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4 CONTENTS

Notation table. Here we fix notation used throughout this thesis.

• For m ∈ N, denote by Zm the cyclic group of order m.
• Denote by Fn the free group of rank n for n ∈ N.
• Denote by F∞ the free group of (countable) infinite rank.
• For a group Γ, we denote by D(Γ) the commutator subgroup of Γ, i.e., the subgroup

of Γ generated by commutators sts−1t−1, s, t ∈ Γ.
• For two actions σ and τ of a group Γ, denote by σ × τ the diagonal action of σ and τ .
• When the action α : Γ y X is clear from the context, we denote αs(x) and αs(U) by
s.x and sU for s ∈ Γ, x ∈ X, and U ⊂ X.
• For a subset U of a topological space, its closure and interior are denoted by cl(U) and

int(U) respectively.
• Denote by e the unit element of a group.
• For a subset S of a set, denote by χS the characteristic function of S.
• For a set X, denote by ∆X the diagonal set {(x, x) : x ∈ X} of X ×X.
• Denote by K(H) and B(H) the C∗-algebras of all compact operators and all bounded

operators on a Hilbert space H respectively. When H = `2(N), we denote them by K
and B respectively.
• Denote by ⊗ the minimal tensor product of C∗-algebras. We use the same notation for

the minimal tensor product of completely positive maps.
• Let A be a C∗-algebra. For a projection p in A or A⊗K, denote by [p]0 the element of
K0(A) represented by p.
• For a ∗-homomorphism α between C∗-algebras, denote by α∗,i the homomorphism in-

duced on the Ki-groups.
• For an action α : Γ y A of a group on a unital C∗-algebra, let Aoalg Γ denote its alge-

braic crossed product, i.e., the ∗-subalgebra of the reduced crossed product generated
by A and Γ.
• For the simplicity of notation, in the reduced crossed product B = Aor Γ, we denote

the unitary of B corresponding to s ∈ Γ by the same symbol s.
• Let E : AorΓ→ A denote the canonical conditional expectation on the reduced crossed

product. That is, the unital completely positive map defined by the formula E(as) :=
δe,sa for a ∈ A and s ∈ Γ.
• For x ∈ A or Γ and s ∈ Γ, set Es(x) := E(xs−1). This is referred to as the sth

coefficient of x.
• For a unital C∗-algebra, we denote by C the C∗-subalgebra generated by the unit.
• For n,m ∈ N and a C∗-algebra A, let Mn,m(A) denote the space of n by m matrices

over A. As usual, for a matrix [ai,j ]i,j ∈Mn,m(A), we set [ai,j ]
∗
i,j := [a∗j,i]i,j ∈Mm,n(A).

Note that Mn(A) := Mn,n(A) is a C∗-algebra. We denote Mn(C) by Mn for short.
• For a C∗-algebra A and a finite set X, denote by MX(A) the C∗-algebra of all A-valued
X by X matrices.



CHAPTER 1

Introduction

1. Introduction

A concept of amenability is first introduced for groups by von Neumann in order to explain
the Banach–Tarski paradox. Since then it plays crucial roles in many subjects, which include
operator algebras, ergodic theory, and topology. Inspired by amenability of groups, this concept
is introduced for many other mathematical objects. To understand dynamical systems of non-
amenable groups, Zimmer introduced a notion of amenability in the measurable context ([59],
[60]). In the celebrated paper [13], Connes, Feldman, and Weiss showed that any amenable
orbit equivalence relation is hyperfinite. In particular they concluded a crucial structural result
on amenable factors, namely, the unicity of Cartan subalgebras up to conjugacy. Inspired by
works in measurable dynamical systems, Anantharaman-Delaroche [1] introduced amenability
for topological dynamical systems. Nowaday, it is known that topological amenable dynamical
systems have striking applications in many subjects, which include topology and theory of both
C∗- and von Neumann algebras. We refer the reader to the survey paper of Ozawa [36] for
further information.

In this thesis, we construct amenable dynamical systems with new interesting properties. We
also use our examples to reveal new phenomena of nuclearity (which is equivalent to amenability)
of C∗-algebras. Our results are divided to four chapters. We next introduce main results of each
chapter. For the precise statements, see the introduction of the corresponding chapter.

In Chapter 2, we compute K-groups of amenable Cantor systems of free groups arising as
the diagonal action of the boundary action and a profinite action. We also show that their
crossed products are in a classifiable class, thus we can decide their isomorphism classes. As
a result, we obtain the first continuously many examples of amenable Cantor systems of free
groups whose crossed products are classified and pairwise non-isomorphic. We construct free
examples, which extends a result of Elliott and Sierakowski [17]. The results of this chapter is
based on the author’s paper [52].

In Chapter 3, we extend the existence theorem of minimal skew product extensions of dy-
namical systems of amenable groups obtained by Glasner and Weiss [20] to general amenable
dynamical systems. This provides many new examples of amenable minimal dynamical systems
for arbitrary exact groups. In particular we give a generalization of a theorem of Rørdam and
Sierakowski [48]. Roughly speaking, their result shows that the structure of a group cannot be
an obstruction to form a Kirchberg algebra. Our generalization further says that the structure
of neither a group nor a space can be an obstruction to form a Kirchberg algebra. The results
of this chapter is based on the author’s paper [54].

In Chapter 4, by using amenable dynamical systems, we show that the class of nuclear C∗-
algebras do not form a monotone class. More strongly, we show that the decreasing intersection
of nuclear C∗-algebras can lost the operator approximation property, which is a weak version
of nuclearity. Note that in the von Neumann algebra case, it is well-known that the injective
von Neumann algebras do form a monotone class. This reflects how C∗-algebras are sensitive
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6 1. INTRODUCTION

compared with von Neumann algebras. The results of this chapter is based on the author’s
paper [53].

In Chapter 5, we study how typical Cantor systems behave. We show that amenability is
always generic whenever a given group is exact. For infinite free product groups, we further show
that a generic Cantor system has a certain extremal transitivity. In particular this shows that
primeness is generic. To the best knowledge of the author, this is the first existence result of an
amenable minimal prime topological dynamical system of a non-amenable group. We also use
this property to show that the reduced group C∗-algebra of any infinite free product group with
the approximation property [24] (e.g., the free group F∞) has an ambient nuclear C∗-algebra
with no proper intermediate C∗-algebra. This is somehow surprising, since the developments
of classification theory of nuclear C∗-algebras show that nuclear C∗-algebras admit mysterious
isomorphisms and embeddings. We also emphasize that the existence of a minimal ambient
nuclear C∗-algebra of a non-nuclear C∗-algebra is already new and highly nontrivial. See the
introduction of Chapter 5 for the details. By using Kirchberg’s O2-absorption theorem, we
also show that the Cuntz algebra O2 admits non-nuclear C∗-subalgebras with no intermediate
C∗-algebras. The results of this chapter is based on the author’s paper [55].

2. Preliminaries

Here we collect the fundamental knowledge and notation used throughout this thesis. The
basic references are the book [6] of Brown and Ozawa and the book [45] of Rørdam.

2.1. Pure infiniteness of C∗-algebras and classification theorem. Recall that a unital
C∗-algebra A is purely infinite and simple if for any nonzero positive element a ∈ A, there is
b ∈ A with b∗ab = 1. This notion was introduced by Cuntz in the study of the Cuntz algebras
On; 2 ≤ n ≤ ∞ [10]. Pure infiniteness plays an important role in the study of C∗-algebras. See
[10], [28], [29], [39], and [44] for example.

A C∗-algebra is said to be a Kirchberg algebra if it is simple, separable, nuclear, and purely
infinite. A celebrated theorem of Kirchberg [28] and Phillips [39] states that the Kirchberg
algebras are classified in terms of the KK-theory. In particular, the Kirchberg algebras in the
UCT class (i.e., the class of C∗-algebras satisfying the universal coefficient theorem of Rosenberg–
Schochet [49]) are classified by their K-theoretic data. More precisely, for unital cases they
are classified by the triplet (K0, [1]0,K1) and for non-unital cases they are classified by the
pair (K0,K1). Consequently all Kirchberg algebras in the UCT class are isomorphic to the
one constructed in [44]. Note that all possible K-theoretic data are exhausted by a Kirchberg
algebra in the UCT [44, Theorem 3.6]. Typical examples of Kirchberg algebras in the UCT class
are the Cuntz algebras On [9] and the Cuntz–Krieger algebras OA [12]. Kirchberg algebras in
the UCT class also naturally arise in many constructions of C∗-algebras. For example, certain
graphs (see e.g., [42]) and certain topological dynamical systems (see e.g., [2], [30], [43], [48],
and [50]) provide Kirchberg algebras in the UCT class.

For these reasons, it is important to know whether a given C∗-algebra is purely infinite.
Obviously pure infiniteness implies other infiniteness properties; e.g., tracelessness, properly
infiniteness. The latter conditions are easy to check in many situations. However, even in the
nuclear case, Rørdam has constructed a counterexample for the converse implications [46]. See
[45] and the references therein for more information on pure infiniteness and Kirchberg algebras.

2.2. Approximation properties for C∗-algebras and groups. For C∗-algebras A, B
and a closed subspace X of B, we define a subspace F (A,B,X) ⊂ A⊗B by

F (A,B,X) := {a ∈ A⊗B : (ϕ⊗ idB)(a) ∈ X for all ϕ ∈ A∗}.
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A triplet (A,B,X) is said to have the slice map property if the equality F (A,B,X) = A ⊗X
holds. Here A⊗X denotes the closed subspace of A⊗B spanned by elements a⊗x; a ∈ A, x ∈ X.
Note that when there is a completely bounded projection from B onto X, the triplet (A,B,X)
has the slice map property. Note also that a C∗-algebra A is exact if and only if for any C∗-
algebra B and its ideal J , the triplet (A,B, J) has the slice map property. In general, deciding
whether a given triplet has the slice map property is a sensitive and difficult problem. We give
a definition of the SOAP (strong operator approximation property) and the OAP (operator
approximation property) in terms of the slice map property. See [6, Section 12.4] for the detail.

Definition 2.1. A C∗-algebra A is said to have the SOAP (resp. the OAP) if for any C∗-
algebra B (resp. for B = K) and for any closed subspace X of B, the triplet (A,B,X) has the
slice map property.

It is not hard to show the following implications

Nuclearity ⇒ CBAP ⇒ SOAP⇒ OAP, exactness.

All implications are known to be proper and there are no implications in the last two properties.
However, for the reduced group C∗-algebras, the SOAP and the OAP are equivalent. See Chapter
12 of [6] for details. The SOAP and the OAP have a strong connection to the property of groups
called the AP (approximation property [24]). Here we give the following equivalent condition
as a definition of the AP.

Definition 2.2. A discrete group Γ is said to have the AP if there is a net (ϕi)i∈I of finitely
supported complex valued functions on Γ such that mϕi ⊗ idB converges to the identity map
in the pointwise norm topology. Here mϕ(x) :=

∑
g∈Γ ϕ(g)Eg(x)g is the multiplier of ϕ for a

finitely supported function ϕ on Γ defined on the reduced group C∗-algebra C∗r(Γ).

This property is characterized in the following way.

Proposition 2.3. Let Γ be a discrete group. Then the following are equivalent.

(1) The group Γ has the AP.
(2) The C∗-algebra C∗r(Γ) has the SOAP.
(3) The C∗-algebra C∗r(Γ) has the OAP.
(4) There is an intermediate C∗-algebra between C∗r(Γ) and L(Γ) which has the SOAP or the

OAP.

In particular, the AP implies exactness.

See Section 12.4 of [6] for the proof. Note that the implication (4)⇒(1) follows from the
proofs of (2), (3)⇒ (1).

A group Γ is said to have the ITAP (invariant translation approximation property) if we
have the equality

L(Γ) ∩ C∗u(Γ) = C∗r(Γ) (in B(`2(Γ))).

Here C∗u(Γ) denotes the uniform Roe algebra of Γ, i.e., the C∗-subalgebra of B(`2(Γ)) generated
by `∞(Γ) and C∗r(Γ). Note that under the canonical isomorphism C∗u(Γ) ∼= `∞(Γ) or Γ, the
intersection L(Γ)∩C∗u(Γ) is identified with the C∗-subalgebra of `∞(Γ)orΓ consisting of elements
whose coefficients sit in C. Zacharias [58] showed that the AP implies the ITAP. We do not
know either the ITAP holds or not for groups without the AP.

2.3. Minimality of dynamical systems. Minimality of topological dynamical systems is
an indecomposability condition of topological dynamical systems. It is regarded as a topological
analogue of ergodicity. Hence it is natural and important to study minimal dynamical systems.
Here we recall the definition of minimal dynamical system.
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Definition 2.4. A topological dynamical system α : Γ y X is said to be minimal if every
orbit of α is dense in X.

It is clear from the definition that α is minimal if and only if there is no proper Γ-invariant
open/closed subset of X. Minimality has a strong relation with the simplicity of the reduced
crossed product. Obviously minimality is necessary for the simplicity of the reduced crossed
product. The converse is not true in general. Archbold and Spielberg [3, page 122, Corollary]
showed the converse under the additional assumption that the action is topologically free. Recall
that a topological dynamical system α : Γ y X is said to be topologically free if it acts freely
on a dense subset of X.

2.4. Amenability of dynamical systems. (Topological) amenability of dynamical sys-
tems is a dynamical analogue of amenability of discrete groups. First we review the definition
of topological amenability. For the definition, we need the space Prob(Γ), which is the space
of all probability measures on Γ with the pointwise convergence topology. On Prob(Γ), Γ acts
from the left by s.µ(t) := µ(s−1t) for s, t ∈ Γ and µ ∈ Prob(Γ).

Definition 2.5. A dynamical system α of a group Γ on a compact Hausdorff space X is
said to be amenable if there is a sequence (µn)n of continuous maps

µn : x ∈ X 7→ µxn ∈ Prob(Γ)

such that for all s ∈ Γ, we have

lim
n→∞

sup
x∈X

(‖s.µxn − µs.xn ‖1) = 0.

Roughly speaking, what this condition means is the existence of Følner-like distributions on
the orbit structure. In Chapter 3, we will see how it plays the role of Følner sets in a purely
dynamical problem.

Amenable dynamical systems arise naturally in many situations. Here we review a few
examples of amenable dynamical systems.

Examples 2.6 (See [6]). • Any dynamical system of an amenable group is amenable.
• The Gromov boundary action of a hyperbolic group is amenable.
• For a second countable locally compact group G, a discrete subgroup Γ, and a closed co-

compact amenable subgroup P , the left multiplication action of Γ on G/P is amenable.
• The left translation action of Γ on its Stone-Čech compactification βΓ is amenable if

and only if Γ is exact.

Next we review some basic and important properties of amenable dynamical systems. For
an amenable dynamical system and for any non-amenable subgroup Λ of the acting group,
there is no Λ-invariant probability measure. It is easy to check that any amenable minimal
dynamical system of Fn must be topologically free. In fact, this holds for all C∗-simple groups.
See Theorem 14 in [38]. The most important feature of amenability for us is that it ensures
that the crossed product has nice properties. For example, the reduced crossed product of an
amenable dynamical system is nuclear (in fact this characterizes the amenability) [1], satisfies
the UCT [56], and coincides with the full crossed product [1].

2.5. Extensions and factors of dynamical systems. Let α : Γ y X and β : Γ y Y be
actions of a group on compact Hausdorff spaces. The α is said to be an extension of β if there
is a Γ-equivariant quotient map π : X → Y . In this case β is said to be a factor of α. The
action α : Γ y X is said to be prime if there is no nontrivial factor of α. Obviously freeness and
amenability pass to extensions and minimality passes to factors.
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2.6. Transformation groupoids, continuous orbit equivalence, and topological
full groups. We refer the reader to Section 5.6 of [6] for the definition and basic facts on
étale groupoids. For each topological dynamical system α : Γ y X, we have an associated étale
groupoid X oα Γ, called the transformation groupoid of α. As a topological space, it is usually
defined to be the space

{(g.x, g, x) ∈ X × Γ×X : x ∈ X, g ∈ Γ}.
(Sometimes we omit the first or third coordinate from the definition, which define the isomor-
phic étale groupoids in the obvious way.) With this definition, the range and source map of
X oα Γ coincide with the projections onto the first and third coordinate respectively. For a
composable pair (g.x, g, x) and (h.y, g, y), i.e., in the case x = h.y, their composite is defined to
be (g.x, gh, y) = (gh.y, gh, y).

We next recall the notion of continuous orbit equivalence, which has a strong relation with
the structure of transformation groupoids. To state the definitions, first we recall the definition
of orbit cocycles.

Definition 2.7. Let α1 and α2 be minimal topologically free dynamical systems of groups
Γ1 and Γ2 respectively. Let F : X1 → X2 be an orbit preserving homeomorphism between α1

and α2. A map c : Γ1 ×X1 → Γ2 is said to be an orbit cocycle of F if it satisfies the equation
F (α1(g)(x)) = α2(c(g, x))(F (x)) for all (g, x) ∈ Γ1 ×X1.

Note that by topological freeness, the cocycle equation

c(g, h.x)c(h, x) = c(gh, x)

holds on a dense subset of Γ1 × Γ1 × X1. If we further assume that either α2 is free or c is
continuous, then the cocycle equation holds on Γ1 × Γ1 ×X1.

Definition 2.8. Let α1 and α2 be as above. Two dynamical systems α1 and α2 are said
to be continuously orbit equivalent if there is an orbit preserving homeomorphism F : X1 → X2

such that both F and F−1 admit a continuous orbit cocycle.

It is easy to check that two minimal topologically free dynamical systems are continuously
orbit equivalent if and only if their transformation groupoids are isomorphic as étale groupoids.

Next we recall the definition of the topological full group. This is the group that gathers
the local behaviors of a topologically free Cantor system. Here and throughout this thesis, we
call a dynamical system on the Cantor set a Cantor system.

Definition 2.9. The topological full group [[γ]] of a topologically free Cantor system γ : Γ y
X is the group of all homeomorphisms F on X with the following property. For each x ∈ X,
there are a neighborhood U of x and s ∈ Γ satisfying F (y) = s.y for all y ∈ U .

It is not hard to show that a homeomorphism F on X is contained in [[γ]] if and only if
there is a partition (Us)s∈Γ of X by clopen sets such that F (x) = s.x for any x ∈ Us and s ∈ Γ.
Hence the topological full groups are countable.

It is immediate from the definition that the continuous orbit equivalence implies the isomor-
phism of topological full groups. With minimality assumption, Matui showed the converse [33].
This rigidity theorem is originally shown in [23] for the integer group.

2.7. Gromov boundary. For a pair of a finitely generated group Γ and a finite generating
set S of Γ, we equip a geodesic left-invariant metric dS on Γ by dS(g, h) := |g−1h|S where | · |S is
the length function on Γ determined by S. The quasi-isometric class of dS is independent of the
choice of S. Hence any quasi-isometric invariant property of (geodesic) metric spaces defines a
property of finitely generated groups. Hyperbolicity is one such property. Recall that a discrete
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geodesic space is said to be hyperbolic if there is a constant δ > 0 such that for any geodesic
triangle, each edge is contained in the δ-neighborhood of the union of other two edges.

Basic examples of hyperbolic groups are the finitely generated free groups and the funda-
mental groups of closed manifolds of negative curvature. For each hyperbolic group Γ, there is a
canonical boundary ∂Γ, called the Gromov boundary, which is a metrizable compact Hausdorff
space. Here we do not explain the precise definitions of the Gromov boundary and boundary
action, since it is technically involved. Roughly speaking, ∂Γ is the space of all infinite geodesic
rays in Γ modulo a certain equivalence relation. The left multiplication action of Γ on itself nat-
urally induces an action on the Gromov boundary ∂Γ, called the boundary action. See Section
5.3 of [6] or [19] for details. For finitely generated free groups, we have a simple description of
the Gromov boundary (which is also known as the ideal boundary). See Chapter 2 for details.
The Gromov boundary actions are known to be amenable. For a proof, see Section 5.3 of [6] for
instance.
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CHAPTER 2

Amenable minimal Cantor systems of free groups arising from
diagonal actions

The Cantor set is characterized by the following four properties: compactness, total dis-
connectedness, metrizability, and not having isolated points. From this characterization, the
property ‘X is (homeomorphic to) the Cantor set’ is preserved by many operations. Moreover,
the properties which characterize the Cantor set make topological difficulties small in many
situations. By these properties, the Cantor set can be considered as a topological analogue of
the Lebesgue space without atoms. Moreover, in the category of minimal dynamical systems on
metrizable compact spaces, the Cantor set has a “universal” property in the following sense. For
any minimal dynamical system of a countable infinite group Γ on a metrizable compact space,
it is realized as a factor of a minimal Cantor Γ-system. This follows from a similar proof to the
case Γ = Z; see Section 1 in [22]. Therefore the study of minimal Cantor systems is impor-
tant. Furthermore, Cantor systems themselves are attractive objects. The underlying spaces of
many important dynamical systems are homeomorphic to the Cantor set. This includes certain
symbolic dynamical systems, the boundary actions of virtually free groups, and the odometer
transformations.

The free group Fn is one of the most interesting and tractable non-amenable groups. Most of
the known non-amenable groups contain Fn, and it has nice properties: the universal property
(namely, the freeness), exactness, the Haagerup property, weak amenability, hyperbolicity (with
the nice boundary), and so on. Hence, to understand the phenomena of non-amenable groups,
the free groups are suitable objects for the first study.

The aim of this chapter is to construct and study amenable minimal Cantor systems of
free groups. This is motivated by the following two natural questions. The first question is
finding new concrete and tractable presentations of Kirchberg algebras in the UCT class, which
is asked in the book [45] of Rørdam. (See the last paragraph of page 85.) The second question
is about how well the crossed products of amenable minimal Cantor Fn-systems remember the
information about the original systems.

Note that for the case of the group Z, analogues of both questions have complete answers.
They are the celebrated results of Giordano, Putnam, and Skau [22]. For the first question, they
have shown that every simple unital AT-algebra of real rank zero whose K1-group is isomorphic
to Z is presented as the crossed product of a minimal Cantor Z-system and this is the only
possible case. For the second question, they have shown that two minimal Cantor Z-systems
have isomorphic crossed products exactly when they are strongly orbit equivalent.

To start the study on these problems, we need as many well-understandable examples of
amenable minimal Cantor Fn-systems as possible. Until now, only a few examples have been
constructed and studied. In this chapter, we construct continuously many examples of amenable
minimal Cantor Fn-systems whose crossed products are completely determined. As a conse-
quence, for the first question, we obtain new concrete presentations for certain continuously
many Kirchberg algebras in the UCT class. For the second question, our examples give a hope-
ful prospect. As examples, we show that the diagonal actions of the boundary actions and the
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products of odometer transformations are classified in terms of continuous orbit equivalence by
using a C∗-algebraic technique.

A recent work of Elliott and Sierakowski [17] gives an example of amenable minimal Cantor
Fn-systems which are distinguished by K-theory. They constructed an amenable minimal free
Cantor Fn-system whose K0-group vanishes. In particular, it has the different K0-group from
that of the boundary action. Their construction is based on the idea developed in the paper
[48]. Our strategy is different from them. We construct amenable minimal Cantor Fn-systems
from the diagonal actions. This construction is quite simple and gives many fruitful and concrete
examples of amenable minimal Cantor Fn-systems.

Main results. Here we collect the main results of this chapter.
Throughout this chapter, the K-theory of the reduced crossed product of a dynamical system

γ is referred to as the K-theory of γ for short.

Theorem A (Theorem 3.5). Let G be a subgroup of Q⊕∞ which contains Z⊕∞ as a subgroup
of infinite index. Let 2 ≤ n <∞ and k be an integer. Then there is an amenable minimal Cantor
Fn-system that satisfies the following properties.

• The pair of K0-group and the unit [1]0 is isomorphic to(
G⊕ ΛG,n, 0⊕ [k(n− 1)−1]

)
,

where ΛG,n is the subgroup of Q/Z consisting of elements whose order divides the prod-
uct of (n− 1) and the order of a finite subgroup of G/Z⊕∞.
• The K1-group is isomorphic to Z⊕∞.
• The crossed product is a Kirchberg algebra in the UCT class.

We also show similar results for non-amenable finitely generated virtually free groups (The-
orem 3.6). As a consequence of these results, we obtain the following decomposition theorem.

Corollary B (Corollary 3.7). For a torsion free abelian group G of infinite rank, consider
a Kirchberg algebra A in the UCT class satisfying (K0(A), [1]0,K1(A)) ∼= (G ⊕ Q/Z, 0,Z⊕∞).
Then for any non-amenable finitely generated virtually free group Γ, A is decomposed as the
crossed product of an amenable minimal topologically free Cantor Γ-system.

We also see that even if we restrict our attention to the free Cantor systems, we still obtain
the existence of continuously many amenable minimal Cantor systems. We further work on the
infinite rank free group, and finally obtain the following result.

Theorem C (Theorem 3.8). Every non-amenable virtually free group admits continuously
many amenable minimal free Cantor Γ-systems whose crossed products are mutually non-isomorphic
Kirchberg algebras in the UCT class.

