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Introduction

Let K be a non-archimedean local field with residue field k of characteristic
p > 0. LetWK be the Weil group ofK andD the central division algebra over
K of invariant 1/n. Denote byOK ⊂ K the valuation ring and by p ⊂ OK the
maximal ideal. We fix an algebraic closure k of k. Let n ≥ 1 be an integer.
Then the Lubin-Tate spaces are defined to be certain deformation spaces
of a one-dimensional formal OK-module over k with level structures. The
Lubin-Tate spaces naturally form a projective system, called the Lubin-Tate
tower, and the non-abelian Lubin-Tate theory asserts that the cohomology of
the Lubin-Tate tower, which admits a natural action of a large subgroup of
GLn(K)×D××WK , realizes the local Langlands correspondence for GLn(K)
and the local Jacquet-Langlands correspondence simultaneously. However,
as the proofs of this fact ([Boye99], [HT01]) make heavy use of the theory
of automorphic representations and the global geometry, the geometry of
the Lubin-Tate spaces and its relation to representations are not yet fully
understood.

Among the studies on the geometry of the Lubin-Tate spaces is a work
[Yos10] of Yoshida. There he constructed a semistable model of the Lubin-
Tate space of level p and proved that an affine open subscheme of the reduc-
tion is isomorphic to a Deligne-Lusztig variety for GLn(k). The appearance of
the Deligne-Lusztig variety reflects the fact that some irreducible supercusp-
idal representations of GLn(K) can be constructed from irreducible cuspidal
representations of GLn(k). Note that this open subscheme can also be ob-
tained as the reduction of an affinoid subspace in the Lubin-Tate space by
considering its tube.

More recently, Weinstein showed in [Wei14] that a certain limit space of
the Lubin-Tate tower makes sense as a perfectoid space. While it is no longer
an ordinary finite-type analytic space, the Lubin-Tate perfectoid space has
a simpler geometry; with coordinates not available on the individual Lubin-
Tate spaces, the defining equation is simpler and the group actions can be
made very explicit. Taking advantage of these properties, Weinstein[Wei14],
Boyarchenko-Weinstein[BW16] and Imai-Tsushima[IT15a] constructed fami-
lies of affinoid subspaces and their formal models in the Lubin-Tate perfectoid
space such that the cohomology of the reduction of each formal model re-
alizes the local Langlands and Jacquet-Langlands correspondences for some
representations. The aim of this paper is to establish the existence of such a
family of affinoids related to certain other representations, under a simplify-
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ing assumption that K is of characteristic p > 0.
Let ℓ ̸= p be a prime number. We fix an isomorphism Qℓ ≃ C. Set

G = GLn(K)×D× ×WK . Here is our main theorem:

Theorem. Suppose that K is of equal-characteristic and that p does not
divide n. Let ν > 0 be an integer which is coprime to n. Let L/K be a
totally ramified extension of degree n. Then there exist an affinoid Zν and
a formal model Zν of Zν in the Lubin-Tate perfectoid space such that the
following hold.

(1) The stabilizer Stabν of Zν naturally acts on the reduction Z ν.

(2) For an irreducible smooth representation π of GLn(K), we have

HomGLn(K)

(
c-IndGStabν H

n−1
c

(
Z ν ,Qℓ

)
((1− n)/2), π

)
̸= 0

if and only if the image τ of π under the local Langlands correspondence is
a character twist of an n-dimensional irreducible smooth representation
of the form IndL/K ξ for a character ξ of L× which is non-trivial on
U ν
L, but trivial on U ν+1

L . Moreover, if the above space is non-zero, it is
isomorphic to ρ ⊠ τ as a representation of D× × WK, where ρ is the
image of π under the local Jacquet-Langlands correspondence.

Here, ξ is identified with a character of the Weil group WL of L via the
Artin reciprocity map and IndL/K denotes the smooth induction from WL to
WK .

Let us compare Theorem with the preceding results. The affinoid Z1 and
the formal model Z1 in Theorem are essentially identical to those constructed
in [IT15a]. Also, in [Wei14], the affinoids and the formal models in Theo-
rem are constructed when n = 2 and p ̸= 2, along with those related to the
unramified case in a suitable sense. Thus, Theorem generalizes [IT15a]1 and
partially [Wei14], in the equal-characteristic setting. In the terminology of
Definition 4.4, which is essentially taken from [BH05b], the above condition
for π to occur in the compact induction is equivalent to being parametrized
by a minimal admissible pair (L/K, ξ) with the jump at ν. Let F/K be
an unramified extension of degree n. The affinoids and the formal models
constructed in [BW16] are related, in the same way as in Theorem, to irre-
ducible supercuspidal representations π parametrized by minimal admissible

1However, Imai and Tsushima announced that they also obtained a corresponding
result for n divisible by p.
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pairs (F/K, ξ) with the jump at some ν (see Remark 4.5 (5) for more on
the comparison with the preceding results). The author learned from Imai
and Tsushima that they had previously constructed what should be Z2 and
Z2 in our notation, computed the reduction and verified the non-triviality of
the cohomology. Although this unannounced result preceded ours, our result
was obtained independently. On a related note, in a recent article [IT15b],
the corresponding affinoids in the Lubin-Tate space of level p2 are studied
when K is of equal-characteristic and n = 3.

We note some properties of the affinoids Zν and the reductions Z ν . While
only those with ν coprime to n are relevant to Theorem, the affinoids Zν and
the formal models Zν are constructed for any ν > 0 in a certain uniform
way. The reductions Z ν are related to the perfections of algebraic varieties
Zν , which turn out to be periodic in ν with period 2n. They are quite
different, according to whether ν is odd or even. If ν is odd, Zν is the variety
obtained by pulling back the Artin-Schreier covering A1

k
→ A1

k
by a morphism

An−1

k
→ A1

k
corresponding to a quadratic form depending on ν. If ν is even,

the defining equation of Zν is more involved. However, it can be described
in terms of the Lang torsor of an algebraic group Gν and a morphism related
to a quadratic form (see 2.6 for more details). Here we imitated a similar
description found in [BW16], but the analogy is not so straightforward; the
relevant algebraic groups are not the same and no quadratic forms occur
there.

In Section 1, we review some basic facts on the Lubin-Tate perfectoid
space and a formal model, following [Wei14], [BW16] and [IT15a]. In par-
ticular, a power series δ is defined which essentially serves as the defining
equation of the formal model of the Lubin-Tate perfectoid space. Also the
actions of the relevant groups on the formal model are described explicitly.

In Section 2, a family of affinoids and formal models is constructed, and
the reductions are studied along with the induced actions of the stabilizers.
Building on the notion of CM points and related facts found in [BW16],
[IT15a], which are recalled in Subsection 2.1, we construct affinoids Zν in
Subsection 2.2. The construction of formal models Zν and the computation
of the reductions Z ν given in Subsection 2.4 are based on the behavior
of the power series δ under a certain change of coordinates, which is the
subject of Subsection 2.3. While motivated by that in [Wei14], our argument
is more intricate. Thus we give a rather detailed account. In Subsection
2.5 we compute the stabilizers Stabν of the affinoids Zν and the induced
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actions on the reductions Z ν . The algebraic groups Gν appearing in the
alternative description of Zν given in Subsection 2.6 are modeled on the
actions of Stabν ∩GLn(K).

In Section 3 we compute the cohomology of Z ν together with the relevant
group actions. This is reduced to the corresponding computation for Zν and
is treated separately according to whether ν is odd or even. If ν is odd,
we compute the cohomology for any ν. In particular, it turns out that the
middle-degree cohomology is non-trivial if and only if ν is coprime to n. If
ν is even, our understanding is not as complete and we restrict to the cases
where ν is coprime to n; this suffices for the proof of the main theorem.
Subsections 3.1, 3.2 (resp. Subsection 3.3) contain key ingredients for the
computations for the odd (resp. even) cases.

In Section 4 we prove the main theorem described above. To this end, we
apply the theory of essentially tame local Langlands and Jacquet-Langlands
correspondences developed in [BH05a], [BH05b], [BH10], [BH11], as well as
the results obtained in the previous sections. The review of the theory in the
special cases that we need is given in Subsection 4.1. In Subsection 4.2 we
finally achieve the main theorem.

Let us end this introduction by making a remark on the equal-characteristic
assumption. Although this assumption is in force throughout the paper, it
plays only a minor role in Sections 3 and 4. It seems reasonable to expect
very similar varieties to appear as the reductions of suitable affinoids also
in the mixed-characteristic setting. On the other hand, our computation
of the reductions and the stabilizers in Section 2 heavily relies on this as-
sumption, especially on the particularly simple expression of δ and the group
actions. We hope to consider the problem of extending our results to the
mixed-characteristic setting in a future work.
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Notation For any non-archimedean valuation field F , we denote the valua-
tion ring by OF ⊂ F and its maximal ideal by pF ⊂ OF . If R is a topological
ring, we denote by R◦◦ the set of topologically nilpotent elements.

For any non-archimedean local field F , we write vF for the additive valua-
tion normalized so that vF (ϖF ) = 1 for any uniformizer ϖF ∈ F . We denote
by WF the Weil group of F and the Artin reciprocity map ArtF : F

× →W ab
F

is normalized so that the uniformizers are mapped to geometric Frobenius el-
ements. A multiplicative character ξ of F is often identified with a character
of WF via ArtF .

We take a prime number ℓ ̸= p, and fix an isomorphism Qℓ ≃ C of fields.
Smooth representations over Qℓ are always identified with those over C by
this isomorphism.

1 Preliminaries on Lubin-Tate perfectoid space

We summarize the relevant materials on the Lubin-Tate spaces, the Lubin-
Tate perfectoid space and its formal model. Our basic references are [Wei14],
[BW16] and [IT15a]. In many parts, we closely follow their expositions.

Let K be a non-archimedean local field of characteristic p > 0 and k its
residue field. Denote by p = pK the maximal ideal of OK . We write q for
the cardinality of k. We fix an algebraic closure K of K and denote by k the
residue field of K. Let Cp be the completion of K.

Let n be a positive integer. Let Σ0 be a one-dimensional formal OK-
module over k of height n, which is unique up to isomorphism. Let Kur be
the maximal unramified extension of K and K̂ur its completion. We denote
by C the category of complete Noetherian local OK̂ur-algebras with residue
field k. Let R ∈ C. A pair (Σ, ι) consisting of a formal OK-module Σ over
R and an isomorphism ι : Σ0 → Σ⊗R k is said to be a deformation of Σ0 to
R. For a formal OK-module Σ over R and an integer m ≥ 0, we mean by “a
Drinfeld level pm-structure on Σ” what is called “a structure of level m on
Σ” in [Dri74, p. 572 Definition].

We define a functor C → Sets by associating to R ∈ C the set of iso-
morphism classes of triples (Σ, ι, ϕ) in which (Σ, ι) is a deformation of Σ0

over R and ϕ : (p−m/OK)n → Σ[pm](R) is a Drinfeld level pm-structure on Σ.
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This functor is representable by a regular local ring Rm of dimension n by
[Dri74, Proposition 4.3]. These rings Rm naturally form an inductive system
{Rm}. We denote by R∞ = (lim−→Rm)

∧ the completion of the inductive limit
with respect to the ideal generated by the maximal ideal of R0. We put
MΣ0,∞ = Spf R∞.

Let Kab be the maximal abelian extension of K and K̂ab its completion.
We denote by ∧Σ0 the formal OK-module of height 1 over k. Then from
the above discussion a formal schemeM∧Σ0,∞ is defined. By the Lubin-Tate
theory we haveM∧Σ0,∞ ≃ SpfOK̂ab .

We take a uniformizer ϖ of K. Let (Σ, ι) be a deformation of Σ0 to OK̂ur

and A its coordinate ring. We set Σ̃0 = Spf(lim−→A)∧, where the transition
maps are ring homomorphisms corresponding to the multiplication by ϖ of Σ
and the completion is taken with respect to the ideal generated by a defining
ideal of A. Then Σ̃0 is a K-vector space object in the category of complete,
adic OK̂ur-algebras. It is shown in [Wei14, Proposition 2.4.2] that Σ̃0, as a K-
vector space object, does not depend on the choice of (Σ, ι) and is isomorphic
to SpfOK̂ur [[Xq−∞

]] as a formal scheme. Here OK̂ur [[Xq−∞
]] is defined to be

the (ϖ,X)-adic completion of OK̂ur [Xq−∞
] = lim−→X 7→Xq

OK̂ur [X].

Theorem 1.1. There is a canonical Cartesian diagram of formal schemes:

MΣ0,∞ −−−→ M∧Σ0,∞y y
Σ̃n

0 −−−→ ∧̃Σ0.

(1.1)

Proof. This is proved in [Wei14]. The constructions of morphisms are given
in [Wei14, 2.5-2.7] and the fact that the diagram is Cartesian is proved in
[Wei14, Theorem 2.7.3]. 2

Let Map(UK ,OCp) denote the OCp-algebra of continuous maps from UK
to OCp . We use similar notations for other topological rings as well. We set

R∞,OCp
= R∞⊗̂O

K̂ab
Map(UK ,OCp),

where the right factor is considered as an OK̂ab-algebra via

α : OK̂ab → Map(UK ,OCp); a 7→ (ArtK(u)(a))u∈UK
.

With this algebra, we define the Lubin-Tate perfectoid space as

Mad
Σ0,∞,η = {|·| ∈ Spa(R∞,OCp

, R∞,OCp
) | |ϖ| ̸= 0}.

7



We also set

Mad
∧Σ0,∞,η = {|·| ∈ Spa(Map(UK ,OCp),Map(UK ,OCp)) | |ϖ| ̸= 0}.

Setting Bn = OCp [[X
q−∞

1 , . . . , Xq−∞
n ]] and B1 = OCp [[T

q−∞
]], we similarly

define

Σ̃n,ad
0,∞,η = {|·| ∈ Spa(Bn, Bn) | |ϖ| ̸= 0},

∧̃Σ
ad

0,∞,η = {|·| ∈ Spa(B1, B1) | |ϖ| ̸= 0}.

In what follows, we give an explicit description of the following diagram

R∞,OCp
←−−− Map(UK ,OCp)x x

Bn ←−−− B1

induced by the Cartesian diagram (1.1) and α, in terms of coordinates. Ba-
sically, we closely follow the general treatment in [IT15a, 1.1], but adopt and
specialize it to our equal-characteristic setting (see also [Wei14, 2.10, 2.11],
[Wei13, 5.1]).

For a formal OK-module Σ and a ∈ K, we denote by [a]Σ the multiplica-
tion by a of Σ. Take a model of Σ0 so that

[ϖ]Σ0(X) = Xqn , [ζ]Σ0(X) = ζX for ζ ∈ k.

We set OD = EndΣ0 and D = OD ⊗OK
K. Then D is a central division

algebra over K of invariant 1/n. Denoting by [a] the action of a ∈ OD, we
define φD ∈ OD to be the element such that [φD](X) = Xq. Let kn be the
field extension of k of degree n, so that Kn = K ⊗k kn is the unramified
extension of degree n of K. We define a K-algebra embedding Kn → D by
[ζ](X) = ζX for ζ ∈ kn. Then D is generated over Kn by φD and we have
φDζ = ζqφD.

Let ∧̂Σ0 be the one-dimensional formal OK-module over OK defined by

[ϖ]∧̂Σ0
(X) = ϖX + (−1)n−1Xq, [ζ]∧̂Σ0

(X) = ζX for ζ ∈ k.

Let {tm}m≥1 be a system of elements of K
◦◦

such that

tm ∈ K
◦◦
, [ϖ]∧̂Σ0

(t1) = 0, t1 ̸= 0, [ϖ]∧̂Σ0
(tm) = tm−1 for m ≥ 2
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and set t = limm→∞(−1)(n−1)(m−1)tq
m−1

m ∈ OCp . We denote by v = vK the
normalized valuation on K and extend it to Cp by continuity. Then v(t) =
1/(q − 1).

We put ϖ′ = (−1)n−1ϖ and t′m = (−1)(n−1)(m−1)tm for m ≥ 1. Then we
have

[ϖ′]∧̂Σ0
(X) = ϖ′X +Xq, [ζ]∧̂Σ0

= ζX for ζ ∈ k,

[ϖ′]∧̂Σ0
(t′1) = 0, [ϖ′]∧̂Σ0

(t′m) = t′m−1 for m ≥ 2, t = lim
m→∞

t′q
m−1

m .

By [Wei14, Proposition 2.3.3, Corollary 2.8.14] we have OK̂ab = k[[tq
−∞

]] and

the continuous OK̂ur-homomorphism OK̂ur [[T q
−∞

]] → OK̂ab induced by the
right vertical morphism of (1.1) sends T to t. Thus the morphism B1 →
Map(UK ,OCp) induced by α is described as

B1 → Map(UK ,OCp); f(T ) 7→ (f (ArtK(u)(t)))u∈UK
.

We denote by ∆(X1, . . . , Xn) the Moore determinant

∆(X1, . . . , Xn) = det(Xqj−1

i )1≤i,j≤n ∈ Z[X1, . . . , Xn]

and put

δ(X1, . . . , Xn) =
∑

m1+···+mn=0

∆(Xqm1n

1 , . . . , Xqmnn

n ) ∈ Bn.

For m ∈ Z, we also put

δm(X1, . . . , Xn) = δ(X1, . . . , Xn)
q−m

=
∑

m1+···+mn=0

∆(Xqm1n−m

1 , . . . , Xqmnn−m

n )

for later use. Then the continuous OCp-algebra homomorphism B1 → Bn

induced by the lower horizontal morphism in (1.1) is

B1 → Bn; f(T ) 7→ f(δ(X1, . . . , Xn)).

This can be found in [IT15a, 1.1] (see also [BW16, Theorem 2.15] and [Wei13,
Lemma 5.1.2]). We call δ the determinant map.
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Remark 1.2. Let x1, . . . , xn ∈ B◦◦
n . Then, since Bn is perfect, we can sub-

stitute Xi in δ(X1, . . . , Xn) with xi for 1 ≤ i ≤ n in a natural way. The
following properties of δ0 are easy to check, but useful;

δ0(x
qn

1 , . . . , xn) = (−1)n−1δ−1(x1, . . . , xn),

δ0(x
q−n

1 , . . . , xn) = (−1)n−1δ1(x1, . . . , xn),

δ0(xσ(1), . . . , xσ(n)) = sgn(σ)δ0(x1, . . . , xn).

In particular, we have

δm(x1, . . . , xn) = δm+1(x
qn

n , x1, . . . , xn−1),

δm(x1, . . . , xn) = δm−1(x2, . . . , xn, x
q−n

1 ).

