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Preface

This thesis is a collection of three individual articles

• Integral formula and upper estimate of I and J-Bessel functions on Jordan algebras,

• Norm computation and analytic continuation of vector valued holomorphic discrete
series representations,

• Intertwining operators between holomorphic discrete series representations,

all of which are related to the analysis of holomorphic discrete series representations. This
thesis is organized by three chapters, and each chapter corresponds to the aforementioned
article.

The holomorphic discrete series representations are introduced by Harish-Chandra in
1950’s, and are one of the easiest class of representations to study deeply, among all infinite-
dimensional unitary representations of real reductive Lie groups. For example, this class of
representations have highest weight vectors, and this allows us to treat this representations
parallelly to finite-dimensional representations in some sense. Moreover, these represen-
tations have several explicit realizations, with inner products given by explicit converging
integrals, and this enables us to compute several quantities such as reproducing kernels
explicitly. The holomorphic series representations also connects with various theories, such
as analysis on symmetric cones, Hardy spaces, modular forms, and physics.

Now we review some explicit realizations of the holomorphic discrete series represen-
tations in the simplest case, namely, in G = SL(2,R) case. The first realization is given
by the space of holomorphic functions O(D) on the unit disk D := {w ∈ C : |w| < 1}. For
any λ ∈ C, the universal covering group S̃U(1, 1) of SU(1, 1) ≃ SL(2,R) acts on O(D) by
the linear fractional transformation

τλ

((
a b
b̄ ā

)−1
)
f(w) := (b̄w + ā)−λf

(
aw + b

b̄w + ā

)
(0.0.1)

(Here the function (b̄w + ā)−λ is not well-defined on SU(1, 1)×D, but is well-defined as

a function on the universal covering space S̃U(1, 1) × D). When λ ∈ R and λ > 1, this
action preserves the inner product

⟨f, g⟩λ,D :=
λ− 1

π

∫
D
f(w)g(w)(1− |w|2)λ−2dw (0.0.2)

where dw is the Lebesgue measure on C. Thus the corresponding Hilbert subspace
in O(D) gives the first realization of the holomorphic discrete series representation of
SU(1, 1) ≃ SL(2,R). Since D is biholomorphically diffeomorphic to the upper half plane
H := R +

√
−1R>0 via the Cayley transform, O(D) is isomorphic to the space of holo-

morphic functions O(H) on H, and this gives the second realization of the holomorphic
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discrete series representation of SL(2,R), with the inner product

⟨f, g⟩λ,H :=
λ− 1

4π

∫
H
f(z)g(z)(Im(z))λ−2dz.

Moreover, via the Laplace transform, the Hilbert subspace in O(H) is isomorphic to the
space of square-integrable functions on the half line R>0, with the inner product

⟨f, g⟩λ,R>0 :=
1

Γ(λ)

∫ ∞

0
f(x)g(x)xλ−1dx.

Then the Hilbert space L2(R>0, x
λ−1dx) gives the third realization of the holomorphic

discrete series representations. We note that S̃L(2,R) does not act on the geometry R>0,
but it acts on the function space L2(R>0, x

λ−1dx), and its infinitesimal action of sl(2,R)
is given by at most 2nd order differential operators.

In general, let G be a real reductive group of Hermitian type, that is, the Riemannian
symmetric space G/K has a natural complex structure, where K is a maximal compact
subgroup of G. Then G/K is diffeomorphic to a bounded domain D in a complex vector
space V C = p+ (V C is a notation in Chapter 1, p+ is a notation in Chapter 2, 3), which
is called the bounded symmetric domain. Therefore, the universal covering group G̃ acts
on the space of holomorphic sections of a vector bundle on D. Since the complex domain
D is contractible, the vector bundle is isomorphic to the direct product bundle, and thus
the space of holomorphic sections is isomorphic to the space of vector-valued holomorphic
functions on D. If this action preserves an inner product given by a converging integral
on D, then the corresponding Hilbert space gives the first realization of the holomorphic
discrete series representations. Moreover, if G is of tube type, that is, the symmetric
space G/K is also diffeomorphic to a tube domain TΩ = V +

√
−1Ω over a symmetric

cone Ω, the holomorphic discrete series representation is also realized on the space of
holomorphic functions on the tube domain TΩ (the second realization), and on the space
of square-integrable functions on the symmetric cone Ω (the third realization). In the
first realization, the K-finite vectors are given by polynomials, and it is easy to treat
algebraically. On the other hand, in the third realization, we can construct a rich theory
for analysis on symmetric cones, sometimes with the aid of the second realization.

In chapter 1, we deal with the third realization, the symmetric cone picture. There
are various special functions on symmetric cones which are the natural generalization of
ordinary special functions of one variable. Among these, we deal with the multivariate
Bessel function, which was introduced by Dib ([5] of Chapter 1). This Bessel function is
used as the kernel function of the Hankel transform, which is a variant of the usual Fourier
transform. It is well-known that the usual Fourier transform is the unitary operator on
L2(Rn), and this appears in the (Segal-Shale-)Weil representation of the metaplectic group
Mp(n,R) (the double covering group of the symplectic group Sp(n,R)) as the action of
the conformal inversion element w0 (the element interchanging the maximal parabolic
subgroup and the opposite parabolic subgroup via the inner automorphism). Likewise,
the Hankel transform appears in the holomorphic discrete series representation on L2(Ω)
(under a suitable measure) as the action of the conformal inversion element. The Fourier
transform on L2(Rn) also appears as the special value of the Hermite semigroup. The
Hermite semigroup is the family of operators τ̃(t) on L2(Rn), where t runs over the right
half plane {t ∈ C : Re t ≥ 0}, satisfying τ̃(s)τ̃(t) = τ̃(s + t). When Re t = 0, τ̃(t) is a
unitary operator, and it coincides with the restriction of the Weil representation to the
center of the maximal compact subgroup U(n) in Mp(n,R). This extends analytically to
the right half plane, and when Re t > 0, τ̃(t) gives a Hilbert-Schmidt operator. The special
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value τ̃(π
√
−1/4) coincides with the usual Fourier transform (up to scalar multiple). A

similar phenomenon also occurs on L2(Ω), that is, the restriction of the holomorphic dis-
crete series representation to the center of the maximal compact subgroup K of G extends
to the analytic semigroup on the half plane, and it gives a Hilbert-Schmidt operator when
the parameter t satisfies Re t > 0. The multivariate Bessel function appears in the kernel
functions of these operators. The program for such problems understanding the highest
weight representations of real Lie groups from the viewpoint of representations of complex
analytic semigroups was suggested by Gelfand-Gindikin (1977), and the general theory of
this program was completed by Stanton (1986) and Ol’shanskĭı (1981, 91, 95). Moreover,
this theory led to the theory of Laguerre semigroups by Kobayashi-Mano (2007), and gen-
erated the theories of global analysis on minimal representations and the deformation of
Fourier transforms.

The author’s result in Chapter 1 is about the upper estimate of the multivariate Bessel
functions Iλ(x). In general, for any symmetric cone Ω, there exists a natural Euclidean
Jordan algebra which contains Ω as an open subset. Then this is a special function defined
on V C. In this chapter the author has proved a new integral expression of Iλ(x2), and
using this, proved the upper estimate of Dib’s multivariate Bessel function Iλ(x2),

|Iλ(x2)| ≤ Cλ,k

(
1 + |x|max{2n−rλ,0}

1

)
e2|Rex|1 ,

where | · |1 is a suitable norm on V C, and r is the rank of the Jordan algebra V . Especially,
it is of polynomial growth on

√
−1V ⊂ V C, and from this result we can show that the

1-dimensional analytic semigroup in the previous paragraph maps functions with polyno-
mial growth to functions with exponential decay, and can also reconfirm that it gives the
Hilbert-Schmidt operator, without using representation theory.

In Chapters 2 and 3, we deal with the first realization, the bounded symmetric do-
main picture. In this picture the holomorphic discrete series representation is realized on
the space of holomorphic functions on the bounded symmetric domain D, and the corre-
sponding Hilbert space has the reproducing kernel. For example, when G = SU(1, 1), the
representation (0.0.1) gives the holomorphic discrete series if λ > 1, and the reproducing
kernel with respect to the inner product (0.0.2) is given by

Kλ(z, w) = (1− zw̄)−λ.

Now, this reproducing kernel is expanded as

Kλ(z, w) =

∞∑
m=0

(λ)m
m!

(zw̄)m,

where (λ)m = λ(λ+1) · · · (λ+m−1) is the usual shifted factorial. From this expression it
follows that the kernel function Kλ(z, w) is of positive type if λ ≥ 0, that is, there exists a

non-zero Hilbert space with the reproducing kernel Kλ(z, w) if λ ≥ 0, on which S̃U(1, 1)
acts unitarily via (0.0.1), even though the integral (0.0.2) converges only when λ > 1. The
corresponding Hilbert spaces for 0 ≤ λ ≤ 1 can be regarded as the analytic continuation
of the holomorphic discrete series representations for λ > 1. The similar phenomena also
occur for other Lie groups, are studied by e.g. Berezin (1975), Vergne-Rossi (1976) and
Wallach (1976)，and completely classified by Enright-Howe-Wallach (1983) and Jakobsen
(1983). After that, other proofs with analytic methods are given by e.g. Clerc (1995) and
Faraut-Korányi (1990) for partial results. Among these studies, Faraut-Korányi ([6] of
Chapter 2) computed the expansion of the reproducing kernels explicitly for holomorphic
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discrete series representations of scalar type of any simple Lie groups of Hermitian type. In
Chapter 2 of this thesis the author has generalized the above results of Faraut-Korányi for
vector-valued holomorphic discrete series representations such that their K-type decom-
postion are multiplicity-free. In more detail, in the bounded symmetric domain picture,
the space of K-finite vectors is equal to the space of polynomials, and its K-type decom-
position is independent of the continuous parameter λ. Thus the reproducing kernel of
the Hilbert space is expanded in terms of the reproducing kernel of each K-type, and the
author has computed how the coefficients in this expansion depends on the parameter
λ. From this result we can determine when the analytic continuation of the holomor-
phic discrete series representation is unitarizable, and can also determine the underlying
(g,K)-modules of the representation spaces. This argument gives an analytical proof for
a part of the results of Enright-Howe-Wallach and Jakobsen.

We can also view the result in Chapter 2 that it determines explicitly how the holomor-
phic discrete series representation behaves when it is restricted to the maximal compact
subgroupK. Then the next natural question is how it behaves when it is restricted to other
subgroups. In 1990’s, the general theories on discrete decomposability and multiplicity-
freeness of restriction of representations were established by Kobayashi, and he suggested
the importance of problems of writing down the decomposition explicitly (see [18] of Chap-
ter 3 (2015)), and these problems are studied by e.g. Clerc-Kobayashi-Ørsted-Pevzner
(2011), Kobayashi-Ørsted-Somberg-Souček (2015), Kobayashi-Pevzner (2015), Kobayashi-
Speh (2015), Möllers-Oshima (2015) and Peng-Zhang (2004). In general, when we consider
an irreducible representation H of a reductive Lie group G, and restrict it to a subgroup
G1 ⊂ G, it may behaves very wildly, for example, the multiplicities in H|G1 may become
infinite, or it may contain continuous spectrums, even if (G,G1) is a symmetric pair.
However, if G is of Hermitian type, H is a holomorphic discrete series representation,
and G1 ⊂ G is also of Hermitian type such that the embedding map G1/K1 ↪→ G/K
of Riemannian symmetric spaces is holomorphic, then H|G1 decomposes discretely, and
moreover all multiplicities are finite and uniformly bounded if (G,G1) is a symmetric pair
(Kobayashi, 2007). In this case we also know what kind of representations of G1 appears
in H|G1 . Thus our next interest is to determine explicitly how each representation of G1 is
embedded in H|G1 , that is, to write down explicitly the G1-intertwining operators between
each representation of G1 and H|G1 . In Chapter 3, the author has studied this problem,
and got the integral expressions of the G1-intertwining operators for general holomorphic
discrete series representations of G1 and G. From this result the author has also deduced
the (infinite-order) differential expressions of the G1-intertwining embedding maps from
the representation of G1 to that of G in the case both G and G1 are classical groups and
both representations of G and G1 are of “almost scalar type”. In the proof the author
has used the series expansion of integrands and the results on the norm computation by
Faraut-Korányi.

Finally, the author would like to express his gratitude to his supervisor professor T.
Kobayashi for his attentive guidance, and also for professors T. Kubo and B. Ørsted for
many helpful advices. He also thank his colleagues, especially for M. Kitagawa and Y.
Tanaka for many helpful discussions. He would also like to thank Grant-in-Aid for JSPS
Fellows for financial support.
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Chapter 1

Integral formula and upper
estimate of I and J-Bessel
functions on Jordan algebras

In this chapter we give a new integral expression of I and J-Bessel functions on simple
Euclidean Jordan algebras, integrating on a bounded symmetric domain. From this we
easily get the upper estimate of Bessel functions. As an application we give an upper
estimate of the integral kernel function of the holomorphic 1-dimensional semi-group acting
on the space of square integrable functions on symmetric cones.

Keywords: Euclidean Jordan algebras; Bessel functions; holomorphic discrete series rep-
resentations; holomorphic semigroups.
AMS subject classification: 33C10; 33C67; 17C30; 22E45; 47D06.

1.1 Introduction and main results

In this chapter we find in Theorem 1.3.1 a new integral expression of I and J-Bessel
functions Iλ(x), Jλ(x) on a Jordan algebra V . J-Bessel functions are first introduced by
Faraut and Travaglini [9] for special cases, associating to self-adjoint representations of
Jordan algebras (see also (1.4.2)), and generalized by Dib [5] (for V = Sym(r,R) case see
also [12] and [18]). It is well-known that Iλ(x), Jλ(x) are the holomorphic functions on
V C for λ in open dense subset of C. On the other hand, for countable singular λ they are
still well-defined on certain subvarieties. These are defined by the series expansion (see
Section 1.3), and satisfy the following differential equation

BλIλ − eIλ = 0, BλJλ + eJλ = 0

where Bλ : C2(V ) → C(V )⊗ V C is the V C-valued 2nd order differential operator defined
in [8, Section XV.2], and e is the unit element on V (see [5, Proposition 1.7] or [8, Theorem
XV.2.6]). Also Iλ and Jλ have the following integral expression

Iλ(x) =
ΓΩ(λ)

(2iπ)n

∫
e+iV

etrwe(w
−1|x)∆(w)−λdw, (1.1.1)

Jλ(x) =
ΓΩ(λ)

(2iπ)n

∫
e+iV

etrwe−(w−1|x)∆(w)−λdw (1.1.2)

(see [5, Définition 1.2] or [8, Theorem XV.2.2]. For notations tr, (·|·), ∆ and ΓΩ(λ) see
Section 1.2.1 and (1.2.3)). There are some attempts to generalize these Bessel functions
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to operator-valued ones (see e.g. [6] and references therein), but it is still not very well-
understood. In this paper we only treat scalar-valued ones.

Now we briefly state our theorem. Let V be a simple Euclidean Jordan algebra (i.e.,
V is one of the Sym(r,R), Herm(r,C), Herm(r,H), R1,n−1 or Herm(3,O)). We assume
dimV = n, rankV = r. We prove

Theorem 1.1.1. For λ ∈ C, x ∈ Xrankλ (see (1.2.1) and (1.2.6)), take k ∈ Z≥0 such that
Reλ+ k > 2n

r − 1. Then, we have the integral expressions

Iλ
(
x2
)
= cλ+k

∫
D

1F1(−k, λ;−x,w)e2(x|Rew)h(w,w)λ+k− 2n
r dw,

Jλ

(
x2
)
= cλ+k

∫
D

1F1(−k, λ;−ix, w)e2i(x|Rew)h(w,w)λ+k− 2n
r dw,

where cλ is a constant and 1F1(−k, λ;x,w) is a polynomial of degree rk with respect to
both x and w.

Here Xl are the L = Str(V C)0-orbits. Xl are also characterized as the supports of some
distributions on V C (see [3] and (1.2.2)). D ⊂ V C is the bounded symmetric domain and
h(w,w) is the generic norm on V C (see Section 1.2.1). For the explicit forms of cλ and

1F1(−k, λ;x,w) see Theorem 1.3.1. Especially if Reλ > 2n
r − 1 we can take k = 0 and

Iλ
(
x2
)
=

1

πn

ΓΩ(λ)

ΓΩ

(
λ− n

r

) ∫
D
e2(x|Rew)h(w,w)λ−

2n
r dw

and Jλ is similar.
Now D is naturally identified with G/K = Bihol(D)/Stab(0) = Co(V )0/AutJTS(V )0.

For λ > 2n
r −1, the universal covering group G̃ acts unitarily onO(D)∩L2(D,h(w,w)λ−

2n
r dw)

by left translation. This defines the holomorphic discrete series representation of G̃. This
is analytically continued with respect to λ ∈ C, and become unitary when λ ∈ W, the
(Berezin–)Wallach set (see (1.2.7) and [25], [4]). The trivial representation corresponds
to λ = 0.

From now we set V = R. Let Iλ(x) be the classical I-Bessel function (see [2, (4.12.2)]),

and we set Ĩλ(x) =
(
x
2

)−λ
Iλ(x). Then Ĩλ and Iλ on R are related as

Ĩλ(x) =
1

Γ(λ+ 1)
Iλ+1

(
x2

4

)
.

Therefore the above theorem is rewritten as

Ĩλ(x) =
λ+ k

πΓ(λ+ 1)

∫
|w|<1

1F1(−k, λ+ 1;−xw)exRew
(
1− |w|2

)λ+k−1
dw.

where 1F1(−k, λ+1;x) is the classical hypergeometric polynomial. This formula seems to
be new even for V = R case. On the other hand, the formula (1.1.1) is rewritten as

Ĩλ(x) =
1

2iπλ

∫
1+iR

ew+x2

w w−λ−1dw.

These two integral formulas are mutually independent, and cannot easily deduce one from
another.

Again let V be a general Jordan algebra. Since D is bounded, we can prove from this
formula the following corollary.
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Corollary 1.1.2. For λ ∈ C, x ∈ Xrankλ, if Reλ + k > 2n
r − 1 for some k ∈ Z≥0, then

there exists a positive constant Cλ,k > 0 such that

|Iλ(x2)| ≤ Cλ,k

(
1 + |x|rk1

)
e2|Rex|1 , |Jλ(x

2)| ≤ Cλ,k

(
1 + |x|rk1

)
e2| Imx|1

where |x|1 is the norm defined in Definition 1.2.1.

In [17, Lemma 3.1] an upper estimate of Jλ(x) is given by another method, but our
estimate is sharper. For detail see Remark 1.3.3. When V = R, this corollary implies that
if Reλ > −k for some k ∈ Z≥0,

|Ĩλ(x)| =
1

|Γ(λ+ 1)|

∣∣∣∣Iλ+1

(
x2

4

)∣∣∣∣ ≤ C ′
λ,k

(
1 + |x|k

)
e|Rex|.

On the other hand, we have the asymptotic expansion

Ĩλ(x) ∼
(
x
2

)−λ

√
2πx

(
ex

∞∑
m=0

(−1)m(λ,m)

(2x)m
+ e−x+(λ+ 1

2)πi
∞∑

m=0

(λ,m)

(2x)m

)

where (λ,m) are some numbers (see [2, (4.12.7)]), and this implies that

|Ĩλ(x)| ≤ C ′′
λ

(
1 + |x|max{−λ− 1

2
,0}
)
e|Rex|.

Therefore our result is not the sharpest when Reλ ≤ 0, but it still seems to be sufficiently
sharp.

This chapter is organized as follows: In Section 1.2, we recall some notations and facts
about Euclidean Jordan algebras. In Section 1.3 we prove our main theorem, the integral
formula and upper estimates. In Section 1.4, as an application of the inequality (Corollary
1.1.2), we give an upper estimate of the integral kernel function of the 1-dimensional
semigroup on the functions on the symmetric cones.

1.2 Preliminaries

1.2.1 Simple Euclidean Jordan algebras

Let V be a simple Euclidean Jordan algebra of dimension n, rank r. We denote the unit
element by e. Also let V C be its complexification. For x, y, z ∈ V C, we write

L(x)y := xy,

x□y := L(xy) + [L(x), L(y)],

P (x, z) := L(x)L(z) + L(z)L(x)− L(xz),

P (x) := P (x, x) = 2L(x)2 − L(x2),

B(x, y) := IV C − 2x□ȳ + P (x)P (ȳ)

where y 7→ ȳ is the complex conjugation with respect to the real form V . Also, we write

{x, y, z} := (x□ȳ)z = P (x, z)ȳ = (xȳ)z + x(ȳz)− (xz)ȳ.

Then V C becomes a positive Hermitian Jordan triple system with this triple product.
We denote the Jordan trace and the Jordan determinant of the complex Jordan algebra

V C by tr(x) and ∆(x) respectively. Also let h(x, y) be the generic norm of the Jordan
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triple system V C. These can be expressed by L(x), P (x), and B(x, y) (see [8, Proposition
III.4.2], [7, Part V, Proposition VI.3.6]):

TrL(x) =
n

r
tr(x),

DetP (x) = ∆(x)
2n
r ,

DetB(x, y) = h(x, y)
2n
r

where Tr and Det stand for the usual trace and determinant of complex linear operators
on V C. Using the Jordan trace we define the inner product on V C:

(x|y) := tr(xȳ), x, y ∈ V C.

Then this is positive definite since V is Euclidean. Also we define the symmetric cone Ω
and the bounded symmetric domain D by

Ω := {x2 : x ∈ V, ∆(x) ̸= 0},
D := (connected component of {w ∈ V C : h(w,w) > 0} which contains 0).

Then Ω is self-dual, i.e.,

Ω = {x ∈ V : (x|y) > 0 for any y ∈ Ω},

and D is biholomorphically equivalent to V +
√
−1Ω ⊂ V C.

Let KL and K be the identity components of automorphism groups of the Jordan
algebra V and the Jordan triple system V C. Similarly let L and LC be the identity
components of structure groups of V and V C. Also let G be the identity component of
conformal group of V :

KL := AutJ.Alg(V )0 = {k ∈ GL(V ) : k(xy) = kx · ky, ∀x, y ∈ V }0,
K := AutJTS(V

C)0 = {k ∈ GL(V C) : k{x, y, z} = {kx, ky, kz}, ∀x, y, z ∈ V C}0,
L := Str(V )0 = {l ∈ GL(V ) : l{x, y, z} = {lx, tl−1y, lz}, ∀x, y, z ∈ V }0,

LC := Str(V C)0 = {l ∈ GL(V C) : l{x, y, z} = {lx, (l∗)−1y, lz}, ∀x, y, z ∈ V C}0,
G := Co(V )0 = Bihol(D)0 ≃ Bihol(V +

√
−1Ω)0

where tl and l∗ stand for the transpose with respect to the bilinear form tr(xy) and the
sesquilinear form tr(xȳ) = (x|y). Then Ω and D are naturally identified with L/KL and
G/K respectively. For the classification of these groups see [13, Table 1] or [17, Table 1].

1.2.2 Spectral decomposition and some norms on V C

From now on we fix a Jordan frame {c1, . . . , cr} ⊂ V , i.e.,

cjck = δjkcj ,
r∑

j=1

cj = e,

and if dj1, dj2 ∈ V satisfy cj = dj1 + dj2, djkdjl = δkldjk, then dj1 = 0 or dj2 = 0.

Then for any x ∈ V C there exist the unique numbers t1 ≥ · · · tr ≥ 0 and the element k ∈ K
such that x = k

∑r
j=1 tjcj ([8, Proposition X.3.2]). Using this, we define the p-norm on

V C.
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Definition 1.2.1. For 1 ≤ p ≤ ∞ and for x = k
∑r

j=1 tjcj ∈ V C, we define

|x|p :=



 r∑
j=1

|tj |p
 1

p

(1 ≤ p < ∞),

max
j∈{1,...,r}

|tj | (p = ∞).

For example, we have (x|x) = |x|22. Also if x ∈ Ω then all eigenvalues (in the sense of
Jordan algebras. For V = Sym(r,R) or Herm(r,C) this coincides with the usual one) are
positive and |x|1 = trx holds. In addition, we can define D by D = {w ∈ V C : |w|∞ < 1}.
This norm satisfies the following properties.

Proposition 1.2.2 ([23, Theorem V.4, V.5] for V = Herm(r,C) case). Let 1 ≤ p, q ≤ ∞
and 1

p + 1
q = 1. Then the following statements hold.

(1) For x, y ∈ V C, |(x|y)| ≤ |x|p|y|q.

(2) For x ∈ V C, |x|p = max
y∈V C\{0}

|(x|y)|
|y|q

.

(3) x 7→ |x|p is a norm on V C.

To prove this, we quote the following lemma (see [7, Part V, Proposition VI.2.1]):

Lemma 1.2.3. For x, y ∈ V C, if x□ȳ = y□x̄, then there exists an element k ∈ K such
that both x and y belong to R- span{kc1, . . . , kcr}.

Proof of Proposition 1.2.2. (1) We note that |(x|y)| ≤ max
k∈K

|(kx|y)| = max
k∈K

Re(kx|y) since

eiθIV C ∈ K for any θ ∈ R. We take k0 ∈ K such that Re(kx|y) (k ∈ K) attains its
maximum at k = k0 ∈ K. We put k0x =: x0. Then for any D ∈ k = Lie(K),

d

dt

∣∣∣∣
t=0

Re(etDx0|y) = Re(Dx0|y) = 0.

In the case when D = u□v̄ − v□ū with u, v ∈ V C,

0 = Re((u□v̄)x0|y)− Re((v□ū)x0|y) = Re((x0□v̄)u|y)− Re((x0□ū)v|y)
= Re(u|(v□x̄0)y)− Re(v|(u□x̄0)y) = Re(u|(y□x̄0)v)− Re(v|(y□x̄0)u)

= Re((x0□ȳ)u|v)− Re(v|(y□x̄0)u) = Re((x0□ȳ − y□x̄0)u|v).

Since u, v ∈ V C are arbitrary and (·|·) is non-degenerate, x0□ȳ = y□x̄0. Therefore
by Lemma 1.2.3 there exists k ∈ K such that x0, y ∈ R- span{kc1, . . . , kcr}. Let x =
k′
∑r

j=1 tjcj , y = k
∑r

j=1 sjcj . Then

|(x|y)| ≤ max
k∈K

Re(kx|y) = Re(x0|y) = Re

k

r∑
j=1

tjcj

∣∣∣∣∣∣ k
r∑

j=1

sjcj


=

r∑
j=1

tjsj ≤

 r∑
j=1

|tj |p
 1

p
 r∑

j=1

|sj |q
 1

q

= |x|p|y|q.
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(2) (≥) Clear from (1).
(≤) For x = k

∑r
j=1 tjcj ∈ V C (t1 ≥ · · · tr ≥ 0), we find a y ∈ V C which attains the

equality. We set

y :=

{
k
∑r

j=1 t
p−1
j cj (1 ≤ p < ∞),

kc1 (p = ∞).

Then,

|y|q =


(∑r

j=1 t
(p−1)q
j

) 1
q
=
(∑r

j=1 t
p
j

) p−1
p

= |x|p−1
p (1 < p < ∞),

1 (p = 1,∞),

and

(x|y) =

{∑r
j=1 t

p
j = |x|pp = |x|p|x|p−1

p = |x|p|y|q (1 ≤ p < ∞),

t1 = |x|∞ = |x|∞|y|1 (p = ∞).

(3) Positivity and homogeneity are clear. For triangle inequality, by (2), for x, y ∈ V C,

|x+ y|p = max
|z|q=1

|(x+ y|z)| ≤ max
|z|q=1

|(x|z)|+ max
|z|q=1

|(y|z)| = |x|p + |y|p

and this completes the proof.

We set

Xl :=

k

l∑
j=1

tjcj : k ∈ K, tj > 0

 = LC ·
l∑

j=1

ej ⊂ V C (l = 0, . . . , r). (1.2.1)

Then Xl = X0 ∪ X1 ∪ . . . ∪ Xl holds. Xl are also characterized as the supports of the

distributions which are the analytic continuation of |∆(x)|2(λ−
n
r )dx:

supp

(
|∆(x)|2(λ−

n
r )dx

∣∣∣
λ=l d

2

)
= Xl, l = 0, 1, . . . , r − 1 (1.2.2)

(see [3, Proposition 5.5]).

1.2.3 Peirce decomposition and generalized power function

As before we fix a Jordan frame {c1, . . . , cr} ⊂ V . Then V is decomposed as

V =
⊕

1≤j≤k≤r

Vjk where Vjk =

{
x ∈ V : L(cl)x =

δjl + δkl
2

x

}
.

Moreover Vjj = Rcj holds, and all Vjk’s (j ̸= k) have the same dimension (see [8, Theorem
IV.2.1, Corollary IV.2.6]). We write dimVjk = d. Then dimV = n = r+ 1

2r(r−1)d holds.
Let V C

(l) :=
⊕

1≤j≤k≤l V
C
jk (l = 1, . . . , r) and P(l) be the orthogonal projection on

V C
(l). We denote by det(l)(x) the Jordan determinant on the Jordan algebra V C

(l). We set

∆l(x) := det(l)(P(l)(x)) for x ∈ V C. For s = (s1, . . . , sr) ∈ Cr, the generalized power

function on V C is defined by

∆s(x) := ∆s1−s2
1 (x)∆s2−s3

2 (x) · · ·∆sr−1−sr
r−1 (x)∆sr

r (x).
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Then, the Gindikin Gamma function and Pochhammer symbol are defined as follows: for
s ∈ Cr and m ∈ (Z≥0)

r,

ΓΩ(s) :=

∫
Ω
e− tr(x)∆s(x)∆(x)−

n
r dx, (s)m :=

ΓΩ(s+m)

ΓΩ(s)
. (1.2.3)

This integral converges for Re sj > (j − 1)d2 , and both functions are extended meromor-
phically on Cr (see [8, Theorem VII.1.1] or [11, Theorem 2.1]). Moreover, we have

(s)m =

r∏
j=1

(
sj − (j − 1)

d

2

)
mj

where (s)m = s(s+ 1) · · · (s+m− 1).

For s = (s1, . . . , sr) ∈ Cr, we set s∗ = (sr, . . . , s1). Then we can prove easily

(s)m+n = (s)m(s+m)n, (−s∗)m = (−1)|m|
(
s−m∗ +

n

r

)
m∗

(1.2.4)

where |m| = m1 + · · ·+mr. Here we identify λ ∈ C and (λ, . . . , λ) ∈ Cr.

1.2.4 Polynomials on V C

We set Zr
++ := {m = (m1, . . . ,mr) ∈ (Z≥0)

r : m1 ≥ m2 ≥ · · ·mr ≥ 0}, and denote the
space of holomorphic polynomials on V C by P(V C). For m ∈ Zr

++, we define Pm(V C) :=
C- span{∆m ◦ l : l ∈ LC}. Then clearly Pm(V C) becomes a LC-module. Moreover, we
have

Theorem 1.2.4 (Hua–Kostant–Schmid, see [8, Theorem XI.2.4]).

P(V C) =
⊕

m∈Zr
++

Pm(V C).

These Pm(V C)’s are mutually inequivalent, and irreducible as LC-modules.

Since ∆l vanishes on Xl−1, all polynomials in Pm(V C) vanish on Xl−1 if and only if
ml ̸= 0.

We write dm := dimPm(V C), and Φm(x) :=
∫
KL

∆m(kx)dk. Then the KL-fixed

subspace in Pm(V C) is spanned by Φm (see [8, Proposition XI.3.1]).

1.2.5 Inner products on P(V C)

For f, g ∈ P(V C), we denote the Fischer inner product by ⟨f, g⟩F :

⟨f, g⟩F :=
1

πn

∫
V C

f(w)g(w)e−(w|w)dw = f

(
∂

∂w

)
ḡ(w)

∣∣∣∣
w=0

(For the second equality see [8, Proposition XI.1.1]). Then the reproducing kernel of

P(V C)
F

(Hilbert completion of P(V C)) is given by e(z|w). We denote by Km(z, w) =
Km

w (z) the reproducing kernel of Pm(V C) with respect to ⟨·, ·⟩F . Then clearly,

e(z|w) =
∑

m∈Zr
++

Km(z, w),
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Also, by [8, Proposition XI.3.3, Propsition XI.4.1.(ii)], we have

Km(gz, w) = Km(z, g∗w) for any g ∈ Str(V C),

Km
e (z) =

1

∥Φm∥2F
Φm(z) =

dm(
n
r

)
m

Φm(z)

and
Km(x, x̄) = Km(x2, e)

for x ∈ V , and therefore for any x ∈ V C by analytic continuation.
Also, for λ > 2n

r − 1, we denote the weighted Bergman inner product on D by ⟨·, ·⟩λ:

⟨f, g⟩λ :=
1

πn

ΓΩ(λ)

ΓΩ

(
λ− n

r

) ∫
D
f(w)g(w)h(w,w)λ−

2n
r dw.

Then, these two inner products are related as follows:

Theorem 1.2.5 (Faraut–Korányi, see [8, Theorem XIII.2.7]). If f, g ∈ P(V C) are decom-
posed as f =

∑
m∈Zr

++
fm, g =

∑
m∈Zr

++
gm (fm, gm ∈ Pm(V C)), then

⟨f, g⟩λ =
∑

m∈Zr
++

1

(λ)m
⟨fm, gm⟩F . (1.2.5)

Although the left hand side is only defined for λ > 2n
r − 1, the right hand side extends

meromorphically for λ ∈ C. Therefore we can redefine ⟨·, ·⟩λ with this formula for any
λ ∈ C by restricting the domain. For λ ∈ C we set

rankλ := max
{
l ∈ {0, 1, . . . , r} : (λ)m ̸= 0 for any m ∈ Zr

++ ∩ {ml+1 = 0}
}

=

{
l if λ ∈

(
l d2 + Z≤0

)
\
∪l−1

j=0

(
j d2 + Z≤0

)
(l = 0, 1, . . . , r − 1),

r if λ /∈
∪r−1

j=0

(
j d2 + Z≤0

)
.

(1.2.6)

For example, if d = 2, i.e., V = Herm(r,C), then

rankλ =


0 (λ ∈ Z≤0),

l (λ = l, l = 1, . . . , r − 1),

r (λ /∈ r − 1 + Z≤0).

Then ⟨·, ·⟩λ defines a sesquilinear form on
⊕

m∈Zr
++, mrankλ+1=0 Pm(V C). This form ⟨·, ·⟩λ

is positive definite if and only if

λ ∈ W :=

{
0,

d

2
, . . . , (r − 1)

d

2

}
∪
(
(r − 1)

d

2
,∞
)
. (1.2.7)

This set W is called the (Berezin–)Wallach set (see [25] or [4]).

1.2.6 Invariant differential operators

For λ ∈ C and k ∈ Z≥0, we recall the differential operators D(k) from [8, Section XIV.2]:

D(k)(λ) := ∆(x)
n
r
−λ∆

(
∂

∂x

)k

∆(x)λ−
n
r
+k

where ∆
(

∂
∂x

)
is the differential operator characterized by ∆

(
∂
∂x

)
e(x|y) = ∆(y)e(x|y). Then

these operators commute with the LC-action (i.e., D(k)(λ)(f ◦ l) = (D(k)(λ)f) ◦ l for
f ∈ P(V C) and l ∈ LC). Moreover, we have
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Proposition 1.2.6.

D(k)(λ)e(x|y) =
∑

m∈Zr
++, |m|≤rk

(−1)|m|(−k)m(λ+m)k−mKm(x, y)e(x|y),

and if (λ)m ̸= 0 for any m ∈ Zr
++, |m| ≤ rk,

D(k)(λ)e(x|y) = (λ)k1F1(−k, λ;−x, y)e(x|y)

where

1F1(−k, λ;−x, y) :=
∑

m∈Zr
++, |m|≤rk

(−1)|m|(−k)m
(λ)m

Km(x, y). (1.2.8)

Proof. We follow the proof of [8, Proposition XIV.1.5]. For x ∈ Ω and λ < −k + 1,

D(k)(λ)e(x|e) = ∆(x)
n
r
−λ∆

(
∂

∂x

)k

∆(x)λ−
n
r
+ke(x|e)

= ∆(x)
n
r
−λ∆

(
∂

∂x

)k 1

ΓΩ

(
−λ+ n

r − k
) ∫

Ω
e(x|e−y)∆(y)−λ+n

r
−k∆(y)−

n
r dy

= ∆(x)
n
r
−λ 1

ΓΩ

(
−λ+ n

r − k
) ∫

Ω
e(x|e−y)∆(e− y)k∆(y)−λ−kdy

= ∆(x)
n
r
−λ 1

ΓΩ

(
−λ+ n

r − k
) ∑

m∈Zr
++, |m|≤rk

dm
(−k)m(

n
r

)
m

∫
Ω
e(x|e−y)Φm(y)∆(y)−λ−kdy

= ∆(x)
n
r
−λ

∑
m∈Zr

++, |m|≤rk

dm
(−k)m(

n
r

)
m

ΓΩ

(
m− λ+ n

r − k
)

ΓΩ

(
−λ+ n

r − k
) Φm(x−1)∆(x)λ−

n
r
+ke(x|e)

=
∑

m∈Zr
++, |m|≤rk

dm(−k)m
(
−λ+ n

r − k
)
m(

n
r

)
m

Φk−m∗(x)e(x|e)

=
∑

m∈Zr
++, |m|≤rk

dk−m∗(−k)k−m∗
(
−λ+ n

r − k
)
k−m∗(

n
r

)
k−m∗

Φm(x)e(x|e).

Here we used [8, Lemma XI.2.3] at the 2nd and 5th equalities, and [8, Corollary XII.1.3]
at the 4th equality. At the 6th equality we used Φm(x−1)∆(x)k = Φk−m∗(x), which
follows from the linear isomorphism Pm(V C) → Pk−m∗(V C), p 7→ ∆(x)kp(x−1). Now,
dm = dk−m∗ holds by this isomorphism, and by (1.2.4),

(−k)k−m∗(
n
r

)
k−m∗

=
(−1)|k−m∗| (n

r +m
)
k−m(

n
r

)
k−m∗

=
(−1)|k−m∗| (n

r

)
k(

n
r

)
m

(
n
r

)
k−m∗

=
(−1)|k−m∗|(−k)m

(−1)|m|
(
n
r

)
m

,(
−λ+

n

r
− k
)
k−m∗

= (−1)|k−m∗|(λ+m)k−m.

Therefore,

D(k)(λ)e(x|e) =
∑

m∈Zr
++, |m|≤rk

(−1)|m|(−k)m(λ+m)k−m
dm(
n
r

)
m

Φm(x)e(x|e).
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By the LC-invariance of D(k)(λ), for y ∈ Ω,

D(k)(λ)e(x|y) = D(k)(λ)e(P (y
1
2 )x|e)

=
∑

m∈Zr
++, |m|≤rk

(−1)|m|(−k)m(λ+m)k−m
dm(
n
r

)
m

Φm(P (y
1
2 )x)e(P (y

1
2 )x|e)

=
∑

m∈Zr
++, |m|≤rk

(−1)|m|(−k)m(λ+m)k−mKm(x, y)e(x|y).

This holds for any x, y ∈ V C and λ ∈ C by analytic continuation. The second equality
follows from

(λ+m)k−m =
(λ)k
(λ)m

.

Using these differential operators, we can calculate ⟨f, g⟩λ for λ ∈ C: for Reλ + k >
2n
r − 1 and f, g ∈

⊕
m∈Zr

++, mrankλ+1=0 Pm(V C),

⟨f, g⟩λ =


cλ+k

(λ)k

∫
D
(D(k)(λ)f)(w)g(w)h(w,w)λ+k− 2n

r dw (rankλ = r)

lim
µ→λ

cµ+k

(µ)k

∫
D
(D(k)(µ)f)(w)g(w)h(w,w)µ+k− 2n

r dw (rankλ < r)
(1.2.9)

where cλ = 1
πn

ΓΩ(λ)

ΓΩ(λ−n
r )

(see [8, Proposition XIV.2.2, Proposition XIV.2.5]). We can prove

easily that this equality holds not only for polynomials, but also for holomorphic functions
f, g ∈ O(D) with D(k)(λ)f and g bounded on D.

1.3 Proof for main theorem

For λ ∈ C with rankλ = r, the I and J-Bessel functions are defined by

Iλ(x) :=
∑

m∈Zr
++

dm(
n
r

)
m

1

(λ)m
Φm(x),

Jλ(x) :=
∑

m∈Zr
++

dm(
n
r

)
m

(−1)|m|

(λ)m
Φm(x) = Iλ(−x).

If rankλ < r, then (λ)m = 0 for some m, so we cannot define these functions on entire
V C. However, if x ∈ Xl, Φm(x) = 0 for ml+1 ̸= 0, and therefore for any λ ∈ C we can
define I and J-Bessel functions for x ∈ Xrankλ (see (1.2.1) and (1.2.6)) by

Iλ(x) :=
∑

m∈Zr
++, mrankλ+1=0

dm(
n
r

)
m

1

(λ)m
Φm(x),

Jλ(x) :=
∑

m∈Zr
++, mrankλ+1=0

dm(
n
r

)
m

(−1)|m|

(λ)m
Φm(x) = Iλ(−x).

Now we are ready to state the main theorem.
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Theorem 1.3.1. For λ ∈ C, x ∈ Xrankλ, take k ∈ Z≥0 such that Reλ+k > 2n
r − 1. Then

we have the integral expressions

Iλ
(
x2
)
= cλ+k

∫
D

1F1(−k, λ;−x,w)e2(x|Rew)h(w,w)λ+k− 2n
r dw,

Jλ

(
x2
)
= cλ+k

∫
D

1F1(−k, λ;−ix, w)e2i(x|Rew)h(w,w)λ+k− 2n
r dw.

where

cλ =
1

πn

ΓΩ(λ)

ΓΩ

(
λ− n

r

) , 1F1(−k, λ;x,w) =
∑

m ∈ Zr
++, |m| ≤ rk,

mrankλ+1 = 0

(−k)m
(λ)m

Km(x,w).

When rankλ = r, the definition of 1F1 clearly coincides with the one in (1.2.8).

Proof. We calculate
⟨
e(·|x̄), e(·|x)

⟩
λ
in two ways. By (1.2.5),

⟨
e(·|x̄), e(·|x)

⟩
λ
=

⟨ ∑
m∈Zr

++

Km
x̄ ,

∑
n∈Zr

++

Kn
x

⟩
λ

=
∑

m∈Zr
++

1

(λ)m
⟨Km

x̄ ,Km
x ⟩F

=
∑

m∈Zr
++

1

(λ)m
Km(x, x̄) =

∑
m∈Zr

++

1

(λ)m
Km(x2, e)

=
∑

m∈Zr
++

1

(λ)m

dm(
n
r

)
m

Φm(x2) = I(x2).

On the other hand, by (1.2.9) and Proposition 1.2.6,⟨
e(·|x̄), e(·|x)

⟩
λ
= lim

µ→λ

cµ+k

(µ)k

∫
D

(
D(k)(µ)e(w|x̄)

)
e(w|x)h(w,w)µ+k− 2n

r dw

= lim
µ→λ

cµ+k

∫
D

1F1(−k, µ;−x,w)e(w|x̄)e(w|x)h(w,w)µ+k− 2n
r dw

= cλ+k

∫
D

1F1(−k, λ;−x,w)e2(x|Rew)h(w,w)λ+k− 2n
r dw.

The formula for Jλ

(
x2
)
follows by replacing x by ix.

From this theorem we can easily deduce the following corollary.

Corollary 1.3.2. For λ ∈ C, x ∈ Xrankλ, if Reλ + k > 2n
r − 1 for some k ∈ Z≥0, then

there exists a positive constant Cλ,k > 0 such that

|Iλ(x2)| ≤ Cλ,k

(
1 + |x|rk1

)
e2|Rex|1 , |Jλ(x

2)| ≤ Cλ,k

(
1 + |x|rk1

)
e2| Imx|1

where |x|1 is the norm defined in Definition 1.2.1.

Proof. By Proposition 1.2.2, for w ∈ D, x ∈ V C,

|(Rex|Rew)| ≤ |Rex|1|Rew|∞ ≤ |Rex|1
|w|∞ + |w̄|∞

2
≤ |Rex|1.

Also, since 1F1(−k, λ;−x,w) is a polynomial of degree rk with respect to both x and w,

|1F1(−k, λ;−x,w)| ≤ C ′
λ,k

(
1 + |x|rk1

)(
1 + |w|rk∞

)
≤ 2C ′

λ,k

(
1 + |x|rk1

)
.
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Therefore, by Theorem 1.3.1,

|Iλ(x2)| ≤ |cλ+k|
∫
D
|1F1(−k, λ;−x,w)|e2(Rex|Rew)h(w,w)Reλ+k− 2n

r dw

≤ 2|cλ+k|C ′
λ,k

(
1 + |x|rk1

)
e2|Rex|1

∫
D
h(w,w)Reλ+k− 2n

r dw

= Cλ,k

(
1 + |x|rk1

)
e2|Rex|1 .

The proof for Jλ

(
x2
)
is similar.

Remark 1.3.3. In [17, Lemma 3.1] Möllers gave another estimate of Jλ(x):∣∣Jλ

(
x2
)∣∣ ≤ C

(
1 + |x|22

) r(2n−1)
4 e2r|x|2 for any λ ∈ W , x ∈ Xrankλ ⊂ V C.

However, our estimate is sharper because our leading term is given by e2| Imx|1. Espe-
cially in our estimate Jλ(x) is uniformly bounded on V if Reλ is sufficiently large. This
difference comes from that of methods of proofs: in [17] the Taylor expansion was used,
while in this paper we use the integral formula. However, in general Taylor series is not
strong enough for L∞ estimates. For example, the bound of cosine function is calculated
as follows:

| cosx| =

∣∣∣∣∣
∞∑

m=0

(−1)m

(2m)!
x2m

∣∣∣∣∣ ≤
∞∑

m=0

1

(2m)!
|x|2m ≤

∞∑
m=0

1

m!
|x|m = e|x|.

