ooy

Jood

Riemann-Hilbert correspondence for unit F-crystals on embeddable algebraic varieties

(000000000000 0UDO00O0 FPO0DD00O0O0ODOUOOODOO-0D0O0O0OO0D)

oo oo o



Abstract

For a separated scheme X of finite type over a perfect field k of characteristic p > 0 which admits
an immersion into a proper smooth scheme over the truncated Witt ring W,,, we define the bounded
derived category of locally finitely generated unit F-crystals with finite Tor-dimension on X over
W, independently of the choice of the immersion. Then we prove the anti-equivalence of this
category with the bounded derived category of constructible étale sheaves of Z/p™Z-modules with
finite Tor dimension. We also discuss the relationship of ¢-structures on these derived categories
when n = 1. Our result is a generalization of the Riemann-Hilbert correspondence for unit F-
crystals due to Emerton-Kisin to the case of (possibly singular) embeddable algebraic varieties in
characteristic p > 0.
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1 Introduction

For a complex manifold X, Kashiwara [Kas1] and Mebkhout [Mel] independently established an anti-
equivalence, which is called the Riemann-Hilbert correspondence, between the triangulated category
D% (Dx) of Dx-modules with regular holonomic cohomologies and that D2(X,C) of sheaves of C-
vector spaces on X with constructible cohomologies. There is a significant property from the point of
view of relative cohomology theories that this anti-equivalence respects Grothendieck’s six operations
f's fi, £, f«, RHom and ®" defined on DY (Dx) and D%(X,C).

In [EK], Emerton and Kisin studied a positive characteristic analogue of the Riemann-Hilbert
correspondence. Let k be a perfect field of characteristic p > 0. We denote by W,, := W, (k) the
ring of Witt vectors of length n. For a smooth scheme X over W,, Emerton and Kisin defined the



sheaf Dp x of Ox-algebras by adjoining to Ox the differential operators of all orders on X and a
“local lift of Frobenius”. By using D x, they introduced the triangulated category Df)fgu(DFy x) of
Dx-modules with Frobenius structures with locally finitely generated unit cohomologies and proved
the anti-equivalence

D}t (Drp.x)° = Dhy(Xew, Z/p" L)

between the subcategory lefgu(D rx)° of Df’fgu (Dr,x) consisting of complexes of finite Tor dimension
over Ox and the triangulated category D’C’tf(Xét7 Z/p"7Z) of étale sheaves of Z/p™Z-modules with con-
structible cohomologies and of finite Tor dimension over Z/p™Z, which they call the Riemann-Hilbert
correspondence for unit F-crystals. They also introduced three of Grothendieck’s six operations, which
are the direct image f,, the inverse image f' and the tensor product ®* on Df)fgu(DF7 x), and proved
that their Riemann-Hilbert correspondence exchanges these to fi, f~! and ®" on Dgtf(Xét, Z/p"7Z).

Emerton and Kisin established the Riemann-Hilbert correspondence for unit F-crystals only for
smooth schemes X over W,,. Since the triangulated category D% (X, Z/p"Z) depends only on the
mod p reduction of X, it is natural to expect that there exists a definition of the triangulated category
lefgu(D rx)° and the Riemann-Hilbert correspondence depending only on the mod p reduction of X.
Also, there should be the Riemann-Hilbert correspondence for algebraic varieties over k which are not
smoothly liftable to W,,. The purpose of this article is to generalize the Emerton-Kisin theory to the
case of W,,-embeddable algebraic varieties over k. Here we say a separated k-scheme X of finite type
is W,,-embeddable if there exists a proper smooth W,,-scheme P and an immersion X < P such that
the diagram

X—————-PpP

]

Speck —— SpecW,,

is commutative. A quasi projective variety over k is a typical example of W,-embeddable variety and
thus W,-embeddable varieties form a sufficiently wide class of algebraic varieties in some sense.

The first problem is to define a reasonable D-module category for W,,-embeddable algebraic varieties
over k. Our construction is based on Kashiwara’s theorem which roughly asserts that, for any closed
immersion X < P of smooth algebraic varieties, the category of D-modules on P supported on X
is naturally equivalent to the category of D-modules on X. Using the characteristic p > 0 analogue
of Kashiwara’s theorem due to Emerton-Kisin [EK, Proposition 15.5.3], we show that, when we are
given the diagram (1.1), the full triangulated subcategory of lefgu(DF, p)° cousisting of complexes
supported on X does not depend on the choice of immersion X < P (Corollary 4.6). We denote this
full subcategory by Df’fgu(X /W,)°. Then we show the Riemann-Hilbert correspondence

o~

fogu(X/Wn)o — Dgtf(Xéta Z/p"Z)

for any W,-embeddable k-scheme X (Theorem 4.12). As in the case of [EK], we can naturally introduce
three of Grothendieck’s six operations, that is, direct and inverse images and tensor products. We then
prove that the Riemann-Hilbert correspondence respects these operations (Theorem 4.14). A striking
consequence of the Riemann-Hilbert correspondence over complex numbers is that one can introduce



an exotic t-structure on the topological side called the perverse t-structure, which corresponds to the
standard t-structure on the D-module side. For an algebraic variety X over k, Gabber introduced
in [Ga] the perverse t-structure on D%(Xg,Z/pZ), which we call Gabber’s perverse t-structure. In
the case when X is smooth over k, Emerton and Kisin showed that the standard t¢-structure on the
D-module side corresponds to Gabber’s perverse t-structure. In this paper, we generalize it to the case
of k-embeddable k-schemes. In the complex situation, conversely, a t-structure on the D-module side
corresponding to the standard t-structure on the topological side is explicitly described by Kashiwara
in [Kas2]. In this paper, we construct the analogue of Kashiwara’s ¢-structure on D{’fgu(X /k) and

discuss the relationship of it and the standard t-structure on D%(X;, Z/pZ).

The content of each section is as follows: In the second section, we recall several notions, terminolo-
gies and cohomological operations on D p-modules from [EK] which we often use in this paper. We
also recall the statement of the Riemann-Hilbert correspondence for unit F-crystals of Emerton-Kisin
(Theorem 2.3). In the third section, we define the local cohomology functor RT'; for Dp p-modules
and prove compatibilities with RI'z and other operations for Dr p-modules, which are essential tools
to define and study the triangulated category D]bfgu(X /Wp)° for any W,,-embeddable k-scheme X. In
subsection 4.1, we introduce the category lefgu(X /W,,)° for any W,,-embeddable k-scheme X and in
subsection 4.2, we construct three of Grothendieck’s six operations on Df’fgu(X /Wy)°. Our arguments
in these subsections are heavily inspired by that of Caro in [Ca]. In subsection 4.3, we prove the
Riemann-Hilbert correspondence for unit F-crystals on W,,-embeddable k-schemes, which is our main
result. In the fifth section, we discuss several properties on lefgu(X /k) (in the case n = 1) related
to t-structures. In subsection 5.1, we introduce the standard ¢-structure on Df’fgu(X /k) depending on
the choice of the immersion X < P. We prove that the standard t-structure corresponds to Gabber’s
perverse t-structure via the Riemann-Hilbert correspondence. As a consequence, we know that the
definition of the standard ¢-structure is independent of the choice of X < P (Theorem 5.5). In subsec-
tion 5.2, we define the abelian category jusgu,x as the heart of the standard t-structure on Djy,, (X/k),
and prove that the natural functor D°(uge,x) — Df’fgu(X /k) is an equivalence of triangulated cat-
egories (Theorem 5.6), which can be regarded as an analogue of Beilinson’s theorem. In subsection
5.3, depending on the choice of the immersion X < P, we introduce the constructible ¢-structure
on lefgu(X /k) by following the arguments in [Kas2] and prove that it corresponds to the standard
t-structure on the étale side via the Riemann-Hilbert correspondence. As a consequence, we see that
the constructible t-structure does not depend on the choice of X — P (Corollary 5.19).

Conventions

Throughout this paper, we fix a prime number p and a base perfect field k of characteristic p. We
denote by W the ring of Witt vectors associated to k and by W,, the quotient ring W/(p)™ for any
natural number n. For a scheme X, we denote the structure sheaf of X by Ox. For a smooth
W,,-scheme X, the dimension of X is a continuous integer valued function on X defined by

dx :x € X — dimension of the component of X containing x.

For a morphism f : X — Y of smooth W,-scheme, we denote a function dx — dy o f by dx,y and
a function —dx/y by dy,x. For an abelian category C, we denote by D(C) the derived category of
C. For a scheme X and an Ox-algebra A, we denote by D(A) the derived category of left .A-modules



and by Dgc(A) the full triangulated subcategory of D(A) consisting of complexes whose cohomology
sheaves are quasi-coherent as Ox-modules. For A-modules F and G, we denote by Hom 4(F,G) the
sheaf of A-linear homomorphism from F to G. We denote a complex by a single letter such as M and
by M™ the n-th term of M. For an object M in D(A), we denote by H!(M) the i-th cohomology of
M and by SuppM the support of M, which is defined as the closure of | J; SuppH*(M).

2 Preliminaries

In this section we recall the notion of locally finitely generated unit Dp x-modules introduced in [EK]
and the Riemann-Hilbert correspondence for unit F-crystals in [EK].

2.1 Locally finitely generated unit Df y-modules

For a smooth W,,-scheme X, we denote by Dx the sheaf of differential operators of X over W,, defined
in [EGA4, §16]. For a morphism of smooth W,,-schemes f : X — Y and a left Dy-module M,
M= Ox @510, f~'M has a natural structure of left Dx-modules. When there exists a lifting
F : X — X of the absolute Frobenius on X ®yy, k, the left Dx-module structure on F*M is known to
be independent of the choice of the lifting F up to canonical isomorphism by [EK, Proposition 13.2.1].
Since the lifting F' above always exists Zariski locally on X, we obtain a functor

F* : (left Dx-module) — (left Dx-module)

by glueing for any smooth W,,-scheme X. We set

Drx = P(F*) Dx.
r>0

Then Dp x naturally forms a sheaf of associative W,,-algebras such that the natural embedding Dx —
Dr x is a Wy-algebra homomorphism by [EK, Corollary 13.3.5]. It is proved in [EK, Proposition
13.3.7] that giving a left Dp x-module M is equivalent to giving a Dx-module M together with a
morphism Y : F*M — M of left Dx-modules, which we call the structural morphism of M.

Next let us recall the notion of locally finitely generated unit Dp x-modules. We say that a
left Dp x-module M is unit if it is quasi-coherent as an Ox-module and the structural morphism
Ym 2 F*M — M is an isomorphism. We say that a Dp x-module M is locally finitely generated
unit if it is unit and Zariski locally on X, there exists a coherent Ox-submodule M C M such that
the natural morphism Dp x ®o, M — M is surjective. Then the locally finitely generated unit left
Dr x-modules form a thick subcategory of the category of quasi-coherent left Dp x-modules [EK,
Proposition 15.3.4]. We say that a locally finitely generated unit Dp x-module M is an F-crystal if
M is locally free of finite rank as an Ox-module.

Finally we introduce some notations on triangulated categories. We denote by D(Dp, x ) the derived
category of left D x-modules and by Dqc(Dp,x) (resp. Diggu(Dr,x)) the full triangulated subcategory
of D(Dr,x) consisting of those complexes whose cohomology sheaves are quasi-coherent as O x-modules
(resp. are locally finitely generated unit left Dp x-modules). If e is one of (), —, +, b, we denote by
D*(Dr,x) the full triangulated subcategories of D(Dr x) consisting of those complexes satisfying the
appropriate boundedness condition. We use the notations D (Dr,x) and Df,,(Dr,x) in a similar



manner. We denote by Df’fgu(DR x)° the full triangulated subcategory of lefgu(DR x) cousisting of
those complexes which are of finite Tor dimension as O x-modules.

