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Introduction

Let K be a non-archimedean local field with residue field k& of characteristic
p > 0. Let Wik be the Weil group of K and D the central division algebra over
K of invariant 1/n. Denote by Ox C K the valuation ring and by p C Ok the
maximal ideal. We fix an algebraic closure kof k. Let n > 1 be an integer.
Then the Lubin-Tate spaces are defined to be certain deformation spaces
of a one-dimensional formal Ox-module over k with level structures. The
Lubin-Tate spaces naturally form a projective system, called the Lubin-Tate
tower, and the non-abelian Lubin-Tate theory asserts that the cohomology of
the Lubin-Tate tower, which admits a natural action of a large subgroup of
GL,(K) x D* x Wk, realizes the local Langlands correspondence for GL,, (K)
and the local Jacquet-Langlands correspondence simultaneously. However,
as the proofs of this fact ([Boye99], [HT01]) make heavy use of the theory
of automorphic representations and the global geometry, the geometry of
the Lubin-Tate spaces and its relation to representations are not yet fully
understood.

Among the studies on the geometry of the Lubin-Tate spaces is a work
[Yos10] of Yoshida. There he constructed a semistable model of the Lubin-
Tate space of level p and proved that an affine open subscheme of the reduc-
tion is isomorphic to a Deligne-Lusztig variety for GL,, (k). The appearance of
the Deligne-Lusztig variety reflects the fact that some irreducible supercusp-
idal representations of GL,(K) can be constructed from irreducible cuspidal
representations of GL, (k). Note that this open subscheme can also be ob-
tained as the reduction of an affinoid subspace in the Lubin-Tate space by
considering its tube.

More recently, Weinstein showed in [Weil4] that a certain limit space of
the Lubin-Tate tower makes sense as a perfectoid space. While it is no longer
an ordinary finite-type analytic space, the Lubin-Tate perfectoid space has
a simpler geometry; with coordinates not available on the individual Lubin-
Tate spaces, the defining equation is simpler and the group actions can be
made very explicit. Taking advantage of these properties, Weinstein[Weil4],
Boyarchenko-Weinstein[BW16] and Imai-Tsushima[IT15a] constructed fami-
lies of affinoid subspaces and their formal models in the Lubin-Tate perfectoid
space such that the cohomology of the reduction of each formal model re-
alizes the local Langlands and Jacquet-Langlands correspondences for some
representations. The aim of this paper is to establish the existence of such a
family of affinoids related to certain other representations, under a simplify-



ing assumption that K is of characteristic p > 0. o
Let ¢ # p be a prime number. We fix an isomorphism Q, ~ C. Set
G = GL,(K) x D* x Wg. Here is our main theorem:

Theorem. Suppose that K is of equal-characteristic and that p does not
divide n. Let v > 0 be an integer which is coprime to n. Let L/K be a
totally ramified extension of degree n. Then there exist an affinoid Z, and
a formal model %4, of Z, in the Lubin-Tate perfectoid space such that the
following hold.

(1) The stabilizer Stab, of Z, naturally acts on the reduction z,.

(2) For an irreducible smooth representation m of GL,(K), we have

Homgr,, (k) (C—Indg’taby H' 1 (?u,@@) (1 —=n)/2), 7r) #0

if and only if the image T of m under the local Langlands correspondence is
a character twist of an n-dimensional irreducible smooth representation
of the form Indp k& for a character § of L* which is non-trivial on
Uy, but trivial on UZ“. Moreover, if the above space is non-zero, it is
isomorphic to p X 7 as a representation of D* x Wy, where p is the
image of ™ under the local Jacquet-Langlands correspondence.

Here, € is identified with a character of the Weil group Wp of L via the
Artin reciprocity map and Ind;,x denotes the smooth induction from W7, to
WK.

Let us compare Theorem with the preceding results. The affinoid Z; and
the formal model 2 in Theorem are essentially identical to those constructed
in [IT15a]. Also, in [Weild], the affinoids and the formal models in Theo-
rem are constructed when n = 2 and p # 2, along with those related to the
unramified case in a suitable sense. Thus, Theorem generalizes [IT15a]' and
partially [Weild], in the equal-characteristic setting. In the terminology of
Definition 4.4, which is essentially taken from [BHO5b], the above condition
for m to occur in the compact induction is equivalent to being parametrized
by a minimal admissible pair (L/K, &) with the jump at v. Let F/K be
an unramified extension of degree n. The affinoids and the formal models
constructed in [BW16] are related, in the same way as in Theorem, to irre-
ducible supercuspidal representations m parametrized by minimal admissible

'However, Imai and Tsushima announced that they also obtained a corresponding
result for n divisible by p.



pairs (F/K,&) with the jump at some v (see Remark 4.5 (5) for more on
the comparison with the preceding results). The author learned from Imai
and Tsushima that they had previously constructed what should be Z; and
%5 in our notation, computed the reduction and verified the non-triviality of
the cohomology. Although this unannounced result preceded ours, our result
was obtained independently. On a related note, in a recent article [IT15b],
the corresponding affinoids in the Lubin-Tate space of level p? are studied
when K is of equal-characteristic and n = 3.

We note some properties of the affinoids Z, and the reductions Z,. While
only those with v coprime to n are relevant to Theorem, the affinoids Z, and
the formal models %, are constructed for any v > 0 in a certain uniform
way. The reductions %, are related to the perfections of algebraic varieties
Z,, which turn out to be periodic in v with period 2n. They are quite
different, according to whether v is odd or even. If v is odd, Z, is the variety
obtained by pulling back the Artin-Schreier covering A;- — Al by a morphism
A%_l — A% corresponding to a quadratic form depending on v. If v is even,
the defining equation of Z, is more involved. However, it can be described
in terms of the Lang torsor of an algebraic group G, and a morphism related
to a quadratic form (see 2.6 for more details). Here we imitated a similar
description found in [BW16], but the analogy is not so straightforward; the
relevant algebraic groups are not the same and no quadratic forms occur
there.

In Section 1, we review some basic facts on the Lubin-Tate perfectoid
space and a formal model, following [Weil4], [BW16] and [IT15a]. In par-
ticular, a power series ¢ is defined which essentially serves as the defining
equation of the formal model of the Lubin-Tate perfectoid space. Also the
actions of the relevant groups on the formal model are described explicitly.

In Section 2, a family of affinoids and formal models is constructed, and
the reductions are studied along with the induced actions of the stabilizers.
Building on the notion of CM points and related facts found in [BW16],
[IT15a], which are recalled in Subsection 2.1, we construct affinoids Z, in
Subsection 2.2. The construction of formal models 2, and the computation
of the reductions %, given in Subsection 2.4 are based on the behavior
of the power series § under a certain change of coordinates, which is the
subject of Subsection 2.3. While motivated by that in [Weil4|, our argument
is more intricate. Thus we give a rather detailed account. In Subsection
2.5 we compute the stabilizers Stab, of the affinoids Z, and the induced



actions on the reductions Z,. The algebraic groups G, appearing in the
alternative description of Z, given in Subsection 2.6 are modeled on the
actions of Stab, NGL,,(K).

In Section 3 we compute the cohomology of %, together with the relevant
group actions. This is reduced to the corresponding computation for Z, and
is treated separately according to whether v is odd or even. If v is odd,
we compute the cohomology for any v. In particular, it turns out that the
middle-degree cohomology is non-trivial if and only if v is coprime to n. If
v is even, our understanding is not as complete and we restrict to the cases
where v is coprime to n; this suffices for the proof of the main theorem.
Subsections 3.1, 3.2 (resp. Subsection 3.3) contain key ingredients for the
computations for the odd (resp. even) cases.

In Section 4 we prove the main theorem described above. To this end, we
apply the theory of essentially tame local Langlands and Jacquet-Langlands
correspondences developed in [BHO05a], [BHO5b], [BH10], [BH11], as well as
the results obtained in the previous sections. The review of the theory in the
special cases that we need is given in Subsection 4.1. In Subsection 4.2 we
finally achieve the main theorem.

Let us end this introduction by making a remark on the equal-characteristic
assumption. Although this assumption is in force throughout the paper, it
plays only a minor role in Sections 3 and 4. It seems reasonable to expect
very similar varieties to appear as the reductions of suitable affinoids also
in the mixed-characteristic setting. On the other hand, our computation
of the reductions and the stabilizers in Section 2 heavily relies on this as-
sumption, especially on the particularly simple expression of § and the group
actions. We hope to consider the problem of extending our results to the
mixed-characteristic setting in a future work.
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Notation For any non-archimedean valuation field F', we denote the valua-
tion ring by O C F' and its maximal ideal by pr C Op. If R is a topological
ring, we denote by R°° the set of topologically nilpotent elements.

For any non-archimedean local field F', we write vg for the additive valua-
tion normalized so that ve(wpr) = 1 for any uniformizer wp € F. We denote
by W the Weil group of F and the Artin reciprocity map Artp: F* — Wab
is normalized so that the uniformizers are mapped to geometric Frobenius el-
ements. A multiplicative character £ of F' is often identified with a character
of WF via AI‘tF.

We take a prime number ¢ # p, and fix an isomorphism Q, ~ C of fields.
Smooth representations over Q, are always identified with those over C by
this isomorphism.

1 Preliminaries on Lubin-Tate perfectoid space

We summarize the relevant materials on the Lubin-Tate spaces, the Lubin-
Tate perfectoid space and its formal model. Our basic references are [Weil4],
[BW16] and [IT15a]. In many parts, we closely follow their expositions.

Let K be a non-archimedean local field of characteristic p > 0 and & its
residue field. Denote by p = px the maximal ideal of Ox. We write ¢ for
the cardinality of k. We fix an algebraic closure K of K and denote by k the
residue field of K. Let C, be the completion of K.

Let n be a positive integer. Let >y be a one-dimensional formal Og-
module over k of height n, which is unique up to isomorphism. Let K™ be
the maximal unramified extension of K and K™ its completion. We denote
by C the category of complete Noetherian local Og..-algebras with residue
field k. Let R € C. A pair (%,:) consisting of a formal Og-module . over
R and an isomorphism ¢: £y — ¥ Qg k is said to be a deformation of ¥, to
R. For a formal Og-module ¥ over R and an integer m > 0, we mean by “a
Drinfeld level p™-structure on " what is called “a structure of level m on
¥ in [Dri74, p. 572 Definition].

We define a functor C — Sets by associating to R € C the set of iso-
morphism classes of triples (X, ¢, ¢) in which (X,¢) is a deformation of ¥
over R and ¢: (p~™/Ok)" — X[p™](R) is a Drinfeld level p™-structure on 3.



This functor is representable by a regular local ring R,, of dimension n by
[Dri74, Proposition 4.3]. These rings R,, naturally form an inductive system
{R..}. We denote by R, = (hﬂ R,,)" the completion of the inductive limit
with respect to the ideal generated by the maximal ideal of Ry. We put
Mzmoo == Spf ROO.

Let K be the maximal abelian extension of K and K® its completion.
We denote by AXg the formal Og-module of height 1 over k. Then from
the above discussion a formal scheme M 5, o is defined. By the Lubin-Tate
theory we have Ms o =~ Spf Oga.

We take a uniformizer w of K. Let (X, ) be a deformation of ¥ to Oz,

and A its coordinate ring. We set >y = Spf(h%qA)A, where the transition
maps are ring homomorphisms corresponding to the multiplication by w of X
and the completion is taken with respect to the ideal generated by a defining
ideal of A. Then X is a K-vector space object in the category of complete,
adic Op.,,-algebras. It is shown in [Weil4, Proposition 2.4.2] that ¥, as a K-
vector space object, does not depend on the choice of (3, ¢) and is isomorphic
to Spf Oz.[[X? 7]] as a formal scheme. Here Oz, [[X9 ~]] is defined to be

the (e, X)-adic completion of O, [X1 ™| = lim o, Ogu[X].
Theorem 1.1. There is a canonical Cartesian diagram of formal schemes:

MEo,oo —_— M/\Eo,oo

| | (1.1)
ig e //Cio.
Proof. This is proved in [Weil4]. The constructions of morphisms are given

in [Weild, 2.5-2.7] and the fact that the diagram is Cartesian is proved in
[Weil4, Theorem 2.7.3]. O

Let Map(Uk, Oc,) denote the Oc, -algebra of continuous maps from Uk
to Oc,. We use similar notations for other topological rings as well. We set

ROO,OCP = ROC)@OI?ab Map(UK7 OCp)?
where the right factor is considered as an Op.,-algebra via
a: Oga — Map(Uk, Oc,); a = (Artg(u)(a)),ep, -

With this algebra, we define the Lubin-Tate perfectoid space as
M3 oo = {I] € SPa(Rec.0c, s Roc0c,) | || # 0}
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We also set

M3S, con = {I- € Spa(Map(Uk, O, ), Map(Uk, O,)) | || # 0}.
Setting B, = Oc,[[X{ ,...,XZ )] and B, = Oc,[[T? ~]], we similarly
define

igﬁiﬁ = {|| € Spa(B,, By) | |=| # 0},
—~ ad
NS oo = 11| € Spa(Bi, B1) | [w] # 0}.

In what follows, we give an explicit description of the following diagram

Roo’(gcp — Map(UK,O@p)

| |

B, +—— By

induced by the Cartesian diagram (1.1) and «, in terms of coordinates. Ba-
sically, we closely follow the general treatment in [IT15a, 1.1], but adopt and
specialize it to our equal-characteristic setting (see also [Weil4, 2.10, 2.11],
[Weil3, 5.1)).

For a formal Og-module ¥ and a € K, we denote by [a]y the multiplica-
tion by a of 3. Take a model of ¥y so that

n

[@]5, (X) = X7, [(]g,(X) = (X for ¢ € k.

We set Op = EndYj and D = Op ®o, K. Then D is a central division
algebra over K of invariant 1/n. Denoting by [a] the action of a € Op, we
define pp € Op to be the element such that [pp](X) = X7 Let k, be the
field extension of k of degree n, so that K, = K ®; k, is the unramified
extension of degree n of K. We define a K-algebra embedding K,, — D by
[C](X) = (X for ¢ € k,. Then D is generated over K,, by ¢p and we have

vpC = Clpp.

Let AYg be the one-dimensional formal Og-module over Ok defined by
(@55, (X) =X + (-1)"' X%, [(]is, (X) = C¢X for C € k.
Let {tm}m>1 be a system of elements of K such that

tn €K, [@]ig () =0, t#0, [@]5(tm) = tm for m >2

8



and set t = limm_m(—l)("*1)(””“1)1537;%1 € Oc,. We denote by v = vg the
normalized valuation on K and extend it to C, by continuity. Then v(t) =

1/(g—1).
We put @’ = (—1)" "' and t, = (—=1)~Dm=Yt_ for m > 1. Then we
have
(@], (X) = @' X + X%, [(];5, = (X for ¢ €k,

)5 (1) =0, [ (Fa) =ty form>2, t= lim g

By [Weil4, Proposition 2.3.3, Corollary 2.8.14] we have Og., = k[[t? ~]] and
the continuous Oz,,-homomorphism Oz, [[T7 ~]] = Og., induced by the
right vertical morphism of (1.1) sends 7" to t. Thus the morphism B; —
Map(Uk, Oc,) induced by « is described as

By = Map(Ux, Oc,); f(T) = (f (Artx (u)(1)))yep, -

We denote by A(Xq,...,X,) the Moore determinant

A(Xy, ., X)) = det(XE Vicijen € Z[X1, .., X,

and put
0(Xy,.. X)) = > AX{,.XI") € B,
my+-+mp=0
For m € Z, we also put
Om(X1, o Xo) = 0(Xy, ., X)) "= Y AXTTT X
mi+--+mp=0

for later use. Then the continuous Oc,-algebra homomorphism B; — B,
induced by the lower horizontal morphism in (1.1) is

By — Bu f(T) = f(5(X1,..., Xa).

