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THE DETERMINANT AND THE DISCRIMINANT OF
A COMPLETE INTERSECTION OF EVEN DIMENSION

YASUHIRO TERAKADO

Abstract. The determinant of the Galois action on the ℓ-adic
cohomology of the middle degree of a proper smooth variety of
even dimension defines a quadratic character of the absolute Galois
group of the base field. In this article, we show that for a complete
intersection of even dimension in a projective space, the character
is computed via the square root of the discriminant of the defining
polynomials of the variety.

Introduction

Let k be a field, k̄ an algebraic closure of k and ks the separable
closure of k contained in k̄. Let Γk = Gal(ks/k) = Autk(k̄).

Let X be a proper smooth variety of even dimension m over k.
If ℓ is a prime number invertible in k, the ℓ-adic cohomology V =
Hm(Xk̄,Qℓ(

m
2
)) defines an orthogonal representation of the absolute

Galois group Γk. The determinant

detV : Γk → {±1} ⊂ Q×
ℓ

is independent of the choice of ℓ (Corollary 2.2).
In this introduction we assume that the characteristic of k is not

2. Let f1, . . . , fr be homogeneous polynomials of n + 1 variables of
degrees d1, . . . , dr of coefficients in k. Let X be the intersection of
r hypersurfaces defined by these polynomials in a projective space of
dimension n. In 2012, O. Benoist[1] studied the discriminant of a
complete intersection and gave an explicit formula of its degree. The
discriminant, here denoted by disc(f1, . . . , fr), is a polynomial of the
coefficients of f1, . . . , fr, and is defined in [1] up to sign by the property
that X is smooth of dimension n− r if and only if disc(f1, . . . , fr) ̸= 0.

Further, we assume that n−r is even. In this case, we determine the
sign of the discriminant by the property that the discriminant modulo 4
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is a square (Theorem 2.3.1). Let us denote the discriminant defined in
these steps by discσ(f1, . . . , fr). We shall prove below (Theorem 2.3.2):

Theorem 0.1. Assume that X is smooth of dimension m = n − r.
Then the quadratic character detV is defined by the square root of
discσ(f1, . . . , fr).

In other words, the kernel of detV : Γk → {±1} is the subgroup of

Γk corresponding to the field extension k(
√
discσ(f1, . . . , fr))/k.

Let us briefly outline the contents of this paper. In Section 1, we
study the discriminant disc(f1, . . . , fr) of a complete intersection. We
follow the method of Benoist in [1]. However, we see the variety XA

in [1] as a projective space bundle over the projective space in order
to give another calculation of the degree of the discriminant, therefore
we recall the detail. We construct the universal family of intersections
of hypersurfaces in the projective space, and consider the subset of
the parameter space consisting of the points corresponding to singular
fibers. We show the subset is identified with the underlying set of the
projective dual of a smooth projective variety. This variety is equal to
the projective toric variety XA in [1] (Remark 1.10), though we treat it
as a projective space bundle over the projective space. We then verify
that the projective dual is an irreducible divisor in the parameter space
(Corollary 1.15). We define the discriminant of complete intersections
as the defining polynomial of the divisor.

In Subsection 1.22, we calculate the degree of the discriminant in
a different way from that in [1]. We give a new explicit presentation
of the degree, though we do not know the relation between this and
Benoist’s formula.

In Section 2, we prove the main theorem. We first recall the quadratic
character of the absolute Galois group defined by the determinant of the
ℓ-adic representation of the middle degree of a proper smooth variety
defined over a field. In [8], T. Saito showed that, for a smooth hypersur-
face of even dimension, the character is computed via the square root
of the discriminant of a defining polynomial of the hypersurface. We
adapt his method to extend the result to our case of smooth complete
intersections of even dimension. By the same argument on universal
families as in the case of hypersurface, the theorem is true up to a sign
of the discriminant. Then the sign is determined by properties of the
discriminant modulo 4.

Finally, in Section 3, we give an explicit presentation of the dis-
criminant of intersections of two quadrics (Theorem 3.6). Let F1 =∑

0≤i≤j≤nC
(1)
ij XiXj and F2 =

∑
0≤i≤j≤nC

(2)
ij XiXj be universal homo-

geneous polynomials of degree 2. Let R = Z[t1, t2] be the polynomial
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ring with variables t1, t2. We see t1F1 + t2F2 as a quadratic form with
variables X0, . . . , Xn and denote its discriminant by disc(t1F2+ t2F2) ∈
R[(C

(l)
ij )]. Further we see disc(t1F2 + t2F2) as a binary form with vari-

ables t1, t2 and denote its discriminant by disc(disc(t1F1 + t2F2)) ∈
Z[(C(l)

ij )].

Theorem 0.2. 1. Let n ≥ 2 be an even integer. Then the equation

disc(F1, F2) = disc(disc(t1F1 + t2F2))

holds up to sign.
2. Let n ≥ 3 be an odd integer. Then the equation

disc(F1, F2) = 2−2(n+1) disc(disc(t1F1 + t2F2))

holds up to sign.

The discriminant of a quadratic polynomial is the determinant of
the symmetric matrix corresponding to the quadratic form. Further,
the discriminant of a binary polynomial is given by the Sylvester’s
determinant. Thus the above equality give explicit presentation of the
discriminant of the complete intersection of two quadrics.

The author was imformed by Takeshi Saito that Jean-Pierre Serre
suggested him that the discriminant of a complete intersection of two
quadrics should be given by those of a binary polynomial and a qua-
dratic polynomial.

The cohomology of such an intersection is generated by algebraic
classes of linear subspaces. The intersection theory of these classes is
studied in detail in [6] and [7]. We give an application of the main
theorem to this subject.

1. Discriminant

1.1. Ordinary quadratic singularity. We recall the definition of an
ordinary quadratic singularity [3, Exposé XV, 1.2], [3, Exposé XVII,
1.1], [2, Exposé VI, 6.6]. Let k be an algebraically closed field. A
quadratic form with n+1 variables over k is called a ordinary quadratic
form if the hypersurface of Pnk defined by the vanishing of the form is
smooth over k if n ≥ 1, and is non-zero if n = 0.

Definition 1.2. Let k be a field. Let X be a k-scheme of finite type,
x be a closed point of X, and n be a dimension of X at x.

1. For k algebraically closed, we call x an ordinary quadratic sin-

gularity of X if the completion ÔX,x of the local ring of X at x is
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isomorphic to the quotient k[[x0, . . . , xn]]/(g) of the ideal generated by
a formal series g(x0, . . . , xn) such that

g(x0, . . . , xn) = q(x0, . . . , xn) + (terms of degree > 2)(1)

where q(x0, . . . , xn) is an ordinary quadratic form.
2. If k̄ is an algebraic closure of k, we call a closed point x ∈ X is

an ordinary quadratic singularity if the points of X = X ×k k̄ on x are
ordinary quadratic singularities of X.

If k is algebraically closed, and if char k ̸= 2 or n is even, the
condition (1) is equivalent to the condition :

m̂X,x =

(
∂g

∂x1
, . . . ,

∂g

∂xn

)
.(2)

1.3. Dual variety. We recall the formalism of the dual variety [3,
Exposé XVII, 3.1, 5.1]. Let S be SpecZ or Spec k for a field k. Let PN
denote the N -dimensional projective space over S, and P∨ denote the
dual projective space. A point in P∨ corresponds to a hyperplane H in
PN .

Let Z be a proper smooth irreducible S-scheme, purely of dimension
n ≥ 1 over S, with closed immersion Z ↪→ PN . Let I ⊂ OPN be the
ideal sheaf defining Z. Let N = (I/I2)∨ denote the normal sheaf and
let P(N ) = ProjS•N denote the associated projective space bundle
over Z.

We view the projective bundle P(N ) over Z as a closed subscheme
of PN × P∨. We have an exact sequence of coherent sheaves on Z

0 → I/I2 → ΩPN ⊗OZ → ΩZ → 0.(3)

On the other hand, we have an exact sequence of sheaves on PN

0 → ΩPN/S → (OPN (−1))N+1 → OPN → 0

and its restriction to Z

0 → ΩPN/S ⊗OZ → (OZ(−1))N+1 → OZ → 0.(4)

By (3) and (4), we have an injection I/I2 → (OZ(−1))N+1 and its dual
gives a surjection OZ(1)

N+1 → N . Hence we have an closed immersion

P(N ) ↪→ P(OZ(1)
N+1) ∼= Z × P∨ ↪→ PN × P∨.

We define φ : P(N ) → P∨ by the composition P(N ) ↪→ Pn×P∨ → P∨.
We denote the reduced induced closed subscheme structure of the

image of φ by Z∨ and call it the dual variety of Z (with respect to the
immersion Z ↪→ PN).
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Proposition 1.4. (c.f. [3, Exposé XVII, Proposition 3.1.4]) The dual
variety Z∨ is an irreducible and proper S-scheme of relative dimension
≤ N − 1.

Proof. Since P(N ) is a projective space bundle over the irreducible
scheme Z, it is irreducible and its image Z∨ is also irreducible.

The S-scheme P(N ) is of relative dimension N − 1 if Z ̸= PN , and
is empty if Z = PN . □

Let k be an algebraically closed field and let Spec k → S be a geo-
metric point. Let the suffix k denote the base change to Spec k over S.
By [3, Exposé XVII, (3.1.1)], the set of k-valued points P(N )k(k) ⊂
PNk (k)× P∨

k (k) consists of the pairs (x,H) ∈ PNk (k)× P∨
k (k) such that

H is hyperplanes tangent to Zk at x.
The set of k-valued points of the dual variety Z∨

k is the set of hyper-
planes tangent to Zk.