However, it is well-known that cosine function is bounded unformly on R. So this bound
is not sharp.

1.4 Applications

For λ > n
r − 1, t ∈ C \ πiZ, Re t ≥ 0, we define a integral operator on Ω: for a measurable

function φ : Ω → C, we define

τλ(t)φ(x) :=
1

ΓΩ(λ)

∫
Ω
φ(y)

e− coth t(trx+tr y)

sinhrλ t
Iλ
(

1

sinh2 t
P (x

1
2 )y

)
∆(y)λ−

n
r dy.

Since Iλ is K-invariant, by [8, Lemma XIV.1.2] we can replace P (x
1
2 )y by P (y

1
2 )x.

Remark 1.4.1. For λ > 2n
r − 1, the Laplace transform

Lλ : L2(Ω,∆(x)λ−
n
r dx) −→ L2(V +

√
−1Ω,∆(Im z)λ−

2n
r dz) ∩ O(V +

√
−1Ω)

is defined by

Lλφ(z) :=
2n

ΓΩ(λ)

∫
Ω
ei(z|x)φ(x)∆(2x)λ−

n
r dx.

Then we can prove by the similar method to [8, Theorem XV.4.1] that

Lλτλ(t)L−1
λ F (z) = ∆(− sin(it)z + cos(it)e)−λ

×F
(
(cos(it)z + sin(it)e)(− sin(it)z + cos(it)e)−1

)
.

If t is purely imaginary, then this coincides with the restriction of the holomorphic discrete
series representation of the simple Hermitian Lie group Bihol(V +

√
−1Ω), to the center

of the maximal compact subgroup Stab(ie). That is, τλ can be regarded as the natural
complexification of the action of Z(Stab(ie)) ⊂ Bihol(V +

√
−1Ω). Especially, τλ(s)τλ(t) =

τλ(s+ t) holds for λ > 2n
r − 1.
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Remark 1.4.2. Let E be an Euclidean vector space of dimension N with inner product
(·|·)E. Then the Hermite semigroup on L2(E) is given by

τ̃(t)f(ξ) :=
1

(2π sinh t)
N
2

∫
E
f(η) exp

(
−1

2
coth t(|ξ|2E + |η|2E) +

1

sinh t
(ξ|η)E

)
dη (1.4.1)

for f ∈ L2(E), t ∈ C \ πiZ, Re t ≥ 0 (see, e.g., [10, Section 5.2]). From now on we
assume there exists an self-adjoint representation ϕ : V → End(E). We also assume
N > r(r − 1)d. Let Q : E → V be the quadratic map defined by

(ϕ(x)ξ|ξ)E = (x|Q(ξ))V for any x ∈ V, ξ ∈ E.

Let Σ := Q−1(e) ⊂ E be the Stiefel manifold. Then we have∫
Σ
e−i(ξ|σ)dσ = JN

2r

(
Q

(
ξ

2

))
(1.4.2)

(see [8, Proposition XVI.2.3]). We extend Q to Q : EC → V C bilinearly. Then since
Jλ(x) = Iλ(−x) we have ∫

Σ
e(ξ|σ)dσ = IN

2r

(
Q

(
ξ

2

))
.

If f ∈ L2(E) is written as f(ξ) = F
(
1
2Q(ξ)

)
with a function F on V , then (1.4.1) can be

rewritten as

τ̃(t)f(ξ) =
1

(2π sinh t)
N
2

∫
E
F

(
1

2
Q(η)

)
exp

(
−1

2
coth t(|ξ|2E + |η|2E) +

1

sinh t
(ξ|η)E

)
dη

=
1

(π sinh t)
N
2

∫
E
F (Q(η)) exp

(
− coth t

(
1

2
|ξ|2E + |η|2E

)
+

√
2

sinh t
(ξ|η)E

)
dη

=
1

ΓΩ(
N
2r ) sinh

N
2 t

∫
Ω

∫
Σ
F (Q(ϕ(y

1
2 )σ)) exp

(
− coth t

(
1

2
|ξ|2E + |ϕ(y

1
2 )σ|2E

))

× exp

( √
2

sinh t
(ξ|ϕ(y

1
2 )σ)E

)
∆(y)

N
2r

−n
r dσdy

=
1

ΓΩ(
N
2r )

∫
Ω

∫
Σ
F (y)

exp
(
− coth t

(
1
2 |ξ|

2
E + tr y

))
sinh

N
2 t

exp

( √
2

sinh t
(ϕ(y

1
2 )ξ|σ)E

)
∆(y)

N
2r

−n
r dσdy

=
1

ΓΩ(
N
2r )

∫
Ω
F (y)

exp
(
− coth t

(
1
2 |ξ|

2
E + tr y

))
sinh

N
2 t

IN
2r

(
Q

(
1√

2 sinh t
ϕ(y

1
2 )ξ

))
∆(y)

N
2r

−n
r dy

=
1

ΓΩ(
N
2r )

∫
Ω
F (y)

exp
(
− coth t

(
1
2 trQ(ξ) + tr y

))
sinh

N
2 t

IN
2r

(
1

2 sinh2 t
P (y

1
2 )Q(ξ)

)
∆(y)

N
2r

−n
r dy

= τN
2r
(t)F

(
1

2
Q(ξ)

)
where we used [8, Proposition XVI.2.1] at the 3rd equality and [8, Lemma XVI.2.2.(ii)] at
the 4th, 6th equalities. Therefore τN

2r
(t) coincides with the action of the Hermite semigroup

on radial functions on E.

Remark 1.4.3. For x ∈ X1 (see (1.2.1)), Iλ(x) = Γ(λ)Ĩλ−1(2
√
|x|2) holds (see [17,

Example 3.3]), and by analytic continuation the distribution 1
ΓΩ(λ)

∆(x)λ−
n
r 1Ωdx at λ = d

2
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gives the semi-invariant measure on X1 ∩ Ω (see [8, Proposition VII.2.3]). Therefore for
V = R1,n−1 the action τλ at λ = d

2 coincides with the action of the holomorphic semigroup
on the minimal representation of O(p, 2) (see [14, Theorem B] or [15, Theorem 5.1.1]).

Remark 1.4.4. We set

Hλφ(x) := irλτλ

(
πi

2

)
φ(x) =

1

ΓΩ(λ)

∫
Ω
φ(y)J

(
P (x

1
2 )y
)
∆(y)λ−

n
r dy.

This is called the generalized Hankel transform ([8, Section XV.4]). Similar to Remark
1.4.2, this is regarded as a variant of the Fourier transform. Therefore it is expected that
this Hankel transform has similar properties as the Fourier transform such as a Paley-
Wiener type theorem, which determines the image of the compactly supported functions.
This is done by, e.g., [1], [16, Remark 5.4] for classical V = R case, but not for generalized
case. In this paper we don’t touch this topic in detail.

We set Kλ(x, y; t) := e− coth t(trx+tr y)Iλ
(
sinh−2 tP (x

1
2 )y
)
, the kernel function of τλ(t).

Then we can deduce from Theorem 1.3.2 that

Theorem 1.4.5. Take k ∈ Z≥0 such that λ + k > 2n
r − 1. Then if t = u + iv, u, v ∈ R,

u ≥ 0,

|Kλ(x, y; t)| ≤ Cλ,t

(
1 + (trx tr y)

rk
2

)
exp

(
− sinhu

coshu+ | cos v|
(trx+ tr y)

)
.

Especially, if u = Re t > 0 then the integral defining τλ(t) converges if φ is of polynomial
growth, and the resulting τλ(t)φ has exponential decay. Even if u = Re t = 0, if λ > 2n

r −1

and t /∈ πiZ, the integral converges if φ ∈ L1(Ω,∆(x)λ−
n
r dx), and the resulting τλ(t)φ is

bounded. In order to prove this theorem, we prepare the following lemma.

Lemma 1.4.6. (1) For x ∈ Ω the directional derivative of x 7→
√
x is

Du

√
x =

1

2
L
(√

x
)−1

u.

(2) For x, y ∈ V if [L(x), L(y)] = 0, then there exists a Jordan frame {c1, . . . , cr} such
that x, y ∈ R- span{c1, . . . , cr}.

(3) For x, y ∈ Ω, tr

√
P (x

1
2 )y ≤

√
trx tr y ≤ trx+ tr y

2
.

Proof. (1) u = Dux = Du (
√
x)

2
= 2

√
xDu

√
x = 2L (

√
x)Du

√
x and then Du

√
x =

1
2L (

√
x)

−1
u follows.

(2) See [8, Lemma X.2.2].
(3) The second inequality is clear. For the first inequality, we take k0 ∈ K such that

tr

√
P (x

1
2 )ky (k ∈ KL) attains its maximum at k = k0. We put k0y =: y0. Then for any

D ∈ kl = Lie(KL),

0 =
d

dt

∣∣∣∣
t=0

tr

√
P (x

1
2 )etDy0 =

1

2
tr

(
L

(√
P (x

1
2 )y0

)−1

P (x
1
2 )Dy0

)

=
1

2

(√
P (x

1
2 )y0

−1
∣∣∣∣∣P (x

1
2 )Dy0

)
=

1

2

(
P (x

1
2 )

√
P (x

1
2 )y0

−1
∣∣∣∣∣Dy0

)
.
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We put P (x
1
2 )

√
P (x

1
2 )y0

−1

=: z. If D = [L(u), L(v)] (u, v ∈ V ), then

0 = (z|[L(u), L(v)]y0) = (z|u(vy0))− (z|v(uy0)) = (zu|vy0)− (zv|uy0)
= (y0(zu)|v)− (v|(uy0)z) = ([L(y0), L(z)]u|v).

Since (·|·) is non-degenerate, [L(y0), L(z)] = 0. Also,

P (z)y0 = P

(
P (x

1
2 )

√
P (x

1
2 )y0

−1
)
y0

= P (x
1
2 )P

(√
P (x

1
2 )y0

−1
)
P (x

1
2 )y0 = P (x

1
2 )e = x.

So especially [L(x), L(y0)] = 0. Let x =
∑r

j=1 tjcj , y =
∑r

j=1 sjdj (tj , sj > 0, and
{cj}rj=1, {dj}rj=1 are Jordan frames). Then,

tr

√
P (x

1
2 )y ≤ tr

√
P (x

1
2 )y0 = tr

√√√√√P

 r∑
j=1

t
1
2
j cj

 r∑
j=1

sjcj

=
r∑

j=1

√
tjsj ≤

√√√√√
 r∑

j=1

tj

 r∑
j=1

sj

 =
√
trx tr y

and the proof is completed.

Now we are ready to prove Theorem 1.4.5.

Proof of Theorem 1.4.5. By Corollary 1.3.2,

|Kλ(x, y; t)| ≤ C ′
λe

−Re coth t(trx+tr y)

(
1 +

∣∣∣∣ 1

sinh t

√
P (x

1
2 )y

∣∣∣∣rk
1

)
e
2

∣∣∣∣Re 1
sinh t

√
P (x

1
2 )y

∣∣∣∣
1

= C ′
λe

−Re coth t(trx+tr y)

(
1 +

1

| sinh t|rk
tr

(√
P (x

1
2 )y

)rk
)
e
2|Re 1

sinh t | tr
(√

P (x
1
2 )y

)

≤ Cλ,t exp

(
− coshu sinhu

cosh2 u− cos2 v
(trx+ tr y)

)(
1 +

√
trx tr y

rk
)

× exp

(
sinhu| cos v|

cosh2 u− cos2 v
(trx+ tr y)

)
= Cλ,t

(
1 + (trx tr y)

rk
2

)
exp

(
− sinhu

coshu+ | cos v|
(trx+ tr y)

)
and this completes the proof.
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Chapter 2

Norm computation and analytic
continuation of vector valued
holomorphic discrete series
representations

In this chapter we compute explicitly the norm of the vector-valued holomorphic discrete
series representations, when its K-type is “almost multiplicity-free”. As an application,
we discuss the properties of highest weight modules, such as unitarizability, reducibility
and composition series.

Keywords: holomorphic discrete series representations; highest weight modules; Jordan
triple systems; composition series.
AMS subject classification: 22E45; 43A85; 17C30.

2.1 Introduction

The purpose of this chapter is to compute explicitly the norm of the vector-valued holo-
morphic discrete series representations, and to study the properties of the highest weight
modules, such as unitarizabily, reducibility and composition series.

Let G be a simple Lie group, such that its maximal compact subgroup K has a non-
discrete center. Then it is known that there exist a linear subspace p+ ⊂ gC and a bounded
domain D ⊂ p+ such that the symmetric space G/K is diffeomorphic to D. Therefore
G/K becomes a complex manifold. Let (τ, V ) be a finite-dimensional holomorphic rep-
resentation of KC, and χ−λ be a suitable character of the universal covering group K̃C.
Then we can consider the representation of the universal covering group G̃ on the space
of holomorphic sections of the equivariant vector bundle on G/K with fiber V ⊗ χ−λ,

G̃ ↷ ΓO(G/K, G̃×K̃ (V ⊗ χ−λ)).

Since D ≃ G/K is contractible, this space is isomorphic to the space of V -valued holo-
morphic functions on D,

ΓO(G/K, G̃×K̃ (V ⊗ χ−λ)) ≃ O(D,V ).

Then the infinitesimal action of the Lie subalgebra p+ ⊂ gC on O(D,V ) is given by 1st
order differential operators with constant coefficients, and thus it annihilates constant
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functions in O(D,V ). Such representations are called the highest weight representations.
Also, if λ ∈ R is sufficiently large, then this representation preserves an inner product
which is given by an explicit integral onD. Such representations are called the holomorphic
discrete series representations.

For example, let G := Sp(r,R), realized explicitly as

Sp(r,R) =
{
g ∈ GL(2r,C) : g

(
0 Ir

−Ir 0

)
tg =

(
0 Ir

−Ir 0

)
, g

(
0 Ir
Ir 0

)
=

(
0 Ir
Ir 0

)
ḡ

}
.

Then G/K = Sp(r,R)/U(r) is diffeomorphic to

D := {w ∈ Sym(r,C) : Ir − ww∗ is positive definite.}.

Let (τ, V ) be a representation of KC = GL(r,C). Then the universal covering group

G̃ = S̃p(r,R) acts on O(D,V ) by

τλ

((
a b
c d

)−1
)
f(w) = det(cw + d)−λτ

(
t(cw + d)

)
f
(
(aw + b)(cw + d)−1

)
.

We note that det(cw+d)−λ is not well-defined as a function on G×D, but is well-defined
as a function on the universal covering space G̃×D. If Reλ is sufficiently large, then this
preserves the sesquilinear form

⟨f, h⟩λ,τ :=
cλ

πr(r+1)/2

∫
D

(
τ((I − ww∗)−1)f(w), h(w)

)
τ
det(I − ww∗)λ−(r+1)dw,

that is, ⟨τλ(g)f, τλ̄(g)h⟩λ,τ = ⟨f, h⟩λ,τ holds for any f, h ∈ O(D,V ) with finite norms, and
for any g ∈ G̃. Therefore τλ gives a holomorphic discrete series representation of G̃ if
λ ∈ R and the above norm converges for some nonzero function in O(D,V ). In this case
the corresponding Hilbert space Hλ(D,V ) ⊂ O(D,V ) has the reproducing kernel

Kλ,τ (z, w) := det(Ir − zw∗)−λτ(Ir − zw∗) ∈ O(D ×D,End(V )),

if we choose the normalizing constant cλ suitably. When r = 1, then we have G = SU(1, 1)

and D = {w ∈ C : |w| < 1}, and the action τλ of S̃U(1, 1) on O(D) reduces to the simplest
example

τλ

((
a b
c d

)−1
)
f(w) = (cw + d)−λf

(
aw + b

cw + d

)
,

with the invariant inner product and the reproducing kernel

⟨f, h⟩λ =
λ− 1

π

∫
|w|<1

f(w)h(w)(I − |w|2)λ−2dw, (2.1.1)

Kλ(z, w) = (1− zw̄)−λ ∈ O(D ×D). (2.1.2)

We return to the general case. The question of when the highest weight representations
are unitarizable is studied by e.g. Berezin [2], Clerc [3], Vergne-Rossi [28], and Wallach
[29], and completely classified by Enright-Howe-Wallach [4] and Jakobsen [13] by different
methods. In [4] and [13] they used purely algebraic methods.

On the other hand, the analytical proof, the proof using explicit norm computation,
was only partially successful. When the fiber (τ, V ) is trivial, this is studied by e.g. Hua
[11], Upmeier [27], and Ørsted [19], and completely done by Faraut-Korányi [6]. However,
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vector-valued cases are not computed yet except for a few cases, e.g. the case when (τ, V )
is a defining representation of KC = GL(s,C) (Ørsted-Zhang [20], [21]), and the case when
G is of real rank 1 (Hwang-Liu-Zhang [12]).

Now we explain how the explicit norm computation gives informations on unitarizabil-
ity and reducibility in the simplest example. Let G = SU(1, 1). Then the G̃-invariant
inner product (2.1.1) converges for any polynomial f, h ∈ P(C) if Reλ > 1, but does not
converge for any non-zero polynomial f, h ∈ P(C) if Reλ ≤ 1. Suppose f, h has a Taylor
expansion f(w) =

∑
m amwm, h(w) =

∑
m bmwm. Then for Reλ > 1, we can compute

⟨f, h⟩λ explicitly as

⟨f, h⟩λ =

∞∑
m=0

m!

(λ)m
ambm,

where (λ)m := λ(λ+1) · · · (λ+m−1). This expression is available even if Reλ ≤ 1, and is
also (g, K̃)-invariant. As a result, the reproducing kernel Kλ(z, w) in (2.1.2) is expanded
as

Kλ(z, w) = (1− zw̄)−λ =

∞∑
m=0

(λ)m
m!

zmw̄m.

This expression is also available when Reλ ≤ 1. This kernel function is positive definite if
λ ≥ 0, and thus (τλ,O(D)) is unitarizable if λ ≥ 0. Here, when λ = 0, the corresponding
Hilbert space consists of only 0th order polynomials, and is of 1-dimensional. Also, for
λ = −l ∈ Z≤0, the sesquilinear forms

⟨f, h⟩−l =
l∑

m=0

m!

(−l)m
ambm, (2.1.3)

lim
λ→−l

(λ+ l)⟨f, h⟩λ =
1

(−l)l

∞∑
m=l+1

m!

(1)m−l−1
ambm (2.1.4)

are well-defined and (g,K)-invariant on P≤l(C), the space of polynomials of order at most
l, and on P(C)/P≤l(C) respectively. Moreover (2.1.4) is definite. Therefore P≤l(C) gives
a (g,K)-submodule, and P(C)/P≤l(C) gives a infinitesimally unitary (g,K)-module.

To compute the norm for general G, we use the K-type decomposition of O(D,V )K =
P(p+, V ) instead of the Taylor expansion, fix a K-invariant norm ∥ · ∥F,τ on P(p+, V )
independent of λ (see (2.3.2)), and compare ∥ · ∥λ,τ and ∥ · ∥F,τ on each K-type. Let

O(D,V )K = P(p+, V ) =
⊕
i

Wi

be a K-type decomposition such that each Wi is orthogonal to the others with respect to
⟨·, ·⟩F,τ . Then since ∥ · ∥λ,τ and ∥ · ∥F,τ are both K-invariant, the ratio of two norms are
constant on Wi. We denote this ratio by Ri(λ). Moreover, if Wi ⊥ Wj with respect to
⟨·, ·⟩F,τ implies Wi ⊥ Wj with respect to ⟨·, ·⟩λ,τ (for example, if P(p+, V ) is K-multiplicity
free), then we have

∥f∥2λ,τ =
∑
i

Ri(λ)∥fi∥2F,τ (f ∈ O(p+, V ))

where fi is the orthogonal projection of f onto Wi, and the reproducing kernel Kλ,τ (z, w)
is expanded as

Kλ,τ (z, w) =
∑
i

Ri(λ)
−1Ki(z, w),
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where Ki(z, w) is the reproducing kernel of Wi with respect to ⟨·, ·⟩F,τ . Similarly to the
SU(1, 1) case, if we compute Ri(λ) explicitly, then we can determine completely when the
representation is unitarizable, or reducible, and can get some informations on composition
series.

Since the above argument is available only if Wi ⊥ Wj with respect to ⟨·, ·⟩F,τ implies
Wi ⊥ Wj with respect to ⟨·, ·⟩λ,τ , we specialize our interest to (G,V )’s in the following
table.

G K V Where

Sp(r,R) U(r)
∧k(Cr)∨ (0 ≤ k ≤ r − 1) Thm 2.4.2

SU(q, s) S(U(q)× U(s)) C⊠ V ′ (V ′: any irrep of U(s))

Thm 2.4.3 (q ≥ s)

Thm 2.5.1 (q < s)

SO∗(2s) U(s)

Sk(Cs)∨

Sk(Cs)⊗ det−k/2 (k ∈ Z≥0)

Thm 2.4.5 (s even)

Thm 2.5.2, 2.5.5 (s odd)

Spin0(2, n)

(Spin(2)×
Spin(n))/Z2

C−k ⊠ V(k,...,k,±k) (k ∈ 1
2Z≥0, n even)

C−k ⊠ V(k,...,k) (k ∈ {0, 12}, n odd) Thm 2.4.7

E6(−14) SO(2)× Spin(10) C−k/2 ⊠Hk(R10) (k ∈ Z≥0) Prop 2.5.8, Conj 2.5.11

E7(−25) SO(2)× E6 C Already done in [7]

In the above cases, except for G = SU(q, s) case, P(p+, V ) is multiplicity-free under
K, which is proved by direct computation of K-type decomposition. We can also prove
multiplicity-freeness a priori by using [14, Theorem 2]. In G = SU(q, s) case, P(p+, V ) is
not multiplicity-free in general, but each K-isotypic component sits in a single polynomial
space, and thus the arguments explained above is still available.

When G is of tube type or G = SU(q, s) with q ≥ s, which we deal with in Section 2.4,
we can compute the norm in a uniform way, by generalizing the technique used by Faraut-
Korányi [7]. For these cases, the fibers V in the above table satisfy the condition that they
remain irreducible even if restricted to some subgroup KL of K, and this condition allows
us to compute the norm explicitly. The same condition also appears in e.g. [3], [10]. In
these papers they got some necessary condition on the unitarizability of highest weight
representations, by considering when the reproducing kernel on the tube domain becomes
a Laplace transform of some measure. Under the assumption that V |KL

is irreducible, the
necessary and sufficient condition is also computable, and therefore this assumption seems
to be natural.

However, when G is of non-tube type, there is no such uniform way to compute the
norm at this time, and we do this by purely case-by-case analysis. For example, we use an
embedding of G into a larger group, or use an embedding of some smaller subgroup into
G. We deal with such cases in Section 2.5.

We enumerate the main results of this chapter.

Theorem 2.1.1 (Theorem 2.4.2). When G = Sp(r,R), and (τ, V ) = (τ∨ε1+···+εk
, V ∨

ε1+···+εk
)

(k = 0, 1, . . . , r− 1), ∥ · ∥2λ,τ converges if Reλ > r, the K-type decomposition of O(D,V )K
is given by

P(p+)⊗ V ∨
ε1+···+εk

=
⊕

m∈Zr
++

⊕
k∈{0,1}r, |k|=k

m+k∈Zr
+

V ∨
2m+k,
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and for f ∈ V ∨
2m+k, the ratio of norms is given by

∥f∥2λ,τ∨ε1+···+εk

∥f∥2
F,τ∨ε1+···+εk

=

∏k
j=1

(
λ− 1

2(j − 1)
)∏r

j=1

(
λ− 1

2(j − 1)
)
mj+kj

=
1∏k

j=1

(
λ− 1

2(j − 1) + 1
)
mj+kj−1

∏r
j=k+1

(
λ− 1

2(j − 1)
)
mj+kj

.

Theorem 2.1.2 (Theorem 2.4.3, 2.5.1). When G = SU(q, s), and (τ, V ) = (1(q)⊠τ
(s)
k ,C⊗

V
(s)
k ) (k ∈ Zs

++), ∥ · ∥2λ,τ converges if Reλ + ks > q + s − 1, the K-type decomposition of
O(D,V )K is given by

P(p+)⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zs

++

⊕
n∈m+wt(k)

cnk,mV
(q)∨
m ⊠ V

(s)
n ,

and for f ∈ V
(q)∨
m ⊠ V

(s)
n , the ratio of norms is given by

∥f∥2
λ,1(q)⊠τ

(s)
k

∥f∥2
F,1(q)⊠τ

(s)
k

=

∏s
j=1(λ− (j − 1))kj∏s
j=1(λ− (j − 1))nj

=
1∏s

j=1(λ− (j − 1) + kj)nj−kj

.

Theorem 2.1.3 (Theorem 2.4.5). When G = SO∗(4r), and (τ, V ) = (τ∨(k,0,...,0), V
∨
(k,0,...,0))

(k ∈ Z≥0), ∥ · ∥2λ,τ converges if Reλ > 4r − 3, the K-type decomposition of O(D,V )K is
given by

P(p+)⊗ V ∨
(k,0,...,0) =

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−1−mj

V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

,

and for f ∈ V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

, the ratio of norms is given by

∥f∥2λ,τ∨
(k,0,...,0)

∥f∥2
F,τ∨

(k,0,...,0)

=
(λ)k∏r

j=1(λ− 2(j − 1))mj+kj

=
1

(λ+ k)m1+k1−k
∏r

j=2(λ− 2(j − 1))mj+kj

.

When G = SO∗(4r), and (τ, V ) = (τ∨(k/2,...,k/2,−k/2), V
∨
(k/2,...,k/2,−k/2)) (k ∈ Z≥0), ∥ ·∥2λ,τ

converges if Reλ > 4r − 3, the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V ∨
( k
2
,..., k

2
,− k

2 )
=

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−mj+1

V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr)+( k

2
,..., k

2 )
,

and for f ∈ V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr)+( k

2
,..., k

2 )
, the ratio of norms is given by

∥f∥2λ,τ∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ∨

(k/2,...,k/2,−k/2)

=

∏r−1
j=1(λ− 2(j − 1))k∏r

j=1(λ− 2(j − 1))mj−kj+k

=
1∏r−1

j=1(λ+ k − 2(j − 1))mj−kj (λ− 2(r − 1))mr−kr+k

.
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Theorem 2.1.4 (Theorem 2.5.2, 2.5.5). When G = SO∗(4r+2) and (τ, V ) = (τ∨(k,0,...,0), V
∨
(k,0,...,0))

(k ∈ Z≥0), ∥ · ∥2λ,τ converges if Reλ > 4r − 1, the K-type decomposition of O(D,V )K is
given by

P(p+)⊗ V ∨
(k,0,...,0) =

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r+1;|k|=k
0≤kj≤mj−1−mj

V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

,

and for f ∈ V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

, the ratio of norms is given by

∥f∥2λ,τ∨
(k,0,...,0)

∥f∥2
F,τ∨

(k,0,...,0)

=
(λ)k∏r

j=1(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

=
1

(λ+ k)m1+k1−k
∏r

j=2(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

.

When G = SO∗(4r + 2) and (τ, V ) = (τ∨(k/2,...,k/2,−k/2), V
∨
(k/2,...,k/2,−k/2)) (k ∈ Z≥0),

∥ · ∥2λ,τ converges if Reλ > 4r − 1, the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V ∨
( k
2
,..., k

2
,− k

2 )
=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r+1;|k|=k
0≤kj≤mj−mj+1

0≤kr≤mr

V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
,

and for f ∈ V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
, the ratio of norms is given by

∥f∥2λ,τ∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ∨

(k/2,...,k/2,−k/2)

=

∏r
j=1 (λ− 2(j − 1))k∏r

j=1 (λ− 2(j − 1))mj−kj+k (λ− 2r + 1)k−kr+1

=
1∏r

j=1 (λ+ k − 2(j − 1))mj−kj
(λ− 2r + 1)k−kr+1

.

Theorem 2.1.5 (Theorem 2.4.7). When G = Spin0(2, n) and

(τ, V ) =

{
(χ−k ⊠ τ(k,...,k,±k),C−k ⊗ V(k,...,k,±k))

(
k ∈ 1

2Z≥0

)
(n : even),

(χ−k ⊠ τ(k,...,k),C−k ⊗ V(k,...,k))
(
k = 0, 12

)
(n : odd),

∥ · ∥2λ,τ converges if Reλ > n− 1, the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V =



⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,±l) (n : even),

⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,|l|) (n : odd),

and for f ∈ C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,±l) or C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,|l|), the
ratio of norms is given by

∥f∥2λ,τ
∥f∥2F,τ

=
(λ)2k

(λ)m1+k+l

(
λ− n−2

2

)
m2+k−l

=
1

(λ+ 2k)m1−k+l

(
λ− n−2

2

)
m2+k−l

.

29



We also state the conjecture on E6(−14) in Section 2.5.5. From these theorems we can
get informations on unitarizability, reducibility and composition series.

This chapter is organized as follows. In Section 2.2 we prepare some notations and
review some facts on Lie algebras of Hermitian type and Jordan triple systems. In Section
2.3 we state and prove the theorems (Theorem 2.3.1, Corollary 2.3.4) which plays a key
role in this chapter. In Section 2.4 and 2.5 we compute the norm explicitly. In Section 2.4
we deal with the cases that the norm is computable directly from the theorem in Section
2.3, and in Section 2.5 we deal with the cases that need more techniques. In Section 2.6
we apply the results on norm computation to the problems on unitarizabily, reducibility
and composition series.

2.2 Preliminaries

2.2.1 Root decomposition

Let g = k⊕p be a simple Hermitian Lie algebra, that is, the maximal compact part k has a
1-dimensional center. We take an element z from the center of k such that the eigenvalues
of ad(z) are +

√
−1, 0, −

√
−1, and let

gC = p+ ⊕ kC ⊕ p−

be the corresponding eigenspace decomposition. We denote the Cartan involution of gC

(the anti-holomorphic extension of the Cartan involution on g) by ϑ. Then p+ has a
Hermitian Jordan triple system structure with the product

(x, y, z) 7−→ {x, y, z} := −1

2
[[x, ϑy], z], x, y, z ∈ p+.

We take a maximal abelian subalgebra h ⊂ k. Then hC becomes simaltaneously a Cartan
subalgebra of both kC and gC. Let ∆ = ∆(gC, hC) be the root system. We denote by
∆p± , ∆kC the all roots α such that the corresponding root space gCα is contained in p±, kC

respectively. Also, we take a positive root system ∆+ = ∆+(g
C, hC) such that ∆p+ ⊂ ∆+,

and we denote ∆kC,+ := ∆kC ∩∆+. We set n := dim p+, r := rankR g.
We take the set of strongly orthogonal roots {γ1, . . . , γr} ⊂ ∆p+ such that

(1) γ1 is the highest root in ∆p+ ,

(2) γk is the root in ∆p+ which is highest among the roots strongly orthogonal to each
γj with 1 ≤ j ≤ k − 1,

and for each j, we take ej ∈ gCγj such that −[[ej , ϑej ], ej ] = 2ej . Then a :=
⊕r

j=1R(ej −
ϑej) ⊂ p is a maximal abelian subalgebra in p, and {e1, . . . , er} is a Jordan frame on p+.
We set e :=

∑r
j=1 ej ∈ p+ (a maximal tripotent), and h := −[e, ϑe] ∈

√
−1h. Then ad(h)

has eigenvalues 2, 1, 0,−1,−2. We set

p±T := {x ∈ p± : [h, x] = ±2x} ⊂ p±,

kCT := [p+T , p
−
T ] ⊂ kC,

gCT := p+T ⊕ kCT ⊕ p−T ,

gT := gCT ∩ g.
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Then, p+T becomes a complex simple Jordan algebra with the product

x · y := {x, e, y} = −1

2
[[x, ϑe], y], (2.2.1)

and gT becomes a Lie algebra of tube type.

We define the Cayley transform c : gC → gC by c := Ad(e
πi
4
(e−ϑe)), and set cg := c(g),

cgT := c(gT). Then
cgT ⊂ gCT is fixed by the involution σϑ := Ad(e

π
2
(e+ϑe)) ◦ ϑ. By direct

computation we have

σϑ|p+T =
1

2
ad(e)2 ◦ ϑ : p+T −→ p+T ,

σϑ|kCT = (idkC + ad(e)ad(ϑe)) ◦ ϑ : kCT −→ kCT,

σϑ|p−T =
1

2
ad(ϑe)2 ◦ ϑ : p−T −→ p−T .

That is, σϑ preserves the grading. Therefore we denote

cgT = n+ ⊕ l⊕ n− ⊂ p+T ⊕ kCT ⊕ p−T = gCT.

Then the real form n+ of p+T becomes a Euclidean simple Jordan algebra.
We set al := c(a) =

√
−1h∩ l =

⊕r
j=1Rhj , where hj := −[ej , ϑej ]. Then the restricted

root system Σ = Σ(cg, al) is given by

Σ =



{
1

2
(γj − γk)

∣∣∣∣
al

:
1 ≤ j, k ≤ r,

j ̸= k

}
∪

{
±1

2
(γj + γk)

∣∣∣∣
al

: 1 ≤ j ≤ k ≤ r

}
(g = gT),

(as above) ∪

{
±1

2
γj

∣∣∣∣
al

: 1 ≤ j ≤ r

}
(g ̸= gT).

We define the positive restricted roots Σ+ by

Σ+ =



{
1

2
(γj − γk)

∣∣∣∣
al

: 1 ≤ j < k ≤ r

}
∪

{
1

2
(γj + γk)

∣∣∣∣
al

: 1 ≤ j ≤ k ≤ r

}
(g = gT),

(as above) ∪

{
1

2
γj

∣∣∣∣
al

: 1 ≤ j ≤ r

}
(g ̸= gT).

Then Σ+ and ∆+ are compatible, that is, α ∈ ∆+ implies α|al ∈ Σ+ ∪ {0}. We set

ljk :=

{
X ∈ cgT : ad(H)X =

1

2
(γj − γk)(H)X for any H ∈ al

}
(1 ≤ j, k ≤ r, j ̸= k),

ml :=
{
X ∈ cgϑT : ad(H)X = 0 for any H ∈ al

}
,

n±jk :=

{
X ∈ cgT : ad(H)X = ±1

2
(γj + γk)(H)X for any H ∈ al

}
(1 ≤ j ≤ k ≤ r),

p±jk := (n±jk)
C (1 ≤ j ≤ k ≤ r),

p±0j :=

{
X ∈ p± : ad(H)X = ±1

2
γj(H)X for any H ∈ al

}
(1 ≤ j ≤ r),

and

kl := lϑ = {X ∈ l : ϑX = Ad(e
π
2
(e+ϑe))X = X},

n−l :=
⊕

1≤k<j≤r

ljk.
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Then we have

l = al ⊕ml ⊕
⊕
j ̸=k

ljk = kl ⊕ al ⊕ n−l ,

n± =
⊕

1≤j≤k≤r

n±jk, p±T =
⊕

1≤j≤k≤r

p±jk, p± =
⊕

0≤j≤k≤r
(j,k) ̸=(0,0)

p±jk.

The decomposition n+ =
⊕

j≤k n
+
jk, or p+ =

⊕
j≤k p

+
jk, coincides with the Peirce decom-

position of the Jordan algebra n+, or the Jordan triple system p+, with respect to the
Jordan frame {e1, . . . , er}. We set d := dimC p+12, b := dimC p+01, and nT := dimC p+T . Then
n = r+ 1

2r(r− 1)d+ br and nT = r+ 1
2r(r− 1)d holds. Also we set p := 2 + (r− 1)d+ b.

Throughout this chapter, let GC be a connected complex Lie group with Lie algebra gC,
and letG, cGT,K,KC,KC

T be the connected Lie subgroups with Lie algebras g, cgT, k, k
C, kCT

respectively. Also we set L := KC ∩ cGT, KL := K ∩L (possibly non-connected, with Lie
algebras l, kl), let AL, N

−
L be the connected Lie subgroups of L with Lie algebras al, n

−
l

respectively, and let ML be the centralizer of al in KL.
We write

x̄ := σϑx =
1

2
ad(e)2(ϑx) (x ∈ p+T),

l∗ := −ϑl (l ∈ kC),
tl := −σl = −(idkC + ad(e)ad(ϑe))(l) (l ∈ kCT),

l̄ := σϑl = (idkC + ad(e)ad(ϑe)) (l ∈ kCT).

Then these are (anti-)involutions on p+T , k
C and kCT, which preserves n+, k, (kl)

C and l
respectively. Also, we denote by the same symbols ∗, t and ¯ the corresponding (anti-
)involutions on KC and KC

T . Also, for x ∈ p+ and l ∈ KC or kC, we abbreviate Ad(l)x or
ad(l)x as lx.

2.2.2 Some operations and polynomials on Jordan algebras

As in the previous subsection, p+ has a Jordan triple system structure, and p+T , n
+ has

a Jordan algebra structure. For x, y ∈ p+, we define x□y, B(x, y) ∈ EndC(p
+) by, for

z ∈ p+,

(x□y)z := {x, y, z} = −1

2
ad([x, ϑy])z,

B(x, y)z := x− 2{x, y, z}+ {x, {y, z, y}, x} =

(
Ip+ + ad([x, ϑy]) +

1

4
ad(x)2ad(ϑy)2

)
z.

These depends holomorphically on x, and anti-holomorphically on y. Also, for x ∈ p+T , we
define L(x), P (x) ∈ EndC(p

+
T) by, for y ∈ p+T ,

L(x)y := xy = −1

2
ad([x, ϑe])y,

P (x)y := 2x(xy)− (x2)y =
1

4
ad(x)2ad(ϑe)2y.

Then for x, y ∈ p+ and l ∈ KC,

lx□(l∗)−1y = l(x□y)l−1,

B(lx, (l∗)−1y) = lB(x, y)l−1
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holds, and for x ∈ p+T , l ∈ KC
T ,

P (lx) = lP (x)tl,

B(x, x)|p+T = P (e− x2)

holds. We define an inner product (·|·) on p+ by

(x|y) := 2

p
Tr(x□y : p+ → p+).

Then for l ∈ KC, (lx|y) = (x|l∗y) holds. This inner product is proportional to the
restriction of the Killing form on gC to p+ × p−, under the identification of p+ and p−

through ϑ. Also, let tr(x), det(x) be the trace and determinant polynomials of the Jordan
algebra p+T , and let h(x, y) be the generic norm of the Jordan triple system p+. Then these
polynomials are expressed by

nT

r
tr(x) = Tr(L(x) : p+T → p+T),

(det(x))2nT/r = Det(P (x) : p+T → p+T),

(h(x, y))p = Det(B(x, y) : p+ → p+).

tr(x) is a linear form satisfying tr(x) = (x|e), and det(x), h(x, y) are polynomials of degree
r with respect to each variable. These polynomials satisfy

det(lx) = det(le) det(x) (l ∈ KC
T , x ∈ p+T),

h(lx, (l∗)−1y) = h(x, y) (l ∈ KC, x, y ∈ p+),

h(x, x) = det(e− x2) (x ∈ p+T).

From now we abbreviate B(x, x) = B(x), h(x, x) = h(x), and (x|x) = |x|2 for x ∈ p+.
Then B(x) is self-adjoint on p+, and therefore h(x) is real-valued. Also we set

Ω := {x2 ∈ n+ : x ∈ n+, det(x) ̸= 0},
D := (connected componet of {w ∈ p+ : h(w) > 0} which contains 0).

Then L acts on Ω by linear transformation, and G acts on D ⊂ p+ via Borel embedding,
which we will review later. Moreover we have

Ω ≃ L/KL, D ≃ G/K.

For x ∈ Ω, P (x) is positive definite on n+, and there exists a unique element l ∈ exp(l−ϑ) ⊂
L such that P (x) = Ad(l)|n+ . We denote such l ∈ L by the same P (x). Similarly, for
z, w ∈ D, B(z, w) is invertible on p+, and there exists an element l ∈ KC such that
B(z, w) = Ad(l)|p+ . So we define the holomorphic map B : D ×D → KC (with the same
symbol B) such that Ad(B(z, w))|p+ = B(z, w) and B(0, 0) = 1. Clearly P (x) and B(z, w)

are also well-defined as elements of the universal covering groups L̃, K̃C.
Now we recall the Peirce decomposition

p+ =
⊕

0≤j≤k≤r
(j,k) ̸=(0,0)

p+jk.
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We set
p+(l) :=

⊕
1≤j≤k≤l

p+jk

for l = 1, 2, . . . , r. Then each p+(l) is again a unital Jordan algebra. For each l, let det(l) be

the determinant polynomial of p+(l), Pl : p
+ → p+(l) be the orthogonal projection, and we

set
∆l(x) := det(l)(Pl(x)).

For l = r we also write
∆(x) = ∆r(x) = det(x).

Using these, for s = (s1, . . . , sr) ∈ Cr, we set

∆s(x) := ∆1(x)
s1−s2∆2(x)

s2−s3 · · ·∆r−1(x)
sr−1−sr∆r(x)

sr .

If m ∈ Zr and m1 ≥ m2 ≥ · · · ≥ mr ≥ 0, then ∆m is a polynomial of degree m1+ · · ·+mr.
We denote this condition by Zr

++:

Zr
++ := {m = (m1, . . . ,mr) ∈ Zr : m1 ≥ · · · ≥ mr ≥ 0}.

For later use, we prepare another set Zr
+:

Zr
+ := {m = (m1, . . . ,mr) ∈ Zr : m1 ≥ · · · ≥ mr}.

Now for q ∈ (MLALN
−
L )C, since q preserves each p+(l), we have

∆s(qx) = ∆s(qe)∆s(x).

That is, for any m, ∆m is a lowest weight vector with lowest weight −m1γ1 − · · · −mrγr
under the representation

L −→ End(P(p+)), l 7−→ (f(x) 7−→ f(l−1x))

where P(p+) denotes the space of all holomorphic polynials on p+. In fact, we have

Theorem 2.2.1 (Hua-Kostant-Schmid, [5, Part III, Theorem V.2.1]).

P(p+) =
⊕

m∈Zr
++

Pm(p+)

where Pm(p+) is the irreducible representation of KC with lowest weight −m1γ1 − · · · −
mrγr.

We quote another theorem here.

Theorem 2.2.2 ([7, Theorem XII.2.2]). The irreducible representation V of L has a KL-
fixed vector if and only if the lowest weight −λ is of the form −λ = −m1γ1 − · · · −mrγr
with (m1, . . . ,mr) ∈ Zr

+.

For l = 0, 1, . . . , r we set

Ol := Ad(KC)(e1 + · · ·+ el) ⊂ p+. (2.2.2)
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Then KC acts on each Ol transitively, and we have the orbit decomposition

p+ = O0 ∪ O1 ∪ · · · ∪ Or.

For each orbit Ol, its closure Ol is given by

Ol = O0 ∪ O1 ∪ · · · ∪ Ol.

Also, since the polynomial ∆l+1(x) vanishes on Ol, the polynomial space on Ol decomposes
under KC as

P(Ol) =
⊕

m∈Zr
++

ml+1=ml+2=···=0

Pm(p+). (2.2.3)

Each orbit Ol has the dimension

dimCOl = l +
1

2
l(2r − l − 1)d+ lb (2.2.4)

since the tangent space of Ol at e1 + · · ·+ el is given by

Te1+···+elOl =
⊕

0≤j≤k≤r
j≤l, (j,k)̸=(0,0)

p+jk.

Now we recall the generalized Gamma function, which was introduced by Gindikin [8].
For s ∈ Cn this is defined as

ΓΩ(s) :=

∫
Ω
e− tr(x)∆s(x)∆(x)−

nT
r dx.

This integral converges if Re sj > (j − 1)d2 , and we have the following equality

ΓΩ(s) = (2π)
nT−r

2

r∏
j=1

Γ

(
sj − (j − 1)

d

2

)
([7, Corollary VII.1.3]), and this is meromorphically extended on Cn. Also we denote

(s)m :=
ΓΩ(s+m)

ΓΩ(s)
=

r∏
j=1

(
sj − (j − 1)

d

2

)
mj

.

For s = (λ, . . . , λ), we abbreviate (λ, . . . , λ) =: λ. For example, we denote

ΓΩ((λ, . . . , λ)) = ΓΩ(λ), ((λ, . . . , λ))m =
ΓΩ(λ+m)

ΓΩ(λ)
= (λ)m.

2.3 Norm computation: General theory

2.3.1 Holomorphic discrete series representation

In this subsection we recall the explicit realization of the holomorphic series representation
of the universal covering group G̃. First we recall the Borel embedding.

G/K //

∼

���
�
�

GC/KCP−

D � � // p+

exp

OO
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We consider maps π+ : G×D → D ⊂ p+, κ : G×D → KC, π− : G×D → p− such that

g exp(w) = exp(π+(g, w))κ(g, w) exp(π−(g, w)) (g ∈ G,w ∈ D).

Then π+ gives the action of G on D, so we abbreviate π+(g, w) =: gw. On K ⊂ G this
coincides with the adjoint action. Also, κ satisfies the cocycle condition

κ(gh,w) = κ(g, hw)κ(h,w) (g, h ∈ G, w ∈ D),

and for k ∈ K, κ(k,w) = k holds. Ad(κ(g, w))|p+ ∈ End(p+) coincides with the tangent
map of w 7→ gw = π+(g, w) at w ∈ p+. We naturally lift κ to the universal covering group,
and we denote this map by the same symbol κ : G̃×D → K̃C.

Let (τ, V ) be a finite dimensional irreducible complex representation of KC, and we
fix a K-invariant inner product (·, ·)τ on V . Also, let χλ be the character of K̃C such that
χ(k)λ = Det(Ad(k)|p+)λ/p. We consider the space of holomorphic sections

ΓO(G/K, G̃×K̃ (V ⊗ χ−λ)).

