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Abstract. Biran, Polterovich and Salamon introduced a relative symplectic ca-
pacity which indicates the existence of non-contractible trajectories of certain
Hamiltonian isotopies. In the present paper, we give an upper bound of their
relative symplectic capacity of certain heavy subsets by using spectral invariants
defined in terms of the Hamiltonian Floer theory on contractible trajectories.

1. Introduction

For Hamiltonian isotopies, it is interesting to know whether they have
non-contractible (periodic) trajectories. Biran, Polterovich and Salamon
introduced a relative symplectic capacity which indicates the existence of
non-contractible trajectories of certain Hamiltonian isotopies ([BPS]).

For a compact subset Y of an open symplectic manifold (N, ω) and a free
homotopy class α ∈ [S 1,N], Biran, Polterovich and Salamon [BPS] defined
the relative symplectic capacity CBPS (N,Y;α) by

CBPS (N,Y;α) = inf{K > 0;∀H ∈ HK(N,Y),P(H;α) , ∅},

where
HK(N,Y) = {H ∈ C∞c (S 1 × N); inf

S 1×Y
H ≥ K},

and P(H;α) is the set of 1-periodic trajectories of the Hamiltonian isotopy
generated by the Hamiltonian function H in the class α.

Biran, Polterovich and Salamon proved the following theorem by show-
ing non-vanishing of the homomorphism from a symplectic homology to a
relative symplectic homology.

Theorem 1.1 ([BPS]). Let N be a connected closed Riemannian manifold
and α ∈ [S 1,N] a non-trivial homotopy class of free loops in N. Assume
that N is the n-dimensional torus or has the Riemannian metric whose sec-
tional curvature is negative. Then

CBPS (B∗N,N;α) = lα,

where lα is the infimum of length of closed geodesics in the class α. Here let
(B∗N, ωN) denote the unit ball subbundle of the cotangent bundle with the
standard symplectic form ωN and let N denote the zero section of B∗N.
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After the above work by Biran, Polterovich and Salamon [BPS], Weber
[W] proved that Theorem 1.1 holds for any connected closed Riemannian
manifold N and Niche [N] gave bounds of Biran-Polterovich-Salamon’s
capacities for twisted cotangent bundles.

One of the reasons why CBPS (N,Y) is finite in their cases is that the com-
pact subsets Y are non-displaceable in N. Indeed, Biran, Polterovich and
Salamon essentially proved the following proposition.

Proposition 1.2 (Proposition 3.3.2 of [BPS]). Let (N, ω) be a connected
open symplectic manifold and Y a compact subset of N. Let α be a non-
trivial homotopy class of free loops. Assume that there exists a Hamiltonian
function H : S 1 × N → R with compact support such that Y ∩ ϕ1

H(Y) = ∅
and P(H;α) = ∅. Then CBPS (N,Y;α) = ∞. Here {ϕt

H} is the Hamiltonian
isotopy generated by H.

Thus, we would like to know the problem whether Biran-Polterovich-
Salamon’s capacity is finite or not on non-displaceable subsets in general.

One of the important classes of non-displaceable subsets is the class of
heavy subsets. In fact, heavy subsets are known to be non-displaceable,
moreover, stably non-displaceable (See Section 2). For example,

(Clifford torus of CPn) × T n ⊂ CPn × T ∗T n

is a heavy subset and thus non-displaceable.
In the present paper, we give an upper bound of Biran-Polterovich-Salamon’s

capacity of heavy subsets.
To state our main result, we introduce some notations.
For R = (R1, . . . ,Rn) ∈ (R>0)n, let In

R be the open subset In
R of Rn defined

by

In
R = {p = (p1, . . . , pn) ∈ Rn; |pi| < Ri for i = 1, . . . , n}.

We consider the standard symplectic formω0 = dp1∧dq1+· · ·+dpn∧dqn on
In
R × T n with coordinates (p, q) = (p1, . . . , pn, q1, . . . , qn), where we regard

T n as (R/Z)n. We denote the zero-section {(p, q) ∈ In
R×T n; p = 0} of In

R×T n

by T n.
Let (M, ω) be a connected symplectic manifold and X a compact subset

of M. For an element e = (e1, . . . , en) of Zn and an element R = (R1, . . . ,Rn)
of (R>0)n, we define the relative symplectic capacity C(M, X,R; e) by

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)).

Here, we fix the symplectic form pr∗1 ω + pr∗2 ω0 on M × In
R × T n and we

identify the homotopy set [S 1, In
R × T n] with Zn and let 0M denote the class

of constant loops in M.
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For a real number λ, a symplectic manifold (M, ω) is said to be λ-monotone
if [ω] = λc1 on π2(M) and monotone if (M, ω) is λ-monotone for some pos-
itive λ. Here c1 is the first Chern class of T M with respect to an almost
complex structure compatible with ω.

Our main theorem is the following one.

Theorem 1.3. Let (M, ω) be a 2m-dimensional connected closed λ-monotone
symplectic manifold and X a heavy subset of M. Then

C(M, X,R; e) ≤ 2
n∑

i=1

Ri · |ei| +max{0,−λ(m + n)},

for any elements e = (e1, . . . , en) and R = (R1, . . . ,Rn) of Zn and (R>0)n,
respectively.

We can rewrite Theorem 1.3 in the following form.

Theorem 1.4. Let X be a heavy subset of a 2m-dimensional connected
closed λ-monotone symplectic manifold (M, ω). Let e = (e1, . . . , en) and
R = (R1, . . . ,Rn) be elements of Zn and (R>0)n, respectively. We fix the sym-
plectic form pr∗1 ω+pr∗2 ω0 on M× In

R×T n, where pr1 : M× In
R×T n → M and

pr2 : M× In
R×T n → In

R×T n are the the projections defined by pr1(x, p, q) = x
and pr2(x, p, q) = (p, q). Let F : S 1 × M × In

R × T n → R be a Hamiltonian
function with compact support such that

F|S 1×X×T n ≥ 2
n∑

i=1

Ri · |ei| +max{0,−λ(m + n)}.

Then the Hamiltonian isotopy {ϕt
F}t∈R has a 1-periodic trajectory in the free

loop homotopy class (0M, e) ∈ [S 1,M × In
R × T n].

Many of papers which give upper bounds of Biran-Polterovich-Salamon’s
capacity use the Hamiltonian Floer theory on non-contractible trajectories
([BPS], [W], [N] ,[X]). In the present paper, however, we use (Oh-Schwarz’s)
spectral invariants ([Sc], [O02] and [O06]) to give an upper bound of Biran-
Polterovich-Salamon’s capacity. Spectral invariants are defined in terms of
the Hamiltonian Floer theory on contractible trajectories, however they be-
have better when we look at heavy subsets.

For a displaceable compact subset X, we have the following results.

Proposition 1.5. Let (M, ω) be a connected symplectic manifold and X a
displaceable compact subset of M. Let e = (e1, . . . , en) and R = (R1, . . . ,Rn)
be elements of Zn and (R>0)n, respectively. Assume that Rk · |ek| > E(X) for
some k, where E(X) denotes the displacement energy of X (see Section 6).
Then C(M, X,R; e) = ∞.
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Thus we obtain an upper bound of Biran-Polterovich-Salamon’s capacity
of (Clifford torus of CPn) × T n in CPn × In

R × T n and a lower bound of the
one of (other fiber of the moment map CPn → △n) × T n in CPn × In

R × T n.

Example 1.6. Let (CPm, ωFS ) be the m-dimensional complex projective
space with the Fubini-Study form ωFS . Let Φ : CPm → Rm be the moment
map defined by

Φ([z0 : . . . : zm]) = (
|z0|2

|z0|2 + · · · + |zm|2
, . . . ,

|zm|2
|z0|2 + · · · + |zm|2

).

The Clifford torus Φ−1(y0) is a heavy subset of (CPm, ωFS ) where y0 =

( 1
m+1 , . . . ,

1
m+1 ). Since (CPm, ωFS ) is a monotone symplectic manifold, The-

orem 1.3 implies

C(CPm,Φ−1(y0),R; e) ≤ 2
m∑

i=1

Ri · |ei|,

for any elements e = (e1, . . . , em) and R = (R1, . . . ,Rm) of Zm and (R>0)m,
respectively.

