なイミンへの求核付加反 応に成功している¹⁰。同時期に、Shi らもカチオン性の[Cp*Rh(CH₃CN)₃](SbF₆)₂を用いるこ とで、2-フェニルピリジンのオルト位選択的なイミンへの求核付加反応に成功している ¹¹。上記 2 つの反応は、先ほどの酸化的 C-H 官能基化反応と異なりプロトン移動型の反応 であるために、原子効率の高い反応である。これらの報告から始まり、アルデヒド、イソ シアネート、α,β-不飽和カルボニル化合物といった極性官能基への付加反応が次々と報告 された。また、Cp*Rh(III)触媒は非極性官能基への付加反応も適用可能である。2010 年

¹⁰ a) Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc., **2011**, *133*, 1248. b) Tauchert, M.E.; Incarvito, C. D.; Rheingold, A.L.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. **2012**, *134*, 1482.

¹¹ a) Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J. *Angew. Chem. Int. Ed.* **2011**, *50*, 2115. b) Li, Y.; Zhang, X.-S.; Li, H.; Wang, W.-H.; Chen, K.; Li, B.-J.; Shi, J.-Z. *Chem. Sci.* **2012**, *3*, 1634.

に、Schipper、Fagnou らによって、インドール 2 位選択的なアルキンの付加反応が報告された¹²。本反応では、本来反応性の高い 3 位で反応が進行するのではなく、2 位で反応が進行し、アルケニル化体が得られている。これは、カルバモイル配向基が活性点の制御を可能にしたことを示している。さらに、求核置換型の C-H 官能基化反応も報告されている。 Fu らは、オキシムやピリジンを配向基として利用し、シアノ化剤を用いることで C-H シアノ化反応を達成している¹³。この反応は、オキシム配向基の ortho 位 C-H 活性化後、ロジウム触媒がシアノ基に求核攻撃をし、その後アミド基が脱離していく反応機構が想定されている。Li、Wan らによっては、ピリジン配向基を有する求核剤とアジリジンを用いた、アジリジン開環反応が報告されている¹⁴。この開環反応では、キラルなアジリジンを用いた場合、目的物のエナンチオ選択性が低下することから、ゆるい S_N2 反応もしくはS_N1 反応で進行していると想定されている。

¹² Schipper, D. J.; Hutchinson, M.; Fagnou, K. J. Am. Chem. Soc. **2010**, 132, 6910.

¹³ a) Gong, T.-J.; Xiao, B.; Cheng, W.-M.; Su, W.; Xu, J.; Liu, Z.-J.; Liu, L.; Fu, Y. J. Am. Chem. Soc. 2013,

^{135, 10630.} b) Chaitanya, M.; Yadagiri, D.; Anbarasan, P. Org. Lett. 2013, 15, 4960.

¹⁴ Li, X.; Yu, S.; Wang, F.; Wan, B.; Yu, X. Angew. Chem. Int. Ed. 2013, 52, 2577.

(a) Nucleophilic Addition to Polar Functional Group

Bergman, R. G.; Ellman, J. A. et al. J. Am. Chem. Soc. 2011, 133, 1248.

(b) Addition to Nonpolar Functional Group

Schipper, J. D.; Fagnou, K. et al. J. Am. Chem. Soc. 2010, 132, 6910.

(c) Nucleophilic Substitution

Fu, Y. et al. J. Am. Chem. Soc. 2013, 135, 10630.

(d) Loose $S_N 2$ or $S_N 1$ Reaction

Li, X.; Wan, B. et al. Angew. Chem. Int. Ed. 2013, 52, 2577.

Scheme 1-5. Redox-neutral C-H functionalization by Cp*Rh(III) catalyst

上記のように、Cp*Rh(III)触媒は様々な C-H 結合を活性化することができ、多様な反応 形式を実現することが可能である。しかしながら、ロジウムは希少な金属ゆえに高価であ るため、大量合成への利用を見据えると、より安価な触媒の開発が求められる。

このような背景から、安価な第1列遷移金属を用いた C-H 官能基化反応の開発が行われ てきた¹⁵。中でも、コバルトは C-H 官能基化反応で有能な同族のロジウムよりも安価な C-H 官能基化反応の触媒として期待されている。コバルト触媒を用いた最初の C-H 官能基化 反応は、1950 年に村橋らによって報告された(Scheme 1-6)。彼らは Co₂(CO)₈ 触媒存在下、 高温・高圧でシッフ塩基と一酸化炭素を反応させることでフタルイミジンを得ている¹⁶。

Murahashi, S. et al. J. Am. Chem. Soc. 1955, 77, 6403.

その後、コバルト触媒を用いた C-H 官能基化反応は近年までほとんど報告例がなかった ^{15b}。そして 2010 年になって、吉戒らが低原子価コバルト触媒の有用性を示した ^{15b,c,d,e,17}。 彼らは、2 価の CoBr₂を系中で還元することで、低原子価コバルト触媒が生み出され、 種々の C-H 官能基化反応が進行することを報告している。例えば、求核剤として 2-フェニ ルピリジンを用いると、高原子価ロジウム触媒と同様に、極性官能基¹⁸、非極性官能基¹⁹へ の付加反応が進行することを見出している(Scheme 1-7)。低原子価コバルト触媒を用いた C-H 官能基化反応は経済的に優れた反応であるが、当量のグリニャール試薬が必要である ために、官能基許容性に欠点を抱えている。

¹⁵ Review on the first-row transition metal-catalyzed C-H bond activation/C-C bond formation, (a) Kulkarni, A. A.; Daugulis, O. *Synthesis* **2009**, 4087. (b) Yoshikai, N. *Synlett* **2011**, 1047. (c) Gao, K.; Yoshikai, N. *Acc. Chem. Res.* **2014**, 47, 1208. (d) Yoshikai, N. *Bull. Chem. Soc. Jpn.* **2014**, 87, 843. (e) Ackermann, L. *J. Org. Chem.* **2014**, 79, 8948 (f) Hirano, K; Miura, M. *Chem. Lett.* **2015**, 44, 868.

¹⁶ Murahashi, S. J. Am. Chem. Soc. **1955**, 77, 6403.

¹⁷ (a) Gao, K.; Yamakawa, T.; Yoshikai, N. *Synthesis* 2014, *46*, 2024. (b) Yamakawa, T.; Seto, Y. W.;
Yoshikai, N. *Synlett* 2015, *26*, 340. (c) Li, J.; Ackermann, L. Chem. Eur. J. 2015, *21*, 5718. (d) Moselage,
M.; Sauermann, N.; Richter, S. C.; Ackermann, L. Angew. Chem., Int. Ed. 2015, *54*, 6352. (e) Xu, W.; Paira,
R.; Yoshikai, N. *Org. Lett.* 2015, *17*, 4192.

¹⁸ Gao, K; Yoshikai, N. Chem. Commun. 2012, 48, 4305.

¹⁹ Gao, K.; Lee, P.-S.; Fujita, T.; Yoshikai, N. J. Am. Chem. Soc. 2010, 132, 12249.

(a) Nucleophilic Addition to Polar Functional Group

Yoshikai, N. et al. Chem. Commun. 2012, 48, 4305.

(b) Addition to Nonpolar Functional Group

Yoshikai, N. et al. J. Am. Chem. Soc. 2010, 132, 12249.

Scheme 1-7. Low valent cobalt catalyzed C-H functionalization

この欠点の解決策として、3価の高原子価コバルト触媒を用いた C-H 官能基化反応の開 発が進められている。高原子価コバルト触媒を用いた C-H 官能基化反応は大きく分けて 2 つの触媒系がある。それは、2価のコバルトと当量の酸化剤を用いて系中で高原子価コバ ルト触媒を発生させる系と保存可能な高原子価コバルト触媒を直接使用する系である。

2価のコバルトと当量の酸化剤を用いて系中で高原子価コバルト触媒を発生させる系は、2014年に Daugulis らによって報告された(Scheme 1-8)。彼らは、Co(OAc)₂と酸化剤の Mn(OAc)₂を用いて、系中で高原子価コバルトを発生させ、コバルト触媒がより強固に配位 することが可能な 8-アミノキノリン配向基を有する基質とアルキンを反応させることで酸 化的環化反応を行うことに成功している^{20a}。この触媒系は、求電子剤をアルケン²¹、一酸 化炭素²²とすることでそれぞれ酸化的環化反応を行うことができる。また、アルコールを 溶媒量用いることで C-H アルコキシ化を行うことも可能である²³。さらに、求電子剤を加 えないと二量化することも発見された²⁴。これらの C-H 官能基化反応は、2 座配向基を用

 ²⁰ (a) Grigorjeva, L.; Daugulis, O. *Angew. Chem., Int. Ed.* 2014, *53*, 10209. (b) Zhang, L.-B.; Hao, X.-Q.;
 Liu, Z.-J.; Zheng, X.-X.; Zhang, S.-K.; Niu, J.-L.; Song, M.-P. *Angew. Chem., Int. Ed.* 2015, *54*, 10012.

²¹ (a) Grigorjeva, L.; Daugulis, O. *Org. Lett.* **2014**, *16*, 4684. (b) Ma, W.; Ackermann, L. *ACS Catal.* **2015**, *5*, 2822.

²² Grigorjeva, L.; Daugulis, O. Org. Lett. 2014, 16, 4688.

²³ Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. *Angew. Chem., Int. Ed.* **2015**, *54*, 272.

²⁴ Grigorjeva, L.; Daugulis, O. Org. Lett. 2015, 17, 1204.

いなければならない点、活性な高原子価コバルト触媒を発生させるために当量の酸化剤が 必要であり、それゆえに本触媒系が酸化反応にしか適さない点が問題として挙げられる。

(a) Alkynes

Daugulis, O. et al. Angew. Chem., Int. Ed. 2014, 53, 10209.

(b) Alkenes

Daugulis, O. et al. Org. Lett. 2014, 16, 4684.

(c) Carbon Monooxide

Daugulis, O. et al. Org. Lett. 2014, 16, 4688.

(d) Alcohols

Song, M.-P. et al. Angew. Chem., Int. Ed. 2015, 54, 272.

Scheme 1-8. In situ generated Co(III) catalyzed oxidative C-H functionalization

保存可能な高原子価コバルト触媒を直接使用する系は、当研究室が2013年に初めて報告した²⁵。この触媒系で用いる Cp*Co(III)触媒は、先に述べた Cp*Rh(III)触媒と同様の電子配置、構造を有しているため、Cp*Rh(III)触媒よりも安価な C-H 官能基化反応の触媒とし

²⁵ (a) Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem., Int. Ed. 2013, 52, 2207. (b)
Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142.

て有望である(Scheme 1-9)。実際、Cp*Co(III)触媒は Cp*Rh(III)触媒と同様の反応性を示し ており、カチオン性の触媒[Cp*Co(C₆H₆)](PF₆)₂(1)存在下、2-フェニルピリジンを求核剤と して用いることで、イミンやα,β-不飽和カルボニル化合物への付加反応が進行することが 報告されている^{25a}。インドールを求核剤とした場合には、インドール2位選択的なイミン への付加反応が進行する^{25b}。また本触媒系は、アルキンの付加反応にも適用可能であり、 インドールの C-2位選択的なアルキンへの付加反応および環化反応が達成されている²⁶。

(a) Nucleophilic Addition of 2-Phenylpyridines to Imines and α , β -unsaturated compounds

Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Angew. Chem. Int. Ed. 2013, 52, 2207.

(b) Nucleophilic Addition of Indoles to Imines

Yoshino, T.; Ikemoto, H.; Matsunaga, S.; Kanai, M. Chem. Eur. J. 2013, 19, 9142.

(c) Addition of Indoles to Alkynes

Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424.

Scheme 1-9. [Cp*Co(C₆H₆)](PF₆)₂ catalyzed C-H functionalization

²⁶ Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424.

上記のように、Cp*Co(III)触媒は Cp*Rh(III)触媒と比較して安価な C-H 官能基化反応の触 媒として有望であることは示されたが、私が研究に着手した当初、基質適用範囲が狭く、 多様な反応への適用が難しいという問題があった。そこで私は、Cp*Co(III)触媒の基質適 用範囲を拡張し、Cp*Rh(III)触媒同様の反応および Cp*Co(III)触媒特有の反応を開発するこ とを目指し研究に取り組むこととした。

II. C-H 官能基化反応における Cp*Co(CO)I₂ 触媒の有用性の検証

II-1 研究戦略

上記したように、[Cp*Co(C₆H₆)](PF₆)₂(1)は、Cp*Rh(III)触媒と比較して、基質適用範囲が 狭く、多様な反応への適用が難しいとの知見が得られていた。その原因として、私は付随す る PF₆ アニオンとベンゼンが触媒失活を引き起こす要因になっていると考察した。即ち、 PF₆ アニオンに関しては、加熱すると HF が発生することが知られており、この HF が Cp*Co(III)触媒 1 に有毒であり、ベンゼンに関しては、電荷移動錯体のようにコバルトと電 子の授受が行われており、コバルト中心から乖離する際に、触媒を失活させていると推察し た。そこで、多様な基質・反応条件に耐えうるより安定な Cp*Co(III)触媒を用いる必要があ ると考え、Cp*Co(CO)I₂(2)に着目した(Figure 2-1)²⁷。Cp*Co(III)触媒 1 は、ベンゼンと PF₆が 付随している。本錯体は系中で銀塩と混ぜることで C-H 結合活性化に必要な配位不飽和種 を生成可能であり、高原子価コバルト触媒 1 で問題だった付随物による触媒失活を防ぐこ とができる。さらに、適切な銀塩のカウンターアニオンを選択することで、より多彩な反応 性を示す高原子価コバルト活性種を生み出すことができると考えた。

Figure 2-1. Cataionic Cp*Co(III) catalysts

本触媒系は、私が研究に着手した初期に、当研究室の Sun 博士らによって報告されている²⁸。彼らは、ピリミジル配向基を有するインドールとトシルアジドを反応させることで、 インドール 2 位選択的な C-H アミノ化を達成した(Scheme 2-1)。

²⁷ (a) Frith, S. A.; Spencer, J. *Inorg. Synth.* 1990, 28, 273. (b) Li, W.; Weng, L.; Jin. G. *Inorg. Chem. Commun.* 2004, *7*, 1174.

²⁸ Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.

Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.

Scheme 2-1. Amidation of indoles by Cp*Co(CO)I₂

本反応は、求核剤としてインドールを用いており、求核剤の基質制限から脱却できていない。また、redox neutral な反応系からの脱却もできていないことから、私はベンズアミドを 求核剤とするアルキンとの酸化的環化反応を検討することを計画した(Scheme 1-4-a)⁸。

II-2 アルキンを用いた酸化的環化反応の開発

II-2-1 反応条件の最適化

Cp*Co(III)触媒 1 を用いた際、若干ではあるが反応が進行することを確認していたので、 その知見をもとに初期検討を行った(Table 2-1)。*N*-メチルベンズアミド(**3**a)を求核剤、ジフ ェニルアセチレン(**4**a)を求電子剤、酸化銅を酸化剤、2,6-di-t-ブチルピリジンを塩基とし、1,2-ジクロロエタン(DCE)溶媒中で、コバルト触媒の比較を行った。その結果、Cp*Co(III)触媒 1 を用いた際は、5%以下の収率であったのに対し、Cp*Co(III)触媒 2 と AgSbF₆を用いた際に は若干の収率の上昇が観測され、5%の収率で目的の環化体(**5**a)が得られた。また、Cp*Co(III) 触媒 2 のみを用いた場合は、反応が進行しなかった。

Table 2-1. Initial trial

a) Determined by crude ¹H NMR

Cp*Co(III)触媒 2 の系で反応が観測されたので、種々の条件検討を行った(Table 2-2)。まず、酸化剤の検討を行った。適切な酸化力を有する酸化剤を選択することは、Cp*Co(III)触媒を 再酸化する過程において、重要な役割を果たす。すなわち、1 価の触媒を 3 価にまで酸化で き、かつ触媒を失活させない酸化剤を選ぶ必要がある。酸化銅の代わりに酢酸銀を用いて反 応を行ったところ、10%まで収率が向上し、触媒回転することがわかった(entry 2)。また、 他の有機酸化剤を用いて検討を行ったところ、酸化銅と同様の結果が得られた(entries 3-5)。 これら結果から、酢酸銀を最適な酸化剤として選択した。

次に、種々塩基の検討を行った(Table 2-3)。Cp*Co(III)触媒による C-H 官能基化反応は、 concerted metalation-deprotonation(CMD)機構で進むと考えられている²⁹。塩基はその過程にお いて脱プロトン化を促進する役割があると考えられている。種々のアセテートイオン、カル ボキシレートイオンを検討したところ、炭酸カリウムを用いた時に 19%収率で目的物が得 られた(entries 2-7)。また、酢酸銀が酸化剤だけでなく塩基の役割も果たすと考え、外部塩基 を添加しなかったところ、炭酸カリウムと同程度の収率で反応が進行した(entry 8)。

O H H	.Me + Pi Ph	Cp*Co(CO)I ₂ (5 mol%) AgSbF ₆ (10 mol%) base (1.0 eq) AgOAc (2.0 eq) DCE (0.3 M) 100 °C, 15 h		O N ^M Ph	
3a (1.5 eq)	4a				5aa
entry	base	yield (%) ^a	entry	base	yield (%) ^a
1	2,6-di-t-Bu-pyridine	10	5	Na ₂ CO ₃	< 5
2	NaOAc	10	6	K ₂ CO ₃	19
3	KOAc	5	7	Cs_2CO_3	< 5
4		F	•		20

Table 2-3. Effect of bases

a) Determined by crude ¹H NMR

²⁹ Review on concerted metalation-deprotonation mechanism: a) D. Lapointe, K. Fagnou, *Chem. Lett.* **2010**, *39*, 1118. b) Ackermann L. *Chem. Rev.* **2011**, *111*, 1315.

外部塩基を加えない条件で、溶媒の検討を行った (Table 2-4)。Cp*Rh(III)触媒を用いたベ ンズアミドのアルキンとの酸化的環化反応で良い結果だった、t-アミルアルコールを溶媒と した場合、収率の大幅な低下がみられた(entry 2)⁸。また、Cp*Co(III)触媒での反応で報告例 のあるエーテル系溶媒も検討したが、ほとんど目的物が得られなかった(entry 3)^{25a}。また、 トルエン溶媒、非プロトン性極性溶媒でも反応を行ったが、いずれも良い結果を得ることが できなかった(entries 4-6)。

 Table 2-4. Effect of solvents

続いて銀塩の検討を行った(Table 2-5)。銀塩はカチオン性 Cp*Co(III)触媒活性種を発生させるために必要である。銀塩のカウンターアニオンによって、Cp*Co(III)触媒活性種の量が変化すると考えている²⁶。AgPF₆を用いた際は AgSbF₆と同程度の収率であったが(entry 2)、AgBF₄では収率が若干上昇し、27%収率で目的物が得られた(entry 3)。AgOTf、AgNTf₂を銀塩とした場合は、これまでで最も高い 33%収率で環化体が得られた(entries 4-5)。

Table 2-5. Effect of silver salt

さらに銀塩を AgOTf として、温度、濃度、基質の当量比といった条件の検討も行ったが、 上記よりも良い結果が得られなかった。

II-2-2 考察

種々の条件検討を行ったが、収率が33%以上上昇することはなかった。そこで私は、目的 物が反応の進行を阻害していると考察し、阻害効果実験を行った(Scheme 2-2)。1.5 当量の *N*-メチルベンズアミドと1 当量のジフェニルアセチレンに加え、目的物である環化体を0.3 当 量添加して反応条件に付したところ、35%収率で環化体が得られた。初めに添加した環化体 とほぼ同程度の収率だったことから、系中で*N*-メチルベンズアミドとジフェニルアセチレ ンが反応して、新たな環化体が生成しておらず、目的物である環化体に阻害効果があること がわかった。この阻害効果は、環化体のコバルト中心に対する配位能が*N*-メチルベンズア ミドの配位能よりも高いため、反応が進行するために必要な*N*-メチルベンズアミドの Cp*Co(III)触媒への配位が阻害されて生じたと考えている。

Scheme 2-2. Inhibition test

この実験事実から、2つの研究の方向性を考えた(Scheme 2-3)。1つ目は、環化が起こらな い酸化反応を検討することである。上記の阻害実験で、目的物として環化体が得られると、 出発物がコバルト中心に配位できなくなることがわかった。もし目的物が環化体でなけれ ば、出発物と目的物の配位能がほぼ等しくなるため、目的物から出発物への配位子交換が起 こり、反応が進行すると考えた(Scheme 2-3-a)。2つ目は、ベンズアミドのアルキンを用いた 付加反応を検討することである。これまでの実験結果から、ベンズアミドを基質とした場合、 Cp*Co(III)触媒 2が触媒回転することがわかった。ベンズアミドの窒素上の置換基を嵩高く することによって、コバルトの還元的脱離が抑制され、プロトン化が進行するのではないか と考えた。そして、得られた付加体は環化体ではないため、目的物による反応の阻害が起こ ることなく触媒回転すると考えた。 (a) Oxidative Non-Cyclization Reaction (Section II-3)

(b) Addition of Benzamides to Alkynes (Section II-4)

Scheme 2-3. Direction of research

上記の仮説に基づいて、それぞれ検討を行った。環化が起こらない酸化反応に関しては II-3章で、ベンズアミドのアルキンを用いた付加反応に関しては、II-4章で報告する。

II-3 アクリレートを用いた酸化的アルケニル化反応の開発

II-3-1 反応条件の最適化

環化が起こらない酸化的 C-H 官能基化反応として、Cp*Rh(III)触媒でも報告のある、酸化的 Heck 反応をモデルとして検討を行った(Table 2-6)% 10 mol%の Cp*Co(III)触媒 2 と 20 mol% の AgSbF₆存在下、求核剤として N-メチルベンズアミド、求電子剤としてエチルアクリレー ト(6)、酸化剤として酢酸銀を用いて、DCE 中 100℃で反応を行ったところ、予想通り反応 が進行し、44%収率でアルケニル化体が得られた(entry 1)。この条件では、crude ¹H NMR が 煩雑であったため、副生成物を抑える目的で温度の低減化を行った。温度を下げるにつれて 収率は上昇し、80℃では 74%収率、60℃では最も高い 84%収率で目的物を得ることに成功 した。また、40℃まで温度を下げても反応は進行し、73%収率でアルケニル化体が得られて いる。この結果は、Cp*Co(III)触媒 1 の C-H 官能基化反応で高温条件(80-100℃)が必須であ った事実と異なっている。これは、Cp*Co(III)触媒 1 においては、活性種を出すために配位 しているベンゼンを解離する必要があり、その過程で加熱しなければいけないのに対し、 Cp*Co(III)触媒 2 においては、活性種を出すための、銀塩によってコバルト中心からヨウ素 を乖離させる過程に、高温が必要ないからだと考えている。

Table 2-6. Effect of temperature

次に、溶媒と酸化剤の検討を行った(Table 2-7)。エーテル系溶媒、ベンゼン系溶媒、いず れにおいても、DCEよりも良い結果が得られなかった(entries 2-3)。また酸化剤に関しては、 酢酸銅を用いた場合は反応が進行するものの、収率が中程度まで低減し、有機酸化剤を用い た場合は目的物が得られなかった(entries 4-5)。この結果と II-2 章の酸化剤の検討結果から、 酢酸銀が Cp*Co(III)触媒2を失活させることなく再酸化できる、最適な酸化剤であることが わかった。

Table 2-7. Effect of solvents and oxidants

銀塩の検討も行った(Table 2-8)。Cp*Co(III) 触媒 1 と同様の活性種が発生する AgPF₆ を用 いた時が最も収率の低い結果で 54% だった(entry 2)。そのほかの銀塩も、中程度の収率は与 えるものの、AgSbF6を上回る結果とならなかった。

Table 2-8. Effects of silver salts

a) Determined by crude ¹H NMR

さらに、Negative control 実験を行った(Table 2-9)。Cp*Co(III)触媒 2 に銀塩を添加しなかっ た場合、反応は進行しなかった。このことから、カチオン性の触媒活性種が本反応の進行に 必要だということがわかった(entry 2)。また Cp*Co(III)触媒なしではアルケニル化体が得ら れなかった(entry 3)。カチオン性の Cp*Co(III)触媒1を用いて反応を行った場合も反応が進 行しなかったことから、Cp*Co(III)触媒2の優位性が示された(entry 4)。その他、2価や3価 の市販のコバルトで検討を行ったが、全く反応が進行しなかった(entries 5-8)。これらの結果 から、entry1の条件を最適条件と設定し、基質一般性の検討を行った。

Table 2-9. Negative control experiments

a) Determined by crude ¹H NMR

II-3-2 基質一般性

まず、求核剤のベンズアミド類縁体の検討を行った(Table 2-10)。N-メチルベンズアミドの para 位に置換基のある基質を検討したところ、電子供与基を有する基質、電子求引基を有 する基質いずれの場合も高い収率でアルケニル化体が得られることがわかった(7a-7h)。特 に、ブロモ基を有する基質の場合、最も高い93%収率で目的物が得られた(7e)。また、本反 応はニトロ基やエステル基存在下でも問題なく反応が進行した(7g,7h)。しかしながら、フェ ノールやアニリンといった基質を用いた場合は、反応が複雑化した(7i,7j)。これは、エチル アクリレートがこれらの官能基と反応したために起こったと考えている。meta 位に置換基 を有する場合は、立体障害を避け、高収率で置換基に対して para 位で反応が進行した(7k)。 それに対し、ortho 位に置換基を有する基質は、立体障害の影響から大幅に収率が低下した (7l)。窒素上の置換基をより嵩高い t-Bu 基とした場合も、高収率で反応が進行した(7m,7n)。 その他、ナフタレン環やチオフェン環を有する基質も反応が進行し、それぞれ 79%、52%収 率で目的物が得られることがわかった。

Table 2-10. Substrate scope of benzamide derivartives^a

a) Reaction was run using **3** (0.1 mmol) and **6** (0.15 mmol). Isolated yields of **7** after purification by silica gel column chromatography are shown in Table 2-10.