This can be found in [IT15a, 1.1] (see also [BW16, Theorem 2.15] and [Weil3,
Lemma 5.1.2]). We call § the determinant map.



Remark 1.2. Let xy,...,x, € B;°. Then, since B,, is perfect, we can sub-
stitute X; in 0(Xy,...,X,) with z; for 1 < i < n in a natural way. The
following properties of 0y are easy to check, but useful;

So(xd" .. wn) = (—1)" oy (21, . @),

n

So(xd . xn) = (1) (2, T),

00(Zo(), - - To(my) = sg0(0)00 (@1, . . ., Tp).
In particular, we have

5m(x17 s 7xn) = 5m+1(l‘%na AP 71:71—1)7

—-n

Om (@1, o 20) = Ot (29, ooy, 2 ).
Put G = GL,,(K) x D* x Wg. We define Ng by
Ng: GL,(K) x D* x Wi — K*; (g,d,0) — det g~ Nrd dArt ' o,

where Nrd: D* — K* is the reduced norm, and set G° = Ker(v o Ng).

The Lubin-Tate perfectoid space M3, - and its formal model R 0, carry

natural actions of G° induced by that on the Lubin-Tate tower, studied in
the non-abelian Lubin-Tate theory. Following [IT15a, 1.2], we explicitly write
down the action of G on Reo 0, in the equal-characteristic setting (see also
[BW16, 2.11]). We describe the left action of G on B,, which induces that of
GO on Roo,OCp .

Let g = (aij)i<ij<n € GLn(K) and write a;; = >, aggwl € K with
aﬁ? € k. Then g acts on the ring B, as a continuous Oc,-homomorphism
defined by

g*: By, — By, X;— Z ZaE-QX;?M for 1 <i <n. (1.2)
1<j<n 1
Let d € D* and write d~' = Y, dj¢’, with d; € k,. Then d acts on the ring
B,, as a continuous O¢,-homomorphism defined by
d*: By = By X;— Y d X! forl<i<n. (1.3)
I
Let 0 € Wi and set n, = v(Arti'(0)). Then o € Wy acts on the ring

B,, as a continuous ring homomorphism defined by

c*: B, — B,; X;— Xffna, v o(x), forl1<i<nandzeO,.
(1.4)

10



We remark that a natural action of K* (resp. of Ux) on B; (resp. on
Oza) is deduced as a special case of the above. With respect to these actions
the upper horizontal morphism (resp. the lower horizontal morphism) of the
base change to Oc, of the Cartesian diagram (1.1) is G%-equivariant (resp.
G-equivariant) via Ng.

2 Affinoids and the reductions of formal mod-
els

2.1 CM points

We briefly review some facts on CM points, following [BW16] and [IT15a].
For a deformation ¥ of 3y over Oc,, we set

7% = lim [p™)(O,),
V2 =T,% ®o, K,

where each transition map is the multiplication by w. By [BW16, Definition
2.10.1], a point £ € M;(}mﬁ((cp) defines a corresponding triple (X, ¢, ¢),
where X is a formal Og-module over Oc,, ¢: ¥o — Z®CPE is an isomorphism

and ¢: Of — T,X is an isomorphism of Ox-modules.

Definition 2.1. Let L C C, be an extension of K of degree n and let > be
a deformation of ¥, to Oc, .

We say that ¥ has CM by L if there exists a K-isomorphism L —»
(End ¥) ®o,, K such that the induced homomorphism L — End(Lie¥) ~ C,
agrees with the inclusion L C C,. We also say that £ € Mg _ -(C,) has
CM by L if the corresponding deformation has CM by L.

Note that the K-isomorphism in the definition is determined uniquely by
the compatibility with the induced homomorphism, if it exists.
A point £ € MY _ _(C,) with CM by L defines a K-embedding i¢: L —

207007ﬁ
M, (K); x> i¢(x) by the commutativity of the following diagram

jon 9% vy

ig(ﬂ?)l le (z)

K" —— V%
#®id

11



and similarly defines i : L — D; x + i (z) by

Sy — Y ®o, k

z? (z) J{ J/a:@id

S0 —— S ®o, ky

where morphisms are considered up to isogeny in both diagrams.

We set A¢ = (ig, 3¢ ): L — M,(K) x D.

The following are consequences of the Lubin-Tate theory as proved in
[BW16, Lemmas 3.1.2, 3.1.3] (see also [IT15a, Lemmas 1.9, 3.4]).

Proposition 2.2. Let L and £ € M _ _(C,) be as above.

30,00,7

(1) The group G° N (GL,(K) x D*) acts transitively on the set of points on
M (C,) with CM by L. The stabilizer of  in this group is A¢(L).

0,00,1

(2) Put Wi, = {0 € Wi | (L) = L}. Then, for an element o € Wk, the
translation® (1, 05", 0)*¢ has CM by L if and only if 0 € Wi,

(3) If o € Wy, then (1, (Art;'o)™! 0)"¢ = €.

By (1) and (2), for any ¢ € Wy, there exists an element (g,d) €
GL,(K) x D*, uniquely up to multiplication by A¢(L*), such that (¢,d, o) €
G® and (g,d,0)*¢ = £&. We define a map j¢: Wy — L*\(GL,(K) x D*) by
je(o) = L*(d, o). Then the stabilizer S of € in GV is

S ={(9,d,0) € GL,(K) x D* x Wy | je(o) = L*(g,d)}.

The assertion (3) says that je(o) = L*(1, (Art;'o)™1) if 0 € W,
Now let n > 2 and assume p { n. We put n, = ged(n,q — 1).
For any uniformizer w € K, we set L, = K[X]/(X" — w).

Lemma 2.3. [IT15a, Lemma 2.1] Let T(K,n) be the set of isomorphism
classes of totally ramified extensions of K of degree n. Then the following
map 1S a bijection:

M(‘]*l)/nq(K>\(p - p2)/p2 — T(K7 n)a w Lw-

2Somewhat awkwardly, we use the notation g*(-) for the actions of g € G° on both
R(X%@Cp and Mad

X0,00,7"

12



Let L/K be a totally ramified extension of degree n in C,. From this
point on, we work with this fixed field L. Although we do not indicate in the
notation the constructions to follow depend on the choice of L.

By Lemma 2.3, there exists a uniformizer ¢, € L such that w = ¢} € K.
We apply the arguments of Section 1 with respect to this uniformizer @ € K.
In particular, a model of ¥ is chosen, and ¢p € D and /\EO are defined. We

set
_ 0 [nfl
go—(w 0 >€Mn(K).

Note that o € W lies in Wy, if and only if ¢} 'o (1) € fin, (K).
For a point £ € Mzo coi(Cp), we write (&1, ..., &) € C} for the coordinate
with respect to Xy,..., X, € B,.

Proposition 2.4. Let L C C,, ¢;, € L, w € K be as above. There exists a
point £ € Mzo coq(Cp) with CM by L satisfying the following conditions:

(1) & =& for1 <i<n-—1.
(2) v(&) =1/(ng" (¢ —1)) for 1 <i<m.
(3) ic(pL) = ¢, i (L) = b

(4) For any o € Wy, there ewists an element ( € K such that (971 =
pr o(pr) and &a(&) = ¢ mod pr.

Proof. This is essentially [IT15a, Lemma 2.2, where an explicit construction
of £ € M¥ . 5(C,) is given. The assertion (4) is not stated there but follows
from the construction. O

2.2 Construction of affinoids
Put
Yi=X,—-§& e B, forall 1 <i <n,
Z=3Y Y’ €B,

1<i<n

For each integer v > 0, we define an affinoid X, C Egjj 7 by

|§i|q”(q+1)/2 if v =2+ 1is odd

[91ka if v =2 is even

1Z] < |&]7, Y] < {

13



and an affinoid Z, C M by the pull-back of X, in M2l Take a

30,00, , ¥0,00,m"
square root &% of &, and put 3 2 = (&7 We also define a formal
model Z, of &, by
2, =Spf O, (2" " 6" Lyl

7 Mﬁ lfl/:2,u+1180dd

d=m U= 2.1
3 Y ;,:—L if v =2pu is even. (2.1)

To construct a formal model of Z, and to study its special fiber, we prove
several lemmas on the determinant map 9.

2.3 Lemmas on the determinant map

Lemma 2.5. Let 1 < ¢ < n be an integer. Let x,,T; € R Put

0070([31; :
Tpim =24 " for allm € Z. Then

i—1

50(Tiq y Ty Tn) = 00(T1s - i1, Tiy Tigr, -, ).

Proof. To prove the equality we may assume ¢ > 1. By definition of §, we
have

i—1 i—1+mq mo m
So(TH L, x9,...,1,) = sgn(o, )T xd g
o\+; ) ) y bn m)+q 2 n o
m:(mj)ES
_ § : qm1 g™ i
50<:U17 ey Ti—1, T’ia Tit1y--- ,xn) - Sgn(am)xl T T‘z a:i-l-l T
m=(m;)eS

where

Y omi=> (Gi—1), mj#my wmodn (if j 75]/)}

j=1 j=1

( 0 1 ... n-— 1)

om=|_ _ —

my Mo ... my,

is a permutation of Z/nZ. (Here and in the rest of the proof j denotes the
image of j € Z in Z/nZ.) As the two series converge absolutely, it suffices to

S = {(m]) ez

and
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construct a bijection f: S — S such that, for m = (m;) € 5,

mj+n—j12<j<n]=[f(m);j+n—7|1<j<n,j#i (as multisets),
(2.3)
o (G, T, 1 o) = 24

Given m = (m;) € S, we are to define f(m) € S. This is done based on the
following inductive steps. Put jo =1 and j; = 1.
Given 1 < jg, jor1 < n, define

m;'a =My, — ja—f—l + Ja (2‘5>
and j,4o to be the unique integer 1 < j,10 < n such that

' mod n. (2.6)

mjaJrQ = m]a

We repeat this procedure for a = 0,1,...,b — 2, where b > 2 is the smallest
integer such that j, = j. for some 0 < ¢ < b. We claim that ¢ = 0 here. To
see this, note that

mj, =mj, — ja—1+jo modn (2.7)
for all @ > 1 by construction. Therefore, if ¢ > 0, then
Mjy = Je-1 + Jo = My, = My, =My — jp-1 +jo mod n,
which implies j._; = j,_1, contradicting the minimality of b.

Thus we have defined jo, . .., jy—1, 5 = @ and my, ..., m;,_,. Define m}
by (2.5) for a = b — 1. Finally define f(m) € Z" by

F(m) m} it j = j, for some 0 <a <b—1,
m); =
! m; otherwise.

By (2.5) we clearly have

. /
D mu= ), m,

0<a<b-—1 0<a<b-1

15



and hence » ., m; = > i, f(m);. By (2.6), the definition of m},  and

(2.7), the map m; — f(m); defines a permutation on Z/nZ. Therefore, we
see that f(m) € S.

The properties (2.2) and (2.3) follow from (2.5). The property (2.4) can
be checked as

sgn(ﬂ Ty . ﬂ):SgHC) 1 ... b=2 b—1>:1
fm), f(m)y, ... f(m), 23 ... 0 1 '

Also, we can readily construct the inverse map in a similar way. This com-

pletes the proof. a
In the rest of this subsection, let |-| € M3 .
Lemma 2.6. Let ry > ry > --- > r,, be rational numbers. Let x € (‘(’:Z and

7 € RY o, (1 <i<n). Suppose that |z;| < |z[" for all 1 < i <n and that
’ P
ry < q"r,. Then

[Go(1, oy wa)| < [aZ07,

i—1

n—1 r;
do(x1,. o @) — Z(sgn O)To) a2 - - Topm) | < |24

where the summation in the left-hand side of the second inequality is taken
over the permutations o € &,, such that ro(1) = <+ = ro(n)-

Proof. Put d; = log, r; for all 1 <7 < n, so that d; — d,, < n. The mono-

. . . mi
mials occurring in dg(x,...,x,) are all of the form z¢  ---22"™" for some
(mq,...,m,) € S, where S is as in the proof of the preceding lemma, and
we have
my m m; My o m;+d;
g™ g™ = [T haal™ < faf = = faf =,

7

To facilitate our argument, we introduce a total order structure > on the set

of all the multisets of n real numbers by deeming [my, ..., m,] > [m},...,m/]
if and only if, when altering the indexing so that m; > --- > m, and
my > --- > ml, we have (mq,...,m,) > (mf,...,m!) with respect to

the lexicographic order on R™. Then it is easily verified that, assuming

_ / m; ml
Z1gignmi = Zlgignmi’ we have Z1gignq P2 Z1§ignq ¢ if and only

16



if [my,...,my] > [my,...,m}]. Thus, putting f(mi,...,m,) = [m +
di,...,mp+ dy,], we are to show that the set

O={f(my,...,my) | (my,...,m,) €S}

admits the smallest element f(0,...,n—1) (with respect to the induced order
structure) and that it is attained only by those (my,...,m,) € S such that

{may,...omp} =1{0,...,n =1} and do(1) > -+ > do(n), (2.8)

1 ... nt+1

where

1

Let us show that if (mq, ..., m,) € S does not satisfy (2.8) then f(mq,...,m,)
admits a strictly smaller element in O.

First assume that {mi,...,m,} # {0,...,n — 1}. Then there exist 1 <
t,7 < n such that m; > n and m; < —1. Now replacing m; with m; +n and
m; with m; — n yields a strictly smaller element:?

f(ml,...,mi,...,mj,...,mn)>f(ml,...,mj+n,...,mi—n,...,mn)

because m; + d; > m; +d;, m; +n+d;, m; —n+d;.

Next assume that {my,...,m,} = {0,...,n—1} but (2.8) does not hold.
Then there exists 1 <4 < n — 1 such that d,;) < dyi41) with o as before
(so that o(i) > o(i + 1)). Now interchanging m,q) = i — 1 and m, (1) = ¢
yields a strictly smaller element:

~—

o(i+1) a (i) o(i+1) o (i)
fmy, ooy @ oci—=1,000,my) > f(my,...,i—1,..., 4§

yeeey ).

Finally, given an element (mq,...,m,) € S such that f(m,...,m,) #
f@0,...,n — 1), we may apply the above procedures finitely many times to

obtain strict inequalities f(mq,...,my,) > f(my,...,m.) > --- until we
eventually find some element (my,...,m,) € S such that

flma,...,my) > > f(my,...,my,) = f(0,...,n—1).
Therefore, f(0,...,n — 1) is indeed the smallest in O. The same argument
shows that f(mq,...,my,) = f(0,...,n — 1) only if (m4,...,m,) satisfies
(2.8). Now the proof is complete. O

3Here the inequality is written as if ¢ < j, but this is only for a notational convenience.
We do not assume i < j and the argument clearly works without this assumption.
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Although the following two lemmas are in principle simple applications
of the preceding lemma, they involve many cases. To state them concisely
we define, for an integer 0 < g < n — 1 and a rational number 1 < ¢ < ¢,

My(p) = (n+ p(q —1)g" ",

) (n+2(c—1)+2u(g—1))g" ! ifo<p<n/2
M2<'u’c)_{(n+2(c—1)+(2,u—n)(q—1))q” if n/2 < pu<n.

