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ACTIONS OF LOCALLY COMPACT ABELIAN
GROUPS ON FACTORS WITH THE ROHLIN
PROPERTY

KOICHI SHIMADA

ABSTRACT. Motivated by a classification problem of actions of lo-
cally compact abelian groups on factors, we study a property of
actions which is called the Rohlin property. First of all, by gen-
eralizing a work of Masuda—Tomatsu, we establish a classification
theorem of actions of locally compact abelian groups on factors
with the Rohlin property. Next, we give a good sufficient condi-
tion for actions to have the Rohlin property. Namely, we show that
actions of R with faithful Connes—Takesaki modules on AFD fac-
tors have the Rohlin property, which provides many new examples
of actions with the Rohlin property. Finally, as an application of
the study of the Rohlin property, we characterize an analytic prop-
erty of finite index endomorphisms, approximate innerness, which
is useful for classifying actions of compact groups on factors.

1. INTRODUCTION

An operator algebra is a *-closed algebra which consists of bounded
operators on a Hilbert space. If it is closed in the operator norm
topology, then it is called a C*-algebra. If it is closed in the strong
operator topology, then it is called a von Neumann algebra. Since the
convergence in the norm topology implies the convergence in the strong
operator topology, a von Neumann algebra is a C*-algebra. However,
if we think of a von Neumann algebra as a C*-algebra, it is so large
that we hardly obtain fine information. Hence they are thought to be
different topics and considerable parts of their respective techniques
are different. In this thesis, we mainly treat von Neumann algebras.
In particular, we consider a classification problem of group actions on
von Neumann algebras.

The classification problems of von Neumann algebras attract many
researchers’ attentions. It is a natural attempt to classify von Neu-
mann algebras, their symmetric structures (group actions), and their

subalgebras, up to appropriate isomorphisms. However, because the
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number of von Neumann algebras is so huge that it is hopeless to clas-
sify all of them, we often classify those with conditions which are called
amenability.

The history of classifying von Neumann algebras dates back to the
age of Murray and von Neumann. First, they showed that factors (von
Neumann algebras with trivial centers) are devided into factors of type
I, II;, I and type III and that factors of type I are isomorphic to
one of the (possibly infinite dimensional) matrix algebras [45]. Then
they showed that the AFD (a short expression for approximately finite
dimensional, a kind of amenability) factor of type II; is unique, up to
*-isomorphism [46]. This result is amazing because although there are
so many ways of constructing AFD factors of type II; such as infinite
tensor products of n x n matrices (n > 2), it turned out that all of
them are mutually isomorphic. Later, Connes tried to classify all of
the AFD factors, which was completely solved in 1987 by Connes [5]
(6] and Haagerup [18]. In his program, classification of group actions
on von Neumann algebras began to be studied. He noticed that most
factors of type III are described by using von Neumann algebras of
type II and actions of Z on them [9]. Then he classified actions of
Z on AFD factors of type II [7]. With another crucial ingredient (a
characterization of approximate finite dimensionality [5]), he succeeded
in classifying most of the AFD factors. By this achievement, he was
bestowed the Fields medal.

Hence the original motivation of classifying group actions is to clas-
sify factors. However, classifying group actions is itself attractive be-
cause their complete invariant is simple compared with the diversity of
the ways of constructing actions. His technique for classifying group
actions is also interesting. He borrowed an idea from ergodic theory. In
ergodic theory, there is a classical theorem which is called the Rohlin
lemma. He showed that for any outer action of Z on the AFD factor of
type II, an analogue of the Rohlin lemma holds (the non commutative
Rohlin lemma), which is one of the vital points of his proof.

Hence classifying group actions has fascinated many operator alge-
braists. After Connes’ work, Jones [23] classified actions of finite groups
on the AFD factors of type II and Ocneanu [47] classified actions of dis-
crete amenable groups on the AFD factors of type II. At these stages,
one of the difficulties was to find out the invariants. Some invariants
which are needed to classify actions of these classes of groups degener-
ate when the group is that of the integers. After that, some researchers
such as Katayama, Kawahigashi, Takesaki and Sutherland were inter-
ested in classifying actions on AFD factors of type III. When one con-

siders factors of type III, he would face with some difficulties which
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do not occur when we consider only factors of type II. The lack of the
trace makes analytic arguments difficult. Finding invariants is another
problem. In order to construct invariants, Connes—Takesaki [11] and
Kawahigashi-Sutherland—Takesaki [27], in which analytic properties of
automorphisms are studied, play crucial roles. The problem was finally
solved in 1998 by Sutherland-Takesaki [56], Kawahigashi—Sutherland—
Takesaki [31] and Katayama—Sutherland-Takesaki [27]. We also have
to say that Masuda [39] gave a simple proof of the classification the-
orem of actions of discrete amenable groups on AFD factors based on
techniques of Evans—Kishimoto [12], in which actions on C*-algebras
are studied.

Anyway, classification of actions of discrete amenable groups on AFD
factors has been completed. One of the next problems is to classify ac-
tions of continuous (amenable) groups. In particular, actions of R are
important because they naturally appear in Takesaki’s structural theo-
rem of factors of type III (See Takesaki [60]). Although there are some
pioneering results about actions of continuous groups due to Kawahi-
gashi [28] [29] [30], the classification of actions of continuous groups
is not completed. One of the reasons is that it is not easy to classify
“outer” of actions of continuous groups. In the case of actions of dis-
crete groups, the classification problem was separated into the outer
part and the inner part and then these results were combined. How-
ever, when the group is continuous, we cannot classify outer actions
by just an analogue of the discrete group case. As we have said, one
of the vital points of classifying outer actions of discrete groups is the
non-commutative Rohlin lemma. However, when the group is contin-
uous, if we simply assume that an action is outer at any nontrivial
point, then it may not have a similar property to the conclusion of
the non-commutative Rohlin lemma. Hence in order to proceed with
classification, the Rohlin property was introduced by Kishimoto [34].
Actually, he introduced the Rohlin property for actions of R on C*-
algebras and Kawamuro [33] translated it in the von Neumann setting.
Roughly speaking, the Rohlin property corresponds to the conclusion of
the non-commutative Rohlin lemma of the discrete group case. Later,
Masuda-Tomatsu [44] established a classification theorem of actions of
R with the Rohlin property. It is natural to try to generalize there
result for actions of more general groups. For actions of locally com-
pact abelian groups, it is not difficult to define the Rohlin property
in the same way as in Kishimoto [34]. The problem is to classify ac-
tions with the Rohlin property. In this direction, Asano [3] showed a

classification theorem when the group is R? for some d € Z~,. When
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the group is a general locally compact abelian group, the problem is
that the group may not have enough compact quotients. Section 3 is
devoted to considering this problem. Namely, we show the following
theorem (Theorem 2 of Shimada [53]).

Theorem 1.1. Let a and [ be actions of a locally compact abelian
group G on a factor M with the Rohlin property. Assume that azoB_,
1s approrimately inner for any g € G. Then a and (5 are mutually
cocycle conjugate.

We also present many examples of actions with the Rohlin property.

However, there is a much more important problem. Although a clas-
sification theorem of actions with the Rohlin property is established,
the definition of the Rohlin property is rather technical. Hence we have
to study relation between the Rohlin property and invariants for group
actions. In Section 4, we give a sufficient condition for actions of R to
have the Rohlin property, that is, we show that an action of R which
is “very outer” at any nontrivial point has the Rohlin property (Main
Theorem of Shimada [51]).

Theorem 1.2. An action of R with faithful Connes—Takesaki module
on any AFD factor has the Rohlin property.

Not only does this theorem provide many examples of actions with
the Rohlin property on factors of type III but also makes a connection
between pointwise outerness defined by usual invariants of automor-
phisms and the Rohlin property. As a corollary of this theorem, we
obtain the following.

Corollary 1.3. Actions of R with faithful Connes—Takesaki module
on any AFD factor are completely classified by their Connes—Takesaki
modules, up to cocycle conjugacy.

Actually, there is a similar theorem about actions of compact groups
due to Izumi [22]. He showed that actions of compact groups on any
AFD factor are completely classified by their Connes—Takesaki mod-
ules, up to cocycle conjugacy. However, it is impossible to show our the-
orem by the same argument as his one. One evidence is the following.
There is a classification theorem of actions of (any!) locally compact
groups on any AFD factor due to Yamanouchi [64] based on Izumi’s
method. However, there is a strong restriction of Connes—Takesaki
modules of the actions which are classified by his method, that is, they
should be isomorphic to (an amplification of) the left translation of the
group. Hence we can say that at least for actions of R, our classifica-

tion theorem covers a much wider class of actions. There is another
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evidence which shows the diversity of the class of actions covered by
our theorem. For the class of actions which are covered by Izumi [22]
and Yamanouchi [64], the coincidence of Connes—Takesaki modules of
actions in fact implies conjugacy of two actions. Although this fact
itself is surprising, this means that the number of actions contained in
the class is small. However,by our theorem, it turns out that there are
some actions of R with faithful Connes-Takesaki modules which are
mutually cocycle conjugate but are not mutually conjugate.

Finally, in Section 5, we give a characterization of an analytic prop-
erty of endomorphisms, approximate innerness, by using the Rohlin
property for actions of R. More precisely, we have the following theo-
rem.

Theorem 1.4. Let p, o be endomorphisms of an AFD factor M of
type 111 with d(p),d(o) < oco. Then the following two conditions are
equivalent.

(1) We hcwe (;5/3 (@) t9_ 108(d(p))|Z(M) = ¢5 o 9_ 1og(d(g))’2(]\;[).
(2) There exists a sequence {u,} of unitaries of M with Adu,op — o
as n — oo.

Among actions of locally compact groups, actions of compact groups
are special because their duals are discrete. In fact, actions of compact
abelian groups on AFD factors have completely been classified by clas-
sifying their duals (See Jones—Takesaki [25] and Kawahigashi-Takesaki
[32]). However, when it comes to classifying actions of non-abelian
compact groups, the problem is much more difficult. One of the rea-
sons is that the dual of an action of a non-abelian compact group is a
collection of endomorphisms, not of automorphisms. Hence we need to
handle endomorphisms. In classification theorems of outer actions of
discrete amenable groups, approximate innerness of automorphisms is
an (and the only!) obstruction for cocycle conjugacy. Hence approx-
imate innereness is also thought to be important for the dual of an
action of a compact group. This is the reason why the above charac-
terization theorem is important. We have to mention that when the
endomorphism is an automorphism, the characterization is obtained
by Kawahigashi-Sutherland-Takesaki [31]. By using the Rohlin prop-
erty of the trace-scaling action of R on the AFD factor of type Il
we have succeeded in generalizing their result for endomorphisms. By
this method, it is also possible to provide a new proof of a charac-
terization theorem of another analytic property, central triviality, of

automorphisms due to Kawahigashi-Sutherland—Takesaki [31].
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Theorem 1.5. (See Theorem 1 (2) of Kawahigashi-Sutherland—Takesaki)
For an automorphism o of M, « is centrally trivial if and only if its
canonical extension is inner.

Note that by our results and the result of Masuda [39], if we admit
that AFD factors are completely classified by their flows of weights, it
is possible to classify the actions of discrete amenable groups on AFD
factors without separating cases by the types of the factors.
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2. PRELIMINARIES

2.1. Notations. Let M be a von Neumann algebra. We denote the set
of unitaries of M by U(M). For a weakly continuous linear functional
¢ € M, and an element a € M, set [¢,a] := ap — ¢a. For a weakly
continuous positive linear functional ¢ € M and an element x € M,
set

. o(z*r + xa*)
ol o= 2D

This || - ||g) is a seminorm on M. If ¢ is faithful, then this norm

metrizes the strong* topology of the unit ball of M.
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2.2. A topology of groups of automorphisms. Let M be a von
Neumann algebra. Let Aut(M) be the set of all automorphisms « of
M. A topology of Aut(M) is defined in the following way. We have

o —

if, by definition, |[1) o a; ' — 1 o ™| — 0 for any o € M,.

2.3. Ultraproduct von Neumann Algebras. Next, we recall ul-
tapruduct von Neumann algebras. Basic references are Ando—Haagerup
2] and Ocneanu [47]. Let w be a free ultrafilter on N and M be a sep-
arable von Neumann algebra. We denote by [*°(M) the C*-algebra
consisting of all norm bounded sequences in M. Set

[w = {(xn) € ZOO(M) ’ Strong*_hmn%wxn = 0}7

N, = {(z,) € (M) | for all (y,) € L,,
we have (x,y,) € I, and (y,x,) € 1},

C, = {(z,) € (M) | for all ¢ € M,, we have lim ||[¢p, z,]|| = 0}.
n—w

Then we have I, C C, C N, and 1, is a closed ideal of N,. Hence we
can take the quotient C*-algebra M* := N, /I,. Denote the canonical
quotient map N, — MY by w. Set M, := n(C,). Then M, and M¥
are von Neumann algebras as in Proposition 5.1 of Ocneanu [47].

Let 7: M“ — M be the map defined by 7 (7 ((z,))) = lim,_,, ,.
Here, the limit is taken in the weak topology of M. This map is a
faithful normal conditional expectation (see Subsection 2.4 of [44]).

Let a be an automorphism of M. We define an automorphism o
of M¥ by o*(m((x,))) = 7((a(xy,))) for n((z,)) € M¥. Then we have
a¥(M,) = M,. By restricting a* to M,,, we define an automorphism
a,, of M,. Hereafter we omit m and denote ¥ and «, by « if no
confusion arises.

2.4. The Rohlin Property. Next, we recall the Rohlin property. A
basic reference is [44]. In the previous subsection, we have seen that
it is possible to lift automorphisms of von Neumann algebras on their
ultraproducts. Hence it is natural to consider lifts of actions of lo-
cally compact abelian groups on M* and M,. However, lifts may not
be continuous. Instead of considering o on whole MY, we consider
their continuous part. Let G be a locally compact separable abelian
group. In the rest of the paper, we always assume that groups and von
Neumann algebras are separable, except for ultaproduct von Neumann
algebras. We denote the group operation of G by +. Let d be a trans-

lation invariant metric on G (This metric exists. See Theorem 8.3 of
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[19]). Choose a normal faithful state ¢ on M. For an action « of G on
a von Neumann algebra M, set

M2 :={(x,) € M* | for each € > 0, there exists 0 > 0 such that
{n e N | |lax(z,) — :vn||i < e for t € G with d(0,t) < 0} € w},

M, = {(x,) € M, | for each ¢ > 0, there exists 6 > 0 such that
{n e N |lae(zn) — xn||?p < e for t € G with d(0,t) < 0} € w}.

Since all metrics on GG are mutually equivalent, this definition does not
depend on the choice of d. The condition appearing in the definition
of M¥ means the w-equicontinuity of the family of maps {G > t —
ai(x,)} (See Definition 3.1 and Lemma 3.2 of [44]). Now, we define
the Rohlin property.

Definition 2.1. An action 6 of a locally compact abelian group G on
a von Neumann algebra M 1is said to have the Rohlin property if for
each p € G, there exists a unitary u of M, satisfying 0;(u) = (t, —p)u
forallt € G.

The Rohlin property is also defined for Borel cocycle actions (See
Definition 3.4 and Definition 4.1 of [44]). For actions, by the same
argument as in the proof of Proposition 3.5 of [44], it is shown that the
two definitions coincide.

2.5. Connes—Takesaki module. First of all, we recall Connes—Takesaki
module. Basic references are Connes—Takesaki [11] and Haagerup—
Stgrmer [20].

Let M be a properly infinite factor and let ¢ be a normal faithful
semifinite weight on M. Set N := M x,s R. Then the von Neu-
mann algebra NV is generated by M and a one parameter unitary group
{\s}ser satisfying Az = 0%(x) for z € M, s € R. Let 6% be the
dual action of o® and let C be the center of N. Then an automorphism
a of M extends to an automrphism & of N by the following way (See
Proposition 12.1 of Haagerup—Stgmer [20]).

a(r) = a(z) for x € M, a(),) = [Dpoa™": D]\, for s € R.

This & has the following properties (See Proposition 12.2 of Haagerup—
Stgmer [20]).

(1) The automorphism & commutes with 6.
8



(2) The automorphism & preserves the canonical trace on N.
(3) The map a — & is a continuous group homomorphism.

Set mod?(a) := é|¢. This is said to be a Connes-Takesaki module
of a. Actually, this definition is different from the original definition
of Connes—Takesaki [11]. However, in Proposition 13.1 of Haagerup—
Stomer [20], it is shown that they are same. This Connes—Takesaki
module does not depend on the choice of ¢, that is, if ¢ and ¢ are
two normal faithful semifinite weights, then the action mod®(a) o 6%
of R x Z on C is conjugate to mod¥(a) o #%¥. Hence, in the following,
we omit ¢ and write #; and mod(«) if there is no danger of confu-
sion. For an automorphism of any factor of type Il.,, considering its
Connes—Takesaki module is equivalent to considering how it scales the
trace. Hence flows with faithful Connes—Takesaki modules are natural
generalization of trace-scaling flows.

We explain what property of automorphisms Connes—Takesaki mod-
ule indicates. By Theorem 1 of Kawahigashi-Sutherland—Takesaki [31],
an automorphism of any AFD factor is approximately inner if and only
if its Connes—Takesaki module is trivial. Hence Connes—Takesaki mod-
ule indicates “the degree of approximate innerness”.

3. A CLASSIFICATION THEOREM OF ACTIONS OF LOCALLY
COMPACT ABELIAN GROUPS ON FACTORS WITH THE ROHLIN
PROPERTY

3.1. A Classification Theorem of actions of the Rohlin prop-
erty. Let G be a locally compact abelian group. Let a! and o? be two
actions of G on a von Neumann algebra M. Two actions o' and o?
are said to be cocycle conjugate if there exist an a?-cocycle u and an
automorphism o of M satisfying Adu;oa? =coajoo ! forallt € G.
If o can be chosen to be approximately inner, then o is said to be
strongly cocycle conjugate to o (see Subsection 2.1 of [44]).

Our main theorem of this section is the following.

Theorem 3.1. Let G be a locally compact abelian group. Let o and (8
be actions of G with the Rohlin property on a factor M. Then o and
B are strongly cocycle conjugate if and only if oy o 5y € Int(M) for all
ted.

This is a generalization of the following theorem due to Masuda—
Tomatsu [44].

Theorem 3.2. (See Theorem 5.14 of Masuda-Tomatsu [44]) Let o',

a? be two Rohlin flows on a separable von Neumann algebra M. If
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o} o a?, is approzimated by inner automorphisms for each t € R, then
they are mutually (strongly) cocycle conjugate.

In the rest of this section, we present a proof of this theorem. The
proof is modeled after that in [44]. However, at some points of the
proof, we need to deal with problems different from those in their proof.
One of the problems is that some locally compact abelian groups do
not have enough compact quotients. Instead, we consider compact
quotients of compactly generated clopen subgroups. By Theorem 9.14
of Hewitt—Ross [19], a compactly generated subgroup is isomorphic to
R" x K x Z™ for some compact abelian group K and non-negative
integers n, m. We deal with this problem in Subsection 3.1.3.

3.1.1. Lifts of Borel Unitary Paths. The first step of our proof of The-
orem 3.1 is to find a representing unitary sequence {u}} for a Borel
map Uy: G — U(M{) so that the family {¢ — wu}} is “almost” w-
equicontinuous. More precisely, we have the following.

