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Preface

Blow-up phenomena are one of important problems in the theory of nonlinear partial

differential equations (PDEs). Since the behavior of solutions of PDEs near the blow-

up time is a meaningful study, the numerical study of them is also crucial from the

standpoint of mathematical study. In this paper, we study numerical analysis of

blow-up phenomena for nonlinear wave equations focusing on the blow-up time.

In practical applications, it is desirable to use numerical methods which are math-

ematically guaranteed their validity. This is because it is hard to distinguish the

numerical results which exactly simulate blow-up phenomena of PDEs from failure

of computations.

Moreover, convergence analysis of numerical method used for the simulations is

important for the numerical analysis of blow-up phenomena. In this paper, we

consider a splitting method which is a time-discretization numerical method. It is

often used for Schrödinger equations.

On the other hand, we analytically show continuous differentiability of the blow-up

curve of a wave equation with a nonlinear term involving the derivative of unknown

functions by applying the idea of numerical analysis in Chapter 1. We also simulate

these results. Moreover, we present numerical results that showed the blow-up curves

have singular points.

In Chapter 1, we consider the following wave equation.{
utt − uxx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(0.1)

Here, SL = R/LZ and p > 1 is a constant such that the function sp (s ≥ 0) is of

class C4. The solution of (0.1) blows up in finite time if the initial values are large

enough. The aims of this Chapter are to construct the numerical method of the

blow-up time and to give the error estimates of them. In this paper, we call the

approximation of the blow-up time numerical blow-up time. We divide the proof of

convergence of the numerical blow-up time into 2 steps.

(Step 1.) Proof of convergence of numerical method for wave equations.

(Step 2.) Proof of convergence of numerical blow-up time.

There are almost no studies on numerical blow-up time for wave equations, while

there are lots of such studies for heat equations. In resent years, construction of

numerical blow-up time and convergence analysis of it for wave equations were done

by Cho [10]. However, the proof of (Step 1.) is still open at present. He proved

(Step 2.) holds under the assumption that (Step 1.) holds.
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We need to take sufficiently small time increments near the blow-up time in order

to compute the blow-up phenomena. That is, we use the variable time increments.

There are many results of convergence analysis of numerical methods using variable

time increments for heat equations. However, there is no such study for wave equa-

tions. The reason is that wave equations have the second derivative by time. Thus,

we construct the numerical methods and corresponding numerical blow-up time for

(0.1) and prove both (Step 1.) and (Step 2.).

We rewrite (0.1) as the following first order system.
ut + ux = ϕ, t > 0, x ∈ SL,

ϕt − ϕx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ϕ(0, x) = u1(x) + u′0(x), x ∈ SL.

(0.2)

We present numerical method using variable time increments for (0.2). We show

our numerical methods satisfy (Step 1.) by using the idea of [32]. We also prove our

numerical blow-up time satisfies (Step 2.). Moreover, we present numerical results

of blow-up time of (0.2).

In Chapter 2, we consider error analysis of semilinear evolution equations. As

mentioned above, such study is important from the viewpoint of numerical analysis

of blow-up phenomena. Let X be a Hilbert space and let A be an m-dissipative

operator in X. For u0 ∈ D(A), we consider the following Cauchy problem for

semilinear evolution equation:{
ut = Au+ F (u), t ∈ [0, T ],

u(0) = u0,
(0.3)

The splitting method is one of time-discretization methods. Let S(t) be the solution

operator of (0.3). The idea behind splitting methods is to approximate the solution

u(t) = S(t)u0 of (0.3) by ΦA(t) and ΦF (t), which are solution operators of ∂tv = Av

and ∂tw = F (w), respectively. The splitting method is useful when ΦA(t) and ΦF (t)

are easy to compute, while S(t)u0 is difficult to compute. In particular, the approx-

imation Ψ(t) = ΦA(t/2)ΦF (t)ΦA(t/2) is called the Strang-type splitting method.

The Strang-type spitting method is numerically known as a second order convergent

scheme. In addition, splitting method retains the dissipation or conservation prop-

erties of (0.3). Hence their ease of calculation and the dissipation or conservation

properties, the splitting method is in common used as a numerical method for solv-

ing various differential equations. However, there are many open problems on error

analysis of (0.3). In particular, for (0.3), whether the Strang-type splitting method

is second order convergent or not was an open question in a rigorous manner.

The splitting method which is split into 2 parts is used on many occasions. On

the other hand, sometimes there are cases that we should use the splitting method

which is split into 3 parts. Therefore, we demonstrate that the convergence of our

Strang-type splitting method which is split into 3 parts is a second order rate.
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In Chapter 3, we consider a blow-up curve for the following nonlinear wave equa-

tion. {
utt − uxx = F (u), t > 0, x ∈ R,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ R,

(0.4)

where F (u) = |ut|p. Here, p > 1 is a constant such that the function sp (s ≥ 0)

is of class C4. It is well known that the solution of (0.4) blows up in finite time if

the initial values are large enough. Let R∗ and T ∗ be positive constants. We set

BR∗ = {x | |x| < R∗}. We consider

T (x) = sup {t ∈ (0, T ∗) | |ut(t, x)| <∞} (x ∈ BR∗).

We call Γ = {(T (x), x) | x ∈ BR∗} blow-up curve. Below, we will identify Γ

with T itself. We have 2 purposes of this Chapter. First, we analytically show

that T ∈ C1(BR∗). Second, we present numerical examples of blow-up curve. We

numerically show that the blow-up curve is smooth if the initial values of (0.4) are

large and smooth enough. Moreover, we show that the case where the blow-up curve

has singular points even the initial values are smooth. In previous study, the cases

of F (u) = |u|p, eu and the following blow-up curve are considered (for example, [6],

[7], [18]).

T̃ (x) = sup {t ∈ (0, T ∗) | |u(t, x)| <∞} (x ∈ BR∗).

It was shown that T̃ ∈ C1(BR∗) under suitable initial values. The method introduced

by Caffarelli-Friedman [7] are used in the proof of regularity of the blow-up curve.

However, we cannot directly apply their method to (0.4) in the case of F (u) = |ut|p.
For these reasons, the mathematical analysis of blow-up curve for the wave equation

with a nonlinear term involving the derivative of unknown functions is not well

understood.

On the other hand, Ohta-Takamura [30] studied the blow-up curve in the case of

F (u) = (ut)
2 − (ux)

2. The key point of their proof is the transformation v = e−u.

We see that v satisfies vtt − vxx = 0. Thanks to the linearization, we can study the

blow-up curve in the case of F (u) = (ut)
2 − (ux)

2. However, we cannot use this

transformation in the case of F (u) = |ut|p.
Thus, we rewrite (0.4) as the following first order system by using the idea of

Chapter 1. 
D−ϕ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
D+ψ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
ϕ(x, 0) = f(x), ψ(x, 0) = g(x), x ∈ R,

where D−v = vt − vx, D+v = vt + vx and f = u1 + ∂xu0, g = u1 − ∂xu0. Such

rewriting makes it easier to analyze the blow-up curve, not to mention ease of analysis

of numerical methods. We also offer an alternative proof of [7] for showing that

the blow-up curve of the blow-up limits is an affine function. Our proof is more

elementary and easy to read. Moreover, we show some numerical examples of the
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blow-up curve of (0.4) in the case of F (u) = |ut|p. From the numerical results,

the blow-up curve sometimes has singular points even the initial values are smooth

if the initial values are not large. The analytical proof is still open in the case of

F (u) = |ut|p.
In order that we want to readers to avoid to confuse the formulations, we explicitly

write the definitions in each chapter. Although multiple same definitions may appear

through the thesis, the arguments in each chapter become self contained. This helps

readers understand the detailed content of each chapter separately.
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1 Blow-up of finite-difference solutions to

nonlinear wave equations

Finite-difference schemes for computing blow-up solutions of one dimen-

sional nonlinear wave equations are presented. By applying time in-

crements control technique, we can introduce a numerical blow-up time

which is an approximation of the exact blow-up time of the nonlinear

wave equation. After having verified the convergence of our proposed

schemes, we prove that solutions of those finite-difference schemes actu-

ally blow up in the corresponding numerical blow-up times. Then, we

prove that the numerical blow-up time converges to the exact blow-up

time as the discretization parameters tend to zero. Several numerical

examples that confirm the validity of our theoretical results are also of-

fered.

1.1 Introduction

The purpose of this paper is to establish numerical methods for computing blow-up

solutions of one space dimensional nonlinear wave equations with power nonlin-

earlities. In order to avoid unessential difficulties about boundary conditions, we

concentrate our attention to L-periodic functions of x with L > 0. That is, set-

ting SL = R/LZ, we consider the following initial value problem for the function

u = u(t, x) (t ≥ 0, x ∈ SL),{
utt − uxx = |u|p, t > 0, x ∈ SL,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.1)

Before stating assumptions on nonlinearlity and initial values, we recall a general

result for nonlinear wave equations. Set QT,L = [0, T ]× SL for T > 0.

Proposition 1.1.1. Let u0, u1 ∈ C3(SL) and f ∈ C4(R) be given. Then, there

exists T > 0 and a unique classical solution u ∈ C3(QT,L) of{
utt − uxx = f(u), (t, x) ∈ QT,L,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ SL.
(1.2)

Moreover, there exists a positive and continuous function Cml(η) of η > 0 satisfying∥∥∥∥ ∂m∂tm ∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

≤ Cml

(
∥u∥L∞(QT,L)

)
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for non-negative integers m, l such that m+l ≤ 3. Furthermore, if f(s) ≥ 0 for s ≥ 0

and u0(x) ≥ 0, u1(x) ≥ 0 for x ∈ SL, then we have u(t, x) ≥ 0 for (t, x) ∈ QT,L.

This proposition is proved by the standard argument based on the contraction

mapping principle (cf. [15, §12.3]) with the aid of the explicit solution formula given

as

u(t, x) =
1

2
[u0(x− t) + u0(x− t)]

+
1

2

∫ x+t

x−t
u1(ξ) dξ +

1

2

∫ t

0

∫ x+s

x−s
f(u(s, y)) dyds.

Throughout this paper, we make the following assumptions:

f(u) = |u|p with p > 1 is of class C4; (1.3)

u0, u1 ∈ C3(SL); (1.4)

u0(x) ≥ 0, u1(x) ≥ 0, x ∈ SL. (1.5)

Thanks to Proposition 1.1.1, the problem (1.1) admits a unique non-negative solution

u ∈ C3(QT,L), which we will call simply a solution hereinafter. We note that the

condition (1.3) is equivalently written as

p = 2 or p is a real number ≥ 4. (1.6)

See also Remark 1.2.10.

The supremum of T in Proposition 1.1.1 is called the lifespan of a solution and is

denoted by T∞. If T∞ = ∞, then we say that the solution u of (1.1) exists globally-

in-time. On the other hand, if T∞ < ∞, we say that u blows up in finite time and

call T∞ the blow-up time of a solution.

As a readily obtainable consequence of Proposition 1.1.1, we deduce the following

proposition.

Proposition 1.1.2. Let u be the solution of (1.1). Then, the following (i) and (ii)

are equivalent.

(i) u blows up in finite time T∞ <∞.

(ii) lim
t↑T∞

∥u(t)∥L∞(SL) = ∞.

Any solution u of (1.1) actually blows up. To verify this fact, the functional

K(v) =
1

L

∫ L

0
v(x) dx (v ∈ C(SL))

plays an important role. Obviously, we have

K(v) ≤ ∥v∥L∞(SL) (0 ≤ v ∈ C(SL)). (1.7)
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Proposition 1.1.3. Assume that

α = K(u0) ≥ 0, β = K(u1) > 0. (1.8)

Then, there exists T∞ ∈ (0,∞) such that the solution u of (1.1) blows up in finite

time T∞.

This proposition is not new; however, we briefly review the proof since we will

study a discrete analogue of this result in Section 1.4. As a matter of fact, the key

point of the proof is that the solution u of (1.1) satisfies, whenever it exists,

d

dt
K(u(t)) ≥ β +

∫ t

0
K(u(s))p ds > 0, (1.9)[

d

dt
K(u(t))

]2
≥ 2

p+ 1
K(u(t))p+1 +M1 ≥ 0, (1.10)

where M1 = β2 − 2
p+1α

p+1 and K(u(t)) = K(u(t, ·)).
These inequalities, together with the following elementary proposition, implies

that K(u(t)) cannot exist beyond TK , which is defined below. Thus, u(t, x) blows

up in finite time T∞ ∈ (0, TK ], which completes the proof of Proposition 1.1.3.

Proposition 1.1.4. Let a C1 function w = w(t) satisfy a differential inequality

d

dt
w(t) ≥

√
2

p+ 1
w(t)p+1 +M1 (t > 0) (1.11)

with w(0) = α ≥ 0. Then, w(t) blows up in finite time TK ∈ (0, T1), where

T1 =

∫ ∞

α

[
β2 +

2

p+ 1
(sp+1 − αp+1)

]− 1
2

ds <∞.

Inequalities (1.9) and (1.10) are derived in the following manner. First, we derive

by using Jensen’s inequality

d2

dt2
K(u(t)) ≥ K(u(t))p, (1.12)

which gives (1.9). Multiplying the both-sides of (1.12) by (d/dt)K(u(t)), we have

d

dt
K(u(t))

d2

dt2
K(u(t)) ≥ d

dt
K(u(t))K(u(t))p.

Thus
d

dt

[
1

2

(
d

dt
K(u(t))

)2

−
∫ K(u(t))

α
ξp dξ

]
≥ 0.

Therefore, we get[
d

dt
K(u(t))

]2
≥ β2 +

2

p+ 1

[
K(u(t))p+1 − αp+1

]
,
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which implies (1.10).

There are a large number of works devoted to blow-up of positive solutions for

nonlinear wave equations. To our best knowledge, the first result was obtained by

Kawarada [24]. He studied a nonlinear wave equation

utt −∆u = f(u) (x ∈ Ω, t > 0) (1.13)

in a smooth bounded domain Ω in Rd and proved a positive solution actually blows

up in finite time if the initial values are sufficiently large. (He did not consider

a positive solution explicitly, but as a readily obtainable corollary of his theorem

we could obtain the blow-up of a positive solution.) Those results are referred as

“large data blow-up” results. After Kawarada’s work, a lost of results have been

reported. For example, Glassey’s papers [16], [17] are well-known. On the other

hand, “small data blow-up” results were presented, for example, F. John ([22]) and

T. Kato ([23]). See an excellent survey by S. Alinhac ([2]) for more details on blow-

up results for nonlinear hyperbolic equations. In contrast to parabolic equations, it

seems that there is a little work devoted to asymptotic profiles and blow-up rates

of blow-up solutions for hyperbolic equations. Therefore, numerical methods would

be important tools to study blow-up phenomena in hyperbolic equations.

However, the computation of blow-up solutions is a difficult task. We do not

state here the detail of those issues; see, for example, [13] and [10]. In order to

surmount those obstacles, various techniques for computing blow-up solutions of

various nonlinear partial differential equations are developed so far. Among them,

variable time-increments ∆tn is of use. The pioneering work is done by Nakagawa

[28] in 1976. He considered the explicit Euler/finite difference scheme to a semilinear

heat equation ut − uxx = u2 (t > 0, 0 < x < 1) with u(t, 0) = u(t, 1) = 0. The

crucial point of his strategy is that the time increment and the discrete time are

given, respectively, as

∆tn = τ min

{
1,

1

∥uh(tn)∥L2

}
, tn+1 = tn +∆tn =

n∑
k=0

∆tk

with some τ > 0, where uh(tn), h being the size of space grids, denotes the piece-

wise constant interpolation function of the finite-difference solution at t = tn and

∥uh(tn)∥L2 its L2(0, 1) norm. Then, he succeeded in proving that, for a sufficiently

large initial value, the finite-difference solution uh(tn) actually blows up in finite

time

T (τ, h) =

∞∑
n=1

∆tn <∞

and

lim
τ,h→0

T (τ, h) = T∞, (1.14)

where τ denotes the size of a time discretization and T∞ the blow-up time of the

equation under consideration. T (τ, h) is called the numerical blow-up time. Later,

Nakagawa’s result has been extend to several directions; see, for example, Chen [?],
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Abia et al. [1], Nakagawa and Ushijima [29] and Cho et al. [13]. However, those

papers are concerned only with parabolic equations. On the other hand, it seems

that little is known for hyperbolic equations and C. H. Cho’s work ([10]) is the first

result on the subject. He studied the initial-boundary value problem for a nonlinear

wave equation{
utt − uxx = u2 (t > 0, x ∈ (0, 1)),

u = 0 (t ≥ 0, x = 0, 1), u(0, x) = u0(x), ut(0, x) = u1(x).

and the explicit Euler/finite-difference scheme
1

τn

(
un+1
j − unj
∆tn

−
unj − un−1

j

∆tn−1

)
=
unj+1 − 2unj + unj−1

h2
+ (unj )

2,

un0 = unN = 0, u0j = u0(xj), u1j (xj) = u0(xj) + ∆t0u1(xj),

(1.15)

where the time and space variable are discretized as tn = ∆t0 +∆t1 + · · ·+∆tn−1,

xj = j/N and N ∈ N, and unj denotes the approximation of u(tn, xj). He proposed

the following time-increments control strategy

∆tn = τ min

{
1,

1

∥uh(tn)∥
1/2
L2

}
, τn =

∆tn +∆tn−1

2
. (1.16)

Then, he succeeded in proving that (1.14) actually holds true under some assump-

tions. One of the crucial assumptions in his theorem is convergence of the finite-

difference solutions, that is,

lim
h→0

max
0≤tn≤T

|unj − u(tn, xj)| = 0 (1.17)

for any T ∈ (0, T∞). The proof of this convergence result is still open at present.

As a matter of fact, we need some a priori estimates or stability in a certain norm

in order to prove (1.17). However, as Cho mentioned in [10, page 487], it is quite

difficult to prove a stability that remains true even when ∆tn → 0.

Recently, K. Matsuya reported some interesting results on global existence and

blow-up of solutions of a discrete nonlinear wave equation in [26]. However, it seems

that his results are not directly related with approximation of partial differential

equations.

This paper is motivated by the paper [10] and devoted to a study of the finite-

difference method applied to (1.1). Thus, we propose finite-difference schemes and

prove convergence results (cf. Theorems 1.2.4 and 1.2.5) for those schemes even

when time-increments approaches to zero. To accomplish this purpose, we rewrite

the equation as

ut + ux = ϕ, ϕt − ϕx = |u|p,

which is based on the formal factorization utt − uxx = (∂t − ∂x)(∂t + ∂x)u = |u|p,
and then follow the method of convergence analysis proposed by [32] that is origi-

nally developed to study time-discretizations for a system of nonlinear Schrödinger
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equations. Actually, it suffices to prove local stability results in a certain sense (cf.

Theorems 1.2.2 and 1.2.3) in order to obtain convergence results. Moreover, we show

that discrete analogues of (1.9) and (1.10) holds true, and therefore, we can deduce

approximation of blow-up time (1.14) (cf. Theorem 1.2.8).

This paper is organized as follows. In Section 1.2, after having stated our finite-

difference schemes, we mention stability and convergence results for our schemes

(Theorems 1.2.2, 1.2.3, 1.2.4 and 1.2.5). Therein, approximation of blow-up time is

also mentioned (Theorem 1.2.8). Section 1.3 is devoted to the proofs of Theorems

1.2.2, 1.2.3, 1.2.4 and 1.2.5. The proof of Theorem 1.2.8 is given in Section 1.4. We

conclude this paper by examining several numerical examples in Section 1.5.

Notation

For v = (v1, . . . , vJ)
T ∈ RJ , we set ∥v∥ = max

1≤j≤J
|vj |, where ·T indicates the transpose

of a matrix. We write v ≥ 0 if and only if vi ≥ 0 (1 ≤ i ≤ J). We use the matrix ∞
norm

∥E∥ = max
v∈RJ

∥Ev∥
∥v∥

= max
1≤i≤J

J∑
j=1

|Eij |

for a matrix E = (Eij) ∈ RJ×J . Moreover, we write E ≥ O if and only if Ei,j ≥ 0

(1 ≤ i, j ≤ J). The set of all positive integers is denoted by N.

1.2 Schemes and main results

Introducing a new variable ϕ = ut + ux, we first convert (1.1) into the first order

system as follows:
ut + ux = ϕ (t, x) ∈ QT,L,

ϕt − ϕx = |u|p (t, x) ∈ QT,L,

u(0, x) = u0(x), ϕ(0, x) = u1(x) + u′0(x), x ∈ SL.

(1.18)

Take a positive integer J and set xj = jh with h = L/J . As a discretization of

the time variable, we take positive constants ∆t0,∆t1, . . . and set

t0 = 0, tn =

n−1∑
k=0

∆tk = tn−1 +∆tn−1 (n ≥ 1).

Then, our explicit scheme to find

unj ≈ u(tn, xj), ϕnj ≈ ϕ(tn, xj) (1 ≤ j ≤ J, t ≥ 0)

reads as
un+1
j − unj
∆tn

+
unj − unj−1

h
= ϕnj

ϕn+1
j − ϕnj
∆tn

−
ϕnj+1 − ϕnj

h
= |un+1

j |p
(1 ≤ j ≤ J, n ≥ 0) (1.19)
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where un0 and ϕnJ+1 are set as un0 = unJ and ϕnJ+1 = ϕn1 .

We also consider an implicit scheme for the purpose of comparison. However,

we do not prefer fully implicit schemes since we need iterative computations for

solving resulting nonlinear system. Instead, we consider a linearly-implicit scheme

by introducing dual time grids

tn+ 1
2
=

∆t0
2

+ tn (n ≥ 0). (1.20)

Then, our implicit scheme to find

unj ≈ u(tn, xj), ϕ
n+ 1

2
j ≈ ϕ(tn+ 1

2
, xj) (1 ≤ j ≤ J, n ≥ 0)

reads as

un+1
j − unj
∆tn

+
1

2

(
un+1
j − un+1

j−1

h
+
unj − unj−1

h

)
= ϕ

n+ 1
2

j ,

ϕ
n+ 3

2
j − ϕ

n+ 1
2

j

∆tn
− 1

2

ϕn+ 3
2

j+1 − ϕ
n+ 3

2
j

h
+
ϕ
n+ 1

2
j+1 − ϕ

n+ 1
2

j

h

 = |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0), (1.21)

where un0 and ϕ
n+ 1

2
J+1 are set as un0 = unJ and ϕ

n+ 1
2

J+1 = ϕ
n+ 1

2
1 .

Remark 1.2.1. It is possible to take

t 1
2
=

∆t0
2
, tn+ 1

2
=

∆t0
2

+

n∑
k=1

τk (n ≥ 1)

as dual time grids instead of (1.20), where τk = (∆tk−1 +∆tk)/2. With this choice,

the implicit scheme is modified as

un+1
j − unj
∆tn

+
1

2

(
un+1
j − un+1

j−1

h
+
unj − unj−1

h

)
= ϕ

n+ 1
2

j ,

ϕ
n+ 3

2
j − ϕ

n+ 1
2

j

τn
− 1

2

ϕn+ 3
2

j+1 − ϕ
n+ 3

2
j

h
+
ϕ
n+ 1

2
j+1 − ϕ

n+ 1
2

j

h

 = |un+1
j |p,

(1 ≤ j ≤ J, n ≥ 0). (1.22)

Then, we can deduce all the results presented below with obvious modifications.

For n ≥ 0, we set

un = (un1 , . . . , u
n
J)

T ∈ RJ ,

ϕn = (ϕn1 , . . . , ϕ
n
J)

T ∈ RJ , ϕn+
1
2 = (ϕ

n+ 1
2

1 , . . . , ϕ
n+ 1

2
J )T ∈ RJ .

Theorem 1.2.2 (Local stability of the explicit scheme). Let τ = γh with some

γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Let a ≥ 0, b ≥ 0 ∈ RJ . Then,

13



the solution (un,ϕn) of the explicit scheme (1.19) with u0 = a and ϕ0 = b satisfies

un ≥ 0 and ϕn ≥ 0 for n ≥ 1. Furthermore, for any N ∈ N, there exists a constants

hR,N > 0 depending only on N and R = ∥a∥ + ∥b∥ such that, if h ∈ (0, hR,N ], we

have

sup
1≤n≤N

(∥un∥+ ∥ϕn∥) ≤ 2R. (1.23)

Theorem 1.2.3 (Well-posedness and local stability of the implicit scheme). Let

τ = 2γh with some γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Let a, b ∈ RJ .
Then, the implicit scheme (1.21) admits a unique solution (un,ϕn+

1
2 ) for any n ≥ 1,

where u0 = a and ϕ
1
2 = b. Moreover, if a ≥ 0 and b ≥ 0, then we have un ≥ 0

and ϕn+
1
2 ≥ 0 for n ≥ 1. Furthermore, for any N ∈ N, there exists a constants

hR,N > 0 depending only on N and R = ∥a∥ + ∥b∥ such that, if h ∈ (0, hR,N ], we

have

sup
1≤n≤N

(
∥un∥+ ∥ϕn+

1
2 ∥
)
≤ 2R. (1.24)

In order to state convergence results, we introduce en = (enj ), εn = (εnj ) and

εn+
1
2 = (ε

n+ 1
2

j ) which are given as

enj = u(tn, xj)− unj , εnj = ϕ(tn, xj)− ϕnj , ε
n+ 1

2
j = ϕ(tn+ 1

2
, xj)− ϕ

n+ 1
2

j .

Recall that T∞ denotes the blow-up time of the solution u(t, x) of (1.1).

