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Preface

This thesis is a collection of three individual articles
e Integral formula and upper estimate of I and J-Bessel functions on Jordan algebras,

e Norm computation and analytic continuation of vector valued holomorphic discrete
series representations,

e Intertwining operators between holomorphic discrete series representations,

all of which are related to the analysis of holomorphic discrete series representations. This
thesis is organized by three chapters, and each chapter corresponds to the aforementioned
article.

The holomorphic discrete series representations are introduced by Harish-Chandra in
1950’s, and are one of the easiest class of representations to study deeply, among all infinite-
dimensional unitary representations of real reductive Lie groups. For example, this class of
representations have highest weight vectors, and this allows us to treat this representations
parallelly to finite-dimensional representations in some sense. Moreover, these represen-
tations have several explicit realizations, with inner products given by explicit converging
integrals, and this enables us to compute several quantities such as reproducing kernels
explicitly. The holomorphic series representations also connects with various theories, such
as analysis on symmetric cones, Hardy spaces, modular forms, and physics.

Now we review some explicit realizations of the holomorphic discrete series represen-
tations in the simplest case, namely, in G = SL(2,R) case. The first realization is given
by the space of holomorphic functions O(D) on the unit disk D := {w € C: |w| < 1}. For
any A € C, the universal covering group SU(1,1) of SU(1,1) ~ SL(2,R) acts on O(D) by
the linear fractional transformation

- (( b)) Fw) = (bw+a)f (bjjjb) 0.0.1)

(Here the function (bw + @)~ is not well-defined on SU(1,1) x D, but is well-defined as
a function on the universal covering space SU(1,1) x D). When A € R and A > 1, this
action preserves the inner product

S

A

(g =2 [ flu)al)(1 ~ [wf)* 2w (002
where dw is the Lebesgue measure on C. Thus the corresponding Hilbert subspace
in O(D) gives the first realization of the holomorphic discrete series representation of
SU(1,1) ~ SL(2,R). Since D is biholomorphically diffeomorphic to the upper half plane
H := R + /1R~ via the Cayley transform, O(D) is isomorphic to the space of holo-
morphic functions O(H) on H, and this gives the second realization of the holomorphic



discrete series representation of SL(2,R), with the inner product

A

1 B
(g =" [ FGIgGI m() 2z,

™ H
Moreover, via the Laplace transform, the Hilbert subspace in O(H) is isomorphic to the
space of square-integrable functions on the half line R+, with the inner product

'—L - z)g(z)z’ tda
s = F [, S e

Then the Hilbert space L?(Rwq,2* 'dz) gives the third realization of the holomorphic
discrete series representations. We note that 5@(2, R) does not act on the geometry R,
but it acts on the function space L?(Rg, x’\*ldx), and its infinitesimal action of s((2, R)
is given by at most 2nd order differential operators.

In general, let G be a real reductive group of Hermitian type, that is, the Riemannian
symmetric space G/K has a natural complex structure, where K is a maximal compact
subgroup of G. Then G/K is diffeomorphic to a bounded domain D in a complex vector
space VC = pt (V(c is a notation in Chapter 1, p™ is a notation in Chapter 2, 3), which
is called the bounded symmetric domain. Therefore, the universal covering group G acts
on the space of holomorphic sections of a vector bundle on D. Since the complex domain
D is contractible, the vector bundle is isomorphic to the direct product bundle, and thus
the space of holomorphic sections is isomorphic to the space of vector-valued holomorphic
functions on D. If this action preserves an inner product given by a converging integral
on D, then the corresponding Hilbert space gives the first realization of the holomorphic
discrete series representations. Moreover, if G is of tube type, that is, the symmetric
space G/K is also diffeomorphic to a tube domain T = V + /—1Q over a symmetric
cone {2, the holomorphic discrete series representation is also realized on the space of
holomorphic functions on the tube domain Tq (the second realization), and on the space
of square-integrable functions on the symmetric cone € (the third realization). In the
first realization, the K-finite vectors are given by polynomials, and it is easy to treat
algebraically. On the other hand, in the third realization, we can construct a rich theory
for analysis on symmetric cones, sometimes with the aid of the second realization.

In chapter 1, we deal with the third realization, the symmetric cone picture. There
are various special functions on symmetric cones which are the natural generalization of
ordinary special functions of one variable. Among these, we deal with the multivariate
Bessel function, which was introduced by Dib ([5] of Chapter 1). This Bessel function is
used as the kernel function of the Hankel transform, which is a variant of the usual Fourier
transform. It is well-known that the usual Fourier transform is the unitary operator on
L?(R™), and this appears in the (Segal-Shale-)Weil representation of the metaplectic group
Mp(n,R) (the double covering group of the symplectic group Sp(n,R)) as the action of
the conformal inversion element wg (the element interchanging the maximal parabolic
subgroup and the opposite parabolic subgroup via the inner automorphism). Likewise,
the Hankel transform appears in the holomorphic discrete series representation on L?(£2)
(under a suitable measure) as the action of the conformal inversion element. The Fourier
transform on L?(R") also appears as the special value of the Hermite semigroup. The
Hermite semigroup is the family of operators 7(t) on L?(R™), where ¢ runs over the right
half plane {t € C : Ret > 0}, satisfying 7(s)7(¢) = 7(s +t). When Ret = 0, 7(¢) is a
unitary operator, and it coincides with the restriction of the Weil representation to the
center of the maximal compact subgroup U(n) in Mp(n,R). This extends analytically to
the right half plane, and when Ret > 0, 7(¢) gives a Hilbert-Schmidt operator. The special



value 7(my/—1/4) coincides with the usual Fourier transform (up to scalar multiple). A
similar phenomenon also occurs on L?(2), that is, the restriction of the holomorphic dis-
crete series representation to the center of the maximal compact subgroup K of G extends
to the analytic semigroup on the half plane, and it gives a Hilbert-Schmidt operator when
the parameter t satisfies Ret > 0. The multivariate Bessel function appears in the kernel
functions of these operators. The program for such problems understanding the highest
weight representations of real Lie groups from the viewpoint of representations of complex
analytic semigroups was suggested by Gelfand-Gindikin (1977), and the general theory of
this program was completed by Stanton (1986) and Ol’shanskii (1981, 91, 95). Moreover,
this theory led to the theory of Laguerre semigroups by Kobayashi-Mano (2007), and gen-
erated the theories of global analysis on minimal representations and the deformation of
Fourier transforms.

The author’s result in Chapter 1 is about the upper estimate of the multivariate Bessel
functions Zy(z). In general, for any symmetric cone €, there exists a natural Euclidean
Jordan algebra which contains €2 as an open subset. Then this is a special function defined
on VC. In this chapter the author has proved a new integral expression of T\(2?), and
using this, proved the upper estimate of Dib’s multivariate Bessel function Zy(2?),

|I,\(.7}2)| < C)\,k (1 + |x|§nax{2n—r>\,0}) 62|Rex|17

where |-|; is a suitable norm on VC, and r is the rank of the Jordan algebra V. Especially,
it is of polynomial growth on /—1V C VC, and from this result we can show that the
1-dimensional analytic semigroup in the previous paragraph maps functions with polyno-
mial growth to functions with exponential decay, and can also reconfirm that it gives the
Hilbert-Schmidt operator, without using representation theory.

In Chapters 2 and 3, we deal with the first realization, the bounded symmetric do-
main picture. In this picture the holomorphic discrete series representation is realized on
the space of holomorphic functions on the bounded symmetric domain D, and the corre-
sponding Hilbert space has the reproducing kernel. For example, when G = SU(1, 1), the
representation (0.0.1) gives the holomorphic discrete series if A > 1, and the reproducing
kernel with respect to the inner product (0.0.2) is given by

Ky\(z,w) = (1 — zw) .

Now, this reproducing kernel is expanded as

Ky(z,w) = Z (Nm (zw)™,

m)!

m=0

where (A)y, = A(A+1)--- (A+m —1) is the usual shifted factorial. From this expression it
follows that the kernel function K)(z,w) is of positive type if A > 0, that is, there exists a
non-zero Hilbert space with the reproducing kernel K)(z,w) if A > 0, on which g\ff/(l, 1)
acts unitarily via (0.0.1), even though the integral (0.0.2) converges only when A > 1. The
corresponding Hilbert spaces for 0 < A < 1 can be regarded as the analytic continuation
of the holomorphic discrete series representations for A > 1. The similar phenomena also
occur for other Lie groups, are studied by e.g. Berezin (1975), Vergne-Rossi (1976) and
Wallach (1976), and completely classified by Enright-Howe-Wallach (1983) and Jakobsen
(1983). After that, other proofs with analytic methods are given by e.g. Clerc (1995) and
Faraut-Koranyi (1990) for partial results. Among these studies, Faraut-Koranyi ([6] of
Chapter 2) computed the expansion of the reproducing kernels explicitly for holomorphic



discrete series representations of scalar type of any simple Lie groups of Hermitian type. In
Chapter 2 of this thesis the author has generalized the above results of Faraut-Korédnyi for
vector-valued holomorphic discrete series representations such that their K-type decom-
postion are multiplicity-free. In more detail, in the bounded symmetric domain picture,
the space of K-finite vectors is equal to the space of polynomials, and its K-type decom-
position is independent of the continuous parameter A\. Thus the reproducing kernel of
the Hilbert space is expanded in terms of the reproducing kernel of each K-type, and the
author has computed how the coefficients in this expansion depends on the parameter
A. From this result we can determine when the analytic continuation of the holomor-
phic discrete series representation is unitarizable, and can also determine the underlying
(g, K)-modules of the representation spaces. This argument gives an analytical proof for
a part of the results of Enright-Howe-Wallach and Jakobsen.

We can also view the result in Chapter 2 that it determines explicitly how the holomor-
phic discrete series representation behaves when it is restricted to the maximal compact
subgroup K. Then the next natural question is how it behaves when it is restricted to other
subgroups. In 1990’s, the general theories on discrete decomposability and multiplicity-
freeness of restriction of representations were established by Kobayashi, and he suggested
the importance of problems of writing down the decomposition explicitly (see [18] of Chap-
ter 3 (2015)), and these problems are studied by e.g. Clerc-Kobayashi-Orsted-Pevzner
(2011), Kobayashi-Orsted-Somberg-Soucek (2015), Kobayashi-Pevzner (2015), Kobayashi-
Speh (2015), Méllers-Oshima (2015) and Peng-Zhang (2004). In general, when we consider
an irreducible representation H of a reductive Lie group G, and restrict it to a subgroup
G1 C G, it may behaves very wildly, for example, the multiplicities in H|g, may become
infinite, or it may contain continuous spectrums, even if (G,G1) is a symmetric pair.
However, if G is of Hermitian type, H is a holomorphic discrete series representation,
and G; C G is also of Hermitian type such that the embedding map G1/K; — G/K
of Riemannian symmetric spaces is holomorphic, then H|g, decomposes discretely, and
moreover all multiplicities are finite and uniformly bounded if (G, G1) is a symmetric pair
(Kobayashi, 2007). In this case we also know what kind of representations of G appears
in H|g,. Thus our next interest is to determine explicitly how each representation of G is
embedded in H|q,, that is, to write down explicitly the G-intertwining operators between
each representation of G; and H|g,. In Chapter 3, the author has studied this problem,
and got the integral expressions of the Gi-intertwining operators for general holomorphic
discrete series representations of G; and G. From this result the author has also deduced
the (infinite-order) differential expressions of the Gi-intertwining embedding maps from
the representation of G1 to that of G in the case both G and G; are classical groups and
both representations of G and G are of “almost scalar type”. In the proof the author
has used the series expansion of integrands and the results on the norm computation by
Faraut-Koranyi.

Finally, the author would like to express his gratitude to his supervisor professor T.
Kobayashi for his attentive guidance, and also for professors T. Kubo and B. Orsted for
many helpful advices. He also thank his colleagues, especially for M. Kitagawa and Y.
Tanaka for many helpful discussions. He would also like to thank Grant-in-Aid for JSPS
Fellows for financial support.



Chapter 1

Integral formula and upper
estimate of I and J-Bessel
functions on Jordan algebras

In this chapter we give a new integral expression of I and J-Bessel functions on simple
Fuclidean Jordan algebras, integrating on a bounded symmetric domain. From this we
easily get the upper estimate of Bessel functions. As an application we give an upper
estimate of the integral kernel function of the holomorphic 1-dimensional semi-group acting
on the space of square integrable functions on symmetric cones.

Keywords: Euclidean Jordan algebras; Bessel functions; holomorphic discrete series rep-
resentations; holomorphic semigroups.
AMS subject classification: 33C10; 33C67; 17C30; 22E45; 47D06.

1.1 Introduction and main results

In this chapter we find in Theorem 1.3.1 a new integral expression of I and J-Bessel
functions Zy(x), Jx(x) on a Jordan algebra V. J-Bessel functions are first introduced by
Faraut and Travaglini [9] for special cases, associating to self-adjoint representations of
Jordan algebras (see also (1.4.2)), and generalized by Dib [5] (for V' = Sym(r, R) case see
also [12] and [18]). It is well-known that Z,(z), Jx(z) are the holomorphic functions on
VC for X in open dense subset of C. On the other hand, for countable singular \ they are
still well-defined on certain subvarieties. These are defined by the series expansion (see
Section 1.3), and satisfy the following differential equation

By\I) — eI, =0, B\JI\+edy=0

where By : C*(V) — C(V) ® VC is the VC-valued 2nd order differential operator defined
in [8, Section XV.2|, and e is the unit element on V' (see [5, Proposition 1.7] or [8, Theorem
XV.2.6]). Also Z) and J) have the following integral expression

) = FQ()‘) etrwe(w_1|:r) w —-A W

L) = Ghye /HW A(w)dw, (1.1.1)
) — La(N) etrwef(w_lkr) w)Mdw

nw =g | Aw)d (1.12)

(see [5, Définition 1.2] or [8, Theorem XV.2.2]. For notations tr, (-|-), A and I'q(\) see
Section 1.2.1 and (1.2.3)). There are some attempts to generalize these Bessel functions



to operator-valued ones (see e.g. [6] and references therein), but it is still not very well-
understood. In this paper we only treat scalar-valued ones.

Now we briefly state our theorem. Let V' be a simple Euclidean Jordan algebra (i.e.,
V is one of the Sym(r,R), Herm(r,C), Herm(r, H), R'"~! or Herm(3,0)). We assume
dimV =n, rankV =r. We prove

Theorem 1.1.1. For A € C, x € Xiankn (see (1.2.1) and (1.2.6)), take k € Z>¢ such that
ReA+k > 27" — 1. Then, we have the integral expressions

I)\ ($2) = C)\-‘rk’/ 1F1(_k7 )‘a -, w)62(m|Rew)h(wa w))\+k_27ndwa
D

2n

I (ajZ) = C)\—l—k/ 1B (—k, N _iwi)ezi(MRew)h(w?w))ﬁLk,wa’
D

where ¢y s a constant and 1 F1(—k, \;x,w) is a polynomial of degree rk with respect to
both x and w.

Here &) are the L = Str(VC)g—orbits. A are also characterized as the supports of some
distributions on VC (see [3] and (1.2.2)). D C VC is the bounded symmetric domain and
h(w,w) is the generic norm on VC (see Section 1.2.1). For the explicit forms of ¢y and
1F1(—k, \;z,w) see Theorem 1.3.1. Especially if Re A > 27” — 1 we can take k = 0 and

2) = 1FQ()‘)/ 2(z| Re w) A—2n
B = ™ To (A= 12) n° Alw, w)™ dw

T

and 7y is similar.

Now D is naturally identified with G/K = Bihol(D)/Stab(0) = Co(V)o/Autyrs(V)o.
For A > 221, the universal covering group G acts unitarily on O(D)NL?(D, h(w, w)’\727ndw)
by left translation. This defines the holomorphic discrete series representation of G. This
is analytically continued with respect to A € C, and become unitary when A € W, the
(Berezin—) Wallach set (see (1.2.7) and [25], [4]). The trivial representation corresponds
to A =0.

From now we set V' = R. Let Iy(x) be the classical I-Bessel function (see [2, (4.12.2)]),
and we set 1:)\(3:) = (%)7A I\(z). Then I, and 7, on R are related as

~ 1 a2
I =——7 — .
M®) T\ +1) M1 < 4 >
Therefore the above theorem is rewritten as

~ Atk R o\ A+h—1
I = — Fi(—kX+1;— rhew (1 — dw.
A(7) TOED) /w<11 1(=k, A+ 1; —zw)e (1—|wl?) w

where 1 F1(—k, A+ 1; x) is the classical hypergeometric polynomial. This formula seems to
be new even for V' = R case. On the other hand, the formula (1.1.1) is rewritten as

~ 1 =2
I = vt w A .
A(x) i /1+z‘]R e w w

These two integral formulas are mutually independent, and cannot easily deduce one from
another.

Again let V' be a general Jordan algebra. Since D is bounded, we can prove from this
formula the following corollary.




Corollary 1.1.2. For A € C, x € Xank ), if ReA+ &k > 27" — 1 for some k € Z>o, then
there exists a positive constant C > 0 such that

Za(@?)] < Cog (14 [fi*) 2 Reah |7 (@2)] < Ope (14 Jafft ) e2limeh

where |x|y is the norm defined in Definition 1.2.1.

In [17, Lemma 3.1] an upper estimate of Jy(x) is given by another method, but our
estimate is sharper. For detail see Remark 1.3.3. When V' = R, this corollary implies that
if ReA > —k for some k € Z>,

1
T+ 1)]

2
o (2) sttty

On the other hand, we have the asymptotic expansion

NG

~ z) A z > —1m)\,m —x Y = )\>m
oy~ B ( S ) oo mzﬂiwg)

where (A, m) are some numbers (see [2, (4.12.7)]), and this implies that
[I\(z)| < CY (1 + \:cymaX{—A—%,O}) ol Real

Therefore our result is not the sharpest when Re A < 0, but it still seems to be sufficiently
sharp.

This chapter is organized as follows: In Section 1.2, we recall some notations and facts
about Euclidean Jordan algebras. In Section 1.3 we prove our main theorem, the integral
formula and upper estimates. In Section 1.4, as an application of the inequality (Corollary
1.1.2), we give an upper estimate of the integral kernel function of the 1-dimensional
semigroup on the functions on the symmetric cones.

1.2 Preliminaries

1.2.1 Simple Euclidean Jordan algebras

Let V be a simple Euclidean Jordan algebra of dimension n, rank r. We denote the unit
element by e. Also let VC be its complexification. For z,y, z € VC, we write

L(z)y := zy,
a0y := L(wzy) + [L(z), L(y)],
P(z,z) = L(x)L(z) + L(z)L(x) — L(z2),
P(z) := P(z,z) = 2L(z)* — L(z?),
B(z,y) := Iyc — 220y + P(z)P(y)

where y — 7 is the complex conjugation with respect to the real form V. Also, we write
{z,y,2} := (209)z = P(z, 2)y = (xy)z + 2(§z) — (x2)7.

Then VC becomes a positive Hermitian Jordan triple system with this triple product.
We denote the Jordan trace and the Jordan determinant of the complex Jordan algebra
VC by tr(z) and A(z) respectively. Also let h(z,y) be the generic norm of the Jordan



triple system VC. These can be expressed by L(z), P(x), and B(z,y) (see [8, Proposition
I11.4.2], [7, Part V, Proposition VI.3.6]):

Tr L(z) = %tr(m),
Det P(z) = A(z) ™,
Det B(z,y) = h(ozc,y)%1

where Tr and Det stand for the usual trace and determinant of complex linear operators
on VC. Using the Jordan trace we define the inner product on VC:

(aly) = tr(ey),  myeVE.

Then this is positive definite since V' is Euclidean. Also we define the symmetric cone )
and the bounded symmetric domain D by

Q:={2?:2 €V, A(z) # 0},
D := (connected component of {w € VC: h(w,w) > 0} which contains 0).

Then € is self-dual, i.e.,
Q={xeV:(z|y) > 0for any y € Q},

and D is biholomorphically equivalent to V + v/—1Q c VC.

Let K; and K be the identity components of automorphism groups of the Jordan
algebra V and the Jordan triple system VC. Similarly let L and LC be the identity
components of structure groups of V and VC. Also let G be the identity component of
conformal group of V:

Kp :=Autjag(V)o=1{k € GL(V) : k(zy) = kx - ky, Va,y € V}y,
K := Autyrg(VE)o = {k € GL(VE) : k{z,y, 2} = {ka, ky, kz}, Vx,y,z € V),
L:=Str(V)o={l € GL(V) : l{z,y, 2} = {lz, 1"y, 12}, Vz,y,2 € V},
LC = Str(VE)y = {le GL(V®): Hx,y, 2} = {lz, (I*) "Ly, 12}, Vo, y,2 € VC}O,
G := Co(V)g = Bihol(D)g ~ Bihol(V + v/—1Q)o
where I and [* stand for the transpose with respect to the bilinear form tr(zy) and the

sesquilinear form tr(zy) = (z|y). Then Q and D are naturally identified with L/K} and
G/ K respectively. For the classification of these groups see [13, Table 1] or [17, Table 1].

1.2.2 Spectral decomposition and some norms on V°

From now on we fix a Jordan frame {cy,...,c,} CV, i.e.,

T

cjcr = 0jkcj, E cj = e,
Jj=1

and if djl,djz € V satisfy cj = aj1 + djg, djkdjl = 5kldjk7 then djl =0 or djz =0.

Then for any = € VC there exist the unique numbers t; > - - -1, > 0 and the element £k € K
such that » = k>7"_, tjc; ([8, Proposition X.3.2]). Using this, we define the p-norm on
Ve,

10



Definition 1.2.1. For 1 <p < oo and for x = kZ;Zl ticj € VC, we define

T
DIl (A<p <o),

|z]p = j=1

max |t; = 00).
el | J| (p )

For example, we have (z|x) = |z|3. Also if x € 2 then all eigenvalues (in the sense of
Jordan algebras. For V' = Sym(r,R) or Herm(r, C) this coincides with the usual one) are
positive and |x|; = trz holds. In addition, we can define D by D = {w € VC : |w|s < 1}.
This norm satisfies the following properties.

Proposition 1.2.2 (|23, Theorem V.4, V.5] for V' = Herm(r, C) case). Let 1 < p,q < oo
and 1% + % = 1. Then the following statements hold.

(1) For xz,y € VC; [(z[y)] < |2lplylg-

(2) Forx € VC, |z|, = max (ly)|
veveo} ylg

(8) x> |z|, is a norm on VC.
To prove this, we quote the following lemma (see [7, Part V, Proposition VI.2.1]):

Lemma 1.2.3. For z,y € VC, if 20y = yOz, then there exists an element k € K such
that both = and y belong to R-span{kcy,..., ke, }.

Proof of Proposition 1.2.2. (1) We note that |(z|y)| < max |(kx|y)| = Igl&}){(Re(kx|y) since
€ €

e¥Iyc € K for any € R. We take kg € K such that Re(kz|y) (k € K) attains its
maximum at k = kg € K. We put koz =: xg. Then for any D € ¢ = Lie(K),

d

o7 Re(ethO\y) = Re(Dzply) = 0.

t=0

In the case when D = w05 — v0a with u,v € VC,

= Re((ubv)zoly) — Re((vDu)xoly) = Re((zoH0)uly) — Re((zoHu)vly)
= Re(u|(v0zo)y) — Re(v](ubzo)y) = Re(ul(yHzo)v) — Re(v|(yUzo)u)
= Re((zo0y)ulv) — Re(v|(yOxo)u) = Re((zo0y — yOo)ulv).

Since u,v € VT are arbitrary and (-|-) is non-degenerate, xoJj = yzp. Therefore
by Lemma 1.2.3 there exists k € K such that zg,y € R-span{kecy,..., ke }. Let x =
K'Yy tici, y =k iy sjcj. Then

[(z]y)| < I}%E}){(Re(k:cly) Re(zoly) = Re k:Zt ¢j stjcj

1

q

r T 5 T
= tys; < | Y14l Slsil?] = lxlplylg-
j=1 j=1 j=1

11



(2) (>) Clear from (1).
(<) For » = k375 tjc; € VC (t; > ---t, > 0), we find a y € V® which attains the
equality. We set
Y = k Z;:l tﬁ?_lcj (1 < p< OO),
ke (p = 0).

Then,

1 p—1
r -1 q r P —
(Zj:l tﬁp )q> t= (Zj:l t?) b= |$|£ ' (1 <p<o0),
1 (p=1,00),

and

-1
(ely) = 4 25=1 55 = 2l = lelplaly ™ = Jolplyly (1< p < o0),
t1 = |%]oo = |Z|oolyl1 (p = 00).

(3) Positivity and homogeneity are clear. For triangle inequality, by (2), for z,y € V',

[+ ylp = max |(z +yl2)] < max |(@]2)] + max |(y|2)] = [zl + [yl

|Z q:]' Zlg= |Z|q:1

and this completes the proof. ]
We set
l l
X=Sk> tie; k€K, t;>0p=L%> ¢ cV® (I=0,...,7). (1.2.1)
j=1 j=1

Then X, = Xy U X; U...U A] holds. A are also characterized as the supports of the
distributions which are the analytic continuation of |A(:U)|2()\7%)dl‘i

supp <|A(w)|2()‘:)d:v’/\_ld> = A, [=0,1,...,r—1 (1.2.2)
2
(see [3, Proposition 5.5]).

1.2.3 Peirce decomposition and generalized power function

As before we fix a Jordan frame {cy,...,¢.} C V. Then V is decomposed as

5146

V= €P Vi where xgk_{er:L(cl)x_ i+ klx}.

. 2
1<j<k<r

Moreover V;; = Rc; holds, and all Vj;,’s (j # k) have the same dimension (see [8, Theorem
IV.2.1, Corollary IV.2.6]). We write dim Vjj, = d. Then dimV = n = r+ $r(r — 1)d holds.

Let V((lc) = ®1§j§k§l V](% (I =1,...,r) and Py be the orthogonal projection on
V(%. We denote by det(;(z) the Jordan determinant on the Jordan algebra V((lc) We set
Ay(z) = det) (P (x)) for z € VC. Fors = (s1,...,5:) € C", the generalized power
function on VC is defined by

Ag(w) = AT 2 (2) AP () - AT (@) A (x)

12



Then, the Gindikin Gamma function and Pochhammer symbol are defined as follows: for
s € C" and m € (Z>o)",
_ Fo(s+m)

To(s) := /Qetr(x)As(x)A(a;):da:, (S)m = TG (1.2.3)

This integral converges for Res; > (j — 1)%, and both functions are extended meromor-

phically on C" (see [8, Theorem VII.1.1] or [11, Theorem 2.1]). Moreover, we have

r

(s)m =] <5j - (- 1);) where  (8)n = s(s+1)--- (s +m —1).

j=1 m;
For s = (s1,...,s,) € C", we set s* = (s;,...,51). Then we can prove easily
* % n
(S = Smls+m)n,  (=5)m = (1) (s—m* + ) (1.2.4)
m*

where |m| = mj + --- + m,. Here we identify A € C and (..., \) € C".

1.2.4 Polynomials on V®

We set ZI, | := {m = (mq,...,m;) € (Z>0)" : m1 > mg > ---m, > 0}, and denote the
space of holomorphic polynomials on VC by P(VC). For m € Z', ,, we define Py, (VC) :=
C-span{Ap ol : 1 € LF}. Then clearly Pp, (V") becomes a LE-module. Moreover, we
have

Theorem 1.2.4 (Hua-Kostant-Schmid, see [8, Theorem XI.2.4]).

PVE) = B Pu(VE).

mezl

These Pm (V) ’s are mutually inequivalent, and irreducible as L®-modules.

Since A; vanishes on Aj_1, all polynomials in Pm(VC) vanish on A;_q if and only if

my # 0.
We write dpy := dim P (VC), and &p(z) := fKL Am(kz)dk. Then the Kp-fixed

subspace in P, (VC) is spanned by @, (see [8, Proposition XI.3.1]).
1.2.5 Inner products on P(VC)
For f,g € P(VC), we denote the Fischer inner product by (f, g)p:

fade = [ swigtoie @ = 1 (5] gtw

w=0

(For the second equality see [8, Proposition XI.1.1]). Then the reproducing kernel of

P(VC)F (Hilbert completion of P(VC)) is given by e*I*). We denote by K™(z,w) =
K™(2) the reproducing kernel of Py, (VC) with respect to (-,-)z. Then clearly,

6(2|w): Z Km(sz),

meL |

13



Also, by [8, Proposition XI.3.3, Propsition XI.4.1.(ii)], we have
K™(gz,w) = K™(z,g"w) for any g € Str(VC),

1 I g (o)

K;n(z) = H‘I’mH% m(z) = (%)m

and
K™(z,z) = K™(2%, e)
for € V, and therefore for any = € VC by analytic continuation.
Also, for A > 27” — 1, we denote the weighted Bergman inner product on D by (-, )z:

A—2n
= — r dw.
e A_, || fataihtw, wp = o
Then, these two inner products are related as follows:

Theorem 1.2.5 (Faraut-Koranyi, see [8, Theorem XI11.2.7]). If f,g € P(VC) are decom-
posed as f = ZmeZTH fm, 9= ZmEZT++ 9m (fm,9m € Pm(VE)), then

(foam= > L<fm,gm>F. (1.2.5)

mez ()\)m

Although the left hand side is only defined for \ > 27” — 1, the right hand side extends
meromorphically for A\ € C. Therefore we can redefine (-,-)) with this formula for any
A € C by restricting the domain. For A € C we set

rank A :=max {l € {0,1,...,7} : (\)m # 0 for any m € Z', | N {my1 = 0}}
_ {z if A e (zd+z<0)\UJ V(g +Z<0) (1=0,1,...,r—1),
r 1f)\§éU] 0(32+Z<0)
For example, if d = 2, i.e., V = Herm(r, C), then

(1.2.6)

0 ()‘ € ZSO),
rank A = < [

A=11=1,...,r—1),

r (A%T—l—i—ZS()).
VC). This form (-,-)

Then (-,-)) defines a sesquilinear form on @mem . Mramag =0 Pm

is positive definite if and only if

AEW = {o,g,...,(r_n;l}u((r_1);l,oo>. (1.2.7)

This set W is called the (Berezin—)Wallach set (see [25] or [4]).

1.2.6 Invariant differential operators
For A € C and k € Z>, we recall the differential operators D*) from [8, Section XIV.2]:
2\" "
DHF ) = A(z)7 A <a ) A(z)\—r Tk
x

where A ( gp ) is the differential operator characterized by A (8@) e@lv) = A(y)el¥) . Then
(Fol) = (DWNS) ol for

these operators commute with the LC-action (i.e., D®)()\)
f€P(VC and I € L®). Moreover, we have

14



Proposition 1.2.6.

DF (Nl = Z (=D (—E) (A + m)j i K™ (2, )@,

meZ, ,, |m|<rk

and if (N)m # 0 for any m € Z7,  , |m| < rk,
DE N e®W) = (N1 Fi(—k, X; —z, y)eV)

where
(=)™ (B o

Fi(—kN—zy) =Y O

mezZ, ., |m|<rk

(z,y). (1.2.8)
Proof. We follow the proof of [8, Proposition XIV.1.5]. For x € Q and A < —k + 1,

k
D(k)()\)e(x\e) — A(w)%_AA <8> A(x)/\—§+ke(z|e)

ox
— A($): A <0>k 1 / (z|e— y)A( ) )\+7_kA(y)_%dy
9z ) To(-A+2-k) Jo
n 1

= A(z)7 / (@le=0) A (e — o)A ()2 kg

(=) To(-A+2—k - (e —y)"Ay) Y
- 80 >l [ e a2 tay

I'ag (_)\ + T k) mezy ,, |m|<rk (?)m Q

mezZ”

D Lo (A5 H)
- ¥

oo (—K)m (— A+ 2 —
mezy |m|<rk (?)m

- ¥

mezZ’, ., lm|<rk (%)k—m*

jm|<rk

Here we used [8, Lemma XI.2.3] at the 2nd and 5th equalities, and [8, Corollary XII.1.3]
at the 4th equality. At the 6th equality we used ®m(z 1)A(2)¥ = &) (z), which
follows from the linear isomorphism Py (VC) = Pr_m:(VE), p = A(z)*p(z~1). Now,
dm = di_m+ holds by this isomorphism, and by (1.2.4),

(R _ ™G 4m) 0 GO, () (k)
(%)k—m* (%)k—m* (%)m (%)kz—m* (_1)\m| (%)m ,

(*A + ? B k>k_m* = (=D)F (A 4 m)y

Therefore,

=

DB ()™,

m

DF(N)el®le) = > (FD)M(—E)m(A + m)

meZl ., m|<rk (

23
~—
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By the LC-invariance of D) ()), for y € Q,
DB (N)ely) = D) ()P i)

= Yo Y)M (R mA - m)m,

me7Z m|<rk (%)m

I (D)) P20

T
+4

- Z (= D)MN(—E)m (A + m) (K™ (2, y)e ).

meZ; ., lm|<rk

This holds for any z,y € VC and X\ € C by analytic continuation. The second equality
follows from
(M

Mm-

Using these differential operators, we can calculate (f,g)y for A € C: for Re\ + k >
27” - 1 and f’g 6 ®mezi+7 mrank>\+1:O Pm(V(C)’

()\ + m)k,m = ]

(f.9) O /D<D"“><A>f><w>th<w,wwk—i"dw (rank A = )
ygIx = 2n

imcui (k) w)g(w)h(w, w)*t* =7 dw  (ran r
Jim P | (D ) ) gl oo, ) o (ranke A < 7)

(1.2.9)

where ¢y = - —LoQ) (see [8, Proposition XIV.2.2, Proposition XIV.2.5]). We can prove

T Po(A-2
easily that this equality holds not only for polynomials, but also for holomorphic functions
f,g € O(D) with D®)(\)f and g bounded on D.

1.3 Proof for main theorem

For A € C with rank A = r, the I and J-Bessel functions are defined by

L) = Y L (),

o ) O

—1)/ml
Ix(x) = Z dm_ (1) O () = I (—2x).

T
mezZl |

If rank A < r, then (), = 0 for some m, so we cannot define these functions on entire
VC. However, if 2 € &), ®(z) = 0 for my; # 0, and therefore for any A € C we can
define T and J-Bessel functions for = € Xjanka (see (1.2.1) and (1.2.6)) by

d 1
Iy(z) := P (2),
’ mEZl+7%nkx+1=0 (;)m ()\)m
—1)lm]
Ia(@) = ) (gl)n ((;))m Om (@) = Ih(~).

mEZ:_+, Mrank A+1=0

Now we are ready to state the main theorem.
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Theorem 1.3.1. For A € C, x € Xank z, take k € Z>q such that Re A\ +k > 27" —1. Then
we have the integral expressions

2n

) (%) = CA+k/ VFy(=k, X —z, w) @R b (g ap) MR duy,
D

I (332) = C>\+k:/ 1F1(—=k, X —i:n,w)e%(x'Rew)h(w,w)’\+k_27"dw'
D

where

1 Ta(N)

C/\:ﬁm, 1F1(=k, Az, w) = Z

r

(=%)m
(Mm

K™(z,w).
meZ,,,|m|<rk,
Mrank A\4+1 =0

When rank A = r, the definition of | F; clearly coincides with the one in (1.2.8).
Proof. We calculate <e("5),e('|”")>/\ in two ways. By (1.2.5),

<e('|£),e('w)>)\=< > kRN K;;> = ) ()\1)m<K;‘;an;n>F

mezZl | nezl A

1 1
= > WKm(x,i’): > me(a:Z,e)

m
mGZi+ mEZfHr

1 d
= (%) = Z(2P).
2 D (3, =

On the other hand, by (1.2.9) and Proposition 1.2.6,
(0,687 i G [ (D0 )ee49) T,
<e ,€e >)\ ul—%\ 00k o ( (n)e )e (w, w) w

= lim Cu+k/ 1By (—Fk, s —a:,w)e(’U'j)e(wlx)h(w,w)“+k_27ndw
n—A D

2n

= C>\+k/ VEL(=k, Ay —2, w) @R b (4 4p) MR o,
D

The formula for 7, (a;2) follows by replacing x by ix. O

From this theorem we can easily deduce the following corollary.