In the proof of Theorem A, techniques of the computation of K-theory are developed for
certain Cantor systems. In Section 4, we give computations of the K-theory for the diagonal
actions of the boundary actions and the products of the odometer transformations. From our
computations, their topological full groups, continuous orbit equivalence classes, and strong orbit
equivalence classes (which we define later) are classified. Here we collect the classification results.
First we present the Cantor systems which we will classify more precisely. For each free group
Fn, fix an enumeration {s1, . . . , sn} of the canonical generators. For 2 ≤ n <∞, 1 ≤ k ≤ n, and
a sequence N1, . . . , Nk of infinite supernatural numbers, define a Cantor Fn-system by

γ
(n)
N1,...,Nk

:= βn ×

 k∏
j=1

αNj ◦ π
(n)
j

 ,
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where βn denotes the boundary action of Fn, αN denotes the odometer transformation of type

N , and π
(n)
j denotes the homomorphism Fn → Z given by sj 7→ 1 and si 7→ 0 for i 6= j.

Theorem D (Proposition 4.2 and Theorem 4.5). For two Cantor systems γ1 := γ
(n)
N1,...,Nk

and γ2 := γ
(m)
M1,...,Ml

defined as above, the following conditions are equivalent.

(1) They are strongly orbit equivalent.
(2) They are continuously orbit equivalent.
(3) Their topological full groups are isomorphic.
(4) The commutator subgroups of their topological full groups are isomorphic.
(5) Their crossed products are isomorphic.
(6) Their K0-invariants (K0, [1]0) are isomorphic.
(7) The equations k = l and n = m hold and there are a permutation σ ∈ Sk and sequences

(n1, . . . , nk) and (m1, . . . ,mk) of natural numbers that satisfy
∏k
j=1 nj =

∏k
j=1mj and

niNi = miMσ(i).

1. Preliminaries

1.1. Gromov boundaries of free groups. Since free groups have a combinatorial aspect
(cf. [32]), it is not so surprising that their Gromov boundaries also have a combinatorial aspect.
Here we recall an explicit description of the boundaries of free groups and their combinatorial
aspect that we need in the computation of K-groups in Theorem 3.5.

Definition 1.1. Let S be the set of canonical generators of Fn and set S̃ := StS−1. Define

the subspace ∂Fn of
∏

N S̃ by

∂Fn :=

{
(sm)m∈N ∈

∏
N
S̃ : sm+1 6= s−1

m for all m ∈ N

}
.

We equip ∂Fn with the topology induced from the product topology.

It is easy to check that ∂Fn is homeomorphic to the Cantor set.
Each element of ∂Fn is regarded as a (one-sided) infinite reduced word of the free basis S.

For an element w of Fn or ∂Fn with the reduced word w = s1 · · · sk · · · , the elements s1 · · · sk
and sk are referred to as the first kth segment of w and the kth alphabet of w, respectively. For
w ∈ Fn, denote by |w| the length of the reduced word of w. For w ∈ Fn and k ≤ |w| = m, the
element sm−k+1 · · · sm is referred to as the last kth segment of w.

For z ∈ Fn and w ∈ ∂Fn, we define the product z ·w by the same rule as that of the product
of two elements of Fn. This is the boundary action of Fn. We denote the boundary action of Fn
by βn, or simply by β if the rank n is obvious from the context.

Similarly to the elements of free groups, for any other free basis T of Fn, every element w of
∂Fn can be expanded uniquely as an infinite reduced word of the free basis T . This enables us
to identify the boundary space ∂Fn with the space{

(tm)m∈N ∈
∏
N
T̃ : tm+1 6= t−1

m for all m ∈ N

}
,

where T̃ := T t T−1, for any free basis T of Fn. We always identify these spaces in this way
without further comments.

For a free basis T of Fn and t ∈ T̃ , we define the clopen subset Ω(t;T ) of ∂Fn to be the
subspace of all infinite reduced words whose first alphabet is t in the expansion with respect to
the free basis T . When the free basis T is obvious from the context, we simply denote it by Ω(t).
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More generally, for a free basis W of a finite index subgroup Γ of Fn and w ∈W tW−1, we define
the clopen subset Θ(w;W ) of ∂Fn to be the image of Ω(w;W )(⊂ ∂Γ) under the homeomorphism
∂Γ ∼= ∂Fn induced from the inclusion map. If we need to refer the entire group Λ = Fn, we
further denote it by Θ(w;W ; Λ).

1.2. Supernatural numbers and associated abelian groups. To describe certain abelian
groups, we recall the definition of the supernatural numbers. Denote by P the set of all prime
numbers. A supernatural number is a map from P into the set {0, 1, . . . ,∞}. A supernatural

number N is formally presented as the formal infinite product
∏
p∈P p

N(p) of powers of prime
numbers. By this presentation, supernatural numbers are naturally regarded as a generalization
of natural numbers. We say a supernatural number N is infinite if it is not a natural number.
Note that many operations of natural numbers are naturally extended to that of supernatural
numbers. (E.g., the (possibly infinite) product, the greatest common divisor, and the least
common multiple; which correspond to the summation, the infimum, and the supremum of the
corresponding functions N , respectively.)

For a supernatural number N , denote by Λ(N) the subgroup of Q/Z generated by the
elements whose order divides N and denote by Υ(N) the inverse image of the group Λ(N)
under the quotient homomorphism Q → Q/Z. Note that for two supernatural numbers N and
M , the groups Λ(N) and Λ(M) are isomorphic if and only if N = M holds, and the groups Υ(N)
and Υ(M) are isomorphic if and only if there are natural numbers n and m with nN = mM .

2. Elementary construction

In this section we give the construction of amenable minimal Cantor Fn-systems which plays
the fundamental role in the next two sections. The next proposition provides amenable minimal
dynamical systems of hyperbolic groups.

Proposition 2.1. Let Γ be a hyperbolic group. Let σ be a transitive action of Γ on a finite
set X. Then the diagonal action β × σ is amenable and minimal, and its crossed product is
isomorphic to Mn(C(∂Γ0) or Γ0), where Γ0 is the stabilizer subgroup of σ : Γ y X at a point,
which is independent of the choice of point up to conjugacy by transitivity, and n = ]X.

Proof. The amenability of β × σ is clear since it has an amenable factor. Fix x0 ∈ X and
denote by Γ0 the stabilizer subgroup of σ at x0. Then it is hyperbolic and the restriction of
the boundary action of Γ to Γ0 coincides with the boundary action of Γ0. This shows that the
restriction of β to Γ0 is minimal, hence β × σ is minimal.

The last claim immediately follows from Green’s imprimitivity theorem [21, Theorem 4.1].
However, we need a concrete isomorphism for later use, so we construct an isomorphism directly
here, which is a very special case of [21]. To do this, first we identify X with Γ/Γ0 by the
bijective map s ∈ Γ/Γ0 7→ s.x0 ∈ X. Take a cross section ρ of the quotient map Γ → Γ/Γ0.
Then define two maps π and u by

π : f ∈ C(∂Γ×X) 7→
⊕
x∈X

(
f ◦ ((β × σ)(ρ(x)))|∂Γ×{x0}

)
∈MX(C(∂Γ0) or Γ0)

and

u : s ∈ Γ 7→
∑
x∈X

Es.x,x ⊗ (ρ(s.x)−1sρ(x)) ∈MX(C(∂Γ0) or Γ0),

here we identify ∂Γ × {x0} with ∂Γ0 in the canonical way. Then the pair (π, u) is a covariant
representation of β × σ. This covariant representation induces a ∗-isomorphism θ between two
∗-algebras C(∂Γ×X) oalg Γ and MX(C(∂Γ0) oalg Γ0). Then by the amenability of β × σ, the
universal C∗-enveloping algebra of the ∗-algebra C(∂Γ ×X) oalg Γ coincides with the reduced
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crossed product of β × σ, and similarly for the second one. This shows that the ∗-isomorphism
θ extends to the desired isomorphism. �

A particularly interesting case is the one that the group Γ is a free group.

Remark 2.2. Let 2 ≤ n <∞. We apply Proposition 2.1 to the case Γ = Fn and a transitive
action σ : Fn y X on a set X with ]X = k ∈ N. Then by Schreier’s formula [32, Chap.1,
Prop.3.9], any subgroup of Fn of the index k is the free group of rank m := k(n− 1) + 1. Hence
the resulting crossed product is isomorphic to Mk(C(∂Fm) or Fm), which only depends on the
cardinality ofX. However, the inclusion C(∂Fn)orFn → C(∂Fn×X)orFn ∼= Mk(C(∂Fm)orFm)
does depend on the choice of transitive action. The difference between them is crucial in the
next section.

3. More general constructions of amenable minimal Cantor Fn-systems

In this and the next sections we investigate more general constructions of amenable minimal
Cantor systems for free groups. We construct continuously many amenable minimal Cantor
systems and classify them in terms of the crossed products.

For computations of K-groups in Theorem 3.5, we need a few lemmas and facts about the
K-theory of the boundary algebra C(∂Fn) or Fn.

In [50], Spielberg showed that the boundary algebras of free groups are presented as a
Cuntz–Krieger algebra. (The canonical generators are explicitly given.) This presentation and
Cuntz’s computation of the K-theory of Cuntz–Krieger algebras [11, Proposition 3.1] show that
the K0-group of the boundary algebra is equal to

(⊕
s∈S Z[ps]0

)
⊕ Zn−1[1]0, where ps denotes

the characteristic function of the clopen subset Ω(s) for each s ∈ S̃. Here for an element x of
a group G, we denote the subgroup 〈x〉 by Zx (resp. Zmx) if x is of infinite order (resp. x is
of order m). Notice that for s ∈ S, the equality s.Ω(s−1) = ∂Fn \ Ω(s) holds. This implies the
equality [ps]0 + [ps−1 ]0 = [1]0. We also have that the K1-group is isomorphic to Zn.

We also need a few notations for abelian groups. For an abelian group G, the torsion
subgroup Gtor of G is the subgroup of G consisting of all torsion elements. For a finitely
generated abelian group G, denote by Gfree the quotient group G/Gtor. The subgroup Gtor is
referred to as the torsion part of G and the quotient Gfree is referred to as the free part of G.
By the structure theorem of finitely generated abelian groups, Gfree is indeed free abelian and
G is isomorphic to Gfree ⊕Gtor (in a non-canonical way). Every homomorphism h between two
finitely generated abelian groups induces a homomorphism between their free parts. We denote
it by hfree. Similarly, for a homomorphism h between two abelian groups, we denote by htor the
restriction of it to the torsion subgroup, and refer to it as the torsion part of h.

Every automorphism ϕ of Fn induces the automorphism Φ of C(∂Fn) or Fn by

s ∈ Fn 7→ ϕ(s) ∈ Fn
and

f ∈ C(∂Fn) 7→ f ◦ (∂ϕ)−1 ∈ C(∂Fn).

Here and below, for an automorphism ϕ of a hyperbolic group, denote by ∂ϕ the homeomor-
phism on the Gromov boundary induced by ϕ. Note that the mapping ϕ 7→ Φ preserves the
composition. The next give two lemmas about Φ∗,0.

Lemma 3.1. Let 2 ≤ n < ∞ and fix an enumeration S = {s1, . . . , sn} of S. Then, for any
A ∈ GL(n,Z), there is an automorphism ϕ of Fn such that with respect to the identification

K0(C(∂Fn) or Fn) =

(
n⊕
i=1

Z[psi ]0

)
⊕ Zn−1[1]0,
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Φ∗,0 is identified with A⊕ id.

Proof. We claim that for the following automorphisms

(i) the automorphism induced from a permutation of S,
(ii) the automorphism given by

s1 7→ s2s1 and si 7→ si for 2 ≤ i ≤ n,

the equality Φ∗,0 = t(ϕab)
−1⊕ id holds under the identification of

⊕
s∈S Z[ps]0 with the abelian-

ization Fab
n of Fn. Then the same condition holds for any element of the subgroup of Aut(Fn)

generated by these automorphisms. This ends the proof. Case (i) is obvious, so let ψ be the
automorphism of Fn given in case (ii). For our purpose, it is enough to expand [Ψ(ps)]0 as a
linear combination of [pt]0’s. By the definition of Ψ, for each s ∈ S, the projection Ψ(ps) is
the characteristic function of ∂ψ(Ω(s;S)) = Ω(ψ(s);ψ(S)). Then one can check easily that the
following three equations hold.

Ω(ψ(s1);ψ(S)) = s2.Ω(s1;S).

Ω(ψ(s2);ψ(S)) = Ω(s2;S) \ (s2.Ω(s1;S)).

Ω(ψ(si);ψ(S)) = Ω(si;S) for 2 < i ≤ n.
Here we only give a proof of the inclusion s2.Ω(s1;S) ⊂ Ω(ψ(s1);ψ(S)). The rest of the proof
is done in a similar way. Let w ∈ s2.Ω(s1, S) be given. Then the reduced form of w is of the

form s2s1v1s
k1
1 s

l1
2 v2 · · · for some vi ∈ 〈s3, . . . , sn〉, ki, li ∈ Z. (Here we allow the possibility that

vi = e, ki = 0, li = 0.) Then the expansion of w with respect to ψ(S) is given by reducing the
formal infinite product ψ(s1)v1(ψ(s2)−1ψ(s1))k1ψ(s2)l1v2 · · · to a reduced form (with respect to

ψ(S)). Note that since w = s2s1v1s
k1
1 s

l1
2 v2 · · · is reduced with respect to S, the equality v1 = e

implies k1 ≥ 0 and similarly for the other places. This shows that any cancellation does not
remove the first ψ(s1). Thus we have s2.Ω(s1, S) ⊂ Ω(ψ(s1), ψ(S)).

From these equations, we obtain the equations

Ψ([ps1 ]0) = [ps1 ]0,

Ψ([ps2 ]0) = [ps2 ]0 − [ps1 ]0,

Ψ([psi ]0) = [psi ]0 for 2 < i ≤ n.
This shows that the automorphism ψ satisfies our claim. �

Lemma 3.2. Let t and u be two distinct elements of S and let m ∈ Z. Let ψ be the auto-
morphism of Fn defined by

t 7→ t, u 7→ tmut−m, and v 7→ v for the other v ∈ S.

Then Ψ∗,0 is given by

[1]0 7→ [1]0, [pt]0 7→ [pt]0 −m[1]0, and [pv]0 7→ [pv]0 for u ∈ S \ {t}.

Proof. Since the set of integers satisfying the claim forms a group, it suffices to show it
for the case m = 1. Let ϕ1, ϕ2 be the automorphisms of Fn defined by ϕ1(u) = u−1, ϕ1(v) :=
v for v ∈ S \{u}, ϕ2(u) := tu, and ϕ2(v) := v for v ∈ S \{u}. Then a direct computation shows
the equality ψ = ϕ2 ◦ϕ1 ◦ϕ2 ◦ϕ1. Therefore, to compute Ψ∗,0, it suffices to compute (Φ1)∗,0 and
(Φ2)∗,0. The computation of (Φ1)∗,0 is easily derived from the equation [pu−1 ]0 = [1]0−[pu]0. The
(Φ2)∗,0 is computed in the proof of Lemma 3.1. Now the claim follows from a simple algebraic
computation. �
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Lemma 3.3. Let Fn be the free group. Enumerate S as S := {s1, . . . , sn}. Consider the
presentation

K0(C(∂Fn) or Fn) =

(
n⊕
i=1

Z[psi ]0

)
⊕ Zn−1[1]0,

where ps := χΩ(s;S) for s ∈ StS−1. Similarly, for each enumerated free basis W := {w1, . . . , wm}
of a finite index subgroup Γ of Fn, consider the presentation

K0(C(∂Fn × (Fn/Γ)) or Fn) =

(
m⊕
i=1

Z[q(wi;W )]0

)
⊕ Zm−1[rW ]0

where q(w;W ) := χΘ(w;W ) ⊗ δ[e] for w ∈ W tW−1 and rW := 1 ⊗ δ[e]. (This follows from the
isomorphism given in Proposition 2.1. See also the proof below.) Let

j : C(∂Fn) or Fn → C(∂Fn × (Fn/Γ)) or Fn

denote the canonical inclusion. Let A : Zn → Zn be an injective homomorphism and let l denote
the product of all elementary divisors of A. Then for any left invertible inclusion Q : Zn →
Zl(n−1)+1, there is an enumerated finite subset W = {w1, . . . , wm} of Fn satisfying the following
conditions.

• The subset W is a free basis of a subgroup Γ of Fn.
• The index [Fn : Γ] is l; hence one has m = l(n− 1) + 1.
• With respect to the above enumerated bases, (j∗,0)free is presented by QA.
• The torsion part of j∗,0 is injective.
• The image of

⊕n
i=1 Z[psi ]0 under j∗,0 is contained in the subgroup(

m⊕
i=1

Z[q(wi;W )]0

)
⊕ Λ

where Λ denotes the subgroup of Zm−1[rW ]0 generated by elements of order 2, which
must be either trivial or isomorphic to Z2.

Proof. First we show that if the claim holds for a homomorphism QA : Zn → Zl(n−1)+1,
then it also holds for any homomorphisms of the form BQAC where B ∈ GL(l(n− 1) + 1,Z)
and C ∈ GL(n,Z). To see this, take an enumerated finite subset W which satisfies the required
conditions for QA. Clearly, it suffices to show the claim for the cases B = id and C = id holds.

First we consider the case B = id. In this case, take an automorphism ϕ of Fn satisfying
Φ∗,0 = C−1 ⊕ id, which exists by Lemma 3.1. Consider the commutative diagram

C(∂Fn) or Fn
j−−−−→ C(∂Fn × (Fn/Γ)) or Fn

Φ

y Φ̃

y
C(∂Fn) or Fn

j′−−−−→ C(∂Fn × (Fn/ϕ(Γ))) or Fn

where each row map is the canonical inclusion and the second column map Φ̃ is the isomorphism
induced from the following covariant representation

s ∈ Fn 7→ ϕ(s) ∈ Fn,

f ∈ C(∂Fn × (Fn/Γ)) 7→ (f ◦ (∂ϕ× ϕ̃)−1) ∈ C(∂Fn × (Fn/ϕ(Γ))) or Fn.
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Here ϕ̃ : Fn/Γ → Fn/ϕ(Γ) is the bijection defined by xΓ ∈ Fn/Γ 7→ ϕ(xΓ) ∈ Fn/ϕ(Γ). Then
on the level of K0-groups, the above commutative diagram becomes the following commutative
diagram.

ZS ⊕ Zn−1
j∗,0−−−−→ ZW ⊕ Zm−1

C−1⊕id

y τϕ

y
ZS ⊕ Zn−1

j′∗,0−−−−→ Zϕ(W ) ⊕ Zm−1

where τϕ is the isomorphism given by [q(w:W )]0 7→ [q(ϕ(w);ϕ(W ))]0 and [rW ]0 7→ [rϕ(W )]0. This
shows that the enumerated finite subset ϕ(W ) satisfies the desired conditions for the homomor-
phism QAC. We remark that this operation may change the subgroup Γ.

Next we consider the case C = id. In this case, take an automorphism ψ of Γ such that the
induced automorphism Ψ satisfies Ψ∗,0 = B−1⊕ id with respect to the enumerated free basis W .
Then from this form of Ψ∗,0, we immediately conclude that the enumerated finite subset ψ(W )
satisfies the desired conditions for BQA.

From this together with the elementary divisor theory, it suffices to show the assertion for the
case of A being a diagonal homomorphism with respect to the standard basis. By decomposing
A as a composite of finitely many homomorphisms, we only need to show the following. For
each k ∈ N \ {1}, there is a free basis W of a finite index subgroup Γ of Fn with the following
properties.

• The index [Fn : Γ] is k.
• The elementary divisors of j∗,0 are given by (1, 1, . . . , 1, k).
• The j∗,0 satisfies the last two conditions in the statement.

To construct the desired W , fix s ∈ S and set

W :=
{
sk, slts−l : 0 ≤ l ≤ k − 1, t ∈ S \ {s}

}
.

Then W is a free basis of the kernel Γ of the homomorphism πs : Fn → Zk. Here πs is given by

s 7→ [1] and t 7→ [0] for t ∈ S \ {s}.

In particular, the subgroup of Fn generated by W is of index k. Note that the group Γ coincides
with the stabilizer subgroup of the action σ : Fn y Fn/Γ of an arbitrary point.

By direct computations, we obtain the equalities

Ω(s) =
⊔
w∈I

Θ(w;W )

where I := {sk, slt±1s−l : 1 ≤ l ≤ k − 1, t ∈ S \ {s}}, and

Ω(t) = Θ(t;W ) for t ∈ S \ {s}.

From the isomorphism C(∂Fn × (Fn/Γ)) or Fn ∼= Mk(C(∂Γ) or Γ) given in Proposition 2.1,
the canonical (non-unital) inclusion

C(∂Fn × {[e]}) or Γ→ C(∂Fn × (Fn/Γ)) or Fn

induces the isomorphism of K0-groups. This yields the equation

K0(C(∂Fn × (Fn/Γ)) or Fn) =

(⊕
w∈W

Z[q(w;W )]0

)
⊕ Zk(n−1)[rW ]0.
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Since the set im(ρ) = {sl : 0 ≤ l ≤ k − 1} is a complete system of representatives for the
quotient Fn/Γ, the above equations of Θ’s give the equations

ps =

k−1∑
l=0

∑
v∈I

q(v;W ) ◦ (β(s−l)× id) ◦ (γ(sl))

and

pt =
k−1∑
l=0

q(t;W ) ◦ (β(s−l)× id) ◦ (γ(sl))

for t ∈ S \ {s}. (Here we use the equality (β(s−l)× id) ◦ γ(sl) = id× σ(sl).) We also have

1 =
k−1∑
l=0

rW ◦ (γ(sl)).

The last equation shows the equation [1]0 = k[rW ]0. This shows that the j∗,0 preserves the order
of the unit [1]0. This proves the injectivity of (j∗,0)tor.

We observe that the homeomorphism β(s−1) on ∂Γ is induced by a group automorphism of
Γ. Indeed, it is induced from the conjugating automorphism α := ad(s−1). Hence it extends to
the automorphism Φ of C(∂Γ)or Γ ∼= C(∂Fn×{[e]})or Γ. The proof of Lemma 3.1 and Lemma
3.2 show that Φ∗,0 is the automorphism of

(⊕
w∈W Z[q(w;W )]0

)
⊕ Zm−1[rW ]0 given as follows.

[rW ]0 7→ [rW ]0,

[q(sk;W )]0 7→ [q(sk;W )]0 + (n− 1)[rW ]0,

[q(w;W )]0 7→ [q(σ(w);W )]0 for w ∈W \ {sk},
where σ is the permutation of W given by

σ(w) :=

 w if w = sk,
s−1+kws1−k if w ∈ S \ {s},
s−1ws otherwise.

This is because the automorphism α is equal to the composite of the automorphism induced
from the permutation σ of W and n − 1 automorphisms of the form appearing in Lemma 3.2
with t = sk and m = −1. (Notice that the equality s−1ts = s−k(sk−1ts1−k)sk holds for t ∈ S.)

From this, the first equation is reduced to

[ps]0 =

k−1∑
l=0

(
[q(sk;W )]0 + l(n− 1)[rW ]0 + (k − 1)(n− 1)[rW ]0

)
= k[q(sk;W )]0 +

k(k − 1)(n− 1)

2
[rW ]0.

Here we use the equation [q(w;W )]0 + [q(w−1;W )]0 = [rW ]0 for w ∈ W . Similarly, the second
equation is reduced to

[pt]0 =
∑
v∈Jt

[q(v;W )]0,

where Jt = {slts−l : 0 ≤ l ≤ k − 1} for t ∈ S \ {s}. Since the sets {sk}, Jt; t ∈ S \ {s} are

mutually disjoint subsets of W and the order of the element k(k−1)(n−1)
2 [rW ]0 is either 0 or 2,

this W is what we needed. �
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For a torsion group H, we define the supernatural number NH to be the least common
multiple of the orders of finite subgroups of H. For a subset X of Z⊕∞, define the subgroup
P (X) of Z⊕∞ to be

{y ∈ Z⊕∞ : there exists n ∈ Z \ {0} with ny ∈ 〈X〉}.
We denote by π the quotient homomorphism Q⊕∞ → Q⊕∞/Z⊕∞.

Lemma 3.4. Let G be a subgroup of Q⊕∞ which contains Z⊕∞ as a subgroup of infinite
index. Let 2 ≤ n < ∞. Then G is isomorphic to the inductive limit of an inductive system of
the form (Zkm , Am)m that satisfies the following conditions.

• Each connecting map Am is injective.
• The sequence (km)m satisfies k1 = n and km = lm−1(km−1 − 1) + 1 for m ≥ 2, where

for each m, lm denotes the product of all elementary divisors of Am.
• The formal infinite product

∏
m lm is equal to NG/Z⊕∞.

