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1 Introduction

For an arbitrary number field K, a C∗-dynamical system (AK , σt,K) is defined
in the works of Ha-Paugam [5], Laca-Larsen-Neshveyev [6] and Yalkinoglu [20].
The C∗-dynamical system (AK , σt,K) is related to class field theory. It is called
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the Bost-Connes system, after Bost and Connes [1], who defined such a sys-
tem for the special case of K = Q. It was a longstanding open problem to
generalize Bost-Connes systems to arbitrary number fields, but that problem
has been solved in recent years by the efforts of many researchers (especially,
Yalkinoglu’s work [20] was the last piece). So it is a good moment to start the
investigation of those C∗-dynamical systems from both number theoretic and
operator algebraic viewpoints. The operator algebraic viewpoint naturally asks
for the classification of Bost-Connes systems. Concretely, we are interested in
the following problem:

Problem 1.1. Does an R-equivariant isomorphism of (AK , σt,K) and (AL, σt,L)
imply an isomorphism of K and L ?

The best known result for the classification problem is the classification the-
orem of the KMS-states by Laca-Larsen-Neshveyev [6], obtaining the Dedekind
zeta function ζK(s) as the partition function of (AK , σt,K). In particular, Prob-
lem 1.1 is true if [K : Q] ≤ 6 or [L : Q] ≤ 6, thanks to the work of R. Perlis
[11].

The purpose of this paper is to show that several invariants of number fields
are in fact invariants for Bost-Connes systems. The main tool is the primitive
ideal space, which is a common tool for the analysis of non-simple C∗-algebras.
Using Williams’ theorem [18], we describe the whole picture of the primitive
ideal space of Bost-Connes C∗-algebras in Section 4. There is a result of Laca
and Raeburn [8] determining the primitive ideal space of the original Bost-
Connes C∗-algebra AQ. Hence Section 4 (especially, Theorem 4.5) amounts to
a generalization of their work.

This paper contains two main theorems, and one of them provides an actual
new invariant. For a number field K, h1K denotes the narrow class number of
K. We give a proof of the following theorem in Section 5:

Theorem 1.2. Let K,L be number fields and AK , AL be associated Bost-Connes
C∗-algebras. If AK is isomorphic to AL, then we have h1K = h1L.

Theorem 1.2 says that the narrow class number is an invariant of Bost-
Connes C∗-algebras. The narrow class number measures the distance of the
integer ring OK from being a principal ideal domain, and some information of
infinite primes is added. Hence, in principle, it is an independent invariant from
the zeta function, which collects the information of finite primes. Indeed, there
is an example of a pair of number fields which have the same zeta function but
different narrow class numbers (Remark 5.3).

Looking at flows on the primitive ideal space, we get another invariant
(P̂ 1

K , σt,K), which is studied in Section 5.4. This is a dynamical system on
the infinite-dimensional torus (Proposition 5.5). We can also recover the norm
map on P 1

K from that dynamical system (Theorem 5.9). This is a sort of results
like reconstructing the norm map on the whole ideal group JK , which amounts
to the reconstruction of the zeta function by [6], but from a different perspective.

The difference between the Dedekind zeta function and the narrow class
number can be viewed from an operator algebraic perspective. The narrow
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class number appears as the dimension of finite dimensional irreducible repre-
sentations (Theorem 5.1). As we see later, a primitive ideal of Bost-Connes
C∗-algebra is maximal if and only if it is the kernel on an irreducible represen-
tation. Hence we can say that maximal primitive ideals have the information of
the narrow class number.

On the contrary, second maximal primitive ideals contain the information
of the zeta function. As we see in Section 6, those ideals are closely related to
primes of K. Concretely, there is a one-to-one correspondence between prime
ideals of the integer ring OK and connected components of the space of second
maximal primitive ideals (Proposition 6.4). So we can expect that the compo-
nent Cp corresponding to a fixed prime p may remember some information of
p. Indeed, the information of p can be recovered as in Theorem 6.11 by using
K-theory. As a consequence, we prove the following second main theorem:

Theorem 1.3. Let K,L be number fields and AK , AL be associated Bost-Connes
C∗-algebras. If AK is isomorphic to AL, then we have ζK = ζL.

As mentioned, ζK appears as the partition function and hence an invariant
of Bost-Connes systems. Theorem 1.3 says that it is in fact an invariant of Bost-
Connes C∗-algebras. The difference of ζK and h1K become clear by comparing
both theorems. The space of maximal primitive ideals I1,K is connected and
contains the information of h1K as dimensions of quotients. On the contrary,
each connected component Cp of the space of second maximal primitive ideals
I2,K contain the information of each primes, and in summary, I2,K contains the
information of ζK as a K-theoretic invariant.

Generally speaking, in order to classify a class of non-simple C∗-algebras, it
is effective to combine ideal structure theory and K-theory. Our strategy goes
in a usual way in this sense, but how to use the information of ideals seems to
depend on C∗-algebras. So we think our strategy is interesting as a concrete
example of classifying a class of non-simple C∗-algebras.

Taking semigroup C∗-algebras C∗r (OK ⋊ O×K) is another way to construct
C∗-algebras related to number fields. For semigroup C∗-algebras, there is a
work of Li [9] for the classification of such C∗-algebras. According to [9], the
minimal primitive ideals of the semigroup C∗-algebras C∗r (R⋊R×) are labeled
by prime ideals of R, and we can extract some information of original prime
ideals by looking at K-theory of the quotient. This work is inspired by Li’s
work, although the proof is much different. It is interesting that there seems to
exist a common philosophy behind two different constructions.

The contents of this paper is a collection of the papers “Irreducible Repre-
sentations of Bost-Connes systems” ([16]) and “Primitive ideals and K-theoretic
approach to Bost-Connes systems” ([15]). Several lemmas and arguments are
unified and arranged.

3



2 Overview of Bost-Connes systems

2.1 Definition of Bost-Connes systems

In this section, we quickly review the definition of the Bost-Connes system of
a number field. The reader can also consult [20, p.388] for the construction of
the Bost-Connes system. Throughout this paper, JK denotes the ideal group of
K and IK denotes the ideal semigroup of K. The integer ring of K is denoted
by OK . The finite adéle ring is denoted by AK,f and the finite idéle group is
denoted by A∗K,f (for the definition, see e.g. [7]). The Galois group G(Kab/K)

of the maximal abelian extension Kab over K is denoted by Gab
K .

Let K be a number field. Put

YK = ÔK ×Ô∗
K
Gab

K ,

where ÔK is the profinite completion of OK , and Ô∗K acts on ÔK ×Gab
K by

s · (ρ, α) = (ρs, [s]−1K α)

for ρ ∈ ÔK , α ∈ Gab
K and s ∈ Ô∗K , where [·]K is the Artin reciprocity map. Let

a ∈ IK and take a finite idéle a ∈ A∗K,f ∩ ÔK such that a = (a). The action of
IK on YK is given by

a · [ρ, α] = [ρa, [a]−1K α].

Let AK = C(YK)⋊ IK . Define an R-action on AK by

σt,K(f) = f, σt,K(va) = N(a)itva

for f ∈ C(YK), a ∈ IK and t ∈ R, where N(·) is the ideal norm.

Definition 2.1. The system (AK , σt,K) is called the Bost-Connes system for
K.

It is convenient to extend the Bost-Connes system to a non-unital group
crossed product. Let

XK = AK,f ×Ô∗
K
Gab

K

and define the action of JK on XK in the same way. Let ÃK = C0(XK)⋊ JK .
Then AK is a full corner of ÃK . Namely, we have AK = 1YK

ÃK1YK
. The

R-action on ÃK is defined in the same way, which is also denoted by σt,K .
For convenience, we fix notations of subspaces of XK and YK . Define four

subspaces by

Y ∗K = Ô∗K ×Ô∗
K
Gab

K
∼= Gab

K ,

X0
K = {0} ×Ô∗

K
Gab

K
∼= Gab

K /[Ô∗K ]K ,

X♮
K = (AK,f \ {0})×Ô∗

K
Gab

K ,

Y ♮
K = (ÔK \ {0})×Ô∗

K
Gab

K .
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2.2 KMS-states of Bost-Connes systems

Let Σβ be the set of KMSβ-states of (AK , σt,K) and let ex(Σβ) be its extremal
points. The following theorem is due to Laca-Larsen-Neshveyev, which is a
fundamental theorem in Bost-Connes systems.

