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Preface
In this thesis we study special Lagrangian submanifolds, mean curvature flows (especially, La-

grangian mean curvature flows) and some related topics. This thesis consists of self-contained four
parts, Part I, Part II, Part III and Part IV. In this preface we outline each of parts.

Recently, the study of special Lagrangian submanifolds have acquired an important role in Mirror
Symmetry. For example, they are key words in the Strominger-Yau-Zaslow Conjecture [48] which
explains Mirror Symmetry of 3-dimensional Calabi-Yau manifolds. Historically, special Lagrangian
submanifolds in Calabi-Yau manifolds are defined in the paper of Harvey and Lawson [22] as calibrated
submanifolds. As a general property of calibrated submanifolds, a special Lagrangian submanifold is a
minimal submanifold. In general, constructing explicit examples of special Lagrangian submanifolds is
difficult, since these conditions are locally written by nonlinear elliptic PDE. However some examples
are constructed in the case that the ambient Calabi-Yau manifold has symmetries, especially in Cm.

In Part I (cf. [50]), we construct some examples of special Lagrangian submanifolds and Lagrangian
self-similar solutions in almost Calabi–Yau cones over toric Sasaki manifolds. The cone of a toric Sasaki
manifold is a kind of generalization of Cm, since it has R+-action and Tm-action, where Tm is a real
m-dimensional torus. As a corollary of this part, for any integer g ≥ 1, we can construct a real
6-dimensional toric almost Calabi–Yau cone Mg and a 3-dimensional special Lagrangian submanifold
F 1
g : L1

g → Mg which is diffeomorphic to Σg × R, where Σg is a closed surface of genus g. This is
a generalization of the construction of special Lagrangian submanifold in Cm by Harvey-Lawson[22]
and Joyce [24]. Furthermore, in this part, for any integer g ≥ 1, we construct a compact Lagrangian
self-shrinker F 2

g : L2
g → Mg which is diffeomorphic to Σg × S1. The meaning and importance of

Lagrangian self-shrinkers are mentioned in other paragraphs below. This construction of Lagrangian
self-shrinkers is a generalization of one of Joyce, Lee and Tsui [26] in Cm.

Although the chief aim of Part I is constructing explicit examples of special Lagrangian subman-
ifolds, there is an abstract way to get special Lagrangian submanifolds. It is the Lagrangian mean
curvature flow. A Lagrangian mean curvature flow is one of potential approaches to find a special
Lagrangian submanifold in a given Calabi-Yau manifold as the following meaning. If there exists
a long time solution of a Lagrangian mean curvature flow {Lt ; t ∈ [0,∞) } starting from a given
Lagrangian submanifold L0 and the flow converges to some smooth manifold L∞, then it is a minimal
Lagrangian submanifold, that is, a special Lagrangian submanifold. Here we used a well-known magi-
cal fact that if an initial submanifold L0 is a Lagrangian submanifold then its deformation Lt along the
mean curvature flow is also a Lagrangian submanifold if the ambient space is a Calabi-Yau manifold,
that is, the Lagrangian condition is preserved under the mean curvature flow. Indeed, the method of
Lagrangian mean curvature flow has more deep background related to Mirror Symmetry proposed by
Thomas and Yau [49]. Roughly speaking, they introduce a stability condition on Lagrangian subman-
ifolds and conjecture that the Lagrangian mean curvature flow {Lt ; t ∈ [0, T ) } starting from a stable
Lagrangian submanifold exists for all time, that is, T = ∞, and converges to a special Lagrangian
submanifold in its Hamiltonian deformation class. This conjecture is called Thomas-Yau conjecture.
Recently, Joyce [25] has updated the Thomas-Yau conjectures to achieve more plausible statement. In
[25], he discussed the possibility that the Lagrangian mean curvature flow develops singularities many
times even if an initial Lagrangian submanifold is stable and mentioned the necessity of surgeries of
Lagrangian mean curvature flows. Thus it is meaningful to construct examples of Lagrangian mean
curvature flows with singularities to understand the motion of Lagrangian mean curvature flows and
to develop this program.

In Part II (cf. [51]), we construct explicit examples of special or weighted Hamiltonian stationary
Lagrangian submanifolds in toric almost Calabi–Yau manifolds and construct solutions of generalized
Lagrangian mean curvature flows with singularities and topological changes starting from these ex-
amples. These examples can be considered as some kind of generalization of examples of Lee and
Wang [29] in Cm to toric almost Calabi–Yau manifolds. In general, the topology of a toric almost
Calabi–Yau manifold is not simple and there are many fixed points of the torus action. Hence we
can get examples of special or weighted Hamiltonian stationary Lagrangian submanifolds with various
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topologies. Furthermore, its generalized Lagrangian mean curvature flow develops singularities many
times, though examples of Lee and Wang in Cm develops a singularity once. Note that, in this part,
we use notions of weighted Hamiltonian stationary and generalized Lagrangian mean curvature flow.
These notions are modifications of the ordinary notions of Hamiltonian stationary and Lagrangian
mean curvature flow defined in Calabi–Yau manifolds to almost Calabi–Yau manifolds. See Section
13 for precise definitions.

