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Chapter 1

Introduction

In this paper, we always assume that a ring is a domain essentially of finite

type over C and a variety is an irreducible reduced separated scheme of finite

type over C.

Rees and Sally introduced the cores of ideals in [33]. Okuma, Watanabe

and Yoshida characterized 2-dimensional local ring with a rational singular-

ity via cores of ideals in [32]. However, in higher dimensional case we have a

counterexample to the characterization. We will show another characteriza-

tion of local ring with a rational singularity of arbitrary dimension via cores

of ideals. We, namely, will prove the following:

Theorem 1.0.1. Let (A,m) be an n-dimensional Cohen-Macaulay local ring

with an isolated singularity. Then A is a rational singularity if and only if

In ⊂ core(I) for any m-primary ideal I.

By this Theorem, we show that a Cohen-Macaulay local ring with an iso-

lated singularity has a rational singularity if Briançon-Skoda Theorem holds

for the ring. Lipman and Teissier showed that for a local ring with rational

singularities, Briançon-Skoda Theorem holds in [28]. Therefore a Cohen-

Macaulay local ring with an isolated singularity has a rational singularity if

and only if Briançon-Skoda Theorem holds for the ring.

The multiplier ideals are fundamental tools in birational geometry. In this

paper we introduce a new notion an ”ω-multiplier ideal” which has similar

properties and works in a slightly different way than a multiplier ideal. The
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main goal of this paper is to prove the properties of ω-multiplier ideals and

show some applications.

For the definition of the multiplier ideals we used the discrepancies. In

order for the discrepancy to be well-defined, we need to assume that the vari-

ety is normal and Q-Gorenstein. The advantage of ω-multiplier ideals is that

they can be defined on any normal variety. If a variety X is normal Goren-

stein, then the ω-multiplier ideal J ω(X, ac) is equal to the usual multiplier

ideal J (X, ac) for any ideal a.

One of the most important theorem of the multiplier ideals is the Skoda’s

Theorem. We will prove that the Skoda’s Theorem of ω-multiplier ideals of

a local ring with a rational singularity.

Proposition 1.0.2. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an m-primary ideal and J be a reduction of a. Then for

n ∈ Z≥2,
J ω(A, an) = aJ ω(A, an−1) = JJ ω(A, an−1).

Huneke and Swanson proved the many properties of cores of ideals of

2-dimensional regular local ring and the relationships between the core of

an ideal and multiplier ideal of 2-dimensional regular local ring in [13]. We

generalize their results to rational singularities using ω-multiplier ideals. We

will prove the followings:

Proposition 1.0.3. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an integrally closed m-primary ideal. Then

(1) core(a) = J ω(A, a2) = aJ ω(A, a).

(2) e(a) = `(A/core(a))− 2`(A/J ω(A, a)).

(3) J ω(A, core(a)) = (J ω(A, a))2.

(4) core(an) = a2n−1J ω(A, a).

(5) coren(a) = a(J ω(A, a))2
n−1. In particular, core(core(a)) = a(J ω(A, a))3.

Demailly, Ein and Lazarsfeld proved the subadditivity theorem for multi-

plier ideals on non-singular varieties in [4]. This theorem gives many applica-

tions of commutative algebra and algebraic geometry. Takagi and Watanabe

proved that the subadditivity theorem holds for a 2-dimensional log termi-

nal local ring in [37]. Moreover they showed the characterization of a 2-

dimensional log terminal local ring via the subadditivity of multiplier ideals.
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Hence it makes sense to consider the subadditivity of ω-multiplier ideals. We

show the characterization of 2-dimensional local ring with a rational singu-

larity via the subadditivity of ω-multiplier ideals.

Theorem 1.0.4. Let (A,m) be a two-dimensional normal local ring. Then

X = SpecA has a rational singularity if and only if the subadditivity theorem

holds, that is, for any two ideal a, b ⊂ OX ,

J ω(X, ab) ⊂ J ω(X, a)J ω(X, b).

To use the subadditivity of ω-multiplier ideals, we investigate the sub-

additivity of cores of ideals. We show the characterization of 2-dimensional

local ring with a rational singularity via the subadditivity of cores of ideals.

Corollary 1.0.5. Let (A,m) be a two-dimensional normal local ring. Then

X = SpecA is rational singularities if and only if the subadditivity theorem

hold, that is, for any two m-primary integral closed ideals a, b ⊂ OX ,

core(ab) ⊂ core(a)core(b).

Moreover in [37] Takagi and Watanabe showed that a 2-dimensional nor-

mal ring is regular if the strong subadditivity theorem for the ring holds. We

will consider the problem of a version of ω-multiplier ideals. We will prove

the following:

Proposition 1.0.6. Let (A,m) be a two-dimensional normal local ring es-

sentially of finite type over C. Then X = SpecA is regular if and only if the

strong subadditivity theorem hold, that is, for any two ideal a, b ⊂ OX and

any rational number c, d > 0,

J ω(X, acbd) ⊂ J ω(X, ac)J ω(X, bd).

A multiplier ideal is an integrally closed ideal. It is natural to ask that an

integrally closed ideal is a multiplier ideal. In general multiplier ideals are not

integrally closed ideals (see [25], [26]). Favre, Jonsson, Lipman and Watanabe

gave an answer to this question when a ring is 2-dimensional regular local

ring. That is, they showed that all integrally closed ideals on a regular local

ring are multiplier ideals in [10] and [29]. Moreover Tucker generalized the
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result to a log terminal local ring in [38]. On the other hand we generalize

this theorem to rational singularities by using ω-multiplier ideals. In other

words, we will prove the following:

Theorem 1.0.7. Let (A,m) be a two-dimensional local normal ring. Suppose

X = SpecA is a rational singularity. Then every integrally closed ideal is an

ω-multiplier ideal.

Another application of ω-multiplier ideals is an upper bound of the multi-

plicity of a Du Bois singularity. Huneke and Watanabe gave an upper bound

on the multiplicity of a rational singularity in [15]. That is, they showed the

following:

Theorem 1.0.8. ([15]) Let X be an n-dimensional variety with rational

singularities. Then for a closed point x ∈ X

e(mx) ≤
(

emb(X, x)− 1

n− 1

)
.

In [15], Huneke and Watanabe asked the following

Question 1.0.9. Let X be an n-dimensional variety with Du Bois singular-

ities. Is it true that for a closed point x ∈ X

e(mx) ≤
(

emb(X, x)

n

)
?

We give the affirmative answer to the question under the condition that

X is a normal Cohen-Macaulay variety.

Theorem 1.0.10. Let X be an n-dimensional normal Cohen-Macaulay va-

riety with Du Bois singularities. Then for a closed point x ∈ X

e(mx) ≤
(

emb(X, x)

n

)
.

In Chapter 2, we define rational singularities, the Mather-Jacobian dis-

crepancy and cores of ideals and collect their results.

In Chapter 3, we define ω-multiplier ideals and prove their properties.

Further we characterize local ring with a rational singularity of arbitrary

dimension via cores of ideals.
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In Chapter 4, we study ω-multiplier ideals of a 2-dimensional local ring

with a rationals singularity. In section 4.1, we discuss the various relation-

ships between the a core of an ideal and a ω-multiplier ideal of a 2-dimensional

local ring with a rational singularity. In section 4.2, we investigate when the

subadditivity theorem of ω-multiplier ideals holds in the two-dimensional

case. In section 4.3, we show that all integrally closed ideals on surface with

a rational singularity are ω-multiplier ideals.

In Chapter 5, we give an upper bound of the multiplicity of a Du Bois

singularity.
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Chapter 2

Preliminaries

2.1 Rational singularities and Du Bois singu-

larities

In this section, we define rational singularities and Du Bois singularities.

Definition 2.1.1. We say that a local ring A has rational singularities if A is

normal and there exists a desingularizaion Y → SpecA with H i(Y,OY ) = 0

for every i > 0.

The following is well known as a characterization of rational singularities

in characteristic zero (see for example [21])

Proposition 2.1.2. Let A be a normal local Cohen-Macaulay ring essentially

of finite type over a field of characteristic 0. The scheme X = SpecA has

rational singularities if and only if there exists a desingularizaion Y → X

with f∗ωY = ωX , where ωY and ωX are the canonical sheaves of Y and X,

respectively.

Definition 2.1.3. Suppose that X is a reduced scheme embedded as a closed

subscheme of a smooth scheme Y . Let f : Ỹ → Y be a log resolution of (Y,X)

that is an isomorphism outside of X. Let E denote (f−1(X))red. Then X

is said to have Du Bois singularities if the natural map OX → Rf∗OE is a

quasi-isomorphism.
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First Du Bois singularities are introduced by Steenbrink with the different

definition in [36], but Schwede ([35]) showed that it is equivalent to the

condition in Definition 2.1.3.

Kovács, Schwede and Smith characterized normal Cohen-Macaulay Du

Bois singularities.

Theorem 2.1.4. [22] Suppose that X is normal and Cohen-Macaulay. Let

π : Y → X be any log resolution and denote the reduced exceptional divisor

of π by G. Then X has Du Bois singularities if and only if π∗ωY (G) = ωX .

Using this theorem, it is easy to see that Cohen-Macaulay log canonical

singularities are Du Bois singularities and Gorenstein Du Bois singularities

are log canonical singularities.

Remark 2.1.5. Kollár and Kovács showed that log canonical singularities

are Du Bois singularities even if the singularities are not Cohen-Macaulay

(See [20]).

2.2 Mather-Jacobian minimal log discrepancy

We start by recalling the definition and basic properties of Mather-Jacobian

log discrepancy which is defined in [7], [8]. We refer to [7] for further details.

Let X is a variety of dimension dimX = n. The sheaf Ωn
X is invertible over

the smooth locus Xreg of X, hence the projection

π : P(Ωn
X)→ X

is an isomorphism over Xreg. The Nash blow up X̂ → X is defined as the

closure of π−1(Xreg) in P(Ωn
X).

If V ⊃ X is an n-dimensional reduced, locally complete intersection

scheme, then Nash blow up π : X̂ → X is isomorphic to the blow-up of

the ideal jV |X , where jV is the Jacobian ideal of V (see Proposition 2.4 in

[3]).

Definition 2.2.1. Let f : Y → X be a resolution of singularities of X

that factors through the Nash blow-up of X. The image of the canonical

homomorphism
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f ∗(Ωn
X)→ Ωn

Y

is an invertible sheaf of the form JacfΩ
n
Y , where Jacf is the relative Jacobian

which is an invertible ideal on Y and defines an effective divisor supported

on the exceptional locus of f . The divisor is called the Mather discrepancy

divisor and denoted by K̂Y/X .

Remark 2.2.2. Let X be an n-dimensional normal variety and V ⊃ X be an

n-dimensional reduced, locally complete intersection scheme. If f : Y → X

is a log resolution of jV |X such that jV |XOY = OY (−JV ), then we have

K̂Y/X = KY + JV − f ∗(KV |X) (see [3]).

Definition 2.2.3. Let f : Y → X is a log resolution of jX , where jX is

the Jacobian ideal of a variety X. We denote by JY/X the effective divisor

on Y such that jXOY = OY (−JY/X). This divisor is called the Jacobian

discrepancy divisor.

Here, we note that every log resolution of jX factors through the Nash

blow-up, see for example, Remark 2.3, in [8].

Definition 2.2.4. Let X be an n-dimensional normal variety and V be a

reduced locally complete intersection n-dimensional scheme containing X.

The ideal dX,V is the ideal such that

Im(ωX → ωV |X) = dX,V ⊗ ωV |X .

Remark 2.2.5. Let M be a smooth variety containing X and V . Consider

the ideals IX and IV of X and V in M . Then, as OV -modules, we have

ωX ⊗ ω−1V = HomOV (OX ,OV ) = (IV : IX)/IV ,

and therefore

dX,V = ((IV : IX) + IX)/IX .

In other words, if we write V = X ∪ X ′, where X ′ is the residual part of

V with respect to X (given by the ideal (IV : IX)), then dX,V is the ideal

defining the intersection X ∩X ′ in X.
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Definition 2.2.6. Let X be a normal variety. The lci-defect ideal of X is

defined to be

dX =
∑
V

dX,V ,

where the sum is taken over all reduced, locally complete intersection schemes

V ⊃ X of the same dimension.

Remark 2.2.7. The support of the lci-defect ideal of X is locally a non-

complete intersection locus of X. In particular dX = OX if X is locally a

complete intersection.

Definition 2.2.8. A normal variety X is said to be Q-Gorenstein if its

canonical divisor KX is Q-Cartier.

Definition 2.2.9. Let X be an n-dimensional normal Q-Gorenstein variety

and V be a reduced locally complete intersection n-dimensional scheme con-

taining X. Let r be a positive integer such that rKX is Cartier. The ideal

dr,X,V is the ideal such that

Im(OX(rKX)→ (ωV |X)⊗r) = dr,X,V ⊗ (ωV |X)⊗r.

Definition 2.2.10. Let X be a normal Q-Gorenstein variety. Let r be a

positive integer such that rKX is Cartier. The lci-defect ideal of level r of X

is defined to be

dr,X =
∑
V

dr,X,V ,

where the sum is taken over all reduced, locally complete intersection schemes

V ⊃ X of the same dimension.

Proposition 2.2.11. ([3]) Let X be a normal Q-Gorenstein variety. Let r

be a positive integer such that rKX is Cartier. Then drX ⊂ dr,X .

Remark 2.2.12. If X is Gorenstein, then dX = d1,X . In general however

drX 6= dr,X .

Definition 2.2.13. Let X be a normal Q-Gorestein variety. Let a1, . . . , ar be

nonzero ideals on X, and t1, . . . , tr ∈ R. Given a log resolution f : Y → X

of a1 · · · ar, we denote by Z1, . . . , Zr the effective divisors on Y such that
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aiOY = OY (−Zi) for 1 ≤ i ≤ r. For a prime divisor E over X such that E

appears on Y , we define the log discrepancy at E as

a(E;X, at11 · · · atrr ) := ord(KY/X)− ordE(t1Z1 + · · ·+ trZr) + 1.

Definition 2.2.14. Let a1, . . . , ar be nonzero ideals on X, and t1, . . . , tr ∈ R.

Given a log resolution f : Y → X of jXa1 · · · ar, we denote by Z1, . . . , Zr the

effective divisors on Y such that aiOY = OY (−Zi) for 1 ≤ i ≤ r. For a prime

divisor E over X such that E appears on Y , we define the Mather-Jacobian-

log discrepancy at E as

aMJ(E;X, at11 · · · atrr ) := ordE(K̂Y/X − JY/X − t1Z1 − · · · − trZr) + 1.

Remark 2.2.15. If X in normal and locally a complete intersection, then

aMJ(E;X, at11 · · · atrr ) = a(E;X, at11 · · · atrr ). Indeed, in this case the image

of the canonical map Ωn
X → ωX is jXωX , hence K̂Y/X − JY/X = KY/X .

In particular, we see that aMJ(E;X, at11 · · · atrr ) = a(E;X, at11 · · · atrr ) if X is

smooth.

Note that the Mather-Jacobian log discrepancy at a prime divisor E does

not depend on the choice of f . We denote ordEK̂Y/X by k̂E.