Then since G/K ≃ D is contractible, this is isomorphic to O(D,V ), the space of V -valued
holomorphic functions. Under this identification, the natural action τλ of G̃ on O(D,V )
is written as

τλ(g)f(w) = χ(κ(g−1, w))λτ(κ(g−1, w))−1f(g−1w) (g ∈ G̃, w ∈ D, f ∈ O(D,V )).

Its differential representation is given by, for u+ l − ϑv ∈ p+ ⊕ kC ⊕ p− = gC,

dτλ(u+ l − ϑv)f(w) = −λdχ(l + [w, ϑv])f(w) + dτ(l + [w, ϑv])f(w)

+
d

dt

∣∣∣∣
t=0

f

(
w − t

(
u+ ad(l)w − 1

2
ad(w)2ϑv

))
.

Then since κ(g, w)B(w)κ(g, w)∗ = B(gw) holds for any g ∈ G̃, w ∈ D (see [16, Lemma
2.11]), this action preserves the following weighted Bergman inner product

⟨f, g⟩λ,τ :=
cλ
πn

∫
D

(
τ(B(w)−1)f(w), g(w)

)
τ
h(w)λ−pdw (f, g ∈ O(D,V )), (2.3.1)

where cλ is a constant defined such that ∥v∥λ,τ = |v|τ holds for any constant functions
z 7→ v ∈ V (i.e. for any element of the minimal K-type). Let Hλ(D,V ) ⊂ O(D,V )
be the unitary subrepresentation of G̃ under τλ. Then Hλ(D,V ) is non-zero if λ ∈ R is
sufficiently large so that the above inner product converges. On the other hand, we cannot
know a priori whether Hλ(D,V ) is zero or non-zero if λ is small. In any case, if Hλ(D,V )
is non-zero, the reproducing kernel is proportional to KReλ,τ (z, w), where

Kλ,τ (z, w) := h(z, w)−λτ(B(z, w)) ∈ O(D ×D,End(V )).

This is because the reproducing kernel K(z, w) is characterized by

χ(κ(g, z))λτ(κ(g, z))−1K(gz, gw)τ(κ(g, w))∗−1χ(κ(g, w))λ = K(z, w),

and such K(z, w) is unique up to constant multiple, since G̃ acts transitively on the totally
real submanifold diag(D) ⊂ D×D, which allows the value at origin K(0, 0) to determine
the whole K(z, w), and K(0, 0) ∈ End(V ) is proportional to identity since this commutes
with K̃-action. When λ ∈ R is sufficiently large, then the reproducing kernel corresponding
to the inner product (2.3.1) is precisely Kλ,τ (z, w) by the normalization assumption.
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2.3.2 Key theorem

The norm ∥ · ∥λ,τ in the previous subsection is G̃-invariant, and therefore K̃-invariant.
From now on we observe how the norm varies as the parameter λ varies on each K-type.
In order to compare, we consider another K-invariant norm which is independent of λ.

We recall the Fischer inner product ⟨·, ·⟩F,τ on P(p+, V ), the space of V -valued holo-
morphic polynomials on p+.

⟨f, g⟩F,τ :=
1

πn

∫
p+
(f(w), g(w))τe

−|w|2dw (f, g ∈ P(p+, V )). (2.3.2)

This inner product is invariant under the following representation (τ̂ ,P(p+, V )):

(τ̂(k)f) (w) := τ(k)f(k−1w) (k ∈ KC, f ∈ P(p+, V ), w ∈ p+),

that is, ⟨τ̂(k)f, g⟩F,τ = ⟨f, τ̂(k∗)g⟩F,τ holds. Let W ⊂ P(p+, V ) = O(D,V )K be a KC-
irreducible subspace. Then since both ∥·∥F,τ and ∥·∥λ,τ are K-invariant, the ratio of these
two norms are constant on W . Therefore we aim to compute this ratio of two norms.

In order to state the key theorem, we prepare some notations. Let

(τ, V )|KC
T
=
⊕
i

(τi, Vi)

be the decomposition of the KC-module (τ, V ) into KC
T-irreducible submodules, and for

each i we denote by (τ̄i, Vi) the complex conjugate representation of Vi with respect to the
real form L ⊂ KC

T , that is, there exists a conjugate linear isomorphism ·̄ : Vi → Vi, and τ̄i

is given by τ̄i(l)v̄ = τi(l̄)v. Let

rest : P(p+, V ) → P(p+T , V ) =
⊕
i

P(p+T , Vi)

be the restriction map, and for each i we take KC
T-submodules Wij ⊂ P(p+T , Vi) such that

rest(W ) ⊂
⊕
i

⊕
j

Wij

holds.

Theorem 2.3.1. Let (τ, V )|KC
T

=
⊕

i(τi, Vi), and suppose each (τi, Vi) has a restricted

lowest weight −
(
ki,1
2 γ1 + · · ·+ ki,r

2 γr

)∣∣∣
al
. Let W ⊂ P(p+, V ) be a KC-irreducible subspace,

with rest(W ) ⊂
⊕

i

⊕
j Wij ⊂

⊕
i P(p+T , Vi) as above. We assume

(A1) (τi, Vi)|KL
still remains irreducible for each i.

(A2) For each i, j, all the KL-spherical irreducible subspaces in Wij ⊗ Vi have the same
lowest weight − (nij,1γ1 + · · ·+ nij,rγr).

Then the integral ∥f∥2λ,τ converges for any f ∈ W if Re(λ)+ki,r > p−1 for all i. Moreover,
there exist non-negative numbers aij such that, for any f ∈ W ,

∥f∥2λ,τ
∥f∥2F,τ

=
cλ∑
ij aij

∑
ij

aij
ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ nij)

,

where

c−1
λ =

1

dimV

∑
i

(dimVi)
ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ ki)

.
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In the rest of this section we prove this theorem. We set ∥f∥2λ,τ/∥f∥2F,τ =: RW (λ) for
f ∈ W , and compute this ratio RW (λ).

Let KW (z, w) ∈ P(p+ × p+,End(V )) be the reproducing kernel of W with respect to
⟨·, ·⟩F,τ , that is, for an orthonormal basis {fi} of W with respect to ⟨·, ·⟩F,τ ,

KW (z, w)v :=
∑
i

(v, fi(w))τfi(z) (v ∈ V ),

which does not depend on the choice of {fi}. Then the ratio RW (λ) is computed as

RW (λ) =

cλ
∑
i

∫
D

(
τ(B(w)−1)fi, fi

)
τ
h(w)λ−pdw

∑
i

∫
p+

(fi, fi)τ e
−|w|2dw

=

cλ

∫
D
TrV

(
τ(B(w)−1)KW (w,w)

)
h(w)λ−pdw∫

p+
TrV (KW (w,w))e−|w|2dw

,

and if the numerator converges, then ∥fi∥2λ,τ converges for any i, and so does ∥f∥2λ,τ for
any f ∈ W . To proceed the computation, we use the following lemma.

Lemma 2.3.2. For any integrable, or non-negative-valued measurable function f on p+,
we have

1

πn

∫
p+

f(w)dw =
1

ΓΩ

(
n
r

) ∫
Ω

∫
K
f(kx

1
2 )∆(x)bdkdx,

where x
1
2 is the square root with respect to the Jordan algebra structure (2.2.1) on Ω ⊂ n+.

Proof. For tube type case (b = 0) see [7, Proposition X.3.4]. Even for b ̸= 0 case we can
prove this similarly.

Since the integrand of RW (λ) is non-negative-valued, by this lemma, this is equal to

RW (λ) =

cλ

∫
Ω∩(e−Ω)

∫
K
TrV

(
τ(B(kx

1
2 )−1)KW (kx

1
2 , kx

1
2 )
)
h(kx

1
2 )λ−p∆(x)bdkdx∫

Ω

∫
K
TrV

(
KW (kx

1
2 , kx

1
2 )
)
e−|kx

1
2 |2∆(x)bdkdx

.

Since the reproducing kernel satisfies

KW (kz, k∗−1w) = τ(k)KW (z, w)τ(k−1) (z, w ∈ p+, k ∈ KC),

we have,

KW (kx
1
2 , kx

1
2 ) = τ(k)KW (P (x−

1
4 )x, P (x

1
4 )e)τ(k−1)

= τ(k)τ(P (x−
1
4 ))KW (x, e)τ(P (x

1
4 ))τ(k−1) (x ∈ Ω, k ∈ K).

Therefore we have
TrV

(
KW (kx

1
2 , kx

1
2 )
)
= TrV (KW (x, e)).
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Also, since k−1B(kx
1
2 )−1k = B(x

1
2 )−1 = P (e−x)−1 and P (e−x)−1 commutes with P (x

1
4 ),

we have

TrV

(
τ(B(kx

1
2 )−1)KW (kx

1
2 , kx

1
2 )
)
= TrV

(
τ(P (e− x)−1)KW (x, e)

)
.

By these and h(kx
1
2 ) = ∆(e− x), |kx

1
2 |2 = tr(x), we have

RW (λ) =

cλ

∫
Ω∩(e−Ω)

TrV
(
τ(P (e− x)−1)KW (x, e)

)
∆(e− x)λ−p∆(x)bdx∫

Ω
TrV (KW (x, e))e− tr(x)∆(x)bdx

.

By the assumption, we can rewrite KW (z, w) by using KWij (z, w), the reproducing kernels
of Wij , when z, w ∈ p+T :

KW (z, w) =
∑
ij

ãijKWij (z, w) ∈ P(p+T × p+T ,End(V )) (z, w ∈ p+T),

using some non-negative numbers ãij . Therefore we have

RW (λ) =

cλ
∑
ij

ãij

∫
Ω∩(e−Ω)

TrVi

(
τi(P (e− x)−1)KWij (x, e)

)
∆(e− x)λ−p∆(x)bdx

∑
ij

ãij

∫
Ω
TrVi(KWij (x, e))e

− tr(x)∆(x)bdx

.

Now we set

Bij(λ) :=

∫
Ω∩(e−Ω)

TrVi

(
τi(P (e− x)−1)KWij (x, e)

)
∆(e− x)λ−p∆(x)bdx,

Γij :=

∫
Ω
TrVi(KWij (x, e))e

− tr(x)∆(x)bdx

so thatRW (λ) = cλ

(∑
ij ãijBij(λ)

)/(∑
ij ãijΓij

)
. Now, we regardKWij (x, e) ∈ P(p+T ,End(Vi))

as a function of x. We define the action τ̃i of K
C
T on P(p+T ,End(Vi)) by

(τ̃i(k)F )(x) := τi(k)F (k−1x)τi(
tk) (k ∈ KC

T , F ∈ P(p+T ,End(Vi)), x ∈ p+T).

Then KWij (x, e) is KL-invariant under τ̃i. Now we identify

(τ̃i,P(p+T ,End(Vi))) ≃ (τ̂ |KC
T
⊗ τ̄i,P(p+T , Vi)⊗ Vi).

Then under this identification KWij (x, e) sits in Wij ⊗ Vi, and therefore by (A2) this sits
in the space with lowest weight −(nij,1γ1 + · · ·+ nij,rγr). That is, there exists a function
Fij ∈ P(p+T ,End(Vi)) such that

(τ̃i(q)Fij)(x) = ∆nij (q
−1e)Fij(x) (q ∈ ALN

−
L , x ∈ p+T),∫

KL

(τ̃(k)Fij)(x)dk = KWij (x, e).

We note that
∫
KL

(τ̃(k)Fij)(x)dk is non-zero for any non-zero N−
L -fixed vector Fij , since

we have (Fij ,KWij (·, e))τ ̸= 0, which is proved by using the Iwasawa decomposition L =
KLALN

−
L .
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From now, we compute Bij(λ) formally, allowing variable changes. By using Fij , we
rewrite Bij(λ) and Γij .

Bij(λ) =

∫
Ω∩(e−Ω)

TrVi

(
τi(P (e− x)−1)Fij(x)

)
∆(e− x)λ−p∆(x)bdx,

Γij :=

∫
Ω
TrVi(Fij(x))e

− tr(x)∆(x)bdx.

For y ∈ Ω we set

I(y) :=

∫
Ω∩(y−Ω)

TrVi

(
τi(P (y − x)−1)Fij(x)

)
∆(y − x)λ−p∆(x)bdx (2.3.3)

so that I(e) = Bij(λ). We take q ∈ ALN
−
L such that y = qe, and set x = qz. Then

I(y) =

∫
Ω∩(e−Ω)

TrVi

(
τi(P (q.(e− z))−1)Fij(qz)

)
∆(q.(e− z))λ−p∆(qz)b∆(qe)

nT
r dz

=

∫
Ω∩(e−Ω)

TrVi

(
τi(

tq−1)τi(P (e− z)−1)τi(q
−1)Fij(qz)

)
∆(e− z)λ−p∆(z)b∆(qe)λ−p+b+

nT
r dz

=

∫
Ω∩(e−Ω)

TrVi

(
τi(P (e− z)−1)Fij(z)

)
∆nij (qe)∆(e− z)λ−p∆(z)b∆(qe)λ−

nT
r dz

= I(e)∆nij (y)∆(y)λ−
nT
r = Bij(λ)∆λ+nij

(y)∆(y)−
nT
r .

Now we calculate
∫
Ω I(y)e− tr(y)dy by two ways.∫

Ω
I(y)e− tr(y)dy = Bij(λ)

∫
Ω
e− tr(y)∆λ+nij

(y)∆(y)−
nT
r dy = Bij(λ)ΓΩ(λ+ nij),∫

Ω
I(y)e− tr(y)dy =

∫∫
x∈Ω,y−x∈Ω

e− tr(y)TrVi

(
τi(P (y − x)−1)Fij(x)

)
∆(y − x)λ−p∆(x)bdxdy

=

∫∫
x∈Ω,z∈Ω

e− tr(x+z)TrVi

(
τi(P (z)−1)Fij(x)

)
∆(z)λ−p∆(x)bdxdz

= TrVi

(∫
Ω
e− tr(z)τi(P (z)−1)∆(z)λ−pdz

∫
Ω
e− tr(x)Fij(x)∆(x)bdx

)
.

Therefore, formally

Bij(λ)ΓΩ(λ+ nij) = TrVi

(∫
Ω
e− tr(z)τi(P (z)−1)∆(z)λ−pdz

∫
Ω
e− tr(x)Fij(x)∆(x)bdx

)
holds. By Fubini’s theorem, variable changes are verified and the above equality exactly
holds if ∫∫

x∈Ω,z∈Ω
e− tr(x+z)

∣∣TrVi

(
τi(P (z)−1)Fij(x)

)∣∣∆(z)Re(λ)−p∆(x)bdxdz < ∞

is verified, and since all norms on the finite-dimensional vector space End(Vi) are equiva-
lent, this holds if ∫

Ω
e− tr(z)

∣∣τi(P (z)−1)
∣∣
τi,op

∆(z)Re(λ)−pdz < ∞, (2.3.4)∫
Ω
e− tr(x) |Fij(x)|τi,op∆(x)bdx < ∞ (2.3.5)
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hold, where | · |τi,op denotes the operator norm. Since

|Fij(x)|τi,op = max
u,v∈Vi\{0}

|(Fij(x)u, v)τi |
|u|τi |v|τi

holds and (Fij(x)u, v)τ is a polynomial on Ω for any u, v ∈ Vi, (2.3.5) exactly holds. Also,
since τi(P (z)−1) is self-adjoint and positive definite for z ∈ Ω, we have

∣∣τi(P (z)−1)
∣∣
τi,op

= max
u∈Vi\{0}

∣∣(τi(P (z)−1)u, u)τi
∣∣

|u|2τi
,

and elements v ∈ Vi such that∫
Ω
e− tr(z)

∣∣(τi(P (z)−1)v, v)τi
∣∣∆(z)Re(λ)−pdz < ∞ (2.3.6)

forms a KL-invariant vector subspace, by the triangle inequality and the KL-invariance of
the integral. By assumption (A1), such vector subspace is either Vi or {0}. Thus (2.3.4)
holds if and only if (2.3.6) holds for some non-zero v ∈ Vi. Moreover, again by assumption
(A1), the integral

Γ′
i(λ) :=

∫
Ω
e− tr(z)τi(P (z)−1)∆(z)λ−pdz (2.3.7)

is proportional to the identity operator IVi if (2.3.6) holds, since this Γ
′
i(λ) commutes with

KL-action. Now we prove (2.3.6) for v ∈ Vi lowest weight vector, assuming Re(λ) + ki,r >

p − 1. Since the restricted lowest weight of Vi is −ki,1
2 γ1 − · · · − ki,r

2 γr

∣∣∣
al
, for q ∈ ALN

−
L

we have

(τi(P (qe)−1)v, v)τi = (τi(
tq−1q−1)v, v)τi = |τi(q−1)v|2τi = ∆−ki

2

(q−1e)2|v|2τi = ∆ki
(qe)|v|2τi ,

and this is positive valued. Therefore we have

(Γ′
i(λ)v, v)τi =

∫
Ω
e− tr(z)(τi(P (z)−1)v, v)τi∆(z)λ−pdz

=

∫
Ω
e− tr(z)∆ki

(z)∆(z)λ−
n
r
−nT

r dz|v|2τi

= ΓΩ

(
λ+ ki −

n

r

)
|v|2τi (2.3.8)

if Re(λ) + ki,r > p− 1. That is, (2.3.4) is verified, and Γ′
i(λ) = ΓΩ

(
λ+ ki − n

r

)
IVi holds.

Therefore,

Bij(λ) =
ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ nij)

TrV

(∫
Ω
e− tr(x)∆(x)bFij(x)dx

)
=

ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ nij)

Γi,

exactly holds, and

RW (λ) =
cλ∑

ij ãijΓij

∑
ij

ãij
ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ nij)

Γij .

By putting ãijΓij =: aij , we get the desired formula.

41



When W = V , clearly we have rest(V ) = ⊕iVi, and KV (z, w) = IV , KVi(z, w) = IVi .
Thus, the coefficients

ai = Γi =

∫
Ω
TrVi(KVi(x, e))e

− tr(x)∆(x)bdx

=

∫
Ω
TrVi(IVi)e

− tr(x)∆(x)bdx = (dimVi)ΓΩ

(n
r

)
.

Also, by assumption (A1), KL-spherical vectors in (τ̃ ,End(Vi)) ≃ (τi ⊗ τi, Vi ⊗ Vi) is pro-
portional to IVi , that is, dimEnd(Vi)

KL = 1. Therefore, assumption (A2) is automatically
satisfied, with ni = ki. Since cλ is determined such that RV,λ = 1, we have

c−1
λ =

1∑
i(dimVi)ΓΩ

(
n
r

)∑
i

(dimVi)ΓΩ

(n
r

) ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ ki)

=
1

dimV

∑
i

(dimVi)
ΓΩ

(
λ+ ki − n

r

)
ΓΩ(λ+ ki)

,

and this completes the proof.

Remark 2.3.3. The integral Γ′
i,λ in (2.3.7) is essentially the same as the “Gamma func-

tion” in [9, Definition 3.1], [10, Section 4] on End(Vi), or the integral with the measure
Rµ in [3, Theorem 3.4], and the property of Γ′

i,λ or the finiteness of (2.3.4) have been
already proved. However, since the notation is different, the author wrote the proof for
completeness.

If (τ, V )|kCT is still irreducible and rest(W ) ⊂ P(p+T , V ) consists of one irreducible KC
T-

module, then Theorem 2.3.1 becomes easier.

Corollary 2.3.4. Suppose (τ, V )|KC
T
has a restricted lowest weight −

(
k1
2 γ1 + · · ·+ kr

2 γr

)∣∣∣
al
.

Let W ⊂ P(p+, V ) be a KC-irreducible subspace. We assume

(A0) rest(W ) ⊂ P(p+T , V ) is irreducible as a KC
T-module.

(A1’) (τ, V )|KL
still remains irreducible.

(A2’) All the KL-spherical irreducible subspaces in rest(W )⊗V have the same lowest weight
− (n1γ1 + · · ·+ nrγr).

Then the integral ∥f∥2λ,τ converges for any f ∈ W if Re(λ) + kr > p − 1. Moreover, we
have

cλ =
ΓΩ(λ+ k)

ΓΩ

(
λ+ k− n

r

) ,
and for any f ∈ W , we have

∥f∥2λ,τ
∥f∥2F,τ

=
ΓΩ(λ+ k)

ΓΩ(λ+ n)
=

(λ)k
(λ)n

=
1

(λ+ k)n−k
.

The assumption (A0) is automatically satisfied if

• G = GT i.e. G is of tube type, or

• G = SU(q, r) (q ≤ r), and V = C⊠ V ′ as a K = S(U(q)× U(r))-module.

In Section 2.4, we deal with these cases explicitly, and in Section 2.5, we deal with the
cases such that Corollary 2.3.4 is not applicable. To remove the ambiguity of the action
of the center, we assume ki,r ≥ 0 for any i, and ki,r = 0 for some i.
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2.4 Norm computation: Tube type case

2.4.1 Explicit roots

Before starting the computation of norms, we fix the notation about roots of classical Lie
algebras of Hermitian type.

Let g = k⊕ p be a classical simple Lie algebra of Hermitian type, i.e. one of sp(r,R),
su(q, s), so∗(2s), or so(2, n). We fix a Cartan subalgebra h ⊂ k. Then h automatically
becomes a Cartan subalgebra of g. We take a basis

{t1, t2, . . . , tr} ⊂
√
−1h (g = sp(r,R)),

{t1, t2, . . . , tq+s} ⊂ (
√
−1h)⊕ R (g = su(q, s)),

{t1, t2, . . . , ts} ⊂
√
−1h (g = so∗(2s)),

{t0, t1, . . . , t⌊n/2⌋} ⊂
√
−1h (g = so(2, n)),

with the dual basis {εj}, such that the simple systems ΠgC , ΠkC of positive roots ∆+(g
C, hC),

∆+(k
C, hC) are given by

ΠkC =



{εj − εj+1 : j = 1, . . . , r − 1} (g = sp(r,R)),
{εj − εj+1 : j = 1, . . . , q − 1}

∪{εj+1 − εj : j = q + 1, . . . , q + s− 1} (g = su(q, s)),

{εj − εj+1 : j = 1, . . . , s− 1} (g = so∗(2s)),

{εj − εj+1 : j = 1, . . . , s− 1} ∪ {εs−1 + εs} (g = so(2, 2s)),

{εj − εj+1 : j = 1, . . . , s− 1} ∪ {εs} (g = so(2, 2s+ 1)),

ΠgC = ΠkC ∪


{2εr} (g = sp(r,R)),
{εq − εq+s} (g = su(q, s)),

{εs−1 + εs} (g = so∗(2s)),

{ε0 − ε1} (g = so(2, n)).

Then the central character dχ of kC is given by

dχ =


ε1 + · · ·+ εr (g = sp(r,R)),
ε1 + · · ·+ εq = −(εq+1 + · · ·+ εq+s) (g = su(q, s)),
1
2(ε1 + · · ·+ εs) (g = so∗(2s)),

ε0 (g = so(2, n)),

and the maximal set of strongly orthogonal roots {γ1, . . . , γrankR g} is given by

γj = 2εj (j = 1, . . . , r) (g = sp(r,R)),
γj = εj − εq+j (j = 1, . . . ,min{q, s}) (g = su(q, s)),

γj = γ2j−1 + γ2j (j = 1, . . . , ⌊s/2⌋) (g = so∗(2s)),

γ1 = ε0 + ε1, γ2 = ε0 − ε1 (g = so(2, n)).

When g = sp(r,R), su(r, r), so∗(4r) or so(2, n), g is of tube type, i.e. g = gT holds. On
the other hand, when su(q, s) (q ̸= s) or g = so∗(4r + 2), g is of non-tube type, and we
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have gT = su(r, r) (r := min{q, s}), or gT = so∗(4r) respectively. Let hT := h ∩ gT. Then
we have

√
−1hT = span({tj − tj+1 : j = 1, . . . , r − 1, q + 1, . . . , q + r − 1} ∪ {tr − tq+r})

(g = su(q, s)),
√
−1hT = span{t1, . . . , t2r} (g = so∗(4r + 2)).

Also, al ⊂
√
−1hT is given by

al =



√
−1h (gT = sp(r,R)),

span{tj − tq+j : j = 1, . . . , r} (gT = su(r, r)),

span{t2j−1 + t2j : j = 1, . . . , r} (gT = so∗(4r)),

span{t0, t1} (gT = so(2, n)).

In general, we consider gl(s,C) or so(n,C), and parametrize their irreducible represen-
tations. We fix the positive root system of gl(s,C) such that its simple system is given by

{εj − εj+1 : j = 1, . . . , s− 1}, and for m ∈ Zs
+, let (τ

(s)
m , V

(s)
m ), (τ

(s)∨
m , V

(s)∨
m ) be the finite-

dimensional irreducible representation of gl(s,C) with highest weight m1ε1 + · · ·+msεs,
−msε1−· · ·−m1εs respectively. Similarly, we fix the positive root system of so(n,C) such
that its simple system is given by

{εj − εj+1 : j = 1, . . . , s− 1} ∪ {εs−1 + εs} (n = 2s),

{εj − εj+1 : j = 1, . . . , s− 1} ∪ {εs} (n = 2s+ 1),

and for m ∈ Zs ∪
(
Z+ 1

2

)s
with

m1 ≥ m2 ≥ · · · ≥ ms−1 ≥ |ms| (n = 2s),

m1 ≥ m2 ≥ · · · ≥ ms−1 ≥ ms ≥ 0 (n = 2s+ 1),

let (τ
[n]
m , V

[n]
m ) be the finite-dimensional irreducible representation of so(n,C) with highest

weight m1ε1 + · · · +msεs. Then (τ
(r)∨
m , V

(r)∨
m ), (τ

(q)∨
m ⊠ τ

(s)
n , V

(q)∨
m ⊗ V

(s)
n ), (τ

(s)∨
m , V

(s)∨
m )

and (χm0 ⊠ τ
[n]
m ,Cm0 ⊗ V

[n]
m ) are naturally identified with the representation of kC for

g = sp(r,R), su(q, s), so∗(2s) and so(2, n) respectively. Their restricted lowest weights are
given by

− 1

2
(m1γ1 + · · ·+mrγr)

∣∣∣∣
al

(g = sp(r,R), V = V
(r)∨
m ),

− 1

2
((m1 − n1)γ1 + · · ·+ (mr − nr)γr)

∣∣∣∣
al

(g = su(q, s), V = V
(q)∨
m ⊠ V

(s)
n ),

− 1

2
((m1 +m2)γ1 + · · ·+ (m2r−1 +m2r)γr)

∣∣∣∣
al

(g = so∗(2s), V = V
(s)∨
m ),

− 1

2
((m0 +m1)γ1 + (m0 −m1)γ2)

∣∣∣∣
al

(g = so(2, n), V = Cm0 ⊠ V
[n]
m ).

We will omit the superscript (s) or [n] if there is no confusion.
Next we determine (τ̄ , V̄ ) for each representation (τ, V ) of kCT. As in Section 2.2.1, let

·̄ be the involution of kCT fixing l. Then ·̄ acts on hCT anti-linearly, and fixes al ⊕ (ml ∩ h).
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Therefore ·̄|hCT is characterized by

tj = tj (gT = sp(r,R)),
tj = −tq+j , tq+j = −tj (gT = su(r, r)),

t2j−1 = t2j , t2j = t2j−1 (gT = so∗(4r)),

tj =

{
tj (j = 0, 1)

−tj (j = 2, . . . , s)
(gT = so(2, n), s = ⌊n/2⌋).

We take an element w ∈ NK(h) ⊂ K (the normalizer of h in K, or the “Weyl group” of
h) such that

Ad(w)tj = tj (gT = sp(r,R), su(r, r)),
Ad(w)t2j−1 = t2j , Ad(w)t2j = t2j−1 (gT = so∗(4r)),

Ad(w)tj =

{
tj (j = 0, 1, s)

−tj (j = 2, 3, . . . , s− 1)
(gT = so(2, n), n ∈ 4N, s = ⌊n/2⌋),

Ad(w)tj =

{
tj (j = 0, 1)

−tj (j = 2, 3, . . . , s)
(gT = so(2, n), n /∈ 4N, s = ⌊n/2⌋).

Then we have

Ad(w)tj = tj (gT = sp(r,R), so∗(4r)),
Ad(w)tj = −tq+j , Ad(w)tq+j = −tj (gT = su(r, r)),

Ad(w)tj =

{
tj (j = 0, 1, . . . , s− 1)

−ts (j = s)
(gT = so(2, n), n ∈ 4N, s = ⌊n/2⌋),

Ad(w)tj = tj (gT = so(2, n), n /∈ 4N, s = ⌊n/2⌋),

and thus Ad(w)̄·|hCT preserves the positive Weyl chamber. This implies Ad(w)̄· preserves
the Borel subalgebra b ⊂ kCT. Let (τ, V ) be an irreducible kT-module with highest weight
µ ∈ (hCT)

∨ and we extend µ on b such that it is trivial on the nilradical. Let v ∈ V be the
highest weight vector. Then for b ∈ b we have

dτ̄(b)(τ(w−1)v) = dτ(b̄)τ(w−1)v = τ(w−1)dτ(Ad(w)b̄)v = µ(Ad(w)b̄) τ(w−1)v.

Therefore (τ̄ , V̄ ) has the highest weight vector τ(w−1)v with highest weight t 7→ µ(Ad(w)t̄)
(t ∈ hCT). Thus we conclude

V
(r)∨
m ≃ V

(r)∨
m (gT = sp(r,R)),

V
(r)∨
m ⊠ V

(r)
n ≃ V

(r)∨
n ⊠ V

(r)
m (gT = su(r, r)),

V
(2r)∨
m ≃ V

(2r)∨
m (gT = so∗(4r)),

Cm0 ⊠ V
[n]
(m1,...,ms−1,ms)

≃ Cm0 ⊠ V
[n]
(m1,...,ms−1,−ms)

(gT = so(2, n), n ∈ 4N, s = ⌊n/2⌋),

Cm0 ⊠ V
[n]
(m1,...,ms−1,ms)

≃ Cm0 ⊠ V
[n]
(m1,...,ms−1,ms)

(gT = so(2, n), n /∈ 4N, s = ⌊n/2⌋).

In the following sections, we compute the ratio of norms by using Corollary 2.3.4.
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2.4.2 Sp(r,R)

In this subsection we set G = Sp(r,R). This is of tube type, and we have

K ≃ U(r), p± ≃ Sym(r,C), L ≃ GL(r,R), KL ≃ O(r),

r = r, n =
1

2
r(r + 1), d = 1, p = r + 1.

We want to calculate the norm ∥ · ∥λ,τ of O(D,V ) in the case V = V ∨
ε1+···+εk

≃
∧k(Cr)∨

(k = 0, 1, . . . , r − 1). These V have the restricted lowest weight − 1
2(γ1 + · · ·+ γs)

∣∣
al
,

and remain irreducible even if restricted to KL = O(r), i.e. satisfy assumption (A1’) of
corollary 2.3.4. Thus the norm ∥ · ∥2λ,τ∨ε1+···+εk

converges if Reλ > r, and the normalizing

constant cλ is given by

cλ =
ΓΩ(λ+ ε1 + · · ·+ εk)

ΓΩ

(
λ+ ε1 + · · ·+ εk − r+1

2

) =

∏k
j=1 Γ

(
λ− j−1

2 + 1
)∏r

j=k+1 Γ
(
λ− j−1

2

)
∏k

j=1 Γ
(
λ− j+r

2 + 1
)∏r

j=k+1 Γ
(
λ− j+r

2

) .
First we compute the K-type decomposition of O(D,V )K = P(p+) ⊗ V ∨

ε1+···+εk
. To do

this, we quote the following lemma.

Lemma 2.4.1 ([30, §79, Example 3]).

V ∨
m ⊗ V ∨

ε1+···+εk
=

⊕
k∈{0,1}r, |k|=k

m+k∈Zr
+

V ∨
m+k.

By this lemma and Theorem 2.2.1, we have

P(p+)⊗ V ∨
ε1+···+εk

=
⊕

m∈Zr
++

V ∨
2m ⊗ V ∨

ε1+···+εk

=
⊕

m∈Zr
++

⊕
k∈{0,1}r, |k|=k

m+k∈Zr
+

V ∨
2m+k.

Second, for each K-type V ∨
2m+k, we compute V ∨

2m+k ⊗ V ∨
ε1+···+εk

≃ V ∨
2m+k ⊗ V ∨

ε1+···+εk
.

V ∨
2m+k ⊗ V ∨

ε1+···+εk
=

⊕
k′∈{0,1}r, |k′|=k
2m+k+k′∈Zr

+

V ∨
2m+k+k′ .

By Theorem 2.2.2, V ∨
2m+k+k′ is KL-spherical if and only if each component of 2m+k+k′

is even, that is, k = k′. Thus, the only KL-spherical submodule in V ∨
2m+k ⊗ V ∨

ε1+···+εk
is V ∨

2m+2k, and V ∨
2m+k satisfies the assumption (A2’) of Corollary 2.3.4 with n = m + k.

Therefore by Corollary 2.3.4, for f ∈ V ∨
2m+k we have

∥f∥2λ,τ∨ε1+···+εk

∥f∥2
F,τ∨ε1+···+εk

=
(λ)ε1+···+εk

(λ)m+k
=

∏k
j=1

(
λ− 1

2(j − 1)
)∏r

j=1

(
λ− 1

2(j − 1)
)
mj+kj

.

We summarize this subsection.
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Theorem 2.4.2. When G = Sp(r,R), and (τ, V ) = (τ∨ε1+···+εk
, V ∨

ε1+···+εk
), ∥·∥2λ,τ converges

if Reλ > r, the normalizing constant cλ is given by

cλ =

∏k
j=1 Γ

(
λ− j−1

2 + 1
)∏r

j=k+1 Γ
(
λ− j−1

2

)
∏k

j=1 Γ
(
λ− j+r

2 + 1
)∏r

j=k+1 Γ
(
λ− j+r

2

) ,
the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V ∨
ε1+···+εk

=
⊕

m∈Zr
++

⊕
k∈{0,1}r, |k|=k

m+k∈Zr
+

V ∨
2m+k,

and for f ∈ V ∨
2m+k, the ratio of norms is given by

∥f∥2λ,τ∨ε1+···+εk

∥f∥2
F,τ∨ε1+···+εk

=

∏k
j=1

(
λ− 1

2(j − 1)
)∏r

j=1

(
λ− 1

2(j − 1)
)
mj+kj

=
1∏k

j=1

(
λ− 1

2(j − 1) + 1
)
mj+kj−1

∏r
j=k+1

(
λ− 1

2(j − 1)
)
mj+kj

.

2.4.3 SU(q, s)

In this subsection we set G = SU(q, s), with q ≥ s. Then we have

K ≃ S(U(q)× U(s)), p± ≃ M(q, s;C), GT ≃ SU(s, s), KT ≃ S(U(s)× U(s)),

L ≃ {l ∈ GL(s,C) : det l ∈ R×}, KL ≃ {k ∈ U(s) : det k = ±1},
r = s, n = qs, d = 2, p = q + s.

We want to calculate the norm ∥·∥λ,τ of O(D,V ) in the case (τ, V ) = (τ
(q)∨
0 ⊠τ

(s)
k , V

(q)∨
0 ⊗

V
(s)
k ) = (1(q) ⊠ τ

(s)
k ,C ⊗ V

(s)
k ) (k ∈ Zs

++). These V have the restricted lowest weight
− 1

2(k1γ1 + · · ·+ ksγs)
∣∣
al
, and remain irreducible even if restricted to KL = diag({±1} ×

SU(s)) i.e. satisfy assumption (A1’) of corollary 2.3.4. Thus ∥·∥2λ,τ converges if Reλ+ks >
q + s− 1, and the normalizing constant cλ is given by

cλ =
ΓΩ(λ+ k)

ΓΩ(λ+ k− q)
=

s∏
j=1

(λ− (j − 1) + kj − q)q.

First, we compute the K-type decomposition of O(D,V )K = P(p+) ⊗
(
C⊠ V

(s)
k

)
. By

Theorem 2.2.1 we have

P(p+)⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zs

++

(
V

(q)∨
m ⊠ V

(s)
m

)
⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zs

++

⊕
n∈m+wt(k)

cnk,mV
(q)∨
m ⊠ V

(s)
n .

where V
(q)∨
m is the abbreviation of V

(q)∨
(m1,...,ms,0,...,0)

, wt(k) is the set of all weights in the

GL(s,C)-module V
(s)
k , and cnk,m are some non-negative integers. Second, let rest : P(p+)⊗

V → P(p+T)⊗ V be the restriction map, as in Section 2.3.2. Then we have

rest
(
V

(q)∨
m ⊠ V

(s)
n

)
= V

(s)∨
m ⊠ V

(s)
n ,
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so each K-type V
(q)∨
m ⊠ V

(s)
n satisfies the assumption (A0) in Corollary 2.3.4. Third, we

compute the tensor product with C⊠ V
(s)
n ≃ V

(s)
n ⊠ C.(

V
(s)∨
m ⊠ V

(s)
n

)
⊗
(
V

(s)∨
k ⊠ C

)
=

⊕
n′∈m+wt(k)

cn
′

k,mV
(s)∨
n′ ⊠ V

(s)
n .

By Theorem 2.2.2, V
(s)∨
n′ ⊠ V

(s)
n is KL-spherical if and only if n′ = n, so all irreducible

KL-spherical submodules in
(
V

(s)∨
m ⊠ V

(s)
n

)
⊗
(
V

(s)∨
k ⊠ C

)
are isomorphic to V

(s)∨
n ⊠V

(s)
n ,

which has the lowest weight −(n1γ1 + · · · + nsγs). Therefore each K-type satisfies the

assumption (A2’), and by Corollary 2.3.4, for f ∈ V
(q)∨
m ⊠ V

(s)
n we have

∥f∥2
λ,1(q)⊠τ

(s)
k

∥f∥2
F,1(q)⊠τ

(s)
k

=
(λ)k
(λ)n

=

∏s
j=1(λ− (j − 1))kj∏s
j=1(λ− (j − 1))nj

.

We summarize this subsection.

Theorem 2.4.3. When G = SU(q, s) (q ≥ s), and (τ, V ) = (1(q) ⊠ τ
(s)
k ,C ⊗ V

(s)
k ) (k ∈

Zs
++), ∥ · ∥2λ,τ converges if Reλ+ ks > q + s− 1, the normalizing constant cλ is given by

cλ =
s∏

j=1

(λ− (j − 1) + kj − q)q,

the K-type decomposition of O(D,V )K is given by

P(p+)⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zs

++

⊕
n∈m+wt(k)

cnk,mV
(q)∨
m ⊠ V

(s)
n ,

and for f ∈ V
(q)∨
m ⊠ V

(s)
n , the ratio of norms is given by

∥f∥2
λ,1(q)⊠τ

(s)
k

∥f∥2
F,1(q)⊠τ

(s)
k

=

∏s
j=1(λ− (j − 1))kj∏s
j=1(λ− (j − 1))nj

=
1∏s

j=1(λ− (j − 1) + kj)nj−kj

.

2.4.4 SO∗(4r)

In this subsection we set G = SO∗(4r). Then we have

K ≃ U(2r), p± ≃ Skew(2r,C), L ≃ GL(r,H), KL ≃ Sp(r),

r = r, n = r(2r − 1), d = 4, p = 2(2r − 1).

We want to calculate the norm ∥ · ∥λ,τ of O(D,V ) in the case V = V ∨
(k,0,...,0) ≃ Sk(Cr)∨,

or V = V ∨
( k
2
,..., k

2
,− k

2 )
≃ Sk(Cr) ⊗ det−k/2 (k = 0, 1, 2 . . .) (the latter is not defined as the

representation of U(2r) if k is odd, so in this case we consider the double covering group

K = Ũ2(r) ⊂ G = S̃O∗2(4r) ⊂ Spin(4r,C)). These V have the restricted lowest weight
− k

2γ1
∣∣
al

and − k
2 (γ1 + · · ·+ γr−1)

∣∣
al

respectively. Also, these V remain irreducible even

if restricted to KL = Sp(r), i.e. satisfy assumption (A1’) of corollary 2.3.4.
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First, we deal with V = V ∨
(k,0,...,0) case. Then ∥ · ∥2λ,τ∨

(k,0,...,0)
converges if Reλ > 4r − 3,

and the normalizing constant cλ is given by

cλ =
ΓΩ(λ+ (k, 0, . . . , 0))

ΓΩ(λ+ (k, 0, . . . , 0)− (2r − 1))
= (λ+ k)2r−1

r∏
j=2

(λ− 2(j − 1)− (2r − 1))2r−1.

To begin with, we compute the K-type decomposition of O(D,V )K = P(p+)⊗ V ∨
(k,0,...,0).

To do this, we quote the following lemma.

Lemma 2.4.4 ([30, §79, Example 4]).

V ∨
m ⊗ V ∨

(k,0,...,0) =
⊕

k∈(Z≥0)
2r, |k|=k

0≤kj≤mj−1−mj

V ∨
m+k.

Using this and Theorem 2.2.1, we get

P(p+)⊗ V ∨
(k,0,...,0) =

⊕
m∈Zr

++

V ∨
(m1,m1,m2,m2,...,mr,mr)

⊗ V ∨
(k,0,...,0)

=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−1−mj

V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

.

Next, for eachK-type V ∨
(m1+k1,m1,...,mr+kr,mr)

, we compute the tensor product with V ∨
(k,0,...,0) ≃

V ∨
(k,0,...,0).

V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

⊗ V ∨
(k,0,...,0)

=
⊕

l∈(Z≥0)
2r, |l|=k

0≤l2j−1≤mj−1−mj−kj
0≤l2j≤kj

V ∨
(m1+k1+l1,m1+l2,m2+k2+l3,m2+l4,...,mr+kr+l2r−1,mr+l2r)

.

By Theorem 2.2.2, V ∨
(m1+k1+l1,m1+l2,...,mr+kr+l2r−1,mr+l2r)

is KL-spherical if and only if the

(2j−1)-th component of its lowest weight is equal to the 2j-th component for each j, that is,
l2j−1 = 0 and l2j = kj . Thus, the onlyKL-spherical submodule in V ∨

(m1+k1,m1,...,mr+kr,mr)
⊗

V ∨
(k,0,...,0) is V

∨
(m1+k1,m1+k1,...,mr+kr,mr+kr)

, and V ∨
(m1+k1,m1,...,mr+kr,mr)

satisfies the assump-

tion (A2’) of Corollary 2.3.4 with n = m + k. Therefore by Corollary 2.3.4, for f ∈
V ∨
(m1+k1,m1,...,mr+kr,mr)

we have

∥f∥2λ,τ∨
(k,0,...,0)

∥f∥2
F,τ∨

(k,0,...,0)

=
(λ)(k,0,...,0)

(λ)m+k
=

(λ)k∏r
j=1(λ− 2(j − 1))mj+kj

.

Second, we deal with V = V ∨
( k
2
,..., k

2
,− k

2 )
case. Then ∥ · ∥2λ,τ∨

(k,0,...,0)
converges if Reλ >

4r − 3, and the normalizing constant cλ is given by

cλ =
ΓΩ(λ+ (k, . . . , k, 0))

ΓΩ(λ+ (k, . . . , k, 0)− (2r − 1))

=

r−1∏
j=1

(λ− 2(j − 1) + k − (2r − 1))2r−1(λ− 2(r − 1)− (2r − 1))2r−1.
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Similar to the previous arguments,K-type decomposition ofO(D,V )K = P(p+)⊗V ∨
( k
2
,..., k

2
,− k

2 )
is given by

P(p+)⊗ V ∨
( k
2
,..., k

2
,− k

2 )
=

⊕
m∈Zr

++

V ∨
(m1,m1,m2,m2,...,mr,mr)

⊗ V ∨
(0,...,0,−k) ⊗ V ∨

( k
2
,..., k

2 )

=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−mj+1

V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr)+( k

2
,..., k

2 )
,

and for each K-type, we can show that the only KL-spherical submodule in

V ∨
(m1,m1−k1,...,mr,mr−kr)+( k

2
,..., k

2 )
⊗ V ∨

( k
2
,..., k

2
,− k

2 )

is V ∨
(m1−k1,m1−k1,...,mr−kr,mr−kr)+(k,...,k). Thus V ∨

(m1,m1−k1,...,mr,mr−kr)+( k
2
,..., k

2 )
satisfies the

assumption (A2’) of Corollary 2.3.4 with n = m− k+ (k, . . . , k). Therefore by Corollary
2.3.4, for f ∈ V ∨

(m1,m1−k1,...,mr,mr−kr)+( k
2
,..., k

2 )
we have

∥f∥2λ,τ∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ∨

(k/2,...,k/2,−k/2)

=
(λ)(k,...,k,0)

(λ)m−k+k
=

∏r−1
j=1(λ− 2(j − 1))k∏r

j=1(λ− 2(j − 1))mj−kj+k
.

We summarize this subsection.

Theorem 2.4.5. When G = SO∗(4r), and (τ, V ) = (τ∨(k,0,...,0), V
∨
(k,0,...,0)) (k ∈ Z≥0), ∥·∥2λ,τ

converges if Reλ > 4r − 3, the normalizing constant cλ is given by

cλ = (λ+ k)2r−1

r∏
j=2

(λ− 2(j − 1)− (2r − 1))2r−1,

the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V ∨
(k,0,...,0) =

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−1−mj

V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

,

and for f ∈ V ∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr)

, the ratio of norms is given by

∥f∥2λ,τ∨
(k,0,...,0)

∥f∥2
F,τ∨

(k,0,...,0)

=
(λ)k∏r

j=1(λ− 2(j − 1))mj+kj

=
1

(λ+ k)m1+k1−k
∏r

j=2(λ− 2(j − 1))mj+kj

.