Corollary 1.3.2. For A € C, x € Xankn, if ReA+ &k > 27" — 1 for some k € Z>o, then
there exists a positive constant Cy j > 0 such that

Ta@)] < O (1+]alit) Reah |7y (2%)] < O (14 Jali*) el

where |x|y is the norm defined in Definition 1.2.1.

Proof. By Proposition 1.2.2, for w € D, z € VC,

|(Rez|Rew)| < |Rez|i|Rew|s < |Re

$|1WO < |Rexl.

Also, since 1 Fy(—k, \; —z,w) is a polynomial of degree rk with respect to both x and w,

(ks =, w0)] < Ch (14 [alfF) (14 fwl) <205, (1+ Jafi*).
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Therefore, by Theorem 1.3.1,
Th@?)] < ‘CHk’/ L Fy(—k, \; —, w)|e2®ealRew) p gy, g \Redth=22 g0,
D
G (1) |
D
= Chi (1 4 |:v|71"k) (2| Reals

The proof for Jy (;1:2) is similar. O

Remark 1.3.3. In [17, Lemma 3.1] Méllers gave another estimate of Jx(x):

r(2n—1)
4

}j)\ (a:Q)‘ <C (1 + |:c\%) e2rlel2 forany A€W, x € Xeankr C VC.

However, our estimate is sharper because our leading term is given by 2™zl Espe-

cially in our estimate Jy(x) is uniformly bounded on V if Re A is sufficiently large. This
difference comes from that of methods of proofs: in [17] the Taylor expansion was used,
while in this paper we use the integral formula. However, in general Taylor series is not
strong enough for L estimates. For example, the bound of cosine function is calculated
as follows:

oo ( 1)m o0 1 0 1
o - 2m § : 2m § : m __ |z
|cos x| = Z (2m)!aC = (2m)'|x| = m‘|x| -
m=0 m=0 m=0

However, it is well-known that cosine function is bounded unformly on R. So this bound
s not sharp.

1.4 Applications

For A > " —1,t € C\miZ, Ret > 0, we define a integral operator on €2: for a measurable
function ¢ : Q@ — C, we define

1 e~ cotht(trz+try) 1 ) \n
¢ — T P(x2 A “rdy.
n0pe) = s [T (S Pty Ay

=

Since 7, is K-invariant, by [8, Lemma XIV.1.2] we can replace P(m%)y by P(y2)x.

Remark 1.4.1. For A > 27" — 1, the Laplace transform
Ly L2(Q, Alx) Fda) — L2(V + V=19, A(Im 2)*~ 7 dz) N O(V + V/—1Q)
1s defined by

2" < n
Lrp(z) = /62('2'1) 2)A(22) 7 dz.
Then we can prove by the similar method to [8, Theorem XV.4.1] that
Loma(t) Ly F(z) = A(—sin(it)z + cos(it)e)
X F ((cos(it)z + sin(it)e) (— sin(it)z + cos(it)e)_l) :

If t is purely imaginary, then this coincides with the restriction of the holomorphic discrete
series representation of the simple Hermitian Lie group Bihol(V + /—1Q), to the center
of the mazimal compact subgroup Stab(ie). That is, Ty can be regarded as the natural
complexification of the action of Z(Stab(ie)) C Bihol(V ++/—1Q). Especially, z(s)7x(t) =
TA(s + 1) holds for A > 22 —
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Remark 1.4.2. Let E be an Euclidean vector space of dimension N with inner product
(:|Ye. Then the Hermite semigroup on L*(E) is given by

_ 1 1 1
) f(§) = m /E f(n) exp <—2 coth (€% + InlE) + Smht(§|77)E> dn (1.4.1)

for f € L*(E), t € C\ miZ, Ret > 0 (see, e.g., [10, Section 5.2]). From now on we
assume there exists an self-adjoint representation ¢ : V. — End(E). We also assume
N >r(r—1)d. Let Q : E — V be the quadratic map defined by

(p(2)€|O)E = (x]|Q(E))v foranyx eV, £ € F.

Let ¥ := Q7 Y(e) C E be the Stiefel manifold. Then we have

/Ee—i@'”)da =Jx (Q (g)) (1.4.2)

(see [8, Proposition XVI.2.3]). We extend Q to Q : E® — VC bilinearly. Then since

Ixn(x) = In(—x) we have
/ e€l)de =Ty (Q (£>> .
b)) 2r 2

If f € L*(E) is written as f(£) = F (3Q(€)) with a function F on V', then (1.4.1) can be
rewritten as

050 = e [P (50 ) exp (—geometiels + ) + g enls ) a

(27 sinht)2

1 1 NG
" Gt [ F@mes (— corht  3lelt + Iy ) + mm(&!n)E) y

1 |
e oy Jo JLFQtwho e (—eoth (g1 + 0w ) )

ot )
‘o p< Y2 (¢l6(s})o) )medady

l\)\»—-

e (y)El0)s | Aly) S dody
FQ(% sinh® ¢ sinh
1 /F exp cotht(%\ﬂ%—i—try ( ( é)g))A(y)é\i_?dy
T To(Y) sinh? ¢t VZsinht”
exp (—cotht (3trQ(§) +try)) ( 1 ) N_n
= F(y y2)Q(E) | Aly)> " dy
Fg(éi)/n ) sinh? ¢ 2sinh?i ©)aws
1
—rp (07 (5000)

where we used [8, Proposition XVI.2.1] at the 3rd equality and [8, Lemma XVI.2.2.(ii)] at
the 4th, 6th equalities. Therefore Tn (t) coincides with the action of the Hermite semigroup
2r

on radial functions on E.

Remark 1.4.3. For z € X (see (1.2.1)), Tn(z) = D(N)\_1(2\/]z]2) holds (see [17,
Ezample 3.3]), and by analytic continuation the distribution ﬁ(/\)A(x)A_%lgdm at \ =4
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gives the semi-invariant measure on X1 N Q) (see [8, Proposition VII.2.3]). Therefore for
V =R the action 7y at \ = %l coincides with the action of the holomorphic semigroup
on the minimal representation of O(p,2) (see [14, Theorem B] or [15, Theorem 5.1.1]).

Remark 1.4.4. We set

T

Hyp(x) == i1y (2) o(x) = Fgl()\) /Q o(y)T (P(rc%)y) A(y) " dy.

This is called the generalized Hankel transform ([8, Section XV.4]). Similar to Remark
1.4.2, this is regarded as a variant of the Fourier transform. Therefore it is expected that
this Hankel transform has similar properties as the Fourier transform such as a Paley-
Wiener type theorem, which determines the image of the compactly supported functions.
This is done by, e.g., [1], [16, Remark 5.4] for classical V=R case, but not for generalized
case. In this paper we don’t touch this topic in detail.

We set Ky (x,y;t) := e~ cothtlbrattry) 7, (sinh_2 tP(:E%)y), the kernel function of 7, (t).
Then we can deduce from Theorem 1.3.2 that

Theorem 1.4.5. Take k € Z>q such that A + k > 27" — 1. Then if t = u+ v, u,v € R,
u >0,

T inh
[Kx(z,y:t)] < O (1 + (tratr y)7k> exp <_ S u

t t .
coshu—l—\cosv\( T ry))

Especially, if u = Ret > 0 then the integral defining 7 (¢) converges if ¢ is of polynomial
growth, and the resulting 7, (¢)¢ has exponential decay. Even if u = Ret = 0, if A > 27” -1
and t ¢ miZ, the integral converges if ¢ € L'(€, A(z)*~ 7 dx), and the resulting 7 (¢) is
bounded. In order to prove this theorem, we prepare the following lemma.

Lemma 1.4.6. (1) For x € Q the directional derivative of x — \/x is
1 -1
Dz = 5L (Vz) .

(2) For z,y € V if [L(x),L(y)] = 0, then there exists a Jordan frame {ci,...,c,} such
that z,y € R-span{cy,...,c }.

t t
(8) For x,y € Q, tr\/P(x%)y <Vtratry < %

Proof. (1) u = Dyz = D, (vVz)* = 22Dyvz = 2L (%) Duy/Z and then Dy\/z =
%L (\/:5)71 u follows.

(2) See [8, Lemma X.2.2].

(3) The second inequality is clear. For the first inequality, we take ky € K such that

tr4/ P(wé)ky (k € K1) attains its maximum at k = ko. We put koy =: yo. Then for any
Det= Lie(KL),

1 -1
tr P(a:%)etDyg = §tr (L ( P(xé)%) P(:Ué)Dy())

Dy0> .

-1

P@%D%)—;<Pm% P(27)yo




-1
We put P(az%) P(:c%)yo =:z. If D =[L(u),L(v)] (u,v € V), then

0 = (2|[L(w), L(v)]yo) = (z[u(vyo)) — (zlv(uyo)) = (zulvyo) — (zv|uyo)
= (yo(zu)[v) = (v](uyo)2) = ([L(yo), L(2)]ulv).

Since (-|-) is non-degenerate, [L(yo), L(z)] = 0. Also,

So especially [L(z),L(yo)] = 0. Let @ = 377 tjc;, y = > s;d; (tj,s; > 0, and
{cjtj=1,{d;}j—; are Jordan frames). Then,

T 1 T
tr\/ P(z )yStr\/P(w%)yO:tr P Ho

Jj=1 J=1

N
~
N
O
V)
<
O

T T T
:Z\/tjsjg th Zsj =/trxtry
j=1 j=1 j=1
and the proof is completed. O

Now we are ready to prove Theorem 1.4.5.

Proof of Theorem 1.4.5. By Corollary 1.3.2,

1
Re sinlht P(z2)y

NI

1

\Kx(x,y;t)\ < Cg\e—Recotht(trx-i-try) (1 +

rk 9
P(z2)y ) e
1

)”“) 2|Re 1| tr(\/P(z%)y)
)y e

sinh ¢

N

1
— (' e Recotht(trattry) (1 4~ ¢ P
x€ F Temngpe T V@

h w sinh
< Oy exp (_ cosh u sinh u (trx+try)> (1+‘/tr4Txtry k)

cosh? u — cos? v
sinh u| cos v|
X exp (trz+try)

cosh? u — cos2 v

rk sinh u
=C <1 trxt 7) - t t
e (1+ (ratry) exp( ot oo (T ry>)
and this completes the proof. O
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Chapter 2

Norm computation and analytic
continuation of vector valued
holomorphic discrete series
representations

In this chapter we compute explicitly the norm of the vector-valued holomorphic discrete
series representations, when its K-type is “almost multiplicity-free”. As an application,
we discuss the properties of highest weight modules, such as unitarizability, reducibility
and composition series.

Keywords: holomorphic discrete series representations; highest weight modules; Jordan
triple systems; composition series.
AMS subject classification: 22E45; 43A85; 17C30.

2.1 Introduction

The purpose of this chapter is to compute explicitly the norm of the vector-valued holo-
morphic discrete series representations, and to study the properties of the highest weight
modules, such as unitarizabily, reducibility and composition series.

Let G be a simple Lie group, such that its maximal compact subgroup K has a non-
discrete center. Then it is known that there exist a linear subspace p* C g€ and a bounded
domain D C p* such that the symmetric space G/K is diffeomorphic to D. Therefore
G/K becomes a complex manifold. Let (7,V) be a finite-dimensional holomorphic rep-
resentation of K€, and y~* be a suitable character of the universal covering group KC.
Then we can consider the representation of the universal covering group G on the space

of holomorphic sections of the equivariant vector bundle on G/K with fiber V & x =,

GATo(G/K,Gxi (Vax™)).

Since D ~ G/K is contractible, this space is isomorphic to the space of V-valued holo-
morphic functions on D,

To(G/K,G xz (Vex ™) ~0(D,V).

Then the infinitesimal action of the Lie subalgebra p* C g€ on O(D, V) is given by 1st
order differential operators with constant coefficients, and thus it annihilates constant
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functions in O(D, V). Such representations are called the highest weight representations.
Also, if A € R is sufficiently large, then this representation preserves an inner product
which is given by an explicit integral on D. Such representations are called the holomorphic
discrete series representations.

For example, let G := Sp(r,R), realized explicitly as

Sp(r,R) = {g € GL(2r,C) : g (—OI,, '8") tg = <—0IT Ig) . g <2 %) = <2 %) g}.
Then G/K = Sp(r,R)/U(r) is diffeomorphic to
D :={w € Sym(r,C) : I, — ww" is positive definite.}.
I_iet (1,/ V) be a representation of K¢ = GL(r,C). Then the universal covering group
G = Sp(r,R) acts on O(D, V) by

-1
A <<Z Z) ) f(w) = det(cw + d) 7 ((cw + d)) f ((aw + b)(cw +d)™*).

We note that det(cw +d)~* is not well-defined as a function on G' x D, but is well-defined
as a function on the universal covering space G x D. If Re A is sufficiently large, then this
preserves the sesquilinear form

(fyhoag = ﬁ /D (T((I —ww*)™ 1) f(w), h(w))_det(I — ww*) ) oy,

that is, (7x(9) f, 75(9)h)x+ = (f, h)+ holds for any f,h € O(D, V') with finite norms, and
for any g € G. Therefore Ty gives a holomorphic discrete series representation of G if
A € R and the above norm converges for some nonzero function in O(D, V). In this case
the corresponding Hilbert space Hy(D,V) C O(D,V) has the reproducing kernel

Ky (z,w) := det(I, — z2w0*) 7 (I, — 2w*) € O(D x D,End(V)),

if we choose the normalizing constant ¢y suitably. When r = 1, then we have G = SU(1, 1)
and D = {w € C: |w| < 1}, and the action 7) of SU(1,1) on O(D) reduces to the simplest

example
! aw +b
™ (( Z) ) f(w) = (ew+d)7f (cwjd) ,

with the invariant inner product and the reproducing kernel

A—1

™

(f by = /| SR — ol (2.1.1)
Kx(z,w) = (1 —zw)™ € O(D x D). (2.1.2)

We return to the general case. The question of when the highest weight representations
are unitarizable is studied by e.g. Berezin [2], Clerc [3]|, Vergne-Rossi [28], and Wallach
[29], and completely classified by Enright-Howe-Wallach [4] and Jakobsen [13] by different
methods. In [4] and [13] they used purely algebraic methods.

On the other hand, the analytical proof, the proof using explicit norm computation,
was only partially successful. When the fiber (7, V') is trivial, this is studied by e.g. Hua
[11], Upmeier [27], and Orsted [19], and completely done by Faraut-Korédnyi [6]. However,
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vector-valued cases are not computed yet except for a few cases, e.g. the case when (7,V)
is a defining representation of K€ = GL(s,C) (@rsted-Zhang [20], [21]), and the case when
G is of real rank 1 (Hwang-Liu-Zhang [12]).

Now we explain how the explicit norm computation gives informations on unitarizabil-
ity and reducibility in the simplest example. Let G = SU(1,1). Then the G-invariant
inner product (2.1.1) converges for any polynomial f,h € P(C) if Re A > 1, but does not
converge for any non-zero polynomial f,h € P(C) if ReA < 1. Suppose f, h has a Taylor
expansion f(w) = Y apw™, h(w) = > bpw™. Then for ReX > 1, we can compute
(f, h) explicitly as

o0

|
<f>h> = lamaa
=2t

where (A)m := A(A+1) - (A+m—1). This expression is available even if Re A <1, and is

also (g, K)-invariant. As a result, the reproducing kernel K (z,w) in (2.1.2) is expanded

as
00

Ky\(z,w) = (1 — zw) ™ = Z ()\W?L!Tnzmwm.
m=0
This expression is also available when Re A < 1. This kernel function is positive definite if
A >0, and thus (1), O(D)) is unitarizable if A > 0. Here, when A = 0, the corresponding
Hilbert space consists of only Oth order polynomials, and is of 1-dimensional. Also, for

A = =l € Z<y, the sesquilinear forms

l
ZO "Z)' (2.1.3)
1

. ad m)! -
AILHEZ(A + l)<fa h>)\ - (_l)l mgl mambm (214)

are well-defined and (g, K)-invariant on P<;(C), the space of polynomials of order at most
[, and on P(C)/P<;(C) respectively. Moreover (2.1.4) is definite. Therefore P<;(C) gives
a (g, K)-submodule, and P(C)/P<;(C) gives a infinitesimally unitary (g, K)-module.

To compute the norm for general G, we use the K-type decomposition of O(D,V)x =
P(pT,V) instead of the Taylor expansion, fix a K-invariant norm || - ||g, on P(p™,V)
independent of A (see (2.3.2)), and compare || - ||x and || - || on each K-type. Let

OD,V)k =Pp*,V) =P W

be a K-type decomposition such that each W; is orthogonal to the others with respect to
(,-)F,r- Then since || - ||x and || - |r- are both K-invariant, the ratio of two norms are
constant on W;. We denote this ratio by R;(\). Moreover, if W; L W; with respect to
(-,-)pr implies W; L W, with respect to (-, ) , (for example, if P(p™, V') is K-multiplicity
free), then we have

I£13., = ZR Whlz.  (feo@rh,v)

where f; is the orthogonal projection of f onto W;, and the reproducing kernel K -(z, w)
is expanded as

Ky (z,w) = ZR VK (2,w),
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where K;(z,w) is the reproducing kernel of W; with respect to (-,-)p,. Similarly to the
SU(1,1) case, if we compute R;(\) explicitly, then we can determine completely when the
representation is unitarizable, or reducible, and can get some informations on composition
series.

Since the above argument is available only if W; L W; with respect to (-, ), implies
W; L W; with respect to (-, ), we specialize our interest to (G,V)’s in the following
table.

G K V Where
Sp(r,R) U(r) AF(C)Y  (0<k<r—1) Thm 2.4.2
Thm 2.4.3 (¢ > s)
SU(q, s) S(U(q) x U(s)) CXV'" (V': any irrep of U(s)) Thm 2.5.1 (¢ < s)
sk(ce)Y Thm 2.4.5 (s even)

S0O*(2s) U(s) SE(C%) @ det™ /2 (k € Zx) Thm 2.5.2, 2.5.5 (s odd)
(Spin(2)x C k™ Vg kr) (k€ 320, n even)
Sping(2,n) Spin(n))/Zs C BV, (k€0 1, n odd) Thm 2.4.7
Eg—14y | SO(2) x Spin(10) C_jo MWHFRY) (k€ Zxo) Prop 2.5.8, Conj 2.5.11
Er(_95) SO(2) x Eg C Already done in [7]

In the above cases, except for G = SU(q,s) case, P(p*,V) is multiplicity-free under
K, which is proved by direct computation of K-type decomposition. We can also prove
multiplicity-freeness a priori by using [14, Theorem 2]. In G = SU(q, s) case, P(p*,V) is
not multiplicity-free in general, but each K-isotypic component sits in a single polynomial
space, and thus the arguments explained above is still available.

When G is of tube type or G = SU(q, s) with ¢ > s, which we deal with in Section 2.4,
we can compute the norm in a uniform way, by generalizing the technique used by Faraut-
Kordnyi [7]. For these cases, the fibers V' in the above table satisfy the condition that they
remain irreducible even if restricted to some subgroup Ky, of K, and this condition allows
us to compute the norm explicitly. The same condition also appears in e.g. [3], [10]. In
these papers they got some necessary condition on the unitarizability of highest weight
representations, by considering when the reproducing kernel on the tube domain becomes
a Laplace transform of some measure. Under the assumption that V|, is irreducible, the
necessary and sufficient condition is also computable, and therefore this assumption seems
to be natural.

However, when G is of non-tube type, there is no such uniform way to compute the
norm at this time, and we do this by purely case-by-case analysis. For example, we use an
embedding of G into a larger group, or use an embedding of some smaller subgroup into
G. We deal with such cases in Section 2.5.

We enumerate the main results of this chapter.

Theorem 2.1.1 (Theorem 2.4.2). When G = Sp(r,R), and (7,V) = (724 .1, Voli o ie,)
(k=0,1,...,r=1), |- HiT converges if Re A > r, the K-type decomposition of O(D,V )k

s given by
P(p+) & ‘/E\f_t,_‘.._i_gk == @ @

meZ’ , ke{0,1}7, |k|=k
m+keZ’,

\
V2m+k7
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and for f € V2\1/n+k, the ratio of norms is given by

By, T (= 3G - 1)
1112, I (A= 3G=D) 1,

T ot J=1
1

I (=50 =D 4 )y Tt A= 30 = 1),

Theorem 2.1.2 (Theorem 2.4.3, 2.5.1). When G = SU(q, s), and (1,V) = (1(‘1)®7-1£5)7(C®

Vés)) (keZsy), |- |13, converges if ReA+ ks > g+ s — 1, the K-type decomposition of
O(D, V) is given by
Pee (€)= B B dnndund)

meZi |, nem+wt(k)

and for f € Vn(f)v X Vés), the ratio of norms is given by

HfH)\ 1@Rr ( ) B Hj:l()\ — (] — 1))]% _ 1
B Hj’:1()‘ - (] - 1))nj a Hj’:l()‘ - (j - 1) + kj)nj_kj

Theorem 2.1.3 (Theorem 2.4.5). When G = SO*(4r), and (1,V) = (T(Vk 0,..0) V(Z 0. 0))
(k € Z>0), || - |13 converges if Re A > 4r — 3, the K-type decomposition of O(D,V ) is

given by
\%
P(p ) ® Vk ,0,. @ @ ‘/(mlJrkl,ml,m2+k2,m2,...,mr+kr,mr)7

mEZ"" ke(Zzo)r |k‘=k
Oﬁkj <mj_1—m;

and for f € leJrk1 T ST A the ratio of norms is given by

HfH)‘Toco ,,,,, 0 _ ()\)k . 1
W2l I =20 = D)k A+ Bty [l = 20— 1) )omy ok,

j=1
When G = SO*(4r), and (7,V') = (T4 a0, o —k2) Vijo,. kja—ks2)) (8 € Zz0), |15 -
converges if Re A > 4r — 3, the K-type decomposition of O(D,V )k is given by

-&d b v
(m1,m1—k1,ma,ma—ka,...;mr,mp—ke)+(%,.... 5 )’

meZ, | ke(Zso)", [k|=k
ngj<m] mj41

(k,0,...,0)

Phph) ® V(

EE
22

299

and for f € V the ratio of norms is given b
for f (m1,mi—k1,ma,ma—k,...ompmr—ke)+( 5, %) / g y

71 .
AT /20 k)2~ K )2) _ H§:1(>‘ =207 = 1)
M T 020~ Dy yor

..... k/2,—k/2)
1

H;;i ()‘ +k— 2(.7 - 1))mj—k3j (>‘ - 2(T - 1))mr_kr+k.
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Theorem 2.1.4 (Theorem 2.5.2, 2.5.5). When G = SO*(4r+2) and (1,V) = (T(\/{C o)

(k € Z>o), || - HiT converges if Re X > 4r — 1, the K-type decomposition of O(D, )
given by

+ Vv _ \Y
P @ V(k70,.,.,0) - @ @ V(ml-*-kl7m17m2+k’2,m27~-~7mr+kr,mr7kr+1)’

meZl | ke(Zxo) i |k|=k
ng] Smj_l —my

VY

and for f € Vm1+k1 T ST T SR the ratio of norms is given by
2
B, e
My, o TG0 =26 = Dy O 200k

1
B ()‘ + k)mlJrkl*k H;:2()‘ - 2(] - 1))m]’+k]’(A - 2T)kr'+1 .

When G = SO*(4r + 2) and (1,V) = (T(\;c/Q,..‘,k/Z,fk/Q)’V(\IQ/Q,...,k/ka/Z)) (k € Z>o),
Il - HiT converges if Re A > 4r — 1, the K-type decomposition of O(D,V )k is given by

\Y
P(p ) ® V% g % @ @ Vv(ml,ml—k:1,mg7m2—kQ,...,mhmr—kr,—kﬂ_l)-i-(g,...,g)’

meZl | ke(Zxo) ik|=k
0<k;<mj—mji1

OSkTSm'r
and for f € le ket iz — ey e — ki =y ) (£ )7 the ratio of norms is given by
HfHA T(k/2 ..... k/2,-k/2) ngl ()‘ - 2(] - 1))k
1. [Tor (20— D)y o A28 + Dy

k)2, k)2, —k/2)
B 1
[oi A+ k=20 =1))y g, A =20+ 1)y

Theorem 2.1.5 (Theorem 2.4.7). When G = Sping(2,n) and

(r, V) = { (x "X Tty ertk)s C—ke @ Vik, ok k) (k? € %Z>0) (n : even),
’ (X "R 7k, 1) Coke ® Vige, 1)) (k=0,3) (n:odd),

Il - ||§\T converges if ReA > n — 1, the K-type decomposition of O(D,V )k is given by

@ @ C_mytmatk) B Vimy—mo sk, kx1) (0 even),
meZ? —k<I<k
’P(p"‘) QV = i —me H>k
@ @ C_tmitmatk) B Vi —motik, k) (0 odd),

mez2, —h<I<k
mi1—mo+I>k

and for f € C_(mytmatk) B Vieny —mot ik, kx0) 07 C iy tmotk) B Vieny —mot ik, k1)), the
ratio of norms is given by

£, (Va _ 1
||f||%‘77' ()\)Tfu-i-k-H ()\ - nT_Q)mQ-‘,—k—l ()\ + Qk)ﬂh—k-‘rl ()\ - nT_Q)mQ-i-k—l
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We also state the conjecture on Eg_14) in Section 2.5.5. From these theorems we can
get informations on unitarizability, reducibility and composition series.

This chapter is organized as follows. In Section 2.2 we prepare some notations and
review some facts on Lie algebras of Hermitian type and Jordan triple systems. In Section
2.3 we state and prove the theorems (Theorem 2.3.1, Corollary 2.3.4) which plays a key
role in this chapter. In Section 2.4 and 2.5 we compute the norm explicitly. In Section 2.4
we deal with the cases that the norm is computable directly from the theorem in Section
2.3, and in Section 2.5 we deal with the cases that need more techniques. In Section 2.6
we apply the results on norm computation to the problems on unitarizabily, reducibility
and composition series.

2.2 Preliminaries

2.2.1 Root decomposition

Let g = €®p be a simple Hermitian Lie algebra, that is, the maximal compact part £ has a
1-dimensional center. We take an element z from the center of £ such that the eigenvalues

of ad(z) are +v/—1, 0, —v/—1, and let
" =ptotCop

be the corresponding eigenspace decomposition. We denote the Cartan involution of g©
(the anti-holomorphic extension of the Cartan involution on g) by . Then p* has a
Hermitian Jordan triple system structure with the product

1
(x,y,z)r—>{x,y,z} = _5[[:%293/}7'2}7 xay,Z€p+-

We take a maximal abelian subalgebra b C £. Then h® becomes simaltaneously a Cartan
subalgebra of both ¢¢ and g®. Let A = A(g%, b®) be the root system. We denote by
Ayx, Ay the all roots « such that the corresponding root space gg is contained in p*, €€
respectively. Also, we take a positive root system A, = A, (g%, h*) such that Agr CTAY,
and we denote Agc | := A N Ay We set n:=dimp™, r := rankg g.

We take the set of strongly orthogonal roots {71,...,7} C Ay+ such that

(1) 71 is the highest root in A+,

(2) i is the root in Ay+ which is highest among the roots strongly orthogonal to each
v with 1 <j <k -1,

and for each j, we take e; € ggj such that —[[e;, Je;], ¢;] = 2¢;. Then a := P_; R(ej —

Yej) C p is a maximal abelian subalgebra in p, and {e1,...,e,;} is a Jordan frame on p+.
We set e :=>"_je; € pT (a maximal tripotent), and h := —[e,Je] € v/—1h. Then ad(h)

has eigenvalues 2,1,0, —1, —2. We set
pT = {w € p® 1 [ha] = +22} C p*,
C — C
éT = [p’}_?pT] ct ’
g% = pff@?%@p{,
gri=gr Ng.
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Then, p;ﬁ becomes a complex simple Jordan algebra with the product

1

x-y:={zx,ey} = —5[[33,196],y], (2.2.1)

and gt becomes a Lie algebra of tube type

We define the Cayley transform c:9% = g€ by ¢:= Ad(ed (e 196)) and set ‘g := ¢(g),
gt := c(gr). Then gr C g% is fixed by the involution o0 := Ad(ez (e+’9€)) o . By direct
computation we have

1 2
m9|p¥ = iad(e) ot :pt — pi,
oilec = (idee + ad(e)ad(Ve)) o ) : EF — B,
1 _ _
m9|P¥ = Ead(ﬁe)z o pp — P
That is, 01 preserves the grading. Therefore we denote
‘gr=nt@l®n” Cpt €T pr = gF.

Then the real form nt of p}r becomes a Euclidean simple Jordan algebra.
We set a:= c(a) = vV—1hNl= @]_; Rh;, where h; := —[e;, Je;]. Then the restricted
root system 3 = ¥(°g, a;) is given by

1 1<g,k<m, 1
{2(%'—%) : . }U{i2(7j + )
Y —

ar ‘ j ?é ]{:
(as above)U{j:; :lgjgr} (g # g1).
ar

:1§j§k‘§7“} (9 =91),

ar

Vi

We define the positive restricted roots >, by

1 ) 1
{2(%—%) 1< <7€§T}U{2(7j+7k) 1< <k‘§7“} (9 = g1),
E+ — ag ay
1 .
(as above) U 2| 1<j<r (g # g1).
a
Then ¥ and A, are compatible, that is, & € A} implies alq, € X4 U {0}. We set
1
i = {X €r:adH)X = 5(7]- — ) (H)X for any H € a[} (1<jk<r j#k),
my { g% :ad(H)X =0 for anyHEa[},
1
n]ik = {X €gr:ad(H)X = Zti("}/j + ) (H)X for any H € a[} (1<j<k<nr),
P = (0" 1<j<k<r),
1
p(jfj = {X €ptiadH)X = igyj(H)X for any H € a;} (1<j<r),
and

b= = {X e[:9X = Ad(e2“T79))X = X},

Ill_ = @ [jk~

1<k<j<r
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Then we have

[:a[@m[@@[jk:ﬂ@a[@n[—,

j#k
+ + + + + +
ne = @ Wik bt = @ P> = @ Pk
1<j<hk<r 1<j<h<r 0<j<k<r

(7:K)#(0,0)

The decomposition nt = @ i<k njk, or pt =P i<k pj’k, coincides with the Peirce decom-
position of the Jordan algebra n*, or the Jordan triple system p™, with respect to the
Jordan frame {ey, ..., e, }. We set d := dimc pJy, b := dimc pg;, and nr = dimc p¥. Then
n=r+3r(r—1)d+br and ny =7+ r(r — 1)d holds. Also we set p :=2+ (r —1)d +b.

Throughout this chapter, let G be a connected complex Lie group with Lie algebra g€,
and let G, °Gr, K, K©, K% be the connected Lie subgroups with Lie algebras g, “gr, &, £C, E%
respectively. Also we set L := KCN°Gr, K :=KNL (possibly non-connected, with Lie
algebras [, (), let Az, N, be the connected Lie subgroups of L with Lie algebras aj,n;
respectively, and let My, be the centralizer of a; in K.

We write
T :=odx = %ad(e)%ﬁx) (z € p),
I* = —0l (1 € €%),
.= —ol = —(idgc + ad(e)ad(de)) (1) (1 € £5),
[ := o0l = (idec + ad(e)ad(Ve)) (1 € £5).

Then these are (anti-)involutions on pi, £C and ‘E%, which preserves nt, €, (£)C and [

respectively. Also, we denote by the same symbols *, * and ~ the corresponding (anti-

)Jinvolutions on K€ and K%. Also, for z € p* and I € K€ or £, we abbreviate Ad(l)z or
ad(l)x as lzx.

2.2.2 Some operations and polynomials on Jordan algebras

As in the previous subsection, p* has a Jordan triple system structure, and pJTr ,n" has
a Jordan algebra structure. For z,y € pT, we define z0y, B(x,y) € Endc(p™) by, for
zept,

1
(ZL‘Dy)Z = {x,y, Z} = _iad([xaﬁy])za
1
B(z,y)z == x — 2{z,y, 2z} + {z,{y, z,y}, 2} = <Ip+ + ad([z,dy]) + 4ad(x)2ad(ﬁy)2> z.

These depends holomorphically on x, and anti-holomorphically on y. Also, for x € p¥, we
define L(z), P(x) € Endc(ps) by, for y € pt,

L)y =z = — ad(fw, de])y
P(z)y = 2z(xy) — (2})y = iad(x)Qad('ﬁe)Qy.

Then for x,y € p* and | € K€,
01"y =
B(lz, (") ly) =

(z0y)l

!
IB(z,y)l

32



holds, and for z € pf, | € K%,

P(lz) = IP(2)1,

B(:z:,f)|p¥ = P(e — z?)

holds. We define an inner product (:|-) on p™ by
2 gt
(zly) :== ;)Tr(a:[ly pT = ph).

Then for I € K©, (lz|y) = (z|l*y) holds. This inner product is proportional to the
restriction of the Killing form on g® to p™ x p~, under the identification of p* and p~
through . Also, let tr(x), det(z) be the trace and determinant polynomials of the Jordan
algebra pJTr, and let h(x,y) be the generic norm of the Jordan triple system p*. Then these
polynomials are expressed by

”TT tr(z) = Te(L(z) : pf — pa),
(det(x))*"*/" = Det(P(x) : pf — p),
(h(z,y))? = Det(B(z,y) : p* —p™).

tr(x) is a linear form satisfying tr(z) = (z|e), and det(z), h(z,y) are polynomials of degree
r with respect to each variable. These polynomials satisfy

det(lz) = det(le) det(z) (1€ K%, x €pt),
h(lz, (I*)""y) = h(z,y) (le KS xyept),
h(z,T) = det(e — z?) (z € p).

From now we abbreviate B(x,z) = B(x), h(z,z) = h(x), and (z|z) = |z|? for = € pt.
Then B(x) is self-adjoint on p™, and therefore h(z) is real-valued. Also we set

Q:={2®> en’ :zen’, det(x) # 0},
D := (connected componet of {w € p* : h(w) > 0} which contains 0).

Then L acts on by linear transformation, and G acts on D C p* via Borel embedding,
which we will review later. Moreover we have

Q~L/Kp, D~G/K.

For z € Q, P(z) is positive definite on n*, and there exists a unique element [ € exp(I~?) C
L such that P(x) = Ad(l)|,+. We denote such [ € L by the same P(x). Similarly, for
z,w € D, B(z,w) is invertible on p*, and there exists an element | € K© such that
B(z,w) = Ad(l)|y+. So we define the holomorphic map B : D x D — K* (with the same
symbol B) such that Ad(B(z,w))|,+ = B(z,w) and B(0,0) = 1. Clearly P(z) and B(z, w)
are also well-defined as elements of the universal covering groups L, KC.

Now we recall the Peirce decomposition

= P b

0<j<k<r
(4,k)#(0,0)
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We set

p(7) = D P

1<j<k<l

forl =1,2,...,r. Then each p?g) is again a unital Jordan algebra. For each [, let det(;) be

the determinant polynomial of pa), P opt — p(+l) be the orthogonal projection, and we
set
Ay(z) = det()(Pi(x)).

For | = r we also write

A(z) = Ap(z) = det(z).
Using these, for s = (s1,...,s,) € C", we set
Ag(x) = Ar(x) 752 Ag(x)%27% - Ap_q1(2)* 1 Ay ().

IfmeZ and my > mg > --- > m, > 0, then Ay, is a polynomial of degree my+---+m,..
We denote this condition by Z/, , :

7l ={m=(my,...,my) €Z" :my >--->m, > 0}.
For later use, we prepare another set Z', :
Z ={m=(my,...,my) €EZ" :my >--->m,}.
Now for g € (M ALN, )€, since q preserves each ng)’ we have
As(gz) = As(ge)As().

That is, for any m, Ay, is a lowest weight vector with lowest weight —miy1 — - - - — mv,
under the representation

L—End(P(p), L (F(x) — f("'2)
where P(p™) denotes the space of all holomorphic polynials on p*. In fact, we have

Theorem 2.2.1 (Hua-Kostant-Schmid, [5, Part III, Theorem V.2.1]).