Lemma 3.3. (See Lemma 3.24 of [44]) Let (0,c) be a Borel cocycle
action of a locally compact abelian group G on a factor M. Suppose that
U: G — My is a Borel unitary map. Let H be a compactly generated
clopen subgroup of G, which is isomorphic to R" x K x Z™ for some

non-negative integers n, m and a compact abelian group K. Let L be
a subset of H of the form

L=10,51) x---x10,5,) x K x[0,N7) X ---[0,Ny,)

when we identify H with R™ x K x Z™. Then for any 6 > 0 with
0 <d <1 and a finite set ® of M}, there exist a compact subset I
of L x L, a compact subset C' of L and a lift {u}} of U satisfying the
following conditions.

(1) We have m,((u}),) = Uy for almost every t € L and the equality
holds for allt € C.

(2) We have pug(L\ C) < 6, where ug is the Haar measure on G.

(3) For all v € N, the map L > t — u} is Borel and its restriction
to C' is strongly continuous.

(4) The family of maps {C >t — u}}, is w-equicontinuous.

(5) We have (1 % j16)(1) > (1— 8) (s X pic) (L x L).

(6) The family of maps {1 > (t,s) — uyf(ul)c(t,s)(uy )}y is w-
equicoONtINUOUS.

(7) The following limit is the uniform convergence on I for all ¢ € ®.

lim [ 8, (u)e(t, s)(ufy,)" — 15 = [Ub:(Us)e(t, )U., — 15
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The proof is similar to that of Lemma 3.24 of [44]. Here, we only
prove the following lemma, which corresponds to Lemma 3.21 of [44].
The proof is a simple approximation by Borel simple step functions.

Lemma 3.4. (See also Lemma 3.21 of [44]) Let G be a locally compact
abelian group, 0: G — Aut(M) be a Borel map and U: G — My be
a Borel unitary map. Then for any Borel subset L of G with 0 <
pa(L) < oo and for any € > 0, there exist a compact subset C' of L and
a sequence {u}},en of unitaries of M for any t € L which satisfy the
following conditions.

(1) We have m,((u}),) = Uy for almost every t € L and the equality
holds for all t € C.

(2) We have pa(L\ C) < e.

(3) For all v € N, the map L > t — u} is Borel and its restriction
to C' 1is strongly continuous.

(4) The family of maps {C >t — uy}, is w-equicontinuous.

Proof. By the same argument as in the proof of Lemma 3.21 of [44],
it is shown that there exists a sequence {L,} of compact subsets of L
satisfying the following conditions.

(1) We have L; N L; = () for i # j.

(2) We have uc(L\ Uj2, L;) = 0.

(3) The map Uy, is continuous for each i.

Hence we may assume that L is compact and that U |, is strongly
continuous. Let ¢ € M, be a normal faithful state. For each ¢t € L,
take a representing unitary {Utl’}y of U;. Note that ¢t — ﬁt” may not
be Borel measurable. We first show the following claim.

Claim. For each k € N, there exist N, € N, F}, € w, a finite subset
Ay, of L, a finite Borel partition P* := {KF}}" of L and a compact
subset C} of L satisfying the following conditions.

(1) For s,t € L with d(s,t) < 1/Ny, we have ||Us — Ut||fpw < 1/2k.

(2) We have Ny > Nk_172/Nk + 1/(2Nk_1) < 1/Nk_1 for all k.

(3) We have [k, 00) D Fy_1 2 F, for all k.

(4) We have A, D A for all k.

( ) We have U]Oil Aj C Ok, Ck—',—l C Ck, ,ug(L \ Ok) < 6(1 — 2_k) for
all k and Cj, N K}’s are also compact for all k € N, [ =1, - - ny.

(6) For each k, the partition P**! is finer than P* and for each
ke N, [l = 1, e, Ny, WE have Ak N Klk = {t}ﬁl}(: {pt}).

(7) For s,t € KF, we have d(s,t) < 1/Nj.

(8) For s,t € Ay, v € Fy, we have [|UY U ||}, < [|U,—Us /%0 +1/(2K).

Proof of Claim. First of all, choose a sequence {Ny}32; C N so

that the sequence satisfies conditions (1) and (2). Next, we take P*’s.
11
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Assume that P, - - - P* are chosen so that they satisfy condition (7) and
that P/t is a refinement of P’ for j = 1,--- ,k—1. By compactness of
L, there exists a family of finite balls { By} sep of radius 1/(2Nj41) of L
which covers L. This { By} ser defines a partition {Bp}prepr of L. Then
P*U = {KL N By} prepri—i.. n, is a refinement of P¥, which satisfies
condition (7). Next, we take Cy’s. Set Cy := L and C := Cy. By
Lusin’s theorem, for each I = 1,--- ,ni, k € N, there exists a compact
subset CF of K} which satisfies the following conditions.

(1) We have CF*' ¢ CF if K[! ¢ K}.

(2) We have pc((KT nCE)\ CFY) < 276+ De/ny .y if K C K.

Set Cy, := U, CF for each k € N. Since C}’s are compact, Cj, is
also compact. On the other hand, we have

j+1

c(Ci\ Cina) = Z Ha Kle NC)\ Cja)
N+l . .
=D na((KT N\ Cra)
=1
Tj+1

= Z pa(( K]+1 N Cl]’) \ Cﬁ_l)

< U7ES] 27(j+1)6
Tj+1
— 9=U+1)
In the above inequality, for each | = 1,---n;y, I" € {1,--- ,n;} is the

1
unique number with /™" € CJ. Hence we have

k—1

na(L\C) <) na(Cy\ Cin)

=¢(1—-27F).

These Cy’s satisfy Cp11 C Cp and pg(L \ Ck) < €(1 —27%), and we
also have Cy N KF(= CF) ’s are compact. Next, we take A;’s. For
each C}, D CP D -+, there exists t;,;,.. € (),—; C by compactness of
CPF’s. By induction on k, it is possible to choose Ay = {t;,};*, so that

Ap C Apgr and that £ = 10,0, ,.., 1.e., [ = . These A;’s satisfy
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conditions (4), (5) and (6). We may choose F}’s so that they satisfy
conditions (3) and (8). This completes the proof of Claim. 0
Now, we return to the proof of Lemma 4.5. Fort € L, set Utk’” =U/

(28]
ift € KF, u/ := U for v € F},\ Fyp1. Set C := (1, Cx. Then we have
pi(L\ C) < € by condition (5) of Claim. Since U*"’s are continuous on
each KFNCy(= CF) and CY, - - C’T’fk are compact, Utk’”’s are continuous
on each C%. Hence they are continuous on C'. Hence by the same
argument as in the proof of Lemma 3.21 of [44], the map C' > t — uY
is strongly continuous for each v € N. Then by the same argument
as in Lemma 3.21 of [44], it is possible to see that {C' 3 ¢t — u}}, is
w-equicontinuous and that m,(u}) = Uy for all ¢ € C. Now, we have
chosen {uy}, and C so that they satisfy conditions (2),(3) and (4) of
Lemma 4.5 and the following condition.

(1)” We have 7, ((uy),) = U, for t € C.

Hence what remains to be done is to replace {u} }, so that 7, ((u}),) =
U, for almost all ¢t € L. By repeating the same process, we can find a
sequence of compact subsets {D,,}>°, of L and a sequence of strongly
continuous maps {D, > t — w"" € U(M)}°,_, which satisfy the
following conditions.

(1) We have pe(L\ (U,—y D»)) = 0 and D,,’s are mutually disjoint.

(2) We have m,((uy""),) = Uy for t € D,,.

(3) We have Dy = C and u)"” = u”|¢ for all v € N.

Set uy := u;"” for t € D,. This {u}}, satisfies all conditions of
Lemma 4.5. U

3.1.2. The Averaging Technique. Next, we show the “averaging lemma”.
For the R-action case, this means that it is possible to embed (M ®
L>([0,95)),0 ® translation) into (M, 0) for any S > 0. This is a key
lemma for the classification theorem. For the general case, the following
lemma corresponds to this.

Lemma 3.5. Let G be a locally compact abelian group and 6 be an
action with the Rohlin property of G on a factor M. Let L be a subset
of G with the following properties.

(1) There ezists a compactly generated clopen subgroup H of G, which
is isomorphic to R™ x K X Z™ for some compact group K and non-
negative integers n, m.

(2) The set L is a subset of H. When we identify H with R" x K x
Z™, L is of the form [0,S7) x -+ x [0,S,) X K x [0, N7) x ---x [0, Ns).
Note that L can be thought of as a quotient group of H.
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Then there exist a unitary representation {uk}keﬁ of L on M, ¢ and
an injective *-homomorphism © : M@ L>*°(L) — M with the following
properties.

(1) We have 0,00 = O o (6, @ ;). Here, v: H ~ L*(L) denotes
the translation. A

(2) We have ©(a ® (-, k)) = aug, fora e M, k € L.

(3) We have 7900 = idy®uy,, where puy, denotes the normalized Haar
measure on L, which is the normalization of the restriction of a Haar
measure on G, and ¢ is the normal faithful conditional expectation as
in Section 2.

In order to show this lemma, by the same argument as in Lemma 5.2
of [44] (in this part, we use the fact that M is a factor), it is enough to
show the following proposition.

Proposition 3.6. Let 0 : G ~ M be an action with the Rohlin property
of a locally compact abelian group G on a factor M and L C H be
subsets of G as in the above lemma. Then there exists a family of
unitaries {ug},c; C U(My) with the following properties.

(1) We have 0;(uy,) = (t, k)uy, forte H.

(2) The map k — uy is an injective group homomorphism.

To show the above proposition, we need to prepare some lemmas. In
the rest of this subsection, #, G, H and L are as in Proposition 3.6.

Lemma 3.7. Let C be a subgroup of L isomorphic to Z/lZ. Then
there ezists a family of unitaries {ug}trec C My with the following
properties.

(1) We have 0y(uy) = (t, k)uy fort € H.

(2) The map C' 3 k v+ wy, is an injective group homomorphism.

Proof. Let p be a generator of C. Since # has the Rohlin property,
there exists a unitary w of M,y satistying 0;(w) = (t,p)w for t € H.
Since w' € MY, there exists a unitary v of Mf, N {w}" such that
v =w'. Set u := vw and vy, := u*. Then the family {ur}reziz does
the job. O

By the same argument as in the proof of Lemma 3.16 of [44], we have
the following lemma. See also Lemma 5.3 of Ocneanu [47], Lemma 3.16
of [44].

Lemma 3.8. (Fast reindexation trick.) Let 6 be an action of G on a
von Neumann algebra M and let F' C M* and N C My be separable

von Neumann subalgebras. Suppose that the subalgebra N s globally
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invariant by 0. Then there exists a faithful normal *-homomorphism
b : N — My with the following properties.

®=id on FNM,
O(NN M) CF' NM,g,
7(®(a)r) = ™(a)T*(x) for alla € N, z € F,
OpoP=Pob, on N forallt e L.

Lemma 3.9. Let C be a subgroup of L of the form Z™ X F', where
F =@, Z/(lkZ) is a finite abelian group. Then there exists a family
of unitaries {ug trec C M, g which satisfies the following conditions.
(1) We have 0;(uy,) = (t, k)uy, forte H.
(2) The map k — uy is an injective group homomorphism.

Proof. Let {pl, e PaiG, -+ @m)} be a base of C. Then there exist
unitaries {u;}" ; and {U]}J L with 0,(w;) = (¢, pi)uws, 6:(vy) = (t,q;)v;
for t € H. By Lemma 3.7, we may assume that v;-j = 1. By using the
fast reindexation trick, it is possible to choose {u;}i-; and {v;}72; so
that they mutually commute.

Now, we prove Proposition 3.6.

Proof. Let ¢» € M, be a normal faithful state and let & = {¢,,} be
a countable dense subset of the unit ball of M,. There exists an in-
creasing sequence {C,} of finitely generated subgroups of L satisfying
L = U,~, C,. Then by the structure theorem of finitely generated
abelian groups and the above lemma, for each v, there exists a family
of unitaries {u}rec, C U(M,yp) with C, 3 k — u} satisfying condi-
tions (1) and (2) of Lemma 3.9. For each k € L, set a sequence {k,}
of L as follows.

Lk ifkeC,
Ylo ifkgC, .

Foreachv € N, k € (), take a representmg sequence {u, "} of u}. Take

a sequence {E,} of finite subsets of L satisfying |JE, = L, E, C C,
for all v € N. By Lemma 3.3 of [?], the convergence

T [16,(uf") — (¢, Kyl [, = 0
15



is uniform for t € L. Hence it is possible to choose F, € w (v =

1,2,3,---) so that

(1) F,CF, 1Clv—1,00), v=23--,

(2) luy"uy™ —up |5 < 1/v, k1€ E,, n€F,,

(3) l[ém, wy"Il <1/v, k€ By, m<v, n€F,

(4) 10 (up™) — (¢ Kyuy" |5, < 1/v, k€ E,, t € L, n € F,.

Set (up)n = uy," for n € F, \ F,41. We show that w;, := {(u),} is a
desired family of unitaries.

We show u, € M,,. Fix p € N and k € L. Then there exists v >
with k € E,. Then for n € F,, there exists a unique A > v satisfying
n € Fy\ Frt1. Then by the inequality (3), we have

16ms (wr)alll = G, (] < 1/A < 1/

for m < p. Thus we have u € M,,,.
In a similar way to the above, we obtain ;(uy) = (t, k)ug, using the

inequality (4). It is also possible to show that the map L 2 k — uy is
a unitary representation by using the inequality (2). O

3.1.3. Cohomology Vanishing. By using Lemma 3.5, we show the fol-
lowing two propositions. See also Theorems 5.5 and 5.11 of [44], re-
spectively.

Proposition 3.10. (2-cohomology vanishing) Let (0, c) be a Borel co-
cycle action of a locally compact abelian group G on a factor M. Sup-
pose that (6,c¢) has the Rohlin property. Then the 2-cocycle ¢ is a
coboundary, that is, there exists a Borel unitary map v : G — U(M)
such that

V0 (vs)ce(t, s)vp, s =1

for almost every (t,s) € G

Furthermore, if ||c(¢, s) — 1||§257 I[c(t,s), ¢]|| (¢ € M,) are small, then

it is possible to choose v; so that ||v; — 1Hg5 and |[|[v, ¢]|| are small. We
will explain this later.

Proposition 3.11. (Approximate 1-cohomology vanishing) Let 6 be
an action with the Rohlin property of a locally compact abelian group
G on a factor M. Let €, 0 be positive numbers and ® be a compact
subset of the unit ball of M,. Let H be a compactly generated clopen
subgroup of G, which is isomorphic to R" x K x Z™ for some compact
abelian group K and non-negative integers n, m. Let T, L be subsets

of H which satisfy the following conditions.
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(1) When we identify H with R™ x K x Z™, L is of the form
[0,51) x -+ x[0,5,) x K x[0,Ny) x ---x [0, Ny,),

which implies that L is a compact quotient of H.
(2) We have

Ha (ﬂteT(t + L))

pc(L)
Then for any 0-cocycle u; with

1
—_— Uy, dug(t) <o
— 5 Nl all dote)
for all ¢ € ®, there exists a unitary w € M such that
|[w, ¢]|| < 36 for all ¢ € P,
16 - (wbr(w)w” = 1)|| <e,
|(ube(w)w™ — 1) - ¢|| < eforallt € T, ¢ € P.

> 1 — 462,

By carefully examining arguments of the proofs of [44] Theorems 5.5
and 5.11, we notice that we need to choose sequences {L,} and {7}
of subsets of G with the following properties.

(1) There exists an increasing sequence of compactly generated clopen
subgroups {H} of G with J, H, = G and Ly, T}, are subsets of H,
and T}’s are compact. When we identify Hy with R™ x K} x Z™* for
some compact abelian group K and non-negative integers ny, my, the
subset L is of the form

[0,S1) x -+ x [0,5,,) X Ki x [0, N1) X -+ X [0, Ny, ).
(2) The translation Hy ~ L*™(Ly) is embedded into (0, M, ) (see
Proposition 3.6).
(3) The quantity
Ha (Lk \ ﬂtETk-f—Tk (t+ Lk))
pc(Li)

is small.

(4) We have Ly + Ty, C Tpy1.

(5) We have Tj, C Tj4 for all k € N and J;—, T} = G.

For the R-action case, Ly = [0, s;) and T}, = [—tg, ), tr < i <
tx+1 do the job. In the following, we explain how to choose L;’s and
Ty’s for the general case. First, we show that there exists an increasing
sequence { Hy} of clopen subgroups of G with the following conditions.

(6) For each k, the subgroup Hy is compactly generated, which is

isomorphic to R"™ x K x Z™* for some compact abelian group K. Note
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that the multiplicity n of R of Hj can be chosen to be independent on
k by Theorem 9.14 of [19].

(7) We have |, H, = G.

This increasing sequence is chosen in the following way. There exists
an increasing sequence {Oy} of open subsets of G such that Oy’s are
compact, 0 € Oy, for all k € N and that |J, O, = G. For each k € N,
let H; be the subgroup of G generated by O,. We show that Hj, is
clopen. If t € Hy, then t + Op C Hj. Hence this is open. Hence by
Theorem 5.5 of [19], Hy, is closed. By Theorem 9.14 of [19], Hy is of
the form R"™ x K, x Z™*.

Next, take two sequences {L;} and {T}} of subsets of G and a de-
creasing sequence {¢,} C Ro with the following properties.

(8) The sets Ly, T} are subsets of Hy. When we identify Hj with
R"™ x K}, x Z™* for some compact abelian group K} and a non-negative
integer my, the subset Ly is of the form

[0,51) x -+-[0,S,) x Kt x [0, N7) X -+ x [0, Ny, ).

Note that the way how to identify Hy with R" x K x Z™* is not
important. The point is that L is a quotient of a clopen subgroup of
G.

(9) We have

e (Lk \ ﬂteTk+Tk (t+ Lk)) E—k)z
116(Ly) 6ua(T)*

(10) We have T}, + Ly, C Ti41, U, Tk = G and T}’s are compact.
(11) We have 0 < ¢ < 1/k and

>1—(

Z \/ 13HG(TIC>€I<: < €p.

k=n+1

From now on, we explain how to choose two sequences {L;} and
{T\}. They are chosen in the following way. For each k € N, set
Ay, := Oy. Here, the set Oy, is chosen as in (7).

Assume that (T}, L, ¢), | < k are chosen. Then since Ay + Tj + Ly
is compact, it is possible to choose a subset T} 1 C Hy.q so that when
we identify Hjy; with R™ X Kjq X Z™+1 T}.4 is of the form

[—t1,t1] X - X [=t, ty] X Kjqq X [= My, My] x -+ x [—=M,

Mip419

M,

mk+1]

and that Ay + T + Ly C Tjyq. Since |J, Ax = G, we also have
U, T = G. Choose €1 > 0 so that

€1 < e V1306 (Th1)enr < €x/2".
18



Choose Lii1 C Hyyq so large that Ly, satisfies conditions (8) and (9).
Thus we are done.

By using the above sequences {Ly}, {7} instead of {Sk} and {T}}
of (5.14) of [44], Propositions 3.10 and 3.11 are shown by a similar
argument to that of the proofs of Theorems 5.5 and 5.11 of [44], re-
spectively. Furthermore, it is possible to choose v; in Proposition 3.10
so that v; satisfies the following conditions.

(1) If for some n > 2 and a finite subset ® C (M,), we have

| dnett) [ duo(s)lett.s) = 1 < e
Tn+l Tn+1
for all ¢ € ®, then it is possible to choose v; so that

[ =11 du(t) < e (@)

for all ¢ € ®. Here, d(®) is defined in the following way.

d(®) := max({1} U {|[o]| | ¢ € }).

