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A moving lemma for algebraic cycles with

modulus and contravariance

Wataru Kai

Abstract

We prove a moving lemma of algebraic cycles with modulus which
implies their contravariance: Bloch-Esnault’s additive higher Chow group
turns out to be contravariant in smooth a�ne schemes; Binda-Saito’s
higher Chow group with modulus proves contravariant in smooth schemes
Nisnevich locally. Our moving method is based on parallel translation in
the a�ne space “with modulus” which involves a new integer parameter
s.
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1 Introduction

In recent years, the theory of algebraic cycles with modulus has been an attrac-
tive subject. It concerns the behavior of algebraic cycles at boundaries; more
precisely the intersection property with a chosen e↵ective Cartier divisor (called
the modulus). The notion of modulus dates back at least to class field theory.
Algebro-geometrically this concept probably started in 1952 when Rosenlicht
[Ros] introduced the divisor class group relative to a modulus (of a complete
nonsingular curve).

The current development has been initiated by Bloch and Esnault [BE] who
introduced the additive higher Chow group TCHr(X,n;m) (the definitive defi-
nition due to Park [Park]) and it has been a fruitful subject over the last decade.
It is expected to have a relation to the relative K-groups

K⇤(X ⇥ A1, X ⇥ (m+ 1){0}),
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just as Bloch’s higher Chow group CHr(X,n) is related to the K-group:

K
n

(X)Q ⇠=
M

r

CHr(X,n)Q

for smooth schemes X over a field.

In the last few years there has been a movement of introducing Chow groups
with modulus: Kerz and Saito [KS] studied the Chow group of zero-cycles with
modulus for arbitrary algebraic schemes equipped with an e↵ective divisor and
showed its remarkable connection to the wildly ramified class field theory of
varieties over finite fields. Russell [Rus] defined a slightly di↵erent version earlier
and studied its relation to his Albanese variety with modulus.

Binda and Saito [BS] then defined the higher Chow group with modulus
CHr(X|D,n) for an arbitrary pair of an algebraic scheme X and an e↵ective
Cartier divisor D on it. It is defined as the homology groups of the cycle
complex with modulus zr(X|D, •). It contains all the groups above (in suitable
versions) as particular cases. It is expected as a cycle-theoretic cohomology
theory corresponding to the relative K-theory K

n

(X,D).

In spite of being a candidate of a nice cohomology theory, it has been un-
known if the additive higher Chow group and the higher Chow group with
modulus are contravariant for arbitrary morphisms of smooth schemes. In the
projective case this has been settled by Krishna and Park [KP, KP2], but in the
general case (e.g. a�ne) the concept “modulus” gets harder to handle.

The aim of this thesis is to provide an a�rmative answer to the problem at
least locally by proving a new moving lemma. The moving lemma assures the
contravariance of the additive higher Chow group in smooth a�ne schemes,
and that of Nisnevich-localized versions of Binda-Saito’s higher Chow group
with modulus in pairs (X,D) for which X \D is smooth.

Let us explain our results in slightly more detail:

1.1 Moving lemma

We will often consider pairs (X,D) consisting of an equi-dimensional scheme X
over a base field k and an e↵ective Cartier divisor D on it.

For any integer r � 0, Binda and Saito ([BS, §2.1], recalled in §2) defined a
complex of abelian groups zr(X|D, •) called the codimension r cycle complex
of the pair (X,D) as a subcomplex of Bloch’s cycle complex zr(X, •) (cubical
version); in particular, elements of zr(X|D,n) are represented by cycles on
X ⇥An satisfying certain conditions. When D = ; it reduces to Bloch’s higher
Chow theory.

The complex is contravariant for flat maps. The association

(U
étale���! X) 7! zr(U |D|

U

, •)
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defines a complex of étale sheaves on X. We will denote this sheaf simply by
zr(X|D, •)

ét

, and similarly for weaker topologies (such as Nis., Zar.). We write
CHr(X|D,n)

Nis

for the n-th homology sheaf of zr(X|D, •)
Nis

.

Definition 1.1. For a finite collection W of constructible irreducible subsets
of X \D, define a subcomplex

zr(X|D, •)W ⇢ zr(X|D, •)

as the one which is generated by cycles V 2 zr(X|D,n) such that V (which is
by definition a codimension r cycle on X ⇥ An) intersects W ⇥ F properly in
X⇥An for every W 2W and every face F of An. This extends to a subcomplex
of étale sheaves

zr(X|D, •)W,ét

⇢ zr(X|D, •)
ét

.

Theorem 1.2 (Moving Lemma; see Theorem 4.11). Let X be an equi-dimensional
k-scheme, D be an e↵ective Cartier divisor on it, and W be a finite collection
of constructible irreducible subsets of X \D. Assume X \D is smooth over k.
Then the above inclusion is a quasi-isomorphism in the Nisnevich topology:

zr(X|D, •)W,Nis

qis

,! zr(X|D, •)
Nis

.

Along its proof we establish the following general result:

Theorem 1.3 (Noether’s normalization theorem; see Theorem 4.6). Let X ! B
be an equidimensional morphism to a regular Noetherian 1-dimensional scheme
B of relative dimension d. Then locally in the Nisnevich topology on X and B,
there is a finite surjective map

X ! Ad

B

.

This explains the need of Nisnevich localization from the technical side.

1.2 Functoriality of motivic cohomology

Binda and Saito defined the motivic complex Z(r)
X|D of a pair (X,D) as

Z(r)
X|D := zr(X|D, •)[2r]

where the degree shift is homological. This forms a complex of Nisnevich sheaves
Z(r)

X|D,Nis

on X
ét

. They defined the (Nisnevich) motivic cohomology groups
as the hypercohomology groups

Hn

M,Nis

(X|D,Z(r)) := Hn

Nis

(X,Z(r)
X|D,Nis

).

It is obviously contravariant for flat maps. Our moving lemma, Theorem 1.2,
implies its contravariance for any map of smooth schemes with e↵ective Cartier
divisors:
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Theorem 1.4 (Functoriality; see Theorem 4.15). Let (X,D), (Y,E) be pairs of
equi-dimensional k-schemes and e↵ective Cartier divisors on them, and assume
Y \ E is smooth. Let f : X ! Y be a map of k-schemes inducing a morphism
D ! E of schemes. Then there is a natural map

f⇤ : f�1zr(Y |E, •)
Nis

! zr(X|D, •)
Nis

in the derived category of complexes of Nisnevich sheaves on X. Consequently
there are natural maps of abelian groups

Hn

M,Nis

(Y |E,Z(r))! Hn

M,Nis

(X|D,Z(r))

and Nisnevich sheaves

f�1CHr(Y |E, n)
Nis

! CHr(X|D,n)
Nis

.

A “projective” variant of Theorem 1.4, without need of Nisnevich localiza-
tion, has been proved by Krishna and Park [KP2, Th.4.3].

The contravariance in this generality can deduce a natural product struc-
ture:

zr(X|D, •)
Nis

⌦ zs(X|D0, •)
Nis

! zr+s(X|D +D0, •)
Nis

in the derived category, inducing product structures on Nisnevich motivic co-
homology groups and Nisnevich Chow sheaves with modulus.

1.3 Additive higher Chow groups

The higher Chow groups with modulus includes the additive higher Chow groups
as special cases. There are some technical simplification in this case and our
method yields the following.

Definition 1.5. For schemes X, denote by Tzr(X, •;m) the complex of abelian
groups

Tzr(X, •;m) := zr(X ⇥ A1|(m+ 1){0}, •�1).
Given a finite set W of irreducible constructible subsets of X, write

Tzr(X, •;m)W := zr(X ⇥ A1|X ⇥ (m+ 1){0}, •� 1)W⇥A1

where W ⇥A1 := {W ⇥ (A1 \ {0}) | W 2W} which is a finite set of irreducible
constructible subsets of X ⇥ (A1 \ {0}).
Theorem 1.6 (see Theorem 3.22). If X is a smooth a�ne scheme, then the
inclusion of complexes of abelian groups

Tzr(X, •;m)W ,! Tzr(X, •;m)

is a quasi-isomorphism for any finite set W of irreducible constructible subsets
of X.
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Corollary 1.7 (see Theorem 3.25). For any map f : X ! Y from an algebraic
k-scheme to a smooth a�ne k-scheme Y , there is a natural pull-back map

f⇤ : Tzr(Y, •;m)! Tzr(X, •;m)

in the derived category of complexes of abelian groups.

Theorem 1.6 for projective smooth Y has been proved by Krishna and Park
[KP, Th.4.1].

Plan of the paper

In §2 we describe the definition of the cycle complex with modulus zr(X|D, •)
and prove some basic facts used in this paper.

In §3 we treat the case of the additive higher Chow group (Theorem 1.6).
In §4 we treat the case of the higher Chow group with modulus (Theorem

1.2).
Both in §§3 and 4, we follow the traditional strategy used for Bloch’s Chow

theory ([Lev, Part I, Chap. II, §3.5]), which originates from Chow’s proof [Chow].
It consists of the case of the a�ne space Ad and the reduction to this case. Our
new contribution mainly lies in the proof for the case of the a�ne space. The
treatments are very similar in both sections, but we have opted to write down
the details respectively. As a result, each section can be read independently
except that we use the facts in §3.2 on linear projection twice.

2 Definitions and basic facts

2.1 Algebraic cycle and pull-back

For an excellent Noetherian equidimensional scheme X (always over a field in
this paper), denote by zr(X) the free abelian group generated by irreducible
closed subsets of codimension r in X (also regarded as an integral closed sub-
scheme). Its elements are called algebraic cycles on X of codimension r. An
algebraic cycle represented by a single irreducible closed subset is called a prime
cycle. If V =

P

i

n
i

V
i

is a cycle with non-zero coe�cients, its support |V | is
defined to be the closed subset |V | := [

i

V
i

of X.
Given a flat morphism f : X ! Y of excellent Noetherian equidimensional

schemes and a prime cycle V 2 zr(Y ), we define a cycle f⇤V 2 zr(X) by

f⇤V :=
X

⌘

lengthO
X,⌘

(O
V

⌦O
Y

O
X

){⌘}

where ⌘ runs through the generic points of irreducible components of f�1(|V |).
Since pull-backs of closed subsets by a flat map preserve codimension, every ⌘
has codimension r in X. We extend the definition linearly to get

f⇤ : zr(Y )! zr(X).
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This operation is called the flat pull-back of algebraic cycles.
Besides flat pull-back of cycles, the following is a useful principle when con-

sidering pull-backs of cycles.

Definition 2.1 (Serre’s Tor formula). Let f : X ! Y be an l.c.i. morphism
of equidimensional schemes and V 2 zr(Y ) be a codimension r cycle. Suppose
f�1(|V |) is a codimension � r closed subset of Y (in general it has codimension
 r, if nonempty, by the l.c.i. hypothesis). Then define an element f⇤(V ) of
zr(X) as follows. First we assume V to be prime (thus V is an integral closed
subscheme). Then set:

f⇤(V ) :=
X

⌘

 

X

i

(�1)ilengthO
X,⌘

TorOY

i

(O
V

,O
X

)

!

{⌘},

where ⌘ runs through the generic points of all irreducible components of f�1(|V |).
By the condition codim

X

f�1(|V |) � r, each Tor has finite length, and by the
l.c.i. hypothesis it is a finite sum. In the general case, we extend the definition
linearly. This operation is functorial whenever the pulled-back cycles involved
are defined.

Lemma 2.2 (semi-continuity theorem of Chevalley, [EGA IV
3

, 13.1.3]). Let
f : X ! Y be a morphism of finite type of schemes. Then the function x 7!
dim

x

(f�1(f(x))) is upper-semicontinuous on X.

Lemma 2.3. Let f : X ! S be a morphism of finite type of Noetherian schemes.
Then the function s 7! dim(f�1(s)) is constructible on S.

Proof. This is a consequence of [EGA IV
3

, (9.5.5)] and can be deduced from
the previous lemma as well.

Variants of the following observation appear in this thesis repeatedly: Let
f : X ! Y be an l.c.i. morphism of equidimensional schemes. Let Z�i(f) ⇢
Y be the constructible subset consisting of points where the fiber of f has
dimension � i. Then the condition codim

X

(f�1(|V |)) � r is equivalent to

dim(V \ Z�i(f)) + i  dimX � r

for all i � 0.

2.2 The cycle complex with modulus

We write ⇤1 = P1 \1 = Spec Z[z] and ⇤n := Spec Z[z
1

, . . . , z
n

], i.e. the a�ne
space with a coordinate system z = (z

1

, . . . , z
n

). We will often consider it over
a base field k; in that case we mean ⇤n = Spec k[z

1

, . . . , z
n

]. We will often
consider the compactification ⇤n ⇢ (P1)n. Let F1 be the Cartier divisor on
(P1)n defined by:

F1 :=
n

X

i=1

(P1)i�1 ⇥
i

ˇ{1}⇥ (P1)n�i.
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There are distinguished subschemes of ⇤n, called faces. Faces of ⇤n are
{z

i

= 0}, {z
i

= 1} (1  i  n) and their finitely many intersections.

Definition 2.4. Let X be an excellent Noetherian equidimensional scheme
equipped with an e↵ective Cartier divisor D. Let zr(X|D,n) be the subgroup
of zr(X ⇥⇤n) consisting of cycles V satisfying the following two conditions:

(1) (face condition): The cycle V meets every face F of ⇤n properly, i.e.

codim|V |(|V |⇥⇤n F ) � codim⇤n(F ).

(2) (modulus condition): Let V be the closure of |V | in X ⇥ (P1)n and V
N

be its normalization (= the disjoint sum of normalizations of the irreducible

components). We have two Cartier divisors on V
N

, the pull-backs of D ⇢ X

and F1 ⇢ (P1)n by the natural projections V
N ! X, V

N ! (P1)n. In this
notation the condition is: the inequality of Cartier divisors

(the pull-back of D)  (the pull-back of F1)

holds on V
N

.

If n = 0, we read (2) as |V |\D = ;. Note that the condition (2) always implies
|V | \ (D ⇥⇤n) = ;.

2.2.1

Denote by @
i,✏

: ⇤n�1 ,! ⇤n (1  i  n, ✏ = 0, 1) the embedding

(z
1

, . . . , z
n

) 7! (z
1

, . . . ,
i

✏̌, z
i

, . . . , z
n�1

).