Pert)= B Pub®)

mezZl

where P (p™) is the irreducible representation of K€ with lowest weight —myy, — -+ —
MYy

We quote another theorem here.

Theorem 2.2.2 ([7, Theorem XII1.2.2]). The irreducible representation V' of L has a K-

fixed vector if and only if the lowest weight —X is of the form —\ = —myy1 — -+ — My,
with (mq,...,m;) € ZI..
For1=0,1,...,r we set
Oy = Ad(K®)(e; +---+¢) C pt. (2.2.2)
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Then KC acts on each O; transitively, and we have the orbit decomposition
pT=0UOU---UO,.

For each orbit O, its closure O is given by
O, =0,U0,U---UO,.

Also, since the polynomial A, 1(x) vanishes on Oy, the polynomial space on O; decomposes
under K€ as

P(O) = b Pen(ph). (2.2.3)

T
mezZl |
myp1=myyo=--=0

Each orbit O; has the dimension
1
dimec O; =1 + 5[(2?" —l—1)d+1b (2.2.4)
since the tangent space of O; at e; + --- + ¢; is given by

— +
T31+...+elO[ = @ p]k
0<j<k<r
J<L, (5,k)#(0,0)

Now we recall the generalized Gamma function, which was introduced by Gindikin [8].
For s € C" this is defined as

To(s) := /Q e @A (2)A(z)” 7 da.

d
2

Ta(s) = (2r) 7 jlle <3j - (- 1)3)

This integral converges if Res; > (j — 1)%, and we have the following equality

([7, Corollary VIIL.1.3]), and this is meromorphically extended on C". Also we denote
Fo(s+m) . , d
=T —G-Ds) .
(S)m FQ(S) H (S] (j )2> .
j=1 my;
For s = (A,...,\), we abbreviate (A,...,\) =: \. For example, we denote

To((A-. s A) =Ta(N), (oo A))m = Fﬂé?);;)m) = (M.

2.3 Norm computation: General theory

2.3.1 Holomorphic discrete series representation

In this subsection we recall the explicit realization of the holomorphic series representation
of the universal covering group G. First we recall the Borel embedding.

G/K —=G%/K®P~
|

12 TeXP
Y

pD— o p+
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We consider maps 77 : G x D = D CpT, k:Gx D — K® 77 : G x D — p~ such that

gexp(w) = exp(rT (g, w))k(g, w) exp(r™ (g, w)) (g € G,we D).
Then 7t gives the action of G on D, so we abbreviate 77 (g, w) =: gw. On K C G this
coincides with the adjoint action. Also, x satisfies the cocycle condition

k(gh,w) = k(g, hw)s(h,w)  (g9,h € G, we D),

and for k € K, r(k,w) = k holds. Ad(k(g,w))|,+ € End(p*) coincides with the tangent
map of w — gw = 77 (g,w) at w € pT. We naturally lift x to the universal covering group,
and we denote this map by the same symbol & : G x D — KC.

Let (7,V) be a finite dimensional irreducible complex representation of K C. and we
fix a K-invariant inner product (-,-), on V. Also, let x* be the character of K€ such that
x(k)* = Det(Ad(k:)\er))‘/ P, 'We consider the space of holomorphic sections

To(G/K,Gxg (Vex™)).

Then since G/K ~ D is contractible, this is isomorphic to O(D, V'), the space of V-valued
holomorphic functions. Under this identification, the natural action 7y of G on O(D,V)
is written as

ma(9) f(w) = x(k(g~H w) r(k(g w) " f(g7'w) (g€ G,we D, f € OD,V)).

Its differential representation is given by, for u + 1 — 9v € p* © € @ p~ = ¢,

dry(u+1—9v) f(w) = =Mdx (I + [w, Iv]) f(w) + d7(l + [w, Pv]) f (w)

d . f (w —t <u + ad(l)w — ;ad(w)26v>) .

Tt
Then since (g, w)B(w)k(g, w)* = B(gw) holds for any g € G, w € D (see [16, Lemma
2.11]), this action preserves the following weighted Bergman inner product

(fs @ = % A (r(B(w)™H) f(w),g(w))  h(w)*Pdw  (f,g€ O(D,V)), (23.1)
where c) is a constant defined such that ||v||), = |v|; holds for any constant functions
z+— v € V (ie. for any element of the minimal K-type). Let Hx(D,V) C O(D,V)
be the unitary subrepresentation of G under 7y. Then (D, V) is non-zero if A\ € R is
sufficiently large so that the above inner product converges. On the other hand, we cannot
know a priori whether H (D, V) is zero or non-zero if A is small. In any case, if H)(D,V)
is non-zero, the reproducing kernel is proportional to Kgex -(z,w), where

Ky (2, w) := h(z,0) *1(B(2,w)) € O(D x D,End(V)).
This is because the reproducing kernel K (z,w) is characterized by

X(k(g,2)) 7 (k(g, 2)) " K (g2, gw)7(k(g, w))* ' x(r(g,w))* = K(2,w),

and such K (z,w) is unique up to constant multiple, since G acts transitively on the totally
real submanifold diag(D) C D x D, which allows the value at origin K(0,0) to determine
the whole K (z,w), and K(0,0) € End(V) is proportional to identity since this commutes
with K-action. When A € R is sufficiently large, then the reproducing kernel corresponding
to the inner product (2.3.1) is precisely K -(z,w) by the normalization assumption.
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2.3.2 Key theorem

The norm || - || in the previous subsection is G-invariant, and therefore K-invariant.
From now on we observe how the norm varies as the parameter A varies on each K-type.
In order to compare, we consider another K-invariant norm which is independent of .

We recall the Fischer inner product (-,-)p, on P(p™, V), the space of V-valued holo-
morphic polynomials on p+.

1

o9)rr = = | J@)glw)ee e (fgePETV).  (232)
p+

This inner product is invariant under the following representation (7, P(p™, V)):
(F(k)f) (w) := 7(k) f(k'w) (ke KE, fePpT,V), weph),

that is, (F(k)f,9)rr = (f,7(k*)g)r holds. Let W C P(p*,V) = O(D,V)k be a K-
irreducible subspace. Then since both |||/ r - and ||| - are K-invariant, the ratio of these
two norms are constant on W. Therefore we aim to compute this ratio of two norms.

In order to state the key theorem, we prepare some notations. Let

(7—7 V)|K$ = @(Tiv VZ)

be the decomposition of the KC-module (1, V) into K%—irreducible submodules, and for

each i we denote by (7, V;) the complex conjugate representation of V; with respect to the
real form L C K%, that is, there exists a conjugate linear isomorphism ~: V; — V;, and 7;

is given by 7;(1)v = 7(I)v. Let
rest : P(p*, V) = P(pf, V) = PP, Vi)

be the restriction map, and for each ¢ we take K%—submodules Wi; C P(p%, V;) such that
rest(W) C @ @ Wij
(]

holds.

Theorem 2.3.1. Let (T, V)]Kgrz = @,(7:, Vi), and suppose each (7;,V;) has a restricted

lowest weight — (kglfyl NI kgr%> . Let W C P(p+, V) be a K -irreducible subspace,
a

with rest(W) C @, @,; Wi; C @D, P(p+, Vi) as above. We assume

(A1) (13, Vi)| K, still remains irreducible for each i.

(A2) For each i, j, all the Ky -spherical irreducible subspaces in W;; @ V; have the same
lowest weight — (nijivi + -+ + NijrYr)-
Then the integral ||f|]§\7 converges for any f € W if Re(X)+k;» > p—1 for alli. Moreover,
there exist non-negative numbers a;; such that, for any f € W,
1715~ e L Ta(A 4k —3)
IF1E,  Xijes 57 Ta(A+ny)

where
L Lo (A 4k %)

N T dimv Zi:(dlmvi) To(h + k)
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In the rest of this section we prove this theorem. We set HinT/HfH%T =: Ry (A) for
f € W, and compute this ratio Ry ().

Let Ky (z,w) € P(pT x pT,End(V)) be the reproducing kernel of W with respect to
(-,-)F.r, that is, for an orthonormal basis {f;} of W with respect to (-, ),

Kw(zwp =3 (@, fiw) fiz) eV,

i

which does not depend on the choice of {f;}. Then the ratio Ry (\) is computed as

cAZ / ) fi, f3), hwPPduw

and if the numerator converges, then || fi||3  converges for any i, and so does || f||3 . for
any f € W. To proceed the computation, we use the following lemma.

Lemma 2.3.2. For any integrable, or non-negative-valued measurable function f on p™,

we have
5 iy o

where 3 is the square root with respect to the Jordan algebra structure (2.2.1) on  C n™.

Proof. For tube type case (b = 0) see [7, Proposition X.3.4]. Even for b # 0 case we can
prove this similarly. ]

Since the integrand of Ry () is non-negative-valued, by this lemma, this is equal to
ex / / TrV B(kz2) YKy (kx2, k;m%)) h(kz ) PA(z) dkda
QN (e
11\ ke?p? b
Try Kw(kxz,kxz))e k22 * A (2)0 deda
QJK

Since the reproducing kernel satisfies

Kw (kz, K w) = 7(k)Kw (z,w)r (k') (z,w € p*, ke K©),
we have,

Ky (kz?, ka2) = 7(k) Ky (P(z~ 1)z, P(z1)e)r(k™Y)
= r(k)r(P(z~ 1) Ky (z,e)r(P(zi)r(k™)  (z€Q ke K).

Therefore we have ) .
Try (Kw(kwi, kxi)) = Try (Kw(z,e)).
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Also, since k:_lB(k:x2) 'k = B(x %) = P(e—z)~! and P(e—x)~! commutes with P(xi),
we have

Try (T(B(kx%)*l)KW(kx%, kx%)) = Try (r(P(e — 2) Ky (z,e)) .
By these and h(l{:x%) = Ae — z), |kx%|2 = tr(z), we have

C)\/ Try (7(P(e — ) Y Ky (z, e)) Ale — )N PA(z)bdx
QN(e—Q)

Ry (X) =
/Q Try (Kw (z,€))e” "@ A(z)da

By the assumption, we can rewrite Ky (2, w) by using Ky, (2, w), the reproducing kernels
of Wi;, when z,w € pff:

KW(Z7w) = ZainWij (z,w) S ,P(p—iT_ X gv End(V)) (va € PJ'T_),
ij

using some non-negative numbers a;;. Therefore we have

Y Z ajj / Try, (r:(P(e — a;)*l)KWij (z,€)) Ale — 2) PA(z) dx
ij QN(e—Q)
Ry (A) =

Za,]/TrV (Kw,, (z, e))e "@A(z)bdx

Now we set

Ly = [ T (K, (o) A ds
so that Ry (\) = ¢x (ZU aZ]BZ-j(/\)) / (ZU a1 ) Now, we regard Ky, (z,e) € P(p7, End(V;))
as a function of x. We define the action 7; of K% on P(p+, End(V;)) by
(7:(k)F)(x) := 7 (k) F (k™ 2)7 (k) (k € K%, F € P(pt, End(V;)),z € pt).
Then Ky, (7, e) is Kp-invariant under 7;. Now we identify
(73 P(pg, End(V7))) = (Fle ® 73, Plpr, Vi) @ V7).

Then under this identification Ky, (x,e) sits in Wi; ® V;, and therefore by (A2) this sits
in the space with lowest weight —(n;;171 + - -+ 4+ n4j,7-). That is, there exists a function
Fj; € P(p+,End(V;)) such that

(F(@)Fi)(@) = D, (') Fy(x) (g€ AN}z € p),
/K (F(K)Fy) ()dk = K, (¢ €).

We note that | x, (7(k)Fij)(x)dk is non-zero for any non-zero N -fixed vector Fy;, since
we have (Fyj, Kw,;(+,e))r # 0, which is proved by using the Iwasawa decomposition L =
K AN I
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From now, we compute B;;(A) formally, allowing variable changes. By using Fj;, we
rewrite Bz]()\) and F”

Ty = /Q Try, (Fy(xz))e” @ A(z)d.
For y € ) we set
I(y) := / Try, (1a(P(y — :L“)_l)Fij(I)) Ay — )V PA(x)da (2.3.3)
QN(y—Q)
so that I(e) = B;;(\). We take ¢ € AL N, such that y = ge, and set © = gz. Then
I(y) = / Try, (Ti(P(q.(e - z))_l)Fij(qz)) A(g.(e — Z))’\_pA(qz)bA(qe)nTsz
QN(e—Q)
= [y T AP = 97 a9)) B~ 2T A ) s
B / Try; (ri(Ple = 2)")Fy(2)) Any (ge)Ale — 2)* PA(2)?A(ge)*™ " dz
QN(e—Q)

nT

= I(€)An,, (AW T = Bij(M)Axin, ) Ay) 7.
Now we calculate [, I(y)e™ ¥ dy by two ways.
[ 10 0y = By [ DA, A dy = By(NTa(h + 1)
[ 1weway [ e Tay, (ri(Ply — ) ) Fyg() Aly — ) PA (@) dady
Q zeQ,y—xeN
= // e~ @) Ty, (Ti(P(Z)_l)Fij(IE)) A(2))PA(x)dzdz
€N, zeN

~ Ty, < /Q e~ 1 (P(2) ") A(2) Pd /Q e_tr(x)Fij(x)A(x)bdx>.

Therefore, formally

; e tr(m)Fij (:U)A(x)bda:>

holds. By Fubini’s theorem, variable changes are verified and the above equality exactly
holds if

// e” ) Ty, (73(P(2) 1) Fij(2)) | A(2) WV P A(2) dadz < oo
€N, zeN)

is verified, and since all norms on the finite-dimensional vector space End(V;) are equiva-
lent, this holds if

A(2)ReN Pz < o0, (2.3.4)

e @ e
Q

/ e MO Fy(@)],, op Alw)dz < 00 (2.3.5)
Q 1

Ti,0P
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hold, where | - |, o, denotes the operator norm. Since

o) (Fi(w)u, )

= m
Ti,0p u,veV;\{0} |U‘n |U|n

holds and (Fjj(x)u,v); is a polynomial on Q for any u,v € V;, (2.3.5) exactly holds. Also,
since 7;(P(2)7!) is self-adjoint and positive definite for z € Q, we have

|(7:(P(2)" Y, u)-,
= max )
Ti,0p ueV;\{0} |u|2_Z

|7i(P(2)7")

and elements v € V; such that

/ ™ T (7i(P(2) o, v)7 ] A2) N Pdz < oo (2.3.6)
Q

forms a Kj-invariant vector subspace, by the triangle inequality and the K-invariance of
the integral. By assumption (A1), such vector subspace is either V; or {0}. Thus (2.3.4)
holds if and only if (2.3.6) holds for some non-zero v € V;. Moreover, again by assumption
(A1), the integral

TN = /Q =) (P(2) ") A ()N Pde (2.3.7)

is proportional to the identity operator Iy, if (2.3.6) holds, since this I';(A) commutes with

Kp-action. Now we prove (2.3.6) for v € V; lowest weight vector, assuming Re(\) + k; » >

p — 1. Since the restricted lowest weight of V; is —kg’lfyl — k;”%‘a , for g € ALN,
[

we have

(ri(P(ge) ™ )v, v)r, = (ril'a ™ a v, v)r = mala™)olZ = A (a7 1e)?|vl7, = A (ge) vl

Sy

and this is positive valued. Therefore we have
(T (Ao, v)s, = /Q e~ (1, (P(2) Yo, v)r A=) Pd
= [ e TOAL AP bl
—Tq ()\ ki — ;) 2 (2.3.8)

if Re(\) 4 kir > p— 1. That is, (2.3.4) is verified, and T/(A) = g (A + k; — 2) Iy; holds.
Therefore,

_FQ (/\+k1_%) —tr(z) b _ Lo ()\—i_kz_%)
B = "p 0 gy Y </Q€ AR ) = TE Ny

exactly holds, and

A _To(M+ki— %)
= = Qjj Lij.
245 @iLij 4 Fo(A+njj)

Rw () =

By putting a;;I';; =: a;;, we get the desired formula.
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When W =V, clearly we have rest(V) = &;V;, and Ky (z,w) = Iy, Ky,(z,w) = Iy,.
Thus, the coefficients

a; =T; = / Try, (Kv; (z,€))e” @ A(z)bdx
Q
= / Try, (Iy; )e” "@ A(z)bda = (dim V;)Tq <ﬁ> .
Q r
Also, by assumption (A1), K-spherical vectors in (7,End(V;)) ~ (1; ® 77, V; ® V;) is pro-

portional to Iy;, that is, dim End(V;)%% = 1. Therefore, assumption (A2) is automatically
satisfied, with n; = k;. Since c) is determined such that Ry, = 1, we have

o 1 N n Po (A +k — %)
N T Zz(dlmVZ)FQ (%) Zz:(dlm‘/l)rﬂ (7") FQ(}\+ki)
1 o Ta(A+k—12)
~ dimV Zi:(dlmv’) To(A + ki)
and this completes the proof. O

Remark 2.3.3. The integral I, , in (2.3.7) is essentially the same as the “Gamma func-
tion” in [9, Definition 3.1], [10,’ Section 4] on End(V;), or the integral with the measure
Ry, in [3, Theorem 3.4], and the property of I, \ or the finiteness of (2.3.4) have been
already proved. Howewver, since the notation is 7dz'ﬁerent, the author wrote the proof for
completeness.

If (1,V)] ¢c s still irreducible and rest(W) C P(p+, V) consists of one irreducible K&-
module, then Theorem 2.3.1 becomes easier.

Corollary 2.3.4. Suppose (T, V)|K$ has a restricted lowest weight — (%71 N %%)
Let W C P(p*t, V) be a KC-irreducible subspace. We assume
(A0) rest(W) C P(pL, V) is irreducible as a K%-module.

ar

(A1°) (1,V)|K, still remains irreducible.

(A2’) All the K1 -spherical irreducible subspaces in rest(W)®V have the same lowest weight
- (nlf)/l +-+ nr’}/r)'

Then the integral || f||3 . converges for any f € W if Re(\) + k, > p — 1. Moreover, we

have
_ (A + k)
Lo (A+k—12)’

Cx
and for any f € W, we have
IF1X-  Tad+k) (Wi 1

I£l7;  TaA+n) ~ (Ma (A +Knx’
The assumption (A0) is automatically satisfied if
e G =(Grie. Gis of tube type, or
e G=SU(q,r) (¢<r),and V=CKXV' asa K = S(U(q) x U(r))-module.

In Section 2.4, we deal with these cases explicitly, and in Section 2.5, we deal with the
cases such that Corollary 2.3.4 is not applicable. To remove the ambiguity of the action
of the center, we assume k;, > 0 for any 4, and k;, = 0 for some 4.
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2.4 Norm computation: Tube type case

2.4.1 Explicit roots

Before starting the computation of norms, we fix the notation about roots of classical Lie
algebras of Hermitian type.

Let g = £ @ p be a classical simple Lie algebra of Hermitian type, i.e. one of sp(r,R),
su(q, s), s0%(2s), or so(2,n). We fix a Cartan subalgebra h C €. Then h automatically
becomes a Cartan subalgebra of g. We take a basis

{ti, b2, t,} CV/=1b (g =sp(r,R)),
{ti,t2,. . tgrs} € (V-1h) @R (g =su(g,s)),
{t1,ta,...,ts} C vV/—1b (g = 50%(25)),
{to,t1, -+, tny2)} C V—1h (g =s0(2,n)),

with the dual basis {¢;}, such that the simple systems Il c, Il,c of positive roots A, (g%, 50),
AL (€5, 5C) are given by

( .
{8j_8j+1:]:1a"'7r_1} (gzsp(T7R)),
{8j-€j+1:j:1,...,q—1}

HEC: U{ejJrl_ej:jZQ+1a"'aQ+S_1} (gzﬁu(QVS))a
{ej—¢ejr1:j=1,...,s—1} (g = s0%(2s)),
{ej—ejpr:j=1,...,s =1} U{es—1 + &5} (g =50(2,25)),
{ej—ejpr:i=1,...,s =1} U{es} (g =s50(2,25+ 1)),

{2e,} (g =sp(r,R)),
— =su(q, s)),
Mye = e U {eq —cq+s} (g iq s))
{es—1 +est (g9 =150"(2s)),
{eo—e1} (g =s50(2,n)).
Then the central character dy of £ is given by
e1t-te (g =sp(r,R)),
dX: 51+"'+5q:_(5q+1+"'+5q+8) (QZBU(Q,S)),
ser+-+es) (g =s0"(2s)),
€0 (g =s50(2,n)),
and the maximal set of strongly orthogonal roots {71, ... ,’yrankRg} is given by
v = 2€5 Gj=1,...,7) (g =sp(r,R)),
Vi =€ ~ €q+j (j =1,...,min{q, s}) (9 =su(g, s)),
Vi = V2j-1+ V2 (G=1,...,[s/2]) (g =50"(2s)),
Mm=¢cot+e, Y2e=cr—¢&1 (g =50(2,n))

When g = sp(r,R), su(r,r), so*(4r) or so(2,n), g is of tube type, i.e. g = gr holds. On
the other hand, when su(q, s) (¢ # s) or g = so*(4r + 2), g is of non-tube type, and we

43



have gt = su(r,r) (r := min{q, s}), or g7 = s0*(4r) respectively. Let b := h N gp. Then
we have
V—=1bp =span({t; —tjp1:j=1,...,r=Lqg+1,...,q+r—1}U{t, —tyr})

(g = su(g, s)),
V—1br = span{ty, ..., 12} (g =s0™(4r +2)).

Also, ay C /—1bh7 is given by
V—1b (
span{t; —tgyj:j=1,...,7}  ( )
span{tej_1 +t9; : j=1,...,r} (g1 = s0*(4r)),
span{to, t1} (

a =

In general, we consider gl(s, C) or so(n,C), and parametrize their irreducible represen-
tations. We fix the positive root system of gl(s,C) such that its simple system is given by
{ej—ejr1:5=1,...,5s—1}, and for m € Z3, let (Tlﬁf),vr(rf)), (Tr(lf)v,VIEf)v) be the finite-
dimensional irreducible representation of gl(s, C) with highest weight mie; + - - + mses,
—mge1 — - - - —Mm1€g respectively. Similarly, we fix the positive root system of so(n, C) such
that its simple system is given by

{ej—ejr1:d=1,...,5s =1} U{es1 + &5} (n =2s),
{ej—ejpr:d=1,...,s =1} U{es} (n=2s+1),

and for m € Z5 U (Z + %)S with

mi>mo > - > Me_1 > Myl (n = 2s),
my>mg > > mg > my >0 (n=2s+1),

let (T,[ﬁ] Vi ]) be the finite-dimensional irreducible representation of so(n,C) with highest
weight mie; + - -+ + mges. Then (’7’1(1:;)\/, IE{’)V), (r,(;{)v X T,ﬁs), ,ﬁ?)v ® VISS)), (Tr(é)v, ,ﬁf)v)
and (y™ X Tr[ﬁ],@mo ® Vr[r? ]) are naturally identified with the representation of tC for
g =sp(r,R), su(q, s), s0*(2s) and so(2, n) respectively. Their restricted lowest weights are

given by

(g =sp(r,R), V=V,

1
= 5my e+ mey)

ay

(g =su(g,s), V=Vi"RWY),

B %((Tm —n)y1+ e+ (my = ne)y)

ay

1 S
— 5((7711 +ma)y1 + - -+ (mar—1 + may)yr) (g =s50"(2s), V= Vlgl)v)v

ar

(9250(2,71), V:Cmo&vr[r?])'

_ %((mo +mi)y1 + (mo — m1)72)

ay

We will omit the superscript (s) or [n] if there is no confusion.
Next we determine (7, V') for each representation (7,V) of £5. As in Section 2.2.1, let
~ be the involution of Eg fixing [. Then * acts on h% anti-linearly, and fixes a; ® (m;Nh).

44



Therefore T‘b% is characterized by

Eot, (g1 = p(r, R)),

t] = _tq+j> tq+] - —t] (gT = ‘su(r7 r))?

toj—1 = taj, taj = taj1 (g = s0”(4r)),

— ;. (=01

ti=14" (‘7 ) (gr =s0(2,n), s = |n/2]).
_tj (]ZQ,...,S)

We take an element w € Nk (h) C K (the normalizer of h in K, or the “Weyl group” of
h) such that

Ad(w)t]‘ = tj (gT = 5p(r, R),su(r, T))?
Ad(w)tgj—1 = toj, Ad(w)taj = taj—1 (g7 = s0™(47)),
o tj (] = 0, 1, S) B B
Ad(w)t; = {—tj =23 s 1) (g =s0(2,n), n € 4N, s = [n/2]),
G (G=0,1) _ _
Ad(w)t; = {—tj =23 .3 (g7 =s0(2,n), n ¢ AN, s = |n/2]).
Then we have
Ad(w)t; =t (g1 = sp(r, R), 50" (47)),
Ad(w)ﬁ = —tq+j, Ad(w)ﬁ = _tj (GT = 5u(r, T‘)),

Ad(w)t; = {tj (‘7::0’1"”’8_1) (g7 = s0(2,n), n € 4N, s = [n/2]),
~ts (j=s)

Ad(w)ﬁ = tj (gT = 50(2777’)7 n ¢ 4N, s = Ln/2J)7

and thus Ad(w)%g preserves the positive Weyl chamber. This implies Ad(w)- preserves

the Borel subalgebra b C €. Let (7,V) be an irreducible £p-module with highest weight
1 € (h%)Y and we extend g on b such that it is trivial on the nilradical. Let v € V be the
highest weight vector. Then for b € b we have

d7(b)(T(w=1)v) = dr(b)T(w=1)v = T(w1)dr (Ad(w)b)v = pu(Ad(w)b) T(w=1)v.

Therefore (7, V) has the highest weight vector 7(w—1)v with highest weight t — p(Ad(w)?)
(t € bS). Thus we conclude

ViV = v

(g7 = sp(r,R)),

VIOV RV ~ vV m v (g1 = su(r, 7)),

VY = v (g = 50" (4r)),
Cong BV iy 2 Cog @V (gr=50(2,n), n € AN, 5 = [n/2]),
Cong BV iy = Cog BV (g =50(2,n), n ¢ 4N, s = [n/2]).

In the following sections, we compute the ratio of norms by using Corollary 2.3.4.
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2.4.2 Sp(r,R)
In this subsection we set G = Sp(r,R). This is of tube type, and we have

K ~U(r), p*=Sym(r,C), L=~GL(rR), K=O(r),

1
r=r, nzir(r+1), d=1, p=r-+1.
We want to calculate the norm || - |[x - of O(D,V) in the case V.= VY, . =~ AF(CryY
(k = 0,1,...,r —1). These V have the restricted lowest weight — (v + - -l-%)‘a[’
and remain irreducible even if restricted to K = O(r), i.e. satisfy assumption (A1) of

corollary 2.3.4. Thus the norm || - [|2 converges if Re A > r, and the normalizing
e+ ey

constant c) is given by

k i1 r =

. To(A + &1+ + &) o T (A= 5+ ) I T (A - 55
A: r pu— - : )
Po (et odea—5) H?:lr(A—%—i—l)H;:kHF(A—%)

First we compute the K-type decomposition of O(D,V)g = P(p*) @ V', ,.,. To do
this, we quote the following lemma.

Lemma 2.4.1 ([30, §79, Example 3]).

\Y \Y _ \Y
Vi @ Veiqge, = @ Vimik:
ke{0,1}7, [k|=k
m+keZ’

By this lemma and Theorem 2.2.1, we have

P(p+) ® V;:\l/—&-~~-+ek = @ V2¥n ® Ve\1/+~~~+6k

mezZl |

= @ @ Vz\fmk-

meZ’ , ke{0,1}", |k|=k
m+keZ’

v v ~ TV v
Second, for each K-type Vo, .1, we compute Vo \\ ® V€Y+...+5k ~ Vomik @ Ve 4ote, -

v v _ Y%
Vomtk @ Vo g, = @ Vom4ktx/-
k'e{0,1}", |K'|=k
2m+k+k'€Z7

By Theorem 2.2.2, VY +x+1w 18 Kp-spherical if and only if each component of 2m +k + K’
is even, that is, k = k. Thus, the only K-spherical submodule in V,/ ik ® VEY Tt
is Voroiow and Vol o\ satisfies the assumption (A2’) of Corollary 2.3.4 with n = m + k.
Therefore by Corollary 2.3.4, for f € V!, 4 We have

2 k .
LF O RN O N I (A -LG-D)

Hf”%‘,TEVﬁ“*Ek a (A)m—i-k B H;:l ()‘ - %(] - 1))mj+kj .

We summarize this subsection.
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Theorem 2.4.2. When G = Sp(r,R), and (7, V) = (7 4. Vel pie )5 |13 5 converges
if Re A > r, the normalizing constant cy is given by

k i—1 r i—1
=T (/\ 5t 1) i T (/\ - JT)
[T (A= 58+ 1) [T T (A - 227)
the K-type decomposition of O(D,V )k is given by

P(P+) ® Va\{—&mn-i-ak - @ @ V2\£n+k7

mezn, | kef0,1}", [k|=k

C) =

m+keZ’,
and for f € VQ\;nJrk, the ratio of norms is given by
2 k 1/ -
ey T (A =36 - 1)
2 - r 1/ -
L R § (A =30 =D)p,un,
1

H_];Zl (A - %(] - 1) + 1)m]'+k‘j—1 H§:k+1 ()\ - %(j - 1))mj'+k‘j .

2.4.3 SU(q,s)
In this subsection we set G = SU(q, s), with ¢ > s. Then we have

K ~ S(U(Q) X U(S))? pi = M(qu;(c)v GT = SU(Sv‘S)a Ky~ S(U(S) X U(S))a
L~{leGL(s,C):detl e R*}, K ~{keU(s):detk==+1},
r=s, n=gqs, d=2, p=q-+s.

We want to calculate the norm || - || - of O(D, V) in the case (7,V) = (T((,q)v @Tl({s), O(q)\/ ®
Vk(s)) = 19X Tlgs),(C ® Vk(s)) (k € Z% ). These V have the restricted lowest weight
— %(le 4+ 4+ k:sfys)|a[, and remain irreducible even if restricted to K = diag({£1} X

SU(s)) i.e. satisfy assumption (A1) of corollary 2.3.4. Thus ||-||3 _ converges if Re A+ ks >
q + s — 1, and the normalizing constant cy is given by

Fo(A+k)
= —
FQ()\ +k— q)

S

=[[A -G -1 +k —a),

j=1
First, we compute the K-type decomposition of O(D,V)x = P(pT) @ ((C X Vk(8)>. By
Theorem 2.2.1 we have

PeHe (CuyY) = @ (W Eud) e (cry?)

S
mezs

D D e,

meZs , nem+wt(k)

where V,%q)v is the abbreviation of V" 0 wt(k) is the set of all weights in the

(m1,---,m570,
GL(s,C)-module Vk(s), and ¢! | are some non-negative integers. Second, let rest : P(p™)®
V — P(pf) ® V be the restriction map, as in Section 2.3.2. Then we have

rest (Vi m Vi) = v m v,
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so each K-type V(Q)v V,ES) satisfies the assumption (A0) in Corollary 2.3.4. Third, we
compute the tensor product with C X Vn(s) ~ Vns) X C.
(Ve e (Wec) = @ dan En.

n’em+wt(k)

By Theorem 2.2.2, VIE,S VK Vn(s) is Kr-spherical if and only if n’ = n, so all irreducible
K-spherical submodules in < Iﬁf)v X VIES)> ® (Vk(s)v X C) are isomorphic to Vns)v @Vés),
which has the lowest weight —(n1y; + -+ + ng7vs). Therefore each K-type satisfies the
assumption (A2’), and by Corollary 2.3.4, for f € ViV )V we have

13 L omy © W TGO =0G =),

17117 T IO =G =1,

F1@ORA

We summarize this subsection.

Theorem 2.4.3. When G = SU(q,s) (¢ > s), and (1,V) = (19 K Tlis),C ® Vk(s)) (k €
Z5.), || - HiT converges if Re A+ ks > q+ s — 1, the normalizing constant cy is given by

S

o= =G -1 +k— )y

j=1

the K-type decomposition of O(D,V )k is given by

PeH) e (CHK) = B D dwal BW,

meZi |, nem+wt(k)
(q)V (s) - S i
and for f € Vi’ WV, the ratio of norms is given by

IS ywsre I = G = D), 1
GE N

F1(ORr ( )

2.4.4  SO*(4r)

In this subsection we set G = SO*(4r). Then we have

K ~U(2r), p*~Skew(2r,C), L~GL(r,H), K~ Sp(r),
r=r, n=r2r—-1), d=4, p=2(2r—1).

We want to calculate the norm || - || of O(D, V) in the case V = V(XO ) Sk(cryY,
or V= V(,c L k)™ ~ SK(C") @ det™"/? (k = 0,1,2...) (the latter is not defined as the

DR
representation of U (2r) 1f k is odd, so in this case we consider the double covering group

K=U%r)CcG= S0+ (4r) C Spin(4r,C)). These V have the restricted lowest weight
— gfyl‘a‘ and — %(’h +--+ %—1)’(11 respectively. Also, these V' remain irreducible even
if restricted to K = Sp(r), i.e. satisfy assumption (A1’) of corollary 2.3.4.
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First, we deal with V = V(X,O,...,O)

and the normalizing constant c is given by

case. Then |- |3 converges if Re A > 4r — 3,
T(k,0,...,0)

-----

FQ()\+(]€,0,...,O))
ToOv+ (k,0,...,0)— (2r — 1))

= A+ k)2 [JA =20 —1) = (2r — 1))2r—1.

=2

C) =

To begin with, we compute the K-type decomposition of O(D, V) = P(pT) ® V(\,g 0,..0)"
To do this, we quote the following lemma.

Lemma 2.4.4 ([30, §79, Example 4]).

\ \ _ \
Vin @ Vigo,...00 = @ Vinix-
ke(Z>0)*", |k|=k
0<kj<mj;_1—m;

Using this and Theorem 2.2.1, we get

P(p+) ® V(\/g,o,...,o) = @ Vv(}r/nhml,mg,mz,...,m,-,mr) ® Vv(\lg,O,...,O)

mezZl |

-d b W
- (m1+ki,m1,ma+ka,ma,....mr+kr,mp)"

meZ’ , ke(Zxo)", |k|=k
0<k;j<m;_1—m;

Next, for each K-type V(\7/nl+k1,m1,...,mr+kr,mr)’ we compute the tensor product with V(X,O,...,o) ~
v
V(k,o,...,())'

\% \%
‘/(ml +k1,m1,ma+ka,mso ,...,mr+kr,m7~) ® V(lc,O,...,O)

Vv
- @ V(m1 +k1+l1,m1+la,ma+ko+l3,ma+la,....mrtkr+lor_1,mr+l2p)
1€(Z>0)?", =k
Oglzj_lgmj_l—mj—kj
0<la,; <k;

\%
By Theorem 222’ ‘/(m1+k‘1+l1,m1+12,...,mr+kr+12r717m7‘+12r)

(25—1)-th component of its lowest weight is equal to the 2j-th component for each j, that is,
laj—1 = 0 and ly; = kj. Thus, the only K -spherical submodule in VY ®

(m1+k17m17~'~7mr+kramr)

is Kp-spherical if and only if the

. \/ .
‘/(\]g,o,...,o) 18 Vv(\él1+k1,m1+k1,.,.,mr+kr,mr+kT)’ and Vv(m1+k1,m1,...,mr+kr,mr) SatlSﬁeS the assump-
tion (A2’) of Corollary 2.3.4 with n = m + k. Therefore by Corollary 2.3.4, for f €
Y
‘/(m1+k17m17"'7m7’+k7”7m7") we haVe
2
”fH)“T(vk,o ,,,,, 0 _ ()‘)(k,O,...,O) _ ()\)k
My, . Qe TEa0 20~ Dl
Second, we deal with V' = V(vk £ k) case. Then [ -] converges if Re A >
PR R ' (k,0,..., 0)

4r — 3, and the normalizing constant c) is given by

B Lo\ + (k... k,0))
AT T+ (k... k,0) — (2r — 1))
r—1
=[[x-20-D)+k—(@2r— 1) 1(A=2(r — 1) = (2r = 1))gr_1.
j=1
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Similar to the previous arguments, K-type decomposition of O(D, V)i = ”P(p+)®V(E 5 k)
2720 2

is given by
P ® V( k_EY= @ VY(\r/nl,ml,mz,mQ,...,mr,mr) ® V(\(;,...,o,—k) ® V(v& 5

27 A b i
meZ’ |

S D W
(m1,mlfkl,mg,mgfkg,...,mr,mrfkr)Jr(%,...,%)’

meZl , k€(Zxo)", |k|=k
0<kj<mj—mji1

and for each K-type, we can show that the only Kp-spherical submodule in

Vv k )®VV k

(mhml_kl7'“7mr’mr_kr)+(§""’g (%7'”757_%)

is VY - Thus 1754 £ k) satisfies the

(m1—Fk1,m1—k1,....mpr—kr mp—kr)+(k,....k (m1,m1—k1,....mp,mp— k,-)+(§,...,§
assumption (A2’) of Corollary 2.3.4 with n = m — k + (£, ..., k). Therefore by Corollary
2.34, for f € Vv

we have
mi,mi—ki,.. mmmr_kr)"!‘(g,--ag)

2 _ )
HfHAvT(vk/z ..... k/2,-k/2) _ ()‘)(k7---7k70) _ Hj:%()\i 205 = )x
1£13 - MNm-tetr =1 (A =20 = 1))m;—k+k

(k/2,....k/2,—k/2)
We summarize this subsection.