Theorem 2.2 (KMS-classification theorem, [6]). The following holds:

1. For 0 < β ≤ 1, there is a unique KMSβ-state of (AK , σt,K).

2. For 1 < β ≤ ∞, there is a one-to-one correspondence between ex(Σβ) and
Gab

K .

3. The partition function coincides with ζK(β).

In the above theorem, KMSβ-states for 1 < β ≤ ∞ are obtained from
irreducible representations (cf. [6, Remark 2.2]). For g ∈ Gab

K , we have an
irreducible representation πg on ℓ2(IK) defined by

πg(f)ξb = f(b · g)ξb for f ∈ C(YK), and

πg(va)ξb = ξab for a ∈ IK ,

where g is identified with [1, g] ∈ Y ∗K and {ξb}b∈IK is the standard orthonormal
basis of ℓ2(IK). Let H be the positive self-adjoint operator on ℓ2(IK) defined
by

Hξb = (logNK(b))ξb.

Then the state

x 7→ Tr(e−βHπg(x))

Tr(e−βH)

is the KMSβ-state corresponding to g ∈ Gab
K . The partition function is β 7→

Tr(e−βH). Since the partition function is an invariant of C∗-dynamical systems,
we obtain the following corollary:

Corollary 2.3. Let K,L be number fields. If (AK , σt,K) is R-equivariantly
isomorphic to (AL, σt,L), then we have ζK = ζL.

One of the purposes of this paper to remove the condition of R-equivariance.
Since the above corollary crucially depends on the structure of the time evo-
lution, the proof must be completely different if we do not consider the time
evolution.

3 Preliminaries

3.1 Arithmetic Preliminary

First we fix notations (basically, we follow notations of [10]). Let K be a number
field. The symbol K∗+ denotes the group of all totally positive nonzero elements
of K and let O×K,+ = OK ∩ K∗+. The symbol UK,+ denotes the closure of
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OK,+ in Ô∗K . The symbol P 1
K denotes the subgroup of principal ideals of JK

generated by totally positive elements (i.e., P 1
K

∼= K∗+/O∗K,+). The narrow ideal

class group of K is denoted by C1
K = JK/P

1
K . The order of C1

K is called the
narrow class number of K, which is denoted by h1K . The set of all finite primes
is denoted by PK . For any ideal m of OK , Let

Jm
K = {a ∈ JK | a is prime to m},
Pm
K = {(k) ∈ JK | k ∈ K∗+, k ≡ 1 mod m}.

Similarly, for any subset S of PK , JS
K is the set of all fractional ideals which is

prime to any p ∈ S, and ISK = IK ∩JS
K . For any finite prime p of K, Kp denotes

the localization of K at p, and Op denotes the integer ring of Kp. The unit

group O∗p is often denoted by Up. For any integer m ≥ 1, let U
(m)
p = 1 + pm

and U
(0)
p = Up.

For a ring R, R× denotes R \ {0}.
The following two lemmas are fundamental and implicitly used in this paper.

They are essentially contained in [7, Proposition 1.1].

Lemma 3.1. The reciprocity map [·]K : A∗K → Gab
K induces the isomorphism

A∗K,f/K
∗
+
∼= Gab

K , where K∗+ is the closure of K∗+ in A∗K,f .

Lemma 3.2. The sequence

1 // UK,+ // Ô∗K // A∗K,f/K
∗
+

// C1
K

// 1

is exact.

Note that the homomorphism A∗K,f/K
∗
+ → C1

K is defined by sending the
class of a ∈ A∗K,f to the class of (a).

3.2 R-equivariant imprimitivity bimodules

Definition 3.3. Let (A, σA
t ) and (B, σB

t ) be C∗-dynamical systems. An (A,B)-
imprimitivity bimodule E is said to be an R-equivariant imprimitivity bimodule
if there is a one-parameter group of isometries Ut on E such that

• A⟨Utξ, Utη⟩ = σt(A⟨ξ, η⟩)

• ⟨Utξ, Utη⟩B = σt(⟨ξ, η⟩B)

for any ξ, η ∈ Ep and t ∈ R.
If there exists an R-equivariant imprimitivity bimodule, then the two C∗-

dynamical systems are said to be R-equivariantly Morita equivalent.

Note that from the above axioms we have

σA
t (a)Ut(ξ) = Ut(aξ), Ut(ξ)σ

B
t (b) = Ut(ξb)

for any a ∈ A, b ∈ B and ξ ∈ E.

6



Lemma 3.4. For a number field K, the Bost-Connes system (AK , σt,K) is R-
equivariantly Morita equivalent to (ÃK , σt,K).

Proof. Since AK = 1YK ÃK1YK and 1YK is a full projection, the (AK , ÃK) bi-
module E = 1YK

ÃK is an imprimitivity bimodule. Define a one-parameter
group of isometries Ut on E by restricting the time-evolution of ÃK . Then Ut

satisfies the desired property.

If two C∗-algebras are Morita equivalent, then we have natural correspon-
dences between their representations and ideals. As a consequence, their primi-
tive ideal spaces are homeomorphic. The homeomorphism obtained in this way
is called the Rieffel homeomorphism (cf. [12, Corollary 3.33]). We need an R-
equivariant version of this theorem. For a C∗-dynamical system (A, σt), then
we consider the R-action on PrimA defined by

t · kerπ = ker(π ◦ σt) = σ−t(kerπ),

where π is an irreducible representation of A.

Proposition 3.5. Let E be an R-equivariant imprimitivity bimodule between
two C∗-dynamical systems (A, σA

t ) and (B, σB
t ). Then the Rieffel homeomor-

phism hX : PrimB → PrimA is R-equivariant.

Proof. Let (π,Hπ) be a representation of B. We need to show that the repre-
sentation (idA ⊗ 1, E ⊗π◦σB

t
Hπ) is unitarily equivalent to (σA

t ⊗ 1, E ⊗π Hπ).
Let Ut be a one-parameter group of isometries on E which gives R-equivariance.
Then it is easy to check that the unitary

E ⊗π◦σB
t
Hπ → E ⊗π Hπ, x⊗π◦σB

t
ξ 7→ Ut(x)⊗π ξ

gives the unitary equivalence.

Note that the strong continuity of the one-parameter group of isometries Ut

is tacitly assumed in the definition of R-equivariant imprimitivity bimodules.
However, the strong continuity is not needed for the sake of Proposition 3.5.

3.3 The Primitive ideal space of crossed products by abelian
groups

In order to determine PrimAK , by Proposition 3.5, we may investigate PrimÃK

instead. We have a nice structure theorem of the primitive ideal space for
group crossed products. Let G be a countable abelian group acting on a second
countable locally compact space X. Define an equivalence relation on X× Ĝ by

(x, γ) ∼ (y, δ) if Gx = Gy and γδ−1 ∈ G⊥x ,

where Ĝ is the Pontrjagin dual of G and Gx is the isotropy group of x. For
a representation (π,Hπ) of Ax = C0(X) ⋊ Gx, IndGGx

π denotes the induced
representation of A = C0(X)⋊G on the Hilbert space A⊗Ax Hπ.
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Theorem 3.6. (Williams, [19, Theorem 8.39]) We have a homeomorphism Φ :
X × Ĝ/ ∼→ PrimC0(X)⋊G defined by

Φ([x, γ]) = ker(IndGGx
(evx ⋊ γ|Gx)).

