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1 Introduction

The aim of this thesis is to study branching laws of real reductive Lie groups
by algebraic methods.

1.1 Irreducible decomposition

The main problem is to analyze the restriction of an irreducible represen-
tation of a Lie group (resp. Lie algebra) with respect to a closed subgroup
(resp. Lie subalgebra). The problem is called the branching problem. If the
given irreducible representation is unitary, the following fact assures us that
the restriction has an irreducible decomposition.

Fact 1.1 (Mautner and Teleman). Let U be a unitary representation of a
locally compact group G. Then U has an irreducible decomposition:

U ≃
∫ ⊕

Ĝ

m(π)Vπdµ(π),

where Ĝ is the unitary dual of G and Vπ is a representation space of π.

The measurable function m : Ĝ′
R → Z≥0 ∪ {∞} is called the multiplicity

function. For the case of Lie group representations, R. Goodman showed
in the proof of [15, Lemma 3.1] that the direct integral decomposition is
compatible with the Lie algebra action.
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Fact 1.2 (Goodman). Let U be a unitary representation of a Lie group G
with direct integral decomposition:

U ≃
∫ ⊕

Z

Uzdµ(z).

Then for any vector v ∈ U∞ defined by a section z 7→ v(z), v(z) belongs
to U∞

z for µ-almost every z, where U∞ is the space of smooth vectors with
respect to the G-action. Furthermore, for any X ∈ U(g), we have (Xv)(z) =
X(v(z)) for µ-almost every z.

1.2 Branching problem

Our main concern is the branching problem of unitary representations of real
reductive Lie groups. For the branching problem of real reductive Lie groups,
we refer to [51, 56]. Let GR be a real reductive Lie group and G′

R a reductive
subgroup of GR. For any irreducible unitary representation V of GR, the
restriction V |G′

R
to G′

R has an irreducible decomposition by the theorem of
Mautner and Teleman:

V |G′
R
≃
∫ ⊕

Ĝ′
R

m(π)Vπdµ(π). (1.2.1)

Since G′
R is reductive, the irreducible decomposition is unique. The irre-

ducible decomposition is called the branching law of V with respect to G′
R.

The branching problem for compact Lie groups has been studied by many
mathematicians, and explicit branching laws have been obtained such as the
Clebsh–Gordan formula, the Pieri rule, the branching laws for (GR, G

′
R) =

(U(n),U(n−1)), (SO(n), SO(n−1)) and (Sp(n), Sp(n−1)), the Littlewood–
Richardson coefficient, Kostant’s formula and the Littelmann path model.
Conversely, the branching problem for non-compact reductive Lie groups
is difficult in general, and branching laws were known at the end of 1980s
only for specific unitary representations such as holomorphic discrete series
representations [24], [29], [70], [89], the Segal-Shale-Weil representation [25,
26], [35] and K-type formulas.

In the late 1980s, T. Kobayashi discovered discretely decomposable branch-
ing laws of Zuckerman derived functor modules Aq(λ). Let θ be a Cartan
involution of GR preserving G′

R. Set KR := Gθ
R and gR := Lie(GR). We de-

note by K and g the complexification of KR and gR, respectively. We use a
similar notation for G′

R such as K ′
R, K

′ and g′. For a representation V of GR,
we write VK for the subspace of all KR-finite vectors. In the series of papers
[42, 43, 45, 46], Kobayashi initiated and developed the theory of discretely
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decomposable (g, K)-modules and gave examples of explicit branching laws
for Aq(λ).

Definition 1.3 (T. Kobayashi [45, Definition 1.1]). A (g, K)-module V is
said to be discretely decomposable if V has a (g, K)-module filtration V0 ⊂
V1 ⊂ · · · such that

∪
i Vi = V and each Vi is finite length.

He gave criteria for the discrete decomposability of a restriction of an
irreducible (g, K)-module by the asymptotic K-support [45] and the associ-
ated variety [46], and gave necessary and sufficient conditions for the discrete
decomposability of a restriction of Aq(λ). An important property is that the
discrete decomposability of a (g, K)-module implies the discrete decompos-
ability of a unitary representation of GR as follows.

Fact 1.4 (T. Kobayashi [48, Theorem 2.7]). Let V be an irreducible uni-
tary representation of GR. Suppose that VK |(g′,K′) is discretely decompos-
able. Then VK |(g′,K′) is decomposed into the direct sum of irreducible (g′, K ′)-
modules:

VK |(g′,K′) ≃
⊕
π∈Ĝ′

R

m(π)(Vπ)K′ ,

and V |G′
R
is decomposed into the direct sum of irreducible unitary represen-

tations with the same multiplicity function m(π):

V |G′
R
≃
∑⊕

π∈Ĝ′
R

m(π)Vπ.

In the framework, discretely decomposable restrictions, explicit branching
laws were computed for some unitary representations [8], [16], [42, 43, 45, 46],
[58], [74], [78], [83], [95]. The discretely decomposable restrictions of Aq(λ)
with respect to symmetric subgroups were classified by T. Kobayashi and Y.
Oshima [60], and the branching laws were obtained by Y. Oshima in [82].

1.3 Intertwining operator

The space of all intertwining operators is important to study the branch-
ing problem. Let V be an irreducible (g, K)-module and V ′ an irreducible
(g′, K ′)-module. Consider the following two vector spaces:

Homg′,K′(V, V ′),

Homg′,K′(V ′, V ).
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An element of Homg′,K′(V, V ′) or Homg′,K′(V ′, V ) is called an intertwining
operator.

The two spaces have a natural U(g)G′
-module structure. For the case of

compact G′, it is well-known that the action on Homg′,K′(V ′, V ) is irreducible.
In particular, when G′

R is equal to the maximal compact subgroup KR of GR,
the U(g)K-module plays an important role in the theory of (g, K)-modules
such as Harish-Chandra’s subquotient theorem [19]. Remark that for non-
compact G′

R, the U(g)G′
-modules may be reducible.

The space Homg′,K′(V ′, V ) is deeply related to the discrete decomposabil-
ity:

Fact 1.5 (T. Kobayashi [46, Lemma 1.5]). Let V be an irreducible (g, K)-
module. Homg′,K′(V ′, V ) is non-zero for some irreducible (g′, K ′)-module if
and only if V |(g′,K′) is discretely decomposable.

In many cases, the restriction of an irreducible (g, K)-module to the sub-
pair (g′, K ′) is not discretely decomposable, and Homg′,K′(V ′, V ) is zero for
any irreducible (g′, K ′)-module V ′. In such cases, any general theories to
deal with branching laws are not known. Nevertheless, some geometric and
analytic methods work well for some irreducible unitary representations [9],
[24], [58], [59], [63], [77], [79], [80], [109].

The space Homg′,K′(V ′, V ) may have many information about branch-
ing laws with continuous spectrum. T. Kobayashi proposed the program to
construct symmetry breaking operators explicitly. Here a symmetric break-
ing operators means a continuous G′

R-intertwining operator from a contin-
uous irreducible (or finite length) representation of GR to one of G′

R. The
explicit construction was obtained for principal series representations and
(GR, G

′
R) = (O(n + 1, 1),O(n, 1)) [63], and holomorphic discrete series rep-

resentations [61, 62]. A relation between symmetry breaking operators and
(g, K)-module intertwining operators was discussed in [55], and recent devel-
opments and open problems on this topic are in [56].

1.4 Multiplicity-free representation

The concept of a multiplicity-free representation is just as important as that
of the discrete decomposability.

Definition 1.6. For a unitary representation V ofGR, we denote byMGR(V )
the essential supremum of the multiplicity function of the irreducible decom-
position. V is said to be multiplicity-free if MGR(V ) = 1, and to have
uniformly bounded multiplicities if MGR(V ) < ∞.
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We use the same terminology for completely reducible (g, K)-modules
and algebraic representations.

The Fourier transform, the Fourier series expansion and spherical harmon-
ics are classical and important examples of multiplicity-free representations.
In the representation theory of Lie groups, many multiplicity-free represen-
tations are known such as the Clebsh–Gordan formula, the Pieri rule, the
Peter–Weyl theorem, the branching laws for (GR, G

′
R) = (U(n),U(n − 1))

and (SO(n), SO(n − 1)), the Cartan–Helgason theorem, the Plancherel for-
mulas for Riemannian symmetric spaces and group manifolds.

A multiplicity-free representation has a ‘canonical’ irreducible decompo-
sition, and the representation yields some natural transform like the Fourier
transform. Therefore, finding a multiplicity-free representation may be re-
lated to finding some good analysis and geometry. We refer the reader to
[50] for the point of view.

A spherical variety is one of the geometric objects to produce multiplicity-
free representations.

Definition 1.7. Let G be a complex reductive algebraic group with Borel
subgroup B. A G-variety X is said to be spherical if B has an open orbit on
X.

By [100, Theorem 2], an affine G-variety X is spherical if and only if the
coordinate ring C[X] of X is a multiplicity-free G-module.

T. Kobayashi introduced the notion of visible action on a complex mani-
fold in [49], and showed the propagation theorem of multiplicity-free property
in [44, 54]. Many multiplicity-free representations can be explained in the
machinery [50]. An advantage of the notion is that infinite-dimensional uni-
tary representations of any Lie group such as non-reductive Lie groups can be
treated in the framework. An example of applications of visible actions is the
branching laws of unitary highest weight modules with respect to symmetric
subgroups [52].

Let GR be a connected simple Lie group of Hermitian type with Cartan
involution θ and G′

R a symmetric subgroup of GR preserved by θ. Put KR :=
Gθ

R and K ′
R := (G′

R)
θ. Let a′R be a maximal abelian subspace in g−θ ∩ (g′R)

⊥.
Set MR := ZK′

R
(a′R).

Fact 1.8 (T. Kobayashi [50, Theorem 18, Theorem 34], [52, Theorem A]). Let
H be a unitary highest weight module of GR embedded in O(GR/KR, GR ×KR

F ) for some irreducible unitary representation F ofKR. If F |MR is multiplicity-
free, then H|G′

R
is multiplicity-free. In particular, if H is of scalar type, then

H|G′
R
is multiplicity-free.
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Fact 1.9 (T. Kobayashi [44, Theorem B]). Retain the notation in the above
fact. If (GR, G

′
R) is a symmetric pair of holomorphic type (i.e. g′ contains

the center of k), then H|G′
R
has uniformly bounded multiplicities.

The second fact asserts MG′
R
(H) < ∞. In this case, T Kobayashi stated

in [52, Remark 1.5] that using the Howe duality [26], we could relate the
multiplicity function and the stable branching coefficients defined by F. Sato
[93].

1.5 Stability of multiplicities

If a representation has uniformly bounded multiplicities, the multiplicity
function may have a stability property. We state Sato’s stability theorem
[93] as follows.

Let G be a connected complex semisimple algebraic group and G′ a con-
nected reductive subgroup of G. Assume that (G,G′) is a spherical pair, that
is, there is a Borel subgroup B of G such that BG′ is open dense in G. Put

L := {g ∈ G : gBG′ = BG′} ∩G′.

Then L is a reductive subgroup of G′ by a Theorem of Brion–Luna–Vust [6].
Note that the set of equivalence classes of irreducible representations of L
can be parametrized by a set of characters of B ∩G′ ⊂ L. We denote by Λ+

the set of all dominant integral weights of B. For a weight λ ∈ Λ+, we write
FG(λ) for the finite-dimensional irreducible representation of G with highest
weight λ. Set

Λ+(G/G′) :=
{
λ ∈ Λ+ : FG(λ)G

′ ̸= 0
}
.

Under this setting, F. Sato proved the following theorem.

Fact 1.10 (F. Sato [93, Theorem 3]). Let F be a finite-dimensional irre-
ducible representation of G′. Then for any λ ∈ Λ+, there exists a weight
ν0 ∈ Λ+(G/G′) such that

dimC(HomG′(FG(λ+ ν0 + ν), F )) = dimC(HomL(F
L(λ|B∩G′), F ))

for any ν ∈ Λ+(G/G′).

The above fact asserts two things: the multiplicity function of IndG
G′(F )

is invariant by the translation of Λ+(G/G′) for enough large parameters;
and for such parameters, the multiplicity function can be described by the
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multiplicity function of the fiber F . The first property is called stability by
F. Sato in [93].

For the case of symmetric pairs (GR, G
′
R), the stability property appeared

in Wallach’s book [102, Cor. 8.5.15]. In the case, we can see the phenomena
in some literatures [43, Lemma 3.4], [65]. Stable branching coefficients was
computed for some concrete compact Lie groups [71], [98].

1.6 Main results

In this section, we state the main theorems in this thesis.
Let GR be a reductive Lie group with Cartan involution θ and G′

R a re-
ductive subgroup of GR closed under θ. We put KR := Gθ

R and gR := Lie(GR)
and denote by K and g the complexifications of KR and gR, respectively. In
a similar way, we define K ′ and g′ for G′

R.

1.6.1 Direct integral and intertwining operators

For a representation V of GR, we write VK for the subspace of KR-finite
vectors.

Theorem 1.11. Let V be an irreducible unitary representation of GR. Sup-
pose that the irreducible decomposition of V |G′

R
is as in (1.2.1). Then for

almost every π ∈ Ĝ′
R, there exist a U(g)G′

-module structure on Cm(π) and a
surjective (g′, K ′)-module and U(g)G′

-module homomorphism:

ϕπ : VK → (Vπ)K′ ⊗ Cm(π)

such that the vector field (π 7→ ϕπ(v)) is equal to v in V for any v ∈ VK.

Remark 1.12. A similar result for the Plancherel formulas on homogeneous
spaces is well-known [3].

For the proof of the theorem, we use the reduction theorem by A. E.
Nussbaum [76], which is a generalization of von Neumann’s reduction the-
orem for bounded operators to closed operators. Since VK and U(g)G′

are
at most countable-dimensional, we can define ϕπ for almost every π. The
compatibility with the g′-action is proved by Fact 1.2. See Theorem 7.11.

Definition 1.13. For a (g, K)-module V and a (g′, K ′)-module V ′, we define

H0(g
′, K ′;V ⊗ (V ′)∗K′)

as the space of all coinvariants of V ⊗ (V ′)∗K′ . Then H0(g
′, K ′;V ⊗ (V ′)∗K′)

has a natural U(g)G′
-module structure.
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Remark 1.14. In the context of the Howe duality [26], the spaceH0(g
′, K ′;V⊗

(V ′)∗K′) appears as the full theta lift. Hence the U(g)G′
-module structure on

H0(g
′, K ′;V ⊗ (V ′)∗K′) is used in the study of the Howe duality [66], [69].

By Theorem 1.11, there is a surjective U(g)G′
-module homomorphism:

H0(g
′, K ′;VK ⊗ (V ∗

π )K′) → Cm(π)

for almost every π. This is one of the reasons to study U(g)G′
-modules.

We treat U(g)G′
-modules in Section 7.

1.6.2 Irreducibility of U(g)G′
-module: generalized Verma modules

Let q = l⊕ u be a parabolic subalgebra of g constructed from a semisimple
element H ∈ g′. Define q′ = l′ ⊕ u′ in a similar way for g′. We fix a Cartan
subalgebra h′ of l′ and extend it to a Cartan subalgebra h of l.

For a finite-dimensional irreducible l-module F , we define a generalized
Verma module by

indg
q(F ) := U(g)⊗U(q) F.

The following theorem is needed to consider the branching problem of gen-
eralized Verma modules.

Fact 1.15 (T. Kobayashi [53]). Under the setting, indg
q(F )|g′ is discretely

decomposable and g′-admissible.

Following Knapp–Vogan’s book [40], we recall the notion of the good
range. A finite-dimensional irreducible l-module F is said to be in the good
range if the infinitesimal character λ of F satisfies

Re(λ+ ρ(u), α) < 0 for any α ∈ ∆(u, h).

Under this setting, the following theorems hold (see Theorem 8.6 and its
corollaries).

Theorem 1.16. Let F be a finite-dimensional irreducible l-module in the

good range. Suppose that indg
q(F )|g′ is completely reducible and ind

g′

q′ (F
′) is an

irreducible direct summand. Then the U(g)G′
-module Homg(ind

g′

q′ (F
′), indg

q(F ))
is irreducible.

Theorem 1.17. Let F be a finite-dimensional irreducible l-module in the

good range. Then the length of the U(g)G′
-module Homg(ind

g′

q′ (F
′), indg

q(F ))

is less than or equal to the length of ind
g′

q′ ((F
′)∗ ⊗ C−2ρ(u)).
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1.6.3 Outline of the proof of Theorem 1.16

To study the U(g)G′
-modules, we define a (g′ ⊕ g,∆(G′))-module structure

on the space of ∆(G′)-finite linear maps as follows (see Section 7).

Definition 1.18. Let V be a (g, K)-module and V ′ be a (g′, K ′)-module.
Then g′ ⊕ g and K ′ × K act on HomC(V

′, V ). HomC(V
′, V )∆(G′) is defined

as the sum of finite-dimensional (∆(g′),∆(K ′))-submodules which lift to a
representation of ∆(G′). Then HomC(V

′, V )∆(G′) becomes a (g′ ⊕ g,∆(G′))-
module. We define a (g′ ⊕ g,∆(G′))-module HomC(V, V

′)∆(G′) in the same
way.

Remark 1.19. If G′
R is equal to GR, a (g′ ⊕ g,∆(G′))-module is a Harish-

Chandra module of a complex reductive Lie group. In this case, for objects
V, V ′ of the BGG category O, HomC(V

′, V )∆(G) was studied by many math-
ematicians because the module is related to primitive ideals of the universal
enveloping algebra and principal series representations of complex semisimple
Lie groups (e.g. [4], [7], [10, 11], [33]).

An important property of the module is that the ∆(G′)-invariant part
of the module is equal to the space of all intertwining operators. Hence
we can study the U(g)G′

-module through the (g′ ⊕ g,∆(G′))-module. More
precisely, the following two propositions hold.

Proposition 1.20. Retain the settings in the above. Put

I := U(g′ ⊕ g)∆(G′) ∩ U(g′ ⊕ g)∆(g′).

Then there is an algebra isomorphism:

α : U(g)G′ ≃ U(g′ ⊕ g)∆(G′)/I

∈ ∈

X 7→ I ⊗X + I.

Proposition 1.21. Let W be a (g′ ⊕ g,∆(G′))-module. Then the length of
the U(g)G′

-module on W∆(G′) is bounded by the length of W . In particular if
W is irreducible, then W∆(G′) is irreducible or zero.

To prove Theorem 1.17, 1.16 and 1.27, we construct (g′ ⊕ g,∆(G′))-
modules using the Zuckerman derived functor RiΓ. Let L′ be the analytic
subgroup of G′ with Lie algebra l′. For a finite-dimensional irreducible l-

module F with infinitesimal character λ, let Og′

q′ (λ) be the full subcategory

of the relative BGG category Og′

q′ whose object V satisfies that V ⊗ F can
lifts to a representation of L′. We denote by F(g′ ⊕ g,∆(G′)) the category
of (g′ ⊕ g,∆(G′))-modules of finite length. The following theorem is a key
result (see Theorem 6.1).
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Theorem 1.22. Let F be a finite-dimensional irreducible l-module with in-
finitesimal character λ in the good range. Set S := dimC(u

′). Then the
following functor gives a category embedding:

Og′

q′ (λ) ∋ M 7→ RSΓ
∆(G′)
∆(L′)(M ⊗ indg

q(F )) ∈ F(g′ ⊕ g,∆(G′)),

that is, the functor is exact and fully faithful, and maps irreducible objects to
irreducible objects.

Remark 1.23. If g = g′, the theorem was proved by T. J. Enright [10,
Chapter 16] except for the full faithfulness.

Remark 1.24. For a non-symmetric pair (g, k), a (g, k)-module with some
finiteness conditions is called a generalized Harish-Chandra module by I.
Penkov and G. Zuckerman [85, 86, 87].

The proof of the theorem follows the proofs in Knapp–Vogan’s book [40],
Wallach’s book [104] and Penkov–Zuckerman’s papers.

Under the settings of Theorem 1.16, using the functor, we can prove the
following U(g)G′

-module isomorphism:

Homg′,K′(ind
g′

q′ (F
′), indg

q(F )) ≃ RSΓ
∆(G′)
∆(L′)(M ⊗ indg

q(F ))∆(G′),

where M is a unique irreducible quotient of ind
g′

q′ ((F
′)∗ ⊗C−2ρ(u′)). Thus the

irreducibility of Homg′,K′(ind
g′

q′ (F
′), indg

q(F )) is reduced to the irreducibility

of RSΓ
∆(G′)
∆(L′)(L⊗ indg

q(F )) by Proposition 1.21.

1.6.4 Irreducibility of U(g)G′
-module: Zuckerman derived functor

modules

To apply Theorem 1.16 to Zuckerman derived functor modules, we define a
quasi-abelian parabolic subalgebra.

Definition 1.25 (quasi-abelian). q is said to be quasi-abelian with respect
to g′ if (α, β) ≥ 0 holds for any α ∈ ∆(u′, h′) and β ∈ ∆(u′′, h′).

Remark 1.26. In the case of G′
R = KR, the notion of a quasi-abelian

parabolic subalgebra was used by Enright–Parthasarathy–Wallach–Wolf [12]
to study Zuckerman derived functor modules.

If q is quasi-abelian with respect to g′, the completely reducibility always
holds as long as F is in the good range. We assume H ∈ k′, and set KL :=
ZK(H) and K ′

L := ZK′(H). Then the following theorem (Theorem 8.24)
holds.

12



Theorem 1.27. Let F be a finite-dimensional irreducible (l, KL)-module in
the good range. Suppose that there exists an ideal k1 of k such that H ∈ k1 and
u∩k ⊂ k1 ⊂ g′, and suppose that q is quasi-abelian with respect to g′. Put S :=
dimC(u ∩ k). Then RSΓK

KL
(indg

q(F ))|(g′,K′) is completely reducible and each

direct summand is of the form RSΓK′

K′
L
(ind

g′

q′ (F
′)) with F ′ in the good range.

Moreover, Homg′,K′(RSΓK′

K′
L
(ind

g′

q′ (F
′)), RSΓK

KL
(indg

q(F ))) is irreducible as a

U(g)G′
-module.

Remark 1.28. As we mentioned in the introduction, T. Kobayashi gave a
necessary and sufficient condition for the discrete decomposability of Aq(λ)
(including discrete series representations), and gave some examples of explicit
branching laws in [42, 43, 45, 46].

Remark 1.29. One of important cases satisfying the assumptions is the case
of discretely decomposable restrictions of discrete series representations with
respect to symmetric subgroups. For small discrete series representations
and its restrictions to symmetric subgroups, the branching law was computed
by Gross–Wallach in [16]. For any discrete series representations and non-
symmetric subgroups, Duflo–Vargas gave a formula of the multiplicities like
Blattner’s formula in [8]. The subgroup K1 in our setting is the same as in
[16] and [8].

Under the assumptions in the theorem, indg
q(F )|g′ is completely reducible.

Hence the proof is reduced to Theorem 1.16 by the following fact.

Fact 1.30 (Gross–Wallach [16, Lemma 7]). Under the assumptions in The-
orem 1.27, RSΓK

KL
(indg

q(F )) is isomorphic to RSΓK1
K1∩L(ind

g
q(F )).

1.6.5 Irreducibility of U(g)G′
-module: Holomorphic discrete series

representations

We study the U(g)G′
-module and (g′ ⊕ g,∆(G′))-module arising from the

branching law with continuous spectrum.
Following Kanpp’s book [38, Chapter VI], we recall holomorphic discrete

series representations. Assume that GR is a connected simple Lie group of
Hermitian type. Fix an element H ∈

√
−1c(kR) such that adg(H) has eigen-

values −1, 0 and 1. Then g is decomposed into the direct sum of eigenspaces
of adg(H):

g = p+ ⊕ k⊕ p−

corresponding to eigenvalues 1, 0 and −1, respectively. We put q := k ⊕ p+
and q = k⊕ p−. Then GR/KR admits a GR-invariant complex structure such
that the natural embedding GR/KR ↪→ G/Q is holomorphic.

13



Fact 1.31 (Harish-Chandra [20]). Let F be an irreducible unitary represen-
tation of KR. Then O ∩ L2(GR/KR, GR ×KR F ) is non-zero if and only if F
is in the good range with respect to q, where O ∩ L2 means the space of all
holomorphic and L2 sections. Furthermore, if O ∩ L2(GR/KR, GR ×KR F ) is
non-zero, it is irreducible and unitary as a representation of GR.

The irreducible unitary representation is called a holomorphic discrete
series representation.

Assume that (GR, G
′
R) is a symmetric pair of anti-holomorphic type (i.e.

g′R does not contains the center of kR) and G′
R satisfies the following condition:

Adg(G
′
R) = G′ ∩ Int(gR),

where G′ is the analytic subgroup of Aut(g) with Lie algebra g′.
It is known that the branching law of a holomorphic discrete series rep-

resentation with respect to G′
R is reduced to the Plancherel formula of the

Riemannian symmetric space G′
R/K

′
R. Hence the irreducible decomposition

has a continuous spectrum.

Fact 1.32 (J. Repka [89], R. Howe [24], Ólafsson–Ørsted [77]). For a holo-
morphic discrete series representation V of GR realized in O(GR/KR,V) for
a holomorphic GR-equivariant vector bundle V on GR/KR, the following iso-
morphism holds:

V |G′
R
≃ L2(G′

R/K
′
R,V|G′

R/K
′
R
).

Let Q′
R = M ′

RA
′
RN

′
R be a minimal parabolic subgroup of G′

R. Take a Car-
tan subalgebra t′ of m′, and put h′ := a′⊕ t′. Write I (δ, ν) for the underlying
Harish-Chandra module of the principal series representation induced from

(δ, Vδ) ∈ M̂ ′
R and ν ∈ (a′)∗. We consider ‘generic’ principal series representa-

tions in the following sense (Lemma 9.4).

Lemma 1.33. Let µ be the infinitesimal character of δ. Assume

2(−ν − µ+ ρ(n′), α)

(α, α)
̸∈ Z for any α ∈ ∆(n′, h′).

Let W be an irreducible subquotient of I (δ, ν). Then the following properties
hold:

(a) EndC(W )∆(G′) is irreducible as a (g′ ⊕ g′,∆(G′))-module;

(b) for any finite-dimensional representation F of G′, F ⊗W is completely
reducible.
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Fix a maximal abelian subspace tR of (g′R)
⊥ ∩ kR. Then tR is a maximal

abelian subspace of (g′R)
⊥. Choose a set of positive roots ∆+(g, t) containing

∆(p+, t). Let γ1 be the highest weight of ∆(g′R, a
′
R) with respect to the

parabolic subgroup Q′
R, and β1 be the highest weight of ∆(p+, t). Then the

following theorem holds (Theorem 9.13).

Theorem 1.34. Retain the notation and the assumption in Lemma 1.33.
Let Cλ be a one-dimensional representation of KR with weight λ. Assume

±(w(ν − ρ(n)) + ρ(n), γ1)

(γ1, γ1)
+

(λ, β1)

(β1, β1)
̸∈ Z

for any w ∈ Wg′R
. Then the (g′ ⊕ g,∆(G′))-module HomC(ind

g
q(Cλ),W )∆(G′)

is irreducible.

Remark 1.35. In the case of the trivial representation W (the theorem can
not apply to this case), HomC(ind

g
q(Cλ),1)∆(G′) is isomorphic to a degenerate

principal series representation of some real form of G. The irreducibility of
degenerate principal series representations can be determined from the data
of the K-type decomposition and the p-action on each K-type. T. Hirai
introduced this method to study degenerate principal series representations
of Lorentz groups [23]. Many mathematicians computed the composition
series of degenerate principal series representations by a similar way such as
V. F. Molčanov [73], Klimyk–Gavrilik [37], Johnson–Wallach [32] and Kudla–
Rallis [64].

The structure of HomC(ind
g
q(Cλ),W )∆(G′) can be computed by a simi-

lar way. Under the assumptions of Theorem 1.34, HomC(ind
g
q(Cλ),W )∆(G′)

is completely reducible and multiplicity-free as a (g′ ⊕ g′,∆(G′))-module.
Hence we can use the irreducible decomposition as a (g′ ⊕ g′,∆(G′))-module
instead of the K-type decomposition.

It follows from Harish-Chandra’s classification of holomorphic discrete
series representations (Fact 1.31) that if λ is in the good range, indg

q(Cλ)
is isomorphic to the underlying Harish-Chandra module of a holomorphic
discrete series representation. We apply the Jantzen–Zuckerman translation
functor to HomC(ind

g
q(Cλ),W )∆(G′), and we obtain the following theorem

(Theorem 9.35).

Theorem 1.36. Let F be an irreducible unitary representation of KR in
the good range, and let (δ, Vδ) be an irreducible subrepresentation of F |M ′

R
.

Suppose that the center c(k) of k acts on F by a character λ. Assume that λ, δ
and ν ∈ (a′)∗ satisfy the conditions of Lemma 1.33 and Theorem 1.34. Let W
be an irreducible subquotient of I (δ, ν). Then HomC(ind

g
q(F ),W )∆(G′) is an

irreducible (g′ ⊕ g,∆(G′))-module, and Homg′,K′(indg
q(F ),W ) is irreducible

as a U(g)G′
-module.

15



1.6.6 Stability of multiplicities

We generalize Sato’s stability theorem (Fact 1.10) to the case of quasi-affine
spherical varieties.

Let X be a quasi-affine spherical variety of a complex connected reductive
algebraic group G with Borel subgroup B = TN . Then the coordinate ring
C[X] is a multiplicity-free G-module. Fix an open orbit Bx0 ⊂ X and put
L := {g ∈ G : gx0 = x0, gBx0 ⊂ Bx0}. Then L is a reductive subgroup of G
by the theorem of Brion–Luna–Vust [6, Théorème 3.4]. Consider a finitely
generated torsion-free (C[X], G)-module M such as the space of all global
sections of a G-equivariant vector bundle on X. Then the following theorem
holds (see Theorem 3.18).

Theorem 1.37. There exists a weight λ0 ∈ Λ+(C[X]) such that

mG
M(λ+ λ0) = mL

M/m(x0)M
(λ|Bx0

)

for any λ ∈ Λ+(M).

Here mG
M(·) is the multiplicity function of the G-module M , and Λ+(M)

is the set of weights of B/N ≃ T in MN . We denote by m(x0) the maximal
ideal of C[X] corresponding to x0.

Remark 1.38. IfX is an affine homogeneous variety G/G′ of G, the theorem
is just Sato’s stability theorem (Fact 1.10).

The proof is essentially the same as the proof of Sato’s stability theorem
[93]. The only difference is that we study some behavior of the evaluation
map M → M/m(x0)M instead of using the reductivity of G′.

As an application of Theorem 1.37, we obtain the following corollary (see
Corollary 3.39). Recall the notation in Fact 1.9.

Corollary 1.39. Let H be a holomorphic discrete series representation of
GR. Suppose that G′

R is connected and (GR, G
′
R) is a symmetric pair of

holomorphic type. Then we have

MG′
R
(H) = MMR(H

p+
K ),

where MG′
R
(H) is the maximal value of the multiplicities. In particular, H|G′

R

is multiplicity-free if and only if (Hp+
K )|MR is multiplicity-free.

Remark 1.40. MG′
R
(H) < ∞ and the ‘if part’ of the second assertion were

proved by T. Kobayashi (Fact 1.8, 1.9).
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We write σ for the involution defining the symmetric pair (GR, G
′
R). We

can reduce the branching law of H|G′
R
to the irreducible decomposition of

S(p−σ
− ) ⊗ Hp+

K as a K ′-module (see [29, Proposition 2.5] and [52, Lemma
8.8]). As in the proof of [52, Theorem 8.3], the irreducible decomposition of
S(p−σ

− )⊗Hp+
K is considered as the K-type decomposition of some direct sum

of holomorphic discrete series representations of the associated symmetric
subgroup Gθσ

R . Since S(p−σ
− ) is multiplicity-free by the Hua–Kostant–Schmid

theorem [94], we can apply Theorem 1.37 to S(p−σ
− ) ⊗ Hp+

K , and this shows
the corollary.

1.6.7 Classification of multiplicity-free restrictions of holomorphic
discrete series representations

We classify multiplicity-free restrictions of holomorphic discrete series repre-
sentations with respect to symmetric subgroups.

Let GR be a connected simple Lie group of Hermitian type with simply-
connected complexification G, and σ be an involutive automorphism of GR.
Put G′

R := Gσ
R. The following theorem is the classification result (Theorem

10.3).

Theorem 1.41. Let H be a holomorphic discrete series representation of
GR. Put F := Hp+

K . Then H|G′
R
is multiplicity-free if and only if F is one-

dimensional or the highest weight of F |[k,k] belongs to Λ(σ) in Table 2 in
Section 10.

Remark 1.42. In the case of scalar type H, the theorem was proved by
T. Kobayashi [44, 50] (Fact 1.8). The multiplicity-freeness was shown for
(gR, g

′
R) = (so(2, n), so(2, n − 1)) by Jakobsen–Vergne [29, Corollary 3.1],

and for (su(p, q), u(p− 1, q)) by T. Kobayashi [52, Theorem 8.10].

To prove the classification result, the following theorem (Theorem 10.1)
is useful. Fix a unitary character (ζ,Cζ) of KR. For an irreducible unitary
representation F of KR with infinitesimal character λ, we define

Zhol(F ) := {z ∈ Z : (λ+ ρ(p+), α) < 0 for any α ∈ ∆(p+, h)} ,

Zfin(F ) :=

{
z ∈ Z :

2(λ+ ρ(p+), α)

(α, α)
∈ {1, 2, . . .} for any α ∈ ∆(p+, h)

}
,

and let L(F ) denote a unique irreducible submodule of progq̄(F ) (defined in
Section 2.2).

Theorem 1.43. Let F be a unitary irreducible representation of KR. Then
the following conditions are equivalent:
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(a) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for any z ∈ Zhol(F );

(b) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for some z ∈ Zhol(F );

(c) MGσ(L(F ⊗ Czζ)) = 1 for any z ∈ Zfin(F );

(d) MMR(F ) = 1.

where MR is the subgroup of K ′
R defined before Fact 1.8.

Remark 1.44. For the proof of the theorem, we use the method, ana-
lytic continuation of holomorphic discrete series representations [1], [92], [99],
[103]. To prove the theorem, we need only that the family of the represen-
tations O(GR/KR, GR ×KR (F ⊗Czζ))KR depends on z polynomially, that is,
any element of g acts on the space by a differential operator with polynomial
coefficient on z (see Section 4.1).

Remark 1.45. In the branching problem, the method of analytic continua-
tion was used to study symmetry breaking operators [63].

Remark 1.46. The theorem asserts that the sufficient condition for the
multiplicity-freeness given by T. Kobayashi (Fact 1.8) is a necessary condition
for holomorphic discrete series representations.

By the theorem, the classification of multiplicity-free restrictions of holo-
morphic discrete series representations is reduced to that of finite-dimensional
irreducible representations. In particular, in the case that G′

R has a one-
dimensional center, J. R. Stembridge has classified multiplicity-free restric-
tions of finite-dimensional irreducible representations with respect to G′ in
[96]. Thus for such G′

R, the classification is immediately done by Theorem
1.43 and the Stembridge classification.

As a consequence, we obtain the following proposition (Proposition 10.6).

Corollary 1.47. Let σ′ be an involutive automorphism of GR. Assume that
Gσ and Gσ′

are conjugate by an inner automorphism of G. Then we have
Λ(σ) = Λ(σ′).

Remark 1.48. The theorem asserts that the classification is not depend
on a choice of real forms. The similarity of two groups with isomorphic
complexifications can be found in many fields in the representation theory
and the harmonic analysis. We give several examples:

• the Weyl unitary trick;

• the Flensted-Jensen duality [14];
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• non-existence of compact Clifford–Klein forms [57];

• transfer of K-type [16];

• one to one correspondence of infinitesimal characters in the theory of
the Howe duality [67], [88].

This thesis is organized as follows. In Section 2, we review some of the
standard facts on the representation theory of reductive Lie groups. Section
3 deals with the stability theorem. We give its proof and some examples.
In Section 4, we relate the branching laws of infinite-dimensional represen-
tations to the branching laws of finite-dimensional representations using the
method, analytic continuation. In Section 5, we discuss the Zuckerman de-
rived functor and generalized Verma modules to use Section 6. In Section
6, we construct a category embedding from the BGG category O to the cat-
egory of generalized Harish-Chandra modules. Section 7 is devoted to the
study of U(g)G′

-modules and (g′ ⊕ g,∆(G′))-modules. The relation between
the direct integral decomposition and (g, K)-module is in this section. In
Section 8, it is shown that U(g)G′

-modules arising from the branching laws
of generalized Verma modules and the Zuckerman derived functor modules
are irreducible under good conditions. Section 9 contains a discussion of
the structure of (g′ ⊕ g,∆(G′))-modules for holomorphic discrete series rep-
resentations and principal series representations. In Section 10, we classify
multiplicity-free restrictions of holomorphic discrete series representations
with respect to symmetric subgroups.

1.7 Notation

In this thesis, any Lie algebra is finite-dimensional. Real Lie groups and
their Lie algebras are denoted by Roman alphabets and corresponding Ger-
man letters with subscript (·)R, respectively. We express complex Lie groups
and their Lie algebras by Roman alphabets and corresponding German let-
ters without subscript. For example, the Lie algebras of real Lie groups
GR, KR and HR are denoted as gR, kR and hR with complexification g, k and
h, respectively. We write U(g) and Z(g) for the universal enveloping algebra
and its center of a complex Lie algebra g. For a topological group G, let G0

denote the identity component of G.
For a compact Lie group, we identify its locally finite representations with

rational representations of its complexification. Here we consider the com-
plexification of a compact Lie group as a complex reductive algebraic group.
We denote by F g(λ) (resp. FG(λ)) the finite-dimensional representation of a
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reductive Lie algebra g (resp. connected complex reductive algebraic group
G) with highest weight λ.

For a vector space V over a field k, we denote by V ∗ the dual vector space
(i.e. Homk(V, k)). Let a be an abelian subspace of a Lie algebra g. For an
a-stable subspace s of g and λ ∈ a∗, we define

sλ := {X ∈ s : [H,X] = λ(H)X for any H ∈ a} ,
∆(s, a) := {λ ∈ a∗\ {0} : sλ ̸= 0} .

We denote by ρ(s) half the sum of elements in ∆(s, a) with multiplicity
dim(sλ). Let ρg denote half the sum of positive roots in g.

For a Lie algebra g and its subalgebra h, we write adg for the adjoint
action of h on g. Its group version is written as Adg. If the Lie algebra is
clear from the context, we write ad for adg. We denote by c(g) the center of
a Lie algebra g.

For a unitary representation V of a real reductive Lie group GR, MGR(V )
stands for the essential supremum of the multiplicity function of V . We use
the similar notation for completely reducible representations of a Lie algebra
or algebraic group.

For a complex semisimple Lie algebra g, we denote by (, ) the Killing
form of g. For a reductive subalgebra g′ of g, whenever we use an invariant
bilinear form on g′ without no mention, we suppose that the bilinear form
is the restriction of the Killing form of g. The dual space (g′)∗ is identified
with g′ by the bilinear form, and admits a g′-invariant bilinear form induced
from the bilinear form on g′.
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2 Preliminaries

In this section, we summarize without proofs the relevant material on (g, K)-
modules.

2.1 (g, K)-modules

We define a (g, K)-module and review its properties. We give a reference
[40] for the definition of a pair and (g, K)-module.

Definition 2.1. Let g be a complex Lie algebra and K be a complex reduc-
tive algebraic group with Lie algebra k which is a subalgebra of g. Suppose
that an algebraic group homomorphism ϕ : K → Aut(g) is given. (g, K) is
said to be a pair if the differential of ϕ is equal to the adjoint action adg, and
ϕ(k)|k = Adk(k) holds for any k ∈ K.