Let φ : P(N ) → P∨ be the canonical morphism. By [3, Exposé XV,
1.3.4], there exists an open subset W of P(N ) consisting of the points
w such that w is an ordinary quadratic singularity in the intersection
Z ∩ Hφ(w) where Hφ(w) is the hyperplane in PN corresponding to the
point φ(w).

Now we consider the case that S = Spec k for an algebraically closed
field k. Recall the notion of a multiple of an immersion i : Z ↪→ PN .
Let d ≥ 2 be an integer. Then we can obtain an immersion of Z
into a projective space by the composition of i : Z ↪→ PN and Segre

embedding Sd : PN ↪→ PN ′
where N ′ =

(
N + d
d

)
− 1. We call this

composition by The d-uple embedding of i.
We will use the following proposition due to N. Katz.

Proposition 1.5. Let S = Spec k for an algebraically closed field k.
Let d ≥ 2 be an even integer and id : Z ↪→ PN be the d-uple embedding
of a immersion of Z into a projective space over k. Further let φ :
P(N ) → P∨ be the canonical morphism associated to id.

1. The open set W is dense in P(N ).
2. Assume that n = dimk Z is even or chark ̸= 2. Then, the canon-

ical morphism φ : P(N ) → Z∨ is birational. More precisely, the fol-
lowing two open sets of Z∨ are equal ;

a) the maximum open subset V of Z∨ where the morphism φ :
P(N ) → Z∨ induce an isomorphism φ−1(V ) ∼= V ,

b) the subset of Z∨ consisting of the points corresponding to hyper-
planes H, such that the intersection Z∩H has a unique singular point,
which is ordinary quadratic.
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Proof. 1. By [3, Exposé XVII, (3.7.1)], there exists a hyperplane H
such that Z ∩H has an ordinary quadratic singularity and hence the
open subschemeW is non-empty. Since P(N ) is irreducible, it is dence.

2. By the assertion 1 and [3, Exposé XVII, Proposition 3.3], The
morphism φ : P(N ) → P∨ is generically unramified. Hence, the asser-
tion follows from [3, Exposé XVII, Proposition 3.5]. □

1.6. The universal family of intersections of hypersurfaces. We
fix integers 0 ≤ r ≤ n. We consider the polynomial ring Z[X0, . . . , Xn]
and the free Z-module E =

⊕n
i=0 Z · Xi. For an integer d ≥ 1, we

identify the d-th symmetric power SdE defined over Z with the free Z-
module of finite rank consisting of homogeneous polynomials of degree
d in Z[X0, . . . , Xn]. If α = (α0, . . . , αn) ∈ Nn+1 is a multi-index, we
put Xα = Xα0

0 · · ·Xαn
n ∈ Z[X0, . . . , Xn] and |α| = α0 + · · · + αn. The

monomials Xα of degree |α| = d form a basis of SdE.
We put Pn = P(E) = ProjZ[X0, . . . , Xn] and fix integers d1, . . . , dr ≥

1. We assume that dl ≥ 2 for an index l (1 ≤ l ≤ r). Further we
put V =

⊕
1≤j≤r S

djE and let P∨ = P(V ∨) = Proj(S•(V ∨)) be the

projective space defined by the dual V ∨ = Hom(V,Z). Let (C(j)
α )|α|=dj

be the dual basis of (SdjE)∨ and define the universal polynomials Fj =∑
|α|=dj C

(j)
α Xα. Then we define a closed subscheme X ⊂ Pn × P∨

by the equations F1 = · · · = Fr = 0. This is the universal family of
intersections of r hypersurfaces.

Let k be an algebraically closed field and let s : Spec k → P∨ be
a geometric point. Then this s corresponds to a sequence of homo-
geneous polynomials f1, . . . , fr of degrees d1, . . . , dr of coefficients in
k. The geometric fiber Xs of π is isomorphic to the intersection of r
hypersurfaces in Pnk defined by the polynomials f1, . . . , fr.

Let J be the ideal sheaf of OPn×P∨ defined by all the r × r minor
determinants of the Jacobian matrix

J(F1, . . . , Fr) =

((
∂Fj
∂Xi

)
0≤i≤n,1≤j≤r

)
of the universal polynomials F1, . . . , Fr. We define a closed subscheme
∆X ⊂ X by the ideal sheaf J · OX .

Let π : X ⊂ Pn × P∨ → P∨ be the canonical map. By the Jacobian
criterion, the complement U = X − ∆X is the maximum open sub-
scheme of X on which the morphism π : X → P∨ is smooth of relative
dimension n− r.

Proposition 1.7. Let k be an algebraically closed field. Let (x, s) ∈
(∆X)k ∈ Pnk × P∨

k be a closed point and let (f1, . . . , fr) be homogeneous
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polynomials of degrees d1, . . . , dr of coefficients in k corresponding to the
closed point s ∈ P∨

k . Then, the following two conditions are equivalent.
1. The point x is a closed point at which the fiber Xs is of dimension

n− r, and is an ordinary quadratic singularity of Xs.
2. There exists an index l (1 ≤ l ≤ r) such that x is a closed

point at which the intersection V ((f1, . . . , fl−1, fl+1, . . . , fr)) of r − 1
hypersurfaces in Pnk is smooth of dimension n − r + 1, and x is an
ordinary quadratic singularity of Xs.

If char ̸= 2 or n− r is odd, the conditions 1, 2 are further equivalent
to :

3. The morphism π|(∆X)k : (∆X)k → P∨
k is unramified at (x, s) ∈

(∆X)k.

Proof. 1 ⇒ 2. The assumption implies that the rank of the Jacobian
matrix J(f1, . . . , fr) at x is r − 1.

2 ⇒ 1. Obvious.
1⇒ 3. We assume that x is a closed point at whichXs is of dimension

n − r, and is an ordinary quadratic singularity of Xs. We assume

x ∈ D+(Xi)k for a fixed i (0 ≤ i ≤ n). We write ϕj = X
−dj
i fj.

We identify the fiber Pnk × s with Pnk . Then by 1.1.(2), there is an
isomorphism

ÔPn
k ,x

∼= k[[x1, . . . , xn]]

such that

ÔXs,x = ÔPn
k ,x
/(ϕ1, . . . , ϕr) ∼= k[[x1, . . . , xn−r+1]]/(g(x1, . . . , xn−r+1))

and m̂Xs,x
∼=
(
∂g
∂x1
, . . . , ∂g

∂xn−r+1

)
. Hence we have JPn

k ,x
· ÔXs,x = m̂Xs,x.

This implies Ô(∆X)k,(x,s) ⊗ÔP∨
k
,s
κ(s) ∼= κ(s)(= k).

3 ⇒ 1. We assume that π|(∆X)k : (∆X)k → P∨
k is unramified at

(x, s). Let v denote the rank of the Jacobian matrix J(ϕ1, . . . , ϕr)(x)
at x. Then there are v integers {k1, . . . , kv} ⊂ {1, . . . , r} such that the
intersection V ((ϕk1 , . . . , ϕkv)) ⊂ D+(Xi)k ⊂ Pnk is smooth of dimension
n − r + v at x and V ((ϕk1 , . . . , ϕkv , ϕh)) is not smooth at x for h /∈
{k1, . . . , kv}. So the ideal JPn

k ,x
· ÔPn

k ,x
⊂ ÔPn

k ,x
generated by the r × r

minor determinants of J(ϕ1, . . . , ϕr) is contained in (m̂Pn
k ,x

)r−v. By the

assumption, we have JPn
k ,x

· ÔPn
k ,x

+ (ϕ1, . . . , ϕr) = m̂Pn
k ,x

and hence
r − v = 1. So we have an isomorphism

ÔPn
k ,x

∼= k[[x1, . . . , xn]]

and an integer l such that

ÔPn
k ,x
/(ϕ1, . . . , ϕl−1, ϕl+1, . . . , ϕr) ∼= k[[xr, . . . , xn]]
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and ϕl 7→ g with ∂g
∂xi

(0) = 0 (1 ≤ i ≤ n), and further m̂Pn
k ,x

∼=
(x1, . . . , xr−1, g,

∂g
∂xr
, . . . , ∂g

∂xn
). Hence we have ÔXs,x

∼= k[[xr, . . . , xn]]/(g)

with m̂Xs,x
∼=
(
∂g
∂xr
, . . . , ∂g

∂xn

)
. By 1.1 (2), the assertion follows. □

1.8. The dual variety and the discriminant. We define a closed
subscheme DX ⊂ P∨ as the image π(∆X) with the reduced struc-
ture. For an algebraically closed field k, the set of k-valued points
DX(k) consists of the sequences of homogeneous polynomial (f1, . . . , fr)
of degrees d1, . . . , dr of coefficients in k such that the intersections
V ((f1, . . . , fr)) ⊂ Pnk are singular. We show that DX is an irreducible
divisor (Corollary 1.15). We can reduce this problem on complete
intersections of r hypersurfaces in Pn to that on hypersurfaces in a
Pr−1-bundle T = P(E) = ProjS•E on Pn associated to a locally free
OPn-module E = O(d1)⊕ · · · ⊕ O(dr).

We identify

Γ(T,OT (1)) = Γ(Pn, E) = Γ(Pn,O(d1)⊕ · · · ⊕ O(dr)) = V.