Lemma 2.7. Let 0 < <n —1 be an integer. Let x, € OF, T € R o, .
’ P
Put Ty = 22" for all m € Z. Suppose that |T| < |z1]|?". Put

0= 50(T,I2,...,.§L’n)

and My = M;(u).
Then the following assertions hold.

(1) Suppose that = 0. Then
0] < ||,

§ — x| < | M

(2) Suppose that > 0. Then

0] < Jal™,

5 — (_1)ux(n7u71+(u71)q)q”‘1(xq”Tq"‘ _ xq”‘qu—““) < |xn|M1_

Proof. The case (1) follows immediately from Lemma 2.6.
Suppose that © > 0. By Remark 1.2 we have

0= (5_1(272, ey Ty, qun)
= (=1)"6_1(x2, -+, Ty T ity 5 T

Now Lemma 2.6 shows

n—p—1 - - n—p+1 - —u+1 gn—p n—pu+2
6 — (—1)x§ xgz—u (19 n)qn szf;ﬂrl — (17 n)qn ' x27u+1)xifp+2 "'95%" < |$n|M7
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where M = ((n — p—1)¢" ' + ¢" ' + ug™) = M;. The left-hand side of the
second inequality is easily seen to agree with the statement of the lemma and

the case (2) follows. 0

Lemma 2.8. Let 1 < i < j < n be integers, 0 < p < n — 1 an integer

and 1 < ¢ < g a rational number. Let x, € OF and T;,T; € R . . Put
~Cp

Typim = 2" for all m € Z. Suppose that |T;| < |z;]7"¢ and |T;| < |z;|7"°.
Put
5:50(331,...,TZ-,...,Tj,...,xn)

and My = Ms(u,c).
Then the following assertions hold.

(1) 18] < Jan|*=.
(2) Suppose that ¢ > 1 and < n/2. Then

ifp<j—i<n—pu

0] otherwise.

n—2u—2+2 n—1 i—p—1 J—pu—1
s ’5 B %(1 w 1q)q Tiq qu
|z, |2 >

(3) Suppose that ¢ > 1 and > n/2. Then

2(n—p—1)+(2u—n)q)q"™ gt~ j— . . .
B ’M2>{‘5—9:§1< pEUTEREIITE T i —p < i< p

0] otherwise.

(4) Suppose that c =1 and = 0. Then

i— [

n—1 j —
|ZL’n|M2 > |5 — x1(1n—2)q Tz‘q T;]J w '

(5) Suppose that c =1 and 0 < p < n/2.

Then |xn|]\/[2 > |(5 . x;n—Qp—2+(2u—2)q)qn—1dl|7 where

i—p—1

(g T =2l T @ T =2l T ifp<j—i<n—p
T @ T T T ifu<j—i=n—p
0 otherwise.
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(6) Suppose that ¢ =1 and . =n/2 (hence n is even). Then

§—al T T ifj—i=n)2
|z, |2 > {‘ Lo /3 /

0] otherwise.

(7) Suppose that ¢ =1 and p > n/2.

Then |z, M2 > |§ — g #=DFE=200" ) here

Al gt T H e ntl gl H n gl —HHL . . .
(@p T =2l T ) T =l T ) fn—p<j-i<p

i7 n j — n j — +1 . . .
TP T e T ifn—p=j—i<np
d2 = gt ingt gt gd T . . .
(8T8 — 20T, )T ifn—p<j—i=np
0 otherwise.
Proof. Let us first prove (1).
Suppose that 7 — 7 < p. Then
d = 5n—j(in+1—m e X, X1y T, T Ty, - 717j—177})
= (_1)H6nfj<xj+lfna s Tjop—1, Tjja Lj—ppy -y Ti—1, E? Lip1y--- 7*%_7'71)
= (=1)"0n—im1(Tit1-n, - - T dmny Tjplony oy L1y Ljy Tjpyy o i1, T;)
(
(_1)#(_1)#+15n7i71($i+17n7 e Tj—1—ny Lj41—ny -+ - -y Ti—p—1, T, Tiepyy - v-
ce ,xj,u,l,Tj,J:j,u, . 7*771'71)
fj—i<pandj—i<n—pu
(=D)M(=1)"0p—ic1 (Tit1—ny - s Tim 1, Ty Bipyy o 1, Ty - - -
ce ,xj_u_l,Tj,a:j_M, cen ;xi—l)
fn—p<j—i<p

(2.9)

Thus, if j —4 < g and j —i < n — p, then Lemma 2.6 shows that |§] < |x,|Y,
where

M=(G—i-1)+n—p—0G—i)—Dg ' +eg ' +(G—9) +c+p—0G—1)eq"
=n—p—(G—i)+c—14+QU—i)+c—Lg+ (u— (G —19)*)d" "
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Now

L (M (42— 1) + 2u(g - 1))

L)
3

p=(G=—i)=(=D+QG—i—m+ec-1g+ (- —1)
== —i)g—1)°+(-1)(g—1)
0.

v

(2.10)

Here, the equality holds if and only if 4 = j — ¢ and ¢ = 1 (in which case
i < mn/2). Similarly, noting ¢ > ¢ we have

(M~ (20— 1) + (2= n)(g — ))g")
=n—p—(—i)tc—1+Q20—i—(n—p)—(c=1)g+n—p—(—1)d
=(n—p—0G-))g=1)7—(c-1(g—-1)
>(n—p—(—1i)-1)(g-1)
>0 (2.11)
Applying similarly Lemma 2.6, we see that
if n—p<j—i<p,then |§| < |z,|"2. (2.12)

Suppose that j —i > p. We proceed in a way similar to that in the above
case.

0= 5n—j(xj+1—nu s Loy L1y ey Tj—1q, E,ZL’H_l, PN ,J]j_l,T')
= (_1>H5nfj(xj+1fn7 R 7 I E, Titly vy Lj—p—1, 7}7 Lj—puy - ,xj,1>
= (_1)M(5n—j+u+1(7}qnv Tj—p—ny- s Lj—1—ny Ljtl-ny- -+ Ti—1, T’ia Litly -y Lj—p—1s )
( (—1)“(—1)“_15n_j+#+1(7}qn, Lj—p—my -y Li—p—1, ﬂ, Li—piy v+
vy L1y Tj41—my - -« 3 Li—1, Tit1, - - - ,ij_u_l,)
B ifj—i>pand j—i>n—pu
B <_1)#(_1)#6n7j+u+1(Tygn> Tj—pp—ms- -y Lj—1-n, Ljtl-n;s - - -
c ,xi,#,l,Ti, Limppyev oy Li=1y Tigly - - 7‘27]',#,1,)
L fu<j—i<n-—p.
(2.13)
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If j—i>pand j —i > n — pu, then Lemma 2.6 shows that |0] < |z, |,
where M' = (j—i—p+c—1+2n—2(j—1)+c—1)g+(j—i—(n—pu))¢*)g" .
We have

(M'— (n+2(c—1) +2u(qg — 1))¢" ")
=(—i—(n—p)g—1)72+(c=1)(g—1) >0, (2.14)
(M'—(n+2(c—1)+ (2u—n)(qg—1))q¢")

G—i—mg—12=(c—1)(g—1)> (G —i—p—1)(qg—1)%>0.
(2.15)

In the first inequality, the equality holds if and only if j —¢ = g and ¢ = 1
(in which case p < n/2). Similarly, it follows from Lemma 2.6 that

if < j—1i<n—p,then |§] < |z, ™. (2.16)

The assertion (1) follows from (2.10), (2.11), (2.12), (2.14), (2.15), (2.16).
In proving the rest of the lemma, we first assume ¢ = 1. If u > n/2 we
have, by the second case of (2.9) and Lemma 2.6,

o= 5n—i—1(‘ri+1—n7 sy Li—p—1, ﬂa Limps -y Tj—l—n, Ljdl—ns -+ Lj—pu—1; frja Lj—piy -+

and hence |§ — d| < |x,|™2, where

( qi+17n qz 1 qz I qz pn+1 qz pn+1 quu qi7u+2 qun
S B 1(Tz i T; i—p )xi—;ﬁ-l BRI
qj+1 n q] p—1 q] n q] u+1 . qJ K q] pt1 quu+2 q*
Tit1—n """ Tjp— 1<T Lip T Ljp )xj—#+1 Tia
ifn—pu<j—i<p
qi+17n 7, p—1 qz "
93¢+1 n‘]_‘an,u 11;u1 J—H  gi—p+1 J—k gi—pt+l J—pn+2 %
77 q @ .a ’ @ .a ¢
Ljr1—n " Ljop- 1<T Ljp T Lj—p >xj—u+1 LTi1
g fn—p=j—i1<up
- qi+17n ’L p—1 qz N q’L p+1 qz pn+1 qif,u qif,u,+2 qun
Liy1-n " ;rl z n—1 (T . xz—,u - T xz—u )xi—,u—l-l Y mj—l—n
¢’ n ¢l H q]
j+l-—"m ] pn—1
fn—pu<j—i=u
qi+1—n 7, pn—1 q1 N
i+1-—n Ti 1
qﬂ+1 n e J p— 1TqJ I
Lip1—n " Tiop—1
L fn—p=j3—i=u
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From this, (2.11) and (2.15), the assertions (6) and (7) follow.

Except for minor complications the assertions (4) and (5) are proved in
a way similar to the above; we apply Lemma 2.6 to the second case of (2.13)
(resp. the first case of (2.9) with j — ¢ = p and the first case of (2.13) with
j —1i =mn—p) to obtain the desired inequalities for those (i,j) such that
p<j—i<n—p(resp. p=j—i<n—pand p<j—i=mn-—pu). Note
that in the second case of (2.13) we have to treat separately the cases where
pw=0and pu > 0.

The assertions (2) and (3) are similarly and more easily proved by apply-

ing Lemma 2.6 to the second case of (2.13) and (2.9) respectively.
O

2.4 Reductions of formal models

Let v > 0 be an integer and set M3(v) = (1 — s/n)q" + (s/n)¢" ™!, where
v=rn+swithrseZand0<s<n—-1 Weput U =T —t € By.

—~ ad ~
Proposition 2.9. (1) The set-theoretic image of X, in AX o, - under §: Eg,’;iﬁ —
—~— ad —~— ad
N ooz 18 contained in a rational subset Y, C NX 5 defined by
U] < [t
(2) The pull-back of Y, in M;Z\dEo,oo,ﬁ ~ Uk, which we simply denote by Y, N
MGS, soms 18 identified with Ulf(ll/nw.
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—o0

Proof. Let us prove (1). In O, [[X{ ..., X2 7], we expand as follows:

n—1

0(Xp,o o, Xp) =t =0 =Y = =Y  + 7 &6+Ys...,6+Y,)—t
:6<51,,£n)—t
+ Z (5(_}/1‘(11717"'76%)+6<517---a}/;'7"'75n)>
1<i<n
(2,6 )+ D (Y G Y )
2<,5<n
+ Y MG YY)
2<i<j<n
:5(Z7€27a£n)+ Z 5(_}/;(12717527'"a}/}a"'agn)
2<i,j<n
+ > 0 YY)
2<i<j<n

where we use Lemma 2.5 in the last equality. Note that terms not indicated
here are negligible because |Y;| < [&].

Let |-| € X,,. It suffices to prove that the valuation of each term explicitly
appearing in the last two lines of the above is bounded by |t|*®), for then
16(X1,. .., X,) —t] < [t/M®) which is to say, the image of |-| by 6 lies in ), .
The required estimates are obtained by applying Remark 1.2 and Lemmas
2.7 and 2.8. For instance, expressing v = rn+s withr,s € Zand 0 < s < n,
we have

’(5<Zv 527 s ’gn)‘ = ’(_1)r(n_1)5—r(zqim> 627 B afn)|
< M
— |t|n*1q*("*1)Ml(8)q’"
= J)
Similarly, if ¢ = (¢ + 1)/2 or ¢ = 1 according to the parity of v, and if
w=r'n+s with ', s € Z and 0 < s’ < n, we have

. / . /
i—1 —r'n i r'n

’5<_Y;q 7527--'7}/}7"'a€n)| = |(_1)27J(n_1)5—2r’(_(Y;q )q 717527"'7Y;'q7 77511)’
< Jg e

= |t|n71‘17("71>M2(5’76)q2”l
)
—1,—(n—1) 27/
|5(£1""7-}/;;7'"’}/}7"'7£n)| S |t|n 1 M2(S,7C)q
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and one can check the equality n='q~ VM, (s, c)¢*" = Ms(v) by case-by-
case calculations.
Now we prove (2). For x =3 - z,@™ € Uk, we set

[2](t) = Art(z)(t) = lim [a] 5 (8,)7 =D 2t

m—00
m>0

ad

Then, under the canonical identifications M35,  +(C,) = Uk, /f\io,oo,ﬁ((cp) =
(COO

p?
—~— ad

ApY

—~ ad

the maps induced by the morphisms ./\/l?\dzopoﬁ — /\EO,oo,ﬁ7 Y, —

0,007 COITESpONd to
Ug = C x— [z](),
{yeClly—tl <"} - Cp

respectively. The pull-back of these two maps are clearly U [[{V / "], as desired.
O

Take an n-th root t¥/" € Oc,. We define a formal model %, of ), by
T—1t

ng" "1 Ms(v) *
n

%, = Spf Oc, (u? ™), u=

Then the morphism U I[(V /ml ~ Yy, N M — Y, is induced by a morphism

N3g,00,7]

Spf Map(UI[{'j/n] ,Oc,) = %, = Spt Oc, (u? ™) of formal models given by

[2](t) — ¢
fu) = (f (W) ) o (2.17)

We finally define a formal model %, of Z, by
%, = 2, x Spf Map(UY'™, O¢,). (2.18)
z,
Theorem 2.10. Let v > 0 be an integer. Let Z,, be the affinoid defined in 2.2

and %2, its formal model defined by (2.18). For each integer 0 < m <n —1,
define a set T'(m) by

T(m) {(i,j) €Z? |1 <i<j<n, m<j—i<n—m} ifm<n/2
m) =
{(i,j)) eZ*|1<i<j<m,n-m<j—i<m} ifm>n/2.
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Then the special fiber Z,, of %, fits into the following Cartesian diagrams*

z, —— U™ = Ny Uy
(Z,)pt —— NpUy/NpUpt! (2.19)

| O
(A%)pcrf N @V — (A%)pcrf’

where Z,, is a smooth affine variety defined below, (-)P** denotes the inverse
perfection of an affine scheme in characteristic p and we simply write

NL/KUZ = Spec Map(NL/KUE, I{Z),
Ni,xU} /N gUyt = Spec Map(Ny,, x Uy /N kULt k).

(1) Suppose that n divides v (so that NL/KUZ/NL/KUEJrl is identified with k
viaw ). Then Z, is the trivial affine space bundle HkA%_l over NL/KUZ/NL/KUZH.