By the face condition, we have pull-back maps

@⇤
i,✏

: zr(X|D,n)! zr(X|D,n� 1).

Here, the modulus condition is preserved (so that the maps go into zr(X|D,n�
1)) by the following elementary fact.

Lemma 2.5. Let Y be an integral scheme and D
1

, D
2

be two e↵ective Cartier
divisors. Let f : Y 0 ! Y be a morphism from an integral scheme, whose image
is not contained in |D

1

| [ |D
2

|; thus Cartier divisors f⇤D
1

, f⇤D
2

on Y 0 are
defined. Suppose an inequality D

1

 D
2

of Cartier divisors holds on Y . Then
we have f⇤D

1

 f⇤D
2

on Y 0.

Proof. Let u
1

, u
2

be representatives of D
1

, D
2

on some open set of Y respec-
tively. The relation D

1

 D
2

says locally there is a regular function c with

u
1

c = u
2

.
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Pulling back this equation by f ,

f⇤u
1

f⇤c = f⇤u
2

.

By our hypothesis each term is not a zero-divisor. The equation says f⇤D
1


f⇤D

2

holds on Y 0.

We can organize zr(X|D,n)’s to make a complex by the di↵erentials

n

X

i=1

(�1)i�1(@⇤
i,1

� @⇤
i,0

) : zr(X|D,n)! zr(X|D,n� 1).

Let s
i

: ⇤n ! ⇤n�1 (1  i  n) be the i-th degenerate map (= collapsing
the i-th axis). We define zr(X|D,n)

degen

to be the subgroup of zr(X|D,n):

zr(X|D,n)
degen

:=
X

1in

s⇤
i

zr(X|D,n� 1).

Then zr(X|D, •)
degen

forms a subcomplex of zr(X|D, •). We define

zr(X|D,n) := zr(X|D,n)/zr(X|D,n)
degen

.

We are principally interested in the quotient complex

zr(X|D, •) = zr(X|D, •)/zr(X|D, •)
degen

,

called the cycle complex of the pair (X,D). The homolog groups

CHr(X|D,n) = H
n

(zr(X|D, •))

are called the higher Chow groups of the pair (X,D).
If D = ;, these definitions reduce to (the cubical version of) Bloch’s higher

Chow theory.

2.2.2 Additive Chow theory

The case
(X,D) = (Y ⇥ A1, Y ⇥ (m+ 1){0})

(m � 1) had been studied earlier independently and we write

Tzr(Y, n;m) := zr(Y ⇥ A1|Y ⇥ (m+ 1){0}, n� 1),

TCHr(Y, n;m) := CHr(Y ⇥ A1|Y ⇥ (m+ 1){0}, n� 1),

called the additive higher Chow groups of Y with modulus m. Their contravari-
ance in smooth a�ne Y will be proved in §3.4.
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2.2.3 The subcomplex of cycles in good position

Definition 2.6. (1) Let W be a finite set of irreducible constructible subsets
of X \D and e : W ! N be a map of sets. Define a subgroup

zr(X|D,n)W,e

⇢ zr(X|D,n)

to be the subgroup consisting of cycles V satisfying

codim
W⇥F

(|V | \ (W ⇥ F )) � r � e(W )

for all W 2 W and faces F of ⇤n (we will express this as: |V | and W ⇥ F
meet with excess  e(W )). When e is the constant function r, we have

zr(X|D,n)W,r

= zr(X|D,n).

We define
zr(X|D,n)W := zr(X|D,n)W,0

.

(2) Denote zr(X|D,n)W,e

degen

= zr(X|D,n)W,e

\ zr(X|D,n)
degen

and define
zr(X|D,n)W,e

to be the quotient group:

zr(X|D,n)W,e

:=
zr(X|D,n)W,e

zr(X|D,n)W,e

degen

.

This is the same as saying zr(X|D,n)W,e

is the image of the natural map

zr(X|D,n)W,e

! zr(X|D,n).

The series of groups zr(X|D, •)W,e

and zr(X|D, •)W,e

form complexes of
abelian groups. We write

zr(X|D, •)W := zr(X|D, •)W,0

.

As a whole, we have the following diagram:

zr(X|D, •)W := zr(X|D, •)W,0

⇢

✏✏✏✏

zr(X|D, •)W,e

⇢

✏✏✏✏

zr(X|D, •)

✏✏✏✏
zr(X|D, •)W := zr(X|D, •)W,0

⇢ zr(X|D, •)W,e

⇢ zr(X|D, •)

where the vertical maps are given by “modulo degenerate cycles.”

2.2.4 Cycle complex sheaves

For a scheme X, denote by X
et

the small étale site over X. Suppose X is ex-
cellent Noetherian and equidimensional, and equipped with an e↵ective Cartier
divisor D. Then we can consider a presheaf on X

et

(U
et�! X) 7! zr(U |D|U , n)
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(resp. zr(U |D|U , n)) which turns out to be a sheaf. We shall regard it as a
Nisnevich sheaf and denote it by zr(X|D,n)

Nis

(resp. zr(X|D,n)
Nis

).
Given a finite set W of irreducible constructible subsets of X \ D and a

function e : W ! N, we consider, for each étale scheme U ! X, the set

W
U

:= { irreducible components of W ⇥
X

U | W 2W}
of irreducible constructible subsets of U and the function

e
U

: W
U

! N
W 0 7! min

W

{e(W )|W 0 is a component of W ⇥
X

U}.
We often omit the subscript (�)

U

. Then we have presheaves

(U
et�! X) 7! zr(U |D|U , n)W,e

(resp. zr(U |D|U , n)W,e

) which turns out to form a subsheaf zr(X|D,n)W,e,Nis

of zr(X|D,n)
Nis

(resp. zr(X|D,n)W,e,Nis

of zr(X|D,n)
Nis

).
Following the classical theory without modulus, we can define the (Nis-

nevich) motivic cohomology of the pair (X,D) as

Hn

M,Nis

(X|D,Z(r)) := Hn�2r

Nis

(X, zr(X|D, •)
Nis

).

It will be proved in §4.6 that these motivic cohomology groups are contravariant
in pairs (X,D) such that X \D is smooth over the base field.

2.3 Limit and specialization lemmas

Lemma 2.7. Let X
0

be a Noetherian scheme and D be an e↵ective Cartier
divisor on X

0

. Let {X
i

}
i

be a filtered system of Noetherian X
0

-schemes and
assume the transition maps are smooth and a�ne. Suppose the limit scheme
X := lim �i

X
i

is Noetherian. Denote the pull-backs of D to X
i

or X also by D.
Then for each n, the natural map

lim�!
i

zr(X
i

|D,n)! zr(X|D,n)

(resp. lim�!
i

zr(X
i

|D,n)W,e

! zr(X|D,n)W,e

)

is an isomorphism.

Proof. The first statement is a special case of the second. The surjectivity
is the nontrivial point. Suppose given a prime cycle V 2 zr(X|D,n). As a
cycle it comes from a prime cycle V

i

on X
i

⇥ ⇤n of codimension r (by the
Noetherian hypothesis). Denote by V

i

0 := V
i

⇥
X

i

X
i

0 for transition maps X
i

0 !
X

i

. Let us check V
i

will satisfy the face condition, the modulus condition and
the intersection condition with W 2W, after replacing i.

First consider the intersection V
i

\(X
i

⇥F ) where F is a face in ⇤n. Suppose
it contains an irreducible component C of codimension < r in X

i

⇥ F . Since
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X ! X
i

is flat, its inverse image to X ⇥F would have the same codimension if
it were not empty. So the inverse image has to be empty.

We have to show the inverse image of C to some V
i

0 ⇥ F is empty. Let the
open set U

i

0 be the image of X
i

0 ! X
i

. By the condition C ⇥
X

i

X = ;, we get

\

i

0

(U
i

0 ⇥ F ) \ C = ;.

This implies some U
i

0 ⇥ F does not contain the generic point of C. For this i0,
we have C ⇥

X

i

X
i

0 = ;.
Next consider the modulus condition. Consider the closed subset {D|

V

i

N >

F1|
V

i

N } on V
i

N

. By the permanence of normality with respect to smooth
morphisms, its formation commutes with base changes X

i

0 ! X
i

. Since V

satisfies the modulus condition, it becomes empty in V
N

. Thus similarly to the
previous step, V

i

will satisfy the modulus condition after pulling back to some
X

i

0 .
Lastly we consider the condition V

i

2 zr(X
i

|D,n)W,e

. For W 2 W, write
W

i

= W ⇥
X0 X

i

. Suppose the intersection V \ (W
i

⇥ F ) has an irreducible
component C 0 having codimension < r � e(W ) in W

i

⇥ F . If C 0 ⇥
X

i

X were
nonempty, it should have the same codimension in W

X

⇥ F , which contradicts
the condition V 2 zr(X|D,n)W,e

. Therefore C 0 ⇥
X

i

X is empty. If follows
C 0 ⇥

X

i

X
i

0 is empty for some i0. Therefore V
i

0 2 zr(X
i

0 |D,n)W,e

.

Applying Lemma 2.7 to n and n� 1 we obtain:

Corollary 2.8. Under the hypotheses of Lemma 2.7, the natural maps

lim�!
i

zr(X
i

|D,n)W,e

degen

! zr(X|D,n)W,e

degen

lim�!
i

zr(X
i

|D,n)W,e

! zr(X|D,n)W,e

are isomorphisms.

Lemma 2.9. Let K/k be a purely transcendental extension of fields. Let e, e0 : W !
N be two functions satisfying e � e0 � 0. Then the natural map

zr(X|D, •)W,e

zr(X|D, •)W,e

0
! zr(X

K

|D
K

, •)W,e

zr(X
K

|D
K

, •)W,e

0

induces injective maps on the homology groups.

Proof. By Lemma 2.7 we may assume K has a finite transcendence degree m
over k; it is the function field of the a�ne space S = Am

k

.
Suppose a cycle V 2 zr(X|D,n)W,e

represents a homology class in the first
complex and maps to the zero class in the second. Then we have:

V
K

= dV 2

(K)

+ V 3

(K)

+Q
(K)

11



as cycles onX
K

⇥⇤n, where V 2

(K)

2 zr(X
K

|D,n+1)W,e

, V 3

(K)

2 zr(X
K

|D,n)W,e

0

and Q
(K)

is a degenerate cycle in zr(X
K

|D,n)W,e

. By the limit argument
(Lemma 2.7 and its corollary), after shrinking S, this formula comes from a
formula over S:

V
S

= dV 2

(S)

+ V 3

(S)

+Q
(S)

.

Moreover we may assume every component of these cycles is equidimensional
over S by Lemma 2.3.

Now suppose k is an infinite field for a while. Then there is a k-rational
point s 2 S. Pulling back the last formula to s gives a killing relation of V in
the homology group of zr(X|D, •)W,e

/zr(X|D, •)W,e

0 (pull back to s is possible
because cycles are equidimensional over S).

Next, suppose k is a finite field. Pick two prime numbers (say 2 and 3).
There is an infinite algebraic extension k(2)/k obtained as the union of finite
extensions of 2-power degrees. The class of V

k

(2) is annihilated by the scaler
extension Kk(2)/k(2). Since k(2) is an infinite field, our previous arguments
show that the class of V

k

(2) is already zero. By the limit argument (Lemma

2.7 and its corollary), there is a finite 2-power subextension k
(2)

1

such that V
k

(2)
1

represents the zero class. Therefore applying finite push-forward by k
(2)

1

/k, we

find that [k(2)
1

: k]V represents the zero class, i.e. the class of V is annihilated
by a power of 2. Applying the same argument to the prime number 3, we find
that the class of V is annihilated by a power of 3. Therefore the class of V must
be zero.

Remark 2.10. Essentially the same proof works for the following more special-
ized case: Let R be a discrete valuation ring over k with a uniformizer u, and
X be an R-scheme of finte type with an e↵ective Cartier divisor D. Let R be
the local ring of the polynomial ring R[x

1

, . . . , x
m

] at the height 1 prime ideal
(u). Then the map

zr(X|D, •)W,e

zr(X|D, •)W,e

0
! zr(XR|DR, •)W,e

zr(XR|DR, •)W,e

0

induces injective maps on the homology groups.

3 Theorem for additive higher Chow groups

In this section we prove Theorem 1.6. The basic strategy is as follows: first
we prove the statement for the a�ne space Ad equipped with a Cartier divisor.
We basically use moving by parallel translation on the a�ne space; however, in
order to manage the modulus condition, we have to introduce the moving speed
varying depending on the point.

Secondly, we treat the general case. We reduce the problem for a general
smooth a�ne X (equidimensional) to that for the a�ne space Ad via finite flat
maps X ! Ad, by choosing such maps su�ciently generally.

12



3.1 The case of a�ne spaces

Let k be a field. Write Ad = Spec(k[x
1

, . . . , x
d

]). Let u 2 k[x
1

, . . . , x
d

] \ {0} be
a nonzero function and D = (u) be the divisor defined by u.

Let z
1

, . . . , z
n

be the coordinate of ⇤n := Spec(k[z
1

, . . . , z
n

]).

3.1.1 Choosing an integer s(V )

Let V 2 zr(Ad|D,n) be a prime cycle. Let V be its closure in Ad ⇥ (P1)n with
the reduced scheme structure. We are going to define an integer s(V ) � 1.

Consider a partition {1, . . . , d} = I tJ . Let U
IJ

be the open subset of (P1)n

which has coordinates {z
i

}
i2I and {1/z

j

}
j2J . Put ⇣j = 1/z

j

. In this region the
divisor F1 is defined by the function ⇣

J

:=
Q

j

⇣
j

.
Choose a finite set of polynomials generating the ideal of the closed sub-

scheme V
red

\ (Ad ⇥ U
IJ

) and write it as

{f�

IJ

2 k[x
1

, . . . , x
d

, z
i

(i 2 I), ⇣
j

(j 2 J)]}
�

.

The next lemma is useful to interpret the modulus condition.