Put G = GLn(K)×D× ×WK . We define NG by

NG : GLn(K)×D× ×WK → K×; (g, d, σ) 7→ det g−1 Nrd dArt−1
K σ,

where Nrd: D× → K× is the reduced norm, and set G0 = Ker(v ◦ NG).
The Lubin-Tate perfectoid spaceMad

Σ0,∞,η and its formal model R∞,OCp
carry

natural actions of G0 induced by that on the Lubin-Tate tower, studied in
the non-abelian Lubin-Tate theory. Following [IT15a, 1.2], we explicitly write
down the action of G0 on R∞,OCp

in the equal-characteristic setting (see also
[BW16, 2.11]). We describe the left action of G on Bn which induces that of
G0 on R∞,OCp

.

Let g = (ai,j)1≤i,j≤n ∈ GLn(K) and write ai,j =
∑

l a
(l)
i,jϖ

l ∈ K with

a
(l)
i,j ∈ k. Then g acts on the ring Bn as a continuous OCp-homomorphism

defined by

g∗ : Bn → Bn; Xi 7→
∑

1≤j≤n

∑
l

a
(l)
j,iX

qln

j for 1 ≤ i ≤ n. (1.2)

Let d ∈ D× and write d−1 =
∑

l dlφ
l
D with dl ∈ kn. Then d acts on the ring

Bn as a continuous OCp-homomorphism defined by

d∗ : Bn → Bn; Xi 7→
∑
l

dlX
ql

i for 1 ≤ i ≤ n. (1.3)

Let σ ∈ WK and set nσ = v(Art−1
K (σ)). Then σ ∈ WK acts on the ring

Bn as a continuous ring homomorphism defined by

σ∗ : Bn → Bn; Xi 7→ Xq−nσ

i , x 7→ σ(x), for 1 ≤ i ≤ n and x ∈ OCp .
(1.4)
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We remark that a natural action of K× (resp. of UK) on B1 (resp. on
OK̂ab) is deduced as a special case of the above. With respect to these actions
the upper horizontal morphism (resp. the lower horizontal morphism) of the
base change to OCp of the Cartesian diagram (1.1) is G0-equivariant (resp.
G-equivariant) via NG.

2 Affinoids and the reductions of formal mod-

els

2.1 CM points

We briefly review some facts on CM points, following [BW16] and [IT15a].
For a deformation Σ of Σ0 over OCp , we set

TpΣ = lim←−Σ[pm](OCp),

VpΣ = TpΣ⊗OK
K,

where each transition map is the multiplication by ϖ. By [BW16, Definition
2.10.1], a point ξ ∈ Mad

Σ0,∞,η(Cp) defines a corresponding triple (Σ, ι, ϕ),

where Σ is a formal OK-module over OCp , ι : Σ0 → Σ⊗Cp k is an isomorphism
and ϕ : OnK → TpΣ is an isomorphism of OK-modules.

Definition 2.1. Let L ⊂ Cp be an extension of K of degree n and let Σ be
a deformation of Σ0 to OCp .

We say that Σ has CM by L if there exists a K-isomorphism L
∼−→

(EndΣ)⊗OK
K such that the induced homomorphism L→ End(LieΣ) ≃ Cp

agrees with the inclusion L ⊂ Cp. We also say that ξ ∈ Mad
Σ0,∞,η(Cp) has

CM by L if the corresponding deformation has CM by L.

Note that the K-isomorphism in the definition is determined uniquely by
the compatibility with the induced homomorphism, if it exists.

A point ξ ∈Mad
Σ0,∞,η(Cp) with CM by L defines a K-embedding iξ : L→

Mn(K); x 7→ iξ(x) by the commutativity of the following diagram

Kn ϕ⊗id−−−→ VpΣ

iξ(x)

y yVp(x)
Kn −−−→

ϕ⊗id
VpΣ
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and similarly defines iDξ : L→ D; x 7→ iDξ (x) by

Σ0
ι−−−→ Σ⊗OCp

k

iDξ (x)

y yx⊗id

Σ0 −−−→
ι

Σ⊗OCp
k,

where morphisms are considered up to isogeny in both diagrams.
We set ∆ξ = (iξ, i

D
ξ ) : L→Mn(K)×D.

The following are consequences of the Lubin-Tate theory as proved in
[BW16, Lemmas 3.1.2, 3.1.3] (see also [IT15a, Lemmas 1.9, 3.4]).

Proposition 2.2. Let L and ξ ∈Mad
Σ0,∞,η(Cp) be as above.

(1) The group G0 ∩ (GLn(K)×D×) acts transitively on the set of points on
Mad

Σ0,∞,η(Cp) with CM by L. The stabilizer of ξ in this group is ∆ξ(L
×).

(2) Put WL′ = {σ ∈ WK | σ(L) = L}. Then, for an element σ ∈ WK, the
translation2 (1, φ−nσ

D , σ)∗ξ has CM by L if and only if σ ∈ WL′.

(3) If σ ∈ WL, then (1, (Art−1
L σ)−1, σ)∗ξ = ξ.

By (1) and (2), for any σ ∈ WL′ , there exists an element (g, d) ∈
GLn(K)×D×, uniquely up to multiplication by ∆ξ(L

×), such that (g, d, σ) ∈
G0 and (g, d, σ)∗ξ = ξ. We define a map jξ : WL′ → L×\(GLn(K)×D×) by
jξ(σ) = L×(d, σ). Then the stabilizer S of ξ in G0 is

S = {(g, d, σ) ∈ GLn(K)×D× ×WL′ | jξ(σ) = L×(g, d)}.

The assertion (3) says that jξ(σ) = L×(1, (Art−1
L σ)−1) if σ ∈ WL.

Now let n ≥ 2 and assume p ∤ n. We put nq = gcd(n, q − 1).
For any uniformizer ϖ ∈ K, we set Lϖ = K[X]/(Xn −ϖ).

Lemma 2.3. [IT15a, Lemma 2.1] Let T (K,n) be the set of isomorphism
classes of totally ramified extensions of K of degree n. Then the following
map is a bijection:

µ(q−1)/nq(K)\(p− p2)/p2 → T (K,n); ϖ 7→ Lϖ.

2Somewhat awkwardly, we use the notation g∗(·) for the actions of g ∈ G0 on both
R∞,OCp

andMad
Σ0,∞,η.
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Let L/K be a totally ramified extension of degree n in Cp. From this
point on, we work with this fixed field L. Although we do not indicate in the
notation the constructions to follow depend on the choice of L.

By Lemma 2.3, there exists a uniformizer φL ∈ L such that ϖ = φnL ∈ K.
We apply the arguments of Section 1 with respect to this uniformizer ϖ ∈ K.
In particular, a model of Σ0 is chosen, and φD ∈ D and ∧̂Σ0 are defined. We
set

φ =

(
0 In−1

ϖ 0

)
∈Mn(K).

Note that σ ∈ WK lies in WL′ if and only if φ−1
L σ(φL) ∈ µnq(K).

For a point ξ ∈Mad
Σ0,∞,η(Cp), we write (ξ1, . . . , ξn) ∈ Cn

p for the coordinate
with respect to X1, . . . , Xn ∈ Bn.

Proposition 2.4. Let L ⊂ Cp, φL ∈ L, ϖ ∈ K be as above. There exists a
point ξ ∈Mad

Σ0,∞,η(Cp) with CM by L satisfying the following conditions:

(1) ξi = ξqi+1 for 1 ≤ i ≤ n− 1.

(2) v(ξi) = 1/(nqi−1(q − 1)) for 1 ≤ i ≤ n.

(3) iξ(φL) = φ, iDξ (φL) = φD.

(4) For any σ ∈ WL′, there exists an element ζ ∈ K such that ζq−1 =
φ−1
L σ(φL) and ξ

−1
1 σ(ξ1) ≡ ζ mod pK.

Proof. This is essentially [IT15a, Lemma 2.2], where an explicit construction
of ξ ∈Mad

Σ0,∞,η(Cp) is given. The assertion (4) is not stated there but follows
from the construction. 2

2.2 Construction of affinoids

Put

Yi = Xi − ξi ∈ Bn for all 1 ≤ i ≤ n,

Z =
∑

1≤i≤n

Y qi−1

i ∈ Bn.

For each integer ν > 0, we define an affinoid Xν ⊂ Σ̃n,ad
0,∞,η by

|Z| ≤ |ξ1|q
ν

, |Yi| ≤

{
|ξi|q

µ(q+1)/2 if ν = 2µ+ 1 is odd

|ξi|q
µ

if ν = 2µ is even

13



and an affinoid Zν ⊂ Mad
Σ0,∞,η by the pull-back of Xν in Mad

Σ0,∞,η. Take a

square root ξ
1/2
n of ξn and put ξ

1/2
i = (ξ

1/2
n )q

n−i
. We also define a formal

model Xν of Xν by

Xν = SpfOCp⟨z′
q−∞

, y′2
q−∞

, . . . , y′n
q−∞
⟩,

z′ =
Z

ξq
ν

1

, y′i =


Yi

ξ
qµ(q+1)/2
i

if ν = 2µ+ 1 is odd

Yi
ξq

µ

i

if ν = 2µ is even.
(2.1)

To construct a formal model of Zν and to study its special fiber, we prove
several lemmas on the determinant map δ.

2.3 Lemmas on the determinant map

Lemma 2.5. Let 1 ≤ i ≤ n be an integer. Let xn, Ti ∈ R◦◦
∞,OCp

. Put

xn+m = xq
−m

n for all m ∈ Z. Then

δ0(T
qi−1

i , x2, . . . , xn) = δ0(x1, . . . , xi−1, Ti, xi+1, . . . , xn).

Proof. To prove the equality we may assume i > 1. By definition of δ0 we
have

δ0(T
qi−1

i , x2, . . . , xn) =
∑

m=(mj)∈S

sgn(σm)T
qi−1+m1

i xq
m2

2 · · · xqmn

n ,

δ0(x1, . . . , xi−1, Ti, xi+1, . . . , xn) =
∑

m=(mj)∈S

sgn(σm)x
qm1

1 · · · xq
mi−1

i−1 T q
mi

i xq
mi+1

i+1 · · · xqmn

n ,

where

S =

{
(mj) ∈ Zn

∣∣∣∣∣
n∑
j=1

mj =
n∑
j=1

(j − 1), mj ̸≡ mj′ mod n (if j ̸= j′)

}

and

σm =

(
0 1 . . . n− 1
m1 m2 . . . mn

)
is a permutation of Z/nZ. (Here and in the rest of the proof j denotes the
image of j ∈ Z in Z/nZ.) As the two series converge absolutely, it suffices to

14



construct a bijection f : S → S such that, for m = (mj) ∈ S,

f(m)i = m1 + i− 1, (2.2)

[mj + n− j | 2 ≤ j ≤ n] = [f(m)j + n− j | 1 ≤ j ≤ n, j ̸= i] (as multisets),
(2.3)

sgn

(
m1 m2 . . . mn

f(m)1 f(m)2 . . . f(m)n

)
= 1. (2.4)

Given m = (mj) ∈ S, we are to define f(m) ∈ S. This is done based on the
following inductive steps. Put j0 = i and j1 = 1.

Given 1 ≤ ja, ja+1 ≤ n, define

m′
ja = mja+1 − ja+1 + ja (2.5)

and ja+2 to be the unique integer 1 ≤ ja+2 ≤ n such that

mja+2 ≡ m′
ja mod n. (2.6)

We repeat this procedure for a = 0, 1, . . . , b− 2, where b ≥ 2 is the smallest
integer such that jb = jc for some 0 ≤ c < b. We claim that c = 0 here. To
see this, note that

mja ≡ mj1 − ja−1 + j0 mod n (2.7)

for all a ≥ 1 by construction. Therefore, if c > 0, then

mj1 − jc−1 + j0 ≡ mjc = mjb ≡ m1 − jb−1 + j0 mod n,

which implies jc−1 = jb−1, contradicting the minimality of b.
Thus we have defined j0, . . . , jb−1, jb = i and mj0 , . . . ,mjb−2

. Define m′
jb−1

by (2.5) for a = b− 1. Finally define f(m) ∈ Zn by

f(m)j =

{
m′
j if j = ja for some 0 ≤ a ≤ b− 1,

mj otherwise.

By (2.5) we clearly have ∑
0≤a≤b−1

mja =
∑

0≤a≤b−1

m′
ja

15



and hence
∑

1≤j≤nmj =
∑

1≤j≤n f(m)j. By (2.6), the definition of m′
jb−1

and

(2.7), the map mj 7→ f(m)j defines a permutation on Z/nZ. Therefore, we
see that f(m) ∈ S.

The properties (2.2) and (2.3) follow from (2.5). The property (2.4) can
be checked as

sgn

(
m1 m2 . . . mn

f(m)1 f(m)2 . . . f(m)n

)
= sgn

(
0 1 . . . b− 2 b− 1
2 3 . . . 0 1

)
= 1.

Also, we can readily construct the inverse map in a similar way. This com-
pletes the proof. 2

In the rest of this subsection, let |·| ∈ Mad
Σ0,∞,η.

Lemma 2.6. Let r1 ≥ r2 ≥ · · · ≥ rn be rational numbers. Let x ∈ O◦◦
Cp

and
xi ∈ R◦◦

∞,OCp
(1 ≤ i ≤ n). Suppose that |xi| ≤ |x|ri for all 1 ≤ i ≤ n and that

r1 < qnrn. Then

|δ0(x1, . . . , xn)| ≤ |x|
∑
qi−1ri ,∣∣∣δ0(x1, . . . , xn)−∑(sgnσ)xσ(1)x

q
σ(2) . . . x

qn−1

σ(n)

∣∣∣ < |x|∑ qi−1ri ,

where the summation in the left-hand side of the second inequality is taken
over the permutations σ ∈ Sn such that rσ(1) ≥ · · · ≥ rσ(n).

Proof. Put di = logq ri for all 1 ≤ i ≤ n, so that d1 − dn < n. The mono-

mials occurring in δ0(x1, . . . , xn) are all of the form xq
m1

1 · · · xqmn

n for some
(m1, . . . ,mn) ∈ S, where S is as in the proof of the preceding lemma, and
we have

|xq
m1

1 · · · xqmn

n | =
∏
i

|xi|q
mi ≤ |x|

∑
qmiri = |x|

∑
qmi+di .

To facilitate our argument, we introduce a total order structure ≥ on the set
of all the multisets of n real numbers by deeming [m1, . . . ,mn] ≥ [m′

1, . . . ,m
′
n]

if and only if, when altering the indexing so that m1 ≥ · · · ≥ mn and
m′

1 ≥ · · · ≥ m′
n, we have (m1, . . . ,mn) ≥ (m′

1, . . . ,m
′
n) with respect to

the lexicographic order on Rn. Then it is easily verified that, assuming∑
1≤i≤nmi =

∑
1≤i≤nm

′
i, we have

∑
1≤i≤n q

mi ≥
∑

1≤i≤n q
m′

i if and only
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if [m1, . . . ,mn] ≥ [m′
1, . . . ,m

′
n]. Thus, putting f(m1, . . . ,mn) = [m1 +

d1, . . . ,mn + dn], we are to show that the set

O = {f(m1, . . . ,mn) | (m1, . . . ,mn) ∈ S}

admits the smallest element f(0, . . . , n−1) (with respect to the induced order
structure) and that it is attained only by those (m1, . . . ,mn) ∈ S such that

{m1, . . . ,mn} = {0, . . . , n− 1} and dσ(1) ≥ · · · ≥ dσ(n), (2.8)

where

σ =

(
m1 + 1 . . . mn + 1

1 . . . n

)
∈ Sn.

Let us show that if (m1, . . . ,mn) ∈ S does not satisfy (2.8) then f(m1, . . . ,mn)
admits a strictly smaller element in O.

First assume that {m1, . . . ,mn} ̸= {0, . . . , n − 1}. Then there exist 1 ≤
i, j ≤ n such that mi ≥ n and mj ≤ −1. Now replacing mi with mj + n and
mj with mi − n yields a strictly smaller element:3

f(m1, . . . ,mi, . . . ,mj, . . . ,mn) > f(m1, . . . ,mj + n, . . . ,mi − n, . . . ,mn)

because mi + di > mj + dj, mj + n+ di, mi − n+ dj.
Next assume that {m1, . . . ,mn} = {0, . . . , n−1} but (2.8) does not hold.

Then there exists 1 ≤ i ≤ n − 1 such that dσ(i) < dσ(i+1) with σ as before
(so that σ(i) > σ(i + 1)). Now interchanging mσ(i) = i − 1 and mσ(i+1) = i
yields a strictly smaller element:

f(m1, . . . ,

σ(i+1)
⌣

i , . . . ,

σ(i)
⌣

i− 1, . . . ,mn) > f(m1, . . . ,

σ(i+1)
⌣

i− 1, . . . ,

σ(i)
⌣

i , . . . ,mn).

Finally, given an element (m1, . . . ,mn) ∈ S such that f(m1, . . . ,mn) ̸=
f(0, . . . , n − 1), we may apply the above procedures finitely many times to
obtain strict inequalities f(m1, . . . ,mn) > f(m′

1, . . . ,m
′
n) > · · · until we

eventually find some element (m̃1, . . . , m̃n) ∈ S such that

f(m1, . . . ,mn) > · · · > f(m̃1, . . . , m̃n) = f(0, . . . , n− 1).

Therefore, f(0, . . . , n − 1) is indeed the smallest in O. The same argument
shows that f(m1, . . . ,mn) = f(0, . . . , n − 1) only if (m1, . . . ,mn) satisfies
(2.8). Now the proof is complete. 2

3Here the inequality is written as if i < j, but this is only for a notational convenience.
We do not assume i < j and the argument clearly works without this assumption.
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Although the following two lemmas are in principle simple applications
of the preceding lemma, they involve many cases. To state them concisely
we define, for an integer 0 ≤ µ ≤ n− 1 and a rational number 1 ≤ c < q,

M1(µ) = (n+ µ(q − 1))qn−1,

M2(µ, c) =

{
(n+ 2(c− 1) + 2µ(q − 1))qn−1 if 0 ≤ µ < n/2

(n+ 2(c− 1) + (2µ− n)(q − 1))qn if n/2 ≤ µ < n.

Lemma 2.7. Let 0 ≤ µ ≤ n − 1 be an integer. Let xn ∈ O◦◦
Cp
, T ∈ R◦◦

∞,OCp
.

Put xn+m = xq
−m

n for all m ∈ Z. Suppose that |T | ≤ |x1|q
µ
. Put

δ = δ0(T, x2, . . . , xn)

and M1 =M1(µ).
Then the following assertions hold.

(1) Suppose that µ = 0. Then

|δ| ≤ |xn|M1 ,∣∣∣δ − x(n−1)qn−1

n T
∣∣∣ < |xn|M1 .

(2) Suppose that µ > 0. Then

|δ| ≤ |xn|M1 ,

∣∣∣δ − (−1)µx(n−µ−1+(µ−1)q)qn−1

n (xq
n

n T
q−µ − xqn−1

n T q
−µ+1

)
∣∣∣ < |xn|M1 .

Proof. The case (1) follows immediately from Lemma 2.6.
Suppose that µ > 0. By Remark 1.2 we have

δ = δ−1(x2, . . . , xn, T
q−n

)

= (−1)µδ−1(x2, . . . , xn−µ, T
q−n

, xn−µ+1, . . . , xn).