Theorem 2.4.5. When G = SO*(4r), and (1,V) = (7&70,...’0), ‘/'(\]2’07“"0)) (k € Z>o), HH%T

converges if Re A > 4r — 3, the normalizing constant cy s given by
T
ox=A+E)p [JA-2G—1) = @2r—1))21,
=2

the K -type decomposition of O(D,V )k is given by

P(p ) ® Vk 0,. @ @ ‘/(\7/711+/€1,’ml,m2+k2,m2,---7mr+k5r7mr)’

meZ’_ ke(Zso)", |k|=Fk
OSIC] Sm]-_l—m]-

and for f € Vm1+k1 iy ma -k, M,y ey my) the ratio of norms is given by
HfH/\T(ko ,,,,, 0 _ ()\)k: _ 1
||f|| H;:l()‘ - 2(.] - 1))mj+kj ()‘ + k)m1+k1—k H;:Q()‘ - 2(] - 1))mj+kj
(kO ,,,,, 0)

When G = SO*(4r), and (7, V) = (70 k2 —ks2y Viesa.. ko —kyz) (F € Z20), 1113,
converges if Re A > 4r — 3, the normalizing constant cy s given by

r—1

= H(A =20 =D 4+k—2r—1))2—1(A=2(r—1) — (2r — 1))g,_1,

the K-type decomposition of O(D,V )k is given by

P<p ) ® (27 7% g (mlaml7kl7m27m27k27"'7m7“7mT7k7‘)+(§7"'a%)7
meZl , ke(Zxo)", |k|=k
0<k;j<mj—mj 1
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and for f € V ELk) the ratio of norms is given by
k..k

(m1,mi—k1,ma,ma—k,...ompme—ke)+( 5 .o0s

—1 .
B e TIZEO = 20—

,,,,,

e T (20— D)y

(k/2,....k/2,—k/2)
1

I O+ B =207 = 1))y, A = 200 = 1))

2.4.5 Sping(2,n)

In this subsection we set G = Sping(2,n), the identity component of the indefinite spin
group. This is of tube type, and we have

K =~ (Spin(2) x Spin(n))/{(1,1), (-1,-1)},  p==C",
r=2, n=n, d=n—2, p=n.
Let 7 : K€ = (Spin(2,C) x Spin(n,C))/{(1,1),(=1,—1)} = SO(2,C) x SO(n,C) be the
covering map. Then we have
(L) >~ SO0p(1,1) x SOp(1,n —1)USO_(1,1) x SO_(1,n — 1),
W(KL) ~ {—I-IQ} X SO(n — 1) U {—IQ} X O_(n — 1),
where SO_(p,q),0_(q) are the connected component of SO(p,q),O(q) which does not

contain the unit element. Each representation of K is of the form (y™° IXTr[ﬁ} s Crneo ®V£t ]),
and sometimes we abbreviate this to (7(m:m)s Vime;m))-
Now we want to calculate the norm || - ||y of O(D, V) in the case

(7, V) = { (X "R 7k, k) Cok @ Vg, k) (k€ %leo) (n : even),
’ (X "R 7, 1) Coke @ Vg, 1)) (k=0,3) (n:odd).

These (7,V') have the restricted lowest weight —k~;, and remain irreducible even if re-

stricted to K7, i.e. satisfy assumption (A1’) of corollary 2.3.4. Thus || - HiT converges if
Re A > n — 1, and the normalizing constant c) is given by
o Lo+ (k0) _  TOAFKHCA- ")

FQ()\—i—(k,O)—%) FPA+k=2)T(A=(n—1))

First we compute the K-type decomposition of O(D, V)i = P(pT)®@V. To do this, we use
the following lemma, which comes from the “multi-minuscule rule” [25, Corollary 2.16].

Lemma 2.4.6. (1) Let m € Z>p and k € %Zzo- For two representations Vi, o, 0y and
Vik,...k+k) of 50(2s,C),
k

Vim,0,...0) @ Vik,... k k) = @ Vim+tk,...k,40)
l=max{—k,k—m}

(double sign corresponds) holds.

(2) Let m € Zsq. For two representations Vi, o, 0y and V(l 1 of s0(2s +1,C),
2772

Vimo..o) © Vg, 4) =Y

1
29

) & Vim )

NG

1
190

I\D\»—‘
NG

11
m+§,§,..

holds.
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By Theorem 2.2.1,

P(p+) - @ C—(ml—i-mg) X ‘/(ml—mz,O,..,,O)

2
meZy 4

holds, and combining with the above lemma, we have

PpT) @ (Cor BV, kan) = @ @ C_mrt+matk) B Vi, —moti b, k0

meZ2 —k<I<k
=+ mi1—mo+I>k

for n = 2s even case, k € %ZZO, and

Ph") @ (Corn BV 1) = P B Comirmort) B Vi —matih i)

meZ2 —k<I<Ek
T g —ma H >k

for n = 2s 4+ 1 odd case, k:zO,%.

Second, we seek K-spherical subspace in the tensor product of each K-type and V.
To begin with, we deal with n = 2s even, V = V(_p.;. ) case. Suppose

V(—(n1+n2):n1—n2,0,,..,0) C ‘/(—(m1+m2+k);m1—m2+l,k,,..,k,l) ® ‘/(—k:;k,...,k)7

where (n1,ng) € Z%r. This implies that (—(n1 + n2) + (m1 + ma + k); (n1 — n2) — (mq —
ma+1), —k,...,—k, 1) is a weight of V(_.;, ). However, the weight of this form is only
(=k;l,—k,...,—k,=l), since V(_p.1 . ik has the lowest weight (—k;—k,...,—k, k), and
root vectors T, , Te,te, € 50(2s) commute with each other. Therefore we have

(n1+n2)—(m1—{—m2—|—k):k, . ny=mqy+k+1,
(nl—n2)—(m1—m2+l):l. ng =my+k—1.

Thus all Ky -spherical irreducible submodule in V(_ (, fmyk)mmi—mati k. kl) @ V(C ki, k)
have the same lowest weight —(n1y1 + no7y2) with (n1,n2) = (m1+k+1,ma+k —1), and
all K-types satisfy the assumption (A2’) of Corollary 2.3.4. The same argument holds
for V.= V(_p,..k—k) case, and also for n odd case, noting that only k = O,% is allowed,
and ny,ng € Z. Therefore by Corollary 2.3.4, for f € V() fmotk)imi—ma+ik,....k,+l) OF
‘/(7(m1+mg+k);m17m2+l,k,...,k,|l|)7 we have

17115, (A 2k,0) _ (A)2k

£ 1% Nemtkrtmati—t  Nmprrrs A= "52) 0y

We summarize this subsection.

Theorem 2.4.7. When G = Sping(2,n) and

Z>o) (n: even),

(r, V) = (x "X Tty ertk)s C—ke @ Vik, ok k) (k € %
’ k=0,4) (n:odd),

(X "R 7k, 1) Coke @ Vg, 1))
Il - ||§\T converges if Re A > n — 1, the normalizing constant cy s given by

TA+K)T (A -22)
FTA+E-2)T(A=(n—-1))

C) =

92



the K-type decomposition of O(D,V )k is given by

@ @ (Cf(mlerngk) X ‘/(m17m2+l,k‘,.“,k,:|:l) (n : 6'[)677,),
mez? | —k<i<k

’P(p"‘) QV = m1—ma+l>k
@ @ C_mitmatk) B Vi —motik, ki) (02 odd),

meZ? —k<I<k
++ mi1—mo+I>k

and for f € C_(m tmotk) ¥ Vien —moti ko ktl) 07 C_tmytmoth) B Vi —motik,.. k1)) the
ratio of norms is given by

1713, (Vs B |

11E Mmieess A =252) 0, e O 2ot A= 252)

2.5 Norm computation: Non-tube type case

When G is of non-tube type, we cannot compute the norm by just using Theorem 2.3.1,
because it is difficult to determine the constants a;; in Theorem 2.3.1. Thus we have to
use other informations to compute the norm. In this section we compute the norm in the
case

e (G,V)=(SU(q,s),CR V') (q < s), by direct computation,

o (G,V) = (SO*(4r+2), S¥(C>*+1)V), by using the embedding SO* (4r+2) C SO* (4r+
4),

o (G,V) = (50*(4r +2), S¥(C¥ 1) @ det*/2), by combining Theorem 2.3.1 and the
embedding SU(1,2r) C SO*(4r + 2).

Also, for G = Eg_14), we try to compute the norm as best we can, by using Theorem
2.3.1.
2.5.1 Explicit realization of G

Before starting the computation, we fix the realization of G = SU(q, s), SO*(2s). We
realize SU(q, s), SO*(2s) as

SU(q,s) == {g € SL(g+5C): g (Ig _OI> g = ({)q _%) } , (2.5.1)
s peammcra(, 5o (3 )25, 5% 55}

and realize KC, p* as
{(a 0) . (a,d) € S(GL(q,C) x GL(s,C)) (G =S5U(q,s)) }
" a€GL(s,C), d="ta"! (G =50*(2s)) |’

_[(0 B) . beM@sC) (G=SU(qs)
{( > " be Skew(s,C) (G= SO*( s)) } ’
_ {(0 0> ceM(s,q;C) (G=SU(q,s))

¢ 0/ ceSkew(s,C) (G=S0*(29))

93



0 b

Then under the identification p* ~ M(q, s; C) or Skew(2s, C) by (O 0

) — b, we have
D ={we M(q,s;C): I, —ww" is positive definite.} (G =5U(q,s)), (2.5.3)
D = {w € Skew(s,C) : Iy — ww” is positive definite.} (G = 507%(2s)). (2.5.4)

For a representation (11 X 7, V; ® V2) of K€ = S(GL(q,C) x GL(s,C)), the universal
covering group SU (g, s) acts on O(D, V) ® Vo) by

-1
T ((Z Z) ) f(w) = det(cw + d)~ (11 (@* + wb*) W7y ((cw + d)_l))

x f ((aw+b)(cw+d)~"), (2.5.5)

and for a representation (7,V) of K€ = GL(s,C), the universal covering group 5?./*(25)
acts on O(D,V) by

-1
) <<CCL Z) ) f(w) = det(cw + d)—k/27_ (t(cw +d)) ¥ ((aw + b)(cw +d)_1) ’ (2.5.6)

We note that we have the identities, for w € M(q, s; C) and <Z Z) e Ulq,s),

a b

-1
- d) det(cw + d).

det(I; — ww*) = det(Is — w*w), det(a™ 4+ wb*) = det (

Therefore, on SU(q, ), det(a*+wb*) = det(cw+d) holds. We also note that det(cw+d)
is not well-defined on G for general A € C, but is well-defined on the universal covering
group G. These representations preserve the inner product

C\

{(f,90nr = /D (1 (g = ww*) ™) Rm (I — w'w)) f(w), g(w)) .,
x det(I; — ww*) "y, (2.5.7)
(f,9)rr = ﬁ /D (T ((Is - ww*)—l) f(w),g(w))T det(Is — ww*>%(>\—2(s—1))dw.
(2.5.8)

was

respectively. Let h C g be the subspace which consists of all diagonal matrices, and define
the linear form ¢; on h® by &;(F;;) = 6;;. We define the positive system A (g®,h) as in
Section 2.4.1.

2.5.2 SU(q,s)

In this subsection we set G = SU(q, s), with ¢ < s, which is realized explicitly as (2.5.1).
Then we have

K ~S(U(q) x U(s)), p*==~M(q,s;C), Gr~SUlqq), Kr=~SU()xU(q)),
L~{leGL(q,C):detl e R*}, K ~{keU(q):detk==+1},
r=q, n=gqs, d=2, p=gq+s.
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We set (r,V) = (" R Vi @ ) = 1@ RV, Cc o 1Y) (k € Z5,). In this
case, the inner product is glven by

_ 4 (s) * *, \A— s
SN /D (A1, = ww)) F(w), g(w))ﬁis) det(Ls — w*w) @) du,

was
The goal of this subsection is to prove the following theorem.

Theorem 2.5.1. When G = SU(q,s) (¢ < s) and (7,V) = 10 R Co V) (k ¢
Z5.), |- ||§,T converges if Re A+ ks > q+ s — 1, the normalizing constant cy is given by

S

a=[[0-0G-1+k—a

j=1
the K-type decomposition of O(D,V )k is given by

P(p*)@(@&{/“) P & cka() RV,

mEZq nem+wt(k
(a)Vv (s) . .
and for f € Vi’ W VL™, the ratio of norms is given by

11 s iA=L, 1
171

ML =G =Dy, TGO =G = 1)+ kg)nmn,

F1@R
Before beginning the proof, we prepare some more notations. For k € N, m € C* and

for x € M (k,C), we write

k—1

Am(z) = [ det ((wij)1<ij<)™ ™" det(z)™
=1

For k € N, let Qr C GL(k,C) be the set of upper triangular matrices with positive diagonal
entries. Then for I1,l3 € Q, m € C*, A (1) Am(l2) = Am(Yl1l2) holds, and for I € Q,

ly € M(k,l;C), I3 € Q andm € C*, n € C', Ay (1) An(l3) = Apmm) (lé f) holds. Also
we set
(p7)" = M(q,5 — ¢;C),
Q := {z € Herm(q, C) : x is positive definite.},
Q := {x € Herm(s, C) : z is positive definite.}.

Now we start the proof. To begin with, we compute the K-type decomposition of

oD, V) =P e (CrK).

PeHe (CuyY) = @ (W eul) e (crr?)

q
mezZl

=P P aWEn

meZi | nem+wt(k)
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where Véf ) is the abbreviation of V(S)

(m1,...,mq,0,...,0)

, wt(k) is the set of all weights in the

GL(s,C)-module Vk(s), and ¢, are some non-negative integers. We note that, for n €
77, there exists m € Zi - such that c{(‘,m # 0 if and only if

nj>kij(1<j<q and kjq<nj<k;(j>q+1l),
which can be proved by using Littlewood-Richardson rule.

For each K-type ViV RV et Kmn(z,w) € P(p* x pTt, End(Vk(s))) be the repro-
ducing kernel of the K%—submodule Vé?)v @Vn(,q) C Vr(r?)v®vrfs), where n’ := (ny,...,nq) €
ZZ_ o Then since Vrﬁf)v X VIE,q) C V,&?)V X VISS) is the lowest submodule, we have

(s) l2 l3 l2 l3 x—1 l>2k_1 l5 (s) l2_1 0 — a (1
Tk <0 l4) Km,n (llz (O l4 ; ll w 0 l6 Tk l; lé = An (l6l4)Km7n(z’ ’Uj)
(va € M(Q? 55 C)’ lla l2 € GL(q,C)a l37l5 € M(Qa S—q; (C), l47 l6 € stq)a

where n” := (ns_q41,...,ns). Using this Kmn(2z,w), we can rewrite the ratio of norms.

That is, for f € ViV R V,Ss), the ratio of norms Hf||i LOR o/ fI12
k) Tk

is equal to
Fig

C) /D TI'VI((S) (7_1((5) (Is - W*w)Km,n(w,w)) det(IS _ w*w))\_(q+s)dw

Rmn(N) =
/ Tr, (5) (Kmn(w, w))e™ br(w™w) gy
pt k

Now similarly to Lemma 2.3.2, for any non-negative measurable function f on M(q, s;C),
we have

1 1 )
dw = =—— fe % k. k) )dky dkadady.
e /p+ flwyd La(q) Aeﬂaye(p}r% F((kra2hy, kry))dkydhaddy

k1,k2€U(q)

Using this and the Kp-invariance of Km (2, w)
Km,n((k‘w%kz,k‘ly),(kw%kz,kly))
-1
_ (s (k?z 0 > 1 1 (s) <k2 0 )
=T Kmn((z2,y), (22,9))7
O 0 ) Kb ebond? (70
(ﬂj‘ € Q’ Yy e (p¥)l) klka € U(q))v

we have

s x  zl/? 1 1
O Pl L (T ) SRR R

(z'/2y)eD A—(g4s)
1/2 —(gq+s
x det <15—< 12 xy)) dady
yx vy

z 2/

—t
/ e, (K ((22,3), (27, 9)))e (i >da:dy
zeQue(pf)t Tk

Rmn(A) =

Kmﬁn((m%,y), (x%,y)) is transformed as below.
~1/2 ~1/2
Kona((%,), (0%.)) = Ko (27 3.0) (¢ 7, V)b (,0) (0 7,7
0 Ig—q 0 Is—q

e (1~ (s) I 0
_ (O I Konn(2,0), (I, )7 ( _ 1o )

o6



Then Kmn((+,0),(Iy,0)) is K, = diag({£1} x SU(q))-invariant under the representation
7 of K& on P(pJTr,End(Vk(s))) = P(M(q, s),End(Vk(s))), where

i o /ly 0 _ o9 (l7t 0
Fare = (¢ 7 )reta (),

K
X (C)) . (Vi m Vrf,q))KL.
U(qg)

Therefore there exists an Fmn(z) € P(p7, End(Vk(s))) such that

That i, Km.n((-0), (I, 0)) € <VI${1)V X Vlff”) ® <Vk(5)v

(k0 ) ) <k‘1 0 ) _
T Fon(E™ x2k)T dk = Kmn((2,0),(1y,0)),
LA (6 1) pmnttamn (0 ((2,0), (1,0))
s l2 0 S tl1 0
) ( 0 z4> Fonn (o) (0 t13> = Aw (hls) Agr (T3ls) Fonn ()
(z € pps liylo € Qs 13,14 € Qs—yg).-

We define

. o (I —p—1/2 s I 0
Fan(z,y) = TIE) (61 I, y) me(x)ﬁg) (_ Wy ]sq> ’

Then we have
1/2
(s) z 'y =
V1£S> <Tk8 <Is - <y*$1/2 vy >) Fm,n(xay)>

1/2 A—(g+s)
sdet (I, — (%, ©.Y ddy
yzl? gty

C
A Jreye(ph)*

(z'/?y)eD

z  zl/%y

~ —t
/ TrV(S) (Fmn(z,y))e r(y*m1/2 vy >d$dy
r€Que(p)t Tk

1/2 -
— (s) z 7y
Bmn(A) = Aeﬁ,ye(p}r% Trvk(s) (Tk <IS — (y*x1/2 vy )) me(m,y))

(z'/2 y)eD
1/2 A—(g+s)
det (L —( T, T Y ddy,
yx yy
z /%y

~ —t
Tmn 3:/ Tr, ) (Fan(z,9))e r<y*m”2 vy )dxdy,
zeQue(pf)t Tk

so that Rmn(A\) = cABmm():)/Fm,n. We want to compute Bmn(A) explicitly. To do this,
similarly to (2.3.3), for z € Q we define

)= /E(z) P <TI£S) <Z - <(y’)*g«“’)1/ ? (Z/)';/Z?//>> Fm’n(x,’y/))

—(g+s)
2! ($/)1/2y/>))‘ L
x det [ z — dx'dy’,
< <(y’)*(m’)l/2 (y/)*y/ Yy
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where

E(z): Z, €N x p 2 « ¥ 1S POSIT1V ennite. o,
Yy Y ]_/2 p

so that E(Is) coincides with the domain of integration of Bmn(A), and J(Is) = Bmn())
holds. To compute J(z), we take l; € Qq, l2 € M(q,s — q;C) and I3 € Q4_, such that

= 1) (6 1)
3 13)\0 13)°

1'/ = ZT'%.ZM y/ = (li$ll)_1/2lf$l/2(yl3 + $1/2l2)7

o~

and we change variables x,y to

so that

x’ (2" 2y _ lfxly a2 (yls + x'/%1,)
(yl)*<$/)1/2 (y/)*y/ (gy* +l§$1/2).’1}1/2ll (lgy* +l;$1/2)(yl3+$1/212)

(i 0 x xl/Qy li o
S \B i) \yrat? gty )0 Bs)
Then under this change of variables, we have
() (1 l2) £ ron(s) (G0
Ty <0 l3) me(xvy)Tk <l§ I
_ o (b B e (L @)Y N (9) I, 0\ (i 0
e (0 ls) e (0 Loy )Tl e 1) e g g
_y-1.-1/2 1/2
0 Is_q
(s) I 0) (s) (li‘ 0)
X T *— T * *
8 (—(lgy*+l§x1/2):n_1/2ll lg) e \B 0
_ (I~ Py o (0 a6 (0 @ I 0
=7 <0 Iy T g ls Fan(l{zl)n, 0 I The /2 I,
_ 0\ (b I ~
=2 (i 8) (5 1)) Fnten
Thus we can compute J(z) as

o e (6§ B S )
* (g+5)
D0 T B

x det(11)%? det(l3)??dxdy

2,0\ -
(s) xr @l
= Tr (s T IS - % * Fm,n z,
/E(Is) Vé)(“ ( (y !/ yy>> ( y)>
22\ oo\ (L L
< det <Is - <y 22y >> Bin—s <<l2 l§> <0 13>> dedy

= Bmn(A)Axin—s(2).
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Next we compute [5 J(z)e™ "*)dz in two ways.

/ J(2)e” ") dz = Byun(N) [ Axin_s(2)e” TG = Bun(MTg(A +n),
Q Q

/Q J(z)e” " dz
://E<Z>Trv<5 ( <><z_<(y,)*f;,)1/2 (<y)>/yy>) >
A—

2! (z )1/2/ (q+s) R
< det <2‘<<y'>*<x'>1/2 <y'>*y'>) A

o T @)y
— [[ Tryo (A0 Pl ) det( P00 CrCurtore W) artaya

' eQy e(pt)t,
2'eQ

21/2
- —tr 7 Y
=Tr o /Tlgs)(z) det(z)/\_(q“)e_tr(z)dz/ Fmn(z,y)e (y*x1/2 vy )dzz:dy .
k Q Qx(ph)L

Since Vk(s) is U(s)-invariant and [q Tl((s)(z) det(2)}@+9)e= ()2 commutes with U(s)-
action, this is proportional to the identity map. Also, similar to (2.3.8), we can show

/ Tl({s)(z) det(z)’\_(‘”s)e_ () g, = LA +k— Q)Iv(s)
k

Q
when Re A + ks > g+ s — 1. Therefore we have

¢ /%y

—tr
/ J(z)e” "Fdz =T5(A+k —q) / Try o (Fmn(,9)e (e >da:dy
Q Qx(ph)t
= FQ()\ +k—¢)lmn,

and thus we get

Rm,n()\) = C)\

Since the norm is normalized so that Rgk(A) = 1, we have

Fg(A+k) , '
M—E(A—(J—1)+@—Q)q,

C) =

and consequently we get

Lo\ +k) _ T[im(A =G = D),
FoA+mn) [ A=0G =1y,

and we have completed the proof of Theorem 2.5.1. O

Rmn(A) =
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2.5.3 SO*(4r+2), V = Sk(C>r+1)v

In this subsection we set G = SO*(4r + 2), which is realized explicitly as (2.5.2) with
s = 2r 4+ 1. Then we have

K~U®@2r+1), p*~Skew(2r+1,0C),
Gt ~ SO*(4r), L~GL(r,H), K ~ Sp(r),
r=r, n=r2r+1), d=4, p=4r.

We set V = V((I%H) \; ~ Sk(C?+1)V. The goal of this subsection is to prove the following
theorem.

Theorem 2.5.2. When G = SO*(4r + 2) and (1,V) = (T((ggﬂ?(\)/),v(fgfl’) )) (k € Z>p),

Il - H%\T converges if Re X > 4r — 1, the normalizing constant cy is given by

r

=M= @+ 1)) A+k=2r) [JA = @r+1) =20 - 1)2r41,
j=2

the K-type decomposition of O(D,V )k is given by

(2r+1 @ @ (2r+1)v
P(p ) V(kO, -0 ‘/(ml“‘kl7m1am2+k2:m27--~’mr+kmmrvkr+l)7

mEZL |, ke(Zxo) T |k|=k
0<k;<mj_1—m;

(2r+1)v . . .
and for f € Vm1+k1,m1,m2+k2,m2, b rt1)? the ratio of norms is given by

2
1715 ey o
—1

”fH (2T+1)v B ngl ()‘ - 2( ))mri—k ()‘ 2T)k"r+1
0)
1

a (A + k)mrf-kl—k H;:Q(A —2(j — 1))mj+kj (A= 2r>kr+1 '

To begin with, we determine the normalizing constant cy. Since V| KS is decomposed

as
k
_ @2r)v
KC - @ ‘/(l)07"'70),
T =0

(2r+1)v
‘/(k 0,...,0)

and V2V ) has the restricted lowest weight — 571‘(1 , and remains irreducible when re-

(1,0,...,0
stricted to K1, = Sp(r), by Theorem 2.3.1 || - H Grany converges if ReA > 4r — 1, and
T(k,0,...,0)
we have
k
1 (2r)V Fo(A+(1,0,...,0) — (2r + 1))
¢y = mV
A dim V(2f‘+1)0 ;( (¢,0,..,0 ) Cao(A+ (1,0,...,0))
k r4l—
_ 3 () 1
() = (A L= @2+ D)o [Tjmo(A = 2r +1) = 2(5 — 1))2r1

1
A=2r+1)(N+k—2r)2 H;ZZ(A —2r+1) =2 —1)or41
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To compute the norm on each K-type, we consider G’ := SO*(4r+4), which is realized
explicitly as (2.5.2) with s = 2r 4+ 2, and embed G < G’ by

(¢ 0)—

. 2r+1 2r+1
We realize (T((k,OJ,r...?Ov)’ V((k,of...,)ov)) as

(a,b,e,d € M(2r+1,C)).

OO0 O
O O = O
O Qoo
o o O

V((kQSJ'F})OV) = P.(C?" 1) = {Homogeneous holomorphic polynomials on C*" ! of degree k},

oo o () =p(7tv) (1€ GL(2r +1,C), v e CF!, p e P(CTHY),
with the inner product

1

(p17p2) 2r+1 = 27”+1/ D1 ( )pQ( ) —|uf? dv (p17p2 c 'Pk((c2r+1))‘
k,0,...,0) ™ C2r+1

Then G = 5”5"(47“ +2) acts on O(D, Py(C*+1)) by
-1
A <<Z Z) ) f(w,v) := det(cw + d) 2 f ((aw +b)(cw + d) =", (cw + d) ~'v)
(w e D C Skew(2r +1,C), v € C¥+1),

On the other hand, the scalar type representation of G/ = SO*(4r + 4) on O(D') (D' is
realized as (2.5.4) with s = 2r + 2) is given by

-1
T ((Z Z) ) f(w) := det(cw + d)"M2f ((aw + b)(cw + d)_l)
(w € D' C Skew(2r + 2,C)).

If we restrict this representation to G, we have

I
—

/ (—Ut)v 8) det(cw +d) " f <(aw +(l;)u(}cj_u$ d)~t Yew +Od)_1v>

O 0 O
o O = O
O QU O
— o O O

(w € Skew(2r +1,C), v € C*T1).
Therefore if we define the embedding map ¢ : O(D, P (C* 1)) — O(D') by

w (Y

(e(f)) <_t,U 0) = f(w,v) (w € Skew(2r + 1,C), v € C* 1),

then ¢ intertwines two actions 7 and 74| 5. Also, since Fischer inner products on P(p™*, P (C* 1))
and P(p™’) (p™ = Skew(2r + 1,C), p*’ = Skew(2r + 2,C)) are given by

— 1 TNk tr(ww*) —|v]?
(f,9) Py = W/Skew(%ﬂ’@ /(C%+1 f(w,v)g(w,v)e2 e """dvdw,

— 1 — L tr(ww*)
<f, g>F71(2r+2> = m /Skew(2r+2 o f(w)g(w)e 2 dw,
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¢ is an isometry with respect to the Fischer inner product.
Next, we compute the K-type decomposition of O(D, Py(C* 1)) x = P(pt)@P,(C* 1)
and O(D") g = P(p™).

2r+1)Vv 2r4+1)Vv
77(]3+) & Pk(C2T+1) = @ V((nzlfmi,mz,mg,...,mr,mr, 0) V(gc Ojr ,))
mezl
(2r+1)v
- @ @ (m1+ki,m1,ma+ko,ma,...;mptke,mp ki)’
meZl | ke(Zxo)" L, [k|=k
OSk:jSmj_lfmj

oy (2r+2)v
P(p )_ GB V(m,m,nz,nz,---,nrﬂ,nr+1)'

+1
nezZl’
2r4+2)V .
Each K’ = GL(2r + 2,C)-module y 22 is decomposed under K€ =
(n1,m1,m2,n2,. ;N 41,0 41)
GL(2r+1,C) as
(2r+2)v o @ V(2r+1)v
(n1,m1,m2,n2,0 1, ne41) | T (n1,m1,n2,ma,...nr My npg1)’
mezn
G2 241

which follows from the following lemma about the branching law of GL(s,C) | GL(s —
1,C).

Lemma 2.5.3 ([30, §66, Theorem 2]). For m € Z7,

Igjs)\/‘ _ @ V,ES_I)V.
GL(s—1,C)

nEZf;l
mj2n;2m; 1

Therefore it follows that

L (V(2r+1)\/

(2r42)v
(mi+k1,my,... mT+kT7mT1kT+l)> Vi

(mi+ki,mi+k,....mr+kr,mpe+ke ket ,krg1)” (2'5'9)

Therefore, for any f € V(WQ:;EC)I 1 -tk M2y 10 o 1) the ratio of norm is given by
||L(f)||>\71(2r'+2) B 1
IO prin Tz =20 = 1))k (A = 20k
Since ¢ intertwines G-action, || - H/\ @Dy is proportional to [[c(-)[|y yr+2). Also, since ¢
( ,,,,, 0)
preserves the Fischer norm, and || - || ArETHDY is normalized such that it coincides with the

.....

Fischer norm on the minimal K-type, We have

[F s
Tlor0) _ (M
”f”F (2r+1)Vv H§:1(>‘ - 2(] - 1))m]+k ()‘ 2r)kT+1 ’
'T(k,0,...,0)
and we have proved Theorem 2.5.2. O

Remark 2.5.4. We can also prove the former part of Theorem 2.4.5 (G = SO*(4r)), or
Theorem 2.4.3, 2.5.1 (G = SU(q, s)) by this method, by embedding

SO*(4r) — SO*(4r +2),  P(Skew(2r,C), Pi(C*)) < P(Skew(2r + 1,C)),
Up) x Ulg.s) > Ulp+q,5), WY RP(M(q,sC), V") = P(M(p+q,5,C)),

but we cannot determine the normalizing constant cy in this way.
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2.5.4 SO*(4r +2), V = SHC¥ ) @ det™*/?

In this subsection we continue to set G = SO*(4r + 2), which is realized explicitly as
(2.5.2). Weset V = V((QTH) ~ SF(C?+1) @ det™*/2. The goal of this subsection is to

20020 2 )
prove the following theorem.

_ * 2r+1)v 2r+1)v
Theorem 2.5.5. When G = SO*(4r + 2) and (1,V) = (T, T2, ke 2—k)2) V()20 )2, k/2))
(k € Z>o), || - H?\T converges if Re X > 4r — 1, the normalizing constant cy is given by
r—1
=[O+ k=@ +1) = 2( = 1))arpr(A = 47 + Dop (A + & — 2r + 1),
j=1

the K-type decomposition of O(D,V )k is given by

(2r+1)v (2r+1)v
Pt eV =P b v
(p ) % g 7% (ml,mlfkl,mz,mg7k2,...,mhmr7kr,7k,«+1)+(§,...,g)’

meZ | ke(Zxo) i |k|=k
0<k;<mj—mji1

OSkTSm'r
and for f €V @r+1)v the ratio of norms is given by
(m1,m1—k1,m2,ma—kz,..omemr—ke,—krp 1)+ (5., %)
HfHA (2r+1)v HT‘ ()\_2(_1))
/2,00 k/2,-K/2) j=1 J k
Hf”F (@r+1)v H] 1 (A—=2(j — ))mj—kj+k (A—=2r+ 1)k—kr+1

T(k)2,... k/2,—k/2)
B 1
H§:1 A+k—2( - 1))mj—k]- (A—2r+ 1)k—kr+1 ‘

To begin with, we determine the normalizing constant cy. Since V| KS is decomposed
as
k
. (2r)v
V(@ kk gy
K§ o L

and V(( v 5 k) has the restricted lowest weight — (%(’Yl +o 1) + %%«)‘a[ and

2902
remains irreducible when restricted to Ky, = Sp(r), by Theorem 2.3.1 || - ||§T converges if
Re A > 4r — 1, and we have
k
1 r FaoA+(k,....,k,k—=1)—(2r+1))
-1 __ 2r)v Q ) s Ty
= di V
CA ohmv(2 v Z( R CRX = l)) ToA+ (k. ...k, k—1))
(ki) =0
1 1 k (2r+ll—1)
(27"’:-16) H;;i()\ + k- (27‘ + 1) - 2(] — 1))2r+1 =0 ()\ +k—-1- (47’ - 1))27«+1
. 1
[IoiA+ k= (2r+1) =2 — D)ars1 (A — 47+ D)gr (A + & — 2r + 1)
()\ —2r + 1)k

TIZiA+ k= (2r +1) =2 — D)2rs1 (A — 47 + D)gpiayn
Tt (k. b 0) — (2 1) — 20 4 1),
= ToO+ (ky -2 koK) '
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Next we compute the K-type decomposition of O(D, V) = P(ph) ® V((irﬂ,zv )

2T
(2r+1)v . @ (2r+1)v (2r+1)v
PODOVL s sy = D Vimmimamsrcmmr0) @ V(E Tkt
meZl |
- @ v |
(m1,m1—k1,ma,ma—ka,..ompme—kp,—kry1)+( 5, 5)

meZl | ke(Zxo) ™, [k|=k
0<kj<mj—my1
0<kr<my
To apply Theorem 2.3.1 for each K-type, we determine the image of each K-type under
rest : P(p*, V) — P(psf, V). Since we have

r%t(V@”DV oygV%HJW )

(m1,m1,m2,ma,...,my,my,

= ey ® V&Y
mr) (5,3

(m1,m1,m2,ma2,...,my,

_ y/@n)Vv (2r)v
- V(m17m1,m2,m2,-..,mr,mr) ® @ V(g g %4)

k
® @
(ma1,m1—l1,ma,ma—la,...meme—l)+( 5,5

=0 1€(Z>o)", 1=l
0<l; j<mj—mji1

and the abstract decomposition of KC-modules under K% is given by Lemma 2.5.3, we

have
)

k
(2r)v

D D v -
(m1,m1—ll,mg,mz—lg,...,m,«,mr—lr)—s—(g,...,g)

I=k=kr11 1€(Z>o)", 1|=1
ki<lj<mj—mji1

[NIES

(ma,mi—k1,ma,ma—ka.omeme—ke,— k1) +( %,

2r—+1
rest <V( v kL

Then, the only Kj = Sp(r)-spherical submodule in

2r)V (2r)v
V! RV
(m17m17l1,mg,mgflg,...,mr,mrflr)Jr(g,...,g) (g, 7]2“7%71)
2r)V (2r)v
~ V! ?V,
(ma,ma—l1,ma,ma—lg,..me,me—l )+ (£, %) (%,...55-1)

2r)v . .
is Vi, - l1,m1 s —la ma—la,. o —Lrin—ln )+ (k... k)0 Which has the lowest weight —((my1 —

L+ kv + -+ (my — 1l + k)y). Therefore by Theorem 2.3.1, there exist non-negative

numbers am, k1 such that for f € V(m1 A= — s~y 1)+ (5 B ) the ratio of norms

is given by
1713, c F ToO+ (k... ke k—1)—(2r+1
IIfH; -y aA Z Z el Q(Fa(i+m—l+(/€) (’f)) :
F,T 1 m,k,l l:k—kr+1 IE(Z>0)T, m:l g eey

kj<lj<mji1—m;

i Z amkl()\ 47’+ 1)
21 S P R [loi A+ k=20 = 1))m;—1;(A = 2r + 1)
kj<lj<mjy1—m;

It is difficult to know the exact values of am, k1, but at least we have proved
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Lemma 2.5.6. For f €V, @r+1)v

the ratio of norms 1s
(m1,m1—Fk1,...;mp,myp— krﬁkr+1)+(§w-,§); f

HfH)\, ((f;;l)v,c/g k) (monic polynomial of degree ky41)
HfHF (@ri1)v H;Zl()\ + k=20 = 1))m;—k;(A—=2r + 1)

T(k/2,... k)2,—k/2)

Next we consider G := SU(2r, 1), which is realized as (2.5.1), and embed Gp — G
as

a Q 0 b
a b L 0 d —¢c 0 a € M(2r,C), be M(2r,1;C),
c d 0 -b a O ce M(1,2r;C), de C
c 0 0 d
Then the positive root system A (g(g, (hNga)®) of ga, induced from A, (g%, h%), has the

simple system
{Ej —€jy1:7=12,...,2r — 1} U {é‘gr + 527«+1}.