次に、その他の求核剤について検討を行った(Scheme 2-4)。3 級アミドを有するベンズア ミド8を求核剤として用いたところ、反応は進行しなかった(Scheme-2-4-a)。一方で、アセ トアニリド(10)を求核剤とした場合、反応が進行した(Scheme-2-4-b)。10 mol%の Cp*Co(III) 触媒2では中程度の収率だったので、触媒量を20 mol%まで増やしたところ、61%収率でア ルケニル化体が得られた。また、インドールについても検討を行った(Scheme-2-4-c)。ピリ ミジル配向基を用いた際は目的物が得られなかったのに対し、カルバモイル配向基を用い た場合は、若干ではあるが目的物が得られた。

Scheme-2-4. Substrate scope of other nucleophile

求電子剤に関しても検討を行った(Scheme 2-5)。Cp*Rh(III)触媒で報告例のあるスチレン (14)を用いて反応を行ったが目的物が得られなかった。この結果を踏まえて求電子性のアミ ド基やシアノ基を有する 16 や 18 で検討を行ったが、反応が進行しなかった。反応が進行 しなかった原因は、アミド基やシアノ基の配位能が高かったためだと考えている。

Scheme 2-5. Substrate scope of electrophile

II-3-3 反応機構

当研究室が報告した Cp*Co(III)触媒の反応機構解析を基に、本反応の想定反応機構を示す (Figure 2-1)²⁶。まず、酢酸銀存在下、AgSbF₆によって Cp*Co(III)触媒 2 からヨウ素と一酸 化炭素が解離し、Cp*Co(III)(OAc)₂が形成される。Cp*Co(III)(OAc)₂は休止状態であり、ア セテートイオンが一つ脱離した触媒活性種[Cp*Co(III)(OAc)]⁺(I)と平衡状態にある。この触 媒活性種の濃度が銀塩に依存しているため、Table 2-8 で示したような反応性の違いが生じ ると考えている。触媒活性種[Cp*Co(III)(OAc)]⁺にアミド配向基が配位した(II)後に、アミ ド配向基 ortho 位選択的な CMD 機構による脱プロトン化が起こり、コバルタサイクル(III) が形成される。次にアクリレートが配位、挿入することでアルケニルコバルト中間体(IV) が形成される。その後、β-ヒドリド脱離が起こることでアルケニル化体と酢酸、Cp*Co(I) 触媒が生成する(V)。生成した Cp*Co(I)触媒は酢酸銀によって再酸化されることで触媒活性 種[Cp*Co(III)(OAc)]⁺(I)が再生すると考えている。また、3 級アミドを有するベンズアミド 8 を用いた場合反応が進行しなかったのは、アミド基のアルキル鎖と芳香環の ortho 位水素 が立体反発することで、コバルタサイクル(III)の安定性が変化したことが要因だと考えて いる。

Figure 2-1. Plausible catalytic cycle

II-4 アルキンを用いたアルケニル化反応の開発

II-4-1 反応条件の最適化

まず仮説に基づき、窒素上の置換基を嵩高くしていった(Scheme 2-6)。エチル基、フェニ ル基を有する基質を用いた場合、いずれも環化体が得られた(Scheme 2-6-a,b)。それに対し、 より嵩高い t-ブチル基を有する基質とジフェニルアセチレンを用いて検討したところ、付加 体が全く得られず付加体が 37% 収率で得られた(Scheme 2-6-c)。この条件においては、mono 体と di 体が 4:1 の割合で得られた。ジフェニルアセチレンでは、低収率に留まったので、よ り求電子性の高いアセチレンジカルボン酸ジェチル(4b)で検討したところ、ジアステレオマ ー混合物ではあるものの 64% 収率で目的物が得られた。この条件を基に最適化を行った。

Scheme 2-6. Effect of substituent on nitrogen atom

銀塩の検討を行ったところ、AgOTf が最も収率が高い結果となった(Table 2-11, entries 1-3)。また、ジアステレオマー混合物が得られるのは、C-H 付加反応でできた Z 体が高温下で E 体に異性化することが原因だと推察し、反応温度の検討を行った(Table 2-11, entries 1,4-7)。 120℃で反応を行うと、収率の大幅は低下が観測される同時に E 体のみが生成した。それに

対し、温度を低減させていくと、予想通り Z 体の割合が増え、40℃において 67%収率でほぼ単一のジアステレオマーを得ることに成功した。

Table 2-11. Effect of silver salt and temperature

a) Determined by crude ¹H NMR

次に当量の調整を行った(Table 2-12)。求核剤と求電子剤の割合を検討したところ、求核剤 を過剰に用いた方が、収率が高くなることがわかった(entries 1-3)。本反応は redox neutral な 反応であり、酢酸銀は酸化剤ではなく塩基として働いていると考えている。余分な廃棄物を 削減するため、酢酸銀の量を検討した(entries 4-6)。その結果、酢酸銀は 0.2 当量まで低減可 能であり、1.0 当量用いた場合と同等の収率であった。一方で酢酸銀の量を 0.1 当量にまで 低減すると、収率の大幅な低下がみられた。収率の低下は、アセテートイオンの量が減った ことで、CMD 機構が機能しなくなったことが原因だと考えている。

また、塩基の検討も行った(Table 2-13)。2,6-di-t-ブチルピリジンや種々のアセテートイオン、カルボキシレートイオンの検討を行ったところ、収率が大幅に低下した。酢酸銀以外に 高収率で目的物が得られなかったことから、酢酸銀は塩基としての役割に加え、不慮の要因 で還元された触媒を再酸化する役割もあると推察している。

Table 2-12. Investigation of equivalents

a) Determined by crude ¹H NMR

Table 2-13. Effect of bases

a) Determined by crude ¹H NMR

アセチレンジカルボン酸ジエチルで良い結果が得られたので、より汎用性の高いジフェ ニルアセチレンを求電子剤として最後の最適化を行った(Table 2-14)。アセチレンジカルボ ン酸ジエチルでの最適条件をジフェニルアセチレンにも適用したところ、60%収率で目的物 が得られた(entry 2)。初期条件(Scheme 2-6-c)と比較して mono 体が多く得られたのは、温度 の低減化に成功したため、2 つ目のアルキンが付加しにくくなったためだと考えている。溶 媒濃度が本反応では重要で、濃度を濃くすると収率の上昇がみられ、DCE 2.0M の際、最高 の 82%収率で目的物が得られた(entries 3-5)。濃度を濃くすることで、コバルトに配位してい る出発物と目的物の交換が加速し、収率が上がったと考えている。
Table 2-14. Final optimization

a) Determined by crude ¹H NMR

II-4-2 基質一般性

まず、求核剤のベンズアミド類縁体の検討を行った(Table 2-15)。*N-t*-ブチルベンズアミド の para 位に置換基のある基質を検討した。電子供与性のメチル基を有する基質の場合、10 mol%の触媒量で 67%収率であった。また、モデル基質よりも mono 体と di 体の生成比が低 下した(20sa)。一方で、電子求引性を有する基質の場合は、モデル基質と同程度もしくはそ れ以上の mono 選択性かつ収率で反応が進行した(20ta,20ua)。電子求引性の置換基で収率が 上がる理由は、CMD 機構における脱プロトン化が進行しやすくなるからだと考えている。 また選択性が上がる理由は、*t*-ブチルベンズアミドの求核力が下がり、ジフェニルアセチレ ンの 2 つ目の付加段階が進行しづらくなるからだと考えている。meta 位に置換基を有する 場合は、10 mol%の触媒量で、立体障害を避けるように高 mono 選択的に置換基に対して para 位で反応が進行した(20na,20va)。収率が低下し、mono 選択性が上昇した要因は、meta 位置 換基の立体障害による C-H 結合活性化の阻害だと考えている。実際、meta 位よりも立体障 害の影響を与える ortho 位に置換基を有する基質を用いた場合、反応が全く進行しなかった (20wa)。

a) Reaction was run using **3** (0.15 mmol) and **4a** (0.1 mmol). Isolated yields of **20** after purification by silica gel column chromatography are shown in Table 2-14. b) *E/Z* ratio was determined by crude ¹H NMR c) Cp*Co(CO)l₂ (10 mol%), AgOTf (20 mol%) were used.

次に、その他の求核剤について検討を行った(Scheme 2-7)。3 級アミドを有するベンズア ミド8、アセトアニリド10を用いたが、いずれもアルケニル化体が得られなかった。

Scheme 2-7. Substrate scope of other nucleophile

求電子剤についても検討を行った(Scheme 2-8)。一方にフェニル基を有する非対称なアル キン 4c を用いた場合、わずかながら反応が進行したのに対し、ジアルキルアルキン 4d を 用いた場合、反応が進行しなかった(20mc,20md)。これは、アルキンの求電子性が低下した ことが原因だと考えている。すなわち、4a と 4c と 4d を比べると、4a>4c>4d の順に求電 子性が下がっており、それに準じた反応性の違いが収率に反映したと推察した。また、アル ケニル化体 20mc は位置異性体が得られる。Cp*Co(III)触媒を用いた C-H アルケニル化反応 の前例では、20mc-2 と同じ異性体のみが得られている²⁶。これは、コバルタサイクル中間 体がアルキンに挿入する際、求核剤の炭素と立体的に小さいメチル基側の炭素が反応する からだと考えている。現在のところ、位置異性体が得られる要因は、コバルタサイクル中間 体において、t-ブチルベンズアミドの酸素原子ではなく窒素原子が Cp*Co(III)触媒に配位す ることで、よりコバルト中心に近くなった嵩高いt-ブチル基が選択性を低下させていると考 えている。末端アルキン 4e も検討したが、反応が進行しなかった(20me)。

Scheme 2-8. Substrate scope of electrophile

II-5 小括

私は Cp*Co(III)触媒活性種を発生させる方法として、Cp*Co(III)触媒 2 と種々の銀塩を添 加する系に着目し、アクリレートを用いたベンズアミドの酸化的 C-H アルケニル化反応と アルキンを用いたベンズアミドの C-H アルケニル化反応を達成した。前者は、Cp*Co(III)触 媒を用いた初の酸化的反応であり、Cp*Co(III)触媒による C-H 官能基化反応の汎用性を拡張 できた。また、Cp*Co(III)触媒 2 が Cp*Co(III)触媒 1 と比較して、酸化剤にも耐えうるより 安定な触媒であることが実証できた。後者は、これまでインドールでのみ可能だった Cp*Co(III)触媒による C-H アルケニル化反応を、単純なフェニル基にも適用できることを実 証した。これらの反応の開発によって、Cp*Co(III)触媒の有用性を高めることができたと考 えている³⁰。

Scheme 2-9. Summary of chapter II

³⁰ Suzuki, Y.; Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Tetrahedron 2015, 71, 4552.

III. Cp*Co(III) 触媒特有の反応の開発

III-1 背景

II 章で示したように、Cp*Co(III)触媒 2 は有用な C-H 官能基化反応の触媒であることがわ かった。私が研究を始めた後に、私の研究室も含めいくつかの研究室から Cp*Co(III)触媒を 用いた C-H 官能基化反応が報告された^{31,32}。炭素-炭素結合形成反応にのみ焦点を当てると、 シアノ化 ^{31a,eg}、アリル化 ^{31a,j,32b}、アミド化 ^{31h,i}、アルキル化 ^{31k}、アルキニル化 ^{31I} といった 反応が報告さていれている(Scheme 3-1)。

しかしながらほとんどの場合、Cp*Rh(III)触媒でも進行する反応を Cp*Co(III)触媒に代替 したに過ぎず、Cp*Co(III)触媒特有の反応は、私が研究に着手した時点では、2014 年に当研 究室が報告したインドールとアルキンを用いた C-H アルケニル化/環化連続反応のみであっ た(Scheme 3-2-a)²⁶。この反応では、C-H 結合活性化、アルキン挿入の後に生成するアルケニ ルコバルト中間体がアルケニルロジウム中間体よりも求核力があることを利用して、配向 基との環化反応を達成している。その後、2015 年に Glorius らによって C-H アルキル化/環 化連続反応が報告された(Scheme 3-2-b)。本反応では、コバルト触媒のルイス酸性を利用す ることで、ピリジン環窒素原子のエステルへの求核攻撃を実現している。またごく最近、当 研究室より位置選択的酸化的 C-H 環化反応が報告された(Scheme 3-2-c)^{32c}。この反応は、コ バルトがロジウムよりも原子半径が小さいことを活かし、コバルト触媒を用いてベンゼン 上の meta 位置換基と Cp*の立体反発を大きくすることで、2 つの ortho 位 C-H 結合を効率 的に差別化している。このように Cp*Co(III)触媒特有の反応が未だほとんど報告されていな い状況を鑑み、私は Cp*Co(III)触媒の特性を活かした C-H アリル化反応の開発に着手した。

³¹ (a) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F J. Am. Chem. Soc. 2014, 136, 17722. (b) Figg, T. M.; Park, S.; Park, J.; Chang, S.; Musaev, D. G. Organometallics 2014, 33, 4076.
(c) Hummel, J. R.; Ellman, J. A. J. Am. Chem. Soc. 2015, 137, 490. (d) Patel, P.; Chang, S. ACS Catal. 2015, 5, 853. (e) Li, J.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 3635. (f) Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Chem. Commun. 2015, 51, 4659. (g) Pawar, A. B.; Chang, S. Org. Lett. 2015, 17, 660. (h) Li, J.; Ackermann, L. Angew. Chem. Int. Ed. 2015, 54, 8551. (i) Hummel, J. R.; Ellman, J. A. Org. Lett. 2015, 17, 2400. (j) Moselage, M.; Sauermann, N.; Koeller, J.; Liu, W.; Gelman, D.; Ackermann, L. Synlett 2015, 26, 1596. (k) Liu, X.-G. Zhang, S.-S.; Wu, J.- Q.; Li, Q.; Wang, H. Tetrahedron Lett. 2015, 56, 4093. (l) Zhang, Z.-Z.; Liu, B.; Wang, C.-Y.; Shi, B.-F. Org. Lett. 2015, 17, 4094.

³² a) Zhao, D.; Kim, J. H.; Stegemann, L.; Strassert, C. A.; Glorius, F. Angew. Chem. Int. Ed. 2015, 54, 4508. b) Gensch, T.; Vásquez-Céspedes, S. Yu, D.-G.; Glorius, F. Org. Lett. 2015, 17, 3714. (c) Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968.

(a) C-H Cyanation

Glorius, F et al. J. Am. Chem. Soc. 2014, 136, 17722.

(b) C-H Alkylation

Wang, H. et al. Tetrahedron Lett. 2015, 56, 4093.

Scheme 3-1. Selected examples of Cp*Co(CO)I2 catalyzed C-H functionalization forming C-C bond

(a) C-H Alkenylation/Annulation Sequence

Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424.

(b) C-H Alkylation/Annulation Sequence

Glorius, F. et al. Angew. Chem. Int. Ed. 2015, 54, 4508.

(c) Site-Selective Oxidative C-H Cyclization

Sun, B.; Yoshino, T.; Kanai, M.; Matsunaga, S. Angew. Chem. Int. Ed. 2015, 54, 12968.

Scheme 3-2. Unique reactivity of Cp*Co(III) catalysis

III-2 アリルアルコールを用いたアリル化反応の開発

III-2-1 背景

芳香族アリル化反応は、アリル基がアルコール基やカルボニル基といった多様な置換基 に容易に変換可能なため、合成化学上有用な反応である。それ故に、これまで多くの芳香族 アリル化反応が開発されてきた。中でも、クロスカップリングを用いたアリル化反応は強力 であり、多くの合成に用いられてきた³³。しかしながら、事前に C-H 結合を活性化する必要 があるため、余分な工程数や廃棄物が生じる問題がある。それに対し、芳香族の C-H 結合 を直接アリル化する反応は、アトムエコノミー・ステップエコノミーの観点から優れた反応 である。古典的な反応として、Friedel-Crafts 反応が挙げられる³⁴。この反応は、芳香族の C-H 結合を直接変換できる点で、クロスカップリングを用いたアリル化よりも優れた反応で あるが、位置選択性の制御や、アリル基の導入数の制御、基質一般性といった点に問題を抱 えている(Scheme 3-3)。

Scheme 3-3. Problems of Friedel-Crafts reaction

³³ Review: (a) Pigge, F. C. *Synthesis* 2010, 1745. For more recent works, see (b) Farmer, J. L.; Hunter, H.
N.; Organ, M. G. *J. Am. Chem. Soc.* 2012, *134*, 17470 and references therein.

³⁴ Review: (a) Rueping, M.; Nachtsheim, B. J. *Beilstein J. Org. Chem.* **2010**, *6*, doi: 10.3762/bjoc.6.6. For transition metal-catalyzed nucleophilic allylic substitution via activation of free allyl alcohols as π -allylic species, see: (b) Sundararaju, B.; Achard, M.; Bruneau, C. *Chem. Soc. Rev.* **2012**, *41*, 4467.

近年これらの問題を解決すべく、遷移金属触媒を用いた C-H アリル化反応の開発が盛ん に行われている。遷移金属触媒を用いた C-H アリル化反応は 2 つに大別される。1 つ目は、 2011 年に佐藤、三浦ら、Zhang らそれぞれによって報告された酸性 C-H 結合をアリル化す る反応である(Scheme 3-4)³⁵。彼らは、電子不足な芳香族であるポリフルオロアレーンの C-H アリル化に成功している(Scheme 3-4-a)^{35a,b}。この反応では、酸性度の高い C-H 結合を LiOt-Bu や炭酸セシウムといった強塩基で活性化して生成した、アレーン銅中間体とアリル化剤 を反応させることで、アリル化を達成している。2012 年には澤村らによって基質適用範囲 が拡張され、ヘテロ芳香環のアリル化も可能となった(Scheme 3-4-b)^{35c}。また、キラルなア リル化剤を用いることでγ-選択的かつ立体選択的にアリル化体が得られることも見出され ている。これらの反応では求核剤が電子不足な芳香族に限られており、基質一般性に欠けて いる。さらに、アリルアルコールから事前に合成したアリルホスフェートといったアリル化 剤が必要な点も問題である。

(a) Allylation of Polyfluoroarenes

Satoh, T.; Miura, M. et al. Angew. Chem. Int. Ed. 2011, 50, 2990.

(b) Regio- and Stereo-Selective allylation of Heteroarenes and Polyfluoroarens

Sawamura, M. et al. Angew. Chem. Int. Ed. 2012, 51, 4122.

Scheme 3-4. Allylation of electron-deficient arenes

³⁵ (a) Yao, T.; Hirano, K.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2011, 50, 2990. (b) Fan, S.; Chen,
F.; Zhang, X. Angew. Chem. Int. Ed. 2011, 50, 5918. (c) Makida, Y.; Ohmiya, H.; Sawamura, M. Angew.
Chem. Int. Ed. 2012, 51, 4122.

2 つ目は、配向基を用いた C-H アリル化反応である(Scheme 3-5)^{31aj,32b,36,37}。遷移金属触 媒の中でも、Cp*Rh(III)触媒を用いた C-H アリル化反応の開発が精力的に行われている³⁷。 例えば、Glorius らによる最初の配向基を用いた C-H アリル化反応の報告例では、Cp*Rh(III) 触媒存在下、アリル化剤としてアリルカーボネートを用いることで、様々な配向基を有する 求核剤の C-H アリル化を達成している^{36a}。この反応では、C-H 結合活性化、アリル化剤の 二重結合部位に転位挿入後、β-ヒドロキシ脱離が起こることによりアリル化体が得られると 考えられている。また、私が研究に着手した後に、Glourius らによって Cp*Co(III)触媒 2 を 用いたインドールの 2 位選択的なアリル化反応も報告されている^{31a}。これらの反応でも、 アリルアルコールから事前に合成したアリル化剤が必要であり、余分な廃棄物と工程数が かかるため環境負荷の観点から劣っている。もしアリルアルコールから直接 C-H アリル化 が行えれば、水のみを排出する環境調和型の反応が実現可能である。このような背景のもと、 私はアリルアルコールを直接用いた C-H アリル化反応の開発に着手した。

Glorius, F. et al. Angew. Chem. Int. Ed. 2013, 52, 5386.

Scheme 3-5. Directing group assisted C-H allylation

³⁶ For leading examples of transition metal-catalyzed directing group assisted redox neutral C-H allylation of arenes, see: (a) Oi, S.; Tanaka, Y.; Inoue, Y. *Organometallics* 2006, 25, 4773. (b) Kuninobu, Y.; Ohta, K.; Takai, K. *Chem. Commun.* 2011, 47, 10791. (c) Aihara, Y.; Chatani, N. J. Am. Chem. Soc. 2013, 135, 5308. (d) Asako, S.; Ilies, L.; Nakamura, E. J. Am. Chem. Soc. 2013, 135, 17755. (e) Cong, X.; Li, Y.; Wei, Y.; Zeng, X. Org. Lett. 2014, 16, 3926.

³⁷ Cp*Rh^{III}-catalyzed redox neutral C-H allylation: (a) Wang, H.; Schröder, N.; Glorius, F. *Angew. Chem. Int. Ed.* 2013, *52*, 5386. (b) Wang, H.; Beiring, B.; Yu, D.-G.; Collins, K. D.; Glorius, F. *Angew. Chem. Int. Ed.* 2013, *52*, 12430. (c) Feng, S.; Feng, D.; Loh, T.-P. *Chem. Commun.* 2015, *51*, 342. For related works under Cp*Rh^{III}-catalysis, see also: (d) Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. *Org. Lett.* 2011, *13*, 540. (e) Yu, S.; Li, X. *Org. Lett.* 2014, *16*, 1200. For related works on C-H allylation using allenes as substrates, see also: (f) Zneg, R.; Fu, C.; Ma, S. *J. Am. Chem. Soc.* 2012, *134*, 9597. (g) Ye, B.; Cramer, N. *J. Am. Chem. Soc.* 2013, *135*, 636.

III-2-2 研究戦略

アリルアルコールを用いた C-H 官能基化反応は一般的にアリル化体ではなく、アルデヒ ド化体が生成することが知られている。2013 年に Glorius らは、様々な配向基を有する求核 剤に対し、アリルアルコールを用いることで、種々のアルデヒド体を得ることに成功してい る(Scheme 3-6)³⁸。この反応では、アリールロジウム種のアリルアルコールへの転移挿入後、 β-ヒドリド脱離が起こり、続く還元的脱離によって生じた Cp*Rh(I)触媒が酢酸銅によって 再酸化されることで触媒回転している。

Glorius, F. et al. Angew. Chem. Int. Ed. 2013, 52, 5386.

上記の反応において、転移挿入後のβ-脱離の際に、β-ヒドリド脱離ではなくβ-ヒドロキシ 脱離を起こすことが可能となれば、目的のアリル化体が得られる。私は Cp*Co(III)触媒を用 いることで、この反応を達成できると考えた(Figure 3-1)。コバルトはロジウムよりも原子番 号が小さく、Hard な性質を有している。そのため、Cp*Co(III)触媒がβ-脱離を起こす際に、 Soft な水素原子と Hard な Cp*Co(III)触媒の間に結合ができるβ-ヒドリド脱離ではなく、Hard な水酸基と Hard な Cp*Co(III)触媒の間に結合ができるβ-ヒドロキシ脱離が優先することで、 脱水型アリル化反応が達成できると考えた。このような仮説のもと、2-ピリミジルインドー ルを求核剤として用いて反応条件の検討を行った。

³⁸ Shi, Z.; Boultadakis-Arapinis, M.; Glorius, F. Chem. Commun. 2013, 49, 6489.