Definition 2.2.16. Let X be a normal Q-Gorestein variety and a1, . . . , ar

be nonzero ideals on X, and t1, . . . , tr ∈ R. Then (X, at11 · · · atrr ) is canonical

(resp. log canonical) if for every exceptional prime divisor E over X, the

inequality aMJ(E;X, at11 · · · atrr ) ≥ 1 (resp. ≥ 0) holds.

Definition 2.2.17. Let X be a variety and a1, . . . , ar be nonzero ideals on

X, and t1, . . . , tr ∈ R. Then (X, at11 · · · atrr ) is MJ-canonical (resp. MJ-log

canonical) if for every exceptional prime divisor E over X, the inequality

aMJ(E;X, at11 · · · atrr ) ≥ 1 (resp. ≥ 0) holds.

Remark 2.2.18. Fix a log resolution Y → X of jXa1, . . . , ar. Then (X, a1 · · · ar)
is MJ-canonical (resp. MJ-log canonical) if and only if aMJ(E;X, at11 · · · atrr ) ≥
1 (resp. ≥ 0) for all exceptional prime divisor E on Y . This is proved by

using the fact that

K̂Y ′/X − JY ′/X = KY ′/Y + g∗(K̂Y/X − JY/X)

for a sequence Y ′
g−→ Y

f−→ X of such log resolution of jXa1, . . . , ar.
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Definition 2.2.19. Let X be a normal Q-Gorenstein variety and a1, . . . , ar

be nonzero ideals on X, and t1, . . . , tr ∈ R. Let f : Y → X be a log resolution

of a1, . . . , ar. Define Z1, . . . , Zr by aiOY = OY (−Zi) for 1 ≤ i ≤ r. Then we

can define the multiplier ideal as follows:

J (X, at11 · · · atrr ) = f∗OY (dKY/X − t1Z1 − · · · − trZre).

Definition 2.2.20. Let X be a normal Q-Gorestein variety. X is said to be

a log terminal singularities if J (X,OX) = OX .

Remark 2.2.21. Log terminal singularities are rational singularities.

Definition 2.2.22. Let X be a variety and a1, . . . , ar be nonzero ideals on

X, and t1, . . . , tr ∈ R. Let f : Y → X be a log resolution of jXa1, . . . , ar.

Define Z1, . . . , Zr by aiOY = OY (−Zi) for 1 ≤ i ≤ r. Then we can define

the Mather-Jacobian multiplier ideal (or MJ-multiplier ideal for short) as

follows:

JMJ(X, a
t1
1 · · · atrr ) = f∗OY (K̂Y/X − JY/X − [t1Z1 − · · · − trZr]).

Remark 2.2.23. Multiplier ideals and Mather-Jacobian multiplier ideals are

independent of the choice of a log resolution.

Proposition 2.2.24. ([3], [8] ) If X is MJ-canonical, then it is normal and

has rational singularities.

Proposition 2.2.25. ([3]) If X is MJ-log canonical, then it has Du Bois

singularities.

There are the relations between jet scheme and Mather-Jacobian mini-

mal log discrepancy (see [3], [7], [18]). For the theory on jet schemes and arc

space, see for example [9].

2.3 Cores of ideals

In this section, we define cores of ideals and collect their results.
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Definition 2.3.1. Let A be a ring and I be an ideal of A. An ideal J ⊂ I is

called a reduction of I if there is a positive number r such that JIr = Ir+1.

An ideal J ⊂ I is called a minimal reduction of I if J is minimal among the

reductions of I.

Definition 2.3.2. Let A be a ring and I be an ideal of A. Let f : Y → X =

SpecA be the normalized blowing up of I such that IOY = OY (−F ). The

integral closure of I is defined to be f∗OY (−F ). We denote it by I

Definition 2.3.3. Let X be an n-dimensional scheme. Suppose that a du-

alizing complex for X exists. A canonical sheaf ωX for X is defined to be

the coherent sheaf given by (−n)-th cohomology of a normalized dualizing

complex for X.

Remark 2.3.4. Dualizing complexes exist for any equidimensional scheme

essentially of finite type over an affine Gorenstein scheme (see [12]). If X

is a normal algebraic variety, then the usual notion of the canonical sheaf

provides the canonical sheaf of X. In the case X = SpecA where A is a local

ring, ωX coincides with the sheafification of the canonical module ωA.

Let f : Y → X be a birational morphism of integral schemes. Then the

trace map Trf : f∗ωY → ωX is injective, and it is important to observe that

in this case we can consider Trf as an inclusion f∗ωY ⊂ ωX .

Hyry and Villamayor proved the following lemma in [16].

Lemma 2.3.5. (Lemma 2.2 in [16]) Let (A,m) be a local ring. Let f : Y →
X = SpecA be a proper birational morphism such that Y has rational sin-

gularities. Then H0(Y, ωY ) ⊂ H0(Z, ωZ) for any proper birational morphism

g : Z → X. It follows, in particular, that H0(Y, ωY ) = H0(Z, ωZ) if Z has

rational singularities.

Definition 2.3.6. Let A be a Noetherian local ring and I an ideal. The core

of I, denoted core(I), is the intersection of all its reductions.

Definition 2.3.7. Let (A,m) be a local ring. An ideal I of A is equimultiple

if a minimal reductions of I are generated by h elements, where h = ht(I).

Example 2.3.8. Every m-primary ideal in a local ring is equimultiple.
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By the following theorem, we are able to compute core ideals for equi-

multiple ideals in Cohen-Macaulay local rings whose residue field has char-

acteristic 0.

Theorem 2.3.9. ([14], Theorem 3.7) Let A be a Cohen-Macaulay local ring.

Let I be an equimultiple ideal of A with h = ht(I) ≥ 1, let J be a minimal

reduction of I, and let r be a positive number such that JIr = Ir+1. Then

core(I) = Jr+1 : Ir.

Lemma 2.3.10. ([17], Lemma 3.1.5) Let (A,m) be a local ring and let I be

a proper ideal of A of height greater than one. Let Y = ProjA[I]. Then

H0(Y, In+pωY ) :ωA I
p = H0(Y, InωY ) for all n ≥ 0 and all p ≥ 1.

Lemma 2.3.11. ([17], Lemma 5.1.6) Let (A,m) be a Cohen-Macaulay local

ring, and I be an equimultiple ideal of height h. Then

H0(Y, IhωY ) :A ωA = Jr+1 :A I
r

where Y = ProjA[I], H0(Y, IhωY ) is considered as a submodule of ωA via the

trace map, and J is any reduction of I with JIr = Ir+1.

Theorem 2.3.12. ([17], Corollary 5.3.1) Let (A,m) be a Gorenstein local

ring with rational singularities, and I be an equimultiple ideal of height h such

that the Rees ring A[It] is normal and Cohen-Macaulay. Let Y = ProjA[It].

Then the following conditions are equivalent

(1) A[It] has rational singularities;

(2) H0(Y, InωY ) = J (In) for all n ≥ 0;

(3) core(I) = J (Ih).

If this is the case, then

core(I) = IJ (Ih−1),

J (Ih−1) = core(I) : I.
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Chapter 3

ω-multiplier ideals and cores of

ideals

3.1 ω-multiplier ideals

In this section, we define ω-multiplier ideals and prove some properties of

ω-multiplier ideals.

Definition 3.1.1. Let X be a normal variety, a be a nonzero ideal of OX ,

c ∈ Q>0 and let f : Y → X be a log resolution of a with aOY = OY (−F ).

The ω-multiplier ideal of a pair (X, ac) is defined to be f∗(ωY (−[cF ])) : ωX .

We will denote it by J ω(X, ac).

Definition 3.1.2. Let X be a variety with rational singularities and a ( OX
be a nonzero ideal of OX . The rational threshold of a pair (X, a) is defined

to be sup{c > 0|J ω(X, ac) = OX}. We will denote it by rt(X, a).

Theorem 3.1.3. (Theorem 6.15 in [3]) Let X be a normal variety, a be a

nonzero ideal and c ∈ Q>0. Then we have

J ω(X, ac) = JMJ(X, a
cd−1X ).

De Fernex and Decampo prove the following in the proof of Theorem 6.15

in [3].
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Theorem 3.1.4. ([3]) Let X be a normal variety and a be a nonzero ideal

sheaf of OX . Let V be a reduced locally complete intersection scheme contain-

ing Xof the same dimension. Let dV,X be the ideal determined by the image

of ωX → ωV |X . Let f : Y → X be a log resolution of jV |X · dV,X · a such that

jV |X · OY = OY (−JV ), dX,V · OY = OY (−DV ) and a · OY = OY (−F ) for

some effective divisors JV , DV and F on Y . Then

J ω(X, ac) = f∗OY (K̂Y/X − JV +DV − [cF ]).

Corollary 3.1.5. Let X be a normal variety, a be a nonzero ideal and c ∈
Q>0. Then we have

J ω(X, ac) ⊃ JMJ(X, a
c).

In particular, If X is locally a complete intersection, then

J ω(X, ac) = JMJ(X, a
c).

Theorem 3.1.6. (Theorem 7.1 in [3]) Let X be a normal variety and let

dX ⊂ OX be the lci-defect ideal of X. Let f : Y → X be a log resolution

of dX and denote by E the reduced exceptional divisor. Then the following

properties hold:

(i) The pair (X, d−1X ) is MJ-canonical if and only if J ω(X,OX) = OX .
(ii) The pair (X, d−1X ) is MJ-log canonical if and only if f∗ωY (E) = ωX .

Corollary 3.1.7. (Corollary 7.2 in [3]) Let X be a normal variety, and let

dX ⊂ OX be the lci-defect ideal of X. Then the following properties hold:

(i) If X has rational singularities, then (X, d−1X ) is MJ-canonical.

(ii) If X has Du Bois singularities, then (X, d−1X ) is MJ-log canonical.

Moreover, the converse holds in both cases whenever X is Cohen-Macaulay.

This corollary implies the following corollary.

Corollary 3.1.8. Let X be a Cohen-Macaulay normal variety. Then X has

rational singularities if and only if J ω(X,OX) = OX .

The following proposition gives the relation of Mather Jacobian discrep-

ancies and usual multiplier discrepancies.
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Proposition 3.1.9. (Proposition 3.4 in [3]) Let X be a Q-Gorenstein normal

variety. Let r be a positive integer such that rKX is Cartier. Let f : Y → X

be a log resolution of jX ·dX ·dr,X such that jX ·OY = OY (−JY/X), dX ·OY =

OY (−DY/X) and dr,X · OY = OY (−Dr,Y/X) for some effective divisors JY/X ,

DY/X and Dr,Y/X on Y . Then

K̂Y/X − JY/X +DY/X ≥ K̂Y/X − JY/X +Dr,Y/X = KY/X .

In particular, if X is Gorenstein, then

K̂Y/X − JY/X +DY/X = KY/X .

The following proposition gives the relation of ω-multiplier ideals and

usual multiplier ideals is an immediate consequence of the above proposition.

Proposition 3.1.10. Let X be a Q-Gorenstein normal variety, a be a nonzero

ideal of OX and c ∈ Q>0. Then J ω(X, ac) ⊃ J (X, ac). In particular, if X

is Gorenstein, J ω(X, ac) = J (X, ac).

The assertion in the next proposition are an immediate consequence of

the definition.

Proposition 3.1.11. Let a and b be nonzero ideals on a normal variety X,

and c > 0.

(1) If a ⊂ b, then J ω(X, ac) ⊂ J ω(X, bc).

(2) If c ≥ d are in Q>0, then J ω(X, ac) ⊂ J ω(X, ad).

(3) J ω(X, ac) = J ω(X, ac), where a is integrally closure of a.

Proposition 3.1.12. Let a be a nonzero ideal on a normal variety X, and

c > 0.

(1) The ω-multiplier ideal J ω(X, ac) is an integrally closed ideal of OX .

(2) Suppose that X has rational singularities. Then a ⊂ J ω(X, a).

Proof. Let jX be the Jacobian ideal of X and dX be the lci-defect ideal of X.

Let f : Y → X be a log resolution of jX ·dX such that jX ·OY = OY (−JY/X),

dX · OY = OY (−DY/X) and a · OY = OY (−F ) for some effective divisors

JY/X , DY/X and F on Y . Then we have J ω(X, ac) = f∗OY (K̂Y/X − JY/X +

DY/X − [cF ]) by Theorem 3.1.3. Therefore J ω(X, ac) is an integrally closed
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ideal of OX . If X has rational singularities, then J ω(X,OX) = OX by

Corollary 3.1.8. Therefore K̂Y/X−JY/X+DY/X is effective. Thus J ω(X, a) ⊃
f∗OY (−F ) = a ⊃ a.

Blickle defined the multiplier module in [1].

Definition 3.1.13. Let X be a normal variety and let a be a nonzero ideal

on X. Let f : Y → X be a log resolution of a such that aOY = OY (−F ).

Then the multiplier module is defined as

Jω(ac) = f∗OY (KY − [cF ]) ⊂ ωX

for c > 0.

Proposition 3.1.14. Let X be a normal variety and let a be a nonzero ideal

on X. Then J ω(ac) = Jω(ac) : ωX for all c > 0.

Proof. This follows immediately from the definition of ω-multiplier ideals.

Blickle gave a formula computing the multiplier module of a monomial

ideal on an arbitrary affine toric variety in [1].

Theorem 3.1.15. ([1]) Let Xσ be an affine toric variety and a a monomial

ideal. Then

Jω(Xσ, a
c) = 〈xm|m ∈ interior of cNewt(a)〉 ⊂ ωXσ .

Proposition 3.1.16. Let Xσ be an n-dimensional affine toric variety and m

be the maximal ideal. Then rt(m) ≥ 1.

Proof. Note that ωXσ = 〈xm|m ∈ int(σ) ∩ Zn〉 ⊂ OXσ . By theorem 3.1.15,

we have

Jω(Xσ,m
c) = 〈xm|m ∈ interior of cNewt(m)〉 ⊂ ωXσ .

Therefore if c < 1, then we have xm ∈ Jω(Xσ,m
c) for any xm ∈ ωXσ . This

implies that rt(m) ≥ 1.
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In general rt(m) is not necessarily greater than or equal to 1.

Example 3.1.17. Let (A = (C[x, y, z]/(x2 + y2z + z3))(x,y,z),m = (x, y, z).

Then A is a Du Val singularity of type D4. Let Y be the minimal resolution

of X = SpecA. The dual graph of the exceptional divisor on the minimal

resolution of A is as follows;

E1

©
E2

©
E3

©©

E4

©

©

Therefore the fundamental cycle of the minimal resolution of SpecA is Z =

E1+2E2+E3+E4, where E1, . . . , E4 are exceptional divisors on the minimal

resolution of SpecA. Since A is a Gorenstein rational singularity, we have

KY/X = 0, mOY = OY (−Z). This implies that lct(m) = 1
2
. Since A is

Gorenstein, rt(m) is equal to lct(m). Thus we have rt(m) = 1
2
.

Lemma 3.1.18. Let (A,m) be an n-dimensional Cohen-Macaulay normal

local ring and a be an m-primary ideal of A. Then J ω(A, an) ⊂ core(a). In

particular, if ProjA[a] has rational singularities, then J ω(A, an) = core(a).

Proof. Let f : Y → X be the blowing-up along a and g : Z → X be a log

resolution of a. By Theorem 2.3.9 and Lemma 2.3.11, we have

core(a) = H0(Y, anωY ) :A ωA.

