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CHAPTER 1

Introduction

One of the most fundamental problems in mathematical physics, espe-
cially in relation to statistical physics, is to relate a macroscopic system such
as a system of partial differential equations with a microscopic system. A
microscopic system is naturally expected to have a large number of degrees
of freedom and self-interaction structures. Such a microscopic system is
called a large scale interacting system in probability theory. Hydrodynamic
limit, which is a limiting procedure in a space-time scaling for the large
scale interacting systems, gives an answer to the above problem. For in-
stance, by means of the hydrodynamic limit, a system such as a Stefan free
boundary problem can be derived from some sort of large scale interacting
systems. The theory of the hydrodynamic limit also plays an important role
in the study of stationary non-equilibrium states, which is one of the main
objects in thermodynamic theory. In recent years, the large deviation prin-
ciple in this context has been extensively studied by both mathematicians
and physicists. Especially “Macroscopic fluctuation theory” developed by
Bertini et al. in [8] gives a unified approach to the study of the station-
ary non-equilibrium states from the point of view of a microscopic system.
The theory of the hydrodynamic limit is used to formulate this theory in a
mathematical way.

This thesis is dedicated to studying some problems related to the hydro-
dynamic limit for lattice-gas. In this thesis, we consider the following types
of lattice-gas consisting of particles evolving in a one-dimensional discrete
domain. Lattice-gas is described by a superposition of the Kawasaki dy-
namics and the Glauber dynamics. More precisely, for each fixed N > 0,
let TN be the one-dimensional discrete torus Z/NZ = {0, 1, · · · , N − 1}.
The state space of our process is given by {0, 1}TN and denote by η an ele-
ment of {0, 1}TN , which describes a configuration on TN such that η(x) = 1
if there is a particle at x ∈ TN and η(x) = 0, otherwise. We consider in
the set TN the superposition of the exclusion process with speed change
(Kawasaki) with a spin-flip dynamics (Glauber). The stochastic dynamics
is a Markov process on {0, 1}TN whose generator, denoted by LN in this
introduction, acts on functions f : {0, 1}TN → R as

LNf = (N2/2)LKf + LGf ,
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whereLK is the generator of the simple exclusion process with speed change
(Kawasaki dynamics),

(LKf)(η) =
∑
x∈TN

c0,1(τxη)[f(η
x,x+1)− f(η)] ,

and LG is the generator of a spin flip dynamics (Glauber dynamics),

(LGf)(η) =
∑
x∈TN

c0(τxη)[f(η
x)− f(η)] .

In these formulas, ηx,x+1, ηx, τxη, represents the configuration obtained from
η by exchanging, flipping, translating by x, the occupation variables η(x)
and η(x+1), η(x), respectively. For this model, the hydrodynamic equation
is formally given by

∂ρt = ∇(D(ρ)∇ρ) + F (ρ) ,

where D and F are functions on [0, 1] and are determined only by c0,1 and
c0 respectively.

In Chapter 2, we consider a system of particles called an exclusion pro-
cess with speed change. This model is realized as a lattice-gas with the jump
rates c0 ≡ 0 and general c0,1. We consider a tagged particle problem for this
particle system and study a law of large numbers for a tagged particle under
the diffusive scaling. Combining this with the result of the hydrodynamic
limit, we derive a Stefan free boundary problem in a diffusive scaling limit.
Chapter 2 is based on a work [39].

Several kinds of Stefan free boundary problems have been derived from
particle systems by many authors. Funaki [26] derived a nonlinear one-
phase Stefan free boundary problem from a system consisting of two types
of particles called “water” and “ice” on multi-dimensional periodic lattices.
Landim, Olla and Volchan [35] derived a Stefan free boundary problem
from an infinite system of particles evolving in a one-dimensional lattice
according to symmetric random walks with hard core interaction. Komoriya
[33] derived a Stefan free boundary problem from a system of two types of
particles moving on a one-dimensional lattice according to simple random
walks. The methods developed in [33, 35] strongly depend on the analysis
of the related zero-range process. We note that our proof is different from
these.

In Chapter 3, we consider a system of particles with creation and anni-
hilation of particles. We call this system reaction-diffusion model and the
reaction-diffusion model is also realized as a lattice-gas with the jump rates
c0,1 ≡ 1 and general c0. We prove the hydrostatics and the dynamical large
deviation principle for the reaction-diffusion model. Chapter 3 is based on
a joint work [36] with Professor Claudio Landim.

The hydrostatics and the dynamical large deviations for the boundary
driven exclusion processes are studied in [20, 7, 23]. In their models, the
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stationary solution of the hydrodynamic equation is always unique. There-
fore the solution of the hydrodynamic equation converges to its unique sta-
tionary solution as time go to infinity. Moreover, the system conserves a
total mass in the bulk. Therefore the H−1 norm of the solution of the hy-
drodynamic equation is finite. These facts allow to use usual techniques to
prove the hydrostatics and the dynamical large deviation principle and are
not true for our model in general. The dynamical large deviation princi-
ple for non-conservative dynamics in the bulk is studied in [13]. However
they assumed some monotonicity for the non-linear term of the hydrody-
namic equation and, under their assumption, the stationary solution of the
hydrodynamic equation is always unique.

The aim of our study is to extend the previous works to the reaction-
diffusion model. We also prove that the large deviations rate function is
lower semicontinuous and has compact level sets. These properties play
a fundamental role in the proof of the static large deviation principle, dis-
cussed in Chapter 4, for the empirical measure under the stationary state
[11, 22]. The main difficulty in the proof of the lower bound of the large
deviation principle comes from the presence of exponential terms in the
rate function, denoted in this introduction by I . In contrast with conserva-
tive dynamics, for a trajectory u(t, x), I(u) is not expressed as a weighted
H−1 norm. This forces the development of new tools to prove that smooth
trajectories are I-dense.

In Chapter 4, we consider the stationary state of the reaction-diffusion
model. We prove the static large deviation principle for the empirical mea-
sure under the stationary state. The static rate function is determined by
the dynamical one considered in Chapter 3 and the structure of the set of
all stationary solutions to the hydrodynamic equation. Chapter 4 is based
on a joint work [24] with Professor Jonathan farfan and Professor Claudio
Landim.

The static large deviations for the boundary driven exclusion processes
are studied in [7, 11, 22]. As mentioned in the above, for their models,
there exists a unique stationary solution of the hydrodynamic equation. In
this case, the static rate function is described by the quasi potential similar
to a finite-dimensional setting (c.f. [21]). In our case, there are several sta-
tionary solutions of the hydrodynamic equation in general. This fact makes
the structure of the static rate function and the proof of the large deviation
principle much complicated. To overcome this difficulty one needs to con-
struct several paths in our infinite-dimensional setting.

This thesis is organized as follows: In Chapter 2, we prove the con-
vergence of a tagged particle under a diffusive scaling and derive a Stefan
problem from a one-dimensional exclusion process with speed change. In
Chapter 3, we prove the hydrostatics and the dynamical large deviation prin-
ciple for a reaction-diffusion model. In Chapter 4, we prove the static large
deviation principle for a reaction-diffusion model.
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CHAPTER 2

Derivation of Stefan problem from a one-dimensional
exclusion process with speed change

1. Introduction to Chapter 2

Bertsch, Dal Passo and Mimura [3] introduced a mathematical model
which describes a phenomenon of two different types of cells, called “con-
tact inhibition of growth between two cells”. They formulated this phe-
nomenon as a one-dimensional system of partial differential equations, see
Remark 2.2 below. In some cases, the system of partial differential equa-
tions can be expressed as a Stefan free boundary problem. Our goal is to
relate a microscopic particle system to the macroscopic Stefan free bound-
ary problem. We study a model of a microscopic particle system called
an exclusion process with speed change to derive the Stefan free bound-
ary problem. From the point of view of the particle system, a solution to
the partial differential equation describes an evolution of the macroscopic
density of particles and it is derived under a diffusive scaling limit called
the hydrodynamic limit. On the other hand, the moving Stefan free bound-
ary corresponds to the behavior of a tagged particle in the particle system.
The hydrodynamic limit for the exclusion process with speed change was
already studied by Funaki and Uchiyama [27] and Funaki, Uchiyama and
Yau [28]. In this chapter, we study the behavior of a tagged particle for the
particle system.

Let us explain the relationship between the Stefan problem introduced
in [3] and our particle system more precisely. Let T be the one-dimensional
torus R/Z = [0, 1) under the identification of 0 and 1. Consider two in-
tervals I1 and I2 which satisfy I1 ∩ I2 = ∅ and I1 ∪ I2 = T. Assume that
two different types of cells are initially distributed on I1 and I2 respectively.
For each time t ≥ 0, the moving Stefan free boundaries describes the time
evolution of intervals, say I1(t) and I2(t). Since I1(t) ∩ I2(t) = ∅ and
I1(t)∪ I2(t) = T, the moving boundary actually consists of two points. We
denote them by ũ1t and ũ2t . We now consider two types of particles, say red
particles and blue particles. We interpret a system of these red and blue par-
ticles as a microscopic model of two different types of cells. If red particles
and blue particles have same velocity, the Stefan free boundary problem
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considered in [3] reduces to the following system:

∂tρ = ∂u(D(ρ)∂uρ),(1.1)

d

dt
ũit = −(D(ρ)∂uρ)(t, ũ

i
t)

ρ(t, ũit)
, i = 1, 2 ,(1.2)

where ρ(t, u) : [0,∞) × T → [0,∞), ũit : [0,∞) → T and D : [0, 1] →
[0,∞). Though we consider the special situation such that red particles
and blue particles have same velocity, Theorem 1.2 in [3] actually discusses
such situation. Under this situation, the derivation of the Stefan problem
can be reduced to solving a tagged particle problem for one type of particle
systems. We will describe the relationship in Remark 2.2 much clearly.

We emphasize two facts. One is that, if one of the moving boundaries
ũ1t is determined, then the other moving boundary ũ2t is automatically de-
termined by the conservation law of the total number of red and blue parti-
cles. Moreover the other moving boundary automatically satisfies the same
equation (1.2), see Remark 2.3. The other is that, once (1.1) is derived,
the derivation of (1.2) under Neumann boundary conditions is not difficult.
However, on the periodic domain T, it is not clear that one of the moving
boundaries ũ1t satisfies (1.2), see Remark 2.4. Hence we consider a tagged
particle problem to derive the equation (1.2) on the periodic domain T and
we derive it as a scaling limit for a tagged particle.

This chapter is organized as follows: In Section 2, we introduce our
model and state our main result. We relate our results and the Stefan free
boundary problem considered in [3] in Remark 2.2. In Section 3, we show
the law of large numbers for the diffusively scaled current across the bond.
In Section 4, we prove our main theorem, Theorem 2.2, using the results
established in Section 3.

2. Model and main result

In this section, we precisely formulate our particle system and state a
main result. We consider an exclusion process with speed change. Before
defining the process, we introduce some notation. Let TN be the one dimen-
sional discrete torus Z/NZ = {0, 1, · · · , N − 1}. The state space of our
process is given by {0, 1}TN and denote by η an element of {0, 1}TN , which
describes a configuration on TN such that η(x) = 1 if there is a particle
at x ∈ TN and η(x) = 0, otherwise. The time evolution ηNt of the exclu-
sion process with speed change is determined as a Markov process whose
generator acting on local functions f : {0, 1}TN → R is given by

LNf(η) = N2
∑
x∈TN

cx,x+1(η){f(ηx,x+1)− f(η)},
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where ηx,x+1 is the configuration obtained from η by exchanging configu-
rations on x and x+ 1:

ηx,x+1(z) =


η(x+ 1) if z = x,

η(x) if z = x+ 1,

η(z) otherwise.

Note that we have already put the time change factor N2 in LN . We first
consider the jump rates cx,x+1 as functions on {0, 1}TN . The fact of the mat-
ter, under the condition (2.2) below, the jump rates cx,x+1 can be regarded as
local functions on {0, 1}TN . We assume the following conditions for jump
rates cx,x+1:

Spatial uniformity : cx,x+1(η) = c0,1(τxη).(2.1)

Non-degeneracy : c0,1(η) > 0 for any configuration η.(2.2)
Locality : c0,1 depends only on finite coordinates of η.(2.3)

Symmetry : c0,1(η) = c0,1(η
0,1).(2.4)

In the condition (2.1), {τx}x∈Z stands for a translation group acting on the
configuration space {0, 1}TN :

(τxη)(y) = η(x+ y), y ∈ TN ,

where, for each x ∈ Z and y ∈ TN , x+ y is considered modulo N . We use
the same notation {τx}x∈Z as a translation group acting on the configuration
space {0, 1}Z.

We now briefly discuss the limiting behavior of the empirical measure,
so-called hydrodynamic limit. Define the empirical measure πN

t by

πN
t (du) =

1

N

∑
x∈TN

ηNt (x)δ x
N
(du),

where δu stands for the Dirac measure which has a point mass at u ∈ T.
We define the diffusion coefficient D : [0, 1] → R as follows. Let νρ be
the Bernoulli product measure with density ρ defined on {0, 1}Z. From
the condition (2.4), these measures are reversible under our process. The
expectation with respect to νρ will be denoted by Eνρ [·]. For each x ∈ Z
and each local function f : {0, 1}Z → R, define

(τxf)(η) = f(τxη),

(σ0,1f)(η) = f(η0,1)− f(η).

For each density 0 < ρ < 1 and each local function f : {0, 1}Z → R, define

D(ρ; f) =
1

2χ(ρ)
Eνρ [{η(0)− η(1)−

∑
y∈Z

{σ0,1(τyf)}(η)}2c0,1(η)],

χ(ρ) = ρ− ρ2,
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and the diffusion coefficient D by the variational formula

D(ρ) = inf{D(ρ; f) : f are local functions on {0, 1}Z}.

REMARK 2.1. It is known that the diffusion coefficient D is continu-
ously extended to two endpoints 0 and 1, cf. Funaki and Uchiyama [27].
Furthermore Bernardin [2] proved under the conditions (2.1)-(2.4) that the
diffusion coefficientD is infinitely differentiable on the interval [0, 1]. More-
over, from the condition (2.2), we can show that D is strictly positive on the
interval [0, 1]. Note that, from the Lipschitz continuity and positivity of the
diffusion coefficient D, the H−1 method gives the uniqueness of the weak
solution of the Cauchy problem (2.5) below for any measurable initial pro-
file ρ0 : T → [0, 1], cf. Kipnis and Landim [31].

The next result is known. We refer to [27, 28, 31] for its proof.

THEOREM 2.2. Assume that there exists a measurable function ρ0 :
T → [0, 1] such that for every smooth function J : T → [0, 1], it holds that

lim
N→∞

∫
T
J(u)πN

0 (du) =

∫
T
J(u)ρ0(u)du, in probability.

Then for every t > 0 and every smooth function J : T → [0, 1], we have

lim
N→∞

∫
T
J(u)πN

t (du) =

∫
T
J(u)ρ(t, u)du, in probability,

where ρ(t, u) : [0,∞)×T → [0, 1] is determined as a unique weak solution
of the Cauchy problem

(2.5)

{
∂tρ(t, u) = ∂u(D(ρ(t, u))∂uρ(t, u)),

ρ(0, u) = ρ0(u).

Let µN be the initial distribution of the exclusion process ηNt with speed
change. As we explained in the introduction, the moving boundary ac-
tually consists of two points. We note that if one of the moving bound-
aries is determined, then the other moving boundary is determined by the
conservation law for the total number of red and blue particles (see Re-
mark 3.1). Therefore we concentrate on the analysis of one tagged parti-
cle. We now assume that there is a particle sitting at site 0 at time 0, that
is, µN(η; η(0) = 1) = 1. Moreover we also assume that the assumption
of Theorem 2.1 holds with a positive C1(T)-smooth function ρ0. Trace
the particle sitting at site 0 at time 0 and denote its position at time t by
XN

t ∈ TN . Denote by PN the probability measure on the Skorokhod space
D([0,∞), {0, 1}TN ) induced by the process {ηNt : t ≥ 0} with the initial
measure µN . The expectation with respect to PN is denoted by EN [·]. We
are interested in the behavior of the rescaled position of the tagged particle
defined by uNt = 1

N
XN

t . The following theorem is a main result of this
chapter. Denote by ρ(t, u) : [0,∞) × T → [0, 1] the unique weak solution
of (2.5).
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THEOREM 2.3. The tagged particle XN
t starts from 0, that is, XN

t = 0.
Then, every t ≥ 0, we have

lim
N→∞

uNt = ut, in probability,

where ut is defined as follows. We first consider the solution, ũt ∈ R of the
implicit equation

(2.6)

{∫ ũt

0
ρ(t, u)du = −

∫ t

0
(D(ρ)∂uρ)(s, 0)ds,

ũ0 = 0.

and ut is defined as the element in T which satisfies ut ≡ ũt mod 1.

REMARK 2.4. Bertsch et al. [3] considered the following Stefan free
boundary problem on the finite interval [−L,L] under Neumann boundary
conditions and initial conditions:
(2.7)
wt = (w(χ(w))x)x + w(1− w) if −L < x < ζ(t), t > 0,

wt = d(w(χ(w))x)x + γw(1− w/k) if ζ(t) < x < L, t > 0,

ζ ′(t) = −(χ(w))x(ζ(t)
−, t) = −d(χ(w))x(ζ(t)+, t) for t > 0.

We now relate our results and the system (2.7). Consider the system (2.7)
with the function χ such that αχ′(α) = D(α), d = 1 and without reaction
terms, then the equations on w and ζ can be written aswt = (wxD(w))x,

ζ ′(t) = −(wxD(w))(t, ζ(t))

w(t, ζ(t))
.

As we mentioned in the introduction, we treat the state space of the system
to have a periodic boundary. Although we have to consider another moving
boundary by its topological effect, from Theorem 2.1, 2.2 and Lemma 3.2,
we can derive the system (2.7) without reaction terms and d = 1 from the
microscopic particle system. The similar derivation is given in [33] for the
linear case D ≡ 1 and general d > 0. The derivation of the system (2.7)
for the general case d > 0 becomes more difficult. Note that Bertsch et al.
[3] studied the only case d = 1 in their Theorem 1.2. The analysis of the
general case remains an open problem.

REMARK 2.5. Let ρ(t, u) : [0,∞)× T → [0, 1] be a solution of (1.1):

∂tρ(t, u) = ∂u(D(ρ(t, u))∂uρ(t, u)).

Let ũ1t and ũ2t be the moving boundaries as considered in the introduction
and assume that ũ1t satisfies the equation (1.2):

d

dt
ũ1t = −(D(ρ)∂uρ)(t, ũ

1
t )

ρ(t, ũ1t )
.
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Then the other moving boundary ũ2t also satisfies the same equation (1.2).
Indeed, since the total mass between ũ1t and ũ2t is conserved under the dy-
namics, we have

(2.8)
∫ ũ2

t

ũ1
t

ρ(t, u)du ≡ constant.

Differentiating (2.8) in t, we can conclude that the other moving boundary
ũ2t also satisfies the same equation (1.2).