Lemma 3.1. Let A be a commutative ring with 1, p be a prime ideal, ⇣ 2 A
and u 2 A \ p be two elements. Then the element ⇣/u of Frac(A/p) (the residue
field of p) is integral over A/p if and only if there is a homogeneous polynomial
E(↵,�) 2 A[↵,�] which is monic in ↵ such that we have

E(⇣, u) 2 p in A.

Proof. If ⇣/u is integral over A/p, there is an equation of the form

(⇣/u)N + a
1

(⇣/u)N�1 + · · ·+ a
N

= 0 (a
i

2 A) in Frac(A/p)

satisfied by ⇣/u. Then we have the equation ⇣N +a
1

⇣N�1u+ · · ·+a
N

uN = 0 in
A/p. Therefore we have ⇣N +a

1

⇣N�1u+ · · ·+a
N

uN 2 p in A. For the converse,
read this paragraph backwards.

Now since V satisfies the modulus condition, we can apply Lemma 3.1 to
the elements

⇣
J

:=
Y

j2J
⇣
j

and u 2 A := k[x
1

, . . . , x
d

, z
i

(i 2 I), ⇣
j

(j 2 J)]

with p := (f�

IJ

)
�

. So by Lemma 3.1 we get a homogeneous polynomial

E
IJ

(↵,�) 2 k[x
1

, . . . , x
d

, z
i

(i 2 I), ⇣
j

(j 2 J)][↵,�]

monic in ↵ satisfying

E
IJ

(⇣
J

, u) 2
X

�

f�

IJ

k[x
1

, . . . , x
d

, z
i

(i 2 I), ⇣
j

(j 2 J)]. (1)

13



By multiplying E
IJ

by a power of ↵, we may assume

degE
IJ

� deg f�

IJ

where the first deg is the homogeneous degree and the second deg is the total
degree with respect to x

1

, . . . , x
d

.
Moreover, we may assume degE

IJ

is the same for all partitions {1, . . . , n} =
I t J .

Definition 3.2. For a prime cycle V 2 zr(Ad|D,n), we choose the above data
and set

s(V ) := degE
IJ

.

For an arbitrary element V =
P

µ

c
µ

V
µ

2 zr(Ad|D,n), we put

s(V ) := max
µ

{s(V
µ

)}.

3.1.2 Construction of homotopy

Choose a vector v 2 Ad and an integer s � 1. Define a morphism

p := pv,s : Ad ⇥⇤n ⇥ A1 ! Ad ⇥⇤n

by
(x, z, t) 7! (x+ tus

v, z).

(It is defined over the residue field of v; but we neglect to make the scalar
extension explicit in the notation. Or one can make scalar extension to the
residue field of v first and assume v is a rational point.) The map p is flat
over the open subset (Ad \ D) ⇥ ⇤n on the target. So if we have an element
V 2 zr(Ad|D,n), we can define a cycle

p⇤V on Ad ⇥⇤n ⇥ A1 (= Ad ⇥⇤n+1)

by flat pull-back.
The next is our technical key point.

Proposition 3.3. Suppose given an element V 2 zr(Ad|D,n) and define an
integer s(V ) as in §3.1.1. Consider the cycle p⇤v,sV on Ad ⇥ ⇤n+1. If we have
s � s(V ), then p⇤v,sV satisfies the modulus condition for any choice of v.

Proof. We may assume V is a prime cycle. The ⇤n+1 appearing in the assertion
has coordinates z

1

, . . . , z
n

, t. The compactification (P1)n+1 of ⇤n+1 is covered
by (P1)n ⇥ Spec(k[t]) and

Spec(k[z
i

(i 2 I), ⇣
j

(j 2 J), 1/t])

where I, J run through partitions {1, . . . , n} = I t J . We put ⌧ = 1/t. The
modulus condition we have to check is

D|
p

⇤
(V )

N  F1|
p

⇤
(V )

N . (2)

14



This can be checked after restricting to the region over each of those open sets.
First consider the open set (P1)n ⇥ Spec(k[t]). The morphism pv,s extends

to
p̄ := p̄v,s : Ad ⇥ (P1)n ⇥ Spec(k[t])! Ad ⇥ (P1)n

by the same formula, so we have

p⇤(V )⇥
(P1

)

n+1 ((P1)n ⇥ Spec(k[t])) = p̄⇤(V ).

From this we have an induced map

p̄ : p⇤(V )
N ⇥

(P1
)

n+1 ((P1)n ⇥ Spec(k[t]))! V
N

.

Thus we can deduce (2) from the corresponding inequality satisfied by V , on
this region.

Next consider U
IJ

⇥ Spec(k[⌧ ]). Recall we have put

U
IJ

:= Spec(k[z
i

, ⇣
j

]
i2I,j2J).

The set V \ (Ad ⇥ U
IJ

) is defined by equations

f�

IJ

(x, z
i

, ⇣
j

).

So the set p̄⇤(V ) \ (Ad ⇥ U
IJ

⇥ Spec(k[t])) is defined by equations

f�

IJ

(x+ tus

v, z
i

, ⇣
j

).

Therefore the function

(1/tdeg f

�

IJ )f�

IJ

(x+ tus

v, z
i

, ⇣
j

)

vanishes along p̄⇤(V ) \ (Ad ⇥ U
IJ

⇥ Spec(k[t, 1/t])). Here deg f�

IJ

is the total
degree of f�

IJ

with respect to x. Hence the function

'�

IJ

:= ⌧deg f

�

IJ f�

IJ

(x+ (1/⌧)us

v, z
i

, ⇣
j

)

is regular on Ad ⇥ U
IJ

⇥ Spec(k[⌧ ]) and vanishes along p⇤(V ) \ (Ad ⇥ U
IJ

⇥
Spec(k[⌧ ])). It has the form

'�

IJ

= ⌧deg f

�

IJ f�

IJ

(x, z
i

, ⇣
j

) + usg
�

for some g
�

2 k[x, z
i

, ⇣
j

, ⌧ ]
i2I,j2J . Suppose the relation (1) in §3.1.1 is explicitly

written as (recall ⇣
J

=
Q

j2J ⇣j)

E
IJ

(⇣
J

, u) =
X

�

b
�

(x, z
i

, ⇣
j

)f�

IJ

(x, z
i

, ⇣
j

) in k[x
1

, . . . , x
d

, z
i

, ⇣
j

].

Combining the last two equations, we get
X

�

⌧ s(V )�deg f

�

IJ b
�

'�

IJ

= ⌧ s(V )E
IJ

(⇣
J

, u) + (
X

�

b
�

g
�

⌧ s(V )�deg f

�

IJ )us. (3)
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By the condition s(V ) � deg f�

IJ

, everything in the equation is a polynomial
belonging to k[x, z

i

, ⇣
j

, ⌧ ].
Suppose E

IJ

(↵,�) has the form

E
IJ

= ↵s(V ) + c
1

↵s(V )�1� · · ·+ c
s(V )

�s(V ).

Then we put

E0
IJ

:= ↵s(V ) + c
1

⌧↵s(V )�1� + · · ·+ c
s(V )�1

⌧ s(V )�1↵�s(V )�1

+

 

c
s(V )

⌧ s(V ) + (
X

�

b
�

g
�

⌧ s(V )�deg f

�

IJ )us�s(V )

!

�s(V )

which belongs to k[x, z
i

, ⇣
j

, ⌧ ][↵,�] by s � s(V ). Then the equation (3) reads

E0
IJ

(⌧⇣
J

, u) 2
X

�

'�

IJ

k[x, z
i

, ⇣
j

, ⌧ ].

By Lemma 3.1 this shows that the inequality of Cartier divisors

D|
p

⇤
(V )

N  F1|
p

⇤
(V )

N

holds on the region over U
IJ

⇥ Spec(k[⌧ ]).

3.1.3 Proper intersection

We keep the notation. We choose v := v

gen

to be the generic point of Ad in this
§3.1.3. Denote the function field of Ad by k

gen

.

Lemma 3.4. Let W be a finite set of irreducible constructible subsets of Ad \D
and e : W ! N be a map of sets. Suppose v = v

gen

. Then for any s � 1 and
for any V 2 zr(Ad|D,n) we have:

(1) The cycle p⇤vgen,s
(V ) on Ad

kgen
⇥⇤n+1 meets all faces properly.

(2) The cycle p⇤(V )|
t=1

on Ad

kgen
⇥ ⇤n meets W

kgen ⇥ F properly for every

constructible irreducible subset W of Ad \D (i.e. defined over k) and every
face F of ⇤n.

(3) If V 2 zr(Ad|D,n)W,e

, the cycle p⇤(V ) meets W
kgen⇥F with excess  e(W )

for every W 2W and every face F of ⇤n+1.

Proof. The assertion (1) is a special case of (3) where W = Ad \D and e = 0.
We prove (2) first. We have to prove the intersection p⇤(V )|

t=1

\ (W
kgen ⇥ F )

is proper in Ad

kgen
⇥⇤n for any face F ⇢ ⇤n.

First suppose the map u : W ! A1 is dominant. Embed p⇤(V )|
t=1

\(W
kgen⇥

F ) into Ad

kgen
⇥ F ⇥ A1 by the composition

p⇤(V )|
t=1

\ (W ⇥ F ) ⇢ Ad

kgen
⇥ F ,!

(id,u

s

)

Ad

kgen
⇥ F ⇥ A1
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followed by the automorphism

Ad

kgen
⇥ F ⇥ A1 ! Ad

kgen
⇥ F ⇥ A1

(x, z,↵) 7! (x+ ↵v, z,↵).

Under this embedding, the fiber over a point ↵ 2 A1

kgen
looks like:

V \ ((W
↵

+ ↵v)⇥ F )) ⇢ Ad

kgen
⇥ F (⇢ Ad

kgen
⇥⇤n).

where W
↵

= W ⇥A1 ↵ (we have omitted the base-change notation to the residue
field of ↵ in some places). In particular the fiber over 0 2 A1 is empty, since W
is given as a subset of Ad \D.

Consider the following subsets of Ad ⇥ F ⇥ (A1 \ {0}):
A = W ⇥ F ,!

(incl.,u

s

)

Ad ⇥ F ⇥ (A1 \ {0}),

B = (V ⇥⇤n F )⇥ (A1 \ {0}) ⇢ Ad ⇥ F ⇥ (A1 \ {0}).
and the automorphism:

� : Ad

kgen
⇥ F ⇥ (A1 \ {0})! Ad

kgen
⇥ F ⇥ (A1 \ {0})

(x, z,↵) 7! (x+ ↵v, z,↵).

Then by the observation above, the subset �(A)\B of Ad

kgen
⇥F ⇥(A1 \{0})

is exactly the set p⇤(V )|
t=1

\(W
kgen⇥F ) embedded into it by the above fashion.

We apply the following lemma to the subsets Ā, B in Ad

kgen
⇥F ⇥ (A1 \ {0}),

the map

 : Ad

kgen
⇥ F ⇥ (A1 \ {0})! Ad

kgen
; (x, z,↵) 7! ↵v

gen

and
U = Ad

kgen
⇥ F ⇥ (A1 \ {0}).

Lemma 3.5 ([Blo, Lem.1.2]). Suppose a connected algebraic k-group G acts on
an algebraic k-scheme X. Let A,B be two closed subsets of X and assume the
fibers of the map

G⇥A! X; (g, a) 7! g · a
all have the same dimension and that this map is dominant. Assume given an
overfield K of k and a K-morphism  : X

K

! G
K

, and there is a nonempty
open set U ⇢ X such that for any point x 2 U

K

we have

tr.deg.
k

(k(' �  (x),⇡(x))) � dimG,

where ⇡ : X
K

! X and ' : G
K

! G. Define

� : X
K

! X
K

;x 7!  (x) · x
and assume it is an automorphism. Then the intersection �(A\U)\B is proper
in X

K

.
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(The condition on the map G ⇥ A ! X is satisfied in our case because
us : W ! A1 is assumed to be dominant.) When we apply Lemma 3.5, note
that B is a codimension r subset by the face condition satisfied by V . It yields

dim(p⇤(V )|
t=1

\ (W ⇥ F ))  dim(W ⇥ F )� r

i.e. the intersection is proper.
The case where u : W ! A1 is not dominant is similar and much easier. So

we omit the proof for this case.
We prove (3). Let F be a face of ⇤n+1. If F is contained in ⇤n ⇥ {0}, our

assertion follows from the assumption V 2 zr(Ad|D,n)W,e

tautologically. The
case F is contained in ⇤n⇥ {1} was treated in (2). So let us suppose F has the
form F = F 0 ⇥⇤1 where F 0 is a face of ⇤n.

We embed p⇤(V ) \ (W ⇥ F ) into Ad

kgen
⇥ F 0 ⇥ A1 by the inclusion

p⇤(V ) \ (W ⇥ F ) ,! Ad

kgen
⇥ F 0 ⇥⇤1

followed by the map

Ad

kgen
⇥ F 0 ⇥⇤1 ! Ad

kgen
⇥ F 0 ⇥ A1; (x, z, t) 7! (x+ tus

v, z, tus).

Its fiber over ↵ 2 A1

kgen
looks like

V \ ((W + ↵v)⇥ F 0) in Ad

kgen
⇥ F 0.

We can apply Lemma 3.5 to the situation

A = W ⇥ F 0 ⇥ A1 ⇢ X = Ad ⇥ F 0 ⇥ A1,

B = (V ⇥⇤n F 0)⇥ A1 ⇢ X,

 : Ad

kgen
⇥ F 0 ⇥ A1 ! Ad

kgen
; (x, z,↵) 7! ↵v,

U = X \ {↵ = 0}.
Then we find that irreducible components of the intersection

p⇤(V ) \ (W ⇥ F 0 ⇥⇤1)

which are not contained in {t = 0} all have the right dimension. Dimensions
of the components contained in {t = 0} are bounded by the condition that
V 2 zr(Ad|D,n)W,e

because p⇤(V )|
t=0

= V . Thus one sees the intersection has
excess  e(W ).

3.1.4

Here is a consequence of Proposition 3.3 and Lemma 3.4:
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Proposition 3.6. Suppose given V 2 zr(Ad|D,n)W,e

. If v = v

gen

and s �
s(V ), then we have

p⇤vgen,s
(V ) 2 zr(Ad

kgen
|D,n+ 1)W,e

and
p⇤vgen,s

(V )|
t=1

2 zr(Ad

kgen
|D,n)W .