Let h : Z → Y be a morphism with g = f ◦ h. Then h∗(a
nωZ) ⊂ anωY .

Hence we have H0(Z, anωZ) ⊂ H0(Y, anωY ). Therefore we have

J ω(A, an) = H0(Z, anωZ) :A ωA ⊂ H0(Y, anωY ) :A ωA = core(a).

We assume that Y = ProjA[a] has rational singularities. Then h∗(a
nωZ) =

anωY by the projection formula. Therefore we have J ω(A, an) = core(a).

Proposition 3.1.19. Let X be an n-dimensional normal variety. Let jX be

the Jacobian ideal of X and dX be the lci-defect ideal of X. Let f : Y → X
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be a log resolution of jX · dX such that jX · OY = OY (−JY/X) and dX · OY =

OY (−DY/X) for some effective divisors JY/X and DY/X on Y . Then for i > 1

Rif∗OY (K̂Y/X − JY/X +DY/X) = 0.

Proof. If X is locally a complete intersection, then dX = OX . Therefore

DY/X = 0. Then by Local Vanishing Theorem (see Theorem 3.5 in [8]),

Rif∗OY (K̂Y/X − JY/X +DY/X) = 0.

We assume that X is not locally a complete intersection. We may assume

that X is affine. Note that there is a reduction of an ideal of OX generated

by n elements (see [2], Proposition 4.6.8). Let I = (x1, . . . , xn) be a reduction

of dX . If V is the C-vector space generated by x1, . . . , xn, then we have on

Y an exact Koszul complex

0→ ∧nV ⊗OY (nDY/X)→ · · · → V ⊗OY (DY/X)→ OY → 0.

Let Ln = OY (K̂Y/X − JY/X +DY/X − nDY/X). By tensoring with Ln we get

the exact complex

0→ ∧nV ⊗ L0 → · · · → V ⊗ Ln−1 → Ln → 0.

Therefore we have

0→ ∧nV ⊗ f∗L0 → · · · → V ⊗ f∗Ln−1 → f∗Ln

→ ∧nV⊗R1f∗L0 → ∧n−1V⊗R1f∗L1 → · · · → V⊗R1f∗Ln−1 → R1f∗Ln → · · ·

→ ∧nV⊗Rif∗L0 → ∧n−1V⊗Rif∗L1 → · · · → V⊗Rif∗Ln−1 → Rif∗Ln → · · ·

By Local Vanishing Theorem (see Theorem 3.5 in [8]) for j > 0,

Rjf∗L1 = Rjf∗OY (K̂Y/X − JY/X) = 0

and

Rjf∗Ln = Rjf∗OY (K̂Y/X − JY/X − (n− 1)DY/X) = 0.

Therefore we have

Rj+1f∗OY (K̂Y/X − JY/X +DY/X) = 0.
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Lemma 3.1.20. Let (A,m) be an n-dimensional local ring with rational sin-

gularities and I be a minimal reduction of m. Then mn+1−drt(m)e ⊂ I.

Proof. Let X = SpecA. Let jX be the Jacobian ideal of X and dX be the

lci-defect ideal of X. Let f : Y → X be a log resolution of jX · dX · m such

that jX ·OY = OY (−JY/X), dX ·OY = OY (−DY/X) and m·OY = OY (−F ) for

some effective divisors JY/X , DY/X and F on Y . Since drt(m)e − 1 < rt(m),

we have K̂Y/X − JY/X +DY/X − (drt(m)e − 1)F ≥ 0. Therefore

I ⊃ core(m) ⊃ J ω(A,mn) = f∗OY (K̂Y/X − JY/X +DY/X − nF )

⊃ f∗OY (K̂Y/X − JY/X +DY/X − (drt(m)e − 1)F − (n+ 1− drt(m)e)F )

⊃ f∗OY (−(n+ 1− drt(m)e)F ) ⊃ mn+1−drt(m)e

Proposition 3.1.21. Let X be an n-dimensional variety with rational sin-

gularities. For a closed point x ∈ X,

(1) rt(mx) ≤ n

(2) rt(mx) = n if and only if x is a nonsingular point.

(3) If rt(mx) > n− 1, then x is a nonsingular point.

Proof. For part (1), let m be the maximal ideal of OX,x. Let I be a minimal

reduction of m, then I ⊃ mn+1−drt(mx)e by Lemma 3.1.20. Here, if rt(mx) > n,

then we obtain I ⊃ OX,x, a contradiction.

For part (2), suppose x is a nonsingular point. Replacing X by small

neighborhood of x, we may assume that X is nonsingular. Let f : Y → X be

the blowup of mx and E the exceptional divisor. Then f is a log resolution

of mx and the equalities KY − f ∗KX = (n− 1)E, valE(mx) = 1 hold. Hence

rt(mx) = n. Conversely suppose rt(mx) = n, then by Lemma 3.1.20, we have

m = I. Therefore m is generated by n elements. This implies that x is a

nonsingular point.

For part (3), suppose rt(mx) > n− 1. By the same way as above, x is a

nonsingular point.

Proposition 3.1.22. Let X be a variety with rational singularities and a a

nonzero ideal of OX . Then rt(a) > 1 if and only if for every nonzero ideal

b ⊂ OX , we have J ω(X, b) ⊃ b : a.
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Proof. First suppose that J ω(X, b) ⊃ (b : a) for every ideal b ⊂ OX . Con-

sidering the case where a = b, we have J ω(X, a) = OX , Hence rt(a) > 1.

Conversely assume that rt(a) > 1. Let f : Y → X be a log resolution

of jX · dX · a · b such that jX · OY = OY (−JY/X), dX · OY = OY (−DY/X),

a · OY = OY (−Fa) and b · OY = OY (−Fb) for some effective divisors JY/X ,

DY/X , Fa and Fb on Y . Since rt(a) > 1, we have J ω(X, a) = OX . This

implies that

K̂Y/X − JY/X +DY/X − Fa ≥ 0.

We may assume that b is an integrally closed ideal, that is b = f∗OY (−Fb).

Then x ∈ b : a ⇔ xa ⊂ b ⇔ f ∗x · OY (−Fa) ⊂ OY (−Fb) ⇔ f ∗x ∈ OY (Fa −
Fb). Therefore we have divf ∗x+ Fa − Fb ≥ 0. Hence we have

divf ∗x+ K̂Y/X − JY/X +DY/X − Fb ≥ K̂Y/X − JY/X +DY/X − Fa ≥ 0.

Thus x ∈ J ω(X, b).

Corollary 3.1.23. Let X be a variety with rational singularities. Then

rt(mx) > 1 for closed point x ∈ X if and only if for every mx-primary ideal

a ⊂ OX , we have a strict containment J ω(X, a) ) a.

Proof. First suppose J ω(X, a) ) a for every mx-primary ideal a ⊂ OX . Con-

sidering the case where a = mx, we have J ω(X,mx) = OX , Hence rt(mx) > 1.

Conversely assume that rt(mx) > 1. By Proposition 3.1.22, we have

J ω(X, a) ⊃ (a : mx) for every mx-primary ideal a ⊂ OX . If ml
x ⊂ a, then

ml−1
x ⊂ (a : mx). Therefore we have (a : mx) ) a. This implies that

J ω(X, a) ) a.

De Fernex and Hacon defined in [5] the log canonical, log terminal singu-

larities on an arbitrary normal variety. These singularities are generalizations

of log canonical, log terminal singularities for Q-Gorenstein variety. More-

over they defined the \-pull back of an arbitrary divisor on a normal variety

in [5]. In a local situation, as we can take an effective divisor −KX . Let

Y → X be a log resolution of OX(KX). Define the divisor f \(−KX) on Y

by OX(KX)OY = OY (−f \(−KX)).

We assume that mKX is effective. Let Y → X be a log resolution of

OX(−mKX). Define the divisor Dm on Y by OX(−mKX)OY = OY (−Dm).
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Under this notation we define the divisor

Km,Y/X = KY −
1

m
Dm

with the support on the exceptional divisor. In [5] De Fernex and Hacon

showed that for m, q ≥ 1,

Km,Y/X ≤ Kqm,Y/X ≤ KY + f \(−KX).

Proposition 3.1.24. Let X ⊂ AN be an n-dimensional affine normal vari-

ety. Then there is a log resolution Y → X of jXdXOX(KX) such that

K̂Y/X − JY/X +DY/X = KY + f \(−KX).

Proof. Let f : Y → X be a log resolution of jXdXOX(KX) such that jX ·OY =

OY (−JY/X), dX · OY = OY (−DY/X). Take a reduced complete intersection

scheme M ⊂ AN of codimension c = N − n such that M contains X as an

irreducible component. Then we have a sequence

∧nΩX
η−→ ωX

u−→ ωM |X .

By Proposition 9.1 of [9], Im(u ◦ η) = jM |XωM |X . Note that OX(KX)OY =

OY (−f \(−KX)). We have a sequence

f ∗(∧nΩX)
η′−→ OY (−f \(−KX))

u′−→ f ∗(ωM |X).

Since OY (−f \(−KX)) and f ∗(ωM |X) are invertible, we can write

Imη′ = IOY (−f \(−KX))

Imu′ = JMf
∗(ωM |X),

with the ideal I, JM ⊂ OY . Then we obtain IJM = jM |XOY . Consider all

M and define J =
∑

M JM , then we have IJ = jXOY . Let g : Z → Y be

a log resolution of IJ such that IOZ = OZ(−B) and h : Z → X be the

composition of f and g. Then B +DZ/X = JZ/X since dXOY = J .

Since h factors through the Nash blow-up, the torsion free sheaf h∗(∧nΩX)/Tor

is invertible, it is written as OZ(C) by a divisor C on Z. Then by the def-

inition of K̂Z/X , we have K̂Z/X = KZ − C. On the other hand we have
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C = g∗(−f \(−KX))− B = −h\(−KX)− B by Lemma 2.7 in [5]. Therefore

we have

K̂Z/X − JZ/X +DZ/X = KZ − C −B = KZ + h\(−KX),

which completes the proof of the lemma.

In [5], De Fernex and Hacon introduced a multiplier ideal for a pair (X, at)

with normal variety X and an ideal a on X. For m ∈ N, they defined m-th

multiplier ideal as follows:

Jm(X, at) = f∗OY (dKm,Y/X − tZe),

where f : Y → X is log resolution of aOX(−KX) and aOY = OY (−Z).

They proved that the family of ideals {Jm(X, at)}m has the unique maximal

element and call it the multiplier ideal of (X, at) and denote it by J (X, at).

Corollary 3.1.25. Let X be a normal variety and a be a nonzero ideal of

OX , Then for c ∈ Q>0,

Jm(X, ac) ⊂ J ω(X, ac)

Proof. Since Km,Y/X ≤ KY +f \(−KX), we have Jm(X, ac) ⊂ J ω(X, ac).

Corollary 3.1.26. Let X be a normal variety and a be a nonzero ideal of

OX , Then for c ∈ Q>0,

J (X, ac) ⊂ J ω(X, ac)

Proof. Since Jm(X, ac) ⊂ J ω(X, ac) for anym, we have J (X, ac) ⊂ J ω(X, ac).

3.2 Characterization rational singularities via

cores of ideals

In this section, we characterize rational singularities via cores of ideals.
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Theorem 3.2.1. ([28] Briançon-Skoda Theorem ) Let (A,m) be an n-dimensional

local ring with rational singularities and I be an ideal of A. Then we have

In ⊂ I

where ¯̄ denotes integral closure.

Lemma 3.2.2. Let (A,m) be an n-dimensional Cohen-Macaulay isolated

singularity local ring. Suppose that A is not a rational singularity. Then

there exists an m-primary ideal I of A such that In 6⊂ core(I).

Proof. Since A is not a rational singularity, we have H0(Y, ωY ) 6⊃ ωA. Let I

be an m-primary ideal such that f : ProjA[I]→ SpecA is a desingularization.

By Theorem 2.3.9 and Lemma 2.3.11, we have

core(I) = H0(Y, InωY ) :A ωA.

By Lemma 2.3.10, we have H0(Y, InωY ) :ωA In = H0(Y, ωY ). This implies

that InωA * H0(Y, InωY ) since H0(Y, ωY ) 6⊃ ωA. Therefore we have In 6⊂
H0(Y, InωY ) :A ωA = core(I).

Theorem 3.2.3. Let (A,m) be an n-dimensional Cohen-Macaulay isolated

singularity local ring . Then A is a rational singularity if and only if In ⊂
core(I) for any m-primary ideal I.

Proof. If A is a rational singularity, then In ⊂ core(I) for any m-primary

ideal I by Briançon-Skoda Theorem. For the converse proof, we assume that

A is not a rational singularity. By Lemma 3.2.2, there is an m-primary ideal

I of A such that In 6⊂ core(I). Thus we have In 6⊂ core(I).

The following corollary implies that a Cohen-Macaulay isolated singular-

ity local ring is a rational singularity if Briançon-Skoda Theorem holds for

the ring.

Corollary 3.2.4. Let (A,m) be an n-dimensional Cohen-Macaulay isolated

singularity local ring. A is a rational singularity if and only if In ⊂ I for

any m-primary ideal I.
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Proof. If A is a rational singularity, then In ⊂ I for any m-primary ideal I

by Briançon-Skoda Theorem. Hence we will show the converse implication.

We assume that A is not rational singularity. By Theorem 3.2.3, there are

an m-primary ideal I and a reduction J of I such that In 6⊂ J . Therefore we

have Jn 6⊂ J since In = Jn.

Corollary 3.2.5. Let (A,m) be an n-dimensional Cohen-Macaulay isolated

singularity local ring . Then A is a rational singularity if and only if I ⊂
J ω(I) for any m-primary ideal I.

Proof. We assume that A is a rational singularity. Let f : Y → X = SpecA

be a log resolution of jXdXI such that jXOY = OY (−J), dXOY = OY (−D)

and IOY = OY (−F ). Then Theorem 3.1.3 and Corollary 3.1.8

K̂Y/X − J +D ≥ 0, J ω(X, I) = f∗OY (K̂Y/X − J +D − F ).

Therefore we have

J ω(I) = f∗OY (K̂Y/X − J +D − F ) ⊃ f∗OY (−F ) = I.

We assume that A is not a rational singularity. Then by Theorem 3.2.3,

there exists an m-primary I such that In 6⊂ core(I). Since by Lemma 3.1.18,

J ω(In) ⊂ core(I),

we have

In 6⊂ J ω(In).

Definition 3.2.6. Let (A,m) be a local domain which is a homomorphic

image of a Gorenstein local ring. Suppose that SpecA\m has rational singu-

larities, and that there exists a proper birational morphism f : Y → SpecA

such that Y has rational singularities. We define the number r(A) as the

smallest integer r such that mrωA ⊂ Γ(Y, ωY ).

Hyry and Villamayor gave in [16] a extension of Briançon-Skoda Theorem

to normal Cohen-Macaulay local rings which have rational singularities in the

punctured spectrum.
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Theorem 3.2.7. ([16], Theorem 2.6) Let (A,m) be an n-dimensional normal

Cohen-Macaulay local domain which is a homomorphic image of a Gorenstein

local ring. Suppose that SpecA \m has rational singularities, and that there

exists a proper birational morphism f : Y → SpecA such that Y has rational

singularities. Set r = r(A). Then In+r ⊂ I for all ideal I ⊂ A.

