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Abstract. Motivated by a classification problem of actions of lo-
cally compact abelian groups on factors, we study a property of
actions which is called the Rohlin property. First of all, by gen-
eralizing a work of Masuda–Tomatsu, we establish a classification
theorem of actions of locally compact abelian groups on factors
with the Rohlin property. Next, we give a good sufficient condi-
tion for actions to have the Rohlin property. Namely, we show that
actions of R with faithful Connes–Takesaki modules on AFD fac-
tors have the Rohlin property, which provides many new examples
of actions with the Rohlin property. Finally, as an application of
the study of the Rohlin property, we characterize an analytic prop-
erty of finite index endomorphisms, approximate innerness, which
is useful for classifying actions of compact groups on factors.

1. Introduction

An operator algebra is a *-closed algebra which consists of bounded
operators on a Hilbert space. If it is closed in the operator norm
topology, then it is called a C∗-algebra. If it is closed in the strong
operator topology, then it is called a von Neumann algebra. Since the
convergence in the norm topology implies the convergence in the strong
operator topology, a von Neumann algebra is a C∗-algebra. However,
if we think of a von Neumann algebra as a C∗-algebra, it is so large
that we hardly obtain fine information. Hence they are thought to be
different topics and considerable parts of their respective techniques
are different. In this thesis, we mainly treat von Neumann algebras.
In particular, we consider a classification problem of group actions on
von Neumann algebras.

The classification problems of von Neumann algebras attract many
researchers’ attentions. It is a natural attempt to classify von Neu-
mann algebras, their symmetric structures (group actions), and their
subalgebras, up to appropriate isomorphisms. However, because the
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number of von Neumann algebras is so huge that it is hopeless to clas-
sify all of them, we often classify those with conditions which are called
amenability.

The history of classifying von Neumann algebras dates back to the
age of Murray and von Neumann. First, they showed that factors (von
Neumann algebras with trivial centers) are devided into factors of type
I, II1, II∞ and type III and that factors of type I are isomorphic to
one of the (possibly infinite dimensional) matrix algebras [45]. Then
they showed that the AFD (a short expression for approximately finite
dimensional, a kind of amenability) factor of type II1 is unique, up to
*-isomorphism [46]. This result is amazing because although there are
so many ways of constructing AFD factors of type II1 such as infinite
tensor products of n × n matrices (n ≥ 2), it turned out that all of
them are mutually isomorphic. Later, Connes tried to classify all of
the AFD factors, which was completely solved in 1987 by Connes [5]
[6] and Haagerup [18]. In his program, classification of group actions
on von Neumann algebras began to be studied. He noticed that most
factors of type III are described by using von Neumann algebras of
type II and actions of Z on them [9]. Then he classified actions of
Z on AFD factors of type II [7]. With another crucial ingredient (a
characterization of approximate finite dimensionality [5]), he succeeded
in classifying most of the AFD factors. By this achievement, he was
bestowed the Fields medal.

Hence the original motivation of classifying group actions is to clas-
sify factors. However, classifying group actions is itself attractive be-
cause their complete invariant is simple compared with the diversity of
the ways of constructing actions. His technique for classifying group
actions is also interesting. He borrowed an idea from ergodic theory. In
ergodic theory, there is a classical theorem which is called the Rohlin
lemma. He showed that for any outer action of Z on the AFD factor of
type II, an analogue of the Rohlin lemma holds (the non commutative
Rohlin lemma), which is one of the vital points of his proof.

Hence classifying group actions has fascinated many operator alge-
braists. After Connes’ work, Jones [23] classified actions of finite groups
on the AFD factors of type II and Ocneanu [47] classified actions of dis-
crete amenable groups on the AFD factors of type II. At these stages,
one of the difficulties was to find out the invariants. Some invariants
which are needed to classify actions of these classes of groups degener-
ate when the group is that of the integers. After that, some researchers
such as Katayama, Kawahigashi, Takesaki and Sutherland were inter-
ested in classifying actions on AFD factors of type III. When one con-
siders factors of type III, he would face with some difficulties which
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do not occur when we consider only factors of type II. The lack of the
trace makes analytic arguments difficult. Finding invariants is another
problem. In order to construct invariants, Connes–Takesaki [11] and
Kawahigashi–Sutherland–Takesaki [27], in which analytic properties of
automorphisms are studied, play crucial roles. The problem was finally
solved in 1998 by Sutherland–Takesaki [56], Kawahigashi–Sutherland–
Takesaki [31] and Katayama–Sutherland–Takesaki [27]. We also have
to say that Masuda [39] gave a simple proof of the classification the-
orem of actions of discrete amenable groups on AFD factors based on
techniques of Evans–Kishimoto [12], in which actions on C∗-algebras
are studied.

Anyway, classification of actions of discrete amenable groups on AFD
factors has been completed. One of the next problems is to classify ac-
tions of continuous (amenable) groups. In particular, actions of R are
important because they naturally appear in Takesaki’s structural theo-
rem of factors of type III (See Takesaki [60]). Although there are some
pioneering results about actions of continuous groups due to Kawahi-
gashi [28] [29] [30], the classification of actions of continuous groups
is not completed. One of the reasons is that it is not easy to classify
“outer” of actions of continuous groups. In the case of actions of dis-
crete groups, the classification problem was separated into the outer
part and the inner part and then these results were combined. How-
ever, when the group is continuous, we cannot classify outer actions
by just an analogue of the discrete group case. As we have said, one
of the vital points of classifying outer actions of discrete groups is the
non-commutative Rohlin lemma. However, when the group is contin-
uous, if we simply assume that an action is outer at any nontrivial
point, then it may not have a similar property to the conclusion of
the non-commutative Rohlin lemma. Hence in order to proceed with
classification, the Rohlin property was introduced by Kishimoto [34].
Actually, he introduced the Rohlin property for actions of R on C∗-
algebras and Kawamuro [33] translated it in the von Neumann setting.
Roughly speaking, the Rohlin property corresponds to the conclusion of
the non-commutative Rohlin lemma of the discrete group case. Later,
Masuda–Tomatsu [44] established a classification theorem of actions of
R with the Rohlin property. It is natural to try to generalize there
result for actions of more general groups. For actions of locally com-
pact abelian groups, it is not difficult to define the Rohlin property
in the same way as in Kishimoto [34]. The problem is to classify ac-
tions with the Rohlin property. In this direction, Asano [3] showed a
classification theorem when the group is Rd for some d ∈ Z>0. When
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the group is a general locally compact abelian group, the problem is
that the group may not have enough compact quotients. Section 3 is
devoted to considering this problem. Namely, we show the following
theorem (Theorem 2 of Shimada [53]).

Theorem 1.1. Let α and β be actions of a locally compact abelian
group G on a factor M with the Rohlin property. Assume that αg ◦β−g
is approximately inner for any g ∈ G. Then α and β are mutually
cocycle conjugate.

We also present many examples of actions with the Rohlin property.

However, there is a much more important problem. Although a clas-
sification theorem of actions with the Rohlin property is established,
the definition of the Rohlin property is rather technical. Hence we have
to study relation between the Rohlin property and invariants for group
actions. In Section 4, we give a sufficient condition for actions of R to
have the Rohlin property, that is, we show that an action of R which
is “very outer” at any nontrivial point has the Rohlin property (Main
Theorem of Shimada [51]).

Theorem 1.2. An action of R with faithful Connes–Takesaki module
on any AFD factor has the Rohlin property.

Not only does this theorem provide many examples of actions with
the Rohlin property on factors of type III but also makes a connection
between pointwise outerness defined by usual invariants of automor-
phisms and the Rohlin property. As a corollary of this theorem, we
obtain the following.

Corollary 1.3. Actions of R with faithful Connes–Takesaki module
on any AFD factor are completely classified by their Connes–Takesaki
modules, up to cocycle conjugacy.

Actually, there is a similar theorem about actions of compact groups
due to Izumi [22]. He showed that actions of compact groups on any
AFD factor are completely classified by their Connes–Takesaki mod-
ules, up to cocycle conjugacy. However, it is impossible to show our the-
orem by the same argument as his one. One evidence is the following.
There is a classification theorem of actions of (any!) locally compact
groups on any AFD factor due to Yamanouchi [64] based on Izumi’s
method. However, there is a strong restriction of Connes–Takesaki
modules of the actions which are classified by his method, that is, they
should be isomorphic to (an amplification of) the left translation of the
group. Hence we can say that at least for actions of R, our classifica-
tion theorem covers a much wider class of actions. There is another
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evidence which shows the diversity of the class of actions covered by
our theorem. For the class of actions which are covered by Izumi [22]
and Yamanouchi [64], the coincidence of Connes–Takesaki modules of
actions in fact implies conjugacy of two actions. Although this fact
itself is surprising, this means that the number of actions contained in
the class is small. However,by our theorem, it turns out that there are
some actions of R with faithful Connes–Takesaki modules which are
mutually cocycle conjugate but are not mutually conjugate.

Finally, in Section 5, we give a characterization of an analytic prop-
erty of endomorphisms, approximate innerness, by using the Rohlin
property for actions of R. More precisely, we have the following theo-
rem.

Theorem 1.4. Let ρ, σ be endomorphisms of an AFD factor M of
type III with d(ρ), d(σ) < ∞. Then the following two conditions are
equivalent.

(1) We have φρ̃ ◦ θ− log(d(ρ))|Z(M̃) = φσ̃ ◦ θ− log(d(σ))|Z(M̃).

(2) There exists a sequence {un} of unitaries of M with Adun◦ρ→ σ
as n→∞.

Among actions of locally compact groups, actions of compact groups
are special because their duals are discrete. In fact, actions of compact
abelian groups on AFD factors have completely been classified by clas-
sifying their duals (See Jones–Takesaki [25] and Kawahigashi–Takesaki
[32]). However, when it comes to classifying actions of non-abelian
compact groups, the problem is much more difficult. One of the rea-
sons is that the dual of an action of a non-abelian compact group is a
collection of endomorphisms, not of automorphisms. Hence we need to
handle endomorphisms. In classification theorems of outer actions of
discrete amenable groups, approximate innerness of automorphisms is
an (and the only!) obstruction for cocycle conjugacy. Hence approx-
imate innereness is also thought to be important for the dual of an
action of a compact group. This is the reason why the above charac-
terization theorem is important. We have to mention that when the
endomorphism is an automorphism, the characterization is obtained
by Kawahigashi–Sutherland–Takesaki [31]. By using the Rohlin prop-
erty of the trace-scaling action of R on the AFD factor of type II∞,
we have succeeded in generalizing their result for endomorphisms. By
this method, it is also possible to provide a new proof of a charac-
terization theorem of another analytic property, central triviality, of
automorphisms due to Kawahigashi–Sutherland–Takesaki [31].
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Theorem 1.5. (See Theorem 1 (2) of Kawahigashi–Sutherland–Takesaki)
For an automorphism α of M , α is centrally trivial if and only if its
canonical extension is inner.

Note that by our results and the result of Masuda [39], if we admit
that AFD factors are completely classified by their flows of weights, it
is possible to classify the actions of discrete amenable groups on AFD
factors without separating cases by the types of the factors.
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2. Preliminaries

2.1. Notations. Let M be a von Neumann algebra. We denote the set
of unitaries of M by U(M). For a weakly continuous linear functional
φ ∈ M∗ and an element a ∈ M , set [φ, a] := aφ − φa. For a weakly
continuous positive linear functional φ ∈ M+

∗ and an element x ∈ M ,
set

‖x‖]φ :=

√
φ(x∗x+ xx∗)

2
.

This ‖ · ‖]φ is a seminorm on M . If φ is faithful, then this norm
metrizes the strong* topology of the unit ball of M .
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2.2. A topology of groups of automorphisms. Let M be a von
Neumann algebra. Let Aut(M) be the set of all automorphisms α of
M . A topology of Aut(M) is defined in the following way. We have

αi → α

if, by definition, ‖ψ ◦ α−1
i − ψ ◦ α−1‖ → 0 for any ψ ∈M∗.

2.3. Ultraproduct von Neumann Algebras. Next, we recall ul-
tapruduct von Neumann algebras. Basic references are Ando–Haagerup
[2] and Ocneanu [47]. Let ω be a free ultrafilter on N and M be a sep-
arable von Neumann algebra. We denote by l∞(M) the C∗-algebra
consisting of all norm bounded sequences in M . Set

Iω := {(xn) ∈ l∞(M) | strong*-limn→ωxn = 0},

Nω := {(xn) ∈ l∞(M) | for all (yn) ∈ Iω,
we have (xnyn) ∈ Iω and (ynxn) ∈ Iω},

Cω := {(xn) ∈ l∞(M) | for all φ ∈M∗,we have lim
n→ω
‖[φ, xn]‖ = 0}.

Then we have Iω ⊂ Cω ⊂ Nω and Iω is a closed ideal of Nω. Hence we
can take the quotient C∗-algebra Mω := Nω/Iω. Denote the canonical
quotient map Nω → Mω by π. Set Mω := π(Cω). Then Mω and Mω

are von Neumann algebras as in Proposition 5.1 of Ocneanu [47].
Let τω : Mω → M be the map defined by τω(π((xn))) = limn→ω xn.

Here, the limit is taken in the weak topology of M . This map is a
faithful normal conditional expectation (see Subsection 2.4 of [44]).

Let α be an automorphism of M . We define an automorphism αω

of Mω by αω(π((xn))) = π((α(xn))) for π((xn)) ∈ Mω. Then we have
αω(Mω) = Mω. By restricting αω to Mω, we define an automorphism
αω of Mω. Hereafter we omit π and denote αω and αω by α if no
confusion arises.

2.4. The Rohlin Property. Next, we recall the Rohlin property. A
basic reference is [44]. In the previous subsection, we have seen that
it is possible to lift automorphisms of von Neumann algebras on their
ultraproducts. Hence it is natural to consider lifts of actions of lo-
cally compact abelian groups on Mω and Mω. However, lifts may not
be continuous. Instead of considering αω on whole Mω, we consider
their continuous part. Let G be a locally compact separable abelian
group. In the rest of the paper, we always assume that groups and von
Neumann algebras are separable, except for ultaproduct von Neumann
algebras. We denote the group operation of G by +. Let d be a trans-
lation invariant metric on G (This metric exists. See Theorem 8.3 of
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[19]). Choose a normal faithful state ϕ on M . For an action α of G on
a von Neumann algebra M , set

Mω
α := {(xn) ∈Mω | for each ε > 0, there exists δ > 0 such that

{n ∈ N | ‖αt(xn)− xn‖]ϕ < ε for t ∈ G with d(0, t) < δ} ∈ ω},

Mω,α := {(xn) ∈Mω | for each ε > 0, there exists δ > 0 such that

{n ∈ N | ‖αt(xn)− xn‖]ϕ < ε for t ∈ G with d(0, t) < δ} ∈ ω}.
Since all metrics on G are mutually equivalent, this definition does not
depend on the choice of d. The condition appearing in the definition
of Mω

α means the ω-equicontinuity of the family of maps {G 3 t 7→
αt(xn)} (See Definition 3.1 and Lemma 3.2 of [44]). Now, we define
the Rohlin property.

Definition 2.1. An action θ of a locally compact abelian group G on
a von Neumann algebra M is said to have the Rohlin property if for
each p ∈ Ĝ, there exists a unitary u of Mω,θ satisfying θt(u) = 〈t,−p〉u
for all t ∈ G.

The Rohlin property is also defined for Borel cocycle actions (See
Definition 3.4 and Definition 4.1 of [44]). For actions, by the same
argument as in the proof of Proposition 3.5 of [44], it is shown that the
two definitions coincide.

2.5. Connes–Takesaki module. First of all, we recall Connes–Takesaki
module. Basic references are Connes–Takesaki [11] and Haagerup–
Størmer [20].

Let M be a properly infinite factor and let φ be a normal faithful
semifinite weight on M . Set N := M oσφ R. Then the von Neu-
mann algebra N is generated by M and a one parameter unitary group
{λs}s∈R satisfying λsxλ−s = σφs (x) for x ∈ M , s ∈ R. Let θφ be the
dual action of σφ and let C be the center of N . Then an automorphism
α of M extends to an automrphism α̃ of N by the following way (See
Proposition 12.1 of Haagerup–Stømer [20]).

α̃(x) = α(x) for x ∈M, α̃(λs) = [Dφ ◦ α−1 : Dφ]sλs for s ∈ R.

This α̃ has the following properties (See Proposition 12.2 of Haagerup–
Stømer [20]).

(1) The automorphism α̃ commutes with θφ.
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(2) The automorphism α̃ preserves the canonical trace on N .
(3) The map α 7→ α̃ is a continuous group homomorphism.

Set modφ(α) := α̃|C . This is said to be a Connes–Takesaki module
of α. Actually, this definition is different from the original definition
of Connes–Takesaki [11]. However, in Proposition 13.1 of Haagerup–
Stømer [20], it is shown that they are same. This Connes–Takesaki
module does not depend on the choice of φ, that is, if φ and ψ are
two normal faithful semifinite weights, then the action modφ(α) ◦ θφ
of R× Z on C is conjugate to modψ(α) ◦ θψ. Hence, in the following,
we omit φ and write θt and mod(α) if there is no danger of confu-
sion. For an automorphism of any factor of type II∞, considering its
Connes–Takesaki module is equivalent to considering how it scales the
trace. Hence flows with faithful Connes–Takesaki modules are natural
generalization of trace-scaling flows.

We explain what property of automorphisms Connes–Takesaki mod-
ule indicates. By Theorem 1 of Kawahigashi–Sutherland–Takesaki [31],
an automorphism of any AFD factor is approximately inner if and only
if its Connes–Takesaki module is trivial. Hence Connes–Takesaki mod-
ule indicates “the degree of approximate innerness”.

3. A classification theorem of actions of locally
compact abelian groups on factors with the Rohlin

property

3.1. A Classification Theorem of actions of the Rohlin prop-
erty. Let G be a locally compact abelian group. Let α1 and α2 be two
actions of G on a von Neumann algebra M . Two actions α1 and α2

are said to be cocycle conjugate if there exist an α2-cocycle u and an
automorphism σ of M satisfying Adut ◦α2

t = σ ◦α1
t ◦ σ−1 for all t ∈ G.

If σ can be chosen to be approximately inner, then α1 is said to be
strongly cocycle conjugate to α2 (see Subsection 2.1 of [44]).

Our main theorem of this section is the following.

Theorem 3.1. Let G be a locally compact abelian group. Let α and β
be actions of G with the Rohlin property on a factor M . Then α and
β are strongly cocycle conjugate if and only if αt ◦ β−t ∈ Int(M) for all
t ∈ G.

This is a generalization of the following theorem due to Masuda–
Tomatsu [44].

Theorem 3.2. (See Theorem 5.14 of Masuda–Tomatsu [44]) Let α1,
α2 be two Rohlin flows on a separable von Neumann algebra M . If
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α1
t ◦ α2

−t is approximated by inner automorphisms for each t ∈ R, then
they are mutually (strongly) cocycle conjugate.

In the rest of this section, we present a proof of this theorem. The
proof is modeled after that in [44]. However, at some points of the
proof, we need to deal with problems different from those in their proof.
One of the problems is that some locally compact abelian groups do
not have enough compact quotients. Instead, we consider compact
quotients of compactly generated clopen subgroups. By Theorem 9.14
of Hewitt–Ross [19], a compactly generated subgroup is isomorphic to
Rn × K × Zm for some compact abelian group K and non-negative
integers n, m. We deal with this problem in Subsection 3.1.3.

3.1.1. Lifts of Borel Unitary Paths. The first step of our proof of The-
orem 3.1 is to find a representing unitary sequence {uνt } for a Borel
map Ut : G → U(Mω

θ ) so that the family {t 7→ uνt } is “almost” ω-
equicontinuous. More precisely, we have the following.

Lemma 3.3. (See Lemma 3.24 of [44]) Let (θ, c) be a Borel cocycle
action of a locally compact abelian group G on a factor M . Suppose that
U : G → Mω

θ is a Borel unitary map. Let H be a compactly generated
clopen subgroup of G, which is isomorphic to Rn ×K × Zm for some
non-negative integers n, m and a compact abelian group K. Let L be
a subset of H of the form

L = [0, S1)× · · · × [0, Sn)×K × [0, N1)× · · · [0, Nm)

when we identify H with Rn × K × Zm. Then for any δ > 0 with
0 < δ < 1 and a finite set Φ of M+

∗ , there exist a compact subset I
of L × L, a compact subset C of L and a lift {uνt } of U satisfying the
following conditions.

(1) We have πω
(
(uνt )ν

)
= Ut for almost every t ∈ L and the equality

holds for all t ∈ C.
(2) We have µG(L \ C) < δ, where µG is the Haar measure on G.
(3) For all ν ∈ N, the map L 3 t 7→ uνt is Borel and its restriction

to C is strongly continuous.
(4) The family of maps {C 3 t 7→ uνt }ν is ω-equicontinuous.
(5) We have (µG × µG)(I) ≥ (1− δ)(µG × µG)(L× L).
(6) The family of maps {I 3 (t, s) 7→ uνt θt(u

ν
s)c(t, s)(u

ν
t+s)

∗}ν is ω-
equicontinuous.

(7) The following limit is the uniform convergence on I for all φ ∈ Φ.

lim
ν→ω
‖uνt θt(uνs)c(t, s)(uνt+s)∗ − 1‖]φ = ‖Utθt(Us)c(t, s)U∗t+s − 1‖]φω .
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The proof is similar to that of Lemma 3.24 of [44]. Here, we only
prove the following lemma, which corresponds to Lemma 3.21 of [44].
The proof is a simple approximation by Borel simple step functions.

Lemma 3.4. (See also Lemma 3.21 of [44]) Let G be a locally compact
abelian group, θ : G → Aut(M) be a Borel map and U : G → Mω

θ be
a Borel unitary map. Then for any Borel subset L of G with 0 <
µG(L) <∞ and for any ε > 0, there exist a compact subset C of L and
a sequence {uνt }ν∈N of unitaries of M for any t ∈ L which satisfy the
following conditions.

(1) We have πω
(
(uνt )ν

)
= Ut for almost every t ∈ L and the equality

holds for all t ∈ C.
(2) We have µG(L \ C) < ε.
(3) For all ν ∈ N, the map L 3 t 7→ uνt is Borel and its restriction

to C is strongly continuous.
(4) The family of maps {C 3 t 7→ uνt }ν is ω-equicontinuous.

Proof. By the same argument as in the proof of Lemma 3.21 of [44],
it is shown that there exists a sequence {Ln} of compact subsets of L
satisfying the following conditions.

(1) We have Li ∩ Lj = ∅ for i 6= j.
(2) We have µG(L \

⋃∞
j=1 Lj) = 0.