Remark 3.7. The quotient map X × Ĝ→ X × Ĝ/ ∼ is an open map (cf. [19,
Remark 8.40]). This fact is useful to determine the topology of the primitive
ideal space.

In this section, we look into the dynamics of the primitive ideal space in a
general setting. Let N : G → R+ be a group homomorphism and define the
time evolution on A by

σt(fus) = N(s)itfus

for any f ∈ C0(X), s ∈ G and t ∈ R. Take x ∈ X, γ ∈ Ĝ and let π = evx⋊γ|Gx .
Then πx defines a character of Ax. By [18, Proposition 8.24], IndGGx

π is unitarily
equivalent to the representation πx,γ on Hx,γ = C∗(G)⊗C∗(Gx) C defined by

πx,γ(f)ξs = f(sx)ξs, πx,γ(ut)ξs = ξts

for f ∈ C0(X) and s, t ∈ G. The inner product of Hx,γ is defined by

⟨ξs, ξt⟩ =
{
γ(s−1t) if s−1t ∈ Gx,
0 if s−1t ̸∈ Gx,

for any s, t ∈ G. We would like to determine the representation πx,γ ◦ σt. We

have πx,γ ◦ σt(us)ξr = N(s)itξsr. Let H̃ = Hx,γ as a linear space. Define a

linear map U : Hx,γ → H̃ by

U(N(s)itξs) = ξ̃s

for s ∈ G. To make U a unitary, the inner product on H̃ needs to be defined by

⟨ξ̃s, ξ̃r⟩ =
{
N(s−1r)itγ(s−1r) if s−1r ∈ Gx,
0 if s−1r ̸∈ Gx.

Then we can see that Uπx,γ ◦ σtU∗ = πx,γ̃ , where γ̃ = N(·)itγ. Thus we have
the following proposition:

Proposition 3.8. Let A = C0(X)⋊G and consider the R-action on PrimA =
X × Ĝ/ ∼ defined in Section 3.2 (this action is also denoted by σ). Then we
have

σt([x, γ]) = [x,N(·)itγ]
for [x, γ] ∈ X × Ĝ/ ∼.

The Bost-Connes systems for number fields are not Type I C∗-algebras, be-
cause it is known that they have type III1 representations. So we cannot expect
that Williams’ theorem gives complete classification of irreducible representa-
tions. However, we can still get some information about irreducible representa-
tions, such as their dimensions. The following lemma will be used:
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Lemma 3.9. For (x, γ) ∈ X × Ĝ, let (πx,γ ,Hx,γ) be the representation of
A = C0(X) ⋊ G defined as above. Then dimHx,γ = [G : Gx]. In particular,
πx,γ is finite-dimensional if and only if Gx has a finite index in G.

Proof. Let {si} be a complete representative of G/Gx. Then the family {ξsi}
is orthogonal in Hx,γ . We can see that {ξsi} is an orthogonal basis. In fact, we
have ξsit = γ(t)ξsi for t ∈ Gx because

⟨γ(t)ξsi , ξsir⟩ = γ(t−1r) = ⟨ξsit, ξsir⟩,
⟨γ(t)ξsi , ξsjr⟩ = 0 = ⟨ξsit, ξsjr⟩,

for t, r ∈ Gx and j ̸= i.

Remark 3.10. In fact, there is a canonical orthonormal basis of Hx,γ . If {si}
is a complete set of representatives of G/Gx, then the family {γ(s−1i )ξsi} is an
orthonormal basis and independent of the choice of {si}.

We need to study the dimensions of irreducible representations. Clearly, if
E is an (A,B)-imprimitivity bimodule and π is a finite-dimensional representa-
tion of B, E−Indπ may be infinite-dimensional (e.g., A = K(H) and B = C).
However, we have the following criterion in our case.

Lemma 3.11. Let A be a C∗-algebra and e ∈ A be a full projection and Let E =
eA be the natural (eAe,A)-imprimitivity bimodule. Let π be a non-degenerate
representation of A. Then E−indπ is unitarily equivalent to (π|eAe, π(e)H). In
particular, dim(E−indπ) = dimπ(e)H.

Proof. The unitary

eA⊗A Hπ → π(e)Hπ, ea⊗ ξ 7→ π(ea)ξ

gives the desired unitary equivalence.

4 Picture of the primitive ideal space

4.1 The formal description of the primitive ideal space

In this section, we study the equivalence relation that appeared in Section 3.3 in
our case, and determine the structure of PrimAK in a formal way. This section
amounts to an actual generalization of the work of Laca and Raeburn [8].

The first step is to determine the closure of the orbit JKx for x ∈ YK .

Lemma 4.1. (cf. [8, Lemma 2.3]) For ρ ∈ AK,f , we have

K∗+ρ = {σ ∈ AK,f | ρp = 0 implies σp = 0}.

Proof. We may assume ρ ∈ ÔK becauseK∗+aρ = K∗+ρ for any a ∈ OK,+ and the
right hand side is invariant under multiplication by an element of A∗K,f . Take
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σ from the right hand side. Enumerate the primes of K as p1, p2, . . . . Define
τ ∈ AK,f by

τp =

{
ρ−1p σp if ρp ̸= 0,
0 if ρp = 0.

Take a ∈ OK,+ satisfying aτ ∈ ÔK . For each n, take kn ∈ OK,+ such that

kn ≡ aτp mod pn for p = pk with 1 ≤ k ≤ n. Then we have aσ ∈ ÔK and
knρp ≡ aσp mod pn for such p. This implies that knρ converges to aσ in AK,f ,
so a−1knρ converges to σ. The other inclusion is obvious.

Lemma 4.2. For x = [ρ, α] ∈ XK , we have

JKx = {y = [σ, β] ∈ XK | ρp = 0 implies σp = 0}.

Proof. Take y = [σ, β] from the right hand side. Take a finite idéle a ∈ A∗K,f such

that α[a]−1K = β and let a be the ideal generated by a. Then a[ρ, α] = [ρa, β].
By Lemma 4.1, there exists a sequence kn ∈ K∗+ such that knρa converges to σ.
Since [kn]K = 1, the sequence (kn)ax converges to y.

The next step is to determine what the isotropy group is.

Definition 4.3. For any subset S of PK , define the subgroup ΓS of JK by

ΓS = {(a) | a ∈ K∗+ ⊂ A∗K,f , ap = 1 for p ̸∈ S}.

Note that ΓS is a subgroup of P 1
K , because K∗+ is contained in K∗+Ô

∗
K . We

can see that Γ∅ = 1 and ΓPK
= P 1

K . For two subsets S, T ⊂ PK , we have
ΓS ⊂ ΓT if and only if S ⊂ T .

For x = [ρ, α] ∈ XK , let Sx = {p ∈ PK | ρp = 0}. By Lemma 4.2, for
x, y ∈ XK , JKx = JKy if and only if Sx = Sy.

Lemma 4.4. (cf. [8, Lemma 2.1]) For x ∈ XK , the isotropy group JK,x coin-
cides with ΓSx .

Proof. Let a ∈ JK,x. Take ρ ∈ AK,f and α ∈ Gab
K such that x = [ρ, α]. Then

we can choose a finite idéle a ∈ AK,f generating a and satisfies [a]K = 1 and
ρa = ρ. Hence a belongs to K∗+ and ap = 1 for p satisfying ρp ̸= 0. This implies
that a ∈ ΓSx . The converse inclusion can be shown in a similar way.

Combining Lemma 4.2, Lemma 4.4 and Theorem 3.6, we get the following
conclusion.

Theorem 4.5. We have PrimAK =
∪

S⊂PK

Γ̂S, where S runs through all subsets

of PK . Let PS,γ be the ideal which corresponds to γ ∈ Γ̂S. Then we have

PS,γ = ker((IndJK

ΓS
(evx ⋊ γ))|AK

),

where x = [ρ, α] ∈ XK which satisfies that ρp = 0 if and only if p ∈ S.
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Remark 4.6. Using Remark 3.10 and Lemma 3.11, the explicit form of the
representation (IndJK

ΓS
(evx⋊γ))|AK

can be determined. Let H̃S,γ = ℓ2(JK/ΓS).