On the other hand, Lemma 5.1 of [BEP] essentially proved that there
exists a positive constant P such that E(Φ−1(y)) < P for any element y , y0

of Rm. Thus for any element y of Rm with y , y0, Proposition 1.5 implies

C(CPm,Φ−1(y),R; e) = ∞,
for any elements e and R of Zm and (R>0)m such that Rk · |ek| > P for some
k, respectively.

The present paper is organized as follows. We review the definitions in
symplectic geometry in Section 2 and spectral invariants in Section 3 which
are needed to prove Theorem 1.4 in Section 4. We discuss in Section 5
the existence of periodic trajectories of period not more than 1. In Section 6
and 7, we look at the capacity of displaceable subsets and prove Proposition
1.5. In Section 8, we discuss generalizations of our main Example 1.6.
In Sections 9 and 10, we discuss exact values of the capacities, where we
show that our capacity of a certain non-displaceable but not stably non-
displaceable subsets is infinite.
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2. Preliminaries

In this section, we review several definitions in symplectic geometry in
order to fix the terminology.

Let (M, ω) be a symplectic manifold. For a Hamiltonian function H : M →
R with compact support, we define the Hamiltonian vector field XH associ-
ated with H by

ω(XH,V) = −dH(V) for any V ∈ X(M),

where X(M) denotes the set of smooth vector fields on M.
Let S 1 denoteR/Z. For a (time-dependent) Hamiltonian function H : S 1×

M → R with compact support and for t ∈ S 1, we define Ht : M → R by
Ht(x) = H(t, x). We denote the Hamiltonian vector field associated with Ht

by Xt
H and denote by {ϕt

H}t∈R the isotopy generated by Xt
H such that ϕ0

H = id.
ϕ1

H is called the Hamiltonian diffeomorphism generated by the Hamiltonian
function H and denoted by ϕH. For a symplectic manifold (M, ω), we de-
note by Ham(M, ω) the group of Hamiltonian diffeomorphisms of (M, ω).
For x ∈ M, we denote by γx

H : [0, 1]→ M the path defined by γx
H(t) = ϕt

H(x).
A subset X of M is displaceable if X̄ ∩ ϕ1

H(X) = ∅ for some Hamiltonian
function H : S 1 × M → R, where X̄ is the topological closure of X. X
is non-displaceable otherwise. A subset X of a symplectic manifold M is
stably displaceable if X × T 1 is displaceable in M × T ∗T 1. X is stably
non-displaceable otherwise. If X is stably non-displaceable, then X is non-
displaceable.

We denote the free loop space C∞(S 1,M) of M by LM. For z ∈ LM,
we denote its free homotopy class by [z] ∈ [S 1,M]. Let ev : LM → M be
the evaluation map defined by ev(z) = z(0). For a given class α ∈ [S 1,M],
we define the subset LαM of LM by LαM = {z ∈ LM; [z] = α}. For
a Hamiltonian function H : S 1 × M → R, we define the set of 1-periodic
trajectories of {ϕt

H}t∈R in the class α by

P(H;α) = {z ∈ LαM; ż(t) = Xt
H(z(t))}.

We define the covering space L̃0M (M) of L0M (M) by

L̃0M (M) = {u ∈ C∞(D2,M); u|∂D2 ∈ L0M (M)}/ ∼ .
Here u ∼ u′ if u|∂D2 = u′|∂D2 , ω(ū♯u′) = 0 and c1(ū♯u′) = 0, where ♯ denotes
the map from the sphere obtained from u with the reversed orientation and
u′ by gluing along their common boundary. We also define the covering
space P̃(H) of P(H; 0M) by

P̃(H) = {[z, u] ∈ P(H; 0M) ×C∞(D2,M); u|∂D2 = z}/ ∼ .
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Here [z, u] ∼ [z′, u′] if z = z′, ω(ū♯u′) = 0 and c1(ū♯u′) = 0.

3. Spectral invariants and heavy subsets

In this section, we review spectral invariants which we use in the proof
of our results.

3.1. Spectral invariants. For a 2m-dimensional closed connected sym-
plectic manifold (M, ω), we define

Γ =
π2(M)

Ker(c1) ∩ Ker([ω])
.

The Novikov ring Λ of the closed symplectic manifold (M, ω) is defined as
follows:

Λ =

∑
A∈Γ

aAA; aA ∈ Z2, #{A; aA , 0,
∫

A
ω < R} < ∞ for any real number R

 .
The quantum homology QH∗(M, ω) is aΛ-module isomorphic to H∗(M;Z2)⊗Z2

Λ and QH∗(M, ω) has a ring structure with the multiplication called the
quantum product ([O06]).

For a Hamiltonian function H : S 1 × M → R, the action functional
AH : L̃0M M → R is given by

AH([z, u]) =
∫ 1

0
H(t, z(t))dt −

∫
D2

u∗ω.

Then we regard P̃(H) as the set of critical points ofAH.
We define the non-degeneracy of Hamiltonian functions as follows:

Definition 3.1. A Hamiltonian function H : S 1 × M → R is said to be non-
degenerate if for any element z of P(H; 0M), 1 is not an eigenvalue of the
differential (dϕ1

H)z(0).

When H is non-degenerate, the Floer chain complex CF∗(H) is gener-
ated by P̃(H) as a module over Z2. Since there exists a natural action of
Λ on CF∗(H), we regard CF∗(H) as a module over Λ. The chain com-
plex CF∗(H) is graded by the Conley-Zehnder index indCZ([SZ]). Note
that indCZ([z, u♯A]) = indCZ([z, u]) + 2c1(A) for any map A ∈ π2(M). We
obtain the boundary homomorphism of this chain complex by counting iso-
lated negative gradient flow lines of AH formally. Let F : M → R be a
Morse function on M and x a critical point of F. Assume that dF is C1-
small near x. Then indMorse(x) = indCZ([x, cx]), where cx is a trivial capping
disk and indMorse is the Morse index. There exists a natural isomorphism
Φ : QH∗(M, ω) → HF∗(M, ω). We call this isomorphism the PSS isomor-
phism ([PSS]).
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Given an element A =
∑

i ai[zi, ui] of CF∗(H), we define the action level
lH(A) of A by

lH(A) = max{AH([zi, ui]); ai , 0}.
For a non-zero element a of QH∗(M, ω), we define the spectral invariant

associated to a non-degenerate Hamiltonian function H and a by

c(a,H) = inf{lH(A); [A] = Φ(a)}.
The following proposition summarizes the properties of spectral invari-

ants which we need to show our result.

Proposition 3.2 ([O06]). The spectral invariant has the following proper-
ties.

(1)Lipschitz property: The map H 7→c(a,H) is Lipschitz on C∞(S 1 ×
M) with respect to the C0-norm,

(2)Homotopy invariance: Assume that Hamiltonian functions F,G : S 1×
M → R are normalized i.e.

∫
M

Ft(x)ωm = 0,
∫

M
Gt(x)ωm = 0

for any t ∈ S 1 and satisfy ϕ1
F = ϕ1

G and that their Hamiltonian
isotopies {ϕt

F} and {ϕt
G} are homotopic relative to endpoints. Then

c(a, F) = c(a,G),
(3)Triangle inequality: c(a∗b, F♯G) ≤ c(a, F)+c(b,G) for any Hamil-

tonian functions F,G : S 1 × M → R, where ∗ denotes the quantum
product. Here the Hamiltonian function F♯G : S 1 × M → R is de-
fined by

(F♯G)(t, x) = F(t, x) +G(t, (ϕt
F)−1(x)),

whose Hamiltonian isotopy is {ϕt
Fϕ

t
G}.

For a general Hamiltonian function H : S 1 × M → R (which might be
degenerate) , we define the spectral invariant c(a,H) by the Lipschitz prop-
erty for spectral invariants (Proposition 3.2 (1)). Then the spectral invari-
ant defined for general Hamiltonian functions also satisfy the properties in
Proposition 3.2.

3.2. Heaviness. Entov and Polterovich ([EP]) defined the notion of heavi-
ness of compact subsets in closed symplectic manifolds.