Let ((Sα,1, |α| = d1), . . . , (Sα,r, |α| = dr)) denote the basis ((Xα, |α| =
d1), . . . , (X

α, |α| = dr)) of V = Γ(T,OT (1)). We consider the section

s =
∑
|α|=d1

C
(1)
|α|Sα,1 + · · ·+

∑
|α|=dr

C
(r)
|α|Sα,r

∈ V ⊗ V ∨ = Γ(T × P∨,OT (1)⊗OP∨(1)).

We define a closed subscheme Y of T × P∨ by the equation s = 0. Let
ψ : Y ⊂ T × P∨ → P∨ be the canonical map.

For V = Sd1E ⊕ · · · ⊕ SdrE, we put N = dim(V ) − 1 and PN =
P(V ) = Proj(S•V ). The projective space P∨ = P(V ∨) is the dual of
PN parametrizing hyperplanes in PN . The Z-module V is identified
with the space of global sections Γ(T,OT (1)) of the invertible sheaf
OT (1) on T .

Lemma 1.9. The invertible sheaf OT (1) is very ample relatively to
SpecZ. More explicitly, the global sections

(Sα,1, |α| = d1), . . . , (Sα,r, |α| = dr)

define a closed immersion v : T ↪→ PN = P(V ).

Proof. For the sections Sα,j, we define open sets Uα,j ⊂ T by Uα,j =
{x ∈ T | (Sα,j)x /∈ mxOT (1)x}.

Let p : T → Pn denote the canonical map and D+(Xi) ⊂ Pn (0 ≤
i ≤ n) denote the fundamental open sets. Then we have D+(Xi) ∼=
SpecZ[x0, . . . , xi−1, xi+1, . . . , xn] where xk =

Xk

Xi
(0 ≤ k ≤ n, k ̸= i). On
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the open subscheme D+(Xi), the section X
dj
i ∈ Γ(D+(Xi),O(dj)) gives

the trivialization O(dj)|D+(Xi)
∼= OD+(Xi)(1 ≤ j ≤ r). Let Tj denote

this generator X
dj
i . Then we have an isomorphism

p−1(D+(Xi)) ∼= D+(Xi)× ProjZ[T1, . . . , Tr] = D+(Xi)× Pr−1
Z .

For 0 ≤ i ≤ n and 1 ≤ j ≤ r, we define multi-indices αi,j =
(α0, . . . , αn) by αk = 0 (k ̸= i) and αi = dj. Then we have Uαi,j ,j

∼=
D+(Xi)×D+(Tj) ⊂ D+(Xi)×Pr−1

Z for any fixed i. Thus the open sets
(Uαi,j ,j)0≤i≤n,1≤j≤r cover T .

We show that for each Uαi,j ,j, the global sections define a closed
immersion Uαi,j ,j → PN . We have an isomorphism

Uαi,j ,j
∼= SpecZ

[
x0, . . . , xi−1, xi+1, . . . , xn,

T0
Tj
, . . . ,

Tr
Tj

]
where xk =

Xk

Xi
as above. For each i and j, we define a ring homomor-

phism

Z
[
(sα,j′)1≤j′≤r,|α|=dj′ ,(α,j′ )̸=(αi,j ,j)

]
→ Γ(Uαi,j ,j,OT )

by the indeterminate sα,j′ mapping to the element Sα,j′/Sαi,j ,j. Then
this morphism is surjective. In fact, in the isomorphism

Γ(Uαi,j ,j,OT ) ∼= Z
[
x0, . . . , xi−1, xi+1, . . . , xn,

T0
Tj
, . . . ,

Tr
Tj

]
,

the indeterminate sαi,j′ ,j′ maps to
Tj′

Tj
. Further, for the multi-indices

αi,j,l = (α0, . . . , αn) (0 ≤ l ≤ n, l ̸= i) defined by αk = 0(k ̸= i, l) and
αi = dj − 1 and αl = 1, the indeterminate sαi,j,l,j maps to xl. □

We consider T as a closed subscheme of PN by the immersion v.

Remark 1.10. For any algebraically closed field k, the base change
Tk ⊂ PNk is equal to the projective toric variety XA ⊂ PNk introduced
in [1]. We recall the definition of the variety XA. We consider the
finite set A = {YjXα}1≤j≤r,|α|=dj of monomials in n + r + 1 variables
Y1, . . . , Yr, X0, . . . , Xn. Each monomial YjX

α in A defines the function

(k×)n+r+1 → k× : (y1, . . . , yr, x0, . . . , xn) 7→ yjx
α.

The variety XA ⊂ PNk is defined by the closure of the set

X0
A = {[y1xα : . . . : yrx

α] : 1 ≤ j ≤ r, |α| = dj, (y1, . . . , xn) ∈ (k×)n+r+1}.

Then the set X0
A is included in Tk by the definition of the embedding

v : Tk ↪→ PNk . Since Tk is irreducible, we have XA = Tk.
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As in Subsection 1.3, we consider the projective space bundle P(N )
over T with respect to the immersion v. We define a closed subvariety
∆Y ⊂ PN × P∨ by ∆Y = P(N ).

We have an explicit presentation of ∆Y . Let p : T → Pn denote the
canonical map. Recall that

p−1(D+(Xi)) ∼= D+(Xi)× Pr−1
Z .

Let Φj = X
−dj
i Fj. Then Y ×T×P∨ p−1(D+(Xi)) × P∨ is defined in

p−1(D+(Xi)) × P∨ by the equation Φ1T1 + · · · + ΦrTr = 0. Hence the
closed subscheme ∆Y×T×P∨p−1(D+(Xi))×P∨ is defined in p−1(D+(Xi))×
P∨ by the equations of the row vectors

(Φ1, . . . ,Φr) = 0, (T1, . . . , Tr)J(Φ1, . . . ,Φr) = 0

where J(Φ1, . . . ,Φr) =
(
∂Φj

∂xl

)
0≤l≤n,l ̸=i,1≤j≤r

.

Lemma 1.11. The restriction of the morphism T × P∨ → Pn × P∨ to
∆Y induce a surjective morphism δ : ∆Y → ∆X . In particular, ∆X is
irreducible.

Proof. Recall that π : X → P∨ is the universal family. Let k be
an algebraically closed field. Let (x, s) ∈ Pnk × P∨

k be a closed point.
Then the point s ∈ P∨

k corresponds to a sequence of homogeneous
polynomials f1, . . . , fr of degrees d1, . . . , dr of coefficients in k. We
assume x ∈ D+(Xi)k ⊂ Pn(k) for a fixed i (0 ≤ i ≤ n) and write

ϕj = X
−dj
i fj. Then (x, s) is in (∆X)k if and only if ϕ1(x) = · · · =

ϕr(x) = 0 and the Jacobian matrix J(ϕ1, . . . , ϕr) has rank < r at x.
This is equivalent to that ϕ1(x) = · · · = ϕr(x) = 0 and there exists a
non-trivial vector value (t1, . . . , tr) ∈ kr − {0} such that

(t1, . . . , tr)J(ϕ1(x), . . . , ϕr(x)) = 0.

Thus ∆Y maps onto ∆X as sets.
Since ∆Y = P(N ) is a projective space bundle over T , it is reduced

and irreducible. Hence the map δ : ∆Y → ∆X as sets induces a
morphism of schemes, and its image is irreducible. □

Recall that the projective dual T∨ is the image of φ : ∆Y (= P(N )) →
P∨ with the reduced induced closed subscheme structure.

Corollary 1.12. (c.f. [1, Proposition 3.1]) The scheme DX is isomor-
phic to T∨. In particular, DX is irreducible.

Proof. The latter assertion follows from Proposition 1.4. □
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Let ψ : Y → P∨ denote the canonical morphism. By [3, Exposé XV,
Corollaire 1.3.4], there exists an open subset WY of ∆Y consisting of
points w such that w is an ordinary quadratic singularity in the fiber
Yψ(w).

Further, let π : X → P∨ be the canonical morphism. In the same
way as above, there exists an open subset WX of ∆X consisting of
points u such that u is an ordinary quadratic singularity in the fiber
Xπ(u).

Lemma 1.13. For every algebraically closed field k, the geometric fiber
(WX)k is dense in (∆X)k.

Proof. Let l (1 ≤ l ≤ r) be an integer such that dl ≥ 2. Let f1, . . . , fl−1,
fl+1, . . . , fr be homogeneous polynomials of degrees d1, . . . , dl−1, dl+1, . . . , dr
of coefficients in k such that the intersection

Z = V ((f1, . . . , fl−1, fl+1, . . . , fr)) ⊂ Pnk
is smooth of dimension n−r+1. Then by Proposition 1.5.1, there exists
a homogeneous polynomial fl of degree dl such that the intersection
Z ∩ (fl = 0) = V ((f1, . . . , fr)) has an ordinary quadratic singularity
at a point x ∈ Pnk . If we denote the closed point corresponding to
(f1, . . . , fr) by s ∈ P∨

k , the closed point (x, s) ∈ Pnk × P∨
k belongs to

(WX)k.
Since (∆X)k is irreducible by Lemma 1.11, (WX)k is dense. □

Proposition 1.14. Let k be an algebraically closed field.
1. The inverse image δ−1((WX)k) is included in (WY )k. In particu-

lar, the open set (WY )k is dense in (∆Y )k.
2. Assume that n−r is even or char k ̸= 2. Let (W ′

Y )k be the subset
of (WY )k ⊂ (∆Y )k consisting of the images of geometric points w of
(WY )k that is a unique singular point in the geometric fiber Yψ(w).