Now Lemma 2.6 shows

|δ| ≤ |xn|M ,∣∣∣δ − (−1)µxq2 · · · x
qn−µ−1

n−µ ((T q
−n

)q
n−µ

xq
n−µ+1

n−µ+1 − (T q
−n

)q
n−µ+1

xq
n−µ

n−µ+1)x
qn−µ+2

n−µ+2 · · · xq
n

n

∣∣∣ < |xn|M ,
18



where M = ((n− µ− 1)qn−1 + qn−1 + µqn) =M1. The left-hand side of the
second inequality is easily seen to agree with the statement of the lemma and
the case (2) follows. 2

Lemma 2.8. Let 1 ≤ i < j ≤ n be integers, 0 ≤ µ ≤ n − 1 an integer
and 1 ≤ c < q a rational number. Let xn ∈ O◦◦

Cp
and Ti, Tj ∈ R◦◦

∞,OCp
. Put

xn+m = xq
−m

n for all m ∈ Z. Suppose that |Ti| ≤ |xi|q
µc and |Tj| ≤ |xj|q

µc.
Put

δ = δ0(x1, . . . , Ti, . . . , Tj, . . . , xn)

and M2 =M2(µ, c).
Then the following assertions hold.

(1) |δ| ≤ |xn|M2.

(2) Suppose that c > 1 and µ < n/2. Then

|xn|M2 >

{∣∣∣δ − x(n−2µ−2+2µq)qn−1

n T q
i−µ−1

i T q
j−µ−1

j

∣∣∣ if µ < j − i < n− µ
|δ| otherwise.

(3) Suppose that c > 1 and µ ≥ n/2. Then

|xn|M2 >

{∣∣∣δ − x(2(n−µ−1)+(2µ−n)q)qn
n T q

i−µ

i T q
j−µ

j

∣∣∣ if n− µ ≤ j − i ≤ µ

|δ| otherwise.

(4) Suppose that c = 1 and µ = 0. Then

|xn|M2 >
∣∣∣δ − x(n−2)qn−1

n T q
i−µ

i T q
j−µ

j

∣∣∣ .
(5) Suppose that c = 1 and 0 < µ < n/2.

Then |xn|M2 > |δ − x(n−2µ−2+(2µ−2)q)qn−1

n d1|, where

d1 =


(xq

n

n T
qi−µ−1

i − xqn−1

n T q
i−µ

i )(xq
n

n T
qj−µ−1

j − xqn−1

n T q
j−µ

j ) if µ < j − i < n− µ
−(xqnn T

qi−µ−1

i − xqn−1

n T q
i−µ

i )T q
j−µ

j if µ = j − i < n− µ
−T q

i−µ

i (xq
n

n T
qj−µ−1

j − xqn−1

n T q
j−µ

j ) if µ < j − i = n− µ
0 otherwise.
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(6) Suppose that c = 1 and µ = n/2 (hence n is even). Then

|xn|M2 >

{∣∣∣δ − x(n−2)qn

n T q
i−µ

i T q
j−µ

j

∣∣∣ if j − i = n/2

|δ| otherwise.

(7) Suppose that c = 1 and µ > n/2.

Then |xn|M2 > |δ − x(2(n−µ−1)+(2µ−n−2)q)qn

n d2|, where

d2 =


(xq

n+1

n T q
i−µ

i − xqnn T
qi−µ+1

i )(xq
n+1

n T q
j−µ

j − xqnn T
qj−µ+1

j ) if n− µ < j − i < µ

T q
i−µ

i (xq
n+1

n T q
j−µ

j − xqnn T
qj−µ+1

j ) if n− µ = j − i < µ

(xq
n+1

n T q
i−µ

i − xqnn T
qi−µ+1

i )T q
j−µ

j if n− µ < j − i = µ

0 otherwise.

Proof. Let us first prove (1).
Suppose that j − i ≤ µ. Then

δ = δn−j(xj+1−n, . . . , x0, x1, . . . , xi−1, Ti, xi+1, . . . , xj−1, Tj)

= (−1)µδn−j(xj+1−n, . . . , xj−µ−1, Tj, xj−µ, . . . , xi−1, Ti, xi+1, . . . , xj−1)

= (−1)µδn−i−1(xi+1−n, . . . , xj−1−n, xj+1−n, . . . , xj−µ−1, Tj, xj−µ, . . . , xi−1, Ti)

=



(−1)µ(−1)µ+1δn−i−1(xi+1−n, . . . , xj−1−n, xj+1−n, . . . , xi−µ−1, Ti, xi−µ, . . .

. . . , xj−µ−1, Tj, xj−µ, . . . , xi−1)

if j − i ≤ µ and j − i < n− µ
(−1)µ(−1)µδn−i−1(xi+1−n, . . . , xi−µ−1, Ti, xi−µ, . . . , xj−1−n, xj+1−n, . . .

. . . , xj−µ−1, Tj, xj−µ, . . . , xi−1)

if n− µ ≤ j − i ≤ µ.

(2.9)

Thus, if j− i ≤ µ and j− i < n−µ, then Lemma 2.6 shows that |δ| ≤ |xn|M ,
where

M = ((j − i− 1) + (n− µ− (j − i)− 1)q−1 + cq−1 + (j − i) + c+ (µ− (j − i))q)qn

= (n− µ− (j − i) + c− 1 + (2(j − i) + c− 1)q + (µ− (j − i))q2)qn−1.
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Now

1

qn−1
(M − (n+ 2(c− 1) + 2µ(q − 1))qn−1)

= µ− (j − i)− (c− 1) + (2(j − i− µ) + c− 1)q + (µ− (j − i))q2

= (µ− (j − i))(q − 1)2 + (c− 1)(q − 1)

≥ 0. (2.10)

Here, the equality holds if and only if µ = j − i and c = 1 (in which case
µ < n/2). Similarly, noting q > c we have

1

qn−1
(M − (n+ 2(c− 1) + (2µ− n)(q − 1))qn)

= n− µ− (j − i) + c− 1 + (2(j − i− (n− µ))− (c− 1))q + (n− µ− (j − i))q2

= (n− µ− (j − i))(q − 1)2 − (c− 1)(q − 1)

> (n− µ− (j − i)− 1)(q − 1)2

≥ 0. (2.11)

Applying similarly Lemma 2.6, we see that

if n− µ ≤ j − i ≤ µ, then |δ| ≤ |xn|M2 . (2.12)

Suppose that j− i > µ. We proceed in a way similar to that in the above
case.

δ = δn−j(xj+1−n, . . . , x0, x1, . . . , xi−1, Ti, xi+1, . . . , xj−1, Tj)

= (−1)µδn−j(xj+1−n, . . . , xi−1, Ti, xi+1, . . . , xj−µ−1, Tj, xj−µ, . . . , xj−1)

= (−1)µδn−j+µ+1(T
qn

j , xj−µ−n, . . . , xj−1−n, xj+1−n, . . . , xi−1, Ti, xi+1, . . . , xj−µ−1, )

=



(−1)µ(−1)µ−1δn−j+µ+1(T
qn

j , xj−µ−n, . . . , xi−µ−1, Ti, xi−µ, . . .

. . . , xj−1−n, xj+1−n, . . . , xi−1, xi+1, . . . , xj−µ−1, )

if j − i > µ and j − i ≥ n− µ
(−1)µ(−1)µδn−j+µ+1(T

qn

j , xj−µ−n, . . . , xj−1−n, xj+1−n, . . .

. . . , xi−µ−1, Ti, xi−µ, . . . , xi−1, xi+1, . . . , xj−µ−1, )

if µ < j − i < n− µ.
(2.13)
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If j − i > µ and j − i ≥ n− µ, then Lemma 2.6 shows that |δ| ≤ |xn|M
′
,

whereM ′ = (j−i−µ+c−1+(2n−2(j−i)+c−1)q+(j−i−(n−µ))q2)qn−1.
We have

1

qn−1
(M ′ − (n+ 2(c− 1) + 2µ(q − 1))qn−1)

= (j − i− (n− µ))(q − 1)2 + (c− 1)(q − 1) ≥ 0, (2.14)

1

qn−1
(M ′ − (n+ 2(c− 1) + (2µ− n)(q − 1))qn)

= (j − i− µ)(q − 1)2 − (c− 1)(q − 1) > (j − i− µ− 1)(q − 1)2 ≥ 0.
(2.15)

In the first inequality, the equality holds if and only if j − i = µ and c = 1
(in which case µ < n/2). Similarly, it follows from Lemma 2.6 that

if µ < j − i < n− µ, then |δ| ≤ |xn|M2 . (2.16)

The assertion (1) follows from (2.10), (2.11), (2.12), (2.14), (2.15), (2.16).
In proving the rest of the lemma, we first assume c = 1. If µ ≥ n/2 we

have, by the second case of (2.9) and Lemma 2.6,

δ = δn−i−1(xi+1−n, . . . , xi−µ−1, Ti, xi−µ, . . . , xj−1−n, xj+1−n, . . . , xj−µ−1, Tj, xj−µ, . . . , xi−1)

and hence |δ − d| < |xn|M2 , where

d =



xq
i+1−n

i+1−n · · · x
qi−µ−1

i−µ−1 (T
qi−µ

i xq
i−µ+1

i−µ − T q
i−µ+1

i xq
i−µ

i−µ )x
qi−µ+2

i−µ+1 · · · x
qj−n

j−1−n

·xq
j+1−n

j+1−n · · · x
qj−µ−1

j−µ−1 (T
qj−µ

j xq
j−µ+1

j−µ − T q
j−µ

j xq
j−µ+1

j−µ )xq
j−µ+2

j−µ+1 · · · x
qi

i−1

if n− µ < j − i < µ

xq
i+1−n

i+1−n · · · x
qi−µ−1

i−µ−1T
qi−µ

i

·xq
j+1−n

j+1−n · · · x
qj−µ−1

j−µ−1 (T
qj−µ

j xq
j−µ+1

j−µ − T q
j−µ

j xq
j−µ+1

j−µ )xq
j−µ+2

j−µ+1 · · · x
qi

i−1

if n− µ = j − i < µ

xq
i+1−n

i+1−n · · · x
qi−µ−1

i−µ−1 (T
qi−µ

i xq
i−µ+1

i−µ − T q
i−µ+1

i xq
i−µ

i−µ )x
qi−µ+2

i−µ+1 · · · x
qj−n

j−1−n

·xq
j+1−n

j+1−n · · · x
qj−µ−1

j−µ−1T
qj−µ

j

if n− µ < j − i = µ

xq
i+1−n

i+1−n · · · x
qi−µ−1

i−µ−1T
qi−µ

i

·xq
j+1−n

j+1−n · · · x
qj−µ−1

j−µ−1T
qj−µ

j

if n− µ = j − i = µ
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From this, (2.11) and (2.15), the assertions (6) and (7) follow.
Except for minor complications the assertions (4) and (5) are proved in

a way similar to the above; we apply Lemma 2.6 to the second case of (2.13)
(resp. the first case of (2.9) with j − i = µ and the first case of (2.13) with
j − i = n − µ) to obtain the desired inequalities for those (i, j) such that
µ < j − i < n − µ (resp. µ = j − i < n − µ and µ < j − i = n − µ). Note
that in the second case of (2.13) we have to treat separately the cases where
µ = 0 and µ > 0.

The assertions (2) and (3) are similarly and more easily proved by apply-
ing Lemma 2.6 to the second case of (2.13) and (2.9) respectively.

2

2.4 Reductions of formal models

Let ν > 0 be an integer and set M3(ν) = (1 − s/n)qr + (s/n)qr+1, where
ν = rn+ s with r, s ∈ Z and 0 ≤ s ≤ n− 1. We put U = T − t ∈ B1.

Proposition 2.9. (1) The set-theoretic image of Xν in ∧̃Σ
ad

0,∞,η under δ : Σ̃
n,ad
0,∞,η →

∧̃Σ
ad

0,∞,η is contained in a rational subset Yν ⊂ ∧̃Σ
ad

0,∞,η defined by

|U | ≤ |t|M3(ν).

(2) The pull-back of Yν inMad
∧Σ0,∞,η ≃ UK, which we simply denote by Yν ∩

Mad
∧Σ0,∞,η, is identified with U

⌈ν/n⌉
K .
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Proof. Let us prove (1). In OCp [[X
q−∞

1 , . . . , Xq−∞
n ]], we expand as follows:

δ(X1, . . . , Xn)− t = δ(ξ1 − Y q
2 − · · · − Y qn−1

n + Z, ξ2 + Y2, . . . , ξn + Yn)− t
= δ(ξ1, . . . , ξn)− t

+
∑

1≤i≤n

(
δ(−Y qi−1

i , . . . , ξn) + δ(ξ1, . . . , Yi, . . . , ξn)
)

+ δ(Z, ξ2, . . . , ξn) +
∑

2≤i,j≤n

δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn)

+
∑

2≤i<j≤n

δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn) + · · ·

= δ(Z, ξ2, . . . , ξn) +
∑

2≤i,j≤n

δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn)

+
∑

2≤i<j≤n

δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn) + · · · ,

where we use Lemma 2.5 in the last equality. Note that terms not indicated
here are negligible because |Yi| < |ξi|.

Let |·| ∈ Xν . It suffices to prove that the valuation of each term explicitly
appearing in the last two lines of the above is bounded by |t|M3(ν), for then
|δ(X1, . . . , Xn)− t| ≤ |t|M3(ν), which is to say, the image of |·| by δ lies in Yν .
The required estimates are obtained by applying Remark 1.2 and Lemmas
2.7 and 2.8. For instance, expressing ν = rn+ s with r, s ∈ Z and 0 ≤ s < n,
we have

|δ(Z, ξ2, . . . , ξn)| = |(−1)r(n−1)δ−r(Z
q−rn

, ξ2, . . . , ξn)|
≤ |ξn|M1(s)qr

= |t|n−1q−(n−1)M1(s)qr

= |t|M3(ν).

Similarly, if c = (q + 1)/2 or c = 1 according to the parity of ν, and if
µ = r′n+ s′ with r′, s′ ∈ Z and 0 ≤ s′ < n, we have

|δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn)| = |(−1)2r
′(n−1)δ−2r′(−(Y q−r′n

i )q
i−1

, ξ2, . . . , Y
q−r′n

j , . . . , ξn)|

≤ |ξn|M2(s′,c)q2r
′

= |t|n−1q−(n−1)M2(s′,c)q2r
′

,

|δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn)| ≤ |t|n
−1q−(n−1)M2(s′,c)q2r

′
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and one can check the equality n−1q−(n−1)M2(s
′, c)q2r

′
= M3(ν) by case-by-

case calculations.
Now we prove (2). For x =

∑
m≥0 xmϖ

′m ∈ UK , we set

[x](t) = Art(x)(t) = lim
m→∞

[x]∧̂Σ0
(t′m)

qm−1

=
∑
m≥0

xmt
qm .

Then, under the canonical identificationsMad
∧Σ0,∞,η(Cp) = UK , ∧̃Σ

ad

0,∞,η(Cp) =

C◦◦
p , the maps induced by the morphisms Mad

∧Σ0,∞,η → ∧̃Σ
ad

0,∞,η, Yν →
∧̃Σ

ad

0,∞,η correspond to

UK → C◦◦
p ; x 7→ [x](t),{

y ∈ Cp | |y − t| ≤ |t|M3(ν)
}
↪→ C◦◦

p

respectively. The pull-back of these two maps are clearly U
⌈ν/n⌉
K , as desired.

2

Take an n-th root t1/n ∈ OCp . We define a formal model Yν of Yν by

Yν = SpfOCp⟨uq
−∞⟩, u =

T − t
ξ
nqn−1M3(ν)
n

.

Then the morphism U
⌈ν/n⌉
K ≃ Yν ∩Mad

∧Σ0,∞,η → Yν is induced by a morphism

Spf Map(U
⌈ν/n⌉
K ,OCp)→ Yν = SpfOCp⟨uq

−∞⟩ of formal models given by

f(u) 7→

(
f

(
[x](t)− t
ξ
nqn−1M3(ν)
n

))
x∈U⌈ν/n⌉

K

. (2.17)

We finally define a formal model Zν of Zν by

Zν = Xν ×
Yν

Spf Map(U
⌈ν/n⌉
K ,OCp). (2.18)

Theorem 2.10. Let ν > 0 be an integer. Let Zν be the affinoid defined in 2.2
and Zν its formal model defined by (2.18). For each integer 0 ≤ m ≤ n− 1,
define a set T (m) by

T (m) =

{
{(i, j) ∈ Z2 | 1 ≤ i < j ≤ n, m < j − i < n−m} if m < n/2

{(i, j) ∈ Z2 | 1 ≤ i < j ≤ n, n−m ≤ j − i ≤ m} if m ≥ n/2.
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Then the special fiber Z ν of Zν fits into the following Cartesian diagrams4

Z ν −−−→ U
⌈ν/n⌉
K = NL/KU

ν
Ly y

(Zν)
perf −−−→ NL/KU

ν
L/NL/KU

ν+1
Ly y

X ν = (An
k
)perf −−−→ Y ν = (A1

k
)perf,

(2.19)

where Zν is a smooth affine variety defined below, (·)perf denotes the inverse
perfection of an affine scheme in characteristic p and we simply write

NL/KU
ν
L = SpecMap(NL/KU

ν
L, k),

NL/KU
ν
L/NL/KU

ν+1
L = SpecMap(NL/KU

ν
L/NL/KU

ν+1
L , k).

(1) Suppose that n divides ν (so that NL/KU
ν
L/NL/KU

ν+1
L is identified with k

via ϖ). Then Zν is the trivial affine space bundle ⨿kAn−1

k
over NL/KU

ν
L/NL/KU

ν+1
L .

(2) Suppose5 that ν is odd and ν ≡ ν ′ mod 2n with 0 < ν ′ < n. Define
µ′ < n/2 by ν ′ = 2µ′ + 1. Then Zν is an affine variety defined by

y1 + · · ·+ yn = 0

zq − z = −
∑

(i,j)∈T (µ′)

yiyj

in An+1

k
.

(3) Suppose that ν is odd and ν ≡ ν ′ mod 2n with n < ν ′ < 2n. Define
µ′ ≥ n/2 by ν ′ = 2µ′ + 1. Then Zν is an affine variety defined by

y1 + · · ·+ yn = 0

zq − z =
∑

(i,j)∈T (µ′)

yiyj

in An+1

k
.

4Analogous Cartesian diagrams occur in [BW16] as well. We drew inspirations from
their result.

5In the assertions to follow, the relations between various yi (resp. z) and various y′i
(resp. z′) are given in the proof.
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(4) Suppose that ν is even and ν ≡ ν ′ mod 2n with 0 < ν ′ < n. Define
µ′ < n/2 by ν ′ = 2µ′. Then Zν is an affine variety defined by
y1 + · · ·+ yn = 0

zq − z =
∑

(i,j)∈T (µ′)

(yqi − yi)(y
q
j − yj) +

∑
j−i=µ′

(yqi − yi)y
q
j +

∑
j−i=n−µ′

yqi (y
q
j − yj)

in An+1

k
.