Take a lift of γ on ĴK , which is still denoted by γ. Define a representation π̃S,γ
of ÃK by

π̃S,γ(f)ξt̄ = f(tx)ξt̄, π̃S,γ(us)ξt̄ = γ(s)ξs̄t,

where s, t ∈ JK and f ∈ C0(XK) (note that the unitary us corresponding to
s ∈ JK actually lies in the multiplier algebra of ÃK). Then (πS,γ ,HS,γ) =

(π̃S,γ |AK , π̃S,γ(1YK )H̃S,γ) is exactly the above irreducible representation. Up to
unitary equivalence, πS,γ is independent of the choice of a lift of γ. Indeed,

for any element ω ∈ Γ⊥S = ĴK/ΓS ⊂ ĴK , we have a unitary Uω on ℓ2(JK/ΓS)
defined by

Uωξt̄ = ω(t)ξt̄

for t̄ ∈ JK/ΓS , which gives the equivalence between πS,1 and πS,ω. Moreover,

we have π̃S,γ(1YK )H̃S,γ = ℓ2(JSc

K /ΓS × ISK). Note that πS,γ(vp) is a unitary if
p ̸∈ S.

Note that the unitary equivalence class of the representation πS,γ may change
if we change x to another one — only the kernel of πS,γ is independent of the
choice of x. However, for our purpose, this difference does not matter in most
of the cases, so we abuse the notation. In the case that this difference actually
matters (as in Section 4.2), we prepare another notation.

We can say that PrimAK is a bundle over 2PK with fibers Γ̂S . In other
words, PrimAK is considered as an increasing net of compact groups indexed
by subsets of PK . In fact, the lattice structure of primitive ideals reflects this
net structure in the following sense:

Proposition 4.7. Let S, T be two subsets of PK and let γ ∈ ĴK . Then we have
PS,γ ⊂ PT,γ if and only if S ⊂ T .

Proof. Take x = [ρ, α], y = [σ, β] ∈ YK satisfying that ρp = 0 if and only if
p ∈ S, and σp = 0 if and only if p ∈ T .

Suppose PS,γ ⊂ PT,γ . Since C0((JKx)
c∩YK) ⊂ PS,γ , any function of C(YK)

which vanishes on JKx ∩ YK also vanishes on JKy ∩ YK . Hence JKx ∩ YK ⊃
JKy ∩ YK , which is equivalent to S ⊂ T by Lemma 4.2.

Suppose S ⊂ T . By Lemma 4.2, there exists a sequence {wn}n∈N ⊂ JK such
that wnx converges to y in XK . For any n ∈ N, let π̃n be the representation of
ÃK on ℓ2(JK/ΓS) determined by

π̃n(f)ξt̄ = f(twnx)ξt̄, π̃n(us)ξt̄ = γ(s)ξs̄t,

where s, t ∈ JK and f ∈ C0(XK). Then we can see that π̃n is unitarily equiv-
alent to π̃S,γ . For any a ∈ ÃK , we can see that there exists a limit of π̃n(a)
with respect to the strong operator topology, which is denoted by π(a). The
representation π of ÃK is determined by

π(f)ξt̄ = f(ty)ξt̄, π(us)ξt̄ = γ(s)ξs̄t,

11



for s, t ∈ JK and f ∈ C0(XK). If a ∈ PS,γ , then we have π(a) = 0 by definition.
Hence it suffices to show that kerπ ∩AK is contained in PT,γ .

Let ρ = π̃T,γ . First, we consider the case of γ = 1. By the universality of
group crossed products, we have a quotient map ϕ : C0(XK)⋊JK → C0(JKx)⋊
(JK/ΓS). Then the representations π, ρ factors through ϕ, i.e., there exist
representations π′, ρ′ of C0(JKx) ⋊ (JK/ΓS) on B(ℓ2(JK/ΓS)) such that π =
π′ ◦ ϕ and ρ = ρ′ ◦ ϕ. We can see that π′ is in fact a faithful representation
(cf. [3, Lemma 2.5.1]). Hence kerπ = kerϕ ⊂ ker ρ.

Next, we consider general cases. In fact, the C∗-algebras π(ÃK), ρ(ÃK) are
independent of the choice of γ. Hence we have a quotient map ψ : π(ÃK) →
ρ(ÃK) obtained from the case of γ = 1. We can directly check that ψ ◦ π = ρ
for general γ. Therefore, kerπ ⊂ ker ρ holds for general γ.

Theorem 4.5 does not say anything about the topology of PrimAK . The
most important fact is that the inclusion Γ̂S ↪→ PrimAK is a homeomorphism
onto its range. However, we describe the topology of PrimAK in detail because
it is needed in Section 6.

Definition 4.8. (cf. [8, pp.437]) Let 2PK be the power set of PK . The power-
cofinite topology of 2PK is the topology generated by

UF = {S ∈ 2PK | S ∩ F = ∅},

where F is a finite subset of PK .

Note that {UF }F is a basis of the topology since we have UF1∩UF2 = UF1∪F2 .

Proposition 4.9. (cf. [8, Proposition 2.4]) The canonical surjection

Q : 2PK × ĴK →
∪

S⊂PK

Γ̂S = PrimAK , (S, γ) 7→ γ|ΓS ∈ Γ̂S

is an open continuous surjection.

Proof. Define Q1 : XK × ĴK → 2PK × ĴK by sending (x, γ) to (Sx, γ). Let
Q2 : XK × ĴK → PrimAK = XK × ĴK/ ∼ be the natural quotient map. Then
we have Q2 = Q ◦Q1. The quotient map AK,f ×Gab

K → AK,f ×Ô∗
K
Gab

K = XK

is denoted by R. Then we can show in the same way as in [8, Proposition 2.4]
that

Q1

R
∏

p∈F

Vp ×
∏
p̸∈F

OK,p × V

×W

 = UG ×W, and

Q−11 (UF ×W ) = R

∏
p∈F

K∗p ×
∏⨿
p̸∈F

(Kp, ÔKp
)×Gab

K

×W

for a finite set F of PK , non-empty open sets Vp of Kp, V of Gab
K and W of

ĴK , where G = {p ∈ F | 0 ̸∈ Vp}. This means that Q1 is open and continuous.
Since Q1 is surjective and Q2 = Q ◦Q1 is open and continuous by Remark 3.7,
Q is also an open and continuous surjection.
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Let us briefly view when two points in PrimAK can be separated by open
sets. Take two distinct subsets S1, S2 of PK . If S1 ̸⊂ S2, then Q(UG × ĴK) ∩
Γ̂S1

= ∅ and Q(UG × ĴK) ⊃ Γ̂S2
for any finite subset G of S1 \ S2. Hence, if

S1 ̸⊂ S2 and S2 ̸⊂ S1, then Γ̂S1 ∪ Γ̂S2 is Hausdorff with respect to the relative
topology. If S1 ⊂ S2, then any open set which contains Γ̂S2 also contains Γ̂S1 .

Remark 4.10. As mentioned, PrimAK is a bundle over 2PK with fibers Γ̂S .
By Proposition 4.7, maximal primitive ideals sit in the fiber on PK , and second
maximal primitive ideals sit in the fiber of PK \ {p} for some p.

We study those ideals in Section 5 and Section 6 respectively. If K = Q or
K is imaginary quadratic, then ΓS is trivial for S ̸= PK because K∗+ is closed
in A∗K,f . In such cases, we have

PrimAK = 2PK \ {PK} ∪ P̂ 1
K .

In general cases, the concrete form of Γ̂S is not known.

4.2 Faithful irreducible representations

By the KMS-classification theorem in [6], extremal KMSβ-states for β > 1 are
obtained from irreducible representations πg’s as in Section 2.2. We can check
that πg is unitarily equivalent to π∅,1 if we choose x in Remark 4.6 to [g, 1] ∈ YK .