2.2 Cohomological operations for left Dy x-modules

For a morphism f : X — Y of smooth Wy-schemes, f*Dry = Ox ®@;-10, f_lDRy has a natural
structure of left Dp x-module by [EK, Corollary 14.2.2]. It also forms a right f~!Dp y-module via the
right multiplication on f71DF7y. So f*Dpy has a structure of (DF,X, f’lpp,y)—bimodule, which we
denote by D xy. For a Dpy-module M, we define a left Dp x-module f*M by Dr x vy @f-1p,
f7'M. Note that f*M = Ox ®-10, f~'M as an Ox-module. We then define a functor

Lf*: D™ (Pry) — D™ (Dr.x)

to be the left derived functor of f*. One has Lf*M = Ox ®H};,loy M as a complex of Ox-modules.
We also define a functor
' D (Dry) — D™ (Drx)

by f'M := Lf*M|dx/y]. For the definition of the shift functor (—)[dx/y] by the function dx/y,
we refer the reader to [EK, §0]. The second inverse image functor is appropriate to formulate the
compatibility with the Riemann-Hilbert correspondence (see Theorem 2.3 (2) bellow). Let x be one of
qc or Ifgu and * one of o or (). Then the functor f' restricts to a functor

fI : Di(Dpyy)* — Di(Dpyx)*

by [EK, Proposition 14.2.6 and Proposition 15.5.1].
Next let us define the direct image functor f for Dp x-modules for a morphism f : X — Y of
smooth W, -schemes. First of all, we recall the definition of the direct image functor

15D~ (Dx) — D™ (Dy)

for Dx-modules. For a smooth W,,-scheme Y, we denote by wy the canonical bundle of Y over W,,.
Then Dy ®o, w;l has two natural left Dy-module structures. The first one is the tensor product
of left Dy-modules Dy and w;l (cf. [B, 1.2.7.(b)]). On the other hand, using the right Dy-module
structure on Dy defined by the multiplication of Dy on the right, one has the second left Dy -module
structure on Dy ®o, wy = by [B, 1.2.7.(b)]. So Dy ®o, wy ' naturally forms a left (Dy, Dy )-bimodule.
For a morphism f : X — Y of smooth W,,-schemes, by pulling Dy ®o0, w{,l back with respect to the
second Dy-module structure, one has left (f =Dy, Dx)-module 13 (Dy R0y wyfl). Here, in order to
avoid confusion we use the notation f] instead of f*. By tensoring wx on the right, one obtains an
(f =Dy, Dx)-bimodule
Dyx = fi (Dy ®oy wy') ®oy wx.

On the other hand, by pulling back Dy ®o, w{,l with respect to the first Dy-module structure, one has
left (Dx, f~!Dy)-module fa (Dy ®Roy w;l). By tensoring wx on the left, we obtain an (f Dy, Dx)-
bimodule

Dy x':=wx ®ox fi (Dy Qoy wy')

Then there exists the natural isomorphism of (f~!Dy, Dy )-bimodules

= /
Dyx — Dyex.



For more details see [B, 3.4.1]. We define a functor f%: D=(Dx) — D~ (Dy) by
f./\/l = Rf* (Dy<_X ®]l»bx ./\/l) .
Let us go back to the situation of Dp x-modules. We define Dgy x by

Drycx i=wx Qox [* (Pry ®oy W;fl) .

Then Dry . x has a natural (f Dy, Dr x)-bimodule structure (see [EK, §14.3]). We remark that
Dry«x has finite Tor dimension as a right Dp x-module by [EK, Proposition 14.3.5] and, since Y is
a noetherian topological space, R f, has finite cohomological amplitude. We define a functor

f+ : D (Dpx)— D™ (Dry)
by
[+ M =Rf, (IDF,YHX by x M) :
Let x be one of qc or Ifgu and * one of o or (). The functor f restricts to a functor
f+: DUDpx)* — Di(Dry)*
by [EK, Proposition 14.3.9 and Proposition 15.5.1].

Remark 2.1. Let f : X — Y be a morphism of smooth W,,-schemes. The natural inclusion of
(Dy, Dy )-bimodules Dy — Dpy induces an inclusion of (f~!Dy,Dx)-bimodules ¢ : Dy, x —
Dry«x. We then obtain morphisms in the derived category of (f~'Dy, D x)-bimodules

D1®D2?—)L(D1)D2
%

L
Dy. x @9, Dr.x = Dy« x @py Drx Dry«x.

For an object M in D~ (D x), applying the functor Rf,(— ®%F . M) to the composite of the above
morphisms, we obtain a Dy -linear morphism

BM — fiM.
It is proved in [EK, §14.3.10] that the morphism ffM — f1 M is an isomorphism.

Let X be a smooth W,,-scheme. Let M and N be D, x-modules with structural morphisms 1)
and Y. Then M ®o, N has a natural structure of left Dy-modules. We define the structural
morphism on M ®o, N to be the composite of Dx-linear morphisms

F* (M @0y N)2F*M @0, F*N 2292% M@0, N.

Here the first isomorphism follows from [B, 2.3.1] and its proof. We thus obtain the Dp x-module
structure on M ®p, N and define a bi-functor

Di(’DR)() X Di(’DR)() — Di(DFV)()
by (M,N) = M &g N. This functor restricts to a bi-functor
Df)fgu (DF’X) X lefgu(DF,X)O - Df)fgu (DF,X)
by [EK, Proposition 15.5.1].



Proposition 2.2. Let f : X =Y be a morphism of smooth W, -schemes. If M and N are objects in
D~ (Dpy), then there are natural isomorphisms

LIMe% LN S L (M, N)

and

FM&5 [ N[dy,x] = ' (Mah, N).

Proof. The second isomorphism follows from the first one. Let P — M (resp. @ — N) be a resolution
of M (resp. N) by flat D y-modules. Note that P and Q are complexes of flat Oy-modules. So
P®Roy, Q= M®g, N gives a resolution of M®g_ N by flat Dp,y-modules (cf. [Ha, Lemma 4.1]) and
f*P is a complex of flat Ox-modules. By the universal mapping property of the tensor product, one
has a natural Dp x-linear morphism f*P ®o, [*Q — f* (P ®0, Q). Evidently it is an isomorphism
as a morphism in D(Ox) and hence it is the desired isomorphism.

O

2.3 Riemann-Hilbert correspondence for unit F'-crystals

Let X be a smooth W,-scheme. We denote by D®(Xe,Z/p"Z) the bounded derived category of
complexes of Z/p"Z-modules on the étale site X¢;. We let D2 (X4, Z/p"7Z) denote the full triangulated
subcategory of Dgtf(Xét, Z/p™Z) consisting of complexes whose cohomology sheaves are constructible
and which have finite Tor dimension over Z/p"Z.

For a morphism f : X — Y of smooth W,-schemes, the inverse image

P D (Yoo, Z/p"LZ) = Diy(Xew, Z/p" L)
and the direct image with proper support
fi: Dg(Xet, Z/p" L) — Dy (Yer, Z/p"Z)

are defined. For a review of constructions of these functors, we refer the reader to [EK, §8].

Let X be a smooth W,,-scheme. We denote by wx : X¢ — X the natural morphism of sites,
where X means the Zariski site of X. Then Dp x,, := 7% Dp x naturally forms a sheaf of associative
W, -algebras on X¢. By étale descent, we have an equivalence of triangulated categories (cf. [EK, §7
and 16.1.1])

Tk : Dio(Prx) = Dyo(Dr x.,)

with quasi-inverse 7x.. For an object M € D}, (Dr x)°, we set
Solx (M) = RHO—mDF,xét (rx (M), Ox.,,)[dx].
Then this correspondence defines a contravariant functor
Solx : Diu(DPr,x)° — D2y(Xer, Z/p"Z)
by [EK, Proposition 16.1.7]. Conversely, for an object £ € D% (X4, Z/p"7Z), we set

MX (E) = FX*RHOIHZ/an(ﬂ, Oxét)[dx].



Then this correspondence defines a contravariant functor
My : D%(Xet, Z/p"Z) — DT (Dp x).
Now we may state one of the main results in [EK].

Theorem 2.3. Let X be a smooth W,,-scheme. Then the functor Solx is an anti-equivalence of tri-
angulated categories between Df’fgu(DF,X)" and DY (X4, Z/p"7Z) with quasi-inverse My . Furthermore
Solx and Mx satisfy the following properties:

(1) If f : X — Y is a morphism of smooth W,,-schemes, then Solx and Mx interchange f' and
1

(2) Let f be a morphism of smooth W,,-schemes such that f can be factored as f = g o h, where g
18 an immersion of smooth W, -schemes and h is a proper smooth morphism of smooth W, -schemes.
Then Solx and Mx interchange f, and f.

(3) Solx and Mx interchange the functors ®H(‘9X and ®Hi/pnz up to shift. More precisely, for objects

M and N in Df’fgu(DRX)o, there exists a canonical isomorphism

Solx (M) ®% . Solx (M) = Soly (M @, ) [dx).

Proof. See [EK, Proposition 16.1.10 and Corollary 16.2.6]. O

2.4 Remark in the case n=1

Let X be a smooth k-scheme and assume that n = 1 in this subsection. Let O x denote a sheaf of the
non-commutative polynomial ring Ox[F] in a formal variable F', which satisfies the relation Fa = a?F
for a € Ox. One can naturally regard Op x as a subring of Dp x. Giving an O x-module M is
equivalent to giving an Ox-module M with a structural morphism F*M — M, where F' denotes
the absolute Frobenius on X. We say an Op x-module M is unit if it is quasi-coherent as an Ox-
module and the structural morphism F*M — M is an isomorphism. We say an O x-module M is
locally finitely generated unit if it is unit and locally finitely generated as an O x-module. Similar to
the case of Dr x-modules, the locally finitely generated unit O x-modules form a thick subcategory
of the category of quasi-coherent Op x-modules. So one can consider the bounded derived category
Df’fgu(op, x) of complexes of Op x-modules whose cohomology sheaves are locally finitely generated
unit. Similar to the case of Df x-modules, one can define the inverse and direct image functors for a
morphism of smooth k-schemes (see [EK, §2 and §3]) and the derived tensor product on lefgu((’)p, X)-
Then Emerton and Kisin proved that the natural functor

Dft(Dr.x) = Dl (Orx)

induces an equivalence of triangulated categories with quasi inverse D x ®% o x (=), which is compat-

ible with the functors f,, f' and ®H@X, where f is a morphism of smooth k-schemes [EK, Proposition
15.4.3].

Remark 2.4. In [EK], Emerton and Kisin firstly established the theory of Op x-modules for smooth
k-schemes. They proved many properties of D x-modules for smooth W,,-schemes including Theorem
2.3 by reducing them to the corresponding properties of Or xg,, r-modules.