Then, (W ′
Y )k is the maximum open subscheme of ∆Y where the re-

striction of the morphism ψ|(∆Y )k : (∆Y )k → P∨
k is an immersion.

Consequently, the canonical morphism (∆Y )k → (DX)k,red to the max-
imum reduced subscheme of (DX)k = T∨

k is birational.

Proof. 1. Let k be an algebraically closed field. By Lemma 1.13, the
open set (WX)k is not empty. Let (x, s) ∈ (WX)k be a point and
let (f1, . . . , fr) be homogeneous polynomials of degrees d1, . . . , dr of
coefficients in k corresponding to the s. Then by 1 ⇔ 2 in Proposition
1.7, there exists an integer l (1 ≤ l ≤ r) such that the intersection
V ((f1, . . . , fl−1, fl+1, . . . , fr)) ⊂ Pnk is smooth of dimension n − r + 1
and the intersection V ((f1, . . . , fr)) = Xs has an ordinary quadratic
singularity at x. We may assume x ∈ D+(Xi)k for some i (0 ≤ i ≤ n).
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Let us write ϕj = X
−dj
i fj for 1 ≤ j ≤ r. Then the Jacobian matrix

J(ϕ1, . . . , ϕl−1, ϕl+1, . . . , ϕr) has the full rank (= r− 1) at x. Hence the
equation (T1, . . . , Tr)J(ϕ1(x), . . . , ϕr(x)) = 0 has one dimensional roots
space. Thus there exists a unique point y ∈ Ys which maps to x ∈ Xs.

Further, if (t1, . . . , tr) ∈ kr − {0} is a non-trivial root of the above
equation, we have tl ̸= 0.

We show that the point y is an ordinary quadratic singularity of the
fiber Ys. The open subscheme Ys ×Tk p

−1(D+(Xi)k) of Ys is defined in
p−1(D+(Xi)k) by the equation ϕ1T1 + . . . + ϕrTr = 0. On the other
hand, by the assumptions on ϕ1, . . . , ϕr, there is an isomorphism of
complete local rings

ÔPn
k ,x

∼= k[[x1, . . . , xn]]

such that ϕj 7→ xj (1 ≤ j < l), ϕj 7→ xj−1 (l < j ≤ r) and ϕl 7→
g(xr, . . . , xn) where g = q(xr, . . . , xn) + (terms of degree > 2) with q
being an ordinary quadratic form. Hence we have an isomorphism

ÔYs,y
∼= k[[x1, . . . , xn, τ1, . . . , τr−1]]/(x1τ1+· · ·+xr−1τr−1+g(xr, . . . , xn)).

Since the degree 2 part of the series x1τ1+ · · ·+xr−1τr−1+g(xr, . . . , xn)
is an ordinary quadratic form, the point y is an ordinary quadratic
singularity in Ys. Thus the point (y, s) ∈ Tk × P∨

k belongs to (WY )k,
and hence δ−1((WX)k) ⊂ (WY )k.

The latter assertion follows from that (∆Y )k is irreducible.
2. By assertion 1 and [3, Exposé XVII, Proposition 3.3], the mor-

phism φ : (∆Y )k → P∨
k is generically unramified. Hence, the assertion

follows from [3, Exposé XVII, Proposition 3.5]. □
Corollary 1.15. ([1, Lemme 4.4.(ii)]) 1. Let k be an algebraically
closed field. We further assume that char k ̸= 2 or n− r is odd. Then
the subscheme (DX)k is irreducible and of codimension one in P∨

k .
2. The subscheme DX is irreducible and of codimension one in P∨.

Proof. 1. The scheme (∆Y )k is a projective space bundle over Tk, hence
irreducible. Hence its image T∨

k = (DX)k is also irreducible.
Since the dimension of the irreducible scheme (∆Y )k equals to the

dimension of P∨
k minus one, its image T∨

k = (DX)k is of codimension
one by Proposition 1.14.2. Thus the closed subscheme (DX)k ⊂ P∨

k is
irreducible and of codimension one.

2. Since the scheme ∆Y over Z is a projective space bundle over T ,
the irreducibility of DX follows from the same way as in 1. The latter
assertion follows from applying 1 to k = Q. □
Definition 1.16. By Corollary 1.15.2 , there exists a geometrically ir-

reducible polynomial in (C
(j)
I )1≤j≤r,|I|=dj with coefficients in Z uniquely
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defined up to ±1, such that it defines the closed subscheme DX ⊂ P∨.
We call this homogeneous polynomial defined up to sign the discrimi-
nant of complete intersetions and we denote it by disc(F1, . . . , Fr).

By specialization, the definition of the discriminant gives a meaning
to disc(f1, . . . , fr) for every homogeneous polynomials f1, . . . , fr in n+1
variables over a commutative ring R. Then the discriminant satisfies
the following smoothness criterion.

Proposition 1.17. Let f1, . . . fr be homogeneous polynomials of de-
grees d1, . . . , dr in n+1 variables of coefficients in a commutative ring
R. Then, the discriminant disc(f1, . . . , fr), defined up to a sign, is in-
vertible in R if and only if the corresponding intersection V ((f1, . . . , fr))
is a smooth complete intersection in the projective space PnR over R.

We deduce the irreducibility of the reduction of the discriminant
modulo p.

Proposition 1.18. (c.f. [1, Théorème 1.7]) Let p be a prime. Except
for p = 2 and n− r being even, the polynomial disc(F1, . . . , Fr) mod p
is geometrically irreducible in the CI . Consequently, the canonical mor-
phism (∆Y )Fp → (DX)Fp is birational.

Proof. Since (∆Y )Fp
is a projective space bundle over TFp

, it is reduced

and irreducible. Hence by the same proof as of [8, Proposition 2.11],
the fiber (DX)Fp = T∨

Fp
is a divisor of P∨

Fp
defined by a geometrically

irreducible polynomial.
The latter assertion follows from Proposition 1.14.2 and that (DX)Fp

is reduced. □

1.19. Properties of ∆X . Let k be an algebraically closed field.

Proposition 1.20. Assume that char k ̸= 2 or n− r is odd. Then the
morphism δ|δ−1((WX)k) : δ

−1((WX)k) → (WX)k is an isomorphism. In
particular, the scheme (WX)k is smooth.

Proof. First we show that (WX)k is reduced. Let u ∈ (WX)k be a closed
point. Let A be the henselization of OP∨

k ,π(u)
. Since X is regular, the

base change XA to the henselization is also regular. By [3, Exposé XV,
1.3.2.(i)], there exists an ordinary quadratic form q of n−r+1 variables
(x0, . . . , xn−r) with coefficients in A, and an element b in the maximal
ideal mA of A, such that the henselization of X at u is isomorphic
to a henselization at the origin of the subvariety of An−r+1

A defined
by the equation q − b = 0. Since XA is regular, we have b /∈ m2

A.
Since q is an ordinary quadratic form, we have the isomorphism JOA

∼=
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(x0, . . . , xn−r). Hence O(∆X)A,u
∼= A/(b), and it is reduced. Hence

(∆X)k is reduced at u.
Let (x, s) ∈ (WX)k be a closed point. By Proposition 1.14.1, there

exists a unique point y ∈ Ys which maps to x, which is an ordinary qua-
dratic singularity of the fiber Ys. Then by [3, Exposé XVII, Proposition
3.3], the morphism φ : (∆Y )k → (DX)k = T∨

k is unramified at (y, s).
This implies that the morphism δ : (∆Y )k → (∆X)k is unramified at
(y, s). Thus the morphism δ|δ−1((WX)k) : δ

−1((WX)k) → (WX)k is un-
ramified. On the other hand, since the scheme (∆X)k is irreducible, the
reduced open set (WX)k is integral. Since the morphism δ|δ−1((WX)k) is
of relative dimension 0 and unramified, thus it is étale. Further, since
δ|δ−1((WX)k) is radiciel, it is an open immersion, and hence an isomor-
phism. Since (∆Y )k is projective space over Tk, it is smooth and the
open subset δ−1((WX)k) is also smooth. 2. By Proposition 1.7, the
morphism π|(W ′

X)k : (W ′
X)k → (DX)k is unramified. Further, since this

morphism is relative dimension 0 and (DX)k is integral by Proposition
1.18, it is étale. On the other hand, it is radiciel by the definition of
(WX)k. Hence it is open immersion. □

Corollary 1.21. Assume that char k ̸= 2 or n − r is odd. Then the
schemes (∆X)k, (∆Y )k and (DX)k are birational to each other.

Proof. The assertion follows from Proposition 1.14.2 and Proposition
1.20.1 or 2. □

1.22. The degree of the discriminant of complete intersections.
To compute the degree of DX , we define a homogeneous polynomial
P (H,K) ∈ Z[H,K] by

P (H,K) = (d1H −K) · · · (drH −K).

We put d̄ = d1 · · · dr, ďi = d1 · · · di−1 · di+1 · · · dr for i = 1, . . . , r and
ď = ď1 + · · ·+ ďr.

Lemma 1.23. The degree of the discriminant is the coefficient of
hnkr−1 of the element

d̄ · hr
n−r∑
i=0

(
n+ 1
i

)
(n− i)kn−1−i(−h)i + ď · hr−1

n−r+1∑
i=0

(
n+ 1
i

)
kn−i(−h)i

(5)

in the ring Z[h, k]/(hn+1, P (h, k)) with respect to the basis (hikj; i =
0, . . . , n, j = 0, . . . , r − 1).
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Proof. The cycle class of X ⊂ PnZ × P∨ is given by [X] = cr(E(1P∨)) ∈
CHr(PnZ × P∨) and that of ∆Y ⊂ (T × P∨)X is given by

[∆Y ] = cn(Ω
1
Pn
Z/Z

(1T , 1P∨)) ∈ CHn((T × P∨)X).