Proof. Fix an enumeration {xn}n of elements of Z⊕∞. Since the quotient G/Z⊕∞ is an infi-
nite torsion abelian group, there are a sequence (yj)j of elements of Z⊕∞ and a sequence (kj)j of

natural numbers greater than 1 such that the sequence (〈π(k−1
1 y1), . . . , π(k−1

j yj)〉)j of subgroups

of π(G) is strictly increasing and the union of the sequence coincides with π(G). Note that the
set {xj , k−1

j yj : j ∈ N} generates G. For each j ∈ N, set mj := ](〈π(k−1
1 y1), . . . , π(k−1

j yj)〉).
Take r1 ∈ N such that the rank of 〈y1, x1, . . . , xr1〉 is equal to n. Set H1 := P (y1, x1, . . . , xr1).
Note that any subgroup of Z⊕∞ is free abelian [18, Vol.I, Theorem 14.5]. Therefore H1 is
isomorphic to Zn. Next take r2 ∈ N such that r2 ≥ r1 and the rank of 〈y1, y2, x1, . . . , xr2〉
is equal to m1(n − 1) + 1. Set the subgroup H2 of G to be 〈k−1

1 y1, P (y1, y2, x1, . . . , xr2)〉.
Then H2 contains H1, the rank of H2 is m1(n − 1) + 1, and H2 is finitely generated. Hence

H2 is isomorphic to Zm1(n−1)+1. We will determine the product l1 of all elementary divi-
sors of the inclusion map ι1 : H1 → H2. This is equal to the order of (H2/H1)tor. By
definition of H1 and H2, the group (H2/H1)tor is generated by the image of k−1

1 y1. Since

〈k−1
1 y1〉 ∩ H1 = 〈k−1

1 y1〉 ∩ Z⊕∞, the group (H2/H1)tor is isomorphic to 〈π(k−1
1 y1)〉. Hence we

have l1 = m1. Next take r3 ∈ N such that the rank of the group 〈y1, y2, y3, x1, . . . , xr3〉 is
equal to m2(n − 1) + 1 and set H3 := 〈k−1

1 y1, k
−1
2 y2, P (y1, y2, y3, x1, . . . , xr3)〉. Note that since

m2(n − 1) − m1(n − 1) = m1(l1 − 1)(n − 1) > 1, we must have r3 > r2. It is clear from
the definition that H3 contains H2. By a similar reason to above, the group H3 is isomor-
phic to Zm2(n−1)+1. We determine the product l2 of all elementary divisors of the inclusion
map ι2 : H2 → H3. By the same reason as above, it is equal to the order of (H3/H2)tor. It
is clear that (H3/H2)tor is generated by the image of k−1

2 y2. This, together with the equal-

ity 〈k−1
2 y2〉 ∩H2 = 〈k−1

2 y2〉 ∩ 〈k−1
1 y1,Z⊕∞〉, shows that the group (H3/H2)tor is isomorphic to

〈π(k−1
1 y1), π(k−1

2 y2)〉/〈π(k−1
1 y1)〉. This shows the equation l2 = m2/m1. Continuing this process

inductively, we obtain an increasing sequence (Hj)j of subgroups of G which has the following
properties.

• The union of Hj ’s is equal to G.

• The group Hj is isomorphic to Zmj−1(n−1)+1 for each j ∈ N. Here we put m0 = 1 for
convenience.
• The product lj of all elementary divisors of the inclusion map ιj : Hj → Hj+1 is equal

to mj/mj−1 for each j ∈ N.

By the last property, we have
∏
j lj = NG/Z⊕∞ . Therefore the inductive system (Hm, ιm)m

satisfies the desired properties. �

Now we prove the main theorem.
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Theorem 3.5. Let G be a subgroup of Q⊕∞ which contains Z⊕∞ as a subgroup of infinite
index. Set G̃ := G/Z⊕∞. Let 2 ≤ n < ∞ and k be an integer. Then there is an amenable
minimal Cantor Fn-system with the following properties.

• The pair of K0-group and the unit [1]0 is isomorphic to(
G⊕ Λ((n− 1)NG̃), 0⊕ [k(n− 1)−1]

)
.

• The K1-group is isomorphic to Z⊕∞.
• The crossed product is a Kirchberg algebra in the UCT class.

Proof. First we consider the case k = 1. Let G be a group as stated. Take an inductive
system (Zkm , Am)m as in Lemma 3.4 for the case of n and G. Fix an enumeration of S. By
Lemma 3.3, there is an enumerated subset W1 of Fn such that the equation ]W1 = (n−1)l1 +1 =
k2 holds, the subset W1 is a free basis of a finite index subgroup Γ1 of Fn, and the K0-map
h1 := (j1)∗,0 of the canonical inclusion

j1 : C(∂Fn) or Fn → C(∂Fn × (Fn/Γ1)) or Fn
satisfies the following conditions.

• With respect to the bases ([χΩ(s)]0 : s ∈ S) and ([χΘ(w1;W1;Fn) ⊗ δe]0 : w1 ∈ W1), the
free part of h1 is presented by A1.
• The image of

⊕
s∈S Z[χΩ(s)]0 under h1 is contained in ⊕

w1∈W1

Z[χΘ(w1;W1;Fn)]0

⊕ Λ1

where Λ1 is the subgroup of the torsion part generated by elements of order 2.
• The torsion part of h1 is injective.

From Lemma 3.3 and the proof of Proposition 2.1, we can further take an enumerated subset
W2 of Γ1 such that the equation ]W2 = (]W1− 1)l2 + 1 = k3 holds, the subset W2 is a free basis
of a finite index subgroup Γ2 of Γ1, and the K0-map h2 := (j2)∗,0 of the canonical inclusion

j2 : C(∂Fn × (Fn/Γ1)) or Fn → C(∂Fn × (Fn/Γ2)) or Fn
satisfies the following conditions.

• With respect to the bases ([χΘ(w1;W1;Fn) ⊗ δe]0 : w1 ∈ W1) and ([χΘ(w2;W2;Fn) ⊗ δe]0 :
w2 ∈W2), the free part of h2 is presented by A2.
• The image of

⊕
w1∈W1

Z[χΘ(w1;W1;Fn) ⊗ δe]0 under h2 is contained in ⊕
w2∈W2

Z[χΘ(w2;W2;Fn) ⊗ δe]0

⊕ Λ2,

where Λ2 is the subgroup of the torsion part generated by elements of order 2.
• The torsion part of h2 is injective.

Note that we have h1(Λ1) ⊂ Λ2 and each Λi is either trivial or isomorphic to Z2.
Continuing this process inductively, we finally obtain a sequence (Wm)m of enumerated

subsets of Fn such that each Wm is a free basis of a finite index subgroup of Γm−1 := 〈Wm−1〉
(here we set W0 := S for convenience), the equation ]Wm = km+1 holds, and for each m, the
K0-map hm := (jm)∗,0 of the canonical inclusion

jm : C(∂Fn × (Fn/Γm−1)) or Fn → C(∂Fn × (Fn/Γm)) or Fn
satisfies the analogues of the above three conditions.
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For each m we denote by αm the canonical action of Fn on Ym := Fn/Γm. We denote by
α : Fn y Y the projective limit of the projective system (αm : Fn y Ym)m and set

Xm := ∂Fn × Ym, X := ∂Fn × Y, γm := β × αm, γ := β × α.
Note that by definition γ is the projective limit of (γm)m. Then since both amenability and
minimality pass to projective limits, the γ is an amenable minimal Cantor system. Since the
UCT class and the class of all Kirchberg algebras are closed under inductive limits, the crossed
product of γ is a Kirchberg algebra in the UCT class.

We next show that the Cantor Fn-system γ has the desired K-theory. First we determine
the pair (K0(C(X) or Fn), [1]0). From our construction, we have

K0(C(X) or Fn) ∼= lim−→(Zkm ⊕ Zkm−1, hm).

This shows that the group K0(C(X)or Fn)/K0(C(X)or Fn)tor is isomorphic to G and that the
group K0(C(X)or Fn)tor is isomorphic to Λ((n− 1)NG̃). (Note that km+1− 1 = (n− 1)l1 · · · lm
for m ∈ N.) We show that the torsion subgroup K0(C(X) or Fn)tor is a direct summand of
K0(C(X) or Fn). This proves that the group K0(C(X) or Fn) is isomorphic to the expected
group. To see this, consider the subgroup H of K0(C(X)or Fn) generated by elements of order
2 (at most one such element exists) and the images of [χΘ(wm;Wm;Fn) ⊗ δe]0 for all m ∈ N and
wm ∈ Wm. Then the torsion part of H is either trivial or of order 2. In both cases, Szele’s
Theorem [18, Vol. I. Prop. 27.1] shows that Htor is a direct summand of H. This shows that
the torsion free quotient K0(C(X) or Fn)/K0(C(X) or Fn)tor is lifted to H ⊂ K0(C(X) or Fn)
by homomorphism, as desired. Furthermore, by the construction, the above isomorphism maps
the unit [1]0 to 0⊕ [(n− 1)−1]. This shows that γ has the desired K0-group.

Next we determine the K1-group. By the Pimsner–Voiculescu exact sequence for free
groups [40], for any Cantor Fn-system τ : Fn y Z, we have K1(C(Z) or Fn) ∼= ker(ητ ), where
ητ : C(Z,Z)⊕S → C(Z,Z) is the group homomorphism given by

(fs)s∈S ∈ C(Z,Z)⊕S 7→
∑
s∈S

(fs − fs ◦ τ(s−1)) ∈ C(Z,Z).

From the above isomorphism and the functoriality of the Pimsner–Voiculescu exact sequence,
the canonical map K1(C(Xm) or Fn) → K1(C(X) or Fn) is injective for each m (since ηγm is
identified with the restriction of ηγ). The isomorphism

C(Xm) or Fn ∼= MLm(C(∂Fkm) or Fkm),

shows that the rank of K1(C(Xm) or Fn) is km. Here Lm := l1 · · · lm. This shows that the
rank of K1(C(X)or Fn) must be infinite. Since the group K1(C(X)or Fn) is a subgroup of the
free abelian group C(X,Z)⊕S , it is free abelian [18, Vol.I, Theorem 14.5]. This shows that the
K1-group is isomorphic to Z⊕∞.

To end the proof for general case, we need the skyscraper construction. For G as above, let
γG : Fn y X be the Cantor Fn-system constructed above for the case of G. Then for each natural

number k, we define the new Cantor Fn-system γ̃G
(k) as follows. Set X̃(k) := X×{1, . . . , k} and

fix s ∈ S. Then define a dynamical system γ̃G
(k) of Fn on X̃(k) by

γ̃G
(k)(s)(x, j) :=

{
(x, j + 1) if j 6= k
(γG(s)(x), 1) if j = k

and γ̃G
(k)(t)(x, j) := (γG(t)(x), j) for the other t ∈ S. Then by definition, γ̃G

(k) is an amenable
minimal Cantor system and its crossed product is isomorphic to the tensor product of Mk and
the crossed product of γG. �

Similar results also hold for virtually free groups.
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Theorem 3.6. Let Γ be a group. Supposes we have a subgroup Λ of index k isomorphic to
Fn. Then for each triplet (G0, u,G1) given in Theorem 3.5 for the case n, there is an amenable
minimal topologically free Cantor Γ-system with the following properties.

• The K-theory (K0, [1]0,K1) is isomorphic to (G0, ku,G1).
• The crossed product is a Kirchberg algebra in the UCT class.

Proof. The claim follows from the induced construction of dynamical systems with Green’s
imprimitivity theorem. For the convenience of the reader, we give the precise construction. Let Γ
and Λ be as above. Take an amenable minimal Cantor Λ-system γ : Λ y X such that its crossed
product is a Kirchberg algebra in the UCT class and its K-theory (K0, [1]0,K1) is isomorphic
to (G0, u,G1). On the space Γ×X, define the equivalence relation ∼Λ by

(g, x) ∼Λ (h, y)⇐⇒ ∃k ∈ Λ, (h, y) = (gk−1, γ(k)(x)).

Define the space Γ ×Λ X to be the quotient space of Γ × X by the equivalence relation ∼Λ.
It is easy to check that Γ ×Λ X is the Cantor set. Define an action γ̃ of Γ on Γ ×Λ X by
γ̃(g)([h, x]) := [gh, x]. Here [h, x] denotes the equivalence class of (h, x) under ∼Λ. By the
definition of γ̃ (with the corresponding properties of γ), we can check easily that γ̃ is minimal,
amenable, and topologically free.

Define π : Γ×ΛX → Γ/Λ by [h, x] 7→ hΛ. Then by the definition of ∼Λ, π is a (well-defined)
Γ-equivariant quotient map. Notice that π−1(eΛ) is Λ-equivariantly homeomorphic to X. Now
applying Green’s imprimitivity theorem to π, we get the isomorphism

C(Γ×Λ X) oγ̃,r Γ ∼= Mk(C(X) oγ,r Λ).

(An isomorphism can be given by a similar way to that in Proposition 2.1.) This shows that
the Cantor Γ-system γ̃ has the desired properties. �

Combining Theorems 3.5 and 3.6, we obtain the following decomposition theorem.

Corollary 3.7. For a torsion free abelian group G of infinite rank, consider a Kirchberg
algebra A in the UCT class satisfying (K0(A), [1]0,K1(A)) ∼= (G⊕Q/Z, 0,Z⊕∞). Then for any
finitely generated non-amenable virtually free group Γ, A is decomposed as the crossed product
of an amenable minimal topologically free Cantor Γ-system.

Proof. Let G be as stated. Thanks to Theorems 3.5 and 3.6, it suffices to show that there
is an embedding ι : G ↪→ Q⊕∞ such that its image G′ contains Z⊕∞ and satisfies NG′/Z⊕∞ =∏
p∈P p

∞. To see this, take a maximal linear independent sequence (xn)n of G. Then the

mapping xn 7→ n−1en ∈ Q⊕∞, n ∈ N extends to the desired inclusion. Here (en)n denotes the
canonical basis of Z⊕∞. �

We say a Cantor system is profinite if it is of the form lim←−(Γ y Γ/Γm)m for some (strictly)

decreasing sequence (Γm)m of finite index subgroups of Γ. When each Γm is normal in Γ, the
corresponding profinite Cantor system is free if and only if the intersection

⋂
m Γm only consists

of the unit element. Our constructions in Theorems 3.5 and 3.6 also provide continuously many
amenable minimal free Cantor systems for every virtually free group. We also show the same
result for non-finitely generated virtually free groups, by using a restriction of the boundary
action. Consequently, we obtain the following result.

Theorem 3.8. Let Γ be a non-amenable virtually free group. Then there are continu-
ously many amenable minimal free Cantor Γ-systems whose crossed products are mutually non-
isomorphic Kirchberg algebras in the UCT class.
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Proof of Theorem 3.8:finitely generated case. We first show the assertion for the
case Γ = Fn. For each nonempty subset Q of P, take a decreasing sequence of finite index
subgroups of Fn as follows. First take an increasing sequence (Fm)m of finite subsets of Q whose
union is Q and set qm :=

∏
p∈Fm

p for each m. Let π1 : Fn → G1 be the quotient homomorphism

where G1 is the quotient Fab
n /q1Fab

n of Fn. Then Γ1 := kerπ1 is a proper characteristic subgroup
of Fn whose index is a power of q1. Next consider the quotient homomorphism π2 : Γ1 → G2

where G2 is the quotient Γab
1 /q2Γab

1 of Γ1. Then Γ2 := kerπ2 is a proper characteristic subgroup
of Γ1 whose index is a power of q2. Continuing this process inductively, we get a decreasing
sequence (Γm)m of subgroups of Fn that satisfies the following conditions.

• Each Γm is a proper characteristic subgroup of Γm−1.
• Each index [Γm : Γm−1] is a power of qm.

From the first condition, Levi’s theorem [32, Chap.1, Prop.3.3] implies that the intersection⋂
m Γm only consists of the unit element. Denote by αQ the profinite Cantor system defined by

the sequence (Γm)m. Then the proof of Theorem 3.5 shows that the Cantor system γQ := β×αQ
is amenable and minimal, the crossed product is a Kirchberg algebra in the UCT class, and the
torsion subgroup of the K0-group is isomorphic to Λ((n − 1)

∏
q∈Q q

∞). This completes the
proof. The case of virtually free groups is derived from the case of free groups by the same
method as that in the proof of Theorem 3.6. �

Lemma 3.9. The restriction of the boundary action to the commutator subgroup D(F2) of
F2 is amenable, minimal, and its crossed product satisfies the following properties.

• It is a Kirchberg algebra in the UCT class.
• The unit [1]0 generates a subgroup isomorphic to Z.
• For any n ≥ 2, [1]0 6∈ nK0(A).

The same statement also holds for any finite index subgroup of D(F2).

Proof. The amenability of β|D(F2) is clear. We observe that for any nontrivial element t of

F2, there are two points t∞ and t−∞ in ∂F2 with the following property. For any compact subset
K of ∂F2 \{t−∞}, the sequence (tm.x)m converges to t∞ uniformly on K. (To see this, note that
for any n ∈ N, the first n segments of the sequence (tm)m is eventually constant. This defines
an element, say t∞, in ∂F2. We define t−∞ in an analogous way. Then it is not hard to check
that these points satisfy the above condition. Note that this is a general result for hyperbolic
groups. See Chapter 8 of [19] for details.) This property with the normality of D(F2) in F2

shows the minimality of β|D(F2). Then thanks to the above property with minimality, we can
apply Theorem 5 of [30] to conclude the pure infiniteness of the crossed product of β|D(F2).

Now we consider the reminded two conditions. For any n ≥ 3, there is a finite index
subgroup Λn of F2 which contains D(F2) and is isomorphic to Fn. For such Λn, the restriction
β2|Λn is isomorphic to the boundary action of Fn. Hence for any n ≥ 2, there is a unital
embedding C(∂F2) or D(F2)→ C(∂Fn) or Fn. This shows that for any n ≥ 2, there is a group
homomorphism K0(C(∂F2) or D(F2)) → Zn ⊕ Zn−1 that maps the unit [1]0 to the canonical
generator of Zn−1. This shows the claim for D(F2).

Now let a finite index subgroup Λ of D(F2) be given. The conditions on K-groups follows
from the above proof. To show the minimality of β2|Λ and pure infiniteness of the crossed
product, by the proof in the case Λ = D(F2), it suffices to show that Λ contains a nontrivial
normal subgroup of F2. To see this, consider the group action D(F2) y

⊔
g∈F2

D(F2)/gΛg−1

given by the left multiplication action on each component. Then the kernel of the action is a
normal subgroup of F2 contained in Λ. Moreover, it must be nontrivial because D(F2) contains
a torsion free element. �
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Proof of Theorem 3.8: non-finitely generated case. By the induced dynamical sys-
tem construction, it suffices to show the claim for Γ = F∞. For any nonempty set Q of prime
numbers, take a sequence (qn)n in Q satisfying {qn}n = Q. Then take a decreasing sequence
(Λn)n of finite index normal subgroups of F∞ that satisfies Λ1 = F∞ and [Λn : Λn+1] = qn
for n ∈ N. We identify F∞ with the commutator subgroup of F2 by a fixed isomorphism [32,
Chap.1 Prop.3.12]. Take a decreasing sequence (Γn)n of finite index normal subgroups of F2

such that the index [Γn : Γn+1] is a power of qn and
⋂
n Γn = {1} holds. (Such a sequence can be

constructed in the same way as the proof for the finitely generated case.) Now set Υn := Γn∩Λn.
Then (Υn)n is a decreasing sequence of finite index normal subgroups of F∞ such that the index
[F∞ : Υn] divides a power of q1 · · · qn−1 and is divisible by q1 · · · qn−1 for each n, and

⋂
n Υn = {1}

holds. Now consider the Cantor system γQ := lim←−((β2|F∞)× αn : F∞ y ∂F2 × (F∞/Υn)). Then
Lemma 3.9 shows that the Cantor system γQ is amenable, minimal, free, and its crossed product
is a Kirchberg algebra in the UCT class. Furthermore, a similar argument to that in the proof
of Theorem 3.5 shows the equality

{p ∈ P : [1]0 ∈ pK0(C(X) oγQ,r F∞)} = Q.

This shows that the crossed products of γQ’s are mutually non-isomorphic. �

4. Classification of diagonal actions of boundary actions and products of odometer
transformations

In this section, using the technique of computation of K-groups developed in Section 3, we
classify the amenable minimal Cantor Fn-systems given by the diagonal actions of the boundary
actions and the products of the odometer transformations.

First we recall the definition of the odometer transformation. For an infinite supernatural
number N , take a sequence (km)m of natural numbers whose least common multiple is equal to
N with the condition km|km+1 for all m. The odometer transformation of type N is then defined
as the projective limit of the projective system (Z y Zkm)m. We denote it by αN . (Obviously,
the definition of αN only depends on N .)

Let 2 ≤ n < ∞, let 1 ≤ k ≤ n, and let N1, . . . , Nk be a sequence of infinite supernatural
numbers. Fix an enumeration {s1, . . . , sn} of S(⊂ Fn). Then define a Cantor Fn-system by

γ
(n)
N1,...,Nk

:= βn ×

 k∏
j=1

αNj ◦ π
(n)
j

 ,

where for each j, π
(n)
j denotes the homomorphism π

(n)
j : Fn → Z given by

si 7→
{

1 if i = j,
0 otherwise.

By the result of the previous section, each γ
(n)
N1,...,Nk

is an amenable minimal Cantor Fn-system
and similar computations to those in Lemmas 3.1 and 3.3 and Theorem 3.5 show the following
theorem.

Theorem 4.1. Let γ
(n)
N1,...,Nk

be as above. Then the crossed product of γ
(n)
N1,...,Nk

satisfies the
following conditions.

• The pair of K0-group and the unit [1]0 is isomorphic to((
k⊕
i=1

Υ(Ni)

)
⊕ Z⊕∞ ⊕ Λ((n− 1)N1 · · ·Nk), 0⊕ 0⊕ [(n− 1)−1]

)
.
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• The K1-group is isomorphic to Z⊕∞.
• It is a Kirchberg algebra in the UCT class.

Proof. For each j = 1, . . . , k, take a sequence (n(m, j))m of natural numbers that satisfies
the equation

∏
m n(m, j) = Nj . We further assume that for each m, only one j, say jm, satisfies

n(m, j) 6= 1. Put N(m, j) := n(1, j) · · ·n(m, j) and M(m) := N(m − 1, jm). Then for each m,

consider the surjective homomorphism qm : Fn →
⊕k

j=1 Z/N(m, j) defined by mapping sj to the
canonical generator of the jth direct summand for j = 1, . . . , k and the other s ∈ S to 0. Set
Γm := ker(qm). Then the sequence (Γm)m defines a profinite Cantor system α. By definition we

have γ
(n)
N1,...,Nk

= β × α.
Next we inductively choose suitable free bases of Γm’s as follows. First set W0 := S and

N(0, j) = 1 for convenience. Then define Wm by

Wm :=
(
Wm−1 \ {sM(m)

jm
}
)
∪ {sN(m,jm)

jm
} ∪ Zm,

where

Zm :=
{
w−1s

lM(m)
jm

ws
−lM(m)
jm

: w ∈Wm−1 \ {sM(m)
jm

}, 1 ≤ l < n(jm,m)
}
.

It is easy to check that for each m, the set Wm is a free basis of Γm.
Combining the computations used in the proofs of Lemmas 3.1 and 3.3, we can show that

the free part of the K0-map induced from the canonical inclusion

C(∂Fn × (Fn/Γm−1)) or Fn → C(∂Fn × (Fn/Γm)) or Fn

is given by

[q
(s

N(m−1,jm)
jm

;Wm−1)
]0 7→ n(m, jm)[q

(s
N(m,jm)
jm

;Wm)
]0

and

[q(t,Wm−1)]0 7→ [q(t;Wm)]0 for t ∈Wm−1 \ {sN(m−1,jm)
jm

}.

Now the proof of Theorem 3.5 completes the computation. �

The invariants appearing in Theorem 4.1 are completely classified in terms of (n;N1, . . . , Nk)
as follows. A supernatural number N is recovered from the group Λ(N) as the least common
multiple of the orders of finite subgroups of Λ(N). On the other hand, from the group G =(⊕k

i=1 Υ(Ni)
)
⊕ Z⊕∞(∼= K0/K

tor
0 ), we can recover the subgroup

⊕k
i=1 Υ(Ni) as the subgroup

generated by the subset of all elements x such that the set {n ∈ N : there exists y ∈ G with ny =

x} is infinite. Then it is known that the two groups
⊕k

i=1 Υ(Ni) and
⊕m

i=1 Υ(Mi) are isomorphic
if and only if k = m and there are a permutation σ ∈ Sk and natural numbers n1, . . . , nk,
m1, . . . ,mk such that niNi = miMσ(i) holds for all i. This follows from Baer’s theorem [18,
Vol.II, Prop.86.1] and the isomorphism condition of groups Υ(M).