Remark 2.2. If we say that (g, K) is a pair, we always assume that the
homomorphism ϕ is given implicitly. For simplicity, we write Adg for the
homomorphism ϕ.

A typical example is a pair constructed from a real Reductive Lie group
GR. Fix a maximal compact subgroup KR of GR. Then (g, K) is a pair,
where g is the complexification of Lie(GR) and K is the complexification of
KR. We define a (g, K)-module as follows.

Definition 2.3. Let (g, K) be a pair and V be a vector space with g-action
and K-action. We will say that V is a (g, K)-module if

• the K-action on V is algebraic (hence locally finite and completely
reducible);

• the action of k determined by the differential of the K-action is equal
to the restriction of the g-action;

• kXv = Adg(k)(X)kv holds for any k ∈ K, X ∈ g and v ∈ V .

We denote by C(g, K) the category of (g, K)-modules. For reductive g,
we write C(g, K)λ for the full subcategory of C(g, K) of which objects have
generalized infinitesimal character λ.

We use the similar terminology, (gR, KR)-module for an infinitesimal rep-
resentation of an infinite covering GR of a real reductive Lie group. In this
case, we replace ‘algebraic’ by ‘locally finite and unitarizable’ for KR-action.
For an admissible representation V of a real reductive Lie group GR, the
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space of KR-finite vectors becomes a (g, K)-module. We denote by VK the
(g, K)-module.

Let (g, K) be a pair, g′ be a Lie subalgebra of g and K ′ be a reductive
subgroup of K. Suppose k′ = k∩ g′. Then (g′, K ′) forms a pair. We say that
(g′, K ′) is a subpair of (g, K).

We review the theory of a discretely decomposable (g, K)-module due
to T. Kobayashi [43, 45, 46, 48]. Since we do not use the deep results, we
summarize only definitions and fundamental facts.

Definition 2.4 (discretely decomposable (g, K)-module). Let V be a (g, K)-
module. V is said to be discretely decomposable if there exists a (g, K)-
module filtration 0 = V0 ⊂ V1 ⊂ · · · such that

∪
i Vi = V and each Vi is finite

length.

Let (g, K) be a pair constructed from a real reductive Lie group GR
and (g′, K ′) be a subpair corresponding to a reductive subgroup G′

R. The
following fact is in [46, Lemma 1.5].

Fact 2.5. Let V be an irreducible (g, K)-module. Then V |(g′,K′) is discretely
decomposable if and only if there exists an irreducible (g′, K ′)-module V ′ such
that Homg′,K′(V ′, V ) ̸= 0.

If V is the underlying Harish-Chandra module of an irreducible unitary
representation of GR, the discretely decomposability of V |(g′,K′) is equivalent
to the completely reducibility. More precisely, the following facts are known
[48, Theorem 2.7]:

Fact 2.6. Let V be an irreducible unitary representation of GR. Suppose that
VK |(g′,K′) is discretely decomposable. Then VK |(g′,K′) is decomposed into the
direct sum of irreducible (g′, K ′)-modules:

VK |(g′,K′) ≃
⊕
π∈Ĝ′

R

m(π)(Vπ)K′ ,

and V |G′
R
is decomposed into the direct sum of irreducible unitary represen-

tations with the same multiplicity function m(π) as above:

V |G′
R
≃
∑⊕

π∈Ĝ′
R

m(π)Vπ.
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2.2 Generalized Verma modules

This section contains a brief summary of generalized Verma modules. The
general reference here is the Humphreys book [28]. For the branching problem
part, we refer the reader to [53].

Let g be a complex semisimple Lie algebra. We fix a semisimple element
H ∈ g such that ad(H) has only real eigenvalues. l(H), u(H) and ū(H) denote
the sum of eigenspaces of ad(H) with zero, positive and negative eigenvalue,
respectively. Then q(H) := l(H) ⊕ u(H) is a parabolic subalgebra of g.
Similarly, we put q̄(H) := l(H) ⊕ ū(H). If H is clear from the context, we
omit ‘(H)’ part. For example, we write l for l(H). We fix a Cartan subalgebra
h of g contained in l.

We define generalized Verma modules. Let F be an l-module. We define

indg
q(F ) := U(g)⊗U(q) F,

progq̄(F ) := HomU(q̄)(U(g), F )l,

where we consider F as a q- (resp. q̄-)module letting u (resp. ū) act on F
trivially. If F is a finite-dimensional irreducible l-module, indg

q(F ) is called a
generalized Verma module. In this case, indg

q(F ) is a highest weight module.
We define the relative BGG category O denoted by Og

q as follows (see
[28, Chapter 9]). Og

q is the full subcategory of C(g) whose objects V satisfy:

• V is finitely generated as a g-module;

• V is a locally finite and completely reducible l-module;

• the action of u on V is locally nilpotent.

Then any generalized Verma module is an object of the category Og
q .

In general, a generalized Verma module can be reducible. The following
result provide a criterion for the irreducibility of a generalized Verma module.
(e.g. [28, Theorem 9.12.])

Fact 2.7. Let F be an irreducible finite-dimensional l-module with infinites-
imal character λ satisfying

2(λ+ ρ(u), α)

(α, α)
̸∈ {1, 2, . . .} for any α ∈ ∆(u, h).

Then the generalized Verma module indg
q(F ) is irreducible.

If indg
q(F ) is irreducible, indg

q(F ) is isomorphic to progq̄(F ) because they
are irreducible highest weight modules with the same highest weight.

The following definition is a generalization of the standard definition in
[28, Section 3.7].
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Definition 2.8. Let V be a g-module. We will say that V has a standard
filtration with respect to q if there is a filtration 0 = V0 ⊂ V1 ⊂ · · · such that∪

i Vi = V and each Vi+1/Vi is isomorphic to some generalized Verma module
indg

q(F ).

If the parabolic subalgebra q is clear from the context, we simply say that
V has a standard filtration. We give several fundamental properties of the
standard filtration.

Proposition 2.9. Let V be a g-module with standard filtration V·.

(a) For any finite-dimensional g-module F , V ⊗F has a standard filtration.

(b) If each Vi+1/Vi is irreducible, then V is completely reducible.

Proof. (a) is clear because it is well-known that if V is a generalized Verma
module, V ⊗ F has a standard filtration.

To prove (b), we can assume that V is finite length. In fact, if each Vi

is completely reducible, V is completely reducible because V can be written
as a sum of simple submodules. Since Ext1Og

q
(M,N) = 0 for any two irre-

ducible generalized Verma modules M and N (see [28, Theorem 3.3 (d)],)
the assertion follows.

We consider the branching law of a generalized Verma module. Let g′ be
a reductive subalgebra of g. Assume that H is an element of g′. In [53], q
is said to be g′-compatible. Then q′ := q ∩ g′ is a parabolic subalgebra of g′.
We write u′, l′ and ū′ for the intersections of u, l and ū with g′, respectively.

An important fact is that any object of Og
q is discretely decomposable as a

g′-module, and the filtration in the definition of the discrete decomposability

can be taken from objects of Og′

q′ (see [53, Proposition 3.8]). By the same
proof as in [104, Lemma 6.4.4], we obtain

Proposition 2.10. Let F be a finite-dimensional irreducible l-module. Then
indg

q(F ) has a standard filtration V· as a g′-module satisfying

gr(V·) ≃ ind
g′

q′ (F ⊗ S(ū/ū′)),

where we consider ū/ū′ as a q′-module by letting u′ act on ū/ū′ trivially.

2.3 Holomorphic discrete series representations

In this section, we review some of the standard facts on a holomorphic dis-
crete series representation. We refer the reader to [38] for the construction,
and to [52] for the branching laws.
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Let GR be a connected semisimple Lie group with Cartan involution θ.
Assume that each simple factor of gR is of Hermitian type. Then we do not
assume that GR has finite center. Put KR := Gθ

R, and pR := g−θ
R . Fix a

characteristic element H ∈
√
−1c(kR) such that eigenvalues of ad(H) on p

are 1 or −1. Then we have the following ad(H)-eigenspace decomposition:

g = p+ ⊕ k⊕ p−

with eigenvalue 1, 0 and −1, respectively. q := k ⊕ p+ and q̄ := k ⊕ p− are
parabolic subalgebras of g with abelian nilpotent radical. We fix a Cartan
subalgebra of g contained in k.

We take a simply-connected connected complex algebraic group G with
Lie algebra g. K,Q and Q are the connected subgroups corresponding to k, q
and q̄. Then there is a natural open embedding:

GR/KR ↪→ G/Q.

This embedding induces a GR-invariant complex structure on GR/KR.
The following fact is due to Harish-Chandra (see e.g. [38, Theorem 6.6])

Fact 2.11. Let F be an irreducible unitary representation of KR with in-
finitesimal character λ satisfying

(λ+ ρ(p+), α) < 0 for any α ∈ ∆(p+, h).

Then (O ∩ L2)(GR/KR, GR ×KR F ) is non-zero and an irreducible unitary
representation of GR, where we denote by O∩L2 the space of square-integrable
holomorphic sections.

The irreducible unitary representation is called a holomorphic discrete
series representation.

The underlying Harish-Chandra module of a holomorphic discrete series
representation can be written as a generalized Verma module. More gener-
ally, the following facts are well-known. For a unitary representation F of
KR, we set M(F ) := O(GR/KR, GR ×KR F )KR .

Fact 2.12. Retain the assumptions in Fact 2.11. Then M(F ) is the underly-
ing Harish-Chandra module of the holomorphic discrete series representation
in Fact 2.11. Hence M(F ) is an irreducible (gR, KR)-module.

Fact 2.13. Let F be an irreducible unitary representation of KR. Then we
have M(F ) ≃ progq̄(F ). If M(F ) is irreducible, then M(F ) ≃ indg

q(F ) holds.
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2.4 Zuckerman derived functor

We review the Zuckerman derived functor. We refer the reader to [104,
Chapter 6] and [40].

Let (g, K) be a pair andM be a reductive subgroup ofK. Then (g,M) be
a subpair of (g, K). For simplicity, we assume that M meets every connected
component of K, and hence we have K = MK0. We define a functor Γg,K

g,M

by

Γg,K
g,M : C(g,M) → C(g, K)

∈ ∈

V 7→ VK ,

where VK is the sum of finite-dimensional (k,M)-submodules which lift to a
representation of K.

The functor Γg,K
g,M is called the Zuckerman functor in [40]. It is obvious

that the functor is covariant and left exact. Since C(g,M) has enough in-
jectives, we can define the right derived functors RiΓg,K

g,M . These functors are
called the Zuckerman derived functors in [40].

Another construction of the Zuckerman derived functors is known as fol-
lows (see e.g. [5, I. 8]). Let (τ, V ) be a (g,M)-module. We take a basis {Xi}
of g and the dual basis {λi} of g∗. For X ∈ g, we define

µ(X) : V ⊗ C[K] → V ⊗ C[K]

∈ ∈

v ⊗ f 7→
∑

iXiv ⊗ λi(Ad(k)(X))f.

We denote by (L⊗R,C[K]) the regular representation of K×K. Then µ(X)
commutes with (τ ⊗L)(k) and (τ ⊗L)(Y ) for any X ∈ g, Y ∈ k and k ∈ M .

Fact 2.14. Under the above settings, we have

RiΓg,K
g,M(V ) ≃ H i(k,M ;V ⊗ C[K]),

where we take the (k,M)-cohomology with respect to τ ⊗ L, and the (g, K)-
module structure is induced from µ and 1V ⊗R.

By this construction, we can see the following commutative diagram:

C(g,M)

F
��

RiΓg,K
g,M// C(g, K)

F
��

C(k,M)
RiΓk,K

k,M

// C(k, K).
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Here F is the forgetful functor. The following facts are useful to study the
g-action on the Zuckerman derived functor modules (see [5, I. 8. Theorem
8.8] and [104, Lemma 6.3.1]).

Fact 2.15. Let V be a (g,M)-module and W be a (g, K)-module. Then we
have

RiΓg,K
g,M(V ⊗W ) ≃ RiΓg,K

g,M(V )⊗W.

Fact 2.16. Let V be a (g,M)-module and S be a Ad(K)-stable subspace of
U(g). Write

m : S ⊗ V → V,

m′ : S ⊗RiΓg,K
g,M(V ) → RiΓg,K

g,M(V )

for the multiplication maps. Then we have the following (k, K)-module com-
mutative diagram:

S ⊗RiΓk,K
k,M(V )

≃
��

m′
// RiΓk,K

k,M(V )

RiΓk,K
k,M(S ⊗ V )

RiΓ(m)

77oooooooooooo

By the above facts, to simplify notation, we write RiΓK
M instead of RiΓg,K

g,M .
To prove several vanishing theorems, we need the following lemma.

Lemma 2.17. Let V be a (g,M)-module with (g,M)-module filtration 0 =
V0 ⊂ V1 ⊂ · · · such that

∪
j Vj = V . If RiΓK

M(Vj) = 0 for any j, then

RiΓK
M(V ) = 0 holds.

Proof. Consider the standard complex to define H i(k,M ; ·). Define

Ci := HomM(∧i(k/m), V ⊗ C[K])

with d : Ci → C i+1. Take ω ∈ C i such that dω = 0. Then Im(ω) is contained
in V j ⊗ C[K] for some j. Hence by assumption, we can take ω′ ∈ Ci−1 such
that dω′ = ω. This shows the assertion.

2.5 Jantzen–Zuckerman translation functor

In this section, we summarize the facts on the Jantzen–Zuckerman translation
functor. For a fuller treatment, we refer the reader to [40, Chapter VII]. We
do not use the case of singular infinitesimal characters.
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Let g be a semisimple Lie algebra with Borel subalgebra b. Fix a Levi
decomposition b = t ⊕ n. For g-module V , we say that V is locally finite
Z(g)-module if Z(g)v is finite-dimensional for any v ∈ V . By Schur’s lemma,
It is obvious that any discretely decomposable g-module is locally Z(g)-finite.
For a locally Z(g)-finite g-module and a character χ of Z(g), we define

P g
χ(V ) := {v ∈ V : (z − χ(z))nv = 0 for some n depending on z ∈ Z(g)} .

If g is clear from the context, we write Pχ for P g
χ. Then Pχ(V ) is a g-

submodule, and called the primary component corresponding to χ. The
following fact is a direct consequence of [40, Proposition 7.20].

Fact 2.18. Let V be a locally Z(g)-finite g-module. Then V is the direct
sum of its primary components.

We define the Jantzen–Zuckerman translation functor as follows. Let V
be a locally Z(g)-finite g-module. Then for any finite-dimensional g-module
F , V ⊗ F is also locally Z(g)-finite. Take two weights λ, µ of t. Suppose
that µ is algebraically integral. Let Fµ be a finite-dimensional irreducible
representation of g with extreme weight µ. We write χλ for the character of
Z(g) corresponding to λ under the Harish-Chandra isomorphism. We define

T λ
λ+µ(V ) := Pχλ+µ

(Fµ ⊗ Pχλ
(V )).

The functor T λ
λ+µ is called the Jantzen–Zuckerman translation functor in [41].

Before we state several properties of the functor, we prepare notation.

Definition 2.19. Let λ be a character of t. λ is said to be integrally dominant
with respect to b if

2(λ, α)

(α, α)
̸∈ {−1,−2, . . .} for any α ∈ ∆+(g, t),

and is said to be integrally anti-dominant with respect to b if

2(λ, α)

(α, α)
̸∈ {1, 2, . . .} for any α ∈ ∆+(g, t).

Here we take the positive roots ∆+(g, t) corresponding to b.

The most important property of the translation functor for us is that the
functor gives a category equivalence. We write the same notation T λ

λ+µ for
the restrictions of the translation functor to subcategories of C(g)λ.
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Fact 2.20. Let λ be a integrally dominant regular weight of t and µ be a
algebraically integral weight of t. Suppose that λ + µ is integrally dominant
regular.

• T λ+µ
λ sends an irreducible object of C(g)λ to an irreducible object of

C(g)λ+µ.

• T λ
λ+µT

λ+µ
λ (V ) ≃ V holds for any irreducible object V of C(g)λ.

• Let C(g)(1)λ be the full subcategory of C(g)λ whose objects have the in-

finitesimal character λ. Then T λ+µ
λ gives a category equivalence from

C(g)(1)λ to C(g)(1)λ+µ.

We consider the relative BGG category Og
q . Recall the notation in Section

2.2. We assume that t is a Cartan subalgebra of l, and do not assume that q
contains b. The following fact (see [28, Theorem 7.8]) is used in Section 6.

Fact 2.21. Let λ be a integrally dominant regular weight of t and µ be a
algebraically integral weight of t. Suppose that λ + µ is integrally dominant
regular. Then T λ+µ

λ gives a category equivalence from (Og
q )λ to (Og

q )λ+µ.

The image of a generalized Verma module by the translation functor is
also a generalized Verma module (see [40, Theorem 7.237]).

Fact 2.22. Let F be a finite-dimensional l-module with infinitesimal char-
acter λ, and µ be a algebraically integral weight of t. Suppose that λ + ρ(u)
and λ+µ+ ρ(u) are integrally dominant and regular with respect to b. Then
we have

T
λ+µ+ρ(u)
λ+ρ(u) (indg

q(F )) ≃ indg
q(T

λ+µ
λ (F )).

At the last, we state the result for the category of (g, K)-modules. Let
(g, K) be a pair with semisimple g (see Section 2.1). For simplicity, we assume
that K is connected. In our usage, this assumption is always true. We denote
by F(g, K)λ the full subcategory of C(g, K) whose objects are finite length
and have the generalized infinitesimal character λ. The following result can
be shown by the same proof as in [40, Corollary 7.209]. Remark that we do
not assume that (g, k) is a symmetric pair.

Fact 2.23. Let λ be a integrally dominant regular weight of t and µ be a al-
gebraically integral weight of t. Suppose that λ+µ is integrally dominant reg-
ular, and the finite-dimensional irreducible g-module Fµ with extreme weight

µ lifts to a representation of K. Then T λ+µ
λ gives a category equivalence from

F(g, K)λ to F(g, K)λ+µ.
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Since the Zuckerman derived functor preserves the generalized infinitesi-
mal character and a direct sum decomposition, we obtain the following fact
(see the proof of [40, Theorem 7.237]).

Fact 2.24. Let (g, K) be a pair with semisimple g and connected K, and
M be a reductive subgroup of K. Take a weight λ and algebraically integral
weight µ of t. Suppose that the finite-dimensional irreducible g-module Fµ

with extreme weight µ lifts to a representation of K. Then the following
diagram commutes:

C(g,M)λ

Tλ+µ
λ

��

RiΓK
M // C(g, K)λ

Tλ+µ
λ

��
C(g,M)λ+µ

RiΓK
M

// C(g, K)λ+µ.

2.6 Polynomial identity

In this section, we discuss the representation theory of an associative algebra
with polynomial identity.

We define a invariant of rings called the polynomial identity degree (see
[72, Chapter 13]).

Definition 2.25. As a Z-coefficient non-commutative polynomial with n-
valuables, we define

sn(X1, X2, . . . , Xn) :=
∑
w∈Sn

sgn(w)Xw(1)Xw(2) · · ·Xw(n).

HereSn is the symmetric group of degree n and sgn is its signature character.
For a ring R, the polynomial identity degree of R is defined by

PI.deg(R) := min {n ∈ N : s2n ≡ 0 on R} .

For example, PI.deg(R) = 1 holds if and only ifR is commutative because
s2(X, Y ) = XY − Y X. The following fact is the key result to control some
invariant in the representation theory by the ring invariant.

Fact 2.26 (Amitsur–Levitzki theorem). Let Mn(C) be the algebra of n × n
matrices. Then we have PI.deg(Mn(C)) = n.

By the fact, we can see that if a C-algebra A has the finite polynomial
identity degree, then the dimension of any irreducible module of A can be
bounded by the polynomial identity degree. More precisely, we have the
following proposition.
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Proposition 2.27. Let A be an at most countable-dimensional unital asso-
ciative C-algebra, and {(Vλ, πλ)}λ∈Λ be a family of irreducible representations
of A. Suppose

∩
λ∈Λ Ker(πλ) = 0. Then PI.deg(A) = supλ∈Λ {dimC(Vλ)}

holds.

Proof. πλ(A) is dense in EndC(Vλ) in the sense of the Jacobson density the-
orem. Hence PI.deg(πλ(A)) = dimC(Vλ) holds. By assumption, we have the
following injection:

A ↪→
∏
λ∈Λ

πλ(A).

Thus we have PI.deg(A) ≤ supλ∈Λ {dimC(Vλ)}. Obviously, PI.deg(A) ≥
PI.deg(πλ(A)) holds for any λ ∈ Λ. This shows the converse inequality.

3 Stability theorem

The aim of this section is to study unitary or algebraic representations with
uniformly bounded multiplicities. We treat the irreducible decomposition of
torsion-free modules on the coordinate ring of a spherical variety and the
branching law of unitary highest weight modules with respect to symmetric
subgroups of holomorphic type.

The contents of this section has been published in [36].

3.1 Some algebraic results

In this section, we set up some notation and results about representations of
complex algebraic groups.

3.1.1 G-algebra and (A, G)-module

Let G be a connected reductive complex algebraic group. Fix a Borel sub-
group B of G. Let B = TN be its Levi decomposition, where T is a maximal
torus of G and N is the unipotent radical of B. Let Λ+ = Λ+

G ⊂ t∗ be the set
of dominant integral weights with respect to B. For each λ ∈ Λ+, we denote
by Vλ = Vλ,G the irreducible representation of G with highest weight λ.

For an algebraic group H, we say a representation V of H over C is a
rational representation if spanC{gv : g ∈ H} is a finite dimensional algebraic
representation of H for any v ∈ V . This implies that any rational represen-
tation of G is completely reducible. Given a rational representation V of G,
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we can decompose V into the direct sum of irreducible representations:

V =
⊕
λ∈Λ+

mG
V (λ)Vλ,

where mG
V (λ) is the multiplicity of the irreducible representation Vλ in V . If

the group G is obvious, we write mV (λ) := mG
V (λ). We set

Λ+(V ) := Λ+
G(V ) := {λ ∈ Λ+ : mV (λ) ̸= 0}.

We say that a C-algebra A is a G-algebra if A is a rational representation
of G and G acts on A via C-algebra automorphisms.

Definition 3.1. LetA be aG-algebra, andM be anA-module and a rational
representation of G. Then M is said to be an (A, G)-module if g(am) =
(ga)(gm) for any g ∈ G, a ∈ A and m ∈ M . Moreover, we will say that
an (A, G)-module M is finitely generated if M is finitely generated as an
A-module.

Let X be a quasi-projective variety over C. We denote by C[X] the ring
of regular functions on X. Suppose that X is a G-variety. The action of G
on X induces a rational representation of G on C[X] as follows:

(g · f)(x) = f(g−1x) for g ∈ G, f ∈ C[X].

We write Λ+(X) = Λ+(C[X]) for short.

3.1.2 Some finiteness results

We prepare some finiteness results for proofs in Section 3.3. Let G be a con-
nected reductive algebraic group over C, and B = TN be a Borel subgroup
of G.

Lemma 3.2. Let A be a Noetherian G-algebra, and M be a finitely generated
(A, G)-module. Then MG is a finitely generated AG-module.

Proof. Observe that AMG ⊂ M is finitely generated as an A-module. In
fact, since A is a Noetherian algebra and M is finitely generated, M is a
Noetherian A-module. Thus AMG is finitely generated.

Let {m1,m2, · · · ,mr} be a generating set of AMG as an A-module. We
may and do assume {m1,m2, . . . ,mr} ⊂ MG. We show that {m1,m2, . . . ,mr}
is a generating set of MG as an AG-module. Since {m1,m2, · · · ,mr} gener-
ates AMG, each m ∈ MG can be expressed as m = f1m1+f2m2+ · · ·+frmr

for some f1, f2, . . . , fr ∈ A. Taking the G-invariant part, we have m =
fG
1 m1 + fG

2 m2 + · · · + fG
r mr, where fG

i is the projection to the G-invariant
part of fi. This shows {m1,m2, . . . ,mr} generates MG as an AG-module.
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The following result is due to Dž. Hadžiev and F. D. Grosshans [17].

Proposition 3.3. Let A be a G-algebra. Then (A⊗C[G/N ])G is isomorphic
to AN as a C-algebra. Moreover if A is finitely generated, so is AN .

Remark 3.4. For the following lemma, we only define the isomorphism when
A is the regular function ring C[X] of G-variety X. For f ∈ C[X]N , define
φ(f)(g, x) := f(g−1x). Then φ is an algebra isomorphism between C[X]N

and C[G/N ×X]G(≃ (C[G/N ]⊗ C[X])G).

The following lemma is a key result for the proof of Theorem 3.14. If A
is finitely generated, this result (for arbitrary characteristics) is in [18].

Lemma 3.5. Let A be a Noetherian G-algebra, and M be an (A, G)-module.
Then MN is isomorphic to (M ⊗ C[G/N ])G as an AN -module. Here we
consider (M ⊗C[G/N ])G as an AN -module via the isomorphism AN ≃ (A⊗
C[G/N ])G in Proposition 3.3. Moreover, if M is a finitely generated A-
module, then MN is a finitely generated AN -module.

Proof. First, observe that the second assertion follows from the first. Indeed,
since C[G/N ] is finitely generated, A ⊗ C[G/N ] is a Noetherian algebra by
Hilbert’s basis theorem. Thus the second assertion follows from the first
assertion and Lemma 3.2.

To show the first assertion, it suffices to construct an isomorphism be-
tween MN and (M ⊗ C[G/N ])G. Since M is a rational representation of
G, φm(g) := gm is well-defined as an element of (M ⊗ C[G])G for any
m ∈ M . The map M ∋ m 7→ φm ∈ (M ⊗ C[G])G is an isomorphism as
an ((A⊗C[G])G, G)-module because the map f 7→ f(e) gives its inverse. Re-
stricting the map to the N -invariant part, we have an (A⊗C[G/N ])G-module
isomorphism from MN to (M ⊗ C[G/N ])G. This completes the proof.

3.2 Highest weight modules

In this section, we will review some definitions and facts about unitary highest
weight modules of real Lie groups.

Real Lie groups and their Lie algebras are denoted by Roman alphabets
and the corresponding German letters, respectively. We express the com-
plexification of a real Lie algebra by writing a subscript (·)C. For example,
the Lie algebras of real Lie groups G, H, and K are denoted as g, h, and k
with complexification gC, hC, and kC, respectively.

For a compact Lie group, we identify its locally finite representations with
rational representations of its complexification. Note that the complexifica-
tion of a compact Lie group is a complex reductive algebraic group. We
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express the complexification of a compact Lie group by writing a subscript
(·)C.

3.2.1 Associated variety and isotropy representation

We define the associated variety and the isotropy representation of a (g, K)-
module.

Let G be a real reductive Lie group, and K be a maximal compact sub-
group of G. Let g = k⊕p be the Cartan decomposition of g determined byK.
Let V be a finitely generated (g, K)-module. Since V is finitely generated, we
can take a K-invariant finite dimensional subspace W ⊂ V as a generating
subspace of V . We put Vi := Ui(gC)W and V−1 := 0, where {Ui(gC)} is the
canonical filtration of the universal enveloping algebra U(gC). Taking the
associated graded module, we have an (S(gC), KC)-module

gr(V ) :=
∞⊕
i=0

Vi/Vi−1.

The affine variety determined by AnnS(gC)(gr(V )) is called the associated va-
riety of V , and denoted by AV(V ) ⊂ g∗C. It is well-known that AV(V ) is
independent of the choice of W . Since the filtration is KC-stable, AV(V ) is
a KC-stable variety contained in (gC/kC)

∗. We identify g∗C with gC via an
invariant non-degenerate symmetric bilinear form on gC. By this identifica-
tion, (gC/kC)

∗ corresponds to pC, and AV(V ) is a subvariety in the nilpotent
cone in pC. It is known that the number of KC-orbits in the nilpotent cone
in pC is finite. Thus there exists an open KC-orbit in AV(V ).

Following D. Vogan [101], we recall the isotropy representation of V .
(See also [108].) To describe the representation effectively, for the rest of this
section, we assume that AV(V ) is irreducible. Let I be the defining ideal of
AV(V ). By the Hilbert Nullstellensatz, In is contained in AnnS(gC)(gr(V ))
for some positive integer n. Since AV(V ) is irreducible, AV(V ) has a unique
open dense KC-orbit O. Fix a point x0 ∈ O. We denote by m(x0) ⊂ C[pC]
the maximal ideal corresponding to x0. We set

W :=
n−1⊕
i=0

I igr(V )/m(x0)I
igr(V ).

W is a finite dimensional rational representation of (KC)x0 , where (KC)x0

is the isotropy subgroup of KC at x0. The representation W is called the
isotropy representation of V . Note that the isotropy representation is depen-
dent on the filtration of V and the point x0.
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3.2.2 Highest weight modules

Next, we review unitary highest weight modules. Throughout the rest of
this section, we assume G is a connected non-compact simple Lie group of
Hermitian type with finite center. Though the assumption ‘finite center’ is
not essential, we assume this for convenience.

By assumption, (g, k) is a Hermitian symmetric pair (i.e. the center c(k)
of k is one-dimensional). We fix a characteristic element Z ∈ c(kC) (i.e. the
eigenvalues of ad(Z) are 0,±1), and we write the eigenspace decomposition
of ad(Z) as

gC = p+ ⊕ kC ⊕ p−,

with the eigenvalues 1, 0,−1, respectively.
For an irreducible (g, K)-module V , we will say that V is a highest weight

module of G if V p+ ̸= 0, where V p+ is the space of p+-null vectors of V .
Moreover, if V is infinitesimally unitary, we will say that V is a unitary
highest weight module.

Let H be a highest weight module. Then Hp+ is an irreducible represen-
tation of K, and Hp+ generates H as a representation of gC. We take Hp+ as
W in Section 3.2.1, and define a filtration of H by Hi := Ui(gC)Hp+ . Since
this filtration is stable under p+-action, its associated graded module gr(H)
is an (S(p−), KC)-module. Thus the associated variety of H is contained in
p+.

Since p− is abelian, U(p−) is isomorphic to S(p−) as an algebra. H can
be considered as a (S(p−), KC)-module under this isomorphism. Then the
graded module gr(H) is isomorphic to H as a (S(p−), KC)-module. Hence,
we always omit the filtration step for highest weight modules.

About the annihilators of unitary highest weight modules, A. Joseph
showed the following result in [34]:

Proposition 3.6. Let H be a unitary highest weight module. Then the anni-
hilator AnnS(p−)(H) is a prime ideal in S(p−), and AnnS(p−)(v) = AnnS(p−)(H)
for any v ∈ H.

By this proposition, the isotropy representation of a unitary highest
weight module at x0 ∈ AV(H) is simply written as W = H/m(x0)H.

Since Hp+ generates H as a g-module, we have a canonical surjective
homomorphism as a (g, K)-module:

U(gC)⊗U(kC⊕p+) Hp+ → H. (3.6.1)

For a finite dimensional representation V of K, we set

N g(V ) := U(gC)⊗U(kC⊕p+) V.
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Definition 3.7. Let H be a unitary highest weight module. We will say H
is a holomorphic discrete series representation if the completion of H with
respect to its Hermitian inner product is a discrete series representation of
G.

It is known that if H is a holomorphic discrete series representation, the
homomorphism (3.6.1) is bijective. Therefore, for a holomorphic discrete
series representation H, the associated variety AV(H) is equal to p+.

3.2.3 Strongly orthogonal roots

We will describe some structures of KC-orbits in p+.
We take a Cartan subalgebra t ⊂ k. Since g is of Hermitian type, t is a

Cartan subalgebra of g. For each λ ∈ t∗C, we set

gλ := {X ∈ gC : [H,X] = λ(H)X for any H ∈ tC}.

For a tC-stable subspace s ⊂ gC, we define

∆(s, tC) := {λ ∈ t∗C\{0} : gλ ∩ s ̸= 0}.

Let ∆ := ∆(gC, tC) be the root system determined by tC, and fix a positive
system ∆+ such that ∆+ ⊃ ∆(p+, tC). Set ∆

+
c := ∆(kC, tC)∩∆+ and ∆+

n :=
∆(p+, tC).

Two roots α, β are said to be strongly orthogonal if neither of α + β
nor α − β is a root. We take a maximal set of strongly orthogonal roots
{γ1, γ2, . . . , γr} ⊂ ∆(p+, tC) as follows:

i) γ1 is the lowest root in ∆(p+, tC),

ii) for i > 1, γi is the lowest root in the roots that are strongly orthogonal
to γ1, γ2, . . . , γi−1.

Fix root vectors {Xγi}ri=1 for the roots {γi}ri=1. We set

a :=
r⊕

i=1

R(Xγi +Xγi),

t0 :=
r⊕

i=1

C[Xγi , Xγi ],

where · is the complex conjugation of gC with respect to g. It is known that
a is a maximal abelian subspace of p. Then we have r = R-rank(g).

36



We state a fact to describe restricted roots of G by the strongly orthogonal
roots. For i, j (1 ≤ i < j ≤ r), we put

Cij :=

{
γ ∈ ∆+

c : γ|t0 =
(
γj − γi

2

)∣∣∣∣
t0

}
,

Ci :=

{
γ ∈ ∆+

c : γ|t0 = −
(γi
2

)∣∣∣
t0

}
,

C0 := {γ ∈ ∆+
c : γ|t0 = 0}.

Pij :=

{
γ ∈ ∆+

n : γ|t0 =
(
γj + γi

2

)∣∣∣∣
t0

}
,

Pi :=

{
γ ∈ ∆+

n : γ|t0 =
(γi
2

)∣∣∣
t0

}
,

P0 := {γ1, γ2, . . . , γr}.

The following fact is due to Moore. (see e.g. [22, Proposition 4.8 in
Chapter 5]).

Proposition 3.8. In the above notation, ∆+
c and ∆+

n can be decomposed as
follows:

∆+
c =

( ∪
1≤i<j≤r

Cij

)
∪

( ∪
1≤i≤r

Ci

)
∪ C0,

∆+
n =

( ∪
1≤i<j≤r

Pij

)
∪

( ∪
1≤i≤r

Pi

)
∪ P0.

Moreover, the map γ 7→ γ + γi gives bijections from Cij to Pij, from −Cji to
Pji, and from Ci to Pi.

Next, we describe KC-orbits in p+ by the strongly orthogonal roots. Put
Xi = Xγ1 +Xγ2 + · · ·+Xγi . We set Oi := Ad(KC)Xi, and O0 = {0}.

Proposition 3.9. p+ is decomposed into KC-orbits as follows:

p+ =
n⨿

i=0

Oi.

Moreover, for any 1 ≤ m ≤ r, the Zariski closure of Om is decomposed into
KC-orbits as follows:

Om =
m⨿
i=0

Oi.
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By this proposition, for a highest weight module H, AV(H) = Om for
some m ∈ {1, 2, · · · , r}. The irreducible decomposition of C[Om] as a repre-
sentation of KC is well-known.

Proposition 3.10. The ring of regular functions on Om is decomposed as a
KC-representation as follows:

C[Om] ≃
⊕

c1≥c2≥···≥cm≥0
c1,c2,...,cm∈Z

V−
∑m

i=1 ciγi,KC .

In particular, Om is a spherical affine KC-variety.

Remark 3.11. The irreducible decomposition of C[p+] as a representation
of KC is obtained by L. K. Hua [27] (for classical groups), B. Kostant (un-
published) and W. Schmid [94]. The proposition can be obtained by the
Hua–Kostant–Schmid theorem and the orbit description.

The decomposition can be considered as the K-type decomposition of ir-
reducible unitary highest weight modules of scalar type. For holomorphic dis-
crete series representations, the Hua–Kostant–Schmid theorem is generalized
to the case of restrictions to non-compact symmetric pairs of holomorphic
type by T. Kobayashi [44, 52].

3.2.4 Symmetric pairs of holomorphic type

In this section, we review some results about branching laws of unitary high-
est weight modules. For the following formulation and Table 1, we refer the
reader to [47] and [52].

Suppose θ is a Cartan involution of G corresponding to the maximal
compact subgroup K, and τ is an involutive automorphism of G commuting
with θ. Since τ(k) = k and τ is an automorphism, the following two cases are
possible:

τ(Z) = Z, (3.11.2)

τ(Z) = −Z. (3.11.3)

Recall that Z is the characteristic element in c(kC). We will say (g, gτ ) is a
symmetric pair of holomorphic type if the equation (3.11.2) holds, otherwise
we will say (g, gτ ) is a symmetric pair of anti-holomorphic type.

If (g, gτ ) is a symmetric pair of holomorphic type, the decomposition
gC = p− ⊕ kC ⊕ p+ induces a decomposition of gτC:

gτC = pτ− ⊕ kτC ⊕ pτ+,
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since Z ∈ kτC. Suppose gτ =
⊕n

i=1 hi is the direct sum decomposition into
simple ideals and abelian ideals. Then hi is contained in k if hi is a compact
or abelian Lie algebra, and hi is of Hermitian type if hi is a non-compact Lie
algebra. Moreover, if hi is of Hermitian type, hi has the decomposition:

(hi)C = (p− ∩ (hi)C)⊕ (kC ∩ (hi)C)⊕ (p+ ∩ (hi)C), (3.11.4)

and each summand is nonzero. The following proposition is due to T.
Kobayashi [43, 47].

Proposition 3.12. Let H be a holomorphic discrete series representation
of G, and (g, gτ ) be a symmetric pair of holomorphic type. Then H is gτ -
admissible. In particular, H is completely reducible as a (gτ , kτ )-module.
Moreover, all irreducible components of H|gτ are holomorphic discrete series
representations.

The following proposition is useful to study the branching law of holo-
morphic discrete series representations. The proposition is proved by H. P.
Jakobsen and M. Vergne [29] (see also [44, 52]).

Proposition 3.13. Let H be a holomorphic discrete series representation of
G, and (g, gτ ) be a symmetric pair of holomorphic type. Set H := (Gτ )0.
Then each irreducible component of H|gτ is a unitary highest weight module
of H (more precisely, holomorphic discrete series representation by the above
proposition,) and its multiplicity can be described as

mH
H(λ) = mH∩K

S(p−τ
− )⊗Hp+ (λ),

where λ is the highest weight of a unitary highest weight module of H.

Table 1: symmetric pairs of holomorphic type

g gτ

su(p, q) s(u(i, j) + u(p− i, q − j))
su(n, n) so∗(2n)
su(n, n) sp(n,R)
so∗(2n) u(i, n− i)
so∗(2n) so∗(2i) + so∗(2(n− i))
so(2, n) so(2, n− i) + so(i)
so(2, 2n) u(1, n)
sp(n,R) u(i, n− i)
sp(n,R) sp(i,R) + sp(n− i,R)
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e6(−14) so(10) + so(2)
e6(−14) so∗(10) + so(2)
e6(−14) so(8, 2) + so(2)
e6(−14) su(5, 1) + sl(2,R)
e6(−14) su(4, 2) + su(2)
e7(−25) e6(−78) + so(2)
e7(−25) e6(−14) + so(2)
e7(−25) so(10, 2) + sl(2,R)
e7(−25) so∗(12) + su(2)
e7(−25) su(6, 2)

3.3 Stability theorem

In this section, we will show a stability theorem for general settings. Through-
out this section, G is a connected reductive complex algebraic group, and B
is a Borel subgroup of G. Fix a Levi decomposition B = TN , where T is a
maximal torus and N is the unipotent radical of B.

3.3.1 Stability theorem for general settings

Let X be an irreducible quasi-projective variety over C. We assume the
following two conditions:

X is a spherical G-variety (i.e. a Borel subgroup of G has an open
dense orbit in X), and

(3.13.5)
the quotient field of C[X] is naturally isomorphic to the rational
function field of X.