(3) The map U |Li is continuous for each i.
Hence we may assume that L is compact and that U |L is strongly

continuous. Let ψ ∈ M∗ be a normal faithful state. For each t ∈ L,
take a representing unitary {Ũν

t }ν of Ut. Note that t 7→ Ũν
t may not

be Borel measurable. We first show the following claim.
Claim. For each k ∈ N, there exist Nk ∈ N, Fk ∈ ω, a finite subset

Ak of L, a finite Borel partition P k := {Kk
l }

nk
l=1 of L and a compact

subset Ck of L satisfying the following conditions.
(1) For s, t ∈ L with d(s, t) ≤ 1/Nk, we have ‖Us − Ut‖]ψω < 1/2k.
(2) We have Nk > Nk−1, 2/Nk + 1/(2Nk−1) < 1/Nk−1 for all k.
(3) We have [k,∞) ⊃ Fk−1 ) Fk for all k.
(4) We have Ak ⊃ Ak−1 for all k.
(5) We have

⋃∞
j=1 Aj ⊂ Ck, Ck+1 ⊂ Ck, µG(L \ Ck) < ε(1− 2−k) for

all k and Ck ∩Kk
l ’s are also compact for all k ∈ N, l = 1, · · ·nk.

(6) For each k, the partition P k+1 is finer than P k and for each
k ∈ N, l = 1, · · · , nk, we have Ak ∩Kk

l = {tk,l}(= {pt}).
(7) For s, t ∈ Kk

l , we have d(s, t) ≤ 1/Nk.

(8) For s, t ∈ Ak, ν ∈ Fk, we have ‖Ũν
s −Ũν

t ‖
]
ψ < ‖Us−Ut‖

]
ψω+1/(2k).

Proof of Claim. First of all, choose a sequence {Nk}∞k=1 ⊂ N so
that the sequence satisfies conditions (1) and (2). Next, we take P k’s.
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Assume that P 1, · · ·P k are chosen so that they satisfy condition (7) and
that P j+1 is a refinement of P j for j = 1, · · · , k−1. By compactness of
L, there exists a family of finite balls {Bf}f∈F of radius 1/(2Nk+1) of L

which covers L. This {Bf}f∈F defines a partition {B̃f ′}f ′∈F ′ of L. Then

P k+1 := {K l
k ∩ B̃f ′}f ′∈F ′,l=1,··· ,nk is a refinement of P k, which satisfies

condition (7). Next, we take Ck’s. Set C0 := L and C0
1 := C0. By

Lusin’s theorem, for each l = 1, · · · , nk, k ∈ N, there exists a compact
subset Ck

l of Kk
l which satisfies the following conditions.

(1) We have Ck+1
l ⊂ Ck

l′ if Kk+1
l ⊂ Kk

l′ .
(2) We have µG((Kk+1

l ∩Ck
l′) \Ck+1

l ) < 2−(k+1)ε/nk+1 if Kk+1
l ⊂ Kk

l′ .
Set Ck :=

⋃nk
l=1 C

k
l for each k ∈ N. Since Ck

l ’s are compact, Ck is
also compact. On the other hand, we have

µG(Cj \ Cj+1) =

nj+1∑
l=1

µG((Kj+1
l ∩ Cj) \ Cj+1)

=

nj+1∑
l=1

µG((Kj+1
l ∩ Cj

l′) \ Cj+1)

=

nj+1∑
l=1

µG((Kj+1
l ∩ Cj

l′) \ C
j+1
l )

< nj+1
1

nj+1

2−(j+1)ε

= 2−(j+1)ε.

In the above inequality, for each l = 1, · · ·nj+1, l′ ∈ {1, · · · , nj} is the

unique number with Cj+1
l ⊂ Cj

l′ . Hence we have

µG(L \ Ck) ≤
k−1∑
j=0

µG(Cj \ Cj+1)

< ε
k−1∑
j=0

2−(j+1)

= ε(1− 2−k).

These Ck’s satisfy Ck+1 ⊂ Ck and µG(L \ Ck) < ε(1 − 2−k), and we
also have Ck ∩ Kk

l (= Ck
l ) ’s are compact. Next, we take Ak’s. For

each C1
l1
⊃ C2

l2
⊃ · · · , there exists tl1l2··· ∈

⋂∞
k=1C

k
lk

by compactness of

Ck
l ’s. By induction on k, it is possible to choose Ak = {tk,l}nkl=1 so that

Ak ⊂ Ak+1 and that tk,l = tl1l2···llk+1···, i.e., lk = l. These Ak’s satisfy
12



conditions (4), (5) and (6). We may choose Fk’s so that they satisfy
conditions (3) and (8). This completes the proof of Claim. �

Now, we return to the proof of Lemma 4.5. For t ∈ L, set Uk,ν
t := Ũν

tk,l

if t ∈ Kk
l , uνt := Uk,ν

t for ν ∈ Fk \Fk+1. Set C :=
⋂
k Ck. Then we have

µG(L\C) < ε by condition (5) of Claim. Since Uk,ν
t ’s are continuous on

each Kk
l ∩Ck(= Ck

l ) and Ck
1 , · · ·Ck

nk
are compact, Uk,ν

t ’s are continuous
on each Ck. Hence they are continuous on C. Hence by the same
argument as in the proof of Lemma 3.21 of [44], the map C 3 t 7→ uνt
is strongly continuous for each ν ∈ N. Then by the same argument
as in Lemma 3.21 of [44], it is possible to see that {C 3 t 7→ uνt }ν is
ω-equicontinuous and that πω(uνt ) = Ut for all t ∈ C. Now, we have
chosen {uνt }ν and C so that they satisfy conditions (2),(3) and (4) of
Lemma 4.5 and the following condition.

(1)’ We have πω((uνt )ν) = Ut for t ∈ C.
Hence what remains to be done is to replace {uνt }ν so that πω((uνt )ν) =

Ut for almost all t ∈ L. By repeating the same process, we can find a
sequence of compact subsets {Dn}∞n=0 of L and a sequence of strongly
continuous maps {Dn 3 t 7→ un,νt ∈ U(M)}∞n,ν=0 which satisfy the
following conditions.

(1) We have µG(L \ (
⋃∞
n=0Dn)) = 0 and Dn’s are mutually disjoint.

(2) We have πω((un,νt )ν) = Ut for t ∈ Dn.
(3) We have D0 = C and u0,ν

t = uνt |C for all ν ∈ N.
Set uνt := un,νt for t ∈ Dn. This {uνt }ν satisfies all conditions of

Lemma 4.5. �

3.1.2. The Averaging Technique. Next, we show the “averaging lemma”.
For the R-action case, this means that it is possible to embed (M ⊗
L∞([0, S)), θ ⊗ translation) into (Mω

θ , θ) for any S > 0. This is a key
lemma for the classification theorem. For the general case, the following
lemma corresponds to this.

Lemma 3.5. Let G be a locally compact abelian group and θ be an
action with the Rohlin property of G on a factor M . Let L be a subset
of G with the following properties.

(1) There exists a compactly generated clopen subgroup H of G, which
is isomorphic to Rn × K × Zm for some compact group K and non-
negative integers n, m.

(2) The set L is a subset of H. When we identify H with Rn×K ×
Zm, L is of the form [0, S1)× · · ·× [0, Sn)×K × [0, N1)× · · ·× [0, N2).
Note that L can be thought of as a quotient group of H.

13



Then there exist a unitary representation {uk}k∈L̂ of L̂ on Mω,θ and
an injective *-homomorphism Θ : M⊗L∞(L)→Mω

θ with the following
properties.

(1) We have θt ◦ Θ = Θ ◦ (θt ⊗ γt). Here, γ : H y L∞(L) denotes
the translation.

(2) We have Θ(a⊗ 〈·, k〉) = auk for a ∈M , k ∈ L̂.
(3) We have τω◦Θ = idM⊗µL, where µL denotes the normalized Haar

measure on L, which is the normalization of the restriction of a Haar
measure on G, and τω is the normal faithful conditional expectation as
in Section 2.

In order to show this lemma, by the same argument as in Lemma 5.2
of [44] (in this part, we use the fact that M is a factor), it is enough to
show the following proposition.

Proposition 3.6. Let θ : GyM be an action with the Rohlin property
of a locally compact abelian group G on a factor M and L ⊂ H be
subsets of G as in the above lemma. Then there exists a family of
unitaries {uk}k∈L̂ ⊂ U(Mω,θ) with the following properties.

(1) We have θt(uk) = 〈t, k〉uk for t ∈ H.
(2) The map k 7→ uk is an injective group homomorphism.

To show the above proposition, we need to prepare some lemmas. In
the rest of this subsection, θ, G, H and L are as in Proposition 3.6.

Lemma 3.7. Let C be a subgroup of L̂ isomorphic to Z/lZ. Then
there exists a family of unitaries {uk}k∈C ⊂ Mω,θ with the following
properties.

(1) We have θt(uk) = 〈t, k〉uk for t ∈ H.
(2) The map C 3 k 7→ uk is an injective group homomorphism.

Proof. Let p be a generator of C. Since θ has the Rohlin property,
there exists a unitary w of Mω,θ satisfying θt(w) = 〈t, p〉w for t ∈ H.
Since wl ∈ M θ

ω,θ, there exists a unitary v of M θ
ω,θ ∩ {w}′ such that

v−l = wl. Set u := vw and uk := uk. Then the family {uk}k∈Z/lZ does
the job. �

By the same argument as in the proof of Lemma 3.16 of [44], we have
the following lemma. See also Lemma 5.3 of Ocneanu [47], Lemma 3.16
of [44].

Lemma 3.8. (Fast reindexation trick.) Let θ be an action of G on a
von Neumann algebra M and let F ⊂ Mω and N ⊂ Mω

θ be separable
von Neumann subalgebras. Suppose that the subalgebra N is globally

14



invariant by θ. Then there exists a faithful normal *-homomorphism
Φ : N →Mω

θ with the following properties.

Φ = id on F ∩M ,

Φ(N ∩Mω,θ) ⊂ F ′ ∩Mω,θ,

τω(Φ(a)x) = τω(a)τω(x) for all a ∈ N , x ∈ F ,

θt ◦ Φ = Φ ◦ θt on N for all t ∈ L.

Lemma 3.9. Let C be a subgroup of L̂ of the form Zn × F , where
F :=

⊕m
k=1 Z/(lkZ) is a finite abelian group. Then there exists a family

of unitaries {uk}k∈C ⊂Mω,θ which satisfies the following conditions.
(1) We have θt(uk) = 〈t, k〉uk for t ∈ H.
(2) The map k 7→ uk is an injective group homomorphism.

Proof. Let {p1, · · · , pn, q1, · · · , qm} be a base of Ĉ. Then there exist
unitaries {ui}ni=1 and {vj}mj=1 with θt(ui) = 〈t, pi〉ui, θt(vj) = 〈t, qj〉vj
for t ∈ H. By Lemma 3.7, we may assume that v

lj
j = 1. By using the

fast reindexation trick, it is possible to choose {ui}ni=1 and {vj}mj=1 so
that they mutually commute. �

Now, we prove Proposition 3.6.

Proof. Let ψ ∈ M∗ be a normal faithful state and let Φ = {φm} be
a countable dense subset of the unit ball of M∗. There exists an in-
creasing sequence {Cν} of finitely generated subgroups of L̂ satisfying

L̂ =
⋃∞
ν=1Cν . Then by the structure theorem of finitely generated

abelian groups and the above lemma, for each ν, there exists a family
of unitaries {uνk}k∈Cν ⊂ U(Mω,θ) with Cν 3 k 7→ uνk satisfying condi-

tions (1) and (2) of Lemma 3.9. For each k ∈ L̂, set a sequence {kν}
of L̂ as follows.

kν =

{
k if k ∈ Cν
0 if k 6∈ Cν .

For each ν ∈ N, k ∈ Cν , take a representing sequence {uν,nk } of uνk. Take

a sequence {Eν} of finite subsets of L̂ satisfying
⋃
Eν = L̂, Eν ⊂ Cν

for all ν ∈ N. By Lemma 3.3 of [?], the convergence

lim
n→ω
‖θt(uν,nk )− 〈t, k〉uν,nk ‖

]
ψ = 0

15



is uniform for t ∈ L. Hence it is possible to choose Fν ∈ ω (ν =
1, 2, 3, · · · ) so that

Fν ( Fν−1 ⊂ [ν − 1,∞), ν = 2, 3, · · · ,(1)

‖uν,nk uν,nl − u
ν,n
k+l‖

]
ψ < 1/ν, k, l ∈ Eν , n ∈ Fν ,(2)

‖[φm, uν,nk ]‖ < 1/ν, k ∈ Eν , m ≤ ν, n ∈ Fν ,(3)

‖θt(uν,nk )− 〈t, k〉uν,nk ‖
]
ψ < 1/ν, k ∈ Eν , t ∈ L, n ∈ Fν .(4)

Set (uk)n := uν,nkν for n ∈ Fν \ Fν+1. We show that uk := {(uk)n} is a
desired family of unitaries.

We show uk ∈ Mω. Fix µ ∈ N and k ∈ L̂. Then there exists ν ≥ µ
with k ∈ Eν . Then for n ∈ Fν , there exists a unique λ ≥ ν satisfying
n ∈ Fλ \ Fλ+1. Then by the inequality (3), we have

‖[φm, (uk)n]‖ = ‖[φm, (uλ,nkλ )]‖ < 1/λ ≤ 1/µ

for m ≤ µ. Thus we have uk ∈Mω.
In a similar way to the above, we obtain θt(uk) = 〈t, k〉uk, using the

inequality (4). It is also possible to show that the map L̂ 3 k 7→ uk is
a unitary representation by using the inequality (2). �

3.1.3. Cohomology Vanishing. By using Lemma 3.5, we show the fol-
lowing two propositions. See also Theorems 5.5 and 5.11 of [44], re-
spectively.

Proposition 3.10. (2-cohomology vanishing) Let (θ, c) be a Borel co-
cycle action of a locally compact abelian group G on a factor M . Sup-
pose that (θ, c) has the Rohlin property. Then the 2-cocycle c is a
coboundary, that is, there exists a Borel unitary map v : G → U(M)
such that

vtθt(vs)c(t, s)v
∗
t+s = 1

for almost every (t, s) ∈ G2.

Furthermore, if ‖c(t, s)− 1‖]φ, ‖[c(t, s), φ]‖ (φ ∈M∗) are small, then

it is possible to choose vt so that ‖vt − 1‖]φ and ‖[vt, φ]‖ are small. We
will explain this later.

Proposition 3.11. (Approximate 1-cohomology vanishing) Let θ be
an action with the Rohlin property of a locally compact abelian group
G on a factor M . Let ε, δ be positive numbers and Φ be a compact
subset of the unit ball of M∗. Let H be a compactly generated clopen
subgroup of G, which is isomorphic to Rn×K ×Zm for some compact
abelian group K and non-negative integers n, m. Let T , L be subsets
of H which satisfy the following conditions.
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(1) When we identify H with Rn ×K × Zm, L is of the form

[0, S1)× · · · × [0, Sn)×K × [0, N1)× · · · × [0, Nm),

which implies that L is a compact quotient of H.
(2) We have

µG
(⋂

t∈T (t+ L)
)

µG(L)
> 1− 4ε2.

Then for any θ-cocycle ut with

1

µG(L)

∫
L

‖[ut, φ]‖ dµG(t) < δ

for all φ ∈ Φ, there exists a unitary w ∈M such that

‖[w, φ]‖ < 3δ for all φ ∈ Φ,

‖φ · (utθt(w)w∗ − 1)‖ < ε,

‖(utθt(w)w∗ − 1) · φ‖ < ε for all t ∈ T, φ ∈ Φ.

By carefully examining arguments of the proofs of [44] Theorems 5.5
and 5.11, we notice that we need to choose sequences {Ln} and {Tn}
of subsets of G with the following properties.

(1) There exists an increasing sequence of compactly generated clopen
subgroups {Hk} of G with

⋃
kHk = G and Lk, Tk are subsets of Hk

and Tk’s are compact. When we identify Hk with Rnk ×Kk × Zmk for
some compact abelian group Kk and non-negative integers nk, mk, the
subset Lk is of the form

[0, S1)× · · · × [0, Snk)×Kk × [0, N1)× · · · × [0, Nmk).

(2) The translation Hk y L∞(Lk) is embedded into (θ,Mω,θ) (see
Proposition 3.6).

(3) The quantity

µG
(
Lk \

⋂
t∈Tk+Tk

(t+ Lk)
)

µG(Lk)

is small.
(4) We have Lk + Tk ⊂ Tk+1.
(5) We have Tk ⊂ Tk+1 for all k ∈ N and

⋃∞
k=1 Tk = G.

For the R-action case, Lk = [0, sk) and Tk = [−tk, tk), tk � sk �
tk+1 do the job. In the following, we explain how to choose Lk’s and
Tk’s for the general case. First, we show that there exists an increasing
sequence {Hk} of clopen subgroups of G with the following conditions.

(6) For each k, the subgroup Hk is compactly generated, which is
isomorphic to Rn×Kk×Zmk for some compact abelian group Kk. Note
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that the multiplicity n of R of Hk can be chosen to be independent on
k by Theorem 9.14 of [19].

(7) We have
⋃
kHk = G.

This increasing sequence is chosen in the following way. There exists
an increasing sequence {Ok} of open subsets of G such that Ok’s are
compact, 0 ∈ Ok for all k ∈ N and that

⋃
k Ok = G. For each k ∈ N,

let Hk be the subgroup of G generated by Ok. We show that Hk is
clopen. If t ∈ Hk, then t + Ok ⊂ Hk. Hence this is open. Hence by
Theorem 5.5 of [19], Hk is closed. By Theorem 9.14 of [19], Hk is of
the form Rn ×Kk × Zmk .

Next, take two sequences {Lk} and {Tk} of subsets of G and a de-
creasing sequence {εk} ⊂ R>0 with the following properties.

(8) The sets Lk, Tk are subsets of Hk. When we identify Hk with
Rn×Kk×Zmk for some compact abelian group Kk and a non-negative
integer mk, the subset Lk is of the form

[0, S1)× · · · [0, Sn)×Kk × [0, N1)× · · · × [0, Nmk).

Note that the way how to identify Hk with Rn × Kk × Zmk is not
important. The point is that Lk is a quotient of a clopen subgroup of
G.

(9) We have

µG
(
Lk \

⋂
t∈Tk+Tk

(t+ Lk)
)

µG(Lk)
> 1− (

εk
6µG(Tk)2

)2.

(10) We have Tk + Lk ⊂ Tk+1,
⋃
k Tk = G and Tk’s are compact.

(11) We have 0 < εk < 1/k and

∞∑
k=n+1

√
13µG(Tk)εk < εn.

From now on, we explain how to choose two sequences {Lk} and
{Tk}. They are chosen in the following way. For each k ∈ N, set
Ak := Ok. Here, the set Ok is chosen as in (7).

Assume that (Tl, Ll, εl), l ≤ k are chosen. Then since Ak+1 +Tk +Lk
is compact, it is possible to choose a subset Tk+1 ⊂ Hk+1 so that when
we identify Hk+1 with Rn ×Kk+1 × Zmk+1 , Tk+1 is of the form

[−t1, t1]× · · · × [−tn, tn]×Kk+1 × [−M1,M1]× · · · × [−Mmk+1
,Mmk+1

]

and that Ak+1 + Tk + Lk ⊂ Tk+1. Since
⋃
k Ak = G, we also have⋃

k Tk = G. Choose εk+1 > 0 so that

εk+1 < εk,
√

13µG(Tk+1)εk+1 < εk/2
k.
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Choose Lk+1 ⊂ Hk+1 so large that Lk+1 satisfies conditions (8) and (9).
Thus we are done.

By using the above sequences {Lk}, {Tk} instead of {Sk} and {Tk}
of (5.14) of [44], Propositions 3.10 and 3.11 are shown by a similar
argument to that of the proofs of Theorems 5.5 and 5.11 of [44], re-
spectively. Furthermore, it is possible to choose vt in Proposition 3.10
so that vt satisfies the following conditions.

(1) If for some n ≥ 2 and a finite subset Φ ⊂ (M∗)+, we have∫
Tn+1

dµG(t)

∫
Tn+1

dµG(s)‖c(t, s)− 1‖]φ ≤ εn+1

for all φ ∈ Φ, then it is possible to choose vt so that∫
Tn

‖vt − 1‖]φ dµG(t) < εn−1d(Φ)1/2

for all φ ∈ Φ. Here, d(Φ) is defined in the following way.

d(Φ) := max({1} ∪ {‖φ‖ | φ ∈ Φ}).

(2) If for some n ≥ 2 and a finite subset Φ ⊂M∗, we have∫
Tn+1

dµG(t)

∫
Ln+1

dµG(s)‖[c(t, s), φ]‖ < ε

for all φ ∈ Φ, then it is possible to choose vt satisfying∫
Tn

‖[vt, φ]‖ dµG(t) ≤ (3εn−1 + 3ε)d(Φ)

for all φ ∈ Φ.

In the proof, the following points are slightly different.
(1) The inequality corresponding to (5.12) of [44] is

2µG
(
L \ (

⋂
t∈T+T t+ L)

)1/2

µG(L)1/2
<

δ

6µG(T )2
.

(2) We need to show a lemma which corresponds to Lemma 5.4 of
[44]. In the proof, the inequality corresponding to (5.13) of [44] is the
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following.

‖Utαt(Us)c(t, s)U∗s+t − 1‖]φ
≤ ‖χ⋂

t∈T+T t+L
− 1‖]φ⊗µL

+ ‖χL\(⋂t∈T+T t+L)

(
(a unitary valued function)− 1

)
‖]φ⊗µL

≤ 0 + 2‖χL\(⋂t∈T+T t+L)‖]φ⊗µL

≤ 2‖φ‖1/2
µG
(
L \ (

⋂
t∈T+T t+ L)

)1/2

µG(L)1/2

<
δ

6µG(T )2

for all t, s ∈ T , φ ∈ Φ. The other parts of of the proof are completely
same.

(3) In the proof of Theorem 5.5 of [44], they show the inequality∫ Tn

Tn

‖W ∗utα
n
t (W )− 1‖2

2 dt < 18εn.

Instead, in the proof of Proposition 3.10, we show the following in-
equality.∫

Tn

‖W ∗utα
n
t (W )− 1‖2

2 dµG(t)

≤ 2

µG(Ln)

∫
Tn

dµG(t)
(∫

⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖2
2

+

∫
Ln\

⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖2
2

)
≤ 2

µG(Ln)

∫
Tn

dµG(t)

∫
⋂
t∈Tn t+Ln

dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖2
2

+
8

µG(Ln)
µG(Tn)µG(Ln \

⋂
t∈Tn

t+ Ln)

<
2

µG(Ln)

∫
Tn+1×Tn+1

dµG(t)dµG(s) ‖ũ∗sutαnt (ũs−t)− 1‖2
2

+ µG(Tn)
εn

2

18µG(Tn)4

< 9εn.

The other parts of the proof of Proposition 3.10 are same as corre-
sponding parts of the proof of Theorem 5.5 of [44].

(4) In the proof of Proposition 3.11, we need to show the inequality
20



‖utαt(W )W ∗ − 1‖]|φ|ω ≤ 2‖χL\(⋂t∈T t+L)‖]|φ|⊗µL ,
which corresponds to the inequality

‖utαt(W )W ∗ − 1‖]|φ|ω ≤ 2
t1/2‖φ‖1/2

S1/2

in the proof of Theorem 5.11 of [44]. This is obtained by a similar
computation to the above (3).

By using Proposition 3.10, it is possible to show the following lemma,
which corresponds to Lemma 5.8 of [44].