Proposition 3.2.8. Let (A,m) be an n-dimensional Cohen-Macaulay iso-

lated singularity local ring. If A is a Du Bois singularity, In+1 ⊂ core(I) for

all ideal I ⊂ A.

Proof. Let f : Y → SpecA be a resolution of SpecA such that f is iso-

morphism over SpecA \ m, f−1(m) is simple normal crossing divisor and

mOY = OY (−F ) for a divisor F on Y . Let G be the reduced exceptional divi-

sor of f . Since A is a Du Bois singularity, we have Γ(Y, ωY (G)) = ωA by The-

orem 2.1.4. Therefore mωA = mΓ(Y, ωY (G)) ⊂ Γ(Y, ωY (G− F )) ⊂ Γ(Y, ωY ).

Thus r(A) = 1. By Theorem 3.2.7, we have In+1 ⊂ core(I).

This proposition does not give a characterization of a Cohen-Macaulay Du

Bois singularity. We have an example of an n-dimensional Cohen-Macaulay

local ring A with non-Du Bois isolated singularity such that In+1 ⊂ core(I)

for all ideal I ⊂ A.

Example 3.2.9. Let A = (C[x, y, z]/(x3+y3+z4))(x,y,z). Note Gorenstein Du

Bois singularities are log canonical singularities. Then SpecA is Gorenstein,

but not log canonical. Therefore A is not a Du Bois singularity. Let f : Y →
SpecA be the blowing-up at m. Then f is a resolution of SpecA. Therefore

we have r(A) = 1. By Theorem 3.2.7, I3 ⊂ core(I) for any ideal I.
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Chapter 4

Cores of ideals and ω-multiplier

ideals of 2-dimensional local

rings with a rational singularity

4.1 The arithmetic of cores of ideals and ω-

multiplier ideals

In this section, we discuss the various relationships between the a core of an

ideal and a ω-multiplier ideal of a 2-dimensional local ring with a rational

singularity.

Definition 4.1.1. Let (A,m) be a two-dimensional rational singularity and

fix a resolution of singularities f : Y → SpecA. For any integral divisor

D on Y , f -anti-nef closure of D is defined to be a unique smallest integral

f -anti-nef divisor which is bigger than or equal to D. We will denote it by

anf (D).

The followings are quite useful.

Theorem 4.1.2. ([27] , [11]) Let (A,m) be a two-dimensional local ring with

a rational singularity and fix a resolution of singularities f : X → SpecA.

Then there is a one-to-one correspondence between the set of integrally closed

ideals I in A such that IOX is invertible and the set of effective f -anti-
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nef cycles Z on X. The correspondence is given by IOX = OX(−Z) and

I = H0(X,OX(−Z)).

Lemma 4.1.3. ([29]) Let (A,m) be a two-dimensional local ring with a ra-

tional singularity and fix a resolution of singularities f : Y → SpecA. For

any divisor D on Y , we have f∗OY (−D) = f∗OY (−anf (D)).

Proposition 4.1.4. ([28]) Let (A,m) be a two-dimensional local ring with a

rational singularity, a be an integrally closed ideal of A and I be a reduction

of a. Then Ia = a2.

The following is a generalization of Lemma 5.6 in [31].

Lemma 4.1.5. Let (A,m) be a 2-dimensional normal local ring, I be an

m-primary ideal and J be a minimal reduction of I with JI = I2. Then for

n ∈ Z≥0,
Jn+1 : I = Jn(J : I) = In(J : I).

Proof. We will show that Jn+1 : I = Jn(J : I) = In(J : I) by induction

on n. When n = 0, the assertion is trivial. If n = 1, then the equalities

hold by Lemma 5.6 in [31]. Thus we may assume that n ≥ 2. It is clear

that Jn(J : I) ⊂ In(J : I). Let x ∈ In, y ∈ (J : I). Then xyI ⊂ yIn+1 =

yIJn ⊂ Jn+1. Therefore we have In(J : I) ⊂ Jn+1 : I. Hence we will

show the inclusion Jn+1 : I ⊂ Jn(J : I). Let J = (x1, x2). Assume that

x ∈ Jn+1 : I. Since Jn+1 : I ⊂ Jn+1 : J ⊂ Jn, there exist ai1,i2 ∈ A

such that x =
∑

i1+i2=n
ai1,i2x

i1
1 x

i2
2 . Since x ∈ Jn+1 : I, for any f ∈ I

there exist bi1,i2 ∈ A such that xf =
∑

j1+j2=n+1 bj1,j2x
j1
1 x

j2
2 . Then we have

an,0x
n
1f − bn+1,0x

n+1
1 ∈ (x2), a0,nx

n
2f − b0,n+1x

n+1
2 ∈ (x1). Since x1, x2 is a

regular sequence, we have an,0f − bn+1,0x1 ∈ (x2), a0,nf − b0,n+1x2 ∈ (x1).

Thus an,0f, a0,nf ∈ J . This shows that an.0, a0,n ∈ J : I. We can write

x− an.0xn1 − a0,nxn2 = x1x2
∑

i1+i2=n,i1,i2 6=0,n

ai1,i2x
i1−1
1 xi2−12 .

Let y =
∑

i1+i2=n,i1,i2 6=0,n ai1,i2x
i1−1
1 xi2−12 . Since x ∈ Jn+1 : I and an.0x

n
1 , a0,nx

n
2 ∈

Jn(J : I) ⊂ Jn+1 : I, we have x1x2y ∈ Jn+1 : I. For any f ∈ I, we have

x1x2yf ∈ Jn+1.
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Hence we have

yf ∈ Jn−1.

Therefore we have

y ∈ Jn−1 : I.

By induction hypothesis, we have y ∈ Jn−2(J : I). Thus we have x =

an.0x
n
1 + a0,nx

n
2 + x1x2y ∈ Jn(J : I).

Proposition 4.1.6. Let (A,m) be a 2-dimensional normal local ring, I be

an m-primary ideal and J be a minimal reduction of I with JI = I2. Then

for n ∈ Z≥1,

Jn−1core(I) = In−1core(I) = Jn+1 : I = Jn(J : I) = In(J : I).

Proof. By Theorem 2.3.9 and Lemma 4.1.5, we have

core(I) = J2 : I = J(J : I) = I(J : I).

Thus by Lemma 4.1.5, we have

Jn−1core(I) = In−1core(I) = Jn+1 : I = Jn(J : I) = In(J : I).

We need the following theorem to prove the properties of ω-multiplier

ideals of 2-dimensional local ring with a rational singularity.

Theorem 4.1.7. ([32]) Let (A,m) be a 2-dimensional local ring with a ratio-

nal singularity, a be an integrally closed m-primary ideal and I be a minimal

reduction of a. Let f : Y → X = SpecA be a log resolution of a such that

a ·OY = OY (−F ) and f : Y0 → X be the minimal resolution of singularities.

Then

I : a = H0(Y,OY (KY/Y0 − F )),

core(a) = aH0(Y,OY (KY/Y0 − F ))

= IH0(Y,OY (KY/Y0 − F )) = H0(Y,OY (KY/Y0 − 2F )).

Hyry and Smith proved the following in the proof of Lemma 5.1.6 in [17].

We need the lemma to prove Proposition 4.1.9.
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Lemma 4.1.8. ([17]) Let (A,m) be an n-dimensional Cohen-Macaulay local

ring, a be an m-primary ideal and J be a minimal reduction of a with Jar =

ar+1. Let Y be the blowing-up of a. Then for m ∈ Z≥1,

H0(Y, amωY ) = Jm+r+1−nωA :ωA ar

and

JmωA : ωA = Jm.

Proposition 4.1.9. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an m-primary integrally closed ideal and J be a minimal

reduction of a. Then for n ∈ N,

J ω(A, an) = Jn : a = Jn−1(J : a) = an−1(J : a).

Proof. Let f : Y → X be the blowing-up along a and g : Z → X be a log

resolution of a. Then Y is normal because am is an integrally closed ideal

for any m ∈ N (see Theorem 7.1 in [27]). By Proposition 1.2 in [27], Y has

a rational singularity. Therefore we have by the projection formula,

H0(Z, anωZ) = H0(Y, anωY ).

Thus by Proposition 4.1.4 and Lemma 4.1.8 we have

J ω(A, an) = H0(Y, anωY ) : ωA = (JnωA :ωA a) : ωA

= (JnωA : ωA) : a = Jn : a.

Thus by Lemma 4.1.5, we have

J ω(A, an) = Jn : a = Jn−1(J : a) = an−1(J : a).

The following proposition implies that the Skoda’s Theorem of ω-multiplier

ideals holds for a 2-dimensional local ring with a rational singularity.

Proposition 4.1.10. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an m-primary ideal and J be a reduction of a. Then for

n ∈ Z≥2,

J ω(A, an) = aJ ω(A, an−1) = JJ ω(A, an−1).
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Proof. We may assume that a is an integrally closed ideal and J is a minimal

reduction of a. By Proposition 4.1.9, we have

J ω(A, an) = Jn−1(J : a) = an−1(J : a)

J ω(A, an−1) = Jn−2(J : a) = an−2(J : a).

Therefore we have

J ω(A, an) = aJ ω(A, an−1) = JJ ω(A, an−1).

Theorem 4.1.11. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an m-primary ideal. Let f : Y → X be a log resolution of

singularities of a such that a·OY = OY (−F ) and f0 : Y0 → X be the minimal

resolution of singularities. Then for n ∈ N,

J ω(A, an) = H0(Y,OY (KY/Y0 − nF )).

Proof. We may assume that a is an integrally closed ideal. Let I be a minimal

reduction of an. By Theorem 4.1.7 we have I : an = H0(Y,OY (KY/Y0−nF )).

By Proposition 4.1.9, we have I : an = J ω(A, an). Therefore J ω(A, an) =

H0(Y,OY (KY/Y0 − nF )).

Corollary 4.1.12. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an m-primary integrally closed ideal and J be a minimal

reduction of a. Then

core(a) = J ω(A, a2) = aJ ω(A, a) = JJ ω(A, a).

Proof. By Theorem 4.1.7, Proposition 4.1.10 and Theorem 4.1.11, we have

core(a) = J ω(A, a2) = aJ ω(A, a) = JJ ω(A, a).

Proposition 4.1.13. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an integrally closed m-primary ideal. Then

e(a) = `(A/core(a))− 2`(A/J ω(A, a)).
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Proof. Let I = (x1, x2) be a minimal reduction of a. We have

e(a) = `(A/I) = `(A/IJ ω(A, a))− `(I/IJ ω(A, a)).

By Corollary 4.1.12, `(A/IJ ω(A, a)) = `(A/core(a)).

We will show that I/IJ ω(A, a) is isomorphic toA/J ω(A, a)⊕A/J ω(A, a).

Let φ : A/J ω(A, a) ⊕ A/J ω(A, a) → I/IJ ω(A, a) be a map defined by

φ(a + J ω(A, a), b + J ω(A, a)) = x1a + x2b + IJ ω(A, a). It is clear that φ

is surjective. Let (a + J ω(A, a), b + J ω(A, a)) ∈ kerφ. Then by Proposition

4.1.9,

x1a+ x2b ∈ IJ ω(A, a) = I(I : a) = I2 : a.

Then for any element h ∈ a, (x1a+x2b)h ∈ I2. Therefore there are c1, c2, c3 ∈
A such that (x1a + x2b)h = c1x

2
1 + c2x1x2 + c3x

2
2. Since x1ah − c1x

2
1 ∈

(x2), x2bh− c3x22 ∈ (x1) and x1, x2 is a regular sequence, we have ah− c1x1 ∈
(x2), bh − c3x2 ∈ (x1). Therefore we have ah, bh ∈ (x1, x2). Thus we have

a, b ∈ I : a. Since J ω(A, a) = I : a, φ is injective. Hence φ is isomorphism.

This implies that `(I/IJ ω(A, a)) = 2`(A/J ω(A, a)). Thus we have

e(a) = `(A/core(a))− 2`(A/J ω(A, a)).

Lemma 4.1.14. Let (A,m) be a 2-dimensional local ring with a rational

singularity. Let f : Y → X = SpecA be a resolution of singularities of

SpecA. We assume that the morphism f is factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every

i = 1, . . . , n and f0 : Y0 → X is the minimal resolution of X. We denote

by πi : Y → Yi the composition of fi+1, . . . , fn for i = 0, 1, . . . , n − 1 and by

πn : Y → Y the identity morphism on Y . Let Z be a f -anti-nef cycle on Y

and K = KY/Y0 =
∑n

i=1 π
∗
iEi. Let

C = {j ∈ N|1 ≤ i ≤ n, Z · π∗jEj < 0}.

Then

anf (Z −K) = Z −
∑
i∈C

π∗iEi
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Proof. First we will show that Z −
∑

i∈C π
∗
iEi is f -anti-nef. For each f0-

exceptional curve F , we have

(Z −
∑
i∈C

π∗iEi) · π−10 ∗F ≤ Z · π−10 ∗F ≤ 0.

We assume that for i ∈ C and j 6∈ C, π∗iEi ·π−1j ∗Ej = 1. Then fi : Yi → Yi−1

is the blowing-up at a closed point of the strict transform of Ej on Yi−1.

This implies that π∗iEi ≤ π∗jEj. Therefore Z · π∗jEj ≤ Z · π∗iEi < 0 since Z

is f -anti-nef. This implies that j ∈ C, which is a contradiction. Hence we

have π∗iEi · π−1j ∗Ej = 0 for i ∈ C and j 6∈ C. Thus for j 6∈ C, we have

(Z −
∑
i∈C

π∗iEi) · π−1j ∗Ej = Z · π−1j ∗Ej = 0.

We assume that Z · π−1j ∗Ej < 0 for j ∈ C. Then we have

(Z −
∑
i∈C

π∗iEi) · π−1j ∗Ej ≤ Z · π−1j ∗Ej − π
∗
jEj · π−1j ∗Ej = Z · π−1j ∗Ej + 1 ≤ 0.

We assume that Z ·π−1j ∗Ej = 0 for j ∈ C. Then there exists k ∈ C such that

Z · π∗kEk < 0, π∗kEk ≤ π∗jEj and π∗kEk · π−1j ∗Ej = 1. Therefore

(Z −
∑
i∈C

π∗iEi) · π−1j ∗Ej = −
∑
i∈C

π∗iEi · π−1j ∗Ej

≤ −π∗jEj · π−1j ∗Ej − π
∗
kEk · π−1j ∗Ej = 0.

By the above discussion, Z −
∑

i∈C π
∗
iEi is f -anti-nef. This implies that

anf (Z −K) ≤ Z −
∑
i∈C

π∗iEi.

Let Z ′ be a cycle such that Z −K ≤ Z ′ < Z −
∑

i∈C π
∗
iEi. Next we will

show that Z ′ is not f -anti-nef. Let F = Z−
∑

i∈C π
∗
iEi−Z ′ and π−1j ∗Ej ≤ F .

Then there exists k 6∈ C such that π−1j ∗Ej ≤ π∗kEk. Thus we have j 6∈ C.

Since Z · π−1j ∗Ej = 0 and π∗iEi · π−1j ∗Ej = 0 for i ∈ C and j 6∈ C,

Z ′ · F = (Z −
∑
i∈C

π∗iEi − F ) · F = −F · F > 0.