When G = SO∗(4r), and (τ, V ) = (τ∨(k/2,...,k/2,−k/2), V
∨
(k/2,...,k/2,−k/2)) (k ∈ Z≥0), ∥ ·∥2λ,τ

converges if Reλ > 4r − 3, the normalizing constant cλ is given by

cλ =

r−1∏
j=1

(λ− 2(j − 1) + k − (2r − 1))2r−1(λ− 2(r − 1)− (2r − 1))2r−1,

the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V ∨
( k
2
,..., k

2
,− k

2 )
=

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r, |k|=k
0≤kj≤mj−mj+1

V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr)+( k

2
,..., k

2 )
,
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and for f ∈ V ∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr)+( k

2
,..., k

2 )
, the ratio of norms is given by

∥f∥2λ,τ∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ∨

(k/2,...,k/2,−k/2)

=

∏r−1
j=1(λ− 2(j − 1))k∏r

j=1(λ− 2(j − 1))mj−kj+k

=
1∏r−1

j=1(λ+ k − 2(j − 1))mj−kj (λ− 2(r − 1))mr−kr+k

.

2.4.5 Spin0(2, n)

In this subsection we set G = Spin0(2, n), the identity component of the indefinite spin
group. This is of tube type, and we have

K ≃ (Spin(2)× Spin(n))/{(1, 1), (−1,−1)}, p± ≃ Cn,

r = 2, n = n, d = n− 2, p = n.

Let π : KC = (Spin(2,C)× Spin(n,C))/{(1, 1), (−1,−1)} → SO(2,C)× SO(n,C) be the
covering map. Then we have

π(L) ≃ SO0(1, 1)× SO0(1, n− 1) ∪ SO−(1, 1)× SO−(1, n− 1),

π(KL) ≃ {+I2} × SO(n− 1) ∪ {−I2} ×O−(n− 1),

where SO−(p, q), O−(q) are the connected component of SO(p, q), O(q) which does not

contain the unit element. Each representation of KC is of the form (χm0⊠τ
[n]
m ,Cm0⊗V

[n]
m ),

and sometimes we abbreviate this to (τ(m0;m), V(m0;m)).
Now we want to calculate the norm ∥ · ∥λ,τ of O(D,V ) in the case

(τ, V ) =

{
(χ−k ⊠ τ(k,...,k,±k),C−k ⊗ V(k,...,k,±k))

(
k ∈ 1

2Z≥0

)
(n : even),

(χ−k ⊠ τ(k,...,k),C−k ⊗ V(k,...,k))
(
k = 0, 12

)
(n : odd).

These (τ, V ) have the restricted lowest weight −kγ1, and remain irreducible even if re-
stricted to KL, i.e. satisfy assumption (A1’) of corollary 2.3.4. Thus ∥ · ∥2λ,τ converges if
Reλ > n− 1, and the normalizing constant cλ is given by

cλ =
ΓΩ(λ+ (k, 0))

ΓΩ

(
λ+ (k, 0)− n

2

) =
Γ (λ+ k) Γ

(
λ− n−2

2

)
Γ
(
λ+ k − n

2

)
Γ (λ− (n− 1))

.

First we compute the K-type decomposition of O(D,V )K = P(p+)⊗V . To do this, we use
the following lemma, which comes from the “multi-minuscule rule” [25, Corollary 2.16].

Lemma 2.4.6. (1) Let m ∈ Z≥0 and k ∈ 1
2Z≥0. For two representations V(m,0,...,0) and

V(k,...,k,±k) of so(2s,C),

V(m,0,...,0) ⊗ V(k,...,k,±k) =
k⊕

l=max{−k,k−m}

V(m+l,k,...,k,±l)

(double sign corresponds) holds.

(2) Let m ∈ Z>0. For two representations V(m,0,...,0) and V( 1
2
,..., 1

2)
of so(2s+ 1,C),

V(m,0,...,0) ⊗ V( 1
2
,..., 1

2)
= V(m+ 1

2
, 1
2
,..., 1

2)
⊕ V(m− 1

2
, 1
2
,..., 1

2)

holds.

51



By Theorem 2.2.1,

P(p+) =
⊕

m∈Z2
++

C−(m1+m2) ⊠ V(m1−m2,0,...,0)

holds, and combining with the above lemma, we have

P(p+)⊗
(
C−k ⊠ V(k,...,k,±k)

)
=

⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,±l)

for n = 2s even case, k ∈ 1
2Z≥0, and

P(p+)⊗
(
C−k ⊠ V(k,...,k)

)
=

⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,|l|)

for n = 2s+ 1 odd case, k = 0, 12 .
Second, we seek KL-spherical subspace in the tensor product of each K-type and V̄ .

To begin with, we deal with n = 2s even, V = V(−k;k,...,k,k) case. Suppose

V(−(n1+n2):n1−n2,0,...,0) ⊂ V(−(m1+m2+k);m1−m2+l,k,...,k,l) ⊗ V(−k;k,...,k),

where (n1, n2) ∈ Z2
+. This implies that (−(n1 + n2) + (m1 +m2 + k); (n1 − n2) − (m1 −

m2+ l),−k, . . . ,−k,−l) is a weight of V(−k;k,...,k). However, the weight of this form is only

(−k; l,−k, . . . ,−k,−l), since V(−k;k,...,k,k) has the lowest weight (−k;−k, . . . ,−k, k), and
root vectors xε1−εs , xε1+εs ∈ so(2s) commute with each other. Therefore we have{

(n1 + n2)− (m1 +m2 + k) = k,
(n1 − n2)− (m1 −m2 + l) = l.

∴
{

n1 = m1 + k + l,
n2 = m2 + k − l.

Thus all KL-spherical irreducible submodule in V(−(m1+m2+k);m1−m2+l,k,...,k,l) ⊗V(−k;k,...,k)

have the same lowest weight −(n1γ1 + n2γ2) with (n1, n2) = (m1 + k+ l,m2 + k− l), and
all K-types satisfy the assumption (A2’) of Corollary 2.3.4. The same argument holds
for V = V(−k;k,...,k,−k) case, and also for n odd case, noting that only k = 0, 12 is allowed,
and n1, n2 ∈ Z. Therefore by Corollary 2.3.4, for f ∈ V(−(m1+m2+k);m1−m2+l,k,...,k,±l) or
V(−(m1+m2+k);m1−m2+l,k,...,k,|l|), we have

∥f∥2λ,τ
∥f∥2F,τ

=
(λ)(2k,0)

(λ)(m1+k+l,m2+k−l)
=

(λ)2k

(λ)m1+k+l

(
λ− n−2

2

)
m2+k−l

.

We summarize this subsection.

Theorem 2.4.7. When G = Spin0(2, n) and

(τ, V ) =

{
(χ−k ⊠ τ(k,...,k,±k),C−k ⊗ V(k,...,k,±k))

(
k ∈ 1

2Z≥0

)
(n : even),

(χ−k ⊠ τ(k,...,k),C−k ⊗ V(k,...,k))
(
k = 0, 12

)
(n : odd),

∥ · ∥2λ,τ converges if Reλ > n− 1, the normalizing constant cλ is given by

cλ =
Γ (λ+ k) Γ

(
λ− n−2

2

)
Γ
(
λ+ k − n

2

)
Γ (λ− (n− 1))

,
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the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V =



⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,±l) (n : even),

⊕
m∈Z2

++

⊕
−k≤l≤k

m1−m2+l≥k

C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,|l|) (n : odd),

and for f ∈ C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,±l) or C−(m1+m2+k) ⊠ V(m1−m2+l,k,...,k,|l|), the
ratio of norms is given by

∥f∥2λ,τ
∥f∥2F,τ

=
(λ)2k

(λ)m1+k+l

(
λ− n−2

2

)
m2+k−l

=
1

(λ+ 2k)m1−k+l

(
λ− n−2

2

)
m2+k−l

.

2.5 Norm computation: Non-tube type case

When G is of non-tube type, we cannot compute the norm by just using Theorem 2.3.1,
because it is difficult to determine the constants aij in Theorem 2.3.1. Thus we have to
use other informations to compute the norm. In this section we compute the norm in the
case

• (G,V ) = (SU(q, s),C⊠ V ′) (q < s), by direct computation,

• (G,V ) = (SO∗(4r+2), Sk(C2r+1)∨), by using the embedding SO∗(4r+2) ⊂ SO∗(4r+
4),

• (G,V ) = (SO∗(4r + 2), Sk(C2r+1)⊗ det−k/2), by combining Theorem 2.3.1 and the
embedding SU(1, 2r) ⊂ SO∗(4r + 2).

Also, for G = E6(−14), we try to compute the norm as best we can, by using Theorem
2.3.1.

2.5.1 Explicit realization of G

Before starting the computation, we fix the realization of G = SU(q, s), SO∗(2s). We
realize SU(q, s), SO∗(2s) as

SU(q, s) :=

{
g ∈ SL(q + s,C) : g

(
Iq 0
0 −Is

)
g∗ =

(
Iq 0
0 −Is

)}
, (2.5.1)

SO∗(2s) :=

{
g ∈ GL(2s,C) : g

(
0 Is
Is 0

)
tg =

(
0 Is
Is 0

)
, g

(
0 Is

−Is 0

)
=

(
0 Is

−Is 0

)
ḡ

}
,

(2.5.2)

and realize KC, p± as

KC :=

{(
a 0
0 d

)
:

(a, d) ∈ S(GL(q,C)×GL(s,C)) (G = SU(q, s))
a ∈ GL(s,C), d = ta−1 (G = SO∗(2s))

}
,

p+ :=

{(
0 b
0 0

)
:

b ∈ M(q, s;C) (G = SU(q, s))
b ∈ Skew(s,C) (G = SO∗(2s))

}
,

p− :=

{(
0 0
c 0

)
:

c ∈ M(s, q;C) (G = SU(q, s))
c ∈ Skew(s,C) (G = SO∗(2s))

}
.
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Then under the identification p+ ≃ M(q, s;C) or Skew(2s,C) by
(
0 b
0 0

)
7→ b, we have

D = {w ∈ M(q, s;C) : Iq − ww∗ is positive definite.} (G = SU(q, s)), (2.5.3)

D = {w ∈ Skew(s,C) : Is − ww∗ is positive definite.} (G = SO∗(2s)). (2.5.4)

For a representation (τ1 ⊠ τ2, V1 ⊗ V2) of KC = S(GL(q,C) × GL(s,C)), the universal

covering group S̃U(q, s) acts on O(D,V1 ⊗ V2) by

τλ

((
a b
c d

)−1
)
f(w) = det(cw + d)−λ

(
τ1 (a

∗ + wb∗)⊠ τ2
(
(cw + d)−1

))
× f

(
(aw + b)(cw + d)−1

)
, (2.5.5)

and for a representation (τ, V ) of KC = GL(s,C), the universal covering group S̃O∗(2s)
acts on O(D,V ) by

τλ

((
a b
c d

)−1
)
f(w) = det(cw + d)−λ/2τ

(
t(cw + d)

)
f
(
(aw + b)(cw + d)−1

)
, (2.5.6)

We note that we have the identities, for w ∈ M(q, s;C) and
(
a b
c d

)
∈ U(q, s),

det(Iq − ww∗) = det(Is − w∗w), det(a∗ + wb∗) = det

(
a b
c d

)−1

det(cw + d).

Therefore, on SU(q, s), det(a∗+wb∗) = det(cw+d) holds. We also note that det(cw+d)−λ

is not well-defined on G for general λ ∈ C, but is well-defined on the universal covering
group G̃. These representations preserve the inner product

⟨f, g⟩λ,τ =
cλ
πqs

∫
D

((
τ1
(
(Iq − ww∗)−1

)
⊠ τ2 (Is − w∗w)

)
f(w), g(w)

)
τ1⊠τ2

× det(Iq − ww∗)λ−(q+s)dw, (2.5.7)

⟨f, g⟩λ,τ =
cλ

πs(s−1)/2

∫
D

(
τ
(
(Is − ww∗)−1

)
f(w), g(w)

)
τ
det(Is − ww∗)

1
2
(λ−2(s−1))dw.

(2.5.8)

respectively. Let h ⊂ g be the subspace which consists of all diagonal matrices, and define
the linear form εi on hC by εi(Ejj) = δij . We define the positive system ∆+(g

C, hC) as in
Section 2.4.1.

2.5.2 SU(q, s)

In this subsection we set G = SU(q, s), with q < s, which is realized explicitly as (2.5.1).
Then we have

K ≃ S(U(q)× U(s)), p± ≃ M(q, s;C), GT ≃ SU(q, q), KT ≃ S(U(q)× U(q)),

L ≃ {l ∈ GL(q,C) : det l ∈ R×}, KL ≃ {k ∈ U(q) : det k = ±1},
r = q, n = qs, d = 2, p = q + s.
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We set (τ, V ) = (τ
(q)∨
0 ⊠ τ

(s)
k , V

(q)∨
0 ⊗ V

(s)
k ) = (1(q) ⊠ τ

(s)
k ,C ⊗ V

(s)
k ) (k ∈ Zs

++). In this
case, the inner product is given by

⟨f, g⟩
λ,1(q)⊠τ

(s)
k

=
cλ
πqs

∫
D

((
τ
(s)
k (Is − w∗w)

)
f(w), g(w)

)
τ
(s)
k

det(Is − w∗w)λ−(q+s)dw.

The goal of this subsection is to prove the following theorem.

Theorem 2.5.1. When G = SU(q, s) (q < s) and (τ, V ) = (1(q) ⊠ τ
(s)
k ,C ⊗ V

(s)
k ) (k ∈

Zs
++), ∥ · ∥2λ,τ converges if Reλ+ ks > q + s− 1, the normalizing constant cλ is given by

cλ =

s∏
j=1

(λ− (j − 1) + kj − q)q,

the K-type decomposition of O(D,V )K is given by

P(p+)⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zq

++

⊕
n∈m+wt(k)

cnk,mV
(q)∨
m ⊠ V

(s)
n ,

and for f ∈ V
(q)∨
m ⊠ V

(s)
n , the ratio of norms is given by

∥f∥2
λ,1(q)⊠τ

(s)
k

∥f∥2
F,1(q)⊠τ

(s)
k

=

∏s
j=1(λ− (j − 1))kj∏s
j=1(λ− (j − 1))nj

=
1∏s

j=1(λ− (j − 1) + kj)nj−kj

.

Before beginning the proof, we prepare some more notations. For k ∈ N, m ∈ Ck and
for x ∈ M(k,C), we write

∆m(x) :=

k−1∏
l=1

det ((xij)1≤i,j≤l)
ml−ml+1 det(x)mk .

For k ∈ N, letQk ⊂ GL(k,C) be the set of upper triangular matrices with positive diagonal
entries. Then for l1, l2 ∈ Qk, m ∈ Ck, ∆m(l1)∆m(l2) = ∆m(tl1l2) holds, and for l1 ∈ Qk,

l2 ∈ M(k, l;C), l3 ∈ Ql and m ∈ Ck, n ∈ Cl, ∆m(l1)∆n(l3) = ∆(m,n)

(
l1 l2
0 l3

)
holds. Also

we set

(p+T)
⊥ := M(q, s− q;C),
Ω := {x ∈ Herm(q,C) : x is positive definite.},
Ω̃ := {x ∈ Herm(s,C) : x is positive definite.}.

Now we start the proof. To begin with, we compute the K-type decomposition of

O(D,V )K = P(p+)⊗
(
C⊠ V

(s)
k

)
.

P(p+)⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zq

++

(
V

(q)∨
m ⊠ V

(s)
m

)
⊗
(
C⊠ V

(s)
k

)
=

⊕
m∈Zq

++

⊕
n∈m+wt(k)

cnk,mV
(q)∨
m ⊠ V

(s)
n .
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where V
(s)
m is the abbreviation of V

(s)
(m1,...,mq ,0,...,0)

, wt(k) is the set of all weights in the

GL(s,C)-module V
(s)
k , and cnk,m are some non-negative integers. We note that, for n ∈

Zs
++, there exists m ∈ Zq

++ such that cnk,m ̸= 0 if and only if

nj ≥ kj (1 ≤ j ≤ q) and kj−q ≤ nj ≤ kj (j ≥ q + 1),

which can be proved by using Littlewood-Richardson rule.

For each K-type V
(q)∨
m ⊠ V

(s)
n , let Km,n(z, w) ∈ P(p+ × p+,End(V

(s)
k )) be the repro-

ducing kernel of the KC
T-submodule V

(q)∨
m ⊠V

(q)
n′ ⊂ V

(q)∨
m ⊠V

(s)
n , where n′ := (n1, . . . , nq) ∈

Zq
++. Then since V

(q)∨
m ⊠ V

(q)
n′ ⊂ V

(q)∨
m ⊠ V

(s)
n is the lowest submodule, we have

τ
(s)
k

(
l2 l3
0 l4

)
Km,n

(
l1z

(
l2 l3
0 l4

)
, l∗−1

1 w

(
l∗−1
2 l5
0 l6

))
τ
(s)
k

(
l−1
2 0
l∗5 l∗6

)
= ∆n′′(l∗6l4)Km,n(z, w)

(z, w ∈ M(q, s;C), l1, l2 ∈ GL(q,C), l3, l5 ∈ M(q, s− q;C), l4, l6 ∈ Qs−q),

where n′′ := (ns−q+1, . . . , ns). Using this Km,n(z, w), we can rewrite the ratio of norms.

That is, for f ∈ V
(q)∨
m ⊠ V

(s)
n , the ratio of norms ∥f∥2

λ,1(q)⊠τ
(s)
k

/∥f∥2
F,1(q)⊠τ

(s)
k

is equal to

Rm,n(λ) :=

cλ

∫
D
Tr

V
(s)
k

(
τ
(s)
k (Is − w∗w)Km,n(w,w)

)
det(Is − w∗w)λ−(q+s)dw∫

p+
Tr

V
(s)
k

(Km,n(w,w))e
− tr(w∗w)dw

.

Now similarly to Lemma 2.3.2, for any non-negative measurable function f on M(q, s;C),
we have

1

πqs

∫
p+

f(w)dw =
1

ΓΩ(q)

∫
x∈Ω,y∈(p+T)⊥

k1,k2∈U(q)

f((k1x
1
2k2, k1y))dk1dk2dxdy.

Using this and the KT-invariance of Km,n(z, w)

Km,n((k1x
1
2k2, k1y), (k1x

1
2k2, k1y))

= τ
(s)
k

(
k−1
2 0
0 Is−q

)
Km,n((x

1
2 , y), (x

1
2 , y))τ

(s)
k

(
k2 0
0 Is−q

)
(x ∈ Ω, y ∈ (p+T)

⊥, k1, k2 ∈ U(q)),

we have

Rm,n(λ) =

cλ

∫
x∈Ω,y∈(p+T)⊥

(x1/2,y)∈D

Tr
V

(s)
k

(
τ
(s)
k

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))
Km,n((x

1
2 , y), (x

1
2 , y))

)

×det

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))λ−(q+s)

dxdy∫
x∈Ω,y∈(p+T)⊥

Tr
V

(s)
k

(Km,n((x
1
2 , y), (x

1
2 , y)))e

− tr

(
x x1/2y

y∗x1/2 y∗y

)
dxdy

.

Km,n((x
1
2 , y), (x

1
2 , y)) is transformed as below.

Km,n((x
1
2 , y), (x

1
2 , y)) = Km,n

(
x−

1
2 (x, 0)

(
Iq x−1/2y
0 Is−q

)
, x

1
2 (Iq, 0)

(
Iq x−1/2y
0 Is−q

))
= τ

(s)
k

(
Iq −x−1/2y
0 Is−q

)
Km,n((x, 0), (Iq, 0))τ

(s)
k

(
Iq 0

−y∗x−1/2 Is−q

)
.
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Then Km,n((·, 0), (Iq, 0)) is KL = diag({±1} × SU(q))-invariant under the representation

τ̃ of KC
T on P(p+T ,End(V

(s)
k )) = P(M(q, s),End(V

(s)
k )), where

(τ̃(l1, l2))F (x) := τ
(s)
k

(
l2 0
0 Is−q

)
F (l−1

1 xl2)τ
(s)
k

(
l−1
1 0
0 Is−q

)
.

That is,Km,n((·, 0), (Iq, 0)) ∈
((

V
(q)∨
m ⊠ V

(q)
n′

)
⊗
(
V

(s)∨
k

∣∣∣
U(q)

⊠ C
))KL

=
(
V

(q)∨
n′ ⊠ V

(q)
n′

)KL

.

Therefore there exists an Fm,n(x) ∈ P(p+T ,End(V
(s)
k )) such that∫

U(q)
τ
(s)
k

(
k 0
0 Is−q

)
Fm,n(k

−1xk)τ
(s)
k

(
k−1 0
0 Is−q

)
dk = Km,n((x, 0), (Iq, 0)),

τ
(s)
k

(
l2 0
0 l4

)
Fm,n(

tl1xl2)τ
(s)
k

(
tl1 0
0 tl3

)
= ∆n′(tl1l2)∆n′′(tl3l4)Fm,n(x)

(x ∈ p+T , l1, l2 ∈ Qq, l3, l4 ∈ Qs−q).

We define

F̃m,n(x, y) := τ
(s)
k

(
Iq −x−1/2y
0 Is−q

)
Fm,n(x)τ

(s)
k

(
Iq 0

−y∗x−1/2 Is−q

)
.

Then we have

Rm,n(λ) =

cλ

∫
x∈Ω,y∈(p+T)⊥

(x1/2,y)∈D

Tr
V

(s)
k

(
τ
(s)
k

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))
F̃m,n(x, y)

)

×det

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))λ−(q+s)

dxdy∫
x∈Ω,y∈(p+T)⊥

Tr
V

(s)
k

(F̃m,n(x, y))e
− tr

(
x x1/2y

y∗x1/2 y∗y

)
dxdy

.

We set

Bm,n(λ) :=

∫
x∈Ω,y∈(p+T)⊥

(x1/2,y)∈D

Tr
V

(s)
k

(
τ
(s)
k

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))
F̃m,n(x, y)

)

× det

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))λ−(q+s)

dxdy,

Γm,n :=

∫
x∈Ω,y∈(p+T)⊥

Tr
V

(s)
k

(F̃m,n(x, y))e
− tr

(
x x1/2y

y∗x1/2 y∗y

)
dxdy,

so that Rm,n(λ) = cλBm,n(λ)/Γm,n. We want to compute Bm,n(λ) explicitly. To do this,
similarly to (2.3.3), for z ∈ Ω̃ we define

J(z) :=

∫
E(z)

Tr
V

(s)
k

(
τ
(s)
k

(
z −

(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

))
F̃m,n(x

′, y′)

)
× det

(
z −

(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

))λ−(q+s)

dx′dy′,
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where

E(z) :=

{
(x, y) ∈ Ω× (p+T)

⊥ : z −
(

x x1/2y

y∗x1/2 y∗y

)
is positive definite.

}
,

so that E(Is) coincides with the domain of integration of Bm,n(λ), and J(Is) = Bm,n(λ)
holds. To compute J(z), we take l1 ∈ Qq, l2 ∈ M(q, s− q;C) and l3 ∈ Qs−q such that

z =

(
l∗1 0
l∗2 l∗3

)(
l1 l2
0 l3

)
,

and we change variables x, y to

x′ = l∗1xl1, y′ = (l∗1xl1)
−1/2l∗1x

1/2(yl3 + x1/2l2),

so that(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

)
=

(
l∗1xl1 l∗1x

1/2(yl3 + x1/2l2)

(l∗3y
∗ + l∗2x

1/2)x1/2l1 (l∗3y
∗ + l∗2x

1/2)(yl3 + x1/2l2)

)
=

(
l∗1 0
l∗2 l∗3

)(
x x1/2y

y∗x1/2 y∗y

)(
l1 l2
0 l3

)
.

Then under this change of variables, we have

τ
(s)
k

(
l1 l2
0 l3

)
F̃m,n(x

′, y′)τ
(s)
k

(
l∗1 0
l∗2 l∗3

)
= τ

(s)
k

(
l1 l2
0 l3

)
τ
(s)
k

(
Iq −(x′)−1/2y′

0 Is−q

)
Fm,n(x

′)τ
(s)
k

(
Iq 0

−(y′)∗(x′)−1/2 Is−q

)
τ
(s)
k

(
l∗1 0
l∗2 l∗3

)
= τ

(s)
k

(
l1 l2
0 l3

)
τ
(s)
k

(
Iq −l−1

1 x−1/2(yl3 + x1/2l2)
0 Is−q

)
Fm,n(l

∗
1xl1)

× τ
(s)
k

(
Iq 0

−(l∗3y
∗ + l∗2x

1/2)x−1/2l∗−1
1 Is−q

)
τ
(s)
k

(
l∗1 0
l∗2 l∗3

)
= τ

(s)
k

(
Iq −x−1/2y
0 Is−q

)
τ
(s)
k

(
l1 0
0 l3

)
Fm,n(l

∗
1xl1)τ

(s)
k

(
l∗1 0
0 l∗3

)
τ
(s)
k

(
Iq 0

−y∗x−1/2 Is−q

)
= ∆n

((
l∗1 0
l∗2 l∗3

)(
l1 l2
0 l3

))
F̃m,n(x, y).

Thus we can compute J(z) as

J(z) =

∫
E(Is)

Tr
V

(s)
k

(
τ
(s)
k

((
l∗1 0
l∗2 l∗3

)(
Is −

(
x x1/2y

y∗x1/2 y∗y

))(
l1 l2
0 l3

))
F̃m,n(x

′, y′)

)
× det

((
l∗1 0
l∗2 l∗3

)(
Is −

(
x x1/2y

y∗x1/2 y∗y

))(
l1 l2
0 l3

))λ−(q+s)

× det(l1)
2q det(l3)

2qdxdy

=

∫
E(Is)

Tr
V

(s)
k

(
τ
(s)
k

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))
F̃m,n(x, y)

)
× det

(
Is −

(
x x1/2y

y∗x1/2 y∗y

))λ−(q+s)

∆λ+n−s

((
l∗1 0
l∗2 l∗3

)(
l1 l2
0 l3

))
dxdy

= Bm,n(λ)∆λ+n−s(z).
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Next we compute
∫
Ω̃ J(z)e− tr(z)dz in two ways.∫

Ω̃
J(z)e− tr(z)dz = Bm,n(λ)

∫
Ω̃
∆λ+n−s(z)e

− tr(z) = Bm,n(λ)ΓΩ̃(λ+ n),∫
Ω̃
J(z)e− tr(z)dz

=

∫∫
E(z)

Tr
V

(s)
k

(
τ
(s)
k

(
z −

(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

))
F̃m,n(x

′, y′)

)
× det

(
z −

(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

))λ−(q+s)

e− tr(z)dx′dy′dz

=

∫∫
x′∈Ω,y′∈(p+T)⊥,

z′∈Ω̃

Tr
V

(s)
k

(
τ
(s)
k (z′)F̃m,n(x

′, y′)
)
det(z′)λ−(q+s)e

− tr

(
z′+

(
x′ (x′)1/2y′

(y′)∗(x′)1/2 (y′)∗y′

))
dx′dy′dz′

= Tr
V

(s)
k

(∫
Ω̃
τ
(s)
k (z) det(z)λ−(q+s)e− tr(z)dz

∫
Ω×(p+T)⊥

F̃m,n(x, y)e
− tr

(
x x1/2y

y∗x1/2 y∗y

)
dxdy

)
.

Since V
(s)
k is U(s)-invariant and

∫
Ω̃ τ

(s)
k (z) det(z)λ−(q+s)e− tr(z)dz commutes with U(s)-

action, this is proportional to the identity map. Also, similar to (2.3.8), we can show∫
Ω̃
τ
(s)
k (z) det(z)λ−(q+s)e− tr(z)dz = ΓΩ̃(λ+ k− q)I

V
(s)
k

when Reλ+ ks > q + s− 1. Therefore we have∫
Ω̃
J(z)e− tr(z)dz = ΓΩ̃(λ+ k− q)

∫
Ω×(p+T)⊥

Tr
V

(s)
k

(F̃m,n(x, y))e
− tr

(
x x1/2y

y∗x1/2 y∗y

)
dxdy

= ΓΩ̃(λ+ k− q)Γm,n,

and thus we get

Bm,n(λ) =
ΓΩ̃(λ+ k− q)

ΓΩ̃(λ+ n)
Γm,n,

Rm,n(λ) = cλ
Bm,n(λ)

Γm,n
= cλ

ΓΩ̃(λ+ k− q)

ΓΩ̃(λ+ n)
.

Since the norm is normalized so that R0,k(λ) = 1, we have

cλ =
ΓΩ̃(λ+ k)

ΓΩ̃(λ+ k− q)
=

s∏
j=1

(λ− (j − 1) + kj − q)q,

and consequently we get

Rm,n(λ) =
ΓΩ̃(λ+ k)

ΓΩ̃(λ+ n)
=

∏s
j=1(λ− (j − 1))kj∏s
j=1(λ− (j − 1))nj

,

and we have completed the proof of Theorem 2.5.1.
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2.5.3 SO∗(4r + 2), V = Sk(C2r+1)∨

In this subsection we set G = SO∗(4r + 2), which is realized explicitly as (2.5.2) with
s = 2r + 1. Then we have

K ≃ U(2r + 1), p± ≃ Skew(2r + 1,C),
GT ≃ SO∗(4r), L ≃ GL(r,H), KL ≃ Sp(r),

r = r, n = r(2r + 1), d = 4, p = 4r.

We set V = V
(2r+1)∨
(k,0,...,0) ≃ Sk(C2r+1)∨. The goal of this subsection is to prove the following

theorem.

Theorem 2.5.2. When G = SO∗(4r + 2) and (τ, V ) = (τ
(2r+1)∨
(k,0,...,0), V

(2r+1)∨
(k,0,...,0)) (k ∈ Z≥0),

∥ · ∥2λ,τ converges if Reλ > 4r − 1, the normalizing constant cλ is given by

cλ = (λ− (2r + 1))(λ+ k − 2r)2r

r∏
j=2

(λ− (2r + 1)− 2(j − 1))2r+1,

the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V
(2r+1)∨
(k,0,...,0) =

⊕
m∈Zr

++

⊕
k∈(Z≥0)

r+1;|k|=k
0≤kj≤mj−1−mj

V
(2r+1)∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

,

and for f ∈ V
(2r+1)∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

, the ratio of norms is given by

∥f∥2
λ,τ

(2r+1)∨
(k,0,...,0)

∥f∥2
F,τ

(2r+1)∨
(k,0,...,0)

=
(λ)k∏r

j=1(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

=
1

(λ+ k)m1+k1−k
∏r

j=2(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

.

To begin with, we determine the normalizing constant cλ. Since V |KC
T
is decomposed

as

V
(2r+1)∨
(k,0,...,0)

∣∣∣
KC

T

=

k⊕
l=0

V
(2r)∨
(l,0,...,0),

and V
(2r)∨
(l,0,...,0) has the restricted lowest weight − l

2γ1
∣∣
al
, and remains irreducible when re-

stricted to KL = Sp(r), by Theorem 2.3.1 ∥ · ∥2
λ,τ

(2r+1)∨
(k,0,...,0)

converges if Reλ > 4r − 1, and

we have

c−1
λ =

1

dimV
(2r+1)∨
(k,0,...,0)

k∑
l=0

(
dimV

(2r)∨
(l,0,...,0)

) ΓΩ (λ+ (l, 0, . . . , 0)− (2r + 1))

ΓΩ(λ+ (l, 0, . . . , 0))

=
1(

2r+k
k

) k∑
l=0

(
2r+l−1

l

)
(λ+ l − (2r + 1))2r+1

1∏r
j=2(λ− (2r + 1)− 2(j − 1))2r+1

=
1

(λ− (2r + 1))(λ+ k − 2r)2r
∏r

j=2(λ− (2r + 1)− 2(j − 1))2r+1
.
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To compute the norm on each K-type, we consider G′ := SO∗(4r+4), which is realized
explicitly as (2.5.2) with s = 2r + 2, and embed G ↪→ G′ by

(
a b
c d

)
7−→


a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

 (a, b, c, d ∈ M(2r + 1,C)).

We realize (τ
(2r+1)∨
(k,0,...,0), V

(2r+1)∨
(k,0,...,0)) as

V
(2r+1)∨
(k,0,...,0) = Pk(C2r+1) = {Homogeneous holomorphic polynomials on C2r+1 of degree k},

τ
(2r+1)∨
(k,0,...,0)(l)p(v) = p(l−1v) (l ∈ GL(2r + 1,C), v ∈ C2r+1, p ∈ Pk(C2r+1)),

with the inner product

(p1, p2)τ (2r+1)∨
(k,0,...,0)

:=
1

π2r+1

∫
C2r+1

p1(v)p2(v)e
−|v|2dv (p1, p2 ∈ Pk(C2r+1)).

Then G̃ = S̃O∗(4r + 2) acts on O(D,Pk(C2r+1)) by

τλ

((
a b
c d

)−1
)
f(w, v) := det(cw + d)−λ/2f

(
(aw + b)(cw + d)−1, t(cw + d)−1v

)
(w ∈ D ⊂ Skew(2r + 1,C), v ∈ C2r+1).

On the other hand, the scalar type representation of G̃′ = S̃O∗(4r + 4) on O(D′) (D′ is
realized as (2.5.4) with s = 2r + 2) is given by

τ ′λ

((
a b
c d

)−1
)
f(w) := det(cw + d)−λ/2f

(
(aw + b)(cw + d)−1

)
(w ∈ D′ ⊂ Skew(2r + 2,C)).

If we restrict this representation to G̃, we have

τ ′λ



a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1


−1
f

(
w v
−tv 0

)
= det(cw + d)−λf

(
(aw + b)(cw + d)−1 t(cw + d)−1v

−tv(cw + d)−1 0

)

(w ∈ Skew(2r + 1,C), v ∈ C2r+1).

Therefore if we define the embedding map ι : O(D,Pk(C2r+1)) → O(D′) by

(ι(f))

(
w v
−tv 0

)
:= f(w, v) (w ∈ Skew(2r + 1,C), v ∈ C2r+1),

then ι intertwines two actions τλ and τ ′λ|G̃. Also, since Fischer inner products on P(p+,Pk(C2r+1))
and P(p+′) (p+ = Skew(2r + 1,C), p+′ = Skew(2r + 2,C)) are given by

⟨f, g⟩
F,τ

(2r+1)∨
(k,0,...,0)

=
1

π(r+1)(2r+1)

∫
Skew(2r+1,C)

∫
C2r+1

f(w, v)g(w, v)e−
1
2
tr(ww∗)e−|v|2dvdw,

⟨f, g⟩F,1(2r+2) =
1

π(r+1)(2r+1)

∫
Skew(2r+2,C)

f(w)g(w)e−
1
2
tr(ww∗)dw,
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ι is an isometry with respect to the Fischer inner product.
Next, we compute theK-type decomposition ofO(D,Pk(C2r+1))K = P(p+)⊗Pk(C2r+1)

and O(D′)K′ = P(p+′).

P(p+)⊗ Pk(C2r+1) =
⊕

m∈Zr
++

V
(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ V
(2r+1)∨
(k,0,...,0)

=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r+1, |k|=k
0≤kj≤mj−1−mj

V
(2r+1)∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

,

P(p+′) =
⊕

n∈Zr+1
++

V
(2r+2)∨
(n1,n1,n2,n2,...,nr+1,nr+1)

.

Each K ′C = GL(2r + 2,C)-module V
(2r+2)∨
(n1,n1,n2,n2,...,nr+1,nr+1)

is decomposed under KC =

GL(2r + 1,C) as

V
(2r+2)∨
(n1,n1,n2,n2,...,nr+1,nr+1)

∣∣∣
KC

=
⊕

m∈Zr
++

nj≥mj≥nj+1

V
(2r+1)∨
(n1,m1,n2,m2,...,nr,mr,nr+1)

,

which follows from the following lemma about the branching law of GL(s,C) ↓ GL(s −
1,C).

Lemma 2.5.3 ([30, §66, Theorem 2]). For m ∈ Zs
+,

V
(s)∨
m

∣∣∣
GL(s−1,C)

=
⊕

n∈Zs−1
+

mj≥nj≥mj+1

V
(s−1)∨
n .

Therefore it follows that

ι
(
V

(2r+1)∨
(m1+k1,m1,...,mr+kr,mr,kr+1)

)
⊂ V

(2r+2)∨
(m1+k1,m1+k1,...,mr+kr,mr+kr,kr+1,kr+1)

. (2.5.9)

Therefore, for any f ∈ V
(2r+1)∨
(m1+k1,m1,m2+k2,m2,...,mr+kr,mr,kr+1)

, the ratio of norm is given by

∥ι(f)∥2
λ,1(2r+2)

∥ι(f)∥2
F,1(2r+2)

=
1∏r

j=1(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

.

Since ι intertwines G̃-action, ∥ · ∥
λ,τ

(2r+1)∨
(k,0,...,0)

is proportional to ∥ι(·)∥λ,1(2r+2) . Also, since ι

preserves the Fischer norm, and ∥ ·∥
λ,τ

(2r+1)∨
(k,0,...,0)

is normalized such that it coincides with the

Fischer norm on the minimal K-type, we have

∥f∥2
λ,τ

(2r+1)∨
(k,0,...,0)

∥f∥2
F,τ

(2r+1)∨
(k,0,...,0)

=
(λ)k∏r

j=1(λ− 2(j − 1))mj+kj (λ− 2r)kr+1

,

and we have proved Theorem 2.5.2.

Remark 2.5.4. We can also prove the former part of Theorem 2.4.5 (G = SO∗(4r)), or
Theorem 2.4.3, 2.5.1 (G = SU(q, s)) by this method, by embedding

SO∗(4r) ↪→ SO∗(4r + 2), P(Skew(2r,C),Pk(C2r)) ↪→ P(Skew(2r + 1,C)),

U(p)× U(q, s) ↪→ U(p+ q, s), V
(p)∨
k ⊠ P(M(q, s,C), V (s)

k ) ↪→ P(M(p+ q, s,C)),

but we cannot determine the normalizing constant cλ in this way.
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2.5.4 SO∗(4r + 2), V = Sk(C2r+1)⊗ det−k/2

In this subsection we continue to set G = SO∗(4r + 2), which is realized explicitly as

(2.5.2). We set V = V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
≃ Sk(C2r+1)⊗ det−k/2. The goal of this subsection is to

prove the following theorem.

Theorem 2.5.5. When G = SO∗(4r+ 2) and (τ, V ) = (τ
(2r+1)∨
(k/2,...,k/2,−k/2), V

(2r+1)∨
(k/2,...,k/2,−k/2))

(k ∈ Z≥0), ∥ · ∥2λ,τ converges if Reλ > 4r − 1, the normalizing constant cλ is given by

cλ =
r−1∏
j=1

(λ+ k − (2r + 1)− 2(j − 1))2r+1(λ− 4r + 1)2r(λ+ k − 2r + 1),

the K-type decomposition of O(D,V )K is given by

P(p+)⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r+1;|k|=k
0≤kj≤mj−mj+1

0≤kr≤mr

V
(2r+1)∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
,

and for f ∈ V
(2r+1)∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
, the ratio of norms is given by

∥f∥2
λ,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

=

∏r
j=1 (λ− 2(j − 1))k∏r

j=1 (λ− 2(j − 1))mj−kj+k (λ− 2r + 1)k−kr+1

=
1∏r

j=1 (λ+ k − 2(j − 1))mj−kj
(λ− 2r + 1)k−kr+1

.

To begin with, we determine the normalizing constant cλ. Since V |KC
T
is decomposed

as

V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

∣∣∣∣
KC

T

=

k⊕
l=0

V
(2r)∨
( k
2
,..., k

2
, k
2
−l)

,

and V
(2r)∨
( k
2
,..., k

2
, k
2
−l)

has the restricted lowest weight −
(
k
2 (γ1 + · · ·+ γr−1) +

k−l
2 γr

)∣∣
al

and

remains irreducible when restricted to KL = Sp(r), by Theorem 2.3.1 ∥ · ∥2λ,τ converges if
Reλ > 4r − 1, and we have

c−1
λ =

1

dimV
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

k∑
l=0

(
dimV

(2r)∨
( k
2
,..., k

2
, k
2
−l)

)
ΓΩ (λ+ (k, . . . , k, k − l)− (2r + 1))

ΓΩ(λ+ (k, . . . , k, k − l))

=
1(

2r+k
k

) 1∏r−1
j=1(λ+ k − (2r + 1)− 2(j − 1))2r+1

k∑
l=0

(
2r+l−1

l

)
(λ+ k − l − (4r − 1))2r+1

=
1∏r−1

j=1(λ+ k − (2r + 1)− 2(j − 1))2r+1(λ− 4r + 1)2r(λ+ k − 2r + 1)

=
(λ− 2r + 1)k∏r−1

j=1(λ+ k − (2r + 1)− 2(j − 1))2r+1(λ− 4r + 1)2r+1+k

=
ΓΩ(λ+ (k, . . . , k, 0)− (2r + 1))(λ− 2r + 1)k

ΓΩ(λ+ (k, . . . , k, k))
.
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Next we compute the K-type decomposition of O(D,V )K = P(p+)⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
.

P(p+)⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
=

⊕
m∈Zr

++

V
(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

=
⊕

m∈Zr
++

⊕
k∈(Z≥0)

r+1, |k|=k
0≤kj≤mj−mj+1

0≤kr≤mr

V
(2r+1)∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
.

To apply Theorem 2.3.1 for each K-type, we determine the image of each K-type under
rest : P(p+, V ) → P(p+T , V ). Since we have

rest

(
V

(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

)
= V

(2r)∨
(m1,m1,m2,m2,...,mr,mr)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

∣∣∣∣
KC

T

= V
(2r)∨
(m1,m1,m2,m2,...,mr,mr)

⊗
k⊕

l=0

V
(2r)∨
( k
2
,..., k

2
, k
2
−l)

=
k⊕

l=0

⊕
l∈(Z≥0)

r, |l|=l
0≤lj≤mj−mj+1

V
(2r)∨
(m1,m1−l1,m2,m2−l2,...,mr,mr−lr)+( k

2
,..., k

2 )
,

and the abstract decomposition of KC-modules under KC
T is given by Lemma 2.5.3, we

have

rest

(
V

(2r+1)∨
(m1,m1−k1,m2,m2−k2...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )

)
⊂

k⊕
l=k−kr+1

⊕
l∈(Z≥0)

r, |l|=l
kj≤lj≤mj−mj+1

V
(2r)∨
(m1,m1−l1,m2,m2−l2,...,mr,mr−lr)+( k

2
,..., k

2 )
.

Then, the only KL = Sp(r)-spherical submodule in

V
(2r)∨
(m1,m1−l1,m2,m2−l2,...,mr,mr−lr)+( k

2
,..., k

2 )
⊗ V

(2r)∨
( k
2
,..., k

2
, k
2
−l)

≃ V
(2r)∨
(m1,m1−l1,m2,m2−l2,...,mr,mr−lr)+( k

2
,..., k

2 )
⊗ V

(2r)∨
( k
2
,..., k

2
, k
2
−l)

is V
(2r)∨
(m1−l1,m1−l1,m2−l2,m2−l2,...,mr−lr,mr−lr)+(k,...,k), which has the lowest weight −((m1 −

l1 + k)γ1 + · · · + (mr − lr + k)γr). Therefore by Theorem 2.3.1, there exist non-negative
numbers am,k,l such that for f ∈ V(m1,m1−k1,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
, the ratio of norms

is given by

∥f∥2λ,τ
∥f∥2F,τ

=
cλ∑

l am,k,l

k∑
l=k−kr+1

∑
l∈(Z≥0)

r, |l|=l
kj≤lj≤mj+1−mj

am,k,l
ΓΩ (λ+ (k, . . . , k, k − l)− (2r + 1))

ΓΩ(λ+m− l+ (k, . . . , k))

=
1∑

l am,k,l

k∑
l=k−kr+1

∑
l∈(Z≥0)

r, |l|=l
kj≤lj≤mj+1−mj

am,k,l(λ− 4r + 1)k−l∏r
j=1(λ+ k − 2(j − 1))mj−lj (λ− 2r + 1)k

.

It is difficult to know the exact values of am,k,l, but at least we have proved

64



Lemma 2.5.6. For f ∈ V
(2r+1)∨
(m1,m1−k1,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
, the ratio of norms is

∥f∥2
λ,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

=
(monic polynomial of degree kr+1)∏r

j=1(λ+ k − 2(j − 1))mj−kj (λ− 2r + 1)k
.

Next we consider GA := SU(2r, 1), which is realized as (2.5.1), and embed GA ↪→ G
as (

a b
c d

)
7−→


a 0 0 b
0 d̄ −c̄ 0
0 −b̄ ā 0
c 0 0 d

 (
a ∈ M(2r,C), b ∈ M(2r, 1;C),

c ∈ M(1, 2r;C), d ∈ C

)
.

Then the positive root system ∆+(g
C
A, (h∩ gA)

C) of gA, induced from ∆+(g
C, hC), has the

simple system
{εj − εj+1 : j = 1, 2, . . . , 2r − 1} ∪ {ε2r + ε2r+1}.

Each representation ofKC
A = S(GL(2r,C)×GL(1,C)) is of the form (τ

(2r)∨
m ⊠τ

(1)∨
m0 , V

(2r)∨
m ⊗

V
(1)∨
m0 ), and we sometimes abbreviate this to (τ

(2r,1)∨
(m;m0)

, V
(2r,1)∨
(m;m0)

). Clearly V
(2r,1)∨
(m+(c,...,c);m0−c) ≃

V
(2r,1)∨
(m;m0)

holds as KC
A-modules for any c. The representation τλ of G̃ on O(D,V ) is given

by (2.5.6), and if we restrict this representation to G̃A, we have

τλ



a 0 0 b
0 d̄ −c̄ 0
0 −b̄ ā 0
c 0 0 d


−1
 f

(
w v
−tv 0

)

= det(a∗ + vb∗)−λ/2 det(cv + d)−λ/2τ
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

(
a∗ + vb∗ −wtc

0 t(cv + d)

)
× f

(
(a∗ + vb∗)−1wt(a∗ + vb∗)−1 (av + b)(cv + d)−1

−t((av + b)(cv + d)−1) 0

)
= det(cv + d)−λτ

(2r+1)∨
( k
2
,..., k

2
,− k

2 )

(
a∗ + vb∗ −wtc

0 t(cv + d)

)
× f

(
(a∗ + vb∗)−1wt(a∗ + vb∗)−1 (av + b)(cv + d)−1

−t((av + b)(cv + d)−1) 0

)
(w ∈ Skew(2r,C), v ∈ C2r).