Lemma 3.12. Let α, β be actions with the Rohlin property of a locally
compact abelian group G on a factor M . Suppose that αt◦β−t ∈ Int(M)
for all t ∈ G. Let H be a compactly generated clopen subgroup of G and
T be a subset of H such that when we identify H with Rn ×K × Zm

for some compact abelian group K and non-negative integers n, m, T
is of the form

[−t1, t1]× · · · × [−tn, tn]×K × [−M1,M1]× · · · × [−Mm,Mm].

Then for any ε > 0 and a finite set Φ ⊂ M∗, there exists an α-cocycle
u such that ∫

T

‖Adut ◦ αt(φ)− βt(φ)‖ dµG(t) < ε

for all φ ∈ Φ.

In the proof of this lemma, the set corresponding to (5.18) of [44] is
obtained in the following way. For a small positive real number η > 0,
take a small number r > 0 so that

‖αt(φ)− φ‖ < η, ‖βt(φ)− φ‖ < 2η

µG(T )

for φ ∈ Φ, t ∈ G, d(t, 0) < r. Choose A(r, T ) := {tj}Nj=1 so that for
any t ∈ T , there exists tj ∈ A(r, T ) with d(t, tj) < r. This is possible
because T is compact.

Now, we return to the proof of Theorem 3.1. The proof is basi-
cally the same as that of Case 2 of Lemma 5.12 of [44]. Here, we only
explain the outline. By using Proposition 3.11 and Lemma 3.12 al-
ternatively, our main theorem of this section is obtained (the Bratteli–
Elliott–Evans–Kishimoto type argument). However, we need to change
the following part. In the proof of Case 2 of Lemma 5.12 of [44], they
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take {Mn} ⊂ N and {A(Mn, Tn)}, which appear in conditions (n.1)
and (n.8). Instead, in (n.8), take rn ∈ R>0 so that

‖(v̂n(t)− v̂n(s)) · φ‖ < εn,

‖φ · (v̂n(t)− v̂n(s))‖ < εn

for t, s ∈ Tn, d(t, s) < rn, φ ∈ Φ̂n−1. Choose a finite subset A(rk, Tk) of
Tk so that for each t ∈ Tk, there exists t0 ∈ A(rk, Tk) with d(t, t0) < rk.
This is possible because Tk is compact.

3.2. Actions with the Rohlin property on the AFD factors of
type II. Here, we give some classes of actions each member of which
has the Rohlin property. We separate the argument by factors on which
the group acts. Namely, we will separately consider the following three
classes.

(1) The factor is AFD and of type II.
(2) The factor is non-McDuff and of type II.
(3) The factor is AFD and of type III.

The first case is deeply studied by Kawahigashi [28], [29] and [30].
We give proofs for some of his results by using Theorem 3.1. We will
explain this in Subsubsection 3.2.1. The second case is studied by the
author [54]. Although he handles only actions of R in [54], its results
holds for actions of general locally compact abelian groups. We will
explain this in Subsubsection 3.2.2. For the third case, in Section 4,
we will give a sufficient condition for the Rohlin property.

First, we consider actions which fix Cartan subalgebras. This type of
examples are classified by Kawahigashi [28]. One of the most important
examples of actions of this form is an infinite tensor product action.

Let {pn} be a sequence of the dual group Ĝ of G. Set

M :=
∞⊗
n=1

(M2(C), tr),

Then it is possible to define an action θ of G by the following way.

θt :=
⊗

Ad

(
1 0
0 〈t, pn〉

)
.

Then this θ has the Rohlin property if and only if the set

A := {p ∈ Ĝ : there exists a subsequence of {pn} which converges to p}

generates a dense subgroup Γ in Ĝ. This is seen by the following way.
We first show the “if” part. Here, we show this implication in the case
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where for each p ∈ A, a subsequence of {pn} which converges to p can
be chosen to be a constant sequence. This case is needed for the proof
of Example 3.13. The general case of this implication will follow from
Example 3.13.

Choose p ∈ A. By ignoring other tensor components, we may assume
that pn = p for all n. For each m ∈ N, set

Sm := {σ : {1, · · · , 2m−1} → {1, 2} | ]σ−1(1) = m−1, ]σ−1(2) = m}.

For σ ∈ Sm, m ∈ N and k ∈ {1, · · · , 2m− 1}, set τ(k) := 3−σ(k) and

vσ := eτ(1)σ(1) ⊗ · · · ⊗ eτ(2m−1)σ(2m−1) ⊗ 1⊗ · · · .

Then we have

eσ := v∗σvσ = eσ(1)σ(1) ⊗ · · · ⊗ eσ(2m−1)σ(2m−1) ⊗ 1⊗ · · · ,

fσ := vσv
∗
σ = eτ(1)τ(1) ⊗ · · · ⊗ eτ(2m−1)τ(2m−1) ⊗ 1⊗ · · · ,

θt(vσ) = 〈t, p〉vσ
for t ∈ G. Hence if we set

T :=
∞⋃
m=1

{
σ ∈ Sm | ](σ−1(1) ∩ {1, · · · , k})

≥ ](σ−1(2) ∩ {1, · · · , k}) for k = 1, · · · , 2m− 2
}
,

then the families {eσ}σ∈T and {fσ}σ∈T are orthogonal families, respec-
tively. We show that

∑
σ∈T eσ = 1, which implies that

∑
σ∈T vσ is a

unitary. This is shown in the following way. Consider the gambler’s
ruin problem when one has infinite money, the other has no money
and they have equal chance to win. Then ‖

∑
σ∈T eσ‖1 is equal to the

probability of the poor’s ruin. This is 1. Set

un := 1⊗ · · · ⊗ 1⊗
∑
σ∈T

vσ ∈M2(C)⊗n ⊗M.

Then we have {un} ∈ Mω,θ and θt((un)ω) = 〈t, p〉(un)ω for t ∈ G. By

assumption, the set A generates a dense subgroup of Ĝ. Hence θ has
the Rohlin property.

Conversely, assume that the subgroup Γ is not dense in Ĝ. Then
there exists a non-empty open subset U of Ĝ with U ∩ Γ = ∅. Then
by a similar argument to that of the proof of Proposition 1.2 of [28], it
is shown that the Connes spectrum of θ and U do not intersect, which
implies that θ does not have the Rohlin property.

Theorem 3.13. (See also Corollary 1.9 of Kawahigashi [28]) Let α be
an action of a locally compact abelian group G on the AFD factor R of
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type II1. Assume that α fixes a Cartan subalgebra of R. Then α has
the Rohlin property if and only if its Connes spectrum is Ĝ.

The proof is just a combination of an analogue of Corollary 5.17,
which follows from the above example of an infinite tensor product
action and Theorem 3.1, and Lemma 6.2 of [44]. In the proof, the
point is that invariantly approximate innerness (see Definition 4.5 of
[44]) is the dual of the Rohlin property. This fact is shown by the
completely same argument as in the proof of Theorem 4.11 of [44].

By this example and the main theorem, all the actions fixing Cartan
subalgebras with full Connes spectrum are cocycle conjugate to an
infinite tensor product action with full Connes spectrum.

The following is a next example.

Example 3.14. (See Theorem 6.12 of [44]) Let θ be an almost periodic
minimal action of a locally compact abelian group G on the AFD factor
of type II1. Then θ has the Rohlin property.

Proof. An almost periodic action is a restriction of a compact abelian
group action to its dense subgroup (see Proposition 7.3 of Thomsen
[61]). If θ is minimal, then the original compact group action is also
minimal, which is unique up to cocycle conjugacy by Jones–Takesaki
[25]. This has the Rohlin property. �

3.3. Actions with the Rohlin property on non-McDuff factors.
One of the remarkable point of Theorem 3.1 is that the theorem is also
applicable to actions of locally compact abelian groups on non-McDuff
factors. Hence it is natural to try to find actions with the Rohlin
property on non-McDuff factors. Here we construct Rohlin flows on a
non-McDuff factor.

3.3.1. The Construction. Although the following is written about ac-
tions of R for simplicity, it is also possible to construct actions of
general locally compact abelian groups by completely the same argu-
ment. Let D = L∞(X,µ) be a diffuse separable abelian von Neumann
algebra, where µ is a probability measure. Choose a free ergodic µ-
preserving action α : Z y D. Then A := D oα Z ⊃ D is a pair of
the AFD type II1 factor and its Cartan subalgebra. There is a unique
action α ∗α : F2 y D which satisfies α ∗α(a) = α, α ∗α(b) = α, where
a, b are two generator of F2. Set M := A ∗D A. Then M is isomorphic
to D oα∗α F2 and is a non-McDuff factor.

Lemma 3.15. (See also Theorem 2.6 of Ueda [62])
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Let θ : R y D be a µ-preserving flow commuting with α. Let {uit} be
θ-cocycles (i = 1, 2). Then the action θ extends to M by θt(λa) = u1

tλa,
θt(λb) = u2

tλb for t ∈ R.

Proof. Fix t ∈ R. Since θt commutes with α, the injective homomor-
phisms πA : A ∼= {{λa} ∪ D}′′ ↪→ A ∗D A, πB : A ∼= {{λb} ∪ D}′′ ↪→
A ∗D A satisfying the following are well-defined.

πA(λa) = u1
tλa, πB(λb) = u2

tλb, πA(x) = πB(x) = θt(x) for x ∈ D.
Then here exists an automorphism θt of A∗DA such that θt|{{λa}∪D}′′ =
πA, θt|{{λa}∪D}′′ = πB. It is not difficult to see that the map t 7→ θt(y)
is strongly continuous for y ∈M .

�

For the above flows, we give a characterization of the Rohlin property.
In order to achieve this, we make use of the following Rohlin type

theorem for R×Z actions on the standard probability space, which is
a part of a theorem of Lind [38] or Ornstein–Weiss [48].

Lemma 3.16. (Theorem 1 of Lind [38]) Let R be a µ -preserving faith-
ful ergodic action of R × Z on the standard probability space (X,µ).
Then for any ε > 0, for any N ∈ N and for any T > 0, there exists a
Borel subset Y ⊂ X with the following properties.

(1) The set A :=
⋃
|t|≤T,|n|≤N R(t,n)(Y ) is Borel measurable and sat-

isfies µ(A) > 1− ε.
(2) There is a Borel isomorphism F : A ∼= Y×[−T, T ]×{−N, · · · , N}

and a Borel measure ν on Y such that

µF−1 = ν ⊗ Lebesgue measure⊗ counting measure.

(3) Under this identification, we have

R(t,n)(y, s,m) = (y, s+ t,m+ n)

for y ∈ Y , |s + t| ≤ T , |s| ≤ T , m ∈ {−N, · · · , N}, |m| ≤ N ,
|n+m| ≤ N .

Now, we give the characterization of the Rohlin property for flows
constructed in Lemma 3.15.

Theorem 3.17. For flows constructed in Lemma 3.15, consider the
following five conditions.

(1) The flow θ has the Rohlin property.
(2) The action {(θt|D) ◦ αn}(t,n)∈R×Z is faithful on D.
(3) The flow θ is centrally free. That is, θt is free on Mω for t 6= 0.
(4) The flow θ is centrally free and has full Connes spectrum.
(5) We have (M oθ R) ∩M ′ = C.
Then we have implications (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇒ (5).
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Proof. The implications (1) ⇒ (4) ⇒ (3) and (1) ⇒ (5) follow from
Masuda–Tomatsu [44]. Hence it suffices to show the implications (3)
⇒(2) and (2) ⇒ (1).

First, we show the implication (3) ⇒ (2). Assume that condition
(2) does not hold. Then there exists (t, n) 6= 0 such that θt = αn.
We have t 6= 0 because α is ergodic. Hence for x ∈ Mω ⊂ Dω (the
implication Mω ⊂ Dω is shown in Theorem 8 of Ueda [63]), we have
θt(x) = λanxλa−n = x, which implies that condition (3) does not hold.

Next, we show the implication (2) ⇒ (1). Suppose that the action
{(θt|D) ◦ αn}(t,n)∈R×Z is faithful. Fix n ∈ N. It is enough to construct
a sequence {un} of unitary elements of D such that

(i) µ (|θt(un)− e−iptun|2) < n−2 for |t| < n,
(ii) µ (|α(un)− un|2) < n−2.
Assume that we have these un’s. Then by condition (ii), {un} asymp-

totically commutes with λa and λb. Hence {un} is a centralizing se-
quence. By using condition (i), we have θt ({un}) = e−ipt{un} for
t ∈ R.

Now, we show the existence of the above {un}. RegardD as L∞(X,µ),
where (X,µ) is a standard probability measured space and let S : R y
(X,µ) and T : Z y (X,µ) be actions induced by θ, α, respectively. By
using Lemma 3.16 for T := 8n3, N := 8n2, ε := 1/8n2, R(s,m) := SsTm,
there exists a Borel subset Y ⊂ X satisfying the conditions in Lemma
3.16.

Set

un(y, s,m) :=

{
eips for (y, s,m) ∈ A,
1 for x ∈ X\A.

Then by condition (3) of Lemma 3.16, we have

(θt(un)− e−iptun)(x) = 0 for x ∈ {(y, s,m) ∈ A| |s| ≤ T − n}.

Hence we have

µ(|θt(un)− e−iptun|2) ≤ 4µ(X\{(y, s,m) ∈ A| |s| ≤ T − n})
= 4(µ(X\A) + µ({(y, s,m) ∈ A| |s| > T − n}))
≤ 4(ε+ n/T ) = n−2.

By similar computation to this, we have µ(|α(un)− un|2) < n−2. �

By this theorem, it is possible to see that there exist Rohlin flows
on the factor M . In order to do this, first, note that if an action β :
Z y D is free ergodic probability measure preserving, then Doβ∗βF2 is
isomorphic to the factor M , which is shown by Connes–Feldman–Weiss
[10] and the uniqueness of the amalgamated free product.
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Example 3.18. Let (D̃, µ) be a diffuse separable abelian von Neumann

algebra with a normal faithful trace and let θ̃ be a µ-preserving faithful
flow on D. Set D := ⊗∞n=−∞(D̃, µ)n and α : Z y D be a Bernoulli shift.

Then the diagonal action θ : R y D of θ̃ extends to M := D oα F2

and has the Rohlin property.

Other examples are given in the following.

Example 3.19. Let D = L∞(T2)(= L∞((R/Z)2)) and let α : Z y D
be an action defined by α(f)(r, s) = f(r− 1/

√
2, s− 1/

√
3) for (r, s) ∈

T2, f ∈ D. Then D oα∗α F2 is isomorphic to M . By Lemma 3.15, we
can define a flow θλ,µ,p,q : R y D oα∗α F2 by

θλ,µ,p,qt (f)(r, s) = f(r − pt, s− qt)

for (r, s) ∈ T2, f ∈ D, t ∈ R,

θλ,µ,p,qt (λa) = eiλtλa, θ
λ,µ,p,q
t (λb) = eiµtλb

for t ∈ R. This θλ,µ,p,q has the Rohlin property if and only if (p, q) 6=
r(n/
√

2−m,n/
√

3− l) for any r ∈ R, n,m, l ∈ Z.

Proof. In order to show this, by Theorem 3.17, it is enough to show that
the action {(θλ,µ,p,qt |D)◦αn} is faithful if and only if the above condition

holds. For (t, n) ∈ R×Z, θλ,µ,p,qt |D = αn if and only if pt = n/
√

2 +m,

qt = n/
√

3 + l for some m, l ∈ Z. Hence {(θλ,µ,p,qt |D) ◦ αn} is faithful if
and only if (p, q) 6= (n/

√
2+m,n/

√
3+ l)/t for all t ∈ R\{0}, n,m, l ∈

Z. �

If we further assume that (p, q) 6= r(s/
√

2 − m, s/
√

3 − l) for any
r, s ∈ R, m, l ∈ Z, then this also gives a new example of a Rohlin
flow on the C∗-algebra C(T2) oα∗α F2, which is shown by the same
argument as in Proposition 2.5 of Kishimoto [34].

Remark 3.20. Let α : Gy D be a non-singular free ergodic action of
a discrete group. If the action α is stable (See Definition 3.1 of Jones–
Schmidt [24]), then the factor M := D oα∗α (G ∗ G) admits Rohlin
flows. This is shown by the argument similar to (2) ⇒ (1) of Theorem
3.17. In particular, by Corollary 5.8 of Ueda [62], for any λ ∈ [0, 1],
there exists a type IIIλ non-McDuff factor which admits Rohlin flows.

3.3.2. On classifications. In this subsubsection, we discuss classifica-
tion of actions on non-McDuff factors above. It is remarkable that
Theorem 3.1 holds for actions on any separable factors. Hence it is
natural to apply the theorem to the actions constructed above.
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Lemma 3.21. (Lemma 2.1 of Popa [49], Theorem 5 of Ueda [63])
Let M = A ∗D B, µ, EA, EB, E be as above. Let x ∈ Mω and let

v, w be unitaries of A with µ ◦ EA(u∗ · u) = µ ◦ EA = µ ◦ EA(v∗ · v).
Assume that EA(vn) = 0, EA(wn) = 0 (n 6= 0), vDv∗ = D = wDw∗,
x = vxw∗. Then for y1, y2 ∈ kerEB, we have

‖ y1x− xy2 ‖2
(µ◦E)ω≥‖ y1(x−Eω(x)) ‖2

(µ◦E)ω + ‖ (x−Eω(x))y2 ‖2
(µ◦E)ω ,

where (µ ◦ E)ω : Mω → C, Eω : Mω → Dω are maps induced by µ ◦ E
and E, respectively (see subsection 2.2 of Ueda [63]) and ‖ x ‖(µ◦E)ω=

((µ ◦ E)ω(x∗x))1/2 for x ∈Mω.

By using this lemma, it is possible to show the following lemma,
which is crucial to investigate the approximate innerness of flows. Let
M = A∗DA be the type II1 amalgamated free product factor considered
in this subsection.

Lemma 3.22. Let θ be an automorphism of M = A∗DA which globally
preserves D and satisfies θ(λa) = u1λa, θ(λb) = u2λb for some u1, u2

∈ U(D). Then the automorphism θ is approximately inner if and only
if θ|D = id, u1 = u2.

Proof. This is shown in the proof of Theorem 14 of Ueda [63] in a more
general setting. Here we give a proof briefly.

First, we show the “only if” part. Assume that θ is approximately
inner. Then there exists a unitary {un} of Mω such that θ(y) = strong-
limn→ω u

∗
nyun for y ∈ M . Then by using Lemma 3.21 for v = λa, w =

u1∗λa, y1 = λb, y2 = u2∗λb, x = {un}, we have {un} − Eω({un}) = 0.
Hence we have {un} ∈ Dω, which implies that θ|D = id, and we have

u1 = θ(λa)λ
∗
a = lim

n→ω
unλau

∗
nλ
∗
a = lim

n→ω
unα(u∗n) = lim

n→ω
unλ

∗
bu
∗
nλb = u2.

Next, we show the “if” part. Assume that θ|D = id, u1 = u2. We
construct a sequence {un} of unitaries of D such that unα(u∗n) → u1.
By using the Rohlin lemma for α, there exists a partition {ek}nk=0 ⊂
Proj(D) of unity in D such that

α(ek) = ek+1 for k = 1, · · · , n− 1, µ(e0) < 1/(n+ 1).

Set

un =
n∑
k=0

vkek, v1 = u1, vk+1 = α(vk)u
1.

for k = 1, · · · , n− 1. Note that

vkekα(elv
∗
l ) = vkv

∗
l+1u

1ekel+1 = δk,l+1u
1ek
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for k, l = 1, · · ·n−1. Hence by a similar computation to the one in the
proof of Theorem 3.17, we have unα(u∗n)→ u1. Hence we have

unλau
∗
n → u1λa = θ(λa),

unλbu
∗
n → u1λb = u2λb = θ(λb),

which implies that Adun(y)→ θ(y) strongly for y ∈M . �

Lemma 3.23. The Rohlin flows constructed in Theorem 3.17 are com-
pletely classified by {θ|D, u1

tu
2
t
∗}, up to strong cocycle conjugacy.

Proof. This lemma immediately follows from Theorem 3.1 and Lemma
3.22. �

Example 3.24. The Rohlin flows considered in Example 3.19 are com-
pletely classified by (p, q, λ− µ), up to strong cocycle conjugacy.

However, we are mainly interested in classifying actions up to usual
cocycle conjugacy. Being mutually strongly cocycle conjugate is just
a sufficient condition for being mutually cocycle conjugate. When the
factor is approximately finite dimensional, then the difference of these
classifications does not cause any problem because we can describe
how far from being approximately inner an automorphism is (See The-
orem 1 of Kawahigashi–Sutherland–Takesaki [31]). However, we will
see that when the factor is not approximately finite dimensional, these
two classifications are completely different.

Theorem 3.25. For Rohlin flows in Example 3.19, usual cocycle con-
jugacy and strong cocycle conjugacy are different.

The following lemma is an essential part of Theorem 3.25. Recall that
the discrete spectrum Spd(θ) of a flow θ on a von Neumann algebra M
is the set

Spd(θ) := {p ∈ R | there exists x ∈M\{0} with θt(x) = eiptx for t ∈ R}.

Lemma 3.26. Let θλ1,µ1,p1,q1, θλ2,µ2,p2,q2 be two Rohlin flows mentioned
in Example 3.19. Then they are cocycle conjugate if there exist r ∈ R
and two points c, d of Spd(θ

λ1,µ1,p1,q1 |D) such that one of the following
conditions holds.

(1) We have (p1, q1) = (p2, q2) and(
λ2

µ2

)
=

(
λ1

µ1

)
+

(
r
r

)
+

(
c
d

)
.

(2) We have (p1, q1) = −(p2, q2) and(
λ2

µ2

)
=

(
0 −1
1 −2

)(
λ1

µ1

)
+

(
r
r

)
+

(
c
d

)
.
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Proof. Assume that one of the above conditions holds. First, consider
the case when condition (2) holds. Let σ be an automorphism of D
defined by

σ(f)(s, t) := f(−s,−t)
for f ∈ D, (s, t) ∈ T2. We show the following claim.

Claim. The automorphism σ extends to an automorphism of M by

σ(λa) =λb−1 , σ(λb) =λab−2 .

Proof of Claim. Set an automorphism β on D by β := α−1. Then we
have σ◦β ◦σ−1 = α. Hence by Lemma 7.5 of Takesaki [59], there exists

an isomorphism πA : Doα∗α{a}Z ∼= DoαZ→ DoβZ ∼= Doα∗α{b−1}Z
satisfying

D 3 f 7→ σ(f), λa 7→ λb−1 .

Similarly, there exists an isomorphism πB : D oα∗α {b}Z ∼= D oα Z→
D oβ Z ∼= D oα∗α {ab−2}Z satisfying

D 3 f 7→ σ(f), λb 7→ λab−2 .