As mentioned above, it is important to study singularities of Lagrangian mean curvature flows.
In the study of mean curvature flows, there is a well-known result of Huisken [23]. He studied
asymptotic behavior of a mean curvature flow in Rm when it develops a singularity of special type I,
and proved that its rescaled flow converges to a self-shrinker in Rm. Here a self-shrinker is an immersion

F : L→ Rm from some manifold L which satisfies H(F )x = − 1
2
−→x ⊥

for all points x ∈ F (L). Hence a
self-shrinker is considered as a local model of a singularity of a mean curvature flow.

In Part III (cf. [52]), we try to generalize the result of Huisken in Rm to in a more general
Riemannian manifold, to study singularities of a Lagrangian mean curvature flow in a Calabi-Yau
manifold. As a result of such an attempt, we have generalized the result of Huisken in Rm for a Ricci-
mean curvature flow moving along a Ricci flow constructed from a gradient shrinking Ricci soliton,
although it is not a Calabi-Yau manifold. Here a Ricci-mean curvature flow is a coupled parabolic
PDE system of a Ricci flow and a mean curvature flow, that is, we consider a Ricci flow (N, gt) with
∂
∂tgt = −2Ric(gt) and a mean curvature flow Ft : L → (N, gt) with ∂

∂tFt = H(Ft), where the mean
curvature vector field H(Ft) is calculated by gt at each time t. In Part III, the Ricci flow we consider is
the one generated by a gradient shrinking Ricci soliton (N, g) with potential function f . Then, under
the special type I assumption, we prove that the rescaled flow converges to a self-shrinker in (N, g, f).
Here a self-shrinker in a gradient shrinking Ricci soliton (N, g, f)is an immersion F : L → N from
some manifold L which satisfies H(F ) = − 1

2∇f
⊥. This is a generalization of the notion of self-shrinker

in Rm to in a gradient shrinking Ricci soliton (N, g, f), given by Lott [32].

There are many results about self-shrinkers (more generally, self-similar solutions) in Rm. By a
generalization of the notion of a self-similar solution in Rm to in a gradient shrinking Ricci soliton
(N, g, f), we can discuss which results about self-similar solutions in Rm also hold in a gradient
shrinking Ricci soliton (N, g, f). As an example of such results, it is proved that a result due to
Smoczyk partially holds in a gradient shrinking Kähler-Ricci soliton. More precisely, in the proof of
Theorem 2.3.5 in [44], Smoczyk proved that every compact Lagrangian self-similar solution with exact
mean curvature form is a minimal submanifold in Cn, and as a generalization of this statement, we
can prove that every compact Lagrangian self-similar solution with exact mean curvature form is a
minimal submanifold in a gradient shrinking Kähler-Ricci soliton.

In Part IV (cf. [53]), we give further two results which are already established when (N, g, f) is Rm.
The first result is an analog of Theorem 4.3 of Futaki, Li and Li [15] under the Lagrangian assumption.
It gives a lower diameter bound of a compact Lagrangian self-shrinker (with under some assumptions)
in a complex m-dimensional gradient shrinking Kähler-Ricci soliton (N, g, f) by using an estimate of
the first eigenvalue of the weighted Laplacian. The second result is an analog of Proposition 5.3 of Cao
and Li [6] under the Lagrangian assumption. To be more precise, we prove that if R(g) > 2m there
exists no compact Lagrangian self-shrinker in N , if R(g) < 2m there exists no compact Lagrangian
self-expander in N and if R(g) = 2m every compact Lagrangian self-similar solution in N is a minimal
submanifold, where R(g) is the scalar curvature of (N, g).
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Part I

Special Lagrangians and Lagrangian
self-similar solutions in cones over toric
Sasaki manifolds
Abstract. We construct some examples of special Lagrangian submanifolds and Lagrangian self-
similar solutions in almost Calabi–Yau cones over toric Sasaki manifolds. For example, for any integer
g ≥ 1, we can construct a real 6-dimensional Calabi–Yau cone Mg and a 3-dimensional special La-
grangian submanifold F 1

g : L1
g → Mg which is diffeomorphic to Σg × R and a compact Lagrangian

self-shrinker F 2
g : L2

g → Mg which is diffeomorphic to Σg × S1, where Σg is a closed surface of genus
g.