Figure 3-1. Working hypothesis

III-2-3 反応条件の最適化

まず、仮説を検証すべく、触媒の検討を行った(Table 3-1)。Cp*Co(III)触媒 2 と AgSbF₆存 在下、N-ピリミジルインドールとアリルアルコール(23a)を用いて、DCE 中 100 ℃で加熱し たところ予想通り反応が進行し、66%収率でアリル化体(24aa)、11%収率で二重結合が内部 に異性化したアルケニル化体が得られた。本反応は、インドール 2 位選択的な反応であり、 単純な Friedel-Crafts 反応でないことが示唆される。Cp*Co(III)触媒 1 を用いた場合は、反応 が進行しなかった。さらに Cp*Rh(III)触媒で検討を行ったところ、期待通り目的物が得られ なかったことから、本反応は Cp*Co(III)触媒の特性を活かせた反応だとわかった。

先の初期検討で異性体が生じたのは、触媒反応で生成したアリル化体が熱力学的に安定 なアルケニル化体に異性化したことが原因だと考え、それを防ぐ目的で温度の検討を行っ た(Table 3-2)。その結果、温度を低減すると異性体の割合が低下し、80 ℃では 3%まで異性 体が低減し、60℃ではほぼ異性体が生じず、78%収率で目的物が得られた(entries 1-3)。また、 40℃まで温度を低減すると、反応性が低下した(entry 4)。さらに、濃度検討も行った。濃度 を濃くしたところ、異性体収率が上がり、アリル化体収率が下がった(entry 5)。そこで、逆 に濃度を薄くしたところ、0.1 M の時、異性体が生成することなく、これまでで最も高い 88% 収率でアリル化体が得られた(entry 6)。

Table 3-2. Effect of temperature and concentration

収率の改善を目指し銀塩の検討も行ったところ(Table 3-3)、AgOTf を用いた際に最も高い 99%収率でアリル化体が得られた(entry 5)。この時、4%のアルデヒド化体も同時に生成した。

Table 3-3. Effect of silver salts

a) Determined by crude ¹H NMR

アルデヒド体が生成するのは、酢酸銀が塩基に加え酸化剤として働いているためだと考察し、塩基の検討を行った(Table 3-4)。種々のアセテートイオンと炭酸銀を検討したが、アルデヒド体の生成は抑制できるものの、酢酸銀と同等の結果が得られなかった(entries 1-5)。 そこで、酢酸銀の等量を10 mol%まで減じたところ、ほぼアルデヒド体を抑制することに成功したので、この条件を最適条件とした(entry 6)。

最後に最適条件を参考に negative control 実験を行った(Table 3-5)。酢酸銀を添加しない場合、反応は進行したものの、収率の低下が観測された(entry 2)。Entry 2 における C-H 結合活性化は、N-ピリミジルインドールもしくはトリフラートイオンを塩基とした CMD 機構か、芳香族求電子置換反応(S_EAr)が起きていると想定している。Cp*Co(III)触媒 2 と銀塩は必須で、一方を添加しなかった場合、反応が進行しなかった(entries 3.4)。その他のコバルト触媒を用いた場合も、反応が進行しなかった(entries 5-8)。Cp*Rh(III)触媒について再度検討を行ったところ、最適条件にて Cp*Rh(III)触媒を用いた際に、わずかではあるが反応が進行した(entry 9)。しかしながら、Cp*Co(III)触媒を用いた際に、わずかではあるが反応が進行した(entry 9)。しかしながら、Cp*Co(III)触媒 2 の状況とは異なり、酢酸銀を添加しない場合や、銀塩として AgOTf 以外を用いた場合には反応が全く進行しなかった(entries 10.11)。これは、本反応においては Cp*Co(III)触媒が Cp*Rh(III)触媒と比較して優れた触媒であり、本反応がCp*Co(III)触媒の特性を活かせていることを示している。また、Cp*Rh(III)触媒によるアリルカーボネートを用いた C-H アリル化反応では、塩基ではなく酸が用いられていたので、酸を添加し検討してみたところ、反応は進行しなかった(entry 12)。

Table 3-5. Control experiment

a) Determined by crude ¹H NMR

求核剤のインドール類縁体の検討を行った(Table 3-6)。インドールの5位に置換基のある 基質を検討したところ、電子供与性の置換基、電子求引性の置換基、いずれの場合も高い収 率で目的物が得られた(24aa-24ga)。また、様々な置換パターンのメチルインドールに関して も検討を行ったところ、立体障害の考えられる3位や7位にメチル基を有するインドール も含め、いずれも高い収率でアリル化体が得られた(24ca,24ha,24ja-24la)。さらに、N-ピリミ ジルピロールでも反応を行ったところ、10 mol%の Cp*Co(III)触媒2と20 mol%の AgOTf存 在下、4 当量のアリルアルコールを用いることで、ジアリル化体が 64%得られた(24ma)。

a) Reaction was run using **12** (0.1 mmol) and **23a** (0.15 mmol). Isolated yields of **24** after purification by silica gel column chromatography are shown in Table 3-6. b) **23a** (4 eq), Cp*Co(CO)I₂ (10 mol%), AgOTf (20 mol%) and AgOAc (20 mol%) were used.

その他の求核剤について検討を行った(Scheme 3-7)。ピリジン系配向基の基質として、2-フェニルピリジンを用いた場合、反応が進行したものの低収率に留まった(Scheme 3-7-a)。 インドールと比較して、求核力が低いことが問題だと考え、2-フェニルピリジンよりも ortho 位の電子密度が高いと考えられる 2-フェニルピラゾールを基質として用いたところ、62%収 率で目的物が得られた(Scheme 3-7-b)。また触媒量を 10 mol%に上げることで、アリル化体 が 79%得られた。 アミド系の配向基を有する基質に関しても検討を行った。その結果、ピ リジン系配向基を有する基質と比較して、低収率に留まった(Scheme 3-7-c,d,e)。特に、カル バモイル配向基を有するインドールを用いた場合に、低収率だったことは特筆すべき点である(Scheme 3-7-c)。

Scheme 3-7. Substrate scope of other nucleophiles

ピリジン系配向基とアミド系配向基の違いに関して、ピリジン系配向基では、ピリジンの 窒素原子とアリルアルコールの酸素原子のコバルトに対する配位能が近い故に、求核剤と 求電子剤がそれぞれ一つずつコバルトと配位結合した状態を取ることができるため、反応 が進行している。一方で、アミド系配向基では、アミド基のコバルトに対する配位能が低い 故に、求核剤がほとんどコバルトに配位できないため、反応が進行しないと考えている。

アリルアルコールの基質一般性の検討も行った(Table 3-7)。アルコールのα位に置換基を 有するアリルアルコールは、2級、3級いずれの場合も高い収率でγ位選択的に反応が進行し た(24ab,24ac)。また、アルコールのγ位に置換基を有するアリルアルコールを用いた場合も、 γ位選択的に反応が進行し、アリルアルコールを10当量用いた場合に、62%収率で目的物が 得られた(24ad)。いずれのアリルアルコールもγ位選択的にアリル化が進行していることか ら、本反応はアリルカチオンやπ-アリル中間体を経由しない反応であることが示唆される。

Table 3-7. Substrate scope of allyl alcohols

a) Reaction was run using **12a** (0.1 mmol) and **23** (0.15 mmol). Isolated yields of **24** after purification by silica gel column chromatography are shown in Table 3-6. b) **24d** (10 eq) was used.

最後に触媒量の低減を行ったところ、触媒量は 1 mol%まで低減可能で、92%収率でアリル化体が得られた(entry 4)。また、グラムスケールでの合成も可能であることがわかった (entry 3)。

Table 3-8. Catalyst loading

a) Isolated yields of **24aa** after purification by silica gel column chromatography

III-2-5 反応機構

共同研究者が Gaussian09³⁹(B3LYP/6-31G**⁴⁰)を用いて、[CpCo(III)(OAc)]⁺触媒による *N*-ピリミジルインドール(**12a**)とアリルアルコール(**31a**)の反応をモデルとした、C-H 結合活性 化以降の反応経路に関する DFT 計算を行った(Figure 3-2)。Cp*Co(III)触媒の C-H 結合活性 化に関する DFT 計算は、既に当研究室で報告している²⁶。[CpCo(III)(OAc)]⁺触媒による *N*-ピリミジルインドールの 2-位選択的 C-H 結合活性化は、一重項状態¹A と三重項状態³A を 与える²⁶。一重項状態¹A は、三重項状態³A と比較して 5.8 kcal/mol 安定である。一重項状 態においては、¹A 中の酢酸とアリルアルコールが配位子交換することで、アルコールの酸 素原子が配位した¹C もしくは、二重結合部位が配位した¹D 状態をとる。¹C では、6 員環 遷移状態¹TS_{C-I}を経由し協奏的な S_N2^{*}反応が起こる(Figure 3-3)。一方で、¹D からコバルト 触媒がアリルアルコールの二重結合部位に転移挿入する経路も存在する(¹D → ¹TS_{D-E} → ¹E)。 両者の遷移状態のギブスの自由エネルギーを比較すると、¹TS_{D-E} (15.9 kcal/mol)が¹TS_{C-I} (40.3 kcal/mol)よりも低いことから、協奏的な S_N2^{*}反応が起こる経路よりも、コバルト触媒 がアリルアルコールの二重結合部位に転移挿入する経路のほうが有利だとわかった。転移 挿入後の¹E は、コバルト原子とインドールの 2 位の炭素原子の間で相互作用がある(2.18 Å)。この相互作用は、コバルト原子がアリルアルコールのβ-水素原子と相互作用する経路(¹E

³⁹ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01* Gaussian, Inc., Wallingford, CT, 2009.

⁴⁰ (a) Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648. (b) Becke, A. D.; Roussel, M. R. Phys. Rev. A **1989**, *39*, 3761. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B **1988**, *37*, 785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frish, M. J. J. Phys. Chem. **1994**, *98*, 11623. (e) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986. (f) Wachters, A. J. H. J. Chem. Phys. **1970**, *52*, 1033. (g) Hay, P. J. J. Chem. Phys. **1977**, *66*, 4377. (h) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. **2010**, *132*, 154104.

→ ¹**TS**_{E-J} → ¹**J** → ¹**TS**_{J-K} → ¹**K** → ¹**TS**_{K-L} → ¹**L**</sup>)か、アリルアルコールの酸素原子と相互作用 する経路(¹**E** → ¹**TS**_{E-F} → ¹**F**)を経ることで消失する。後者の遷移状態の方が(¹**TS**_{E-F}: ΔG = 18.2 kcal/mol)、前者の遷移状態(¹**TS**_{J-K}: ΔG = 24.9 kcal/mol、¹**TS**_{K-L}: ΔG = 23.7 kcal/mol)よりもギ ブスの自由エネルギーが低いことから、アリルアルコールの酸素原子と相互作用する経路 が有利である(¹**E** → ¹**TS**_{E-F} → ¹**F**)。¹**F** は水酸基のプロトンの向きが異なる ¹**G** へ容易に移行 する。その後、¹**F** もしくは ¹**G** から、β-ヒドリド脱離もしくはβ-ヒドロキシ脱離が起こるが (Figure 3-4)、遷移状態 ¹**TS**_{G-H}(ΔG = 15.4 kcal/mol)が遷移状態 ¹**TS**_{G-L}(ΔG = 17.8 kcal/mol)より も有利なことからβ-ヒドロキシ脱離が進行する(¹**G** → ¹**TS**_{G-H} → ¹**H**)。三重項状態 ³**A** において も、協奏的な **S**_N² 反応の遷移状態のギブスの自由エネルギーは高く(³**TS**_{C-I}: ΔG = 41.3 kcal/mol)、ピリミジルの水素原子とアリルアルコールの酸素原子が相互作用する経路が有利 であった(³**TS**_{D'F'}: ΔG = 27.2 kcal/mol)。三重項状態における、転移挿入、β-ヒドロキシ脱離 過程(³**D**' → ³**TS**_{D'F'} → ³**TS**_{F'I} → ³**I**)の遷移状態のエネルギー(³**TS**_{D'F'}: ΔG = 27.2 kcal/mol, ³**TS**_{F'}: ΔG = 21.6 kcal/mol),は、一重項のそれよりも高く不利な経路だとわかった。

Figure 3-2. Relative Gibbs free-energy diagram (298.15 K) for the reaction pathway following the C–H bond metalation (kcal/mol)

Figure 3-3. Concerted S_N2' substitution

Figure 3-4. The transition states of β -hydroxide and β -hydride eliminations from the complexes ¹F and ¹G.

上記の計算結果を踏まえ、本反応の想定反応機構を示す(Figure 3-5)。まず、酢酸銀存在下、 AgSbF₆によって Cp*Co(III)触媒 2 からヨウ素と一酸化炭素が解離し、Cp*Co(III)(OAc)₂と触 媒活性種[Cp*Co(III)(OAc)]⁺(I)が形成される。触媒活性種[Cp*Co(III)(OAc)]⁺がピリミジル配 向基に対して配位した(II)後に、インドール 2 位選択的な CMD 機構による脱プロトン化が 起こり、コバルタサイクル(III)が形成される。次にアリルアルコールが配位、転移挿入する ことでアルケニルコバルト中間体(IV)が形成される。その後、 β -ヒドロキシ脱離が β -ヒドリ ド脱離よりも優先して起こることでアリル化体と、[Cp*Co(III)(OH)]⁺が生成する(V)。最後 に、[Cp*Co(III)(OH)]⁺がアセテートイオンと配位し交換することで、 [Cp*Co(III)(OAc)]⁺(I) が再生すると考えている。また、協奏的な S_N2^{*}反応によって、IV を経由せず III から V に 進む経路も考えられるが、計算結果から不利であることがわかった。

Figure 3-5. Plausible catalytic cycle

III-3 小括

私は Cp*Co(III)触媒の特性を活かした反応開発を行い、アリルアルコールを用いたインド ール C-2 位選択的なアリル化を達成した。共同研究者による DFT 計算の結果から、本反応 は協奏的な S_N2'反応によるアリル化ではなく、転移挿入・β-ヒドロキシ脱離を経由するアリ ル化が進行していることが示唆された。また、β-脱離に関する DFT 計算で、β-ヒドリド脱 離よりもβ-ヒドロキシ脱離が有利だという結果が得られたことは、実験事実と一致する。本 反応はアリル化剤を事前に合成することなく、直接アリルアルコールを用いることが可能 であり、さらに反応終了後、水のみが当量廃棄物となる環境調和型のアリル化反応である。 さらに、Cp*Rh(III)触媒を用いた際に、反応がほとんど進行しないことから、Cp*Co(III)触媒 特有の反応であると言える⁴¹。

Scheme 3-8. Summary of chapter III

⁴¹ Suzuki, Y.; Sun, B.; Sakata, K.; Yoshino, T.; Matsunaga, S.; Kanai, M. *Angew. Chem. Int. Ed.* **2015**, *54*, 9944.

<u>IV. 総括</u>

私は本学博士課程において、Cp*Co(III)触媒の基質適用範囲を拡張し、Cp*Rh(III)触媒同様の反応および Cp*Co(III)触媒特有の反応を開発することを目指し研究に取り組んだ。そして、Cp*Co(III)触媒活性種を発生させる方法として、Cp*Co(III)触媒 2 と銀塩を添加する系に着目することで、3 つの反応の開発を達成した。これらの反応の開発によって、新たに求核剤としてベンズアミド、アセトアミド、求電子剤としてアクリレート、アリルアルコールがCp*Co(III)触媒による C-H 官能基化反応に適用できることを見出し、基質適用範囲の拡張に成功した。また II 章において、Cp*Co(III)触媒は redox neutral な反応だけでなく、酸化反応も可能であることを実証した。さらに III 章において、Cp*Rh(III)触媒では達成できないCp*Co(III)触媒特有の反応性を見出すことで、Cp*Co(III)触媒が単なる Cp*Rh(III)触媒の代替ではなく、独自性を持った有用な触媒であることを示せた。

<u>V. 実験項</u>

General: Infrared (IR) spectra were recorded on a JASCO FT/IR 410 Fourier transform infrared spectrophotometer. NMR spectra were recorded on JEOL JNM-ECS400 and JNM-ECX500 spectrometers. Chemical shifts in CDCl₃ was reported in the scale relative to CHCl₃ (7.26 ppm for ¹H NMR) and CDCl₃ (77.16 ppm for ¹³C NMR) as an internal reference. ESI mass spectra for HRMS were measured on a JEOL JMS-T100LC AccuTOF spectrometer. Column chromatography was performed with silica gel Merck 60 (230–400 mesh ASTM). 1,2-Dichloroethane (DCE) was distilled from CaH₂, purged with argon for over 30 min and stored over activated molecular sieves 4A under argon atmosphere. Cp*Co(CO)I₂ was synthesized according to the literature¹. All benzamides were prepared by the same procedure as described in the literature^{2,3,4}. Commercially available ethyl acrylate (TCI) was purified by distillation before use. Acetanilide and diphenylacetylene was purchased from Aldrich and used without purification. Diethyl acetylenedicarboxylate was purchased from TCI and Aldrich used without purification.

[1] Sun, B.; Yoshino, T.; Matsunaga, S.; Kanai, M. Adv. Synth. Catal. 2014, 356, 1491.

[2] Ackermann, L.; Wang, L.; Wolfram, R.; Lygin, A.V. Org. Lett. 2012, 14, 728.

[3] Ryu, J.; Shin, K.; Park, S. H.; Kim, J. Y.; Chang, S. Angew. Chem. Int. Ed. 2012, 51, 9904.

[4] Bellamy, E.; Bayh, O.; Hoarau, C.; Trécourt, F.; Quéguiner, G.; Marsais, F. *Chem. Commun.* **2010**, *46*, 7043.

[5] Ackermann, L.; Lygin, A. V. Org. Lett. 2011, 13, 3332.

General Procedure of Cobalt(III)-catalyzed Oxidative C-H Alkenylation with Ethyl Acrylate (II-3)

To a dried screw-capped vial were added benzamide **3** (0.10 mmol), ethyl acrylate **6** (0.15 mmol), **2** (4.8 mg, 0.01 mmol), AgSbF₆ (6.8mg, 0.02 mmol), AgOAc (41.7 mg, 0.25 mmol) and 1,2dichloroethane (1.0 mL) under Ar atmosphere. The vial was capped and the mixture was heated at 60 °C for 13 h with stirring. After the mixture was cooled to room temperature, saturated EDTA·2Na *aq*. was added following dilution with CH₂Cl₂. Organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (x 2). Combined organic layers were dried over Na₂SO₄. After filtration and evaporation, obtained crude mixture was purified by silica gel column chromatography (CH₂Cl₂/EtOAc) to give a corresponding product **7**.

(*E*)-ethyl 3-(2-(methylcarbamoyl)phenyl)acrylate (7a): a colorless solid; IR (KBr) v 3085, 2979, 1714, 1703, 1635, 1557, 1270, 1048, 980, 767 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.31 (t, *J* = 7.3 Hz, 3 H), 2.99 (d, *J* = 4.6 Hz, 3H), 4.23 (q, *J* = 7.3 Hz, 2H), 5.98 (brs, 1H), 6.35 (d, *J* = 16.0 Hz, 1H), 7.34-7.50 (m, 3H), 7.59 (s, *J* = 7.3 Hz, 1H), 7.96 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.0, 60.7, 120.9, 127.2, 127.7, 129

1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.0, 60.7, 120.9, 127.2, 127.7, 129.9, 130.4, 132.8, 137.3, 141.9, 166.6, 169.5; HRMS (ESI): *m*/*z* calculated for C₁₃H₁₅NNaO₃⁺ [M+Na]⁺: 256.0944, found: 256.0956

6.4 Hz, 1H), 7.34-7.42 (m, 2H), 8.00 (d, J = 12.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 21.4, 27.0, 60.7, 120.7, 127.8, 127.8, 130.6, 132.9, 134.5, 140.5, 142.3, 166.7, 169.5; HRMS (ESI): m/z calculated for C₁₄H₁₇NNaO₃⁺ [M+Na]⁺: 270.1101, found: 270.1092

(E)-ethyl 3-(5-methoxy-2-(methylcarbamoyl)phenyl)acrylate

(7c): a colorless solid; IR (KBr) v 2985, 2942, 1715, 16641, 1625, 1546, 1314, 1293, 1228, 1182, 1034, 974, 862 cm⁻¹; ¹H NMR
(CDCl₃, 400 MHz) δ 1.32 (t, *J* = 7.3 Hz, 3 H), 2.98 (d, *J* = 5.0 Hz, 3H), 3.83 (s, 3H), 4.24 (q, *J* = 7.3 Hz, 2H), 5.88 (brs, 1H), 6.33 (d,

J = 16.7 Hz, 1H), 6.89 (dd, J = 2.3, 8.7 Hz, 1H), 7.06 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 8.7 Hz, 1s) 8.02 (d, J = 16.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.1, 55.6, 60.8, 112.2, 115.4, 121.1, 129.5, 129.7, 135.0, 142.3, 161.0, 166.6, 169.2; HRMS (ESI): m/z calculated for $C_{14}H_{17}NNaO_4^+$ [M+Na]⁺: 286.1050, found: 286.1054

(*E*)-ethyl 3-(5-fluoro-2-(methylcarbamoyl)phenyl)acrylate (7d): a colorless solid; IR (KBr) v 3082, 2984, 1721, 1635, 1558, 1321, 1182, 1034, 971, 855 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.30 (t, *J* = 6.8 Hz, 3 H), 2.99 (d, *J* = 5.0 Hz, 3H), 4.24 (q, *J* = 6.8 Hz, 2H), 5.95 (brs, 1H), 6.34 (d, *J* = 16.5 Hz, 1H), 7.04 (ddd, *J* = 2.8, 8.7, 8.7 Hz, 1H), 7.25 (dd, *J* = 2.8, 10.1 Hz, 1H), 7.44 (dd, *J* = 6.0, 8.7 Hz, 2H), 7.91 (d, *J* = 16.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.1, 60.9, 113.9 (d, *J* = 22.9 Hz), 116.8 (d, *J* = 22.9 Hz), 122.1, 130.6 (d, *J* = 9.5 Hz), 133.4 (d, *J* = 2.9 Hz), 135.5 (d, *J* = 7.6 Hz), 140.8 (d, *J* = 2.9 Hz), 163.5 (d, *J* = 254.7 Hz), 166.3, 168.6;

HRMS (ESI): m/z calculated for C₁₃H₁₄FNNaO₃⁺ [M+Na]⁺: 274.0850, found: 274.0844

(*E*)-ethyl 3-(5-bromo-2-(methylcarbamoyl)phenyl)acrylate (7e): a colorless solid; IR (KBr) v 3079, 2975, 2935, 1719, 1642, 1561, 1316, 1190, 1032, 979, 862 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.32 (t, *J* = 7.5 Hz , 3 H), 3.00 (d, *J* = 5.2 Hz, 3H), 4.23 (q, *J* = 7.5 Hz, 2H),

5.88 (brs, 1H), 6.36 (d, J = 16.0 Hz, 1H), 7.34 (d, J = 8.6 Hz, 1H), 7.49 (d, J = 8.6 Hz, 1H), 7.74 (s, 1H) 7.90 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.1, 60.1, 122.1, 124.1, 124.7, 129.3, 130.1, 132.7, 134.9, 135.8, 140.5, 166.2, 168.5; HRMS (ESI): m/z calculated for C₁₃H₁₄BrNNaO₃⁺ [M+Na]⁺: 334.0049, found: 334.0050

(*E*)-ethyl 3-(2-(methylcarbamoyl)-5-(trifluoromethyl)phenyl)acrylate (7f): a colorless solid; IR (KBr) v 3084, 2974, 1717, 1642, 1551, 1337, 1292, 1159, 1122, 1042, 989, 924, 843 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (t, *J* = 6.9 Hz , 3 H), 3.04 (d, *J* = 4.6 Hz, 3H), 4.24 (q, *J* = 6.9 Hz, F₃C CO₂Et 2H), 5.88 (brs, 1H), 6.45 (d, *J* = 16.0 Hz, 1H), 7.57-7.65 (m, 2H),

7.85 (s, 1H) 7.94 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.1, 61.0, 122.6, 123.5 (q, J = 273.4 Hz), 124.1 (q, J = 3.8 Hz), 126.3 (q, J = 22.9 Hz), 128.4, 132.5 (q, J = 32.9 Hz), 133.7; HRMS (ESI): m/z calculated for C₁₄H₁₄F3NNaO₃⁺ [M+Na]⁺: 324.0818, found: 324.0818

(*E*)-ethyl 3-(2-(methylcarbamoyl)-5-nitrophenyl)acrylate (7g): a colorless solid; IR (KBr) v 3085, 2977, 1713, 1643, 1556, 1522, 1352, 1282, 1040, 989, 825 cm⁻¹; ¹H NMR (CDCl₃, 400 O₂N T_{g} MHz) δ 1.31 (t, *J* = 7.3 Hz, 3 H), 3.03 (d, *J* = 5.0 Hz, 3H), 4.26 (q, *J* = 7.3 Hz, 2H), 6.14 (brs, 1H), 6.50 (d, *J* = 16.5 Hz, 1H), 7.62 (d, *J* = 8.7 Hz, 1H), 7.89 (d, *J* = 16.5 Hz, 1H), 8.19 (d, *J* = 8.7 Hz, 1H) 8.43 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.2, 61.2, 122.1, 123.7, 124.2, 134.7, 139.4, 142.3, 148.8, 165.9, 167.5; HRMS (ESI): *m/z* calculated for C₁₃H₁₄N₂NaO₅⁺ [M+Na]⁺: 301.0795, found: 301.0791