By applying this (partially defined) homotopy operator to arbitrary finitely
generated subcomplexes of zr(Ad|D, •)W,e

, we see that the scalar extension map

zr(Ad|D, •)W,e

zr(Ad|D, •)W !
zr(Ad

kgen
|D, •)W,e

zr(Ad

kgen
|D, •)W

induces the zero map on homology groups. On the other hand, since the ex-
tension k

gen

/k is purely transcendental, by a standard specialization argument
(Lemma 2.9) the scalar extension map should induce injective maps on homol-
ogy groups (when the base field is finite we also use a trace argument to reduce
the assertion to infinite field case). Therefore the homology groups of the first
complex are all zero.

We have shown:

Theorem 3.7. Let D ⇢ Ad be an e↵ective Cartier divisor in an a�ne space
over a field k. For any W and e : W ! N, the inclusion of the complexes

zr(Ad|D, •)W ⇢ zr(Ad|D, •)W,e

is a quasi-isomorphism.

3.2 Generalities on linear projection

In this §3.2 we review techniques involving linear projection, which is used to
prove Theorem 1.6 out of Theorem 3.7. Everything is known and has been
used to prove the corresponding result for Bloch’s higher Chow theory in [Lev]
(explicitly and implicitly).

We work over a base field k.

3.2.1 Terminologies

The projective terminology. Let L ⇢ PN be a linear subscheme of codi-
mension d + 1. The Grassmannian variety parametrizing linear subschemes L0

of codimension d in PN containing L is a projective space of dimension d. Let
us denote it by P

d

.
Let Q ⇢ PN ⇥ P

d

be the incidence correspondence

Q = {(x, L0) | x 2 L0} ⇢ PN ⇥ P
d

.
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The first projection pr
1

: Q! PN is an isomorphism over the open set PN \ L.
We define the linear projection from L as the composite

⇡
L

: PN \ L pr1 ��⇠
=

Q|PN\L
pr2��! P

d

.

Given a rational point x 2 PN \ L, the fiber of ⇡
L

containing x is the linear
subspace spanned by L and x.

Choosing a system of equations F
i

2 k[X
0

, . . . , X
N

] (0  i  d) for L gives
a trivialization P

d

⇠= Pd, and ⇡
L

is written as:

⇡
L

= (F
0

: · · · : F
d

) : PN \ L! Pd.

The a�ne terminology. Let M ⇢ AN be a linear subspace of codimension
d, corresponding to a linear subspace of the vector space kN having codimension
d. Let A

d

be the a�ne space corresponding to the d-dimensional vector space
kN/M . Then we have the following map, called the linear projection

⇡
M

: AN ! A
d

.

The fiber of it containing a rational point x 2 AN is the a�ne linear subspace
x+M .

If we choose a system of equations f
1

, . . . , f
d

2 k[x
1

, . . . , x
N

] defining M , it
determines a trivialization A

d

⇠= Ad and the linear projection is written as:

(f
1

, . . . , f
d

) : AN ! Ad.

The relation between the projective and the a�ne terminologies.
Embed AN into PN naturally. Their coordinates are related by x

i

= X
i

/X
0

.
Write PN�1

1 = PN \ AN = {X
0

= 0}, the hyperplane at the infinity. Choosing
a linear subspace M ⇢ AN of codimension d is equivalent to choosing a linear
subspace L ⇢ PN of codimension d+ 1 contained in PN�1

1 (the codimension in
PN�1

1 is d).
By assigning to an a�ne linear subspace of the form x +M ⇢ AN a linear

subspace spanned by x and L in PN , we get a map A
d

! P
d

. We have a
commutative diagram

PN \ L ⇡

L // P
d

AN

⇡

M //

OO

A
d

.

OO

Moreover this diagram is Cartesian as one can easily see from the description
by coordinates below.

Choosing a system f
i

(1  i  d) of equations forM is equivalent to choosing
a system of equations for L in the form

(X
0

, F
1

, . . . , F
d

)
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where f
i

and F
i

are related by f
i

= F
i

/X
0

. Then the above diagram takes the
form:

PN \ L ⇡

L

=(X0:F1:···:Fd

) // Pd

AN

⇡

M

=(f1,...,fd) //

OO

Ad.

OO

The following will be useful when we reduce the problems to a larger field.

Lemma 3.8. Let X be a scheme of finite type over a field k. Let K be an
overfield of k and suppose given a dense open subset U

(K)

of X
K

. Then there is
a dense open subset U of X such that for any algebraic closure k̄ of k and any
common overfield ⌦ of k̄ and K,

k̄ ⇢ ⌦
[ [
k ⇢ K

we have the inclusion of subsets in X(⌦):

U(k̄) ⇢ U
(K)

(⌦).

Proof. First we may assume K/k is a finitely generated field extension. Indeed,
the open set U

(K)

is defined over some subfield K 0 of K finitely generated over
k. Let us denote the dense open set by U

(K

0
)

⇢ X
K

0 . Then if an open set
U ⇢ X solves the problem for U

(K

0
)

, it solves the problem for U
(K)

.
So let us assume K is finitely generated over k throughout the proof. First

suppose K is algebraic over k; it is a finite extension of k. The projection
p
K/k

: X
K

! X is finite. Therefore the set Z := p
K/k

(X
K

\ U
(K)

) ⇢ X is a
closed subset of X containing no generic point. Thus the set U := X \ Z is a
dense open subset of X. Since we have p�1

K/k

(U) ⇢ U
(K)

, it clearly solves our
problem.

Next we will observe that if our assertion is true for algebraically closed base
fields, then our assertion is true in general. So let us assume our assertion is
true for k̄ and verify the assertion for k. The algebra (k̄ ⌦

k

K)
red

is a finite
product of fields, say

(k̄ ⌦
k

K)
red

⇠=
Y

i

K
i

.

Put U
(K

i

)

= U
(K)

⇥
K

K
i

⇢ X
K

i

. By the assumption we can take a dense
open subset U

(

¯

k)

⇢ X
¯

k

which solves the problem for all U
(K

i

)

; for any common

overfield ⌦ of k̄ and K
i

(for an i), we have

U
(

¯

k)

(k̄) ⇢ U
(K

i

)

(⌦) (4)

in X(⌦).
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Now U
(

¯

k)

is defined over some finite subextention k0 of k̄/k, say U
(k

0
)

⇢ X
k

0 .

Set U := X \ �p
k

0
/k

(X
k

0 \ U
(k

0
)

)
�

, a dense open subset of X as we have seen

above. Then we have p�1

¯

k/k

(U) ⇢ U
(

¯

k)

, a fortiori we have

U(k̄) ⇢ U
(

¯

k)

(k̄). (5)

We can check this U solves the problem: suppose given a common overfield ⌦ of
k̄ and K. There is an index i such that the inclusion maps k̄ ! ⌦ and K ! ⌦
factor through an inclusion K

i

! ⌦. Then we have a relation (4). Combined
with (5), we get

U(k̄) ⇢ U
(K)

(⌦).

We deal with the case k = k̄. In this case every closed point of X is a k-
rational point. Write K as the function field of an integral scheme V over k with
the generic point ⌘. U

(K)

is the restriction of an open subset U
(V )

⇢ X ⇥
k

V .
Let pr

1

: X ⇥
k

V ! X be the first projection. It is a flat surjective map,
so U := pr

1

(U
(V )

) ⇢ X is a dense open subset. We will check this U solves
our problem. Indeed, suppose given an overfield ⌦ of K. We have to show
U(k̄) ⇢ U

(K)

(⌦) in X(⌦). It su�ces to show U(k̄) ⇢ U
(K)

(K). Let x 2 X(k̄) be
a k̄-rational point. Its image in X(K) is represented by (x, ⌘) 2 X⇥

¯

k

⌘. Suppose
it does not belong to U

(K)

. Then the closure of the point (x, ⌘)� = x ⇥
¯

k

V in
X ⇥

¯

k

V is contained in the closed subset (X ⇥
¯

k

V ) \U
(V )

. Therefore x does not
lie in the image of U

(V )

by the projection X ⇥ V ! X. Thus we have shown
U(k̄) maps into U

(K)

(K).

3.2.2 Notation

We will keep the following notation throughout the rest of §3.2: Let X be an
a�ne equidimensional scheme embedded in an a�ne space AN . Let AN ⇢ PN

be the natural open embedding. Write PN�1

1 = PN \AN . Let us allow ourselves
mixed usage of projective and a�ne terminologies on linear projection.

Let d  N be a positive integer. For L 2 Gr(N � d � 1,PN�1

1 ) (which we
may think defined by d linear functions on AN ), a surjective linear morphism
⇡
L

: AN ! Ad is defined (by the d functions) well-defined up to linear automor-
phism on the target. Denote by p

L

its restriction to X. The fiber of ⇡
L

passing
a rational point x 2 AN is equal to x+ ker⇡

L

.

AN

⇡

L // Ad

X

[
p

L

77

When we say some property holds for a general L 2 Gr(N � d� 1,PN�1

1 ),
let us mean the property holds on the set of closed points of a dense open subset
of Gr(N � d � 1,PN�1

1 ). Our assertions made below does not depend on the
ambiguity of linear automorphism on the target (or you may use the a�ne space
A

d

as the target to avoid any ambiguity).

22



3.2.3 Avoidance

Lemma 3.9. Suppose given a point x 2 AN and a closed subset Z ⇢ AN of
dimension < d not containing x. Then for a general L, we have ⇡

L

(x) 62 ⇡
L

(Z).
(Consequently, finitely many distinct points with closure dimension < d have
distinct images for a general L.)

Proof. By Lemma 3.8, after scalar extension, we may assume x is a k-rational
point and k is algebraically closed. A general codimension d linear subspace
passing through x does not meet Z by the assumption on dimension.

Definition 3.10. Let X be the closure of X in PN . Denote by U
X

the open
subset of Gr(N � d � 1,PN�1

1 ) consisting of linear subspaces L of PN�1

1 which
does not meet X. (If dim  d, it is a dense open subset. Otherwise it is empty.)

If L 2 U
X

, then the map p
L

: X ! Ad is finite and surjective. It is flat on
the Cohen-Macaulay locus of X [EGA IV

2

, (6.1.5)].

3.2.4 Smoothness

Let m � 1 be an integer. Denote by V the vector space of polynomials in
(x

1

, . . . , x
d

) of degree  m. It defines an a�ne space over k, also denoted by V .
The Veronese embedding of degree m is the closed embedding

AN ,! V

corresponding to the inclusion (which is a k-linear map from a vector space to
a k-algebra)

V ,! k[x
1

, . . . , x
d

].

The Veronese reembedding of degree m of an a�ne embedding refers to the
composite of a given embedding X ⇢ AN followed by the Veronese embedding
AN ⇢ V of degree m.

Lemma 3.11. Suppose dimX � d and given x 2 X. After any Veronese
reimbedding of degree � 2 of the original a�ne embedding, a general p

L

is
smooth on the subset p�1

L

p
L

(x) \X
sm

.

Proof. By the flat descent of smoothness and Lemma 3.8, we may assume k is
algebraically closed and x is a closed point. A general L satisfies the condition
that x + ker⇡

L

meets X properly. In this case the map p
L

is equidimensional
around p�1

L

p
L

(x). Therefore it is flat onX
sm

by [EGA IV
2

, (6.1.5)]. By Bertini’s
smoothness theorem [SGA4, XI, 2.1], the fiber p�1

L

p
L

(x)\X
sm

is smooth. This
completes the proof.

3.2.5 Birationality

Lemma 3.12. Suppose dimX  d and let x 2 X
sm

be a point whose closure
has dimension < d, and set y := p

L

(x). Then the induced map k(y) ! k(x) is
an isomorphism for a general L.
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Proof. By Lemma 3.11, a general p
L

is unramified at x. Therefore the extension
k(x)/k(y) is finite and separable. We have to prove it is also purely inseparable
for a general L.

Let k(x) be an algebraic closure of k(x). The points of x⇥
k

k(x) ⇢ X⇥
k

k(x)
are generic points of several irreducible subsets of dimension < d. By Lemma
3.9, for a general L 2 U

X

k(x)
, these points have distinct images by p

L

. Therefore
by Lemma 3.8, a general L 2 U

X

, the map p
L

induces an injection on the set
of k(x)-valued points over x! y. This implies that the extension k(x)/k(y) is
purely inseparable.

3.2.6 Chow’s moving lemma

Definition 3.13. Let L 2 U
X

. For a constructible subset Z of X, define a new
constructible subset

L+Z :=
�

(p�1

L

p
L

(Z)) \ Z��

where we take the closure (�)� inside p�1

L

p
L

(Z).

Definition 3.14. For irreducible constructible subsets A,B of X, set

i(A,B) = max{�1, dimA+ dimB � dimX}
(the “ideal dimension” for the intersection A \B) and

e(A,B) = max{0, dim(A \B)� i(A,B)}
(the excess dimension of the intersection A\B) where we set dim(;) = �1 by
convention. When A and B are constructible subsets not necessarily irreducible,
we define e(A,B) as the maximum of componentwise e(�,�)’s.
Lemma 3.15 (Chow’s moving lemma). Keep the notation in §3.2.2. Let d =
dimX. Let Z,W two irreducible constructible subsets of X. Assume X is
smooth at each generic point of Z \W . Then for a general L we have:

e(L+Z,W )  max{0, e(Z,W )� 1}.
Proof. This is essentially known, cf. [Lev, Part I, Chap. II, 3.5.4]. We may
restrict ourselves to those L’s such that p

L

: X ! Ad is finite. Let ram(p
L

) be
the closed subset of X where p

L

is not étale.
As we have tautologically

L+(Z)\W ⇢ ⇥

L+(Z) \W \ (ram(p
L

) \ Z \W )
⇤ [ [ram(p

L

) \ Z \W ] ,

it su�ces to control the dimensions of L+(Z) \ W \ (ram(p
L

) \ Z \W) and
(ram(p

L

) \ Z \W).
For the second one, if ram(p

L

) does not contain any generic point of Z \W ,
it has dimension  dim(Z \ W ) � 1 or is the empty set. Such L’s form a
dense open subset of the Grassmannian because of our smoothness assumption
(Lemma 3.11).
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To handle the first one, we introduce some notation. Let l(Z,W ) ⇢ Gr(1,PN )
be the constructible subset consisting of lines l such that there are points z 2 Z
and w 2 W , z 6= w, on l. Clearly dim l(Z,W )  dimZ + dimW . For each
integer j � 0, let S

j

be the set of points x 2 PN�1

1 whose fiber of the following
map (“direction”)

� : l(Z,W ) ! PN�1

1
l 7! l \ PN�1

1

has dimension j. Let S
j

=
S

�

S
(�)

j

be its irreducible decomposition. Note that
one has for any j � 0 and �:

j + dimS
(�)

j

 dim l(Z,W )  dimZ + dimW. (6)

Let us recall:

Lemma 3.16 ([Rob, Lem.6]). If a geometric point x 2 X(k) lands on L+(Z) \
(ram(p

L

) \ Z), there is a y 2 Z(k), di↵erent from x, such that p
L

(x) = p
L

(y).