(5) Suppose that ν is even and ν ≡ ν ′ mod 2n with n < ν ′ < 2n. Define
µ′ > n/2 by ν ′ = 2µ′. Then Zν is an affine variety defined by
y1 + · · ·+ yn = 0

zq − z = −
∑

(i,j)∈T (n−µ′)

(yqi − yi)(y
q
j − yj) +

∑
j−i=µ′

(yqi − yi)yj +
∑

j−i=n−µ′
yi(y

q
j − yj)

in An+1

k
.

Proof. It follows from (2.17) that SpecMap(U
⌈ν/n⌉
K , k) = NL/KU

ν
L → Y ν =

(A1
k
)perf = Spec k[uq

−∞
] is given by

k[uq
−∞

]→ Map(U
⌈ν/n⌉
K , k); u 7→

{
(0)

x∈U⌈ν/n⌉
K

if n does not divide ν

(y)
1+yϖν/n∈Uν/n

K
if n divides ν,

where y is the image of y ∈ OK in k = NL/KU
ν
L/NL/KU

ν+1
L . This shows the

desired factorization of NL/KU
ν
L → Y ν .

Thus, it now suffices for us to study (the perfection of) the variety X ν ×
Y ν

NL/KU
ν
L/NL/KU

ν+1
L defined by the lower Cartesian diagram. Note that the

morphism X ν → Y ν is induced by the reduction of

OCp⟨uq
−∞⟩ → OCp⟨z′

q−∞
, y′2

q−∞
, . . . , y′n

q−∞
⟩; u 7→ ξ−nq

n−1M3(ν)
n (δ − t),

where δ = δ(X1, . . . , Xn). We claim that (in (2) to (5)) an isomorphism is
given by6

z′ 7→ zq
−(r−ν)

, y′i 7→ yi
q−(r−µ+i−1)

(2 ≤ i ≤ n), (2.20)

6Since we are working with perfect rings, there are many other obvious possibilities;
for instance, we may leave out all r from the definition of the above map.

27



where we write ν = rn + s with r, s ∈ Z and 0 ≤ s < n, and µ = ⌊ν/2⌋.
As in the proof of Proposition 2.9 (1) we use Remark 1.2 to reduce to the
case where 0 ≤ ν < n (resp. where 0 ≤ µ < n), so that Lemma 2.7 (resp.
Lemma 2.8) is applicable. Since the computation is rather complicated, we
only indicate several typical cases.

Since δ(Z, ξ2, . . . , ξn) = (−1)r(n−1)δ−r(Z
q−rn

, ξ2, . . . , ξn), we have, by Lemma
2.7, |δ(Z, ξ2, . . . , ξn)− f | < |ξn|nq

n−1M3(ν), where, if 0 < s,

f = (−1)r(n−1)
(
(−1)sξ(n−s−1+(s−1)q)qn−1

n

(
ξq

n

n (Zq−rn

)q
−s − ξqn−1

n (Zq−rn

)q
−s+1

))qr
= (−1)r(n−1)+s

(
ξ(n−s−1+(s−1)q)qn−1

n

(
ξq

n

n (ξq
n−1+ν

n z′)q
−ν − ξqn−1

n (ξq
n−1+ν

n z′)q
−ν+1

))qr
= (−1)ν−r

(
ξ(n−s−1+(s−1)q)qn−1

n

(
ξq

n+qn−1

n z′
q−ν

− ξqn−1+qn

n z′
q−ν+1

))qr
= (−1)ν−rξ(n−s+sq)qn−1·qr

n (z′
q−ν+r

− z′q
−ν+r+1

)

= (−1)ν−rξnqn−1M3(ν)
n (z − zq)

and, if s = 0,

f = (−1)r(n−1)
(
ξ(n−1)qn−1

n Zq−rn
)qr

= (−1)ν−rξnqn−1M3(ν)
n z.

In particular, (1) follows.
Suppose that we are in the case (2). In particular, we have µ = (ν−1)/2 =

r′n + µ′ with r′ = r/2 ∈ Z. Similarly to the above computation, since

δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn) = (−1)2r′(n−1)δ−2r′(ξ1, . . . , Y
q−r′n

i , . . . , Y q−r′n

j , . . . , ξn),

we have, by Lemma 2.8 (2), |δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn)−fi,j| < |ξn|nq
n−1M3(ν),

where, if µ′ < j − i < n− µ′,

fi,j =
(
ξ(n−2µ′−2+2µ′q)qn−1

n (Y q−r′n

i )q
i−µ′−1

(Y q−r′n

j )q
j−µ′−1

)q2r′
=
(
ξ(n−2µ′−2+2µ′q)qn−1

n (ξ
qµ(q+1)/2
i y′i)

qi−µ−1

(ξ
qµ(q+1)/2
j y′j)

qj−µ−1
)qr

=
(
ξ(n−2µ′−2+2µ′q)qn−1

n ξq
n−1(q+1)/2
n y′i

qi−µ−1

ξq
n−1(q+1)/2
n y′j

qj−µ−1
)qr

= ξ(n−ν
′+ν′q)qn−1·qr

n y′i
qi−µ−1+r

y′j
qj−µ−1+r

= ξnq
n−1M3(ν)

n yiyj
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and, otherwise, fi,j = 0. The same computation shows that |δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn)+

ξ
nqn−1M3(ν)
n yiyj| < |ξn|nq

n−1M3(ν) if µ′ < j−1 < n−µ′ and |δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn)| <
|ξn|nq

n−1M3(ν) otherwise. Therefore, arguing as in the proof of Proposition 2.9
(1), we have

ξ−nq
n−1M3(ν)

n (δ(X1, . . . , Xn)− t) ≡ ξ−nq
n−1M3(ν)

n (f +
∑

µ′<j−i<n−µ′
fi,j −

∑
µ′<j−1<n−µ′

fi,j)

= zq − z +
∑

(i,j)∈T (µ′)

yiyj

modulo the maximal ideal of OCp . This completes the proof of (2).
Suppose that we are in the case (4). In this case µ = ν/2 = r′n+µ′ with

r′ = r/2 ∈ Z. Again, by Lemma 2.8 (5), |δ(ξ1, . . . , Yi, . . . , Yj, . . . , ξn)−gi,j| <
|ξn|nq

n−1M3(ν), where, if µ′ < j − i < n− µ′,

gi,j =
(
ξ(n−2µ′−2+(2µ′−2)q)qn−1

n

(
ξq

n

n (Y q−r′n

i )q
i−µ′−1 − ξqn−1

n (Y q−r′n

i )q
i−µ′
)

·
(
ξq

n

n (Y q−r′n

j )q
j−µ′−1 − ξqn−1

n (Y q−r′n

j )q
j−µ′))q2r′

=
(
ξ(n−2µ′−2+(2µ′−2)q)qn−1

n

(
ξq

n

n (ξq
µ

i y
′
i)
qi−µ−1 − ξqn−1

n (ξq
µ

i y
′
i)
qi−µ
)

·
(
ξq

n

n (ξq
µ

j y
′
j)
qj−µ−1 − ξqn−1

n (ξq
µ

j y
′
j)
qj−µ
))qr

=
(
ξ(n−ν

′+ν′q)qn−1

n

(
y′i
qi−µ−1

− y′i
qi−µ
)(

y′j
qj−µ−1

− y′j
qj−µ
))qr

= ξnq
n−1M3(ν)

n (yi − yqi )
(
yj − yqj

)
and

gi,j =


−ξnq

n−1M3(ν)
n (yi − yqi ) y

q
j if µ′ = j − i

−ξnq
n−1M3(ν)

n yqi
(
yj − yqj

)
if j − i = n− µ′

0 otherwise.

We also deduce from this the estimate for δ(−Y qi−1

i , ξ2, . . . , Yj, . . . , ξn) and
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thus obtain as before

ξ−nq
n−1M3(ν)

n (δ(X1, . . . , Xn)− t)

≡ z − zq +
∑

µ′<j−i<n−µ′
(yi − yqi )

(
yj − yqj

)
−

∑
µ′<j−1<n−µ′

(yi − yqi )
(
yj − yqj

)
−
∑
µ′=j−i

(yi − yqi ) y
q
j +

∑
µ′=j−1

(yi − yqi ) y
q
j

−
∑

j−i=n−µ′
yqi
(
yj − yqj

)
+

∑
j−1=n−µ′

yqi
(
yj − yqj

)
= z − zq +

∑
(i,j)∈T (µ′)

(yi − yqi )
(
yj − yqj

)
−
∑
µ′=j−i

(yi − yqi ) y
q
j −

∑
j−i=n−µ′

yqi
(
yj − yqj

)
= z − zq +

∑
(i,j)∈T (µ′)

(yqi − yi)
(
yqj − yj

)
+
∑
µ′=j−i

(yqi − yi) y
q
j +

∑
j−i=n−µ′

yqi
(
yqj − yj

)
.

The other cases are treated in the same vein. 2

2.5 Stabilizers of the affinoids and their actions on the
reductions

To state the main result of this subsection we define several subgroups of
GLn(K) and D×.

Let I ⊂ Mn(K) (resp. Let P ⊂ I) be the inverse image of the set
of upper triangular matrices (resp. upper triangular matrices with all the
diagonal entries zeros) by the canonical map Mn(O) → Mn(k). Note that
Pi = φiI for all i. We set UI = I× and U i

I = 1+Pi ⊂ UI for i ≥ 1 as usual.
Recall that L is identified with K(φ) ⊂Mn(K) via iξ. We also define C1

to be the orthogonal complement7 of L ⊂ Mn(K) with respect to the non-
degenerate symmetric pairing Mn(K) ×Mn(K) → K; (x, y) 7→ tr(xy). We

set Pi
C1

= Pi∩C1 and U
(i)
I = 1+Pi+P

⌊(i+1)/2⌋
C1

. Then we have Pi = piL⊕Pi
C1

and therefore U
(i)
I = 1+ piL+P

⌊(i+1)/2⌋
C1

. Also, U
(i)
I is a subgroup of U

⌊(i+1)/2⌋
I

containing U i
I.

7The author learned the importance of C1 and U
(i)
I in [BW16]. However, these have

been studied before elsewhere (see for instance, [BF83, (6.2)]).
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Remark 2.11. As we are working in an equal-characteristic setting, we can
describe these groups very explicitly:

Um
I = {1 + (aj,i) ∈ UI | a(l)j,i = 0 if 0 < i− j + ln < m }

U
(m)
I = {1 + (aj,i) ∈ U ⌊(m+1)/2⌋

I |
∑

(i,j,l);i−j+ln=r

a
(l)
j,i = 0 for r < m },

where aj,i =
∑

l a
(l)
j,iϖ

l.

The following can be verified by a simple computation.

Proposition 2.12. The subgroup U
(m+1)
I ⊂ U

(m)
I is normal. In the nota-

tion of Remark 2.11, the quotient group S1,m = U
(m)
I /U

(m+1)
I is described as

follows.

(1) Suppose that m is odd. Then S1,m is isomorphic to the additive group k:

S1,m → k; (1 + a)U
(m+1)
I 7→ Trφ−ma =

∑
(i,j,l);i−j+ln=m

a
(l)
j,i

(2) Suppose that m is even. Put

T1,m = {(v, (wi)) ∈ k × kZ/nZ |
∑
i

wi = 0}.

Then the following is a bijection:

S1,m → T1,m; (1 + a)U
(m+1)
I 7→

(
Trφ−ma, (ai(m/2))i

)
,

where, for 1 ≤ i ≤ n, we put ai(m/2) = a
(l)
j,i with the unique pair (j, l)

such that i− j + ln = m/2. Under this identification, the induced group
operation on T1,m is described as follows:

(v, (wi)) · (v′, (w′
i)) = (v + v′ +

∑
i

wiw
′
i+(m/2), (wi + w′

i)) (2.21)

For an even m, we identify S1,m with T1,m.
We have similar subgroups for D×. Let OD be the maximal order of D

and PD ⊂ OD the maximal ideal. Note that Pi
D = φiDOD for all i. We set

UD = O×
D and U i

D = 1 +Pi
D ⊂ UD as usual.
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Recall that L is identified withK(φD) ⊂ D via iDξ . Similarly to the above,
we define C2 to be the orthogonal complement of L ⊂ D with respect to the
non-degenerate symmetric pairing D × D → K; (x, y) 7→ Trd(xy). We set

Pi
C2

= Pi
D∩C2 and U

(i)
D = 1+Pi

D+P
⌊(i+1)/2⌋
C2

. Then we have Pi
D = piL⊕Pi

C2

and U
(i)
D = 1+piL+P

⌊(i+1)/2⌋
C2

. Also, U
(i)
D is a subgroup of U

⌊(i+1)/2⌋
D containing

U i
D.

Remark 2.13. Again, we can describe these groups very explicitly:

Um
D = {d ∈ UD | dl = 0 if 0 < l < m }

U
(m)
D = {d ∈ U ⌊(m+1)/2⌋

D |
∑
i

dq
i−1

l = Tr dl = 0 for l < m },

where d−1 =
∑

l dlφ
l
D with dl ∈ kn.

As before, we have the following proposition.

Proposition 2.14. The subgroup U
(m+1)
D ⊂ U

(m)
D is normal. In the nota-

tion of Remark 2.13, the quotient group S2,m = U
(m)
D /U

(m+1)
D is described as

follows.

(1) Suppose that m is odd. Then S2,m is isomorphic to the additive group k:

S2,m → k; dUD
(m+1) 7→ Trdφ−ν

D (d−1 − 1) = −Trdφ−ν
D (d− 1) = Tr dm

(2) Suppose that m is even. Put

T2,m = {(v, w) ∈ k × kn | Trw = 0}.

Then the following is a bijection:

S2,m → T2,m; dUD
(m+1) 7→ (Tr dm, dm/2)

and under this identification, the induced group operation on T2,m is de-
scribed as follows:

(v, w) · (v′, w′) = (v + v′ + Tr(wq
m/2

w′), w + w′)

For even m, we identify S2,m with T2,m.
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Theorem 2.15. Let ν > 0 be an integer. Let Stabν ⊂ G0 be the stabilizer of
the affinoid Zν.

(1) We have Stabν = (U
(ν)
I × U

(ν)
D × {1}) · S and the action of Stabν on

Zν induces an action on the reduction Z ν, U
⌈ν/n⌉
K and (Zν)

perf in the
Cartesian diagram (2.19). The upper-half square of the diagram (2.19)
is equivariant for the induced action.

(2) In (1), Stabν acts on U
⌈ν/n⌉
K as the translation by U

⌈ν/n⌉
K ⊂ K× via

Stabν ↪→ G0 NG−−→ K×.

(3) The action of φG = (φ, φD, 1) ∈ S on (Zν)
perf is described as

z 7→ z, y1 7→ yn, yi 7→ yi−1 for 2 ≤ i ≤ n.

(4) The action of ∆ξ(UL) ⊂ S on (Zν)
perf is trivial.

(5) For σ ∈ WL, set aσ = Art−1
L (σ) ∈ L ⊂ D, nσ = v(aσ) and uσ =

aσφ
−nσ
D ∈ UD. We denote by Frobq the q-th power geometric Frobenius.

Then the action of (1, a−1
σ , σ) ∈ S on (Zν)

perf is described as Frobnσ
q if ν

is even, and as the composite of Frobnσ
q and the automorphism

z 7→ z, yi 7→ u(q−1)/2
σ yi for 1 ≤ i ≤ n

if ν is odd.

(6) The action of U
(ν)
I = Stabν ∩GLn(K) on (Zν)

perf factors through U
(ν)
I →

S1,ν. If ν is odd, then the induced action of x ∈ k = S1,ν is described as

z 7→ z + x, yi 7→ yi for 1 ≤ i ≤ n.

If ν is even, then the induced action of (v, (wi)) ∈ S1,ν is described as

z 7→ z + v +
∑

i∈Z/nZ

wiyi−µ, yi 7→ yi + wi for i ∈ Z/nZ,

where we regard {yi} as indexed by Z/nZ.

(7) The action of U
(ν)
D = Stabν ∩D× on (Zν)

perf factors through U
(ν)
D → S2,ν.

If ν is odd, then the induced action of x ∈ k = S2,ν is described as

z 7→ z + x, yi 7→ yi for 1 ≤ i ≤ n.
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If ν = 2µ is even, then the induced action8 of (v, w) ∈ S2,ν is described
as

z 7→ z + v +
∑

i∈Z/nZ

wq
r−ν+i−1

yi, yi 7→ yi + wq
r−µ+i−1

for i ∈ Z/nZ,

where we regard {yi} as indexed by Z/nZ.

Remark 2.16. The subgroups and elements appearing in (3) to (7) do not
generate the whole group Stabν unless W ′

L = WL. Later, we shall study the
action of Stabν on the cohomology in an indirect way (see 4.16).

The proof9 of the theorem occupies the rest of this subsection.
We define a rational subset Z0 ⊂Mad

Σ0,∞,η by |Xi| = |ξi| (1 ≤ i ≤ n). We
clearly have Zν ⊂ Z0. Let us begin with the following useful lemma, which
follows from the proof of [IT15a, Lemma 3.1].

Lemma 2.17. Let (g, d, 1) ∈ G0. Assume that there exists a point η ∈ Z0

such that (g, d, 1)∗η ∈ Z0. Then we have (g, d) ∈ (φ, φD)
Z · (UI × UD).

Action of φG Let us prove that φG ∈ S stabilizes Zν and induces the
stated action on the reduction. We have

φ∗
GXi =

{
Xqn−1

n if i = 1

Xq−1

i−1 otherwise,
φ∗
Gξi = ξi

and hence

φ∗
GYi =

{
Y qn−1

n if i = 1

Y q−1

i−1 otherwise,
φ∗
GZ = Z.

From this we find that φG stabilizes Zν and acts on the reduction in a manner
stated in (3).

8Here, ν = rn+ s. Complicated values like r − ν + i− 1 result from our choice of the
normalization (2.20).

