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1. Introduction

1.1. Graph coloring problem. A graph is a pair G = (V (G), E(G)) consisting of a set V (G) together

with a symmetric subset E(G) of V (G) × V (G), i.e. (x, y) ∈ E(G) implies (y, x) ∈ E(G). Hence our

graphs are undirected, may have loops, but have no multiple edges. We call a graph simple if it has no

looped vertices. A graph homomorphism is a map f : V (G)→ V (H) with (f × f)(E(G)) ⊂ E(H).

An n-coloring of G is a map c : V (G) → ⟨n⟩ = {0, 1, · · · , n − 1} such that (x, y) ∈ E(G) implies

c(x) ̸= c(y). The chromatic number is defined to be the number

χ(G) = inf{n ≥ 0 | There is an n-coloring of G.}.

Consider the infimum of the empty set is +∞.

Let Kn be the complete graph with n-vertices. Namely, V (Kn) = ⟨n⟩ = {0, 1, · · · , n − 1} and

E(Kn) = {(x, y) | x ̸= y} ⊂ V (G)× V (G). Then an n-coloring is identified with a graph homomorphism

from G to Kn. Let f : G→ H be a graph homomorphism. If H has an n-coloring c : H → Kn, then G

has an n-coloring c ◦ f , and hence we have χ(G) ≤ χ(H).

The neighborhood complexes were introduced by Lovász in his proof of the Kneser conjecture. He

related the connectivity of the neighborhood complex of a graph G to the chromatic number of G. This

is the first application of algebraic topology to the graph coloring problem. After that, several complexes

have been considered by many authors in this context.

The Hom complex Hom(T,G) of graphs is a poset assigned to a pair of graphs T and G (The definition

will be found in Section 1.3). This is functorial with respect to T and G, and hence if a group Γ acts on

T then the Hom complex Hom(T,G) becomes a Γ-poset. We regard K2 as a Z2-graph by the exchange

of the two vertices. The box complex B(G) is the Z2-poset Hom(K2, G).

In this thesis, we study how far the chromatic numbers are determined by the neighborhood com-

plexes, the box complexes, and the Hom complexes. A homotopy test graph is a graph T such that the

connectivity of Hom(T,G) plus χ(T ) + 1 is a lower bound for the chromatic number of a graph G. We

show that every bipartite graph is a homotopy test graph. This is conjectured by Kozlov. Next we show

that the homotopy types of the Hom complexes (and hence the box complexes and the neighborhood

complexes) do not determine the chromatic numbers of graphs. Moreover, we show that no homotopy

invariant of Hom(T,G) is an upper bound for the chromatic number of G.

Hence to determine the chromatic number of G, we need to observe more rigid structures on the Hom

complexes. The box complex B(G) = Hom(K2, G) is a Z2-poset. We show that the Z2-poset structure of

the box complex B(G) determines the graph G up to isolated vertices. On the other hand, we show that

there are graphs having the same box complexes, the same neighborhood complex, yet different chromatic

numbers. This implies that the non-equivariant poset structure and the neighborhood complex do not

determine the chromatic number. In the paper [30] of the proof of the Kneser conjecture, Lovász asked

if there is a topological property which is equivalent to the k-colorability. Therefore the above example

gives a negative answer to his question.

To deduce the non-existence of graph homomorphisms, we assign a graph to a the box complex B(G),

and consider that there is a Z2-map between the box complexes. Hence it is interesting to compare

the category of graphs with the category of Z2-spaces. For example, it is important to understand
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that which Z2-homotopy class of Z2-continuous maps between the box complexes is induced by a graph

homomorphism. In general, there is no graph homomorphism from G to H although there is a Z2-map

between their box complexes. In fact the Z2-homotopy type of the box complex does not determine the

chromatic number as was mentioned. However, if we consider the localization of the category of graphs

by the class of graph homomorphisms which induce Z2-homotopy equivalences between box complexes,

then the resulting category and the homotopy category of Z2-spaces are equivalent.

1.2. Neighborhood complex. For a vertex v of a graphG, the set of vertices adjacent to v is denoted by

N(v), and is called the neighborhood of v. The neighborhood complex N(G) of G is the abstract simplicial

complex whose vertex set is the set of non-isolated vertices of G and simplices are finite subsets of V (G)

contained in the neighborhood of some vertex of G. The neighborhood complex is introduced by Lovász

[30], and he showed the following theorem.

Theorem 1.1 (Lovász [30]). If the neighborhood complex N(G) is n-connected, then χ(G) ≥ n+ 3.

Lovász applied the above theorem to solve the Kneser conjecture described as follows. Let X be the

family of subsets having k elements of ⟨n⟩ = {0, · · · , n − 1}. Consider a partition X into m subsets

X1, · · · , Xm for some positive integer m. Kneser conjectured in 1955 that if m ≤ n− 2k + 1, then there

is Xi containing two elements which are disjoint as subsets in ⟨n⟩.
Let n, k be positive integers with n ≥ 2k. The Kneser graph KGn,k is defined by

V (KGn,k) = {σ ⊂ ⟨n⟩ | #σ = k},

and

E(KGn,k) = {(σ, τ) | σ ∩ τ = ∅}.
The Kneser conjecture is equivalent to χ(KGn,k) = n − 2k + 2. (It is easy to show that χ(KGn,k) ≤
n−2k+2.) Lovász proved that N(KGn,k) is (n−2k)-connected and showed that χ(KGn,k) = n−2k+2,

using Theorem 1.1.

In the next section we shall explain how to obtain obstructions of the exitence of a coloring, using the

Hom complexes.

1.3. Hom complex. A multi-homomorphism from G to H is a map η : V (G) → V (H) which satis-

fies η(v) × η(w) ⊂ E(H) for all (v, w) ∈ E(G). We write η ≤ η′ if η(v) ⊂ η′(v) for all v ∈ V (G).

The Hom complex Hom(G,H) is the poset of multi-homomorphisms from G to H. Note that a graph

homomorphism f is identified with a multi-homomorphism v 7→ {f(v)}.
Let f : G1 → G2 be a graph homomorphism. Then we have an order preserving map

Hom(G2,H)→ Hom(G1,H)

corresponding η to η ◦ f . On the other hand, for a graph homomorphism g : H1 → H2, define the order

preserving map

g∗ : Hom(G,H1)→ Hom(G,H2)

by g∗(η)(x) = g(η(x)). Thus we have a functor

Gop × G → P, (G,H) 7→ Hom(G,H),

where G is the category of graphs and P is the category of posets.

Suppose that a group Γ acts on a graph T from the right. Then the functorial property of the Hom

complex implies that Hom(T,G) is a left Γ-poset, and a graph homomorphism f : G → H induces a Γ-

equivariant map f∗ : Hom(T,G)→ Hom(T,H). Hence if there is no Γ-equivariant map from Hom(T,G)

to Hom(T,H), then we have that there is no graph homomorphism from G to H.

Consider K2 as a Z2-graph by the involution 0 ↔ 1. We often write B(G) instead of Hom(K2, G),

and call it the box complex of G.
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Theorem 1.2 (Babson-Kozlov [1]). The box complex B(G) is homotopy equivalent to the neighborhood

complex N(G).

Theorem 1.3 (Babson-Kozlov [1]). The box complex B(Kn) is Z2-homeomorphic to the (n− 2)-sphere

Sn−2.

Here we consider the n-sphere Sn as a Z2-space by the antipodal map.

For a Z2-space X, the Z2-index of X is defined to be the number

ind(X) = inf{n ≥ −1 | There is a Z2-map from X to Sn.}.

Corollary 1.4 (Walker [37]). The inequality

χ(G) ≥ ind(B(G)) + 2

holds for every graph G.

For a topological space X, define the connectivity of X to be the number

conn(X) = sup{n ≥ −1 | X is n-connected.}.

Since ind(X) > conn(X), Theorem 1.1 follows from Corollary 1.4.

1.4. Test graphs. To generalize the case of the box complex, Kozlov introduced the notion of test

graphs. A graph T is a test graph if a certain inequality between the chromatic number χ(G) and some

homotopy invariant of Hom(T,G) holds for every graph G. There are several type of test graphs. We

deal with homotopy test graphs and Stiefel-Whitney test graphs.

Definition 1.5 (Kozlov [21]). A graph T is a homotopy test graph if the inequality

χ(G) > conn(Hom(T,G)) + χ(T )

holds for every graph G.

An involution of a graph T is a graph homomorphism α : T → T with α2 = idT . The involution α is

flipping if there is a vertex v such that α(v) is adjacent to v. An involution is identified with a Z2-action

on the graph T , and we call a Z2-graph T flipping if its Z2-action is flipping. It is easy to see that if T

is a flipping Z2-graph, then Hom(T,G) is a free Z2-space (see [1] for example).

Let X be a free Z2-space. Let X denote the orbit space of X and suppose that the quotient map

X → X is a double covering. Let w1(X) ∈ H1(X;Z2) be the 1st Stiefel-Whitney class of the O(1)-bundle

X → X. The Z2-height of X is defined to be the number

h(X) = sup{n ≥ 0 | w1(X)n ̸= 0}.

Definition 1.6 (Kozlov). A flipping Z2-graph T is a Stiefel-Whitney test graph if

h(Hom(T,Kn)) = n− χ(T )

for every n with n ≥ χ(T ).

Remark 1.7. Dochtermann and Schultz [11] call a flipping Z2-graph T a “Stiefel-Whitney test graph” if

the inequality

χ(G) ≥ h(Hom(T,G)) + χ(T )(1)

holds for every graph G.

Suppose that T is a Stiefel-Whitney test graph in the sense of Definition 1.6. Let G be a graph and

let f : G→ Kn be an n-coloring of G. Then f induces a Z2-map

f∗ : Hom(T,G)→ Hom(T,Kn).
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This implies that h(Hom(T,G)) ≤ Hom(T,Kn) = n− χ(T ). Hence T is a “Stiefel-Whitney test graph”

in the sense of Dochtermann and Schultz [11]. On the other hand, it is not known that these two notions

coincide. In this thesis, we call a flipping Z2-graph T a weak Stiefel-Whitney test graph if the inequality

(1) holds.

Remark 1.8. By the Gysin sequence, we have that h(X) > conn(X). This implies that a weak Stiefel-

Whitney test graph (Remark 1.7) is a homotopy test graph.

There are several results concerning with test graphs. Theorem 1.1 and Theorem 1.2 imply that K2

is a homotopy test graph. In general, Babson and Kozlov [1] showed that the complete graph Kn for

n ≥ 2 is a Stiefel-Whitney test graph. Here we consider the involution of Kn as the exchange of 0 and

1. Lovász conjectured that an odd cycle C2r+1 for a positive integer r is a homotopy test graph, and

this conjecture was proved by Babson and Kozlov [2]. Babson and Kozlov conjectured that an odd cycle

with reflection is a Stiefel-Whitney test graph, and this conjecture was proved by Schultz [34], and was

later solved in [24] and [35]. It is clear that a graph having no edges is not a homotopy test graph. The

first non-trivial example of a non-homotopy test graph is found in Hoory and Linial [17]. For further

references relating to test graphs, we refer to [11].

Kozlov suggested several problems concerning with Hom complexes in [21]. The following are two of

them.

Problem 1.9 (Kozlov, Conjecture 6.2.1 of [21]). Does χ(T ) = 2 imply that T is a homotopy test graph?

Remark 1.10. The precise statement of the conjecture is “Every bipartite graph is a homotopy test

graph”. Here we should consider that the term “bipartite graph” means a graph with chromatic number

2. In fact it is clear that graphs having no edges are not homotopy test graphs, as was mentioned.

Problem 1.11 (Kozlov, Section 6.1 of [21]). Is there a graph T having two flipping involutions α0 and

α1 such that (T, α0) is a Stiefel-Whitney test graph but (T, α1) is not?

The purpose of Section 3 is to solve the above problems. The following theorem is the answer to

Problem 1.9.

Theorem 1.12. A graph T with χ(T ) = 2 is a homotopy test graph.
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Figure 1.1

Let X be a graph illustrated in Figure 1.1. Let α0 be the reflection in the horizontal line, and let α1

be the reflection in the vertical line. The following theorem is the answer to Problem 1.11.

Theorem 1.13. Let X be the graph, and let α0 and α1 be the involutions described in Figure 1.1. Then

(X,α0) is a Stiefel-Whitney test graph but (X,α1) is not.

1.5. Homotopy types of Hom complexes. In his pioneer paper [30], Lovász asked that there is

a homotopy, or topological invariant of neighborhood complexes which is equivalent to the chromatic

number. The homotopy case of this question was negatively solved by Walker [37]. He constructed graphs
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G1 and G2 such that their box complexes are Z2-homotopy equivalent but their chromatic numbers are

different (see Theorem 1.3 and Figure 1.2).

In Section 4, we will generalize his result to Hom complexes in the following form:

Theorem 1.14. Let T be a finite graph and let G be a non-bipartite graph. For each integer n, there

is a graph H such that Hom(T,G) and Hom(T,H) are homotopy equivalent and χ(H) > n. In case T

is a flipping Z2-graph, we can take H so that Hom(T,G) and Hom(T,H) are Z2-homotopy equivalent.

Moreover, if G is finite or connected, then we can take H to be finite or connected, respectively.

This theorem will be proved in Section 4.

In Section 1.3 and Section 1.4, we mentioned that some homotopy invariants of the Hom complex

Hom(T,G) gives a lower bound for the chromatic number of G. On the other hand, Theorem 1.14

implies that there is no (Z2-equivariant) homotopy invariant of Hom(T,G) gives an upper bound for the

chromatic number. However, we should say that this result is almost known by Walker [37] in the case

T = K2. In fact, he noticed that for every integer n, there is a finite graph G such that χ(G) > n and

B(G) is Z2-homotopy equivalent to some 1-dimensional Z2-complex.

1.6. Kronecker double coverings. Therefore to determine the chromatic number, one should observe

more rigid structures of the Hom complex. The next result (Theorem 1.15) concerns with the poset

structure and the Z2-poset structure of the box complex.

Let G and H be graphs. The (tensor or categorical) product G×H of G and H is the graph defined

by

V (G×H) = V (G)× V (H)

and

E(G×H) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G), (y, y′) ∈ E(H)}.

It is easy to see that the product G×H is actually the categorical product of the category of graphs.

A graph homomorphism p : G → H is a covering if p|N(v) : N(v) → N(p(v)) is bijective for all

v ∈ V (G). The Kronecker double covering over G is the 2nd projection K2 × G → G. It is easy to see

that the Kronecker double covering is a covering.

The following result shows that there is a remarkable relation between box complexes (or neighborhood

complexes) and Kronecker double coverings.

Theorem 1.15. Let G and H be graphs without isolated vertices. Then the following hold.

(1) The Kronecker double coverings K2 × G and K2 × H are isomorphic if and only if their box

complexes B(G) and B(H) are isomorphic as posets.

(2) The graphs G and H are isomorphic if and only if their box complexes B(G) and B(H) are

isomorphic as Z2-posets.

(3) If the Kronecker double coverings K2 ×G and K2 ×H are isomorphic, then their neighborhood

complexes are isomorphic. On the other hand, if G and H are stiff (mentioned below), then the

converse holds.

A graph G is stiff if v, w ∈ V (G) and N(v) ⊂ N(w) imply v = w.

Let m,n be positive integers greater than 3. In Example 5.16, we construct graphs G and H such that

K2×G ∼= K2×H, χ(G) = m, and χ(H) = n. It follows from (1) of Theorem 1.15, there are graphs G and

H with isomorphic box complexes and isomorphic neighborhood complex, yet with different chromatic

numbers. As was mentioned, Lovász asked if there is a topological property of N(G) which is equivalent

to the chromatic number of G. The above example gives a negative answer to his question.
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1.7. Simplicial methods. The category of graphs is denoted by G. For a non-negative integer n,

define the graph Σn as follows: The vertex set of Σn is [n] = {0, 1, · · · , n}, and the edge set of Σn is

V (Σn) × V (Σn). Let T be a graph. Define Sing(T,G) to be the simiplicial set whose n-simplices are

graph homomorphisms from T × Σn to G, i.e. Sing(T,G)n = G(T × Σn, G). We will show the following

theorem in Section 7.

Theorem 1.16. There is a natural homotopy equivalence

|Sing(T,G)| ≃−−−−→ |Hom(T,G)|.

As an application of this theorem, we show that the category G of graphs has a model structure which

is Quillen equivalent to the category of Z2-spaces.

Let SSet be the category of simplicial sets and let SSetZ2 be the category of Z2-simplicial sets.

Let B(G) be the Z2-simplicial set Sing(K2, G). We will call B(G) the singular box complex of G. One

can show that B(G) is Z2-homotopy equivalent to the B(G). Then the functor

B : G −→ SSetZ2

has a left adjoint. (In fact the usual box complex functor B is not a right adjoint functor since B does

not preserve products up to homotopy.) Let A : SSetZ2 → G be the left adjoint functor of A. If K is an

ordered Z2-simplicial complex, then it turns out that A(K) is isomorphic to GK constructed in Csorba

[7]. Namely, the vertex set of A(K) is the vertex set of K. Two vertices v, w are adjacent if and only if

{α(v), w} is a simplex of K, where α is the involution of K.

A graph homomorphism f : G → H induces a Z2-map f : G → H. So it is important to compare

the category of graphs with the category of Z2-spaces. In general, there is not a graph homomorphism

from G to H if there is a Z2-map from B(G) to B(H) (see Section 1.5). However, the following theorem

asserts that the localization of the category of graphs with respect to the class of graph homomorphisms

which induce Z2-homotopy equivalences between box complexes coincides with the homotopy category

of Z2-spaces. Let Sd : SSet → SSet be the barycentric subdivision functor, and let Ex be the right

adjoint of Sd. Then we have the following.

Theorem 1.17. The category G of graphs has a model structure described as follows:

(1) A graph homomorphism f : G→ H is a weak equivalence if and only if f∗ : B(G)→ B(H) is a

Z2-homotopy equivalence.

(2) A graph homomorphism f : G → H is a cofibration if there is an inclusion i : K ↪→ L of

Z2-simplicial sets such that f ∼= A ◦ Sd3(i).
Moreover, the adjoint pair

A ◦ Sd3 : SSetZ2 −−−−→ G : Ex3 ◦ B

is a Quillen equivalence.

Recall that the inequality

χ(G) ≥ ind(B(G)) + 2

holds for every graph G (see Corollary 1.4). Namely, the chromatic number of χ(G) is bounded below by

the Z2-homotopy invariant of B(G). As another application of the singular box complex, we show that

the lower bound ind(B(G))+ 2 is best possible in the following sense: Let u be a Z2-homotopy invariant

of a Z2-space, which assign an integer to a Z2-space, and suppose that χ(G) ≥ u(B(G)) for every finite

graph G. Then we have that ind(X) + 2 ≥ u(X). In fact we show that for a finite Z2-complex X, there

is a finite graph G with B(G) ≃Z2 X and χ(G) = ind(X) + 2. However, we should note that this is also

deduced from Theorem 1.6 and Theorem 1.7 in Dochtermann and Schultz [11].
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1.8. Organization of the thesis. The rest of the thesis is organized as follows. Section 3 is devoted to

the proofs of Theorem 1.11 and Theorem 1.12 which answers Problem 1.9 and Problem 1.10, respectively.

Section 4 is devoted to the proof of Theorem 1.13. In Section 5, we review the theory of the Kronecker

double coverings, and prove Theorem 1.14. Here we construct graphs such that their Kronecker double

coverings are isomorphic but their chromatic numbers are different.

In Section 2, we review definitions and facts we will need in Section 3, Section 4, and Section 5. For

the reader who is not familiar with topology, we often give precise proofs.

In Section 6, we review simplicial sets and model categories. In Section 7, we introduce the singular

complex mentioned in Section 1.6 and prove Theorem 1.16 and Theorem 1.17.
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comments and suggestions.

2. Preliminaries

2.1. Classical theorems in algebraic topology. Let us recall the following three theorems which are

well-known in algebraic topology.

Theorem 2.1 (Whitehead’s theorem, Theorem 4.5 of [14]). A continuous map f : X → Y between

CW-complexes is a homotopy equivalence if and only if f induces a bijection π0(X) → π0(Y ) and an

isomorphism πn(X,x)→ πn(Y, f(x)) for every n > 0 and x ∈ X.

Theorem 2.2 (Theorem 4.5 of [14]). For a CW-pair (X,A), A is a deformation retract of X if and only

if the inclusion A ↪→ X is a homotopy equivalence.

Theorem 2.3 (Cellular approximation theorem, Theorem 4.8 of [14]). A continuous map f : X → Y

between CW-complexes is homotopic to a cellular map. If f is already cellular on the subcomplex A ⊂ X,

we can take the homotopy to be stationary on A.

We often use the following property of CW-complexes.

Proposition 2.4 (Proposition A.1 of [14]). A compact subset of a CW-complex is contained in some

finite subcomplex of it.

Proposition 2.5 (Gluing lemma). Let f : X → Y be a continuous map between CW-complexes, let

A0 and A1 be subcomplexes of X with X = A0 ∪ A1, and let B0 and B1 be subcomplexes of Y with

Y = B0, B1. Suppose that f(Ai) ⊂ Bi for i = 0, 1. If f |A0 : A0 → B0, f |A1 : A1 → B1, and

f |A0∩A1 : A0 ∩A1 → B0 ∩B1 are homotopy equivalences, then f is a homotopy equivalence.

Proof. It follows from the cellular approximation theorem that f |A0∩A1
: A0∩A1 → B0∩B1 is homotopic

to a cellular map. The homotopy extension property implies that f is homotopic to a continuous map

g such that g|Ai ≃ f |Ai : Ai → Bi for each i = 0, 1 and g|A0∩A1 is cellular. Applying the cellular

approximation theorem to each of the maps g|Ai : Ai → Bi, we have that there is a cellular map

h : X → Y such that h|Ai ≃ g|Ai for each i = 0, 1 and h|A0∩A1 = g|A0∩A1 . Replacing h to f , we can

assume that f is cellular.
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Let Mf be the mapping cylinder of f . We want to show that the inclusion X ↪→ Mf is a homotopy

equivalence. For i = 0, 1, consider the sequence

Ai ↪→ (Mf |A0∩A1
∪Ai) ↪→M |f |Ai

.