Thus Z ′ is not f -anti-nef. Therefore the minimal f -anti-nef cycle which are

bigger than or equal to Z −K is Z −
∑

i∈C π
∗
iEi.
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Lemma 4.1.15. Let (A,m) be a 2-dimensional local ring with a rational

singularity. Let f : Y → X = SpecA be a log resolution of jXdX such that

jXOY = OY (−J) and dXOY = OY (−D). Let Z be an exceptional f -anti-nef

divisor on Y . Let Kω = K̂Y/X − J + D and K = KY/Y0, where Y0 is the

minimal resolution of X. Then

ordFK
ω = ordFK

for any exceptional prime divisor F with Z · F < 0.

Proof. The morphism f can be factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every

i = 1, . . . , n and f0 : Y0 → X is the minimal resolution of X. We denote

by πi : Y → Yi the composition of fi+1, . . . , fn for i = 0, 1, . . . , n− 1 and by

πn : Y → Y the identity morphism on Y . Let

C = {j ∈ N|1 ≤ i ≤ n, Z · π∗jEj < 0}.

Then

anf (nZ −K) = nZ −
∑
i∈C

π∗iEi

for any positive integer n by Lemma 4.1.14. Let a = f∗OY (−Z). Then a is an

m-primary ideal and we have aOY = OY (−Z) by Theorem 4.1.2. Therefore

J ω(X, an) = f∗OY (Kω − nZ) by Theorem 3.1.3. By Theorem 4.1.11 and

Lemma 4.1.14, we have

nZ −Kω ≤ anf (nZ −Kω) = anf (nZ −K) = nZ −
∑
i∈C

π∗iEi.

This implies that
∑

i∈C π
∗
iEi ≤ Kω. Since ordFπ

∗
jEj = 0 for j 6∈ C, we have

ordFK = ordF

n∑
i=1

π∗iEi = ordF
∑
i∈C

π∗iEi.

Therefore we have ordFK
ω ≥ ordFK.
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We assume that ordFK
ω > ordFK. Then we have

Kω ≥
∑
i∈C

π∗iEi + F.

Since Z ·F < 0, there exists n ∈ N such that nZ−
∑

i∈C π
∗
iEi−F is f -anti-nef.

Then

anf (nZ −Kω) ≤ anf

(
nZ − (

∑
i∈C

π∗iEi + F )

)
≤ nZ −

∑
i∈C

π∗iEi − F < nZ −
∑
i∈C

π∗iEi

= anf (nZ −Kω),

which is a contradiction. Therefore we have ordFK
ω = ordFK.

Lemma 4.1.16. Let (A,m) be a 2-dimensional local ring with a rational

singularity. Let f : Y → X = SpecA be a resolution of singularities of X

and F be a prime exceptional divisor on Y . Then there exists an exceptional

f -anti-nef divisor Z on Y with Z · F < 0.

Proof. Let Zf be a fundamental cycle of f . Then there exists a prime excep-

tional divisor F1 with Z · F1 < 0. Since f−1(m) is connected, there exists a

sequence {F1, . . . , Fn} such that Fi is a exceptional prime divisor, Fi·Fi+1 = 1

for 1 ≤ i ≤ n− 1 and Fn = F .

We will make an exceptional f -anti-nef divisor Zi such that Zi · Fi < 0

for i by induction on i. When i = 1, we can take Zf as Z1. By the induction

hypothesis there exists an exceptional f -anti-nef divisor Zi such that Zi ·Fi <
0. Since Zi · Fi < 0, there exists a positive integer n such that nZi − Fi is

f -anti-nef divisor. Then (nZi−Fi) ·Fi+1 ≤ −Fi ·Fi+1 < 0. Therefore we can

take nZi − Fi as Zi+1.

Thus there exists an exceptional f -anti-nef divisor Z on Y with Z · F <

0.

Proposition 4.1.17. Let (A,m) be a 2-dimensional local ring with a rational

singularity. Let f : Y → X = SpecA be a log resolution of jXdX such that

jXOY = OY (−J) and dXOY = OY (−D). Let Z be an exceptional f -anti-nef

divisor on Y . Let Kω = K̂Y/X − J + D and K = KY/Y0, where Y0 is the

minimal resolution of X. Then

Kω = K
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Proof. By Lemma 4.1.16, for any prime exceptional divisor F on Y , there

exists an exceptional f -anti-nef divisor Z on Y with Z · F < 0. By Lemma

4.1.15, we have ordFK
ω = ordFK. Therefore we have Kω = K.

We need the following lemma to prove Lemma 4.1.19.

Lemma 4.1.18. (Lemma 9.2.19 in [24]) Let X be a smooth variety of di-

mension n, and D any Q-divisor on X with simple normal crossing support.

Suppose that f : Y → X is a log resolution of D. Then

f∗OY (KY/X − [f ∗D]) = OX(−[D]).

Lemma 4.1.19. Let (A,m) be a 2-dimensional normal local ring, a be a

nonzero ideal of A. Let f : Y → X = SpecA be a log resolution of a

such that a · OY = OY (−F ) and f0 : Y0 → X be the minimal resolution

of singularities. Then for c > 0, f∗OY (KY/Y0 − [cF ]) is independent of the

choice of log resolutions.

Proof. Since any two log resolutions can be dominated by a third, we consider

the case of two log resolutions of a, f1 : Y1 → X and f2 : Y2 → X, with a

map between them:

Y2

f2
  A

A
A
A
A
A
A

g
// Y1

f1
��

X

Let aOY1 = OY1(−F1), aOY2 = OY2(−F2) and g : Y2 → Y1 be the morphism

with f2 = f1◦g . Then we haveKY2/Y0 = KY2/Y1+g
∗(KY1/Y0) and F2 = g∗(F1).

By the projection formula and Lemma 4.1.18,

f2∗OY (KY2/Y0 − [cF2]) = f1∗g∗OY2(KY2/Y1 + g∗KY1/Y0 − [cg∗F1])

= f1∗

(
g∗OY2(KY2/Y1 − [cg∗F1])⊗OY1(KY1/Y0)

)
= f1∗OY1(KY1/Y0 − [cF1]).

Therefore f∗OY (KY/Y0− [cF ]) is independent of the choice of log resolutions.
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Theorem 4.1.20. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be a nonzero ideal of A. Let f : Y → X = SpecA be a log

resolution of a such that a · OY = OY (−Z) and f0 : Y0 → X be the minimal

resolution of singularities. Then for c > 0,

J ω(A, ac) = H0(Y,OY (KY/Y0 − [cZ])).

Proof. By Lemma 4.1.19, we may assume that f is a log resolution of jXdXa.

Let J , D be divisors on Y such that jXOY = OY (−J) and dXOY = OY (−D).

Let Kω = K̂Y/X − J + D and K = KY/Y0 . By Proposition 4.1.17, Kω = K.

This implies that

J ω(A, ac) = H0(Y,OY (KY/Y0 − [cZ])).

Proposition 4.1.21. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an integrally closed m-primary ideal. Then

J ω(A, core(a)) = (J ω(A, a))2.

Proof. Let f : Y → X be a log resolution of a such that a · OY = OY (−Z)

for some effective divisor Z on Y . The morphism f can be factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every

i = 1, . . . , n and f0 : Y0 → X is the minimal resolution of X. We denote

by πi : Y → Yi the composition of fi+1, . . . , fn for i = 0, 1, . . . , n− 1 and by

πn : Y → Y the identity morphism on Y . Let K = KY/Y0 and

C = {j ∈ N|1 ≤ i ≤ n, Z · π∗jEj < 0}.

By Lemma 4.1.14 we have

anf (Z −K) = Z −
∑
i∈C

π∗iEi.

By Theorem 4.1.7 we have

core(a) = f∗OY (
∑
i∈C

π∗iEi − 2Z).
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Let

C ′ = {j ∈ N|1 ≤ i ≤ n, (2Z −
∑
i∈C

π∗iEi) · π∗jEj < 0}.

Then by Lemma 4.1.14 we have

anf (2Z −
∑
i∈C

π∗iEi −K) = 2Z −
∑
i∈C

π∗iEi −
∑
i∈C′

π∗iEi.

We will show C = C ′. Let j ∈ C. Since Z ·π∗jEj < 0 and
∑

i∈C π
∗
iEi ·π∗jEj =

−1, we have (2Z −
∑

i∈C π
∗
iEi) · π∗jEj < 0. Therefore C ⊂ C ′.

Hence we will show the opposite inclusion. We assume that we can take

j ∈ C ′ \ C. Then Z · π∗jEj = 0 and
∑

i∈C π
∗
iEi · π∗jEj > 0 since (2Z −∑

i∈C π
∗
iEi) ·π∗jEj < 0. On the other hand since π∗iEi ·π∗jEj = 0 for i 6= j, we

have
∑

i∈C π
∗
iEi · π∗jEj is 0, which is a contradiction. Thus we have C = C ′.

This implies that

anf (2Z −
∑
i∈C

π∗iEi −K) = 2(Z −
∑
i∈C

π∗iEi).

Thus we have

J ω(A, core(a)) = f∗OY (K − (2Z −
∑
i∈C

π∗iEi))

= f∗OY (−2(Z −
∑
i∈C

π∗iEi)) = (J ω(A, a))2.

Proposition 4.1.22. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an integrally closed m-primary ideal. Then for n ∈ N,

core(an) = a2n−1J ω(A, a).

Proof. We have core(an) = anJ ω(A, an) = a2n−1J ω(A, a) by Proposition

4.1.10 and Corollary 4.1.12.

Now we introduce some notation: core1(a) = core(a) and, for n > 1,

coren(a) = coren−1(core(a)).
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Proposition 4.1.23. Let (A,m) be a 2-dimensional local ring with a rational

singularity, a be an integrally closed m-primary ideal. Then for n ∈ N,

coren(a) = a(J ω(A, a))2
n−1.

In particular, core(core(a)) = a(J ω(A, a))3.

Proof. We have core(a) = a(J ω(A, a)) by Corollary 4.1.12. Now let n > 1

and assume that the proposition holds for n− 1. Then by Proposition 4.1.21

coren(a) = coren−1(core(a))

= core(a)
(
J ω(A, core(a))

)2n−1−1

= aJ ω(A, a)
(

(J ω(A, a))2
)2n−1−1

= a(J ω(A, a))2
n−1.

Proposition 4.1.24. Let (A,m) be a 2-dimensional local ring with a rational

singularity. Let X = SpecA. Let jX be the Jacobian ideal of X and dX be the

lci-defect ideal of X. Let f : Y → X be a log resolution of jX · dX such that

jX ·OY = OY (−JY/X) and dX ·OY = OY (−DY/X) for some effective divisors

JY/X and DY/X on Y . Then

R1f∗OY (K̂Y/X − JY/X +DY/X) = 0.

Proof. If X is locally a complete intersection, then dX = OX . Therefore

DY/X = 0. Then by Local Vanishing Theorem (see Theorem 3.5 in [8]),

R1f∗OY (K̂Y/X − JY/X +DY/X) = 0.

We assume that X is not locally a complete intersection. Let I = (x1, x2)

be a minimal reduction of dX . If V is the C-vector space generated by x1, x2,

then we have on Y an exact Koszul complex

0→ ∧2V ⊗OY (2DY/X)→ V ⊗OY (DY/X)→ OY → 0.
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Let Ln = OY (K̂Y/X − JY/X +DY/X − nDY/X). By tensoring with L2 we get

the exact complex

0→ ∧2V ⊗ L0 → V ⊗ L1 → L2 → 0.

Since J ω(A, d2) = IJ ω(A, d1) by Proposition 4.1.10, the map V ⊗ f∗L1 →
f∗L2 is surjective. Hence the map

∧2V ⊗R1f∗OY (K̂Y/X − JY/X +DY/X)→ V ⊗R1f∗OY (K̂Y/X − JY/X)

is injective. Since R1f∗OY (K̂Y/X − JY/X) = 0 by Local Vanishing Theorem

(see [8]), we have

R1f∗OY (K̂Y/X − JY/X +DY/X) = 0.

4.2 Subadditivity thorem for ω-multiplier ide-

als of a 2-dimensional singularity

In this section, we investigate when the subadditivity theorem of ω-multiplier

ideals holds in the two-dimensional case.

Demailly, Ein and Lazarsfeld proved the following theorem, which is called

the subadditivity theorem.

Theorem 4.2.1. ([4]) Let (A,m) be a regular local ring. Then for any two

nonzero ideals a, b ⊂ OX and any rational numbers c, d > 0,

J (X, acbd) ⊂ J (X, ac)J (X, bd).

In this paper, we say that the subadditivity theorem holds if J ω(X, ab) ⊂
J ω(X, a)J ω(X, b) for any two nonzero ideals a, b ⊂ OX , and the strong

subadditivity theorem holds if J ω(X, acbd) ⊂ J ω(X, ac)J ω(X, bd) for any

two nonzero ideals a, b ⊂ OX and any rational numbers c, d > 0.

The following lemma seems to be well known to the specialists, but for

lack of an explicit reference we give its proof.
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Lemma 4.2.2. Let (A,m) be a two-dimensional rational singularity and fix

a resolution of singularities f : Y → SpecA. Let Z1, Z2 be two effective

f -anti-nef divisors on Y . Then f∗OY (−Z1) ⊂ f∗OY (−Z2) if and only if

Z1 ≥ Z2.

Proof. If Z1 ≥ Z2, then f∗OY (−Z1) ⊂ f∗OY (−Z2). Hence we will show

the converse implication. Suppose, by way of contradiction, f∗OY (−Z1) ⊂
f∗OY (−Z2) and Z1 6≥ Z2. Note that f∗OY (−Z1)·OY = OY (−Z1) by Theorem

4.1.2. Then

x ∈ f∗OY (−Z2) : f∗OY (−Z1)⇔ xf∗OY (−Z1) ⊂ f∗OY (−Z2)

⇔ f ∗x · OY (−Z1) ⊂ OY (−Z2)⇔ f ∗x ∈ OY (Z1 − Z2)

⇔ x ∈ f∗OY (Z1 − Z2).

Therefore we have f∗OY (−Z2) : f∗OY (−Z1) = f∗OY (Z1 − Z2). Since

f∗OY (−Z1) ⊂ f∗OY (−Z2),

we have f∗OY (−Z2) : f∗OY (−Z1) = A. On the other hand we have f∗OY (Z1−
Z2) 6= A since Z1 6≥ Z2. Thus if f∗OY (−Z1) ⊂ f∗OY (−Z2), then Z1 ≥
Z2.

Theorem 4.2.3. Let (A,m) be a two-dimensional normal local ring. Then

X = SpecA has a rational singularity if and only if the subadditivity theorem

of ω-multiplier ideals holds, that is, for any two nonzero ideals a, b ⊂ OX ,

J ω(X, ab) ⊂ J ω(X, a)J ω(X, b).

Proof. If the subadditivity theorem holds, then J ω(X,OX) ⊂ J ω(X,OX)2.

Thus J ω(X,OX) = OX , namely X has a rational singularity. Hence we will

show the converse implication, that is, we will prove that for any two ideals a,

b ⊂ OX , J ω(X, ab) ⊂ J ω(X, a)J ω(X, b), when X has a rational singularity.