Theorem 1.2.4 (Convergence of the explicit scheme). Let τ = γh with some γ ∈
(0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that (un,ϕn) is the solution of

the explicit scheme (1.19) for n ≥ 1, where (u0,ϕ0) is defined as

u0j = u0(xj), ϕ0j = u1(xj) + u′0(xj) (1 ≤ j ≤ J). (1.25)

Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 andM0 which

depend only on

p, T, γ, M = max
0≤m+l≤3

∥∥∥∥ ∂m∂tm ∂l

∂xl
u

∥∥∥∥
L∞(QT,L)

(1.26)

such that we have

max
0≤tn≤T

(∥en∥+ ∥εn∥) ≤M0(τ + h)

for any h ∈ (0, h0].

Theorem 1.2.5 (Convergence of the implicit scheme). Let τ = 2γh with some

γ ∈ (0, 1) and assume that ∆tn ≤ τ for n ≥ 0. Suppose that (un,ϕn+
1
2 ) is the

solution of the implicit scheme (1.21) for n ≥ 1, where (u0,ϕ
1
2 ) is defined as

u0j = u0(xj), ϕ
1
2
j = u1(xj) + u′0(xj) (1 ≤ j ≤ J). (1.27)
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Let T ∈ (0, T∞) be arbitrarily. Then, there exists positive constants h0 and M0,

which depend only on (1.26), such that we have

max
0≤tn+1≤T

(
∥en∥+ ∥εn+

1
2 ∥
)
≤M0(τ + h) (1.28)

for any h ∈ (0, h0].

Remark 1.2.6. If taking constant time-increments ∆tn = τ and suitable initial value

ϕ
1
2 , we can prove

max
0≤tn+1≤T

(
∥en∥+ ∥εn+

1
2 ∥
)
≤M0(τ

2 + h)

instead of (1.28).

By using the solutions of the explicit scheme (1.19) and the implicit scheme (1.21),

we can calculate the blow-up time T∞ of the solution of (1.1). To this purpose, we

fix

1 ≤ q <∞, 0 < γ < 1 (1.29)

and choose the time increments ∆t0,∆t1, . . . as

∆tn = τ ·min

{
1,

1

∥un∥q

}
(n ≥ 0), (1.30)

where τ is taken as

τ =

{
γh for the explicit scheme (1.19)

2γh for the implicit scheme (1.21).
(1.31)

Definition 1. Let un be the solution of the explicit scheme (1.19) or the implicit

scheme (1.21) with the time increment control (1.30) and (1.31). Then, we set

T (h) =
∞∑
n=0

∆tn.

If T (h) <∞, we say that un blows up in finite time T (h).

Remark 1.2.7. The blow-up of un implies that lim
tn→T (h)

∥un∥ = lim
n→∞

∥un∥ = ∞.

We are now in a position to state numerical blow-up results.

Theorem 1.2.8 (Approximation of the blow-up time). Let un be the solution of the

explicit scheme (1.19) or the implicit scheme (1.21) with the time increment control

(1.30) and (1.31), where the initial value is defined as (1.25) or (1.27), respectively.

In addition to the basic assumptions (1.4) and (1.5) on initial values, assume that

u1(x) is so large that

u1(x) + u′0(x) ≥ 0, ̸≡ 0 (x ∈ SL). (1.32)

Then, we have the following:
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(i) un ≥ 0 and ϕn ≥ 0 (or ϕn+
1
2 ≥ 0) for all n ≥ 0.

(ii) If (1.8) holds true, un blows up in finite time T (h) and

T∞ ≤ lim inf
h→0

T (h). (1.33)

(iii) In addition to (1.8), we assume that

lim
t→T∞

K(u(t)) = ∞, (1.34)

then we have

T∞ = lim
h→0

T (h). (1.35)

Remark 1.2.9. The assumption (1.34) is somewhat restrictive. Essentially the same

assumption is considered in [10]. However, we are unable to remove it at present.

To find the sufficient condition for (1.34) to hold is an interesting open question.

Remark 1.2.10. All results presented above remain valid for f(u) = u|u|2, since it is

a C4 function on R.

1.3 Proofs of Theorems 1.2.2, 1.2.3, 1.2.4 and 1.2.5

We rewrite the explicit scheme (1.19) and the implicit scheme (1.21), respectively,

as {
un+1 =Mnu

n +∆tnϕ
n

ϕn+1 = Nnϕ
n +∆tnf(u

n+1)
(n ≥ 0), (1.36)

and {
Anu

n+1 = Bnu
n +∆tnϕ

n+ 1
2

Cnϕ
n+ 3

2 = Dnϕ
n+ 1

2 +∆tnf(u
n+1)

(n ≥ 0), (1.37)

where

Mn = P (−γn), Nn = P (−γn)T,
An = P (δn), Bn = P (−δn), Cn = P (δn)

T, Dn = P (−δn)T,

γn =
∆tn
h
, δn =

∆tn
2h

,

P (µ) =


1 + µ 0 · · · −µ

−µ 1 + µ 0
...

. . .
. . . 0

0 −µ 1 + µ

 ,

f(v) = (|v1|p, . . . , |vJ |p)T for v = (v1, . . . , vJ)
T.

Lemma 1.3.1. (i) P (µ) is non-singular, P (µ)−1 ≥ O and ∥P (µ)−1∥ ≤ 1 if µ >

0.
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(ii) P (−µ) ≥ O and ∥P (−µ)∥ = 1 if 0 < µ ≤ 1.

Proof. (i) Let µ > 0. The matrix P (µ) is expressed as P (µ) = (1+µ)(I−G), where

G =
µ

1 + µ


0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

. . .
. . .

. . . 0

0 · · · 0 1 0

 .

Since ∥G∥ = µ(1+µ)−1 < 1, the matrix I−G is non-singular, (I −G)−1 =
∞∑
l=0

Gl ≥ O

and ∥(I − G)−1∥ ≤ 1/(1 − ∥G∥) = 1 + µ. Hence, P (µ) is also non-singular,

P (µ)−1 = (1 + µ)−1
∞∑
l=0

Gl ≥ O and ∥P (µ)−1∥ ≤ (1 + µ)−1∥(I −G)−1∥ = 1.

(ii) Let 0 < µ ≤ 1. Then, P (−µ)≥O is obvious. We further have

∥P (−µ)∥ = max
1≤i≤J

J∑
j=1

|pij | = (1− µ) + µ = 1,

where P (µ) = (pij), which completes the proof.

Now, we can state the following proofs.

Proofs of Theorems 1.2.2 and 1.2.3. According to Lemma 1.3.1, we haveMn, Nn, Bn, Dn ≥
O and ∥Mn∥ = ∥Nn∥ = ∥Bn∥ = ∥Dn∥ = 1. Moreover, An, Cn are non-singular,

A−1
n , C−1

n ≥ O and ∥A−1
n ∥, ∥C−1

n ∥ ≤ 1. Therefore, the unique existence and non-

negativity of solutions of (1.19) and (1.21) are direct consequences of the expressions

(1.36) and (1.37), respectively.

Below we are going to show local stability results (1.23) and (1.24). We only state

the proof of (1.24); that of (1.23) could be done in the same way. Recall that we

are assuming that ∆tj ≤ τ for all j and τ = 2γh with some γ ∈ (0, 1). Choose

N ∈ N arbitrarily and fix it.

Now we can prove (1.24) by induction on n. First, note that ∥u0∥ + ∥ϕ
1
2 ∥ =

∥a∥+ ∥b∥ = R. Assume that

∥un∥+ ∥ϕn+
1
2 ∥ ≤ 2R (1.38)

for 0 ≤ n ≤ N − 1. Since un+1 and ϕn+
3
2 are given as

un+1 = Hn · · ·H0a+

n∑
j=0

∆tn−jHn · · ·Hn−j+1A
−1
n−jϕ

n−j+ 1
2 ,

ϕn+
3
2 = Ln · · ·L0b+

n∑
j=0

∆tn−jLn · · ·Ln−j+1C
−1
n−jf(u

n−j+1)
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with Hn = A−1
n Bn and Ln = C−1

n Dn, we have

∥un+1∥ ≤ ∥a∥+τ
n∑
j=0

∥ϕn−j+
1
2 ∥ ≤ ∥a∥+Nτ(2R),

∥ϕn+
3
2 ∥ ≤ ∥b∥+ τ

n∑
j=0

∥un−j+1∥p ≤ ∥b∥+Nτ(2R)p

for 0 ≤ n ≤ N − 1. Hence,

∥un+1∥+ ∥ϕn+
3
2 ∥ ≤ R+Nτ [2R+ (2R)p] (1.39)

for 0 ≤ n ≤ N − 1.

At this stage, we define τR,N and hR,N as

τR,N =
R

N [2R+ (2R)p]
, hR,N =

τR
2γ

and suppose h ∈ (0, hR,N ].

Then, by (1.39), we get

∥un+1∥+ ∥ϕn+
3
2 ∥ ≤ 2R.

This completes the proof of (1.24). □

We proceed to the proof of convergence results. Below, we only state the proof of

Theorem 1.2.5 since that of Theorem 1.2.4 is simpler.

Proof of Theorem 1.2.5. Let {(un,ϕn+
1
2 )}n≥1 be the solution of the implicit scheme

(1.21) with the initial condition (1.27). We note that

∥u0∥+ ∥ϕ
1
2 ∥ ≤ 3M.

Hereinafter, setM ′ = 3M . In view of Theorem 1.2.3, there exists constants hM ′ > 0

and TM ′ > 0, which depend only on M ′ and p, such that, if h ∈ (0, hM ′ ], we have

∥un∥+ ∥ϕn+
1
2 ∥ ≤ 2M ′ (n ∈ ΛM ′ = {n ∈ N | tn ≤ TM ′}).

We set

ν = sup{n ∈ N | ∥un∥+ ∥ϕn+
1
2 ∥ ≤ 3M ′},

Λ̃ν = {n ∈ N | tn+1 ≤ T, n ≤ ν}.

The rest of the proof is divided into two steps.

Step 1. First, we show that there exist positive constants h1 andM0, which depend

only on T and M , such that the estimate (1.28) holds for all h ∈ (0, h1] and n ∈ Λ̃ν .

We have for n ∈ Λ̃ν

enj − en−1
j +

∆tn−1

2

(
enj − enj−1

h
+
en−1
j − en−1

j−1

h

)
= ∆tn−1E

n− 1
2

j , (1.40)
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where E
n− 1

2
j = ε

n− 1
2

j − E
n− 1

2
1j − E

n− 1
2

2j ,

E
n− 1

2
1j = ut(tn− 1

2
, xj)−

u(tn, xj)− u(tn−1, xj)

∆tn−1
,

E
n− 1

2
2j = ux(tn− 1

2
, xj)

−1

2

(
u(tn, xj)− u(tn, xj−1)

h
+
u(tn−1, xj)− u(tn−1, xj−1)

h

)
.

Since (1.40) is equivalently written as

en = A−1
n−1Bn−1e

n−1 +∆tn−1A
−1
n−1E

n− 1
2 ,

where En− 1
2 = (E

n− 1
2

j ), we have from Lemma 1.3.1

∥en∥ ≤ ∥en−1∥+∆tn−1∥En− 1
2 ∥

≤ ∥en−1∥+∆tn−1(∥E
n− 1

2
1 ∥+ ∥En− 1

2
2 ∥) + ∆tn−1∥εn−

1
2 ∥.

From the standard error estimates for the difference quotients, we obtain

∥En− 1
2

1 ∥ ≤ CM∆tn−1, ∥En− 1
2

2 ∥ ≤ CM(∆tn−1 + h)

for n ∈ Λ̃ν . Consequently,

∥en∥ ≤ ∥en−1∥+ CM∆tn−1(∆tn−1 + h) + ∆tn−1∥εn−
1
2 ∥ (1.41)

for n ∈ Λ̃ν .

Similarly, we have for n ∈ Λ̃ν

ε
n+ 1

2
j − ε

n− 1
2

j − ∆tn−1

2

εn+ 1
2

j+1 − ε
n+ 1

2
j

h
+
ε
n− 1

2
j+1 − ε

n− 1
2

j

h

 = ∆tn−1ξ
n
j ,

or, equivalently,

εn+
1
2 = C−1

n−1Dn−1ε
n− 1

2 +∆tn−1C
−1
n−1ξ

n,

where ξnj = −ξn1j + ξn2j + ξn3j , ξ
n = (ξnj ) and

ξn1j = ϕt(tn, xj)−
ϕ(tn+ 1

2
, xj)− ϕ(tn− 1

2
, xj)

∆tn−1
,

ξn2j = ϕx(tn, xj)

−1

2

(
ϕ(tn+ 1

2
, xj+1)− ϕ(tn+ 1

2
, xj)

h
+
ϕ(tn− 1

2
, xj+1)− ϕ(tn− 1

2
, xj)

h

)
,

ξn3j = |u(tn, xj)|p − |unj |p.

We know

∥ξn1 ∥ ≤ CM∆tn−1, ∥ξn2 ∥ ≤ CM(∆tn−1 + h)
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for n ∈ Λ̃ν . Since |u(tn, xj)| ≤M and |unj | ≤ 3M ′, we can estimate as∣∣∣|u(tn, xj)|p − |unj |p
∣∣∣ ≤ C2pM

p−1|u(tn, xj)− unj |

for n ∈ Λ̃ν and 1 ≤ j ≤ J , where C2p denotes a constant depending only on p.

Hence, we deduce

∥ξn3 ∥ ≤ CMp−1∥en∥

for n ∈ Λ̃ν . Thus, we obtain

∥εn+
1
2 ∥ ≤ ∥εn−

1
2 ∥+ CM∆tn−1(∆tn−1 + h) + CMp−1∆tn−1∥en∥. (1.42)

Summing up (1.41) and (1.42), we deduce

∥en∥+ ∥εn+
1
2 ∥ ≤ ∥en−1∥+ ∥εn−

1
2 ∥+ CM∆tn−1(∆tn−1 + h)

+CMp−1∆tn−1∥en∥+∆tn−1∥εn−
1
2 ∥. (1.43)

Setting M∗ =M +Mp−1, we have from (1.43)

(1− CM∗∆tn−1)(∥en∥+ ∥εn+
1
2 ∥)

≤ ∥en−1∥+ (1 +∆tn−1)∥εn−
1
2 ∥+ CM∆tn−1(∆tn−1 + h)

≤ (1 + CM∗∆tn−1)(∥en−1∥+ ∥εn−
1
2 ∥) + CM∗∆tn−1(∆tn−1 + h).

At this stage, we define

h1 =
1

4γCM∗ , τ1 = 2γh1

and we assume that h ∈ (0, h1]. Then, using an elementally inequality 0 ≤ (1 −
s)−1(1 + s) ≤ 1 + 4s for s ∈ [0, 1/2], we have

∥en∥+ ∥εn+
1
2 ∥

≤ (1 + 4CM∗∆tn−1)(∥en−1∥+ ∥εn−
1
2 ∥) + 2CM∗∆tn−1(∆tn−1 + h)

≤ e4CM
∗∆tn−1(∥en−1∥+ ∥εn−

1
2 ∥) + 2CM∗∆tn−1(∆tn−1 + h).

Therefore

∥en∥+ ∥εn+
1
2 ∥ ≤ e4CM

∗tn(∥e0∥+ ∥ε
1
2 ∥) + 2CM∗

n−1∑
j=0

∆tj(∆tj + h)e4CM
∗tn

≤ e4CM
∗T ∥ε

1
2 ∥+ 2CM∗Te4CM

∗T (τ + h).

On the other hand, we have ∥ε
1
2 ∥ ≤ (τ + h)M , since ε

1
2
j = ϕ(t 1

2
, xj) − ϕ

1
2
j =

ut(t 1
2
, xj) + ux(t 1

2
, xj)− u1(xj)− u′0(xj). Therefore, taking

M0 = (Me4CM
∗T + 2CM∗Te4CM

∗T ),
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we have shown that the desired estimate (1.28) holds for all h ∈ (0, h1] and n ∈ Λ̃ν .

Step 2. We set

h0 = min

{
h1,

M

2M0(1 + 2γ)
, h 3

2M
,1

}
where h 3

2
M,1 is the constant introduced in Theorem 1.2.3 with R = 3

2M and N = 1.

Below we assume h ∈ (0, h0].

We prove

max{n ∈ N | tn+1 ≤ T} ≤ ν (1.44)

by showing a contradiction. Thus, we assume

max{n ∈ N | tn+1 ≤ T} > ν.

Then, we have Λ̃ν = {1, . . . , ν} and, since h0 ≤ h1 in view of Step 1,

∥en∥+ ∥εn+
1
2 ∥ ≤M0(1 + 2γ)h

for all n = 1, . . . , ν. Moreover, since tν+1 ≤ T , it follows from the definition of M

that

max
n=1,...,ν

(∥u(tn)∥+ ∥ϕ(tn+ 1
2
)∥) ≤M,

where u(tn) = (u(tn, xj)) and ϕ(tn+ 1
2
) = (ϕ(tn+ 1

2
, xj)). Combining those inequali-

ties, we get

∥un∥+ ∥ϕn+
1
2 ∥ ≤M +M0(1 + 2γ)h

for all n = 1, . . . , ν. In particular,

∥uν∥+ ∥ϕν+
1
2 ∥ ≤M +M0h ≤ 3

2
M.

Now, we apply Theorem 1.2.3 with a = uν , b = ϕν+
1
2 , R = 3

2M , and N = 1 to

obtain

∥uν+1∥+ ∥ϕν+
3
2 ∥ ≤ 3M.

This contradicts the definition of ν. Therefore, (1.44) actually holds true. Hence, by

the result of Step 1, we see that the desired estimate (1.28) holds for all h ∈ (0, h0]

and n ∈ N satisfying tn+1 ≤ T . This completes the proof of Theorem 1.2.5.

1.4 Proof of Theorem 1.2.8

This section is devoted to the proof of numerical blow-up result, Theorem 1.2.8. We

shall deal only with the case of the explicit scheme (1.19); the case of the implicit

scheme (1.21) is proved in exactly the same way.

Throughout this section, suppose that (un,ϕn) denotes the solution of the explicit

scheme (1.19) as in Theorem 1.2.8. Further, we suppose that all assumptions of

Theorem 1.2.8 hold true. In view of (1.32), we may suppose that ϕ0,u1 ≥ 0, ̸= 0

for a sufficiently small h > 0. Consequently, we have un,ϕn ≥ 0, ̸= 0 for n ≥ 1.
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Before stating the proof of Theorem 1.2.8, we establish a discrete version of (1.10).

To this end, we introduce the functional

Kh(v) =
1

L

J∑
j=1

vjh (0 ≤ v ∈ RJ) (1.45)

and consider the discrete version Kh(u
n) of K(u(t)). We note that Kh(u

n) ≥ 0 and

Kh(ϕ
n) ≥ 0 for n ≥ 0. In particular,

Kh(ϕ
0) > 0, αh = Kh(u

0) ≥ 0, βh = Kh(u
1) > 0. (1.46)

Lemma 1.4.1. Kh(u
n) is a strictly increasing sequence in n ≥ 0 and it satisfies[

Kh(u
n+1)−Kh(u

n)

∆tn

]2
≥ 1

p+ 1
Kh(u

n)p+1 +M1h ≥ 0 (1.47)

for n ≥ 0, where

M1h =

(
βh − αh
∆t0

)2

− 1

p+ 1
αp+1
h . (1.48)

Proof. We have

Kh(u
n+1)−Kh(u

n)

∆tn
=

1

L

J∑
j=1

un+1
j − unj
∆tn

h

=
1

L

J∑
j=1

[
−
unj − unj−1

h
+ ϕnj

]
h = Kh(ϕ

n) (1.49)

for n ≥ 0. In particular, by (1.46)

Kh(u
1)−Kh(u

0)

∆t0
≥ Kh(ϕ

0) > 0 (1.50)

By using Jensen’s inequality, we have from (1.49)

Kh(ϕ
n+1)−Kh(ϕ

n)

∆tn
=

1

L

J∑
j=1

[
ϕnj+1 − ϕnj

h
+
(
un+1
j

)p]
h

=
1

L

J∑
j=1

(
un+1
j

)p
h ≥ Kh(u

n+1)p.

Combining these, we obtain

Kh(u
n+2)−Kh(u

n+1)

∆tn+1
≥ Kh(u

n+1)−Kh(u
n)

∆tn
+∆tn(Kh(u

n+1))p (1.51)

≥ Kh(u
1)−Kh(u

0)

∆t0
+

n∑
k=0

∆tk(Kh(u
k+1))p > 0(1.52)

for n ≥ 0. This, together with (1.50), implies that Kh(u
n) is a strictly increasing

sequence in n ≥ 0.
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Again, we apply (1.51) to obtain[
Kh(u

n+2)−Kh(u
n+1)

∆tn+1

]2
≥ Kh(u

n+1)−Kh(u
n)

∆tn

[
Kh(u

n+1)−Kh(u
n)

∆tn
+∆tn

(
Kh(u

n+1)
)p]

=

[
Kh(u

n+1)−Kh(u
n)

∆tn

]2
+
(
Kh(u

n+1)−Kh(u
n)
)
Kh(u

n+1)p.

Hence, [
Kh(u

n+2)−Kh(u
n+1)

∆tn+1

]2
≥

n∑
k=0

(
Kh(u

k+1)−Kh(u
k)
)
Kh(u

k+1)p +

[
Kh(u

1)−Kh(u
0)

∆t0

]2
≥

∫ Kh(u
k+1)

αh

zp dz +

(
βh − αh
∆t0

)2

=
1

p+ 1

(
Kh(u

n+1)p+1 − αp+1
h

)
+

(
βh − αh
∆t0

)2

. (1.53)

Since Kh(u
n) is non-decreasing in n, the right-hand side of (1.53) is non-negative.

This completes the proof of Lemma 1.4.1.

Remark 1.4.2. Under the assumptions of Theorem 1.2.4, we have M1h → β2 −
1
p+1α

p+1 as h→ 0.

Remark 1.4.3. In view of (1.50) and (1.52),

Kh(u
n+2)−Kh(u

n+1)

∆tn+1
≥ Kh(ϕ

0) ≡ νh,

where νh is a positive number which is independent of n. This implies thatKh(u
n) is

not a bounded sequence in n. In particular, there exists m ∈ N such that Kh(u
m) >

1.

At this stage, we set

G(z) =

√
1

p+ 1
zp+1 +M1h.

Note that G(z) is a strictly increasing function in z ∈ [αh,∞).

In view of Lemma 1.4.1, we can follow exactly the same argument of the proof of

[10, Lemma 5.4] and obtain the following lemma.

Lemma 1.4.4. There exists a positive constant C which is independent of h such

that

T (h) ≤ 2

(∫ ∞

αh

dz

G(z)
+ Cτ

)
.

In particular, we have T (h) <∞.
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Now we can state the following proof.

Proof of Theorem 1.2.8. (i) It is a direct consequence of Theorems 1.2.2 and 1.2.3.

(ii) According to Lemma 1.4.4, we have T (h) < ∞; un blows up in finite time. We

prove that

T∞ ≤ lim inf
h→0

T (h) ≡ T∗ (1.54)

by showing a contradiction. Thus, we assume that

T∗ < T∞.

Then, there exists a subsequence {hi}i such that hi → 0 as i→ ∞ and that

T (hi) ≤ T∗ + δ < T∞,

where δ = (T∞ − T∗)/2. We have

max
0≤t≤T∗+δ

∥u(t)∥L∞(SL) <∞. (1.55)

On the other hand, the solution un = un(hi) of the explicit scheme (1.19) corre-

sponding to the parameter h = hi satisfies (cf. Remark 1.2.7)

lim
n→∞

∥un(hi)∥ = lim
tn→T (hi)

∥un(hi)∥ = ∞. (1.56)

These (1.55) and (1.56) contradict to Theorem 1.2.4. Hence, (1.54) is proved.

(iii) We assume (1.34); thus, u(t, x) and K(u(t)) blow up in finite time t = T∞. We

now prove that

T ∗ ≡ lim sup
h→0

T (h)≤T∞ (1.57)

by showing a contradiction. In fact, this, together with (1.54), implies T∞ = lim
h→0

T (h),

which completes the proof. We assume

T∞ < T ∗

and set ϵ = (T ∗ − T∞)/4. There exist R > 0 and h∗∗ > 0 such that

2

(∫ ∞

R

dz

G(z)
+ Cγh∗∗

)
< ϵ.

Below we fix suchR and h∗∗. Further, there exists t
′ = t′R < T∞ such thatK(u(t′)) >

2R. Set

T = t′ +
T∞ − t′

2
=
t′ + T∞

2
< T∞

and letM andM0 be the positive constants appearing Theorem 1.2.4 corresponding

to this T . Set

h∗ = min

{
h∗∗,

T∞ − t′

2γ
,

R

M +M0(1 + γ)

}
and suppose h ∈ (0, h∗] below. Then, we have Mh+M0(τ + h) ≤ R and τ ≤ T − t′.
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According to Theorem 1.2.4, we have

|K(u(tn))−Kh(u
n)|

≤ 1

L

J∑
j=1

∫ xj

xj−1

|u(tn, x)− unj | dx

≤ 1

L

J∑
j=1

∫ xj

xj−1

(|u(tn, x)− u(tn, xj)|+ |u(tn, xj)− unj |) dx

≤ Mh+M0(τ + h) ≤ R

and, therefore,

Kh(u
n) ≥ K(u(tn))−R.

There exists k ∈ N satisfying t′ ≤ tk < T∞, since τ ≤ T − t′ < T∞ − t′. Then,

Kh(u
k) ≥ K(u(tk))−R > R. (1.58)

At this stage, we can take a subsequence {hi}i such that

T∞ + ϵ < T (hi)

and hi → 0 as i→ ∞. However, in view of Lemma 1.4.4 and (1.58), we have

T (hi) = tk +

∞∑
n=k

∆tn < T∞ + 2

(∫ ∞

R

dz

G(z)
+ Cτi

)
.