9The argument here is largely inspired by that in [IT15a].
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Action of U
(ν)
I Let us prove that GLn(K) ∩ Stabν = U

(ν)
I and that U

(ν)
I

acts on Zν as in the assertion (6). Let g = (ai,j) ∈ GLn(K) stabilize Zν .
Then we see that g ∈ UI by Lemma 2.17. In the notation of (1.2) we have

g∗(Yi) =
∑

1≤j≤n

∑
l

a
(l)
j,i(Yj + ξj)

qln − ξi, (2.22)

g∗(Z) =
∑

1≤i≤n

( ∑
1≤j≤n

∑
l

a
(l)
j,i(Yj + ξj)

qln − ξi

)qi−1

. (2.23)

We first consider the condition g∗ξ ∈ Zν . By (2.22), we must have∣∣∣∣∣ ∑
1≤j≤n

∑
l

a
(l)
j,iξ

qln

j − ξi

∣∣∣∣∣ ≤
{
|ξi|q

µ(q+1)/2 if ν = 2µ+ 1 is odd

|ξi|q
µ

if ν = 2µ is even

for all 1 ≤ i ≤ n. Since the valuations of all ξi are distinct, we conclude that
this is equivalent to

a
(0)
i,i = 1 for 1 ≤ i ≤ n,

a
(l)
j,i = 0 for (i, j, l) such that 0 < i− j + ln < ⌊(ν + 1)/2⌋,

which in turn is equivalent to g ∈ U ⌊(ν+1)/2⌋
I . Similarly, by (2.23), we must

have ∑
1≤i≤n

( ∑
1≤j≤n

∑
l

a
(l)
j,iξ

qln

j − ξi

)qi−1

≤ |ξ1|q
ν

.

Using ξi = ξqi+1, we see that this is equivalent to∑
1≤i≤n

a
(0)
i,i = n for 1 ≤ i ≤ n,∑

(i,j,l);i−j+ln=m

a
(l)
j,i = 0 for 0 < m < ν.

Altogether, the condition g∗ξ ∈ Zν amounts to g ∈ U (ν)
I . Thus Stabν ∩GLn(K) ⊂

U
(ν)
I .

Conversely, let g ∈ U (ν)
I . Then we have, by (2.22),

g∗(Yi) = Yi + a
(l)
j,iξ

qln

j + · · · ,
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where (j, l) is the unique pair such that i− j+ ln = ⌊(ν+1)/2⌋. To be more
precise,

|g∗(Yi)− Yi| < |ξi|q
µ(q+1)/2 if ν = 2µ+ 1 is odd∣∣∣g∗(Yi)− (Yi + a

(l)
j,iξ

qµ

i

)∣∣∣ < |ξi|qµ if ν = 2µ is even.

Similarly, we have

g∗(Z) = Z +
∑

(i,j,l);i−j+ln=ν

a
(l)
j,iξ

qν

1 +
∑

(i,j,l);i−j+ln=⌊(ν+1)/2⌋

a
(l)
j,iY

qln+i−1

j + · · ·

by (2.23). Thus∣∣∣∣∣∣g∗(Z)−
Z +

∑
(i,j,l);i−j+ln=ν

a
(l)
j,iξ

qν

1

∣∣∣∣∣∣ < |ξ1|qν if ν is odd

∣∣∣∣∣∣g∗(Z)−
Z +

∑
(i,j,l);i−j+ln=ν

a
(l)
j,iξ

qν

1 +
∑

(i,j,l);i−j+ln=µ

a
(l)
j,iY

qµ+j−1

j

∣∣∣∣∣∣ < |ξi|qν if ν = 2µ is even.

This shows that g stabilizes Zν and acts on Zν in the stated way.

Action of U
(ν)
D The argument is analogous to the above. Let d ∈ D×

stabilize Zν with dl ∈ kn. Then we have d ∈ UD as (1, d, 1) ∈ G0. In the
notation of (1.3) we have

d∗(Yi) =
∑
l

dl(Yi + ξi)
ql − ξi, (2.24)

d∗(Z) =
∑

1≤i≤n

(∑
l

dl(Yi + ξi)
ql − ξi

)qi−1

. (2.25)

By the condition d∗ξ ∈ Zν , we necessarily have∣∣∣∣∣∑
l

dlξ
ql

i − ξi

∣∣∣∣∣ ≤
{
|ξi|q

µ(q+1)/2 if ν = 2µ+ 1 is odd

|ξi|q
µ

if ν = 2µ is even

for 1 ≤ i ≤ n and∣∣∣∣∣∣
∑

1≤i≤n

(∑
l

dlξ
ql

i − ξi

)qi−1
∣∣∣∣∣∣ ≤ |ξ1|qν .
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As before, this is seen to be equivalent to d ∈ U (ν)
D .

Conversely, let d ∈ U (ν)
D . Then we have, by (2.24),

d∗(Yi) = Yi + d⌊(ν+1)/2⌋ξ
q⌊(ν+1)/2⌋

i + · · · ,
which implies

|d∗(Yi)− Yi| < |ξi|q
µ(q+1)/2 if ν = 2µ+ 1 is odd (2.26)∣∣∣d∗(Yi)− (Yi + dµξ
qµ

i

)∣∣∣ < |ξi|qµ if ν = 2µ is even. (2.27)

Likewise, we have

d∗(Z) = Z +
∑

1≤i≤n

dq
i−1

ν ξq
ν

1 +
∑

1≤i≤n

(d⌊(ν+1)/2⌋Y
q⌊(ν+1)/2⌋

i )q
i−1

+ · · ·

by (2.25). This implies that∣∣∣∣∣d∗(Z)− (Z +
∑

1≤i≤n

dq
i−1

ν ξq
ν

1 )

∣∣∣∣∣ < |ξ1|qν if ν is odd∣∣∣∣∣d∗(Z)−
(
Z +

∑
1≤i≤n

dq
i−1

ν ξq
ν

1 +
∑

1≤i≤n

(dµY
qµ

i )q
i−1

)∣∣∣∣∣ < |ξ1|qν if ν = 2µ is even.

From this we conclude that d indeed stabilizes Zν and acts on Zν exactly as
in (7).

The inclusion S ⊂ Stabν Let us prove that S stabilizes Zν and induces
an action on the reduction. We take an element in S and express it as
(g, dφ−nσ

D , σ), so that (g, d, 1) ∈ G0. As (1, φnσ
D , σ

−1)∗ξ ∈ Z0 and (g, d, 1)∗ξ =
(1, φnσ

D , σ
−1)∗ξ, we infer that (g, d) ∈ (φ, φD)

Z · (UI × UD) by Lemma 2.17.
We may also assume that (g, d) ∈ UI × UD because we have already proved
that (φ, φD) ∈ Stabν . We have

(g, dφ−nσ
D , σ)∗Xi = (g, d, 1)∗Xi, (g, dφ−nσ

D , σ)∗ξi = σ(ξi).

If we set fi(X1, . . . , Xn) = (g, d, 1)∗Xi ∈ OCp [[X
q−∞

1 , . . . , Xq−∞
n ]], then (g, dφ−nσ

D , σ) ∈
S amounts to fi(ξ1, . . . , ξn) = σ(ξi). Thus,

(g, dφ−nσ
D , σ)∗Yi = fi(Y1 + ξ1, . . . , Yn + ξn)− σ(ξi)

= fi(Y1, . . . , Yn). (2.28)

Now since (g, d) ∈ UI×UD it is clear that if |Yi| satisfies the inequality defin-
ing Zν , so does

∣∣(g, dφ−nσ
D , σ)∗Yi

∣∣. The arguments for Z proceeds similarly
and if follows that S ⊂ Zν .
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Action of ∆ξ(UL) Let u ∈ UL. To show that the induced action of u on
Zν is trivial, we may assume that u lies in U1

L since ∆ξ(K
×) acts trivially on

Mad
Σ0,∞,η. Since ∆ξ(u) ∈ S, we have, in the notation of (1.2), (1.3)

∆ξ(u)
∗(Yi) =

∑
1≤j≤n

a
(m)
j,i

∑
m

∑
l

dlY
ql+mn

j ,

∆ξ(u)
∗(Z) =

∑
1≤i≤n

∑
1≤j≤n

a
(m)
j,i

∑
m

∑
l

dlY
ql+mn+i−1

j .

Note that dl ∈ k for all l by assumption. Now, since a
(0)
i,i = 1 for all 1 ≤ i ≤ n

and d0 = 1, we see that

|∆ξ(u)
∗(Yi)− Yi| < |Yi| .

For Z, we argue as follows:

∆ξ(u)
∗Z =

∑
1≤j≤n

∑
c>0

∑
(i,l,m);l+mn+i−1=c

a
(m)
j,i dlY

qc

j

= Z,

where, in the last equality, we used the relation∑
(i,l,m);l+mn+i−1=c

a
(m)
j,i dl = δc,0,

which follows from the assumption. Hence, we conclude that ∆ξ(u) acts
trivially on Zν .

Action of (1, a−1
σ , σ) Let σ ∈ WK and set aσ, nσ, uσ as usual. We also set

uσ =
∑

j≥0 djφ
j
D ∈ UD with dj ∈ k. Since (1, a−1

σ , σ) ∈ S, we have, in the
notation of (1.2), (1.3)

(1, a−1
σ , σ)∗Yi =

∑
j

djY
qj

i ,

(1, a−1
σ , σ)∗Z =

∑
j

djZ
qj ,

(1, a−1
σ , σ)∗ξn =

∑
j

djξ
qj

i .
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Suppose that ν = 2µ + 1 is odd. Then it follows from the above and (2.1)
that

(1, a−1
σ , σ)∗y′i =

(∑
j

djξ
qj

i

)−qµ(q+1)/2

·

(∑
j

djY
qj

i

)

=

(∑
j

djξ
qj

i

)−qµ(q+1)/2

·

(∑
j

dj(ξ
qµ(q+1)/2
i y′i)

qj

)
.

Thus we see that
(1, a−1

σ , σ)∗y′i ≡ d
−(q−1)/2
0 y′i

modulo the maximal ideal of OCp . By (2.20) we infer that the induced action
on yi is as stated in (5) in this case. The computations for the actions on z
and in the even ν case are similar and easier.

The inclusion Stabν ⊂ (U
(ν)
I × U

(ν)
D × {1}) · S To prove the inclusion

Stabν ⊂ (U
(ν)
I × U

(ν)
D × {1}) · S, we take an element in Stabν and write it as

(g, dφ−nσ
D , σ) with (g, d, 1) ∈ G0 and σ ∈ WK . Since (1, φnσ

D , σ
−1)∗ξ ∈ Z0, we

have (g, d) ∈ UI × UD by Lemma 2.17.
Let us first show σ ∈ WL′ . There exists an element ζn ∈ µn(K) such that

σ(φL) = ζnφL. We are to prove that ζn ∈ k. The fact that (g, dφ−nσ
D , σ)

stabilizes ξ implies∣∣∣∣∣∑
j,m

a
(m)
j,i

∑
l

dlξ
ql+mn

j − σ(ξi)

∣∣∣∣∣ ≤
{
|ξi|q

µ(q+1)/2 if ν = 2µ+ 1 is odd

|ξi|q
µ

if ν = 2µ is even

for all 1 ≤ i ≤ n. In particular,∣∣a0i,id0ξi − σ(ξi)∣∣ < |ξi|
for 1 ≤ i ≤ n. As ξi = ξqi+1 for 1 ≤ i ≤ n − 1, we deduce that a0i,id0 =

a0i+1,i+1d
q
0, and hence dq−1

0 ∈ k×. On the other hand, by Proposition 2.4 (4),

we have |σ(ξ1)− ζξ1| < |ξ1| for some element ζ ∈ K such that ζq−1 = ζn.
Therefore,

ζn = ζq−1 = (a0i,id0)
q−1 = dq−1

0 ∈ k,

as desired.
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Now it remains to prove the claim under the assumption σ = 1. We shall
prove that, for (g, d, 1) ∈ G0,

(g, d)∗ξ ∈ Zν implies (g, d)∗ξ ∈ (U
(ν)
I × U

(ν)
D )∗ξ,

where we drop the factor of Weil group to ease the notation. Clearly, this is
exactly what we need to prove.

The Yi-coordinates and the Z-coordinate of (g, d)∗ξ are

∑
r

 ∑
(j,m,l); l+mn+i−j=r

a
(m)
j,i dl

 ξq
r

i − ξi,
∑
r

 ∑
(i,j,m,l); l+mn+i−j=r

a
(m)
j,i d

qi−1

l

 ξq
r

1 − nξ1,

respectively. Accordingly, we put

αi,r(g, d) =
∑

(j,m,l); l+mn+i−j=r

a
(m)
j,i dl, βr(g, d) =

∑
r

 ∑
(i,j,m,l); l+mn+i−j=r

a
(m)
j,i d

qi−1

l

 ξq
r

1 .

As βr(g, d) =
∑

i(αi,r(g, d))
qi−1

by definition, we need to prove the inclusion{
(αi,r(g, d))i,r

∣∣∣(g, d, 1) ∈ Stabν

}
⊂
{
(αi,r(g, d))i,r

∣∣∣(g, d) ∈ U (ν)
I × U

(ν)
D

}
.

Let (g, d, 1) ∈ Stabν . To construct (h, e) ∈ U (ν)
I ×U

(ν)
D such that (αi,r(g, d)) =

(αi,r(h, e)), we set

h = (bj,i), bj,i =
∑
m

b
(m)
j,i ϖ

m, e−1 =
∑
l

elφ
l
D

as usual. For 1 ≤ i ≤ n and r ∈ Z we put ai(r) = a
(m)
j,i for the unique pair

(j,m) such that i− j+mn = r and similarly define bi(r). Note that we must

have b
(0)
i,i = e0 = 1 and bi(r) = el = 0 for 0 < r < ⌊(ν + 1)/2⌋.

From the condition on αi,r(g, d), we infer by induction that

dr ∈ k and ai(r) = ai′(r) for 0 ≤ r < ⌊(ν + 1)/2⌋ and 1 ≤ i, i′ ≤ n. (2.29)

For ⌊(ν + 1)/2⌋ ≤ r < ν, we divide sums;

αi,r(g, d) =
∑

0≤m<⌊(ν+1)/2⌋

ai(r −m)dm +
∑

⌊(ν+1)/2⌋≤m≤r

ai(r −m)dm.
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Here, we have dm ∈ k in the first summation and ai(r−m) is independent of
i in the second summation by (2.29) and r−⌊(ν+1)/2⌋ < ν−⌊(ν+1)/2⌋ ≤
⌊(ν + 1)/2⌋. From the last inequality we have, for (h, e),

αi,r(h, e) = bi(r) + dr.

By
∑

i(αi,r(g, d))
qi−1

= βr(g, d) = 0, it is now clear that, for instance,

bi(r) =
∑

0≤m<⌊(ν+1)/2⌋

ai(r −m)dm − n−1Tr

 ∑
⌊(ν+1)/2⌋≤m≤r

ai(r −m)dm


dr =

∑
⌊(ν+1)/2⌋≤m<ν

ai(r −m)dm + n−1 Tr

 ∑
⌊(ν+1)/2⌋≤m≤r

ai(r −m)dm

 ,

satisfy the required conditions. As there are no conditions to consider for
r ≥ ν, this completes the proof of the claim and also of the theorem.

2.6 Alternative description of the reductions in terms
of algebraic groups and quadratic forms

In [BW16], algebraic varieties obtained by the reduction of affinoids are de-
scribed in terms of the Lang torsors of certain algebraic groups. Motivated
by their observation, we give here an alternative description of Zν using al-
gebraic groups Gν and quadratic forms Qν for ν > 0 not divisible by n. It
suffices to treat the cases where 0 < ν < 2n.

Suppose first that 1 ≤ ν < 2n is odd. We put Gν = Ga, considered over
k. We define a quadratic form Qν(y1, . . . , yn) ∈ k[y1, . . . , yn] by

Qν(y1, . . . , yn) =

{
−
∑

µ<j−i<n−µ yiyj if 1 ≤ ν < n∑
n−µ≤j−i≤µ yiyj if n+ 1 ≤ ν < 2n.

If we denote by Fq the q-th power Frobenius endomorphism, then the Lang
torsor LG of an algebraic group G over k is defined by

LG : G → G; x 7→ Fq(x) · x−1.

In this case the Lang torsor LGν of Gν is nothing but the Artin-Schreier map:

LGν : Gν → Gν ; x 7→ xq − x.
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Then it is clear from Theorem 2.10 (2), (3) that Zν is isomorphic to the base
change to k of Zν,0 defined by the following Cartesian diagram:

Zν,0 −−−→ Gνy yLGν

V −−−→
Qν |V

Gν ,

where V = V (y1 + · · ·+ yn) ⊂ An
k = Spec k[y1, . . . , yn] is a closed subscheme

defined by y1 + · · · + yn = 0 and Qν is considered as a morphism An
k → G.

Note that the action of S1,ν (and also S2,ν) agrees with the action of Gν(k)
induced by the Lang torsor.

Suppose that ν is even. In this case we first define an auxiliary algebraic
group G̃ν . We set G̃ν = An+1

k as a scheme and define a structure of an
algebraic group by the same formula as (2.21):

(v, (wi)) · (v′, (w′
i)) = (v + v′ +

∑
i

wiw
′
i+(ν/2), (wi + w′

i))

for any k-algebra R and for any (v, (wi)) ∈ G̃ν(R). We define

Gν = Ker

(
G̃ν → Ga; (v, (wi)) 7→

∑
i

wi

)
.

By definition, we have Gν(k) = S1,ν . We put

Qν(y1, . . . , yn) =

{
−
∑

µ<j−i<n−µ yiyj if 1 ≤ ν < n

−
∑

n−µ<j−i<µ yiyj if n+ 1 ≤ ν < 2n

and put f = (Qν , id) : An
k → G̃ν .

If 1 ≤ ν < n, then we define Zν,0 by the following Cartesian diagrams:

Zν,0 −−−→ Gνy y(·)−1◦LGν

V −−−→ Gνy y
An
k −−−→

f
G̃ν .
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If n+1 ≤ ν < 2n, then we define Zν,0 by the following Cartesian diagrams:

Zν,0 −−−→ Gνy yLGν

V −−−→ Gνy y
An
k −−−→

f
G̃ν ,

Note that the Lang torsor (or its composite with (·)−1) induces an action of
S1,ν = Gν(k) on Zν,0 in each case.

Proposition 2.18. There exists a natural isomorphism between Zν and the
base change to k of Zν,0 which respects the actions of S1,ν.

Proof. This can be verified by a computation. Note that if we set ℘(x) =
xq − x and ν = 2µ, then we have

LGν (v, (wi)) =

(
℘(v)−

∑
i

℘(wi−µ)wi, ℘(w1), . . . , ℘(wn)

)

LGν (v, (wi))
−1 =

(
−℘(v) +

∑
i

℘(wi−µ)w
q
i ,−℘(w1), . . . ,−℘(wn)

)
on valued points. 2

Remark 2.19. It is interesting that the complicated defining equation of Zν
simplifies with the introduction of Gν when ν is even. On the other hand, we
do not use this description in the computation of the cohomology.

3 Cohomology of the reductions

3.1 Quadratic forms and ℓ-adic cohomology

Let V be a k-vector space of dimensionm and Q = Q(x1, . . . , xm) a quadratic
form on V .

Suppose that p ̸= 2. We define the associated symmetric bilinear form
bQ : V × V → k by

bQ(v1, v2) = 2−1(Q(v1 + v2)−Q(v1)−Q(v2)).
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Then Q is non-degenerate if and only if bQ is non-degenerate. In this case,
we put detQ = det bQ (mod k×2). In general, we have an orthogonal decom-
position (V,Q) = (Vnd, Qnd)⊕ (V0, Q0), where Qnd is non-degenerate and Q0

is zero. We simply write Q = Qnd ⊕ Q0. Let ψ be a non-trivial character
of k. To treat quadratic exponential sums associated to quadratic forms by
reducing to the standard one, we put

g(ψ) =
∑
x∈k

ψ(x2) =
∑
x∈k

(
x

q

)
ψ(x).