For N ∈ N, let P≤N (Skew(2r,C)) be the space of polynomials on Skew(2r,C) whose
degree is smaller than or equal to N , and let DA ⊂ C2r be the unit disk. Also, let

incl : V
(2r,1)∨
(k,...,k,0;0) = V

(2r,1)∨
( k
2
,..., k

2
,− k

2
; k
2 )

↪→ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
be the KA-equivariant inclusion. Then

by the above computation, the map

ι : O(DA, (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0)) → O(D,V

(2r+1)∨
( k
2
,..., k

2
,− k

2 )
),

ι(f)

(
w v
−tv 0

)
:= incl(f(v, w))
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intertwines the GA action, and we can also prove that ι preserves the Fischer norm. Thus
we study the space

O(DA, (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0))KA

= P(C2r)⊗ (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0)

≃
∞⊕

m0=0

V
(2r,1)∨
(m0,0,...,0;m0)

⊗
⊕

m∈Zr
++

|m|≤N

V
(2r,1)∨
(m1,m1,m2,m2,...,mr,mr;0)

⊗ V
(2r,1)∨
(k,...,k,0;0).

This space is not irreducible under GA. For m ∈ Zr
++ and l ∈ Zr

≥0 we define

Fm,l := V
(2r,1)∨
(m1,m1−l1,m2,m2−l2,...,mr,mr−lr;0)+(k,...,k;0)

⊂ V
(2r,1)∨
(m1,m1,m2,m2,...,mr,mr;0)

⊗ V
(2r,1)∨
(k,...,k,0;0)

⊂ (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0),

so that

(P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0) =

⊕
m∈Zr

++

|m|≤N

⊕
l∈Zr

≥0, |l|=k

0≤lj≤mj−mj+1

Fm,l,

O(DA, (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0)) =

⊕
m∈Zr

++

|m|≤N

⊕
l∈Zr

≥0, |l|=k

0≤lj≤mj−mj+1

O(DA, Fm,l).

Also, for m ∈ Zr
++ and k ∈ Zr+1

≥0 we set

Wm,k := V
(2r,1)∨
(m1−k1,m2,m2−k2,m3,...,mr−1−kr−1,mr,mr−kr,−kr+1;m1)+(k,...,k;0)

⊂ V
(2r,1)∨
(m1,m2,m2,m3,...,mr−1,mr,mr,0;m1)

⊗ V
(2r,1)∨
(k,...,k,0;0)

⊂ V
(2r,1)∨
(m1,0,...,0;m1)

⊗ V
(2r,1)∨
(m2,m2,m3,m3,...,mr,mr,0,0;0)

⊗ V
(2r,1)∨
(k,...,k,0;0)

⊂ P(C2r)⊗ (P≤N (Skew(2r,C))⊠ C)⊗ V
(2r,1)∨
(k,...,k,0;0).

Then we have the following.

Lemma 2.5.7. (1) ι(Wm,k) ⊂ V
(2r+1)∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
.

(2) Wm,k ⊂
⊕

l∈(Z≥0)
r, |l|=k

lj≤kj+1, lr≥kr+1

O(DA, F(m2,...,mr,0),l).

(3) ι(Fm,l) ⊂
⊕

n∈(Z≥0)
r+1, |n|=k

nj≤lj , nr+1≥lr−mr

V
(2r+1)∨
(m1,m1−n1,m2,m2−n2,...,mr,mr−nr,−nr+1)+( k

2
,..., k

2 )
.

Proof. (1) The polynomial space P(C2r)⊗ (P(Skew(2r,C))⊠ C) is decomposed as

P(C2r)⊗ (P(Skew(2r,C))⊠ C) =
∞⊕

m0=0

V
(2r,1)∨
(m0,0,...,0;m0)

⊗
⊕

m∈Zr
++

V
(2r,1)∨
(m1,m1,m2,m2,...,mr,mr;0)

=
⊕

m∈Zr
++

⊕
l∈(Z≥0)

r, |l|=m0

0≤lj≤mj−1−mj

V
(2r,1)∨
(m1+l1,m1,m2+l2,m2,...,mr+lr,mr;m0)

,
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and similarly to (2.5.9), we have

V
(2r,1)∨
(m1+l1,m1,m2+l2,m2,...,mr+lr,mr;m0)

⊂ V
(2r+1)∨
(m1+l1,m1+l1,m2+l2,m2+l2,...,mr+lr,mr+lr)

.

Therefore we have

ι
(
V

(2r,1)∨
(m1+l1,m1,m2+l2,m2,...,mr+lr,mr;m0)

⊗ V
(2r,1)∨
(k,...,k,0;0)

)
⊂ V

(2r+1)∨
(m1+l1,m1+l1,m2+l2,m2+l2,...,mr+lr,mr+lr,0)

⊗ incl
(
V

(2r,1)∨
(k,...,k,0;0)

)
⊂ V

(2r+1)∨
(m1+l1,m1+l1,m2+l2,m2+l2,...,mr+lr,mr+lr,0)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )
. (2.5.10)

Especially, by putting l = 0 we have

Wm,k ⊂ V
(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ incl
(
V

(2r,1)∨
(k,...,k,0;0)

)
⊂ V

(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

Let v ∈ Wm,k be the highest weight vector. Then

ι(v) =
∑
i

v1,i ⊗ v2,i ∈ V
(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ incl
(
V

(2r,1)∨
(k,...,k,0;0)

)
⊂ V

(2r+1)∨
(m1,m1,m2,m2,...,mr,mr,0)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

has the weight −(−kr+1,mr − kr,mr, . . . ,m2− k2,m2,m1− k1,m1)−
(
k
2 , . . . ,

k
2

)
, vanishes

under root vectors x ∈ kCεj−εj+1
(j = 1, . . . , 2r−1) since v is the highest under KC

A, and also

vanishes under root vectors x ∈ kCε2r−ε2r+1
since each v1,i, v2,i has the weight (∗, . . . , ∗,−m1)

and (∗, . . . , ∗, 0) −
(
k
2 , . . . ,

k
2

)
respectively, where ∗ are some integers. Thus ι(v) becomes

a highest weight vector of V
(2r+1)∨
(m1,m1−k1,m2,m2−k2,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
.

(2) We have

Wm,l ⊂ V ∨
(m1,...,0;m1)

⊗ V
(2r,1)∨
(m2,m2,m3,m3,...,mr,mr,0,0;0)

⊗ V
(2r,1)∨
(k,...,k,0;0)

=
⊕

l∈Zr
≥0, |l|=k

0≤lj≤mj+1−mj+2

V ∨
(m1,...,0;m1)

⊗ V
(2r,1)∨
(m2,m2−l1,m3,m3−l2,...,mr,mr−lr−1,0,−lr;0)+(k,...,k;0)

=
⊕

l∈Zr
≥0, |l|=k

0≤lj≤mj+1−mj+2

V ∨
(m1,...,0;m1)

⊗ F(m2,...,mr,0),l,

and abstractly

Wm,l ≃ V
(2r,1)∨
(m1−k1,m2,m2−k2,m3,...,mr−1−kr−1,mr,mr−kr,−kr+1;m1)+(k,...,k;0)

⊂ V
(2r,1)∨
(m1,0,...,0;m1)

⊗ V
(2r,1)∨
(m2,m2−l1,m3,m3−l2,...,mr,mr−lr−1,0,−lr;0)+(k,...,k;0)

holds only if lj ≤ kj+1, lr ≥ kr+1 holds.
(3) By (2.5.10) with l = 0 we have

ι(Fm,l) ⊂ V
(2r+1)∨
(m1,m1,m2,m2,...,mr,mr)

⊗ V
(2r+1)∨
( k
2
,..., k

2
,− k

2 )

=
⊕

n∈(Z≥0)
r+1, |n|=k

nj≤mj−mj+1

V
(2r+1)∨
(m1,m1−n1,m2,m2−n2,...,mr,mr−nr,−nr+1)+( k

2
,..., k

2 )
.
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Combining with the abstract branching rule under KC ⊃ KC
A (Lemma 2.5.3), we get the

desired formula.

Now we want to show that, on V
(2r+1)∨
(m1,m1−k1,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
the ratio is given

by

∥f∥2
λ,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

∥f∥2
F,τ

(2r+1)∨
(k/2,...,k/2,−k/2)

=
1∏r

j=1 (λ+ k − 2(j − 1))mj−kj
(λ− 2r + 1)k−kr+1

(2.5.11)

by induction on min{j : mj = 0}.
First, when m = 0 i.e. on V ∨

(0,...,0,−k)+ k
2

, (2.5.11) clearly holds by the normalization

assumption. Second, we assume (2.5.11) holds when mj = 0, and prove this also holds on

V
(2r+1)∨
(m1,m1−k1,...,mr,mr−kr,−kr+1)+( k

2
,..., k

2 )
when mj+1 = 0.

By Lemma 2.5.7 (1), it suffices to compute ∥ι(f)∥2λ,τ/∥ι(f)∥2F,τ for f ∈ Wm,k. For any
l, let fl be the orthogonal of f onto O(DA, Fm′,l), where m′ := (m2, . . . ,mr, 0). Then by
Lemma 2.5.7 (2), we have

f =
∑

l∈(Z≥0)
r, |l|=k

lj≤kj+1, lr≥kr+1

fl,

and there exist bl ≥ 0 such that ∥ι(fl)∥2F = bl∥ι(f)∥2F holds. Next, by Theorem 2.5.1, we
have

∥ι(fl)∥λ,τ
∥ι(fl)∥F,τ

×
∥ι(vl)∥F,τ
∥ι(vl)∥λ,τ

=

∏r−1
j=1((λ− (2j − 2))mj+1+k(λ− (2j − 1))mj+1−lj+k)(λ− (2r − 1))−lr+k∏r−1

j=1((λ− (2j − 2))mj−kj+k(λ− (2j − 1))mj+1+k)

×(λ− (2r − 2))mr−kr+k(λ− (2r − 1))−kr+1+k

=

∏r−1
j=1(λ+ k − 2(j − 1))mj+1

∏r
j=2(λ+ k − (2j − 3))mj−lj−1

(λ− 2r + 1)k−lr∏r
j=1(λ+ k − 2(j − 1))mj−kj

∏r
j=2(λ+ k − (2j − 3))mj (λ− 2r + 1)k−kr+1

,

where vl is any non-zero element in the minimal KA-type Fm′,l. Next, let vl,n be the

orthogonal projection of ι(vl) onto V
(2r+1)∨
(m2,m2−n1,m3,m3−n2,...,mr,mr−nr−1,0,0,−nr)+( k

2
,..., k

2 )
, so

that
ι(vl) =

∑
n∈(Z≥0)

r, |n|=k
nj≤lj , nr≥lr

vl,n

by Lemma 2.5.7 (3). Then there exist cl,n ≥ 0 such that ∥vl,n∥2F,τ = cl,n∥ι(vl)∥2F,τ holds.
Next, by the induction hypothesis (2.5.11), for each n we have

∥vl,n∥2λ,τ
∥vl,n∥2F,τ

=
1∏r−1

j=1 (λ+ k − 2(j − 1))mj+1−nj
(λ− 2r + 1)k−nr

.
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Thus for each l we get

∥ι(vl)∥2λ,τ
∥ι(vl)∥2F,τ

=
∑

n∈(Z≥0)
r, |n|=k

nj≤lj , nr≥lr

cl,n
∥vl,n∥2λ,τ
∥vl,n∥2F,τ

=
∑

n∈(Z≥0)
r, |n|=k

nj≤lj , nr≥lr

cl,n∏r−1
j=1 (λ+ k − 2(j − 1))mj+1−nj

(λ− 2r + 1)k−nr

=
(monic polynomial of degree k − lr)∏r−1

j=1 (λ+ k − 2(j − 1))mj+1
(λ− 2r + 1)k−lr

,

and therefore we get

∥ι(f)∥2λ,τ
∥ι(f)∥2F,τ

=
∑

l∈(Z≥0)
r, |l|=k

lj≤kj+1, lr≥kr+1

bl
∥fl∥2λ,τ
∥fl∥2F,τ

=
∑

l∈(Z≥0)
r, |l|=k

lj≤kj+1, lr≥kr+1

bl

(
(monic polynomial of degree k − lr)∏r−1

j=1 (λ+ k − 2(j − 1))mj+1
(λ− 2r + 1)k−lr

×
∏r−1

j=1(λ+ k − 2(j − 1))mj+1

∏r
j=2(λ+ k − 2(j − 1) + 1)mj−lj−1

(λ− 2r + 1)k−lr∏r
j=1(λ+ k − 2(j − 1))mj−kj

∏r
j=2(λ+ k − (2j − 3))mj (λ− 2r + 1)k−kr+1

)

=
(monic polynomial of degree k2 + · · ·+ kr)∏r

j=1(λ+ k − 2(j − 1))mj−kj

∏r
j=2(λ+ k +mj − kj − (2j − 3))kj (λ− 2r + 1)k−kr+1

.

On the other hand, by Lemma 2.5.6 we have

∥ι(f)∥2λ,τ
∥ι(f)∥2F,τ

=
(monic polynomial of degree kr+1)∏r

j=1(λ+ k − 2(j − 1))mj−kj (λ− 2r + 1)k
,

so combining these two formulas, we get

∥ι(f)∥2λ,τ
∥ι(f)∥2F,τ

=
1∏r

j=1(λ+ k − 2(j − 1))mj−kj (λ− 2r + 1)k−kr+1

,

and the induction continues. Thus we have proved (2.5.11) for anym, and proved Theorem
2.5.5.

2.5.5 Conjecture on E6(−14)

In this subsection we set G = E6(−14). Then we have

k ≃ so(2)⊕ so(10), p± ≃ M(2, 1;OC), gT ≃ so(2, 8), l ≃ R⊕ so(1, 7), kl ≃ so(7),

r = 2, n = 16, d = 6, p = 12.

We take a Cartan subalgebra h ⊂ k. Then we can take a basis {t0, t1, . . . , t5} ⊂
√
−1h

and {ε0, ε1, . . . , ε5} ⊂ (
√
−1h)∨, such that

ε0(tj) =
4

3
δ0,j , εi(tj) = δi,j (i = 1, . . . , 5, j = 0, 1, . . . , 5),
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and the simple system of positive roots ∆+(g
C, hC) is given by{

ε1 − ε2, ε2 − ε3, ε3 − ε4, ε4 − ε5, ε4 + ε5,
3

4
ε0 +

1

2
(−ε1 − ε2 − ε3 − ε4 + ε5)

}
,

where 3
4ε0+

1
2(−ε1−ε2−ε3−ε4+ε5) is the unique non-compact simple root, and the central

character of kC is given by dχ = ε0. The set of strongly orthogonal roots {γ1, γ2} ⊂ ∆p+

is given by

γ1 =
3

4
ε0 +

1

2
(ε1 + ε2 + ε3 + ε4 + ε5), γ2 =

3

4
ε0 +

1

2
(ε1 − ε2 − ε3 − ε4 − ε5),

and hT := h ∩ gT, al is given by

√
−1hT = span

{
3

4
t0 +

1

2
t1, t2, t3, t4, t5

}
, al = span

{
3

4
t0 +

1

2
t1,

1

2
(t2 + t3 + t4 + t5)

}
.

We denote the restriction of εj to
√
−1hT by the same symbol εj (j = 2, 3, 4, 5), and define

ε′1 ∈ (
√
−1hT)

∨ by

ε′1

(
3

4
t0 +

1

2
t1

)
= 1, ε′1(tj) = 0 (j = 2, 3, 4, 5),

so that (m0ε0 + m1ε1)|√−1hT
=
(
m0 +

1
2m1

)
ε′1 holds. Also, we define εω2 , ε

ω
3 , ε

ω
4 , ε

ω
5 ∈

(
√
−1hT)

∨ such that they satisfy the relations

εω2 =
1

2
(ε2 + ε3 + ε4 + ε5),

1

2
(εω2 + εω3 + εω4 + εω5 ) = ε2,

εω2 + εω3 = ε2 + ε3,
1

2
(εω2 + εω3 + εω4 − εω5 ) =

1

2
(ε2 + ε3 + ε4 − ε5),

so that γ1|√−1hT
= ε′1 + εω2 , γ2|√−1hT

= ε′1 − εω2 holds.

For (m0;m) ∈ C×
(
Z5 ∪

(
Z+ 1

2

)5)
withm1 ≥ · · · ≥ m4 ≥ |m5|, let (τ [2,10](m0;m), V

[2,10]
(m0;m)) =

(χm0 ⊠ τ
[10]
m ,Cm0 ⊗V

[10]
m ) be the irreducible kC-module with highest weight m0ε0+m1ε1+

· · · + m5ε5. Also, for (m0;m1;m2, . . . ,m5) ∈ C × C ×
(
Z4 ∪

(
Z+ 1

2

)4)
with m2 ≥

m3 ≥ m4 ≥ |m5|, let (τ
[2,2,8]
(m0;m1;m2,...,m5)

, V
[2,2,8]
(m0;m1;m2,...,m5)

), (τ
[2,8]
(m1;m2,...,m5)

, V
[2,8]
(m1;m2,...,m5)

)

and (τ
[2,8]ω
(m1;m2,...,m5)

, V
[2,8]ω
(m1;m2,...,m5)

) be the irreducible kCT-module with highest weight m0ε0+

m1ε1 + m2ε2 + · · · + m5ε5, m1ε
′
1 + m2ε2 + · · · + m5ε5, and m1ε

′
1 + m2ε

ω
2 + · · · + m5ε

ω
5

respectively. Then as in Section 2.4.1, we can show

(τ
[2,8]ω
(m1;m2,m3,m4,m5)

, V
[2,8]ω
(m1;m2,m3,m4,m5)

) ≃ (τ
[2,8]ω
(m1;m2,m3,m4,−m5)

, V
[2,8]ω
(m1;m2,m3,m4,−m5)

).

We set V = V
[2,10]

(− k
2
;k,0,0,0,0)

. The goal of this subsection is to prove the following propo-

sition.

Proposition 2.5.8. When G = E6(−14) and (τ, V ) = (χ−k/2⊠τ
[10]
(k,0,0,0,0),C−k/2⊗V

[10]
(k,0,0,0,0))

(k ∈ Z≥0), ∥ · ∥2λ,τ converges if Reλ > 11, the normalizing constant cλ is given by

cλ = (λ− 7 + k)7(λ− 8)(λ− 11)7(λ− 4 + k),
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the K-type decomposition of O(D,V )K is given by

P(p+)⊗
(
C−k/2 ⊠ V

[10]
(k,0,0,0,0)

)
=

⊕
m∈Z2

++

⊕
k∈(Z≥0)

4, |k|=k
k2+k4≤m2
k3≤m1−m2

C− 3
4
(m1+m2)− k

2
⊠ V

[10](
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

),

and for f ∈ C− 3
4
(m1+m2)− k

2
⊠V

[10](
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

), the ratio

of norms is of the form

∥f∥2
λ,χ−k/2⊠τ

[10]
(k,0,0,0,0)

∥f∥2
F,χ−k/2⊠τ

[10]
(k,0,0,0,0)

=
(λ)k(λ− 3)k(monic polynomial of degree 2k1 + k2 + k3)

(λ)m1+k1+k2(λ− 3)m2+k1+k3(λ− 4)k(λ− 7)k

=
(monic polynomial of degree 2k1 + k2 + k3)

(λ+ k)m1+k1+k2−k(λ+ k − 3)m2+k1+k3−k(λ− 4)k(λ− 7)k
.

Before starting the proof, we quote the following lemma about the restriction of the
representation V [2s+2] of so(2s+ 2) to so(2)⊕ so(2s).

Lemma 2.5.9 ([26, Theorem 1.1]).

V
[2s+2]
(m0,m1,...,ms)

∣∣∣
so(2)⊕so(2s)

≃
⊕

mi−1≥ni≥|mi+1|
ms−1≥|ns|

⊕
n0

c
(m0,m1,...,ms)
(n1,...,ns)

(n0)V
[2,2s]
(n0;n1,...,ns)

,

where c
(m0,m1,...,ms)
(n1,...,ns)

(n0) ∈ Z≥0 is the coefficient of Xn0 of the polynomial

Xas

s−1∏
j=0

Xaj+1 −X−aj−1

X −X−1
,

where

a0 = m0 −max{m1, n1},
aj = min{mj , nj} −max{|mj+1|, |nj+1|} (j = 1, . . . , s− 1),

as = (sgnms)(sgnns)min{|ms|, |ns|}.

From this lemma we can easily deduce the following.

Lemma 2.5.10.

V
[2s+2]
(k,0,...,0)

∣∣∣
so(2)⊕so(2s)

=
k⊕

l1=0

⊕
l0∈Z, |l0|≤k−l1
k−l0−l1∈2Z

V
[2,2s]
(l0;l1,0,...,0)

.

Now we start the proof. To begin with, we determine the normalizing constant cλ.

Since V
[2,10]

(− k
2
;k,0,0,0,0)

is decomposed under kT as

V
[2,10]

(− k
2
;k,0,0,0,0)

∣∣∣∣
kT

=

k⊕
l1=0

⊕
l0∈Z, |l0|≤k−l1
k−l0−l1∈2Z

V
[2,2,8]

(− k
2
;l0;l1,0,0,0)

=

k⊕
l1=0

⊕
l0∈Z, |l0|≤k−l1
k−l0−l1∈2Z

V
[2,8](
−k+l0

2
;l2,0,0,0

)

=
⊕

k1,k2∈Z≥0

k≥k1≥k2≥0

V
[2,8](
− k1+k2

2
;k1−k2,0,0,0

) =
⊕

k1,k2∈Z≥0

k≥k1≥k2≥0

V
[2,8]ω(
− k1+k2

2
;
k1−k2

2
,
k1−k2

2
,
k1−k2

2
,
k1−k2

2

),
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each V
[2,8]ω(
− k1+k2

2
;
k1−k2

2
,
k1−k2

2
,
k1−k2

2
,
k1−k2

2

) remains irreducible under kl = so(7), and has the

restricted lowest weight − 1
2(k1γ1 + k2γ2)

∣∣
al
, by Theorem 2.3.1, ∥ · ∥2λ,τ converges if Reλ >

11, and cλ is given by

c−1
λ =

1

dimV
[2,10]

(− k
2
;k,0,0,0,0)

∑
k1,k2∈Z≥0

k≥k1≥k2≥0

(
dimV

[2,8]ω(
− k1+k2

2
;
k1−k2

2
,...,

k1−k2
2

)
)

ΓΩ(λ+ (k1, k2)− 8)

ΓΩ(λ+ (k1, k2))

=
1(

k+9
9

)
−
(
k+7
9

) ∑
k1,k2∈Z≥0

k≥k1≥k2≥0

(
k1−k2+7

7

)
−
(
k1−k2+5

7

)
(λ+ k1 − 8)8(λ+ k2 − 11)8

.

For l ∈ Z≥0, we define

F (λ, l) :=
∑

k1,k2∈Z≥0

l≥k1≥k2≥0

(
k1−k2+7

7

)
−
(
k1−k2+5

7

)
(λ+ k1 − 8)8(λ+ k2 − 11)8

.

Then it satisfies

F (λ, l + 1)

=

 ∑
l≥k1≥k2≥0

+
∑

l+1≥k1≥k2≥1

−
∑

l≥k1≥k2≥1

+
∑

(k1,k2)=(l+1,0)

 (
k1−k2+7

7

)
−
(
k1−k2+5

7

)
(λ+ k1 − 8)8(λ+ k2 − 11)8

= F (λ, l) + F (λ+ 1, l)− F (λ+ 1, l − 1) +

(
l+8
7

)
−
(
l+6
7

)
(λ+ l − 7)8(λ− 11)8

.

Solving this recurrence relation, we get

F (λ, l) =

(
l+9
9

)
−
(
l+7
9

)
(λ− 7 + l)7(λ− 8)(λ− 11)7(λ− 4 + l)

,

and thus we have

cλ = (λ− 7 + k)7(λ− 8)(λ− 11)7(λ− 4 + k) =
(λ− 8)k+8(λ− 11)k+8

(λ− 7)k(λ− 4)k

=
ΓΩ(λ+ k)

ΓΩ(λ− 8)(λ− 4)k(λ− 7)k
.

Next we compute the K-type decomposition of O(D,V )K = P(p+) ⊗ V
[2,10]

(− k
2
;k,0,0,0,0)

.

By Theorem 2.2.1 and the “multi-minuscule rule” [25, Corollary 2.16], we have

P(p+)⊗ V
[2,10]

(− k
2
;k,0,0,0,0)

=
⊕

m∈Z2
++

V
[2,10](
− 3

4
(m1+m2);

m1+m2
2

,
m1−m2

2
,
m1−m2

2
,
m1−m2

2
,−m1−m2

2

) ⊗ V
[2,10]

(− k
2
;k,0,0,0,0)

=
⊕

m∈Z2
++

⊕
k∈(Z≥0)

4, |k|=k
k2+k4≤m2
k3≤m1−m2

V
[2,10](
− 3

4
(m1+m2)− k

2
;
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

).
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In order to apply Theorem 2.3.1, we observe the image of each K-type under rest :
P(p+, V ) → P(p+T , V ). For each m ∈ Z2

++, we have

rest

(
V

[2,10](
− 3

4
(m1+m2);

m1+m2
2

,
m1−m2

2
,
m1−m2

2
,
m1−m2

2
,−m1−m2

2

) ⊗ V
[2,10]

(− k
2
;k,0,0,0,0)

)
= V

[2,8](
−(m1+m2);

m1−m2
2

,
m1−m2

2
,
m1−m2

2
,
m1−m2

2

) ⊗
⊕

k′1,k
′
2∈Z≥0

k≥k′1≥k′2≥0

V
[2,8](
−

k′1+k′2
2

;k′1−k′2,0,0,0

)

=
⊕

k′1,k
′
2∈Z≥0

k≥k′1≥k′2≥0

⊕
l1,l2∈Z≥0

l2≤m1−m2
l1+l2=k′1−k′2

V
[2,8](
−
(
m1+m2+

k′1+k′2
2

)
;
m1−m2

2
+l1,

m1−m2
2

,
m1−m2

2
,
m1−m2

2
−l2

).

We write k′1 + k′2 =: l0, so that k′1 =
1
2(l0 + l1 + l2), k

′
2 =

1
2(l0 − l1 − l2). By Lemma 2.5.9,

rest

(
V

[2,10](
− 3

4
(m1+m2)− k

2
;
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

)
)

∩ V
[2,8](
−
(
m1+m2+

l0
2

)
;
m1−m2

2
+l1,

m1−m2
2

,
m1−m2

2
,
m1−m2

2
−l2

) ̸= {0}

implies
0 ≤ l1 ≤ m2 + k1 − k4, 0 ≤ l2 ≤ m1 −m2,

and the coefficient of X
2
(
−
(
m1+m2+

l0
2

)
+( 3

4
(m1+m2)+

k
2 )

)
= X−m1+m2

2
−l0+k of the polyno-

mial

Xa4 X
a0+1 −X−a0−1

X −X−1

Xa1+1 −X−a1−1

X −X−1

Xa3+1 −X−a3−1

X −X−1
,

does not vanish, where

a0 =
m1 +m2

2
+ k1 − k4 −max

{
m1 −m2

2
+ k2,

m1 −m2

2
+ l1

}
= m2 + k1 − k4 −max{k2, l1},

a1 = min

{
m1 −m2

2
+ k2,

m1 −m2

2
+ l1

}
− m1 −m2

2

= min{k2, l1},

a3 =
m1 −m2

2
−max

{∣∣∣∣m1 −m2

2
− k3

∣∣∣∣ , ∣∣∣∣m1 −m2

2
− l2

∣∣∣∣} ,

a4 = sgn

(
−m1 −m2

2
+ k3

)
sgn

(
m1 −m2

2
− l2

)
min

{∣∣∣∣m1 −m2

2
− k3

∣∣∣∣ , ∣∣∣∣m1 −m2

2
− l2

∣∣∣∣} .

This condition is satisfied only if

−m1 +m2

2
− l0 + k ≥ −a0 − a1 − a3 + a4

= −m1 +m2

2
− k1 + k4 + |k2 − l1|+ |k3 − l2|

∴ l0 ≤ k + k1 − k4 − |k2 − l1| − |k3 − l2|
= 2k1 + k2 + k3 − |k2 − l1| − |k3 − l2|.
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Thus we get

rest

(
V

[2,10](
− 3

4
(m1+m2)− k

2
;
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

)
)

⊂
⊕

l0,l1,l2∈Z≥0, l0−l1−l2∈2Z≥0

l1≤m2+k1−k4, l2≤m1−m2

l0≤2k1+k2+k3−|k2−l1|−|k3−l2|

V
[2,8](
−
(
m1+m2+

l0
2

)
;
m1−m2

2
+l1,

m1−m2
2

,
m1−m2

2
,
m1−m2

2
−l2

).

For each m1,m2, l0, l1, l2, we have

V
[2,8](
−
(
m1+m2+

l0
2

)
;
m1−m2

2
+l1,

m1−m2
2

,
m1−m2

2
,
m1−m2

2
−l2

)=V
[2,8]ω(
−
(
m1+m2+

l0
2

)
;m1−m2+

l1−l2
2

,
l1+l2

2
,
l1+l2

2
,
l1−l2

2

),
and as in Section 2.4.5, kl = so(7)-spherical irreducible submodules in

V
[2,8]ω(
−
(
m1+m2+

l0
2

)
;m1−m2+

l1−l2
2

,
l1+l2

2
,
l1+l2

2
,
l1−l2

2

) ⊗ V
[2,8]ω(
− l0

2
;
l1+l2

2
,
l1+l2

2
,
l1+l2

2
,
l1+l2

2

)
≃ V

[2,8]ω(
−
(
m1+m2+

l0
2

)
;m1−m2+

l1−l2
2

,
l1+l2

2
,
l1+l2

2
,
l1−l2

2

) ⊗ V
[2,8]ω(
− l0

2
;
l1+l2

2
,
l1+l2

2
,
l1+l2

2
,− l1+l2

2

)
are isomorphic to V

[2,8]ω
(−(m1+m2+l0);m1−m2+l1−l2,0,0,0)

, which has the lowest weight

−
(
m1 +

l0 + l1 − l2
2

)
γ1 −

(
m2 +

l0 − l1 + l2
2

)
γ2.

Therefore for f ∈ V
[2,10](
− 3

4
(m1+m2)− k

2
;
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

), by The-
orem 2.3.1, the ratio of norms is given by

∥f∥λ,τ
∥f∥F,τ

=
cλ∑

l am,k,l

∑
l0,l1,l2∈Z≥0, l0−l1−l2∈2Z≥0

l1≤m2+k1−k4, l2≤m1−m2

l0≤2k1+k2+k3−|k2−l1|−|k3−l2|

am,k,lΓΩ

(
λ+

(
l0+l1+l2

2 , l0−l1−l2
2

)
− 8
)

ΓΩ

(
λ+

(
m1 +

l0+l1−l2
2 ,m2 +

l0−l1+l2
2

))

=
1∑

l am,k,l

∑
l0,l1,l2∈Z≥0, l0−l1−l2∈2Z≥0

l1≤m2+k1−k4, l2≤m1−m2

l0≤2k1+k2+k3−|k2−l1|−|k3−l2|

am,k,l(λ)k(λ− 3)k(λ− 8) l0+l1+l2
2

(λ− 11) l0−l1−l2
2

(λ)
m1+

l0+l1−l2
2

(λ− 3)
m2+

l0−l1+l2
2

(λ− 4)k(λ− 7)k
,

using some non-negative numbers am,k,l. Now, since

l0 + l1 − l2 ≤ 2k1 + k2 + k3 − |k2 − l1| − |k3 − l2|+ l1 − l2

≤ 2k1 + 2k2 − (k2 − l1)− |k2 − l1|+ (k3 − l2)− |k3 − l2| ≤ 2(k1 + k2),

l0 − l1 + l2 ≤ 2k1 + k2 + k3 − |k2 − l1| − |k3 − l2| − l1 + l2

≤ 2k1 + 2k3 + (k2 − l1)− |k2 − l1| − (k3 − l2)− |k3 − l2| ≤ 2(k1 + k3),

we have

∥f∥2λ,τ
∥f∥2F,τ

=
(λ)k(λ− 3)k(monic polynomial of degree 2k1 + k2 + k3)

(λ)m1+k1+k2(λ− 3)m2+k1+k3(λ− 4)k(λ− 7)k
,

and we have proved Proposition 2.5.8.
By k2 + k4 ≤ m2 and k3 ≤ m1 −m2, we have the inequality

m1 + k1 + k2 ≥ m2 + k1 + k3 ≥ k2 + k3 + k4 ≥ k4.

Thus the author conjectures the following.
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Conjecture 2.5.11. For f ∈ C− 3
4
(m1+m2)− k

2
⊠V

[10](
m1+m2

2
+k1−k4,

m1−m2
2

+k2,
m1−m2

2
,
m1−m2

2
,−m1−m2

2
+k3

),
the ratio of norms is given by

∥f∥2
λ,χ−k/2⊠τ

[10]
(k,0,0,0,0)

∥f∥2
F,χ−k/2⊠τ

[10]
(k,0,0,0,0)

=
(λ)k(λ− 3)k

(λ)m1+k1+k2(λ− 3)m2+k1+k3(λ− 4)k2+k3+k4(λ− 7)k4

=
1

(λ+ k)m1+k1+k2−k(λ+ k − 3)m2+k1+k3−k(λ− 4)k2+k3+k4(λ− 7)k4
.

2.6 Analytic continuation of holomorphic discrete series

In the previous sections, we calculated the norms of the holomorphic discrete series rep-
resentations. Using this, we see how the highest weight modules behave as the parameter
λ goes small, following the arguments in [6] and [19].

For example, when G = Sp(r,R) and V = V ∨
ε1+···+εk

with k = 0, 1, . . . , r − 1, by
Theorem 2.4.2, the norm ∥ · ∥λ,τ∨ε1+···+εk

is written as

∥f∥2λ,τ∨ε1+···+εk

=
∑

m∈Zr
++

∑
k∈{0,1}r, |k|=k

m+k∈Zr
+

∏k
j=1

(
λ− 1

2(j − 1)
)∏r

j=1

(
λ− 1

2(j − 1)
)
mj+kj

∥fm,k∥2F,τ∨ε1+···+εk

for λ > r, where fm,k is the orthogonal projection of f onto V ∨
2m+k. Then as in [7,

Theorem XIII.2.4], the reproducing kernel Kλ,τ∨ε1+···+εk
is written by the converging sum

Kλ,τ∨ε1+···+εk
(z, w) =

∑
m∈Zr

++

∑
k∈{0,1}r, |k|=k

m+k∈Zr
+

∏r
j=1

(
λ− 1

2(j − 1)
)
mj+kj∏k

j=1

(
λ− 1

2(j − 1)
) Km,k(z, w)

where Km,k(z, w) is the reproducing kernel of V ∨
2m+k with respect to the Fischer norm

∥ · ∥2F,τ∨ε1+···+εk

. This is continued analytically for smaller λ, and by [7, Lemma XIII.2.6],

this is positive definite if and only if each coefficient is positive, that is,

λ ∈
{
k

2
,
k + 1

2
, . . . ,

r − 1

2

}
∪
(
r − 1

2
,∞
)
.

The positive definite function automatically becomes a reproducing kernel of some Hilbert
space Hλ(D,V ), and this Hλ(D,V ) gives the unitary representation of G̃. Conversely, if
there exists a unitary subrepresentation Hλ(D,V ) ⊂ O(D,V ) for some λ ∈ R, then its
reproducing kernel is automatically proportional to Kλ,τ∨ε1+···+εk

(z, w) by the arguments in

Section 2.3.1, and thus the above condition on λ is precisely the necessary and sufficient
condition for unitarizability. Using this idea, we get the following result.

Theorem 2.6.1. (1) When G = Sp(r,R) and V = V ∨
ε1+···+εk

with k = 0, 1, . . . , r −
1, (τλ,O(D,V )), originally unitarizable when λ > r, contains a non-zero unitary
submodule Hλ(D,V ) if and only if

λ ∈
{
k

2
,
k + 1

2
, . . . ,

r − 1

2

}
∪
(
r − 1

2
,∞
)
.
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(2) When G = SU(q, s) and V = C ⊠ V
(s)
k with k ∈ Zs

++ (kl ̸= 0, kl+1 = 0, l =
0, . . . , s − 1), (τλ,O(D,V )), originally unitarizable when λ > q + s − 1, contains a
non-zero unitary submodule Hλ(D,V ) if and only if

λ ∈
{
l, l + 1, . . . ,min{q + l, s} − 1

}
∪
(
min{q + l, s} − 1,∞

)
.

(3) When G = SO∗(2s) and V = V ∨
(k,0,...,0) with k ∈ Z≥0, (τλ,O(D,V )), originally

unitarizable when λ > 2s − 3, contains a non-zero unitary submodule Hλ(D,V ) if
and only if

λ ∈

{{
0, 2, 4, . . . , 2

(⌊
s
2

⌋
− 1
)}

∪
(
2
(⌊

s
2

⌋
− 1
)
,∞
)

(k = 0),{
2, 4, . . . , 2

(⌈
s
2

⌉
− 1
)}

∪
(
2
(⌈

s
2

⌉
− 1
)
,∞
)

(k ≥ 1).

(4) When G = SO∗(2s) and V = V ∨
(k/2,...,k/2,−k/2) with k ∈ Z>0, (τλ,O(D,V )), originally

unitarizable when λ > 2s − 3, contains a non-zero unitary submodule Hλ(D,V ) if
and only if

λ ∈ {s− 2} ∪ (s− 2,∞).

(5) When G = Spin0(2, n) and

V =

{
Ck ⊠ V(k,...,k,±k) (k ∈ 1

2Z≥0) (n : even),

Ck ⊠ V(k,...,k,k) (k = 0, 12) (n : odd),

(τλ,O(D,V )), originally unitarizable when λ > n − 1, contains a non-zero unitary
submodule Hλ(D,V ) if and only if

λ ∈

{{
0, n−2

2

}
∪
(
n−2
2 ,∞

)
(k = 0),{

n−2
2

}
∪
(
n−2
2 ,∞

)
(k ≥ 1

2).

From the explicit norm computation, we can also determine completely when the
representation is reducible, and get some informations on the composition series, as in [6],
[19]. We denote the K-type decomposition of O(D,V )K = P(p+, V ) by

P(p+, V ) =
⊕
m

Wm,

and for f ∈ Wm we denote the ratio of norms by ∥f∥2λ,τ/∥f∥2F,τ =: Rm(λ), so that

⟨f, g⟩λ,τ =
∑
m

Rm(λ)⟨fm, gm⟩F,τ .

If λ is not a pole for all Rm(λ), then the above sesquilinear form is well-defined, and non-
degenerate for our cases because the numerator of each Rm(λ) is one. From this we can
show (dτλ,P(p+, V )) is irreducible, because if P(p+, V ) has a proper submodule M , then
its orthogonal complement M⊥ also becomes a submodule, and both M and M⊥ contain a
p+-invariant vector i.e. contain the minimal K-type V , which is a contradiction. We note
that in our cases the sesquilinear form is always definite on each K-isotypic component,
and thus M⊥ is precisely a complement vector space.

On the other hand, if λ is a pole for some Rm(λ), then (dτλ,P(p+, V )) is reducible.
In fact, for j ∈ N and λ ∈ R we define M̃j(λ) as the direct sum of Wm’s such that Rm(λ)
has a pole of order at most j at λ. Then the sesquilinear form

lim
λ′→λ

(λ′ − λ)j⟨f, g⟩λ′,τ (2.6.1)
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is (g,K)-invariant under the representation dτλ on M̃j(λ), which vanishes on M̃j−1(λ).
Thus M̃j(λ) is a (g,K)-submodule of P(p+, V ). Clearly M̃j(λ)/M̃j−1(λ) is infinitesimally
unitary if the sesquilinear form (2.6.1) is definite. This gives the following theorem.

Theorem 2.6.2. (1) When G = Sp(r,R) and V = V ∨
ε1+···+εk

with k = 0, 1, . . . , r − 1,
for λ ∈ R and j = 1, 2, . . . , r, we define

Mj(λ) :=
⊕

mj+kj<
j
2
−λ+ 1

2

V ∨
2m+k ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ r−1
2 and λ ∈ 1

2Z. In this case
we have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+2(λ) ⊂ · · · ⊂ Mb(λ) ⊂ P(p+, V ),

where

a =


2λ+ 1 (k2 ≤ λ ≤ r−1

2 ),

2λ+ 3 (0 ≤ λ ≤ k−1
2 ),

1 (λ ≤ −1
2 , λ ∈ Z),

2 (λ ≤ −1
2 , λ ∈ Z+ 1

2),

b =

{
r − 1 (2λ ≡ r mod 2),

r (2λ ̸≡ r mod 2).

M2λ+1(λ) (λ = k
2 ,

k+1
2 , . . . , r−1

2 ) and P(p+, V )/Mr(λ) (λ ≤ r−1
2 , 2λ ̸≡ r mod 2) are

infinitesimally unitary.

(2) When G = SU(q, s) and V = C ⊠ V
(s)
k with k ∈ Zs

++ (kl ̸= 0, kl+1 = 0, l =
0, . . . , s− 1), for λ ∈ R and j = 1, 2, . . . , s, we define

Mj(λ) :=
⊕

nj<j−λ

cnk,mV
(q)∨
m ⊠ V

(s)
n ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ min{q + l, s} − 1, λ ∈ Z and
there is no j = q + 1, . . . , s such that λ = j − kj = j − kj−q+1 holds. In this case we
have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+1(λ) ⊂ · · · ⊂ Mb(λ) ⊂ P(p+, V ),

where

a =

{
j + 1 (j − kj ≤ λ ≤ j − kj+1) (1 ≤ j ≤ min{q + l, s} − 1),

1 (λ ≤ −k1),

and b = s if q ≥ s,

b =


min{q + l, s} (min{q + l, s} − kmin{l,s−q} ≤ λ ≤ min{q + l, s} − 1),

j (j − kj−q ≤ λ ≤ j − kj−q+1) (q + 1 ≤ j ≤ min{q + l, s} − 1),

q (λ ≤ q − k1)

if q < s.

If q ≥ s or k = 0, then Mλ+1(λ) (λ = l, l+1, . . . ,min{q, s}−1) and P(p+, V )/Mmin{q,s}(λ)
(λ ≤ min{q, s} − 1, λ ∈ Z) are infinitesimally unitary.

If q < s and k ̸= 0, then Mλ+1(λ) (λ = l, l + 1, . . . ,min{q + l, s} − 1) and
P(p+, V )/Mmin{q+l,s}(λ) (min{q+ l, s}− kmin{l,s−q} ≤ λ ≤ min{q+ l, s}− 1, λ ∈ Z)
are infinitesimally unitary.
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(3) When G = SO∗(4r) and V = V ∨
(k,0,...,0) with k ∈ Z≥0, for λ ∈ R and j = 1, 2, . . . , r,

we define

Mj(λ) :=
⊕

mj+kj<2j−λ−1

V ∨
(m1+k1,m1,...,mr+kr,mr)

⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ 2r − 2 and λ ∈ Z. In this case
we have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+1(λ) ⊂ · · · ⊂ Mr(λ) ⊂ P(p+, V ),

where

a =


⌈
λ
2

⌉
+ 1 (3 ≤ λ ≤ 2r − 2),

2 (−k + 1 ≤ λ ≤ 2),

1 (λ ≤ −k).

Mλ
2
+1(λ) (λ = 2, 4, . . . , 2r − 2 if k ≥ 1, λ = 0, 2, . . . , 2r − 2 if k = 0) and

P(p+, V )/Mr(λ) (λ ≤ 2r − 2, λ ∈ Z) are infinitesimally unitary.

(4) When G = SO∗(4r) and V = V ∨
(k/2,...,k/2,−k/2) with k ∈ Z>0, for λ ∈ R and j =

1, 2, . . . , r, we define

Mj(λ) :=
⊕

mj−kj+k<2j−λ−1

V ∨
(m1,m1−k1,...,mr,mr−kr)+(k/2,...,k/2) ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ 2r − 2 and λ ∈ Z. In this case
we have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+1(λ) ⊂ · · · ⊂ Mr(λ) ⊂ P(p+, V ),

where

a =


r (2r − 3− k ≤ λ ≤ 2r − 2),⌈
λ+k
2

⌉
+ 1 (−k + 1 ≤ λ ≤ 2r − 4− k),

1 (λ ≤ −k).

Mr(2r − 2) and P(p+, V )/Mr(λ) (λ ≤ 2r − 2, λ ∈ Z) are infinitesimally unitary.

(5) When G = SO∗(4r + 2) and V = V ∨
(k,0,...,0) with k ∈ Z≥0, for λ ∈ R and j =

1, 2, . . . , r + 1, we define

Mj(λ) :=
⊕

mj+kj<2j−λ−1

V ∨
(m1+k1,m1,...,mr+kr,mr)

⊂ P(p+, V ) (j = 1, . . . , r),

Mr+1(λ) :=
⊕

kr+1<2r−λ+1

V ∨
(m1+k1,m1,...,mr+kr,mr)

⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤

{
2r (k ≥ 1)

2r − 2 (k = 0)
, λ ∈ Z and

(r, λ) ̸= (1,−k + 1). In this case we have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+1(λ) ⊂ · · · ⊂ Mb(λ) ⊂ P(p+, V ),
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where

a =


⌈
λ
2

⌉
+ 1 (3 ≤ λ ≤ 2r),

2 (−k + 1 ≤ λ ≤ 2),

1 (λ ≤ −k),

b =

{
r + 1 (2r + 1− k ≤ λ ≤ 2r),

r (λ ≤ 2r − k).

