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Preface

Blow-up phenomena are one of important problems in the theory of nonlinear partial
differential equations (PDEs). Since the behavior of solutions of PDEs near the blow-
up time is a meaningful study, the numerical study of them is also crucial from the
standpoint of mathematical study. In this paper, we study numerical analysis of
blow-up phenomena for nonlinear wave equations focusing on the blow-up time.

In practical applications, it is desirable to use numerical methods which are math-
ematically guaranteed their validity. This is because it is hard to distinguish the
numerical results which exactly simulate blow-up phenomena of PDEs from failure
of computations.

Moreover, convergence analysis of numerical method used for the simulations is
important for the numerical analysis of blow-up phenomena. In this paper, we
consider a splitting method which is a time-discretization numerical method. It is
often used for Schrodinger equations.

On the other hand, we analytically show continuous differentiability of the blow-up
curve of a wave equation with a nonlinear term involving the derivative of unknown
functions by applying the idea of numerical analysis in Chapter 1. We also simulate
these results. Moreover, we present numerical results that showed the blow-up curves
have singular points.

In Chapter 1, we consider the following wave equation.

— = |ulP, t>0, z €Sy,
{utt Uy |u| X L (01)

uw(0,z) = up(x), w(0,2) =wui(z), x€SL.

Here, S;, = R/LZ and p > 1 is a constant such that the function s? (s > 0) is of
class C*. The solution of (0.1) blows up in finite time if the initial values are large
enough. The aims of this Chapter are to construct the numerical method of the
blow-up time and to give the error estimates of them. In this paper, we call the
approximation of the blow-up time numerical blow-up time. We divide the proof of
convergence of the numerical blow-up time into 2 steps.

(Step 1.) Proof of convergence of numerical method for wave equations.
(Step 2.) Proof of convergence of numerical blow-up time.

There are almost no studies on numerical blow-up time for wave equations, while
there are lots of such studies for heat equations. In resent years, construction of
numerical blow-up time and convergence analysis of it for wave equations were done
by Cho [10]. However, the proof of (Step 1.) is still open at present. He proved
(Step 2.) holds under the assumption that (Step 1.) holds.



We need to take sufficiently small time increments near the blow-up time in order
to compute the blow-up phenomena. That is, we use the variable time increments.
There are many results of convergence analysis of numerical methods using variable
time increments for heat equations. However, there is no such study for wave equa-
tions. The reason is that wave equations have the second derivative by time. Thus,
we construct the numerical methods and corresponding numerical blow-up time for
(0.1) and prove both (Step 1.) and (Step 2.).

We rewrite (0.1) as the following first order system.

U + Uy = @, t>0, xS,
¢t — bu = |uf?, t>0, z €S, (0.2)
uw(0,2) =up(z), ¢(0,2) =ui(z) +uy(z), x € SL.

We present numerical method using variable time increments for (0.2). We show
our numerical methods satisfy (Step 1.) by using the idea of [32]. We also prove our
numerical blow-up time satisfies (Step 2.). Moreover, we present numerical results
of blow-up time of (0.2).

In Chapter 2, we consider error analysis of semilinear evolution equations. As
mentioned above, such study is important from the viewpoint of numerical analysis
of blow-up phenomena. Let X be a Hilbert space and let A be an m-dissipative
operator in X. For ug € D(A), we consider the following Cauchy problem for
semilinear evolution equation:

{ u = Au+ F(u), te€l0,T], (0.3)

u(0) = uo,

The splitting method is one of time-discretization methods. Let S(¢) be the solution
operator of (0.3). The idea behind splitting methods is to approximate the solution
u(t) = S(t)ug of (0.3) by ®4(t) and ®p(t), which are solution operators of dyv = Av
and dyw = F(w), respectively. The splitting method is useful when ® 4(t) and ® ()
are easy to compute, while S(t)ug is difficult to compute. In particular, the approx-
imation W (t) = ®4(t/2)Pp(t)Pa(t/2) is called the Strang-type splitting method.
The Strang-type spitting method is numerically known as a second order convergent
scheme. In addition, splitting method retains the dissipation or conservation prop-
erties of (0.3). Hence their ease of calculation and the dissipation or conservation
properties, the splitting method is in common used as a numerical method for solv-
ing various differential equations. However, there are many open problems on error
analysis of (0.3). In particular, for (0.3), whether the Strang-type splitting method
is second order convergent or not was an open question in a rigorous manner.

The splitting method which is split into 2 parts is used on many occasions. On
the other hand, sometimes there are cases that we should use the splitting method
which is split into 3 parts. Therefore, we demonstrate that the convergence of our
Strang-type splitting method which is split into 3 parts is a second order rate.



In Chapter 3, we consider a blow-up curve for the following nonlinear wave equa-

tion.
gy = F (1), t>0, z €R,
Ut — Ugz (u) x (0.4)
u(z,0) = up(z), w(z,0)=ui(z), zeR,
where F(u) = |ut/P. Here, p > 1 is a constant such that the function s? (s > 0)

is of class C*. Tt is well known that the solution of (0.4) blows up in finite time if
the initial values are large enough. Let R* and 7™ be positive constants. We set
Bp« = {z | |z| < R*}. We consider

T(x)=sup{t € (0,T%) | |u(t,z)| < o0} (x € Bpr+).

We call ' = {(T(x),z) | * € Bpg+} blow-up curve. Below, we will identify T
with T itself. We have 2 purposes of this Chapter. First, we analytically show
that T € C'(Bg+). Second, we present numerical examples of blow-up curve. We
numerically show that the blow-up curve is smooth if the initial values of (0.4) are
large and smooth enough. Moreover, we show that the case where the blow-up curve
has singular points even the initial values are smooth. In previous study, the cases
of F(u) = |u|P, e" and the following blow-up curve are considered (for example, [6],

[7], [18]).

T(z) =sup{t e (0,T%) | |u(t,z)| < oo} (x € Br).
It was shown that T € C''(B r+) under suitable initial values. The method introduced
by Caffarelli-Friedman [7] are used in the proof of regularity of the blow-up curve.
However, we cannot directly apply their method to (0.4) in the case of F'(u) = |u|P.
For these reasons, the mathematical analysis of blow-up curve for the wave equation
with a nonlinear term involving the derivative of unknown functions is not well
understood.

On the other hand, Ohta-Takamura [30] studied the blow-up curve in the case of
F(u) = (u)? — (uz)?. The key point of their proof is the transformation v = e,
We see that v satisfies vy — vy, = 0. Thanks to the linearization, we can study the
blow-up curve in the case of F(u) = (u)?> — (ugz)?. However, we cannot use this
transformation in the case of F(u) = |u|P.

Thus, we rewrite (0.4) as the following first order system by using the idea of
Chapter 1.

D_¢=27P|¢ + Y|P, t>0, zeR,
D+¢:2_p|¢+¢’pv t>07 SCER,
¢(x,0) = f(z), (z,0)=yg(x), zekR,

where D_v = vy — v, Dyv = vy + v, and f = ug + Oyug, g = uy — Opug. Such
rewriting makes it easier to analyze the blow-up curve, not to mention ease of analysis
of numerical methods. We also offer an alternative proof of [7] for showing that
the blow-up curve of the blow-up limits is an affine function. Our proof is more
elementary and easy to read. Moreover, we show some numerical examples of the



blow-up curve of (0.4) in the case of F(u) = |w/P. From the numerical results,
the blow-up curve sometimes has singular points even the initial values are smooth
if the initial values are not large. The analytical proof is still open in the case of
F(u) = |uP.

In order that we want to readers to avoid to confuse the formulations, we explicitly
write the definitions in each chapter. Although multiple same definitions may appear
through the thesis, the arguments in each chapter become self contained. This helps
readers understand the detailed content of each chapter separately.
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1 Blow-up of finite-difference solutions to
nonlinear wave equations

Finite-difference schemes for computing blow-up solutions of one dimen-
sional nonlinear wave equations are presented. By applying time in-
crements control technique, we can introduce a numerical blow-up time
which is an approximation of the exact blow-up time of the nonlinear
wave equation. After having verified the convergence of our proposed
schemes, we prove that solutions of those finite-difference schemes actu-
ally blow up in the corresponding numerical blow-up times. Then, we
prove that the numerical blow-up time converges to the exact blow-up
time as the discretization parameters tend to zero. Several numerical
examples that confirm the validity of our theoretical results are also of-
fered.

1.1 Introduction

The purpose of this paper is to establish numerical methods for computing blow-up
solutions of one space dimensional nonlinear wave equations with power nonlin-
earlities. In order to avoid unessential difficulties about boundary conditions, we
concentrate our attention to L-periodic functions of x with L > 0. That is, set-
ting S;, = R/LZ, we consider the following initial value problem for the function
u=u(t,x) (t >0, x € SL),

Uy — Ugy = |ul?, t>0, zeb5y,
{tt xTT |’ L (11)

u(0,2) = up(z), w(0,2) =wui(z), z€SL.

Before stating assumptions on nonlinearlity and initial values, we recall a general
result for nonlinear wave equations. Set Q7.1 = [0,7] x Sg, for T' > 0.

Proposition 1.1.1. Let ug,u; € C3(Sy) and f € C*(R) be given. Then, there
exists T > 0 and a unique classical solution v € C3(Qr.1,) of

{utt = Ugz = f(u), (t.@) € Qr.r, (1.2)

uw(0,z) = up(z), u(0,2) =ui(x), =€ SL.
Moreover, there exists a positive and continuous function Cy,(n) of n > 0 satisfying

oo
ot™ Pt

< Cout (Il (o1 )
L>(Qr,1)



for non-negative integers m,l such that m+1 < 3. Furthermore, if f(s) >0 fors >0
and up(x) > 0, ur(z) > 0 for x € S, then we have u(t,z) > 0 for (t,z) € Qr L.

This proposition is proved by the standard argument based on the contraction
mapping principle (cf. [15, §12.3]) with the aid of the explicit solution formula given
as

u(t, ) = 3 fuo(x — 1) + uo(x — 1)
T+t t T+s
vy [ m@ders [ [ ) dyas

Throughout this paper, we make the following assumptions:

f(u) = |uP with p > 1 is of class C*;
ug, U1 € Cg(SL); (1.4)
ug(x) >0, wi(x) >0, =ze€SL. (1.5)

Thanks to Proposition 1.1.1, the problem (1.1) admits a unique non-negative solution
u € C3(Qr.1), which we will call simply a solution hereinafter. We note that the
condition (1.3) is equivalently written as

p =2 or pis a real number > 4. (1.6)

See also Remark 1.2.10.

The supremum of 7" in Proposition 1.1.1 is called the lifespan of a solution and is
denoted by Tw. If Tx = 00, then we say that the solution u of (1.1) exists globally-
in-time. On the other hand, if T, < 0o, we say that w blows up in finite time and
call T, the blow-up time of a solution.

As a readily obtainable consequence of Proposition 1.1.1, we deduce the following
proposition.

Proposition 1.1.2. Let u be the solution of (1.1). Then, the following (i) and (ii)
are equivalent.

(1) w blows up in finite time Too < 0.
i) Ui t)]| oo = 0.
(ii) i |u(®) | oo (s,) = o0

Any solution u of (1.1) actually blows up. To verify this fact, the functional

L
Ko =1 [ vl (0ec(sy)
0
plays an important role. Obviously, we have

K(v) < ||vflpe(sy) (0 <veC(S)). (1.7)



Proposition 1.1.3. Assume that
a=K(u) >0, p=K(u)>0. (1.8)

Then, there exists Too € (0,00) such that the solution u of (1.1) blows up in finite
time Tso.

This proposition is not new; however, we briefly review the proof since we will
study a discrete analogue of this result in Section 1.4. As a matter of fact, the key
point of the proof is that the solution u of (1.1) satisfies, whenever it exists,

%K(u(t}) > f +/0 K (u(s))” ds > 0, (1.9)
2

d 2
—K(u(t))| > ——K(u®)"*t" + M > 1.1
O] = Ko o (1.10)
where M; = 3% — I%apﬂ and K(u(t)) = K(u(t,")).

These inequalities, together with the following elementary proposition, implies
that K (u(t)) cannot exist beyond Tk, which is defined below. Thus, u(t,z) blows

up in finite time T4, € (0, Tk, which completes the proof of Proposition 1.1.3.

Proposition 1.1.4. Let a C! function w = w(t) satisfy a differential inequality

%w(t) > \/pj_lw(t)pJrl + M (t>0) (1.11)

with w(0) = o > 0. Then, w(t) blows up in finite time Tx € (0,17), where

o0

2

T = 24 = (P —Pt! ds < 0.
' /a |:ﬁ p+1( )

N

Inequalities (1.9) and (1.10) are derived in the following manner. First, we derive
by using Jensen’s inequality

— K(u(t)) > K(u(t))?, (1.12)

which gives (1.9). Multiplying the both-sides of (1.12) by (d/dt) K (u(t)), we have

d 2 d )
S (u(t) 5 K () = SR ) K (u(t))”

3 (o) [ 2o

Thus

Therefore, we get

2
O] 284 2 Kupt - o]



which implies (1.10).

There are a large number of works devoted to blow-up of positive solutions for
nonlinear wave equations. To our best knowledge, the first result was obtained by
Kawarada [24]. He studied a nonlinear wave equation

ug —Au= f(u) (z€Q, t>0) (1.13)

in a smooth bounded domain 2 in R? and proved a positive solution actually blows
up in finite time if the initial values are sufficiently large. (He did not consider
a positive solution explicitly, but as a readily obtainable corollary of his theorem
we could obtain the blow-up of a positive solution.) Those results are referred as
“large data blow-up” results. After Kawarada’s work, a lost of results have been
reported. For example, Glassey’s papers [16], [17] are well-known. On the other
hand, “small data blow-up” results were presented, for example, F. John ([22]) and
T. Kato ([23]). See an excellent survey by S. Alinhac ([2]) for more details on blow-
up results for nonlinear hyperbolic equations. In contrast to parabolic equations, it
seems that there is a little work devoted to asymptotic profiles and blow-up rates
of blow-up solutions for hyperbolic equations. Therefore, numerical methods would
be important tools to study blow-up phenomena in hyperbolic equations.

However, the computation of blow-up solutions is a difficult task. We do not
state here the detail of those issues; see, for example, [13] and [10]. In order to
surmount those obstacles, various techniques for computing blow-up solutions of
various nonlinear partial differential equations are developed so far. Among them,
variable time-increments At,, is of use. The pioneering work is done by Nakagawa
[28] in 1976. He considered the explicit Euler/finite difference scheme to a semilinear
heat equation u; — Uz, = u? (t > 0,0 < x < 1) with u(¢,0) = u(t,1) = 0. The
crucial point of his strategy is that the time increment and the discrete time are
given, respectively, as

1 n
0, tpy1 =ty + At, = Aty
Tl o =t A=

with some 7 > 0, where uy(t,), h being the size of space grids, denotes the piece-

At, = Tmin{l

wise constant interpolation function of the finite-difference solution at ¢t = ¢, and
lup (tn)] 12 its L2(0,1) norm. Then, he succeeded in proving that, for a sufficiently
large initial value, the finite-difference solution wy(t,) actually blows up in finite

time -
T(r,h) = ZAtn < 00
n=1
and
lim T'(r,h) = Two, (1.14)
7,h—0

where 7 denotes the size of a time discretization and T, the blow-up time of the
equation under consideration. T'(7, h) is called the numerical blow-up time. Later,
Nakagawa’s result has been extend to several directions; see, for example, Chen [?],

10



Abia et al. [1], Nakagawa and Ushijima [29] and Cho et al. [13]. However, those
papers are concerned only with parabolic equations. On the other hand, it seems
that little is known for hyperbolic equations and C. H. Cho’s work ([10]) is the first
result on the subject. He studied the initial-boundary value problem for a nonlinear
wave equation

Ugp — Uy = U> (t>0, x€(0,1)),
u=0 (>0, 2=0,1), u(0,z)=wuo(x), u(0,x)=ui(x).
and the explicit Euler/finite-difference scheme

n+1 n—1
1 [y —u?_u?’—uj :u?+1—2u?+u7j_1+(u
Aty Aty

h2

ug = ulj =0, u? = uo(z;), ujl(afj) = uo(z;) + Atoui (x;),

(1.15)

Tn

where the time and space variable are discretized as t, = Atg + Aty + -+ + Aty_1,
zj =j/N and N € N, and u} denotes the approximation of u(t,,z;). He proposed
the following time-increments control strategy

(1.16)

1 At, + Aty
Atn:Tmin{l, 2}, Tn:M.
2

1
un (£0) | 12 2

Then, he succeeded in proving that (1.14) actually holds true under some assump-
tions. One of the crucial assumptions in his theorem is convergence of the finite-
difference solutions, that is,

ilzig%)ogtl,?%{T luj — u(tn, zj)| =0 (1.17)
for any T' € (0,7T). The proof of this convergence result is still open at present.
As a matter of fact, we need some a priori estimates or stability in a certain norm
in order to prove (1.17). However, as Cho mentioned in [10, page 487], it is quite
difficult to prove a stability that remains true even when At, — 0.

Recently, K. Matsuya reported some interesting results on global existence and
blow-up of solutions of a discrete nonlinear wave equation in [26]. However, it seems
that his results are not directly related with approximation of partial differential
equations.

This paper is motivated by the paper [10] and devoted to a study of the finite-
difference method applied to (1.1). Thus, we propose finite-difference schemes and
prove convergence results (cf. Theorems 1.2.4 and 1.2.5) for those schemes even
when time-increments approaches to zero. To accomplish this purpose, we rewrite
the equation as

WA=, d— by = [ul,

which is based on the formal factorization uy — Uzy = (0 — 0z)(0¢ + Ox)u = |ulP,
and then follow the method of convergence analysis proposed by [32] that is origi-
nally developed to study time-discretizations for a system of nonlinear Schrédinger

11



equations. Actually, it suffices to prove local stability results in a certain sense (cf.
Theorems 1.2.2 and 1.2.3) in order to obtain convergence results. Moreover, we show
that discrete analogues of (1.9) and (1.10) holds true, and therefore, we can deduce
approximation of blow-up time (1.14) (cf. Theorem 1.2.8).

This paper is organized as follows. In Section 1.2, after having stated our finite-
difference schemes, we mention stability and convergence results for our schemes
(Theorems 1.2.2, 1.2.3, 1.2.4 and 1.2.5). Therein, approximation of blow-up time is
also mentioned (Theorem 1.2.8). Section 1.3 is devoted to the proofs of Theorems
1.2.2, 1.2.3, 1.2.4 and 1.2.5. The proof of Theorem 1.2.8 is given in Section 1.4. We
conclude this paper by examining several numerical examples in Section 1.5.

Notation

For v = (vq,...,v;)T € RY, weset ||v|| = max, |v;|, where -1 indicates the transpose
<<

of a matrix. We write v > 0 if and only if v; > 0 (1 <7 < J). We use the matrix oo
norm

J
E
|E|| = max 1Bl = max g | Eij|
ver? [|vf - 1si<s

for a matrix E = (E;;) € R7*/. Moreover, we write E > O if and only if E; ; > 0
(1 <i,5 <J). The set of all positive integers is denoted by N.

1.2 Schemes and main results

Introducing a new variable ¢ = u; + u,, we first convert (1.1) into the first order
system as follows:

Ut + Uy = ¢ (t,x) S QT,L7
Gr — dp = |ulf (t,z) € Qr., (1.18)
u(0,z) = up(x), ¢(0,2) =ui(x)+ uy(z), =€ SL.