For an idempotent a of the quantum homology QH∗(M, ω), we define the
functional ζa : C∞(M)→ R to be the stabilization of c(a, ·);

ζa(H) = lim
l→∞

c(a, lH)
l

.

Definition 3.3 ([EP]). Let (M, ω) be a 2m-dimensional closed symplectic
manifold and a an idempotent of the quantum homology QH∗(M, ω). A
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compact subset X of M is said to be a-heavy if

ζa(H) ≥ inf
X

H,

for any (time-independent) Hamiltonian function H : M → R. A compact
subset X of M is said to be heavy if X is a-heavy for some idempotent a of
QH∗(M, ω).

Entov and Polterovich [EP] proved that every heavy subset is non-displaceable
([EP] Theorem 1.4).

Example 3.4. On the torus T n
R×T n = R/2R1Z×· · ·×R/2RnZ× (R/Z)n with

coordinates (p, q) = (p1, . . . , pn, q1, . . . , qn), we fix the standard symplectic
form ω0 = dp1 ∧ dq1 + · · · + dpn ∧ dqn. Entov and Polterovich [EP] proved
that for any element R = (R1, . . . ,Rn) of (R>0)n, {0} × T n is a heavy subset
of T n

R × T n.

4. Proof of Theorem 1.4

To prove Theorem 1.4, we give an upper bound of the spectral invariant
associated to a Hamiltonian function F : S 1 ×M × In

R(2ϵ) ×T n → R such that
P(F; (0M, e)) = ∅. Here, for R = (R1, . . . ,Rn) ∈ (R>0)n and a positive real
number ϵ with ϵ < min{R1, . . . ,Rn}, let R(ϵ) denote (R1 − ϵ, . . . ,Rn − ϵ) ∈
(R>0)n.

Proposition 4.1. Let (M, ω) be a 2m-dimensional connected closed λ-monotone
symplectic manifold. Let e = (e1, . . . , en) and R = (R1, . . . ,Rn) be ele-
ments of Zn and (R>0)n, respectively. For a positive real number ϵ with
2ϵ < min{R1, . . . ,Rn}, let Uϵ be the open subset of T n

R × T n defined by

Uϵ = {(p, q) ∈ T n
R × T n; p ∈ IR(2ϵ)}.

We fix the symplectic form pr∗1 ω + pr∗2 ω0 on M × T n
R × T n, where pr1 : M ×

T n
R×T n → M and pr2 : M×T n

R×T n → T n
R×T n are the projections defined by

pr1(x, p, q) = x and pr2(x, p, q) = (p, q). Then for any Hamiltonian function
F : S 1 × M × Uϵ → R with compact support such that P(F; (0M, e)) = ∅,

c([M × T n
R × T n], F) < 2

n∑
i=1

Ri · |ei| +max{0,−λ(m + n)}.

To prove Proposition 4.1, we use the following proposition. Let 0T denote
the free homotopy class of constant loops in T n

R × T n.

Proposition 4.2. Let W be an open subset of a 2w-dimensional connected
closed λ-monotone symplectic manifold (Ŵ, ω) and α ∈ [S 1, Ŵ] a non-
trivial homotopy class of free loops on Ŵ. Assume that a Hamiltonian func-
tion H : W → R satisfies the following conditions.

• for any point x in W, ϕ1
H(x) = x and [γx

H] = −α,
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• H is a Morse function and ev(P(H; 0Ŵ)) = Crit(H),
• indMorse(x) = indCZ([x, cx]) for any point x in Crit(H),

where 0Ŵ denotes the class of constant loops in Ŵ.
Then for any Hamiltonian function F : S 1×W → R with compact support

such that P(F;α) = ∅,

c([Ŵ], F) ≤ 2||H||C0 +max{0,−λw},

Proof. To give an upper bound of the spectral invariant associated to F,
we consider the concatenation of ϕ1

F and a Hamiltonian diffeomorphism ϕ1
H

with trajectories in −α. We can choose a smooth function χ : [0, 1
2 ]→ [0, 1]

satisfying the following conditions.

• ∂χ

∂t (t) ≥ 0 for any t ∈ [0, 1
2 ], and

• χ(t) = 0 for any t ∈ [0, 1
5 ] and χ(t) = 1 for any t ∈ [2

5 ,
1
2 ].

Let L : S 1 × Ŵ → R be a Hamiltonian function defined by

L(t, x) =

∂χ∂t (t)H(χ(t), x) when t ∈ [0, 1
2 ],

∂χ

∂t (t − 1
2 )F(χ(t − 1

2 ), x) when t ∈ [ 1
2 , 1].

We claim

c([Ŵ], L) ≤ ||H||C0 +max{0,−λw}.

Let [z, u] be an element of P̃(H) and define x by x = ev(z). If x ∈ W, by
the assumption of H, [γx

H] = L−α(W). Since the path γx
L is the concatenation

of the paths γx
H and γ

ϕH(x)
F up to parameter change, P(F;α) = ∅ implies

γx
L < L0Ŵ

(Ŵ) for any x ∈ W. If x < W, then ϕH(x) < W. Thus γx
L is

equal to γx
H up to parameter change and

∫ 1

0
H(t, γx

H(t))dt =
∫ 1

0
L(t, γx

L(t))dt.
Therefore we see that there exists a natural inclusion map ι : P̃(L) → P̃(H)
which preserves values of the action functionals and the Conley-Zehnder
indices.

We give an estimate of the critical value of the action functional AL

which attains the fundamental class. Since every element of P(H; 0Ŵ) is
a constant loop, every element of P(L; 0Ŵ) is also a constant loop. Since
P(L; 0Ŵ) is a finite set and (Ŵ, ω) is monotone, AL(P̃(H)) is a discrete
subset of R. Thus c([Ŵ], L) is attained by a 1-periodic trajectory of the
Conley-Zehnder index 2w that is the dimension of the fundamental class.
Since every element of P(L; 0Ŵ) is a constant loop, there exists a point x in
Ŵ and A ∈ Γ such that indCZ([x, cx♯A]) = 2w and c([Ŵ], L) = AL([x, cx♯A]).
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Then, by the assumption,

indMorse(x) + 2c1(A)
= indCZ([x, cx]) + 2c1(A)

= indCZ([x, cx♯A])
= 2w.

Since 0 ≤ indMorse(x) ≤ 2w,

0 ≤ c1(A) ≤ w.

Thus

AL([x, cx♯A]) = AH([x, cx♯A])
= H(x) − ω(A)
= H(x) − λc1(A),

and therefore c([Ŵ], L) ≤ ||H||C0+max{0,−λw}. By ||H̄||C0 = ||H||C0 , the Lip-
schitz property and the homotopy invariance for spectral invariants (Propo-
sition 3.2 (1) and (2)) imply

c([Ŵ], F) ≤ c([Ŵ], L) + ||H̄||C0

≤ (||H||C0 +max{0,−λ(m + n)}) + ||H||C0

= 2||H||C0 +max{0,−λ(m + n)},
□

The idea of using a Hamiltonian function H satisfying the above con-
ditions comes from Irie’s paper [I]. Seyfaddini’s techniques of using the
monotonicity assumption [Se] is useful in our proof.

To prove Proposition 4.1, we construct the Hamiltonian function H in
Proposition 4.2 by using HR,ϵ,e given by the following lemma.

Lemma 4.3. Let R, ϵ be positive real numbers such that 2ϵ < R. Let w1,
w2, w3 and w4 denote points (R− ϵ, 0), (R− ϵ, 1

2 ), (R+ ϵ, 0) and (R+ ϵ, 1
2 ) in

T 1
R × T 1, respectively. For an integer e, there exists a Hamiltonian function

HR,ϵ,e : T 1
R × T 1 → R which satisfies the following conditions.

• HR,ϵ,e(p, q) = −ep on Uϵ = (−R + 2ϵ,R − 2ϵ) × T 1,
• Crit(HR,ϵ,e) = {w1,w2,w3,w4},
• HR,ϵ,e is a Morse function,
• ||HR,ϵ,e||L∞ < (R − ϵ) · |e|,
• ev(P(HR,ϵ,e; 0T )) = Crit(HR,ϵ,e),
• indMorse(wi) = indCZ([wi, cwi]) for any i ∈ {1, 2, 3, 4}.