REMARK 2.6. From the similar computation as we did in Remark 2.3,
we can easily drive the ordinary differential equation (1.2) under the 0-
Neumann boundary condition. Indeed, let ρ(t, u) : [0,∞) × [0, 1] → [0, 1]
be a solution of (1.1):{

∂tρ(t, u) = ∂u(D(ρ(t, u))∂uρ(t, u)), for t > 0, u ∈ [0, 1],
∂uρ(t, 0) = ∂uρ(t, 1) = 0, for t > 0.

Assume that ut satisfies the conservation law

(2.9)
∫ ut

0

ρ(t, u)du ≡ constant.

Then, differentiating (2.9) in t, we can deduce that ut actually satisfies the
ordinary differential equation (1.2). Note that the same derivation can not
apply to the Stefan problem under the periodic boundary condition due to
the lack of the conservation law similar to (2.9).

3. Current

In this section, we consider the asymptotic behavior of the current across
the bond (−1, 0). For a bond (x, x + 1), the current JN

x,x+1(t) up to time t
over this bond is defined as the total number of jumps of particles from x to
x+ 1 in the time interval [0, t] minus the total number of jumps of particles
from x+1 to x in the time interval [0, t]. The main result of this section is the
following law of large numbers for the diffusively scaled current 1

N
JN
−1,0(t).

Recall that ρ(t, u) : [0,∞) × T → [0, 1] is determined as the unique weak
solution of (2.5).

THEOREM 3.1. For each time t ≥ 0, we have

lim
N→∞

1

N
JN
−1,0(t) =

∫ 1

0

(1− u)(ρ(t, u)− ρ(0, u))du, in probability.

PROOF. For each x ∈ TN , since simultaneous jumps of two or more
particles do not occur with probability one, the martingales defined by

(3.1) MN
x,x+1(t) := JN

x,x+1(t)−N2

∫ t

0

cx,x+1(η
N
s ){ηNs (x)−ηNs (x+1)}ds
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are orthogonal, that is, their cross variations are equal to 0. Moreover, its
quadratic variation ⟨MN

x,x+1⟩t is given by

(3.2) ⟨MN
x,x+1⟩t = N2

∫ t

0

cx,x+1(η
N
s ){ηNs (x)− ηNs (x+ 1)}2ds.

We define the function G : T → (0, 1] by G(u) = 1 − u. Since, for each
t ≥ 0 and x ∈ TN ,

ηNt (x)− ηN0 (x) = JN
x−1,x(t)− JN

x,x+1(t),

we have

⟨πN
t , G⟩ − ⟨πN

0 , G⟩ =
1

N

∑
x∈TN

(1− x

N
)(ηNt (x)− η0(x))

=
1

N

∑
x∈TN

(1− x

N
)(JN

x−1,x(t)− JN
x,x+1(t)).

Therefore the summation by parts formula gives us

(3.3)
1

N
JN
−1,0(t) = ⟨πN

t , G⟩ − ⟨πN
0 , G⟩+

1

N2

∑
x∈TN

JN
x,x+1(t).

From Theorem 2.1, it is easy to see that the difference of the first two terms
on the right hand side of (3.3) converges to∫ 1

0

(1− u)(ρ(t, u)− ρ(0, u))du, in probability.

Hence it suffices to show that the last term on the right hand side of (3.3)
vanishes as N tends to ∞.

From the martingale decomposition (3.1), we have

1

N2

∑
x∈TN

JN
x,x+1(t) =

1

N2

∑
x∈TN

MN
x,x+1(t)

(3.4)

+
∑
x∈TN

∫ t

0

cx,x+1(η
N
s ){ηNs (x)− ηNs (x+ 1)}ds.

We can easily show that the first sum on the right hand side of (3.4) con-
verges to 0. Indeed, since the jump rates are bounded and from (3.2), we
have

EN [(
1

N2

∑
x∈TN

MN
x,x+1(t))

2] =
1

N4
EN [

∑
x∈TN

⟨MN
x,x+1⟩t] ≤

Ct

N
,

for some universal constant C > 0.
On the other hand, we need some technical result, so-called gradient

replacement, to treat the second sum on the right hand side of (3.4). We
11



refer to [27, 31] for details. The gradient replacement asserts that

lim
ε→0

lim sup
N→∞

EN [|
∫ t

0

∑
x∈TN

(
cx,x+1{ηNs (x)−ηNs (x+1)}+D(ηεNs (x)){ηεNs (x+1)−ηεNs (x)}

)
ds|] = 0,

where ηεN(x) is defined by ηεN(x) := 1
εN+1

∑
|y−x|≤εN η(y). Hence, to

complete the proof of the theorem, it suffices to show that

(3.5) lim
N→∞

EN [|
∫ t

0

∑
x∈TN

D(ηεNs (x)){ηεNs (x+ 1)− ηεNs (x)}ds|] = 0.

Denote by d the integral of D: d(ρ) =
∫ ρ

0
D(α)dα, ρ ∈ [0, 1]. Recall

Remark 2.1. Since D is continuous on the interval [0, 1], we have
(3.6)
D(ηεN(x)){ηεN(x+1)−ηεN(x)} = d(ηεN(x+1))−d(ηεN(x))+N−1rN(η),

where rN(η) represents a term that converges uniformly in η to 0 as N
tends to ∞. The summation by parts formula with (3.6) gives (3.5), which
completes the proof of Theorem 3.1. □

The following lemma easily follows from the definition of the solution
of (2.5).

LEMMA 3.2. (1) Let ρ(t, u) : [0,∞)×T → [0, 1] be the unique solution
of (2.5). Then, we have∫ 1

0

(1− u)(ρ(t, u)− ρ(0, u))du = −
∫ t

0

(D(ρ)∂uρ)(s, 0)ds.

(2) Let ũt be the solution of the implicit equation:{∫ ũt

0
ρ(t, u)du = −

∫ t

0
(D(ρ)∂uρ)(s, 0)ds,

ũ0 = 0.

Then, it solves an ordinary differential equation:

(3.7)
d

dt
ũt = −(D(ρ)∂uρ)(t, ũt)

ρ(t, ũt)
.

Notice that the last ordinary differential equation (3.7) is just introduced
in (1.2).

4. Proof of Theorem 2.2

In this section, we prove Theorem 2.2. We present it for the sake of
completeness although the strategy of the proof is essentially the same as
that of Jara and Landim [29].

We first periodically extend the process ηNt to the {0, 1}Z-valued process
η̃Nt defined by η̃Nt (x + nN) = ηNt (x), for n ∈ Z and x ∈ {0, · · · , N − 1}.
Since ηN0 (0) = 1, we can tag this particle and denote the position of this
particle at time t by X̃N

t ∈ Z. To prove Theorem 2.2, it is enough to show
12



that the re-scaled process ũNt = 1
N
X̃N

t converges to ũt in probability for
each time t.

Due to the exclusive constraint, the position of the tagged particle X̃N
t

is written in terms of the empirical measure πN
t and the current JN

−1,0(t).
More precisely, for each n ∈ N, we have

(4.1) {X̃N
t ≥ n} = {JN

−1,0(t) ≥
n−1∑
x=0

η̃Nt (x)}.

Fix u > 0 and take n = ⌈uN⌉, then the relation (4.1) shows

{ũNt ≥ u} = { 1

N
JN
−1,0(t) ≥

1

N

⌈uN⌉∑
x=0

η̃Nt (x) + rN},

where rN uniformly converges to 0 as N → ∞. From Theorem 2.1,
1
N

∑⌈uN⌉
x=0 η̃Nt (x) converges to

∫ u

0
ρ(t, u)du in probability. Therefore, from

Theorem 3.1 and Lemma 3.2-(1), we have

lim
N→∞

PN(ũNt ≥ u) =

{
1 if −

∫ t

0
(D(ρ)∂uρ)(s, 0)ds >

∫ u

0
ρ(t, u)du,

0 if −
∫ t

0
(D(ρ)∂uρ)(s, 0)ds <

∫ u

0
ρ(t, u)du.

From the symmetry around the origin, we can show the similar statement
for u < 0. Therefore, for any δ > 0, we have

lim
N→∞

PN(|ũNt − ũt| ≥ δ) = 0,

which completes the proof of Theorem 2.2.
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CHAPTER 3

Hydrostatics and dynamical large deviations for a
reaction-diffusion model

1. Introduction to Chapter 3

In recent years, the large deviations of interacting particle systems have
attracted much attention as an important step in the foundation of a thermo-
dynamic theory of nonequilibrium stationary states [19, 6, 10, 8]. Notwith-
standing the absence of explicit expressions for the stationary states, large
deviations principles for the empirical measure under the stationary state
have been derived from a dynamical large deviations principle [7, 23, 13],
extending to an infinite-dimensional setting [11, 22] Freidlin and Wentzell
approach [21].

We consider in this chapter interacting particle systems in which a sym-
metric simple exclusion dynamics, speeded-up diffusively, is superposed to
a non-conservative Glauber dynamics. De Masi, Ferrari and Lebowitz [15]
proved that the macroscopic evolution of the empirical measure is described
by the solutions of the reaction-diffusion equation

(1.1) ∂tρ = (1/2)∆ρ+B(ρ)−D(ρ) .

where ∆ is the Laplacian and F = B −D is a reaction term determined by
the stochastic dynamics. They also proved that the equilibrium fluctuations
evolve as generalized Ornstein-Uhlenbeck processes.

A large deviation principle for the empirical measure has been obtained
in [30] in the case where the initial distribution is a local equilibrium. The
lower bound of the large deviations principle was achieved only for smooth
trajectories. More recently, [13] extended the large deviations principle to a
one-dimensional dynamics in contact with reservoirs and proved the lower
bound for general trajectories in the case where the birth and the death rates,
B(ρ) and D(ρ), respectively, are monotone, concave functions.

In this chapter, we first present a law of large numbers for the empirical
measure under the stationary state [20, 32]. More precisely, denote by µN

the stationary state on a one-dimensional torus with N points of the super-
position of a Glauber dynamics with a symmetric simple exclusion dynam-
ics speeded-up byN2. This probability measure is not known explicitly and
it exhibits long range correlations [4]. Let Vϵ denote an ϵ-neighborhood of
the set of solutions of the elliptic equation

(1.2) (1/2)∆ρ+ F (ρ) = 0 .
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Theorem 2.1 asserts that for any ϵ > 0, µN(V
c
ϵ ) vanishes as N → ∞. In

contrast with previous results, equation (1.2) may not have a unique solution
so that equation (1.1) may not have a global attractor, what prevents the
use of the techniques developed in [23, 37]. This result solves partially a
conjecture raised in [12].

The main results of this chapter concern the large deviations of the
Glauber+Kawasaki dynamics. We first prove a full large deviations prin-
ciple for the empirical measure under the sole assumption that B and D are
concave functions. These assumptions encompass the case in which the po-
tential F (ρ) = B(ρ)−D(ρ) presents two or more wells, and open the way
to the investigation of the metastable behavior of this dynamics. Previous
results in this directions include [16, 17, 5].

Comments on the proof. The proof of the law of large numbers for the em-
pirical measure under the stationary state µN borrows ideas from [23, 37].
On the one hand, by [15], the evolution of the empirical measure is de-
scribed by the solutions of the reaction-diffusion equation (1.1). On the
other hand, by [14], for any density profile γ, the solution ρt of (1.1) with
initial condition γ converges to some solution of the semilinear elliptic
equation (1.2). Assembling these two facts, we show in the proof of The-
orem 2.1 that the empirical measure eventually reaches a neighborhood of
the set of all solutions of the semilinear elliptic equation (1.2).

The proof that the rate function I is lower semicontinuous and has com-
pact level set is divided in two steps. Denote byQ(π) the energy of a trajec-
tory π, defined in (2.2). Following [38], we first show in Proposition 4.2 that
the energy of a trajectory π is bounded by the sum of its rate function with
a constant: Q(π) ≤ C0(I(π) + 1). It is not difficult to show that a sequence
in the set {π : Q(π) ≤ a}, a > 0, which converges weakly also converges
in L1. The lower semicontinuity of the rate function I follows from these
two facts. Let πn be a sequence which converges weakly to π. We may,
of course, assume that the sequence I(πn) is bounded. In this case, by the
two results presented above, πn converges to π in L1. As the rate function
I(·), defined in (2.3), is given by supG JG(·), where the supremum is carried
over smooth functions, and since for each such function JG is continuous
for the L1 topology, JG(π) = limn JG(πn) ≤ lim infn I(πn). To conclude
the proof of the lower semicontinuity of I , it remains to maximize over G.
The proof that the level sets are compact is similar.

Note that the previous argument does not require a bound of the H−1

norm of ∂tπ in terms of I(π) and Q(π). Actually, such a bound does not
hold in the present context. For example, let ρ represent the solution of the
hydrodynamic equation (1.1) starting from some initial condition γ. Due to
the reaction term, the H−1 norm of ∂tρ might be infinite, while I(ρ) = 0
and Q(ρ) < ∞. The fact that a bound on the H−1 norm of ∂tπ is not used,
may simplify the earlier proofs of the regularity of the rate function in the
case of conservative dynamics [9, 23].
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The main difficulty in the proof of the lower bound lies in the I-density
of smooth trajectories: each trajectory π with finite rate function should be
approachable by a sequence of smooth trajectories πn such that I(πn) con-
verges to I(π). We use in this step the hydrodynamic equation and several
convolutions with mollifiers to smooth the paths. The concavity of B and
D are used in this step and only in this one. It is possible that the theory
of Orlicz spaces may allow to weaken these assumptions. Similar difficul-
ties appeared in the investigation of the large deviations of a random walk
driven by an exclusion process and of the exclusion process with a slow
bond [1, 25].

This chapter is organized as follows. In Section 2, we introduce a
reaction-diffusion model and state the main results. In Section 3 we prove
the law of large numbers for the empirical measure under the stationary
state. In Section 4, we present the main properties of the rate function I . In
Section 5, we prove that the smooth trajectories are I-dense and we prove
Theorem 2.5, the main result of the chapter. In Section 6, we recall some
results on the solution of the hydrodynamic equation (1.1).

2. Notation and Results

Throughout this chapter, we use the following notation. N0 stands for
the set {0, 1, · · · }. For a function f : X → R, defined on some space X , let
∥f∥∞ = supx∈X |f(x)|. We will use C0 > 0 and C > 0 as a notation for a
generic positive constant which may change from line to line.

2.1. Reaction-diffusion model. We fix some notation and define the
model. Let TN be the one-dimensional discrete torus Z/NZ = {0, 1, · · · , N−
1}. The state space of our process is given by XN = {0, 1}TN . Let η denote
a configuration in XN , x a site in TN , η(x) = 1 if there is a particle at site
x, otherwise η(x) = 0.

We consider in the set TN the superposition of the symmetric simple
exclusion process (Kawasaki) with a spin-flip dynamics (Glauber). This
model was introduced by De Masi, Ferrari and Lebowitz in [15] to derive a
reaction-diffusion equation from a microscopic dynamics. More precisely,
the stochastic dynamics is a Markov process on XN whose generator LN

acts on functions f : XN → R as

LNf = (N2/2)LKf + LGf ,

where LK is the generator of a symmetric simple exclusion process (Kawasaki
dynamics),

(LKf)(η) =
∑
x∈TN

[f(ηx,x+1)− f(η)] ,

and where LG is the generator of a spin flip dynamics (Glauber dynamics),

(LGf)(η) =
∑
x∈TN

c(x, η)[f(ηx)− f(η)] .
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In these formulas, ηx,x+1 (resp. ηx) represents the configuration obtained
from η by exchanging (resp. flipping) the occupation variables η(x), η(x+
1) (resp. η(x)):

ηx(z) =

{
η(z) if z ̸= x ,

1− η(z) if z = x ,
ηx,y(z) =


η(y) if z = x ,

η(x) if z = y ,

η(z) otherwise .

Moreover, c(x, η) = c(η(x −M), · · · , η(x +M)), for some M ≥ 1 and
some strictly positive cylinder function c(η), that is, a function which de-
pends only on a finite number of variables η(y). Note that the exclusion
dynamics has been speeded-up by a factor N2, and that the Markov process
generated by LN is irreducible because c(η) is a strictly positive function.

2.2. Hydrodynamic limit. We briefly discuss in this subsection the
limiting behavior of the empirical measure.

Denote by T the one-dimensional continuous torus T = R/Z = [0, 1).
Let M+ = M+(T) be the space of nonnegative measures on T, whose total
mass bounded by 1, endowed with the weak topology. For a measure π in
M+ and a continuous function G : T → R, denote by ⟨π,G⟩ the integral
of G with respect to π:

⟨π,G⟩ =

∫
T
G(u)π(du) .

The space M+ is metrizable. Indeed, if f2k(u) = cos(πku) and f2k+1(u) =
sin(πku), k ∈ N0, one can define the distance d on M+ as

d(π1, π2) :=
∞∑
k=0

1

2k
|⟨π1, fk⟩ − ⟨π2, fk⟩| .

Denote by Cm(T), m in N0 ∪ {∞}, the set of all real functions on T
which are m times differentiable and whose m-th derivative is continuous.
Given a function G in C2(T), we shall denote by ∇G and ∆G the first and
second derivative of G, respectively.

Let {ηNt : N ≥ 1} be the continuous-time Markov process on XN

whose generator is given by LN . Let πN : XN → M+ be the function
which associates to a configuration η the positive measure obtained by as-
signing mass N−1 to each particle of η,

πN(η) =
1

N

∑
x∈TN

η(x)δx/N ,

where δu stands for the Dirac measure which has a point mass at u ∈ T.
Denote by πN

t the empirical measure process πN(ηNt ).
Fix arbitrarily T > 0. For a topological space X and an interval I =

[0, T ] or [0,∞), denote by C(I,X) the set of all continuous trajectories
from I to X endowed with the uniform topology. Let D(I,X) be the space
of all right-continuous trajectories from I to X with left-limits, endowed
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with the Skorokhod topology. For a probability measure ν in XN , denote
by PN

ν the measure on D([0, T ], XN) induced by the process ηNt starting
from ν.

Let νρ = νNρ , 0 ≤ ρ ≤ 1, be the Bernoulli product measure with the
density ρ. Define the continuous functions B,D : [0, 1] → R by

B(ρ) =

∫
[1− η(0)] c(η) dνρ , D(ρ) =

∫
η(0) c(η) dνρ .

Since B(1) = 0, D(0) = 0 and B,D are polynomials in ρ,

(2.1) B(ρ) = (1− ρ) B̃(ρ) , D(ρ) = ρ D̃(ρ) ,

where B̃(ρ), D̃(ρ) are polynomials.
The next result was proved by De Masi, Ferrari and Lebowitz in [15]

for the first time. We refer to [15, 30, 31] for its proof.

THEOREM 2.1. Fix T > 0 and a measurable function γ : T → [0, 1].
Let ν = νN be a sequence of probability measures on XN associated to γ,
in the sense that

lim
N→∞

νN

(
|⟨πN , G⟩ −

∫
T
G(u)γ(u)du| > δ

)
= 0 ,

for every δ > 0 and every continuous function G : T → R. Then, for every
t ≥ 0, every δ > 0 and every continuous function G : T → R, we have

lim
N→∞

PN
ν

(
|⟨πN

t , G⟩ −
∫
T
G(u)ρ(t, u)du| > δ

)
= 0 ,

where ρ : [0,∞) × T → [0, 1] is the unique weak solution of the Cauchy
problem

(2.2)

{
∂tρ = (1/2)∆ρ+ F (ρ) on T ,

ρ(0, ·) = γ(·) ,

where F (ρ) = B(ρ)−D(ρ).