(3.13.6)
The first condition implies that C[X] is multiplicity-free as a representa-

tion of G. Note that the second condition is always true for any irreducible
quasi-affine variety X.

Theorem 3.14. Let M be a finitely generated (C[X], G)-module with no zero
divisors: ∪

m∈M\{0}

AnnC[X](m) = 0. (3.14.7)

Then there exists a weight λ0 ∈ Λ+(X) such that

mM(λ+ λ0) = mM(λ+ µ+ λ0)

for any λ ∈ Λ+(M) and µ ∈ Λ+(X).
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This theorem says that the multiplicity function mM is periodic for suffi-
ciently large parameter λ. This property of the multiplicity function is called
stability.

Proof. For the proof of the stability, we will show the uniformly boundedness
of mM(λ) for λ ∈ Λ+. Since M is a finitely generated C[X]-module, there
exists a G-invariant finite dimensional subspace F ⊂ M that generates M .
Then the multiplication map C[X] ⊗ F → M(f ⊗m 7→ fm) is a surjective
G-intertwining operator. For any λ ∈ Λ+(M), we have

mM(λ) ≤ mC[X]⊗F (λ)

= dimHomG(Vλ,C[X]⊗ F )

= dimHomG(Vλ ⊗ F ∗,C[X]).

From [52, Proposition 5.4.1], the number of the irreducible constituents of
Vλ ⊗ F ∗ is bounded by dim(F ). Therefore, since C[X] is multiplicity-free,
mM(λ) is uniformly bounded by dim(F ). This result is also proved in the
proof of Theorem 3.18 (injectivity part).

Next, we will show that mM(·) is monotone increasing with respect to
the translation by Λ+(X). Since C[X] has no zero divisors in M , the mul-
tiplication operator (m 7→ fm) is injective for any f ∈ C[X]. In particular,
for µ ∈ Λ+(X) and f ∈ C[X]N(µ), f induces an injective linear map

f · : MN(λ) ↪→ MN(λ+ µ),

where V (λ) denotes the weight space of weight λ in a T -representation V .
Thus we have

mM(λ) ≤ mM(λ+ µ) (3.14.8)

for any µ ∈ Λ+(X).
We show the stability theorem. From Lemma 3.5, MN is a finitely gen-

erated C[X]N -module. Then we can take a finite subset {λ1, λ2, . . . , λr} ⊂
Λ+(M) such that

Λ+(M) =
∪

1≤i≤r

(Λ+(X) + λi). (3.14.9)

By the uniformly boundedness of mM , for each λi, we can find a weight
λ0,i ∈ Λ+(X) such that

mM(λi + λ0,i) = max{mM(λi + µ) : µ ∈ Λ+(X)}. (3.14.10)
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We put λ0 := λ0,1+λ0,2+ · · ·+λ0,r. Observe that λ0 satisfies the required
condition. Take λ ∈ Λ+(M) and µ ∈ Λ+(X). By (3.14.9), there exists an
i ∈ {1, 2, . . . , r} such that λ ∈ λi + Λ+(X). From (3.14.8) and (3.14.10), we
have

mM(λ+ λ0) = max{mM(λi + µ) : µ ∈ Λ+(X)}
= mM(λ+ µ+ λ0).

This completes the proof.

3.3.2 Description of multiplicities for large parameters

We describe the multiplicities for sufficiently large parameters by the isotropic
representation. Let X be as in the previous section. By the assumption that
X is G-spherical (3.13.5), there exists a point x0 ∈ X such that Bx0 is open
dense in X.

Put P = {g ∈ G : gBx0 ⊂ Bx0}. Then P is a parabolic subgroup of G
contains B. The following proposition is due to M. Brion, D. Luna and T.
Vust [6].

Proposition 3.15. In the above settings,

i) Px0 is a reductive subgroup of G, and

ii) Px0 contains the derived group of some Levi subgroup of P .

The following proposition says that Bx0 is a ‘Borel subgroup’ of Px0 .

Proposition 3.16. Px0 satisfies the following four conditions:

L-1) Px0 ⊂ Gx0,

L-2) Px0 ⊃ Bx0,

L-3) Bx0 meets every connected component of Px0,

L-4) the identity component of Bx0 is a Borel subgroup of the identity com-
ponent of Px0.

Conversely, if a reductive subgroup L of G satisfies the above four conditions,
then we have L = Px0.
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Remark 3.17. If L satisfies the above four conditions, its irreducible repre-
sentations are parametrized by a subset of characters of Bx0 . This is because
V Nx0 is one-dimensional for any irreducible representation V of L. In fact,
since we have the natural injection Bx0/Nx0 ↪→ B/N ≃ T , we can take a
weight vector v ∈ V Nx0 with respect to Bx0/Nx0 . Then v generates an ir-
reducible representation V0 of L0, where L0 is the identity component of L.
Since Bx0 normalizes L0, V0 is L-stable. This shows V0 = V . Therefore, V Nx0

is one-dimensional.

Proof. For the first assertion, put L := Px0 . By definition, L-1) and L-2) are
clear. From Proposition 3.15, we can take a Levi subgroup Q of P such that
[Q,Q] is contained in L. We have the following commutative diagram.

L/(L ∩B) �
� // P/B

[Q,Q]/([Q,Q] ∩B)
?�

OO
≃

66nnnnnnnnnnnnn

Thus L/(L∩B) is isomorphic to P/B. Since P/B ≃ Q/Q∩B is a connected
projective variety, Bx0 = L ∩B meets every connected component of L, and
the identity component of Bx0 is a Borel subgroup of the identity component
of L. This implies that L satisfies L-3) and L-4).

For the second assertion, suppose L is a reductive subgroup ofG satisfying
the conditions. From Remark 3.17, we have

C[G]L = C[G]Bx0

= C[G]Px0 . (3.17.11)

For a reductive subgroup H of G, H can be reconstructed from C[G]H by
the following equation:

H =
∩

f∈C[G]H

f−1(f(e)).

Here e is the identity of G. From this fact and (3.17.11), we have L = Px0 .
This completes the proof.

We set L = Px0 . We denote by evx0 the natural quotient map M →
Mx0(:= M/m(x0)M), where m(x0) is the maximal ideal of C[X] correspond-
ing to x0. From the inclusion L ⊂ Gx0 , evx0 is an L-intertwining operator
from M to Mx0 . We describe the stable multiplicities by the representation
of L on M/m(x0)M .
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Theorem 3.18. Let M be a finitely generated (C[X], G)-module with no
zero divisors (see (3.14.7)). We take a weight λ0 ∈ Λ+(X) as described in
Theorem 3.14. Then for any λ ∈ Λ+(M), we have

mG
M(λ+ λ0) = mL

Mx0
(λ|Bx0

),

where we identify characters of T with characters of B by letting their values
be 1 on N .

Remark 3.19. For any µ ∈ Λ+(X), µ|Bx0
= 0. Thus λ|Bx0

can be written
as (λ+ λ0)|Bx0

.

For the proof of Theorem 3.18, we will show two lemmas.

Lemma 3.20. Under the assumption (3.13.5) and (3.13.6), we have the
following equation:

C[Bx0] = C[X]

[
1

fµ
: µ ∈ Λ+(X), fµ ∈ C[X]N(µ)\{0}

]
.

Proof. This lemma is essentially the same as [93, Lemma 2.2]. It is clear that
the left hand side contains the right hand side. We will show the converse
inclusion.

We take a function f ∈ C[Bx0]. Define an ideal by

I := {g ∈ C[X] : g · bf ∈ C[X] for any b ∈ B}.

Since B acts rationally on C[Bx0], spanC{bf : b ∈ B} is finite dimensional.
By the assumption (3.13.6), I is a B-invariant nonzero ideal of C[X]. Since
B acts rationally on I, there exists a nonzero B-eigenvector g ∈ I. Therefore,
we have f ∈ C[X][1/g]. This shows the converse inclusion.

Lemma 3.21. Let M be a (C[X], G)-module. Suppose C[X] has no zero
divisors in M . Then we have∩

y∈Bx0

(m(y)M) = 0.

Proof. If M is finitely generated, this lemma is in [108, Corollary 2.1]. Put
N =

∩
y∈Bx0

(m(y)M). We assume N ̸= 0. Since N is a B-invariant subspace,
there exists a nonzero B-eigenvector m ∈ N . By definition, m can be written
as

m = f1m1 + f2m2 + · · ·+ frmr (fi ∈ m(x0),mi ∈ M). (3.21.12)

44



Let M ′ be a (C[X], G)-submodule of M generated by m1,m2, . . . ,mr. Since
M ′ is a finitely generated (C[X], G)-module with no zero divisors, we have∩

y∈Bx0

(m(y)M ′) = 0.

From (3.21.12), m is an element of m(x0)M
′. Since m is a B-eigenvector, we

have m ∈
∩

y∈Bx0
(m(y)M ′) and hence m = 0. However, this contradicts the

assumption that m is nonzero. This completes the proof.

Proof of Theorem 3.18. Take λ ∈ Λ+(M).
First, we reduce the assertion of the theorem to bijectivity of evx0 between

some B-eigenspace and Bx0-eigenspace. From Remark 3.17, we have

mL
Mx0

(λ|Bx0
) = dim(M

Nx0
x0 (λ|Bx0

))

Since evx0 is a Gx0-intertwining operator, the image of MN(λ+λ0) by evx0 is

contained in M
Nx0
x0 (λ|Bx0

). We denote by the same notation evx0 the restric-
tion of evx0 to MN(λ+ λ0). Then it suffices to show that evx0 is a bijection

between MN(λ+ λ0) and M
Nx0
x0 (λ|Bx0

).

M
evx0 // Mx0

MN(λ+ λ0)
?�

OO

evx0 // M
Nx0
x0 (λ|Bx0

)
?�

OO

(injectivity). Suppose m ∈ MN(λ+λ0) and evx0(m) = 0. Since m is a B-
eigenvector, m ∈ m(bx0)M for any b ∈ B. Then we havem ∈

∩
y∈Bx0

m(y)M .
Since

∩
y∈Bx0

m(y)M = 0 from Lemma 3.21, this implies m = 0. This shows
evx0 is injective.

(surjectivity). First, we show the surjectivity for the case that M is a free
C[X]-module. Suppose M ≃ C[X]⊗W for some finite dimensional rational
representation W of G. In this case, evx0 is actually the evaluation map at
x0. Take m ∈ WNx0 (λ|Bx0

), and put

φ(bx0) = b−λ−λ0(bm)

for b ∈ B. Then φ is well-defined as an element of C[Bx0]⊗W , and φ is a B-
eigenvector of weight λ+λ0. From Lemma 3.20, there exists a B-eigenvector
fµ ∈ C[X] such that fµφ ∈ C[X]⊗W . Then fµφ is in (C[X]⊗W )N(λ+λ0+µ).
By Theorem 3.14, the multiplication operator fµ· : (C[X]⊗W )N(λ+ λ0) →
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(C[X] ⊗W )N(λ + λ0 + µ) is bijective. Thus φ is in (C[X] ⊗W )N(λ + λ0).
Since φ(x0) = m, evx0 is surjective.

Next, we show the surjectivity for general cases. Since M is finitely gener-
ated as a C[X]-module, there exists a finite dimensional G-subrepresentation
W ⊂ M such that the (C[X], G)-homomorphism × : C[X] ⊗ W → M de-
fined by the multiplication map is surjective. Then we have the following
commutative diagram:

C[X]⊗W
evx0 //

×
��

W

��
M

evx0 // Mx0 ,

and all arrows are surjective. Take λ′
0 ∈ Λ+(X) described in Theorem 3.14

for M = C[X] ⊗ W . By restricting the above diagram to the subspace of
B-eigenvectors of weight λ+ λ′

0, we have

(C[X]⊗W )N(λ+ λ′
0)

evx0 //

��

WNx0 (λ|Bx0
)

��

MN(λ+ λ′
0)

evx0 // M
Nx0
x0 (λ|Bx0

).

Since G and L are reductive, the vertical arrows are surjective. From the
free module case, the above horizontal arrow is surjective. Therefore, evx0 :

MN(λ+ λ′
0) → M

Nx0
x0 (λ|Bx0

) is also surjective.
Since dim(MN(λ + λ0)) ≥ dim(MN(λ + λ′

0)) by the result of Theorem

3.14, evx0 : M
N(λ+ λ0) → M

Nx0
x0 (λ|Bx0

) is also surjective.

Remark 3.22. The injectivity is true in more general settings. For example,
suppose X is a projective G-variety that has an open dense Borel orbit Bx0,
and π : V → X is a G-equivariant algebraic vector bundle over X. Then the
global sections Γ(X,V) and the evaluation map evx0 : Γ(X,V) → π−1(x0)
satisfy the injectivity as in the above proof. This implies that the multiplicity
with respect to G can be bounded by the multiplicity with respect to L as
in Theorem 3.18. See Section 3.4.2 for example.

We can remove the finiteness of M if we admit that the conclusion be-
comes weaker.

Corollary 3.23. Let M be a (C[X], G)-module with no zero divisors. Then
we have

sup
µ∈Λ+(X)

{mG
M(λ+ µ)} = mL

Mx0
(λ|Bx0

).
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for any λ ∈ Λ+(M).

Proof. Take a weight λ ∈ Λ+(M). By the same proof as for the injectivity
in Theorem 3.18, we have

sup
µ∈Λ+(X)

{mG
M(λ+ µ)} ≤ mL

Mx0
(λ|Bx0

).

For any finite dimensional L-subrepresentation N ⊂ Mx0 , we can take a
finitely generated (C[X], G)-submodule N such that N/(N ∩m(x0)M) ⊃ N .
We may assume mG

N(λ) ̸= 0. Since the canonical map N/m(x0)N → N/(N ∩
m(x0)M) is surjective, the converse inequality follows from Theorem 3.18.

For a rational representation V of G, we denote byMG(V ) the supremum
of mG

V .

Corollary 3.24. Let M be a (C[X], G)-module with no zero divisors. Then
the following equation holds:

MG(M) = ML(Mx0).

In particular, M is multiplicity-free as a representation of G if and only if
Mx0 is multiplicity-free as a representation of L.

Proof. By Corollary 3.23, MG(M) ≤ ML(Mx0) is clear. It suffices to show
that any character λ of Bx0 satisfying mL

Mx0
(λ) ̸= 0 can be extended to a

character λ of B such that mG
M(λ) ̸= 0. As in the proof of the surjectivity in

Theorem 3.18, we can assume that M is a free C[X]-module of finite rank,
C[X] ⊗ W . We take a character λ of Bx0 such that mL

W (λ) ̸= 0, and take
m ∈ WNx0 (λ). There exists a character λ′ of B such that λ′|Bx0

= λ. For

φ(bx0) = b−λ′
(bm), we can find fµ ∈ C[X]N(µ) such that fµφ ∈ (C[X] ⊗

W )N(λ′+µ). Since (λ′+µ)|Bx0
= λ′|Bx0

= λ, λ := λ′+µ satisfies the desired
conditions. This completes the proof.

3.4 Examples of stability theorems

In this section, we will apply the stability theorem to some explicit settings.

3.4.1 Stability theorem for quasi-affine spherical homogeneous spaces

Let G be a connected reductive algebraic group and H be a closed subgroup
of G. We assume that (G,H) is a spherical pair (i.e. there exists a Borel
subgroup B of G such that BH is open dense in G). The following fact is
known as the characterization of quasi-affine homogeneous spaces. (See [97,
Theorem 3.12].)
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Proposition 3.25. Let G be a linear algebraic group, and H be a closed
subgroup of G. Then the following three conditions are equivalent:

i) G/H is quasi-affine;

ii) the quotient field of C[G/H] is equal to the rational function field of
G/H;

iii) for any H-representation W , there exists a finite dimensional represen-
tation V of G such that W can be embedded in V as a representation of
H.

We assume that G/H is a quasi-affine variety. By Proposition 3.25, this
assumption is equivalent to the condition (3.13.6). Put L := {g ∈ H :
gBH ⊂ BH}.

For a finite dimensional rational representation W of H, we define the
induced representation of W by

IndG
H(W ) := (C[G]⊗W )H .

IndG
H(W ) is a (C[G]H , G)-module via the left G-action and the multiplication

of C[G]H . Here the H-invariant part is taken via its right action on C[G].
Applying Theorem 3.14 and Theorem 3.18 to X = G/H and M =

IndG
H(W ), we have the following theorem. For a connected semisimple sub-

group H, this theorem was proved by F. Satō in [93].

Theorem 3.26. Let W be a finite dimensional rational representation of H.
Then there exists a weight λ0 ∈ Λ+(G/H) such that

mG
IndGH(W )

(λ+ λ0) = mL
W (λ|B∩H)

for any λ ∈ Λ+(IndG
H(W )).

Proof. First, we show that X = G/H and M = IndG
H(W ) satisfy the con-

ditions of Theorem 3.14 and Theorem 3.18. Recall that (3.13.5), (3.13.6),
‘finitely generated’ and ‘no zero divisors’ are the conditions. By definition,
the condition (3.13.5) (i.e. X is spherical) is clear. By the assumption that
X = G/H is a quasi-affine G-variety and Proposition 3.25, the quotient field
of C[X] coincides with the rational function field of X. This is the condition
(3.13.6). It is obvious that C[G/H] has no zero divisors on IndG

H(W ).
Observe that M is finitely generated. From Proposition 3.25, W can be

embedded in a finite dimensional representation V of G as a representation of
H. The embedding W ↪→ V induces an injection as a (C[G/H], G)-module:

IndG
H(W ) ↪→ C[G/H]⊗ V.
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Since C[G/H]⊗V is a Noetherian C[G/H]-module, IndG
H(W ) is Noetherian,

and hence finitely generated. All conditions are verified.
Next, we show that M/m(eH)M ≃ W as a representation of L. We

can identify IndG
H(W ) with the set of global sections Γ(G/H,G ×H W ) of a

vector bundle G×HW → G/H. Since G/H is a quasi-affine variety, the sheaf
constructed from the vector bundle corresponds to the sheaf constructed from
IndG

H(W ). This shows that the fiber (IndG
H(W ))eH is isomorphic to W as a

representation of L. This completes the proof.

3.4.2 Some examples for projective varieties

In this section, we treat flag varieties. Let G be a connected reductive alge-
braic group, and P be a parabolic subgroup of G. Take a closed connected
reductive subgroup H of G such that G/P is a spherical H-variety. Note
that if H is a Levi subgroup of G, the classification of such triples (G,H, P )
follows from Stembridge’s classification [96] of multiplicity-free restrictions
of finite-dimensional irreducible representations with respect to H, and if
(G,H) is a symmetric pair, such triples (G,H, P ) were classified by He–
Ochiai–Nishiyama–Oshima [21].

Fix a Borel subgroup B of H. Since G/P is a spherical H-variety, there
exists a point x0 ∈ G such that Bx0P is open dense in G. Put L := {g ∈
Hx0P : gBx0P ⊂ Bx0P}. The same result as Theorem 3.26 is not true for
G/P since G/P is projective (see Example 3.29). However, the theorem can
be applied to an ‘affine cone’ of G/P . Then we have the following theorem.

Theorem 3.27. Let W be an irreducible representation of P . Then there
exists a character λ0 of P such that

MH(Ind
G
P (W ⊗ Cλ0+λ)) = ML(W )

for any character λ of P satisfying IndG
P (Cλ) ̸= 0. Here W is considered as

a representation of L via the inclusion x0
−1Lx0 ⊂ P .

Fix a Levi decomposition P = QN , where N is the unipotent radical of
P . Put P ′ := [Q,Q]N and A := Q/[Q,Q]. By Proposition 3.25, G/P ′ is a
quasi-affine spherical H × A-variety. The action of A on G/P ′ is given by

h · gP ′ = gh−1P ′

for h ∈ A and g ∈ G. Note that B × A is a Borel subgroup of H × A. For
the proof of Theorem 3.27, we show the following lemma.
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Lemma 3.28. Set

L′ := {(g, h) ∈ H × A : (g, h) · x0P
′ = x0P

′, (g, h) ·Bx0P ⊂ Bx0P}.
Then there exists a homomorphism φ : L → A such that

L′ = {(g, φ(g)) ∈ L× A : g ∈ L}. (3.28.13)

Proof. First, we define the homomorphism φ. Take g ∈ L. By definition, we
have gBx0P ⊂ Bx0P and gx0P = x0P . From gx0P

′ ⊂ x0P = ⊔l∈Ax0lP
′,

there exists a unique element φ(g) ∈ A such that gx0P
′ = x0φ(g)P

′. It is
obvious that φ is a homomorphism from L to A.

Next, we show that φ satisfies the condition. By the definition of L and
L′, we have (g, φ(g)) ∈ L′ for any g ∈ L. For the converse inclusion, we take
(g, h) ∈ L′. Since (g, h) ∈ L′, we have gx0h

−1P ′ = x0P
′ and gBx0P ⊂ Bx0P .

This implies that g ∈ L. Since x0P
′ = gx0h

−1P ′ = x0φ(g)h
−1P ′, we have

φ(g) = h. This completes the proof.

Proof of Theorem 3.27. We apply Corollary 3.24 to X = G/P ′ and M =
IndG

P ′(W ). Here we replace G in the corollary by H × A, and then L in the
corollary is equal to L′ in the above lemma.

We will determine the action of L′ on M/m(x0P
′)M . M/m(x0P

′)M is
isomorphic to W as a C-vector space. Take (g, φ(g)) ∈ L′. For f ∈ (C[G]⊗
W )P

′
, we have

((g, φ(g)) · f)(x0) = φ(g)f(g−1x0φ(g))

= φ(g)f(x0x0
−1g−1x0φ(g))

= φ(g)(x0
−1g−1x0φ(g))

−1f(x0)

= x0
−1gx0f(x0).

Therefore, the action of L′ on M/m(x0P
′)M ≃ W coincides with the action

of L, and we have ML′(W ) = ML(W ).
From Corollary 3.24, there exists λ′ ∈ Λ+

H×A(Ind
G
P ′(W )) such that

mH×A
IndG

P ′ (W )
(λ′) = ML′(W ). (3.28.14)

We write λ′ = −λ0 + λ1, where λ0 is a character of P and λ1 is a character
of B.

We will show that λ0 satisfies the desired condition. We have the following
isomorphisms of representations of H:

IndG
P ′(W )(−λ0) ≃ (IndG

P ′(W )⊗ Cλ0)
A

≃ ((C[G]⊗W )P
′ ⊗ Cλ0)

A

≃ (C[G]⊗W ⊗ Cλ0)
P

≃ IndG
P (W ⊗ Cλ0).
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Thus we obtain MH(Ind
G
P (W ⊗ Cλ0)) = ML(W ). Again, from the above

isomorphisms for W = C, IndG
P (Cλ) ≃ C[G/P ′](−λ) is nonzero if and only if

there exists a character ν of B such that −λ+ ν ∈ Λ+
H×A(G/P ′). From this

and Theorem 3.18, the proof is completed.

We give an example where IndG
P (W ) is nonzero and we can not take

λ0 = 0.

Example 3.29. Let G = GL(8,C), H = GL(4,C) × GL(4,C). H is block
diagonal in G. Let P be a maximal parabolic subgroup of G containing H
and all lower triangular matrices, and B be a Borel subgroup of H containing
all upper triangular matrices in H. We take a point

x0 :=

(
I J
0 I

)
,

where J is an anti-diagonal matrix with every anti-diagonal entries 1. Then
Bx0P is open dense in G. In this case, L is of the following form:

L =
{
(diag(a1, a2, a3, a4), diag(a4, a3, a2, a1)) ∈ H : a1, . . . , a4 ∈ C×} ,

where diag(· · · ) is a diagonal matrix. Note that L commutes with x0.
We consider a representation W = S2(

∧2(C4))/
∧4(C4) of H, where the

first factor of GL(4,C)×GL(4,C) acts on W in standard way and the second
factor acts on W trivially. W is an irreducible representation of H with
highest weight (2, 2, 0, . . . , 0) in the standard coordinates. We extend the
representation W to P by letting the unipotent radical of P act trivially.
Then the induced representation IndG

P (W ) is an irreducible representation of
G with highest weight (2, 2, 0, . . . , 0). By the Littlewood–Richardson rule,
IndG

P (W )|H is multiplicity-free, and hence MH(Ind
G
P (W )) = 1. However,

W |L is not multiplicity-free. In fact, we can take two weight vectors with
weight (1, 1, 1, 1, 0, 0, 0, 0) such as

e1 ∧ e2 · e3 ∧ e4, e1 ∧ e3 · e2 ∧ e4.

Therefore, we have MH(Ind
G
P (W )) = 1 < 2 = ML(W ).

3.4.3 Stability theorem for highest weight modules

Here we will show a stability theorem for unitary highest weight modules. Let
G be a connected simple real Lie group of Hermitian type with finite center.
Fix a positive root system ∆+, strongly orthogonal roots {γ1, γ2, . . . , γr} and
root vectors {Xγ1 , Xγ2 , . . . , Xγr} as in Section 3.2.3.
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Before we state our theorem, we prepare some lemmas relevant to the
KC-orbit Oi. Fix 1 ≤ m ≤ r. We set am :=

⊕m
i=1R(Xγi + Xγi), tm :=⊕m

i=1C[Xγi , Xγi ] , Xm :=
∑m

i=1Xγi , and L = ZKC(am). We will show that L
satisfies the conditions L-1) ∼ L-4) in Proposition 3.16.

Lemma 3.30. Let B be a Borel subgroup of KC determined by the positive
system ∆+

c . Then Ad(B)Xm is open dense in Om.

Proof. Since Ad(KC)Xm is open dense inOm, it suffices to show that [kC, Xm] =
[b, Xm]. From Proposition 3.8, we have

[g−γ , Xm] =

{
0 (m < j)

g−γ+γj (1 ≤ j ≤ m)
for any γ ∈ Cij,

[g−γ , Xm] = 0 for any γ ∈ Ci ∪ C0,

for any i, j(1 ≤ i < j ≤ r). Thus we have

[b, Xm] = [tC, Xm]⊕
⊕

1≤i<j≤m,γ∈Cij

g−γ+γj

= [tC, Xm]⊕
⊕

1≤i<j≤m,γ∈Pij

gγ,

where b is the opposite Borel subalgebra of b. For any γ ∈ Pij, there exists
a γ′ ∈ Cij such that γ′ + γi = γ. Therefore, we have [b, Xm] ⊃ [b, Xm]. This
implies [kC, Xm] = [b, Xm].

Lemma 3.31. Let B be the same as in the previous lemma. Then the
isotropy subgroup BXm at Xm has the semi-direct product decomposition:
BXm = (TC)XmNXm, where N is the unipotent radical of B.

Proof. BXm ⊃ (TC)XmNXm is obvious.
For the converse inclusion, we take b ∈ BXm , and write b = tn for t ∈ TC

and n ∈ N . By Proposition 3.10, BXm is contained in
∩m

i=1 ker γi. Thus we
have t ∈

∩m
i=1 ker γi|TC . Since Xm is the sum of the eigenvectors of TC with

weight γi(1 ≤ i ≤ m), (TC)Xm is equal to
∩m

i=1 ker γi|TC . Therefore, we have
t ∈ (TC)Xm and hence n ∈ NXm . This shows the converse inclusion.

Lemma 3.32. L(= ZKC(am)) satisfies the conditions L-1) ∼ L-4) in Propo-
sition 3.16 for the spherical KC-variety Om.

Proof. Recall the conditions:

L-1) L ⊂ (KC)Xm ,
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L-2) L ⊃ BXm ,

L-3) BXm meets every connected component of L,

L-4) the identity component of BXm is a Borel subgroup of the identity
component of L.

First, we compute the triangular decomposition of l. For any g ∈ L and
i (1 ≤ i ≤ m), we have

Xγi +Xγi = Ad(g)(Xγi +Xγi)

= Ad(g)(Xγi) + Ad(g)(Xγi).

Since Ad(g)(Xγi) ∈ p+ and Ad(g)(Xγi) ∈ p−, g stabilizes Xγi and Xγi . This
implies that

L = ZKC

(
m⊕
i=1

(gγi ⊕ g−γi)

)
, (3.32.15)

l = ZkC

(
m⊕
i=1

(gγi ⊕ g−γi)

)
.

From the first equation, the condition L-1) is clear. Since the right hand side
of the second equation is stable under the ad(tC)-action, so is l. Thus we
have

l = (l ∩ n)⊕ (l ∩ tC)⊕ (l ∩ n). (3.32.16)

We will show that the Lie algebra bXm of BXm is a Borel subalgebra of l.
By Proposition 3.8, we have

[gγ, Xm] =

{
0 (m < i)

gγ+γi (1 ≤ i ≤ m)
for any γ ∈ Cij ∪ Ci,

[gγ, Xm] = 0 for any γ ∈ C0,

for any i, j(1 ≤ i < j ≤ r). This implies that bXm has the following decom-
position:

bXm = t⊥m ⊕
⊕

γ∈Cij∪Ci

m<i<j≤r

gγ ⊕
⊕
γ∈C0

gγ,

where t⊥m is the orthogonal complement of tm in tC with respect to the Killing
form. Therefore, we have bXm = Zb(

⊕m
i=1(gγi⊕g−γi)) = l∩b. From (3.32.16),

this shows the condition L-4).
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We can show L = ZL(t
⊥
m)L0 by the same proof as [39, Proposition 7.49].

By the equation (3.32.15), ZL(t
⊥
m) is contained in ZKC(tC) ∩ L ⊂ (TC)Xm .

This shows that (TC)Xm meets every connected components of L, and so
does BXm . Thus we have shown the condition L-3).

By the proof in Lemma 3.31, (TC)Xm is equal to
∩m

i=1 ker γi|TC . This
implies that (TC)Xm is contained in L. Since BXm = (TC)XmNXm and NXm is
connected, BXm is contained in L. This is the condition L-2). All conditions
are verified.

For a unitary highest weight module H, we consider the (g, K)-module
H as a (C[p+], KC)-module, and we set HXm := H/m(Xm)H, where m(Xm)
is the maximal ideal of C[p+] corresponding to Xm.

Applying Theorem 3.14 and 3.18 to a unitary highest weight module, we
have the following theorem.

Theorem 3.33. Let H be a unitary highest weight module of G with associ-
ated variety Om. Then there exists a weight λ0 ∈ Λ+(Om) = {−

∑m
i=1 ciγi :

c1 ≥ c2 ≥ · · · ≥ cm ≥ 0, ci ∈ Z} such that

mKC
H (λ+ λ0) = mL

HXm
(λ|TXm

)

for any λ ∈ Λ+(H).

Proof. By Proposition 3.6, the annihilator AnnC[p+](H) is equal to the defin-
ing ideal of Om. Thus we consider H as a (C[Om], KC)-module.

To apply Theorem 3.18, we will verify the four conditions:

i) Om is a spherical KC-variety,

ii) the quotient field of C[Om] is equal to the rational function filed of Om,

iii) H is a finitely generated C[Om]-module, and

iv) C[Om] has no zero divisors in H.

Since Om is an affine variety, the condition ii) is clear. Since H is generated
by Hp+ as a C[Om]-module, H is a finitely generated (C[Om], KC)-module.
This is the condition iii). By Proposition 3.10, Om is a spherical KC-variety,
and hence the condition i) holds. By Proposition 3.6, we have AnnC[p+](v) =
AnnC[p+](H) for any v ∈ H\{0}. This implies the condition iv).

From Proposition 3.10, we obtain the irreducible decomposition of C[Om]
and Λ+(Om) = {−

∑m
i=1 ciγi : c1 ≥ c2 ≥ · · · ≥ cm ≥ 0, ci ∈ Z}.

We have shown that L satisfies the conditions L-1) ∼ L-4) in Lemma
3.32. This completes the proof.
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The following corollary is a direct consequence of Corollary 3.24 and The-
orem 3.33.

Corollary 3.34. Let H be a unitary highest weight module of G with asso-
ciated variety Om. Then we have

MK(H) = ML(HXm).

In particular, H|K is multiplicity-free if and only if HXm|L is multiplicity-free.

Remark 3.35. In the proof of Theorem 3.33 and Corollary 3.34, we do not
use the assumption that H is irreducible. Thus we can apply the theorem
to H under the assumption that H is a finite direct sum of unitary highest
weight modules with the same associated variety.

Remark 3.36. We review some results about the explicit form of the isotropy
representation HXm .

If H is a holomorphic discrete series representation, the isotropy represen-
tation HXm is isomorphic to Hp+ as a representation of L. If G is Sp(n,R),
U(p, q) or SO∗(2n), the isotropy representation HXm is computed from the
theta correspondence (see [106]). If H does not appear in the theta corre-
spondence, the explicit form of the isotropy representation was announced
by H. Yamashita in [107].

3.4.4 Stability theorem for symmetric pairs of holomorphic type

In this section, we will apply the stability theorem to branching laws of
holomorphic discrete series representations with respect to symmetric pairs
of holomorphic type.

Let G be a connected simple real Lie group of Hermitian type with fi-
nite center, and τ be an involutive automorphism of G commuting with a
Cartan involution θ of G. We put H = (Gτ )0, the identity component of
the fixed point group of τ . We assume that (g, h) is a symmetric pair of
holomorphic type (see Section 3.2.4). Suppose H is a holomorphic discrete
series representation of G.

Before we state a theorem, we set up some notation. We fix a Car-
tan subalgebra tτ of kτ , and fix a positive system ∆+(gτθC , tτC) such that
∆(p−τ

+ , tτC) ⊂ ∆+(gτθC , tτC). Let B = TN be a Borel subgroup of (H ∩ K)C
corresponding to the positive system ∆+(gτθC , tτC).

We will take strongly orthogonal roots {γ1, γ2, . . . , γr} in ∆(p−τ
+ , tτC) and

root vectors {Xγ1 , Xγ2 , . . . , Xγr} as in Section 3.2.3. However, gτθ may not be
a simple Lie algebra. Suppose gτθ =

⊕n
i=1 hi is the direct sum decomposition

into simple ideals and abelian ideals. We set up a lexicographical order

55



on ∆(gτθ, tτC) such that any element of ∆+(gτθC , tτC) is greater than zero and
∆+(hi, t

τ
C) < ∆+(hj, t

τ
C) for any i, j (i < j). Here we write X < Y if x < y

for any x ∈ X and y ∈ Y . Replacing the term ’lowest root’ by ’minimum
root’ in the definition of Section 3.2.3, we take strongly orthogonal roots
{γ1, γ2, . . . , γr} in ∆(p−τ

+ , tτC).
Put a =

⊕r
i=1R(Xγi+Xγi) ⊂ p−τ . Then a is a maximal abelian subspace

of p−τ , and r = dimR(a) = R-rank(gτθ).

Theorem 3.37. Let H be a holomorphic discrete series representation of G.
We put L = ZH∩K(a). Then there exists a weight λ0 ∈ Λ+(p−τ

+ ) such that

mH
H(λ+ λ0) = mL

Hp+ (λ|ZT (a))

for any λ ∈ Λ+(H), where we denote by mH
H(λ) the multiplicity of the holo-

morphic discrete series representation with highest weight λ with respect to
pτ+ ⊕ b.

Proof. We will reduce the assertion to Theorem 3.33.
By Proposition 3.13, the decomposition of H|H is reduced to the decom-

position of (S(p−τ
− ) ⊗ Hp+)|H∩K . We have the following isomorphisms as

H ∩K-representations:

S(p−τ
− )⊗Hp+ ≃ N gτθ(Hp+)

≃ U(gτθ)Hp+(⊂ H).

This implies that S(p−τ
− ) ⊗ Hp+ is isomorphic to the finite direct sum of

some holomorphic discrete series representations of (Gθτ )0 as an H ∩ K-
representation. Applying Theorem 3.33 to N gτθ(Hp+), we obtain the theo-
rem.

Remark 3.38. T. Kobayashi stated that we could relate the multiplicity
function and Satō’s stability theorem by the Howe duality in [52, Remark
1.5].

Corollary 3.39. Let H be a holomorphic discrete series representation of G.
We put L = ZH∩K(a). Then we have MH(H) = ML(Hp+). In particular,
H|H is multiplicity-free if and only if Hp+ |L is multiplicity-free.

Remark 3.40. The uniformly boundedness of the multiplicity function and
the ‘if part’ of the second assertion was proved by T. Kobayashi in [44] and
[50] (see also [52, 54]).
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4 Analytic continuation and branching prob-

lem

In this section, we relate the branching laws of infinite-dimensional represen-
tations to the branching laws of finite-dimensional representations using the
analytic continuation. In particular, for holomorphic discrete series represen-
tations, we connect two branching laws for two subgroups with isomorphic
complexifications.

4.1 General setting

Let g be a complex Lie algebra. We consider a family {πz, V }z∈C of rep-
resentations of g with the same representation space V . Such a family can
be seen in the representation theory such as generalized Verma modules and
principal series representations. We introduce the following definition to deal
with the family algebraically.

Definition 4.1. The family {(πz, V )} is said to be dependent on z polyno-
mially if πz(X) is a polynomial function of z for any X ∈ g, namely, there
exist d ∈ N and A0, . . . , Ad ∈ EndC(V ) such that

πz(X) =
d∑

i=0

ziAi.

If the family {(πz, V )} depends on z polynomially, an algebraic property
may be determined by the properties on a Zariski dense subset. To control
the family effectively, the following finiteness property is important. Let k be
a reductive subalgebra of g.

Definition 4.2. Suppose {(πz, V )}z∈C is a family of (g, k)-modules. Then
we say that {(πz, V )}z∈C is admissible if the following two conditions are
satisfied:

• (πz, V ) is locally k-finite, completely reducible and k-admissible for any
z ∈ C, that is, (πz|k, V ) is completely reducible and each isotypic com-
ponent is finite-dimensional;

• for z1, z2 ∈ C, suppose that the isotypic decompositions with respect
to πz1(k) and πz2(k) are as follows:

V =
⊕
λ1∈Λ1

Vλ1 =
⊕
λ2∈Λ2

Vλ2 ,
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where Λ’s are subsets of k̂ such that Vλ ̸= 0 for any λ ∈ Λi. Then there
exists a bijection σ : Λ1 → Λ2 such that Vλ1 = Vσ(λ1) for any λ1 ∈ Λ1.

If {(πz, V )}z∈C is an admissible family, the πz(k)-isotypic decomposition
of V does not depend on z. We say that V ′ is a k-isotypic component of V if
V ′ is a πz(k)-isotypic component of V for some/any z. A subspace V ′ of V
is said to be k-stable if V ′ is πz(k)-stable for any z.

Example 4.3. The following three family of (g, k)-modules are well-known
examples which are admissible and dependent on z polynomially.

• generalized Verma modules;

• the underlying Harish-Chandra module of principal series representa-
tions;

• the underlying Harish-Chandra module of holomorphic discrete series
representations.

Suppose that {(πz, V )}z∈C is an admissible family of (g, k)-modules de-
pending on z polynomially. If conditions P (z) depending on z are satisfied
for any z except for finitely many z, we say that P (z) holds for almost all
(or almost every) z.

Lemma 4.4. Retain the above notation. Let V0 be a k-stable subspace and
V1 be a k-isotypic component of V . If πa(U(g))V0 ⊃ V1 for some a ∈ C, then
we have πz(U(g))V0 ⊃ V1 for almost all z ∈ C.

Proof. We take a ∈ C such that πa(U(g))V0 ⊃ V1. We will show V1 ⊂
πz(U(g))V1 for almost all z.

Take a πa(k)-stable complement V ′
1 of V1 in V . Since V1 is a k-isotypic

component, V ′
1 is k-stable. By the assumption πa(U(g))V0 ⊃ V1, we can take

a k-stable finite-dimensional subspace U ⊂ U(g) such that πa(U)V0 ⊃ V1. We
have

πz(U)V0 = (πz(U)V0 ∩ V1)⊕ (πz(U)V0 ∩ V ′
1) (4.4.1)

for any z, because V1 is a k-isotypic component and V ′
1 is its k-stable com-

plement. Then we define the composition of the multiplication map and the
projection from V = V1 ⊕ V ′

1 to V1:

mz : U ⊗ V0 → V → V1.