Here Crit(HR,ϵ,e) is the set of critical points of HR,ϵ,e.
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Proof. We realize a 2-torus T 2 in R3 as

T 2 = {(x, y, z) ∈ R3; (
√

x2 + z2 − 3)2 + y2 = 1}.
Define the (time-independent) Hamiltonian function H : T 2 → R by H(x, y, z) =
z. Note that the set of critical points of H is

{(0, 0, 2), (0, 0, 4), (0, 0,−2), (0, 0,−4)}.
We can take a diffeomorphism f : T 1

R × T 1 → T 2 which maps w1,w2,w3

and w4 to (0, 0, 2), (0, 0, 4), (0, 0,−2) and (0, 0,−4), respectively and satisfies
H( f (p, q)) = p

R for any p ∈ IR(2ϵ). Let uR,ϵ,e : R→ R be a function such that
• duR,ϵ,e(x) < 0 for any real number x,
• uR,ϵ,e(x) = −eRx if |x| ≤ 1 − 2ϵ

R ,
• |uR,ϵ,e(x)| < (R − ϵ) · |e| if |x| < 4,

Define the Hamiltonian function HR,ϵ,e : T 1
R×T 1 → R by HR,ϵ,e = uR,ϵ,e ◦H ◦

f . Assume that (duR,ϵ,e)x is sufficiently C1-small for any x with 2 ≤ |x| ≤
4. Then the Yorke estimate ([Y]) implies ev(P(HR,ϵ,e; 0T )) = Crit(HR,ϵ,e).
Since 2 ≤ |H( f (wi))| ≤ 4 for any i, dHR,ϵ,e is sufficiently C1-small near
Crit(HR,ϵ,e) and hence indMorse(wi) = indCZ([wi, cwi]) for any i. □

Proof of Proposition 4.1. To use Proposition 4.2, we construct the Hamil-
tonian function H. Define the Hamiltonian function H′ : T n

R × T n → R by

H′(p, q) =
n∑

i=1

HRi,ϵi,ei(pi, qi).

Then γx
H′ ∈ L−e(T n

R × T n) for any x ∈ Uϵ . Thus we can take a neighborhood
W of Uϵ such that

ev(P(H′; (0M, 0T ))) ∩ W̄ = ∅.
In order to compute the spectral invariant, we take a generic perturbation of
H′. Let ρ : T n

R × T n → [0, 1] be a function such that

ρ(p, q) =

1 for any (p, q) ∈ T n
R × T n \W,

0 for any (p, q) ∈ Uϵ .

Let G : M → R be a Morse function and define the Hamiltonian function
H : M × T n

R × T n → R by

H(y, p, q) = H′(p, q) + ρ(p, q) ·G(y).

If the Morse function G is sufficiently C2-small, then
• ev(P(H; (0M, 0T ))) ∩ (M ×W) = ∅, and
• there exist only finitely many points y1, . . . , yk in M such that Crit(G) =

ev(P(tG; 0M)) = {y1, . . . , yk} for any t ∈ (0, 1].
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Thus

ev(P(H; (0M, 0T ))) = {(yi, (w j1 , . . . ,w jn))}i∈{1,...,k}, j1,..., jn∈{1,2,3,4} = Crit(H).

By Proposition 4.3,

indMorse(x) = indCZ([x, cx]),

for any point x in Crit(H).
Hence H satisfies the conditions of Proposition 4.2 and thus we apply

Proposition 4.2.
By Proposition 4.2 and ||H̄||C0 = ||H||C0 , the Lipschitz property and the

homotopy invariance for spectral invariants (Proposition 3.2 (1) and (2))
imply

c([M × T n
R × T n], F) ≤< 2||H||C0 +max{0,−λ(m + n)}

< 2(
n∑

i=1

(Ri − ϵ) · |ei| + ||G||C0) +max{0,−λ(m + n)},

If the Morse function G is sufficiently C2-small,

c([M × T n
R × T n], F) < 2

n∑
i=1

Ri · |ei| +max{0,−λ(m + n)}.

□

To prove Theorem 1.4, we use the following theorem and proposition by
Entov and Polterovich ([EP]).

Theorem 4.4 ([EP] Theorem 1.7). Let (N1, ω1) and (N2, ω2) be closed sym-
plectic manifolds. Assume that for i = 1, 2, Yi is a heavy subset of (Ni, ωi).
Then the product Y1×Y2 is a heavy subset of N1×N2.

Proposition 4.5 ([EP] Theorem 1.4). Let (N, ω) be a closed symplectic
manifold. Assume that Y is a heavy subset of (N, ω). Then Y is [N]-heavy.

Proof of Theorem 1.4. Fix a positive real number ϵ with ϵ < min{R1, . . . ,Rn}
and take a Hamiltonian function F : S 1 ×M × In

R(ϵ) × T n → R with compact
support such that F|S 1×X×T n ≥ 2

∑n
i=1 Ri · |ei| + max{0,−λ(m + n)}. Assume

P(F; (0M, e)) = ∅. By P(F; (0M, e)) = ∅, Proposition 4.1 and the triangle
inequality imply

ζ[M×T n
R(ϵ)×T n](F) < 2

n∑
i=1

Ri · |ei| +max{0,−λ(m + n)}.

Note that Example 3.4 and Theorem 4.4 imply that X × T n is a heavy
subset. Since Proposition 4.5 implies that X × T n is [M × T n

R(ϵ) × T n]-heavy,
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by Definition 3.3,

ζ[M×T n
R(ϵ)×T n](F) ≥ 2

n∑
i=1

Ri · |ei| +max{0,−λ(m + n)}.

These two inequalities contradicts. Since any Hamiltonian function F : S 1×
M × In

R × T n → R with compact support has support in S 1 × M × In
R(ϵ) × T n

for some ϵ, we complete the proof of Theorem 1.4. □

As we mentioned in Introduction, Theorem 1.4 gives the inequality

C(CPm,Φ−1(y0),R; e) ≤ 2
m∑

i=1

Ri · |ei|.

We have another example.

Example 4.6. Since π2(T n
R ×T n) = 0, by applying Theorem 1.3 to Example

3.4, we attain the inequality C(T n
R×T n, T n,R; e) ≤ 2

∑m
i=1 Ri · |ei| for any ele-

ments e = (e1, . . . , em) and R = (R1, . . . ,Rm) of Zm and (R>0)m, respectively.

5. Non-contractible trajectories on non-monotone symplectic manifolds

When we replace the existence problem of 1-periodic trajectories by the
existence problem of periodic orbits whose period is not more than 1, we
have the following result which does not need the assumption of mono-
tonicity.

Theorem 5.1. Let X be a heavy subset of a connected closed symplectic
manifold (M, ω). Let e = (e1, . . . , en) and R = (R1, . . . ,Rn) be elements of Zn

and (R>0)n, respectively. For any (time-independent) Hamiltonian function
F : M × In

R × T n → R with compact support such that F|X×T n ≥ 2
∑ |ei|Ri,

the Hamiltonian flow {ϕt
F}t∈R has a periodic orbits (1, e) whose period is not

more than 1 in the free loop homotopy class (0M, e).

To prove Theorem 5.1, we give an upper bound of the spectral invariant
for a Hamiltonian function F : S 1 × M × Uϵ → R such that its Hamil-
tonian isotopy {ϕt

F} has no trajectories in the free loop homotopy class
(0M, e) whose period is not more than 1. For R = (R1, . . . ,Rn) ∈ (R>0)n

and a positive real number ϵ with ϵ < min{R1, . . . ,Rn}, let R(ϵ) denote
(R1 − ϵ, . . . ,Rn − ϵ) ∈ (R>0)n, as before.

Proposition 5.2. Let (M, ω) be a connected closed symplectic manifold.
Let e = (e1, . . . , en) and R = (R1, . . . ,Rn) be elements of Zn and (R>0)n,
respectively. For a positive real number ϵ with 2ϵ < min{R1, . . . ,Rn}, we
define the open subset Uϵ of T n

R × T n as in Proposition 4.1. Then for any
Hamiltonian function F : S 1×M×Uϵ → R with compact support such that
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its Hamiltonian isotopy {ϕt
F} has no trajectories in the free loop homotopy

class (0M, e) whose period is not more than 1,

c([M × T n
R × T n], F) < 2

n∑
i=1

Ri · |ei|.