The definition, existence and uniqueness of weak solutions of the Cauchy
problem (3.1) are discussed in Section 6.

2.3. Hydrostatic limit. We examine in this subsection the asymptotic
behavior of the empirical measure under the stationary state. Fix N ≥ 1
large enough. Since the Markov Process ηNt is irreducible and the cardinal-
ity of the state space XN is finite, there exists a unique invariant probability
measure for the process ηNt , denoted by µN . Let PN be the probability
measure on M+ defined by PN = µN ◦ (πN)−1.

For each p ≥ 1, let Lp(T) be the space of all real p-th integrable func-
tionsG : T → R with respect to the Lebesgue measure:

∫
T |G(u)|

pdu <∞.
The corresponding norm is denoted by ∥ · ∥p:

∥G∥pp :=

∫
T
|G(u)|pdu .
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In particular, L2(T) is a Hilbert space equipped with the inner product

⟨G,H⟩ =

∫
T
G(u)H(u)du .

For a function G in L2(T), we also denote by ⟨G⟩ the integral of G with
respect to the Lebesgue measure: ⟨G⟩ :=

∫
TG(u)du.

Let E be the set of all classical solutions of the semilinear elliptic equa-
tion:

(2.3) (1/2)∆ρ+ F (ρ) = 0 on T .

Classical solution means a function ρ : T → [0, 1] in C2(T) which satisfies
the equation (2.1) for any u ∈ T. We sometimes identify E with the set of
all absolutely continuous measures whose density are a classical solution of
(2.1):

{π ∈ M+ : π(du) = ρ(u)du, ρ is a classical solution of the equation (2.1)}.
THEOREM 2.2. The measure PN asymptotically concentrates on the set

E . Namely, for any δ > 0, we have

lim
N→∞

PN(π ∈ M+ : inf
π̄∈E

d(π, π̄) ≥ δ) = 0 .

If the set E is a singleton, it follows from Theorem 2.1 that the sequence
{PN : N ≥ 1} converges:

COROLLARY 2.3. Assume that there exists a unique classical solution
ρ : T → [0, 1] of the semilinear elliptic equation (2.1). Then PN converges
to the Dirac measure concentrated on ρ(u)du as N → ∞.

REMARK 2.4. In [16, 17], De Masi et al. examined the dynamics in-
troduced above in the case of the double well potential F (ρ) = −V ′(ρ) =
a(2ρ − 1) − b(2ρ − 1)3, a, b > 0, which is symmetric around the density
1/2. They proved that, starting from a product measure with mean 1/2, the
unstable equilibrium of the ODE ẋ(t) = −V ′(x(t)), the empirical density
remains in a neighborhood of 1/2 in a time scale of order logN . Bod-
ineau and Lagouge in [12] conjectured that Theorem 2.1 remains true if
we replace E by the set of all stable equilibrium solutions of the equation
(2.1). This conjecture is proved in [24] and follows from the large deviation
principle for the sequence {PN : N ≥ 1}.

2.4. Dynamical large deviations. Denote by M+,1 the closed subset
of M+ of all absolutely continuous measures with density bounded by 1:

M+,1 = {π ∈ M+(T) : π(du) = ρ(u)du, 0 ≤ ρ(u) ≤ 1 a.e. u ∈ T} .
Fix T > 0, and denote by Cm,n([0, T ]× T), m,n in N0 ∪ {∞}, the set

of all real functions defined on [0, T ]× T which are m times differentiable
in the first variable and n times on the second one, and whose derivatives
are continuous. Let Qη = QN

η , η ∈ XN , be the probability measure on
D([0, T ],M+) induced by the measure-valued process πN

t starting from
πN(η).
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Fix a measurable function γ : T → [0, 1]. For each path π(t, du) =
ρ(t, u)du in D([0, T ],M+,1), define the energy Q : D([0, T ],M+,1) →
[0,∞] as
(2.4)

Q(π) = sup
G∈C0,1([0,T ]×T)

{
2

∫ T

0

dt ⟨ρt,∇Gt⟩ −
∫ T

0

dt

∫
Td

du G2(t, u)
}
.

It is known that the energy Q(π) is finite if and only if ρ has a generalized
derivative and this generalized derivative is square integrable on [0, T ]×T:∫ T

0

dt

∫
T
du |∇ρ(t, u)|2 <∞ .

Moreover, it is easy to see that the energy Q is convex and lower semicon-
tinuous.

For each function G in C1,2([0, T ] × T), define the functional J̄G :
D([0, T ],M+,1) → R by

J̄G(π) = ⟨πT , GT ⟩ − ⟨γ,G0⟩ −
∫ T

0

dt ⟨πt, ∂tGt +
1

2
∆Gt⟩

− 1

2

∫ T

0

dt ⟨χ(ρt), (∇Gt)
2⟩ −

∫ T

0

dt
{
⟨B(ρt), e

Gt − 1⟩+ ⟨D(ρt) , e
−Gt − 1⟩

}
,

where χ(r) = r(1 − r) is the mobility. Let JG : D([0, T ],M+) → [0,∞]
be the functional defined by

JG(π) =

{
J̄G(π) if π ∈ D([0, T ],M+,1) ,

∞ otherwise .

We define the large deviation rate function IT (·|γ) : D([0, T ],M+) →
[0,∞] as

(2.5) IT (π|γ) =

{
sup JG(π) if Q(π) <∞ ,

∞ otherwise ,

where the supremum is taken over all functions G in C1,2([0, T ]× T).

THEOREM 2.5. Assume that the functions B and D are concave on
[0, 1]. Fix T > 0 and a measurable function γ : T → [0, 1]. Assume that a
sequence ηN of initial configurations in XN is associated to γ, in the sense
that

lim
N→∞

⟨πN(ηN), G⟩ =

∫
T
G(u)γ(u)du

for every continuous function G : T → R. Then, the measure QηN on
D([0, T ],M+) satisfies a large deviation principle with the rate function
IT (·|γ). That is, for each closed subset C ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (C) ≤ − inf

π∈C
IT (π|γ) ,
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and for each open subset O ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (O) ≥ − inf

π∈O
IT (π|γ) .

Moreover, the rate function IT (·|γ) is lower semicontinuous and has com-
pact level sets.

REMARK 2.6. Jona-Lasinio, Landim and Vares [30] proved the dynam-
ical large deviations principle stated above, but the lower bound was ob-
tained only for smooth trajectories. Bodineau and Lagouge [13] proved the
lower bound for one-dimensional reaction-diffusion models in contact with
reservoirs in the case where B and D are concave, monotone functions.

REMARK 2.7. Proposition 4.2 asserts that there exists a finite constant
C0 such that if π is a trajectory with finite energy, Q(π) <∞, then Q(π) ≤
C0(IT (π|γ) + 1). In the case where B and D are concave functions, we
can use Theorem 5.2, which asserts that the smooth trajectories are IT (|γ)-
dense, to prove the same bound without the assumption that the trajectory π
has finite energy. In particular, in this case we can define the rate function
IT ( |γ) simply as

IT (π|γ) = sup
G
JG(π) .

REMARK 2.8. In the proof that the rate function IT (·|γ) is lower semi-
continuous and has compact level sets we do not use a bound on the H−1

norm of ∂tρ in terms of its rate function IT (π|γ). Actually, as mentioned
in the introduction, such a bound does not hold for reaction-diffusion mod-
els. Therefore, the arguments presented here permit to simplify the proof
of the regularity of the rate function in other models, such as the weakly
asymmetric simple exclusion process [5, 23].

3. Proof of Theorem 2.1

We prove in this section Theorem 2.1. Our approach is a generaliza-
tion of the one developed in [23, 37], but it does not require the existence
of a global attractor for the underlying dynamical system. The method can
be applied to any dynamics which fulfills two conditions: the macroscopic
evolution of the empirical measure is described by a hydrodynamic equa-
tion, and for any initial condition the solution of this equation converges
to a stationary profile as time goes to infinity. For instance, the boundary
driven reaction-diffusion models examined in [13].

Recall from Subsection 2.3 the definition of the measure µN on XN ,
the map πN from XN to M+ and the measure PN = µN ◦ (πN)−1 on
M+. Denote by QN the probability measure on the Skorokhod space
D([0,∞),M+) induced by the measure-valued process πN

t under the ini-
tial distribution PN . Since the measure µN is stationary under the dynamics,
PN(B) = QN(π : πT ∈ B), for each T > 0 and Borel set B ⊂ M+.
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LEMMA 3.1. The sequence {QN : N ≥ 1} is tight and all its limit
points Q∗ are concentrated on absolutely continuous paths π(t, du) = ρ(t, u)du
whose density ρ is nonnegative and bounded above by 1 :

Q∗{π : π(t, du) = ρ(t, u)du , for t ∈ [0,∞)} = 1 ,

Q∗{π : 0 ≤ ρ(t, u) ≤ 1 , for (t, u) ∈ [0,∞)× T} = 1 .

The proof of this lemma is similar to the one of Proposition 3.3 in [23].
Let A be the set of all trajectories π(t, du) = ρ(t, u)du inD([0,∞),M+,1)

whose density ρ is a weak solution to the Cauchy problem (3.1) for some
initial profile ρ0 : T → [0, 1].

LEMMA 3.2. All limit points Q∗ of the sequence {QN : N ≥ 1} are
concentrated on paths π(t, du) = ρ(t, u)du in A :

Q∗(A) = 1 .

The proof of this lemma is similar to the one of Lemma A.1.1 in [31].

PROOF OF THEOREM 2.1. Fix a positive δ > 0. Let Eδ be the δ-
neighborhood of E in M+ :

Eδ := {π ∈ M+ : inf
π̄∈E

d(π, π̄) < δ} .

Denote by Ec
δ the complement of the set Eδ. The assertion of Theorem 2.1

can be rephrased as
lim

N→∞
PN(Ec

δ ) = 0 .

Therefore, to conclude the theorem it is enough to show that any limit point
of the sequence PN(Ec

δ ) is equal to zero.
Fix T > 0. Since the measure µN is invariant under the dynamics,

(3.1) PN(Ec
δ ) = QN(π : πT ∈ Ec

δ ) .

Let Q∗ be a limit point of {QN : N ≥ 1} and take a subsequence Nk so
that the sequence {QNk : k ≥ 1} converges to Q∗ as k → ∞. Note that the
set {π : πT ∈ Ec

δ} is not closed in D([0,∞),M+). However, we claim that

(3.2) lim
k→∞

QNk(π : πT ∈ Ec
δ ) ≤ Q∗({π : πT ∈ Ec

δ} ∩ A) ,

where A is the set introduced just before Lemma 3.2. Indeed, denote by
{π : πT ∈ Ec

δ} the closure of the set {π : πT ∈ Ec
δ} under the Skorokhod

topology. By definition of the weak topology and by Lemma 3.2,

lim
k→∞

QNk(π : πT ∈ Ec
δ ) ≤ Q∗({π : πT ∈ Ec

δ}) = Q∗({π : πT ∈ Ec
δ} ∩ A) .

It remains to prove that

{π : πT ∈ Ec
δ} ∩ A = {π : πT ∈ Ec

δ} ∩ A .

Let π be a path in {π : πT ∈ Ec
δ} ∩ A. Then there exists a sequence {πn :

n ≥ 1} such that πn converges to π in D([0,∞),M+) as n → ∞ and πn
T

belongs to Ec
δ for any n ≥ 1. Since A is contained in C([0,∞),M+,1), the

sequence {πn : n ≥ 1} converges to π under the uniform topology. Hence
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πn
T converges to πT . Since Ec

δ is closed in M+, πT also belongs to Ec
δ , which

proves (3.4).
Fix a path π(t, du) = ρ(t, u)du in A. By Proposition 4.3, there exists a

density profile ρ∞ in E such that ρt converges to ρ∞ in C2(T). Hence,

(3.3) A ⊂
∪
j≥1

∩
k≥j

{πk ∈ Eδ} .

By (3.1) and (3.4),

lim
N→∞

PN(Ec
δ ) ≤ Q∗({π : πk ∈ Ec

δ} ∩ A) for all k ≥ 1 .

Since this bound holds for any k ≥ 1,

lim
N→∞

PN(Ec
δ ) ≤ lim

k→∞
Q∗({πk ∈ Ec

δ}∩A) ≤ Q∗
(∩

j≥1

∪
k≥j

{πk ∈ Ec
δ}∩A

)
.

This latter set is empty in view of (3.3), which completes the proof of the
theorem. □

4. The rate function IT (·|γ)

We prove in this section that the large deviations rate function is lower
semicontinuous and has compact level sets. These properties play a funda-
mental role in the proof of the static large deviation principle, cf. [11, 22].
One of the main steps in the proof of these properties is Proposition 4.2.
It asserts that there exists a finite constant C0 such that for all trajectory
π(t, dx) = ρ(t, x) whose density ρ has finite energy is such that Q(π) ≤
C0(IT (π|γ) + 1). Such bound was first proved in [38].

PROPOSITION 4.1. Let π be a path in D([0, T ],M+) such that IT (π|γ)
is finite. Then π(0, du) = γ(u)du and π belongs to C([0, T ],M+,1).

PROOF. The proof of this proposition is similar to the one of Lemma
4.1 in [23]. Actually, the computation performed in the proof of Lemma 4.1
in [23] gives that, for any g in C2(T) and any 0 ≤ s < t ≤ T ,

|⟨πt, g⟩ − ⟨πs, g⟩| ≤ Cαs,r{IT (π|γ) + 1} ,(4.1)

for some positive constant C = C(g), which depends only on g. In the in-
equality (4.6), the constant αs,r is given by (log (r − s)−1)−1. (4.6) implies
the desired continuity. □

The next proposition plays an important role in the proof of Theorem
4.11.

PROPOSITION 4.2. There exists a constant C0 > 0 such that, for any
path π(t, du) = ρ(t, u)du in D([0, T ],M+,1) with finite energy, we have∫ T

0

dt

∫
T
du

|∇ρ(t, u)|2

χ(ρ(t, u))
≤ C0 {IT (π|γ) + 1} .
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We fix some notation before proving Proposition 4.2.
LetH1(T) be the Sobolev space of functionsGwith generalized deriva-

tives ∇G in L2(T). H1(T) endowed with the scalar product ⟨·, ·⟩1,2, defined
by

⟨G,H⟩1,2 = ⟨G,H⟩+ ⟨∇G,∇H⟩ ,
is a Hilbert space. The corresponding norm is denoted by ∥ · ∥1,2:

∥G∥21,2 :=

∫
T
|G(u)|2du+

∫
T
|∇G(u)|2du .

For a Banach space (B, ∥ · ∥B) and T > 0, we denote by L2([0, T ],B) the
Banach space of measurable functions U : [0, T ] → B for which

∥U∥2L2([0,T ],B) =

∫ T

0

∥Ut∥2B dt <∞

holds. For each p ≥ 1 and T > 0, let Lp([0, T ]× T) be the space of all real
p-th integrable functions U : [0, T ] × T → R with respect to the Lebesgue
measure:

∫ T

0
dt
∫
T |U(t, u)|

pdu <∞.
Fix a path π(t, du) = ρ(t, u)du in D([0, T ],M+,1) with finite energy.

For a smooth function G : [0, T ]×T → R and a for bounded function H in
L2([0, T ], H1(T)), define the functionals

LG(π) = ⟨πT , GT ⟩ − ⟨π0, G0⟩ −
∫ T

0

dt ⟨πt, ∂tGt⟩ ,

B1
H(π) =

1

2

∫ T

0

dt ⟨∇ρt,∇Ht⟩ − 1

2

∫ T

0

dt ⟨χ(ρt), (∇Ht)
2⟩ ,

B2
H(π) =

∫ T

0

dt
{
⟨B(ρt), e

Ht − 1⟩+ ⟨D(ρt), e
−Ht − 1⟩

}
.

Note that, for paths π(t, du) such that π(0, du) = γ(u)du,

(4.2) sup
H∈C1,2([0,T ]×T)

{
LH(π) +B1

H(π)−B2
H(π)

}
= IT (π|γ) .

Consider the function ϕ : R → [0,∞) defined by

ϕ(r) :=


1

Z
exp {− 1

(1− r2)
} if |r| < 1 ,

0 otherwise ,

where the constant Z is chosen so that
∫
R ϕ(r)dr = 1. For each δ > 0, let

ϕδ(r) :=
1

δ
ϕ
(r
δ

)
.

Since the support of the function ϕδ is contained in [−δ, δ], the function ϕδ

can be regarded as a function on T. To distinguish convolution in time from
convolution in space, we denote by ψδ : T → [0,∞) the function ϕε defined
on T with ε = δ.
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Denote by f ∗ g the space or time convolution of two functions f , g:

(f ∗ g)(a) =

∫
f(a− b) g(b) db ,

where the integral runs over R in the case where f , g are functions of time
and over T in the case where f and g are functions of space.

Throughout this section, we adopt the following notation: For a bounded
measurable function ρ : [0, T ]× T → R, define the smooth approximation
in space, time and space-time by

ρε(t, u) := [ρ(t, ·) ∗ ψε](u) =

∫
T
ρ(t, u+ v)ψε(v)dv ,

ρδ(t, u) := [ρ(·, u) ∗ ϕδ](t) =

∫ δ

−δ

ρ(t+ r, u)ϕδ(r)dr ,

ρε,δ(t, u) :=

∫ δ

−δ

dr

∫
T
dv ρ(t+ r, u+ v)ψε(v)ϕδ(r) .

In the above formulas, we extend the definition of ρ to [−1, T+1] by setting
ρt = ρ0 for −1 ≤ t ≤ 0 and ρt = ρT for T ≤ t ≤ T+1. Remark that we use
similar notation, ρε and ρδ, for different objects. However, ρε and ρδ always
represent a smooth approximation of ρ in space and time, respectively. For
each π(t, du) = ρ(t, u)du, we also define paths πε(t, du) = ρε(t, u)du,
πδ(t, du) = ρδ(t, u)du and πε,δ(t, du) = ρε,δ(t, u)du.

We summarize some properties of ρε in the next proposition. The proof
is elementary and is thus omitted.

PROPOSITION 4.3. Let ρ : [0, T ]×T → R be a function inL2([0, T ], H1(T)).
Then, for each ε > 0, ρε and ∇ρε converges to ρ and ∇ρ in L2([0, T ]×T),
respectively. Moreover, if ρ is bounded in [0, T ] × T and the application
⟨ρt, g⟩ is continuous on the time interval [0, T ] for any function g in C∞(T),
then, for each ε > 0, ρε is uniformly continuous on [0, T ]× T.

For each a > 0, define the functions h = ha and χa on [0, 1] by

h(ρ) :=
1

2(1 + 2a)

{
(ρ+ a) log (ρ+ a) + (1− ρ+ a) log (1− ρ+ a)

}
,

χa(ρ) := (ρ+ a)(1− ρ+ a) .

Note that h′′ = (2χa)
−1.

Until the end of this section, 0 < C0 < ∞ represents a constant inde-
pendent of ε, δ and a and which may change from line to line.