Take a positive integer J and set x; = jh with h = L/J. As a discretization of

the time variable, we take positive constants Atg, Atq,... and set
n—1

to=0, t,= Z Aty =tn_1+Atp_1 (n>1).
k=0

Then, our explicit scheme to find

ulf 2u(tn, i), ¢f ~ ¢(tn, 7)) (1<j<J, t>0)

reads as
1
up ™t —uf I _
At h J )
i " " (1<j3<J,n>0) (1.19)
¢j B qu i+l ¢j _ |un+1|p
At,, h S

12



where ug and @7, | are set as uy = u'; and ¢, | = ¢7.
We also consider an implicit scheme for the purpose of comparison. However,
we do not prefer fully implicit schemes since we need iterative computations for

solving resulting nonlinear system. Instead, we consider a linearly-implicit scheme
by introducing dual time grids

At
oy :70+tn (n>0). (1.20)

Then, our implicit scheme to find

uj & ultn, z;), @,

reads as
n+1 n n+1 n+1
uj+ —u +1 <Uj+ _ ujfl N uf —uf ¢n+%
At, 2 h h 7o
¢n+% ¢n+% ¢n+% n+3 n+% ¢n+%
i 5 1 1 ¢j . ¢j+1 j _ ‘un+1|p
At, 2 h h J ’

(1<j<J, n>0), (121)

1

1 1 1
where ug and qﬁif are set as uf = u’} and (sz: 2 = 711+2_
Remark 1.2.1. 1t is possible to take

AtO At() "
=" tya=— T m (n>1)
k=1

as dual time grids instead of (1.20), where 7, = (Aty_1 + Aty)/2. With this choice,
the implicit scheme is modified as

n+l _ , n n+l _ , n+l n__,n
I (“j Uj-1 Y uj_1> s

At,, 2 h + h i
n+3 n+ i n+3 n+3 n+i n+i
0 "0 T 1 Pr =9 " P =9 ") pt
™ 2 h h J ’

(1<j<J, n>0). (1.22)
Then, we can deduce all the results presented below with obvious modifications.
For n > 0, we set
u = (uf,...,u")T e RY,
o =01, NI ER!, g =(o1TE g T e R,

Theorem 1.2.2 (Local stability of the explicit scheme). Let 7 = vyh with some
v € (0,1) and assume that At,, < 7 forn > 0. Leta > 0,b > 0 € R7. Then,

13



the solution (u™, @") of the explicit scheme (1.19) with u® = a and ¢° = b satisfies
u”™ > 0 and @™ > 0 forn > 1. Furthermore, for any N € N, there exists a constants
hr,n > 0 depending only on N and R = ||a|| + ||b|| such that, if h € (0, hp n], we
have
sup ([[u"[| + [[¢"]]) < 2R. (1.23)
1<n<N

Theorem 1.2.3 (Well-posedness and local stability of the implicit scheme). Let
T = 2vh with some v € (0,1) and assume that At, < T forn > 0. Let a,b € R’.
Then, the implicit scheme (1.21) admits a unique solution (u", ¢”+%) foranyn > 1,
where v’ = a and q’)é = b. Moreover, if a > 0 and b > 0, then we have u™ > 0
and ¢n+% > 0 form > 1. Furthermore, for any N € N, there exists a constants
hr,n > 0 depending only on N and R = ||a| + ||b]| such that, if h € (0, hgr N], we
have

sup (Jlu”] + " 4])) < 2R. (1.24)

1<n<N

In order to state convergence results, we introduce e = (e?), €” = (&) and

ntl n+3 . .
e""2 = (g; ?) which are given as

eqjl = U(tmxj) - U;‘la €? = ¢(tnaxj) - ¢?7 <5 - ¢(tn+l’xj) o ¢j

Recall that To, denotes the blow-up time of the solution u(¢,x) of (1.1).

Theorem 1.2.4 (Convergence of the explicit scheme). Let 7 = vh with some v €
(0,1) and assume that At,, < 7 for n > 0. Suppose that (u"™,d") is the solution of
the explicit scheme (1.19) for n > 1, where (u°, ¢°) is defined as

W = uolaj), 6= ui(ay) +uple;) (1<j<). (1.25)

Let T € (0,Tx) be arbitrarily. Then, there exists positive constants ho and My which
depend only on

om o

T M = —
p? Y ’}/7 atmaxlu

max (1.26)
OsmHlss L>(Qr.1)

such that we have

n n
<
o (lle” | + lle"]l) < Mo(r + h)

for any h € (0, ho].
Theorem 1.2.5 (Convergence of the implicit scheme). Let 7 = 2vh with some

v € (0,1) and assume that At, < 7 for n > 0. Suppose that (u”,(b""'%) is the
solution of the implicit scheme (1.21) for n > 1, where (u?, gb%) 1s defined as

1

uy =uo(zy), ¢ =u(w;) +ugle;) (1<j<J). (1.27)
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Let T € (0,Tw) be arbitrarily. Then, there exists positive constants hg and My,
which depend only on (1.26), such that we have

"+ e E]) < Mo(r+ 1.2
s (e + €3 ]) < Mo(r +h) (1.28)

for any h € (0, ho].
Remark 1.2.6. If taking constant time-increments At,, = 7 and suitable initial value

1
¢z, we can prove

max_ ([le"| + "4 ) < Mo(r® + h)
0<tn+1<T

instead of (1.28).

By using the solutions of the explicit scheme (1.19) and the implicit scheme (1.21),
we can calculate the blow-up time T, of the solution of (1.1). To this purpose, we

fix

1 <g< o0, 0<y<1 (1.29)

and choose the time increments Atg, Atq,... as
Atn:T-min{l, 1} (n>0), (1.30)

[[un|a

where 7 is taken as

B {yh for the explicit scheme (1.19) (1.31)

a 2vh  for the implicit scheme (1.21).

Definition 1. Let u™ be the solution of the explicit scheme (1.19) or the implicit
scheme (1.21) with the time increment control (1.30) and (1.31). Then, we set

T(h) = i At.
n=0

If T(h) < oo, we say that u" blows up in finite time T'(h).

Remark 1.2.7. The blow-up of ™ implies that lirjr}( : |u”|| = lim [|[u"] = oo.
tn—r

n—oQ
We are now in a position to state numerical blow-up results.

Theorem 1.2.8 (Approximation of the blow-up time). Let u" be the solution of the
explicit scheme (1.19) or the implicit scheme (1.21) with the time increment control
(1.30) and (1.31), where the initial value is defined as (1.25) or (1.27), respectively.
In addition to the basic assumptions (1.4) and (1.5) on initial values, assume that
ui(x) is so large that

ui(z) +uh(z) > 0,20 (z€8L). (1.32)

Then, we have the following:

15



(i) u™ >0 and ¢" >0 (or (;S"Jr% >0) for alln > 0.
(i1) If (1.8) holds true, u™ blows up in finite time T'(h) and

Tno < liminf T'(h). (1.33)
h—0

(iii) In addition to (1.8), we assume that

lim K(u(t)) = oo, (1.34)
t—Too
then we have
Too = lim T'(h). (1.35)

h—0

Remark 1.2.9. The assumption (1.34) is somewhat restrictive. Essentially the same
assumption is considered in [10]. However, we are unable to remove it at present.
To find the sufficient condition for (1.34) to hold is an interesting open question.

Remark 1.2.10. All results presented above remain valid for f(u) = u|u|?, since it is
a C* function on R.

1.3 Proofs of Theorems 1.2.2, 1.2.3, 1.2.4 and 1.2.5

We rewrite the explicit scheme (1.19) and the implicit scheme (1.21), respectively,

as
n+1 :Mn n Atn n
v u' o+ At (n>0), (1.36)
¢ = Noug™ + Aty f ()
and )
Aputl = Bou + Atz
W T e At (n>0), (1.37)
Cn"t2 = D™ 2 4 Aty f(um™)
where

M, = P(_’Yn)a N, = P(_’Yn)Ta
An, = P(6,), Bn=P(=6,), C,=P(,)", D,=P(-6,)7,

Ay A
’Yn_ h7 n — 2h7
14 0 o —p
puy=| "l ,
. . 0
0 —pu 14+p
f)= (i, ..., JvsP)T for v=(v1,...,v05)".

Lemma 1.3.1. (i) P(u) is non-singular, P(u)™' > O and |P(p)7 Y| < 1 if u >
0.

16



(ii) P(=p) 2 O and |[P(=p)|[ =140 <p < 1.

Proof. (i) Let p > 0. The matrix P(u) is expressed as P(u) = (14 p)(I — G), where

0 0 O 1
1 0 0 0
—_H Jo 1 o0 0
L+p :
0 0 1 0
Since ||G|| = p(14p) 7t < 1, the matrix I—G is non-singular, (I — G)~ ZGl >0

and [|[(I — G)7Y < 1/(1 = ||G||) = 1 + p. Hence, P(u) is also non- smgular,
o0

P ' =00+ G'>0and |[P()7 Y <A+ I -G)Y =1
1=0
(ii) Let 0 < u < 1. Then, P(—p)>0O is obvious. We further have

IP(=m)]l = ga<xJZ|pm =(1-m+p=1
where P(p) = (pij), which completes the proof. O

Now, we can state the following proofs.

Proofs of Theorems 1.2.2 and 1.2.3. According to Lemma 1.3.1, we have M,,, N,,, By, Dy, >
O and ||M,|| = ||Nn|| = ||Bnll = ||Dn|| = 1. Moreover, A,,C, are non-singular,

AL Co > O and ||AGY),ICL Y] < 1. Therefore, the unique existence and non-
negativity of solutions of (1.19) and (1.21) are direct consequences of the expressions

(1.36) and (1.37), respectively.

Below we are going to show local stability results (1.23) and (1.24). We only state
the proof of (1.24); that of (1.23) could be done in the same way. Recall that we
are assuming that At; < 7 for all j and 7 = 2yh with some v € (0,1). Choose
N € N arbitrarily and fix it.

Now we can prove (1.24) by induction on n. First, note that |[u°| + H(b%H =
lla]| + ||b|| = R. Assume that

1
|+ [|¢"*2|| < 2R (1.38)

for 0 <n < N — 1. Since u"*! and ¢"*2 are given as

n
! :Hn...HOa+ZAtninn L H,_ g+1A ¢n J+,
j=0

n
3 _ L
¢ =Ly Lob+ Y Aty Ly Ly jaCyly fun =)
Jj=0

17



with H,, = A;an and L, = Cngn, we have

n
a1
™) < llaf+7 3" 6" 3]| < [la] + N(2R),
j=0

™2 < (1Bl +7 Y w7 | < [B]| + N(2R)?
§=0

for 0 <n < N — 1. Hence,
[ + [|¢" 2| < R+ N7[2R+ (2R)”] (1.39)

for0<n<N-—1.
At this stage, we define 7g x and hp N as

T = —R h _ IR
BN T N2R + (2R)P) LN 0y

and suppose h € (0, hp n].
Then, by (1.39), we get

3
w1+ [[¢" 2| < 2R.

This completes the proof of (1.24). O

We proceed to the proof of convergence results. Below, we only state the proof of
Theorem 1.2.5 since that of Theorem 1.2.4 is simpler.

1

Proof of Theorem 1.2.5. Let {(u™, ""2)},>1 be the solution of the implicit scheme
(1.21) with the initial condition (1.27). We note that

1
[u]] + @] < 3M.

Hereinafter, set M’ = 3M. In view of Theorem 1.2.3, there exists constants hy; > 0
and Ty > 0, which depend only on M’ and p, such that, if h € (0, hyy], we have

lu"l| + "2 < 2M' (n€ App = {n € N | t, < Tapr}).
We set

v =sup{n € N | |[u"] + [|¢" 2| < 3M'},
Ayz{neN]tn+1§T, n <wv}.

The rest of the proof is divided into two steps.

Step 1. First, we show that there exist positive constants i1 and My, which depend
only on T and M, such that the estimate (1.28) holds for all & € (0, h1] and n € A,
We have for n € A,

1

1
i1 _ n—3
)Atn_lEj 2 (1.40)

n—1 n—
j e

B Aty e — e'r."_l e
el — 1 + n J J

i 2 h h

18



n—1i u(tn, xj) — u(tn_1,2;)
Elj 2 _ ut(tn_%7$j) . n ]Atn_ln J ,
By 0 = “w(tnﬁ’%‘)
1 u(tn, a:j) — u(tn, $j_1) u(tn_l, l‘j) — u(tn_l, a:j_l)
2 h - h '

Since (1.40) is equivalently written as

e = A,;ian_len_l + Atn_lA;EIEn_%,

=

where E""2 = (E;_Q), we have from Lemma 1.3.1
_ 1
el < [le™ | + Atnr | B" 2|
n—1 n*% n*% n—1

< e+ At (B 2+ 1By 2[) + Atn-ae™ 2]

From the standard error estimates for the difference quotients, we obtain
_1 1

B, 2| < CMAt, 1, ||Ey *|| < CM(At,_1+ h)

for n € A,. Consequently,
le| < le" | + CMAty_y(Aty_1 + h) + Aty ]3| (1.41)

for n € ]\,,.
Similarly, we have for n € A,

n+1 n+i -1 n—1
n++ n—1 Aty €j+12 & 2 €j+12 — € 2
SRR Ly = Aty 18],
or, equivalently,
1 1
etz = CT:_lanflsn_E + Atnflcg_llgna
where £ = =€, + & + &5, €7 = (§]) and
o brltn ) O, 15 25) = (L, _1,75)
1; — t\ln, Ly Atn—l ’
1 [, 1, @) — Bt 1, 25) . ¢(t,_1,2j41) = O(t,_1,5)
2 h h ’
& = |ultn,zy)[" — |ufl".
We know

1€ < CM Aty 1, [[&3]] < CM (At +h)
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for n € A,. Since |u(t,,z;)] < M and [uj}| < 3M', we can estimate as

[utn, 25) P — |uf 1P| < CopMP~Hu(tn, 2;) — uf|

for n € /N\V and 1 < 5 < J, where Cop denotes a constant depending only on p.
Hence, we deduce
15 < CMPHlen

for n € A,. Thus, we obtain
€™t 2 || < [|€" 2| + CMAty_1(Atp_1 + ) + CMP At _1||e”|. (1.42)

Summing up (1.41) and (1.42), we deduce

le™|| + €3] < "1 + [|€" 3| + CMAty—1 (Aby—1 + h)
FOMP AL, 1€ + Aty_1]e™ 2. (1.43)

Setting M* = M + MP~!, we have from (1.43)

(1= CM*At,_1)(|le"]| + [le"+]))
< [le™ Y + (1 + Atp_1)||e™ 2| + CMAty_1(Abp_1 + h)
< (1+ CM*Aty_)([|e" Y + €™ 2])) + CM*Aty_1(Atp_1 + h).

At this stage, we define

1

= — = 2vh

hi

and we assume that h € (0,h1]. Then, using an elementally inequality 0 < (1 —
s)71(1 +s) < 1+ 4s for s € [0,1/2], we have

el + lle™+2]

< (L +4CM*Atp_1)(|l€™ 7| + ||€”_% ) +2CM*Aty—1(Aty—1 + h)

< OM A ([l en | [l 2 ) + 20 M Aty 1 (Aty 1 + D).

Therefore
n—1
le™|| + [l 2| < M (|0 + [le3]]) +20M* Y Aty (At + h)elCM b
7=0

< AOM T g3 | 4 20 M* T M T (7 4 1),

1

On the other hand, we have HséH < (7 + h)M, since ¢} = qb(t%,svj) —¢; =
u(ty, zj) + ugp(te, z;) — ui(z;) — up(z;). Therefore, taking
2 2

Sl

My = (Me*“M™T 4 20M*Te* M),
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we have shown that the desired estimate (1.28) holds for all & € (0, hi] and n € A,
Step 2. We set

M
ho=min{hy, ———— h
0 mm{ Y aMo(1+27) ziwl}

where h 3011 is the constant introduced in Theorem 1.2.3 with R = %M and N = 1.
Below we assume h € (0, hg.

We prove
max{n € N |[t,11 <T} <v (1.44)

by showing a contradiction. Thus, we assume
max{n € N |t,41 <T} >
Then, we have A, = {1,...,v} and, since hy < h; in view of Step 1,
e+ 1l 2 | < Mo(1 +29)h

for all n = 1,...,v. Moreover, since t,41 < T, it follows from the definition of M
that

max ([lu(tn)] + @, 1)) < M,

where u(t,) = (u(ty,x;)) and ¢(tn+%) = (¢(tn+%,xj)). Combining those inequali-
ties, we get
1
| 4 673 < M + My(1 + 29)

foralln =1,...,v. In particular,

3
||+ 1672 || < M + Mh < S M.

Now, we apply Theorem 1.2.3 with @ = u”, b = (,‘b’”'%, R = %M, and N =1 to
obtain
3
[ |+ (¢ 2| < 3M.

This contradicts the definition of v. Therefore, (1.44) actually holds true. Hence, by
the result of Step 1, we see that the desired estimate (1.28) holds for all h € (0, ho]
and n € N satisfying t,,41 < T. This completes the proof of Theorem 1.2.5. O

1.4 Proof of Theorem 1.2.8

This section is devoted to the proof of numerical blow-up result, Theorem 1.2.8. We
shall deal only with the case of the explicit scheme (1.19); the case of the implicit
scheme (1.21) is proved in exactly the same way.

Throughout this section, suppose that (u", ¢™) denotes the solution of the explicit
scheme (1.19) as in Theorem 1.2.8. Further, we suppose that all assumptions of
Theorem 1.2.8 hold true. In view of (1.32), we may suppose that ¢°,u! > 0,# 0
for a sufficiently small h > 0. Consequently, we have u”, "™ > 0,# 0 for n > 1.
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Before stating the proof of Theorem 1.2.8, we establish a discrete version of (1.10).
To this end, we introduce the functional

1

J
Ky(v)==> wvh (0<wveR’) (1.45)
j=1

|

and consider the discrete version Kp(u™) of K (u(t)). We note that Kp(u™) > 0 and
Kp(¢™) > 0 for n > 0. In particular,

Kn(¢°) >0, ap=Ku(u®) >0, B, =Kp(u')>0. (1.46)

Lemma 1.4.1. Kp(u") is a strictly increasing sequence in n > 0 and it satisfies

Kp(uth) — K, (u™)]® 1
> Kp(u™)P™ + My, > 1.4
AL o p(u™)P"t + My, >0 (1.47)
forn >0, where
My, = (6’1 — O‘h>2 B (1.48)
Aty p+1 "
Proof. We have
Kp(u™) - Kp(w") 1 Z uy - “?h
At, L P At,
RN B e/ n
= I3 |FEEE g h=Ka(gn)  (149)
j=1
for n > 0. In particular, by (1.46)
Kn(u') — Kp,(u®
w(w) = Kn(W) o pe 89) > 0 (1.50)

Ato

By using Jensen’s inequality, we have from (1.49)

K@) K" L[ — 0
AL S L;[ 5 J*(“j“”h
J

= 23 () e Ky,

Combining these, we obtain

Kh(u”+2) — Kh(u’”l) > Kh(u”H) — Kh(u")
JAN A - At,
o En(u!) - Ki(u’
B Aty

+ At (Kp(u™1))P (1.51)

) + Zn:Atk(Kh(uk+1))p > (1.52)
k=0

for n > 0. This, together with (1.50), implies that Kj(u™) is a strictly increasing
sequence in n > 0.
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Again, we apply (1.51) to obtain

[Khw"“) - Kh<un+1>r

Atn-i—l

> Kh(u"HA)t— Kp(u") [Kh(unJrlA)t_ Kp(u™) +At, (Kh(un-i—l))P
un+1 - u™ 2

_ |:Kh( A)tn Kh( ):| + (Kh(un+1) _ Kh(un)) Kh(,u,n+1)p‘

Hence,

Kh(u"”) _ Kh(un+1) 2
Athrl

v
&

zn: (Kh(ukJrl) - Kh(fu,k)) (uk+1)p 4 [Kh(ul) — Kh(u()):|2

— Aty
Kh(uk+1) B — 2
> D h h
> /ah 2P dz + ( Aty )
_ 1 (K (un+1)p+1 . p+1) i Brn — ap 2 (1.53)
— p + 1 h O[h Ato . .

Since Kj(u™) is non-decreasing in n, the right-hand side of (1.53) is non-negative.
This completes the proof of Lemma 1.4.1. ]

Remark 1.4.2. Under the assumptions of Theorem 1.2.4, we have M, — (% —

ﬁa”l as h — 0.

Remark 1.4.3. In view of (1.50) and (1.52),

Kh(un+2) _ Kh (un-i-l)

> K 0y =
Aty > Kn(¢") = v,

where v}, is a positive number which is independent of n. This implies that K (u") is
not a bounded sequence in n. In particular, there exists m € N such that Kj(u") >
1.

At this stage, we set

1
G(z) = 2Pt + My,
(2) \/p+1 1h

Note that G(z) is a strictly increasing function in z € [ay, 00).
In view of Lemma 1.4.1, we can follow exactly the same argument of the proof of
[10, Lemma 5.4] and obtain the following lemma.

Lemma 1.4.4. There exists a positive constant C' which is independent of h such

that o g
YA

T(h) <2 — 4+ C .