On the set of all finite sequences of infinite supernatural numbers, we define the equivalence
relation ∼ as follows. For two finite sequences (N1, . . . , Nk) and (M1, . . . ,Ml), we say the relation
∼ holds if k = l and there are a permutation σ ∈ Sk and natural numbers n1, . . . , nk, m1, . . . ,mk

such that
∏k
i=1 ni =

∏k
i=1mi and niNi = miMσ(i) hold for all i. Denote by [N1, . . . , Nk] the

equivalence class of (N1, . . . , Nk) under ∼. From the above observations, the equivalence class

[N1, . . . , Nk] is a complete invariant of the group
(⊕k

i=1 Υ(Ni)
)
⊕ Z⊕∞ ⊕ Λ(N1 · · ·Nk). Here

we record it as a proposition.
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Proposition 4.2. For a sequence N1, . . . , Nk of infinite supernatural numbers, define the
group G(N1, . . . , Nk) by (

k⊕
i=1

Υ(Ni)

)
⊕ Z⊕∞ ⊕ Λ(N1 · · ·Nk).

Then two groups G(N1, . . . , Nk) and G(M1, . . . ,Ml) are isomorphic if and only if [N1, . . . , Nk] =
[M1, . . . ,Mm], where [·] denotes the equivalence class of the equivalence relation ∼ defined above.
In particular, for two free groups Fn, Fm and for two finite sequences of infinite supernatural
numbers N1, . . . , Nk, M1, . . . ,Ml with k ≤ n and l ≤ m, the pairs (K0, [1]0) of the corresponding
two γ are isomorphic if and only if n = m and [N1, . . . , Nk] = [M1, . . . ,Ml] hold.

We next introduce a notion of strong orbit equivalence of Cantor systems for general groups.

Definition 4.3. We define the relation R on the class of Cantor systems as follows. For two
Cantor systems αi : Γi y Xi, i = 1, 2, we declare the relation R(α1, α2) holds if the following
conditions hold. There is an orbit preserving homeomorphism F : X1 → X2 and a generating
set Si of Γi for i = 1, 2 that admit an orbit cocycle c of F with the property that for each
s ∈ S1, the restriction of c on {s} × X1 has at most one point of discontinuity, and the same
condition also holds when we replace X1 by X2, F by F−1, and S1 by S2. Unfortunately, the
relation R seems not to satisfy the transitivity. (This is in fact an equivalence relation if we only
consider the minimal Cantor Z-systems. This is already highly nontrivial; this is a consequence
of a classification result in [22].) For this reason, we define the equivalence relation ∼ to be the
one generated by R, and say α1 is strongly orbit equivalent to α2 if α1 ∼ α2 holds.

From Proposition 4.2 and Matui’s theorem [33] with a little extra effort, we can classify
the strong orbit equivalence classes, the topological full groups, the crossed products, and the

continuous orbit equivalence classes of γ
(n)
N1,...,Nk

’s.
Before completing the classification, we need a lemma about the strong orbit equivalence.

This claims that for two Cantor systems of free groups, the isomorphism of K0-invariants is a
necessary condition for strong orbit equivalence. The idea of the proof comes from [22].

Lemma 4.4. Let γi : Fni y Xi be topologically free Cantor systems with 2 ≤ ni <∞ for i =
1, 2. Assume that γ1 is strongly orbit equivalent to γ2. Then their K0-invariants (K0(C(Xi)oγi,r

Fni), [1]0); i = 1, 2 are isomorphic.

Proof. We may assume that the equalities X1 = X2 = X hold and that the identity map
is an orbit preserving homeomorphism that has orbit cocycles each of which has discontinuous
points at most one on each element of some generating sets Si of Γi. By the Pimsner–Voiculescu
six term exact sequence for free groups [40], we obtain the isomorphism

K0(C(X) oγi,r Fni)
∼= C(X,Z)/Ni,

where Ni is the subgroup of C(X,Z) generated by elements of the form χE−χγi(s)(E) for clopen
subsets E of X and s ∈ Fni . Note that under the isomorphism, the unit [1]0 is mapped to
1X +Ni.

From the above isomorphism, it suffices to show N1 = N2. To see this, let E be a clopen
subset and s ∈ S1. Replacing E be X \ E if necessary, which does not change the difference
χE − χγ1(s)(E) up to sign, we may assume that there is an orbit cocycle c that is continuous on
{s} × E. Define cs(x) := c(s, x) for s ∈ Γ1 and x ∈ X. Set F := cs(E), which is finite by the
continuity assumption. Then we have

γ1(s)(E) =
⊔
g∈F

γ2(g)(c−1
s ({g}) ∩ E).
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This shows
χE − χγ1(s)(E) =

∑
g∈F

(χc−1
s ({g})∩E − χγ2(g)(c−1

s ({g})∩E)) ∈ N2.

Since S1 generates Γ1, we obtain N1 ⊂ N2. The reverse inclusion is shown in a similar way. �

Now we give the classification results for γ’s.

Theorem 4.5. Let γ1 = γ
(n)
N1,...,Nk

and γ2 = γ
(m)
M1,...,Ml

be as before. Then the following
conditions are equivalent.

(1) They are strongly orbit equivalent.
(2) They are continuously orbit equivalent.
(3) Their topological full groups are isomorphic.
(4) The commutator subgroups of their topological full groups are isomorphic.
(5) Their crossed products are isomorphic.
(6) Their K0-invariants (K0, [1]0) are isomorphic.

Proof. The implications (2) ⇒ (3) ⇒ (4), (2) ⇒ (1) and (2) ⇒ (5) ⇒ (6) are clear. The
implication (4) ⇒ (2) follows from Theorem 3.10 of [33] and the implication (1) ⇒ (6) follows
from Lemma 4.4. Now it is left to prove the implication (6) ⇒ (2).

Assume condition (6) holds. Then by Proposition 4.2, the equalities n = m and k = l
hold and there are a permutation σ ∈ Sk and two sequences n1, . . . , nk and m1, . . . ,mk of
natural numbers that satisfy

∏
j nj =

∏
jmj and njNj = mjMσ(j) for all j. By conjugating

an automorphism of the free group, we may assume σ is trivial. Since the continuous orbit
equivalence is an equivalence relation, we further assume that there are a sequence of infinite
supernatural numbers L1, . . . , Lk and a natural number l satisfying N1 = lL1, Nj = Lj for
j 6= 1, M2 = lL2, and Mj = Lj for j 6= 2. Denote by Λi the kernel of the surjection ρi := q ◦ πi
for i = 1, 2. Here q denotes the quotient homomorphism from Z onto Zl. By the definition of
γ’s, for i = 1, 2, we have an Fn-equivariant quotient map pi : Xi → Fn/Λi. Here Xi denotes the
underlying space of γi for i = 1, 2. Then, with the notion Yi := p−1

i (Λi), the homeomorphism Fi
from Xi =

⊔l−1
j=0 s

j
iYi onto Yi×Zl given by x = sjiy ∈ s

j
iYi 7→ (y, [j]) shows that γi is continuously

orbit equivalent to the Cantor system γ̃i� λ : Λi×Zl y Yi×Zl. Here γ̃i denotes the restriction
of γ|Λi to the Λi-invariant subspace Yi of Xi, λ denotes the left translation action of Zl on itself,
and the symbol ‘�’ stands for the product action. From this, it suffices to show that γ̃1 and γ̃2

are continuously orbit equivalent. Notice that for i = 1, 2, the set

Ti :=
{
sli, t, s

j
i ts
−j
i t−1 : t ∈ S \ {si}, 1 ≤ j ≤ l − 1

}
is a free basis of Λi. Set r := ]T1 = ]T2 = l(n − 1) + 1. Then the isomorphism Λ ∼= Fr given

by the free basis Ti shows that the dynamical system γ̃i is conjugate to γ
(r)
L1,...,Lk

. Thus γ̃1 is
continuously orbit equivalent to γ̃2. �

Remark 4.6. It is not hard to check that the transformation groupoid of γ
(n)
N1,...,Nk

is purely

infinite in Matui’s sense [33]. Hence, by Theorem 4.16 in [33], the commutator groups appeared
in Theorem 4.5 are simple.



CHAPTER 3

Construction of minimal skew products of amenable minimal
dynamical systems

It is an interesting question to ask that for a given group Γ which space admits a minimal
(topologically) free dynamical system of Γ. Certainly a space admitting a minimal Γ-dynamical
system must have a nice homogeneity. However, this is not sufficient even for the simplest case,
that is, the case Γ = Z. For example, an obstruction from homological algebra shows the non-
existence of a minimal homeomorphism on even dimensional spheres S2n (see Chapter I.6 of [5]
for instance).

In [20], Glasner and Weiss have shown the existence of minimal skew product extensions
of a minimal homeomorphism under mild conditions. Their result in particular shows that
many spaces admit a minimal homeomorphism. For example, it follows that there is a minimal
homeomorphism on the product of the Hilbert cube and S1. This solved a question asked by
Chapman [8]. For certain amenable groups, their result is generalized in [34]. In this chapter,
following the argument of Glasner and Weiss in [20], we construct minimal skew products of
amenable minimal topologically free dynamical systems (Theorem 1.1). This provides many
new examples of (amenable) minimal topologically free dynamical systems of exact groups.

We also study the reduced crossed product of these minimal skew products. In Section 2,
under certain assumptions on Y and α : Γ y Z, we show that the crossed products of many of
dynamical systems obtained in our result are Kirchberg algebras in the UCT class (Proposition
2.11). For this purpose, we generalize the notion of the finite filling property, which is introduced
in [25]. It turns out that the generalized version is useful to construct minimal skew products
with the purely infinite crossed products. This result is applied particularly to the case that Y
is a connected closed topological manifold and that α is a Cantor system constructed in [48].
As a consequence, we generalize a result of Rørdam and Sierakowski [48], which is a result for
the Cantor set, to the products of connected closed topological manifolds and the Cantor set
(Theorem 2.12). This is the first generalization of their result, and shows that for topological
dynamical systems, not only the structure of groups but also the structure of spaces is not an
obstruction to form a Kirchberg algebra.

In Section 3, we study theK-theory of the crossed products of these minimal skew products in
the free group case. Using the Pimsner–Voiculescu six-term exact sequence, we prove a Künneth-
type formula for them. As an application, for any connected closed topological manifold M and
for any (non-amenable, countable) virtually free group Γ, we show that there are continuously
many amenable minimal free dynamical systems of Γ on the product of M and the Cantor set
whose crossed products are mutually non-isomorphic Kirchberg algebras. This generalizes a
result in Chapter 2.

Spaces of dynamical systems. For a compact metrizable space X, let Homeo(X) denote
the group of homeomorphisms on X. We equip the metric d on Homeo(X) as follows. First let
us fix a metric dX on X. Then define

d(ϕ,ψ) := max
x∈X

(dX(ϕ(x), ψ(x))) + max
x∈X

(dX(ϕ−1(x), ψ−1(x)))

29
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for ϕ,ψ ∈ Homeo(X). It is not hard to check that the metric d is complete and it defines a topol-
ogy that makes Homeo(X) a topological group. Note that the sequence (ϕn)n in Homeo(X) con-
verges to ϕ in this topology if and only if ϕn uniformly converges to ϕ. For a countable group Γ,
let S(Γ, X) denote the set of dynamical systems of Γ on X, i.e., S(Γ, X) = Hom(Γ,Homeo(X)).
This set is naturally regarded as a closed subset of

∏
Γ Homeo(X). Since Γ is countable, this

makes S(Γ, X) to be a complete metric space.
Next let Y be a compact metrizable space and let G y Y be a continuous action of a

topological group G on Y . Let α : Γ y Z be a topological dynamical system of a group Γ on a
compact metrizable space Z. Put X = Z × Y . Recall that a continuous map c : Γ × Z → G is
said to be a cocycle if it satisfies the equation c(s, t.z)c(t, z) = c(st, z) for all s, t ∈ Γ and z ∈ Z.
When there is a continuous map h : Z → G satisfying c(s, z) = h(s.z)−1h(z) for all s ∈ Γ and
z ∈ Z, the cocycle c is said to be a coboundary. Each cocycle c : Γ×Z → G defines an extension
of α on X by the following equation.

s.(z, y) = (s.z, c(s, z)y) for s ∈ Γ and (z, y) ∈ X.

Such extension is called a skew product extension. Note that when c is a coboundary, the
associated skew product extension is conjugate to ᾱ. Here and throughout this chapter, for a
dynamical system α : Γ y Z and a compact space Y , we denote by ᾱ the diagonal action of α
and the trivial action on Y . Since the space Y is always clear from the context, we omit Y in
our notation.

For a continuous map h from Z into G, we have an associated homeomorphism H on X
defined by the formula H(z, y) := (z, hz(y)) for (z, y) ∈ X. We denote by Gs the set of homeo-
morphisms given in the above way. Obviously, Gs is a subgroup of Homeo(X). For a topological
dynamical system α : Γ y Z, we define a subset SG(α) of S(Γ, X) to be

SG(α) := {H−1 ◦ ᾱ ◦H : H ∈ Gs}.

We note that the set SG(α) consists of skew product extensions of α by coboundaries. We denote
by SG(α) the closure of SG(α) in S(Γ, X). Note that any β ∈ SG(α) is a skew product extension of
α on X whose associated cocycle takes the value in G. Here G denotes the closure of the image of
G in Homeo(X). In particular, when α is amenable, every dynamical system contained in SG(α)
is amenable. Throughout this chapter, we always fix metrics dY and dZ on Y and Z respectively
and consider the metric on X = Z×Y defined by dX((z1, y1), (z2, y2)) = dY (y1, y2) + dZ(z1, z2),
and use these metrics to define metrics on the homeomorphism groups.

1. Construction of minimal skew product

The goal of this section is to prove the following theorem. The proof is done by following
the same line as that of Theorem 1 in [20].

In the proof of the following theorem, we use amenability of dynamical systems to construct
suitable continuous functions. In other word, amenability of dynamical systems plays the role
of the Følner sets in the proof of Theorem 1 of [20].

Theorem 1.1. Let G y Y be a minimal action of a path connected group G on a compact
metrizable space Y . Let α : Γ y Z be an amenable minimal topologically free dynamical system
of a countable group Γ on a compact metrizable space Z. Then the set

{β ∈ SG(α) : β is minimal}

is a Gδ-dense subset of SG(α).
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Proof. Let G y Y and α : Γ y Z be as in the statement. For an open set U of X = Z×Y ,
we define the subset EU of SG(α) to be

EU := {β ∈ SG(α) :
⋃
g∈Γ

βg(U) = X}.

Since X is compact, it is not hard to check that the set EU is open in SG(α).
Let (Un)n be a countable basis of X. We observe that an element in SG(α) is minimal if

and only if it is contained in
⋂
n EUn . Therefore, thanks to the Baire category theorem, our

claim follows once we show the density of EU in SG(α) for each non-empty open set U in X.
To see this, it is enough to show the following claim. For any H ∈ Gs and any non-empty open
set U ⊂ X, H−1 ◦ ᾱ ◦ H ∈ cl(EU ). This is equivalent to the condition ᾱ ∈ cl(HEUH−1). A
direct computation shows that HEUH−1 = EH(U). Since H(U) is again a non-empty open set,
now it is enough to show the following statement. For any non-empty open set U ⊂ X, we
have ᾱ ∈ cl(EU ). Now let U be a non-empty set. Let S be a finite subset of Γ and let ε > 0.
Take non-empty open sets V ⊂ Y and W ⊂ Z with W × V ⊂ U . By assumption, there are
h̃0, . . . , h̃n ∈ G satisfying

⋃
0≤i≤n h̃i(V ) = Y . Since G is path-connected, there is a continuous

map h : [0, 1]→ G satisfying hi/n = h̃i for 0 ≤ i ≤ n. By the continuity of h, there is δ > 0 such

that the condition |t1 − t2| < δ implies d(h−1
t1
ht2 , idY ) < ε. Now we use the amenability of α to

choose a continuous map µ : Z → Prob(Γ) satisfying supz∈Z ‖s.µz − µs.z‖1 < δ for all s ∈ S. By
perturbing µ within a small error and replacing W by a smaller one, we may assume that there
is a finite set F ⊂ Γ such that supp(µw) ⊂ F for all w ∈ W . (Cf. Lemma 4.3.8 of [6].) Since
α is topologically free, by replacing W by a smaller one further, we may assume that the open
sets (g.W )g∈F−1 are mutually disjoint. Since W is a locally compact metrizable space without
isolated points, we can choose a compact subset K of W homeomorphic to the Cantor set.

Next take a continuous surjection θ0 : K → [0, 1]. Extend θ0 to a map
⊔
g∈F−1 gK → [0, 1]

by the formula θ0(g.z) := θ0(z) for g ∈ F−1 and z ∈ K. Then take a continuous extension

θ̃ : Z → [0, 1] of θ0. Using θ̃ and µ, we define θ : Z → [0, 1] by

θ(z) :=
∑
g∈Γ

µz(g−1)θ̃(g.z).

Note that the continuity of θ̃ and µ implies that of θ. For z ∈ K, since supp(µz) ⊂ F , we have
θ(z) = θ0(z). In particular, θ(K) = [0, 1]. Moreover, for z ∈ Z and s ∈ S, we have

|θ(s.z)− θ(z)| = |
∑
g∈Γ

(µs.z(g−1)θ̃(gs.z)− µz(g−1)θ̃(g.z))|

= |
∑
g∈Γ

(µs.z(g−1)θ̃(gs.z)− µz(s−1g−1)θ̃(gs.z))|

≤ ‖µs.z − s.µz‖1
< δ.

Now define the map g : Z → G by gz := hθ(z) for z ∈ Z. We will show that the corresponding
homeomorphism G ∈ Gs satisfies the following conditions.

(1) d(ᾱs, G
−1 ◦ ᾱs ◦G) < ε for s ∈ S.

(2) G−1 ◦ ᾱ ◦G ∈ EU .

Since U , ε, and S are arbitrarily, this ends the proof. Let s ∈ S and (z, y) ∈ X. Then a direct
computation shows that

(G−1 ◦ ᾱs ◦G)(z, y) = (αs(z), g
−1
s.zgz(y)).
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Since d(g−1
s.zgz, idY ) < ε for all z ∈ Z, we obtain the first condition.

For the second condition, note that G−1 ◦ ᾱ ◦ G ∈ EU if and only if
⋃
g∈Γ ᾱg(G(U)) = X

holds. By the choice of G, for any 0 ≤ i ≤ n, there is w ∈W satisfying gw = h̃i. It follows that
for any 0 ≤ i ≤ n, there is w ∈ W with {w} × h̃i(V ) ⊂ G(U). Since

⋃
i h̃i(V ) = Y , this shows

that for any y ∈ Y , the intersection (Z × {y})∩G(U) is non-empty (which is open in Z × {y}).
This with the minimality of α shows that

⋃
g∈Γ ᾱg(G(U)) = X. �

2. Pure infiniteness of crossed products of minimal skew products

In this section, we discuss pure infiniteness of reduced groupoid C∗-algebras. Throughout
this chapter, we always assume that étale groupoids are locally compact Hausdorff and their
unit spaces are compact and infinite (as a set). For an étale groupoid G, we denote by r and s
the range and source map unless they are specified.

2.1. Finite filling property for étale groupoids. To study the pure infiniteness of
crossed products of dynamical systems arising from Theorem 1.1, we introduce a notion of
the finite filling property for étale groupoids. First recall from [25] the finite filling property
for dynamical systems. Although their definition and result also cover noncommutative C∗-
dynamical systems, in this thesis, we concentrate on the commutative case. We remark that,
although the following formulation is slightly different from the original one, it is easily checked
that they are equivalent.

Definition 2.1. A dynamical system Γ y X is said to have the n-filling property if for any
non-empty open set U of X, there are n elements g1, . . . , gn ∈ Γ with

⋃n
i=1 gi(U) = X. We say

that a dynamical system has the finite filling property if it has the n-filling property for some
n ∈ N.

Note that the finite filling property implies minimality. In [25], it is shown that the finite
filling property of a topological dynamical system implies the pure infiniteness of the reduced
crossed product by a similar way to the one in [30]. However, as shown in [25], the n-filling
property is inherited to factors. This makes the usage of the n-filling property restrictive in our
application. To avoid this difficulty, we introduce a notion of the finite filling property for étale
groupoids, which can be regarded as a localized version of [25]. This helps to construct minimal
skew products with purely infinite reduced crossed products.

Next we recall a few terminologies of groupoids. A subset U of an étale groupoid G is said
to be a G-set if both the range and source map are injective on U . For two G-sets U and V ,
we set UV := {uv ∈ G : u ∈ U, v ∈ V, s(u) = r(v)}. Obviously it is again a G-set. Furthermore,
if both U and V are open, then UV is again open. An étale groupoid is said to be minimal if
for any x ∈ G(0), the set {r(u) : u ∈ G, s(u) = x} is dense in G(0). Note that the unit space

G(0) has no isolated points whenever G is minimal. (Recall that G(0) is always assumed to be
infinite.)

Definition 2.2. Let G be an étale groupoid. For a natural number n, we say that G has
the n-filling property if every non-empty open set W of G(0) satisfies the following conditon.
There are n open G-sets U1, . . . , Un satisfying

n⋃
i=1

r(UiW ) = G(0).

For short, we say that a dynamical system has the weak n-filling (resp. weak finite filling)
property if its transformation groupoid has the n-filling (resp. finite filling) property.
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Obviously, for dynamical systems, the n-filling (resp. finite filling) property implies the weak
n-filling (resp. weak finite filling) property. However, the converses are not true.

We also remark that it is possible to define the weak finite filling property without going
through the transformation groupoid. However, this specialization does not make the arguments
below easier and this generality makes notation simpler. Considering applications elsewhere also,
we study the property under this generality.

When the unit space G(0) has finite covering dimension, we have a useful criteria for the
finite filling property. The following definition is inspired from [33] and [48].

Definition 2.3. We say that an étale groupoid G is purely infinite if for any non-empty
open set U of G(0), there is a non-empty open subset V of U with the following condition. There
are open G-sets U1 and U2 such that r(Ui) ⊂ V ⊂ s(Ui) for i = 1, 2 and r(U1) and r(U2) are
disjoint. We say that a dynamical system is purely infinite if its transformation groupoid is
purely infinite.

We remark that Matui [33] has introduced pure infiniteness for totally disconnected étale
groupoids for the study of the topological full groups. Clearly, our definition is weaker than
Matui’s one. We will see later that our definition of pure infiniteness coincides with Matui’s one
for minimal totally disconnected étale groupoids.

Proposition 2.4. Let G be a minimal purely infinite étale groupoid and assume that dim(G(0)) =
n <∞. Then G has the (n+ 1)-filling property.

Proof. Let U be a non-empty open subset of G(0). Replacing U by a smaller one, we may
assume that there are open G-sets U1 and U2 such that r(Ui) ⊂ U ⊂ s(Ui) for i = 1, 2 and r(U1)
and r(U2) are disjoint. We first show that for any N ∈ N, there are N open G-sets V1, . . . , VN
satisfying r(Vi) ⊂ U ⊂ s(Vi) for i = 1, . . . , N and the ranges r(V1), . . . , r(VN ) are mutually
disjoint. To see this, first take M ∈ N with 2M ≥ N and then take N mutually distinct elements
from the set

{Ui1Ui2 · · ·UiM : ik = 1 or 2 for each k}.
Then it gives the desired sequence.

By the compactness of G(0) and the minimality of G, for some natural number N , there are
N open G-sets W1, . . . ,WN with

⋃N
i=1 r(WiU) = G(0). Take N open G-sets V1, . . . , VN as in the

previous paragraph and put Zi := WiV
−1
i for each i. Then we have

N⋃
i=1

r(ZiU) ⊃
N⋃
i=1

r(WiU) = G(0).

Note that since s(Zi) ⊂ r(Vi), the sources of Zi’s are mutually disjoint. Since dim(G(0)) = n,
we can choose a refinement (Yj)j∈J of (r(ZiU))Ni=1 with the decomposition J = J0tJ1t · · ·tJn
such that the members of the family (Yj)j∈Jk are mutually disjoint for each k. Choose a map
ϕ : J → {1, . . . , N} satisfying Yj ⊂ r(Zϕ(j)U) for each j ∈ J . Set Xk :=

⋃
j∈Jk YjZϕ(j) for each

k. Then it is not hard to check that each Xk is an open G-set and that r(XkU) =
⋃
j∈Jk Yj .

This shows
⋃n
k=0 r(XkU) = G(0). �

Remark 2.5. The argument in Remark 4.12 of [33] shows that for totally disconnected
étale groupoids, the finite filling property implies pure infiniteness in Matui’s sense. Thus for
a minimal totally disconnected étale groupoid G, pure infiniteness in Matui’s sense [33], that
in our sense, the finite filling property, and the 1-filling property are equivalent. (Here total
disconnectedness is used to replace open G-sets by clopen ones.)
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Next we see a few examples of dynamical systems with the weak finite filling property.
The following three examples are particularly important for us. See [25] for more examples of
dynamical systems with the finite filling property.