(2) If for some n > 2 and a finite subset ® C M,, we have

| dnot®) [ dualliete.).oll <
Tn+1 Ln+1
for all ¢ € ®, then it is possible to choose v; satisfying
[ e a1l duo(®) < (Beas -+ 30d(@)
Th

for all ¢ € .

In the proof, the following points are slightly different.
(1) The inequality corresponding to (5.12) of [44] is

26 (L\ (Dherert + )" 6
p(L)172 6uc(T)

(2) We need to show a lemma which corresponds to Lemma 5.4 of

[44]. In the proof, the inequality corresponding to (5.13) of [44] is the
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following.
U (Us)elt, $)Uz, — 115
< IXAuepart+r — sy,
+ ||XL\(nt€T+T t+L) ((a unitary valued function) — 1) Hfb@m
f
<0+ 2||XL\(mteT+T t+L) ||¢®uL

172 MG (LN (Neerart + L>>1/2
MG(L)1/2

< 2ol
L0
6pc(T)?

for all t,s € T', ¢ € . The other parts of of the proof are completely

same.
(3) In the proof of Theorem 5.5 of [44], they show the inequality

Th
/ W uea (W) — 1|2 dt < 18e,.

Instead, in the proof of Proposition 3.10, we show the following in-
equality.

W uaf (W) = 13 duc(t)

Tn

2 e "~
< —/ dpc(t) (/ duc(s) |agua (is—s) — 1]13
pe(Ln) Jr, Neer, t+Ln

+ [ duc(s) llizua i) — 1]3)
Lo\Ner, t+Ln

< 2
= pa(Ln)

/ dyic(t) / dpi(s) [1a5ual (Gs—s) — 1|1
n ntETn t+Ln

UG<Tn):uG(Ln \ ﬂ l+ Ln)

teTh

/ A (®)dua(s) iuod (@) — 113
Tn+1 XTn+l

€n’

1816(T)!

_l_

8
pic(Ln)
- 2

e (L)

+ pa(Th)

< 9e¢,.

The other parts of the proof of Proposition 3.10 are same as corre-
sponding parts of the proof of Theorem 5.5 of [44].

(4) In the proof of Proposition 3.11, we need to show the inequality
20



luscre(WOW* =10 < 20X ep 20 [y,
which corresponds to the inequality
t2 )2
G1/2

in the proof of Theorem 5.11 of [44]. This is obtained by a similar
computation to the above (3).

(W)W = 1l < 2

By using Proposition 3.10, it is possible to show the following lemma,
which corresponds to Lemma 5.8 of [44].

Lemma 3.12. Let «, (8 be actions with the Rohlin property of a locally
compact abelian group G on a factor M. Suppose that ayo3_; € Int(M)
forallt € G. Let H be a compactly generated clopen subgroup of G and
T be a subset of H such that when we identify H with R" x K x Z™
for some compact abelian group K and non-negative integers n, m, T
1s of the form

[—t1,t1] X -+ X [=tp, tp] X K X [=My, Mq] X -+ X [=M,,, My,

Then for any € > 0 and a finite set ® C M,, there exists an a-cocycle
u such that

/T |Adu, 0 ar() — B(&)] duclt) < e
forall € ®.

In the proof of this lemma, the set corresponding to (5.18) of [44] is
obtained in the following way. For a small positive real number n > 0,
take a small number r > 0 so that

2n
ar(¢) — ol <n, [|6i(@) — ol < — =
@) - o <. 180) = ol < - 20
for p € @, t € G, d(t,0) < r. Choose A(r,T) := {t;};_; so that for
any t € T, there exists t; € A(r,T) with d(¢,t;) < r. This is possible
because T is compact.

Now, we return to the proof of Theorem 3.1. The proof is basi-
cally the same as that of Case 2 of Lemma 5.12 of [44]. Here, we only
explain the outline. By using Proposition 3.11 and Lemma 3.12 al-
ternatively, our main theorem of this section is obtained (the Bratteli—
Elliott—Evans—Kishimoto type argument). However, we need to change

the following part. In the proof of Case 2 of Lemma 5.12 of [44], they
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take {M,} € N and {A(M,,T,)}, which appear in conditions (n.1)
and (n.8). Instead, in (n.8), take 7, € R~q so that

[(0(t) — v (s)) - Ol < €n,
6 - (v"(t) —v™(s))|| < €n
fort,s € T, d(t,s) < rp, ¢ € ®,,_1. Choose a finite subset A(ry, T})) of

Ty so that for each t € T}, there exists to € A(rg, Ty) with d(t,ty) < ry.
This is possible because T}, is compact.

3.2. Actions with the Rohlin property on the AFD factors of
type II. Here, we give some classes of actions each member of which
has the Rohlin property. We separate the argument by factors on which
the group acts. Namely, we will separately consider the following three
classes.

(1) The factor is AFD and of type IL
(2) The factor is non-McDuff and of type II.
(3) The factor is AFD and of type III.

The first case is deeply studied by Kawahigashi [28], [29] and [30].
We give proofs for some of his results by using Theorem 3.1. We will
explain this in Subsubsection 3.2.1. The second case is studied by the
author [54]. Although he handles only actions of R in [54], its results
holds for actions of general locally compact abelian groups. We will
explain this in Subsubsection 3.2.2. For the third case, in Section 4,
we will give a sufficient condition for the Rohlin property.

First, we consider actions which fix Cartan subalgebras. This type of
examples are classified by Kawahigashi [28]. One of the most important
examples of actions of this form is an infinite tensor product action.

Let {p,} be a sequence of the dual group G of G. Set

M = (RQ)(M(C), tr),

Then it is possible to define an action 0 of G by the following way.

1 0
0; .= Ad .
=@M (6 )
Then this 6 has the Rohlin property if and only if the set

A={pe G : there exists a subsequence of {pn} which converges to p}

generates a dense subgroup I' in G. This is seen by the following way.

We first show the “if” part. Here, we show this implication in the case
22



where for each p € A, a subsequence of {p,} which converges to p can
be chosen to be a constant sequence. This case is needed for the proof
of Example 3.13. The general case of this implication will follow from
Example 3.13.

Choose p € A. By ignoring other tensor components, we may assume
that p, = p for all n. For each m € N, set

S™i={o:{l,--- 2m—1} = {1,2} | to (1) = m—1, tc~*(2) = m}.
Foro € S™, m e Nand k € {1,---,2m —1}, set 7(k) := 3 — o (k) and
Vo = Er(o() ® -+ @ Erom-tyo(am1) O L&+ .

Then we have
€o = UzUs = €a(1)o(1) ® *+ Q o2m—1)o2m-1) ® 1 ® -+,
fo =05 = er1)r) © -+ @ Eram-1)r(@m-1) @ L @ -+,

0r(vs) = (t, p)vo
for t € G. Hence if we set

T:=|J{oes™ [t ()n{L - k})

>t 2)N{L,-- k}) for k=1,---,2m — 2},

then the families {e, },er and {f, },er are orthogonal families, respec-
tively. We show that ) _,. e, = 1, which implies that ) _, v, is a
unitary. This is shown in the following way. Consider the gambler’s
ruin problem when one has infinite money, the other has no money
and they have equal chance to win. Then || Y __.e,||; is equal to the
probability of the poor’s ruin. This is 1. Set

Uy =10 ®18 Y v, € My(C)*" @ M.
ceT
Then we have {u,} € M, and 0;((u,)w) = (t,p)(u,), for t € G. By
assumption, the set A generates a dense subgroup of G. Hence 6 has
the Rohlin property.

Conversely, assume that the subgroup I' is not dense in G. Then
there exists a non-empty open subset U of G with UNT = 0. Then
by a similar argument to that of the proof of Proposition 1.2 of [28], it
is shown that the Connes spectrum of ¢ and U do not intersect, which
implies that # does not have the Rohlin property.

oeT

Theorem 3.13. (See also Corollary 1.9 of Kawahigashi [28]) Let « be

an action of a locally compact abelian group G on the AFD factor R of
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type 1. Assume that o fizes a Cartan subalgebra of R. Then o has
the Rohlin property if and only if its Connes spectrum is G.

The proof is just a combination of an analogue of Corollary 5.17,
which follows from the above example of an infinite tensor product
action and Theorem 3.1, and Lemma 6.2 of [44]. In the proof, the
point is that invariantly approximate innerness (see Definition 4.5 of
[44]) is the dual of the Rohlin property. This fact is shown by the
completely same argument as in the proof of Theorem 4.11 of [44].

By this example and the main theorem, all the actions fixing Cartan
subalgebras with full Connes spectrum are cocycle conjugate to an
infinite tensor product action with full Connes spectrum.

The following is a next example.

Example 3.14. (See Theorem 6.12 of [44]) Let 6 be an almost periodic
minimal action of a locally compact abelian group G on the AFD factor
of type II;. Then # has the Rohlin property.

Proof. An almost periodic action is a restriction of a compact abelian
group action to its dense subgroup (see Proposition 7.3 of Thomsen
[61]). If 0 is minimal, then the original compact group action is also
minimal, which is unique up to cocycle conjugacy by Jones—Takesaki
[25]. This has the Rohlin property. O

3.3. Actions with the Rohlin property on non-McDuff factors.
One of the remarkable point of Theorem 3.1 is that the theorem is also
applicable to actions of locally compact abelian groups on non-McDuff
factors. Hence it is natural to try to find actions with the Rohlin
property on non-McDuff factors. Here we construct Rohlin flows on a
non-McDuff factor.

3.3.1. The Construction. Although the following is written about ac-
tions of R for simplicity, it is also possible to construct actions of
general locally compact abelian groups by completely the same argu-
ment. Let D = L*°(X, ) be a diffuse separable abelian von Neumann
algebra, where p is a probability measure. Choose a free ergodic pu-
preserving action  : Z ~ D. Then A := D x,Z D D is a pair of
the AFD type II; factor and its Cartan subalgebra. There is a unique
action a*x« : Fo ~ D which satisfies a xa(a) = a, axa(b) = a, where
a, b are two generator of Fy. Set M := Axp A. Then M is isomorphic
to D X o Fo and is a non-McDuff factor.

Lemma 3.15. (See also Theorem 2.6 of Ueda [62])
24



Let 0 : R ~ D be a u-preserving flow commuting with . Let {ul} be
0-cocycles (i = 1,2). Then the action 0 extends to M by 0;(N\a) = ui \g,
0:(\y) = uX, fort € R.

Proof. Fix t € R. Since 6, commutes with «, the injective homomor-
phisms m4 : A= {{NJUD}Y < Axp A, mp : A= {{N}UD} —
A xp A satistying the following are well-defined.

Ta(Aa) = Ui da, T5(Ny) = Xy, Ta(7) = 7p(2) = O,(7) for z € D.

Then here exists an automorphism 6; of Axp A such that 6, upyr =
T4, 0¢l{prayupyr = mp. It is not difficult to see that the map ¢ — 6;(y)

is strongly continuous for y € M.
O

For the above flows, we give a characterization of the Rohlin property.

In order to achieve this, we make use of the following Rohlin type
theorem for R x Z actions on the standard probability space, which is
a part of a theorem of Lind [38] or Ornstein-Weiss [48].

Lemma 3.16. (Theorem 1 of Lind [38]) Let R be a u -preserving faith-
ful ergodic action of R x Z on the standard probability space (X, ).
Then for any € > 0, for any N € N and for any T > 0, there exists a
Borel subset Y C X with the following properties.

(1) The set A := U\ j<p jnj<n Rn)(Y) is Borel measurable and sat-
isfies p(A) > 1 —e.

(2) There is a Borel isomorphism F : A 2 Y x[-T,T|x{—=N,--- ,N}
and a Borel measure v on'Y such that

uF~!' = v ® Lebesgue measure ® counting measure.
(3) Under this identification, we have
R(t,n) <y7 S, m) = (1/7 s+ tu m—+ n)

fO’I"y S Y7 |S+t| < T; |S| < T7 m € {_Na"'vN}f |m| < N;
In+m| < N.

Now, we give the characterization of the Rohlin property for flows
constructed in Lemma 3.15.

Theorem 3.17. For flows constructed in Lemma 3.15, consider the
following five conditions.
(1) The flow 6 has the Rohlin property.
2) The action {(0¢|p) 0 n}nyecrxz s faithful on D.
3) The flow 0 is centrally free. That is, 0y is free on M, fort # 0.
4) The flow 0 is centrally free and has full Connes spectrum.
5) We have (M xg R)NM' = C.
Then we have implications (1) < (2) & (3) < (4) = (5).
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Proof. The implications (1) = (4) = (3) and (1) = (5) follow from
Masuda-Tomatsu [44]. Hence it suffices to show the implications (3)
=(2) and (2) = (1).

First, we show the implication (3) = (2). Assume that condition
(2) does not hold. Then there exists (f,n) # 0 such that 6; = .
We have ¢ # 0 because « is ergodic. Hence for x € M, C D% (the
implication M, C D*“ is shown in Theorem 8 of Ueda [63]), we have
0:(r) = AgnxAy—n = x, which implies that condition (3) does not hold.

Next, we show the implication (2) = (1). Suppose that the action
{(0¢|p) © n}(t,m)erxz is faithful. Fix n € N. It is enough to construct
a sequence {u,} of unitary elements of D such that

(1) w1 (|0:(up) — e Plu,|?) < n=2 for |t| < n,

(i) g (Jox(un) = un|?) <072

Assume that we have these u,’s. Then by condition (ii), {u,} asymp-
totically commutes with A\, and \,. Hence {u,} is a centralizing se-
quence. By using condition (i), we have 0; ({u,}) = e *{u,} for
teR.

Now, we show the existence of the above {u, }. Regard D as L*>(X, u),
where (X, ) is a standard probability measured space and let S : R ~
(X,pn) and T : Z ~ (X, ) be actions induced by 0, «, respectively. By
using Lemma 3.16 for T := 8n?, N := 8n?, € := 1/8n2, R(sm) = SsTm,
there exists a Borel subset Y C X satisfying the conditions in Lemma
3.16.

Set
w(y. 5.1m) = e for (y,s,m) € A,
A B for x € X\ A.

Then by condition (3) of Lemma 3.16, we have
(0:(up) — e Puy,)(x) = 0 for v € {(y,s,m) € A| |s| <T —n}.
Hence we have
p(0n(un) — e P'un]*) < Ap(X\{(y, 5,m) € A |s| <T —n})
= 4(u(X\A) + p({(y, s,m) € Al [s| > T —n}))
<4(e+n/T)=n"2
By similar computation to this, we have u(|a(u,) — u,?) <n 2. O

By this theorem, it is possible to see that there exist Rohlin flows
on the factor M. In order to do this, first, note that if an action S :
Z ~ D is free ergodic probability measure preserving, then D xg,3F5 is
isomorphic to the factor M, which is shown by Connes—Feldman—Weiss

[10] and the uniqueness of the amalgamated free product.
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Example 3.18. Let ([?, ) be a diffuse separable abelian von Neumann

algebra with a normal faithful trace and let 0 be a p-preserving faithful
flowon D. Set D := ®%° (D, p)" and a : Z ~ D be a Bernoulli shift.

n=—0oo

Then the diagonal action # : R ~ D of 0 extends to M := D X Fo
and has the Rohlin property.

Other examples are given in the following.

Example 3.19. Let D = L®(T?)(= L*((R/Z)?)) and let a : Z ~ D
be an action defined by a(f)(r,s) = f(r —1/v/2,5 —1/4/3) for (r,s) €
T2, f € D. Then D Xa.q F is isomorphic to M. By Lemma 3.15, we
can define a flow 0MP4 : R ~ D Xauq Fo by

0PN 8) = f(r = pt.s — qt)
for (r,s) € T?, f € D, t € R,
R O e A O R

for t € R. This 6*#?¢ has the Rohlin property if and only if (p, q) #
r(n/v/2 —m,n/v/3 —1) for any r € R, n,m,l € Z.

Proof. In order to show this, by Theorem 3.17, it is enough to show that
the action {(6;""|p)oa,} is faithful if and only if the above condition
holds. For (t,n) € R x Z, )", = a,, if and only if pt = n/v/2+m,
gt = n/v/3 + 1 for some m,l € Z. Hence {(6;""|p) o o} is faithful if

and only if (p, q) # (n/v/2+m,n/v/3+1)/t for all t € R\ {0},n,m,l €
Z. U

If we further assume that (p,q) # 7(s/v/2 —m,s/v/3 — 1) for any
r,s € R, m,l € Z, then this also gives a new example of a Rohlin
flow on the C*-algebra C(T?) Xauo Fa2, which is shown by the same
argument as in Proposition 2.5 of Kishimoto [34].

Remark 3.20. Let o : G ~ D be a non-singular free ergodic action of
a discrete group. If the action « is stable (See Definition 3.1 of Jones—
Schmidt [24]), then the factor M := D Xgaua (G % G) admits Rohlin
flows. This is shown by the argument similar to (2) = (1) of Theorem
3.17. In particular, by Corollary 5.8 of Ueda [62], for any A\ € [0, 1],
there exists a type I1I, non-McDuff factor which admits Rohlin flows.

3.3.2. On classifications. In this subsubsection, we discuss classifica-
tion of actions on non-McDuff factors above. It is remarkable that
Theorem 3.1 holds for actions on any separable factors. Hence it is

natural to apply the theorem to the actions constructed above.
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Lemma 3.21. (Lemma 2.1 of Popa [49], Theorem 5 of Ueda [63])

Let M = Axp B, u, Ea, Eg, E be as above. Let x € M“ and let
v, w be unitaries of A with o Ex(u*-u) = po Ey = po Eq(v* - v).
Assume that E4(v") = 0, Ea(w™) =0 (n # 0), vDv* = D = wDw*,
x =vxw*. Then for yi,ys € ker Eg, we have

l912 = 292 [Guompe =l v1(@ — E9(@)) [Gwomye + 1| (@ = E(2))y2 [{uom)-

where (po E) : M*¥ — C, E¥ : M“ — D“ are maps induced by po E
and E, respectively (see subsection 2.2 of Ueda [63]) and || = ||(uor)»=
(o E)(z*x))Y? for v € M*.

By using this lemma, it is possible to show the following lemma,
which is crucial to investigate the approximate innerness of flows. Let
M = AxpA be the type II; amalgamated free product factor considered
in this subsection.

Lemma 3.22. Let 6 be an automorphism of M = Axp A which globally
preserves D and satisfies O(\,) = ul),, 0(Ny) = u?)y for some u', u?
€ U(D). Then the automorphism 0 is approximately inner if and only
if O|p = id, u! = u?.

Proof. This is shown in the proof of Theorem 14 of Ueda [63] in a more
general setting. Here we give a proof briefly.

First, we show the “only if” part. Assume that # is approximately
inner. Then there exists a unitary {u,} of M*“ such that 6(y) = strong-
lim,,_,, w}yu, for y € M. Then by using Lemma 3.21 for v = \,, w =
ut N, y1 = Ny, Y2 = PNy, @ = {u,}, we have {u,} — E“({u,}) = 0.
Hence we have {u,} € D*, which implies that §|p = id, and we have

ut = 0N )ANE = lim up Aui e = lim upa(ul) = lim u, Aius Ay = u’.
n—w n—w n—w

Next, we show the “if” part. Assume that 0|p = id, u' = u*. We
construct a sequence {u,} of unitaries of D such that u,o(u}) — u'.
By using the Rohlin lemma for «, there exists a partition {ex}7_, C
Proj(D) of unity in D such that

aley) =epyg for k=1, . n—1, puleg) <1/(n+1).
Set

n

1 1
Uy = g Ug€r, V1 = U, Vpyq = avg)u’.

k=0
for k=1,---,n — 1. Note that

* * 1 1
vrera(ev]) = VRV U egerp1 = Op it e
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for k,l =1,---n—1. Hence by a similar computation to the one in the
proof of Theorem 3.17, we have u,«(u’) — u'. Hence we have

Up Al — uAg = 0(\y),
UnAbUZ — ul)\b = UQ)\b = 9()\1)),
which implies that Adu,(y) — 6(y) strongly for y € M. O

Lemma 3.23. The Rohlin flows constructed in Theorem 3.17 are com-
pletely classified by {0|p, uiu2"}, up to strong cocycle conjugacy.