Suppose that p = 2. We define the associated alternating bilinear form
aQ : V × V → k by

aQ(v1, v2) = Q(v1 + v2)−Q(v1)−Q(v2).

For a, b ∈ k we define a quadratic form Qa,b on k
2 by Qa,b(x, y) = ax2+xy+

by2. For c ∈ k we define a quadratic form Qc on k by Qc(z) = cz2. It is
well-known that there exists an orthogonal decomposition

(V,Q) ≃
⊕

1≤i≤r′
(k2, Qai,bi)⊕ (k,Qc)

⊕ε ⊕ (k,Q0)
⊕s (3.1)

where r′ ≥ 0, ε ∈ {0, 1}, s ≥ 0 and ai, bi ∈ k, c ∈ k×. This is called a
quasi-diagonalization of Q. Here r′, ε, s do not depend on the choice of de-
composition and we call r = 2r′ the rank of Q. We denote by (Vnd, Qnd) (resp.
(Vql, Qql)) the quadratic space corresponding to a non-degenerate subspace⊕

1≤i≤r′(k
2, Qai,bi) (resp. a “quasi-linear” subspace (k,Qc)

⊕ε⊕(k,Q0)
⊕s) and

simply write Q = Qnd ⊕ Qql. We put Arf(Qnd) =
∑

1≤i≤r′ aibi (mod ℘(k)),
where ℘(k) = {x2 + x | x ∈ k}. This is also an invariant of Q, called the Arf
invariant.

The following can be found, for instance, in [Lic97, Definition 10.2]

Proposition 3.1. Let (V,Q) be as above. Suppose that Q is non-degenerate
(so that m = 2r′ is even) and k = F2. Then the number of elements of the
fiber Q−1(1) is either 2m−1 − 2r

′−1 or 2m−1 + 2r
′−1. We have Arf(Q) = 0 in

the first case, and Arf(Q) = 1 in the second case.

We record an elementary computation of the cohomology of certain vari-
eties associated to quadratic forms.
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Proposition 3.2. Let Q and k be as above. Let X0 be the algebraic variety
defined by the Cartesian diagram;

X0 −−−→ A1
ky y℘k

Am
k −−−→

Q
A1
k,

where ℘k is the Artin-Schreier map ℘k(x) = xq − x and Q is the morphism
induced by the quadratic form. Denote by X the base change of X0 to the
algebraic closure k. Take a prime number ℓ ̸= p and put

H i
c = H i

c(X,Qℓ),

which carries the actions of the additive group k and Ω = Gal(k/k). Then
the following assertions hold.

(1) Suppose that p ̸= 2 and r > 0. Let r be the rank of Q and express Q as
an orthogonal sum Q = Qnd ⊕ Q0 as before. We denote the quadratic
residue symbol of k by

( ·
q

)
. Then we have

H i
c ≃


⊕

ψ∈k∨\{1} Vψ if i = 2m− r
Qℓ(m) if i = 2m

0 otherwise,

where Vψ is a one-dimensional vector space on which k acts via ψ and
the q-th power geometric Frobenius Frobq acts as multiplication by the
scalar

(−1)2m−r
(
detQnd

q

)
g(ψ)rqm−r,

and Qℓ(m) is a one-dimensional vector space on which k acts trivially
and Frobq acts as multiplication by the scalar qm.

(2) Suppose that p = 2 and r > 0. Let r be the rank of Q and express Q
as an orthogonal sum Q = Qnd ⊕ Qql as before. Let ε ∈ {0, 1} be as in
(3.1). We denote by ψ0 the unique non-trivial character of F2. Then we
have

H i
c ≃


⊕

ψ∈k∨\{1} Vψ if i = 2m− 2ε− r
Qℓ(m) if i = 2m

0 otherwise,
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where Vψ is a one-dimensional vector space on which k acts via ψ and
Frobq acts as multiplication by the scalar

(−1)2m−2ε−rψ0

(
Trk/F2 Arf (Qnd)

)
qm−ε−r/2

(which is independent of ψ), and Qℓ(m) is a one-dimensional vector space
on which k acts trivially and Frobq acts as multiplication by the scalar
qm.

Proof. For any additive character ψ of k, let Lψ denote the Artin-Schreier
Qℓ-sheaf on A1

k associated to ψ, which is equal to F(ψ) in the notation of
[Del77, Sommes trig. 1.8 (i)]. No matter whether p = 2 or not, we have an
isomorphism

H i
c ≃

⊕
ψ∈k∨

H i
c(Am

k
, Q∗Lψ)

as representations of k × Ω.
Suppose that p ̸= 2. The assertion in this case is well-known. Diago-

nalizing Q and applying the Künneth formula, we are reduced to computing
H i
c(Am

k
, Q∗Lψ) for m = 1 and Q(x) = ax2, (a ∈ k). As the pull-back of Lψ

by the zero map is the constant sheaf, giving rise to Qℓ(1)[2], it suffices to
show the proposition in r = m = 1 case, which is done by the Grothendieck-
Ogg-Shafarevich formula and the Grothendieck-Lefschetz trace formula.

Suppose now that p = 2. Again, by quasi-diagonalizing Q, we are reduced
to computing H i

c(Am
k
, Q∗Lψ) for either m = 1 and Q(x) = ax2, (a ∈ k), or

m = 2 and Q(x, y) = ax2 + xy + by2, (a, b ∈ k). As the computation is easier
if ψ is trivial, we assume that ψ is non-trivial. In the first case, if a = 0,
then the cohomology is Qℓ(1)[2] as above and if a ̸= 0, then Q is a morphism
of additive group schemes Ga ≃ A1

k, which implies that the cohomology
vanishes in all degrees by [Del77, Sommes trig. Théorème 2.7∗]. In the
remaining case we may assume that ψ is non-trivial. Recall the isomorphism
k

∼−→ k∨; x 7→ ψ0,x, where ψ0,x(y) = ψ0

(
Trk/F2 (xy)

)
, and take c ∈ k× such

that ψ = ψ0,c. Then we see that ψ0,c(ax
2) = ψ0,d(x) for all x ∈ k with
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d = (ca)1/2 ∈ k. Now we can turn an elementary manipulation∑
x,y∈k

ψ0,c(Q(x, y)) =
∑
x,y

ψ0,c(ax
2 + xy + by2)

=
∑
y

ψ0,c(by
2)
∑
x

ψ0,c(ax
2 + xy)

=
∑
y

ψ0,c(by
2)
∑
x

ψ0,d+cy(x)

= ψ0,c

(
b(−d/c)2

)
q

= ψ0

(
Trk/F2 Arf(Q)

)
q

into the desired cohomological statement as in the proof of [Boya13, Prop.
2.10]. 2

3.2 Representations of a cyclic group in finite classical
groups

In [BF83] and [BH05b], one is naturally led to consider orthogonal and sym-
plectic representations of a cyclic group over a finite field in order to compute
subtle invariants of certain representations. We use the theory in our analysis
of the cohomology of Zν . Thus we summarize parts of [BH05b, Section 4] in
this subsection.

We put Ω = Gal(k/k) and Γ = Z/nZ, where n is assumed to be coprime
to p as always.

Let Ω act on Γ̂ = Hom(Γ, k
×
) via its natural action on the target. For

χ ∈ Γ̂, we define a k[Γ]-module Vχ in the following way: the underlying
vector space is the field k[χ] ⊂ k generated by the values of χ and Γ acts via
the character χ : Γ→ k[χ]×.

Proposition 3.3. The k[Γ]-module Vχ is simple and its isomorphism class
depends only on the Ω-orbit of χ. Moreover, we have a bijection between the
set of Ω-orbits of Γ̂ and the set of isomorphism classes of simple k[Γ]-modules
induced by χ 7→ Vχ. In particular, the following decomposition holds;

k[Γ] =
⊕
χ∈Ω\Γ̂

Vχ.
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As we need to treat p = 2 case, we define an orthogonal representation
(V,Q) of Γ over k to be a k[Γ]-module V endowed with a non-degenerate
Γ-invariant quadratic form Q. If p ̸= 2, non-degenerate quadratic forms
Q correspond to non-degenerate symmetric bilinear forms bQ and thus this
notion coincides with the usual one.

Proposition 3.4. Assume that p ̸= 2. Let (V,Q) be an orthogonal represen-
tation of Γ over k.

(1) Suppose that (V,Q) is indecomposable. Then exactly one of the following
holds.

(i) The underlying k[Γ]-module V is simple and isomorphic to Vχ with
χ2 = 1.

(ii) V is isomorphic to U ⊕U∨, where U is a simple k[Γ]-module which
is not isomorphic to its contragredient U∨.

(iii) V = Vχ is simple, isomorphic to its contragredient, but χ2 ̸= 1.

Moreover, the isometry class of (V,Q) as an orthogonal representation
is determined by the isomorphism class of V in the last two cases.

(2) There exists a decomposition of (V,Q) into an orthogonal sum of in-
decomposable orthogonal representations. In particular, detQ is deter-
mined by the restriction of Q to the subspace of V fixed by {γ2 | γ ∈ Γ}.

Example 3.5. Let a be a positive divisor of n and let Γa ⊂ Γ denote the
unique subgroup of order n/a. The regular k[Γ]-module k[Γ] has canonical
Γ-submodules

k[Γ/Γa] = k[Γ]Γ
a

=
⊕

χ∈Ω\Γ̂,χa=1

Vχ, Ik(Γ; a, n) =
⊕

χ∈Ω\Γ̂,χa ̸=1

Vχ.

Then Ik(Γ; a, n) is the unique complement of k[Γ/Γa] in k[Γ] as a Γ-submodule.
Similarly, if a | b | n, we define Ik(Γ; a, b) by

Ik(Γ; a, n) = Ik(Γ; b, n)⊕ Ik(Γ; a, b).

Suppose now that p ̸= 2. Let ε : k[Γ] → k be the k-linear map sending
1 ∈ Γ to 1 ∈ k and 1 ̸= γ ∈ Γ to 0 ∈ k, and let x 7→ x be the standard k-
linear involution on k[Γ] such that γ = γ−1 for γ ∈ Γ. Then QΓ(x) = ε(xx),
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x ∈ k[Γ] defines a Γ-invariant non-degenerate quadratic form on k[Γ] such
that detQΓ = 1. We see that

QΓ|k[Γ/Γa] = a−1nQΓ/Γa

and hence

det(QΓ|k[Γ/Γa]) = (a−1n)a, det(QΓ|Ik(Γ;a,n)) = (a−1n)a (mod k×2).

As usual, by a symplectic representation of Γ over k we mean a pair (V, b)
consisting of a k[Γ]-module V and a non-degenerate Γ-invariant alternating
form b.

Proposition 3.6. 10 Let (V, b) be a symplectic representation of Γ over k.

(1) Suppose that (V, b) is indecomposable. Then exactly one of the following
holds.

(i) The underlying k[Γ]-module V is isomorphic to U ⊕ U∨, where U
is either isomorphic to Vχ for some χ with χ2 = 1, or is a simple
k[Γ]-module which is not isomorphic to its contragredient.

(ii) V = Vχ is simple, isomorphic to its contragredient, but χ2 ̸= 1.

Moreover, the isometry class of (V, b) as a symplectic representation is
determined by the isomorphism class of V in all the three cases.

(2) There exists a decomposition of (V, b) into an orthogonal sum of inde-
composable symplectic representations.

Remark 3.7. Suppose that p = 2. Let (V,Q) be an orthogonal representa-
tion of Γ over k. Considering the orthogonal decomposition of the alternating
bilinear form aQ associated to Q, we may separately study the isotypic com-
ponents of V appearing in Proposition 3.6 to compute the Arf invariant of
Q.

10In [BF83][BH05b], this proposition is stated under the assumption that k = Fp. How-
ever, it plays a role only in the discussion of the computation of trace invariants and this
proposition remains true without the assumption.
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3.3 Certain Heisenberg groups and their representa-
tions

Let H be a finite group and Z ⊂ H its center. We say that a finite group H
is a Heisenberg group if it is not abelian and Q = H/Z is abelian. If H is a
Heisenberg group, the map H ×H → Z; (x, y) 7→ [x, y] = xyx−1y−1 induces
an alternating bilinear map [·] : Q×Q→ Z.

The following is well-known; see for instance [Bum98, Exercises 4.1.4-
4.1.7].

Proposition 3.8. Let H,Z,Q be as above. Let ψ : Z → Q×
ℓ be a character of

Z. Assume that ψ ◦ [·] : Q×Q→ Q×
ℓ is non-degenerate. Then there exists an

irreducible representation ρψ of H, unique up to isomorphism, whose central
character is ψ. Moreover, dim ρψ =

√
c, where c is the order of H.

The following proposition can be verified easily.

Proposition 3.9. Let 1 < ν = 2µ < 2n be an even integer. Let S1,ν (resp.
S2,ν) be the group defined in Proposition 2.12 (resp. in Proposition 2.14).
Assume that n and ν are coprime.

(1) The group S1,ν is a Heisenberg group. In the notation of Proposition 2.12
(2), the center Z(S1,ν) is

Z(S1,ν) = k = {(v, (wi)) ∈ k × kZ/nZ | wi = 0 for all i} ⊂ S1,ν .

Moreover, a character ψ of k induces a non-degenerate alternating form

ψ ◦ [·] : S1,ν/Z(S1,ν)× S1,ν/Z(S1,ν)→ Q×
ℓ if and only if ψ is non-trivial.

(2) The group S2,ν is a Heisenberg group. In the notation of Proposition 2.14
(2), the center Z(S2,ν) is

Z(S2,ν) = k = {(v, w) ∈ k × kn | w = 0} ⊂ S2,ν .

Moreover, a character ψ of k induces a non-degenerate alternating form

ψ ◦ [·] : S2,ν/Z(S2,ν)× S2,ν/Z(S2,ν)→ Q×
ℓ if and only if ψ is non-trivial.

If n and ν are coprime, then, by Propositions 3.8 and 3.9, there exists a
unique irreducible representation ρ1,ψ (resp. ρ2,ν) of S1,ν (resp. of S2,ν) with
the central character ψ, for any non-trivial character ψ of k.
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3.4 Cohomology of the reductions

Proposition 3.10. 11 Let 1 ≤ ν < 2n be an integer. Suppose that ν is odd
and write ν = 2µ + 1. Put d = gcd(n, ν). Let Zν be the algebraic variety
defined in Theorem 2.10 and Qν the quadratic form defined in 2.6. Put

H i
c = H i

c(Zν ,Qℓ).

If p = 2, we denote by
( ·
m

)
the Jacobi symbol for any positive odd integer m.

(1) We have H i
c = 0 unless i = 2(n− 1), n+ d− 2.

(2) If d ̸= n, then

H i
c ≃

{⊕
ψ∈k∨\{1}Wψ if i = n+ d− 2

Qℓ(n− 1) if i = 2(n− 1),

where Wψ is a one-dimensional vector space on which k acts via ψ and
Frobq acts as multiplication by the scalar

(
q
n/d

)
q

n+d−2
2 if n is odd and p = 2(

n/d
q

)
g(ψ)n−dqd−1 if n is odd and p ̸= 2

−
(−1
q

)µ(2
q

)(n/d
q

)
g(ψ)n−dqd−1 if n is even (and hence p ̸= 2),

and k acts trivially on Qℓ(n− 1).

(3) If d = n, then
H2(n−1)
c ≃ Qℓ[k]⊠Qℓ(n− 1)

as a representation of k × Ω.

(4) Consider the following natural action of the standard generators of Γ =
Z/nZ and Z/2Z on Zν ;

(z, y1, y2, . . . , yn) 7→ (z, yn, y1, . . . , yn−1),

(z, y1, . . . , yn) 7→ (z,−y1, . . . ,−yn)

11Although we compute the cohomology of Zν for any ν (not divisible by 2n) in this
proposition, only the cases where n and ν are coprime are relevant in our main theorem;
we find the result interesting nonetheless.

51



respectively (cf. 2.5). Let ψ be a character of k. Then both actions in-
duce, on the ψ-isotypic component of

⊕
iH

i
c, multiplication by the scalar{

(−1)n−1 if ψ is non-trivial

1 otherwise.

Proof. We first treat (1) to (3). In view of Proposition 3.2, we need to
compute various invariants of the quadratic form Qν defining Zν . For this,
we follow the approach of [BH05b, 8.3] and exploit the Γ-invariance of Qν .
Denoting the standard generator of Γ by γ, we regard Qν = Qν(y1, . . . , yn)
as a quadratic form on k[Γ] =

{∑
1≤i≤n yiγ

i | yi ∈ k
}
.

First we claim, with no assumption on the parity of p, that Ik(Γ; 1, n) ⊂
k[Γ] admits an orthogonal decomposition

Ik(Γ; 1, n) = Ik(Γ; d, n)⊕ Ik(Γ; 1, d) (3.2)

in the notation of Example 3.5, where (the restriction of)Qν is non-degenerate
(or zero) on Ik(Γ; d, n) (resp. on Ik(Γ; 1, d)). Suppose that 1 ≤ ν < n. Then,
for x ∈ k[Γ],

Qν(x) =

−ε
(∑

µ+1≤i≤(n−1)/2 x(γ
−ix)

)
if n is odd

−ε
(∑

µ+1≤i≤n/2−1 x(γ
−ix) + 2−1x(γ−n/2x)

)
if n is even (and hence p ̸= 2).

By Proposition 3.4 and Remark 3.7 we may separately consider each isotypic
component underlying some indecomposable orthogonal (or symplectic, if
p = 2) representation of Γ. Also, to prove non-degeneracy or triviality of Qν ,
we may assume that all characters of Γ take values in k×.

For a character χ of Γ, let

eχ = n−1
∑

1≤i≤n

χ(γi)γ−i

be the corresponding idempotent, so that Vχ = eχk[Γ]. First let χ be a
character such that χ2 ̸= 1 and consider Qν |Vχ⊕Vχ−1 . Put α = χ(γ). If n is
odd, then we have, for y, z ∈ k,

Qν(yeχ + zeχ−1) = −ε

 ∑
µ+1≤i≤(n−1)/2

(yeχ + zeχ−1) (α−iyeχ−1 + αizeχ)


= −n−1yz

(∑
(αi + α−i)

)
= −n−1yz

(
αn−µ − αµ+1

)
/ (α− 1) .
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Similarly, if n is even, we see that

Qν(yeχ + zeχ−1) = −n−1yz

 ∑
µ+1≤i≤n/2−1

(αi + α−i) + αn/2


= −n−1yz

(
αn−µ − αµ+1

)
/ (α− 1) .

Thus, Qν |Vχ⊕Vχ−1 is trivial if χd = id and is non-degenerate otherwise.