Therefore if a geometric point x 2 X(k) lands on (L+(Z) \ (ram(p
L

) \ Z))\
W, there is an l 2 l(Z,W ) with x 2 l and l \ L 6= ;. So we can consider the
diagram of constructible subsets of schemes

X � (image)
Lem.3.16� (L+(Z) \ ram(p

L

) \ Z) \W

pr
1

-
8

<

:

(x, l)
�

�

�

x 2 X, x 2 l 2 l(Z,W )
and � : l(Z,W )! PN�1

1 maps
l into L ⇢ PN�1

1

9

=

;

# pr
2

l(Z,W ) � ��1(L)
�����! L

where the map pr
2

is quasi-finite because p
L

is finite on X. So we have

dim
�

(L+(Z) \ ram(p
L

) \ Z) \W
�  dim ��1(L).

At this point we consider the condition:

• L should meet every S
(�)

j

properly in PN�1

1 .

This condition is true on a dense open subset of Gr(N � 1� d,PN�1

1 ). For such
an L we have

dim(��1(L)) = sup
j,�

n

dim(��1(L \ S
(�)

j

))
o

,

dim(��1(L \ S
(�)

j

)) = dim(L \ S
(�)

j

) + j

 dim(S(�)

j

)� d+ j (because L meets S(�)

j

properly)
 dimZ + dimW � d (by (6))
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Therefore for such an L we have

dim
⇥

(L+(Z) \ (ram(p
L

) \ Z) \W)
⇤  dimZ + dimW � d,

the right hand side being the right dimension for the intersection of Z and W .
This handles the first one and completes the proof.

3.2.7 Higher Chow-like situations

Keep the notation in §3.2.2 and let d = dimX.
For L 2 U

X

we will denote p
L

⇥ id⇤n : X ⇥⇤n ! Ad ⇥⇤n also by p
L

when
no confusion can arise. For a constructible subset V of X ⇥⇤n, we will denote
by L+V the set

(p�1

L

p
L

V \ V )�

where the closure is taken in p�1

L

p
L

V . It is a constructible subset of X ⇥⇤n.

Lemma 3.17. Let V 0 ⇢ X⇥⇤n be an irreducible constructible set with generic
point ⌘. Let Z ⇢ X ⇥ ⇤n be a constructible set containing no generic point of
X ⇥

k

pr
2

(⌘). Assume X ⇥
k

pr
2

(⌘) is smooth over pr
2

(⌘) at each generic point
of (V 0 ⇥⇤n pr

2

(⌘)) \ (Z ⇥⇤n pr
2

(⌘)) (for example X is smooth).
Then for a general L 2 U

X

, no irreducible component of L+V 0 is contained
in Z.

Proof. We apply Chow’s moving lemma 3.15 to constructible subsets

V 0 ⇥⇤n pr
2

(⌘) and Z ⇥⇤n pr
2

(⌘) of X ⇥
k

pr
2

(⌘).

Taking into account the fact that Z contains no generic point of X
pr2(⌘)

, we find
that a general L 2 U

X

⇥
k

pr
2

(⌘) satisfies the condition that no component of
L+(V 0⇥⇤n pr

2

(⌘)) is contained in Z ⇥⇤n pr
2

(⌘). Using Lemma 3.17, this holds
for a general L 2 U

X

. Since the generic points of L+V 0 are all on L+(V 0 ⇥⇤n

pr
2

(⌘)), we get our assertion.

Lemma 3.18. Let V ⇢ X ⇥ ⇤n be a prime cycle with generic point ⌘ and
assume ⌘ is not a generic point of X ⇥

k

pr
2

(⌘). Assume moreover that X is
smooth at pr

1

(⌘) 2 X. Then for a general L, the support of p�1

L

p
L⇤V � V is

L+|V |. (I.e. the component V appears in p�1

L

p
L⇤V with multiplicity 1.)

Proof. The assertion will follow from properties that the mapX⇥⇤n ! Ad⇥⇤n

is étale at ⌘, and that the composite

V ⇢ X ⇥⇤n ! Ad ⇥⇤n

is a birational morphism to the image.
The first follows from Lemma 3.11 applied to pr

1

(⌘) 2 X.
We consider the second property. Consider ⌘ 2 X ⇥

k

pr
2

(⌘). Then by
Lemma 3.12, the property holds for a general L 2 U

Xpr2(⌘)
. By Lemma 3.8 the

property also holds for a general L 2 U
X

.
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Definition 3.19. Given a closed subset V ⇢ X ⇥ ⇤n, an integer i � 0 and a
face of F ⇢ ⇤n, let V �i

F

⇢ V be the set of y 2 V ⇥⇤n F such that the fiber
of pr

1

: V ⇥⇤n F ! X has dimension � i around y. By the semi-continuity
theorem of Chevalley on fiber dimensions 2.2, V �i

F

is a closed subset. Put

Z�i

F

(V ) := pr
1

(V �i

F

), a constructible subset of X. It is the set of x 2 X such
that

dim (V ⇥
X⇥⇤n (x⇥ F )) � i.

Lemma 3.20. Assume X is smooth (but see Remark 3.21 below). Let V ⇢
X ⇥⇤n be an irreducible closed subset with generic point ⌘. Assume ⌘ is not a
generic point of X⇥

k

pr
2

(⌘). Let i � 0 be an integer and assume Z�i

F

(V ) is not
dense in X. Then for a general L 2 U

X

, we have the next inclusion of subsets
of X:

Z�i

F

(L+V ) ⇢ L+(Z�i

F

(V )).

Moreover, the first is dense in the second.

Proof. First we find p�1

L

p
L

(V �i

F

) = (p�1

L

p
L

V )�i

F

because p
L

is finite. By Lemma

3.17 we may assume no irreducible component of L+(V �i

F

) is contained in V by

taking L su�ciently generally. Then p�1

L

p
L

(V �i

F

) \ V and (p�1

L

p
L

V )�i

F

\ V =

(p�1

L

p
L

V \ V )�i

F

has the same set of generic points. So we have an equality of

their closures: (L+V )�i

F

= L+(V �i

F

). Thus the problem is whether or not we
have

pr
1

(L+(V �i

F

))
?⇢ L+(Z�i

F

(V )),

i.e. whether pr
1

maps L+(V �i

F

) into L+(Z�i

F

(V )) (and the density of the image).

Let us denote Z = Z�i

F

(V ). Using the trivial fact X⇥⇤n = X⇥Ad (Ad⇥⇤n)
we have

pr
1

p�1

L

p
L

(V �i

F

) = p�1

L

p
L

(Z).

Therefore we have

p�1

L

p
L

(V �i

F

) \ pr�1

1

(Z) ⇢

pr1
✏✏✏✏

p�1

L

p
L

(V �i

F

)

pr1
✏✏✏✏

p�1

L

p
L

(Z) \ (Z) ⇢ p�1

L

p
L

(Z)

By Lemma 3.17, we may assue no irreducible component of L+(V �i

F

) is contained

in pr�1

1

(Z). Hence L+(V �i

F

) equals to the closure of p�1

L

p
L

(V �i

F

) \ pr�1

1

(Z) in

p�1

L

p
L

(V �i

F

). Therefore taking into account that pr
1

is a continuous map we

find that pr
1

maps L+(V �i

F

) into L+Z, and the image is dense.

Remark 3.21. From the proof, it is clear that we only needed the smoothness
of X at some finitely many points.
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3.3 The general case

Theorem 3.22. Let X be a smooth a�ne scheme. Suppose given a finite
set W of irreducible constructible subsets of X and a function e : W ! N. Let
D ⇢ Am be any e↵ective Cartier divisor. Denote by W⇥Am the set of irreducible
constructible subsets W ⇥ Am (W 2W) of X ⇥ Am. It is in bijection with W.
Denote the function

W ⇥ Am

⇠
= W e�! N

also by the letter e. Then the inclusion

zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e

⇢ zr(X ⇥ Am|X ⇥D, •)

is a quasi-isomorphism.

Proof. Embed X into any a�ne space AN as a closed subscheme. Put d =
dimX. By a trace argument we may assume the base field k is infinite. We
will apply the techniques recalled in §3.2 (regarding Am⇥⇤n as the a�ne space
⇤m+n).

So, for a face F ⇢ ⇤n, an integer i � 0 and a cycle V on X ⇥Am ⇥⇤n, put

V �i

F

⇢ |V |

to be the closed set of points y 2 |V |\ (X ⇥Am⇥F ) around which the fiber of
the projection

|V | \ (X ⇥ Am ⇥ F )! X

has dimension � i. Let Z�i

F

(V ) ⇢ X be its image.

Lemma 3.23. Let V 2 zr(X ⇥ Am|X ⇥D,n). It belongs to zr(X ⇥ Am|X ⇥
D,n)W⇥Am

,e

if and only if we have

dim(Z�i

F

(V ) \W ) + i  dim(W ⇥ Am ⇥ F )� r + e(W ) (7)

for all i � 0, faces F ⇢ ⇤n and W 2W.

[Let Z�i

F

(V ) = [
µ

Z�i

F

(V )µ be the irreducible decomposition. We will use
(7) in the equivalent form

e(Z�i

F

(V )µ,W )  dim(X ⇥ Am) + dimF + e(W )� (dimZ�i

F

(V )µ + r + i)

for all i � 0, faces F , W 2W and components µ.]

Proof of Lemma. Suppose V 2 zr(X ⇥ Am|X ⇥D,n)W⇥Am

,e

; it says

dim(|V | \ (W ⇥ Am ⇥ F ))  dim(W ⇥ Am ⇥ F )� r + e(W ).

Then because we have inclusion V �i

F

⇢ |V | \ (X ⇥ Am ⇥ F ), we have

dim(V �i

F

\ (W ⇥ Am ⇥ F ))  dim(W ⇥ Am ⇥ F )� r + e(W ).
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Since the surjection V �i

F

\(W ⇥Am⇥F ) ⇣ Z�i

F

(V )\W has fibers of dimension
� i, we have

dim(Z�i

F

(V ) \W ) + i  dim(V �i

F

\ (W ⇥ Am ⇥ F )).

The last two inequalities imply (7).
Next, suppose we have inequalities (7). Let ⌘ be any generic point of |V | \

(W ⇥ Am ⇥ F ). Let i � 0 be the dimension of the fiber of the projection

|V | \ (W ⇥ Am ⇥ F )! X

around ⌘. Then ⌘ lands on Z�i

F

(V ) \W by the projection to X. Hence the
irreducible component of |V | \ (W ⇥ Am ⇥ F ) represented by ⌘ has dimension

 dim(Z�i

F

(V ) \W ) + i.

By (7) this is
 dim(W ⇥ Am ⇥ F )� r + e(W ).

Therefore we have V 2 zr(X ⇥ Am|X ⇥D,n)W⇥Am

,e

.

We are going to prove Theorem 3.22 by showing the complex

zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e

zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e�1

is acyclic for any W and e. Here the function e� 1: W ! N is defined by (e�
1)(W ) = max{0, e(W )� 1}. Take any finitely generated subcomplex zr(•)0

e/e�1

of it and fix a finite generating set; we may assume the generating set consists
of prime cycles by enlarging zr(•)0

e/e�1

a little. We can make general position
arguments appearing below work for all of these generators simultaneously.

Suppose given a prime cycle V 2 zr(X ⇥ Am|X ⇥ D,n) on X ⇥ Am ⇥ ⇤n

and suppose it is an irreducible component of a closed subset of type

X ⇥ T

where T is an irreducible closed subset of Am ⇥⇤n. (In this case T necessarily
meets faces of ⇤n properly.) Then the cycle V belongs to zr(X⇥Am|X⇥D,n)W ,
because for any W 2W and F ⇢ ⇤n we have

dim(V \ (W ⇥ Am ⇥ F ))  dim(W ⇥ ((Am ⇥ F ) \ T ))
 dim(W ⇥ Am ⇥ F )� r

Therefore we may assume our generating set doesn’t include this kind of cycles.
Now take a cycle V from our generating set.

Claim 3.24. For a general L 2 U
X

, we have

p⇤
L

p
L⇤V � V 2 zr(X ⇥ Am|X ⇥D,n)W⇥Am

,e�1

.
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Proof of Claim. Note that by Lemma 3.18 and the assumption we’ve just made,
the support of p⇤

L

p
L⇤V �V is L+|V | for a general L. So for proving the assertion,

according to Lemma 3.23, we have to show

e(Z�i

F

(L+|V |)⌫ ,W )  dim(X ⇥ Am) + dimF + (e� 1)(W )

� (dimZ�i

F

(L+|V |)⌫ + r + i) (8)

for all i � 0, faces F ,W 2W and components ⌫, where we have taken irreducible
decomposition

Z�i

F

(L+|V |) =
[

⌫

Z�i

F

(L+|V |)⌫ .

Take any i, F,W, ⌫. First suppose Z�i

F

(L+|V |)⌫ is dense in X; then the left
hand side is 0 and there is nothing to prove.

So let us assume Z�i

F

(L+|V |)⌫ is not dense in X. Since p
L

is finite, Z�i

F

(V )
is not dense either. By V 2 zr(X ⇥ Am|X ⇥D,n)W⇥Am

,e

and Lemma 3.23 we
have

e(Z�i

F

(V )µ,W )  dim(X ⇥ Am) + dimF + e(W )

� (dimZ�i

F

(V )µ + r + i)

for any irreducible component µ of Z�i

F

(V ). By Chow’s moving lemma 3.15 we
have

e(L+(Z�i

F

(V )µ),W )  dim(X ⇥ Am) + dimF + (e� 1)(W )

� (dimZ�i

F

(V )µ + r + i).