3 Local cohomology functor

Let P be a smooth W,,-scheme. Let Z be a closed subset of P and jz the canonical open immersion
P\ Z < P. For a sheaf F of abelian groups on P, we set I'zF := Ker(F — jZ*jgl}'). If M is a left
Dr, p-module, then I'; M naturally forms a left Dp p-module. We have a left exact functor I'; from
the category of left Dp p-modules to itself. Then the local cohomology functor

RI'y : D+(DF,p> — D+(DF’p)
is defined to be the right derived functor of I';. By definition, we have a distinguished triangle
RIzM — M = Rjz.j; M 5 (3.2)

for M € DT (Dp p). Note that Rjz. = jz+ and jgl = jy,. We can also define the local cohomology
functor
Rz : DT(Op) — D (Op)

on the level of Op-modules. Then the forgetful functor Dt (Dp p) — D1 (Op) commutes with RI'.
It is proved by Grothendieck that RI'z has finite cohomological amplitude.

Lemma 3.1. Let P be a smooth W,-scheme and Z a closed subset of P. Denote by jz the open
immersion P\ Z < P. Then the following conditions are equivalent for M € D(Op).

1. RTzM S5 M.
2. Rjz.j,  M=0.
8. SuppM is contained in Z.

Proof. The equivalence of 1 and 2 follows from (3.2). Assuming that SuppM C Z, one has jgl/\/l =0.
This shows 3 = 2. Finally 1 = 3 is evident. O

Lemma 3.2. Let P be a smooth W, -scheme and Z a closed subset of P. There exists a natural
Op-linear isomorphism

RTz (M) @5, N = Rz (M @k N) (3.3)
for any M € D™ (Op) and N € D (Op). Furthermore for any M € D™ (Dp) (resp. M € D™ (Dpp))
and N € Dy (Dp) (resp. N € Dy (Dr.p)) (3.3) is a Dp-linear (resp. D, p-linear) isomorphism.
Proof. Note first that both sides are well-defined. Let us construct a natural morphism in the Lemma.
Let M be an object of D~ (Op) and N an object of D (Op). One has RT'z (M)®g, N = Mg, N.
Then since RT'z (M) ®¢, N is supported on Z, we have RI'z (RI'z (M) ®g, N) = RT, (M)©p, N
by Lemma 3.1. So RI'z (M) ®g _ N = M Qg N uniquely factors as

RI'z (M) ®p, N = Rl (M ®g, N) = Mg, N

and we get the desired morphism. Note that if M is an object of D~ (Dp) (resp. D™ (Drp)) and N is
an object of D (Dp) (vesp. Dy.(Dr,p)) then (3.3) is Dp-linear (resp. D, p-linear). Let us prove that
(3.3) is an isomorphism. It suffices to show that this is an isomorphism in D(Op). The assertion is



Zariski local on P and so we may assume that P is affine. Note that the source is a way-out left functor
in M. Also, since RI'z is finite cohomological amplitude, the target is also a way-out left functor in
N. Using the lemma on way-out functors (cf. [Ha, Chap I, Proposition 7.1]), we reduce to the case
where N is a single quasi-coherent O p-module. Furthermore since any quasi-coherent O p-module is a
quotient of a free Op-module (because P is affine), we may assume that A is a single free O p-module.
Now since RI'z commutes with infinite direct sums, we reduce the assertion to prove the case when
N = Op. Then both sides are equal to RI'; M and we are done. O

Proposition 3.3. Let P be a smooth W, -scheme and Z a closed subset of P. The local cohomology
functor induces a functor
RI'z : Dityo(Pr.p)° = Ditgu(Drp)°.

Proof. Let us first show that, for any M € lefgu(Dp, p), RT'zM has locally finitely generated coho-
mology sheaves. Let jz denote the open immersion P\ Z < P. Then there exists a distinguished
triangle

RIzM = M = Rijz.j; M 5.
Since M and Rjz.j, M are objects of lefgu(Dpr) by [EK, Proposition 15.5.1], R['z M is also an

object of Dft,, (Dr.p) by [EK, Proposition 15.3.4]. Next we show that, for any M € Df (Drp)°,

RI'zM is of finite Tor dimension over Op. According to [Il1, I, Proposition 5.1], it is enough to show
that Rz (M) ®g,, N is a bounded complex for any Op-module N. First of all, suppose that A is

a quasi-coherent Op-module. Then, by Lemma 3.2, we have Rz (M) ®](L9P N S RTy, (./\/l ®H{9P J\/)
Since M is of finite Tor dimension, M ®H@P N is a bounded complex of @ p-modules. So we know that
Rz (M) @, N is bounded since RI'z is finite cohomological amplitude. Now if A" is an arbitrary
Op-module, then the stalks of RI'z (M) ®¢,, N is uniformly bounded, hence so is RI'z (M) ®g, N
because P is quasi-compact. O

Lemma 3.4. Let f: P — @ be a morphism of smooth Wy,-schemes and Z¢g a closed subset of Q. We
denote by Zp the inverse image of Zg. There exists a natural isomorphism in D~ (D p)

Lf* o RFZQ (OQ) i RFZP (Op)
Proof. One has natural morphisms
]Lf*RFZQ (OQ) — Lf*OQ — Op. (3.4)

Let us denote by jz, (resp. jz,) the open immersion Q\ Zg — @ (resp. P\ Zp — P) and by f’ the
restriction of f to P\ Zp. Then one has

JzpLf "Rl (Oq) = Lf"j; R 2, (0Oq) = 0.
Hence, Lf*RI'z,(Ogq) is supported on Zp and the morphism (3.4) uniquely factors as

Lf*RIz,0q < Rl 2,(0Op) = Op.
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It suffices to prove that a is an isomorphism in D(Op). One has a morphism of distinguished triangles

* * *TD 5 — +
Lf*RT 2,0 —Lf*Oq — Lf*Rjzg+jz.Oq ——

| !

. — +
RFZP(OP) OP R-]ZP*]ZiOP%'

Here c is defined to be the composite of morphisms
Lf*Rjzgeize0q = Rizpaiz Lf "Rizgeiz, O RjzpsLf" 7o Rizqwize O

RijzpLf" 7200

Rij*jE;]Lf*OQ

= RiizpizOp,

R IR

where the first morphism and the third one are induced from the adjunction morphisms id = Rjz, jg;

and jgéRj Zo* = id respectively. Then b is evidently an isomorphism and ¢ is an isomorphism by
[Stacks, Lemma 35.18.3]. So a is an isomorphism.
O

Proposition 3.5. Let f : P — @ be a morphism of smooth W, -schemes and Zg a closed subset of
Q. We denote by Zp the inverse image of Zq. Then, for any M € D (Dr,q), there exists a natural
isomorphism

Lf* o R[zoM = RTz, o Lf*M
and also a natural isomorphism

floRTzuM =5 RT 4, 0 f'M.

Proof. The second isomorphism follows by applying the shift operator to the first one. By using
Proposition 2.2, Lemma 3.2 and Lemma 3.4, we obtain

LI RUz7o (M) & Lf* (R, (0q) @, M)
= Lf*RI4,(0g) ®%, Lf*M
= RU4,(0p) @, Lf*M =Rl (Lf*M).

O

Next we show the compatibility of the local cohomology functor and the direct image. We begin
with the corresponding result for usual Dp-modules (without Frobenius structures).

Proposition 3.6. Let f : P — @) be a morphism of smooth W, -schemes and Zg a closed subset of
Q. We denote by Zp the inverse image of Zg. Let M be an object in DgC(Dp). Then there exists a
natural isomorphism of functors

RIz, o fE(M) = fE oRIT 7, (M).
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‘We need some lemmas.

Proposition 3.7. Let f : P — Q be a morphism of smooth W, -schemes. If M is an object in
D_.(Dq) and N is an object in D~ (f~'Dq), then there exists a natural isomorphism

M, REN SRS, (f7 M@ 10, N).

m D~ (DQ) .
Proof. Note first that both sides are defined. Let us take an f,-acyclic resolution Z of N and a Dg-flat
resolution P of M. Then we have a natural Dg-linear morphism

M®p, REN = P®o, LI = fo (fT'P®s-10, 1)
= RE (P &p0, T) = RE (ML 0, N).

It is enough to prove that this is an isomorphism in D(Og). Then this follows from [Ha, II, Proposition
5.6]. O

Lemma 3.8. Let f: P — Q be a morphism of smooth W,,-schemes. For an object € in D™ (Dg) and
an object F in D~ (Dp), there exists an isomorphism

(fflf ®f-104 DQ<—P> @, F = Doep ®p,, (LfE @, F)

m Db(f_l'DQ).
Proof. The proof is the same as that of the corresponding proposition for D-modules of higher level
proved in [Ca, Proposition 1.2.25]. O

Let us prove Proposition 3.6.

Proof. Applying Proposition 3.7 to the case with M = RI'z,(Oq) and N' = Dgp ®%P M, we
obtain

R, (0) ®l5, Y. (Dowr &5, M) S RY. (57 (RL24(00)) @10 (Dacr 5, M)).

The left hand side is isomorphic to RI'z,, o f¥(M) by Lemma 3.2. On the other hand, by Lemma 3.8,
we have

TR 2, (0q) ®f-10, Doep ©p, M

1%

(f_lRFZQ (OQ) ®];‘71@Q DQ(—P) ®Hép M

Lemma 3.2 and Proposition 3.5 imply that

o

!

Doep @5, (RL7,(0p) @5, M)
= Doep @5, Rz, (M).

DQ<—P ®H'ép (Lf*RFZQ (OQ) ®]IC:)P M)

Therefore the right hand side of the first isomorphism is isomorphic to

Rf. (Dgep ®H15p RIz,(M)) = foRDz, (M).
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Proposition 3.9. Let f : P — @Q be a morphism of smooth W, -schemes and Zq a closed subset of
Q. We denote by Zp the inverse image of Zg. Let M be an object in DSC(DRP), Then there exists a
natural isomorphism

RT'z, o f+(M) = f o Rz, (M).

in DY(Dr.q)

Proof. Let us construct a natural transformation RI'z, o f4 — f4 o RI'z,. For an object M in
Db(Dp, p), the natural morphism RI';, M — M induces a morphism RT 7, f+ Rz, M — RT 2, f4 M.
Since, by Remark 2.1 and Proposition 3.6, f4RI['z, M = ffRI‘ZPM = RIg, ff/\/l as a complex of
Dg-module, we know that f1RI'z,M is supported on Zg. Therefore we have a natural morphism

FiRT 7, M <= RT, f{RT 7, M — Rz, f+ M.

Again by Proposition 3.6 we conclude that it is an isomorphism. O

4 Riemann-Hilbert correspondence for unit /'-crystals
4.1 Category Dj, (X/W,)°

Definition 4.1. Let P be a smooth W,,-scheme and let Z and T be closed subsets of P. We define
the category Cp,z1 to be the full triangulated subcategory of Df’fgu(DRp)o consisting of complexes M
satisfying

RIzM = M and R[p M = 0. (4.5)

Lemma 4.2. Let P be a smooth W,,-scheme. Let Z, Z', T and T' be closed subsets of P satisfying
Z\T =Z'\T'. Then we have the equality

Crzr =Cpz 1.

Proof. First we prove the equality in the case Z = Z’. One has ZNT = ZNT’. Then an isomorphism
RI'z M =y M induces
RO M < R zor M = RL 7o M — RO/ M.