Hence, we have [∆Y ] = cr(E(1P∨)) ∩ cn(Ω1
Pn
Z/Z

(1T , 1P∨)) ∈ CHr+n(T ×
P∨). Since the morphism ∆Y → DX is birational, the class [DX ] ∈
CH1(P∨) is the push-forward of [∆Y ]. Hence the degree of DX is equal
to the degree of the dimension 0-part

{c(E) ∩ c(Ω1
Pn
Z/Z

(1T ))}dim0 ∈ CH0(T ).

Let h = [c1(OPn
Z
(1))] and k = [c1(OT (1))] denote the classes of hy-

perplanes. Then, the Chow ring CH•(T ) is Z[h, k]/(hn+1, P (h, k)). For
i = 1, . . . , r, we define a homogeneous polynomial Pi(H,K) of degree
i−1 by requiring that P (H,K)−(−K)r−i−1Pi(H,K) is of degree ≤ r−i
in K. Since

c(E) · c(ΩPn
Z/Z(1T )) = (1 + d1h) · · · (1 + drh) · (1− h+ k)n+1(1 + k)−1

=
r∑
i=1

Pi(h, k) · (1− h+ k)n+1,

we obtain

{c(E)∩c(ΩPn
Z/Z(1T ))}dim0 = (n+1)Pr(h, k)(k−h)n+Pr−1(h, k)·(k−h)n+1.

Since

K · Pr(H,K) = d̄ ·Hr − P (H,K)

K2 · Pr−1(H,K) = ď ·Hr−1K − k̄ ·Hr + P (H,K),

the right hand side is equal to

(n+ 1)

(
d̄ · hr (k − h)n − (−h)n

k
+ Pr(h, k)(−h)n

)

+(ď·hr−1k−d̄·hr)· (k − h)n+1 − ((n+ 1)− ((n+ 1)k(−h)n + (−h)n+1)

k2

+Pr−1(h, k) · ((n+ 1)k(−h)n + (−h)n+1)

= d̄·hr
(
(n+ 1)

(k − h)n − (−h)n

k
− (k − h)n+1 − ((n+ 2)k(−h)n + (−h)n+1)

k2

)
+d̄ · hr−1 (k − h)n+1 − ((n+ 1)k(−h)n + (−h)n+1)

k

+(n+ 1)(Pr(h, k) + Pr−1(h, k)k)(−h)n + Pr−1(h, k)(−h)n+1.
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On the right hand side, the content of the big parantheses in the first
line is

(n+ 1)
n−1∑
i=0

(
n
i

)
kn−1−i(−h)i −

n−1∑
i=0

(
n+ 1
i

)
kn−1−i(−h)i

=
n−1∑
i=0

(
n+ 1
i

)
(n− i)kn−1−i(−h)i.

Since Pr(h, k) + Pr−1(h, k)k = ď · hr−1 and hn+1 = 0, the sum of the
remaining two lines is

ď · hr−1 ·
n∑
i=0

(
n+ 1
i

)
kn−i(−h)i.

Since the dimension 0-part is the component generated by hn · kr−1

of degree 1 with respect to the decomposition by the basis (hikj; i =
0, . . . , n, j = 1, . . . , r), the assertion follows. □

Corollary 1.24. If d1 = · · · = dr = d, the degree of DX is

(n− r + 2)

(
n+ 1
r − 1

)
dr−1(d− 1)n−r+1.(6)

If r ≥ 2 and if d1 − c = d2 = · · · = dr = d, it is the sum of (6) and

dr−2

n+1∑
j=r

(
n+ 1
j

)
cj−r+1(d− 1)n+1−j(7)

+(n+ 1)dr−1

n∑
j=r

(
n
j

)
cj−r+1(d− 1)n−j

+(r − 2)dr−1

n∑
j=r

cj−r+1

n−j∑
p=0

(
n− p
j

)
(−1)p(d− 1)n−p−j.

If d1 = · · · = dr = d > 1, the degree (6) of DX is strictly positive.

Proof. We put d1 = d+ c. Then, we have an isomorphism

Z[h, k]/(hn+1, P (h, k)) → Z[h, l]/(hn+1, lr−1(l − ch))

sending k to l+dh. Hence, the degree of DX is the coefficient of hnlr−1

of the polynomial obtained by substituting k = l + dh in (5). Since
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d̄ = dr−1(d + c) and ď = (r − 1)dr−1 + (d + c)dr−2, after substituting
k = l + dh and lr = clr−1h, we see that the coefficient of hnlr−1 is :

dr−1(d+ c)
n−r∑
i=0

(
n+ 1
i

)
(n− i)

n−i−1∑
j=r−1

(
n− i− 1

j

)
cj−r−1dn−i−j−1(−1)i

(8)

+((r−1)dr−1+(d+c)dr−2)
n−r+1∑
i=0

(
n+ 1
i

) n−i∑
j=r−1

(
n− i
j

)
cj−r+1dn−i−j(−1)i.

Since

(d+ c)
n−i−1∑
j=r−1

(
n− i− 1

j

)
cj−r+1dn−i−j−1

=

(
n− i− 1
r − 1

)
dn+1−i−r +

n−i∑
j=r

(
n− i
j

)
cj−r+1dn−i−j

and similarly for (d+ c)
∑n−i

j=r−1

(
n− i
j

)
cj−r+1dn−i−j, (8) is equal to

dr ·
n−r∑
i=0

(
n+ 1
i

)
(n− i)

(
n− i− 1
r − 1

)
dn−r−i(−1)i(9)

+rdr−1 ·
n−r+1∑
i=0

(
n+ 1
i

)(
n− i
r − 1

)
dn+1−m−i(−1)i

+dr−1

n∑
j=r

cj−r+1

n−j∑
i=0

(
n+ 1
i

)
(n+ r + 1− i)

(
n− i
j

)
dn−i−j(−1)i

+dr−2

n+1∑
j=r

cj−r+1

n+1−j∑
i=0

(
n+ 1
i

)(
n+ 1− i

j

)
dn+1−i−j(−1)i.

The sum of the first two lines in (9) is

rdr−1

n−r−1∑
i=0

(
n+ 1
i

)(
n+ 1− i

r

)
dn−r+1−i(−1)i

= rdr−1

(
n+ 1
r

) n−r+1∑
i=0

(
n− r + 1

i

)
dn−r+1−i(−1)i

= (n− r + 2)

(
n+ 1
r − 1

)
dr−1(d− 1)n−r+1.
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Similarly, the last line in (9) is equal to

dr−2

n+1∑
j=r

(
n+ 1
j

)
cj−r+1(d− 1)n+1−j.

Since (
n+ 1
i

)
(n+ r + 1− i)

(
n− i
j

)
= (j + 1)

(
n+ 1
i

)(
n+ 1− i
j + 1

)
+ (r − 2)

(
n+ 1
i

)(
n− i
j

)

= (n+ 1)

(
n
j

)(
n− j
i

)
+ (r − 2)

i∑
p=0

(
n− p
i− p

)(
n− j
j

)
,

similarly the third line in (9) is equal to

(n+ 1)dr−1

n∑
j=r

(
n
j

)
cj−r+1

n−j∑
i=0

(
n− j
i

)
dn−i−j(−1)i

+(r − 2)dr−1

n∑
j=r

cj−r+1

n−j∑
p=0

(
n− p
j

) n−j−p∑
i−p=0

(
n− j − p
i− p

)
dn−i−j(−1)i

= (n+ 1)dr−1

n∑
j=r

(
n
j

)
cj−r+1(d− 1)n−j

+(r − 2)dr−1

n∑
j=r

cj−r+1

n−j∑
p=0

(
n− p
j

)
(−1)p(d− 1)n−j−p.

□

Corollary 1.25. If n− r is even, the degree of DX is even.

Proof. If there exists at least 2 indices such that di is even, the integers
d̄ = d1 · · · dr and ď = ď1 + · · ·+ ďr are even.

We consider the case where there exists at most 1 index such that di
is even. By the same argument as in the proof of Corollary 1.24, the
congruences on di implies a congruence for the degree of DX . Hence,
if every di is congruent to 1, then the degree is even if n− r is even by
(6).

Assume there exists exactly 1 index such that di is even. We may
assume that i = 1, d ≡ c ≡ 1 (mod 2) in (1.24). Then, (7) is congruent
to 1+(n+1)+(r−2)(n−r+1) (mod 2) and is even if n−r is even. □
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1.26. The discriminant of hypersurfaces. Let r = 1 and fix a posi-
tive integers n and d = d1. Let F = F1 denote the universal polynomial
of degree d. We consider the resultant

res

(
∂F1

∂X0

, . . . ,
∂F1

∂Xn

)
of partial derivatives of F . It is a homogeneous polynomial of degree
m = (n+ 1)(d− 1)n in (CI)|I|=d1 with integral coefficients. If we put

a(n, d) =
(d− 1)n+1 − (−1)n+1

d
,

the greatest common divisor of the coefficients is da(n,d) by [5, Chap.
13.1.D Proposition 1.7].

Definition 1.27. We call

discd(F ) =
1

da(n,d)
res

(
∂F

∂X0

, . . . ,
∂F

∂Xn

)
the divided discriminant of F .