(*E*)-methyl 3-(3-ethoxy-3-oxoprop-1-en-1-yl)-4-(methylcarbamoyl)benzoate (7h): a colorless solid; IR (KBr) v 3082, 2988, 2954, 1721, 1644, 1551, 1320, 1252, 1184, 1032, 976, 866, 760 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.32 (t, *J* = 7.2 Hz, 3 H), 3.02 (d, *J* = 4.8 Hz, 3H), MeO₂C Th CO₂Et 3.94 (s, 3H), 4.25 (q, *J* = 7.2 Hz, 2H), 6.07 (brs, 1H), 6.46 (d, *J* = 16.0 Hz, 1H), 7.50 (d, *J* = 7.6 Hz, 1H), 7.92 (d, *J* = 16.0 Hz, 1H), 7.99 (d, *J* = 7.6 Hz, 1H), 8.35

(s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 27.1, 52.7, 60.9, 122.1, 122.1, 127.9, 128.4, 130.6, 131.9, 133.2, 140.8, 140.9, 166.0, 166.4, 168.6; HRMS (ESI): *m/z* calculated for C₁₅H₁₇NNaO₅⁺ [M+Na]⁺: 314.0999, found: 314.0993

(*E*)-ethyl 3-(4-methyl-2-(methylcarbamoyl)phenyl)acrylate

(7k): a colorless solid; IR (KBr) v 2979, 1715, 1639, 1604, 1541, M 1309, 1272, 1178, 1030, 977, 822 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.30 (t, *J* = 7.3 Hz , 3 H), 2.35 (s, 3H), 3.00 (d, *J* = 5.0 Hz,

3H), 4.22 (q, J = 7.3 Hz, 2H), 5.88 (brs, 1H), 6.32 (d, J = 16.0 Hz, 1H), 7.29-7.37 (m, 2H), 7.48 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 21.4, 27.0, 60.7, 119.9, 127.2, 128.4, 129.9, 131.1, 137.3, 140.4, 141.8, 166.8, 169.6; HRMS (ESI): m/z calculated for C₁₄H₁₇NNaO₃⁺ [M+Na]⁺: 270.1101, found: 270.1104

(*E*)-ethyl 3-(3-methyl-2-(methylcarbamoyl)phenyl)acrylate (7l): a colorless liquid; IR (KBr) v 2980, 1710, 1638, 1543, 1313, 1233, 1090, 1039, 979, 867, 790 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.31 (t, *J* = 7.3 Hz , 3 H), 2.34 (s, 3H), 3.04 (d, *J* = 5.0 Hz, 3H), 4.22 (q, *J* = 7.3 Hz, 2H), 5.72 (brs, 1H), 6.38 (d, *J* = 16.0 Hz, 1H), 7.21 (d, *J* = 7.8 Hz, 1H), 7.28 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.70 (d, *J* = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 19.3, 26.8, 60.7, 120.8, 124.0, 1293, 131.7, 121.9, 135.6, 138.2, 141.6, 166.7, 169.8; HRMS (ESI): *m/z* calculated for C₁₄H₁₇NNaO₃⁺ [M+Na]⁺: 270.1101, found: 270.1102

(*E*)-ethyl 3-(2-(tert-butylcarbamoyl)phenyl)acrylate (7m): a colorless liquid; IR (KBr) v 3063, 2971, 1712, 1639, 1538, 1314, 1177, 1094, 1042, 977, 879, 764 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (t, J =7.3 Hz , 3 H), 1.49 (s, 9H), 4.26 (q, J = 7.3 Hz, 2H), 5.55 (brs, 1H), 6.39 (d, J = 16.0 Hz, 1H), 7.36-7.50 (m, 3H), 7.59 (s, J = 7.4 Hz, 1H), 7.98 (d, J = 16.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 28.9, 52.4, 60.7, 120.8, 127.0, 127.7, 130.0, 130.1, 132.3, 138.7, 142.0, 166.6, 168.3; HRMS (ESI): m/z calculated for C₁₆H₂₀BrNNaO₃⁺ [M+Na]⁺: 298.1414, found: 298.1423

1H), 7.57 (s, J = 2.3 Hz, 1H), 7.85 (d, J = 16.5 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4,

28.8, 52.7, 60.8, 121.3, 124.0, 128.5, 130.7, 131.2, 133.1, 140.0, 140.7, 166.3, 166.7; HRMS (ESI): m/z calculated for C₁₆H₂₁NNaO₃⁺ [M+Na]⁺: 376.0519, found: 376.0520

(*E*)-ethyl 3-(3-(methylcarbamoyl)naphthalen-2-yl)acrylate

(70): a colorless solid; IR (KBr) v 2981, 1715, 1644, 1622, 1551, 1304, 1177, 1033, 976, 863, 758 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (t, J = 7.3 Hz, 3 H), 3.05 (d, J = 5.0 Hz, 3H), 4.26 (q, *J* = 7.3 Hz, 2H), 6.14 (brs, 1H), 6.44 (d, *J* = 16.5 Hz, 1H), 7.50-7.57

 $(m, 2H), 7.76-7.87 (m, 2H), 7.91 (s, 1H), 8.01 (s, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H), 8.23 (d, J = 16.5 Hz, 1H); {}^{13}C NMR (CDCl_3, 1H); {}^{13}C NMR (CDC$ 100 MHz) δ14.5, 27.1, 60.7, 120.8, 127.6, 127.7, 127.8, 127.9, 128.2, 128.4, 130.4, 133.0, 133.6, 134.4, 142.5, 166.7, 169.5; HRMS (ESI): m/z calculated for C₁₇H₁₇NNaO₃⁺ [M+Na]⁺: 306.1101, found: 306.1105

(*E*)-ethyl 3-(2-(methylcarbamoyl)thiophen-3-yl)acrylate (7p): а colorless solid; IR (neat) v 2979, 1707, 1632, 1536, 1244, 1178, 1037, 987, 867, 774 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (t, J = 6.9 Hz , 3 H), 3.01 (s, 3H), 4.26 (q, J = 6.9 Hz, 2H), 6.33 (d, J = 16.5 Hz, 1H), 5.84 (brs,

CO2Et

1H), 7.29 (d, J = 5.5 Hz, 1H), 7.33 (d, J = 5.5 Hz, 1H), 8.26 (d, J = 16.5 Hz, 1H); ¹³C NMR $(CDCl_3, 100 \text{ MHz})$ δ 14.5, 27.2, 60.8, 121.7, 127.0, 127.2, 136.4, 136.5, 138.6, 162.8, 162.9; HRMS (ESI): m/z calculated for C₁₁H₁₃NNaO₃S⁺ [M+Na]⁺: 262.0508, found: 262.0513

(E)-ethyl 3-(2-acetamidophenyl)acrylate (11): a colorless solid; IR (KBr) v 2978, 1712, 1659, 1537, 1455, 1302, 1270, 1045, 971, 764, 743 cm⁻ ¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.33 (t, J = 7.6 Hz , 3 H), 2.23 (s, 3H), 4.26 (q, J = 7.6 Hz, 2H), 6.39 (d, J = 16.0 Hz, 1H), 7.20 (m, 1H), 7.29-7.43 (m, 10.0 H)2H), 7.54 (d, J = 7.6 Hz, 1H), 7.70-7.90 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.4, 24.4, 60.9, 120.9, 125.3, 126.0, 127.3, 127.7, 130.9, 136.0, 139.4, 166.9, 169.0; HRMS (ESI): m/z calculated for C₁₃H₁₅NNaO₃⁺ [M+Na]⁺: 256.0944, found: 256.0936

General Procedure of Cobalt(III)-catalyzed C-H Alkenylation with Alkynes (II-4)

To a dried screw-capped vial were added benzamide 3 (0.10 mmol), ethyl acrylate 4 (0.15 mmol), 2 (4.8 mg, 0.005 mmol), AgOTf (2.6 mg, 0.01 mmol), AgOAc (3.4 mg, 0.02 mmol) and 1,2dichloroethane (50 µl) under Ar atmosphere. The vial was capped and the mixture was heated at 50 °C for 15 h with stirring. After the mixture was cooled to room temperature, saturated EDTA-2Na aq. was added following dilution with CH₂Cl₂. Organic layer was separated and aqueous layer was extracted with CH₂Cl₂ (x 2). Combined organic layers were dried over Na₂SO₄. After filtration and evaporation, obtained crude mixture was purified by silica gel column chromatography (hexane/EtOAc) to give a corresponding product 20.

Diethyl 2-(2-(tert-butylcarbamoyl)phenyl)maleate (20mb): a colorless liquid; IR (neat) v 3361, 3063, 2977, 2935, 1722, 1663, 1531, 1456, 1260, 1206, 1180, 1096, 1029, 881, 781 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.26 (t, J = 7.3 Hz, 3 H), 1.33 (t, J = 6.9 Hz, 3 H), 1.36 (s, 9H), 4.21 (q, J = 6.9 Hz, 2H), 4.33 (q, J = 7.3 Hz, 2H), 6.06 (s, 1H), 6.28 (brs, 1H), 7.31 (dd, J = 1.7, 7.5 Hz, 1H), 7.35-7.42 (m, 2H), 7.48 (dd, J = 1.2, 6.9 Hz, 1H); ¹³C NMR

(CDCl₃, 125 MHz) δ 14.1, 14.2, 28.4, 52.1, 61.1, 62.3, 76.9, 77.2, 77.4, 124.1, 127.5, 129.2, 129.6, 129.7, 132.3, 137.8, 145.7, 164.6, 167.5, 167.9; HRMS (ESI): m/z calculated for C₁₉H₂₅NO₅Na⁺ [M+Na]⁺: 370.1625, found: 370.1618

(E)-N-(tert-butyl)-2-(1,2-diphenylvinyl)benzamide (20ma): a colorless solid; IR (neat) v 3309, 3056, 2968, 1652, 1597, 1541, 1520, 1507, 1456, 1363, 1310, 1221, 1075, 946, 759, 697 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.21 (s, 9H), 5.75 (brs, 1H), 6.75 (s, 1H), 7.08-7.25 (m, 11H), 7.32-7.37 (m, 2H), 7.55-7.58 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.7, 51.6, 127.1,

t-Bu

CO₂Et

CO₂Et 20mb

127.7, 127.7, 128.2, 128.4, 128.5, 129.5, 129.6, 130.5, 131.0, 131.1, 137.3, 137.6, 139.8, 141.4, 142.2, 168.8; HRMS (ESI): m/z calculated for C₂₅H₂₃NONa⁺ [M+Na]⁺: 378.1828, found: 378.1837

(E)-N-(tert-butyl)-2-(1,2-diphenylvinyl)-4-methylbenzamide

(20ma): a colorless solid; IR (neat) v 3246, 3055, 2968, 2925, 1652, 1627, 1542, 1456, 1392, 1363, 1327, 1226, 1076, 923, 885, 695 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (s, 9H), 2.33 (s, 3H), 5.76 (brs, 1H), 6.73 (s, 1H), 7.04 (s, 1H), 7.08-7.22 (m, 11H), 7.49 (d, *J* = 8.1 Hz,

1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.3, 28.7, 51.5, 127.1, 127.6, 128.1, 128.3, 128.6, 129.5, 130.4, 130.8, 131.6, 134.8, 137.3, 139.7, 139.7, 141.6, 142.1, 168.7; HRMS (ESI): *m/z* calculated for C₂₆H₂₇NONa⁺ [M+Na]⁺: 392.1985, found: 392.1989

(E)-N-(tert-butyl)-2-(1,2-diphenylvinyl)-4-fluorobenzamide (20ta): a colorless solid; IR (neat) v 3290, 2971, 1636, 1541, 1488, 1456, 1393, 1363, 1262, 1223, 1189, 1092, 876, 695 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (s, 9H), 5.71 (brs, 1H), 6.76 (s, 1H), 6.92 (dd, J = 2.9, 9.7Hz, 1H), 7.01 (ddd, J = 2.9, 8.6, 8.6 Hz, 1H), 7.08-7.11 (m, 2H), 7.14-

Me

t-Bu

Ph

Ρh

20sa

7.19 (m, 5H), 7.22-7.25 (m, 3H), 7.57 (dd, J = 5.7, 8.6 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 28.7, 51.7, 114.5 (J = 20.3 Hz), 117.8 (J = 21.5 Hz), 127.4, 127.9, 128.2, 128.6, 129.5, 130.4, 130.6, 130.7, 131.7, 133.8 (J = 3.6 Hz), 136.8, 139.2, 140.3, 144.8 (J = 7.2 Hz), 163.0 (J = 248.0 Hz), 167.8; HRMS (ESI): m/z calculated for C₂₆H₂₄FNONa⁺ [M+Na]⁺: 396.1734, found: 396.1742

(E)-4-bromo-N-(tert-butyl)-2-(1,2-diphenylvinyl)benzamide

(**20ua**): a colorless solid; IR (neat) v 3272, 3057, 2969, 2972, 1634, 1583, 1541, 1393, 1364, 1321, 1222, 955, 880, 820, 704 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.19 (s, 9H), 5.70 (brs, 1H), 6.74 (s, 1H), 7.08-7.11 (m, 2H), 7.13-7.19 (m, 5H), 7.20-7.25 (m, 3H), 7.41-7.49 (m, 2H);

¹³C NMR (CDCl₃, 125 MHz) δ 28.6, 51.8, 123.7, 127.4, 128.0, 128.6, 129.6, 130.1, 130.4, 130.7, 131.8, 133.7, 136.4, 136.8, 139.0, 140.2, 144.2, 167.7; HRMS (ESI): m/z calculated for C₂₅H₂₄BrNONa⁺ [M+Na]⁺: 456.0933, found: 456.0929

(E)-5-bromo-N-(tert-butyl)-2-(1,2-diphenylvinyl)benzamide

(**20na**): a colorless solid; IR (neat) v 2924, 2853, 1733, 1457, 1276, 1122, 1075, 743 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (s, 9H), 5.66 (brs, 1H), 6.74 (s, 1H), 7.07-7.11 (m, 3H), 7.14-7.17 (m, 5H), 7.20-7.24 (m, 3H), 7.47 (dd, J = 2.3, 8.0 Hz, 1H) 7.68 (d, J = 1.3 Hz, 1H); ¹³C

NMR (CDCl₃, 125 MHz) δ 28.6, 51.9, 121.6, 127.4, 127.9, 128.2, 128.5, 129.5, 130.5, 131.4, 131.4, 132.6, 132.7, 137.0, 139.3, 139.4, 140.3, 141.2, 167.2; HRMS (ESI): *m/z* calculated for C₂₅H₂₄BrNONa⁺ [M+Na]⁺: 456.0933, found: 456.0929

B

-Bu

Ph

Ρh

20na

(E)-N-(tert-butyl)-2-(1,2-diphenylvinyl)-5-methylbenzamide (20va): a colorless solid; IR (neat) v 3285, 2968, 1653, 1635, 1540, 1456, 1363, 1222, 1074, 818, 775, 760, 695 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.20 (s, 9H), 2.38 (s, 3H), 5.72 (brs, 1H), 6.73 (s, 1H), 7.08-7.12 (m, 3H), 7.12-7.19 (m, 6H), 7.19-7.23 (m, 3H), 7.40 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.1, 28.7, 51.6, 127.0, 127.6, 128.2, 128.4, 129.1, 129.5, 130.3, 130.5, 130.7, 131.1, 137.3, 137.4, 137.6, 139.3, 139.9, 141.3, 168,9; HRMS (ESI): *m/z* calculated for C₂₆H₂₇NONa⁺ [M+Na]⁺: 392.1985, found: 392.1995

General Procedure of Cp*Co^{III}-Catalyzed C-H Allylation with Allyl Alcohols (III-2)

To a dried screw-capped vial were added Cp*Co(CO)I₂ (2.4 mg, 5 μ mol), AgOTf (2.6 mg, 10 μ mol), AgOAc (1.7 mg, 10 μ mol), indoles **12** (0.10 mmol), and 1,2-dichloroethane (1.0 mL) under Ar atmosphere. Allyl alcohol **23** (0.15 mmol) was then added to the vial. The vial was capped and the mixture was heated at 60 °C for 8 h with stirring. After the mixture was cooled to room temperature, saturated EDTA·2Na *aq.* was added, and the mixture was diluted with CH₂Cl₂. The organic layer was separated, and aqueous layer was extracted with CH₂Cl₂ (x 2). Combined organic layers were dried over Na₂SO₄. After filtration and evaporation, the crude residue was purified by silica gel column chromatography (CH₂Cl₂/hexane) to give a corresponding product **24**.

2-Allyl-1-(pyrimidin-2-yl)-1H-indole (24aa): a colorless solid; IR (neat) v 2925, 1574, 1562, 1454, 1428, 1348, 10991, 912, 802, 745 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.98 (dd, J = 0.9, 6.9 Hz, 2 H), 5.00-5.12 (m, 2H), 6.01 (ddt, J = 6.9, 10.2, 16.9 Hz, 1H), 6.49 (s, 1H), 7.13 (t, J = 5.0 Hz, 1H), 7.19-7.23 (m, 2H), 8.26 (d, J = 8.2 Hz, 1H), 8.78 (d, J = 5.0 Hz, 2H); ¹³C **24aa** NMR (CDCl₃, 100 MHz) δ 34.2, 106.6, 113.9, 116.5, 117.2, 119.9, 121.9, 122.8, 129.3, 135.7, 137.2, 139.9, 158.2, 158.3; HRMS (ESI): m/z calculated for C₁₅H₁₃N₃Na⁺ [M+Na]⁺: 258.1002, found: 258.1006

2-Allyl-5-methyl-1-(pyrimidin-2-yl)-1H-indole (24ca): a colorless Methylessolid; IR (neat) v 2916, 1579, 1558, 1429, 1334, 1092, 923, 806 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.45 (s, 3H), 3.97 (d, *J* = 6.1 Hz , 2H), 5.01-5.10 (m, 2H), 6.01 (ddt, *J* = 6.1, 10.4, 17.4 Hz, 1H), 6.42 (s, 1H), 7.04-7.12 (m, 2H), 7.33 (s, 1H), 8.18 (d, *J* = 8.7 Hz, 1H), 8.76 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.5, 34.3, 106.4, 113.8,

24ca

116.4, 116.9, 119.8, 124.2, 129.6, 131.3, 135.5, 135.9, 139.9, 158.1, 158.4; HRMS (ESI): m/z calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1145
2-Allyl-5-methoxy-1-(pyrimidin-2-yl)-1H-indol (24da): a yellow solid; IR (neat) v 2932, 1576, 1561, 1475, 1429, 1339, 1206, 1172, 1117, 1093,917, 802 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.86 (s, 3H), 3.97 (d, J = 6.4 Hz , 2H), 5.00-5.12 (m, 2H), 6.00 (ddt, J = 6.4, 10.5, 17.4 Hz, 1H), 6.43 (s, 1H), 6.86 (dd, *J* = 2.8, 9.2 Hz, 2H), 7.01 (d, J = 2.8 Hz, 1H), 7.10 (t, J = 5.0 Hz, 1H), 8.23 (d, J = 9.2 Hz, 1H),

8.75 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 34.5, 55.8, 102.4, 106.4, 106.6, 111.7, 115.1, 116.5, 116.9, 130.1, 132.1, 135.8, 140.6, 155.5, 158.1, 158.3; HRMS (ESI): *m/z* calculated for C₁₆H₁₅N₃NaO⁺ [M+Na]⁺: 288.1107, found: 288.1113

2-Allyl-5-bromo-1-(pyrimidin-2-yl)-1H-indole (24ea): a colorless solid; IR (neat) v 1642, 1575, 1560, 1426, 1334, 1287, 1197, 1093, 919, 801 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (d, J = 6.4 Hz, 2H), 4.99-5.10 (m, 2H), 5.97 (ddt, J = 6.3, 10.5, 17.4 Hz, 1H), 6.42 (s, 1H), 7.16 (t, J = 5.0 Hz, 1H), 7.30 (dd, J = 1.8, 9.2 Hz, 1H), 7.65 (d, J = 1.8 Hz, 1H), 8.15 (d, J = 9.2 Hz, 1H), 8.78 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) & 34.2, 105.8, 115.1, 115.6, 116.9 117.5, 122.4, 125.5, 131.1, 135.3, 135.9,

141.3, 158.1, 158.3; HRMS (DART): m/z calculated for C₁₅H₁₃BrN₃⁺ [M+H]⁺: 314.0287, found: 314.0290

2-Allyl-5-chloro-1-(pyrimidin-2-yl)-1H-indole (24fa): a colorless CI solid; IR (neat) v 2925, 1642, 1574, 1560, 1427, 1335, 1287, 1093, 921, 802 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (d, J = 6.9 Hz, 2H), 5.02-5.10 (m, 2H), 5.98 (ddt, *J* = 6.9, 10.5, 17.4 Hz, 1H), 6.43 (s, 1H), 7.13-7.19 (m, 2H), 7.49 (s, 1H), 8.20 (d, J = 9.2 Hz, 1H), 8.77 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 34.3, 106.0, 115.2,

116.9, 117.5, 119.4, 122.8, 127.4, 130.5, 135.3, 135.5, 141.4, 158.1, 158.3; HRMS (DART): *m/z* calculated for C₁₅H₁₃ClN₃⁺ [M+H]⁺: 270.0793, found: 270.0795

Methyl 2-allyl-1-(pyrimidin-2-yl)-1H-indole-5-carboxylate (24ga): a colorless solid; IR (neat)

v 2948, 1713, 1562, 1448, 1427, 1355, 1305, 1288, 1245, 1150, MeO₂C 1088, 915, 805, 768 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.93 (s, 3H), 3.95 (d, J = 6.4 Hz , 2H), 5.02-5.09 (m, 2H), 5.96 (ddt, J =6.4, 10.6, 17.4 Hz, 1H), 6.56 (s, 1H), 7.20 (t, *J* = 5.0 Hz, 1H), 7.92 (dd, J = 1.8, 8.7 Hz, 2H), 8.22 (d, J = 8.7 Hz, 1H), 8.27 (d, J = 1.8

Hz, 1H), 8.81 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 34.0, 52.0, 107.0, 113.5, 117.0, 117.9, 122.4, 123.8, 124.2, 129.0, 135.2, 139.8, 141.4, 158.0, 158.4, 168.1; HRMS (ESI): m/z calculated for C₁₇H₁₅N₃NaO₂⁺ [M+Na]⁺: 316.1056, found: 316.1051

2-Allyl-6-methyl-1-(pyrimidin-2-yl)-1H-indole (24ha): a colorless solid; IR (neat) v 2922, 1563, 1428, 1346, 1201, 1093, 918, 814 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.49 (s, 3H), 3.94 (d, *J* = 6.4 Hz, 2H), 4.99-5.08 (m, 2H), 5.99 (ddt, J = 6.4, 10.6, 17.4 Hz, 1H), 6.45 (s, 1H),7.03 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 5.0 Hz, 1H), 7.43 (d, J = 7.8 Hz,

24ga

1H), 8.06 (s, 1H), 8.79 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 22.1, 34.1, 106.4, 113.8, 116.4, 117.1, 119.6, 119.6, 123.4, 127.1, 132.6, 135.8, 137.5, 139.4, 158.2, 158.3; HRMS (ESI): m/z calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1160

2-Allyl-6-(benzyloxy)-1-(pyrimidin-2-yl)-1H-indole (24ia): а colorless solid; IR (neat) v 3034, 2924, 1616, 1559, 1484, 1429, 1267, 1167, 1039, 917, 809, 735, 696 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (dd, J = 6.9 Hz , 2H), 4.99-5.09 (m, 2H), 5.13 (s, 2H), 5.81 (ddt, J = 6.9, 10.5, 17.4 Hz, 1H), 6.43 (s, 1H), 6.93 (dd, J = 1.8,

8.7 Hz, 1H), 7.12 (t, J = 5.0 Hz, 2H), 7.30-7.38 (m, 1H), 7.36-7.42 (m, 3H), 7.45-7.51 (m, 2H), 8.76 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 34.3, 70.9, 100.5, 104.5, 106.4, 111.3, 116.4, 117.0, 123.7, 127.8, 127.9, 128.6, 135.9, 137.7, 137.9, 139.0, 156.1, 158.1, 158.4; HRMS (ESI): m/z calculated for C₂₂H₁₉N₃NaO⁺ [M+Na]⁺: 364.1420, found: 364.1411