By the equation (4.4.1), mz is surjective if and only if πz(U)V0 ⊃ V1 holds.
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Since (πz, V ) is dependent on z polynomially, mz is a HomC(U ⊗ V0, V1)-
valued polynomial. Note that U, V0 and V1 are finite-dimensional. Therefore,
we can take a polynomial f ∈ C[z] such that

f(z) ̸= 0 ⇐⇒ mz has full rank,

⇐⇒ mz is surjective.

Since ma is surjective, f is a non-zero polynomial. We denote by N ⊂ C
the zero set of f . Obviously N is a finite set. Then mz is surjective for any
z ∈ C\N . This implies πz(U)V0 ⊃ V1 for any z ∈ C\N . This shows the
lemma.

Using the above lemma, we prove the following theorem. Roughly speak-
ing, the theorem asserts that the representations (πz, V ) on a Zariski dense
subset S ⊂ C have all information about the representation (πz, V ) for any
z ̸∈ S.

Theorem 4.5. Retain the above notation. Take a k-stable subspace W ⊂ V
and countable subset S ⊂ C. Suppose that πz(U(g))W is irreducible as a
g-module for any z ∈ S. Then the following three conditions are equivalent:

(a) for infinitely many z ∈ C, (πz, V ) is irreducible;

(b) for some z ∈ C, (πz, V ) is irreducible;

(c)
∪

z∈S πz(U(g))W = V .

Proof. We set Wz := πz(U(g))W .
(a) ⇒ (b): Trivial.
(b) ⇒ (c): We assume that (πa, V ) is irreducible for a ∈ C. We will show∪

z∈S Wz = V .
Take v ∈ V . We can take a subspace V ′ ⊂ V such that v ∈ V ′ and V ′ is a

finite direct sum of k-isotypic components of V . Since (πa, V ) is irreducible,
we have V ′ ⊂ Wa. By Lemma 4.4, there exists z ∈ S such that V ′ ⊂ Wz.
Therefore, we have v ∈

∪
z∈S Wz. Thus we complete the proof of (b) ⇒ (c).

(c) ⇒ (a): Assume
∪

z∈S Wz = V . We consider the k-isotypic decomposi-
tion of V :

V =
⊕
λ∈Λ

Vλ.

For each λ ∈ Λ, we will show that there exists a at most countable subset
Nλ ⊂ C satisfying the following two conditions:
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(1) πz(U(g))Vλ = V for any z ∈ C\Nλ;

(2) Vλ is an irreducible πz(U(k)U(g)k)-module for any z ∈ C\Nλ.

Note that V has at most countable dimension because of
∪

z∈S Wz = V .
Hence Λ is at most countable.

We will prove that for any λ, µ ∈ Λ we can take a(λ, µ) ∈ S such that
Vλ, Vµ ⊂ Wa(λ,µ). Take λ, µ ∈ Λ. By the assumption

∪
z∈S Wz = V , we have∪

z∈S

(Wz ∩ (Vλ ⊕ Vµ)) = Vλ ⊕ Vµ.

Since S is a countable set and Vλ ⊕ Vµ is finite-dimensional, there exists
a(λ, µ) ∈ S satisfying Vλ ⊕ Vµ = Wa(λ,µ) ∩ (Vλ ⊕ Vµ). This implies Vλ ⊕ Vµ ⊂
Wa(λ,µ).

We will construct a countable subset N1
λ ⊂ C satisfying the condition (1).

Take µ ∈ Λ and a = a(λ, µ). By the assumption of S, Wa is an irreducible
πa(g)-module. Therefore, we have Vµ ⊂ πa(U(g))Vλ. By Lemma 4.4, there
exists a finite subsetNλ,µ ⊂ C such that Vµ ⊂ πz(U(g))Vλ for any z ∈ C\Nλ,µ.
We set N1

λ :=
∪

µ∈ΛNλ,µ. Then it is clear that N1
λ satisfies the condition (1).

We will construct a countable subset N2
λ ⊂ C satisfying the condition (2).

We take a ∈ S such that Wa ⊃ Vλ. Since Wa is an irreducible πa(g)-module,
Vλ is an irreducible πa(U(k)U(g)k)-module. Since dimC(Vλ) < ∞, we have

πa(U(k)U(g)k)|Vλ
= EndC(Vλ)

by the Jacobson density theorem. We define a family of algebra homomor-
phisms:

τz := πz(·)|Vλ
: U(k)U(g)k → EndC(Vλ).

Since τz is a polynomial function of z and τa is surjective, there exists a finite
subset N2

λ ⊂ C such that τz is surjective for any z ∈ C\N2
λ . Then N2

λ satisfies
the condition (2).

It is obvious that Nλ := N1
λ ∪N2

λ satisfies the two conditions (1) and (2).
We set N :=

∪
λ∈ΛNλ. Then N is an at most countable set. We will show

that V is an irreducible πz(g)-module for any z ∈ C\N . Take z′ ∈ C\N
and a non-zero submodule V ′ ⊂ V . By the irreducibility condition (2), we
have Vλ ⊂ V ′ for some λ ∈ Λ. By the condition (1), Vλ generates V as a
πz′(g)-module. Thus we have V ′ = V . This implies that V is irreducible as
a πz′(g)-module.

We complete the proof of Theorem 4.5.
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4.2 Polynomial identity degree

The polynomial identity degree (see Section 2.6) is defined by polynomials.
Hence the polynomial identity degree of πz(U(g)) behaves well for the poly-
nomially dependent family of representations. Retain the notation in the
previous section.

Lemma 4.6. Let A be a subalgebra of U(g). Let (πz, V ) be a family of
g-modules depending on z polynomially. Set

n := sup
z∈C

{PI.deg(πz(A))} .

Then for any positive integer n′ < n, the set {z ∈ C : PI.deg(πz(A)) ≤ n′}
is a finite set. In particular, for any Zariski dense subset X ⊂ C, we have
n = supz∈X {PI.deg(πz(A))}.
Proof. Take a positive integer n′ < n. By the definition of PI.deg (see Defi-
nition 2.25), we can take A1, A2, . . . , A2n′ ∈ A and a ∈ C satisfying

πa(s2n′(A1, A2, . . . , A2n′)) ̸= 0.

Then f(z) := πz(s2n′(A1, A2, . . . , A2n′)) is a non-zero EndC(V )-valued poly-
nomial of z. By the definition of PI.deg, we have

{z ∈ C : PI.deg(πz(A)) ≤ n′} ⊂ {z ∈ C : f(z) = 0} .

Since f(z) is a polynomial of z, {z ∈ C : f(z) = 0} is a finite set. This shows
the lemma.

Let g′ be a reductive subalgebra of g, and (πz, V ) be an admissible family
of (g, k)-modules depending on z polynomially. Take a k-stable subspace
W ⊂ V and countable subset S ⊂ C. We put

Wz := πz(U(g))W.

Suppose that Ws is a finite-dimensional irreducible g-module for any s ∈ S
and

∪
s∈S Ws = V . By Theorem 4.5, the second condition is equivalent to

the condition that (πz, V ) is irreducible for some z ∈ C.
For s ∈ S, since Ws is a finite-dimensional irreducible g-module, Ws|g′

is completely reducible. We write Mg(Ws) for the maximum value of the
multiplicities in Ws|g.
Theorem 4.7. Under the above settings, we have

PI.deg(πz(U(g)g
′
)) ≤ sup

s∈S
Mg′(Ws)

for any z ∈ C. Furthermore, there exists an at most countable subset N ⊂ C
such that the equality holds for any z ∈ C\N .
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Proof. For X ⊂ C and Y ⊂ S, we define

PI(X) := sup
z∈X

PI.deg(πz(U(g)g
′
)),

M(Y ) := sup
s∈Y

Mg′(Ws).

Since S is countable, Lemma 4.6 implies PI(C) = PI(S). By Lemma 4.6,
the two assertions are equivalent to PI(C) = M(S). Therefore, it suffices to
show PI(S) = M(S).

We denote by (π̄s,Ws) the g-module on Ws. By Proposition 2.27, we have

M(S) = sup
s∈S

PI.deg(π̄s(U(g)g
′
)).

We set n := sups∈S PI.deg(π̄s(U(g)g
′
)). We will show n = PI(S). It is clear

that n ≤ PI(S) because the natural homomorphism πs(U(g)g
′
) → π̄s(U(g)g

′
)

is surjective.
For the converse inequality, we take A1, A2, . . . , A2n ∈ U(g)g′ . By the

definition of PI.deg, we have

π̄s(s2n(A1, A2, . . . , A2n)) = 0

for any s ∈ S. By Theorem 4.5, for any countable subset S ′ ⊂ S, we have∪
s∈S′ Ws = V . This implies that Sv := {s ∈ S : v ∈ Ws} is countable for any

v ∈ V . Since f(z) := πz(s2n(A1, A2, . . . , A2n))v is a V -valued polynomial of
z and f ≡ 0 on the countable set Sv, we have f ≡ 0 on C. Therefore, we
obtain πz(s2n(A1, A2, . . . , A2n)) = 0 for any z ∈ C, and hence PI(S) ≤ n.
We complete the proof.

Corollary 4.8. Retain the notation in Theorem 4.7. Then the following two
conditions are equivalent:

(a) πz(U(g)g
′
) is commutative for any z ∈ C;

(b) Ws is a multiplicity-free g′-module for any s ∈ S.

Proof. By the definition of PI.deg and Mg′ ,

• PI.deg(πz(U(g)g
′
)) = 1 ⇐⇒ πz(U(g)g

′
) is commutative, and

• Mg′(Ws) = 1 ⇐⇒ Ws is multiplicity-free as a g′-module, for s ∈ S.

Therefore, the assertion is a consequence of Theorem 4.7.
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4.3 Discretely decomposable generalized Verma mod-
ules

Let gR be a real simple Lie algebra of Hermitian type with Cartan involution
θ. Put kR := gθR. We fix a characteristic element H ∈

√
−1c(kR). As in

Section 2.3, we construct q, p+, p− and so on. Then we have

g = p+ ⊕ k⊕ p−,

q = p+ ⊕ k.

We fix a unitary character ζ of kR such that ζ(H) = 1.
Let F be a finite-dimensional irreducible unitary representation of kR with

infinitesimal character λ. Then we define

M(z) := progq̄(F ⊗ Czζ).

We put

Zhol := {z ∈ C : (λ+ ρ(p+), α) < 0 for any α ∈ ∆(p+, h)} ,

Zfin :=

{
z ∈ C :

2(λ+ ρ(p+), α)

(α, α)
∈ {1, 2, . . .} for any α ∈ ∆(p+, h)

}
.

Then if z ∈ Zhol, M(z) is the underlying Harish-Chandra module of a holo-
morphic discrete series representation, and hence irreducible (see Fact 2.12).
M(z) contains a unique irreducible finite-dimensional representation of g by
the Borel–Weil–Bott theorem. In general, M(z) has a unique irreducible
submodule. We denote by L(z) the unique irreducible submodule of M(z).

Next, we consider M(z) as a family of representations depending on z
polynomially (see Section 4.1). To do so, we identify the representation
spaces M(z) with a space of polynomial functions as follows. We fix an iden-
tification of Czζ with C. Then we have the following natural isomorphisms
as vector spaces:

M(z) = HomU(q̄)(U(g), F ⊗ Czζ)k

≃ HomC(U(p+), F ⊗ Czζ)k

≃ C[p+]⊗ F ⊗ Czζ

≃ C[p+]⊗ F.

Thus we identify the representation spaces M(z) with C[p+]⊗F . We denote
by πz the g-action on C[p+]⊗ F induced from the action on M(z).

By the above identification, it is easy to see that (πz,C[p+] ⊗ F ) is a
family of representations depending on z polynomially. More precisely, the
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p+-action is the derivation on C[p+], and the [k, k]-action is independent of
z. Hence the family (πz,C[p+]⊗F ) is admissible (Definition 4.2). Using the
identification, we consider L(z) as a subspace of C[p+]⊗ F .

Let g′R be a θ-stable reductive subalgebras of gR. For a subalgebra s of g,
we write s′ for the intersection of s with g′. We assume that g′ contains H as
an element. The branching law of a holomorphic discrete series representation
is well-known. The following fact proved by Jakobsen–Vergne [29] is useful
to see the branching law (see also [52]).

Fact 4.9. Suppose z ∈ Zhol. Then M(z)|g′ is completely reducible and each
direct summand is a unitary highest weight module of g′. Moreover, suppose
C[p+/p′+]⊗F has the following irreducible decomposition as a πz(k

′)-module:

C[p+/p′+]⊗ F ≃
⊕

(µ,Fµ)∈k̂′

m(µ)Fµ.

Then M(z)|g′ has the following irreducible decomposition as a g′-module:

M(z)|g′ ≃
⊕

(µ,Fµ)∈k̂′

m(µ)prog
′

q̄′(Fµ).

Remark 4.10. By [47, Corollary 8.7], each irreducible component of M(z)|g′
is the underlying Harish-Chandra module of a holomorphic discrete series
representation.

The correspondence of the two irreducible decompositions in the fact is as
follows. SinceM(z)|g′ is the direct sum of irreducible highest weight modules,
its irreducible decomposition is completely determined by the p′+-invariant
part. The p′+-action is the derivative on the polynomial C[p+]⊗F . Thus we
have

M(z)p
′
+ ≃(C[p+]⊗ F )p

′
+

≃C[p+/p′+]⊗ F.

Thus the irreducible decomposition of C[p+/p′+] ⊗ F determines the irre-
ducible decomposition of M(z)|g′ as in Fact 4.9. By this observation and
Theorem 4.5, we have

Theorem 4.11. Let F ′ be a direct summand of C[p+/p′+] ⊗ F as a π0(k
′)-

module. Fix z0 ∈ Zhol. Let L′(z) denote the unique irreducible submodule of

prog
′

q̄′(F
′ ⊗ Czζ). Then we have

dimCHomg′(M(z0), pro
g′

q̄′(F
′ ⊗ Cz0ζ))

=max {dimC Homg′(L(z), L
′(z)) : z ∈ Zfin} .
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Proof. By Theorem 4.5, we have∪
z∈Zfin

L(z) = C[p+]⊗ F,

∪
z∈Zfin

L(z)p
′
+ = C[p+/p′+]⊗ F.

This implies that

max
{
dimCHomk′(L(z)

p′+ , L′(z)p
′
+) : z ∈ Zfin

}
=dimCHomk′(M(z0)

p′+ , L′(z0)
p′+).

Since L(z)|g′ is completely reducible, its irreducible decomposition is deter-
mined by the p′+-invariant part. This and Fact 4.9 show the assertion.

The following corollary is a direct consequence of the theorem. The corol-
lary is useful to classify multiplicity-free restrictions of holomorphic discrete
series representations.

Corollary 4.12. For z0 ∈ Zhol, we have

Mg′(M(z0)) = max {Mg′(L(z)) : z ∈ Zfin} .

At the last of this section, we compare two branching laws for two sub-
algebras with isomorphic complexifications. Let g′′R be θ-stable reductive
subalgebras of gR. We assume the following two assumptions:

• g′′ contains H as an element;

• there exists an element c of Int(g) such that

c(g′) = g′′.

Any finite-dimensional representation V of g can be lifted to a representa-
tion of a simply-connected connected complex algebraic group G with Lie al-
gebra g. By assumption, there is an element g ∈ G such that Ad(g)(g′) = g′′.
Hence the branching law of V |g′R is essentially the same as the branching law
of V |g′′R . This shows the following corollary.

Corollary 4.13. For z0 ∈ Zhol, we have

Mg′(M(z0)) = Mg′′(M(z0)).
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5 Generalized Verma modules and the Zuck-

erman derived functor

In this section, we treat modules cohomologically induced from generalized
Verma modules. Our main purpose is to show the vanishing theorem (Lemma
5.2) and the existence of a cyclic subspace (Lemma 5.5). The cohomological
induction of generalized Harish-Chandra modules is studied by I. Penkov and
G. Zuckerman [85, 86, 87]. The proofs in this section are essentially the same
as in Knapp–Vogan’s book [40, Chapter VIII], Wallach’s book [104, Chapter
6] and Penkov–Zuckerman’s papers.

Let g be a complex reductive Lie algebra and g′ be a reductive subalgebra
of g. Fix an element H ∈ g′ such that H is semisimple in g and ad(H) has
real eigenvalues on g. As in Section 2.2, we define u := u(H), l := l(H) and
ū := ū(H). We set u′ := u ∩ g′, l′ := l ∩ g′ and ū′ := ū ∩ g′. Then q := u ⊕ l
and q′ := u′ ⊕ l′ are parabolic subalgebras of g and g′, respectively. We also
define q̄ := ū⊕ l and q̄′ := ū′ ⊕ l′.

We fix a Cartan subalgebra h′ of l′ and a Borel subalgebra b′ ⊂ q′ of
g′ containing h′. We extend h′ to a Cartan subalgebra h of l. Then we
have H ∈ h′, h. Remark that any generalized Verma module indg

q(F ) is
l′-admissible, and hence g′-admissible (see [53]).

We set S := dimC(u
′).

Fix a connected complex reductive algebraic group G′ with Lie algebra
g′ and representation on g compatible with the adjoint action of g′. Then
(g, G′) is a pair (see Definition 2.1). Let L′ be the centralizer of H in G′.
Then L′ is a connected reductive algebraic group with Lie algebra l′.

5.1 Vanishing theorem

We will prove the vanishing theorem of RiΓG′

L′ . The following fact is in [104,
Lemma 6.4.4].

Fact 5.1. Let M be a (g′, L′)-module with standard filtration M· (see Defi-
nition 2.8). Then we have RdΓG′

L′ (M) = 0 for d < S.

The following corollary is a direct consequence of the above fact and
Proposition 2.10. The corollary is used to prove the exactness of some functor
defined by the Zuckerman derived functor (see Theorem 6.4).

Corollary 5.2. Let F be an irreducible finite-dimensional l-module. Suppose
that F lifts to a representation of L′. Then we have

RdΓG′

L′ (indg
q(F )) = 0 for d < S.
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Moreover, if indg
q(F ) is irreducible, then

RdΓG′

L′ (indg
q(F )) = 0 for d ̸= S.

Proof. The first assertion is a direct consequence of Proposition 2.10 and
Fact 5.1.

Assume indg
q(F ) is irreducible. Then we have (indg

q(F )∗)l′ ≃ indg
q̄(F

∗).

Hence there is a non-degenerate bilinear pairing between RdΓG′

L′ (ind
g
q(F ))

and R2S−dΓG′

L′ (ind
g
q̄(F

∗)). Using the first assertion for R2S−dΓG′

L′ (ind
g
q̄(F

∗)),
we have

R2S−dΓG′

L′ (ind
g
q̄(F

∗)) = 0 for 2S − d < S.

This leads RdΓG′

L′ (ind
g
q(F )) = 0 for d > S. We have proved the second

assertion.

5.2 Cyclic subspace

In this section, we prove that there is a cyclic subspace in the Zuckerman
derived functor module under some dominance condition. The proofs in this
section is essentially the same as in [104, Section 6.6]. Retain the notation
in the previous section.

Lemma 5.3. Let F be a finite-dimensional irreducible l-module. Suppose F |l′
is irreducible and lifts to a representation of L′, and F |l′ has an infinitesimal
character λ′. We assume (λ′ + ρ(u′), β) < 0 for any β ∈ ∆(u′, h′). Then
there exists a unique finite-dimensional irreducible G′-subrepresentation W0

of RSΓG′

L′ (ind
g
q(F )) with infinitesimal character λ′ + ρ(u′).

Proof. We define a g′-submoduleW := U(g′)(1⊗F ) of indg
q(F ). RSΓG′

L′ (W ) is
a finite-dimensional irreducible representation of G′ with infinitesimal char-

acter λ′ + ρ(u′) because W is isomorphic to ind
g′

q′ (F ) and F satisfies the
dominance condition.

We will show that W is a unique submodule of indg
q(F ) with generalized

infinitesimal character λ′+ρ(u′). If we prove this, we can see that the natural
map RSΓG′

L′ (W ) → RSΓG′

L′ (ind
g
q(F )) is injective, and we can take the image

of the map as W0 in the assertion.
Set ū′′ := ū ∩ (g′)⊥ and u′′ := u ∩ (g′)⊥. By Proposition 2.10, there exists

a g′-module filtration M· of ind
g
q(F ) with

∪
i Mi = indg

q(F ) and

gr(M·) ≃ ind
g′

q′ (F ⊗ S(ū′′)),
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where u′ acts on ū′′ trivially.
Take a g′-submodule W ′ of gr(M·) with infinitesimal character λ′+ ρ(u′).

It is enough to show W ′ = ind
g′

q′ (F ⊗ 1) in gr(M·). Since W ′ is a submodule

of ind
g′

q′ (F ⊗ S(ū′′)), λ′ + ρ(u′) is of the form λ′ + ρ(u′)−Q modulo the Weyl
group action of g′. Here Q is a sum of elements of ∆(u′′, h′). Hence we can
take an element s ∈ Wg′ such that

λ′ + ρ(u′)−Q = s(λ′ + ρ(u′)).

Since λ′ + ρ(u′) is a dominant integral weight with respect to ∆+(l′, h′)∩
−∆(u′, h′), we have

s(λ′ + ρ(u′)) = λ′ + ρ(u′)−R +Q′,

where R is a sum of elements of ∆+(l′, h′) and Q′ is a sum of elements of
∆(u′, h′). By the above two equations, we obtain Q + Q′ − R = 0. By the
definition of H and u, R(H) = 0 and Q(H), Q′(H) > 0 holds if Q and Q′ are

non-zero. Thus we have Q = Q′ = 0. This implies W ′ = ind
g′

q′ (F ⊗ 1). We
have completed the proof.

The above lemma says that the bottom-layer (see [40, Chapter V]) of
RSΓG′

L′ (ind
g
q(F )) does not vanish if F satisfies the dominance condition. We

will prove that the subspace W0 in the lemma generates RSΓG′

L′ (ind
g
q(F )) as a

g-module under some dominance condition. The following fact is well-known
(see e.g. [104, Lemma 6.A.1.3]).

Fact 5.4 (Koszul resolution). Let g be a complex Lie algebra and g′ be a
subalgebra of g. Let V be a g-module. Set n := dimC(g/g

′). Then there is an
exact sequence of g-modules:

0
∂n−→ U(g)⊗U(g′) (∧n(g/g′)⊗ V )

∂n−1−−−→ U(g)⊗U(g′) (∧n−1(g/g′)⊗ V )

∂n−2−−−→ · · · ∂1−→ U(g)⊗U(g′) (g/g
′ ⊗ V )

∂0−→ U(g)⊗U(g′) V
ϵ−→ V → 0.

The last homomorphism ϵ is the multiplication map.

The following lemma is the main result of this section. We use the lemma
to prove Theorem 6.1.

Lemma 5.5. Retain the notation in Lemma 5.3. Suppose

(λ′ +
∑
α∈E

α + ρ(u′), β) < 0

for any β ∈ ∆(u′, h′) and E ⊂ ∆(q/q′, h′). Take W0 as in Lemma 5.3. Then
W0 generates RSΓG′

L′ (ind
g
q(F )) as a g-module.
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Proof. We apply Fact 5.4 to q, q′ and F . Then we have an exact sequence
of q-modules:

0
∂n−→ U(q)⊗U(q′) (∧n(q/q′)⊗ F )

∂n−1−−−→ U(q)⊗U(q′) (∧n−1(q/q′)⊗ F )

∂n−2−−−→ · · · ∂1−→ U(q)⊗U(q′) (q/q
′ ⊗ F )

∂0−→ U(q)⊗U(q′) F
ϵ−→ F → 0.

Applying an exact functor U(g) ⊗U(q) (·) to the above exact sequence, we
obtain an exact sequence of g-modules:

0
∂n−→ U(g)⊗U(g′) En

∂n−1−−−→ U(g)⊗U(g′) En−1

∂n−2−−−→ · · · ∂1−→ U(g)⊗U(g′) E1
∂0−→ U(g)⊗U(g′) E0

ϵ−→ indg
q(F ) → 0,

where we set Ei := ind
g′

q′ (∧i(q/q′)⊗F ). We takeW = U(g′)(1⊗F ) ⊂ indg
q(F )

as in the proof of Lemma 5.3. Then we have ϵ(1⊗ E0) = W .
We will show that RSΓG′

L′ (ϵ) is surjective. By the dominance condition,
Proposition 2.9 and Fact 2.7, Ei is completely reducible. Since U(g)⊗U(g′)Ei

is isomorphic to S((g′)⊥)⊗ Ei as a g′-module, Corollary 5.2 implies

RdΓG′

L′ (U(g)⊗U(g′) Ei) ≃ S((g′)⊥)⊗RdΓG′

L′ (Ei) = 0

for any d ̸= S. Hence the above exact sequence induces the following exact
sequences:

0 → RSΓG′

L′ (Im(∂0)) → RSΓG′

L′ (U(g)⊗U(g′) E0)
RSΓ(ϵ)−−−−→ RSΓG′

L′ (indg
q(F ))

→ RS+1ΓG′

L′ (Im(∂0)) → 0

0 → RdΓG′

L′ (Im(∂i)) → Rd+1ΓG′

L′ (Im(∂i+1)) → 0 for d > S.

The second exact sequence implies RdΓG′

L′ (Im(∂i)) = 0 for d > S. From this
and the first exact sequence, RSΓG′

L′ (ϵ) is surjective.
By the isomorphisms U(g)⊗U(g′)E0 ≃ S((g′)⊥)⊗E0 and RSΓG′

L′ (S((g′)⊥)⊗
E0) ≃ S((g′)⊥)⊗RSΓG′

L′ (E0), we have the following commutative diagram:

S((g′)⊥)⊗RSΓG′

L′ (E0)

≃
��

m

++VVVV
VVVVV

VVVVV
VVVVV

RSΓG′

L′ (U(g)⊗U(g′) E0)
RSΓG′

L′ (ϵ) // RSΓG′

L′ (ind
g
q(F )),

wherem is the composition of the multiplication map and the symmetrization
mapping (see Fact 2.16). Since RSΓG′

L′ (ϵ) is surjective, we have

U(g)W0 = RSΓG′

L′ (indg
q(F )).

This proves the lemma.
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6 Embedding of category

The main concern in this section is to construct a category embedding from
the BGG category to the category of generalized Harish-Chandra modules.

Let g1 and g2 be complex reductive Lie algebra. We set g := g1 ⊕ g2.
We take a reductive subalgebra g′ of g such that two projections g → g2 and
g → g2 are injective on g′. In other words, g′ is a diagonal subalgebra of
g1 ⊕ g2.

We fix an element H ∈ g′ which is semisimple in g with real eigenvalues.
We define subalgebras q, u, q′, u′, h, h′, . . . from H as in Section 5, and we set
qi := q ∩ gi, ui := u ∩ gi and so on. Then we have a canonical category
equivalence between Og

q and Og1
q1
⊗Og2

q2
.

Let G′ be a connected complex reductive algebraic group with Lie algebra
g′ and Lie group action on g compatible with the adjoint action of g′. We
write L′ for the centralizer of H in G′.

For a finite-dimensional irreducible l2-module F with infinitesimal char-
acter λ, we define a full subcategory Og1

q1
(λ) of Og1

q1
satisfying that M is an

object of Og1
q1
(λ) if and only if M ⊗ F lifts to a representation of L′. Then

Og1
q1
(λ) is closed under taking subquotient modules.
Our main purpose in this section is to show the following theorem. We

denote by L(M) the lattice of submodules of M . Set S := dimC(u
′).

Theorem 6.1. Let F be a finite-dimensional irreducible l2-module with in-
finitesimal character λ satisfying

2(λ+ ρ(u2), α)

(α, α)
̸∈ {0, 1, 2, . . .} for any α ∈ ∆(u2, h2).

We denote by T the functor RSΓG′

L′ (· ⊗ indg2
q2
(F )) from Og1

q1
(λ) to C(g, G′).

Then the functor T is exact, and induces a lattice isomorphism from L(M)
to L(T (M)) for each object M of Og1

q1
(λ).

Corollary 6.2. Under the assumption in Theorem 6.1, the functor T is fully
faithful, and maps irreducible objects to irreducible objects.

Proof. Since L(M) ≃ L(T (M)), the second assertion is clear.
Take two objects M1,M2 of Og1

q1
(λ). First, we will prove the faithfulness

of T . Take f ∈ Homg1(M1,M2) such that T (f) = 0. By the exactness of T ,
we have the following exact sequences:

M1
f−→ Im(f) → 0

T (M1)
T (f)−−→ T (Im(f)) → 0.
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Since T (f) = 0 and L(T (Im(f))) ≃ L(Im(f)), we obtain T (Im(f)) = 0 and
Im(f) = 0. This implies f = 0. Therefore, T is faithful.

Next, we will show that T is full. Let pi be the projection from M1 ⊕M2

to Mi. Take a homomorphism f from T (M1) to T (M2). Consider

idT (M1) ⊕ f : T (M1) → T (M1)⊕ T (M2).

The image of this map is the graph of f . Since L(M) ≃ L(T (M)), there
exists a unique submodule N ⊂ M1⊕M2 such that T (N) = Im(idT (M1)⊕ f).
Then N is a graph. In fact, since T is faithful and T (p1|N) is bijective, p1|N
is also bijective.

We set f ′ := p2 ◦ (p1|N)−1. Then we have T (f ′) = T (p2) ◦ T ((p1|N)−1) =
T (p2) ◦ (idT (M1)⊕ f) = f . Therefore, T is full. We have proved the corollary.

6.1 Exactness of T

In this section, we will prove the exactness in Theorem 6.1.

Lemma 6.3. Let F be an irreducible finite-dimensional l2-module with in-
finitesimal character λ, and V be an object of Og1

q1
(λ). Then we have

RdΓG′

L′ (V ⊗ indg2
q2
(F )) = 0 for d < S.

Proof. Fix a non-negative integer d < S. By Proposition 2.10, we can take
a g′-module standard filtration M· of ind

g2
q2
(F ). By Fact 2.17, it suffices to

show RdΓG′

L′ (V ⊗ Mi) = 0 for any i ≥ 0. By induction on i and the exact
sequence

RdΓG′

L′ (V ⊗Mi) → RdΓG′

L′ (V ⊗Mi+1) → RdΓG′

L′ (V ⊗ (Mi+1/Mi)),

to prove the assertion, it is enough to show RdΓG′

L′ (V ⊗ (Mi+1/Mi)) = 0 for
any i ≥ 0.

Take a non-negative integer i. Since M· is a standard filtration, there is

a finite-dimensional irreducible l′-module F such that Mi+1/Mi ≃ ind
g′

q′ (F ).

Then we have V ⊗(Mi+1/Mi) ≃ ind
g′

q′ (V ⊗F ). Since V is an object of Og1
q1
(λ),

V ⊗F is a completely reducible l′-module and locally finite u′-module. Thus
V ⊗ (Mi+1/Mi) has a g′-module standard filtration. By Lemma 5.1, we have

RdΓG′

L′ (V ⊗ (Mi+1/Mi)) = 0.

This completes the proof.
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Using the lemma, we prove the exactness in Theorem 6.1.

Theorem 6.4. Under the assumption of Lemma 6.3, if moreover we assume
indg2

q2
(F ) is irreducible, then we have

RdΓG′

L′ (V ⊗ indg2
q2
(F )) = 0 for d ̸= S.

In particular, RSΓG′

L′ is exact on Og1
q1
(λ)⊗ indg2

q2
(F ).

Proof. We write T d for the restriction of RdΓG′

L′ to Og1
q1
(λ)⊗ indg2

q2
(F ).

By Lemma 6.3, we have T d = 0 for d < S. Let us show T d = 0 for d > S.
By assumption, indg2

q2
(F ) is irreducible, and hence we have

indg2
q2
(F )∗l2 ≃ indg2

q̄2(F
∗).

Remark that V ⊗ indg2
q2
(F ) is an admissible l′-module. Therefore, (V ⊗

indg2
q2
(F ))∗l′ is an object of Og1

q̄1 ⊗ indg2
q̄2(F

∗). Applying Lemma 6.3 to (V ⊗
indg2

q2
(F ))∗l′ , we obtain

T 2S−d((V ⊗ indg2
q2
(F ))∗l′) = 0 for d > S.

Since there is a non-degenerate g-invariant bilinear pairing between T d(V ⊗
indg2

q2
(F )) and T 2S−d((V ⊗ indg2

q2
(F ))∗l′), we have

T d(V ⊗ indg2
q2
(F )) = 0 for d > S.

This shows the assertion.

6.2 Proof of embedding for g1 ≃ g′

Retain the notation. The exactness of T in Theorem 6.1 has been proved in
the previous section. In this section, we will prove the remaining part of the
theorem under the assumption g1 ≃ g′.

The proof is divided into the following four parts:

Step 1 reduction to the case indg2
q2
(F ) is of scalar type with enough small

infinitesimal character;

Step 2 irreducibility of T (M) for any irreducible object M ;

Step 3 T (M1) ≃ T (M2) ⇒ M1 ≃ M2 for irreducible objects M1,M2;

Step 4 L(M) ≃ L(T (M)).
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For the reduction in Step 1, we need the following lemma. The lemma is
the special case of [40, Proposition 4.68].

Lemma 6.5. The following inequations hold:

(ρ(u2), α) > 0 for any α ∈ ∆(u2, h2),

(ρ(u2)|h′ , α) > 0 for any α ∈ ∆(u′, h′).

Proof. We will prove the first inequation. We omit the proof of the second
inequation because the proof is the same. Fix α ∈ ∆(u2, h2). For β ∈
∆(u2, h2) if (β, α) < 0, sα(β) is in ∆(u2, h2). Hence we have

ρ(u2) =
∑

β∈∆(u2,h2),
(β,α)<0

(β + sα(β)) +
∑

β∈∆(u2,h2),
(β,α)=0

β +
∑

β∈∆(u2,h2),
(β,α)>0,

sα(β)̸∈∆(u2,h2)

β.

Note that α appears in the third sum. Since (β + sα(β), α) = 0, we obtain
(ρ(u2), α) > 0.

We will prove the remaining part of the proof of the theorem.

Step 1: reduction to scalar type case

Without loss of generality, we can assume that g2 is semisimple and any
finite-dimensional g2-module can lift to a representation of G′.

Fix a set of positive roots ∆+(l2, h2) of ∆(l2, h2). Then ∆+(g2, h2) :=
∆+(l2, h2) ∪ −∆(u2, h2) is a set of positive roots of ∆(g2, h2). Recall that λ
is the infinitesimal character of F . We can assume that λ is strictly anti-
dominant with respect to ∆+(l2, h2). By assumption, λ+ρ(u2) is regular and
integrally anti-dominant (see Definition 2.19) with respect to ∆+(g2, h2).

Set (l2)ss := [l2, l2] and hss := h∩(l2)ss. Since−(λ+ρ(l2))|hss is a dominant
integral weight of (l2)ss and l2 is a Levi subalgebra of g2, there exists an
algebraically integral weight µ of g2 such that µ|hss = −(λ+ρ(l2))|hss . Hence
T λ+µ
λ (F ) is a one-dimensional l2-module. Set ν := λ + µ + ρ(l2). Then we

have T λ+µ
λ (F ) ≃ Cν . Remark that Og1

q1
(λ) = Og1

q1
(λ + µ) holds because µ|h′

is integral with respect to G′. This is because we have assumed that any
finite-dimensional g2-module lifts to a representation of G′.

By Lemma 6.5, if necessary, replacing µ by µ− 2mρ(u2) for enough large
integerm, we may assume that ν = λ+µ+ρ(u2) is regular and integrally anti-

dominant with respect to ∆+(g2, h2). Using the translation functor T
λ+µ+ρ(u2)
λ+ρ(u2)
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and Fact 2.22, 2.24, we have

T
λ+µ+ρ(u2)
λ+ρ(u2)

(indg2
q2
(F )) ≃ indg2

q2
(Cν),

T
λ+µ+ρ(u2)
λ+ρ(u2)

(RSΓG′

L′ (M ⊗ indg2
q2
(F ))) ≃ RSΓG′

L′ (M ⊗ indg2
q2
(Cν)),

T
λ+ρ(u2)
λ+µ+ρ(u2)

(RSΓG′

L′ (M ⊗ indg2
q2
(Cν))) ≃ RSΓG′

L′ (M ⊗ indg2
q2
(F ))

for any object M of Og1
q1
(λ). Since T

λ+ρ(u2)
λ+µ+ρ(u2)

is a left/right adjoint functor of

T
λ+µ+ρ(u2)
λ+ρ(u2)

, the above isomorphisms imply the following category equivalence:

T
λ+µ+ρ(u2)
λ+ρ(u2)

: RSΓG′

L′ (Og1
q1
(λ)⊗ indg2

q2
(F )) → RSΓG′

L′ (Og1
q1
(λ)⊗ indg2

q2
(Cν)),

and the commutative diagram:

Og1
q1
(λ) T // RSΓG′

L′ (Og1
q1
(λ)⊗ indg2

q2
(F ))

≃
��

Og1
q1
(λ+ µ) T // RSΓG′

L′ (Og1
q1
(λ)⊗ indg2

q2
(Cν)).

Therefore, we may assume that F is a one-dimensional l-module Cν with

(ν|h′ , α) ≪ 0 for any α ∈ ∆(u′, h′)

by Lemma 6.5. In the following proof, replacing ν by enough small one, we
can assume that the dominance condition of Lemma 5.5 is always satisfied.

Step 2: irreducibility of T (M)

Take an irreducible object M of Og1
q1
(λ). Since M is an irreducible high-

est weight module, there exist a generalized Verma module indg1
q1
(F1) and a

surjective homomorphism η : indg1
q1
(F1) → M .

By the assumption g′ ≃ g1, (F1 ⊗ Cν)|l′ is irreducible. Since ν is enough
small, we can apply Lemma 5.5 to indg

q(F1 ⊗ Cν). Then we can take a
G′-irreducible subrepresentation W0 ⊂ T (indg1

q1
(F1)) such that W0 generates

T (indg1
q1
(F1)) and HomG′(W0, T (ind

g1
q1
(F1))) = 1. This and the exactness of T

imply that T (η)(W0) ̸= 0 and T (M) is generated by T (η)(W0).
Take a proper submodule X of T (M). Let us show X = 0. We consider

the dual module T (M)∗G′ and a non-degenerate paring between T (M) and
T (M)∗G′ . Since T (η)(W0) generates T (M), X does not contain T (η)(W0),
and hence X⊥ contains T (η)(W0)

∗.
By assumption, M and indg2

q2
(Cν) are irreducible. Hence we have

T (M)∗G′ ≃ RSΓG′

L′ (M∗
l2
⊗ indg2

q̄2(C−ν)).
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Applying Lemma 5.5 to T (M)∗G′ , we see that T (η)(W0)
∗ generates T (M)∗G′ .

This implies X⊥ = T (M)∗G′ . Therefore, we have X = 0. This shows the
irreducibility of T (M).

Step 3: T (M1) ≃ T (M2) ⇒ M1 ≃ M2 for irreducible objects M1,M2

Take two irreducible objects M1 and M2 of Og1
q1
(λ). We will show that

T (M1) ≃ T (M2) only if T1 ≃ T2.
Assume T (M1) ≃ T (M2). As in Step 2, we take a generalized Verma

module indg1
q1
(Fi) such that Mi is a unique irreducible quotient of indg1

q1
(Fi).