The first inclusion and the composition are deformation retracts. Hence the second inclusion is a homo-

topy equivalence. Therefore Mf |A0∩A1
∪Ai is a deformation retract of M |f |Ai

.

Next consider the sequence

X ↪→ (Mf |A0∩A1
∪X) ↪→Mf = (Mf |A0

∪Mf |A1
).

Clearly, the first inclusion is a deformation retract. It follows from the previous paragraph that the second

inclusion is a deformation retract. Hence the composition X ↪→Mf is a homotopy equivalence. □

Proposition 2.5 has a vast generalization (see Proposition 6.18).

Proposition 2.6. Let f : X → Y be a map between CW-complexes. Suppose that for every finite

subcomplexes X ′ of X and Y ′ of Y with f(X ′) ⊂ Y ′, there are subcomplexes A of X and B of Y such

that X ′ ⊂ A, Y ′ ⊂ B, f(A) ⊂ B, and f |A : A → B is a homotopy equivalence. Then f is a homotopy

equivalence.

Proof. It suffices to show that f induces a bijection π0(X) → π0(Y ) and isomorphisms πn(X,x) →
πn(Y, f(x)) for every x ∈ X and n > 0. Here we only prove that the map f∗ : πn(X,x)→ πn(Y, f(x)) is

injective for n > 0 since the other parts are similarly proved.

Let α ∈ πn(X,x) and suppose that f∗(α) = 1. Let φ : Sn → X be a representative of α and let

ψ : Dn+1 → Y be an extension of f ◦ φ. By Proposition 2.4 and the hypothesis, there are subcomplexes

A of X and B of Y such that φ(Sn) ⊂ A, ψ(Dn+1) ⊂ B, f(A) ⊂ B, and f |A : A → B is a homotopy

equivalence. Since f ◦φ is null-homotopic in B and f |A is a homotopy equivalence, φ is null-homotopic.

Hence f∗ : πn(X,x)→ πn(Y, f(x)) is injective. □

Corollary 2.7. If every finite subcomplex of X is contained in some contractible subcomplex, then X is

contractible.

Proposition 2.8 (Infinite version of the gluing lemma). Let f : X → Y be a continuous map between

CW-complexes. Let S be a set, and let {Ai | i ∈ S} and {Bi | i ∈ S} be S-indexed families of subcomplexes

of X and subcomplexes of Y , respectively. Suppose that the following conditions hold:

(1)
∪

i∈S Ai = X and
∪

i∈S Bi = Y .

(2) f(Ai) ⊂ Bi for every i ∈ S.
(3) For a non-empty finite subset {i0, · · · , ik} ⊂ S, the map

f |A0∩···∩Ak
: A0 ∩ · · · ∩Ak → B0 ∩ · · · ∩Bk

is a homotopy equivalence.

Then f is a homotopy equivalence.

Proof. First we consider the case S is finite. This follows from the induction on the cardinality of S. Set

S = {i0, · · · , ik}. For simplicity, we write Aj or Bj instead of Aij or Bij , respectively.

The case k = 0 is obvious. By the induction hypothesis, we have that

f |A0∪···∪Ak−1
: A0 ∪ · · · ∪Ak−1 → B0 ∪ · · · ∪Bk−1

and

f |(A0∪···∪Ak−1)∩Ak
: (A0 ∪ · · · ∪Ak−1) ∩Ak → (B0 ∪ · · · ∪Bk−1) ∩Bk

are homotopy equivalences since (A0 ∪ · · · ∪ Ak−1) ∩ Ak = (A0 ∩ Ak) ∪ · · · ∪ (Ak−1 ∩ Ak) and (B0 ∪
· · · ∪ Bk−1) ∩ Bk = (B0 ∩ Bk) ∪ · · · ∪ (Bk−1 ∩ Bk). It follows from Proposition 2.5 that f |A1∪···∪Ak

:

A1 ∪ · · · ∪Ak → B1∪ · · · ∪Bk is a homotopy equivalence. This completes the proof of the case S is finite.

If S is infinite, the proposition follows from Proposition 2.4 and Proposition 2.6. □
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Let Γ be a group and let f, g : X → Y be Γ-maps. A homotopy (ht)t∈I is a Γ-homotopy if ht is

Γ-equivariant for every t ∈ I. We call f and g Γ-homotopic if there is a Γ-homotopy from f to g, and

write f ≃Γ g. A Γ-map f : X → Y is a Γ-homotopy equivalence if there is a Γ-map g : Y → X with

g ◦ f ≃Γ idX and f ◦ g ≃Γ idY .

A Γ-action on a CW-complex X is free if γe ∩ e = ∅ for every cell e of X and γ ∈ Γ \ {1}.

Proposition 2.9. Let f : X → Y be a Γ-map between free Γ-CW-complexes. Then f is a Γ-homotopy

equivalence if and only if f is a homotopy equivalence.

Proof. If Γ is finite, then this follows from Chapter II of Bredon [6]. However, we will use this theorem

in the case that Γ is infinite. Although his proof works well if the action is free, we give an alternative

proof for the reader’s convenience.

We write X and Y to indicate the orbit spaces of X and Y , respectively. We show that the map

f : X → Y induced by f is a homotopy equivalence. By the cellular approximation theorem, f is

homotopic to a cellular map. By the homotopy lifting property of covering spaces, we have that f is

Γ-homotopic to a cellular map. So we can assume that f is cellular.

Let Mf be the mapping cylinder of f . Then Γ acts freely on Mf and the orbit space is identified

with the mapping cylinder Mf of f . Let φ : (Dn, Sn−1) → (Mf ,X) be a map of pairs. Since Dn is

contractible, there is a lift φ̃ : (Dn, Sn−1)→ (Mf , X). Since f is a homotopy equivalence, φ̃ is homotopic

rel Sn−1 to a map with image contained in X. Hence φ is homotopic rel Sn−1 to a map with image

contained in X. This implies that πn(Mf , X) is trivial and hence f is a homotopy equivalence.

Thus X is a deformation retract of Mf . By the homotopy lifting property of covering spaces, this

deformation retract lifts a deformation retract (ht : Mf → Mf ) of Mf to X. It is clear that ht is a

Γ-equivariant for every t. □

2.2. Abstract simplicial complex. In this section, we review some definitions relating to the abstract

simplicial complex. We review the strong homotopy theory of simplicial complexes introduced by Barmak

and Minian [5].

An abstract simplicial complex is a pair (V,∆) consisting of a set V equipped with a family of finite

subsets of V , and we require the following conditions:

(1) v ∈ V implies {v} ∈ ∆.

(2) τ ∈ ∆ and σ ⊂ τ imply σ ∈ ∆.

We often write ∆ to indicate the simplicial complex (V,∆). In this terminology, the vertex set of ∆ is

denoted by V (∆).

A simplicial map is a map f : V (∆0) → V (∆1) such that σ ∈ ∆1 implies f(σ) ∈ ∆2. Two simplicial

maps f and g are contiguous if σ ∈ ∆0 implies f(σ) ∪ g(σ) ∈ ∆1. Let ≃s be the equivalence relation

generated by the contiguity. Two simplicial maps f and g from ∆0 to ∆1 are strongly homotopic if

f ≃s g.

As was the case of Hom complexes of graphs, we shall consider the following construction. A simplicial

multi-map from ∆0 to ∆1 is a map η : V (∆0)→ 2V (∆1) \ {∅} such that σ ∈ ∆0 implies∪
v∈σ

η(v) ∈ ∆2.

For simplicial multi-maps η and η′, we write η ≤ η′ if η(v) ⊂ η′(v) for every v ∈ V (∆0). The poset

of simplicial multi-maps is denoted by Map(∆0,∆1). Note that a simplicial map is identified with a

minimal point of Map(∆0,∆1).

Lemma 2.10. Let f , g be simplicial maps from ∆0 to ∆1. Then the following are equivalent.

(1) f and g are contiguous.

(2) The map V (∆0)→ 2V (∆1) \ {∅}, v 7→ {f(v), g(v)} is a simplicial multi-map.

(3) There is an element η ∈ Hom(∆0,∆1) with f ≤ η and g ≤ η.
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This lemma implies that f and g are strongly homotopic if and only if they belong to the same

connected component of Map(∆0,∆1).

Let K,L,M be simplicial complexes. For η ∈ Map(K,L) and τ ∈ Map(L,M), define the composition

τ ∗ η ∈ Map(K,M) by

(τ ∗ η)(x) =
∪

y∈η(x)

τ(y).

The composition map is an order-preserving map Map(L,M)×Map(K,L)→ Map(K,M). If f : K → L

and g : L→M are simplicial maps, then g ∗ f coincides with the composition g ◦ f of maps.

Let fi : K → L (i = 0, 1) and gi : L→M (i = 0, 1) be simplicial maps. If f0 ≃s g0 and f1 ≃s g1, then

g0 ◦ f0 ≃s g1 ◦ f1 since the composition map ∗ is an order-preserving map.

Definition 2.11 (Barmak-Minian [5]). Let K be a simplicial complex. A vertex x of K is a cone point

if there is another vertex y of K such that σ ∈ K and x ∈ σ imply σ ∪ {y} ∈ K.

Let K be a simplicial complex and let S be a subset of V (K). The maximal subcomplex of K whose

vertex set is V (K) \ S is denoted by K \ S. If S = {x} we write K \ x instead of K \ {x}.

Lemma 2.12 (Barmak-Minian [5]). Let K be a simplicial complex and let x be a cone point of K. Then

the inclusion K \ x ↪→ K is a strong homotopy equivalence.

Proof. Define the simplicial map f : K → K by the correspondence

f(v) =

{
y (v = x)

v (v ̸= x).

Then the pair of f and idK satisfies the condition (2) of Lemma 2.10. □

Let K be a simplicial complex. Let R(V (K)) denote the free R-module generated by V (K). Consider

that the topology of R(V (K)) is induced by the finitely generated R-submodules. For a vertex v, the

element of R(V (K)) associated to v is denoted by ev. For a simplex σ ∈ K, set

∆σ = {
∑
v∈σ

avev | av ≥ 0 (v ∈ σ),
∑
v∈σ

av = 1}.

The geometric realization of K is the union

|K| =
∪
σ∈K

∆σ.

A simplicial map f : K → L induces a continuous map |f | : |K| → |L|.
The geometric realization functor allows us to assign topological terms to simplicial complexes. For

example, a simplicial map f is a homotopy equivalence if the continuous map |f | induced by f is a

homotopy equivalence.

Let K and L be simplicial complexes. The join K ∗ L is the simplicial complex whose vertex set is

the disjoint union V (K) ⊔ V (L), and a subset σ of V (K) ⊔ V (L) is a simplex of K ∗ L if and only if

σ ∩ V (K) ∈ K and σ ∈ V (L).

Let K be a simplicial complex and let σ be a simplex of K. The star of σ is the subcomplex

{τ ∈ K | σ ∪ τ ∈ K}.

2.3. Posets. A partially ordered set is called a poset, for short. A chain of a poset P is a subset c of P

such that for every pair of elements in c is comparable. The order complex ∆(P ) of P is the abstract

simplicial complex whose simplices are finite chains of P . The classifying space of P is the geometric

realization of the order complex, and is denoted by |P |. As is the case of simplicial complexes, we assign

topological terms to posets by the classifying space functor.
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Let P,Q be posets. The product P × Q of posets is defined as follows: The underlying set of P × Q
is the direct product of the underlying sets of P and Q, and (x, y) ≤ (x′, y′) if and only if x ≤ x′ and

y ≤ y′.

Proposition 2.13. There is a natural isomorphism |P | × |Q| ∼= |P ×Q|.

Proof. See Theorem 10.21 of Kozlov [22]. □

Let f : P → Q be an order-preserving map. If c is a finite chain of P , then f(c) is a chain. Hence f

induces a continuous map |f | : |P | → |Q|.

Corollary 2.14. Let f, g : P → Q be order-preserving maps and suppose that f(x) ≤ g(x) for every

x ∈ P . Then |f | ≃ |g|.

Proof. Consider [1] = {0, 1} as a poset ordered by the usual ordering. Define the order preserving map

F : P × [1]→ Q

to be the map F (x, 0) = f(x) and F (x, 1) = g(x). Then |F | : |P |×|[1]| ∼= |P |× [0, 1]→ |Q| is a homotopy

from |f | to |g|. □

Let P,Q be posets. For a pair of order-preserving maps f, g : P → Q, we write f ≤ g if f(x) ≤ g(x)

for every x ∈ P . The poset of order-preserving maps from P to Q is denoted by Poset(P,Q). We call two

order-preserving maps f, g : P → Q strongly homotopic if they belong to the same connected component

of Poset(P,Q), and in this case we write f ≃s g. An order-preserving map f : P → Q is a strong

equivalence if there is an order-preserving map g : Q→ P with g ◦ f ≃s idP and f ◦ g ≃s idQ.

In fact, the term “strongly homotopic” is not standard. However, this notion was known in terms

of finite space theory (see Barmak [4]). A finite space is a topological space whose underlying set is

finite. Recall that the category of finite posets is isomorphic to the category of finite T0-spaces. Then

the order-preserving maps f and g are strongly homotopic if and only if the continuous maps associated

to f and g are homotopic.

Lemma 2.15. Let P , Q, and R be posets. Then there is a natural isomorphism

Poset(P ×Q,R)
∼=−−−−→ Poset(P,Poset(Q,R)).

Let fi : P → Q (i = 0, 1) and gi : Q→ R (i = 0, 1) be order-preserving maps. Suppose that f0 ≃s f1
and g0 ≃s g1. Then we have g0 ◦ f0 ≃s g1 ◦ f1 since the composition

Poset(Q,R)× Poset(P,Q)→ Poset(P,R)

is an order-preserving map.

The face poset FK of an abstract simplicial complex K is the set of non-empty simplices ordered by

inclusion.

Lemma 2.16. Let f and g be simplicial maps from K to L. If f and g are strongly homotopic, then Ff

and Fg are strongly homotopic.

Proof. Define the map F : Map(K,L)→ Poset(FK,FL) by

Fη(σ) =
∪
x∈σ

η(x).

The map F is a well-defined order-preserving map. Hence if the simplicial maps f and g belong to the

same connected component of Map(K,L), then Ff and Fg belong to the same connected component of

Poset(FK,FL). □



12 TAKAHIRO MATSUSHITA

An ascending closure operator of P is an order-preserving map c : P → P such that c ≥ idP and

c2 = c. A descending closure operator of P is an order-preserving map c : P → P such that c ≤ idP and

c2 = c. A closure operator of P is an order-preserving map c : P → P such that c is either an ascending

or descending closure operator.

Lemma 2.17. Let c be a closure operator of P . Then the inclusion c(P ) ↪→ P is a strong homotopy

equivalence.

Proof. Suppose that c is an ascending closure operator. Let c′ : P → c(P ) be the order-preserving

map defined by the correspondence x 7→ c(x). Let i : c(P ) ↪→ P be an inclusion. Then c′i = idP and

ic′ ≥ idP . Hence the inclusion c(P ) ↪→ P is a strong homotopy equivalence. The case that c is descending

is similarly proved. □

Let P be a poset. An element x is a lower beat point if P<x has the maximum. An element x is an

upper beat point if P>x has the minimum. An element x is a beat point if x is either a lower beat point

or an upper beat point.

Suppose that x0 is a lower beat point and let y0 be the maximum of P<x. Define the map c : P → P

by

c(x) =

{
x (x ̸= x0)

y0 (x = x0).

Then c is order-preserving, c2 = c, and c ≤ idP . Therefore the inclusion P \ x = c(P ) ↪→ P is a strong

homotopy equivalence.

It is clear that if x is a beat point of P , then x is a cone point of ∆(P ).

Lemma 2.18. Let P and Q be finite posets. Let f and g be order-preserving maps from P to Q. If f

and g are strongly homotopic, then ∆(f) and ∆(g) are strongly homotopic as simplicial maps from P to

Q.

Proof. We can assume that f ≤ g. Let {x1, · · · , xk} be a linear order of P such that xi ≤ xj implies

i ≤ j. For j = 0, 1, · · · , k, define the map φj : P → Q by

φj(xi) =

{
f(xi) (i ≤ j)
g(xi) (i > j).

Then ∆(φj), ∆(φj−1) : ∆(P ) → ∆(Q) are contiguous for j = 1, · · · , k. Since φ0 = g and φk = f , we

have that f and g are strongly homotopic. □

Let Q be a poset. A subposet P of Q is an induced subposet if for every x, y ∈ P , x ≤ y in Q implies

x ≤ y in P . Whenever we regard a subset A of Q as a poset, we consider that A is an induced subposet

of Q unless otherwise stated.

Theorem 2.19 (Quillen’s theorem A). Let f : P → Q be an order-preserving map. Suppose that for

every y ∈ Q, the subposet f−1(Q≤x) of P is contractible. Then f is a homotopy equivalence.

Proof. The following is essentially the same as the proof of Barmak [3]. A little modification allows us

to generalize his proof to the case that Q is infinite.

We first consider the case that P is an induced subposet of Q, f is an inclusion, and Q \ P is finite.

Let {x1, · · · , xn} be a linear order on Q\P such that xi ≤ xj implies i ≤ j. For i = 0, 1, · · · , n, define Pi

(i = 0, · · · , n) to be the induced subposet of Q consisting of the elements of P and xi+1, · · · , xn. Then

we have a sequence

P = Pn ⊂ Pn−1 ⊂ · · · ⊂ P0 = Q.
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Note that ∆(Pi) ∩ st∆(Pi−1)(xi) = ∆(Q>x) ∗∆(Pi,<xi). Since ∆(Pi,<xi) = ∆(P ∩ Q≤xi) is contractible,

we have that ∆(Pi) ∩ st∆(Pi−1(xi)) is contractible. Hence ∆(Pi) is a deformation retract of ∆(Pi−1) =

∆(Pi) ∪ st∆(Pi−1)(xi). Thus P is a deformation retract of Q.

Next we consider the case that P is an induced subposet of Q and f is an inclusion. By Whitehead’s

theorem (Theorem 2.1), it suffices to show that every map (Dn, Sn−1) → (|Q|, |P |) is a homotopic rel

Sn−1 to a map with image contained in |P |. Let φ : (Dn, Sn−1) → (|Q|, |P |) be a map. Then there is

an induced subposet Q′ of P such that φ(Dn) ⊂ |Q′| and Q′ \ P is finite. If follows from the previous

paragraph that |P | is a deformation retract of |Q′|. Hence φ is homotopic rel Sn−1 to a map with image

contained in |P |.
Finally, we consider the general case. Define the mapping space construction Bf as follows. The

underlying set of Bf is the disjoint union of P and Q. Moreover, P and Q are induced subposets of Bf .

For x ∈ P and y ∈ Q, define x ≤ y in Bf if f(x) ≤ y. No other ordering is defined.

Define the order-preserving map c : Bf → Q by

c(x) =

{
f(x) (x ∈ P )
x (x ∈ Q).

Let j : Q ↪→ Bf be the inclusion. Then jc is an ascending closure operator and cj = idQ. Therefore c

induces a homotopy equivalence |Bf | → |Q|.
Let i : P ↪→ Bf be the inclusion. It follows from the third paragraph of this proof that i is a homotopy

equivalence. Hence f = ci is a homotopy equivalence. This completes the proof. □

2.4. ×-homotopy theory. In this section we shall review the ×-homotopy theory of graphs established

by Dochtermann [8]. The definition of the Hom complex is found in Section 1.3.

Two graph homomorphisms f, g : G → H are ×-homotopic if they belong to the same connected

component of Hom(G,H), and we write f ≃× g. A graph homomorphism f : G → H is a ×-homotopy

equivalence if there is a graph homomorphism g : H → G with g ◦ f ≃× idG and f ◦ g ≃× idH .

Let G0, G1, G2 be graphs and let η ∈ Hom(G0, G1) and η′ ∈ Hom(G1, G2). Then the composition

η′ ∗ η is the multi-homomorphism from G0 to G2 defined by the correspondence

V (G0)→ 2V (G2) \ {∅}, v 7→
∪

w∈η(v)

η′(w).

The composition gives an order-preserving map

Hom(G1, G2)×Hom(G0, G1)→ Hom(G0, G2), (η
′, η) 7→ η′ ∗ η.

Lemma 2.20. Let f, g : G → H be graph homomorphisms. If f ≃× g, then f∗ ≃s g∗ : Hom(T,G) →
Hom(T,H) and f∗ ≃s g

∗ : Hom(H,X)→ Hom(G,X).

Proof. The following proof is due to the author. We only show f∗ ≃s g∗ since the other is similarly

proved. Consider the composition map

∗ : Hom(G,H)×Hom(T,G)→ Hom(T,H).

By Lemma 2.15, we have an order-preserving map Φ : Hom(G,H) → Poset(Hom(T,G),Hom(T,H)).

Then we have Φ(f) = f∗ and Φ(g) = g∗. Since f and g belong to the same connected component of

Hom(G,H), f∗ and g∗ are strongly homotopic. □

In particular, if f is a ×-homotopy equivalence, then both f∗ : Hom(T,G) → Hom(T,H) and f∗ :

Hom(H,X)→ Hom(G,X) are strong homotopy equivalences.

For a non-negative integer n, define In to be the graph whose vertex set is [n] = {0, 1, · · · , n} and

x, y ∈ [n] are adjacent in In if and only if |x − y| ≤ 1. Let f and g be graph homomorphisms. A

×-homotopy from f to g is a graph homomorphism

h : G× In → H
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for a non-negative integer n such that h(x, 0) = f(x) and h(x, n) = g(x) for all x ∈ V (G). Here the

product G× In is the categorical product in G. Namely, for graphs G,H, the product G×H is defined

by

V (G×H) = V (G)× V (H)

and

E(G×H) = {((x, y), (x′, y′)) | (x, x′) ∈ E(G) and (y, y′) ∈ E(H)}.

Lemma 2.21. Let f, g : G→ H be graph homomorphisms. Then f and g are ×-homotopic if and only

if there is a ×-homotopy from f to g.

This lemma is deduced from the following lemma.

Lemma 2.22. Let f, g : G→ H be graph homomorphisms. Then the following assertions are equivalent.

(1) There is a multi-homomorphism η ∈ Hom(G,H) with f ≤ η and g ≤ η.
(2) The map V (G)→ 2V (H) \ {∅}, x 7→ {f(x), g(x)} is a multi-homomorphism.