Therefore, by the definition of R and h∗∗, we obtain T (hi) < T∞ + ϵ, which is a

contradiction. Hence, we obtain (1.57). This completes the proof of Theorem 1.2.8.

□

1.5 Numerical experiments

In this section, we offer some numerical examples and examine the validity of our

proposed finite-difference schemes. Suppose L = 1 and take

u0(x) =
λ

2
(sin(4πx) + 2), u1(x) = 2πλ+ µ

as initial values. Then, if λ, µ > 0, we have α = K(u0) = λ > 0, β = K(u1) =

2πλ+ µ > 0 and u′0(x) + u1(x) ≥ µ > 0. Below we set λ = 10 and µ = 5.

1.5.1 Choice of q

We first examine the value of q in the definition of ∆tn. We consider the explicit

scheme (1.19). In Fig. 1.1, we plot ∆tn as a function of tn when p = 2. We see

that ∆tn deceases as a linear function if q = 0.5 whereas it deceases very rapidly

if q = 0.25 and very slowly if q = 0.75, 1. Results for the cases of p = 3 and 4
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are reported in Fig. 1.2 and 1.3, respectively. Here, the case p = 3 means the

nonlinearlity f(u) = u|u|2; see Remark 1.2.10. For each p, there is q = q∗ such that

∆tn deceases linearly if q = q∗ and it deceases very rapidly if q < q∗ and very slowly

if q > q∗.

Slowly-deceasing cases are not suitable from the viewpoint of efficiency. On the

other hand, we do not prefer rapidly-deceasing cases since it is difficult to capture

clearly the variation of a numerical solution near t = T (h) even if ∆tn is quite small.

Consequently, as a better choice, we offer

q =


0.5 (p = 2)

1 (p = 3)

1.5 (p = 4).

(1.59)

Below we choose q as (1.59).

1.5.2 Stopping criterion

The numerical blow-up time is an infinite series defined as

T (h) =
∞∑
n=0

∆tn.

Therefore, in actual computations, we take a sufficiently large n and regard tn as

a reasonable approximation of T (h). For this purpose, we introduce the truncated

numerical blow-up time T (h; ε) by setting

T (h; ε) = min
{
tn | ∥un∥ > ε−1

}
, (1.60)

where ε > 0 is the stopping criterion given below.

We still consider the explicit scheme (1.19) and plot T (h, ε), T (h; 100ε) for several

h in Fig. 1.4. For suitably small ε and h, T (h, ε) and T (h; 100ε) are almost equal so

that we can take T (h; ε) as a reasonable approximation of the exact blow-up time.

1.5.3 Comparison of our schemes and Cho’s scheme

We compare three finite-difference schemes; the explicit scheme (1.19), the implicit

scheme (1.21) and the Cho’s scheme (1.17) with obvious modification of the bound-

ary condition.

Fig. 1.4, we plot T (h; ε) for several h by using those three schemes. We see that

those T (h; ε) converge to a certain value, say the exact blow-up time, as h → 0.

Thus, we can apply anyone to compute the blow-up solutions. Cho’s scheme is

better than ours. But, again, it should be kept in mind that our schemes and the

numerical blow-up times are guaranteed to converge by the mathematical proof.

Furthermore, we conjecture form those figures that the rate of convergence of T (h)

is expressed as

|T (h)− T∞| ≤ Ch = Cτ
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if τ/h is fixed. We, however, have no mathematical proof; for similar difficulties for

parabolic problems, see [13].

We finally give the shapes of solutions un of the explicit scheme (1.19) in Fig. 1.6.
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Figure 1.6: Shapes of finite-difference solutions un of the explicit scheme (1.19).
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2 Error analysis of splitting methods for

semilinear evolution equations

We consider a Strang-type splitting method for an abstract semilinear

evolution equation ut = Au + F (u). Roughly speaking, the splitting

method is a time-discretization approximation based on the decomposi-

tion of operators A and F. Particularly, the Strang method is a popular

splitting method and is known to be convergent at a second order rate

for some particular ODEs and PDEs. In this chapter, we propose a gen-

eralization of the Strang method and prove that our proposed method

is convergent at a second order rate. Some numerical examples that

confirm our theoretical result are given.

2.1 Introduction and main results

Let X be a Hilbert space equipped with the scalar product (·, ·)X and the norm

∥· ∥X , A be an m-dissipative linear operator in X with dence domain D(A) ⊂ X.

• For any u ∈ D(A), (Au, u) ≤ 0;

• For any f ∈ X and λ > 0, there exists u ∈ D(A) such that u− λAu = f.

As is well-known, the operator A generates a contraction semigroup ΦA(t) = etA if

and only if A is m-dissipative with dense domain. We consider the following Cauchy

problem for semilinear evolution equation:{
ut = Au+ F (u), t ∈ [0, T ],

u(0) = u0,
(2.1)

where F : D(A) → D(A) is a nonlinear operator. Typical examples of (2.1) are

nonlinear Schrödinger equations in Ω ∈ Rd

ut = i∆u+ αu|u|2, (2.2)

ut = i∆u+ αu|u|2 + βu|u|4, (2.3)

where α and β are complex constants. Setting D(A) = {v ∈ H1
0 (Ω) | ∆v ∈ L2(Ω)},

Av = i∆v, and F (v) = αv|v|2 in (2.2), we obtain (2.1).

The main purpose of this chapter is to study the so called splitting method,

which is a semi-discrete approximation of (2.1) with respect to time variable t. The

32



idea behind the splitting method is as follows. We denote the (nonlinear) solution

operator (2.1) by S(t). That is, the solution of (2.1) is given as u(t) = S(t)u0; see

(2.9) below. Then, we consider the time-discrete approximation to (2.1) at t = n∆t

as

un = Ψ(n∆t)u0,

where ∆t > 0 denotes a time increment and n a positive integer. Typical choices of

Ψ are, for example,

Ψ(t) = ΦA(t)ΦF (t), (2.4)

Ψ(t) = ΦF (t)ΦA(t), (2.5)

Ψ(t) = ΦA(t/2)ΦF (t)ΦA(t/2) (2.6)

where ΦF (t) denotes the solution operator of wt = F (w). Particularly, (2.6) is called

the Strang method.

Splitting methods are useful when S(t)u0 is difficult to compute, while ΦA(t)u0
and ΦF (t)u0 are easy to compute. In addition, if (2.8) has conservation properties,

then splitting methods basically preserve its discrete version. Splitting methods are

widely used numerical methods for solving ODEs and PDEs.

Analysis of splitting methods for ODEs has been presented in many studies. For

example, see Hairer et al.[20]. Some results on error analysis are also presented for

PDEs. For example, results of error analysis for nonlinear Schrödinger equations

can be found in e.g., Besse et al. [4] and Lubich [25].

However, to our best knowledge, little is known for abstract Cauchy problem of the

form (2.1). Decombes and Thalhammer[14] and Jahnke and Lubich [21] presented

an error analysis for the case in which F is a linear operator. For nonlinear abstract

Cauchy problems, Borgna et al.[5] demonstrated that various splitting methods in-

volving Strang method have first order accuracy. Namely, if ∆t is sufficiently small,

we have

∥S(n∆t)u0 −Ψ(∆t)nu0∥ ≤ C∆t.

However, they did not demonstrate that Strang-type splitting method is a second

order scheme:

∥S(n∆t)u0 −Ψ(∆t)nu0∥ ≤ C∆t2. (2.7)

It should be kept in mind that (2.7) is established for the Strang method applied to

particular PDEs; see Besse et al.[4] and Lubich[25]. Therefore, it is worth studying

the Strang method for abstract Cauchy problem of the form (2.1) and deriving the

second order error estimate.

On the other hand, the majority of previous studies have considered schemes

that are split into two parts; vt = Av and wt = F (w). As a matter of fact, such

two-parts splitting is applied tp (2.2), then the explicit solution formula for the

ordinary differential equation wt = αw|w|2 is available. However, the two-parts

splitting is applied to (2.3), then we have to solve the ordinary differential equation
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wt = αw|w|2+βw|w|4 by numerical method since the exact solution is not available

in the case.

Therefore, some researchers have proposed schemes that are split into more than

two parts. However, the convergence properties of such schemes are not guaranteed

in the case of PDEs.

In this paper, we propose a Strang-type splitting method that is split into three

parts for (2.8). Moreover, we show that it is actually convergent at a second order

rate.

Let us formulate our problem. For given nonlinear operators F1, F2 : D(A) →
D(A), we set

F (v) = F1(v) + F2(v) (v ∈ D(A)).

For u0 ∈ D(A), we consider the Cauchy problem{
ut = Au+ F1(u) + F2(u), t ∈ [0, T ],

u(0) = u0,
(2.8)

and the corresponding integral equation:

u(t) = ΦA(t)u0 +

∫ t

0
ΦA(t− s)F (u(s))ds, t ∈ [0, T ]. (2.9)

We consider D(A) and D(A2) as Hilbert spaces with

∥v∥D(A) = ∥v∥X + ∥Av∥X for v ∈ D(A),

∥v∥D(A2) = ∥v∥D(A) + ∥A2v∥X for v ∈ D(A2).

For i = 1, 2, we assume that Fi : D(A) → D(A) satisfies the following conditions:

(F0) Fi(0) = 0,

(F1) ∥F ′
i (v)w∥D(A) ≤ L(∥v∥D(A))∥w∥D(A) for v, w ∈ D(A),

(F2) Fi(v) ∈ D(A2) and ∥Fi(v)∥D(A2) ≤ L2(∥v∥D(A))∥v∥D(A2) for v, w ∈ D(A2),

(F3) Fi(v) ∈ D(A2) and ∥Fi(v)−Fi(w)∥D(A2) ≤ L3(max{∥v∥D(A2), ∥w∥D(A2)})∥v−
w∥D(A2)

for v, w ∈ D(A2),

(F4) ∥F ′
i (v)w∥X ≤ L4(∥v∥D(A))∥w∥X for v, w ∈ D(A),

(F5) ∥F ′′
i (v)(w,w)∥X ≤ L5(∥v∥D(A))∥w∥X∥w∥D(A) for v, w ∈ D(A).

Herein, F ′
i and F ′′

i denote the first and second Fréchet derivatives, L,L2, · · · , L5 :

[0,∞) → [0,∞) are decreasing functions.

We note that it follows from (F1) and (F0) that

(F6) ∥Fi(v)− Fi(w)∥D(A) ≤ L(max{∥v∥D(A), ∥w∥D(A)})∥v − w∥D(A)

for v, w ∈ D(A),
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(F7) ∥Fi(v)∥D(A) ≤ L(∥v∥D(A))∥v∥D(A) for v ∈ D(A).

Moreover, it follows from (F4) that

(F8) ∥Fi(v)− Fi(w)∥X ≤ L4(max{∥v∥D(A), ∥w∥D(A)})∥v − w∥X
for v, w ∈ D(A).

For simplicity, we write F ′′(v)(w,w) = F ′′(v)w2 for v, w ∈ D(A). Before stating the

schemes and main results, we recall a general result for (2.9):

Proposition 2.1.1. Assume (F0)–(F1)．Then, for any u0 ∈ D(A), there exist

Tmax(u0) ∈ (0,∞] and a unique solution

u ∈ C([0, Tmax(u0)), D(A)) ∩ C1([0, Tmax(u0), X)

of (2.9) such that either the following (i) or (ii) holds:

(i) Tmax(u0) = ∞,

(ii) Tmax(u0) <∞ and lim
t↑Tmax(u0)

∥u(t)∥D(A) = ∞.

Moreover, if u0 ∈ D(A2), then

u ∈ C([0, Tmax(u0)), D(A2)) ∩ C1([0, Tmax(u0)), D(A)).

For the proof of Proposition 2.1.1, see e.g., Section 4.3 of [8].

In order to state our scheme, for i = 1, 2, we consider the following Cauchy

problem: {
wi,t = Fi(wi), t ∈ [0, T ],

wi(0) = wi,0,
(2.10)

and the corresponding integral equation:

wi(t) = wi,0 +

∫ t

0
Fi(wi(s))ds, t ∈ [0, T ]. (2.11)

We denote the solution of (2.12) by wi(t) = ΦFi(t)wi,0. That is,

ΦFi(t)wi,0 = wi,0 +

∫ t

0
Fi(wi(s))ds, t ∈ [0, T ]. (2.12)

Then, our scheme to find Ψ(t)u0 ≈ S(t)u0, reads as

Ψ(t)u0 = ΦA(t/2)ΦF1(t/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)u0. (2.13)

Our scheme includes the Strang method by setting F1 = 0.

We are now in a position to state the main results.
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Theorem 2.1.2. Assume (F0)–(F5)．Let u0 ∈ D(A2), T ∈ (0, Tmax(u0)) and set

m0 = 8 max
t∈[0,T ]

∥S(t)u0∥D(A).

Then, there exists a positive constant h0, which depends only on T,m0 and ∥u0∥D(A2),

such that

∥(Ψ(h))nu0∥D(A) ≤ m0, ∥(Ψ(h))nu0∥D(A2) ≤ eγ1nh∥u0∥D(A2), (2.14)

∥S(nh)u0 − (Ψ(h))nu0∥D(A) ≤ κ1h∥u0∥D(A2), (2.15)

∥S(nh)u0 − (Ψ(h))nu0∥X ≤ κ2h
2∥u0∥D(A2), (2.16)

for all h ∈ (0, h0] and n ∈ N satisfying nh ≤ T, where γ1 is a positive constant

depending only on m0, and κ1, κ2 are positive constants depending only on T and

m0.

The rest of this paper is organized as follows. In Section 2.2, we collect some

lemmas that are needed to prove Theorem 2.1.2. In Section 2.3, we give local error

estimates between S(h)u0 and Ψ(h)u0 in D(A). In Section 2.4, we give local error

estimates between S(h)u0 and Ψ(h)u0 in X. In Section 2.5, we complete the proof

of Theorem 2.1.2. In Section 2.6, we present some numerical experiments that show

the convergence rate of the scheme numerically.

2.2 Preliminaries

2.2.1 Estimates on the contraction semigroup ΦA(t)

Lemma 2.2.1. Let k = 0, 1. Then,

∥ΦA(t)v0 − ΦA(s)v0∥D(Ak) ≤ (t− s)∥v0∥D(Ak+1),

for v0 ∈ D(Ak+1) and 0 ≤ s ≤ t.

Proof. Set v(t) = ΦA(t)v0. Then, we have

ΦA(t)v0 − ΦA(s)v0 = v(t)− v(s) =

∫ t

s
v′(τ)dτ =

∫ t

s
Av(τ)dτ.

Since

∥Av(τ)∥D(Ak) = ∥ΦA(τ)Av0∥D(Ak) ≤ ∥Av0∥D(Ak)

for τ > 0, we have

∥ΦA(t)v0 − ΦA(s)v0∥D(Ak) ≤
∫ t

s
∥Av(τ)∥D(Ak)dτ

≤ (t− s)∥Av0∥D(Ak) ≤ (t− s)∥v0∥D(Ak+1).

This completes the proof.
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Lemma 2.2.2. Let w ∈ C1([0, T ], D(A)) ∩ C([0, T ], D(A2)). Then,∥∥∥∥∫ t

0
[ΦA(t− s)w(s)− ΦA(t/2)w(s)]ds

∥∥∥∥
X

≤ t3
{
∥w∥C1([0,T ],D(A)) + ∥w∥C([0,T ],D(A2))

}
(2.17)

for t ∈ [0, T ].

Proof. For 0 ≤ s ≤ t ≤ T, by Taylor’s formula, we obtain

ΦA(t− s)w(s)− ΦA(t/2)w(s) = (t/2− s)ΦA(t/2)Aw(s)

+ (t/2− s)2
∫ 1

0
(1− θ)ΦA(θ(t− s) + (1− θ)t/2)A2w(s)dθ.

Let v(s) = ΦA(t/2)Aw(s). Then, we have

∥v′(s)∥X ≤ ∥Aw′(s)∥X ≤ ∥w′(s)∥D(A),∫ t

0
(t/2− s)v(s)ds =

∫ t/2

0
(t/2− s)[v(s)− v(t− s)]ds.

Moreover, for 0 ≤ s ≤ t/2, since

∥v(s)− v(t− s)∥X =

∥∥∥∥∫ 1

0

d

dθ
v(θs+ (1− θ)(t− s))dθ

∥∥∥∥
X

≤ (t− 2s)

∫ 1

0
∥v′(θs+ (1− θ)(t− s))∥Xdθ ≤ 2(t/2− s)∥v′∥C([0,T ],X),

we have∥∥∥∥∫ t

0
(t/2− s)ΦA(t/2)Aw(s)ds

∥∥∥∥
X

=

∥∥∥∥∥
∫ t/2

0
(t/2− s)[v(s)− v(t− s)]ds

∥∥∥∥∥
X

≤ 2

∫ t/2

0
(t/2− s)2ds∥v′∥C([0,T ],X) ≤ t3∥w∥C1([0,T ],D(A)). (2.18)

Furthermore, since∥∥∥∥∫ 1

0
(1− θ)ΦA(θ(t− s) + (1− θ)t/2)A2w(s)dθ

∥∥∥∥
X

≤
∫ 1

0
(1− θ)∥A2w(s)∥Xdθ ≤ ∥w∥C([0,T ],D(A2)),

we have ∥∥∥∥∫ t

0
(t/2− s)2

∫ 1

0
(1− θ)ΦA(θ(t− s) + (1− θ)t/2)A2w(s)dθds

∥∥∥∥
X

≤ ∥w∥C([0,T ],D(A2))

∫ t

0
(t/2− s)2ds ≤ t3∥w∥C([0,T ],D(A2)). (2.19)

Thus, by (2.18) and (2.19), we obtain (2.17).

37



2.2.2 Estimates on the nonlinear flows ΦFi

Lemma 2.2.3. Assume (F0)–(F1). For any M > 0, there exists a positive constant

τ(M) such that if ∥v0∥D(A) ≤M, then

∥ΦFi(t)v0∥D(A) ≤ 2M, ∥S(t)v0∥D(A) ≤ 2M

for all t ∈ [0, τ(M)] and i = 1, 2.Moreover, if v1, v2 ∈ D(A) satisfying max{∥v1∥D(A), ∥v2∥D(A)} ≤
M, then

∥ΦFi(t)v1 − ΦFi(t)v2∥D(A) ≤ eL(2M)t∥v1 − v2∥D(A),

∥S(t)v1 − S(t)v2∥D(A) ≤ eL(2M)t∥v1 − v2∥D(A),

for all t ∈ [0, τ(M)] and i = 1, 2.

Proof. See Proposition 4.3.3 of [8].

Lemma 2.2.4. Assume (F0)–(F3). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤M. Then,

∥ΦFi(t)v0∥D(A2) ≤ eL2(2M)t∥v0∥D(A2), (2.20)

for all t ∈ [0, τ(M)] and i = 1, 2, where τ(M) is previously defined in Lemma 2.2.3.

Moreover, we have

∥Ψ(t)v0∥D(A2) ≤ e2L2(8M)t∥v0∥D(A2) (2.21)

for all t ∈ [0, τ(4M)].

Proof. First, we note that it follows from (F0)–(F3) that (2.9) is local well-posed in

D(A2). For i = 1, 2, we set vi(t) = ΦFi(t)v0.

By (2.12) and (F2), we have

∥vi(t)∥D(A2) ≤ ∥v0∥D(A2) +

∫ t

0
∥Fi(vi(τ))∥D(A2)dτ

≤ ∥v0∥D(A2) +

∫ t

0
L2(∥vi(τ)∥D(A))∥vi(τ)∥D(A2)dτ.

Here, it follows from Lemma 2.2.3 that

∥vi(t)∥D(A2) ≤ ∥v0∥D(A2) + L2(2M)

∫ t

0
∥vi(τ)∥D(A2)dτ

for t ∈ [0, τ(M)]. Thus, Gronwall’s lemma implies (2.20) for t ∈ [0, τ(M)].

Next, since ∥ΦF1(t/2)ΦA(t/2)v0∥D(A) ≤ 2M for t ∈ [0, τ(M)], and

∥ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A) ≤ 4M (2.22)

for t ∈ [0, τ(2M)], it follows from (2.20) that

∥Ψ(t)v0∥D(A2) ≤ ∥ΦF1(t/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A2)

≤ eL2(8M)t/2∥ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A2)
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for t ∈ [0, τ(4M)]. Similarly, we have

∥ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A2) ≤ eL2(4M)t+L2(2M)t/2∥v0∥D(A2)

for t ∈ [0, τ(2M)]. Therefore, we obtain

∥Ψ(t)v0∥D(A2) ≤ eL2(8M)t/2+L2(4M)t+L2(2M)t/2∥v0∥D(A2)

≤ e2L2(8M)t∥v0∥D(A2)

for t ∈ [0, τ(4M)]. This completes the proof.

2.2.3 Lipschitz property of S(t)

Lemma 2.2.5. Assume (F0)–(F4). Let u0 ∈ D(A), T ∈ (0, Tmax(u0)) and set

m1 = 2 max
t∈[0,T ]

∥S(t)u0∥D(A), δ0 = min
{m1

2
, m1e

−2L(2m1)T
}
.

If ∥v0 − S(t0)u0∥D(A) ≤ δ0, then

∥S(t)v0∥D(A) ≤ 2m1 for t ∈ [0, T − t0]. (2.23)

Moreover, if ∥v1 − S(t0)u0∥D(A) ≤ δ0 and ∥v2 − S(t0)u0∥D(A) ≤ δ0, then

∥S(t)v1 − S(t)v2∥D(A) ≤ e2L(2m1)t∥v1 − v2∥D(A),

∥S(t)v2 − S(t)v2∥X ≤ e2L4(2m1)t∥v1 − v2∥X
(2.24)

for t ∈ [0, T − t0].

Proof. First, we show (2.23). Since

∥v0∥D(A) ≤ ∥v0 − S(t0)u0∥D(A) + ∥S(t0)u0∥D(A) ≤ δ0 +
m1

2
≤ m1,

it follows from Lemma 2.2.3 that ∥S(t)v0∥D(A) ≤ 2m1 for t ∈ [0, τ(m1)].

Here, we define

T̃ = sup
{
τ ∈ (0, Tmax(v0)) | ∥S(t)v0∥D(A) ≤ 2m1, ∀t ∈ [0, τ ]

}
,

and suppose that T̃ < T − t0．Then, we have

S(t)v0 = ΦA(t)v0 +

∫ t

0
ΦA(t− τ)F (S(τ)v0)dτ, t ∈ [0, T̃ ].

Moreover, for τ ∈ [0, T̃ ], since 0 ≤ τ ≤ T̃ and τ + t0 ≤ T , we have

∥S(τ)v0∥D(A) ≤ 2m1, ∥S(τ)(S(t0)u0)∥D(A) = ∥S(τ + t0)u0∥D(A) ≤ m1.

Thus, by (F6), for t ∈ [0, T̃ ], we have

∥S(t)v0 − S(t)(S(t0)u0)∥D(A)

≤ ∥v0 − S(t0)u0∥D(A) +

∫ t

0
∥F (S(τ)v0)− F (S(τ)S(t0)u0)∥D(A)dτ

≤ δ0 + 2L(2m1)

∫ t

0
∥S(τ)v0 − S(τ)S(t0)u0∥D(A)dτ.
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By Gronwall’s lemma, for t ∈ [0, T̃ ], we have

∥S(t)v0 − S(t)S(t0)u0∥D(A) ≤ δ0e
2L(2m1)t ≤ δ0e

2L(2m1)T ≤ m1,

and

∥S(t)v0∥D(A) ≤ ∥S(t)v0 − S(t)S(t0)u0∥D(A) + ∥S(t)S(t0)u0∥D(A)

≤ m1 +
1

2
m1 < 2m1.

This contradicts the definition of T̃ . Thus, we conclude that T − t0 ≤ T̃ , which

shows (2.23).

Next, we will show (2.24). By (2.23), we have

∥S(t)v1∥D(A) ≤ 2m1, ∥S(t)v2∥D(A) ≤ 2m1, for t ∈ [0, T − t0]. (2.25)

Thus, by (F6), for t ∈ [0, T − t0], we have

∥S(t)v1 − S(t)v2∥D(A)

≤ ∥v1 − v2∥D(A) +

∫ t

0
∥F (S(τ)v1)− F (S(τ)v2)∥D(A)dτ

≤ ∥v1 − v2∥D(A) + 2L(2m1)

∫ t

0
∥S(τ)v1 − S(τ)v2∥D(A)dτ.

and by Gronwall’s lemma, we have

∥S(t)v1 − S(t)v2∥D(A) ≤ e2L(2m1)t∥v1 − v2∥D(A), for t ∈ [0, T − t0].

Moreover, by (2.25) and (F8), for t ∈ [0, T − t0], we have

∥S(t)v1 − S(t)v2∥X

≤ ∥v1 − v2∥X +

∫ t

0
∥F (S(τ)v1)− F (S(τ)v2)∥Xdτ

≤ ∥v1 − v2∥X + 2L4(2m1)

∫ t

0
∥S(τ)v1 − S(τ)v2∥Xdτ.

Hence, we obtain

∥S(t)v1 − S(t)v2∥X ≤ e2L4(2m1)t∥v1 − v2∥X for t ∈ [0, T − t0].

This completes the proof.

2.3 Local error estimates in D(A)

In this section, we will estimate local errors in D(A) between the solution u(t) of

(2.9) and Ψ(t)v0 which is defined by (2.13).
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Proposition 2.3.1. Assume (F0)–(F3). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤ M for

some M > 0. Then, there exists a positive constant K1(M) depending only on M

such that

∥S(t)v0 −Ψ(t)v0∥D(A) ≤ K1(M)∥v0∥(D(A2)t
2

for t ∈ [0, τ(4M)].