Example 2.6. It follows from the proof of Theorem 6.11 of [48] that every countable non-
amenable exact group admits an amenable minimal free purely infinite dynamical system on the
Cantor set. (To see this, use the equivalence of conditions (i) and (iii) in Proposition 5.5 in the
proof of Proposition 6.8.) By Proposition 2.4, it has the weak 1-filling property. We remark
that these dynamical systems almost never have the finite filling property.

Recall that a manifold is said to be closed if it is compact and has no boundaries.

Lemma 2.7. Let M be a connected closed topological manifold. Let Homeo(M)0 denote the
path connected component of Homeo(M) containing the identity. Then the action Homeo(M)0 y
M has the finite filling property.

Proof. It is not hard to show that the above action is transitive by using the connectedness
of M with the fact that M is locally homeomorphic to Rn.

Take an open cover U1, . . . , UN of M each of which is homeomorphic to Rn. We show that
for any non-empty open set V in M , for any i, and for any compact subset K of Ui, there is
an element g ∈ Homeo(M)0 with g(V ) ⊃ K. Since M is compact, the claim with a standard
argument for compactness shows the N -filling property of the action in the question. Since the
action is transitive, replacing V by g(V ) for a suitable g ∈ Homeo(M)0 and replacing it by a
smaller one further, we may assume that V is contained in Ui. Take a homeomorphism ϕ : Ui →
Rn satisfying 0 ∈ ϕ(V ). Take a sufficiently large positive number λ > 0 with ϕ(K) ⊂ λϕ(V ).
Then choose a continuous function f : R≥0 → R≥0 satisfying the following conditions.

(1) For t ≤ diam(ϕ(V )), we have f(t) = λ.
(2) For all sufficiently large t, we have f(t) = 1.
(3) The function t 7→ tf(t) is strictly monotone increasing.

Now set ϕf (x) := ϕ−1(f(‖ϕ(x)‖)ϕ(x)) for x ∈ Ui. Here ‖ · ‖ denotes the Euclidean norm on Rn.
From the assumptions on f , the map ϕf is a homeomorphism on Ui satisfying K ⊂ ϕf (V ). We
extend ϕf to a homeomorphism ψf on M as follows.

ψf (x) :=

{
ϕf (x) if x ∈ Ui,
x if x ∈M \ Ui.

It is clear from the properties of f that ψf is indeed a homeomorphism on M . Clearly we have
K ⊂ ψf (V ). Moreover, the map t ∈ [0, 1] 7→ ψ(1−t)f+tk defines a continuous path in Homeo(M)
from ψf to the identity. Here k denotes the constant function of value 1 defined on R≥0. Thus
we have ψf ∈ Homeo(M)0. �

Next we see examples of finite filling actions of path-connected groups on infinite dimensional
spaces. Let Q :=

∏
N[0, 1] be the Hilbert cube. Recall that a topological space is said to be

a Hilbert cube manifold if there is an open cover each of the member is homeomorphic to an
open subset of Q. It is not hard to show that open subsets of Q in the definition can be taken
to be [0, 1)×Q. (See Theorem 12.1 of [8] for instance.) Obvious examples are Q itself and the
product of Q and a topological manifold (possible with boundary). We refer the reader to [8]
for more information of Hilbert cube manifolds.

Lemma 2.8. Let M be a connected compact Hilbert cube manifold. Then the action Homeo(M)0 y
M has the finite filling property.
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Proof. We first show the following claim. For any open subset U of [0, 1) × [0, 1]n of the
form (a, b)n × [0, 1] (0 < a < b < 1) and for any compact subset K of [0, 1) × [0, 1]n, there is a
homeomorphism h ∈ Homeo([0, 1)× [0, 1]n)c,0 satisfying K ⊂ h(U). Here, for a locally compact
metrizable space Y , Homeo(Y )c,0 denotes the subgroup of homeomorphisms on Y defined as
follows. First we define Homeo(Y )c to be the group of homeomorphisms on Y which coincide
with the identity off a compact subset. Then we identify Homeo(Y )c with the inductive limit
of subgroups of homeomorphism groups of compact subsets of Y in the natural way. Then
we topologize Homeo(Y )c with the inductive topology. Now we define Homeo(Y )c,0 to be the
path-connected component of Homeo(Y )c containing the identity with respect to this topology.
To show the claim, we first construct a homeomorphism h1 ∈ Homeo([0, 1)× [0, 1]n)c,0 satisfying
h1({0}× [0, 1]n) ⊂ (a, b)n× [0, 1] in a similar way to the proof of Lemma 2.7. Then, since h1 is a
homeomorphism, there is a positive number δ > 0 satisfying h1([0, δ)× [0, 1]n) ⊂ (a, b)n × [0, 1].
Also, it is easy to find h2 ∈ Homeo([0, 1)× [0, 1]n)c,0 satisfying K ⊂ h2([0, δ)× [0, 1]n). Now the

homeomorphism h := h2 ◦ h−1
1 satisfies the required condition.

Next we observe that for any compact metrizable space X and its open subset U , any
h ∈ Homeo(U)c,0 extends to a homeomorphism h̃ in Homeo(X)0 by defining h̃(x) = x off U .
Now thanks to the claim in the previous paragraph with this observation, the rest of the proof
can be completed by a similar way to that of Lemma 2.7. �

We next show that the finite filling property gives a sufficient condition for the pure infinite-
ness of the reduced groupoid C∗-algebra. Recall from [33] that an étale groupoid G is said to

be essentially principal if the interior of the set {g ∈ G : r(g) = s(g)} coincides with G(0). Note
that for transformation groupoids, this condition is equivalent to the topological freeness of the
original dynamical system.

Proposition 2.9. Let G be an étale groupoid with the finite filling property. Assume further
that G is essentially principal. Then the reduced groupoid C∗-algebra C∗r(G) is purely infinite
and simple. In particular, if G is additionally assumed to be second countable and amenable,
then C∗r(G) is a Kirchberg algebra in the UCT class.

To show the main statement, we need the following lemma, which is an analogue of Lemma
1.5 of [25].

Lemma 2.10. Let G be an étale groupoid with the n-filling property. Let b be a positive
element in C(G(0)) with norm one. Then for any ε > 0, there is c ∈ C∗r(G) such that ‖c‖ ≤

√
n

and c∗bc ≥ 1− ε.

Proof. Set U := {x ∈ G(0) : b(x) > 1 − ε}. Take n mutually disjoint non-empty open
subsets U1, . . . , Un of U . Since G is minimal, there are n open G-sets V1, . . . , Vn with the
property that the intersection

⋂
i r(ViUi) is non-empty. Using the n-filling property of G with

this observation, we can find n open G-sets W1, . . . ,Wn satisfying

n⋃
i=1

r(WiUi) = G(0).

By replacing Wi by WiUi, we may assume s(Wi) ⊂ Ui. Since G is locally compact and G(0)

is compact, replacing each Wi by a smaller one if necessary, we may assume further that each
Wi is relatively compact in G. Since G is locally compact, for each i, it is not hard to find
an increasing net (Wi,λ)λ∈Λ of open subsets of Wi that satisfies the following conditions. The
closure of Wi,λ in G is contained in Wi for each λ, and the union

⋃
λWi,λ is equal to Wi. Since

the unit space G(0) is compact, there is λ ∈ Λ satisfying
⋃n
i=1 r(Wi,λ) = G(0). Now fix such
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λ and put Zi := cl(Wi,λ) for each i. Then, by the choice of Wi,λ, the Zi is a compact G-set.
Moreover we have

G(0) =
n⋃
i=1

r(Wi,λ) ⊂
n⋃
i=1

r(Zi).

Now for each i, take a continuous function fi ∈ Cc(G) satisfying the following conditions.

(1) 0 ≤ fi ≤ 1.
(2) supp(fi) ⊂Wi.
(3) fi ≡ 1 on Zi.

(Since Zi and the closure of Wi in G are compact, such function exists.) Since Wi is a G-set, these

conditions imply that fi ∗f∗i ∈ C(G(0)) and that fi ∗f∗i ≤ 1. Since the sets s(W1), . . . , s(Wn) are
mutually disjoint, we have fi∗f∗j = 0 for two distinct i and j. Now put c :=

∑n
i=1 f

∗
i . The above

observations show that c∗ ∗ c ∈ C(G(0)) and that c∗ ∗ c ≤ n. Thus ‖c‖ ≤
√
n. Since the G-sets

W1, . . . ,Wn have mutually disjoint sources, we also get c∗ ∗ b ∗ c ∈ C(G(0)). Since s(Wi) ⊂ U for

each i and
⋃n
i=1 r(Zi) = G(0), we further obtain c∗ ∗ b ∗ c ≥ 1− ε. �

Proof of Proposition 2.9. The rest of the proof is basically the same as that in [25]. We
first observe that since G is essentially principal, it is not hard to show that for any b ∈ Cc(G)

and ε > 0, there is a positive element y ∈ C(G(0)) with norm one satisfying yby = yE(b)y and

‖yby‖ > ‖E(b)‖ − ε, where E denotes the restriction map Cc(G) → C(G(0)). Note that the
map E extends to a faithful conditional expectation on C∗r(G). From this with Lemma 2.10, for

any positive element b ∈ Cc(G) with ‖E(b)‖ = 1, there is an element c ∈ Cc(G(0)) satisfying
‖c‖ ≤

√
n and c∗yc ≥ 1/2. Since the norm of c is bounded by the fixed constant

√
n, now a

standard argument completes the proof. �

2.2. Minimal skew products with purely infinite crossed products. Now using
the finite and weak finite filling property, we construct minimal skew products whose crossed
products are purely infinite.

Proposition 2.11. Let α : Γ y Z be an amenable topologically free dynamical system with
the weak n-filling property. Let G y Y be a minimal dynamical system of a path connected group
G with the m-filling property. Then the set{

β ∈ SG(α) : β has the weak (nm)-filling property
}

is a Gδ-dense subset of SG(α).

Proof. For an open set U of X = Z × Y , let FU denote the set of elements β of SG(α)
satisfying the following condition. There are nm open Gβ-sets V1, . . . , Vnm with

⋃
i r(ViU) = X.

Here Gβ denotes the transformation groupoid X oβ Γ of β. Then for a countable basis (Un)n
of X, the set in the question coincides with the intersection

⋂
nFUn . Hence it suffices to show

that each FU is open and dense in SG(α).
We first show the openness of FU . Let β ∈ FU . Let V1, . . . , Vnm be open Gβ-sets as above.

Replacing Vi’s by smaller ones, we may assume that they are relatively compact in Gβ and that
the sources s(Vi) are contained in U . Set F := π(

⋃
i Vi), where π : X oβ Γ → Γ denotes the

projection onto the second coordinate. Since each Vi is relatively compact in Gβ, the set F is
a finite subset of Γ. Now we apply the argument in the proof of Lemma 2.10 to (Vi)i to choose
compact Gβ-sets W1, . . . ,Wnm with the following properties. The Wi is contained in Vi for each
i and the union

⋃
i r(int(Wi)) is equal to X. Now for a Gβ-set W and g ∈ Γ, define the subset

Wg ⊂ X to be r(W ∩ π−1({g})). Then, for each i, the sets (Wi,g)g∈F are mutually disjoint
compact sets in X. Moreover, the union

⋃
i,g int(Wi,g) is equal to X.
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For W ⊂ X and δ > 0, we define the (open) subsets Nδ(W ) and Iδ(W ) of X as follows.

Nδ(W ) :=
⋃
x∈W

B(x, δ),

Iδ(V ) := {x ∈ G : there is η > δ with B(x, η) ⊂ V }.
Here for x ∈ X and η > 0, B(x, η) denotes the open ball of center x and radius η. Then, from
the properties of Wi’s and the compactness of X, for a sufficiently small positive number δ > 0,
the following conditions hold. The sets (Nδ(Wi,g))g are mutually disjoint for each i and the
sets (Iδ(Wi,g))i,g cover X. We fix such positive number δ. From the first condition, for any

γ ∈ SG(α) satisfying d(γs, βs) < δ for all s ∈ F , each Wi is a Gγ-set. Here Wi is regarded as
a subset of Gγ by identifying the transformation groupoids with the set Γ×X by ignoring the
first coordinates. Let rβ and rγ denote the range map of Gβ and Gγ respectively. Then we have⋃

i

rγ(int(Wi)) ⊃
⋃
i

Iδ(rβ(int(Wi))) =
⋃
i,g

Iδ(Wi,g) = X.

Therefore we have γ ∈ FU , which proves the openness of FU .
To show the density of FU , by the similar reason to that in the proof of Theorem 1.1, it

suffices to show the following statement. For any ε > 0 and any finite subset S ⊂ Γ, there is a
homeomorphism H ∈ Gs satisfying the following conditions.

(1) d(ᾱs, H
−1 ◦ ᾱs ◦H) < ε for s ∈ S.

(2) H−1 ◦ ᾱ ◦H ∈ FU .

Replacing U by a smaller open set, we may assume U = W ×V for some W ⊂ Z and V ⊂ Y . By
the m-filling property of G y Y , we can choose m elements h̃1, . . . , h̃m of G with

⋃
i h̃i(V ) = Y .

Now proceeding the same argument as in the proof of Theorem 1.1, we get a continuous map
g : Z → G with the following conditions.

(1) d(g−1
s.zgz, idY ) < ε for all z ∈ Z and s ∈ S.

(2) There are m elements w1, . . . , wm in W with the condition
⋃
i gwi(V ) = Y .

Let H ∈ Gs be the element corresponding to g. Then from the first condition, we conclude
d(ᾱs, H

−1 ◦ ᾱs ◦ H) < ε for s ∈ S. To show β := H−1 ◦ ᾱ ◦ H ∈ FU , it suffices to show the
following claim. There are nm open Gᾱ-sets W1, . . . ,Wnm with

⋃
i r(WiH(U)) = X. Indeed the

sets

{(H−1(z), s,H−1(w)) ∈ X × Γ×X : (z, s, w) ∈Wi} (i = 1, . . . , nm)

then define the desired open Gβ-sets. To show the claim, first note that since g is continuous,
there are an open subset Ui of U containing wi for i = 1, . . . ,m and an open covering (Vi)

m
i=1 of Y

satisfying the following condition. For any z ∈ Ui, we have Vi ⊂ gz(V ). From these conditions,
we have H(U) ⊃

⋃m
i=1(Ui × Vi). Now for each 1 ≤ i ≤ m, take n open Gα-sets Wi,1, . . . ,Wi,n

with
⋃n
j=1 r(Wi,jUi) = Z. For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, set Zi,j := ϕ−1(Wi,j), where

ϕ : Gᾱ → Gα denotes the canonical quotient map. Then each Zi,j is an open Gᾱ-set and we
further get ⋃

i,j

rᾱ(Zi,jH(U)) ⊃
⋃
i,j

rᾱ(Zi,j(Ui × Vi)) =
⋃
i,j

(rα(Wi,jUi)× Vi) = X.

�

In [48], Rørdam and Sierakowski have shown that every countable non-amenable exact group
admits an amenable minimal free dynamical system on the Cantor set whose crossed product is
a Kirchberg algebra in the UCT class. Proposition 2.11 particularly gives an extension of their
result to more general spaces.
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Theorem 2.12. Let M be a connected closed topological manifold, a connected compact
Hilbert cube manifold, or a countable direct product of these manifolds. Let X be the Cantor set.
Then every countable non-amenable exact group admits an amenable minimal free dynamical
system on M ×X whose crossed product is a Kirchberg algebra in the UCT class.

Proof. For the first two cases, the statement immediately follows from Example 2.6, Lem-
mas 2.7 and 2.8, and Propositions 2.9 and 2.11.

For the last case, let M1,M2, . . . be a sequence of spaces each of which is either connected
closed topological manifold or connected compact Hilbert cube manifold. Set Nn := M1 ×
· · · × Mn × X for each n. We put α0 := α and N0 := X for convenience. We inductively
apply Proposition 2.11 to αn : Γ y Nn and Mn+1 to get a minimal skew product extension
αn+1 : Γ y Nn+1 of αn with the weak finite filling property. Then we get the projective system
(αn)∞n=1 of dynamical systems of Γ. Now it is not hard to show that the projective limit lim←−αn
possesses the desired properties. �

3. Minimal dynamical systems of free groups on products of Cantor set and closed
manifolds

In this section, we investigate the K-groups of the crossed products of minimal dynamical
systems obtained in Theorem 1.1 for the free group case. By using the Pimsner–Voiculescu exact
sequence [40], we give a Künneth-type formula for K-groups of their crossed products. As an
application, we give the following generalization of Theorem 3.8 in Chapter 2.

Theorem 3.1. Let Γ be a countable non-amenable virtually free group. Let M be either
connected closed topological manifold or connected compact Hilbert cube manifold. Then there
are continuously many amenable minimal free dynamical systems of Γ on the product of M and
the Cantor set whose crossed products are mutually non-isomorphic Kirchberg algebras.

In the below, we regard abelian groups as Z-modules. We simply denote the tensor product
‘⊗Z’ by ‘⊗’ for short. Recall that for two abelian groups G,H, the group TorZ1 (G,H) is defined
as follows. First take a projective resolution of G.

· · · → P2 → P1 → P0 → G→ 0.

Then by tensoring H with the above resolution, we obtain a complex

· · · → P2 ⊗H → P1 ⊗H → P0 ⊗H → 0.

The group TorZ1 (G,H) is then defined as the first homology of the above complex. Note that
the definition does not depend on the choice of the projective resolution. We remark that when
we have a projective resolution of length one

0→ P1 → P0 → G→ 0,

then TorZ1 (G,H) is computed as the kernel of the homomorphism P1⊗H → P0⊗H. See [5] for
the detail.

For a compact space X, we denote Ki(C(X)) by Ki(X) for short. Note that this coincides
with the usual definition of Ki-group.

Proposition 3.2. Let α : Fd y X be an amenable minimal topologically free dynamical
system of the free group Fd on the Cantor set X (d ∈ N ∪ {∞}). Let G y Y be a minimal
action of a path-connected group G on a compact metrizable space Y . Let β ∈ SG(α). Let A and
B denote the crossed product of α and β respectively. Then for i = 0, 1, we have the following
short exact sequence.

0→ K0(A)⊗Ki(Y )→ Ki(B)→ (K1(A)⊗K1−i(Y ))⊕ TorZ1 (K0(A),K1−i(Y ))→ 0.
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Moreover, the first map maps [1A]0 ⊗ [1Y ]0 to [1B]0 when i = 0.

Proof. Since C(X) is an AF-algebra, we have a canonical isomorphism

Ki(X × Y )→ C(X,Ki(Y ))(∼= K0(X)⊗Ki(Y ))

for i = 0, 1. Here C(X,Ki(Y )) denotes the group of continuous maps from X into Ki(Y ) and
Ki(Y ) is regarded as a discrete group. For i = 0, the isomorphism is given by mapping the
element [p]0 where p is a projection in K⊗C(X)⊗C(Y ) to the map x ∈ X 7→ [p(x, ·)]0 ∈ K0(Y )
and similarly for the case i = 1.

From this isomorphism and the fact that G is path-connected, for any γ ∈ SG(α) and g ∈ Fd,
we have (γg)∗,i = (αg)∗,0⊗ idKi(Y ) for i = 0, 1. Here we identify Ki(X×Y ) with K0(X)⊗Ki(Y )
under the above isomorphism. By continuity of the K-theory, the above equality holds for all
γ ∈ SG(α). Now let S be a free basis of Fd. Then by the Pimsner–Voiculescu six term exact
sequence [40], we have the following short exact sequence.

0→ coker(ϕ⊗ idKi(Y ))→ Ki(B)→ ker(ϕ⊗ idK1−i(Y ))→ 0.

Here ϕ denotes the homomorphism

ϕ : K0(X)⊕S → K0(X)

which maps (fs)s∈S to
∑

s∈S(fs − (αs)∗,0(fs)). Since K0(X) is a free abelian group, the exact
sequence

0→ K1(A)→ K0(X)⊕S → K0(X)→ K0(A)→ 0

obtained by the Pimsner–Voiculescu six-term exact sequence is a free resolution of K0(A). This
also gives the free resolution

0→ im(ϕ)→ K0(X)→ K0(A)→ 0

of K0(A). Here the first map is given by the inclusion map, say ι.
Let ψ : K0(X)⊕S → im(ϕ) be the surjective homomorphism obtained by restricting the

range of ϕ. By tensoring Ki(Y ) with the second free resolution, we obtain the following exact
sequence.

0→ TorZ1 (K0(A),Ki(Y ))→ im(ϕ)⊗Ki(Y )→ K0(X)⊗Ki(Y )→ K0(A)⊗Ki(Y )→ 0.

This shows that
ker(ι⊗ idKi(Y ))

∼= TorZ1 (K0(A),Ki(Y )).

Since the second map surjects onto im(ϕ⊗ idKi(Y )), we also obtain the isomorphism

coker(ϕ⊗ idKi(Y ))
∼= K0(A)⊗Ki(Y ).

Since ϕ = ι ◦ ψ and ψ is surjective, we have the following exact sequence.

(1) 0→ ker(ψ ⊗ idKi(Y ))→ ker(ϕ⊗ idKi(Y ))→ ker(ι⊗ idKi(Y ))→ 0.

Here the first map is the canonical inclusion and the second map is the restriction of ψ⊗ idKi(Y ).

Since im(ϕ) is free abelian, there is a direct complement K of ker(ϕ) in K0(X)⊕S . Note that
the restriction of ψ on K is an isomorphism. Hence we have the isomorphism

ker(ψ ⊗ idKi(Y )) = ker(ψ)⊗Ki(Y ) ∼= K1(A)⊗Ki(Y ).

Again by the freeness of im(ϕ), we have a right inverse σ of ψ. Then the homomorphism
σ ⊗ idKi(Y ) gives a splitting of the short exact sequence (1). Combining these observations, we
obtain the isomorphism

ker(ϕ⊗ idKi(Y ))
∼= (K1(A)⊗Ki(Y ))⊕ TorZ1 (K0(A),Ki(Y )).

Now the first exact sequence completes the proof. �
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Remark 3.3. Certainly, when K∗(Y ) has a good property, the short exact sequence in
Proposition 3.2 is spilitting. However, we do not know whether it is splitting in general. Recall
that a splitting of the Künneth tensor product theorem is obtained by replacing considered C∗-
algebras by easier ones by using suitable elements of the KK-groups (see Remark 7.11 of [49]).
However, in our setting, this argument does not work. Such replacement does not respect the
relation among C(X), C(Y ), A,B, and Fd.

Proof of Theorem 3.1. We first prove the claim for free groups. Theorem 4.3 of Chapter
4 shows that for any finite d, there is an amenable minimal topologically free dynamical system
γ of Fd on the Cantor set whose crossed product A satisfies the following condition. The unit
[1]0 ∈ K0(A) generates a direct summand of K0(A) isomorphic to Z. Note that this property
passes to unital C∗-subalgebras of A. Moreover, since γ is found as a factor of the ideal boundary
action, its restriction to any finite index subgroup of Fd is minimal. It is also not hard to show
that the restriction of γ to any finite index subgroup of Fd is purely infinite. Applying the
argument in the proof of Theorem 3.8 for non-finitely genereted cases in Chapter 2 to γ instead
of the action used there, we obtain the following consequence. For any non-empty set Q of prime
numbers, there is an amenable minimal free purely infinite dynamical system αQ of Fd on the
Cantor set whose K0-group G satisfies the following condition.

{p ∈ P : [1]0 ∈ pG} = Q.
Here P denotes the set of all prime numbers. The similar statement for F∞ is also shown in the
proof of Theorem 3.8 in Chapter 2. We also denote by αQ a dynamical system of F∞ satisfying
the above conditions.

Now let M be as in the statement. Put

R := {p ∈ P : K1(M) contains an element of order p}.
Then by [7], R is finite. (Indeed, in either case, M × [0, 1]N is a compact Hilbert cube manifold.
Now the main theorem of [7] shows that K1(M) is in fact finitely generated.)

Let G denote the path-connected component of Homeo(M) containing the identity. For each
non-empty subset Q of P \R, we apply Proposition 2.11 to αQ to choose β from SG(αQ) whose
crossed product is a Kirchberg algebra. For i = 0, 1, denote by Gi and Hi the Ki-group of the
crossed products of αQ and β respectively. We claim that

Q̃ := {p ∈ P \ R : [1]0 ∈ pH0} = Q.
Since the cardinal of the power set of P \ R is continuum, this ends the proof. The inclusion

Q ⊂ Q̃ is obvious. To see the converse, let p ∈ Q̃ and take h ∈ H0 with ph = [1]0. Denote by
∂i the third map of the short exact sequence in Proposition 3.2. Then since ∂0([1]0) = 0, we
have p∂0(h) = 0. On the other hand, by the definition of R and the fact that G1 is torsion free,
there is no element of order p in the third term of the short exact sequence. Thus p∂0(h) = 0
implies ∂0(h) = 0. Hence there is an element y in the first term of the short exact sequence with
σ0(y) = h. Here σi denotes the second map in the short exact sequence. Then from the injectivity
of σ0 and the equality ph = [1]0, we must have py = [1]0⊗ [1M ]0. Now let τ : K0(M)→ Z be the
homomorphism induced from a character on C(M). Put w := (id ⊗ τ)(y) ∈ G0. (We identify
G0 with G0 ⊗Z in the obvious way.) Then we have pw = (id⊗ τ)([1]0 ⊗ [1M ]0) = [1]0. Thus we
get p ∈ Q as desired.