Next we consider the case T'= T'. We have to show that RI'; M = M if and only if RT"z» M = M
under the assumption RI'r M = 0. For a closed subset C' of P, let us denote by jc the canonical open

immersion P\C' < P. Then the condition RT"z M = Mis equivalent to the condition Rjz*jgl/\/l =0.
One always has RI‘TRjZ*jglM ~ Rjz*jglRFTM = 0 by Proposition 3.5 and Proposition 3.9. By
the distinguished triangle

RU7Rj 7457 "M = Rijzaiiz ' M = Rirjr Rizaiz ' M 5,

we see that the condition RjZ*jgl./\/l = 0 is equivalent to the condition RjT*jflez*jglM = 0. Let
us denote by j the open immersion (P\T)\ (Z\T)=(P\T)\(Z'\T) — P\ T and by j' the open
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immersion (P\T)\ (Z\ T) — P. We have the following cartesian diagram:

(P\T)\ (Z\T)—— P\ T

| R

p\z—'% __p
Applying the flat base change theorem to the complex jgl./\/l of Op\ z-modules, we obtain
Jr'Rizejz M2 R TM 2 i Rz M.

Therefore we know that RjT*jfleZ*jglM = 0 if and only if RjT*jgleZ/*jg,lM = 0. The general
case follows from these two cases. O

Proposition 4.3. Let P be a smooth W, -scheme and X a locally closed subset of P. Let j :U — P
be an open immersion of smooth W, -schemes such that an immersion X — P factors as a closed
immersion X — U and the open tmmersion U — P. Let Z be a closed subset of P such that
ZNU =X. WesetT := (P\U)NZ. Then the direct image functor Rj.(= jy) induces an equivalence
of triangulated categories

Rj.: Cuxo = Cpzr

with quasi-inverse 77 (= j').

Proof. Firstly we shall see that the functors Rj, and j~! are well-defined. Let M be an object in
Cu.x.p- By Proposition 3.9, we have RI'z(Rj.M) = Rj, R znp M = Rj,R[ x M — Rj,. M. We also
have RI'p(Rj,M) = 0 as TNU = § and thus know that Rj, restricts to a functor Cy x 9 — Cp,z 7.

Conversely, let A/ be an object in Cpz7. Applying the functor ;7! to R[zN =, N we obtain
RIxj~'N = j~'AN. There exist natural adjunction morphisms (cf. [EK, Lemma 4.3.1])

IR M = M and N — Rj,j'N.

One has j7'Rj,. M = M for any M € Cy x. Let us prove that the adjunction morphism N —
Rj.j !N is an isomorphism for any N € Cp z 7. One has a distinguished triangle

RTp\ N = N = Rj.j N 5

We need to show that RT’ p\UN is quasi-isomorphic to zero. Let us consider a distinguished triangle

RIZRT oy N — RN = Rz 'RTpyp N 25, (4.6)

where jz denotes the open immersion P\ Z < P. One has RT'zRT p\y V' = R['zA = 0. On the other
hand, we obtain
Rjzjz RUp\yN = R p\yRjz.j; ' N = 0.

So the assertion follows from (4.6). O

14



Recall that a W,,-embeddable k-scheme is a separated k-scheme X of finite type such that there
exists a proper smooth W,,-scheme P and an immersion X < P which fits in the following commutative
diagram:

X——-P

.

Speck —— SpecW,,.

Definition 4.4. Let X be a W, -embeddable k-scheme with an immersion X < P into a proper smooth
Wy, -scheme P. We define the category Cp x to be Cp z 1 for some closed subsets Z and T of P with
X =Z\T. This definition is well-defined by Lemma 4.2.

Theorem 4.5. Let f: P — @ be a proper smooth morphism of smooth W, -schemes. Suppose that we
are given closed immersions i1 : X — P and iy : X — @Q such that f oi; =iy. Then f induces an
equivalence of categories

o

f+:Cpxp —Cqx0 (4.7)
with a quasi-inverse RTx o f'.
Proof. Since the definition of the category Cp x ¢ depends only on the underlying topological space

of X by Lemma 4.2, we may assume that X is reduced. First of all, we note that the functors f; and
RI'x o f' are well-defined. Indeed, for M € Cp x ¢, by Proposition 3.9, we have

ROx f+M =5 fLRD 1 x)M
& fiRD1(x)RTx M
= ARTyM
= M.

We also have RI'x (RFXf!N) N RT x f'A for any N € Co,x,p- Next let us construct a natural
transformation from f; to RI'x o f' and its inverse. By [EK, Corollary 14.5.15], there are canonical
adjunction morphisms

fof'N = N and M — fof'M. (4.8)
We thus obtain natural transformations of functors
[+RDx f'N = fof'N = N (4.9)
and N
M — RIx M — Rl x f' f1 M. (4.10)

Let us prove that these morphisms are isomorphisms by the induction on n. We begin with the
case n = 1. Then P and @) are smooth k-schemes. Let us firstly consider the case when X is smooth
over k. Then [EK, Corollary 15.5.4 and Proposition 15.5.3] imply that

FROx N S fringd fIN S gy is N = N
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This shows that (4.9) is an isomorphism. In order to see that (4.10) is an isomorphism, we claim that
the natural morphism 4 M — i} f'fL M is an isomorphism. Indeed, since M € Cp x,p is supported
on X, there exists M’ € Df’fgu(Dp_’X) such that i3 M’ =2 M by [EK, Corollary 15.5.4]. Then we
have 4 M 22 it i M =2 M’ and @4 f' fo M =23 f i M 22 dbia M 22 M| hence we see the claim.
Applying the functor iy, to the isomorphism i} M =N it f f M we see that Tx M — RUx f'fL M is
an isomorphism by [EK, Proposition 15.5.3].

Next let us prove the case n = 1 for general X by the induction on the dimension d of X. If d = 0,
then X is étale over k and the assertion follows from the smooth case. Let Xy be a d-dimensional
smooth open subscheme of X such that H := X\ Xj is of dimension < d. Let us consider the following

S~
J

diagram:
P
|

Q\H Q.

Let us consider the following morphism of distinguished triangles

X\H——> P\ f~(H) —~
O

RE -1y M M Rj’ 5" ~t M

| | |

RTx f' f+RD p-1 sy M ——= RUx f' fy M ——= RTx [ [ RjLj" M — .

In the left term, we have RI y-1 5y M & RI -1 (g)RCx M = RI'y M and we also calculate
RO x f'f1RT p-1 (M Z RO x f' fLRT po1 gy RT gy M = Ry f' fLRT y M

by Proposition 3.9 and Proposition 3.5. Hence the induction hypothesis implies that the left vertical
arrow is an isomorphism. Similarly, by the smooth case, one can see that the right vertical arrow is
an isomorphism. As a consequence, we see that M — RI'x f'f, M is an isomorphism. Next let us
consider the following morphism of distinguished triangles

F+ROx fRE g N — LR x f'Rj,j N —— f ROy f'Ryjj N — >

| | |

In the left term, we have f RIx f'RI'gN = f RI'yf'RIyN by Proposition 3.5. Hence the left
vertical arrow is an isomorphism by the induction hypothesis. In the right term, we can calculate as

f+RUx f'Rj, (j7IN) 2 fLRDx Ry f" (G7IN) 2 £ RIRT gy f" (G7N) 2 R f R x\ g f" (57N

by Proposition 3.9. So the right vertical arrow is an isomorphism by the smooth case and hence the
middle arrow is also an isomorphism. This finishes the proof in the case n = 1. Now let us consider a
distinguished triangle

M &5 g, TIPL — M = M @Yy T)p" T
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Then the induction hypothesis, Lemma 3.2 and [EK, Proposition 14.8.1] reduce us to the case n = 1
and we are done.
O

Corollary 4.6. Let f: P — @ be a proper smooth morphism of proper smooth W, -schemes. Suppose
that we are given immersions i1 : X — P and ig : X — @ such that f oiy = i3. Then fi induces an
equivalence of categories

er :CP7X i>CQ7X (4.11)

with a quasi-inverse RI'g , o f'. Here Xp denotes the closure of X in P.

Proof. Let us prove that f, restricts to a functor Cpx — Cg,x. Let V be an open subset of P
such that 79 factors as a closed immersion X < V and the open immersion js : V — . Denote
by U the open subset f~1(V) of Q. Then i; factors as a closed immersion X — U and the open
immersion j; : U < P. For an object M in Cp x, by Proposition 4.3, there exists M’ € Cy x
satisfying Rj1. M’ = M. We have fL M = fiRj1.M' = Rjo, fly4 M. In the course of the proof of
Theorem 4.5, we saw that fj;4 M’ is in Cy x g. Hence we know that fi M = Rja. fjy M’ is in Cq,x
by Proposition 4.3.

Next let us prove that RI'g o f' restricts to a functor Co,x — Cp x. Let T be a closed subset of @
such that Xo\To = X in Q, where X denotes the closure of X in ). We denote by X p the the closure
of X in P. Let T be a closed subset of P such that Xp\7 = X and we set Tp := TN f~1(Tg). Then
Tp is a closed subset of P such that )_(p\Tp = X and we have Cp x =Cp 5, 7, and Cg x = CQ,XQ,TQ-

For an object M in Cg x, 1, one has RI'x, (]RFXPf!M) EN RFXPf!./\/l. Also by assumption, one
has RI'r, M = 0. Applying the functor RI’XPf! to this equality we have 0 = RFXPf!RFTQM =
RT %, f-1 (1) f M. Then we have RI'r, Rl g, f'M = RI'1,RT g p-1 (1) f' M = 0.

There are natural adjunction morphisms

U fy RO, f'N =N and & : M — R g, f' f M.
By Proposition 4.3, ¥ is an isomorphism if and only if so is ¥y, = jy L. Now we can calculate as
J2 FrRUg, fN 2= fioeji 'RUg, fN 2 fiosRUx Gy N 2 flu RUx fids 'V

Hence we see that jg_llll : f|U+RFXf|!Uj2_1N — j2_1./\/ is an isomorphism by Theorem 4.5. One can
prove that ® is an isomorphism in a similar manner.
O

Definition 4.7. Let X be a W, -embeddable scheme. Let us take an immersion X — P into a proper

smooth W, -scheme. We define the triangulated category lefgu(X/Wn)o by Cpx. This definition is

independent of the choice of embedding X — P up to natural equivalence by Corollary 4.6.

4.2 Cohomological operations on Df, (X/W,)°
Let f: X — Y be a morphism of W,,-embeddable schemes. Let us first define a functor

f! : Df)fgu(Y/W’ﬂ)o - lefgu(X/W’ﬂ)o‘
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One can always obtain the following commutative diagram:

x " _p
I (4.12)
yo 2 Q.
Here P and ) are proper smooth W,,-schemes, i; and i, are immersions and g is a proper smooth
morphism of W,-schemes.

Lemma 4.8. Let f : X — Y be a morphism of W, -embeddable schemes. Suppose that we are given
the diagram (4.12). Let j : U < P be an open immersion of smooth W, -schemes such that i, factors
as a closed immersion X — U and j. Then the functor

Rj.RI xgj : Coy — Cpx
does not depend on the choice of the open immersion j : U < P.