Note that the endomorphism ρ of F2 defined by a 7→ b−1, b 7→ ab−2 is
bijective. The inverse is given by a 7→ ba−2, b 7→ a−1. By the injectivity
of ρ, the images of πA and πB are free over D. By this observation,by
the uniqueness of the amalgamated free product, the automorphism σ
extends to an automorphism of M . �

Now we continue the proof of the lemma. Since we have

σ−1 ◦ θλ1,µ1,p1,q1 ◦ σ = θ−µ1,λ1−2µ1,−p1,−q1 ,

by replacing θλ1,µ1,p1,q1 by σ−1 ◦ θλ1,µ1,p1,q1 ◦ σ, it is enough to consider
the case when condition (1) holds. Assume that condition (1) holds.
Since c ∈ Spd(θ

λ1,µ1,p1,q1 |D), there exists u ∈ D such that ‖ u ‖= 1 and

θλ1,µ1,p1,q1t (u) = eictu for t ∈ R. Since u∗u(= uu∗) is fixed by θλ1,µ1,p1,q1 ,
u∗u = uu∗ = 1 by the ergodicity of θλ1,µ1,p1,q1 |D. Similarly, there exists

a unitary v of D with θλ1,µ1,p1,q1t (v) = eidtv for t ∈ R.
Then the identity map σ of D extends to M by σ(λa) = uλa, σ(λb) =

vλb. By replacing θλ1,µ1,p1,q1 by σ−1◦θλ1,µ1,p1,q1 ◦σ, we may assume that
c = d = 0. Hence by using Example 3.24, θλ1,µ1,p1,q1 and θλ2,µ2,p2,q2 are
cocycle conjugate. �

Now, we return to the proof of Theorem 3.25.

Proof of Theorem 3.25. Let θλ1,µ1,p1,q1 and θλ2,µ2,p2,q2 be two Rohlin
flows considered in Example 3.19. Then by Example 3.24, they are
strongly cocycle conjugate if and only if λ1 − µ1 = λ2 − µ2, p1 = p2
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and q1 = q2. On the other hand, by Lemma 3.26, they are cocycle
conjugate if (p2, q2) = (−p1,−q1) and (λ2, µ2) = (−µ1, λ1 − 2µ1). �

4. A sufficient condition of actions of R on AFD factors
of type III for the Rohlin property

4.1. The main theorems of Section 4. The main theorem of this
paper is the following.

Theorem 4.1. A flow on any AFD factor with faithful Connes–Takesaki
module has the Rohlin property.

As we have explained in Subsection 2.5, Connes–Takesaki module
indicates how far from being approximately iner an automorphism is.
Hence this theorem means that a kind of “pointwise outerness” implies
“global outerness”.

As a corollary, we obtain a classification theorem up to cocycle
conjugacy. For a von Neumann algebra C and a flow β of C, set
Autβ(C) := {σ ∈ Aut(C) | σ ◦ βt = βt ◦ σ, t ∈ R}. By Theorem 4.1,
Theorem 3.2, and the characterization of approximate innerness of au-
tomorphisms of AFD factors (Theorem 1 of Kawahigashi–Sutherland–
Takesaki [31]), we have the following.

Corollary 4.2. Let α1 and α2 be two flows on an AFD factor M with
faithful Connes–Takesaki modules. Then they are cocycle conjugate if
and only if there exists an automorphism σ ∈ Autθ(C) with mod(α2

t ) =
σ ◦mod(α1

t ) ◦ σ−1 for any t ∈ R.

As an obvious application, we have the following example.

Example 4.3. A flow on any AFD factor with faithful Connes–Takesaki
module absorbs any flow on the AFD II1 factor, as a tensor product
factor.

As we have explained in the introduction, characterization of the
Rohlin property is an important problem (Conjecture 8.3 of Masuda–
Tomatsu [44]). Theorem 4.1 gives a partial answer to this problem.
We will proceed further to this direction in Subsection 4.3.3.

4.2. The proof of the main theorem of Section 4. In this sub-
section, we show Theorem 4.1. In order to achieve this, we first note
that we may assume that a flow has an invariant weight. This is seen
in the following way. Let α be a flow on an AFD factor M . Then by
the same argument as in Lemma 5.10 of Sutherland–Takesaki [55] (or
equivalently, by the combination of Lemma 5.11 and Lemma 5.12 of
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[55]), there exists a flow β and a dominant weight φ which satisfy the
following conditions.

(1) We have φ ◦ βt = φ for all t ∈ R.
(2) The action β is cocycle conjugate to α⊗ idB(L2R).

By Lemma 2.11 of Connes [8], (M ⊗ B(L2R))ω = Mω ⊗C. Hence,
by replacing α by β, we may assume that the action α has an invariant
dominant weight. In the rest of the section, we denote the continuous
core M oσφ R by N and the dual action of σφ by θ. Then by the same
argument as in the proof of Proposition 13.1 of Haagerup–Størmer [20],
the action α̃ extends to a flow ˜̃α of NoθR so that if we identify NoθR
with M ⊗ B(L2R) by Takesaki’s duality, ˜̃α corresponds to α⊗ id. By
Lemma 2.11 of Connes [8] again, in order to show that α has the Rohlin
property, it is enough to show that ˜̃α has the Rohlin property. In order
to achieve this, we need to choose {un} ⊂ U(M ⊗ B(L2R))ω which
satisfies the conditions in the definition of the Rohlin property. Our
strategy is to choose {un} fromN . Based on this strategy, it is sufficient
to show the following lemma.

Lemma 4.4. For each p ∈ R, there exists a sequence {un} ⊂ U(N)
satisfying the following conditions.

(1) We have ‖[un, φ]‖ → 0 for any φ ∈ N∗.
(2) We have θs(un) − un → 0 compact uniformly for s ∈ R in the

strong* topology.
(3) We have α̃t(un)− eiptun → 0 compact uniformly for t ∈ R in the

strong* topology.

By the first two conditions, this {un} asymptotically commutes with
elements in a dense subspace of M ⊗ B(L2R) ∼= M . However, in gen-
eral, this does not imply that {un} is centralizing (and this sometimes
causes a serious problem). Hence, in order to assure that Lemma 4.4
implies Theorem 4.1, we need to show the following lemma.

Lemma 4.5. Let M be an AFD factor of type III and let M = NoθR
be the continuous decomposition. Then a sequence {un} ⊂ U(N) with
conditions (1) and (2) of the above lemma is centralizing.

Proof. Let H be the standard Hilbert space of N . Take ξ ∈ H and
f ∈ L2(R). Since

x(ξ ⊗ f)(s) = (θ−s(x)ξ)f(s),
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(ξ ⊗ f)x(s) = (JMx
∗JM(ξ ⊗ f))(s)

= (JNx
∗JNξ)f(s)

= (ξx)f(s)

for s ∈ R, x ∈ N , we have

‖un(ξ ⊗ f)− (ξ ⊗ f)un‖2 =

∫
R

‖θ−s(un)ξ − ξun‖2|f(s)|2 ds

≤
∫
R

‖(θ−s(un)− un)ξ‖2|f(s)|2 ds

+

∫
R

‖unξ − ξun‖2|f(s)|2 ds

→ 0

by Lebesgue’s convergence theorem. Here, the convergence of the sec-
ond term follows from Lemma 2.6 of Masuda–Tomatsu [44]. Any vector
of H⊗L2R is approximated by finite sums of vectors of the form ξ⊗f .
Hence for any vector η ∈ H ⊗ L2R, we have ‖unη − ηun‖ → 0. Hence
{un} is centralizing. �

By this lemma, Lemma 4.4 implies Theorem 4.1. In the following,
we will show Lemma 4.4. If M is of type II∞, Lemma 4.4 is shown in
Theorem 6.18 of Masuda–Tomatsu [44], using Connes and Haagerup’s
theory. If M is of type II1 or is of type III1, then we need not do
anything because Connes–Takesaki modules of automorphisms are al-
ways trivial. Hence we only need to consider the case when M is of
type III0 and the case when M is of type IIIλ (0 < λ < 1). Actually,
as we will see in Remark 4.16, if M is of type IIIλ (0 < λ < 1), the
Connes–Takesaki module of a flow cannot be faithful. Hence, the only
problem is how to handle the case when M is of type III0.

Let C be the center of N . First, we list up the form of the kernel of
the action mod(α)◦ (θ |C) of R2 on C. This is a closed subgroup of R2.
Thus the kernel must be isomorphic to one of the following groups.

0, Z, Z2, R, R× Z, R2.

However, since θ |C is faithful, the kernel cannot be isomorphic to R×Z
or R2. We handle the other four cases separately.

We first consider the case when ker(mod(α) ◦ (θ |C)) = 0. In this
case, by an argument similar to that of the proof of Theorem 3.3 of
Shimada [54], Lemma 4.4 follows from a Rohlin type theorem due to
Feldman [13]. In the following, we will explain this theorem.
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Settings. A subset Q of Rd is said to be a cube if Q is of the form

[−s1, t1]× · · · × [−sd, td]

for some s1, · · · , sd, t1, · · · , td > 0. Let Q be a cube of Rd and T
be a non-singular action of Rd on a Lebesgue space (X,µ). Then
a measurable subset F of X is said to be a Q-set if F satisfies the
following two conditions.

(1) The map Q× F 3 (t, x) 7→ Tt(x) ∈ X is injective.
(2) The set TQF := {Tt(x) | t ∈ Q, x ∈ F} is measurable and non-

null.

In this setting, the following theorem holds.

Theorem 4.6. (p.410 of Feldman [13], Thoerem 1 of Feldman–Lind
[16]) Let T be a free non-singular action of Rd on the standard prob-
ability space (X,µ). Then for any ε > 0 and for any cube P of Rd,
there exists a large cube Q and a Q-set F of X with

µ(T⋂
t∈P (t+Q)F ) > 1− ε.

The proof is written in Feldman [14]. However, his paper is privately
circulated. Hence we explain the outline of the proof in Appendix of
this section (Subsection 4.4), which is based on Theorem 1 of Feldman–
Lind [16] and Lind [37]. As written in the proof of Theorem 1.1 (a)
of Feldman [13] (p.410 of Feldman [13]), it is possible to introduce a
measure ν on F so that the map Q × F 3 (t, x) 7→ Tt(x) ∈ TQF is a
non-singular isomorphism. The measure ν is defined in the following
way. Set

M := {A ⊂ F | TQ(A) is measurable with respect to µ}.

ThenM is a σ-algebra of F and it is possible to define a measure ν on
F by

ν(A) :=
µ(TQA)

µ(TQF )

for A ∈M. Then the map (t, x) 7→ Tt(x) is a non-singular isomorphism
with respect to Lebesgue ⊗ ν and µ|TQF . These things are written in
p.410 of Feldman [13] and the proof may be written in Feldman–Hahn–
Moore [15]. In this paper, for reader’s convenience, we present a proof
of what we will use (Propositions 4.30 and 4.31 of Subsection 4.4).

Lemma 4.7. When ker(mod(α) ◦ (θ|C)) is zero, Lemma 4.4 holds.
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Proof. Think of C as L∞(X,µ) for some probability measured space
(X,µ). Let T be an action of R2 defined by the following way.

f ◦ T(s,t) = θ−s ◦ α̃−t(f)

for f ∈ L∞(X,µ), (s, t) ∈ R2. Fix a natural number n ∈ N. Set
P := [−n, n]2. Then by Theorem 4.6, there exists a large cube Q and
a Q-set F of X with

µ(T⋂
t∈P (t+Q)F ) > 1− 1

n
.

Define a function un on X by the following way.

un =

{
e−ipt (x = T(s,t)(y), (s, t) ∈ Q, y ∈ F )

1 (otherwise).

Then by Proposition 4.30, the function un is Borel measurable. Then
for x ∈ T⋂

t∈P (t+Q)F and (s, t) ∈ P , we have

θs(un)(x) = un(x),

α̃t(un)(x) = eiptun(x).

Hence we have

‖θs(un)− un‖2
µ ≤ 4µ(X \ T⋂

t∈P (t+Q)F )

≤ 4

n+ 1

for s ∈ [−n, n]. By the same computation, we have

‖α̃t(un)− eiptun‖2
µ ≤

4

n+ 1

for t ∈ [−n, n]. Hence the sequence {un} of unitaries of C satisfies the
conditions in Lemma 4.4. �

Next, we consider the following case.

Lemma 4.8. When ker(mod(α) ◦ (θ |C)) is isomorphic to Z2, Lemma
4.4 holds.

In this case, there exist two pairs (p1, q1), (p2, q2) of non-zero real
numbers with ker(mod ◦ θ) = Z(p1, q1) ⊕ Z(p2, q2). Here, we use our
assumption that mod(α) is faithful for showing qi 6= 0. Set σt :=
θq1t ◦ α̃p1t. In order to show Lemma 4.8, it is enough to show the
following lemma.
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Lemma 4.9. For each r ∈ R, there exists a sequence of unitaries {un}
of N which satisfies the following conditions.

(1) We have ‖[un, φ]‖ → 0 for any φ ∈ N∗.
(2) We have θs(un) − un → 0 compact uniformly for s ∈ R in the

strong* topology.
(3) We have σt(un)− eirtun → 0 compact uniformly for t ∈ R in the

strong* topology.

In order to show this lemma, we need to prepare some lemmas.

Lemma 4.10. The action θ on Cσ is ergodic and has a period p ∈
(0,∞).

Proof. Ergodicity follows from the ergodicity of θ : R y C. We show
that the restriction of θ on Cσ has a period.

We first note that a Borel measurable map T from T to itself which
commutes with every translations of the torus must be a translation
because we have T (γ+t)−t = T (γ) for t ∈ T and for almost all γ ∈ T.
Now, we show that Cσ 6= C. Assume that Cσ were isomorphic to C.
Then since θ would commute with σ, which is a translation flow on the
torus. Hence θ would be also a translation on the torus. Hence θ ◦ σ
would define a group homomorphism from R2 to the group of transla-
tions of the torus, which is isomorphic to T. Hence the kernel of θ ◦ σ
would be isomorphic to R×Z, which would contradict to the faithful-
ness of θ. Combining this with the ergodicity of θ, we have θ |Cσ is non-
trivial. Since mod(αp2) = θ−q2 |C , we have (σp2/p1 ◦θq2−p2q1/p1) |C= idC .
Since (p1, q1) and (p2, q2) are independent, this θ |Cσ has a non-trivial
period. �

By this lemma, we may assume the following.

(1) We have Cσ = L∞(Tp), where Tp is the torus of length p, which
is isomorphic to [0, p) as a measured space.

(2) We have θt(f) = f(· − t) for f ∈ L∞(Tp), t ∈ R.

Let

N =

∫ ⊕
[0,p)

Nγ dγ

be the direct integral decomposition of N . For γ1, γ2 ∈ R, Nγ1 and Nγ2

are mutually isomorphic by the following map.

θγ2−γ1,γ1 : Nγ1 → Nγ2 ,

θγ2−γ1,γ1(xγ1) = (θγ2−γ1(x))γ2
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for x =
∫ ⊕

[0,p)
xγdγ ∈ N . These θγ1,γ2 ’s satisfy the following two condi-

tions.

Conditions.
(1) The equality θ0,γ = idNγ holds for each γ ∈ [0, p).
(2) The equality θγ3−γ2,γ2◦θγ2−γ1,γ1 = θγ3−γ1,γ1 holds for each γ1, γ2, γ3 ∈

R.

By these θγ1,γ2 ’s, all Nγ’s are mutually isomorphic. Thus it is possible
to think of N as N0 ⊗ L∞([0, p)).

Now, we need to consider the measurability of θt,γ.

Fact.
If we identify N with N0 ⊗ L∞([0, p)), the map [0, p)2 3 (t, γ) 7→

θt,γ ∈ Aut(N0) is Lebesgue measurable.

Although this fact is probably well-known to specialists, for the
reader’s convenience, we present the proof in Appendix of this section
(Subsection 4.4).

By measurability of θt,γ, Lusin’s theorem and Fubini’s theorem, for
almost all γ ∈ [0, p), the map t 7→ θ−t,t+γ and t 7→ θt,γ are also Lebesgue
measurable. We may assume that γ = 0 and we identify Nγ1 with N0

by θγ1,0 for all γ1 ∈ [0, p), that is, if we think of N as the set of all
essentially bounded weak * Borel measurable maps from [0, p) to N0,
then the set of constant functions is the following set.

{
∫ ⊕

[0,p)

θγ,0(x0) dγ | x0 ∈ N0}.

Take a normal faithful state φ0 of N0. Then

φ :=
1

p

∫ ⊕
[0,p)

φ0 ◦ θ−γ,γ dγ

is a normal faithful state on N . Choose φ1, · · · , φn ∈ N∗, ε > 0 and
T > 0. Then by the above identification of N∗ with L1

(N0)∗
([0, p)), each

φk is a Lebesgue measurable map from [0, p) to (N0)∗. Hence it is
possible to approximate each φk by Borel simple step functions by the
following way.

‖φk −
lk∑
i=1

φk,i ◦ θ−γ,γχIi(γ)‖ < ε.
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for each k ∈ {1, · · · , n}. Here, φk,i ∈ N0∗ for i = 1, · · · , lk, {Ii}lki=1 is a
Borel partition of [0, p). Next, we look at actions on N0. Let

θp =

∫ ⊕
[0,p)

θγp dγ,

σt =

∫ ⊕
[0,p)

σγt dγ,

τ =

∫ ⊕
[0,p)

τγ dγ

be the direct integral decompositions. Since θ is trace-scaling and α̃ is
trace-preserving, σ is trace-scaling. Hence for almost all γ ∈ [0, p), σγ

is τγ -scaling. Thus we may assume that σ0 is τ0-scaling. In order to
show Lemma 4.9, it is enough to show the following lemma.

Lemma 4.11. In the above context, for real number r ∈ R, there exists
a unitary u0 of N0 which satisfies the following conditions.

(1) We have ‖[u0, φk,i]‖ < ε/(plk) for k = 1, · · · , n, i = 1, · · · , lk.

(2) We have ‖θ0
mp(u0)− u0‖]φ0 < ε/p for m ∈ Z, |m| ≤ p/T + 2.

(3) We have ‖σ0
t (u0)− e−irtu0‖]φ0 < ε/p for all t ∈ [−T, T ].

First, we show that Lemma 4.11 implies Lemma 4.9.

Proof of Lemma 4.11 ⇒ Lemma 4.9. Assume that there exists a
unitary u0 in N0 which satisfies the conditions in Lemma 4.11. We set

uγ := θγ,0(u0),

u :=

∫ ⊕
[0,p)

uγ dγ.

Fix t ∈ [−T, T ] and γ ∈ [0, p). For each γ ∈ [0, p), choose mγ ∈ Z so
that −t+mγp+ γ ∈ [0, p). Then we have

(θt(u))γ = θt,−t+γ(u−t+γ)

= θt,−t+γ(u−t+γ+mγp)

= θγ,0 ◦ θ0
mγp ◦ θt−mγp−γ,−t+mγp+γ(u−t+mγp+γ)

= θγ,0 ◦ θ0
mγp(u0).
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Hence we have

‖θt(u)− u‖]φ =

∫
[0,p)

‖(θt(u))γ − uγ‖]φ0◦θ−γ,γ dγ

=

∫
[0,p)

‖θγ,0 ◦ θ0
mγp(u0)− θγ,0(u0)‖]φ0◦θ−γ,γ dγ

=

∫
[0,p)

‖θ0
mγp(u0)− u0‖]φ0 dγ

<

∫
[0,p)

ε

p
dγ

= ε.

Here we use that |mγ| ≤ T/p+ 2 in the fourth inequality of the above
estimation. By the same argument, we also have

‖σt(u)− e−irtu‖]φ < ε

for t ∈ [−T, T ]. We also have

‖[u, φk]‖ ≤ 2‖φk −
lk∑
i=1

φk,i ⊗ χIi‖+ ‖[u,
lk∑
i=1

φk,i ⊗ χIi ]‖

< 2ε+

lk∑
i=1

‖[u, φk,i ⊗ id]‖

= 2ε+

lk∑
i=1

∫
[0,p)

‖[θγ,0(u0), φk,i ◦ θ−γ,γ]‖ dγ

= 2ε+

lk∑
i=1

∫
[0,p)

‖[u0, φk,i]‖ dγ

< 2ε+

lk∑
i=1

∫
[0,p)

ε

plk
dγ

= 3ε.

Thus Lemma 4.9 holds. �

In order to prove Lemma 4.11, we first rewrite the lemma in a simpler
form. To do this, we show that there exists a number s ∈ (0, 1) with
(θ0
p ◦ σ0

s) |Z(N0)= id. Since the restriction of σ0 on the center of N0 has
a period 1 and is ergodic, we may assume that Z(N0) is isomorphic to
L∞([0, 1)), which is canonically identified with L∞(T), σ0

s(f) = f(·−s)
for s ∈ R, f ∈ L∞(T). By this identification, θ0

p commutes with all
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σ0
s ’s. Hence θ0 is a translation on the torus. Thus there exists a unique
s ∈ (0, 1) with (θ0

p ◦ σ0
s) |Z(N0)= id. Set β0 := θ0

p ◦ σ0
s . The proof of

Lemma 4.11 reduces to that of the following lemma.

Lemma 4.12. The action {β0
m◦σ0

t }(m,t) of Z×R on N0 has the Rohlin
property.

Proof of Lemma 4.12⇒ Lemma 4.11. Assume that the action {β0
m ◦

σ0
t }m,t has the Rohlin property. Then there exists a unitary element u0

of N0 with the following conditions.

(1) We have ‖[u0, φk,i]‖ < ε/(plk) for k = 1, · · · , n, i = 1, · · · , lk.
(2) We have ‖β0

m(u0) − e−irmsu0‖]φ0 < ε/(2p) for m ∈ Z, |m| ≤
p/T + 2.

(3) We have ‖σ0
t (u0)− e−irtu0‖]φ0◦θ0mp < ε/(2p) for t ∈ [−(1 + s)(T +

2p), (1 + s)(T + 2p)], m ∈ Z, |m| ≤ p/T + 2.

Since β0
m = θ0

mp ◦ σ0
ms, we have

‖θ0
mp(u0)− u0‖ = ‖e−irmsθ0

mp(u0)− e−irmsu0‖]φ0
≤ ‖θ0

mp(e
−irmsu0 − σ0

ms(u0))‖]φ0 + ‖β0
m(u0)− e−irmsu0‖]φ0

= ‖e−irmsu0 − σ0
ms(u0)‖]φ0◦θ0mp + ‖β0

m(u0)− e−irmsu0‖]φ0
<

ε

2p
+

ε

2p

=
ε

p

for m ∈ Z, |m| ≤ p/T + 2. Thus Lemma 4.11 holds. �

In order to show Lemma 4.12, we need further to reduce the lemma
to a simpler statement. Let

N0 =

∫ ⊕
[0,1)

(N0)γ dγ

be the direct integral decomposition of N0 over the center of N0. For
each γ1, γ2 ∈ [0, 1), there exists an isomorphism from (N0)γ1 to (N0)γ2
defined by

σ0
γ2−γ1,γ1((x0)γ1) = (σ0

γ2−γ1(x0))γ2

for x0 =
∫ ⊕

[0,1)
(x0)γdγ ∈ N0. These σ0

γ2−γ1,γ1 ’s satisfy the conditions

similar to conditions (1) and (2) of θt,γ (See Conditions between Lemma
4.10 and Lemma 4.11).
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We identify (N0)γ’s with (N0)0 by σ0
γ,0. Choose a normal faithful

state ψ0 of (N0)0. Set

ψ :=

∫ ⊕
[0,1)

ψ0 ◦ σ0
−γ,γ dγ.

This is a normal faithful state on N0. Choose ψ1, · · ·ψn ∈ (N0)∗, ε > 0
and T > 0. By the same argument as above, we may assume that ψk’s
are simple step Borel functions.