(h) < ( a " )

In particular, we have T'(h) < 0.
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Now we can state the following proof.
Proof of Theorem 1.2.8. (i) It is a direct consequence of Theorems 1.2.2 and 1.2.3.

(ii) According to Lemma 1.4.4, we have T'(h) < oo; u™ blows up in finite time. We
prove that

To < liminf T(h) = T, (1.54)
h—0

by showing a contradiction. Thus, we assume that
T, < Tw.
Then, there exists a subsequence {h;}; such that h; — 0 as ¢ — oo and that
T(hi) <Ty+ 6 < T,
where 6 = (T — Tx)/2. We have

)| 700 . 1.
s fu(®) (s, < 0 (1.55)

On the other hand, the solution u" = w"(h;) of the explicit scheme (1.19) corre-
sponding to the parameter h = h; satisfies (cf. Remark 1.2.7)

lim ||u"(h)| = lim [[u"(hi)] = oc. (1.56)

n—oo tn—>T(hi)

These (1.55) and (1.56) contradict to Theorem 1.2.4. Hence, (1.54) is proved.
(iii) We assume (1.34); thus, u(t,z) and K (u(t)) blow up in finite time ¢ = T,,. We
now prove that

T* =limsup T'(h)<Tw (1.57)
h—0

by showing a contradiction. In fact, this, together with (1.54), implies To, = flbin%) T(h),
—

which completes the proof. We assume
Too <T*
and set € = (T — T)/4. There exist R > 0 and hy > 0 such that
* dz
2 / — —i—C’fyh**) < €.
< r G(2)

Below we fix such R and h... Further, there exists t' = t}; < Tw, such that K (u(t')) >
2R. Set

Too =t '+ Ty
22
and let M and My be the positive constants appearing Theorem 1.2.4 corresponding

to this T'. Set

T=t+ < Ty

_ !
h*—min{h**, Too — R }

2 "M+ M()(l + ")/)
and suppose h € (0, hy] below. Then, we have Mh+ My(r+h) < Rand 7 < T —¢'.
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According to Theorem 1.2.4, we have

| K (u(tn)) — Kn(u")]
I a
< iz/x (b, ) — u?| dz

j=1"7%j-1

J .
1 T "
< 230 [ (ultne) = utnsmy)| + ultn,25) — ) do
j=1"%i-1

and, therefore,

Kp(u") > K(u(t,)) — R.

There exists k € N satisfying ¢/ <ty < T, since 7 < T —t' < Ty, — t'. Then,
Kp(u®) > K(u(ty)) — R > R. (1.58)
At this stage, we can take a subsequence {h;}; such that
Too + € < T(hy)

and h; — 0 as i — oo. However, in view of Lemma 1.4.4 and (1.58), we have

00 SO
T(hi):tk+ZAtn<Too+2(/R G(Z)-i—CTZ)

n=~k

Therefore, by the definition of R and h.s, we obtain T'(h;) < T + €, which is a
contradiction. Hence, we obtain (1.57). This completes the proof of Theorem 1.2.8.
O

1.5 Numerical experiments

In this section, we offer some numerical examples and examine the validity of our
proposed finite-difference schemes. Suppose L = 1 and take

o () = %(Sm(zm) +9), wi(x) = 27A+

as initial values. Then, if \,u > 0, we have a = K(ug) = X > 0, 8 = K(u1) =
27\ 4+ > 0 and ug(z) + ur(z) > p > 0. Below we set A = 10 and p = 5.

1.5.1 Choice of ¢

We first examine the value of ¢ in the definition of At,. We consider the explicit
scheme (1.19). In Fig. 1.1, we plot At, as a function of ¢, when p = 2. We see
that At,, deceases as a linear function if ¢ = 0.5 whereas it deceases very rapidly
if ¢ = 0.25 and very slowly if ¢ = 0.75,1. Results for the cases of p = 3 and 4
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are reported in Fig. 1.2 and 1.3, respectively. Here, the case p = 3 means the
nonlinearlity f(u) = u|u|?; see Remark 1.2.10. For each p, there is ¢ = g, such that
At,, deceases linearly if ¢ = ¢, and it deceases very rapidly if ¢ < ¢, and very slowly
if ¢ > qx.

Slowly-deceasing cases are not suitable from the viewpoint of efficiency. On the
other hand, we do not prefer rapidly-deceasing cases since it is difficult to capture
clearly the variation of a numerical solution near ¢t = T'(h) even if At,, is quite small.

Consequently, as a better choice, we offer

0.5 (p=2)
=41 (p=3) (1.59)
15 (p=4)

Below we choose ¢ as (1.59).

1.5.2 Stopping criterion

The numerical blow-up time is an infinite series defined as

T(h) = i Aty
n=0

Therefore, in actual computations, we take a sufficiently large n and regard ¢,, as
a reasonable approximation of T'(h). For this purpose, we introduce the truncated

numerical blow-up time T (h;e) by setting
T(hie) = min {t, | |[u"| >}, (1.60)

where € > 0 is the stopping criterion given below.

We still consider the explicit scheme (1.19) and plot T'(h, ¢), T'(h; 100¢) for several
h in Fig. 1.4. For suitably small € and h, T'(h,e) and T'(h; 100¢) are almost equal so
that we can take T'(h;e) as a reasonable approximation of the exact blow-up time.

1.5.3 Comparison of our schemes and Cho’s scheme

We compare three finite-difference schemes; the explicit scheme (1.19), the implicit
scheme (1.21) and the Cho’s scheme (1.17) with obvious modification of the bound-
ary condition.

Fig. 1.4, we plot T'(h;e) for several h by using those three schemes. We see that
those T'(h;e) converge to a certain value, say the exact blow-up time, as h — 0.
Thus, we can apply anyone to compute the blow-up solutions. Cho’s scheme is
better than ours. But, again, it should be kept in mind that our schemes and the
numerical blow-up times are guaranteed to converge by the mathematical proof.

Furthermore, we conjecture form those figures that the rate of convergence of T'(h)

is expressed as
|T(h) — Tw| < Ch=CTt
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if 7/h is fixed. We, however, have no mathematical proof; for similar difficulties for
parabolic problems, see [13].
We finally give the shapes of solutions u™ of the explicit scheme (1.19) in Fig. 1.6.
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2 Error analysis of splitting methods for
semilinear evolution equations

We consider a Strang-type splitting method for an abstract semilinear
evolution equation u; = Au + F(u). Roughly speaking, the splitting
method is a time-discretization approximation based on the decomposi-
tion of operators A and F. Particularly, the Strang method is a popular
splitting method and is known to be convergent at a second order rate
for some particular ODEs and PDEs. In this chapter, we propose a gen-
eralization of the Strang method and prove that our proposed method
is convergent at a second order rate. Some numerical examples that
confirm our theoretical result are given.

2.1 Introduction and main results

Let X be a Hilbert space equipped with the scalar product (-,-)x and the norm
II-lx, A be an m-dissipative linear operator in X with dence domain D(A) C X.

e For any u € D(A), (Au,u) <O0;
e For any f € X and A\ > 0, there exists u € D(A) such that u — MAu = f.

As is well-known, the operator A generates a contraction semigroup ®4(t) = etA if
and only if A is m-dissipative with dense domain. We consider the following Cauchy
problem for semilinear evolution equation:

{ up = Au+ F(u), tel0,T], (2.1)

u(0) = u,

where F' : D(A) — D(A) is a nonlinear operator. Typical examples of (2.1) are
nonlinear Schrédinger equations in € R?

up = iAu + aulul?, (2.2)

up = iAu + aulul?® + Bulul*, (2.3)

where o and 8 are complex constants. Setting D(A) = {v € H}(Q) | Av € L?(Q)},
Av = iAv, and F(v) = av|v|? in (2.2), we obtain (2.1).

The main purpose of this chapter is to study the so called splitting method,
which is a semi-discrete approximation of (2.1) with respect to time variable ¢t. The
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idea behind the splitting method is as follows. We denote the (nonlinear) solution
operator (2.1) by S(¢). That is, the solution of (2.1) is given as u(t) = S(t)uo; see
(2.9) below. Then, we consider the time-discrete approximation to (2.1) at t = nAt
as

up, = U(nAt)ug,

where At > 0 denotes a time increment and n a positive integer. Typical choices of
U are, for example,

T(t) = Da(t)Pp(t), (2.4)
U(t) = 2p(t)Pa(t),
V(t) = 2a(t/2)2r(t)®a(t/2) (2:6)

where ®(t) denotes the solution operator of w; = F'(w). Particularly, (2.6) is called
the Strang method.

Splitting methods are useful when S(t)ug is difficult to compute, while ® 4(¢)ug
and ®p(t)up are easy to compute. In addition, if (2.8) has conservation properties,
then splitting methods basically preserve its discrete version. Splitting methods are
widely used numerical methods for solving ODEs and PDEs.

Analysis of splitting methods for ODEs has been presented in many studies. For
example, see Hairer et al.[20]. Some results on error analysis are also presented for
PDEs. For example, results of error analysis for nonlinear Schrédinger equations
can be found in e.g., Besse et al. [4] and Lubich [25].

However, to our best knowledge, little is known for abstract Cauchy problem of the
form (2.1). Decombes and Thalhammer[14] and Jahnke and Lubich [21] presented
an error analysis for the case in which F is a linear operator. For nonlinear abstract
Cauchy problems, Borgna et al.[5] demonstrated that various splitting methods in-
volving Strang method have first order accuracy. Namely, if At is sufficiently small,
we have

1S(nAt)ug — T(AH) ug|| < CAL.

However, they did not demonstrate that Strang-type splitting method is a second
order scheme:

S (nAt)ug — T (AL ug| < CAL2. (2.7)

It should be kept in mind that (2.7) is established for the Strang method applied to
particular PDEs; see Besse et al.[4] and Lubich[25]. Therefore, it is worth studying
the Strang method for abstract Cauchy problem of the form (2.1) and deriving the
second order error estimate.

On the other hand, the majority of previous studies have considered schemes
that are split into two parts; v; = Av and wy = F(w). As a matter of fact, such
two-parts splitting is applied tp (2.2), then the explicit solution formula for the
ordinary differential equation w; = aw|w|? is available. However, the two-parts
splitting is applied to (2.3), then we have to solve the ordinary differential equation
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w; = aw|w|? + Bw|w|* by numerical method since the exact solution is not available
in the case.

Therefore, some researchers have proposed schemes that are split into more than
two parts. However, the convergence properties of such schemes are not guaranteed
in the case of PDEs.

In this paper, we propose a Strang-type splitting method that is split into three
parts for (2.8). Moreover, we show that it is actually convergent at a second order
rate.

Let us formulate our problem. For given nonlinear operators Fi, Fy : D(A) —
D(A), we set

F(v) = Fi(v) + Fa(v) (v e D(A)).

For ug € D(A), we consider the Cauchy problem

up = Au+ Fi(u) + Fo(u), te€[0,T], (2.8)
u(0) = uo, .
and the corresponding integral equation:
t
u(t) = D4 (t)uo + / Balt — s)Fluls))ds, te[0,T]. (2.9)
0

We consider D(A) and D(A?) as Hilbert spaces with

[0llpay = lvllx + [[Av]x  for v e D(A),
lvllpeazy = vl peay + |A%v]|x for ve D(A?).
For i = 1,2, we assume that F; : D(A) — D(A) satisfies the following conditions:
(FO) Fi(0) =
(F1) [|Ff(0)wlpcay < Lol pay)lwlpeay  for v,w € D(A),
(F2) Fi(v) € D(A?) and ||F;(v)||p(azy < La(llvll peay) vl peazy — for v,w € D(A?),
) F

(F3) Fi(v) € D(A?) and || Fy(v) = Fi(w)||p(az) < Ls(max{[[v]| p(az), |wllpaz v —

w|[paz)
for v,w € D(A?),

F4) [|F(v)wllx < La(|lvllpeayllwllx  for v,w € D(A),
(F5) [IF(v)(w, w)llx < Ls(l|vllpay)lwllxllwllpay for v,w € D(A).

Herein, F/ and F denote the first and second Fréchet derivatives, L, La,--- ,Ls :
[0,00) — [0,00) are decreasing functions.
We note that it follows from (F1) and (F0) that

F6) |[Fi(v) = Fi(w)l|pay < L(max{[[v| pcay, [wlpeayHllv = wllpea
for v,w € D(A),
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(F7) [I1F:(w)llpay < Lol pay)llvllpay for v e D(A).
Moreover, it follows from (F4) that

(F8) [|Fi(v) = Fi(w)|x < La(max{[[v| pay, [[wllpeay})llv — wl[x
for v,w € D(A).

For simplicity, we write F"(v)(w,w) = F"(v)w? for v,w € D(A). Before stating the
schemes and main results, we recall a general result for (2.9):

Proposition 2.1.1. Assume (FO)-(F1)O Then, for any ug € D(A), there exist
Tiax(ug) € (0,00] and a unique solution

u € C([0, Tax(uo)), D(A)) N CH([0, Tax(uo), X)
of (2.9) such that either the following (i) or (ii) holds:
(1) Tmax(uo) = oo,

il) Tmax(ug) < 0o and lim u(t = 00.
() Thnas(0) el (8o

Moreover, if ug € D(A?), then
u € C([0, Tax(uo)), D(A%)) N CH([0, Trnax(uo)), D(A)).

For the proof of Proposition 2.1.1, see e.g., Section 4.3 of [8].

In order to state our scheme, for i = 1,2, we consider the following Cauchy
problem:
i+ = Fi(w;), te€l0,T],
{ wiy = Fi(w), t€[0,T] 210
w;(0) = wip,
and the corresponding integral equation:
t
wl(t) = w; 0 +/ Fz(wl(s))ds, te [O,T] (211)
0
We denote the solution of (2.12) by w;(t) = ®,(t)w;o. That is,
t
(I)Fi (t)’u}i,o = Wj,0 +/ Fi(wi(s))ds, t e [0, T}. (2.12)
0
Then, our scheme to find ¥ (t)ug =~ S(t)up, reads as
U(t)ug = Pa(t/2)Pp (t/2)Pr, (t)Pr (t/2)PA(t/2)up. (2.13)

Our scheme includes the Strang method by setting F; = 0.
We are now in a position to state the main results.
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Theorem 2.1.2. Assume (FO)—~(F5)0 Let ug € D(A?), T € (0, Tiax(ug)) and set

mo = 83&% 15 (t)uoll p(ay-

Then, there exists a positive constant ho, which depends only onT, mo and ||uo|| p(a2),
such that

1(®(R) ol pay < mo, (T (h)"uollpazy < €™ luoll p(az), (2.14)
[S(nh)uo — (¥ (R))"uollpcay < K1hlluollpeaz), (2.15)
1S (nh)ug — (¥(h)) uollx < Kah®|ugll peaz), (2.16)

for all h € (0,hg] and n € N satisfying nh < T, where 1 is a positive constant
depending only on mg, and K1, ks are positive constants depending only on T and
myo.

The rest of this paper is organized as follows. In Section 2.2, we collect some
lemmas that are needed to prove Theorem 2.1.2. In Section 2.3, we give local error
estimates between S(h)up and ¥(h)up in D(A). In Section 2.4, we give local error
estimates between S(h)ug and ¥(h)up in X. In Section 2.5, we complete the proof
of Theorem 2.1.2. In Section 2.6, we present some numerical experiments that show
the convergence rate of the scheme numerically.

2.2 Preliminaries

2.2.1 Estimates on the contraction semigroup ® ()

Lemma 2.2.1. Let k=0,1. Then,

[@a(t)vo — Pa(s)voll peary < (£ = s)l[vollprar+y,
forvg € D(AFY) and 0 < s < t.

Proof. Set v(t) = ®4(t)vg. Then, we have

t t
B a(t)vo — Da(s)vo = v(t) — v(s) = / o (r)dr = / Av(r)dr.
Since
[Av(T) || peary = [[@a(T)Avo | peary < [[Avoll pary
for 7 > 0, we have
t
|@a(t)0 ~ a(s)uollouasy < [ 1400 pgandr
< (t = s)[[Avollprary < (t = s)l[voll prar+ry-

This completes the proof. O
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Lemma 2.2.2. Let w € C*([0,T], D(A)) N C([0,T], D(A?)). Then,

/0 (@ 4( — $)w(s) — ®a(t/2)w(s)|ds

< & {||wllcro.m,pa)) + lwlloor,paz) (2.17)

X

fort €10,T.
Proof. For 0 < s <t < T, by Taylor’s formula, we obtain
DAt — s)w(s) — Pa(t/2w(s) = (t/2 — 5)Pa(t/2) Aw(s)
+ (t/2 — 5)? /01(1 —0)DA(O(t — 5) + (1 — 0)t/2)A%w(s)db.
Let v(s) = ®(t/2)Aw(s). Then, we have
[V (s)llx < [[Aw'(s)llx < llw'(s)llpcay,

t t/2
/ (t/2 — s)v(s)ds = / (t/2 — s)[v(s) —v(t — s)]ds.
0 0

Moreover, for 0 < s < t/2, since

[v(s) —v(t—s)|x = H/ol d%v(es =)t - S))deHx

1
< (t- 23)/0 [v'(0s 4+ (1 = 0)(t — )| xdf < 2(t/2 = )|Vl (j0,1], %)
we have

X

t t/2
/ (t/2 — s)PA(t/2)Aw(s)ds / (t/2 — s)[v(s) —v(t — s)]ds
0 0

X
t/2
<2 /0 (/2 — 5)2ds]v oy < Ellwller (or1.peay- (2.18)

Furthermore, since

/1(1 — )P40 —5)+ (1 — 9)t/2)A2w(s)d9H
0

X

1
< /0 (1 - 0)[A%uw(s)|[xd6 < [wllcqory.puey,

we have
t 1
/ (t/2 — 3)2/ (1—0)DA(0(t —5) + (1 — 0)t/2) A%w(s)dOds
0 0 X
t
< HwHC([O,T],D(A2))/O (t/2 — s)*ds < £*||wllo(o,77,p(42))- (2.19)
Thus, by (2.18) and (2.19), we obtain (2.17). O
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2.2.2 Estimates on the nonlinear flows ¢,

Lemma 2.2.3. Assume (FO)—(F1). For any M > 0, there exists a positive constant
7(M) such that if |[vol| pay < M, then

[®F,()vollpay < 2M,  [[S(t)vollpeay < 2M

forallt € [0,7(M)] andi = 1,2. Moreover, ifvi,v2 € D(A) satisfying max{||vi| pa), [[vell p(ay} <
M, then

[@F, (o1 — (bFi(t)/UQHD( ) < LMt y; — V2 DAY
15(t)or — S(t)vallpeay < XM |oy — vo| pa),

for allt € [0,7(M)] and i =1,2.
Proof. See Proposition 4.3.3 of [8]. O
Lemma 2.2.4. Assume (F0)~(F3). Let vg € D(A?) and ||lvo||p(ay < M. Then,

1@ 5, (H)voll prazy < eP2CM|ug|| paz), (2.20)

forallt € [0,7(M)] and i = 1,2, where 7(M) is previously defined in Lemma 2.2.5.
Moreover, we have
Vol D(A2 € VollD(A2 .
12(E)ooll pazy < EED gl e (2.21)

for all t € [0,7(4M)].