2-Allyl-3-methyl-1-(pyrimidin-2-yl)-1H-indole (24ja): a colorless solid; IR (neat) v 3046, 2918, 1560, 1456, 1428, 1343, 1199, 1092, 912, 803, 744 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.36 (s, 3H), 4.03 (d, *J* = 6.4 Hz, 2H), 4.86-4.94 (m, 2H), 5.86-5.99 (m, 1H), 7.11 (t, *J* = 5.0 Hz, 1H), 7.23-7.30 (m, 2H), 7.56 (d, *J* = 1.8, 6.8 Hz, 1H), 8.27 (dd, *J* = 1.4, 7.3 Hz, 1H), 8.78 (d, *J* = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 8.9, 30.6, 113.7, 113.9,

Me N N 24ja

115.1, 116.9, 118.2, 121.6, 123.0, 130.5, 134.2, 136.1, 136.4, 158.2, 158.3; HRMS (ESI): m/z calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1157

2-Allyl-4-methyl-1-(pyrimidin-2-yl)-1H-indole (24ka): a colorless solid; IR (neat) v 2918, 1566, 1434, 1348, 1204, 1158, 1089, 990, 916, 802, 769, 741 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 2.55 (s, 3H), 3.98 (d, *J* = 6.0 Hz, 2H), 5.03-5.10 (m, 2H), 6.02 (ddt, *J* = 6.0, 10.5, 17.4 Hz, 1H), 6.53 (s, 1H), 7.00 (d, *J* = 7.3 Hz, 1H), 7.11-7.17 (m, 2H), 8.09 (d, *J* = 8.8 Hz, 1H), 8.78 (d, *J* = 4.6 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 18.7, 34.2, 105.0, **24ka** 111.4, 116.5, 117.2, 122.3, 122.9, 128.9, 129.3, 135.8, 136.9, 139.2, 158.2, 158.4; HRMS (ESI): *m/z* calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1157

2-Allyl-7-methyl-1-(pyrimidin-2-yl)-1H-indole (24la): a colorless solid; IR (neat) v 3045, 2927, 1561, 1422, 1348, 1226, 1082, 914, 815, 742 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.97 (s, 3H), 3.55 (d, *J* = 5.5 Hz , 2H), 4.85-4.94 (m, 2H), 5.84 (ddt, *J* = 5.5, 10.5, 17.0 Hz, 1H), 6.45 (s, 1H), 6.96 (d, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 5.0 Hz, 1H), 7.29 (dd, *J* = 7.5, 7.5 Hz, 1H), 7.44

(d, J = 7.5 Hz, 1H), 8.84 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.2, 32.3, 104.2, 116.5, 118.2, 119.2, 121.4, 121.8, 125.2, 129.6, 134.7, 136.7, 139.8, 158.4, 158.9; HRMS (ESI): m/z calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1157

2-(2,5-Diallyl-1H-pyrrol-1-yl)pyrimidine (24ma): a colorless oil; IR (neat) v 3005, 1640, 1571, 1432, 1092, 916, 817, 759 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 3.56 (d, *J* = 6.9 Hz, 4H), 4.78-4.85 (m, 4H), 5.98 (s, 2H), 7.18 (t, *J* = 5.2 Hz, 1H) 8.76 (d, *J* = 5.2 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 32.6, 108.7, 115.5, 118.4, 132.5, 136.3, 158.2,

N N 24ma

Ńе

24la

1-(2-allylphenyl)-1H-pyrazole (28a): a colorless oil; IR (neat) v 3076, 2978, 1637, 1517, 1498, 1394, 1328, 1044, 939, 916, 756 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 3.33 (d, *J* = 6.3 Hz, 2H), 4.91-5.04 (m, 2H), 5.84 (ddt, *J* = 6.3, 10.3, 17.2 Hz, 1H), 6.42 (brs, 1H), 7.29-7.40 (m, 4H), 7.60 (m, 1H), 7.72 (brs, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 35.7, 106.3, 116.4, 126.7, 127.2, 128.8, 130.8,

130.9, 135.9, 136.7, 139.9, 140.5; HRMS (ESI): m/z calculated for $C_{12}H_{12}N_2Na^+$ [M+Na]⁺: 207.0893, found: 207.0884

2-Cinnamyl-1-(pyrimidin-2-yl)-1H-indole (24ab): a colorless solid; IR (neat) v 3025, 1574, 1561, 1454, 1428, 1348, 1205, 967, 803, 744, 695 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 4.12 (d, *J* = 6.3 Hz, 2H), 6.38 (dt, *J* = 6.3, 16.1 Hz, 1H), 6.44 (d, *J* = 16.1 Hz, 1H), 6.55 (s, 1H), 7.12-7.34 (m, 8H), 7.54 (d, *J* = 7.5 Hz, 1H), 8.29 (d, *J* = 8.6 Hz, 1H) 8.80 (d, *J* = 4.6 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 33.4, 106.8, 114.0,

24ab

24ac

24ad

28a

Ph

Me

Me

Me

117.2, 120.0, 122.0, 122.9, 126.3, 127.3, 127.5, 128.6, 129.4, 131.8, 137.3, 137.6, 140.0, 158.3, 158.4; HRMS (ESI): *m*/*z* calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 334.1315 found: 334.1316

2-(3-Methylbut-2-en-1-yl)-1-(pyrimidin-2-yl)-1H-indole (24ac): a yellow oil; IR (neat) v 3046, 2971, 2924, 1574, 1562, 1455, 1428, 1348, 1205, 1095, 802, 745 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 1.68 (s, 3H), 1.75 (s, 3H), 3.87 (d, *J* = 6.9 Hz, 2H), 5.33 (t, *J* = 6.9 Hz, 1H), 6.46 (s, 1H), 7.10-7.24 (m, 3H), 7.52 (d, *J* = 7.5 Hz, 1H), 8.23 (d, *J* = 8.1 Hz, 1H), 8.79 (d, *J* = 4.0 Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ ; HRMS (ESI): *m/z* calculated for C₁₇H₁₇N₃Na⁺ [M+Na]⁺: 286.1315, found: 286.1319

2-(But-3-en-2-yl)-1-(pyrimidin-2-yl)-1H-indole (24ad): a colorless oil; IR (neat) v 2965, 2930, 1654, 1561, 1454, 1425, 1265, 1093, 917, 800, 739 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.42 (d, *J* = 7.3 Hz, 3H), 4.66 (dq, *J* = 7.3, 7.3 Hz, 1H), 4.78-4.86 (m, 2H), 5.91 (ddd, *J* = 7.3, 10.5, 17.4 Hz, 1H), 6.54 (s, 1H), 7.15-7.22 (m, 3H), 7.56 (d, *J* = 7.8 Hz, 1H), 8.24 (d, *J* = 8.2

Hz, 1H) 8.81 (d, J = 5.0 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 19.8, 35.8, 104.5, 113.1, 113.5, 117.6, 120.1, 121.8, 122.8, 129.1, 137.5, 142.1, 144.8, 158.3, 158.4; HRMS (ESI): m/z calculated for C₁₆H₁₅N₃Na⁺ [M+Na]⁺: 272.1158, found: 272.1161

Computational Details. All the density functional theory (DFT) calculations were carried out with the *Gaussian 09* program package.^{S1} Geometry optimization and analytical vibrational frequency analysis were performed by the restricted and unrestricted Kohn \Box Sham DFT method using the B3LYP hybrid functional.^{S2} Pople's 6-311G** basis set^{S3} for C, N, O, and H atoms and the (14s9p5d)/[9s5p3d] basis set of Wachters–Hay^{S4,S5} with one polarization f-function ($\alpha = 1.17$) for Co atom were used for the Gaussian basis functions. The electronic energies of each structure were calculated by using the B3LYP functional with the D3 dispersion corrections (B3LYP-D3).^{S6}

Results and Discussion of DFT Calculations. For the model reaction between *N*-pyrimidin-2-yl indole 12a and allyl alcohol 23a catalyzed by [CpCo(III)(OAc)]⁺, we examined the reaction pathway after the C-H bond metalation step. For the analysis of [CpCo(III)(OAc)]⁺-catalyzed C–H bond metalation, see our previous work.^{S7} The Gibbs free energy diagrams are shown in Figure S1, and the energies of each structure are listed in Table S1. The [CpCo(III)(OAc)]⁺catalyzed C–H bond metalation of N-pyrimidin-2-yl indole **1a** with $[CpCo(III)(OAc)]^+$ provides the complex ${}^{1}A$ or ${}^{3}A$.^{S7} The free energy of the singlet-state complex ${}^{1}A$ is more stable than that of the triplet-state complex ${}^{3}A$ by 5.8 kcal/mol. In the singlet state, the substitution between AcOH in ¹A and allyl alcohol gives the oxygen-coordinated complex ¹C or the π -coordinated complex ¹D. In ¹C, the $S_N 2$ ' concerted substitution occurs via the six-membered cyclic transition state ${}^{1}TS_{C.I.}$ The activation free-energy activation is 36.4 kcal/mol, which is too high. On the other hand, the insertion of the Co–C bond to the C=C bond in allyl alcohol proceeds from ${}^{1}D$ to ¹E via the transition state ¹TS_{D-E}. The relative energy of ¹TS_{D-E} (15.9 kcal/mol) is much lower than that of ${}^{1}TS_{C-I}$ (40.3 kcal/mol). Thus, the Co–C bond insertion is more favorable in comparison with the S_N2 ' substitution. The interaction between Co atom and the C2 atom, which exists in ¹E (the Co \Box C distance is 2.18 Å), is vanished through two pathways (${}^{1}E \rightarrow {}^{1}TS_{E-J} \rightarrow {}^{1}J$ $\rightarrow {}^{1}TS_{J-K} \rightarrow {}^{1}K \rightarrow {}^{1}TS_{K-L} \rightarrow {}^{1}L \text{ or } {}^{1}E \rightarrow {}^{1}TS_{E-F} \rightarrow {}^{1}F).$ The Co atom interacts with the β hydrogen atom in allyl alcohol through the former pathway (from ${}^{1}E$ to ${}^{1}L$), while the Co atom interacts with the oxygen atom of the OH group via the latter pathway (from ${}^{1}E$ to ${}^{1}F$). The relative energies of transition states in the former pathway, ${}^{1}TS_{J-K}$ and ${}^{1}TS_{K-L}$ (24.9 and 23.7 kcal/mol), are higher than that of the transition state in the latter one, ${}^{1}TS_{E-F}$ (18.2 kcal/mol). Therefore, the latter pathway (from ${}^{1}E$ to ${}^{1}F$) is more favorable. The complex ${}^{1}F$ is easily converted to the complex ${}^{1}G$, in which the direction of the proton in the OH group is different from that in ¹F. As shown in Figure S2, either the β -hydroxide elimination or β -hydride

elimination occurs from the complex ${}^{1}\mathbf{F}$ or ${}^{1}\mathbf{G}$. The transition state ${}^{1}\mathbf{TS}_{G-H}$, which leads to the β -hydroxide elimination, has the lowest free energy among five transition states taken into account shown in Figure S2. Thus, the β -hydroxide elimination (the blue line in Figure S1 and Figure S2; 15.4 kcal/mol) is more favorable to the β -hydride elimination (the green line in Figure S1 and Figure S2; 17.8 kcal/mol).

We also examined the triplet-state pathways. The relative free energy of the transition state of the $S_N 2'$ substitution, ${}^3TS_{C-I}$, is also high (41.3 kcal/mol). The π -coordinated complex in the triplet-state, which corresponds to 1D in the singlet-state, was not found in the present study. Alternatively, we optimized the complex ${}^3D'$, in which the oxygen atom in allyl alcohol is interacted with the pyrimidyl hydrogen atom. For the triplet-state Co–C bond insertion followed by the β -hydroxide elimination (${}^3D' \rightarrow {}^3TS_{D'-F'} \rightarrow {}^3F' \rightarrow {}^3TS_{F'-I} \rightarrow {}^3I$), the relative free energies of the transition states, ${}^3TS_{D'-F'}$ and ${}^3TS_{F'-I}$, are 27.2 and 21.6 kcal/mol, respectively, which are higher than those in the singlet-state pathway. As a result, the triplet-state pathway is unfavorable.

References

Wiley: New York, 1986.

(S1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01* Gaussian, Inc., Wallingford, CT, 2009.

(S2) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Becke, A. D.; Roussel, M. R. Phys. Rev. A 1989, 39, 3761. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frish, M. J. J. Phys. Chem. 1994, 98, 11623.
(S3) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory;

- (S4) Wachters, A. J. H. J. Chem. Phys. 1970, 52, 1033.
- (S5) Hay, P. J. J. Chem. Phys. 1977, 66, 4377.
- (S6) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104.
- (S7) Ikemoto, H.; Yoshino, T.; Sakata, K.; Matsunaga, S.; Kanai, M. J. Am. Chem. Soc. 2014, 136, 5424.

Figure S1. Relative Gibbs free-energy diagram (298.15 K) for the reaction pathway following the C–H bond metalation (kcal/mol).

Figure S2. The transition states of β -hydroxide and β -hydride eliminations from the complexes ${}^{1}F$ and ${}^{1}G$.

	B3LYP		B3LYP-D3//B3LYP		
	E	thermal	E	G	
		free term			
¹ A	-2431.817390	0.275040	-2431.869034	-2431.593994	
CH ₃ COOH	-229.156428	0.034567	-229.159427	-229.124860	
CH2=CHCH2OH	-193.173709	0.057346	-193.177935	-193.120589	
${}^{1}\mathbf{B}$	-2202.623925	0.217414	-2202.659970	-2202.442556	
¹ C	-2395.825166	0.297417	-2395.882366	-2395.584949	
$^{1}\mathbf{D}$	-2395.819085	0.301957	-2395.880394	-2395.578437	
¹ E	-2395.822783	0.302904	-2395.883061	-2395.580157	
${}^{1}\mathbf{F}$	-2395.827941	0.304238	-2395.888373	-2395.584135	
¹ G	-2395.832453	0.305255	-2395.893364	-2395.588109	
${}^{1}\mathbf{H}$	-2395.815149	0.301313	-2395.879757	-2395.578444	
¹ I	-2395.815446	0.296858	-2395.875970	-2395.579112	
1 J	-2395.815875	0.301881	-2395.874856	-2395.572975	
¹ K	-2395.795019	0.299904	-2395.853167	-2395.553263	
${}^{1}\mathbf{L}$	-2395.817045	0.302509	-2395.877519	-2395.575010	
${}^{1}\mathbf{M}$	-2395.815446	0.300944	-2395.876932	-2395.575988	
¹ TS _{C-I}	-2395.762046	0.297978	-2395.823410	-2395.525432	
$^{1}TS_{D-E}$	-2395.806921	0.303266	-2395.867604	-2395.564338	
$^{1}TS_{E-F}$	-2395.803614	0.301386	-2395.862151	-2395.560765	
$^{1}TS_{F-G}$	-2395.827086	0.304008	-2395.887850	-2395.583842	
¹ TS _{G-H}	-2395.804092	0.301892	-2395.867068	-2395.565176	
¹ TS _{H-I}	-2395.809632	0.298857	-2395.871164	-2395.572307	
$^{1}TS_{G-L}$	-2395.804174	0.302015	-2395.863367	-2395.561352	
$^{1}TS_{L-M}$	-2395.813438	0.300602	-2395.874463	-2395.573861	
$^{1}TS_{E-J}$	-2395.812575	0.303483	-2395.871515	-2395.568032	
$^{1}TS_{J-K}$	-2395.793366	0.300384	-2395.850405	-2395.550021	
$^{1}TS_{K-L}$	-2395.794914	0.301083	-2395.853033	-2395.551950	
³ A	-2431.804501	0.268873	-2431.853607	-2431.584734	
³ B	-2202.627127	0.213963	-2202.661988	-2202.448025	

 Table S1.
 Total energies E and Gibbs free energies G at 298.15K (hartree)

³ C	-2395.818625	0.291693	-2395.870832	-2395.579139
³ D′	-2395.817869	0.289293	-2395.862578	-2395.573285
³ F′	-2395.830454	0.298568	-2395.886962	-2395.588394
³ I	-2395.816656	0.296186	-2395.878529	-2395.582343
³ TS _{C-I}	-2395.757031	0.292449	-2395.816352	-2395.523903
$^{3}TS_{D^{\prime}-F^{\prime}}$	-2395.785368	0.297268	-2395.843603	-2395.546335
³ TS _{F'-I}	-2395.792142	0.297177	-2395.852489	-2395.555312

Cartesian coordinates of stationary points are given below:

¹A (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.443351	-0.320156	-0.471067	
2	6	0	-1.890791	-0.144536	-2.475144	
3	6	0	-3.090808	0.212483	-1.765106	
4	6	0	-1.604764	-1.506682	-2.182092	
5	6	0	-3.473698	-0.879455	-0.984727	
6	6	0	-2.529011	-1.944227	-1.204873	
7	1	0	-1.345047	0.482796	-3.162850	
8	1	0	-3.577345	1.175846	-1.795669	
9	1	0	-0.772652	-2.070309	-2.571230	
10	1	0	-4.290541	-0.902721	-0.279027	
11	1	0	-2.557644	-2.920534	-0.745869	
12	7	0	-0.788212	1.490548	-0.082174	
13	6	0	0.570114	1.602898	-0.017378	
14	6	0	-1.506215	2.597126	0.163017	
15	7	0	1.231855	2.731889	0.215887	
16	6	0	-0.895495	3.810514	0.426134	
17	6	0	0.500090	3.822952	0.425847	
18	1	0	-2.583247	2.491958	0.145035	
19	1	0	-1.476032	4.701863	0.616347	
20	1	0	1.052039	4.739915	0.606739	
21	7	0	1.215620	0.418614	-0.203706	
22	6	0	0.426017	-0.744922	-0.388745	
23	6	0	2.585312	0.084293	-0.198314	
24	6	0	1.285554	-1.802478	-0.503630	
25	6	0	2.647335	-1.315408	-0.381284	
26	6	0	3.723022	0.870988	-0.049085	
27	6	0	3.893091	-1.948168	-0.420386	
28	б	0	4.950837	0.215508	-0.093808	

29	6	0	5.036680	-1.171862	-0.277332	
30	1	0	1.005305	-2.831073	-0.680750	
31	1	0	3.652882	1.939145	0.091828	
32	1	0	3.965034	-3.020207	-0.561200	
33	1	0	5.860082	0.794388	0.014642	
34	1	0	6.011331	-1.643815	-0.307447	
35	8	0	-1.838553	-0.555377	1.459921	
36	б	0	-1.301057	-1.129465	2.418861	
37	8	0	-0.155994	-1.757260	2.348339	
38	б	0	-1.934379	-1.148768	3.772962	
39	1	0	-2.061430	-2.183608	4.098753	
40	1	0	-1.264630	-0.666699	4.489223	
41	1	0	-2.893224	-0.637669	3.752100	
42	1	0	0.236133	-1.676051	1.442548	

CH₃COOH (NIMAG=0)

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (A Y	ngstroms) Z	
1	6	0	0.000000	0.157229	0.000000	
2	8	0	0.187529	1.345827	0.000000	
3	8	0	-1.243976	-0.384805	0.00000	
4	6	0	1.062427	-0.909236	0.000000	
5	1	0	2.044542	-0.442632	0.000000	
6	1	0	0.948805	-1.545977	0.880133	
7	1	0	0.948805	-1.545977	-0.880133	
8	1	0	-1.865135	0.358451	0.000000	

CH₂=CHCH₂OH (NIMAG=0)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	1.505761	-0.532002	-0.000016	
2	6	0	0.783494	0.581808	0.000053	
3	1	0	1.029158	-1.504274	-0.000129	
4	1	0	2.589100	-0.499650	0.000046	
5	1	0	1.270424	1.554796	0.000186	
6	6	0	-0.714408	0.632968	-0.000068	
7	1	0	-1.047631	1.200443	-0.884503	
8	1	0	-1.047753	1.200592	0.884220	
9	8	0	-1.253826	-0.680024	0.000001	
10	1	0	-2.211763	-0.608360	0.000361	

¹**B** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	X	Y	Z	
1	27	0	-1.587797	-0.528609	-0.049511	
2	6	0	-2.340623	-2.330435	0.543929	
3	6	0	-2.588791	-2.133600	-0.833084	
4	6	0	-2.979151	-1.264235	1.255989	
5	6	0	-3.412899	-0.962657	-0.973309	
6	6	0	-3.669727	-0.449826	0.312642	
7	1	0	-1.738105	-3.108662	0.984599	
8	1	0	-2.205850	-2.733675	-1.644383	
9	1	0	-2.929413	-1.098782	2.321963	
10	1	0	-3.740761	-0.535605	-1.909610	
11	1	0	-4.239550	0.436416	0.546525	
12	6	0	0.233584	-0.875151	-0.021744	
13	6	0	1.125126	-1.941411	-0.042238	
14	7	0	1.021551	0.296657	0.017668	
15	6	0	2.461264	-1.441972	-0.024528	

16	6	0	2.388879	-0.021634	0.016131	
17	б	0	3.716913	-2.072735	-0.038625	
18	б	0	3.521451	0.777329	0.041970	
19	б	0	4.853043	-1.281144	-0.011390	
20	б	0	4.753200	0.120385	0.028113	
21	1	0	0.848600	-2.985108	-0.071683	
22	1	0	3.789924	-3.153190	-0.069979	
23	1	0	3.451150	1.854404	0.071728	
24	1	0	5.832813	-1.742172	-0.020772	
25	1	0	5.660384	0.712518	0.048811	
26	б	0	0.360115	1.486545	0.010000	
27	7	0	-1.000399	1.327009	-0.029861	
28	7	0	1.001853	2.647453	0.034149	
29	б	0	0.250266	3.745107	0.010864	
30	б	0	-1.145727	3.704891	-0.039894	
31	б	0	-1.735534	2.456674	-0.058815	
32	1	0	-2.809713	2.335047	-0.099118	
33	1	0	0.783009	4.690338	0.032478	
34	1	0	-1.741319	4.606305	-0.063512	

¹C (NIMAG=0)

_ _

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.589359	-0.604395	-0.033379	
2	6	0	-2.230377	-1.394380	-1.812245	
3	6	0	-3.346939	-0.657260	-1.285866	
4	6	0	-1.954314	-2.463973	-0.910384	
5	6	0	-3.677388	-1.196346	-0.041448	
6	6	0	-2.788106	-2.304219	0.215807	
7	1	0	-1.741243	-1.221620	-2.758197	
8	1	0	-3.805944	0.202826	-1.749960	
9	1	0	-1.180687	-3.204250	-1.031680	

10	1	0	-4.447413	-0.831767	0.623206
11	1	0	-2.793109	-2.935120	1.092123
12	6	0	0.272385	-1.018484	-0.002681
13	6	0	1.123057	-2.032720	0.315837
14	7	0	1.055007	0.062200	-0.485187
15	6	0	2.483006	-1.597142	0.055237
16	б	0	2.422953	-0.279290	-0.453178
17	6	0	3.727815	-2.215141	0.204220
18	б	0	3.558077	0.439128	-0.812428
19	б	0	4.870282	-1.508004	-0.153868
20	б	0	4.785416	-0.201490	-0.653750
21	1	0	0.842728	-3.002263	0.700037
22	1	0	3.800527	-3.225589	0.589190
23	1	0	3.486773	1.444281	-1.200727
24	1	0	5.842979	-1.973060	-0.047059
25	1	0	5.692554	0.323732	-0.927461
26	б	0	0.416992	1.223700	-0.777351
27	7	0	-0.934130	1.152391	-0.591778
28	7	0	1.073478	2.306770	-1.185678
29	б	0	-1.639902	2.276355	-0.786956
30	б	0	0.349150	3.400642	-1.398738
31	6	0	-1.032180	3.448551	-1.198282
32	1	0	-2.705429	2.219682	-0.604723
33	1	0	0.894835	4.275229	-1.739096
34	1	0	-1.603603	4.351211	-1.360450
35	8	0	-1.663507	0.033736	1.916827
36	6	0	-0.539559	0.289481	2.847277
37	1	0	-0.894582	-0.008284	3.837754
38	1	0	0.288876	-0.355511	2.556921
39	6	0	-0.165419	1.733402	2.828346
40	1	0	-0.963699	2.437034	3.050010
41	6	0	1.078103	2.161765	2.629387
42	1	0	1.894033	1.476471	2.422044
43	1	0	1.329485	3.214039	2.688636
44	1	0	-2.355131	-0.415227	2.410935