LEMMA 4.4. LetRε,δ be the difference between LH(π
ε,δ) and LHε,δ(π):

Rε,δ = LH(π
ε,δ) − LHε,δ(π) ,

whereH = h′a(ρ
ε,δ). Then, for any fixed ε > 0, Rε,δ converges to 0 as δ ↓ 0.

PROOF. Keep in mind that H = h′a(ρ
ε,δ) depends on ε and δ, although

this does not appears in the notation, and recall that C0 represents a constant
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independent of ε, δ and a which may change from line to line. A change of
variables shows that

LH(π
ε,δ) = ⟨ρδT , Hε

T ⟩ − ⟨ρδ0, Hε
0⟩ −

∫ T

0

dt ⟨ρδt , ∂tHε
t ⟩

= ⟨ρT , Hε,δ
T ⟩ − ⟨ρ0, Hε,δ

0 ⟩ −
∫ T

0

dt ⟨ρδt , ∂tHε
t ⟩+Rε,δ

1 ,

where

Rε,δ
1 := Rε,δ,T −Rε,δ,0

0 and Rε,δ,t := ⟨ρδt − ρt, H
ε
t ⟩+ ⟨ρt, Hε

t −Hε,δ
t ⟩

for 0 ≤ t ≤ T .
From a simple computation it is easy to see that∫ T

0

dt ⟨ρδt , ∂tHε
t ⟩ =

∫ T

0

dt ⟨ρt, ∂tHε,δ
t ⟩+Rε,δ

2 ,

where |Rε,δ
2 | ≤ C0δ∥∂tHε∥∞. To conclude the proof, it is enough to show

that, for each fixed ε > 0, Rε,δ
1 and δ∥∂tHε∥∞ converge to zero as δ ↓ 0.

Fix ε > 0. We first prove that

(4.3) lim
δ↓0

Rε,δ,t = 0 for t = 0 and t = T .

We prove this assertion for t = T , the argument being similar for t = 0. A
change of variables shows that

Rε,δ,T = ⟨ρε,δT − ρεT , HT ⟩+ ⟨ρεT , HT −Hδ
T ⟩ .

By Proposition 4.3, ρε(·, u) is continuous for any u ∈ T. Therefore, for any
(t, u) ∈ [0, T ]× T,

(4.4)
lim
δ↓0

ρε,δ(t, u) = ρε(t, u) ,

lim
δ↓0

Hδ(T, u) = h′a(ρ
ε(T, u)) = lim

δ↓0
H(T, u) .

Since h′ is bounded and continuous on [0, 1], (4.3) is proved by letting δ ↓ 0
and by the bounded convergence theorem.

It remains to show that δ∥∂tHε∥∞ converges to 0 as δ ↓ 0. An elemen-
tary computation gives that, for any (t, u) ∈ [0, T ]× T,

∂tH
ε(t, u) =

∫
T
dv h′′(ρε,δ(t, u+v))ψε(v)

∫ δ

−δ

dr ρε(t+r, u+v)(ϕδ)′(r) .

Since ϕδ is a symmetric function, a change of variables shows that∫ δ

−δ

dr ρε(t+r, u+v)(ϕδ)′(r) =

∫ 0

−δ

dr {ρε(t+r, u+v)−ρε(t−r, u+v)}(ϕδ)′(r) .

By Proposition 4.3, ρε is uniformly continuous on [−1, T + 1]× T. On the
other hand, δ

∫ 0

−δ
(ϕδ)′(r)dr = ϕ(0). Therefore, the last expression multi-

plied by δ converges to 0 as δ ↓ 0 uniformly in (t, u) ∈ [0, T ]×T. Since h′′

and ψε are uniformly bounded, δ∥∂tHε∥∞ converges to 0 as δ ↓ 0. □
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LEMMA 4.5. For any path π(t, du) = ρ(t, u)du such that Q(π) < ∞
and for i = 1, 2,

lim
ε↓0

lim
δ↓0

Bi
Hε,δ(π) = Bi

h′(ρ)(π) .

Moreover, there exists a positive constant C0 < ∞, independent of a > 0,
such that

(4.5)
∫ T

0

dt

∫
T
du

(∇ρ(t, u))2

χa(ρ(t, u))
≤ C0B

1
h′(ρ)(π) , |B2

h′(ρ)(π)| ≤ C0 .

PROOF. Throughout this proof, C(a) expresses a constant depending
only on a > 0 which may change from line to line.

Let π(t, du) = ρ(t, u)du be a path in D([0, T ],M+,1) such that Q(π) <
∞. We first show that

(4.6) lim
ε↓0

lim
δ↓0

B1
Hε,δ(π) = B1

h′(ρ)(π) .

Since ∇ρε = ρ ∗∇ψε, by Proposition 4.3, ∇ρε is uniformly continuous
in [0, T ]× T. Therefore, for any (t, u) ∈ [0, T ]× T, we have

lim
δ↓0

∇ρε,δ(t, u) = ∇ρε(t, u) ,

lim
δ↓0

∇Hε,δ(t, u) =

∫
T
dv ψε(v)h′′a(ρ

ε(t, u+ v))∇ρε(t, u+ v) .

Hence, by the bounded convergence theorem and a change of variables,
(4.7)

lim
δ↓0

B1
Hε,δ(π) =

1

2

∫ T

0

dt
{
⟨∇ρεt , h′′a(ρεt)∇ρεt⟩−⟨χ(ρt), ([h′′a(ρεt)∇ρεt ]ε)2⟩

}
.

On the one hand, since for any fixed a > 0 h′′a is bounded, and since by
Proposition 4.3, ∇ρε converges to ∇ρ in L2([0, T ]× T),

lim
ε↓0

∫ T

0

dt
⟨
h′′a(ρ

ε
t)
[
∇ρεt −∇ρt

]2⟩
= 0 .

As ρ has finite energy and h′′a is bounded, the family {h′′a(ρε)[∇ρ]2; ε > 0} is
uniformly integrable. Moreover, since h′′a is Lipschitz continuous, by Propo-
sition 4.3, h′′a(ρ

ε) converges to h′′a(ρ) as ε ↓ 0 in measure, that is, for any
b > 0, the Lebesgue measure of the set {(t, u) ∈ [0, T ]×T; |h′′a(ρε(t, u))−
h′′a(ρ(t, u))| ≥ b} converges to 0 as ε ↓ 0. Therefore

(4.8) lim
ε↓0

∫ T

0

dt
⟨
h′′a(ρ

ε
t)
[
∇ρt

]2⟩
=

∫ T

0

dt
⟨
h′′a(ρt)

[
∇ρt

]2⟩
.

On the other hand, by Schwarz inequality,

lim sup
ε↓0

∫ T

0

dt
⟨
χ(ρt)

{
[h′′a(ρ

ε
t)∇ρεt − h′′a(ρt)∇ρt]ε

}2⟩
≤ lim sup

ε↓0

∫ T

0

dt
⟨
χ(ρt)

{
h′′a(ρ

ε
t)∇ρεt − h′′a(ρt)∇ρt

}2⟩
.
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We may now repeat the arguments presented to estimate the first term on
the right hand side of (4.7) to show that the last expression vanishes.

Since χ is a bounded function, to complete the proof of (4.6), it remains
to show that

lim sup
ε↓0

∫ T

0

dt
⟨{

[h′′a(ρt)∇ρt]ε − h′′a(ρt)∇ρt
}2⟩

= 0 .

We estimate the previous integral by the sum of two terms, the first one
being ∫ T

0

dt
⟨{

[h′′a(ρt)∇ρt]ε − [h′′a(ρt)]
ε∇ρt

}2⟩
≤ C(a)

∫ T

0

dt

∫
T
dv ψε(v)

⟨{
∇ρt(u+ v)−∇ρt(u)

}2⟩
,

where we used Schwarz inequality and the fact that h′′a is uniformly bounded.
This expression vanishes as ε → 0 because ∇ρ belongs to L2([0, T ] × T).
The second term in the decomposition is∫ T

0

dt
⟨
[∇ρt]2

{
[h′′a(ρt)]

ε − h′′a(ρt)
}2⟩

.(4.9)

By the argument leading to (4.8), the expression (4.9) converges to 0 as
ε ↓ 0.

We turn to the proof that

(4.10) lim
ε↓0

lim
δ↓0

|B2
Hε,δ(π)−B2

h′(ρ)(π)| = 0 .

Since B,D and h′ are bounded functions, the difference appearing in the
previous formula is less than or equal to

C(a)
{∫ T

0

∥eH
ε,δ
t − eh

′(ρt)∥1 dt +

∫ T

0

∥e−Hε,δ
t − e−h′(ρt)∥1 dt

}
≤ C(a)

∫ T

0

∥Hε,δ
t − h′(ρt)∥1 dt .

By Proposition 4.3, ρε is uniformly continuous in [0, T ] × T. Therefore
letting δ → 0, the previous expression converges to

C(a)

∫ T

0

dt ∥ [h′(ρεt)]ε − h′(ρt)∥1 dt

≤ C(a)
{∫ T

0

∥[h′(ρεt)]ε − h′(ρεt)∥1 dt+
∫ T

0

∥h′(ρεt)− h′(ρt)∥1 dt
}
.

Since h′ is Lipschitz continuous and ρε converges to ρ in L2([0, T ]×T), the
second integral vanishes in the limit as ε ↓ 0. On the other hand, the first
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integral is bounded above by

C(a)

∫ T

0

dt

∫
T
dv ψε(v)

∫
T
du |ρεt(u+ v)− ρεt(u)|

≤ C(a)

∫ T

0

dt

∫
T
dv ψε(v)

∫
T
du |ρt(u+ v)− ρt(u)| .

This last integral vanishes in the limit as ε ↓ 0 because ρ belongs toL2([0, T ]×
T).

To proof of the first bound in (4.5) is elementary and left to the reader.
To prove the second one, recall from (2.1) that there exist polynomials B̃, D̃
such that B(ρ) = (1−ρ)B̃(ρ) and D(ρ) = ρD̃(ρ). From this fact, it is easy
to see that the second bound in (4.5) holds for some finite constant C0,
independent of a > 0. □

PROOF OF PROPOSITION 4.2. We may assume, without loss of gener-
ality, that IT (π|γ) is finite. From the variational formula (4.2) and Lemma
4.4,

LH(π
ε,δ) + B1

Hε,δ(π)−B2
Hε,δ(π)−Rε,δ ≤ IT (π|γ) ,(4.11)

where H stands for the function h′(ρε,δ).
Since ρε,δ is smooth, an integration by parts yields the identity

LH(π
ε,δ) = ⟨h(ρε,δT )⟩ − ⟨h(ρε,δ0 )⟩ .

There exists, therefore, a constant C0, independent of ε, δ and a, such that

|LH(π
ε,δ)| ≤ C0 .

In (4.11), let δ ↓ 0 and then ε ↓ 0. It follows from the previous bound,
and from Lemmas 4.4 and 4.5 that∫ T

0

dt

∫
T
du

|∇ρ(t, u)|2

χa(ρ(t, u))
≤ C0{IT (π|γ) + 1} .

It remains to let a ↓ 0 and to use Fatou’s lemma. □

COROLLARY 4.6. The density ρ of a path π(t, du) = ρ(t, u)du in
D([0, T ],M+,1) is the weak solution of the Cauchy problem (3.1) with ini-
tial profile γ if and only if the rate function IT (π|γ) is equal to 0. Moreover,
in that case

(4.12)
∫ T

0

dt

∫
T
du

|∇ρ(t, u)|2

χ(ρ(t, u))
<∞.

PROOF. If the density ρ of a path π(t, du) = ρ(t, u)du inD([0, T ],M+,1)
is the weak solution of the Cauchy problem (3.1), then for anyG inC1,2([0, T ]×
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T) we have

JG(π) = − 1

2

∫ T

0

dt ⟨χ(ρt), (∇Gt)
2⟩

−
∫ T

0

dt {⟨B(ρt), e
Gt −Gt − 1⟩+ ⟨D(ρt), e

−Gt +Gt − 1⟩} .

Since ex − x − 1 ≥ 0 for any x in R, IT (π|γ) = 0. In addition, the bound
(4.12) follows from Proposition 4.2.

On the other hand, if IT (π|γ) is equal to 0, then, for anyG inC1,2([0, T ]×
T) and ε in R, we have JεG(π) ≤ 0. Note that J0(π) is equal to 0. Hence
the derivative of JεG(π) in ε at ε = 0 is equal to 0. This implies that the
density ρ is a weak solution of the Cauchy problem (3.1). □

THEOREM 4.7. The function IT (·|γ) : D([0, T ],M+) → [0,∞] is
lower semicontinuous and has compact level sets.

PROOF. For each q ≥ 0, let Eq be the level set of the rate function
IT (·|γ):

Eq := {π ∈ D([0, T ],M+)|IT (π|γ) ≤ q} .
Let {πn : n ≥ 1} be a sequence in D([0, T ],M+) such that πn con-
verges to some element π in D([0, T ],M+). We show that IT (π|γ) ≤
lim infn→∞ IT (π

n|γ). If lim inf IT (π
n|γ) is equal to ∞, the conclusion is

clear. Therefore, we may assume that the set {IT (πn|γ) : n ≥ 1} is con-
tained in Eq for some q > 0. From the lower semicontinuity of the energy
Q and Proposition 4.2, we have

Q(π) ≤ lim
n→∞

Q(πn) ≤ C(q + 1) <∞ .

Since πn belongs to D([0, T ],M+,1), so does π.
Let ρ and ρn be the density of π and πn respectively. We now claim that

the sequence {ρn : n ≥ 1} converges to ρ in L1([0, T ]× T). Indeed, by the
triangle inequality,

∫ T

0

∥ρt − ρnt ∥1 dt

≤
∫ T

0

∥ρt − ρεt∥1 dt+
∫ T

0

∥ρεt − ρn,εt ∥1 dt+
∫ T

0

∥ρn,εt − ρnt ∥1 dt ,

(4.13)

where ρn,εt = ρnt ∗ ψε. The first term on the right hand side in (4.13) can be
computed as∫ T

0

∥ρt − ρεt∥1 dt ≤
∫ T

0

dt

∫
T
du

∫
T
dv ψε(v)|ρ(t, u+ v)− ρ(t, u)|

≤
∫ T

0

dt

∫
T
du

∫
T
dv ψε(v)

∫ u+v

u

dw |∇ρ(t, w)| .
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Note that supp ψε ⊂ [−ε, ε]. From the fundamental inequality 2ab ≤
A−1a2 + Ab2, for any A > 0, the above expression can be bounded above
by

Q(π)

2A
+
ATε

2
.

Similarly, the last term on the right hand side in (4.13) can be bounded
above by ∫ T

0

∥ρε,nt − ρnt ∥1 dt ≤ Q(πn)

2A
+
ATε

2
.

Since, for fixed ε > 0, ρε,nt converges to ρεt weakly as n → ∞ for a.e. t ∈
[0, T ], letting n→ ∞ in (4.13) gives that

lim
n→∞

∫ T

0

∥ρt − ρnt ∥1 dt ≤ C(q, T ){ 1
A

+ Aε} ,

for some constant C(q, T ) > 0 which depends on q and T . Optimizing in
A and letting ε ↓ 0, we complete the proof of the claim made above (4.13).

It follows from this claim that for any function G in C1,2([0, T ]× T),
lim
n→∞

JG(π
n) = JG(π) .

This limit implies that IT (π|γ) ≤ lim infn→∞ IT (π
n|γ), proving that IT ( · |γ)

is lower-semicontinuous.
The same argument shows that Eq is closed in D([0, T ],M+). Since

it is shown in [30] that Eq is relatively compact in D([0, T ],M+), Eq is
compact in D([0, T ],M+), and the proof is completed. □

5. IT (·|γ)-Density

The lower bound of the large deviations principle stated in Theorem
2.5 has been established in [30] for smooth trajectories. To remove this
restriction, we have to show that any trajectory πt, 0 ≤ t ≤ T , with fi-
nite rate function can be approximated by a sequence of smooth trajectories
{πn : n ≥ 1} such that

πn −→ π and IT (π
n|γ) −→ IT (π|γ) .

This is the content of this section. We first introduce some terminology.

DEFINITION 5.1. Let A be a subset of D([0, T ],M+). A is said to
be IT (·|γ)-dense if for any π in D([0, T ],M+) such that IT (π|γ) < ∞,
there exists a sequence {πn : n ≥ 1} in A such that πn converges to π in
D([0, T ],M+) and IT (πn|γ) converges to IT (π|γ).

Let Π be the set of all trajectories π(t, du) = ρ(t, u)du inD([0, T ],M+,1)
whose density ρ is a weak solution of the Cauchy problem

(5.1)

∂tρ =
1

2
∆ρ−∇(χ(ρ)∇H) +B(ρ)eH −D(ρ)e−H on T ,

ρ(0, ·) = γ(·) ,
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for some function H in C1,2([0, T ]× T).

THEOREM 5.2. Assume that the functions B and D are concave. Then,
the set Π is IT (·|γ)-dense.

The proof of Theorem 5.2 is divided into several steps. Throughout this
section, denote by λ : [0, T ] × T → [0, 1] the unique weak solution of the
Cauchy problem (3.1) with initial profile γ, and assume that the functions
B and D are concave.

Let Π1 be the set of all paths π(t, du) = ρ(t, u)du in D([0, T ],M+,1)
whose density ρ is a weak solution of the Cauchy problem (3.1) in some
time interval [0, δ], δ > 0.

LEMMA 5.3. The set Π1 is IT (·|γ)-dense.

PROOF. Fix π(t, du) = ρ(t, u)du inD([0, T ],M+,1) such that IT (π|γ) <
∞. For each δ > 0, set the path πδ(t, du) = ρδ(t, u)du where

ρδ(t, u) =


λ(t, u) if t ∈ [0, δ] ,

λ(2δ − t, u) if t ∈ [δ, 2δ] ,

ρ(t− 2δ, u) if t ∈ [2δ, T ] .

It is clear that πδ converges to π in D([0, T ],M+) as δ ↓ 0 and that πδ

belongs to Π1. To conclude the proof it is enough to show that IT (πδ|γ)
converges to IT (π|γ) as δ ↓ 0.

Since the rate function is lower semicontinuous, IT (π|γ) ≤ lim infδ→0 IT (π
δ|γ).

Note that Q(πδ) ≤ 2Q(λ) +Q(π). From Corollary 4.2, we have Q(πδ) <
∞. To prove the upper bound lim supδ→0 IT (π

δ|γ) ≤ IT (π|γ), we now
decompose the rate function IT (πδ|γ) into the sum of the contributions on
each time interval [0, δ], [δ, 2δ] and [2δ, T ]. The first contribution is equal
to 0 since the density ρδ is a weak solution of the equation (3.1) on this
interval. The third contribution is bounded above by IT (π|γ) since πδ on
this interval is a time translation of the path π.

On the time interval [δ, 2δ], the density ρδ solves the backward reaction-
diffusion equation: ∂tρδ = −(1/2)∆ρδ − F (ρδ). Therefore, the second
contribution can be written as

sup
G∈C1,2([0,T ]×T)

{∫ δ

0

dt
{
⟨∇λt,∇Gt⟩ −

1

2
⟨χ(λt), (∇Gt)

2⟩
}

+

∫ δ

0

dt
{
⟨B(λt), 1− eGt −Gt⟩+ ⟨D(λt), 1− e−Gt +Gt⟩

}}
.