Let f : Y → X be a resolution of singularities such that aOY = OY (−Fa)

and bOY = OY (−Fb) are invertible and Exc(f)∪SuppFa∪SuppFb is a simple

normal crossing divisor. Denote by K the relative canonical divisor KY/Y0 ,

where Y0 is the minimal resolution of X. By Theorem 4.1.20, we have

J ω(X, a)J ω(X, b) = H0(Y,OY (K − Fa))H
0(Y,OY (K − Fb)),
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J ω(X, ab) = H0(Y,OY (K − Fa − Fb)).

Since X has a rational singularity, the product of integrally closed ideals of X

is also integrally closed (see [27]). Hence J ω(X, a)J ω(X, b) and J ω(X, ab)

are integrally closed, and J ω(X, a)J ω(X, b) and J ω(X, ab) correspond to

the cycles anf (Fa −K) + anf (Fb −K) and anf (Fa + Fb −K), respectively.

Therefore, it suffices to show that

anf (Fa −K) + anf (Fb −K) ≤ anf (Fa + Fb −K).

In order to prove this, we prepare some notation. The morphism f can be

factorized as

Y := Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0
f0−→ X,

where fi : Yi → Yi−1 is a contraction of a (−1)-curve Ei on Yi for every

i = 1, . . . , n and f0 : Y0 → X is the minimal resolution of X. We denote

by πi : Y → Yi the composition of fi+1, . . . , fn for i = 0, 1, . . . , n− 1 and by

πn : Y → Y the identity morphism on Y . Using Lemma 4.1.14, we will prove

anf (Fa −K) + anf (Fb −K) ≤ anf (Fa + Fb −K).

Let

Ca = {j ∈ N|1 ≤ i ≤ n, Fa · π∗jEj < 0},

Cb = {j ∈ N|1 ≤ i ≤ n, Fb · π∗jEj < 0}

and

Cab = {j ∈ N|1 ≤ i ≤ n, (Fa + Fb) · π∗jEj < 0}.

Then we have Cab ⊂ Ca ∪ Cb. Therefore by Lemma 4.1.14,

anf (Fa −K) + anf (Fb −K) = Fa −
∑
i∈Ca

π∗iEi + Fb −
∑
i∈Cb

π∗iEi

≤ Fa + Fb −
∑
i∈Cab

π∗iEi = anf (Fa + Fb −K).

Lemma 4.2.4. Let (A,m) be an n-dimensional local ring and I be a nonzero

ideal of A. Let f : Y → X = SpecA be a log resolution of I such that

IOY = OY (−F ). Then for any divisor K on Y ,

f∗OY (K) : I = f∗OY (K + F ).
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Proof. Then

x ∈ f∗OY (K) : I ⇔ xI ⊂ f∗OY (K)

⇔ f ∗x · OY (−F ) ⊂ OY (K)⇔ f ∗x ∈ OY (K + F )

⇔ x ∈ f∗OY (K + F ).

Therefore we have f∗OY (K) : I = f∗OY (K + F ).

Corollary 4.2.5. Let (A,m) be a two-dimensional normal local ring. Then

X = SpecA has a rational singularity if and only if the subadditivity theorem

of cores of ideals holds, that is, for any two m-primary integral closed ideals

a, b ⊂ OX ,

core(ab) ⊂ core(a)core(b).

Proof. If A has a rational singularity, then

core(ab) = J ω(X, a2b2) ⊂ J ω(X, a2)J ω(X, b2) = core(a)core(b)

by Corollary 4.1.12 and Theorem 4.2.3. Hence we will show the converse

implication. Let I be an m-primary integral closed ideal such that g : Z =

ProjA[I]→ X = SpecA is a resolution of singularities. Let F ′ be an effective

divisor on Z such that IOZ = OZ(−F ′). Let f : Y → X be a log resolution

of jX · dX · I such that jX · OY = OY (−JY/X), dX · OY = OY (−DY/X), and

I · OY = OY (−F ) for some effective divisors JY/X , DY/X and F on Y . Let

K = K̂Y/X − JY/X +DY/X . Then

core(I) = g∗OZ(KZ − 2F ′) : ωX = f∗OY (KY − 2F ) : ωX

= J ω(X, I2) = f∗OY (K − 2F )

by Lemma 2.3.9, Lemma 2.3.11 and Theorem 3.1.3. In the same manner, we

have

core(I2) = f∗OY (K − 4F ).

Next we will show that

f∗OY (K − 2F ) ⊂ f∗OY (2n−1K − 2F )
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for any n ∈ N by induction on n. When n = 1, the assertion is trivial. By

the induction hypothesis and subadditivity of cores of ideals, we have

f∗OY (K − 4F ) = core(I2) ⊂ (core(I))2 = (f∗OY (K − 2F ))2

⊂ (f∗OY (2n−1K − 2F ))2 ⊂ f∗OY (2nK − 4F ).

Therefore we have

f∗OY (K − 2F ) = f∗OY (K − 4F ) : I2

⊂ f∗OY (2nK − 4F ) : I2 = f∗OY (2nK − 2F )

by Lemma 4.2.4. By the above discussion, we have

f∗OY (K − 2F ) ⊂ f∗OY (2n−1K − 2F )

for any n ∈ N. By Lemma 4.2.4 we have for any n ∈ N,

f∗OY (K) = f∗OY (K − 2F ) : I2 ⊂ f∗OY (2n−1K − 2F ) : I2 = f∗OY (2n−1K).

This implies that K is effective. Since J ω(A) = f∗OY (K) = A, A has a

rational singularity.

In order that the strong subadditivity theorem of ω-multiplier ideal holds,

non-singularness is necessary.

Proposition 4.2.6. Let (A,m) be a two-dimensional normal local ring.

Then X = SpecA is regular if and only if the strong subadditivity theorem of

ω-multiplier ideals holds, that is, for any two nonzero ideals a, b ⊂ OX and

any rational numbers c, d > 0,

J ω(X, acbd) ⊂ J ω(X, ac)J ω(X, bd).

Proof. If A is regular, then the strong subadditivity theorem holds (see [4]).

Hence we will show the converse implication. In order that the strong subad-

ditivity theorem holds, by Theorem 4.2.3, it is necessary that A is a rational

singularity. Assume that A is not regular. Let f : Y → X be the minimal

resolution and F be the fundamental cycle of f .
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We assume that the exceptional locus of f is irreducible. Then F is the

f -exceptional prime divisor. Let g : Z → Y be the blowing-up at closed point

of F and h : Z → X be the composite morphism of f and g. We denote

by E1 the strict transform of F and by E2 the exceptional divisor of g. Let

n = −E1 · E1, C = (n − 1)E1 + 2nE2 and K = KZ/Y = E2. Then C and

(n− 1)E1 + (2n− 1)E2 are h-anti-nef since n = −E1 ·E1 = −F · F + 1 ≥ 3.

Since E1 + E2 is the fundamental cycle of h, we have

anh(b
1

n
C −Kc) = E1 + E2

anh(C −K) = (n− 1)E1 + (2n− 1)E2.

These imply that

h∗OZ(−anh(C −K)) 6⊂
(
h∗OZ(−anh(b

1

n
C −Kc))

)n
by Lemma 4.2.2. Therefore, denoting the ideal I = h∗OZ(−C), we have

J ω(X, I) 6⊂ J ω(X, I
1
n )n by Theorem 4.1.20. Thus the strong subadditivity

theorem does not hold on A.

We assume that the exceptional locus of f is reducible. Let E be a f -

exceptional prime divisor such that F ·E < 0. Then there exists n ∈ N such

that nF − E is f -anti-nef. Since F is the fundamental cycle of f , we have

anf (b
1

n
(nF − E)c)) = F,

anf (nF − E) = nF − E.

These imply that

f∗OY (−anf (nF − E)) 6⊂
(
f∗OY (−anf (b

1

n
(nF − E)c))

)n
by Lemma 4.2.2. Therefore, denoting the ideal I = f∗OY (−nF+E), we have

J ω(X, I) 6⊂ J ω(X, I
1
n )n by Theorem 4.1.20. Thus the strong subadditivity

theorem does not hold on A.

According to the above discussion, if A is not regular, then the strong

subadditivity theorem does not hold on A.
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Remark 4.2.7. In higher dimensional case, we have a counterexample to

Theorem 4.2.3.

Takagi and Watanabe gave the following counterexample to the subaddi-

tivity of multiplier ideals in a 3-dimensional hypersurface local ring in [37].

Since the ring is Gorenstein, the multiplier ideals are ω-multiplier ideals by

Proposition 3.1.10.

Example 4.2.8. Let A = (C[X, Y, Z,W ]/(X2 + Y 4 + Z4 + W 5))(X,Y,Z,W )

and m = (x, y, z, w), where x, y, z, w are the images of X, Y, Z,W in A.

Then A is a Gorenstein canonical singularity, but not a terminal singularity.

Therefore A is a rational singularity, J ω(m) = m and m2 ⊂ J ω(m2). Since

x2 ∈ m4, we have x ∈ m2. Hence x ∈ J ω(m2) and x 6∈ J ω(m)J ω(m). Thus

J ω(m2) 6⊂ J ω(m)J ω(m).

4.3 Integrally closed ideals on surface with a

rational singularity

In this section, we show that all integrally closed ideals on surface with a

rational singularity are ω-multiplier ideals.

Theorem 4.3.1. Let (A,m) be a two-dimensional normal local ring. Suppose

X = SpecA has a rational singularity. Then every integrally closed ideal is

an ω-multiplier ideal.

Favre, Jonsson, Lipman and Watanabe showed that all integrally closed

ideals on regular surfaces are multiplier ideals (see [10] and [29]). Our result

is a generalization of this theorem since ω-multiplier ideals of regular scheme

are multiplier ideals.

Definition 4.3.2. Let (A,m) be a two-dimensional normal local ring. Let

f : Y → X be a resolution of singularities such that f−1(m) is a simple

normal crossing divisor. Let E1, . . . , Eu be the irreducible components of

f−1(m). Ěi is defined to be a effective exceptional Q-divisor such that

Ěi · Ej =

{
−1 (i = j)

0 (i 6= j)
(4.1)
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Definition 4.3.3. Let Y be a 2-dimensional regular scheme and x(i) be a

closed point of Y . A generic sequence of n-blowing-ups over x(i) is:

Yn
fn−→ Yn−1

fn−1−−→ · · · f1−→ Y0 = Y

where fi is the blowing-up of Y0 = Y at x1 := x(i), and fk : Yk → Yk−1 is

the blowing-up of Yk−1 at general closed point xk of (fk−1)
−1(xk−1) for k =

2, . . . , n. Let f : Yn → Y be the composition f1 ◦ · · · ◦ fn. Let E(x(i), k), k =

1, . . . , n be the strict transforms of the n new f -exceptional divisors created

by blowing-ups f1, . . . , fn respectively.

Lipman and Watanabe stated the following in [29].

Remark 4.3.4. f−1 is a chain of n integral curve E(x(i), 1), . . . , E(x(i), n)

such that for 0 < k < n,

E(x(i), k) · E(x(i), k + 1) = 1,

E(x(i), k) · E(x(i), k) = −2

while

E(x(i), n) · E(x(i), n) = −1;

and if |k′ − k| > 1 then

E(x(i), k′) · E(x(i), k) = 0.

Lemma 4.3.5. Let Y be a 2-dimensional regular scheme and x(i) be a closed

point of Y . Let f : Yn → Y be a generic sequence of n-blowing-ups over x(i).

As in Definition 4.3.3 denote by E(x(i), 1), . . . , E(x(i), n) the strict transforms

of the n exceptional divisors over x(i). Then

Kf := KYn − f ∗(KY ) =
n∑
k=1

kE(x(i), k).

Proof. We will show the lemma by induction of n. When n = 1, we have

Kf := KY1−f ∗(KY ) = E(x(i), k). By in the induction hypothesis, KYn−1/KY =∑n−1
k=1 kE(x(i), k). Therefore

KYn − f ∗(KY ) = KYn/Yn−1 + f ∗nKYn−1/KY
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= nE(x(i), n) +
n−1∑
k=1

kE(x(i), k) =
n∑
k=1

kE(x(i), k).

Lemma 4.3.6. Let Y be a 2-dimensional regular scheme and x(i) be a closed

point of Y . Let f : Yn → Y be a generic sequence of n-blowing-ups over x(i).

As in Definition 4.3.3 denote by E(x(i), 1), . . . , E(x(i), n) the strict transforms

of the n exceptional divisors over x(i). Let Kf = KYn − f ∗(KY ). Then

Kf · E(x(i), k) =

{
−1 (k = n)

0 (k 6= n)
(4.2)

Proof. By Lemma 4.3.5, Kf := KYn−f ∗(KY ) =
∑n

k=1 kE(x(i), k). For k 6= n,

by Remark 4.3.4

Kf · E(x(i), k)

=
(

(k − 1)E(x(i), k − 1) + kE(x(i), k) + (k + 1)E(x(i), k + 1)
)
·E(x(i), k)

= (k − 1)− 2k + (k + 1) = 0.

By Remark 4.3.4

Kf · E(x(i), n)

=
(

(n− 1)E(x(i), n− 1) + nE(x(i), n)
)
·E(x(i), n)

= (n− 1)− n = −1.

Tucker showed the following in [38].

Lemma 4.3.7. ([38]) Let (A,m) be a 2-dimensional normal local ring. Let

f : Y → X = SpecA be a resolution of singularities such that f−1(m) is a

simple normal crossing divisor. Let E1, . . . , Eu be the irreducible components

of f−1(m). Suppose x(i) be a closed point of Ei with x(i) /∈ Ej for j 6= i.

Let g : Yn → Y be a generic sequence of n-blowing-ups over x(i). As in

Definition 4.3.3 denote by E(x(i), 1), . . . , E(x(i), n) the strict transforms of the

n exceptional divisors over x(i) and E(i) the strict transforms of E1, . . . , Eu

on Yn. Then

(1) Ě(i) ≤ Ě(x(i), 1) ≤ · · · ≤ Ě(x(i), n).
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(2) Suppose D is an integral f ◦ g-anti-nef divisor on Yn such that Ei is the

unique component of g∗D containing x(i). Then

ordE(i)D ≤ ordE(x(i),1)D ≤ · · · ≤ ordE(x(i),n)D.

Further ordE(i)D < ordE(x(i),n)D if and only if

n∑
k=1

(−D · E(x(i), k))Ě(x(i), k) ≥ Ě(i).

Tuker showed that all integrally closed ideals on log terminal surfaces are

multiplier ideals (see [38]). Our proof is just an imitation of the proof of the

Theorem 1.1 of [38].

We will begin the proof of Theorem 4.3.1.

Proof. Let I ⊂ OX be an integrally closed ideal. We will construct an ideal a

and c ∈ Q>0 such that I = J ω(X, ac). Let f : Y → X be a log resolution of

jX ·dX ·I with exceptional divisors E1, . . . , Eu such that jX ·OY = OY (−JY/X),

dX ·OY = OY (−DY/X) and I ·OY = OY (−F0). Let K = K̂Y/X−JY/X+DY/X .

Write

K =
u∑
i=1

biEi,

F0 = (f−1)∗f∗(F0) +
u∑
i=1

aiEi.