¹**D** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.156088	-0.746640	-0.135817	
2	6	0	-1.163792	-1.307824	-2.126607	
3	6	0	-2.433264	-0.709487	-1.858721	
4	6	0	-1.063938	-2.486522	-1.323635	
5	б	0	-3.069825	-1.443990	-0.848740	
6	6	0	-2.203168	-2.544514	-0.501439	
7	1	0	-0.435230	-0.969954	-2.847048	
8	1	0	-2.805696	0.198301	-2.308641	
9	1	0	-0.226724	-3.164440	-1.305393	
10	1	0	-4.025781	-1.211487	-0.407948	
11	1	0	-2.404625	-3.299475	0.243922	
12	7	0	-0.704171	1.166698	-0.278215	
13	6	0	0.636413	1.439375	-0.268440	
14	б	0	-1.537884	2.203969	-0.478362	
15	7	0	1.169872	2.649244	-0.433944	
16	6	0	-1.059582	3.487369	-0.668171	
17	6	0	0.326947	3.655102	-0.636098	
18	1	0	-2.596817	1.979117	-0.446749	
19	1	0	0.776326	4.633542	-0.775613	
20	1	0	-1.732563	4.317522	-0.829027	
21	7	0	1.406673	0.344361	-0.064831	
22	б	0	0.761575	-0.908806	0.090734	
23	6	0	2.804978	0.184514	0.060833	
24	6	0	1.720984	-1.845441	0.310472	
25	6	0	3.017289	-1.191116	0.300539	
26	б	0	3.844470	1.104327	-0.014006	
27	6	0	4.322352	-1.659836	0.470559	
28	6	0	5.135881	0.609910	0.159137	
29	6	0	5.372026	-0.750213	0.397797	

30	1	0	1.559596	-2.900076	0.476768
31	1	0	3.656281	2.151268	-0.199237
32	1	0	4.512872	-2.710565	0.655234
33	1	0	5.973357	1.295044	0.106541
34	1	0	6.390184	-1.097330	0.527229
35	6	0	-0.960636	-0.813696	2.062275
36	6	0	-2.288236	-0.557918	1.860048
37	1	0	-0.278823	-0.018955	2.339758
38	1	0	-0.612643	-1.817659	2.260723
39	1	0	-2.979502	-1.392168	1.828484
40	6	0	-2.948560	0.769301	2.080419
41	1	0	-2.216118	1.584108	2.077941
42	1	0	-3.392734	0.729028	3.084172
43	8	0	-3.962663	0.970998	1.094647
44	1	0	-4.636470	1.556330	1.456121

¹E (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.064248	-0.742294	-0.200060	
2	6	0	-0.958227	-1.005478	-2.358023	
3	б	0	-2.303403	-0.993719	-1.836951	
4	б	0	-0.274406	-2.059445	-1.752504	
5	б	0	-2.445941	-2.098388	-0.959828	
6	6	0	-1.176245	-2.719333	-0.843367	
7	1	0	-0.544471	-0.296128	-3.059141	
8	1	0	-3.089405	-0.305971	-2.105900	
9	1	0	0.768874	-2.302546	-1.889168	
10	1	0	-3.342344	-2.348498	-0.416539	
11	1	0	-0.941700	-3.578215	-0.233334	
12	7	0	-0.841712	1.223050	-0.179880	
13	6	0	0.409400	1.636046	0.130976	

14	6	0	-1.713008	2.164783	-0.583238	
15	7	0	0.885519	2.858242	-0.038043	
16	б	0	-1.308545	3.477649	-0.761887	
17	б	0	0.030276	3.769532	-0.508456	
18	1	0	-2.729564	1.829155	-0.746071	
19	1	0	0.431157	4.765114	-0.667578	
20	1	0	-2.001720	4.235645	-1.099162	
21	7	0	1.207715	0.634634	0.665764	
22	б	0	0.587622	-0.542926	1.207597	
23	б	0	2.524518	0.340745	0.313665	
24	б	0	1.557509	-1.536678	1.194098	
25	б	0	2.755213	-1.025353	0.630689	
26	б	0	3.505556	1.136654	-0.279483	
27	б	0	4.015912	-1.599585	0.374704	
28	б	0	4.733785	0.539580	-0.522643	
29	б	0	4.991794	-0.809989	-0.198760	
30	1	0	1.429159	-2.516181	1.632436	
31	1	0	3.322573	2.176991	-0.505694	
32	1	0	4.209937	-2.635220	0.626987	
33	1	0	5.525893	1.133199	-0.963484	
34	1	0	5.972217	-1.222968	-0.400977	
35	6	0	-0.567686	-0.426300	2.239977	
36	6	0	-1.902753	-0.723345	1.568451	
37	1	0	-0.531920	0.583091	2.659188	
38	1	0	-0.346831	-1.119865	3.053525	
39	1	0	-2.237928	-1.738310	1.782783	
40	б	0	-3.025340	0.263559	1.812803	
41	1	0	-2.624554	1.278782	1.936605	
42	1	0	-3.548373	0.007230	2.744417	
43	8	0	-3.945452	0.226311	0.711403	
44	1	0	-4.799545	0.546622	1.019705	

 ${}^{1}F$ (NIMAG=0)

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	27	0	1.814914	-0.370240	0.269382	
2	6	0	0.711652	-0.805604	1.977370	
3	6	0	1.705031	0.155703	2.390729	
4	6	0	1.387612	-1.971159	1.543416	
5	6	0	2.962049	-0.385753	2.129644	
6	б	0	2.779158	-1.691287	1.549752	
7	1	0	-0.358782	-0.688669	2.052447	
8	1	0	1.502694	1.140272	2.785225	
9	1	0	0.917443	-2.877057	1.195438	
10	1	0	3.912483	0.109310	2.265938	
11	1	0	3.568255	-2.364854	1.252200	
12	7	0	0.784873	1.247253	-0.314434	
13	6	0	-0.569006	1.366629	-0.427046	
14	б	0	1.486709	2.402398	-0.290104	
15	7	0	-1.216175	2.534274	-0.375188	
16	б	0	0.889752	3.643545	-0.317524	
17	б	0	-0.507028	3.649924	-0.309973	
18	1	0	2.562632	2.312066	-0.198541	
19	1	0	1.473144	4.553266	-0.295520	
20	1	0	-1.069428	4.577245	-0.257505	
21	7	0	-1.336838	0.232824	-0.579259	
22	6	0	-1.013763	-0.898545	-1.378755	
23	6	0	-2.646128	0.047612	-0.059055	
24	6	0	-2.056187	-1.765798	-1.342151	
25	6	0	-3.090861	-1.215137	-0.504335	
26	6	0	-3.416709	0.844761	0.784178	
27	6	0	-4.344131	-1.689160	-0.103134	
28	6	0	-4.658560	0.350287	1.171897	
29	б	0	-5.119867	-0.898951	0.733658	
30	1	0	-2.106243	-2.692439	-1.894073	
31	1	0	-3.087156	1.822364	1.102137	
32	1	0	-4.699185	-2.655994	-0.439941	
33	1	0	-5.285154	0.953191	1.818080	

34	1	0	-6.095257	-1.247403	1.051052
35	6	0	0.250325	-0.975089	-2.170064
36	1	0	0.461659	-0.004256	-2.632064
37	1	0	0.074892	-1.670976	-2.998705
38	6	0	1.449809	-1.447485	-1.351358
39	1	0	1.344112	-2.502976	-1.109058
40	6	0	2.808656	-1.134113	-1.935080
41	1	0	3.530462	-1.944731	-1.850391
42	1	0	2.802084	-0.763135	-2.963092
43	8	0	3.309228	-0.053102	-1.037045
44	1	0	3.400739	0.768960	-1.530792

¹G (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Ζ	
Ţ	27	0	-1.768416	-0.450819	-0.282398	
2	6	0	-0.464325	-1.103364	-1.774943	
3	6	0	-1.430920	-0.261406	-2.434607	
4	6	0	-1.151250	-2.212914	-1.227362	
5	6	0	-2.694195	-0.810275	-2.222248	
б	6	0	-2.540734	-2.001337	-1.423859	
7	1	0	0.604138	-0.953955	-1.759865	
8	1	0	-1.214325	0.658721	-2.956267	
9	1	0	-0.697168	-3.028143	-0.686757	
10	1	0	-3.633455	-0.384706	-2.545918	
11	1	0	-3.334471	-2.664768	-1.114016	
12	7	0	-0.850247	1.261049	0.189234	
13	6	0	0.495707	1.433243	0.309898	
14	6	0	-1.596038	2.384032	0.091707	
15	7	0	1.109056	2.607473	0.158558	
16	6	0	-1.032286	3.640350	0.016928	
17	6	0	0.362077	3.690145	-0.007619	

18	1	0	-2.667365	2.238244	0.066328
19	1	0	-1.643607	4.528212	-0.063320
20	1	0	0.894460	4.625942	-0.147650
21	7	0	1.286739	0.337724	0.591742
22	б	0	0.959108	-0.718875	1.483581
23	б	0	2.595110	0.109498	0.093612
24	б	0	2.000851	-1.588302	1.524512
25	б	0	3.038849	-1.111351	0.646239
26	б	0	3.369021	0.835651	-0.808988
27	б	0	4.295647	-1.614364	0.292661
28	б	0	4.613609	0.312764	-1.146863
29	6	0	5.074188	-0.895198	-0.603279
30	1	0	2.050730	-2.461059	2.158221
31	1	0	3.038692	1.783679	-1.206493
32	1	0	4.651407	-2.548000	0.712305
33	1	0	5.243797	0.860904	-1.836862
34	1	0	6.052120	-1.266570	-0.884878
35	б	0	-0.298272	-0.705564	2.292589
36	1	0	-0.125407	-1.338610	3.169703
37	1	0	-0.472099	0.304490	2.679348
38	б	0	-1.535512	-1.192743	1.536586
39	1	0	-1.548137	-2.280250	1.487597
40	б	0	-2.865410	-0.640376	2.008079
41	1	0	-2.799135	0.088099	2.817069
42	1	0	-3.607823	-1.398252	2.261028
43	8	0	-3.350111	0.106604	0.807115
44	1	0	-4.234447	-0.186082	0.561759

¹**H** (NIMAG=0)

Center	Atomic	Atomic	Coo	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.893401	-0.460934	-0.202224	

2	б	0	-0.541227	-0.875328	-1.830604
3	6	0	-1.835990	-0.494553	-2.286044
4	6	0	-0.669088	-2.017308	-1.021725
5	6	0	-2.762554	-1.476248	-1.824557
6	6	0	-2.060601	-2.391110	-1.016535
7	1	0	0.377768	-0.339383	-2.012665
8	1	0	-2.077720	0.366964	-2.888195
9	1	0	0.137201	-2.530251	-0.521680
10	1	0	-3.827007	-1.461715	-1.995920
11	1	0	-2.490246	-3.233751	-0.495195
12	7	0	-0.903524	1.287059	0.235696
13	6	0	0.446141	1.452941	0.318749
14	6	0	-1.640748	2.420795	0.177328
15	7	0	1.066058	2.617893	0.174339
16	б	0	-1.060434	3.673427	0.110190
17	б	0	0.327658	3.715864	0.045075
18	1	0	-2.711840	2.256517	0.145737
19	1	0	-1.669834	4.565097	0.059569
20	1	0	0.868539	4.646243	-0.097235
21	7	0	1.255108	0.346214	0.557962
22	6	0	1.070470	-0.605287	1.589933
23	б	0	2.529406	0.129622	-0.015098
24	6	0	2.161133	-1.414659	1.643000
25	6	0	3.092715	-0.992733	0.629755
26	6	0	3.180801	0.786805	-1.057941
27	6	0	4.345029	-1.468896	0.221836
28	6	0	4.421060	0.292525	-1.446363
29	6	0	4.998497	-0.820609	-0.815314
30	1	0	2.307460	-2.211099	2.357435
31	1	0	2.764485	1.667370	-1.526122
32	1	0	4.792420	-2.326777	0.709871
33	1	0	4.957575	0.787863	-2.246644
34	1	0	5.970007	-1.171338	-1.141720
35	6	0	-0.148102	-0.611763	2.457361
36	1	0	-0.451022	0.398276	2.743598
37	1	0	0.115230	-1.130097	3.386156

38	6	0	-1.309587	-1.362322	1.860240	
39	1	0	-1.106184	-2.401895	1.626207	
40	6	0	-2.598564	-0.932219	1.845286	
41	1	0	-2.874138	0.037083	2.236697	
42	1	0	-3.409050	-1.629587	1.671731	
43	8	0	-3.484236	0.540986	-0.108646	
44	1	0	-4.277521	0.015981	0.034178	

¹**I** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	27	0	-1.730216	-1.061190	0.024140
2	6	0	-0.246382	-2.461056	0.419217
3	б	0	-0.273426	-2.200687	-0.966168
4	б	0	-1.544568	-2.941208	0.813060
5	б	0	-1.587212	-2.467508	-1.436682
б	б	0	-2.364037	-2.963253	-0.333693
7	1	0	0.585195	-2.269257	1.081026
8	1	0	0.540844	-1.789354	-1.542735
9	1	0	-1.845255	-3.191772	1.819409
10	1	0	-1.949190	-2.313326	-2.442745
11	1	0	-3.410981	-3.225462	-0.370359
12	б	0	0.877574	0.509676	1.578507
13	б	0	2.023316	-0.061288	2.047016
14	7	0	1.008054	0.660363	0.170469
15	6	0	2.921062	-0.284430	0.944018
16	6	0	2.284450	0.209410	-0.216422
17	6	0	4.200382	-0.846807	0.837826
18	6	0	2.881169	0.152541	-1.475319
19	6	0	4.802993	-0.904530	-0.410101
20	6	0	4.150867	-0.409646	-1.551584
21	1	0	2.232832	-0.245054	3.090258

22	1	0	4.709161	-1.224972	1.716789
23	1	0	2.403513	0.568261	-2.352505
24	1	0	5.794722	-1.328978	-0.508746
25	1	0	4.652511	-0.451885	-2.510883
26	б	0	0.069467	1.230191	-0.683628
27	7	0	-1.192041	0.731987	-0.666742
28	7	0	0.466674	2.218033	-1.474395
29	б	0	-2.138231	1.440215	-1.321044
30	6	0	-0.456185	2.845172	-2.197685
31	6	0	-1.812167	2.535976	-2.094816
32	1	0	-3.153926	1.087076	-1.203597
33	1	0	-0.100542	3.631048	-2.856430
34	1	0	-2.571545	3.094480	-2.624210
35	8	0	-3.100034	-0.251113	0.765752
36	6	0	-1.490635	3.252215	1.940170
37	1	0	-1.526963	4.334131	1.888686
38	1	0	-2.421150	2.717615	1.773948
39	6	0	-0.362053	2.609530	2.226007
40	1	0	0.554058	3.168047	2.402293
41	6	0	-0.256328	1.106751	2.366388
42	1	0	-1.221435	0.658381	2.117186
43	1	0	-0.056712	0.857798	3.414091
44	1	0	-3.758176	-0.795993	1.215000

¹J (NIMAG=0)

Center Number	Atomic Number	Atomic Type	Coc X	ordinates (Ar Y	ngstroms) Z	
						·
1	27	0	1.082078	-0.681934	0.425779	
2	6	0	0.167592	-1.909438	1.989655	
3	б	0	0.868761	-0.861876	2.584888	
4	б	0	1.081945	-2.638477	1.149215	
5	6	0	2.236815	-0.921512	2.128721	

6	6	0	2.369536	-2.066781	1.300898
7	1	0	-0.888968	-2.107706	2.090414
8	1	0	0.453917	-0.107439	3.236705
9	1	0	0.842346	-3.509439	0.558768
10	1	0	3.039492	-0.268840	2.437397
11	1	0	3.275703	-2.399322	0.819406
12	7	0	0.792548	1.282320	0.357738
13	6	0	-0.433102	1.646438	-0.094213
14	6	0	1.563862	2.262689	0.859312
15	7	0	-0.967474	2.853217	0.000715
16	6	0	1.099154	3.562135	0.968825
17	6	0	-0.207164	3.803335	0.547159
18	1	0	2.552729	1.978122	1.193726
19	1	0	1.718577	4.345458	1.382832
20	1	0	-0.657764	4.786168	0.637623
21	7	0	-1.141267	0.611625	-0.683507
22	6	0	-0.429455	-0.547299	-1.142314
23	6	0	-2.474323	0.274055	-0.450980
24	6	0	-1.357290	-1.580391	-1.194320
25	6	0	-2.621301	-1.106481	-0.757215
26	6	0	-3.537557	1.042050	0.024988
27	6	0	-3.878882	-1.724657	-0.611658
28	6	0	-4.761014	0.401948	0.160597
29	6	0	-4.935263	-0.962782	-0.155335
30	1	0	-1.151304	-2.560714	-1.599987
31	1	0	-3.417195	2.093242	0.242908
32	1	0	-4.008921	-2.771600	-0.858164
33	1	0	-5.614449	0.972697	0.507059
34	1	0	-5.915053	-1.409658	-0.041461
35	6	0	0.810761	-0.387151	-2.058414
36	1	0	0.829364	0.639362	-2.430931
37	1	0	0.680034	-1.038413	-2.924165
38	6	0	2.065864	-0.721168	-1.266220
39	1	0	2.372903	-1.751932	-1.450945
40	6	0	3.255128	0.182484	-1.489957
41	1	0	2.995378	1.232428	-1.294133

42	1	0	4.075035	-0.097429	-0.813595	
43	8	0	3.636692	0.015429	-2.855653	
44	1	0	4.417484	0.550959	-3.030682	

¹**K** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
			1 604065			
Ţ	21	0	1.694865	-0.110335	0.620492	
2	6	0	1.152683	0.542926	2.617779	
3	6	0	2.531201	0.372770	2.575390	
4	6	0	0.544853	-0.688375	2.175600	
5	б	0	2.810837	-0.981315	2.143732	
6	6	0	1.585471	-1.652572	1.982565	
7	1	0	0.625203	1.455933	2.848599	
8	1	0	3.275303	1.131762	2.771757	
9	1	0	-0.514349	-0.872798	2.070267	
10	1	0	3.793667	-1.408517	2.008040	
11	1	0	1.447177	-2.678895	1.682754	
12	7	0	0.745655	1.317084	-0.348004	
13	6	0	-0.590501	1.341186	-0.618804	
14	6	0	1.423599	2.476317	-0.509079	
15	7	0	-1.273153	2.465449	-0.845631	
16	6	0	0.795157	3.655437	-0.842728	
17	6	0	-0.599099	3.601753	-0.939954	
18	1	0	2.494180	2.442633	-0.337202	
19	1	0	1.348615	4.574790	-0.971443	
20	1	0	-1.187228	4.498224	-1.110885	
21	7	0	-1.277930	0.151465	-0.640272	
22	6	0	-0.784092	-1.080778	-1.159823	
23	6	0	-2.609029	-0.052144	-0.190063	
24	б	0	-1.749582	-2.022447	-1.010083	
25	б	0	-2.900997	-1.418939	-0.385553	

26	6	0	-3.519345	0.823127	0.395972	
27	6	0	-4.144252	-1.922206	0.011210	
28	6	0	-4.748746	0.297482	0.784023	
29	6	0	-5.059856	-1.056193	0.594081	
30	1	0	-1.674931	-3.039690	-1.364131	
31	1	0	-3.302337	1.874348	0.514464	
32	1	0	-4.385597	-2.968365	-0.135531	
33	1	0	-5.484112	0.955809	1.230667	
34	1	0	-6.029897	-1.427188	0.902160	
35	6	0	0.533985	-1.163532	-1.860919	
36	1	0	0.657934	-0.291675	-2.512970	
37	1	0	0.508514	-2.029938	-2.526255	
38	6	0	1.743424	-1.292381	-0.927994	
39	1	0	1.825040	-2.324082	-0.583521	
40	6	0	3.060351	-0.938607	-1.623192	
41	1	0	3.034378	0.095355	-2.003655	
42	1	0	3.907802	-1.024247	-0.925587	
43	8	0	3.206725	-1.862541	-2.697685	
44	1	0	4.027095	-1.671138	-3.164949	

¹L (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.755104	-0.563450	-0.329483	
2	6	0	-0.525383	-1.222549	-1.869298	
3	6	0	-1.604278	-0.466522	-2.461769	
4	6	0	-1.082777	-2.344722	-1.216725	
5	б	0	-2.808214	-1.095283	-2.129558	
6	б	0	-2.497837	-2.232405	-1.303217	
7	1	0	0.526862	-0.995136	-1.949297	
8	1	0	-1.494392	0.441278	-3.035833	
9	1	0	-0.531125	-3.102692	-0.683035	

10	1	0	-3.799808	-0.762939	-2.399325
11	1	0	-3.216355	-2.924732	-0.889744
12	7	0	-0.890750	1.203384	-0.005551
13	6	0	0.446625	1.418916	0.140262
14	6	0	-1.657746	2.298010	-0.203573
15	7	0	1.035715	2.594246	-0.084369
16	6	0	-1.124469	3.559730	-0.353806
17	6	0	0.269129	3.642529	-0.347232
18	1	0	-2.725350	2.132068	-0.264388
19	1	0	-1.753849	4.423648	-0.514561
20	1	0	0.782728	4.578877	-0.542805
21	7	0	1.256278	0.370325	0.527803
22	6	0	0.944509	-0.601823	1.516603
23	6	0	2.583936	0.140652	0.083976
24	6	0	2.012526	-1.425026	1.666944
25	6	0	3.055194	-1.000945	0.767161
26	6	0	3.354422	0.799580	-0.871317
27	6	0	4.336132	-1.491774	0.492568
28	б	0	4.623864	0.290429	-1.128589
29	б	0	5.111389	-0.839303	-0.455858
30	1	0	2.074417	-2.229218	2.384678
31	1	0	3.002841	1.690326	-1.370478
32	1	0	4.712654	-2.365082	1.012043
33	1	0	5.251810	0.788488	-1.857489
34	1	0	6.107589	-1.202082	-0.678414
35	б	0	-0.337558	-0.560391	2.286353
36	1	0	-0.188214	-1.135021	3.205380
37	1	0	-0.567232	0.460270	2.597323
38	6	0	-1.507533	-1.145919	1.514094
39	1	0	-1.559917	-2.229302	1.569624
40	6	0	-2.828330	-0.490442	1.561851
41	1	0	-3.659164	-1.175421	1.745813
42	1	0	-3.129434	-0.140285	0.414261
43	8	0	-2.879912	0.681187	2.312267
44	1	0	-3.797288	0.938456	2.455743

¹M (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.774685	-0.530622	-0.389202	
2	6	0	-0.389878	-1.140202	-1.927266	
3	б	0	-1.590993	-0.570346	-2.464480	
4	б	0	-0.735555	-2.263624	-1.163908	
5	б	0	-2.678925	-1.394453	-2.068061	
6	6	0	-2.163236	-2.404617	-1.213275	
7	1	0	0.608587	-0.750317	-2.057159	
8	1	0	-1.652841	0.300539	-3.098690	
9	1	0	-0.049881	-2.890784	-0.615542	
10	1	0	-3.715387	-1.252032	-2.331115	
11	1	0	-2.741477	-3.182271	-0.736648	
12	7	0	-0.926519	1.248558	-0.031758	
13	6	0	0.408664	1.456917	0.147255	
14	6	0	-1.674936	2.357236	-0.236876	
15	7	0	1.015276	2.625791	-0.051751	
16	6	0	-1.123817	3.614733	-0.365598	
17	6	0	0.267927	3.685883	-0.327181	
18	1	0	-2.739734	2.199315	-0.326468	
19	1	0	-1.743380	4.484435	-0.533858	
20	1	0	0.796854	4.617128	-0.504862	
21	7	0	1.207021	0.399296	0.547083	
22	6	0	0.894552	-0.543644	1.559475	
23	6	0	2.532457	0.157005	0.110222	
24	6	0	1.962372	-1.363894	1.734759	
25	6	0	3.004454	-0.966040	0.823151	
26	6	0	3.301003	0.789401	-0.865018	
27	6	0	4.284858	-1.465242	0.558195	
28	6	0	4.568781	0.272343	-1.111960	
29	6	0	5.057300	-0.839604	-0.409819	

30	1	0	2.023013	-2.148518	2.474089
31	1	0	2.949179	1.667353	-1.386677
32	1	0	4.662741	-2.324276	1.099991
33	1	0	5.195296	0.749566	-1.855888
34	1	0	6.052508	-1.209029	-0.625655
35	б	0	-0.390526	-0.492905	2.323434
36	1	0	-0.649632	0.533272	2.590280
37	1	0	-0.232175	-1.023721	3.267570
38	б	0	-1.549935	-1.151647	1.605898
39	1	0	-1.490862	-2.228718	1.507259
40	б	0	-2.828992	-0.628383	1.601192
41	1	0	-3.687077	-1.264420	1.414235
42	8	0	-3.073617	0.570578	2.172393
43	1	0	-4.005931	0.800168	2.090158
44	1	0	-3.078282	0.115460	-0.347543

¹**TS**_{C-I} (NIMAG=1, 352.5*i* cm⁻¹)

Center	Atomic	Atomic	Сос	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Ζ	
1	27	0	-1.482330	-0.619771	-0.184904	
2	6	0	-0.949480	-1.674165	-1.955154	
3	6	0	-2.053914	-0.845874	-2.268992	
4	6	0	-1.376302	-2.596449	-0.944881	
5	6	0	-3.128650	-1.182738	-1.415481	
6	6	0	-2.706034	-2.287856	-0.604846	
7	1	0	0.021182	-1.651404	-2.424910	
8	1	0	-2.044718	-0.030375	-2.977362	
9	1	0	-0.776944	-3.377215	-0.505734	
10	1	0	-4.100343	-0.714640	-1.394061	
11	1	0	-3.298682	-2.792593	0.143235	
12	б	0	0.385866	-0.723216	0.565376	
13	6	0	1.354724	-1.740236	0.572251	