By Schwarz inequality, the first integral inside the supremum is bounded
above by

(5.2)
1

2

∫ δ

0

dt

∫
T
du

|∇λ(t, u)|2

χ(λ(t, u))
.

On the other hand, taking advantage of the relation (2.1) and of the fact
that B and D are bounded functions, a simple computation shows that the
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second integral inside the supremum in the penultimate displayed equation
is bounded above by

C

∫ δ

0

dt

∫
T
du log

1

χ(λ(t, u))
+ Cδ ,

for some finite constant C independent of δ. By Corollary 4.2, the expres-
sion (5.2) converges to 0 as δ ↓ 0. Hence, to conclude the proof it suffices
to show that

(5.3) lim
δ↓0

∫ δ

0

dt

∫
T
du logχ(λ(t, u)) = 0 .

Let λj(t, u) ≡ λjt , j = 0, 1, be the weak solution of the equation (3.1)
with initial profile λj0(u) ≡ j. By Proposition 6.5,

(5.4) λ0t ≤ λ(t, u) and 1− λ1t ≤ 1− λ(t, u) ,

for any (t, u) ∈ [0, δ]×T. Since λj , j = 1, 2, solves the ordinary differential
equation

d

dt
λjt = F (λjt) ,

and since F (1) < 0 < F (0), an elementary computation shows that

(5.5) lim
δ↓0

∫ δ

0

dt log λ0t = 0 and lim
δ↓0

∫ δ

0

dt log (1− λ1t ) = 0 .

By definition of χ and by (5.4),

logχ(λ(t, u)) = log λ(t, u) + log (1− λ(t, u)) ≥ log λ0t + log (1− λ1t ) .

To conclude the proof of (5.3), it remains to recall (5.5). □
Let Π2 be the set of all paths π(t, du) = ρ(t, u)du in Π1 with the prop-

erty that for every δ > 0 there exists ε > 0 such that ε ≤ ρ(t, u) ≤ 1 − ε
for all (t, u) ∈ [δ, T ]× T.

LEMMA 5.4. The set Π2 is IT (·|γ)-dense.

PROOF. Fix π(t, du) = ρ(t, u)du in Π1 such that IT (π|γ) < ∞. For
each ε > 0, set the path πε(t, du) = ρε(t, u)du with ρε = (1− ε)ρ+ ελ. It
is clear that πε converges to π in D([0, T ],M+) as ε ↓ 0. Let λj(t, u) ≡ λjt ,
j = 0, 1, be the weak solution of the equation (3.1) with initial profile
λj0(u) ≡ j. By Proposition 6.5, ελ0 ≤ ρε ≤ (1 − ε) + ελ1. Therefore πε

belongs to Π2. To conclude the proof it is enough to show that IT (πε|γ)
converges to IT (π|γ) as ε ↓ 0.

Since the rate function is lower semicontinuous, IT (π|γ) ≤ lim infε↓0 IT (π
ε|γ).

By the convexity of the energy, Q(πε) ≤ εQ(λ) + (1 − ε)Q(π), hence
Q(πε) <∞. Let G be a function in C1,2([0, T ]×T). Since B,D and χ are
concave and Lipschitz continuous,

JG(π
ε) ≤ (1− ε)JG(π) + εJG(λ) + C0

∫ T

0

∥ρεt − ρt∥1 dt
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for some finite constant C0. Therefore,

IT (π
ε|γ) ≤ (1− ε)IT (π|γ) + εIT (λ|γ) + C0Tε .

Letting ε ↓ 0 gives lim supε↓0 IT (π
ε|γ) ≤ IT (π|γ), which completes the

proof. □
Let Π3 be the set of all paths π(t, du) = ρ(t, u)du in Π2 whose density

ρ(t, ·) belongs to the space C∞(T) for any t ∈ (0, T ].

LEMMA 5.5. The set Π3 is IT (·|γ)-dense.

PROOF. Fix π(t, du) = ρ(t, u)du in Π2 such that IT (π|γ) < ∞. Since
π belongs to the set Π1, we may assume that the density solves the equation
(3.1) in some time interval [0, 2δ], δ > 0. Take a smooth nondecreasing
function α : [0, T ] → [0, 1] with the following properties:

α(t) = 0 if t ∈ [0, δ] ,

0 < α(t) < 1 if t ∈ (δ, 2δ) ,

α(t) = 1 if t ∈ [2δ, T ] .

Let ψ(t, u) : (0,∞) × T → (0,∞) be the transition probability density of
the Brownian motion on T at time t starting from 0. For each n ∈ N, denote
by ψn the function

ψn(t, u) := ψ(
1

n
α(t), u)

and define the path πn(t, du) = ρn(t, u)du where

ρn(t, u) =

{
ρ(t, u) if t ∈ [0, δ] ,

(ρt ∗ ψn
t )(u) =

∫
T dv ρ(t, v)ψ

n(t, u− v) if t ∈ (δ, T ] .

It is clear that πn converges to π in D([0, T ],M+) as n → ∞. Since the
density ρn is a weak solution to the Cauchy problem (3.1) in time interval
[0, δ], by Proposition 3.4, ρn(t, ·) belongs to the space C∞(T) for t ∈ (0, δ].
On the other hand, by the definition of ρn, it is clear that ρn(t, ·) belongs to
the space C∞(T) for t ∈ (δ, T ]. Therefore πn belongs to Π3. To conclude
the proof it is enough to show that IT (πn|γ) converges to IT (π|γ) as n →
∞.

Since the rate function is lower semicontinuous, IT (π|γ) ≤ lim infn→∞ IT (π
ε|γ).

Note that the generalized derivative of ρn is given by

∇ρn(t, u) =

{
∇ρ(t, u) if t ∈ [0, δ] ,

(∇ρt ∗ ψn
t )(u) if t ∈ (δ, T ] .

Therefore, by Schwarz inequality, Q(πn) ≤ Q(π) <∞.
The strategy of the proof of the upper bound is similar to the one of

Lemma 5.3. We decompose the rate function IT (πn|γ) into the sum of the
contributions on each time interval [0, δ], [δ, 2δ] and [2δ, T ]. The first con-
tribution is equal to 0 since the density ρn is a weak solution of the Cauchy
problem (3.1) on this interval. Since πn is defined as a spatial average of
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π, and since the functions B and D are concave, similar arguments to the
ones presented in the proof of Lemma 5.4 yield that the third contribution
is bounded above by IT (π|γ) + on(1). Hence it suffices to show that the
second contribution converges to 0 as n→ ∞.

Since ∂tψ = (1/2)∆ψ, an integration by parts yields that in the time
interval (δ, 2δ),

∂tρ
n = ∂tρ ∗ ψn +

α′(t)

2n
∆ρ ∗ ψn .

Thus, since in the time interval [δ, 2δ] ρ is a weak solution of the hydrody-
namic equation (3.1), for any function G in C1,2([0, T ]× T),

⟨ρn2δ, G2δ⟩ − ⟨ρnδ , Gδ⟩ −
∫ 2δ

δ

dt ⟨ρnt , ∂tGt⟩

=

∫ 2δ

δ

dt
{
⟨ρnt ,

1

2
∆Gt⟩ −

α′(t)

2n
⟨∇ρnt ,∇Gt⟩+ ⟨F n

t , Gt⟩
}
,

where F n
t = F (ρt)∗ψn

t . Therefore, the contribution to IT (π|γ) of the piece
of the trajectory in the time interval [δ, 2δ] can be written as

sup
G∈C1,2([0,T ]×T)

{∫ 2δ

δ

dt
(
− α′(t)

2n
⟨∇ρnt ,∇Gt⟩ −

1

2
⟨χ(ρnt ), (∇Gt)

2⟩
)

+

∫ 2δ

δ

dt ⟨F n
t Gt −B(ρnt )(e

Gt − 1)−D(ρnt )(e
−Gt − 1)⟩

}
.

(5.6)

By Schwarz inequality, the first integral inside the supremum is bounded
above by

∥α′∥2∞
8n2

∫ 2δ

δ

dt

∫
T
du

|∇ρn(t, u)|2

χ(ρn(t, u))
.

Since π belongs to Π1, there exists a positive constant C(δ), depending only
on δ, such that C(δ) ≤ ρn ≤ 1−C(δ) on time interval [δ, 2δ]. This bounds
together with the fact that Q(πn) ≤ Q(π) permit to prove that the previous
expression converges to 0 as n→ ∞. On the other hand, the second integral
inside the supremum (5.6) is bounded above by

(5.7)
∫ 2δ

δ

dt ⟨F n
t m

n
t −B(ρnt )(e

mn
t − 1)−D(ρnt )(e

−mn
t − 1)⟩ ,

where

mn
t = log

F n
t +

√
(F n

t )
2 + 4B(ρnt )D(ρnt )

2B(ρnt )
.

Note that mn
t is well-defined and that the integrand in (5.7) is uniformly

bounded in n because in the time interval [δ, 2δ] ρt is bounded below by a
strictly positive constant and bounded above by a constant strictly smaller
than 1. Sincemn(t, u) converges to 0 as n→ ∞ for any (t, u) ∈ [δ, 2δ]×T,
the expression in (5.7) converges to 0 as n→ ∞. □
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Let Π4 be the set of all paths π(t, du) = ρ(t, u)du in Π3 whose density
ρ belongs to C∞,∞((0, T ]× T).

LEMMA 5.6. The set Π4 is IT (·|γ)-dense.

PROOF. Fix π(t, du) = ρ(t, u)du in Π3 such that IT (π|γ) < ∞. Since
π belongs to the set Π1, we may assume that the density ρ solves the equa-
tion (3.1) in the time interval [0, 3δ] for some δ > 0. Take a smooth non-
negative function ϕ : R → R with the following properties:

supp ϕ ⊂ [0, 1] and
∫ 1

0

ϕ(s)ds = 1 .

Let α be the function introduced in the previous lemma. For each ε > 0
and n ∈ N, let

Φ(ε, s) :=
1

ε
ϕ(
s

ε
) , αn(t) :=

1

n
α(t) ,

and let πn(t, du) = ρn(t, u)du where

ρn(t, u) =

∫ 1

0

ρ(t+ αn(t)s, u)ϕ(s)ds =

∫
R
ρ(t+ s, u)Φ(αn(t), s)ds .

In the above formula, we extend the definition of ρ to [0, T + 1] by setting
ρt = λ̃t−T for T ≤ t ≤ T + 1, where λ̃ : [0, 1] × T → [0, 1] stands for the
unique weak solution of the equation (3.1) with initial profile ρT .

It is clear that πn converges to π in D([0, T ],M+). Since on the time
interval (0, 3δ), the function ρ is smooth in time, for n large enough the
function ρn is smooth in time on (0, T ] × T. Hence, πn belongs to Π4 and
Q(πn) is finite.

The remaining part of the proof is similar to the one of the previous
lemma. We only present the arguments leading to the bound lim supn→∞ IT (π

n|γ) ≤
IT (π|γ). The rate function can be decomposed in three pieces, two of which
can be estimated as in Lemma 5.5. We consider the contribution to IT (πn|γ)
of the piece of the trajectory corresponding to the time interval [δ, 2δ].

The derivative of ρn in time on (δ, 2δ) is computed as

∂tρ
n(t, u) =

∫
R
∂tρ(t+s, u)Φ(αn(t), s)ds +

∫
R
ρ(t+s, u)∂t[Φ(αn(t), s)]ds .

It follows from this equation and from the fact that the density ρ solves
the hydrodynamic equation (3.1) on the time interval [δ, 3δ], that for any
function G in C1,2([0, T ]× T),

⟨ρn2δ, G2δ⟩−⟨ρnδ , Gδ⟩−
∫ 2δ

δ

dt ⟨ρnt , ∂tGt⟩ =

∫ 2δ

δ

dt
{
⟨ρnt ,

1

2
∆Gt⟩+⟨F n

t +r
n
t , Gt⟩

}
,
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where

F n(t, u) :=

∫
R
F (ρ(t+ s, u)) Φ(αn(t), s) ds ,

rn(t, u) :=

∫
R
ρ(t+ s, u) ∂t[Φ(αn(t), s)] ds .

Therefore, the second contribution can be bounded above by

sup
G∈C1,2([0,T ]×T)

{∫ 2δ

δ

dt ⟨(F n
t + rnt )Gt −B(ρnt )(e

Gt − 1)−D(ρnt )(e
−Gt − 1)⟩

}
.

(5.8)

We now show that rn(t, u) converges to 0 as n → ∞ uniformly in
(t, u) ∈ (δ, 2δ)× T. Let (t, u) in (δ, 2δ)× T. Since

∫
R ∂t[Φ(αn(t), s)]ds =

∂t[
∫
R Φ(αn(t), s)ds] = 0, rn(t, u) can be written as∫

R
{ρ(t+ s, u)− ρ(t, u)} ∂t[Φ(αn(t), s)] ds .

Since ρ is Lipschitz continuous on [δ, 3δ]×T, there exists a positive constant
C(δ) > 0, depending only on δ, such that

|ρ(t+ s, u)− ρ(t, u)| ≤ C(δ)s ,

for any (t, u) ∈ [δ, 2δ] × T and s ∈ [0, δ]. Therefore rn(t, u) is bounded
above by

C(δ)

∫
R
s
∣∣∂t[Φ(αn(t), s)]

∣∣ ds .
It follows from a simple computation and from the change of variables
αn(t)s = s̄ that∫

R
s
∣∣∂t[Φ(αn(t), s)]

∣∣ ds ≤ ∥α′(t)∥∞
n

∫ 1

0

{
sϕ(s) + s2|ϕ′(s)|

}
ds .

Therefore rn(t, u) converges to 0 as n→ ∞ uniformly in (t, u) ∈ (δ, 2δ)×
T.

To complete the proof, it remains to take a supremum inG ∈ C1,2([0, T ]×
T) in formula (5.8) and to let n→ ∞. □

PROOF OF THEOREM 5.2. From the previous lemma, all we need is to
prove that Π4 is contained in Π. Let π(t, du) = ρ(t, u)du be a path in Π4.
There exists some δ > 0 such that the density ρ solves the equation (3.1)
on time interval [0, 2δ]. In particular, the density ρ also solves the equation
(5.1) withH = 0 on time interval [0, 2δ]. On the one hand, since the density
ρ is smooth on [δ, T ] and there exists ε > 0 such that ε ≤ ρ(t, u) ≤ 1 − ε
for any (t, u) ∈ [δ, T ] × T, from Lemma 2.1 in [30], there exits a unique
function H in C1,2([δ, T ]×T) satisfying the equation (5.1) with ρ on [δ, T ],
and it is proved that π belongs to Π. □
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PROOF OF THEOREM 2.5. We have already proved in Section 4 that
the rate function is lower semicontinuous and that it has compact level sets.

Recall from the beginning of this section the definition of the set Π. It
has been proven in [30] that for each closed subset C of D([0, T ],M+),

lim
N→∞

1

N
logQηN (C) ≤ − inf

π∈C
IT (π|γ) ,

and that for each open subset O of D([0, T ],M+),

lim
N→∞

1

N
logQηN (O) ≥ − inf

π∈O∩Π
IT (π|γ) .

Since O is open in D([0, T ],M+), by Theorem 5.2,

inf
π∈O∩Π

IT (π|γ) = inf
π∈O

IT (π|γ) ,

which completes the proof. □

6. Appendix

In sake of completeness, we present in this section results on the Cauchy
problem (3.1).

DEFINITION 6.1. A measurable function ρ : [0, T ]× T → [0, 1] is said
to be a weak solution of the Cauchy problem (3.1) in the layer [0, T ]×T if,
for every function G in C1,2([0, T ]× T),

⟨ρT , GT ⟩ − ⟨γ,G0⟩ −
∫ T

0

dt⟨ρt, ∂tGt⟩

=
1

2

∫ T

0

dt⟨ρt,∆Gt⟩+
∫ T

0

dt⟨F (ρt), Gt⟩ .(6.1)

For each t ≥ 0, let Pt be the semigroup on L2(T) generated by (1/2)∆.

DEFINITION 6.2. A measurable function ρ : [0, T ]× T → [0, 1] is said
to be a mild solution of the Cauchy problem (3.1) in the layer [0, T ]× T if,
for any t in [0, T ], it holds that

ρt = Ptγ +

∫ t

0

Pt−sF (ρs)ds .(6.2)

The first proposition asserts existence and uniqueness of weak and mild
solutions, a well known result in the theory of partial differential equations.
We give a brief proof because uniqueness of the Cauchy problem (3.1) plays
an important role in the proof of Theorem 2.1.

PROPOSITION 6.3. Definitions 3.1 and 3.2 are equivalent. Moreover,
there exists a unique weak solution of the Cauchy problem (3.1).

PROOF. Since F is Lipschitz continuous, by the method of successive
approximation, there exists a unique mild solution of the Cauchy problem
(3.1). Therefore to conclude the proposition it is enough to show that the
above two notions of solutions are equivalent.
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Assume that ρ : [0, T ] × T → [0, 1] is a weak solution of the Cauchy
problem (3.1). Fix a function g in C2(T) and 0 ≤ t ≤ T . For each δ > 0,
define the function Gδ as

Gδ(s, u) =


(Pt−sg)(u) if 0 ≤ s ≤ t ,

δ−1(t+ δ − s)g(u) if t ≤ s ≤ t+ δ ,

0 if t+ δ ≤ s ≤ T .

One can approximate Gδ by functions in C1,2([0, T ] × T). Therefore, by
letting δ ↓ 0 in (3.2) with G replaced by Gδ and by a summation by parts,

⟨ρt, g⟩ = ⟨Ptγ, g⟩+
∫ t

0

⟨Pt−sF (ρs), g⟩ds .(6.3)

Since (6.3) holds for any function g in C2(T), ρ is a mild solution of the
Cauchy problem (3.1).

Conversely, assume that ρ : [0, T ]×T → [0, 1] is a weak solution of the
Cauchy problem (3.1). In this case, (6.3) is true for any function g in C2(T)
and any 0 ≤ t ≤ T . Differentiating (6.3) in t gives that

d

dt
⟨ρt, g⟩ =

1

2
⟨ρt,∆g⟩+ ⟨F (ρt), g⟩ .

Therefore (3.2) holds for any function G(t, u) = g(u) in C2(T). It is not
difficult to extend this to any function G in C1,2([0, T ] × T). Hence ρ is a
weak solution of the Cauchy problem (3.1). □

The following two propositions assert the smoothness and the mono-
tonicity of weak solutions of the Cauchy problem (3.1).

PROPOSITION 6.4. Let ρ be the unique weak solution of the Cauchy
problem (3.1). Then ρ is infinitely differentiable over (0,∞)× T.

PROPOSITION 6.5. Let ρ10 and ρ20 be two initial profiles. Let ρj , j = 1, 2,
be the weak solutions of the Cauchy problem (3.1) with initial condition ρj0.
Assume that

m{u ∈ T : ρ10(u) ≤ ρ20(u)} = 1 ,

where m is the Lebesgue measure on T. Then, for any t ≥ 0, it holds that

m{u ∈ T : ρ1(t, u) ≤ ρ2(t, u)} = 1 .

The proofs of Propositions 3.4 and 6.5 can be found in the ones of
Proposition 2.1 of [18].