(2) Suppose® that v is odd and v = v/ mod 2n with 0 < v/ < n. Define
w<n/2byv =21+ 1. Then Z, is an affine variety defined by

Yt Y, =0

2 —z=- Z YiY;

(4:5) €T (1)
mn A%H.
(8) Suppose that v is odd and v = v/ mod 2n with n < V' < 2n. Define
w>n/2 by =21 + 1. Then Z, is an affine variety defined by

Y+t =0

2 —z= Z Yilj

(i,9)€T(u')
. n+1
m AE .

4Analogous Cartesian diagrams occur in [BW16] as well. We drew inspirations from
their result.

°In the assertions to follow, the relations between various y; (resp. z) and various
(resp. z') are given in the proof.
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(4) Suppose that v is even and v = V' mod 2n with 0 < v/ < n. Define
w<n/2byv =2u. Then Z, is an affine variety defined by

Yt ya =0

29—z = Z (Wi —vi) (Y] —y;) + Z(yf—yi)yjq-—i— Z yi (y; — v5)

(6,) €T (1) Jj—i=p’ j—i=n—u'
in A
r

(5) Suppose that v is even and v = v/ mod 2n with n < v/ < 2n. Define
w >n/2 by v =2u'. Then Z, is an affine variety defined by

Yty =0
d—z=— > W v+ Y W v+ Y vyl — )

(6,)) €T (n—p') j—i=p' j—i=n—p/
in AnT!
b

Proof. Tt follows from (2.17) that Spec Map(UILV/n],E) = NpgUl — A, =
(AD)Pet = Spec k[u? ~] is given by
if n does not divide v

— (0

- v/in| 7. x [v/n]
k[u? ]%Map(U;L/],k); ur—>{ )GUK/

Y pywrimeut!n if n divides v,

where 7 is the image of y € Ok in k = NL/KUE/NL/KU’L’H. This shows the
desired factorization of Ny, xU] — >,

Thus, it now suffices for us to study (the perfection of) the variety 27, x
2

NL/KUZ/]\TL/KUZL’+1 defined by the lower Cartesian diagram. Note that the
morphism 27, — %, is induced by the reduction of

— 00

Oc, (Ul ™) = Oc, (27 b b ) wes g0 M0 (5 gy,

where § = 0(X1,...,X,). We claim that (in (2) to (5)) an isomorphism is
given by

(r—v) g (r—uti=D)

22t Yy (2 <i<n), (2.20)

6Since we are working with perfect rings, there are many other obvious possibilities;
for instance, we may leave out all r from the definition of the above map.
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where we write v = rn + s with r,s € Z and 0 < s < n, and u = [v/2].
As in the proof of Proposition 2.9 (1) we use Remark 1.2 to reduce to the
case where 0 < v < n (resp. where 0 < p < n), so that Lemma 2.7 (resp.
Lemma 2.8) is applicable. Since the computation is rather complicated, we
only indicate several typical cases.

Since §(Z, &, .., &) = (=1)"V6_ (2™ &, ..., &,), we have, by Lemma
2.7, 10(Z, &, ... &) — f| < |&a™" M) wwhere, if 0 < s,

r

f = (10 (e (e 2y g 2y )
= (—1)(n=D+s <§1(1n s—1+(s—1)q <§q (e o Sy (gqn 1o 2y Hl))qr
= (-1 <§T(Zn78*1+(sfl)q)qn_l (ggnﬂn_lz,w B fgn_uqnz’qyﬂ))qr
= (_1)V—T€T(Ln—s+sq) ¢ 1yq (z/q v Z,q—u+w+1)
= (1T ROz - 1)
and, if s =0,

r

f (_1)T(n71) <£T(Zn,1)qn—1zq_m>q

(g )

n

In particular, (1) follows.
Suppose that we are in the case (2). In particular, we have u = (v—1)/2 =
r'n + p' with v = r/2 € Z. Similarly to the above computation, since

’
rn —r'n

§(&, o Yiy o Y &) = (1) (g QT(&,...,Y;q_ Y6,
we have, by Lemma 2.8 (2), [6(&1, ..., Y, ..., Y, ..., &)= fi ] < [&a]"0" M@
where, if p/ < j—i<n—/,

’
/ 2r
—r'n

fZ] — <€(n—2ﬂl—2+2u/q)q"71 (Yq )quulfl (Y'qirln)qu“/*l)q

J

— (5("‘2“/—“2#’(1)(1”‘1 (£ @D/ ryg = (§?H(q+1)/2y’.)qr”_l> '

" J

= (ffln—2u/_2+2wq)qn1€qn1(q+l)/2y{qiu1€Zn1(q+1)/2y;qjul)qr

_g(n VA g lgn 1q T ETINT gd e
Ty i

ng™— 1 v
=&’ Ms( )yiyj
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i*l
Z. oy Y 6+
-1 .
yly]|<|£ |nq Ma () lf:u <.7 1<TL Mand|5( zq 7627"'7 ]7"'7£n)‘<
otherwise. Therefore, arguing as in the proof of Proposition 2.9

and otherwise, f; ; = 0. The same computation shows that [§(—Y;
Gui
i

(1), we have

e R O L LU AT DN TS DR )

w<j—i<n—p/ W<j—l<n—p/

=z1—-z+ Z YiYj

(4:5) €T (W)

modulo the maximal ideal of O¢,. This completes the proof of (2).

Suppose that we are in the case (4). In this case p = v/2 = r'n+ y' with
P =r/2 ez Again, by Lemma 2.8 (5), [6(&1, ..., Y, ..., Y}, &) — 0] <
&, M) yhere, if pf < j—i < n— i,

gig = (22 @2 (e (v e ()
. (Szn(ygfr’n)quﬂl B Sgnfl(y.q*r/n)quﬂ/>>q
ol G CRG R RN G
(e @y e @)

et 4 g1 i—p—1 i—p Jj—u—1 J—H q
e () (0 )
ng™— 1 v
=& M0 (g — g (y; — oY)

27!

and
—En T (g — gl i =i
n 1 i ]
ng 1 Ms(v e . .
9ij = _fnq s )yf (yj — y;l) ifj—i=n-— ol

0 otherwise.

/

i—1

We also deduce from this the estimate for 6(=Y,? ,&,...,Y},...,&,) and
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thus obtain as before
EmTIMM (5(X LX) — t)

=z—2+ > Wiy wi-v) - D wi—v) (v

wW<j—i<n—p' w<j—l<n—p/
- > wi—uhyi+ Y (-
W=j—i w=j-1
- Z yq(y'—y?)Jr > vl (v —vl)
J—1l=n—p/
—z—zq+ Z i—u))— > wi—vhyi— >, vl (y—u
(4,5) €T (u ) p'=j—i j—i=n—u/
=z—2"4+ Z ) —yj)+Z(y3—yi)y?+ Z yf(y?—yj).
(4,4)€T (1 ) w=j—i J—i=n—p/
The other cases are treated in the same vein. O

2.5 Stabilizers of the affinoids and their actions on the
reductions

To state the main result of this subsection we define several subgroups of
GL,(K) and D*.

Let 3 C M,(K) (resp. Let 9 C 3J) be the inverse image of the set
of upper triangular matrices (resp. upper triangular matrices with all the
diagonal entries zeros) by the canonical map M, (O) — M, (k). Note that
P = ¢'T for all i. We set Uy =T* and Ul =1+ 9" C Uy for i > 1 as usual.

Recall that L is identified with K () C M, (K) via ie. We also define C4
to be the orthogonal complement” of L C M, (K) with respect to the non-
degenerate symmetric palrmg M,(K) x M,(K) = K; (z,y) — tr(xzy). We

set iBC = ‘B’ﬁCl and U = 1+5BZ+‘I3CH1)/2J Then we have P! = pLEB‘,B

and therefore U = 1+ pi + P82 Also, UL is a subgroup of UL )/2]
containing U%.

"The author learned the importance of C; and Uéi) in [BW16]. However, these have
been studied before elsewhere (see for instance, [BF83, (6.2)]).
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Remark 2.11. As we are working in an equal-characteristic setting, we can
describe these groups very explicitly:

Uy = {1+ (aj;) €Uy |al) =0if 0 <i—j+In<m}
Uj(m) = {1+ (aj;) € UJL(mH)/2J | Z al) =0 for r < m }

VA

where a;; =), agfgwl.
The following can be verified by a simple computation.

Proposition 2.12. The subgroup Uj(mH) C Uém) is normal. In the nota-
tion of Remark 2.11, the quotient group Sy, = Uj(m)/Uj(mH) is described as
follows.

(1) Suppose that m is odd. Then Sy, is isomorphic to the additive group k:

Sim — k; (14 a)U§m+1) — Trp=ma = Z agl).

Y2
(i,4.0)si—j+In=m

(2) Suppose that m is even. Put

Tym = {(v, (w;)) € k x K2/ | Zw =0}.

Then the following is a bijection:
Stm = Ty (1+ a)UfgmH) — (Tr Y "a, (ai(m/Q))i) ,

where, for 1 < i < n, we put a;(m/2) = aglz with the unique pair (7,1)
such that i — j+In = m/2. Under this identification, the induced group
operation on T} ,, is described as follows:

(v, (wi)) - (v, (wy)) = (v + 0" + Z Wiy (ny2), (Wi wi))  (2.21)

For an even m, we identify S} ,,, with 71 ,,.

We have similar subgroups for D*. Let Op be the maximal order of D
and Bp C Op the maximal ideal. Note that P, = 5 Op for all i. We set
Up =0} and Uj, = 1+, C Up as usual.
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Recall that L is identified with K (pp) C D via i?. Similarly to the above,
we define C5 to be the orthogonal complement of L C D with respect to the
non-degenerate symmetric pairing D x D — K; (z,y) — Trd(xzy). We set

Ph, = PN Cy and UY = 1495, + B2 Then we have B, = pi, &%,
and U(DZ) =1 —I—piL—l—‘Bg;H)/QJ. Also, Ug) is a subgroup of U}D(ZH)/QJ containing
Uy,

Remark 2.13. Again, we can describe these groups very explicitly:

Uy ={deUp|d=0if0<l<m}
UsY ={de U™ 3 df = Trdy=0for l <m },

where d=' = 3", dyply with d; € ky,.
As before, we have the following proposition.

Proposition 2.14. The subgroup Ugnﬂ) C Uj(jm) 1s normal. In the nota-
tion of Remark 2.13, the quotient group Ss, = U,(jm)/UgmH) 1s described as
follows.

(1) Suppose that m is odd. Then Sy, is isomorphic to the additive group k:

Som — k; dUp™™ s Trd o/ (d—t — 1) = —Trd " (d — 1) = Trd,,
(2) Suppose that m is even. Put
Tom ={(v,w) € k Xk, | Trw = 0}.
Then the following is a bijection:
Som = Tom; U™ ™ = (Tr dn, i)

and under this identification, the induced group operation on T, is de-
scribed as follows:

(v,w) - (V,0') = (v+ v + Tr(w!™ W), w+ )

For even m, we identify S ,,, with T5,,.
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Theorem 2.15. Let v > 0 be an integer. Let Stab, C G be the stabilizer of
the affinoid Z,,.

(1)

(2)

(3)

(4)
(5)

(6)

(7)

We have Stab, = (Uj(”) X Ul()y) x {1}) - & and the action of Stab, on
Z, induces an action on the reduction ?V, UILV/M and (Zl,)perf in the
Cartesian diagram (2.19). The upper-half square of the diagram (2.19)
18 equivariant for the induced action.

In (1), Stab, acts on U™ as the translation by U™ c K* via
Stab, < G® =% K.

The action of o = (p,¢p,1) € S on (Z,)P is described as

2z, YL Y, Y Yo for 2 <0 <n.

The action of A¢(Ur) C S on (Z,)P is trivial.

For o € Wy, set a, = Art;'(0) € L C D, n, = v(a,) and u, =
aspp " € Up. We denote by Frob, the q-th power geometric Frobenius.
Then the action of (1,a;*,0) € S on (Z,)P* is described as Froby” if v
is even, and as the composite of Frob,” and the automorphism

2>z, Y ﬂf,q_l)ﬂyi for1<i<n
if v is odd.

The action of U = Stab, NGL,(K) on (Z,)*** factors through UL —
S1v. If v is odd, then the induced action of x € k = 51, s described as

2= z4+x, y+—y forl<i<n.

If v is even, then the induced action of (v, (w;)) € Si,, is described as

2z 4+ v+ Z Wiliep,  Yi— Yy +w; fori € Z/nZ,
1€Z/nZ

where we regard {y;} as indexed by Z/nZ.

The action of UY) = Stab, ND* on (Z,)P* factors through UY) — Sy,
If v is odd, then the induced action of x € k = S5, is described as

2= z4x, y—y forl<i<n.
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If v = 2u is even, then the induced action® of (v,w) € Sy, is described
as

r—v+i—1

2 z+v+ Z w! Vi, Yir— Yy +w!
1€EZ/nZ

r—pu+i—1

for i € Z/nZ,

where we regard {y;} as indexed by Z/nZ.

Remark 2.16. The subgroups and elements appearing in (3) to (7) do not
generate the whole group Stab, unless W; = Wy. Later, we shall study the
action of Stab, on the cohomology in an indirect way (see 4.10).

The proof® of the theorem occupies the rest of this subsection.
We define a rational subset Zy C M __ by | X;| = |&| (1 <i<n). We

207oozﬁ
clearly have Z, C Zj. Let us begin with the following useful lemma, which

follows from the proof of [IT15a, Lemma 3.1].

Lemma 2.17. Let (g,d,1) € G°. Assume that there exists a point n € Z;
such that (g,d,1)*n € Zy. Then we have (g,d) € (p,op)% - (Us x Up).

Action of ¢; Let us prove that g € § stabilizes Z, and induces the
stated action on the reduction. We have

D o Xgnfl ifi=1 -
Tt Xf__f otherwise, wasi =&

and hence

v vt ifi=1 g
voti = Yiq:ll otherwise, res =2

From this we find that (g stabilizes Z,, and acts on the reduction in a manner
stated in (3).

8Here, v = rn + s. Complicated values like 7 — v 4+ i — 1 result from our choice of the
normalization (2.20).
9The argument here is largely inspired by that in [IT15a].
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Action of U} Let us prove that GL,(K) N Stab, = U and that U
acts on Z, as in the assertion (6). Let g = (a;;) € GL,(K) stabilize Z,.
Then we see that g € Uy by Lemma 2.17. In the notation of (1.2) we have

gy = > > dlv+¢)" —¢. (2.22)

1<j<n [
qifl
* l in
RS (z Sy, 4 ) —si) e
1<i<n 1<j<n 1

We first consider the condition g*¢ € Z,. By (2.22), we must have

Z Z aﬁ-f?f;?m =&

1<j<n 1

< |€i’q“(q+1)/2 if v =2u+11is odd
& if v = 2u is even

for all 1 < i < n. Since the valuations of all §; are distinct, we conclude that
this is equivalent to

ag?i)zlforlﬁiﬁn,

aglz =0 for (4,7,1) such that 0 <i—j+In < |[(v+1)/2],
which in turn is equivalent to g € UJL(VH)/ 2]
have

. Similarly, by (2.23), we must
qi—l

l in v

> (z Sl —@-) <lel”

1<i<n \1<j<n 1

Using & = &, we see that this is equivalent to

Z agg):nforlgign,
1<i<n

Z aﬁ:OforO<m<y.
(4,5,0);i—j+Hln=m

Altogether, the condition g*¢ € Z, amounts to g € Uj(y). Thus Stab, NGL,,(K) C
U,
Conversely, let g € U:EV). Then we have, by (2.22),

% In
G =Yi+alled" + .
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where (7,1) is the unique pair such that i —j+In = [ (¥ +1)/2]. To be more
precise,

lg"(Yi) = Vil < |&[" @D i v = 2u+ 1 s odd
g (V) — (Vi + o)
Similarly, we have

* 1) ¢q” l
) =2+ 3 g+ > Y]

('L’]»l)ﬂ*]“rln:l/ (’L,j,l),l*]+ln= L(V+1)/2J

by (2.23). Thus

< &7 if v = 2u is even.