In what follows, we put

u(t) = S(t)v0, v(t) = Ψ(t)v0. (2.26)

First, u(t) is expressed as

u(t) = ΦA(t)v0 +

∫ t

0
ΦA(t− s)F (u(s))ds.

To derivative a useful expression for v(t), we note by (2.12)

ΦF1(t/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0︸ ︷︷ ︸
=w0(t)

= w0(t) +

∫ t/2

0
F1(ΦF1(s)w0(t))ds

= w0(t) +
1

2

∫ t

0
F1(ΦF1(s/2)w0(t))ds,

ΦF2(t)ΦF1(t/2)ΦA(t/2)v0︸ ︷︷ ︸
=w1(t)

= w1(t) +

∫ t

0
F2(ΦF2(s)w1(t))ds,

and

ΦF1(t/2)ΦA(t/2)v0 = ΦA(t/2)v0 +

∫ t/2

0
F1(ΦF1(s)ΦA(t/2)v0)ds

= ΦA(t/2)v0 +
1

2

∫ t

0
F1(ΦF1(s/2)ΦA(t/2)v0)ds.

Therefore, v(t) can be written as

v(t) = ΦA(t/2)ΦF1(t/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0,

= ΦA(t)v0 +G1(t) +G2(t) +G3(t) (2.27)

where

G1(t) =
1

2

∫ t

0
ΦA(t/2)F1(ΦF1(s/2)ΦA(t/2)v0)ds,

G2(t) =

∫ t

0
ΦA(t/2)F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)ds,

G3(t) =
1

2

∫ t

0
ΦA(t/2)F1(ΦF1(s/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0)ds.

Hence, we have

u(t)− v(t) =

∫ t

0
ΦA(t− s) [F (u(s))− F (v(s))] ds+R(t), (2.28)
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where

R(t) =

∫ t

0
ΦA(t− s)F (v(s))ds− [G1(t) +G2(t) +G3(t)] .

We devide R(t) as R(t) = R1(t) +R2(t), where

R1(t) =

∫ t

0
ΦA(t− s)F1(v(s))ds− (G1(t) +G3(t)),

R2(t) =

∫ t

0
ΦA(t− s)F2(v(s))ds−G2(t).

Moreover, we split R1(t) and R2(t) as R1(t) = R1a(t)+R1b(t) and R2(t) = R2a(t)+

R2b(t), respectively. Here,

R1a(t) =

∫ t

0
ΦA(t− s)

[
F1(v(s))−

1

2
F1(ΦF1(s/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0)

−1

2
F1(ΦF1(s/2)ΦA(t/2)v0)

]
ds, (2.29)

R1b(t) =

∫ t

0
(ΦA(t− s)− ΦA(t/2))

[
1

2
F1(ΦF1(s/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0)

+
1

2
F1(ΦF1(s/2)ΦA(t/2)v0)

]
ds, (2.30)

R2a(t) =

∫ t

0
ΦA(t− s) [F2(v(s))− F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)] ds, (2.31)

R2b(t) =

∫ t

0
(ΦA(t− s)− ΦA(t/2))F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)ds. (2.32)

First, we prove the following lemma.

Lemma 2.3.2. Assume (F0)–(F3). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤M. Then, there

exists a positive constant C12 depending only on M such that

∥R2(t)∥D(A) ≤ C12∥v0∥D(A2)t
2 (2.33)

for t ∈ [0, τ(4M)].

Proof. First, we show that there exists a positive constant C12a depending only on

M such that

∥R2a(t)∥D(A) ≤ C12a∥v0∥D(A2)t
2 (2.34)

for t ∈ [0, τ(4M)]. For 0 ≤ s ≤ t ≤ τ(4M), we set

w(s, t) = ΦF2(s)ΦF1(t/2)ΦA(t/2)v0.

Then, we have

R2a(t) =

∫ t

0
ΦA(t− s)[F2(v(s))− F2(w(s, t))]ds.
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By Lemma 2.2.3, we have ∥w(s, t)∥D(A) ≤ 4M and ∥v(s)∥D(A) ≤ 8M for 0 ≤ s ≤
t ≤ τ(4M). Thus, by (F6), we have

∥R2a(t)∥D(A) ≤ L(8M)

∫ t

0
∥v(s)− w(s, t)∥D(A) ds (2.35)

for 0 ≤ s ≤ t ≤ τ(4M). Since

v(s) = ΦA(s/2)ΦF1(s/2)w(s, s)

= ΦA(s/2)

{
w(s, s) +

∫ s/2

0
F1(ΦF1(τ)w(s, s))dτ

}
,

we have

∥v(s)− w(s, s)∥D(A) ≤ ∥ΦA(s/2)w(s, s)− w(s, s)∥D(A)

+

∫ s/2

0
∥F1(ΦF1(τ)w(s, s))∥D(A)dτ.

By Lemmas 2.2.1 and 2.2.4, we have

∥ΦA(s/2)w(s, s)− w(s, s)∥D(A) ≤
s

2
∥w(s, s)∥D(A2)

≤ s

2
e2L2(8M)s∥v0∥D(A2) ≤

s

2
e2L2(8M)τ(4M)∥v0∥D(A2)

for 0 ≤ s ≤ τ(4M). Moreover, by (F7) and Lemma 2.2.3, we have

∥F1(ΦF1(τ)w(s, s))∥D(A)

≤ L(∥ΦF1(τ)w(s, s)∥D(A))∥ΦF1(τ)w(s, s)∥D(A) ≤ L(8M)8M

for 0 ≤ τ ≤ s ≤ τ(4M). Thus, we have

∥v(s)− w(s, s)∥D(A) ≤
s

2

{
e2L2(8M)τ(4M) + 8L(8M)

}
∥v0∥D(A2)

for 0 ≤ s ≤ τ(4M), which implies (2.34).

Next, we show that there exists a positive constant C12b depending only on M

such that

∥R2b(t)∥D(A) ≤ C12b∥v0∥D(A2)t
2 (2.36)

for t ∈ [0, τ(2M)].

By (F2) and Lemmas 2.2.1 and 2.2.4, we have

∥R2b(t)∥D(A)

≤
∫ t

0

∣∣∣∣ t2 − s

∣∣∣∣ ∥F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)∥D(A2)ds

≤
∫ t

0

∣∣∣∣ t2 − s

∣∣∣∣L2(4M)∥ΦF2(s)ΦF1(t/2)ΦA(t/2)v0∥D(A2)ds

≤
∫ t

0

∣∣∣∣ t2 − s

∣∣∣∣L2(4M)eL2(4M)s+L2(2M)t/2∥v0∥D(A2)ds

≤
∫ t

0

∣∣∣∣ t2 − s

∣∣∣∣ dsL2(4M)e2L2(4M)τ(2M)∥v0∥D(A2)
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for t ∈ [0, τ(2M)], which implies (2.36).

Finally, (2.33) follows from (2.34) and (2.36).

Lemma 2.3.3. Assume (F0)–(F3). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤M. Then, there

exists a positive constant C11 depending only on M such that

∥R1(t)∥D(A) ≤ C11∥v0∥D(A2)t
2 (2.37)

for t ∈ [0, τ(4M)].

Lemma 2.3.3 can be proved in the same way as in Lemma 2.3.2, so we omit the

detail. By Lemmas 2.3.2 and 2.3.3, we obtain the following lemma.

Lemma 2.3.4. Assume (F0)–(F3). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤M. Then, there

exists a positive constant C1 depending M such that

∥R(t)∥D(A) ≤ C1∥v0∥D(A2)t
2 (2.38)

for t ∈ [0, τ(4M)].

Now, we give the proof of Proposition 2.3.1.

Proof of Proposition 2.3.1. It follows from (F6) and Lemma 2.3.4 that there exists

a positive constant C1 depending only on M such that

∥u(t)− v(t)∥D(A) ≤
∫ t

0
∥F (u(s))− F (v(s))∥D(A)ds+ ∥R(t)∥D(A)

≤
∫ t

0
2L(max{∥u(s)∥D(A), ∥v(s)∥D(A)})∥u(s)− v(s)∥D(A)ds

+ C1∥v0∥D(A2)t
3

for t ∈ [0, τ(4M)]. Moreover, by Lemma 2.2.3，we have ∥u(s)∥D(A) ≤ 8M and

∥v(s)∥D(A) ≤ 8M for s ∈ [0, τ(4M)]. Thus, we have

∥u(t)− v(t)∥D(A) ≤ 2L(8M)

∫ t

0
∥u(s)− v(s)∥D(A)ds+ C1∥v0∥D(A2)t

2

for t ∈ [0, τ(4M)]. Finally, by Gronwall’s lemma, we obtain

∥u(t)− v(t)∥D(A) ≤ e2L(8M)tC1∥v0∥D(A2)t
2 ≤ e2L(8M)τ(4M)C1∥v0∥D(A2)t

2

for t ∈ [0, τ(4M)]. This completes the proof.

2.4 Local error estimates in X

In this section, we prove the following local error estimates in X.
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Proposition 2.4.1. Assume (F0)–(F5). Let v0 ∈ D(A2) and ∥v0∥D(A) ≤M. Then,

there exists a positive constant K2(M) depending only on M that

∥S(t)v0 −Ψ(t)v0∥X ≤ K2(M)∥v0∥D(A2)t
3

for t ∈ [0, τ(4M)].

This proposition is a readily obtainable consequence of

∥R1a(t)∥X ≤ C12a∥v0∥D(A2)t
3, (2.39)

∥R1b(t)∥X ≤ C12b∥v0∥D(A2)t
3, (2.40)

∥R2a(t)∥X ≤ C22a∥v0∥D(A2)t
3, (2.41)

∥R2b(t)∥X ≤ C22b∥v0∥D(A2)t
3, (2.42)

for t ∈ [0, τ(4M)], where C12a, C12b, C22a, C22b are positive constants depending only

on M and R1a(t), R1b(t), R2a(t), R2b(t) are defined by (2.26), (2.28)–(2.32).

The proof of theses estimates are given below.

2.4.1 Proof of (2.42)

For 0 ≤ s ≤ t ≤ τ(M), we set

w0 = ΦF1(t/2)ΦA(t/2)v0, w(s) = F2(ΦF2(s)w0).

Then, it follows from Lemmas 2.2.3 and 2.2.4 that

∥w0∥D(A) ≤ 2M, ∥w0∥D(A2) ≤ eL2(2M)t∥v0∥D(A2)

for t ∈ [0, τ(M)]. Moreover, by Lemma 2.2.2, we have∥∥∥∥∫ t

0
[ΦA(t− s)w(s)− ΦA(t/2)w(s)]ds

∥∥∥∥
X

≤ t3
{
∥w∥C1([0,τ(M)],D(A)) + ∥w∥C([0,τ(M)],D(A2))

}
for t ∈ [0, τ(M)].

Here, it follows from (F7) and Lemma 2.2.3 that

∥w(s)∥D(A) ≤ L(∥ΦF2(s)w0∥D(A))∥ΦF2(s)w0∥D(A) ≤ 4ML(4M) (2.43)

for s ∈ [0, τ(2M)]. Moreover, by (F2) and Lemma 2.2.4, we see that

∥w(s)∥D(A2) ≤ L2(∥ΦF2(s)w0∥D(A))∥ΦF2(s)w0∥D(A2)

≤ L2(4M)eL2(4M)s∥w0∥D(A2) ≤ L2(4M)e2L2(4M)τ(2M)∥v0∥D(A2)

for s ∈ [0, τ(2M)]. Thus, there exists a positive constant C ′ depending only on M

such that ∥w∥C([0,τ(2M)],D(A2)) ≤ C ′∥v0∥D(A2).
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Next, since w′(s) = F ′
2(ΦF2(s)w0)∂s(ΦF2(s)w0) = F ′

2(ΦF2(s)w0)F2(ΦF2(s)w0), it

follows from (F1) and (2.43) that

∥w′(s)∥D(A) ≤ L(∥ΦF2(s)w0∥D(A))∥F2(ΦF2(s)w0)∥D(A)

≤ 4ML(4M)2 ≤ 4L(4M)2∥v0∥D(A2)

for s ∈ [0, τ(2M)]. Thus, there exists a positive constant C ′′ depending only on M

such that ∥w∥C1([0,τ(2M)],D(A)) ≤ C ′′∥v0∥D(A2).

This completes the proof of (2.42).

2.4.2 Proof of (2.41)

In order to prove (2.41), we devide R2a(t) into several parts．By Taylor’s formula,

we have

F2(Ψ(s)v0)− F2(v0) = F ′
2(v0)[Ψ(s)v0 − v0] + J1(s), (2.44)

F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)− F2(v0)

= F ′
2(v0)[ΦF2(s)ΦF1(t/2)ΦA(t/2)v0 − v0] + J2(s), (2.45)

where

J1(s) =

∫ 1

0
(1− θ)F ′′

2 (θΨ(s)v0 + (1− θ)v0)[Ψ(s)v0 − v0]
2dθ,

J2(s) =

∫ 1

0
(1− θ)F ′′

2 (θΦF2(s)ΦF1(t/2)ΦA(t/2)v0 + (1− θ)v0)

· [ΦF2(s)ΦF1(t/2)ΦA(t/2)v0 − v0]
2dθ.

Moreover, it follows from (2.27) that

Ψ(s)v0 = ΦA(s)v0 +
1

2

∫ s

0
ΦA(s/2)F1(ΦF1(τ/2)ΦF2(s)ΦF1(s/2)ΦA(s/2)v0)dτ

+

∫ s

0
ΦA(s/2)F2(ΦF2(τ)ΦF1(s/2)ΦA(s/2)v0)dτ

+
1

2

∫ s

0
ΦA(s/2)F1(ΦF1(τ/2)ΦA(s/2)v0)dτ,

ΦF2(s)ΦF1(t/2)ΦA(t/2)v0 = ΦA(t/2)v0 +

∫ s

0
F2(ΦF2(τ)ΦF1(t/2)ΦA(t/2)v0)dτ

+
1

2

∫ t

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ.

Hence, we have

Ψ(s)v0 − ΦF2(s)ΦF1(t/2)ΦA(t/2)v0

= ΦA(s)v0 − ΦA(t/2)v0 + J3(s, t) + J4(s) + J5(s, t) + J6(s, t), (2.46)
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where

J3(s, t) =

∫ s

0
ΦA(s/2)F2(ΦF2(τ)ΦF1(s/2)ΦA(s/2)v0)dτ

−
∫ s

0
F2(ΦF2(τ)ΦF1(t/2)ΦA(t/2)v0)dτ,

J4(s) =
1

2

∫ s

0
ΦA(s/2)F1(ΦF1(τ/2)ΦF2(s)ΦF1(s/2)ΦA(s/2)v0)dτ

− 1

2

∫ s

0
ΦA(s/2)F1(ΦF1(τ/2)ΦA(s/2)v0)dτ,

J5(s, t) =

∫ s

0
ΦA(s/2)F1(ΦF1(τ/2)ΦA(s/2)v0)dτ

−
∫ s

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ,

J6(s, t) =

∫ s

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ

− 1

2

∫ t

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ.

Thus, it follows from (2.44) and (2.45) that

R2a(t) =

∫ t

0
ΦA(t− s)

[
F2(Ψ(s)v0)− F2(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)

]
ds

=

∫ t

0
ΦA(t− s)F ′

2(v0)
[
Ψ(s)v0 − ΦF2(s)ΦF1(t/2)ΦA(t/2)v0

]
ds

+

∫ t

0
ΦA(t− s)(J1(s)− J2(s))ds. (2.47)

By (2.46), we obtain∫ t

0
ΦA(t− s)F ′

2(v0)
[
Ψ(s)v0 − ΦF2(s)ΦF1(t/2)ΦA(t/2)v0

]
ds

=

∫ t

0
ΦA(t− s)F ′

2(v0)
[
ΦA(s)v0 − ΦA(t/2)v0

]
ds

+

∫ t

0
ΦA(t− s)F ′

2(v0)
{
J3(s, t) + J4(s) + J5(s, t) + J6(s, t)

}
ds. (2.48)

Hence, we can express as

R2a(t) =
6∑
j=0

Qj(t),

where

Q0(t) =

∫ t

0
ΦA(t− s)F ′

2(v0) [ΦA(s)v0 − ΦA(t/2)v0] ds,

Qj(t) = (−1)j+1

∫ t

0
ΦA(t− s)Jj(s)ds (j = 1, 2),

Qj(t) =

∫ t

0
ΦA(t− s)F ′

2(v0)Jj(s, t)ds (j = 3, 4, 5, 6).
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Estimation for Q0(t).

By Taylor’s formula, we have

ΦA(s)v0 − ΦA(t/2)v0 = (s− t/2)ΦA(t/2)Av0

+ (s− t/2)2
∫ 1

0
(1− θ)ΦA(θs+ (1− θ)t/2)A2v0dθ.

We note, for any ŵ ∈ X,∫ t

0
(s− t/2)ΦA(t− s)ŵds =

∫ t/2

0
(t/2− s)(ΦA(s)− ΦA(t− s))ŵds. (2.49)

We set w0 = F ′
2(v0)ΦA(t/2)Av0. By (F1), we have

∥w0∥D(A) ≤ L(∥v0∥D(A))∥ΦA(t/2)Av0∥D(A) ≤ L(M)∥v0∥D(A2). (2.50)

Hence, by (F4), Lemma 2.2.1 and (2.50), we have

∥Q0(t)∥X

≤
∫ t/2

0
(t/2− s)∥(ΦA(s)− ΦA(t− s))w0∥Xds

+

∫ t

0
(s− t/2)2L4(M)

∥∥∥∥∫ 1

0
(1− θ)ΦA(θs+ (1− θ)t/2)A2v0dθ

∥∥∥∥
X

ds

≤
∫ t

0
2(t/2− s)2ds∥w0∥D(A) +

∫ t

0
(s− t/2)2dsL4(M)∥v0∥D(A2)

≤ (L(M) + L4(M))∥v0∥D(A2)t
3

for t ≥ 0.

Estimations for Q1(t) and Q2(t)

First, we consider the case j = 1. Since ∥Ψ(s)v0∥D(A) ≤ 8M for s ∈ [0, τ(4M)], it

follows from (F5) that

∥Q1(t)∥X

≤
∫ t

0
∥J1(s)∥X ds

≤
∫ t

0

∫ 1

0

∥∥∥F ′′
2 (θΨ(s)v0 + (1− θ)v0) [Ψ(s)v0 − v0]

2
∥∥∥
X
dθds

≤
∫ t

0
L5(8M) · ∥Ψ(s)v0 − v0∥X · ∥Ψ(s)v0 − v0∥D(A)ds

for t ∈ [0, τ(4M)]. Moreover, by (2.27) and Lemma 2.2.1, we have

∥Ψ(s)v0 − v0∥D(A)

≤ ∥ΦA(s)v0 − v0∥D(A) + ∥G1(s)∥D(A) + ∥G2(s)∥D(A) + ∥G3(s)∥D(A)

≤ s∥v0∥D(A2) + ∥G1(s)∥D(A) + ∥G2(s)∥D(A) + ∥G3(s)∥D(A).
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By (F7) and Lemma 2.2.3,

∥G1(s)∥D(A) ≤
∫ s

0
∥F1(ΦF1(τ/2)ΦA(s/2)v0)∥D(A)dτ

≤ 2ML(2M)s ≤ 2L(2M)∥v0∥D(A2)s

∥G2(s)∥D(A) ≤
∫ s

0
∥F2(ΦF2(τ)ΦF1(s/2)ΦA(s/2)v0)∥D(A)ds

≤ 4ML(4M)s ≤ 2L(2M)∥v0∥D(A2)s

∥G3(s)∥D(A) ≤
∫ s

0
∥F1(ΦF1(τ/2)ΦF2(s)ΦF1(s/2)ΦA(s/2)v0)∥D(A)ds

≤ 8ML(8M)s ≤ 8L(8M)∥v0∥D(A2)s.

Thus, there exists a positive constant C ′
J1

depending only on M such that

∥Ψ(s)v0 − v0∥D(A) ≤ C ′
J1∥v0∥D(A2)s,

for s ∈ [0, τ(4M)]. Similarly, there exists a positive constant C ′′
J1

depending only on

M such that ∥Ψ(s)v0 − v0∥X ≤ C ′′
J1
s for s ∈ [0, τ(4M)].

Therefore, we have

∥Q1(t)∥X ≤ L5(8M)

∫ t

0
C ′
J1C

′′
J1∥v0∥D(A2)s

2ds

≤ L5(8M)C ′
J1C

′′
J1∥v0∥D(A2)t

3. (2.51)

for t ∈ [0, τ(4M)].

Similarly, we can prove

∥Q2(t)∥X ≤ C∥v0∥D(A2)t
3. (2.52)

Estimations for Q3(t), Q4(t) and Q5(t).

First, we consider the case j = 3. By (F4), we have

∥Q3(t)∥X ≤
∫ t

0
L4(∥v0∥D(A))∥J3(s, t)∥Xds.

We set w(τ, s) = ΦF2(τ)ΦF1(s/2)ΦA(s/2)v0. Then, we have

J3(s, t) =

∫ s

0

[
ΦA(s/2)F2(w(τ, s))− F2(w(τ, s))

]
dτ

+

∫ s

0

[
F2(w(τ, s))− F2(w(τ, t))

]
dτ.

It follows from Lemma 2.2.3 that

∥w(τ, s)∥D(A) ≤ 4M for τ, s ∈ [0, τ(2M)].

Moreover, by Lemma 2.2.1 and (F1), we have∥∥∥∥∫ s

0

[
ΦA(s/2)F2(w(τ, s))− F2(w(τ, s))

]
dτ

∥∥∥∥
X

≤
∫ s

0
s∥F2(w(τ, s))∥D(A)dτ

≤ 4ML(4M)s2 ≤ 4L(4M)∥v0∥D(A2)s
2
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for s ∈ [0, τ(2M)]. Furthermore, by (F8), we have∥∥∥∥∫ s

0

[
F2(w(τ, s))− F2(w(τ, t))

]
dτ

∥∥∥∥
X

≤
∫ s

0
L4(4M)∥w(τ, s)− w(τ, t)∥Xdτ

≤
∫ s

0
L4(4M)∥w(τ, s)− w(τ, t)∥D(A)dτ

for s, t ∈ [0, τ(2M)]. For 0 ≤ τ ≤ s ≤ t ≤ τ(2M), by Lemmas 2.2.3, 2.2.1 and (F1),

we have

∥w(τ, s)− w(τ, t)∥D(A)

≤ eL(4M)τ∥ΦF1(s/2)ΦA(s/2)v0 − ΦF1(t/2)ΦA(t/2)v0∥D(A)

≤ eL(4M)τ∥ΦF1(s/2)ΦA(s/2)v0 − ΦF1(s/2)ΦA(t/2)v0∥D(A)

+ eL(4M)τ∥ΦF1(s/2)ΦA(t/2)v0 − ΦF1(t/2)ΦA(t/2)v0∥D(A)

≤ eL(4M)τ+L(2M)s/2∥ΦA(s/2)v0 − ΦA(t/2)v0∥D(A)

+

∫ t/2

s/2
eL(4M)τ∥F1(ΦF1(τ)ΦA(t/2)v0)∥D(A)dτ

≤ 1

2
eL(4M)τ+L(2M)s/2∥v0∥D(A2)(t− s) +ML(2M)eL(4M)τ(2M)(t− s)

≤ 1

2
eL(4M)τ(2M)

(
eL(2M)τ(2M)/2 + 2L(2M)

)
∥v0∥D(A2)(t− s).

Thus, there exists a positive constant C ′
J3

which depend only on M such that

∥J3(s, t)∥D(A) ≤ C ′
J3∥v0∥D(A2)ts

for 0 ≤ s ≤ t ≤ τ(2M). Therefore, we have

∥Q3(t)∥X ≤
∫ t

0
L4(M)C ′

J3∥v0∥D(A2)tsds

≤ L4(M)C ′
J3∥v0∥D(A2)t

3

for t ∈ [0, τ(2M)],

Similarly, we can prove

∥Q4(t)∥X ≤ C∥v0∥D(A2)t
3, ∥Q5(t)∥X ≤ C∥v0∥D(A2)t

3

for t ∈ [0, τ(4M)].

Estimation for Q6(t).

We notice that J6(s, t) can be rewritten as

J6(s, t) =

∫ s

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ −

1

2

∫ t

0
F1(ΦF1(τ/2)ΦA(t/2)v0)dτ

= 2

∫ s/2

0
F1(ΦF1(τ)ΦA(t/2)v0)dτ −

∫ t/2

0
F1(ΦF1(τ)ΦA(t/2)v0)dτ
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We set w(τ) = F1(ΦF1(τ)ΦA(t/2)v0). Then, we have

J6(s, t) = J61(s, t) + J62(s, t),

where

J61(s, t) = 2

∫ s/2

0
w(τ)dτ − 2

∫ t/4

0
w(τ)dτ,

J62(t) = 2

∫ t/4

0
w(τ)dτ −

∫ t/2

0
w(τ)dτ.

By Taylor’s formula, we obtain

J61(s, t) = J61a(s, t) +
1

2
(s− t/2)2J61b(s, t),

where

J61a(s, t) = (s− t/2)w(t/4),

J61b(s, t) =

∫ 1

0
(1− θ)F ′

1(ΦF1((θs+ (1− θ)t/2)/2)ΦA(t/2)v0)

·F1(ΦF1((θs+ (1− θ)t/2)/2)ΦA(t/2)v0))dθ.