We can see directly that these representations are not mutually unitarily
equivalent.

Proposition 4.11. The representations {πg}g are not unitarily equivalent.

Proof. We have the tensor product decomposition of the Hilbert space as follows:

ℓ2(IK) ∼=
⊗
p

ℓ2(Np), ξ∏
p∈F pkp 7→

⊗
p∈F

ξkp
⊗

⊗
p̸∈F

1,

where Np is a copy of N and F is a finite set of primes of K. In this decompo-
sition, the C∗-subalgebra C∗(IK) of B(ℓ2(IK)) moves to

⊗
p Tp, where Tp is a

copy of the Toeplitz algebra (Tp is generated by the unilateral shift on ℓ2(Np)).
Since Tp contains K(ℓ2(Np)), its commutant is trivial. Hence the commutant of
C∗(IK) is trivial.

Suppose that πg and πh are unitarily equivalent. Then the implementing
unitary U commutes with C∗(IK). The above argument implies U = 1, so we
have πg = πh. Hence g = h.

The representations πg’s have the same kernel by Theorem 3.6. In fact, we
have the following proposition:

Proposition 4.12. (cf. [8, Proposition 2.10]) The representations πg’s are faith-
ful.
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Proof. It suffices to see that the conditional expectation E : C(YK) ⋊ IK →
C(YK) is recovered by πg. From Lemma 4.2, we have IKg = YK . Indeed, if
the sequence ang for an ∈ JK converges to some x ∈ YK , then ang ∈ YK for
large n, which implies an ∈ IK for large n. Hence C(YK) can be embedded into∏

a∈IK C by f 7→
∏

a∈IK f(ag). For a ∈ IK , let φa be the vector state ⟨·ξa, ξa⟩
on B(ℓ2(IK)). Define a unital completely positive map E′ by

E′ =
∏
a∈IK

φa : B(ℓ2(IK)) →
∏
a∈IK

C.

Then E = E′ ◦ πg, which completes the proof.

Since Γ∅ = 1, the fiber on ∅ ⊂ PK inside PrimAK is just one point. The
above proposition implies that the point is in fact the zero ideal.

5 Maximal primitive ideals

5.1 Dynamics on P̂ 1
K

Since we use the dynamics on P̂ 1
K later, we prepare it in advance. We fix a

notation of a dynamical system on a torus. For a (finite or infinite) sequence
of positive numbers {rj}, (

∏
j Tj ,

∏
j r

it
j ) denotes the dynamical system deter-

mined by
σt((xj)j) = (ritj xj)j

for xj ∈ T and t ∈ R.
Let K be a number field. We consider an action of R on P̂ 1

K (as a topological
space) defined by

⟨x, σt(γ)⟩ = N(x)it⟨x, γ⟩

for any x ∈ P 1
K , γ ∈ P̂ 1

K and t ∈ R, where P̂ 1
K is the Pontrjagin dual of P 1

K . Note
that P 1

K is a free abelian group, since it is a subgroup of the free abelian group

JK . Hence P̂ 1
K is isomorphic to the infinite product of circles. If {aj} is a basis

of P 1
K , then the dynamical system (P̂ 1

K , σ) is conjugate to (
∏

j Tj ,
∏

j N(aj)
it).

5.2 Extraction of the narrow class number

The purpose of this section is to study quotients by maximal primitive ideals.
As a consequence, maximal primitive ideals have information of the narrow class
number. In a representation theoretic language, it is described as follows:

Theorem 5.1. Let (AK , σt) be the Bost-Connes system for a number field K
and let h1K be the narrow class number of K. Then AK has h1K-dimensional
irreducible representations, and does not have n-dimensional irreducible repre-
sentations for n ̸= h1K and n <∞.

Lemma 5.2. The statement of Theorem 5.1 holds for ÃK .

14



Proof. Let S ⊂ PK and let γ ∈ ĴK . By Lemma 3.9, the dimension of π̃S,γ in
Remark 4.6 equals [JK : ΓS ]. In general, if kerπ = ker ρ holds for irreducible
representations π, ρ of a C∗-algebra A, then we have dimπ = dim ρ because if
either ρ or π is finite dimensional, then A/ kerπ ∼= Mdimπ(C) is isomorphic to
A/ ker ρ ∼=Mdim ρ(C). Hence it suffices to show the following:

1. If S ̸= PK , then [JK : ΓS ] = ∞.

2. If S = PK , then [JK : ΓS ] = h1K .

Since ΓPK
= P 1

K , the second statement is obvious. Suppose S ̸= PK and let
p be a prime of K which does not belong to S. If a ∈ ΓS , then we can see that
pna’s are distinct elements in JK/ΓS . Therefore the index of ΓS is infinite.

Proof of Theorem 5.1. Let S ⊂ PK and γ ∈ ĴK . We need to show that
dim π̃S,γ = dimπS,γ . If S = PK , then we have πS,γ(1YK

) = 1 by definition
of πS,γ . Hence dim π̃S,γ = dimπS,γ holds by Lemma 3.11. So it suffices to show
that πS,γ is infinite dimensional if S ̸= PK .

Take x = [ρ, α] ∈ XK as in Remark 4.6 and take an integral ideal a ∈ IK
such that ax ∈ YK (we can always take such a because ρp ∈ Op for all but
finitely many p). Let p be a prime of K which does not belong to S. Then
we have seen in the proof of Lemma 5.2 that the classes of pn’s are distinct
in JK/ΓS . Hence so are for pna’s. Since pnax ∈ YK for n ≥ 0, {ξpna}n∈Z is
an orthogonal family in πS,γ(1YK

)ℓ2(JK/ΓS). Therefore πS,γ(1YK
)ℓ2(JK/ΓS) is

infinite dimensional.

Theorem 1.2 is obtained as a corollary of Theorem 5.1.

Example 5.3. From the classification theorem of the KMS-states by Laca-
Larsen-Neshveyev [6], we know that the Dedekind zeta function is an invariant
of Bost-Connes systems. From Theorem 5.1, we know that the narrow class
number is also an invariant. We can see that this is actually a new invariant.
Indeed, there exist two fields which have the same Dedekind zeta function but
different narrow class numbers. For example, let K = Q( 8

√
a), L = Q( 8

√
16a)

for a = −15. Then K and L are totally imaginary fields, so their narrow class
numbers h1K , h

1
L are equal to their class numbers hK , hL. By the result of de

Smit and Perlis [4], we have ζK = ζL and h1K/h
1
L = hK/hL = 2.

Definition 5.4. Let I1,K be the set of all maximal primitive ideals of AK . We
consider I1,K as topological spaces with the relative topology of PrimAK .

For any maximal primitive ideal P of AK , Theorem 5.1 tells us that AK/P
is isomorphic to Mh1

K
(C). The space I1,K is identified with Γ̂PK

= P̂ 1
K , which

is homeomorphic to T∞. By Proposition 3.8, R acts on P̂ 1
K as in Section 5.1.

Hence we can get another invariant by restricting our attention to dynamics on
P̂ 1
K .

Proposition 5.5. Let K,L be two number fields. If their Bost-Connes systems
(AK , σt,K) and (AL, σt,L) are R-equivariantly Morita equivalent, then P̂ 1

K and

P̂ 1
L are R-equivariantly homeomorphic.
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Proof. Let Φ : PrimAK → PrimAL be the Rieffel homeomorphism induced
from an R-equivariant imprimitivity bimodule between Bost-Connes systems
of K and L. This is R-equivariant by Proposition 3.5. Note that the Rieffel
homeomorphism preserves the inclusion of ideals (cf. [12, Section 3.3]). Hence
we have Φ(P̂ 1

K) = P̂ 1
L, since those subspaces are characterized by the maximality

of ideals.

We study the dynamics P̂ 1
K in Section 5.4.