Next let χ be of order two (so that n is even) and consider the restriction
of Qν on Vχ ⊂ Ik(Γ; d, n). Then

Qν(eχ) = −n−1

 ∑
µ+1≤i≤n/2−1

(−1)i + 2−1(−1)n/2
 = (2n)−1(−1)µ (3.3)

and Qν is non-degenerate on Vχ. Hence we have proved the claim (3.2) if
1 ≤ ν < n. The case where n+1 ≤ ν < 2n can be reduced to the above case
by noting that Qν = −Q2n−ν . In particular, we find that

Qν(eχ) = (2n)−1(−1)µ (3.4)

for the character χ of order two, if n is even.
Now suppose that p ̸= 2. Then we need to show that

detQν |Ik(Γ;d,n) =

{
n/d if n is odd

(−1)µ2n/d if n is even
(mod k×2).

We compare Qν with the standard quadratic form QΓ on k[Γ]. If n is even
and χ is the character of order two, then the determinant of QΓ|Vχ is 1/n. By
Proposition 3.4, (3.3), (3.4), we infer that the determinants of Qν |Ik(Γ;d,n) and
QΓ|Ik(Γ;d,n) differ by a factor of (−1)µ2 if n is even and coincide if n is odd.
Now the determinant of QΓ|Ik(Γ;d,n) is indeed n/d, as is seen from Example
3.5.

Suppose that p = 2 (and hence n is odd). Then we are to prove that

ψ0

(
Trk/F2 Arf

(
Qν |Ik(Γ;d,n)

))
=

(
q

n/d

)
.

However, as Qν is clearly defined over F2 and Ik(Γ; d, n) = IF2(Γ; d, n)⊗F2 k,
the additivity of the Arf invariant and the multiplicativity of the Jacobi
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symbol reduce the computation to k = F2 case. In fact, in the course of
computation below we shall see that if a k[Γ]-module V with no non-zero
fixed vectors admits an invariant non-degenerate quadratic form, then the
Arf invariant is uniquely determined by V .

Let m > 1 be a divisor of n and set

Vm =
⊕

Vχ,

where the sum is taken over all the orbits Ωχ ∈ Ω\Γ∨ of order m. Take a
prime divisor lm of m. Suppose that a non-degenerate quadratic form Q on
Vm is invariant under the action of Γ. Now every Γ-orbit of Vm except for
{0} is of length m. Thus if Arf(Q) = 0 (or = 1), then 2φ(m)/2−1+2φ(m)−1 ≡ 1
mod m (resp. ≡ 0 mod m) by Proposition 3.1. Since the two congruences
in the latter condition never occur together and Arf(Q) ∈ {0, 1}, the two
conditions are in fact equivalent. The congruences are further equivalent to
2φ(m)/2 ≡ 1 mod m (resp. ≡ −1 mod m). We find that these in turn are
equivalent to the same congruence mod lm, again by observing that 2φ(m)/2

can only be congruent to 1 or −1 mod m. Now an elementary calculation
shows that 2φ(m)/2 ≡ 2lm−1 mod lm if m is a prime power and 2φ(m)/2 ≡ 1
mod lm otherwise. Therefore,

ψ0 (Arf(Q)) =

{(
2
lm

)
if m is a prime power

1 otherwise,

from which we conclude

ψ0

(
Arf

(
Qν |Ik(Γ;d,n)

))
=

(
2

n/d

)
as desired.

Finally, let us prove (4). By [DL76, Theorem 3.2]12, we have∑
i

(−1)i tr
(
γx | H i

c

)
=
∑
i

(−1)i tr
(
x | H i

c(Z
γ
ν ,Qℓ)

)
,

where x ∈ k and Zγ
ν denotes the fixed point variety with respect to the action

of the generator γ ∈ Γ. Since Zγ
ν is clearly a discrete set of points indexed

12The author learned the idea of applying the Deligne-Lusztig fixed point formula in
[BW13, 4.4].
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by k, the right-hand side equals the trace of the regular representation of
k. Now we find the required action of γ by applying the idempotents of
the group ring corresponding to each character of k. The action of Z/2Z is
treated in exactly the same way because the fixed point variety remains the
same (unless p = 2, in which case the statement is trivial). 2

Proposition 3.11. Let 1 ≤ ν < 2n be an integer. Suppose that ν is even
and write ν = 2µ. Assume that n and ν are coprime. Let Zν be the algebraic
variety defined in Theorem 2.10. Put

H i
c = H i

c(Zν ,Qℓ),

which carries the actions of S1,ν × S2,ν and Ω = Gal(k/k) in the notation of
2.5.

(1) We have H i
c = 0 unless i = 2(n− 1), n− 1.

(2) We have

Hn−1
c ≃

⊕
ψ∈k∨\{1}

ρ1,ψ ⊠ ρ2,ψ

as a representation of S1,ν × S2,ν, where ρ1,ψ (ρ2,ψ) is the unique irre-
ducible representation of S1,ν (resp. of S2,ν) with the central character ψ
(cf, Proposition 3.9), and

tr (Frobq | ρ1,ψ ⊠ ρ2,ψ) = qn−1.

(3) Consider the following natural action of the standard generator γ ∈ Γ =
Z/nZ on Zν ;

(z, y1, y2, . . . , yn) 7→ (z, yn, y1, . . . , yn−1).

Let ψ be a character of k and H•
c,ψ the ψ-isotypic component of

⊕
iH

i
c.

Then we have
tr
(
γj | H•

c,ψ

)
= 1

for any j coprime to n.

Proof. Let us prove the assertions (1), (2). As the case where n < ν < 2n is
settled in exactly the same way, we only treat the case ν < n. We denote by
P̃ν(y1, . . . , yn) the polynomial appearing in the right-hand side of the second
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equation in 2.10 (4). We put Pν(y2, . . . , yn) = P̃ν(−(y2+ · · ·+yn), y2, . . . , yn).
Then for any i we have the following decomposition:

H i
c ≃

⊕
ψ∈k∨

H i
c(An−1

k
, P ∗

νLψ)

as a representation of S1,ν × S2,ν × Ω. It suffices to prove

dimH i
c(An−1

k
, P ∗

νLψ) =

{
qn−1 if i = n− 1

0 otherwise

for any non-trivial ψ ∈ k∨. Indeed, ψ = 1 non-trivially contributes to the
above decomposition only if i = 2(n− 1), and we have dim ρ1,ψ = dim ρ2,ψ =
q(n−1)/2 if ψ is non-trivial by Proposition 3.8. Also, as ψ(xq − x) = 1 for
any x ∈ k and any ψ ∈ k∨, the statement for the Frobenius trace immedi-
ately follows from the Grothendieck-Lefschetz trace formula and the above
vanishing.

Our basic strategy is to apply [Del80, (3.7.2.3)]13:

Let P ∈ k[T1, . . . , Tm] be a polynomial of degree d. Suppose that
d is coprime to p and that the homogeneous part P (d) of degree
d of P defines a smooth hypersurface in Pm−1

k . Then

dimH i
c(Am

k
, P ∗Lψ) =

{
(d− 1)m if i = m

0 otherwise.

Although the polynomial Pν is of degree 2q, we may replace each mono-
mial of the form yqi y

q
j with yiyj, because f

∗Lψ is a constant sheaf if f = gq−g
for some polynomial g. We denote by P ′

ν ∈ k[y2, . . . , yn] the polynomial
obtained by applying the above procedures to all monomials of the form
yqi y

q
j . We similarly denote by P̃ ′

ν ∈ k[y1, . . . , yn] the polynomial obtained

from P̃ν in the same way. Then we have degP ′
ν = deg P̃ ′

ν = q + 1 and

P ′
ν(y2, . . . , yn) = P̃ ′

ν(−(y2 + · · · + yn), y2, . . . , yn). Thus it suffices to show

that P ′(q+1)
ν defines a smooth hypersurface in Pn−2

k
. As this hypersurface is

13In fact, it also asserts that the cohomology in degree m is pure of weight m. However,
we only need the dimension assertions in what follows.
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isomorphic to the projective variety V defined by P̃
′(q+1)
ν and y1+ · · ·+ yn in

Pn−1

k
, we are reduced to proving that the Jacobian(

1 1 . . . 1
∂
∂y1
P̃

′(q+1)
ν

∂
∂y2
P̃

′(q+1)
ν . . . ∂

∂yn
P̃

′(q+1)
ν

)

is of rank two at every k-valued point [Y1 : · · · : Yn] of V . Regarding {yi} as
indexed by Z/nZ we easily verify that

P̃ ′(q+1)
ν (y1, . . . , yn) = −

∑
1≤i≤n

yi
∑

µ≤d<n−µ

yqi+d

and hence
∂

∂yi
P̃ ′(q+1)
ν (y1, . . . , yn) = −

∑
µ≤d<n−µ

yqi+d.

The rank of the Jacobian is not maximal if and only if these partial derivatives
are all equal, that is, Y q

i = Y q
j for all 1 ≤ i, j ≤ n, by the assumption that

n and ν = 2µ are coprime. Together with Y1 + · · · + Yn = 0, this implies
Y1 = · · · = Yn = 0, as required.

Now the assertion (3) follows from [DL76, Theorem 3.2] exactly as in
Proposition 3.10 (4). 2

Given the preceding propositions, the cohomology of the reduction Z ν

is computed by exploiting the periodicity of Zν with respect to ν and the
following proposition.

Proposition 3.12. Let ν > 0 be an integer, not divisible by n. Then we
have the following isomorphism

H i
c(Z ν ,Qℓ) ≃

⊕
χ∈

(
U

⌈ν/n⌉
K

)∨

H i
c(Zν ,Qℓ)⊗ (χ ◦NG).

of representations of Stabν for any i.

Proof. The proposition follows from Theorem 2.15 (1) in the same way as
[BW16, Corollary 3.6.2]. 2
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4 Realization of correspondences

4.1 Special cases of essentially tame local Langlands
and Jacquet-Langlands correspondences

Let us allow n to be divisible by p only in this subsection.

Definition 4.1. ([BH05a, 1, 2]) Let ρ be an n-dimensional irreducible smooth
representation of WK . Let t(ρ) be the number of unramified characters χ of
K× such that χ⊗ ρ ≃ ρ. Then t(ρ) divides n and ρ is said to be essentially
tame if p does not divide n/t(ρ).

We denote by Getn (K) the set of isomorphism classes of n-dimensional
(irreducible) essentially tame representations of WK .

Similarly, let π be an irreducible supercuspidal representation of GLn(K)
or an irreducible smooth representation of D×. We say that π is essentially
tame if p does not divide n/t(π), where t(π) is the number of unramified
characters χ of K× such that χπ ≃ π.

Definition 4.2. ([BH05a, 3. Definition]) An admissible pair (of degree n)
is a pair (F/K, ξ) in which F/K is a tamely ramified extension of degree n
and ξ is a character of F× such that

(1) if ξ factors through the norm map NF/E : F
× → E× for a subextension

K ⊂ E ⊂ F , then F = E, and

(2) if ξ|U1
F
factors through NF/E : F

× → E× for a subextension K ⊂ E ⊂ F ,
then F/E is unramified.

Two admissible pairs (F1/K, ξ1), (F2/K, ξ2) are said to be K-isomorphic if
there exists a K-isomorphism i : F1

∼−→ F2 such that ξ1 = ξ2 ◦ i.
We denote by Pn(K) the set of K-isomorphism classes of admissible pairs

of degree n.

The proof of the following is found in [BH05a, A.3 Theorem].

Proposition 4.3. The following map is a bijection:

Pn(K)→ Getn (K); (F/K, ξ) 7→ IndF/K ξ = IndWK
WF

ξ.
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In [BH05a], [BH05b], [BH10], a canonical bijection (F/K, ξ) 7→ πξ be-
tween Pn(K) and the set of isomorphism classes of essentially tame represen-
tations of GLn(K) is constructed, and the existence and an explicit descrip-
tion of tamely ramified characters Kµξ are established such that IndF/K ξ 7→
π

Kµξξ is the local Langlands correspondence. Likewise, a special case of the
main result of [BH11] yields a canonical bijection (F/K, ξ) 7→ πDξ between
Pn(K) and the set of isomorphism classes of essentially tame representa-
tions of D×, and the description of tamely ramified characters Dιξ such that
π

Dιξξ 7→ πDξ is the local Jacquet-Langlands correspondence.
In what follows, we review the construction of πξ and π

D
ξ and the descrip-

tion of Kµξ and Dιξ for certain admissible pairs (F/K, ξ) that are relevant to
our results.

Minimal pairs

Definition 4.4. Let i ≥ 0 be an integer. An admissible pair (F/K, ξ) is said
to be minimal with the jump at i if ξ|U i+1

F
factors through the norm map NF/K

and ξ|U i
F
does not factor through NF/E for any subextension K ⊂ E ⊊ F .

We say that an admissible pair is minimal14 if it is minimal with the jump
at i for some i ≥ 0.

Remark 4.5. (1) If n is a prime, then any admissible pairs are minimal.

(2) If (F/K, ξ) is a minimal pair with the jump at i, then there exists a
decomposition

ξ|U i
F
=
(
φ⊗ (χ ◦NF/K)

)
|U i

F
, (4.1)

where φ is a character of F× trivial on U i+1
F and χ is a character of K×.

(3) If (F/K, ξ) is a minimal pair with the jump at i, then the ramification
index of F/K is coprime to i.

(4) In this paper we are interested in minimal pairs (F/K, ξ) with the jump
at ν in which F/K is totally ramified (hence, p ∤ n and ν is coprime to n).
We will see that the cohomology of each reduction Z ν, with ν coprime
to n, realizes the local Langlands and Jacquet-Langlands correspondences
for representations parametrized by such minimal pairs (for a specific F ).

14Note that some authors further impose the triviality of ξ|Ui+1
F

in the definition of

minimality. This definition is taken from [BH05a, 2.2] (except that i is assumed to be
positive there). They also discuss jumps of possibly not minimal pairs.

59



(5) Many of the preceding results treat the representations parametrized by
minimal pairs;

• The cohomology of each reduction in [BW16] deals with minimal
pairs (F/K, ξ) with the jump at some i ≥ 1 in which F/K is un-
ramified.

• That of [IT15a] deals with minimal pairs (F/K, ξ) with the jump
at 1 in which F/K is totally ramified. These representations are
(character twists of) the simple epipelagic representations if p does
not divide n. Imai and Tsushima announced that they constructed
corresponding affinoids also in the cases where p divides n. In these
cases simple epipelagic representations are not essentially tame.

• In [Wei14], it is assumed that n = 2 and p ̸= 2, in which case all
representations involved are parametrized by minimal pairs.

Construction of πξ and π
D
ξ in special cases In the rest of this subsection

we assume that (F/K, ξ) is a minimal pair with the jump at i and F/K is
totally ramified.

Fix a character ψ of K 15 which is trivial on p, but not on OK . For α ∈ F ,
define a function ψFα by ψFα (u) = ψ(TrF/K α(u − 1)), (u ∈ F ). Then by the
tame ramification assumption we have

p−sF /p−rF
∼−→ (U r+1

F /U s+1
F )∨; α + p−rF 7→ ψFα (4.2)

for any integers r, s such that 0 ≤ r < s ≤ 2r + 1. Similarly, for β ∈Mn(K)
and γ ∈ D, set

ψβ(g) = ψ(tr β(g−1)), (g ∈Mn(K)) and ψDγ (d) = ψ(Trd γ(d−1)), (d ∈ D).

Let us construct πξ and π
D
ξ .

First suppose that ξ is trivial on U i+1
F . Then there exists an α ∈ F with

vF (α) = −i such that ξ|
U

⌊i/2⌋+1
F

= ψFα . Take a K-embedding F → Mn(K)

(resp. F → D) and regard F as a K-subalgebra F ⊂Mn(K) (resp. F ⊂ D).
Let I = Iξ ⊂ Mn(K) be the unique hereditary OK-order normalized by
F×. (Later we will always arrange it to be the standard Iwahori order;
see Remark 4.8). Denote by PI = rad I the Jacobson radical of I and set

15Thus, we change notation here; in Section 3 ψ generally denote a character of k.
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UI = I×, U i
I = 1+Pi

I for i ≥ 1 as usual. Define a character θξ (resp. θ
D
ξ ) of

H1
ξ = U1

FU
⌊i/2⌋+1
I (resp. of H1,D

ξ = U1
FU

⌊i/2⌋+1
D ) by

θξ|U1
F
= ξ|U1

F
, θξ|U⌊i/2⌋+1

I
= ψα|U⌊i/2⌋+1

I
,

θDξ |U1
F
= ξ|U1

F
, θDξ |U⌊i/2⌋+1

D
= ψDα |U⌊i/2⌋+1

D
.

Set J1
ξ = U1

FU
⌊(i+1)/2⌋
I , J1,D

ξ = U1
FU

⌊(i+1)/2⌋
D , Jξ = F×J1

ξ and JDξ = F×J1,D
ξ .

To construct an irreducible smooth representation Λξ (resp. Λ
D
ξ ) of Jξ (resp.

of JDξ ), we use the following lemma.

Lemma 4.6. Let θ = θξ or θ = θDξ . Accordingly, set H
1 = H1

ξ (resp. H1,D
ξ ),

J1 = J1
ξ (resp. J1,D

ξ ) and J = Jξ (resp. J
D
ξ ).

(1) The conjugation by F× stabilizes θ. Thus, the cyclic group Γ = F×/K×U1
F

acts on the finite p-group Q = J1/Ker θ. The center Z of Q is the cyclic
group Z = H1/Ker θ, which is also the Γ-fixed part Z = QΓ.

(2) There exists a unique irreducible smooth representation η of Q whose
central character is θ.

(3) There exists a unique irreducible smooth representation η̃ of Γ⋉Q such
that η̃|Q ≃ η and det η̃|Γ = 1.

(4) There exists a constant ϵ ∈ {±1} such that tr η̃(γu) = ϵξ(u) for any
generator γ ∈ Γ and u ∈ U1

F .

(5) There exists a unique irreducible smooth representation Λ of J such that
Λ|J1 ≃ η and

tr Λ(h) = ϵξ(h) (4.3)

for any h ∈ F× whose image in Γ is a generator.

Proof. This follows from [BH05a, (4.1.4) and Lemma 4.1] and [BH11, 5.2
Lemma 1], where the construction of Λ using η̃ is given.

Note that the statements are trivial if i is odd, in which case H1 = J1.
In fact, then Λ is one-dimensional, Λ|F× = ξ and ϵ = 1. Note also that the
existence of η (if i is even) is a consequence of Proposition 3.8 and that Λ|UF

is a sum of ξ by (4.3). 2
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According to whether θ = θξ or θ = θDξ , we denote the sign ϵ appearing
in the proposition by ϵξ (resp. ϵ

D
ξ ) and similarly denote the representation Λ

by Λξ (resp. Λ
D
ξ ). We set

πξ = c-Ind
GLn(K)
Jξ

Λξ, πDξ = IndD
×

JD
ξ
ΛDξ .