Proof. First, we note that it follows from (F0)-(F3) that (2.9) is local well-posed in
D(A?). For i = 1,2, we set v;(t) = ®p, (t)vg
By (2.12) and (F2), we have

t
i) pazy < llvoll peaz) +/O 153 (vi(7)) || pazydr
t
< ||U0||D(A2)+/O La([lvi(1)[| pay) lvi(T)]| pazydr

Here, it follows from Lemma 2.2.3 that

t
i) p(azy < llvollpeazy + L2(2M)/0 [[vi(T)[| p(azydT

for t € [0, 7(M)]. Thus, Gronwall’s lemma implies (2.20) for ¢ € [0, 7(M)].
Next, since || ®p (t/2)Pa(t/2)voll pay < 2M for t € [0, 7(M)], and

[P, (£) PR (1/2)Pa(t/2)v0l pray < 4M (2.22)
for ¢ € [0, 7(2M)], it follows from (2.20) that

I @)vollpazy < 1@F1(t/2)Pr, ()P r, (8/2)P a(t/2)v0]| p(a2)
< 22, (1)@ 1 (8/2)@a(t/2) 0] pa2)
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for t € [0, 7(4M)]. Similarly, we have
1@ 5, ()@ r1(8/2)® a(t/2)v0l| pazy < e"2AMDHE2ED g o)

for t € [0,7(2M)]. Therefore, we obtain

2y < el2(BM)E/2+ Lo(AM)t+Lo(2M)2/2

N (@)voll peaz) [voll a2

< R o] paz)

for ¢ € [0, 7(4M)]. This completes the proof. O

2.2.3 Lipschitz property of S(t)
Lemma 2.2.5. Assume (FO)—(F4). Let ug € D(A), T € (0, Tmax(uo)) and set

_[m —oL(2m
mr:aggmwumﬂmm,<%=mm{3%nue%@1ﬁ}.
If [lvo — S(to)uollpay < do, then
1S (t)vollp(ay < 2my for t€[0,T —to]. (2.23)

Moreover, if |lv1 — S(to)uoll p(ay < do and [lva — S(to)uol pcay < do, then

)
||5(t§ — S(t)v2llp(ay < €™y — vl pay, (2.24)

15(£)os — S(teallx < e2A4Cm oy — vyl
fort € [0,T —to].
Proof. First, we show (2.23). Since
lvollcay < lleo = S(to)uollpa) + 1S to)uollpgay < 8o+ 5+ < ma,

it follows from Lemma 2.2.3 that [|.S(¢)vol|pay < 2my for t € [0, 7(m1)].
Here, we define

T = sup {7 € (0, Tmax(v0)) | 5()wollpay < 2m1, Ve € [0,7]},

and suppose that T < T — to[ Then, we have

t
S(t)vo = ®a(t)vo + / Ba(t — 7V F(S(F)vo)dr, t e [0,T).
0
Moreover, for 7 € [0, T], since 0 <7< T and 7+t < T, we have

15(T)vollpeay < 2ma,  [[S(T)(S(to)uo)llpeay = 1S(T + to)uollpay < ma-

Thus, by (F6), for t € [0, T], we have
[S(#)vo — S(t)(S(to)uo)llp(a)

< o — S(to)uollpeay /HF F(S(r)S(to)uo)l| payd

<%+ﬂ@mﬂ/\ﬂﬂm—5hﬁ%mﬂmmw
0
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By Gronwall’s lemma, for ¢ € [0, 7], we have
1S(t)vo — S(£)S(to)uol| pay < e Emt < goe2LmiT <
and

15()vollpeay < [[S(E)vo = S(#)S(to)uoll pay + 15(8)S(to)uoll peay

1
<mq+ §m1 < 2mj.

This contradicts the definition of 7. Thus, we conclude that T — tg < T, which
shows (2.23).
Next, we will show (2.24). By (2.23), we have

[S()villpay < 2ma,  [[S(t)v2llpay < 2ma, for t € [0,T —to]. (2.25)
Thus, by (F6), for t € [0,T — to], we have
[S(t)v1 — S(t)v2lpa)
< o = wlloga + [ NFSE0) = FS@louadr
< or = alloga) +222m) [ 1500 = S(llpiaydr
and by Gronwall’s lemma, we have
1S(t)vr — S(tyvallpray < 2™ |oy — vo||p(ay, for t € [0,T — to).
Moreover, by (2.25) and (F8), for ¢ € [0,T — t], we have
1S(t)v1 — S(t)va|x
< lor = vallx + [ 1S - F(S)lxdn
< [[vr = valx + 2La(2m1) /Ot 1S(r)o1 — S(r)s| xdr.
Hence, we obtain
1S(t)v1 — S(t)va||x < 24Pt luy —wvy||x  for te[0,T —to].

This completes the proof. ]

2.3 Local error estimates in D(A)

In this section, we will estimate local errors in D(A) between the solution wu(t) of
(2.9) and ¥(t)vg which is defined by (2.13).
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Proposition 2.3.1. Assume (F0)—~(F3). Let vo € D(A?) and |jvo|pay < M for
some M > 0. Then, there exists a positive constant K1(M) depending only on M
such that

1S (t)vo — W(t)voll pray < K1(M)l|voll(paz)t?
fort € [0,7(4M)].
In what follows, we put

u(t) = S(t)vg, v(t) = ¥(t)vo. (2.26)

First, u(t) is expressed as
t
u(t) = ®a(t)vo + / DA(t — s)F(u(s))ds.
0
To derivative a useful expression for v(t), we note by (2.12)

t/2
Ppy (1/2) PR, (1) Pry (8/2)a(t/2)v = wo(t) + /0 F1(®p (s)wo(t))ds

=wo (t)

= wo(t) + ;/0 Fi(®p (s/2)wo(t))ds,

Op, (1) Dy (8/2)a(t/2)vg = wi(t) + /Ot (@ py(sywi(t))ds,

=w1 (t)

and
t/2
B, (£/2) a(t/2)v0 = B alt/2)v0 + /O Fu(® g (5)B a(t/2)00)ds
= <I>A(t/2)1}0 + % /Ot Fl((I)Fl (5/2)‘1)A(t/2)110)d8.

Therefore, v(t) can be written as

0(t) = Da(t/2)B 5 (1/2) B, (D1, (1/2)D 4 (t/2)u,
= (I)A(t)vo + Gl(t) + GQ(t) + Gg(t) (2.27)

where
1 t
Gi(1) = /0 B a(t/2)F1 (D, (5/2)D a(t/2)v0)ds,
Gs(t) = /Ot D A(t/2) Fo(PF, (s)Pr (t/2)a(t/2)v0)ds,

Gs(1) = /0 DA/ T (B, (5/2)0 5 ()01 (1/2) B 4(1/2)00) s,

Hence, we have

u(t) —o(t) = /0 DAt — ) [F(u(s)) — F(v(s))]ds + R(t), (2.28)
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where

Ri0) = [ 0at = )F(wls))ds — [61(0) + Galt) + G ().
We devide R(t) as R(t) = Ry(t) + Ra(t), where
R1(0) = [ @Al = 9)Fi (o) — (G1(1) + G,
Ra(t) = /Ot Ba(t — 5)Fo(v(s))ds — Galt).

Moreover, we split Ry (t) and Ra(t) as Ri(t) = Ria(t) + Rip(t) and Ra(t) = Raa(t) +
Rop(t), respectively. Here,

Rua(®) = [ @alt =) [Filo(s) = J 0 (51201 (05, (1/2)0a(1/2)0)
5 PR 5/ ds, (2:29)

Ruft) = | (@alt—5) ~ Da(t/2) RO /2 (O (/20 2)0)

3RO (/20020 ds (230
Rza(t) = /0 (I)A(t — 3) [FQ(U(S)) — FQ(CI)F2 (S)(I)Fl (t/Q)CI)A(t/Q)Uo)] ds, (2.31)
Rop(t) = /D t(<1>,4(t —8) — BA(t)2)) Fa(Pr, ()P p, (/2)B a(t/2)v0)ds. (2.32)

First, we prove the following lemma.

Lemma 2.3.2. Assume (F0)—(F3). Let vy € D(A?) and [voll p(ay < M. Then, there
exists a positive constant Co depending only on M such that

|R2(t)]I pay < Cuazllvoll prazyt® (2.33)
fort € [0,7(4M)].

Proof. First, we show that there exists a positive constant C2, depending only on
M such that

[ R2a(t) || p(ay < Cl2aHU0||D(A2)t2 (2.34)

for t € [0, 7(4M)]. For 0 < s <t < 7(4M), we set
w(s,t) = Pp,(8)Pr (t/2)DA(t/2)vp.

Then, we have

Rou(t) = /0 DAt — 8)[Fa(v(s)) — Fa(w(s,t))]ds.
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By Lemma 2.2.3, we have [|w(s,)|[pa)y < 4M and [jv(s)||pa) < 8M for 0 < s <
t < 7(4M). Thus, by (F6), we have

IRen®)lpay < L8M) [ o(s) = (s, (2.35)
for 0 < s <t <7(4M). Since
v(s) = als/2)@p (s/2)w(s, s)
s/2
= Dy(s/2) {w(s,s) —I—/O Fi(®p (T)w(s,s))dT} ,
we have
[v(s) —w(s, s)lpay < |@als/2)w(s, s) —w(s, s)||pa

s/2
+ /0 | Fu(@ 5, (7)o (s, )| gy dr-

By Lemmas 2.2.1 and 2.2.4, we have

s
1®a(s/2)w(s, s) —w(s, s)llpa) < 5llwls, s)lpcaz)
s s
< ie2L2(8M)5||U0”D(Az) < 562L2(8M)T(4M)||,U0”D(A2)
for 0 < s < 7(4M). Moreover, by (F7) and Lemma 2.2.3, we have
[FL (@R (T)w(s, $)lp(a)
< L([[ @7, (T)w(s, s) [l () [| @, (T)w(s, s)|[ pay < L(8M)8M
for 0 <7 < s <7(4M). Thus, we have
S T
[v(s) —w(s,s)llpay < 5{62L2(8M) (M) 4 8L(8M) }|wol| pa2)

for 0 < s < 7(4M), which implies (2.34).
Next, we show that there exists a positive constant C1g, depending only on M
such that

|1 R26(t) I p(ay < Cuzllvoll paz)t? (2.36)

for ¢ € [0, 7(2M)].
By (F2) and Lemmas 2.2.1 and 2.2.4, we have

[ R25(t) || p(a)

S/ %_3 1F2(®@r, ()P, (£/2)2A(E/2)v0) || p(az)ds
0

g/ %_3 Lo(4M) || @, (5)®, (1/2)® a(t/2)v0|| paz) ds
0

t
t
< []5 - o[ Eaannyebs s L 1o ds

t
t
< / = — 8| dsLo(4M)e2E2GMDTEM)| || b 2y
0
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for t € [0, 7(2M)], which implies (2.36).
Finally, (2.33) follows from (2.34) and (2.36). O

Lemma 2.3.3. Assume (F0)—~(F3). Let vy € D(A?) and |jvo|| pay < M. Then, there
exists a positive constant C11 depending only on M such that

IR ()] peay < Cuallvollpaz)t? (2.37)
fort € [0,7(4M)].

Lemma 2.3.3 can be proved in the same way as in Lemma 2.3.2, so we omit the
detail. By Lemmas 2.3.2 and 2.3.3, we obtain the following lemma.

Lemma 2.3.4. Assume (F0)(F3). Let vg € D(A?) and ||vo||pay < M. Then, there
exists a positive constant Cy depending M such that

IR(®)|Ipay < Cillvoll paz)t? (2.38)
fort e [0,7(4M)].
Now, we give the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. 1t follows from (F6) and Lemma 2.3.4 that there exists
a positive constant C'; depending only on M such that

[u(t) = v(®)llpca) S/O 1 (u(s)) = F(v(s))lpayds + [ R(#)[| p(a)

t
S/O 2L(max{[|u(s)|| p(ay. [lv(s)[ peay P lluls) — v(s)||payds
+ Cilvol| paz)t?

for ¢ € [0,7(4M)]. Moreover, by Lemma 2.2.30 we have [|u(s)|p4) < 8M and
lv(s)llpay < 8M for s € [0,7(4M)]. Thus, we have

¢
u(t) = v(t)||peay < 2LBM) | [lu(s) — v(s)lIpeayds + Cillvoll p(az)t?
0
for t € [0,7(4M))]. Finally, by Gronwall’s lemma, we obtain
[u(t) — v() | peay < e2FEMICvg|| prazyt® < e2EEMTEMCy |[yg|| 42t

for t € [0, 7(4M)]. This completes the proof. O

2.4 Local error estimates in X

In this section, we prove the following local error estimates in X.
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Proposition 2.4.1. Assume (F0)~(F5). Let vg € D(A?) and |lvo| p(ay < M. Then,
there exists a positive constant Ko(M) depending only on M that

1S (t)vo — ¥ (t)vollx < Kao(M)|vollprazyt®
fort € [0, 7(4M)].

This proposition is a readily obtainable consequence of

[R1a(t)]|x < Cizallvollpiaz)t®, (2.39)
|R1(t) ]| x < Chasllvoll peaz)t?, (2.40)
[ R2a(t) ]| x < Cazallvollpaz)t®, (2.41)
[ Ras ()|l x < Conpllvoll prazyt?, (2.42)

for t € [0, 7(4M)], where Ci24, C12, C224, Co9p are positive constants depending only
on M and Ri,(t), Rip(t), Raqa(t), Rap(t) are defined by (2.26), (2.28)—(2.32).
The proof of theses estimates are given below.

2.4.1 Proof of (2.42)
For 0 < s <t <7(M), we set

wo = ¢)F1 (t/Q)CI)A(t/Q)Uo, w(s) = F2(<I>F2(s)w0).
Then, it follows from Lemmas 2.2.3 and 2.2.4 that

2M)t

lwoll peay < 2M,  Jlwoll pazy < e“2CM o[ pazy

for t € [0, 7(M)]. Moreover, by Lemma 2.2.2, we have

/0 [Da(t — s)w(s) — Pa(t/2)w(s)]ds

X
< {Jlwllerqoranpay + lwlleqor-an,piaz) }

for t € [0, 7(M)].
Here, it follows from (F7) and Lemma 2.2.3 that

lw(s)lpeay < L@ (s)woll pa)) 1@ r, (s)woll pay < 4ML(4M) (2.43)
for s € [0, 7(2M)]. Moreover, by (F2) and Lemma 2.2.4, we see that

|w(s)lIpazy < L@, (s)wol| p(ay) 1P (8)woll paz)
< Ly(4M)e"2 43 g | pazy < Lo(AM)eE2EMTEM) o) 1 o)

for s € [0,7(2M)]. Thus, there exists a positive constant C’ depending only on M
such that ||w||c(jo,r2an)],D(42)) < C'llvoll peaz)-
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Next, since w'(s) = F§(Pp,(s)wo)0s(Pr, (s)wo) = F5(Pp,(s)wo) Fa(Pp,(s)wp), it
follows from (F1) and (2.43) that

[0’ ()1 pay < L2, (s)woll pray) [ F2 (P r, (s)wo) | pay
< AML(4M)?* < AL(AM)?|[vol| p(a2)

for s € [0, 7(2M)]. Thus, there exists a positive constant C” depending only on M

such that ||wl|c1(o,@2),00a)) < C”llvoll paz)-
This completes the proof of (2.42).

2.4.2 Proof of (2.41)

In order to prove (2.41), we devide Ra,(t) into several partsd) By Taylor’s formula,

we have
FQ(\II(S)'UO) — FQ(Uo) = Fé(vo)[‘ll(s)vo — Q}o] + Jl(s), (2.44)
Fy (@, ()P, (1/2)Pa(t/2)vo) — F2(vo)
= F3(v0)[®r, (5)®r (t/2)® a(t/2)vo — vo] + Ja(s), (2.45)
where

1
Ji(s) = /0 (1= ) EL (0 (s)uo + (1 — 0)00) (¥ (s)vo — voldb,

1
Ja(s) = /O (1= 0)F5 (02, ()P (t/2)Pa(t/2)vo + (1 — O)vo)
(Pp, (8) P, (t/2)® A(t)2)vo — vo)?db.

Moreover, it follows from (2.27) that

U (s)vg = Pa(s)vo + % /08 DA(s/2)F1(Pp, (T/2)Pp,(5)Pr (s/2)Pa(s/2)v0)dT

N /0 "D a(5/2) Fo(py (1) B, (5/2) a(s/2)v0)dr

+ ;/OS D4 (5/2)F1(Pp, (1/2)Pa(s/2)v0)dr,

Dp, (8)Pp, (t/2)PA(t/2)vg = Pa(t/2)vy + /OS Fo(Op, (1)Pp, (t/2)PA(t/2)vo)dT

1 t
+ 2/ Fi(Pp, (1/2)PA(t/2)vo)dT.
0
Hence, we have

(s)vo — Pr, (s)Pry (£/2)Pa(t/2)v0
=D 4(s)vg — Pa(t/2)vg + J3(s,t) + Ja(s) + J5(s,t) + Js(s, 1), (2.46)
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where
J3(s,t) = /Os DA (s/2)Fo(Ppry(T)Pr (5/2)Pa(s/2)v0)dT

- [ B@nmen @220

Ja(s) = 1/05 D a(s/2) F1(Pr, (7/2)Pr, (5)Pry (5/2) @ a(s/2)v0)dr

1

-5 /OS DA(s/2)F1(Pp, (7/2)Pa(s/2)vo)dT,

J5(s,t) = /08 D A(s/2)F1(Pp, (T/2)Pa(s/2)v)dT
- /OS Fi(®p, (1/2)®A(t/2)vo)dT,

Jo(s, 1) = /0 "B (@ (7/2)® 4 (t/2)00)dr

_ % / t Fi(®p, (7/2)® 4(1/2)v0)dr.

0

\V)

Thus, it follows from (2.44) and (2.45) that
Raa(t) = /0 “oult—s) [ P2(W()00) = Po(@r (5) @1, (£/2) @ a(t/2)00) | ds
= /Ot DAt — s)F3(vo) [ (s)vo — Ppy (8)Pp, (£/2)P a(t/2)v0]ds

+ /t Pa(t = 5)(Ji(s) = Ja(s))ds. (2.47)
0

By (2 46), we obtain

S—

(t = 8)F5(v0) [T (s)v0 — P, (5)Pry (£/2)Pa(t/2)v0] ds

<I>
/ At — 8)Fy(vo) [®a(s)vo — P a(t/2)vo]ds

+ /0 DAt — 5)Fy(vo){J3(s,t) + Ju(s) + J5(s,t) + Jo(s,t) }ds. (2.48)

HGHCQ, we can express as

where
Qo(t) = /Ot DAt — 8)Fy(vo) [Pals)vg — Pa(t/2)vo] ds,
Q)= (7 [ @att— )55 (1=1,2),
0

Q;(t) = /O‘IDA(t—s)FZ(vo)J (s,8)ds (j = 3,4,5,6).
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Estimation for Qo(t).
By Taylor’s formula, we have

D A(s)vg — Pa(t/2)vg = (s —t/2)D 4(t/2) Avg

+ (s — t/2)? /01(1 —0)® (05 + (1 — 0)t/2)A%vdb.