ψk =

lk∑
i=1

ψk,i ◦ σ0
−γ,γχIi(γ)

for k = 1, · · · , n. Here, ψk,i ∈ (N0)∗, {Ii}lki=1 are partitions of [0, 1).
Since β0 and σ0 fix the center of N0, they are decomposed into the
following form.

β0 =

∫ ⊕
[0,1)

β0,γ dγ,

σ0
1 =

∫ ⊕
[0,1)

σ0,γ dγ.

Then for each γ ∈ [0, 1), {β0,γ
n ◦σ0,γ

m }(n,m)∈Z2 defines an action of Z2 on
(N0)γ, which is isomorphic to the AFD factor of type II∞. We show
the following lemma, which is essentially important, that is, assumption
that mod(α) is faithful is essentially used for showing this lemma.

Lemma 4.13. For almost all γ ∈ [0, 1), the action {β0,γ
n ◦ σ0,γ

m } is
trace-scaling for (n,m) 6= 0.

Proof. Take a pair (n,m) 6= 0. By definition of β0 and σ0, we have

β0
n ◦ σ0

m = (θnp ◦ σns)0 ◦ σ0
m

= (θnp ◦ σns+m)0

= (θnp ◦ θ(ns+m)q1 ◦ α̃(ns+m)p1)
0

= (θnp+(ns+m)q1 ◦ α̃(ns+m)p1)
0.

If n = 0, we need not show anything . Assume that n 6= 0. Then
since θnp is not identity on the center of N0, σns+m is not identity
on Z(N0) by looking at the first equation. Hence (ns + m)p1 6= 0.
Thus, by the faithfulness of mod(α) and the last equation, we have
np+ (ns+m)q1 6= 0. Hence θnp+(ns+m)q1 scales τ . Besides, α̃ preserves
τ . Hence we may assume that β0

n◦σ0
m scales τ0. Hence if we decompose

τ 0 by

τ 0 =

∫ ⊕
[0,1)

τ 0,γ dγ,
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(β0
n ◦ σ0

m)γ scales τ 0,γ for almost all γ ∈ [0, 1). �

From Lemma 4.13, we may assume that {β0,0
n ◦σ0,0

m } is trace-scaling.
Now, we will return to prove Lemma 4.12, which completes the proof
of Lemma 4.9.

Proof of Lemma 4.12. Let ψ0, ε and T be as explained after the state-
ment of Lemma 4.12. By Lemma 4.13, the action {β0,0

n ◦ σ0,0
m } is cen-

trally outer, and hence has the Rohlin property. Hence, for A,B ∈ N
with 4(T+1)2/ε2 < B and A > 1/ε2, there exists a family of projections

{en,m}m=1,···A
n=1,··· ,B of N0,0 which satisfies the following conditions.

(1) The projections are mutually orthogonal.
(2) We have ∑

n,m

en,m = 1,

‖
∑

1≤n≤B,m=1,A

en,m‖]ψ0+ψ0◦β0,0 ≤ 2/
√
A,

‖
∑

1≤m≤A,n≥B−(T+1),n≤T+1

en,m‖]
ψ0+

∑[T ]+1
l=−[T ]−1

ψ0◦σ0,0
l

≤ 2(T + 1)/
√
B.

Here, [T ] is the maximal natural number which is not larger than T .
(3) We have ‖[en,m, ψk,i]‖ < ε/(ABlk) for n = 1, · · ·B, m = 1, · · · , A,

i = 1, · · · lk, k = 1, · · ·n.
(4) We have ‖σ0,0

l (en,m) − en+1,m‖]ψ0
< ε/(AB) for n,m, l ∈ Z with

|l| ≤ T + 1, n ≤ B − (T + 1).

(5) We have ‖β0,0(en,m) − en,m+1‖]ψ0
< ε/(AB) for n,m ∈ Z with

m 6= A.

Here, we define eB+1,m = e1,m for m = 1, · · · , A, en,A+1 = en,1 for
n = 1, · · · , B. For (s, t) ∈ T×R, we set

uγ := e2πitγ
∑
n,m

e2πi(nt+ms)σ0
γ,0(en,m)

for γ ∈ [0, 1). We also set

u :=

∫ ⊕
[0,1)

uγ dγ ∈ U(N0).

The above conditons (2) and (4) ensure that we can almost control
σ0,0, which is useful to show that σ0

q (u) is close to e−2πitqu. Conditions

(2) and (5) is useful to show that β0(u) is close to e−2πisu. Condition
(3) is useful to show that [u, ψk] is small.
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By condition (3) of the above, we have

‖[u, ψk]‖ ≤
∫

[0,1)

∑
n,m

lk∑
i=1

‖[σ0
γ,0(en,m), ψk,i ◦ σ0

−γ,γ]‖ dγ

=

∫
[0,1)

∑
n,m

∑
i

‖[en,m, ψk,i]‖ dγ

<

∫
[0,1)

∑
n,m

∑
i

ε

ABlk
dγ

= ε.

By conditions (2) and (5), we have

‖β0(u)− e−2πisu‖]ψ

=

∫
[0,1)

‖β0,γ ◦ σ0
γ,0(
∑
m,n

(e2πi((n+γ)t+ms)en,m))

−
∑
m,n

e2πi((n+γ)t+(m−1)s)σ0
γ,0(en,m)‖]

ψ0◦σ0
−γ,γ

dγ

=

∫
[0,1)

‖σ0
γ,0(β0,0(

∑
m,n

e2πi((n+γ)t+ms)en,m)

−
∑
m,n

e2πi((n+γ)t+(m−1)s)en,m)‖]
ψ0◦σ0

−γ,γ
dγ

≤
∑

m,n,m 6=A

∫
[0,1)

‖e2πi((n+γ)t+ms)σ0
γ,0(β0,0(en,m)− en,m+1)‖]

ψ0◦σ0
−γ,γ

dγ

+

∫
[0,1)

‖σ0
γ,0(β0,0(

∑
n

en,A)−
∑
n

en,A+1)‖]
ψ0◦σ0

−γ,γ
dγ

≤
∑

m,n,m 6=A

∫
[0,1)

‖β0,0(en,m)− en,m+1‖]ψ0
dγ + 2/

√
A

< AB(
ε

AB
) + 2ε

= 3ε.

Condition (2) is used in the fourth inequality and condition (5) is used

in the fifth inequality. Next, we will compute ‖σ0
q (u) − e2πitqu‖]ψ for

q ∈ [−T, T ]. In order to do this, the following observation is useful. Let
γ ∈ [0, 1) and let q ∈ [−T, T ]. Choose lγ ∈ Z so that γ− q+ lγ ∈ [0, 1).
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Then we have

(σ0
q (u))γ = σ0

q,γ−q(uγ−q+lγ )

= σ0
γ,0 ◦ σ

0,0
lγ
◦ σ0

q−lγ−γ,γ−q+lγ (uγ−q+lγ )

= σ0
γ,0 ◦ σ

0,0
lγ

(e2πit(γ−q+lγ)
∑
n,m

e2πi(nt+ms)en,m)

= e2πit(γ−q+lγ)σ0
γ,0 ◦ σ

0,0
lγ

(u0).

By conditions (2) and (4), we have

‖σ0
q (u)− e−2πitqu‖]ψ

=

∫
[0,1)

‖σ0
γ,0(e2πit(γ−q+lγ)σ0,0

lγ
(u0)− e−2πitquγ)‖]ψ0◦σ0

−γ,γ
dγ

=

∫
[0,1)

‖
∑
n,m

(e2πi((γ−q+lγ+n)t+ms)σ0,0
lγ

(en,m)− e2πi((γ+n−q)t+ms)en,m)‖]ψ0
dγ

≤
∫

[0,1)

∑
m,lγ<n≤B−1

‖e2πi((γ−q+n)t+ms)σ0,0
lγ

(en−lγ ,m)

− e2πi((γ+n−q)t+ms)en,m)‖]ψ0
dγ + 2ε

< (
ε

AB
)AB + 2ε

= 3ε.

Condition (2) is used in the third inequality and condition (4) is used
in the fourth inequality. Thus {σ0

q ◦ β0
m}(q,m) has the Rohlin property.

Thus Lemma 4.12 holds. �

Lemma 4.14. When ker(mod(αs) ◦ (θ |C)t) ∼= R, Lemma 4.4 holds.

Proof. There exists (p, q) ∈ (R \ {0})2 with ker(mod(α) ◦ θ |C) =
(p, q)R. Set σt := θqt ◦ α̃pt for t ∈ R. In order to show our lemma, it
is enough to show that for each r ∈ R, the action σ admits a sequence
of unitaries which satisfies the same conditions as in Lemma 4.9. Take
a normal faithful state φ0 of N , φ1, · · · , φn ∈ N∗ with ‖φk‖ = 1 (k =
1, · · · , n), ε > 0 and T > 0. Think of C as a standard probability
measured space L∞(Γ, µ). Let

N =

∫ ⊕
Γ

Nγ dµ(γ),

φk =

∫ ⊕
Γ

φk,γ dµ(γ)
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(k = 1, · · · , n) be the direct integral decompositions. Then by Theorem
4.6 and Proposition 4.31, there exists a Borel subset A of Γ which
satisfies the following three conditions.

(1) There exists a large cube Q := [−T ′, T ′] and a Q-set Y such that
A = TQY and the map Q× Y 3 (t, x) 7→ Tt(x) ∈ A is injective.

(2) We have

µ(
⋂

t∈[−T,T ]

TtA) > 1− ε

and ∫
⋂
t∈[−T,T ] TtA

‖φk,γ‖ dµ(γ) > 1− ε

for k = 1, · · · , n.
(3) There is a measure ν on Y such that the map Q× Y 3 (t, x) 7→

Tt(x) ∈ A is a non-singular isomorphism with respect to Lebesgue ⊗
ν and µ (Note that two measures µ +

∑
k

∫
Γ
‖φk,γ‖ dµ(γ) and µ are

mutually equivalent).

Here, we do not assume the existence of invariant probability mea-
sures for θ |C . Then N is isomorphic to

NΓ\A ⊕
∫ ⊕

[−T ′,T ′]
Ns ds.

Here,

Ns =

∫ ⊕
Y

N(y,s) dν(y).

For s, t ∈ [−T ′, T ′], θ defines an isomorphism θs−t,t from Nt to Ns

by θs−t,t(xt) = (θs−t(x))s. As in Lemma 4.9, we identify Nt with N0

by this isomorphism. By this identification, we approximate φk’s by
simple step functions.

‖φkχA −
lk∑
i=1

φk,i ◦ θ−t,tχIi(t)‖ < ε

for k = 1, · · · , n, where φk,i ∈ (N0)∗ and {Ii}lki=1 are partitions of
[−T ′, T ′]. Here, we note that it is possible to choose φ0,i’s so that
they are positive. This is shown by the following way. Since φ0 :
[−T ′, T ′] → (N0)∗ is measurable, by Lusin’s theorem, it is possible to
choose a sufficiently large compact subset K of [−T ′, T ′] on which φ0

is continuous. Choose a finite partition {si}l0i=1 of K so that for every
s ∈ K, there exists a number i such that φ0(s) is close to φ(si). It is
possible to choose a partition {Ii} of K so that φ0(s) is close to φ0(si)
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on Ii. Then
∑
φ0(si)χIi well approximates φ0. Since σ fixes the center

of N , this is decomposed into the direct integral.

σ = σΓ\A ⊕
∫

[−T ′,T ′]
σt dt.

Since σ scales the canonical trace on N , for almost all t ∈ R, the action
σt is trace-scaling, and hence has the Rohlin property by Theorem 6.18
of Masuda–Tomatsu [44]. Hence, by the same argument as in the proof
of Lemma 4.12, it is possible to choose a unitary element u0 of N0

satisfying the following conditions.

(1) We have ‖[u0, φk,i]‖ < ε/(2lkT
′) for k = 1, · · · , n, i = 1, · · · , lk.

(2) We have ‖σ0
t (u0) − e−iptu0‖]φ0,i < ε/(2l0T

′) for t ∈ [−T, T ], i =

1, · · · , l0.

Set ut := θt,0(u0) for t ∈ [−T ′, T ′] and set

u := χX\A ⊕
∫ ⊕

[−T ′,T ′]
ut dt.

Hence by the same aregument as in the proof of Lemma 4.11⇒ Lemma
4.9, Lemma 4.4 holds. �

Lemma 4.15. When ker(mod(αs) ◦ (θ |C)t) ∼= Z, Lemma 4.4 holds.

Proof. Let (p, q) ∈ (R \ {0})2 be a generator of ker(mod(αs) ◦ (θ |C)t).
Set σt := θqt ◦ α̃pt for t ∈ R. Think of Cσ as a standard probability
space L∞(Γ, µ). We first show the following claim.

Claim. The action θ : R y Cσ is faithful (and hence is free).
Proof of Claim. Assume that θt |Cσ= idCσ . Then θ is decomposed

into the direct integral over Γ.

θt =

∫ ⊕
Γ

θγt dµ(γ),

N =

∫ ⊕
Γ

Nγ dµ(γ).

We also decompose σ by

σs =

∫ ⊕
Γ

σγs dµ(γ).

Then for almost all γ ∈ Γ, {σγt }t∈R defines a periodic ergodic action
on the center of Nγ. Since the restriction of θγt on the center of Nγ

commutes with that of σγs ’s, θγt |Z(Nγ) is of the form σγsγ |Z(Nγ). We

show that there exists s ∈ [0, 1) such that sγ = s for almost all γ.
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Since we want to show the faithfulness of the action θ, we may assume
that t 6= 0. We think of C as a probability measured space L∞(X,µX).
Then there exists a projection p from X to Γ induced by the inclu-
sion L∞(Γ) → L∞(X). Let T, S be two flows on (X,µX) defined by
f(Ttx) = θ−t(f)(x), f(Ssx) = σ−s(f)(x) for x ∈ X, f ∈ L∞(X,µX).
We may assume that X is a separable compact Hausdorff space and T
and S are continuous. We show that the set

As = {x ∈ X | Tt ◦ Sr(x) = x for some 0 ≤ r ≤ s}

is Borel measurable. Let f : R × X → X2 is a map defined by f :
R×X 3 (s, x) 7→ (Tt◦Ss(x), x) ∈ X2. Then we have As = πX(f−1(∆)∩
([0, s]×X)), which is Borel measurable. Here, ∆ is the diagonal set of
X ×X and πX : R×X → X is the projection.

Next we show that there exists s ∈ [0, 1) such that

Bs := {x ∈ X | Tt ◦ Ss(x) = x}

has a positive measure. If not, the map s→ µX(As) would be contin-
uous. By the first part of this proof, for each γ ∈ Γ, if x ∈ X satisfies
p(x) = γ, then we have x ∈ Asγ . Hence

⋃
s>0As is full measure. On

the other hand, since t 6= 0, we have µ(A0) = 0. Thus there would
exist s ∈ [0, 1) with µX(As) = 1/2. However, this would contradict to
the ergodicity of θ. Thus there exists s ∈ [0, 1) with µX(Bs) > 0.

By using the ergodicity of θ again, there exists s ∈ [0, 1) such that
Bs is full measure.

Hence there exists s ∈ [0, 1) such that σs |C= θt |C . Since ker(mod(α)◦
(θ |C)) = (p, q)Z, we have s = t = 0, which is a contradiction. Hence
Claim is shown. �

Now, we return to the proof of Lemma 4.15. For almost all γ ∈ Γ, the
action σγ |Z(N0) is ergodic and has a period 1, and σγ is trace-scaling.
Hence this is the dual action of a modular automorphism of an AFD
IIIλ (0 < λ < 1) factor. Hence σγ has the Rohlin property. Hence by
the same argument as in Lemma 4.14, our lemma is shown. �

Remark 4.16. When M is of type IIIλ, 0 < λ < 1, then Connes–
Takesaki module of a flow on M cannot be faithful. This is shown by
the following way. Since mod(α) commutes with θ, as we have seen, this
is a homomorphism from R to T. Hence mod(α) cannot be faithful.

4.3. Remarks and Examples. In this section, we present examples
which have interesting properties.
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4.3.1. Model Actions. In this subsection, we will construct model ac-
tions. If there were no flows with faithful Connes–Takesaki modules,
then our main theorem of this section would have no value. Hence it
is important to construct a flow which has a given flow as its Connes–
Takesaki module.

Proposition 4.17. Let M be an AFD factor with its flow space {C, θ}
and let σ be a flow on C which commutes with θ (Here, we do not
assume the faithfulness of σ). Then there exists a Rohlin flow α on M
with mod(α) = σ.

Proof. The proof is modeled after Masuda [39]. As in Corollary 1.3 of
Sutherland–Takesaki [57], there exists an exact sequence

1→ Int(M)→ Aut(M)→ Autθ(C)→ 1,

and there exists a right inverse s : Autθ(C) → Aut(M). The maps
p : Aut(M)→ Autθ(C) and s : Autθ(C)→ Aut(M) are continuous.

Hence for a flow σ on C commuting with θ, the homomorphism α :=
s◦σ : R→ Aut(M) gives an action with its Connes–Takesaki module σ.
If σ is faithful, by our main theorem of this section, this has the Rohlin
property. Assume that σ is not faithful. Then mod(α ⊗ β) = mod(α)
for a Rohlin flow β on the AFD factor of type II1. Hence this α ⊗ β
does the job. �

For actions on the AFD factor of type II1, strong cocycle conjugacy
is equivalent to cocycle conjugacy because every automorphism of the
AFD factor of type II1 is approximated by its inner automorphisms.
However, for flows on some AFD factor of type III0, cocycle conjugacy
does not always imply strong cocycle conjugacy.

Example 4.18. Let (X,µ) be a probability measured space defined
by

(X,µ) := (
∏
m∈Z

(
∏
n∈Z

({0, 1}, {1

2
,
1

2
}))).

Let S, T be two automorphisms of X defined by the following way.

S(m 7→ (n 7→ xn
m ∈ {0, 1})) = (m 7→ (n 7→ xn+1

m)),

T (m 7→ (n 7→ xn
m)) = (m 7→ (n 7→ xn

m+1)).

Then both S and T are ergodic and satisfy S ◦ T = T ◦ S. Let β1, β2

be two flows on L∞(T) satisfying the following conditions.

(1) Two flows are faithful.
(2) The flow β1 is not conjugate to β2.
(3) Two flows preserve the Lebesgue measure.
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As a probability measured space, we have∏
n∈Z

{0, 1}n = (
∏
n:odd

{0, 1}n)× (
∏
n:even

{0, 1}n) ∼= T2.

By this identification, we set

β := (
⊗
m∈Z

(β1 ⊗ β2))⊗ id : R y L∞(X × [0, 1)).

Let θ be a flow on L∞(X× [0, 1)) defined by T and the ceiling function
r = 1. Let ρ be an automorphism of L∞(X × [0, 1)) defined by S × id.
Then we have the following.

(1) The flow θ commutes with both ρ and β.
(2) The action ρ does not commute with β.
(3) The flow θ is ergodic.

Now, we construct a pair of flows which are mutually cocycle con-
jugate but not strongly cocycle conjugate. Let M be an AFD factor
of type III0 with its flow of weights {θ,X × [0, 1)}, α be a Rohlin ac-
tion satisfying mod(α) = β and let σ be an an automorphism of M
satisfying mod(σ) = ρ. Then we have

mod(α) = β 6= ρ ◦ β ◦ ρ−1 = mod(σ ◦ α ◦ σ−1).

Hence α is cocycle conjugate to σ ◦ α ◦ σ−1 but they are not strongly
cocycle conjugate.

4.3.2. On Stability. In Thoerem 5.9, Izumi [22] has shown that an ac-
tion of a compact group on any factor of type III with faithful Connes–
Takesaki module is minimal. As well as our main theorem of this
section, this theorem means that actions which are “very outer” at any
non-trivial point are “globally outer”. He has also shown that for these
actions, cocycle conjugacy coincides with conjugacy. This phenomenon
also occurs for trace-scaling flows on any factor of type II∞. Hence one
may be tempted to think that this is true under our assumption. How-
ever, this is not the case.

Theorem 4.19. Let C be an abelian von Neumann algebra and θ be
an ergodic flow on C. Let M be an AFD factor with its flow of weights
(C, θ). Let β be a faithful flow on C which commutes with θ and fixes a
normal faithful semifinite weight µ of C. If the discrete spectrum of β
is not R, then there are two flows α1, α2 which satisfies the following
two conditions.

(1) The Connes–Takesaki modules of α1 and α2 are β.
(2) The flow α1 is not conjugate to α2.
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In the following, we actually construct these flows. In the following,
we denote the AFD factor of type II1 by R0 and denote the AFD factor
of type II∞ by R0,1.

Let Λ be the discrete spectrum of β and µ be a β-invariant measure.
In the rest of this subsection, we assume that Λ is not R. Then by
the ergodicity of θ (Note that β may not be ergodic), Λ is a proper
subgroup of R. Hence there are at least two real numbers which do
not belong to Λ. Let Γj (j = 1, 2) be two subgroups of R generated by
two elements λj, µj, respectively, satisfying the following conditions.

Γ1 ∪ Λ 6⊂ 〈Γ2,Λ〉,

Γ2 ∪ Λ 6⊂ 〈Γ1,Λ〉.
Here, 〈Γi,Λ〉 is the subgroup of R generated by Γi and Λ. Let γj

(j = 1, 2) be two ergodic flows on R0 with their discrete spectrum Γj,
respectively. Namely, we think of R0 as a weak closure of an irrational
rotation algebra As := C∗(u, v | u, v : unitaries satisfying vu = e2πisuv)
and define flows γj, j = 1, 2, by the following way. This type of actions
is considered by Kawahigashi [29].

γjt (u) = eiλjtu, γjt (v) = eiµjtv

for t ∈ R.
Set τ := µ⊗τR0,1⊗τR0 . The flow θ is extended to a τ -scaling flow on

N := C ⊗R0,1 ⊗R0 as in equations (1.2) of Sutherland–Takesaki [57].

Set αj := β ⊗ idR0,1 ⊗ γj. Then αj commutes with θ (See the equation

after equation (1.8) of Sutherland–Takesaki [57]). Hence the flow αj is
extended to M := N oθ R in the following way.

αjt (λ
θ
s) = λθs

for s, t ∈ R. Note that the flow θ : R y N is not so “easy”. However,
the flow αj is very concrete. Here, we think of M as a von Neumann
algebra generated by N and a one parameter unitary group {λs}s∈R.

In order to show Theorem 4.19, for these αj’s, it is enough to show
the following lemma.

Lemma 4.20. In the above context, we have the following two state-
ments.

(1) The Connes–Takesaki module of αj is β for each j = 1, 2.
(2) For the discrete spectrum of αj, we have the following inclusion.

Γj ∪ Λ ⊂ Spd(α
j) ⊂ 〈Γj,Λ〉.
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From statement (1) of the lemma and Corollary 4.2, it is shown that
α1 and α2 are mutually cocycle conjugate. On the other hand, from
statement (2) of the lemma, it is shown that the discrete spectrum of
α1 and that of α2 are different. Hence they are not conjugate.

In order to show this lemma, we first show the following lemma.

Lemma 4.21. The weight τ̂ is invariant by αj.