Each representation of K§ = S(GL(2r, C)xGL(1,C)) is of the form (Tr(ﬁr) X TS%gV, Ve

V(l)v) and we sometimes abbreviate this to (7, @r1)v V((QT 1)\)/) Clearly V(( DV

(mm)’ .C)imo—c) T

+(c,.
V((ZT 1)) holds as K¢ s-modules for any c. The representation 7 of G on O(D,V) is given

by (2.5.6), and if we restrict this representation to Ga, we have

()

* ot
= detfa” 4 o) N2 deten + )N ( I cvwfd)>

0 —1
d —¢
—b
0

P

o O O R
o Ql
QL O O o

(a* 4+ vb*)~lwt(a* —i—vb*) (av +b)(cv+d)~!
Xf( ((cw—l—b)(cv—l—d) h 0 )
A (2r 1)V a* +vb*  —wle
= det(cv +d)~ (27 s §)< 0 t(cv+d)>
f <(a* + ob*) " twl(a* +vb*)" (av + b)(cv + d)1>
~Y(av + b)(cv +d)~h) 0

(w € Skew(2r,C), v € C?").

For N € N, let P<y(Skew(2r,C)) be the space of polynomials on Skew(2r,C) whose
degree is smaller than or equal to N, and let Dy C C?" be the unit disk. Also, let

incl : V((sz.’_l’])go;o) V((jf 1357_ k) — V((?Hg)v_ ) be the Ka-equivariant inclusion. Then

by the above computation, the map

202 2

12 O(Da, (P (Skew(2r,C)) RC) @ V) 1) = O(D, 1/((2’““)v )

) (4, §) = el )
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intertwines the G5 action, and we can also prove that ¢ preserves the Fischer norm. Thus

we study the space

O(Da, (P<n(Skew(2r, C)) B C) & V1Y e
= P(C*) ® (P<n(Skew(2r,C) K C) @ V"N
- (2r1)Vv (2r 1)v (2r,1)v
- @ Vmo 0, .,0;mo) ® @ (ma,m1,m2,ma,...,myr,mr;0) ® V( k,....k,050)°
mo=0 m621+
lm|<N

This space is not irreducible under G. For m € Z', | and 1 € Z%, we define

F (2r,1)Vv
m.l = Vg my 11 ma,ma—laem me—lp;0) 4+ (K, .. k;0)
2r1)Vv (2r,1)v
< (m1,m1,m2,ma,....,mr,mr;0) ®V(k7 -,k,0;0)

C (P<n(Skew(2r,C) RC) @ VO o,

so that
2r.1
(Pen(Skew(2r, C)RC) 0 V) = @ D Fa,
mezy ,  1€ZL,, 1=k
|m\<N 0<l; <m] mj+1

O(Da, (P<n(Skew(2r,C) B C) @ Vi) ) = €D D  O(Da,Fmy).
mezy 1€, |I|=k
|m‘§N Ogljgﬁjfmj+1

Also, form € Z', , and k € Z’;gl we set

_ eny
W V(ml —k1,ma,ma—ko,m3,...mpr_1—kr_1,mp mpr—kr,—kr11;m1)+(k,...,k;0)
(2r,1)Vv (2r,1)V
V(m17m2,mz,m37 My —1,Mp My, 05my) V(’ﬁ -,k,0;0)
2r1)Vv (2r,1)v (2r,1)v
C V(m170,~~,0;m1) ® V(mz,m27m3,m3,m,mmmr,0 0;0) ® V( k,...,k,0;0)
V(Qr 1)v

C P(C*) @ (P<n(Skew(2r,C)) KC) ® V™ 1 0)°

Then we have the following.
@2r+1)v
Lemma 2.5.7. (1) t(Wmx) C (M, — k1 ma,ma—kz e ek, — 1)+ (£, £)

(2) Winx C @ O(Da, Finy,....mp0)1)-

1€(Z>0)", 1=k
i<kji1, lr>kria

2r+1
(3) ((Fm1) C D y el e e
’ (m1,m1—n1,me,ma—ng2,...mpMp =g, =N 1)+ (5,0, %)
n€(Zxo) ', |n|=k
nj<lj, ny412l-—m,

Proof. (1) The polynomial space P(C?") @ (P(Skew(2r,C)) X C) is decomposed as

2r . (2r,1)Vv (27‘1
P(C?) @ (P(Skew(2r,C)) K C) = @ Ve o 0umg) © @ o 022 7 30)

mo= 0 mEZ++
@ @
- (m1+l1,m1,ma+l2,ma,...mr+lr,mpr;ymo)’

mEZ1+ IG(ZZ())T, m:mo
0<l;<mj_1—m;
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and similarly to (2.5.9), we have

(2r,1)Vv (2r+1)v
(m1+l1,m1,ma+l2,ma,...;mr+lr,mr;mo) (ma+l,m1+H,me+la,mo+la,. ..o+, me 1)

Therefore we have
(21",1)\/ (2T,1)\/
L (V ® V(k,...,k,O;O))

(mi1+l1,m1,mo+la,ma,...,me+l.,mrmo)

(2r+1)v . (2r,1)V
- ‘/(m1+l1,m1+l1,m2+l2,m2+l2,...,mr—}—lr,mr—‘rlmO) ® incl (‘/(k,...,k,0;0)>
(2r+1)v (2r+1)V
< V(m1+l1,7m+l17m2+l27m2+l2,---7m7-+lr,mr+lr,0) ® V(g,...,g—g)' (2.5.10)
Especially, by putting 1 = 0 we have
(2r+1)v . (2r,1)v
Wm,k C Vv(ml,ml,mg,mz,...,mr,mr,()) ® incl (‘/(k,...,k,();o))
(2r+1)Vv (2r+1)v
© Vimami ama.ma,.e.mmy0) © Vik & iy
Let v € Wiy x be the highest weight vector. Then
_ . . (2r+1)V . (2r,1)V
[/('U) - Z Ul,l ® '1)271 € ‘/(ml7m1am2)m27~~7mramr70) ® lnCI (‘/(k’JC:OvO))
i
(2r+1)v (2r+1)v
C Vi mama,macnyann0) @ Vs 5y

has the weight —(—k,41,my — kp,myp, ... ,mo — ko, mao, my — ki, mq) — (g, el %), vanishes
under root vectors x € Eg e (j=1,...,2r—1) since v is the highest under Kf, and also
vanishes under root vectors x € E?QT_£2T+1 since each vy ;, v2; has the weight (x, ..., %, —my)
and (*,...,%,0) — (g, . %) respectively, where * are some integers. Thus ¢(v) becomes
a highest weight vector of y eriy

ko kY
(ma,ma—k1,ma,ma—ka,.omeme—kr,—kpy 1)+ (£, 5)

(2) We have
\Y (2r, 1)V (2r,1)v
WmJ C V(mlw-,O;ml) ® V(m2,m2,m37m3,~~-,mmmr70:0§0) ® V(k,...,k,O;O)
_ @ VvV ® (2r,1)v
B (ma,...,0;m1) (m2,m2—1l1,m3,m3—lz,...mr,mpr—lr_1,0,—1r;0)+(k,...,k;0)

1672, 1=k
0<lj<mji1—myqo

_ V
- @ ‘/Y(mlv"'vo;ml) ® F(m27"'7m7‘10)71’
IEZTZO, 1=k
0<lj<mjt1—mjt2

and abstractly

 1/@2r)Vv
Wm’l - ‘/(ml_kl7m21m2_k27m37~-~1mr71_k'rflammmr_kry_kr+1§m1)+(k7-~-7k§0)
c V(QT,I)V (2r,1)Vv

(m1,0,.-0:m1) © Y (ma,ma—1y mams—la,...mip my—lo—1,0,~1r30)+ (k.. k;0)

holds only if I; < kj41, I, > ky41 holds.
(3) By (2.5.10) with 1= 0 we have

2r+1)v @2r 1)V
{Fm1) € Vi g mocmeime) © V(E ki
B @ (2r+1)v
(m1,m1—n1,m2,me—ng,..meme—np,—npp 1)+ (£,.,5)

ne(Z>o)"*, [nl=k
nj<mj—m;i1
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Combining with the abstract branching rule under K€ > KE (Lemma 2.5.3), we get the
desired formula. O

Now we want to show that, on y2rHnv

the ratio is given
(m1,ml—kl,...,mT,mr—kr,—kr+1)+(§,...,g) &

by
0 ey . 1 2.511)
= - .0.
”fHF (2r+1)v HJ:I ()\ + k— 2(] - ]‘))mj—k:]‘ ()\ —2r + 1)]€—kr+1

T(k/2,.. k)2, —k/2)

by induction on min{j : m; = 0}.

Fir hen m = 0 i.e. on VY
st, whe 0ie. o V(o,...,o,—k)+§’

assumption. Second, we assume (2.5.11) holds when m; = 0, and prove this also holds on

2r+1)v
when m,,1 = 0.
(m1,m1—kl,---,mrﬂmr_km_kﬂrl)""(g vvvv g) s+l

By Lemma 2.5.7 (1), it suffices to compute |]L(f)||§T/HL(f)||2FT for f € W x. For any
1, let fi be the orthogonal of f onto O(Da, Fy 1), where m’ := (mo, ..., m,,0). Then by
Lemma 2.5.7 (2), we have
f = Z f17

1€(Z>0)", =k
li<kji1, lr>krpa

(2.5.11) clearly holds by the normalization

and there exist by > 0 such that [|¢(f1)]|% = bil|¢(f)||% holds. Next, by Theorem 2.5.1, we
have

leC)llar IIL(vl)HFr
s TGy

TT=1((A ( = 2))my 1 +k(A = (25 = 1))y —t;46) (A = (27 = 1)) g vk
11 (N = (25 = 2))my =k (A = (25 = 1))y 1 +8)
X (A= (2r = 2))m, btk (A = (21 = 1)) ks r 4k
IO+ k=20 = D)y TTja O+ B = (25 = 3))my 1, o (A = 2 + 1)y,
I O k=20 = D)y T o+ k= (25 = 3))my, A = 20 + D)y

where v; is any non-zero element in the minimal Ka-type Fy . Next, let vy, be the

. 2r4+1)V

orthogonal projection of ¢(v;) onto y ety ©  ky, SO
(ma,ma—n1,m3,m3—nz2,....mp,mr—nr-1,0,0,—nr)+(%,...5)

that

L(’U]) = Z UL,n

n€(Z>o)", In|=k
n;<lj, np>lp

Next, by the induction hypothesis (2.5.11), for each n we have

by Lemma 2.5.7 (3). Then there exist ¢, > 0 such that HanHQF’T = cl,n||L(v1)H2F7T holds.

H/UI,H”%,T 1
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Thus for each 1 we get

[[e(0n)] i,q— o Z c Hvl,n”g\,fr
2 - 1,1’1 2

le(wn)] FT neZso)", In|=k 1or.n] mr
n;<lj, nyp >l

= > .

ne(Zso)", [n|=k H;;% ()‘ +k— 2(] - 1))mj+1—n]- ()\ —2r+ 1)k—n7-

n;<lj, np>l,

(monic polynomial of degree k — 1)
[ A4k =20 = 1))y, A= 2 +1),

and therefore we get

||L(f)H§\,T Z b ||f1”§\,7
M ARAT 1
(O~ o wos AT,
Ui<kjy1, lr>krta

Z ( (monic polynomial of degree k — I,.)

- 1 r—1 .

1€(Z>0)", 1=k Hj:l A+k—2(— 1))mj+1 AN=2r+ l)k—lr
1i<kji1, lr>kri1

H;;i()‘ +k— 2(3 - 1))mj+1 H;:2<)‘ +k— 2(] - 1) + 1>mj_lj71 ()‘ —2r+ 1)k_lr>

[+ k=20 = 1))y -y ITjma A+ & = (25 = 3))im; (A = 27 + D, 1
B (monic polynomial of degree ko + - -+ + k;)
[+, =20 = 1)y —r; [moA+h+my — K — (2 = 3))i; (A = 27 + Dgpryy

On the other hand, by Lemma 2.5.6 we have

||L(f)||§\¢ (monic polynomial of degree k;1)

D7, TN+ k=20 = 1)y —r; (A =27 + 1)

so combining these two formulas, we get

L (IR~ 1

Hb(f)H%?J B ngl()‘ +k— 2(] - 1))777‘]'*]?]' (/\ —2r+ 1>k*kr+1 ’

and the induction continues. Thus we have proved (2.5.11) for any m, and proved Theorem
2.5.5. O
2.5.5 Conjecture on Eg_1y4)

In this subsection we set G' = Eg(_14). Then we have

t~s50(2) ®s0(10), pT~ M(2,1;0¢), gr ~s0(2,8), [~Rdso(1,7), & ~so(7),
r=2, n=16, d=6, p=12.

We take a Cartan subalgebra hh C £. Then we can take a basis {tg,t1,...,t5} Cv/—1b
and {gg,€1,...,65} C (v/=1h)Y, such that

4 . ,
60(tj) = g(SOJ, 5i(tj):5i7j (121,...,5, Vi :O,l,...,5),



and the simple system of positive roots A (g©, h®) is given by

3 1
{61 — €2, €2 — €3, €3 — €4, €4 — €5, €4 t €5, 250 + 5(—51 —€2—€3— &4+ 55)} ;
where %so—i—%(—sl —e9—e3—e4+¢€5) is the unique non-compact simple root, and the central
character of €€ is given by dy = £9. The set of strongly orthogonal roots {v1,72} C Ap+
is given by

3 1 1
’Y1:Z€0+§(51+€2+53+€4+85), 722180-1-5(61—52—63—84—55),

and bt := HhNgr, q is given by

3 1 3 1 1
Vv—1bhr = Spaﬂ{4to+ 5751, ta, t3, t4, 755}7 a = Span{4to+ itl, 2(t2+t3+t4+t5)}-

We denote the restriction of € to v/—1h by the same symbol ¢ (j = 2,3,4,5), and define
ey € (V—1hr)" by

3 1
o <4t0+2t1>:1, S =0 (j=2.3,4,5),

so that (moeo + m161)|\/jlhT = (mo + %ml) e holds. Also, we define ¢4,¢%,e9,e¢ €
(v/—1hT)" such that they satisfy the relations

1 1
5§=§(€2+63+€4+65), 5(6§+6§J+6§1’+5‘5’):sg,
1 1
g5 + €% =eg +e3, 5(5‘5—%5@,"—%52{—5‘5’):§(sg+83+54—55),

so that y1|, /=gy, = €] + €5, 72| /—1p, = €1 — €4 holds.

For (mp; m) € Cx <Z5 U(Z+ %)5) withmy > -+ > my > |ms|, let (T([f);i.oil), V([fnj(i]n)) =
[10]

(X" R 7, Cyy ® VrEO]) be the irreducible £€-module with highest weight moeg +mie1 +
-+ 4+ mges.  Also, for (mg;mi;ma,...,ms) € C x C x (Z4U (Z+%)4) with mg >

[2,2,8] [2,2,8] (2,8] (2,8]
mg > maq > |ms|, let (T(mo;ml;mz,m,mf))’V(mo;ml;mz,..-,mzs))’ ( (m1ma,...;,ms)? (ml§m2~-~,m5))

2,8 2,8
and (T[ e , 12,8
(m17m2»"'7m5) (ml?m27"'7m5)

miel + magg + -+ + mses, Mie) + magg + -+ - + mses, and miel + moed + -+ + mse?
respectively. Then as in Section 2.4.1, we can show

) be the irreducible {%g—module with highest weight mgeg+

[2,8]w [2,8]w (128w (2,8]w
(T(M1;m2,m37m4,m5)’ V(ml;m2,m37m4,m5)) - (T(ml;m2,m37m4ﬁm5)’ V(ml;m27m3,m4ﬁm5))'
We set V = V([i’}f]k 0,000’ The goal of this subsection is to prove the following propo-
55/,0,0,0,

sition.

. 10 10
Proposition 2.5.8. When G = Eg(_14) and (7,V) = (X_k/ggT([h(}]’O’O’o), (C_k/2®V([k’0]707070))
(k € Z>o), || - H%\T converges if Re A > 11, the normalizing constant cy is given by

o= (A —T+k)r(h—8) (A= 11)7(A — 4 + k),
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the K-type decomposition of O(D,V )k is given by

10
Pt @ (C—k/2 X V(Eko}o 00))

[10]
D D Cogimmy s BV mgmay y mma g, mioma mom s )
meZ3 | ke(Zxo)*, kl=k
ko+ksi<mo
k3<mi—ma
(10] .
and for f € C_s (ny 1mz)- ng(L;% ey —ha, T2 ey TSR I I g ) fheratio
of norms is of the form
2
1£1l [10] ‘ ‘
AX—k/2®7 000000 (Ar(A = 3)i(monic polynomial of degree 2ky + ko 4 k3)
||f||2 [10] (A)m1+k1+k’2 ()‘ - 3)m2+k1+k3 ()‘ - 4)k()‘ - 7)k

Fix—g /2R (k,0,0,0,0)
B (monic polynomial of degree 2k + ko + k3)
N E) itk A E = 3) gk g k(X — DA = 7).
Before starting the proof, we quote the following lemma about the restriction of the
representation V252 of s0(2s + 2) to s50(2) @ s0(2s).

Lemma 2.5.9 ([26, Theorem 1.1]).

[2542] ~ mo,ml7 .,m [2,25]
‘/(mg,ml,...,ms) 50(2)@50(25) - @ Tll, ,ns ( )‘/(noffll, ST 9)7

mi_1>nz>\ml+1| no
msflz‘ns‘

where cgzof.r_n;"j"ms)(no) € Z> 1is the coefficient of X™ of the polynomial
s—1 ) .
XaJ—H _ X_a3_1
xo 1] :
. X-X-1
7=0
where
ap = mo — max{my,ny},
a; = min{m;,n;} — max{|m;i1|, |nj+1|} (j=1,...,s—1),

as = (Sgnms)(sgn ns) min{’ms’a ’ns‘}
From this lemma we can easily deduce the following.

Lemma 2.5.10.

25+2] [2,25]
vl = @ @ |7 .
(£,0,--50) | 50 (2)s0(25) (10511,0,...,0)
11=0 l0€Z, ‘l()|<k l1

k—lo—l1€2Z
Now we start the proof. To begin with, we determine the normalizing constant cy.
. [2,10] .
in i m nder
Since V(fg;k,O,O,O,O) s decomposed under t1 as
(2,10] @ @ (2,2,8] @ @ (2,8]
V(—g;k:,o,(xo 0 V(—g;lo;h,o,o 0 V(ﬂ;lg,o,o,o)
T =0 ez, |lo|]<k—11 L1=0 lo€Z, |lo|<k—I1 2
k—lo—1,€27Z k—lo—1 €27Z
_ (2,8] _ @ 2,8]w
o @ V(_k1+k2.k1_k2000) - V( k1+k2 ki—ky ky—ky ky—ky ki k2)
k1,k2€Z>0 2 o k1,k2€Z>0 2 2 2 2
k>k1>ko>0 k>ky >ko >0
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[2,8]w
each V_k1+k2.k1*k2 k1—kg ki1—Fka kj—ko
2 T 32 2 2 T3

) remains irreducible under ¢ = s0(7), and has the

restricted lowest weight — % (k1v1 + k272) ’a[, by Theorem 2.3.1, || - ||§\T converges if Re A >
11, and c, is given by

_ 1 . Ta(A+ (k1 ko) — 8)
1 [2,8]w Q 1, 2
A T 2,10 Z <d1mV  kptky ki—k ky—k )
dim V([_E;}]c70707070) k1,k2€Z>¢ ( 12 4 12 2, 12 2) FQ()\ + (kla kQ))
2 k>k1>ky >0

1 (k1*’;2+7) _ (k1*/7€2+5)
- (k—é—Q)_(k+7) Z (A+l€1—8)8()\+k2—11)8.

9 k1,k2€Z>¢
k>k1>ky>0
For | € Z>o, we define
Z (k1—17€2+7) o (k1—$2+5)
F(\) = .
ki ke ()\ + k1 — 8)8()\ + kg — 11)8
I1>k1>k2>0

Then it satisfies

FOAL+1)

( k‘lfk‘2+7) _ (klfk‘2+5 )

= )RS DR DR 3 ()\+k17—8)8()\+/<727—11)8

2k1>k2>0  1+1>k1>ko>1  12k1>ko>1  (ki,k2)=(1+1,0)

(F%) = ("%°)
(/\+l— 7)8()\— 11)8.

=FOAD)+FOA+1,0)—FA+1,1—1)+

Solving this recurrence relation, we get

(%) - (%7
F(\I) = D—T7+D7A—8)(A—11)s(A—4+1)

and thus we have

(A = 8)k+8(A — 11)kyg

er= (A= THE)rA=8)A —11)r(A =44 k) = == e

- To(A+ k)
 Ta(A=8)A—4)e(A =)

Next we compute the K-type decomposition of O(D,V)x = P(pT) ® V([i’?]k 0,0.0,0)
27 A b ]

By Theorem 2.2.1 and the “multi-minuscule rule” [25, Corollary 2.16], we have

,P(er) ® V[2,10]

(—£:£,0,0,0,0)
=D v VP
mez? , (*z(mﬁrmz); 1tmy my—my my_mp my—mp _mi- 2) (~%:£.0,0.00)
= EB @ 2,10]
= meZ2 | ke(Zso), [kl=k (*%(m1+m2)f§;w4rklfk4vml;mz hy, TS oMy | —my +k3)'
ko+ks<mg

k3<mi—mz2
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In order to apply Theorem 2.3.1, we observe the image of each K-type under rest :
P(pt,V) = P(p£, V). For each m € Z2 ,, we have

rest (V[z’lo] & 1210 )

3 .mji+mg mi—m mi—m mi—m mi—m _ k.
(—1(7711-%-7712)7 12 27 12 2’ 12 2 12 2 _ 12 2) ( Q’k,()’()’o’o)

_ ks o @ VP

.mj1—mg mj—mg mj—mg mj—mg k! 4k’
_(1)L1+77l2)7 ) P} , P} s ) _ 1 2.L" —k’ 0.0.0
K, kb€Z >0 k1 —R2,0,0,

2 2 5
k>k, >k, >0

V[278]
kiFky . my—my mp—mg mj-—mg mj—mg )
K kSEZ>y  ll2€Z>0 —mtmet =y Ty o th T T T ok
k>k, >k,>0 l2<mi—m>
ll-‘rlz:kll—k?IQ

We write k] + k5 =: lg, so that k} = 3(lo + 1 +12), kb = 3(lo — {1 — lz). By Lemma 2.5.9,

rest V[2’10]
(= 3mabma)— U5y kg AT gy TR M )
(2,8]
m V lg mi—mo mi]—mgo mjp—mg mji—mo # {0}
(* <m1+m2+7); 7=+, — 5=, 5,3 *12>
implies
0<1li <mg—+ki—ka, 0 <ly <my —mo,

— LQ 3 k m1+m.
and the coefficient of X2< (m1+m2+ 2 )+(4<m1+m2)+2)) = Xz lotk of the polyno-
mial Xa0+1 _ Xfaofl Xa1+1 _ Xfalfl Xa3+1 _ Xfagfl
aq

X
X -X-1 X —-X-1 X - X1 ’

does not vanish, where

+k1_k4_max{m;m+k2ﬁu;m+h}

mi + ms
2
=mo+ ki —ky— maX{kQ, ll},

. mip —ma mip —ma mip —ma
alzmln{ + ko, —|—l1}—

ag —

2 2 2
= min{ko, 1},
_ml—mg mi1 — my mi1 — mgy
as B — max B —kg y B —l2 y
0 _sgn(_ml;”mkg) g(m;m _12) m{ Mmooy, ,‘ml S, }

This condition is satisfied only if

mi + ma

5 —lo+k>—-ap—a—az+ay

mi + ma

:_T
Sl <k4ki—ky— ko — U] — |ks — l2]

:2k1+k‘2+k‘3—|/€2—l1|—|/€3—l2|.

—k1+k4—|—|]{72—11|—|—|k’3—12|
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Thus we get

[2,10]
rest V 3 k._mi1+m mq—m mij—mg mij—mg mjp—m
(—Z(m1+m2) Syt k—ka, TR g, g2 TS - S 2+k3>

2,8]
c &b 1% .
+ + m3 = m2+l mj—mg m1 mo ml m27l
lo,l1,l2€Z50, lo—l1—12€2Z5 ( <m1 2 ) LT z P 2)
l1<ma+k1—ka, l2<mi—ma2
lo<2ki+ko+ks—|ka—l1|—|ks—l2]

For each m1,mao,ly, 1,12, we have

V[Q 8] V[ 8w

L=ly U+ly Ii+ly 11—l
( (mﬁ-mg—&— )ml M2 gy, TS L my m12m2_12> ( (m1+m2+ )ml —ma+ itz 1+2 1+2 122>

and as in Section 2.4.5, ¢, = s0(7)-spherical irreducible submodules in

28 o VB
< (m1+m2+ )ml m2+l1 lo l1+l2 11212711;l2> < L. l1+12 l1+l2 l1+l2 l1+12>
2,8 2,8

28 28

oty Lty Lty L—lp) & o Litlo L+lo l+ly I3+l
((m1+m2+ >m1m2+121212122> (0121212712?.)

V[2 8lw
(—(m1i+ma+lp);m1—ma+l1—I12,0,0,0)’

lo+11 =1 lo—1+1
<m1+0212>71(m2+0212)72-

2,10]
Therefore for f € V!
(- B3R |y g, T2y, T2 MR 2 )

are isomorphic to which has the lowest weight

by The-

3 (m1+ma)—E;
orem 2.3.1, the ratio of norms is given by

Y Z amijFQ ()\ + <l0+l21+l2, lo—l21—l2) — 8)
Iflrr

a lo+l1—1 lo—l1+l
2 0mk) loJl1,l2€Z50, lo—l1—12€2Z5 1 © ()\ + (m1 + 5—2,mg + %))
li<ma+ki—ka, la<mi—maz
lo<2k1+ko+ks—|ka—l1|—|k3—I2|

am,k,l(A)k(A —3)k(A—18) l0+l21+12 (A= 11)107121712

1
> ,
Zl Gm k1 lo,l1,l2€Z >0, lo—l1—12€2Z>0 ()\)m1+l +l21_l2 ()\ B 3>m2+% (/\ B 4)k()\ B 7)k

l1<mo+k1—kq, l2<mi—m2
lo<2k1+ko+ks—|ka—11|—|k3—I2]

using some non-negative numbers am k1. Now, since
lo+l—lo<2ki+kao+ks— ko —Ul|—|ks—la| +11— 1o
< 2ky 4+ 2ky — (ko — l1) — |k — L] + (k3 — l2) — |ks — l2] < 2(k1 + k2),
lo—li+1la<2ki+ko+ks—|ka—Ui]| — ks —la| = l1 + 12
< 2k1 + 2ks + (ke — 11) — |ka — 1] — (ks — l2) — |k3s — la] < 2(k1 + k3),

we have
||f||?\T ~ (M)r(A = 3)g(monic polynomial of degree 2k + ko + k3)
1A%, (N mrthr+ka (A = 3)img by ks (A — DA = T ’
and we have proved Proposition 2.5.8. O

By ko + k4 < mg and k3 < m; — me, we have the inequality
mi1+ ki +ka>mo+ ki + ks > kot ks + ks > ka.

Thus the author conjectures the following.
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(10]

Conjecture 2.5.11. For f € C_%(m1+m2)_@ :
the ratio of norms is given by

1112 10

7X—k/Q&T(k,Do,o,o,o) _ (/\)k(/\ — 3>k
Hf”z 53,1101 ()\>m1+k1+k2 (/\ - 3>77”024r’€1+7€3(A - 4)k2+k3+/€4 (/\ - 7>k4
X—k/257(£.0,0,0,0)

1
B ()‘ + k)m1+k1+k2*k()‘ +k— 3>m2+k1+k3*k()‘ - 4)k2+k3+k4(/\ - 7)k4

2.6 Analytic continuation of holomorphic discrete series

In the previous sections, we calculated the norms of the holomorphic discrete series rep-
resentations. Using this, we see how the highest weight modules behave as the parameter
A goes small, following the arguments in [6] and [19].

For example, when G = Sp(r,R) and V = VE\er,._JFEk with £ = 0,1,...,r — 1, by
Theorem 2.4.2, the norm || - |5 ;v T e is written as

2 Yy [ (A —3G-1)
)\T r 5 v it
TR ez, ke, 1} Ji= [T (A =20 - 1))mj+kj s
m-+keZn

for A\ > 7, where fmx is the orthogonal projection of f onto Vo7 +x- Then as in [7,

Theorem XIII.2.4], the reproducing kernel K v o is written by the converging sum
T ey

K w) Z Z ngl ()\ - %(] - 1))mj+kj
)\TE 6 7 = .
e mezZ’ | ke{0,1}7, |k|=k H?=1 ()‘ - %0 o 1))
m+keZ’

Kmx(z,w)

where K, k(z,w) is the reproducing kernel of V,7 4 With respect to the Fischer norm
- 112 By . This is continued analytically for smaller A, and by [7, Lemma XIII.2.6],
coteg

this is posnzlve definite if and only if each coefficient is positive, that is,

kK k+1 r—1 r—1
)\6{2,2,..., 9 }U<2,OO>

The positive definite function automatically becomes a reproducing kernel of some Hilbert
space Hx(D, V), and this Hy(D, V') gives the unitary representation of G. Conversely, if
there exists a unitary subrepresentation Hy(D,V) C O(D,V) for some A € R, then its
reproducing kernel is automatically proportional to K AT e (z,w) by the arguments in

Section 2.3.1, and thus the above condition on A is precisely the necessary and sufficient
condition for unitarizability. Using this idea, we get the following result.

Theorem 2.6.1. (1) When G = Sp(r,R) and V. = VY, . with k = 0,1,...,7 —
1, (A, O(D,V)), originally unitarizable when X\ > r, contains a non-zero unitary

submodule Hx(D, V) if and only if
kEkE+1 r—1 r—1
/\6{2, o }u< . ,oo>.

75

— — — — 2
<m1;m2+kl_k47m12m2+k2’ml2’”2’ml m2’_m12m2+k3)



(2) When G = SU(q,s) and V = C@Vés) with k € 25, (k #0, kyp =0, 1 =
0,...,s = 1), (t\,O(D,V)), originally unitarizable when X > q + s — 1, contains a
non-zero unitary submodule Hy(D, V) if and only if

A€ {l,l—l—l,...,min{q—l—l,s}—1}U(min{q+l,s}—1,oo).

(3) When G = SO*(2s) and V = V(\é 0..0) With k € Z>o, (T2, O(D,V)), originally

unitarizable when A > 2s — 3, contains a non-zero unitary submodule Hx(D,V) if
and only if

{0,2,4,...,2(|
Ae{ {2,4,....2(]

(4) When G = SO*(2s) andV = V(i 5 115 9y Withk € Zso, (14, O(D, V), originally
unitarizable when A\ > 2s — 3, contains a non-zero unitary submodule Hx(D, V) if
and only if

] =1),0) (k=0),

Nlw Nl®w

Ae{s—2}U(s—2,00).
(5) When G = Sping(2,n) and

v — { Cr® Vi, otk (K
Cr® Vi, kry (K

(ma, O(D, V), originally unitarizable when X > n — 1, contains a non-zero unitary

submodule Hx(D, V) if and only if

From the explicit norm computation, we can also determine completely when the
representation is reducible, and get some informations on the composition series, as in [6],
[19]. We denote the K-type decomposition of O(D, V) = P(p™, V) by

P, V) =P W,
and for f € W, we denote the ratio of norms by Hf||§\T/HfH%T =: Ry (), so that

(f,9)07 =D Bn(N){fm, ) -

If A is not a pole for all R,,(A), then the above sesquilinear form is well-defined, and non-
degenerate for our cases because the numerator of each R,,()\) is one. From this we can
show (dry,P(p*,V)) is irreducible, because if P(p™, V') has a proper submodule M, then
its orthogonal complement M also becomes a submodule, and both M and M~ contain a
pT-invariant vector i.e. contain the minimal K-type V, which is a contradiction. We note
that in our cases the sesquilinear form is always definite on each K-isotypic component,
and thus M is precisely a complement vector space.

On the other hand, if A is a pole for some R,,()), then (dry,P(p™,V)) is reducible.
In fact, for j € N and A € R we define M;(\) as the direct sum of W,,’s such that R,,()\)
has a pole of order at most j at A. Then the sesquilinear form

Jim (X = AV (g (2.6.1)
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is (g, K)-invariant under the representation dr on Mj())), which vanishes on M;_1(\).

Thus M;()) is a (g, K )-submodule of P(p™, V). Clearly M;(\)/M;_1()) is infinitesimally

unitary if the sesquilinear form (2.6.1) is definite. This gives the following theorem.

Theorem 2.6.2. (1) When G = Sp(r,R) and V. =V, ., withk =0,1,...,r -1,
forAeR and j =1,2,...,r, we define

M;(A) = @ Vomix CPHT, V).

my+k;<i-A+1

Then (drx, P(p™,V)) is reducible if and only if A < %1 and \ € %Z. In this case
we have the sequence of submodules

{0} € My(\) C Mgio(N) C--- C My(\) C P(pT, V),

where
2A+1 (E<a<3h,
20 +3 (0 <A< E5h, b r—1 (2A\=r mod 2),
a = =
1 (A< -1, A€z, r (2A\#£7r mod 2).
2 A<=, 2eZ+3d),
Moyy1(N) (A= 5 E2L 0 m=hy and P(p*, V) /M, (A) (A < %52, 20 # 7 mod 2) are

infinitesimally unitary.

(2) When G = SU(q,s) and V. = CR V") with k € 75, (k # 0, kip1 = 0, 1 =
0,...,s—=1), for A€ Rand j =1,2,...,s, we define
M;(\) = P @V B cPrt, V).