The proof for general case is done by taking the induced dynamical systems of the actions
obtained in above. See the proof of Theorem 3.6 in Chapter 2 for the detail. �



CHAPTER 4

Group C∗-algebras as decreasing intersection of nuclear
C∗-algebras

It is well-known that every exact discrete group admits an amenable action on a compact
space [35], and each such action gives rise to an ambient nuclear C∗-algebra of the reduced
group C∗-algebra via the crossed product construction [1]. More generally, it is known that
every separable exact C∗-algebra is embeddable into the Cuntz algebra O2 [29]. Motivated by
these phenomena, we are interested in the following question. How small can we take an ambient
nuclear C∗-algebra/ Cuntz algebra O2 for a given exact C∗-algebra? In this chapter, we give an
answer to the question for the reduced group C∗-algebras of discrete groups with the AP. The
next theorem states that ambient nuclear C∗-algebras of the reduced group C∗-algebras with the
AP can be arbitrarily small in a certain sense. This in particular shows that, unlike injective
von Neumann algebras, nuclear C∗-algebras do not form a monotone class.

Main Theorem . Let Γ be a countable discrete exact group. Then there is an intermedi-
ate C∗-algebra A between the reduced group C∗-algebra C∗r(Γ) and L(Γ) ∩ C∗u(Γ) satisfying the
following properties.

• There is a decreasing sequence of isomorphs of the Cuntz algebra O2 whose intersection
is isomorphic to A.
• There is a decreasing sequence (An)∞n=1 of separable nuclear C∗-algebras whose inter-

section is isomorphic to A and the sequence admits compatible multiplicative condi-
tional expectations (En : A1 → An)∞n=1. Here the compatibility means that the equality
En ◦ Em = En holds for all n ≥ m.

In particular, when the group Γ has the AP, the statements hold for the reduced group C∗-algebra
C∗r(Γ).

As a consequence of Main Theorem, we obtain the following result.

Corollary A. The decreasing intersection of nuclear C∗-algebras need not have the follow-
ing properties.

(1) The OAP, hence nuclearity, the CBAP, the WEP, and the SOAP.
(2) The local lifting property.

They can happen simultaneously. The statements are true even when the decreasing sequence
admits a compatible family of multiplicative conditional expectations.

Thus the decreasing intersection of nuclear C∗-algebras can lost most of good properties.
Since the decreasing intersection of injective von Neumann algebras is injective, the analogous
results for von Neumann algebras can never be true.

We also give a geometric construction of a decreasing sequence of Kirchberg algebras whose
intersection is isomorphic to the hyperbolic group C∗-algebra. Although the result follows
from Main Theorem, this approach has good points. Our decreasing sequence is taken in-
side the boundary algebra C(∂Γ) or Γ. Moreover, the proof does not depend on Kirchberg’s
O2-absorption theorem and the theory of reduced free products, both of which are used in the

41
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proof of Main Theorem. Using the sequence constructed by this method, we also study absorb-
ing extensions of the reduced free group C∗-algebras by stable separable nuclear C∗-algebras,
and prove the following theorem.

Theorem B. Let A be a stable separable nuclear C∗-algebra and let

0→ A→ B → C∗r(Fd)→ 0

be an extension of C∗r(Fd) by A (2 ≤ d ≤ ∞). Assume B is exact and the extension is either
absorbing or unital absorbing. Then B is realized as a decreasing intersection of isomorphs of
the Cuntz algebra O2. In particular, any exact extension of C∗r(Fd) by K is realized in this way.

The proof of Theorem B is based on the KK-theory.

Organization of this chapter. In Section 1, we review some notions and facts used in this
chapter. In Section 2, we prove Main Theorem. We also give few more examples satisfying the
conditions in Main Theorem. In Section 3, we deal with the hyperbolic groups. Based on the
study of the boundary action, we construct a decreasing sequence of nuclear C∗-algebras inside
the boundary algebra C(∂Γ)or Γ whose intersection is the reduced group C∗-algebra C∗r(Γ). In
Section 4, using the decreasing sequence constructed in Section 3, we prove Theorem B.

1. Preliminaries

1.1. Reduced free product. We refer the reader to [6, Section 4.7] for the definition of
the reduced free product. First we recall a few terminology related to theorems we will use.
Let A be a C∗-algebra and ϕ be a state on A. Recall that ϕ is said to be non-degenerate if its
GNS-representation is faithful. Recall that the centralizer of ϕ is the set of all elements b ∈ A
satisfying the equality ϕ(ba) = ϕ(ab) for all a ∈ A. An abelian C∗-subalgebra D of A is said to
be diffuse with respect to ϕ if ϕ|D is a diffuse measure on the spectrum of D.

In the proofs of Main Theorem and Theorem B, we use the reduced free product to make
C∗-algebras simple. The following two theorems are important in our proof. The first theorem
guarantees the nuclearity of the reduced free product under certain conditions. The second one
gives a sufficient condition for the simplicity of the reduced free product.

Theorem 1.1 (Dykema–Smith [6, Exercise 4.8.2]). Let (A,ϕ) be a pair of a unital nuclear
C∗-algebra and a non-degenerate state on A. Let ψ be a pure state on the matrix algebra Mn

(n ≥ 2). Then the reduced free product (A,ϕ) ∗ (Mn, ψ) is nuclear.

Theorem 1.2 (Dykema [15, Theorem 2]). Let (A,ϕ) and (B,ψ) be pairs of a unital C∗-
algebra and a non-degenerate state on it. Assume that B 6= C and the centralizer of ϕ contains a
diffuse abelian C∗-subalgebra D containing the unit of A. Then the reduced free product (A,ϕ) ∗
(B,ψ) is simple.

A good aspect of these theorems is that we only need to force a condition on one of the
states. Thus we can apply these theorems at the same time in many situations.

1.2. Extensions of C∗-algebras. Here we recall basic facts and terminologies related to
the extensions of C∗-algebras. We refer the reader to [4, Sections 15, 17] for the details. Let A
be a unital separable C∗-algebra, B be a stable (i.e., B ∼= B ⊗K) nuclear C∗-algebra. Let

0→ B → C → A→ 0

be an essential extension of A by B. Here essential means that the ideal B of C is essential (i.e.,
cB = 0 implies c = 0 for c ∈ C).

Let σ : A → Q(B) := M(B)/B be the Busby invariant of the above extension. Here M(B)
denotes the multiplier algebra of B. As usual, we identify an extension with its Busby invariant.



2. PROOF OF MAIN THEOREM 43

To define the addition of two extensions, we fix an isomorphism B ∼= B ⊗ K. (Note that
up to canonical identifications, the choice of the isomorphism does not affect to the following
definitions.)

An extension σ is said to be trivial (resp. strongly unital trivial) if it has a ∗-homomorphism
(resp. unital ∗-homomorphism) lifting σ̃ : A → M(B). Two extensions σ1 and σ2 are said to
be strongly equivalent if there is a unitary element u in M(B) satisfying ad(π(u)) ◦ σ1 = σ2.
An extension σ is said to be absorbing (resp. unital absorbing) if for any trivial extension
(resp. strongly unital trivial extension) τ , σ ⊕ τ is strongly equivalent to σ. On the class of
extensions of A by B, we define an equivalence relation as follows. Two extensions σ1 and σ2

are equivalent if there are trivial representations τ1 and τ2 such that the direct sums σi ⊕ τi are
strongly equivalent. The quotient Ext(A,B) of the class of all extensions by this equivalence
relation naturally becomes an abelian semigroup.

Kasparov showed that there is a unital absorbing strongly unital trivial extension τ of A
by B [27, Theorem 6]. Therefore any [σ] ∈ Ext(A,B) has a unital absorbing representative.
Moreover, if [σ] contains a unital extension, then [σ] has a unital absorbing unital representative.
Note that an element [σ] ∈ Ext(A,B) contains a unital extension if and only if [σ(1)]0 = 0 in
K0(Q(B)).

A theorem of Kasparov [27, Theorem 2] shows that for a unital absorbing extension σ, the
direct sum σ ⊕ 0 is an absorbing extension. Thus, by the same reason as above, any element of
Ext(A,B) has an absorbing representative. By definition, such a representative is unique up to
strongly equivalence.

It follows from [27, Theorem 6] that for any unital C∗-subalgebra C ⊂ A, the restriction of
the absorbing (resp. unital absorbing) extension to C again has the same property.

Let Ext(A,B)−1 be the subsemigroup of Ext(A,B) consisting of invertible elements. Then
there is a natural group isomorphism between Ext(A,B)−1 and KK1(A,B) [4, Corollary 18.5.4].

2. Proof of Main Theorem

Let Γ be an exact group. Take an amenable action Γ y X on a compact metrizable space.
Define An := C(

∏∞
k=nX) or Γ for each n ∈ N. Here the action Γ y

∏∞
k=nX is given by

the diagonal action. We regard An+1 as a C∗-subalgebra of An in the canonical way. Since
the Γ-space

∏∞
k=nX is metrizable and amenable, each An is separable and nuclear. Put A :=⋂∞

n=1An. We will show that A is isomorphic to an intermediate C∗-algebra between C∗r(Γ) and
C∗u(Γ)∩L(Γ), To see this, take an arbitrary point x ∈

∏∞
k=1X and define ρ : C(

∏∞
k=1X)→ `∞(Γ)

by ρ(f)(s) := f(s.x) for f ∈ C(
∏∞
k=1X) and s ∈ Γ. Then ρ is a Γ-equivariant ∗-homomorphism.

Hence it induces a ∗-homomorphism ρ̃ : A1 → `∞(Γ)or Γ. Note that for all a ∈ A and g ∈ Γ, we
have Eg(a) ∈

⋂∞
n=1C(

∏∞
k=nX) = C. This shows that ρ̃ is injective on A and ρ̃(A) is contained

in C∗u(Γ) ∩ L(Γ). Thus A is isomorphic to the desired C∗-algebra.
Next we show that there is a compatible family of multiplicative conditional expectations

(En : A1 → An)∞n=1. Let En be the ∗-homomorphism induced from the Γ-equivariant ∗-homomorphism

En : C(
∞∏
k=1

X)→ C(
∞∏
k=n

X)

defined by
En(f)(xn, xn+1, xn+2, . . .) := f(xn, . . . , xn, xn+1, xn+2, . . .),

where, in the right hand side, xn is iterated n times. Then it is not difficult to check that they
satisfy the desired conditions.

To make terms isomorphic to the Cuntz algebra O2, we first make terms simple. To do
this, take a faithful state ν on A1. Take a compact metric space Y consisting at least two
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points and a faithful measure µ on Y . On (
⊗∞

k=1C(Y )) ⊗ A1, define a faithful state ϕ by
ϕ := (

⊗∞
k=1 µ) ⊗ ν. Then define a faithful state ϕn on Bn := (

⊗∞
k=nC(Y )) ⊗ An to be the

restriction of ϕ. Now take a pure state ψ on M2 and put Cn := (Bn, ϕn) ∗ (∗∞k=n(M2, ψ)). Then
by Theorem 1.2, each Cn is simple. Moreover, since Cn is the increasing union of finite free
products ((Bn, ϕn) ∗ (∗mk=n(M2, ψ)))∞m=n, each Cn is nuclear by Theorem 1.1. By Theorem 4.8.5
of [6], for each n ∈ N, we have a conditional expectation from C1 onto (B1, ϕ) ∗ (∗nk=1(M2, ψ))
which maps Cn+1 onto Bn+1. This proves

∞⋂
n=1

Cn =
∞⋂
n=1

Bn =
∞⋂
n=1

An = A.

Finally, to make terms isomorphic to O2, we apply Kirchberg–Phillips’s O2-absorption the-
orem [29]. We define a new sequence (Dn)∞n=1 by Dn := Cn ⊗ (

⊗∞
k=nO2) . Then each Dn is

isomorphic to O2 and we have
∞⋂
n=1

Dn =

∞⋂
n=1

Cn = A.

�

Remark 2.1. There is an isomorphism between the decreasing intersectionA =
⋂
n∈N (C(

∏∞
k=nX) or Γ)

and the C∗-algebra
B = {b ∈ C(X) or Γ : Eg(b) ∈ C for all g ∈ Γ}

that preserves the reduced group C∗-algebra. To see this, consider the quotient map π : C(
∏∞
k=1X)or

Γ→ C(X) or Γ induced from the diagonal embedding X →
∏
k∈NX. Then π is injective on A.

To see the equality π(A) = B, consider the embedding of C(X) into C(
∏∞
k=1X) induced from

the quotient map from
∏∞
k=1X onto the nth product component for each n ∈ N.

Therefore, the question either the equation⋂
n∈N

(
C(
∞∏
k=n

X) or Γ

)
= C∗r(Γ)

holds or not seems difficult when the group Γ does not have the AP. Indeed, if the equation
holds for every compact metrizable Γ-space X (when Γ is exact, we only need to consider the
amenable one), then Γ has the ITAP. However, we do not know either a given group has the
ITAP or not for groups without the AP.

Now we can prove Corollary A.

Proof of Corollary A. We apply Main Theorem to Γ := SL(3,Z). (See [6, Section 5.4]
for the exactness of Γ.) This gives an intermediate C∗-algebra A between C∗r(Γ) and L(Γ)∩C∗u(Γ)
satisfying the conditions in Main Theorem. We show that A does not have the OAP and the
local lifting property. Since Γ does not have the AP [31], Proposition 2.3 in Chapter 1 yields
that A does not have the OAP.

Next take a subgroup Λ of Γ isomorphic to SL(2,Z). Denote by p ∈ B(`2(Γ)) the projection
onto the subspace `2(Λ). Then the compression by p gives a conditional expectation

EΓ
Λ : C∗u(Γ)→ C∗u(Λ).

It is clear from the definition that EΓ
Λ maps L(Γ) ∩ C∗u(Γ) onto L(Λ) ∩ C∗u(Λ). Since Λ has the

AP [6, Corollary 12.3.5], we obtain the conditional expectation

Φ: A→ C∗r(Λ).

Since C∗r(Λ) does not have the local lifting property [6, Corollary 3.7.12], neither does A. �
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Other examples. We end this section by giving few more examples satisfying the conditions
in Main Theorem.

Proposition 2.2. Let A be a unital separable nuclear C∗-algebra, Γ be a group with the
AP. Then for any action of Γ on A, the reduced crossed product Aor Γ satisfies the conditions
mentioned in Main Theorem.

Let A be a unital C∗-algebra. Let Γ be a group and S be a Γ-set. Consider the reduced
crossed product A⊗S or Γ, where Γ acts on A⊗S by the shift of tensor components. We say it
the generalized wreath product of A with respect to S and denote it by A oS Γ.

Proposition 2.3. The class of unital C∗-algebras with the SOAP satisfying the conditions
in Main Theorem is closed under taking the following operations.

(1) Countable minimal tensor products.
(2) The generalized wreath product with respect to any Γ-set with Γ the AP.

To prove Propositions 2.2 and 2.3, we need the following proposition. The idea of the proof
is essentially contained in [58].

Proposition 2.4. Let Γ be a group with the AP. Let A be a Γ-C∗-algebra and let X be a
closed subspace of A. Assume that an element x ∈ A or Γ satisfies Eg(x) ∈ X for all g ∈ Γ.
Then x is contained in the closed subspace

X or Γ := span{xg : x ∈ X, g ∈ Γ}.
Conversely, if the above implication always holds for any Γ-C∗-algebra and its closed subspace,
then the group Γ has the AP.

Proof. Since Γ has the AP, there is a net (ϕi)i∈I of finitely supported functions on Γ
satisfying the condition in Definition 2.2. For i ∈ I, define the linear map Φi : Aor Γ→ Aor Γ
by Φi(y) :=

∑
g∈Γ ϕi(g)Eg(y)g. We claim that the net (Φi)i∈I converges to the identity map in

the pointwise norm topology. To show this, consider the embedding ι : AorΓ→ (AorΓ)⊗C∗r(Γ)
induced from the maps a ∈ A 7→ a⊗ 1 and g ∈ Γ 7→ g ⊗ g. (This indeed defines an embedding
by Fell’s absorption principle [6, Prop.4.1.7].) Then the composite ι ◦ Φi coincides with the
composite (idAorΓ ⊗mϕi) ◦ ι. This proves the convergence condition. Now let x be as stated.
Then for any i ∈ I, we have Φi(x) ∈ X or Γ. Since the net (Φi(x))i∈I converges in norm to x,
we have x ∈ X or Γ.

To show the converse, apply the above condition to the case Γ-action is trivial. �

As a consequence, we obtain a permanence property of the SOAP and the OAP.

Corollary 2.5. The SOAP and the OAP are preserved under taking the reduced crossed
product of a group with the AP.

Proof. We only give a proof for the SOAP. Let A be a Γ-C∗-algebra with the SOAP. Let
B be a C∗-algebra and X be its closed subspace. To show the SOAP of A or Γ, it suffices
to prove the inclusion F (A or Γ, B,X) ⊂ (A or Γ) ⊗ X. Let x ∈ F (A or Γ, B,X). Then
(Eg⊗ idB)(x) ∈ F (A,B,X) for all g ∈ Γ. Since A has the SOAP, we have F (A,B,X) ⊂ A⊗X.
Then from Proposition 2.4, we conclude x ∈ (AorΓ)⊗X. Here we use the canonical identification
of (Aor Γ)⊗B with (A⊗B) or Γ. �

Remark 2.6. The similar proofs also show the W∗-analogues of Proposition 2.4 and Corol-
lary 2.5. We note that the W∗-analogue of Corollary 2.5 is shown by Haagerup and Kraus for
locally compact groups with the AP [24, Theorem 3.2].
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Proof of Proposition 2.2. Replace C(
∏∞
k=nX) by C(

∏∞
k=nX) ⊗ A with the diagonal

Γ-action in the proof of Main Theorem. �

Proof of Proposition 2.3. We only prove the second claim.
First take a decreasing sequence (An)∞n=1 of separable nuclear C∗-algebras whose intersection

is isomorphic to A and that admits a compatible family of multiplicative conditional expecta-
tions. We will use C(

∏∞
k=nX)⊗A⊗Sn instead of C(

∏∞
k=nX) in the proof of Main Theorem. To

do this, we remark that the equality
∞⋂
n=1

(
C(
∞∏
k=n

X)⊗
(
A⊗Sn

))
= A⊗S

holds since C∗-algebras A and An have the SOAP. �

3. Hyperbolic group case

In this section, we give a geometric construction of a decreasing sequence of Kirchberg
algebras whose decreasing intersection is isomorphic to the hyperbolic group C∗-algebra. We
construct such a sequence inside the boundary algebra C(∂Γ) or Γ. To find such a sequence,
we construct amenable factors of the boundary space. The proof does not depend on both
reduced free product theory and Kirchberg’s O2-absorption theorem. We will use the sequence
constructed in this section for the free group case in the next two sections.

For the reader who is only interested in the free group case, we recommend to concentrate on
that case. In this case, some arguments related to geodesic paths become much simpler. Next we
recall a few facts on hyperbolic groups. (See 8.16, 8.21, 8.28, and 8.29 in [19].) For a torsion free
element t of a hyperbolic group Γ, the sequence (tn)∞n=1 is quasi-geodesic. The boundary action
of t has exactly two fixed points. They are the points represented by the quasi-geodesic paths
(tn)∞n=1 and (t−n)∞n=1. We denote them by t+∞ and t−∞ respectively. For any neighborhoods
U± of t±∞, there is n ∈ N such that for any m ≥ n, tm(∂Γ \ U−) ⊂ U+ holds.

For a metric space (X, d) and its points x, y, z ∈ X, denote by 〈y, z〉x the Gromov product
(d(y, x) + d(z, x)− d(y, z))/2 of y, z with respect to x.

We recall the following criteria for the Hausdorffness of a quotient space. We left the proof
to the reader.

Proposition 3.1. Let X be a compact Hausdorff space. Let R be an equivalence relation
on X. Assume that the quotient map π : X → X/R is closed. Then the quotient space X/R is
Hausdorff.

The next lemma guarantees the amenability of certain factors of amenable dynamical sys-
tems. We are grateful to Narutaka Ozawa for letting us know Lusin’s theorem.

Lemma 3.2. Let Γ be a group, X be an amenable compact metrizable Γ-space. Let R be a
Γ-invariant equivalence relation on X such that the quotient space X/R is Hausdorff. Assume
that each equivalence class of R is finite. Then X/R is again an amenable compact Γ-space.

To prove Lemma 3.2, we need the following characterization of amenability due to Anantharaman-
Delaroche [1, Theorem 4.5]. See also [6, Prop.5.2.1] for a generalized version.

Proposition 3.3. Let α : Γ y X be an action of Γ on a compact metrizable space X. Then
α is amenable if and only if there is a net (ζi : X → Prob(Γ))i∈I of Borel maps satisfying the
following condition.

lim
i∈I

∫
X
‖g.ζi(x)− ζi(g.x)‖1 dµ = 0 for all µ ∈ Prob(X) and g ∈ Γ.



3. HYPERBOLIC GROUP CASE 47

Here Prob(X) denotes the set of all Borel probability measures on X.

Proof of Lemma 3.2. Since R is closed in X × X and each equivalence class is finite,
Lusin’s theorem [51, Theorem 5.8.11] tells us that R is presented as a countable disjoint union
of graphs of Borel maps between Borel subsets of X. Then it is not hard to check that for each
f ∈ C(X), the function f̃ on X/R defined by

f̃([x]) :=
1

][x]

∑
y∈[x]

f(y)

is Borel. By the same reason, the similar formula also defines the map Φ from C(X,Prob(Γ))
to B(X/R,Prob(Γ)). Here C(X,Prob(Γ)) denotes the set of all continuous maps from X into
Prob(Γ) and B(X/R,Prob(Γ)) denotes the set of all Borel maps from X/R into Prob(Γ).

Let (ζi : X → Prob(Γ))i∈I be a net of continuous maps that satisfies the condition in the
definition of amenability for Γ y X. Consider the net (Φ(ζi))i∈I . Then for any g ∈ Γ, x ∈ X,
and i ∈ I, we have

‖(g.Φ(ζi))([x])− Φ(ζi)(g.[x])‖1 ≤
1

][x]

∑
y∈[x]

‖g.ζi(y)− ζi(g.y)‖1.

Thus, for each g ∈ Γ, the norms ‖(g.Φ(ζi))([x])−Φ(ζi)(g.[x])‖1 converge to 0 uniformly on X/R
as i tends to ∞. In particular, the net (Φ(ζi))i∈I satisfies the condition in Proposition 3.3. �

Lemma 3.4. Let Γ be a hyperbolic group. Let T be a finite set of torsion free elements of Γ.
Then the set

RT := ∆∂Γ ∪
{

(g.t+∞, g.t−∞) : g ∈ Γ, t ∈ T ∪ T−1
}

is a Γ-invariant equivalence relation on ∂Γ. Moreover, the quotient space ∂Γ/RT is a Hausdorff
space.

Proof. Clearly RT is Γ-invariant. Let s and t be torsion free elements of Γ. Then the two
sets {s±∞} and {t±∞} are either disjoint or the same [19, 8.30]. Therefore the set RT is an
equivalence relation. Note that this shows that each equivalence class of RT contains at most
two points.

For the Hausdorffness of the quotient space, it suffices to show that the quotient map
π : ∂Γ→ ∂Γ/RT is closed. Let A be a closed subset of ∂Γ. Then π−1(π(A)) = A ∪B, where

B :=
{
g.t−∞ ∈ ∂Γ : g ∈ Γ, t ∈ T ∪ T−1, g.t+∞ ∈ A

}
.