Proof. This lemma immediately follows from Theorem 3.1 and Lemma
3.22. 0

Example 3.24. The Rohlin flows considered in Example 3.19 are com-
pletely classified by (p,q, A — 1), up to strong cocycle conjugacy.

However, we are mainly interested in classifying actions up to usual
cocycle conjugacy. Being mutually strongly cocycle conjugate is just
a sufficient condition for being mutually cocycle conjugate. When the
factor is approximately finite dimensional, then the difference of these
classifications does not cause any problem because we can describe
how far from being approximately inner an automorphism is (See The-
orem 1 of Kawahigashi-Sutherland-Takesaki [31]). However, we will
see that when the factor is not approximately finite dimensional, these
two classifications are completely different.

Theorem 3.25. For Rohlin flows in Example 3.19, usual cocycle con-
Jugacy and strong cocycle conjugacy are different.

The following lemma is an essential part of Theorem 3.25. Recall that
the discrete spectrum Sp,(6) of a flow 6 on a von Neumann algebra M
is the set

Spy(0) := {p € R | there exists v € M\ {0} with 6;(z) = "'z fort € R}.

Lemma 3.26. Let QAvHoruai  gr2m2:p2:82 be tyo Rohlin flows mentioned
in Fxample 3.19. Then they are cocycle conjugate if there exist r € R
and two points ¢, d of Spy(6*+1Pr9 |p) such that one of the following
conditions holds.

(1) We have (p1,q1) = (p2,q2) and

()= Ga) () (5)

(2) We have (p1,q1) = —(p2,¢2) and

()= 2) ()« (1) (2).
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Proof. Assume that one of the above conditions holds. First, consider
the case when condition (2) holds. Let ¢ be an automorphism of D
defined by

O-(f)(87t) = f(_su _t>
for f € D, (s,t) € T2 We show the following claim.
Claim. The automorphism o extends to an automorphism of M by

O'()\a) :)\b—l, O'()\b) :)\ab—Q.

Proof of Claim. Set an automorphism 3 on D by 3 := a~!. Then we
have cofloo™! = a. Hence by Lemma 7.5 of Takesaki [59], there exists
an isomorphism m4 : DX gua{a}? 2 DxoZ — DxgZ = Dxa*a{lfl}z
satisfying

D> f—oa(f), A\ar— Ap-1.
Similarly, there exists an isomorphism 7g : D Xauo {0}2 = D x4 Z —
D %37 % D xq.0 {ab~2}” satisfying

D> feoa(f), M= A2

Note that the endomorphism p of Fy defined by a + b= %, b+ ab™2 is

bijective. The inverse is given by a — ba=2, b+~ a~'. By the injectivity

of p, the images of m4 and g are free over D. By this observation,by

the uniqueness of the amalgamated free product, the automorphism o

extends to an automorphism of M. O
Now we continue the proof of the lemma. Since we have

o logrHPLa o 5 — 9—#1)\1—2#1,—1717—(117

by replacing 9 1#1P1a1 by g1 o Pr1HLPLA o g it is enough to consider
the case when condition (1) holds. Assume that condition (1) holds.
Since ¢ € Spy(6r+#1P1a1 | b)) there exists u € D such that || u ||= 1 and
gD () = ety for t € R. Since u*u(= uu*) is fixed by @ #1141
uw*u = uu* = 1 by the ergodicity of #*1:#1P191 |, Similarly, there exists
a unitary v of D with 6,"**P1% () = iy for t € R.

Then the identity map o of D extends to M by o(A\,) = ul,, 0(Xp) =
vXp. By replacing 02 1#1:P10 by g~ o @ALH1PLI o 5 we may assume that
¢ = d = 0. Hence by using Example 3.24, §At#1:P101 and r2:H2:P2:82 gre
cocycle conjugate. 0

Now, we return to the proof of Theorem 3.25.

Proof of Theorem 3.25. Let \#1:P1@ and §r2#2:22:¢2 he two Rohlin
flows considered in Example 3.19. Then by Example 3.24, they are
strongly cocycle conjugate if and only if A\; — 1 = Ao — o, p1 = po
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and ¢ = ¢2. On the other hand, by Lemma 3.26, they are cocycle
conjugate if (p2, g2) = (—=p1, —q1) and (Mg, po) = (—p1, A1 — 2p1). O

4. A SUFFICIENT CONDITION OF ACTIONS OF R ON AFD FACTORS
OF TYPE III FOR THE ROHLIN PROPERTY

4.1. The main theorems of Section 4. The main theorem of this
paper is the following.

Theorem 4.1. A flow on any AFD factor with faithful Connes—Takesak:i
module has the Rohlin property.

As we have explained in Subsection 2.5, Connes—Takesaki module
indicates how far from being approximately iner an automorphism is.
Hence this theorem means that a kind of “pointwise outerness” implies
“global outerness”.

As a corollary, we obtain a classification theorem up to cocycle
conjugacy. For a von Neumann algebra C' and a flow g of C, set
Autp(C) :={o € Aut(C) | 0o 5y = fr oo, t € R}. By Theorem 4.1,
Theorem 3.2, and the characterization of approximate innerness of au-
tomorphisms of AFD factors (Theorem 1 of Kawahigashi-Sutherland-
Takesaki [31]), we have the following.

Corollary 4.2. Let o' and o be two flows on an AFD factor M with
faithful Connes—Takesaki modules. Then they are cocycle conjugate if
and only if there exists an automorphism o € Auty(C') with mod(a?) =
ogomod(a}) oo™t for anyt € R.

As an obvious application, we have the following example.

Example 4.3. A flow on any AFD factor with faithful Connes—Takesaki
module absorbs any flow on the AFD II; factor, as a tensor product
factor.

As we have explained in the introduction, characterization of the
Rohlin property is an important problem (Conjecture 8.3 of Masuda—
Tomatsu [44]). Theorem 4.1 gives a partial answer to this problem.
We will proceed further to this direction in Subsection 4.3.3.

4.2. The proof of the main theorem of Section 4. In this sub-
section, we show Theorem 4.1. In order to achieve this, we first note
that we may assume that a flow has an invariant weight. This is seen
in the following way. Let a be a flow on an AFD factor M. Then by
the same argument as in Lemma 5.10 of Sutherland—Takesaki [55] (or

equivalently, by the combination of Lemma 5.11 and Lemma 5.12 of
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[55]), there exists a flow 5 and a dominant weight ¢ which satisfy the
following conditions.

(1) We have ¢ o B, = ¢ for all t € R.
(2) The action 3 is cocycle conjugate to o ® idp(r2m)-

By Lemma 2.11 of Connes [§], (M ® B(L*R)),, = M,, ® C. Hence,
by replacing a by 3, we may assume that the action « has an invariant
dominant weight. In the rest of the section, we denote the continuous
core M x,s R by N and the dual action of o® by #. Then by the same
argument as in the proof of Proposition 13.1 of Haagerup—Stgrmer [20],
the action & extends to a flow & of N x4 R so that if we identify N xyR
with M ® B(L*R) by Takesaki’s duality, & corresponds to o ® id. By
Lemma 2.11 of Connes [8] again, in order to show that « has the Rohlin
property, it is enough to show that & has the Rohlin property. In order
to achieve this, we need to choose {u,} C U(M ® B(L*R)),, which
satisfies the conditions in the definition of the Rohlin property. Our
strategy is to choose {u, } from N. Based on this strategy, it is sufficient
to show the following lemma.

Lemma 4.4. For each p € R, there exists a sequence {u,} C U(N)
satisfying the following conditions.

(1) We have ||[un, ¢]|| = 0 for any ¢ € N,.

(2) We have 04(u,) — u,, — 0 compact uniformly for s € R in the
strong* topology.

(3) We have a;(u,) — e?u, — 0 compact uniformly for t € R in the
strong™® topology.

By the first two conditions, this {u,} asymptotically commutes with
elements in a dense subspace of M @ B(L*R) = M. However, in gen-
eral, this does not imply that {u,} is centralizing (and this sometimes
causes a serious problem). Hence, in order to assure that Lemma 4.4
implies Theorem 4.1, we need to show the following lemma.

Lemma 4.5. Let M be an AFD factor of type 111 and let M = N xgR
be the continuous decomposition. Then a sequence {u,} C U(N) with
conditions (1) and (2) of the above lemma is centralizing.

Proof. Let H be the standard Hilbert space of N. Take £ € H and
f € L*(R). Since

2(€ @ [)(s) = (0-s(2)€) f (),
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(€@ Na(s) = (Jux"Ju(§® f))(s)
= (Jnz"InE) f(s)
= (&x) f(s)

for s € R, x € N, we have

lunl€ ® F) = (€ ® fua|l? = /R 10— ()€ — EunPIF () ds
< /R 16 () — w217 ()P ds
n /R lané — Eunl?/f()[? ds

—0

by Lebesgue’s convergence theorem. Here, the convergence of the sec-
ond term follows from Lemma 2.6 of Masuda—Tomatsu [44]. Any vector
of H® L?R is approximated by finite sums of vectors of the form £ ® f.
Hence for any vector n € H ® L*R, we have |u,n — nu,|| — 0. Hence
{u,} is centralizing. O

By this lemma, Lemma 4.4 implies Theorem 4.1. In the following,
we will show Lemma 4.4. If M is of type Il,, Lemma 4.4 is shown in
Theorem 6.18 of Masuda—Tomatsu [44], using Connes and Haagerup’s
theory. If M is of type II; or is of type IIl;, then we need not do
anything because Connes—Takesaki modules of automorphisms are al-
ways trivial. Hence we only need to consider the case when M is of
type 11l and the case when M is of type III, (0 < A < 1). Actually,
as we will see in Remark 4.16, if M is of type III, (0 < A < 1), the
Connes—Takesaki module of a flow cannot be faithful. Hence, the only
problem is how to handle the case when M is of type IlIj.

Let C be the center of N. First, we list up the form of the kernel of
the action mod(a)o (6 |¢) of R* on C. This is a closed subgroup of R?.
Thus the kernel must be isomorphic to one of the following groups.

0, Z, Z°, R, Rx Z, R

However, since 6 | is faithful, the kernel cannot be isomorphic to R xZ
or R?. We handle the other four cases separately.

We first consider the case when ker(mod(a) o (6 |¢)) = 0. In this
case, by an argument similar to that of the proof of Theorem 3.3 of
Shimada [54], Lemma 4.4 follows from a Rohlin type theorem due to

Feldman [13]. In the following, we will explain this theorem.
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Settings. A subset @ of R? is said to be a cube if Q is of the form
[—Sl,tl] X X [—Sd,td]

for some s1,---,84,t1,--- ,tqg > 0. Let Q be a cube of R? and T
be a non-singular action of R% on a Lebesgue space (X,u). Then
a measurable subset F' of X is said to be a Q-set if F' satisfies the
following two conditions.

(1) The map Q x F' 3 (t,x) — Ti(z) € X is injective.
(2) The set ToF = {T}(x) | t € Q,x € F'} is measurable and non-
null.

In this setting, the following theorem holds.

Theorem 4.6. (p.410 of Feldman [13], Thoerem 1 of Feldman-Lind
[16]) Let T be a free non-singular action of R on the standard prob-
ability space (X, p). Then for any € > 0 and for any cube P of R,
there exists a large cube QQ and a Q-set F' of X with

N perf) > 1 =€

The proof is written in Feldman [14]. However, his paper is privately
circulated. Hence we explain the outline of the proof in Appendix of
this section (Subsection 4.4), which is based on Theorem 1 of Feldman—
Lind [16] and Lind [37]. As written in the proof of Theorem 1.1 (a)
of Feldman [13] (p.410 of Feldman [13]), it is possible to introduce a
measure v on F' so that the map Q@ x F' 3 (t,z) — Ti(z) € TpF is a
non-singular isomorphism. The measure v is defined in the following
way. Set

M :={A C F | Ty(A) is measurable with respect to u}.

Then M is a g-algebra of F' and it is possible to define a measure v on

F by
oAy — MToA)
()= w(TQF)

for A € M. Then the map (¢, z) — Ti(x) is a non-singular isomorphism
with respect to Lebesgue ® v and p|z,r. These things are written in
p.410 of Feldman [13] and the proof may be written in Feldman-Hahn—
Moore [15]. In this paper, for reader’s convenience, we present a proof
of what we will use (Propositions 4.30 and 4.31 of Subsection 4.4).

Lemma 4.7. When ker(mod(«) o (0|¢)) is zero, Lemma 4.4 holds.
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Proof. Think of C' as L>°(X, u) for some probability measured space
(X, ). Let T be an action of R? defined by the following way.

f o T(s,t) - 975 o 647t<f)

for f € L*(X,u), (s,t) € R% Fix a natural number n € N. Set
P :=[—n,n]%. Then by Theorem 4.6, there exists a large cube @Q and
a (Q-set F' of X with

1
I epeF) > 1= —.

Define a function u, on X by the following way.
W, = et (l’ = T(s,t)<y)7 <S7t) € Q7 y e F)
" 1 (otherwise).

Then by Proposition 4.30, the function w, is Borel measurable. Then
for v € T, @+ and (s,t) € P, we have

Os(un)(z) = un(),
&y (uy) (1) = P, (z).
Hence we have

105 (wn) = wally < Ap(X N\ T, ) F)

4
<
T n+1
for s € [-n,n|. By the same computation, we have
' 4
~ _ ipt 2 <
I (un) — €T unll, <

for t € [-n,n]. Hence the sequence {u,} of unitaries of C satisfies the
conditions in Lemma 4.4. U

Next, we consider the following case.

Lemma 4.8. When ker(mod(a) o (0 |¢)) is isomorphic to Z?, Lemma
4.4 holds.

In this case, there exist two pairs (p1,¢1), (p2,¢2) of non-zero real
numbers with ker(mod o 0) = Z(p1, q1) ® Z(p2, q2). Here, we use our
assumption that mod(«) is faithful for showing ¢; # 0. Set o, :=
04t © Gy In order to show Lemma 4.8, it is enough to show the

following lemma.
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Lemma 4.9. For eachr € R, there exists a sequence of unitaries {u,}
of N which satisfies the following conditions.

(1) We have ||[un, ¢]|| — 0 for any ¢ € N,.

(2) We have 0s(uy,) — u, — 0 compact uniformly for s € R in the
strong* topology.

(3) We have oy(u,) — eu,, — 0 compact uniformly for t € R in the
strong* topology.

In order to show this lemma, we need to prepare some lemmas.

Lemma 4.10. The action 0 on C° is ergodic and has a period p €
(0,00).

Proof. Ergodicity follows from the ergodicity of 6§ : R ~ C'. We show
that the restriction of # on C'” has a period.

We first note that a Borel measurable map 7" from T to itself which
commutes with every translations of the torus must be a translation
because we have T'(y+t) —t = T(y) for t € T and for almost all v € T.
Now, we show that C° # C. Assume that C'° were isomorphic to C.
Then since 6 would commute with o, which is a translation flow on the
torus. Hence 6 would be also a translation on the torus. Hence 6 o o
would define a group homomorphism from R? to the group of transla-
tions of the torus, which is isomorphic to T. Hence the kernel of 6 o &
would be isomorphic to R x Z, which would contradict to the faithful-
ness of #. Combining this with the ergodicity of 6, we have 6 |¢o is non-
trivial. Since mod(ay,) = 0_¢, |c, we have (0, /p, ©0g,—pogi/p1 ) lc= idc.
Since (p1,q1) and (p2, q2) are independent, this 6 |¢- has a non-trivial
period. O

By this lemma, we may assume the following.

(1) We have C? = L>(T),), where T, is the torus of length p, which
is isomorphic to [0, p) as a measured space.
(2) We have 0,(f) = f(- —t) for f € L>(T,), t € R.

Let
®

N = N, dv
[0.p)
be the direct integral decomposition of V. For 71,7, € R, N,, and V.,
are mutually isomorphic by the following map.

0 : Ny, — N,

Y2—71,71

—— ("Evl ) = (‘972 -1 (r) )’Y2
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for x = f[?p) xdy € N. These 0., ,,’s satisfy the following two condi-
tions.

Conditions.

(1) The equality 6y, = idy, holds for each v € [0, p).

(2) The equality 0,y 4y 00~y vy 1 = O~5—ny 4, holds for each v1,y2, 73 €
R.

By these 0., ,,’s, all N,’s are mutually isomorphic. Thus it is possible
to think of N as Ny ® L>([0,p)).

Now, we need to consider the measurability of 6, ,.

Fact.
If we identify N with Ny ® L>([0,p)), the map [0,p)? > (t,7) —
6, € Aut(Nyp) is Lebesgue measurable.

Although this fact is probably well-known to specialists, for the
reader’s convenience, we present the proof in Appendix of this section
(Subsection 4.4).

By measurability of ¢, Lusin’s theorem and Fubini’s theorem, for
almost all v € [0,p), the map ¢t — 6_, 4, and t — 6, , are also Lebesgue
measurable. We may assume that v = 0 and we identify V,, with Ny
by 0., 0 for all 44 € [0,p), that is, if we think of N as the set of all
essentially bounded weak * Borel measurable maps from [0,p) to Np,
then the set of constant functions is the following set.

2]
([ 0ra(e0) dv | € No}.
[

0.p)
Take a normal faithful state ¢y of Ny. Then
1 53}

¢ = - ¢o © 0—7,7 dy
P Jo,p)

is a normal faithful state on N. Choose ¢, -+, ¢, € N,, ¢ > 0 and
T > 0. Then by the above identification of N, with L%NO)*([O,p)), each

¢y is a Lebesgue measurable map from [0,p) to (Ny).. Hence it is
possible to approximate each ¢ by Borel simple step functions by the
following way:.

Uk
6k =D drio b yxn ()] <e
=1
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for each k € {1,--- ,n}. Here, ¢y; € Ny, fori =1,--- I, {IZ-}?;1 is a
Borel partition of [0, p). Next, we look at actions on Ny. Let

&

6, = / o) dy,
[0,p)
@

op = / o) d,
[0,p)

o
T = / Ty dy
[0,p)

be the direct integral decompositions. Since @ is trace-scaling and & is
trace-preserving, o is trace-scaling. Hence for almost all vy € [0, p), o7
is 7, -scaling. Thus we may assume that o° is 7p-scaling. In order to
show Lemma 4.9, it is enough to show the following lemma.

Lemma 4.11. In the above context, for real number r € R, there exists
a unitary uy of No which satisfies the following conditions.

(1) We have ||[u0)¢k,i]” < 6/(plk) f07” k= ]-7 R L= 17 e 7lk'

(2) We have ||6)),,(uo) — uOH(ﬁﬁo <e€/p form €Z, |m| <p/T+2.

(3) We have ||o?(up) — e_mu0||g§0 < ¢€/p forallt € [-T,T].

First, we show that Lemma 4.11 implies Lemma 4.9.