To prove Proposition 5.2, we use the following proposition which is a
slight modification of an argument in [I].

Proposition 5.3. Let W be an open subset of a 2w-dimensional connected
closed symplectic manifold (Ŵ, ω) and α ∈ [S 1, Ŵ] a non-trivial homotopy
class of free loops on Ŵ. Assume that a Hamiltonian function H : W → R
satisfies the following conditions.

• for any point x in W, ϕ1
H(x) = x and [γx

H] = −α,
• H is non-degenerate,

Let 0Ŵ denote the class of constant loops in Ŵ.
Let F : S 1 × W → R be a Hamiltonian function with compact support

such that its Hamiltonian isotopy {ϕt
F} has no trajectories in the free loop

homotopy class (0Ŵ , e) whose period is not more than 1. Then

c([Ŵ], F) ≤ 2||H||C0 ,

For a Hamiltonian function H : S 1 × M → R with compact support, let
Spec(H) denote the set of critical values of the action functional AH i.e.
AH(P̃(H)). To prove Proposition 5.3, we use the following theorem.

Theorem 5.4 ([U], non-degenerate spectrality). Let (M, ω) be a closed sym-
plectic manifold and a be an element of QH∗(M, ω). Then for any non-
degenerate Hamiltonian function F : S 1 × M → R with compact support,
c(a, F) ∈ Spec(F).

Proof of Proposition 5.3. We give an upper bound of the spectral invariant
associated to F by using the concatenation with ϕt

H.
For a real number s with s ∈ [0, 1], we define the new Hamiltonian func-

tion Ls : S 1 × Ŵ → R as follows:

Ls(t, x) =

∂χ∂t (t)H(χ(t), x) when t ∈ [0, 1
2 ],

s∂χ
∂t (t − 1

2 )F(sχ(t − 1
2 ), x) when t ∈ [ 1

2 , 1],

where χ : [0, 1
2 ] → [0, 1] is the function defined in the proof of Proposition

4.1. Since ∂χ

∂t = 0 on neighborhoods of t = 0 and t = 1
2 , Ls is a smooth

Hamiltonian function.
We claim Spec(Ls) ⊂ Spec(H) for a real number s with s ∈ [0, 1]. Let

F s : S 1 × Ŵ → R denote the Hamiltonian function defined by F s(t, x) =
s∂χ
∂t ( t

2 )F(sχ( t
2 ), x). Let [z, u] be an element of P̃(H) and define x by x =

ev(z). If x ∈ W, by the definition of H, γx
H ∈ L0Ŵ

(W). Since the path
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γx
Ls is the concatenation of the paths γx

H and γϕH(x)
F s up to parameter change

and {ϕt
F} has no trajectories in the free loop homotopy class 0Ŵ whose

period is not more than 1, γx
Ls < L0Ŵ

(Ŵ) for any x ∈ W. If x < W,
then ϕH(x) < W. Thus γx

Ls is equal to γx
H up to parameter change and∫ 1

0
H(t, γx

H(t))dt =
∫ 1

0
L(t, γx

Ls(t))dt. Therefore we see that there exists a nat-
ural inclusion map ι : P̃(Ls) → P̃(H) which preserves values of the action
functionals, and hence Spec(Ls) ⊂ Spec(H). Since H is a non-degenerate
Hamiltonian function, Ls is also non-degenerate, and hence Theorem 5.4
implies c([Ŵ], Ls) ∈ Spec(H).

By the Lipschitz property for spectral invariants (Proposition 3.2 (1)),
c([Ŵ], Ls) depends continuously on s. Since Spec(H) is a measure-zero set
(Lemma 2.2 of [O02]), c([Ŵ], Ls) is a constant function of s. The homotopy
invariance for spectral invariants (Proposition 3.2 (2)) implies

c([Ŵ], L0) = c([Ŵ],H)

hence for any s ∈ [0, 1],

c([Ŵ], Ls) = c([Ŵ],H).

Then c([Ŵ], F) is estimated as follows.

c([Ŵ], F) ≤ c([Ŵ], L1) + ||H̄||C0

= c([Ŵ],H) + ||H||C0

< 2(
n∑

i=1

(Ri − ϵ) · |ei| + ||G||C0).

□

Proof of Proposition 5.2. Let G be a Morse function on M and H : Ŵ → R
the Hamiltonian function defined in the proof of Proposition 4.1.

As we explained in the proof of Proposition 4.1, if the Morse function G
is sufficiently C2-small, then

ev(P(H; (0M, 0T ))) = {(yi, (w j1 , . . . ,w jn))}i∈{1,...,k}, j1,..., jn∈{1,2,3,4} = Crit(H).

In particular, H is a non-degenerate Hamiltonian function. Since

||H̄||C0 = ||H||C0 ≤
n∑

i=1

(Ri − ϵ) · |ei| + ||G||C0 ,

Proposition 5.3 implies

c([M × T n
R × T n], F) < 2(

n∑
i=1

(Ri − ϵ) · |ei| + ||G||C0).
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If the Morse function G is sufficiently C2-small,

c([M × T n
R × T n], F) < 2

n∑
i=1

Ri · |ei|.

□

The idea of using the Hamiltonian function H comes from [I].

Proof of Theorem 5.1. Fix a positive real number ϵ with ϵ < min{R1, . . . ,Rn}
and take a Hamiltonian function F : S 1 × M × In

R(ϵ) × T n → R with com-
pact support such that F|S 1×X×T n ≥ 2

∑n
i=1 Ri · |ei|. Assume that {ϕt

F} has
no trajectories in the free loop homotopy class (0M, e) whose period is
not more than 1. Since {ϕt

F} has no trajectories in the free loop homo-
topy class (0M, e) whose period is not more than 1, Proposition 5.2 and
the triangle inequality for spectral invariants (Proposition 3.2 (3)) imply
ζ[M×T n

R(ϵ)×T n](F) < 2
∑n

i=1 Ri · |ei|.
By applying Theorem 4.4 to Example 3.4, we see that X × T n is a heavy

subset. Then Proposition 4.5 implies that X × T n is [M × T n
R(ϵ) × T n]-heavy,

and hence ζ[M×T n
R(ϵ)×T n](F) ≥ infX×T n F ≥ 2

∑n
i=1 Ri · |ei| by Definition 3.3.

These two inequalities contradict and we proved that {ϕt
F} has a trajectory

in the free loop homotopy class (0M, e) whose period is not more than 1.
Since any Hamiltonian function F : S 1 × M × In

R × T n → R with compact
support has support in S 1×M× In

R(ϵ)×T n for some ϵ, we complete the proof
of Theorem 5.1. □

6. Displaceable subsets and non-contractible trajectories

For a Hamiltonian function H : S 1 × M → R with compact support on a
symplectic manifold M, we define the Hofer length ||H|| of H by

||H|| =
∫ 1

0
||Ht||C0dt.

For a subset X of M, we define the displacement energy of X by

E(X) = inf{||H||; H ∈ C∞c (S 1 × M), X̄ ∩ ϕ1
H(X) = ∅},

where X̄ is the topological closure of X. If X is non-displaceable, we define
E(X) = ∞.

Proof of Proposition 1.5. To use Proposition 1.2, we construct a Hamilton-
ian function Ĥ : S 1 ×M × In

R ×T n → R such that (X ×T n)∩ ϕ1
Ĥ

(X ×T n) = ∅
and P(Ĥ; (0M, e)) = ∅. Fix a sufficiently small positive real number ϵ. We
take a Hamiltonian function H : S 1 × M → R with compact support such
that ||H|| < E(X) + ϵ and X ∩ ϕ1

H(X) = ∅. Since |ek| · Rk > E(X) and ϵ is
sufficiently small, we can take a function ρk ∈ C∞c (−Rk,Rk) such that
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• ρk = 1 in a neighborhood of {0},
• |ρ̇k(x)| < |ek| · (E(X) + ϵ)−1 for any x ∈ (−Rk,Rk).