14	7	0	1.087214	0.431258	0.067688
15	б	0	2.619199	-1.222279	0.189315
16	б	0	2.438833	0.154094	-0.126311
17	6	0	3.902723	-1.795266	0.090281
18	6	0	3.495104	0.963303	-0.541701
19	б	0	4.949763	-0.996683	-0.327598
20	6	0	4.744601	0.363101	-0.639726
21	1	0	1.178661	-2.744615	0.930272
22	1	0	4.059013	-2.839581	0.333029
23	1	0	3.344490	2.008822	-0.766441
24	1	0	5.945529	-1.413639	-0.414504
25	1	0	5.589450	0.961859	-0.958819
26	6	0	0.341792	1.525252	-0.288900
27	7	0	-0.982526	1.254459	-0.367152
28	7	0	0.893747	2.712513	-0.502083
29	б	0	-1.819749	2.284907	-0.540289
30	б	0	0.054073	3.719643	-0.747549
31	б	0	-1.332123	3.566756	-0.738419
32	1	0	-2.875312	2.049999	-0.510431
33	1	0	0.510579	4.685274	-0.939481
34	1	0	-1.998362	4.403383	-0.894503
35	8	0	-2.597226	-0.025051	1.236393
36	6	0	-1.772620	0.306878	3.231477
37	1	0	-2.483839	1.085368	3.472467
38	1	0	-2.065438	-0.707380	3.468515
39	6	0	-0.471024	0.596555	2.939571
40	1	0	-0.160543	1.628686	2.818553
41	6	0	0.433382	-0.438123	2.615788
42	1	0	0.164874	-1.440110	2.930308
43	1	0	1.495248	-0.224815	2.644626
44	1	0	-3.354148	-0.606048	1.372100

 1 **TS**_{D-E} (NIMAG=1, 281.8*i* cm⁻¹)

Center	Atomic	Atomic	c Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.221459	-0.722650	-0.155570	
2	6	0	-1.347981	-1.042717	-2.271169	
3	6	0	-2.632677	-0.701544	-1.721978	
4	6	0	-0.926700	-2.235743	-1.660137	
5	б	0	-2.993869	-1.689476	-0.787378	
б	б	0	-1.909028	-2.618338	-0.698611	
7	1	0	-0.803694	-0.480197	-3.014199	
8	1	0	-3.227353	0.159518	-1.984859	
9	1	0	0.017608	-2.729468	-1.826924	
10	1	0	-3.899290	-1.695551	-0.202692	
11	1	0	-1.870296	-3.493204	-0.067179	
12	7	0	-0.779790	1.209008	-0.230231	
13	6	0	0.550610	1.484404	-0.141464	
14	6	0	-1.601838	2.246218	-0.470201	
15	7	0	1.102744	2.679275	-0.324414	
16	6	0	-1.108617	3.524042	-0.668133	
17	6	0	0.275258	3.684402	-0.600434	
18	1	0	-2.660268	2.022404	-0.465338	
19	1	0	0.737851	4.652760	-0.763133	
20	1	0	-1.770717	4.354560	-0.868217	
21	7	0	1.311040	0.396322	0.177106	
22	6	0	0.659248	-0.844138	0.429289	
23	б	0	2.702912	0.200427	0.123858	
24	б	0	1.639511	-1.799942	0.539648	
25	б	0	2.920137	-1.182308	0.344718	
26	б	0	3.747584	1.092452	-0.099937	
27	б	0	4.230040	-1.682647	0.347597	
28	б	0	5.035910	0.566172	-0.094043	
29	6	0	5.276223	-0.800180	0.127361	
30	1	0	1.474742	-2.838542	0.786565	
31	1	0	3.562881	2.143442	-0.262392	
32	1	0	4.417369	-2.736233	0.517570	
33	1	0	5.874887	1.231219	-0.259949	

34	1	0	6.295937	-1.165637	0.126230	
35	6	0	-0.562690	-0.847793	1.985466	
36	6	0	-1.956430	-0.663823	1.734689	
37	1	0	-0.014170	-0.029220	2.442068	
38	1	0	-0.251907	-1.821627	2.336941	
39	1	0	-2.563467	-1.556165	1.849840	
40	6	0	-2.683632	0.586694	2.153201	
41	1	0	-2.002879	1.445882	2.189425	
42	1	0	-3.070364	0.431649	3.169198	
43	8	0	-3.768434	0.828286	1.249580	
44	1	0	-4.441781	1.340451	1.709518	

1 **TS**_{E-F} (NIMAG=1, 232.8*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	27	0	-1.421252	-0.605280	-0.340917
2	6	0	-0.372894	-1.565158	-1.866207
3	6	0	-1.322497	-0.735143	-2.488008
4	6	0	-1.062937	-2.495056	-1.003760
5	6	0	-2.593224	-1.086722	-1.958977
6	6	0	-2.440582	-2.209161	-1.077891
7	1	0	0.701243	-1.492446	-1.964124
8	1	0	-1.115486	0.084892	-3.158006
9	1	0	-0.589050	-3.245327	-0.390058
10	1	0	-3.524558	-0.574059	-2.149491
11	1	0	-3.235722	-2.690463	-0.531683
12	7	0	-0.845841	1.279759	-0.024083
13	6	0	0.468974	1.541652	0.185966
14	6	0	-1.654692	2.328767	-0.276316
15	7	0	1.033795	2.730631	0.000355
16	6	0	-1.149592	3.606227	-0.420610
17	6	0	0.236136	3.744606	-0.322604

18	1	0	-2.709309	2.098056	-0.364604	
19	1	0	-1.795860	4.447024	-0.630274	
20	1	0	0.720721	4.701444	-0.489436	
21	. 7	0	1.255060	0.484938	0.608116	
22	6	0	0.827141	-0.556717	1.484227	
23	б	0	2.571486	0.201151	0.179897	
24	. б	0	1.833604	-1.469309	1.574216	
25	б б	0	2.935034	-1.036709	0.755863	
26	6	0	3.421438	0.898830	-0.675700	
27	6	0	4.192937	-1.585648	0.476192	
28	6	0	4.663366	0.330257	-0.938477	
29	б	0	5.047291	-0.894865	-0.370251	
30	1	0	1.821696	-2.332106	2.223555	
31	. 1	0	3.147317	1.858636	-1.088265	
32	1	0	4.490566	-2.530203	0.916090	
33	1	0	5.354865	0.855218	-1.586517	
34	. 1	0	6.026929	-1.299718	-0.593466	
35	6	0	-0.432765	-0.453335	2.306612	
36	1	0	-0.525462	0.575828	2.670353	
37	1	0	-0.278454	-1.073246	3.194795	
38	6	0	-1.731199	-0.871421	1.585890	
39	1	0	-1.915373	-1.935959	1.735167	
40	6	0	-2.962322	-0.059300	1.975173	
41	. 1	0	-3.538583	-0.563937	2.759681	
42	1	0	-2.665638	0.925619	2.355645	
43	8	0	-3.785869	0.106635	0.798171	
44	. 1	0	-4.658410	0.415270	1.067888	

¹**TS**_{F-G} (NIMAG=1, 354.6*i* cm⁻¹)

Center	Atomic	Atomic	Coo	rdinates (A	ngstroms)	
Number	Number	Туре	Х	Ү	Z	
1	27	0	-1.772465	-0.435273	-0.299343	

2	б	0	-0.467513	-1.085078	-1.776478
3	6	0	-1.423939	-0.235835	-2.441293
4	6	0	-1.165787	-2.199148	-1.245122
5	6	0	-2.691265	-0.780712	-2.239886
6	6	0	-2.549189	-1.980081	-1.453644
7	1	0	0.601536	-0.941300	-1.750834
8	1	0	-1.198616	0.686150	-2.955941
9	1	0	-0.719901	-3.018952	-0.704630
10	1	0	-3.628800	-0.347937	-2.557831
11	1	0	-3.354026	-2.623834	-1.133593
12	7	0	-0.844453	1.265397	0.189349
13	6	0	0.502066	1.429620	0.324059
14	6	0	-1.578304	2.394235	0.084246
15	7	0	1.122632	2.603184	0.189126
16	6	0	-1.010340	3.648816	0.024640
17	6	0	0.385020	3.691184	0.022774
18	1	0	-2.649992	2.260798	0.024562
19	1	0	-1.615929	4.539881	-0.063064
20	1	0	0.924216	4.625277	-0.101847
21	7	0	1.288014	0.329543	0.598071
22	б	0	0.954473	-0.737716	1.475461
23	б	0	2.597677	0.103203	0.100300
24	б	0	1.993305	-1.610566	1.508059
25	б	0	3.035314	-1.126152	0.638480
26	б	0	3.376257	0.837100	-0.791755
27	б	0	4.290876	-1.629606	0.281689
28	б	0	4.619730	0.313650	-1.133305
29	6	0	5.074455	-0.902426	-0.603475
30	1	0	2.038882	-2.490963	2.131419
31	1	0	3.050749	1.790984	-1.179022
32	1	0	4.641772	-2.569937	0.690303
33	1	0	5.253393	0.867725	-1.815323
34	1	0	6.051563	-1.274186	-0.887387
35	6	0	-0.303162	-0.726016	2.283135
36	1	0	-0.469677	0.282150	2.678437
37	1	0	-0.134154	-1.366520	3.155746

	38	6	0	-1.543702	-1.198202	1.523097
	39	1	0	-1.558892	-2.284852	1.461074
4	40	б	0	-2.871476	-0.654189	2.033222
4	41	1	0	-2.758354	0.111970	2.804498
4	42	1	0	-3.579140	-1.414502	2.370355
4	43	8	0	-3.393813	-0.033209	0.811091
4	44	1	0	-4.197885	0.486738	0.905564

¹**TS**_{G-H} (NIMAG=1, 313.1i cm⁻¹)

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	27	0	-1.811245	-0.463197	-0.236583		
2	6	0	-0.447938	-1.013468	-1.787801		
3	б	0	-1.557903	-0.304546	-2.364070		
4	б	0	-0.944092	-2.166443	-1.159004		
5	б	0	-2.724102	-1.037696	-2.088159		
6	6	0	-2.372059	-2.163473	-1.286809		
7	1	0	0.589117	-0.718511	-1.831609		
8	1	0	-1.504924	0.625637	-2.908843		
9	1	0	-0.350105	-2.893978	-0.628495		
10	1	0	-3.727986	-0.738777	-2.351590		
11	1	0	-3.047540	-2.922271	-0.921811		
12	7	0	-0.867878	1.271163	0.215743		
13	б	0	0.477956	1.445955	0.325490		
14	б	0	-1.616287	2.394613	0.121804		
15	7	0	1.091000	2.618191	0.181170		
16	6	0	-1.048210	3.650742	0.046790		
17	6	0	0.343403	3.703561	0.020058		
18	1	0	-2.685452	2.227262	0.094748		
19	1	0	-1.661735	4.537414	-0.031710		
20	1	0	0.876780	4.639103	-0.117468		
21	7	0	1.278090	0.347229	0.589716		
22	6	0	0.987205	-0.694215	1.506583		
----	---	---	-----------	-----------	-----------		
23	б	0	2.574777	0.125607	0.063616		
24	б	0	2.040253	-1.552264	1.538194		
25	б	0	3.048859	-1.079658	0.625662		
26	6	0	3.316276	0.845643	-0.871529		
27	6	0	4.303329	-1.573045	0.248790		
28	6	0	4.558000	0.332360	-1.231970		
29	6	0	5.048502	-0.860275	-0.679126		
30	1	0	2.116820	-2.412069	2.186977		
31	1	0	2.964905	1.783651	-1.275107		
32	1	0	4.682594	-2.493788	0.676252		
33	1	0	5.163700	0.876148	-1.946871		
34	1	0	6.024055	-1.223424	-0.978977		
35	6	0	-0.245366	-0.696138	2.354012		
36	1	0	-0.463867	0.312747	2.716558		
37	1	0	-0.018169	-1.294421	3.242327		
38	6	0	-1.483714	-1.286522	1.696201		
39	1	0	-1.418737	-2.349033	1.482478		
40	6	0	-2.752333	-0.803241	1.989612		
41	1	0	-2.888306	0.091550	2.580934		
42	1	0	-3.617089	-1.449322	1.914554		
43	8	0	-3.431939	0.347124	0.382438		
44	1	0	-4.222747	-0.129670	0.109430		

¹**TS_{H-I}** (NIMAG=1, 48.3*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.834851	-0.403289	-0.541688	
2	6	0	-0.335266	-0.990898	-1.881663	
3	6	0	-1.601516	-0.759968	-2.505571	
4	6	0	-0.502309	-1.988079	-0.908318	
5	6	0	-2.537592	-1.696641	-1.957219	

6	6	0	-1.872048	-2.426277	-0.952405
7	1	0	0.573398	-0.439062	-2.067070
8	1	0	-1.814748	-0.020415	-3.262929
9	1	0	0.254028	-2.331272	-0.219083
10	1	0	-3.583601	-1.767701	-2.214306
11	1	0	-2.322239	-3.152953	-0.293356
12	7	0	-0.963439	1.335930	0.041909
13	6	0	0.347985	1.529593	0.341793
14	6	0	-1.726039	2.447694	-0.078263
15	7	0	0.940313	2.715393	0.371586
16	6	0	-1.185938	3.716265	0.005689
17	6	0	0.192012	3.799679	0.180246
18	1	0	-2.778734	2.259654	-0.245493
19	1	0	-1.808413	4.594409	-0.097710
20	1	0	0.712673	4.752052	0.186872
21	7	0	1.150246	0.418174	0.620028
22	б	0	1.038853	-0.447736	1.738822
23	б	0	2.380361	0.165863	-0.015764
24	б	0	2.132145	-1.260323	1.760919
25	б	0	2.988502	-0.915647	0.657627
26	б	0	2.956310	0.764733	-1.136050
27	б	0	4.211473	-1.414702	0.188578
28	б	0	4.170115	0.251540	-1.579288
29	б	0	4.789715	-0.827018	-0.926540
30	1	0	2.333507	-2.000566	2.520945
31	1	0	2.506781	1.620263	-1.623957
32	1	0	4.696640	-2.242342	0.692594
33	1	0	4.652702	0.702414	-2.438046
34	1	0	5.737653	-1.196921	-1.298043
35	б	0	-0.089479	-0.377477	2.731239
36	1	0	-0.563723	0.606862	2.728805
37	1	0	0.353321	-0.497183	3.726280
38	б	0	-1.132194	-1.455032	2.547996
39	1	0	-0.747795	-2.471746	2.504146
40	6	0	-2.446993	-1.245107	2.504690
41	1	0	-2.874892	-0.251656	2.561064

42	1	0	-3.146956	-2.070287	2.433194	
43	8	0	-3.376861	0.305971	-0.028270	
44	1	0	-4.182153	-0.161772	-0.275935	

${}^{1}TS_{G-L}$ (NIMAG=1, 202.0*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.720840	-0.547145	-0.366452	
2	б	0	-0.526785	-1.288959	-1.826285	
3	6	0	-1.483522	-0.457416	-2.520315	
4	6	0	-1.235985	-2.370498	-1.221826	
5	6	0	-2.752483	-0.956757	-2.249412	
6	6	0	-2.611437	-2.123755	-1.405697	
7	1	0	0.545383	-1.160737	-1.827095	
8	1	0	-1.251102	0.434231	-3.082442	
9	1	0	-0.792280	-3.176204	-0.658850	
10	1	0	-3.690686	-0.521324	-2.563029	
11	1	0	-3.423288	-2.730150	-1.031703	
12	7	0	-0.873191	1.192802	-0.010010	
13	6	0	0.459585	1.415784	0.149632	
14	6	0	-1.656686	2.279026	-0.187719	
15	7	0	1.038602	2.599443	-0.054272	
16	6	0	-1.133050	3.546918	-0.318373	
17	6	0	0.260253	3.642391	-0.306761	
18	1	0	-2.723349	2.101086	-0.229308	
19	1	0	-1.769425	4.408286	-0.464296	
20	1	0	0.764281	4.586828	-0.487817	
21	7	0	1.267736	0.364956	0.532157	
22	6	0	0.937077	-0.628145	1.495358	
23	6	0	2.598276	0.137932	0.097206	
24	6	0	1.999101	-1.461285	1.636408	
25	6	0	3.054804	-1.022416	0.758635	

26	6	0	3.383212	0.815952	-0.832438
27	6	0	4.336479	-1.513189	0.487205
28	б	0	4.653200	0.306490	-1.086656
29	б	0	5.126504	-0.841950	-0.435808
30	1	0	2.049384	-2.281769	2.336394
31	1	0	3.041448	1.720555	-1.313332
32	1	0	4.702665	-2.400602	0.989934
33	1	0	5.292710	0.818871	-1.795308
34	1	0	6.123541	-1.204530	-0.654974
35	6	0	-0.352146	-0.589744	2.253193
36	1	0	-0.214855	-1.181898	3.164051
37	1	0	-0.572895	0.430965	2.573859
38	б	0	-1.529619	-1.136212	1.451774
39	1	0	-1.552236	-2.225921	1.489482
40	б	0	-2.916583	-0.617025	1.858472
41	1	0	-3.247641	-1.184276	2.740626
42	1	0	-3.667824	-0.852314	1.075093
43	8	0	-2.901514	0.783181	2.110243
44	1	0	-3.632251	1.003135	2.696290

${}^{1}TS_{L-M}$ (NIMAG=1, 529.2*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.764226	-0.543342	-0.349949	
2	б	0	-0.468932	-1.155179	-1.918078	
3	6	0	-1.617093	-0.472379	-2.455775	
4	6	0	-0.917828	-2.294476	-1.228867	
5	6	0	-2.766012	-1.203105	-2.096154	
6	6	0	-2.346780	-2.300267	-1.279738	
7	1	0	0.560179	-0.847937	-2.027933	
8	1	0	-1.595909	0.433835	-3.041917	
9	1	0	-0.293870	-3.002583	-0.705981	

10	1	0	-3.786035	-0.952956	-2.345230
11	1	0	-2.994594	-3.047983	-0.846908
12	7	0	-0.903801	1.229038	-0.003557
13	6	0	0.433127	1.436808	0.159015
14	6	0	-1.658534	2.332517	-0.204514
15	7	0	1.033724	2.609219	-0.044978
16	6	0	-1.113615	3.591690	-0.338651
17	6	0	0.279205	3.666127	-0.310453
18	1	0	-2.724877	2.172205	-0.284262
19	1	0	-1.735802	4.460240	-0.502834
20	1	0	0.802701	4.600135	-0.490093
21	7	0	1.235628	0.378816	0.542840
22	6	0	0.921369	-0.591530	1.530400
23	б	0	2.561633	0.145059	0.098884
24	6	0	1.987486	-1.417659	1.682591
25	6	0	3.030719	-0.997332	0.782282
26	6	0	3.332649	0.800686	-0.858607
27	б	0	4.310045	-1.492241	0.506064
28	6	0	4.599848	0.287442	-1.117562
29	6	0	5.085346	-0.843179	-0.444314
30	1	0	2.046929	-2.221706	2.400772
31	1	0	2.983117	1.692152	-1.358068
32	1	0	4.684956	-2.366124	1.025739
33	1	0	5.227986	0.782626	-1.848262
34	1	0	6.080039	-1.209079	-0.668433
35	6	0	-0.361094	-0.553537	2.299329
36	1	0	-0.603506	0.467028	2.601183
37	1	0	-0.206493	-1.117567	3.224359
38	6	0	-1.529553	-1.166128	1.550855
39	1	0	-1.529560	-2.249813	1.511155
40	6	0	-2.816016	-0.574565	1.563681
41	1	0	-3.687322	-1.221947	1.512245
42	8	0	-2.979686	0.593234	2.248376
43	1	0	-3.907622	0.854057	2.255212
44	1	0	-3.083383	-0.012236	0.068396

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.067598	-0.818644	-0.312769	
2	б	0	-0.115329	-2.150061	-1.764739	
3	б	0	-0.870617	-1.198753	-2.449227	
4	б	0	-0.985437	-2.834054	-0.844007	
5	б	0	-2.229857	-1.277734	-1.970177	
6	б	0	-2.300946	-2.341091	-1.033977	
7	1	0	0.948310	-2.308689	-1.860952	
8	1	0	-0.498701	-0.493868	-3.177801	
9	1	0	-0.698908	-3.633024	-0.177614	
10	1	0	-3.064842	-0.694208	-2.327961	
11	1	0	-3.187052	-2.669963	-0.514413	
12	7	0	-0.894143	1.161383	-0.434694	
13	6	0	0.323401	1.630564	-0.062762	
14	6	0	-1.733438	2.050335	-0.991751	
15	7	0	0.786970	2.849085	-0.284320	
16	6	0	-1.347164	3.358704	-1.230358	
17	6	0	-0.043838	3.705441	-0.881643	
18	1	0	-2.713519	1.685677	-1.268930	
19	1	0	0.347747	4.698702	-1.074588	
20	1	0	-2.022835	4.067717	-1.687917	
21	7	0	1.103890	0.691879	0.591434	
22	6	0	0.464636	-0.447568	1.182590	
23	6	0	2.446892	0.402576	0.359796	
24	6	0	1.446732	-1.421917	1.314756	
25	6	0	2.674420	-0.930221	0.800455	
26	6	0	3.457161	1.172136	-0.218507	
27	6	0	3.960517	-1.493907	0.684831	
28	6	0	4.710251	0.585876	-0.320413	
29	6	0	4.964400	-0.728908	0.126678	

¹**TS**_{E-J} (NIMAG=1, 92.7i cm⁻¹)

30	1	0	1.301726	-2.366313	1.819863
31	1	0	3.275264	2.188191	-0.537378
32	1	0	4.152147	-2.502374	1.031389
33	1	0	5.524434	1.161650	-0.744348
34	1	0	5.964267	-1.133988	0.032587
35	6	0	-0.761127	-0.246707	2.107908
36	1	0	-0.568998	-0.781334	3.040366
37	1	0	-0.839909	0.810687	2.355771
38	6	0	-2.016566	-0.744425	1.405841
39	1	0	-2.224107	-1.773498	1.697813
40	6	0	-3.277789	0.110602	1.543437
41	1	0	-3.490992	0.669338	0.621080
42	1	0	-4.134956	-0.552032	1.716404
43	8	0	-3.108375	1.020293	2.628939
44	1	0	-3.951752	1.446612	2.810555

¹**TS**_{J-K} (NIMAG=1, 117.0i cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	1.562509	-0.193376	0.656457	
2	6	0	0.804296	0.015888	2.655880	
3	6	0	2.124637	0.452061	2.639395	
4	6	0	0.773976	-1.327954	2.130157	
5	6	0	2.939637	-0.620667	2.115443	
6	б	0	2.113303	-1.741790	1.877860	
7	1	0	-0.064263	0.600419	2.920199	
8	1	0	2.479309	1.437756	2.902213	
9	1	0	-0.115876	-1.918609	1.967305	
10	1	0	4.005991	-0.572848	1.945484	
11	1	0	2.427575	-2.703679	1.506245	
12	7	0	0.729087	1.372804	-0.262658	
13	6	0	-0.601091	1.412990	-0.551319	

14	6	0	1.407437	2.538564	-0.338480
15	7	0	-1.288534	2.541764	-0.722519
16	б	0	0.775160	3.735578	-0.599740
17	б	0	-0.615701	3.684783	-0.728808
18	1	0	2.475374	2.493945	-0.158193
19	1	0	1.325688	4.663844	-0.658581
20	1	0	-1.203637	4.588581	-0.855277
21	7	0	-1.269837	0.214227	-0.651261
22	6	0	-0.732890	-0.981683	-1.214330
23	6	0	-2.596883	-0.043614	-0.225540
24	6	0	-1.675218	-1.955414	-1.111655
25	6	0	-2.848850	-1.409437	-0.478361
26	6	0	-3.536296	0.782764	0.385271
27	6	0	-4.082206	-1.961991	-0.115286
28	6	0	-4.754017	0.208469	0.738410
29	6	0	-5.026099	-1.145209	0.491746
30	1	0	-1.570080	-2.953856	-1.509094
31	1	0	-3.348769	1.834011	0.546884
32	1	0	-4.293624	-3.007386	-0.306909
33	1	0	-5.512213	0.827992	1.202112
34	1	0	-5.988735	-1.553845	0.774313
35	6	0	0.588139	-1.003296	-1.923559
36	1	0	0.708010	-0.085999	-2.509479
37	1	0	0.563302	-1.818755	-2.650586
38	6	0	1.805160	-1.205084	-1.006458
39	1	0	1.870999	-2.261196	-0.737512
40	6	0	3.118043	-0.811332	-1.675376
41	1	0	3.114588	0.259461	-1.934319
42	1	0	3.964446	-0.993990	-0.998136
43	8	0	3.231515	-1.610212	-2.849576
44	1	0	4.043830	-1.376328	-3.310838