Proof. Set
nτ := {a ∈ N | τ(a∗a) <∞},

K(R, N) := {x : R→ N | strongly∗ continuous map with compact support},
bτ := span{xa | x ∈ K(R, N), a ∈ nτ}.

For x ∈ bτ , set

π̃(x) :=

∫
R

xtλ
θ
t dt.

In order to show this lemma, it is enough to show the following two
statements (For example, see Theorem X.1.17. of Takesaki [59]).

(1) For s, t ∈ R, we have στ̂t = αj−s ◦ στ̂t ◦ αjs.
(2) For x ∈ bτ , s ∈ R, we have

τ̂ ◦ αjs(π̃(x)∗π̃(x)) = τ̂(π̃(x)∗π̃(x)).

Statement (1) is trivial because αj commutes with στ̂ . We show
statement (2). Notice that

αjs(π̃(x)) = αjs(

∫
R

xtλt dt)

=

∫
R

αjs(xt)λt dt

= π̃(αjs(x)).

Since τ is invariant by αj, we have

τ̂ ◦ αjs(π̃(x)∗π̃(x)) = τ̂(π̃(αjs(x))∗π̃(αjs(x)))

= τ(

∫
R

αjs(x
∗
txt) dt)

= τ(

∫
R

x∗txt dt)

= τ̂(π̃(x)∗π̃(x)).

Thus statement (2) holds.
�
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By this lemma, the canonical extention α̃j of αj is defined by α̃jt(λ
σ
s ) =

λσs if we think of M̃ := M oστ̂ R as a von Neumann algebra generated
by M and a one parameter unitary group {λσt }.

Hence by Lemma 13.3 of Haagerup–Størmer [20], if we identify Noθ

R oσ R with N ⊗B(H) by Takesaki’s duality theorem, we have

α̃j ∼= αj ⊗ id.

Thus statement (1) of Lemma 4.20 holds.
In the following, we show statement (2) of Lemma 4.20. We need to

show the following lemma.

Lemma 4.22. We have Spd(α
j) = Spd(α

j) = Spd(α̃
j).

Proof. The action αj is an extension of the action αj, and the action α̃j

is an extension of the action αj. Hence we have Spd(α
j) ⊂ Spd(α

j) ⊂
Spd(α̃

j). We show the implication Spd(α̃
j) ⊂ Spd(α

j). Note that if we
identify NoθRoσR with N⊗B(H) by Takesaki’s duality theorem, we

have α̃j = αj ⊗ id. Choose p ∈ Spd(α̃
j). Then there exists a non-zero

element x ∈ N ⊗ B(H) with α̃jt(x) = eiptx for t ∈ R. If we write
x = (xkl)kl ∈ N ⊗B(l2(N)), then there exists (k, l) with xkl 6= 0. Since

we have αjt(xkl) = eiptxkl, we have p ∈ Spd(α
j). �

Now, we return to the proof of statement (2) of Lemma 4.20, which
completes the proof of Theorem 4.19.

Proof of Lemma 4.20. The inclusion Γj ∪Λ ⊂ Spd(α
j) is trivial. We

show the inclusion Spd(α
j) ⊂ 〈Γj,Λ〉. If we think of N = C⊗R0,1⊗R0

as a subalgebra of C ⊗B(H)⊗R0, then αj extends to β⊗ idB(H)⊗ γj.
Hence by the same argument as in Lemma 4.22, we have Spd(α

j) =
Spd(β ⊗ γj). Choose p ∈ Spd(β ⊗ γj). Let x ∈ C ⊗ R0 be a non-zero

eigenvector for p ∈ Spd(α
j). Then x is expanded as

x =
∑
n,m

cn,mu
nvm

with cn,m ∈ C (n,m ∈ Z). Hence we have∑
n,m

eiptcn,mu
nvm = eiptx

= βt ⊗ γjt (x)

=
∑
n,m

βt(cn,m)ei(nλj+mµj)tunvm.
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Since x 6= 0, there exists (n,m) with cn,m 6= 0. Hence by the uniqueness
of the Fourier expansion, we have

βt(cn,m) = ei(p−nλj−mµj)tcn,m.

Thus p ∈ 〈Γj,Λ〉. �

Remark 4.23. (1) As shown in Corollary 8.2 of Yamanouchi [64], if we
further assume that α1, α2 and β are integrable, then α1 is conjugate
to α2. In this case, β contains the translation of R as a direct product
component.

(2) Another important difference between flows and actions of com-
pact groups is about extended modular actions. The duals of extended
modular flows are important examples of flows with faithful Connes–
Takesaki modules (See Theorem 4.20 of Masuda–Tomatsu [44]). Ac-
tions of compact groups with faithful Connes–Takesaki modules are
duals of skew products (See Definition 5.6 and Theorem 5.9 of Izumi
[22]). However, this is not true for flows by subsection 4.3.1 of this
paper and Theorem 4.20 of Masuda–Tomatsu [44].

4.3.3. On a Characterization of the Rohlin Property. One of the ulti-
mate goals of the study of flows is to completely classify all flows on
AFD von Neumann algebras. In order to achieve this, it is important
to characterize the Rohlin property by using invariants for flows. A
candidate for this characterization is the following conjecture.

Conjecture 4.24. (See Section 8 of Masuda–Tomatsu [44]) Let M be
an AFD von Neumann algebra and let α be a flow on M . Let α̃ : R y
M̃ be a canonical extension of α. Then the following three conditions
are equivalent.

(1) The action α has the Rohlin property.
(2) We have πα̃(M̃)′ ∩ M̃ oα̃ R = πα̃(Z(M̃)).
(3) The action α has full Connes spectrum and is centrally free.

We will give a partial answer for this conjecture by generalizing The-
orem 4.1. We start off by showing the following lemma.

Lemma 4.25. Let M be an AFD factor of type III. Let α be an au-
tomorphism of M with trivial Connes–Takesaki module. Then α is
centrally outer if and only if α̃γ is outer for almost every γ ∈ Γ. Here,
C = L∞(Γ, µ) is the center of M̃ and α̃ =

∫ ⊕
Γ
α̃γdµ(γ) is the direct

integral decomposition.

Proof. This is shown by Proposition 5.4 of Haagerup–Størmer [21] and
Theorem 3.4 of Lance [36]. �
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In order to state our theorem, we define the following notion.

Definition 4.26. Let C be an abelian von Neumann algebra and let
β be a flow on C. Then β is said to be nowhere trivial if for any
e ∈ Proj(Cβ), β |Ce is not idCe as a flow.

The following theorem means that we need not consider Conjecture
4.24 for flows on AFD von Neumann algebras of type III0 anymore.

Theorem 4.27. (a) Let M be a von Neumann algebra of type III0 and
α be a flow on M . Assume that mod(α) is nowhere trivial, then condi-
tions (1)–(3) in the above conjecture are all equivalent to the following
condition.

(4) The action α is centrally free.
(b) If conditions (1)–(3) are equivalent for flows on the AFD factor

of type II∞, then these conditions are also equivalent for flows on AFD
von Neumann algebras of type III0.

Proof. Step 0. The implications (1) ⇒ (2) and (2) ⇒ (3) are shown
in Lemma 3.17 and Corollary 4.13 of Masuda–Tomatsu [44]. The im-
plication (3) ⇒ (4) is trivial.

Step 1. First, we show (a) and (b) when M is a factor.
(a) We show the implication (4) ⇒ (1). If mod(α) : R y Z(M) is

faithful, then α satisfies condition (1) by Theorem 4.1. In the following,
we assume that mod(α) is not faithful. By the ergodicity of θ, mod(α)
has a non-trivial period p ∈ (0,∞). Since θ is faithful and commutes
with mod(α), Cmod(α) is not trivial. Hence, the restriction of θ to
Cmod(α) is either free or periodic.

When the restriction of θ to Cmod(α) is free, then the proof goes
parallel to Lemma 4.15, using Lemma 4.25.

When the restriction of θ to Cmod(α) is periodic, then the proof goes
parallel to Lemma 4.8.

(b) What remains to do is to reduce the case when mod(α) is trivial
to Conjecture 4.24 for flows on the AFD factor of typeII∞. This goes
parallel to the proof of Lemma 4.14.

Step 2. Next, we consider the proof of this theorem for the case
when M is not a factor. Decomposing into a direct integral, we may
assume that α is centrally ergodic. We need to consider the case when
α |Z(M) is faithful, the case when α |Z(M) has a non-trivial period and
the case when α |Z(M) is trivial separately. When α|Z(M) is faithful, the
implication (4) ⇒ (1) follows from Theorem 4.6 and Proposition 4.30.
When α|Z(M) has non-trivial period, then the proof is similar to that
of Lemma 4.15. When α|Z(M) is trivial, then the implication follows
from the case when M is a factor. �
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Remark 4.28. By the same argument, it is possible to reduce Conjec-
ture 4.24 for flows on the AFD factor of type IIIλ (0 < λ < 1), III1 to
Conjecture 4.24 for actions of R×Z, actions of R2 on the AFD factor
of type II∞, respectively.

4.4. Appendix of Section 4. In this section, we explain the proof
of two statements which are used in the proof of the main theorem of
Section 4.

4.4.1. Proof of Theorem 4.6. For readers who do not have any access
to Feldman [14], we will explain the outline of the proof of Theorem
4.6.

Proof of Theorem 4.6.
The proof consists of two parts. The first is, for any cube Q of

Rd, constructing a Q-set F with µ(QF ) > 0. This part is shown
by the same argument as in the proof of Lemma of Lind [37] (Note
that Wiener’s ergodic theorem holds for actions without invariant mea-
sures). The second is to show this theorem by using the first part.
This is achieved by the same argument as in the proof of Theorem 1 of
Feldman–Lind [16]. In the proof, they show two key statements (State-
ments (i) and (ii) in p.341 of Feldman–Lind [16]). We need statements
corresponding to them. Let L, N , P be positive natural numbers.
Assume that P is a multiple of L. Set

QP := [0, P )d,

SL(QP ) := {t = (t1, · · · , td) ∈ Rd | P
L
≤ tj < P − P

L
for all j},

BN(QP ) := {t = (t1, · · · , td) ∈ Rd | −N ≤ tj < P +N for all j} \QP ,

CP/L := {n = (n1, · · · , nd) ∈ Zd | 0 ≤ nj <
P

L
for all j}.

The corresponding statements are the following.

(i)’ Let η > 0 be a positive number. Then for any sufficiently large
even integer M , any integer L, any multiple P = NLM of LM and
any QP -set F , we have

µ(B2N(QP )(tF )) < η

for over 9/10 of the elements t of CP/L.
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(ii)’ Let ξ > 0 be a positive number. Then for any sufficiently large
integer L, any integer M , any multiple P = NLM of LM by a multiple
N of L and any QP -set F , we have

µ(SL(QN)(NCP/L)(tF )) > µ(QP (tF ))− ξ

for over 9/10 of the elements t of CP/L.

The other parts of the proof is the same as that of Theorem 1 of
Feldman–Lind [16]. �

We may assume that X is a compact metric space and the map
T : Rd ×X → X is continuous.

Lemma 4.29. In the context of Theorem 4.6, the set F can be chosen
to be a Borel subset of X.

Proof. This follows from the proof of Lemma of Lind [37]. By removing
a null set, we may assume that the set D in p.181 of Lind [37] is a Borel
subset of X. Then the set

{(t, x) ∈ Rn ×X | Tt(x) ∈ D}

is a Borel subset of Q×X. Hence by Fubini’s theorem, the map ψ±j (x)
in p.181 of Lind is Borel measurable. Thus the set F can be chosen to
be a Borel subset. �

Proposition 4.30. In the context of Theorem 4.6, the map

Q× F 3 (t, x) 7→ Tt(x) ∈ TQF

is a Borel isomorphism.

Proof. By Lemma 4.29, if C ⊂ TQF is a Borel subset, then C is also
Borel in X. Hence the map Q × F 3 (t, x) 7→ Tt(x) ∈ TQF is a Borel
bijection. Hence by Corollary A.10 of Takesaki [58], this map is a Borel
isomorphism. �

Proposition 4.31. In the context of Theorem 4.6, if Rd = R, then
the map

Q× F 3 (t, x) 7→ Tt(x) ∈ TQF
is non-singular.

Proof. This is based on Lemma 3.1 of Kubo [35]. The action T of R
on X induces an action T̃ of R on TQ(F ). Then T̃ defines an action
S of Z on F . Then (F, ν), S and (TQF, µ) satisfy the assumptions of
Lemma 3.1 of Kubo [35]. �
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4.4.2. On a Measurability of a Certain Map. In the proof of Lemma
4.9, we use the fact that a map from a measured space to the auto-
morphism group of a von Neumann algebra is measurable (See Fact
between Lemma 4.10 and Lemma 4.11). Probably it is well-known to
specialists. However, we could not find appropriate references. Hence,
we present the proof here.

Proposition 4.32. If we identify N with N0 ⊗ L∞([0, p)), the map
[0, p)2 3 (t, γ) 7→ θt,γ ∈ Aut(N0) is Lebesgue measurable.

Proof. By Lusin’s theorem, it is enough to show that the map [0, p)2 3
(t, γ) 7→ φ0 ◦ θt,γ ∈ (N0)∗ is Lebesgue measurable for φ0 ∈ (N0)∗. We
identify N∗ with L1

(N0)∗
([0, p)) and set φ := φ0 ⊗ id. Since the map

s 7→ φ ◦ θs ∈ L1
(N0)∗

([0, p)) is continuous, for any ε > 0, there exists a
positive number δ such that

(5) ‖φ ◦ θs − φ‖ < ε2

for |s| < δ. Take a partition 0 = s0 < s1 < · · · < sn = p so that
|si − si+1| < δ. For each i = 0, · · · , n, the map [0, p) 3 γ 7→ (φ ◦
θsi)γ is Lebesgue measurable and integrable. Hence it is possible to
approximate φ ◦ θsi by Borel simple step functions, that is, for each i,
there exists a compact subset Ki of [0, p) which satisfies the following
conditions.

(2) We have µ(Ki) > p− ε.
(3) There exist a Borel partition {Ij} of Ki and φi,j ∈ (N0)∗ such

that
‖(φ ◦ θsi)γ −

∑
j

φi,jχIj(γ)‖ < ε

for γ ∈ Ki.

Set
ψt,γ :=

∑
i,j

φi,jχ[si,si+1)(t)χIj(γ).

for each (t, γ) ∈ [0, p)2. For each s ∈ [si, si+1), set

Ks := {γ ∈ [0, p) | ‖(φ ◦ θs)γ − (φ ◦ θsi)γ‖ < ε}.
Then by the above inequality (1), we have µ(Ks) > p − ε. For γ ∈
Ks ∩Ki, we have

‖(φ ◦ θs)γ − ψs,γ‖ < 2ε.

Set
K := {(s, γ) ∈ [0, p)2 | ‖(φ ◦ θs)γ − ψs,γ‖ < 2ε}.
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Then we have µ(K) > p(p − 2ε). Hence (s, γ) 7→ (φ ◦ θs)γ is well-
approximated by simple step Borel functions in measure convergence.
Hence this is Lebesgue measurable. �

5. Characterization of approximate innerness of finite
index endomorphisms of AFD factors

In this subsection, as an application of the study of the Rohlin prop-
erty, we present a characterization of approximate innerness of endo-
morphisms.

5.1. Preliminaries of Section 5. First, we explain some notions nec-
essary to understand our main theorem of this section. In order to
understand endomorphisms, some notions of automorphisms were gen-
eralized to that of endomorphisms by Izumi [22] and Masuda–Tomatsu
[40].

5.1.1. A topology of semigroups of endomorphisms. Let M be a factor
of type III. Let End(M)0 be the set of all finite index endomorphisms
ρ of M . Let d(ρ) be the square root of the minimal index of M ⊃ ρ(M)
and Eρ be the minimal expectation from M to ρ(M). Set φρ := ρ−1◦Eρ.
In Masuda–Tomatsu [40], a topology of End(M)0 is introduced in the
following way. We have

ρi → ρ

if, by definition, ‖ψ ◦ φρi − ψ ◦ φρ‖ → 0 for any ψ ∈M∗.

5.1.2. Canonical extension of endomorphisms. Let ϕ be a normal faith-
ful semifinite weight of M and σϕ be the group of modular automor-
phisms of ϕ. In Izumi [22], an extension ρ̃ of ρ ∈ End(M)0 on the
continuous core M̃ := M oσϕ R is introduced in the following way. We
have

ρ̃(xλσ
ϕ

t ) = d(ρ)itρ(x)[Dϕ ◦ φρ : Dϕ]tλ
σϕ

t

for t ∈ R, x ∈M , where [Dϕ◦φρ : Dϕ]t is the Connes cocycle between
ϕ ◦φρ and ϕ. This extension does not depend on the choice of ϕ under
a specific identification (See Theorem 2.4 of Izumi [22]). The extension
ρ̃ is said to be the canonical extension of ρ.

In Lemma 3.5 of Masuda–Tomatsu [40], it is shown that there exists
a left inverse φρ̃ of ρ̃ satisfying

φρ̃(xλ
ϕ
t ) = d(ρ)−itφρ(x[Dφ : Dφ ◦ φρ]t)λϕt

for x ∈M , t ∈ R.
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5.2. The main theorem of Section 5. The main theorem of this
paper is the following.

Theorem 5.1. Let ρ, σ be endomorphisms of an AFD factor M of
type III with d(ρ), d(σ) < ∞. Then the following two conditions are
equivalent.

(1) We have φρ̃ ◦ θ− log(d(ρ))|Z(M̃) = φσ̃ ◦ θ− log(d(σ))|Z(M̃).

(2) There exists a sequence {un} of unitaries of M with Adun◦ρ→ σ
as n→∞.

As a corollary, we have the following result.

Corollary 5.2. Let M be an AFD factor and R0 be the AFD factor of
type II1. Take endomorphisms ρ1, ρ2 ∈ End(M)0. Then the following
two conditions are equivalent.

(1) There exists a sequence of unitaries {un} of M ⊗R0 with Adun ◦
(ρ1 ⊗ idR0)→ ρ2 ⊗ idR0 as n→∞.

(2) There exists a sequence of unitaries {vn} of M with Advn ◦ρ1 →
ρ2 as n→∞.

Proof. By the identification Z((M⊗R0)oσϕ⊗idR0
R) ∼= Z((MoσϕR)⊗

R0) ∼= Z(M oσϕ R) by

(x⊗ y)λ
σϕ⊗idR0
t 7→ (xλσ

ϕ

t )⊗ y,

we have φρi⊗idR0
= φρi on the center of the continuous core for i = 1, 2.

We also have d(ρi ⊗ idR0) = d(ρi). Hence by Theorem 5.1, conditions
(1) and (2) are equivalent. �

Note that this corollary would be quite difficult to show without
Theorem 5.1 (See also Section 3 of Connes [5]).

As we will explain later, this is a generalization of a work of Kawahigashi–
Sutherland–Takesaki [31], in which our main theorem of this section is
shown when ρ and σ are automorphisms. We briefly explain this. For
an automorphism α of a factor M , we have φα̃ = α̃−1. Hence in this
case, considerling φα̃ is equivalent to considering α̃. Set mod(α) :=
α̃|Z(M̃). The following is a special case of Theorem 5.1.

Corollary 5.3. (Theorem 1(1) of Kawahigashi–Sutherland–Takesaki
[31]) Let M be an AFD factor of type III and α be an automorphism
of M . Then the following two conditions are equivalent.

(1) The automorphism α is approximately inner.
(2) The automorphism mod(α) ∈ Aut(Z(M̃)) is trivial.
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Theorem 5.1 should also be useful for classifying actions of com-
pact groups on AFD factors of type III. Popa–Wassermann [50] and
Masuda–Tomatsu [42] showed that any compact group has only one
minimal action on the AFD factor of type II1, up to conjugacy. One
of the next problems is to classify actions of compact groups on AFD
factors of type III. In Masuda–Tomatsu [41] and [43], they are trying
to solve this problem, and some partial answers to this problem are
obtained (Theorems A, B of [41] and Theorem 2.4 of [43]). However,
still the problem has not been solved completely. In Masuda–Tomatsu
[41], a conjecture about this classification problem is proposed (Con-
jecture 8.2). Our main theorem of this section implies that if two
actions of discrete Kac algebras on AFD factors of type III have the
same invariants, the difference of these two actions is approximately
inner (See Problem 8.3 and the preceding argument to that problem
of Masuda–Tomatsu [41]). In order to classify group actions, whether
the difference of two actions is approximately inner or not is very im-
portant. Kawahigashi–Sutherland–Takesaki [31] and Masuda–Tomatsu
[40] characterize the approximate innerness of endomorphisms under
such a motivation. Theorem 5.1 is a generalization of their results.

In the following, we will show Theorem 5.1. Implication (2)⇒ (1) is
shown easily by using known results.

Proof of implication (2) ⇒ (1) of Theorem 5.1. This is shown by
the same argument as that of the proof of implication (1) ⇒ (2) of
Theorem 3.15 of [40]. Assume that we have Adun ◦ ρ→ σ as n→∞.
Then by the continuity of normalized canonical extension (Theorem
3.8 of Masuda–Tomatsu [40]), we have

φρ̃ ◦ θ− log d(ρ) ◦ Adu∗n(x)→ φσ̃ ◦ θ− log d(σ)(x)

in the strong* topology for any x ∈ M̃ . Hence we have

φρ̃ ◦ θ− log(d(ρ)/d(σ))|Z(M̃) = φσ̃|Z(M̃).

�

In the following, we will show the reverse implication. Our strategy is
to reduce the problem to that of endomorphisms on semifinite von Neu-
mann algebras. In order to achieve this, in Kawahigashi–Sutherland–
Takesaki [31] and Masuda–Tomatsu [40], they have used discrete de-
composition theorems (See Connes [9]). However, in our situation, the
centers of the images of canonical extensions may not coincide with
that of M̃ . This makes the problem difficult. It seems that Corollary
4.4 of Izumi [22] means that it is difficult to show Theorem 5.1 by the
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same strategy as those in them. Instead, we will use continuous de-
composition. We also note that our method gives a proof of Theorem
(1) of Kawahigashi–Sutherland–Takesaki [31] which does not depend
on the types of AFD factors.

5.3. Approximation on the continuous core. In order to prove
implication (1) ⇒ (2) of Theorem 5.1, we need to prepare some lem-
mas. We first show the implication when φρ̃ = φσ̃ on the center of the
continuous core. Until the end of the proof of Lemma 5.22, we always
assume that d(ρ) = d(σ) and φρ̃ = φσ̃ on the center of the continuous
core. Choose a dominant weight ϕ of M (For the definition of dominant
weights, see Definition II.1.2. and Theorem II.1.3. of Connes–Takesaki
[11]). Then by Lemma 2.3 (3) of Izumi [22], it is possible to choose uni-
taries u and v of M so that (ϕ,Adu ◦ ρ) and (ϕ,Adv ◦ σ) are invariant
pairs (See Definition 2.2 of Izumi [22]). More precisely, we have

ϕ ◦ Adu ◦ ρ = d(ρ)ϕ, ϕ ◦ EAdu◦ρ = ϕ,

ϕ ◦ Adv ◦ σ = d(σ)ϕ, ϕ ◦ EAdv◦σ = ϕ.