Since ν is sufficiently small, we can apply Lemma 5.3 to indg
q(Fi ⊗ Cν), and

we take Wi as W0 in the lemma.
Let λi be the infinitesimal character of (Fi ⊗ Cν)|L′ . We may assume

that λi is strictly dominant with respect to ∆+(l′, h′). By the assumption
T (M1) ≃ T (M2), we have HomG′(W1, T (M2)) = 1. As in the proof of Lemma
5.3, there exist s ∈ Wg′ and P1 a sum of elements of ∆(u2, h

′) such that

λ1 + ρ(u′) = s(λ2 − P1 + ρ(u′)). (6.5.1)

Since λ1 + ρ(u′) is dominant integral weight with respect to ∆+(l′, h′) ∪
−∆(u′, h′), we have

s−1(λ1 + ρ(u′)) = λ1 + ρ(u′)−Q1 (6.5.2)

with Q1 a sum of elements of ∆+(l′, h′)∪−∆(u′, h′). (6.5.1) and (6.5.2) lead
to

λ1 − λ2 = −P1 +Q1.

Thus we have λ1(H)− λ2(H) = −P1(H) +Q1(H) ≤ 0. Repeating the above
discussion, we obtain λ2(H)− λ1(H) = −P2(H) +Q2(H) ≤ 0. This implies
P1 = P2 = 0 and λ1 + ρ(u′) = s(λ2 + ρ(u′)).

Since λ1 + ρ(u′) and λ2 + ρ(u′) are strictly dominant with respect to
∆+(g′, h′) ∪ −∆(u′, h′), we have s = 0, and hence λ1 = λ2. This implies
F1 ≃ F2. Since Mi is a unique irreducible quotient of indg1

q1
(Fi), we have

M1 ≃ M2.

Step 4: L(M) ≃ L(T (M))

Take an object M of Og1
q1
(λ). For any submodule N of M , we identify T (N)

with a submodule of T (M). By the exactness of T , the induced map T :
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L(M) → L(T (M)) is an injective lattice homomorphism. In fact, for any
two submodules M1,M2 ⊂ M , we have two exact sequences:

0 → M1 ∩M2 → M1 ⊕M2 → M1 +M2 → 0

0 → T (M1 ∩M2) → T (M1)⊕ T (M2) → T (M1 +M2) → 0.

This implies T (M1 ∩ M2) = T (M1) ∩ T (M2) and T (M1 + M2) = T (M1) +
T (M2).

We will prove surjectivity of the lattice homomorphism T . We denote by
Len(M) the length of M . If Len(M) = 1, the surjectivity is obvious from
Step 2. Hence we assume Len(M) ≥ 2. Note that the exactness and Step 2
imply Len(T (M)) = Len(M) < ∞.

Assume T (L(M)) ⊊ L(T (M)). We consider triples

T := {(M1,M2, N) ∈ L(M)× L(M)× L(T (M)) :

T (M1) ⊂ N ⊂ T (M2), N ̸∈ T (L(M))}.

Choose a triple (M1,M2, N) ∈ T such that Len(M2) − Len(M1) takes the
minimum value throughout T . Replacing M by M2/M1 if necessary, we can
assume M2 = M and M1 = 0.

We will show Len(M) = 2. Take a non-zero proper submodule M ′ ⊂ M .
If T (M ′) + N ̸∈ T (L(M)), then (M ′,M, T (M ′) + N) ∈ T . By the choice
of (0,M,N), we have M ′ = 0, and this is contradiction. Thus we have
T (M ′) + N ∈ T (L(M)) and (0, T−1(T (M ′) + N), N) ∈ T . This implies
T (M ′)+N = T (M). Repeating the same discussion for T (M ′)∩N , we have
T (M ′) ∩ N = 0. Thus T (M) = T (M ′) ⊕ N holds for any non-zero proper
submodule M ′ ⊂ M . This forces Len(M) = 2 and T (M) is completely
reducible.

There are three possibilities for M :

(1) M is a direct sum of two distinct irreducible modules;

(2) M is a direct sum of two isomorphic irreducible modules;

(3) M has a unique non-zero proper submodule.

By Step 2 and 3, if M satisfies (1) or (2), T (L(M)) = L(T (M)) holds. Hence
we can assume that M has a unique submodule M ′.

If M ′ contains a non-zero weight vector with maximal weight of M , re-
placing M by M∗

l′ and M ′ by (M ′)⊥, we can reduce this case to the following
case.

If M ′ does not contain any non-zero weight vector with maximal weight
of M , then M is a quotient of a generalized Verma module M̃ . From Lemma
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5.5, T (M̃) has a unique irreducible quotient and hence so does T (M). By the
above discussion, T (M) is a direct sum of two irreducible submodules. This
is contradiction. Therefore, we have T (L(M)) = L(T (M)). This completes
the proof.

6.3 Extension of embedding

We extend the category embedding proved in the previous section. Keep the
notation in the introduction of Section 6. We do not assume g1 ≃ g′. We
denote by g′1, q

′
1, . . . the image of g′, q′, . . . by the projection onto the first

factor of g1 ⊕ g2. By assumption, g′ ≃ g′1 holds.
Recall that for a g′1-module M and an infinitesimal character χ, Pχ(M)

denotes the maximum submodule of M with generalized infinitesimal char-
acter χ (see Section 2.5).

By the construction of q1 and q′1, any module M of Og1
q1

is g′1-admissible
(see [53]). Hence any object of Og1

q1
has the primary decomposition as a

g′1-module (Fact 2.18).

Lemma 6.6. Let M be an object of Og1
q1
. Then we have a g′1-module decom-

position:

M =
⊕
χ

Pχ(M),

where the sum is taken over all infinitesimal characters of g′1. Moreover, each

Pχ(M) is finite length and hence an object of Og′1
q′1
.

Proof. The first assertion is clear from Fact 2.18.
Fix an infinitesimal character χ of g′1. Since M is g′1-admissible, so is

Pχ(M). Any composition factor of Pχ(M) is an object of Og′1
q′1

because u′1-

action on Pχ(M) is locally nilpotent and l′1-action is completely reducible.
There are only finitely many equivalence classes of irreducible modules of

Og′1
q′1

with infinitesimal character χ. Therefore, Pχ(M) is finite length.

We will prove Theorem 6.1 using this lemma.

proof of Theorem 6.1. We have proved the exactness of T in Theorem 6.4.
Then we will show that T induces a lattice isomorphism from L(M) to
L(T (M)). As in the proof in Section 6.2, the induced map T : L(M) →
L(T (M)) is an injective lattice homomorphism. It remains to prove the
surjectivity of T .
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Take a module M of Og1
q1

and a g-submodule X of T (M). By Lemma 6.6,
we have

M =
⊕
χ

Pχ(M)

T (M) =
⊕
χ

T (Pχ(M)).

Since the Zuckerman functor preserves generalized infinitesimal characters,
T (Pχ(M)) = Pχ(T (M)) holds. Here in the right hand side, we consider
T (M) as a g1-module to apply Pχ. Considering X as a g′1-module, we obtain

X =
⊕
χ

Pχ(X).

Obviously, Pχ(X) is a g′1 ⊕ g2-submodule of T (Pχ(M)). Applying Theorem
6.1 for g′1 ⊕ g2 proved in subsection 6.2, we can take a unique g′1-submodule
Nχ of Pχ(M) with T (Nχ) = Pχ(X).

We setN :=
⊕

χ Nχ ⊂ M . Then we have T (N) = X. It is enough to show
that N is g1-stable. Let m : g1 ⊗M → M and mT : g1 ⊗ T (M) → T (M) be
the multiplication maps. By Fact 2.16, the following diagram is commutative:

g1 ⊗ T (M)

≃
��

mT // T (M)

T (g1 ⊗M)
T (m)

88qqqqqqqqqq

We considerm|N as the composition of the following surjection and inclusion:

g1 ⊗N

m|N

66// // g1N
� � // M.

Applying T to the above sequence, we have the following commutative dia-
gram:

T (g1 ⊗N)

T (m|N )

**
// // T (g1N) �

� // T (M).

g1 ⊗ T (N)

≃

OO

mT |T (N)

44hhhhhhhhhhhhhhhhhhhh

This implies T (g1N) = g1T (N) ⊂ X = T (N). Therefore, Theorem 6.1
leads Pχ(g1N) ⊂ Nχ and hence g1N ⊂ N . This shows the surjectivity of
T : L(M) → L(T (M)). We have proved the theorem.
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6.4 Category equivalence in special case

The main purpose in this section is to show that the functor T defined in
Theorem 6.1 gives a category equivalence in a special setting.

Let g be a complex semisimple Lie algebra. Fix a Borel subalgebra b of g
with Levi decomposition b = h⊕u, where u is the nilpotent radical of b. Let
G be a complex semisimple Lie group with Lie algebra g and H be a closed
subgroup of G corresponding to h ⊂ g. Then (g⊕ g,∆(G)) is a pair.

Set S := dimC(u).

Theorem 6.7. Let λ be a character of h with

2(λ+ ρ(u), α)

(α, α)
̸∈ {0, 1, 2, . . .} for any α ∈ ∆(u, h).

Then the following functor gives a category equivalence:

T : Og
b(λ) → C(g⊕ g,∆(G))λ+ρ(u)

∈ ∈

M 7→ RSΓ
∆(G)
∆(H)(M ⊗ indg

b(Cλ)),

where C(g⊕ g,∆(G))λ+ρ(u) is the full subcategory of C(g⊕ g,∆(G)) whose
object has the infinitesimal character λ + ρ(u) with respect to the action of
the second factor of g⊕ g.

Remark 6.8. This theorem was conjectured and partially proved by T. J.
Enright in [10].

By Theorem 6.1, the functor T is exact and fully faithful. Hence what
we need to show is that T is dense (i.e. for any object N in the codomain,
there is an object M in the domain with T (M) ≃ N). In fact, a functor F
gives a category equivalence if and only if F is fully faithful and dense.

To prove the denseness, we use the following well-known category equiv-
alence (see [4]). For a weight λ′ ∈ h∗, we define the following two covariant
functors:

F (M) := HomC(ind
g
b(Cλ′),M)∆(G) for M ∈ Og

b(−λ′)

G(N) := N ⊗U(g) ind
g
b(Cλ′) for N ∈ C(g⊕ g,∆(G))−λ′−ρ(u).

Here to define G, we consider the (g⊕ g,∆(G))-module N as a (U(g),U(g))-
bimodule by

A · n ·B := (A⊗B)n for A,B ∈ U(g) and n ∈ N,

and (·)∆(G) means the sum of finite-dimensional ∆(g)-submodules which can
lift to representations of ∆(G). Then the following fact holds.
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Fact 6.9. Under the above setting, if moreover λ′ + ρ(u) is regular integrally
dominant (see Definition 2.19,) then F is a category equivalence and G is a
quasi-inverse of F .

Proof of Theorem 6.7. We set λ′ = −λ − 2ρ(u). Then we have Og
b(−λ′) =

Og
b(λ), and λ satisfies the condition in Theorem 6.7 if and only if λ′ is regular

and integrally dominant. Therefore, by Theorem 6.1 and Fact 6.9, we have
an exact fully faithful endofunctor G ◦ T on Og

b(λ), and G ◦ T preserves
irreducibility.

We prove that G ◦ T is a dense functor. We denote by Irr the set of
equivalence classes of irreducible modules in Og

b(λ). Then G ◦ T induces
a permutation on Irr. Since G ◦ T preserves infinitesimal characters, the
cardinality of each orbit on Irr is bounded by the index of the Weyl group
Wg. Thus there exists a positive integer k such that (G ◦ T )k acts on Irr
trivially. Obviously, (G ◦ T )k is dense if and only if G ◦ T is dense.

Set E := (G ◦ T )k. We show E(P ) ≃ P holds for each projective object
P of Og

b(λ). Without loss of generality, we may assume that P is inde-
composable, and hence a projective cover of an irreducible module L (see
[28, Section 3.9]). Then we have a surjective homomorphism π : P → L.
Remark that L is a unique irreducible quotient of P . Since E is exact,
E(π) : E(P ) → E(L) is surjective. By the choice of k that E acts on Irr
trivially, we can identify E(L) with L. Since P is projective, there exists a
homomorphism τ : P → E(P ) such that the following diagram commutes:

P
τ

zzuu
uu
uu
uu
u

��
E(P )

E(π)
// E(L) // 0 (exact)

Recall that the functor E induces a lattice isomorphism between L(P ) and
L(E(P )). Then E(L) is a unique irreducible quotient of E(P ), and hence τ
is surjective. Since P and E(P ) have the same length, we have P ≃ E(P ).

Since Og
b(λ) have enough projectives [28, Section 3.9], any object of Og

b(λ)
can be written as a quotient of a projective object. This implies that E is
dense. This completes the proof.

7 U(g)G′
-module

This section is devoted to the study of U(g)G′
-modules arising from the

branching problem. To study U(g)G′
-modules, we define (g′ ⊕ g,∆(G′))-
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modules in Section 7.4. The results in this section are used in Section 8
and 9 to prove the irreducibility of U(g)G′

-modules.

7.1 General setting

Let (g, K) be a pair, and (g′, K ′) be a subpair of (g, K) (see Definition 2.1).
Suppose that g′ is reductive in g. Let G′ be a subgroup of Aut(g) generated
by Adg(K

′) and the analytic subgroup with Lie algebra adg(g
′) ⊂ der(g).

Then G′ is a complex reductive algebraic group.
For a (g, K)-module V and a (g′, K ′)-module V ′, we define the following

three U(g)G′
-modules:

Homg′,K′(V ′, V ), Homg′,K′(V, V ′), H0(g
′, K ′;V ⊗ (V ′)∗K′).

Here H0(g
′, K ′; ·) means the zeroth relative Lie algebra homology, namely,

the space of coinvariants. Since the above modules are the spaces of (g′, K ′)-
(co)invariants on (g, K)-modules, the U(g)G′

-actions are naturally induced
from the (g, K)-actions. For example, U(g)G′

acts on Homg′,K′(V, V ′) via

(X · φ)(·) = φ(tX·)

for X ∈ U(g)G′
and φ ∈ Homg′,K′(V, V ′). Here tX is the anti-automorphism

of U(g) with tX = −X for X ∈ g.
The three modules are related to each other. To see the relation, we

prepare the following well-known lemma (see e.g. [68, Section 2.3.3]).

Lemma 7.1. Let V be an irreducible (g, K)-module and W be a vector space.
Then for any (g, K)-submodule U of V ⊗W , there exists a unique subspace
W ′ ⊂ W such that U = V ⊗W ′.

Proof. Since V is a completely reducible (g, K)-module, we can assume that
U is irreducible. Take u ∈ U , and write u =

∑
i vi ⊗ wi such that w’s are

linearly independent. We can replace W by the linear span of w’s. We define
pi by the projection to V ≃ V ⊗ wi. By Schur’s lemma, cijpi|U = pj|U holds
for some cij. Then u can be written as vi ⊗

∑
i cijwi. Since U is generated

by u, this shows the assertion.

Proposition 7.2. Retain the notation in the above. Suppose that V is K-
admissible and V ′ is K ′-admissible.

(a) The following U(g)G′
-isomorphism holds:

H0(g
′, K ′;V ⊗ (V ′)∗K′)∗ ≃ Homg′,K′(V, V ′).
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(b) Set U :=
∩

φ∈Homg′,K′ (V,V ′)Ker(φ). Then V/U is a (g′, K ′)-module and

a U(g)G′
-module, and there is an injective homomorphism:

V/U → V ′ ⊗H0(g
′, K ′;V ⊗ (V ′)∗K′).

Moreover, if V ′ is irreducible, the homomorphism is isomorphism.

(c) If V ′ is irreducible, then we have a U(g)G′
-homomorphism:

Homg′,K′(V, V ′) → Homg′,K′(V ′, V )∗.

Moreover, if V |g′,K′ is completely reducible, the above homomorphism
is isomorphism.

Proof. (a) is clear from

HomC(H0(g
′, K ′;V ⊗ (V ′)∗K′),C) ≃ Homg′,K′(V ⊗ (V ′)∗K′ ,1)

≃ Homg′,K′(V, V ′).

The second isomorphism holds because V ′ is K ′-admissible.
To prove (b), we construct the homomorphism. By definition, there is a

canonical surjection:

π : V ⊗ (V ′)∗K′ → H0(g
′, K ′;V ⊗ (V ′)∗K′).

Through the following isomorphisms:

Homg′,K′(V ⊗ (V ′)∗K′ , H0(g
′, K ′;V ⊗ (V ′)∗K′))

≃Homg′,K′(V,HomC((V
′)∗K′ , H0(g

′, K ′;V ⊗ (V ′)∗K′))K′)

≃Homg′,K′(V, V ′ ⊗H0(g
′, K ′;V ⊗ (V ′)∗K′)),

we define π′ ∈ Homg′,K′(V, V ′ ⊗H0(g
′, K ′;V ⊗ (V ′)∗K′)) corresponding to π.

We shall show Ker(π′) = U . For a homomorphism T ∈ Homg′,K′(V, V ′),

let T̃ denote the corresponding element of H0(g
′, K ′;V ⊗ (V ′)∗K′)∗ by the

isomorphism in (a). Then it is easy to see (idV ′ ⊗ T̃ ) ◦ π′ = T . This implies

Ker(π′) =
∩
T̃

Ker((idV ′ ⊗ T̃ ) ◦ π′) =
∩
T

Ker(T ) = U. (7.2.1)

Therefore, we obtain an injection π′′from V/U to V ′⊗H0(g
′, K ′;V ⊗ (V ′)∗K′).

Assume that V ′ is irreducible. Then from Lemma 7.1, there exists a
subspace W of H0(g

′, K ′;V ⊗ (V ′)∗K′) satisfying Im(π′′) = V ′ ⊗ W . Take

T̃ ∈ H0(g
′, K ′;V ⊗ (V ′)∗K′)∗ such that T̃ (W ) = 0. Then we have

0 = (idV ′ ⊗ T̃ ) ◦ π′ = T.
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This implies T̃ = 0, and hence W = H0(g
′, K ′;V ⊗ (V ′)∗K′). Therefore, π′′ is

surjective.
(c) There is a canonical homomorphism:

τ : V ′ ⊗ Homg′,K′(V ′, V ) → V. (7.2.2)

Applying the contravariant functor Homg′,K′(·, V ′) to this, we have

τ ′ : Homg′,K′(V, V ′) →Homg′,K′(V ′ ⊗ Homg′,K′(V ′, V ), V ′)

≃Homg′,K′(V ′, V )∗

because the irreducibility of V ′ implies Homg′,K′(V ′, V ′) ≃ C. If V |g′,K′ is
completely reducible, (7.2.2) is split and Homg′,K′(Coker(τ), V ′) = 0, and
hence τ ′ is an isomorphism.

By construction, it is clear that the homomorphisms constructed in the
above are U(g)G′

-module homomorphisms. We have proved the proposition.

Remark 7.3. In the context of the Howe duality [26], H0(g
′, K ′;V ⊗ (V ′)∗K′)

appears as the full theta lift.

7.2 Direct integral and (g′, K ′)-module

In this section, we discuss a relation between the irreducible decomposition of
the restriction of an irreducible unitary representation and Homg′,K′(V, V ′).

Let GR be a real reductive Lie group with maximal compact subgroup
KR, and G′

R be a reductive subgroup of GR with maximal compact subgroup
K ′

R = GR ∩ KR. Construct pairs (g, K) and (g′, K ′) from GR and G′
R. We

denote by G′ the Zariski closure of Ad(G′
R) in Aut(g).

Let (τ, V ) be an irreducible unitary representation of GR. Then V |G′
R
has

a unique irreducible decomposition (see [105, Section 14.9]):

V |G′
R
≃
∫ ⊕

Ĝ′
R

Vπ ⊗̂Mπdµ(π),

where Vπ is a representation space of π, Mπ is a Hilbert space with trivial

G′
R-action and µ is a Borel measure on Ĝ′

R.

For µ-almost all π ∈ Ĝ′
R, we will construct U(g)G

′
-action on a dense sub-

spaceM0
π ofMπ, and a (g′, K ′)-module and a U(g)G′

-module homomorphism:

ϕπ : VK → (Vπ)K′ ⊗M0
π

with some compatibility conditions.
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To do this, we review some of facts on the reduction theory of closed
operators (see [76]). Let H be a Hilbert space with direct integral decompo-
sition:

H =

∫ ⊕

Z

Hzdν(z),

where Z is a locally compact space, ν a positive Radon measure on Z and
z → Hz a ν-measurable field of Hilbert spaces. For simplicity, we assume
that (Z, ν) is σ-finite. For a operator T in H, we denote by D(T ) the domain
of T .

Definition 7.4. For a closed operator T in H, we write the projection from
H⊕H onto the graph of T as the matrix form:

(x, y) 7→ (P11x+ P12y, P21x+ P22y),

and we call (Pij)1≤i,j≤2 the characteristic matrix of T .
A field of closed operators z → T (z) is said to be measurable if the field

of bounded operators z → Pij(z) defined by the characteristic matrices of
T (z) is measurable.

Fact 7.5. Let z → T (z) be a measurable field of closed operators. Let D(T )
denote the set of all vectors v ∈ H such that v(z) ∈ D(T (z)) for ν-almost all
z and the vector field z → T (z)v(z) is square-integrable. Then the operator
T given by Tv(z) = T (z)v(z) for v ∈ D(T ) is closed operator with domain
D(T ).

We write T ∼ T (z) if a closed operator T is equal to the closed operator
defined by a measurable field of closed operators T (z) as in the fact.

Definition 7.6. A closed operator T in H is decomposable if there exists a
measurable field of closed operators T (z) with T ∼ T (z).

Fact 7.7. Let T be a closed decomposable operator in H, and z → T (z), S(z)
be measurable fields of closed operators. Suppose T ∼ T (z).

(1) If T ∼ S(z), then T (z) = S(z) holds for ν-almost every z.

(2) z → T (z)∗ is also a measurable field of closed operators, and T ∗ ∼ T (z)∗

holds.

For a operator T and bounded operator B in H, we will say that T
commutes with B if BT ⊂ TB. Here D(BT ) is equal to D(T ), and D(TB)
is the set of all vectors v ∈ H satisfying Bv ∈ D(T ).

The following proposition is useful to check that given two operators are
commutative.
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Proposition 7.8. Let T be a closable operator and B a bounded operator in
H.

(a) T commutes with B if and only if BG(T ) ⊂ G(T ) holds, where G(T )
is the graph of T .

(b) If BD(T ) ⊂ D(T ) and BT = TB holds on D(T ) , then T commutes
with B.

(c) If T commutes with B, then so does T .

Proof. By definition, (a) and (b) is obvious. If BG(T ) ⊂ G(T ), then we have
BG(T ) ⊂ G(T ). Hence (a) leads to (c).

Fact 7.9 (A. E. Nussbaum [76, Corollary 4]). A closed operator T on H is
decomposable if and only if T commutes with every bounded diagonalizable
operator.

We return to the setting of unitary representations. We consider the
irreducible decomposition of an irreducible unitary representation (τ, V ):

V |G′
R
≃
∫ ⊕

Ĝ′
R

Vπ ⊗̂Mπdµ(π).

In this case, the von Neumann algebra of bounded diagonalizable operators
is equal to the center of EndG′

R
(V ) denoted by ZG′

R
(V ). Before we state the

main theorem in this section, we review the following important fact proved
by R. Goodman [15, Lemma 3.1].

Fact 7.10. Let U be a unitary representation of GR with direct integral de-
composition:

U ≃
∫ ⊕

Z

Uzdµ(z).

Then for any vector v ∈ U∞ defined by a section z 7→ v(z), v(z) is in U∞
z

for µ-almost every z, where U∞ is the space of smooth vectors with respect to
the GR-action. Furthermore, for any X ∈ U(g), we have (Xv)(z) = X(v(z))
for µ-almost every z.

We write (·)∗ for the anti-automorphism of U(g) such that X∗ = −X for
any X ∈ g, where X is the complex conjugate with respect to the real form
gR. We say that a U(g)G′

-moduleM is unitary ifM admits a positive definite
invariant Hermitian form with respect to the (·)∗-structure. Applying Fact
7.9 and 7.10 to our case, we have
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Theorem 7.11. Let (τ, V ) be an irreducible unitary representation of GR.
Suppose that V |G′

R
has the following irreducible decomposition:

V |G′
R
≃
∫ ⊕

Ĝ′
R

Vπ ⊗̂Mπdµ(π).

Then there exist a µ-null set N and a family of (g′, K ′)-homomorphisms

{ϕπ : VK → (Vπ)K′ ⊗Mπ}π∈Ĝ′
R\N

satisfying the following conditions:

(a) there exists a dense subspace M0
π of Mπ such that Im(ϕπ) = (Vπ)K′ ⊗

M0
π ;

(b) M0
π admits a unique U(g)G′

-module structure such that ϕπ is a U(g)G′
-

module homomorphism, and the U(g)G′
-module is unitary with respect

to (·)∗ and the restriction of the inner product of Mπ;

(c) for any v ∈ VK, we have v(π) = ϕπ(v) for µ-almost every π;

(d) if ϕπ(v) = 0 for any π ∈ Ĝ′
R\N , then v = 0 holds.

Proof. By the construction of the irreducible decomposition, we can replace

the measure space (Ĝ′
R, µ) by a measure space (Z, ν) such that Z is a locally

compact space and ν is a positive Radon measure on Z (see [105, Section
14.9]). Then it is enough to show the assertion for the following direct integral
decomposition:

V |G′
R
≃
∫ ⊕

Z

Vπ(z) ⊗̂Mπ(z)dν(z),

The algebra of bounded diagonalizable operators in the above decomposition
is equal to ZG′

R
(V ).

We consider that the domain of each operator in τ(U(g)) is V ∞. Then
any operator in τ(U(g)) is closable.

To apply Fact 7.9, we shall check that the closure of any operator in
τ(U(g′)) and τ(U(g)G′

) commutes with every operator in ZG′
R
(V ). Take X ∈

τ(U(g)G′
). It is obvious that X commutes with any T ∈ τ(G′

R), and then X
commutes with any element of spanC{T ∈ τ(G′

R)}. By Proposition 7.8, X
commutes with S ∈ spanC{T ∈ τ(G′

R)}, and we have

SG(X) ⊂ G(X). (7.11.3)
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Take S ∈ ZG′
R
(V ) ⊂ τ(G′

R)
′′. Here τ(G′

R)
′′ is the centralizer of EndG′

R
(V ) in

End(V ). By the von Neumann double commutant theorem, τ(G′
R)

′′ is equal
to the closure of spanC{T ∈ τ(G′

R)} in the strong topology. Hence there
exists S1, S2, . . . ∈ spanC{T ∈ τ(G′

R)} with limi→∞ Si = S in the strong
topology. From (7.11.3), we have

SG(X) ⊂ G(X),

and hence X commutes with S. This shows that the closure of any operator
in τ(U(g)G′

) commutes with every operator in ZG′
R
(V ).

Take X ∈ U(g′) and T ∈ EndG′
R
(V ). For v ∈ V ∞, we have

Tτ(X)v = T lim
t→0

τ(exp(tX))v − v

t

= lim
t→0

τ(exp(tX))Tv − Tv

t
= τ(X)Tv.

From (7.11.3), this implies that X commutes with T .
By the above discussion, we can apply Fact 7.9 to any operator in τ(U(g′))

and τ(U(g)G′
). Fix a basis {vi} of VK and {Xi} of U(g′)U(g)G′

, and fix
representatives {gk} of connected components of K ′

R. Suppose that {Xi}
contains a basis of U(g′). For each vi, we choose a measurable section z →
vi(z), and for each Xi, take a measurable field z → Xi(z) of closed operators
with τ(Xi) ∼ Xi(z). We define a linear map ϕz : VK → Vπ(z) ⊗̂Mπ(z) to be
ϕz(vi) = vi(z).

Remark that since VK and the algebra are at most countable-dimensional,
{vi} and {Xi} are at most countable sets, and since K ′

R is compact, {gk} is
a finite set. We put

N0 := {z ∈ Z : ϕz(τ(Xi)vj) = Xi(z)ϕz(vj) for any i, j}
∪ {z ∈ Z : ϕz(τ(gk)vj) = π(z)(gk)ϕz(vj) for any j, k} .

Fact 7.7 (1) yields that N0 is a ν-null set. For z ∈ Z\N0, we can define a
linear map τz : U(g′)U(g)G′ → EndC(Im(ϕz)) to be τz(Xi) = Xi(z). By the
definition of N0, the map τz is an algebra homomorphism for z ∈ Z\N0.

We will construct N satisfying the compatibility conditions in the theo-
rem:

(1) τz(Xi)
∗ = τz(X

∗
i ) on Im(ϕz) for any i;

(2) τz(Xi) = π(z)(Xi) on Im(ϕz) for any i with Xi ∈ U(g′);

87



(3) ϕz has dense image in Vπ(z) ⊗̂Mπ(z).

For p ∈ {1, 2, 3}, we put Np := {z ∈ Z : (p) fails for z}. By Fact 7.7 (2), N1

is a ν-null sets. Fact 7.10 implies Im(ϕz) ⊂ (Vπ(z) ⊗̂ Mπ(z))
∞ and τz(Xi) =

π(z)(Xi) on (Vπ(z) ⊗̂Mπ(z))
∞ for ν-almost every z. Hence N2 is a ν-null set.

Since VK is a dense subset of V , N3 is a ν-null set (see [3, Lemma 1.3]).
We put N :=

∪
0≤p≤3 Np. Then N is a ν-null set. Hereafter, we consider

z ∈ Z\N . By the definition of N0 and N2, ϕz is a (g′, K ′)-homomorphism.
Then we have

Im(ϕz) ⊂ (Vπ(z) ⊗̂Mπ(z))K′ = (Vπ(z))K′ ⊗Mπ(z).

Lemma 7.1 implies that there exists a subspace M0
π(z) of Mπ(z) with Im(ϕz) =

(Vπ(z))K′ ⊗ M0
π(z). Since Im(ϕz) is dense in Vπ(z) ⊗̂ Mπ(z), M

0
π(z) is dense in

Mπ(z).
Since τz is an algebra homomorphism, τz defines a U(g)G′

-module struc-
ture on (Vπ(z))K′⊗M0

π(z). Since the U(g)G
′
-action commutes with the (g′, K ′)-

action, U(g)G′
acts on

M0
π(z) ≃ Homg′,K′((Vπ(z))K′ , (Vπ(z))K′ ⊗M0

π(z)).

The condition (1) implies that this action is unitary.
By the construction of N and ϕz, it is clear that the conditions in the

theorem hold. We have proved the theorem.

By Theorem 7.11, we can relate the branching laws of unitary represen-
tations with the branching laws of (g, K)-modules. The following corollary
is an easy consequence of the theorem.

Corollary 7.12. Retain the setting in Theorem 7.11. Then we have a sur-
jective U(g)G′

-homomorphism:

H0(g
′, K ′;VK ⊗ (Vπ)

∗
K′) → M0

π

for µ-almost every π ∈ Ĝ′
R. In particular, we have

MG′
R
(V ) ≤ ess sup

{
dimC(H0(g

′, K ′;VK ⊗ (Vπ)
∗
K′)) : π ∈ Ĝ′

R

}
= ess sup

{
dimC(Homg′,K′(VK , (Vπ)K′) : π ∈ Ĝ′

R

}
,

where MG′
R
(V ) is the essential supremum of the multiplicity function.

Proof. Since M0
π is dense in Mπ, the second assertion is clear from the first

assertion. Theorem 7.11 and Proposition 7.2 (b) show the first assertion.
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Since M0
π is a unitary module, if M0

π is finite-dimensional, M0
π is com-

pletely reducible. Using the theory of polynomial identity (Section 2.6), we
have

Corollary 7.13. Retain the setting in Theorem 7.11. We have

PI.deg(τ(U(g)G′
)) ≤ MG′

R
(V ).

Proof. If MG′
R
(V ) = ∞, the assertion is trivial. We assume MG′

R
(V ) < ∞.

Then for almost all π, M0
π is a completely reducible U(g)G′

-module. Applying
Proposition 2.27 to {M0

π}π and τ(U(g)G′
), we obtain the inequation.

By the above two corollaries, we can estimate MGR(V ) by algebraic in-
variants.

7.3 Compact subgroup case

In this section, we review some basic facts about U(g)G′
-modules in the case

of compact subgroups G′.
Let (g, K) be a pair, and K ′ be a reductive subgroup of K. The following

proposition is well-known, and plays an important role in the theory of (g, K)-
modules (e.g. Harish-Chandra’s subquotient theorem [19]).

Proposition 7.14. Let V be an irreducible (g, K)-module, and V ′ be a finite-
dimensional irreducible K ′-module. Suppose that V is irreducible as a g-
module. Then the U(g)K′

-module HomK′(V ′, V ) is irreducible or zero.

Proof. Assume that HomK′(V ′, V ) is non-zero.
Take non-zero elements T, S ∈ HomK′(V ′, V ). Fix a basis {vi} of V ′.

Since V ′ is irreducible, {T (vi)} is linearly independent. Hence by the Jacob-
son density theorem, there exists X ∈ U(g) such that XT (vi) = S(vi) for
any i, and hence XT = S. This implies U(g)T ⊃ HomK′(V ′, V ). Since the
K ′-action on U(g) is completely reducible, taking the K ′-invariant part, we
have

U(g)K′
T = HomK′(V ′, V ).

This finishes the proof.

In the proof, it is important that U(g)T = HomC(V
′, V ) holds. This

observation is useful to generalize Proposition 7.14 to the case of non-compact
subgroups G′. We treat the general case in Section 7.4.

As a corollary of Proposition 7.14 and Proposition 2.27, we obtain
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Corollary 7.15. Let (τ, V ) be an irreducible (g, K)-module. Suppose that
V |g is irreducible. Then we have

PI.deg(τ(U(g)K′
)) = MK′(V ).

Proof. We denote by K̂ ′ the equivalence classes of finite-dimensional irre-
ducible representations of K ′. Then for any (π, Vπ) ∈ K̂ ′, HomK′(Vπ, V ) is
an irreducible U(g)K′

-module or zero. Applying Proposition 2.27 to A =
τ(U(g)K′

) and {HomK′(Vπ, V )}
π∈K̂′ , we obtain the corollary.

As variations of the corollary, we state the following two results. These
results are our motivation to study U(g)G′

-modules.

Corollary 7.16 (I. Penkov, V. Serganova [84, Theorem 4.3]). Let (τ1, V1)
and (τ2, V2) be irreducible (g, K)-modules. Suppose that Vi|g is irreducible
and AnnU(g)(V1) = AnnU(g)(V2) holds. Then we have

MK′(V1) = MK′(V2).

Proof. Since AnnU(g)(V1) = AnnU(g)(V2), the algebra τ1(U(g)K
′
) is isomorphic

to τ2(U(g)K
′
). This implies

PI.deg(τ1(U(g)K
′
)) = PI.deg(τ2(U(g)K

′
)).

This and Corollary 7.15 show the assertion.

Corollary 7.17. Retain the notation in Corollary 7.15. Let K ′′ be a re-
ductive subgroup of K. Let Gad denote the subgroup of Aut(g) generated by
Adg(K

′) and Int(g). Assume that Adg(K
′) and Adg(K

′′) are conjugate by an
inner automorphism of Gad. Then we have

MK′(V ) = MK′′(V ).

Proof. Since AnnU(g)(V ) is an Adg(K)-stable and adg(g)-stable subspace of
U(g), AnnU(g)(V ) is Gad-stable. By assumption, we can take g ∈ Gad such
that gAdg(K

′)g−1 = Adg(K
′′). Hence we have

τ(U(g)K′
)) ≃ (U(g)/AnnU(g)(V ))Ad(K′)

≃ (U(g)/AnnU(g)(V ))g
−1Ad(K′′)g

≃ (U(g)/AnnU(g)(V ))Ad(K′′)

≃ τ(U(g)K′′
)).

Therefore, by Corollary 7.15, we obtain the required equation.
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7.4 ∆(G′)-finite linear maps

To generalize the results in the previous section, we define a space of ∆(G′)-
finite linear maps.

First, we define ∆(G′)-finite linear maps. Let (g′, K ′) be a pair with
reductive g′, and G′ be a complex reductive algebraic group with Lie algebra
g′. Suppose that there is an algebraic group homomorphism ϕK′ from K ′ to
G′ such that the differential of ϕK′ is the inclusion map from k′ to g′, and
ϕK′(K ′) and the identity component of G′ generate G′.

Let (τ, V ) and (τ ′, V ′) be (g′, K ′)-modules. We define

(τad(X)T )(v) = τ ′(X)T (v)− T (τ(X)v)

(τAd(k)T )(v) = τ ′(k)T (τ(k−1)v)

for X ∈ g′, k ∈ K ′, T ∈ HomC(V, V
′) and v ∈ V . Then τad is a representation

of g′ and τAd is a representation of K ′ as an abstract group. The following
equation is the reason why we define τad and τAd as in the above:

HomC(V, V
′)τad(g

′),τAd(K
′) = Homg′,K′(V, V ′).

Definition 7.18. T ∈ HomC(V, V
′) is said to be ∆(G′)-finite if there exists

an algebraic representation F of G′ and (g′, K ′)-homomorphism with respect
to (τad, τAd):

φ : F → HomC(V, V
′)

satisfying T ∈ φ(F ). Let HomC(V, V
′)∆(G′) denote the space of ∆(G′)-finite

linear maps.

Then HomC(V, V
′)∆(G′) has a G′-module structure via

τAd(g)T = φ(gφ−1(T )) for g ∈ G′ and T ∈ HomC(V, V
′)∆(G′),

where φ is the homomorphism used in Definition 7.18. It is obvious that the
definition is well-defined because the G′-action is uniquely determined by the
actions of τad(g

′) and τAd(K
′). Hence it is also clear that the G′-action is

compatible with the action of τad(g
′) and τAd(K

′).
The following proposition is useful to see the ∆(G′)-module structure.

Proposition 7.19. Retain the notation. Let F be a finite-dimensional rep-
resentation of G′. Then we have

HomG′(F,HomC(V, V
′)∆(G′)) ≃ Homg′,K′(V ⊗ F, V ′).
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Proof. By the definition of the ∆(G′)-module structure, we have

HomG′(F,HomC(V, V
′)∆(G′)) = Homg′,K′(F,HomC(V, V

′)∆(G′))

= Homg′,K′(F,HomC(V, V
′))

≃ Homg′,K′(V ⊗ F, V ′).

This shows the assertion.

Hereafter, we consider (g, K)-modules. Let (g, K) be a pair and (g′, K ′)
be a subpair. Suppose g′ is reductive in g. For simplicity, we assume that g′

does not intersect with the center of g. Let (τ, V ) be a (g, K)-module and
(τ ′, V ′) be a (g′, K ′)-module.

Let G′ denote the subgroup of Aut(g) generated by Adg(K
′) and the

analytic subgroup with Lie algebra adg(g
′) ⊂ der(g). Then G′ is a complex

reductive algebraic group, and satisfies the conditions at the beginning of
this subsection.

We consider (g′ ⊕ g,∆(G′)) as a pair by the diagonal embedding:

∆ : G′ → Aut(g′)× Aut(g) ⊂ Aut(g′ ⊕ g).

We define three ∆(G′)-modules:

HomC(V, V
′)∆(G′) (7.19.4)

HomC(V
′, V )∆(G′) (7.19.5)

Π
g′⊕g,∆(G′)
g′⊕g,∆(K′)((V

′)∗K′ ⊗ V ), (7.19.6)

where Π
g′⊕g,∆(G′)
g′⊕g,∆(K′) is the Bernstein functor (see [40]). The third module can

be written as

H0(g
′, K ′; (V ′)∗K′ ⊗ V ⊗ C[G′]).

Then the ∆(G′)-invariant subspaces of the modules are equal to

Homg′,K′(V, V ′),

Homg′,K′(V ′, V ),

H0(g
′, K ′; (V ′)∗K′ ⊗ V ),

respectively. Note that these spaces are the U(g)G′
-modules defined in Sec-

tion 7.1.
By definition, the third module has a (g′ ⊕ g,∆(G′))-module structure.