To show the closedness of π(A), which is equivalent to that of π−1(π(A)), it suffices to show that
cl(B) ⊂ A∪B. Fix a finite generating set S of Γ and denote by | · | and d(·, ·) the length function
and the left invariant metric on Γ determined by S respectively. Take δ > 0 with the property
that every geodesic triangle in (Γ, d) is δ-thin [6, Proposition 5.3.4]. Let x ∈ cl(B) and take a
sequence (gn.t

−∞
n )∞n=1 in B which converges to x. By passing to a subsequence, we may assume

that there is t ∈ T ∪ T−1 with tn = t for all n ∈ N. Replace gn by gnt
l(n) for some l(n) ∈ Z

for each n ∈ N, we may further assume |gn| ≤ |gntk| for all k ∈ Z and n ∈ N. If the sequence
(gn)∞n=1 has a bounded subsequence, then it has a constant subsequence. Hence we have x ∈ B.
Assume |gn| → ∞. For each k ∈ Z, take a geodesic path [e, tk] from e to tk. Since t is torsion
free, the sequences (tn)∞n=1 and (t−n)∞n=1 are quasi-geodesic. Therefore, by [6, Prop.5.3.5], there
is D > 0 such that the Hausdorff distance between [e, tk] and (tn)kn=0 is less than D for all
k ∈ Z. This shows the inequality dist(g−1

n , [e, tk]) ≥ |gn| − D for all n ∈ N and k ∈ Z. Now
consider a geodesic triangle ∆ with the vertices {e, g−1

n , tk}. Let f denote the comparison tripod
of ∆ (see Section 5.3 of [6] for the definition.) Let u, v, w be (unique) points in ∆ lying on the
geodesic paths [e, g−1

n ], [g−1
n , tk], [tk, e] ⊂ ∆ respectively that satisfy f(u) = f(v) = f(w). Put
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l1 := d(e, u) = d(w, e), l2 := d(u, g−1
n ) = d(g−1

n , v), and l3 := d(v, tk) = d(tk, w). Then, since ∆ is
δ-thin, we have l2 + δ ≥ dist(g−1

n , [e, tk]) ≥ |gn| −D. Since l1 + l2 = |gn|, this implies l1 ≤ D+ δ.
Then since l1 + l3 = |tk|, we further obtain l3 ≥ |tk| −D − δ. Combining these inequalities, we
have |gntk| = l2 + l3 ≥ |tk|+ |gn| − 2(D + δ). This yields

〈gntk, gnt−l〉e ≥ |gn| − 2(D + δ) for all n, k, l ∈ N.
Since both (tk)∞k=1 and (t−k)∞k=1 are quasi-geodesic and the left multiplication action of Γ on

itself is isometric, the paths {(gntk)∞k=1, (gnt
−k)∞k=1 : n ∈ N} are uniformly quasi-geodesic (i.e.,

there are constants C ≥ 1 and r > 0 such that all paths in the set are (C, r)-quasi-geodesic).
This with the above inequality shows that the limits of (gn.t

+∞)∞n=1 and (gn.t
−∞)∞n=1 coincide.

(Cf. Lemmas 5.3.5, 5.3.8 in [6] and the definition of the topology on ∂Γ.) Since A is closed, we
have x ∈ A as required. �

For a subgroup Λ of a hyperbolic group Γ, we define the limit set LΛ of Λ to be the closure
of the set {t+∞ ∈ ∂Γ : t ∈ Λ torsion free} in ∂Γ. Recall that every hyperbolic group does not
contain an infinite torsion subgroup [19, 8.36]. Therefore the limit set LΛ is nonempty when Λ
is infinite. Since we have (sts−1)+∞ = s.t+∞ for any torsion free element t of Γ and any element
s of Γ, the limit set LΛ is Λ-invariant. Hence Λ acts on LΛ in the canonical way. Next we give
two lemmas on the action on the limit set, which are familiar to specialists.

Lemma 3.5. Let Λ be an ICC subgroup of a hyperbolic group Γ. Then the action ϕΛ of Λ
on its limit set LΛ is amenable, minimal, and topologically free.

Proof. The amenability of ϕΛ is clear since boundary actions are amenable. Since Λ is ICC,
it is neither finite nor virtually cyclic. Hence Λ contains a free group of rank 2 [19, Theorem
8.37]. Hence there are two torsion free elements s and t of Λ which do not have a common fixed
point. This shows the minimality of ϕΛ.

Assume now that ϕΛ is not topologically free. Take an element g1 ∈ Λ \ {e} such that the
set Fg1 := {x ∈ LΛ : g1.x = x} has a nontrivial interior. Since LΛ does not have an isolated
point, the order of g1 must be finite. Assume Fg1 = LΛ. This means that the kernel of ϕΛ is
nontrivial. Since it cannot contain a torsion free element, it is a nontrivial torsion subgroup.
Therefore it must be finite. This contradicts to the ICC condition. For a subgroup G of Λ, we
set FG :=

⋂
g∈G Fg. Note that for a subgroup G of Λ and g ∈ Λ, we have FgGg−1 = gFG. Set

G1 := 〈g1〉. Then int(FG1) = int(Fg1) 6= ∅. We will show that there is g2 ∈ Λ satisfying

∅ 6= g2(int(FG1)) ∩ int(FG1) ( int(FG1).

Indeed, if such g2 does not exist, then the family {g(int(FG1)) : g ∈ Λ} makes an open covering
of LΛ whose members are mutually disjoint. (Note that if g ∈ Λ satisfies int(FG1) ( g(int(FG1)),
then g−1 satisfies the required condition.) This forces that the subgroup

Λ0 := {g ∈ Λ : g(int(FG1)) = int(FG1)}
has finite index in Λ. Since Λ is ICC, the subgroup G := 〈gG1g

−1 : g ∈ Λ0〉 must be infinite.
Moreover, by definition, we have int(FG) = int(FG1) 6= 0. Hence G must be an infinite torsion
subgroup, a contradiction. Thus we can take g2 ∈ Λ as above. Set G2 = 〈G1, g2G1g2

−1〉.
Then we have ∅ 6= int(FG2) ( int(FG1). This shows that G2 is still finite and is larger than
G1. Continuing this argument inductively, we obtain a strictly increasing sequence (Gn)∞n=1 of
finite subgroups of Λ. Then the union

⋃∞
n=1Gn is an infinite torsion subgroup of Λ, again a

contradiction. �

Remark 3.6. Conversely, if Λ is not ICC, then the action on the limit set LΛ is not faithful.
In this case, Λ contains a finite index subgroup Λ0 with the nontrivial center. Since LΛ0 = LΛ,
the center of Λ0 acts on LΛ trivially.
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Lemma 3.7. For Λ as in Lemma 3.5, the equivalence relation

R :=

 ⋃
t∈Λ, torsion free

R{t}

 ∩ (LΛ × LΛ)

on LΛ is dense in LΛ × LΛ.

Proof. Let s and t be two torsion free elements in Λ which do not have a common fixed
point. For any neighborhoods U± of s±∞ and neighborhoods V± of t±∞ with the properties
U+∩V− = ∅ and U−∩V+ = ∅, take a natural number N satisfying sN (∂Γ\U−) ( U+ and tN (∂Γ\
V−) ( V+. Then, for any m ∈ N, we have (sN tN )m(∂Γ\V−) ( U+ and (sN tN )−m(∂Γ\U+) ( V−.
This shows that the element sN tN is torsion free, (sN tN )+∞ ∈ cl(U+), and (sN tN )−∞ ∈ cl(V−).
Thus the product cl(U+)× cl(V−) intersects with R. This proves the density of R. �

Recall that an action Γ y X of a group on a compact Hausdorff space is called a locally
boundary action if for any nonempty open set U ⊂ X, there is an open set V ⊂ U and an
element t ∈ Γ such that cl(t.V ) ( V holds [30, Definition 6].

Lemma 3.8. Let Λ and Γ be as in Lemma 3.5. Let T be a finite set of torsion free elements
of Λ. Then Λ y LΛ/(RT ∩ (LΛ × LΛ)) is a locally boundary action.

Proof. Let s be a torsion free element of Λ whose fixed points are not equal to g.t±∞ for
any g ∈ Λ and t ∈ T . Then π(s+∞) 6= π(s−∞). Hence, on the set π(LΛ \ {s+∞}), the sequence
(sn.x)∞n=1 converges to π(s+∞) uniformly on compact subsets. Thus for any neighborhood U of
π(s+∞) whose closure does not contain π(s−∞), there is n ∈ N such that sn(cl(U)) ( U . From
the minimality of Λ y LΛ, now it is easy to conclude that the action is a locally boundary
action. �

Theorem 3.9. Let Λ be a subgroup of a hyperbolic group Γ. Then there is a decreasing
sequence of nuclear C∗-subalgebras of C(LΛ)orΛ whose intersection is equal to C∗r(Λ). Moreover,
if Λ is ICC, then we can find such a sequence with the terms Kirchberg algebras in the UCT
class.

Proof. Let (Fn)∞n=1 be an increasing sequence of finite subsets of torsion free elements of Λ
whose union contains all torsion free elements. Define Rn := RFn ∩ (LΛ ×LΛ) for each n. Note
that by Lemma 3.4, each quotient space LΛ/Rn is Hausdorff. Put An := C(LΛ/Rn)or Λ. Then
by Lemma 3.2, each An is nuclear. Moreover, by Lemma 3.7, we have

⋂∞
n=1C(LΛ/Rn) = C.

Since every hyperbolic group is weakly amenable [37], we have the equality

∞⋂
n=1

An = C∗r(Λ).

When Λ is ICC, a similar proof to that of Lemma 3.5 shows the topological freeness of Λ y
LΛ/Rn. Since each action Λ y LΛ/Rn is a locally boundary action, Theorem 9 of [30] yields
that each An is a Kirchberg algebra. �

4. Extensions of free group C∗-algebras by nuclear C∗-algebras

In this section, we prove Theorem B. We first consider the case d is finite. We deal the case
d = ∞ in the end of this section. Denote by S the set of all canonical generators of Fd. We
denote by | · | the length function on Fd determined by S. To prove Theorem B, first we compute
the K-groups of the crossed product C(∂Fd/RS) or Fd.
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We always use the following standard picture of the Gromov boundary ∂Fd.

∂Fd :=

{
(xn)∞n=1 ∈

∏
n∈N

S t S−1 : xn 6= x−1
n+1 for all n ∈ N

}
equipped with the relative product topology. For w ∈ Fd, we denote by p[w] the characteristic
function of the clopen set {

(xn)∞n=1 ∈ ∂Fd : x1 · · ·x|w| = w
}

and set q[w] := p[w] + p[w−1]. Throughout this section, we identify C(∂Fd/RS) with the C∗-
subalgebra of C(∂Fd) in the canonical way. Under this identification, it is not difficult to check
that for s ∈ S, q[s] is contained in C(∂Fd/RS). We denote the action Fd y C(∂Fd) by w.f for
w ∈ Fd and f ∈ C(∂Fd).

Lemma 4.1. The C∗-algebra C(∂Fd/RS) is generated by the set

P := {w.q[s] : w ∈ Fd, s ∈ S}.
In particular, the space ∂Fd/RS is homeomorphic to the Cantor set.

Proof. By the Stone–Weierstrass theorem, it suffices to show that the set P separates
the points of ∂Fd/RS . Let x = (xn)∞n=1 and y = (yn)∞n=1 be two elements in ∂Fd satisfying
(x, y) 6∈ RS . If x 6∈ {ws+∞ : w ∈ Fd, s ∈ S t S−1}, then take n ∈ N with xn 6= yn. Let m be
the smallest integer greater than n satisfying xm 6= xn (which exists by assumption). Then the
projection (x1 · · ·xm−1).(q[xm]) separates x and y. Next consider the case x = zs+∞, y = wt+∞,
where s, t ∈ S tS−1 and z, w are elements of Fd whose last alphabets are not equal to s±1, t±1,
respectively. Assume |z| ≥ |w|. Note that the equality z = w implies s 6= t±1 by assumption.
Hence the projection z.q[s] separates x and y. Thus P satisfies the required condition.

The last assertion now follows from the following fact. A topological space is homeomorphic
to the Cantor set if and only if it is compact, metrizable, totally disconnected, and does not
have an isolated point. �

Lemma 4.2. The K0-group of C(∂Fd/RS) or Fd is generated by {[q[s]]0 : s ∈ S}.

Proof. By Lemma 4.1 and the Pimsner–Voiculescu exact sequence [40], the K0-group is
generated by the elements represented by a projection in C(∂Fd/RS). Let r be a projection in
C(∂Fd/RS). Then r can be presented as a sum

∑
w∈F p[w], where F is a subset of Fd\{e} whose

elements have the same lengths. Let w be an element of Fd whose reduced form is s
n(1)
1 · · · sn(k)

k ,

where si ∈ S tS−1, n(i) ∈ N, and si 6= si+1 for all i. We define ŵ ∈ Fd by s
n(1)
1 · · · sn(k−1)

k−1 s
−n(k)
k .

We will show that w ∈ F implies ŵ ∈ F . Indeed, if w ∈ F , then r(ws+∞
k ) = 1. Hence we must

have r(ws−∞k ) = 1. This implies ŵ ∈ F as desired. Since w 6= ŵ and [p[w] + p[ŵ]]0 = [q[s
n(k)
k ]]0,

it suffices to show that for s ∈ S and n ∈ N, the element [q[sn]]0 is contained in the subgroup
generated by [q[s]]0, s ∈ S. This follows from the equations

q[s2] = s.q[s] + s−1.q[s] + q[s]− 2

and

q[sk] = s.q[sk−1] + s−1.q[sk−1]− q[sk−2]

for s ∈ S and k > 2. �

We denote the triplet (K0, [1]0,K1) by K∗.

Theorem 4.3. The K∗(C(∂Fd/RS) or Fd) is isomorphic to (Zd, (1, 1, . . . , 1),Zd).
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Proof. We first compute the pair (K0, [1]0). By Lemma 4.2, it suffices to show the linear
independence of the family ([q[s]]0)s∈S . Let

η : C(∂Fd,Z)⊕S → C(∂Fd,Z)

be the additive map defined by (fs)s∈S 7→
∑

s∈S(fs−s.fs) and denote by τ the restriction of η to

C(∂Fd/RS ,Z)⊕S . Then the Pimsner–Voiculescu exact sequence [40] shows that the canonical
map

C(∂Fd/RS ,Z)→ K0(C(∂Fd/RS) or Fd)
is surjective and its kernel is equal to im(τ). Hence it suffices to show that im(τ) does not
contain a nontrivial linear combination of the projections q[s], s ∈ S. The isomorphisms ker(η) ∼=
K1(C(∂Fd) or Fd) ∼= Zd (see [11, 40, 50]) show that ker(η) = {(fs)s∈S : each fs is constant}.
Now let r =

∑
s∈S n(s)q[s] be a nontrivial linear combination of q[s]’s. If

∑
s∈S n(s) 6≡ 0

mod (d − 1), then r 6∈ im(η) by [11, 50]. If
∑

s∈S n(s) = (d − 1)m for some m ∈ Z, then∑
s∈S n(s)q[s] = η((gs)s∈S), where gs := (n(s)−m)p[s−1] for s ∈ S. Hence η−1({r}) = (gs)s∈S+

ker(η), which does not intersect with C(∂Fd/RS ,Z)⊕S . Thus we have r 6∈ im(τ) in either case.
The isomorphism of the K1-group follows from the Pimsner–Voiculescu exact sequence [40]

and the equality ker(τ) = ker(η). �

Proof of Theorem B:the case d is finite. Let A be a stable separable nuclear C∗-
algebra. Let ι : C∗r(Fd)→ C(∂Fd/RS)or Fd be the inclusion map. Then the above computation
yields that the homomorphism ι∗,0 has a left inverse and the homomorphism ι∗,1 is an isomor-
phism. Consequently, the homomorphism

Hom(Ki(C(∂Fd/RS) or Fd),K1−i(A))→ Hom(Ki(C
∗
r(Fd)),K1−i(A))

induced from ι is surjective for i = 0, 1. Recall that both C∗r(Fd) and C(∂Fd/RS) or Fd satisfy
the universal coefficient theorem [48, Corollary 7.2]. Since Ki(C

∗
r(Fd)) is a free Z-module for

i = 0, 1, the universal coefficient theorem [48] yields that the canonical homomorphism

Ext(C∗r(Fd), A)−1 →
⊕
i=0,1

Hom(Ki(C
∗
r(Fd)),K1−i(A))

is an isomorphism. Combining these facts, we see that the homomorphism

ι∗ : Ext(C(∂Fd/RS) or Fd, A)→ Ext(C∗r(Fd), A)−1

induced from ι is surjective.
Now let B be the exact C∗-algebra obtained by an extension σ of C∗r(Fd) by A which

is either absorbing or unital absorbing. Since A is nuclear and C∗r(Fd) is exact, the Effros–
Haagerup lifting theorem [16, Theorem B and Prop. 5.5] shows that [σ] ∈ Ext(C∗r(Fd), A) is
invertible in the semigroup Ext(C∗r(Fd), A). Note that in either case, the direct sum σ ⊕ 0 is
absorbing. Thus, by the surjectivity of ι∗, the direct sum σ ⊕ 0 extends to a ∗-homomorphism
ϕ : C(∂Fd/RS) or Fd →M2(Q(A)). Then, since ϕ(1) = σ(1)⊕ 0 ≤ 1⊕ 0, the map

σ̃ : C(∂Fd/RS) or Fd 3 x 7→ ϕ(x)1,1 ∈ Q(A)

defines a ∗-homomorphism which extends σ.
We next show that B is realized as a decreasing intersection of separable nuclear C∗-algebras.

Take a decreasing sequence (An)∞n=1 of nuclear C∗-subalgebras of C(∂Fd/RS) or Fd whose de-
creasing intersection is equal to C∗r(Fd). PutBn := σ̃−1(σ̃(An)) for each n. Then, since nuclearity
is preserved under taking the extension, each Bn is nuclear. Moreover, we have the equality

∞⋂
n=1

Bn =

∞⋂
n=1

σ̃−1(σ̃(An)) = B.
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For the unital case, the rest of the proof is similarly done to the proof of Main Theorem. For
the non-unital case, let (Bn)∞n=1 be a decreasing sequence of separable nuclear C∗-algebras whose

intersection is B. Denote by 1 the unit of the unitization B̃1 of B1. Define C∗-subalgebras Cn
of B̃1 ⊕ `∞(N) by Cn := C∗(Bn, {1⊕ pk : k ∈ N}), where pk is the characteristic function of the
set {l ∈ N : l ≥ k}. Set Dn := Cn ⊗

⊗∞
k=nC(X) for each n, where X is a compact metrizable

space consisting at least two points. Take a faithful state φ on C1 and a faithful measure µ on
X. Then define a state ϕ on D1 by ϕ := φ ⊗

⊗∞
k=1 µ. Now take a pure state ψ on M2 and

define En := qn ((Dn, ϕ|Dn) ∗ (∗∞k=n(M2, ψ))) qn, where qn := (1 ⊕ pn) ∈ Dn. Then, being as a
corner of a simple unital separable nuclear C∗-algebra, each En also has these properties. Now
put Fn := En ⊗

⊗∞
k=nO2. Then each Fn is isomorphic to O2 [29]. Now it is easy to see that

the intersection of the decreasing sequence (Fn)∞n=1 is isomorphic to B.
Finally, when A = K, by Voiculescu’s theorem [57], any essential unital extension is unital

absorbing and any essential non-unital extension is absorbing. Moreover, since C∗r(Fd) is simple
[41], the only non-essential extension is the zero extension C∗r(Fd) ⊕ K. In this case, the claim
follows from the above argument. �

We remark that in the proof of Main Theorem and the above argument, the following is
implicitly proved.

Proposition 4.4. Let A be a (possibly non-unital) C∗-algebra which is realized as a decreas-
ing intersection of separable nuclear C∗-algebras. Then it is realized as a decreasing intersection
of isomorphs of the Cuntz algebra O2.

Proof of Theorem B: the case d =∞. Let Λ be the commutator subgroup of F2. Then
Λ is isomorphic to F∞. Therefore we only need to show the claim for Λ. Let S be the canonical
generator of F2 and consider the restriction α of the action F2 y ∂F2/RS to Λ. Let

ι : C∗r(Λ)→ C(∂F2/RS) or Λ

denote the inclusion. We will show that the induced homomorphism ι∗ on the K-theory is left
invertible. To show the claim for the K0-group, consider the following inclusion map

ι̃ : C∗r(Λ)→ C(∂F2/RS) or F2.

Then by Theorem 4.3, the homomorphism ι̃∗,0 is left invertible. This proves the left invertibility
of ι∗,0.

To show the claim for the K1-group, first take a free basis A of Λ ∼= F∞. Define the
homomorphism

η : C(∂F2/RS ,Z)⊕A → C(∂F2/RS ,Z)

by η((fa)a∈A) :=
∑

a∈A(fa − a(fa)). Then by the Pimsner–Voiculescu six term exact sequence,
we obtain an isomorphism

K1(C(∂F2/RS) or Λ) ∼= ker(η)

which maps [ua]1 to (δa,b1)b∈A for each a ∈ A. Since the subgroup generated by 1 is a direct sum-

mand of the group C(∂F2/RS ,Z), the homomorphism Z⊕A → ker(η) given by δa 7→ (δa,b1)b∈A
is left invertible. Consequently, the homomorphism ι∗,1 is left invertible. Now the rest of the
proof is similarly done to the case d is finite. �

By Theorem 4.1 of [39], for unital Kirchberg algebras in the UCT class, every homomorphism
between the triplets K∗ is implemented by a unital ∗-homomorphism. Combining this fact with
our results in this section, we obtain the following consequence.

Corollary 4.5. For any countable free group F, there is a unital embedding of C∗r(F) into
a Kirchberg algebra which implements the KK-equivalence.



CHAPTER 5

Minimal ambient nuclear C∗-algebras

A deep theorem of Kirchberg–Phillips [29] states that every separable exact C∗-algebra has
an ambient nuclear C∗-algebra. (In fact, one can choose it to be isomorphic to the Cuntz algebra
O2.) When we consider reduced group C∗-algebras, thanks to Ozawa’s result [35], we have
more natural ambient nuclear C∗-algebras, namely, the reduced crossed products of amenable
dynamical systems. Nuclear ambient C∗-algebras play important roles in theory of both C∗- and
von Neumann algebras. We refer the reader to the books [6] and [45] for details. In this chapter,
based on (new) results on topological dynamical systems, we give the first example of a minimal
ambient nuclear C∗-algebra of a non-nuclear C∗-algebra. In fact, we have a stronger result: our
examples of minimal ambient nuclear C∗-algebras have no proper intermediate C∗-algebras.

Note that as we have seen in Chapter 4, in contrast to injectivity of von Neumann algebras,
nuclearity of C∗-algebras is not preserved under taking the decreasing intersection. We also note
that the increasing union of non-nuclear C∗-algebras can be nuclear. See Remark 2.10 for the
detail. Thus there is no obvious way to provide a minimal ambient nuclear C∗-algebra.

In 1975, Powers [41] invented a celebrated method to study structures of the reduced group
C∗-algebras. His idea has been applied to more general situations, particularly for reduced
crossed products, and to more general groups, by many hands. See [14] for instance. We use his
technique with certain properties of dynamical systems to obtain the following main theorem of
this chapter.

We say that a group is an infinite free product group if it is a free product of infinitely many
nontrivial groups. Throughout this chapter, groups are supposed to be countable.

Main Theorem (Corollary 1.4, Theorem 2.9). Let Γ be an infinite free product group
with the AP ([24]) (or equivalently, each free product component has the AP). Then there is
an amenable action of Γ on the Cantor set X with the following property. There is no proper
intermediate C∗-algebra of the inclusion C∗r(Γ) ⊂ C(X) or Γ. In particular C(X) or Γ is a
minimal ambient nuclear C∗-algebra of the non-nuclear C∗-algebra C∗r(Γ).

In Main Theorem, we need the AP to determine when a given element of the reduced crossed
product sits in the reduced group C∗-algebra. Cf. [58] and Proposition 2.4 in Chapter 4. By
modifying Main Theorem, we also provide examples of non-nuclear C∗-subalgebras of O2 with
no proper intermediate C∗-algebras (Theorem 3.1).

In theory of both measurable and topological dynamical systems, the Baire category theorem
is a powerful tool to produce an example with a nice property. We follow this strategy to
construct dynamical systems as in Main Theorem. To apply the Baire category theorem, we
again work on the space S(Γ, X) of all actions Γ y X introduced in Chapter 3.

For the simplicity of notion, here we introduce a few terminology. We say that a property
of topological dynamical systems is open, Gδ, dense, Gδ-dense, respectively when the subset
of S(Γ, X) consisting of actions with this property has the corresponding property. We say
that a property is generic when the corresponding set contains a Gδ-dense subset of S(Γ, X).
Note that thanks to the Baire category theorem, the intersection of countably many Gδ-dense
properties is again Gδ-dense, and similarly for genericity. Although some results (e.g., genericity
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of amenability, minimality, primeness, for infinite free product groups) can be extended to more
general spaces by minor modifications, we concentrate on the Cantor set. This is enough for
Main Theorem.

1. Some generic properties of Cantor systems

In this section, we summarize generic properties of Cantor systems. From now on we denote
by X the Cantor set. We recall that the Cantor set is the topological space characterized
(up to homeomorphism) by the following four properties: compactness, total disconnectedness,
metrizability, and perfectness (i.e., no isolated points).

Lemma 1.1. For any group Γ, the following properties are Gδ in S(Γ, X).

(1) Freeness.
(2) Amenability.

Proof. The first claim is well-known. For completeness, we include a proof.
(1): For s ∈ Γ, set Vs := {α ∈ S(Γ, X) : αs(x) 6= x for all x ∈ X}. By the compactness of X,
each Vs is open. The Gδ-set

⋂
s∈Γ\{e} Vs consists of all free Cantor systems.

(2): For each finite subset S of Γ, we say that an action α : Γ y X has property AS if it admits
a continuous map µ : X → Prob(Γ) satisfying

‖s.µx − µs.x‖1 <
1

|S|
for all s ∈ S and x ∈ X. Let α ∈ S(Γ, X) be given and suppose we have a continuous map µ
that witnesses AS of α. Then, by the continuity of µ, it guarantees AS for any β sufficiently
close to α. This shows that AS is open. Now obviously, the intersection

∧
S AS is equivalent to

amenability, where S runs over finite subsets of Γ. �

The following simple lemma is crucial to show the genericity of some properties.