In4i—1

72 - z+ Y dlel || <lal” ifvisodd
(i,4,0);i—j+In=v

9 (Z)— | Z+ Z ag‘fz)‘ff + Z a(»l)Y;-quH_l < |&|7 if v = 2u is even.

gy
(i,j,l);i—j+ln:u (i,j,l);i—j—i—ln:,u

This shows that g stabilizes Z, and acts on Z, in the stated way.

Action of U l(),, ) The argument is analogous to the above. Let d € D*
stabilize Z, with d; € k,. Then we have d € Up as (1,d,1) € G°. In the
notation of (1.3) we have

d*(Y;) = Z (Y + &) - &, (2.24)
.

d(2)= ) <Zdl(Yi+&)ql—&) : (2.25)

1<i<n

By the condition d*¢ € Z,,, we necessarily have

Z d gq’ gl < |§i|q“(q+l)/2 it v=2u+11is odd
! . I |fi|qM if v = 2pu is even
for 1 <7 <nand

i—1

3y (Z A€l — a-) <lal”.
l

1<i<n
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As before, this is seen to be equivalent to d € U 1‘7” ),
Conversely, let d € U ,(3”). Then we have, by (2.24),

\ Lw+1)/2)
d (Vi) = Yi+d|ws1)2) & +-

which implies

|d*(Y;) = Vi < |&]7 T2 if p = 24 + 1 is odd (2.26)
(i) - (Yi+ )
Likewise, we have

d'(Z) =7 + Z el + Z (alt(yﬂ)/zjYiqt(uﬂw)qF1 +

1<i<n 1<i<n

by (2.25). This implies that

< |&|" if v = 2 is even. (2.27)

<& if v is odd

d(Z)—(Z+ ) di el

1<i<n
d*(Z) — (Z + Z da el 4 Z (qu;qu)qil> < |&|" if v = 2u is even.
1<i<n 1<i<n

From this we conclude that d indeed stabilizes Z, and acts on Z, exactly as
in (7).

The inclusion & C Stab, Let us prove that S stabilizes Z, and induces
an action on the reduction. We take an element in & and express it as
(g,dep" ), so that (g,d,1) € G°. As (1,7, 071)*¢ € Zy and (g,d,1)*¢ =
(1,7, 07 1)*¢, we infer that (g,d) € (¢,op)? - (Uy x Up) by Lemma 2.17.
We may also assume that (g,d) € Uy x Up because we have already proved
that (¢, ¢p) € Stab,. We have

(97 dngn(I? U)*Xz = <g7 d7 1)*X’L (ga d(anda O->*§’L = O-(gl)

e}

If weset f;(Xy,...,X,) = (g9,d,1)*X; € OCP[[X{f soo sy X7, then (g, dpp*, o) €

S amounts to f;(&1,...,&,) = 0(&). Thus,
(ga dQOBngv 0->*Y; = fz(Yl + 51; cee 7Yn + gn) - 0-(51)
= fiY1,....Y,). (2.28)

Now since (g,d) € Uy x Up it is clear that if |Y;| satisfies the inequality defin-
ing Z,, so does |(g,d<pl_7”",a)*Yi|. The arguments for Z proceeds similarly
and if follows that S C Z,,.

37



Action of A¢(Uy) Let u € Ug. To show that the induced action of u on
Z, is trivial, we may assume that u lies in U} since A¢(K*) acts trivially on
Ml 5 Since A¢(u) € S, we have, in the notation of (1.2), (1.3)

Aew(V) = D afP 32> vy
m

1<j<n

_ Z Z ag.?)ZZdlY;qH—mnH_l.
m

1<i<n 1<j<n

Note that d; € k for all [ by assumption. Now, since a( =1lforalll <i<n
and dy = 1, we see that

[Ac(u)"(Ys) = Yi| < [Yil.

For Z, we argue as follows:

M7= Y Y Yy

1<j<n ¢>0 (3,l,m);l+mn+i—1=c
=7

Y

where, in the last equality, we used the relation

> " d; = 8.0,

(3,l,m);l+mn+i—1=c

which follows from the assumption. Hence, we conclude that A¢(u) acts
trivially on Z,.

Action of (1,a,',0) Let 0 € Wi and set a,,n,,u, as usual. We also set

Uy = Y50 djpp € Up with d; € k. Since (1,a,',0) € S, we have, in the
notation of (1.2), (1.3)

(1,a7%,0)*Y; = ZdW’
(L,a;',0)°Z ZdZ
(L,a;'0 Zdé’]
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Suppose that v = 2u + 1 is odd. Then it follows from the above and (2.1)
that

\ ~9"(et1)/2 ,
(1,&;1,0) yz{: (Zdjfzgj> ' <Zdjyiq]>
J J
N\ ¢ (gt1)/2 _
= (Z dﬁ?) : (Z dj<§2”<q+”/2y;>q’> .
J J

Thus we see that
(Lagt o) yf = dy ",

y Yo ) (2

modulo the maximal ideal of O¢,. By (2.20) we infer that the induced action
on y; is as stated in (5) in this case. The computations for the actions on z
and in the even v case are similar and easier.

The inclusion Stab, C (UJ(V) X Ug) x {1}) - S To prove the inclusion
Stab, C (Uj(") X Ul()'j) x {1}) - S, we take an element in Stab, and write it as
(g,dop" o) with (g,d,1) € G° and o € W. Since (1, ¢}y, 071)*¢ € 24, we
have (g,d) € Uy x Up by Lemma 2.17.

Let us first show o € Wp,. There exists an element ¢,, € y,,(K) such that
o(¢r) = Gupr. We are to prove that ¢, € k. The fact that (g,de,",0)
stabilizes £ implies

{|§Z~|q#(q+1)/2 if v=2u+1is odd

m l+mn
STd S ™ —o()| <
jm l
for all 1 <17 < n. In particular,

’a?,idoﬁi - 0(&)\ <&

for 1 <i<n As§ =&, for 1 <i<n—1, wededuce that af;dy =
agy 14,145, and hence d?" € k*. On the other hand, by Proposition 2.4 (4),
we have |o(&1) — (€| < |€1] for some element ¢ € K such that (77! = (,.
Therefore,

& if v = 2u is even

Go=C"" = (a),do)t =di " €k,

as desired.
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Now it remains to prove the claim under the assumption o = 1. We shall
prove that, for (g,d,1) € GY,

(9,d)*¢ € Z, implies (g,d)*¢ € (U x UY)y*¢,

where we drop the factor of Weil group to ease the notation. Clearly, this is
exactly what we need to prove.
The Y;-coordinates and the Z-coordinate of (g, d)*¢ are

m T m i—1 r
> Yoo aYd)E -a Y Yo adl | - ne,
T (4,m,\l); l+mn+i—j=r T (4,5,m,0); l+mn+i—j=r
respectively. Accordingly, we put
m m i—1 r
i (g,d) = > AVd, Bilg.d) = > amal | el

(]7m7l)7 l+mn+7‘_J:T r (Z7Jamal)1 l+m7‘L+Z—j:T‘

As Bo(g,d) = 3 (. (g9,d))?" by definition, we need to prove the inclusion

{(ai,r (9, d))i,r

(9.d,1) € Stab, } € { (ar(g, )i,

(9.d) € U x U}?} .

Let (g,d, 1) € Stab,. To construct (h,e) € U§V) X Ul()") such that (o, ,.(g,d)) =
(i (I, €)), we set

h = (bj,i>7 bj,i = Zbgf?)wm, 671 = Z elgolD
m l

m
52

as usual. For 1 < i <mn and r € Z we put a;(r) = ag- ) for the unique pair
(7,m) such that ¢ — j +mn = r and similarly define b;(r). Note that we must

have bgg) =e=1land b(r)=¢=0for 0 <r < |[(rv+1)/2].
From the condition on «;,(g,d), we infer by induction that

d. € k and a;(r) = ay(r) for 0 <r < |(v+1)/2] and 1 <i,i' <n. (2.29)

For |(v +1)/2] <r < v, we divide sums;

a;,(g,d) = Z a;(r —m)d,, + Z a;(r —m)d,y,.

0<m<|(v+1)/2] L(v+1)/2]<m<r
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Here, we have d,,, € k in the first summation and a;(r —m) is independent of
i in the second summation by (2.29) and r — |(r+1)/2] <v—[(rv+1)/2] <
(v +1)/2]. From the last inequality we have, for (h,e),

a;r(h,e) =b;i(r) +d,.

i—1

By > .(ir(9,d))" = p,(g,d) =0, it is now clear that, for instance,

bi(r) = Z ai(r —m)dy,, —n*Tr Z a;(r —m)d,,

0<m<|(v+1)/2] [(v+1)/2]<m<r

d, = Z ai(r —m)dy, +n"*Tr Z a;(r—m)d,, |,

[(v4+1)/2] <m<v (v41) /2] <m<r

satisfy the required conditions. As there are no conditions to consider for
r > v, this completes the proof of the claim and also of the theorem.

2.6 Alternative description of the reductions in terms
of algebraic groups and quadratic forms

In [BW16], algebraic varieties obtained by the reduction of affinoids are de-

scribed in terms of the Lang torsors of certain algebraic groups. Motivated

by their observation, we give here an alternative description of Z, using al-

gebraic groups G, and quadratic forms @), for v > 0 not divisible by n. It

suffices to treat the cases where 0 < v < 2n.

Suppose first that 1 < v < 2n is odd. We put G, = G,, considered over
k. We define a quadratic form Q,(y1,...,yn) € kly1,...,yn] by

Q (yl y ): {_Zﬂ<j—i<n—“yiyj lfl S v<n
v ) y Yn Z

n—p<j—i<p YiY; ifn+1<wv<2n.

If we denote by Fj, the ¢-th power Frobenius endomorphism, then the Lang
torsor Lg of an algebraic group G over k is defined by

Lg:G— G, v — Fyx) cr L
In this case the Lang torsor Lg, of G, is nothing but the Artin-Schreier map:

Lg,: G, = Gy; v+ 2% — .
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Then it is clear from Theorem 2.10 (2), (3) that Z, is isomorphic to the base
change to k of Z,, defined by the following Cartesian diagram:

ZI/,O E— gu

where V =V (yy + -+ +yn) C A} = Speck[yi, ..., yn] is a closed subscheme
defined by y; + -+ + vy, = 0 and (), is considered as a morphism A} — G.
Note that the action of S;, (and also Sy,) agrees with the action of G, (k)
induced by the Lang torsor.

Suppose that v is even. In this case we first define an auxiliary algebraic
group G,. We set G, = AZ“ as a scheme and define a structure of an
algebraic group by the same formula as (2.21):

(v, (wy)) - (v, (W) = (040 + Y waw] ), (wi +w0))
for any k-algebra R and for any (v, (w;)) € G,(R). We define

G, = Ker (é} — Gg; (v, (wy)) — Zm) )
By definition, we have G, (k) = S;,. We put

Qu(yl s yn) =3 Zu<j—i<n—u Yibs Hlsv<n
Y —anqﬂ.@yiyj fn+1<v<2n

and put f = (Q,,id): A" = G,,.
If 1 <v <mn, then we define Z, 4 by the following Cartesian diagrams:

ZV,O —_— gz/

J{ J{(-)_loLgV

Vv —— G,

Lo
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If n+1 < v < 2n, then we define Z, ¢ by the following Cartesian diagrams:
ZI/,O E— gu

| -

vV —— G,

AZ T> gm
Note that the Lang torsor (or its composite with (-)7!) induces an action of
S1, =G,(k) on Z, in each case.

Proposition 2.18. There exists a natural isomorphism between Z,, and the
base change to k of Z, o which respects the actions of Si,.

Proof. This can be verified by a computation. Note that if we set p(x) =
x? —x and v = 2u, then we have

Lg, (v, (w;)) = (@(v) - Z p(wi—p)ws, p(ws), . . ., p(%))

Lgu (U7 (wz’)>_1 = <_p(v) + Z @(wi—u)wzqv _p(wl)a sy —p(wn)>

on valued points. O

Remark 2.19. It is interesting that the complicated defining equation of Z,
simplifies with the introduction of G, when v is even. On the other hand, we
do not use this description in the computation of the cohomology.

3 Cohomology of the reductions

3.1 Quadratic forms and /-adic cohomology

Let V be a k-vector space of dimension m and @ = Q(z1, . .., x,,) a quadratic
form on V.

Suppose that p # 2. We define the associated symmetric bilinear form
bg: V xV — k by

bo(vi,v2) = 27H(Q(v1 + v2) — Q(v1) — Q(v2)).
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Then @) is non-degenerate if and only if by is non-degenerate. In this case,
we put det Q = det by (mod k*?). In general, we have an orthogonal decom-
position (V, Q) = (Vaa, Qna) ® (Vo, Qo), where Q,q is non-degenerate and Qo
is zero. We simply write () = Qg ® Q. Let ¥ be a non-trivial character
of k. To treat quadratic exponential sums associated to quadratic forms by
reducing to the standard one, we put

aw) = v =Y (f)wm.

z€ek z€ek q

Suppose that p = 2. We define the associated alternating bilinear form
ag: V xV =k by

ag(vi,v2) = Q(v1 + v2) — Q(v1) — Q(va).

For a,b € k we define a quadratic form Q,; on k% by Q.s(z,y) = az® +xy +

by?. For ¢ € k we define a quadratic form Q. on k by Q.(z) = cz?. It is
well-known that there exists an orthogonal decomposition
(V.Q) ~ B (+* Q) @ (k, Q)™ @ (k, Qo)™ (3.1)
1<i<r

where ' > 0, ¢ € {0,1}, s > 0 and a;,b; € k,c € k*. This is called a
quasi-diagonalization of ). Here 7/, £, s do not depend on the choice of de-
composition and we call r = 2r’ the rank of ). We denote by (Viq, @na) (resp.
(Vy1, Qq)) the quadratic space corresponding to a non-degenerate subspace
DB, cic, (k?,Qu,p;) (resp. a “quasi-linear” subspace (k, Q)% ® (k, Qo)®*) and
simply write Q@ = Qua ® Qq. We put Arf(Qua) = > ;v aib; (mod p(k)),
where p(k) = {22 + 2 | € k}. This is also an invariant of Q, called the Arf
invariant.
The following can be found, for instance, in [Lic97, Definition 10.2]

Proposition 3.1. Let (V,Q) be as above. Suppose that Q) is non-degenerate
(so that m = 21" is even) and k = Fy. Then the number of elements of the
fiber Q7Y(1) is either 21 — 271 or 2771 £ 271 We have Arf(Q) = 0 in
the first case, and Arf(Q) =1 in the second case.