The last proposition asserts that, for any initial density profile γ, the
weak solution ρt of the Cauchy problem (3.1) converges to some solution
of the semilinear elliptic equation (2.1). Recall, from Subsection 2.3, the
definition of the set E .

PROPOSITION 6.6. Let ρ : [0,∞) × T → [0, 1] be the unique weak
solution of the Cauchy problem (3.1). Then there exists a density profile ρ∞
in E such that ρt converges to ρ∞ as t→ ∞ in C2(T).
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The proof of this proposition can be found in the one of Proposition 2.1
of [14].
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CHAPTER 4

Static large deviation principle for a reaction-diffusion
model

1. Introduction to Chapter 4

The aim of this chapter is to obtain the static large deviation principle for
a reaction-diffusion model, introduced in [16]. Our result can be regarded
as generalization of one which is shown in [19, 7]

We again consider in this chapter the superposition of the symmetric
simple exclusion process with a spin-flip dynamics. Landim and Tsunoda
[36] proved the concentration of the sequence of the stationary measures to
the set of all classical solutions to the semilinear elliptic equation

(1.1) (1/2)∆ρ+B(ρ)−D(ρ) = 0 ,

where ∆ is the Laplacian and F = B −D is a reaction term determined by
the spin-flip dynamics.

We study the large deviations for the sequence of the stationary mea-
sures based on results presented in [36]. The static large deviation principle
for the boundary driven exclusion processes was proved in [7, 11, 22]. In
contrast with the conservative dynamics, the stationary equation, given by
the equation (1.1), may not have a unique solution in general. Therefore
the corresponding dynamical system may not have a global attractor. Due
to this fact, we need a detailed analysis for the microscopic system to prove
the static large deviation principle.

The main idea to prove the static large deviation principle is to refor-
mulate Freidlin and Wentzell approach [21] in our infinite-dimensional set-
ting. The basic strategy is the following. We first consider a chain induced
from the original one on the union of neighborhoods of all solutions of the
equation (1.1). Then we give large deviation type estimates on one-step
transition probability for the induced chain. Such estimates give similar
bounds for the stationary measure for the induced chain. The next step is to
consider the minimal cost which creates a measure from each equilibrium
states. This step is somewhat similar to one presented in [11, 22]. These
two steps give the large deviations bound for the stationary measures of the
reaction-diffusion model.

The main difficulty in the proof of the static large deviation is due to the
weak topology of the state space. This topology prevents us from connect-
ing two different points by the simple line segment. To avoid this problem,
we use several properties of solutions of the hydrodynamic equation.
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We mention the necessity of the technical assumption that B and D are
concave. The static large deviation principle remains true if the dynamical
large deviation principle holds with a lower semicontinuous rate function
since we do not additionally use this assumption in the proof of the static
large deviation principle. However the dynamical large deviation principle
is proved only under this assumption. See [36] for more details. We also
referred to some references [4, 13, 8] for physical aspects of the reaction-
diffusion model.

This chapter is organized as follows. In Section 2, we introduce a
reaction-diffusion model and state the main result. In Section 3 we study
some properties of weak solutions of the Cauchy problem (3.1). In Section
4, we present the main properties of the dynamical and static rate functions.
In Section 5, we prove the static large large deviation principle, which is the
main result of this chapter.

2. Notation and Results

Throughout this chapter, we use the following notation. N0 stands for
the set {0, 1, · · · }. For a function f : X → R, defined on some space X , let
∥f∥∞ = supx∈X |f(x)|. We sometimes denote the interval [0,∞) by R+.

2.1. Reaction-diffusion model. For each integer N ≥ 1, Let TN =
Z/NZ be the one-dimensional discrete torus. Denote by XN = {0, 1}TN

the state space of our process and by η the configurations of XN . For each
x ∈ TN , η(x) stands for the number of particles sitting at site x for the
configuration η. For each x, y ∈ TN with x ̸= y, we also denote by ηx,y,
resp. by ηx, the configuration obtained from η by displacing a particle from
x to y, resp. by flipping the occupation variable at site x:

ηx,y(z) =


η(y) if z = x ,

η(x) if z = y ,

η(z) otherwise ,
ηx(z) =

{
η(z) if z ̸= x ,

1− η(z) if z = x .

We consider the superposition of the symmetric simple exclusion pro-
cess with a spin-flip dynamics. More precisely, the stochastic dynamics is
described by the continuous-time Markov process on XN whose generator
acts on functions f : XN → R as

LNf = (N2/2)LKf + LGf ,

where LK is the generator of a symmetric simple exclusion process (Kawasaki
dynamics),

(LKf)(η) =
∑
x∈TN

[f(ηx,x+1)− f(η)] ,

and LG is the generator of a spin flip dynamics (Glauber dynamics),

(LGf)(η) =
∑
x∈TN

c(x, η)[f(ηx)− f(η)] .
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In the last formula, we choose the function c(x, η) = c(η(x−M), · · · , η(x+
M)) , for some M ≥ 1, to be strictly positive and local, that is, a function
which depends only on a finite number of coordinates η(y), |y| ≤M . Note
that we have already put the time-change factor N2 in LN , which corre-
sponds to the diffusive scaling. If the jump rate of the Glauber dynamics is
identically equal to 0, then the corresponding Markov process is given by
the symmetric simple exclusion process speeded up by N2. In this case, the
static large deviation principle for the boundary driven exclusion process
was studied in [7, 11, 22].

Fix arbitrarily T > 0. For a topological space X and an interval I =
[0, T ] or [0,∞), let D(I,X) be the space of all right-continuous trajecto-
ries from I to X with left-limits, endowed with the Skorokhod topology.
Let {ηNt : N ≥ 1} be the continuous-time Markov process on XN whose
generator is given by LN and Pη, η ∈ XN , be the probability measure on
D(R+, XN) induced by the process ηNt starting from η. Denote by Eη[·] the
expectation with respect to Pη.

2.2. Hydrostatics. We review in this subsection the asymptotic behav-
ior of the empirical measure under the stationary state.

Let T be the one-dimensional continuous torus T = R/Z = [0, 1) and
M+ = M+(T) be the space of all nonnegative measures on T, whose total
mass bounded by 1, endowed with the weak topology. For a measure ϑ in
M+ and a continuous function G : T → R, denote by ⟨ϑ,G⟩ the integral
of G with respect to ϑ:

⟨ϑ,G⟩ =

∫
T
G(u)ϑ(du) .

The space M+ is metrizable. Indeed, if e0(u) = 1, ek(u) =
√
2 cos(2πku)

and e−k(u) =
√
2 sin(2πku), k ∈ N, then one can define the distance d on

M+ as

d(ϑ1, ϑ2) :=
∞∑
k∈Z

1

2k
|⟨ϑ1, ek⟩ − ⟨ϑ2, ek⟩| .

Note that M+ is compact under the weak topology.
Denote by Cm(T), m in N0 ∪ {∞}, the set of all real functions on T

which are m times differentiable and whose m-th derivative is continuous.
Given a function G in C2(T), we shall denote by ∇G and ∆G the first and
second derivative of G, respectively.

Let νρ = νNρ , 0 ≤ ρ ≤ 1, be the Bernoulli product measure with the
density ρ. Define the continuous functions B,D : [0, 1] → R by

B(ρ) =

∫
[1− η(0)] c(η) dνρ , D(ρ) =

∫
η(0) c(η) dνρ .

Let S be the set of all classical solutions of the semilinear elliptic equa-
tion:

(2.1) (1/2)∆ρ+ F (ρ) = 0 on T ,
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where F (ρ) = B(ρ) −D(ρ). Classical solution means a function ρ : T →
[0, 1] in C2(T) which satisfies the equation (2.1) for any u ∈ T. We also
define by Msol the set of all absolutely continuous measures whose density
is a classical solution of (2.1):

Msol := {ϑ̄ ∈ M+ : ϑ̄(du) = ρ̄(u)du, ρ̄ ∈ S} .
Let πN : XN → M+ be the function which associates to a configuration

η the positive measure obtained by assigning mass N−1 to each particle of
η,

πN(η) =
1

N

∑
x∈TN

η(x)δx/N ,

where δu stands for the Dirac measure which has a point mass at u ∈ T.
Since the jump rate c(η) is strictly positive, the Markov process ηNt ,

t ≥ 0, is irreducible. Therefore there exists a unique stationary probability
measure under the dynamics. We denote it by µN . We also introduce the
probability measure on M+ defined by PN := µN ◦ (πN)−1.

The following theorem has been established in [36].

THEOREM 2.1. The sequence of measures {PN : N ≥ 1} is asymptot-
ically concentrated on the set Msol. Namely, for any δ > 0, we have

lim
N→∞

PN(ϑ ∈ M+ : inf
ϑ̄∈Msol

d(ϑ, ϑ̄) ≥ δ) = 0 .

2.3. Dynamical and static large deviations. We state in this subsec-
tion the dynamical and static large deviation principles. Theorem 2.2 is the
main result of this chapter.

Let M+,1 be the closed subset of M+ of all absolutely continuous mea-
sures with density bounded by 1:

M+,1 = {π ∈ M+(T) : π(du) = ρ(u)du, 0 ≤ ρ(u) ≤ 1 a.e. u ∈ T} .
Fix T > 0, and denote by Cm,n([0, T ]× T), m,n in N0 ∪ {∞}, the set

of all real functions defined on [0, T ]× T which are m times differentiable
in the first variable and n times on the second one, and whose derivatives
are continuous. Let Qη = QN

η , η ∈ XN , be the probability measure on
D([0, T ],M+) induced by the measure-valued process πN

t starting from
πN(η).

For each p ≥ 1, let Lp(T) be the space of all real p-th integrable func-
tionsG : T → R with respect to the Lebesgue measure:

∫
T |G(u)|

pdu <∞.
The corresponding norm is denoted by ∥ · ∥p:

∥G∥pp :=

∫
T
|G(u)|pdu .

In particular, L2(T) is a Hilbert space equipped with the inner product

⟨G,H⟩ =

∫
T
G(u)H(u)du .
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For a function G in L2(T), we also denote by ⟨G⟩ the integral of G with
respect to the Lebesgue measure: ⟨G⟩ :=

∫
TG(u)du.

For each path π(t, du) = ρ(t, u)du in D([0, T ],M+,1), define the en-
ergy QT as
(2.2)

QT (π) = sup
G∈C0,1([0,T ]×T)

{
2

∫ T

0

dt ⟨ρt,∇Gt⟩ −
∫ T

0

dt

∫
Td

du G2(t, u)
}
.

It is known that the energy QT (π) is finite if and only if ρ has a generalized
derivative and this generalized derivative is square integrable on [0, T ]×T:∫ T

0

dt

∫
T
du |∇ρ(t, u)|2 <∞ .

Moreover, it is easy to see that the energy QT is convex and lower semicon-
tinuous.

For each function G in C1,2([0, T ] × T), define the functional J̄G :
D([0, T ],M+,1) → R by

J̄G(π) = ⟨πT , GT ⟩ − ⟨π0, G0⟩ −
∫ T

0

dt ⟨πt, ∂tGt +
1

2
∆Gt⟩

− 1

2

∫ T

0

dt ⟨χ(ρt), (∇Gt)
2⟩ −

∫ T

0

dt
{
⟨B(ρt), e

Gt − 1⟩+ ⟨D(ρt) , e
−Gt − 1⟩

}
,

where χ(r) = r(1 − r) is the mobility. Let JG : D([0, T ],M+) → [0,∞]
be the functional defined by

JG(π) =

{
J̄G(π) if π ∈ D([0, T ],M+,1) ,

∞ otherwise .

We define the functional IT : D([0, T ],M+) → [0,∞] as

(2.3) IT (π) =

{
sup JG(π) if QT (π) <∞ ,

∞ otherwise ,

where the supremum is taken over all functions G in C1,2([0, T ]× T).
For a measurable function γ : T → [0, 1], we define the dynamical large

deviation function IT (·|γ) : D([0, T ],M+) → [0,∞] as

IT (π|γ) =

{
IT (π) if π(0, du) = γ(u)du ,

∞ otherwise .

In [36], it has been established that the measure-valued process πN
· satisfies

a dynamical large deviation principle with the rate function IT (·|γ) under
the assumption that the functionsB andD are concave on [0, 1]. The precise
statement will be introduced in Subsection 4.1.

We now define the static large deviation rate functional which is defined
similar to [21][Chapter 6] in spirit.
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Assume that there exist density profiles ρ̄1, · · · , ρ̄l, l > 1, such that
any classical solution ρ̄ : T → [0, 1] of the equation (2.1) can be given by
ρ̄(u) = ρ̄i(u − u0) for some 1 ≤ i ≤ l and u0 ∈ T. In other words, it is
equivalent to the following:

Msol = {ρ̄i(· − v)du : 1 ≤ i ≤ l, v ∈ T} .
For each 1 ≤ i ≤ l, let Mi be the subset of Msol given by Mi = {ρ̄i(· −
v)du : v ∈ T}.

For each 1 ≤ i ≤ l, we define the functional Vi : M+ → [0,∞] by

Vi(ϑ) = inf{IT (π|ρ̄) : T > 0, ρ̄(u)du ∈ Mi, π ∈ D([0, T ],M+) and πT = ϑ} ,
which is the minimal cost that creates the measure ϑ from the set Mi. For
each 1 ≤ i, j ≤ l with i ̸= j, let ϑ̄i(du) = ρ̄i(u)du and vij = Vi(ϑ̄j).

To define the static large deviation rate function, we need to recall some
notation introduced in [21][Chapter 6]. Let L be a finite set and let W be
a subset of L. A graph consisting of arrows m → n (m ∈ L\W , n ∈ L,
n ̸= m) is called a W -graph if it satisfies the following conditions:

i) Every point m ∈ L\W is the initial point of exactly one arrow,
ii) There are not closed cycles in the graph.

We denote by G(W ) the set of all W -graphs. If a graph W is given by
the singleton-set {i}, then we simply denote G({i}) by G(i). We regard
L := {1, · · · , l} as a graph with weights vij and, for each 1 ≤ i ≤ l,
consider the number

wi = min
g∈G(i)

∑
(m→n)∈g

vmn ,

where the product is taken over all arrows in G(i).
Let w = min1≤i≤l {wi}. For each 1 ≤ i ≤ l, we define the functions

Wi,W : M+ → [0,∞] by

Wi(ϑ) = wi − w + Vi(ϑ) ,

W (ϑ) = min
1≤k≤l

Wi(ϑ) .

The following theorem is main result of this chapter.

THEOREM 2.2. Assume that the functions B and D are concave on
[0, 1]. The sequence of measures {PN ;N ≥ 1} satisfies a large deviation
principle on M+ with speed N and the rate function W . Namely, for each
closed set C ⊂ M+ and each open set O ⊂ M+,

lim
N→∞

1

N
logPN(C) ≤ − inf

ϑ∈C
W (ϑ) ,

lim
N→∞

1

N
logPN(O) ≥ − inf

ϑ∈O
W (ϑ) .

Moreover, the rate functional W is bounded on M+,1, lower semicontinu-
ous and has compact level sets.
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3. The hydrodynamic equation

Fix an initial profile γ : T → [0, 1]. We discuss in this section several
properties of the weak solutions of the Cauchy problem

(3.1)

{
∂tρ = (1/2)∆ρ+ F (ρ) on T ,

ρ(0, ·) = γ(·) ,

where F (ρ) = B(ρ)−D(ρ).

3.1. The hydrodynamic limit. We review in this subsection several re-
sults on the Cauchy problem (3.1). We first define two concepts of solutions
of the Cauchy problem (3.1).

DEFINITION 3.1. A measurable function ρ : [0, T ]× T → [0, 1] is said
to be a weak solution of the Cauchy problem (3.1) in the layer [0, T ]×T if,
for every function G in C1,2([0, T ]× T),

⟨ρT , GT ⟩ − ⟨γ,G0⟩ −
∫ T

0

dt⟨ρt, ∂tGt⟩

=
1

2

∫ T

0

dt⟨ρt,∆Gt⟩+
∫ T

0

dt⟨F (ρt), Gt⟩ .(3.2)

For each t ≥ 0, let Pt be the semigroup on L2(T) generated by (1/2)∆.

DEFINITION 3.2. A measurable function ρ : [0, T ]× T → [0, 1] is said
to be a mild solution of the Cauchy problem (3.1) in the layer [0, T ]× T if,
for any t in [0, T ], it holds that

ρt = Ptγ +

∫ t

0

Pt−sF (ρs)ds .(3.3)

The following proposition asserts that two notion of solutions are equiv-
alent.

PROPOSITION 3.3. Definitions 3.1 and 3.2 are equivalent. Moreover,
there exists a unique weak solution of the Cauchy problem (3.1).

The following three propositions claim fundamental properties of solu-
tions of the Cauchy problem (3.1).

PROPOSITION 3.4. Let ρ be the unique weak solution of the Cauchy
problem (3.1). Then ρ is infinitely differentiable over (0,∞)× T.

PROPOSITION 3.5. Let ρ : [0,∞) × T → [0, 1] be the unique weak
solution of the Cauchy problem (3.1). Then there exists a density profile ρ∞
in S such that ρt converges to ρ∞ as t→ ∞ in C2(T).

See [36] and its references for the proof of Propositions 3.3, 3.4 and 3.5.
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3.2. Properties of weak solutions of (3.1). We study in this subsection
some properties of weak solutions of the Cauchy problem (3.1). Lemmas
3.6 and 3.7 are quite simple but these lemmas play important roles in the
proof of the static large deviation principle.

LEMMA 3.6. There exists a constant C > 0 such that for any weak
solutions ρj , j = 1, 2, of the Cauchy problem (3.1) with initial profile ρj0
and any t > 0, we have

∥ρ1t − ρ2t∥2 ≤ eCt∥ρ10 − ρ20∥2 .

PROOF. From (3.3), for any t ≥ 0 and j = 1, 2, we have

ρjt = Ptρ
j
0 +

∫ t

0

Pt−sF (ρ
j
s)ds .

Therefore

∥ρ1t − ρ2t∥2 ≤ ∥Pt(ρ
1
0 − ρ20)∥2 +

∫ t

0

∥Pt−s(F (ρ
1
s)− F (ρ2s))∥2ds

≤ ∥ρ10 − ρ20∥2 + ∥F ′∥∞
∫ t

0

∥ρ1s − ρ2s∥2ds .

In the last inequality, we use the fact that the operator norm of Pt is equal
to 1. Hence, the Gronwall’s inequality concludes the lemma. □

LEMMA 3.7. Let ρ0 : T → [0, 1] be an initial profile and ρt be the
unique weak solution of the Cauchy problem (3.1) with initial condition
ρ0 and ρ̄ : T → [0, 1] be a classical solution to the equation (2.1). Set
ϑ̄(du) = ρ̄(u)du. Then, for any δ1 > 0 small enough, there exist δ > 0 and
T = Tδ1 > 0 such that for any ρ0(u)du in Bδ(ϑ̄), it holds that πt ∈ Bδ1/2(ϑ̄)
for any 0 ≤ t ≤ 1 and ∥ρT − ρ̄∥2 ≤ δ1.

PROOF. The first claim of the lemma easily follows from the definition
of weak solutions of the Cauchy problem (3.2). We now prove the second
claim of the lemma.