 1 **TS**_{K-L} (NIMAG=1, 55.3*i* cm⁻¹)

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	27	0	1.720147	-0.106635	0.594733		
2	6	0	1.304483	0.704877	2.568582		
3	б	0	2.670117	0.463440	2.478139		
4	6	0	0.619421	-0.520809	2.237056		
5	6	0	2.865864	-0.925961	2.122516		
6	6	0	1.602807	-1.545062	2.061327		
7	1	0	0.832159	1.655524	2.764219		
8	1	0	3.457229	1.195407	2.592637		
9	1	0	-0.450925	-0.659014	2.190954		
10	1	0	3.820238	-1.409994	1.975872		
11	1	0	1.401704	-2.580862	1.840340		
12	7	0	0.745942	1.283209	-0.411608		
13	б	0	-0.597307	1.310262	-0.646023		
14	6	0	1.426543	2.432048	-0.628604		
15	7	0	-1.277955	2.433131	-0.887745		
16	6	0	0.798176	3.604881	-0.983006		
17	6	0	-0.598832	3.559875	-1.037804		
18	1	0	2.500981	2.396181	-0.484154		
19	1	0	1.354608	4.514941	-1.156925		
20	1	0	-1.185091	4.455565	-1.219195		
21	7	0	-1.293786	0.126898	-0.615093		
22	б	0	-0.820853	-1.122929	-1.112064		
23	6	0	-2.624947	-0.049094	-0.152539		
24	б	0	-1.797937	-2.047578	-0.936967		
25	6	0	-2.936922	-1.415268	-0.318087		
26	6	0	-3.519380	0.850119	0.421585		
27	6	0	-4.184117	-1.893303	0.096415		
28	6	0	-4.753276	0.349417	0.828124		
29	6	0	-5.084148	-1.003229	0.667340		
30	1	0	-1.738757	-3.073355	-1.268546		
31	1	0	-3.287226	1.900278	0.517975		
32	1	0	-4.440496	-2.938842	-0.027459		
33	1	0	-5.476348	1.026642	1.266520		

34	1	0	-6.057061	-1.354644	0.989064
35	6	0	0.495365	-1.243298	-1.810807
36	1	0	0.647673	-0.385215	-2.473458
37	1	0	0.451372	-2.116519	-2.465925
38	б	0	1.688566	-1.398087	-0.863074
39	1	0	1.700150	-2.412543	-0.463661
40	6	0	3.032942	-1.125070	-1.544408
41	1	0	3.153527	-0.047032	-1.762223
42	1	0	3.860539	-1.429129	-0.889931
43	8	0	3.048596	-1.870041	-2.757411
44	1	0	3.884199	-1.711956	-3.209701

³A (NIMAG=0)

Center	Atomic	Atomic	omic Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	27	0	-1.443626	-0.409184	-0.425549		
2	6	0	-1.779381	-1.045026	-2.524187		
3	б	0	-2.690135	-0.010937	-2.322129		
4	6	0	-2.063572	-2.084251	-1.545595		
5	6	0	-3.520370	-0.366709	-1.206823		
6	6	0	-3.190190	-1.679501	-0.793196		
7	1	0	-0.993884	-1.081245	-3.262984		
8	1	0	-2.721782	0.923899	-2.861115		
9	1	0	-1.560484	-3.037574	-1.487114		
10	1	0	-4.312160	0.240698	-0.792130		
11	1	0	-3.657748	-2.231512	0.007206		
12	7	0	-0.758895	1.501746	-0.221976		
13	6	0	0.598103	1.590123	-0.170426		
14	6	0	-1.450769	2.644201	-0.101212		
15	7	0	1.288886	2.716769	-0.030764		
16	6	0	-0.813070	3.862788	0.053050		
17	6	0	0.581966	3.839961	0.075292		

18	1	0	-2.530465	2.563517	-0.129712	
19	1	0	-1.371346	4.783281	0.147164	
20	1	0	1.155206	4.755158	0.184767	
21	7	0	1.226389	0.380349	-0.271243	
22	6	0	0.431881	-0.789481	-0.395991	
23	6	0	2.587999	0.032055	-0.248546	
24	6	0	1.283354	-1.860850	-0.468132	
25	6	0	2.639870	-1.379008	-0.360848	
26	6	0	3.735676	0.812453	-0.133494	
27	6	0	3.881938	-2.026739	-0.361000	
28	6	0	4.954560	0.142016	-0.139947	
29	6	0	5.029714	-1.256206	-0.253032	
30	1	0	0.992722	-2.892785	-0.597277	
31	1	0	3.677019	1.886845	-0.047505	
32	1	0	3.941937	-3.105160	-0.447051	
33	1	0	5.869555	0.716111	-0.056749	
34	1	0	6.000744	-1.736268	-0.255026	
35	8	0	-1.834050	-0.366891	1.680286	
36	6	0	-1.247942	-0.767829	2.687420	
37	8	0	-0.071993	-1.365976	2.649171	
38	6	0	-1.806360	-0.627960	4.067744	
39	1	0	-1.932704	-1.619743	4.508650	
40	1	0	-1.096176	-0.085898	4.696053	
41	1	0	-2.759980	-0.107537	4.036770	
42	1	0	0.251520	-1.427532	1.724402	

³**B** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.577450	-0.462432	0.000285	
2	б	0	-2.380713	-2.373514	0.000106	
3	б	0	-2.909801	-1.720928	-1.162823	

4	6	0	-2.910371	-1.720690	1.162611	
5	6	0	-3.676116	-0.630051	-0.716740	
6	6	0	-3.676424	-0.629846	0.715878	
7	1	0	-1.769997	-3.262922	0.000343	
8	1	0	-2.713750	-1.994783	-2.187989	
9	1	0	-2.714890	-1.994355	2.187937	
10	1	0	-4.179103	0.089323	-1.346762	
11	1	0	-4.179794	0.089630	1.345477	
12	б	0	0.230359	-0.882017	0.000071	
13	б	0	1.088549	-1.966620	0.000004	
14	7	0	1.045576	0.283663	0.000072	
15	б	0	2.437825	-1.494292	-0.000018	
16	б	0	2.402937	-0.073258	0.000006	
17	б	0	3.677287	-2.155781	-0.000047	
18	б	0	3.557007	0.698840	-0.000012	
19	б	0	4.832325	-1.392625	-0.000054	
20	б	0	4.770303	0.012744	-0.000041	
21	1	0	0.789322	-3.003577	0.000004	
22	1	0	3.723209	-3.238095	-0.000062	
23	1	0	3.513496	1.777573	0.000013	
24	1	0	5.799800	-1.879272	-0.000069	
25	1	0	5.692591	0.581233	-0.000046	
26	б	0	0.421665	1.491232	0.000032	
27	7	0	-0.944489	1.390016	0.000072	
28	7	0	1.101368	2.632556	-0.000043	
29	6	0	0.386498	3.753765	-0.000096	
30	б	0	-1.012268	3.767158	-0.000067	
31	6	0	-1.645936	2.541599	0.000023	
32	1	0	-2.724708	2.452682	0.000046	
33	1	0	0.952717	4.679844	-0.000170	
34	1	0	-1.573663	4.690440	-0.000118	

³C (NIMAG=0)

Center	Atomic	Atomic	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z		
1	27	0	-1.403056	-0.835182	0.023380		
2	б	0	-1.806839	-2.550950	-1.322556		
3	б	0	-2.806443	-1.624441	-1.615765		
4	6	0	-1.908243	-2.876226	0.086900		
5	6	0	-3.531401	-1.353030	-0.407551		
6	6	0	-3.027917	-2.185101	0.617223		
7	1	0	-1.069646	-2.945918	-2.003995		
8	1	0	-2.973964	-1.150543	-2.571309		
9	1	0	-1.303133	-3.604358	0.604698		
10	1	0	-4.366747	-0.673041	-0.319085		
11	1	0	-3.387952	-2.249375	1.632767		
12	6	0	0.473094	-1.070362	0.175397		
13	6	0	1.371093	-1.961266	0.696533		
14	7	0	1.211913	-0.003631	-0.403506		
15	б	0	2.701600	-1.448127	0.485432		
16	б	0	2.587665	-0.223859	-0.219316		
17	б	0	3.972581	-1.929096	0.826787		
18	б	0	3.696818	0.529591	-0.591403		
19	6	0	5.084049	-1.186043	0.457529		
20	6	0	4.945806	0.024795	-0.240787		
21	1	0	1.129951	-2.889217	1.191608		
22	1	0	4.082335	-2.862915	1.365286		
23	1	0	3.588656	1.458576	-1.130796		
24	1	0	6.075643	-1.542113	0.709338		
25	1	0	5.833459	0.581302	-0.516763		
26	6	0	0.524121	1.013301	-0.995754		
27	7	0	-0.827088	0.853728	-0.933856		
28	7	0	1.149240	2.045133	-1.555832		
29	б	0	-1.583045	1.821567	-1.470813		
30	6	0	0.377910	2.985138	-2.097611		
31	6	0	-1.016276	2.926487	-2.081243		
32	1	0	-2.656071	1.694925	-1.400212		
33	1	0	0.897008	3.819421	-2.558988		

34	1	0	-1.626358	3.703044	-2.519891	
35	8	0	-1.857204	0.500656	1.714455	
36	6	0	-0.922457	1.265439	2.545217	
37	1	0	-0.895624	0.796613	3.533694	
38	1	0	0.054160	1.134218	2.082741	
39	6	0	-1.304073	2.709098	2.628680	
40	1	0	-2.276697	2.927301	3.065315	
41	6	0	-0.509979	3.705088	2.248193	
42	1	0	0.475764	3.521379	1.831388	
43	1	0	-0.804879	4.741444	2.361760	
44	1	0	-2.682620	0.385292	2.197360	

³**D'** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-0.305420	-1.262272	-0.169901	
2	6	0	-0.513058	-3.302493	-0.897100	
3	6	0	-1.660838	-2.611407	-1.313016	
4	6	0	-0.458092	-3.232136	0.542236	
5	6	0	-2.319937	-2.097500	-0.151381	
6	б	0	-1.608506	-2.534434	0.995449	
7	1	0	0.216338	-3.780397	-1.533017	
8	1	0	-1.961503	-2.443179	-2.336678	
9	1	0	0.296533	-3.685687	1.166328	
10	1	0	-3.216299	-1.490920	-0.158430	
11	1	0	-1.857257	-2.323183	2.024150	
12	7	0	-0.425220	0.661265	-0.502513	
13	6	0	0.784611	1.298941	-0.413968	
14	6	0	-1.503630	1.415814	-0.799686	
15	7	0	0.979353	2.596792	-0.607553	
16	б	0	-1.376223	2.775809	-1.014500	
17	б	0	-0.096522	3.322002	-0.907805	

18	1	0	-2.467117	0.918329	-0.848854	
19	1	0	0.074651	4.382179	-1.066205	
20	1	0	-2.237317	3.383835	-1.251575	
21	7	0	1.809286	0.459549	-0.098387	
22	6	0	1.501831	-0.914341	0.088627	
23	6	0	3.179995	0.681507	0.098853	
24	6	0	2.689945	-1.550536	0.398269	
25	6	0	3.744711	-0.584739	0.413454	
26	6	0	3.943727	1.839994	0.032680	
27	6	0	5.122880	-0.682913	0.667564	
28	6	0	5.306916	1.708791	0.289646	
29	6	0	5.890315	0.467548	0.602475	
30	1	0	2.802415	-2.605856	0.595017	
31	1	0	3.498817	2.794018	-0.207199	
32	1	0	5.570736	-1.639412	0.908829	
33	1	0	5.934788	2.590733	0.246516	
34	1	0	6.954984	0.416810	0.794527	
35	6	0	-4.628280	2.250101	2.127250	
36	6	0	-4.846943	1.082729	1.530196	
37	1	0	-4.911705	3.189501	1.662289	
38	1	0	-4.182626	2.310831	3.113237	
39	1	0	-4.570834	0.154987	2.026181	
40	6	0	-5.509197	0.933509	0.198058	
41	1	0	-5.782193	1.913983	-0.206827	
42	1	0	-6.423153	0.336471	0.302621	
43	8	0	-4.600078	0.254906	-0.702712	
44	1	0	-5.098442	-0.001690	-1.486528	

${}^{3}F'$ (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (An	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	1.555299	-0.450890	0.294060	

2	6	0	1.766367	-0.222819	2.564770
3	6	0	2.996356	-0.652397	2.010977
4	б	0	0.762791	-1.184470	2.266024
5	б	0	2.754990	-1.859418	1.313094
6	б	0	1.356588	-2.195789	1.483361
7	1	0	1.613280	0.689355	3.123694
8	1	0	3.941285	-0.135118	2.077646
9	1	0	-0.275315	-1.133300	2.557691
10	1	0	3.492022	-2.465436	0.808524
11	1	0	0.870135	-3.083423	1.109145
12	7	0	0.759724	1.342394	-0.104072
13	б	0	-0.580778	1.478327	-0.271260
14	б	0	1.488566	2.474070	-0.009356
15	7	0	-1.229828	2.636527	-0.180555
16	6	0	0.891384	3.716763	0.019377
17	6	0	-0.505160	3.736838	-0.015886
18	1	0	2.559824	2.344559	0.059678
19	1	0	-1.058180	4.666669	0.074158
20	1	0	1.475918	4.622080	0.103645
21	7	0	-1.304952	0.333991	-0.543602
22	6	0	-0.903020	-0.720758	-1.420477
23	6	0	-2.620033	0.059439	-0.094884
24	б	0	-1.912174	-1.626994	-1.484221
25	б	0	-2.997873	-1.180784	-0.650739
26	б	0	-3.451963	0.767664	0.769419
27	б	0	-4.249135	-1.725690	-0.340380
28	б	0	-4.689348	0.204904	1.063278
29	б	0	-5.085964	-1.024875	0.515874
30	1	0	-1.907239	-2.508189	-2.108311
31	1	0	-3.169020	1.729373	1.171046
32	1	0	-4.555047	-2.675777	-0.762135
33	1	0	-5.365319	0.736675	1.721999
34	1	0	-6.060449	-1.427376	0.764531
35	б	0	0.375210	-0.688996	-2.211815
36	б	0	1.587143	-1.299657	-1.495214
37	1	0	0.605646	0.331502	-2.528326

38	1	0	0.193100	-1.261390	-3.129307	
39	1	0	1.484882	-2.381122	-1.415324	
40	6	0	2.942458	-0.897055	-2.037580	
41	1	0	2.919536	-0.756541	-3.126289	
42	1	0	3.692041	-1.657596	-1.800894	
43	8	0	3.278886	0.350865	-1.385468	
44	1	0	4.185699	0.591967	-1.605613	

³**I** (NIMAG=0)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.915015	-0.471416	-0.335118	
2	6	0	-0.552067	-1.120449	-2.016490	
3	б	0	-1.875462	-1.247905	-2.418741	
4	б	0	-0.355950	-1.936339	-0.838304	
5	б	0	-2.527544	-2.143564	-1.484819	
6	6	0	-1.555030	-2.625353	-0.571888	
7	1	0	0.202131	-0.496287	-2.471808	
8	1	0	-2.355570	-0.737375	-3.239796	
9	1	0	0.577209	-2.049081	-0.308445	
10	1	0	-3.561132	-2.454852	-1.529916	
11	1	0	-1.729874	-3.334167	0.221944	
12	7	0	-0.947313	1.323145	0.059636	
13	6	0	0.388981	1.542329	0.175448	
14	6	0	-1.721810	2.420325	-0.117658	
15	7	0	0.979134	2.706903	-0.067042	
16	б	0	-1.180453	3.679663	-0.284629	
17	6	0	0.209440	3.760123	-0.323639	
18	1	0	-2.786669	2.226048	-0.151559	
19	1	0	-1.813213	4.544788	-0.426751	
20	1	0	0.723150	4.690475	-0.544807	
21	7	0	1.210804	0.489096	0.565544	

22	6	0	1.076211	-0.280249	1.750869
23	б	0	2.450459	0.173400	-0.029556
24	б	0	2.166862	-1.085592	1.866870
25	б	0	3.043118	-0.842188	0.751246
26	6	0	3.048002	0.661545	-1.190822
27	6	0	4.272334	-1.386627	0.355178
28	6	0	4.266994	0.105481	-1.561152
29	б	0	4.872545	-0.907128	-0.799073
30	1	0	2.352619	-1.755862	2.692851
31	1	0	2.609342	1.466740	-1.764174
32	1	0	4.743859	-2.164979	0.943475
33	1	0	4.764972	0.471230	-2.451028
34	1	0	5.825600	-1.311979	-1.117203
35	б	0	-0.070686	-0.117993	2.706572
36	1	0	-0.395538	0.923770	2.769308
37	1	0	0.307572	-0.379265	3.700640
38	б	0	-1.246863	-1.015948	2.416760
39	1	0	-1.012714	-2.075785	2.355625
40	6	0	-2.521267	-0.619371	2.329871
41	1	0	-2.810620	0.418551	2.442080
42	1	0	-3.328639	-1.332685	2.218939
43	8	0	-3.524368	0.302950	-0.217735
44	1	0	-4.237382	-0.063629	-0.752550

3 **TS**_{C-I} (NIMAG=1, 327.0*i* cm⁻¹)

Center	Atomic	Atomic	Coo	rdinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.588950	-0.639826	-0.067413	
2	6	0	-1.162446	-1.631643	-1.971289	
3	6	0	-2.166856	-0.689434	-2.262421	
4	б	0	-1.711238	-2.613320	-1.054013	
5	6	0	-3.272144	-0.985022	-1.433142	

6	б	0	-3.008696	-2.220693	-0.738729
7	1	0	-0.179343	-1.675424	-2.414944
8	1	0	-2.069375	0.164801	-2.913747
9	1	0	-1.195615	-3.488678	-0.690913
10	1	0	-4.191886	-0.421573	-1.377988
11	1	0	-3.685675	-2.720840	-0.062692
12	6	0	0.336975	-0.738766	0.479725
13	6	0	1.237428	-1.810612	0.533649
14	7	0	1.097576	0.369008	-0.001077
15	6	0	2.534183	-1.373277	0.162687
16	6	0	2.434923	0.007885	-0.171349
17	6	0	3.780719	-2.026191	0.083884
18	6	0	3.547936	0.744156	-0.580840
19	6	0	4.879172	-1.299084	-0.328651
20	6	0	4.758656	0.067711	-0.656033
21	1	0	0.980444	-2.804905	0.870143
22	1	0	3.867857	-3.075780	0.338446
23	1	0	3.465717	1.793230	-0.819694
24	1	0	5.848478	-1.776734	-0.400876
25	1	0	5.641311	0.611113	-0.972142
26	6	0	0.457375	1.555003	-0.324233
27	7	0	-0.881863	1.453498	-0.368543
28	7	0	1.165643	2.657893	-0.543973
29	6	0	-1.570701	2.578660	-0.573891
30	6	0	0.463206	3.765326	-0.793794
31	б	0	-0.929779	3.789632	-0.795790
32	1	0	-2.650879	2.488480	-0.562576
33	1	0	1.041222	4.663433	-0.986731
34	1	0	-1.483388	4.701116	-0.972996
35	8	0	-2.581216	0.013885	1.358606
36	б	0	-1.649002	0.463785	3.346125
37	1	0	-2.307863	1.292684	3.566928
38	1	0	-1.995037	-0.522501	3.622906
39	6	0	-0.354227	0.665161	2.961080
40	1	0	0.004467	1.672286	2.780947
41	6	0	0.482540	-0.422897	2.667247

42	1	0	0.169353	-1.409144	2.987440
43	1	0	1.551348	-0.271909	2.590389
44	1	0	-3.457384	-0.376512	1.463215

3 **TS**_{D'-F'} (NIMAG=1, 307.6*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)
Number	Number	Туре	Х	Y	Z
1	27	0	-1.251942	-0.798651	-0.091809
2	б	0	-1.390755	-1.526391	-2.158662
3	б	0	-2.507406	-0.702595	-1.934476
4	б	0	-1.491403	-2.672987	-1.280639
5	б	0	-3.231118	-1.247310	-0.843154
б	б	0	-2.629303	-2.510627	-0.492691
7	1	0	-0.618905	-1.369540	-2.897418
8	1	0	-2.724283	0.226339	-2.438379
9	1	0	-0.800484	-3.501782	-1.253742
10	1	0	-4.117548	-0.822524	-0.399093
11	1	0	-2.982634	-3.186784	0.271290
12	7	0	-0.687879	1.353800	-0.313007
13	6	0	0.640297	1.526881	-0.180216
14	6	0	-1.404939	2.435067	-0.644936
15	7	0	1.307415	2.661254	-0.354045
16	6	0	-0.802565	3.665216	-0.866939
17	6	0	0.579345	3.722576	-0.708614
18	1	0	-2.476798	2.292285	-0.703229
19	1	0	1.126776	4.646957	-0.862341
20	1	0	-1.380147	4.535564	-1.145700
21	7	0	1.324415	0.374632	0.182477
22	6	0	0.611349	-0.837768	0.373433
23	б	0	2.698257	0.109365	0.120364
24	6	0	1.572370	-1.853495	0.471559
25	б	0	2.858983	-1.296293	0.305689

26	6	0	3.788738	0.945976	-0.100406	
27	6	0	4.150139	-1.864915	0.288920	
28	б	0	5.047466	0.352572	-0.109018	
29	б	0	5.231090	-1.033016	0.084438	
30	1	0	1.348544	-2.889754	0.678002	
31	1	0	3.658900	2.007112	-0.243736	
32	1	0	4.281190	-2.930504	0.433480	
33	1	0	5.917333	0.980017	-0.263487	
34	1	0	6.234192	-1.440701	0.070070	
35	6	0	-0.556037	-0.791492	2.050039	
36	6	0	-1.927418	-0.459807	1.822906	
37	1	0	0.093988	-0.023530	2.455914	
38	1	0	-0.328968	-1.790479	2.397401	
39	1	0	-2.637646	-1.263097	1.988706	
40	6	0	-2.469672	0.899107	2.179887	
41	1	0	-1.678777	1.657370	2.141997	
42	1	0	-2.830946	0.852175	3.216560	
43	8	0	-3.545234	1.231335	1.300677	
44	1	0	-4.131640	1.845573	1.754251	

 ${}^{3}TS_{F'-I}$ (NIMAG=1, 430.9*i* cm⁻¹)

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	27	0	-1.942041	-0.456730	-0.195774	
2	6	0	-0.805509	-0.593100	-2.142968	
3	б	0	-2.180067	-0.508131	-2.426868	
4	б	0	-0.611154	-1.725181	-1.314697	
5	б	0	-2.836264	-1.673209	-1.884062	
б	б	0	-1.878265	-2.423965	-1.208155	
7	1	0	-0.048952	0.119633	-2.430885	
8	1	0	-2.666036	0.277274	-2.988198	
9	1	0	0.331877	-2.066635	-0.914731	

10	1	0	-3.887945	-1.901833	-1.974827
11	1	0	-2.038786	-3.357499	-0.690161
12	7	0	-0.765673	1.403524	0.255347
13	6	0	0.581520	1.518809	0.279161
14	6	0	-1.464532	2.546666	0.112776
15	7	0	1.253398	2.640696	0.021425
16	б	0	-0.846739	3.767087	-0.088099
17	6	0	0.544341	3.746893	-0.179298
18	1	0	-2.541924	2.438840	0.150211
19	1	0	-1.417419	4.678062	-0.203176
20	1	0	1.110707	4.645447	-0.404284
21	7	0	1.323381	0.385768	0.583624
22	6	0	0.974121	-0.603352	1.539097
23	6	0	2.602928	0.068610	0.067925
24	6	0	1.978388	-1.517350	1.605995
25	6	0	3.010681	-1.137800	0.678283
26	6	0	3.386349	0.708384	-0.892218
27	6	0	4.235170	-1.717113	0.323243
28	6	0	4.595617	0.110975	-1.230003
29	6	0	5.018488	-1.085839	-0.631022
30	1	0	2.002916	-2.358965	2.282236
31	1	0	3.088300	1.647968	-1.332340
32	1	0	4.561598	-2.639937	0.788291
33	1	0	5.230377	0.590554	-1.965473
34	1	0	5.971115	-1.515707	-0.916069
35	6	0	-0.270912	-0.544363	2.370437
36	1	0	-0.501260	0.482900	2.661367
37	1	0	-0.052603	-1.083902	3.298796
38	6	0	-1.495964	-1.191187	1.738894
39	1	0	-1.390925	-2.254033	1.538447
40	6	0	-2.790731	-0.770089	2.088310
41	1	0	-2.937762	0.083568	2.735504
42	1	0	-3.619733	-1.464529	2.032165
43	8	0	-3.450876	0.383355	0.561917
44	1	0	-4.313982	0.073271	0.260539