We record an elementary computation of the cohomology of certain vari-
eties associated to quadratic forms.
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Proposition 3.2. Let () and k be as above. Let X, be the algebraic variety
defined by the Cartesian diagram;

X0—>Al£

A7 — AL

where @y, is the Artin-Schreier map o (x) = 29 — x and Q is the morphism
induced by the quadratic form. Denote by X the base change of Xo to the
algebraic closure k. Take a prime number { # p and put

Hé = Hz(X7@€)7
which carries the actions of the additive group k and Q = Gal(k/k). Then

the following assertions hold.

(1) Suppose that p # 2 and r > 0. Let r be the rank of Q) and express @ as
an orthogonal sum @ = Quq ® Qo as before. We denote the quadratic
residue symbol of k by (E) Then we have

[ Bvery Vo fi=2m =
HE = { Qy(m) if i = 2m

0 otherwise,

where Vy, is a one-dimensional vector space on which k acts via v and
the g-th power geometric Frobenius Frob, acts as multiplication by the

scalar dot
(_1)2m—r (eTCQHd) g(w)rqm—r’

and Q,(m) is a one-dimensional vector space on which k acts trivially
and Frob, acts as multiplication by the scalar ¢™.

(2) Suppose that p = 2 and r > 0. Let r be the rank of Q) and express Q
as an orthogonal sum Q = Qna ® Qq as before. Let ¢ € {0,1} be as in
(3.1). We denote by 1 the unique non-trivial character of Fy. Then we

have
Dyerny Vo i=2m—2e—r
H; =~ Q(m) if i =2m
0 otherwise,
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where Vi is a one-dimensional vector space on which k acts via ¢ and
Frob, acts as multiplication by the scalar

(_1)2m—28—rw0 (Trk'/IF2 Arf (Qnd)) qm—a—r/2

(which is independent of 1), and Q,(m) is a one-dimensional vector space

on which k acts trivially and Frob, acts as multiplication by the scalar

qm.
Proof. For any additive character ¢ of k, let £, denote the Artin-Schreier
Q,-sheaf on A} associated to ¢, which is equal to F(¢) in the notation of
[Del77, Sommes trig. 1.8 (i)]. No matter whether p = 2 or not, we have an
isomorphism
H ~ ) HI(AL, Q" Z,)
PekY

as representations of k x ).

Suppose that p # 2. The assertion in this case is well-known. Diago-
nalizing () and applying the Kiinneth formula, we are reduced to computing
HL (AT, Q*Zy) for m = 1 and Q(x) = az®, (a € k). As the pull-back of %
by the zero map is the constant sheaf, giving rise to Q,(1)[2], it suffices to
show the proposition in » = m = 1 case, which is done by the Grothendieck-
Ogg-Shafarevich formula and the Grothendieck-Lefschetz trace formula.

Suppose now that p = 2. Again, by quasi-diagonalizing (), we are reduced
to computing H (AT, Q*.%,) for either m = 1 and Q(z) = a2?, (a € k), or
m =2 and Q(z,y) = ax® + xy + by?, (a,b € k). As the computation is easier
if 1 is trivial, we assume that 1 is non-trivial. In the first case, if a = 0,
then the cohomology is Q,(1)[2] as above and if a # 0, then @ is a morphism
of additive group schemes G, =~ A}, which implies that the cohomology
vanishes in all degrees by [Del77, Sommes trig. Théoreme 2.7*]. In the
remaining case we may assume that 1 is non-trivial. Recall the isomorphism
k= kY; x — 1o, where 1g.(y) = o (Trk/]p2 (xy)) , and take ¢ € k* such
that ¢ = .. Then we see that ¢y .(az?) = tgq(z) for all z € k with
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d = (ca)'/? € k. Now we can turn an elementary manipulation

D 0@z, y) = toclar® + zy + by?)

T,y€k

x?y
- Z ¢0,c(by2) Z ¢o,c(a$2 + xy)
Yy x

= Z wovc(byZ) Z wO,dJrcy ('T>

= 1o, (b(—d/C)Q) q
= g (Trk/Fz Arf(Q)) q

into the desired cohomological statement as in the proof of [Boyal3, Prop.
2.10]. O

3.2 Representations of a cyclic group in finite classical
groups

In [BF83] and [BHO5b], one is naturally led to consider orthogonal and sym-
plectic representations of a cyclic group over a finite field in order to compute
subtle invariants of certain representations. We use the theory in our analysis
of the cohomology of Z,. Thus we summarize parts of [BH05b, Section 4] in
this subsection.

We put Q = Gal(k/k) and I' = Z/nZ, where n is assumed to be coprime
to p as always.

Let Q act on I = Hom(F,EX) via its natural action on the target. For
y € T, we define a k[I'-module V, in the following way: the underlying
vector space is the field k[y] C k generated by the values of y and I acts via
the character y: I' — k[x]*.

Proposition 3.3. The k[I'|-module V,, is simple and its isomorphism class
depends only on the S2-orbit of x. Moreover, we have a bijection between the
set of Q-orbits of T' and the set of isomorphism classes of simple k[T'|-modules
induced by x — V. In particular, the following decomposition holds;

KT = B Vi

xeO\T
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As we need to treat p = 2 case, we define an orthogonal representation
(V,Q) of ' over k to be a k[['J-module V' endowed with a non-degenerate
[-invariant quadratic form @. If p # 2, non-degenerate quadratic forms
() correspond to non-degenerate symmetric bilinear forms bg and thus this
notion coincides with the usual one.

Proposition 3.4. Assume that p # 2. Let (V,Q) be an orthogonal represen-
tation of I' over k.

(1) Suppose that (V, Q) is indecomposable. Then exactly one of the following
holds.

(i) T2h6 underlying k[I'|-module V' is simple and isomorphic to V) with
x-=1.

(i1) V is isomorphic to U@ U, where U is a simple k[I'|-module which
is mot isomorphic to its contragredient U" .

(iii) V =V, is simple, isomorphic to its contragredient, but x* # 1.

Moreover, the isometry class of (V,Q) as an orthogonal representation
is determined by the isomorphism class of V' in the last two cases.

(2) There exists a decomposition of (V,Q) into an orthogonal sum of in-
decomposable orthogonal representations. In particular, det Q) is deter-
mined by the restriction of Q to the subspace of V' fized by {~* | v € T'}.

Example 3.5. Let a be a positive divisor of n and let I'* C T denote the
unique subgroup of order n/a. The reqular k[I'|-module k[I'] has canonical
I'-submodules

KD/ =k = P V. LTian)= @ V.

X€Q\T xo=1 XEQ\T xo#1

Then I (I'; a, n) is the unique complement of k[l /T%] in k[['] as a T'-submodule.
Similarly, if a | b| n, we define I(T'; a,b) by

I(T;a,n) = I(T;b,n) & I(T; a,b).

Suppose now that p # 2. Let e: k[['| — k be the k-linear map sending
lel"tolekandl #~vyel to0 €k, and let x — T be the standard k-
linear involution on k[U] such that 5y =y~ for v € . Then Qr(z) = e(2T),
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x € K[| defines a I'-invariant non-degenerate quadratic form on k[I'] such
that det Qr = 1. We see that

Qr|kr/ra) = a_anF/Fa
and hence

det(Qr|kr/re) = (a7'n)*,  det(Qrlr,(ram) = (@"'n)*  (mod £™?).

As usual, by a symplectic representation of I' over k we mean a pair (V,b)
consisting of a k[I']-module V' and a non-degenerate I'-invariant alternating
form b.

Proposition 3.6. ' Let (V,b) be a symplectic representation of T' over k.

(1) Suppose that (V,b) is indecomposable. Then exactly one of the following
holds.

(1) The underlying k[T']-module V is isomorphic to U @ U, where U
is either isomorphic to V,, for some x with x*> =1, or is a simple
k[l']-module which is not isomorphic to its contragredient.

(ii) V =V, is simple, isomorphic to its contragredient, but x* # 1.

Moreover, the isometry class of (V,b) as a symplectic representation is
determined by the isomorphism class of V' in all the three cases.

(2) There ezists a decomposition of (V,b) into an orthogonal sum of inde-
composable symplectic representations.

Remark 3.7. Suppose that p = 2. Let (V,Q) be an orthogonal representa-
tion of I' over k. Considering the orthogonal decomposition of the alternating
bilinear form ag associated to (), we may separately study the isotypic com-
ponents of V' appearing in Proposition 3.6 to compute the Arf invariant of

0.

19In [BF83][BHO5b], this proposition is stated under the assumption that k = F,,. How-
ever, it plays a role only in the discussion of the computation of trace invariants and this
proposition remains true without the assumption.
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3.3 Certain Heisenberg groups and their representa-
tions

Let H be a finite group and Z C H its center. We say that a finite group H
is a Heisenberg group if it is not abelian and @ = H/Z is abelian. If H is a
Heisenberg group, the map H x H — Z; (z,y) — [z,y] = zyxz~'y~! induces
an alternating bilinear map [-]: Q@ x Q — Z.

The following is well-known; see for instance [Bum98, Exercises 4.1.4-

4.1.7).

Proposition 3.8. Let H, Z, () be as above. Let: Z — @Z be a character of

Z. Assume that Yol[-]: Q xQ — @Z is non-degenerate. Then there exists an
irreducible representation py of H, unique up to isomorphism, whose central
character is 1. Moreover, dim py, = \/c, where ¢ is the order of H.

The following proposition can be verified easily.

Proposition 3.9. Let 1 < v = 2u < 2n be an even integer. Let Sy, (resp.
Sa,) be the group defined in Proposition 2.12 (resp. in Proposition 2.14).
Assume that n and v are coprime.

(1) The group S, is a Heisenberg group. In the notation of Proposition 2.12
(2), the center Z(S,) is

Z(S1,) =k = {(v, (w;)) € k x K¥" |w; =0 for all i} C Sy,.

Moreover, a character v of k induces a non-degenerate alternating form
Wol]: 81,/Z(S1,) x S1.,/Z(S1,) — Q, if and only if 1 is non-trivial.

(2) The group Sz, is a Heisenberg group. In the notation of Proposition 2.14
(2), the center Z(S,,) is

Z(S2,) =k ={(v,w) € k xk, | w=0} CSy,.

Moreover, a character v of k induces a non-degenerate alternating form
ol]: So/Z(S2,) X Sa,/Z(S2,) — @Z if and only if ¢ is non-trivial.

If n and v are coprime, then, by Propositions 3.8 and 3.9, there exists a
unique irreducible representation p;, (resp. pa,) of Si, (resp. of Sy,) with
the central character v, for any non-trivial character ¢ of k.
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3.4 Cohomology of the reductions

Proposition 3.10. ' Let 1 < v < 2n be an integer. Suppose that v is odd
and write v = 2u + 1. Put d = ged(n,v). Let Z, be the algebraic variety
defined in Theorem 2.10 and Q, the quadratic form defined in 2.6. Put

Hy = Hy(Z,,Qy).
If p =2, we denote by (E) the Jacobi symbol for any positive odd integer m.
(1) We have H: =0 unless i =2(n —1),n+d — 2.
(2) If d # n, then

| Qn—-1) if i =2(n—1),

where Wy, 1s a one-dimensional vector space on which k acts via v and
Frob, acts as multiplication by the scalar

q 2 if n is odd and p = 2
Fe) gt if n is odd and p # 2
-FH"e (n_/d)g(i/f)n_dqd_l if nis even (and hence p # 2),

and k acts trivially on Qu(n — 1).

(8) If d =n, then
HZ" Y o QK] R Qy(n — 1)

as a representation of k x €.

(4) Consider the following natural action of the standard generators of I' =
Z/nZ and 7.)27 on Z,;

(Z7y17y27 o 7yn) — (Zaynaylv s 7yn71)7
(Zaylv-'-vyn) = (Zv _y17"'7_yn)

1 Although we compute the cohomology of Z, for any v (not divisible by 2n) in this
proposition, only the cases where n and v are coprime are relevant in our main theorem;
we find the result interesting nonetheless.
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respectively (cf. 2.5). Let ¢ be a character of k. Then both actions in-
duce, on the y-isotypic component of @, H:, multiplication by the scalar

{(—1)"_1 if ¢ is non-trivial

1 otherwise.

Proof. We first treat (1) to (3). In view of Proposition 3.2, we need to
compute various invariants of the quadratic form @, defining Z,. For this,
we follow the approach of [BHO5b, 8.3] and exploit the I'-invariance of Q,.
Denoting the standard generator of I by ~, we regard Q, = Q,(y1,---,Yn)
as a quadratic form on k[I'] = {}, ... v* | vi € k}.

First we claim, with no assumption on the parity of p, that I(I";1,n) C
k[I'] admits an orthogonal decomposition

I(I;1,n) = LT dyn) & Ii(1; 1, d) (3.2)

in the notation of Example 3.5, where (the restriction of ) @), is non-degenerate
(or zero) on I(I';d,n) (resp. on I(I';1,d)). Suppose that 1 < v < n. Then,
for x € k[I'],

Ou(a) = —€ Zwlgig(nfl)/zx(fy—ix)) if n is odd
’ —& (X pricicnpa (v 'e) + 2_135(7*”/235)) if n is even (and hence p # 2).

By Proposition 3.4 and Remark 3.7 we may separately consider each isotypic
component underlying some indecomposable orthogonal (or symplectic, if
p = 2) representation of I'. Also, to prove non-degeneracy or triviality of @Q,,
we may assume that all characters of I' take values in £*.

For a character y of I, let

ex=n"> x(v)"
1<i<n

be the corresponding idempotent, so that V,, = e, k[[]. First let x be a
character such that x* # 1 and consider Qulviov,_.- Put oo = x(7). If nis
odd, then we have, for y, z € k,

Qu(yey + zey—1) = —¢ Z (yey + zey-1) (@ 'ye,—1 + a'zey)
p+1<i<(n—1)/2

= —n"lyz (Z(O/ + og_i)) =-—n"'yz (" =) [ (a—1).
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Similarly, if n is even, we see that

Qu(yey + zey-1) = —n"'yz Z (o + a7 + a™/?
pt1<i<n/2—1

=—nlyz (oz”_“ — oz““) [(a—1).

Thus, QV|VX®VX_1 is trivial if y¢ = id and is non-degenerate otherwise.

Next let x be of order two (so that n is even) and consider the restriction
of @, on V,, C I(I';d,n). Then

Quley) = —n"" Yoo 2T =) (=D (33)

p+1<i<n/2-1

and @), is non-degenerate on V,. Hence we have proved the claim (3.2) if
1 < v < n. The case where n+1 < v < 2n can be reduced to the above case
by noting that @), = —Qs,_,. In particular, we find that

Qu(ey) = (2n) 7 (-1)" (3.4)

for the character x of order two, if n is even.
Now suppose that p # 2. Then we need to show that

n/d if n is odd

d k*?).
(—=1)#2n/d if n is even (mo )

det QV|Ik(F;d,n) - {

We compare @), with the standard quadratic form Qr on k[I']. If n is even
and y is the character of order two, then the determinant of Qr|y, is 1/n. By
Proposition 3.4, (3.3), (3.4), we infer that the determinants of @, |1, (r.a,n) and
Qr|1,(r:an differ by a factor of (—1)#2 if n is even and coincide if n is odd.
Now the determinant of Qr|r, (4, is indeed n/d, as is seen from Example
3.5.