Finally, if ξ is not trivial on U i+1
F , we take a decomposition of ξ as in (4.1)

and put
πξ = χπφ, πDξ = χπDφ .

The representation πξ (resp. πDξ ) is irreducible and supercuspidal (resp.
irreducible). The isomorphism classes of πξ and πDξ only depend on the
K-isomorphism class of (F/K, ξ).

We need an explicit description of the signs ϵξ and ϵ
D
ξ .

Proposition 4.7. Suppose that i is even. In the situation of Lemma 4.6 the
sign ϵ equals the Jacobi symbol

ϵ =

(
q

n

)
.

Proof. By [BF83, (8.6.1)], the sign ϵ is determined by the symplectic rep-
resentation (Q/Z, hθ) of Γ induced by hθ : (x, y) 7→ θ(xyx−1y−1) and hence
by the k[Γ]-module Q/Z (cf. Proposition 3.6). Also it is multiplicative
with respect to orthogonal sums of symplectic representations. We have
Q/Z ≃ Ik(Γ; 1, n) ≃ IFp(Γ; 1, n)⊗Fp k, no matter whether θ = θξ or θ = θDξ .
Therefore, the assertion is reduced to k = Fp case, which is treated in [BF83,
(9.3.5)] 2

Remark 4.8. Let us temporarily return to the situation of Theorem 2.15.
There L = K(φL) is a totally tamely ramified extension of K of degree n and
it is considered as a K-subalgebra of Mn(K) (resp. D) via a fixed embedding
φL 7→ φ (resp. φL 7→ φD) arising from the fixed CM point. It is easily seen
that L× does normalize the standard Iwahori order, which is denoted there
again by I ⊂ Mn(K). We apply the preceding constructions with respect to

this field, these embeddings and the order. Note also the equalities L×U
(ν)
I =

L×U
⌊(ν+1)/2⌋
I and L× ∩ U (ν)

I = U ν
L, and the analogous equalities for U

(ν)
D .
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Description of Kµξ and Dιξ in special cases Let us first define some
invariants attached to F/K, ψ and ξ. We set

RF/K = IndF/K 1K , δF/K = detRF/K ,

where 1K denotes the trivial representation of WK . We define the Langlands
constant λF/K(ψ) by

λF/K(ψ) =
ε(RF/K , 1/2, ψ)

ε(1F , 1/2, ψ ◦ TrF/K)
,

where the denominator and the numerator denote the Langlands-Deligne
local constants (see [BH06, Section 30] for these two constants).

Take α = α(ξ) ∈ F as in the construction of πξ, so that vF (α) = −i
and φ|

U
⌊i/2⌋+1
F

= ψFα where φ is as in the decomposition (4.1). Note that

α(ξ)U1
F only depends on ξ by (4.2). For any uniformizer ϖF ∈ F , we define

ζ(ϖF , ξ) ∈ F as the unique root of unity satisfying

ζ(ϖF , ξ) ≡ ϖi
Fα(ξ) (mod U1

F ).

In the case at hand, [BH05b, Theorem 2.1] reads as follows.

Theorem 4.9. Let (F/K, ξ) be an admissible pair as above, i.e. it is minimal
with the jump at i and F/K is totally ramified. Then the image of IndF/K ξ
under the local Langlands correspondence is π

Kµξξ, where Kµξ is a character
of F× defined below.

(1) If n is odd, then Kµξ is unramified and, for any uniformizer ϖF ∈ F ,

Kµξ(ϖF ) = λF/K(ψ).

(2) If n is even, then Kµξ is determined by the following conditions

Kµξ|U1
F
= 1, Kµξ|K× = δF/K ,

Kµξ(ϖF ) =

(
ζ(ϖF , ξ)

q

)(
−1
q

)(i−1)/2

λF/K(ψ)

for any uniformizer ϖF ∈ F .

Remark 4.10. In both cases, Kµξ does not depend on the choice of ψ (see
[BH05b, Remark 2.1.3]).
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Similarly, we need the following special case of [BH11, Theorem 5.3].

Theorem 4.11. Let (F/K, ξ) be as above. Then the image of πDξ under
the local Jacquet-Langlands correspondence is π

Dιξξ, where ι = Dιξ is the
unramified character of F× sending uniformizers to (−1)n−1.

We record here some of the explicit values used later.

Proposition 4.12. Let the notation be as above.

(1) Suppose that n is odd. Then λF/K(ψ) =
(
q
n

)
.

(2) Suppose that n is even. Then δF/K(u) =
(
u
q

)
for u ∈ UK.

Proof. The assertion (1) (resp. (2)) is part of [BH05b, Lemma 1.5(2)] (resp.
part of [IT15a, Lemma 5.3]). 2

4.2 Realization of correspondences
16 Let ψ be the additive character of K fixed in the previous subsection and
denote by ψ the non-trivial additive character of k obtained as the reduction

of ψ|OK
. We also denote by ψζ the character ψζ : k → Q×

ℓ ; x 7→ ψ(ζx) for
any ζ ∈ µq−1(K).

Let ν > 0 be an integer and assume that it is coprime to n. We return to
our analysis of the cohomology in Section 3. Put Hν = Hn−1

c (Zν ,Qℓ)((1 −
n)/2) and Πν = Hn−1

c (Z ν ,Qℓ)((1−n)/2). We denote by Hν,ζ the ψζ-isotypic
component of Hν and set

Πν,ζ =
⊕

χ∈
(
U

⌈ν/n⌉
K

)∨

Hν,ζ ⊗ (χ ◦NG).

Then we have Hν =
⊕

ζ∈µq−1(K)Hν,ζ and Πν =
⊕

ζ∈µq−1(K)Πν,ζ by Theorem

2.10, Proposition 3.10 (2), Proposition 3.11 (2) and Proposition 3.12.

Lemma 4.13. Let π be an irreducible smooth representation of GLn(K). Set
G1 = GLn(K) and G2 = D× ×WK. Denote by Stabν ⊂ G2 the image of
Stabν under the projection G→ G2. Then we have a canonical isomorphism

HomG1

(
c-IndGStabν Πν , π

)
≃ IndG2

Stabν
Hom

U
(ν)
I

(Πν , π)

16The reasoning in this subsection is motivated by that in [IT15a].
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of representations of G2, where the action of (d, σ) ∈ Stabν on Hom
U

(ν)
I

(Πν , π)

is given by the composition of the action of (g, d, σ)−1 ∈ Stabν on the source
and that of g ∈ G1 on the target for some lift (g, d, σ) ∈ Stabν of (d, σ) ∈
Stabν.

Proof. This is straightforward; one only needs to check the action of G2 on
the right-hand side of the following isomorphism

HomG1

(
c-IndGStabν Πν , π

)
≃

⊕
Stabν\G2

Hom
U

(ν)
I

(Πν , π)

induced by the Mackey decomposition

(c-IndGStabν Πν)|G1 ≃
⊕

Stabν gG1∈Stabν\G/G1

c-IndG1

Stabgν ∩G1
Πg
ν

≃
⊕

Stabν\G2

c-IndG1
Stabν ∩G1

Πν

and the Frobenius reciprocity. 2

Proposition 4.14. Let (π, V ) be an irreducible smooth representation of
GLn(K). Let ζ ∈ µq−1(K) be a (q − 1)-st root of unity. We have

Hom
U

(ν)
I

(Hν,ζ , π) ̸= 0

if and only if π is an essentially tame (supercuspidal) representation parametrized
by a minimal admissible pair (L/K, ξ) such that ξ|Uν

L
= ψL

ζφ−ν
L

. Moreover, if

this space is non-zero, then we have

dimHom
U

(ν)
I

(Hν,ζ , π) =

{
1 if ν is odd

q(n−1)/2 if ν is even.

Proof. Define irreducible representations ρ1 and ρ2 of S1,ν and S2,ν by ex-
pressing Hν,ζ ≃ ρ1 ⊠ ρ2 as a representation of S1,ν × S2,ν , so that

dim ρ1 = dim ρ2 =

{
1 if ν is odd

q(n−1)/2 if ν is even.

Then we need to determine the condition for ρ1 to occur in π and prove that
the multiplicity is (at most) one.
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Suppose ρ1 occurs in π. Note first that L× normalizes C1 (appearing in

the definition of U
(ν)
I ) and the central character of ρ1, which in turn implies

that it normalizes (U
(ν)
I , ρ1). Thus L×U

(ν)
I = L×U

⌊(ν+1)/2⌋
I acts on the ρ1-

isotypic part V ρ1 of π. Take an irreducible subrepresentation Λ ⊂ V ρ1 The
restriction Λ|Uν

I
is clearly a sum of characters ψζφ−ν

L
. Now the discussions in

[Car84, 5.6, 5.7], which treat more general cases, yield in this case the classifi-

cation of irreducible representations Ξ of K(ζφ−ν
L )×U

⌊(ν+1)/2⌋
I = L×U

⌊(ν+1)/2⌋
I

containing ψζφ−ν
L

when restricted to U ν
I . In particular,

• dimΞ = dim ρ1.

• Ξ|K×U1
L
is a sum of characters.

• An irreducible representation of K×U1
LU

⌊(ν+1)/2⌋
I containing ψζφ−ν

L
|Uν

I

admits exactly n extensions to L×U
⌊(ν+1)/2⌋
I .

It can be readily verified that Λ ≃ Λξ for some ξ as in the statement. Hence
we obtain a homomorphism πξ = c-IndΛξ → π, which is an isomorphism
by the irreducibility of π. The converse being easy, we deduce the desired
condition for the occurrence of ρ.

Since dimΛξ = dim ρ as above, the claim about the multiplicity is reduced
to certain multiplicity one statement in the theory of types. We can argue
as follows. Take once again a subrepresentation Λ′ in V ρ1 . By the above
argument we have Λ′ ≃ Λξ′ for some ξ′ and πξ ≃ πξ′ . Then ξσ = ξ′ for
some σ ∈ Aut(L/K) by the injectivity of the parametrization, which implies
ζφ−ν

L = ζ(φ−ν
L )σ and hence σ = id. This shows that V ρ1 is Λξ-isotypic.

Therefore,

dimHom
U

(ν)
I
(ρ1, π) = dimHom

L×U
⌊(ν+1)/2⌋
I

(Λξ, π) = dimEndGLn(K)(π) = 1

as desired (see also [BH06, 15.7 Proposition (3)]). 2

Proposition 4.15. Let π be as above. Suppose that Hom
U

(ν)
I

(Hν , π) ̸= 0, so

that π ≃ πξ for some minimal admissible pair (L/K, ξ) by Proposition 4.14.
Then this space contains

ΛDιξ ⊠ Kµ
−1
ξ ξ

as a representation of L×U
⌊(ν+1)/2⌋
D ×WL ⊂ Stabν.
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Proof. By Proposition 4.14 we have Hom
U

(ν)
I

(Hν,ζ , π) ̸= 0 for some ζ ∈
µq−1(K) such that ξ|Uν

L
= ψL

ζφ−ν
L

. We claim that this subspace Hom
U

(ν)
I

(Hν,ζ , π) ⊂
Hom

U
(ν)
I

(Hν , π) is isomorphic to the representation ΛDιξ ⊠ Kµ
−1
ξ ξ appearing

in the assertion.
First it is indeed stable under the action of L×U

⌊(ν+1)/2⌋
D ×WL ⊂ Stabν

because the action on the source of U
(ν)
D ×WL clearly commutes with that

of U
(ν)
I and L× ⊂ GLn(K) normalizes U

(ν)
I .

By the proof of Proposition 4.14, Hom
U

(ν)
I
(Hν,ζ , πξ) = Hom

U
(ν)
I
(Hν,ζ ,Λξ)

is isomorphic to ρ∨2 (inflated via U
(ν)
D → S2,ν) as a representation of U

(ν)
D .

Therefore we may set Hom
U

(ν)
I

(Hν,ζ , π) = Hom
U

(ν)
I
(Hν,ζ ,Λξ) = Λ′ ⊠ ξ′ with

some irreducible smooth representation Λ′ of L×U
⌊(ν+1)/2⌋
D whose restriction

to U
(ν)
D is isomorphic to ρ∨2 and some smooth character ξ′ of WL.
In the first part of the argument to follow, we do not divide cases; we

make no assumption on the parity of ν. Let us first show Λ′ ≃ ΛDιξ. The

action of x ∈ L× ⊂ L×U
⌊(ν+1)/2⌋
D is given by the composition of the action of

(x, x, 1)−1 ∈ Stabν on the source and that of x ∈ L×U
⌊(ν+1)/2⌋
I on the target.

As (x, x, 1) ∈ Stabν (x ∈ UL) acts trivially by Theorem 2.15 (4) and Λξ|UL
is

a sum of ξ by Lemma 4.6, we find that UL acts via the character ξ on Λ′, as
desired. Thus, to conclude Λ′ ≃ ΛDιξ, we need to show

trΛ′(φjD) = ϵDιξ(ιξ)(φ
j
L) (4.4)

for any j coprime to n by (4.3). Put Q = U
(ν)
I /U

(ν+1)
I . By a standard

argument we find that

tr Λ′(φjD) = |Q|
−1
∑
x∈Q

tr
((
xφj, φjD, 1

)−1
∣∣∣Hν,ζ

)
tr Λξ(xφ

j).

To further compute, we quote a result from the representation theory of
finite groups17. Regard ψζ as a character of the center Z of Q and set

Q′ = Q/Kerψζ , Z
′ = Z/Kerψζ . Then Hν,ζ (resp. Λξ) is inflated from

a representation H ′
ν,ζ (resp. Λ′

ξ) of Q′. By [BH99, Lemma A1.3] and a
counting argument we infer that for every x ∈ Q′ there exist unique elements

17The quoted result is trivial if ν is odd and hence Z = Q.
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y ∈ Q′/Z ′ and z ∈ Z ′ such that xφj = yzφjy−1. Hence

tr Λ′(φjD) = |Q|
−1|Kerψζ |

∑
(y,z)∈Q′/Z′×Z′

tr
((
yzφjy−1, φjD, 1

)−1
∣∣∣H ′

ν,ζ

)
tr Λ′

ξ(yzφ
jy−1)

= |Q|−1|Kerψζ ||Q′/Z ′||Z ′| tr
((
φj, φjD, 1

)−1
∣∣∣Hν,ζ

)
tr Λξ(φ

j)

= (−1)n−1ϵξξ(φ
j
L),

where we use Theorem 2.15 (3), Proposition 3.10 (4), Proposition 3.11 (3)
and (4.3) in the last equality. Now the equality (4.4) follows since ϵDιξ = ϵξ
for any ν by Proposition 4.7.

Let us prove ξ′ = Kµ
−1
ξ ξ by checking

tr
(
(a−1
σ , σ)

∣∣∣Hom
U

(ν)
I

(Hν,ζ ,Λξ)
)
= tr

(
ΛDιξ ⊠ Kµ

−1
ξ ξ
)
(a−1
σ , σ) (4.5)

for any σ ∈ WL with nσ = v(aσ) = −1.
Now we proceed by cases. First suppose that ν is even. Noting the twist

and the multiplicity of Λξ in Hν,ζ , we see

tr
(
(a−1
σ , σ)

∣∣∣Hom
U

(ν)
I

(Hν,ζ ,Λξ)
)
= 1

by Theorem 2.15 (5) and Proposition 3.11 (2). By Theorems 4.9, 4.11 and
(4.3), we have

tr
(
ΛDιξ ⊠ Kµ

−1
ξ ξ
)
(a−1
σ , σ) = (−1)n−1ϵξλL/K(ψ).

As n is odd, the equality (4.5) follows from Proposition 4.7 and Proposition
4.12 (1).

Suppose next that ν is odd. Put uσ = aσφ ∈ UL andm(ψζ) = q−1/2g(ψζ) =(
ζ
q

)
m(ψ). We have

tr
(
(a−1
σ , σ)

∣∣∣Hom
U

(ν)
I

(Hν,ζ ,Λξ)
)

=


(
q
n

)
if p = 2 and n is odd(

n
q

)
m(ψζ)

n−1 if p ̸= 2 and n is odd

−
(
uσ
q

)n−1(−1
q

)(ν−1)/2(2
q

)(
n
q

)
m(ψζ)

n−1 if p ̸= 2 and n is even,
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by Theorem 2.15 (5) and Proposition 3.10 (2), (4). On the other hand, we
have

tr
(
ΛDιξ ⊠ Kµ

−1
ξ ξ
)
(a−1
σ , σ) = (−1)n−1

Kµ
−1
ξ (aσ)

=

{
λL/K(ψ) if n is odd

−δL/K(u−1
σ )
(
ζ
q

)(−1
q

)(ν−1)/2
λL/K(ψ) if n is even,

.

by Theorems 4.9, 4.11 and Lemma 4.6. Now the equality (4.5) follows from
Proposition 4.12 (1) if p = 2, and from Proposition 4.12 (2) and the equalities

λL/K(ψ) =

{(
n
q

)
m(ψ)n−1 if n is odd(

2
q

)(
n
q

)
m(ψ)n−1 if n is even,

which appear in [IT15a, (5.22)], if p ̸= 2. 2

Let LJ(π) (resp. LL(π)) be the image of π under the local Jacquet-
Langlands correspondence (resp. the local Langlands correspondence).

Theorem 4.16. Let π be as above. We have

HomGLn(K)

(
c-IndGStabν Πν , π

)
̸= 0

if and only if π is parametrized by a minimal admissible pair (L/K, ξ) with the
jump at ν. Moreover, if non-zero, this space is isomorphic to LJ(π)⊠ LL(π)
as a representation of D× ×WK.

Proof. The first assertion follows immediately from Lemma 4.13, Proposition
3.12, Proposition 4.14 and the Frobenius reciprocity.

To prove the second assertion let π ≃ πξ occur in c-IndGStabν Πν . By
Theorems 4.9, 4.11 it suffices to show that the following morphism, induced
by the Frobenius reciprocity, is an isomorphism;

IndStabν

L×U
⌊(ν+1)/2⌋
D ×WL

(
ΛDιξ ⊠ Kµ

−1
ξ ξ
)
→ Hom

U
(ν)
I
(Πν , π).

Since the source is irreducible, we only need to show the equality of the
dimensions. We have

dim IndStabν

L×U
⌊(ν+1)/2⌋
D ×WL

(
ΛDιξ ⊠ Kµ

−1
ξ ξ
)
= dimΛDιξ · [Stabν : L×U

⌊(ν+1)/2⌋
D ×WL]

= dimΛDιξ · [WL′ : WL].
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By Proposition 4.14 we are reduced to showing that [WL′ : WL] equals the
number of ζ ∈ µq−1(K) such that Hom

U
(ν)
I
(Πν,ζ , π) ̸= 0. This can be done

readily by the injectivity of the paramatrization of essentially tame represen-
tations. 2

Now recalling that a totally ramified extension L/K is arbitrarily given
after the Lemma 2.3, we obtain the main theorem described in Introduction.
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