The relation between the discriminant of a complete intersection and
the divided discriminant of a hypersurface is as follows.

Proposition 1.28. If r = 1 and d1 = d, then the discriminant disc(F )
defined in Definition 1.16 equals to discd(F ) up to sign.

Proof. The assertion follows from Proposition 1.17 and the smoothness
criterion [8, Proposition 2.3] of the divided discriminant of hypersur-
face. □

2. Determinant

Let S be a normal integral scheme over Z and f : X → S be a
proper smooth morphism of relative even dimension n. For a prime
number ℓ invertible in the function field of S, the cup-product de-
fines a non-degenerate symmetric bilinear form on the smooth Qℓ-
sheaf Rnf∗Qℓ(

n
2
) on S[1

ℓ
]. Hence the determinant defines a character

π1(S[
1
ℓ
])ab → {±1} ⊂ Q×

ℓ of the fundamental group, which we denote
by [detHn

ℓ (X)].

Lemma 2.1 ([8, Lemma 3.2]). There exists a unique character

[detHn(X)] : π1(S)
ab → {±1}

such that, for every prime number ℓ invertible in the function field of
S, the composition with the map π1(S[

1
ℓ
])ab → π1(S)

ab induced by the

open immersion S[1
ℓ
] → S gives [detHn

ℓ (X)].
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Corollary 2.2 ([8, Lemma 3.3]). Let X be a proper smooth scheme of
even dimension n over a field k. Then, for a prime number ℓ invertible
in k, the character detHn(Xk̄,Qℓ(

n
2
)) of Γk is independent of ℓ.

By applying Lemma 2.1 to the universal family of intersections of r
hypersurfaces πU : XU → U , we define [detHn−r(X)] ∈ H1(U,Z/2Z).
Let now k be a field and let fj ∈ SdjE ⊗ k (1 ≤ j ≤ r) be ho-
mogeneous polynomials of degrees d1, . . . , dr which define a smooth
complete intersection Y in Pnk . Then, the pull-back in H1(k,Z/2Z) =
Hom(Γabk ,Z/2Z) of [detHn−r(X)] by the k-valued point of U corre-
sponding to (f1, . . . , fr) is given by the determinant of the orthogonal
representation Hn−r(Yk̄,Qℓ(

n−r
2
)) for a prime number ℓ invertible in k.

The Kummer sequence gives an exact sequence

0 → Γ(U 1
2
,O)×/(Γ(U 1

2
,O)×)2

∂→ H1(U 1
2
,Z/2Z) → Pic(U 1

2
)[2] → 0,

(10)

where we have written U 1
2
instead of UZ[ 1

2
] for typographical reasons,

and Pic(U 1
2
)[2] denotes the subgroup of Pic(U 1

2
) killed by 2.

Theorem 2.3. Let n ≥ 1 and d1, . . . , dr ≥ 1 be integers. Assume that
n− r is even and that dj ≥ 2 for an index j (1 ≤ j ≤ r).

1. Let m = deg(disc(F1, . . . , Fr)). Then there exists unique choice
of sign of the polynomial disc(F1, . . . , Fr) such that, there exist ho-
mogeneous polynomials A ∈ S

m
2 (V ∨) and B ∈ Sm(V ∨) such that

disc(F1, . . . , Fr) = A2 + 4B.
We denote this polynomial by discσ(F1, . . . , Fr).
2. The square roots of discσ(F1, . . . , Fr) define a Z/2Z-torsor on U 1

2
.

We denote by [discσ(F1, . . . , Fr)] the class of this torsor in H
1(U 1

2
,Z/2Z).

Then

[detHn−r(X)] = [discσ(F1, . . . , Fr)]

in H1(U 1
2
,Z/2Z).

Thus by a standard specialization argument, Theorem 2.3 implies
Theorem 0.1.

Proof. We have an exact sequence

0 → Γ(P∨
1
2
,O)× → Γ(U 1

2
,O)× → Z → Pic(P∨

1
2
) → Pic(U 1

2
) → 0.(11)

The Picard group Pic(P∨
1
2

) is canonically identified with Z by the gen-

erator [O(1)]. Then, the map Z → Pic(P∨
1
2

) is identified with the mul-

tiplication m = deg(disc(F1, . . . , Fr)) ̸= 0 since it sends 1 to the class
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[O(m)]. Thus, we have

Γ(U 1
2
,O)× = Γ(P∨

1
2
,O)× = Z

[
1

2

]×
= ⟨−1, 2⟩.

It also follows from (11) that Pic(U 1
2
) ∼= Z/mZ. Since m is even by

Corollary 1.25, this shows Pic(U 1
2
)[2] ∼= Z/2Z. Thus, by (10), we have

H1(U 1
2
,Z/2Z) ∼= ⟨−1, 2⟩/⟨−1, 2⟩2 ⊕ Pic(U 1

2
)[2] ∼= (Z/2Z)3.

Recall that DX is an irreducible divisor in P∨. Let ξ̄ be a geometric
generic point of DX and let Iξ̄ denote the absolute Galois group of the
fraction field of the strict henselization OP∨,ξ̄. Since the profinite group

Iξ̄ is isomorphic to Ẑ, we have Hom(Iξ̄,Z/2Z) ∼= Z/2Z.
We recall that disc(F1, . . . , Fr) is defined up to sign as the defining

polynomial of DX . Then the square roots of disc(F1, . . . , Fr) defines a
class of Z/2Z-torsor on U 1

2
up to sign. We denote by [± disc] this class

of torsor in H1(U 1
2
,Z/2Z)/⟨−1⟩.

Since we have Q ⊂ OP∨,ξ̄, the restriction map H1(U 1
2
,Z/2Z) →

Hom(Iξ̄,Z/2Z) induces a map H1(U 1
2
,Z/2Z)/⟨−1⟩ → Hom(Iξ̄,Z/2Z).

We show that the images of [detHn−r(X)] and [± disc] under this map
are both the unique non-trivial element. For the latter [± disc], this fol-
lows from that disc(F1, . . . , Fr) is the defining polynomial of the divisor
DX .

For the former [detHn−r(X)], this follows from the same argument as
that in the proof of [8, Theorem 3.5]. Let η̄ denote the geometric generic
point of SpecOP∨,ξ̄. We show that the character detHn−r(Xη̄,Qℓ) of Iξ̄
is the unique non-trivial character of order 2. By Proposition 1.20.2,
the geometric fiber Xξ̄ has a unique singular point which is an ordinary
quadratic singularity in Xξ̄. Hence, by the Picard-Lefschetz formula [3,
Exposé XV, Théorème 3.4 (ii)], we have an exact sequence

0 → Hn−r(Xξ̄,Qℓ) → Hn−r(Xη̄,Qℓ) → Qℓ(
n− r

2
)(12)

→ Hn−r+1(Xξ̄,Qℓ) → Hn−r+1(Xη̄,Qℓ) → 0

of ℓ-adic representation of the inertia group Iξ̄. Further, since X is
regular, the base change XOP∨,ξ̄

to the strict henselization is also reg-

ular. Hence by [3, Exposé XV, Théorème 3.4 (iii)], the inertia group
Iξ̄ acts on Qℓ

(
n−r
2

)
via the unique non-trivial character Iξ̄ → {±1}.

Since Iξ̄ acts trivially onHn−r+1(Xξ̄,Qℓ) and onHn−r(Xξ̄,Qℓ), the map
Qℓ(

n−r
2
) → Hn−r+1(Xξ̄,Qℓ) in (12) is the zero-map and the character

detHn−r(Xη̄,Qℓ) of Iξ̄ is non-trivial.
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The composition map

Γ(U 1
2
,O)×/(Γ(U 1

2
,O×)2 → H1(U 1

2
,Z/2Z) → Hom(Iξ̄,Z/2Z)

is 0 since the strict henselization OP∨,ξ̄ contains Q as a subfield. By
(11) we thus have a map Pic(U 1

2
)[2] → Hom(Iξ̄,Z/2Z).

Since the images of [detHn−r(X)] and [± disc] in Hom(Iξ̄,Z/2Z)
are non-trivial, the map Pic(U 1

2
)[2] → Hom(Iξ̄,Z/2Z) is an isomor-

phism of groups of order 2. Further by (11), the difference [± disc] −
[detHn−r(X)] is in the image of the map

Γ(U 1
2
,O)× = Z

[
1

2

]×
→ H1(U 1

2
,Z/2Z).

Therefore, [detHn−r(X)] equals either [± disc] or [±2 disc]. We show
that the latter case is not possible.

Let K be the local field of P∨ at the generic point of the fiber P∨
F2
.

Then, the character [detHn−r(X)] induces an unramified character of
the absolute Galois group GK . On the other hand, the class [±2 disc]
corresponds to a totally ramified quadratic extension of K. Hence we
obtain [detHn−r(X)] = [± disc].

Hence there exists a unique homogeneous geometrically irreducible
polynomial discσ(F1, . . . , Fr) of degree m such that discσ(F1, . . . , Fr)
equals disc(F1, . . . , Fr) up to sign and the Z/2Z-torsor defined by the
square roots of discσ on U 1

2
is isomorphic to [detHn−r(X)].

It remains to show that there exists a homogeneous polynomial A of
degree m

2
such that discσ(F1, . . . , Fr) ∼= A2 (mod 4).

We use the following fact.

Lemma 2.4. [8, Lemma 4.1] Let K be a complete discrete valuation
field such that 2 is a uniformizer. Let u ∈ O×

K be a unit which is not a
square and let L denote the quadratic extension K(

√
u).