’I’Ll7'<j—/\

Then (dtx, P(p™,V)) is reducible if and only if X < min{q + 1,5} — 1, A\ € Z and
there is no j = q+1,...,s such that \ = j —kj = j — kj_g41 holds. In this case we
have the sequence of submodules

{0} € Ma(N) € Maya(N) C--- C My(A) € P(p™, V),
where

i+t G-k A<i—k) (1<) <min{g+Ls}- 1),
1 ()\ < _kl)a

and b=sif ¢ > s,

min{g +1,s} (min{q+1, s} — Eninfi,s—qp < A <min{g+1,s} — 1),

b=1{; (= kjog SASG—kjgr)) (g+1<j<min{g+1s} 1),
q (A<q—Fk)
if g <s.

Ifg> s ork =0, then My;1(A) (A =1,141,...,min{q,s} 1) and P(p™, V) /Mying.s} (N)
(A <min{q, s} — 1, X\ € Z) are infinitesimally unitary.

If ¢ < s and k # 0, then Myxy1(A) (A = I,l+1,...,min{qg + I,s} — 1) and
P(p+7 V)/Mmin{qul,s}()‘) (min{q + l, 3} - kmin{l,sfq} <A< min{q + l, S} - 17 A€ Z)

are infinitesimally unitary.
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(3) When G = SO*(4r) and V = V(\lgo.uo) with k € Z>o, for A€ R and j =1,2,...,r,
we define

Mj()\) = @ ‘/(\'l’/rll‘f‘klyml,u-,mr"l‘krymr) C P(p+7 V)
mj+kj<2j—A—1

Then (drx, P(pt,V)) is reducible if and only if X\ < 2r — 2 and X\ € Z. In this case
we have the sequence of submodules

{0} € My(N\) C Myy1(A) C -+ C M,(\) C P(p™, V),

where
[3]+1 B<Aa<2r—2),
a=12 (—k+1<A<2),
1 (A < —k).

Ma () A= 24,20 =2 ifk > 1, A = 0,2,....,2r =2 if k = 0) and
2
PpT,V)/M.(X) (A< 2r —2, X\ € Z) are infinitesimally unitary.

(4) When G = SO*(4r) and V = V(%/Z,...,k/2,—k/2) with k € Zsq, for X € R and j =
1,2,...,r, we define

M;(A) = EB V(Ym,mrkl,...,mr,mrkT)Jr(k/Q,...,k/z) - P(P+, V).
mj—k;+k<2j—A—1

Then (dry, P(pt,V)) is reducible if and only if X < 2r — 2 and X\ € Z. In this case
we have the sequence of submodules

{0} € My(\) C Myi1(N\) C--- C M.(\) C P(pt, V),

where
T (2r—3—-—k<A<2r-—2),
o= [ME]+1 (“k+1<A<2r—4—k),
1 (A< —k).

M, (2r —2) and P(p™,V)/M,(\) (A < 2r —2, X\ € Z) are infinitesimally unitary.
(5) When G = SO*(4r +2) and V = V(xo o) With k € Zxo, for A € R and j =

77777

MJ()\> = @ ‘/(\r/nlJrkl,ml,...,mrJrkr,mr) - P(p+7 V) (.7 = 17 s ,7’),
mj+kj<2j—)\—1
MT‘-H()‘) = @ ‘/(xn-‘rklmu ..... myp+kr,m;) C P(p+’ V)
kT+1<27‘—/\+1
2 k>1
Then (drx, P(p™,V)) is reducible if and only if X < 2T ) Ek - 0;, A €7Z and
T — =

(r,A) # (1,—=k + 1). In this case we have the sequence of submodules

{0} € My(\) C Mgi1(N) C--- C My(\) C P(pT, V),
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(6)

(7)

A 1 <A<2
[2]+1 B<A<om), r+l (2r+l-k<A<),
a—=19 —k+1<A<2) =
; r ()\<2T—k)
1 (A< —k) -

If k=0, then My () (A=0,2,...,2r —2) and Ppt,V)/M.(\) (A<2r—2, e
2

7) are infinitesimally unitary.

Ifk>1, then M 1 (N) (A =2,4,...,2r) and P(p™,V)/Mp11(N) 2r+1 -k <A<
2

2r, X\ € Z) are infinitesimally unitary.

When G = SO*(4r +2) and V. = V{{ 1y 10 9y with k € Zsg, for X € R and
i=12....r+1, we define
MJ()‘) = @ V(\T/n1,m1—k1,...,mmmr—kr)+(k/2,...,k/2) - P(p+7 V) (] =1,... 7“),
mj—kj+k<2j—A—1
MeiN) = D Vi —bsrmem—k )+ (6/2,0e/2) © POV,

k—kry1<2r—A

Then (dtx, P(p™,V)) is reducible if and only if N < 2r—1, X\ € Z and X\ # 2r —k—1.
In this case we have the sequence of submodules

{0} € Ma(N) € Maya(N) C--- C Mp(N) € P(p™, V),

where
(r+1,r4+1) @2r—k<A<2r-1),
(a,) = ([ME]+1,7) (“k+1<A<2r—2—k),
(1,7) (A< —k).
M, 1(2r—1) and P(p™, V) /My11(\) (2r—k <X <2r—1, X\ € Z) are infinitesimally
unitary.
When G = Sping(2,2s) and V = Ci, ¥ V{3, 1 1) with k € %Zzo; for X € R and
7 =1,2, we define
Mi(N) = B Cotmots B Vi —msip, bty € PO, V),
m1+k+H<l—XA
MQ()\) = @ Cm1-|-mz—|—k X ‘/(m1—m2+l,k’,...,k,:tl) C 73(]3+, V)

mo+k—I<Z5—X

Then (drx, P(p™,V)) is reducible if and only if \ < s—1 and X\ € Z. In this case we
have the sequence of submodules

{0} € My(\) Cc P(p™,V) (1-2k<A<s—1),
{0} € My(\) € Ma(M\) C P(p™,V) (A < —2k).

Ms(s — 1), M1(0) (only when k =0), and P(p*,V)/Ma(A\) A< s—1, A €Z) are
infinitesimally unitary.
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(8) When G = Sping(2,2s + 1) and V = C, KV, iy with k = 0,3, for A € R and
j=1,2, we define

Mi(A) = @ Crnytmatk B Vi, —mgtip,eiy € PT, V),
mi1+k+I<l—A
Ma(A) = @ Crny4matk B Vi, —motih, ey € PO, V).

ma+k—l<Z—X

Then (drx, P(p™,V)) is reducible if and only if N < s—% and X\ € Z+3%, or A < —2k
and A € Z. In this case we have the sequence of submodules

1

(0} € My(N) C P(p™, V) (/\gs—%, AEZ+3),

{0} c My(\) Cc P(pt,V) (A< =2k, A€ 7).

Ms(s — 3), M1(0) (only when k =0), and P(p*,V)/Ma(\) A< s—1, NeZ+1)
are infinitesimally unitary.

By [15, Lemma 4.8], we can determine the associated variety of each subquotient
module by comparing the asymptotic K-support of each subquotient module and (2.2.3).
In fact, we have

VoMt (N)/My (or -1y (V) = {gl =p* 8 ) S)l oy

VQ(,P(p+) V)/Mb (or r) ()‘)) = @ = eru

where we set Mo(\) = M_1(\) = {0}, O; are defined in (2.2.2), and r = rankg G. These
and (2.2.4) give the Gelfand-Kirillov dimension of each subquotient module.

I+ 30(2r—1—=1)d+1b  (1=0,1,...,r—1),

DIM(My41(A) /My (or 1-1)(N)) = {r L Dddrb=n (>0
P} - =T

1
DIM(P(p*, V) /M, (or r)(/\)) =7+ Er(r —1)d+rb=n.

Also, we can show that the smallest submodule M, () is irreducible in any case, by
the same argument for the irreducibility of P(p™, V) for A generic case. However, we
cannot determine whether the other subquotient modules are irreducible or not, by the
norm computation, and we need some other techniques to determine the full composition
series, such as the techniques used in e.g. [17], [22], [23], or [1].
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Chapter 3

Intertwining operators between
holomorphic discrete series
representations

In this chapter we explicitly construct the Gi-intertwining operator between a holomorphic
discrete series representation of some Lie group G and that of some subgroup G; C G.
More precisely, we construct a Gp-intertwining projection operator from H of G onto H;
of G as a differential operator, in the case (G,G1) = (Go x Go, AGp) and both H, H; are
of “almost scalar type”, and also construct a G-intertwining embedding operator from H;
of GG1 into ‘H of G as an “infinite-order differential operator”, in the case both G, G are
classical groups and both H, H; are of “almost scalar type”. In the actual computation
we make use of a series expansion of integral kernels and the result of Faraut-Kordnyi [5]
on norm computation.

Keywords: branching laws; intertwining operators; symmetry breaking operators; sym-
metric pair; holomorphic discrete series representations; highest weight modules.
AMS subject classification: 22E45; 43A85; 17C30.

3.1 Introduction

The purpose of this chapter is to study the intertwining operator between a holomorphic
discrete series representation of some Lie group G and that of some subgroup G; C G,
and write down such an operator explicitly.

Let G be a Lie group, G; be a subgroup of G, and consider a representation (7, H)
of G. Then it is a fundamental problem to understand how the representation (7,H) of
G behaves when it is restricted to the subgroup G;. Recently Kobayashi [18] proposed a
program for such problems in the following three stages.

(Stage A) Abstract features of the restriction 7|¢, .
(Stage B) Branching laws.
(Stage C) Construction of symmetry breaking operators.

In general, the restriction 7|z, may behave wildly, for example, the multiplicity becomes
infinite, or it contains continuous spectrum, even if (G, G1) is a symmetric pair, and 7 is
a unitary representation of G. However Kobayashi and his collaborators found conditions
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for (G, Gy, 7) that the restriction 7|, behaves nicely, that is, it is discretely decomposable
([9, 11, 12, 14, 22, 23]), its multiplicity becomes finite or uniformly bounded ([17, 19, 21]),
or decomposes multiplicity-freely ([13, 15]) (Stage A). Especially, if G is a reductive Lie
algebra of Hermitian type (i.e. the Riemannian symmetric space G/K has a natural
complex structure), (G,G1) is a symmetric pair of holomorphic type (i.e. a symmetric
pair such that the embedding map G1/K; — G/K is holomorphic), and 7 is in the nice
class of representations, called the holomorphic discrete series representations of GG, then
the restriction 7|g, decomposes discretely. Moreover, if the holomorphic discrete series
representation 7 is of scalar type, then it decomposes multiplicity-freely. In this case, its
branching law
Hoy = 3 mr m)h
721661

(where G, is the unitary dual of GGy i.e. the equivalence class of unitary representations
of Gi, and m(7,71) € Z>o) is also known ([8, 10, 13, 29]) (Stage B). Thus our next in-
terest is to understand the above decomposition explicitly, for example, to construct the
G1-intertwining operator between 7|, and 71 explicitly (Stage C). Such problems have
been considered by e.g. Clerc-Kobayashi-Orsted-Pevzner [1], Kobayashi-Orsted-Somberg-
Soucek [20], Kobayashi-Speh [27], Mollers-Orsted-Oshima [30] and Méllers-Oshima [31]
when 7 are principal series or complementary series representations, and by e.g. Ibukiyama-
Kuzumaki-Ochai [7], Kobayashi-Pevzner [24, 25] and Peng-Zhang [34] when 7 are holo-
morphic discrete series representations. The approach used in [20, 24, 25] is called the
“F-method”, in which the explicit intertwining operators are determined by solving cer-
tain differential equations. This idea first appeard in [16]. In this chapter, we also attack
this problem when 7 are holomorphic discrete series representations, but take an approach
different from the F-method, namely, by computing some integrals using series expansion.

Now we review the holomorphic discrete series representations. Let G be a reductive
Lie group of Hermitian type, and K C G be a maximal compact subgroup. Then there
exists a complex subspace p™ C g€ in the complexified Lie algebra of G and a bounded
domain D C p* such that the Riemannian symmetric space G/K is diffeomorphic to D,
and G/K admits a natural complex structure via this diffeomorphism. Next, let (7,V)
be a finite-dimensional representation of K€, the universal covering group of K€, and
consider the space of holomorphic sections of the homogeneous vector bundle G x 7V on
G/K. Then since the complex domain D ~ G/K is contractible, it is isomorphic to the
space of V-valued holomorphic functions on D.

To(G/K,G x;V)~0O(D,V).

Clearly this admits an action of G. If (7, V) is sufficiently “regular”, then O(D, V) admits
a G-invariant inner product which is given by a converging integral on D. In this case
the corresponding Hilbert subspace H,(D,V) C O(D, V) admits a unitary representation,
which is called the holomorphic discrete series representation.

We take a subgroup G; C G which is stable under the Cartan involution of G. We
assume that the embedding map G1/K; — G/K of Riemannian symmetric spaces is
holomorphic. Let pj :=p*t N g(lc be the intersection of p™ and the complexfied Lie algebra
of Gy, and pJ = (pj)* C pt be the orthogonal complement under a suitable inner
product on p*. We take a finite dimensional representation (71, V7) of K (10, and consider
the corresponding holomorphic discrete series representation H., (D1, Vi) of Gi. Then
Hr (D1, V1) appears in the direct summand of H-(D, V)|, if and only if (71, V1) appears
in the irreducible decomposition of V' ® P(pg) under K7, where P(p3) is the space of
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holomorphic polynomials on p3 . Our aim is to write down the G (or (g1, K1 ))-intertwining
operator between H.(D,V) and each H, (D1, V1) explicitly. To do this, we gather such
H (D1, V1)’s, and consider a Hilbert space

H., (D1 x p3,V) CO(Dy x pg,V) =~ O(D1,P(p3,V))

such that each embedding H, (D1, V1) < H.(Dy x p3, V) is written easily, and construct
the (g1, K1)-intertwining operator between H, (D, V) and H’.(D; x p3, V) explicitly.

We calculate the intertwining operator in the following way. First, we find a kernel
function K (z;y) which is Gj-invariant in a suitable sense (Proposition 3.3.1). Then the
intertwining operator is given by

H-,—(D,V) — H;(Dl X p;av)7 f = <f7K(';y)>'HT(D,V)7
H;(Dl X p;a V) - HT(Dav)a g <97K(‘T’ ')*>’H{F(D1><p;’v)

(Corollary 3.3.3). This gives the integral expression of the intertwining operator, and
this step is similar to the method used in [30, 26, 27]. However, this expression is a bit
complicated. Also, in [24] it is proved that the intertwining operator from H,(D, V) to
Hr (D1, V1) is always given by a differential operator, but we cannot see this fact from
the integral expression. Thus we try to rewrite the integral expression to a differential
expression by substituting f(z) with e(*?), g(y) with @), where (-|-) is a suitable in-
ner product on p*. Then we can show that there exists a polynomial F*(z1,22;92) €
P(pT x pg x p5,End(V)) and a function F(z2;wi,ws) € O(p3 x pf x p3,End(V)) such
that the intertwining operator is given by

- 5
H, (D, V)i — Ho(D1 x p3,V HF*(’; > ’
H/(D X]J+ V)w = H (D, V)5 g(y)'_)F<x aa) 9(y)
(D1 2> V)i, T\ V)i 2; Oy1’ Oyo y1=21,y2=0

(Theorem 3.3.5). The latter operator is of infinite order in general, but when g is K-finite
i.e. is a polynomial, then it becomes a finite sum. The functions F' and F* are given by
an explicit integral, and actual computation of F' and F* is performed in Section 3.5 case
by case, by using the series expansion of integrands and the result of Faraut-Kordnyi [5]
on norm computation. In this way, the author has got the explicit intertwining operators
H.(D,V) = Hy (D1, V1) in the case
(G.G1) = (U(g,5),U(g,s") x U(s")), (SO*(2s),S0"(2(s — 1)) x SO(2)),
(50(2,25),U(1,5)),

which are given by normal derivatives, the operators H,(D,V) — H,, (D1, V1) in the case
(G,G1) = (Go x Go, AGo)

where Gy is a simple Lie group of Hermitian type, when (7,V') is scalar and (71, V)
s “almost scalar”, which gives essentially the same result with [34], and the operators
Hr (D1, V1) = H-(D,V) in the case
(G7 Gl) = (Sp(s, R) Sp(sl R) X Sp( g R))v (U(Q7S 7U( /) X U(q//73”))7
(SO*(25), 507(25) x SO*(25")),  (Sp(s,R),U(s',5")),
(SO*(25),U(s', ")), (SU
(SU(s, ), SO™(2s)), (
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when (7, V) is scalar and (71, V1) is “almost scalar”.

This chapter is organized as follows. In Section 3.2 we prepare some notations and
review some facts on Lie algebras of Hermitian type, Jordan triple systems, and holo-
morphic discrete series representations. In Section 3.3 we construct a general theory on
the intertwining operators between holomorphic discrete series representations. In Section
3.4, as a preparation for case by case analysis, we fix the explicit realization of classical
Lie groups, and observe series expansions of some functions. In Section 3.5 we compute
the explicit intertwining operators by using the result of Section 3.3 and 3.4.

3.2 Preliminaries for general theory

3.2.1 Root systems

Let g be a reductive Lie algebra with Cartan involution 9. We decompose g into a sum of
simple and abelian subalgebras as

g=001) D Dgm) D3(9)

We assume that each simple subalgebra g(; is of Hermitian type, that is, its maximal
compact subalgebra £;) := gz) has a 1-dimensionla center 3(£;)), and also that the abelian
part 3(g) is fixed by 9. For each i, we fix an element z;;) € 3(;) ) such that ad(z)
has eigenvalues ++v/—1, 0, —v/—1, and decompose the complexified Lie algebra g%.) into

eigenspaces under ad(z(i))(c as
C _ .+ C -
86) = P T8 PGy
We denote
C._ 4C C ¢
PT=pay @ D, =t @ B ¥ D3(0) = 0
so that

d“=ptatCaop.
We denote the anti-holomorphic extension of the Cartan involution ¥ on g€ by the same
symbol 9. Also, let ¥ := 9 o Ad(e™) (z := 3, 2(;)) be the anti-holomorphic involution on
g€ fixing g.
Next, we fix a Cartan subalgebra hh C ¢. Then h® automatically becomes a Cartan
subalgebra of g©. We set by = bNgg). Let Ag%) = A(g((ci), [)((CZ.)) be the root system of g((ci),
and let Api)’ AE((%) be the set of roots such that the corresponding root space is contained

in pi), E((CZ.) respectively. We fix a positive system Ag?), + C Ag%) such that A + C A_c

P SO
and denote AE?)’JF = Aéc(c_) N Ag((c-),Jr' Then we can take a system of strongly orthogonal

roots {71,(:), - - - ,’yr(i)y(i)} C Ap%, where 7(;) = rankg g(;), such that
(1) 71,@) is the highest root in Ap+ ,
’ (%)

(2) Y&,y is the root in Ap?r_) which is highest among the roots strongly orthogonal to
each v; ;) with 1 <j <k —1.
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For each j, let pT. . be the root space corresponding to 7; ;. We take an element e, ;y €
ARG 5,(0) 3:(0)

%

pT . such that
33,(1)
—llej.ays Ve €)= 2¢5.6)5
and set
T(4) m
by == —lej @)y Ve € V=1buy, eu = Z e i) € P?;y e:= Ze(i) ept,
j=1 i=1
() (i)
a) = D Rhy ) € V=1hg), aly == P Rej) oy
j=1 j=1

Then the restricted root system ¥ = E(g((ci), aic(i)) is one of

1§Jak§r2 ) 1
: i4k R }U{i2(%‘,(z‘)+%,(i))

1
Y= { 5(%,(@‘) - %,(z’))

a1, (4)

(type Cr ), or

2

1
Y = (as above) U {:l:’yj7(i)
(type BCW)). For 1 <j <k <rg we set
1
p;.'k’(i) = {x € p?;) cad(l)x = 5(7]-,(2-) + Vi, (3y) (1) for all | € a[y(i)} ,

1
pa(i) = {:L‘ € pa) cad(l)x = §7j’(i)(l)$ for all | € a[,(z‘)} )

Then we have

v n
P = @ Pk i)

0<j<k<r(;
(4,k)#(0,0)
We set
+ . + - gnt + . +
Py = @ Pk i) Pry = P s Pp = @pT,(i)’
1<j<k<r( i=1
C R — . pC
ET,(i) = [p}r,(z‘)mT,(i)]’ ET,(z‘) = ET,(i) N E(i)a

g%(i) = p¥7(%‘) @ E%(i) D P ) o7,(i) ‘= 0
and we define the integers
dy = dimpa(i), b(;) = dim pa'l’( ¥

%

. 1
ngy = dimply =ra) + 56 (re) — Dda) + bar),
n:=dimpt = Zn(i),
=1

. 1
ny ) = dimpy o) = re) + 570 (76 — D),
D) = 24 (T(i) — l)d(i) + b(i)‘
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Throughout the chapter, let GC be a connected complex Lie group with Lie algebra g©,

and let G, KC, K, G((CZ.), Gy Kéci), K, G () Gr,3) () K ;) be the connected Lie

subgroup with Lie algebras g, €€, €, g((ci), 93) E(l), iy gT () 9T, E T,(3)° 1 (;) respectively.
Also, let
KL = {k S KT( ) Ad(k)E(z) = e(i)},

which is possibly non-connected, and we denote its Lie algebra by & ;).
For k € K©, we write k* := (9k)~!. Then for each i, there exists a unique Hermitian

inner product (-\-)p+ , holomorphic in the first variable and anti-holomorphic in the second
(@)

variable, such that
(Ad(R)sly)y, = (@lAd(E)g)ye (e €0y ke K.

(61,(i)|€1,(z‘))p(4;) =1

This is proportional to the restriction of the Killing form of g((ci) on pa) X p&), if we identify
ng) and p&) through 9. By summing these inner products, we define

m

(zly) = (2|y)p+ = Z(xi\yi)p?;) <:c => zy=Y yicpt = @p%) . (3.2.1)
=1 =1 =1

=1

From now on we omit Ad or ad if there is no confusion, so that (kx|y),+ = (z[k*y),+

3.2.2 Operations on Jordan triple systems

pT has a Hermitian positive Jordan triple system structure with the product

_1 x,ﬁy],z]

(r,3:2) = =5l

We recall that, for z,y € p*, the Bergman operator B(z,y) € End(p™) is defined as

B(z,y) := I + ad([z, dy]) + %ad(m)Qad(ﬁy)z € End(p™).

p+

We say (z,y) € pt x pt is quasi-invertible if B(x,y) (or equivalently B(y,x)) is invertible,
and in this case the quasi-inverse x¥ is defined as

1
2¥ = B(z,y) " <a: + Qad(x)2§y> cpt.
Then if B(z,y) is invertible, then there exists an element k € K© such that B(z,y)z =

Ad(k)z holds for any z € p™. Also, B(x,y) and z¥ satisfy the following properties. For
z,y,z €ptand k € KC, if (x,y) is quasi-invertible, then

B(kz,k* ) = kB(x,y)k ™1, (3.2.2)
B(z,y)B(2Y,z) = B(z,y + 2) [4, Part V, Proposition II1.3.1, (J6.4)], (3.2.3)
B(z,2Y)B(y,z) = B(y + 2, ) [4, Part V, Proposition II1.3.1, (J6.4")], (3.2.4)

(kz)¥ 'Y = k(2V), (3.2.5)
VT = (a¥)? [4, Part V, Theorem III.5.1(i)], (3.2.6)
(z +2)Y = 2¥ + B(x,y) " *2®") [4, Part V, Theorem ITL.5.1(ii)] (3.2.7)
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holds. Here, the equality (3.2.6) holds when one of (z,y + z) or (2Y, 2) is quasi-invertible,
and the other also becomes quasi-invertible. Similarly, the equality (3.2.7) holds when one
of (x + z,y) or (z,y") is quasi-invertible, and then the other also is. Next, for each i, let
hey(z,y) € P(pT x pT) be the generic norm on p(t). This is the polynomial, holomorphic
in  and anti-holomorphic in y, satisfying

Detpz)(‘B('I’L” Yi)) = hy (@i, yi)PO (z4,; € PEE))-

If 2; = J(z)l aje; iy Yi = bje] (G) € ?;) C pa), then h; (x4, i) is given by

=

i

hiy (@i yi) = [ [ (1 — ajby).
j=1

For later use we abbreviate
Det,+ (B Hh(Z i, y;) PO =: h(z,y)"P.

Also, we abbreviate B(z,z) =: B(z), h (mz,xz) = hy(z;). Let

D := (connected component of {x € p* : B(x) is positive definite.} which contains 0)
(3.2.8)
be the bounded symmetric domain, which is diffeomorphic to G/K via the Borel embed-
ding which we will review later. Then if x,y € D, B(z,y) is invertible, and thus it is in
the image of KC. Moreover, since D is simply connected, there exists a holomorphic map
B:DxD — K€ (or B: DxD — K€, where K€ is the universal covering group of K©)
such that

Ad(B(z,y)) = B(z,y) € End(p?),  B(0,0) = 1xc € K© (resp. € K©)
holds. From now on we omit the tilde, and use the same symbol B instead of B.

Next we consider p%. This has a complex Jordan algebra structure with the product

(z,y) = - y:= —%[[%196]71/]-

We recall the quadratic map P : p¥ — End(]ﬁ) by

Plxyy:=2x-(y-x)—y-(r-x)= lad(m)%d(ﬂe)y (x,y € pJTr)

If y is in the real form {y € p¥ : Lad(e)?9y = y} of pF, then P(2)y = — 5[z, ¥y], ] holds.
Next we review the determinant polynomials on Jordan algebras. On each simple compo-
nent pT there exists a determinant polynomial A(;), which is the homogeneous polyno-
mial of éegree 7(;) satisfying

The quadratic map P and the determinant polynomials are related as

Detp;m (P(z;)) = A;)?m0/mo) (zi € (Z,)),

We extend A;) on pz;) such that it does not depend on (pT G )) EB;(Z)I poj (i)’ and denote
by the same symbol A;y. Then the determinant polynomlal A(;y and the generic norm
h; are related as

A(i)(e(i) —z) = hs (z, 6(1')) (x € pz;)).
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3.2.3 Polynomials on Jordan triple systems

Let P(pT) be the space of all holomorphic polynomials on p*. Then K© acts on P(p+)
by

(Adye)* (k) f(x) == f(k~'2) (ke K, feP@h)).
Then clearly we have P(p™) ~ P(pa)) ®---® P(p?rm)), according to the simple decompo-
sition of the Jordan triple system p* = pa) G- B p?rm). In the rest of this subsection, we
assume g is simple, and we drop the subscript (7). We set

7, c={m=(my,...,my) €Z" :my >--->my >0}
Then P(p™) is decomposed as follows.

Theorem 3.2.1 (Hua-Kostant-Schmid, [4, Part ITI, Theorem V.2.1]). Under K®-action,
P(p™) is decomposed as

PhrT)= P Pub™)

meZ’ |

where Pm(p™) is the irreducible representation of K© with lowest weight —myy, — -+ —
myyr. Moreover, each Pm(pt) has a nonzero Kp-invariant polynomial, which is unique
up to scalar multiple.

Let d2™ := dim Pm(pT), and let 3¢ be the Kp-invariant polynomial in P, (p™)
such that @Eﬁ’r)(e) = 1. Especially, when m = (m,...,m), then @Efr’;) m) () = A(x)™
holds.

Next we recall the Fischer inner product. For two holomorphic polynomials f,g €
P(p™), it is defined as

- 2)g(@)e” o .
o= [ 1@

This integral converges for any polynomial f, g, and the reproducing kernel is given by
e@Wpt  Let Km(z,y) € P(p* x pt) be the reproducing kernel of Py, (p™) with respect to
(-,)F, so that ZmeZh Km(z,y) = @)y Then the following holds.

Proposition 3.2.2 ([4, Part III, Lemma V.3.1(a), Theorem V.3.4]).

(d77‘7b) d
Km(z,e) = ( ;3 &) (7).
r/m,d

Here, (A)m,q is defined as

(Mma =[] <A - g(j - 1)) E Nm = AA+1) - (A +m—1). (3.2.9)

j=1
According to [32], we renormalize ") as
dia™ i
w (2) = ity — o)
r/m,d
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so that .
el@le)yt — Z Km(z,e) = —é(d)(x).

m
++ ++

Then éﬁﬁ) () does not depend on r in the following sense. Since ci>£ﬁ> is Kp-invariant, it

is determined by the value on a* C p*. Thus for z = aje; + -+ + aye, € a™, we write
(i)sﬁ)(l’) =: i)g)(al, ceey Q).
Then this does not depend on r, that is,

7 (dyr = (d,r—1
(I)En )(al,...,aT_l,O):(I)En )(al,...,aT_l)
holds.

Next we recall the Laplace-Beltrami operator from [6, Proposition VI.4.1]. This is a
differential operator on the real form {x € pf : Jad(e)*9z =z} of pf. We extend this
operator to a KC-invariant differential operator on p*, so that
02 nT

Bradzy T 7 2Ny

L= > ([, —vea), 2] ep) (3.2.10)

af

where {e,} C pT is a basis of p*, with the dual basis {e} C pT, and % is the directional
derivative along e?. Then this has the following properties.

Proposition 3.2.3. (1) ([6, Proposition VI.4.2]) If f is a Kp-invariant function, then
using the coordinate x = aje; + --- + aye, € a’, we have

" L,0%f aja, (O0f  Of nr <~ Of
Lf= 2= L e (L 2L =t iy
! z_:aj da? +dj§<: a; — ay <8aj 8ak> * r ;“faaj

(2) (Corollary of [6, Proposition VI.4.4]) If f € Pm(p™), then f is an eigenfunction of

L with eigenvalue 37, (m?

— 42 —r— 1)mj>.
3.2.4 Holomorphic discrete series representations

In this subsection we recall the explicit realization of the holomorphic discrete series rep-
resentation of the universal covering group . First we recall the Borel embedding,

G/K —=GC/KtP~
2 Jess
lv)c—> pt
where P* := exp(pT). When g € GC and = € p* satisfy gexp(z) € PYKCP~, we write
gexp(x) = exp(r™ (g, z))r(g, z) exp(n~ (g, 2)),

where 77 (g, z) € pt, k(g,x) € K®, and 7 (g,z) € p~. If g =k € KC, g = exp(y) € P*
or g = exp(dy) € P~ with y € pT, we have

at(k,z) = kz, k(k,x) =k,
7t (exp(y),x) =z +y, k(exp(y), z) = 1c,
7 (exp(Vy), z) = v, Ad(k(exp(9y), x))|p+ = B(z,y) "
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*+ gives the birational action of G® on p*, and from now on we abbreviate 7 (g, z) =: ga.
Especially, if x € D and g € G, then automatically gz € D and (g, x) is well-defined, and
the action of G on D is transitive. Since D is simply connected, the map x : G x D — K©
lifts to the universal covering space, that is, x : G x D — KC is well-defined. We denote
this extended map by the same symbol x. Then for z,y € p* and g € G,

B(ga, (Dg)y) = k(g,2)B(z,y)r(dg,y)* (3.2.11)

holds in End(p™), where ¥ is the anti- holomorphic involution of G® fixing G, and Ad is
omitted. If g € G (i.e. g = 199) and z,y € D, this also holds in KC, regarding B(z,y) as
the element of K. This formula is also verified in K€ if g € G.

Now let (7,V) be an irreducible holomorphic representation of K€ with K-invariant
inner product (-,-);. We consider the space of holomorphic sections of the vector bundle
on G/K with fiber V. Then since D ~ GG/ K is contractible, it is isomorphic to the space
of V-valued holomorphic functions on D.

To(G/K,G x; V) ~0O(D,V).
Via this identification, G acts on O(D, V) by

#(9)f(x) =7(rlg"2)) " flg™'e)  (9€GweD,feOD,V)).

Then since the G-invariant measure on D is given by h(x) Pdx := [[[Z) h) (@) PO de =
Det(B(z))~dz, G preserves the weighted Bergman inner product

(g0 = /D (r(B(2)™Y)f(x), g(x)). h(z) Pd.

Let H-(D, V) be the space of all functions f € O(D, V) such that || f|| < co. If H,(D,V)
is non-trivial, then we call the unitary representation (7, H,(D,V)) of G the holomorphic
discrete series representation. In this case, the space of K-finite vectors is equal to the
space of polynomials,

H-(D, V)i =0O(D, V) =Pp", V),

and the reproducing kernel of (7, H,(D,V)) is proportional to 7(B(z,y)).

Now we assume G is simple. Let x be the character of K€ such that y(k)? =
Det(Ad(k)|,+), or x(B(x,y)) = h(x,y). Let (79,V) be a fixed irreducleble representa-
tion of KC. Then for A € R, (1,V) = (10 ® x*, V) is again a representation of KC. In
this case we denote H,(D, V) =: Hy(D, V). Then H,(D, V) is non-zero if X is sufficiently
large, and the reproducing kernel of this Hilbert space is proportional to 7o ®@x ™ (B(z, y)).
On the other hand, even if A is smaller so that the integral defining the inner product does
not converge, it may happen that the kernel function 7o ® x~*(B(z, %)) is positive definite.
In this case we denote the corresponding Hilbert space by the same notation H (D, V)
Then this again gives an irreducible unitary representation of G, but the underlying (g, K )-
module H (D, V) may be smaller than P(p*, V).

Now we additionally assume (79, V') is trivial, and review the result of Faraut-Koranyi
[5] on Hx(D,V) =: Hx(D). In this case, the G-invariant inner product (f, g) is given by

(.9 A—/f )P,

and this integral converges for any polynomial f and g if A > p—1. Moreover, the following
holds.
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Theorem 3.2.4 ([5], [4, Part 111, Corollary V.3.9, Theorem V.3.10]). (1) If f,g € Pm(p™)
(m € Z' ,, see Theorem 3.2.1), we have

um:%gmm,

where (XN)m,q is as (3.2.9), and

Lan (A —7)

Crdrp:=7" ,
Lar(N)

L (apA) =a DA T <)\ - g(j - 1)) .

j=1
(2) The reproducing kernel (under a suitable normalization) is expanded as

W)™ = > Nmakid (,9), (3.2.12)

meZ |

where K& (z,y) € P(pt x pF) is the reproducing kernel of Pm(p™) with respect to
<'a >F
Then for f € Pm(p') we have

j/ KD (2, y) f (0)h(y)Pdy = 5870 (),
D (A)m,d

and since Py (pT) and Pyu(p™) are perpendicular to each other with respect to both (-, -)
and (-,-)p if m # n, we have

[ 1@t ray = T pi), (32.13)

D (/\)m,d

3.3 Intertwining operators between holomorphic discrete se-
ries representations

Let GG be a real reductive Lie group such that each simple component is of Hermitian type,
as in Section 3.2.1. Let G1 C G be a reductive subgroup which is stable under the Cartan
involution ¥ of G. We denote the Lie algebra of G; and its Cartan decomposition under
9 by g1 = £ ® p1. We assume

pT =M npH) @ (T Np7). (3.3.1)
We set p :=pF np™, p; :=pF Np~, so that
or =pT BE B pT.

Also, let p; C pT be the orthogonal complement of pf with respect to the inner product
(:|)p+ defined in (3.2.1). We define another inner product (|)PT on pi as in (3.2.1),
changing g to g1, and let Dy C p; is the bounded symmetric domain, defined as in (3.2.8).

Let (7,V) be a representation of K€, and consider the representation (7, H,(D,V))
of G, as in Section 3.2.4. We assume that (D, V) is non-trivial. We want to argue the
restriction H,(D, V)| X Then since it is discretely decomposable, the space of K-finite
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vectors coincides with the space of K-finite vectors (see [18, Theorem 4.5]), which is equal
to the space of V-valued polynomials on p+.

He(D,V)g, =Ho(D,V)g =Pp*,V).

Since pt acts on H(D, V) =P(p™,V) by 1st order differential operators with constant
coefficients, every (g1, K1)-submodule in H,(D, V), = P(p*, V) has p; -invariant vectors,
and the space of pf—invariant vectors is equal to

P +
H. (D, V)f(l =Pps) V.
Thus if we write the decomposition of the above space under K (1C as

Plpy) @V ~ @m 7, Vi)

then H,(D,V) is decomposed under G abstractly as
H(DVK|91K1 @m Dl?vvl)Kl

2]
HT(D7V)|G]_ = Z m(Ti)HTZ-’(DlaVi,)

)

(see (8], [13, Section 8], [29]). Thus we formally gather the space in the right hand side,
and consider the space O(Dy, P(p3,V)), with the Gi-action

() fyr,y2) = 7(k(g ) " a7y, k(g7 yn)ye)
(g€ G,y1 € Dy,yp € p3, f € O(D1, P(p3, V).