The following proposition ensures that the modules (7.19.4) and (7.19.5) are
(g′ ⊕ g,∆(G′))-modules.
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Proposition 7.20. Retain the above settings. HomC(V, V
′)∆(G′) is a (g′ ⊕

g,∆(G′))-module by the representation (τ ′ ⊗ τ ∗, τAd), and HomC(V
′, V )∆(G′)

is a (g′ ⊕ g,∆(G′))-module by the representation ((τ ′)∗ ⊗ τ, τAd).

Proof. We shall show that HomC(V, V
′)∆(G′) is g′ ⊕ g-stable. The proof

for HomC(V
′, V )∆(G′) is the same. Take a G′-stable finite-dimensional sub-

space F ⊂ HomC(V, V
′)∆(G′). Then there exists a surjective (∆(g′),∆(K ′))-

homomorphism defined by the multiplication:

(g′ ⊕ g)⊗ F → (τ ′(g′) + τ ∗(g))F.

Since g′ ⊕ g is a ∆(G′)-module, by definition, (τ ′(g′) + τ ∗(g))F is contained
in HomC(V, V

′)∆(G′). This implies that HomC(V, V
′)∆(G′) is g

′ ⊕ g-stable.
By definition, the differential representation of τAd is equal to the rep-

resentation τad of ∆(g′). By the above discussion, the g′ ⊕ g-action and
∆(G′)-action are compatible.

The study of the U(g)G′
-action on Homg′,K′(V, V ′) can be reduced to that

of the (g′ ⊕ g,∆(G′))-action on HomC(V, V
′)∆(G′). To do this, we prove the

following two propositions.

Proposition 7.21. Retain the settings in the above. Put

I := U(g′ ⊕ g)∆(G′) ∩ U(g′ ⊕ g)∆(g′).

Then there is an algebra isomorphism:

α : U(g)G′ ≃ U(g′ ⊕ g)∆(G′)/I

∈ ∈

X 7→ I ⊗X + I.

Proof. Since U(g′ ⊕ g) is a completely reducible ∆(G′)-module, we have

U(g′ ⊕ g)∆(G′)/I ≃ (U(g′ ⊕ g)/U(g′ ⊕ g)∆(g′))∆(G′).

The Poincaré–Birkhoff–Witt theorem leads to

(U(g′ ⊕ g)/U(g′ ⊕ g)∆(g′))∆(G′) ≃ U(g)G′
.

Therefore, α is an isomorphism. This finishes the proof.

Proposition 7.22. Let W be a (g′ ⊕ g,∆(G′))-module. Then the length of
the U(g)G′

-module on W∆(G′) is bounded by the length of W . In particular if
W is irreducible, then W∆(G′) is irreducible or zero.
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Proof. Since the ∆(G′)-action on W is completely reducible, the functor
which sends W to W∆(G′) is exact. Hence the first assertion is reduced to
the second assertion.

We assume that W is irreducible. Take a non-zero vector v ∈ W∆(G′).
By assumption, we have

U(g′ ⊕ g)v = W.

Taking the ∆(G′)-invariant part, we obtain

U(g′ ⊕ g)∆(G′)v = W∆(G′).

This implies thatW∆(G′) is irreducible as a U(g′⊕g)G
′
-module. The assertion

follows from this and Proposition 7.21.

Summarizing the above two results, for example, if HomC(V, V
′)∆(G′) is

an irreducible (g′ ⊕ g,∆(G′))-module, then Homg′,K′(V, V ′) is an irreducible
U(g)G′

-module.
In Section 8 and Section 9, we will estimate the length of HomC(V, V

′)∆(G′)

for concrete representations.

8 Irreducibility of U(g)G′
-modules: part I

The purpose of this section is to prove that the U(g)G′
-module on the space of

g′-homomorphisms between two generalized Verma modules is irreducible un-
der some assumptions. As an application of this result, we treat the branching
laws of discrete decomposable Aq(λ) with quasi-abelian parabolic subalgebra
q, in particular, discrete series representations. The main tool is the results
in Section 6.

8.1 Irreducibility of U(g)G′
-modules

Let g be a semisimple complex Lie algebra and g′ be a reductive subalgebra of
g. FixH ∈ g′ such that adg(H) is diagonalizable and has only real eigenvalues
on g. As in Section 5, we construct parabolic subalgebras q = l ⊕ u and
q′ = l′ ⊕ u′ from H, and fix Borel subalgebras b, b′ and Cartan subalgebras
h, h′. Put S := dimC(u

′).
Let G be a complex connected semisimple algebraic group with Lie alge-

bra g. G′ (resp. L′) is denoted the analytic subgroup of G corresponding to
g′ (resp. l′).
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The following lemma is a key result to relate the module structure of
HomC(V

′, V )∆(G′) to that of a Zuckerman derived functor module. For an
irreducible finite-dimensional l′-module F , we define

d(F ) := F ∗ ⊗ C−2ρ(u′).

Lemma 8.1. Let F be an irreducible finite-dimensional l′-module and L be

a quotient module of ind
g′

q′ (d(F )). Then RSΓ
∆(G′)
∆(L′)(L⊗ ind

g′

q′ (F )) has a unique

∆(G′)-invariant vector up to scalar.

Proof. There is a unique submodule F ′ of F ⊗ d(F ) isomorphic to C−2ρ(u′).
U(∆(g′))F ′ is an irreducible submodule and we have RSΓG′

L′ (U(∆(g′))F ′) ≃ 1.
We shall show

P∆(g′)
ρg′

(L⊗ ind
g′

q′ (F )) = U(∆(g′))F ′,

where P
∆(g′)
ρg′ is the projection to the maximum submodule with generalized

infinitesimal character ρg′ (see Fact 2.18). It is obvious that the left hand

side contains the right hand side. Hence we may assume L = ind
g′

q′ (d(F )).

Put M := ind
g′⊕g′

q′⊕q′ (d(F )⊗ F ).
By Proposition 2.10, there exists a ∆(g′)-module standard filtration M·

of M with

gr(M·) ≃ ind
g′

q′ (S(ū
′)⊗ F ⊗ d(F ))

as a ∆(g′)-module. Thus gr(P
∆(g′)
ρg′ (M·)) can be written as ind

g′

q′ (W ) for some
l′-submodule W of S(ū′)⊗ F ⊗ d(F ).

By the Weyl character formula, the infinitesimal character of an irre-
ducible submodule W ′ of W ⊂ S(ū′)⊗ F ⊗ d(F ) is of the form

ρl′ − 2ρ(u′) +R−Q,

where R is a sum of elements of ∆+(l′, h′) and Q is a sum of elements of
∆(u′, h′).

By the definition of W ,

s(ρl′ − ρ(u′)) = ρl′ − 2ρ(u′) +R−Q+ ρ(u′)

holds for some s ∈ Wg′ . Since ρl′ − ρ(u′) is dominant integral with respect to
∆+(l′, h′) ∪ −∆(u′, h′), we have

s(ρl′ − ρ(u′)) = ρl′ − ρ(u′)−R′ +Q′,
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where R′ is a sum of elements of ∆+(l′, h′) and Q′ is a sum of elements of
∆(u′, h′). Thus we obtain R + R′ − Q − Q′ = 0. Since R + R′ − Q − Q′

is a sum of positive roots of g′ with respect to ∆+(l′, h′) ∪ −∆(u′, h′), this
implies R = R′ = Q = Q′ = 0. Therefore, we have W = F ′. This shows the
assertion.

The following corollary is a direct consequence of Lemma 8.1.

Corollary 8.2. Retain the notation in Lemma 8.1. Let M be a proper g′⊕g′-

submodule of ind
g′⊕g′

q′⊕q′ (F ⊗ d(F )). Then P
∆(g′)
ρg′ (M) = 0 holds.

We give several criteria for the irreducibility of U(g)G′
-modules. Let

F be a finite-dimensional irreducible l-module with infinitesimal charac-
ter λ and F ′ be a finite-dimensional irreducible l′-module. Suppose that

Homg′(ind
g′

q′ (F
′), indg

q(F )) is non-zero. We assume

2(λ+ ρ(u), α)

(α, α)
̸∈ {0, 1, 2, . . .} for any α ∈ ∆(u, h).

We write the canonical g′- and U(g)G′
-homomorphism defined by substi-

tution as:

ΦF
F ′ : ind

g′

q′ (F
′)⊗ Homg′(ind

g′

q′ (F
′), indg

q(F )) → indg
q(F ).

By Lemma 8.1, for any quotient L of ind
g′

q′ (d(F
′)), we have

RSΓ
∆(G′)
∆(L′)(L⊗ ind

g′

q′ (F
′)⊗ Homg′(ind

g′

q′ (F
′), indg

q(F )))∆(G′)

≃ Homg′(ind
g′

q′ (F
′), indg

q(F )). (8.2.1)

Thus ΦF
F ′ induces a U(g)G′

-module homomorphism:

Φ̃F
F ′ : Homg′(ind

g′

q′ (F
′), indg

q(F )) → RSΓ
∆(G′)
∆(L′)(L⊗ indg

q(F ))∆(G′). (8.2.2)

The submodule lattice of RSΓ
∆(G′)
∆(L′)(L ⊗ indg

q(F )) is isomorphic to that of L

by Theorem 6.1. Therefore, it is important to know when Φ̃F
F ′ is injective.

Lemma 8.3. Under the above notation, we have

P∆(g′)
ρg′

(ind
g′

q′ (d(F
′))⊗Ker(ΦF

F ′)) = 0.
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Proof. LetM be a unique proper maximal submodule of ind
g′

q′ (F
′). By Corol-

lary 8.2, it is enough to show

Ker(ΦF
F ′) ⊂ M ⊗ Homg′(ind

g′

q′ (F
′), indg

q(F )).

Take a non-zero vector v ∈ Ker(ΦF
F ′). We can assume that v is a b′-

eigenvector. We write v =
∑r

i=0 vi ⊗ φi, where {vi}ri=0 ⊂ ind
g′

q′ (F
′) and

{φi}ri=0 ⊂ Homg′(ind
g′

q′ (F
′), indg

q(F )) such that {φi}ri=0 is linearly indepen-
dent. Then each vi is a b′-eigenvector with the same weight µ.

If µ is not the highest weight of ind
g′

q′ (F
′), vi is in M , and this shows the

assertion. If µ is the highest weight of ind
g′

q′ (F
′), each vi is a highest weight

vector of ind
g′

q′ (F
′). Then we may assume r = 0. Since v ∈ Ker(ΦF

F ′), we
have φ0(v0) = 0. However, this implies φ0 = 0 and v = 0 because v0 is a

cyclic vector of ind
g′

q′ (F
′). This contradicts to v ̸= 0. We have proved the

lemma.

For short, we write RSΓ
∆(G′)
∆(L′) as ΓS.

Lemma 8.4. In the above settings, we have U(g)G′
-module isomorphisms:

ΓS(L⊗Dom(ΦF
F ′))∆(G′) ≃ ΓS(L⊗ Im(ΦF

F ′))∆(G′)

≃ Homg′(ind
g′

q′ (F
′), indg

q(F )),

where we denote by Dom the domain of a map.

Proof. We consider the following g′- and U(g)G′
-module exact sequence:

0 → L⊗Ker(ΦF
F ′) → L⊗Dom(ΦF

F ′) → L⊗ Im(ΦF
F ′) → 0.

Applying the Zuckerman derived functor to the exact sequence, we obtain
the following exact sequence:

ΓS(L⊗Ker(ΦF
F ′)) → ΓS(L⊗Dom(ΦF

F ′))

→ ΓS(L⊗ Im(ΦF
F ′)) → ΓS+1(L⊗Ker(ΦF

F ′)).

By Lemma 8.3, the ∆(G′)-invariant part of Γi(L⊗Ker(ΦF
F ′)) is trivial for

any i. This implies

ΓS(L⊗Dom(ΦF
F ′))∆(G′) ≃ ΓS(L⊗ Im(ΦF

F ′))∆(G′).

As in (8.2.1), by Lemma 8.1 we have

ΓS(L⊗Dom(ΦF
F ′))∆(G′) ≃ Homg′(ind

g′

q′ (F
′), indg

q(F )).

These isomorphisms imply the assertion.
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Lemma 8.5. Retain the above settings. Suppose L⊗Coker(ΦF
F ′) has a stan-

dard filtration as a ∆(g′)-module. Then Φ̃F
F ′ defined in (8.2.2) is injective.

Proof. We consider the following g′- and U(g)G′
-module exact sequence:

0 → L⊗ Im(ΦF
F ′) → L⊗ Codom(ΦF

F ′) → L⊗ Coker(ΦF
F ′) → 0.

Here we denote by Codom the codomain of a map. The Zuckerman derived
functor induces the following exact sequence:

ΓS−1(L⊗ Coker(ΦF
F ′)) → ΓS(L⊗ Im(ΦF

F ′)) → ΓS(L⊗ Codom(ΦF
F ′)).

By the assumption that L ⊗ Coker(ΦF
F ′) has a standard filtration, Fact

5.1) leads to ΓS−1(L⊗ Coker(ΦF
F ′)) = 0. Hence we have an injection:

ΓS(L⊗ Im(ΦF
F ′)) ↪→ ΓS(L⊗ Codom(ΦF

F ′)).

This and Lemma 8.4 imply that

Φ̃F
F ′ : Homg′(ind

g′

q′ (F
′), indg

q(F )) → ΓS(L⊗ indg
q(F ))∆(G′)

is injective.

Theorem 8.6. Retain the above settings. Suppose that L is a unique irre-

ducible quotient of ind
g′

q′ (d(F
′)), and L ⊗ Coker(ΦF

F ′) has a standard filtra-

tion as a ∆(g′)-module. Then Homg′(ind
g′

q′ (F
′), indg

q(F )) is irreducible as a

U(g)G′
-module.

Proof. Since indg
q(F )(= Codom(ΦF

F ′)) satisfies the condition of Theorem 6.1,

ΓS(L⊗ indg
q(F )) is an irreducible (g′⊕ g,∆(G′))-module. Therefore, ΓS(L⊗

indg
q(F ))∆(G′) is an irreducible U(g)G′

-module by Proposition 7.22.

By Lemma 8.5, Homg′(ind
g′

q′ (F
′), indg

q(F )) can be embedded in the irre-

ducible module ΓS(L ⊗ indg
q(F ))∆(G′). Hence Homg′(ind

g′

q′ (F
′), indg

q(F )) is

irreducible as a U(g′)G′
-module. We have proved the theorem.

The following criterion is useful to prove the irreducibility of U(g)G′
-

modules.

Corollary 8.7. Suppose that L is a unique irreducible quotient of ind
g′

q′ (d(F
′)),

and Im(ΦF
F ′) is a direct summand of indg

q(F ). (In particular, if indg
q(F ) is

a completely reducible g′-module, this condition holds.) Then the U(g)G′
-

module Homg′(ind
g′

q′ (F
′), indg

q(F )) is irreducible.
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Proof. By assumption, we have indg
q(F ) ≃ Im(ΦF

F ′) ⊕ Coker(ΦF
F ′). Since

indg
q(F ) has a standard filtration as a g′-module from Proposition 2.10,

Coker(ΦF
F ′) has a standard filtration. Thus L ⊗ Coker(ΦF

F ′) has a standard
filtration as a ∆(g′)-module. This and Theorem 8.6 show the corollary.

Theorem 8.8. Under the above settings, the length of the U(g)G′
-module

Homg′(ind
g′

q′ (F
′), indg

q(F )) is less than or equal to that of ind
g′

q′ (d(F
′)). In

particular, the length is bounded by a constant depending only on g′.

Remark 8.9. In general, the dimensions of the spaces of intertwining oper-
ators are unbounded. The theorem, however, asserts that the lengths of the
U(g)G′

-modules are uniformly bounded by a constant depending only on g′.

Proof. We set L = ind
g′

q′ (d(F
′)). Then L⊗Coker(ΦF

F ′) has a standard filtra-
tion as a ∆(g′)-module. Hence by Lemma 8.5,

Φ̃F
F ′ : Homg′(ind

g′

q′ (F
′), indg

q(F )) → ΓS(L⊗ indg
q(F ))∆(G′)

is injective.
By Proposition 7.22, we have

LenU(g)G′ (ΓS(L⊗ indg
q(F ))∆(G′)) ≤ Leng′⊕g,∆(G′)(Γ

S(L⊗ indg
q(F ))), (8.9.3)

where we write Len for the length of a module. Theorem 6.1 implies that

the length of ΓS(L⊗ indg
q(F )) is equal to that of L(= ind

g′

q′ (d(F
′))). By the

injectivity of Φ̃F
F ′ and (8.9.3), we obtain

LenU(g)G′ (Homg′(ind
g′

q′ (F
′), indg

q(F ))) ≤ Leng′(ind
g′

q′ (d(F
′))).

This is the required inequation.

The following corollary is clear from the theorem.

Corollary 8.10. If ind
g′

q′ (d(F
′)) is irreducible, Homg′(ind

g′

q′ (F
′), indg

q(F )) is

an irreducible U(g)G′
-module.

8.2 Quasi-abelian parabolic subalgebra

If the parabolic subalgebra q satisfies a good condition, indg
q(F ) is completely

reducible as a g′-module. In this section, we review this condition. Retain
the notation in the previous section.

We set u′′ := u ∩ (g′)⊥ and ū′′ := ū ∩ (g′)⊥. The following definition is a
generalization of the definition in [12].
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Definition 8.11 (quasi-abelian). q is said to be quasi-abelian with respect
to g′ if (α, β) ≥ 0 holds for any α ∈ ∆(u′, h′) and β ∈ ∆(u′′, h′).

If the nilradical of q is abelian, q is quasi-abelian. More precisely, the
following proposition holds.

Proposition 8.12. If [u′, u′′] = 0 holds, then q is quasi-abelian. In particu-
lar, a parabolic subalgebra with abelian nilradical is quasi-abelian.

Proof. Take α ∈ ∆(u′, h′) and β ∈ ∆(u′′, h′). Assume (α, β) < 0. Then this
implies α + β ∈ ∆(u′′, h′) and [u′α, u

′′
β] ̸= 0 because h′ is a Cartan subalgebra

of g′ and (g′)⊥ is a g′-module. By assumption, [u′α, u
′′
β] ⊂ [u′, u′′] = 0 holds.

This is contradiction. Therefore, q is quasi-abelian.

The following lemma is a generalization of Lemma in [12]. The proof is
the same.

Lemma 8.13. Let F be a finite-dimensional irreducible l-module. Assume
that for any irreducible submodule of F |l′, its infinitesimal character λ′ sat-
isfies

2(λ′ + ρ(u′), α)

(α, α)
̸∈ {1, 2, . . .} for any α ∈ ∆(u′, h′).

Suppose that q is quasi-abelian. Then indg
q(F )|g′ is completely reducible.

Proof. By Proposition 2.10, indg
q(F )|g′ has a standard filtration M· with

gr(M·) ≃ ind
g′

q′ (F ⊗ S(ū′′)),

where the u′-action on ū′′ is trivial.
Take an irreducible l′-submodule W of F ⊗S(ū′′). By the Weyl character

formula, the infinitesimal character of W is of the form λ′ − R, where R is
a sum of elements of ∆(u′′, h′) and λ′ is the infinitesimal character of some
irreducible submodule of F |l′ . Since q is quasi-abelian, we have

2(R,α)

(α, α)
∈ {0, 1, 2, . . .} for any α ∈ ∆(u′, h′).

This and the assumption imply

2(λ′ −R + ρ(u′), α)

(α, α)
̸∈ {1, 2, . . .} for any α ∈ ∆(u′, h′).

Thus ind
g′

q′ (W ) is irreducible. From Proposition 2.9, this leads that indg
q(F )|g′

is completely reducible. We have shown the lemma.
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The following theorem plays an important role in studying the Zuckerman
derived functor modules induced from a quasi-abelian parabolic subalgebra.

Theorem 8.14. Let F be a finite-dimensional irreducible l-module with in-
finitesimal character λ in the good range, namely,

Re(λ+ ρ(u), α) < 0 for any α ∈ ∆(u, h).

Suppose that q is quasi-abelian. Then indg
q(F )|g′ is completely reducible, and

each irreducible direct summand is of the form ind
g′

q′ (F
′) such that F ′ is a

finite-dimensional irreducible l′-module in the good range.

To prove the theorem, we prepare several lemmas about the restriction of
roots to a subalgebra. For a subset S of a real vector space, Co(S) denotes
the convex hull of S.

Lemma 8.15. Let h′′ be the orthogonal complement of h′ in h. Consider
(h′)∗ as a subspace of h∗ using the direct sum decomposition h = h′⊕ h′′. For
α ∈ ∆(g′, h′), define

∆(α) := {β ∈ ∆(g, h) : β|h′ = α} .

Then α belongs to Co(∆(α)).

Proof. Fix a Cartan involution θ of g such that g′, h and h′ are θ-stable. In
fact, since g′ is reductive in g, such an involution exists. Then θ is conjugate-
linear. For any α ∈ h∗, we define Hα ∈ h satisfying

β(Hα) = (β, α) for any β ∈ h∗.

Take α ∈ ∆(g′, h′) and a non-zero element X ∈ g′α, and write X =∑
β∈∆(α)Xβ such that Xβ ∈ gβ. Then we have

Hα = [X, θ(X)]/(X, θ(X)),

Hβ = [Xβ, θ(Xβ)]/(Xβ, θ(Xβ))

for any β ∈ ∆(α) such that Xβ ̸= 0. This implies

Hα = [X, θ(X)]/(X, θ(X))

= (X, θ(X))−1
∑

β∈∆(α)

[Xβ, θ(Xβ)]

=
∑

β∈∆(α)

(Xβ, θ(Xβ))

(X, θ(X))
Hβ.
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By the definition of Hα and Hβ, this leads to

α =
∑

β∈∆(α)

(Xβ, θ(Xβ))

(X, θ(X))
β. (8.15.4)

Since θ is a Cartan involution, (X, θ(X)) and (Xβ, θ(Xβ)) are non-negative.
Thus α is a linear combination of elements of ∆(α) with positive coefficients.

Restricting the equation (8.15.4) to h′, we obtain

α =
∑

β∈∆(α)

(Xβ, θ(Xβ))

(X, θ(X))
α.

This implies ∑
β∈∆(α)

(Xβ, θ(Xβ))

(X, θ(X))
= 1,

which is the desired conclusion.

Lemma 8.16. Let λ1 and λ2 be dominant integral weights of l. Then we
have Co(Wlλ1) + Co(Wlλ2) = Co(Wl(λ1 + λ2)).

Proof. Co(Wlλ1)+Co(Wlλ2) ⊃ Co(Wl(λ1+λ2)) is obvious because Co(Wlλ1)+
Co(Wlλ2) = Co(Wlλ1 +Wlλ2) holds.

We show the converse inclusion. It is enough to prove λ1 + s(λ2) ∈
Co(Wl(λ1 + λ2)) for any s ∈ Wl. If s is the identity, this is trivial. We
assume that s is not the identity. By assumption, there is a unique non-zero
homomorphism up to scalar multiplication:

p : F l(λ1)⊗ F l(λ2) → F l(λ1 + λ2).

We fix a highest weight vector vi of F
l(λi). Then we have p(v1 ⊗ v2) ̸= 0.

Let n be the nilpotent radical of b ∩ l. There exists X ∈ U(n) such that
Xs(v2) = v2. Since s is not the identity, the constant term of X is 0. Then
we have Xv1 = 0 and X(v1 ⊗ s(v2)) = v1 ⊗ v2. This leads to

0 ̸= p(v1 ⊗ v2) = p(X(v1 ⊗ s(v2))) = Xp(v1 ⊗ s(v2)).

Thus we obtain p(v1 ⊗ s(v2)) ̸= 0.
Since any weight of F l(λ1 + λ2) is in Co(Wl(λ1 + λ2)), this implies λ1 +

s(λ2) ∈ Co(Wl(λ1 + λ2)). This finishes the proof.

Lemma 8.17. Under the settings in the above, there exists a character ζ of
l′ such that ρ(l′) + ζ ∈ Co(Wlρ(l))|h′.
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Proof. We choose a basis of h′ and extend it to a basis of h. We consider a
lexicographical order on h∗ induced from the basis and a Borel subalgebra bl
of l determined by the order. Then bl∩l′ is a Borel subalgebra of l′, and ρ(l)|h′
is a dominant integral weight of l′. Since Co(Wlρ(l))|h′ is equal to the convex
hull of weights of F l(ρ(l))|l′ , it suffices to show ρ(l′)+ ζ ∈ Co(Wl′(ρ(l)|h′)) for
some character ζ.

To apply Lemma 8.16, we shall prove that ρ(l)|h′ − ρ(l′) is dominant
integral. Take a simple root α ∈ ∆+(g′, h′). By Lemma 8.15, α can be
written as

α =
∑

β∈∆(α)

cββ

with
∑

cβ = 1 and cβ ≥ 0. By the choice of the Borel subalgebra, ∆(α) is
contained in ∆+(l, h). This implies

2(ρ(l)|h′ − ρ(l′), α)

(α, α)
=
∑

β∈∆(α)

cβ
2(ρ(l), β)

(α, α)
− 1

≥
∑

β∈∆(α)

cβ
(β, β)

(α, α)
− 1

≥
∑

β∈∆(α)

cβ − 1

= 0.

The second inequality holds because β|h′ = α. Thus we can apply Lemma
8.16 to λ1 = ρ(l′) and λ2 = ρ(l)|h′ − ρ(l′). We obtain

Co(Wl′ρ(l
′)) + Co(Wl′(ρ(l)|h′ − ρ(l′))) = Co(Wl′(ρ(l)|h′)).

Put ζ := |Wl′ |−1
∑

s∈Wl′
s(ρ(l)|h′ − ρ(l′)). Then ζ belongs to Co(Wl′(ρ(l)|h′ −

ρ(l′))), and hence we have ρ(l′)+ζ ∈ Co(Wl′(ρ(l)|h′)). Since ζ isWl′-invariant,
ζ defines a character of l′. This gives the lemma.

Proof of Theorem 8.14. We shall prove that for any irreducible submodule
F ′ of F |l′ , its infinitesimal character λ′ satisfies

Re(λ′ + ρ(u′), α) < 0 for any α ∈ ∆(u′, h′).

By the same proof as Lemma 8.13, if we prove this, the assertion follows.
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Any h-weight of F belongs to Co(Wl(λ−ρ(l))). Lemma 8.16 and Lemma
8.17 show

λ′ ∈ Co(Wl(λ− ρ(l)))|h′ + ρ(l′)

⊂ Co(Wl(λ− ρ(l)))|h′ + Co(Wlρ(l))|h′ + ζ

= Co(Wl(λ))|h′ + ζ

for some character ζ of l′. Hence we have

λ′ =
∑
s∈Wl

ass(λ)|h′ + ζ

with
∑

s∈Wl
as = 1 and as ≥ 0.

We compute (λ′ + ρ(u′), α) for α ∈ ∆(u′, h′). By Lemma 8.15, α can be
written as

α =
∑

β∈∆(α)

cββ

with
∑

β∈∆(α) cβ = 1 and cβ ≥ 0. Since α(H) > 0, ∆(α) is contained in

∆(u, h). Note that (ζ, α) = 0 holds because ζ is a character of l′. Then we
have

Re(λ′ + ρ(u′), α) = Re(
∑
s∈Wl

ass(λ)|h′ + ρ(u′), α)

=
∑

s∈Wl,β∈∆(α)

ascβRe(λ, s
−1(β)) + (ρ(u′), α)

<
∑

s∈Wl,β∈∆(α)

ascβ(−ρ(u), s−1(β)) + (ρ(u′), α)

= (−ρ(u)|h′ + ρ(u′), α)

= −(ρ(u′′), α)

≤ 0.

The third inequality holds by the assumption of λ. Since u is l-stable, ρ(u)
is Wl-invariant, and hence the firth equality holds. The last inequality is the
special case of [40, Proposition 4.68]. We have proved the theorem.

The following corollary is a direct consequence of Theorem 8.14 and Corol-
lary 8.7.

Corollary 8.18. Retain the settings in Theorem 8.14. Let W be an ir-
reducible direct summand of indg

q(F ). Then Homg′(W, indg
q(F )) is an irre-

ducible U(g)G′
-module.
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8.3 Holomorphic discrete series representations

Holomorphic discrete series representations satisfy the conditions of Theorem
8.14. In this section, we summarize the results related to holomorphic discrete
series representations.

Let gR be real semisimple Lie algebra with maximal compact subalgebra
kR. Let gR = kR ⊕ pR be the Cartan decomposition with respect to kR. We
assume that gR is a direct sum of simple Lie algebras of Hermitian type.
Fix a characteristic element H ∈

√
−1c(kR) such that ad(H) has eigenvalues

{−1, 1} on p. We construct the subalgebras q, p+, . . . as in Section 2.3. In
this case, l is equal to k and, u (resp. ū) is equal to p+ (resp. p−).

By construction, the nilpotent radical of q is abelian. Then we can apply
Theorem 8.14 to indg

q(F ). The following important observation is an easy
consequence of Harish-Chandra’s classification of holomorphic discrete series
representations (see Fact 2.11:) for any irreducible unitary representation F
of kR, F is in the good range if and only if indg

q(F ) is unitarizable and iso-
morphic to the underlying Harish-Chandra module of a holomorphic discrete
series representations.

Let g′R be a reductive subalgebra of gR with Cartan decomposition g′R =
kR ∩ g′R ⊕ pR ∩ g′R. Suppose H ∈ g′R. We denote by q′, k′, . . . the intersection
of g′ and q, k, . . .. Let GR be a simply-connected connected Lie group with
Lie algebra gR, and G′

R be the analytic subgroup of GR corresponding to g′R.
Proposition 2.27 and Theorem 8.14 show the following theorem.

Theorem 8.19. Retain the above notation. Let (π, V ) be a holomorphic dis-
crete series representation of GR. Then V |G′

R
is discretely decomposable, and

each irreducible direct summand is a holomorphic discrete series representa-
tion of G′

R. For an irreducible direct summand W of V , Homg′(WK′
R
, VKR) is

an irreducible U(g)G′
-module. Moreover, we have

PI.deg(π(U(g)G′
)) = MG′

R
(V ).

Remark 8.20. The first assertion is well-known. In fact, any discrete spec-
trum of the restriction of a discrete series representation is also a discrete
series representation (see [47, Corollary 8.7]). For the discretely decompos-
able branching laws of holomorphic discrete series representations, we refer
the reader to [29], [52] and [53].

In the first assertion, we regard a finite-dimensional unitary representa-
tion as a holomorphic discrete series representation.
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8.4 Zuckerman derived functor modules

As an application of Theorem 8.14, we consider the branching problem of
Zuckerman derived functor modules induced from quasi-abelian parabolic
subalgebras.

Let GR be a connected real semisimple Lie group with finite center and
Cartan involution θ. Put KR := Gθ

R. Fix H ∈
√
−1kR and define subalgebras

q, l, u, . . . as in Section 2.2. Then q is a θ-stable parabolic subalgebra.
We set KL = ZK(H). Then KL is connected and (l, KL) is a subpair of

the pair (g, K). For an (l, KL)-module V , we define a (g, K)-module

Lg
q,i(V ) := RiΓK

KL
(indg

q(V )).

Remark that in many books and papers (e.g. [40]), this module is defined
by the Bernstein functor, and our parametrization is so-called unnormalized
version (in [40], L is written as uL). Put S := dimC(u ∩ k). For an (l, KL)-
module V with infinitesimal character λ, we will say that λ and V are in the
good range if λ satisfies

Re(λ+ ρ(u), α) < 0 for any α ∈ ∆(u, h).

Fact 8.21. Let V be an irreducible (l, KL)-module with infinitesimal charac-
ter λ.

(a) Lg
q,i(V ) has the infinitesimal character λ+ ρ(u).

(b) If λ is in the good range, Lg
q,i(V ) is zero for i ̸= S and non-zero irre-

ducible for i = S.

Hereafter, we assume that k is the direct sum of two non-zero ideals:

k = k1 ⊕ k2,

H belongs to
√
−1(k1)R and q is quasi-abelian with respect to k1. This implies

that kL contains k2. Hence we have u∩ k ⊂ k1. We denote by Ki the analytic
subgroup of K corresponding to ki. Remark that the subgroup K1 is the
same as in [16] and [8].

By the following lemma, we can reduce the branching law of Lg
q,S(F ) to

that of indg
q(F ). The proof is essentially the same as [16, Lemma 7].

Lemma 8.22. Let V be an irreducible (l, KL)-module and K ′ is a reductive
subgroup of K containing K1. Under the above settings, we have a (g, K ′)-
module isomorphism:

Lg
q,i(V ) ≃ RiΓK′

K′∩KL
(indg

q(V )).
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Proof. Put K ′
L := K ′ ∩KL. By Fact 2.14, we have

Lg
q,i(V ) ≃ H i(k, KL; ind

g
q(V )⊗ C[K]).

We consider the following complex with cohomology H i(k, KL; ind
g
q(V ) ⊗

C[K]) (see [5]:)

Ci(k, KL; ind
g
q(V )⊗ C[K]) = HomKL

(∧i(k/kL), ind
g
q(V )⊗ C[K]).

By the assumption K ′ ⊃ K1 and KL ⊃ K2, the right hand side is isomorphic
to

HomK1(∧i(k′/k′L), ind
g
q(V )⊗ C[K2\K])

≃HomK1(∧i(k′/k′L), ind
g
q(V )⊗ C[(K ′ ∩K2)\K ′])

≃HomK′∩K′
L
(∧i(k′/k′L), ind

g
q(V )⊗ C[K ′]).

Taking its cohomology, we obtain

H i(k, KL; ind
g
q(V )⊗ C[K]) ≃ H i(k′, K ′

L; ind
g
q(V )⊗ C[K ′])

≃ RiΓK′

K′
L
(indg

q(V )).

This gives the lemma.

Proposition 8.23. Let g′ be a θ-stable reductive subalgebra of g such that
g′ ⊃ k1. Then q is quasi-abelian with respect to g′.

Proof. Note that g′ contains H as an element because H ∈ k1. Fix a funda-
mental Cartan subalgebra h′ of g′ which is contained in g′ ∩ l and contains
H. Define u′ := u ∩ g′ and u′′ := u ∩ (g′)⊥. Then by assumption, we have
u′′ ⊂ k⊥.

Assume that q is not quasi-abelian with respect to g′. Then there exist
α ∈ ∆(u′, h′) and β ∈ ∆(u′′, h′) such that (α, β) < 0. Since (g′)⊥ is a g′-
module and h′ is a Cartan subalgebra of g′, this implies [u′α, u

′′
β] ̸= 0. There

is two possibilities:

(a) u′α ⊂ k⊥;

(b) (u′α ⊕ u′θ(α)) ∩ k ̸= 0.

Assume (a). Using [u′, u′′] ⊂ u′′, u′′ ⊂ k⊥ and [k⊥, k⊥] ⊂ k, we have

[u′α, u
′′
β] ⊂ u′′ ∩ k ⊂ k⊥ ∩ k = 0.

This contradicts [u′α, u
′′
β] ̸= 0.

107



Assume (b). We put h′k := h′ ∩ k. Remark that h′k contains a Cartan
subalgebra of k1. Since u′′β ⊂ k⊥, β is θ-invariant. Thus we have

(α|h′k , β|h′k) = (α, β) < 0. (8.23.5)

By the assumption (b), α|h′k belongs to ∆(u∩k, h′k). Therefore, the inequation
(8.23.5) contradicts the assumption that q is quasi-abelian with respect to
k1. This finishes the proof.

By Proposition 8.23, we can apply Theorem 8.14 to any reductive sub-
algebra containing k1. Let G′

R be a connected reductive subgroup of GR
closed under θ. Assume g′ ⊃ k1. Put K ′

R := (G′
R)

θ and define subalgebras
q′, l′, u′, . . . as in Section 2.2. We set K ′

L := K ′ ∩KL. Under these settings,
S(= dimC(u ∩ k)) = dimC(u ∩ k′) holds.

Theorem 8.24. Let F be a finite-dimensional irreducible (l, KL)-module
with infinitesimal character λ. Suppose that λ is in the good range. Then
Lg

q,S(F )|(g′,K′) is decomposed into a direct sum of irreducible modules of the

form Lg′

q′,S(F
′) with finite-dimensional irreducible (l′, K ′

L)-module F ′ in the

good range. Moreover, RSΓK′

K′
L
induces the following U(g)G′

-isomorphism:

Homg′,K′
L
(ind

g′

q′ (F
′), indg

q(F )) ≃ Homg′,K′(Lg′

q′,S(F
′),Lg

q,S(F )),

and Homg′,K′(Lg′

q′,S(F
′),Lg

q,S(F )) is zero or irreducible as a U(g)G′
-module.

Proof. Lemma 8.22 gives a (g, K ′)-module isomorphism:

Lg
q,S(F ) ≃ RSΓK′

K′
L
(indg

q(F )).

By Theorem 8.14, indg
q(F )|g′,K′ is completely reducible, and any irreducible

(g′, K ′)-submodule of indg
q(F ) is of the form ind

g′

q′ (F
′) with F ′ in the good

range. Then we have

indg
q(F )|(g′,K′

L),U(g)G′ ≃
⊕
F ′

ind
g′

q′ (F
′)⊗ Homg′,K′

L
(ind

g′

q′ (F
′), indg

q(F )),

and hence

Lg
q,S(F )|(g′,K′),U(g)G′ ≃

⊕
F ′

Lg′

q′,S(F
′)⊗ Homg′,K′

L
(ind

g′

q′ (F
′), indg

q(F )).

The sum is taken over all finite-dimensional irreducible (l′, K ′
L)-modules in

the good range.
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By Fact 8.21, each Lg′

q′,S(F
′) is non-zero irreducible, and for F ′′ ̸≃ F ′

in the good range, Lg′

q′,S(F
′′) is not isomorphic to Lg′

q′,S(F
′) because their

infinitesimal characters are different. This implies

Homg′,K′
L
(ind

g′

q′ (F
′), indg

q(F )) ≃ Homg′,K′(Lg′

q′,S(F
′),Lg

q,S(F )).

This isomorphism is induced by the functor RSΓK′

K′
L
. The irreducibility of the

U(g)G′
-module follows from Corollary 8.18. We have proved the theorem.

8.5 Discrete series representations

One of important examples of Theorem 8.24 is discrete series representations.
Let GR be a connected real simple Lie group with finite center and Cartan

involution θ, andG′
R be a θ-stable connected non-compact reductive subgroup

of GR. We put KR := Gθ
R and K ′

R := (G′
R)

θ. We assume that (GR, G
′
R) is a

symmetric pair and rank(g) = rank(k).
Fix a Cartan subgroup HR of KR satisfying that HR ∩ K ′

R is a Cartan
subgroup of K ′

R. Then HR is a Cartan subgroup of GR. Take a θ-stable Borel
subalgebra b containing h. Let n denote the nilpotent radical of b. We set
S ′ := dimC(n).

Under these settings, for a unitary character Cλ of HR in the good range
with respect to b, Lg

b,S′(Cλ) is a underlying Harish-Candra module of a dis-
crete series representation of GR. By the classification ([60]) of discretely
decomposable Aq(λ), we can see the following fact (see also [8] and [82, Sec-
tion 9]).