(3) The map h : V (G × I1) → V (H), (x, 0) 7→ f(x), (x, 1) 7→ g(x) is a graph homomorphism from

G× I1 to H.

Proof. It is clear that (2) implies (1).

Suppose that (1) holds. We show that the condition (3) holds. Let η ∈ Hom(G,H) with f ≤ η and

g ≤ η. Let ((x, i), (y, j)) ∈ E(G× I1). Then we have (x, y) ∈ E(G). Since

(h(x, i), h(y, j)) ∈ {f(x), g(x)} × {f(y), g(y)} ⊂ η(x)× η(y) ⊂ E(H).

This implies that h is a graph homomorphism. Thus the condition (3) holds.

Suppose that (3) holds. We show that the condition (2) holds. Let (x, y) ∈ E(G). We want to show

that {f(x), g(x)} × {f(y), g(y)} = {(f(x), g(x)), (f(x), g(y)), (f(y), g(x)), (f(y), g(y))} ⊂ E(H). Since f

and g are graph homomorphisms, we have (f(x), f(y)), (g(x), g(y)) ∈ E(H). Note that f(x) = h(x, 0),

g(y) = h(y, 1), and (x, 0) and (y, 1) are adjacent in G× I1. Therefore (f(x), g(y)) ∈ E(H). Similarly, we

can show that (f(y), g(x)) ∈ E(H). Thus the condition (1) holds. □

For a subset S of V (G), we write G \ S to indicate the maximal subgraph of G whose vertex set is

V (G) \ S. If S = {v}, then we write G \ v instead of G \ {v}.

Definition 2.23. A vertex v of G is dismantlable if there is w ∈ V (G) such that v ̸= w and N(v) ⊂ N(w).

Lemma 2.24. Suppose that v is a dismantlable vertex of a graph G. Then the inclusion i : G \ v ↪→ G

is a ×-homotopy equivalence.

Proof. Since v is dismantlable, there is a vertex w ∈ V (G) such that v ̸= w and N(v) ⊂ N(w). Define

the graph homomorphism r : G→ G \ v by

r(x) =

{
x (x ̸= v)

w (x = v).

Then the pair of graph homomorphisms idG and ir satisfies the condition (2) of Lemma 2.10. Since

ri = idG\v, we have that the inclusion i : G \ v ↪→ G is a ×-homotopy equivalence. □

3. Test graphs

The purpose of this section is to prove the following theorems. The definitions of homotopy test graphs

and Stiefel-Whitney test graphs are found in Section 1.4.

Theorem 3.1 (M. [26]). Every graph T with χ(T ) = 2 is a homotopy test graph.

Let X be the graph and let α0, α1 be involutions described in Figure 1.1.
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Theorem 3.2 (M. [26]). The flipping Z2-graph (X,α0) is a Stiefel-Whitney test graph but (X,α1) is

not.

As was mentioned in Section 1.3, these theorems give answers to some problems suggested by Kozlov.

We now prove Theorem 3.1. Suppose χ(T ) = 2. Then K2 is a retract of T . Since K2 is a homotopy

test graph (see Section 1.4), it suffices to prove the following lemma.

Lemma 3.3. Suppose that a graph S is a retract of T . If S is a homotopy test graph, then T is a

homotopy test graph.

Proof. Since there are graph homomorphisms between S and T from each to the other, we have χ(T ) =

χ(S).

Suppose that Hom(T,G) is n-connected. Since Hom(S,G) is a retract of Hom(T,G), we have that

Hom(S,G) is n-connected. Since S is a homotopy test graph, we have the inequality

χ(G) > conn(Hom(S,G)) + χ(S)

≥ n+ χ(T ).

It follows that T is a homotopy test graph. □

Next we show Theorem 3.2. To prove that (X,α0) is a Stiefel-Whitney test graph, we need the

following.

Theorem 3.4 (Schultz [34]). For a positive integer r, the odd cycle C2r+1 with reflection is a Stiefel-

Whitney test graph.

Proposition 3.5 (Kozlov, Proposition 6.1.5 of [21]). Let A, B, and C be flipping Z2-graphs satisfying

the following conditions:

(a) A and C are Stiefel-Whitney test graphs.

(b) χ(A) = χ(C)

(c) There are Z2-equivariant graph homomorphisms f : A→ B and g : B → C.

Then B is a Stiefel-Whitney test graphs.

Combining Theorem 3.4 and Proposition 3.5, we have that the Z2-graph (T, α0) is a Stiefel-Whitney

test graph, since there are Z2-equivariant graph homomorphisms C5 → X and X → C5.

Next we prove that (X,α1) is not a Stiefel-Whitney test graph. We first note the following lemma.

Lemma 3.6. Let φ and ψ be graph homomorphisms from G to H. If there is a non-looped vertex v of G

such that φ(x) = ψ(x) for x ̸= v, then φ and ψ belong to the same connected component of Hom(G,H).

Proof. This is deduced from Lemma 2.10. □

From now on, we consider Hom(X,K3) as a Z2-poset by the involution induced by α1. It suffices to

show that w1(Hom(X,K3) ̸= 0. Let f be a graph homomorphism depicted by Figure 3.1. The front

and the back of each arrow in Figure 3.2 satisfy the hypothesis of Lemma 3.6. Therefore f and f ◦ α1

belong to the same connected component of Hom(X,K3). This implies that there is a Z2-map from S1

to Hom(X,K3), and hence w1(Hom(X,K3)) ̸= 0. This completes the proof of Theorem 3.2.
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4. Chromatic numbers and homotopy types of Hom complexes

The purpose of this section is to prove the following theorem.

Theorem 4.1 (M. [29]). Let T be a finite graph and let G be a non-bipartite graph. For each integer n,

there is a graph H such that Hom(T,G) and Hom(T,H) are homotopy equivalent and χ(H) > n. In case

T is a flipping Z2-graph, we can take H so that Hom(T,G) and Hom(T,H) are Z2-homotopy equivalent.

Moreover, if G is finite or connected, then we can take H to be finite or connected, respectively.

To explain the outline of the proof, we review Walker’s remark (Section 12 of [37]). The girth g(G)

of G is the minimal length of cycles embedded into G. Walker showed that if the girth of G is greater

than 4, then the box complex of G is Z2-homotopy equivalent to a 1-dimensional free Z2-CW-complex.

On the other hand, the following famous theorem by Erdős asserts that there is a graph whose girth and

chromatic number are both quite large:

Theorem 4.2 (Erdős [12]). Let n and m be positive integers. There is a finite graph G such that

χ(G) > n and g(G) > m.

Since the Z2-index of a 1-dimensional free Z2-CW-complex is smaller than or equal to 1, Walker

showed that the difference of the both sides of the inequality

χ(G) ≥ ind(B(G)) + 2

can be arbitrarily bad (see Section 1.3).

Now we write the outline of the proof of Theorem 4.1 in the case T = K2. Let n be a positive integer.

It follows from Theorem 4.2 that there is a graph X such that χ(X) > n and g(X) > 4. In Section 4.2,

we show that there are a graph Y and graph homomorphisms f : Y → X and g : Y → G such that f

induces a Z2-homotopy equivalence Hom(K2, Y ) → Hom(K2, X). Let k be an integer greater than 2.

The graph H is constructed by attaching the ends Y of the “cylinder” Y × Ik to G and X, respectively.

Since X is a subgraph of H, we have χ(H) ≥ χ(X) > n.

The reader who is familiar with algebraic topology may notice that this construction is similar to

the homotopy pushout of spaces. In fact it turns out that Hom(K2,H) is the homotopy pushout of

f∗ : Hom(K2, Y ) → Hom(K2, X) and g∗ : Hom(K2, Y ) → Hom(K2, G). Since f∗ is a Z2-homotopy

equivalence, we have that Hom(K2, G)→ Hom(K2,H) is a Z2-homotopy equivalence. This is the outline

of the proof in the case T = K2.

4.1. Deformations of box complexes. Let G be a finite graph. Recall that the box complex B(G)

is isomorphic to the face poset of some regular CW-complexes (see [1]). In fact, let RV (G) be the free

R-module generated by V (G) and let ∆V (G) be the standard simplex, i.e.,

∆V (G) = {
∑

v∈V (G)

avev | av ≥ 0,
∑

v∈V (G)

av = 1}.

Note that there is a 1-1-correspondence between subsets of V (G) and subsimplices of ∆V (G). For a

subset σ of V (G), we write ∆σ to indicate the subsimplex associated to σ. Then the box complex B(G)

is isomorphic to the face poset of the CW-complex

X =
∪

(σ,τ)∈V (G)

∆σ ×∆τ .

In this section we show that some deformations of graphs do not change the Z2-homotopy type of

the box complex B(G). For a positive integer k, define the graph Lk by V (Lk) = {0, 1, · · · , k} and

E(Lk) = {(a, b) | |a− b| = 1}.
For a pair of vertices x, y of G, the subset {(x, y), (y, x)} of V (G)× V (G) is denoted by ⟨x, y⟩.
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Lemma 4.3. Let G be a finite graph and let e = ⟨x,w⟩ be an edge of G. Suppose that either x or w is

non-looped and there is a unique graph homomorphism f from L3 to G \ e which takes 0 to x and 3 to

w, respectively. Then the inclusion B(G \ e) ↪→ B(G) is a homotopy equivalence.

Proof. Since B(G) is a face poset of a certain regular CW-complex, one can apply the discrete Morse

Theory (see Section 11 of [22]). Throughout this proof, we identify B(G) with the poset

B(G) = {(σ, τ) | σ and τ are non-empty subsets of V (G) with σ × τ ⊂ E(G).}

ordered by (σ, τ) ≤ (σ′, τ ′) ⇔ σ ⊂ σ′ and τ ⊂ τ ′. We want to construct a partial matching of B(G)

whose set of critical points coincides with B(G\ e). Here we consider a partial matching as a pair (M,φ)

consisting of a subset M ⊂ B(G) and an injection φ : M → P \M such that φ(x) covers x for every

x ∈M .

Let f : L3 → G \ e be the unique homomorphism joining x to w, and put y = f(1) and z = f(2). We

can assume that x is not looped. Set

A = {(σ, τ) ∈ B(G) | x ∈ σ and w ∈ τ .}

and

B = {(σ, τ) ∈ B(G) | w ∈ σ and x ∈ τ .}.

Then we have that B(G) \B(G \ e) = A ∪B, and A ∩B = ∅ since x is not looped.

Let (σ, τ) ∈ A. We show that either (σ ∪ {z}, τ) or (σ, τ ∪ {y}) belongs to B(G). Suppose that

neither of these belongs to B(G). Then (σ ∪ {z}, τ) ̸∈ B(G) implies that there is an element y′ ∈ τ with

(z, y′) ̸∈ E(G). The condition that y′ is not adjacent to z implies y′ ̸= y, w. Since y′ ∈ τ and x ∈ σ, y′
is adjacent to x. Similarly, the assumption (σ, τ ∪ {y}) ̸∈ B(G) implies that there is z′ ∈ σ such that

z′ ̸= x, z and z′ ∼ w. Since y′ ∈ σ and z′ ∈ τ , we have that y′ and z′ are adjacent in G. This implies

that the map f ′ : V (L3)→ V (G) defined by the correspondence

f ′(0) = x, f ′(1) = y′, f ′(2) = z′, f ′(3) = w

is a homomorphism from L3 to G \ e. This contradicts the uniqueness of f .

We now construct a partial matching on A. Set

M1 = {(σ, τ) ∈ A | z ̸∈ σ and (σ ∪ {z}, τ) ∈ B(G).},

and

M2 = {(σ, τ) ∈ A | (σ ∪ {z}, τ) ̸∈ B(G) and y ̸∈ τ.}.

Define the matching (M1 ∪M2, φ) on A by

φ(σ, τ) =

{
(σ ∪ {z}, τ) ((σ, τ) ∈M1)

(σ, τ ∪ {y}) ((σ, τ) ∈M2).

It follows from the previous paragraph that this matching has no critical points. Since the verification

of the acyclicity is easy, we omit the details.

Let T denote the involution of B(G). Note that T (A) = B. Then we have an acyclic partial matching

(M,ψ) on A ∪B defined by

M = (M1 ∪M2) ∪ T (M1 ∪M2),

and

ψ(σ, τ) =

{
φ(σ, τ) ((σ, τ) ∈ A)
TφT (σ, τ) ((σ, τ) ∈ B).

Applying Theorem 11.13 of [22], we have that the inclusion B(G\e) ↪→ B(G) is a homotopy equivalence.

□
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Remark 4.4. In fact the above acyclic matching is Z2-equivariant in the sense of [36]. Therefore we

have that the box complex B(G \ e) ↪→ B(G) is a Z2-simple homotopy equivalence (Definition 4.8 and

Proposition 4.9 of [36]).

Let G be a graph and let e = ⟨v, w⟩ be an edge of G. We define the graph Ge as follows. The vertex

set of Ge is V (G)
⨿
{0, 1} and the edge set is defined by

E(Ge) = (E(G) \ e) ∪ ⟨0, 1⟩ ∪ ⟨0, v⟩ ∪ ⟨1, w⟩.

Then we have a natural homomorphism re : Ge → G defined by the correspondence re(x) = x for

x ∈ V (G), re(0) = w, and re(1) = v. In general re does not induce a homotopy equivalence between

their box complexes. For example, consider C6 and C4 (B(C6) ≃ S1 ⊔ S1 and B(C4) ≃ S0).
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Figure 4.1.

Lemma 4.5. Let G be a graph and let e = ⟨v, w⟩ be an edge of G. If there is no graph homomorphism

L3 → G \ e, then the map re : Ge → G induces a homotopy equivalence B(Ge)→ B(G).

Proof. Let H be the graph defined by V (H) = V (Ge) and E(H) = E(Ge) ∪ e (see Figure 4.2). Let

se : H → G be the extension of re. Since the deletion of a dismantlable vertex does not change the Z2-

homotopy type of the box complex, we have that the inclusion i : G→ H induces a homotopy equivalence

B(G) → B(H). Since sei = idG, se induces a homotopy equivalence B(H) → B(G). It follows from

Lemma 4.3 that the inclusion Ge ↪→ H induces a Z2-homotopy equivalence B(Ge) → B(H). Hence the

composition B(Ge)→ B(H)→ B(G) is a Z2-homotopy equivalence. □
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Note that if the girth g(G) of G is greater than 4, then the hypothesis of Lemma 4.5 always holds.

Example 4.6 (Walker [37]). Let G1 and G2 be graphs illustrated in Figure 4.3. Clearly they have

different chromatic numbers. On the other hand, applying Lemma 4.5, we have that B(G1) and B(G2)

are Z2-homotopy equivalent.
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4.2. Trees. Let T be a connected bipartite graph having at least one edge, namely, χ(T ) = 2. The

purpose of this section is to prove Proposition 4.10. This implies that if the girth of G and H are

sufficiently large, then a graph homomorphism f : G → H which induces a homotopy equivalence

f∗ : Hom(K2, G)→ Hom(K2,H) also induces a homotopy equivalence f∗ : Hom(T,G)→ Hom(T,H).

Recall that a tree means a connected graph having no embedded cycles. Throughout this thesis, we

assume that a tree has at least one edge.

Let G and H be graphs. A multi-homomorphism η ∈ Hom(G,H) is locally finite if η(v) is finite for

every v ∈ V (G). The induced subposet of Hom(G,H) consisting of locally finite multi-homomorphisms

is denoted by Homf (G,H).

Lemma 4.7. The inclusion Homf (G,H) ↪→ Hom(G,H) is a homotopy equivalence.

This is deduced from Theorem 2.19 and the following lemma.

Lemma 4.8. Let P be a poset. If every finite subset of P has an upper bound, then P is contractible.

Proof. This is deduced from Corollary 2.7. □

Proposition 4.9. Let X be a tree, let T be a finite connected graph with χ(T ) = 2, and let ι : K2 → T

be a graph homomorphism. Then ι∗ : Hom(T,X)→ Hom(K2, X) ≃ S0 is a homotopy equivalence.

Proof. We first consider the case that X is finite. Note that a tree X has a dismantlable vertex if X has

at least three vertices. Since the deletion of a dismantlable vertex does not change the homotopy type

of Hom complexes (see Section 2.4), we have that Hom(T,X) ≃ Hom(T,K2) = S0.

Suppose that X is infinite. Let u : X → K2 be a graph homomorphism. Let F be the family of finite

subtrees of X containing u(K2). Then we have∪
X′∈F

Homf (K2, X
′) = Homf (K2, X)

and ∪
X′∈F

Homf (T,X
′) = Homf (T,X).

Proposition 2.6 implies that u∗ : Hom(K2, X)→ Hom(K2,K2) = S0 and u∗ : Hom(T,X)→ Hom(T,K2) =

S0 are homotopy equivalences.

Then we have the commutative diagram

Homf (T,X)
u∗−−−−→ Homf (T,K2) = S0

ι∗
y yι∗

Homf (K2, X)
u∗−−−−→ Homf (K2,K2) = S0.

By the previous paragraph, the horizontal arrows are homotopy equivalences. It is clear that the right

vertical arrow is a homeomorphism. Hence the left vertical arrow is a homotopy equivalence. □

Proposition 4.10. Let T be a finite connected graph with χ(T ) = 2 and let ι : K2 → T be a graph

homomorphism. There is a positive integer n such that for every graph X with g(X) > n, the map

ι∗ : Hom(T,X)→ Hom(K2, X)

is a homotopy equivalence.

Proof. Let X1, · · · , Xk be the connected components of T . Then we have

Hom(T,X) ∼= Hom(T,X1) ⊔ · · · ⊔Hom(T,Xk),

and g(xi) ≥ g(X) for i = 1, · · · , k. Hence we can assume that X is connected. Let ∆ be the diameter

of T . Let n be an integer greater than 2∆ + 4. Let X be a connected graph whose girth is greater than
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n. Let p : X̃ → X be the universal covering of X. Since the girth of X is greater than 4, p induces a

covering map Hom(T, X̃)→ Hom(T,X). Similarly, Hom(K2, X̃)→ Hom(K2, X) is a covering map.

Note that Hom(T, X̃) ≃ S0, and the complex Hom(T,X) has at least two connected components. We

claim that Hom(T, X̃) → Hom(T,X) is surjective and hence Hom(T, X̃)/π1(X) ∼= Hom(T,X). To see

this, it suffices to show that for each graph homomorphism f : T → X, there is a graph homomorphism

f̃ : T → X̃ with p ◦ f̃ = f . Let f : T → X be a graph homomorphism. Then the image of f is contained

in a certain subgraph Y of X whose diameter is smaller than or equal to ∆.

Suppose that Y is not a tree. Since Y is a subgraph of X, we have that g(Y ) ≥ g(X) ≥ 2∆ + 4. Let

φ : Ck → Y be an embedding of a cycle with k = g(Y ). The distance between φ(0) and φ([k/2]) in Y is

equal to [k/2]. Let ∆(Y ) denote the diameter of Y . Then we have the inequality

∆ ≥ ∆(Y ) ≥
[k
2

]
≥

[2∆ + 4

2

]
= ∆+ 2.

This is a contradiction.

Therefore Y is a tree and the inclusion Y → X has a lift Y → X̃. Hence f : T → X has a lift. By the

same way, we can show that p∗ : Hom(K2, X̃)→ Hom(K2, X) is a surjective covering map.

Consider the commutative diagram

Hom(T, X̃)
p∗−−−−→ Hom(T,X)

ι̃∗
y yι∗

Hom(K2, X̃)
p∗−−−−→ Hom(K2, X).

The left vertical arrow ι̃∗ of the above diagram is a homotopy equivalence (see Proposition 4.7) and is

π1(X)-equivariant. Therefore it follows from Proposition 2.9 that ι∗ : Hom(T,X) → Hom(K2, X) is a

homotopy equivalence. □

4.3. Proof of the main theorem. Let G be a graph. Recall that the odd girth of G to be the number

go(G) = inf{2r+1 | r is a non-negative integer and there is a graph homomrophism from C2r+1 to G.}.

It is easy to see that if go(G) > go(H), then there is no graph homomorphism from G to H.

Let F be a (not necessarily small) family of finite connected graphs and suppose that there is a positive

integer n which satisfies the following conditions:

• The diameter of a graph belonging to F is smaller than n.

• If T ∈ F is not bipartite, then the odd girth of T is smaller than n.

We call a family F uniformly small if such an integer n exists. Note that if F is a finite family of finite

graphs, then F is uniformly small. Let T be a finite graph and let {T1, · · · , Tk} be the set of connected

components of T . Then we have

Hom(T,G) ∼= Hom(T1, G)× · · · ×Hom(Tk, G).

Hence the non-equivariant part of Theorem 4.1 is deduced from the following theorem:

Theorem 4.11. Let F be a uniformly small family of graphs and let G be a non-bipartite graph. Then

for every positive integer m, there is an inclusion f : G ↪→ H such that f induces a homotopy equivalence

Hom(T,G) → Hom(T,H) for every T ∈ F but χ(H) ≥ m. Moreover, if G is finite and connected, then

one can take H to be finite and connected.

Proof. Let n be an integer satisfying the following conditions:

• For a bipartite graph T contained in F , we have n > 2∆(T )+4. Here ∆(T ) denotes the diameter

of T .

• n is greater than the odd girth of a non-bipartite graph belonging to F .
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By Theorem 4.2, there is a finite graph X whose girth is greater than n and χ(X) ≥ m. We can

assume that X is connected. Let G be a non-bipartite graph, and let k be the odd girth of G. Define

the graph Y to be the subdivision of X so that each edge of X is subdivided into Lk (see the beginning

of Section 3 for the definition of Lk). It follows from Lemma 4.5 that there is a map f : Y → X which

induces a Z2-homotopy equivalence between their box complexes. Clearly there is a homomorphism from

Y to the k-cycle Ck, and hence there is a homomorphism g from Y to G.