By replacing ρ by Adu◦ρ and σ by Adv◦σ respectively, we may assume
that (ϕ, ρ) and (ϕ, σ) are invariant pairs. In the rest of this paper, we
identify M̃ with M oσϕ R. Let h be a positive self-adjoint operator
affiliated to M̃ satisfying h−it = λϕt and ϕ̂ be the dual weight of ϕ. Let
τ be a trace of M̃ defined by ϕ̂(h·).

Lemma 5.4. For ρ ∈ End(M)0, we have φρ̃ = ρ̃−1 ◦ Eρ̃, where Eρ̃ is
the conditional expectation with respect to τ .

Proof. For x ∈M and t ∈ R, we have

ρ̃ ◦ φρ̃(xλϕt ) = ρ̃(d(ρ)−itφρ(x[Dϕ : Dϕ ◦ φρ]t)λϕt )

= d(ρ)itd(ρ)−itρ(φρ(x[Dϕ : Dϕ ◦ φρ]t))[Dϕ ◦ φρ : Dϕ]tλ
ϕ
t

= Eρ(x[Dϕ : Dϕ ◦ φρ]t)[Dϕ ◦ φρ : Dϕ]tλ
ϕ
t

Since (ϕ, ρ) is an invariant pair, we have

[Dϕ ◦ φρ : Dφ]t = d(ρ)−it.

Hence we have

Eρ(x[Dϕ : Dϕ◦φρ]t)[Dϕ◦◦φρ : Dϕ]tλ
ϕ
t = Eρ(x)d(ρ)itd(ρ)−itλϕt = Eρ(x)λϕt .

Hence by an argument of p.226 of Longo [38], it is shown that ρ̃ ◦ φρ̃ is
the expectation with respect to τ . �

Lemma 5.5. For ρ ∈ End(M)0, we have τ ◦ φρ̃ = d(ρ)−1τ .
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Proof. By Lemma 5.4, we have φρ̃ = ρ̃−1 ◦ Eρ̃. On the other hand, by
Proposition 2.5 (4) of Izumi [22], we have τ ◦ ρ̃ = d(ρ)τ . Hence we have

τ ◦ φρ̃ = d(ρ)−1τ ◦ ρ̃ ◦ φρ̃
= d(ρ)−1τ ◦ ρ̃ ◦ ρ̃−1 ◦ Eρ̃
= d(ρ)−1τ ◦ Eρ̃
= d(ρ)−1τ.

�

In the following, we identify Z(M̃) with L∞(X,µ). Let

τ =

∫ ⊕
X

τx dµ(x)

be the direct integral decomposition of τ .

Lemma 5.6. Let ρ, σ be elements of End(M)0. Assume that φρ̃|Z(M̃) =

φσ̃|Z(M̃) and d(ρ) = d(σ). For a ∈ M̃+ with τ(a) <∞, set

b := ρ̃(a) =

∫ ⊕
X

bx dµ(x),

c := σ̃(a) =

∫ ⊕
X

cx dµ(x).

Then we have

τx(bx) = τx(cx)

for almost every x ∈ X.

Proof. Take an arbitrary positive element z of Z(M̃)+. Then we have

τ(bz) =

∫
X

τx(bxzx) dµ(x)

=

∫
X

τx(bx)zx dµ(x).

Similarly, we have

τ(cz) =

∫
X

τx(cx)zx dµ(x).
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On the other hand, by Lemma 5.5, we have

τ(bz) = d(ρ)τ ◦ φρ̃(bz)

= d(ρ)τ ◦ φρ̃(ρ̃(a)z)

= d(ρ)τ ◦ ρ̃−1 ◦ Eρ̃(ρ̃(a)z)

= d(ρ)τ ◦ ρ̃−1(ρ̃(a)Eρ̃(z))

= d(ρ)τ(aφρ̃(z)).

Since we assume d(ρ) = d(σ) and φρ̃|Z(M̃) = φσ̃|Z(M̃), the last number

of the above equality is d(σ)τ(aφσ̃(z)), which is shown to be τ(cz) in a
similar way. Hence we have∫

X

τx(bx)zx dµ(x) =

∫
X

τx(cx)zx dµ(x).

Since the maps x 7→ τx(bx) and x 7→ τx(cx) are integrable functions
and z ∈ L∞(X,µ) = L1(X,µ)∗ is arbitrary, we have τx(bx) = τx(cx) for
almost every x ∈ X. �

Note that we have never used the assumption that M is approxi-
mately finite dimensional up to this point. However, in order to show
the following lemma, we need to assume that M is approximately finite
dimensional. Let

M̃ =

∫ ⊕
X

M̃x dµ(x)

be the direct integral decomposition.

Lemma 5.7. Let M be an AFD factor of type III and ρ, σ be as in
Lemma 5.6. Then for almost every x ∈ X, there exist a factor Bx of
type I∞, a unitary u of M̃x and a sequence {un} of unitaries of M̃x

with the following properties.

(1) The relative commutant B′x ∩ M̃x is finite.
(2) There exists a sequence of unitaries {vn} of B′x ∩ M̃x with un =

(vn ⊗ 1)u, where we identify M̃x with (B′x ∩ M̃x)⊗Bx.
(3) For almost every x ∈ X and for any a ∈ M̃ , we have Adun((ρ̃(a))x)→

(σ̃(a))x in the strong * topology.
(4) We have Bx ⊂ u(ρ̃(M̃))xu

∗ ∩ (σ̃(M̃))x.

Proof. Let B0 ⊂ ρ̃(M̃) be a factor of type I∞ with Q := ρ̃(M̃) ∩ B′0
finite. Let {f 0

ij} be a matrix unit generating B0. We may assume that

τ(f 0
ii) <∞. Then since (τ ◦Eρ̃)x((f 0

11)x) <∞ for almost every x ∈ X,
63



P := M̃ ∩ B′0 is also finite. Then by Lemma 5.6, there exists a partial
isometry v of M̃ with v∗v = ρ̃(f 0

11), vv∗ = σ̃(f 0
11). Set

u :=
∞∑
j=1

σ̃(f 0
j1)vρ̃(f 0

1j).

Then u is a unitary of M̃ with uσ̃(f 0
ij)u

∗ = ρ̃(f 0
ij). Set

B := σ̃(B0)(= uρ̃(B0)u∗),

fij := σ̃(f 0
ij)(= uρ̃(f 0

ij)u
∗).

By replacing ρ̃ by Adu ◦ ρ̃, we may assume that ρ̃(fij) = σ̃(fij). In the

following, we identify M̃ with P ⊗B and P with R⊗Z(M̃), where R is
the AFD factor of type II1. By the approximate finite dimensionality
of R and Z(M̃), there exists a sequence {{enij ⊗ ank}i,j,k}∞n=1 of systems
of partial isometries of P with the following properties.

(1) For each n, the system {enij}i,j is a matrix unit of R.

(2) For each n, the system {ank}k is a partition of unity in Z(M̃).
(3) For each n, {en+1

ij }i,j is a refinement of {enij}i,j.
(4) For each n, {an+1

k }k is a refinement of {ank}k.
(5) We have

∨∞
n=1{enij ⊗ ank}′′i,j,k = P .

Fix a natural number n. Then by Lemma 5.6, we have

τx((ρ̃(en11 ⊗ ank ⊗ f11))x) = τx((σ̃(en11 ⊗ ank ⊗ f11))x)

for almost every x ∈ X. Here, we should notice that we have τ(en11 ⊗
ank ⊗f11) ≤ τ(1⊗1⊗f11) <∞. Hence the assumption of Lemma 5.6 is
satisfied. Hence for almost every x ∈ X, there exists a partial isometry
vnk of Px = (ρ̃(f11)M̃ρ̃(f11))x with

vnk
∗vnk = ρ̃(en11 ⊗ ank ⊗ f11)x, v

n
kv

n
k
∗ = σ̃(en11 ⊗ ank ⊗ f11)x.

Set

vn :=
∑
k,j

σ̃(ej1 ⊗ ank ⊗ f11)xv
n
k ρ̃(e1j ⊗ ank ⊗ f11)x.

Then vn is a unitary of ρ̃(f11)xM̃xρ̃(f11)x with

vnρ̃(enij ⊗ ank ⊗ f11)xv
∗
n = σ̃(enij ⊗ ank ⊗ f11)x.

Hence for almost every x ∈ X, there exists a sequence {vn} of unitaries
of Px with

Ad(vn ⊗ 1)(ρ̃(a)x)→ σ̃(a)x

for any a ∈ M̃ . �
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Lemma 5.8. Let M , ρ and σ be as in Lemma 5.7. Then there exist
a unital subfactor B of M̃ , a unitary u of M̃ and a sequence {un} of
unitaries of M̃ with the following properties.

(1) The factor B is of type I∞.
(2) The relative commutant B′ ∩ M̃ is finite.
(3) There exists a sequence of unitaries {vn} of B′ ∩ M̃ with un =

(vn ⊗ 1)u, where we identify M̃ with (B′ ∩ M̃)⊗B.
(4) For any a ∈ M̃ , we have Adun ◦ ρ̃(a) → σ̃(a) in the strong *

topology.
(5) We have B ⊂ uρ̃(M̃)u∗ ∩ σ̃(M̃).

Proof. This is shown by “directly integrating” the above lemma. �

The conclusion of Lemma 5.8 means that Adun ◦ ρ̃ converges to σ̃
point *strongly. However, this convergence is slightly weaker than that
of the topology we consider. We need to fill this gap. In order to
achieve this, the following criterion is very useful.

Lemma 5.9. (Lemma 3.8 of Masuda–Tomatsu [42]). Let ρ and ρn, n ∈
N be endomorphisms of a von Neumann algebra N with left inverses Φ
and Φn, n ∈ N, respectively. Fix a normal faithful state φ of N . Then
the following two conditions are equivalent.

(1) We have limn→∞ ‖ψ ◦ Φn − ψ ◦ Φ‖ = 0 for all ψ ∈ N∗.
(2) We have limn→∞ ‖φ ◦ Φn − φ ◦ Φ‖ = 0 and limn→∞ ρn(a) = ρ(a)

for all a ∈ N .

Hence what we need to do is to find a normal faithful state of M̃
satisfying condition (2) of Lemma 5.9.

Lemma 5.10. Let M , ρ, σ be as in Lemma 5.7. Then there exists a
sequence of unitaries un of M̃ with Adun ◦ ρ̃→ σ̃.

Proof. Take a subfactor B of M̃ , a unitary u of M̃ and a sequence {vn}
of unitaries of M̃ as in Lemma 5.8. By condition (5) in Lemma 5.8, we
have u∗Bu ⊂ ρ̃(M̃). Set

F := ρ̃−1(u∗Bu).

Then we have
ρ̃−1 ◦ Adu∗(B) = F,

ρ̃−1 ◦ Adu∗(B′ ∩ Adu ◦ ρ̃(M̃)) = F ′ ∩ M̃.

We also have
Adu ◦ Eρ̃ ◦ Adu∗|B = idB,

Adu ◦ Eρ̃ ◦ Adu∗(B′ ∩ M̃) = B′ ∩ Adu ◦ ρ̃(M̃).
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Let {fij} be a matrix unit generating B. Set

τ(a) := τ(aρ̃−1(u∗f11u))

for a ∈ F ′ ∩ M̃ , which is a faithful normal finite trace of F ′ ∩ M̃ . Let
ψF be a normal faithful state of F . Let ΨF : M̃ → (F ′ ∩ M̃) ⊗ F
is the natural identification map. Then by the above observation, for
a ∈ B′ ∩ M̃ and i, j, we have

(τ ⊗ ψF ) ◦ΨF ◦ φρ̃ ◦ Adu∗(afij)

= (τ ⊗ ψF ) ◦ΨF ◦ (ρ̃−1 ◦ Adu∗) ◦ (Adu ◦ Eρ̃ ◦ Adu∗)(afij)

= (τ ⊗ ψF ) ◦ΨF ◦ (ρ̃−1 ◦ Adu∗)((Adu ◦ Eρ̃ ◦ Adu∗|B′∩M̃)(a)fij)

= (τ ◦ φρ̃ ◦ Adu∗)(a)(ψF ◦ φρ̃ ◦ Adu∗)(fij).

Since B ⊂ σ̃(M̃) ∩ Adu ◦ ρ̃(M̃), we have

Eσ̃(afij) = Eσ̃(a)fij,

Adu ◦ Eρ̃ ◦ Adu∗(afij) = Adu ◦ Eρ̃ ◦ Adu∗(a)fij

for a ∈ B′ ∩ M̃ . Notice that σ̃−1(fij) = ρ̃−1(u∗fiju) by conditions (3)

and (4)of Lemma 5.8. Then for any a ∈ B′ ∩ M̃ , we have

(τ ⊗ ψF ) ◦ΨF ◦ φρ̃ ◦ Adu∗(v∗n ⊗ 1)(afij)

= (τ ⊗ ψF ) ◦ΨF ◦ φρ̃((u∗(v∗navn)u)(u∗fiju))

= τ ◦ φρ̃(u∗(v∗navn)u)ψF (ρ̃−1(u∗fiju))

= τ(φρ̃(u
∗(v∗navn)u)ρ̃−1(u∗f11u))ψF (ρ̃−1(u∗fiju))

= τ ◦ φρ̃(u∗(v∗navn)f11u)ψF (ρ̃−1(u∗fiju))

= d(ρ)τ(u∗(v∗navn)f11u)ψF (ρ̃−1(u∗fiju))

= d(σ)τ(af11)ψF (σ̃−1(fij))

= τ(φσ̃(a)σ̃−1(f11))ψF (σ̃−1(fij))

= τ(φσ̃(a)ρ̃−1(u∗f11u))ψF (σ̃−1(fij))

= (τ ⊗ ψF ) ◦ΨF ◦ φσ̃(afij).

Hence we have (τ ⊗ψF )◦ΨF ◦φρ̃ ◦Ad(u∗(vn⊗1)∗) = (τ ⊗ψF )◦ΨF ◦φσ̃
for any n. Hence by Lemma 5.8 and Lemma 5.9, we have Ad((vn ⊗
1)u) ◦ ρ̃→ σ̃. �

5.4. Averaging by the trace-scaling action. In this subsection, we
always assume thatM is an AFD factor of type III. Let ϕ be a dominant
weight of M and ρ, σ ∈ End(M)0 be finite index endomorphisms with
(ϕ, ρ) and (ϕ, σ) invariant pairs. Set

M̃ := M oσϕ R.
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Let ψ0 be a normal faithful state of M̃ and {ψi}∞i=1 be a norm dense
sequence of the unit ball of M̃∗. Let θ be the dual action on M̃ of
σϕ. We will replace the sequence {un} chosen in the previous section
so that it is almost invariant by θ. In order to achieve this, we use
a property of θ which is said to be the Rohlin property. In order to
explain this property, we first need to explain related things. Let ω
be a free ultrafilter of N. A sequence {[−1, 1] 3 t 7→ xn,t ∈ M̃}∞n=1 of

maps from [−1, 1] to M̃ is said to be ω-equicontinuous if for any ε > 0,
there exist an element U ⊂ N of ω and δ > 0 with ‖xn,t− xn,s‖ < ε for
any s, t ∈ [−1, 1] with |s− t| < δ, n ∈ U . Set

Cω := {(xn) ∈ l∞(M̃) | ‖xnψ − ψxn‖ → 0 as n→ ω for any ψ ∈ M̃.},

Cθ,ω := {(xn) ∈ Cω | the maps {t 7→ θt(xn)}∞n=1 are ω equicontinuous.},

Iω := {(xn) ∈ l∞(M̃) | xn → 0 in the ∗strong topology as n→ ω.}.
Then Iω is a (norm) closed ideal of Cθ,ω, and the quotient M̃θ,ω :=
Cθ,ω/Iω is a von Neumann algebra. As mentioned in Masuda–Tomatsu
[44], the action θ has the Rohlin property, that is, for any R > 0, there
exists a unitary v of M̃θ,ω with

θt(v) = e−iRtv

for any t ∈ R (See Section 4 of Masuda–Tomatsu [44]). Choose ar-
bitrary numbers r > 0 and 0 < ε < 1. Then since M is of type III,
there exists a real number R such that any times of which is not of
the discrete spectrum of θ|Z(M̃) and which satisfies r/R < ε2. Then as

shown in Theorem 5.2 of Masuda–Tomatsu [44], there exists a normal
injective *-homomorphism Θ from M̃ ⊗L∞([−R,R]) to M̃ω satisfying
x⊗ f 7→ xf(v) for any x ∈ M̃ , f ∈ L∞([−R,R]). For each t ∈ R, set

γt : L∞([−R,R]) 3 f 7→ f(· − t) ∈ L∞([−R,R]),

where we identify [−R,R] with R/2RZ as measured spaces. Then the
*-homomorphisms Θ and γt satisfy

Θ ◦ (θt ⊗ γt) = θt ◦Θ

(See Theorem 5.2 of Masuda–Tomatsu [44]).

Lemma 5.11. For ψ ∈ M̃∗, we have

ψω ◦Θ = ψ ⊗ τL∞ ,

where τL∞ is the trace coming from the normalized Haar measure of
L∞([−R,R]).
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Proof. Let {vn} be a representing sequence of v. For x ⊗ f ∈ M̃ ⊗
L∞([−R,R]), we have

ψω ◦Θ(x⊗ f) = ψω(xf(v))

= lim
n→ω

ψ(xf(vn))

= ψ(x) lim
n→ω

f(vn)

= ψ(x)τL∞(f)

= (ψ ⊗ τL∞)(x⊗ f).

�

Since the maps

[−R,R] 3 t 7→ ψi ◦ φρ̃ ◦ θt ∈ (M̃)∗,

[−R,R] 3 t 7→ ψi ◦ φσ̃ ◦ θt ∈ (M̃)∗

are norm continuous, the union of their images

{ψi ◦ φρ̃ ◦ θt | t ∈ [−R,R]} ∪ {ψi ◦ φσ̃ ◦ θt | t ∈ [−R,R]}
is compact. Hence there exists a finite set −R = t0 < · · · < tJ = R of
[−R,R] such that

‖ψi ◦ φρ̃ ◦ θtj − ψi ◦ φρ̃ ◦ θt‖ < ε,

‖ψi ◦ φσ̃ ◦ θtj − ψi ◦ φσ̃ ◦ θt‖ < ε

for any i = 1, · · · , n, j = 0, · · · , J−1 and t ∈ [tj, tj+1]. We may assume
that tj = 0 for some j. Then by Lemma 5.10, there exists a unitary u

of M̃ with

‖ψi ◦ φρ̃ ◦ θtj ◦ Adu− ψi ◦ φσ̃ ◦ θtj‖ < ε

for any j = 0, · · · , J − 1, i = 1, · · · , n (Notice that we used the fact
that we have φρ̃ ◦ θtj = θtj ◦ φρ̃ and that we have φσ̃ ◦ θtj = θtj ◦ φσ̃ for
any j = 0, · · · , J − 1). Hence we have

‖ψi ◦ φρ̃ ◦ θt ◦ Adu− ψi ◦ φσ̃ ◦ θt‖ < 3ε

for any t ∈ [−R,R]. Set

U : [−R,R] 3 t 7→ θt(u) ∈ M̃,

which is a unitary of M̃ ⊗ L∞([−R,R]).

Lemma 5.12. We have

‖θs(Θ(U))−Θ(U)‖]ψω0 < 2ε

for |s| ≤ r.
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Proof. Notice that we have

(θs ⊗ γs)(U) : t 7→ θs(Ut−s),

where Ut denotes the evaluation of the function U at the point t. Hence
by the definition of U , we have

(θs ⊗ γs)(U)t = θt(u)

for any t ∈ [−R + r, R − r], where the left hand side is the evaluation
of the function (θs ⊗ γs)(U) at the point t. Hence by Lemma 5.11, we
have

‖θs(Θ(U))−Θ(U)‖]ψω0
= ‖(θs ⊗ γs)(U)− U‖]ψ0⊗τL∞

= (

∫
[−R,R]

(‖((θs ⊗ γs)(U))t − Ut‖]ψ0
)2 dm(t))1/2

≤ (

∫
[−R,−R+r]∪[R−r,R]

4 dm(t))1/2

≤ (4ε2)1/2

= 2ε.

�

Lemma 5.13. There exists a finite subset −R = s0 < · · · < sK = R
of [−R,R] with

‖U −
K−1∑
k=0

θsk(u)ek‖](ψ0◦θtj )⊗τL∞ < ε

for any j = 0, · · · , J − 1, where ek := χ[sk,sk+1] ∈ L∞([−R,R]).

Proof. Since the map t 7→ θt(u) is continuous in the strong * topology,
there exists a finite set −R = s0 < · · · < sK = R of [−R,R] with

‖θt(u)− θsk(u)‖]ψ0◦θtj
< ε
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for j = 0, · · · , J −1, k = 0, · · · , K−1 and t ∈ [sk, sk+1]. Then we have

‖U −
K−1∑
k=0

θsk(u)ek‖]ψ0◦θtj⊗τL∞

= (
K−1∑
k=0

∫
[sk,sk+1)

(‖θt(u)− θsk(u)‖]ψ0◦θtj
)2 dm(t))1/2

< (
K−1∑
k=0

∫
[sk,sk+1)

ε2 dm(t))1/2

= ε.

�

Set

V :=
K−1∑
k=0

θsk(u)ek.

Take a representing sequence {enk}∞n=1 of Θ(ek) so that {enk}K−1
k=0 is a

partition of unity in M̃ by projections for each n. Set

vn :=
K−1∑
k=0

θsk(u)enk .

The sequence {vn}∞n=1 represents the unitary Θ(V ). Let {un}∞n=1 be a
representing sequence of Θ(U).

Lemma 5.14. We have

lim
n→ω
‖θt(vn)− vn‖]ψ0

< 6
√
ε.

for t ∈ [−r, r].

Proof. Note that we have

(‖θt(a)‖]ψ0
)2

=
1

2
ψ0 ◦ θt(a∗a+ aa∗)

=
1

2
(ψ0 ◦ θtj(a∗a+ aa∗))− 1

2
((ψ0 ◦ θtj − ψ0 ◦ θt)(a∗a+ aa∗))

≤ (‖a‖]ψ0◦θtj
)2 + ‖a‖2‖ψ0 ◦ θtj − ψ0 ◦ θt‖
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for any a ∈ M̃ . Hence for t ∈ [tj, tj+1] ∩ [−r, r], we have

‖θt(vn)− vn‖]ψ0

≤ ‖θt(vn − un)‖]ψ0
+ ‖θt(un)− un‖]ψ0

+ ‖un − vn‖]ψ0

≤ (4‖ψ0 ◦ θtj − ψ0 ◦ θt‖+ (‖vn − un‖]ψ0◦θtj
)2)1/2

+ ‖θt(un)− un‖]ψ0
+ ‖un − vn‖]ψ0

< (4ε+ (‖vn − un‖]ψ0◦θtj
)2)1/2

+ ‖θt(un)− un‖]ψ0
+ ‖un − vn‖]ψ0

.

Hence by Lemmas 5.12 and 4.11, we have

lim
n→ω
‖θt(vn)− vn‖]ψ0

≤ (4ε+ (‖V − U‖](ψ0◦θtj )⊗τL∞ )2)1/2

+ ‖θt(U)− U‖]ψ0⊗τL∞ + ‖U − V ‖]ψ0⊗τL∞

< (4ε+ ε2)1/2 + 2ε+ ε

< 6
√
ε.