Note that bi ≥ 0 since X has a rational singularity. Let 0 < ε < 1/2

such that bε(f−1)∗f∗(F0)c = 0 and ε(ai + 1) < 1 + bi for i = 1, . . . , u. Let

ni := b1+bi
ε
− (ai + 1)c > 0 and ei := (−F0 · Ei). Choose ei distinct closed

points x
(i)
1 , . . . , x

(i)
ei on Ei such that x

(i)
j /∈ Supp((f−1)∗f∗(F0)) and x

(i)
j /∈ El

for l 6= i. Denote by g : Z → Y the composition of generic sequence of ni-

blowing-ups over each of the points x
(i)
j for j = 1, . . . , ei and i = 1, . . . , u. As

in Definition 4.3.3 denote by E(x
(i)
j , 1), . . . , E(x

(i)
j , ni) the strict transforms of

the ni exceptional divisors over x
(i)
j and E(1), . . . , E(u) the strict transforms

of E1, . . . , Eu.

Let h := f ◦ g and F = g∗(F0). By Lemma 4.3.5 and Lemma 4.3.6,

Kg := KZ − g∗(KY ) =
u∑
i=1

ei∑
j=1

ni∑
k=1

kE(x
(i)
j , k)
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and

Kg · E(i) = ei

Kg · E(x
(i)
j , k) =

{
−1 (k = ni)

0 (k 6= ni)
(4.3)

Then F +Kg is h-anti-nef since

F · E(i) = F0 · Ei = −ei, F · E(x
(i)
j , k) = 0.

Let K ′ = Kg + g∗(K), a = h∗OZ(−(F + Kg)) and c = 1 + ε. Then by

Theorem 4.1.2, we have aOZ = OZ(−(F +Kg)).

We will show I = J ω(X, ac) = h∗OZ(−F ). By Theorem 3.1.3,

J ω(X, ac) = h∗OZ(−bc(F +Kg)−K ′c).

Therefore it suffices to show that

F ′ := anh(bc(F +Kg)−K ′c) = F,

by Lemma 4.1.3.

Claim 1 We have F ′ ≤ F and h∗F
′ = h∗F . In addition, for i = 1, . . . , u

and j = 1, . . . , ei,

ord
E(x

(i)
j ,ni)

(F ′) = ord
E(x

(i)
j ,ni)

(F ) = ordE(i)(F ).

proof of Claim 1. By the definition of a generic sequence of blowing-up, we

have

ord
E(x

(i)
j ,ni)

(F ) = ordE(i)(F ).

Since F ′ = anh(bc(F +Kg)−K ′c) and F are h-anti-nef, it suffices to show

that

bc(F +Kg)−K ′c ≤ F,

h∗bc(F +Kg)−K ′c = h∗F,

ord
E(x

(i)
j ,ni)

(bc(F +Kg)−K ′c) = ord
E(x

(i)
j ,ni)

(F ).

We have

bc(F +Kg)−K ′c = F + bε(F +Kg)− g∗Kc.
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Since bε(f−1)∗f∗(F0)c = 0, it follows that h∗bc(F + Kg)−K ′c = h∗F . Con-

sider the coefficients of ε(F +Kg)− g∗K. We have

ordE(i)(ε(F +Kg)− g∗K) = εai − bi < 1,

ord
E(x

(i)
j ,k)

(ε(F +Kg)− g∗K) = ε(ai + k)− bi.

Since 0 < ε < 1/2 and 1+bi
ε
− (ai + 1)− 1 < ni ≤ 1+bi

ε
− (ai + 1), we have

0 < 1− 2ε < ε(ai + ni)− bi ≤ 1− ε < 1.

Therefore we have

ord
E(x

(i)
j ,k)
bε(F +Kg)− g∗Kc ≤ 0

ord
E(x

(i)
j ,ni)
bε(F +Kg)− g∗Kc = 0.

Thus we have F ′ ≤ F and

ord
E(x

(i)
j ,ni)

(F ′) = ord
E(x

(i)
j ,ni)

(F ).

�

Claim 2 For each i = 1, . . . , u,

(−F ′ · E(i))Ě(i) +

ei∑
j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ (−F · E(i))Ě(i).

proof of Claim 2.

1. We assume that ordE(i)F
′ = ordE(i)F .

We have F ′ · E(i) ≤ F · E(i) since we have F ′ ≤ F by Claim 1. Since

Ě(i) and Ě(x
(i)
j , k) are effective and F ′ is h-anti-nef, we have

(−F ′ ·E(i))Ě(i)+

ei∑
j=1

ni∑
k=1

(−F ′ ·E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ (−F ·E(i))Ě(i).

2. We assume that ordE(i)F
′ < ordE(i)F = ord

E(x
(i)
j ,ni)

F ′.

Then for each j = 1, . . . , ei we have

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k) ≥ Ě(i)
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by Lemma 4.3.7. Therefore we have

(−F ′ · E(i))Ě(i) +

ei∑
j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

≥
ei∑
j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

≥ eiĚ(i) = (−F · E(i))Ě(i)

�

Next we will prove that F ′ ≥ F . By the two claims, we have

F ′ = h∗h∗F
′ +

u∑
i=1

(
(−F ′ · E(i))Ě(i) +

ei∑
j=1

ni∑
k=1

(−F ′ · E(x
(i)
j , k))Ě(x

(i)
j , k)

)

≥ h∗h∗F +
u∑
i=1

(−F · E(i))Ě(i) = F.

Therefore we have F = F ′ by Claim 1. Thus I = J ω(X, ac).

Remark 4.3.8. In higher dimensional case, we have counterexamples to

Theorem 4.3.1 (see [25] and [26]).
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Chapter 5

Upper bound of the multiplicity

5.1 Upper bound of the multiplicity of a Du

Bois singularity

In this section, we show bounds of the multiplicity of a Du Bois singularity.

Recall that for an n-dimensional variety X and an n-dimensional locally

complete intersection variety V ⊃ X, the ideal dX,V is the ideal such that

Im(ωX → ωV |X) = dX,V ⊗ ωV |X .

The following is a generalization of Theorem 3.1 in [15]. But our proof is

just an imitation of the proof of Theorem 3.1 in [15].

Proposition 5.1.1. Let X be an n-dimensional variety with rational singu-

larities. Then for a closed point x ∈ X,

e(mx) ≤
(

emb(X, x)− drt(mx)e
n− drt(mx)e

)
.

Proof. Let m be the maximal ideal of OX,x and I be a minimal reduction

of m. Since OX.x is Cohen-Macaulay, we have e(m) = `(OX,x/I). Let

v = emb(X, x). we may assume that {x1, . . . , xn, y1, . . . , yv−n} is a mini-

mal generators of m with I = (x1, . . . , xn). Then OX,x/I is generated as a

C-vector space by 1 and the monomials of y1, . . . , yv−n. Here, we can take

generators as monomials of degree ≤ n − drt(mx)e, since I ⊃ mn+1−drt(mx)e
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by Lemma 3.1.20. Therefore we obtain `(OX,x/I) ≤
(
v − drt(mx)e
n− drt(mx)e

)
. Then

we obtain

e(m) ≤
(

emb(X, x)− drt(mx)e
n− drt(mx)e

)
.

Corollary 5.1.2. Let X be an n-dimensional variety with rational singular-

ities. If drt(mx)e = n− 1 for a closed point x ∈ X, then

e(mx) + n− 1 = emb(X, x).

Proof. Since X is Cohen-Macaulay, e(mx) + n − 1 ≥ emb(X, x). By Propo-

sition 5.1.1, e(mx) + n− 1 ≤ emb(X, x).

Lemma 5.1.3. Let X be a normal variety, x be a closed point of X and

a be an mx-primary ideal sheaf of OX . Let V be a reduced locally complete

intersection scheme containing Xof the same dimension. Let f : Y → X be

a log resolution of jV |X · dV,X · a such that jV |X ·OY = OY (−JV ), dX,V ·OY =

OY (−DV ) and a · OY = OY (−F ) for some effective divisors JV , DV and

F on Y . Let C =
∑
Fi, where Fi is exceptional prime divisor on Y which

center is not x. Then for any integer l,

f∗ωY (C − lF ) : ωX = f∗OY (K̂Y/X − JV +DV + C − lF ).

Proof. We have ωX = dX,V ωV |X and K̂Y/X = KY + JV − f ∗KV |X by the

definition of dX,V and Remark 2.2.2. Hence

f∗ωY (C − lF ) : ωX = f∗OY (K̂Y/X − JV + f ∗KV |X + C − lF ) : dX,V ωV |X

= f∗OY (K̂Y/X − JV + C − lF ) : dX,V .

Next we will prove

f∗OY (K̂Y/X − JV + C − lF ) : dX,V = f∗OY (K̂Y/X − JV +DV + C − lF ).

x ∈ f∗OY (K̂Y/X − JV + C − lF ) : dX,V

⇔ xdX,V ⊂ f∗OY (K̂Y/X − JV + C − lF )

⇔ f ∗x · OY (−DV ) ⊂ fOY (K̂Y/X − JV + C − lF )
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⇔ f ∗x ∈ OY (K̂Y/X − JV +DV + C − lF )

⇔ x ∈ f∗OY (K̂Y/X − JV +DV + C − lF )

Therefore we have

f∗ωY (C − lF ) : ωX = f∗OY (K̂Y/X − JV +DV + C − lF ).

Lemma 5.1.4. Let X be a normal variety with Du Bois singularities, x

be a closed point of X and a be an mx-primary ideal sheaf of OX . Let V

be a reduced locally complete intersection scheme containing Xof the same

dimension. Let f : Y → X be a log resolution of jV |X · dV,X · a such that

jV |X · OY = OY (−JV ), dX,V · OY = OY (−DV ) and a · OY = OY (−F ) for

some effective divisors JV , DV and F on Y . Let C =
∑
Fi, where Fi is

exceptional prime divisor on Y which center is not x. Then

K̂Y/X − JV +DV + C + F ≥ 0.

Proof. By Lemma 5.1.3, we have

f∗ωY (C + F ) : ωX = f∗OY (K̂Y/X − JV +DV + C + F ).

By Theorem 2.1.4, we have f∗ω(C + F ) : ωX = OX . Therefore

K̂Y/X − JV +DV + C + F ≥ 0.

Lemma 5.1.5. Let X be an n-dimensional normal Cohen-Macaulay variety

with Du Bois singularities and x be a closed point of X. Let m be the maximal

ideal of OX,x and I be a minimal reduction of m. Then mn+1 ⊂ I

Proof. Let V be a reduced locally complete intersection scheme containing

Xof the same dimension. Let f : Y → X be a log resolution of jV |X ·dV,X ·mx

such that jV |X · OY = OY (−JV ), dX,V · OY = OY (−DV ) and mx · OY =

OY (−F ) for some effective divisors JV , DV and F on Y . Let C =
∑
Fi,

where Fi is exceptional prime divisor on Y which center is not x. Since X

has Du Bois singularities, we have K̂Y/X − JV +DV +C +F ≥ 0 by Lemma
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5.1.4. Therefore we have K̂Y/X − JV +DV +C − nF ≥ −(n+ 1)F. Thus we

have

mn+1
x ⊂ f∗OY (K̂Y/X − JV +DV + C − nF ) = f∗ωY (C − nF ) : ωX .

Let g : Z → X be the blow-up at x such that mxOZ = OZ(−F ′) and

h : Y → Z be the morphism such that f = g ◦ h. Then we have h∗ωY (C −
nF ) ⊂ ωZ(−nF ′). Hence by Theorem 2.3.9 and Lemma 2.3.11, we have

(f∗ωY (C − nF ) : ωX)x ⊂ (g∗ωZ(−nF ′) : ωX)x

⊂ g∗ωZ(−nF ′)x : ωX,x ⊂ core(m).

Therefore

mn+1 ⊂ (f∗ωY (C − nF ) : ωX)x ⊂ core(m) ⊂ I.

In [15], Huneke and Watanabe asked the following

Question 5.1.6. Let X be an n-dimensional variety with Du Bois singular-

ities. Is it true that for a closed point x ∈ X,

e(mx) ≤
(

emb(X, x)

n

)
?

The following Theorem gives an answer to the above question in the case

where X is normal Cohen-Macaulay.

Theorem 5.1.7. Let X be an n-dimensional normal Cohen-Macaulay vari-

ety with Du Bois singularities. Then for a closed point x ∈ X,

e(mx) ≤
(

emb(X, x)

n

)
.

Proof. Let m be the maximal ideal of OX,x and I be a minimal reduction

of m. Since OX.x is Cohen-Macaulay, we have e(m) = `(OX,x/I). Let

v = emb(X, x). we may assume that {x1, . . . , xn, y1, . . . , yv−n} is a mini-

mal generators of m with I = (x1, . . . , xn). Then OX,x/I is generated as a

C-vector space by 1 and the monomials of y1, . . . , yv−n. Here, we can take
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generators as monomials of degree ≤ n, since I ⊃ mn+1 by Lemma 5.1.5.

Therefore we obtain `(OX,x/I) ≤
(
v

n

)
. Then we obtain

e(m) ≤
(

emb(X, x)

n

)
.

Corollary 5.1.8. Let X be an n-dimensional Cohen-Macaulay variety with

log canonical singularities. Then for a closed point x ∈ X,

e(mx) ≤
(

emb(X, x)

n

)
.

Proof. Since log canonical singularities are Du Bois singularities, the state-

ment follows by Theorem 5.1.7.

Huneke and Watanabe proved the following using Matlis duality in the

proof of Theorem 5.1 in [15].

Lemma 5.1.9. ([15]) If (A,m) is a Gorenstein Artin local ring with ms = 0,

then `(mt) ≤ `(A/ms−t) for each 0 ≤ t ≤ s.

If X is a Gorenstein variety, then the upper bound is largely reduced by

the lemma. Our proof is just an imitation of the proof of Theorem 5.1 in

[15].

Proposition 5.1.10. Let X be an n-dimensional normal Gorenstein variety

with Du Bois singularities and let x ∈ X be a closed point. Let emb(X, x) =

v.

(1) If n = 2r + 1, then

e(mx) ≤ 2

(
v − r − 1

r

)
.

(2) If n = 2r, then

e(mx) ≤
(
v − r
r

)
+

(
v − r − 1

r − 1

)
.
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Proof. Let m be the maximal ideal of OX,x. Let I be a minimal reduction of

m. Let A = OX,x/I and n = m/I. Then (A, n) is a Gorenstein Artin local

ring, as OX,x is Gorenstein and I is generated by a system of parameters.

Now, by Lemma 5.1.5, we have I ⊃ mn+1, which yields nn+1 = 0. We need

to evaluate `(A) in order to get bounded of e(mx). We may assume that

{y1, . . . , yn, z1, . . . , zv−n} is minimal generators of m with I = (y1, . . . , yn).

Then A/nl+1 is generated as C-vector space by the monomials of z1, . . . , zv−n

of degree ≤ l. Therefore `(A/nl+1) ≤
(
v − n+ l

l

)
. If n = 2r + 1, then by

Lemma 5.1.9 we obtain

`(A) = `(A/nr+1) + `(nr+1) ≤ `(A/nr+1) + `(A/nr+1)

≤ 2

(
v − r − 1

r

)
.

If n = 2r, then by Lemma 5.1.9 we obtain

`(A) = `(A/nr) + `(nr) ≤ `(A/nr) + `(A/nr+1) ≤
(
v − r − 1

r − 1

)
+

(
v − r
r

)
.