Proof of Lemma /.11 = Lemma 4.9. Assume that there exists a
unitary ug in Ny which satisfies the conditions in Lemma 4.11. We set

uw = 9%0<U0),

o
u :—/ u,y, dry.
[0.p)

Fix t € [-T,T] and v € [0,p). For each v € [0,p), choose m, € Z so
that —t + m.p+ v € [0,p). Then we have

(0 (w)y = Or—t1r (u—t1y)
= Ot —t-4 (U—tytmyp)
=0,00 egnwp 0 Ot—rmp—,—tmopty (U=t pin)
=0,00 ngwp(uo).
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Hence we have

16,(w) — ull, = /[ O, el
- /[ 181000 00) =)y
Y

- /[ 165, (o) ol
7p

< / € dry
[0.p) P

= €.
Here we use that |m,| < T/p+ 2 in the fourth inequality of the above
estimation. By the same argument, we also have

low(u) — e ullf < e
for t € [-T,T]. We also have

s

[u, Z Pri @ X1,]

=1

Uk
1w, dilll < 2[|dx — Z¢k,i ® X1,

<2G+Z|| u, dp,; @ id]||

—26"’2/ 0,0(u0), Pri © 0]l dv
- 2€+Z / o, ]|
i=1 7 [0,p)

Uk
<26+Z/0p]7kd7

= 3e.
Thus Lemma 4.9 holds. O

In order to prove Lemma 4.11, we first rewrite the lemma in a simpler
form. To do this, we show that there exists a number s € (0,1) with
(09 0 0?) |z(ng)= id. Since the restriction of ¢° on the center of Ny has
a period 1 and is ergodic, we may assume that Z(Np) is isomorphic to
L>=([0, 1)), which is canonically identified with L>=(T), o%(f) = f(-—s)

for s € R, f € L>(T). By this identification, ) commutes with all
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02’s. Hence 6° is a translation on the torus. Thus there exists a unique
s € (0,1) with (6) 0 o) |zny= id. Set 3° := 6) o 02. The proof of
Lemma 4.11 reduces to that of the following lemma.

Lemma 4.12. The action {83,007} of ZXR on Ny has the Rohlin
property.
Proof of Lemma 4.12= Lemma 4.11. Assume that the action {32 o

0P} has the Rohlin property. Then there exists a unitary element ug
of Ny with the following conditions.

(1) We have ||[ug, pr]l| < €/(ply) for k=1,--- n,i=1,--- .

(2) We have |82 (ug) — e*"msuoﬂi)o < ¢/(2p) for m € Z, Im| <
p/T + 2.

(3) We have ||o?(uo) — e‘i”tu0||(ﬁboogomp <¢/(2p) fort € [—(1+s)(T +
2p), (1+s)(T'+2p)], m € Z, m| < p/T +2.

Since 39, = 6),, 0 o5, we have
165, (o) = woll = lle™"™60,,,(u0) — €™,
< 16 0 — g (o)) |15, + 1185 (wo) — e o,
_ He—zrmSuO — O-?VLS(UO)H?;SOOHQ,LP -+ Hﬂgl(Uo) — e—lesU/O“];O
L E
2p 2p
G
p
for m € Z, |m| < p/T + 2. Thus Lemma 4.11 holds. O

In order to show Lemma 4.12, we need further to reduce the lemma
to a simpler statement. Let

@
No = / (No)y d
[0,1)
be the direct integral decomposition of Ny over the center of Ny. For
each 71,72 € [0,1), there exists an isomorphism from (Np),, to (No)a,

defined by

032*71,’71((‘%0)71) = (022771 (x()))’yz
for zp = f®

[071)(x0)7d7 € Np. These o9, ., . ’s satisfy the conditions

similar to conditions (1) and (2) of 6, , (See Conditions between Lemma

4.10 and Lemma 4.11).
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We identify (Np),’s with (Ng)o by 09,. Choose a normal faithful
state g of (Np)o. Set

e
Y= g 0 09%7 dry.
[0,1)

This is a normal faithful state on Ny. Choose 1, -, € (Ny)., € > 0
and T" > 0. By the same argument as above, we may assume that ;s
are simple step Borel functions.

lk
wk = Z wk,’i o Uo—'y,'yXIi (’y)
i=1

for k = 1,---,n. Here, ¢¥p; € (No)s, {I;}/*, are partitions of [0,1).
Since 3% and ¢ fix the center of Ny, they are decomposed into the

following form.
®

g= | 8y,
[0,1)

@
o) = / a7 dr.
[0,1)

Then for each v € [0,1), {857 0027} (m)ez2 defines an action of Z? on
(No)~, which is isomorphic to the AFD factor of type II,,. We show
the following lemma, which is essentially important, that is, assumption
that mod(a) is faithful is essentially used for showing this lemma.

Lemma 4.13. For almost all v € [0,1), the action {827 o c27} is
trace-scaling for (n,m) # 0.
Proof. Take a pair (n,m) # 0. By definition of 5% and ¢°, we have

B © 0 = (Onp © Ona)” 0 0

= (enp o Uns+m>0
- (an o 9(ns+m)q1 o &(ns+m)p1)0

= (Bup+(ns+myas © Anstmypr)' -
If n = 0, we need not show anything . Assume that n # 0. Then
since 0,, is not identity on the center of Ny, 0,54m is not identity
on Z(Ny) by looking at the first equation. Hence (ns + m)p; # 0.
Thus, by the faithfulness of mod(«) and the last equation, we have
np + (ns+m)q # 0. Hence 0,4 (nsm)q Scales 7. Besides, & preserves
7. Hence we may assume that 3°0c? scales 75. Hence if we decompose

70 by
&
70 = / 77 dry,
[0,1)
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(82 0 62)7 scales 7% for almost all y € [0, 1). O

From Lemma 4.13, we may assume that {8%°00%°} is trace-scaling.
Now, we will return to prove Lemma 4.12, which completes the proof
of Lemma 4.9.

Proof of Lemma 4.12. Let 1y, € and T be as explained after the state-
ment of Lemma 4.12. By Lemma 4.13, the action {3%° o0 ¢%°} is cen-
trally outer, and hence has the Rohlin property. Hence, for A, B € N
with 4(T+1)?/e* < B and A > 1/€?, there exists a family of projections
{enﬁm}T:f’j:f% of Ny which satisfies the following conditions.

(1) The projections are mutually orthogonal.

(2) We have
Z €nm = ]-)

n,m

” Z e”’mHSZJOJﬂZJOOﬁO’O S 2/\/2’
1<n<B,m=1,A

[ > enmll® s L <2T+1)/VB.

Yo+ g Y000y’
1<m<An>B—(T+1),n<T+1 I==1T]-1 !

Here, [T] is the maximal natural number which is not larger than 7.

(3) We have ||[enm, Yr.il|| < €/(ABl;) forn=1,---B,m=1,--- A,
t=1,-lg, k=1,---n.

(4) We have [0} (enm) — ens1mllly, < €/(AB) for n,m, | € Z with
| <T+1,n<B—-(T+1).

(5) We have [|8%°(enm) — €n,m+1||§¢,0 < €/(AB) for n,m € Z with
m # A.

Here, we define egy1,, = €1 for m = 1,--- | A, e, 411 = ey, for
n=1,---,B. For (s,t) € T x R, we set

. 2mity 2mi(nt+ms) 0
Uy =€ g e 0. 0(€nm)

n,m

for v € [0,1). We also set

®

u::/ uy dy € U(Np).
[0,1)

The above conditons (2) and (4) ensure that we can almost control

0?9, which is useful to show that o) (u) is close to e=*™*u. Conditions

(2) and (5) is useful to show that 3°(u) is close to e *™*u. Condition

(3) is useful to show that [u,1)y] is small.
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By condition (3) of the above, we have

w Uil H</ S 3 0 e s 00|

nmzl

_ / SN llenm el dy
[0,1) nm 1
€
= /[0,1) nzn:z Zz: ABly o
=€

By conditions (2) and (5), we have

18°(u) = e ull,
= /[ ) ||50,'y o 0_310(Z(e2m((n+v)t+ms)6nvm))
0,1

m,n

. Z 62wi((n+7)t+(m_1)s) O',?,p(en,M) ||§/;0000 d'}/

m,n -

_ HO_O (60,0( 827rz‘((n-&—v)t—&-ms)en,m>
/[o yo ;

o Z 2mi((n+y)t+(m— l)s) )”woog d’)/

< Z / ||€2m((n+7)t+ms)02,0(50’0(en,m) _ 6n7m+1)||3p0000 dy
m,n,m#A [0,1) -

—l—é Ha%(ﬁo,o(z en,A)—Zen,AH”wpooagw dy
< 2 / 18°(enm) = enmalf, dy+2/VA
0,1)

mnm;ﬁA
< AB(
= 3e.

2
AB)—l— €

Condition (2) is used in the fourth inequality and condition (5) is used

in the fifth inequality. Next, we will compute ||o}(u) — eQ’Titqqup for

€ [=T,T]. In order to do this, the following observation is useful. Let

v €[0,1) and let ¢ € [-T,T]. Choose [, € Z so that v —q¢+1, € [0,1).
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Then we have

(04 ()3 = 0, (ty—g41,)
0,0
- 0-370 © O-l'V © Ugile’Yv’Y*q“l’l'y <u7_q+lw)

_ -0 0,0/ 2mit(y—q+ly) 2mi(nt+ms)
= 0% 0 P RO-0t) $ aritncimg, )

n,m

= ezmt('yfﬁl”)a&o o ‘71(:0 (uo).
By conditions (2) and (4), we have

log (w) — e~ 0wl [,

- 0 2mit(y—q+ly) 0,0 __—2mitq f
= [ IR o ) ey

mi((y— n)t+ms) 0,0 i n— ms
:/[01) ||Z(€2 (y=g+iy+n)t+ )Ulw (Enm) — € ((y+n—q)t+ )emm)H?po dy

n,m

_ / |’€2m((7_q+n)t+m8)ggo(en_zy,m)
[0,1) m,ly<n<B-1
_ e2wi((7+n—Q)t+ms) en,m) Hiﬁllo d7 + 2

€
AB
= 3e.

< (==)AB + 2¢

Condition (2) is used in the third inequality and condition (4) is used
in the fourth inequality. Thus {0} o 3} }(4m) has the Rohlin property.
Thus Lemma 4.12 holds. U

Lemma 4.14. When ker(mod(ay) o (0 |¢):) = R, Lemma 4.4 holds.

Proof. There exists (p,q) € (R \ {0})? with ker(mod(a) o 6 |¢) =
(p,q)R. Set oy := 0 0 &y for t € R. In order to show our lemma, it
is enough to show that for each r € R, the action ¢ admits a sequence
of unitaries which satisfies the same conditions as in Lemma 4.9. Take
a normal faithful state ¢ of N, ¢, , ¢, € N, with ||¢x] =1 (k =
1,---,n), ¢ > 0and T > 0. Think of C' as a standard probability
measured space L®(', ). Let



(k=1,---,n) be the direct integral decompositions. Then by Theorem
4.6 and Proposition 4.31, there exists a Borel subset A of I' which
satisfies the following three conditions.

(1) There exists a large cube @) := [-T",T'] and a Q-set Y such that
A =Ty,Y and the map Q@ x Y > (t,z) — Ti(z) € A is injective.
(2) We have
p( [ TA)>1-e

te[-T,T]

/ 6001 du() > 1~
nte[—T,T] T; A
fork=1,---,n.

(3) There is a measure v on Y such that the map Q x Y 3 (¢,z) —
Ti(z) € A is a non-singular isomorphism with respect to Lebesgue ®
v and p (Note that two measures p + Y, [1 [|#x~|l du(y) and p are
mutually equivalent).

and

Here, we do not assume the existence of invariant probability mea-
sures for 6 |¢. Then N is isomorphic to

2
NF\A@/ N, ds.
[

7TI7T/]

Here,

S
Ns = / N(yﬁ) dV(y)
Y

For s,t € [-1",1"], 6 defines an isomorphism 6,_,; from N, to Nj
by Os_ti(xt) = (0s—¢(x))s. As in Lemma 4.9, we identify N, with N,
by this isomorphism. By this identification, we approximate ¢;’s by
simple step functions.

Uy
Prxa =Y bri o O_raxs (t)] <€

i=1

for k = 1,---,n, where ¢p; € (No). and {[;}’*, are partitions of
[—T",T"]. Here, we note that it is possible to choose ¢g;’s so that
they are positive. This is shown by the following way. Since ¢q :
[—T",T'] — (Np)« is measurable, by Lusin’s theorem, it is possible to
choose a sufficiently large compact subset K of [—=7",T'] on which ¢y
is continuous. Choose a finite partition {s;}*, of K so that for every
s € K, there exists a number ¢ such that ¢g(s) is close to ¢(s;). It is

possible to choose a partition {I;} of K so that ¢q(s) is close to ¢g(s;)
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on I;. Then ) ¢o(s;)xr, well approximates ¢g. Since o fixes the center
of N, this is decomposed into the direct integral.

a:ap\AEB/ ot dt.
[—T’,T’]

Since o scales the canonical trace on N, for almost all ¢ € R, the action
ot is trace-scaling, and hence has the Rohlin property by Theorem 6.18
of Masuda—Tomatsu [44]. Hence, by the same argument as in the proof
of Lemma 4.12, it is possible to choose a unitary element ug of Ny
satisfying the following conditions.

(1) We have ||[ug, ¢ri]l| < €/RUT") for k=1,--- ,n,i=1,--- .
(2) We have ||o?(ug) — e_iptu0|]ioz_ < €/(2LT") for t € [-T,T], i =
1, . ’

Set uy := 0y 0(up) for t € [-1",T"] and set

&
U= XX\A@/ u dt.
[7T/7T/]

Hence by the same aregument as in the proof of Lemma 4.11 = Lemma
4.9, Lemma 4.4 holds. U

Lemma 4.15. When ker(mod(as) o (6 |¢):) = Z, Lemma 4.4 holds.

Proof. Let (p,q) € (R\ {0})? be a generator of ker(mod(ay) o (0 |¢)¢)-
Set 0y 1= 04 0 ayy for t € R. Think of C” as a standard probability
space L®(T", ). We first show the following claim.

Claim. The action 6 : R ~ C7 is faithful (and hence is free).
Proof of Claim. Assume that 0; |co= idco. Then 6 is decomposed
into the direct integral over I'.

(&)
<9t=/ 07 du(v),
T

D

N = [ Nydu(y).
r

We also decompose o by

@
7= [ o duta).
I

Then for almost all v € T, {0} }ser defines a periodic ergodic action
on the center of N,. Since the restriction of #; on the center of N,
commutes with that of o)’s, ] |z, is of the form ol |z(n,). We

show that there exists s € [0,1) such that s, = s for almost all ~.
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Since we want to show the faithfulness of the action #, we may assume
that ¢t # 0. We think of C' as a probability measured space L>(X, j1x).
Then there exists a projection p from X to I' induced by the inclu-
sion L>®(I') — L>®(X). Let T,S be two flows on (X, ux) defined by
f(Tx) = 0-(f)(x), f(Ssw) = o_s(f)(2) for x € X, f € L*(X, px).
We may assume that X is a separable compact Hausdorff space and T’
and S are continuous. We show that the set

As={r € X | T, 0 S,(x) = x for some 0 < r < s}

is Borel measurable. Let f : R x X — X? is a map defined by f :
RxX 3 (s,z) = (T105:(z),x) € X% Then we have Ay = mx(f~(A)N
([0, s] x X)), which is Borel measurable. Here, A is the diagonal set of
X x X and mx : R x X — X is the projection.

Next we show that there exists s € [0, 1) such that

Bs:={x € X |T;08s(x) =z}

has a positive measure. If not, the map s — pux(As) would be contin-
uous. By the first part of this proof, for each v € I, if x € X satisfies
p(x) = 7, then we have x € A, . Hence J,., A is full measure. On
the other hand, since ¢t # 0, we have p(Ap) = 0. Thus there would
exist s € [0,1) with ux(As) = 1/2. However, this would contradict to
the ergodicity of 8. Thus there exists s € [0,1) with ux(Bs) > 0.

By using the ergodicity of § again, there exists s € [0,1) such that
B, is full measure.

Hence there exists s € [0, 1) such that o5 |c= 0; |c. Since ker(mod(«a)o
0 1¢)) = (p,q)Z, we have s = t = 0, which is a contradiction. Hence
Claim is shown. O

Now, we return to the proof of Lemma 4.15. For almost all v € T, the
action 07 |z(n,) is ergodic and has a period 1, and ¢” is trace-scaling.
Hence this is the dual action of a modular automorphism of an AFD
III, (0 < A < 1) factor. Hence ¢ has the Rohlin property. Hence by
the same argument as in Lemma 4.14, our lemma is shown. 0

Remark 4.16. When M is of type III,, 0 < A < 1, then Connes—
Takesaki module of a flow on M cannot be faithful. This is shown by
the following way. Since mod(a)) commutes with 6, as we have seen, this
is a homomorphism from R to T. Hence mod(«) cannot be faithful.

4.3. Remarks and Examples. In this section, we present examples

which have interesting properties.
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4.3.1. Model Actions. In this subsection, we will construct model ac-
tions. If there were no flows with faithful Connes—Takesaki modules,
then our main theorem of this section would have no value. Hence it
is important to construct a flow which has a given flow as its Connes—
Takesaki module.

Proposition 4.17. Let M be an AFD factor with its flow space {C, 0}
and let o be a flow on C which commutes with 6 (Here, we do not
assume the faithfulness of o). Then there exists a Rohlin flow o on M
with mod(«a) = 0.

Proof. The proof is modeled after Masuda [39]. As in Corollary 1.3 of
Sutherland—Takesaki [57], there exists an exact sequence

1 — Int(M) — Aut(M) — Auty(C) — 1,

and there exists a right inverse s : Auty(C') — Aut(M). The maps
p: Aut(M) — Aute(C) and s : Auty(C) — Aut(M) are continuous.
Hence for a flow ¢ on C' commuting with €, the homomorphism « :=
soo : R — Aut(M) gives an action with its Connes—Takesaki module o.
If o is faithful, by our main theorem of this section, this has the Rohlin
property. Assume that o is not faithful. Then mod(a ® ) = mod(«)
for a Rohlin flow § on the AFD factor of type II;. Hence this a ®
does the job. O

For actions on the AFD factor of type II;, strong cocycle conjugacy
is equivalent to cocycle conjugacy because every automorphism of the
AFD factor of type II; is approximated by its inner automorphisms.
However, for flows on some AFD factor of type I, cocycle conjugacy
does not always imply strong cocycle conjugacy.

Example 4.18. Let (X, u) be a probability measured space defined
by

11
meZ neZ
Let S, T be two automorphisms of X defined by the following way.
S(m— (n—z," €{0,1})) = (m+— (n— z,1™)),
T(m = (nx,™)) = (m— (n— 2,")).
Then both S and T" are ergodic and satisfy SoT =T o0 S. Let 51, 5o
be two flows on L>°(T) satisfying the following conditions.

(1) Two flows are faithful.
(2) The flow 5 is not conjugate to [3s.

(3) Two flows preserve the Lebesgue measure.
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As a probability measured space, we have

[Tfo.13"=(J] fo.13") x ([T {o.13) = T2

neZ n:odd n:even

By this identification, we set

5= (R & B) ®id : R~ L(X x [0,1))
meZ
Let 6 be a flow on L>*(X x [0, 1)) defined by T" and the ceiling function
r = 1. Let p be an automorphism of L>(X x [0,1)) defined by S x id.
Then we have the following.

(1) The flow # commutes with both p and £.
(2) The action p does not commute with /.
(3) The flow @ is ergodic.