Proof. Assume that we are given an open subset V of U such that X — U factors as a closed
immersion X < V and the open immersion j' : V < U. Put j” := j' o j. Then one has

Rj/RCxgjy = RLRjRx ) gy = RjRjLj' 'Rl xgjy = Rj.RLx gy
This completes the proof. O

Next let us suppose that we are given the following commutative diagram:

X

|\

Y P3P (4.13)

g1 lm

Q1 TQz-

Here Py, P>, @1 and Q2 are proper smooth W,-schemes, and ¢;, g2, h1 and hy are proper smooth
morphisms over W,,, and all slanting allows are immersions. Let us denote by Xp, (resp. Yg,) the
closure of X (resp. Y) in P; (resp. @1). Take an open immersion js : U < P, such that the immersion
X < P factors as a closed immersion X < U and j,. We set V = hy '(U) and h), = hoy 2V = U.
Denote by j; the open immersion V' < P;. Then we have the following functors:

R  oh),
Cp x ~—2—C
P, X Py, X

le*RFX{]!lVT TRJ-Z*RFXOQ!QU

CQ1,Y y .Cszy'
RF?Q oh}
1
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This diagram is commutative up to natural isomorphism since we have
) ) ! ) ! ) !
RI g, by o Rjo.RUx g3 = RT ¢, Rjiahy RTx ghjr = Rjr RO R, -1y hh g3y = RjrRT x By gy
(where the first isomorphism follows from the flat base change theorem) and
. ! PR N RPN 1ot
Rj1«RIx gy} © RFYQl hy = le*RFXFg;‘;(YQl)guvhl = le*RFXQHVhr

For a morphism f : X — Y of W,-embeddable schemes, we take a diagram as in (4.12) and an
open immersion j : U < P as in Lemma 4.8. We then define the inverse image functor

f! : Df)fgu(Y/Wn)o - fogu(X/Wn)o

by f' = Rj,RT X9|IU' The above argument shows that this definition is independent of the choice of

diagram (4.12) up to natural isomorphism.

Next let us define the direct image functor f; : Df’fgu(X /Wy)° — Df’fgu

(Y/Wh)°.
Lemma 4.9. Let f : X — Y be a morphism of W, -embeddable schemes. Suppose that we are given a

diagram as in (4.12). Then the functor gy restricts to a functor

g+ : CP,X — CQJ/.

Proof. Take an open subset V of @) such that is : Y < @ factors as a closed immersion Y — V and
the open immersion j; : V < Q. There exists an open subset U of g~!(V) such that the immersion
X < g7Y(V) factors as a closed immersion X < U and the open immersion U < g~ }(V). We
denote by j; the open immersion U — P. Let M be an object in Cp,x. Then, by Proposition 4.3,
there exists N € Cy,x ¢ satisfying Rji, N = M. We have g, M = g, Rj1.N = Rz, gpsN. In the
course of the proof of Theorem 4.5, we saw that g‘U+./\/ is in Cy y,¢. By Proposition 4.3, we know that
g+./\/l = ]Rjg*g‘U_‘_./\/ is in Cny. O

Let us assume that we are given a diagram as in (4.13). Then we have a natural isomorphism of
functors hy o g1 = hg 0 go. For a morphism f : X — Y of W,,-embeddable schemes, we take a diagram
as in (4.12) and define the direct image functor

f+ : lefgu(X/Wﬂ)o - Df)fgu(Y/Wﬂ)o

by fi =g+

Finally let us take an immersion i : X — P into a proper smooth W,,-scheme and Z and T closed
subsets P such that X = Z \ T as a set. For M and N € Cp 2z = Cp,x we consider M ®H(9P N|[—dp]
in Dfy,,(Dpp). By Lemma 3.2, we have Rz (M @g, N) = (RTzM) @ N =M ®o, N. We also
have RT'7 (M ®H@P /\/) ~ (R['r M) ®H(9P/\/' = 0. Hence M®H@PN[—dp] is an object in Cp z 7. Assume
that we are given another immersion 7' : X < (Q into a proper smooth W,,-scheme and a proper
smooth W,,-morphism f_: P — Q with foi =4 There exists an equivalence RI' ¢ f* : Cox — Cpx
by Theorem 4.5, where X denotes the closure of X in P. For objects M and N in Cg, x, applying the
functor RT' ¢ f' to M ®H@Q N[—dg], we compute that

RI /(M ®b, N[-dg]) = RIs (f'M &, ['N) [~dp]
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by Proposition 2.2. On the other hand, there exist isomorphisms
RO f'M®@% RIg f'N[-dp] ZRlg (f'M @, RU 5 f'N) [~dp] 2RI g (f'M &%, f'N) [~dp]
by Lemma 3.2. Therefore we can define a bi-functor
(=) ®" (=) : Ditgu(X/W3)° X Dt (X/Wn)® = Dy (X/Wr)°

to be M @ N := M ®H@P N[—dp] for some immersion X < P into a proper smooth W,,-scheme P.

4.3 Riemann-Hilbert correspondence for unit F-crystals

Let X be a W,,-embeddable scheme with an immersion ¢ from X into a proper smooth W,,-scheme P.
We define a functor Solx to be the composite of the functors

° Sol n it n
Df)fgu(X/Wn) =Cpx C D{)fgu(Dpr) — Dgtf(PétaZ/p Z) — Dgtf(XéhZ/p Z),

where the first functor is the natural embedding.

Lemma 4.10. This definition is independent of the choice of embedding i : X — P wup to natural
isomorphism.

Proof. Let us first suppose that we are given an open immersion j : U — P such that i factors as an

closed immersion ¢’ : X < U and j. Then j~! induces an equivalence Cpy x ¢ =N p,x by Proposition
4.3. Let us consider a functor i’ ! o Soly : Cy.x.g — D%;(Xeét, Z/p"Z). Then one has

i Solyj'M 2 '~ 1Sol p M 22 'S0l p M (4.14)

for any M € Cp x. Next let us suppose that we are given a closed immersion " : X — @ into a
smooth W,-scheme @ and a proper smooth W,,-morphism U — @ with f o4 =4"”. Then f, induces

an equivalence Cy x ¢ =N Co,x,p by Theorem 4.5. Note that, because Soly is compatible with the
inverse image functor by Theorem 2.3, we know that Soly M is supported on X for any M € Cy x 9.
Then, for M € Cy x 9, we can compute that

i""1Solg f+ M ="~ fiSoly M = "~ fiili’ ~*Soly M = i~ Soly M.
We can prove the lemma by combining two claims proved above. O

Next let us define a functor My : D%(Xet, Z/p"Z) — D}y, (X/W,)°. We define Mx to be the
composite of the functors

n Ty n M o
D(b:tf(XétaZ/p Z) — DStf(Pé‘mZ/p Z) - D{)fgu(Dpr) .

Lemma 4.11. The essential image of Mx is contained in Cp x.
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Proof. Let us take an open subscheme U of P such that ¢ factors as a closed immersion ¢’ : X — U
and an open immersion j : U < P. Then by [EK, Corollary 16.2.8] Mx is naturally isomorphic to the
composition
b n i b n My b o Ry« b o
Deie(Xew, Z/p"Z) — Diyy(Uss, Z/p"Z) — legu(DF,U) — legu(DF,P) -

So we reduce to the case when X is closed in P by Proposition 4.3. Now since M p is compatible with
the inverse image functor by Theorem 2.3, F € Dgtf(Pét, Z/p™Z) is supported on X if and only if so is
Mp(F). O

One can prove that this functor is independent of the choice of X — P as in Lemma 4.10. By
Lemma 4.11, we obtain a functor
M @ Dy (Xet, Z/p"Z) — Dty (X/W)°.
We now state our main result.

Theorem 4.12. Let X be a W, -embeddable k-scheme. Then Solx induces an equivalence of triangu-
lated categories

Soly : Dy (X/Wy)° =5 Dby(Xer, Z/p"Z) (4.15)
with quasi-inverse Mx .
In order to prove Theorem 4.12 we need the following lemma.

Lemma 4.13. Let X be a W, -embeddable k-scheme with a closed immersion i from X into a smooth
W,,-scheme P. Let us denote by DgtﬂX(Pét, Z/p"Z) the full triangulated subcategory of D (Ps;,Z/p"7Z)

consisting of complexes supported on X. Then Solp : Diy, (Drp)° — D2(Pe, Z/p"Z) restricts an
equivalence

CP7X,<2) — Dgtf,X(Péh Z|p"Z).
Proof. By Lemma 3.1, we can write as
Cp,x,p = {M € D}, (Dr.p)°|SuppM C X }.

Denote by j the open immersion P\ X < P. For an object M in Cp x g, the condition SuppM C X
is equivalent to the condition 7'M = 0. Applying the functor Solp to 7'M = 0, by Theorem 2.3,
one has j~! (SolpM) 2 Solpy xj~'M = 0. Hence we know that Solp restricts to a functor

Solp : Cp x,0 — Dl x (Pet, Z/p"Z).
Similarly, M p restricts to a functor Mp : DgthX (Pst, Z/p™Z) — Cp x,9p and we are done. O
Let us prove Theorem 4.12.

Proof. We may assume that there exists a proper smooth W,-scheme P, an open subset U of P
together with a closed immersion ¢ : X < U. Then Solp is compatible with Solyy and Soly induces an
equivalence of triangulated categories

Cu,x.,0 = Dgtf,X(Uém Z/p"Z)
with quasi-inverse My by Lemma 4.13. Also, i~! : Dgtf7X(Pét,Z/an) — D% :(Xet, Z/p"Z) is an

equivalence of triangulated categories with quasi-inverse i,. This finishes the proof. O
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Theorem 4.14. Let f : X — Y be a morphism of W,,-embeddable schemes. Then there exist natural
isomorphisms of functors

Soly o f4 = fi o Solx : Dip,,(X/Wy) = Dby (Yer, Z/p"Z),

o

f7'oSoly = Solx o f': Dfy, ,(Y/W,) = Dl(Xer, Z/p"Z.)

and a functorial isomorphism
Solx (M) ®Hz“/pnz Solx (V) = Solx (M & N)

for objects M and N in Dfy, (X /W,,).

Proof. We may assume that there exists a commutative diagram

X&,p

'

vy _ 9

such that P is a smooth W,-scheme which is an open subscheme of a proper smooth W,,-scheme P,
@ is a proper smooth W, -scheme, i, is a closed immersion, 72 is an immersion, and g is the composite
of an immersion and a proper smooth morphism. Also, we can identify the categories Df’fgu(X /Wh)

and Df’fgu(Y/Wn) in the statement with the categories Cp x g = Cp y and Cq,y respectively. Via this

identification, Solx is identified with ifl o Solp on Cp x g by (4.14). For any object M in Cp x g,
Solp(M) is supported on X. So we can compute that

Soly o fi := i;lsong+ = i;lggSolp ~ i;lggil*ifISOIP 2 fioSolx.

Let us prove the second isomorphism. Recall that f' := Rlx¢' : Coy — Cp.x,p- We define a
natural transformation f~! o Soly — Solx o f' to be the composite of natural transformations

f~toSoly = iflg_lSolQ = iIISOIPg! — iflSolp]RFXgI =Solx o f'.

Let us prove that it is an isomorphism. The usual dévissage argument reduces the proof to the case
n = 1. First of all, suppose that X is smooth over k. Then using [EK, Corollary 15.5.4] and Theorem
2.3, we obtain isomorphisms

ftoSoly = fliy " Solg =2 iy tiniy g Solg =iy 'Solp o (i14414")
>~ j;'Solpo (RFXg!) >~ Soly o f'.

R

In general case, we shall prove by the induction on the dimension d of X. Let Xy be a d-dimensional
smooth open subscheme of X such that H := X \ Xy is of dimension < d. Let a denote the open
immersion P\ H < P and M an object in Cy. We have a distinguished triangle in D%(Pg, Z/pZ)

SolpRT xaya'g'M — SolpRI yg' M — SolpRT yg' M 5 . (4.16)
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Let us denote by iy the closed immersion H < P. For any F € DY(Ps,Z/pZ), there exists a
distinguished triangle in D%( Py, Z/pZ)

ama '\F = F = igig'F 5 (4.17)

Applying (4.17) to F = g~ *SolgM, one has a distinguished triangle

aa"t g™ SolgM — g SolgM — imrigtg  SolgM L5 . (4.18)
There are natural morphisms
Y a;ailg*ISolQM >~ Solpara'g' M — SolpRI' xa,a'g' M
and N
¢ :imig g SolgM — gy Solpg' M — igi' Sol pRT rg' M 2 Sol pRT g g' M.