Fact 8.25. Let Cλ be a unitary character of HR in the good range with
respect to b. Suppose that Lg

b,S′(Cλ)|(g′,K′) is discretely decomposable. Then

there exists an element H ∈ g′ ∩
√
−1hR such that the corresponding θ-stable

parabolic subalgebra q = l⊕ u satisfies the following conditions:

(a) q ⊃ b;

(b) l ⊂ k;

(c) q is quasi-abelian with respect to k;

(d) there exists an ideal k1 of k such that u ∩ k ⊂ k1, H ∈ k1 and k1 ⊂ g′;

(e) there exists an irreducible unitary representation F of lR in the good
range such that

Lg
b,S′(Cλ) ≃ Lg

q,S(F ),

where S = dimC(u).
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Remark 8.26. If the first four conditions hold, the last condition is auto-
matically satisfied for F = Ll

b∩l,S′−S(Cλ). In fact, by induction in stages (see
[40, Corollary 11.86]) and the vanishing theorem, we have

Lg
q,S(L

l
b∩l,S′−S(Cλ)) ≃ Lg

b,S(Cλ).

For convenience, we construct the parabolic subalgebra q in the above
fact. Define H ∈

√
−1hR such that

α(H) =

{
0 if α is a compact simple root,

1 if α is a non-compact simple root.

We construct subalgebras q, u, l as in Section 2.2. Then it is easy to see
q ⊃ b, l ⊂ k and u ∩ p = n ∩ p.

We set un := u ∩ p and uc := k ∩ u. By construction, the set of simple
roots of [l, l] is equal to the set of compact simple roots of ∆+(g, h). This
implies

[un, un] = uc.

Let k1 be the ideal of k generated by uc and H. The theorem by M. Duflo
and J. A. Vargas in [8] asserts that Lg

b,S′(Cλ)|(g′,K′) is discretely decomposable
if and only if g′ contains k1. Hence by assumption, g′ contains k1. This is the
condition (d).

We shall show that q is quasi-abelian with respect to k. By Proposition
8.12, it is enough to show [uc, un] = 0. We write σ for the involution defining
the symmetric pair (g, g′). Then we have

[uσn, u
−σ
n ] ⊂ u−σ

c ⊂ k−σ
1 = 0. (8.26.6)

Let i′ denote the subalgebra of g′ generated by pσ. Then i′ is an ideal of
g′, and g′ is the direct sum of i′ and an ideal j′ of k′. We need the following
lemma to prove [uσn, u

σ
n] = uc.

Lemma 8.27. [uσn, k
−σ] = u−σ

n .

Proof. [uσn, k
−σ] ⊂ u−σ

n is obvious because k−σ ⊂ l. For the converse inclusion,
we assume [uσn, k

−σ] ̸= u−σ
n . Then there exists a non-zero element Z ∈ ū−σ

n

such that (Z, [uσn, k
−σ]) = 0.

Since [Z, uσn] ⊂ k−σ, this implies [Z, uσn] = 0. This and [Z, ūσn] = 0 (8.26.6)
show Z ∈ Ng(i

′). Hence we have Ng(i
′) ⊃ i′⊕ j′⊕CZ ⊋ g′. Since a symmetric

subalgebra of a simple Lie algebra is a maximal reductive subalgebra, we
obtainNg(i

′) = g. However, Ng(i
′) has the nontrivial ideal i′. This contradicts

that g is simple. We have proved the lemma.

110



Replacing σ by θσ in the lemma, we obtain [u−σ
n , k−σ] = uσn. By this

lemma, we have

[u−σ
n , u−σ

n ] = [[uσn, k
−σ], u−σ

n ]

= [uσn, [k
−σ, u−σ

n ]]

= [uσn, u
σ
n].

The second equality follows from (8.26.6). This shows [uσn, u
σ
n] = [u−σ

n , u−σ
n ] =

uc. Since [uσn, u
−σ
n ] = 0, this implies [un, uc] = 0. We have constructed the

parabolic subalgebra q in Fact 8.25.
From the construction, we can see that u is 2-step nilpotent and [u, u] ⊂ k.

A discrete series representation induced from such a parabolic subalgebra is
said to be small (see [16]). By Fact 8.25, we can apply Theorem 8.24 to
discretely decomposable discrete series representations. We set b′ := b ∩ g′,
q′ := q ∩ g′ and so on. Put S ′′ := dimC(n

′).

Corollary 8.28. Retain the notation in Fact 8.25. Lg
b,S′(Cλ)|G′

R
is decom-

posed into a direct sum of discrete series representations of G′
R, and any

irreducible submodule is isomorphic to Lg′

b′,S′′(Cλ′) for some unitary charac-
ter λ′ of h′R in the good range. Moreover, we have

Homg′,K′(Lg′

b′,S′′(Cλ′),Lg
b,S′(Cλ)) ≃ Homg′,K′

L
(ind

g′

q′ (F
′), indg

q(F )),

where F and F ′ are irreducible modules corresponding to Cλ and Cλ′ as in
Remark 8.26. In particular, Homg′,K′(Lg′

b′,S′′(Cλ′),Lg
b,S′(Cλ)) is an irreducible

U(g)G′
-module.

Remark 8.29. The first study of discretely decomposable Zuckerman de-
rived functor modules is due to T. Kobayashi. He gave a necessary and suffi-
cient condition for the discretely decomposability of Zuckerman derived func-
tor modules and gave examples of explicit branching laws in [42, 43, 45, 46].
The branching laws of discretely decomposable Zuckerman derived functor
modules including discrete series representations have been studied by sev-
eral mathematicians. In the case of algebraic GR and G′

R, B. Gross and N.
Wallach computed the branching laws of discrete series representations in
[16] using the technique so-called K-type transfer. For non-symmetric sub-
groups, M. Duflo and J. A. Vargas announced a multiplicity formula using
partition function like Blattner’s formula in [8]. Y. Oshima obtained the
branching laws for any discretely decomposable restrictions of Zuckerman
derived functor modules Aq(λ) with respect to symmetric subgroups using
D-modules [82].
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9 Irreducibility of U(g)G′
-modules: part II

The purpose of this section is to study the (g′ ⊕ g,∆(G′))-module on the
space of ∆(G′)-finite linear maps from holomorphic discrete series repre-
sentations to principal series representations of a symmetric subgroup of
anti-holomorphic type. In the main theorem in this section, we prove the
irreducibility of the (g′ ⊕ g,∆(G′))-module with generic parameter.

9.1 Setting

Let gR be a real semisimple Lie algebra with Cartan involution θ and GR
be a simply-connected connected Lie group with Lie algebra gR. Take an
involution σ commuting with θ. Let G′ denote the identity component of
Aut(gR)

σ. We put KR := Gθ
R, p := g−θ, G′

R := Ad−1(G′ ∩ Int(gR)) ⊂ GR and
K ′

R := G′
R ∩ KR. Remark that KR may be non-compact. Nevertheless, GR

and G′
R have the ‘Cartan decomposition’:

GR = KR × exp(pR),

G′
R = K ′

R × exp(pσR).

We assume that (gR, g
′
R) is one of the following cases:

• gR is a simple Lie algebra of Hermitian type and (gR, g
′
R) is of anti-

holomorphic type;

• (gR, g
′
R) = (g′′R⊕ g′′R,∆(g′′R)), where g

′′
R is a simple Lie algebra of Hermi-

tian type;

By assumption, GR is of Hermitian type. We fix a characteristic element
H ∈

√
−1c(kR) such that ad(H) has eigenvalues {1,−1} on p. We choose H

satisfying H ∈ g−σ. This holds automatically if gR is simple because (gR, g
′
R)

is of anti-holomorphic type. We have the ad(H)-eigenspace decomposition:

g = p+ ⊕ k⊕ p−

with eigenvalue 1, 0,−1, respectively. Then q := p+ ⊕ k is a parabolic subal-
gebra of g.

Our purpose is to study the branching law of indg
q(F )|(g′,K′). By the

assumption H ̸∈ g′, indg
q(F )|(g′,K′) is not discretely decomposable (see [46,

Theorem 5.3]). However, the (g′, K ′)-module structure is not complicated.
In fact, σ(H) = −H implies σ(p+) = p− and this leads to

pσ + q = g.
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Hence by the Poincaré–Birkhoff–Witt theorem, we have

indg
q(F )|(g′,K′) = (U(g)⊗U(q) F )|(g′,K′)

≃ U(g′)⊗U(k) F.

From this, the following lemma is clear.

Lemma 9.1. Let F be a finite-dimensional representation of k and V ′ be a
(g′, K ′)-module. Then we have a natural isomorphism

Homg′,K′(indg
q(F ), V ′) ≃ HomK′(F, V ′)

as a vector space.

We will study the U(g)G′
-module structure on Homg′,K′(indg

q(F ), V ′) and
the (g′⊕g,∆(G′))-module structure on HomC(ind

g
q(F ), V ′)∆(G′). These mod-

ules was defined in Section 7.
The discussion in the after section is true if we divide (GR, G

′
R) by a

subgroup of the center of GR and replace G′
R by its open subgroup as long

as Adg(G
′
R) = G′ ∩ Int(gR) holds. (GR, G

′
R) = (Sp(n,R),GL(n,R)0), for

example, does not satisfy this condition. To check the condition, the following
proposition is useful.

Proposition 9.2. Suppose that there exists a connected complex algebraic
group G such that the Lie algebra of G is g and G contains GR. Let G̃′

be the analytic subgroup of G with Lie algebra g′. If G′
R = G̃′ ∩ GR, then

Adg(G
′
R) = G′ ∩ Int(gR) holds.

Proof. Put Z := Ker(Adg) ⊂ G. Since G′ is connected, we have Adg(G̃′) =
G′. By definition, Adg(GR) = Int(gR) is obvious.

Since GR is of Hermitian type, GR has a compact Cartan subgroup TR.
The center Z of G is contained in the complexification T of TR. Since Z is a
finite group, Z is contained in TR and GR. Thus we have

G′ ∩ Int(gR) = Adg(G̃′) ∩ Adg(GR)

= Adg(G̃′Z ∩GRZ)

= Adg(G̃′Z ∩GR)

= Adg((G̃′ ∩GR)Z)

= Adg(G
′
R).

This shows the proposition.
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In particular, ifGR is a real form of a simply-connected connected complex
algebraic group G, G′

R = Gσ
R satisfies the condition Ad(G′

R) = G′ ∩ Int(gR).
We return to the case of simply-connected GR. We discuss the connected

components of M ′
R. Let a′R be a maximal abelian subspace of p′R. We put

M ′
R := ZK′

R
(a′R). Under our assumptions, M ′

R is not complicated.

Lemma 9.3. Let ZM ′
R
be the center of M ′

R. Then we have M ′
R = ZM ′

R
·(M ′

R)0.

Proof. Put Z := Ker(Adg). Then Z is a subgroup of the center of GR. First,
we show that Adg(M

′
R) = ZAdg(M ′

R)
· Adg((M

′
R)0) implies the assertion.

Assume Adg(M
′
R) = ZAdg(M ′

R)
· Adg((M

′
R)0). Since M ′

R ⊃ Z, this implies

M ′
R = Ad−1

g (ZAdg(M ′
R)
) · (M ′

R)0Z

= Ad−1
g (ZAdg(M ′

R)
) · (M ′

R)0.

Since ZAdg(M ′
R)
is contained in a maximal torus TR of Adg(KR), Ad

−1
g (ZAdg(M ′

R)
)

is contained in Ad−1
g (TR). Ad

−1
g (TR) is abelian because KR = ZKR×[KR, KR].

Hence Ad−1
g (ZAdg(M ′

R)
) is abelian. Since the adjoint action of Ad−1

g (ZAdg(M ′
R)
)

on (M ′
R)0 is trivial, Ad−1

g (ZAdg(M ′
R)
) is contained in ZM ′

R
. This shows the

assertion.
Thus it is enough to show Adg(M

′
R) = ZAdg(M ′

R)
· Adg((M

′
R)0). Hence

we can assume that G′
R ⊂ Int(g). By assumption, G′

R is contained in the
connected complex reductive algebraic group G′. Put L′ := ZG′(a′) and
M ′ := ZK′(a′). Then L′ is a Levi subgroup of some parabolic subgroup of
G′. Hence L′ is connected and so is [L′, L′]. Since a′R is maximal abelian
in p′R, [L

′, L′] is contained in K ′ and hence contained in M ′. This implies
that there exists a subgroup Z ′ of ZL such that M ′ = Z ′ · [L′, L′]. Thus
we have M ′ = ZM ′ · M ′

0. Taking real valued points, we obtain the desired
equation.

9.2 Principal series representations

We consider principal series representations of G′
R. Now G′

R may have count-
ably many connected components. Since Lemma 9.3 holds, however, this is
not a serious problem. In this section, we treat only G′

R. Then we remove
primes of G′

R, K
′
R and so on such as GR, KR.

Let aR be a maximal abelian subspace of pR. Fix a set of positive roots
∆+(gR, aR) of the restricted root system. We write nR for the sum of root
spaces of positive roots. We put MR := ZKR(aR), AR := exp(aR) and NR :=
exp(nR). Then QR := MRARNR is a minimal parabolic subgroup of GR. We
denote by WgR the little Weyl group for gR.
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We fix a maximal torus TR ofMR. ThenHR := TRAR is a Cartan subgroup
of GR. By Lemma 9.3, HR is abelian.

For an irreducible unitary representation (δ, Vδ) ofMR and a (non-unitary)
character (eν ,Cν) of aR, we define

IGR
QR

(δ, ν) := C∞(GR/QR, GR ×QR (Vδ ⊗ Cν))KR ,

letting NR act on Vδ ⊗ Cν trivially. We write I (δ, ν) for short if the groups
are clear from the context.

To study an algebraic structure of I (δ, ν), we give an algebraic realization
as follows (see [40, Proposition 11.57]). Taking derivatives at e, we have

r : I (δ, ν) → HomU(q)(U(g), Vδ ⊗ Cν)

∈ ∈
f 7→ (X 7→ (Xf)(e)),

where the U(q)-action on U(g) is the natural right action. We denote by
HomU(q)(U(g), Vδ ⊗Cν)KR the sum of irreducible (kR,MR)-submodules which
lift to a unitary representation ofKR. Then r is a (g, K)-module isomorphism
from I (δ, ν) to HomU(q)(U(g), Vδ ⊗ Cν)KR .

HomU(q)(U(g), Vδ ⊗ Cν)KR can be written as:

indg
q(V

∗
δ ⊗ C−ν)

∗
KR

.

Using this expression, we show the following lemma.

Lemma 9.4. Let λ be the infinitesimal character of δ|(MR)0. Suppose

2(−ν − λ+ ρ(n), α)

(α, α)
̸∈ Z for any α ∈ ∆(n, h).

(a) For any finite-dimensional representation F of G, indg
q(V

∗
δ ⊗C−ν)⊗F ∗

is completely reducible as a g-module and

(b) if indg
q(V

∗
δ ⊗C−ν)⊗F ∗ has the irreducible decomposition

⊕
i ind

g
q(V

∗
δi
⊗

C−νi) as a (g,MR)-module, then I (δ, ν)⊗ F ≃
⊕

i I (δi, νi) holds.

(c) Let W be a submodule of I (δ, ν) with dimCHomgR,KR(W, I (δ, ν)) = 1.
Then EndC(W )∆(G) is irreducible as a (g⊕ g,∆(G))-module.

Remark 9.5. Lemma 9.3 implies that the restriction of any finite-dimensional
irreducible MR-representation to (MR)0 is irreducible. Hence the irreducibil-
ity of indg

q(V
∗
δ ⊗C−ν) as a (g,MR)-module is equivalent to the irreducibility

as a g-module.
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Proof. By the Mackey isomorphism (see [40, Theorem 2.103]), we have

indg
q(V

∗
δ ⊗ C−ν)⊗ F ∗ ≃ indg

q(V
∗
δ ⊗ C−ν ⊗ F ∗).

Hence indg
q(V

∗
δ ⊗ C−ν) ⊗ F ∗ has a standard filtration V·. Vi/Vi−1 is of the

form indg
q(F

′), where F ′ is an irreducible (m ⊕ a,MR)-submodule of V ∗
δ ⊗

C−ν ⊗F ∗. Fact 2.7 and the assumption imply that Vi/Vi−1 irreducible. Thus
by Proposition 2.9, indg

q(V
∗
δ ⊗C−ν)⊗F ∗ is completely reducible. This shows

(a).
(b) is proved by (a) and the following isomorphism:

indg
q(V

∗
δ ⊗ C−ν)

∗
KR

⊗ F ≃ (indg
q(V

∗
δ ⊗ C−ν)⊗ F ∗)∗KR

.

To prove (c), we prepare a few lemmas.

In the following lemmas, we retain the notation and the assumptions in
Lemma 9.4.

Lemma 9.6. There exists an injective map:

φ : EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) → EndC(I (δ, ν))∆(G),

and φ is (g⊕ g,∆(G))-equivariant in the following sense:

φ(X ⊗ Y ·) = Y ⊗Xφ(·).

Proof. Since I (δ, ν) ≃ indg
q(V

∗
δ ⊗ C−ν)

∗
KR

, we have

EndC(I (δ, ν))∆(G) = HomC(I (δ, ν), I (δ, ν))∆(G)

≃ HomC(I (δ, ν)⊗ indg
q(V

∗
δ ⊗ C−ν),1)∆(G)

≃ HomC(ind
g
q(V

∗
δ ⊗ C−ν), I (δ, ν)

∗
q,MR

)∆(G).

For the second and third isomorphism, we used the fact that a ∆(G)-finite
linear map preserves locally-finiteness (see Proposition 7.19). Since I (δ, ν) ≃
indg

q(V
∗
δ ⊗ C−ν)

∗
KR

again, there is a natural homomorphism:

indg
q(V

∗
δ ⊗ C−ν) → I (δ, ν)∗q,MR

.

By assumption, indg
q(V

∗
δ ⊗ C−ν) is irreducible, and hence the above homo-

morphism is injective. Thus we have an injective homomorphism:

φ : EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) → EndC(I (δ, ν))∆(G).

This is the desired homomorphism.
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Lemma 9.7. EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) is an irreducible (g⊕ g,∆(G))-

module.

Proof. Fix a set of positive roots ∆+(m, t) such that −λ is strictly dominant.
Let b be a Borel subalgebra of g corresponding to ∆+(g, h). Then µ :=
−λ− ρ(m)− ν satisfies

2(µ+ ρg, α)

(α, α)
̸∈ {0,−1,−2, . . .} for any α ∈ ∆+(g, h).

From Fact 6.9, the functor HomC(ind
g
b(Cµ), ·)∆(G) is an exact functor and

preserves irreducibility. Hence HomC(ind
g
b(Cµ), ind

g
q(V

∗
δ ⊗ C−ν))∆(G) is ir-

reducible. Since indg
q(V

∗
δ ⊗ C−ν) has the same highest weight as indg

b(Cµ),
indg

q(V
∗
δ ⊗ C−ν) is a unique irreducible quotient of indg

b(Cµ). Thus there is
an injection:

EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) → HomC(ind

g
b(Cµ), ind

g
q(V

∗
δ ⊗ C−ν))∆(G).

This implies that EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) is irreducible.

The following lemma is an analogue of [40, Proposition 7.199].

Lemma 9.8. Let F be a finite-dimensional representation of G and χ be a
infinitesimal character of g. Suppose

Pχ(ind
g
q(V

∗
δ ,C−ν)⊗ F ) ≃ indg

q(V
∗
δ′ ,C−ν′)⊗ Cr

for some δ′ ∈ M̂R, ν
′ ∈ a∗ and r ∈ Z. Then we have an algebra isomorphism:

Pχ ◦ (EndC(ind
g
q(V

∗
δ ,C−ν))∆(G) ⊗ EndC(F )) ◦ Pχ

≃EndC(ind
g
q(V

∗
δ′ ,C−ν′))∆(G) ⊗ EndC(Cr).

Proof. It is easy to see

Pχ ◦ (EndC(ind
g
q(V

∗
δ ,C−ν))∆(G) ⊗ EndC(F )) ◦ Pχ

≃Pχ ◦ EndC(ind
g
q(V

∗
δ ,C−ν)⊗ F )∆(G) ◦ Pχ

≃EndC(Pχ(ind
g
q(V

∗
δ ,C−ν)⊗ F ))∆(G)

≃EndC(ind
g
q(V

∗
δ′ ,C−ν′))∆(G) ⊗ EndC(Cr).

Lemma 9.9. Retain the settings in Lemma 9.8. Let W be an irreducible
subquotient of I (δ, ν). Then W ⊗ F is completely reducible and

Pχ(W ⊗ F ) ≃ W ′ ⊗ Cr

for some irreducible (gR, KR)-module W ′.
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Proof. The completely reducibility follows from the second assertion and
Lemma 9.4 (a).

SinceW⊗F is an irreducible EndC(ind
g
q(V

∗
δ ,C−ν))∆(G)⊗EndC(F )-module,

Pχ(W ⊗ F ) is an irreducible EndC(ind
g
q(V

∗
δ′ ,C−ν′))∆(G) ⊗ EndC(Cr)-module

by Lemma 9.8.
Since EndC(Cr) is a finite-dimensional simple algebra, Pχ(W ⊗F ) can be

written as W ′ ⊗ Cr for some (gR, KR)-module W ′. By Lemma 9.7, U(g) →
EndC(ind

g
q(V

∗
δ′ ,C−ν′))∆(G) is surjective. Thus W

′ is irreducible as a (gR, KR)-
module.

By the lemma, we can see that W ′ is dependent only on χ and, in par-
ticular, independent of F . Hence W ′ can be written as an image of the
Jantzen–Zuckerman translation functor of W .

Lemma 9.10. Let V1, V2 be finite-dimensional irreducible representations of
MRAR and F be a finite-dimensional representation of G. Suppose

HomMRAR(V1, V2 ⊗ F ) ̸= 0.

Then we have Hom(MR)0AR(V1, V2 ⊗ F ) = HomMRAR(V1, V2 ⊗ F ).

Proof. Recall the homomorphism Ad : GR → G. Ad(MRAR) is contained
in a Levi subgroup L with Lie algebra m ⊕ a. Since G is connected, L is
connected. Note that we have a canonical isomorphism HomMRAR(V1, V2 ⊗
F ) ≃ HomMRAR(V1 ⊗ V ∗

2 , F ). If we show that V1 ⊗ V ∗
2 has an L-module

structure compatible with the diagonal KRAR-action, the assertion follows
because

Hom(MR)0AR(V1 ⊗ V ∗
2 , F ) = Homm⊕a(V1 ⊗ V ∗

2 , F )

= HomL(V1 ⊗ V ∗
2 , F )

⊂ HomMRAR(V1 ⊗ V ∗
2 , F )

⊂ Hom(MR)0AR(V1 ⊗ V ∗
2 , F ).

By assumption, V1 ⊗ V ∗
2 has a non-zero MRAR-submodule W with L-

module structure. Since V1 and V ∗
2 are irreducible as (m⊕ a)-modules, we

have V1 ⊗ V ∗
2 = U(m⊕ a⊕m⊕ a)W . This implies that the diagonal MRAR-

action on V1 ⊗ V ∗
2 lifts to an L-action.

Proof of (c) in Lemma 9.4. We have constructed an injective homomorphism:

φ′ : EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) → EndC(I (δ, ν))∆(G)
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in Lemma 9.6. Then we have a homomorphism:

φ : EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) → EndC(W )∆(G)

∈ ∈

f → φ(f)|W

This is well-defined because EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G) is generated by id

and φ(id) = id holds by construction.
By Lemma 9.7, EndC(ind

g
q(V

∗
δ ⊗C−ν))∆(G) is irreducible. Hence it suffices

to show that φ is surjective.
We compare multiplicities of each ∆(G)-type. Take a finite-dimensional

irreducible ∆(G)-module F . By Lemma 9.4 (a), the irreducible decomposi-
tion of indg

q(V
∗
δ ⊗ C−ν)⊗ F can be written as:

indg
q(V

∗
δ ⊗ C−ν)⊗ F ≃

⊕
i

indg
q(V

∗
δi
⊗ C−νi).

By Lemma 9.4 (b), we have

I (δ, ν)⊗ F ∗ ≃
⊕
i

I (δi, νi).

Then Proposition 7.19 gives

Hom∆(G)(F,EndC(W )∆(G)) ≃ Homg,KR(W,W ⊗ F ∗)

⊂ Homg,KR(W, I (δ, ν)⊗ F ∗)

≃
⊕
i

Homg,KR(W, I (δi, νi)).

Similarly, we have

Hom∆(G)(F,EndC(ind
g
q(V

∗
δ ⊗ C−ν))∆(G))

≃
⊕
i

Homg,KR(ind
g
q(V

∗
δi
⊗ C−νi), ind

g
q(V

∗
δ ⊗ C−ν)).

By the proof of Lemma 9.4 (a), Lemma 9.10 and the assumption of ν, I (δi, νi)
has the same infinitesimal character as I (δ, ν) if and only if (δi, νi) ≃ (δ, ν).
Thus we obtain

dimC Hom∆(G)(F,EndC(W )∆(G))

≤# {i : (δi, νi) ≃ (δ, ν)} · dimC HomgR,KR(W, I (δ, ν))

=# {i : (δi, νi) ≃ (δ, ν)}
=dimC Hom∆(G)(F,EndC(ind

g
q(V

∗
δ ⊗ C−ν))∆(G)). (9.10.1)
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We used the assumption dimCHomgR,KR(W, I (δ, ν)) = 1 for the third line.
Since φ is injective, (9.10.1) implies that φ is surjective. This finishes the
proof.

A typical example of W in Lemma 9.4 (c) is a submodule of a spherical
principal series representation generated by a non-zero KR-invariant vector.
We state a lemma about a relation between principal series representations
and irreducible (gR, KR)-modules with one-dimensional KR-type. The fol-
lowing lemma is a direct consequence of the proof of Harish-Chandra’s sub-
quotient theorem (see [104, Section 3.5]).

Lemma 9.11. Let δ be the restriction of a unitary character (γ,Cγ) of KR
to MR, and ν be a character of aR. Let V be a unique subquotient of I (δ, ν)
with KR-type γ. Then V is a subquotient of I (δ, w(ν − ρ(n)) + ρ(n)) for any
w ∈ WgR.

Proof. By the Harish-Chandra isomorphism, there is an exact sequence (see
[104, Theorem 3.6.6]):

0 → U(g)KR ∩
∑
X∈k

U(g)(X − γ(X)) → U(g)KR → U(a)WgR → 0.

For two irreducible (gR, KR)-module V1, V2, if HomKR(Cγ, V1) is isomorphic to
HomKR(Cγ, V2) as a U(g)KR-module, we have V1 ≃ V2 (see [104, Proposition
3.5.4]). By assumption and the Harish-Chandra isomorphism, we obtain the
U(g)KR-module isomorphism:

HomKR(Cγ, I (δ, ν)) ≃ HomKR(Cγ, I (δ, w(ν − ρ(n)) + ρ(n))).

Thus V is a subquotient of I (δ, w(ν − ρ(n)) + ρ(n)).

Remark 9.12. δ in the lemma is WgR-invariant. In fact, δ(kmk−1) =
γ(k)δ(m)γ(k)−1 = δ(m) holds for any m ∈ MR and k ∈ NKR(aR).

9.3 (g′ ⊕ g′,∆(G′))-module structure

We return to the branching problem of the pair (GR, G
′
R) (see Section 9.1).

We take a minimal parabolic subgroup Q′
R of G′

R as in the previous sec-
tion. Let (eλ,Cλ) be a unitary character of KR. We denote by γ (resp. δ)
the restriction of eλ to K ′

R (resp. M ′
R). For a character ν ∈ a∗, we write

W (ν) for a submodule of I
G′

R
Q′

R
(δ, ν) generated by the K ′

R-type γ, and write
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W (ν) for a unique irreducible quotient of W (ν). Hereafter, we consider the
problem to determine the structure of

HomC(ind
g
q(Cλ),W (ν))∆(G′)

for ν ∈ a∗ satisfying the condition of Lemma 9.4.
We will prove the following theorem.

Theorem 9.13. Suppose that δ and ν satisfy the condition of Lemma 9.4
and ν is generic in some sense (see Theorem 9.35). Then the (g′ ⊕ g,∆(G′))-
module HomC(ind

g
q(Cλ),W (ν))∆(G′) is irreducible.

Remark 9.14. The proof is divided into two parts: computation of the ir-
reducible decomposition of HomC(ind

g
q(Cλ),W (ν))∆(G′)|(g′⊕g′,∆(G′)); and com-

putation of the (g′)⊥-action on each irreducible component. This is an ana-
logue of the method introduced by T. Hirai to study degenerate principal
series representations of Lorentz groups [23]. A similar method is used in
[73], [37], [32], [64], etc.

To prove this theorem, we prepare several lemmas. Henceforth, we assume
that δ and ν satisfy the condition of Lemma 9.4. For µ ∈ (a′)∗, we denote
by χµ the infinitesimal character of I (δ, µ). We define

Λ := {µ ∈ (a′)∗ : Cµ lifts to a character of L′/M ′} .

In other words, Λ is the set of characters of L′ trivial on M ′
R.

Lemma 9.15. We have

Homg′R,KR(ind
g
q(Cλ), I (δ, ν))

=Homg′R,KR(ind
g
q(Cλ),W (ν))

≃−→Homg′R,KR(ind
g
q(Cλ),W (ν)).

Moreover, the spaces are one-dimensional.

Proof. The assertion is clear from Lemma 9.1 because

Homg′R,K
′
R
(indg

q(Cλ),W ) ≃ HomK′
R
(Cλ,W )

for any (g′R, K
′
R)-module W .

Lemma 9.16. Let µ be an element of Λ and W a submodule of I (δ, ν).
Suppose that HomC(W (ν + µ),W )∆(G′) is non-zero. Then we have

HomC(W (ν + µ), I (δ, ν))∆(G′)

≃HomC(W (ν + µ),W )∆(G′).

Moreover, the (g′ ⊕ g′,∆(G′))-modules are irreducible.
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Proof. Since there is a natural injection

HomC(W (ν + µ),W )∆(G′) ↪→ HomC(W (ν + µ), I (δ, ν))∆(G′),

it is enough to show that HomC(W (ν + µ), I (δ, ν))∆(G′) is irreducible.
By Lemma 9.4 (b) and the Jantzen–Zuckerman translation functor, this

is equivalent to the irreducibility of HomC(W (ν + µ), I (δ, ν + µ))∆(G′). By
the same proof as that of Lemma 9.4 (c), HomC(W (ν + µ), I (δ, ν + µ))∆(G′)

is irreducible. This finishes the proof.

Lemma 9.17. Let W be a submodule of I (δ, ν). The following (g′ ⊕ g′,∆(G′))-
homomorphism defined by the composition of maps:

φ :
⊕
µ∈Λ

HomgR,KR(ind
g
q(Cλ),W (ν + µ))⊗ HomC(W (ν + µ),W )∆(G′)

→ HomC(ind
g
q(Cλ),W )∆(G′).

gives an isomorphism.

Proof. By Lemma 9.15, HomgR,KR(ind
g
q(Cλ),W (ν + µ)) is one-dimansional.

Hence the injectivity of φ is clear because the infinitesimal characters of
HomC(W (ν+µ),W )∆(G′) are mutually different and any non-zero element of
HomgR,KR(ind

g
q(Cλ),W (ν + µ)) is surjective.

To prove the surjectivity of φ, we compare the multiplicities of each
∆(G′)-type. We denote by χν+µ the infinitesimal character of I (δ, ν + µ).
Take an irreducible ∆(G′)-module F . Then we have

dimCHom∆(G′)(F,Dom(φ))

=
∑
µ∈Λ

dimC Homg′R,K
′
R
(W (ν + µ),W ⊗ F ∗)

=
∑
µ∈Λ

dimC Homg′R,K
′
R
(W (ν + µ), Pχν+µ(W ⊗ F ∗))

=
∑
µ∈Λ

dimC HomK′
R
(Cγ, Pχν+µ(W ⊗ F ∗))

=dimCHomK′
R
(Cγ,W ⊗ F ∗)

=dimCHomg′R,K
′
R
(indg

q(Cλ),W ⊗ F ∗)

=dimCHom∆(G′)(F,Codom(φ)).

The third equality follows from W ⊗ F ∗ ⊂
⊕

i I (δi, νi) (see Lemma 9.4 (b)).
This shows the surjectivity of φ.
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Since indg
q(Cλ)|(g′R,K′

R)
≃ U(g′)⊗U(k′)Cλ, HomC(ind

g
q(Cλ), ·)∆(G′) is an exact

functor. The following result is a direct consequence of the above lemma.

Lemma 9.18. Let W be a subquotient of I (δ, ν) The following (g′ ⊕ g′,∆(G′))-
homomorphism defined by the composition of maps:

φ :
⊕
µ∈Λ

HomgR,KR(ind
g
q(Cλ),W (ν + µ))⊗ HomC(W (ν + µ),W )∆(G′)

→ HomC(ind
g
q(Cλ),W )∆(G′).

gives an isomorphism.

Proof. The proof of the injectivity is the same as Lemma 9.17.
Let p be a quotient map W → W for some submodule W of I (δ, ν). Then

we have φ(f ⊗ g) = p ◦ (φ(f ⊗ g)). Since HomC(ind
g
q(Cλ), ·)∆(G′) is an exact

functor,

p◦ : HomC(ind
g
q(Cλ),W )∆(G′) → HomC(ind

g
q(Cλ),W )∆(G′)

is surjective. Thus φ is surjective.

Corollary 9.19. Let W be a submodule of I (δ, ν) and W be a quotient of
W . The natural homomorphism

HomC(W (ν + µ),W )∆(G′) → HomC(W (ν + µ),W )∆(G′)

is surjective. Moreover, if HomC(W (ν + µ),W )∆(G′) is non-zero, the homo-
morphism is an isomorphism and the modules are irreducible.

Proof. The surjectivity is clear from Lemma 9.18. The second assertion
follows from Lemma 9.16.

By the above discussion, we can consider the (g′ ⊕ g′,∆(G′))-isomorphism:

HomC(ind
g
q(Cλ),W )∆(G′)

≃
⊕
µ∈Λ

HomgR,KR(ind
g
q(Cλ),W (ν + µ))⊗ HomC(W (ν + µ),W )∆(G′)

as the ‘K-type decomposition’. For any µ ∈ Λ, Lemma 9.15 leads to
dimC HomgR,KR(ind

g
q(Cλ),W (ν + µ)) = 1. Hence we identify

HomgR,KR(ind
g
q(Cλ),W (ν + µ))⊗ HomC(W (ν + µ),W )∆(G′)

with HomC(W (ν + µ),W )∆(G′). Then we have

HomC(ind
g
q(Cλ),W )∆(G′) =

⊕
µ∈Λ

φ(HomC(W (ν + µ),W )∆(G′)).

We give another ‘K-type decomposition.’
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Definition 9.20. Take µ ∈ Λ. Then there is a finite-dimensional representa-
tion F ofG′ such that Pχν+µ(W (ν)⊗F ) ̸= 0. By Lemma 9.9, Pχν+µ(W (ν)⊗F )

is a direct sum of some copies of an irreducible module. We write W ν(ν+µ)
for the irreducible module.

By Lemma 9.9, W ν(ν + µ) does not depend on the choice of F . Re-
mark that W ν(ν + µ) is an irreducible subquotient of I (δ, ν + µ). Hence
if W ν(ν + µ) has the K ′

R-type γ, W ν(ν + µ) is isomorphic to W (ν + µ).
By definition, HomC(W ν(ν + µ),W (ν))∆(G′) is non-zero. More precisely, the
following lemma holds.

Lemma 9.21. HomC(W ν(ν + µ),W (ν))∆(G′) is non-zero irreducible.

Proof. Using the Jantzen–Zuckerman translation functor, we can assume µ =
0. Since HomC(W (ν),W (ν))∆(G′) is embedded in HomC(W (ν),W (ν))∆(G′),
Corollary 9.19 gives the assertion.

Lemma 9.22. The following (g′ ⊕ g′,∆(G′))-homomorphism defined by the
composition of maps:

φ′ :
⊕
µ∈Λ

Homg′R,K
′
R
(indg

q(Cλ),W ν(ν + µ))⊗ HomC(W ν(ν + µ),W (ν))∆(G′)

→ HomC(ind
g
q(Cλ),W (ν))∆(G′)

is an isomorphism.

Proof. As in the proof of Lemma 9.17, the injectivity follows. We compare
the two ∆(G′)-type decompositions. Take a finite-dimensional irreducible
representation F of ∆(G′). Then we have

dimCHom∆(G′)(F,Dom(φ′))

=
∑
µ∈Λ

dimCHomg′R,K
′
R
(indg

q(Cλ),W ν(ν + µ))

· dimCHomg′R,K
′
R
(W ν(ν + µ),W (ν)⊗ F ∗)

=dimCHomK′
R
(Cγ,W (ν)⊗ F ∗)

=dimCHom∆(G′)(F,Codom(φ′)).

This shows the lemma.
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9.4 g−σ-action

In the previous section, we have obtained the ‘K-type decomposition’ of
HomC(ind

g
q(Cλ),W (ν))∆(G′). In this section, we study the g−σ-action on each

‘K-type’ φ′(HomC(W ν(ν+µ),W (ν))∆(G′)). Recall that (g, g
′) is a symmetric

pair determined by σ. Then g−σ is equal to g′⊥.
We define

Λν :=
{
µ ∈ Λ : HomK′

R
(Cγ,W ν(ν + µ)) ̸= 0

}
=
{
µ ∈ Λ : W ν(ν + µ) ≃ W (ν + µ)

}
.

For each µ ∈ Λ, we fix a non-zero element

Φν+µ ∈ HomgR′,K′
R
(indg

q(Cλ),W (ν + µ)),

and identify Homg′R,K
′
R
(indg

q(Cλ),W (ν + µ)) with C. Then the isomorphism
in Lemma 9.22 can be rewritten as

φ′ :
⊕
µ∈Λν

HomC(W (ν + µ),W (ν))∆(G′) → HomC(ind
g
q(Cλ),W (ν))∆(G′),

and

φ′(HomC(W (ν + µ),W (ν))∆(G′)) = HomC(W (ν + µ),W (ν))∆(G′) ◦ Φν+µ,

where ◦ means the composition.

Lemma 9.23. Let µ, µ′ ∈ Λ. Then we have

HomC(W ν(ν + µ),W ν(ν))∆(G′) ◦ HomC(W ν(ν + µ+ µ′),W ν(ν + µ))∆(G′)

=HomC(W ν(ν + µ+ µ′),W ν(ν))∆(G′).

Proof. By the definition of W ν(·), there exists a finite-dimensional ∆(G′)-
module F such that W ν(ν + µ) is a direct summand of W ν(ν) ⊗ F . This
implies that there exists an injective map in HomC(W ν(ν + µ),W ν(ν))∆(G′).
Hence the left hand side of the desired equation is non-zero.

By Lemma 9.21, HomC(W ν(ν + µ+ µ′),W ν(ν))∆(G′) is irreducible. This
shows the assertion.

Remark that for µ ∈ Λν , Λν+µ+µ = Λν holds. Then putting Λ′
ν := Λν+ν,

we have Λ′
µ = Λ′

µ′ for any µ, µ′ ∈ Λ′
ν , and

W ν′(µ) ≃ W ν′′(µ)

for any ν ′, ν ′′, µ ∈ Λ′
ν .
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Lemma 9.24. Let µ ∈ Λ′
ν. Suppose

U(g′ ⊕ g′)g−σΦµ =
⊕

α∈D(µ)

φ′(HomC(W µ(µ+ α),W µ(µ))∆(G′))

in HomC(ind
g
q(Cλ),W µ(µ))∆(G′) for some subset D(µ) ⊂ Λµ. Then we have

g−σφ′(HomC(W ν(µ),W ν(ν))∆(G′))

=
⊕

α∈D(µ)

φ′(HomC(W ν(µ+ α),W ν(ν))∆(G′)).

Proof. φ′ is the restriction of the following homomorphism defined by the
composition of maps:

HomC(ind
g
q(Cλ),W ν(µ))∆(G′) ⊗ HomC(W ν(µ),W ν(ν))∆(G′)

→ HomC(ind
g
q(Cλ),W ν(ν))∆(G′).