For a pair of integers a, b with a ≤ b, define the graph I[a,b] by V (I[a,b]) = {x ∈ Z | a ≤ x ≤ b} and
E(I[a,b]) = {(x, y) | |x− y| ≤ 1}. Define the graph H as the colimit of the diagram

X
f←−−−− Y

ι0−−−−→ Y × I[0,n+1]
ιn+1←−−−− Y

g−−−−→ G

in the category of graphs. Precisely speaking, the vertex set of H is the quotient of V (X) ⊔ V (Y ×
I[0,n+1]) ⊔ V (G) with respect to the equivalence relation ∼ generated by the relations f(y) ∼ ι0(y) and

ιn+1(y) ∼ g(y). Let π denote the quotient map V (X)⊔V (Y × In+1)⊔V (G)→ V (H). Then two vertices

α and β of H are adjacent if there is (x, y) ∈ E(X)⊔E(Y ×I[0,n+1])⊔E(G) with π(x) = α and π(y) = β.

SinceX is a subgraph ofH, we have χ(H) ≥ χ(X) ≥ m. We want to show that Hom(T,G)→ Hom(T,H)

is a homotopy equivalence for every T ∈ F .
Let H1 be the colimit (pushout) of the diagram

X
f←−−−− Y

ι0−−−−→ Y × I[0,n],
and let H2 be the colimit of the diagram

Y × I[1,n+1]
ιn+1←−−−− Y

g−−−−→ G.

Here we write ιk : Y → Y × Ik to indicate the injection Y → Y × Ik, x 7→ (x, k). Note that these are

subgraphs of H and the inclusions X ↪→ H1 and G ↪→ H2 are ×-homotopy equivalences (see Section 2.4).

Let T be a graph contained in F . Since the diameter of T is smaller than n, a multi-homomorphism

from T to G factors through either H1 or H2. Therefore we have

Hom(T,H1) ∪Hom(T,H2) = Hom(T,H)

and

Hom(T,H1) ∩Hom(T,H2) = Hom(T,H1 ∩H2) = Hom(T, Y × I[1,n]).
Recall that we want to prove that the composition of the sequence

Hom(T,G) ↪→ Hom(T,H2) ↪→ Hom(T,H)(2)

is a homotopy equivalence. To show this, it is enough to show that the inclusion i : Hom(T,H1 ∩H2) ↪→
Hom(T,H1) is a homotopy equivalence. In fact if i is a homotopy equivalence, then Hom(T,H1∩H1) is a

deformation retract of Hom(T,H1) (see Theorem 2.2). Since Hom(T,H1) ∩Hom(T,H2) = Hom(T,H1 ∩
H2), we have that Hom(T,H2) is a deformation retract of Hom(T,H) = Hom(T,H1) ∪ Hom(T,H2).

Since the inclusion G ↪→ H2 is a ×-homotopy equivalence, we have that the composition of the sequence

(2) is a homotopy equivalence.

Note that the graph homomorphism f : Y → X is the composition of the sequence

Y
ιn−−−−→ Y × I[1,n] = H1 ∩H2 −−−−→ H1

r′−−−−→ X.

Here r : H1 → X is the natural retraction of the inclusion X ↪→ H1. Since ιn and r are ×-homotopy

equivalences, the inclusion Hom(T,H1 ∩ H2) → Hom(T,H1) is a homotopy equivalence if and only if

f∗ : Hom(T, Y )→ Hom(T,X) is a homotopy equivalence. Thus it suffices to prove that f∗ : Hom(T, Y )→
Hom(T,X) is a homotopy equivalence.

Suppose that T is not bipartite. Then there is no graph homomorphism from T to X since the girth

of X is greater than the odd girth of T . Since there is a graph homomorphism r from Y to X, there

is no graph homomorphism from T to Y . This implies that Hom(T, Y ) and Hom(T,X) are empty and

hence f∗ : Hom(T, Y )→ Hom(T,X) is a homotopy equivalence.
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Suppose that T is bipartite. If T has no edges, then both of Hom(T, Y ) and Hom(T,X) are contractible.

Hence f∗ : Hom(T, Y ) → Hom(T,X) is a homotopy equivalence. Thus we assume that T has at least

one edge. Let ι : K2 → T be a graph homomorphism. Proposition 4.2 implies that the maps ι∗ :

Hom(T,X)→ Hom(K2, X) and ι∗ : Hom(T, Y )→ Hom(K2, Y ) induced by ι are homotopy equivalences.

It follows from the diagram

Hom(T, Y )
≃−−−−→ Hom(K2, Y )

f∗

y y≃

Hom(T,X)
≃−−−−→ Hom(K2, X)

that f∗ : Hom(T, Y )→ Hom(T,X) is a homotopy equivalence. □

The equivariant part of Theorem 4.1 is deduced from the following.

Corollary 4.12. Let F be a uniformly small family of flipping Z2-graphs. Then for every graph G with

χ(G) ≥ 3 and for every positive integer m, there is an inclusion f : G ↪→ H such that f induces a

Z2-homotopy equivalence Hom(T,G) → Hom(T,H) for every T ∈ F but χ(H) ≥ m. Moreover, if G is

finite and connected), then one can take H to be finite and connected.

Proof. If G has a looped vertex, then put H = G. If G has no looped vertex, then the graph H

constructed in the proof of Theorem 4.11 has the desired properties. In fact Hom(T,G) and Hom(T,H)

are free Z2-complexes and i∗ : Hom(T,G)→ Hom(T,H) is a homotopy equivalence. By Proposition 2.9),

we have that i∗ is a Z2-homotopy equivalence. □

5. Kronecker double coverings and box complexes of graphs

The purpose of this section is to prove the following theorem.

Theorem 5.1 (M. [29]). Let G and H be graphs without isolated vertices. Then the following hold.

(1) The Kronecker double coverings K2 × G and K2 × H are isomorphic if and only if their box

complexes B(G) and B(H) are isomorphic as posets.

(2) The graphs G and H are isomorphic if and only if their box complexes B(G) and B(H) are

isomorphic as Z2-posets.

(3) If the Kronecker double coverings K2 ×G and K2 ×H are isomorphic, then their neighborhood

complexes are isomorphic. On the other hand, if G and H are stiff (mentioned below), then the

converse holds.

5.1. Kronecker double covering. In this section we shall review the theory of the Kronecker double

coverings. Most of the results mentioned here are essentially known (see [19]). We formulate the theory in

terms of “2-colored graphs” mentioned below. For the sake of our treatment, we have a simple description

provided as Theorem 3.1.

A graph homomorphism p : X → G is a covering if p|N(v) : N(v) → N(p(v)) is bijective for every

v ∈ V (G). The Kronecker double covering over G is the second projection K2 ×G→ G. It is clear that

the Kronecker double covering is actually a covering.

If a graph G is bipartite, then its Kronecker double covering is the direct sum G ⊔ G. If G is not

bipartite and is connected, then its Kronecker double covering is connected. These facts are easily proved.

A 2-colored graph is a pair (X, ε) consisting of a graph X equipped with a graph homomorphism

ε : X → K2. Let (X, εX) and (Y, εY ) be 2-colored graphs. A 2-colored homomorphism from (X, εX) to

(Y, εY ) is a graph homomorphism f : X → Y which satisfies εY ◦ f = εX . We often abbreviate (X, ε) to

X.

The category of graphs whose morphisms are graph homomorphisms is denoted by G. If we use

the language of category theory [20], a 2-colored graph is a graph over K2, and a 2-colored graph
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homomorphism is a morphism between graphs over K2. So we write G/K2
to indicate the category of

2-colored graphs.

Let X be a 2-colored graph. An odd involution τ of X is a graph homomorphism τ : X → X such

that τ2 = idX and εX ◦ τ(x) ̸= εX(x) for every x ∈ X. Note that this involution is not a morphism in

G/K2
if X is not empty.

Consider a triple (X, ε, τ) consisting of a 2-colored graph (X, ε) with an odd involution τ of X. A

2-colored homomorphism f : X → Y between such triples (X, εX , τX) and (Y, εX , τY ) is equivariant if

τY ◦ f = f ◦ τX . Let Godd/K2
denote the category whose objects are 2-colored graphs with odd involutions,

and whose morphisms are equivariant 2-colored homomorphisms.

Note that for a graph G, the Kronecker double covering K2 × G is naturally 2-colored by the first

projection K2×G→ K2and the involution (1, x)↔ (2, x) is an odd involution. Therefore the Kronecker

double covering gives a functor K2 × (−) : G → Godd/K2
. On the other hand, the correspondence (X, τ) 7→

X/τ gives a functor from Godd/K2
→ G. Here X/τ denotes the quotient graph defined by

V (X/τ) = {{x, τ(x)} | x ∈ V (X)},

E(X/τ) = {(α, β) | α, β ∈ V (X/τ), (α× β) ∩ E(X) ̸= ∅}.
In terms of these notions, we can formulate the following theorem. The proof is straightforword and

is omitted.

Theorem 5.2. The above two functors give categorical equivalences between G and Godd/K2
.

In particular, there is a natural isomorphism X ∼= K2 × (X/τ) for an object (X, ε, τ) of Godd/K2
.

Next we consider the case of bipartite graphs. Let GK2 be the full subcategory of G consisting of

bipartite graphs. An involution τ : X → X of a bipartite graph X is odd if for every x ∈ V (X), there is

no path with even length joining x to τ(x). If X is 2-colored and τ is an odd involution in the sense of

2-colored graphs, then τ is an odd involution in the sense of bipartite graphs.

Define the category GoddK2
whose object consists of a pair (X, τ) of a bipartite graph X equipped

with an odd involution τ , and whose morphism is an equivariant graph homomorphism. Clearly the

Kronecker double covering gives a functor G → GoddK2
, and the quotient (X, τ) 7→ X/τ gives a functor

GoddK2
→ G. However, these functors are not categorical equivalences. Indeed, for an object (X, τ) of GoddK2

,

the involution τ : X → X is a morphism of GK2 which induces the identity X/τ → X/τ .

However, one can easily show that if (X, τ) is an object of GoddK2
, then there is a 2-coloring ε : X → K2

such that the involution τ is an odd involution of the 2-colored graph (X, ε). In other words the forgetful

functor Godd/K2
→ GoddK2

is essentially surjective. Hence for an object (X, τ) of GoddK2
, there is an isomorphism

X ∼= K2 × (X/τ), but this isomorphism is not natural.

Note that K2 × G ∼= K2 × H does not imply G ∼= H. In fact Imrich and Pisanski [19] show that

the Desargues graph is not only the Kronecker double covering over the Peterson graph but is also the

Kronecker double covering over the graph which is not isomorphic to the Peterson graph. In Example

4.13 we will construct graphs having different chromatic numbers but having the same Kronecker double

coverings.

We conclude this section with the following proposition. This may be classically known to experts,

but I could not find it.

Proposition 5.3. Suppose that G is connected but is not bipartite. Let p : X → G be a double covering.

If X is bipartite, then X is the Kronecker double covering over G.

Proof. For a vertex x of X, let τ(x) be a vertex of X with τ(x) ̸= x and p(τ(x)) = p(x). Then

τ : V (X)→ V (X) is an involution of X and X/τ ∼= G.

We now show that X is connected. Since X is bipartite and G is not bipartite, X is not isomorphic

to the direct sum G ⊔ G of two copies of G. Hence there is x ∈ V (X) such that x and τ(x) belong to
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the same connected component of X. Let y be a vertex of X. Since G is connected, there is a path φ of

G joining p(y) to p(x). Consider the lift ψ of φ whose initial point is y. Then the terminal point of ψ is

either x or τ(x). Since x and τ(x) belong to the same connected component of X, y and x belong to the

same connected component of X. Therefore X is connected.

Suppose that τ is not an odd involution. Since X is connected, for every vertex x of X, there is no

path joining x to τ(x) with odd length. This implies that there is no graph homomorphism from an odd

cycle to G. This contradicts the assumption that G is not bipartite.

Hence τ is an odd involution and X ∼= K2 × (X/τ) ∼= K2 ×G. This completes the proof. □

5.2. Complexes of bipartite graphs. The purpose of this section is to prove Theorem 5.1. We also

construct graphs G and H such that their Kronecker double coverings are isomorphic but their chromatic

numbers are different (Example 5.16).

The category of posets is denoted by P, and the category of Z2-posets is denoted by PZ2 . Recall that

GK2 denotes the full subcategory of G consisting of bipartite graphs. We start with the construction of

the functor B0 : GK2 → P which makes the following diagram commute:

G B−−−−→ PZ2

K2×(−)

y y
GK2

B0−−−−→ P

Here the right vertical arrow is the forgetful functor.

Definition 5.4. Let X be a bipartite graph. We define the poset B0(X) of X as follows. The underlying

set of B0(X) consists of an unordered pair {σ, τ} of subsets of V (X) such that σ×τ ⊂ E(X). For elements

α, β of B0(X), we write α ≤ β if for each element σ of α, there is an element τ of β which contains α.

One can easily show that this relation “≤” is actually an ordering, by noting that bipartite graphs have

no looped vertices.

Let (X, ε) be a 2-colored graph. Then the poset B0(X) is identified with the induced subposet of the

box complex B(X) consisting of a pair (σ, τ) ∈ B(X) with σ ⊂ ε−1(1) and τ ⊂ ε−1(2).

Proposition 5.5. For a graph G, there is a natural isomorphism B(G) ∼= B0(K2 × G) as Z2-posets.

Here we consider B0(K2 ×G) as a Z2-poset by the involution of K2 ×G.

Proof. Consider the correspondence

Φ : B(G)→ B0(K2 ×G), (σ, τ) 7→ {{1} × σ, {2} × τ}.

Clearly Φ is a Z2-equivariant poset map. So it suffices to prove that Φ is an isomorphism as posets. Now

we regard B0(K2 × G) as the induced subposet of the box complex B(K2 × G) by the first projection

K2 × G → K2 (see the previous paragraph of this proposition). Then Φ is rewritten as the map

(σ, τ) 7→ ({1} × σ, {2} × τ). It is easy to see that the map

Ψ : B0(K2 ×G)→ B(G), (σ, τ) 7→ (p1(σ), p1(τ))

is the inverse of Φ. □

Corollary 5.6. Let G and H be graphs. If K2 ×G ∼= K2 ×H as graphs, then B(G) ∼= B(H) as posets.

Next we consider the converse of Corollary 5.6.

Proposition 5.7. Let X and Y be bipartite graphs without isolated vertices. Then B0(X) ∼= B0(Y )

implies X ∼= Y .



26 TAKAHIRO MATSUSHITA

Proof. Let f : B0(X) → B0(Y ) be an isomorphism of posets. Let x ∈ V (X). We assert that

f({{x}, N(x)}) is written as {{y}, N(y)} for some y ∈ V (H). To prove this we need some prepara-

tion.

Let a be an element of a poset P . We say that a has a finite height if there is a non-negative integer n

such that there is an integer n such that P≤a does not have chains with length greater than n. Consider

the following condition concerning an element x of a poset P .

(∗) For an element y of P≤x with finite height, the poset P≤y is isomorphic to the face poset of a

finite dimensional simplex.

Clearly the element {{x}, N(x)} ∈ B0(X) satisfies the condition (∗). On the other hand, the following

two conditions concerning with an element α of B0(X) are equivalent:

(1) The element α is not minimal. Moreover, α is maximal among the points of B0(X) satisfying

the condition (∗).
(2) There is a vertex x such that α = {{x}, N(x)} and the degree of x is greater than 1.

Clearly the vertex x in the condition (2) is unique.

Now we are ready to construct the graph homomorphism g : X → Y . Let x ∈ V (X). If #N(x) > 1,

then we define g(x) by f({{x}, N(x)) = {{g(x)}, N(g(x))}. Next suppose N(x) = {x′}. If #N(x′) > 1,

then define g(x) by f({{x}, {x′}}) = {{g(x)}, {g(x′)}}. (Note that we have already defined g(x′).)

Suppose that N(x′) = {x}, namely, x and x′ form a connected component isomorphic to K2. This is

equivalent that {{x}, {x′}} is an isolated point of B0(X). Hence f({{x}, {x′}}) is also an isolated point

of B0(Y ). Define g(x), g(x′) simultaneously so that {{g(x)}, {g(x′)}} = f({{x}, {x′}}).
Now we show that g is actually a graph homomorphism. Let (x, x′) ∈ E(X). It is clear that

(g(x), g(x′)) ∈ E(Y ) if #N(x) = 1 or #N(x′) = 1. Suppose #N(x) > 1 and #N(x′) > 1. Then

{{x}, {x′}} ∈ B0(X)≤{{x},N(x)} ∩B0(X)≤{{x′},N(x′)} ̸= ∅,

and hence

B0(Y )≤{{g(x)},N(g(x))} ∩B0(Y )≤{{g(x′)},N(g(x′))} ̸= ∅.

This implies that (g(x), g(x′)) ∈ E(Y ).

Construct the graph homomorphism h : Y → X from f−1 : B0(Y )→ B0(X) in a similar way. Indeed

gh and hg may not be the identities. (Recall that the homomorphism g is not uniquely determined on

the connected components isomorphic to K2.) However, they become the identities after flipping some

of connected components isomorphic to K2. Hence g is an isomorphism. □

Combining Proposition 5.5 and Proposition 5.7, we have the following.

Corollary 5.8. Let G and H be graphs having no isolated vertices. If B(G) ∼= B(H) as posets, then

K2 ×G ∼= K2 ×H as graphs.

Next we show that the Z2-poset structure of B(G) determines the graph G.

Proposition 5.9. Let G and H be graphs having no isolated vertices. If B(G) ∼= B(H) as Z2-posets,

then G ∼= H as graphs.

Proof. Let X and Y be bipartite graphs without isolated vertices, and let τX and τY be odd involutions

of X and Y respectively. Suppose that there is a Z2-poset isomorphism f : B0(X) → B0(Y ). From the

discussion in Section 3, it is enough to show that there is a Z2-equivariant isomorphism X → Y .



HOM COMPLEXES AND CHROMATIC NUMBERS OF GRAPHS 27

Let g : X → Y be the homomorphism constructed in the proof of Proposition 5.7. Let x ∈ V (X) with

#N(x) > 1. Then

{{g(τXx)}, N(g(τXx))} = f({{τXx}, N(τXx)})
= f(τX{{x}, N(x)})
= τXf({{x}, N(x)})
= {{τXg(x)}, N(τXg(x))}

implies g(τXx) = τXg(x). Next suppose #N(x) = {x′} and #N(x′) > 1. Then we have

{{g(τXx)}, {g(τXx′)}} = f({{τXx}, {τXx′}}) = τXf({{x}, {x′}}) = τX{{g(x)}, {g(x′)}}.

Since we have already proved g(τXx
′) = τXg(x

′), we have τXg(x) = g(τXx).

Suppose that N(x) = {x′} and N(x′) = {x}. If {{x}, {x′}} is a fixed point of B0(X), then τX(x) = x′

and τX(x′) = x. Since f({{x}, {x′}}) = {{g(x)}, {g(x′)}} is also a fixed point, we have that τXg(x) =

g(x′) = g(τXx) and τXg(x
′) = g(x) = g(τXx

′). Suppose that {{x}, {x′}} is not a fixed point of B0(X).

Set y = τX(x) and y′ = τX(x′). If τXg(x) ̸= g(τXx), then we replace g ◦ φ to g where φ : X → X is the

graph isomorphism exchange x and x′ and fixing the other elements. Then we have g(τXv) = τXg(v) for

v = x, x′, y, y′. After these modifications, we have a Z2-equivariant isomorphism g : X → Y . (If X is

infinite one needs transfinite induction.) □

Next we discuss the case of neighborhood complexes. Let X be a 2-colored graph with a 2-coloring

ε : X → K2. Define Ni(X) (i = 1, 2) to be the induced subcomplex of the neighborhood complex N(X)

of X whose vertex set is ε−1(i) ∩ V (N(X)). In general, N1(X) and N2(X) are not isomorphic, but we

will see that N1(X) and N2(X) are homotopy equivalent in Lemma 5.10.

Let Bf
0 (X) be the induced subposet of B0(G) consisting of an element α ∈ B0(X) such that each

element σ ∈ α is a finite set. Then the inclusion Bf
0 (X) ↪→ B(X) is a homotopy equivalence. This is

shown in the same way as Lemma 4.7, and is the details is omitted.

Lemma 5.10. Let X be a 2-colored graph. Then B0(X), N1(X), and N2(X) are homotopy equivalent.

Proof. It suffices to show that Bf
0 (X), N1(X), and N2(X) are homotopy equivalent. Consider the map

p1 : Bf
0 (X)→ FN1(X), (σ, τ) 7→ σ.

Let σ0 ∈ FN1(X). By Quillen’s lemma A (Theorem 2.19), it suffices to show that p−1
1 (FN1(X))≥σ0 is

contractible. Define the order-preserving map

c : p−1
1 (FN1(X)≥σ0)→ p−1

1 (FN1(X)≥σ0)

by the correspondence (σ, τ) 7→ (σ0, τ). Then c is a descending closure operator. Therefore

c(FN1(X)≥σ0) = {(σ0, τ) | σ0 × τ ⊂ E(X)}

is a deformation retract of FN1(X)≥σ0 . It follows from Lemma 4.8 that c(FN1(X)≥σ0) is contractible.

Hence we have shown that Bf
0 (X) ≃ N1(X). The proof of Bf

0 (X) ≃ N2(X) is similar. □

On the other hand the following lemma holds. The proof is obvious and is omitted.

Lemma 5.11. Suppose that the 2-colored graph X admits an odd involution. Then N1(X) and N2(X)

are isomorphic. Hence for a graph G, we have that N1(K2 ×G) ∼= N2(K2 ×G) ∼= N(G).

Proposition 5.12. Let G and H be graphs. If K2 ×G ∼= K2 ×H as graphs, then N(G) ∼= N(H).

Proof. By Lemma 4.8, we have

N(G) ⊔N(G) ∼= N1(K2 ×G) ⊔N2(K2 ×G) ∼= N(K2 ×G)
∼= N(K2 ×H) ∼= N1(K2 ×H) ⊔N2(K2 ×H) ∼= N(H) ⊔N(H).
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This implies N(G) ∼= N(H). □

On the other hand, the converse does not hold in general. Consider the path P4 with 4-vertices and the

4-cycle C4. Their neighborhood complexes are two copies of a closed interval, but clearlyK2×P4
∼= P4⊔P4

and K2 × C4
∼= C4 ⊔ C4 are not isomorphic. However, we will show that if N(G) ∼= N(H), then their

Kronecker double coverings are ×-homotopy equivalent in the sense of [8].