By Lemma 3.20 and Remark 3.21 we know Z�i

F

(L+|V |) ⇢ L+(Z�i

F

(V )) and it

is a dense inclusion. Therefore for any component ⌫ of Z�i

F

(L+|V |), there is a

component µ of L+(Z�i

F

(V )) containing it and sharing the generic point. Thus
the previous inequality implies:

e((Z�i

F

(L+|V |)⌫),W )  dim(X ⇥ Am) + dimF + (e� 1)(W )

� (dimZ�i

F

(L+|V |)⌫ + r + i).

By Lemma 3.23, it says p�1

L

p
L

V � V belongs to the smaller subgroup:

p�1

L

p
L

V � V 2 zr(X ⇥ Am|X ⇥D,n)W⇥Am

,e�1

.

This proves Claim 3.24.

Using Lemma 3.9, choosing L generally, we may assume p
L

(W ) are di↵erent
subsets of Ad for di↵erent W 2W. Then the definitions

p⇤W = {p(W ) ⇢ Ad|W 2W}
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(a set of irreducible constructible subsets of Ad) and

p⇤e : p⇤W ! N; p(W ) 7! e(W )

make sense.
By Claim 3.24 we have a diagram

zr(•)0
e/e�1

p

L⇤��! zr(Ad ⇥ Am|Ad ⇥D)
p⇤W⇥Am

,p⇤e

zr(Ad ⇥ Am|Ad ⇥D)
p⇤W⇥Am

,p⇤e�1

p

⇤
L��! zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e

zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e�1

.

Since the middle term is acyclic by Theorem 3.7, the composite p⇤
L

p
L⇤ induces

the zero map on homology. Also by Claim 3.24 the cycle p⇤
L

p
L⇤V �V is zero as

an element of the last term.
Therefore the map

incl. = p⇤
L

p
L⇤ � [p⇤

L

p
L⇤ � incl.] :

zr(•)0
e/e�1

! zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e

zr(X ⇥ Am|X ⇥D, •)W⇥Am

,e�1

(9)

induces the zero map on homology. Since this holds for any finitely generated
subcomplex zr(•)0

e/e�1

of the right hand side, the right hand side is acyclic.
This completes the proof of Theorem 3.22.

3.4 Functoriality

Let D ⇢ Am

k

be an e↵ective Cartier divisor. Let f : X ! Y be a map from an
equidimensional algebraic scheme over k to a smooth a�ne equidimensional k-
scheme. Let Z�i(f) ⇢ Y be the constructible subset consisting of points where
the fiber of f has dimension � i.

Suppose given V 2 zr(Y ⇥Am|Y ⇥D,n) and let us consider if we can define
a cycle f⇤V 2 zr(X ⇥ Am|X ⇥ D,n). (By abuse of notation we wrote f for
f ⇥ idAm⇥⇤n : X ⇥ Am ⇥⇤n ! Y ⇥ Am ⇥⇤n.)

First we’d like to have codim
X⇥Am⇥⇤n(f�1(|V |)) � r to have a well-defined

cycle f⇤V on X ⇥Am ⇥⇤n. Furthermore the cycle f⇤V has to satisfy the face
condition. The modulus condition will be automatically true.

The first and the face conditions are summarized as follows: for any face F
of ⇤n, we have

codim
X⇥Am⇥F

(f�1(|V |⇥⇤n F )) � r.

This is equivalent to:

dim(|V |⇥
Y⇥⇤n

�

Z�i(f)⇥ F
�

) + i  dim(X ⇥ Am ⇥ F )� r

for all i � 0 and F . If Z�i(f) = [
⌫

Z�i(f)⌫ is the irreducible decomposition, it
can be written, using excess of intersections of subsets:

e(|V |, Z�i(f)⇥ Am ⇥ F )  dimX � dim(Z�i(f)⌫)� i.

31



So, if we set W := {Z�i(f)⌫}
i,⌫

and define a function e by:

e : W ! N; Z�i(f)⌫ 7! dimX � dim(Z�i(f)⌫)� i,

the condition is equivalent to

V 2 zr(Y ⇥ Am|Y ⇥D,n)W⇥Am

,e

.

Therefore the pull-back operation f⇤ is well-defined on this complex. By The-
orem 3.22, our subcomplex

zr(Y ⇥ Am|Y ⇥D, •)W⇥Am

,e

⇢ zr(Y ⇥ Am|Y ⇥D, •)
is quasi-isomorphic to the whole.

Thus we have proven:

Theorem 3.25. Let D ⇢ Am

k

be an e↵ective Cartier divisor and let f : X ! Y
be a map from an equidimensional algebraic scheme over k to a smooth a�ne
equidimensional k-scheme.

Then there is a pull-back map in the derived category of complexes of abelian
groups:

f⇤ : zr(Y ⇥ Am|Y ⇥D, •)! zr(X ⇥ Am|X ⇥D, •).

4 Theorem for higher Chow groups with modu-

lus

In this section we prove Theorem 1.2. The basic strategy is the same as in
§3. In this case the technique of linear projection to the a�ne space causes a
new trouble; for an a�ne equidimensional scheme X equipped with an e↵ective
Cartier divisor D, there might be no finite surjective map X ! Ad such that
the divisor D is the pull-back of some divisor on Ad. Fortunately, it turns out
that such maps can be canstructed after Ninevich localization (§4.2). That is
why Theorem 1.2 involves Nisnevich topology.

4.1 The case of a�ne spaces over a discrete valuation ring

Let R be a discrete valuation ring over k and u be a uniformizer. Denote by K
the fraction field of R. Denote by  = R/(u) the residue field of R.

Theorem 4.1. Let D = Ad



= (u) be the divisor on Ad

R

= Spec(R[x
1

, . . . , x
d

])
defined by u. Let W be a finite set of irreducible constructible subsets of Ad

K

=
Ad

R

\D and e : W ! N be a map of sets. Then the inclusion of complexes

zr(Ad

R

|D, •)W,e

⇢ zr(Ad

R

|D, •)
is a quasi-isomorphism.

Section 4.1 is devoted to the proof of Theorem 4.1, though it is similar to
that of Theorem 3.7.
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4.1.1

Let V 2 zr(Ad

R

|D,n) be a prime cycle. Let V be its closure in Ad

R

⇥ (P1)n. We
are defining an integer s(V ) � 1.

For a partition {1, . . . , n} = ItJ , we had defined open sets U
IJ

= Spec(k[z
i

, ⇣
j

]
i2I,j2J)

of (P1)n. Choose a finite set of generators of the ideal of V
red

\ Ad

R

⇥ U
IJ

:

�

f�

IJ

(x, z
i

, ⇣
j

) 2 R[x, z
i

, ⇣
j

]
 

�

Since V satisfies the modulus condition, we can apply Lemma 3.1 to get a
homogeneous polynomial (in ↵,�)

E
IJ

(↵,�) 2 R[x, z
i

, ⇣
j

][↵,�]

monic in ↵, satisfying

E
IJ

(⇣
J

, u) 2
X

�

f�

IJ

R[x, z
i

, ⇣
j

]. (10)

By multiplying E
IJ

by a power of ↵, we may assume

degE
IJ

� deg f�

IJ

where the first deg is the homogeneous degree of E
IJ

and the second is the total
degree of f�

IJ

with respect to x. Furthermore, we may assume degE
IJ

are the
same for all partition I, J . Under these choices we set s(V ) := degE

IJ

.
For an element V 2 zr(Ad

R

|D,n), choose a representative
P

µ

c
µ

V
µ

and put
s(V ) := max

µ

{s(V
µ

)}.
Remark 4.2. Our definition is almost the same as §3.1.1, but be aware that u
is a scalar now, not a polynomial.

4.1.2 Construction of homotopy

Let R0/R be a faithfully flat extension of discrete valuation rings and a vector
v 2 Ad

R

(R0). Let s � 1 be an integer.
Define a morphism

p = pv,s : Ad

R

0 ⇥⇤n ⇥ A1 ! Ad

R

⇥⇤n

by
(x, z, t) 7! (x+ tus

v, z).

Given an element V 2 zr(Ad

R

|D,n), we can define a cycle p⇤(V ) on Ad

R

0⇥⇤n⇥A1

(= Ad

R

0 ⇥⇤n+1).

Proposition 4.3. Suppose given a V 2 zr(Ad

R

|D,n) and define s(V ) � 1 by
the procedure in §4.1.1. Consider the cycle p⇤v,s(V ) on Ad

R

0 ⇥⇤n+1. If we have
s � s(V ), then p⇤v,s(V ) satisfies the modulus condition for any v.
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Proof. The modulus condition can be checked after restricting p⇤(V ) ⇢ Ad

R

0 ⇥
(P1)n+1 to the regions over the open subsets

(P1)n ⇥ A1 and U
IJ

⇥ Spec(R[⌧ ]) of (P1)n+1.

On (P1)n ⇥ A1 it is very easy. Let us consider U
IJ

⇥ Spec(R0[⌧ ]). In this
region the ideal of p⇤(V ) contains functions

'�

IJ

= ⌧deg f

�

IJ (x+ (1/⌧)us

v, z
i

, ⇣
j

) 2 R0[x, z
i

, ⇣
j

, ⌧ ].

It has the form
'�

IJ

= ⌧deg f

�

IJ f�

IJ

(x, z
i

, ⇣
j

) + usg

for some g 2 R0[x, z
i

, ⇣
j

, ⌧ ]. Write the relation (10) explicitly as

E
IJ

(⇣
J

, u) =
X

�

b
�

(x, z
i

, ⇣
j

)f�

IJ

(x, z
i

, ⇣
j

).

From these two equations we get

X

�

⌧ s(V )�deg f

�

IJ b
�

'�

IJ

= ⌧ s(V )E
IJ

(⇣
J

, u) + usg
2

(x, z
i

, ⇣
j

, ⌧) (11)

for some polynomial g
2

.
Suppose E

IJ

(↵,�) has the form

E
IJ

= ↵s(V ) + c
1

↵s(V )�1� · · ·+ c
s(V )

�s(V ).

Then we put

E0
IJ

:= ↵s(V ) + ⌧c
1

↵s(V )�1� + · · ·+ c
s(V )�1

⌧ s(V )�1↵�s(V )�1

+ (c
s(V )

⌧ s(V ) + us�s(V )g
2

)�s(V )

which belongs to R0[x, z
i

, ⇣
j

, ⌧ ][↵,�] by s � s(V ). Then the equation (11) reads

E0
IJ

(⌧⇣
J

, u) 2
X

�

'�

IJ

R0[x, z
i

, ⇣
j

, ⌧ ].

By Lemma 3.1 this shows the inequality of Cartier divisors

D|
p

⇤
(V )

N  F1|
p

⇤
(V )

N

holds on the region over U
IJ

⇥ Spec(R0[⌧ ]). Thus Proposition 4.3 has been
proved.
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4.1.3 Proper intersection

Here in §4.1.3 we specify our choice of v. Let R
gen

be the local ring of Ad

R

at the
generic point of Ad



. Its fraction field is K
gen

:= K(x
1

, . . . , x
d

) and its residue
field is (x

1

, . . . , x
d

). Let v = v

gen

2 Ad(R
gen

) be the vector corresponding to
the inclusion Spec(R

gen

) ,! Ad

R

.

Lemma 4.4. Let W be a finite set of irreducible constructible subsets of Ad

R

\D
and e : W ! N be a map of sets. Suppose v = v

gen

. Then for any s � 1 and
for any V 2 zr(Ad

R

|D,n) we have:

(1) The cycle p⇤vgen,s
(V ) on Ad

Rgen
⇥⇤n+1 meets every face of ⇤n+1 properly.

(2) The cycle p⇤(V )|
t=1

on Ad

Rgen
⇥ ⇤n meets W

Kgen ⇥ F properly for every

irreducible constructible set W of Ad

K

(i.e. defined over K) and face F of
⇤n.

(3) If V 2 zr(Ad

R

|D,n)W,e

, the cycle p⇤(V ) meets W
Kgen⇥F with excess  e(W )

for every W 2W and every face F of ⇤n+1.

Proof. The assertion (1) is a special case of (3). We will prove (2) first.
The cycle p⇤(V )|

t=1

\ (W
Kgen ⇥ F ) equals to

(V � us

v) \ (W
Kgen ⇥ F ).

After translated by the automorphism +us

v of Ad

Kgen
⇥ F , it looks like

V
Kgen \ ((W + us

v)⇥ F ) ⇢ Ad

Kgen
⇥ F.

We can apply the following lemma to:

A = W ⇥ F ⇢ X = Ad

K

⇥ F,

B = V ⇥⇤n F ⇢ X.

Lemma 4.5 ([Blo, Lem.1.1]). Let X be a scheme of finite type over a field k
and G a connected algebraic k-group acting on X. Let A,B ⇢ X be two closed
subsets, and assume the fibers of the map

G⇥A! X; (g, a) 7! g · a
all have the same dimension, and that this map is dominant. Then there exists
an open set ; 6= U ⇢ G such that for g 2 U the intersection g(A)\B is proper.

This completes the proof of (2).
We prove (3). Let F be a face of ⇤n+1. If F is contained in ⇤n⇥{0, 1}, then

the assertion follows respectively from the assumption V 2 zr(Ad

R

|D,n)W,e

and
from (2). So assume F has the form F = F 0⇥⇤1. Embed p⇤(V )\ (W

Kgen ⇥F )
into Ad

Kgen
⇥ F 0 ⇥ A1 by the inclusion

p⇤(V ) \ (W
Kgen ⇥ F ) ,! Ad

Kgen
⇥ F 0 ⇥⇤1
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followed by the isomorphism

Ad

Kgen
⇥ F 0 ⇥⇤1 ⇠= Ad

Kgen
⇥ F 0 ⇥ A1

(x, z, t) 7! (x+ tus

v, z, tus).