For i , k, we take a function ρi ∈ C∞c (−Ri,Ri) such that ρi = 1 in a neighbor-
hood of {0}. we define the Hamiltonian function Ĥ : S 1 ×M × In

R × T n → R
by

Ĥ(t, x, p, q) =
∏

i

ρi(pi) · H(t, x).

Then

(Xt
Ĥ)(x,p,q) = (

∏
i

ρi(pi) · (Xt
H)x, 0, . . . , 0, ρ̇1(p1) ·H(t, x), . . . , ρ̇n(pn) ·H(t, x)).

Since ρi = 1 in a neighborhood of {0}, (X×T n)∩ϕ1
Ĥ

(X×T n) = ∅. Since |ρ̇k| <
|ek| · (E(X)+ϵ)−1 and

∫ 1

0
||Ht||C0dt = ||H|| < E(X)+ϵ,

∫ 1

0
|ρ̇k(pk)| · |H(t, x)|dt is

smaller than |ek| and hence P(Ĥ; (0M, e)) = ∅. Thus Proposition 1.2 implies

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)) = ∞.

□

7. Non-Lagrangian submanifolds and non-contractible trajectories

For a compact non-Lagrangian submanifold X, we have the following
result.

Proposition 7.1. Let (M, ω) be a 2m-dimensional connected symplectic
manifold and X an m-dimensional compact non-Lagrangian submanifold
of M. Let e = (e1, . . . , en) and R = (R1, . . . ,Rn) be elements of Zn and (R>0)n

with e , 0, respectively. Then C(M, X,R; e) = ∞.

To prove Proposition 7.1, we use the following theorem which follows
from an argument similar to that in the proof of Theorem C of [BPS].

Theorem 7.2. Let (N, ω) be a 2m-dimensional connected symplectic man-
ifold, Y an m-dimensional compact non-Lagrangian submanifold of N and
α a non-trivial homotopy class of free loops in N. Assume that the normal
fibre bundle ν of Y in N has a non-vanishing section. Then CBPS (N,Y;α) =
∞.

To prove Theorem 7.2, we use the following theorem.

Proposition 7.3 ([P95], [LS]). Let (N, ω) be a 2m-dimensional connected
symplectic manifold and Y an m-dimensional compact non-Lagrangian sub-
manifold of N. Assume that the normal fibre bundle ν of Y in N has a non-
vanishing section. Then there exists a Hamiltonian function H : N → R
with compact support such that (XH)y < TyY for any point y in Y.
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Proof of Theorem 7.2. To use Proposition 1.2, we construct a Hamiltonian
function Ĥ : S 1 × M × In

R × T n → R such that (X × T n) ∩ ϕ1
Ĥ

(X × T n) = ∅
and P(Ĥ; (0M, e)) = ∅.

By the assumption, Proposition 7.3 implies that we can take a Hamil-
tonian function H : N → R with compact support such that (XH)y < TyY
for any point y in Y . Then there exists a positive real number ϵ such that
Y ∩ ϕ1

tH(Y) = ∅ and P(tH;α) = ∅ for any real number t with 0 < t < ϵ and
any integer e with e , 0.

Thus Proposition 1.2 implies

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)) = ∞,

for any integer e with e , 0 □

Proof of Proposition 7.1. Since X is an m-dimensional non-Lagrangian sub-
manifold and the normal fibre bundle ν of X × T n in M × In

R × T n has a
non-vanishing section, Theorem 7.2 implies

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)) = ∞,

for any e with e , 0 □

8. Compressible Hamiltonian torus action and non-contractible
trajectories

We have a family of examples similar to Example 1.6. Let (M, ω) be
a closed symplectic manifold. We consider the case when a moment map
Φ = (F1, . . . , Fk) : M → Rk induces a Hamiltonian torus action i.e. ϕ1

Fi = id
for i = 1, . . . , k and {F i, F j} = 0 for i , j. Then there exists a natural
inclusion map ι : T k → Ham(M, ω). A Hamiltonian action induced by Φ is
compressible if the image of the map ι∗ : π1(T k)→ π1(Ham(M, ω)) is finite,
where ι∗ is induced by ι.

Entov and Polterovich proved the following theorem.

Theorem 8.1 ([EP]). Let (M, ω) be a 2m-dimensional connected closed
symplectic manifold and Φ = (F1, . . . , Fk) : M → Rk a moment map which
induces a compressible Hamiltonian torus action. Assume that F i is nor-
malized as a Hamiltonian function for any i. Then

(1): Φ−1(0) is heavy, thus stably non-displaceable,
(2): Φ−1(y) is stably displaceable for any point y in Φ(M) with y , 0.

We have the corresponding result on the existence problem of non-contractible
trajectories.

Theorem 8.2. Let (M, ω) be a connected closed λ-monotone symplectic
manifold and Φ = (F1, . . . , Fk) : M → Rk be a moment map which induces
a compressible Hamiltonian torus action. Assume that F i is normalized as
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a Hamiltonian function for any i. Then there exists a positive real number
E such that

(1): C(M,Φ−1(0),R; e) ≤ 2
∑n

i=1 Ri · |ei| + max{0,−λ(m + n)} for any
elements e = (e1, . . . , en) and R = (R1, . . . ,Rn) of Zn and (R>0)n,
respectively,

(2): C(M,Φ−1(y),R; e) = ∞ for any point y inΦ(M) with y , 0 and for
any elements e = (e1, . . . , en) and R = (R1, . . . ,Rn) of Zn and (R>0)n

with Rl > E for some l and e , 0, respectively.

(1) of Theorem 8.2 follows immediately from Theorem 1.3 and (1) of
Theorem 8.1.

To prove (2) of Theorem 8.2, we use the following theorem which is a
slight modification of Theorem 2.1 of [EP]. Note that we can identify T ∗T 1

with R × T 1 with the coordinate (p, q).

Proposition 8.3. Let X be a compact subset of a closed symplectic manifold
M. Assume that there exists a normalized Hamiltonian function F : S 1 ×
M → R generating a loop {ϕt

F}t∈[0,1] in Ham(M, ω) which is homotopic to
the trivial isotopy relative to endpoints and F(t, x) , 0 for any t and any
point x with x < X. Then there exists a Hamiltonian function H : S 1 × M ×
T ∗T 1 → R with compact support such that (X × T 1) ∩ ϕ1

H(X × T 1) = ∅ and
|∂H
∂p (t, x, p, q)| < 1 for any point (t, x, p, q) in S 1 × M × T ∗T 1.

Proof. Let { f s
t }s,t∈[0,1] be a homotopy of loop {ϕs

F}s∈[0,1] to the constant loop
i.e. f s

0 = id and f s
1 = ϕs

F . Let F t : S 1 × M → R denote the normalized
Hamiltonian function generating the isotopy { f s

t }s∈[0,1]. Consider the family
of diffeomorphisms Ψt of M × T ∗T 1 defined by

Ψt(x, p, q) = ( f q
t x, p − F t(q, f q

t x), q).

By Theorem 6.1.B of [P01], Ψt is a Hamiltonian isotopy. Let Ĥ : S 1 × M ×
T ∗T 1 → R be a Hamiltonian function generating Ψt. Note that Ĥ does not
depend on the coordinate p since pr3( dΨt

ds ) = 0, where pr3 : M × T ∗T 1 → T 1

is the projection defined by pr3(x, p, q) = q.
We can take a function ρ : R→ R with compact support such that
• ρ = 1 in

∪
t(pr2(Ψt(X))), where pr2 : M×T ∗T 1 → R is the projection

defined by pr2(x, p, q) = p,
• |ρ̇(x)| < inft ||Ĥt||−1

C0 for any x ∈ R.

Let H : S 1 × M × T ∗T 1 → R a Hamiltonian function defined by

H(t, x, p, q) = ρ(p) · Ĥ(t, x, p, q).