Now we review the ×-homotopy theory established by Dochtermann, following his paper [8]. Define the

graph In (n ≥ 0) by V (In) = {0, 1, · · · , n} and E(In) = {(x, y) | |x−y| ≤ 1}. Two graph homomorphisms

f, g : G → H are ×-homotopic if there are n ≥ 0 and a graph homomorphism K : G × In → H which

satisfies K(x, 0) = f(x) and K(x, n) = g(x) for every x ∈ V (G). In this case we write f ≃× g. A graph

homomorphism f : G → H is a ×-homotopy equivalence if there is a graph homomorphism h : H → G

such that hf ≃× idG and fh ≃× idH .

If f : G → H is a ×-homotopy equivalence, then for each graph T the poset map Hom(T,G) →
Hom(T,H) induced by f is a homotopy equivalence. Since our box complex is isomorphic to Hom(K2, G),

a ×-homotopy equivalence gives rise to a homotopy equivalence between the box complexes or the neigh-

borhood complexes. A graph homomorphism f : G → H between stiff graphs (see Section 2 for the

definition) is a ×-homotopy equivalence if and only if f is an isomorphism.

We are now ready to formulate the precise statement of the converse of Proposition 5.12.

Proposition 5.13. Let G and H be non-empty locally finite graphs. If N(G) ∼= N(H) as simplicial

complexes, then K2 ×G ≃× K2 ×H.

Proof. We can assume that G andH have no isolated vertices. Let f : N(G)→ N(H) be an isomorphism.

Let g : V (G)→ V (H) and h : V (H)→ V (G) be maps which satisfy

f(N(x)) ⊂ N(g(x)), f−1(N(y)) ⊂ N(h(x)) (x ∈ V (G), y ∈ V (H)).

Note that such maps exist since G and H are locally finite. Define the graph homomorphisms F :

K2 ×G→ K2 ×H and F ′ : K2 ×H → K2 ×G by

F (1, x) = (1, f(x)), F (2, x) = (2, g(x)),

F ′(1, y) = (1, f−1(y)), F ′(2, y) = (2, h(y)).

Then we have that F ′F (1, x) = (1, x) and F ′F (2, x) = (2, hg(x)). Since N(x) = f−1f(N(x)) ⊂
f−1(N(g(x))) ⊂ N(hg(x)), we have that N(v) ⊂ N(F ′F (v)) for every v ∈ V (K2 × G). Applying

Lemma 5.14 mentioned below, we have that F ′F ≃× id. Similarly we can prove that FF ′ ≃× id. □

Lemma 5.14. Let f, g : G → H be graph homomorphisms which satisfy N(f(x)) ⊂ N(g(x)) for all

x ∈ V (G). Then f ≃× g.

Proof. One can show that the map H : V (G× I1)→ V (H × I1), (x, 0) 7→ f(x), (x, 1) 7→ g(x) is a graph

homomorphism. □

Note that a graph G is stiff if and only if K2 × G is stiff. Since the maps F and F ′ constructed in

the proof of Proposition 5.13 preserve the 2-colorings of their Kronecker double coverings, we have the

following.

Corollary 5.15. Let G and H be locally finite stiff graphs having no isolated vertices. If N(G) ∼= N(H)

as simplicial complexes, then K2 ×G ∼= K2 ×H as 2-colored graphs.

Proof of Theorem 5.1. The assertion (1) is deduced from Corollary 5.6 and Corollary 5.8. The assertion

(2) is deduced from Proposition 5.9. The assertion (3) is deduced from Proposition 5.12 and Corollary

5.15. □

Let m,n be integers greater than 3. We conclude this section with the construction of connected

graphs G and H such that K2 ×G ∼= K2 ×H, χ(G) = m, and χ(H). It follows from (1) of Theorem 5.1
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that their box complexes are isomorphic as posets, their neighborhood complexes are isomorphic, but

they have different chromatic numbers.

Example 5.16. Set X1 = X2 = K2 ×Kn and Y1 = Y2 = K2 ×Km. Define the bipartite graph Z by

identifying the following vertices of X1 ⊔X2 ⊔ Y1 ⊔ Y2.

• The vertex (1, 1) of X1 and the vertex (1, 1) of Y1.

• The vertex (2, 1) of X1 and the vertex (1, 1) of Y2.

• The vertex (1, 1) of X2 and the vertex (2, 1) of Y1.

• The vertex (2, 1) of X1 and the vertex (2, 1) of Y2.

The graphs X1, X2, Y1, and Y2 are considered as subgraphs of Z.

Next we define the odd involutions τ1, τ2 of Z as follows:

• τ1 maps Xi to Xi for each i = 1, 2, and τ1|Xi : Xi → Xi is the natural odd involution of

Xi = K2 × Kn. On the other hand, τ1 exchanges Y1 and Y2. The maps τ1|Y1 : Y1 → Y2 and

τ2|Y2 : Y2 → Y1 are the identity of K2 ×Km.

• τ2 maps Yi to Yi for each i = 1, 2, and τ2|Yi
: Yi → Yi is the natural odd involution of Yi =

K2 × Km. On the other hand, τ2 exchanges X1 and X2. The maps τ2|X1 : X1 → X2 and

τ2|X2 : X2 → X1 are the identity of K2 ×Kn.

Set G = Z/τ1 and H = Z/τ2. Since τ1 and τ2 are odd involutions, we have that K2 × G ∼= Z and

K2 ×H ∼= Z (see the sentence after Theorem 3.1). To complete the proof, we need to show χ(G) = n

and χ(H) = m. We only prove χ(G) = n since the other is similarly proved. However, it is enough to

note that G is obtained by identifying the following vertices of X ′
1 ⊔X ′

2 ⊔ (K2 ×Km). Here X ′
1 and X ′

2

are the copies Kn.

• The vertex of 1 ∈ X ′
1 and the vertex of (1, 1) of K2 ×Km.

• The vertex of 1 ∈ X ′
2 and the vertex of (2, 1) of K2 ×Km.

Figure 5.1 describes the graphs G,H,Z in the case n = 4 and m = 3. In this figure the involution τ1
is the reflection in the horizontal line, and the involution τ2 is the reflection in the vertical line.
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5.3. Comparison with another box complex. In this short section we shall discuss the case of

another box complex B′(G) discussed in Matoušek and Ziegler [31]. Namely, we consider that theorems

similar to Theorem 5.1 holds for B′(G).

We recall the definition of B′(G). The Z2-subcomplex B′(G) of N(G) ∗N(G) by

B′(G) = {σ ⊎ τ | σ, τ ∈ N(G), σ ∩ τ = ∅}.

Here we write σ ⊎ τ to indicate the subset σ × {0} ⊔ τ × {1} of V (N(G) ∗N(G)) = V (N(G)) × {0, 1}.
The involution is given by (x, 0) ↔ (x, 1). There is a Z2-equivariant inclusion B(G) ↪→ FB′(G), and

Živaljević showed that this is a Z2-homotopy equivalence [38].

As we constructed B0(X) in the case of B(X), we can define the complex B′
0(X) for a bipartite graph

X as follows. Let X be a bipartite graph. Fix a 2-coloring ε : X → K2. We define B′
0(X) to be the

subcomplex

B′
0(X) = {σ ⊎ τ | σ ∈ N1(X), τ ∈ N2(X), σ × τ ⊂ E(G)}

of N1(X) ∗N2(X). Clearly this definition does not depend on the choice of 2-colorings. Moreover, it is

easy to see that the following holds.

Theorem 5.17. There is a Z2-poset isomorphism B′
0(K2 ×G) = B′(G) for a graph G.

However, Proposition 5.7 for B′
0 fails. Let X and Y be bipartite graphs described in Figure 5.2. Then

we have that B′
0(X) and B′

0(Y ) are the 4-dimensional simplex. I do not know that whether the assertion

similar to Theorem 5.1 for B′(X) holds or not.
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6. Simplicial sets and model categories

In this section, we review the definitions and facts related to simplicial sets and model categories. For

a concrete introduction to the subjects, we refer to [13], [16], and [18].

6.1. Simplicial sets. For a non-negative integer n, let [n] be the totally ordered set {0, 1, · · · , n}. Let

∆ be the small category described as follows: the objects are the ordered sets [n] for n ≥ 0, and the

morphisms are order-preserving maps. Let Set denote the category of small sets. A simplicial set is a

functor from ∆op to Set. A simplicial map is a natural transformation between two simplicial sets. The

category of simplicial sets is denoted by SSet.

For a simplicial set K, we write Kn instead of K[n]. An n-simplex of K is an element of K.

Let C be a category. A cosimplicial object of C is a functor from ∆ to C, and a simplicial object of C is

a functor from ∆op to C. Suppose that C admits all small colimits, and let A• : ∆→ C be a cosimplicial

object of C. Then we have the functor C(A•,−) : C → SSet defined by

C(A•, X)n = C(An, X).

Proposition 6.1. If the category C admits all small colimits, then the functor C(A•,−) is a right adjoint

functor.

In fact the left Kan extension of A• : ∆ → C along the Yoneda functor ∆ → SSet is the left adjoint

of C(A•,−).
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The above proposition is easily generalized to the following form. Let J be a small category and let

C be a category which admits all small colimits. We write CJ to indicate the functor category from J op

to C. Let A• : J → C be a functor. Define the functor C(A•,−) : C → SetJ in the same way. Then this

functor is a right adjoint functor, and its left adjoint is the left Kan extension of A• : ∆ → C along the

Yoneda functor ∆→ SetJ . This generalization will be used in the proof of Lemma 7.9.

Example 6.2. We write Top to indicate the category of k-spaces. For a non-negative integer n, we let

∆n = {(t0, · · · , tn) ∈ Rn+1 | ti ≥ 0,
n∑

i=0

ti = 1}.

Then ∆• : ∆→ Top is a cosimplicial object of Top. The functor

Sing := Top(∆•,−) : Top→ SSet

is called the singular functor. The geometric realization functor

| − | : SSet→ Top, K 7→ |K|

is the left adjoint of the singular functor.

Let K be a simplicial set. We describe the precise construction of the geometric realization |K| of K.

Assign the standard n-simplex ∆σ = ∆n to each n-simplex σ of K. Consider the following equivalence

relation ∼ on the disjoint union of all ∆σ: Let f : [m]→ [n] be an order-preserving map. Then f induces

a continuous map f∗ from ∆f∗σ = ∆m to ∆σ = ∆n. Then we set x ∼ f∗(x) for all x ∈ ∆f∗σ. Then ∼ is

the equivalence relation generated by these identification. Then |K| is the quotient space

|K| =
⨿

n≥0,σ∈Kn

∆σ/ ∼ .

It is known that the geometric realization functor preserves equalizers and finite products (see Section

3 of [18]).

6.2. Model categories. Let C be a category and let

A
f−−−−→ X

i

y yp

B
g−−−−→ Y

be a commutative square in C. A lift of the square is a morphism r from B to X which commutes the

diagram, i.e. pr = g and ri = f .

Let i, p be morphisms in the category C. The map i has the left lifting property with respect to p, or p

has the right lifting property with respect to i if and only if every commutative square such as

A −−−−→ X

i

y yp

B −−−−→ Y

has a lift. In other words, the natural map

(i∗, p∗) : C(B,X)→ C(A,X)×C(A,Y ) C(B, Y )

is surjective.

Recall that an adjoint pair from C to D is a pair of functors F : C → D and G : D → C such that

there is a natural isomorphism

D(FA,X) ∼= C(A,UX)

as functors from Cop ×D to Set. A natural isomorphism φ between the above functors Cop ×D → Set

is called an adjunction.
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Lemma 6.3. Let (F,U, φ) : C → D be an adjunction. Consider a diagram

FA
f−−−−→ X

Fi

y yp

FB
g−−−−→ Y

in D. This diagram is commutative if and only if the diagram

A
φ(f)−−−−→ UX

f

y yUp

B
φ(g)−−−−→ UY

is commutative in C.

Proof. Consider the commutative diagram

D(FA,X)
p∗−−−−→ D(FA, Y )

Fi∗←−−−− D(FB, Y )

φ

y φ

y yφ

C(A,UX)
Up∗−−−−→ C(A,UY )

i∗←−−−− C(B,UY ).

The upper square is commutative, namely, g◦Fi = p◦f if and only if f ∈ D(FA,X) and g ∈ D(FB, Y ) are

taken to the same element of D(FA, Y ). Similarly, the lower square is commutative, namely, φ(g) ◦ i =
Up ◦ φ(f) if and only if φ(f) ∈ C(A,UX) and φ(g) ∈ C(B,UY ) are taken to the same element of

C(A,UY ). □

Lemma 6.4. Let F : C → D : U be an adjoint pair. Let i be a morphism in C and let p be a morphism

in D. Then Fi has the left lifting property with respect to p if and only if i has the left lifting property

with respect to Up.

Proof. Consider the following commutative diagram

D(FB,X)
(Fi∗,p∗)−−−−−→ D(FA,X)×D(FA,Y ) D(FB, Y )

∼=
y y∼=

C(B,GX)
(i∗,Gp∗)−−−−−→ C(A,UX)×C(A,UY ) C(B,UY ).

The upper horizontal arrow is surjective if and only if the lower horizontal arrow is surjective. □

Let S be a (not necessarily small) family of morphisms in C. A map f in C is S-injective if f has

the right lifting property with respect to every map belonging to S. The family of S-injective maps is

denoted by S-inj. A morphism f in C is S-projective if f has the right lifting property with respect

to every map belonging to S. The family of S-projective maps is denoted by S-proj. We write S-cof

instead of (S-inj)-proj. A map belonging to S-cof is called an S-cofibration.

It is easy to show that both S-inj and S-proj are closed under compositions, and contain all isomor-

phisms. S-proj is closed under pushouts. Dually, S-inj is closed under pullbacks.

Lemma 6.5. S-inj = (S-cof)-inj

Proof. Since S ⊂ S-cof , we have S-inj ⊃ (S-cof)-inj. On the other hand, we have S-inj ⊂ ((S-inj)-proj)-inj =

(S-cof)-inj. □

Let P be a poset. We regard the poset P as a small category in the usual way: The object set is the

underlying set of P , and there is a unique morphism from x to y if and only if x ≤ y.
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Let C be a category and let J be a small category. The functor category from J to C is denoted by CJ .

A functor from [n] to a category C is identified with a composable sequence (fn, · · · , f1) of morphisms in

C, i.e. the domain of fi coincide with the codomain of fi−1 for i = 2, · · · , n. In particular, a functor from

[1] to C is identified with a morphism in C, and a morphism between objects in C[1] is identified with a

commutative square. For a pair of morphisms f, g in C, we call f a retract of g if f is a retract of g in

C[1]. A family S of morphisms in C is closed under retracts if a map f in C which is a retract of a map g

belonging to S belongs to S. For example, S-inj and S-proj are closed under retracts.

Define ∂i : [n]→ [n+ 1] (i = 0, 1, · · · , n) by the correspondence

∂i(j) =

{
j (j < i)

j + 1 (j ≥ i).

Example 6.6. Recall that an object of C[2] is identified with a pair (g, f) of morphisms in C such that

the composition g ◦ f is defined. Let di : C[2] → C[1] denote the dual of ∂i : [1]→ [2]. Then

d0 : C[2] → C[1], (g, f) 7→ g,

d2 : C[2] → C[1], (g, f) 7→ f,

and

d1 : C[1] → C[1], (g, f) 7→ g ◦ f.

Definition 6.7. A functorial factorization of C is a functor Φ : C[1] → C[2] such that d1 ◦Φ is the identity

functor of C[1].

Set β = d0 ◦ Φ and α = d2 ◦ Φ. Then the functorial factorization Φ is determined by the pair of

functors β, α : C[1] → C[1]. So we write (β, α) to indicate the functorial factorization Φ.

We are now ready to define the model category, following [16].

Definition 6.8. LetM be a category which admits all small colimits and limits. A model structure on

the category M is a triple (W, C,F) of (not necessarily) families of morphisms inM which satisfies the

following conditions:

(1) The families W, C, and F are closed under retracts.

(2) Let g and f be morphisms in M such that g ◦ f is defined. If two of f , g, and g ◦ f belong to

W, then so does the third. This axiom is called the two out of three axiom.

(3) A map belonging to C has the left lifting property with respect to every map belonging toW∩F .
A map belonging to C ∩W has the left lifting property with respect to every map belonging to

F .
(4) There are functorial factorizations (β, α) and (δ, γ) which satisfies the following. For every

morphism f in M, β(f) belongs to W ∩ F , α(f) belongs to C, δ(f) belongs to F , and γ(f)

belongs to C ∩W.

A model category is a category equipped with a model structure on it. A map belonging to W (C, F ,
W∩C, orW∩F) is called a weak equivalence (cofibration, fibration, trivial cofibration, or trivial fibration,

respectively).

Lemma 6.9 (Proposition 7.2.3 of [16]). Let M be a model category and let (W, C,F) be the model

structure. Then we have C = (W ∩F)-proj, W ∩ C = F-proj, F = (W ∩ C)-inj, and W ∩F = C-inj.

In particular, every isomorphism in a model category M is a weak equivalence, a cofibration, and

a fibration. Moreover, a composition of cofibrations (or fibrations) is again a cofibration (or fibration,

respectively).

An initial object is denoted by ∅ and a terminal object is denoted by ∗. An object A ofM is cofibrant

if ∅ → A is a cofibration, and A is fibrant if A→ ∗ is a fibration. Clearly this definition does not depend

on the choices of an initial object and a terminal object.
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Let M and N be model categories. A left Quillen functor from M to N is a left adjoint functor

F : M → N which preserves cofibrations and trivial cofibrations. A right Quillen functor from N
to M is a right adjoint functor U : N → M which preserves fibrations and trivial fibrations. Let

(F,U, φ) :M→N be an adjunction. Then F is a left Quillen functor if and only if U is a right Quillen

functor (Proposition 8.5.7 of [16]).

Since a left adjoint functor preserves initial objects, a left Quillen functor preserves cofibrant objects. A

Quillen functor preserves weak equivalences between cofibrant objects (Proposition 8.5.7 of [16]). Dually,

a right Quillen functor preserves fibrant objects, and weak equivalences between fibrant objects.

A Quillen adjoint pair F :M→ N : U is a Quillen equivalence if for every cofibrant object A ofM
and every fibrant object X of N , a morphism f : FA→ X is a weak equivalence in N if and only if the

adjoint A→ UX of f is a weak equivalence inM.

Next we recall the transfinite composition. From now on, we assume that the category C admits all

small colimits. A totally ordered set λ is an ordinal if every non-empty subset of λ has a minimal element.

We write 0 to indicate the minimal element of an ordinal. Let λ be an ordinal. A λ-sequence in C is a

colimit preserving functor from λ to C. The composition of the λ-sequence X• : λ→ C is the natural map

X0 → colim (X•)

For a set X, recall that the cardinality |X| of X is the minimal ordinal κ such that there is a bijvection

from κ to X. A cardinal is an ordinal κ with |κ| ∼= κ. Let κ be a cardinal. An ordinal λ is κ-filtered if

every cofinal subset A of λ has the cardinality greater than or equal to κ. In other words, a subset A of

λ has an upper bound if |A| < κ.

Let C be a category and let D be a subcategory. Let κ be a small cardinal. An object A of C is κ-small

relative to D if and only if for every κ-filtered ordinal λ and every λ-sequence X• : λ→ C such that the

map

Xα → Xα+1

belongs to D for every α < λ, the natural map

colimα<λC(A,Xα)→ C(A, colim(X•))

is bijective. An object A is small if it is κ-small relative to D for some cardinal κ. If C = D, a small

object relative to D is simply called a small object of C.

Example 6.10. A graph G is small if V (G) is a small set. This implies that E(G) is also small. Let G
be the category of (small) graphs. Then every graph is a small object in G.

Proof. Let G be a small graph. Let κ be a small infinite cardinal greater than max{|V (G)|, |E(G)|}. Let
λ be a κ-filtered ordinal and let X• : λ→ G be a λ-sequence. We shall write Xλ to indicate the colimit

of X•. For α, β < λ with α ≤ β, the map Xα → Xβ is denoted by ιβα, and the natural map Xα → Xλ

is denoted by ια. We want to show that the natural map

Φ : colimα<λG(G,Xα)→ G(G, colim(X•))

is bijective.

Let α < λ, and let f and g be graph homomorphisms from G to Xα with ια ◦ f = ιαg. Let v ∈ V (G).

Since ια(f(v)) = ια(g(v)), there is α(v) < λ such that α ≤ α(v) and ια(v)α(f(v)) = ια(v)α(g(v)). Since λ

is κ-filtered and |V (G)| < κ, there is an upper bound β < λ for {α(v) | v ∈ V (G)}. Then we have that

ιβα(f(v)) = ιβα(g(v))

for every v ∈ V (G). This implies that Φ is injective.

Next we show that Φ is surjective. Let f : G → colim(X•) be a graph homomorphism. For each

element v of V (G), there are α(v) < λ and v′α ∈ Xα(v) such that ια(v)(v
′
α) = f(v). Let α be an upper

bound for the set {α(v) | v ∈ V (G)}, and let vα = ια,α(v)(v
′
α).
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For each (v, w) ∈ E(G), there is β(v, w) ≥ α such that (ιβ(v,w),α(vα), ιβ(v,w),α(wα)) ∈ E(Xβ(v,w)). Let

β be an upper bound for the set {β(v, w) | (v, w) ∈ E(G)}. Then (v, w) ∈ E(G) implies (vβ , wβ) ∈ E(Xβ).

Namely, the correspondence V (G)→ V (Xβ), v 7→ vβ is a graph homomorphism fβ : G→ Xβ . Since

ιβ ◦ fβ(v) = ιβ(vβ) = ια(vα) = ια′(v′α) = f(v),

we have ιβ ◦ fβ = f . This implies that the map Φ is surjective. This completes the proof. □

Definition 6.11. Let C be a category and let I be a small family of morphisms in C. We say that I

permits the small object argument if I is a small set and the domains of elements of I are small relative

to I-cell.

Let I be a family of morphisms in C. A map f in C is an I-cell complex if f is isomorphic to the

composition of some sequence X•λ→ C from an ordinal λ such that

Xα → Xα+1

is the pushout of an element of I. The class of I-cell complexes is denoted by I-cell. The class I-cof of

I-cofibrations is closed under pushouts and transfinite compositions. Hence we have I-cell ⊂ I-cof .