Its fiber over ↵ 2 A1

Kgen
looks like

V \ ((W + ↵v)⇥ F 0) in X ⇥ F 0

(of course, everything base-changed to the residue field of ↵). We apply Lemma
3.5 to our situation:

A := W ⇥ F 0 ⇥ A1

incl.

,! X := Ad

K

⇥ F 0 ⇥ A1

embedded by the above map,

B := (V ⇥⇤n F 0)⇥ A1 ⇢ X,

 : Ad

Kgen
⇥ F 0 ⇥ A1 ! Ad

Kgen
; (x, z,↵) 7! ↵v,

U = {↵ 6= 0} ⇢ X.

then we find that the intersection p⇤vgen,e
(V ) \ (W

Kgen ⇥ F ) in ⇤n+1 is proper
away from the closed subset {t = 0}. The dimensions of components contained
in this closed subset is bounded by the fact that we originally started with
V 2 zr(Ad

R

|D,n)W,e

. This completes the proof.

4.1.4

By Proposition 4.3 and Lemma 4.4, the canonical map

zr(Ad

R

|D, •)W,e

zr(Ad

R

|D, •)W
! zr(Ad

Rgen
|D

Rgen , •)W,e

zr(Ad

Rgen
|D

Rgen , •)W
induces the zero map on homology. But by a standard specialization argument
(Remark 2.10) it should induce an injective map on homology. Therefore we
conclude the first complex is acyclic. Thus we have shown Theorem 4.1.

4.2 Noether’s normalization theorem over a Dedekind base

Noether’s normalization theorem asserts that a d-dimensional integral a�ne
scheme of finite type over a field k admits a finite map to the d-dimensional a�ne
space Ad

k

. This theorem is often convenient to reduce a problem on an a�ne
scheme to the case of a�ne spaces. In this section we show that this statement
holds over the spectrum of a Dedekind domain, locally in the Nisnevich topology.
Namely, we prove the following variant of [Lev2, 10.2.2] customized for our use.
The proof is similar to that in loc. cit.
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Theorem 4.6. Let B be the spectrum of a Dedekind ring and ' : X ! B be a B-
scheme of finite type and equi-dimensional with d-dimensional fibers. Let x

0

2 X
and b

0

= '(x
0

) 2 B. Suppose the residue field at b
0

is infinite. Then there are
a�ne Nisnevich neighborhoods (Y, y

0

) ! (X,x
0

) and (B0, b0
0

) ! (B, b
0

) and a
commutative diagram:

(Y, y
0

)

✏✏

// (X,x
0

)

'

✏✏
(B0, b0

0

) // (B, b
0

)

such that the following holds: there is a closed embedding Y ,! An

B

0 such that
if we denote by Y the closure of Y in Pn

B

0 , then Y is fiberwise dense in Y over
B0, i.e. for any b0 2 B0 the open subset Y

b

0 ⇢ Y
b

0 is dense.

A Nisnevich neighborhood of a point s 2 S on a scheme refers to an étale
S-scheme equipped with a point having the same residue field as that of s.

Corollary 4.7. Keep the notation from Theorem 4.6. Then after a further
(Zariski) localization of B0, there is a finite surjective B0-morphism Y ! Ad

B

0 .

Proof. By the conclusion of Theorem 4.6, the closed subset Y \ Pn�1

1B

0 of Pn�1

1B

0

is equidimensional over B0 with (d � 1)-dimensional fibers. Therefore after
localizing B0, there is a linear subspace L

B

0 of Pn�1

1B

0 (relatively over B0) having
codimension d which misses Y \ Pn�1

1B

0 . Then the linear projection from L
B

0

restricts to a finite surjective map Y ! Ad

B

0 .

Proof of Theorem 4.6. We may assume X is embedded into a projective space
PN

B

as a locally closed subscheme and take the closure X ⇢ PN

B

. Note since B is
the spectrum of a Dedekind ring X is still equi-dimensional with d-dimensional
fibers. Take a codimension d linear subspace L

B

⇢ PN

B

relative to B, meeting
X fiberwise properly (i.e. the intersection L

B

\X is finite over B), and missing
x
0

. For this we may have to shrink B. By “shrink” we will always mean to take
an open neighborhood of a marked point. Shrinking X if necessary, we may
assume L

B

does not meet X. Let P̃N

B

be the blow-up of PN

B

by L
B

. Denote by
X̃ the strict transform of X. Linear projection from L

B

gives the diagram:

X � v

))

\

X

\

X̃oo

\

PN

B

P̃N

B

blow-upoo

p

✏✏
T := Pd�1

B

(12)
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Write T = Pd�1

B

and set t
0

= p(x
0

) 2 T . The map p
˜

X

: X̃ ! T is equi-
dimensional with 1-dimensional fibers.

Choose any projective embedding X̃ ,! PN

0

T

and take a hypersurface H
t0 of

PN

0

t0
such that:

(i) [In case x
0

is a closed point in p�1(p(x
0

))] H
t0 passes x

0

;

(ii) Write X̃
t0 = X̃ ⇥

T

t
0

. Then X̃
t0 and H

t0 meet properly in PN

0

t0
.

(iii) Denote by (X
t0)
� the closure of X

t0 = X ⇥Pd�1
B

t
0

in X̃
t0 . Then we have

H
t0 \ (X

t0)
� ⇢ X

t0 .

[Indeed, a general hypersurface of some high degree satisfying (i) satisfies
(ii)(iii). We used the assumption that the residue field is infinite.]

Shrinking T if necessary, there exists a hypersurface H
T

of PN

0

T

relative to
T which specializes to H

t0 at t
0

. We replace X̃ with the restriction X̃ ⇥Pd�1
B

T .

Condition (ii) holds with t
0

replaced by t 2 T if we shrink T further, since
H

T

\ X̃ is proper over T .
Set D = H

T

\ X̃. It is an e↵ective divisor on X̃ and the morphism D ! T
is finite, by (ii).

We let T vary among a�ne Nisnevich neighborhoods of (Pd�1

B

, t
0

) towards
the henselian local scheme and replace X̃ by its base change; then D ⇢ X̃
becomes a direct sum of (eventually) local components finite over T . Let D be
the sum of those components meeting X

t0 . Shrinking T if necessary, we may
assume D is contained in X by the properness.

D � � divisor //

finite

((

X ⇢ X̃

projective relative curve

✏✏
T

Nisnevich neighborhood

✏✏
Pd�1

B

Lemma 4.8. For any su�ciently large m > 0, the map

�(X̃,O
˜

X

(mD))! �(D,OD(mD)) ⇠= �(D,OD)

is surjective.

Proof. Let s 2 H0(X̃,O
˜

X

(D)) be the canonical section (i.e. the one correspond-
ing to the inclusion O

˜

X

⇢ O
˜

X

(D)). We have exact sequences

0! O
˜

X

((m� 1)D)
⇥s��! O

˜

X

(mD)! O
˜

X

(mD)⌦O
X̃

OD ! 0
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which yield the long exact sequences

H0(X̃,O
˜

X

(mD))! H0(D,OD(mD))!
! H1(X̃,O

˜

X

((m� 1)D))! H1(X̃,O
˜

X

(mD))! H1(D,OD(mD)) = 0.

The last vanishing is becauseD is a�ne. Write T = Spec(A). SinceH1(X̃,O
˜

X

(mD))
are Noetherian A-modules, the series of surjections

H1(X̃,O
˜

X

((m� 1)D))! H1(X̃,O
˜

X

(mD))! · · ·
eventually stabilizes. Then H0(X̃,O

˜

X

(mD))! H0(D,OD(mD)) becomes sur-
jective. This proves Lemma 4.8.

Thus we take an m su�ciently large so that O
˜

X

(mD) is generated by the
canonical section s

0

and another section s
1

(which maps to an invertible element
of �(D,OD(mD)) ⇠= �(D,OD)). The pair (s

0

, s
1

) defines a morphism

f : X̃ ! P1

T

.

As D is very ample on (X
t0)
� by condition (iii) on H

t0 , f is quasi-finite on X
t0 ;

replacing X by an open subset containing X
t0 , we may assume f is quasi-finite

on X because the quasi-finite locus of a morphism is open [EGA IV
3

, 13.1.4].
Shrinking T further, we may continue assuming D ⇢ X, equivalently (X̃ \

X) \ D = ;. Thus W := f(X̃ \ X) ⇢ P1

T

is contained in the open subset
P1

T

\ {s
0

= 0} ⇠= A1

T

. Moreover W is proper over T . Therefore W is finite over
T .

The morphism
f |P1

T

\W : X̃ \ f�1(W )! P1

T

\W
is finite because it is proper and f is quasi-finite on X (here, needless to say,
X̃ \f�1(W ) ⇢ X). We write X 0 := X \f�1(W ). Note that x

0

2 X 0 by condition
(i) on H

t0 .

Now, by induction on the relative dimension d of X over B, we may assume
T has a projective compactification T such that T ⇢ T is fiberwise dense over
B after possibly Nisnevich-localizing B and T .

Since f : X̃ ! P1

T

is projective it factors as the composite X̃ ,! PM

T

⇥
T

P1

T

!
P1

T

of a closed immersion and the projection.

X 0

\

� �  // X̃

\

X̃ 0

PM

T

⇥
T

(P1

T

\W ) �
�
 // PM

T

⇥
T

P1

T

� �  //

✏✏

PM

T

⇥
T

P1

T

✏✏
T �
�

 // T

✏✏
B
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Let X̃ 0 be the closure of X̃ in PM

T

⇥
T

P1

T

. Take the Stein factorization

[EGA III
1

, §4.3] of the proper morphism f 0 : X̃ 0 ! P1

T

to get

X̃ 0 ! Y ���!
finite

P1

T

.

Since f 0 is already finite over the open subset P1

T

\ W of P1

T

we have a

canonical isomorphism Y ⇥P1
T

P1

T

\W ⇠= X 0.

X̃ 0 // Y
finite // P1

T

X 0

[

finite

f

//
/ O

__

P1

T

\W

[⇤

Now we check that the open immersion X 0 ⇢ Y is fiberwise dense over B.
Take any point b 2 B and any irreducible component P of Y

b

. We have to show
P \X 0

b

is nonempty.
First consider the fiber above a generic point ⇠ of B. Then X 0

⇠

⇢ Y
⇠

is

dense because X 0 ⇢ Y is dense by construction. Moreover since X 0
⇠

is purely
d-dimensional it follows by the semi-continuity theorem of Chevalley 2.2 that
any irreducible component of the fibers of Y ! B has dimension � d.

Back to the general case, since the composite

P ,! Y
b

! P1

T

b

is finite and the last scheme has pure dimension d by the induction hypothesis,
P must have dimension exactly d, and it dominates an irreducible component
of P1

T

b

. Note that P1

T

b

\ W
b

is a dense open subset of P1

T

b

because T
b

⇢ T
b

is

a dense open subset by induction, and W is finite over T . Therefore it follows
that P ⇥P1

T

b

P1

T

b

\ W
b

= P \ X 0
b

is nonempty. Therefore X 0 ⇢ Y is fiberwise

dense.
Choose any closed embedding Y ,! Pn

B

. Then since X 0 ⇢ Y is fiberwise
dense, there exists a hypersurface H of Pn

B

relative to B which contains the
closed set Y \ X 0, misses x

0

2 X 0, and meets Y fiberwise properly, at least
after shrinking B. By composing the projective embedding with the m-fold
Veronese embedding where m is the degree of H relative to B, we may think
H is a hyperplane. By linear automorphism of Pn

B

we can take H = Pn�1

1,B

, the

hyperplane at the infinity. Then the neighborhood Y = X 0 \ Pn�1

1,B

⇢ An

B

of x
0

makes our assertion true. This completes the proof.

4.3 Choosing a good defining equation

Proposition 4.9. Let X be a finite-type scheme over an infinite field k, x 2 X
be a point, and U be an open subset of X which is smooth over k. Then there
is an open neighborhood V of x in X and a morphism v : V ! G

m

which is
smooth on V \ U .
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Proof. We may assume x is a closed point. If x 2 U , the statement is plainly
true. Let us suppose to the contrary. We may assume X has a locally closed
embedding X ,! PN .

Fix a degree n and consider the scheme P = P(�(PN ,O(n))) parametrizing
the hypersurfaces in PN of degree n. There is a linear closed subset Q of P
consisting of hypersurfaces containing x. By [AK, Th.1], if n is large enough,
there is a dense open subset P o of P meeting Q, consisting of hypersurfaces
transversal to U .

Take a rational curve l inside P o which meets Q but not contained in Q.
It defines a pencil — an open set Xo ⇢ X and a morphism v : Xo ! l. Its
axis does not contain the point x. Since l is contained in P o the morphism
v : Xo ! l restricted to U \Xo is smooth because it has smooth fibers and is
flat (being a map to a Dedekind scheme).

Our assertion now follows after setting a coordinate on l and shrinking Xo

if necessary so that v becomes a map into G
m

.

4.3.1

Assume k be an infinite field. Suppose given a k-scheme X of finite type and
an e↵ective principal Cartier divisor D on it; it is defined by a function u on X.
Assume X \D is smooth over k. Let x 2 D be a point and {x0

i

}
i

⇢ X \D be
finitely many points generalizing x.

Proposition 4.10. Keep the notation and assumptions in 4.3.1. Then we can
replace X with an open neighborhood of x and replace the defining equation u
of D so that the morphism u : X ! A1 is smooth at each x0

i

.

Proof. By Proposition 4.9 we may assume there is an invertible function v : X !
G

m

which is a smooth morphism on X\D. Given a scalar ↵ 2 k, we may assume
v + ↵ is also an invertible function (unless ↵ = v(x)) by shrinking X. Consider
the function (v + ↵)u : X ! A1. Let us see its di↵erential at x0

i

:

d[(v + ↵)u](x0
i

) = dv(x0
i

) · u(x0
i

) + (v(x0
i

) + ↵)du(x0
i

).

The first term has a nonzero value in the cotangent space T ⇤
x

0
i

X because of the

smoothness of v on X \ D. Hence the whole formula has a nonzero value in
T ⇤
x

0
i

X (for each i simultaneously) for all but finitely many ↵ 2 k. Choosing ↵

away from such a finite subset, we take (v + ↵)u as the new defining equation
of D. This proves our assertion.