Since Ĥ does not depend on the coordinate p,

pr3∗((X
t
H)(x,p,q)) = ρ̇(p) · Ĥt(x, p, q).
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Since |ρ̇(x)| < inft ||Ĥt||−1, |∂H
∂p (t, x, p, q)| < 1. Since ρ = 1 in

∪
t(pr2(Ψt(X))),

(X × T 1) ∩ ϕ1
H(X × T 1) = ∅.

□

The construction of Ψt appeared in [P01] and [EP].

Proof of (2) of Theorem 8.2. Let e be an element of (Z>0)n with ek , 0. To
use Proposition 1.2, we construct a Hamiltonian function Ĥ : S 1 ×M × In

R ×
T n → R such that

(Φ−1(y) × T n) ∩ ϕ1
Ĥ(Φ−1(y) × T n) = ∅,

and P(Ĥ; (0M, e)) = ∅.
First, we prepare some Hamiltonian functions Hl : S 1 × M × T ∗T 1 → R

(l = 1, . . . , k). Since the action induced by Φ is compressible, for any l
there exists a sufficient large positive integer Nl such that the Hamiltonian
function NlF l generates a contractible Hamiltonian circle action on M.

Since NlF l generates a contractible Hamiltonian circle action on M for
any l, Proposition 8.3 implies that there exist Hamiltonian functions Hl : S 1×
M × T ∗T 1 → R (l = 1, . . . , L) with compact support such that

(Φ−1(y) × T 1) ∩ ϕ1
Hl(Φ−1(y) × T 1) = ∅

for any y with yl , 0 and |∂Hl

∂p (x, p, q)| < 1 for any point (x, p, q) in M×T ∗T 1.
Define the projection pr2 : M × T ∗T 1 → R by pr2(x, p, q) = p and put

E = maxl sup{|r|; r ∈ pr2(∪t∈[0,1] Supp(Hl
t))}.

Fix a point y = (y1, . . . , yk) of Φ(M) with y , 0. There exists some l such
that yl , 0. Let R = (R1, . . . ,Rn) be an element of (R>0)n with Rk > E. For
i , k, we take a function ρi : (−Ri,Ri) → [0, 1] with compact support such
that ρi = 1 in a neighborhood of {0}. Let Ĥl : S 1 × M × In

R × T n → R be a
Hamiltonian function defined by

Ĥl(t, x, p, q) =
∏
i,k

ρi(pi) · Hl(t, x, pk, qk).

Since Rk > E, Ĥl has compact support in S 1 × M × In
R × T n. Then

pr∗((X
t
Ĥl)(x,p,q)) =

∏
i,k

ρi(pi) ·
∂Hl

∂p
(t, x, pk, qk),

where pr : M × In
R × T n → T 1 is the projection defined by pr(x, p, q) = qk

Since
(Φ−1(y) × T 1) ∩ ϕ1

Hl(Φ−1(y) × T 1) = ∅,
and ρi = 1 in a neighborhood of {0},

(Φ−1(y) × T n) ∩ ϕ1
Ĥl(Φ

−1(y) × T n) = ∅.
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Since |∂Hl

∂p (t, x, p, q)| < 1 for any point (t, x, p, q) in S 1 × M × T ∗T 1 and the
image of ρi is in [0, 1], P(Ĥl; (0M, e)) = ∅.

Thus Proposition 1.2 implies

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)) = ∞,

for any e with e , 0. □

9. Stably non-displaceable subsets and non-contractible trajectories

For a positive integer n, a subset X of a symplectic manifold M is n-
stably displaceable if X × T n is displaceable in M × T ∗T n. X is n-stably
non-displaceable otherwise. If X is n-stably non-displaceable, then X is
stably non-displaceable.

By our Theorem 1.4, we have estimates on C(M, X,R; e) for heavy sub-
sets. However, we expect better estimates. We would like to pose the fol-
lowing problems.

Problem 9.1. Let X be an n-stably non-displaceable compact subset of a
closed symplectic manifold (M, ω). Show that the inequality

C(M, X,R; e) ≤
n∑

i=1

Ri · |ei|

holds for any elements e = (e1, . . . , en) and R = (R1, . . . ,Rn) of Zn and
(R>0)n, respectively.

Problem 9.2. Let N be a connected closed Riemannian manifold and α ∈
[S 1,N] a non-trivial free homotopy class. Let X be a stably non-displaceable
compact subset of a closed symplectic manifold (M, ω). Show that the in-
equality

CBPS (M × B∗N, X × N;α) = lα,

holds, where lα is the infimum of geodesic length in the class α.

Weber [W] gave the positive answer to Problem 9.2 when M is one point
set {∗} and M = X.

Since heavy subsets are stably non-displaceable, the positive answer to
Problem 9.1 is a generalization of Theorem 1.3. In this subsection, we give
several supporting observations related to Problem 9.1.

The argument in [BPS] shows the following estimate from below.

Proposition 9.3. Let X be any subset of a closed symplectic manifold (M, ω).
Then

CBPS (M × B∗N, X × N;α) ≥ lα.
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In Section 10, we introduce a relative symplectic capacity CP which is
defined in terms of invariant measures of (time-independent) Hamiltonian
flow and satisfies CP(M, X,R; e) ≤ C(M, X,R; e).

Theorem 9.4. Let (M, ω) be a closed symplectic manifold and X an n-stably
non-displaceable compact subset of M. Then

CP(M, X,R; e) ≤
n∑

i=1

Ri · |ei|,

for any elements e = (e1, . . . , en) and R = (R1, . . . ,Rn) of Zn and (R>0)n,
respectively.

We prove Theorem 9.4 in Section 10.
We cannot replace the assumption that X is n-stably non-displaceable in

Problem 9.1 by that X is non-displaceable. We have the following example.

Proposition 9.5. Let S 2 be a 2-sphere {(x, y, z) ∈ R3; x2 + y2 + z2 = 1}
with the standard area (symplectic) form. For a positive real number ϵ, we
define a subset Cϵ of S 2 by Cϵ = {(x, y, z) ∈ S 2; z = ±ϵ}. Then Cϵ is stably
displaceable for any positive real number ϵ and there exists a positive real
number E such that

C(S 2,Cϵ ,R; e) = ∞,
for any positive real number ϵ and any elements R and e of (R>0)n and Zn

with Rk > E and ek , 0 for some k, respectively.

Remark 9.6. Let Aϵ and Bϵ be the subsets of S 2 defined by Aϵ = {(x, y, z) ∈
S 2; |z| ≤ ϵ} and Bϵ = {(x, y, z) ∈ S 2; z > ϵ}, respectively. If ϵ < 1

3 ,
then Area(Aϵ) < Area(Bϵ). Since any Hamiltonian diffeomorphism is area-
preserving, Cϵ is non-displaceable.

Professor Kaoru Ono told the author that Cϵ for ϵ < 1
3 is an example

due to Professor Polterovich of a non-displaceable subset which is stably
non-displaceable.

Proof of Proposition 9.5. Let e be an element of (Z>0)n with ek , 0. To use
Proposition 1.2, we construct a Hamiltonian function Ĥ : S 1×S 2×In

R×T n →
R such that (Cϵ × T n) ∩ ϕ1

Ĥ
(Cϵ × T n) = ∅ and P(Ĥ; (0M, e)) = ∅.

Let F : S 2 → R be a Hamiltonian function defined by F(x, y, z) = 4πz.
The isotopy {ϕt

F}t∈[0,1] is homotopic to the trivial isotopy relative to end-
points.

Thus Proposition 8.3 implies that there exists a Hamiltonian function
H : S 1×S 2×T ∗T 1 → R with compact support such that (Cϵ×T 1)∩ϕ1

H(Cϵ×
T 1) = ∅ and |∂H

∂p (x, y, z, p, q)| < 1 for any point (x, y, z, p, q) in S 2 × T ∗T 1.
Define the projection pr4 : S 2×T ∗T 1 → R by pr4(x, y, z, p, q) = p and put

E = sup{|r|; r ∈ pr4(∪t∈[0,1] Supp(Ht))}. Let R = (R1, . . . ,Rn) be an element
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of (R>0)n with Rk > E. For i , k, we take a function ρi : (−Ri,Ri) →
[0, 1] with compact support such that ρi = 1 in a neighborhood of {0}. Let
Ĥ : S 1 × S 2 × In

R × T n → R be a Hamiltonian function defined by

Ĥ(t, x, y, z, p, q) =
∏
i,k

ρi(pi) · H(t, x, y, z, pk, qk).