Laufer proved the relation between the multiplicity and embedding di-

mension of the minimal elliptic singularity in [23].

Corollary 5.1.11. ([23]) Let X be a 2-dimensional normal Gorenstein va-

riety and let x ∈ X be a closed point. Suppose that X is Du Bois singularity

but not regular. Then

e(mx) = emb(X, x)− 1 = 2

or

e(mx) = emb(X, x) ≥ 3.

Proof. By Proposition 5.1.10, we have e(mx) ≤ emb(X, x). On the other

hand, since X is Cohen-Macaulay, we have emb(X, x) ≤ e(mx)+1. Therefore

emb(X, x) is e(mx) or e(mx) + 1. Let I be a minimal reduction of maximal

ideal m of OX,x, A = OX,x/I and n = m/I be the maximal ideal of A. We

assume that e(mx) = 2. Since `(OX,x/I) = 2, emb(X, x) = 3.
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We assume that emb(X, x) = e(mx) + 1. Then Im = m2 (see [34]).

Therefore e(mx) = `(A) = `(A/n) + `(n) ≤ `(A/n) + `(A/n) = 2 by Lemma

5.1.9. By the above discussion, if e(mx) = emb(X, x), then e(mx) ≥ 3.

Definition 5.1.12. A two-dimensional normal singularity (X, x) is called a

simple elliptic singularity if the exceptional curve E of the minimal resolution

f : Y → X is an irreducible nonsingular elliptic curve.

Definition 5.1.13. If the exceptional divisor E =
∑r

i=1Ei of the minimal

resolution f : Y → X of two-dimensional normal singularity (X, x) satisfies

the following, then we call (X, x) a cusp singularity.

The total exceptional divisor E is an irreducible rational curve with an

ordinary node or the equalities Ei ∼= P1 (∀i = 1, . . . , r) hold and E is of

normal crossings with the dual graph as the following cyclic form (ignoring

the weight):

©

©
tttttttt ©

©JJJJJJJJ

© ©

©

© ©

©

We know that a 2-dimensional normal singularity (X, x) is Gorenstein

Du Bois singularity if and only if (X, x) is a rational double point, a simple

elliptic singularity or a cusp singularity (see [19]).

Example 5.1.14. Suppose X is a simple elliptic singularity or a cusp sin-

gularity. Since simple elliptic singularity and cusp singularity are Gorenstein

Du Bois singularities, we have e(mx) = emb(X, x) − 1 = 2 or e(mx) =

emb(X, x) ≥ 3.
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5.2 Upper bound of the multiplicity of mx-

primary ideal

In this section, we show bounds of the multiplicity by functions of birational

invariants for singularities.

Definition 5.2.1. Let X be a variety and Z be a proper reduced subscheme

of X defined by an ideal sheaf q. The i-th symbolic power qt is then defined

on any affine open set U by q(t)(U) = {f ∈ OX(U)|f ∈ mt
η, for all generic

point η of Z}, where mη means the maximal ideal in the local ring OX,η.

Definition 5.2.2. Let X be a variety and a be a non-zero ideal of OX .

Let ν : W → X be the normalization of the blowing-up of X along a so

that a · OW = OW (−E) where E is an effective Cartier divisor on W . We

can write E =
∑t

i=1 riEi as a sum of distinct prime divisor Ei’s with some

positive integer coefficients ri. Write Zi = ν(Ei) to be the image Ei on X

with the reduced scheme structure. Then Zi’s are called the distinguished

subvarieties of a with the coefficient ri.

Niu showed the relation between the Mather-Jacobian ideals and symbolic

powers in [30]. Our proof of the following lemma is just an imitation of the

proof of Claim 3.1.1 in [30].

Lemma 5.2.3. Let X be a variety with rational singularities and a be a non-

zero ideal sheaf of OX . Let Zi, i = 1, . . . , t, be the distinguished subvarieties

of a with the coefficient ri defined by the ideal qZi. For l ≥ drt(a)e − 1, we

have the inclusion

q
(r1(l+1−drt(a)e))
Z1

∩ · · · ∩ q
(rt(l+1−drt(a)e))
Zt

⊂ J ω(X, al).

Proof. Since the inclusion is local, we can assume that X is affine. Let

jX be the Jacobian ideal of X and dX be the lci-defect ideal of X. Let

f : Y → X be a log resolution of jX · dX · a such that jX · OY = OY (−JY/X),

dX · OY = OY (−DY/X) and a · OY = OY (−F ) for some effective divisors

JY/X , DY/X and F on Y . Then by Theorem 3.1.3 we have

J ω(X, al) = f∗OY (K̂Y/X − JY/X +DY/X − lF ).
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Therefore, it suffices to show that for any element h ∈ q
(r1(l+1−drt(a)e))
Z1

∩ · · · ∩
q
(rt(l+1−drt(a)e))
Zt

,

divf ∗h ≥ −K̂Y/X + JY/X −DY/X + lF,

where divf ∗h means the effective divisor defined by f ∗h on Y . To see this

let ν : W → X be the normalization of the blowing-up of X along a such

that a · OW = OW (−E) where E is an effective Cartier divisor on W . Write

E as a sum of prime divisors E =
∑t

i=1 riEi. Note that Zi = ν(Ei) and

f factors through ν via a morphism g : Y → W such that F = g∗E. For

any element h ∈ q
(r1(l+1−drt(a)e))
Z1

∩ · · · ∩ q
(rt(l+1−drt(a)e))
Zt

, we have ordEiν
∗h ≥

ri(l + 1 − drt(a)e). Therefore we have divν∗h ≥ (l + 1 − drt(a)e)E. Thus

we have divf ∗h = divg∗(ν∗h) ≥ g∗((l + 1− drt(a)e)E) = (l + 1− drt(a)e)F .

Since drt(a)e − 1 < rt(a), K̂Y/X − JY/X + DY/X − (drt(a)e − 1)F ≥ 0. Thus

we have divf ∗h ≥ (l+1−drt(a)e)F ≥ −K̂Y/X +JY/X−DY/X + lF. Therefore

the lemma is proved.

Lemma 5.2.4. Let X be a variety with rational singularities and a be a non-

zero ideal sheaf of OX . Let Zi, i = 1, . . . , t, be the distinguished subvarieties

of a with the coefficient ri defined by the ideal qZi. Let r = maxi{ri}. For

l ≥ drt(a)e − 1, we have the inclusion

(
√
a)r(l+1−drt(a)e) ⊂ J ω(X, al).

Proof. By Lemma 5.2.3, we have

q
(r1(l+1−drt(a)e))
Z1

∩ · · · ∩ q
(rt(l+1−drt(a)e))
Zt

⊂ J ω(X, al).

Since r ≥ ri, (
√
a)r(l+1−drt(a)e) ⊂ q

(r1(l+1−drt(a)e))
Z1

∩ · · · ∩ q(rt(l+1−drt(a)e))
Zt

. There-

fore we have

(
√
a)r(l+1−drt(a)e) ⊂ J ω(X, al).

Theorem 5.2.5. Let X be an n-dimensional variety with rational singulari-

ties, x be a closed point of X and a be an mx-primary ideal sheaf of OX . Let

Zi, i = 1, . . . , t, be the distinguished subvarieties of a with the coefficient ri

defined by the ideal qZi. Let r = maxi{ri}. Then

e(a) ≤
(

emb(X, x) + r(n+ 1− drt(a)e)− 1

emb(X, x)

)
.
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Proof. By Lemma 5.2.4, we have

mr(n+1−drt(a)e)
x ⊂ J ω(X, an).

Let m be the maximal ideal of OX,x and I be a minimal reduction of aOX,x.
Let g : Z → X be the blow-up of a such that aOZ = OZ(−F ′) and h : Y → Z

be the morphism such that f = g◦h. Then we have h∗ωY (−nF ) ⊂ ωZ(−nF ′).
Hence by Theorem 2.3.9 and Lemma 2.3.11, we have

mr(n+1−drt(a)e) ⊂ J ω(X, an)x = (f∗ωY (−nF ) : ωX)x

⊂ (g∗ωZ(−nF ′) : ωX)x ⊂ g∗ωZ(−nF ′)x : ωX,x ⊂ core(aOX.x) ⊂ I.

Since OX.x is Cohen-Macaulay, we have e(a) = `(OX,x/I).

Let v = emb(X, x). we may assume that {y1, . . . , yv} is a minimal gen-

erators of m. Then OX,x/I is generated as a C-vector space by 1 and the

monomials of y1, . . . , yv. Here, we can take generators as monomials of degree

≤ d := r(n+ 1−drt(a)e)− 1, since I ⊃ mr(n+1−drt(mx)e). Therefore we obtain

`(OX,x/I) ≤
(
v + d

d

)
. Then we obtain

e(a) ≤
(

emb(X, x) + r(n+ 1− drt(a)e)− 1

emb(X, x)

)
.

Lemma 5.2.6. Let X be a normal Cohen-Macaulay variety with Du Bois

singularities, x be a closed point of X and a be an mx-primary ideal sheaf of

OX . Let V be a reduced locally complete intersection scheme containing Xof

the same dimension. Let f : Y → X be a log resolution of jV |X · dV,X · a such

that jV |X · OY = OY (−JV ), dX,V · OY = OY (−DV ) and a · OY = OY (−F )

for some effective divisors JV , DV and F on Y . Let C =
∑
Fi, where Fi is

exceptional prime divisor on Y which center is not x. Let Zi, i = 1, . . . , t, be

the distinguished subvarieties of a with the coefficient ri defined by the ideal

qZi. For l ≥ 0, we have the inclusion

q
(r1(l+1))
Z1

∩ · · · ∩ q
(rt(l+1))
Zt

⊂ f∗ωY (C − lF ) : ωX .
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Proof. Since the inclusion is local, we can assume that X is affine. By Lemma

5.1.3, we have

f∗ωY (C − lF ) : ωX = f∗OY (K̂Y/X − JV +DV + C − lF ).

Therefore it suffices to show that for any element h ∈ q
(r1(l+1))
Z1

∩· · ·∩q(rt(l+1))
Zt

,

divf ∗h ≥ −K̂Y/X + JV −DV − C + lF,

where divf ∗h means the effective divisor defined by f ∗h on Y . To see this let

ν : W → X be the normalization of the blowing-up of X along a such that

a · OW = OW (−E) where E is an effective Cartier divisor on W . Write E as

a sum of prime divisors E =
∑t

i=1 riEi. Note that Zi = ν(Ei) and f factors

through ν via a morphism g : Y → W such that F = g∗E. For any element

h ∈ q
(r1(l+1))
Z1

∩· · ·∩q(rt(l+1))
Zt

, we have ordEiν
∗h ≥ ri(l+1). Therefore we have

divν∗h ≥ (l + 1)E. Thus we have divf ∗h = divg∗(ν∗h) ≥ g∗((l + 1)E) =

(l+1)F . Since X has Du Bois singularities, K̂Y/X−JV +DV +C+F ≥ 0 by

Lemma 5.1.4. Thus we have divf ∗h ≥ (l+1)F ≥ −K̂Y/X +JV −DV −C+ lF.

Therefore the lemma is proved.

Theorem 5.2.7. Let X be an n-dimensional normal Cohen-Macaulay va-

riety with Du Bois singularities, x be a closed point of X and a be an mx-

primary ideal sheaf of OX . Let Zi, i = 1, . . . , t, be the distinguished subvari-

eties of a with the coefficient ri defined by the ideal qZi. Let r = maxi{ri}.
Then

e(a) ≤
(

emb(X, x) + r(n+ 1)− 1

emb(X, x)

)
.

Proof. Let V be a reduced locally complete intersection scheme containing

Xof the same dimension. Let f : Y → X be a log resolution of jV |X · dV,X · a
such that jV |X ·OY = OY (−JV ), dX,V ·OY = OY (−DV ) and a·OY = OY (−F )

for some effective divisors JV , DV and F on Y . Let C =
∑
Fi, where Fi is

exceptional prime divisor on Y which center is not x. By Lemma 5.2.6, we

have

mr(n+1)
x ⊂ q

(r1(l+1))
Z1

∩ · · · ∩ q
(rt(l+1))
Zt

⊂ f∗ωY (C − lF ) : ωX .

Let m be the maximal ideal of OX,x and I be a minimal reduction of aOX,x.
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Let g : Z → X be the blow-up of a such that aOZ = OZ(−F ′) and

h : Y → Z be the morphism such that f = g ◦ h. Then we have h∗ωY (C −
nF ) ⊂ ωZ(−nF ′). Hence by Theorem 2.3.9 and Lemma 2.3.11, we have

mr(n+1) ⊂ (f∗ωY (C − nF ) : ωX)x ⊂ (g∗ωZ(−nF ′) : ωX)x

⊂ g∗ωZ(−nF ′)x : ωX,x ⊂ core(aOX.x) ⊂ I.

Since OX.x is Cohen-Macaulay, we have e(a) = `(OX,x/I).

Let v = emb(X, x). we may assume that {y1, . . . , yv} is a minimal

generators of m. Then OX,x/I is generated as a C-vector space by 1 and

the monomials of y1, . . . , yv. Here, we can take generators as monomials

of degree ≤ d := r(n + 1) − 1, since I ⊃ mr(n+1). Therefore we obtain

`(OX,x/I) ≤
(
v + d

d

)
. Then we obtain

e(a) ≤
(

emb(X, x) + r(n+ 1)− 1

emb(X, x)

)
.

Corollary 5.2.8. Let X be an n-dimensional Cohen-Macaulay variety with

log canonical singularities, x be a closed point of X and a be an mx-primary

ideal sheaf of OX . Let Zi, i = 1, . . . , t, be the distinguished subvarieties of a

with the coefficient ri defined by the ideal qZi. Let r = maxi{ri}. Then

e(a) ≤
(

emb(X, x) + r(n+ 1)− 1

emb(X, x)

)
Proof. Since log canonical singularities are Du Bois singularities, the state-

ment follows by Theorem 5.2.7.

Definition 5.2.9. Let (X, a) be a pair consisting of a variety X and a non-

zero ideal a ⊂ OX . The Mather log- canonical threshold of (X, a) is defined

as follows:

l̂ct(a) = sup{c|k̂E − cordE(a) + 1 ≥ 0, E divisor over X}.

De Fernex and Mustaţă showed the relationship between the Mather log

canonical threshold and the multiplicity of an mx-primary ideal.

66



Theorem 5.2.10. ([6]) Let X be an n-dimensional Cohen-Macaulay variety,

x be a closed point of X and a be an mx-primary ideal sheaf of OX .( n

l̂ct(a)

)n
≤ e(a).

Corollary 5.2.11. Let X be an n-dimensional normal Cohen-Macaulay va-

riety, x be a closed point of X and a be an mx-primary ideal sheaf of OX .

Let Zi, i = 1, . . . , t, be the distinguished subvarieties of a with the coefficient

ri defined by the ideal qZi. Let r = maxi{ri}.
(1) If X has rational singularities, then( n

l̂ct(a)

)n
≤
(

emb(X, x) + r(n+ 1− drt(a)e)− 1

emb(X, x)

)
.

(2) If X has Du Bois singularities, then( n

l̂ct(a)

)n
≤
(

emb(X, x) + r(n+ 1)− 1

emb(X, x)

)
.

Proof. The statements follow by Theorem 5.2.5, Theorem 5.2.7 and Theorem

5.2.10.
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