We note, for any w € X,

t t/2
/ (5 — /2Bt — s)ids = / (1)2 = $)(®a(s) — DAt — 5))iids.  (2.49)
0 0
We set wog = Fy(v9)®a(t/2)Avg. By (F1), we have
lwoll peay < L(llvoll pay) [[®a(t/2) Avo || pay < LIM)||vol| paz)- (2.50)
Hence, by (F4), Lemma 2.2.1 and (2.50), we have
1Qo(t)l x
t/2
< / (t/2 = s)[[(®a(s) — Pa(t — s))wol xds
0

/01(1 —0)D4(0s + (1 — 0)t/2)A2v0d0HX ds

+A%—ﬁﬁm@@]

t t
</0 Q(t/2—8)2d8|leHD(A)+/O (s —t/2)*dsLa(M)]|vol p(a2)

< (L(M) + Lay(M))|lvoll pazyt®

for t > 0.
Estimations for Q1(t) and Q2(t)

First, we consider the case j = 1. Since ||¥(s)vol|p(a) < 8M for s € [0, 7(4M)], it
follows from (F5) that

1Q1()]| x
t
< [ 1n@las
t 1
< / / | F2 6w s)o0 + (1~ 8)00) (W(s)e0 — vl b
0 JO
t
< [ Ls(320) - 0(s)un — el - [¥(5)en — vl ayds
0
for t € [0, 7(4M)]. Moreover, by (2.27) and Lemma 2.2.1, we have

[ (s)vo — vollp(a)
< |[[®a(s)vo — vollpea) + [|G1(3)|I pay + |G2(8) I pay + 1G3(s) [ pay
< sllvollpazy + IG1(8)lIpay + 1G2(3)Ipcay + [1G3(5) [ pay-
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By (F7) and Lemma 2.2.3,
1G1(3)|[pay < /Os [ F1 (@R, (7/2)Pa(s/2)v0) || paydT
<2ML(2M)s < 2L(2M)||lvo | p(azys
1G2(s)llp(ay < /OS [E2(®r, (T)@r (5/2)® a(s/2)v0)l p(ayds
<AML(4M)s < 2L(2M)llvo |l p(az)s
IGa (6o < [ IR (/28 ()01, (5/2@a(5/ 200 (s
<8ML(8M)s < 8L(8M)||lvolp(az)s-
Thus, there exists a positive constant Cf,l depending only on M such that

1@ (s)vo — vollp(ay < C, llvoll pazys,

for s € [0, 7(4M)]. Similarly, there exists a positive constant Cj depending only on
M such that [[¥(s)vg — vol|x < CY s for s € [0,7(4M)].
Therefore, we have

t
@1l < Ls(8M) | €5, Chlloan s

< Ls5(8M)CY, CY lvoll prazyt. (2.51)
for t € [0, 7(4M)].
Similarly, we can prove
1Q2(t)llx < Cllvollpeaz)t™. (2.52)

Estimations for Qs(t), Q4(t) and Qs(t).
First, we consider the case j = 3. By (F4), we have

t
1Q3(t)]x < / La(llvollpeay) [l J3(s: t) || x ds.
0
We set w(r,s) = ®p, (7)Pr (5/2)PAa(s/2)vg. Then, we have
J3(s,t) = /Os [(I)A(S/Q)FQ(U)(T, s)) — Fa(w(r, 3))]d7'
+ /S [FQ(U}(T, s)) — Fa(w(r, t))]dT.
0
It follows from Lemma 2.2.3 that
|w(T,s)|pay <4M  for 7,5 € [0,7(2M)].
Moreover, by Lemma 2.2.1 and (F1), we have
’ /0 [®a(s/2) Faw(r, ) — Fo(w(r, s))] dr

< AML(4M)s* < AL(4M)||vo|| pa2)s”

g/ﬂ%@hﬂ%@“
X 0
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for s € [0, 7(2M)]. Furthermore, by (F8), we have

— Fy(w(r,t))]dr

. g/o Ly(4M)||w(r, s) — w(T,t)||xdr

< /0 Ly(4M)[w(r, 5) = w(r,t)]| paydr

for s,t € [0,7(2M)]. For 0 <7 < s <t < 7(2M), by Lemmas 2.2.3, 2.2.1 and (F1),
we have

Jw(r, ) —w(T,t)||p(ay
< UMD, (5/2)@ a(s/2)v0 — By (8/2) P a(t/2) w0l Dy
< UMDy (5/2)@a(s/2)v0 — PRy (5/2)Pa(t/2)v0] p(a)
+ PO D (5/2)@a(t/2)v0 — ©ry (£/2)P at/2)00] (ay
< eL(4M)T+L(2M)S/2H(I)A(S/Q)UO — (I)A(t/Q)v()HD(A)
t/2
-1-// eL(4M)THF1(<I’F1(T)‘IDA(t/Q)”O)”D(A)dT
s/2
%eL(4M)T+L(2M)s/2Hv0||D(A2)(t —5)+ ML(QM)@L(4M)T(2M) (t —s)

%eL(ZLM)T(QM) (eL(2M)T(2M)/2 n 2L(2M)> ol gz (¢ — 5)-

IN

Thus, there exists a positive constant C’Z,S which depend only on M such that

13(s, )l p(a) < Clllvoll pazyts

for 0 < s <t < 7(2M). Therefore, we have

t
1Qs()lx < | La)Cl ol peytsds
< L4(M)C§S‘|00”D(A2)t3

for t € [0, 7(2M)],
Similarly, we can prove

1Qs(®)llx < Cllwollpazyt®s  1Qs(B)llx < Cllvoll peaz)t®

for t € [0, 7(4M)].
Estimation for Qg(t).
We notice that Jg(s,t) can be rewritten as

Jo(s,t) = /0 Fi(r, (7/2)0a(t/2)u0)dr — /0 B (/20 at/2)u0)

s/2 t/2
= 2/ Fl(‘l)pl( )(I)A t/2 Uo / F1 CI)Fl (I)A(t/Q)Uo)
0 0
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We set w(1) = F1(®p, (T)Pa(t/2)vg). Then, we have
Jﬁ(s,t) = Js1 (S, t) + JGQ(S,t),
where

s/2 t/4
Je1(s,t) = 2/0 w(T)dr — 2/0 w(T)dT,
t/4 t/2
Je2(t) = 2/0 w(T)dr —/0 w(T)dr.

By Taylor’s formula, we obtain
Je61 (S, t) = J61a(87 t) + %(S — t/2)2J61b(S, t),
where
Jora(.1) = (5 — t/2)w(t/4),
1
Jony(s,t) = /0 (1= 0)F! (@ (05 + (1 — 0)t/2)/2) a(t/2)v0)
(@R ((0s + (1= 0)t/2)/2)® 4(t/2)v0))db.
Then, we have
/O C Bt — $)FL(00) Jora(s.0)ds
_ /O (5 — £/2)BA(t — 5)Fy(vo)w(t/4)ds.

Hence, it follows from (F1), (2.49), Lemmas 2.2.1 and 2.2.3 that

/Ot P A(t — 8)Fy(vo)Jo1a(s,t)ds

X

t/2
/0 (5 — £/2)(@a(t — 5) — D a(s)) Fh(vo)w(t/4)ds

X
t/2

< / 2(t/2 — 5)2ds| Fy(vo)w(t/4) | peay
0

< L2M)*Mt* < L(2M)?||vo|| p(az)t®

for t € [0, 7(M)].
By (F4), we have

/Ot(s —1/2)2® 4 (t — 8)F5(vo) Je1p(s, t)ds

X

< [~ /2 LaaD) s, .
0
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By (F1) and (F7), we have
[ J61(s,t)|x < 1 J616(8, t) [ peay < L(2M)*M < L(2M)?||vo|| p(az)

for s,t € [0,7(M)]. Thus, we obtain

< L(2M)?La(M)|vol| p(az)t®  (2.53)

/Ot(s — t/2)2q)A(t — S)FQI('UO)JGM(S, t)ds

X

for ¢t € [0, 7(M)].
Therefore, there exists a positive constant Cg; depending only on M such that

for t € [0, 7(M)].
On the other hand,

/Ot D A(t — 8)Fy(vo)Je1(s,t)ds

S CﬁlHUO”D(A2)t3 (2.54)
X

t/4 t/2
J62(t) = 2/ w / w
0
t/2 t/2
AREY /
0 0

Hence, by (F6) and Lemma 2.2.3, we have

[ J62() || x < [[J62(t)l| D)
t/2

< /0 lwo(r) = w(r/2)l|pay dr
t/2 T

<[ e [ V@R P22 oy
0 T/2

< L2M)*Mt* < L(2M)?||vo|| p(az)t?

for ¢ € [0, 7(M)].
Thus, it follows from (F1) that

/0 "Bt — )L (o0) Jealt)ds

X

/0 "Bt — )l (o0) Jealt)ds

D(A)
< [ OO0 lloyds < LMl (255)
for t € [0, 7(M)].
Summing up those estimates, we obtain
1Q6(t)llx < Cllvollpeaz)t’. (2.56)

for ¢ € [0, 7(M)].
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2.4.3 Proofs of (2.39) and (2.40)

Inequality (2.40) can be proved in the same way as the proof of (2.42), so we skip
the detail.
To derive the estimation for Ry, (t), we divide R14(t) as

R14(t) = Ri14(t) + Ri2q,

where
Ri1q(t) = /Ot DAt — 5) {F1((s)vo) — F1(Pr,(s)Pr (t/2)Pa(t/2)v0)} ds,

Risat) = 3 [ @t = 5) 21 (01 5)8, (1/2)24(1/2))
—{F1(Pr, (5/2)Pr, (1) Pr, (£/2)Pa(t/2)v0) + F1(PFR (5/2)Pa(t/2)v0)} | ds
Then, in exactly the same way as the proof of (2.41), we can prove
[R11a ()| x < Cllvoll piazyt®
for t € [0, 7(4M)]. We proceed to shpw
IR124(t) 1 x < Cllvollpaz)t® (2.57)

for ¢ € [0, 7(4M)]. To do this, we divide Rj2,(t) into some parts. We set

{ wi(s) = Pp (s/2)Pa(t/2)vo,  wals) = Pry(5)Pr (1/2)Pa(E/2)v0,

(2.58)
w3(s) = (I)Fl (8/2)‘1)}7’2 (t)(I)Fl (t/Q)q)A(t/2)’U0.

By Taylor’s formula, we have

2F; (wa(s)) — F1 (ws(s)) — Fi (wi(s)) = Q(s) +2J7(s) — Js(s) — Jo(s),

where
Q(s) = Fi(vo) [2wa(s) — w3 (s) — wi(s)],
7(5) = [ (0= O (Guals) + (1)) an(s) o,
R(6) = [ (0= O (Gus(s) + (1)) s (s) o,
Jo(s) = /O (1= 6)F (Bun(s) + (1 — B)vp) [us(5) — o] db.
That is,

Ry94(t) =
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We can prove

< Cllvollpanyt®  ( =7,8,9)
X

/t Oyt —s)Jj(s)ds
0

for t € [0,7(4M)] in the same way as the proofs of (2.51) akd (2.52). Hence, it
remains to derive the following estimate:

< Cllvoll pazyt’ (2.59)

/t D4(t—5)Q(s)ds
0 X

for ¢ € [0, 7(4M)].
Functions w(s), wa(s), ws(s) are written as

wi(s) = Pa(t/2)vo + I5(s), wa(s) = Pa(t/2)vo + Iu(s) + I5(t),
ws(s) = Pa(t/2)vo + 14(t) + I5(t) + Is(s),

where

S

s/2
Iy(s) = Fy (wo(r))dr, I5(s) = /0 Fy (wy(27)) dr,

|
Io(s) = /O " B (ws(20)) d

Thus, we obtain
/Ot B At — $)Q(s)ds = W (£) + Wial(t)
where,
Wi t) = /0 "Dt — $)F(v0) [21a(s) — La(t)] ds,
Walt) = /0 "Bt — $)Fl(09) [Is(t) — 20s(s)] ds.
Wy(t) = /0 "4t — sVl (wo)Ts(s) — To(s))ds.
First, we can prove the following estimate in the same way as the proof of (2.56)
IW1(t)llx < Cllvollpazyt®,  [Wa(t)llx < Cllvollprazyt® (2.60)
for t € [0,7(2M)]. In view of (F1), (F6) and Lemma 2.2.3, we obtain

115(s) — Is(s) | x
< | I5(s) — Is(s)| pay

s/2
S/O LEBM)||@r, (1) a(t/2)v0 — Pry (1), (1) PRy (8/2) @ a(E/2)v0]| praydT

s/2
< [ LEaHNED 04 (1/2)u0 — @, (10, (/224120 ) O
0
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for s,t € [0, 7(4M)]. Furthermore, by (F7) and Lemma 2.2.3, we have

1@ a(t/2)v0 — @, ()P r, (£/2)Pa(t/2)v0] pa)
t t/2

< / [ F2(®r, ()P R, (t/2)A(t/2)v0)l paydT +/O [ F1(Pr, ()P a(t/2)v0) || peaydr
0

¢ t/2
< / L(4M)4Mdr + / L(2M)2Mdr

0 0
< 5L(4M)]|vo|| pazyt
for t € [0, 7(2M)].

Thus, we have
s/2
115(s) — Is(s)l|x < / ds- 5L(8M)* e BMITEM) g | 1 gt
0
< 5L(8M)26L(8M)T(4M)HUOHD(Az)ts

for s.t € [0, 7(4M)].
Hence, there exists a positive constant C”’ depending only on M such that

IW3(t)llx < C"llvoll prazyt’

for t € [0, 7(4M)].
Summing up those estimates, we obtain (2.57) and, therefore, (2.39).

2.5 Proof of Theorem 2.1.2

This section is devoted to the proof of the main result, Theorem 2.1.2. We set

= 2Ly(8mg), k1 = ePLEMOITIT K (mo)T, k3 = kiljuol|praz),  (2.61)
Ko = e(2LaC@mo)t 3T ) (VT (2.62)

We assume that hy > 0 satisfies

7
ho < m(4my),  e*HCMIMOKshy < 6o, Kghg < %, (2.63)

where mg = 8 max,¢c(o 77 [|S(t)uol|p(a)y and o which is previously defined in Lemma
2.2.5. We note that k3h < e2LGmohgah < §g for h € (0, ho).
In what follows, we assume h € (0, hp]. By induction, we will show

19 (h) uoll prazy < €79 uol| p(az) (2.64)
1@ (h) ol p(ay < mao, (2.65)
1S(jh)u ( Y uollp(ay < wsh (2.66)
||S(]h) U(h) ullx < w2lluollpeazyh® (2.67)

for j € NU {0} satisfying jh < T.
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In the case j = 0, it is clear that (2.64)—(2.67) hold. We assume nh < T and
(2.64)—(2.67) holds for j =0,1,...,n — 1.
First, it follows from Lemma 2.2.4 and (2.64) that

19 (R)" w0l prazy = 1 (R)T(h)"  ug|| prazy < e¥X2EmOM [T (h)* g paz)
< e DR g | pazy = € |ug|| paz).-
By the triangle inequality, we obtain

1S (nh)ug — W (h)"uo||p(a)
n—1

< I8((n = j — 1)R)S(h)T(h)Tug — S((n — j — L)h)T(A)T(h) ug| p(a).
j=0

Moreover,
¥ (h)?ug — S(jh)uollpay < rsh < do

for j =0,1,...,n— 2. Thus, it follows from Lemma 2.2.5 that
1S(R)®(h) ug — S((j + 1)h)uoll peay = IS(h) ¥ (h) ug — S(h)S(jh)uol| p(a)
< 62L(2m0)hH\Il(h)qu - S(]h)UOHD(A) < €2L(2m0)hﬁ3h < 50

for  =0,1,...,n — 2. We see that

1@ (h) ¥ (hY ug — S((j + 1)h)uoll peay = ¥ (h) T ug — S((j + 1h)uoll pay
< kgh <o

for  =0,1,...,n — 2. Hence, it follows from Lemma 2.2.5 that
1S((n = j = R)S(h)T(h)ug — S((n = j — D)) ()W (h) uo| p(ay
< eI S (h) W (h)ug — U (h) ¥ (h) o | pay
< LTS (R)W (h) ug — T ()W (h) uo|| p(ay.

Hence, we have

n—1
1S (nh)ug — W(h) ol pray < e " ||S(R)W(h)Y up — W(h) T (h) uol p(ay.
=0

Moreover, it follows from (2.65) that ||¥ (k) ug||pay < mo for j = 0,1,...,n — 1.
By Proposition 2.3.10 we obtain
IS(R)¥ (R ug — W (h)¥ (A uollp(ay < K1(mo) ¥ (h)Y uol| p(azyh?

< K1 (mo)e™ |uol| p(azyh®.

Therefore, we have

n—1
1S (nh)ug — W (h)"ug|| p(ay < 2 Zmo)T > " Ki(mo)e||ug pazyh?
7=0
< @MY K () [[ug | pazynh? < ksh.
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Finally, it follows from (2.63) that
W (h)" uollpray < I[¥(h)" ug — S(nh)uol pay + IS(nh)uoll piay < K3h +mo/8 < my.

We can also prove (2.67) in the same way of the proof of (2.66).
Therefore, we showed (2.65) holds for j = n.
This completes the proof. O

2.6 Numerical examples

In this section, we present numerical examples to confirm the validity of Theorem
2.1.2. We consider

Opu = iAu — i|ul?u — 2Julu, te[0,T], z €R,
(2.68)

u(0) = up(x), x e R.

Let A = i0? and D(A) = H?(R). Moreover, we put F;(v) = —ilv|?v, Fy(v) =
—2|v[*v.

For simplicity of computation, we consider the equation in a bounded interval [0, 1]
and pose the Dirichlet boundary condition. We set ug(x) = sin(mz). We numerically

solve @ 4(h)vg by applying the Crank-Nicolson type finite difference method. We can
obtain the following exact solutions of d;v = —i|v|?v and v = —|v|*v, respectively:

O (h)vg = exp [—i\v()]?h] vo and Pg,(h)vo = (1+ 8]v0|4h)*1/4vo.

It is difficult to obtain the exact solution of (2.68). Therefore, we numerically
confirm the following condition instead of (2.16). We define

eP)(h) = sup [[W(h)"ug — W (h/2)* uolly-
0<nh<T

In this experiment, we set T = 1. We confirm that there exists positive constant C'
such that

elP)(h) < Ch?,

which is a sufficient condition for (2.16). In Figure 1, we plot (logh,loge(”)(h))
with Y = L°°, L? and H'. We sce that e(P)(h) ~ Ch? in all cases.

Moreover, (2.68) has the following property:

d
dt/uﬁda: <0. (2.69)

In Figure 2, we see that the scheme (2.13) preserves the property (2.69).
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3 Regularity and singularity of blow-up
curve for Ut — Ugpy = ‘Ut‘p

We study a blow-up curve for the one dimensional wave equation g —
Ugy = |ug[P with p > 1. The purpose of this paper is to show that the
blow-up curve is a C' curve if the initial values are large and smooth
enough. To prove the result, we convert the equation into a first order
system, and then apply a modification of the method of Caffarelli and
Friedman [7]. Moreover, we present some numerical investigations of the
blow-up curves. From the numerical results, we were able to confirm
that the blow-up curves are smooth if the initial values are large and
smooth enough. Moreover, we can predict that the blow-up curves have
singular points if the initial values are not large enough even they are
smooth enough.

3.1 Introduction

In this paper, we consider the nonlinear wave equation

Ut — Ugy = |ue|?, t>0, r€R, (3.1)
uw(0,z) = up(z), ut(0,2) =ui(x), x€R, '
where
p > 1is a constant such that the function |s|P is of class C"*. (3.2)
Here, u is an unknown real-valued function.
Let T* and R* be any positive constants, and set
Br- ={z | |z| < R"}, (3.3)
K,(to,xo) = {(t, :E) | |$ — CC()| <tg—t, t> O},
Kpep-= |J K(T"2). (3.5)
rEBRx*

We then consider the following function
T(x) =sup{t € (0,T7) | |u(t,z)| < oo} forz € Bp-.

In this paper, we call the set I' = {(T'(z),z) | * € Bg~} the blow-up curve. Below, we
identify I with T itself. There are two purposes of this paper. First, we demonstrate
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that T is continuously differentiable for the suitable initial values. Second, we present
some numerical examples of the various blow-up curves. From the numerical results,
we were able to confirm that the blow-up curves are smooth if the initial values are
large and smooth enough. Moreover, we can predict that the blow-up curves have
singular points if the initial values are not large enough even they are smooth enough.

We will state some analytical results from previous studies on the blow-up curves
for nonlinear wave equations. The majority of previous studies have considered the
following nonlinear wave equation:

Ut — Uge = F(u), t>0, z €R,
and corresponding blow-up curve
T(z) =sup{t € (0,7%) | |u(t,z)] < oo} forx € B~

We note that the definition of the blow-up curve is different from ours. The pi-
oneering study on this topic was done by Caffarelli and Friedman [6], [7]. They
investigated the case with F(u) = |u|?. They demonstrated that T in that case is
continuously differentiable under suitable initial conditions. Moreover, Godin [18]
showed that the blow-up curve with F'(u) = e* is also continuously differentiable un-
der appropriate initial conditions. It was also shown that the blow-up curve can be
C°, in the case of F'(u) = e* (see Godin [19]). Furthermore, Uesaka [33] considered
the blow-up curve for the system of nonlinear wave equations.

On the other hand, Merle and Zagg [27] showed that there are cases where the
blow-up curve has singular points, while the above results concern the smoothness
of the blow-up curve.

As mentioned above, several results have been established on the blow-up curve
when there are no nonlinear terms involving the derivative of the solution. On the
other hand, to the best of our knowledge only one result has been found concerning
the blow-up curve with nonlinear terms involving the derivative of solution. Ohta
and Takamura [30] considered the nonlinear wave equation

Upt — Uge = (ug)? — (ug)?, teR, z € R. (3.6)
This equation can be transformed into the wave equation d2v — 92v = 0 by

v(t,z) = exp{—u(t,z)}, wu(t,zr)=—log{v(t,x)}.

Thanks to the linearization of (3.6), we can study the blow-up curve of (3.6).