Since Rk > E, Ĥ has compact support in S 1 × S 2 × In
R × T n. Then

pr∗((X
t
Ĥ

)(x,y,z,p,q)) =
∏
i,k

ρi(pi) ·
∂H
∂p

(t, x, y, z, pk, qk),

where pr : S 2×In
R×T n → T 1 is the projection defined by pr(x, y, z, p, q) = qk

Since ρi = 1 in a neighborhood of {0}, (X × T n) ∩ ϕ1
Ĥ

(X × T n) = ∅. Since
|∂H
∂p (t, x, y, z, p, q)| < 1 for any point (t, x, y, z, p, q) in S 1×S 2×T ∗T 1 and the

image of ρi is in [0, 1], P(Ĥ; (0M, e)) = ∅.
Thus Proposition 1.2 implies

C(M, X,R; e) = CBPS (M × In
R × T n, X × T n; (0M, e)) = ∞

for any e with e , 0. □

10. Polterovich’s invariant measure and Proof of Theorem 9.4

First, we review several definitions in order to fix the terminology.

Definition 10.1. Let N be a manifold and X a smooth vector field on N
generating a flow ϕt. For an invariant Borel measure µ of ϕt with compact
support, its rotation vector ρ(µ, X) is an element of 1-dimensional homol-
ogy H1(N;R) defined by

⟨l∗, ρ(µ, X)⟩ =
∫

N
λ(X)µ,

for any cohomology class l∗ of H1(N;R), where λ is a closed 1-form repre-
senting l∗.

We can easily verify that
∫

N
λ(X)µ does not depend on the choice of λ.

We define relative symplectic capacities CP
BPS and CP. For a manifold N

and the vector field X on N generating a flow ϕt, letM(N, X) denote the set
of invariant Borel measures of ϕt with compact support.

Definition 10.2. Let Y be a compact subset of an open symplectic manifold
(N, ω) and α ∈ [S 1,N] a free homotopy class in N. For a cohomology class
l∗ ∈ H1(N;R), we define the relative symplectic capacity CP

BPS (N,Y; l∗, α)
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by

CP
BPS (N,Y; l∗, α)
= inf{K > 0;∀H ∈ C∞(N) such that H|Y ≥ K,
∃µ ∈ M(N, XH) such that |⟨l∗, ρ(µ, XH)⟩| ≥ l∗(α)}.

We define the relative symplectic capacity CP
BPS (N,Y;α) by

CP
BPS (N,Y;α) = sup

l∗∈H1(N;R)
CP

BPS (N,Y; l∗, α).

Let X be a compact subset of a closed symplectic manifold (M, ω). For an
element e = (e1, . . . , en) of Zn and an element R = (R1, . . . ,Rn) of (R>0)n,
we define the relative symplectic capacity CP(M, X,R; e) by

CP(M, X,R; e) = CP
BPS (M × In

R × T n, X × T n; (0M, e)).

Note that for any positive real number s, CP
BPS (N,Y; sl∗, α) = CP

BPS (N,Y; l∗, α).
Since every 1-periodic orbit representing a non-trivial homology class a
determines an invariant measure with the rotation vector a, we see that
CP

BPS (N,Y, α) ≤ CBPS (N,Y;α) and CP(M, X,R; e) ≤ C(M, X,R; e).
A diffeomorphism ψ of M is said to be a symplectomorphism if ψ∗ω = ω

and an isotopy {ψt}t∈[0,1] of M is said to be a symplectic isotopy if ψ0 = id
and (ψt)∗ω = ω for any t. Let Symp(M, ω) denote the group of symplec-
tomorphisms of (M, ω) with compact support. Let S̃ymp0(M, ω) denote the
universal covering of the identity component of Symp(M, ω) and its element
is the homotopy class of a symplectic isotopy {ψt}t∈[0,1] of M relative to the
end points ψ0 = id and ψ1 = ψ.

Definition 10.3. The flux homomorphism Flux: S̃ymp0(M, ω)→ H1(M;R)
is defined by

Flux([{ψt}t∈[0,1]]) =
∫ 1

0
ιXtωdt,

for any element [{ψt}t∈[0,1]] of S̃ymp0(M, ω), where Xt is the (time-dependent)
vector field which generates {ψt}t.

The flux homomorphism is known to be surjective.
To prove Theorem 9.4, we explain Polterovich’s result in [P14].

Theorem 10.4 ([P14]). Let Y1 and Y2 be non-displaceable compact sub-
sets of a closed symplectic manifold (N, ω). Assume that Y1 ∩ Y2 = ∅
and there exists a symplectic isotopy {ψt}t∈[0,1] such that ψ1(Y1) = Y2. Put
l∗ = Flux({ψt}). Then for any positive real number p and any Hamiltonian
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function F : N → R such that F|Y1 ≤ 0 and F|Y2 ≥ p, {ϕt
F} possesses an

invariant measure µ such that Supp(µ) ⊂ Supp F and

|⟨l∗, ρ(µ, XF)⟩| ≥ p.

Let pr1 : M× In
R×T n → M denote the projections defined by pr1(y, p, q) =

y. Define the subset S R of R3 by S R = ∂Īn
R, more precisely,

S R = ({−R1,R1} × [−R2,R2] × · · · × [−Rn,Rn])
∪ ([−R1,R1] × {−R2,R2} × · · · × [−Rn,Rn])
∪ · · · ∪ ([−R1,R1] × [−R2,R2] × · · · × {−Rn,Rn}).

Proof of Theorem 9.4. Fix a cohomology class

l∗ = pr∗1 b∗ + a1[dq1] + · · · + an[dqn] , 0 ∈ H1(M × In
R × T n;R),

where a1, . . . , an are real numbers and b∗ ∈ H1(M;R) is a cohomology class
of M. To use Theorem 10.4, we prepare the symplectic isotopy {ψt}t∈[0,1].
Since l∗ , 0, there exists a unique positive real number K such that (Ka1, . . . ,Kan) ∈
S R. Then we regard In

R × T n as a subset of T n
2R × T n. Fix a point x0 in M.

Since the flux homomorphism is surjective, there exists a symplectic isotopy
{ψt

0}t∈[0,1] of M such that Flux({ψt
0}t∈[0,1]) = Kb∗. Let {ψt} be the symplectic

isotopy of M × T n
2R × T n defined by

ψt(x, p1, . . . , pn, q1, . . . , qn) = (ψt
0(x), p1 + Ka1t, . . . , pn + Kant, q1, . . . , qn).

Then

Flux({ψt}t∈[0,1]) = Ka1[dq1] + · · · + Kan[dqn] + K pr∗1 b∗ = Kl∗.

Assume that a Hamiltonian function H : M× In
R×T n → R satisfies H|X×T n ≥∑n

i=1 Ri · |ei|. We regard F as a Hamiltonian function on M ×T n
2R ×T n. Since

ψ1(X × {−R} × T n) = X × {0} × T n and F|X×{(−Ka1,...,−Kan)}×T n = 0, Theorem
10.4 implies that there exists an invariant measure µ on M × In

R × T n such
that

|⟨R1[dq1] + · · · + Rn[dqn], ρ(µ, XF)⟩| ≥
n∑

i=1

Ri · |ei|.

Since (Ka1, . . . ,Kan) ∈ S R, Kl∗(e) ≤ ∑n
i=1 Ri ·|ei|. Thus, for any cohomology

class l∗ with l∗ , 0,

CP
BPS (M × In

R × T n, X × T n; l∗, (0M, e))

= CP
BPS (M × In

R × T n, X × T n; Kl∗, (0M, e)) ≤
n∑

i=1

Ri · |ei|.
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Since CP
BPS (M × In

R × T n, X × T n; 0, (0M, e)) = 0, CP(M, X,R; e) ≤ ∑n
i=1 Ri ·

|ei|. □
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Mathematics ETH Zürich. Birkäuser Verlag, Basel, (2001).

[P14] L. Polterovich, Symplectic intersections and invariant measures, Ann. Math. Qué., 38
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