Then, we have ∫ t

0
ΦA(t− s)F ′

2(v0)J61a(s, t)ds

=

∫ t

0
(s− t/2)ΦA(t− s)F ′

2(v0)w(t/4)ds.

Hence, it follows from (F1), (2.49), Lemmas 2.2.1 and 2.2.3 that∥∥∥∥∫ t

0
ΦA(t− s)F ′

2(v0)J61a(s, t)ds

∥∥∥∥
X

=

∥∥∥∥∥
∫ t/2

0
(s− t/2)(ΦA(t− s)− ΦA(s))F

′
2(v0)w(t/4)ds

∥∥∥∥∥
X

≤
∫ t/2

0
2(t/2− s)2ds∥F ′

2(v0)w(t/4)∥D(A)

≤ L(2M)2Mt3 ≤ L(2M)2∥v0∥D(A2)t
3

for t ∈ [0, τ(M)].

By (F4), we have∥∥∥∥∫ t

0
(s− t/2)2ΦA(t− s)F ′

2(v0)J61b(s, t)ds

∥∥∥∥
X

≤
∫ t

0
(s− t/2)2L4(M)∥J61b(s, t)∥Xds.
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By (F1) and (F7), we have

∥J61b(s, t)∥X ≤ ∥J61b(s, t)∥D(A) ≤ L(2M)2M ≤ L(2M)2∥v0∥D(A2)

for s, t ∈ [0, τ(M)]. Thus, we obtain∥∥∥∥∫ t

0
(s− t/2)2ΦA(t− s)F ′

2(v0)J61b(s, t)ds

∥∥∥∥
X

≤ L(2M)2L4(M)∥v0∥D(A2)t
3 (2.53)

for t ∈ [0, τ(M)].

Therefore, there exists a positive constant C61 depending only on M such that∥∥∥∥∫ t

0
ΦA(t− s)F ′

2(v0)J61(s, t)ds

∥∥∥∥
X

≤ C61∥v0∥D(A2)t
3 (2.54)

for t ∈ [0, τ(M)].

On the other hand,

J62(t) = 2

∫ t/4

0
w(τ)dτ −

∫ t/2

0
w(τ)dτ

=

∫ t/2

0
w(τ/2)dτ −

∫ t/2

0
w(τ)dτ.

Hence, by (F6) and Lemma 2.2.3, we have

∥J62(t)∥X ≤ ∥J62(t)∥D(A)

≤
∫ t/2

0
∥w(τ)− w(τ/2)∥D(A) dτ

≤
∫ t/2

0
L(2M)

∫ τ

τ/2
∥F1(ΦF1(τ̃)ΦA(t/2)v0)∥D(A)dτ̃dτ

≤ L(2M)2Mt2 ≤ L(2M)2∥v0∥D(A2)t
2

for t ∈ [0, τ(M)].

Thus, it follows from (F1) that∥∥∥∥∫ t

0
ΦA(t− s)F ′

2(v0)J62(t)ds

∥∥∥∥
X

≤
∥∥∥∥∫ t

0
ΦA(t− s)F ′

2(v0)J62(t)ds

∥∥∥∥
D(A)

≤
∫ t

0
L(M)∥J62(t)∥D(A)ds ≤ L(2M)3∥v0∥D(A2)t

3 (2.55)

for t ∈ [0, τ(M)].

Summing up those estimates, we obtain

∥Q6(t)∥X ≤ C∥v0∥D(A2)t
3. (2.56)

for t ∈ [0, τ(M)].
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2.4.3 Proofs of (2.39) and (2.40)

Inequality (2.40) can be proved in the same way as the proof of (2.42), so we skip

the detail.

To derive the estimation for R1a(t), we divide R1a(t) as

R1a(t) = R11a(t) +R12a,

where

R11a(t) =

∫ t

0
ΦA(t− s) {F1(Ψ(s)v0)− F1(ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)} ds,

R12a(t) =
1

2

∫ t

0
ΦA(t− s) [2F1 (ΦF2(s)ΦF1(t/2)ΦA(t/2)v0)

− {F1(ΦF1(s/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0) + F1(ΦF1(s/2)ΦA(t/2)v0)} ] ds

Then, in exactly the same way as the proof of (2.41), we can prove

∥R11a(t)∥X ≤ C∥v0∥D(A2)t
3

for t ∈ [0, τ(4M)]. We proceed to shpw

∥R12a(t)∥X ≤ C∥v0∥D(A2)t
3 (2.57)

for t ∈ [0, τ(4M)]. To do this, we divide R12a(t) into some parts. We set{
w1(s) = ΦF1(s/2)ΦA(t/2)v0, w2(s) = ΦF2(s)ΦF1(t/2)ΦA(t/2)v0,

w3(s) = ΦF1(s/2)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0.
(2.58)

By Taylor’s formula, we have

2F1 (w2(s))− F1 (w3(s))− F1 (w1(s)) = Q(s) + 2J7(s)− J8(s)− J9(s),

where

Q(s) = F ′
1(v0)

[
2w2(s)− w3(s)− w1(s)

]
,

J7(s) =

∫ 1

0
(1− θ)F ′′

1 (θw2(s) + (1− θ)v0) [w2(s)− v0]
2 dθ,

J8(s) =

∫ 1

0
(1− θ)F ′′

1 (θw3(s) + (1− θ)v0) [w3(s)− v0]
2 dθ,

J9(s) =

∫ 1

0
(1− θ)F ′′

1 (θw1(s) + (1− θ)v0) [w1(s)− v0]
2 dθ.

That is,

R12a(t) =
1

2

∫ t

0
[2F1(w2(s))− F1(w3(s))− F1(w1(s))] ds

=
1

2

∫ t

0
ΦA(t− s) [Q(s) + 2J7(s)− J8(s)− J9(s)] ds.
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We can prove ∥∥∥∥∫ t

0
ΦA(t− s)Jj(s)ds

∥∥∥∥
X

≤ C∥v0∥D(A2)t
3 (j = 7, 8, 9)

for t ∈ [0, τ(4M)] in the same way as the proofs of (2.51) akd (2.52). Hence, it

remains to derive the following estimate:∥∥∥∥∫ t

0
ΦA(t− s)Q(s)ds

∥∥∥∥
X

≤ C∥v0∥D(A2)t
3 (2.59)

for t ∈ [0, τ(4M)].

Functions w1(s), w2(s), w3(s) are written as

w1(s) = ΦA(t/2)v0 + I5(s), w2(s) = ΦA(t/2)v0 + I4(s) + I5(t),

w3(s) = ΦA(t/2)v0 + I4(t) + I5(t) + I6(s),

where

I4(s) =

∫ s

0
F2 (w2(τ)) dτ, I5(s) =

∫ s/2

0
F1 (w1(2τ)) dτ,

I6(s) =

∫ s/2

0
F1 (w3(2τ)) dτ.

Thus, we obtain ∫ t

0
ΦA(t− s)Q(s)ds =W1(t) +W2(t)

where,

W1(t) =

∫ t

0
ΦA(t− s)F ′

1(v0) [2I4(s)− I4(t)] ds,

W2(t) =

∫ t

0
ΦA(t− s)F ′

1(v0) [I5(t)− 2I5(s)] ds,

W3(t) =

∫ t

0
ΦA(t− s)F ′

1(v0)[I5(s)− I6(s)]ds.

First, we can prove the following estimate in the same way as the proof of (2.56)

∥W1(t)∥X ≤ C∥v0∥D(A2)t
3, ∥W2(t)∥X ≤ C∥v0∥D(A2)t

3 (2.60)

for t ∈ [0, τ(2M)]. In view of (F1), (F6) and Lemma 2.2.3, we obtain

∥I5(s)− I6(s)∥X
≤ ∥I5(s)− I6(s)∥D(A)

≤
∫ s/2

0
L(8M)∥ΦF1(τ)ΦA(t/2)v0 − ΦF1(τ)ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A)dτ

≤
∫ s/2

0
L(8M)eL(8M)τ(4M) ∥ΦA(t/2)v0 − ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A) dτ
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for s, t ∈ [0, τ(4M)]. Furthermore, by (F7) and Lemma 2.2.3, we have

∥ΦA(t/2)v0 − ΦF2(t)ΦF1(t/2)ΦA(t/2)v0∥D(A)

≤
∫ t

0
∥F2(ΦF2(τ)ΦF1(t/2)ΦA(t/2)v0)∥D(A)dτ +

∫ t/2

0
∥F1(ΦF1(τ)ΦA(t/2)v0)∥D(A)dτ

≤
∫ t

0
L(4M)4Mdτ +

∫ t/2

0
L(2M)2Mdτ

≤ 5L(4M)∥v0∥D(A2)t

for t ∈ [0, τ(2M)].

Thus, we have

∥I5(s)− I6(s)∥X ≤
∫ s/2

0
ds· 5L(8M)2eL(8M)τ(4M)∥v0∥D(A2)t

≤ 5L(8M)2eL(8M)τ(4M)∥v0∥D(A2)ts

for s.t ∈ [0, τ(4M)].

Hence, there exists a positive constant C ′′′ depending only on M such that

∥W3(t)∥X ≤ C ′′′∥v0∥D(A2)t
3

for t ∈ [0, τ(4M)].

Summing up those estimates, we obtain (2.57) and, therefore, (2.39).

2.5 Proof of Theorem 2.1.2

This section is devoted to the proof of the main result, Theorem 2.1.2. We set

γ1 = 2L2(8m0), κ1 = e{2L(2m0)+γ1}TK1(m0)T, κ3 = κ1∥u0∥D(A2), (2.61)

κ2 = e{2L4(2m0)+γ1}TK2(m0)T. (2.62)

We assume that h0 > 0 satisfies

h0 ≤ τ(4m0), e2L(2m0)h0κ3h0 ≤ δ0, κ3h0 ≤
7m0

8
, (2.63)

where m0 = 8maxt∈[0,T ] ∥S(t)u0∥D(A) and δ0 which is previously defined in Lemma

2.2.5. We note that κ3h ≤ e2L(2m0)hκ3h ≤ δ0 for h ∈ (0, h0].

In what follows, we assume h ∈ (0, h0]. By induction, we will show

∥Ψ(h)ju0∥D(A2) ≤ eγ1jh∥u0∥D(A2) (2.64)

∥Ψ(h)ju0∥D(A) ≤ m0, (2.65)

∥S(jh)u0 −Ψ(h)ju0∥D(A) ≤ κ3h (2.66)

∥S(jh)u0 −Ψ(h)ju0∥X ≤ κ2∥u0∥D(A2)h
2 (2.67)

for j ∈ N ∪ {0} satisfying jh ≤ T.
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In the case j = 0, it is clear that (2.64)–(2.67) hold. We assume nh ≤ T and

(2.64)–(2.67) holds for j = 0, 1, . . . , n− 1.

First, it follows from Lemma 2.2.4 and (2.64) that

∥Ψ(h)nu0∥D(A2) = ∥Ψ(h)Ψ(h)n−1u0∥D(A2) ≤ e2L2(8m0)h∥Ψ(h)n−1u0∥D(A2)

≤ eγ1heγ1(n−1)h∥u0∥D(A2) = eγ1nh∥u0∥D(A2).

By the triangle inequality, we obtain

∥S(nh)u0 −Ψ(h)nu0∥D(A)

≤
n−1∑
j=0

∥S((n− j − 1)h)S(h)Ψ(h)ju0 − S((n− j − 1)h)Ψ(h)Ψ(h)ju0∥D(A).

Moreover,

∥Ψ(h)ju0 − S(jh)u0∥D(A) ≤ κ3h ≤ δ0

for j = 0, 1, . . . , n− 2. Thus, it follows from Lemma 2.2.5 that

∥S(h)Ψ(h)ju0 − S((j + 1)h)u0∥D(A) = ∥S(h)Ψ(h)ju0 − S(h)S(jh)u0∥D(A)

≤ e2L(2m0)h∥Ψ(h)ju0 − S(jh)u0∥D(A) ≤ e2L(2m0)hκ3h ≤ δ0

for j = 0, 1, . . . , n− 2. We see that

∥Ψ(h)Ψ(h)ju0 − S((j + 1)h)u0∥D(A) = ∥Ψ(h)j+1u0 − S((j + 1)h)u0∥D(A)

≤ κ3h ≤ δ0

for j = 0, 1, . . . , n− 2. Hence, it follows from Lemma 2.2.5 that

∥S((n− j − 1)h)S(h)Ψ(h)ju0 − S((n− j − 1)h)Ψ(h)Ψ(h)ju0∥D(A)

≤ e2L(2m0)(n−j−1)h∥S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0∥D(A)

≤ e2L(2m0)T ∥S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0∥D(A).

Hence, we have

∥S(nh)u0 −Ψ(h)nu0∥D(A) ≤ e2L(2m0)T
n−1∑
j=0

∥S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0∥D(A).

Moreover, it follows from (2.65) that ∥Ψ(h)ju0∥D(A) ≤ m0 for j = 0, 1, . . . , n − 1.

By Proposition 2.3.1，we obtain

∥S(h)Ψ(h)ju0 −Ψ(h)Ψ(h)ju0∥D(A) ≤ K1(m0)∥Ψ(h)ju0∥D(A2)h
2

≤ K1(m0)e
γ1T ∥u0∥D(A2)h

2.

Therefore, we have

∥S(nh)u0 −Ψ(h)nu0∥D(A) ≤ e2L(2m0)T
n−1∑
j=0

K1(m0)e
γ1T ∥u0∥D(A2)h

2

≤ e{2L(2m0)+γ1}TK1(m0)∥u0∥D(A2)nh
2 ≤ κ3h.
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Finally, it follows from (2.63) that

∥Ψ(h)nu0∥D(A) ≤ ∥Ψ(h)nu0 − S(nh)u0∥D(A) + ∥S(nh)u0∥D(A) ≤ κ3h+m0/8 ≤ m0.

We can also prove (2.67) in the same way of the proof of (2.66).

Therefore, we showed (2.65) holds for j = n.

This completes the proof. □

2.6 Numerical examples

In this section, we present numerical examples to confirm the validity of Theorem

2.1.2. We consider{
∂tu = i∆u− i|u|2u− 2|u|4u, t ∈ [0, T ], x ∈ R,
u(0) = u0(x), x ∈ R.

(2.68)

Let A = i∂2x and D(A) = H2(R). Moreover, we put F1(v) = −i|v|2v, F2(v) =

−2|v|4v.
For simplicity of computation, we consider the equation in a bounded interval [0, 1]

and pose the Dirichlet boundary condition. We set u0(x) = sin(πx).We numerically

solve ΦA(h)v0 by applying the Crank-Nicolson type finite difference method. We can

obtain the following exact solutions of ∂tv = −i|v|2v and ∂tv = −|v|4v, respectively:

ΦF1(h)v0 = exp
[
−i|v0|2h

]
v0 and ΦF2(h)v0 = (1 + 8|v0|4h)−1/4v0.

It is difficult to obtain the exact solution of (2.68). Therefore, we numerically

confirm the following condition instead of (2.16). We define

e(D)(h) = sup
0≤nh≤T

∥Ψ(h)nu0 −Ψ(h/2)2nu0∥Y .

In this experiment, we set T = 1. We confirm that there exists positive constant C

such that

e(D)(h) ≤ Ch2,

which is a sufficient condition for (2.16). In Figure 1, we plot (log h, log e(D)(h))

with Y = L∞, L2 and H1. We see that e(D)(h) ≈ Ch2 in all cases.

Moreover, (2.68) has the following property:

d

dt

∫
|u|2dx ≤ 0. (2.69)

In Figure 2, we see that the scheme (2.13) preserves the property (2.69).
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3 Regularity and singularity of blow-up

curve for utt − uxx = |ut|p

We study a blow-up curve for the one dimensional wave equation utt −
uxx = |ut|p with p > 1. The purpose of this paper is to show that the

blow-up curve is a C1 curve if the initial values are large and smooth

enough. To prove the result, we convert the equation into a first order

system, and then apply a modification of the method of Caffarelli and

Friedman [7]. Moreover, we present some numerical investigations of the

blow-up curves. From the numerical results, we were able to confirm

that the blow-up curves are smooth if the initial values are large and

smooth enough. Moreover, we can predict that the blow-up curves have

singular points if the initial values are not large enough even they are

smooth enough.

3.1 Introduction

In this paper, we consider the nonlinear wave equation{
utt − uxx = |ut|p, t > 0, x ∈ R,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R,

(3.1)

where

p > 1 is a constant such that the function |s|p is of class C4. (3.2)

Here, u is an unknown real-valued function.

Let T ∗ and R∗ be any positive constants, and set

BR∗ = {x | |x| < R∗}, (3.3)

K−(t0, x0) = {(t, x) | |x− x0| < t0 − t, t > 0} , (3.4)

KT ∗,R∗ =
∪

x∈BR∗

K−(T
∗, x). (3.5)

We then consider the following function

T (x) = sup {t ∈ (0, T ∗) | |ut(t, x)| <∞} for x ∈ BR∗ .

In this paper, we call the set Γ = {(T (x), x) | x ∈ BR∗} the blow-up curve. Below, we

identify Γ with T itself. There are two purposes of this paper. First, we demonstrate
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that T is continuously differentiable for the suitable initial values. Second, we present

some numerical examples of the various blow-up curves. From the numerical results,

we were able to confirm that the blow-up curves are smooth if the initial values are

large and smooth enough. Moreover, we can predict that the blow-up curves have

singular points if the initial values are not large enough even they are smooth enough.

We will state some analytical results from previous studies on the blow-up curves

for nonlinear wave equations. The majority of previous studies have considered the

following nonlinear wave equation:

utt − uxx = F (u), t > 0, x ∈ R,

and corresponding blow-up curve

T̃ (x) = sup {t ∈ (0, T ∗) | |u(t, x)| <∞} for x ∈ BR∗ .

We note that the definition of the blow-up curve is different from ours. The pi-

oneering study on this topic was done by Caffarelli and Friedman [6], [7]. They

investigated the case with F (u) = |u|p. They demonstrated that T̃ in that case is

continuously differentiable under suitable initial conditions. Moreover, Godin [18]

showed that the blow-up curve with F (u) = eu is also continuously differentiable un-

der appropriate initial conditions. It was also shown that the blow-up curve can be

C∞, in the case of F (u) = eu (see Godin [19]). Furthermore, Uesaka [33] considered

the blow-up curve for the system of nonlinear wave equations.

On the other hand, Merle and Zagg [27] showed that there are cases where the

blow-up curve has singular points, while the above results concern the smoothness

of the blow-up curve.

As mentioned above, several results have been established on the blow-up curve

when there are no nonlinear terms involving the derivative of the solution. On the

other hand, to the best of our knowledge only one result has been found concerning

the blow-up curve with nonlinear terms involving the derivative of solution. Ohta

and Takamura [30] considered the nonlinear wave equation

utt − uxx = (ut)
2 − (ux)

2, t ∈ R, x ∈ R. (3.6)

This equation can be transformed into the wave equation ∂2t v − ∂2xv = 0 by

v(t, x) = exp {−u(t, x)} , u(t, x) = − log {v(t, x)} .

Thanks to the linearization of (3.6), we can study the blow-up curve of (3.6).

However, we cannot apply this linearization to (3.1). Therefore, we employ an

alternative method, which is to rewrite to (3.1) as a system that does not include

the derivative of the solution in nonlinear terms. We basically apply the method

introduced by Caffarelli and Friedman [7] to this system. However, we offer an

alternative proof of [7] for showing that the blow-up curve of the blow-up limits is

an affine function (Section 3.5). Consequently, our proof is more elementary and

easy to read. Our method would be applied to the original equation of [7].
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We define ϕ and ψ as

ϕ = ut + ux, ψ = ut − ux.

Then, we see that (3.1) is rewritten as
D−ϕ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
D+ψ = 2−p|ϕ+ ψ|p, t > 0, x ∈ R,
ϕ(0, x) = f(x), ψ(0, x) = g(x), x ∈ R,

(3.7)

where D−v = vt − vx, D+v = vt + vx and f = u1 + ∂xu0, g = u1 − ∂xu0. (The

equivalency of between (3.1) and (3.7) will be described in Remark 3.1.2.)

Let (ϕ̃, ψ̃) be the solution of
dϕ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

dψ̃

dt
= 2−p|ϕ̃+ ψ̃|p, t > 0,

ϕ̃(0) = γ1, ψ̃(0) = γ2,

(3.8)

where γ1 and γ2 are some positive constants which will be fixed later. Then, we see

that there exists a positive constant T1 such that

ϕ̃(t) + ψ̃(t) → ∞ as t→ T1.

We make the following assumptions.

(A1) f ≥ γ1, g ≥ γ2 in BT ∗+R∗ .

(A2) f, g ∈ C4(BT ∗+R∗).

(A3) There exists a constant ε0 > 0 such that

2−p(γ1 + γ2)
p ≥ (2 + ε0)· max

x∈BT∗+R∗
{|fx(x)|+ |gx(x)|}.

(A4) T1 < T ∗.

(A5.1) There exists a constant ε1 >
2

2p− 3
such that

2−p(γ1 + γ2)
p ≥ (2 + ε1)· max

x∈BT∗+R∗
{|fx(x)|+ |gx(x)|}.

(We notice that it follows from (3.2) that p > 3/2.)

(A5.2) There exists a constant C(2) > 0 such that

(f + g)2p−1 ≥ C(2)· max
x∈BT∗+R∗

{|fxx(x)|+ |gxx(x)|}.
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(A5.3) There exists a constant C(3) > 0 such that

(f + g)3p−2 ≥ C(3)· max
x∈BT∗+R∗

{|∂3xf(x)|+ |∂3xg(x)|}.

We now state the main results of this paper.

Theorem 3.1.1. Let T ∗ and R∗ be arbitrary positive numbers. Assume that (A1)-

(A5.3) hold true. Then, there exists a unique C1(BR∗) function T such that 0 <

T (x) < T ∗ (x ∈ BR∗) and a unique (C3,1(Ω))2 solution (ϕ, ψ) of (3.7) satisfying

ϕ(t, x), ψ(t, x) → ∞ as t→ T (x) (3.9)

for any x ∈ BR∗, where Ω =
{
(t, x) ∈ R2 | x ∈ BR∗ , 0 < t < T (x)

}
.

Remark 3.1.2. The equation (3.1) is equivalent to (3.7). We set

u(t, x) = u0(x) +
1

2

∫ t

0
(ϕ+ ψ)(s, x)ds.

Then, u satisfies (3.1).

Remark 3.1.3. The assertion (3.9) implies that ut(t, x) → ∞ as t → T (x) (x ∈
BR∗).

Next, we will mention numerical analysis of blow-up of nonlinear partial differen-

tial equations. There are many previous works of computation of blow-up solutions

of various partial differential equations; See, for example, [28], [13], [10], [34], [31],

[11] and [12].

We computed blow-up curve using the method of Cho [12] and obtained the various

numerical results of blow-up curves. We will show them in Section 3.7.

The remainder of this paper is organized as follows. In Section 3.2, we construct

a classical solution for (3.7) in the domain Ω. In Section 3.3, we give the blow-up

rates of the solutions of (3.7). Moreover, we show that the blow-up curve is Lipschitz

continuous. In the course of Sections 3.4–3.6, we prove that the blow-up curve is

continuously differentiable. In Section 3.7, we show some numerical examples of

blow-up curves.

3.2 Existence and regularity of solutions

In this section, we will demonstrate the existence and regularity of the solutions ϕ

and ψ of (3.7) by successive approximation. Let us define {ϕn} and {ψn} by ϕ0 ≡ γ1,

ψ0 ≡ γ2, and
D−ϕn+1 = 2−p|ϕn + ψn|p, (t, x) ∈ KT ∗,R∗ ,

D+ψn+1 = 2−p|ϕn + ψn|p, (t, x) ∈ KT ∗,R∗ ,

ϕn+1(x, 0) = f(x), ψn+1(x, 0) = g(x), x ∈ BT ∗+R∗ ,

(3.10)
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for n ∈ N ∪ {0}. Here, γ1 and γ2 are initial values of (3.8). We note that (3.10) can

be rewritten as
ϕn+1(t, x) = f(x+ t) +

∫ t

0
2−p|ϕn + ψn|p(s, x+ (t− s))ds,

ψn+1(t, x) = g(x− t) +

∫ t

0
2−p|ϕn + ψn|p(s, x− (t− s))ds.

(3.11)

Remark 3.2.1. Consider a function F ∈ C1(KT ∗,R∗). We note that it follows from

(3.10) and (3.11) that F (t, x) ≥ 0 in KT ∗,R∗ if

F (0, x) ≥ 0 in BT ∗+R∗ , and


D−F (t, x) ≥ 0

or

D+F (t, x) ≥ 0

in KT ∗,R∗ .

3.2.1 Lemmas

Now, we introduce two important lemmas.

Lemma 3.2.2. Assume that (A1) hold. Then, we have

ϕn+1 ≥ ϕn ≥ 0,

ψn+1 ≥ ψn ≥ 0,
in KT ∗,R∗ , (3.12)

for n ∈ N ∪ {0}.

Proof. First, it follows from (A1) that

ϕ1(t, x) = f(x+ t) +

∫ t

0
2−p|ϕ0 + ψ0|p(s, x+ (t− s))ds ≥ γ1 = ϕ0(t, x) ≥ 0

in KT ∗,R∗ . Similarly, we have that ψ1 ≥ ψ0 ≥ 0 in KT ∗,R∗ .

Next, we assume that

ϕn ≥ ϕn−1 ≥ 0 and ψn ≥ ψn−1 ≥ 0 in KT ∗,R∗ .