Definition 6.12. A model categoryM is cofibrantly generated if there are small families I and J which

satisfy the following conditions:

(1) I permits the small object argument, and the class of cofibrations coincide with I-cof .

(2) J permits the small object argument, and the class of trivial cofibrations coincide with J-cof .

We call I a set of generating cofibrations and call J a set of generating trivial cofibrations.

Proposition 6.13 (The small object argument, Proposition 10.5.16 of [16]). Let C be a category which

admits all small colimits. Let I be a family of morphisms in C which permits the small object argument.

Then there is a functorial factorization (β, α) : C[1] → C[2] such that β(f) ∈ I-inj and α(f) ∈ I-cell for
every morphism f in C.

Theorem 6.14 (Kan, Theorem 11.3.1 of [16]). LetM be a category which admits all small colimits and

limits. Let W be a family of morphisms inM which is closed under retracts and satisfies the two out of

three axiom, and let I and J be small families of morphisms inM. Suppose that the following conditions

hold:

(1) Both I and J permit the small object argument.

(2) J-cof ⊂ W ∩ (I-cof)

(3) I-inj ⊂ W ∩ (J-inj)

(4) Either J-cof =W ∩ (I-cof) or I-inj =W ∩ (J-inj) holds.

ThenM has a cofibrantly generated model structure in which W is the family of weak equivalences, I is

a set of generating cofibrations, and J is a set of generating trivial cofibrations.

Theorem 6.15 (Kan, Theorem 11.3.2 of [16]). Let M be a cofibrantly generated model category with

generating cofibration I and generating trivial cofibrations J , and let F :M→N : U be an adjoint pair.

Suppose that N admits all small colimits and limits. Let FI denote the set {Ff | f ∈ I} and FJ denote

the set {Ff | f ∈ J}. Suppose the following conditions hold.

(1) Both FI and FJ permit the small object argument.

(2) U takes an (FJ)-cell complex to a weak equivalence inM.

Then N has a cofibrantly generated model structure with generating cofibrations I and generating trivial

cofibrations J . A map f in N is a weak equivalence if and only if Uf is a weak equivalence in M.

Moreover, the adjoint pair (F,U) is a Quillen adjoint pair with respect to this model structure.
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Example 6.16 (Chapter 2 of [18]). Let Top be the category of k-spaces. We call a continuous map

f : X → Y a weak homotopy equivalence if f induces a bijection π0(X)→ π0(Y ) and a group isomorphism

f∗ : πn(X,x)→ πn(Y, f(x)) for every n > 0 and x ∈ X. Set

Sn = {(x0, · · · , xn) | x20 + · · ·+ x2n = 1},

Dn = {(x1, · · · , xn) | x21 + · · ·+ x2n ≤ 1}.
Define the map i0 : Dn ↪→ Dn × [0, 1] by the correspondence x 7→ (x, 0). Set

I = {Sn−1 ↪→ Dn | n ≥ 0},

J = {i0 : Dn ↪→ Dn × [0, 1] | n ≥ 0}.
Then Top has the cofibrantly generated model structure with generating cofibrations I and generating

trivial cofibrations J . The class of weak equivalences coincides with the class of weak homotopy equiv-

alences. Note that a continuous map f is a fibration if and only if f is a Serre fibration. If (X,A) be a

pair of CW-complexes, then the inclusion A ↪→ X is a cofibration.

Example 6.17 (Chapter 3 of [18]). Let SSet be the category of simplicial sets. For a non-negative integer

n, we write ∆[n] ∈ SSet to indicate the Yoneda functor [m] 7→ ∆([m], [n]). Define the subcomplexes

∂∆[n] and Λr[n] (0 ≤ r ≤ n) of ∆[n] as follows:

∂∆[n]m = {f : [m]→ [n] | f is order-preserving and Im(f) ̸= [n].},

Λr[n]m = {f : [m]→ [n] | f is order-preserving and Im(f) ∪ {r} ̸= [n].}.
Set

I = {∂∆[n] ↪→ ∆[n] | n ≥ 0},
J = {Λr[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ r ≤ n}.

The category SSet of simiplicial sets has the cofibrantly generated structure with generating cofibra-

tions I and generating trivial cofibrations J . A simplicial map f is a weak equivalence if and only if ithe

continuous map |f | : |K| → |L| induced by f is a homotopy equivalence. A simplicial map i : K ↪→ L is

a cofibration if and only if i is an inclusion. A fibration of SSet is called a Kan fibration, and a fibrant

object is called a Kan complex.

The geometric realization functor

| − | : SSet→ Top

is a Quillen equivalence. Moreover, it is known that the geometric realization functor preserves fibrations

(see Chapter 3 of [18]).

The following lemma is a generalization of the gluing lemma (Proposition 2.5).

Proposition 6.18 (Proposition 15.10.10 of [16]). Let C be a model catgory and let

A
i←−−−− B −−−−→ C

fA

y fB

y yfC

A′ i′←−−−− B′ −−−−→ C ′

be a commutative diagram in C. Suppose that all objects appearing in the above diagram are cofibrant,

and i and i′ are cofibrations. Then the natural map

A ∪B C → A′ ∪B′ C ′

is a weak equivalence.

Proposition 6.19. Let C be a model category. Let κ be an ordinal, let X•, Y• : κ → C be κ-sequences,

and let u : X• → Y• be a natural transformation. Moreover, suppose the following conditions.

(1) For every α < κ, uα : Xα → Yα is a weak equivalence.
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(2) X0 is cofibrant and Xα ↪→ Xα+1 is a cofibration for every α < κ.

(3) Y0 is cofibrant and Yα ↪→ Yα+1 is a cofibration for every α < κ.

Then the colimit u∞ : X∞ → Y∞ of u is a weak equivalence.

Proof. The proof is almost the same as the proof of Proposition 15.10.11 of [16]. □

We will use the following criterion to prove the Quillen equivalence.

Proposition 6.20 (Corollary 1.3.16 of [18]). A Quillen adjoint pair F : M → N : U is a Quillen

equivalence if and only if both of the following conditions hold:

(1) Let f : X → Y be a map between fibrant objects in N . If Uf is a weak equivalence, then f is a

weak equivalence.

(2) For a cofibrant object A ofM, the composition

A→ UFA→ URFA

is a weak equivalence.

6.3. Model structure on SSetZ2 . The category of Z2-simplicial sets is denoted by SSetZ2 . For a

Z2-simplicial set K, the subcomplex of fixed points of K is denoted by KZ2 . Note that KZ2 is the

equalizer of the identity of K and the involution of K. We call a Z2-simplicial map f : K → L a Z2-weak

equivalence if both f : K → L and fZ2 are weak equivalences in SSet.

If we regard a simplicial set K as a Z2-simplicial set, we consider the Z2-action on K is trivial

unless otherwise stated. Let i : SSet → SSetZ2 be the inclusion functor. Then i is the left adjoint of

(−)Z2 : SSetZ2 → SSet. We often abbreviate i(K) to K.

Regard Z2 as a Z2-simplicial set consisting of two vertices ∆[0]⊔∆[0] whose involution is the exchange

of the vertices. Consider the composition

SSet
i−−−−→ SSetZ2

Z2×(−)−−−−−→ SSetZ2 ,

which is also denoted by Z2 × (−). Then Z2 × (−) : SSet → SSetZ2 is the left adjoint functor of the

forgetful functor SSetZ2 → SSet.

In Example 6.17, recall that we set

I = {∂∆[n] ↪→ ∆[n] | n ≥ 0}

and

J = {Λr[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ r ≤ n}.
Set I ′ = (Z2 × I) ∪ i(I) and J ′ = (Z2 × J) ∪ i(J). The purpose of this section is to prove the following

proposition.

Proposition 6.21. The category SSetZ2 of Z2-simplicial sets has the cofibrantly generated model struc-

ture with generating cofibrations I ′ and generating trivial cofibrations J ′. Moreover, the classes of weak

equivalences, cofibrations, and fibrations are described as follows:

(1) The class of weak equivalences is the class of Z2-weak equivalences.

(2) The class of cofibrations is the class of inclusions.

(3) A Z2-simplicial map p : X → Y is a fibration in SSetZ2 if and only if both Up : X → Y and

pZ2 : XZ2 → Y Z2 are Kan fibrations.

Proposition 6.21 seems well-known to the experts (see Appendix of [15]). In fact the proof is straight-

forward. However, I could not find the proof of Proposition 6.21. So we write the proof here to make the

thesis self-contained.

Lemma 6.22. A Z2-simplicial map i is an I ′-cofibration if and only if i is an inclusion.

Proof. The proof is almost the same as the case of usual simplicial sets (see Section 3 of [18]). □
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Lemma 6.23. Let p be a Z2-simplicial map. Then p is J ′-injective if and only if both Up and pZ2 are

Kan fibrations.

Proof. Suppose that p is J ′-injective. Consider a commutative square

Λr[n] −−−−→ UX

f

y yUp

∆[n] −−−−→ UY

(3)

in SSet. Then the associated diagram

Z2 × Λr[n] −−−−→ Xy y
Z2 ×∆[n] −−−−→ Y

in SSetZ2 commutes (Lemma 6.3) and has a lift. Hence the diagram (3) has a lift (Lemma 6.4). This

implies that Up is a Kan fibration. On the other hand, consider a commutative square

Λr[n] −−−−→ XZ2y ypZ2

∆[n] −−−−→ Y Z2

(4)

in SSet. Then the associated diagram

i(Λr[n]) −−−−→ Xy y
i(∆[n]) −−−−→ Y

in SSetZ2 commutes (Lemma 6.3) and has a lift. Hence we have that the diagram (4) has a lift (Lemma

6.4). This implies that pZ2 is a Kan fibration.

On the other hand, suppose that both Up and pZ2 are Kan fibrations. Consider a commutative diagram

such as

Z2 × Λr[n] −−−−→ Xy y
Z2 ×∆[n] −−−−→ Y

(5)

in SSetZ2 . By Lemma 6.4, this has a lift if and only if

Λr[n] −−−−→ Xy yUp

∆[n] −−−−→ Y

in SSet. Since Up has a lift, we have that the diagram (5) has a lift. In a similar way, we can show that

a commutative diagram such as
Λr[n] −−−−→ Xy y
∆[n] −−−−→ Y

has a lift. □

The following lemma is similarly proved.
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Lemma 6.24. Let p : X → Y be a Z2-simplicial map. Then p is an I ′-injective map if and only if both

Up and pZ2 are I-injective in SSet.

We write W ′ to indicate the class of Z2-weak equivalences in SSetZ2 .

Corollary 6.25. I ′-inj =W ′ ∩ (J ′-inj)

Lemma 6.26. The fixed point functor (−)Z2 : SSetZ2 → SSet commutes with the transfinite composi-

tion. Namely, for a λ-sequence X• : λ→ SSetZ2 , the natural map

Φ : colimα<λ(X
Z2
α )→ (colim(X•))

Z2

is an isomorphism.

Proof. The colimit of X• is denoted by Xλ, for simplicity. The generator of Z2 is denoted by τ . For

α, β < λ with α ≤ β, the natural map Xα → Xβ is denoted by ιβα. We write ια to indicate the natural

map Xα → Xλ.

Let α < λ and let σ0, σ1 ∈ XZ2
α with ια(σ0) = ια(σ1). Then there is α1 ≥ α such that ια1α(σ0) =

ια1α(σ1). This implies that Φn is injective.

Next let σ be an n-simplex of XZ2

λ . Since σ ∈ (Xλ)n, there is α < λ and σ′ ∈ Xα such that ια(σ
′) = σ.

Since ια(σ
′) = ια(τσ

′), there is β ≥ α such that ιβα(σ
′) = ιβα(τσ

′) = τιβα(σ
′). Therefore σ′′ = ιβα(σ

′)

is contained in XZ2

β and ιβ(σ
′′) = σ. This implies that Φn is surjective. □

Lemma 6.27. The class W ′ of weak equivalences in SSetZ2 is closed under the transfinite compositions.

Proof. This is deduced from Lemma 6.26 and the fact that the class of weak equivalences in SSet is

closed under transfinite compositions. □

Lemma 6.28. J ′-cof ⊂ W ′ ∩ (I ′-cof)

Proof. Recall that we have already shown that J ′-cof ⊂ I ′-cof . If f : K → L is a pushout of an

element of J ′, then |f | : |K| → |L| is a Z2-homotopy equivalence. Hence Lemma 6.27 implies that J-cell

complexes are Z2-weak equivalences. Since a J ′-cofibration is a retract of a J ′-cell complex, we have

J ′-cof ⊂ W ′. □

This completes the proof of Proposition 6.21

We close this section with the Quillen equivalence between SSetZ2 and the category TopZ2 of Z2-k-

spaces. It is similarly shown that TopZ2 has the model structure described as follows:

(1) A Z2-continuous map f : X → Y is a weak equivalence if and only if f and fZ2 : XZ2 → Y Z2 are

weak homotopy equivalences.

(2) A Z2-continuous map p : X → Y is a fibration if and only if f and fZ2 : XZ2 → Y Z2 are Serre

fibrations.

Moreover, if (X,A) is a Z2-CW-pair, then the incluion A ↪→ X is a cofibration in TopZ2 .

Lemma 6.29. Let J be a small category and let F : C → D : U be an adjunction between categories.

Then F∗ : CJ → DJ : U∗ is an adjoint pair.

Proof. Let φ be the adjunction

φA,X : D(FA,X)
∼=−−−−→ C(A,UX), f 7→ φ(f).

Let A• : J → C and X• : J → D be functors. Let f• : F∗A
• → X• be a natural transformation. Define

the natural transformation φ(f•) by j 7→ φ(f j) for an object j of J .
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We want to show that this is actually an natural transformation. Let α : j → j′ be a morphism in J .
Since the diagram

FAj fj

−−−−→ Xj

FAα

y yXα

FAj′ fj′

−−−−→ Xj′

commutes, the diagram

Aj φ(fj)−−−−→ UXj

Aα

y yUXα

Aj′ φ(fj′ )−−−−→ UXj′

commutes. This implies that φ(f•) is a natural transformation. □

Proposition 6.30. The adjoint pair

| − | : SSetZ2 → TopZ2 : Sing

is a Quillen equivalence.

Proof. Let K be a Z2-simplicial set, let X be a Z2-space, and let f : |K| → X be a Z2-continuous map.

Let φ(f) : K → Sing(X) be the adjoint. We show that the adjoint of fZ2 : |KZ2 | → XZ2 is

φ(f)Z2 : KZ2 → Sing(XZ2).

To see this, consider the commutative diagram

|KZ2 | fZ2
−−−−→ XZ2y y

|K| f−−−−→ X.

Then the diagram

KZ2
φ(fZ2 )−−−−→ Sing(XZ2)y y

K
φ(f)−−−−→ Sing(X)

By taking the fixed point subcomplex, we have that φ(fZ2) = φ(f)Z2 .

Suppose that f : |K| → X is a Z2-weak equivalence. Then f = Uf and fZ2 are weak equivalences in

SSet. Since | − | : SSet→ Top : Sing is a Quillen equivalence, we have that φ(f) and φ(fZ2) ∼= φ(f)Z2

are Z2-weak equivalences. This implies that φ(f) : K → Sing(X) is a Z2-weak equivalence. Similarly,

we can show that if φ(f) is a Z2-weak equivalence, then f is a Z2-weak equivalence. By definition, this

shows that | − | is a Quillen equivalence. □

Let X be a Z2-CW-complex and let Y be a Z2-space. Then the Z2-maps f, g : X → Y are left

homotopic in TopZ2 if and only if they are Z2-homotopic. Since every object in TopZ2 is fibrant, we

have the following.

Proposition 6.31 (Bredon [6]). A Z2-map f : X → Y is a Z2-homotopy equivalence if and only if

f : X → Y and fZ2 : XZ2 → Y Z2 are Z2-homotopy equivalences.

Of course, Proposition 6.31 is directly proved in an obvious way.
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6.4. Barycentric subdivision. Consider the set 2[n]\{∅} of non-empty subsets of [n] as a poset ordered

by inclusion. Define the simplicial set Sd(∆[n]) to be the nerve of 2[n] \ {∅}. Then we have a functor

∆→ SSet, [n] 7→ Sd(∆[n]).

The barycentric subdivision functor Sd : SSet → SSet is the left Kan extension of this functor along

the Yoneda functor ∆op → SSet. The right adjoint of Sd is denoted by Ex.

Note that the poset map

2[n] \ {∅} → [n], σ 7→ max(σ)

induces a simplicial map Sd(∆[n]) → ∆[n], and induces a natural weak equivalence u : Sd → id, i.e.

uK : Sd(K)→ K is a weak equivalence for every simplicial set K. Let h : K → Ex(K) be the adjoint of

u : Sd(K)→ K.

Lemma 6.32 ([13]). For a simplicial set K, the simplicial map h : K → Ex(K) is a weak equivalence.

Let Ex∞(K) be the colimit of the sequence

K
h−−−−→ Ex(K)

h−−−−→ Ex2(K) −−−−→ · · · .
Since the class of weak equivalences in SSet is closed under transfinite compositions, we have that

K → Ex∞(K) is a weak equivalence.

Proposition 6.33 ([13]). The simplicial set Ex∞(K) is a Kan complex for every K ∈ SSet.

Next we consider the barycentric subdivision of SSetZ2 .

We start with the following general argument: Let F : C → D : G be an adjoint pair and let J be

a small category. Then F induces a functor F∗ : CJ → DJ and G induces a functor G∗ : DJ → CJ .

Moreover, the pair F∗ : CJ → DJ : G∗ is an adjoint pair.

Consider the group Z2 as a small category in the usual way. Namely, the object set of Z2 is the

one point subset {∗}, and the morphisms set from ∗ to ∗ is Z2. The composition law is defined by the

group multiplication of Z2. Then the Z2-simplicial set is identified with a functor from Z2 to SSet, and

a Z2-equivariant simpilcial map coincides with a natural transformation. Hence the category SSetZ2

of Z2-simplicial sets is identified with the functor category from Z2 to SSet as the notation indicates.

Hence the adjoint pair

Sd : SSet→ SSet : Ex

induces an adjoint pair

Sd : SSetZ2 → SSetZ2 : Ex.

Consider the adjoint h : K → Ex(K) of u : Sd(K)→ K.

Lemma 6.34. For a Z2-simplicial set K, the map Sd(KZ2)→ Sd(K)Z2 is an isomorphism.

Proof. See the following commutative diagram

|Sd(KZ2)|
∼=−−−−→ |KZ2 |y y∼=

|Sd(K)Z2 |
∼=−−−−→ |K|Z2 .

The horizontal arrows are natural homeomorphisms. The left vertical arrow is a homeomorphism since

the geometric realization preserves equalizers. Hence the left vertical arrow is a homeomorphism. It is

easy to see that a simplicial map f : K → L which induces a homeomorphism from |K| to |L| is an

isomorphism. □

Corollary 6.35. Let K be a Z2-simplicial set. Then the natural map map u : Sd(K) → K is a Z2-

homotopy equivalence.
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Proof. It suffices to see that uZ2 : Sd(K)Z2 → KZ2 is a homotopy equivalence. Consider the diagram

Sd(KZ2)
≃−−−−→ KZ2

∼=
y ∥∥∥

Sd(K)Z2 −−−−→ KZ2

The left vertical arrow is an isomorphism by Lemma 6.34. Hence the map uZ2 : Sd(K)Z2 → KZ2 is a

homotopy equivalence. □

Lemma 6.36. For a Z2-simplicial set K, the map h : K → Ex(K) is a weak equivalence in SSetZ2 .

Proof. For a simplicial set K, we write h(K) to indicate the natural weak equivalence K → Ex(K). We

want to show that h(K) : K → Ex(K) is a Z2-weak equivalence. It suffices to show that h(K)Z2 : KZ2 →
Ex(K)Z2 = Ex(KZ2) is a weak equivalence. Consider the diagram

KZ2
h(KZ2 )−−−−−→ Ex(KZ2)

i

y yEx(i)

K
h(K)−−−−→ Ex(K).

in SSetZ2 . Here we consider that KZ2 and Ex(KZ2) are Z2-simplicial set by the trivial Z2-actions. By

taking the fixed point subcomplexes, we have the diagram

KZ2
h(KZ2 )−−−−−→ Ex(KZ2)

∼=
y y∼=

KZ2
h(K)Z2−−−−−→ Ex(K)Z2 .

Since h(KZ2) is a weak equivalence, we have that h(K)Z2 is a weak equivalence. □

Since the class of the Z2-weak equivalences of SSetZ2 is closed under transfinite compositions, we have

that the map K → Ex∞(K) is a Z2-weak equivalence.

Lemma 6.37. For a Z2-simplicial set K, the Z2-simplicial object Ex∞(K) is fibrant in SSetZ2 .

Proof. By Proposition 6.33, the simiplicial set Ex∞(K) is a Kan complex. Since Ex preserves equalizers,

we have that Ex(KZ2) ∼= Ex(K)Z2 . Since the functor (−)Z2 : SSetZ2 → SSet preserves transfinite

compositions we have

Ex∞(K)Z2 ∼= colimn→∞(Exn(K)Z2) ∼= colimn→∞(Exn(KZ2)) ∼= Ex∞(KZ2).

By Proposition 6.33, the simplicial set Ex∞(K)Z2 is a Kan complex. This completes the proof. □

7. Simplicial methods

7.1. Singular complex. In this section we shall introduce a simplicial set associated to a pair of graphs,

which will be called a singular complex. The main result showed that singular complexes and Hom

complexes are homotopy equivalent. The results mentioned here are found in [27].

Let Σn be the graph defined by V (Σn) = [n] and E(Σn) = V (Σn)× V (Σn). We often write 1 instead

of Σ0. Note that 1 is the terminal object of G and hence 1×G ∼= G× 1 ∼= G.

Let T,G be graphs. The singular complex Sing(T,G) is the simplicial set

Sing(T,G)n = G(T × Σn, G)

with obvious face and degeneracy maps. The purpose of this section is to prove the following theorem.
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Theorem 7.1 (M. [27]). There is a natural homotopy equivalence

Φ : |Sing(T,G)| ≃−−−−→ |Hom(T,G)|.

Remark 7.2. Let T be a graph and let P be the category of poset. Then the functor

G → P, G 7→ Hom(T,G)

is not a right adjoint functor since it does not preserve products. On the other hand, the functor

G → SSet, G 7→ Sing(T,G)

becomes a right adjoint functor. To see this, apply Proposition 6.1 to the cosimplicial object ∆ → G,
[n] 7→ T × Σn.