5.3 Finite dimensional irreducible representations

We can determine finite dimensional irreducible representations explicitly by
using Remark 4.6.

By Lemma 3.2, we have X0
K = C1

K (X0
K is defined in Section 2.1). Since

X0
K is a closed invariant set of JK , we have a canonical quotient map qK :

C(YK) ⋊ IK → C(C1
K) ⋊ JK . Take a character γ ∈ ĴK . Then we have the

∗-homomorphism φγ : C(C1
K)⋊ JK → C(C1

K)⋊ C1
K defined by

φγ(f) = f, and φγ(us) = γ(s)us̄,

for f ∈ C(C1
K) and s ∈ JK , where s̄ denotes the class of s in C1

K . Since
C(C1

K) ⋊ C1
K

∼= Mn(C) for n = |C1
K | = h1K , we obtain the surjection φγ ◦ qK :

AK →Mn(C). As usual, the C∗-algebra C(C1
K)⋊ C1

K acts on ℓ2(C1
K) by

(fξ)(s) = f(s)ξ(s), and (utξ)(s) = ξ(t−1s).

for f ∈ C(C1
K), s, t ∈ C1

K and ξ ∈ ℓ2(C1
K). So ργ = φγ ◦ qK defines an

irreducible representation. If two elements γ, δ ∈ ĴK satisfy γδ−1 ∈ P̂ 1,⊥
K , then

ργ is unitarily equivalent to ρδ. Identifying those representations, the family
{ργ}γ∈P̂ 1

K
is the complete representative of unitary equivalence classes of finite

dimensional irreducible representations of AK .
Benefiting from writing down representations associated to P̂ 1

K in this form,
we can prove the following proposition:

Proposition 5.6. We have ker qK =
∩

γ∈P̂ 1
K

ker ργ .

The right hand side is equal to the intersection of all ideals in I1,K . Hence
the above proposition follows from the following lemma, which is also used in
Section 6.

Lemma 5.7. Let S be a subset of PK , and let

Y S
K = {x = [ρ, α] ∈ YK | ρp = 0 for any p ∈ S},
PS = C0((Y

S
K )c)⋊ IK .

Then we have ∩
γ∈Γ̂S

PS,γ = PS .

In particular, PS is a primitive ideal if and only if ΓS = 1.
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Proof. Here, we consider that representations πS,γ in Remark 4.6 are defined for

any γ ∈ ĴK (some of them are mutually unitarily equivalent, but we distinguish
them).

By Lemma 4.2, PS is contained in kerπS,γ = PS,γ for any γ. Let B =
B(πS,γ(1YK

)ℓ2(JK/ΓS)). Then the image of the homomorphism∏
γ∈ĴK

πS,γ : AK/PS →
∏

γ∈ĴK

B.

is actually contained in C(ĴK , B). Let Φ : AK/PS → C(ĴK , B) be the restric-
tion of that map. Since kerΦ =

∩
γ kerπS,γ/PS , it suffices to show that Φ is

injective.
We have AK/PS

∼= C(Y S
K ) ⋊ (JSc

K × ISK), and Φ(fva) = χa ⊗ πS,1(fva) for

f ∈ C(Y S
K ), a ∈ JSc

K × ISK , where χa is the character on ĴK corresponding to a.
So we have the following commutative diagram:

C(Y S
K )⋊ (JSc

K × ISK)
Φ //

E

��

C(ĴK)⊗B

µ⊗idB

��
C(Y S

K ) // B,

where µ is the Haar measure of ĴK . The homomorphism of the bottom line is
injective by Lemma 4.2. This implies that Φ is injective.

Corollary 5.8. Let K,L be number fields. Then any isomorphism from AK to
AL carries ker qK = C0(Y

♮
K)⋊ IK to ker qL = C0(Y

♮
L)⋊ IL.

5.4 Norm preserving map on P 1
K

As we have seen, the dynamics on I1,K = P̂ 1
K is an invariant of Bost-Connes

systems. The purpose of this section is to study the meaning of this invariant.
In short, we have the following theorem:

Theorem 5.9. LetK,L be number fields. If their Bost-Connes systems (AK , σt,K)
and (AL, σt,L) are R-equivariantly Morita equivalent, then we have a group iso-
morphism P 1

K → P 1
L which preserves the norm map.

By definition in Section 5.1, the dynamics on P 1
K is determined from the

norm map N : P 1
K → Q. Theorem 5.9 says the converse.

By Proposition 5.5, the above theorem is reduced to the following proposi-
tion:

Proposition 5.10. Let K,L be number fields. If P̂ 1
K and P̂ 1

L are R-equivariantly
homeomorphic, then there exists an R-equivariant isomorphism between them.
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Remark 5.11. If φ̂ : P̂ 1
L → P̂ 1

K is an R-equivariant isomorphism, then the
isomorphism φ : P 1

K → P 1
L induced by φ̂ preserves the norm. Indeed, let

a ∈ P 1
K and b = φ(a) ∈ P 1

L. Then, by taking the Pontrjagin duals, we have the
following commutative diagram:

P̂ 1
L

∼
φ̂

//

��

P̂ 1
K

��
(b̂Z, N(b)it)

∼ // (âZ, N(a)it).

The isomorphism φ̂ is R-equivariant by assumption, and it is easy to show that
the vertical maps are R-equivariant. Using these facts, we can show that the

isomorphism b̂Z → âZ is R-equivariant. This implies that N(a) = N(b).

Note that the isomorphism in Proposition 5.10 is not canonical. The key
observation is that the space P̂ 1

K has a nice orbit decomposition.

Lemma 5.12. LetK be a number field. The compact group P̂ 1
K is R-equivariantly

isomorphic to (
∏∞

j=1 Tj ×T∞,
∏∞

j=1 n
it
j × 1), where nj > 1 and {nj} is linearly

independent over Z in the free abelian group Q∗+.

Proof. Let N : P 1
K → Q∗+ be the ideal norm and let A = N(P 1

K). Then the
exact sequence

0 // kerN // P 1
K

N // A // 0

splits, because kerN,P 1
K and A are all free abelian groups. Let s : A→ P 1

K be
the splitting of N , and take a basis {aj}j of s(A). Then we have the decompo-
sition

P 1
K =

⊕
j

aZj ⊕ kerN.

Taking the Pontrjagin duals, we have the desired decomposition.

Remark 5.13. The condition that {nj} is linearly independent in Q∗+ means
that the homeomorphism on

∏
j Tj by multiplying

∏
j n

it
j is minimal for appro-

priate t ∈ R. Indeed, the family {1, t
2π log nj} is linearly independent over Q if

we choose t = 2π.

Proof of Proposition 5.10. Let φ : P̂ 1
K → P̂ 1

L be an R-equivariant homeomor-
phism. Take the decomposition

P 1
K =

⊕
aZj ⊕ kerNK , P̂

1
K = (

∏
j

Tj × T∞,
∏
j

N(aj)
it × 1),

P 1
L =

⊕
bZk ⊕ kerNL, P̂

1
L = (

∏
k

Tk × T∞,
∏
k

N(bk)
it × 1)
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as in Lemma 5.12. By Remark 5.13, We have the closed orbit decomposition

P̂ 1
K =

⨿
x∈T∞

∏
j

Tj × {x}, P̂ 1
L =

⨿
y∈T∞

∏
k

Tk × {y}.

Hence we have φ(
∏

j Tj × {1}) =
∏

k Tk × {y} for some y ∈ T∞, so φ induces
an R-equivariant homeomorphism

φ̄ : (
∏
j

Tj ,
∏
j

N(aj)
it) → (

∏
k

Tk,
∏
k

N(bk)
it).

Let ψ = φ̄(1)−1φ̄ and x =
∏

j N(aj)
2πi, y =

∏
kN(bk)

2πi. Then we have

ψ(al) = bl for any l ∈ Z. Hence ψ is an R-equivariant group isomorphism, since
a and b generates dense subgroups in

∏
j Tj and

∏
k Tk respectively. Taking

any group isomorphism τ of T∞, we obtain an R-equivariant group isomorphism
ψ × τ : P̂ 1

K → P̂ 1
L.