Suppose that p = 2 (and hence n is odd). Then we are to prove that

Yo (Tri /e AL (Qu ] ram)) = (ni/d) |

However, as @, is clearly defined over Fy and I1(I';d, n) = Iy, (I'; d, n) ®p, k,
the additivity of the Arf invariant and the multiplicativity of the Jacobi
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symbol reduce the computation to k& = Fy case. In fact, in the course of
computation below we shall see that if a k[[']-module V' with no non-zero
fixed vectors admits an invariant non-degenerate quadratic form, then the
Arf invariant is uniquely determined by V.

Let m > 1 be a divisor of n and set

Vo = PV

where the sum is taken over all the orbits Qy € Q\I'Y of order m. Take a
prime divisor [, of m. Suppose that a non-degenerate quadratic form ¢ on
V., is invariant under the action of I'. Now every I'-orbit of V,, except for
{0} is of length m. Thus if Arf(Q) = 0 (or = 1), then 2¢(m)/2=1 4 2¢(m)—1 = |
mod m (resp. =0 mod m) by Proposition 3.1. Since the two congruences
in the latter condition never occur together and Arf(Q) € {0,1}, the two
conditions are in fact equivalent. The congruences are further equivalent to
2¢(m/2 =1 mod m (resp. = —1 mod m). We find that these in turn are
equivalent to the same congruence mod I,,,, again by observing that 2#(™)/2
can only be congruent to 1 or —1 mod m. Now an elementary calculation
shows that 2¢(™)/2 = 2l==1 mod [, if m is a prime power and 2¢(™/2 = 1
mod [, otherwise. Therefore,

(%) if mis a prime power

ln

1 otherwise,

Yo (Arf(Q)) = {
from which we conclude

Yo (Arf (Qulrriam)) = (ﬁ)

as desired.
Finally, let us prove (4). By [DL76, Theorem 3.2]'%, we have

(1)t (g | HY) = Y1 (o | B2 @),

where z € k and Z denotes the fixed point variety with respect to the action
of the generator v € I'. Since Z) is clearly a discrete set of points indexed

12The author learned the idea of applying the Deligne-Lusztig fixed point formula in
[BW13, 4.4].
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by k, the right-hand side equals the trace of the regular representation of
k. Now we find the required action of v by applying the idempotents of
the group ring corresponding to each character of k. The action of Z/27Z is
treated in exactly the same way because the fixed point variety remains the
same (unless p = 2, in which case the statement is trivial). a

Proposition 3.11. Let 1 < v < 2n be an integer. Suppose that v is even
and write v = 2u. Assume that n and v are coprime. Let Z, be the algebraic
variety defined in Theorem 2.10. Put

HZ = Hz(ZUJ@€)7

which carries the actions of Sy, X Sa, and Q@ = Gal(k/k) in the notation of
2.5.

(1) We have H: =0 unless i = 2(n —1),n — 1.

(2) We have

H™~ B proRpoy
PpekV\{1}

as a representation of Sy, X Sa,, where pyy (p2y) s the unique irre-
ducible representation of Sy, (resp. of Sa,) with the central character i
(cf, Proposition 3.9), and

tr (Froby | p1.y X pay) = ¢t

(8) Consider the following natural action of the standard generator v € T' =
Z/nZ on Z,;

(27917927 s 7yn) = (zaynvylv s 7yn—1)'

Let v be a character of k and H?,, the -isotypic component of P, H.
Then we have

tr (77 | H,) =1

for any 5 coprime to n.

Proof. Let us prove the assertions (1), (2). As the case where n < v < 2n is
settled in exactly the same way, we only treat the case v < n. We denote by
P,(y1,...,yn) the polynomial appearing in the right-hand side of the second
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equation in 2.10 (4). We put P, (y2,...,Yn) = P.(—(Y2+- - +Yn), Y2, - -, Yn)-
Then for any ¢ we have the following decomposition:

H = @ HK P2
ek
as a representation of S;, x Sy, x €. It suffices to prove
. n=1l ifi—p—1
dim Hi(AY Y Py =44 R
k 0 otherwise

for any non-trivial ¢» € kY. Indeed, ¢ = 1 non-trivially contributes to the
above decomposition only if ¢ = 2(n — 1), and we have dim p; ,, = dim pg y =
q™=Y/2 if 4 is non-trivial by Proposition 3.8. Also, as ¢(z9 — x) = 1 for
any x € k and any ¢ € kY, the statement for the Frobenius trace immedi-
ately follows from the Grothendieck-Lefschetz trace formula and the above
vanishing.

Our basic strategy is to apply [Del80, (3.7.2.3)]'3:

Let P € k[Ty,...,T,] be a polynomial of degree d. Suppose that
d is coprime to p and that the homogeneous part P of degree
d of P defines a smooth hypersurface in P}"~'. Then

, d—1)" ifi=
dim Hi (A, Py — 70" Hi=m
0 otherwise.
Although the polynomial P, is of degree 2¢, we may replace each mono-
mial of the form ygy? with y,y;, because f*.Z) is a constant sheafif f = g?—g
for some polynomial g. We denote by P, € k[ys,...,y,] the polynomial
obtained by applying the above procedures to all monomials of the form
yiyi. We similarly denote by P, € k[yi,...,yn] the polynomial obtained

from P, in the same way. Then we have deg P, = deg ﬁ,ﬁ =g+ 1 and

P(ya, .. yn) = P(=(y2 + -+ + Un), Y2, .-, Yn). Thus it suffices to show
that P’ ,(f’ﬂ) defines a smooth hypersurface in ]P’%’z. As this hypersurface is

13In fact, it also asserts that the cohomology in degree m is pure of weight m. However,
we only need the dimension assertions in what follows.
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isomorphic to the projective variety V' defined by Pl and 1+ +y,in
IP)%_I, we are reduced to proving that the Jacobian

( 1 1 . 1 )

o _plle+l) o plle+1) o_plla+l)

8—y1PV B_sz’/ o B P,

is of rank two at every k-valued point [Y] : ---: Y,] of V. Regarding {y;} as

indexed by Z/nZ we easily verify that

ﬁl//(qul)(y17 e Yn) = — Z Ui Z ?/;'I+d

1<i<n  pu<d<n—p

and hence 5
—P ) == Y Y

B
Yi p<d<n—p

The rank of the Jacobian is not maximal if and only if these partial derivatives
are all equal, that is, Y} = Y/ for all 1 <4,j < n, by the assumption that
n and v = 2u are coprime. Together with Y; + --- + Y, = 0, this implies
Y, =---=Y, =0, as required.

Now the assertion (3) follows from [DL76, Theorem 3.2] exactly as in
Proposition 3.10 (4). O

Given the preceding propositions, the cohomology of the reduction %,
is computed by exploiting the periodicity of Z, with respect to v and the
following proposition.

Proposition 3.12. Let v > 0 be an integer, not divisible by n. Then we
have the following isomorphism

Hé(yuy@d = @ Hé(Zm@Z) ® (X © NG)

xe (U[’;V/7L]>v
of representations of Stab, for any 1.

Proof. The proposition follows from Theorem 2.15 (1) in the same way as
[BW16, Corollary 3.6.2]. 0
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4 Realization of correspondences

4.1 Special cases of essentially tame local Langlands
and Jacquet-Langlands correspondences

Let us allow n to be divisible by p only in this subsection.

Definition 4.1. ([BHO5a, 1, 2]) Let p be an n-dimensional irreducible smooth
representation of Wy. Let t(p) be the number of unramified characters x of
K> such that y ® p ~ p. Then t(p) divides n and p is said to be essentially
tame if p does not divide n/t(p).

We denote by G¢(K) the set of isomorphism classes of n-dimensional
(irreducible) essentially tame representations of Wi.

Similarly, let 7 be an irreducible supercuspidal representation of GL,,(K)
or an irreducible smooth representation of D*. We say that « is essentially
tame if p does not divide n/t(w), where t(m) is the number of unramified
characters y of K* such that ym ~ .

Definition 4.2. ([BHO05a, 3. Definition]) An admissible pair (of degree n)
is a pair (F/K,¢) in which F'/K is a tamely ramified extension of degree n
and ¢ is a character of F'* such that

(1) if £ factors through the norm map Ng/g: F'* — E* for a subextension
K CECF,then FF=FE, and

(2) if €|y factors through Np/p: F* — E* for a subextension K C B C F,
then F'/E' is unramified.

Two admissible pairs (F1/K, &), (Fo/K, &) are said to be K-isomorphic if
there exists a K-isomorphism ¢ : F; = F, such that & = & oi.

We denote by P, (K) the set of K-isomorphism classes of admissible pairs
of degree n.

The proof of the following is found in [BH05a, A.3 Theorem].

Proposition 4.3. The following map is a bijection:

P (K) = GHNK); (F/K,&) v~ Indp/k & = Ind%ﬁ €.
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In [BHO5a], [BHO5b], [BH10], a canonical bijection (F/K,&) — m¢ be-
tween P,(K) and the set of isomorphism classes of essentially tame represen-
tations of GL, (K) is constructed, and the existence and an explicit descrip-
tion of tamely ramified characters g ¢ are established such that Indp/x & —
Teuee 15 the local Langlands correspondence. Likewise, a special case of the
main result of [BH11] yields a canonical bijection (F/K,§) — mf between
P,(K) and the set of isomorphism classes of essentially tame representa-
tions of D>, and the description of tamely ramified characters pte such that
T et F 7T£D is the local Jacquet-Langlands correspondence.

In what follows, we review the construction of ¢ and 7r§D and the descrip-
tion of g e and pee for certain admissible pairs (F/ K, £) that are relevant to
our results.

Minimal pairs

Definition 4.4. Let i > 0 be an integer. An admissible pair (F/K,¢) is said
to be minimal with the jump at i if & Uit factors through the norm map Ng/k

and &

We say that an admissible pair is minimal'* if it is minimal with the jump
at ¢ for some ¢ > 0.

Ui, does not factor through Ng/g for any subextension K C £ C F.

Remark 4.5. (1) If n is a prime, then any admissible pairs are minimal.

(2) If (F/K,§) is a minimal pair with the jump at i, then there ezists a
decomposition

Elus, = (¢ ® (x o Np/x)) [ (4.1)

where ¢ is a character of F* trivial on UI@H and x 1s a character of K*.

(3) If (F/K,§&) is a minimal pair with the jump at i, then the ramification
index of F/K is coprime to i.

(4) In this paper we are interested in minimal pairs (F/K,§) with the jump
at v in which F/ K is totally ramified (hence, p{ n and v is coprime ton).
We will see that the cohomology of each reduction Z,, with v coprime
to n, realizes the local Langlands and Jacquet-Langlands correspondences
for representations parametrized by such minimal pairs (for a specific F').

MNote that some authors further impose the triviality of ¢ \U?l in the definition of

minimality. This definition is taken from [BHO05a, 2.2] (except that ¢ is assumed to be
positive there). They also discuss jumps of possibly not minimal pairs.
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(5) Many of the preceding results treat the representations parametrized by
minimal pairs;

e The cohomology of each reduction in [BW16] deals with minimal
pairs (F/K,&) with the jump at some i > 1 in which F/K is un-
ramified.

e That of [IT15a] deals with minimal pairs (F/K,§) with the jump
at 1 in which F/K is totally ramified. These representations are
(character twists of) the simple epipelagic representations if p does
not divide n. Imai and Tsushima announced that they constructed
corresponding affinoids also in the cases where p divides n. In these
cases simple epipelagic representations are not essentially tame.

o In [Weil}], it is assumed that n = 2 and p # 2, in which case all
representations tnvolved are parametrized by minimal pairs.

Construction of 7, and ’/T5D in special cases In the rest of this subsection
we assume that (F/K,¢) is a minimal pair with the jump at ¢ and F/K is
totally ramified.

Fix a character ¢ of K ' which is trivial on p, but not on O. For a € F,
define a function % by ¢ (u) = ¢(Trp/x a(u — 1)), (u € F). Then by the
tame ramification assumption we have

pe’ /o = (U U a+pp" = ol (4.2)

for any integers r, s such that 0 < r < s < 2r + 1. Similarly, for 8 € M, (K)
and v € D, set

Us(g) = v(trBlg—1)), (9 € Mu(K)) and 7 (d) = ¢ (Trd y(d—1)), (d € D).

Let us construct 7e and 7.

First suppose that ¢ is trivial on UL, Then there exists an o € F with
vp(a) = —i such that §|U};/2J+1 = . Take a K-embedding F — M, (K)
(resp. F' — D) and regard F as a K-subalgebra F' C M,,(K) (resp. F' C D).
Let 3 = J¢ C M,(K) be the unique hereditary Og-order normalized by
F*. (Later we will always arrange it to be the standard Iwahori order;
see Remark 4.8). Denote by By = rad J the Jacobson radical of J and set

15Thus, we change notation here; in Section 3 ¢ generally denote a character of k.
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Uy =7%, Ué =1+, fori>1as usual.’ Define a character ¢ (resp. 6f) of
Hi = U}wUJW2J+1 (resp. of Hg’D = U}U[L;/ZJH) by

95’[]}? = §|U1g’ 9£|U3Li/2j+1 = wa‘UJLiﬂJJrl,

9§D|U}w = f|U;, ‘9§D|UB‘/2J+1 = ¢£‘Ug/2J+1-

Set Ji = URUS ™V g0 = vhug ™t e = FX I and JP = FX NP
To construct an irreducible smooth representation A¢ (resp. AZ) of Jg (resp.
of JP), we use the following lemma.

Lemma 4.6. Let § = 0 or 0 = 62 Accordingly, set H' = H/ (resp. Hg’D),
JU=J} (resp. Jg’D) and J = J¢ (resp. JP).

(1) The conjugation by F* stabilizes 6. Thus, the cyclic group T' = F*/K*UL
acts on the finite p-group Q = J' /Ker 6. The center Z of Q is the cyclic
group Z = H' /Ker 0, which is also the I'-fived part Z = Q.

(2) There exists a unique irreducible smooth representation n of Q whose
central character is 0.

(8) There exists a unique irreducible smooth representation 1 of I' X Q such
that n|g ~n and det f|r = 1.

(4) There exists a constant € € {£1} such that tri(yu) = e(u) for any
generator v € I and u € U}..

(5) There exists a unique irreducible smooth representation A of J such that
Ay ~n and
tr A(h) = e€(h) (4.3)

for any h € F* whose image in I' is a generator.

Proof. This follows from [BHO05a, (4.1.4) and Lemma 4.1] and [BH11, 5.2
Lemma 1], where the construction of A using 7 is given.