Then this action preserves the inner product
(f,9)# = //D B(y1) ™) f (y1, By1)y2), g(y1,y2)) . ha(y1) P |y2|”+dy1dy2,
1><}J2

where ny 1= dimpg, hy(y1) P! = Det(B(y1)|pr)_1, and dy;, dys are the Lebesgue mea-
sures on p;, pjy determined from the inner products (-|-)pIL, (:|)p+ respectively. Let
H. (D x p;r, V) be the completion of the pre-Hilbert subspace of functions f such that
| f[l# < oo. Our aim is to construct Gi-intertwining operators between H. (D, V|5, and
H. (D1 x p3, V) explicitly.

Let F : H,(D,V) — H.(Dy x p5, V) be such an operator. Then for any y € Dy x pg,
the linear map H,(D,V) — V, f — (Ff)(y) is continuous, and by the Riesz representation
theorem, there exists K, € H,(D,V) ® V such that

(f,Ky):=(FNy)  (f €H(D,V),y € Dixp]).
We write K (z;y) = K(z;y1, 1) := Ky(x) for z € D, y = (y1,y2) € D1 x p5. We identify

V®V and End(V) via the inner product of V. Then by the intertwining property, K (x;y)
must satisfy

K (gz; gy1, £(g, y1)y2) = 7(r(g, 2)) K (25 y1, y2) 7 (15(g, y1))* (3.3.2)
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for any g € G1. Thus we seek the kernel function satisfying (3.3.2).
Let K(x2,1y2) € P(p3 X p5,End(V)) be an operator-valued polynomial satisfying

K (kwa, k*'ya) = 7(k) K (w2, y2)7(k) ™" (22,92 € p5, k € KT). (3.3.3)

Let Proj, : p* — p;r be the orthogonal projection, and we define an operator-valued
function K € O(D x Dy x p3, End(V)) by

A A

K(z;y) = K(x1,22;91,92) := 7(B(x,y1)) K (Projy (), y2)
(= (z1,20) EDCpT, y1 € D1 C Pfy Y2 € p;)

Then the following holds.

Proposition 3.3.1. For any x € D, y; € D1, y2 € p; and g € Gy, K(x;y) satisfies the
identity (3.5.2).

Proof. By (3.2.11), we have
T(B(gz, 9y1)) = 7(k(g, 2))7(B(x,y1))7(r(g,y1))"
Thus it suffices to show
K (Projy((92)%"), £(g, y1)y2) = 7(k(g,91))* K (Proja ('), y2)7(k(g, y1))*.

By K Coinvariance of K(-,-), this is equivalent to

Projy((92)") = k(g,y1)" "' Projy(2¥)  (z € D, y1 € D1, g € G).
First we show

Proj,((gz) ") = k(dg,11)* ! Proj(a)  (z €p*, y € p{) (3.3.4)

for g =k € K¥ or g = exp(—21), g = exp(Jw1) € G with z1,w; € pf, when one side is
well-defined, that is, we show

Projy((kz)¥" V1) = k Proj,(a¥),
Projy((z — 21)#1")) = B(z1, 1) Projy(a¥1),

Projy((z*)7*") = Projy(2*").

In fact, these are true by (3.2.6), (3.2.7), and the fact that Proj, commutes with K "-action
and (x — 21)(3/;1) — B(z1,11)2% = B(z1,y1)z" € p{ is annihilated by Proj,. Since any
g € Gy is written as the form g = exp(Yw)kexp(—z1) with z;,w; € Dy and k € K(lc
(which is proved by using the K AK-decomposition and [4, Part III, Lemma II1.2.4]), the
proposition follows from the cocycle condition of k. O

Also, the function satisfying (3.3.2) is unique for every irreducible submodule of P(p3)®
V.

Lemma 3.3.2. We take an irreducible submodule W1 C P(p3) @ V. Then the function
K € O(D x Dy x py,End(V)) satisfying (3.3.2) and

K(z;y,) e VW, C (’)(g, End(V)) (for any = € D,y; € D)

s unique up to scalar multiple.
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Proof. By the invariance (3.3.2), if we substitute 21 = y; = 0, then the function K (z2, y2) :=
K(0,22;0,y2) satisfies (3.3.3), and by the irreducibility of W1, such function on p3 X pg is
unique up to scalar multiple. Then again by (3.3.2), the values of K is uniquely determined
on

S = {(g.(O,ajg);g.O,/{(g,O)yz) €D x D x p; g € Gr,x9 € Do,ys € p;} C Dx Dy x p;

Thus it suffices to show S contains a totally real submanifold of full dimension of D x
Dy x p;. Let pr; : D x Dy x p; — D, pry: D x Dy x p; — D1 x p;r be the projections.
Then since for every xo € Da, {exp(z).(0,2z2) : z € p1} C D intersects transversally with
D C p5 at x9, the differential of pry|g at (0,z2;0,y2) is surjective. Similarly, since G; acts
transitively on Dy, the differential of pry|g at (0,z2;0,y2) is also surjective. Therefore,
pry|s and pry|g are both submersive near {0} x Do x {0} x p5 C S, and Ty S+ I Tz S =

Tig) (D x Dy ¥ p3) holds on this neighborhood, where J is the complex structure of

Dx D; x p3 . Hence S contains a totally real submanifold of full dimension of D x D1 x p3,
and this completes the proof. ]

Let K (z9,y2) € P(ps ><p2 p7) be a polynomial satisfying (3.3.3), and let Wy C Ppy)@V
be a subrepresentation of K€ 1 such that K (-,y2) € W for any ys € p2 Then by the unique-
ness, the function K (z;y) becomes the kernel function of the intertwining operator from
H(D,V) to Hr@(Ad|p+)*(D1, W1) C H.(Dy x p3, V). Especially, K(, y) € H, (D, V)@V

2

holds for any y € Dy x p3. Similarly, K (z;-)* € H.(D; x p;, V) holds for any « € D, and
it becomes the kernel function of the intertwining operator of opposite direction. That is,
the following holds.

Corollary 3.3.3. We assume H.(D,V) is non-trivial.
(1) The linear map Fyy, : Hr (D, V) = Hrgaq) o) (D1, W1) C Hi (D1 x pa, V),
Py

(Fwv, F) (Y1, y2) :Z/L)K(x;ylyyz)*T(B(ﬂﬁ)1)f($)h(9«")”dﬂf
tertwines the él—action.

(2) The linear map Fyw, : H.(Dy x p3, V) D HT@(Ad|p+)*(D17 Wi) = H-(D,V),
2

(‘7:W1f

_ 2
T //D R @iy, Bly)y2)r(Blyn) ™)y y)e 5t ha(yn) " dyndys
><p2

intertwines the él—action.

Next we rewrite these operators. Since the reproducing kernel of P(p™, V') with respect

(2]2),+

to the Fischer norm is given by e , we have

(Fir, f) / K ()" >1>/p+ F(2)e@ Dt e o gz h(a) Pda

/ / R (x;y)*r(B(a) e hiz) Pde f(z)e 1 dz.
pt JD
Now we have
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Lemma 3.3.4.
/K(w;yl,yg)*T(B(x)_l)e(z|z)h(:c)_pdac
D

:/ K(z;0,y2)"7(B(z) e h(z)Pds eW1l?).
D
Proof. Since ]-"{,*Vl intertwines the él—action, it also intertwines the g(f—action. Especially,

since p; C g(lc acts as a lst-order differential operator with constant coefficients, we have

4 / K (2591 + twy, y2)*1(B(z) e @& h(z)Pdx
dt t=0+D

/K(:U;yl,yg)*T(B(:c)_l)e($+tw1|Z)h($)_pdx
t=0JD

d
dt
/D K(z;y1,12) 1(B(x) ™ He® D h(z)Pda - (wy]2).

Therefore, as functions of y;, both
/K(z;yhyg)*T(B(x)1)e($z)h(az)pd1‘
D

and
/ K(ax 0, y2)*T(B(x)_1)e(f\z)h(x)—pdx e(y1|z)
D
satisfy the same differential equation with the same initial condition, and thus they coin-
cide. -
Thus we set

Fiy, (z:92) = Fy, (21, 223 52) 1= / K (2;0,y2) 7(B(z) Ve ™ot h(z) Pda

D
= / K (29, y2)"7(B(x) " )e ™2+ h(z) P da.
D
This is a polynomial anti-holomorphic in z and holomorphic in y3. Then we have

(Fin ) = —

1 _|~|2
/ By, (21, 225 2) eVt f () o dz
: " (@2),+ —|212,

g Fiy, (21, 22;y2)e"vt f(2)e “vtdz

r1=Yy1,22=0

0 0 1 2|2
— F* _ R R (ZBlZ) + |Z| +
Wi (8351 oy 012 IQO,ZI2> n /‘ﬁe vt f(2)e Thtdz
. 0 0
= YR z).
Wi <ax1 8.1'2 y2> wl:yth:O f( )

Here, for anti-holomorphic polynomial f € P(pT), we write

) =T st
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where {e,} C pT is a basis, with the dual basis {e} C p* with respect to the inner
product (-|-),+, and % is the directional derivative along the direction of e. Similarly,
we set

FW1 To;w FW1($2;7U17U)2)

= // K(0,22; 91, B(y1)y2)7(B(yr) el w2l wnwys () =Pe Tl "’*dy1dy2
T2 DixpF

= | K(0,22;51, Bly1)wa)m(B(yr) e Dot hy(y1) Pdyy
Dy

N /D (B2, 1)) K (Projy((z2)"), By )wa)7(B(y1) ™ )e 1"t hy(y1) Pdy1.

This is holomorphic in s, anti-holomorphic in w, but in general this is not a polynomial.
As in Fyy, case, we have

(Fw f)(x) = 1n/ FK($2;w17wz)e(x1|w)v+f(w)ei|w|§+dw.
T P+

We summarize the above results.

Theorem 3.3.5. We assume H,(D,V) is non-trivial. Let K (z2,y2) € P(ps xg, End(V))
be an operator-valued polynomial satisfying

K (kxo, k* Yyo) = 7(k) K (22, yo)7(k) " (z9,92 € py, k € KT). (3.3.3 reshown)
Let Wy C P(p;)@V be a subrepresentation of f((lc such that K(-,y2) € W for any ys € p;r.
(1) We set
Fiy, (2352) = Fiy (21, 223 92) 1= / K (22,42)"7(B(x) ™)t () P
D
Then the linear map

‘7:;‘/1:% (D V) _>HT®(Ad|+) (D1’W1)K CH/(DlXp27V)
1 —
(Fi, F)y) = ﬂ.n/+ Fyy, (21, z2;92)e (yl‘z)ﬁf(z)e 12 lp*dz
p

f(x)

r1=y1,r2=0

intertwines the (g1, K1)-action.
(2) We set
Fy, (23 w) = Fu, (225 w1, w2)
= /D 7(B(a2, 1)) K (Projy((w2)"), B(y1)w2)7(Blyn) ™ e ™o ha (y1) 1y
1
Then the linear map
Fwy : Hy (D1 x p3, V), D HT®(Ad|p2+)*(D1,W1)f<1 - H(D,V) g,

(Fun ) (@) = / Fipn (93 w1, w2) e f(w)e ot duy
+

n
™ Jp

intertwines the (g1, K1)-action.
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The operator Fyy, is not a differential operator of finite order in general, but if
Fyy, (xz2; w) is expanded as

oo
Fyy, (w5 w ZFk wo;w) = Y Fy(wa;wi, ws),
k=0

where Fj(z2; w) is a homogeneous polynomial of degree k in w, then we can write

s 0 0
P 1)) = 3 F (ayay)

for polynomials f € H, (Dy x P;, Vg = Ppt,V).

f(y)

y1==1,y2=0

Remark 3.3.6. For w € p*, we define the End(V)-valued differential operator B, (w) on
pr by

82f
L azaazﬁ

of
0Zy

Bo(w)f(2) = 3 3 (ad(ea)ad(es)u]2) (2),

ap

)+ Z dr([eq, Yw])=—

where {eq} is a basis of p*, with the dual basis {e’}, and % is the anti-holomorphic
directional derivative along e’. Then this is a generalization of the Bessel operator B, in
[3] or [6, Section XV.2]. Then for wy € pi, B;(w1) annihilates Fyy, (25y2), because

(Be(w1))-Fiy, (23 3) = (Be(wn)) / K (22, 3) 7(B(x)™)el* )t h(z)Pda
— / K(x9,12)*1(B(x)™}) (2(ad(a:)219w1|z)p+ +d7'([x,19wl])> e @2et b (2)Pda
/K:cg,yg 7( (a;)*l) (df'(—ﬁwl)me(z‘z)p*)h(a:)*pdx
~ [ @)K (o)) r(B@) el ha) o
[ d
_A;ﬁ

This differential equation coincides with c%r\u on ny appeared in Proposition 3.10 or Section
4.4, Step 1 of [24], and thus the operator Fiy, coincides with the one given by the F-method.

K (Projy(w — tws), y2) 7(B(x) ~)e vt hz) Pdz = 0.
t=0

3.4 Preliminaries for examples

3.4.1 Parametrization of representations of K*

In this subsection we fix the realization of root systems and parametrization of irreducible
finite-dimensional representations of K©. First we set KC := GL(r,C) or SO(n,C). We
take a Cartan subalgebra hC C €€, and take a basis {t1,...,t,} C hC, with the dual basis
{e1,...,&,} € (%)Y, where r = L%J when K€ = SO(n,C), such that the positive root
system A, (€€, hC) is given by

{egj—er:1<j<k<r} (K® = GL(r,C)),
AL D) = {eitep:1<j<k<r} (K€ = 50(2r,C)),
{ejtep:1<j<k<riu{e:1<j<r} (KC=S0(2r+1,0)).
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For m € Z" with m; > --- > m,, we denote the irreducible representation of GL(r,C)

with highest weight mieq + -+ - + m,e, by (TI(:;), ,ﬁf )), the irreducible representation of

GL(r,C) with highest weight —m,e; — -+ — mye, by (Tr(rf)v, Véf)v), and for m € Z" with
my > - > my_1 > |my| (when n = 2r) or with m; > --- >m, >0 (when n =2r+1), we
denote the irreducible representation of SO(n,C) with highest weight myeq + - -+ + mye,
by (T,[ﬁ], Vi ]). We omit the superscript (r) and [n] if there is no confusion.

Next we set G := Sp(r,C), U(q, s), SO*(2s), or SOy(2,n), and let K€ be the complexi-
fication of their maximal compact subgroups, that is, K© = GL(r,C), GL(q, C)x GL(s,C),
GL(s,C) or SO(2,C) x SO(n,C) respectively. Then irreducible finite-dimensional repre-
sentations of K€ are of the form Véf ), Vé{l) X Vrgs)v, V,gf ), or C,,, X Vrkl ] respectively, where
we normalize the representation (x°,C,,,) of SO(2,C) later as in (3.4.2). Also, under
the suitable ordering of A(g®,H%), Pm(p™) in Theorem 3.2.1 is given by

(r)v
(2m1,2ma,...,.2m;)
R A AR
Pm(p™) ~ AN
(m1,m1,ma,ma,...;m | s/2],m | s/2)(,0))

[n]
le +mg X V(m1 —m2,0,0,...,0)

(G =8p(r,C), meZ, ),
(G =U(q,s), m e Z1),
(G = S0*(2s5), m € Z*?)y,
(G = SOO(2>n)7 m € Z?i-+)7

where, when s < ¢ and m € Z% |, we denote v =: Vn(f) etc.

(m17'~-7m5707~'~70)

3.4.2 Explicit realization of groups and bounded symmetric domains
In this subsection, we review and fix the explicit realization of groups

G = Sp(r,R), U(q,s), SO*(2s), SOy(2,n).
First we deal with G = Sp(r,R), U(q, s), and SO*(2s). For these groups we have

(r, %r(r—l—l),l,r—l—l) (G = Sp(r,R),
(r,n,d,p) = { (min{q, s},¢s,2,¢ + 5) (G =Ul(qg,s)),

(15).3s(s —1),4,2(s — 1)) (G = SO*(2s))

We realize these groups as

0 I 0 I
Sp(r,R) := {gGGL(Qr,(C):g(_I O>tg:<—l O)’
0

g
1 . (I, 0
e ={oecrarnera(i G)o-(5 )

0 L\ [0 IL\._
9\, o) T \=, 0)9(

respectively. We embed K into G

* 0 I 0
50(23)::{g€GL(23,(C):g 7 O)tg:<I 0

o
— N

Then K is isomorphic to U(r), U(q) x U(s), and U(s

kﬁ<g%&) (G = Sp(r,R), SO*(25)),
ko (B 0) (@ =Ulg9))
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Clearly these extends to the embeddings of complexified Lie groups K€ — G€. When
G = Sp(r,R) or SO*(2s), we sometimes write the elements of K or KC as (k,*%~1), and
deal with these inclusions uniformly. Similarly, p™ is isomorphic to Sym(r,C), M(q, s;C)

and Skew(s,C) respectively. We embed p* into g* as = — . Then the rational

T
0 0
action of G on pT is given by

<‘C‘ 2>x:(az+b)(cx+d)_1 ((Z 2>6G,x€p+>.

The Bergman operator B : D x D — K is given by
B(z,y) = (I —zy*, (I —y*x)™")  (z,yep®),
the quasi-inverse is given by
=l —ya) = —xy) e (zyep’)
and the bounded symmetric domain D is given by
D = {z €p’:I—zx*is positive definite.}

Let (7, V) be an irreducible representation of K€ with K-invariant inner product (-, -),.
Then G acts on O(D, V) as

1
7 ((Z Z) ) fw) =7 (a* +2b*, (cx +d)7") f ((az + b)(cx +d) '),

where we regard (a* + xb*, (cx + d)_l) as the lift on KC, and this action preserves the
inner product

{f,9): = /D (7 (I —xa*)" I — a*z) f(x),g(x)), det(I — z2*)~Pda,

where

_ {1 (G = Sp(r,R), Ul(g, s)), p= ;:1 Eg i ?Zér,sﬂ;))’
1 — * ’ _ 7 7
L (G =50%(29)), 20s —1) (G = S0*(29)).

Especially, for G = Sp(r,R) or SO*(2s), let (1,V) = (x~*,C) be a 1-dimensional
representation of K€, normalized as in the latter half of Section 3.2.4, that is,

x(k) := det(k)".
Then the G-invariant inner product on H,(D,C) = H,(D) is given by
(fig)n = /Df(a:)g(ac)det(f e (3.4.1)
which converges for any polynomial f,g if A > p — 1. When G = U(q,s), we define
(x 17%2,C) as

x(k1, kg) == det(k) ™ det(kg)2,
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and write the corresponding representation of GasH A +xo (D). Then again the G-invariant
inner product is given by (3.4.1) with A = A1 + Aa.
Next we deal with G = SOq(2,n) case with n > 3. In this case, we have

(T)na dap) = (2,77,, n— 27”)'

We realize this group as

IQ 0 t IQ 0
800(2,n)::{gESL(2+n,R):g< >g:( >}
0o -1, 0o -I, 0

as usual, where the subscript 0 means the identity component. We have K ~ SO(2) x

SO(n), embedded into G as (k1, ko) — <k01 ;), and pt ~ C", embedded into g€ as
2

0 0 by
z— |0 0 V-1tz |,
r —1lx 0

where we regard x as a column vector. For x = z1,...,2,),y = (y1,...,yn) € pT, we
write
g(x) = ai 4+ 4z, ql@y) = sy + o+ Ty,

Then the generic norm is given by

h(z,y) =1 —2q(x,y) + q(z)q(y),

the quasi-inverse is given by

2 = (1—-2¢(z,9) + q(x)q(y)) " (z — q(x)7),

and the bounded symmetric domain D is the connected component of {h(z,x) > 0} which
contains the origin.

Let (1,V) = (x*,C) be a 1-dimensional representation of K€, where  is normalized
as in the latter half of Section 3.2.4, that is,

X <exp (a (\/(1—1 _\/0j1>) ,k2> = e (a € C, k2 € SO(n,C)). (3.4.2)

Then the G-action on O(D) preserves the inner product
(o = [ F@a@(1 = 2a(0.2) + lo(w)P"da: (343)
When n = 1,2, we have s0(2,1) ~ s[(2,R), which is of real rank 1, or s0(2,2) ~ sl(2,R) &

5[(2,R), which is not simple, and thus their properties are a bit different from those of
n > 3 cases. However, for convenience, we use the same inner product as (3.4.3), so that

HA(Dsoo(2,1)) = Haa(Dsr2,r)); HA(Ds0y(2,2) ~ Ha(Dsr2r)) ¥ HA(Dsror))-
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3.4.3 Polynomials on Jordan triple systems revisited

In this subsection we reconsider the polynomials on p™ = Sym(r,C), M(q,s;C) and
Skew(s,C). As in (3.2.12) we have

h(%e)i)\ = det(] — xe*)fw‘ = Z (A)mdq)(d)( ),

meZ’ |m|'
where
1 G = Sp(r,R
) (G = Splr ). L (G=Sp(nR), Ug.s)),
(d7 T) = (27 mln{Q? S}) (G = U(q7 S))’ €= l (G _ SO*(2S))
(4. [5]) (G = 50%(2s)), 2 ’
and e is a maximal tripotent in pT, for example,
e=1I (G=Sp(r,R)), e=(Il;;0) (G=U(g,s), ¢<5s),
Ls/2] I
e=Jsoi= Y (Byaj1—Eaj1p) (G=50%2s), e= <OS> (G=1Ul(g,s), ¢> ).
j=1

Let ,y € pt, and take an element (k1,ko) € K such that y = kieky ' (such (ky, k2)
exists if y is in some open dense subset of pT). Then we have

- d * *—
w@gn)(klxké 1).

Since K,(;f) is determined by the values on a* C p* (i.e. by the eigenvalues of ze*), and
k:i‘xk:;*le*, zy* and y*x have the same eigenvalues, we write

K (,y) = KD (kfxki ' e) =

1 - *
K (2,y) = —“éﬁi)(xy) L5 (yra),

m jm|!

following [32], so that

) = det(l —ay) = 30 magBy

++

Next we take positive integers ¢, ¢”, s’, s”, and we consider the sets

pt(11,1) := Sym(s', C), pt(22,1) := Sym(s”,C), (3.4.4a)
pt(11,2) := M(q,s’;C), pt(22,2) := M(q",s";C), (3.4.4b)
pt(11,4) := Skew(s C), pt(22,4) := Skew(s”, C), (3.4.4¢c)
pt(12,1) := {(w12,221) : 212 = ‘201 € M (', 8";C)}, (3.4.44)
pt(12,2) .= M(¢,s";C) x M(q",';C), (3.4.4e)
p+(12,4) = {(xlg,l'gl) P X1 = —txgl S M(S/, S”; (C)}, (3.4.4f)

so that if (:E11,33‘12,:L‘21,$22) c p*(ll, d) D p+(12, d) D p+(22,d), then

Sym(s+#.C) (d=1),
T11 T12
c M / /" / . —
(G 22) e dm+ans 450 (@=2)
Skew(s" + s”,C) (d=4)
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holds. Now we observe the expansion of det(I — x11x12222221) %>, This is expanded as

_ AN)m,d z (d
det(I — x11712222%21 ) A — Z (|I)rljl' <I>£n) (z11712222721)
mezZl | ‘

where

min{s’, s"} (d=1),
r:=< min{q¢,q¢",s,s"} (d=2),
4

on{[3] 5]} -

and each summand is in a single irreducible module, that is,

Lemma 3.4.1. (1) As a polynomial in x11, @Sﬁ) (x11712722T21) € Pm(pT(11,d)).

(2) As a polynomial in a2, @Eﬁ) (x11712722T21) € Pm(pT(22,d)).

(5)) Letd =1. As a polynomial m $1/2,//<I)£31)(x11x12x22x21) c P2m(p+(12,1)), where
2m = (2my,2ma,...,2m,) € errlil{s S}

(4) Let d = 4. As a polynomial in x12, i)ﬁﬁ)(x.llg;}zl{cgml) € Poz(pt(12,4)), where
m? = (my,my, ma, ma,...,my,m.(,0)) € errlf{s "}

Proof. (1) Clear.
(2) Since x11x19722721 and woox21 11212 have the same eigenvalues, we have
(d) 5(d)
O’ (11212022721) = P’ (T22221711212),

and the claim follows.
(3) Since Pm(pt(12,1)) is GL(s',C) x GL(s",C)-invariant, we may assume x1; = I,
x99 = Ign, and consider o (z12'212). For z € Sym(s’,C), we set

s'—1

AS]) (x> = H det(($k1)1§k7l§j)mj_mj+l det(x)ms’.
j=1
Then we have
oV (z) = AW (kz'k)dk,

O(s")

and thus
(1)5111) (z12'712) = ( )Agl)(k:xlgtxlgtk)dk.
O(s’

Also since @;11)(3712%12) is proportional to <I>£,11) (r12'T12), @5111) (z12'212) sits in a GL(s',C) x

GL(s",C)-module generated by ASR (x12'r12). Next, for lower triangular matrices | =
(lk)1<i<k<s € GL(s',C), we have

AR (T arolan 1Y) = 12 l;izmsl AR (z12'212),

that is, this is the lowest weight vector with lowest weight —2mq 61 — - -+ — 2mgéey under
GL(s',C). Since P(M(s',s";C)) is decomposed as

P(M(s's5C) = @  PuMs,s50)= H  vwVEW,
mez iy (") mez )
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the highest weight under GL(s”,C) of submodules in P(M(s',s”;C)) is uniquely deter-
mined by the lowest weight under GL(s, C), and therefore Al (z12'712) € Pm(M(s',s";C))
holds, and thus <i>£,11) (r12'112) € Pm(M (s, 8";C)) also holds.

(4) Similarly to (3), we may assume z1; = Jy, 222 = Jgr. Then by replacing O(s’)
with Sp (L%’J), and AL () on Sym(s’,C) with

|s'/2] -1
Agﬁ) ('r) = H Pf((‘rkl)lgk,lSZj)mjiijrl Pf((xkl)lgk,ISQL,Sl/ZJ)mLS//QJ
j=1
on Skew(s’,C), we can prove parallelly to (3). O

Next, for zs € Sym(s,C) and x, € Skew(s,C), we want to consider the expansion of
det(I — z5x,)~ . Since

det(I — 24,) = det(I — zams) = det(*(I — zams)) = det(I + z42),
we can rewrite
det(I — zgxa) ™ = det(] — zgaa) M2 det(I + zex,) M2 = det(I — (z524)) 2.

If 2, = I, or z, = Js, then det(I — x2)~2, det(I — (x4J5)%) "2 are O(s), Sp([5])-
invariant respectively. We set

Ls/2]

t? = —1(E2j’2j_1 — Egj_LQj) € Skew(s,(C), a? = @ Rt; C Skew(s,(C),
j=1
Ls/2]

t; = E2j,2j71 + Egjfl’gj S Sym(s,(C), a’ = @ Rt; C Sym(s,(C).
j=1

Then O(s)-invariant functions on Skew(s, C) and Sp (| 5| )-invariant functions on Sym (2 |5, C)
are determined by the values on a® and a® respectively. We note that even when s is odd,
we do not have to consider the Sym (2 | 5| ,(C)L = Sym(s—1,C)* := @;:1 C(Es,j+Ejs)-
dependence in this case, because det(I — (x5.J5)?)~*? does not depend on Sym(s —1,C)=.
When z, = > a;t§ € a® or zs = _a;t; € a®, then we have

ls/2]
det( —a2) 2 = det(I — (2,J)) M? = [ @ =a}) ™
j=1
— ()‘)m72~(2) 2 2
= 2 g Deedahy).
mGZfJ?J

For x5 € Sym(s,C) and z, € Skew(s,C), we take ls,l, € GL(s,C) such that x5 = I,
Za = l,Js1,. Then we have

det(I — (zsz4))? = det(I — (Uszals)?) = det(I — (lazslas)?),
and a;’s for Ulsxals and Y, 240, coincide. Thus using these a;, we define

O (wera)?) = B (wam)?) = B (ah, . 0k, o)),
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so that

det( — za,) ™ = det(I — (zs2a)?) 2= Y <A>m72a>g%>'<<xsxa>2>.

, Im!
mezL?
Then each summand is in a single irreducible module, that is,

Lemma 3.4.2. (1) As a polynomial in x,, (ifﬁ),((:vs:va)Q) € Pom(Skew(s, C)),
where 2m = (2my,2ma, ..., 2m|g9|) € foj.
(2) As a polynomial in xs, @gﬁ)/((wsma)2) € Pm2(Sym(s, C)),
where m? = (my, my, ma, ma, . .. M s/2],Ms/2)(,0)) € Z5 4.

To prove this, we need the following lemma on Laplace-Beltrami operators (3.2.10),

Lf= Z etr(we,zes)
ap

where (g,22) = (3,2 |5] —1) on Skew(s,C), (g,22) = (1,%}}) on Sym(s,C), {eq} is a
basis, with the dual basis {e’} with respect to the inner product ¢ tr(zy*), and % is the

directional derivative along the direction of ey.

ox 8:65 Zstr ze” 8ac

Ot

Lemma 3.4.3. (1) For O(s)-invariant functions on Skew(s,C), using the coordinate
Ta = ) a;ty € a®, we have

Ls/2] o2 2 Ls/2]
o°f ajap (1 9f 1 0f of
Li= Z +4Za — a3 <aj&aj_ak8ak> ( %J _1) Z ]8aj.

j<k J

(2) Fsor’ Sph(L;J)-mvam'ant functions on Sym(s,C), using the coordinate x5 = a;ti €
a®, we have

Ls/2] o2 f Ls/2]
1 a? ak, 1 of 1 8f> s—1 of
Lf==2 + (— + aj .
2 ; ; aj —ai \ajda;  aj day 2 ]; ! da;

These are proved similarly to [6, Proposition VI1.4.2].

Proof of Lemma 3.4.2. (1) We may assume x5 = I5. Then égﬁ)/(azg) is O(s)-invariant. By
the change of variables a? = b;, L on Skew(s,C) is rewritten as

Ls/2]

02 f bbow [(Of Of Lo/2]
Lf=4 Z]a2+2zb_kbk<_8bk> [JZbJ

Then since éﬁﬁ) is an eigenfunction of the Laplace-Beltrami operator on M (L%J ,C) with
the eigenvalue ZJL‘S:/EJ m; (mj — (2j — L%J — 1)) by Proposition 3.2.3, we have

Ls/2]

18t <13 m - (1[5 -1) B0

LS/ 2]

_ Z om; (2m] (2j - EJ - 1)) 32 (22).
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Since the highest weight of a finite-dimensional representation is uniquely determined by
the action of the Casimir element, we conclude that &)g)/(ﬂzg) € Pom(Skew(s, C)).

(2) Similarly, we may assume z, = Js. Then ég)/((sts)Z) is Sp (| 5])-invariant. By
the change of variables a? = bj, L on Sym(s, C) is rewritten as

Ls/2] 2

15/2)
by (Of Of of
Li=2 Z a2+ Zb—2k<_abk) HZ]

Ls/2]

+(o-2[3]) X gy

and therefore

1s/2]
~ . S
LOR (@) = (2 my (my— (2 - 5] -1)) + (s -2 (@
j=1
Ls/2] 1 ‘ 1 (2)/
:Z m; mj—§(2(2j—1)—s—1) +m; | my — 2 2(2j§) — s — Dy $)2).
j=1
Thus we conclude that Q;)gl),((:vst)z) € Pm2(Sym(s, C)). O

3.5 Examples of intertwining operators

3.5.1 Normal derivative case

In this subsection, we seek a sufficient condition for F3; L+ Fw, to become a normal deriva-
tive, that is, a differential operator for the direction of pj. Let G D G7 be two real
reductive groups of Hermitian type satisfying the assumption (3.3.1), (7,V) be an irre-
ducible finite-dimensional representation of K€ such that (D, V) is non-trivial, and let
K(x2,y2) € P(py x p3, End(V)) be a K -invariant polynomial in the sense of (3.3. 3) Let
Wi C P(pd, V) be a subrepresentation of K such that K (-,y2) € W for any ys € pJ.
taking the projection of K into irreducible subspaces, we may assume Wi is 1rredu01ble
Then the following holds.

Theorem 3.5.1. (1) Assume that there exists an irreducible subrepresentation W C
P(p™,V) of K such that Wy C W. Then the linear map

Fiv, t He(D, V) g = Heo(ad) ) (D1, W), € Ho(D1xpy, V)i,

f(y17 $2)

x2=0

(Fiv )1, 2) = K (£y)

intertwines the (g1, K1)-action.

(2) We take a subrepresentation Vi C V such that Wi C P(p;,%). Assume that
Proj,((z2)¥') = z9, and 7(B(z2,v1))lv, = Ly, for any x2 € p;r, y1 € pf. Then
the linear map

Fwy, : Ho (D1 x p3, V) D HT@(Ad|p;.)*(D17W1)f(I = H:(D,V)g,»

f(xl, 92)

(fW1f)(x1’x2) =K <332; aay2> y2=0
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intertwines the (g1, K1)-action.

Proof. (1) Since e@?)vt I, is the reproducing kernel of P(p™, V) with respect to the inner
product (-, ) g, the projection of @)+ Iy, onto any subrepresentation of P(pt,V) is non-
zero. Let Ky (x,2) € P(p™ x pT,End(V)) be the orthogonal projection of e@?et Iy, onto
W with respect to the inner product (-,-)7. Then we have

Fiy, (21,205 92)" = / Dot 7(B(2) N K (22, y2) h(x) Pdz
D

_ /D K (2, 2)7(B(x) VK (29, ya)h(x) Pda.

Then since the map f — [, Kw(z,2)7(B(x)™!) f(z)h(z) Pdz in End(W) intertwines the
K-action, by Schur’s lemma, there exists a constant C' such that

Fyy, (21, 22;92)" = CK(22,92) o By (21, 225 92) = CK (22,92)"

Since the intertwining property does not change by scalar multiplication, we may omit C.
Then the corresponding Fj; intertwines the (g1, K1)-action, and the claim follows.
(2) By the assumption, we have

Fy, (z2; w1, w2)

B /D T(B(w2,y1)) K (Projy((z2)"), B(y1)w2)T(B(y1) ™)™ vt hy (y1) Prdy,

= | K(z2, Byn)wa)(B(y1) e Vot hy (y1) 7P dyy
D,

= | K(B(y)ws, ws)r(By) e Dot hy (y1) P dy.
Dy
Then z1 — K(B(y1)z2, w2) is regarded as a W-valued constant function on pf, and
such functions forms the irreducible subrepresentation of KT in P(p},W). Thus by the
argument similar to (1), we can show that Fyy, (z2; w1, ws2) is proportional to K (z2,ws),
and the claim follows. O

The condition in Theorem 3.5.1 (1) is the same as [25, Lemma 5.5 (3)] when (G, G1) is
of split rank 1 (i.e. (G,G1) = (U(q,s),U(g,s—1)xU(1)), (SO*(2s),50*(2(s—1))xS0O(2)),
or (S0O(2,2s),U(1,s))), and (7,V) is 1-dimensional. That is also satisfied when (G,G1) =
(U(q,s),U(q,s") x U(s")) with ' + " = s, and (7,V) is 1-dimensional. That is,

Corollary 3.5.2. Let (G,G1) = (U(q,s),U(q,s") x U(s")), (SO*(2s),S0*(2(s — 1)) x
SO(2)), or (SO(2,2s),U(1,5s)), and (7,V) = (x~*,C) be 1-dimensional. Then for any
subrepresentation Hx(D1, W1) C Ha(D) of G1, the intertwining operator Fiy, - HA(D) —
Ha (D1, Wh) is given by normal derivative.