Now, we construct a pair of flows which are mutually cocycle con-
jugate but not strongly cocycle conjugate. Let M be an AFD factor
of type III, with its flow of weights {6, X x [0,1)}, a be a Rohlin ac-
tion satisfying mod(«) = 8 and let ¢ be an an automorphism of M
satisfying mod(c) = p. Then we have

mod(a) =B # poBop t=mod(coaocc™?).

Hence « is cocycle conjugate to o o & o o~ but they are not strongly
cocycle conjugate.

4.3.2. On Stability. In Thoerem 5.9, Izumi [22] has shown that an ac-
tion of a compact group on any factor of type III with faithful Connes—
Takesaki module is minimal. As well as our main theorem of this
section, this theorem means that actions which are “very outer” at any
non-trivial point are “globally outer”. He has also shown that for these
actions, cocycle conjugacy coincides with conjugacy. This phenomenon
also occurs for trace-scaling flows on any factor of type Il,,. Hence one
may be tempted to think that this is true under our assumption. How-
ever, this is not the case.

Theorem 4.19. Let C' be an abelian von Neumann algebra and 0 be
an ergodic flow on C'. Let M be an AFD factor with its flow of weights
(C,0). Let 8 be a faithful flow on C' which commutes with 6 and fizes a
normal faithful semifinite weight p of C. If the discrete spectrum of 3
is not R, then there are two flows o, o which satisfies the following
two conditions.

(1) The Connes—Takesaki modules of o' and o® are (3.

(2) The flow a is not conjugate to o®.
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In the following, we actually construct these flows. In the following,
we denote the AFD factor of type II; by Ry and denote the AFD factor
of type Il by Ro1.

Let A be the discrete spectrum of 5 and p be a S-invariant measure.
In the rest of this subsection, we assume that A is not R. Then by
the ergodicity of # (Note that 5 may not be ergodic), A is a proper
subgroup of R. Hence there are at least two real numbers which do
not belong to A. Let I'; (j = 1,2) be two subgroups of R generated by
two elements A, 115, respectively, satisfying the following conditions.

FTUAZ (T, A),

ToUA ¢ (T, A).

Here, (T';, A) is the subgroup of R generated by I'; and A. Let ~7
(7 = 1,2) be two ergodic flows on R, with their discrete spectrum I';,
respectively. Namely, we think of Ry as a weak closure of an irrational
rotation algebra A := C*(u, v | u, v : unitaries satisfying vu = e*™*uv)
and define flows 77, j = 1,2, by the following way. This type of actions
is considered by Kawahigashi [29].

7 (u) = eMtu, 5] (v) = et
for t € R.

Set 7 1= u®7R,, ®TR,. The flow 0 is extended to a 7-scaling flow on
N :=C® Ry1 ® Ry as in equations (1.2) of Sutherland-Takesaki [57].
Set @ == f® idg,, ®77. Then o’ commutes with 6 (See the equation
after equation (1.8) of Sutherland-Takesaki [57]). Hence the flow a7 is
extended to M := N x4 R in the following way.

ol (X)) = A
for s,t € R. Note that the flow # : R ~ N is not so “easy”. However,
the flow o’ is very concrete. Here, we think of M as a von Neumann
algebra generated by N and a one parameter unitary group {As}ser.
In order to show Theorem 4.19, for these a’’s, it is enough to show
the following lemma.

Lemma 4.20. In the above context, we have the following two state-
ments.

(1) The Connes—Takesaki module of o’ is B for each j = 1,2.

(2) For the discrete spectrum of o/, we have the following inclusion.

Y UA C Spy(a?) C (IV, A).
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From statement (1) of the lemma and Corollary 4.2, it is shown that
a! and a? are mutually cocycle conjugate. On the other hand, from
statement (2) of the lemma, it is shown that the discrete spectrum of
o' and that of o? are different. Hence they are not conjugate.

In order to show this lemma, we first show the following lemma.

Lemma 4.21. The weight 7 is invariant by o .

Proof. Set
n, :={a € N|7(a"a) < oo},
K(R,N) :={z: R — N | strongly” continuous map with compact support},
b, :=span{za | x € K(R,N),a € n.}.
For x € b,, set
7(x) ::/ A dt.
R

In order to show this lemma, it is enough to show the following two
statements (For example, see Theorem X.1.17. of Takesaki [59]).

(1) For s,t € R, we have 6] = o’ ,oof 0.

(2) For z € b;, s € R, we have

7o a(7(z) 7 () = 7(7(2) 7 (x)).

Statement (1) is trivial because o/ commutes with o7. We show

statement (2). Notice that

od (7(z)) = o /R £y di)

= / ad ()N dt
= T(ads(x)).

Since T is invariant by o/, we have

oo (f(2) 7 (x)) = (7 (ad y(x)) T (ads(2)))
o /R o (azy) dt)

= 7‘(/R xixy dt)
= 7(7(x)*7(2)).

Thus statement (2) holds.
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By this lemma, the canonical extention a7 of a7 is defined by a/ (A7) =
A? if we think of M := M x,+ R as a von Neumann algebra generated
by M and a one parameter unitary group {A?}.

Hence by Lemma 13.3 of Haagerup—Stgrmer [20], if we identify N X
R %, R with N ® B(H) by Takesaki’s duality theorem, we have

ol = o @ id.
Thus statement (1) of Lemma 4.20 holds.

In the following, we show statement (2) of Lemma 4.20. We need to
show the following lemma.

Lemma 4.22. We have Sp,(a?) = Sp,y(a?) = Spy(ad).

Proof. The action o is an extension of the action o/, and the action i
is an extension of the action /. Hence we have Spd(oﬂ ) C Spy(ad) C
Spy(a?). We show the implication Spy(a?) C Spy(a). Note that if we
identify N xR x,R with N® B(H) by Takesaki’s duality theorem, we

have ad = aJ ® id. Choose p € Spd(oﬂ) Then there exists a non-zero
element z € N ® B(H) with ad(z) = e’z for t € R. If we write
x = (z1)m € N® B(I*(N)), then there exists (k,[) with xy, # 0. Since

we have ady(xy) = e®'ay, we have p € Sp,y(ad). O

Now, we return to the proof of statement (2) of Lemma 4.20, which
completes the proof of Theorem 4.19.

Proof of Lemma 4.20. The inclusion T'; U A C Spy(a) is trivial. We
show the inclusion Spy(ad) C (T';, A). If we think of N = C® Ry ® Ry
as a subalgebra of C ® B(H) ® Ry, then o extends to 8 ® idp( ) ® 7.
Hence by the same argument as in Lemma 4.22, we have Spd(oﬂ) =
Spu(B ®47). Choose p € Spy(8B®47). Let x € C' ® Ry be a non-zero
eigenvector for p € Sp,(ad). Then x is expanded as

T = E Cpmt" V"

n,m

with ¢, € C (n,m € Z). Hence we have

5 e”’tcnmu ™ = ey

= B ® 7 (z)
o Zﬂt Cnm einXjtmpug)t, nym
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Since x # 0, there exists (n, m) with ¢, ,, # 0. Hence by the uniqueness
of the Fourier expansion, we have

Thus p € (IV, A). O

Remark 4.23. (1) As shown in Corollary 8.2 of Yamanouchi [64], if we
further assume that o', o? and 8 are integrable, then o! is conjugate
to o®. In this case, 5 contains the translation of R as a direct product
component.

(2) Another important difference between flows and actions of com-
pact groups is about extended modular actions. The duals of extended
modular flows are important examples of flows with faithful Connes—
Takesaki modules (See Theorem 4.20 of Masuda—Tomatsu [44]). Ac-
tions of compact groups with faithful Connes—Takesaki modules are
duals of skew products (See Definition 5.6 and Theorem 5.9 of Izumi
[22]). However, this is not true for flows by subsection 4.3.1 of this
paper and Theorem 4.20 of Masuda-Tomatsu [44].

4.3.3. On a Characterization of the Rohlin Property. One of the ulti-
mate goals of the study of flows is to completely classify all flows on
AFD von Neumann algebras. In order to achieve this, it is important
to characterize the Rohlin property by using invariants for flows. A
candidate for this characterization is the following conjecture.

Conjecture 4.24. (See Section 8 of Masuda—Tomatsu [44]) Let M be
an AFD von Neumann algebra and let a be a flow on M. Let & : R ~
M be a canonical extension of oe. Then the following three conditions
are equivalent.

(1) The action o has the Rohlin property.

(2) We have (M) N M x5 R = n5(Z(M)).

(3) The action o has full C’onnes spectrum and is centrally free.

We will give a partial answer for this conjecture by generalizing The-
orem 4.1. We start off by showing the following lemma.

Lemma 4.25. Let M be an AFD factor of type III. Let o be an au-
tomorphism of M with trivial Connes—Takesaki module. Then « 1is
centrally outer if and only if &7 is outer for almost every v € I'. Here,
C = L™(T, ) is the center of M and & = fr aVdu(y) is the direct
integral decomposition.

Proof. This is shown by Proposition 5.4 of Haagerup—Stgrmer [21] and

Theorem 3.4 of Lance [36]. O
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In order to state our theorem, we define the following notion.

Definition 4.26. Let C' be an abelian von Neumann algebra and let
B be a flow on C. Then [ is said to be nowhere trivial if for any
e € Proj(C?), B |c, is not ideg, as a flow.

The following theorem means that we need not consider Conjecture
4.24 for flows on AFD von Neumann algebras of type Il anymore.

Theorem 4.27. (a) Let M be a von Neumann algebra of type 111y and
a be a flow on M. Assume that mod(«) is nowhere trivial, then condi-
tions (1)—(3) in the above conjecture are all equivalent to the following
condition.

(4) The action « is centrally free.

(b) If conditions (1)—(3) are equivalent for flows on the AFD factor
of type 1, then these conditions are also equivalent for flows on AFD
von Neumann algebras of type I11,.

Proof. Step 0. The implications (1) = (2) and (2) = (3) are shown
in Lemma 3.17 and Corollary 4.13 of Masuda-Tomatsu [44]. The im-
plication (3) = (4) is trivial.

Step 1. First, we show (a) and (b) when M is a factor.

(a) We show the implication (4) = (1). If mod(a) : R ~ Z(M) is
faithful, then « satisfies condition (1) by Theorem 4.1. In the following,
we assume that mod(a) is not faithful. By the ergodicity of 6, mod(«)
has a non-trivial period p € (0,00). Since 6 is faithful and commutes
with mod(a), C™4® is not trivial. Hence, the restriction of 6 to
C™od(@) ig either free or periodic.

When the restriction of 8 to C™°4® is free, then the proof goes
parallel to Lemma 4.15, using Lemma 4.25.

When the restriction of 8 to C™°4®) is periodic, then the proof goes
parallel to Lemma 4.8.

(b) What remains to do is to reduce the case when mod(«) is trivial
to Conjecture 4.24 for flows on the AFD factor of typell,,. This goes
parallel to the proof of Lemma 4.14.

Step 2. Next, we consider the proof of this theorem for the case
when M is not a factor. Decomposing into a direct integral, we may
assume that « is centrally ergodic. We need to consider the case when
a | z(w) 1s faithful, the case when o \ z(m) has a non-trivial period and
the case when o |z(ay) is trivial separately. When o z(ay) is faithful, the
implication (4) = (1) follows from Theorem 4.6 and Proposition 4.30.
When «|z) has non-trivial period, then the proof is similar to that
of Lemma 4.15. When oz is trivial, then the implication follows

from the case when M is a factor. O
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Remark 4.28. By the same argument, it is possible to reduce Conjec-
ture 4.24 for flows on the AFD factor of type III (0 < A < 1), III; to
Conjecture 4.24 for actions of R x Z, actions of R? on the AFD factor
of type I, respectively.

4.4. Appendix of Section 4. In this section, we explain the proof
of two statements which are used in the proof of the main theorem of
Section 4.

4.4.1. Proof of Theorem 4.6. For readers who do not have any access
to Feldman [14], we will explain the outline of the proof of Theorem
4.6.

Proof of Theorem 4.6.

The proof consists of two parts. The first is, for any cube @ of
R?, constructing a Q-set F' with u(QF) > 0. This part is shown
by the same argument as in the proof of Lemma of Lind [37] (Note
that Wiener’s ergodic theorem holds for actions without invariant mea-
sures). The second is to show this theorem by using the first part.
This is achieved by the same argument as in the proof of Theorem 1 of
Feldman-Lind [16]. In the proof, they show two key statements (State-
ments (i) and (ii) in p.341 of Feldman—Lind [16]). We need statements
corresponding to them. Let L, N, P be positive natural numbers.
Assume that P is a multiple of L. Set

QP = [pr)dv
P P
Sp(Qp) = {t = (t1, - ,t5) € R*| 7 St < P——forall j},
BN(QP) = {t:(tl, ,td) ERd|—NSt]‘ <P—|—NfOI' aH]}\Qp,

P
Cpip:={n=(n, - ,ng) €Z910<n; < 7 for all j}.
The corresponding statements are the following.
(i)’ Let 7 > 0 be a positive number. Then for any sufficiently large

even integer M, any integer L, any multiple P = NLM of LM and
any ()p-set F', we have

p(Ban (Qp)(LF)) <1

for over 9/10 of the elements t of Cp/r-
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(ii)” Let £ > 0 be a positive number. Then for any sufficiently large
integer L, any integer M, any multiple P = N LM of LM by a multiple
N of L and any Q)p-set I', we have

p(SL(@N)(NCp)(tF)) > p(@p(tF)) — €
for over 9/10 of the elements ¢ of Cp/y.

The other parts of the proof is the same as that of Theorem 1 of
Feldman-Lind [16]. O

We may assume that X is a compact metric space and the map
T :R?x X — X is continuous.

Lemma 4.29. In the context of Theorem 4.6, the set F' can be chosen
to be a Borel subset of X.

Proof. This follows from the proof of Lemma of Lind [37]. By removing
a null set, we may assume that the set D in p.181 of Lind [37] is a Borel
subset of X. Then the set

{(t,z) e R" x X | Ty(x) € D}

is a Borel subset of () x X. Hence by Fubini’s theorem, the map @Z)]i ()
in p.181 of Lind is Borel measurable. Thus the set F' can be chosen to
be a Borel subset. 0

Proposition 4.30. In the context of Theorem 4.6, the map
QxF>(tx)—T(x) e ToF
1s a Borel isomorphism.

Proof. By Lemma 4.29, if C' C ToF' is a Borel subset, then C' is also
Borel in X. Hence the map Q x F' 3 (t,z) — Ti(z) € ToF is a Borel
bijection. Hence by Corollary A.10 of Takesaki [58], this map is a Borel
isomorphism. 0

Proposition 4.31. In the context of Theorem 4.6, if R? = R, then
the map

QxF>(tx)— T(x) e ToF
18 non-singular.

Proof. This is based on Lemma 3.1 of Kubo [35]. The action 7" of R

on X induces an action 7' of R on To(F). Then T defines an action

S of Z on F. Then (F,v), S and (TgF, ) satisfy the assumptions of

Lemma 3.1 of Kubo [35]. O
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4.4.2. On a Measurability of a Certain Map. In the proof of Lemma
4.9, we use the fact that a map from a measured space to the auto-
morphism group of a von Neumann algebra is measurable (See Fact
between Lemma 4.10 and Lemma 4.11). Probably it is well-known to
specialists. However, we could not find appropriate references. Hence,
we present the proof here.

Proposition 4.32. If we identify N with Ny ® L>*([0,p)), the map
0,p)? 2 (t,7) — 6 € Aut(Ny) is Lebesgue measurable.

Proof. By Lusin’s theorem, it is enough to show that the map [0, p)* 3
(t,7) — ¢ 00, € (Ny)s is Lebesgue measurable for ¢y € (Np).. We
identify N, with L%NO)*([O,p)) and set ¢ = ¢y ® id. Since the map
s+ ¢ofs € Liy,,([0,p)) is continuous, for any e > 0, there exists a
positive number ¢ such that

(5) [p 0By — | < e

for |s| < 6. Take a partition 0 = 59 < 81 < -+ < s, = p so that
|s;i — si41| < 0. For each ¢ = 0,--- ,n, the map [0,p) 2 v — (¢ o
0s,) is Lebesgue measurable and integrable. Hence it is possible to
approximate ¢ o 6, by Borel simple step functions, that is, for each 1,
there exists a compact subset K; of [0, p) which satisfies the following
conditions.

(2) We have u(K;) > p —e.
(3) There exist a Borel partition {/;} of K; and ¢;; € (Ny). such

that
(@0 05)y =Y digxr, (NI <e
J
for v € K;.

Set
@th,v = E ¢i7jX[S¢,Si+1)(t)X1j(7)'
,J

for each (t,7) € [0,p)?. For each s € [s;, si11), set

Ks:={y€[0,p) | [[(¢00s), — (¢obs) [l <e}.
Then by the above inequality (1), we have u(K;) > p —e. For v €
K, N K;, we have
1(@ 0 05)y — syl < 2e.
Set

K :={(s,7) € [0,}?)2 |E|>|7(¢008)7 - ¢877H < 2¢}.



Then we have p(K) > p(p — 2¢). Hence (s,7) — (¢ o 05), is well-
approximated by simple step Borel functions in measure convergence.
Hence this is Lebesgue measurable. U

5. CHARACTERIZATION OF APPROXIMATE INNERNESS OF FINITE
INDEX ENDOMORPHISMS OF AFD FACTORS

In this subsection, as an application of the study of the Rohlin prop-
erty, we present a characterization of approximate innerness of endo-
morphisms.

5.1. Preliminaries of Section 5. First, we explain some notions nec-
essary to understand our main theorem of this section. In order to
understand endomorphisms, some notions of automorphisms were gen-
eralized to that of endomorphisms by Izumi [22] and Masuda—Tomatsu
40].

5.1.1. A topology of semigroups of endomorphisms. Let M be a factor
of type III. Let End(M)g be the set of all finite index endomorphisms
pof M. Let d(p) be the square root of the minimal index of M D p(M)
and E, be the minimal expectation from M to p(M). Set ¢, := p~loE,,.
In Masuda—Tomatsu [40], a topology of End(M ) is introduced in the
following way. We have

pi —p
if, by definition, ||3) o ¢,, — 1 0 ¢,| — 0 for any ¥ € M,.

5.1.2. Canonical extension of endomorphisms. Let ¢ be a normal faith-
ful semifinite weight of M and ¢¥ be the group of modular automor-
phisms of ¢. In Izumi [22], an extension p of p € End(M), on the
continuous core M := M X, R is introduced in the following way. We
have

paX]") = d(p)"p(x)[Dp o ¢, : Dl N
fort € R, x € M, where [Dyo¢, : Dy|; is the Connes cocycle between
po ¢, and . This extension does not depend on the choice of ¢ under
a specific identification (See Theorem 2.4 of Izumi [22]). The extension
p is said to be the canonical extension of p.

In Lemma 3.5 of Masuda—Tomatsu [40], it is shown that there exists
a left inverse ¢; of p satisfying

Cbﬁ(fv)‘f) = d(P)_ithp(gj[ng :Dgo ¢p]t)>‘f

forx e M, t e R.
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5.2. The main theorem of Section 5. The main theorem of this
paper is the following.

Theorem 5.1. Let p, o be endomorphisms of an AFD factor M of
type 111 with d(p),d(c) < oo. Then the following two conditions are
equivalent.

(1) We have ¢; 0 0—rogaip))| z(siry = 5 © O-10g(a(o)) | z (i)
(2) There exists a sequence {u,} of unitaries of M with Adu,op — o
as n — 0o.

As a corollary, we have the following result.

Corollary 5.2. Let M be an AFD factor and Ry be the AFD factor of
type 11;. Take endomorphisms py, ps € End(M)g. Then the following
two conditions are equivalent.