Here the last isomorphism follows since Sol pRTz7¢' M is supported on H. Hence we obtain a morphism
of distinguished triangle from (4.18) to (4.16). We then claim that i} '4 is an isomorphism. We can
calculate as

SolpRFXa+a!g!M = Solpa+RFX\Ha!g!/\/l
= (L[SO]P\HRF)(\HG!Q!M.
So iy taia'g™ SolgM and i} 'SolpRI xaya'g' M are supported on X \ H. Hence i '4) is an iso-
morphism if and only if so is a’~'i; '+, where a’ denotes the open immersion X \ H — X. We

denote by 4] the closed immersion X \ H — P\ H. Applying the functor o’ *lifl to the isomorphism
SolpRI'yaa'g' M = G!SOIP\HRF)(\HGIQ!M, we have

~ /!

a/ Y 'SolpRI'ya a'g M = a _1i1_1agSOIP\HRFX\Ha!g!M = i’l_la_langp\HfllX\HM

i'7 " Solpy g flx M = Solx gy fix\ g M-

1

We can also calculate as

alirtaa g SolgM = i e aa g SolgM =i’y fa g Solg M
= ¢ty ISolgM = f‘}l\HSolyM.

Hence a’'~'i; ¢ is identified with the morphism f‘;{l\HdeM — SolX\HffX\HM and it is an iso-

morphism by the smooth case. On the other hand, since SolpRI'z¢g'M and iH!izllg_lsolQM are
supported on H, ¢ is an isomorphism if and only if so is i;llqb. Let us denote by fjg the com-

posite of morphisms H — X ENR'S Applying il}l to SolpRI'g'M and ngil}lg’lsolQM, one

has iI_{lSolpRFHgIM = SolellH./\/l and iﬁlimi]}lg*ISolQM = f‘;SolH./\/l respectively. So il_ilqﬁ
is identified with the morphism fl;IlsolH/\/l — Soly fllH/\/l and it is an isomorphism by the induction

hypothesis. Now we know that the morphism of distinguished triangle from (4.18) to (4.16) is an iso-
morphism after we apply the functor ifl to it. As a consequence, we obtain the desired isomorphism

£~1So0ly —» Soly f'.
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Finally let us prove the last isomorphism. For objects M and N of Df’fgu(X /Wy) = Cp x g, there
exists a natural isomorphism

Solp M ®% .7, SolpN = Solp (M @, N) [dp]

by Theorem 2.3. Recall that M ®“ N is defined to be M ®H@P N|[—dp]. Applying the functor
Solyx := 4" 'Solp to it, one has

Soly (M ®"N) =i~ 'Solp (M ®g, N[-dp]) = i 'Solp (Mg, N) [dp]
= 7 (SolpM ©F 0, Solp )
>~ Solx (M) &7 nz Solx (V).
This finishes the proof. O

5 t-structures on Dy (X/k)

In this section, we study several t-structures on D (X/k) for a k-embeddable k-scheme X. Note

Ifgu
that, for a smooth k-scheme P, one has D%  (Drp)° = D}, (Drp) and lefgu(DF,p)o is naturally

Ifgu lfgu

equivalent to lefgu(OF, p) (see the subsection 2.4).

5.1 The standard t-structure on Df, (X/k)

For a smooth k-scheme P, we set

Din(Dpp) = {M € Df, (Drp) |H (M) =0 for k>n} and
Dl%gﬁl(’DF»P) = {M S Dll)fgu(DF,P) |Hk(M) =0 fO?” k< ’I”L} .

Let X be a k-scheme of finite type. The middle perversity is the function p : X — Z defined by
p(x) = —dim{z}.
For z € X, we denote by i, the canonical inclusion {z} < X. We then set

PDEY (X, Z/pZ) = {F € DY( X, Z/pZ) |H (i ' F) =0 for allz € X and k >p(z)} and
PDZY(Xey, Z/pZ) = {F € DY( X, Z/pZ) |HF (i, F) =0 for allz € X and k < p(z)} .

Gabber proved that (pDCSO(Xét,Z/pZ),pDCZO(Xét,Z/pZ)) forms a t-structure on DY(Xg,Z/pZ) in
[Ga, Theorem 10.3]. Emerton and Kisin gave another proof of it in the case when X is smooth
over k based on the Riemann-Hilbert correspondence [EK, Theorem 11.5.4]: Indeed, they proved that
Diio,(X/k) (vesp. Di,) (X/k)) is equivalent to PDZ%(Xer, Z/pZ) (vesp. PDE°(Xa, Z/pl)) via Solx.

Ifgu
We shall generalize [EK, Theorem 11.5.4] to the case of k-embeddable k-schemes.
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Definition 5.1. Let P be a smooth k-scheme with a closed subset X of P. We set

Iég(,w = {MeCpxp H*(M) =0 for k > 0} and
Ci%o = {MeCpxy|H (M) =0 fork<0}.

Then (Clégf,ﬁ)’ E&,@) defines a t-structure on Cp x ¢, which we call the standard t-structure on Cp x g.

For a k-embeddable k-scheme X with an immersion X — P into a proper smooth k-scheme P, we
take an open immersion j : U < P such that the immersion X — P factors as a closed immersion

X — U and j. We define the standard t-structure (ng(,cgg() on Cpx by the essential image of

(CE&’Q,CE&’@ under the equivalence Rj,.. This definition is independent of the choice of U — P by

the following lemma.

Lemma 5.2. Let j: U <= V be an open immersion of smooth k-schemes. For any closed subset X of
U which is also closed in V', the functor

Rjx : Cux,0 — Cv,x,0

induces an equivalence of triangulated categories, which is t-exact with respect to the standard t-
structure.

Proof. We can prove that Rj, is an equivalence of triangulated categories with quasi-inverse ;! in the
same way as in the proof of Proposition 4.3. Then it is enough to prove that Rj, and its quasi-inverse
j~1 are left t-exact (cf. [KS, Corollary 10.1.18]). These claims are evident. O

We need the following lemma.

Lemma 5.3. Let P be a smooth W, -scheme and i : X — P a closed immersion. For e € {<
0,> 0}, we denote by D(I;X(Pét,Z/pZ) (resp. PD¢ x(Pe, Z/pZ)) the full triangulated subcategory of
DY(Ps, Z/pZ) (resp. PD2(Pe,Z/pZ)) consisting of complexes supported on X. Then the equivalence
is : DY(Xe, Z/pZ) =5 D! x(Pst, Z/pZ) restricts to an equivalence

DS (Xew, Z/pL) =3 P DS x (P, L /L)

with quasi-inverse i~ 1.

Proof. For an object £ in PD=%(Xg,Z/pZ), one obviously has i.L € stg((Pét,Z/pZ). Let £ be
an object of PDZ%(X¢,Z/pZ) and x an element of X C P. Denote by i, (resp. i) the canonical
inclusion {z} < X (resp. {z} < P). One has i, £ = ii'i, £ =i}, L. So we have H* (i}i,L) = 0 for
any k < p(z). If 2 € P\ X, one has H¥ (i}i,£) = 0 for any k. Hence we see i,L € pD;—,g((Pét,Z/pZ).
Conversely, for an object £ in pDEg((Pét, 7/pZ), one obviously has i~1L € PDS%(Xg,Z/pZ). Finally
let £ be an object of PDCZ’())((PéhZ/pZ). Then, since £ is supported on X, we have i'L =712 and
hence we have i~1L € PDZ%( Xy, Z/pZ). O

Corollary 5.4. Let X be a k-embeddable k-scheme with a closed immersion i : X — P into a
smooth k-scheme P. Then Soly = i~'Solp : Cpxp =N DY(X¢,Z/pZ) sends (C;OX,Q),CES(’@) to
(pDCSO(Xét7 Z/pZ)7 pDCSO(Xé(H Z/pZ)) .
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Proof. By Lemma 4.13, Solp restricts to an equivalence of triangulated categories
Cpx,0 — DY x (P, Z/pZ).

We know that Solp sends CP X0 tO D % (Pes, Z/pZ) and C;g( o to pDCS_g( (Pet, Z/pZ) by [EK, Theorem

11.5.4]. By Lemma 5.3, we see that 2_1 sends pD;yX(Pét7Z/pZ) 0 PD¢ (X, Z/pZ) if e € {< 0, > 0}.
This finishes the proof. O

By Lemma 5.2 and Corollary 5.4, one has the following theorem.

Theorem 5.5. Let X be a k-embeddable k-scheme with an immersion X — P into a proper smooth
k-scheme P. We set

lfgu(X/k) PX and legu(X/k) PX

Then the t-structure ( lfgu(X/k) lfgu(X/k)) is independent of the choice of X — P, which we
call the standard t-structure on legu(X/k). Furthermore, ( lfgu(X/k> lfgu(X/k)) corresponds to

Gabber’s perverse t-structure via Solx .

5.2 Bellinson’s theorem

In this subsection, we prove an analogue of Beilinson’s theorem (Theorem 5.6), which is a generalization
of [EK, Corollary 17.2.5] to the case of k-embeddable k-schemes. In the rest of this subsection, we

fix a k-embeddable k-scheme X, an immersion 7 : X < P into a proper smooth k-scheme and an
open subscheme P of P such that 7 factors as a closed immersion i : X <> P and the open immersion
P < P. Denote byt (resp. pifgu) the category of unit Dy p-modules (resp. locally finitely generated
unit Dp p-modules). We also denote by pu,, x (resp. pufeu,x) the full subcategory of i, (resp. figgn)
consisting of objects supported on X. Note that pig,, x is the heart of the standard t-structure on

lfgu(X/k) Cp x = Cpx,p and hence it is independent of the choice of X — P and P by Theorem
5.5. The followmg theorem is the main theorem in this subsection.

Theorem 5.6. The natural functor
D*(uggu,x) — Ditgu(X/)
18 an equivalence of triangulated categories.
The proof of Theorem 5.6 is divided into two parts. First of all, we prove the following theorem.

Theorem 5.7. The natural functor
D*(uggu,x) = Ditgu(X/K)
is essentially surjective and, for any objects M and N in D®(puggu,x) the map
Hom pb (4,0 1) (ML N) — Hompy  (x/k) (M, N)

18 surjective.

26



We need the following lemma.

Lemma 5.8. Let Ind-pigen, x be the full subcategory of py,x consisting of objects which are direct limits
of objects in purgu,x. Then the natural functor

D" (tiiggu,x) = Ditgy (Ind-fuggu,x)
s an equivalence of triangulated categories.

Proof. For an object M in Dﬁcgu(Ind—mfgm x ), there exists a subcomplex M’ of M such that the
canonical inclusion M’ — M is a quasi-isomorphism and the terms of M’ are locally finitely generated
unit. Since M is supported on X, so is M’. Hence Db(/,l/lfgu’x) — Df’fgu(lnd—,ulfgu’x) is essentially
surjective. Let us prove the full faithfulness of the functor. Suppose that we are given a quasi-
isomorphism M — N in K°(Ind-puggu,x) with N € K°(puggu,x), where we denote by K°(figu,x)
(resp. K b(Ind—,ulfgm x)) the (bounded) homotopy category of pigeu x (resp. Ind-pigeu,x). Then all
cohomology sheaves of M are locally finitely generated unit and so there exists a subcomplex M’
of M such that the canonical inclusion M’ — M is a quasi-isomorphism and the terms of M’ are
locally finitely generated unit. Hence, by [KS, Proposition 1.6.5], Db(/}/lf‘gu)x) — Db(Ind—,ulfng) is
fully faithful and the assertion follows. O

Let us prove the Theorem 5.7.