Lemma 1.2. Let α : Γ y X be a given Cantor system. Then the set of extensions of α is
dense in S(Γ, X).

Proof. Let us regard the Cantor set X as the direct product of infinitely many copies Y
of the Cantor set: X = Y N. We regard α as a dynamical system on Y via a homeomorphism
X ∼= Y . For each N ∈ N, define a map σN : N→ N by

σN (n) :=

{
n when n < N,
n+ 1 when n ≥ N.

Now let β ∈ S(Γ, X) be given. Let γ : Γ y Y × X be the diagonal action of α and β. For
each N ∈ N, define a homeomorphism ϕN : X → Y × X by ϕN (x) := (xN , (xσN (n))n∈N). Put

β(N) := ϕ−1
N ◦ γ ◦ ϕN ∈ S(Γ, X). Then for each N ∈ N, the projection from X onto the Nth

coordinate gives a factor map of β(N) onto α. Moreover the sequence (β(n))∞n=1 converges to β.
Since β is arbitrary, this proves the claim. �

The next lemma is well-known. For completeness, we give a proof.

Lemma 1.3. Every group admits a free Cantor system. Also, every exact group admits an
amenable Cantor system.

Proof. Let Γ be a group. We first show that the left translation action of Γ on its Stone–
Čech compactification βΓ is free. Let s ∈ Γ \ {e} be given. Put Λ := 〈s〉. Take a Λ-equivariant
map Γ → Λ where Λ acts on both groups by the left multiplication. This extends to the Λ-
equivariant quotient map βΓ→ βΛ. By universality, βΛ factors onto every minimal dynamical
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system of Λ (on a compact space). Since any cyclic group admits a minimal free action on a
compact space, this shows that s has no fixed points in βΓ.

Let (Aµ)µ∈M be the increasing net of Γ-invariant unital C∗-subalgebras of `∞(Γ) = C(βΓ)
generated by countably many projections. Note that

⋃
µ∈M Aµ = `∞(Γ). Let Xµ denote the

spectrum of Aµ. Obviously, each Xµ is totally disconnected and metrizable. Let αµ : Γ y Xµ

be the action induced from the action Γ y Aµ. By the freeness of Γ y βΓ, for sufficiently large
µ, the αµ must be free. When Γ is exact, then as stated in Theorem 5.1.7 of [6], for sufficiently
large µ, the αµ must be amenable. Hence for sufficiently large µ, the diagonal action of αµ and
the trivial Cantor system gives the desired action. �

We now summarize the results of this section.

Corollary 1.4. For any group Γ, freeness is a Gδ-dense property in S(Γ, X). Moreover,
when Γ is exact, then amenability is also a Gδ-dense property in S(Γ, X).

Proof. Since both freeness and amenability are inherited to extensions, it follows from
Lemmas 1.1 through 1.3. �

2. Construction of dynamical systems and proof of Main Theorem

In this section, we prove Main Theorem. Let (Γi)
∞
i=1 be a sequence of nontrivial groups and

let Γ := ∗∞i=1Γi be their free product. By replacing Γi by Γ2i−1 ∗ Γ2i for all i if necessary, in
the rest of this chapter, we assume that each free product component Γi contains a torsion-free
element. We start with the following elementary lemmas. We remark that in the case that Γ is
the free group F∞, we do not need these lemmas.

Lemma 2.1. Let Λ be a group and Υ be its subgroup. Then for any minimal dynamical
system α of Υ on a compact metrizable space, there is a Cantor system of Λ whose restriction
on Υ is an extension of α.

Proof. Let α : Υ y Y be an action as in the statement. Fix an element y ∈ Y . Then the
map Υ→ Y defined by s 7→ s.y extends to a factor map βΥ→ Y . This induces an Υ-equivariant
unital embedding of C(Y ) into `∞(Υ). By the right coset decomposition of Λ with respect to
Υ, we have an Υ-equivariant unital embedding of `∞(Υ) into `∞(Λ). We identify C(Y ) with a
unital Υ-invariant C∗-subalgebra of `∞(Λ) via the composite of these two embeddings. Take a
Λ-invariant C∗-subalgebra A of `∞(Λ) which contains C(Y ) and is generated by countably many
projections. Let Z be the spectrum of A. Note that Z is metrizable and totally disconnected.
Let β : Λ y Z be the action induced from the action Λ y A. Since A contains C(Y ) as a unital
C∗-subalgebra, the restriction of β on Υ is an extension of α. Now the diagonal action of β with
the trivial Cantor system gives the desired Cantor system. �

Lemma 2.2. Let Λ be a group. Let s be a torsion-free element of Λ. Then for any finite
family U = {U1, . . . , Un} of pairwise disjoint proper clopen subsets of X, there is a Cantor system
α : Λ y X with sUi = Ui+1 for all i. Here and below, we put Un+1 := U1 for convenience.

Proof. By Lemma 2.1, there is a Cantor system α : Λ y X whose restriction on 〈s〉 factors
a transitive action on the set {1, . . . , n}. For such α, there is a partition {V1, . . . , Vn} of X by
clopen subsets satisfying sVi = Vi+1 for all i. Set I := {0, 1} if

⋃n
i=1 Ui 6= X. Otherwise we set

I := {0}. Then define a new action β : Λ y X × I by

βt(x, j) :=

{
(αt(x), 0) when j = 0,
(x, 1) otherwise.
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Since nonempty clopen subsets of the Cantor set are mutually homeomorphic, there is a home-
omorphism ϕ : X × I → X which maps Vi × {0} onto Ui for each i. For such ϕ, the conjugate
ϕ ◦ β ◦ ϕ−1 gives the desired Cantor system. �

We next introduce a property of Cantor systems which is one of the key of the proof of Main
Theorem and show that this property is Gδ-dense for infinite free product groups.

Proposition 2.3. Let Γ = ∗∞i=1Γi be an infinite free product group. Then the following
property R of Cantor systems is Gδ-dense in S(Γ, X).

(R): For any finite family U = {U1, . . . , Un} of mutually disjoint proper clopen subsets of
X, there are infinitely many i ∈ N satisfying the following condition. The group Γi
contains a torsion-free element s satisfying sUj = Uj+1 for all j.

Here we put Un+1 := U1 as before.

Proof. For any i ∈ N and a family U as stated, we say that an element α ∈ S(Γ, X) has
property R(i,U) if it satisfies the following condition. There are k ≥ i and a torsion-free element
s ∈ Γk satisfying sUj = Uj+1 for all j. Then observe that for any two clopen subsets U and V
of X, the set

{ϕ ∈ Homeo(X) : ϕ(U) = V }
is clopen in Homeo(X). This shows that property R(i,U) is open in S(Γ, X).

To show the density of R(i,U), for each m ∈ N, take a Cantor system ϕm : Γm y X as in

Lemma 2.2. Let α ∈ S(Γ, X) be given. Then, for each m ∈ N, we define α(m) ∈ S(Γ, X) as
follows.

α(m)|Γk
:=

{
α|Γk

for k < m,
ϕk for k ≥ m.

Then each α(m) satisfies property R(i,U) and the sequence (α(m))∞m=1 converges to α. This
proves the density of R(i,U).

Now observe that property R is equivalent to the intersection
∧
i,U R(i,U). Since there are

only countably many clopen subsets in X, the intersection is taken over a countable family. Now
the Baire category theorem completes the proof. �

Remark 2.4. It is not hard to check that an action with R is a boundary in Furstenberg’s
sense (see Definition 3.8 of [26] for the definition). Also, by Theorem 5 of [30], property R with
topological freeness implies the pure infiniteness of the reduced crossed product.

Remark 2.5. Since every infinite group admits a weak mixing Cantor system of all orders
(e.g., the Bernoulli shift), in a similar way to the proof of Proposition 2.3, it can be shown
that weak mixing of all orders is Gδ-dense for infinite free product groups. Here recall that a
topological dynamical system α is said to be weak mixing of all orders if for any n ∈ N, the
diagonal action of n copies of α has a dense orbit. Similarly, it can also be shown that the set of
disjoint pairs (α, β) ∈ S(Γ, X)2 is generic in S(Γ, X)2. Here recall that two minimal dynamical
systems are disjoint if and only if their diagonal action is minimal.

Remark 2.6. Consider the case Γ = F∞. Then by the Pimsner–Voiculescu exact sequence
[40], property R implies K0(C(X) or F∞) = 0. We also have K1(C(X) or F∞) ∼= Z⊕∞ for
any Cantor system of F∞. This with the classification theorem of Kirchberg–Phillips [28], [39]
shows that generically the crossed products give only a single C∗-algebra. However, as we have
seen in Chapter 2, there are continuously many Kirchberg algebras which are realized as the
reduced crossed product of an amenable minimal free Cantor system of F∞.
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The next proposition says that propertyR implies the non-existence of nontrivial Γ-invariant
closed subspace of C(X). This result may be of independent interest.

Proposition 2.7. Assume α ∈ S(Γ, X) satisfies R. Then there is no Γ-invariant closed
subspace of C(X) other than 0, C, or C(X). In particular R implies primeness.

Proof. Let V be a closed Γ-invariant subspace of C(X) other than 0 or C. We first show
that V contains C. Take a nonzero function f ∈ V . Then for any ε > 0, there is a partition
U := {U1, . . . , Un} of X by proper clopen sets and complex numbers c1, . . . , cn with |c1| = ‖f‖
such that with g :=

∑n
i=1 ciχUi , we have ‖f − g‖ < ε. Put c := 1

n

∑n
i=1 ci. By replacing U by

dividing U1 into sufficiently many clopen subsets and replacing the sequence (ci)i suitably, we
may assume |c| ≥ ‖f‖/2. By property R, we can take s ∈ Γ with sUi = Ui+1 for all i. We then
have

∑n
i=1 s

igs−i =
∑n

i=1 ci. This yields the inequality

‖ 1

n

n∑
i=1

sifs−i − c‖ < ε.

Since ε > 0 is arbitrary and |c| ≥ ‖f‖/2, we obtain C ⊂ V .
From this, we can choose a nonzero function f ∈ V with 0 ∈ f(X). For any ε > 0, take a

partition U = {U0, U1, . . . , Un} of X by proper clopen sets and complex numbers c1, . . . , cn such
that with g :=

∑n
i=1 ciχUi , we have ‖f − g‖ < ε. Put c := 1

n

∑n
i=1 ci. As before, we may assume

|c| ≥ ‖f‖/2. By using property R to the family {U1, . . . , Un}, we can take s ∈ Γ satisfying
sU0 = U0 and sUi = Ui+1 for 1 ≤ i < n. Then we have 1

n

∑n
i=1 s

igs−i = cχX\U0
. Now let U be

any proper clopen subset of X. Take t ∈ Γ with t(X \ U0) = U . (To find such t, use property
R twice.) We then have

t(
1

n

n∑
i=1

sigs−i)t−1 = ct(χX\U0
)t−1 = cχU .

This shows the inequality

‖( 1

n

n∑
i=1

tsifs−it−1)− cχU‖ < ε.

Since ε > 0 is arbitrary, this proves χU ∈ V . Since U is arbitrary, we obtain V = C(X). �

We need the following restricted version of the Powers property for free product groups.
Although the proof is essentially contained in [41], for completeness, we include a proof.

Lemma 2.8 (Compare with Lemma 5 of [41] and Lemma 5 of [14]). Let Λ1,Λ2 be groups
and set Λ := Λ1 ∗ Λ2. Let s ∈ Λ1, t ∈ Λ2 be torsion-free elements. Then for any finite subset
F of Λ \ {e}, there are a partition Λ = D t E of Λ and elements u1, u2, u3 ∈ 〈s, t〉 with the
following properties.

(1) fD ∩D = ∅ for all f ∈ F .
(2) ujE ∩ ukE = ∅ for any two distinct j, k ∈ {1, 2, 3}.

Proof. Let F ⊂ Λ \ {e} be given. Then for sufficiently large n ∈ N, with z := tsn, any
element of zFz−1 is started with t and ended with t−1. Here for u ∈ Λi \ {e}, we say an element
w of Λ is started with u if w = uw1 . . . wn for some (possibly empty) sequence w1, . . . , wn with
wj ∈ Λkj \ {e} and i 6= k1 6= k2 6= · · · 6= kn. The word “ended with u” is similarly defined.

(Thus, in our terminology, the element u2 is not started with u.)
Let E′ be the subset of Λ consisting of all elements started with t. Put E := z−1E′,

D := Λ \ E, and D′ := Λ \ E′. Then note that fD ∩ D = ∅ for all f ∈ F if and only if
f ′D′ ∩D′ = ∅ for all f ′ ∈ zFz−1. Since elements f ′ ∈ zFz−1 are started with t and ended with
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t−1 but D′ consists of elements not started with t, we have f ′D′ ∩D′ = ∅. Now for j ∈ {1, 2, 3},
put uj := sjz. Obviously each uj is contained in 〈s, t〉. By definition, we have ujE = sjE′.
This shows that ujE consists of only elements started with sj . Therefore u1E, u2E, and u3E
are pairwise disjoint. �

Now we prove Main Theorem. Before the proof, we remark that the AP is preserved under
taking free products. Hence Γ has the AP if and only if each free product component Γi has it.
See Section 12.4 of [6] for the detail.

Theorem 2.9. Let Γ be an infinite free product group with the AP. Then, for α ∈ S(Γ, X)
with property R, there is no proper intermediate C∗-algebra of the inclusion C∗r(Γ) ⊂ C(X)orΓ.
In particular, when additionally α is amenable, then C(X) or Γ is a minimal ambient nuclear
C∗-algebra of the non-nuclear C∗-algebra C∗r(Γ)

Proof. Let A be an intermediate C∗-algebra of the inclusion C∗r(Γ) ⊂ C(X)or Γ. We first
consider the case E(A) = C. In this case, thanks to Theorem 3.2 of [58] (see also Proposition
2.4 in Chapter 4), we have the equality A = C∗r(Γ).

We next consider the case E(A) 6= C. In this case, by Proposition 2.7, E(A) is dense in
C(X). Let U be a proper clopen subset of X. Let ε > 0 be given. Then take a self-adjoint
element x ∈ A with ‖E(x) − χU‖ < ε. By property R, there are torsion-free elements s1 ∈ Γi
and s2 ∈ Γj with i 6= j which fix χU . Put Λ := 〈s1, s2〉. Take y ∈ C(X) oalg Γ satisfying
E(y) = χU and ‖y − x‖ < ε. By Lemma 2.8, we can apply the Powers argument, Lemma 5
of [14], by elements of Λ. Iterating the Powers argument sufficiently many times, we obtain a
sequence t1, . . . , tn ∈ Λ satisfying the inequality

‖ 1

n

n∑
i=1

ti(y − χU )t−1
i ‖ < ε.

Since χU is Λ-invariant, we have

‖ 1

n

n∑
i=1

tixt
−1
i − χU‖ < 2ε.

Since ε > 0 is arbitrary, this shows χU ∈ A. Therefore A = C(X) or Γ. �

Remark 2.10. It is impossible to find a minimal ambient nuclear C∗-algebra of a non-
nuclear C∗-algebra by maximality arguments. From the outside, it is shown in Chapter 4 that
the decreasing sequence of nuclear C∗-algebras need not be nuclear. From the inside, it can be
shown that the increasing union of non-nuclear C∗-algebras can be nuclear. Here we give an
example. Let A be a unital nuclear C∗-algebra and let B be a non-nuclear C∗-subalgebra of
A containing the unit of A. Put An := A⊗n ⊗ B for each n ∈ N. Then they are canonically
identified with C∗-subalgebras of the infinite tensor power A⊗∞ of A. Then each An is not
nuclear but their increasing union is the nuclear C∗-algebra A⊗∞.

Remark 2.11. When Γ is exact without the AP (e.g., Γ = SL(3,Z) [31]), the proof of 2.9
shows that for an amenable Cantor system Γ y X with R, any proper intermediate C∗-algebra
of the inclusion C∗r(Γ) ⊂ C(X) or Γ is contained in the following C∗-algebra.

A := {x ∈ C(X) or Γ : E(xs) ∈ C for all s ∈ Γ}.
By Proposition 2.3 in Chapter 1, any intermediate C∗-algebra of the inclusion C∗r(Γ) ⊂ A does
not have the OAP. Therefore C(X) or Γ gives a minimal ambient nuclear C∗-algebra of the
reduced group C∗-algebra C∗r(Γ). Also, the inclusion A ⊂ C(X) or Γ gives an example of
an ambient nuclear C∗-algebra of a C∗-algebra without the OAP with no proper intermediate
C∗-algebra.
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Remark 2.12. Let Γ be an exact infinite free product group. We show that amenable Cantor
systems of Γ with property R are not unique at the level of continuous orbit equivalence. When
additionally Γ has the AP, we also show that minimal ambient nuclear C∗-algebras of C∗r(Γ) are
not unique in the following sense: there is no isomorphism between them that is identity on
C∗r(Γ). We say that two ambient C∗-algebras are conjugate if such an isomorphism exists. For
a topologically free Cantor system α, set

E[[α]] := {θ ∈ R/Z : some ϕ ∈ [[α]] factors the rotation Rθ : T→ T}.
It is clear that the set is invariant under continuous orbit equivalence. Note also that E[[α]] is
countable by the metrizability of X. For any amenable Cantor system β : Γ y Y and any subset
I ⊂ N with the infinite complement, by working on the closed subset

{α ∈ S(Γ, X) : α|Λi = (β⊗N)|Λi for all i ∈ I}
instead of S(Γ, X), we can find an amenable Cantor system α with R in this set. Here we
identify X with Y N and we denote by β⊗N the diagonal action of infinitely many copies of β.
Hence, with the aid of (a modification of) Lemme 2.1, for any irrational number θ, we can find
an amenable free Cantor system α of Γ with R satisfying θ ∈ E[[α]]. Thus there is a family
of continuously many amenable free Cantor systems with R whose members are pairwise not
continuously orbit equivalent. We show that their crossed products give pairwise non-conjugacy
ambient C∗-algebras. Suppose two of them are conjugate. Then the composite of a conjugating
isomorphism with the canonical conditional expectation gives a Γ-equivariant unital completely
positive map between two C(X). This is impossible by Lemma 3.10 of [26] (with Remark 2.4)
and Proposition 2.7.

3. Further examples

We close this chapter with the following result on minimal tensor products. Recall that a
C∗-algebra A is of real rank zero if every self-adjoint element of A is a norm limit of self-adjoint
elements of A with finite spectrum.

Theorem 3.1. Let A be a simple C∗-algebra of real rank zero. Let Γ be an infinite free
product group with the AP. Let α : Γ y X be a Cantor system with property R. Then the
inclusion A⊗ C∗r(Γ) ⊂ A⊗ (C(X) or Γ) has no proper intermediate C∗-algebra.

Before the proof, we give a few remarks. Since purely infinite simple C∗-algebras are of real
rank zero (Proposition 4.1.1 of [45]), Kirchberg’s O2-absorption theorem (Theorem 3.8 of [29])
with Theorem 3.1 provides maximal non-nuclear C∗-subalgebras of O2. We also obtain examples
of minimal ambient nuclear C∗-algebras of non-unital C∗-algebras.

Proof of Theorem 3.1. Let B be an intermediate C∗-algebra of the inclusion A⊗C∗r(Γ) ⊂
A⊗ (C(X)or Γ). Put Φ := idA⊗E. Throughout the proof, we identify A with a C∗-subalgebra
of A ⊗ C(X) in the canonical way. Note that the image Φ(B) contains A. When the equality
Φ(B) = A holds, by Proposition 2.4 in Chapter 4 (with Exercise 4.1.3 of [6]), we have the
equality B = A⊗ C∗r(Γ).

Suppose Φ(B) 6= A. We observe first that for an element x ∈ A ⊗ C(X) satisfying (ϕ ⊗
idC(X))(x) ∈ C for all pure states ϕ on A, we have x = (idA ⊗ ψ)(x) ∈ A for any state
ψ on C(X). Hence we can choose a pure state ϕ on A and an element b ∈ B satisfying
f := (ϕ ⊗ idC(X))(Φ(b)) ∈ C(X) \ C. Now let ε > 0 be given. Since A is of real rank zero, the
Akemann–Anderson–Pedersen excision theorem (Theorem 1.4.10 of [6]) shows that there is a
nonzero projection p ∈ A with ‖Φ(pbp)−p⊗f‖ < ε. (Cf. Lemma 1.1 of [29].) By the simplicity
of A, for any nonzero projection q ∈ A, there are n ∈ N and a sequence v1, . . . , vn ∈ M1,n(A)
satisfying the following conditions.
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• viv∗i = p for each i.
• The projections pi := v∗i vi ∈Mn(A) are pairwise orthogonal.
• r ⊗ q ≤

∑n
i=1 pi for some minimal projection r of Mn(C).

(See Exercise 4.8 of [47].) For such a sequence, with Φ(n) := idMn(A) ⊗ E, we have

‖Φ(n)(
n∑
i=1

v∗i bvi)− (
n∑
i=1

pi)⊗ f)‖ < ε.

By cutting off the difference above by the projection r⊗ q and identifying Cr⊗A with A in the
canonical way, we obtain a sequence x1, . . . , xn ∈ A with

‖Φ(
n∑
i=1

x∗i bxi)− q ⊗ f‖ < ε.

This shows that the closure of Φ(B) contains q⊗ f . Proposition 2.7 then shows that the closure
of Φ(B) contains the subspace Cq ⊗ C(X). From this with the proof of Theorem 2.9, we have
Cq ⊗ C(X) ⊂ B. Since A is simple, we obtain the equality B = A⊗ (C(X) or Γ). �

Remark 3.2. Let (Ai)i∈I be a family of C∗-algebras. For each i ∈ I, let Bi be a minimal
ambient nuclear C∗-algebra of Ai. Then it is not hard to check that the direct sum

⊕
i∈I Bi

is a minimal ambient nuclear C∗-algebra of the C∗-algebra
⊕

i∈I Ai. In particular this gives
examples of minimal ambient nuclear C∗-algebras of non-simple C∗-algebras.
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(1987). 297–315.

[2] C. Anantharaman-Delaroche, Purely infinite C∗-algebras arising from dynamical systems. Bull. Soc. Math.
France 125 (1997), 199–225.

[3] R. J. Archbold, J.S. Spielberg, Topologically free actions and ideals in discrete C∗-dynamical systems. Proc.
Edinburgh Math. Soc. (2) 37 (1994), no. 1, 119–124.

[4] B. Blackadar, K-theory for operator algebras. Cambridge University Press, Cambridge (1998).
[5] K. S. Brown, Cohomology of Groups. Graduate Texts in Mathematics 87 (1982), Springer-Verlag, New York-

Berlin.
[6] N. P. Brown, N. Ozawa, C∗-algebras and finite-dimensional approximations. Graduate Studies in Mathematics

88. American Mathematical Society, Providence, RI, 2008. xvi+509 pp.
[7] T. A. Chapman, Compact Hilbert cube manifolds and the invariance of Whitehead torsion. Bull. Amer. Math.

Soc. 79 (1973), 52–56.
[8] T. A. Chapman, Lectures on Hilbert cube manifolds. Vol. 28 (1975), Amer. Math. Soc.
[9] J. Cuntz, Simple C∗-algebras generated by isometries. Comm. Math. Phys. 57 (1977), 173–185.

[10] J. Cuntz, K-theory for certain C∗-algebras. Ann. of Math. 113 (1981), no. 1, 181–197.
[11] J. Cuntz, A class of C∗-algebras and topological Markov chains II: reducible chains and the Ext-functor for

C∗-algebras. Invent. Math. 63 (1981), 25–40.
[12] J. Cuntz, W. Krieger, A class of C∗-algebras and topological Markov chains. Invent. Math. 56 (1980), no. 3,

251–268.
[13] A. Connes, J. Feldman, B. Weiss, An amenable equivalence relation is generated by a single transformation.

Ergodic Theory Dynamical Systems 1 (1981), no. 4, 431–450.
[14] P. de la Harpe, G. Skandalis, Powers’ property and simple C∗-Algebras. Math. Ann. 273 (1986), 241–250.
[15] K. Dykema, Simplicity and the stable rank of some free product C*-algebras. Trans. Amer. Math. Soc. 351

(1999), 1–40.
[16] E. G. Effros, U. Haagerup, Lifling problems and local reflexivity for C∗-algebras. Duke Math. J. 52 (1985),

103–128.
[17] G. A. Elliott, A. Sierakowski, K-theory of certain purely infinite crossed products. Preprint, arXiv:1110.6614.
[18] L. Fuchs, Infinite Abelian Groups volume I, II. Academic Press (1970), (1973).
[19] E. Ghys, P. de la Harpe, Sur les groupes hyperboliques d’aprés Mikhael Gromov. Progress in Math. 83, (1990),

Birkhäuser.
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