If k = 0, then Mλ
2
+1(λ) (λ = 0, 2, . . . , 2r− 2) and P(p+, V )/Mr(λ) (λ ≤ 2r− 2, λ ∈

Z) are infinitesimally unitary.

If k ≥ 1, then Mλ
2
+1(λ) (λ = 2, 4, . . . , 2r) and P(p+, V )/Mr+1(λ) (2r+ 1− k ≤ λ ≤

2r, λ ∈ Z) are infinitesimally unitary.

(6) When G = SO∗(4r + 2) and V = V ∨
(k/2,...,k/2,−k/2) with k ∈ Z>0, for λ ∈ R and

j = 1, 2, . . . , r + 1, we define

Mj(λ) :=
⊕

mj−kj+k<2j−λ−1

V ∨
(m1,m1−k1,...,mr,mr−kr)+(k/2,...,k/2) ⊂ P(p+, V ) (j = 1, . . . , r),

Mr+1(λ) :=
⊕

k−kr+1<2r−λ

V ∨
(m1,m1−k1,...,mr,mr−kr)+(k/2,...,k/2) ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ 2r−1, λ ∈ Z and λ ̸= 2r−k−1.
In this case we have the sequence of submodules

{0} ⊂ Ma(λ) ⊂ Ma+1(λ) ⊂ · · · ⊂ Mb(λ) ⊂ P(p+, V ),

where

(a, b) =


(r + 1, r + 1) (2r − k ≤ λ ≤ 2r − 1),

(
⌈
λ+k
2

⌉
+ 1, r) (−k + 1 ≤ λ ≤ 2r − 2− k),

(1, r) (λ ≤ −k).

Mr+1(2r−1) and P(p+, V )/Mr+1(λ) (2r−k ≤ λ ≤ 2r−1, λ ∈ Z) are infinitesimally
unitary.

(7) When G = Spin0(2, 2s) and V = Ck ⊠ V(k,...,k,±k) with k ∈ 1
2Z≥0, for λ ∈ R and

j = 1, 2, we define

M1(λ) :=
⊕

m1+k+l<1−λ

Cm1+m2+k ⊠ V(m1−m2+l,k,...,k,±l) ⊂ P(p+, V ),

M2(λ) :=
⊕

m2+k−l<n
2
−λ

Cm1+m2+k ⊠ V(m1−m2+l,k,...,k,±l) ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ s− 1 and λ ∈ Z. In this case we
have the sequence of submodules

{0} ⊂ M2(λ) ⊂ P(p+, V ) (1− 2k ≤ λ ≤ s− 1),

{0} ⊂ M1(λ) ⊂ M2(λ) ⊂ P(p+, V ) (λ ≤ −2k).

M2(s − 1), M1(0) (only when k = 0), and P(p+, V )/M2(λ) (λ ≤ s − 1, λ ∈ Z) are
infinitesimally unitary.
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(8) When G = Spin0(2, 2s + 1) and V = Ck ⊠ V(k,...,k) with k = 0, 12 , for λ ∈ R and
j = 1, 2, we define

M1(λ) :=
⊕

m1+k+l<1−λ

Cm1+m2+k ⊠ V(m1−m2+l,k,...,k,|l|) ⊂ P(p+, V ),

M2(λ) :=
⊕

m2+k−l<n
2
−λ

Cm1+m2+k ⊠ V(m1−m2+l,k,...,k,|l|) ⊂ P(p+, V ).

Then (dτλ,P(p+, V )) is reducible if and only if λ ≤ s− 1
2 and λ ∈ Z+ 1

2 , or λ ≤ −2k
and λ ∈ Z. In this case we have the sequence of submodules

{0} ⊂ M2(λ) ⊂ P(p+, V ) (λ ≤ s− 1

2
, λ ∈ Z+

1

2
),

{0} ⊂ M1(λ) ⊂ P(p+, V ) (λ ≤ −2k, λ ∈ Z).

M2(s− 1
2), M1(0) (only when k = 0), and P(p+, V )/M2(λ) (λ ≤ s− 1

2 , λ ∈ Z+ 1
2)

are infinitesimally unitary.

By [15, Lemma 4.8], we can determine the associated variety of each subquotient
module by comparing the asymptotic K-support of each subquotient module and (2.2.3).
In fact, we have

Vg(Ml+1(λ)/Ml (or l−1)(λ)) =

{
Ol (l = 0, 1, . . . , r − 1),

Or = p+ (l ≥ r),

Vg(P(p+, V )/Mb (or r)(λ)) = Or = p+,

where we set M0(λ) = M−1(λ) = {0}, Ol are defined in (2.2.2), and r = rankRG. These
and (2.2.4) give the Gelfand-Kirillov dimension of each subquotient module.

DIM(Ml+1(λ)/Ml (or l−1)(λ)) =

{
l + 1

2 l(2r − l − 1)d+ lb (l = 0, 1, . . . , r − 1),

r + 1
2r(r − 1)d+ rb = n (l ≥ r),

DIM(P(p+, V )/Mb (or r)(λ)) = r +
1

2
r(r − 1)d+ rb = n.

Also, we can show that the smallest submodule Ma(λ) is irreducible in any case, by
the same argument for the irreducibility of P(p+, V ) for λ generic case. However, we
cannot determine whether the other subquotient modules are irreducible or not, by the
norm computation, and we need some other techniques to determine the full composition
series, such as the techniques used in e.g. [17], [22], [23], or [1].
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[7] J. Faraut and A. Korányi, Analysis on symmetric cones. Oxford Mathematical Mono-
graphs. Oxford Science Publications. The Clarendon Press, Oxford University Press,
New York, 1994.

[8] S.G. Gindikin, Analysis in homogeneous domains. Uspehi Mat. Nauk 19 (1964) no.
4 (118), 3–92.

[9] K.I. Gross and R.A. Kunze, Bessel functions and representation theory II: Holomor-
phic discrete series and metaplectic representations. J. Funct. Anal. 25 (1977), no. 1,
1–49.

[10] J. Hilgert and K.H. Neeb, Vector valued Riesz distributions on Euclidean Jordan
algebras. J. Geom. Anal. 11 (2001), no. 1, 43–75.

[11] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical
domains. Amer. Math. Soc., Providence, R.I., 1963.

[12] S. Hwang, Y. Liu and G. Zhang, Hilbert spaces of tensor-valued holomorphic functions
on the unit ball of Cn. Pacific J. Math. 214 (2004), no. 2, 303–322.

[13] H.P. Jakobsen, Hermitian symmetric spaces and their unitary highest weight modules.
J. Funct. Anal. 52 (1983), no. 3, 385–412.

81



[14] T. Kobayashi, Multiplicity-free representations and visible actions on complex mani-
folds. Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 497–549.

[15] T. Kobayashi and Y. Oshima, Classification of symmetric pairs with discretely decom-
posable restrictions of (g,K)-modules. J. Reine Angew. Math. 703 (2015), 201–223.

[16] O. Loos, Bounded symmetric domains and Jordan pairs. Math. Lectures, Univ. of
California, Irvine, 1977.
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Chapter 3

Intertwining operators between
holomorphic discrete series
representations

In this chapter we explicitly construct the G1-intertwining operator between a holomorphic
discrete series representation of some Lie group G and that of some subgroup G1 ⊂ G.
More precisely, we construct a G1-intertwining projection operator from H of G onto H1

of G1 as a differential operator, in the case (G,G1) = (G0×G0,∆G0) and both H, H1 are
of “almost scalar type”, and also construct a G1-intertwining embedding operator from H1

of G1 into H of G as an “infinite-order differential operator”, in the case both G, G1 are
classical groups and both H, H1 are of “almost scalar type”. In the actual computation
we make use of a series expansion of integral kernels and the result of Faraut-Korányi [5]
on norm computation.

Keywords: branching laws; intertwining operators; symmetry breaking operators; sym-
metric pair; holomorphic discrete series representations; highest weight modules.
AMS subject classification: 22E45; 43A85; 17C30.

3.1 Introduction

The purpose of this chapter is to study the intertwining operator between a holomorphic
discrete series representation of some Lie group G and that of some subgroup G1 ⊂ G,
and write down such an operator explicitly.

Let G be a Lie group, G1 be a subgroup of G, and consider a representation (τ̂ ,H)
of G. Then it is a fundamental problem to understand how the representation (τ̂ ,H) of
G behaves when it is restricted to the subgroup G1. Recently Kobayashi [18] proposed a
program for such problems in the following three stages.

(Stage A) Abstract features of the restriction τ̂ |G1 .

(Stage B) Branching laws.

(Stage C) Construction of symmetry breaking operators.

In general, the restriction τ̂ |G1 may behave wildly, for example, the multiplicity becomes
infinite, or it contains continuous spectrum, even if (G,G1) is a symmetric pair, and τ̂ is
a unitary representation of G. However Kobayashi and his collaborators found conditions
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for (G,G1, τ̂) that the restriction τ̂ |G1 behaves nicely, that is, it is discretely decomposable
([9, 11, 12, 14, 22, 23]), its multiplicity becomes finite or uniformly bounded ([17, 19, 21]),
or decomposes multiplicity-freely ([13, 15]) (Stage A). Especially, if G is a reductive Lie
algebra of Hermitian type (i.e. the Riemannian symmetric space G/K has a natural
complex structure), (G,G1) is a symmetric pair of holomorphic type (i.e. a symmetric
pair such that the embedding map G1/K1 ↪→ G/K is holomorphic), and τ̂ is in the nice
class of representations, called the holomorphic discrete series representations of G, then
the restriction τ̂ |G1 decomposes discretely. Moreover, if the holomorphic discrete series
representation τ is of scalar type, then it decomposes multiplicity-freely. In this case, its
branching law

τ̂ |G1 ≃
∑⊕

τ̂1∈Ĝ1

m(τ̂ , τ̂1)τ̂1

(where Ĝ1 is the unitary dual of G1 i.e. the equivalence class of unitary representations
of G1, and m(τ̂ , τ̂1) ∈ Z≥0) is also known ([8, 10, 13, 29]) (Stage B). Thus our next in-
terest is to understand the above decomposition explicitly, for example, to construct the
G1-intertwining operator between τ̂ |G1 and τ̂1 explicitly (Stage C). Such problems have
been considered by e.g. Clerc-Kobayashi-Ørsted-Pevzner [1], Kobayashi-Ørsted-Somberg-
Souček [20], Kobayashi-Speh [27], Möllers-Ørsted-Oshima [30] and Möllers-Oshima [31]
when τ̂ are principal series or complementary series representations, and by e.g. Ibukiyama-
Kuzumaki-Ochai [7], Kobayashi-Pevzner [24, 25] and Peng-Zhang [34] when τ̂ are holo-
morphic discrete series representations. The approach used in [20, 24, 25] is called the
“F-method”, in which the explicit intertwining operators are determined by solving cer-
tain differential equations. This idea first appeard in [16]. In this chapter, we also attack
this problem when τ̂ are holomorphic discrete series representations, but take an approach
different from the F-method, namely, by computing some integrals using series expansion.

Now we review the holomorphic discrete series representations. Let G be a reductive
Lie group of Hermitian type, and K ⊂ G be a maximal compact subgroup. Then there
exists a complex subspace p+ ⊂ gC in the complexified Lie algebra of G and a bounded
domain D ⊂ p+ such that the Riemannian symmetric space G/K is diffeomorphic to D,
and G/K admits a natural complex structure via this diffeomorphism. Next, let (τ, V )
be a finite-dimensional representation of K̃C, the universal covering group of KC, and
consider the space of holomorphic sections of the homogeneous vector bundle G̃×K̃ V on
G/K. Then since the complex domain D ≃ G/K is contractible, it is isomorphic to the
space of V -valued holomorphic functions on D.

ΓO(G/K, G̃×K̃ V ) ≃ O(D,V ).

Clearly this admits an action of G̃. If (τ, V ) is sufficiently “regular”, then O(D,V ) admits
a G̃-invariant inner product which is given by a converging integral on D. In this case
the corresponding Hilbert subspace Hτ (D,V ) ⊂ O(D,V ) admits a unitary representation,
which is called the holomorphic discrete series representation.

We take a subgroup G1 ⊂ G which is stable under the Cartan involution of G. We
assume that the embedding map G1/K1 ↪→ G/K of Riemannian symmetric spaces is
holomorphic. Let p+1 := p+ ∩ gC1 be the intersection of p+ and the complexfied Lie algebra
of G1, and p+2 := (p+1 )

⊥ ⊂ p+ be the orthogonal complement under a suitable inner
product on p+. We take a finite dimensional representation (τ1, V1) of K̃C

1 , and consider
the corresponding holomorphic discrete series representation Hτ1(D1, V1) of G̃1. Then
Hτ1(D1, V1) appears in the direct summand of Hτ (D,V )|G̃1

if and only if (τ1, V1) appears

in the irreducible decomposition of V ⊗ P(p+2 ) under K1, where P(p+2 ) is the space of
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holomorphic polynomials on p+2 . Our aim is to write down the G̃1 (or (g1, K̃1))-intertwining
operator between Hτ (D,V ) and each Hτ1(D1, V1) explicitly. To do this, we gather such
Hτ1(D1, V1)’s, and consider a Hilbert space

H′
τ (D1 × p+2 , V ) ⊂ O(D1 × p+2 , V ) ≈ O(D1,P(p+2 , V ))

such that each embedding Hτ1(D1, V1) ↪→ H′
τ (D1 × p+2 , V ) is written easily, and construct

the (g1, K̃1)-intertwining operator between Hτ (D,V ) and H′
τ (D1 × p+2 , V ) explicitly.

We calculate the intertwining operator in the following way. First, we find a kernel
function K̂(x; y) which is G̃1-invariant in a suitable sense (Proposition 3.3.1). Then the
intertwining operator is given by

Hτ (D,V ) → H′
τ (D1 × p+2 , V ), f 7→ ⟨f,K(·; y)⟩Hτ (D,V ),

H′
τ (D1 × p+2 , V ) → Hτ (D,V ), g 7→ ⟨g,K(x; ·)∗⟩H′

τ (D1×p+2 ,V )

(Corollary 3.3.3). This gives the integral expression of the intertwining operator, and
this step is similar to the method used in [30, 26, 27]. However, this expression is a bit
complicated. Also, in [24] it is proved that the intertwining operator from Hτ (D,V ) to
Hτ1(D1, V1) is always given by a differential operator, but we cannot see this fact from
the integral expression. Thus we try to rewrite the integral expression to a differential
expression by substituting f(x) with e(x|z), g(y) with e(y|w), where (·|·) is a suitable in-
ner product on p+. Then we can show that there exists a polynomial F ∗(z1, z2; y2) ∈
P(p+1 × p+2 × p+2 ,End(V )) and a function F (x2;w1, w2) ∈ O(p+2 × p+1 × p+2 ,End(V )) such
that the intertwining operator is given by

Hτ (D,V )K̃ → H′
τ (D1 × p+2 , V )K̃1

, f(x) 7→ F ∗
(

∂

∂x1
,

∂

∂x2
; y2

)∣∣∣∣
x1=y1,x2=0

f(x),

H′
τ (D1 × p+2 , V )K̃1

→ Hτ (D,V )K̃ , g(y) 7→ F

(
x2;

∂

∂y1
,

∂

∂y2

)∣∣∣∣
y1=x1,y2=0

g(y)

(Theorem 3.3.5). The latter operator is of infinite order in general, but when g is K̃1-finite
i.e. is a polynomial, then it becomes a finite sum. The functions F and F ∗ are given by
an explicit integral, and actual computation of F and F ∗ is performed in Section 3.5 case
by case, by using the series expansion of integrands and the result of Faraut-Korányi [5]
on norm computation. In this way, the author has got the explicit intertwining operators
Hτ (D,V ) ⇄ Hτ1(D1, V1) in the case

(G,G1) = (U(q, s), U(q, s′)× U(s′′)), (SO∗(2s), SO∗(2(s− 1))× SO(2)),

(SO(2, 2s), U(1, s)),

which are given by normal derivatives, the operators Hτ (D,V ) → Hτ1(D1, V1) in the case

(G,G1) = (G0 ×G0,∆G0)

where G0 is a simple Lie group of Hermitian type, when (τ, V ) is scalar and (τ1, V1)
is “almost scalar”, which gives essentially the same result with [34], and the operators
Hτ1(D1, V1) → Hτ (D,V ) in the case

(G,G1) = (Sp(s,R), Sp(s′,R)× Sp(s′′,R)), (U(q, s), U(q′, s′)× U(q′′, s′′)),

(SO∗(2s), SO∗(2s′)× SO∗(2s′′)), (Sp(s,R), U(s′, s′′)),

(SO∗(2s), U(s′, s′′)), (SU(s, s), Sp(s,R)),
(SU(s, s), SO∗(2s)), (SO(2, n), SO(2, n′)× SO(n− n′)),
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when (τ, V ) is scalar and (τ1, V1) is “almost scalar”.
This chapter is organized as follows. In Section 3.2 we prepare some notations and

review some facts on Lie algebras of Hermitian type, Jordan triple systems, and holo-
morphic discrete series representations. In Section 3.3 we construct a general theory on
the intertwining operators between holomorphic discrete series representations. In Section
3.4, as a preparation for case by case analysis, we fix the explicit realization of classical
Lie groups, and observe series expansions of some functions. In Section 3.5 we compute
the explicit intertwining operators by using the result of Section 3.3 and 3.4.

3.2 Preliminaries for general theory

3.2.1 Root systems

Let g be a reductive Lie algebra with Cartan involution ϑ. We decompose g into a sum of
simple and abelian subalgebras as

g = g(1) ⊕ · · · ⊕ g(m) ⊕ z(g).

We assume that each simple subalgebra g(i) is of Hermitian type, that is, its maximal

compact subalgebra k(i) := gϑ(i) has a 1-dimensionla center z(k(i)), and also that the abelian

part z(g) is fixed by ϑ. For each i, we fix an element z(i) ∈ z(k(i)) such that ad(z(i))

has eigenvalues +
√
−1, 0, −

√
−1, and decompose the complexified Lie algebra gC(i) into

eigenspaces under ad(z(i))
C as

gC(i) = p+(i) ⊕ kC(i) ⊕ p−(i).

We denote

p+ := p+(1) ⊕ · · · ⊕ p+(m), kC := kC(1) ⊕ · · · ⊕ kC(m) ⊕ z(g)C,

p− := p−(1) ⊕ · · · ⊕ p−(m), k := k(1) ⊕ · · · ⊕ k(m) ⊕ z(g) = gϑ,

so that
gC = p+ ⊕ kC ⊕ p−.

We denote the anti-holomorphic extension of the Cartan involution ϑ on gC by the same
symbol ϑ. Also, let ϑ̂ := ϑ ◦Ad(eπz) (z :=

∑
i z(i)) be the anti-holomorphic involution on

gC fixing g.
Next, we fix a Cartan subalgebra h ⊂ k. Then hC automatically becomes a Cartan

subalgebra of gC. We set h(i) := h∩g(i). Let ∆gC
(i)

= ∆(gC(i), h
C
(i)) be the root system of gC(i),

and let ∆p±
(i)
, ∆kC

(i)
be the set of roots such that the corresponding root space is contained

in p±(i), k
C
(i) respectively. We fix a positive system ∆gC

(i)
,+ ⊂ ∆gC

(i)
such that ∆p+

(i)
⊂ ∆gC

(i)
,+,

and denote ∆kC
(i)

,+ := ∆kC
(i)

∩ ∆gC
(i)

,+. Then we can take a system of strongly orthogonal

roots {γ1,(i), . . . , γr(i),(i)} ⊂ ∆p+
(i)
, where r(i) = rankR g(i), such that

(1) γ1,(i) is the highest root in ∆p+
(i)
,

(2) γk,(i) is the root in ∆p+
(i)

which is highest among the roots strongly orthogonal to

each γj,(i) with 1 ≤ j ≤ k − 1.
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For each j, let p+jj,(i) be the root space corresponding to γj,(i). We take an element ej,(i) ∈
p+jj,(i) such that

−[[ej,(i), ϑej,(i)], ej,(i)] = 2ej,(i),

and set

hj,(i) := −[ej,(i), ϑej,(i)] ∈
√
−1h(i), e(i) :=

r(i)∑
j=1

ej,(i) ∈ p+(i), e :=
m∑
i=1

e(i) ∈ p+,

al,(i) :=

r(i)⊕
j=1

Rhj,(i) ⊂
√
−1h(i), a+(i) :=

r(i)⊕
j=1

Rej,(i) ⊂ p+(i).

Then the restricted root system Σ = Σ(gC(i), a
C
l,(i)) is one of

Σ =

{
1

2
(γj,(i) − γk,(i))

∣∣∣∣
al,(i)

:
1 ≤ j, k ≤ r(i),

j ̸= k

}
∪

{
±1

2
(γj,(i) + γk,(i))

∣∣∣∣
al,(i)

: 1 ≤ j ≤ k ≤ r(i)

}
(type Cr(i)), or

Σ = (as above) ∪

{
±1

2
γj,(i)

∣∣∣∣
al,(i)

: 1 ≤ j ≤ r(i)

}
(type BCr(i)). For 1 ≤ j ≤ k ≤ r(i) we set

p+jk,(i) :=

{
x ∈ p+(i) : ad(l)x =

1

2
(γj,(i) + γk,(i))(l)x for all l ∈ al,(i)

}
,

p+0j,(i) :=

{
x ∈ p+(i) : ad(l)x =

1

2
γj,(i)(l)x for all l ∈ al,(i)

}
.

Then we have
p+(i) =

⊕
0≤j≤k≤r(i)
(j,k) ̸=(0,0)

p+jk,(i).

We set

p+T,(i) :=
⊕

1≤j≤k≤r(i)

p+jk,(i), p−T,(i) := ϑp+T,(i), p+T :=
m⊕
i=1

p+T,(i),

kCT,(i) := [p+T,(i), p
−
T,(i)], kT,(i) := kCT,(i) ∩ k(i),

gCT,(i) := p+T,(i) ⊕ kCT,(i) ⊕ p−T,(i), gT,(i) := gCT,(i) ∩ g(i),

and we define the integers

d(i) := dim p+12,(i), b(i) := dim p+01,(i),

n(i) := dim p+(i) = r(i) +
1

2
r(i)(r(i) − 1)d(i) + b(i)r(i),

n := dim p+ =

m∑
i=1

n(i),

nT,(i) := dim p+T,(i) = r(i) +
1

2
r(i)(r(i) − 1)d(i),

p(i) := 2 + (r(i) − 1)d(i) + b(i).
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Throughout the chapter, let GC be a connected complex Lie group with Lie algebra gC,
and let G, KC, K, GC

(i), G(i), K
C
(i), K(i), G

C
T,(i), GT,(i), K

C
T,(i), KT,(i) be the connected Lie

subgroup with Lie algebras g, kC, k, gC(i), g(i), k
C
(i), k(i), g

C
T,(i), gT,(i), k

C
T,(i), kT,(i) respectively.

Also, let
KL,(i) := {k ∈ KT,(i) : Ad(k)e(i) = e(i)},

which is possibly non-connected, and we denote its Lie algebra by kl,(i).

For k ∈ KC, we write k∗ := (ϑk)−1. Then for each i, there exists a unique Hermitian
inner product (·|·)p+

(i)
, holomorphic in the first variable and anti-holomorphic in the second

variable, such that

(Ad(k)x|y)p+
(i)

= (x|Ad(k∗)y)p+
(i)

(x, y ∈ p+(i), k ∈ KC
(i)),

(e1,(i)|e1,(i))p+
(i)

= 1.

This is proportional to the restriction of the Killing form of gC(i) on p+(i)×p−(i), if we identify

p+(i) and p−(i) through ϑ. By summing these inner products, we define

(x|y) = (x|y)p+ :=

m∑
i=1

(xi|yi)p+
(i)

(
x =

m∑
i=1

xi, y =

m∑
i=1

yi ∈ p+ =

m⊕
i=1

p+(i)

)
. (3.2.1)

From now on we omit Ad or ad if there is no confusion, so that (kx|y)p+ = (x|k∗y)p+ .

3.2.2 Operations on Jordan triple systems

p+ has a Hermitian positive Jordan triple system structure with the product

(x, y, z) 7→ −1

2
[[x, ϑy], z].

We recall that, for x, y ∈ p+, the Bergman operator B(x, y) ∈ End(p+) is defined as

B(x, y) := I + ad([x, ϑy]) +
1

4
ad(x)2ad(ϑy)2

∣∣∣∣
p+

∈ End(p+).

We say (x, y) ∈ p+×p+ is quasi-invertible if B(x, y) (or equivalently B(y, x)) is invertible,
and in this case the quasi-inverse xy is defined as

xy := B(x, y)−1

(
x+

1

2
ad(x)2ϑy

)
∈ p+.

Then if B(x, y) is invertible, then there exists an element k ∈ KC such that B(x, y)z =
Ad(k)z holds for any z ∈ p+. Also, B(x, y) and xy satisfy the following properties. For
x, y, z ∈ p+ and k ∈ KC, if (x, y) is quasi-invertible, then

B(kx, k∗−1y) = kB(x, y)k−1, (3.2.2)

B(x, y)B(xy, z) = B(x, y + z) [4, Part V, Proposition III.3.1, (J6.4)], (3.2.3)

B(z, xy)B(y, x) = B(y + z, x) [4, Part V, Proposition III.3.1, (J6.4’)], (3.2.4)

(kx)k
∗−1y = k(xy), (3.2.5)

xy+z = (xy)z [4, Part V, Theorem III.5.1(i)], (3.2.6)

(x+ z)y = xy +B(x, y)−1z(y
x) [4, Part V, Theorem III.5.1(ii)] (3.2.7)
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holds. Here, the equality (3.2.6) holds when one of (x, y+ z) or (xy, z) is quasi-invertible,
and the other also becomes quasi-invertible. Similarly, the equality (3.2.7) holds when one
of (x + z, y) or (z, yx) is quasi-invertible, and then the other also is. Next, for each i, let
h(i)(x, y) ∈ P(p+ × p+) be the generic norm on p+(i). This is the polynomial, holomorphic
in x and anti-holomorphic in y, satisfying

Detp+
(i)
(B(xi, yi)) = h(i)(xi, yi)

p(i) (xi, yi ∈ p+(i)).

If xi =
∑r(i)

j=1 ajej,(i), yi =
∑r(i)

j=1 bjej,(i) ∈ a+(i) ⊂ p+(i), then h(i)(xi, yi) is given by

h(i)(xi, yi) =

r(i)∏
j=1

(1− ajbj).

For later use we abbreviate

Detp+(B(x, y))−1 =
m∏
i=1

h(i)(xi, yi)
−p(i) =: h(x, y)−p.

Also, we abbreviate B(x, x) =: B(x), h(i)(xi, xi) = h(i)(xi). Let

D := (connected component of {x ∈ p+ : B(x) is positive definite.} which contains 0)
(3.2.8)

be the bounded symmetric domain, which is diffeomorphic to G/K via the Borel embed-
ding which we will review later. Then if x, y ∈ D, B(x, y) is invertible, and thus it is in
the image of KC. Moreover, since D is simply connected, there exists a holomorphic map
B̃ : D×D → KC (or B̃ : D×D → K̃C, where K̃C is the universal covering group of KC)
such that

Ad(B̃(x, y)) = B(x, y) ∈ End(p+), B̃(0, 0) = 1KC ∈ KC (resp. ∈ K̃C)

holds. From now on we omit the tilde, and use the same symbol B instead of B̃.
Next we consider p+T . This has a complex Jordan algebra structure with the product

(x, y) 7→ x · y := −1

2
[[x, ϑe], y].

We recall the quadratic map P : p+T → End(p+T) by

P (x)y := 2x · (y · x)− y · (x · x) = 1

4
ad(x)2ad(ϑe)y (x, y ∈ p+T).

If y is in the real form
{
y ∈ p+T : 1

2ad(e)
2ϑy = y

}
of p+T , then P (x)y = −1

2 [[x, ϑy], x] holds.
Next we review the determinant polynomials on Jordan algebras. On each simple compo-
nent p+T,(i) there exists a determinant polynomial ∆(i), which is the homogeneous polyno-
mial of degree r(i) satisfying

∆(i)(kx) = ∆(i)(ke(i))∆(i)(x) for all k ∈ KC
T,(i), x ∈ p+T,(i),

∆(i)(e(i)) = 1.

The quadratic map P and the determinant polynomials are related as

Detp+
T,(i)

(P (xi)) = ∆(xi)
2nT,(i)/r(i) (xi ∈ p+T,(i)).

We extend ∆(i) on p+(i) such that it does not depend on (p+T,(i))
⊥ =

⊕r(i)
j=1 p

+
0j,(i), and denote

by the same symbol ∆(i). Then the determinant polynomial ∆(i) and the generic norm
h(i) are related as

∆(i)(e(i) − x) = h(i)(x, e(i)) (x ∈ p+(i)).
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3.2.3 Polynomials on Jordan triple systems

Let P(p+) be the space of all holomorphic polynomials on p+. Then KC acts on P(p+)
by

(Ad|p+)∗(k)f(x) := f(k−1x) (k ∈ KC, f ∈ P(p+)).

Then clearly we have P(p+) ≃ P(p+(1))⊗ · · · ⊗ P(p+(m)), according to the simple decompo-

sition of the Jordan triple system p+ = p+(1) ⊕ · · · ⊕ p+(m). In the rest of this subsection, we

assume g is simple, and we drop the subscript (i). We set

Zr
++ := {m = (m1, . . . ,mr) ∈ Zr : m1 ≥ · · · ≥ mr ≥ 0}.

Then P(p+) is decomposed as follows.

Theorem 3.2.1 (Hua-Kostant-Schmid, [4, Part III, Theorem V.2.1]). Under KC-action,
P(p+) is decomposed as

P(p+) =
⊕

m∈Zr
++

Pm(p+)

where Pm(p+) is the irreducible representation of KC with lowest weight −m1γ1 − · · · −
mrγr. Moreover, each Pm(p+) has a nonzero KL-invariant polynomial, which is unique
up to scalar multiple.

Let d
(d,r,b)
m := dimPm(p+), and let Φ

(d,r)
m be the KL-invariant polynomial in Pm(p+)

such that Φ
(d,r)
m (e) = 1. Especially, when m = (m, . . . ,m), then Φ

(d,r)
(m,...,m)(x) = ∆(x)m

holds.
Next we recall the Fischer inner product. For two holomorphic polynomials f, g ∈

P(p+), it is defined as

⟨f, g⟩F :=
1

πn

∫
p+

f(x)g(x)e
−|x|2

p+dx.

This integral converges for any polynomial f, g, and the reproducing kernel is given by
e(x|y)p+ . Let Km(x, y) ∈ P(p+ × p+) be the reproducing kernel of Pm(p+) with respect to

⟨·, ·⟩F , so that
∑

m∈Zr
++

Km(x, y) = e(x|y)p+ . Then the following holds.

Proposition 3.2.2 ([4, Part III, Lemma V.3.1(a), Theorem V.3.4]).

Km(x, e) =
d
(d,r,b)
m(
n
r

)
m,d

Φ
(d,r)
m (x).

Here, (λ)m,d is defined as

(λ)m,d :=
r∏

j=1

(
λ− d

2
(j − 1)

)
mj

, (λ)m := λ(λ+ 1) · · · (λ+m− 1). (3.2.9)

According to [32], we renormalize Φ
(d,r)
m as

Φ̃
(d)
m (x) := |m|! d

(d,r,b)
m(
n
r

)
m,d

Φ
(d,r)
m (x),
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so that

e(x|e)p+ =
∑

m∈Zr
++

Km(x, e) =
∑

m∈Zr
++

1

|m|!
Φ̃
(d)
m (x).

Then Φ̃
(d)
m (x) does not depend on r in the following sense. Since Φ̃

(d)
m is KL-invariant, it

is determined by the value on a+ ⊂ p+. Thus for x = a1e1 + · · ·+ arer ∈ a+, we write

Φ̃
(d)
m (x) =: Φ̃

(d)
m (a1, . . . , ar).

Then this does not depend on r, that is,

Φ̃
(d,r)
m (a1, . . . , ar−1, 0) = Φ̃

(d,r−1)
m (a1, . . . , ar−1)

holds.
Next we recall the Laplace-Beltrami operator from [6, Proposition VI.4.1]. This is a

differential operator on the real form
{
x ∈ p+T : 1

2ad(e)
2ϑx = x

}
of p+T . We extend this

operator to a KC-invariant differential operator on p+, so that

L :=
1

2

∑
αβ

([[x,−ϑeα], x]|eβ)
∂2

∂xα∂xβ
+

nT

r

∑
α

(x|eα)
∂

∂xα
, (3.2.10)

where {eα} ⊂ p+ is a basis of p+, with the dual basis {e∨α} ⊂ p+, and ∂
∂xα

is the directional
derivative along e∨α. Then this has the following properties.

Proposition 3.2.3. (1) ([6, Proposition VI.4.2]) If f is a KL-invariant function, then
using the coordinate x = a1e1 + · · ·+ arer ∈ a+, we have

Lf =
r∑

j=1

a2j
∂2f

∂a2j
+ d

∑
j<k

ajak
aj − ak

(
∂f

∂aj
− ∂f

∂ak

)
+

nT

r

r∑
j=1

aj
∂f

∂aj
.

(2) (Corollary of [6, Proposition VI.4.4]) If f ∈ Pm(p+), then f is an eigenfunction of

L with eigenvalue
∑r

j=1

(
m2

j − d
2(2j − r − 1)mj

)
.

3.2.4 Holomorphic discrete series representations

In this subsection we recall the explicit realization of the holomorphic discrete series rep-
resentation of the universal covering group G̃. First we recall the Borel embedding,

G/K //

∼

���
�
�

GC/KCP−

D � � // p+

exp

OO

where P± := exp(p±). When g ∈ GC and x ∈ p+ satisfy g exp(x) ∈ P+KCP−, we write

g exp(x) = exp(π+(g, x))κ(g, x) exp(π−(g, x)),

where π+(g, x) ∈ p+, κ(g, x) ∈ KC, and π−(g, x) ∈ p−. If g = k ∈ KC, g = exp(y) ∈ P+

or g = exp(ϑy) ∈ P− with y ∈ p+, we have

π+(k, x) = kx, κ(k, x) = k,

π+(exp(y), x) = x+ y, κ(exp(y), x) = 1KC ,

π+(exp(ϑy), x) = xy, Ad(κ(exp(ϑy), x))|p+ = B(x, y)−1.
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π+ gives the birational action of GC on p+, and from now on we abbreviate π+(g, x) =: gx.
Especially, if x ∈ D and g ∈ G, then automatically gx ∈ D and κ(g, x) is well-defined, and
the action of G on D is transitive. Since D is simply connected, the map κ : G×D → KC

lifts to the universal covering space, that is, κ : G̃×D → K̃C is well-defined. We denote
this extended map by the same symbol κ. Then for x, y ∈ p+ and g ∈ GC,

B(gx, (ϑ̂g)y) = κ(g, x)B(x, y)κ(ϑ̂g, y)∗ (3.2.11)

holds in End(p+), where ϑ̂ is the anti-holomorphic involution of GC fixing G, and Ad is
omitted. If g ∈ G (i.e. g = ϑ̂g) and x, y ∈ D, this also holds in KC, regarding B(x, y) as
the element of KC. This formula is also verified in K̃C if g ∈ G̃.

Now let (τ, V ) be an irreducible holomorphic representation of K̃C with K̃-invariant
inner product (·, ·)τ . We consider the space of holomorphic sections of the vector bundle
on G/K with fiber V . Then since D ≃ G/K is contractible, it is isomorphic to the space
of V -valued holomorphic functions on D.

ΓO(G/K, G̃×K̃ V ) ≃ O(D,V ).

Via this identification, G̃ acts on O(D,V ) by

τ̂(g)f(x) = τ(κ(g−1, x))−1f(g−1x) (g ∈ G̃, x ∈ D, f ∈ O(D,V )).

Then since the G-invariant measure on D is given by h(x)−pdx :=
∏m

i=1 h(i)(xi)
−p(i)dx =

Det(B(x))−1dx, G̃ preserves the weighted Bergman inner product

⟨f, g⟩τ̂ :=

∫
D

(
τ(B(x)−1)f(x), g(x)

)
τ
h(x)−pdx.

Let Hτ (D,V ) be the space of all functions f ∈ O(D,V ) such that ∥f∥τ̂ < ∞. If Hτ (D,V )
is non-trivial, then we call the unitary representation (τ̂ ,Hτ (D,V )) of G̃ the holomorphic
discrete series representation. In this case, the space of K̃-finite vectors is equal to the
space of polynomials,

Hτ (D,V )K̃ = O(D,V )K̃ = P(p+, V ),

and the reproducing kernel of (τ̂ ,Hτ (D,V )) is proportional to τ(B(x, y)).
Now we assume G is simple. Let χ be the character of K̃C such that χ(k)p =

Det(Ad(k)|p+), or χ(B(x, y)) = h(x, y). Let (τ0, V ) be a fixed irreducleble representa-

tion of KC. Then for λ ∈ R, (τ, V ) = (τ0 ⊗ χ−λ, V ) is again a representation of K̃C. In
this case we denote Hτ (D,V ) =: Hλ(D,V ). Then Hλ(D,V ) is non-zero if λ is sufficiently
large, and the reproducing kernel of this Hilbert space is proportional to τ0⊗χ−λ(B(x, y)).
On the other hand, even if λ is smaller so that the integral defining the inner product does
not converge, it may happen that the kernel function τ0⊗χ−λ(B(x, y)) is positive definite.
In this case we denote the corresponding Hilbert space by the same notation Hλ(D,V ).
Then this again gives an irreducible unitary representation of G̃, but the underlying (g, K̃)-
module Hλ(D,V )K̃ may be smaller than P(p+, V ).

Now we additionally assume (τ0, V ) is trivial, and review the result of Faraut-Korányi
[5] on Hλ(D,V ) =: Hλ(D). In this case, the G̃-invariant inner product ⟨f, g⟩λ is given by

⟨f, g⟩λ =

∫
D
f(x)g(x)h(x)λ−pdx,

and this integral converges for any polynomial f and g if λ > p−1. Moreover, the following
holds.
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Theorem 3.2.4 ([5], [4, Part III, Corollary V.3.9, Theorem V.3.10]). (1) If f, g ∈ Pm(p+)
(m ∈ Zr

++, see Theorem 3.2.1), we have

⟨f, g⟩λ =
Cλ,d,r,b

(λ)m,d
⟨f, g⟩F ,

where (λ)m,d is as (3.2.9), and

Cλ,d,r,b := πnΓ(d,r)

(
λ− n

r

)
Γ(d,r)(λ)

, Γ(d,r)(λ) = πr(r−1)d/4
r∏

j=1

Γ

(
λ− d

2
(j − 1)

)
.

(2) The reproducing kernel (under a suitable normalization) is expanded as

h(x, y)−λ =
∑

m∈Zr
++

(λ)m,dK
(d)
m (x, y), (3.2.12)

where K
(d)
m (x, y) ∈ P(p+ × p+) is the reproducing kernel of Pm(p+) with respect to

⟨·, ·⟩F

Then for f ∈ Pm(p+) we have∫
D
K

(d)
m (x, y)f(y)h(y)λ−pdy =

Cλ,d,r,b

(λ)m,d
f(x),

and since Pm(p+) and Pn(p
+) are perpendicular to each other with respect to both ⟨·, ·⟩λ

and ⟨·, ·⟩F if m ̸= n, we have∫
D
f(y)e(x|y)h(y)λ−pdy =

Cλ,d,r,b

(λ)m,d
f(x). (3.2.13)

3.3 Intertwining operators between holomorphic discrete se-
ries representations

Let G be a real reductive Lie group such that each simple component is of Hermitian type,
as in Section 3.2.1. Let G1 ⊂ G be a reductive subgroup which is stable under the Cartan
involution ϑ of G. We denote the Lie algebra of G1 and its Cartan decomposition under
ϑ by g1 = k1 ⊕ p1. We assume

pC1 = (pC1 ∩ p+)⊕ (pC1 ∩ p−). (3.3.1)

We set p+1 := pC1 ∩ p+, p−1 := pC1 ∩ p−, so that

gC1 = p+1 ⊕ kC1 ⊕ p−1 .

Also, let p+2 ⊂ p+ be the orthogonal complement of p+1 with respect to the inner product
(·|·)p+ defined in (3.2.1). We define another inner product (·|·)p+1 on p+1 as in (3.2.1),

changing g to g1, and let D1 ⊂ p+1 is the bounded symmetric domain, defined as in (3.2.8).
Let (τ, V ) be a representation of K̃C, and consider the representation (τ̂ ,Hτ (D,V ))

of G̃, as in Section 3.2.4. We assume that Hτ (D,V ) is non-trivial. We want to argue the
restriction Hτ (D,V )|G̃1

. Then since it is discretely decomposable, the space of K̃1-finite
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vectors coincides with the space of K̃-finite vectors (see [18, Theorem 4.5]), which is equal
to the space of V -valued polynomials on p+.

Hτ (D,V )K̃1
= Hτ (D,V )K̃ = P(p+, V ).

Since p+ acts on Hτ (D,V )K̃ = P(p+, V ) by 1st order differential operators with constant

coefficients, every (g1, K̃1)-submodule inHτ (D,V )K̃1
= P(p+, V ) has p+1 -invariant vectors,

and the space of p+1 -invariant vectors is equal to

Hτ (D,V )
p+1
K̃1

= P(p+2 )⊗ V.

Thus if we write the decomposition of the above space under K̃C
1 as

P(p+2 )⊗ V ≃
⊕
i

m(τ ′i)(τ
′
i , V

′
i ),

then Hτ (D,V ) is decomposed under G̃1 abstractly as

Hτ (D,V )K̃ |(g1,K̃1)
≃
⊕
i

m(τ ′i)Hτ ′i
(D1, V

′
i )K̃1

,

Hτ (D,V )|G̃1
≃
∑⊕

i

m(τ ′i)Hτ ′i
(D1, V

′
i )

(see [8], [13, Section 8], [29]). Thus we formally gather the space in the right hand side,
and consider the space O(D1,P(p+2 , V )), with the G̃1-action

τ̂ ′(g)f(y1, y2) = τ(κ(g−1, y1))
−1f(g−1y1, κ(g

−1, y1)y2)

(g ∈ G̃, y1 ∈ D1, y2 ∈ p+2 , f ∈ O(D1,P(p+2 , V ))).

Then this action preserves the inner product

⟨f, g⟩τ̂ ′ :=
1

πn2

∫∫
D1×p+2

(
τ(B(y1)

−1)f(y1, B(y1)y2), g(y1, y2)
)
τ
h1(y1)

−p1e
−|y2|2

p+dy1dy2,

where n2 := dim p+2 , h1(y1)
−p1 := Det(B(y1)|p+1 )

−1, and dy1, dy2 are the Lebesgue mea-

sures on p+1 , p+2 determined from the inner products (·|·)p+1 , (·|·)p+ respectively. Let

H′
τ (D1 × p+2 , V ) be the completion of the pre-Hilbert subspace of functions f such that

∥f∥τ̂ ′ < ∞. Our aim is to construct G̃1-intertwining operators between Hτ (D,V )|G̃1
and

H′
τ (D1 × p+2 , V ) explicitly.
Let F : Hτ (D,V ) → H′

τ (D1 × p+2 , V ) be such an operator. Then for any y ∈ D1 × p+2 ,
the linear mapHτ (D,V ) → V , f 7→ (Ff)(y) is continuous, and by the Riesz representation
theorem, there exists K̂y ∈ Hτ (D,V )⊗ V̄ such that

⟨f, K̂y⟩τ̂ = (Ff)(y) (f ∈ Hτ (D,V ), y ∈ D1 × p+2 ).

We write K̂(x; y) = K̂(x; y1, y2) := K̂y(x) for x ∈ D, y = (y1, y2) ∈ D1 × p+2 . We identify
V ⊗ V̄ and End(V ) via the inner product of V . Then by the intertwining property, K̂(x; y)
must satisfy

K̂(gx; gy1, κ(g, y1)y2) = τ(κ(g, x))K̂(x; y1, y2)τ(κ(g, y1))
∗ (3.3.2)
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for any g ∈ G̃1. Thus we seek the kernel function satisfying (3.3.2).

Let K(x2, y2) ∈ P(p+2 × p+2 ,End(V )) be an operator-valued polynomial satisfying

K(kx2, k
∗−1y2) = τ(k)K(x2, y2)τ(k)

−1 (x2, y2 ∈ p+2 , k ∈ K̃C
1 ). (3.3.3)

Let Proj2 : p+ → p+2 be the orthogonal projection, and we define an operator-valued

function K̂ ∈ O(D ×D1 × p+2 ,End(V )) by

K̂(x; y) = K̂(x1, x2; y1, y2) := τ(B(x, y1))K(Proj2(x
y1), y2)

(x = (x1, x2) ∈ D ⊂ p+, y1 ∈ D1 ⊂ p+1 , y2 ∈ p+2 ).

Then the following holds.

Proposition 3.3.1. For any x ∈ D, y1 ∈ D1, y2 ∈ p+2 and g ∈ G̃1, K̂(x; y) satisfies the
identity (3.3.2).

Proof. By (3.2.11), we have

τ(B(gx, gy1)) = τ(κ(g, x))τ(B(x, y1))τ(κ(g, y1))
∗.

Thus it suffices to show

K(Proj2((gx)
gy1), κ(g, y1)y2) = τ(κ(g, y1))

∗−1K(Proj2(x
y1), y2)τ(κ(g, y1))

∗.