Proof. The proof is a refinement of the proof of [EK, Corollary 17.1.2]. For a k-scheme Y of finite
type, we denote by €y the category of constructible étale sheaves of Z/pZ-modules on Yz. By using
the results in [De, p.94], we know that the natural functor D*(Cy) — D%(Ya,Z/pZ) is essentially
surjective and induces a surjection on Hom’s. Let E denote the residual complex of injective quasi-
coherent Op,,-modules resolving Op,,. It is proved in [EK, Proposition 17.1.1] that E naturally forms
a complex of unit D p,-modules and the terms of E are in Ind-fufs,. Then, as in the proof of
[EK, Corollary 17.1.2], Mx may be computed as 7p,Homy 7 (—, E) o i, and we have the following
commutative diagram of categories:

Db(€x) ——— D}(Xe, Z/pZ)

D¥(€p) ——— D{(Ps, Z/pZ)
WP*I_IOIUZ/pZ(_vE)l J/MP

Df)fgu (Ind_lu‘lfg‘l) - ‘Df)fgu (DRP)'

The composite of the functors D*(€x) — D%(Xe, Z/pZ) — Db(Ps, Z/pZ) — fogu
functor D*(€x) — fogu(X /k) which is essentially surjective and induces a surjection on Hom’s by
Theorem 4.12. On the other hand, the essential image of the composite of the functors D?(€x) —
D*(€p) = Diyy, (Ind-jusgy) is contained in Dy, (Ind-pusga, x) because for an object G in D*(€x), we
have the natural isomorphism

(Dp,p) induces a

WP*HOmz/pz(i*g, E) = WP*i*HOmz/pz(g, Z'EIX).
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Hence we know that the functor Df’fgu(lnd—mfgu, x) — lefgu(X /k) is essentially surjective. So, by
using Theorem 4.12 and Lemma 5.8, we see that the functor induces a surjection on Hom’s. Now the

assertion follows from Lemma 5.8. O

In order to prove the full faithfulness of the functor D°(uge,x) — Df’fgu(X /k), we need some
preparation.

Lemma 5.9. The category py, x has enough injectives.

Proof. For an object M in p, x, we can take an injection M — Z into an injective object Z in p, by
[EK, Corollary 15.1.6]. Applying I'x to the injection M — Z, one has an injection M = Tx M — T'x7T.
Hence it is enough to prove that I'xZ is an injective object in p, x. Suppose that we are given an
injection ¢ : NV — A and a morphism f : NV — I'xZ in i, x. Let us denote by g the natural morphism
I'xZ — Z. Since T is an injective object, there exists a morphism h : NV — T satisfying hoi = go f.
Then one has 'xhoI'xi = 'xgo'xf. Since I'xi is equal to i : N = 'x N’ — I'xN =N and
Ixgolxf: N =TxN' —T'xI'xZT — I'xZ is equal to f, we know the equality I'xh oi = f. Hence
I'xT is an injective object in fy x. U

For an object M in g, x, there exists a unique maximal subobject L(M) of M which lies in
Ind-puey by [EK, Lemma 17.2.1.(i)]. Then L(M) belongs to Ind-p,, x and it is a unique maximal
subobject of M which lies in Ind-puggu, x . By [EK, Lemma 17.2.1.(ii)], the correspondence M — L(M)
defines a left exact functor

L: Hu, X — Ind',ulfgu,X

which is right adjoint to the natural functor pfey,x — ftu,x. Since p, x has enough injectives by
Lemma 5.9, we obtain the right derived functor

RL : D* (ta,x) = D'+ (Ind-puggu,x)-
By using Theorem 5.7, one can prove the following lemma in the same way as [EK, Lemma 17.2.2].

Lemma 5.10. Objects in pugeu,x are acyclic for RL.

Proof. For an object M in pigeu, x, one can choose an injective resolution M — Z in p1,, x by Lemma
5.9. For a natural number n > 0, we denote by £” the image of the differential 7% — Z"*!. In order
to prove that M is RL-acyclic, it is enough to prove that the map L(Z™) — L(E™) is surjective. We
denote by Z=" the complex defined by (Z=")" = Z' for i < n and by (Z=")" =0 for i > n. Then one
has an (n + 1)-extension

0->M-oTV 5T 5. I 5 E" 50

of £™ by M and denotes by ¢ the class of this extension in Extz:“’i (Z™, M). For a locally finitely

generated unit Dy p-submodule F of £", we denote by cx the image of ¢ under the map

EXtZqu; E" M) — Extﬁi; (F, M) = Homps(,, \(F[-n], M) = Hongc(DFYP)(]:[—n],M).

Note that « is an isomorphism: Indeed we have the diagram of functors

D’ (p,x) = D*(pw) = D*(piqe) = Db (Dr.p)
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(where f1qc denotes the category of Op-quasi-coherent Dp p-modules) in which the first (resp. the
second, the third) functor is fully faithful by Lemma 5.12 below (resp. [EK, Lemma 17.2.3 (iii)],
Bernstein’s theorem [EK, proof of Corollary 17.2.4]). Hence we can regard cr also as an element in
Ethii (F, M).

By Theorem 5.7, there exists an (n + 1)-extension in fug, x which is sent to ¢z by the map

Home(ulfgqu)(F[*n],M) — Home (X/k)(f[*n],./\/l) = HongC(DFﬁp)(}—[fn],M)

lfgu

Let us denote this (n 4 1)-extension by
0—-M—=N—=F—=0,

where N is a complex of locally finitely generated unit Dp p-modules whose terms are supported on
X and are 0 outside [0,n] and such that H/(N) = M if i = 0, H'(N) = F if i = n and H/(N) =0
otherwise. Since 7 is a complex of injective objects in p,, x there exists a map of extensions

0 M sn en 0
idT ¢T wT
0 M N F 0.

Let us consider the exact sequence
Homy,,,  (F,Z") — Hom,,, , (F,€") % Ext'L (F, M) — 0.

By construction of ¢x one has 6(¢) = cx. If we denote by 1’ the natural inclusion F — £™, then

—_—~—

we also have §(¢') = c¢x. Thus ¢ — ¢’ lifts to a map ¢» —¢’' : F — I™. Let us also denote by

1) — 1)’ the composite of morphisms N — F Y7, 7n Then we have a locally finitely generated unit
Dr. p-submodule (qﬁ" - wl) (M) of Z which surjects on 9/(F). This finishes the proof.
O

Lemma 5.11. Let jif_qc,x denote the full subcategory of p, x consisting of L-acyclic objects. Then
the natural functors D®(pusgn,x) — D¥ (pr-ae,x) and DV (pur _aex) — DV (uu,x) are fully faithful. As
a consequence, the natural functor

Db(/"lfgu,X) — Db(Mu,X)
18 fully faithful.

Proof. The strategy of the proof is the same as that of [EK, Lemma 17.2.3] but we slightly modify
their proof. Let us suppose that we are given a quasi-isomorphism N — M in KT (g ac x) with
M € K*(tigu, x ). Then the adjunction morphism L(N) — N is a quasi-isomorphism since the terms
of A and its cohomology sheaves are acyclic for L by Lemma 5.10. Now since the terms of L(N)
are in Ind-fuge,, x and cohomology sheaves of it are in pugeu, x, there exists a bounded subcomplex
L(N)" of L(N) such that L(N) — L(N) is a quasi-isomorphism and L(N')’ belongs to K°(itgu x)-
Hence the first functor is fully faithful by [KS, Proposition 1.6.5]. Next suppose that we are given a
quasi-isomorphism N — M in KT (pp ac,x) with N € KT (uy x). Then, by Lemma 5.9, one has an
injective resolution Z of M in Kt (uy x). So the full faithfulness of the second functor also follows
from [KS, Proposition 1.6.5]. O
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Let us consider the following commutative diagram of categories:

Db(:ulfgu,X) I Db(,ulfgu)

l l

Db(,uu,X) I Db(uu)

| |

D{)fgu(X/k) - Df)fgu(DF’P)‘

In order to prove the full faithfulness of the functor Db(,l,tlfgu7 x) — D},

1fgu(X/k), by Lemma 5.11 and
[EK, Corollary 17.2.4], it suffices to prove the following lemma.

Lemma 5.12. The natural functor D*(py,,x) — D®(u) is fully faithful.

In order to prove Lemma 5.12, we define a functor
RTx : D¥(1a) = D (pu,x)

to be the right derived functor of the left exact functor I'x : p, — pu,x. Here we use the notation
R'T'x instead of RI'x to avoid confusion. We have the following lemma.

Lemma 5.13. Objects in uy x are acyclic for R'T'x.

Proof. For an object M in u, x, take an injective resolution M — Z. One has H(RT'xy M) = 0 for
i > 0. Also, since Z" is an injective object in the category of Op-quasi-coherent Dy p-modules by [EK,
Cor. 15.1.6], one has HY(RT'xZ") = 0 for i > 0. By considering the long exact sequence for RI x, we
deduce that 0 -+ M =T'x M — I'xT is exact. Hence M is acyclic for RT'x. O

Let us prove Lemma 5.12.

Proof. Let us denote by piry.ac the full subcategory of p, x consisting of R'T'x-acyclic objects. It
is enough to prove that the natural functors D®(iy x) — DT (try-ac) and DT (pry ac) — DV (i)
are fully faithful. Let us suppose that we are given a quasi-isomorphism N — M in KT (ury-ac)
with M € K b(uu’ x)- Then the natural morphism 'y AN — N is a quasi-isomorphism since the
terms of N and its cohomology sheaves are acyclic for R'T x by Lemma 5.13. Moreover, since I'x A\ is
cohomologically bounded, there exists a bounded subcomplex I' xy N7 of I'x A such that T x N’ — I'x N/
is a quasi-isomorphism and I'xy N’ belongs to K°(u,, x). Hence, by [KS, Proposition 1.6.5], we know
that the first functor is fully faithful. For the second assertion, let us take a quasi-isomorphism A" — M
in K (pury-ac) with N' € Kt (uy). Then M is quasi-isomorphic to its injective resolution Z in K ().
Hence the second functor is fully faithful by [KS, Proposition 1.6.5].

O

By Theorem 5.7 and Lemma 5.12; we finish the proof of Theorem 5.6.
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5.3 The constructible t-structure on Dj, (X/Fk)

Let P be a smooth k-scheme. Let A be a sheaf of Op-algebra which is quasi-coherent as a left Op-

module and left noetherian. Let us first recall a t-structure on DgC(A) introduced by Kashiwara in
[Kas2]. For more detail, we refer the reader to [Kas2, §3]. We define a support datum & = {&"} by

&" :={Z| Z is a closed subset of P of codimension > n}.

Then &™ has the structure of an ordered set by the natural inclusion. For a sheaf F of A-modules, we

define I'gn (F) := lim T z(F). Then I'sn defines a left exact functor from the category of A-modules
Zeén

to itself and we obtain the right derived functor RI'gn : Db (A) — D}.(A). Let us set

GDEC’“(A) = {M S DZC(A) |RTgn—xH" (M) =Ny (M) for any n} and
6DqZCk(A) = {Me DgC(A) |IRCzM € Dgcn+k(.z4) for anyn and Z € G"}.