Let G,H be graphs. The exponential graph HG is defined by

V (HG) = {f | f is a map from V (G) to V (H).},

E(HG) = {(f, g) | (f × g)(E(G)) ⊂ E(H)}

The following proposition is a well-known fact (see [8] for example).

Proposition 7.3. There is a natural isomorphism

G(T ×G,H) ∼= G(T,HG).

Corollary 7.4. There is a natural isomorphism

Sing(T ×G,H) ∼= Sing(T,HG).

Proof. For each non-negative integer n, we have an isomorphism

Sing(T ×G,H)n = G(Σn × T ×G,H)

∼= G(Σn × T,HG)

= Sing(T,HG)n

The naturality of the isomorphism of Proposition 7.3 implies that the sequence (Φn)n : Sing(T×G,H)→
Sing(T,HG) is an isomorphism of simplicial sets. □

Proposition 7.5 (Dochtermann [8]). There is a natural homoropy equivalence

Hom(T,HG)
≃−−−−→ Hom(T ×G,H)

Proof. The following proof is the same as the original proof of [8]. Here we give the proof for the reader’s

convenience.

Define the order-preserving map

Φ : Hom(T ×G,H)→ Hom(T,HG)

by the correspondence

Φ(η)(x) = {f : V (G)→ V (H) | v ∈ V (G)⇒ f(v) ∈ η(x, v)}.

for η ∈ Hom(T ×G,H) and x ∈ V (T ). On the other hand, define the order-preserving map

Ψ : Hom(T,HG)→ Hom(T ×G,H)

by the correspondence

Ψ(η)(x, v) = {f(v) | f ∈ η(x)}
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for η ∈ Hom(T,HG) and x ∈ V (T ). We want to show that Ψ ◦ Φ = id and Φ ◦ Ψ ≥ id. For η ∈
Hom(T ×G,H), x ∈ V (T ), and v ∈ V (G), we have that

Ψ ◦ Φ(η)(x, v) = {f(v) | f ∈ Φ(η)(x)}
= {f(v) | f : V (G)→ V (H) is a map such that v ∈ V (G) implies f(v) ∈ η(x, v).}
= η(x, v).

Hence we have Ψ ◦ Φ = id. On the other hand, for η ∈ Hom(T,HG) and for x ∈ V (T ), we have

Φ ◦Ψ(η)(x) = {f : V (G)→ V (H) | v ∈ V (G)⇒ f(v) ∈ Ψ(η)(x, v)}
= {f : V (G)→ V (H) | v ∈ V (G)⇒ f(v) ∈ {g(v) | g ∈ η(x)}}
≥ {f : V (G)→ V (H) | f ∈ η(x)}
= η(x).

Hence we have Φ ◦Ψ ≥ id. □

Recall that a multi-homomorphism η ∈ Hom(G,H) is locally finite if η(v) is finite for all v ∈ V (G),

and the induced subposet of Hom(G,H) consisting of locally finite multi-homomorphisms is denoted by

Homf (G,H). The inclusion Homf (G,H) ↪→ Hom(G,H) is a homotopy equivalence (see Lemma 4.7).

A clique of a graph G is a subset σ ⊂ V (G) with σ× σ ⊂ E(G). The clique complex C(G) of G is the

abstract simplicial complex whose simplices are cliques of G. Note that a finite clique of G is identified

with a locally finite multi-homomorphism from 1 to G. Moreover, the face poset of C(G) is isomorphic

to Homf (1, G). Hence there is a natural homeomorphism

|C(G)|
∼=−−−−→ |Hom(1, G)|.

Hence we have homotopy equivalences

|Sing(G,H)|
∼=−−−−→ |Sing(1,HG)|

and

|C(G)|
∼=−−−−→ |Homf (1,H

G)| ≃−−−−→ |Hom(1, HG)| ≃−−−−→ |Hom(G,H)|.
Hence it suffices to prove the following proposition, which will be proved in Section 5.4.

Proposition 7.6. There is a natural homotopy equivalence

|Sing(1, G)| −−−−→ |C(G)|.

In the rest of this section, we use the notation Sing(X) instead of Sing(1, X).

Lemma 7.7. If X is a non-empty and E(X) = V (X)× V (X), then |Sing(X)| is contractible.

Proof. Note that |Sing(1)| is the one point space. This implies that if a graph homomorphism f : G→ H

is constant, then the map |f∗| : |Sing(G)| → |Sing(H)| is also constant.

First we show that Sing(X) is connected. Let a and b be 0-simplices of Sing(X), namely, graph

homomorphisms from Σ0 to X. Define the graph homomorphism u : Σ1 → X by the correspondences

u(0) = a and u(1) = b. Then d0u = b and d1u = a. Hence Sing(X) is connected.

Let x0 ∈ V (X). Define the graph homomorphism r : X × Σ1 by

r(x, i) =

{
x (i = 0)

x0 (i = 1).

Since Sing(X × Σ1) ∼= Sing(X) × Sing(Σ1) and Sing(Σ1) is connected, we have that the identity of

|Sing(X)| is homotopic to the constant map. Therefore |Sing(X)| is contractible. □
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We are now ready to prove Proposition 7.6.

Let X be a graph and let σ be a clique of X. Define the map Φσ : ∆σ → |C(G)| by the correspondence.

Φ(a0e0 + · · ·+ anen) = a0eσ(0) + · · ·+ aneσ(n).

If f : [m]→ [n] is an order-preserving map, then the diagram

∆f∗σ
f∗−−−−→ ∆σ

Φf∗σ

y yΦσ

|C(G)| |C(G)|

is commutative. Hence the maps Φσ inudces a continuous map ΦG : |Sing(G)| → |C(G)|. It is easy to

see that ΦG is natural.

Let σ0, · · · , σn be finite cliques of G. We identify σi with the clique subgraph of G whose vertex set

is σi. By Proposition 2.8, it suffices to show that the restriction

Φσ0,··· ,σn |Sing(σ0)| ∩ · · · ∩ |Sing(σn)| → |C(σ0)| ∩ · · · ∩ |C(σn)|

of ΦG is a homotopy equivalence. Note that

|Sing(σ0)| ∩ · · · ∩ |Sing(σn)| = |Sing(σ0 ∩ · · · ∩ σn)|

and

|C(σ0)| ∩ · · · ∩ |C(σn)| = |C(σ0 ∩ · · · ∩ σn)|.

Hence if σ0 ∩ · · · ∩ σn = ∅, then the source and range of Φσ0,··· ,σn are empty and hence Φσ0,··· ,σn is a

homotopy equivalence. If σ0∩· · ·∩σn ̸= ∅, then Lemma 7.7 implies that the source and range of Φσ0,··· ,σn

are contractible and hence Φσ0,··· ,σn is a homotopy equivalence. This completes the proof of Proposition

7.6, and the proof of Theorem 7.1.

7.2. Singular box complex. Let G be a graph. The singular box complex B(G) of G is the Z2-simplicial

set Sing(K2, G). The Z2-action is induced by the flipping Z2-action on K2.

Lemma 7.8. The map ΦK2 : |B(G)| → |B(G)| in Theorem 7.1 is a Z2-homotopy equivalence.

Proof. The naturality of the map Φ in Theorem 7.1 implies that the map Φ is Z2-equivariant. By

Proposition 6.31, it suffices to show that both ΦK2 and ΦZ2

K2
: |B(G)|Z2 → |B(G)|Z2 are homotopy

equivalence. Theorem 7.1 asserts that ΦK2 is a homotopy equivalence. On the other hand, consider the

commutative diagram.

|Sing(1, G)| −−−−→ |Sing(K2, G)|

Φ1

y yΦK2

|Hom(1, G)| −−−−→ |Hom(K2, G)|
whose horizontal arrows are induced by the graph homomorphism K2 → 1. The commutativity of the

diagram follows from the naturality of Φ. It is easy to show that the map Sing(1, G) → Sing(K2, G)

is an inclusion of simplicial sets and its image coincide with the fixed point subcomplex Sing(K2, G)
Z2 .

Similarly, the map Hom(1, G)→ Hom(K2, G) is an inclusion and the image coincide with the fixed point

subposet Hom(K2, G)
Z2 . Since the geometric realization functor of simplicial sets and the classifying space

functor of posets preserve equalizers, we have |Sing(K2, G)|Z2 = |Sing(K2, G)
Z2 | and |Hom(K2, G)|Z2 =

|Hom(K2, G)
Z2 |. Since Φ1 : |Sing(1, G)| → |Hom(1, G)| is a homotopy equivalence, we have that ΦZ2

K2
:

|Sing(K2, G)|Z2 → |Hom(K2, G)|Z2 is a homotopy equivalence. □

Lemma 7.9. The singular box complex functor B : G → SSetZ2 has a left adjoint.
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Proof. Regard Z2 as a small category in a usual way. A Z2-simplicial set with a functor from Z2 to

SSet. Since a simplicial set is a functor from ∆op to the category Set of small sets, a Z2-simplicial set

is identified with a functor from ∆op × Z2 = (∆ × Z2)
op to the category Set of small sets. Define the

functor K2 × Σ• : ∆ × Z2 → G by [n] 7→ K2 × Σn. Since B(G) = Sing(K2, G) = G(K2 × Σn, G), the

functor B has the left adjoint (see the paragraph after Proposition 6.1). □

We write A to indicate the singular box complex functor B : G → SSetZ2 . We shall describe the precise

construction of A. Let K be a Z2-simplicial set. The vertex set of A(K) is the set K0 of 0-simplices

of K. Let α denote the involution of K. Two vertices x, y ∈ V (A(K)) = K0 are adjacent if there is a

1-simplex connecting x with α(y).

If K is a simplicial complex, the same construction was obtained by Csorba in [7]. Precisely speaking,

for an abstract simplicial complex K, he defines the graph GK as follows: The vertex set of GK is the

vertex set of K. Two vertices x and y are adjacent if and only if {x, α(y)} is a 1-simplex of K. The

Z2-action α on a simplicial complex K is free if α(σ) ∩ σ = ∅ for every σ ∈ K. Csorba showed the

following:

Theorem 7.10 (Csorba [7]). For a free Z2-simplicial complex K, there is a natural Z2-homotopy equiv-

alence

|B(GSd(K))|
≃−−−−→ |K|.

As a corollary, he showed that for every free Z2-simplicial complex K, there is a graph G with

|B(G)| ≃ |K|.
We conclude this section with the following remark. Recall that the inequality

χ(G) ≥ ind(B(G)) + 2

holds for every graph G. We show that this is the maximal lower bound given by the Z2-homotopy type

of the box complex. For the precise statement, see Corollary 7.12.

Proposition 7.11. Let X be a finite Z2-CW-complex. Then there is a finite graph G with B(G) ≃Z2 X

and χ(G) = ind(B(G)) + 2.

Proof. Let K be a finite ordered Z2-simplicial complex with |K| ≃Z2 X. We regard K as a Z2-simplicial

set in the usual way. Set n = ind(X). Since |B(Kn+2)| ≃Z2 S
n, there is a Z2-continuous map |K| →

|B(G)|. Since SSetZ2 and TopZ2 are Quillen equivalent and K → Ex∞(K) is a fibrant replacement in

SSetZ2 , we have that there is a Z2-simplicial map f fromK to Ex∞(B(Kn+2)). SinceK is finite, f factors

through Exm(B(Kn+1)) for some m ≥ 1. Since Ex is the right adjoint of the barycentric subdivision,

there is a Z2-map from Sdm(K) to B(Kn+2). Therefore we have that there is a graph homomorphism

A(Sdm(K))→ Kn+2.

It follows from Theorem 7.10 that |B ◦A◦Sdm(K)| and |K| are Z2-homotopy equivalent. This completes

the proof. □

Corollary 7.12. Let u be a Z2-homotopy invariant which assigns a Z2-space to an integer. Suppose

that χ(B(G)) ≥ u(G) for every finite graph G. Then we have that ind(X) + 2 ≥ u(X) for every finite

Z2-CW-complex X.

We note that this corollary is obtained by combining Theorem 1.6 and Theorem 1.7 in Dochtermann

and Schultz [11].
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7.3. Strong homotopy deformation retract. In this section, we consider the deformation retract of

finite simplicial complexes and finite posets in the sense of strong homotopy theory. We also consider

the deformation retract of graphs in the sense of ×-homotopy theory. This construction is necessary to

describe the cofibrations in the category of graphs.

Let f : L→ L′ be a simplicial map between simplicial complexes. Let K be a subcomplex of L. The

image f(K) of f is the subcomplex {f(σ) | σ ∈ K} in L′.

A subcomplex K of a simplicial complex L is a strong deformation retract if there is a finite sequence

f0, f1, · · · , fk of simplicial maps from L to L which satisfies the following properties:

(1) f0 = idL and fk(L) ⊂ K.

(2) fi(x) = x for every x ∈ V (K) and i = 0, 1, · · · , k.
(3) fi and fi−1 are contiguous for i = 1, · · · , k.
A typical example of strong deformation retracts of simplicial complexes is the deletion K \v of a cone

point v (see Section 2.2). On the other hand, the following holds.

Proposition 7.13. Let L be a finite simplicial complex, and let K be a subcomplex of L. Then K is a

strong deformation retract of Q if and only if there is a linear order {x1, · · · , xk} on V (L) \ V (K) such

that xi is a cone point of the simplicial complex L \ {x1, · · · , xi−1}.

Proof. The proof of the case K = ∅ is found in [5], and the general case is similarly proved. However, we

write the proof for the reader’s convenience.

The proof is obtained by the induction on the cardinality of V (L)\V (K). The case #(V (L)\V (K)) = 0

is trivial. Suppose #(V (L) \ V (K)) = n > 0. Since K is a strong deformation retract of L and K ̸= L,

there is a simplicial map f : L → L such that f |K = idK , f ̸= idL, and f and idL are contiguous. Let

x ∈ V (L) with f(x) ̸= x. Note that f |K = idK implies x ̸∈ V (K).

Let σ be a simplex of L which contains x. Since idL and f are contiguous, we have that σ ∪ f(σ) is a
simplex of L. Therefore σ ∪ {f(x)} is a simplex of L. Thus x is a cone point of L. □

A subposet P of a poset Q is a strong deformation retract if there is a finite sequence f0, f1, · · · , fk of

order-preserving maps from Q to Q which satisfies the following properties:

(1) f0 = idQ, and fk(Q) is contained in P .

(2) fi(x) = x for every x ∈ P and i = 0, 1, · · · , k.
(3) fi and fi−1 are comparable in the poset Poset(Q,Q) (see Section 2 for the definition for the

definition of Poset(Q,Q)).

A typical example of strong deformation retracts of posets is the deletion P \ x of a beat point x of

P . On the other hand, the following holds.

Proposition 7.14. Let P be a subposet of a finite poset Q. Then P is a strong deformation retract of

Q if and only if there is a linear order {x1, · · · , xk} on Q \ P such that xi is a beat point of the poset

Q \ {x1, · · · , xi−1} for i = 1, · · · , k.

Proof. The proof of the case P = ∅ is found in [4], and the general case is similarly proved. However, we

write the proof for the reader’s convenience.

The proof is obtained by the induction of the cardinality of Q \P . The case #(Q \P ) = 0 is obvious.

Suppose that #(Q \P ) = n > 0. It suffices to show that there is a beat point x of Q not contained in P .

Since P is a strong deformation retract of Q and P ̸= Q, there is an order-preserving map f : Q→ Q such

that f > idQ or f < idQ. Suppose f > idQ. Let x0 be a maximal element of the set {x ∈ Q | f(x) ̸= x}.
Since f |P = idP , we have x0 ̸∈ P . We want to show that x0 is an upper beat point. Let y ∈ Q with

y > x0. The maximality of x0 implies f(y) = y. Hence we have y = f(y) ≥ f(x0) > x0. Therefore f(x0)

is the minimum of P>x0 . This completes the proof in the case f > idQ. If f < idQ, let x1 be the minimal

element of {x ∈ Q | f(x) ̸= x}. In a similar way, we can show that x1 is a lower beat point of Q. □
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Proposition 7.15. Let K be a subcomplex of L. If K is a strong deformation retract of L, then the face

poset FK of K is a strong deformation retract of the face poset FL of L.

Proof. Let A(L,K) be the induced subposet of Map(L,L) (see Section 2) consisting of simplicial multi-

maps η such that η(x) = {x} for every x ∈ V (K). Let A0(L,K) be the connected component of A(L,K)

containing the identity map idL. Clearly, K is a strong deformation retract of L if and only if A0(L,K)

contains a simplicial map f : L→ L with f(L) ⊂ K.

Let P be an induced subposet of Q. Let A(Q,P ) be the induced subposet of Poset(Q,Q) consisting

of order-preserving maps f : Q → Q with f(x) = x for every x ∈ P . Let A0(Q,P ) be the connected

component of A(Q,P ) containing the identity map idQ. Then P is a strong deformation retract of Q if

and only if A0(L,K) contains an order-preserving map f : Q→ Q with f(Q) ⊂ P .
The natural order-preserving map F : Map(L,L) → Poset(FL,FL) (see Section 2.3) maps A(L,K)

to A(FL, FK). Suppose that there is f ∈ A0(L,K) with f(L) ⊂ K. Then Ff(FL) ⊂ FK and

Ff ∈ A0(FL, FK). This completes the proof. □

Proposition 7.16. Let P be a subposet of a finite poset Q. If P is a strong deformation retract of Q,

then ∆(P ) is a strong deformation retract of ∆(Q).

Proof. If x is a beat point of Q, then x is a cone point of ∆(P ). Moreover, ∆(P \ x) = ∆(P ) \ x. Hence

the proposition follows from Proposition 7.14. □

Recall that the barycentric subdivision of a simplicial complex K is denoted by Sd(K). Since Sd(K) =

∆(FK), we have the following.

Corollary 7.17. Let L be a finite simplicial complex and let K be a subcomplex of L. If K is a strong

deformation retract of L, then Sd(K) is a strong deformation retract of Sd(L).

Next we consider the ×-homotopy deformation retract. An induced subgraph G of a graph H is a

×-homotopy deformation retract if there is a ×-homotopy K : H × Ik → H such that K(x, i) = x for

every x ∈ V (G) and K(y, k) ∈ V (G) for every y ∈ V (H).

A folding is a typical example of the ×-homotopy deformation retract.

Proposition 7.18. Let G be a subgraph of a finite graph H. Then G is a ×-homotopy deformation retract

of H if and only if there is a linear order {x1, · · · , xn} on V (H) \ V (G) such that xi is a dismantlable

vertex of H \ {x1, · · · , xi−1}.

Proof. The proof of the case G = ∅ is found in [8], and the general case is similarly proved. However, we

write the proof for the reader’s convenience.

The proof is obtained by the induction on the cardinality of V (H)\V (G). The case #(V (H)\V (G)) = 0

is obvious. Suppose #(V (H) \ V (G)) = n > 0. It suffices to show that there is a dismantlable vertex of

H not contained in V (G). Since G is a ×-deformation retract of H and G ̸= H, there is η ∈ Hom(H,H)

such that η(v) = {v} for every v ∈ V (K), η > idH (see Lemma 2.22). Let x ∈ V (G) with η(x) ̸= {x}.
By the assumption on η, we have that x ̸∈ V (G). Let y ∈ η(x) \ {x}. If (x, x′) ∈ E(H), then we have

(y, x′) ∈ η(x)× η(x′) ⊂ E(H).

Therefore x is a dismantlable vertex. □

Let AT be the left adjoint of the functor

Sing(T,−) : G → SSet,

see Remark 7.2.

Let K be a simplicial complex. There is an ordering of V (K) which satisfies ∆(V (K)) = K. We write

N(V (K)) to indicate the nerve of the poset V (K). We write AT (K) instead AT (N(V (K))). The graph

AT (K) is independent of the choice of the ordering of V (K).
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Proposition 7.19. Let K be a subcomplex of a finite simplicial complex L and let T be a finite graph.

If K is a strong deformation retract of L, then AT (K) is a ×-deformation retract of AT (L).

Proof. Consider the case T = 1. Then A1(K) is the graph whose vertex set is V (K) and x, y ∈ V (K) is

adjacent in A1(K) if and only if {x, y} is a simplex of K.

We show that if x is a cone point of K, then x is a dismantlable vertex of A1(K). In fact, suppose

that x is a cone point. There is y ∈ V (K) \ {x} such that σ ∈ K and x ∈ σ imply σ ∪ {y} ∈ K. Let x′

be a vertex of K and suppose that x and x′ are adjacent in A1(K). Since {x, x′} is a simplex of K, we

have that {x, x′, y} is a simplex of K. Hence {x′, y} is a simplex of K. Thus we have that x′ and y are

adjacent in A1(K). This implies that x is dismantlable vertex of A1(K).

Thus it follows from Proposition 7.18 that A1(K) is a ×-deformation retract of A1(L). The general

case follows from AT (K) = T ×A1(K). □

Recall that A denotes the left adjoint functor of the singular box complex B : G → SSetZ2 . For the

definition of B, see Section 7.2.

Corollary 7.20. Let L be a finite simplicial complex and let K be a subcomplex of K. Suppose that K

is a strong deformation retract of L. Then the following hold.

(1) Regard K and L as Z2-simplicial complexes by the trivial Z2-actions. Then we have that A(K)

is a ×-deformation retract of A(L).
(2) A(Z2 ×K) is a ×-homotopy deformation retract of A(Z2 × L).

Proof. Let K be a simplicial complex. Consider K as the Z2-simplicial complex whose Z2-action is

trivial. In this case we have A(K) ∼= A1(K). (Consider the construction of A and A1.) Therefore (1)

follows from Proposition 7.19 in the case T = 1. On the other hand, since A(Z2 ×K) ∼= AK2(K), (2)

follows from Proposition 7.19 in the case T = K2. □

7.4. r-NDR. Let f : G→ H be a graph homomorphism. Consider the pushout diagram such as

G
f−−−−→ Hy y

X −−−−→ Y.

This induces a commutative diagram

B(G)
f∗−−−−→ B(H)y y

B(X) −−−−→ B(Y ).

In general, this square is not homotopy cocartesian even if the map f is an inclusion. However, if f is a

2-NDR mentioned below, then the diagram is homotopy cocartesian.