1. The extension L is unramified over K if and only if there exists
a unit v ∈ O×

K such that u ∼= v2 (mod 4).
2. Assume that the extension L is unramified over K. Then, for

every unit v satisfying u ∼= v2 (mod 2), we have u ∼= v2 (mod 4).
Further, the corresponding residue field extension is given by the Artin-
Schreier equation t2 + t = w, where w is the image of 1

4
(uv−2 − 1) in

the residue field.

Let K be the local field of P∨ at the generic point ν of the fiber
P∨
F2
. Namely, K is the fraction field of the completion of the local

ring OP∨,ν . The residue field F = κ(ν) is the function field of P∨
F2
.

Take a global section A1 ∈ Γ(P∨,O(m
2
)) not divisible by 2. Then the
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germ of A1 generates the stalk (O(m
2
))ν . On the other hand, since the

polynomial discσ(F1, . . . , Fr) is not divisible by 2, its germ generates
the stalk (O(m))ν . Hence the ratio discσ(F1, . . . , Fr)/A

2
1 is a unit in

OP∨,ν .
By Theorem 2.3.2 we have

[detHn−r(X)] = [discσ(F1, . . . , Fr)]

in H1(UZ[ 1
2
],Z/2Z). Since the class [detHn−r(X)] is the restriction of a

class of H1(U,Z/2Z), the extension of K generated by the square root
of discσ(F1, . . . , Fr)/A

2
1 ∈ K× is an unramified extension. Hence by

Lemma 2.4.1, there exists a unit v ∈ O×
K such that discσ(F1, . . . , Fr) ≡

v2 · A2
1 (mod 4).

We consider the germ Ā = v ·A1 (mod 2) of the stalk of OP∨
F2
(m
2
) at

the generic point. Since its square is a germ of polynomial, the germ Ā
has the same property and it defines a global section Γ(P∨

F2
,O(m

2
)). Let

us choose a liftingA ∈ Γ(P∨,O(m
2
)) of this section. Since discσ(F1, . . . , Fr)/A

2 ≡
1 (mod 2), we have discσ(F1, . . . , Fr)/A

2 ≡ 1 (mod 4) by Lemma 2.4.2.
Namely, the difference discσ(F1, . . . , Fr)−A2 is divisible by 4 at ξ and
hence divisible on P∨. □

2.5. The determinant in characteristic 2. We denote [B ·A−2] by
the class in H1(UF2 ,Z/2Z) defined by t2 + t = B ·A−2, and we denote
again [detHn−r(X)] ∈ H1(UF2 ,Z/2Z) by the class of the pull-back of
[detHn−r(X)] ∈ H1(U,Z/2Z).

Theorem 2.6. Let n, d ≥ 2 be even numbers. Then we have

[B · A−2] = [detHn−r(X)]

in H1(UF2 ,Z/2Z).

Proof. By Theorem 2.3, the pull-back of [detHn−r(X)] inH1(UZ[ 1
2
],Z/2Z)

is defined by the square roots of

discσ(F1, . . . , Fr) ∈ Γ(U 1
2
,Z/2Z)×/(Γ(U 1

2
,Z/2Z)×)2.

Since the polynomial discσ(F1, . . . , Fr) is not divisible by 2, the poly-
nomial A is also not divisible by 2.

Let F be the function field of P∨
F2

as in the proof of Theorem 2.3.

Then the restriction map H1(UF2 ,Z/2Z) → Hom(ΓabF ,Z/2Z) is in-
jective. By Theorem 2.3 and Lemma 2.4, the classes [B · A−2] and
[detHn−r(X)] maps to the same element in Hom(ΓabF ,Z/2Z), and hence
we have [B · A−2] = [detHn−r(X)] in H1(UF2 ,Z/2Z). □
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3. The discriminant of the complete intersection of two
quadrics

In this section, we give an explicit presentation of the discriminant
of the complete intersection of two quadrics, by using the discriminant
of a quadric and that of a binary form.

Let F denote the universal homogeneous polynomial of degree d ≥
2. Recall that the divided discriminant discd(F ) of a hypersurface is
defined in 1.26.

Proposition 3.1. Let n ≥ 1 and d ≥ 2 be integers. We assume that
n is odd and define the sign ϵ(n, d) = ±1 by

ϵ(n, d) =

{
(−1)

d−1
2 if d is odd

(−1)
d
2

n+1
2 if d is even.

Then, we have

discσ(F ) = ϵ(n, d) · discd(F ).

Proof. By Proposition 1.28, the equality is true up to a sign. For the
sign, the assertion follows from Theorem 2.3 and [8, Theorem 4.2]. □

3.2. Quadrics. Let r = 1 and d = 2. Let F =
∑

0≤i≤j≤nCijXiXj and

X = (X0, . . . , Xn). Let A ∈ Mn+1(S
•((S2E)∨)) be the symmetric ma-

trix such that XAtX = 2F. Then the resultant of the partial derivatives
is

res

(
∂F

∂X0

, . . . ,
∂F

∂Xn

)
= detA.

We have a(n, 2) = (1− (−1)n+2)/2. Thus we have

discd(F ) =

{
2−1 detA if n− 1 is odd

detA if n− 1 is even,

deg(discd(F )) = n+ 1.(13)

3.3. Binary forms. Let n = 1 and r = 1. Let F = C0X
d
0+C1X

d−1
0 X1+

· · · + CdX
d
1 be the universal binary polynomial of degree d ≥ 2. The

divided discriminant discd(F ) is a homogeneous polynomial in (Ci) of
degree m = 2d− 2 and the sign ϵ(1, d) is (−1)d(d−1)/2. It is well known
that the discriminant discd(F ) is explicitly presented by the Sylvester’s
determinant.
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If the binary form F is decomposed as F =
∏d

i=1(uiT0− viT1), by [8,
(5.1.1)], we have

discd(F ) =
∏
i̸=j

(uivj − ujvi).(14)

Further we have a(1, d) = d−2 and discd(F ) = d−(d−2) res
(
∂F
∂X0

, ∂F
∂X1

)
.

We will use following properties of the resultant of two binary forms
to calculate the discriminant of a binary form. Let l, m ≥ 1 be integers
and

G(t0, t1) = a0t
l
0 + a1t

l−1
0 t1 + · · ·+ alt

l
1,(15)

H(t0, t1) = b0t
m
0 + b1t

m−1
0 t1 + · · ·+ bmt

m
1

be binary forms of degrees l and m over an algebraically closed field k.
Further, let

g(t) = a0 + a1t+ · · ·+ alt
l, h(t) = b0 + b1t+ · · ·+ bmt

m(16)

be polynomials in one variable corresponding to (15). They are of
degrees at most l and m. Then the resultant res(G,H) of binary forms
equals to the resultant resl,m(g, h) of polynomials in one variable.

Let x1, . . . , xl be the roots of g and y1, . . . , yl be the roots of h. By
[5, Ch12.(1.3)], if al ̸= 0 and bm ̸= 0, we have the product formula

resl,m(g, h) = aml b
l
m

∏
i,j

(xi − yj).(17)

Further, by [5, Ch12. p400], if l′ ≥ l we have

resl′,m(g, h) = bl
′−l
m resl,m(g, h).(18)

3.4. Intersection of two quadrics. In this subsection, we consider
the case r = 2 and d1 = d2 = 2. Then V = Γ(Pn,O(2)⊕O(2)) and we
identify the dual V ∨ with the module of pairs of quadratic forms over
Z.

Let k be an algebraically closed field. Let (f1, f2) ∈ V ∨
k = V ∨ ⊗

k be pair of quadratic forms of coefficients in k and let X(f1,f2) =
V ((f1, f2)) ⊂ Pnk be the intersection of the two quadrics defined by
f1, f2.

The following proposition is due to M. Reid.

Proposition 3.5. [7, Proposition 2.1] Let k be an algebraically closed
field of characteristic ̸= 2. Let (f1, f2) ∈ V ∨

k be non-zero homogeneous
polynomials of degree 2 with coefficients in k. LetM1,M2 ∈Mn+1(k) be
symmetric matrices such that XM1

tX = 2f1 and XM2
tX = 2f2 where

X = (X0, . . . , Xn). Then the following two conditions are equivalent.
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1. The intersection X(f1,f2) = V ((f1, f2)) is smooth of dimension
n− 2.

2. The binary form det(t1M1+ t2M2) is not identically zero, and has
at most simple roots. In other words, if this binary form is decomposed
as det(t1M1+ t2M2) =

∏n+1
i=1 (uiti−vit2), we have uivj ̸= ujvi for 0 ≤ i,

j ≤ n, i ̸= j.

Let F1 =
∑

0≤i≤j≤nC
(1)
ij XiXj and F2 =

∑
0≤i≤j≤nC

(2)
ij XiXj be uni-

versal homogeneous polynomials of degree 2. Let R = Z[t1, t2] be the
polynomial ring with variables t1, t2. We see t1F1+ t2F2 as a quadratic
form with variables X0, . . . , Xn and denote its divided discriminant by

discd(t1F2 + t2F2) ∈ R[(C
(l)
ij )]. Further we see discd(t1F2 + t2F2) as a

binary form with variables t1, t2 and denote its divided discriminant by

discd(discd(t1F1 + t2F2)) ∈ Z[(C(l)
ij )].

Theorem 3.6. 1. Let n ≥ 2 be an even integer. Then

discσ(F1, F2) = (−1)
n
2 discd(discd(t1F1 + t2F2)).