(1) There exists a sequence of unitaries {u,} of M ® Ry with Adu,, o
(1 ®idg,) — p2 ®idg, as n — co.

(2) There exists a sequence of unitaries {v,} of M with Adv, o p; —
P2 as M — 00.

Proof. By the identification Z((M ® Ro) Xoegids, R) = Z((M Xpe R)®
Ro) = Z(M >, R) by

(x@y)A; s (X)) @y,

we have ¢,,gia, = ¢p; on the center of the continuous core for i = 1, 2.
We also have d(p; ® idg,) = d(p;). Hence by Theorem 5.1, conditions
(1) and (2) are equivalent. O

Note that this corollary would be quite difficult to show without
Theorem 5.1 (See also Section 3 of Connes [5]).

As we will explain later, this is a generalization of a work of Kawahigashi—
Sutherland—Takesaki [31], in which our main theorem of this section is
shown when p and o are automorphisms. We briefly explain this. For
an automorphism o of a factor M, we have ¢5 = a~!. Hence in this
case, considerling ¢ is equivalent to considering &. Set mod(«) :=

&z (). The following is a special case of Theorem 5.1.

Corollary 5.3. (Theorem 1(1) of Kawahigashi-Sutherland-Takesaki
[31]) Let M be an AFD factor of type 111 and o be an automorphism
of M. Then the following two conditions are equivalent.
(1) The automorphism « is approximately inner.
(2) The automorphism mod(a) € Aut(Z(M)) is trivial.
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Theorem 5.1 should also be useful for classifying actions of com-
pact groups on AFD factors of type III. Popa-Wassermann [50] and
Masuda—-Tomatsu [42] showed that any compact group has only one
minimal action on the AFD factor of type II;, up to conjugacy. One
of the next problems is to classify actions of compact groups on AFD
factors of type III. In Masuda—Tomatsu [41] and [43], they are trying
to solve this problem, and some partial answers to this problem are
obtained (Theorems A, B of [41] and Theorem 2.4 of [43]). However,
still the problem has not been solved completely. In Masuda—Tomatsu
[41], a conjecture about this classification problem is proposed (Con-
jecture 8.2). Our main theorem of this section implies that if two
actions of discrete Kac algebras on AFD factors of type III have the
same invariants, the difference of these two actions is approximately
inner (See Problem 8.3 and the preceding argument to that problem
of Masuda—Tomatsu [41]). In order to classify group actions, whether
the difference of two actions is approximately inner or not is very im-
portant. Kawahigashi-Sutherland—Takesaki [31] and Masuda—Tomatsu
[40] characterize the approximate innerness of endomorphisms under
such a motivation. Theorem 5.1 is a generalization of their results.

In the following, we will show Theorem 5.1. Implication (2)= (1) is
shown easily by using known results.

Proof of implication (2) = (1) of Theorem 5.1. This is shown by
the same argument as that of the proof of implication (1) = (2) of
Theorem 3.15 of [40]. Assume that we have Adu, o p — 0 as n — oco.

Then by the continuity of normalized canonical extension (Theorem
3.8 of Masuda—Tomatsu [40]), we have

¢ﬁ o e—logd(p) o AduZ(x) — ¢& o 9—10gd(a)(£>

in the strong* topology for any = € M. Hence we have

@5 © O-10g(d(p) /do)) | 2 (1) = D5 2031y
O

In the following, we will show the reverse implication. Our strategy is
to reduce the problem to that of endomorphisms on semifinite von Neu-
mann algebras. In order to achieve this, in Kawahigashi-Sutherland-
Takesaki [31] and Masuda—Tomatsu [40], they have used discrete de-
composition theorems (See Connes [9]). However, in our situation, the
centers of the images of canonical extensions may not coincide with
that of M. This makes the problem difficult. It seems that Corollary

4.4 of Tzumi [22] means that it is difficult to show Theorem 5.1 by the
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same strategy as those in them. Instead, we will use continuous de-
composition. We also note that our method gives a proof of Theorem
(1) of Kawahigashi-Sutherland-Takesaki [31] which does not depend
on the types of AFD factors.

5.3. Approximation on the continuous core. In order to prove
implication (1) = (2) of Theorem 5.1, we need to prepare some lem-
mas. We first show the implication when ¢; = ¢5 on the center of the
continuous core. Until the end of the proof of Lemma 5.22, we always
assume that d(p) = d(o) and ¢; = ¢5 on the center of the continuous
core. Choose a dominant weight ¢ of M (For the definition of dominant
weights, see Definition I1.1.2. and Theorem I1.1.3. of Connes—Takesaki
[11]). Then by Lemma 2.3 (3) of Izumi [22], it is possible to choose uni-
taries u and v of M so that (¢, Aduo p) and (¢, Adv o o) are invariant
pairs (See Definition 2.2 of Izumi [22]). More precisely, we have

woAduop=d(p)p, voExqup =¥,

poAdvoo =d(o)p, ¢ o Erdues = ¢.

By replacing p by Aduop and o by Advoo respectively, we may assume
that (¢, p) and (@, o) are invariant pairs. In the rest of this paper, we

identify M with M x,» R. Let h be a positive self-adjoint operator
affiliated to M satisfying =" = Af and ¢ be the dual weight of ¢. Let
7 be a trace of M defined by ¢(h-).

Lemma 5.4. For p € End(M),, we have ¢; = p~' o Ej, where Ej; is
the conditional expectation with respect to 7.

Proof. For x € M and t € R, we have
podp(xA) = pd(p) " p(x[Dy : D o §,]1)AY)
= d(p)"d(p) "' p(¢p(x[Dyp : Dp o ¢,]1))[Dy o ¢, : Dl A}
= E,(2[Dgp : Do gli)[Dp o g, - Delehi
Since (¢, p) is an invariant pair, we have
[Dy o ¢, : Dgly = d(p)™".
Hence we have
Ey(z[Dy : Dpog,),)[Dypood, : Dl A, = E,(x)d(p)"d(p) " Af = Ep(x)A.

Hence by an argument of p.226 of Longo [38], it is shown that po ¢; is
the expectation with respect to 7. 0

Lemma 5.5. For p € End(M)y, we have 7o ¢5 = d(p)~'7.
61



Proof. By Lemma 5.4, we have ¢5 = p~! o E;. On the other hand, by
Proposition 2.5 (4) of Izumi [22], we have 7o p = d(p)7. Hence we have

Tog¢;=d(p) 'Topop;
—d(p)Mropoi o B
=d(p)'roE;
=d(p)"'T.

In the following, we identify Z(M) with L>(X, u). Let

T = /G9 T, dp(x)

X

be the direct integral decomposition of 7.

Lemma 5.6. Let p, 0 be elements of End(M)o. Assume that ¢5| 5y =
b5l z(y and d(p) = d(o). Fora € M, with 7(a) < co, set

bim p(a) = /@ be du(z),

X

Then we have

for almost every x € X.

Proof. Take an arbitrary positive element z of Z(M),. Then we have
T(bz) = / Te(bpzy) dp(z)
b's
= / To(bz) 2 dp(x).
b's
Similarly, we have

T(cz) = /}(Tw(cx)zx du(x).
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On the other hand, by Lemma 5.5, we have
7(bz) = d(p)7 © ¢;5(bz)

)
= d(p)T O¢p( (a)z)
— d(p)r 0 57" o Ex(p(a))
= d(p)7 o p~ ' (pa) Ej())
= d(p)7 (acbp( ))-
Since we assume d(p) = d(o) and ¢z 7y = ¢s|z(r), the last number

of the above equality is d(o)7(a¢s(z)), which is shown to be 7(cz) in a
similar way. Hence we have

/X”(bx)% du(x) = /X ralen)ze dule).

Since the maps = +— 7,(b,) and = — 7.(c,) are integrable functions
and z € L>®(X, ) = L' (X, u)* is arbitrary, we have 7,(b,) = 7,(c,) for
almost every x € X. 0

Note that we have never used the assumption that M is approxi-
mately finite dimensional up to this point. However, in order to show
the following lemma, we need to assume that M is approximately finite
dimensional. Let

~ @ ~
M = / M, du(x)
b's
be the direct integral decomposition.

Lemma 5.7. Let M be an AFD factor of type 111 and p, o be as in
Lemma 5.6. Then for almost every x € X, there exist a factor B, of
type I, a unitary u of M, and a sequence {u,} of unitaries of M,
with the following properties.

(1) The relative commutant B!, N M, is finite.

(2) There exists a sequence of unitaries {v,} of By N M, with u, =
(vn ® 1)u, where we identify M, with (B, N M,) ® B,.

(3) For almost every x € X and for any a € M, we have Adu,((p(a)),) —
(6(a))s in the strong * topology.

(4) We have B, C u(p(M)) u* 0 (5(M)),.

Proof. Let By C p(M) be a factor of type I, with Q := p(M) N B},
finite. Let {f}} be a matrix unit generating By. We may assume that
7(f9) < oo. Then since (70 E;),((f}})z) < oo for almost every = € X,



P:=MnN B, is also finite. Then by Lemma 5.6, there exists a partial
isometry v of M with v*v = p(fY), vv* = a(fY). Set

= Z ]1 Up fl]
J=1

Then u is a unitary of M with ué(f%)u* = p(f3). Set

B := 6 (Bo)(= up(Bo)u"),

fij = o (fi)(= up(fij)u").
By replacing p by Aduo p, we may assume that p(fi;) = 6(f;;). In the
following, we identify M with P® B and P with R® Z(M), where R is
the AFD factor of type II;. By the approximate finite dimensionality
of R and Z(M), there exists a sequence el @ aibijrtns, of systems
of partial isometries of P with the following propertles

(1) For each n, the system {ef;};; is a matrix unit of R.

(2) For each n, the system {a}} is a partition of unity in Z(M).
(3) For each n, {e’"“rl i.j is a refinement of {ef’}; ;.

(4) For each n, {ak“};c is a reﬁnement of {ak}k

(5) We have \/n 1{6” ® a} ”k = P.

Fix a natural number n. Then by Lemma 5.6, we have

T2 ((p(efy © ag @ fi1))z) = Tu((G(e1) @ a @ f11))a)

for almost every x € X. Here, we should notice that we have 7(e}; ®
ap® f11) < 7(1®1® f11) < oo. Hence the assumption of Lemma 5.6 is
satisfied. Hence for almost every x € X, there exists a partial isometry

v of Py = (p(f11)Mp(f11)). with
v vp = plel; ® ap @ fi1)z, vivg" = (e} @ ap @ fi1)a-
Set

Up 1= Z 5(6]‘1 ® ay ® f11)xUZ,5(€1j ®ay ® fll)a:-
k?j

Then v, is a unitary of ﬁ(fll)m]\;[xﬁ(fn)x with
vpp(el; @ ay @ fi1)av, = o(e; ® a @ fi1)e.
Hence for almost every x € X, there exists a sequence {v,} of unitaries
of P, with
Ad(v, @ 1)(p(a)e) = 0(a)e
for any a € M. O
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Lemma 5.8. Let M, p and o be as in Lemma 5.7. Then there exist
a unital subfactor B of M, a unitary u of M and a sequence {u,} of
unitaries of M with the following properties.

(1) The factor B is of type I.
(2) The relative commutant B' N M is finite.
(3) There exists a sequence of unitaries {v,} of B' N M with u, =
(vn ® 1)u, where we identify M with (B'0 M) ® B.

(4) For any a € M, we have Adu, o p(a) — &(a) in the strong *
topology.

(5) We have B C up(M)u* N &(M).
Proof. This is shown by “directly integrating” the above lemma. O

The conclusion of Lemma 5.8 means that Adu, o p converges to &
point *strongly. However, this convergence is slightly weaker than that
of the topology we consider. We need to fill this gap. In order to
achieve this, the following criterion is very useful.

Lemma 5.9. (Lemma 3.8 of Masuda—Tomatsu [42]). Let p and p,, n €
N be endomorphisms of a von Neumann algebra N with left inverses ®
and ®,,, n € N, respectively. Fiz a normal faithful state ¢ of N. Then
the following two conditions are equivalent.

(1) We have lim,, o, ||th o @, —1p o ®|| =0 for all b € N,.

(2) We have lim,, o, ||¢p 0 @, — p o ®|| = 0 and lim,,_,, p(a) = p(a)
forallae N.

Hence what we need to do is to find a normal faithful state of M
satisfying condition (2) of Lemma 5.9.

Lemma 5.10. Let M, p, o be as in Lemma 5.7. Then there erists a
sequence of unitaries u, of M with Adu, op — 7.

Proof. Take a subtactor B of M, a unitary u of M and a sequence {v, }
of unitaries of M as in Lemma 5.8. By condition (5) in Lemma 5.8, we
have u*Bu C p(M). Set
F = p ' (u*Bu).
Then we have
ptoAdu*(B) = F,
pt o Adu*(B' N Aduo p(M)) = F' ' n M.
We also have
Adu o E; o Adu*|p = idp,

Adu o Ej;o Adu*(B'N M) = B'n Adu o p(M).
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Let {fi;} be a matrix unit generating B. Set

7(a) := m(ap™ (u" fuu))
for a € F/ N M, which is a faithful normal finite trace of F' N ]~\~4 Let
Yr be a normal faithful state of F. Let Vp : M — (FFNM)® F
is the natural identification map. Then by the above observation, for
a € B'N M and i, j, we have

(T@Yp)oVpo ¢p 0 Adu*(afij)
= (TRvYr)oWpo (p ' oAdu*)o (Aduo E; o Adu*)(af;;)
=T RvYr)oWpo (p'oAdu*)((Aduo E; o Adu*| g i) (a) fij)
= (T 0 ¢p 0 Adu”)(a)(¢r o ¢5 0 Adu”)(fy).
Since B C #(M) N Aduo (M), we have
Es(afi;) = Es(a)fij,
Adu o E; 0 Adu*(af;;) = Aduo E; o Adu™(a) f;;
for a € B'N M. Notice that 5~ 1(f;;) = p~!(u* fiju) by conditions (3)
and (4)of Lemma 5.8. Then for any a € B’ N M, we have
(T ®@r)oVpog;oAdu* (v @ 1)(af;;)
= (T @ vr) o Up o ¢p((u" (vpavn)u)(u” fiju))
=T 0 gp(u* (v avy )u)p(p (u” fiju))
= 7(op(u (vpavn)u) o~ (u* frou) ) (p (u” fiju)
o gp(u” (vpavy) fuu)r(p~ (u” fiju))
(o) (u* (vpavy) fru) e (p~" (u” fiju))
(o) (afin)r(G (i)
(¢5(a)a= ' (f12)) e (5 (fi5))
7(0s(a)p™ (w* fruu))r(6 7 (fiy))
= (T®vYr) o Vr o ds(afy).

Hence we have (T®¢r)o¥popzoAd(u*(v,®@1)*) = (TRYp)oVpops
for any n. Hence by Lemma 5.8 and Lemma 5.9, we have Ad((v, ®
Du)op— 0. O

-
d
d

Il
\]

5.4. Averaging by the trace-scaling action. In this subsection, we
always assume that M is an AFD factor of type III. Let ¢ be a dominant
weight of M and p,o € End(M)g be finite index endomorphisms with
(p,p) and (p, o) invariant pairs. Set
M := M %, R.
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Let 1y be a normal faithful state of M and {t;}22, be a norm dense
sequence of the unit ball of M,. Let 6 be the dual action on M of
o¥. We will replace the sequence {u,} chosen in the previous section
so that it is almost invariant by 6. In order to achieve this, we use
a property of # which is said to be the Rohlin property. In order to
explain this property, we first need to explain related things. Let w
be a free ultrafilter of N. A sequence {[—1,1] 3t +— x,, € M}, of
maps from [—1, 1] to M is said to be w-equicontinuous if for any € > 0,
there exist an element U C N of w and 6 > 0 with ||z, s — z,s|| < € for
any s,t € [—1,1] with |s —¢| <4, n € U. Set

= {(zn) € I°(M) | |znt) — th2,|| = 0 as n — w for any ¢ € M.},
Cow = {(x,) € C, | the maps {t — 0,(z,)};>, are w equicontinuous.},

= {(x,) € I°(M) | 2, — 0 in the *strong topology as n — w.}.

Then Z, is a (norm) closed ideal of Cy,,, and the quotient Mgw =
Cow/Z., is a von Neumann algebra. As mentioned in Masuda-Tomatsu
[44], the action € has the Rohlin property, that is, for any R > 0, there

exists a unitary v of ]\7[97w with
0, (v) = e ity

for any t € R (See Section 4 of Masuda-Tomatsu [44]). Choose ar-
bitrary numbers » > 0 and 0 < € < 1. Then since M is of type III,
there exists a real number R such that any times of which is not of
the discrete spectrum of 0|z ;) and which satisfies r/R < ¢*. Then as
shown in Theorem 5.2 of Masuda—Tomatsu [44], there exists a normal
injective *-homomorphism © from M ® L>®([—R, R]) to M* satisfying
@ f s xf(v) for any x € M, f € L°([-R, R]). For each t € R, set

o L([=R,R)) > f = f(- —t) € L™([-R, R]),

where we identify [— R, R| with R/2RZ as measured spaces. Then the
*_homomorphisms © and -, satisfy

Oo(0;®@vy) =000
(See Theorem 5.2 of Masuda-Tomatsu [44]).
Lemma 5.11. For ¢ € M,, we have
Yo O =1 @ Tpe,

where T s the trace coming from the normalized Haar measure of
L>([-R, R]).
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Proof. Let {v,} be a representing sequence of v. For z ® f € M®
L>([—R, R]), we have

U° 00 ® f) = v*(xf ()
= lim (2 (v,))
= () lim /(v,)
= Y(@)ri~(f)
= R@Tr=)(x® f).

Since the maps
[—R,R] > t— ’l/}l O¢ﬁ o@t < <M>*,
[~R.B] 3t ¢ 0500, € (M),
are norm continuous, the union of their images

{iopsob, |t € [-R, R} U{pjops00,|tc|[-R,R|}

is compact. Hence there exists a finite set —R =1ty < --- <t; = R of
[—R, R] such that

[Yi0@gpo0b, —hiogs0b <e,
[1i 0 @5 00, — 10 ps 00 <€

foranyi=1,---,n,j=0,---,J—landt € [t;,t;11]. We may assume
that t; = 0 for some j. Then by Lemma 5.10, there exists a unitary u
of M with

[1i 0 ¢pp00; 0 Adu — th; 0 g5 0 Oy | < €

for any j = 0,---,J—1,4=1,--- ,n (Notice that we used the fact
that we have ¢;00;, = 0;, o ¢; and that we have ¢5 o 0;, = 0;, o 5 for
any j =0,---,J —1). Hence we have

|9)i 0 5 0 6; 0 Adu — 1; 0 ¢ 0 04| < 3e
for any ¢ € [-R, R]. Set
U:[-R,R] >t~ 6,(u) € M,
which is a unitary of M @ L®([-R, R]).
Lemma 5.12. We have
16,(0(U)) — O(U)|}, < 2¢

for|s| <.
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Proof. Notice that we have
(05 @ 75)(U) : t = 05(Up—s),

where U; denotes the evaluation of the function U at the point ¢. Hence
by the definition of U, we have

(0s @) (U)e = 0i(u)

for any ¢ € [-R + r, R — r], where the left hand side is the evaluation
of the function (s ® 75)(U) at the point ¢. Hence by Lemma 5.11, we
have

lo.W) - B

= H(es & ’Ys)(U) - UH?J;O@)TLOO

= 95 s []t_[]tﬂ Qdm 1/2
(00O, = Uil dm)

< / 4 dm())
[-R,—R+r]U[R—r,R]

< (462)1/2
= 2e.