�

Lemma 5.15. We have

lim
n→ω
‖v∗nψi ◦ φρ̃ − ψi ◦ φσ̃v∗n‖ ≤ 3ε

for any i = 1, · · · , n.

Proof. Fix i and k. Set λ := θsk(u)∗ψi ◦φρ̃−ψi ◦φσ̃θsk(u)∗. Notice that
we have seen that ‖λ‖ < 3ε in the argument preceding to Lemma 5.12.
We have

‖enkθsk(u)∗ψi◦φρ̃−ψi◦φσ̃enkθsk(u)∗‖ ≤ ‖enkλ‖+‖(enkψi◦ψσ̃−ψi◦φσ̃enk)θsk(u)∗‖.

Let λ = |λ|vλ be the polar decomposition of λ. For x ∈ M̃ with
‖x‖ ≤ 1, we have

|enkλ(x)| = |enk |λ|(vλxenk)|
≤ |(enk |λ| − |λ|enk)(vλxe

n
k)|+ ||λ|(enkvλxenk)|

≤ ‖[enk , |λ|]‖+ ||λ|(ekvλxek)|
≤ ‖[enk , |λ|]‖+ |λ|(enk)

→ ‖λ‖τL∞(ek)

< 3ετL∞(ek).
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Hence we have

lim
n→ω
‖enkθsk(u)∗ψi ◦ φρ̃ − ψi ◦ φσ̃enkθsk(u)∗‖ < 3ετL∞(ek)

for k = 1, · · · , K. Summing up these inequalities, we have

lim
n→ω
‖v∗nψi ◦ φρ̃ − ψi ◦ φσ̃v∗n‖ ≤ 3ε.

�

By Lemmas 5.14 and 5.15, we have the following proposition.

Proposition 5.16. There exists a sequence {vn}∞n=1 of unitaries of M̃
with

lim
n→∞

‖θt(vn)− vn‖]ψ0
= 0,

lim
n→∞

‖v∗nψi ◦ φρ̃ − ψi ◦ φσ̃v∗n‖ = 0

for any i = 1, 2, · · · .

Proof. Take a representing sequence {v′n} of Θ(V ) consisting of uni-
taries. Then by Lemmas 5.14 and 5.15, we have

lim
n→ω
‖θt(v′n)− v′n‖

]
ψ0
< 6
√
ε

for t ∈ [−r, r],
lim
n→ω
‖v′n

∗
(ψi ◦ φρ̃)− (ψi ◦ φσ̃)v′n

∗‖ < 3ε

for finitely many i. Hence by the usual diagonal argument, it is possible
to take the sequence. �

5.5. Approximation on M̃ oθ R. Set

nτ := {x ∈ M̃ | τ(x∗x) <∞}.

Lemma 5.17. (See also Appendix A. of Guido–Longo [17]) Let L2(M̃)
be the standard Hilbert space of M̃ and Λ : nτ → L2(M̃) be the canoni-

cal injection. For each x ∈ nτ , set Vρ̃(Λ(x)) :=
√
d(ρ)

−1
Λ(ρ̃(x)). Then

Vρ̃ defines an isometry of L2(M̃) satisfying

V ∗ρ̃ xVρ̃ = φρ̃(x)

for any x ∈ M̃ . Moreover, the isometry Vρ̃ is the canonical implemen-
tation in the sense of Guido–Longo [17].

Proof. Take x ∈ nτ . Then by Lemma 2.5 (4) of Izumi [22], we have

‖Vρ̃Λ(x)‖2 = d(ρ)−1τ(ρ̃(x∗x))

= τ(x∗x) = ‖Λ(x)‖2.
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Hence Vρ̃ defines an isometry of L2(M̃). Next, we show the latter

statement. We have V ∗ρ̃ (Λ(x)) =
√
d(ρ)Λ(φρ̃(x)) because

〈V ∗ρ̃ Λ(x),Λ(y)〉 = 〈Λ(x),
√
d(ρ)

−1
Λ(ρ̃(y))〉

=
√
d(ρ)

−1
τ(ρ̃(y)∗x)

=
√
d(ρ)τ(y∗φρ̃(x))

= 〈
√
d(ρ)Λ(φρ̃(x)),Λ(y)〉

for any x, y ∈ nτ . In order to show the third equality of the above, we
used Lemma 5.5. Hence for any x ∈ M̃ and y ∈ nτ , we have

V ∗ρ̃ xVρ̃Λ(y) =
√
d(ρ)

−1
V ∗ρ̃ Λ(xρ̃(y))

= Λ(φρ̃(xρ̃(y)))

= φρ̃(x)Λ(y).

Next, we show that Vρ̃ is the standard implementing. Let ξ be a cyclic

separating unit vector of L2(M̃)+. By (b) of Proposition A.2 of Guido–
Longo [17], it is enough to show that Vρ̃ξ ∈ L2(M̃, ξ)+. In order to

achieve this, by the self duality of L2(M̃, ξ), it is enough to show that

〈Vρ̃ξ, JξaJξaξ〉 ≥ 0

for a ∈ M̃ . However, by a characterization of the modular conjugations
(Theorem 1 of Araki [1]), Jξ is the modular conjugation of L2(M̃).
Hence it is enough to show that

〈Vρ̃ξ,Λτ (a
∗a)〉 ≥ 0

for a ∈ nτ . This is trivial because we have V ∗ρ̃ (Λ(x)) =
√
d(ρ)Λ(φρ̃(x)).

Hence Vρ̃ is the standard implementing. �

Let ρ be an endomorphism of a von Neumann algebra M . Then
since its canonical extension ρ̃ commutes with θ, the endomorphism ρ̃
extends to M̃oθR by λθt 7→ λθt for any t ∈ R. We denote this extension
by ˜̃ρ.

Lemma 5.18. Let ρ and σ be finite index endomorphisms of a separable
infinite factor M and ϕ be a dominant weight of M . Assume that there
exists a sequence {un} of unitaries of M̃ oθ R with Adun ◦ ˜̃ρ → ˜̃σ as
n → ∞. Then there exists a sequence {vn} of unitaries of M with
Advn ◦ ρ→ σ.

Proof. Since (ϕ, ρ) and (ϕ, σ) are invariant pairs, it is possible to iden-
tify ˜̃ρ with ρ ⊗ idB(L2R) and ˜̃σ with σ ⊗ idB(L2R) through Takesaki
duality, respectively (It is possible to choose the same identification
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between M ⊗B(L2R) and M̃ oθ R for ˜̃ρ and ˜̃σ. See the argument pre-
ceding to Lemma 3.10 of Masuda–Tomatsu [40]). Then by (the proof
of) Lemma 3.11 of Masuda–Tomatsu [40], there exist an isomorphism
π from M ⊗B(L2R) to M and unitaries uρ, uσ of M satisfying

π ◦ (ρ⊗ id) ◦ π−1 = Aduρ ◦ ρ,
π ◦ (σ ⊗ id) ◦ π−1 = Aduσ ◦ σ

(Although in the statement of Lemma 3.11 of Masuda–Tomatsu [40],
the isomorphism π depends on the choice of ρ, π turns out to be inde-
pendent of ρ by its proof). Then we have

Ad(u∗σπ(un)uρ) ◦ ρ
= Ad(u∗σπ(un)) ◦ π ◦ (ρ⊗ idB(L2R)) ◦ π−1

= Adu∗σ ◦ π ◦ (Adun ◦ (ρ⊗ idB(L2R))) ◦ π−1

→ Adu∗σ ◦ π ◦ (σ ⊗ idB(L2R)) ◦ π−1

= Adu∗σ ◦ (Aduσ ◦ σ)

= σ.

�

Lemma 5.19. Let ρ be an endomorphism with finite index and with

(ϕ, ρ) an invariant pair. Let E ˜̃ρ be the minimal expectation from ˜̃M to

˜̃ρ( ˜̃M). Then we have the following.
(1) For each x ∈ M̃ , we have E ˜̃ρ(x) = Eρ̃(x).

(2) For any t ∈ R, we have E ˜̃ρ(λ
θ
t ) = λθt .

Proof. This is shown in the proof of Theorem 4.1 of Longo [38]. �

Lemma 5.20. For ξ ∈ L2(R, M̃), set

V ˜̃ρ(ξ)(s) := Vρ̃(ξ(s)).

Then V ˜̃ρ is an isometry of L2(R, M̃) satisfying

V ∗˜̃ρ xV ˜̃ρ = φ ˜̃ρ(x)

for any x ∈M , where φ ˜̃ρ = ˜̃ρ−1 ◦ E ˜̃ρ.

Proof. The first statement is shown by the following computation.

‖V ˜̃ρ(ξ)‖2 =

∫
R

‖Vρ̃(ξ(s))‖2 dµ(s)

=

∫
R

‖ξ(s)‖2 dµ(s)

= ‖ξ‖2
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for ξ ∈ L2(R, M̃). Next, we show the latter statement. Choose x ∈M
and ξ ∈ L2(R, M̃). Then we have

V ∗˜̃ρ ◦ πθ(x) ◦ V ˜̃ρ(ξ) = V ∗˜̃ρ πθ(x)(s 7→ Vρ̃(ξ(s)))

= V ∗˜̃ρ (s 7→ θ−s(x) ◦ Vρ̃(ξ(s)))
= (s 7→ V ∗ρ̃ ◦ θ−s(x) ◦ Vρ̃(ξ(s)))
= (s 7→ φρ̃(θ−s(x))(ξ(s)))

= (s 7→ θ−s(φρ̃(x))(ξ(s)))

= πθ(φρ̃(x))(ξ)

= φ ˜̃ρ(πθ(x))(ξ).

In order to show the fourth equality of the above, we used Lemma 5.17.
The last equality of the above follows from Lemma 5.19. For t ∈ R
and ξ ∈ L2(R, M̃), we have

V ∗˜̃ρ λ
θ
tV ˜̃ρξ = V ∗˜̃ρ (s 7→ Vρ̃(ξ(s− t))

= s 7→ V ∗ρ̃ Vρ̃(ξ(s− t))
= λθt (ξ).

Thus we are done. �

Lemma 5.21. Let N be a von Neumann algebra and {Vn}∞n=0 be a
sequence of isometries on the standard Hilbert space L2(N) such that
for each n, the map Φn : N 3 x 7→ V ∗n xVn is a left inverse of an
endomorphism ρn of N . Consider the following two conditions.

(1) The sequence of operators {Vn}∞n=1 converges to V0 strongly.
(2) We have ‖ψ ◦ Φn − ψ ◦ Φ0‖ → 0 for any ψ ∈ N∗.

Then we have implication (1) ⇒ (2). If each isometry Vn is the
standard implementing in the sense of Guido–Longo [17] (See Appendix
A. of [17]), then we have (2) ⇒ (1).

Proof. Implication (1)⇒ (2) is shown by just using the Cauchy–Schwartz
inequality. When Vn is the standard implementing, implication (2) ⇒
(1) is implication (1)⇒ (3) of Lemma 3.3 of Masuda–Tomatsu [40]. �

Note that the isometries Vρ̃u
∗
nJM̃u

∗
nJM̃ and Vσ̃ are examples of the

standard implementing, where JM̃ is the modular conjugation of M̃ .

Lemma 5.22. Let {un} be a sequence of unitaries of M̃ satisfying the
following conditions.

(1) We have Adun ◦ ρ̃→ σ̃ as n→∞.
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(2) For any compact subset F of R, we have θt(un) − un → 0 uni-
formly for t ∈ F .

Then there exists a sequence of unitaries {vn} with Advn ◦ ρ→ σ.

Proof. By Lemma 5.18, it is enough to show that Adun ◦ ˜̃ρ → ˜̃σ. By
Lemma 5.20 and implication (1) ⇒ (2) of Lemma 5.21, it is enough
to show that V ˜̃ρu

∗
nJu

∗
nJ → V˜̃σ, where J is the modular conjugation of

M̃ oθ R. Recall that J : L2(M̃) ⊗ L2R → L2(M̃) ⊗ L2R is given by
the following.

J : ξ 7→ (s 7→ JM̃θ−s(ξ(−s))),
where JM̃ is the modular conjugation of M̃ . Hence we have

V ˜̃ρu
∗
nJu

∗
nJ(ξ ⊗ f)

= (s 7→ Vρ̃(θ−s(u
∗
n)ξun)f(s))

for any ξ ∈ L2(M̃) and f ∈ L2R. Hence we have

‖V ˜̃ρu
∗
nJu

∗
nJ(ξ ⊗ f)− V˜̃σ(ξ ⊗ f)‖2

=

∫
R

‖Vρ̃(θ−s(u∗n)ξun)− Vσ̃(ξ)‖2|f(s)|2 ds

≤
∫
R

‖(Vρ̃((θ−s(u∗n)− u∗n)ξun)‖2|f(s)|2 ds+

∫
R

‖Vρ̃(u∗nξun)− Vσ̃(ξ)‖2|f(s)|2 ds

→ 0

by the Lebesgue dominant convergence theorem. Note that in order to
show the last convergence, we use Lemmas 5.16, 5.17 and implication
(2) ⇒ (1) of Lemma 5.21. �

5.6. The proof of the main theorem of Section 5.

Lemma 5.23. Let M be an AFD factor and σ be a finite index endo-
morphism of M with d(σ) = d. Then there exists an endomorphism λ
with the following properties.

(1) The endomorphism λ is approximately inner.
(2) We have d(λ) = d.
(3) The endomorphism λ has Connes–Takesaki module and it is

θ− log d|Z(M̃).

Proof. By the proof of Theorem 3 of Kosaki–Longo [26], there exists
an endomorphism λ0 of the AFD factor of type II1 with d(λ0) = d.
Then idM ⊗λ0 is an endomorphism of M with d(id⊗λ0) = d and with
mod(id ⊗ λ0) trivial. Hence by the existence of a right inverse of the
Connes–Takesaki module of automorphisms (See Sutherland–Takesaki
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[57]), there exists an automorphism α of M with mod(α◦λ0) = θ− log(d).
By Theorem 3.15 of Masuda–Tomatsu (or by the same argument of our
paper), it is shown that λ := α ◦ λ0 is approximately inner. �

Now, we return to the proof of the main theorem.

Proof of implication (1) ⇒ (2) of Theorem 5.1. Let ρ, σ be endo-
morphisms of End(M)0 with the first condition of Theorem 5.1. Then
by Lemma 5.23, there exist endomorphisms λ, µ ∈ End(M)0 with the
following properties.

(1) We have d(λ) = d(σ), d(µ) = d(ρ).

(2) We have λ̃|Z(M̃) = θ− log(d(σ))|Z(M̃) and µ̃|Z(M̃) = θ− log(d(ρ))|Z(M̃).

(3) The endomorphisms λ and µ are approximately inner.

By the second condition, we have

φρ̃ ◦ φλ̃|Z(M̃) = φρ̃ ◦ θlog d(σ)|Z(M̃)

= φσ̃ ◦ θ− log(d(σ)/d(ρ)) ◦ θlog d(σ)|Z(M̃)

= φσ̃ ◦ θlog(d(ρ))|Z(M̃)

= φσ̃ ◦ φµ̃|Z(M̃).

Hence by replacing ρ by λ ◦ ρ and σ by µ ◦ σ respectively, we may
assume that d(ρ) = d(λ) and φρ̃|Z(M) = φσ̃|Z(M). By Proposition 5.16,

there exists a sequence {un} of unitaries of M̃ satisfying the assump-
tions of Lemma 5.22. Hence by Lemma 5.22, we have Adun◦ρ→ σ. �

5.7. Appendix of Section 5 (A proof of the characterization
of central triviality of automorphisms of AFD factors). In this
subsection, we will see that it is possible to give a proof of a character-
ization theorem of central triviality of automorphisms of AFD factors
by a similar strategy to the proof of Theorem 5.1, which is independent
of the types of the AFD factors.

Let M be an AFD factor of type III. Let α be an automorphism of
M and α̃ be its canonical extension. Set

p := min{q ∈ N | α̃q is centrally trivial},

G := Z/pZ.

Note that when α̃n is not centrally trivial for any n 6= 0, we set G := Z.

Lemma 5.24. The action {α̃n ◦ θt}(n,t)∈G×R of G × R on M̃ω,θ is
faithful.
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Proof. We will show this lemma by contradiction. Let ϕ be a normal
faithful state of M̃ and {ψj}∞j=1 be a norm dense sequence of the unit

ball of M̃∗. Assume that there existed a pair (n, t) ∈ (G×R) \ {(0, 0)}
satisfying α̃n ◦ θ−t(a) = a for any a ∈ M̃ω,θ. Then the automorphism
α̃n ◦ θ−t would be centrally non-trivial because α̃n ◦ θ−t is trace-scaling
if t 6= 0. Hence there would exist an element x of M̃ω, which can never
be of M̃ω,θ, with α̃n(x) 6= θt(x). We may assume that x is a unitary
because any element of a von Neumann algebra is a linear combination
of four unitaries. Take a representing sequence {xk} of x consisting of
unitaries. Then we would have

lim
k→ω
‖α̃n(xk)− θt(xk)‖]ϕ◦θs

= weak lim
k→ω

1

2
(|α̃n(xk)− θt(xk)|2 + |(α̃n(xk)− θt(xk))∗|2)

= 2δ > 0

for some δ > 0. Then for each natural number L, there would exist
k ∈ N satisfying the following two conditions.

(1) We have

‖θs(xk)ψj − ψjθs(xk)‖(= ‖xk(ψj ◦ θs)− (ψj ◦ θs)xk‖) <
1

L

for j = 1, · · · , L, |s| ≤ L (Use the compactness of {ψj ◦ θs | |s| ≤ L}.
See also the argument just after Lemma 5.11).

(2) We have

‖α̃n(xk)− θt(xk)‖]ϕ > δ.

Let Θ : L∞([−L,L], dm(s)) ⊗ (M̃, ϕ) → (M̃ω,θ, ϕ
ω) be the inclusion

mentioned in Section 5 (an inclusion coming from the Rohlin property
of θ), where dm(s) is the normalized Haar measure of [−L,L]. Set

ỹ := ([−L,L] 3 s 7→ θs(xk)) ∈ L∞([−L,L], dm(s))⊗ M̃,

y := Θ(ỹ).

Since we would have α̃n ◦ θ−t is trivial on M̃ω,θ, we would have

α̃n(Θ(f ⊗ b)) = (α̃n(bΘ(f))

= α̃n(b)θt(Θ(f))

= α̃n(b)Θ(f(· − t))
= Θ(α̃n(b)f(· − t))
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for f ∈ L∞([−L,L]) and b ∈ M̃ . Hence we would have

α̃n(y) = Θ(z),

where z is an element of L∞([−L,L], dm(s)) ⊗ M̃ satisfying z(s) =
α̃n(θs−t(xk)) for s ∈ [−L + t, L − t] (Note that the value z(s) is a
unitary element of M̃ for each s ∈ [−L,L] \ [−L + t, L − t] which is
completely determined by ỹ. However, it is not important what it is).
Hence we would have

‖α̃n(y)− y‖]ϕω ≥ (

∫
[−L+t,L−t]

(‖α̃n(θs−t(xk))− θs(xk)‖]ϕ)2 dm(s)

−
∫

[−L,−L+t]∪[L−t,L]

22 dm(s))1/2

≥ (

∫
[−L,L]

δ2 dm(s)− 4t

L
)1/2

= (δ2 − 4t

L
)1/2.

Since we have

(θr(y))s = θs(y)

for any 0 < r < 1, s ∈ [−L+ r, L− r], we have

‖θr(y)− y‖]ϕω = (

∫
[−L,L]

(‖(θr(y))s − ys‖]ϕ)2 dm(s))1/2

≤ (

∫
[−L,−L+1]∪[L−1,L]

22 dm(s))1/2

=
2√
L

for |r| ≤ 1. We also have

‖[y, ψi]|Θ(L∞([−L,L])⊗M̃)‖ =

∫
[−L,L]

‖[ỹs, ψi]‖ dm(s)

=

∫
[−L,L]

‖[θs(xk), ψj]‖ dm(s)

<

∫
[−L,L]

1

L
dm(s)

=
1

L

for j = 1, · · · , L. Hence by Lemma 5.3 of Masuda–Tomatsu [44] (or
by the same argument as that of Lemmas 4.11 and 5.15), there exists
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a representing sequence {y′l} of y with

lim
n→ω
‖[y′l, ψj}‖ <

1

L
+ 2ε.

Hence there would exist a sequence {yl} of M̃ with the following prop-
erties.

(1) We have ‖yl‖ ≤ 1.
(2) We have ‖[yl, ψj]‖ → 0 for any j = 1, 2, · · · .
(3) For any j = 1, 2, · · · , we have ‖θr(yl) − yl‖]ϕ → 0 uniformly for

r ∈ [−1, 1].
(4) We have ‖α̃n(yl)− θt(yl)‖]ϕ ≥ δ/2 for any l.

This would contradict the assumption that α̃n ◦ θ−t were trivial on
M̃ω,θ. �

Lemma 5.25. For each γ ∈ Ĝ×R = Ĝ×R, there exists a unitary u
of M̃ω,θ with α̃m ◦ θs(u) = 〈(m, s), γ〉u for any (m, s) ∈ G×R.

Proof. The proofs of Theorems 4.10 and 7.7 of Masuda–Tomatsu [44]
work in our case. �

Lemma 5.26. There exist a non-zero projection e of (M̃ω,θ)
θ with α̃(e)

orthogonal to e.

Proof. By the previous lemma, when p 6= 0, for each natural number l,
there exists a unitary u of M̃ω,θ with α̃(u) = e2πi/pu and with θs(u) =

e−is/lu for any s. When p = 0, there exists a unitary u of M̃ω,θ with
α̃(u) = −u and with θs(u) = e−is/lu for any s. Hence when p 6= 0, there
exists a spectral projection e of u with α̃(e) ≤ 1− e, τω(e) = 1/p and
with τω(|e − θs(e)|2) ≤ 1/(2l) for |s| ≤ 1. When p = 0, it is possible
to choose a spectral projection e of u with α̃(e) = 1 − e, τω(e) = 1/2
and with τω(|e − θs(e)|2) ≤ 1/(2l) for |s| ≤ 1. By the usual diagonal
argument, it is possible to choose a desired projection. �

Theorem 5.27. (See Theorem 1 (2) of Kawahigashi–Sutherland–Takesaki)
For an automorphism α of M , α is centrally trivial if and only if its
canonical extension is inner.

Proof. First, assume that α̃ is not centrally trivial. Then by the pre-
vious lemma, neither is ˜̃α. Hence neither is α centrally trivial (See,
for example, Lemmas 5.11 and 5.12 of Sutherland–Takesaki [56]). The
above argument means that if α is centrally trivial, then α̃ is centrally
trivial. Since M̃ is of type II, any centrally trivial automorphism of M̃
is inner. The reverse direction is trivial by the central triviality of a
modular automorphism group. �
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Remark 5.28. Finally, we remark that by our results and the result
of Masuda [39], if we admit that AFD factors are completely classified
by their flows of weights, it is possible to classify the actions of discrete
amenable groups on AFD factors without separating cases by the types
of the factors.
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