However, we cannot apply this linearization to (3.1). Therefore, we employ an
alternative method, which is to rewrite to (3.1) as a system that does not include
the derivative of the solution in nonlinear terms. We basically apply the method
introduced by Caffarelli and Friedman [7] to this system. However, we offer an
alternative proof of [7] for showing that the blow-up curve of the blow-up limits is
an affine function (Section 3.5). Consequently, our proof is more elementary and
easy to read. Our method would be applied to the original equation of [7].
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We define ¢ and v as
¢ = us + Uy, Y= up — ug.
Then, we see that (3.1) is rewritten as
D_¢=27Plp+ 9P, t>0, r€R,

Dy =27P|p 4 P, t>0, z€R, (3.7)
¢(Oax) = f($)7 %Z)(Oa@ = g(l’), T < Ra

where D_v = vy — vy, Dyv = v + v, and f = uy + Opug, g = up — Ozug. (The
equivalency of between (3.1) and (3.7) will be described in Remark 3.1.2.)
Let (¢, 1) be the solution of

d¢

L =97P 7 7P t

it lp+ P, >0,

d - -

df =27+ ¢, t>0, (3:8)

$(0) =71, P(0) = e,

where 1 and 2 are some positive constants which will be fixed later. Then, we see
that there exists a positive constant 77 such that

(t) +(t) > 0o ast— Ty.
We make the following assumptions.
(A1) f>m, g=>72 in Brsip-
(A2) f,g € C(Bresn:).
(A3) There exists a constant 9 > 0 such that

277 +172)" 2 2+ e0) max {|fp(x)| +|gs(2)l}-

S T*+R*

(Ad) Ty < T*.

2
(A5.1) There exists a constant e; > 553 such that

2P+ )P 2 2+e) max {[fo(2)]+|gs(2)[}-

. TEDT* L R*
(We notice that it follows from (3.2) that p > 3/2.)

(A5.2) There exists a constant C® > 0 such that

(f + 9)2p_1 >C®.  max {[faz ()] + |gza ()}

$€BT*+R*
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(A5.3) There exists a constant C®) > 0 such that

(f+9)" % =00 max {102f ()] +|02g(2)1}.

xGBT*+ *

We now state the main results of this paper.

Theorem 3.1.1. Let T and R* be arbitrary positive numbers. Assume that (A1)-
(A5.3) hold true. Then, there erxists a unique C*(Bg+) function T such that 0 <
T(xz) < T* (x € Bg) and a unique (C>*(Q))? solution (¢,1) of (3.7) satisfying

o(t,x), Y(t,z) > 00 as t— T(x) (3.9)
for any x € Bg-, where Q = {(t,z) € R* |z € Bg-, 0<t <T(x)}.

Remark 3.1.2. The equation (3.1) is equivalent to (3.7). We set

t
0

u(t,z) = up(x) + ;/ (¢ + 1) (s, z)ds.

Then, u satisfies (3.1).

Remark 3.1.3. The assertion (3.9) implies that u.(t,z) — oo ast — T(z) (z €
Bpg+).

Next, we will mention numerical analysis of blow-up of nonlinear partial differen-
tial equations. There are many previous works of computation of blow-up solutions
of various partial differential equations; See, for example, [28], [13], [10], [34], [31],
[11] and [12].

We computed blow-up curve using the method of Cho [12] and obtained the various
numerical results of blow-up curves. We will show them in Section 3.7.

The remainder of this paper is organized as follows. In Section 3.2, we construct
a classical solution for (3.7) in the domain Q. In Section 3.3, we give the blow-up
rates of the solutions of (3.7). Moreover, we show that the blow-up curve is Lipschitz
continuous. In the course of Sections 3.4-3.6, we prove that the blow-up curve is
continuously differentiable. In Section 3.7, we show some numerical examples of
blow-up curves.

3.2 Existence and regularity of solutions

In this section, we will demonstrate the existence and regularity of the solutions ¢
and v of (3.7) by successive approximation. Let us define {¢,} and {1, } by ¢o = 711,
Yo = 72, and

D_pi1=27P|dp + Yn |, (t,z) € K1+ Rr,
Ditpni1 = 27P|dn + ¥n P, (t,z) € K1+ R+, (3.10)
¢n+1(x70) = f(x)v wn+1($7 0) = g(:v), T E BT*+R*7
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for n € NU{0}. Here, 71 and -9 are initial values of (3.8). We note that (3.10) can

be rewritten as
¢
Oni1(t,z) = fx+1) + /0 27P|pp + Y|P (s, + (t — s))ds,
t
Vnsa) = g =)+ [ 2700+ 0,7 (s, = (¢ = 9)ds

(3.11)

Remark 3.2.1. Consider a function F € C'(Kr+ g+). We note that it follows from

(3.10) and (3.11) that F(t,x) > 0 in Kp« g« if

D_F(t,z) >0
F(0,z) >0 in Bp+«jyp+, and or in Ky« g=.
D+F(t, .73) > 0
3.2.1 Lemmas

Now, we introduce two important lemmas.

Lemma 3.2.2. Assume that (A1) hold. Then, we have

¢n+1 2 ¢n 2 07

m KT*JDL*
wn-i-l > wn >0, ’

forn € NU{0}.

Proof. First, it follows from (A1) that

t
¢1(t, ) =f(w+t)+/0 27P[go + olP (s, 2 + (t = s))ds =1 = do(t, x) >

in K7« g«. Similarly, we have that ¢ > g > 0 in K7« g«.
Next, we assume that

On>Pn-12>0 and Y, >1Pp,1 >0 in Ky« g-.
Then, we have
t
Gni1(t,z) = flx+1t)+ / 27Ppp, + Y|P (s, x + (t — s))ds
0
t
> flx+1t)+ / 27P pp—1 + Yp-1|P(s,z + (t — s))ds
0
in K7« g+. Similarly, we have that ¢, 1 >, >0 in K7« g=.
Lemma 3.2.3. Assume that (A1)-(A3) hold. Then, we have

at¢n > (1 + 50)|8x¢n‘>

n KT*,R*?
Ohn > (1 + 50)‘8$¢n‘7

forn e NU{0}.
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Proof. Set A =1+ €9, and

Jn = at‘lSn + )\apgbn, jn = 8t¢n - )\ax(bny
Ln = a157/)71 + >\8$1/}n7 -En = atwn - >\8$1/]n7
for n € NU{0}. Then, it suffices to show that .J,, jn, L, and En are nonnegative

for n € NU {0}, in K7« g+. We note that Jy = Jo = Lo = Lo = 0 in K7+ ge.
First, it follows from (A3) that

Jl (07 :L‘) = 8t¢1(07 x) + )‘axﬁi)l (O’ I‘)

= (1+ X)9:01(0,2) + 27P|do + 0[P (0, z)
=2+e)fe+27P(11+72)" >0

in Br+4 g+, and we see that

D_J =0,D_¢1+ N0 D_¢1
= 027 P|po + Yo|P + N0x27P|do + YolP
=027 (71 +72)P + X027 P (1 +72)P =0
in K7« g«. Then, we have that J; > 0 in K7+ g+. Similarly, we have that jl >

0, L1 >0 and Ly > 0 in K7+ g
Next, we assume that

JnZO, LnZO in KT*,R*'
Then, it follows from (A3) that

Jn41(0,2) = 0¢pn41(0, ) + A0pbp11(0, x)
= (1 + /\)8x¢n+1 (07 l') + 2_p‘¢n(07 iL') + wn((), iU) ’p
>(2+e0)fe+27P(1+72)’ 20 in Bpeyp-.

Furthermore, it follows from Lemma 3.2.2 that

D_Jni1 = 0t(Opn+1 + A0ypdn+1) — Ox(OrPnt1 + A0pPnt1)
= O0t(OrPn+1 — OxPnt1) + A0u(OPn+1 — OuPny1)
= (O + A02)27P|dn + On |’
= (0r + A02)277(¢n + Yn)?
=27Pp(¢p + Yn)P (Ju + Ln) >0 in Ky« ge.

Therefore, we obtain J,,11 > 0 in K« g«. Similarly, we obtain that L,;1; > in
K7« g+ In the same way of above, we can show that

Jnt1 >0, Lpy1 >0 in Kps ge

if we assume that J, > 0, L, > 0 in K7« g«. Therefore, we have obtained that
Js Ins Ly L, > 0 for n € NU {0}, in K7+ g+. This completes the proof. O
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3.2.2 Proof of existence and regularity of ¢ and v
Fix (t,z) € Kp« g+. Since {¢n(t,x)} and {9 (t,2)} are increasing sequences on n,
we have

lim ¢,(t,x) =sup ¢p(t,z) and lim 1, (¢, x) = sup P, (t, ). (3.14)
n—o0 neN n—oo neN

We set

QS(t,fL‘) = sup ¢n(t¢$) and w(tvl") = sup wn(tv ZL‘)
neN neN

It follows from Lemma 3.2.3 that ¢ and 1 are monotone increasing on t. Hence,
there exists a function 7'(x) such that

T(z) =sup{t € (0,T") | (¢ +¢¥)(t,xz) < 0} for x & Bp-

and

lim (¢ +¢)(t,z) - oo for x € Bp+
tTT(x)(d) V) (L, x) R

if T(x) <T*. Weset Q={(t,z) |z € Bp-, 0 <t <T(x)}.

Remark 3.2.4. We will show that T is actually a blow-up curve of ¢ and 1) in Section
3.3.

We state the following local existence lemma.

Lemma 3.2.5. Assume that (A1)-(A3) hold. Then, (¢,%) is a unique (C31(£2))?
solution of (3.7).

Proof. We set
B(t)={z € Breyp- ||t — 2| <t—t} for (t,2) €.

(Proof of regularity.)
First, we will show that (¢,1) is a (C31(Q2))? solution of (3.7). We split the proof
into 2 steps.

(Step 1.) Fix (£,7) € Q. We will show that there exists a positive constant M,
such that

¢+ Yl Lo (B(r))) < Mo for te€0,1] (3.15)

by showing a contradiction.
We set
V,={2€Bp ||z — & <t-T(x)}

and m is the 1-dimensional Lebesgue measure.
We assume that (3.15) does not hold. Then, there exists ¢’ € (0,) such that there
exist a’, b’ satisfying a’ < b’ and

(V) B(t') and (t,2)¢Q for ze€ (d,V).
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By the monotonicity of ¢ + ¢ on t, we have T'(z) < t' for x € (a’,’), which implies
(@', V') € Y,. Hence, we have m(Y;) > 0.
It follows from the monotonicity of ¢ 4+ v on t that

(t,z) ¢ Q if z€Y, and (t=x+t—-% or t=—-x+t+7).

Moreover, we have m(Y; ;) > 0 or m(Y; _) > 0 if m(Y;) > 0. Here,

Then, we have

00 >(¢nt1 + Yni1)(t, T)
2/ 2P| by + YulP (s, % + 1 — s)ds + / 27P|py, + p|P (s, & — T+ 5)ds
i v

— 00, as n — o0.

It is a contradiction. Therefore, we obtain (3.15).

(Step 2.) We will show (¢,9) € (C>1(2))2. Fix (¢,%) € Q. It suffices to show

¢, ¥ € CPY(K_(1,2)).

By (Step 1.), we have that there exists a positive constant Cy depending only
on t and Z such that

H¢n + 1/}nHLoo(B(t))) < Cy for te [O,ﬂ and n €N (316)
Then, we have
Pnt1(t,-) — dnlts Moo By + 1nt1(t, ) — Yn(t, )l Lo B2y

t
< 2_p+1 n+ np s ) T n— + n— p 5 " ds
< [ 27 l0n + 0P lo1) = 0nes + dncaPlon ),y

for t € [0,%] and n € N. By (3.16), we have that
[fnt1(t, ) = dnlts L@y + 1¥ner(ts ) = ¥n(t, M)
<pCy /Ot(”%(% ) = Gnm1(5 )| o ()
+ ||[¥n(s1, ) — Yn-1(s1, ')HLOO(B(Sl)))dSI
< (pcg_l)Z/Ot /081<H¢n—1(827') = &n—2(52, )| oo (s

+ ||thn-1(s2,+) = Yn-2(s2, )HLoo(B(SQ)QdSzdSL

66



for t € [0,%] and n € N. Repeating this argument, we obtain that
[Pn+1(t, ) — Pnlts )l (Bie)) + 1¥n41(t ) — ¥nlts )llLe(B(r))

1 t S1 52 Sn—1
ﬂmﬁﬁ%%ué~ﬁ

<H¢1 Sny ) — ¢0 Sny* )HL(’O(B(Sn)) + le(sTw ) - 1/)0(8717 : )HLOO(B(Sn))>dSn o 'dSstl-
(ﬂ1>

n!
for t € [0,%]. Hence, it follows from (3.14) that

<4C) —0 as n — 00,

[én = Al poo (i (5.2)) + 10 — Yl poo(_(52)) = 0 asn — oo
Next, we will show that ¢, € WH°(K_(t,7)). We see that

D_Dy¢pni1 = Dg27P(¢n + Pn)? = p277(dn + Pn)? " (Dypn + Do),
D+D6¢n+l = D02_p(¢n + wn)p = p2_p(¢n + wn)p_l(Dﬁ(ﬁn + Dgi/)n),

Dy#1(0,2) = (cos O + sin0) f,(x) +sinb - 27P(y1 + 72)?,
Dy1(0,2) = (cos§ — sin ) g, (x) +sin @ - 27P(y1 + v2)?,
(

Dot (0.2) = (cosf-+ S0 L(a) + 5027/ + f'w). (o
Dgtpp11(0,z) = (cos 0 — sin @) g, (x) +sinf - 27P(f + g)P(z),
for n € NU {0}. Here, Dyv = sin Ov; + cos fv,.
We set W (t) = C¥ exp(ng_lt). Then, we have
t
W@:%+/p%4W@ﬁ
0
We will show
[Dodn(ts Loy < W), [1Doon(t, )L (r)) < W(t) (3.17)
for t € [0,#] and n € NU {0}.
We see

Dygo = Dytpo =0 < W(2)
for t > 0. Assume that (3.17) holds for n. Then, we have
P27 (8 + )P (¢, ) (Do + Doton) ()| ooy < PCH W) (3.18)
for t € [0,%]. It follows that (A3) that

| Dort1(t, )||Loo(B(t))
< 2||fellLe(m(0)) + 277 If + 9l (50

" /0 HPQ_p(% + 9’5, ) (Dodn + Doton) (5, )| Lo (s 45

t
<%+/p%*W@@:W@ for te[0,]. (3.19)
0
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Similarly, we have that || Dgthni1(t,- )| oo (pr)) < W(t) for ¢ € [0,]. Thus,

[1Don(t, )Ly < W), 1Dgton(t, - )Le(my < W(H)
for t € [0,7] and n € NU{0}. We set C; = CP exp(pC2~'T). Then, we have

[Dodn(t, )y < C1 and || Dghn(t, - )|l (B(r)) < Ch (3.20)

for t € [0,#] and n € NU {0}.
We see that

[Dodn+1(t,-) — Dobn(t, )l Lo (1)) + [1Dotbnt1(ts ) — Doton(t, - )|l Lo (B2)
t
< [ 0241 [ + 60 (Dot + Datin)
0
— (¢n-1+Un-1)" " (Dodn-1 + Deﬂ/}n—l)} (s, )H ds

L>(B(s))
It follows from (3.16) and (3.20) that

[Dodnt1(t,) — Dogpn(t, )|l Bt)) + [Dovons1(ts ) — Doon(t, - )l oo (1))
< /Otng_l (HDeéﬁn(Sh -) = Dodn—1(51, )l Lo (B(s1))
-%HLM#M(SL‘)_WD6¢n—ﬂ51V)HLw(B@1D>d81
+ /Ot 2p(p — 1)0105*2(”%(51, ) = Sn—1(81, )l e (B(s1))

+H¢n 51,°) — Yn—1(s1," )HLOO(B(sl)))dsl
(pC57) / / ”Deqbn 1(52,+) — Dgon—2(52," )|l Lo (B(s))

+ | Dovbn-1(s2, ) — Dgthn—2(s2, - )||L°°(B(52))>d52d51
9 t S1
+C?/0 /0 (H?bn—l(s%') _¢n—2(827'>HLoo(B(S2))
+ H1/Jn—1(327 : ) - wn—2(327 : )HLOO(B(SQ)))dSQdSI
t
+ Oy /0 (”@Z)n(sla : ) - ¢n—1(317 : )”LOO(B(SQ))

+ 1Un(s1, ) — Un—1(s1, - )HLoo<B<s2>>)d51

b1\ t S1 S92 Sn—1
< (vt )/0/0 /0 /0

(|’D9¢1(Sn, *) = Dodo(8ns - )l Loo(B(sn))

+ !\Dew1<sn, ) = Dotho(sns )l o(pisn) ) dsidsa .. s,

Tj C2T)
+ Z 400 j)!
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pl
<4CM+Z400@—>0 as n — 0o

a0 )

for t € [0,7]. Here, Cy = max{pCh~"',2p(p—1)C1CE2}. Thus, there exist qﬁél), wél) €

L>°(K_(t,2)) such that

1
1Dodn — &5 1o (1 i.2y) + 1 Don — 9§ oo iz — 0 asn — oo,

Therefore, (¢,1) € (Wh*°(K_(t,%)))?. By repeating the same arguments, we obtain
that (¢,1) € (W (K_(t,%)))% That is, we have (¢,9) € (C3L(K_(t,%)))%

(Proof of uniqueness.)
Next, we will show that (¢,) is a unique solution of (3.7). We suppose (¢1, 1) and
(¢2,12) are solutions of (3.7) and T} and T, are corresponding blow-up curves. Let

Q;={(t,z) |z € Br+, 0 <t <Tj(z)} for j=1,2.

Take (Z,#) € Q1 N Qy arbitrarily. In the same way of proof of (Step 2.), we have

sup (||¢1(t/, ) = Gt ) oo Bry) + 101 (t, ) — ot - )HLOO(B(t’)))

o<t’'<t

t/
< 2P|y + 4y [P (s, - + P ~(B(s) %
_Oi‘éﬂt(/o 11+ (s. ) =102+ w2l (5, )| o )

< tpCh™" sup (H(ﬁl(t/a‘) — ¢a2(t', )l LBty

o<t'<t
+ |1t ) = ot - )”LOO(B(t’)))

for t satisfying 0 < ¢t < t. Thus,

sup <H¢1(t', ) = b2t MLy F 101, ) — ot )”LDO(B(t’))) =0

0<t/<t

if ¢ is small enough. Since Cy does not depend on t, by repeating this argument, we
obtain

Sup~(H¢1(t'7 ) = G2 (', ooy + 10t ) — (', - )HLOO(B(t’))> =0.

0<t/ <t

Therefore, we have
(1,91) = (P2,92) in Q1N

and
Tl(l‘) = TQ(CC) for x € Bpg~.

This completes the proof. O
Lemma 3.2.6. Assume that (A1)-(A/4) hold. Then, we have

T(x) <T* forxz € Bp~.
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Proof. Let us define {¢,} and {¢,,} by ¢o = 71, o = 72 and
%énﬂ =27P|gn + Pl >0,
s =23+ TP, 130,

Gn41(0) =71,  Pnp1(0) = 2.
It suffices to show that ¢, (t,x) > ¢n(t) and ¥, (t,2) > n(t) in Kp« g, for n € N.
First, we see that

N t
b1(t,z) — di(t) = flz+1) — 7 + /0 2P| + [P (5,2 + (t — 5))ds

t ~ ~
- /0 277|Go + o P (s)ds
=flz+t)—m >0,

in K+ g+. Similarly, we have that ¢ (t,z) > 1[11(t) in K7« p=.
Next, we assume that ¢, (t,z) > ¢ (t) and (¢, ) > ¢p(t) in K7+ g+. Then, we
have that

R t
Gni1(t, ) = pny1(t) = f(x +1) =y + /0 2_p‘¢n + YulP (s, 2 + (t —5))ds
t
= [ 2, dar s
0
>0,

in K= g«. Similarly, we obtain that ¢41(¢,2) > Uny1(t) in K7+ g«. Therefore, we

have
bn(t, ) > an(t)7 Yn(t, ) > @Z)n(t) in K7« g
for n € N.
This completes the proof. O

3.3 Blow-up rates of solutions and Lipschitz continuity of 7'

Now, we will show that T is Lipschitz continuous in Bgr+. To prove this fact, we first
introduce the following proposition.