Then, we have

ϕn+1(t, x) = f(x+ t) +

∫ t

0
2−p|ϕn + ψn|p(s, x+ (t− s))ds

≥ f(x+ t) +

∫ t

0
2−p|ϕn−1 + ψn−1|p(s, x+ (t− s))ds

= ϕn(t, x) ≥ 0

in KT ∗,R∗ . Similarly, we have that ψn+1 ≥ ψn ≥ 0 in KT ∗,R∗ .

Lemma 3.2.3. Assume that (A1)–(A3) hold. Then, we have

∂tϕn ≥ (1 + ε0)|∂xϕn|,
∂tψn ≥ (1 + ε0)|∂xψn|,

in KT ∗,R∗ , (3.13)

for n ∈ N ∪ {0}.
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Proof. Set λ = 1 + ε0, and

Jn = ∂tϕn + λ∂xϕn, J̃n = ∂tϕn − λ∂xϕn,

Ln = ∂tψn + λ∂xψn, L̃n = ∂tψn − λ∂xψn,

for n ∈ N ∪ {0}. Then, it suffices to show that Jn, J̃n, Ln and L̃n are nonnegative

for n ∈ N ∪ {0}, in KT ∗,R∗ . We note that J0 = J̃0 = L0 = L̃0 = 0 in KT ∗,R∗ .

First, it follows from (A3) that

J1(0, x) = ∂tϕ1(0, x) + λ∂xϕ1(0, x)

= (1 + λ)∂xϕ1(0, x) + 2−p|ϕ0 + ψ0|p(0, x)
= (2 + ε0)fx + 2−p(γ1 + γ2)

p ≥ 0

in BT ∗+R∗ , and we see that

D−J1 = ∂tD−ϕ1 + λ∂xD−ϕ1

= ∂t2
−p|ϕ0 + ψ0|p + λ∂x2

−p|ϕ0 + ψ0|p

= ∂t2
−p(γ1 + γ2)

p + λ∂x2
−p(γ1 + γ2)

p = 0

in KT ∗,R∗ . Then, we have that J1 ≥ 0 in KT ∗,R∗ . Similarly, we have that J̃1 ≥
0, L1 ≥ 0 and L̃1 ≥ 0 in KT ∗,R∗ .

Next, we assume that

Jn ≥ 0, Ln ≥ 0 in KT ∗,R∗ .

Then, it follows from (A3) that

Jn+1(0, x) = ∂tϕn+1(0, x) + λ∂xϕn+1(0, x)

= (1 + λ)∂xϕn+1(0, x) + 2−p|ϕn(0, x) + ψn(0, x)|p

≥ (2 + ε0)fx + 2−p(γ1 + γ2)
p ≥ 0 in BT ∗+R∗ .

Furthermore, it follows from Lemma 3.2.2 that

D−Jn+1 = ∂t(∂tϕn+1 + λ∂xϕn+1)− ∂x(∂tϕn+1 + λ∂xϕn+1)

= ∂t(∂tϕn+1 − ∂xϕn+1) + λ∂x(∂tϕn+1 − ∂xϕn+1)

= (∂t + λ∂x)2
−p|ϕn + ψn|p

= (∂t + λ∂x)2
−p(ϕn + ψn)

p

= 2−pp(ϕn + ψn)
p−1(Jn + Ln) ≥ 0 in KT ∗,R∗ .

Therefore, we obtain Jn+1 ≥ 0 in KT ∗,R∗ . Similarly, we obtain that Ln+1 ≥ in

KT ∗,R∗ . In the same way of above, we can show that

J̃n+1 ≥ 0, L̃n+1 ≥ 0 in KT ∗,R∗

if we assume that J̃n ≥ 0, L̃n ≥ 0 in KT ∗,R∗ . Therefore, we have obtained that

Jn, J̃n, Ln, L̃n ≥ 0 for n ∈ N ∪ {0}, in KT ∗,R∗ . This completes the proof.
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3.2.2 Proof of existence and regularity of ϕ and ψ

Fix (t, x) ∈ KT ∗,R∗ . Since {ϕn(t, x)} and {ψn(t, x)} are increasing sequences on n,

we have

lim
n→∞

ϕn(t, x) = sup
n∈N

ϕn(t, x) and lim
n→∞

ψn(t, x) = sup
n∈N

ψn(t, x). (3.14)

We set

ϕ(t, x) = sup
n∈N

ϕn(t, x) and ψ(t, x) = sup
n∈N

ψn(t, x).

It follows from Lemma 3.2.3 that ϕ and ψ are monotone increasing on t. Hence,

there exists a function T (x) such that

T (x) = sup{t ∈ (0, T ∗) | (ϕ+ ψ)(t, x) <∞} for x ∈ BR∗

and

lim
t↑T (x)

(ϕ+ ψ)(t, x) → ∞ for x ∈ BR∗

if T (x) < T ∗. We set Ω = {(t, x) | x ∈ BR∗ , 0 < t < T (x)}.

Remark 3.2.4. We will show that T is actually a blow-up curve of ϕ and ψ in Section

3.3.

We state the following local existence lemma.

Lemma 3.2.5. Assume that (A1)–(A3) hold. Then, (ϕ, ψ) is a unique (C3,1(Ω))2

solution of (3.7).

Proof. We set

B(t) =
{
x ∈ BT ∗+R∗ | |x− x̃| ≤ t̃− t

}
for (t̃, x̃) ∈ Ω.

(Proof of regularity.)

First, we will show that (ϕ, ψ) is a (C3,1(Ω))2 solution of (3.7). We split the proof

into 2 steps.

(Step 1.) Fix (t̃, x̃) ∈ Ω. We will show that there exists a positive constant M0

such that

∥ϕ+ ψ∥L∞(B(t))) ≤M0 for t ∈ [0, t̃] (3.15)

by showing a contradiction.

We set

Yx =
{
x ∈ BR∗ | |x− x̃| ≤ t̃− T (x)

}
and m is the 1-dimensional Lebesgue measure.

We assume that (3.15) does not hold. Then, there exists t′ ∈ (0, t̃) such that there

exist a′, b′ satisfying a′ < b′ and

(a′, b′) ⊂ B(t′) and (t′, x) ̸∈ Ω for x ∈ (a′, b′).

65



By the monotonicity of ϕ+ ψ on t, we have T (x) ≤ t′ for x ∈ (a′, b′), which implies

(a′, b′) ∈ Yx. Hence, we have m(Yx) > 0.

It follows from the monotonicity of ϕ+ ψ on t that

(t, x) /∈ Ω if x ∈ Yx and (t = x+ t̃− x̃ or t = −x+ t̃+ x̃).

Moreover, we have m(Yt̃,+) > 0 or m(Yt̃,−) > 0 if m(Yx) > 0. Here,

Yt̃,− =
{
s ∈ (0, t̃) | s = −x+ t̃+ x̃, x ∈ Yx

}
,

Yt̃,+ =
{
s ∈ (0, t̃) | s = x+ t̃− x̃, x ∈ Yx

}
.

Then, we have

∞ >(ϕn+1 + ψn+1)(t̃, x̃)

≥
∫
Yt̃,−

2−p|ϕn + ψn|p(s, x̃+ t̃− s)ds+

∫
Yt̃,+

2−p|ϕn + ψn|p(s, x̃− t̃+ s)ds

→ ∞, as n→ ∞.

It is a contradiction. Therefore, we obtain (3.15).

(Step 2.) We will show (ϕ, ψ) ∈ (C3,1(Ω))2. Fix (t̃, x̃) ∈ Ω. It suffices to show

ϕ, ψ ∈ C3,1(K−(t̃, x̃)).

By (Step 1.), we have that there exists a positive constant C0 depending only

on t̃ and x̃ such that

∥ϕn + ψn∥L∞(B(t))) ≤ C0 for t ∈ [0, t̃] and n ∈ N. (3.16)

Then, we have

∥ϕn+1(t, · )− ϕn(t, · )∥L∞(B(t)) + ∥ψn+1(t, · )− ψn(t, · )∥L∞(B(t))

≤
∫ t

0
2−p+1

∥∥∥|ϕn + ψn|p(s1, · )− |ϕn−1 + ψn−1|p(s1, · )
∥∥∥
L∞(B(s1))

ds1

for t ∈ [0, t̃] and n ∈ N. By (3.16), we have that

∥ϕn+1(t, · )− ϕn(t, · )∥L∞(B(t)) + ∥ψn+1(t, · )− ψn(t, · )∥L∞(B(t))

≤ pCp−1
0

∫ t

0

(∥∥ϕn(s1, · )− ϕn−1(s1, · )
∥∥
L∞(B(s1))

+
∥∥ψn(s1, · )− ψn−1(s1, ·)

∥∥
L∞(B(s1))

)
ds1

≤
(
pCp−1

0

)2 ∫ t

0

∫ s1

0

(∥∥ϕn−1(s2, · )− ϕn−2(s2, · )
∥∥
L∞(B(s2))

+
∥∥ψn−1(s2, · )− ψn−2(s2, · )

∥∥
L∞(B(s2))

)
ds2ds1.
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for t ∈ [0, t̃] and n ∈ N. Repeating this argument, we obtain that

∥ϕn+1(t, · )− ϕn(t, · )∥L∞(B(t)) + ∥ψn+1(t, · )− ψn(t, · )∥L∞(B(t))

...

≤ (pCp−1
0 )n

∫ t

0

∫ s1

0

∫ s2

0
. . .

∫ sn−1

0(∥∥ϕ1(sn, · )− ϕ0(sn, · )
∥∥
L∞(B(sn))

+
∥∥ψ1(sn, · )− ψ0(sn, · )

∥∥
L∞(B(sn))

)
dsn . . . ds2ds1.

≤ 4C0
(pCp−1

0 T )n

n!
→ 0 as n→ ∞,

for t ∈ [0, t̃]. Hence, it follows from (3.14) that

∥ϕn − ϕ∥L∞(K−(t̃,x̃)) + ∥ψn − ψ∥L∞(K−(t̃,x̃)) → 0 as n→ ∞.

Next, we will show that ϕ, ψ ∈W 1,∞(K−(t̃, x̃)). We see that

D−Dθϕn+1 = Dθ2
−p(ϕn + ψn)

p = p2−p(ϕn + ψn)
p−1(Dθϕn +Dθψn),

D+Dθψn+1 = Dθ2
−p(ϕn + ψn)

p = p2−p(ϕn + ψn)
p−1(Dθϕn +Dθψn),{

Dθϕ1(0, x) = (cos θ + sin θ)fx(x) + sin θ · 2−p(γ1 + γ2)
p,

Dθψ1(0, x) = (cos θ − sin θ)gx(x) + sin θ · 2−p(γ1 + γ2)
p,{

Dθϕn+1(0, x) = (cos θ + sin θ)fx(x) + sin θ · 2−p(f + g)p(x),

Dθψn+1(0, x) = (cos θ − sin θ)gx(x) + sin θ · 2−p(f + g)p(x),
(n ∈ N)

for n ∈ N ∪ {0}. Here, Dθv = sin θvt + cos θvx.

We set W (t) = Cp0 exp(pC
p−1
0 t). Then, we have

W (t) = Cp0 +

∫ t

0
pCp−1

0 W (s)ds.

We will show

∥Dθϕn(t, · )∥L∞(B(t)) ≤W (t), ∥Dθψn(t, · )∥L∞(B(t)) ≤W (t) (3.17)

for t ∈ [0, t̃] and n ∈ N ∪ {0}.
We see

Dθϕ0 = Dθψ0 = 0 ≤W (t)

for t ≥ 0. Assume that (3.17) holds for n. Then, we have∥∥p2−p(ϕn + ψn)
p−1(t, · )(Dθϕn +Dθψn)(t, · )

∥∥
L∞(B(t))

≤ pCp−1
0 W (t) (3.18)

for t ∈ [0, t̃]. It follows that (A3) that

∥Dθϕn+1(t, · )∥L∞(B(t))

≤ 2∥fx∥L∞(B(0)) + 2−p∥f + g∥pL∞(B(0))

+

∫ t

0

∥∥p2−p(ϕn + ψn)
p−1(s, · )(Dθϕn +Dθψn)(s, · )

∥∥
L∞(B(s))

ds

≤ Cp0 +

∫ t

0
pCp−1

0 W (s)ds =W (t) for t ∈ [0, t̃]. (3.19)
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Similarly, we have that ∥Dθψn+1(t, · )∥L∞(B(t)) ≤W (t) for t ∈ [0, t̃]. Thus,

∥Dθϕn(t, · )∥L∞(B(t)) ≤W (t), ∥Dθψn(t, · )∥L∞(B(t)) ≤W (t)

for t ∈ [0, t̃] and n ∈ N ∪ {0}. We set C1 = Cp0 exp(pC
p−1
0 T ). Then, we have

∥Dθϕn(t, · )∥L∞(B(t)) ≤ C1 and ∥Dθψn(t, · )∥L∞(B(t)) ≤ C1 (3.20)

for t ∈ [0, t̃] and n ∈ N ∪ {0}.
We see that

∥Dθϕn+1(t, · )−Dθϕn(t, · )∥L∞(B(t)) + ∥Dθψn+1(t, · )−Dθψn(t, · )∥L∞(B(t))

≤
∫ t

0
p2−p+1

∥∥∥[(ϕn + ψn)
p−1(Dθϕn +Dθψn)

− (ϕn−1 + ψn−1)
p−1(Dθϕn−1 +Dθψn−1)

]
(s, · )

∥∥∥
L∞(B(s))

ds

It follows from (3.16) and (3.20) that

∥Dθϕn+1(t, · )−Dθϕn(t, · )∥L∞(B(t)) + ∥Dθψn+1(t, · )−Dθψn(t, · )∥L∞(B(t))

≤
∫ t

0
pCp−1

0

(
∥Dθϕn(s1, · )−Dθϕn−1(s1, · )∥L∞(B(s1))

+ ∥Dθψn(s1, · )−Dθψn−1(s1, · )∥L∞(B(s1))

)
ds1

+

∫ t

0
2p(p− 1)C1C

p−2
0

(
∥ϕn(s1, · )− ϕn−1(s1, · )∥L∞(B(s1))

+ ∥ψn(s1, · )− ψn−1(s1, · )∥L∞(B(s1))

)
ds1

≤
(
pCp−1

0

)2 ∫ t

0

∫ s1

0

(
∥Dθϕn−1(s2, · )−Dθϕn−2(s2, · )∥L∞(B(s2))

+ ∥Dθψn−1(s2, · )−Dθψn−2(s2, · )∥L∞(B(s2))

)
ds2ds1

+ C2
2

∫ t

0

∫ s1

0

(
∥ϕn−1(s2, · )− ϕn−2(s2, · )∥L∞(B(s2))

+ ∥ψn−1(s2, · )− ψn−2(s2, · )∥L∞(B(s2))

)
ds2ds1

+ C2

∫ t

0

(
∥ϕn(s1, · )− ϕn−1(s1, · )∥L∞(B(s2))

+ ∥ψn(s1, · )− ψn−1(s1, · )∥L∞(B(s2))

)
ds1

...

≤
(
pCp−1

0

)n ∫ t

0

∫ s1

0

∫ s2

0
. . .

∫ sn−1

0(
∥Dθϕ1(sn, · )−Dθϕ0(sn, · )∥L∞(B(sn))

+ ∥Dθψ1(sn, · )−Dθψ0(sn, · )∥L∞(B(sn))

)
ds1ds2 . . . dsn

+

n∑
j=1

4C0
T j

j!
· (C2T )

n−j

(n− j)!

68



≤ 4C1
(pCp−1

0 T )n

n!
+

n∑
j=1

4C0
(C2T )

n

j!(n− j)!
→ 0 as n→ ∞

for t ∈ [0, t̃]. Here, C2 = max{pCp−1
0 , 2p(p−1)C1C

p−2
0 }. Thus, there exist ϕ(1)θ , ψ

(1)
θ ∈

L∞(K−(t̃, x̃)) such that

∥Dθϕn − ϕ
(1)
θ ∥L∞(K−(t̃,x̃)) + ∥Dθψn − ψ

(1)
θ ∥L∞(K−(t̃,x̃)) → 0 as n→ ∞.

Therefore, (ϕ, ψ) ∈ (W 1,∞(K−(t̃, x̃)))
2. By repeating the same arguments, we obtain

that (ϕ, ψ) ∈ (W 4,∞(K−(t̃, x̃)))
2. That is, we have (ϕ, ψ) ∈ (C3,1(K−(t̃, x̃)))

2.

(Proof of uniqueness.)

Next, we will show that (ϕ, ψ) is a unique solution of (3.7). We suppose (ϕ1, ψ1) and

(ϕ2, ψ2) are solutions of (3.7) and T1 and T2 are corresponding blow-up curves. Let

Ωj = {(t, x) | x ∈ BR∗ , 0 < t < Tj(x)} for j = 1, 2.

Take (t̃, x̃) ∈ Ω1 ∩ Ω2 arbitrarily. In the same way of proof of (Step 2.), we have

sup
0≤t′≤t

(
∥ϕ1(t′, · )− ϕ2(t

′, · )∥L∞(B(t′)) + ∥ψ1(t
′, · )− ψ2(t

′, · )∥L∞(B(t′))

)
≤ sup

0≤t′≤t

(∫ t′

0
2−p+1

∥∥|ϕ1 + ψ1|p(s, · )− |ϕ2 + ψ2|p(s, · )
∥∥
L∞(B(s))

ds
)

≤ tpCp−1
0 sup

0≤t′≤t

(
∥ϕ1(t′, · )− ϕ2(t

′, · )∥L∞(B(t′))

+ ∥ψ1(t
′, · )− ψ2(t

′, · )∥L∞(B(t′))

)
for t satisfying 0 ≤ t ≤ t̃. Thus,

sup
0≤t′≤t

(
∥ϕ1(t′, · )− ϕ2(t

′, · )∥L∞(B(t′)) + ∥ψ1(t
′, · )− ψ2(t,

′ · )∥L∞(B(t′))

)
= 0

if t is small enough. Since C0 does not depend on t, by repeating this argument, we

obtain

sup
0≤t′≤t̃

(
∥ϕ1(t′, · )− ϕ2(t

′, · )∥L∞(B(t′)) + ∥ψ1(t
′, · )− ψ2(t

′, · )∥L∞(B(t′))

)
= 0.

Therefore, we have

(ϕ1, ψ1) = (ϕ2, ψ2) in Ω1 ∩ Ω2

and

T1(x) = T2(x) for x ∈ BR∗ .

This completes the proof.

Lemma 3.2.6. Assume that (A1)–(A4) hold. Then, we have

T (x) < T ∗ for x ∈ BR∗ .
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Proof. Let us define {ϕ̃n} and {ψ̃n} by ϕ̃0 = γ1, ψ̃0 = γ2 and
d

dt
ϕ̃n+1 = 2−p|ϕ̃n + ψ̃n|p, t > 0,

d

dt
ψ̃n+1 = 2−p|ϕ̃n + ψ̃n|p, t > 0,

ϕ̃n+1(0) = γ1, ψ̃n+1(0) = γ2.

It suffices to show that ϕn(t, x) ≥ ϕ̃n(t) and ψn(t, x) ≥ ψ̃n(t) in KT ∗,R∗ , for n ∈ N.
First, we see that

ϕ1(t, x)− ϕ̃1(t) = f(x+ t)− γ1 +

∫ t

0
2−p|ϕ0 + ψ0|p(s, x+ (t− s))ds

−
∫ t

0
2−p|ϕ̃0 + ψ̃0|p(s)ds

= f(x+ t)− γ1 ≥ 0,

in KT ∗,R∗ . Similarly, we have that ψ1(t, x) ≥ ψ̃1(t) in KT ∗,R∗ .

Next, we assume that ϕn(t, x) ≥ ϕ̃n(t) and ψn(t, x) ≥ ψ̃n(t) in KT ∗,R∗ . Then, we

have that

ϕn+1(t, x)− ϕ̃n+1(t) = f(x+ t)− γ1 +

∫ t

0
2−p|ϕn + ψn|p(s, x+ (t− s))ds

−
∫ t

0
2−p|ϕ̃n + ψ̃n|p(s)ds

≥ 0,

in KT ∗,R∗ . Similarly, we obtain that ψn+1(t, x) ≥ ψ̃n+1(t) in KT ∗,R∗ . Therefore, we

have

ϕn(t, x) ≥ ϕ̃n(t), ψn(t, x) ≥ ψ̃n(t) in KT ∗,R∗

for n ∈ N.
This completes the proof.

3.3 Blow-up rates of solutions and Lipschitz continuity of T

Now, we will show that T is Lipschitz continuous in BR∗ . To prove this fact, we first

introduce the following proposition.

Proposition 3.3.1. Assume that (A1)–(A4) hold. Then, there exist positive con-

stants C1 and C2 depending only on p and ε0 such that

C1(ϕ+ ψ)p ≤ ϕt ≤ C2(ϕ+ ψ)p, (3.21)

C1(T (x)− t)−q−1 ≤ ϕt(t, x) ≤ C2(T (x)− t)−q−1, (3.22)

C1(ϕ+ ψ)p ≤ ψt ≤ C2(ϕ+ ψ)p, (3.23)

C1(T (x)− t)−q−1 ≤ ψt(t, x) ≤ C2(T (x)− t)−q−1, (3.24)

C1(T (x)− t)−q ≤ (ϕ+ ψ)(t, x) ≤ C2(T (x)− t)−q, (3.25)

in Ω. Here, q = 1/(p− 1).
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Proof. First, we will show that (3.21) holds. We see that

D−∂tϕn+1 = ∂tD−ϕn+1 = ∂t2
−p|ϕn + ψn|p = ∂t2

−p(ϕn + ψn)
p

= 2−pp(ϕn + ψn)
p−1(∂tϕn + ∂tψn) in KT ∗,R∗ , (3.26)

for n ∈ N ∪ {0}. From Lemma 3.2.3, we obtain that

D−2
−p(ϕn + ψn)

p = 2−pp(ϕn + ψn)
p−1(∂tϕn − ∂xϕn + ∂tψn − ∂xψn)

≤ 2−p+1p(ϕn + ψn)
p−1(∂tϕn + ∂tψn) in KT ∗,R∗ , (3.27)

for n ∈ N ∪ {0}. We set Jϕ,n+1 = 2∂tϕn+1 − 2−p(ϕn + ψn)
p. Then, by (3.26) and

(3.27), we have

D−Jϕ,n+1

≥ 2−p+1p(ϕn + ψn)
p−1(∂tϕn + ∂tψn)− 2−p+1p(ϕn + ψn)

p−1(∂tϕn + ∂tψn)

= 0 in KT ∗,R∗ , (3.28)

for n ∈ N ∪ {0}. It follows from (A3) that

Jϕ,n+1(0, x) = 2∂tϕn+1(0, x)− 2−p(ϕn + ψn)
p(0, x)

= 2∂xϕn+1(0, x) + 2−p(ϕn + ψn)
p(0, x)

≥ 2fx + 2−p(γ1 + γ2)
p ≥ 0 in BT ∗+R∗ (3.29)

for n ∈ N ∪ {0}. Then, by (3.29) and (3.28), we obtain that Jϕ,n ≥ 0 in KT ∗,R∗ , for

n ∈ N.
On the other hand, it follows from Lemma 3.2.3 that

∂tϕn+1 = ∂xϕn+1 + 2−p(ϕn + ψn)
p ≤ 1

1 + ε0
∂tϕn+1 + 2−p(ϕn + ψn)

p

in KR∗,T ∗ , for n ∈ N ∪ {0}. Hence,

∂tϕn+1 ≤
1 + ε0
ε0

2−p(ϕn + ψn)
p in KT ∗,R∗ , (3.30)

for n ∈ N ∪ {0}. It follows from the fact that Jϕ,n ≥ 0 and (3.30) that

2−p−1(ϕn + ψn)
p ≤ ∂tϕn+1 ≤

1 + ε0
ε0

· 2−p(ϕn+1 + ψn+1)
p in KT ∗,R∗ , (3.31)

for n ∈ N ∪ {0}, which implies (3.21) holds. Similarly, we can prove that (3.23)

holds.

Next, we will show that (3.25) holds. By considering (3.21), we see that

∂(ϕ+ ψ)

∂t
≤ 2−p+1(1 + ε0)ε

−1
0 (ϕ+ ψ)p in Ω.

Thus, we have

∂t

∂(ϕ+ ψ)
≥ 2p−1(1 + ε0)

−1ε0(ϕ+ ψ)−p in Ω. (3.32)
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Fix x0 ∈ BR∗ . By (3.32), we have

T (x0)− ε− τ ≥
∫ (ϕ+ψ)(T (x0)−ε,x0)

(ϕ+ψ)(τ,x0)
2p−1(1 + ε0)

−1ε0z
−pdz

=
[
−(p− 1)−12p−1(1 + ε0)

−1ε0z
−(p−1)

](ϕ+ψ)(T (x0)−ε,x0)
(ϕ+ψ)(τ,x0)

.

for τ > 0 and ε > 0 satisfying T (x0)− ε− τ > 0. Hence, by letting ε→ 0, we obtain

T (x0)− τ ≥
[
−(p− 1)−12p−1(1 + ε0)

−1ε0z
−(p−1)

]∞
(ϕ+ψ)(τ,x0)

= (p− 1)−12p−1(1 + ε0)
−1ε0(ϕ+ ψ)−(p−1)(τ, x0).

Thus, we have that

(ϕ+ ψ)(τ, x0) ≥ 2
(
(p− 1)ε−1

0 (1 + ε0)
)−1/(p−1)

(T (x0)− τ)−1/(p−1) (3.33)

for τ ∈ [0, T (x0)). Similarly, we obtain that

(2p(p− 1)−1)1/(p−1)(T (x0)− τ)−1/(p−1) ≥ (ϕ+ ψ)(τ, x0) (3.34)

for τ ∈ [0, T (x0)). It follows from (3.33) and (3.34) that (3.25) holds. Moreover, it

follows from (3.21) and (3.25) that (3.22) holds. Similarly, we have that (3.24) also

holds. This completes the proof.