4.4 Statement of the general case

We are proving the following:

Theorem 4.11. Let (X,D) be a pair of an equi-dimensional scheme over a
base field k and an e↵ective Cartier divisor on it, W be a finite collection of
constructible irreducible subsets of X \ D and e : W ! Z�0

be a map of sets.
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Assume X \ D is smooth over k. Then for any integer r � 0 the inclusion of
complexes of Nisnevich sheaves

zr(X|D, •)W,e,Nis

,! zr(X|D, •)
Nis

is a quasi-isomorphism.

Below, pull-backs of the divisor D to other schemes will be denoted by the
same letter. By a trace argument we may assume k is an infinite field.

4.4.1

We are going to prove that for any W, e the quotient complex

zr(X|D, •)W,e

zr(X|D, •)W,e�1

is acyclic locally in the Nisnevich topology, i.e. for any point x 2 X, the map

zr(X|D, •)W,e

zr(X|D, •)W,e�1

! lim�!
X

0!X

zr(X 0|D, •)W,e

zr(X 0|D, •)W,e�1

is zero on homology, where X 0 ! X runs through Nisnevich neighborhoods of
x.

Take any finitely generated subcomplex zr(X|D, •)0W,e

of zr(X|D, •)W,e

. Let
{V

�

}
�

be the finite set of prime cycles that appear as components of elements
of zrW,e

(X|D, •)0. Let zrW,e

(X|D, •)0/ ⇠ be the quotient such that an injection

zr(X|D, •)0W,e

/ ⇠ ,! zr(X|D, •)W,e

zr(X|D, •)W,e�1

is induced. It su�ces to find a Nisnevich neighborhood X 0 of x such that the
induced map

zr(X|D, •)0W,e

/ ⇠ ! zr(X 0|D, •)W,e

zr(X 0|D, •)W,e�1

is zero on homology.
By the limit argument (Corollary 2.8), we are allowed to take X 0 to be a

limit of Nisnevich neighborhoods.

Definition 4.12. For a closed subset V of X ⇥⇤n, an integer i � 0 and a face
F ⇢ ⇤n, denote by V �i

F

the closed subset of V consisting of points y such that,
denoting x := pr

1

(y) 2 X, one has

dim
y

({x}⇥
X

⇥V ⇥⇤n F ) � i.

By the semi-continuity theorem on fiber dimensions (Lemma 2.2=[EGA IV
3

,
(13.1.3)]), it is a closed subset of V ⇥⇤n F .

Put Z�i

F

(V ) := pr
1

(V �i

F

) ⇢ X. It equals the set of points x 2 X where

dim ({x}⇥
X

⇥V ⇥⇤n F ) � i.

It is a constructible subset of X.
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Let Z�i

F

(V ) = [
µ

Z�i

F

(V )µ be the irreducible decomposition. The next has
been essentially proved in Lemma 3.23.

Lemma 4.13. Suppose given V 2 zr(X|D,n). It belongs to zr(X|D,n)W,e

if
and only if

e(Z�i

F

(V )µ,W )  dimX + dimF + e(W )� (dimZ�i

F

(V )µ + r + i)

for all components µ, i � 0, W 2W and faces F ⇢ ⇤n.

4.4.2

Since our assertion is local, we may assume the divisor D is defined by a function
u on X. By Proposition 4.10, we may assume u : X ! A1 is smooth at finitely
many chosen points onX\D; we choose those points so that the general position
arguments (using the results from §3.2) appearing below are all valid.

Let Bh be the henselization of A1 at 0. Let us denote the base change of
u : X ! A1 with Bh ! A1 by the same letter u : X 0 ! Bh.

By Theorem 4.6, after Nisnevich localizing X 0 we can choose a closed em-
bedding

X 0 ,! AN

B

h

such that if we denote by X 0c ⇢ PN

B

h

its closure and PN�1

1B

h

= PN

B

h

\ AN

B

h

, the

set X 0c \ PN�1

1B

h

has pure relative dimension (dimX � 2) over Bh. (Without

knowing Theorme 4.6, the special fiber of X 0c \ PN�1

1B

h

might have dimension
� dimX � 1.) This will be used to ensure the set U

X

0 which we now introduce
has a nonempty special fiber.

Let Gr(N�dimX,PN�1

1B

h

) be the Grassmannian variety parametrizing linear

subspaces of PN�1

1B

h

of relative dimension (N � dimX) over Bh (= codimension

(dimX � 1)). A morphism L : B0 ! Gr(N � dimX,PN�1

1B

h

) from a scheme B0

determines a linear map AN

B

0 ! AdimX�1

B

0 up to linear automorphism on the
target.

Let U
X

0 be the open subset of Gr(N �dimX,PN�1

1B

h

) consisting of L’s which

miss X 0c \ PN�1

1B

h

. By our choice of the a�ne embedding X 0 ⇢ AN

B

h

it has a
nonempty special fiber. A section L : Bh ! U

X

0 defines a linear map which
restricts to a finite surjective map p

L

: X 0 ! AdimX�1

B

h

. It is also flat on the
Cohen-Macaulay locus of X 0 [EGA IV

2

, (6.1.5)].
By the flatness (on X 0 \D) and the finiteness of p

L

and the fact that it is a
Bh-morphism we have push-forward and pull-back maps of cycles with modulus
(where ⇡ denotes a uniformizer of Bh)

p
L⇤ : zr(X 0|D, •) � zr(AdimX�1

B

h

|(⇡), •) : p⇤
L

.

4.5 The proof of the general case

Keep the notation in §4.4. Denote by Kh the function field of Bh. We will
apply Chow’s moving lemma §3.2.6 for the scheme X 0

K

h

= X 0 \D over Kh of
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dimension d = dimX � 1. We will choose a section L : Bh ! U
X

0 ⇢ Gr(N �
dimX,PN�1

1B

h

) su�ciently generally so that in particular we will be able to use
the facts recalled in §3.2. When we say some property holds for a su�ciently
general L, we will mean there is a dense open subset of U

X

0 ⇥
B

h Kh such that
if L ⇥

B

h Kh (2 U
X

0(Kh)) belongs to it, the property holds. (We shall always
deal with properties depending only on L⇥

B

h Kh.)
For a function e : W ! N, we define a new function e � 1 by (e � 1)(W ) =

max{0, e(W )� 1}.
Claim 4.14. In this setting, if L is su�ciently general, p⇤

L

p
L⇤V �V belongs to

zrW,e�1

(X 0|D,n) for all V 2 {V
�

}
�

.

Proof. Let V 2 {V
�

}
�

. The case where the generic point of V is a generic
point of the projection pr

2

: X ⇥ ⇤n ! ⇤n is exceptionally easy and we omit
it.Otherwise, for a su�ciently general L the support of p⇤

L

p
L⇤V � V is L+V by

Lemma 3.18. By Lemma 3.23 we have to show the inequality

e(Z�i

F

(V )µ,W )  dimX + dimF + e(W )� (dimZ�i

F

(V )µ + r + i)

for all µ, F, i,W .
Suppose Z�i

F

(L+V ) is dense in X. Then the inequality automatically holds
using the fact that p⇤

L

p
L⇤V meets faces properly. Otherwise, choosing L su�-

ciently general, we deduce for each i a dense inclusion

Z(L+V )�i

F

⇢ L+

⇣

Z(V )�i

F

⌘

. (13)

Let Z(L+V )�i

F

= [
⌫

Z(L+V )�i,⌫

F

be the irreducible decomposition.

Now since V 2 zr(X|D,n)W,e

we know for any face F of ⇤n and i and µ:

e(Z�i,µ

F

,W )  dimX + dimF + e(W )� (dimZ�i,µ

F

+ r + i)

by Lemma 3.23. By Chow’s Moving Lemma 3.15, we have

e(L+(Z�i,µ

F

),W )  dimX + dimF + (e� 1)(W )� (dimL+(Z�i,µ

F

) + r + i)

By the knowledge of the inclusion (13), something similar holds for Z(L+V )�i

F

,
i.e.

e(Z(L+V )�i,⌫

F

,W )  dimX + dimF + (e� 1)(W )� (dimZ(L+V )�i,⌫

F

+ r + i)

for any ⌫. Therefore it follows that p⇤
L

p
L⇤V�V belongs to zr(X 0|D,n)W,e�1

.

By Claim 4.14, it also follows that p⇤
L

p
L⇤V 2 zr(X 0|D,n)W,e

. If V hap-
pens to be in the smaller subgroup zr(X|D,n)W,e�1

, we have more strongly
p⇤
L

p
L⇤V 2 zr(X 0|D,n)W,e�1

.
We may assume our L moreover satisfies:
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• No two subsets p
L

(W ) ⇢ AdimX�1

K

h

(W 2 W) are the same; in particular
the map

pW := {p
L

(W )}
W2W ! Z�0

p
L

(W ) 7! e(W )

is well-defined, which we denote by pe.

Then it follows that p
L⇤V 2 zr(AdimX�1

B

h

|(⇡), n)
pW,pe

by the projection formula
(of subsets):

|p
L⇤V | \ p

L

(W ) = p
L

(|p⇤
L

p
L⇤V | \W ).

If V happens to 2 zr(X|D,n)W,e�1

, then p
L⇤V 2 zr(AdimX�1

B

h

|(⇡), n)
pW,pe�1

.
Therefore we have maps of complexes:

zr(X|D, •)0W,e

/ ⇠ p

L⇤��! zr(AdimX�1

B

h

|(⇡), •)
pW,pe

zr(AdimX�1

B

h

|(⇡), •)
pW,pe�1

p

⇤
L��! zr(X 0|D, •)W,e

zr(X 0|D, •)W,e�1

.

Consider the equality of operations (where the map can. is the canonical map)

can. = p⇤
L

p
L⇤ � [p⇤

L

p
L⇤ � can.] : zrW,e

(X|D, •)0/ ⇠ ! zr(X 0|D, •)W,e

zr(X 0|D, •)W,e�1

.

The first term p⇤
L

p
L⇤ is zero on homology because it factors through an acyclic

complex (Theorem 4.1). The second term [p⇤
L

p
L⇤ � can.] is zero by Claim 4.14.

Therefore the operator can. is also zero on homology. This completes the proof
(recall 4.4.1).

4.6 Functoriality

Suppose given pairs (X,D), (Y,E) of equidimensional algebraic k-schemes and
e↵ective Cartier divisors, and a k-morphism f : X ! Y inducing a morphism
D ! E. Let V 2 zr(Y |E, n) and consider if a pulled-back cycle f⇤V in
zr(X|D,n) is defined via the construction in Definition 2.1.

First, the closed subset (f⇥id⇤n)�1(|V |) ofX⇥⇤n have to have codimension
� r.

Set Z�i(f) ⇢ Y \ E to be the constructible subset consisting of points
where the fibers of f have dimension � i, and let Z�i(f) = [

µ

Z�i(f)µ be the
irreducible decomposition. Then the previous condition is equivalent to

dim(|V | \ (Z�i(F )⇥⇤n)) + i  dim(X ⇥⇤n)� r

for all i � 0.
Furthermore, the pulled-back cycle (f ⇥ id⇤n)⇤V on X ⇥ ⇤n has to meet

faces of ⇤n properly. This is equivalent to

dim(|V | \ (Z�i(F )⇥ F )) + i  dim(X ⇥ F )� r (14)

for all faces F of ⇤n. (The cycle (f ⇥ id)⇤V satisfies the modulus condition
automatically from the fact that f restricts to a morphism D ! E.)
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The condition (14) can be stated equivalently as follows:

codim
Z

�i

(f)

µ⇥F

(|V | \ (Z�i(f)µ ⇥ F )) � r � (dimX � dimZ�i(f)µ � i).

Therefore if we put
W = {Z�i(f)µ}

i,µ

,

a finite set of irreducible constructible subsets of Y and set a function on W as

e(Z�i(f)µ) = dimX � dimZ�i(f)µ � i (� 0),

then our condition is equivalent to

V 2 zr(Y |E, n)W,e

.

So we have a diagram of complexes

zr(Y |E, •) � zr(Y |E, •)W,e

f

⇤

�! zr(X|D, •)

which extends to a diagram of sheaves

zr(Y |E, •)
Nis

� zr(Y |E, •)W,e,Nis

f

⇤

�! f⇤zr(X|D, •)
Nis

on Y (equivalently, a diagram

f�1zr(Y |E, •)
Nis

� f�1zr(Y |E, •)W,e,Nis

f

⇤

�! zr(X|D, •)
Nis

on X). By Theorem 4.11 the left two complexes are quasi-isomorphic in the
Nisnevich topology. Thus we have shown:

Theorem 4.15. Suppose given pairs (X,D), (Y,E) of equidimensional algebraic
k-schemes and e↵ective Cartier divisors, and a k-morphism f : X ! Y inducing
a morphism D ! E.

Then there is a natural pull-back map

f�1zr(Y |E, •)
Nis

f

⇤

�! zr(X|D, •)
Nis

in the derived category of complexes of Nisnevich sheaves on X.

Therefore we have the contravariance of the motivic cohomology groups
Hn(X, zr(X|D, •)

Nis

).
Using this we can deduce a product structure on them:

Lemma 4.16. For any pairs (X,D), (Y,E) of equidimensional k-schemes and
e↵ective Cartier divisors, there are obvious external product maps

⇥ : zr(X|D,m)⇥ zs(Y |E, n)! zr+s(X ⇥ Y |(D ⇥ Y ) + (X ⇥ E),m+ n)

(V,W ) 7! (the cycle associated with) V ⇥W.

46



Proof. It follows directly from the definitions.

An appropriate signed sum of the above maps gives a map of complexes

⇥ : zr(X|D, •)⌦ zs(Y |E, •)! zr+s(X ⇥ Y |(D ⇥ Y ) + (X ⇥ E), •).

Corollary 4.17. Let X be an equidimensional k-scheme and let D,D0 be two
e↵ective Cartier divisors on X such that X \ (|D|\ |D0|) is smooth. Then there
is a natural intersection product map

zr(X|D, •)
Nis

⌦ zs(X|D0, •)
Nis

! zr+s(X|D +D0, •)
Nis

in the derived category of complexes of Ninevich sheaves on X.

Proof. We use the previous lemma and the pull-back by the diagonal X ,!
X ⇥X which exists Nisnevich locally by Theorem 4.15.
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