2. Let n ≥ 3 be an odd integer. Then the equation

disc(F1, F2) = 2−2(n+1) discd(discd(t1F1 + t2F2))

holds up to sign.

Proof. Let k be an algebraically closed field of char k ̸= 2. Let (f1, f2) ∈
V ∨
k be a pair of non-zero homogeneous polynomials of degree 2 and let
M1,M2 ∈ Mn+1(k) be corresponding symmetric matrices. By Propo-
sition 3.5 and 3.2, the closed subvariety X(f1,f2) in Pnk defined by the
zeros of the two polynomials f1, f2 is smooth of dimension n − 2 if
and only if the discriminant discd(t1F1 + t2F2) is not identically zero
and has only simple roots. Further by 3.3. (14), this condition is
equivalent to discd(discd(t1F1 + t2F2)) ̸= 0. Hence we have the equal-
ity V (discd(discd(t1F1 + t2F2)))Z[ 1

2
] = (DX)Z[ 1

2
] as subsets of P∨

Z[ 1
2
]
. By

3.3, the degrees of the two polynomials discd(discd(t1F1 + t2F2)) and
disc(F1, F2) are both 2n(n + 1). The discriminant discd(F1, F2) is ge-
ometrically irreducible in characteristic 0 and the greatest common
divisor of its coefficients is 1, and hence discd(discd(t1F1 + t2F2)) is the
multiple by a non zero integer of disc(F1, F2). By the above equality
as sets, for any prime p ̸= 2 the polynomial discd(discd(t1F1 + t2F2))
mod p is not identically zero. Thus there exists an integer s ≥ 0 such
that

2s disc(F1, F2) = discd(discd(t1F1 + t2F2)).(19)
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1. First we show s = 0. Let P ′ = P((S2E)∨) denote the space
of quadrics in Pn and let let D′ ⊂ P ′ be the divisor defined by the
discriminant of quadrics.

Let k = F2. The pair (f1, f2) defines the line l(f1,f2) = {t1f1 +
t2f2} ∼= P1

k in the space P ′
k. The intersection l(f1,f2) ∩D′

k is isomorphic
to the the hypersurface in the line l(f1,f2) defined by the binary form
discd(t1f1 + t2f2). Hence by the smooth criterion of the discriminant,
the value discd(discd(t1f1 + t2f2)) in k is not equals to zero if and only
if l(f1,f2) ∩ D′

k is smooth. Further, this is equivalent to that the line
l(f1,f2) intersects with D

′
k transversally.

By [3, Exposé XVIII, Théorème 2.5], there exists a Lefschetz pencil
l ⊂ P ′

k. Further by [3, Exposé XVIII, Proposition 3.2.10], the line l
intersects with D′

k transversally. We take quadratic forms f1, f2 corre-
sponding to two different points on l ⊂ P ′

k. (In the above notation, we
have l = l(f1,f2).) Then by (19), we have

2s disc(f1, f2) = discd(discd(t1f2 + t2f2)) ̸= 0 ∈ k = F2

and hence s = 0.
Next we calculate the sign. The degree of the polynomial discd(discd(t1F1+

t2F2)) is n+1, and the sign is ϵ(1, n+1) = (−1)n/2. Thus the assertion
follows from Proposition 3.1.

2. We assume that the dimension n − 2 ≥ 1 of the complete inter-
section of two quadrics is odd. We define a pair of quadratic forms
(f1, f2) ∈ V ∨ over Z by

f1 =

n−1
2∑
i=1

X2i−1X2i +X2
n

f2 = X2
0 +

n−1
2∑
i=0

X2iX2i+1.

(20)

Let X(f1,f2) be the intersection defined over Z of the two quadrics f1
and f2. Then we show that its base extension (X(f1,f2))k to k = F2

is smooth of dimension n − 2. First we show that the dimension of
this scheme is n− 2. Since f1 and f2 are not constant multiple by any
element in k each other, it is sufficient to show that the forms f1 and
f2 are irreducible over k. Let denote f1 =

∑
0≤i,j≤n cijXiXj. Assume

that f1 is decomposed as(
n∑
k=0

akXk

)(
n∑
l=0

blXl

)
=

∑
0≤i,j≤n

cijXiXj.
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Then first we have an ̸= 0. Further we have b1 ̸= 0. Since a1bn +
anb1 = cn,1 + c1,n = 0, we have a1 ̸= 0 and a1b1 ̸= 0. This implies
a1b1 = c11 = 0 and it is a contradiction. Thus f1 is irreducible over
F̄2. The irreducibility of f2 is showed by the same way. Hence the
dimension of X(f1,f2) is n− 2.

Next we show the smoothness. The Jacobian of (f1, f2) over k is

J(f1, f2) =(
0 X2 X1 · · · X2i−1 X2i+2 X2i+1 X2i+4 · · · Xn−3 0
X1 X0 X3 · · · X2i+1 X2i X2i+3 X2i+2 · · · Xn−1 Xn−2

)
.

There exist following (2× 2) minor matrices(
0 X1

X1 X3

)
,

(
X2i−1 X2i+1

X2i+1 X2i+3

)
(1 ≤ i ≤ n− 2

2
),(21)

(
Xn−2 0
Xn−4 Xn−2

)
,

(
X2i X2i+2

X2i−2 X2i

)
(1 ≤ i ≤ n− 3

2
).(22)

Their determinants are

X2
1

X1X5 +X2
3

...

X2i−1X2i+3 +X2
2i+1

...

Xn−4Xn +X2
n−2

(23)



X2
n−2

Xn−1Xn−5 +X2
n−3

...

X2i+2X2i−2 +X2
2i+2

...

X4X0 +X2
2 .

(24)

These polynomials do not have any non-trivial common root in kn+1.
Hence by the Jacobian criterion, the variety (X(f1,f2))k is smooth. Thus
by the smoothness criterion of the discriminant, we have discd(f1, f2) ≡
1 mod 2.
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The (n+1)× (n+1) symmetric matrices corresponding to the qua-
dratic forms f1, f2 are

M1 =



0

0 1 O
1 0

0 1
1 0

. . .
0 1

O 1 0
2


,

M2 =



2 1

1 0 O
0 1
1 0

. . .
0 1
1 0

O 0 1
1 0


.
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Since the dimension n is odd, we have

discd(t1f1 + t2f2)

= det(t1M1 + t2M2)

= det



2t2 t2

t2 0 t1 O
t1 0 t2

t2 0 t1
t1

. . .
0 t2
t2 0 t1

O t1 0 t2
t2 2t1


= (−1)

n−1
2 · 4 · tn1 t2 + (−1)

n+1
2 tn+1

2 .

Hence

∂

∂t1
discd(t1f1 + t2f2) = (−1)

n−1
2 4ntn−1

1 t2,

∂

∂t2
discd(t1f2 + t2f2) = (−1)

n−1
2 4tn1 + (−1)

n+1
2 (n+ 1)tn2 .

Let

g1 = (−1)
n−1
2 4ntn−1, g2 = (−1)

n+1
2 (n+ 1) + (−1)

n−1
2 4tn.

Then we have

res

(
∂

∂t1
discd(t1f2 + t2f2),

∂

∂t2
discd(t1f1 + t2f2)

)
= resn,n(g1, g2).

By 3.3 (18), we have

resn,n(g1, g2) = ((−1)
n−1
2 4) resn−1,n(g1, g2).

Let y1, . . . , yn be the roots of the polynomial g2 in k = F2. Since the
polynomial g1 has 0 as n− 1-multiple root, by (17) we have

resn−1,n(g1, g2) = {(−1)
n−1
2 4n}n{(−1)

n−1
2 4}n−1

(
n∏
j=0

(0− yj)

)n−1

.
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Now we have
n∏
j=0

(−yj) =
(−1)

n+1
2 (n+ 1)

(−1)
n−1
2 · 4

= −n+ 1

4
.

Thus,

res

(
∂

∂t1
discd(t1f2 + t2f2),

∂

∂t2
discd(t1f1 + t2f2)

)
= −22(n+1) · nn(n+ 1)n−1.

Further, we have a(0, n+ 1) = n− 1 and hence

discd(discd(t1f1 + t2f2))

=
1

(n+ 1)n−1
(−22(n+1) · nn(n+ 1)n−1)

= −22(n+1) · nn.

Thus 1 ≡ disc(f1, f2) = 2−s discd(discd(t1f1+t2f2)) = 2−s(−22(n+1) ·nn)
(mod 2)．Since the integer n is odd, we have that s = 2(n+ 1)． □

Let n ≥ 2 be an even integer. Let k be a field. Let X ⊂ P∨
k be

an n − 2-dimensional smooth complete intersection of two quadrics
defined by a pair of quadratic forms (f1, f2) ∈ S2Ek ⊕ S2Ek. Then
Hn−r(Xk̄,Qℓ(

n−r
2
)) is spanned by the classes of n−r

2
-dimensional linear

subspaces of Pn
k̄
contained in Xk̄ [7], [3, Exposé XIX]. The group of Z-

lattice spanned by the classes of these linear subspaces permutationg
them and preserving the intersection form is isomorphic to the Weyl
group W (Dn+1).

The action of Gk on the linear subspaces defines a homomorphism

Gk → W (Dn+1),

unique up to conjugation.

Corollary 3.7. Assume that char k ̸= 2. Then the composition Gk →
W (Dn+1) → {±1} is given by the square root of (−1)

n
2 discd(discd(f1, f2)).

Proof. The assertion follows from Theorem 2.3, Theorem 3.6.1 and
specialization. □
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