Fix δ1 > 0 and ρ0 in Bδ(ϑ̄). δ will be chosen later. From the equation
(3.2), we have

∥ρt − ρ̄∥2 ≤ ∥Pt(ρ0 − ρ̄)∥2 +
∫ T

0

∥Pt−s(F (ρs)− F (ρ̄))∥2ds

≤ ∥Pt(ρ0 − ρ̄)∥2 + t∥F ′∥∞ ,(3.4)

since the operator norm of Pt is equal to 1. Let ρ̃ = ρ0 − ρ̄ and, for each
t > 0, ρ̃t = Ptρ̃. It is easy to see that, for any k ∈ Z,

⟨ρ̃t, ek⟩ = ⟨ρ̃, Ptek⟩ = e−2π2k2t⟨ρ̃, ek⟩ .
Therefore, from Parseval’s relation, we have

(3.5) ∥ρ̃t∥22 =
∑
k∈Z

e−4π4k4t2⟨ρ̃, ek⟩2 .
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We now set T = Tδ1 := (δ1/2∥F ′∥∞) and choose large kδ1 > 0 so that∑
|k|>|kδ1 |

e−4π4k4T 2 ≤ δ21/8 .

Moreover we define δ = (8
∑

|k|≤kδ1
4k)−1/2δ1. The conclusion of the

lemma follows from these choices, (3.4) and (3.5). □
REMARK 3.8. It is clear that T = Tδ1 appeared in the proof of the

previous lemma can be taken to be less than or equal to 1.

4. The rate functions

We study in this section the dynamical and static rate function.

4.1. The functional IT . We study several properties of the dynamical
rate function. For some details see [36]. We start from introducing the
dynamical large deviation principle which has been established in [36].

THEOREM 4.1. Assume that the functions B and D are concave on
[0, 1]. Fix T > 0 and a measurable function γ : T → [0, 1]. Assume that a
sequence ηN of initial configurations in XN is associated to γ, in the sense
that

lim
N→∞

⟨πN(ηN), G⟩ =

∫
T
G(u)γ(u)du

for every continuous function G : T → R. Then, the measure QηN on
D([0, T ],M+) satisfies a large deviation principle with the rate function
IT (·|γ). That is, for each closed subset C ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (C) ≤ − inf

π∈C
IT (π|γ) ,

and for each open subset O ⊂ D([0, T ],M+),

lim
N→∞

1

N
logQηN (O) ≥ − inf

π∈O
IT (π|γ) .

Moreover, the rate function IT (·|γ) is lower semicontinuous and has com-
pact level sets.

It is easy to see that the similar computation performed in [36], Section
4, gives the similar results for the functional IT . For the sake of complete-
ness, we review some of them with the functional IT in the place of IT (·|γ).

The following lemma is proved in [36].

LEMMA 4.2. The density ρ of a path π(t, du) = ρ(t, u)du inD([0, T ],M+,1)
is the weak solution of the Cauchy problem (3.1) with initial profile γ if and
only if the rate function IT (π|γ) is equal to 0. Moreover, in that case∫ T

0

dt

∫
T
du

|∇ρ(t, u)|2

χ(ρ(t, u))
< ∞.
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The computation performed in the proof of Theorem 4.7 in [36] gives
the following lemma.

LEMMA 4.3. Let {πn(t, du) = ρn(t, u)du : n ≥ 1} be a sequence of
trajectories in D([0, T ],M+,1) such that, for some positive constant C,

sup
n≥1

{IT (πn)} ≤ C.

If ρn converges to ρ weakly in L2(T×[0, T ]), then ρn converges to ρ strongly
in L2(T× [0, T ]).

For each δ > and a function ρ in L2(T), let Bδ(ρ) be the δ-open neigh-
borhood of ρ in L2(T). For each δ > and a measure ϑ in M+, let Bδ(ϑ) be
the δ-open neighborhood of ϑ in M+.

For each δ > 0 and each T > 0 denote by DT,δ the set of trajectories
π(t, du) = ρ(t, u)du in D([0, T ],M+) such that ρt /∈ Bδ(ρ̄) for all 0 ≤ t ≤
T and ρ̄ ∈ S. For each δ > 0 and each T > 0 denote by DT,δ the set of
trajectories π(t, du) = ρ(t, u)du in D([0, T ],M+,1) such that πt /∈ Bδ(ϑ̄)
for all 0 ≤ t ≤ T and ϑ̄ ∈ Msol.

LEMMA 4.4. For every δ > 0 there exists T = T (δ) > 0 such that

inf
π∈DT,δ

IT (π) > 0 .

PROOF. Assume that the conclusion of the lemma is not true. Then
there exists some δ > 0 such that, for any n ∈ N,

inf
π∈Dn,δ

In(π) = 0 .

In this case there exists a sequence of trajectories {πn(t, du) = ρn(t, u)du :
n ≥ 1} such that In(πn) ≤ 1/n. Since IT (π) has compact level sets, by
using a Cantor’s diagonal argument and passing to a subsequence if neces-
sary, there exists a path π(t, du) = ρ(t, u)du in D(R+,M+,1) such that πn

converges to π in D([0, T ],M+) for any T > 0. Moreover, by Lemma 4.3,
ρn converges to ρ strongly in L2([0, T ]× T) for any T > 0.

From Proposition 3.5, ρt converges to some density profile ρ∞ in S.
Therefore there exists some T > 0 such that

∥ρt − ρ∞∥2 ≤ δ/2 ,

for any t ≥ T . Hence∫ T+1

0

∥ρnt − ρt∥2dt ≥
∫ T+1

T

∥ρnt − ρt∥2dt

≥
∫ T+1

T

∥ρnt − ρ∞∥2 − ∥ρt − ρ∞∥2dt

≥ δ − δ/2 = δ/2 ,

which contradicts the strong convergence of ρn to ρ in L2([0, T + 1] × T)
and we are done. □
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From Lemma 4.4, we can obtain similar result for the set DT,δ.

LEMMA 4.5. For every δ > 0 there exists T > 0 such that

inf
π∈DT,δ

IT (π) > 0.

PROOF. The conclusion follows from Lemma 4.4 and the fact that

{ϑ(du) = ρ(u)du : ρ ∈ Bδ(ρ̄)} ⊂ Bδ(ρ̄),

for every ρ̄ ∈ S and every δ > 0. □

LEMMA 4.6. There exists a constant C > 0 such that for any T > 0,
any weak solution ρ of (3.1) and any classical solution ρ̄ to the equation
(2.1), we have

IT (π) ≤ C{T + ∥ρT − ρ̄∥1 + ∥ρ0 − ρ̄∥1} ,

where π is the trajectory defined by π(t, du) = ρ(T − t, u)du.

PROOF. For any test functionG ∈ C1,2([0, T ]×T), JG(π) can be rewrit-
ten as

JG(π) =

∫ T

0

dt

∫
T
du∇ρt · ∇Ĝt −

1

2

∫ T

0

dt

∫
T
du χ(ρt)(∇Ĝt)

2

−
∫ T

0

dt

∫
T
du B(ρt)[eĜt + Ĝt − 1]−

∫ T

0

dt

∫
T
du D(ρt)[e−Ĝt − Ĝt − 1] .

where Ĝ(t, u) = G(T − t, u). The first line is bounded above by

1

2
ET (ρ) =

∫ T

0

dt

∫
T
du

1

2

|∇ρ(t, u)|2

χ(ρ(t, u))
.

Since for any 0 < r < 1 and any s ∈ R

−B(r)es +D(r)s+D(r) ≤ D(r) log(D(r)/B(r)) ,

−D(r)e−s −B(r)s+B(r) ≤ B(r) log(B(r)/D(r)) ,

therefore the second line is bounded above by∫ T

0

dt

∫
T
du D(ρt) log(D(ρt)/B(ρt)) +B(ρt) log(B(ρt)/D(ρt))

≤ CT −
∫ T

0

dt

∫
T
du [D(ρt) log(1− ρt) + B(ρt) log(ρt)]

≤ −1

2
ET (ρ) + C{T + ∥ρT − ρ̄i∥1 + ∥ρ0 − ρ̄i∥1} .

The last inequality comes from the equation

∂t[ρt log ρt + (1− ρt) log(1− ρt)] = [log(ρt)− log(1− ρt)]∂tρt

= [log(ρt)− log(1− ρt)][
1

2
∆ρt + F (ρt)] .

51



This equation is justified since, from Proposition 3.4, any weak solution of
the equation (3.1) is smooth. Therefore

−
∫ T

0

dt

∫
T
du [D(ρt) log(1− ρt) +B(ρt) log(ρt)]

= − 1

2
ET (ρ)−

∫ T

0

dt

∫
T
du [D(ρt) log(ρt) +B(ρt) log(1− ρt)]

− ρT log ρT − (1− ρT ) log(1− ρT ) + ρ0 log ρ0 + (1− ρ0) log(1− ρ0) .

It is easy to see that the last four terms can be bounded above by

C{∥ρT − ρ̄∥1 + ∥ρ0 − ρ̄∥1} ,

for some C > 0, which finishes the proof of the lemma. □

4.2. The static rate functional W . In this subsection we study some
properties of the quasi potential W . Throughout the remaining chapter, let
ϑ̄i(du) := ρ̄i(u)du for each 1 ≤ i ≤ l. The first main result states that W
is continuous at ϑ̄i in the L2(T) topology. The second one states that W is
lower semicontinuous.

We start with an estimate on Vi which is the main ingredient in the proof
of the former. Let D be the space of measurable functions on T bounded
below by 0 and bounded above by 1 endowed with the L2(T) topology:

D = {ρ : T → [0, 1] : 0 ≤ ρ(u) ≤ 1 a.e.} .

For each 1 ≤ i ≤ l. let Vi : D → [0,+∞] be the functional given by
Vi(ρ) = Vi(ρ(u)du). For each h > 0 and each δ > 0, let Dh

δ be the subset
of D consisting of those profiles ρ satisfying the following conditions:

i) ρ ∈ H1(T).
ii)
∫
T(∇ρ(u))

2du ≤ h.
iii) δ ≤ ρ(u) ≤ 1− δ a.e. in T.

LEMMA 4.7. For each 1 ≤ i ≤ l, any h > 0, any δ > 0 and any
increasing C1-diffeomorphism α : [0, 1] → [0, 1], there exist constants
C1 = C1(δ, h) > 0 and C2 = C2(δ, h, α) > 0 such that

Vi(ρ) ≤ C1

∫ 1

0

α2(t)dt+ C2∥ρ− ρ̄i∥1 ,

for any ρ in Dh
δ .

PROOF. Fix h > 0 and δ > 0. Let ρ ∈ Dh
δ and let α : [0, 1] → [0, 1] be

an increasing C1-diffeomorphism. Consider the path πα
t (du) = ρα(t, u)du

in C([0, 1],M+) with density given by ραt = (1 − α(t))ρ̄ + α(t)ρ. It is
clear that πα belongs to D([0, 1],M+,1) and, from the condition i), Q1(π

α)
is finite. From the definition of ρα it is easy to see that ∇ραt = α(t)(∇ρ −
∇ρ̄i) + ∇ρ̄i and ∂tραt = α′(t)(ρ − ρ̄i). Since ρ̄i solves the equation (2.1),
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JG(π
α) can be rewritten as

JG(π) =
1

2

∫ T

0

dt {⟨α(t)(∇ρ−∇ρ̄i),∇Gt⟩ − ⟨χ(ραt ), (∇Gt)
2⟩}

+

∫ T

0

dt ⟨{α′(t)(ρ− ρ̄i) + F (ρ̄i)}Gt −B(ραt )(e
Gt − 1)−D(ραt )(e

−Gt − 1)⟩ .

(4.1)

From the similar argument performed in Lemma 4.7 of [22], the first term
on the right hand side of (4.1) is bounded by

C1

∫ 1

0

α2(t) dt ,

for some constant C1 = C1(δ, h). To conclude the proof it is enough to
prove that the second term on the right hand side of (4.1) is bounded by

C2∥ρ− ρ̄i∥1
for some constant C2 = C2(δ, h, α).

Consider the function Φ : R× (0, 1)× R → R defined by

Φ(H, ρ,G) = HG−B(ρ)(eG − 1)−D(ρ)(e−G − 1) .

If we set Ht = α′(t)(ρ− ρ̄i) + F (ρ̄i), it is clear that the second term on the
right hand side of (4.1) can be expressed as∫ T

0

⟨Φ(Ht, ρ
α
t , Gt)⟩ dt .

From the straightforward computation, for any fixed H in R and ρ in (0, 1),
the function Φ(H, ρ, ·) reaches a maximum at

G(H, ρ) = log

(
H +

√
H2 + 4B(ρ)D(ρ)

2B(ρ)

)
.

From the condition iii), there exits a constant cδ > 0 such that cδ ≤
ρα ≤ 1−cδ. Note that Φ(F (ρ), ρ, G(F (ρ), ρ)) = 0 for any ρ and Φ(H, ρ,G(H, ρ))

is Lipschitz on [−
∫ 1

0
α′(t)dt − ∥F∥∞,

∫ 1

0
α′(t)dt + ∥F∥∞] × [cδ, 1 − cδ].

Therefore

Φ(Ht, ρ
α
t , Gt) ≤ Φ(Ht, ρ

α
t , G(Ht, ρ

α
t ))

= Φ(Ht, ρ
α
t , G(Ht, ρ

α
t ))− Φ(F (ραt ), ρ

α
t , G(F (ρ

α
t ), ρ

α
t ))

≤ C2|Ht − F (ραt )|
≤ C2α

′(t)|ρ− ρ̄i|+ C2∥F ′∥∞α(t)|ρ− ρ̄i| ,

for some constant C2 = C2(δ, h, α). These bounds give the desired conclu-
sion. □

The ideas of Lemma 3.7 and 4.7 give the following corollary.
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COROLLARY 4.8. Fix 1 ≤ i ≤ l. For any ε > 0, there exists δ1 > 0
small enough such that for any ϑ(du) = γ(u)du in Bδ1(ϑ̄i) there exists a
path π(t, du) = ρ(t, u)du in D([0, 1],M+) such that π0 = ϑ, π1 = ϑ̄i and
I1(π) ≤ ε.

The following results are proved by using Lemmas 3.6, 4.6, 4.7 and by
the arguments performed in [22]. Therefore the proofs are omitted.

THEOREM 4.9. For each 1 ≤ i ≤ l, the function Vi is continuous at ρ̄i
in the L2(T) norm.

PROPOSITION 4.10. The function W is finite if and only if ϑ belongs to
M+,1. Moreover,

sup
ϑ∈M+,1

W (ϑ) < ∞ .

THEOREM 4.11. The rate function W is lower semicontinuous.

5. Large deviations

We show in this section that the sequence of the stationary measures
satisfies the large deviation principle with the rate function W . Recall from
Subsection 2.3 that ρ̄i, 1 ≤ i ≤ l, is a weak solution of the equation (2.1)
and ϑ̄i, the measure in M+,1 with density ρ̄i, i.e., ϑ̄i(du) = ρ̄idu.

5.1. Preliminaries. We study the asymptotic behavior of the stationary
measure of some process induced from the original Markov process ηN .
The main result of this subsection, Lemma 5.5, plays an important role of
the proof of Theorem 2.2.

We start from introducing some notation. For any δ1 > δ > 0 small
enough, consider the sets defined as follows:

B =
l∪

i=1

Bi , with Bi = {ϑ ∈ M+ : inf
ϑ̄∈Mi

d(ϑ, ϑ̄) ≤ δ} .

Γ =
l∪

i=1

Γi , with Γi = {ϑ ∈ M+ : δ1 ≤ inf
ϑ̄∈Mi

d(ϑ, ϑ̄) ≤ 2δ1} .

For each integerN > 0 and each subsetA of M+, letAN = (πN)−1(A)
and let HN

A : D(R+, XN) → [0,+∞] be the entry time in AN :

HN
A = inf

{
t ≥ 0 : ηt ∈ AN

}
.

LEMMA 5.1. For every δ > 0, there exist T0, C0, N0 > 0, which de-
pends on δ > 0, such that

sup
η∈XN

{
Pη

[
HN

B ≥ kT0
]}

≤ exp
{
−kC0N

d
}
,

for any integers N > N0 and k > 0.

54



PROOF. Fix δ > 0. By Lemma 4.5, there exists T0 > 0 and C0 > 0,
which depends on δ > 0, such that

inf
π∈D

IT0(π) > C0 ,

where D = D([0, T0],M+\B). For each integer N > 0, consider a config-
uration ηN in XN such that

PηN
[
HN

B ≥ T0
]
= sup

η∈XN

{
Pη

[
HN

B ≥ T0
]}

.

By the compactness of M+, every subsequence of πN(ηN) contains a
subsequence converging to some ϑ in M+. Moreover, since each configu-
ration inXN has at most one particle per site, ϑ belongs to M+,1. From this
and since D is a closed subset of D([0, T0],M+), by the dynamical large
deviations lower bound, there exists a measure ϑ(du) = γ(u)du in M+,1

such that

lim sup
N→∞

1

N
logPηN

[
HN

B ≥ T0
]
≤ lim sup

N→∞

1

N
logQηN (D)

≤ − inf
π∈D

IT0(π|γ)

< − C0 .

In particular, there exists N0 > 0 such that for every integer N > N0,

PηN
[
HN

B ≥ T0
]
≤ exp{−C0N} .

To complete the proof, we proceed by induction. Suppose that the state-
ment of the lemma is true until an integer k − 1 > 0. Let N > N0 and let η̂
be a configuration in XN . By the strong Markov property,

Pη̂

[
HN

B ≥ kT0
]
= Eη̂

[
1{HN

B ≥T0}Pη
T0

[
HN

B ≥ (k − 1)T0
]]

≤ Pη̂

[
HN

B ≥ T0
]
sup
η∈XN

{
Pη

[
HN

B ≥ (k − 1)T0
]}

≤ exp {−kC0N} ,

which concludes the proof.
□

Let ∂BN = ∂BN
δ be the set of configurations η in XN for which there

exists a finite sequence of configurations {ηi : 0 ≤ i ≤ k} in XN with η0 in
ΓN , ηk = η and such that

i) For every 1 ≤ i ≤ k, the configuration ηi can be obtained from
ηi−1 by a jump of the dynamics.

ii) The unique configuration of the sequence that can enter into BN

after a jump is ηk.
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We similarly define the set ∂BN
i for each 1 ≤ i ≤ l. Then it is clear that for

N large enough and δ1 small enough,

∂BN =
l∪

i=1

∂BN
i .

Let τ = τN : D(R+, XN) → [0,∞] be the stopping time given by

τ = inf
{
t > 0 : there exists s < t such that ηs ∈ ΓN and ηt ∈ ∂BN

}
.

The sequence of stopping times obtained by iterating τ is denoted by τk.
This sequence generates a irreducible Markov chain Xk on ∂BN by setting
Xk = ητk . Since the Markov chain Xk on ∂BN is irreducible, there exists
a unique invariant measure under the dynamics. We denote it by νN . For
more details see [22].

Define ṽij by

ṽij = inf{IT (π|ρ̄) : T > 0, ρ̄(u)du ∈ Mi, π ∈ D([0, T ],M+), πT = ϑj

and πt /∈ Msol for any 0 < t < T} .