Proof. Since it is already proved for (G, G1) = (U(q, s),U(1)xU(q—1,s)), (SO*(2s), SO*(2(s—
1)) xS0O(2)), or (SO(2,2s),U(1,s)) in [25], we only deal with (G, G1) = (U(q, s),U(q, s") x
U(s")). In this case we have p* = M(q, s;C), pj = M(q,s;C), p3 = M(q,s";C), and

P = P Pubb)= P wmn,

Zz‘f{q,s} Zﬂf{q,s}
"
Phri)= P Pubd)= P v mvm
min{q,s’’} min{q,s’}
Ziy Ziy
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Then by comparing the weights for GL(q,C), we get Pm(p3) C Pm(p"), and clearly we
also get Pm(p3) @ X~ C Pm(p™) ® ¥, and therefore the condition in Theorem 3.5.1 (1)
is satisfied. O

Next we consider Fy,. We again consider

(Ulg, 5),U(q,s") x U(s"))

(Case 1),
(G,G1) =1 (SO*(25),50*(2(s — 1)) x SO(2)) (Case 2),
(50(2,2s),U(1,s)) (Case 3).
Then p™ = M(q, s; C), Skew(s, C) and C?* respectively. We realize G3 C G such that
{yl = cy € M(q,s; (C)} (Case 1),
pr =g Npt = {y1:<g 8 :y € Skew(s — 1 C)} (Case 2),
{y1 = (%y, le 1y € CS} (Case 3),
({332 = (0 x) x e M(q,s"; (C)} (Case 1),
py = (pf)l { = 4 ) x € M(s—1, 1;((3)} (Case 2),
{CL‘Q = l:c, fgsc tx € CS}

(Case 3).
Then for (y1,22) € pf X p5, we have

B(zg,y1) = (Iq - (0 =) <y(;) , (Is _ <y0*> (0 x)>_1>
- (Iq, (Ig’ _I”> _1> (Case 1),
sl =1 (5 0) (5 0) = (Zi ) (Case 2)
- a(yr)

(Case 3),
and
@ =0 a) (1. (%) 0 w)>_1=(0 r) = 2 (Case 1),
o= (L ) (% D) (e e
(2 = (1~ 2002 7) + aw2)alon)) (22— alw2)TT) = 22 (Case 3)

Thus (22)Y* = Projy((x2)¥!) = 2 holds, and for the representation

Vk(Q)V = V) (Case 1)
V=x"® Vrgf)v (Case 2)

1 (Case 3)
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of K€, if we take the subrepresentation

ARM- A7) RTA) (Case 1)

(ma,...,m%) (mg AN R M)
Vi=x"'® V((nihl)’mé HECom, (Case 2)
1 (Case 3)

of KT, then 7(B(x2,51))lv; = Iy, holds. Thus we proved the following.

Corollary 3.5.3. (1) Let (G,G1) = (U(q,5), U(g, &) xU(s")), and (r, V) = (x M
(Tlng (S)) V(q) Vrgf)). Then for any subrepresentation Wi C P(p;,Vk(Q)v X

(s") (s ”)
Vv(ml,..‘,m’s)lgv(msurl,...,ms)
Hx 40, (D, V) is given by normal derivative.

) of KT, the intertwining operator Fyy, : H,4a, (D1, W1) —

(2) Let (G,Gy) = (SO*(25), SO*(2(s — 1)) x SO(2)), and (7,V) = (x> @ n", Vi),
Then for any subrepresentation W1 C P(p2 , (57811 l)vmg_l) KC_,,) of f((lc, the inter-
twining operator Fyy, : Ha(D1, W1) — HA(D, V) is given by normal derivative.

(3) Let (G,G1) = (SO(2,2s),U(1,s)), and (1,V) = (X_AJ C) be 1-dimensional. Then
for any subrepresentation Hx(D1, W1) C Hx(D) of G1, the intertwining operator
Fw, : Ha(D1, W1) — HA(D) is given by normal derivative.

3.5.2 ./—'?;Vl for (G,Gl) = (GO X Go, AG())

In this subsection we seek the operator 77, for (G,G1) = (Go x Go, AGy), where Gy is a
simple Lie group of Hermitian type, although it is already done by Peng-Zhang [34]. We
denote the complexified Lie algebra of Gg by gg = par ® Eg @ py - Similarly, we denote the
objects such as D C p+, h(z,y) € P(pT x pt), p € Z for Gy by writing the subscript 0.
Then we have

p ={(wo.w0) o €pd},  p3 ={(w0,—w0) :xo Epg} CpT =p Dpf.

We identify pg and py, p5 via 2o — (z0,20) and zg — (20, —x0) respectively. Then for
x = (z1,7R) € p, the projection onto p; is given by

. 1
x9 = Projs((zr,zR)) = 5(:@ — TR).

Let (7,V) = (7, ¥ 7, VL, ® VR) be a finite dimensional irreducible representation of
K = Ko x Ko. Let K(x2,52) € P(p3 x p5,End(V)) be a KC-invariant polynomial in
the sense of (3.3.3). Then the function Fyy, (21, zr; y2) € P(p+ x p5,End(V)) in Theorem
3.3.5 (1) is given by

Figerenin) = [k (Gon—am) ) (uBen) ™) & a(Blar) )

e(rL|ZL)pg HwR‘ZR)P(T ho(xp) Pho(xzg) Podxrdrg.

Especially, when (7,V) = (xaA X Xa“’ C) is 1-dimensional, with A\, u > po — 1, rewriting
K (%792) as K(x2,y2), we get

(zrlzr) ++(zrl2R) + _ _
Fw, (21, 2R; Y2) = / K(xzr, —zRr,y2)e Po % ho(zr) POhg(zg)" PO dwdz R
D()XD()
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Now we additionally assume that K(z2,ys2) is proportional to the reproducing kernel of

73(;67__7,,3)(}33) with k € Z>o. We normalize K (2,y2) such that K(z2,y2) = A(z2)*A(y2)*
if xo,y0 € pJTFO. Then for xy, xR, ys € p%LO, we have

FA (o )F KA ok -1/2y . \F
K (o = zr,y2) = Awr - 20) Blp2)F = Awn) A()FA (e - Plag*)r)
dggoﬂ“mbo)

:A(xL)kw Z (_k)m,do

o (Pay)ar).
mEZT‘FO‘F <H> m,do

By [6, Lemma XIV.1.2], we have A(zy,)F®o) (P(le/Q)xR) = A(xp)kaldor) (P(x}f)x?).
This lies in Pm(p7 ) as a polynomial in zp, and lies in Py_m= (P ,) as a polynomial in
xr, where k — m* := (k — my,, k — mypy—1,...,k —m1). Now let \I/,(i’;:ﬂ)m(x,;,a:}g;yz) €

P(pd x pg g) be the polynomial satisfying

d, d *
W) (g, lag;ye) = U0 (or, o ys) (wL.zr Y2 € 0], L € K§),

\I’](gd_ol’;q«)7m(mLa$R§92) = Afw)* APl <P($ZI/2)$R> (T, TR, Y2 € P1 ),

and write

d b d 9
‘I’;(Q_D,:ﬂ)vm(n, TR;Y2) =: \If,iféﬁ{m(y% Tr,ZR),

so that

d(do,ro,bo) (doro)

m Re

K(zp — xR, y2) = Z (_k«')m,doino i m (Y2, 7L, TR).
mEZ:0+ (70> m,do

Using this expansion, we get

Fyy, (2L, 2R3 y2)

d(doﬂ‘o,bo)
-2 (_k>m’dom// \I/l(ccﬁ);:l(l),m(y%xL:$R)€(IL|ZL)"3—+(IRIZR)"3—
@> DQXD()

mEZTO <7’()
A m,do X hg (xL)/\pr h[)(l’R)‘uipo drrdrgr

(_k)m7d dsgoﬂ“o,bo) (do,r0) .
:C Z ()\) § v o (yQaZvaR)7

k_ *
k—m*,do(ﬂ)m,do (M) me.m
o m,dg

mGZf&_
with some C. Here we used (3.2.13). We note that the sum is finite because (—k)m,q4, = 0
if my > k, and the above formula is symmetric under the exchange of (2, \) and (zg, 1)
up to signature, because

‘I’;(fl_ogﬂ),m(yz; 2L,ZR) = \Iffﬁ?,;’"fi,* (y2; 2R, 2L),
d(do,m,bo) d(doﬂo,O)
(—k)m,d()(:;) = (—k)m,d()(mi)
To m,dg ro m,dg
d(d077'070) d(d077'07b0)
= (D) (R pmr g 2 = (_1)kT(_k)k—m*,donkL7

()
"0 ) k—m* dy
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the latter of which follows from the proof of [33, Proposition 2.6]. Since the intertwining
property does not change under scalar multiplication, we may omit the constant C, and
write FY = 0*1.7-";},1. Then we have proved the following.

Theorem 3.5.4. Let \,;u > po — 1, and k € Z>o. Then the linear map
Fr ke Ha(Do) B H, (Do) g o 2y = Hatn(Dos P,y (P65 ) 12,5

\ —Fk)m dsgo,ro,bo)
Faukt Wi,y2) == Z (—k)m.do

A — *
5 el (3]

(do,ro) L0 0
X \I!k_m*,m <y2, orL 83:3)

f(xr,zR)
xL:xR:yl

intertwines the (Ago, AKy)-action.

This gives essentially the same result with [34]. If G is of tube type, i.e. Go = Go T,
then Py, . ) (pg) is 1-dimensional, and we have Horu(Do, Pk, k) (pd)) =~ Hatps2u(Do)
via fA(y)* — f, and thus it gives the intertwining operator Ikt Ha(Do)®H, (Do) g, iy —
Hotpt2k(Do) g, »

. (do,r0,b0)
(=F)m.do Om p!do-ro) ( 0 9 ) f(zr,7R),

F/* e * -~ s A
>\7N7kf(y) Z ()\)k—m*,do(ﬂ)m,do (@) k—m*,m 3$L OSL’R
m,dg

mGZiOJr 0 TL=TR=Y

where we write

) (e, wn) = M) PRI, (o, v gn) = Alwn) @ (Pl )an)

k—m*, k—m*,

Also, if Gop = U(s,1), then g2y (y2; 21, 2R) = (yomp)* " ('y2Tg)™ holds, and thus

k—m,m

Fipk t Ha(Do) W H, (Do) g g, — Hatu(Do, Pr(C?)) g, becomes

]:)\,,u,kf@lva) = Z ¥* (twaxL) (ty2(9xR)

m=0 ()‘)k*m(ﬂ)m m! f(xb Z'R)-

TL=TR=Y1

This coincides with the Rankin-Cohen bidifferential operator (see [2, Theorem 7.1}, [25,
Theorem 8.1 (2)]).

3.5.3 Fy, for (G,G1) = (Sp(s,R),Sp(s',R) x Sp(s”,R)), (U(q,s),U(q,s") x
U(q",s")), (SO*(2s),SO*(2s") x SO*(25"))

In this subsection we set

(Sp(s,R), Sp(s’,R) x Sp(s",R)) (s=5+35") (Case d = 1),
(G.G1) =1 (Ulg,s),U(d,s") xU(q",s"))  (a=4d+q",s=5"+5") (Cased=2),
(SO*(25),S0*(2s") x SO*(25")) (s =5 +5") (Case d = 4).

We realize g1 C g so that

p?[’— =01 ﬂer = p+(117d) S p+(227d)7 p; = (Pi—)l = P+(127d)7
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where pT(ij,d) are as in (3.4.4). In this case, for y; = <y11 0

0 ya2
( 0 132) € p;, we have

21
-1
_ (0 m2)\(y;; O _(vi1 O 0 =xp0
B(l‘Zayl) - (I <l’21 0 ) ( 0 y>2k2 ) I 0 y>2k2 To 0
_ ( I —1’12y’52) ( I _yik1$12)_1
—T21Y11 I "\ Y9721 1

I -z 5\ * *
h(l‘g, yl) = det ( * 112y22> - det(I - x12y22$21y11)av
—T21¥Y11

—1
yiu 0\ (yi; O ) ( (yﬁ 0 ) (yn 0 )>
Bly) = [1- r1- )
(1) < < 0 y22> < 0 w3 0 Y3 0y

>€pfandx2:

. -1
_ (i 0 I —yiyn 0
0 I - y22y§2 ’ 0 I - y;2y22
ha(yr) " = det(] = ynyiy)~ det(l — yaouly) ",
-1
o (0 w2, (v O 0 212
? z21 0 0 y3) \z2 0
_ <a:12y§2:1:21(1 — Y5 T12Y5m21) ! w12(] — Yoyt 12) ")
wa1(I — yi1212y30m21) ™ zo1yt1212(1 — Yowo1y} 212) 7!
: 0 x12(I — Y3921y} $12)_1>
Proj,(z9) = 22 11 ’
J2(e3) ( 21(I — Y1 @12y30m01) 0
where
(s +1,s"+1) (d=1),
{1 @=12), N S -
ST gy, o WPIENE@ESCES)(d=2),
? ’ (2(s' — 1),2(s" — 1)) (d =4).

Let (1, V) be a finite-dimensional irreducible representation of K€, and let K (9, ys) €
P(pt(12,d) x p+(12,d),End(V)) be a KC-invariant polynomial in the sense of (3.3.3).
Then the function Fyy, (x2; w1, w2) = Fyw, (z12, T21; w11, W12, Wa1, Wo2) € (’)(p;xpj, End(V))
in Theorem 3.3.5 (2) is given by

Fw, (x2; w1, w2)

* * 71
// I —Z12Y99 I —Y11712
’ D// —.7521?]1(1 I ’ —ygz.’ﬂzl I

(( 0 z12(I — y52$2191‘1$12)1>
x K * * -1 )
xo1(L — Y1 212Y59721) 0
< 0 (I — yuyi)wi2(I — y§2y22)>>
(I — y22y39)wa1 (I — yi1y11) 0

* -1 %
I — vy, 0 I —yiyn 0
X T * ) *
0 I — y22y59 0 I —y50y22

w ef(tr(yniwiy)+tr(y22ws,y)) det(I — yuyﬁ)_gp/ det(I — y22y§2)_‘5p”dy11dy22
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Now we assume (7, V) = (x ™, C) = (x "2, C) is 1-dimensional, where x " 7*2(ky, k) =
det (k1) det(ko)®*2, with A > p—1, and assume K (-,42) € P(p*(12,d)) lies in only one
irreducible submodule of P(p™(12,d)). Then we have

FW1 x27w17w2)

// << 0 z12(1 — 3wyl 12) LI — 3/523}22))
I DI I — ya2y55) (I — 3321%13312%2)719521 0 7

( 0 (I~— y11yf1)w12>>
wo1 (I — y11y11) 0

x det(I — 33211»/{133121152)_8)‘ eltrlynwiy) +Hr(yrws,))

x det(I — y11yiy) AP det(I — yooysy) AP dyr1dysn

0 12 0 (I— y11y11 w12>)
=C K
// ((ml 0 ) ’ (wm(f — Yi1y11)

X € (tr(y11w11)+tr(x21y111‘12w 2) det(I — yy1yty)°* ) dyy,

with some C' > 0. Here we have used the reproducing property on O(D”, Py (p+(12,d))),

/ I * z12(1 — ysp200) " (I — yhoy20)
0\ = Y22yse) (I — 22035) Lao1 Y22

* \—€& x ye(A=p” *
x det(I — z92yas) /\det(I — Y22Y30) (- )dy22 =Cf <x21 2;) ’

with

f < * 1‘12> _ K(( 0 1‘12) , < 0 . (I - yllyikl)wm))estr(yggw%)7
Tl T2 x21 0 wo1 (I — yT1y11) 0

*
222 = T21Y11T12-

Now we assume s’ < s” when d = 1,4, ¢’ < s” when d = 2, and set

0 X O w . .
K ((@1 62) ’ (’w21 012)) - det(%l?ww)k1 det(wmxm)kz,

where k1 € Z>¢, and ko = 0if d = 1,4 or d = 2 with s’ > ¢”, kg € Z>¢ if d = 2 with
s’ <¢". Then Fyy, (x2; w1, ws) becomes

Fyy, (z2; w1, w2)
=C det(xuwfz)kl det(w;‘lle)k2ef(tr(yuwﬁ)+tr(ﬂ?21yf1x12w§2))
D/
x det(I i yllyikl)s()\Jrs_l(k1+k2)*p')dy11

= C det(z10wiy)F det(wix91 )"

* * * by —1 _a/
x> Imll/ W (yrawpy)eeeRm2vi) det(1 — yuy;,) O B gy,

mZT

1 1 =
= ' det(z10w}y)™ det(tzo1war)*? Z Ot e 0 T o) )oa ! ol (x12W39x21WT)-

/
meZl |
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Here ' = s’ when d = 1, v/ = min{¢/, s’} when d = 2 and ' = L%’J when d = 4, and we
have used the equality (3.2.13). Now we have K (-,y2) € Wi where

Wi = Py, a)(M(s',8"C)) =~ C¥) ® Vk( v (d=1),
1
Wi =Py, o) (M(q',5";C)) R Py ko) (M (", 8';C))
~Cc% R RV RVED (d=2),
k3 kf{
Wi = Pgy....er)(M(s',5"5C)) =€) v DY (d=4),
1
where Vlfj/,)v = 1/'((]:”)\200) etc. Let tg, (d=1,4) or ¢, 1,) (d = 2) be this isomorphism
! 1" !
from the right hand side to the left hand side. Then we have
Hxogad - (D% D, W) = Hagg (D) BHA(D", V5 (a=1),
HX7A17A2®(Ad‘p+)*(D’ X D" W1) 2 Hin k)4 atha) (D) B HA 10, (D" Vk(: "'m Vk(g )
2
(d=2),
H (D' x D", Wh) ~H, » (D) BH\(D", VEW) (d = 4)
XTA®(Ad] 4)* L = T 4 -

via ido(prx pry ® L(7c11,k2)' Thus we have proved the following.

Theorem 3.5.5. (1) Let (G,G1) = (Sp(s,R), Sp(s’,R) x Sp(s”,R)) with s = s + 5",
s’ <s§". Let A\ > s, k € Z>o. Then the linear map

]:)\,k : 7—[)\+k(D/) g ’H)\(DN, Vk(j' )\/)f(l — ’H)\(D)f(,
k
t
r11  T12 9 1 1
F = det —
A (G ) - ( (ayu>> 2 0 Rt I
meZs

Y11=T11, ((ld ® Lk;)f) (yll yl2>

~ (1 0 0
x B <£U12t$12)

Oyao " OY11 ) |jos—m0s) Y21 Y22
y12=0

intertwines the (g1, K1)-action.

(2) Let (G,G1) = (U(q,s),U(d,s") x U(¢",s")) with ¢ = ¢ + 4", s =5+ ", ¢ < 5"
Let \i+Xo>q+s—1, k1 € Zzo, and ko € ZZQ ifS, < q”, ko =0 ifsl > q”. Then
the linear map

Fagks k)t Oath) (D7) B My, (D7 Vk(j MRVED) g = Hae (D)

(Frkika f) <x11 m)

21 X22

t k1 k
0 0 2 1 1
=det | x — det ( 'wgy —— E
( b (31/12)) ( 2132/21) (A+ k1 + Fk2)m2 jm]!

ezt )
5(2) 9 9
x & 1'12.%'21>
" ( Oy22 =~ Oyn

Y11==211, ((id@ L(kl,kz))f) <y11 y12>

Y22=222, Y21 Y22
y12=y21=0

intertwines the (g1, K1)-action.
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(3) Let (G,G1) = (SO*(2s),S0*(2s') x SO*(2s")) with s = s + ", s < §". Let
A>2s—3, k€ Z>y. Then the linear map

fA,k : 7‘[)\+2k(D/) @ 'H)\(D”, Vk(:,”)v)RI — HA(D)K,

t k
Tl T12 0 1 1
F = det — >
( )\’kf) <$21 $22> © (3312 <8y12>> X ()\ + 2k)m,4 |m|'

mGZ_Hj_;_/QJ

(4) 9 4 9 ) . <y11 y12>
—T19——"T19—— _ d® e

m( 128y22 128y11 %i;ﬁé(( £)f) Y21 Y22

y12=0
intertwines the (g1, K1)-action.

Ko

X

If &/ =" (d = 1,4) or q' =s5" & = q” (d = 2), we have

Wi~ %) mc) (d=1),
W ~c% rc rcY)mcl” (d=2),

—R1

Wy ~c®) =mc®) (d=4),

kl k?2
via L(_kll e f—det (&) det < 6521) f. Thus it gives the intertwining operator

ekt Hiagre—thn)+Oare=1ka) (D) B Hon ety o re—1h) (D) 5, = Mo (D)

11 T12 k k 1 1
F = det ! det 2
(Fxkr ko f) (le $22> et(@iz)™ det(@z)™ H (A + e (k1 + k2))m,q [m]!

!
mezZl

~ 0 0
X (I)l(rg) <$128$22$21ax11> f($11a5522)-

3.5.4 Fy, for (G,Gy) = (Sp(s,R),U(s',5")), (SO*(2s),U(s,s"))

In this subsection we set

[ (Sp(s,R),U(s,s")) (s=s+5") (Cased=1),
(G, Gh) = { (SO*(25),U(s',s")) (s=5+5") (Cased=4).

We realize g; C g so that

pr =g npt =pT(12,d), p3 =) =pT(11,d) ®pT(22,4d),
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where p*(ij,d) are as in (3.4.4). In this case, for y; = <y0 y(1)2> € pf and 2y =
21

11 0 +
( 0 xn) € py , we have

ryp 0 0 y§1> < I —$11y§1)
B X 5 = I - —_ ,
(72,01) ( 0 9522) (3/12 T22Y79 I

h(x2,y1) = det ( x11y21> = det(I — z11y5;x22Y72)%,
5522912

0 w2 0 §1> <I 3/12912 0 >
B(y) =1 — :
(1) (3/21 0 > <l/12 0 0 I —ya1y5

hi(y1) = det(] — y12y7s),

. ~1
4= ) (-G ) ()
2 0 2 Yz 0 222
1

_< w11 (I — Y31 2229157 11) w11y51 2221 — YlaT11y5422) " 1)

$22912$11(I y21$22y12$11)_1 $22(I y12$11921$22) !
: I — y35100yTow11) " 0
Prois(z?') — z11( 21 12 ).
Ja(3') ( 0 zoo(I — yiym11ys 222) !

Let (7, V) be a finite-dimensional irreducible representation of K€, and let K (x2,y2) €

P(p3 x py,End(V)) be a KC-invariant polynomial in the sense of (3.3.3). Then the
function Fyy, (x2; w1, w2) = Fyy, (x11, T22; w11, w12, waa) € (9(;35r x pt,End(V)) in Theorem
3.3.5 (2) is given by

Fy, (z2; w1, w2)

_ / < I —x11y§1>
= T %
D, —x22Y19 I
y K<<9511(I — Y T20Yr1r) ! 0 > ’

0 T2 (I — yfow11ys 22) !

<(I — yrayia)win(l — y31921) 0 ))

0 (I — y21y51) w2 (L — yiay12)

-1
I - leyTQ O > 2etr(y12w* ) . s
T € 12) det(I — dy2,

<< 0 I — y21y5, (I — y12y12) *dyr2

where ¢ = 1 when d = 1, ¢ = § when d = 4. Now we assume (7,V) = (x*,C) is
1-dimensional, where (k) = det(k)®, and A > s if d =1, A > 25s — 3 if d = 4. Then we
have

Fy, (x2; w1, w2)

- / K<<x11(1 — Y51 T2yipr1) ! " )
= * * -1 />
D 0 z22(I — Yi9T11Y31 T22)

<(I — y2yiz)wit({ — y51921) 0 >)

0 (I = y21y51)wa (L — yiay12)
x det(I — xllyglwggyﬁ)_&\e%tr(ylzwf?) det(I — ylgyi‘Q)QEA_sdylg.
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Now additionally assume that
zin 0 wip 0 _ % ek % \eks

where k; € Z>¢ when d = 1 case or d = 4 case with s” even, k; = 0 when d = 4 case with
s odd. Then we have

Fy, (z2; w1, wo)
:/ det(z11w}; )™ det(wwiy )™
Dy

« det(] _ xllyglmmyﬁ)—6(>\+k1+k2)€2€tr(y12wf2) det(] _ y12y1<2)2€()\+k1+k:2)—sdy12

(/\ + k1 + kQ)m,d

z(d * *
O m]! <I>£n) (z11921722012)
) !

= det(z11w];)™™ det(waowsy)™ >
meZiJr
x 62& tr(y12wi,) det([ _ y12yf2)28(>\+k1+k2)_8dy12

= O det(znwi;)™ det(zawsy)™™

A+ k1 + ko) 220 - g . .
2 (2(A + k1 + k2))2m,2 [m]! O (wriwhiwaawiy) (d=1)
mGZ;"Jr m,
()\ + kl + k2)m74 ]_ ~ (4 N N
Z (A + k1 + k2)m2 o [ml! i (21103 222w) (d=4)
mEZiJr m=,2
— Cdet(xnwﬁ)d“ det(x22w§2)5k2
1 1 - . .
Z (A+ki+ko+ ) |m\|‘b£n)(5’311w21$22w12) (d=1)
meZiJr 1 27 2)m,1 :
1 1 -4 i .
2 (A+ k1 +ky — 1)m 4 |m)! O (wriwhiwaawty)  (d =4),
/ m, .

mezZ’

where ' = min{s’, s"} when d =1, 1’ = min{ L‘%J, L%"J} when d = 4. Here we have used
(3.2.13) and Lemma 3.4.1. Since

K(-y2) € Wi =Py, gy (0T (11,d) B Py 1oy (7(22,d)) ~ C_gep, W Cgepsy,

and
Henrex(D1, Wi) = Heagoky)+e(rt2k2) (D1)

Y11 Y12 9 o 9 e
— det det | ——
f <y21 y22> ¢ (ayn) ‘ (8y22>

via

f (yn y12)
yar Y2/’
y11=y22=0
we have the following.
Theorem 3.5.6. (1) Let (G,G1) = (Sp(s,R),U(s',s")) with s = s’ + s". Let A\ > s,
ki,ke € Z>o. Then the linear map Fx g, ky * Hixg2k)+(rr2k2) (D) g, = HA(D)

(f)\kf) R Idet(xll)kldet(xgz)kz
’ T21 T22

1 1 = (1) 0 t( 0 )
X P — —
Z (/\ + k1 + ko + %) |m|! (3:11 O0z12 2 0x12 f(wi2)

mezfr{s/,s”} m,1
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intertwines the (g1, K1)-action.

(2) Let (G,G1) = (SO*(25),U(s', ")) with s =5+ s". Let A > 2s —3, and k; € Z> if
s" is even, k; = 0 if sV is odd. Then the linear map

Fakke  Ha )4 (k) (P0) g, = Ha(D) g

(F)\,kf) (1711 3312) _ Pf(m'll)kl Pf(x22)k2

To1 T2
1 1 - 0 t( 0 >
X ) —T11=—2 _— x
min{g/:zj 1" /2]} (A i+ k2 = D mlt =" ( H 0wy \Oany floz)
mEZ_H_ : T

intertwines the (g1, K1)-action.

3.5.5 Fy, for (G,Gq) = (SU(s,s),Sp(s,R)), (SU(s,s),SO*(2s))

In this subsection we set

(G,Gq) = {(SU('s?S)’SP(SaR)) (Case d = 1),

(SU(s,s),50%(2s)) (Case d=4).
We realize g; C g so that

(Sym(s, C), Skew(s,C)) (Case d=1),

- 1y
(i p3) = (91 0P (1)) = {(Skew(s,@),Sym(s,(C)) (Case d = 4).

Then for (y1,22) € pf x p5, we have

B(za,y1) = (I — za2y;, (I — yfza2) ™), h(z2,y1) = det(I — wayy),

B(y1) = (I —yiyi, (I —yiy1) ™), hi(y1) = det(I — y1yi)7,

whereE:lwhendzl,&?:%whendzél, and

1

aft = wo(I — yiwa) ™" = (I — way}) " o,

. 1 * — *\ — *\ — * —
Projy(z3') = 5 (1’2(1— yize) ™t + (I + z2y}) 1552) = (I + 2oy}) 'wa(I — yiag) ™.

Let (7, V) be a finite-dimensional irreducible representation of K€, and let K (9, 19) €

P(ps % py,End(V)) be a f(‘c—inv@n‘c polynomial in the sense of (3.3.3). Then the
function Fyy, (r2; w1, ws) € O(py x pT,End(V)) in Theorem 3.3.5 (2) is given by

Fy, (z2; w1, w2)
= /D 7 (I = 2oyi, (I — yiwa) ") K (I + 2ay}) oI — yiaa) ™' (I — yay)wa (I — yiyn))
1
x 7 ((I —y1y}) ™ T — yiyn) e @) det(I — yry]) ~P din

where (g,p1) = (1,7 + 1) when d = 1, (¢, p1) = (3,2(s — 1)) when d = 4. Now we assume
(1,V) = (x~*,C) is 1-dimensional, where x(k1, k2) = det(k2). Then we have

Fyw, (223 w1, w) =/ K ((I+22y}) 2o — yiwa) ™ (I — yiyf)wa(I — yivn))
D1

x det(I — zoy?) e W10 det(I — y1y5) " Prdy, .
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Now we additionally assume that
K (2, w2) = det(zowy) ) ¥,

where k € Z>¢ when d = 1 or d = 4 with s even, kK = 0 when d = 4 with s odd. Then we
have

Fy, (z2; wi, w2)

:/ det(xng)(ze)ilkdet(I - xgy’f)_)‘_ailketr(ylwf) det(I — yly}k))‘+571k_ap1dy1
Dy

- A e ) meo = .
:det(xgwé)(%) 'k Z / (Tn")ﬁ@g)’((nyDZ)etr(ylwl)
mez!s/2 Dy ’ B B

o x det(I —y1yt)°E Ate 2’€*P1)dy1

Y Ahme L) @=1)

(26)" 1k mez!*/% (A+F)m2,1 [m]!
- *\(2e)™ T
= det(pw)®)F S O+ 2ma DMy (=g
m (2w =
ot (2X\ 4 4k)2m 4 |m]! o
\MmE&; 4
1 L =@y )2
Z P’ ((v2w])?)  (d=1)
1
1 mezLs/2 A+ - 5)“1:2 [ml!

:det(mzwg)(%) R x o 1 1 =2y

> O (z2w})?) (d =),

mGZfin

Here we have used (3.2.13) and Lemma 3.4.2. Since K(-,y2) € Wy = P(ky,“’k)(p;r) ~
(C,E—lk, and

Ho-1\ (D1, WI) = H6*1A+6*2k(D1)
via

f(yl + y2)a
y2=0

8 (26)_1k

we have the following.

Theorem 3.5.7. (1) Let (G,G1) = (SU(s,s),Sp(s,R)). Let A\ > 2s—1, k € Z>o. Then
the linear map Fy i, : Hovk(D1) g, — Ha(D) g

(P f)(z1 + 22) :Pf<$2)k Z ! T ! 'éfﬁ)/ ((m(?a:m> )f(xl)

mezl?/?

(z1 € Sym(s,C), zy € Skew(s,C)) intertwines the (g1, K1)-action.

(2) Let (G,G1) = (SU(s,s),SO*(2s)). Let A\ >2s—1, and k € Z>o if s is even, k =0
if s is odd. Then the linear map Fy 7'[2/\+4k(D1)j<1 — HA(D)

1 1 = (2)r 0 2
(7 A,kf)(im +a9) = det(m)k E O ((l’g) f(z1)
mezls/? ()\ +2k+ %)m,Q | |! 0y
++

(z1 € Skew(s, C), x5 € Sym(s, C)) intertwines the (g1, K1)-action.
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3.5.6 Fy, for (G,G;) =(50(2,n),50(2,n') x SO(n —n'))
In this subsection we set
(G,G1) = (S0O(2,n), SO(2,n’) x SO(n — n’)),

with n > 3. Then we have p™ ~ C", pJ ~ C™, and py = (pf)L ~ C" " For y; € pr
and x3 € p5, we have

h(az, 1) =1+ q(z2)a(y1),  haly) = 1= 2q(y1,51) + la(y1) [,
o = (1 g2l (@2 —alea)i), Proja(al) = (1+alea)alwn)) o2

Let (1,V) = (x*,C) be the 1-dimensional representation of K€, and let K (z9,ys) €

P(p3 x p3,End(V)) be a Kc—inviﬁant polynomial in the sense of (3.3.3). Then the
function Fi (z2;w1,ws2) € O(p5 x pt) in Theorem 3.3.5 (2) is given by

(o) = [ K (Ut ate)in) o B ) (14 ate)iln))

_ _ )\_ /
x 200 (1 — 2q(y1, 71) + la(w1)|?) ™" dn

Now we additionally assume that n —n’ =1 or n —n’ > 3, and

K (22, w3) = q(w2)*q(ws)"

where k € 1Z>o when n —n/ =1, k € Z>o when n —n’ > 3. Then we have

le(xz; wi, W)

= /D )" <1 + q(z2)q ) T ) (1 —2q(y1,51) + |Q(y1)|2)/\+2k7n, dyy
:
= glas) ) i /D (A + 2k)m m o () gl 2 o)
m=0 1
x (1= 20, 31) + la(w) ) don
= Oq(ws)*q(wa)” ni ((A +);()?m+m2)k)/ QTrlL'q(xQ)mW
= Calaz)glua) mii:o (A + z(k_iyzzz»)m %Q(@)mQ(wl)m

Here we have used (3.2.13) and the fact that ¢(y1)™ € Pnm) (C™). Similarly, if we assume
n—n' =2 and

k1 ko
K (22, w9) = (zo1 + V—1x92) (wo1 + vV —Twaa) (w21 — V/—1222)" (w21 — v—1waa) ,
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where x9 = (x91, 222), wa = (w21, waz) € p; =C?, and ky, ks € Z>q, then we have
Fw, (z2; w1, wa)

kl IIMZ
= / (221 + V—1x2) ¥ (w21 + V—1waz) (w21 — V—1292)" (way — vV —Twa)
D1

Ak +k27n’

— \ —A—ki—k2 _
< (14 a(@2)a(n)) P10 (1= 2q(y1, 71) + la(yn) ) dy

L L
K K2

= CO(221 + vV —1292)" (wa1 + v—Twaa) 1 (221 — V/—1z92)*2 (wa1 — vV~ Twaa)
> (-1)™ 1 —m

mm‘ﬂ@)mﬂwl)

X

m=0

Now since K(-,y2) € W1 1= P ) (p3) =~ C_ak,50(m') ¥ 150(n—ns) and
HA(D1, W1) = Har2k(Dsop2nr)) B 1som—n)
fy1,y2)

8 k
fy1,y2) — ¢ (83/2)
y2=0

when n —n' # 2, or K(-,y2) € W1 ~ C_y, _k, s0(n—2) ¥ Ci, _,,50(2) and
HA(D1, W1) = Hatky 1k (Dsog2,n)) B Cry iy 50(2)

via

via

) o\ 7 0 o\ 7o\
o () ()
J(v2) (61/21 0ya2 ) < 0y21 0y22 1 0y .

when n —n’ = 2, we have the following.

Theorem 3.5.8. Let (G,G1) = (SO(2,n),S50(2,n') x SO(n —n')) with n > 3, and let
A>n—1.

1, y2)

2=0

(1) Letn—n' =1,k € %Zzo; orn—n'>3, k&Zsy. Then the linear map

Fak t (Hat2k(Dsog(2n) B lsom-—n)) g, = HA(Dsop2m) i

(Fanf) (@1, 22) = qla2)* Y ()\4_2(];1):/_2) %Q(ﬂfz)mq <(‘98:1:1) f(a1)
5 Jm

m=0

(x1 € C¥, 9 € C"™) intertwines the (g1, K1)-action.
(2) Let n —n' =2, ki, ko € Z>o. Then the linear map

Fakrks t (Hatks+ka (Dsop2m—2)) W Cry —ry 502)) &, = HA(Ds0o(2:m)) 2
(Farf)(@1,22) = (wa1 + vV —1220)" (291 — v/ —1w90)"2
> —1)m 1 m
L () s

X JE—
mZ::O A+ o1 £ k) !

(v1 € CV2 29 = (w21, 192) € C?) intertwines the (g1, K’l)—action.
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