O

Lemma 5.13. There exists a finite subset —R = s < -+ < sg = R
of [-R, R] with

K-1
10 = 37 O werllpo, yery < €
k=0

forany j =0,---,J =1, where ey = Xs.5,.1] € LZ([-R, R]).

Proof. Since the map ¢ — 6,(u) is continuous in the strong * topology,
there exists a finite set —R = sy < --- < sx = R of [-R, R] with

16:(w) = O, ()50, <€
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forj=0,---,J—1,k=0,--- ,K—1and t € [sg, Sg+1]. Then we have

K-1
||U - Z 951@ (u)6k||§/)009tj®TLoo
k=0

K-1

=<Z/

k=0 V [8K:Sk+1)
K-1

<[ camyr

(16:(w) = 05, (W) [0, ) dimi())™?

Set

Take a representing sequence {e}}>%, of O(e;) so that {ef}; ' is a

partition of unity in M by projections for each n. Set

The sequence {v, }% | represents the unitary ©(V). Let {u,}>°, be a
representing sequence of ©(U).

Lemma 5.14. We have
tim 10,(v,) — v, < 6V
fort € [—r,r].

Proof. Note that we have

(16:(a)l3,)?

1
- §¢0 o0i(a*a+ aa™)

— %(1/10 0 6;,(a*a+ aa*)) — %((% 06, — 1 0 0,)(a*a + aa®))

< (llallop,, )* + llali® 120 © 6, — w0 0 b
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for any a € M. Hence for t € [t;, t;41] N [—7, 7], we have
160(vn) = vallf,
< N0ewn — wn) I, + 10e(un) = wallfy, + llun = wallh,
< (4190 © 01, — 1o 0 Oel| + (l[vn — unlliyp, )*)
1186 (wn) = unllly, + llun = vallf,
< (de + (llvn — tnllyop, )"

+ (10 (un) — un”fpo + [lun — Un”fpo-
Hence by Lemmas 5.12 and 4.11, we have

limn [16,(v,) — v,

< e+ (V-0 )22

#

(Y000t )®Tp 00
+16:U) = Ullogryoe + 10 = VI or
< (4e+ V2424 €

< 6v/e.

Lemma 5.15. We have
lim [vnthi 0 @5 — i 0 psu,|| < 3e
foranyi=1,--- n.
Proof. Fix i and k. Set \ := 0, (w)*1); 0 5 —1); 0 p505, (u)*. Notice that

we have seen that ||[A|| < 3€ in the argument preceding to Lemma 5.12.
We have

lexOs, (u) Piogs—hiodzerb, (u)"|| < llegAll+[(efviots —iogser) s, (u)||-

Let A\ = |Muvy be the polar decomposition of X\. For € M with
||| <1, we have

ez A(2)] = leg| Al(vazer)]|
< [(ex Al = [Aleg) (oazep)| + [|A[(egvazey)]
< e, IAI + [IA[(exvazer)]
< e, IAI -+ [Al(er)
— [|All 7z (ex)
< 3eTr(e)-
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Hence we have
Tim [|ef 6y, (w) s © @5 — i 0 Pgepbs, (u)"[| < 3eTreo(ex)
for k=1,---, K. Summing up these inequalities, we have

lim [[v}1); 0 o5 — Uy © Psuy|| < 3e.
n—w

By Lemmas 5.14 and 5.15, we have the following proposition.

Proposition 5.16. There exists a sequence {v,}°>, of unitaries of M

with
. P
nh_{{.lo 10 (vy,) — Un”m =0,
nlggo [vpthi 0 @5 — i 0 psv,|| =0
foranyi=12---.

Proof. Take a representing sequence {v} of ©(V) consisting of uni-
taries. Then by Lemmas 5.14 and 5.15, we have

. ! 7t
lim [6,(v1) — v, [, < 6V
for t € [—r, 1],
lim o, " (i 0 d) — (i 0 da)vy,” || < 3e
for finitely many 7. Hence by the usual diagonal argument, it is possible
to take the sequence. O
5.5. Approximation on M xy R. Set
n, :={z e M|r(z'z) < oo}

Lemma 5.17. (See also Appendiz A. of Guido-Longo [17]) Let L*(M)
be the standard Hilbert space of M and A : n, — L*(M) be the canoni-
1

cal injection. For each x € n., set V5(A(x)) :=+/d(p) A(p(z)). Then
V5 defines an isometry of L*(M) satisfying

ViaVs = dp(x)
for any x € M. Moreover, the isometry V5 s the canonical implemen-
tation in the sense of Guido—Longo [17].

Proof. Take x € n,. Then by Lemma 2.5 (4) of Izumi [22], we have
IVaA(@)|I* = d(p)~'7(p(x"x))
= 7(z"z) = [|A(2)]*
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Hence V; defines an isometry of L?(M). Next, we show the latter
statement. We have V(A = /d(p)A(¢s(z)) because
(VaA(z), Ay)) = (A=), d(/)) AP
= Vd(p) (p(y)")
= Vd(p)7(y" op(x )

(Vd(p)A(¢s(x)), Ay))

for any z,y € n.. In order to show thg third equahty of the above, we
used Lemma 5.5. Hence for any z € M and y € n,, we have

VixVsA(y \/_p VIA(xp(y
= Mos(zp(y)))
= &p(x)A(y)-
Next, we show that Vj is the standard implementing. Let £ be a cyclic
separating unit vector of L*(M),. By (b) of Proposition A.2 of Guido-
Longo [17], it is enough to show that V3¢ € L*(M,&);. In order to
achieve this, by the self duality of L*(M,¢&), it is enough to show that

(Vi€ JeaTeat) > 0

for a € M. However, by a characterization of the modular conjugations
(Theorem 1 of Araki [1]), Je¢ is the modular conjugation of L?(M).
Hence it is enough to show that

(V3€,Ar(a%a)) > 0

for a € n.. This is trivial because we have V* = /d(p)A(o
Hence Vj is the standard implementing. D

Let p be an endomorphism of a von Neumann algebra M. Then
since its canonical extension p commutes with ¢, the endomorphism p
extends to M xgR by A/ — )/ for any t € R. We denote this extension

by p.

Lemma 5.18. Let p and o be finite index endomorphisms of a separable
infinite factor M and ¢ be a dominant weight of M. Assume that there
exists a sequence {u,} of unitaries of M x4 R with Adu, o p — & as
n — o0o. Then there exists a sequence {v,} of unitaries of M with
Adv,op — 0.

Proof. Since (¢, p) and (p, ) are invariant pairs, it is possible to iden-

tify p with p ® idg(z2r) and ¢ with o ® idp(r2r) through Takesaki

duality, respectively (It is possible to choose the same identification
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between M @ B(L*R) and M x4 R for p and &. See the argument pre-
ceding to Lemma 3.10 of Masuda-Tomatsu [40]). Then by (the proof
of) Lemma 3.11 of Masuda—Tomatsu [40], there exist an isomorphism
7 from M @ B(L?R) to M and unitaries u,, u, of M satisfying

To(p®id)on ' = Adu, o p,
o(c®id)or ' = Adu, o0
(Although in the statement of Lemma 3.11 of Masuda—Tomatsu [40],

the isomorphism 7 depends on the choice of p, 7 turns out to be inde-
pendent of p by its proof). Then we have

Ad(ugm(un)up) o p

= Ad(uim(u,)) o mo (p®idper)) 07"
= Adu oo (Adu, o (p @ idp(zery)) o
— Adul oo (0 ®idper)) o
= Adu} o (Adu, o 0)

= 0.

O

Lemma 5.19. Let p be an endomorphism with finite index and with

(p, p) an invariant pair. Let E5 be the minimal expectation from M to

p(M). Then we have the following.
(1) For each x € M, we have E3(x) = E;(z).
(2) For any t € R, we have E5(\]) = M.

Proof. This is shown in the proof of Theorem 4.1 of Longo [38]. O
Lemma 5.20. For ¢ € L*(R, M), set
V5(&)(s) = V5(&(s)).
Then V3 is an isometry of L2(R, M) satisfying
VaVs = ¢5(x)
for any x € M, where ¢z = plo L.

Proof. The first statement is shown by the following computation.

VO = [ VI duts)



for ¢ € L*(R, M). Next, we show the latter statement. Choose x € M
and ¢ € L*(R, M). Then we have

V2 o my(w) o V() = Vimo(w)(s = Vi(E(s)))
V2 (s 0_4(2) 0 Vo(€(9)))
= (s V5 ob_s(z) o V5(£(s)))
= (s ¢5(0-5(2))(£(5)))
= (s = 0_s(d5(2))(£(5)))
= mo(¢5(2))(E)
= ¢5(mo(2))(£).

In order to show the fourth equality of the above, we used Lemma 5.17.

The last equality of the above follows from Lemma 5.19. For ¢t € R
and ¢ € L*(R, M), we have

VENVi = Vi(s o Vilé(s = 1)
— 5 VIVi(E(s — 1)
= N(©)

Thus we are done. O

S

)
)

S

Lemma 5.21. Let N be a von Neumann algebra and {V,}>2, be a
sequence of isometries on the standard Hilbert space L*(N) such that
for each n, the map ®, : N 2 x — V> zV, is a left inverse of an
endomorphism p, of N. Consider the following two conditions.

(1) The sequence of operators {V,}>2, converges to Vi strongly.
(2) We have |[1p o @, — 1) o Dg|| = 0 for any ¢ € N,.

Then we have implication (1) = (2). If each isometry V, is the

standard implementing in the sense of Guido—Longo [17] (See Appendizx
A. of [17]), then we have (2) = (1).

Proof. Tmplication (1) = (2) is shown by just using the Cauchy—Schwartz
inequality. When V,, is the standard implementing, implication (2) =
(1) is implication (1) = (3) of Lemma 3.3 of Masuda—Tomatsu [40]. O

Note that the isometries Vyuy J;ur Jy; and Vi are examples of the
standard implementing, where J; is the modular conjugation of M.

Lemma 5.22. Let {u,} be a sequence of unitaries of M satisfying the
following conditions.

(1) We have Adu, o p — & as n — oo.
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(2) For any compact subset F' of R, we have 0;(u,) — u, — 0 uni-
formly fort € F.

Then there ezists a sequence of unitaries {v,} with Adv, o p — o.

Proof. By Lemma 5.18, it is enough to show that Adu, o p — &. By
Lemma 5.20 and implication (1) = (2) of Lemma 5.21, it is enough
to show that Vzuy JuyJ — Vi, where J is the modular conjugation of

M x4 R. Recall that J : LQ(M) ® LR — L*(M) ® L*R is given by
the following.
J &= (s Ty s(E(=5))),

where J;; is the modular conjugation of M. Hence we have
s Jus I (€@ f)
= (s = Va(0_s(uy)Eun) f(s))
for any & € L?(M) and f € L*R. Hence we have
IVsupJup J(€ @ f) = Vi€ @

= [ Va0t ) — O
/ IVH(0-<(05) — ) PLEG ds + [ IViluzun) = V(OIS ds

by the Lebesgue dominant convergence theorem. Note that in order to
show the last convergence, we use Lemmas 5.16, 5.17 and implication
(2) = (1) of Lemma 5.21. O

5.6. The proof of the main theorem of Section 5.

Lemma 5.23. Let M be an AFD factor and o be a finite index endo-
morphism of M with d(c) = d. Then there ezists an endomorphism A
with the following properties.

(1) The endomorphism X is approzimately inner.

(2) We have d(\) = d.

(3) The endomorphism X\ has Connes—Takesaki module and it is
0108l (1)

Proof. By the proof of Theorem 3 of Kosaki-Longo [26], there exists
an endomorphism Ay of the AFD factor of type II; with d(X\;) = d.
Then idy; ® Ag is an endomorphism of M with d(id ® \g) = d and with
mod(id ® Ag) trivial. Hence by the existence of a right inverse of the

Connes—Takesaki module of automorphisms (See Sutherland-Takesaki
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[57]), there exists an automorphism « of M with mod(aoXg) = 0_10g(q).-
By Theorem 3.15 of Masuda—Tomatsu (or by the same argument of our
paper), it is shown that A := a o \g is approximately inner. O

Now, we return to the proof of the main theorem.

Proof of implication (1) = (2) of Theorem 5.1. Let p,o be endo-
morphisms of End(M)y with the first condition of Theorem 5.1. Then
by Lemma 5.23, there exist endomorphisms A, u € End(M ), with the
following properties.

(1) We have d(\) = d(o), d(un) = d(p).

(2) We have )\|2(M) =0- log(d(o))|Z(M) and ﬁ|z<M) =0 log(d(p))|2(M)-
(3) The endomorphisms A and u are approximately inner.

By the second condition, we have

050 O3l zam) = D5 © Oogd(o) | z ()
= 95 0 0_1og(d(0)/d(p)) © Orogd(o) | z(ar)
= 95 © iog(d(p)) | z (1)
= b5 © Pl z(ar)-
Hence by replacing p by Ao p and o by o o respectively, we may
assume that d(p) = d(\) and ¢s|z() = ¢s|z). By Proposition 5.16,

there exists a sequence {u,} of unitaries of M satisfying the assump-
tions of Lemma 5.22. Hence by Lemma 5.22, we have Adu,0p — o. U

5.7. Appendix of Section 5 (A proof of the characterization
of central triviality of automorphisms of AFD factors). In this
subsection, we will see that it is possible to give a proof of a character-
ization theorem of central triviality of automorphisms of AFD factors
by a similar strategy to the proof of Theorem 5.1, which is independent
of the types of the AFD factors.

Let M be an AFD factor of type III. Let a be an automorphism of
M and & be its canonical extension. Set

p:=min{qg € N | a7 is centrally trivial},
G:=17Z/pZ.
Note that when &™ is not centrally trivial for any n # 0, we set G := Z.

Lemma 5.24. The action {dy o 0} mpecaxr of G x R on ]\waﬁ 18
faithful.
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Proof. We will show this lemma by contradiction. Let ¢ be a normal
faithful state of M and {152, be a norm dense sequence of the unit
ball of M,. Assume that there existed a pair (n,t) € (G x R)\ {(0,0)}
satisfying &, 0 0_;(a) = a for any a € Mwﬂ. Then the automorphism
&, 0 0_; would be centrally non-trivial because &, o _; is trace-scaling
if t # 0. Hence there would exist an element x of M,,, which can never
be of M, g, with &, (z) # 6,(z). We may assume that z is a unitary
because any element of a von Neumann algebra is a linear combination
of four unitaries. Take a representing sequence {z;} of = consisting of

unitaries. Then we would have
lim {1 () — 02 .,

_ weak lim %(|dn(:vk) 0 () + [(@nlan) — On(a) )

k—w

=20>0

for some 6 > 0. Then for each natural number L, there would exist
k € N satisfying the following two conditions.

(1) We have
105 (k) thj — 10is () [|(= [l (b 0 O5) — (15 0 bs)i]]) < =

L

for j=1,---,L, |s| <L (Use the compactness of {1; o6, | |s| < L}.
See also the argument just after Lemma 5.11).

(2) We have
| (1) — et(ﬁk)nfp > 0.

Let © : L>([—L, L],dm(s)) @ (M, p) — (Mg, ¢*) be the inclusion
mentioned in Section 5 (an inclusion coming from the Rohlin property
of #), where dm(s) is the normalized Haar measure of [—L, L]. Set

J:=([~L,L] 3 s 0,(x3)) € L®([~L, L], dm(s)) @ M,
y = 0(y).

Since we would have &, o 0_; is trivial on Mw,g, we would have
an(O(f @ b)) = (@ (0O(f))
= an(0)0:(0(f))
= an(D)O(f(- — 1))
= O(an(b)f(- — 1))
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for f € L®([~L, L]) and b € M. Hence we would have
an(y) = O(2),

where z is an element of L®([—L, L], dm(s)) ® M satisfying z(s) =
0 (0s—i(zy)) for s € [-L +¢,L —t] (Note that the value z(s) is a
unitary element of M for each s € [-L, L]\ [-L + ¢, L — t] which is

completely determined by 3. However, it is not important what it is).
Hence we would have

1Gn(y) = yllfe = (/ (16 (-2 () = Os(xi) [15)? dm(s)

[~ Lt,L—]
_ / 22 dm(s))V?
[—L,—L+t]JU[L—t,L]
2 _ ﬁ 1/2
> ( 6% dm(s) )
~L,L] L
4t
_ (52— iz
( L)

Since we have

(0r(y))s = 0s(y)
forany 0 <r <1,s € [—-L+r, L —r|, we have

16:(y) = yllee = (/ (10 (9))s = wsll%)?* dm(s))"/
-L.L)

<(/ 2 dm(s))"
[~ L,—L+1)U[L—1,L]

SR

for |r| < 1. We also have

RS e ————" / el i)

B /[—L I 1165 (ze), w]ll dm(s)

1
< — dm(s
/{_m > dm(s)

1

L

for j = 1,---, L. Hence by Lemma 5.3 of Masuda—Tomatsu [44] (or

by the same argument as that of Lemmas 4.11 and 5.15), there exists
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a representing sequence {y;} of y with

1
. !
T [y} 61| < 7 +2e.

Hence there would exist a sequence {1} of M with the following prop-
erties.

(1) We have |y < 1.

(2) We have ||y, ¥;]]| = 0 for any j =1,2,---.

(3) For any j = 1,2,---, we have [|6,(y;) — w|l>, = 0 uniformly for
re[-1,1].

(4) We have ||a,(y;) — Qt(yl)HED > §/2 for any I.
. This would contradict the assumption that &, o #_; were trivial on

M. 0

Lemma 5.25. For each vy € GxR=0Gx R, there exists a unitary u
of My, g with éu, o 85(u) = ((m,s),y)u for any (m,s) € G x R.

Proof. The proofs of Theorems 4.10 and 7.7 of Masuda-Tomatsu [44]
work in our case. O]

Lemma 5.26. There exist a non-zero projection e of (M, ¢)? with &(e)
orthogonal to e.

Proof. By the previous lemma, when p # 0, for each natural number [,
there exists a unitary u of M,y with &(u) = ¢*™/Py and with 6,(u) =
e /by for any s. When p = 0, there exists a unitary u of Mwﬂ with
a(u) = —u and with 0,(u) = /'y for any s. Hence when p # 0, there
exists a spectral projection e of u with a(e) <1 —e, 7¥(e) = 1/p and
with 7¢(Je — 04(e)|?) < 1/(21) for |s| < 1. When p = 0, it is possible
to choose a spectral projection e of u with a(e) =1 —e, 7¥(e) = 1/2
and with 7¢(|e — 0,(e)|*) < 1/(21) for |s| < 1. By the usual diagonal
argument, it is possible to choose a desired projection. 0

Theorem 5.27. (See Theorem 1 (2) of Kawahigashi-Sutherland-Takesaki)
For an automorphism o of M, « is centrally trivial if and only if its
canonical extension is inner.

Proof. First, assume that & is not centrally trivial. Then by the pre-
vious lemma, neither is &. Hence neither is a centrally trivial (See,
for example, Lemmas 5.11 and 5.12 of Sutherland-Takesaki [56]). The
above argument means that if a is centrally trivial, then & is centrally
trivial. Since M is of type I, any centrally trivial automorphism of M
is inner. The reverse direction is trivial by the central triviality of a

modular automorphism group. O
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Remark 5.28. Finally, we remark that by our results and the result
of Masuda [39], if we admit that AFD factors are completely classified
by their flows of weights, it is possible to classify the actions of discrete
amenable groups on AFD factors without separating cases by the types
of the factors.
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