Hence we have

g−σφ′(HomC(W ν(µ),W ν(ν))∆(G′))

=HomC(W ν(µ),W ν(ν))∆(G′) ◦ (g−σΦµ)

=HomC(W ν(µ),W ν(ν))∆(G′) ◦
⊕

α∈D(µ)

HomC(W ν(µ+ α),W ν(µ))∆(G′) ◦ Φµ+α

=
⊕

α∈D(µ)

HomC(W ν(µ+ α),W ν(ν))∆(G′) ◦ Φµ+α

=
⊕

α∈D(µ)

φ′(HomC(W ν(µ+ α),W ν(ν))∆(G′)).

We used Lemma 9.23 to show the third equality. We have proved the lemma.

By the lemma, to see the g−σ-action, it is enough to study the decomposi-
tion of U(g′ ⊕ g′)g−σΦµ. Since the decomposition depends only on µ, we can
assume µ = ν. The decomposition of U(g′ ⊕ g′)g−σΦν in the lemma always
exists.

By definition, α ∈ D(ν) holds only if W ν(ν + α) is a direct summand of
W ν(ν) ⊗ g−σ. We denote by D0 the set of weights of a′ in (g−σ)M

′
R . Then

we have D(ν) ⊂ D0 ⊂ Λ by the proof of Lemma 9.4 (a) and (b). We will
determine the condition in which D(ν) is equal to D0 ∩ Λν .
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Lemma 9.25. Let {Xi} be a basis of g−σ and {Yi} be the dual basis of {Xi}
with respect to the Killing form. Put Φ′

ν :=
∑

i Yi ⊗ XiΦν. For X ∈ g−σ,
define ιX : HomC(g

−σ ⊗W (ν),W (ν)) by

ιX(a⊗ w) := (X, a)w for a ∈ g−σ and w ∈ W (ν).

Then we have

Φ′
ν ∈ Homg′R,K

′
R
(indg

q(Cλ), g
−σ ⊗W (ν)),

ιX ∈ HomC(g
−σ ⊗W (ν),W (ν))∆(G′),

ιX ◦ Φ′
ν = XΦν .

The proof of the lemma is straightforward. From the above lemma, it is
enough to determine the image of Φ′

ν . Since indg
q(Cλ) ≃ U(g′) ⊗U(k′) Cδ, Φ

′
ν

is reproduced by the value at 1 ∈ Cλ. Then we will compute Φ′
ν(1) using a

good basis of g−σ.
We fix Ψν ∈ Homg′R,K

′
R
(indg

q(Cλ),W (ν)), define Ψ′
ν by the same way as

Φ′
ν and define

D′(ν) :=
{
α ∈ Λ : HomgR,K

′
R
(U(g′)Ψ′

ν(1),W (ν + α)) ̸= 0
}
.

Since the quotient map induces the following surjection:

HomK′
R
(Cγ ,U(g′)Ψ′

ν(1)) → HomK′
R
(Cγ,U(g′)Φ′

ν(1)),

we have D′(ν) ∩ Λν = D(ν).

9.5 Root decomposition

To see the structure of D′(ν), D0, we review the root decomposition of g (see
[13, Part II]). The root decomposition comes from the structure theory of
Jordan algebras and Jordan triple systems. Jordan algebras and Jordan triple
systems are used in the study of degenerate principal series representations
[30, 31], [75], [81], [90, 91]. Following them, we prepare notations.

We define σ(X) := σ(X) for X ∈ g. Fix a maximal abelian subspace
tR of k−σ

R . Since the characteristic element H belongs to
√
−1k−σ

R , we have
H ∈ t. This implies that tR is a maximal abelian subspace of g−σ

R . Then
for any α ∈ ∆(g, t), gα is σ-stable. We fix a set of positive roots ∆+(g, t)
containing ∆(p+, t).

For two roots α, β, we will say that α and β are strongly orthogonal if
α ± β are not roots. We take a maximal set of strongly orthogonal roots
{β1, β2, . . . , βr} ⊂ ∆(p+, t) as follows:
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(i) β1 is the highest root in ∆(p+, t);

(ii) for each i > 0, βi is the highest root in the roots that are strongly
orthogonal to β1, β2, . . . βi−1.

Then β’s have the same length. For each 1 ≤ i ≤ r, we choose an element
Xi ∈ (p+)

σ
βi
such that 2(Xi, σ(Xi)) = (βi, βi). Put Yi := σ(Xi), Hi := [Xi, Yi].

Then {Xi, Yi, Hi} is a sl2-triple.
Define

H ′
i := Xi + Yi ∈ p′R,

X ′
i :=

1

2
(Hi + Yi −Xi) ∈

√
−1g−σ

R ,

Y ′
i :=

1

2
(Hi − Yi +Xi) ∈

√
−1g−σ

R ,

a′R :=
⊕
1≤i≤r

R(Xi + Yi).

Then a′R is a maximal abelian subspace of p′R, and {X ′
i, Y

′
i , H

′
i} forms a sl2-

triple. We define γi ∈ (a′)∗ by γi(H
′
j) = 2δij. Then X ′

i is in (g−σ)γi and Y ′
i is

in (g−σ)−γi . We replace a′R in the previous section by this a′R , and define a
lexicographical order in (a′R)

∗ by the following ordered basis

γ1 > γ2 > · · · > γr.

We take N ′
R determined by this ordering.

Lemma 9.26. X ′’s and Y ′’s are M ′
R-invariant.

Proof. By definition, we have

[H,H ′
i] = [H,Xi + Yi]

= Xi − Yi

= −X ′
i + Y ′

i .

Since [H,H ′
i] is M ′

R-invariant, so is −X ′
i + Y ′

i . X ′
i and Y ′

i have mutually
different weights of a′. Thus X ′’s and Y ′’s are M ′

R-invariant.

The root system ∆(g, a′) is of type Cr or BCr. More precisely, the fol-
lowing fact is known (see [13, Proposition II.2.1]).

Fact 9.27. ∆(g, a′) is of the form:{
±γi ± γj

2
: 1 ≤ i, j ≤ r

}
\ {0} or{

±γi ± γj
2

,±γi
2

: 1 ≤ i, j ≤ r

}
\ {0} .
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By the classification [13, Part II, Table 5], we can see that ∆(g′, a′) is of
type Br or BCr if ∆(g, a′) is of type BCr, and ∆(g′, a′) is of type Ar−1, Cr

or Dr if ∆(g, a′) is of type Cr. Therefore, if ∆(g′, a′) is of type Ar−1, the
Wg′R

-orbits on {±γi : 1 ≤ i ≤ r} are {γi : 1 ≤ i ≤ r} and {−γi : 1 ≤ i ≤ r},
otherwise {±γi : 1 ≤ i ≤ r} contains one Wg′R

-orbit.
In our setting, g′R is either semisimple or reductive with one-dimensional

non-compact center. In the first case, g−σ is irreducible, and in the second
case, g−σ is a direct sum of non-isomorphic two irreducible submodules as a
g′-module. Summarizing these facts, we have

Lemma 9.28. The following conditions are equivalent:

(a) ∆(g′, a′) is of type Ar−1;

(b) g−σ is a direct sum of non-isomorphic two irreducible submodules.

Proof. If ∆(g′, a′) is of type Ar−1, (g−σ)γ1 and (g−σ)−γr are contained in
(g−σ)M

′
RN

′
R . Hence (b) follows.

Assume (b). Then g′R has a one-dimensional non-compact center. Hence
{±γi : 1 ≤ i ≤ r} is divided into at least twoWg′R

-orbits. This implies (a).

Lemma 9.29. For any i, (g−σ)±γi are one-dimensional.

Proof. Assume ∆(g′, a′) is not of type Ar−1. Then g−σ is an irreducible g′-
module. By the explicit root decomposition, (g−σ)γ1 is contained in (g−σ)M

′
RN

′
R .

Since g−σ is an irreducible g′-module, (g−σ)γ1 is one-dimensional. Since
the Wg′R

-action on {±γi} is transitive, this implies that (g−σ)±γi is one-
dimensional for any i.

For type Ar−1, we can apply the same discussion to each irreducible sum-
mand of g−σ.

Lemma 9.30. We have

D0\ {0} = {±γi : 1 ≤ i ≤ r} ,

Λ =
⊕
1≤i≤r

Zγi,

where D0 is the set of weights in (g−σ)M
′
R and Λ is the set of characters of

L′ trivial on Ad(M ′
R) (defined in the previous section). In particular, as an

additive group, Λ is generated by D0.

Proof. We prove that for each α ∈ ∆(g−σ, a′)\ {±γi : 1 ≤ i ≤ r}, (g−σ)
M ′

R
α is

zero.
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For each i, we define gi := exp(π
√
−1ad(H ′

i)). Let ϕi : SL(2,C) → Int(g)
be the homomorphism determined by the sl2-triple {H ′

i, X
′
i, Y

′
i }. Then we

have ϕi(−I) = gi. This implies that gi is an element ofG′∩Int(gR) = Ad(G′
R),

and hence Ad(M ′
R). Take α ∈ ∆(g−σ, a′)\ {±γi}ri=0 and X ∈ (g−σ)α. By Fact

9.27, α is equal to (±γi ± γj)/2 or (±γi)/2 for some i ̸= j. Hence we have

gαi = exp(π
√
−1α(H ′

i)) = −1.

This shows (g−σ)
M ′

R
α = 0.

It is obvious that Λ contains
⊕

1≤i≤r Zγi because D0 is contained in Λ.
The above discussion shows the converse inclusion.

9.6 Computation of D(ν) and D′(ν)

Using the results in the previous section, we will compute D′(ν) and prove
the main theorem 9.13. To do so, the following lemma is useful. Recall

D′(ν)\ {0} ⊂ D0\ {0} = {±γi : 1 ≤ i ≤ r} .

Lemma 9.31. −γ1 ∈ D′(ν) if and only if

(Ψ′
ν(1)(e), X

′
1) ̸= 0.

If ∆(g′, a′) is of type Ar−1, the same statement holds for γr.

Proof. Recall

D′(ν) =
{
α ∈ Λ : HomgR,K

′
R
(U(g′)Ψ′

ν ,W (ν + α))
}
.

We consider the projection p : g−σ ⊗ I (δ, ν) → I (δ, ν − γ1) and the following
isomorphism:

ι : g−σ ⊗ I (δ, ν) ≃ C∞(G′
R/Q

′
R, G

′
R ×Q′

R
((Cγ ⊗ Cν ⊗ 1N ′

R
)⊗ g−σ))K′

R
.

Then under this isomorphism, the projection p is induced from the quotient
map

p′ : g−σ → 1M ′
R
⊗ C−γ1 ⊗ 1N ′

R
.

Then we have

p(X ⊗ f)(e) = p′(ι(X ⊗ f)(e)).
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for any f ∈ I (δ, ν) and X ∈ g−σ. Since ι(X ⊗ f)(g) = Ad(g−1)(X) ⊗ f(g)
for g ∈ G′

R, we obtain

p(X ⊗ f)(e) = p′(ι(X ⊗ f)(e)) = p′(X ⊗ f(e)) = (X,X ′
1)Y

′
1 ⊗ f(e).

Since Ψ′
ν is a relative K ′

R-invariant in (g−σ ⊗W (ν)), p(Ψ′
ν) is non-zero if

and only if p(Ψ′
ν)(e) is non-zero. This implies that −γ1 ∈ D′(ν) if and only

if

(Ψ′
ν(1)(e), X

′
1) ̸= 0.

The proof for type Ar−1 is the same.

By the above lemma, we can see

Lemma 9.32. −γ1 ∈ D′(ν) if and only if

(ν, γ1)

(γ1, γ1)
+

(λ, β1)

(β1, β1)
̸= 0.

Suppose ∆(g′, a′) is of type Ar−1. Then γr ∈ D′(ν) if and only if

(ν, γr)

(γr, γr)
− (λ, βr)

(βr, βr)
̸= 0.

Remark 9.33. The value of (λ, βi)/(βi, βi) is independent of i. This is be-
cause the Weyl group acts on {βi : 1 ≤ i ≤ r} transitively and λ is a character
of k.

Proof. To compute Ψ′
ν , we take a basis of g−σ such that each vector is weight

vector of a′. Then we have

(Ψ′
ν(1)(e), X

′
1) = −Ψν(X

′
1 · 1)(e).

Since pσ ⊕ p+ = p−σ ⊕ p+, we have

X ′
1 =

1

2
(X ′

1 + θ(X ′
1)) +

1

2
(X ′

1 − θ(X ′
1))

=
1

2
(X ′

1 + Y ′
1) +

1

2
(X ′

1 − Y ′
1)

∼ 1

2
(X ′

1 + Y ′
1)− [Z,

1

2
(X ′

1 − Y ′
1)] (mod p+)

=
1

2
(X ′

1 + Y ′
1) +

1

2
H ′

1.

131



Hence we obtain

Ψν(X
′
1 · 1)(e) =

1

2
H ′

1Ψν(1)(e) + Ψν

(
1

2
(X ′

1 + Y ′
1) · 1

)
(e)

=
ν(H ′

1)

2
Ψν(1)(e) +

λ(H1)

2
Ψν(1)(e)

=
(ν, γ1)

(γ1, γ1)
Ψν(1)(e) +

(λ, β1)

(β1, β1)
Ψν(1)(e)

This shows the assertion.

Recall D(ν) = D′(ν) ∩ Λν . To know the structure of D(ν), let us study
Λν . We define

Λ− :=

{∑
1≤i≤r

miγi ∈ Λ : m1 ≤ m2 ≤ · · · ≤ mr ≤ 0

}
.

By Fact 9.27, any element of Λ− is the lowest restricted weight of some
irreducible G′-module.

Lemma 9.34. There exists an element w ∈ WgR such that W (ν) is an
irreducible submodule of I (δ, w(ν − ρ(n)) + ρ(n)). Moreover, for such w,
Λν + w−1(Λ−) is contained in Λν.

Proof. By the Casselman subrepresentation theorem, W (ν) can be embedded
in I (δ′, ν ′) for some δ′, ν ′. Since W (ν) has the one-dimensional K ′

R-type γ, δ
′

is isomorphic to δ. As in the proof of Lemma 9.11, comparing two U(g′)K′
R-

actions, we can take an element w ∈ WgR such that ν ′ = w(ν − ρ(n)) + ρ(n).
This proves the first assertion.

Since W (ν) is isomorphic to W (w(ν − ρ(n)) + ρ(n)), Λw(ν−ρ(n))+ρ(n) =
w(Λν) holds. Hence we can assume w = e. Then W ν(ν+µ) is an irreducible
submodule of I (δ, ν+µ) for any µ ∈ Λ. Take α ∈ Λ−. Then I (1, α) contains
a unique spherical finite-dimensional representation F . We take non-zero
ϕ ∈ FK′

R .
Take µ ∈ Λν . Then W ν(ν + µ) = W (ν + µ) holds. Since any function of

I (δ, ν+µ) is real analytic, ϕ·W (ν+µ) is a non-zero subspace of I (δ, ν+µ+α)
and has the K ′

R-type γ. Hence F ⊗W (ν + µ) contains W (ν + µ+ α). Thus
we have

W ν(ν + µ+ α) = W (ν + µ+ α) = W (ν + µ+ α).

This shows α+ µ ∈ Λν .
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Theorem 9.35. Suppose that δ and ν satisfy the condition of Lemma 9.4,
and suppose

±(w(ν − ρ(n)) + ρ(n), γ1)

(γ1, γ1)
+

(λ, β1)

(β1, β1)
̸∈ Z

for any w ∈ Wg′R
. Then HomC(ind

g
q(Cλ),W (ν))∆(G′) is irreducible as a

(g′ ⊕ g,∆(G′))-module.

Proof. For simplicity, define w ◦ µ := w(µ − ρ(n)) + ρ(n). We assume that
∆(g′, a′) is not of type Ar−1. For the case of type Ar−1, the proof is the same.

First, we show D(µ)\ {0} = (D0\ {0})∩Λµ for any µ ∈ Λ′
ν . Take µ ∈ Λ′

ν .
By assumption, we can apply Lemma 9.32 to w ◦ µ for any w ∈ Wg′R

. Then
we have D′(w ◦ µ) ∋ −γ1. From the following relation:

w(D(µ)) = D(w ◦ µ) = D′(w ◦ µ) ∩ Λw◦µ,

−γ1 ∈ Λw◦µ if and only if −γ1 ∈ w(D(µ)). This implies that −w−1(γ1) ∈
D(µ) if and only if −w−1(γ1) ∈ Λµ. Thus since Wg′R

acts on {±γi : 1 ≤ i ≤ r}
transitively, we obtain

D(µ)\ {0} = (D0\ {0}) ∩ Λµ. (9.35.2)

For µ, µ′ ∈ Λ′
ν , µ is said to be adjacent to µ′ if µ′ − µ ∈ D(µ) holds.

By (9.35.2), we can see that µ is adjacent to µ′ if and only if µ′ is ad-
jacent to µ. Then there is a bijection between the set of submodules of
HomC(ind

g
q(Cλ),W (ν))∆(G′) and the set of connected components of Λ′

ν with
respect to this adjacent relation. Hence Λ′

ν is connected if and only if
HomC(ind

g
q(Cλ),W (ν))∆(G′) is irreducible.

Take µ, µ′ ∈ Λ′
ν . We show that µ and µ′ are in the same connected

component. By Lemma 9.34, there exists an element w ∈ Wg′R
such that

µ + w(Λ−) and µ′ + w(Λ−) are contained in Λ′
ν . By the definition of Λ−,

µ+w(Λ−) is contained in one connected component. We can assume w = e.
We prove that (µ+Λ−)∩ (µ′ +Λ−) is non-empty. Replacing µ by µ−µ′,

we can assume that µ′ = 0 and µ belongs to Λ. Write

µ =
r∑

i=0

ciγi

for some ci ∈ Z. For convenience, we set cr+1 = 0. We define

ai :=
i∑

j=1

max(cj − cj+1, 0),

α :=
r∑

i=1

aiγi.
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Then it is clear that α ∈ Λ− and µ + α ∈ Λ−. This implies µ + α ∈
(µ+ Λ−) ∩ Λ−. We have proved the theorem.

Using the Jantzen–Zuckerman translation functor, we obtain the following
corollary.

Corollary 9.36. Let F be an irreducible unitary representation of KR in the
good range with respect to q, and let (δ, Vδ) be an irreducible subrepresentation
of F |M ′

R
. Suppose that c(k) acts on F by a character λ. Assume that λ, δ

and ν ∈ (a′)∗ satisfy the condition of Lemma 9.4 and Theorem 9.35. Let W
be an irreducible subquotient of I (δ, ν). Then HomC(ind

g
q(F ),W )∆(G′) is an

irreducible (g′ ⊕ g,∆(G′))-module.

Proof. Let G̃ be a simple-connected connected algebraic group with Lie al-
gebra g and G̃R the real form of G corresponding to gR. Then there are
surjective homomorphism:

GR → G̃R.

The image of a subgroup of GR under the above homomorphism is denoted

by the same Roman alphabet with tilde such as G̃′
R.

We denote by χ1 (resp. χ′
1) the infinitesimal character of indg

q(F ) (resp.
I (δ, ν)). As in the proof of Theorem 6.1, there exists a unitary character Cα

of KR in the good range such that C−α ⊗ F reduces to a representation of

K̃R. Hence we can take a finite-dimensional irreducible G̃-module V and a
infinitesimal character χ2 such that

T χ1
χ2
(indg

q(Cα)) = Pχ1(V ⊗ indg
q(Cα)) ≃ indg

q(F ).

Since Vδ ⊗ C−α reduces to a representation of M̃ ′, there exist a finite-

dimensional irreducible G̃′-module V ′, an infinitesimal character χ′
2 and ν ′ ∈

(a′)∗ such that

T
χ′
1

χ′
2
(I (α, ν ′)) = Pχ′

1
(V ′ ⊗ I (α, ν ′)) ≃ I (δ, ν).

In this setting, HomC(V, V
′) is an irreducible (g′ ⊕ g,∆(G̃′))-module, and

has a non-zero M ′
R-invariant vector. Hence HomC(V, V

′) is a (g′ ⊕ g,∆(G′))-

module. Thus HomC(V, V
′) defines the translation functor T

(χ′
1,χ1)

(χ′
2,χ2)

in the

category C(g′ ⊕ g,∆(G′)). This implies that HomC(ind
g
q(F ),W )∆(G′) is irre-

ducible if and only if HomC(ind
g
q(Cα), T

χ′
2

χ′
1
(W ))∆(G′) is irreducible.
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Considering the action of gi defined in Lemma 9.30 on M ′
R-invariant vec-

tors, we obtain

±(w(ν ′ − ν), γ1)

(γ1, γ1)
+

(α− λ, β1)

(β1, β1)
∈ Z

for any w ∈ Wg′R
. Therefore, Theorem 9.35 shows the assertion.

By the above corollary, we obtain the following results.

Corollary 9.37. Retain the setting in Corollary 9.36. Then the U(g)G′
-

module Homg′R,K
′
R
(indg

q(F ),W ) is irreducible.

Corollary 9.38. Let F be an irreducible unitary representation of KR in the
good range with respect to q. Let π denote the algebra homomorphism of U(g)
defining indg

q(F ). Then we have

PI.deg(π(U(g)G′
)) = MG′

R
(indg

q(F )) = MM ′
R
(F ),

where indg
q(F ) is the Hilbert completion with respect to an invariant inner

product.

Proof. The first equation is proved by Corollary 9.37, 7.12 and 7.13.
For an irreducible unitary representation δ of M ′

R, Proposition 9.1 leads
to

Homg′R,K
′
R
(indg

q(F ), I (δ, ν)) ≃ HomK′
R
(F, I (δ, ν))

≃ HomM ′
R
(F, δ).

Since I (δ, ν) is irreducible for generic ν by a theorem of Bruhat (see [38,
Theorem 7.2]), this and Corollary 7.12 imply

MG′
R
(indg

q(F )) ≤ MM ′
R
(F ).

Since Homg′R,K
′
R
(indg

q(F ), I (δ, ν)) is an irreducible U(g)G′
-module for generic

ν, Proposition 2.27 shows

PI.deg(π(U(g)G′
)) ≥ MM ′

R
(F ).

Therefore, the second equation holds.

10 Application: classification of multiplicity-

free holomorphic discrete series represen-

tations

In this section, we classify multiplicity-free restrictions of holomorphic dis-
crete series representations with respect to symmetric subgroups.
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10.1 Setting

Let GR is a connected real simple Lie group of Hermitian type with Cartan
involution θ. Assume that GR is a subgroup of simply-connected connected
complex simple Lie group G with Lie algebra g. Put KR := Gθ

R. Take an
involutive automorphism σ of G commuting with θ.

As in Section 2.3, fix a characteristic element H ∈
√
−1c(k), and con-

struct subalgebras q, q̄, p+, p−. We fix a unitary character ζ of KR such that
2(ζ, α)/(α, α) = 1 for a unique non-compact simple root α ∈ ∆(p+, h). For
an irreducible unitary representation F of KR with infinitesimal character λ,
we define

Zhol(F ) := {z ∈ Z : (λ+ ρ(p+), α) < 0 for any α ∈ ∆(p+, h)} ,

Zfin(F ) :=

{
z ∈ Z :

2(λ+ ρ(p+), α)

(α, α)
∈ {1, 2, . . .} for any α ∈ ∆(p+, h)

}
,

and let L(F ) denote a unique irreducible submodule of progq̄(F ).
Summarizing the results in the previous sections, we obtain

Theorem 10.1. Let MR denote the centralizer in Kσ
R of a maximal abelian

subspace a′R ⊂ p−σ
R . For an irreducible unitary representation F of KR, the

following conditions are equivalent:

(a) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for any z ∈ Zhol(F );

(b) MGσ
R
(progq̄(F ⊗ Czζ)) = 1 for some z ∈ Zhol(F );

(c) MGσ(L(F ⊗ Czζ)) = 1 for any z ∈ Zfin(F );

(d) MMR(F ) = 1.

Proof. Note that Gσ
R is connected in the above settings if (gR, gR

σ) is of
holomorphic type. If (g, gσ) is of holomorphic type, the equivalence of (a),
(b) and (d) has been proved in Corollary 3.39, and the equivalence of (a) and
(c) has been proved in Theorem 4.12.

Assume that (g, gσ) is of anti-holomorphic type. Note that MR is equal
to the centralizer in Kσ

R of some maximal abelian subspace of pσR. In fact,
[H, a′R] is a maximal abelian subspace of pσR, and ZKσ

R
([H, a′R]) = ZKσ

R
(a′R).

Corollary 9.38 shows the equivalence of (a), (b), (d). We denote by πz the
representation map of progq̄(F ⊗ Czζ). We use Theorem 4.7. The condition
(c) is equivalent to the condition that πz(U(g)G

σ
) is commutative for any z.

The condition (a) is also equivalent to the same condition. Thus (a) and (c)
are equivalent.

Remark 10.2. The theorem holds for the universal covering of GR.
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10.2 Classification

Using Theorem 10.1, we classify multiplicity-free restrictions of holomorphic
discrete series representations with respect to Gσ

R.

Theorem 10.3. Let H be a holomorphic discrete series representation of
GR. Put F := Hp+

K . Then H|G′
R
is multiplicity-free if and only if F is one-

dimensional or the highest weight of F |[k,k] belongs to Λ(σ) in Table 2.

Remark 10.4. The multiplicity-freeness for special cases are known:

• dimC(F ) = 1 (by T. Kobayashi [44, 50] (Fact 1.8));

• (gR, g
′
R) = (so(2, n), so(2, n − 1)) (by Jakobsen–Vergne [29, Corollary

3.1]);

• (gR, g
′
R) = (su(p, q), u(p− 1, q)) (by T. Kobayashi [52, Theorem 8.10]).

Remark 10.5. The classification of irreducible symmetric pairs was obtained
by M. Berger [2]. We refer the reader for the table to [47, Table I, II].

gR gσR ± st. Λ(σ)
su(p, q) su(p1, q1) + su(p2, q2) + t h ⃝ (p1 + q1 = 1, p+ q − 1) any

(p1 + q1 = 2, p+ q − 2) mωi

ωi, mωi(i = 1, p± 1, p+ q − 1)
so(p, q) a ωi

sp(p/2, q/2) a mωi(i = 1, p± 1, p+ q − 1)
su(n, n) so∗(2n) h ωi

sp(n,R) h (n = 2) any
(n ≤ 4) mωi

mωi(i = 1, n± 1, 2n− 1)
sl(n,C) + R a ⃝ (n = 2) mωi

ωi, mωi(i = 1, n± 1, 2n− 1)
so∗(2n) so∗(2p) + so∗(2n− 2p) h ⃝ (min(p, n− p) = 1) mωi

ω2, ωn

u(p, n− p) h ⃝ mωi(i = 2, n)
(n = 4, p:odd) mωi(i = 2, 3, 4)

so(n,C) a ω2, ωn

su∗(n) + R a ⃝ mωi(i = 2, n)
so(2, n) so(2, p) + so(n− p) h (p = n− 1) any

(n:odd) ω1

⃝ (n:even p = 0, n− 2) mω1,mω2

(n:even) ω1, ω2
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gR gσR ± st. Λ(σ)
so(1, p) + so(1, n− p) a the same as above

u(1, n/2) h ⃝ mωi(i = 1, 2, n/2)
sp(n,R) sp(p,R) + sp(n− p,R) h (min(p, n− p) = 1) mωi

ω2, ωn

u(p, n− p) h ⃝ ωi

sp(n/2,C) a ω2, ωn

sl(n,R) + R a ⃝ ωi

e6(−14) so(10) + t h ⃝ mω6

so∗(10) + t h ⃝
so(2, 8) + t h ⃝

su(5, 1) + sl(2,R) h none
su(4, 2) + su(2) h none

f4(−20) a mω2, mω3

sp(2, 2) a ω6

e7(−25) e6(−78) + t h ⃝ none
e6(−14) + t h ⃝ none

so(10, 2) + sl(2,R) h none
so∗(12) + su(2) h none

su(6, 2) h none
e6(−26) + R a ⃝ none

su∗(8) a none
Table 2: the classification of multiplicity-free restrictions
of holomorphic discrete series representations

The symbol t (resp. R) means that the Lie algebra has the one-dimensional
compact (resp. non-compact) center. The circle of the column with title ‘st’
means that its classification can be reduced to the Stembridge classification,
that is, G′

R has a one-dimensional center. The column with title ‘±’ means
that if the value is ‘h’, the symmetric pair is of holomorphic type, and if the
value is ‘a’, the symmetric pair is of anti-holomorphic type. ω’s are funda-
mental weights corresponding to simple roots given later. mωi means that
mωi is in Λ(σ) for any m.

In [96], Stembridge classified multiplicity-free restrictions of irreducible
finite-dimensional representations with respect to Levi subgroups. If Gσ

R
has a one-dimensional center, Gσ is a Levi subgroup of G. Therefore, by
Theorem 10.1, the desired classification for the case is immediately obtained
from Stembridge’s classification.

The following two propositions are useful to prove the theorem.
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Proposition 10.6. Let σ′ be an involutive automorphism of GR. Assume
that Gσ and Gσ′

are conjugate in G. Then Λ(σ) = Λ(σ′) holds.

Proof. The assertion is a direct consequence of Theorem 10.1.

The proposition asserts that the classification is independent of a choice
of real forms.

Proposition 10.7. Let progq̄(F ) be the underlying Harish-Candra module of
a holomorphic discrete series representation of GR. Suppose that (GR, G

σ
R) is

of holomorphic type (see Section 3.2.4). Then progq̄(F )|(gσ ,Kσ) is multiplicity-

free if and only if prog
θσ

q̄θσ
(F )|Kθσ is multiplicity-free.

Proof. Since p+/p
σ
+ ≃ pθσ+ , Fact 4.9 shows the proposition.

Remark 10.8. The reduction to the K-type formula of the associated sym-
metric subalgebra gθσR is used in the proof of the Hua–Kostant–Schmid–
Kobayashi theorem [44, Theorem C] (see also [52, Theorem 8.3 and Lemma
8.8]).

By the proposition, we can reduce the classification for symmetric pairs of
holomorphic type to the K-type case of gθσ. As mentioned above, the classifi-
cation of K-type multiplicity-free holomorphic discrete series representations
is obtained from Stembridge’s classification.

Lemma 10.9. Let Λ+ be the set of dominant integral weights of kss := [k, k].
If λ ̸∈ Λ(σ), (λ+ Λ+) ∩ Λ(σ) = ∅ holds.

Proof. Take µ ∈ Λ+. We can take z, z′ ∈ C such that λ+ zζ and µ+ z′ζ are
dominant integral weights of G. For a dominant integral weight ν of G, we
denote by FG(ν) the finite-dimensional irreducible representation of G.

By Theorem 10.1 and the assumption λ ̸∈ Λ(σ), replacing z by larger
one, we can assume that FG(λ+ zζ)|Gσ is not multiplicity-free. Fix a Borel
subgroup B = TN of Gσ (since G is simply-connected and connected, Gσ is
connected), where N is the unipotent radical of B.

We take a non-zero T -weight vector v ∈ FG(µ+z′ζ)N . Then by the Borel–
Weil construction, the multiplication of two sections induces a T -module
injection FG(λ+ zζ)N ⊗Cv → FG(λ+ µ+ (z + z′)ζ)N . Since FG(λ+ zζ) is
not multiplicity-free, this implies that FG(λ+µ+(z+z′)ζ) is not multiplicity-
free. Therefore, we have λ+ µ ̸∈ Λ(σ).

Remark 10.10. A similar result for a tensor product of two finite-dimensional
irreducible representations is used in Stembridge’s classification [96, Corol-
lary 2.10].
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For fundamental weights, we can easily check the condition ωi ̸∈ Λ(σ)
because for classical cases, the corresponding finite-dimensional irreducible
representation FG(ωi) can be realized in the exterior product of a natural
representation.

Lemma 10.11. Assume rankR(gR) = rankR(g
σθ
R ). Then we have Λ(σ) ⊂

Λ(θ).

Proof. By assumption, a′R is a maximal abelian subspace of pR, and ZKσ
R
(a′R) ⊂

ZKR(a
′
R) holds. Therefore, Theorem 10.1 shows the assertion.

Since the set Λ(θ) can be computed by Stembridge’s classification, we can
narrow candidates of Λ(σ).

10.3 Proof of Theorem 10.3

Let Λ+ be the set of all dominant integral weights of [k, k]. We identify the
restriction of a fundamental weight ωi with ωi. For λ ∈ Λ+, we denote by
Mg(λ) the underlying Harish-Chandra module of one of holomorphic discrete
series representations with highest weight λ+ zζ. We write F (λ) for the p+-
invariant part of Mg(λ).

10.3.1 gR = su(p, q)

The Dynkin diagram of g is as follows:

◦
α1

◦
α2

· · · ◦
αp+q−2

◦
αp+q−1

, and αp is a unique non-compact simple root.

gσR = so(p, q) Assume p ≤ q. MR is isomorphic to O(1) × O(1) × · · · ×
O(1) × SO(q − p), the direct product of SO(q − p) and p copies of O(1).
By a straightforward computation for

∧i(Cp) and
∧i(Cq), we have Λ(σ) ⊃

{ωi : 1 ≤ i < p+ q, i ̸= p}. By the explicit branching laws for (U(n),U(n−1))
and (U(n),O(n)), FK(ωi + ωj)|MR is not multiplicity-free for any i, j. Thus
we obtain

Λ(σ) = {ωi : 1 ≤ i < p+ q, i ̸= p} .
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gσR = sp(p/2, q/2) MR is isomorphic to Sp(1)×Sp(1)×· · ·×Sp(1)×Sp(q−p),
the direct product of Sp(q−p) and p copies of Sp(1). By a direct computation
for
∧i(Cp)|MR and

∧i(Cq)|MR , we have

ωi ∈ Λ(σ) ⇐⇒ i = 1, p± 1, p+ q − 1.

It is easy to see that ωi + ωj ̸∈ Λ(σ) if i, j ⊂ {1, p± 1, p+ q − 1} and i ̸= j
by an explicit computation. This implies

Λ(σ) ⊂ {mωi : i = 1, p± 1, p+ q − 1} .

Since mωi for i = 1, p ± 1, p + q − 1 is isomorphic to a symmetric product
of a natural representation, it is easy to see that their restriction to MR are
multiplicity-free. Then we obtain

Λ(σ) = {mωi : i = 1, p± 1, p+ q − 1} .

gσR = so∗(2n), p = q = n We divide the highest weight λ into two parts
λ1, λ2 corresponding to kss = su(p) ⊕ su(q). By Proposition 10.7, Mg(λ1 +
λ2)|gσ is multiplicity-free if and only ifMgσθ(λ1)⊗Mgσθ(λ2) is multiplicity-free.
By Stembridge’s classification, we have λ1 = ωi, λ2 = 0 or λ1 = 0, λ2 = ωi

for some i.

gσR = sp(n,R), p = q = n In this case, we can do the classification by the
same way as the case gσR = so∗(2n).

10.3.2 gR = so∗(2n)

The Dynkin diagram of g is as follows:

◦
α1

◦α2

|
◦
α3

· · · ◦
αn−1

◦
αn

, and α1 is a unique non-compact simple root.

gσR = so∗(2p) + so∗(2n− 2p)

min(p, n− p) ̸= 1 case. Using Proposition 10.7, we reduce the classification
to the case of (gR, kR) = (su(p, q), su(p) + su(q) + t).

min(p, n− p) = 1 case. In this case, so∗(2p) ≃ u(1) or so∗(2n− 2p) ≃ u(1).
Thus we have Λ(H) = {mωi : i ∈ {2, 3, . . . , n}} by Stembridge’s classi-
fication.
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gσR = so(n,C) Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds by Lemma

10.11. In this case, MR is a maximal torus of SO(n). Hence it is easy to see
that Λ(σ) = {ω2, ωn}.

10.3.3 gR = so(2, n)

If n is odd, the Dynkin diagram of g is as follows:

◦
α1

⇐= ◦
α2

· · · ◦
αl−1

◦
αl

, where l = (n+ 1)/2. αl is a unique non-compact simple root.
If n is even, the Dynkin diagram of g is as follows:

◦
α1

◦α2

|
◦
α3

· · · ◦
αl−1

◦
αl

, where l = n/2 + 1. αl is a unique non-compact simple root.

gσR = so(2, p) + so(n− p)

p = 0 or p = n− 2 case In this case, the classification is reduced to Stem-
bridge’s classification.

p = n− 1 case Using a well-known fact that the restriction of any irre-
ducible representation of SO(n + 2,C) with respect to SO(n + 1,C)
is multiplicity-free. Therefore, we have Λ(σ) = Λ+.

p ̸= 0, n− 2, n− 1 case Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds

by Lemma 10.11. Hence we have

Λ(σ) ⊂
{

{ω1} if n is odd
{mω1,mω2} if n is even

By straightforward computation, the assertion follows.

gσR = so(1, p) + so(1, n − p) The classification is the same as above by
Proposition 10.6.

10.3.4 gR = sp(n,R)

The Dynkin diagram of g is as follows:

◦
α1

=⇒ ◦
α2

· · · ◦
αn−1

◦
αn

, and α1 is a unique non-compact simple root.
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gσR = sp(p,R) + sp(n − p,R) By Proposition 10.7, the classification is the
same as (gR, g

σ
R) = (so∗(2n), so∗(2p) + so∗(2q)) case.

gσR = sp(n/2,C) The classification is the same as above by Proposition 10.6.

10.3.5 gR = e6(−14)

The Dynkin diagram of g is as follows:

◦
α1

◦
α3

◦α2

|
◦
α4

◦
α5

◦
α6

, and α1 is a unique non-compact simple root.

gσR = su(5, 1) + sl(2,R) Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds

by Lemma 10.11. Thus we have Λ(σ) ⊂ Z≥0ω6. Note gθσR ≃ so∗(10) + t.
Consider λ = ω6. We compute the branching law using Proposition 10.7.

We can see that prog
θσ

qθσ
(FK(ω6))|Kσ is isomorphic to⊕

a≥b≥0

FKσ

((a, a, b, b, 0))⊗ (FKσ

((1, 0, 0, 0, 0))⊕ FKσ

((0, 0, 0, 0,−1)))

and this is not multiplicity-free. Therefore, we have Λ(σ) = {0}.

gσR = su(4, 2)+ su(2) The classification is the same as above by Proposition
10.6.

gσR = f4(−20) In this case, MR is isomorphic to Spin(7). Computing explicit
branching laws for (Spin(10), Spin(7)), we have the classification.

gσR = sp(2, 2) Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds by Lemma

10.11. Hence Λ(σ) ⊂ {mω6}. MR is isomorphic to Sp(1)× Sp(1). It is easy
to see that F (ω6)|MR ≃ C10|MR is not multiplicity-free.

10.3.6 gR = e7(−25)

The Dynkin diagram of g is as follows:

◦
α1

◦
α3

◦α2

|
◦
α4

◦
α5

◦
α6

◦
α7

, and α7 is a unique non-compact simple root.
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gσR = so(10, 2) + sl(2,R) By Proposition 10.7, we can reduce the classifica-
tion to the K-type decomposition for g = e6. g

σθ
R ∩ kss = so(10) + t is a Levi

subgroup of kss. Consider (kss)C = e6 = p′+ ⊕ kσ ⊕ p′− and the p′±-action on

F (λ). Then there exists a submodule F ′ of F (λ) such that prog
σθ

q̄σθ(F
′)|kσ is

not multiplicity-free.

gσR = so∗(12)+ su(2) The classification is the same as above by Proposition
10.6.

gσR = su(6, 2) Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds by Lemma

10.11. Thus we have Λ(σ) = {0}.

gσR = su∗(8) Since rankR(gR) = rankR(g
σθ
R ), Λ(σ) ⊂ Λ(θ) holds by Lemma

10.11. Thus we have Λ(σ) = {0}.
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