Kashiwara proved that (®DZ?(A), ®DZ?(A)) forms a t-structure on D], (A). We call this ¢-structure
the constructible t-structure. In particular, we have a t-structure (GDECO((’)RP),GD(?CO((’)RP)) on
Dgc((’) r.p). Moreover, we have the following theorem.

Theorem 5.14. Let P be a smooth separated k-scheme. We set

DG (Orp) = ©D5)(Opp)N Diy,(Op,p) and
®Dg (Opp) = ©DZ(Opp)N Dy, (OF.p).

Then <6D1%g0u(OF7P), GDE&(OEPD defines a t-structure on lefgu(OF,p).

Proof. It suffices to show that for any M € Df’fgu((’)R p), there exists a distinguished triangle

M 5 MM 5
such that M’ € ® D% (Op p) and M” € SDZ°

fzu 1fgu((’) r,p). We show it by the induction on the codimen-
sion d of S := Supp(M). Let us consider a distinguish triangle

7<IM = M = 72M 5, (5.19)

where 7 denotes the truncation functor with respect to the standard t¢-structure. Evidently, one
has Rl ger1 (HY (7<9M)) = H* (r<9M) for any k > d. For any k < d, one has S € &*! and

Rl gr+1 (HY (71<9M)) = Bt (t<?M). Hence we have 7<%M € GDﬁsu(OF,p). By using [Kas2,

Lemma 2.1] with (5.19), we are reduced to the case where M is an object in DE;H(OF,p). Let Sy be
a d-codimensional smooth open subscheme of S such that H := S\ Sy is of codimension > d. We set
U := X\ H. Then we have a closed immersion ¢ : Sy — U and the open immersion j : U < P. Since
M,y is supported on Sy, by [EK, Corollary 5.11.3], there exists an object N € Df’fgu((’)p’so) such that

it N = M,y. Note that, by [EK, Corollary 3.3.6], i is t-exact with respect to the standard t-structure.
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So N belongs to Dl%gdu(onso)' Applying [EK, Proposition 6.9.6], by shrinking Sy if necessary, we may
assume that all cohomology sheaves of N are unit F-crystals. In particular, these are locally free
of finite rank. Then we claim that i, A belongs to GD%&(ORU). In order to see this claim, by
the induction on the cohomological length of N, we may assume that N is a single unit F-crystal
supported on degree > d. Then for any n-codimensional closed subset Z of U, we have R zng, (N) =

RI zns, (Os,)ON € Dl%;((’) F.5,)- Then since i is left t-exact with respect to the standard ¢-structure,

we have RI'zi N =2 iR zng, N € D%;(OF,U) as desired. Because Rj, is left t-exact with respect to

the constructible ¢-structure by [Kas2, Lemma 3.7], one has Rj,i . N=Rj,j 1M € GDl%su((’)F,p). Let
us consider a distinguished triangle

ROy M — M — Rj M L.

Since the codimension of Supp (RT'y M) is greater than d, then the induction proceeds by [Kas2,
Lemma 2.1]. O

Corollary 5.15. For a smooth separated k-scheme P with closed subsets Z and T of P, we set

<0

GCIS,Z,T = GD(?CO(ORP)QCRZT and
>0

SCiyr = SDF(Orp)NCrzr.

Then (GC;OZ’T,GC;OZ7T> defines a t-structure on Cp z 1, which we call the constructible t-structure
on CP,Z,T'

Proof. Denote by j the open immersion P\ T < P. For an object M € Cp z 1 C Df)fgu(Opr). there
exists a distinguished triangle

MMM S

such that M’ € GDﬁsu((’)F,p) and M" ¢ GDE:u((’)RP). Since RI'z, Rj, and j~! are t-exact with

respect to the constructible t-structure by [Kas2, Proposition 4.1, Proposition 4.2 and Lemma 3.7]
respectively, we have a desired distinguished triangle

Rj,j 'RT ;M — M = Rj,j 'R[ ;M”55

such that Rj,.j 'Rz M’ € GCE’OZ’T and Rj,.j'RTzM" € GCE’OZ’T. This finishes the proof. O

For a k-embeddable k-scheme X with an immersion X < P into a proper smooth k-scheme P, we
define by
SChx = Chyp and SCpy := Cpy 1
for some closed subsets Z and T of P satisfying X = Z \ T. Then this definition is independent of
the choice of Z and T by Lemma 4.2 and (Gcgg(, GCEBX) defines a t-structure on Cp,x, which we call

the constructible t-structure on Cpx. By [Kas2, Proposition 4.2 and Lemma 3.7], one immediately
obtains the following lemma.
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Lemma 5.16. Let X be a k-embeddable k-scheme with an immersion X — P into a proper smooth
k-scheme P. Let U be an open subscheme of P such that the immersion X — P factors as a closed
immersion X — U and the open immersion j : U < X. Then the equivalence in Proposition 4.3

Rj. : Cuxp — Cp,x

is t-exact with respect to the constructible t-structure.

Theorem 5.17. Let X be a k-embeddable k-scheme with a closed immersion i into a smooth separated
k-scheme P. We set

DE'(Xe) = {Fe Db (X, Z/pZ) | H*(F) = 0 for k > 0} and
DZ%(Xg) = {F € DY Xew,Z/pZ)|H¥(F) =0 for k <0}.

Then the equivalence of triangulated categories
Solx =i 'Solp : Cpx.9 — D(Xet, Z/pT)

sends (663;{?5,6@%}%’) to (D5%(Xat), DZ%(Xet))-

In order to prove Theorem 5.17 we need the following lemma.

Lemma 5.18. Let P be a smooth k-scheme of dimension dp and M a complex in Df’fgu(OF,p). The
following conditions are equivalent.

1. Me GDl%g;dP(ORP).

2. M is quasi-isomorphic to a bounded complex N of flat Op-modules such that N™ = 0 for any
n < —dp.

3. HF (z'x/\/l) =0 for any k < 0 and any closed point x of P, where i, denotes the canonical closed
immersion {x} < P.

Proof. The equivalence of 1 and 2 follows from [Kas2, Proposition 4.6]. Let us prove that the condition
2 implies the condition 3. Suppose that M is quasi-isomorphic to a bounded complex N of flat Op-
modules such that N = 0 for any n < —dp. Let us denote by r(z) the residue field at z. Then, as a
complex of k(x)-modules, we can calculate as
M = K() @7, iy M[—dp]
o X

= n(z) ®i;1(9x i;l./\/'[fdp].

We have the condition 3 from this description. Next we show the condition 3 implies the condition 1.
Suppose that M satisfies the condition 3. We prove that M belongs to GDEg;dP (OF,p) by the induction
on the codimension d of S := Supp(M). Let Sy be a d-codimensional smooth open subscheme of S
such that H := S\ Sp is of codimension > d. Then we have a closed immersion i : Sy — U := P\ H
and the open immersion j : U — P. Since M)y is supported on U, by [EK, Corollary 5.11.3], there

exists N € lefgu(OF}SO) such that iy N' = M,y By shrinking S if necessary, we may assume that all
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cohomology sheaves of N are unit F-crystals. We fix a closed point x € Sy and denote by i, (resp.
i) the closed immersion {z} < P (resp. {z} < Sp). By pulling back the isomorphism iy N = M
to {z}, we have i \' 2 i’ M. Let us take a flat resolution F — A as Og,-modules. One has

k(x) @i F =it M(ds,).

>—ds,
Ifgu

(Opv). Since Rj, is left t-exact with

respect to the constructible ¢-structure by [Kas2, Lemma 3.7], we have Rj,i, N € GDl%g;dP (OF.p).
Let us consider a distinguished triangle

By this description combined with the condition 3, we know N € D
>—d
ifau

(Or.s,). By a similar
argument in the proof of Theorem 5.14, one has i, N € D

iERCEM = i M =it g i M S

By taking the long exact sequence, we see H¥ (i,R['y M) = 0 for any k < 0. Hence the induction

hypothesis implies R['y M € GDl%g;dP (OF,p) and we obtain M € GDl%g;dP (Op.p).

O
Now we may start to prove Theorem 5.17.

Proof. First of all, we shall prove that the equivalence
Solp : DY (O, p) = DY(Pey, Z/pZ)

sends <GDS7dP((’)F,p),SszdP((’)p’p)) to (D5%(Ps), DZ%(Ps)). Since Solp is an equivalence of

Ifgu Ifgu
1%g;d”((’),mu) corresponds to D=0(Py,Z/pZ) via

Solp (cf. [KS, Corollary 10.1.18]). Let us first suppose that M is an object in GDl%g;dp (Op.p). Let o

be a point in P. Denote by {z} the closure of {z} in P. For an open subset U of {x}, we denote by
iy the canonical immersion U < P. By Lemma 5.18, there exists an Op-flat resolution N of M such
that N™ = 0 for any n < —dp. We then calculate

triangulated categories, it suffices to show that ©D

| ~ L 1
igM =2 Oy ®1’510P (25 ./\/l[dU/p]
= Oy ®,L-EIOP ialN[dU/P].
By this description, we have H* (Z’UM) = 0 for any k < —dy. By shrinking U if necessary, we may
assume that all cohomology sheaves of Z'UM are unit F-crystals. Then, by [EK, Proposition 9.3.2],

.! . * M
iy M is Home,, (757 (—=), Ou,, )-acyclic. Hence we can calculate as

i Solp(M) = Soly (ily M)
= I‘IOHIORUét (7T(*J (7/|UM)a OUét)[dU]'

By this description, for any n > 0 the equality H" (ialsolp(/\/l)) = 0 holds. So we have Solp(M) €
DZ%(Pg,Z/pZ). Conversely, suppose that we are given an object F in D=0(Py, Z/pZ). By [De, p.94,
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Lemma 4.7], we may assume that F is a bounded complex of constructible Z/pZ-modules. For any
closed point x, we can calculate as

itMp(F) = My, (i;'F)
= RmZ/pZ(iglfvﬁ(x))
= 7H0mZ/pZ(i;1f7H(w))‘

By this description, we see the condition 3 in Lemma 5.18 for Mp(F) and thus Mp(F) € Gng;dP (OF,p).

Now let X be a k-embeddable k-scheme with a closed immersion ¢ : X < P. Let .DgX(Pét, Z/pZ)
denote the full triangulated subcategory of DY(Ps,Z/pZ) consisting of complexes supported on X.
By Lemma 4.13, Solp restricts to an equivalence of triangulated categories

Solp : Cpx.p —+ D° x(Ps, Z/L).

Then Gc}%;(dé; corresponds to D(:S’g((Pé ) == DZ%(Ps) N Dgx(Pét, Z/pZ) via Solp. Moreover, since the

equivalence

it DYy (Pa, Z/pZ) = DY(Xe, Z/PZ)

is t-exact with respect to the standard ¢-structure, we see that ng( (Ps) corresponds to DS0(Xg) via

i~1. As a consequence, we know that M € Gcggfg if and only if Solx (M) € DZ0(X;).

O

Corollary 5.19. Let X be a k-embeddable k-scheme with an immersion from X into a proper smooth
k-scheme P. We set

S DR (X/K) = SCER and € DF(X/R) = SCER

Then the t-structure (GDl%gOu(X/k), GDI%;u(X/k)) is independent of the choice of X — P, which we
b

call the constructible t-structure on Dy, (X/k). Moreover, the constructible t-structure corresponds to
the standard t-structure on D2(X¢,Z/pZ) via Solx.
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