Note that the statements are trivial if ¢ is odd, in which case H* = J!.
In fact, then A is one-dimensional, A|px = £ and € = 1. Note also that the
existence of 7 (if 7 is even) is a consequence of Proposition 3.8 and that Ay,
is a sum of & by (4.3). O
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According to whether § = ¢ or 0 = 9? , we denote the sign e appearing
in the proposition by €¢ (resp. e? ) and similarly denote the representation A
by A¢ (resp. AZ). We set

me = cInd; " A, wf = Indfp AL,

Finally, if £ is not trivial on UL, we take a decomposition of £ as in (4.1)

and put
D

e = Xy, Tg = wa.
The representation m¢ (resp. 7T£D ) is irreducible and supercuspidal (resp.
irreducible). The isomorphism classes of 7 and 7r£D only depend on the
K-isomorphism class of (F/K,¢).
We need an explicit description of the signs e, and e? .

Proposition 4.7. Suppose that i is even. In the situation of Lemma 4.6 the
sign € equals the Jacobi symbol
-(3)
e=1|—]).
n

Proof. By [BF83, (8.6.1)], the sign € is determined by the symplectic rep-
resentation (Q/Z, hy) of T induced by hy: (z,y) — O(xyz~'y~!) and hence
by the k[I']-module Q/Z (cf. Proposition 3.6). Also it is multiplicative
with respect to orthogonal sums of symplectic representations. We have
Q/Z ~ I(T;1,n) ~ Ir,(T; 1,n) ®F, k, no matter whether § = 6 or 6 = 6.
Therefore, the assertion is reduced to k = F,, case, which is treated in [BF83,

(9.3.5)] 0

Remark 4.8. Let us temporarily return to the situation of Theorem 2.15.
There L = K(¢1) is a totally tamely ramified extension of K of degree n and
it is considered as a K-subalgebra of M,,(K) (resp. D) via a fized embedding
or — @ (resp. r — @p) arising from the fited CM point. It is easily seen
that L™ does normalize the standard Iwahori order, which is denoted there
again by 3 C M,(K). We apply the preceding constructions with respect to
this field, these embeddings and the order. Note also the equalities LXUj(V) =

LXUjL(VH)/zJ and L™ N Uj(V) = U}, and the analogous equalities for Ug).
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Description of g and pte in special cases Let us first define some
invariants attached to F/K, ¢ and £. We set

Rp/xk = Indp/k 1k, Opjx = det Rk,

where 1x denotes the trivial representation of Wy . We define the Langlands
constant A\p/x (1) by

_ é‘(‘RF/K71/27¢)
Arjic(¥) = e(1p,1/2,0 0 Trpy)’

where the denominator and the numerator denote the Langlands-Deligne
local constants (see [BH06, Section 30] for these two constants).

Take o = a(€) € F as in the construction of m¢, so that vp(a) = —i
and <,0|UP@/2J+1 = I where ¢ is as in the decomposition (4.1). Note that

a(§)UL only depends on £ by (4.2). For any uniformizer wp € F, we define
((wr, &) € F as the unique root of unity satisfying

((@r, &) = @pa(§)  (mod Ug).
In the case at hand, [BHO5b, Theorem 2.1] reads as follows.

Theorem 4.9. Let (F/K, &) be an admissible pair as above, i.e. it is minimal
with the jump at i and F/K is totally ramified. Then the image of Indp)x &
under the local Langlands correspondence is ¢, where gpe is a character
of F* defined below.

(1) If n is odd, then ke is unramified and, for any uniformizer wp € F,
khe(@r) = A/ (V).
(2) If n is even, then ke is determined by the following conditions

Khelor =1, Kpelrx = Or/K,

te(@r) = (M) (‘—1> )

q q

for any uniformizer wp € F.

Remark 4.10. In both cases, ke does not depend on the choice of ¢ (see
[BHO5b, Remark 2.1.3]).
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Similarly, we need the following special case of [BH11, Theorem 5.3].

Theorem 4.11. Let (F/K,§) be as above. Then the image of ©f under
the local Jacquet-Langlands correspondence is wp,.¢, where v = pue is the
unramified character of F* sending uniformizers to (—1)"1.

We record here some of the explicit values used later.
Proposition 4.12. Let the notation be as above.

(1) Suppose that n is odd. Then \pjx(¢) = (£).

n

(2) Suppose that n is even. Then dp/x(u) = (g) foru e Ug.

Proof. The assertion (1) (resp. (2)) is part of [BHO5b, Lemma 1.5(2)] (resp.
part of [IT15a, Lemma 5.3]). 0

4.2 Realization of correspondences

16 Tet 7) be the additive character of K fixed in the previous subsection and
denote by 1) the non-trivial additive character of k obtained as the reduction
of ¥|o,. We also denote by EC the character EC: k— Q,; z— (Cx) for
any ¢ € fig—1(K).

Let v > 0 be an integer and assume that it is coprime to n. We return to
our analysis of the cohomology in Section 3. Put H, = H"'(Z,,Q,)((1 —
n)/2) and 11, = H?Y(Z,,Q,)((1—n)/2). We denote by H,, the ) -isotypic
component of H, and set

HV)C = @ HV,C & (X o Nc;)
e (UI((Vhﬂ)v

Then we have H, = @¢c,, ) Hvc and I, = Bc,,. (k) v by Theorem
2.10, Proposition 3.10 (2), Proposition 3.11 (2) and Proposition 3.12.

Lemma 4.13. Let w be an irreducible smooth representation of GL,(K). Set
G1 = GL,(K) and Gy = D* x Wg. Denote by Stab, C Gy the image of
Stab, under the projection G — Gy. Then we have a canonical isomorphism

Homg, (c-IndS,,, I,,7) ~ IndSGtib Hom, ) (11, )
ab, 5

16The reasoning in this subsection is motivated by that in [IT15a].
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of representations of Gy, where the action of (d, o) € Stab,, on HomUj(V> (IL,, )

is given by the composition of the action of (g,d,o)™" € Stab, on the source
and that of g € Gy on the target for some lift (g,d,o) € Stab, of (d,o) €
Stab,,.

Proof. This is straightforward; one only needs to check the action of G5 on
the right-hand side of the following isomorphism

€]
Homg, (c—IndStabV II,, 7T) ~ @ HomUj(V) (T1,, )
Staby\Gz
induced by the Mackey decomposition

G ~ G1 g
(c-Indgi,y, IL) |G, >~ @ C_IndStabﬁ ey I
Stab, gG1€Stab, \G/G1

G
@ c-Indgiy, na, Ho
Stabu\Gz

12

and the Frobenius reciprocity. a

Proposition 4.14. Let (7, V) be an irreducible smooth representation of
GL,(K). Let ¢ € pg—1(K) be a (q — 1)-st root of unity. We have

HOIIlUéy) (Hl,’g,ﬂ') 7é 0

if and only if m is an essentially tame (supercuspidal) representation parametrized
by a minimal admissible pair (L/K,§) such that {|yy = %L@—u- Moreover, if

L
this space 1s non-zero, then we have

1 if v is odd

dim Hom v HI/ y M) =
ue (Hi ) {q(n—l)/z if v is even.

Proof. Define irreducible representations p; and py of S, and S5, by ex-
pressing H, . ~ p; X py as a representation of Sy, x Ss,, so that

if v is odd

1
dim p; = dim py =
P P2 {q(”_l)/Q if v is even.

Then we need to determine the condition for p; to occur in 7 and prove that
the multiplicity is (at most) one.
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Suppose p; occurs in 7. Note first that L* normalizes C; (appearing in
the definition of Uj(y)) and the central character of p;, which in turn implies
that it normalizes (UL, p1). Thus LU = LUV acts on the p;-
isotypic part V1 of w. Take an irreducible subrepresentation A C V** The
restriction A|Uju is clearly a sum of characters wcﬁp;”' Now the discussions in

[Car84, 5.6, 5.7], which treat more general cases, yield in this case the classifi-
cation of irreducible representations = of K ((cpi”)XUjL("H)/ 4= LXUJL(”H)/ 2
containing 1&@7 when restricted to U5. In particular,

o dim= = dim p;.
® =|xxpt is a sum of characters.
K*U}

e An irreducible representation of K*U int(VH)/ 2

plen/2,

containing 1, oo [

admits exactly n extensions to L*

It can be readily verified that A ~ A, for some § as in the statement. Hence
we obtain a homomorphism 7 = c-Ind Ay — 7, which is an isomorphism
by the irreducibility of m. The converse being easy, we deduce the desired
condition for the occurrence of p.

Since dim A; = dim p as above, the claim about the multiplicity is reduced
to certain multiplicity one statement in the theory of types. We can argue
as follows. Take once again a subrepresentation A’ in VV?*. By the above
argument we have A’ ~ Ay for some ¢ and 7 ~ 7. Then £7 = ¢ for
some o € Aut(L/K) by the injectivity of the parametrization, which implies
Cor” = ((pr”)? and hence o = id. This shows that V?' is Ag-isotypic.
Therefore,

dim HomUj(V) (p1,m) = dim HomLxUjL(qul)/% (A, m) = dim Endgr,, (k) (7) =1

as desired (see also [BH06, 15.7 Proposition (3)]). O

Proposition 4.15. Let m be as above. Suppose that Hom ., (H,,7) # 0, so
J
that ™ o~ m¢ for some minimal admissible pair (L/K, &) by Proposition 4.14.
Then this space contains
AR R epu '€

as a representation of LXUle(VH)/QJ x Wy, C Stab,.
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Proof. By Proposition 4.14 we have Hom ) (H,¢,m) # 0 for some ¢ €
J

ftq—1(K) such that &[y = CL%V. We claim that this subspace HomUéu) (Hy¢,m) C

HomU:(,y) (H,, ) is isomorphic to the representation Ag X Kuglg appearing
in the assertion.

First it is indeed stable under the action of L*U gu+1)/ 2l « W C Stab,
because the action on the source of U ](DV) x Wp, clearly commutes with that
of Uj(y) and L* C GL,,(K) normalizes U:EV).

By the proof of Proposition 4.14, H0111U§V><HV,C77T£) = Hongy) (Hyc, Ae)

is isomorphic to py (inflated via U g) — Sy,) as a representation of U l()y).
Therefore we may set Hom, ) (Hy¢,m) = HomU@)(HV,C, Ae) = N X ¢ with
J J

U2 Whose restriction

some irreducible smooth representation A’ of L*U 1%(
to U l(),, ) is isomorphic to py and some smooth character £’ of Wy.

In the first part of the argument to follow, we do not divide cases; we
make no assumption on the parity of v. Let us first show A’ ~ AZ. The
action of z € L* C LXU,%(VH)/QJ is given by the composition of the action of
(z,z,1)"! € Stab, on the source and that of = € LXUJL(VH)/2J on the target.
As (z,z,1) € Stab, (z € Up) acts trivially by Theorem 2.15 (4) and A¢|y, is
a sum of £ by Lemma 4.6, we find that Uy, acts via the character £ on A’ as
desired. Thus, to conclude A’ ~ Ag , we need to show

trA'(pp) = e (6)(¢1) (4.4)

for any j coprime to n by (4.3). Put Q = Uj(l’)/Uéyﬂ). By a standard
argument we find that

A () = QI Dt (a9 1) | Hug) tr A,
zeQ

To further compute, we quote a result from the representation theory of
finite groups!”. Regard EC as a character of the center Z of ) and set
Q = Q/Ker@c, 7 = Z/Ker@c. Then H,. (resp. A¢) is inflated from
a representation H, . (resp. Ag) of Q'. By [BH99, Lemma A1.3] and a
counting argument we infer that for every x € @)’ there exist unique elements

"The quoted result is trivial if v is odd and hence Z = Q.
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y € Q'/Z" and z € Z' such that z¢’ = yzp’y~!. Hence
. _ _ . . -1 .
rA(eh) = QI Kerdh| > tr ((yzsojy Len 1) ‘HL,g) tr Ag(yze’y ™)
(y,2)€Q’/Z'x Z'
B — . . 1 .
— QI Ker &I/ 2112/t (&, 9, 1) ™ [ Huvc ) r Al
= (=1)"ek(¢1),

where we use Theorem 2.15 (3), Proposition 3.10 (4), Proposition 3.11 (3)
and (4.3) in the last equality. Now the equality (4.4) follows since €7 = €
for any v by Proposition 4.7.

Let us prove & = Kuglg by checking

tr ((a;l, 0)‘H0mUj(y> (H,, A€)> — tr (AR g "€) (a5, 0) (4.5)

for any o € W, with n, = v(a,) = —1.
Now we proceed by cases. First suppose that v is even. Noting the twist
and the multiplicity of A¢ in H, ¢, we see

tr <(a;1, U)‘HomU:j(V) (Hyc, A5)> =1

by Theorem 2.15 (5) and Proposition 3.11 (2). By Theorems 4.9, 4.11 and
(4.3), we have

tr (A X Khe €) (agt, o) = (=1)" ek (V).

As n is odd, the equality (4.5) follows from Proposition 4.7 and Proposition
4.12 (1). B B

Suppose next that v is odd. Put u, = a,¢ € Uy and m(¢) = ¢7/?g(¢,) =
(g)m(ﬂ) We have

) if p=2 and n is odd
Jm(he)" ! if p # 2 and n is odd
()" (=) TP @) () m)m i p# 2 and n s even,
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by Theorem 2.15 (5) and Proposition 3.10 (2), (4). On the other hand, we
have

tr (A B g €) (g, 0) = (=1)" xepg ' (ao)
B {AL/K(w) if n is odd

_5L/K<U;1)(£) (=) (V_l)/Q)\L/K(dJ) if n is even,

q q

by Theorems 4.9, 4.11 and Lemma 4.6. Now the equality (4.5) follows from
Proposition 4.12 (1) if p = 2, and from Proposition 4.12 (2) and the equalities

B (%)m(@)”_l if n is odd
/\L/K(d}) = {(2) (ﬂ)m@)"—l if n is even,

2/ \q
which appear in [IT15a, (5.22)], if p # 2. O

Let LJ(m) (resp. LL(w)) be the image of m under the local Jacquet-
Langlands correspondence (resp. the local Langlands correspondence).

Theorem 4.16. Let m be as above. We have
Homgr,, (1) (c—IndSGtabV I1,, 7r) #0

if and only if 7 is parametrized by a minimal admissible pair (L] K, ) with the
gump at v. Moreover, if non-zero, this space is isomorphic to LJ(m) K LL(7)
as a representation of D* x Wi.

Proof. The first assertion follows immediately from Lemma 4.13, Proposition
3.12, Proposition 4.14 and the Frobenius reciprocity.

To prove the second assertion let m ~ m¢ occur in c—IndSGtaby II,. By
Theorems 4.9, 4.11 it suffices to show that the following morphism, induced
by the Frobenius reciprocity, is an isomorphism,;

Stab,,
Ind 1

D —1
LXUDV+1)/2J><WL (AL§ X Kﬂg f) — HOmUéy) (Hl,,ﬂ').

Since the source is irreducible, we only need to show the equality of the
dimensions. We have

dim IndiTaZ’ng)/%XwL (Afg X K,uglf) = dim Afé - [Stab, : LXUIL)(VH)/2J x W]

= dim Ag : [WL’ . WL]
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By Proposition 4.14 we are reduced to showing that [Wp, : Wi] equals the
number of ¢ € p,—1(K) such that HomU(V>(H,,7C,7r) =# 0. This can be done
J

readily by the injectivity of the paramatrization of essentially tame represen-

tations.

O

Now recalling that a totally ramified extension L/K is arbitrarily given
after the Lemma 2.3, we obtain the main theorem described in Introduction.
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