LEMMA 5.2. For every ε > 0, there exist δ and δ1 with δ1 > δ > 0 such
that, for any 1 ≤ i, j ≤ l with i ̸= j,

lim
N→∞

1

N
log inf

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ) ≥ −ṽij − ε .

PROOF. For each integer N > 0, let ηN be a configuration in ∂BN
i such

that
PηN (ητ ∈ ∂BN

j ) = inf
η∈∂BN

i

Pη(ητ ∈ ∂BN
j ) .

Recall that every subsequence of πN(ηN) contains a subsequence converg-
ing in M+ to some ϑ that belongs to M+,1. Therefore we may assume that
πN(ηN) converges to ϑδ(du) = γδ(u)du in Bi. We may also assume that
ϑδ belongs to Bδ(ϑ̄i) without loss of generality.

Let π be a path in D([0, T ],M+,1) such that π0 = ϑ̄i, πT = ϑ̄j and
πt /∈ Msol for any 0 < t < T . Let also Λδ,δ1(π) be the collection of all
trajectories π̄ in D([0, T + 2],M+) such that I2(π̄|γδ) ≤ ε, π̄t = πt−2

for any 2 ≤ t ≤ T + 2 and πt ∈ Bδ1/2(ϑ̄i) for any 0 ≤ t ≤ 2. From
Corollary 4.8, Λδ,δ1(π) is not empty if δ1 > δ > 0 are enough small. Denote
by Bδ,δ1(π) the δ1/2-open neighborhood of Λδ,δ1(π) in D([0, T + 2],M+).
Since πt /∈ Msol for any 0 < t < T , if δ1 > δ > 0 are enough small, then

{η0 ∈ ∂BN
i , π

N
· ∈ Bδ,δ1(π)} ⊂ {η0 ∈ ∂BN

i , ητ ∈ ∂BN
j } .

Therefore by the dynamical large deviations lower bound,

lim
N→∞

1

N
log inf

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ) ≥ − inf

π̄∈Bδ,δ1 (π)
IT+2(π̄|γδ)

≥ −IT (π)− ε.

It remains to take a supremum in π and T > 0. □
56



LEMMA 5.3. For every ε > 0, there exist δ and δ1 with δ1 > δ > 0 such
that, for any 1 ≤ i, j ≤ l with i ̸= j,

lim
N→∞

1

N
log sup

η∈∂BN
i

Pη(ητ ∈ ∂BN
j ) ≤ −vij + ε .

PROOF. By the strong Markov property,

sup
η∈∂BN

i

Pη(ητ ∈ ∂BN
j ) ≤ sup

η∈ΓN
i

Pη(ηH
∂BN

∈ ∂BN
j ) .

For each integer N > 0, fix a configuration ηN in XN such that

PηN (ηH∂BN
∈ ∂BN

j ) = sup
η∈ΓN

i

Pη(ηH
∂BN

∈ ∂BN
j ) .

By Lemma 5.1 and since vij < ∞, for every δ > 0, there exists Tδ > 0
such that

lim
N→∞

1

N
log sup

η∈XN

{
Pη

[
Tδ ≤ HN

B

]}
≤ −vij .

In that case,

lim
N→∞

1

N
logPηN (ηH∂BN

∈ ∂BN
j )

≤ max{ lim
N→∞

1

N
logPηN (ηH∂BN

∈ ∂BN
j ∧HN

B ≤ Tδ), lim
N→∞

1

N
logPηN (H

N
B > Tδ)}

≤ max{ lim
N→∞

1

N
logPηN (H

N
Γj

≤ Tδ),−vij} .

Let Cj = Cδ,δ1
j be the subset of D([0, T ],M+) consisting of all those

paths π for which there exists some time t ∈ [0, Tδ] such that π(t) belongs
to Γj or π(t−) belongs to Γj . By the dynamical large deviations lower
bound and the compactness of M+, there exists some γ(u)du = γδ

1
(u)du

in Γi such that

lim
N→∞

1

N
logQηN (Cj) ≤ − inf

π∈Cj
IT (π|γ) .

Thus, in order to conclude the proof, it is enough to check that there exist
δ1 > δ > 0 such that

inf
π∈Cj

IT (π|γ) ≥ vij − ε .

Assume that this is not true. In that case, for every integer n > 0 large
enough, there exists a path πn in Cδn,1/n

j ∩C([0, Tδn ],M+,1), with δn < 1/n,
such that

(5.1) IT1/n
(πn|γ1/n) < vij − ε .

Moreover, since πn belongs to Cδn,1/n
j ∩ C([0, Tδn ],M+), there exists 0 <

T̃n ≤ Tδn such that πn
T̃n

belongs to the set {ϑ ∈ M+ : n−1 ≤ inf ϑ̄∈Mj
d(ϑ, ϑ̄) ≤

2n−1}.
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Let us first assume that the sequence of times {T̃n : n ≥ 1} is bounded
above by some T > 0. For each integer n > 0, let π̃n be the path in
C([0, T ],M+,1) given by

π̃n
t =

{
πn
t if 0 ≤ t ≤ T̃n ,

πn
T̃n

if T̃n ≤ t ≤ T .

Since IT has compact level sets and since πn
0 (du) = γ1/n(u)du belongs to

Γi,1/n ∩ M+,1 for every integer n > 0, we may obtain a subsequence of
π̃n converging to some π in C([0, T ],M+,1) such that π0(du) = ρ̄i(u −
ui), πT = ρ̄j(u − uj), for some ui, uj ∈ T, and IT (π) ≤ vij − ε, which
contradicts the definition of vij and we are done.

If the sequence of times {T̃n : n ≥ 1} is not bounded, in this case,
by using Lemma 4.4, for large n, we can replace the path πn by some new
path π̄n which satisfies the inequality (5.1) and whose entry time to the set
{ϑ ∈ M+ : n−1 ≤ inf ϑ̄∈Mj

d(ϑ, ϑ̄) ≤ 2n−1} is bounded in n. Therefore
performing the argument of the previous paragraph gives the contradiction.
This finishes the proof of the lemma. □

The next result is similarly proved by the proof of Lemma 3.1 of chapter
6 in [21].

LEMMA 5.4. Let us be given a Markov chain on a phase space X di-
vided into disjoint sets Xi, where i runs over a finite set L. Suppose that
there exist nonnegative numbers pij, p̃ij (j ̸= i, i, j ∈ L) and a number
a > 1 such that

a−1pij ≤ P (x,Xj) ≤ ap̃ij , for any x ∈ Xi, i ̸= j ,

for the transition probabilities of our chain. Furthermore, suppose that very
set Xj can be reached from any state x sooner or later. Then

a2−2l(
∑
i∈L

Q̃i)
−1Qi ≤ ν(Xi) ≤ a2l−2(

∑
i∈L

Qi)
−1Q̃i ,

for any invariant probability measure of our chain, where l is the number of
elements in L and Qi and Q̃i are given by

Qi =
∑

g∈G(i)

∏
(m→n)∈g

pmn and Q̃i =
∑

g∈G(i)

∏
(m→n)∈g

p̃mn .

We now introduce the main result of this subsection.

LEMMA 5.5. For every ε > 0, there exist δ and δ1 with δ1 > δ > 0 such
that, for any 1 ≤ i, j ≤ l with i ̸= j,

(5.2) lim
N→∞

1

N
log νN(∂BN

i ) ≤ −wi + w + ε .

(5.3) lim
N→∞

1

N
log νN(∂BN

i ) ≥ −wi + w − ε .
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PROOF. Let
w̃i = min

g∈G(i)

∑
(m→n)∈g

ṽmn .

By the argument presented in the proof of Lemma 4.1 in [21], we have
wi = w̃i for any 1 ≤ i ≤ l. Therefore the conclusion of the lemma is a
straightforward consequence of Lemmas 5.2, 5.3 and 5.4. □

5.2. Lower bound. We show in this subsection the large deviations
lower bound, that is, for any closed subset O of M+,

lim
N→∞

1

N
logPN(O) ≥ − inf

ϑ∈C
W (O) .

Following [11, 21, 22], we represent the stationary measure µN of a
subset A of XN as

(5.4) µN(A) =
1

CN

∫
∂BN

Eη

(∫ τ

0

1{ηs∈A}ds

)
dνN(η) ,

where

CN =

∫
∂BN

Eη(τ)dνN(η) .

We start from the estimate on the normalizing constant CN .

LEMMA 5.6. For any ε > 0, there exist δ and δ1 with δ1 > δ > 0 such
that

lim
N→∞

1

N
logCN ≤ ε .

PROOF. By the Strong Markov property,

CN =
l∑

i=1

∫
∂BN

i

Eη(τ)dνN(η)

=
l∑

i=1

∫
∂BN

i

Eη(τ · 1{HN
Γi

<τ})dνN(η)

≤
l∑

i=1

∫
∂BN

i

Eη(H
N
Γi
)dνN(η) + sup

η∈XN

(HN
B ) .

From Lemma 5.7 below, to conclude the lemma it is enough to show that
for any ε > 0 there exist δ1 > δ > 0 such that, for any 1 ≤ i ≤ l,

(5.5) lim
N→∞

1

N
log

(
sup

η∈∂BN
i

Eη(H
N
Γi
)

)
≤ ε .

For each integer N > 0, consider a configuration ηN in B2δ1(Mi) such
that

PηN (H
N
Γi
< 3) = inf

η∈BN
2δ1

(Mi)
Pη(HΓN

i
< 3) .
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Recall that every subsequence of πN(ηN) contains a subsequence converg-
ing in M+ to some ϑ that belongs to M+,1. Therefore we may assume that
πN(ηN) converges to ϑδ1(du) = γδ1(u)du in Bi. We may also assume that
ϑδ1 belongs to B2δ1(ϑ̄i) without loss of generality.

Fix ε > 0. Let π̄ be a path in D([0, 1],M+,1) which satisfies the state-
ments of Corollary 4.8. Let also π̃ be a path in D([0, 1],M+,1) such that
π̃0 = ϑ̄i, π̃1 ∈ M+ \ B2δ1(Mi) and I1(π̃) ≤ ε. This choice is possible if δ1
is small enough. Define the path π in D([0, 2],M+,1) defined as πt = π̄t if
0 ≤ t ≤ 1 and πt = π̃t−1 if 1 ≤ t ≤ 2. For ϵ > 0 small enough, denote by
Λϵ(π) the ϵ-open neighborhood of π in D([0, 2],M+,1).

Then by the dynamical large deviations lower bound, forN large enough
and any η ∈ BN

2δ1
(Mi),

Pη(H
N
Γi
< 3) ≥ exp {−N( inf

π′∈Λϵ(π)
I2(π

′|γ) + ε)}

≥ exp {−3Nε} .
This bound together with the arguments performed in Lemmas 5.1 and 5.7
gives the bound (5.5) , which finishes the proof. □

In order to prove the lower bound, we first claim that for any open set
O of M+ containing ϑ̄i, for some 1 ≤ i ≤ l,

(5.6) lim
N→∞

1

N
logPN(O) ≥ −wi + w .

Indeed, fix ε > 0 and let δ1 > δ > 0 satisfying (5.3), Lemma 3.7 , Lemma
5.6 and such that B2δ1(ϑi) ⊂ O. Then

PN(O) =
1

CN

∫
∂BN

Eη

(∫ τ

0

1{ηs∈ON}ds

)
dνN(η)

≥ 1

CN

∫
∂BN

i

Eη(H
N
Γi
)νN(dη)

≥ 1

CN

νN(∂BN
i ) inf

η∈∂BN
i

Pη(H
N
Γi

≥ 1) .

Hence to conclude the claim it suffices to show that

lim
N→∞

1

N
log inf

η∈∂BN
i

Pη(H
N
Γi

≥ 1) ≥ 0 .

For each integer N > 0, let ηN be a configuration in ∂BN
i such that

PηN (H
N
Γi

≥ 1) = inf
η∈∂BN

i

Pη(H
N
Γi

≥ 1) .

Let also Λ be the collection of trajectories π(t, du) = ρ(t, u)du inC([0, 1],M+)
whose densities ρ are weak solutions of the Cauchy problem (3.1) starting
at some profile ρ0 in Bδ(Mi). Consider the open set

U =
∪
π∈Λ

Bδ1/2
[0,1] (π) ,
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where Bδ1/2
[0,1] (π) is the open δ1/2-neighborhood of π inD([0, 1],M+). Then

from Lemma 3.7, for some γ(u)du in Bδ(Mi), we have

lim
N→∞

1

N
logPηN (H

N
Γi

≥ 1) ≥ lim
N→∞

1

N
logQηN (U)

≥ − inf
π̄∈U

IT (π̄|γ) = 0 ,

which implies the claim.
From (5.6), we may deduce that there exists a sequence εN → 0 such

that
lim

N→∞

1

N
logPN(BεN (Mi)) ≥ −wi + w .

Fix now an open set O of M+. In order to prove the lower bound, it is
enough to prove that for any measure ϑ in O ∩M+ and any trajectory π̃ in
D([0, T ],M+) with π̃T = ϑ,

lim
N→∞

1

N
logPN(O) ≥ −wi + w − IT (π̃|ρ̄i) .

Indeed, for each N , let BN =
(
πN
)−1

(BεN (Mi)) and let ηN be a con-
figuration in BN such that

PηN
[
πN
T ∈ O

]
= inf

η∈BN

{
Pη

[
πN
T ∈ O

]}
.

Let OT = π−1
T O, then

lim
N→∞

1

N
logPN(O) = lim

N→∞

1

N
logEµN

[
Pη0

(
πN
T ∈ O

)]
≥ lim

N→∞

1

N
log

{
PN(BεN (Mi)) inf

η∈BN

{Pη[π
N
T ∈ O]}

}
≥ −wi + w + lim

N→∞

1

N
logPηN

[
πN
T ∈ O

]
= −wi + w + lim

N→∞

1

N
logQηN (OT )

≥ −wi + w − inf
π∈OT

IT (π|ρ̄i)

≥ −wi + w − IT (π̃|ρ̄i) .
It remains to take a supremum in π̃ and T > 0, which finishes the proof of
the lower bound.

5.3. Upper bound. We show in this subsection the large deviations
upper bound, that is, for any closed subset C of M+,

lim
N→∞

1

N
logPN(C) ≤ − inf

ϑ∈C
W (C) .

Let us first assume that C is a closed set of M+ such that, for each
1 ≤ i ≤ l, ϑ̄i /∈ C. In that case we may assume that

∪l
i=1 B2δ1(Mi)∩C = ∅

without loss of generality.
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PN(C) = µN(CN) =
1

CN

∫
∂BN

Eη

(∫ τ

0

1{ηs∈CN}ds

)
dνN(η)

≤ 1

CN

l∑
i=1

νN(∂B
N
i ) sup

η∈∂BN
i

Eη

(∫ τ

0

1{ηs∈CN}ds

)
.

Recall that a configuration in XN can jump by the dynamics to less
than other 2N configurations and that the jump rates are at most of order
N2. Hence, since any trajectory in D(R+, XN) has to perform at least a
jump before the stopping time τ , CN ≥ 1/CN3 for some constant C > 0.
Hence, by (5.2), in order to prove the upper bound it is enough to show that,
for each 1 ≤ i ≤ l,

(5.7) lim
N→∞

1

N
log sup

η∈∂BN
i

Eη

(∫ τ

0

1{ηs∈CN}ds

)
≤ −Vi(C) + ε ,

where Vi(C) = infϑ∈C Vi(ϑ).
For each configuration η in ∂BN

i , by the strong Markov property,

Eη

(∫ τ

0

1{ηs∈CN}ds

)
≤ Pη

[
HN

C < τ
]
sup
η∈CN

{Eη (τ)} .

Notice that the jumps of the process d(πN(ηt),Mi) are of order N−1.
Thus, for N large enough, any trajectory in D(R+, XN) starting at some
configuration in ∂BN

i , resp. CN , satisfies HN
Γi

≤ HN
C , resp. τ ≤ HN

B .
Hence, by the strong Markov property, the expression in the left side of
(5.7) is bounded above by

lim
N→∞

1

N
log sup

η∈ΓN
i

Pη

[
HN

C < HN
B

]
sup
η∈CN

{
Eη

(
HN

B

)}
.

Therefore, in order to prove (5.7), it is enough to show the next lemma.

LEMMA 5.7. For every δ > 0 enough small, we have

(5.8) lim
N→∞

1

N
log sup

η∈XN

{
Eη

(
HN

B

)}
≤ 0 .

For every ε > 0, there exist δ and δ1 with δ1 > δ > 0 such that, for any
1 ≤ i ≤ l, we have

(5.9) lim
N→∞

1

N
log sup

η∈ΓN
i

{
Pη

[
HN

C < HN
B

]}
≤ −Vi(C) + ε .

PROOF. Let δ > 0 and consider T0, C0, N0 > 0 satisfying the statement
of Lemma 5.1. For every integer N > N0 and every configuration η in XN ,

Eη

(
HN

B

)
≤ T0

∞∑
k=0

Pη

(
HN

B ≥ kT0
)

≤ T0

∞∑
k=0

exp
{
−kC0N

d
}

≤ T0
1− e−C0

,

which proves (5.8).
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We turn now to the proof of (5.9). Fix ε > 0. By Lemma 5.1 and since
Vi(C) <∞, for every δ > 0, there exists Tδ > 0 such that

lim
N→∞

1

N
log sup

η∈XN

{
Pη

[
Tδ ≤ HN

B

]}
≤ −Vi(C) .

For each integer N > 0, consider a configuration ηN in ΓN
i such that

PηN
[
HN

C ≤ Tδ
]
= sup

η∈ΓN
i

{
Pη

[
HN

C ≤ Tδ
]}

.

Let Cδ be the subset ofD([0, Tδ],M+) consisting of all those paths π for
which there exists t in [0, Tδ] such that π(t) or π(t−) belongs to C. Notice
that Cδ is the closure of πN({HN

C ≤ Tδ}) in D([0, Tδ],M+).
Recall that every subsequence of πN(ηN) contains a subsequence con-

verging in M+ to some ϑ that belongs to M+,1. Hence, by the dynamical
large deviations upper bound, there exists a measure ϑδ(du) = γδ(u)du in
Γi ∩M+,1 such that

lim
N→∞

1

N
logPηN

(
HN

C ≤ Tδ
)

≤ lim
N→∞

1

N
logQηN (Cδ) ≤ − inf

π∈Cδ
ITδ

(π|γδ) .

Therefore, since

lim
N→∞

1

N
log{aN + bN} ≤ max

{
lim

N→∞

1

N
log aN , lim

N→∞

1

N
log bN

}
,

the left hand side in (5.9) is bounded above by

max

{
−Vi(C),− inf

π∈Cδ
ITδ

(π|γδ)
}
,

for every δ > 0. Thus, in order to conclude the proof, it is enough to check
that there exists δ > 0 such that

inf
π∈Cδ

ITδ
(π|γδ) ≥ Vi(C)− ε .

This bound is proved by the argument as we did in the proof of Lemma
5.3. □

To finish the proof of the large deviations upper bound, it is enough to
show that, for each 1 ≤ i ≤ l,

lim
N→∞

1

N
logPN(Bδ(ϑ̄i)) ≤ −wi + w .

However one can prove this bound by Lemma 5.6 and the argument pre-
sented in the first part of this subsection.
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