By K̃C
1 -invariance of K(·, ·), this is equivalent to

Proj2((gx)
gy1) = κ(g, y1)

∗−1 Proj2(x
y1) (x ∈ D, y1 ∈ D1, g ∈ G1).

First we show

Proj2((gx)
(ϑ̂g)y1) = κ(ϑ̂g, y1)

∗−1 Proj2(x
y1) (x ∈ p+, y1 ∈ p+1 ) (3.3.4)

for g = k ∈ KC
1 or g = exp(−z1), g = exp(ϑw1) ∈ GC

1 with z1, w1 ∈ p+1 , when one side is
well-defined, that is, we show

Proj2((kx)
k∗−1y1) = kProj2(x

y1),

Proj2((x− z1)
(y

z1
1 )) = B(z1, y1) Proj2(x

y1),

Proj2((x
w1)y1−w1) = Proj2(x

y1).

In fact, these are true by (3.2.6), (3.2.7), and the fact that Proj2 commutes with KC
1 -action

and (x − z1)
(y

z1
1 ) − B(z1, y1)x

y1 = B(z1, y1)z
y1
1 ∈ p+1 is annihilated by Proj2. Since any

g ∈ G1 is written as the form g = exp(ϑw1)k exp(−z1) with z1, w1 ∈ D1 and k ∈ KC
1

(which is proved by using the KAK-decomposition and [4, Part III, Lemma III.2.4]), the
proposition follows from the cocycle condition of κ.

Also, the function satisfying (3.3.2) is unique for every irreducible submodule of P(p+2 )⊗
V .

Lemma 3.3.2. We take an irreducible submodule W1 ⊂ P(p+2 ) ⊗ V . Then the function

K̂ ∈ O(D ×D1 × p+2 ,End(V )) satisfying (3.3.2) and

K̂(x; y1, ·) ∈ V ⊗W1 ⊂ O(p+2 ,End(V )) (for any x ∈ D, y1 ∈ D1)

is unique up to scalar multiple.
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Proof. By the invariance (3.3.2), if we substitute x1 = y1 = 0, then the functionK(x2, y2) :=

K̂(0, x2; 0, y2) satisfies (3.3.3), and by the irreducibility of W1, such function on p+2 ×p+2 is
unique up to scalar multiple. Then again by (3.3.2), the values of K̂ is uniquely determined
on

S :=
{
(g.(0, x2); g.0, κ(g, 0)y2) ∈ D ×D1 × p+2 : g ∈ G1, x2 ∈ D2, y2 ∈ p+2

}
⊂ D×D1 × p+2 .

Thus it suffices to show S contains a totally real submanifold of full dimension of D ×
D1 × p+2 . Let pr1 : D ×D1 × p+2 → D, pr2 : D ×D1 × p+2 → D1 × p+2 be the projections.
Then since for every x2 ∈ D2, {exp(z).(0, x2) : z ∈ p1} ⊂ D intersects transversally with
D ⊂ p+2 at x2, the differential of pr1|S at (0, x2; 0, y2) is surjective. Similarly, since G1 acts
transitively on D1, the differential of pr2|S at (0, x2; 0, y2) is also surjective. Therefore,

pr1|S and pr2|S are both submersive near {0}×D2×{0} × p+2 ⊂ S, and T(x;y)S+JT(x;y)S =

T(x;y)(D × D1 × p+2 ) holds on this neighborhood, where J is the complex structure of

D×D1 × p+2 . Hence S contains a totally real submanifold of full dimension ofD×D1 × p+2 ,
and this completes the proof.

Let K(x2, y2) ∈ P(p+2 ×p+2 ) be a polynomial satisfying (3.3.3), and let W1 ⊂ P(p+2 )⊗V
be a subrepresentation of K̃C

1 such thatK(·, y2) ∈ W1 for any y2 ∈ p+2 . Then by the unique-
ness, the function K̂(x; y) becomes the kernel function of the intertwining operator from
Hτ (D,V ) to Hτ⊗(Ad|

p+2
)∗(D1,W1) ⊂ H′

τ (D1 × p+2 , V ). Especially, K̂(·; y) ∈ Hτ (D,V )⊗ V̄

holds for any y ∈ D1× p+2 . Similarly, K̂(x; ·)∗ ∈ H′
τ (D1× p+2 , V ) holds for any x ∈ D, and

it becomes the kernel function of the intertwining operator of opposite direction. That is,
the following holds.

Corollary 3.3.3. We assume Hτ (D,V ) is non-trivial.

(1) The linear map F∗
W1

: Hτ (D,V ) → Hτ⊗(Ad|
p+2

)∗(D1,W1) ⊂ H′
τ (D1 × p+2 , V ),

(F∗
W1

f)(y1, y2) :=

∫
D
K̂(x; y1, y2)

∗τ(B(x)−1)f(x)h(x)−pdx

intertwines the G̃1-action.

(2) The linear map FW1 : H′
τ (D1 × p+2 , V ) ⊃ Hτ⊗(Ad|

p+2
)∗(D1,W1) → Hτ (D,V ),

(FW1f)(x)

:=
1

πn2

∫∫
D1×p+2

K̂(x; y1, B(y1)y2)τ(B(y1)
−1)f(y1, y2)e

−|y2|2
p+h1(y1)

−p1dy1dy2

intertwines the G̃1-action.

Next we rewrite these operators. Since the reproducing kernel of P(p+, V ) with respect

to the Fischer norm is given by e(x|z)p+ , we have

(F∗
W1

f)(y) =
1

πn

∫
D
K̂(x; y)∗τ(B(x)−1)

∫
p+

f(z)e(x|z)p+e
−|z|2

p+dz h(x)−pdx

=
1

πn

∫
p+

∫
D
K̂(x; y)∗τ(B(x)−1)e(x|z)p+h(x)−pdx f(z)e

−|z|2
p+dz.

Now we have
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Lemma 3.3.4. ∫
D
K̂(x; y1, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx

=

∫
D
K̂(x; 0, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx e(y1|z).

Proof. Since F∗
W1

intertwines the G̃1-action, it also intertwines the gC1 -action. Especially,

since p+1 ⊂ gC1 acts as a 1st-order differential operator with constant coefficients, we have

d

dt

∣∣∣∣
t=0

∫
D
K̂(x; y1 + tw1, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx

=
d

dt

∣∣∣∣
t=0

∫
D
K̂(x; y1, y2)

∗τ(B(x)−1)e(x+tw1|z)h(x)−pdx

=

∫
D
K̂(x; y1, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx · (w1|z).

Therefore, as functions of y1, both∫
D
K̂(x; y1, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx

and ∫
D
K̂(x; 0, y2)

∗τ(B(x)−1)e(x|z)h(x)−pdx e(y1|z)

satisfy the same differential equation with the same initial condition, and thus they coin-
cide.

Thus we set

F ∗
W1

(z; y2) = F ∗
W1

(z1, z2; y2) :=

∫
D
K̂(x; 0, y2)

∗τ(B(x)−1)e(x|z)p+h(x)−pdx

=

∫
D
K(x2, y2)

∗τ(B(x)−1)e(x|z)p+h(x)−pdx.

This is a polynomial anti-holomorphic in z and holomorphic in y2. Then we have

(F∗
W1

f)(y) =
1

πn

∫
p+

F ∗
W1

(z1, z2; y2)e
(y1|z)p+f(z)e

−|z|2
p+dz

=
1

πn

∫
p+

F ∗
W1

(z1, z2; y2)e
(x|z)p+f(z)e

−|z|2
p+dz

∣∣∣∣
x1=y1,x2=0

= F ∗
W1

(
∂

∂x1

∣∣∣∣
x1=y1

,
∂

∂x2

∣∣∣∣
x2=0

; y2

)
1

πn

∫
p+

e(x|z)p+f(z)e
−|z|2

p+dz

= F ∗
W1

(
∂

∂x1
,

∂

∂x2
; y2

)∣∣∣∣
x1=y1,x2=0

f(x).

Here, for anti-holomorphic polynomial f ∈ P(p+), we write

f

(
∂

∂x

)
:=
∑
α

f(eα)
∂

∂xα
,
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where {eα} ⊂ p+ is a basis, with the dual basis {e∨α} ⊂ p+ with respect to the inner
product (·|·)p+ , and ∂

∂xα
is the directional derivative along the direction of e∨α. Similarly,

we set

FW1(x2;w) = FW1(x2;w1, w2)

:=
1

πn2

∫∫
D1×p+2

K̂(0, x2; y1, B(y1)y2)τ(B(y1)
−1)e((y1,y2)|(w1,w2))p+h1(y1)

−pe
−|y2|2

p+dy1dy2

=

∫
D1

K(0, x2; y1, B(y1)w2)τ(B(y1)
−1)e(y1|w1)p+h1(y1)

−pdy1

=

∫
D1

τ(B(x2, y1))K(Proj2((x2)
y1), B(y1)w2)τ(B(y1)

−1)e(y1|w1)p+h1(y1)
−pdy1.

This is holomorphic in x2, anti-holomorphic in w, but in general this is not a polynomial.
As in F∗

W1
case, we have

(FW1f)(x) =
1

πn

∫
p+

FK(x2;w1, w2)e
(x1|w)p+f(w)e

−|w|2
p+dw.

We summarize the above results.

Theorem 3.3.5. We assume Hτ (D,V ) is non-trivial. Let K(x2, y2) ∈ P(p+2 ×p+2 ,End(V ))
be an operator-valued polynomial satisfying

K(kx2, k
∗−1y2) = τ(k)K(x2, y2)τ(k)

−1 (x2, y2 ∈ p+2 , k ∈ K̃C
1 ). (3.3.3 reshown)

Let W1 ⊂ P(p+2 )⊗V be a subrepresentation of K̃C
1 such that K(·, y2) ∈ W for any y2 ∈ p+2 .

(1) We set

F ∗
W1

(z; y2) = F ∗
W1

(z1, z2; y2) :=

∫
D
K(x2, y2)

∗τ(B(x)−1)e(x|z)p+h(x)−pdx.

Then the linear map

F∗
W1

: Hτ (D,V )K̃ → Hτ⊗(Ad|
p+2

)∗(D1,W1)K̃1
⊂ H′

τ (D1 × p+2 , V )K̃1
,

(F∗
W1

f)(y) =
1

πn

∫
p+

F ∗
W1

(z1, z2; y2)e
(y1|z)p+f(z)e

−|z|2
p+dz

= F ∗
W1

(
∂

∂x1
,

∂

∂x2
; y2

)∣∣∣∣
x1=y1,x2=0

f(x)

intertwines the (g1, K̃1)-action.

(2) We set

FW1(x2;w) = FW1(x2;w1, w2)

:=

∫
D1

τ(B(x2, y1))K(Proj2((x2)
y1), B(y1)w2)τ(B(y1)

−1)e(y1|w1)p+h1(y1)
−p1dy1.

Then the linear map

FW1 : H′
τ (D1 × p+2 , V )K̃1

⊃ Hτ⊗(Ad|
p+2

)∗(D1,W1)K̃1
→ Hτ (D,V )K̃ ,

(FW1f)(x) =
1

πn

∫
p+

FW1(x2;w1, w2)e
(x1|w)p+f(w)e

−|w|2
p+dw

intertwines the (g1, K̃1)-action.
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The operator FW1 is not a differential operator of finite order in general, but if
FW1(x2;w) is expanded as

FW1(x2;w) =

∞∑
k=0

Fk(x2;w) =

∞∑
k=0

Fk(x2;w1, w2),

where Fk(x2;w) is a homogeneous polynomial of degree k in w, then we can write

(FW1f)(x) =

∞∑
k=0

Fk

(
x2;

∂

∂y1
,

∂

∂y2

)∣∣∣∣
y1=x1,y2=0

f(y)

for polynomials f ∈ H′
τ (D1 × p+2 , V )K̃ = P(p+, V ).

Remark 3.3.6. For w ∈ p+, we define the End(V )-valued differential operator Bτ (w) on
p+ by

Bτ (w)f(z) :=
∑
αβ

1

2
(ad(eα)ad(eβ)ϑw|z)p+

∂2f

∂z̄α∂z̄β
(z) +

∑
α

dτ([eα, ϑw])
∂f

∂z̄α
(z),

where {eα} is a basis of p+, with the dual basis {e∨α}, and ∂
∂z̄α

is the anti-holomorphic
directional derivative along e∨α. Then this is a generalization of the Bessel operator Bν in
[3] or [6, Section XV.2]. Then for w1 ∈ p+1 , Bτ (w1) annihilates F ∗

W1
(z; y2), because

(Bτ (w1))zF
∗
W1

(z; y2) = (Bτ (w1))z

∫
D
K(x2, y2)

∗τ(B(x)−1)e(x|z)p+h(x)−pdx

=

∫
D
K(x2, y2)

∗τ(B(x)−1)

(
1

2
(ad(x)2ϑw1|z)p+ + dτ([x, ϑw1])

)
e(x|z)p+h(x)−pdx

=

∫
D
K(x2, y2)

∗τ(B(x)−1)
(
dτ̂(−ϑw1)xe

(x|z)p+
)
h(x)−pdx

=

∫
D
(dτ̂(w1)xK(x2, y2))

∗τ(B(x)−1)e(x|z)p+h(x)−pdx

=

∫
D

d

dt

∣∣∣∣
t=0

K(Proj2(x− tw1), y2)
∗τ(B(x)−1)e(x|z)p+h(x)−pdx = 0.

This differential equation coincides with d̂πµ on n+ appeared in Proposition 3.10 or Section
4.4, Step 1 of [24], and thus the operator F∗

W1
coincides with the one given by the F-method.

3.4 Preliminaries for examples

3.4.1 Parametrization of representations of KC

In this subsection we fix the realization of root systems and parametrization of irreducible
finite-dimensional representations of KC. First we set KC := GL(r,C) or SO(n,C). We
take a Cartan subalgebra hC ⊂ kC, and take a basis {t1, . . . , tr} ⊂ hC, with the dual basis
{ε1, . . . , εr} ⊂ (hC)∨, where r =

⌊
n
2

⌋
when KC = SO(n,C), such that the positive root

system ∆+(k
C, hC) is given by

∆+(k
C, hC) =


{εj − εk : 1 ≤ j < k ≤ r} (KC = GL(r,C)),
{εj ± εk : 1 ≤ j < k ≤ r} (KC = SO(2r,C)),
{εj ± εk : 1 ≤ j < k ≤ r} ∪ {εj : 1 ≤ j ≤ r} (KC = SO(2r + 1,C)).
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For m ∈ Zr with m1 ≥ · · · ≥ mr, we denote the irreducible representation of GL(r,C)
with highest weight m1ε1 + · · · + mrεr by (τ

(r)
m , V

(r)
m ), the irreducible representation of

GL(r,C) with highest weight −mrε1 − · · · −m1εr by (τ
(r)∨
m , V

(r)∨
m ), and for m ∈ Zr with

m1 ≥ · · · ≥ mr−1 ≥ |mr| (when n = 2r) or with m1 ≥ · · · ≥ mr ≥ 0 (when n = 2r+1), we
denote the irreducible representation of SO(n,C) with highest weight m1ε1 + · · ·+mrεr

by (τ
[n]
m , V

[n]
m ). We omit the superscript (r) and [n] if there is no confusion.

Next we set G := Sp(r,C), U(q, s), SO∗(2s), or SO0(2, n), and let KC be the complexi-
fication of their maximal compact subgroups, that is, KC = GL(r,C), GL(q,C)×GL(s,C),
GL(s,C) or SO(2,C)× SO(n,C) respectively. Then irreducible finite-dimensional repre-

sentations of KC are of the form V
(r)
m , V

(q)
m ⊠V

(s)∨
n , V

(s)
m , or Cm0 ⊠V

[n]
m respectively, where

we normalize the representation (χm0 ,Cm0) of SO(2,C) later as in (3.4.2). Also, under
the suitable ordering of ∆(gC, hC), Pm(p+) in Theorem 3.2.1 is given by

Pm(p+) ≃


V

(r)∨
(2m1,2m2,...,2mr)

(G = Sp(r,C), m ∈ Zr
++),

V
(q)∨
m ⊠ V

(s)
m (G = U(q, s), m ∈ Zmin{q,s}

++ ),

V
(s)∨
(m1,m1,m2,m2,...,m⌊s/2⌋,m⌊s/2⌋(,0))

(G = SO∗(2s), m ∈ Z⌊s/2⌋
++ ),

Cm1+m2 ⊠ V
[n]
(m1−m2,0,0,...,0)

(G = SO0(2, n), m ∈ Z2
++),

where, when s < q and m ∈ Zs
++, we denote V

(q)
(m1,...,ms,0,...,0)

=: V
(q)
m etc.

3.4.2 Explicit realization of groups and bounded symmetric domains

In this subsection, we review and fix the explicit realization of groups

G = Sp(r,R), U(q, s), SO∗(2s), SO0(2, n).

First we deal with G = Sp(r,R), U(q, s), and SO∗(2s). For these groups we have

(r, n, d, p) =


(
r, 12r(r + 1), 1, r + 1

)
(G = Sp(r,R),

(min{q, s}, qs, 2, q + s) (G = U(q, s)),(
⌊ s2⌋,

1
2s(s− 1), 4, 2(s− 1)

)
(G = SO∗(2s))

We realize these groups as

Sp(r,R) :=
{
g ∈ GL(2r,C) : g

(
0 Ir

−Ir 0

)
tg =

(
0 Ir

−Ir 0

)
, g

(
0 Ir
Ir 0

)
=

(
0 Ir
Ir 0

)
ḡ

}
,

U(q, s) :=

{
g ∈ GL(q + s,C) : g

(
Iq 0
0 −Is

)
g∗ =

(
Iq 0
0 −Is

)}
,

SO∗(2s) :=

{
g ∈ GL(2s,C) : g

(
0 Is
Is 0

)
tg =

(
0 Is
Is 0

)
, g

(
0 Is

−Is 0

)
=

(
0 Is

−Is 0

)
ḡ

}
.

Then K is isomorphic to U(r), U(q)× U(s), and U(s) respectively. We embed K into G
as

k 7→
(
k 0
0 tk−1

)
(G = Sp(r,R), SO∗(2s)),

(k1, k2) 7→
(
k1 0
0 k2

)
(G = U(q, s)).
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Clearly these extends to the embeddings of complexified Lie groups KC → GC. When
G = Sp(r,R) or SO∗(2s), we sometimes write the elements of K or KC as (k, tk−1), and
deal with these inclusions uniformly. Similarly, p+ is isomorphic to Sym(r,C), M(q, s;C)

and Skew(s,C) respectively. We embed p+ into gC as x 7→
(
0 x
0 0

)
. Then the rational

action of G on p+ is given by(
a b
c d

)
x = (ax+ b)(cx+ d)−1

((
a b
c d

)
∈ G, x ∈ p+

)
.

The Bergman operator B : D ×D → K is given by

B(x, y) =
(
I − xy∗, (I − y∗x)−1

)
(x, y ∈ p+),

the quasi-inverse is given by

xy = x(I − y∗x)−1 = (I − xy∗)−1x (x, y ∈ p+),

and the bounded symmetric domain D is given by

D = {x ∈ p+ : I − xx∗ is positive definite.}

Let (τ, V ) be an irreducible representation of K̃C with K̃-invariant inner product (·, ·)τ .
Then G̃ acts on O(D,V ) as

τ̂

((
a b
c d

)−1
)
f(w) = τ

(
a∗ + xb∗, (cx+ d)−1

)
f
(
(ax+ b)(cx+ d)−1

)
,

where we regard
(
a∗ + xb∗, (cx+ d)−1

)
as the lift on K̃C, and this action preserves the

inner product

⟨f, g⟩τ̂ =

∫
D

(
τ
(
(I − xx∗)−1, I − x∗x

)
f(x), g(x)

)
τ
det(I − xx∗)−εpdx,

where

ε =

{
1 (G = Sp(r,R), U(q, s)),
1
2 (G = SO∗(2s)),

, p =


r + 1 (G = Sp(r,R)),
q + s (G = U(q, s)),

2(s− 1) (G = SO∗(2s)).

Especially, for G = Sp(r,R) or SO∗(2s), let (τ, V ) = (χ−λ,C) be a 1-dimensional
representation of K̃C, normalized as in the latter half of Section 3.2.4, that is,

χ(k) := det(k)ε.

Then the G̃-invariant inner product on Hτ (D,C) = Hλ(D) is given by

⟨f, g⟩λ =

∫
D
f(x)g(x) det(I − xx∗)ε(λ−p)dx, (3.4.1)

which converges for any polynomial f, g if λ > p − 1. When G = U(q, s), we define
(χ−λ1−λ2 ,C) as

χ(k1, k2) := det(k1)
−λ1 det(k2)

λ2 ,
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and write the corresponding representation of G̃ asHλ1+λ2(D). Then again the G̃-invariant
inner product is given by (3.4.1) with λ = λ1 + λ2.

Next we deal with G = SO0(2, n) case with n ≥ 3. In this case, we have

(r, n, d, p) = (2, n, n− 2, n).

We realize this group as

SO0(2, n) :=

{
g ∈ SL(2 + n,R) : g

(
I2 0
0 −In

)
tg =

(
I2 0
0 −In

)}
0

as usual, where the subscript 0 means the identity component. We have K ≃ SO(2) ×

SO(n), embedded into G as (k1, k2) 7→
(
k1 0
0 k2

)
, and p+ ≃ Cn, embedded into gC as

x 7→

0 0 tx
0 0

√
−1 tx

x
√
−1x 0

 ,

where we regard x as a column vector. For x = t(x1, . . . , xn), y = t(y1, . . . , yn) ∈ p+, we
write

q(x) := x21 + · · ·+ x2n, q(x, y) := x1y1 + · · ·+ xnyn.

Then the generic norm is given by

h(x, y) = 1− 2q(x, ȳ) + q(x)q(y),

the quasi-inverse is given by

xy = (1− 2q(x, ȳ) + q(x)q(y))−1(x− q(x)ȳ),

and the bounded symmetric domain D is the connected component of {h(x, x) > 0} which
contains the origin.

Let (τ, V ) = (χ−λ,C) be a 1-dimensional representation of K̃C, where χ is normalized
as in the latter half of Section 3.2.4, that is,

χ

(
exp

(
a

(
0 −

√
−1√

−1 0

))
, k2

)
= ea (a ∈ C, k2 ∈ SO(n,C)). (3.4.2)

Then the G̃-action on O(D) preserves the inner product

⟨f, g⟩λ =

∫
D
f(x)g(x)(1− 2q(x, x̄) + |q(x)|2)λ−ndx. (3.4.3)

When n = 1, 2, we have so(2, 1) ≃ sl(2,R), which is of real rank 1, or so(2, 2) ≃ sl(2,R)⊕
sl(2,R), which is not simple, and thus their properties are a bit different from those of
n ≥ 3 cases. However, for convenience, we use the same inner product as (3.4.3), so that

Hλ(DSO0(2,1)) ≃ H2λ(DSL(2,R)), Hλ(DSO0(2,2)) ≃ Hλ(DSL(2,R)) ⊠̂Hλ(DSL(2,R)).
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3.4.3 Polynomials on Jordan triple systems revisited

In this subsection we reconsider the polynomials on p+ = Sym(r,C), M(q, s;C) and
Skew(s,C). As in (3.2.12) we have

h(x, e)−λ = det(I − xe∗)−ελ =
∑

m∈Zr
++

(λ)m,d

|m|!
Φ̃
(d)
m (x),

where

(d, r) =


(1, r) (G = Sp(r,R)),
(2,min{q, s}) (G = U(q, s)),(
4,
⌊
s
2

⌋)
(G = SO∗(2s)),

ε =

{
1 (G = Sp(r,R), U(q, s)),
1
2 (G = SO∗(2s)),

and e is a maximal tripotent in p+, for example,

e = Ir (G = Sp(r,R)), e = (Iq, 0) (G = U(q, s), q ≤ s),

e = Js :=

⌊s/2⌋∑
j=1

(E2j,2j−1 − E2j−1,2j) (G = SO∗(2s)), e =

(
Is
0

)
(G = U(q, s), q ≥ s).

Let x, y ∈ p+, and take an element (k1, k2) ∈ KC such that y = k1ek
−1
2 (such (k1, k2)

exists if y is in some open dense subset of p+). Then we have

K
(d)
m (x, y) = K

(d)
m (k∗1xk

∗−1
2 , e) =

1

|m|!
Φ̃
(d)
m (k∗1xk

∗−1
2 ).

Since K
(d)
m is determined by the values on a+ ⊂ p+ (i.e. by the eigenvalues of xe∗), and

k∗1xk
∗−1
2 e∗, xy∗ and y∗x have the same eigenvalues, we write

K
(d)
m (x, y) =:

1

|m|!
Φ̃
(d)
m (xy∗) =

1

|m|!
Φ̃
(d)
m (y∗x),

following [32], so that

h(x, y)−λ = det(I − xy∗)−ελ =
∑

m∈Zr
++

(λ)m,d

|m|!
Φ̃
(d)
m (xy∗).

Next we take positive integers q′, q′′, s′, s′′, and we consider the sets

p+(11, 1) := Sym(s′,C), p+(22, 1) := Sym(s′′,C), (3.4.4a)

p+(11, 2) := M(q′, s′;C), p+(22, 2) := M(q′′, s′′;C), (3.4.4b)

p+(11, 4) := Skew(s′,C), p+(22, 4) := Skew(s′′,C), (3.4.4c)

p+(12, 1) := {(x12, x21) : x12 = tx21 ∈ M(s′, s′′;C)}, (3.4.4d)

p+(12, 2) := M(q′, s′′;C)×M(q′′, s′;C), (3.4.4e)

p+(12, 4) := {(x12, x21) : x12 = −tx21 ∈ M(s′, s′′;C)}, (3.4.4f)

so that if (x11, x12, x21, x22) ∈ p+(11, d)⊕ p+(12, d)⊕ p+(22, d), then

(
x11 x12
x21 x22

)
∈


Sym(s′ + s′′,C) (d = 1),

M(q′ + q′′, s′ + s′′;C) (d = 2),

Skew(s′ + s′′,C) (d = 4)
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holds. Now we observe the expansion of det(I − x11x12x22x21)
−ελ. This is expanded as

det(I − x11x12x22x21)
−ελ =

∑
m∈Zr

++

(λ)m,d

|m|!
Φ̃
(d)
m (x11x12x22x21)

where

r :=


min{s′, s′′} (d = 1),

min{q′, q′′, s′, s′′} (d = 2),

min
{⌊

s′

2

⌋
,
⌊
s′′

2

⌋}
(d = 4),

and each summand is in a single irreducible module, that is,

Lemma 3.4.1. (1) As a polynomial in x11, Φ̃
(d)
m (x11x12x22x21) ∈ Pm(p+(11, d)).

(2) As a polynomial in x22, Φ̃
(d)
m (x11x12x22x21) ∈ Pm(p+(22, d)).

(3) Let d = 1. As a polynomial in x12, Φ̃
(1)
m (x11x12x22x21) ∈ P2m(p+(12, 1)), where

2m = (2m1, 2m2, . . . , 2mr) ∈ Zmin{s′,s′′}
++ .

(4) Let d = 4. As a polynomial in x12, Φ̃
(4)
m (x11x12x22x21) ∈ Pm2(p+(12, 4)), where

m2 = (m1,m1,m2,m2, . . . ,mr,mr(, 0)) ∈ Zmin{s′,s′′}
++ .

Proof. (1) Clear.
(2) Since x11x12x22x21 and x22x21x11x12 have the same eigenvalues, we have

Φ̃
(d)
m (x11x12x22x21) = Φ̃

(d)
m (x22x21x11x12),

and the claim follows.
(3) Since Pm(p+(12, 1)) is GL(s′,C)×GL(s′′,C)-invariant, we may assume x11 = Is′ ,

x22 = Is′′ , and consider Φ̃
(1)
m (x12

tx12). For x ∈ Sym(s′,C), we set

∆
(1)
m (x) :=

s′−1∏
j=1

det((xkl)1≤k,l≤j)
mj−mj+1 det(x)ms′ .

Then we have

Φ
(1)
m (x) =

∫
O(s′)

∆
(1)
m (kxtk)dk,

and thus

Φ
(1)
m (x12

tx12) =

∫
O(s′)

∆
(1)
m (kx12

tx12
tk)dk.

Also since Φ̃
(1)
m (x12

tx12) is proportional to Φ
(1)
m (x12

tx12), Φ̃
(1)
m (x12

tx12) sits in a GL(s′,C)×
GL(s′′,C)-module generated by ∆

(1)
m (x12

tx12). Next, for lower triangular matrices l =
(lkl)1≤l≤k≤s′ ∈ GL(s′,C), we have

∆
(1)
m (l−1x12

tx12
tl−1) = l−2m1

11 l−2m2
22 · · · l−2ms′

s′s′ ∆
(1)
m (x12

tx12),

that is, this is the lowest weight vector with lowest weight −2m1ε1 − · · · − 2ms′εs′ under
GL(s′,C). Since P(M(s′, s′′;C)) is decomposed as

P(M(s′, s′′;C)) =
⊕

m∈Zmin{s′,s′′}
++

Pm(M(s′, s′′;C)) =
⊕

m∈Zmin{s′,s′′}
++

V
(s′)∨
m ⊠ V

(s′′)
m ,
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the highest weight under GL(s′′,C) of submodules in P(M(s′, s′′;C)) is uniquely deter-

mined by the lowest weight underGL(s′,C), and therefore ∆
(1)
m (x12

tx12) ∈ Pm(M(s′, s′′;C))
holds, and thus Φ̃

(1)
m (x12

tx12) ∈ Pm(M(s′, s′′;C)) also holds.
(4) Similarly to (3), we may assume x11 = Js′ , x22 = Js′′ . Then by replacing O(s′)

with Sp
(⌊

s′

2

⌋)
, and ∆

(1)
m (x) on Sym(s′,C) with

∆
(4)
m (x) :=

⌊s′/2⌋−1∏
j=1

Pf((xkl)1≤k,l≤2j)
mj−mj+1 Pf((xkl)1≤k,l≤2⌊s1/2⌋)

m⌊s′/2⌋

on Skew(s′,C), we can prove parallelly to (3).

Next, for xs ∈ Sym(s,C) and xa ∈ Skew(s,C), we want to consider the expansion of
det(I − xsxa)

−λ. Since

det(I − xsxa) = det(I − xaxs) = det(t(I − xaxs)) = det(I + xsxa),

we can rewrite

det(I − xsxa)
−λ = det(I − xsxa)

−λ/2 det(I + xsxa)
−λ/2 = det(I − (xsxa)

2)−λ/2.

If xs = Is or xa = Js, then det(I − x2a)
−λ/2, det(I − (xsJs)

2)−λ/2 are O(s), Sp
(⌊

s
2

⌋)
-

invariant respectively. We set

taj :=
√
−1(E2j,2j−1 −E2j−1,2j) ∈ Skew(s,C), aa :=

⌊s/2⌋⊕
j=1

Rtaj ⊂ Skew(s,C),

tsj := E2j,2j−1 + E2j−1,2j ∈ Sym(s,C), as :=

⌊s/2⌋⊕
j=1

Rtsj ⊂ Sym(s,C).

ThenO(s)-invariant functions on Skew(s,C) and Sp
(⌊

s
2

⌋)
-invariant functions on Sym

(
2
⌊
s
2

⌋
,C
)

are determined by the values on aa and as respectively. We note that even when s is odd,

we do not have to consider the Sym
(
2
⌊
s
2

⌋
,C
)⊥

= Sym(s−1,C)⊥ :=
⊕s

j=1C(Es,j+Ej,s)-

dependence in this case, because det(I− (xsJs)
2)−λ/2 does not depend on Sym(s−1,C)⊥.

When xa =
∑

ajt
a
j ∈ aa or xs =

∑
ajt

s
j ∈ as, then we have

det(I − x2a)
−λ/2 = det(I − (xsJs)

2)−λ/2 =

⌊s/2⌋∏
j=1

(1− a2j )
−λ

=
∑

m∈Z⌊s/2⌋
++

(λ)m,2

|m|!
Φ̃
(2)
m (a21, . . . , a

2
⌊s/2⌋).

For xs ∈ Sym(s,C) and xa ∈ Skew(s,C), we take ls, la ∈ GL(s,C) such that xs = ls
tls,

xa = laJs
tla. Then we have

det(I − (xsxa))
2 = det(I − (tlsxals)

2) = det(I − (tlaxslaJs)
2),

and aj ’s for
tlsxals and

tlaxsla coincide. Thus using these aj , we define

Φ̃
(2)′
m ((xsxa)

2) = Φ̃
(2)′
m ((xaxs)

2) := Φ̃
(2)
m (a21, . . . , a

2
⌊s/2⌋),
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so that

det(I − xsxa)
−λ = det(I − (xsxa)

2)−λ/2 =
∑

m∈Z⌊s/2⌋
++

(λ)m,2

|m|!
Φ̃
(2)′
m ((xsxa)

2).

Then each summand is in a single irreducible module, that is,

Lemma 3.4.2. (1) As a polynomial in xa, Φ̃
(2)′
m ((xsxa)

2) ∈ P2m(Skew(s,C)),
where 2m = (2m1, 2m2, . . . , 2m⌊s/2⌋) ∈ Z⌊s/2⌋

++ .

(2) As a polynomial in xs, Φ̃
(2)′
m ((xsxa)

2) ∈ Pm2(Sym(s,C)),
where m2 = (m1,m1,m2,m2, . . . ,m⌊s/2⌋,m⌊s/2⌋(, 0)) ∈ Zs

++.

To prove this, we need the following lemma on Laplace-Beltrami operators (3.2.10),

Lf =
∑
αβ

ε tr(xe∗αxe
∗
β)

∂2

∂xα∂xβ
+

nT

r

∑
α

ε tr(xe∗)
∂

∂xα
,

where
(
ε, nT

r

)
=
(
1
2 , 2

⌊
s
2

⌋
− 1
)
on Skew(s,C),

(
ε, nT

r

)
=
(
1, s+1

2

)
on Sym(s,C), {eα} is a

basis, with the dual basis {e∨α} with respect to the inner product ε tr(xy∗), and ∂
∂xα

is the
directional derivative along the direction of e∨α.

Lemma 3.4.3. (1) For O(s)-invariant functions on Skew(s,C), using the coordinate
xa =

∑
ajt

a
j ∈ aa, we have

Lf =

⌊s/2⌋∑
j=1

a2j
∂2f

∂a2j
+ 4

∑
j<k

a2ja
2
k

a2j − a2k

(
1

aj

∂f

∂aj
− 1

ak

∂f

∂ak

)
+
(
2
⌊s
2

⌋
− 1
) ⌊s/2⌋∑

j=1

aj
∂f

∂aj
.

(2) For Sp
(⌊

s
2

⌋)
-invariant functions on Sym(s,C), using the coordinate xs =

∑
ajt

s
j ∈

as, we have

Lf =
1

2

⌊s/2⌋∑
j=1

a2j
∂2f

∂a2j
+ 2

∑
j<k

a2ja
2
k

a2j − a2k

(
1

aj

∂f

∂aj
− 1

ak

∂f

∂ak

)
+

s− 1

2

⌊s/2⌋∑
j=1

aj
∂f

∂aj
.

These are proved similarly to [6, Proposition VI.4.2].

Proof of Lemma 3.4.2. (1) We may assume xs = Is. Then Φ̃
(2)′
m (x2a) is O(s)-invariant. By

the change of variables a2j = bj , L on Skew(s,C) is rewritten as

Lf = 4

⌊s/2⌋∑
j=1

b2j
∂2f

∂b2j
+ 2

∑
j<k

bjbk
bj − bk

(
∂f

∂bj
− ∂f

∂bk

)
+
⌊s
2

⌋ ⌊s/2⌋∑
j=1

bj
∂f

∂bj

 .

Then since Φ̃
(2)
m is an eigenfunction of the Laplace-Beltrami operator on M

(⌊
s
2

⌋
,C
)
with

the eigenvalue
∑⌊s/2⌋

j=1 mj

(
mj −

(
2j −

⌊
s
2

⌋
− 1
))

by Proposition 3.2.3, we have

LΦ̃
(2)′
m (x2a) = 4

⌊s/2⌋∑
j=1

mj

(
mj −

(
2j −

⌊s
2

⌋
− 1
))

Φ̃
(2)′
m (x2a)

=

⌊s/2⌋∑
j=1

2mj

(
2mj − 2

(
2j −

⌊s
2

⌋
− 1
))

Φ̃
(2)′
m (x2a).
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Since the highest weight of a finite-dimensional representation is uniquely determined by

the action of the Casimir element, we conclude that Φ̃
(2)′
m (x2a) ∈ P2m(Skew(s,C)).

(2) Similarly, we may assume xa = Js. Then Φ̃
(2)′
m ((xsJs)

2) is Sp
(⌊

s
2

⌋)
-invariant. By

the change of variables a2j = bj , L on Sym(s,C) is rewritten as

Lf = 2

⌊s/2⌋∑
j=1

b2j
∂2f

∂b2j
+ 2

∑
j<k

bjbk
bj − bk

(
∂f

∂bj
− ∂f

∂bk

)
+
⌊s
2

⌋ ⌊s/2⌋∑
j=1

bj
∂f

∂bj


+
(
s− 2

⌊s
2

⌋) ⌊s/2⌋∑
j=1

bj
∂f

∂bj
,

and therefore

LΦ̃
(2)′
m ((xsJs)

2) =

2

⌊s/2⌋∑
j=1

mj

(
mj −

(
2j −

⌊s
2

⌋
− 1
))

+
(
s− 2

⌊s
2

⌋)
|m|

 Φ̃
(2)′
m ((xsJs)

2)

=

⌊s/2⌋∑
j=1

(
mj

(
mj −

1

2
(2(2j − 1)− s− 1)

)
+mj

(
mj −

1

2
(2(2j)− s− 1)

))
Φ̃
(2)′
m ((xsJs)

2).

Thus we conclude that Φ̃
(2)′
m ((xsJs)

2) ∈ Pm2(Sym(s,C)).

3.5 Examples of intertwining operators

3.5.1 Normal derivative case

In this subsection, we seek a sufficient condition for F∗
W1

, FW1 to become a normal deriva-

tive, that is, a differential operator for the direction of p+2 . Let G ⊃ G1 be two real
reductive groups of Hermitian type satisfying the assumption (3.3.1), (τ, V ) be an irre-
ducible finite-dimensional representation of K̃C such that Hτ (D,V ) is non-trivial, and let

K(x2, y2) ∈ P(p+2 ×p+2 ,End(V )) be a K̃C
1 -invariant polynomial in the sense of (3.3.3). Let

W1 ⊂ P(p+2 , V ) be a subrepresentation of K̃C
1 such that K(·, y2) ∈ W1 for any y2 ∈ p+2 . By

taking the projection of K into irreducible subspaces, we may assume W1 is irreducible.
Then the following holds.

Theorem 3.5.1. (1) Assume that there exists an irreducible subrepresentation W ⊂
P(p+, V ) of K̃ such that W1 ⊂ W . Then the linear map

F∗
W1

: Hτ (D,V )K̃ → Hτ⊗(Ad|
p+2

)∗(D1,W1)K̃1
⊂ H′

τ (D1 × p+2 , V )K̃1
,

(F∗
W1

f)(y1, y2) = K

(
∂

∂x2
, y2

)∗∣∣∣∣∣
x2=0

f(y1, x2)

intertwines the (g1, K̃1)-action.

(2) We take a subrepresentation V1 ⊂ V such that W1 ⊂ P(p+2 , V1). Assume that
Proj2((x2)

y1) = x2, and τ(B(x2, y1))|V1 = IV1 for any x2 ∈ p+2 , y1 ∈ p+1 . Then
the linear map

FW1 : H′
τ (D1 × p+2 , V )K̃ ⊃ Hτ⊗(Ad|

p+2
)∗(D1,W1)K̃1

→ Hτ (D,V )K̃1
,

(FW1f)(x1, x2) = K

(
x2,

∂

∂y2

)∣∣∣∣
y2=0

f(x1, y2)
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intertwines the (g1, K̃1)-action.

Proof. (1) Since e(x|z)p+ IV is the reproducing kernel of P(p+, V ) with respect to the inner

product ⟨·, ·⟩F , the projection of e(x|z)p+ IV onto any subrepresentation of P(p+, V ) is non-

zero. Let KW (x, z) ∈ P(p+ × p+,End(V )) be the orthogonal projection of e(x|z)p+ IV onto
W with respect to the inner product ⟨·, ·⟩τ̂ . Then we have

F ∗
W1

(z1, z2; y2)
∗ =

∫
D
e(z|x)p+ τ(B(x)−1)K(x2, y2)h(x)

−pdx

=

∫
D
KW (z, x)τ(B(x)−1)K(x2, y2)h(x)

−pdx.

Then since the map f 7→
∫
D KW (z, x)τ(B(x)−1)f(x)h(x)−pdx in End(W ) intertwines the

K̃-action, by Schur’s lemma, there exists a constant C such that

F ∗
W1

(z1, z2; y2)
∗ = CK(z2, y2) ∴ F ∗

W1
(z1, z2; y2) = C̄K(z2, y2)

∗.

Since the intertwining property does not change by scalar multiplication, we may omit C̄.
Then the corresponding F∗

K intertwines the (g1, K̃1)-action, and the claim follows.
(2) By the assumption, we have

FW1(x2;w1, w2)

=

∫
D1

τ(B(x2, y1))K(Proj2((x2)
y1), B(y1)w2)τ(B(y1)

−1)e(y1|w1)p+h1(y1)
−p1dy1

=

∫
D1

K(x2, B(y1)w2)τ(B(y1)
−1)e(y1|w1)p+h1(y1)

−p1dy1

=

∫
D1

K(B(y1)x2, w2)τ(B(y1)
−1)e(y1|w1)p+h1(y1)

−p1dy1.

Then x1 7→ K(B(y1)x2, w2) is regarded as a W -valued constant function on p+1 , and
such functions forms the irreducible subrepresentation of K̃C

1 in P(p+1 ,W ). Thus by the
argument similar to (1), we can show that FW1(x2;w1, w2) is proportional to K(x2, w2),
and the claim follows.

The condition in Theorem 3.5.1 (1) is the same as [25, Lemma 5.5 (3)] when (G,G1) is
of split rank 1 (i.e. (G,G1) = (U(q, s), U(q, s−1)×U(1)), (SO∗(2s), SO∗(2(s−1))×SO(2)),
or (SO(2, 2s), U(1, s))), and (τ, V ) is 1-dimensional. That is also satisfied when (G,G1) =
(U(q, s), U(q, s′)× U(s′′)) with s′ + s′′ = s, and (τ, V ) is 1-dimensional. That is,

Corollary 3.5.2. Let (G,G1) = (U(q, s), U(q, s′) × U(s′′)), (SO∗(2s), SO∗(2(s − 1)) ×
SO(2)), or (SO(2, 2s), U(1, s)), and (τ, V ) = (χ−λ,C) be 1-dimensional. Then for any
subrepresentation Hλ(D1,W1) ⊂ Hλ(D) of G̃1, the intertwining operator F∗

W1
: Hλ(D) →

Hλ(D1,W1) is given by normal derivative.

Proof. Since it is already proved for (G,G1) = (U(q, s), U(1)×U(q−1, s)), (SO∗(2s), SO∗(2(s−
1))×SO(2)), or (SO(2, 2s), U(1, s)) in [25], we only deal with (G,G1) = (U(q, s), U(q, s′)×
U(s′′)). In this case we have p+ = M(q, s;C), p+1 = M(q, s′;C), p+2 = M(q, s′′;C), and

P(p+) =
⊕

Zmin{q,s}
++

Pm(p+) =
⊕

Zmin{q,s}
++

V
(q)∨
m ⊠ V

(s)
m ,

P(p+2 ) =
⊕

Zmin{q,s′′}
++

Pm(p+2 ) =
⊕

Zmin{q,s′′}
++

V
(q)∨
m ⊠ V

(s′′)
m .
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Then by comparing the weights for GL(q,C), we get Pm(p+2 ) ⊂ Pm(p+), and clearly we
also get Pm(p+2 )⊗χ−λ ⊂ Pm(p+)⊗χ−λ, and therefore the condition in Theorem 3.5.1 (1)
is satisfied.

Next we consider FW1 . We again consider

(G,G1) =


(U(q, s), U(q, s′)× U(s′′)) (Case 1),

(SO∗(2s), SO∗(2(s− 1))× SO(2)) (Case 2),

(SO(2, 2s), U(1, s)) (Case 3).

Then p+ = M(q, s;C), Skew(s,C) and C2s respectively. We realize G1 ⊂ G such that

p+1 = g1 ∩ p+ =



{
y1 =

(
y 0

)
: y ∈ M(q, s′;C)

}
(Case 1),{

y1 =

(
y 0

0 0

)
: y ∈ Skew(s− 1,C)

}
(Case 2),{

y1 =
(
1
2y,

√
−1
2 y

)
: y ∈ Cs

}
(Case 3),

p+2 = (p+1 )
⊥ =



{
x2 =

(
0 x

)
: x ∈ M(q, s′′;C)

}
(Case 1),{

x2 =

(
0 x

−tx 0

)
: x ∈ M(s− 1, 1;C)

}
(Case 2),{

x2 =
(
1
2x,−

√
−1
2 x

)
: x ∈ Cs

}
(Case 3).