Proposition 3.3.1. Assume that (A1)-(A4) hold. Then, there exist positive con-
stants C1 and Cy depending only on p and g9 such that
Cr(¢+ )" < ¢y < Co(d +9)7, (3.21)
CUT(x) = )77 < gyt ) < Co(T(x) — 1), (3.22)
Ci(¢+ )" <o < Ca(9 + )P, (3.23)
Ci(T () =)™ < (t,2) < Co(T(x) — 1)~ (3.24)
Ci(T(x) =)™ < (¢ +¥)(t,2) < CoT(x) — 1), (3.25)
in Q. Here, q=1/(p —1).
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Proof. First, we will show that (3.21) holds. We see that
D—at¢n+1 = 8tD—d)n-i-l = at2_p|¢)n + wn|p = at2_p(¢n + Q;Z)n)p
= 2_pp(¢n =+ wn)p_l(at(bn + atwn) in KT*,R*7 (326)

for n € NU {0}. From Lemma 3.2.3, we obtain that

D_27P (¢ + )P = 27Pp(d + Un )P (04 — Ouhp + Oty — Oty
<2 P (4 )P (Bsn + Othn)  in Kpege,  (3.27)

for n € NU{0}. We set Jy i1 = 20tPn+1 — 27P(én + ¥n)P. Then, by (3.26) and
(3.27), we have

D—J¢>,n+1
Z 2_p+1p(¢n + ﬂ)n)p_l(atﬁbn + at¢n) - 2_p+1p(¢n + ¢n)p_1(8t¢n + 8t¢n)
=0 in KT*7R*7 (328)

for n € NU {0}. It follows from (A3) that

Jon+1(0,2) = 20t¢n+1(0,2) — 277 (¢ + ¥n)" (0, 2)
= 20:¢n41(0, %) + 277(dn + Pn)?(0, 2)
>2fe +27P(11+72)" 20 in Breyps (3.29)
for n € NU {0}. Then, by (3.29) and (3.28), we obtain that Jy, > 0 in Kp= g+, for

n € N.
On the other hand, it follows from Lemma 3.2.3 that

1 _
8t¢n+1 = 8x¢n+1 + 2_p(¢n + wn)p < 1+ o 8t¢n+1 +2 p(¢n + ¢n)p
in Kg« 7+, for n € NU{0}. Hence,
1+eg_ _ .
Opny1 < %2 P(¢n +n)? in Kr+ g+, (3.30)

for n € NU {0}. It follows from the fact that J,, > 0 and (3.30) that

1
27771 (@y + Pn)P < Oyt < *eo

27P(pnt1 + Ypg1)? in Kps gr, (3.31)

for n € N U {0}, which implies (3.21) holds. Similarly, we can prove that (3.23)
holds.
Next, we will show that (3.25) holds. By considering (3.21), we see that

m%?mﬁ2ﬂ“ﬂ+wk#w+wf in Q.
Thus, we have
a(ﬂ 522 ) e )7 n o (3.32)
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Fix 29 € Bg+. By (3.32), we have

(p+9)(T'(x0)—e,20)
T(xg) —e—7 > / 2P (1 + o) ez Pdz
(¢+3) (7,20)
(¢+)(T'(wo0)—e,20)
= |—(p—1)"12P" 1 +¢) e z*(pfl)} .
R (L+20)"e0 (6+40) (r.0)
for 7 > 0 and £ > 0 satisfying T'(z¢) —e — 7 > 0. Hence, by letting ¢ — 0, we obtain

(p+4) (,0)
= (p—1)712P (1 + e0) teo(ep + ¥)"PH (7, 20).

T(xg) — T > [—(p — 1) tor i1+ 50)_150,2_(1"_1)}

Thus, we have that
(6 +¥)(r,0) 22 ((p— Deg {1 +0)) /"™ (Do) —m)~/@"D  (3.33)

for 7 € [0,T(x0)). Similarly, we obtain that
(2°(p — 1) YYD (T () — 1) PV > (6 + ) (7, o) (3.34)

for 7 € [0,T(xp)). It follows from (3.33) and (3.34) that (3.25) holds. Moreover, it
follows from (3.21) and (3.25) that (3.22) holds. Similarly, we have that (3.24) also
holds. This completes the proof. ]

By combining the above Lemma 3.2.3 with Proposition 3.3.1, we obtain that the
blow-up curve T is Lipschitz continuous. That is, the following lemma holds.

Lemma 3.3.2. Suppose that (A1)-(A4) hold. Then, we have that

T (') — T(z") |z' —2"| for 2/ 2" € Bp-. (3.35)

| < ——
1+¢9

Proof. This proof is based on the Implicit Function Theorem. Let € > 0 be arbitrary.
By (3.25), we see that there exists a positive constant C; depending p and ¢ such
that

Cie7 1< (¢p+¢)(t,x) for =€ Br« and te[T(x)—e T (x)).

Thus, there exists a positive constant M satisfying M > Cie™9, and a function
E(z) (x € Bg+) such that

(¢+)(E(x),z) =M and T(x)— E(x) <e forxz € Bp~.

First, we will demonstrate continuity of E in Br«. That is, for ' € Br«, we will
show that t, — E(z') if z,, — 2/, where t,, = E(xy,).

We take an arbitrary converging subsequence {t,} C {t,}, and denote its limit
by 7. Following from the definition of E, we have that (¢ + ) (tnk, Tnx) = (¢ +
V) (E(Tnk), Tnk) = M. Thus, it follows from continuity of ¢ and ¢ that (¢ +
) (n,2") = M. Since 9(¢ + ) > 0 in 2, we have that n = E(x’). Therefore,

liminf ¢, = limsupt, = E(z').
n—o0 n—o00
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Thus, we have demonstrated the continuity of F at 2.
Next, we will prove Lipschitz continuity of E. We see that there exists a positive
constant A’ for 2’ € B+ such that

B(z',h') C Q,

where B(z/,1') = {(t,z) | v/(t — E(z'))? + (z — 2/)> < I'}. Following from conti-
nuity of F, there exits a positive constant h” such that 0 < h” < h' satisfying

(E(z1),21), (E(12),22) € B(2',h) for xy,20 € (' — A", 2" +1").
Let k = E(x2) — E(z1) and

H(§) = (¢ + ¥)(t + &k, w1 + §(w2 — 71)),

where £ is a constant satisfying 0 < ¢ < 1. Then, we have

H(0) = (¢ +¥)(t, 1),
H(1) = (¢ +U)(t+ k,z2) = (¢ + ) (t + E(x2) — E(z1), 29).

Take t as t = E(z1). Then, we have H(0) = H(1) = M. By Rolle’s Theorem, there
exists & € (0,1) such that

H'(&') =(z2 — £1)02(¢ + V) (E(z1) + &'k, 21 + & (22 — 11))
+ kOi(¢ + V) (E(21) + 'k, 21 4 & (x2 — 21)) = 0. (3.36)

Hence, it follows from Lemma 3.2.3 and (3.36) that

_ | Z0(o+ ) (E(x1) + §k,xy + & (22 — 1))
O+ V) (E(x1) + &k, 21 + & (22 — 11))
1

<
- 1+€0

|E(z1) — E(22)| = |k |1 — 22

|z1 — x4

Thus, E is Lipschitz continuous in (z' — h”, 2’ + k). Moreover, it follows from the
continuity of E that

E(@+h)—E(x) _ —hds(¢ +¢)(E(z) + {(E(x +h) — E(x)),z + &h)
h hoi(¢ + ) (E(x) + E(E(z + h) — E(z)), x + £h)

—0:(¢ + ) (E(z),x)

(o + ¥)(E(x),z)

ash—0 for x € Bpg-.

Hence, we have that

0 30+ )(EE),)
52" = 306 1 0) (B ), 2)

By continuity of 9,(¢ + 1), 9(¢ + 1) and E, we see that E € C'(Bg~). Hence, we
have that

for = € Bp+.

1
E@) — E@")| < | swp |E(@)| ]| — 2" < ——1|o — o (3.37)
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for 2/, 2" € Br+. Therefore, E is Lipschitz continuous in Bps.
Finally, we will prove Lipschitz continuity of T' in Bg~. It follows from (3.37) that

T (2') = T(a")| < |T(2") = B + |E@") — E@")| + |E@") = T(z")]

|o" — 2| for 2’ 2" € Bp-.

1
<2+
1 + €0
Since we let € > 0 take an arbitrary value, this completes the proof. O

By applying Lemma 3.3.2, we obtain the following results.
Definition 2. By d(t,x), we denote the distance from a point (¢,z) in Q to I' =
{(T'(x),z) | x € Bgr~}.
Remark 3.3.3. It follows from Lemma 3.3.2 that
T(x)—t
V2

By replacing T'(z) — ¢t by d(z,t) in Proposition 3.3.1, we obtain the following

<d(t,x) <T(x)—t.

Corollary.

Corollary 3.3.4. Assume that (A1)-(A4) hold. Then, there exist positive constants
C1 and Co depending only on p and €y such that

Crd™(t,x) < (¢ +)(t,2) < Cod (2, ), (3.38)
Crd™ TNt x) < ¢e(t,x) < Cod 97 1(t, z), (3.39)
Crd="7 (t, ) < Pu(t,x) < Cod™ (¢, ), (3.40)

where ¢ =1/(p — 1), in Q.

From Corollary 3.3.4, we obtain the following lemma, which states that 7" is the
blow-up curve of both ¢ and :

Lemma 3.3.5. Assume that (A1)-(A4) hold. Then, there exist positive constants
C1 and Co depending on p and g9 such that

Ci(T(x) =)™ < o(t,z) < CoT(x) —
Ci(T(x) =) <o(t,z) < Co(T(z) —
where g =1/(p — 1), in Q.

Proof. We will only show that (3.41) holds. By Corollary 3.3.4 and Lemma 3.3.2,
there exist positive constants ¢; and co depending p and €y such that

¢(T(x) —e,2) = f(z+T(x) —¢)

T(z)—e
n / 2P(p+ )P (5,2 + (T(x) — 2) — 5)ds
0

)9, (3.42)

T(x)—e
> / 2P(6+ )P(s, 2+ (T(x) — &) — 5)ds

T(x)—2e

> inf d T(x)—e)—s)
= 1 (@) 2eSs<T(w) e (8,24 (T(a) — &) =)

> cge e 97 = g4,
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On the other hand, it follows from Proposition 3.3.1 that there exists a positive
constant C depending only on p and g such that ¢(T'(z) —e,z) < Cae™9. This
completes the proof. ]

3.4 Blow-up limits of solutions

In the following, we will show that T' € C!(Bg+). In order to achieve this, we will
consider limits of the scaled functions T}, ¢y, and ¥ (we will define these later) and
their properties.

3.4.1 Estimates of blow-up limits
We set Dy as
Dy = sin60; + cos00,, where 0 < 6 < 2.
First, we introduce the following lemma.

Lemma 3.4.1. Assume that (A1)-(A5.3) hold. Then, there exist positive constants
Cyo and C depending only on p and €1 such that
max{|D§é(t, )|, [Df(t,x)[} < Cal¢+ )+ o=D/4(t, 2) (3.43)
< Crd(t, x)~pat(a=1) (3.44)
for (t,z) € Q, where q=1/(p—1) and « =0, 1,2, 3.
Proof. We can easily obtain that (3.44) holds by Corollary 3.3.4 if we prove (3.43).
So, we will only prove (3.43).
We also obtain that (3.43) holds in the case of @ = 0,1, by Lemmas 3.2.2, 3.2.3
and Proposition 3.3.1.
First, we will show that (3.43) holds in the case of o = 2. It suffices to show that
there exists a positive constant Cy depending only on p and &; such that
max{|Djn (t,x)|, | Djvn(t, )|}
< Co(pn + )Pt 2)  for n € NU {0}, (3.45)
in K+ p+. We see that Dyp¢o = Dptpg = 0 in K+ p+. Hence, (3.43) holds for n = 0.
Assume
max{]ngbn(t,x)], \Dgz,/)n(t,x)]} < Coy(n +¥n)P 7 (t,2) in Kps pe.
Then, it follows from (3.43) in the case a = 1 and Proposition 3.3.1 that
|D_(D§n+1)(t, )|
= 2_p‘D(3<¢n + ¢n)P(t, @)
<27Pp(p—1)(¢n + ¢n)p_2(tv z)(Dodn + D0¢n)2(t’ z)
+27p(¢n + ¥n)P (8, 2)(Ddn + D) (£, )|
<2 p(2p ~ 1)CE + Oo) |60+ ) (2)] in K, (346)
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where C,, is the constant in the case of a = 1,2 of (3.43). Moreover, it follows from
Lemma 3.2.3 and Proposition 3.3.1 that

D_Co(pnt1 + Yni1)P (L, x)
= C2(2p — 1)(Sns1 + Ynr1) ™ 2(t, 2) D_(dps1 + thng1) (t, )

> 27PCy(2p — 1) (1 + ﬁ) (6 + 1) 2(t,2) in Ko pe. (3.47)

Let
My(t,7) = Co(6n + )1 (£, 2) = Din(t, ).
Then, it follows from (A3) and (A5.2) that

M (0,2) = (Co = 4CD " = p2=2%2) (f 4 )27 (a), (3.48)
in By« p+. On the other hand, it follows from (3.46) and (3.47) that

D_ My (t,z) > 2_p02{(2p —1) (1 + ﬁ) - 2p}(¢>n )2, )
— 27P4p(p — 1)CH(dp + )P 2(t,z) in Kps« ge.  (3.49)

By (A5.1), we have
€1

(2p = 1)(1 ST

> —2p > 0.
We take (5 as

Csy > max {40(2)_1 + p27 23,

{(zp—1)<1+ 5 !

m) - 210}71410(1) - 1)012} :

Then, it follows from (3.48) and (3.49) that M,1 > 0 in Kp« g«. Consequently,
we obtain that M,, > 0 in Kp« g+, for n € NU{0}. That is, there exists a positive
constant Cy depending p and 1 such that

Ca(bn + )™ 2 Djd  in Kp+ g
for n € NU{0}. Similarly, we have the following inequality by retaking C if necessary.

02(¢n + wn)2p_1 > _DgQSm
CZ(¢7L + wn)prl > Dgwn; in KT*,R*7
CZ(¢n + ¢n>2p71 > _Dgwm

for n € NU {0}. This means (3.45) holds. In the same way, we can prove (3.43) in
the case of a = 3. O

Let xg € Br+. Then, we introduce the following scaled functions:

oa(s,y) = No(T (z0) + As, 20 + \y), (3.50)
Q;Z)A(Sv y) = XI?/)(T(%) + )\S, o + Ay)? (351)
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where A > 0 and ¢ = 1/(p — 1). Any sequences {¢y, } and {¢y,} with A\, | 0 are
called blow-up sequences (see. [7]). Now, we see that

{Dm = 27P(gx + )P, (3.52)

Doy =27P(dr +ha)P
for (s,y) € Qz, where Q) = {(s,y) € R? | (T(z0) + As,z0 + Ay) € Q}. By di(s,y),

we denote the distance from a point (s,y) € Q) to I'x = {(s,y) | s = T)\(y)}. Here,
T) is a blow-up curve of ¢).

Lemma 3.4.2. For each fixed A > 0,

T(zo + \y) — T'(x0)
i )

Ta(y) = (3.53)

Proof. By Lemma 3.3.5, there exist positive constants C; and Cy depending on p
and e such that

NCy (T (w0 + My) — (T(wo) + As))
< NPT (z0) + As, 0 + Ay) < NCo (T'(xo + Ay) — (T'(z0) + As)) 7.

We see that
T Ay) =T -1
AT (z0+ Ny) — (T'(z0) + Xs)) 1= < (o + g\) (z0) _ s) . (3.54)
Therefore, we obtain (3.53). O

Similarly, we can show that the blow-up curve of ¥5(s,y) is Ta(y).
From Proposition 3.3.1 and Lemmas 3.2.3, 3.3.2 and 3.4.1, there exist positive
constants C1, O3, C3 o, and Cy o, depending only on p and €1 such that

C1(pr +Pa)P < 0sda < Coda +a)P, (3.55)
Cr(da + PP < 0sthx < Ca(da +Yn )P, (3.56)
Ci(Ta(y) —s)71 < dals,y) < Ca(Ti(y) —s)77, (3.57)
Ci(Ta(y) — s)7 T < Ua(s,y) < Co(Ta(y) —5)7%, (3.58)
(3.59)

1 1

< — < — .
|0yda| < Te O, |Oyha| < Te R 3.59

—R — To R — X0

_ N < o / )

1T\ (y) Tx(y)!_lﬂl\y y'| for y,y 6( D ) (3.60)
T — 8
WS <) <1 - (3:61)
max {|Dgox(s,y)|, | Dga(s, y)|}

< C30(da(5,y) + Va(s,9))PHOVT < Oy fdy(s,y)"PITD (3.62)

where (s,y) € Q). Here « =0, 1,2, 3.
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3.4.2 Strategy of proof of the differentiability of T’

We will consider the limits of the functions Ty , ¢»,, and ¢y, . It follows from (3.60)
that T, is equicontinuous.
We define I,, by a closed interval satisfying

o [, C Iy forneN,
o U2 . ICI,.
By (3.60), there exists a positive constant M; such that
Ty, (y)| < M, for ye€ 1.

By the Ascoli and Arzela theorem, there exist a sequence {)\;1)} C {\} and Tél) €
C(Iy) such that T\ converges to Tél) uniformly in I;.

In the same manner as above, we can see that there exist a sequence {)\g)} C
{)\7(11)} and TO(Q) € C(I2) such that T2 converges to To(z) uniformly in I,. By
repeating the same arguments, there exists Ty € C(R) such that Ty, converges to
Ty locally uniformly in R, where A, = )\q(ln).

In the remainder of this paper, we will show that T € C'(Bg). We demonstrate
this proof through the following two steps.

(Step 1.) First (in Section 3.5), we will show that Tp, which is defined as above, is
an affine function. That is, there exists a constant ay, such that Tp(y) = a,y for
y € R.

(Step 2.) Next (in Section 3.6), we will demonstrate that a contradiction arises if
we assume that there exists xg € B+ such that T is not differentiable at g € Bpr=.

We start by assuming that 7' is not differentiable at x¢g € Br+. On the other hand,
by (Step 1), we have that for all y € R,

T, (5) _ T(0+ Ang) — T(zo)
Y Any

— oy, as Ay, — 0,

where {A,} C {\,} is the sequence appeared in (Step 1). This means that there
exist {\y} € {\,} and ¢’ € R such that

limsup T} , (y') > lim i%f Ty, (y). (3.63)

)\n/%o )‘n’*)
On the other hand, there exist {/\S’)} C {A\v} and {)\512,)} C {An} such that

lim T, (y) = limsup T , (),

>\(1,> —0 ! Apr—0
n

lim T)\(z) (y') = li\m inf T)\n/ (y/)'

>\(2/> 0 n! ! —0
n

78



By repeating the above arguments, there exist {)\S,)} C {)\7(11,)} and {)\22,)} C {)\512,)},
k k
and corresponding functions Tél), T(§2) € C(R), such that

T)\(l) — Tél), TA(z) — T[§2) locally uniformly in R.
% %

It follows from (Step 1) that there exist constants aéo) and a&o) such that T( )( ) =

ozgco)y and T(Q)( )= ag(co)y, respectively. By (3.63), we see that ozg(clo) # ozg(fo).

In Section 3.6, we will demonstrate that a contradiction arises if there exist a;%)
and oz( ) such that 045010) #+ 045020) and
1 2
TV (y) = aly, TP (y) =ally  foryeR.
That is, we obtain that T is differentiable in Bg+«. Moreover, we can show that a

contradiction arises if we assume that the derivative T” is not continuous in Bg-.