By combining the above Lemma 3.2.3 with Proposition 3.3.1, we obtain that the

blow-up curve T is Lipschitz continuous. That is, the following lemma holds.

Lemma 3.3.2. Suppose that (A1)–(A4) hold. Then, we have that

|T (x′)− T (x′′)| ≤ 1

1 + ε0
|x′ − x′′| for x′, x′′ ∈ BR∗ . (3.35)

Proof. This proof is based on the Implicit Function Theorem. Let ε > 0 be arbitrary.

By (3.25), we see that there exists a positive constant C1 depending p and ε0 such

that

C1ε
−q ≤ (ϕ+ ψ)(t, x) for x ∈ BR∗ and t ∈ [T (x)− ε, T (x)).

Thus, there exists a positive constant M satisfying M ≥ C1ε
−q, and a function

E(x) (x ∈ BR∗) such that

(ϕ+ ψ)(E(x), x) =M and T (x)− E(x) ≤ ε for x ∈ BR∗ .

First, we will demonstrate continuity of E in BR∗ . That is, for x′ ∈ BR∗ , we will

show that tn → E(x′) if xn → x′, where tn = E(xn).

We take an arbitrary converging subsequence {tnk} ⊂ {tn}, and denote its limit

by η. Following from the definition of E, we have that (ϕ + ψ)(tnk, xnk) = (ϕ +

ψ)(E(xnk), xnk) = M. Thus, it follows from continuity of ϕ and ψ that (ϕ +

ψ)(η, x′) =M. Since ∂t(ϕ+ ψ) > 0 in Ω, we have that η = E(x′). Therefore,

lim inf
n→∞

tn = lim sup
n→∞

tn = E(x′).
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Thus, we have demonstrated the continuity of E at x′.

Next, we will prove Lipschitz continuity of E. We see that there exists a positive

constant h′ for x′ ∈ BR∗ such that

B(x′, h′) ⊂ Ω,

where B(x′, h′) =
{
(t, x) |

√
(t− E(x′))2 + (x− x′)2 < h′

}
. Following from conti-

nuity of E, there exits a positive constant h′′ such that 0 < h′′ ≤ h′ satisfying

(E(x1), x1), (E(x2), x2) ∈ B(x′, h′) for x1, x2 ∈ (x′ − h′′, x′ + h′′).

Let k = E(x2)− E(x1) and

H(ξ) = (ϕ+ ψ)(t+ ξk, x1 + ξ(x2 − x1)),

where ξ is a constant satisfying 0 ≤ ξ ≤ 1. Then, we have

H(0) = (ϕ+ ψ)(t, x1),

H(1) = (ϕ+ ψ)(t+ k, x2) = (ϕ+ ψ)(t+ E(x2)− E(x1), x2).

Take t as t = E(x1). Then, we have H(0) = H(1) = M. By Rolle’s Theorem, there

exists ξ′ ∈ (0, 1) such that

H ′(ξ′) =(x2 − x1)∂x(ϕ+ ψ)(E(x1) + ξ′k, x1 + ξ′(x2 − x1))

+ k∂t(ϕ+ ψ)(E(x1) + ξ′k, x1 + ξ′(x2 − x1)) = 0. (3.36)

Hence, it follows from Lemma 3.2.3 and (3.36) that

|E(x1)− E(x2)| = |k| =
∣∣∣∣−∂x(ϕ+ ψ)(E(x1) + ξ′k, x1 + ξ′(x2 − x1))

∂t(ϕ+ ψ)(E(x1) + ξ′k, x1 + ξ′(x2 − x1))

∣∣∣∣ |x1 − x2|

≤ 1

1 + ε0
|x1 − x2|.

Thus, E is Lipschitz continuous in (x′ − h′′, x′ + h′′). Moreover, it follows from the

continuity of E that

E(x+ h)− E(x)

h
=

−h∂x(ϕ+ ψ)(E(x) + ξ(E(x+ h)− E(x)), x+ ξh)

h∂t(ϕ+ ψ)(E(x) + ξ(E(x+ h)− E(x)), x+ ξh)

→ −∂x(ϕ+ ψ)(E(x), x)

∂t(ϕ+ ψ)(E(x), x)
as h→ 0 for x ∈ BR∗ .

Hence, we have that

∂

∂x
E(x) =

−∂x(ϕ+ ψ)(E(x), x)

∂t(ϕ+ ψ)(E(x), x)
for x ∈ BR∗ .

By continuity of ∂x(ϕ+ ψ), ∂t(ϕ+ ψ) and E, we see that E ∈ C1(BR∗). Hence, we

have that

|E(x′)− E(x′′)| ≤

(
sup
x∈BR∗

|E′(x)|

)
|x′ − x′′| ≤ 1

1 + ε0
|x′ − x′′| (3.37)
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for x′, x′′ ∈ BR∗ . Therefore, E is Lipschitz continuous in BR∗ .

Finally, we will prove Lipschitz continuity of T in BR∗ . It follows from (3.37) that

|T (x′)− T (x′′)| ≤ |T (x′)− E(x′)|+ |E(x′)− E(x′′)|+ |E(x′′)− T (x′′)|

≤ 2ε+
1

1 + ε0
|x′ − x′′| for x′, x′′ ∈ BR∗ .

Since we let ε > 0 take an arbitrary value, this completes the proof.

By applying Lemma 3.3.2, we obtain the following results.

Definition 2. By d(t, x), we denote the distance from a point (t, x) in Ω to Γ =

{(T (x), x) | x ∈ BR∗}.
Remark 3.3.3. It follows from Lemma 3.3.2 that

T (x)− t√
2

≤ d(t, x) ≤ T (x)− t.

By replacing T (x) − t by d(x, t) in Proposition 3.3.1, we obtain the following

Corollary.

Corollary 3.3.4. Assume that (A1)–(A4) hold. Then, there exist positive constants

C1 and C2 depending only on p and ε0 such that

C1d
−q(t, x) ≤ (ϕ+ ψ)(t, x) ≤ C2d

−q(t, x), (3.38)

C1d
−q−1(t, x) ≤ ϕt(t, x) ≤ C2d

−q−1(t, x), (3.39)

C1d
−q−1(t, x) ≤ ψt(t, x) ≤ C2d

−q−1(t, x), (3.40)

where q = 1/(p− 1), in Ω.

From Corollary 3.3.4, we obtain the following lemma, which states that T is the

blow-up curve of both ϕ and ψ:

Lemma 3.3.5. Assume that (A1)–(A4) hold. Then, there exist positive constants

C1 and C2 depending on p and ε0 such that

C1(T (x)− t)−q ≤ ϕ(t, x) ≤ C2(T (x)− t)−q, (3.41)

C1(T (x)− t)−q ≤ ψ(t, x) ≤ C2(T (x)− t)−q, (3.42)

where q = 1/(p− 1), in Ω.

Proof. We will only show that (3.41) holds. By Corollary 3.3.4 and Lemma 3.3.2,

there exist positive constants c1 and c2 depending p and ε0 such that

ϕ(T (x)− ε, x) = f(x+ T (x)− ε)

+

∫ T (x)−ε

0
2−p(ϕ+ ψ)p(s, x+ (T (x)− ε)− s)ds

≥
∫ T (x)−ε

T (x)−2ε
2−p(ϕ+ ψ)p(s, x+ (T (x)− ε)− s)ds

≥ c1ε inf
T (x)−2ε≤s≤T (x)−ε

d(s, x+ (T (x)− ε)− s)−qp

≥ c2ε · ε−q−1 = c2ε
−q.
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On the other hand, it follows from Proposition 3.3.1 that there exists a positive

constant C2 depending only on p and ε0 such that ϕ(T (x) − ε, x) ≤ C2ε
−q. This

completes the proof.

3.4 Blow-up limits of solutions

In the following, we will show that T ∈ C1(BR∗). In order to achieve this, we will

consider limits of the scaled functions Tλ, ϕλ, and ψλ (we will define these later) and

their properties.

3.4.1 Estimates of blow-up limits

We set Dθ as

Dθ = sin θ∂t + cos θ∂x, where 0 ≤ θ < 2π.

First, we introduce the following lemma.

Lemma 3.4.1. Assume that (A1)–(A5.3) hold. Then, there exist positive constants

Cα and C∗
α depending only on p and ε1 such that

max{|Dα
θ ϕ(t, x)|, |Dα

θ ψ(t, x)|} ≤ Cα(ϕ+ ψ)p+(α−1)/q(t, x) (3.43)

≤ C∗
αd(t, x)

−(pq+(α−1)) (3.44)

for (t, x) ∈ Ω, where q = 1/(p− 1) and α = 0, 1, 2, 3.

Proof. We can easily obtain that (3.44) holds by Corollary 3.3.4 if we prove (3.43).

So, we will only prove (3.43).

We also obtain that (3.43) holds in the case of α = 0, 1, by Lemmas 3.2.2, 3.2.3

and Proposition 3.3.1.

First, we will show that (3.43) holds in the case of α = 2. It suffices to show that

there exists a positive constant C2 depending only on p and ε1 such that

max{|D2
θϕn(t, x)|, |D2

θψn(t, x)|}
≤ C2(ϕn + ψn)

2p−1(t, x) for n ∈ N ∪ {0}, (3.45)

in KT ∗,R∗ . We see that Dθϕ0 = Dθψ0 = 0 in KT ∗,R∗ . Hence, (3.43) holds for n = 0.

Assume

max
{
|D2

θϕn(t, x)|, |D2
θψn(t, x)|

}
≤ C2(ϕn + ψn)

2p−1(t, x) in KT ∗,R∗ .

Then, it follows from (3.43) in the case α = 1 and Proposition 3.3.1 that

|D−(D
2
θϕn+1)(t, x)|

= 2−p|D2
θ(ϕn + ψn)

p(t, x)|
≤ 2−pp(p− 1)(ϕn + ψn)

p−2(t, x)(Dθϕn +Dθψn)
2(t, x)

+ 2−pp(ϕn + ψn)
p−1(t, x)|(D2

θϕn +D2
θψn)(t, x)|

≤ 2−p+1p
(
2(p− 1)C2

1 + C2

)
|(ϕn + ψn)

3p−2(t, x)| in KT ∗,R∗ , (3.46)
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where Cα is the constant in the case of α = 1, 2 of (3.43). Moreover, it follows from

Lemma 3.2.3 and Proposition 3.3.1 that

D−C2(ϕn+1 + ψn+1)
2p−1(t, x)

= C2(2p− 1)(ϕn+1 + ψn+1)
2p−2(t, x)D−(ϕn+1 + ψn+1)(t, x)

≥ 2−pC2(2p− 1)
(
1 +

ε1
2(1 + ε1)

)
(ϕn + ψn)

3p−2(t, x) in KT ∗,R∗ . (3.47)

Let

Mn(t, x) = C2(ϕn + ψn)
2p−1(t, x)−D2

θϕn(t, x).

Then, it follows from (A3) and (A5.2) that

Mn+1(0, x) ≥
(
C2 − 4C(2)−1 − p2−2p+3

)
(f + g)2p−1(x), (3.48)

in BT ∗+R∗ . On the other hand, it follows from (3.46) and (3.47) that

D−Mn+1(t, x) ≥ 2−pC2

{
(2p− 1)

(
1 +

ε1
2(1 + ε1)

)
− 2p

}
(ϕn + ψn)

3p−2(t, x)

− 2−p4p(p− 1)C2
1 (ϕn + ψn)

3p−2(t, x) in KT ∗,R∗ . (3.49)

By (A5.1), we have

(2p− 1)
(
1 +

ε1
2(1 + ε1)

)
− 2p > 0.

We take C2 as

C2 > max
{
4C(2)−1

+ p2−2p+3,{
(2p− 1)

(
1 +

ε1
2(1 + ε1)

)
− 2p

}−1
4p(p− 1)C2

1

}
.

Then, it follows from (3.48) and (3.49) that Mn+1 ≥ 0 in KT ∗,R∗ . Consequently,

we obtain that Mn ≥ 0 in KT ∗,R∗ , for n ∈ N ∪ {0}. That is, there exists a positive

constant C2 depending p and ε1 such that

C2(ϕn + ψn)
2p−1 ≥ D2

θϕn in KT ∗,R∗

for n ∈ N∪{0}. Similarly, we have the following inequality by retaking C2 if necessary.
C2(ϕn + ψn)

2p−1 ≥ −D2
θϕn,

C2(ϕn + ψn)
2p−1 ≥ D2

θψn,

C2(ϕn + ψn)
2p−1 ≥ −D2

θψn,

in KT ∗,R∗ ,

for n ∈ N ∪ {0}. This means (3.45) holds. In the same way, we can prove (3.43) in

the case of α = 3.

Let x0 ∈ BR∗ . Then, we introduce the following scaled functions:

ϕλ(s, y) = λqϕ(T (x0) + λs, x0 + λy), (3.50)

ψλ(s, y) = λqψ(T (x0) + λs, x0 + λy), (3.51)
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where λ > 0 and q = 1/(p − 1). Any sequences {ϕλn} and {ψλn} with λn ↓ 0 are

called blow-up sequences (see. [7]). Now, we see that{
D−ϕλ = 2−p(ϕλ + ψλ)

p,

D+ψλ = 2−p(ϕλ + ψλ)
p

(3.52)

for (s, y) ∈ Ωλ, where Ωλ =
{
(s, y) ∈ R2 | (T (x0) + λs, x0 + λy) ∈ Ω

}
. By dλ(s, y),

we denote the distance from a point (s, y) ∈ Ωλ to Γλ = {(s, y) | s = Tλ(y)}. Here,

Tλ is a blow-up curve of ϕλ.

Lemma 3.4.2. For each fixed λ > 0,

Tλ(y) =
T (x0 + λy)− T (x0)

λ
. (3.53)

Proof. By Lemma 3.3.5, there exist positive constants C1 and C2 depending on p

and ε1 such that

λqC1 (T (x0 + λy)− (T (x0) + λs))−q

≤ λqϕ(T (x0) + λs, x0 + λy) ≤ λqC2 (T (x0 + λy)− (T (x0) + λs))−q .

We see that

λq (T (x0 + λy)− (T (x0) + λs))−q =

(
T (x0 + λy)− T (x0)

λ
− s

)−q
. (3.54)

Therefore, we obtain (3.53).

Similarly, we can show that the blow-up curve of ψλ(s, y) is Tλ(y).

From Proposition 3.3.1 and Lemmas 3.2.3, 3.3.2 and 3.4.1, there exist positive

constants C1, C2, C3,α, and C4,α, depending only on p and ε1 such that

C1(ϕλ + ψλ)
p ≤ ∂sϕλ ≤ C2(ϕλ + ψλ)

p, (3.55)

C1(ϕλ + ψλ)
p ≤ ∂sψλ ≤ C2(ϕλ + ψλ)

p, (3.56)

C1(Tλ(y)− s)−q ≤ ϕλ(s, y) ≤ C2(Tλ(y)− s)−q, (3.57)

C1(Tλ(y)− s)−q ≤ ψλ(s, y) ≤ C2(Tλ(y)− s)−q, (3.58)

|∂yϕλ| ≤
1

1 + ε1
∂sϕλ, |∂yψλ| ≤

1

1 + ε1
∂sψλ, (3.59)

|Tλ(y)− Tλ(y
′)| ≤ 1

1 + ε1
|y − y′| for y, y′ ∈

(
−R− x0

λ
,
R− x0
λ

)
, (3.60)

Tλ(y)− s√
2

≤ dλ(y, s) ≤ Tλ(y)− s, (3.61)

max {|Dα
θ ϕλ(s, y)|, |Dα

θ ψλ(s, y)|}

≤ C3,α(ϕλ(s, y) + ψλ(s, y))
p+(α−1)/q ≤ C4,αdλ(s, y)

−(pq+α−1). (3.62)

where (s, y) ∈ Ωλ. Here α = 0, 1, 2, 3.
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3.4.2 Strategy of proof of the differentiability of T

We will consider the limits of the functions Tλn , ϕλn , and ψλn . It follows from (3.60)

that Tλn is equicontinuous.

We define In by a closed interval satisfying

• In ⊂ In+1 for n ∈ N,

•
∪∞
n=1 . I ⊂ In0 .

By (3.60), there exists a positive constant M1 such that

|Tλn(y)| ≤M1 for y ∈ I1.

By the Ascoli and Arzela theorem, there exist a sequence {λ(1)n } ⊂ {λn} and T
(1)
0 ∈

C(I1) such that T
λ
(1)
n

converges to T
(1)
0 uniformly in I1.

In the same manner as above, we can see that there exist a sequence {λ(2)n } ⊂
{λ(1)n } and T

(2)
0 ∈ C(I2) such that T

λ
(2)
n

converges to T
(2)
0 uniformly in I2. By

repeating the same arguments, there exists T0 ∈ C(R) such that TΛn converges to

T0 locally uniformly in R, where Λn = λ
(n)
n .

In the remainder of this paper, we will show that T ∈ C1(BR). We demonstrate

this proof through the following two steps.

(Step 1.) First (in Section 3.5), we will show that T0, which is defined as above, is

an affine function. That is, there exists a constant αx0 such that T0(y) = αx0y for

y ∈ R.

(Step 2.) Next (in Section 3.6), we will demonstrate that a contradiction arises if

we assume that there exists x0 ∈ BR∗ such that T is not differentiable at x0 ∈ BR∗ .

We start by assuming that T is not differentiable at x0 ∈ BR∗ . On the other hand,

by (Step 1), we have that for all y ∈ R,

TΛn(y)

y
=
T (x0 + Λny)− T (x0)

Λny
→ αx0 as Λn → 0,

where {Λn} ⊂ {λn} is the sequence appeared in (Step 1). This means that there

exist {λn′} ⊂ {λn} and y′ ∈ R such that

lim sup
λn′→0

Tλn′ (y
′) > lim inf

λn′→0
Tλn′ (y

′). (3.63)

On the other hand, there exist {λ(1)n′ } ⊂ {λn′} and {λ(2)n′ } ⊂ {λn′} such that

lim
λ
(1)

n′ →0

T
λ
(1)

n′
(y′) = lim sup

λn′→0
Tλn′ (y

′),

lim
λ
(2)

n′ →0

T
λ
(2)

n′
(y′) = lim inf

λn′→0
Tλn′ (y

′).
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By repeating the above arguments, there exist {λ(1)
n′
k
} ⊂ {λ(1)n′ } and {λ(2)

n′
k
} ⊂ {λ(2)n′ },

and corresponding functions T
(1)
0 , T

(2)
0 ∈ C(R), such that

T
λ
(1)

n′
k

→ T
(1)
0 , T

λ
(2)

n′
k

→ T
(2)
0 locally uniformly in R.

It follows from (Step 1) that there exist constants α
(1)
x0 and α

(2)
x0 such that T

(1)
0 (y) =

α
(1)
x0 y and T

(2)
0 (y) = α

(2)
x0 y, respectively. By (3.63), we see that α

(1)
x0 ̸= α

(2)
x0 .

In Section 3.6, we will demonstrate that a contradiction arises if there exist α
(1)
x0

and α
(2)
x0 such that α

(1)
x0 ̸= α

(2)
x0 and

T
(1)
0 (y) = α(1)

x0 y, T
(2)
0 (y) = α(2)

x0 y for y ∈ R.

That is, we obtain that T is differentiable in BR∗ . Moreover, we can show that a

contradiction arises if we assume that the derivative T ′ is not continuous in BR∗ .

In the remainder of this section, we prepare for our proof of (Step 1.). We con-

sider the limits of blow-up sequences ϕλn and ψλn . We set Ω0 = {(s, y) | y ∈ R, s < T0(y)}.
Then, we set Jn as a closed subset of Ω0 satisfying

• Jn ⊂ Jn+1 for n ∈ N,

•
∪∞
n=1 Jn = Ω0.

It follows from the Ascoli and Arzela theorem that there exists a subsequence {λ̃n} ⊂
{Λn}, such that there exist

vϕ, vψ, v
1,θ
ϕ , v1,θψ , v2,θϕ , v2,θψ , v3,θϕ , v3,θψ ∈ C(Ω0)

satisfying
ϕλ̃n → vϕ, ψλ̃n → vψ,

Dθϕλ̃n → v1,θϕ , Dθψλ̃n → v1,θψ ,

D2
θϕλ̃n → v2,θϕ , D2

θψλ̃n → v2,θψ ,

D3
θϕλ̃n → v3,θϕ , D3

θψλ̃n → v3,θψ ,

locally uniformly in Ω0 (3.64)

for θ ∈ [0, 2π). Thus, we have that vϕ, vψ ∈ C3(Ω0). The functions vϕ and vψ are

called blow-up limits of ϕ and ψ (see [7]). By (3.52), (3.55)–(3.62), we have that{
D−vϕ = 2−p(vϕ + vψ)

p,

D+vψ = 2−p(vϕ + vψ)
p,

(3.65)

and there exist positive constants C1, C2, C3,α and C4,α, depending only on p and

ε1, such that

C1(vϕ + vψ)
p ≤ ∂svϕ ≤ C2(vϕ + vψ)

p, (3.66)

C1(vϕ + vψ)
p ≤ ∂svψ ≤ C2(vϕ + vψ)

p, (3.67)

C1(T0(y)− s)−q ≤ vϕ(s, y) ≤ C2(T0(y)− s)−q, (3.68)

C1(T0(y)− s)−q ≤ vψ(s, y) ≤ C2(T0(y)− s)−q, (3.69)

|∂yvϕ| ≤
1

1 + ε1
∂svϕ, |∂yvψ| ≤

1

1 + ε1
∂svψ, (3.70)
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|T0(y)− T0(y
′)| ≤ 1

1 + ε1
|y − y′| for y, y′ ∈ R, (3.71)

T0(y)− s√
2

≤ d0(s, y) ≤ T0(y)− s, (3.72)

max {|Dα
θ vϕ(s, y)|, |Dα

θ vψ(s, y)|}

≤ C3,α(vϕ(s, y) + vψ(s, y))
p+(α−1)/q ≤ C4,αd0(s, y)

−(pq+α−1), (3.73)

where (s, y) ∈ Ω0. Here, d0(s, y) is the distance from a point (s, y) ∈ Ω0 to Γ0 =

{(s, y) | s = T0(y), y ∈ R} and α = 0, 1, 2, 3.

3.4.3 Convexity of blow-up limits

In order to demonstrate that T0 is an affine function, we will prove the following

lemma.

Lemma 3.4.3. Assume that (A1)–(A5.3) hold. Then, we have that

D2
θvϕ ≥ 0, D2

θvψ ≥ 0 in Ω0 (3.74)

for 0 ≤ θ < 2π.

Proof. We fix a point (s̃, ỹ) ∈ Ω0. Let K−(s̃, ỹ) = {(s, y) ∈ Ω0 | |ỹ − y| < s̃− s} .
Then, it suffices to show that D2

θvϕ, D
2
θvψ ≥ 0 in K−(s̃, ỹ).

Let

Jϕ = D2
θvϕ + η∂svϕ, Jψ = D2

θvψ + η∂svψ,

where η is a positive constant.

In what follows, we will show that

Jϕ > 0 and Jψ > 0 in K−(s̃, ỹ). (3.75)

We see that

D−Jϕ = D+Jψ

= 2−pp(p− 1)(vϕ + vψ)
p−2(Dθvϕ +Dθvψ)

2

+ 2−pp(vϕ + vψ)
p−1(Jϕ + Jψ). (3.76)

We consider Jϕ and Jψ in K−(s̃, ỹ). By (3.72), we have

1√
2

(
T0(y)− s

|s|

)
≤ d0(s, y)

|s|
≤ T0(y)− s

|s|
.

Thus, we obtain that

1√
2
≤ d0(s, y)

|s|
≤ 1 for (s, y) ∈ K−(s̃, ỹ), as s→ −∞. (3.77)
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By (3.73), (3.66), (3.68), (3.69) and (3.72), we have that there exist positive constants

c1 and c2, depending only on p and ε1, such that

max{|D2
θvϕ(s, y)|, |D2

θvψ(s, y)|} ≤ c1(vϕ + vψ)
p(s, y)(vϕ + vψ)

1/q(s, y)

≤ c2∂svϕ(s, y)d0(y, s)
−1. (3.78)

Hence, it follows from (3.77) and (3.78) that

Jϕ = η∂svϕ(1 +O(1/|s|)), Jψ = η∂svψ(1 +O(1/|s|)), as s→ −∞ (3.79)

in K−(s̃, ỹ). Since ∂svϕ, ∂svϕ > 0 in Ω0, we have that Jϕ, Jψ > 0 in K−(s̃, ỹ) ∩
{(s, y) | s < −σ} if σ is large enough.

We assume that (3.75) does not hold. Then, there exists (s′, y′) ∈ K−(s̃, ỹ) such

that

Jϕ(s
′, y′) = 0 or Jψ(s

′, y′) = 0

and

Jϕ(s, y) > 0 and Jψ(s, y) > 0 for (s, y) ∈ K−(s̃, ỹ) ∩ {(s, y) | y ∈ R, s < s′}.

We assume Jϕ(s
′, y′) = 0. Then, it follows from (3.76) that

0 = Jϕ(s
′, y′)

= Jϕ(s
′ −M,y′ +M)

+

∫ M

0
2−pp(p− 1)(vϕ + vψ)

p−2(Dθvϕ +Dθvψ)
2(s, y′ +M − s)ds

+

∫ M

0
2−pp(vϕ + vψ)

p−1(Jϕ + Jψ)(s, y
′ +M − s)ds

> 0 for M > 0.