Then for (y1, x2) ∈ p+1 × p+2 , we have

B(x2, y1) =

(
Iq −

(
0 x

)(y∗
0

)
,

(
Is −

(
y∗

0

)(
0 x

))−1
)

=

(
Iq,

(
Is′ −y∗x
0 Is′′

)−1
)

(Case 1),

B(x2, y1) = Is −
(

0 x
−tx 0

)(
y∗ 0
0 0

)
=

(
Is−1 0
−txy∗ 1

)
(Case 2),

h(x2, y1) = 1− 2q(x2, y1) + q(x2)q(y1) = 1 (Case 3),

and

(x2)
y1 =

(
0 x

)(
Is −

(
y∗

0

)(
0 x

))−1

=
(
0 x

)
= x2 (Case 1),

(x2)
y1 =

(
0 x

−tx 0

)(
Is −

(
y∗ 0
0 0

)(
0 x

−tx 0

))−1

=

(
0 x

−tx 0

)
= x2 (Case 2),

(x2)
y1 =

(
1− 2q(x2, y1) + q(x2)q(y1)

)−1
(x2 − q(x2)y1) = x2 (Case 3).

Thus (x2)
y1 = Proj2((x2)

y1) = x2 holds, and for the representation

V = χ−λ ⊗


V

(q)∨
k ⊠ V

(s)
m (Case 1)

V
(s)∨
m (Case 2)

1 (Case 3)
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of K̃C, if we take the subrepresentation

V1 = χ−λ ⊗


V

(q)∨
k ⊠ V

(s′)
(m1,...,m′

s)
⊠ V

(s′′)
(ms′+1,...,ms)

(Case 1)

V
(s−1)∨
(m1,...,ms−1)

⊠ C−ms (Case 2)

1 (Case 3)

of K̃C
1 , then τ(B(x2, y1))|V1 = IV1 holds. Thus we proved the following.

Corollary 3.5.3. (1) Let (G,G1) = (U(q, s), U(q, s′)×U(s′′)), and (τ, V ) = (χ−λ1−λ2⊗
(τ

(q)∨
k ⊠ τ

(s)
m ), V

(q)∨
k ⊗ V

(s)
m ). Then for any subrepresentation W1 ⊂ P(p+2 , V

(q)∨
k ⊠

V
(s′)
(m1,...,m′

s)
⊠V

(s′′)
(ms′+1,...,ms)

) of K̃C
1 , the intertwining operator FW1 : Hλ1+λ2(D1,W1) →

Hλ1+λ2(D,V ) is given by normal derivative.

(2) Let (G,G1) = (SO∗(2s), SO∗(2(s− 1))× SO(2)), and (τ, V ) = (χ−λ ⊗ τ
(s)∨
m , V

(s)∨
m ).

Then for any subrepresentation W1 ⊂ P(p+2 , V
(s−1)∨
(m1,...,ms−1)

⊠C−ms) of K̃
C
1 , the inter-

twining operator FW1 : Hλ(D1,W1) → Hλ(D,V ) is given by normal derivative.

(3) Let (G,G1) = (SO(2, 2s), U(1, s)), and (τ, V ) = (χ−λ,C) be 1-dimensional. Then
for any subrepresentation Hλ(D1,W1) ⊂ Hλ(D) of G̃1, the intertwining operator
FW1 : Hλ(D1,W1) → Hλ(D) is given by normal derivative.

3.5.2 F∗
W1

for (G,G1) = (G0 ×G0,∆G0)

In this subsection we seek the operator F∗
W1

for (G,G1) = (G0 ×G0,∆G0), where G0 is a
simple Lie group of Hermitian type, although it is already done by Peng-Zhang [34]. We
denote the complexified Lie algebra of G0 by gC0 = p+0 ⊕ kC0 ⊕ p−0 . Similarly, we denote the
objects such as D ⊂ p+, h(x, y) ∈ P(p+ × p+), p ∈ Z for G0 by writing the subscript 0.
Then we have

p+1 = {(x0, x0) : x0 ∈ p+0 }, p+2 = {(x0,−x0) : x0 ∈ p+0 } ⊂ p+ = p+0 ⊕ p+0 .

We identify p+0 and p+1 , p
+
2 via x0 7→ (x0, x0) and x0 7→ (x0,−x0) respectively. Then for

x = (xL, xR) ∈ p, the projection onto p+2 is given by

x2 = Proj2((xL, xR)) =
1

2
(xL − xR).

Let (τ, V ) = (τL ⊠ τR, VL ⊗ VR) be a finite dimensional irreducible representation of

K̃ = K̃0 × K̃0. Let K(x2, y2) ∈ P(p+2 × p+2 ,End(V )) be a K̃C-invariant polynomial in
the sense of (3.3.3). Then the function F ∗

W1
(zL, zR; y2) ∈ P(p+ × p+2 ,End(V )) in Theorem

3.3.5 (1) is given by

F ∗
W1

(zL, zR; y2) =

∫∫
D0×D0

K

(
1

2
(xL − xR), y2

)∗
(τL(B(xL)

−1)⊗ τR(B(xR)
−1))

× e
(xL|zL)p+0

+(xR|zR)
p+0 h0(xL)

−p0h0(xR)
−p0dxLdxR.

Especially, when (τ, V ) = (χ−λ
0 ⊠ χ−µ

0 ,C) is 1-dimensional, with λ, µ > p0 − 1, rewriting
K
(
x2
2 , y2

)
as K(x2, y2), we get

FW1(zL, zR; y2) =

∫∫
D0×D0

K(xL − xR, y2)e
(xL|zL)p+0

+(xR|zR)
p+0 h0(xL)

λ−p0h0(xR)
µ−p0dxLdxR.

110



Now we additionally assume that K(x2, y2) is proportional to the reproducing kernel of

P(k,...,k)(p
+
0 ) with k ∈ Z≥0. We normalize K(x2, y2) such that K(x2, y2) = ∆(x2)

k∆(y2)k

if x2, y2 ∈ p+T,0. Then for xL, xR, y2 ∈ p+T,0, we have

K(xL − xR, y2) = ∆(xL − xR)
k∆(y2)k = ∆(xL)

k∆(y2)k∆
(
e0 − P (x

−1/2
L )xR

)k
= ∆(xL)

k∆(y2)k
∑

m∈Zr0
++

(−k)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

Φ
(d0,r0)
m

(
P (x

−1/2
L )xR

)
.

By [6, Lemma XIV.1.2], we have ∆(xL)
kΦ

(d0,r0)
m

(
P (x

−1/2
L )xR

)
= ∆(xL)

kΦ
(d0,r0)
m

(
P (x

1/2
R )x−1

L

)
.

This lies in Pm(p+T,0) as a polynomial in xR, and lies in Pk−m∗(p+T,0) as a polynomial in

xL, where k − m∗ := (k − mr0 , k − mr0−1, . . . , k − m1). Now let Ψ
(d0,r0)
k−m∗,m(xL, xR; y2) ∈

P(p+0 × p+0 × p+0 ) be the polynomial satisfying

Ψ
(d0,r0)
k−m∗,m(lxL, lxR; y2) = Ψ

(d0,r0)
k−m∗,m(xL, xR; l

∗y2) (xL, xR, y2 ∈ p+0 , l ∈ KC
0 ),

Ψ
(d0,r0)
k−m∗,m(xL, xR; y2) = ∆(xL)

k∆(y2)kΦ
(d0,r0)
m

(
P (x

−1/2
L )xR

)
(xL, xR, y2 ∈ p+T,0),

and write

Ψ
(d0,r0)
k−m∗,m(xL, xR; y2) =: Ψ

(d0,r0)
k−m∗,m(y2;xL, xR),

so that

K(xL − xR, y2) =
∑

m∈Zr0
++

(−k)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

Ψ
(d0,r0)
k−m∗,m(y2;xL, xR).

Using this expansion, we get

F ∗
W1

(zL, zR; y2)

=
∑

m∈Zr0
++

(−k)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

∫∫
D0×D0

Ψ
(d0,r0)
k−m∗,m(y2;xL, xR)e

(xL|zL)p+0
+(xR|zR)

p+0

× h0(xL)
λ−p0h0(xR)

µ−p0dxLdxR

= C
∑

m∈Zr0
++

(−k)m,d0

(λ)k−m∗,d0(µ)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

Ψ
(d0,r0)
k−m∗,m(y2; zL, zR),

with some C. Here we used (3.2.13). We note that the sum is finite because (−k)m,d0 = 0
if m1 > k, and the above formula is symmetric under the exchange of (zL, λ) and (zR, µ)
up to signature, because

Ψ
(d0,r0)
k−m∗,m(y2; zL, zR) = Ψ

(d0,r0)
m,k−m∗(y2; zR, zL),

(−k)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

= (−k)m,d0

d
(d0,r0,0)
m(

n0,T

r0

)
m,d0

= (−1)kr(−k)k−m∗,d0

d
(d0,r0,0)
k−m∗(

n0,T

r0

)
k−m∗,d0

= (−1)kr(−k)k−m∗,d0

d
(d0,r0,b0)
k−m∗(

n0
r0

)
k−m∗,d0

,
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the latter of which follows from the proof of [33, Proposition 2.6]. Since the intertwining
property does not change under scalar multiplication, we may omit the constant C, and
write F∗

λ,µ,k := C−1F∗
W1

. Then we have proved the following.

Theorem 3.5.4. Let λ, µ > p0 − 1, and k ∈ Z≥0. Then the linear map

F∗
λ,µ,k : Hλ(D0)⊠Hµ(D0)K̃0×K̃0

→ Hλ+µ(D0,P(k,...,k)(p
+
0 ))K̃0

,

F∗
λ,µ,kf(y1, y2) :=

∑
m∈Zr0

++

(−k)m,d0

(λ)k−m∗,d0(µ)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

×Ψ
(d0,r0)
k−m∗,m

(
y2;

∂

∂xL
,

∂

∂xR

)∣∣∣∣
xL=xR=y1

f(xL, xR)

intertwines the (∆g0,∆K̃0)-action.

This gives essentially the same result with [34]. If G0 is of tube type, i.e. G0 = G0,T,
then P(k,...,k)(p

+
0 ) is 1-dimensional, and we have Hλ+µ(D0,P(k,...,k)(p

+
0 )) ≃ Hλ+µ+2k(D0)

via f∆(y)k 7→ f , and thus it gives the intertwining operator F ′∗
λ,µ,k : Hλ(D0)⊠Hµ(D0)K̃0×K̃0

→
Hλ+µ+2k(D0)K̃0

,

F ′∗
λ,µ,kf(y) :=

∑
m∈Zr0

++

(−k)m,d0

(λ)k−m∗,d0(µ)m,d0

d
(d0,r0,b0)
m(
n0
r0

)
m,d0

Φ
(d0,r0)
k−m∗,m

(
∂

∂xL
,

∂

∂xR

)∣∣∣∣
xL=xR=y

f(xL, xR),

where we write

Φ
(d0,r0)
k−m∗,m(xL, xR) := ∆(y2)−kΨ

(d0,r0)
k−m∗,m(xL, xR; y2) = ∆(xL)

kΦ
(d0,r0)
m

(
P (x

−1/2
L )xR

)
.

Also, if G0 = U(s, 1), then Ψ
(2,1)
k−m,m(y2;xL, xR) = (ty2xL)

k−m(ty2xR)
m holds, and thus

F∗
λ,µ,k : Hλ(D0)⊠Hµ(D0)K̃0×K̃0

→ Hλ+µ(D0,Pk(Cs))K̃0
becomes

F∗
λ,µ,kf(y1, y2) :=

∞∑
m=0

(−k)m
(λ)k−m(µ)m

1

m!

(
ty2

∂

∂xL

)k−m (
ty2

∂

∂xR

)m∣∣∣∣
xL=xR=y1

f(xL, xR).

This coincides with the Rankin-Cohen bidifferential operator (see [2, Theorem 7.1], [25,
Theorem 8.1 (2)]).

3.5.3 FW1 for (G,G1) = (Sp(s,R), Sp(s′,R) × Sp(s′′,R)), (U(q, s), U(q′, s′) ×
U(q′′, s′′)), (SO∗(2s), SO∗(2s′)× SO∗(2s′′))

In this subsection we set

(G,G1) =


(Sp(s,R), Sp(s′,R)× Sp(s′′,R)) (s = s′ + s′′) (Case d = 1),
(U(q, s), U(q′, s′)× U(q′′, s′′)) (q = q′ + q′′, s = s′ + s′′) (Case d = 2),
(SO∗(2s), SO∗(2s′)× SO∗(2s′′)) (s = s′ + s′′) (Case d = 4).

We realize g1 ⊂ g so that

p+1 = g1 ∩ p+ = p+(11, d)⊕ p+(22, d), p+2 = (p+1 )
⊥ = p+(12, d),
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where p+(ij, d) are as in (3.4.4). In this case, for y1 =

(
y11 0
0 y22

)
∈ p+1 and x2 =(

0 x12
x21 0

)
∈ p+2 , we have

B(x2, y1) =

(
I −

(
0 x12
x21 0

)(
y∗11 0
0 y∗22

)
,

(
I −

(
y∗11 0
0 y∗22

)(
0 x12
x21 0

))−1
)

=

((
I −x12y

∗
22

−x21y
∗
11 I

)
,

(
I −y∗11x12

−y∗22x21 I

)−1
)

h(x2, y1) = det

(
I −x12y

∗
22

−x21y
∗
11 I

)ε

= det(I − x12y
∗
22x21y

∗
11)

ε,

B(y1) =

(
I −

(
y11 0
0 y22

)(
y∗11 0
0 y∗22

)
,

(
I −

(
y∗11 0
0 y∗22

)(
y11 0
0 y22

))−1
)

=

((
I − y11y

∗
11 0

0 I − y22y
∗
22

)
,

(
I − y∗11y11 0

0 I − y∗22y22

)−1
)

h1(y1)
−p1 = det(I − y11y

∗
11)

−εp′ det(I − y22y
∗
22)

−εp′′ ,

xy12 =

(
0 x12
x21 0

)(
I −

(
y∗11 0
0 y∗22

)(
0 x12
x21 0

))−1

=

(
x12y

∗
22x21(I − y∗11x12y

∗
22x21)

−1 x12(I − y∗22x21y
∗
11x12)

−1

x21(I − y∗11x12y
∗
22x21)

−1 x21y
∗
11x12(I − y∗22x21y

∗
11x12)

−1

)
,

Proj2(x
y1
2 ) =

(
0 x12(I − y∗22x21y

∗
11x12)

−1

x21(I − y∗11x12y
∗
22x21)

−1 0

)
,

where

ε =

{
1 (d = 1, 2),
1
2 (d = 4),

, (p′, p′′) =


(s′ + 1, s′′ + 1) (d = 1),

(q′ + s′, q′′ + s′′) (d = 2),

(2(s′ − 1), 2(s′′ − 1)) (d = 4).

Let (τ, V ) be a finite-dimensional irreducible representation of K̃C, and let K(x2, y2) ∈
P(p+(12, d) × p+(12, d),End(V )) be a K̃C-invariant polynomial in the sense of (3.3.3).
Then the function FW1(x2;w1, w2) = FW1(x12, x21;w11, w12, w21, w22) ∈ O(p+2 ×p+,End(V ))
in Theorem 3.3.5 (2) is given by

FW1(x2;w1, w2)

=

∫∫
D′×D′′

τ

((
I −x12y

∗
22

−x21y
∗
11 I

)
,

(
I −y∗11x12

−y∗22x21 I

)−1
)

×K

((
0 x12(I − y∗22x21y

∗
11x12)

−1

x21(I − y∗11x12y
∗
22x21)

−1 0

)
,(

0 (I − y11y
∗
11)w12(I − y∗22y22)

(I − y22y
∗
22)w21(I − y∗11y11) 0

))
× τ

((
I − y11y

∗
11 0

0 I − y22y
∗
22

)−1

,

(
I − y∗11y11 0

0 I − y∗22y22

))
× eε(tr(y11w

∗
11)+tr(y22w∗

22)) det(I − y11y
∗
11)

−εp′ det(I − y22y
∗
22)

−εp′′dy11dy22
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Now we assume (τ, V ) = (χ−λ,C) = (χ−λ1−λ2 ,C) is 1-dimensional, where χ−λ1−λ2(k1, k2) =
det(k1)

−ελ1 det(k2)
ελ2 , with λ > p−1, and assume K(·, y2) ∈ P(p+(12, d)) lies in only one

irreducible submodule of P(p+(12, d)). Then we have

FW1(x2;w1, w2)

=

∫∫
D′×D′′

K

((
0 x12(I − y∗22x21y

∗
11x12)

−1(I − y∗22y22)
(I − y22y

∗
22)(I − x21y

∗
11x12y

∗
22)

−1x21 0

)
,(

0 (I − y11y
∗
11)w12

w21(I − y∗11y11) 0

))
× det(I − x21y

∗
11x12y

∗
22)

−ελeε(tr(y11w
∗
11)+tr(y22w∗

22))

× det(I − y11y
∗
11)

ε(λ−p′) det(I − y22y
∗
22)

ε(λ−p′′)dy11dy22

= C

∫
D′

K

((
0 x12
x21 0

)
,

(
0 (I − y11y

∗
11)w12

w21(I − y∗11y11) 0

))
× eε(tr(y11w

∗
11)+tr(x21y∗11x12w∗

22)) det(I − y11y
∗
11)

ε(λ−p′)dy11,

with some C > 0. Here we have used the reproducing property on O(D′′,Pm(p+(12, d))),∫
D′′

f

(
∗ x12(I − y∗22z22)

−1(I − y∗22y22)
(I − y22y

∗
22)(I − z22y

∗
22)

−1x21 y22

)
× det(I − z22y

∗
22)

−ελ det(I − y22y
∗
22)

ε(λ−p′′)dy22 = Cf

(
∗ x12
x21 z22

)
,

with

f

(
∗ x12
x21 x22

)
= K

((
0 x12
x21 0

)
,

(
0 (I − y11y

∗
11)w12

w21(I − y∗11y11) 0

))
eε tr(y22w

∗
22),

z22 = x21y
∗
11x12.

Now we assume s′ ≤ s′′ when d = 1, 4, q′ ≤ s′′ when d = 2, and set

K

((
0 x12
x21 0

)
,

(
0 w12

w21 0

))
= det(x12w

∗
12)

k1 det(w∗
21x21)

k2 ,

where k1 ∈ Z≥0, and k2 = 0 if d = 1, 4 or d = 2 with s′ ≥ q′′, k2 ∈ Z≥0 if d = 2 with
s′ ≤ q′′. Then FW1(x2;w1, w2) becomes

FW1(x2;w1, w2)

= C

∫
D′

det(x12w
∗
12)

k1 det(w∗
21x21)

k2eε(tr(y11w
∗
11)+tr(x21y∗11x12w∗

22))

× det(I − y11y
∗
11)

ε(λ+ε−1(k1+k2)−p′)dy11

= C det(x12w
∗
12)

k1 det(w∗
21x21)

k2

×
∑

m∈Zr′
++

1

|m|!

∫
D′

Φ̃
(d)
m (y11w

∗
11)e

tr(x12w∗
22x21y∗11)) det(I − y11y

∗
11)

ε(λ+ε−1(k1+k2)−p′)dy11

= C ′ det(x12w
∗
12)

k1 det(tx21w21)
k2

∑
m∈Zr′

++

1

(λ+ ε−1(k1 + k2))m,d

1

|m|!
Φ̃
(d)
m (x12w

∗
22x21w

∗
11).

114



Here r′ = s′ when d = 1, r′ = min{q′, s′} when d = 2 and r′ =
⌊
s′

2

⌋
when d = 4, and we

have used the equality (3.2.13). Now we have K(·, y2) ∈ W1 where

W1 = P(k1,...,k1)(M(s′, s′′;C)) ≃ C(s′)
−k1

⊠ V
(s′′)∨
ks

′
1

(d = 1),

W1 = P(k1,...,k1)(M(q′, s′′;C))⊠ P(k2,...,k2)(M(q′′, s′;C))

≃ C(q′)
−k1

⊠ C(s′)
k2

⊠ V
(q′′)∨
ks

′
2

⊠ V
(s′′)

kq
′

1

(d = 2),

W1 = P(k1,...,k1)(M(s′, s′′;C)) ≃ C(s′)
−k1

⊠ V
(s′′)∨
ks

′
1

(d = 4),

where V
(s′′)∨
ks′

:= V
(s′′)∨
(k,...,k︸︷︷︸

s′

,0,...,0︸︷︷︸
s′′−s′

) etc. Let ιk1 (d = 1, 4) or ι(k1,k2) (d = 2) be this isomorphism

from the right hand side to the left hand side. Then we have

Hχ−λ⊗(Ad|
p+2

)∗(D
′ ×D′′,W1) ≃ Hλ+k1(D

′) ⊠̂Hλ(D
′′, V

(s′′)∨
ks

′
1

) (d = 1),

Hχ−λ1−λ2⊗(Ad|
p+2

)∗(D
′ ×D′′,W1) ≃ H(λ1+k1)+(λ2+k2)(D

′) ⊠̂Hλ1+λ2(D
′′, V

(q′′)∨
ks

′
2

⊠ V
(s′′)

kq
′

1

)

(d = 2),

Hχ−λ⊗(Ad|
p+2

)∗(D
′ ×D′′,W1) ≃ H

λ+
k1
2

(D′) ⊠̂Hλ(D
′′, V

(s′′)∨
ks

′
1

) (d = 4),

via idO(D′×D′′) ⊗ ι−1
(k1,k2)

. Thus we have proved the following.

Theorem 3.5.5. (1) Let (G,G1) = (Sp(s,R), Sp(s′,R) × Sp(s′′,R)) with s = s′ + s′′,
s′ ≤ s′′. Let λ > s, k ∈ Z≥0. Then the linear map

Fλ,k : Hλ+k(D
′) ⊠̂Hλ(D

′′, V
(s′′)∨
ks′

)K̃1
→ Hλ(D)K̃ ,

(Fλ,kf)

(
x11 x12
x21 x22

)
= det

(
x12

t( ∂

∂y12

))k ∑
m∈Zs′

++

1

(λ+ k)m,1

1

|m|!

× Φ̃
(1)
m

(
x12

∂

∂y22
tx12

∂

∂y11

)∣∣∣∣y11=x11,
y22=x22,
y12=0

((id⊗ ιk)f)

(
y11 y12
y21 y22

)

intertwines the (g1, K̃1)-action.

(2) Let (G,G1) = (U(q, s), U(q′, s′) × U(q′′, s′′)) with q = q′ + q′′, s = s′ + s′′, q′ ≤ s′′.
Let λ1 + λ2 > q + s− 1, k1 ∈ Z≥0, and k2 ∈ Z≥0 if s′ ≤ q′′, k2 = 0 if s′ > q′′. Then
the linear map

Fλ,k1,k2 : H(λ1+k1)+(λ2+k2)(D
′) ⊠̂Hλ1+λ2(D

′′, V
(q′′)∨
ks

′
2

⊠ V
(s′′)

kq
′

1

)K̃1
→ Hλ1+λ2(D)K̃ ,

(Fλ,k1,k2f)

(
x11 x12
x21 x22

)

= det

(
x12

t( ∂

∂y12

))k1

det

(
tx21

∂

∂y21

)k2 ∑
m∈Zmin{q′,s′}

++

1

(λ+ k1 + k2)m,2

1

|m|!

× Φ̃
(2)
m

(
x12

∂

∂y22
x21

∂

∂y11

)∣∣∣∣ y11=x11,
y22=x22,
y12=y21=0

((id⊗ ι(k1,k2))f)

(
y11 y12
y21 y22

)

intertwines the (g1, K̃1)-action.
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(3) Let (G,G1) = (SO∗(2s), SO∗(2s′) × SO∗(2s′′)) with s = s′ + s′′, s′ ≤ s′′. Let
λ > 2s− 3, k ∈ Z≥0. Then the linear map

Fλ,k : Hλ+2k(D
′) ⊠̂Hλ(D

′′, V
(s′′)∨
ks

′ )K̃1
→ Hλ(D)K̃ ,

(Fλ,kf)

(
x11 x12
x21 x22

)
= det

(
x12

t( ∂

∂y12

))k ∑
m∈Z⌊s′/2⌋

++

1

(λ+ 2k)m,4

1

|m|!

× Φ̃
(4)
m

(
−x12

∂

∂y22
tx12

∂

∂y11

)∣∣∣∣y11=x11,
y22=x22,
y12=0

((id⊗ ιk)f)

(
y11 y12
y21 y22

)

intertwines the (g1, K̃1)-action.

If s′ = s′′ (d = 1, 4) or q′ = s′′, s′ = q′′ (d = 2), we have

W1 ≃ C(s′)
−k1

⊠ C(s′′)
−k1

(d = 1),

W1 ≃ C(q′)
−k1

⊠ C(s′)
k2

⊠ C(q′′)
−k2

⊠ C(s′′)
k1

(d = 2),

W1 ≃ C(s′)
−k1

⊠ C(s′′)
−k1

(d = 4),

via ι−1
(k1,k2)

: f 7→ det
(

∂
∂y12

)k1
det
(

∂
∂y21

)k2
f . Thus it gives the intertwining operator

Fλ,k1,k2 : H(λ1+ε−1k1)+(λ2+ε−1k2)(D
′) ⊠̂H(λ1+ε−1k2)+(λ2+ε−1k1)(D

′′)K̃1
→ Hλ1+λ2(D)K̃ ,

(Fλ,k1,k2f)

(
x11 x12
x21 x22

)
= det(x12)

k1 det(x21)
k2

∑
m∈Zr′

++

1

(λ+ ε−1(k1 + k2))m,d

1

|m|!

× Φ̃
(d)
m

(
x12

∂

∂x22
x21

∂

∂x11

)
f(x11, x22).

3.5.4 FW1 for (G,G1) = (Sp(s,R), U(s′, s′′)), (SO∗(2s), U(s′, s′′))

In this subsection we set

(G,G1) =

{
(Sp(s,R), U(s′, s′′)) (s = s′ + s′′) (Case d = 1),
(SO∗(2s), U(s′, s′′)) (s = s′ + s′′) (Case d = 4).

We realize g1 ⊂ g so that

p+1 = g1 ∩ p+ = p+(12, d), p+2 = (p+1 )
⊥ = p+(11, d)⊕ p+(22, d),
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where p+(ij, d) are as in (3.4.4). In this case, for y1 =

(
0 y12
y21 0

)
∈ p+1 and x2 =(

x11 0
0 x22

)
∈ p+2 , we have

B(x2, y1) = I −
(
x11 0
0 x22

)(
0 y∗21
y∗12 0

)
=

(
I −x11y

∗
21

−x22y
∗
12 I

)
,

h(x2, y1) = det

(
I −x11y

∗
21

−x22y
∗
12 I

)ε

= det(I − x11y
∗
21x22y

∗
12)

ε,

B(y1) = I −
(

0 y12
y21 0

)(
0 y∗21
y∗12 0

)
=

(
I − y12y

∗
12 0

0 I − y21y
∗
21

)
,

h1(y1) = det(I − y12y
∗
12),

xy12 =

(
x11 0
0 x22

)(
I −

(
0 y∗21
y∗12 0

)(
x11 0
0 x22

))−1

=

(
x11(I − y∗21x22y

∗
12x11)

−1 x11y
∗
21x22(I − y∗12x11y

∗
21x22)

−1

x22y
∗
12x11(I − y∗21x22y

∗
12x11)

−1 x22(I − y∗12x11y
∗
21x22)

−1

)
,

Proj2(x
y1
2 ) =

(
x11(I − y∗21x22y

∗
12x11)

−1 0
0 x22(I − y∗12x11y

∗
21x22)

−1

)
.

Let (τ, V ) be a finite-dimensional irreducible representation of K̃C, and let K(x2, y2) ∈
P(p+2 × p+2 ,End(V )) be a K̃C-invariant polynomial in the sense of (3.3.3). Then the
function FW1(x2;w1, w2) = FW1(x11, x22;w11, w12, w22) ∈ O(p+2 ×p+,End(V )) in Theorem
3.3.5 (2) is given by

FW1(x2;w1, w2)

=

∫
D1

τ

(
I −x11y

∗
21

−x22y
∗
12 I

)
×K

((
x11(I − y∗21x22y

∗
12x11)

−1 0
0 x22(I − y∗12x11y

∗
21x22)

−1

)
,(

(I − y12y
∗
12)w11(I − y∗21y21) 0

0 (I − y21y
∗
21)w22(I − y∗12y12)

))
× τ

((
I − y12y

∗
12 0

0 I − y21y
∗
21

)−1
)
e2ε tr(y12w

∗
12) det(I − y12y

∗
12)

−sdy12,

where ε = 1 when d = 1, ε = 1
2 when d = 4. Now we assume (τ, V ) = (χ−λ,C) is

1-dimensional, where χ(k) = det(k)ε, and λ > s if d = 1, λ > 2s − 3 if d = 4. Then we
have

FW1(x2;w1, w2)

=

∫
D1

K

((
x11(I − y∗21x22y

∗
12x11)

−1 0
0 x22(I − y∗12x11y

∗
21x22)

−1

)
,(

(I − y12y
∗
12)w11(I − y∗21y21) 0

0 (I − y21y
∗
21)w22(I − y∗12y12)

))
× det(I − x11y

∗
21x22y

∗
12)

−ελe2ε tr(y12w
∗
12) det(I − y12y

∗
12)

2ελ−sdy12.
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Now additionally assume that

K

((
x11 0
0 x22

)
,

(
w11 0
0 w22

))
= det(x11w

∗
11)

εk1 det(x22w
∗
22)

εk2 ,

where ki ∈ Z≥0 when d = 1 case or d = 4 case with si′ even, ki = 0 when d = 4 case with
si′ odd. Then we have

FW1(x2;w1, w2)

=

∫
D1

det(x11w
∗
11)

εk1 det(x22w
∗
22)

εk2

× det(I − x11y
∗
21x22y

∗
12)

−ε(λ+k1+k2)e2ε tr(y12w
∗
12) det(I − y12y

∗
12)

2ε(λ+k1+k2)−sdy12

= det(x11w
∗
11)

εk1 det(x22w
∗
22)

εk2
∑

m∈Zr′
++

∫
D1

(λ+ k1 + k2)m,d

|m|!
Φ̃
(d)
m (x11y

∗
21x22y

∗
12)

× e2ε tr(y12w
∗
12) det(I − y12y

∗
12)

2ε(λ+k1+k2)−sdy12

= C det(x11w
∗
11)

εk1 det(x22w
∗
22)

εk2

×



∑
m∈Zr′

++

(λ+ k1 + k2)m,1

(2(λ+ k1 + k2))2m,2

22|m|

|m|!
Φ̃
(1)
m (x11w

∗
21x22w

∗
12) (d = 1)

∑
m∈Zr′

++

(λ+ k1 + k2)m,4

(λ+ k1 + k2)m2,2

1

|m|!
Φ̃
(4)
m (x11w

∗
21x22w

∗
12) (d = 4)

= C det(x11w
∗
11)

εk1 det(x22w
∗
22)

εk2

×



∑
m∈Zr′

++

1(
λ+ k1 + k2 +

1
2

)
m,1

1

|m|!
Φ̃
(1)
m (x11w

∗
21x22w

∗
12) (d = 1)

∑
m∈Zr′

++

1

(λ+ k1 + k2 − 1)m,4

1

|m|!
Φ̃
(4)
m (x11w

∗
21x22w

∗
12) (d = 4),

where r′ = min{s′, s′′} when d = 1, r′ = min
{⌊

s′

2

⌋
,
⌊
s′′

2

⌋}
when d = 4. Here we have used

(3.2.13) and Lemma 3.4.1. Since

K(·, y2) ∈ W1 := P(k1,...,k1)(p
+(11, d))⊠ P(k2,...,k2)(p

+(22, d)) ≃ C−2εk1 ⊠ C−2εk2 ,

and
Hελ+ελ(D1,W1) ≃ Hε(λ+2k1)+ε(λ+2k2)(D1)

via

f

(
y11 y12
y21 y22

)
7→ det

(
∂

∂y11

)εk1

det

(
∂

∂y22

)εk2
∣∣∣∣∣
y11=y22=0

f

(
y11 y12
y21 y22

)
,

we have the following.

Theorem 3.5.6. (1) Let (G,G1) = (Sp(s,R), U(s′, s′′)) with s = s′ + s′′. Let λ > s,
k1, k2 ∈ Z≥0. Then the linear map Fλ,k1,k2 : H(λ+2k1)+(λ+2k2)(D1)K̃1

→ Hλ(D)K̃ ,

(Fλ,kf)

(
x11 x12
x21 x22

)
= det(x11)

k1 det(x22)
k2

×
∑

m∈Zmin{s′,s′′}
++

1(
λ+ k1 + k2 +

1
2

)
m,1

1

|m|!
Φ̃
(1)
m

(
x11

∂

∂x12
x22

t( ∂

∂x12

))
f(x12)
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intertwines the (g1, K̃1)-action.

(2) Let (G,G1) = (SO∗(2s), U(s′, s′′)) with s = s′ + s′′. Let λ > 2s− 3, and ki ∈ Z≥0 if
si′ is even, ki = 0 if si′ is odd. Then the linear map

Fλ,k1,k2 : H(λ
2
+k1)+(λ

2
+k2)(D1)K̃1

→ Hλ(D)K̃ ,

(Fλ,kf)

(
x11 x12
x21 x22

)
= Pf(x11)

k1 Pf(x22)
k2

×
∑

m∈Zmin{⌊s′/2⌋,⌊s′′/2⌋}
++

1

(λ+ k1 + k2 − 1)m,4

1

|m|!
Φ̃
(4)
m

(
−x11

∂

∂x12
x22

t( ∂

∂x12

))
f(x12)

intertwines the (g1, K̃1)-action.

3.5.5 FW1 for (G,G1) = (SU(s, s), Sp(s,R)), (SU(s, s), SO∗(2s))

In this subsection we set

(G,G1) =

{
(SU(s, s), Sp(s,R)) (Case d = 1),

(SU(s, s), SO∗(2s)) (Case d = 4).

We realize g1 ⊂ g so that

(p+1 , p
+
2 ) := (g1 ∩ p+, (p+1 )

⊥) =

{
(Sym(s,C), Skew(s,C)) (Case d = 1),

(Skew(s,C), Sym(s,C)) (Case d = 4).

Then for (y1, x2) ∈ p+1 × p+2 , we have

B(x2, y1) = (I − x2y
∗
1, (I − y∗1x2)

−1), h(x2, y1) = det(I − x2y
∗
1),

B(y1) = (I − y1y
∗
1, (I − y∗1y1)

−1), h1(y1) = det(I − y1y
∗
1)

ε,

where ε = 1 when d = 1, ε = 1
2 when d = 4, and

xy12 = x2(I − y∗1x2)
−1 = (I − x2y

∗
1)

−1x2,

Proj2(x
y1
2 ) =

1

2

(
x2(I − y∗1x2)

−1 + (I + x2y
∗
1)

−1x2
)
= (I + x2y

∗
1)

−1x2(I − y∗1x2)
−1.

Let (τ, V ) be a finite-dimensional irreducible representation of K̃C, and let K(x2, y2) ∈
P(p+2 × p+2 ,End(V )) be a K̃C-invariant polynomial in the sense of (3.3.3). Then the
function FW1(x2;w1, w2) ∈ O(p+2 × p+,End(V )) in Theorem 3.3.5 (2) is given by

FW1(x2;w1, w2)

=

∫
D1

τ
(
I − x2y

∗
1, (I − y∗1x2)

−1
)
K
(
(I + x2y

∗
1)

−1x2(I − y∗1x2)
−1, (I − y1y

∗
1)w2(I − y∗1y1)

)
× τ

(
(I − y1y

∗
1)

−1, I − y∗1y1
)
etr(y1w

∗
1) det(I − y1y

∗
1)

−εp1dy1

where (ε, p1) = (1, r + 1) when d = 1, (ε, p1) =
(
1
2 , 2(s− 1)

)
when d = 4. Now we assume

(τ, V ) = (χ−λ,C) is 1-dimensional, where χ(k1, k2) = det(k2). Then we have

FW1(x2;w1, w2) =

∫
D1

K
(
(I + x2y

∗
1)

−1x2(I − y∗1x2)
−1, (I − y1y

∗
1)w2(I − y∗1y1)

)
× det(I − x2y

∗
1)

−λetr(y1w
∗
1) det(I − y1y

∗
1)

λ−εp1dy1.
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Now we additionally assume that

K(x2, w2) = det(x2w
∗
2)

(2ε)−1k,

where k ∈ Z≥0 when d = 1 or d = 4 with s even, k = 0 when d = 4 with s odd. Then we
have

FW1(x2;w1, w2)

=

∫
D1

det(x2w
∗
2)

(2ε)−1k det(I − x2y
∗
1)

−λ−ε−1ketr(y1w
∗
1) det(I − y1y

∗
1)

λ+ε−1k−εp1dy1

= det(x2w
∗
2)

(2ε)−1k
∑

m∈Z⌊s/2⌋
++

∫
D1

(λ+ ε−1k)m,2

|m|!
Φ̃
(2)′
m ((x2y

∗
1)

2)etr(y1w
∗
1)

× det(I − y1y
∗
1)

ε(ε−1λ+ε−2k−p1)dy1

= det(x2w
∗
2)

(2ε)−1k ×



∑
m∈Z⌊s/2⌋

++

(λ+ k)m,2

(λ+ k)m2,1

1

|m|!
Φ̃
(2)′
m ((x2w

∗
1)

2) (d = 1)

∑
m∈Z⌊s/2⌋

++

(λ+ 2k)m,2

(2λ+ 4k)2m,4

22|m|

|m|!
Φ̃
(2)′
m ((x2w

∗
1)

2) (d = 4)

= det(x2w
∗
2)

(2ε)−1k ×



∑
m∈Z⌊s/2⌋

++

1(
λ+ k − 1

2

)
m,2

1

|m|!
Φ̃
(2)′
m ((x2w

∗
1)

2) (d = 1)

∑
m∈Z⌊s/2⌋

++

1(
λ+ 2k + 1

2

)
m,2

1

|m|!
Φ̃
(2)′
m ((x2w

∗
1)

2) (d = 4).

Here we have used (3.2.13) and Lemma 3.4.2. Since K(·, y2) ∈ W1 := P(k,...,k)(p
+
2 ) ≃

C−ε−1k, and
Hε−1λ(D1,W1) ≃ Hε−1λ+ε−2k(D1)

via

f(y1 + y2) 7→ det

(
∂

∂y2

)(2ε)−1k
∣∣∣∣∣
y2=0

f(y1 + y2),

we have the following.

Theorem 3.5.7. (1) Let (G,G1) = (SU(s, s), Sp(s,R)). Let λ > 2s−1, k ∈ Z≥0. Then
the linear map Fλ,k : Hλ+k(D1)K̃1

→ Hλ(D)K̃ ,

(Fλ,kf)(x1 + x2) = Pf(x2)
k

∑
m∈Z⌊s/2⌋

++

1(
λ+ k − 1

2

)
m,2

1

|m|!
Φ̃
(2)′
m

((
x2

∂

∂x1

)2
)
f(x1)

(x1 ∈ Sym(s,C), x2 ∈ Skew(s,C)) intertwines the (g1, K̃1)-action.

(2) Let (G,G1) = (SU(s, s), SO∗(2s)). Let λ > 2s− 1, and k ∈ Z≥0 if s is even, k = 0
if s is odd. Then the linear map Fλ,k : H2λ+4k(D1)K̃1

→ Hλ(D)K̃ ,

(Fλ,kf)(x1 + x2) = det(x2)
k

∑
m∈Z⌊s/2⌋

++

1(
λ+ 2k + 1

2

)
m,2

1

|m|!
Φ̃
(2)′
m

((
x2

∂

∂x1

)2
)
f(x1)

(x1 ∈ Skew(s,C), x2 ∈ Sym(s,C)) intertwines the (g1, K̃1)-action.
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3.5.6 FW1 for (G,G1) = (SO(2, n), SO(2, n′)× SO(n− n′))

In this subsection we set

(G,G1) = (SO(2, n), SO(2, n′)× SO(n− n′)),

with n ≥ 3. Then we have p+ ≃ Cn, p+1 ≃ Cn′
, and p+2 = (p+1 )

⊥ ≃ Cn−n′
. For y1 ∈ p+1

and x2 ∈ p+2 , we have

h(x2, y1) = 1 + q(x2)q(y1), h1(y1) = 1− 2q(y1, ȳ1) + |q(y1)|2,

xy12 =
(
1 + q(x2)q(y1)

)−1
(x2 − q(x2)ȳ1), Proj2(x

y1
2 ) =

(
1 + q(x2)q(y1)

)−1
x2.

Let (τ, V ) = (χ−λ,C) be the 1-dimensional representation of K̃C, and let K(x2, y2) ∈
P(p+2 × p+2 ,End(V )) be a K̃C-invariant polynomial in the sense of (3.3.3). Then the
function FK(x2;w1, w2) ∈ O(p+2 × p+) in Theorem 3.3.5 (2) is given by

FW1(x2;w1, w2) =

∫
D1

K

((
1 + q(x2)q(y1)

)−1
x2, B(y1)w2

)(
1 + q(x2)q(y1)

)−λ

× e2q(y1,w̄1)
(
1− 2q(y1, ȳ1) + |q(y1)|2

)λ−n′
dy1

Now we additionally assume that n− n′ = 1 or n− n′ ≥ 3, and

K(x2, w2) = q(x2)
kq(w2)

k

where k ∈ 1
2Z≥0 when n− n′ = 1, k ∈ Z≥0 when n− n′ ≥ 3. Then we have

FW1(x2;w1, w2)

=

∫
D1

q(x2)
kq(w2)

k
(
1 + q(x2)q(y1)

)−λ−2k
e2q(y1,w̄1)

(
1− 2q(y1, ȳ1) + |q(y1)|2

)λ+2k−n′
dy1

= q(x2)
kq(w2)

k
∞∑

m=0

∫
D1

(−1)m(λ+ 2k)m
m!

q(x2)
mq(y1)

m
e2q(y1,w̄1)

×
(
1− 2q(y1, ȳ1) + |q(y1)|2

)λ+2k−n′
dy1

= Cq(x2)
kq(w2)

k
∞∑

m=0

(−1)m(λ+ 2k)m
(λ+ 2k)(m,m),n′−2

1

m!
q(x2)

mq(w1)
m

= Cq(x2)
kq(w2)

k
∞∑

m=0

(−1)m(
λ+ 2k − n′−2

2

)
m

1

m!
q(x2)

mq(w1)
m
.

Here we have used (3.2.13) and the fact that q(y1)
m ∈ P(m,m)(Cn′

). Similarly, if we assume
n− n′ = 2 and

K(x2, w2) = (x21 +
√
−1x22)

k1(w21 +
√
−1w22)

k1
(x21 −

√
−1x22)

k2(w21 −
√
−1w22)

k2
,
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where x2 = (x21, x22), w2 = (w21, w22) ∈ p+2 = C2, and k1, k2 ∈ Z≥0, then we have

FW1(x2;w1, w2)

=

∫
D1

(x21 +
√
−1x22)

k1(w21 +
√
−1w22)

k1
(x21 −

√
−1x22)

k2(w21 −
√
−1w22)

k2

×
(
1 + q(x2)q(y1)

)−λ−k1−k2
e2q(y1,w̄1)

(
1− 2q(y1, ȳ1) + |q(y1)|2

)λ+k1+k2−n′
dy1

= C(x21 +
√
−1x22)

k1(w21 +
√
−1w22)

k1
(x21 −

√
−1x22)

k2(w21 −
√
−1w22)

k2

×
∞∑

m=0

(−1)m

(λ+ k1 + k2)m

1

m!
q(x2)

mq(w1)
m
.

Now since K(·, y2) ∈ W1 := P(k,k)(p
+
2 ) ≃ C−2k,SO(n′) ⊠ 1SO(n−n′) and

Hλ(D1,W1) ≃ Hλ+2k(DSO0(2,n′))⊠ 1SO(n−n′)

via

f(y1, y2) 7→ q

(
∂

∂y2

)k
∣∣∣∣∣
y2=0

f(y1, y2)

when n− n′ ̸= 2, or K(·, y2) ∈ W1 ≃ C−k1−k2,SO(n−2) ⊠ Ck1−k2,SO(2) and

Hλ(D1,W1) ≃ Hλ+k1+k2(DSO0(2,n′))⊠ Ck1−k2,SO(2)

via

f(y1, y2) 7→
(

∂

∂y21
−

√
−1

∂

∂y22

)k1 ( ∂

∂y21
+

√
−1

∂

∂y22

)k2

q

(
∂

∂y2

)k
∣∣∣∣∣
y2=0

f(y1, y2)

when n− n′ = 2, we have the following.

Theorem 3.5.8. Let (G,G1) = (SO(2, n), SO(2, n′) × SO(n − n′)) with n ≥ 3, and let
λ > n− 1.

(1) Let n− n′ = 1, k ∈ 1
2Z≥0, or n− n′ ≥ 3, k ∈ Z≥0. Then the linear map

Fλ,k : (Hλ+2k(DSO0(2,n′))⊠ 1SO(n−n′))K̃1
→ Hλ(DSO0(2,n))K̃ ,

(Fλ,kf)(x1, x2) = q(x2)
k

∞∑
m=0

(−1)m(
λ+ 2k − n′−2

2

)
m

1

m!
q(x2)

mq

(
∂

∂x1

)m

f(x1)

(x1 ∈ Cn′
, x2 ∈ Cn−n′

) intertwines the (g1, K̃1)-action.

(2) Let n− n′ = 2, k1, k2 ∈ Z≥0. Then the linear map

Fλ,k1,k2 : (Hλ+k1+k2(DSO0(2,n−2))⊠ Ck1−k2,SO(2))K̃1
→ Hλ(DSO0(2,n))K̃ ,

(Fλ,kf)(x1, x2) = (x21 +
√
−1x22)

k1(x21 −
√
−1x22)

k2

×
∞∑

m=0

(−1)m

(λ+ k1 + k2)m

1

m!
q(x2)

mq

(
∂

∂x1

)m

f(x1)

(x1 ∈ Cn−2, x2 = (x21, x22) ∈ C2) intertwines the (g1, K̃1)-action.
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[5] J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded sym-
metric domains. J. Funct. Anal. 88 (1990), no. 1, 64–89.
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