In the remainder of this section, we prepare for our proof of (Step 1.). We con-
sider the limits of blow-up sequences ¢y, and ¥,. Weset Qo = {(s,y) |y € R, s < Tp(y)}.
Then, we set J, as a closed subset of ) satisfying

o J, C Jpy1 forn eN,
e UntiJn =0

It follows from the Ascoli and Arzela theorem that there exists a subsequence {S\n} C
{A,}, such that there exist

L0 10 20 20 30 30
Vs Vips Uy 5 Uy 5 U™ 5 Uy 5 U0, € C(Q)
satisfying

?5, Vo W3, — Vg,
1,0 1,0
Dggb;\n — 1)¢ R Dgib;\n —

¥ ' locally uniformly in Qg (3.64)
D3gs, — vy’ D3y — 3’
D5, —v3’, Dips — i’

for 6 € [0,27). Thus, we have that vs, vy € C3(Qp). The functions v, and vy, are
called blow-up limits of ¢ and 9 (see [7]). By (3.52), (3.55)—(3.62), we have that

D_vy =27P(vy + vy )P,
6 (vg + vy) (3.65)
Divy = 27P(vy + vy)?,

and there exist positive constants Cy,C2,C3, and Cy 4, depending only on p and
€1, such that

C1(vp + vy)P < 0svp < Co(vg + vy)P, (3.66)

C1(vg + vy)P < 0svy < Ca(vg + vy)P, (3.67)

Ci(To(y) — )" < wg(s,y) < Co(To(y) —s)74, (3.68)

C1(To(y) — s)™? < wy(s,y) < Co(Toy) — s)7, (3.69)

10,05 < —— 005, 10y00] < — O, (3.70)
€1 1+e¢
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To(y) = To()| < 7oy =y for yy R, (3.71)
+ &1
T“(y\/){s < do(s,y) < To(y) — s, (3.72)
max {| Djvg(s,y)|, | Dgvy(s,y)l}
< Ca.a(vp(s,y) + vy (5,9)P O < Cy ado(s,y)"PIte=D, (3.73)

where (s,y) € Qp. Here, dy(s,y) is the distance from a point (s,y) € Qg to I'y =
{(s;y) | s=Toly), yeR}anda=0,1,2,3.
3.4.3 Convexity of blow-up limits

In order to demonstrate that 7j is an affine function, we will prove the following
lemma.

Lemma 3.4.3. Assume that (A1)-(A5.3) hold. Then, we have that
Djvs >0, Djuy, >0 in Q (3.74)
for 0 <0 < 27

Proof. We fix a point (3,7) € Qp. Let K_(3,7) =
Then, it suffices to show that Dg’L)(z), D(ng >0in K_
Let

(s,
59

{(s,9) € |7 —yl <5—s}.
(5,9)-
J¢ = Dg’l)¢ + 7785%, Jw = D§v¢ + nas’l)w,

where 7 is a positive constant.
In what follows, we will show that

Jp >0 and Jy, >0 in K_(5,7). (3.75)
We see that
D,J(i) — D+J¢
= 27p(p — 1) (v + vy)?*(Dguvy + Douy)?
+ 2_pp(’l)¢ + Uw)p_l(e]qg + J¢). (3.76)

We consider J4 and Jy in K_(5,7). By (3.72), we have

1 To(y) — s do(s,y) _To(y) —s
ﬂ( ] >§ E

Thus, we obtain that

dO(Svy)
5]

<

<1 for (s,y)e K_(5,9), ass— —oc. (3.77)

Sl
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By (3.73), (3.66), (3.68), (3.69) and (3.72), we have that there exist positive constants
c1 and c¢g, depending only on p and €1, such that

max{|Djvs (s, y)|, | DFvs (s, 9)[} < c1(vg + vy)P(5,9)(vg + vy)(5,y)
< c205v4(5,y)do(y, 5) " (3.78)

Hence, it follows from (3.77) and (3.78) that
Jp =n0svp(1 +O(1/]s])), Jy =ndsvy(1+0(1/]s])), ass— —oo (3.79)

in K_(5,7). Since 0sv4,0sv4 > 0 in §p, we have that Jy, Jy, > 0 in K_(5,7) N
{(s,y) | s < —c} if o is large enough.
We assume that (3.75) does not hold. Then, there exists (s',y’) € K_(§,3) such
that
Js(s',y') =0 or Jyu(s',y')=0

and
Js(s,y) >0 and Jy(s,y) >0 for (s,y) € K_(5,9)N{(s,y) |y ER, s <s'}.

We assume Jy(s',y’) = 0. Then, it follows from (3.76) that

0= J¢(s’,y’)
= Jy(s' = M,y + M)

M
+ / 27Pp(p — 1) (vg + vw)pfz(ng(p + ng¢)2(s, y + M — s)ds
0

M
+ / 27Pp(vg 4 vp)P " (Jp + Jy) (5,4 + M — s)ds
0
>0 for M >0.

This is a contradiction. In the same manner as above, we can show that a con-
tradiction arises if we assume that Jy(s’,y’) = 0. Therefore, we obtain that (3.75)
holds.

By taking n — 0, we have

Djvs >0 and Djvy >0 in K_(3,7).

This completes the proof. O

3.5 Linearity of the blow-up curve of blow-up limits

In this section, we will prove (Step 1.) as stated in Section 3.4.2. In order to prove

this, we will consider

{D_V¢ = 27P(Vy + V)P, (350)

D Vy =27P(Vy + V)P,
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with some constant o € R and the corresponding blow-up curve

{(s;y) | s=ay, yeR}. (3.81)
We know that (3.80)—(3.81) yield the following special solution:
(Voa(5,9), Vipa(s,y)) = (Coalay — )79, Cpalay — 5)79), (3.82)

where
Coa=(@(1+a)(1—a))!, Cya=(e(l+a)’(1-a)).
In this section, we will prove the following lemma.

Lemma 3.5.1. Assume that (A1)-(A5.3) hold. Then, there exists a positive con-
stant o € R such that

To(y) = ay foryeR. (3.83)
Moreover, the constant « satisfies —1 < a < 1 and
vy = Voo and vy =Vy,. (3.84)
In order to prove Lemma 3.5.1, we will first introduce some lemmas.
Lemma 3.5.2. Assume that (A1)-(A5.3) hold. Then, Ty is concave.
Proof. Let € > 0 be arbitrary. Then, by (3.68) we see that there exists a positive
constant c;, depending only on p and €1, such that
cie T <wg(s,y) for yeR and se[To(y) —e,To(y)).
Thus, there exist M > c¢;e~? and Ey(y) such that
ve(Eo(y),y) =M and To(y) — Eo(y) <e for yeR.

We set Hy = {(s,y) | s < Eo(y), ye€R}

We will show that Ejy is concave. It suffices to show that H); is convex. We assume
that Hjys is not convex. Then, there exist (s1,y1), (s2,92) € Hy and & € (0,1) such
that §'(s1,y1) + (1 —&')(s2,y2) ¢ Huy and &' (s1,y1) + (1= &) (s2,92) € Qo. We notice
that dsvg > 0 in Qg. Then, we have

M =M+ (1-&)M > Evy(s1,y1) + (1 — & )vg(s2,2)
> g (&' (51,51) + (1= &) (52, 2))
> M.

This is a contradiction. Hence, Hjs is convex. Therefore, Fy is concave. Thus, we
have

(EEo(y) + (1 =& Eo(y) + (1 = E)(To(y) — Eo(y'))
Eo(Sy+ (1 =8y + (1 =& (To(y) — Eo(y))
1-8)y) <e+To(Ey+ (1 —-8&y),

for y,y’ € R and £ € (0, 1). Since we let € > 0 take an arbitrary value, this completes
the proof. O

M MmN
—~
=
—~~
<
|
&

T~
<
~— ~—
+ +
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We set
v (8, y) = Mug(As, Ay),  vpa(s,y) = Moy (As, Ay),
with A — oo. Then, we can easily see that the blow-up curve of vy y and vy » is
To(M\y)
A
Lemma 3.5.3. Assume that (A1)-(A5.3) hold. Then, we have

Toa(y) =

ay (y=>0)
T, An
o (8) = {By w<oy T

where o and B are constants satisfying —1 < a < < 1.

Proof. First, we see that Tj »,(0) = 0.
Tor,(y) _ To(Any) — To(0)

Yy AnY
decreasing on n, for y > 0. Here, {)\,} is a monotone increasing sequence satisfying

An — 00. Thus, we have that

Next, since T is concave, we see that is monotone

T T,
lim M — inf 0,A\n (y) —inf TQ()\ny)

An—oo Y oY A Any

Let o = infM

An nY

for y > 0.

. Then, we have that

Tox, (y) = ay as A, = 00,

for all y > 0 and monotone increasing sequences {\,, } satisfying A,, — co. By (3.71),
we have —1 < a < 1. We notice that o does not depend on y and \,.
Finally, we can prove

T T To(A
lim 0,\n (ZJ) — sup O,An(y) — sup 0(Any) for y < 0,
An—r00 Y An Y An nY
Zb(Any)

in the same way of above. We set 5 = sup . We notice that -1 < a < g < 1.

An nY

Then, it follows that
Tox, (y) = By as Ay — oo,

for all y < 0 and monotone increasing sequences {\,} satisfying A\, — oo. This
completes the proof. O

Now, we set
-~ ay (y=0 ~ -
TO(Q)Z{ ( ) ) QOZ{(s7y)€R2‘S<T0(y)7 yER}

Remark 3.5.4. In the same way of proof of Lemma 3.5.2, we obtain that T} is concave.
That is, o and § have the same sign.
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Lemma 3.5.5. Assume that (A1)-(A5.3) hold. Then, we have that o = [3. Here, «
and B are constants as defined in Lemma 3.5.5.

Proof. There exists a sequence {\,} such that
Vp A, — W, U r, = Wy, as A, — 00, locally uniformly in Q.

In the same arguments for Lemma 3.4.3, we see that D§w¢ > 0 and Dgww >0
in Q , for 0 < 6 < 2x. Thus, Dowyg and Dyw,, are monotone increasing along the
direction #. We also have that it follows from the estimates |Dpwy| and |Dgwy|,
corresponding (3.73) that |Dpwy(s,y)|, |Dewy(s,y)| — 0 as do(s,y) — oo, where
do(s,y) is the distance from a point (s,y) € Qo to To = {(To(y),y) | y € R}.
Therefore, Dywy and Dyw,, do not occur sign changes in QO.

By Remark 3.5.4, we see that a and S have the same sign.

We assume that 0 < a < 3. We set 0, and 03 as 6, = arctan « and 63 = arctan 3,
respectively. Let us assume that 0 < 6, < 03 < /2 without loss of generality.

If we take 0 € S where S = {0 € [0,37/2) | 6, < 0 < 03+ 7}, then Dywy > 0,
since the closer wy gets to the blow-up curve s = By (y < 0) or s = ay (y > 0), the
bigger wyg becomes.

We take 6 as 0, < 0 < . Then, we have that Djwg > 0, since 6 € S. On the
other hand, Dj, we > 0, since 0 + 7w € S. This contradicts the fact that

Déw¢ = —D9~+7rw¢ Q().
In the same manner, we can prove that a contradiction arises if we assume that
a < B < 0. Therefore, we have that o = 5. This completes the proof. O

s = By

3333¢033ed]
333333333 4
333323333

2222222229

. ()

Figure A. The sign of the directional derivative at (s',y’).

e (A) and (B) areas: The sign of the directional derivative is positive.

84



e (C) area : The sign of the directional derivative is negative.
— If (B) area exists, we can show that a contradiction arises.

Proof of Lemma 8.5.1. First, we will show that Ty(y) = ay. It follows from Lemma
3.5.5 that

T T
sup 0(Any) = inf 70(/\ny> =« for y € R.

An AnY An Ay
Thus, To(Any) = alyy for A, > 0 and y € R. Therefore, we obtain that Ty(y) = ay
for y € R.
Next, we will show that vy = Vj  and vy, = Vy . By applying the proof of Lemma
3.5.5, we obtain that

(a0 + 0y)vg = 0, and (aOs + Oy)vy, =0 (3.85)

in Q. By substituting (3.85) for (3.65), we obtain the following system of equations:
(1+a)dsvp = 277 (vg + vy)
(1 — a)0svy = 27P(vgy + vy),

with the blow-up curve Ty(y) = ay. Therefore, we obtain that vy = Vo and vy, =
Vi, in 2. This completes the proof. O

3.6 Continuous differentiability of the blow-up curve

In this section, we complete the proof of Theorem 3.1.1.

First, we will show that T is differentiable in Br+. We start by assuming that there
exists xg € Bgr+ such that T is not differentiable at zg € Br+. Then, it follows from
the arguments of (Step 2.) of Section 3.4.2 that there exist sequences {/\g)}, {)\g)}
such that there exist constants oy and «y satisfying

ap, 0 € (*]—a ]-)7 aq 7é a2,

qb/\m — Voo, as /\55) — 0, locally uniformly in €2, ,
where
Qo= {(s,y) eR?|s< oy, Y E R}

for j =1,2.
Let 6,, and 6,, be defined such that 6,, = arctan oy and 6,, = arctan aa. Let us
suppose that

3
ogeaj<£ or %<9aj<7r (j=1,2)
and
0oy < ba,
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without loss of generality.
We assume that 0 < 0,, < 0y, < /4. We take 0 < e < 7/2 as
T
0<0a1+5<9a2—a<1.
Then, for j = 1,2, we have that there exist 6; such that

0<0n; +e<0; <0y +m—e< %r.
We define
Séj) = {0]- | Oo; +6 <05 <0a, —|-7T—5} for j7=1,2.
We see that there exists ¢/ > 0 such that

D@/V¢7aj >2¢ in Q0N B1(0,0),

where B,(s',y) = {(s,y) ERY|\/(s—s)2+(y—y)2< p}. Here, p is a positive
constant.
For j = 1,2, let (s;t, y]i) and (sjo’i,ygo’i) be the intersections of s> + 3% = 1 and
s=agy and s=azy— do,

respectively. Here, dg is a positive constant.
We see that there exist ng € N and §p > 0 such that for j = 1,2,

J 0
— 0
Q/\gljo) C ijoo’ Qj?o C Q)\go)
607_
J

) ) 5
For 9]' € Sg), |D9j¢>\’(nj0) - DGqub,a]-’ < ¢ in Qj?O N By (0, 0)

S < sj_,

Here, Q??O = {(s,y) | s <ag;y—2bo, YE R}. This means that
Do;6 > ¢ i Q%N Bi(0,0)

for 0; € SY) and j =1,2. By (3.55), we can prove

3

D9j¢/\5ljo>>a’ in K (3.86)

b

for 0; € Sg) and j = 1,2. (3.86) means that there exists there exists a positive

where

. d0,— 1
KJ{SO = {(s,y) € Q/\%) N B1(0,0) | y < min{|y;" |, |yjo,+

constant p such that

0<p<1l and Dy¢,i > ¢ in Q, ) N B,(0,0) (3.87)
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for 6; € SY) and j = 1,2.

Let Ay, = min{)\go), )\7(120)}. It follows from (3.87) that

Dy >0 in QN By, o(T(x0),z0)-

for 0 € Séll) U SS).
In particular,
Dg<¢p >0 in QN B)mlp(T(xo), xo) (388)

for 0* € (04, +¢€,04, —€), since (0o, +€,00, —€) C S, Moreover, we have

Dog+yrp >0 in QN B)\nlp(T(xo), :L’o) (389)

since 0* + 7 € (0o, + T+ 6,00, +m—¢) C St Then, (3.88) and (3.89) contradict
the fact
Dg*qﬁ = —D9*+ﬂ-¢ in Q.

We can show contradictions in the other cases, that is, in the cases

0<0, <7/4, 374 <0y, <,
3m/4 < Opy < Op, <.

Therefore, T' is differentiable in Bg~.

Next, we will show that the derivative T” is continuous in Bgr+. We start by
assuming that there exists g € Bgr+ such that T” is discontinuous at x¢g € Br+. Set
azy = T'(x0). Let us suppose that 0 < 0,, < /4 or 37/4 < 0, < 57/4 without
loss of generality.

Since T” is discontinuous at xg € Bpg«, there exists 0 < &’ < 7/2 such that there
exists {x;} C Bpr, satisfying

zj — 20| »0 as j—oo and |[fo, —0a,|> 2¢’ for all j € N. (3.90)
By the above argument, there exists ng € N and p € R such that
D90¢ >0 in QN B)\nop(T(l'o), x())

for 6y € 55/7330 = {00 | GMO +e < by < Qazo + 7T — 5’}.
Moreover, by the continuity of 7" and (3.90), there exists jo € N such that

(T(xjo)vxjo) € B)\'IL(),D(T(:BO)’ zO)-
We see that there exists nj, € N such that
D9j0¢ >0 in QN BAnjOP(T(xjo)v xjo)

for 0, € Ser 2;, = {05o | Oo,, + g < b, < Oo,, +m— e'}.
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Then, we have
Dgp>0 in QN B,\nop(T(ﬂco),xo) N BAnjOp(T(a:jO),ij)

for 0 € Ser 5 U Ser,%.
Assume 0 < 0, < 6y, < /4. By (3.90),

!/

O, +& <., —¢.
Jo

Qg

Take 0 as Oa,, +€ < 6 < O, — e
0
Then,

Do >0 and Dé+7r¢ >0 in QN B,\nop(T(xo),xo) N BAnjOp(T(a:jO),ij),
since é, 047 € Set g0 U Sa’wjo- This contradicts the fact that
Dé+7rgf) = —Dé(f) in Q.
In the the other cases, that is, in the cases,

0 < g, <m/4, 3n/4 < 9%],0 <,
34 < Oq,, < 6’%_0 <,
< /4,
0< 9%]_0 <7/4, 3r/4 <6

azO

0< Ha% <0
<m,

Qg

3m/4 < Ga% < ba,, <,

we can show that contradictions arise in the same way.
This completes the proof.

S

7 =h=1/500.
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3.7 Numerical examples

In this section, we will show some numerical examples of the blow-up curves for (3.7).
For simplicity of computation, we consider the equations in a bounded interval (0, 1)
and pose the periodic boundary condition. We follow the method proposed by Cho
[12] for computing the numerical blow-up curve.

For discretization, we employ the finite difference scheme for (3.7). Take a positive
integer J and set x; = jh with h = 1/J. As a time variable, we take a positive
constant 7 as 7 = h and set t,, = 7-n. Then, we consider the following scheme for
(3.7):

O~ Sltyay)s U A () (1S5 < n>0),
n+1 n n mn
M S ks A S

T
¢?+1_¢§L wjn_ ;L—l - () n|P
+ h =2 p|¢j +7’/}j| )

-
05 = flxy), 4§ =glx)),
(1<j<J, nz0),

where ¢ ;11 and vy are set as ¢} | = ¢ and ¢y = ¥7.
We define the numerical blow-up curve 7} approximated to 7'(z;) by

Tj = 7-n (7).

Here, n;(7) is the smallest positive integer such that

T (¢?1(7)_1 + w;"j(T)—1> Z 1/epS and T (Qb;J(T) + w;LJ(T)> < 1/epS,

where eps > 0 is a stopping criterion given below. We set T' = (7}).

We plot two numerical blow-up curves 17 and T, with two stopping criterion epsl
and eps2, respectively, for several 7 in Figure 1-3. We see that T7 and T3 are almost
equal under suitable epsl, eps2 and 7. Therefore, we can regard T is a reasonable
approximation of the exact blow-up curve T for (3.7).

First, we examine the shape of blow-up curve T for p = 2 and f(z) = (14+v/2.3) +
+ sin(27z), g(z) = (1++/2.3) — & sin(2rz). In Figure 1, we see that the numerical
blow-up curve T' converges to a smooth function as 7 — 0. Therefore, we numerically
obtain that the blow-up curve T is continuously differentiable if initial values f and
g are smooth and large enough. In Figure 2, we also obtain the same result for
p=3.

On the other hand, we obtain different results of regularity of the blow-up curve
in Figure 3. We see that there is a case where the blow-up curve has the singular
points. We notice that all the initial values are smooth in Figures 1-3. However,
the initial values f and g occur the sign changes in Figure 3, while the initial values
f and g are positive for x € (0,1) in the case of Figures 1 and 2.

Consequently, we see that we have to impose not only regularity but also largeness
on the initial values.
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Remark 3.7.1. Merle and Zagg [27] considered
O*u — 0*u = uP.

They analytically showed that there are cases where the blow-up curve T has the
singular points. However, we do not know the relationship between the our numerical
results and the results of [27]

()
o
&
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. L L L T 0.395 L L L T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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7= h = 1/500. T = h = 1/1000.

X 0405
Z

T6)
o
=

0.4

0.395 [

L L L T L L L T
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

T = h = 1/2000. 7 = h = 1/5000.

Figure 3.1: The history of (T}) for p = 2, f(z) = (1 + v2.3) 4+ 5= sin(27z) and
g(z) = (1+v2.3) — 5= sin(2mz) and stopping criteria epsl = le — 2 and
eps2 = le — 3.
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Figure 3.2: The history of (T}) for p = 3, f(z) = 2.5 + 5=sin(2mz), g(z) = 2.5 —

% sin(27x) and stopping criteria epsl = le — 2 and eps2 = le — 3.
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Figure 3.3: The history of (T}) for p = 3, f(x) = 2 + 10sin(27z), g(z) = 2 —
10sin(27z) and stopping criteria epsl = le — 2, and eps2 = le — 3.
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