Remark 5.14. By the classification theorem of the KMS-states in [6], we know
that if the Bost-Connes systems of two number fields K,L are isomorphic then
their Dedekind zeta functions are the same, which implies that there exists a
group isomorphism JK → JL which preserves the norm.

By Theorem 5.9, the pair (P 1
K , N : P 1

K → Q∗+) is an invariant of Bost-Connes
systems. The difference between (P 1

K , N : P 1
K → Q∗+) and (JK , N : JK → Q∗+)

is thought to be very subtle because P 1
K is of finite index in JK . We do not

know what difference exists between the two invariants. Instead, we can see
that large information which is obtained by (JK , N : JK → Q∗+) can also be
obtained by (P 1

K , N : P 1
K → Q∗+). Here is an example:

Proposition 5.15. Let K,L be number fields with n = [K : Q] = [L : Q].
Suppose that there exists a group isomorphism P 1

K → P 1
L which preserves the

norm. Then for rational prime p, p is non-split in K if and only if p is non-split
in L.

Proof. It suffices to show the equivalence of the following conditions:

1. p is non-split in K.

2. There does not exist an element a in K∗+ satisfying 1 ≤ vp(N(a)) < n,
where vp denotes the valuation of Q at p.

Suppose that p is non-split in K. Then any element a ∈ K∗+ satisfying
1 ≤ vp(N(a)) is a multiple of p in K. Hence n ≤ vp(N(a)) holds for such a.

Suppose that p splits in K and let (p) =
∏

peii be the prime decomposition
of p. Put p = p1. By assumption, we have 1 ≤ vp(N(p)) < n. Let m =

∏
pi and

let Jm
K/P

m
K be the ray class group modulo m. Since the natural map Jm

K/P
m
K →

JK/P
1
K is surjective, we can choose a fractional ideal b that is prime to (p) and

satisfies bp ∈ P 1
K . Then a = bp satisfies 1 ≤ vp(N(a)) < n.
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Example 5.16. Two quadratic fieldsK,L can be distinguished by primes which
are non-split in K and L, because non-splitness of primes can be known by the
Legendre symbol (cf. [10, Chapter I, Proposition 8.5], [13, Chapter VI, Propo-
sition 14]). Hence, all Bost-Connes systems for quadratic fields are mutually
non-isomorphic. This fact can also be obtained by the KMS classification the-
orem. So Theorem 5.9 gives another proof of this fact.

6 Second maximal primitive ideals

6.1 Structure of second maximal primitive ideals

Our next step is to give a proof of Theorem 1.3. The proof is based on the
analysis of second maximal primitive ideals.

Definition 6.1. Let A be a C∗-algebra and let P be a primitive ideal of A. We
say that P is second maximal if the following holds:

1. There exists a primitive ideal Q of A such that P ⊊ Q.

2. There does not exist a pair of primitive ideals Q1, Q2 of A such that
P ⊊ Q1 ⊊ Q2.

Note that a maximal primitive ideal Q in the condition (1) may not be
unique. For Bost-Connes C∗-algebras, second maximal primitive ideals are ex-
actly of the form of P{p}c,γ for some prime p and γ ∈ Γ̂{p}c by Proposition 4.7.
In the case of K = Q or imaginary quadratic fields, P{p}c in Lemma 5.7 is a
second maximal primitive ideal.

Definition 6.2. Let I2,K be the set of all second maximal primitive ideals
of AK . We consider I2,K as topological spaces with the relative topology of
PrimAK .

Lemma 6.3. The space I2,K is equal to the direct sum of Γ̂{p}c for all p as a
topological space. In particular, I2,K is Hausdorff.

Proof. Let Q2 = {{p}c ∈ 2PK | p is a prime}. Then we can check that Q2 is
Hausdorff with respect to the relative topology of the power-cofinite topology.
Let π : 2PK × ĴK → PrimAK be the canonical map. Then we can see that the
restriction π : Q2 × ĴK → I2,K is an open continuous surjection. This means

that each Γ̂{p}c is compact open inside I2,K .

In summary, we have the following proposition:

Proposition 6.4. There is one-to-one correspondence between PK and con-
nected components of I2,K . The connected component Cp corresponding to p is

equal to Γ̂{p}c , and we have
∩

Cp = P{p}c .

Our strategy is to extract information of a prime p by looking at the corre-
sponding connected component Cp.
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6.2 Arithmetic Observations

Fix a finite prime p of K which is above a rational prime p ∈ Q. Let

U = {1} ×
∏
q̸=p

O∗q ⊂ A∗K,f ,

Gp = A∗K,f/K
∗
+U.

The group Gp plays an important role later. We can see that the group Jp
K

can be considered as a subgroup of Gp (for notations, see Section 3.1). The
important point is that this is a dense subgroup. This follows from the following
proposition:

Proposition 6.5. We have

Gp = lim
←−m

Jp
K/P

pm

K .

Proof. First, we define a homomorphism φm : Gp → Jp
K/P

pm

K . For a ∈ A∗K,f ,
take k ∈ K∗+ such that apk ≡ 1 mod pm, then define φ̃m(a) = (ak). Then it is
independent of the choice of k, and φ̃m is a group homomorphism from A∗K,f to

Jp
K/P

pm

K . The homomorphism φ̃m is trivial on K∗+U because K∗+ is contained

in the open subgroup K∗+U
(m)
p U . Hence, it induces a group homomorphism

φm : A∗K,f/K
∗
+U → Jp

K/P
pm

K . One can see that this homomorphism is open
and continuous.

Let us determine the kernel of φm. Clearly, kerφm contains the open sub-

group K∗+U
(m)
p U/K∗+U . For the reverse inclusion, let a ∈ A∗K,f such that

φm(ā) = 1. Here, ā means the image of a in G. Then we can take k, l ∈ K∗+
such that (ak) = (l) and ak ≡ 1, l ≡ 1 mod pm. This means akl−1 ∈ U

(m)
p U .

So we have kerφm = K∗+U
(m)
p U/K∗+U .

The homomorphisms φm commutes with the projective system Jp
K/P

pm

K , so

it induces a homomorphism Gp → lim
←−m

Jp
K/P

pm

K . It is automatically surjective.

To see that it is injective, it suffices to check
∩

m kerφm = 1. Take a ∈ A∗K,f

such that ā ∈
∩

m kerφm, and we show that ā = 1. By multiplying an element
of O×K,+, we may assume that vq(a) ≥ 0 for any q. Let

C = {x ∈ A∗K,f | vq(a) ≥ vq(x) ≥ 0 for any q}.

Then C is a compact open subset of A∗K,f containing Ô∗K . By assumption, for

any m there exist km ∈ K∗+ and am ∈ U
(m)
p U such that a = kmam. Since

we have km = aa−1m ∈ C, we can take an accumulation point k ∈ K∗+ ∩ C
and a subsequence {kmj} of {km} converging to k. Then the sequence {amj}
converges to ak−1. This implies ak−1 ∈

∩
m U

(m)
p U = U , so a ∈ K∗+U , which

completes the proof.
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Proposition 6.5 gives an inductive limit structure of the C∗-algebra C(Gp)⋊
Jp
K , which is useful to look into K-theory. The next lemma is used to examine

the connecting maps of the inductive limit.

Lemma 6.6. Let f be the inertia degree of p over p. For any m ≥ 1, We have

[P pm

K : P pm+1

K ] = pf .

Proof. The group P pm

K /P pm+1

K can be embedded into U
(m)
p /U

(m+1)
p . We show

that this map is an isomorphism. Let a ∈ pm, and take k ∈ O×K,+ such that

a ≡ k mod pm+1. Then l = 1 + k is in P pm

K , and l(1 + a)−1 ∈ U
(m+1)
p . This

implies the surjectivity, and the injectivity is clear.