Let K be a subcomplex of a simplicial complex L. Set

V (N (K)) = {v ∈ V (L) | There is w ∈ V (K) with {v, w} ∈ L.}.

Define N (K) of H to be the subcomplex induced by V (N (K)), that is, σ ⊂ V (N (K)) is a simplex of

N (K) if and only if σ ∈ L. The r-neighborhood Nr(K) of K is defined inductively by

N1(K) = N (K), Nr+1(K) = N (Nr(K)).

Definition 7.21. An inclusion K ↪→ L is an r-NDR if there is a subcomplex A containing Nr(K) such

that K is a strong deformation retract of A.

A simplicial map f : K → L is an r-NDR if f is an injection as a set map from V (K) to V (L) and

the inclusion f(K) ↪→ L is an r-NDR.
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Recall that the barycentric subdivision of a simplicial complex K is denoted by Sd(K). Let ∆n denote

the abstract simplicial complex ([n], 2[n]).

Proposition 7.22. Let K be a subcomplex of ∆n. Then the inclusion Sd2(K) ↪→ Sd2(∆n) is a 1-NDR.

Proof. Note that Sd(∆n) is the simplicial complex whose simplices are chains of 2[n]\{∅}. Hence FSd(∆n)

is the poset of non-empty chains of 2[n] \ {∅}. Set

X = {σ ⊂ [n] | σ is not a simplex of K.}.

Then we have that

FSd(K) = {α ∈ FSd(∆n) | α ∩X = ∅}.

Define P to be the induced subposet

P = {α ∈ FSd(∆n) | α ̸⊂ X}

of FSd(∆n). Then ∆(P ) is the 1-neighborhood of Sd2(K) in Sd2(∆n). By Proposition 7.16, it suffices

to show that FSd(K) is a strong deformation retract of P .

For i = 2, 3, · · · , n+ 1, set

Bi = {c ∈ P | #c = i, c ∩X ̸= ∅}.

Define the induced subposet Pi of P inductively by P0 = P , Pi = Pi−1 \Bi+1 for i = 1, · · · , n. It is easy
to see that Bi+2 is a set of lower beat points of Pi. Hence we have that Pi+1 is a strong deformation

retract of Pi. Therefore we have

Pn = P \ (B2 ∪ · · · ∪Bn+1) = {c ∈ P | c ∩X = ∅} = FSd(K)

is a strong deformation retract of P . This completes the proof. □

Lemma 7.23. If f : K → L is an r-NDR, then Sd(f) : Sd(K)→ Sd(L) is a (2r)-NDR.

Combining Proposition 7.22 and Lemma 7.23, we have the following.

Corollary 7.24. Let K be a subcomplex of ∆n. For a positive integer r, the inclusion Sdr+1(K) ↪→
Sdr+1(∆n) is an r-NDR.

Let G be a subgraph of H. Define the subgraph N (G) of H as follows. A vertex of N (G) is a vertex

of H adjacent to some vertex of G. Two vertices v and w of N (G) are adjacent if and only if either v or

w belongs to V (G). Then Nr(G) is defined inductively by

N1(G) = N (G), Nr+1(G) = N (Nr(G)).

Definition 7.25. Let G be a subgraph of a graph H. Then the inclusion G ↪→ H is an r-NDR if there

is a subgraph A of H containing Nr(G) such that G is a ×-deformation retract of A.

A graph homomorphism f : G → H is an r-NDR if it is injective as a set map between vertex sets,

and the inclusion f(G) ↪→ H is an r-NDR.

The following proposition is the main result in this section.

Proposition 7.26. Consider a pushout square

G
f−−−−→ H

g

y yj

X
i−−−−→ Y,
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in the category of graphs. Suppose that f is a 2-NDR. Then the square

|B(G)| −−−−→ |B(H)|y y
|B(X)| −−−−→ |B(Y )|

is homotopy cocartesian in the category of Z2-spaces. In other words, the natural map

|B(H)| ∪|B(G)| |B(X)| → |B(Y )|

is a Z2-homotopy equivalence.

Proof. Throughout the proof, we assume that the notation B(G) indicates the classifying space of the

box complex of G, for simplicity.

Without loss of generality, we can assume that G is a subgraph of H and f is an inclusion. Let A be

a subgraph of H such that G is a ×-homotopy deformation retract of A. Let A0 denote the subgraph

X ∪G A in H. Let H \G denote the maximal subgraph of G whose vertex set is V (H) \ V (G). We also

define A \ G and Y \ X in a similar way. Note that every multi-homomorphism from K2 to Y factors

through either A0 or Y \X ∼= H \G. Hence we have

B(Y ) = B(A0) ∪B(H \G).

Define Y ′ to be the colimit of the diagram

X
g←−−−− G

ι0−−−−→ G× I1
ι1←−−−− G −−−−→ H.

Here ιk : G→ G× I1 (k = 0, 1) is the injection v 7→ (v, k). Let A′ be the subgraph X ∪G (G× I1) ∪G A
in Y ′. Then X is a ×-deformation retract of A′

0. Attaching the graph homomorphisms

i : X → Y, j : H → Y,

and the composition of G× I1 → G→ Y , we have a graph homomorphism F : Y ′ → Y .

We show that F∗ : B(Y ′)→ B(Y ) is a Z2-homotopy equivalence. Note that

B(Y ′) = B(A′
0) ∪B(H \G)

and

B(Y ) = B(A0) ∪B(H \G).

The graph homomorphism F induces isomorphisms B(H \ G) → B(H \ G) and B(A′
0) ∩ B(H \ G) =

B(A \G)→ B(A0) ∩B(H \G) = B(A \G). The commutative diagram

B(A′
0)

F |A′
0−−−−→ B(A0)

≃
x x≃

B(X) B(X)

shows that F |A′
0∗ : B(A′

0)→ B(A0) is a Z2-homotopy equivalence. It follows from the gluing lemma for

Z2-spaces (see Proposition 6.18 and Proposition 6.21) that B(Y ′)→ B(Y ) is a Z2-homotopy equivalence.

Next let X ′ denote the subgraph X ∪G (G× I1) of Y ′. The commutative diagram

B(G)
f∗−−−−→ B(H)

ι1

y y
B(X ′) −−−−→ B(Y ′)
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induces a map B(X ′)∪B(G)B(H)→ B(Y ′). Next we show that this map is a Z2-homotopy equivalence.

Note that B(Y ′) = B(A′) ∪ B(H) and B(A′) ∩ B(H) = B(A). By the gluing lemma for Z2-spaces, it

suffices to show that all of the vertical arrows of the diagram

B(X ′) ←−−−− B(G) −−−−→ B(H)y y ∥∥∥
B(A′) ←−−−− B(A) −−−−→ B(H)

are Z2-homotopy equivalences. However, this is clear since G (or X ′) is a ×-deformation retract of A (or

A′, respectively). Hence B(X ′) ∪B(G) B(H) → B(Y ′) is a Z2-homotopy equivalence. Then F : Y ′ → Y

defines the commutative diagram

B(X ′) ∪B(G) B(H) −−−−→ B(Y ′)y yF∗

B(X) ∪B(G) B(H) −−−−→ B(Y )

We have already proved that the right vertical arrow and the upper horizontal arrow are Z2-homotopy

equivalences. It follows from the gluing lemma for Z2-spaces that the left vertical arrow is a Z2-homotopy

equivalence. Therefore the lower horizontal arrow is a Z2-homotopy equivalence. This completes the

proof. □

In a similar way, we can show the following proposition. Since we will not need it, we omit the proof.

Proposition 7.27. Let T be a connected graph and suppose that the diameter is smaller than r. Consider

a pushout square

G
f−−−−→ H

g

y yj

X
i−−−−→ Y

such that f is an r-NDR. Then the square

|Hom(T,G)| −−−−→ |Hom(T,H)|y y
|Hom(T,X)| −−−−→ |Hom(T, Y )|

is homotopy cocartesian. In other words, the natural map

|Hom(T,H)| ∪|Hom(T,G)| |Hom(T,X)| → |Hom(T, Y )|

is a homotopy equivalence.

7.5. Model structure. First we recall the notation of Section 7.3. We set

I = {∂∆[n] ↪→ ∆[n] | n ≥ 0},

Z2 × I = {Z2 × ∂∆[n] ↪→ Z2 ×∆[n] | n ≥ 0},

J = {Λr[n] ↪→ ∆[n] | n ≥ 1, 0 ≤ r ≤ n},

Z2 × J = {Z2 × Λr[n] ↪→ Z2 ×∆[n] | n ≥ 1, 0 ≤ r ≤ n},

I ′ = I ∪ (Z2 × I), and J ′ = J ∪ (Z2 × J). The purpose of this section is to prove the following theorem.
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Theorem 7.28. The category G of graphs has a cofibrantly generated model structure with generating

cofibrations A◦Sd3(I ′) and generating trivial cofibrations A◦Sd3(J ′). A graph homomorphism f : G→ H

is a weak equivalence of this model structure if and only if the Z2-map f∗ : B(G) → B(H) is a Z2-

homotopy equivalence for every f . Moreover, the adjoint pair

A ◦ Sd3 : SSetZ2 → G : Ex3 ◦ B

is a Quillen equivalence.

We first show that the graph G has a cofibrantly generated model structure with generating cofibrations

A ◦ Sd3(I ′) and generating trivial cofibrations A ◦ Sd3(J ′).

Let f : G→ H be a graph homomorphism. Then f∗ : B(G)→ B(H) is a Z2-homotoopy equivalence

if and only if the map

Ex3 ◦ B(f) : Ex3 ◦ B(G)→ Ex3 ◦ B(H)

is a Z2-homotopy equivalence. This follows from Lemma 6.36 and Lemma 7.8.

Hence it suffices to check the hypothesis of Theorem 6.15. Since every object of G is small, both

A ◦ Sd3(I ′) and A ◦ Sd3(J ′) permit the small object argument. Therefore we want to show that if

f : G → H is a J ′-cell complex, then Ex3 ◦ B(f) is a weak equivalence. By Lemma 6.36, it suffices to

show that f∗ : B(G)→ B(H) is a Z2-homotopy equivalence.

Proposition 7.29. Let f : G → H be a graph homomorphism. If f is a pushout of an element of

A ◦ Sd3(J), then B(f) is a Z2-weak equivalence.

Recall B(G)n = G(K2 × Σn, G). Hence if f : G → H is an inclusion, then f∗ : B(G) → B(H) is also

an inclusion. Recall that a A◦ Sd3(J ′)-cell complex is a transfinite composition of pushtouts of elements

of A◦ Sd3(J ′). Therefore Proposition 7.29 implies that if f : G→ H is an A◦ Sd3(J)-cell complex, then

f∗ : B(G)→ B(H) is a Z2-homotopy equivalence. Thus it suffices to show Proposition 7.29.

Recall that ∆n denotes the simplicial complex ([n], 2[n]). Define the subcomplex Λn
r of ∆n whose

simplex is a subset σ of [n] such that σ ∪ {r} ̸= [n]. Suppose n ≥ 1. Let ∗ be the simplicial complex

consisting of one vertex ∗. Then we have the map ir : ∗ → Λn
r , ∗ 7→ n. We also denote by ir the inclusion

∗ → ∆n, ∗ 7→ r. By the following lemma, we have that the inclusions ir : ∗ ↪→ ∆n and ir : ∗ ↪→ Λn
r are

strong deformation retracts.

Lemma 7.30. Let K be a finite simplicial complex. Let CK be the join of ∗ and K. Then the inclusion

∗ ↪→ CK is a strong deformation retract.

Proof. This is proved by the induction on the cardinality of V (K). The case V (K) = ∅ is obvious.

Suppose that #V (K) > 0 and let x ∈ V (K). Let σ be a simplex of CK which contains x. If σ contains

∗, then clearly σ ∪ {∗} ∈ CK. If σ does not contain ∗, then σ ∪ {∗} is a simplex of CK by the definition

of join. Hence x is a cone point of CK and hence (CK) \ x is a strong deformation retract of CK. By

the induction hypothesis, we have that ∗ is a strong deformation retract of (CK) \ x = C(K \ x). □

Corollary 7.31. For every n ≥ 1 and 0 ≤ r ≤ n, both the maps Sd3(ir) : ∗ → Sd3(Λn
r ) and Sd3(ir) :

∗ ↪→ Sd3(∆n) are strong deformation retracts.

By Corollary 7.20, we have the following.

Corollary 7.32. Let n be a positive integer and let r be an integer with 0 ≤ r ≤ n. Then the following

hold.

(1) The inclusions

A ◦ Sd3(ir) : A ◦ Sd3(∗) ↪→ A ◦ Sd3(∆n)

and

A ◦ Sd3(Z2 × ir) : A ◦ Sd3(Z2) ↪→ A ◦ Sd3(Z2 ×∆n)

are ×-homotopy equivalences.
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(2) The inclusions

A ◦ Sd3(ir) : A ◦ Sd3(∗) ↪→ A ◦ Sd3(Λn
r )

and

A ◦ Sd3(Z2 × ir) : A ◦ Sd3(Z2) ↪→ A ◦ Sd3(Z2 × Λn
r )

are ×-homotopy equivalences.

Lemma 7.33. Let n be a positive integer and let r be an integer with 0 ≤ r ≤ n. Then the inclusions

jr : A ◦ Sd3(Λn
r ) ↪→ A ◦ Sd

3(∆n)

and

K2 × jr : A ◦ Sd3(Z2 × Λn
r ) ↪→ A ◦ Sd

3(Z2 ×∆n)

are weak equivalences in G.

Proof. Consider the sequence

1 = A ◦ Sd3(∗) −−−−→ A ◦ Sd3(Λn
r )

jr−−−−→ A ◦ Sd3(∆n).

By Corollary 7.32, the first arrow and the composition of the sequence are ×-homotopy equivalences, and

are weak equivalences. By the two out of three axiom, we have that jr is a weak equivalence of G. □

We are now ready to prove Proposition 7.29. Let n be a positive integer and let r be an integer with

0 ≤ r ≤ n. We first note that the graph homomorphism A ◦ Sd3(Λr[n]) → A ◦ Sd3(∆[n]) is isomorphic

to the graph homomorphism A ◦ Sd3(Λn
r ) ↪→ A ◦ Sd

3(∆n). Consider the pushout diagram

A ◦ Sd3(Λn
r ) −−−−→ A ◦ Sd

3(∆n)y y
G −−−−→ H

in G. By Corollary 7.24, we have that the inclusion Sd3(Λr
n) ↪→ Sd3(∆n) is a 2-NDR. Hence the upper

horizontal arrow of the above diagram is a 2-NDR. It follows from Proposition 7.26 that the natural map

B(G) ∪B(A◦Sd3(Λn
r ))

B(A ◦ Sd3(∆n))→ B(H)

is a Z2-homotopy equivalence. Note that the map B(A ◦ Sd3(Λn
r ))→ B(A ◦ Sd3(∆n)) is an inclusion of

Z2-CW-complexes, which is a Z2-homotopy equivalence. It follows from the gluing lemma for Z2-spaces

(see Proposition 6.18 and Proposition 6.21) that the inclusion

B(G)→ B(G) ∪B(A◦Sd3(Λn
r ))

B(A ◦ Sd3(∆n))

is a Z2-homotopy equivalence. Hence the inclusion B(G) ↪→ B(H) is a Z2-homotopy equivalence. This

completes the proof of Proposition 7.29.

Next we show that the adjoint pair A◦ Sd3 : SSetZ2 → G : Ex3 ◦ B is a Quillen equivalence. We want

to show that for every Z2-simplicial set K, the map

K → Ex3 ◦ B ◦ A ◦ Sd3(K)

is a Z2-homotopy equivalence. Hence it suffices to show the following.

Proposition 7.34. Let K be a Z2-simplicial set. The counit map

Sd3(K)→ B ◦ A(Sd3(K))

is a Z2-homotopy equivalence.

Lemma 7.35. Sd3(∂∆n)→ B◦A(Sd3(∂∆n)) and Sd3(Z2×∆n)→ B◦A(Sd3(Z2×∆n)) are Z2-homotopy

equivalences.
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Proof. Since the latter is simialarly proved, we only prove the former.

We prove this by the induction on n. The case n = 0 is clear. Suppose n > 0. Then we have

∂∆n = ∆n−1 ∪ Λn
n and ∆n−1 ∩ Λn

n = ∂∆n−1. Thus we have the pushout diagram

A(Sd3(∂∆n−1)) −−−−→ A(Sd3(Λn
n))y y

A(Sd3(∆n−1)) −−−−→ A(Sd3(∂∆n)).

Since the upper horizontal arrow is a 2-NDR, we have that the map

B ◦ A ◦ Sd3(Λn
n) ∪B◦A◦Sd3(∂∆n−1) B ◦ A ◦ Sd3(∆n−1)→ B ◦ A ◦ Sd3(∂∆n)

is a Z2-homotopy equivalence. Next consider the diagram

Sd3(∆n−1) ←−−−− Sd3(∂∆n−1) −−−−→ Sd3(Λn
n)y y y

B ◦ A ◦ Sd3(∆n−1) ←−−−− B ◦ A ◦ Sd3(∂∆n−1) −−−−→ B ◦ A ◦ Sd3(Λn
n).

By the gluing lemma for Z2-spaces, we have that the map

Sd3(∂∆n)→ B ◦ A ◦ Sd3(Λn
n) ∪B◦A◦Sd3(∂∆n−1) B ◦ A ◦ Sd3(∆n−1)

is a Z2-homotopy equivalence. Hence we have that the map

Sd3(∂∆n)→ B ◦ A ◦ Sd3(∂∆n)

is a Z2-homotopy equivalence. □

Lemma 7.36. Let K be a Z2-simplicial set and let K ↪→ L be a pushout of an element of I ′ (see the

beginning of this section). Suppose that the counit map

Sd3(K)→ B ◦ A ◦ Sd3(K)

is a Z2-homotopy equivalence, then the counit map

Sd3(L)→ B ◦ A ◦ Sd3(L)

is a Z2-homotopy equivalence.

Proof. Suppose that the inclusion K ↪→ L is a pushout of the inclusion ∂∆[n] ↪→ ∆[n]. Then we have a

pushout diagram

A ◦ Sd3(∂∆[n]) −−−−→ A ◦ Sd3(∆[n])y y
A ◦ Sd3(K) −−−−→ A ◦ Sd3(L).

Since the upper horizontal arrow is a 2-NDR, we have that the map

B ◦ A ◦ Sd3(K) ∪B◦A◦Sd3(∂∆[n]) B ◦ A ◦ Sd3(∆[n])→ B ◦ A ◦ Sd3(L)

is a Z2-homotopy equivalence. Consider the commutative diagram

Sd3(K) ←−−−− Sd3(∂∆[n]) −−−−→ Sd3(∆[n])y y y
B ◦ A ◦ Sd3(K) ←−−−− B ◦ A ◦ Sd3(∂∆[n]) −−−−→ B ◦ A ◦ Sd3(∆[n]).

By the gluing lemma for Z2-spaces, we have that the map

Sd3(L)→ B ◦ A ◦ Sd3(K) ∪B◦A◦Sd3(∂∆[n]) B ◦ A ◦ Sd3(∆[n])
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is a Z2-homotopy equivalence. Hence we have that the map

Sd3(L)→ B ◦ A ◦ Sd3(L)

is a Z2-homotopy equivalence.

The case that the inclusion K ↪→ L is a pushout of the inclusion Z2 × ∂∆[n] ↪→ Z2 ×∆[n] is similarly

proved. □

We are now ready to prove Proposition 7.34.

Let K be a Z2-simplicial set. Let λ be an ordinal and let X• : λ→ SSetZ2 be a λ-sequence such that

Xα → Xα+1 is a pushout of an element of I ′ for every α < λ and colim(X•) ∼= K. By Lemma 7.35, we

have that the map Sd3(X0) → B ◦ A ◦ Sd3(X0) is a Z2-homotopy equivalence. Let α < λ and suppose

that for every β with β < α, the map

Sd3(Xβ)→ B ◦ A ◦ Sd3(Xβ)

is a Z2-homotopy equivalence.

Suppose that α − 1 does not exist. Since the singular box complex functor B commutes with the

transfinite composition, we have that

colimβ<αB ◦ A ◦ Sd3(Xβ) ∼= B ◦ A ◦ Sd3(Xα).

Hence Proposition 6.19 implies that Sd3(Xα)→ B ◦ A ◦ Sd3(Xα) is a Z2-homotopy equivalence.

Next suppose that α − 1 exists. It follows from Lemma 7.35 that Sd3(Xα) → B ◦ A ◦ Sd3(Xα) is a

Z2-homotopy equivalence.

By the transfinite induction, we have that the map

Sd3(K)→ B ◦ A ◦ Sd3(K)

is a Z2-homotopy equivalence. This completes the proof of Proposition 7.34 and hence the proof of

Theorem 7.28.

References

[1] E. Babson, D. N. Kozlov, Complexes of graph homomorphisms, Israel J. Math. 152 285-316 (2006).

[2] E. Babson, D. N. Kozlov, Proof of the Lovász conjecture, Ann. of Math. 165 965-1007 (2007).

[3] J. A. Barmak, On Quillen’s theorem A for posets, J. Combin. Ser. A 118 2445-2453 (2011).

[4] J. A. Barmak, Algebraic topology of finite spaces and applications, Lecture Notes in Mathematics Vol. 2032. Springer

(2011).

[5] J. A. Barmak, Strong homotopy types, nerves and collapses, Discrete and Computational Geometry 47 301-328 (2012).

[6] G. Bredon, Equivariant cohomology theories, Springer Lecture Notes in Mathematics, no. 34 (1967).

[7] P. Csorba, Homotopy types of box complexes, Combinatorica, 27 (6) 669-682 (2007).

[8] A. Dochtermann, Hom complexes and homotopy theory in the category of graphs, European J. Combin. 30 (2) 490-509,

(2009).

[9] A. Dochtermann, Homotopy groups of Hom complexes of graphs, J. Combin. Ser. A 116 (1) 180-194 (2009).

[10] A. Dochtermann, The universality of Hom complexes of graphs, Combinatorica 29 (4) 433-448 (2009)

[11] A. Dochtermann, C. Schultz, Topology of Hom complexes and test graphs for bounding chromatic number, Israel J.

Math. 187 (1) 371-417 (2012).
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