This is a contradiction. In the same manner as above, we can show that a con-

tradiction arises if we assume that Jψ(s
′, y′) = 0. Therefore, we obtain that (3.75)

holds.

By taking η → 0, we have

D2
θvϕ ≥ 0 and D2

θvψ ≥ 0 in K−(s̃, ỹ).

This completes the proof.

3.5 Linearity of the blow-up curve of blow-up limits

In this section, we will prove (Step 1.) as stated in Section 3.4.2. In order to prove

this, we will consider {
D−Vϕ = 2−p(Vϕ + Vψ)

p,

D+Vψ = 2−p(Vϕ + Vψ)
p,

(3.80)
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with some constant α ∈ R and the corresponding blow-up curve

{(s, y) | s = αy, y ∈ R} . (3.81)

We know that (3.80)–(3.81) yield the following special solution:

(Vϕ,α(s, y), Vψ,α(s, y)) = (Cϕ,α(αy − s)−q, Cψ,α(αy − s)−q), (3.82)

where

Cϕ,α = (q(1 + α)(1− α)p)q , Cψ,α = (q(1 + α)p(1− α))q .

In this section, we will prove the following lemma.

Lemma 3.5.1. Assume that (A1)–(A5.3) hold. Then, there exists a positive con-

stant α ∈ R such that

T0(y) = αy for y ∈ R. (3.83)

Moreover, the constant α satisfies −1 < α < 1 and

vϕ = Vϕ,α and vψ = Vψ,α. (3.84)

In order to prove Lemma 3.5.1, we will first introduce some lemmas.

Lemma 3.5.2. Assume that (A1)–(A5.3) hold. Then, T0 is concave.

Proof. Let ε > 0 be arbitrary. Then, by (3.68) we see that there exists a positive

constant c1, depending only on p and ε1, such that

c1ε
−q ≤ vϕ(s, y) for y ∈ R and s ∈ [T0(y)− ε, T0(y)).

Thus, there exist M ≥ c1ε
−q and E0(y) such that

vϕ(E0(y), y) =M and T0(y)− E0(y) ≤ ε for y ∈ R.

We set HM = {(s, y) | s ≤ E0(y), y ∈ R}.
We will show that E0 is concave. It suffices to show thatHM is convex. We assume

that HM is not convex. Then, there exist (s1, y1), (s2, y2) ∈ HM and ξ′ ∈ (0, 1) such

that ξ′(s1, y1)+(1−ξ′)(s2, y2) /∈ HM and ξ′(s1, y1)+(1−ξ′)(s2, y2) ∈ Ω0. We notice

that ∂svϕ > 0 in Ω0. Then, we have

M = ξ′M + (1− ξ′)M ≥ ξ′vϕ(s1, y1) + (1− ξ′)vϕ(s2, y2)

≥ vϕ(ξ
′(s1, y1) + (1− ξ′)(s2, y2))

> M.

This is a contradiction. Hence, HM is convex. Therefore, E0 is concave. Thus, we

have

ξT0(y) + (1− ξ)T0(y
′)

= ξ(T0(y)− E0(y)) + (ξE0(y) + (1− ξ)E0(y
′)) + (1− ξ)(T0(y

′)− E0(y
′))

≤ ξ(T0(y)− E0(y)) + E0(ξy + (1− ξ)y′) + (1− ξ)(T0(y
′)−E0(y

′))

≤ ε+ E0(ξy + (1− ξ)y′) < ε+ T0(ξy + (1− ξ)y′),

for y, y′ ∈ R and ξ ∈ (0, 1). Since we let ε > 0 take an arbitrary value, this completes

the proof.
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We set

vϕ,λ(s, y) = λqvϕ(λs, λy), vψ,λ(s, y) = λqvψ(λs, λy),

with λ→ ∞. Then, we can easily see that the blow-up curve of vϕ,λ and vψ,λ is

T0,λ(y) =
T0(λy)

λ
.

Lemma 3.5.3. Assume that (A1)–(A5.3) hold. Then, we have

T0,λn(y) →

{
αy (y ≥ 0)

βy (y < 0)
as λn → ∞

where α and β are constants satisfying −1 < α ≤ β < 1.

Proof. First, we see that T0,λn(0) = 0.

Next, since T0 is concave, we see that
T0,λn(y)

y
=
T0(λny)− T0(0)

λny
is monotone

decreasing on n, for y > 0. Here, {λn} is a monotone increasing sequence satisfying

λn → ∞. Thus, we have that

lim
λn→∞

T0,λn(y)

y
= inf

λn

T0,λn(y)

y
= inf

λn

T0(λny)

λny
for y > 0.

Let α = inf
λn

T0(λny)

λny
. Then, we have that

T0,λn(y) → αy as λn → ∞,

for all y > 0 and monotone increasing sequences {λn} satisfying λn → ∞. By (3.71),

we have −1 < α < 1. We notice that α does not depend on y and λn.

Finally, we can prove

lim
λn→∞

T0,λn(y)

y
= sup

λn

T0,λn(y)

y
= sup

λn

T0(λny)

λny
for y < 0,

in the same way of above. We set β = sup
λn

T0(λny)

λny
.We notice that −1 < α ≤ β < 1.

Then, it follows that

T0,λn(y) → βy as λn → ∞,

for all y < 0 and monotone increasing sequences {λn} satisfying λn → ∞. This

completes the proof.

Now, we set

T̃0(y) =

{
αy (y ≥ 0)

βy (y < 0)
, Ω̃0 =

{
(s, y) ∈ R2 | s < T̃0(y), y ∈ R

}
.

Remark 3.5.4. In the same way of proof of Lemma 3.5.2, we obtain that T̃0 is concave.

That is, α and β have the same sign.
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Lemma 3.5.5. Assume that (A1)–(A5.3) hold. Then, we have that α = β. Here, α

and β are constants as defined in Lemma 3.5.3.

Proof. There exists a sequence {λn} such that

vϕ,λn → wϕ, vψ,λn → wψ, as λn → ∞, locally uniformly in Ω̃0.

In the same arguments for Lemma 3.4.3, we see that D2
θwϕ ≥ 0 and D2

θwψ ≥ 0

in Ω̃0 , for 0 ≤ θ < 2π. Thus, Dθwϕ and Dθwψ are monotone increasing along the

direction θ. We also have that it follows from the estimates |Dθwϕ| and |Dθwψ|,
corresponding (3.73) that |Dθwϕ(s, y)|, |Dθwψ(s, y)| → 0 as d̃0(s, y) → ∞, where

d̃0(s, y) is the distance from a point (s, y) ∈ Ω̃0 to Γ̃0 = {(T̃0(y), y) | y ∈ R}.
Therefore, Dθwϕ and Dθwψ do not occur sign changes in Ω̃0.

By Remark 3.5.4, we see that α and β have the same sign.

We assume that 0 < α < β. We set θα and θβ as θα = arctanα and θβ = arctanβ,

respectively. Let us assume that 0 ≤ θα < θβ < π/2 without loss of generality.

If we take θ ∈ S where S = {θ ∈ [0, 3π/2) | θα < θ < θβ + π}, then Dθwϕ > 0,

since the closer wϕ gets to the blow-up curve s = βy (y < 0) or s = αy (y ≥ 0), the

bigger wϕ becomes.

We take θ̃ as θα < θ̃ < θβ. Then, we have that Dθ̃wϕ > 0, since θ̃ ∈ S. On the

other hand, Dθ̃+πwϕ > 0, since θ̃ + π ∈ S. This contradicts the fact that

Dθ̃wϕ = −Dθ̃+πwϕ Ω̃0.

In the same manner, we can prove that a contradiction arises if we assume that

α < β < 0. Therefore, we have that α = β. This completes the proof.

s = ↵y

s = �y

(A)

(B)

(C)

y

s

(y0, s0)

Figure A. The sign of the directional derivative at (s′, y′).

• (A) and (B) areas: The sign of the directional derivative is positive.
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• (C) area : The sign of the directional derivative is negative.

→ If (B) area exists, we can show that a contradiction arises.

Proof of Lemma 3.5.1. First, we will show that T0(y) = αy. It follows from Lemma

3.5.5 that

sup
λn

T0(λny)

λny
= inf

λn

T0(λny)

λny
= α for y ∈ R.

Thus, T0(λny) = αλny for λn > 0 and y ∈ R. Therefore, we obtain that T0(y) = αy

for y ∈ R.
Next, we will show that vϕ = Vϕ,α and vψ = Vψ,α. By applying the proof of Lemma

3.5.5, we obtain that

(α∂s + ∂y)vϕ = 0, and (α∂s + ∂y)vψ = 0 (3.85)

in Ω0. By substituting (3.85) for (3.65), we obtain the following system of equations:{
(1 + α)∂svϕ = 2−p(vϕ + vψ)

(1− α)∂svϕ = 2−p(vϕ + vψ),

with the blow-up curve T0(y) = αy. Therefore, we obtain that vϕ = Vϕ,α and vψ =

Vψ,α in Ω0. This completes the proof.

3.6 Continuous differentiability of the blow-up curve

In this section, we complete the proof of Theorem 3.1.1.

First, we will show that T is differentiable in BR∗ .We start by assuming that there

exists x0 ∈ BR∗ such that T is not differentiable at x0 ∈ BR∗ . Then, it follows from

the arguments of (Step 2.) of Section 3.4.2 that there exist sequences {λ(1)n }, {λ(2)n }
such that there exist constants α1 and α2 satisfying

α1, α2 ∈ (−1, 1), α1 ̸= α2,

ϕ
λ
(j)
n

→ Vϕ,αj
as λ(j)n → 0, locally uniformly in Ωj,0,

where

Ωj,0 =
{
(s, y) ∈ R2 | s < αjy, y ∈ R

}
for j = 1, 2.

Let θα1 and θα2 be defined such that θα1 = arctanα1 and θα2 = arctanα2. Let us

suppose that

0 ≤ θαj <
π

4
or

3π

4
< θαj < π (j = 1, 2)

and

θα1 < θα2
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without loss of generality.

We assume that 0 ≤ θα1 < θα2 < π/4. We take 0 < ε < π/2 as

0 < θα1 + ε < θα2 − ε <
π

4
.

Then, for j = 1, 2, we have that there exist θj such that

0 < θαj + ε < θj < θαj + π − ε <
5π

4
.

We define

S(j)
ε =

{
θj | θαj + ε < θj < θαj + π − ε

}
for j = 1, 2.

We see that there exists ε′ > 0 such that

Dθ′Vϕ,αj
> 2ε′ in Ωj,0 ∩B1(0, 0),

where Bρ(s
′, y′) =

{
(s, y) ∈ R2 |

√
(s− s′)2 + (y − y′)2 < ρ

}
. Here, ρ is a positive

constant.

For j = 1, 2, let (s±j , y
±
j ) and (sδ0,±j , yδ0,±j ) be the intersections of s2 + y2 = 1 and

s = αxjy and s = αxjy − δ0,

respectively. Here, δ0 is a positive constant.

We see that there exist n0 ∈ N and δ0 > 0 such that for j = 1, 2,

Ωδ01,0 ∩ Ωδ02,0 ∩B1(0, 0),

Ω
λ
(j)
n0

⊂ Ω−δ0
j,0 , Ωδ0j,0 ⊂ Ω

λ
(j)
n0

sδ0,−j < s−j ,

For θj ∈ S
(j)
ε′ , |Dθjϕλ(j)n0

−DθjVϕ,αj
| ≤ ε′ in Ωδ0j,0 ∩B1(0, 0).

Here, Ωδ0j,0 =
{
(s, y) | s < αxjy − δ0, y ∈ R

}
. This means that

Dθjϕλ(j)n0

> ε′ in Ωδ0j,0 ∩B1(0, 0)

for θj ∈ S
(j)
ε′ and j = 1, 2. By (3.55), we can prove

Dθjϕλ(j)n0

> ε′ in Kδ0
j (3.86)

where

Kδ0
j =

{
(s, y) ∈ Ω

λ
(j)
n0

∩B1(0, 0) | y < min{|yδ0,−j |, |yδ0,+j |}
}

for θj ∈ S
(j)
ε′ and j = 1, 2. (3.86) means that there exists there exists a positive

constant ρ such that

0 < ρ ≤ 1 and Dθjϕλ(j)n0

> ε′ in Ω
λ
(j)
n0

∩Bρ(0, 0) (3.87)
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for θj ∈ S
(j)
ε′ and j = 1, 2.

Let λn1 = min{λ(1)n0 , λ
(2)
n0 }. It follows from (3.87) that

Dθϕ > 0 in Ω ∩Bλn1ρ
(T (x0), x0).

for θ ∈ S
(1)
ε′ ∪ S(2)

ε′ .

In particular,

Dθ∗ϕ > 0 in Ω ∩Bλn1ρ
(T (x0), x0) (3.88)

for θ∗ ∈ (θα1 + ε, θα2 − ε), since (θα1 + ε, θα2 − ε) ⊂ S
(1)
ε . Moreover, we have

Dθ∗+πϕ > 0 in Ω ∩Bλn1ρ
(T (x0), x0) (3.89)

since θ∗ + π ∈ (θα1 + π + ε, θα2 + π − ε) ⊂ S
(2)
ε . Then, (3.88) and (3.89) contradict

the fact

Dθ∗ϕ = −Dθ∗+πϕ in Ω.

We can show contradictions in the other cases, that is, in the cases

0 ≤ θα1 < π/4, 3π/4 < θα2 < π,

3π/4 < θα1 < θα2 < π.

Therefore, T is differentiable in BR∗ .

Next, we will show that the derivative T ′ is continuous in BR∗ . We start by

assuming that there exists x0 ∈ BR∗ such that T ′ is discontinuous at x0 ∈ BR∗ . Set

αx0 = T ′(x0). Let us suppose that 0 ≤ θαx0
< π/4 or 3π/4 ≤ θαx0

< 5π/4 without

loss of generality.

Since T ′ is discontinuous at x0 ∈ BR∗ , there exists 0 < ε′ < π/2 such that there

exists {xj} ⊂ BR∗ satisfying

|xj − x0| → 0 as j → ∞ and |θαxj
− θαx0

| > 2ε′ for all j ∈ N. (3.90)

By the above argument, there exists n0 ∈ N and ρ ∈ R such that

Dθ0ϕ > 0 in Ω ∩Bλn0ρ
(T (x0), x0)

for θ0 ∈ Sε′,x0 = {θ0 | θαx0
+ ε′ < θ0 < θαx0

+ π − ε′}.
Moreover, by the continuity of T and (3.90), there exists j0 ∈ N such that

(T (xj0), xj0) ∈ Bλn0ρ
(T (x0), x0).

We see that there exists nj0 ∈ N such that

Dθj0
ϕ > 0 in Ω ∩Bλnj0

ρ(T (xj0), xj0)

for θj0 ∈ Sε′,xj0 = {θj0 | θαxj0
+ ε′ < θj0 < θαxj0

+ π − ε′}.
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Then, we have

Dθϕ > 0 in Ω ∩Bλn0ρ
(T (x0), x0) ∩Bλnj0

ρ(T (xj0), xj0)

for θ ∈ Sε′,x0 ∪ Sε′,xj0 .
Assume 0 < θx0 < θxj0 < π/4. By (3.90),

θαx0
+ ε′ < θαxj0

− ε′.

Take θ̃ as θαx0
+ ε′ < θ̃ < θαxj0

− ε′.

Then,

Dθ̃ϕ > 0 and Dθ̃+πϕ > 0 in Ω ∩Bλn0ρ
(T (x0), x0) ∩Bλnj0

ρ(T (xj0), xj0),

since θ̃, θ̃ + π ∈ Sε′,x0 ∪ Sε′,xj0 . This contradicts the fact that

Dθ̃+πϕ = −Dθ̃ϕ in Ω.

In the the other cases, that is, in the cases,

0 ≤ θαx0
< π/4, 3π/4 < θαxj0

< π,

3π/4 < θαx0
< θαxj0

< π,

0 ≤ θαxj0
< θαx0

< π/4,

0 ≤ θαxj0
< π/4, 3π/4 < θαx0

< π,

3π/4 < θαxj0
< θαx0

< π,

we can show that contradictions arise in the same way.

This completes the proof.

�0 y

s

s = ↵jy

(s�j , y
�
j )

(s+j , y
+
j )

(s�0,+j , y�0,+j )

(s�0,�j , y�0,�j )

s = ↵jy � �0

τ = h = 1/500.
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3.7 Numerical examples

In this section, we will show some numerical examples of the blow-up curves for (3.7).

For simplicity of computation, we consider the equations in a bounded interval (0, 1)

and pose the periodic boundary condition. We follow the method proposed by Cho

[12] for computing the numerical blow-up curve.

For discretization, we employ the finite difference scheme for (3.7). Take a positive

integer J and set xj = jh with h = 1/J. As a time variable, we take a positive

constant τ as τ = h and set tn = τ ·n. Then, we consider the following scheme for

(3.7):

ϕnj ≈ ϕ(tn, xj), ψnj ≈ ψ(tn, xj) (1 ≤ j ≤ J, n ≥ 0),


ϕn+1
j − ϕnj

τ
−
ϕnj+1 − ϕnj

h
= 2−p

∣∣ϕnj + ψnj
∣∣p,

ψn+1
j − ψnj

τ
+
ψnj − ψnj−1

h
= 2−p

∣∣ϕnj + ψnj
∣∣p,

ϕ0j = f(xj), ψ0
j = g(xj),

(1 ≤ j ≤ J, n ≥ 0),

where ϕJ+1 and ψn0 are set as ϕnJ+1 = ϕn1 and ψn0 = ψnJ .

We define the numerical blow-up curve Tj approximated to T (xj) by

Tj = τ ·nj(τ).

Here, nj(τ) is the smallest positive integer such that

τ ·
(
ϕ
nj(τ)−1
j + ψ

nj(τ)−1
j

)
≥ 1/eps and τ ·

(
ϕ
nj(τ)
j + ψ

nj(τ)
j

)
< 1/eps,

where eps > 0 is a stopping criterion given below. We set T = (Tj).

We plot two numerical blow-up curves T1 and T2 with two stopping criterion eps1

and eps2, respectively, for several τ in Figure 1–3. We see that T1 and T2 are almost

equal under suitable eps1, eps2 and τ. Therefore, we can regard T is a reasonable

approximation of the exact blow-up curve T for (3.7).

First, we examine the shape of blow-up curve T for p = 2 and f(x) = (1+
√
2.3)+

1
2π sin(2πx), g(x) = (1+

√
2.3)− 1

2π sin(2πx). In Figure 1, we see that the numerical

blow-up curve T converges to a smooth function as τ → 0. Therefore, we numerically

obtain that the blow-up curve T is continuously differentiable if initial values f and

g are smooth and large enough. In Figure 2, we also obtain the same result for

p = 3.

On the other hand, we obtain different results of regularity of the blow-up curve

in Figure 3. We see that there is a case where the blow-up curve has the singular

points. We notice that all the initial values are smooth in Figures 1–3. However,

the initial values f and g occur the sign changes in Figure 3, while the initial values

f and g are positive for x ∈ (0, 1) in the case of Figures 1 and 2.

Consequently, we see that we have to impose not only regularity but also largeness

on the initial values.
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Remark 3.7.1. Merle and Zagg [27] considered

∂2t u− ∂2xu = up.

They analytically showed that there are cases where the blow-up curve T has the

singular points. However, we do not know the relationship between the our numerical

results and the results of [27]
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Figure 3.1: The history of (Tj) for p = 2, f(x) = (1 +
√
2.3) + 1

2π sin(2πx) and

g(x) = (1 +
√
2.3)− 1

2π sin(2πx) and stopping criteria eps1 = 1e− 2 and

eps2 = 1e− 3.
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Figure 3.2: The history of (Tj) for p = 3, f(x) = 2.5 + 1
2π sin(2πx), g(x) = 2.5 −

1
2π sin(2πx) and stopping criteria eps1 = 1e− 2 and eps2 = 1e− 3.
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Figure 3.3: The history of (Tj) for p = 3, f(x) = 2 + 10 sin(2πx), g(x) = 2 −
10 sin(2πx) and stopping criteria eps1 = 1e− 2, and eps2 = 1e− 3.
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[3] C. Besse, R. Carles, N. J. Mauser and H. P. Stimming: Monotonicity prop-

erties of the blow-up time for nonlinear Schrödinger equations : numerical

evidence, Discrete Contin. Dyn. Syst. Ser. B 9 (2008) 11–36.

[4] C. Besse, B. Bidegaray and S. Descombes: Order estimates in the time of

splitting methods for the nonlinear Schrödinger equation, SIAM J. Numer.

Anal. 40 (2002) 26-40.

[5] J. P. Borgna, M. De Leo, D. Rial and C. Sánchez de la Vega: General splitting

methods for abstract semilinear evolution equations, Commun. Math. Sci. 13

(2015) 83–101.

[6] L. A. Caffarelli and A. Friedman: Differentiability of the blow-up curve for

one-dimensional nonlinear wave equations, Arch. Rational Mech. Anal. 91

(1985) 83–98. a

[7] L. A. Caffarelli and A. Friedman: The blow-up boundary for nonlinear wave

equations, Trans. Amer. Math. Soc. 297 (1986) 223–241.

[8] T. Cazenave and A. Haraux: An introduction to semilinear evolution equa-

tions, The Clarendon Press, Oxford University Press, (1998).

[9] Y. G. Chen: Asymptotic behaviours of blowing-up solutions for finite difference

analogue of ut = uxx+u
1+α, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986)

541–574.

[10] C. H. Cho: A finite difference scheme for blow-up solutions of nonlinear wave

equations, Numer. Math. Theory Methods Appl. 3 (2010) 475–498.

[11] C. H. Cho: On the computation of the numerical blow-up time, Jpn. J. Ind.

Appl. Math. 30 (2013) 331–349.

[12] C. H. Cho: On the computation for blow-up solutions of the nonlinear wave

equation, SIAM J. Numer. Anal. (submitted).

93



[13] C. H. Cho, S. Hamada and H. Okamoto: On the finite difference approximation

for a parabolic blow-up problem, Japan J. Indust. Appl. Math. 24 (2007) 131–

160.

[14] S. Descombes and M. Thalhammer: An exact local error representation of

exponential operator splitting methods for evolutionary problems and appli-

cations to linear Schrödinger equations in the semi-classical regime, BIT 50

(2010) 729–749.

[15] L. C. Evans: Partial Differential Equations, American Mathematical Society,

1998.

[16] R. T. Glassey: Blow-up theorems for nonlinear wave equations, Math. Z., 132

(1973) 183–203.

[17] R. T. Glassey: Finite-time blow-up for solutions of nonlinear wave equations,

Math. Z. 177 (1981) 323–340.

[18] P. Godin: The blow-up curve of solutions of mixed problems for semilinear

wave equations with exponential nonlinearities in one space dimension. I, Calc.

Var. Partial Differential Equations 13 (2001) 69–95.

[19] P. Godin: A discrete phenomenon in the C∞ and analytic regularity of the

blow-up curve of solutions to the Liouville equation in one space dinemsion, J.

Differential Equations 183 (2002) 224–238.

[20] E. Hairer, C. Lubich and G. Wanner: Geometric numerical integration (2nd

ed.), Springer-Verlag, Berlin Heidelberg, 2006.

[21] T. Jahnke and C. Lubich: Error bounds for exponential operator splittings,

BIT. 40 (2000) 735–744.

[22] F. John: Blow-up of solutions of nonlinear wave equations in three space di-

mensions, Manuscripta Math. 28 (1979) 235–268.

[23] T. Kato: Blow-up of solutions of some nonlinear hyperbolic equations, Comm.

Pure Appl. Math. 33 (1980) 501–505.

[24] H. Kawarada: On solutions of nonlinear wave equations, J. Phys. Soc. Japan

31 (1971) 280–282.

[25] C. Lubich: On splitting methods for Schrödinger-Poisson and cubic nonlinear

Schrödinger equations, Math. Comput. 77 (2008) 2141-2153.

[26] K. Matsuya: A blow-up theorem of a discrete semilinear wave equation, J.

Difference Eq. Appl. 19 (2013) 457–465.

[27] F. Merle and H. Zaag: Existence and classification of characteristic points

at blow-up for a semilinear wave equation in one space dimension, Amer. J.

Math., 134 (2012), no. 3, 581–648.

94



[28] T. Nakagawa: Blowing up of a finite difference solution to ut = uxx+u
2, Appl.

Math. Optim. 2 (1976) 337–350.

[29] T. Nakagawa and T. Ushijima: Finite element analysis of the semi-linear heat

equation of blow-up type, Topics Numer. Anal. III, Academic Press, (1977)

275–291.

[30] M. Ohta and H. Takamura: Remarks on the blow-up boundaries and rates for

nonlinear wave equations, Nonlinear Anal. 33 (1998) 693–698.

[31] N. Saito and T. Sasaki: Blow-up of finite-difference solutions to nonlinear

wave equations, to appear in J. Math. Sci. Univ. Tokyo.

[32] T. Sasaki: A second-order time-discretization scheme for a system of nonlinear

Schrödinger equations, Proc. Japan. Acad. Ser. A Math. Sci. 90 (2014) 15–20.

[33] H. Uesaka: The blow-up boundary for a system of semilinear wave equations,

Further progress in analysis, World Sci. Publ., Hackensack, NJ, (2009) 845–

853.

[34] T. K. Ushijima: On the approximation of blow-up time for solutions of non-

linear parabolic equations, Publ. Res. Inst. Math. Sci. 36 (2000) 613–640.

[35] S. Wang and L. Zhang: An efficient split-step compact finite difference method

for cubic-quintic complex Ginzburg-Landau equations, Comput. Phys. Com-

mun. 184 (2013) 1511–1521.

95