The group U
(m)
p /U

(m+1)
p is isomorphic to the additive group κp, where κp

is the residual field OK/p (see [10, Chapter II, Proposition 3.10]). The order of

κp equals to pf , so we have [P pm

K : P pm+1

K ] = pf .

6.3 Structure of quotients

We focus on the C∗-algebra PPK/P{p}c . By definition, we have

PPK = ker(C(YK)⋊ IK → C(Y PK

K )⋊ JK),

P{p}c = kerC(YK)⋊ IK → C(Y
{p}c
K )⋊ (Jp

K × pN).

and by Lemma 5.7, PPK
=

∩
I1,K , P{p}c =

∩
Cp.

Lemma 6.7. We have

PPK/P{p}c
∼= K⊗ C(Gp)⋊ Jp

K ,

where Gp is the profinite group in Section 6.2.

Proof. We have

PPK/P{p}c = ker(C(Y S
K )⋊ (Jp

K × pN) → C(Y PK

K )⋊ JK)

= C0(O×p ×Ô∗
K
Gab

K )⋊ (Jp
K × pN),

and we focus on the dynamical system Jp
K ×pN ↷ O×p ×Ô∗

K
Gab

K . First, O×p ×Ô∗
K

Gab
K is naturally identified with

O×p ×O∗
p
(Gab

K /U) = O×p ×O∗
p
Gp,

where Gp and U are as in Section 6.2. Fix a prime element πp of Kp. Then
O×p ×O∗

p
Gp is homeomorphic to N ×Gp by sending [πn

p , α] to (n, α) for n ∈ N
and α ∈ Gp. Under this identification, the action is identified with the following
action:

q(n, α) = (n, q−1α), p(n, α) = (n+ 1, π−1p α).
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Moreover, by the homeomorphism of N×Gp → N×Gp defined by (n, α) 7→
(n, πn

pα), this action is conjugate to the following action:

q(n, α) = (n, q−1α), p(n, α) = (n+ 1, α).

Hence, we have

PPK
/P{p}c ∼= C0(N×Gp)⋊α⊗β N× Jp

K
∼= (C0(N)⋊α N)⊗ (C(Gp)⋊β J

p
K),

where α is the action by addition and β is the action by multiplication (Jp
K

is naturally identified with a subgroup of Gp). The second isomorphism is
established by writing both algebras as corners of group crossed products and
applying the well-known decomposition theorem for tensor product actions. The
C∗-algebra C0(N)⋊αN is isomorphic to K, because it is written as a full corner
of C0(Z)⋊ Z.

Remark 6.8. Brownlowe-Larsen-Putnam-Raeburn give a similar presentation
in the case of K = Q. Lemma 6.7 is a kind of generalization of [2, Theorem 4.1
(2)] in the case of P \ S is one point.

6.4 K0-groups of profinite actions

In this section, we prepare a general machinery which is used in the next section.
Let Γ be a discrete amenable torsion-free group. In our case, we only need the
case of Γ = Z∞, but here we treat the general case. Let Pm be a decreasing
sequence of finite index normal subgroups of Γ such that

∩
m Pm = 1. Define

a profinite group G by G = lim
←−m

Γ/Pm. Then, by assumption, Γ is a dense

subgroup of G and G/Pm = Γ/Pm. Let hm = [Γ : Pm]. The C∗-algebra
C(G)⋊ Γ is simple and has a unique tracial state.

Proposition 6.9. Let τ be the unique tracial state of C(G)⋊Γ. Then we have

τ∗(K0(C(G)⋊ Γ)) =
∪
m

h−1m Z.

Proof. By assumption, we have

C(G)⋊ Γ ∼= lim
−→

C(Γ/Pm)⋊ Γ,

and by the imprimitivity theorem, C(Γ/Pm)⋊Γ is Morita equivalent to C∗r (Pm).
In this case, 1PmC

∗
r (Pm) = 1Pm(C(Γ/Pm)⋊Γ)1Pm and 1Pm is a full projection of

C(Γ/Pm)⋊Γ. The inclusion 1PmC
∗
r (Pm) ↪→ C(Γ/Pm)⋊Γ gives the isomorphism

of K-groups.
Let τ be the unique tracial state of C(G) ⋊ Γ. Then it is equal to µ ◦ E,

where µ is the Haar measure of G and E is the canonical conditional expectation
C(G)⋊Γ → C(G). Then the restriction of τ onto C(Γ/Pm)⋊Γ is equal to µm◦E,
where µm is the normalized counting measure of Γ/Pm. Hence the restriction
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of τ onto 1Pm
C∗r (Pm) is equal to h−1m τPm , where τPm is the canonical trace of

C∗r (Pm).
Since Pm is torsion-free and satisfies the Baum-Connes conjecture (cf. [17,

Proposition 6.3.1]), we have

τPm
∗ (K0(C

∗
r (Pm))) = Z

as a subgroup of R. Hence

τ∗(K0(C(G)⋊ Γ)) =
∪
m

τ∗(C(Γ/Pm)⋊ Γ)

=
∪
m

h−1m τPm
∗ (C∗r (Pm))

=
∪
m

h−1m Z.

In our case we actually have to treat with unbounded traces. In this paper,
we tacitly assume unbounded traces have finite values on finite projections. The
following lemma is proved in usual way:

Lemma 6.10. Let A be a simple C∗-algebra with a unique tracial state τ . Then
K⊗A has a unique unbounded trace Tr⊗ τ up to scalar multiplication.

6.5 Reconstruction of the zeta function

In summary, we have the following theorem:

Theorem 6.11. Let K be a number field and let p be a finite prime of K,
and let p ∩ Z = (p). Then

∩
I1,K/

∩
Cp is a simple C∗-algebra with a unique

unbounded trace T up to scalar multiplication, and we have

T∗(K0(
∩

I1,K/
∩

Cp)) ∼= Z[1/p].

Proof. By Proposition 6.4 and Lemma 6.7, the C∗-algebra
∩
I1,K/

∩
Cp is iso-

morphic to K ⊗ C(Gp) ⋊ Jp
K . Let τ be the unique trace of C(Gp) ⋊ Jp

K . By
Lemma 6.10, we may assume T = Tr ⊗ τ because the isomorphism class of
T∗(K0(

∩
I1,K/

∩
Cp)) is independent of the choice of T . By Proposition 6.5, we

have
C(Gp)⋊ Jp

K
∼= lim
−→m

C(Jp
K/P

pm

K )⋊ Jp
K .

So by applying Proposition 6.9, we have

T∗(K0(
∩

I1,K/
∩

Cp)) = τ∗(K0(C(Gp)⋊ Jp
K)) =

∪
m

h−1m Z,

where hm = [Jp
K : P pm

K ]. By Lemma 6.6, we have hm+1/hm = pf , so
∪

m h−1m Z ∼=
Z[1/p].
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The proof of Theorem 1.3 is obtained by applying the theorem of Stuart-
Perlis [14]. For a rational prime p, gK(p) denotes the splitting number of p, i.e.,
the number of primes of K which is above p.

Proof of Theorem 1.3. By Theorem 6.11 and Proposition 6.4, gK(p) is equal to
the number of connected components C of I2,K which satisfy

T∗(K0(
∩

I1,K/
∩

C)) = Z[1/p]

for some unbounded trace T of
∩

I1,K/
∩
C. Since Z[1/p] ∼= Z[1/q] if and

only if p = q for any rational prime p, q, this number is preserved under the
isomorphism. By [14, Main Theorem], the equality of splitting numbers for all
rational primes implies the equality of zeta functions.

Zeta functions consist of the information of the rational prime which is below
a prime and the inertia degree. Since we applied a number theoretic theorem,
the inertia degree is not naturally obtained. It may be interesting to ask how
to get the inertia degree in an operator algebraic way from the C∗-algebra AK .
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