1 Introduction

Special Lagrangian submanifolds are defined in almost Calabi-Yau manifolds. Recently special La-
grangian submanifolds have acquired an important role in Mirror Symmetry. For example, they
are key words in the Strominger–Yau–Zaslow Conjecture [48] which explains Mirror Symmetry of 3-
dimensional Calabi–Yau manifolds. Furthermore Thomas and Yau [49] introduced a stability condition
for graded Lagrangians and conjectured that a stable Lagrangian converges to a special Lagrangian
submanifold by the mean curvature flow.

In this conjecture, the mean curvature flow is also one of important key words. Simply stated,
mean curvature flows are gradient flows of volume functionals of manifolds. In a precise sense, it is a
flow of a manifold in a Riemannian manifold moving along its mean curvature vector field. Let (M, g)
be a Riemannian manifold, N a manifold and F : N × [0, T ) → M a smooth family of immersions,
then F is called a mean curvature flow if it satisfies

∂F

∂t
(p, t) = Ht(p) for all (p, t) ∈ N × [0, T )

where Ht is the mean curvature vector field of the immersion Ft := F (·, t) : N →M . If the ambient is
Rm, there is an important class of solutions called self-similar solution. An immersion of a manifold
F : N → Rm is called a self-similar solution if it satisfies

H = λF⊥

where λ ∈ R is a constant and F⊥ is the normal part of the position vector F . Huisken [23] has
studied mean curvature flows in Rm and proved that if the mean curvature flow in Rm has the
type I singularity, then there exists a smoothly convergent subsequence of the rescaling such that its
limit becomes a self-similar solution. In this sense, a self-similar solution can be thought of as an
asymptotical model of a mean curvature flow which develops a type I singularity at the time when it
blowups.

In this Part, we construct Lagrangian self-similar solutions in cone manifolds. To define self-similar
solutions in cone manifolds, we use the generalization of position vectors in Rm to cone manifolds
defined by Futaki, Hattori and the author in [14].

Here we introduce some notations over cone manifolds. First, for a Riemannian manifold (S, g),
we say that (C(S), g) is a cone over (S, g), if C(S) ∼= S×R+ and g = r2g+dr2 where r is the standard
coordinate of R+. We denote two projections by π : C(S) → S and r : C(S) → R+. On the cone
C(S), there is a natural R+-action defined below. This action can be considered as an expansion or
shrinking on the cone.

Definition 1.1. We define the R+-action on C(S) by

ρ · p0 = (s0, ρr0) ∈ C(S) ∼= S × R+

for all ρ ∈ R+ and p0 = (s0, r0) ∈ C(S).
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Definition 1.2. For a point p0 = (s0, r0) ∈ S × R+ ∼= C(S), we define the position vector −→p0 by

−→p0 = r0
∂

∂r

∣∣∣∣
r=r0

∈ Tp0C(S).

Furthermore, for a map F : N → C(S) from a manifold N , we define the position vector
−→
F of F by

−→
F (x) :=

−−−→
F (x) at x ∈ N . Note that

−→
F is a section of F ∗(TC(S)) over N .

Clearly −→p0 coincides with the derivative of the curve c(ρ) := ρ · p0 in C(S) at ρ = 1, that is,

−→p0 =
d

dρ

∣∣∣∣
ρ=1

(ρ · p0).

Using this generalization of the position vector, we can define self-similar solutions in cone manifolds.

Definition 1.3. Let N be a manifold. An immersion F : N → C(S) is called a self-similar solution if

H = λ
−→
F

⊥

where λ ∈ R is a constant. It is called a self-shrinker if λ < 0 and self-expander if λ > 0.

Here ⊥ is the orthogonal projection map from F ∗(TC(S)) to T⊥N which is an orthogonal com-
plement of F∗(TN). Furthermore if a self-similar solution in a Kähler manifold is a Lagrangian
submanifold, then we call it a Lagrangian self-similar solution.

The typical results in Rn studied by Huisken [23] are extended to the mean curvature flow in a
cone manifold by Futaki, Hattori and the author in [14]. For example, it is proved in [14] that if
a mean curvature flow in a cone manifold has the type Ic singularity, then there exists a smoothly
convergent subsequence of the rescaling such that its limit becomes a self-similar solution. Type Ic
singularity is a certain kind of singularity similar to type I singularity, and for more details refer to
[14].

In this part, we present a method of constructing special Lagrangian submanifolds and Lagrangian
self-similar solutions in toric Calabi–Yau cones. First we construct Lagrangian submanifolds in toric
Kähler cone in Theorem 3.4. Next, if the canonical line bundle of the toric Kähler cone is trivial, that
is, it is a toric almost Calabi–Yau cone, then we construct special Lagrangian submanifolds in Theorem
6.1 and Theorem 6.2, and Lagrangian self-similar solutions in Theorem 7.1. These constructions are
considered to be a kind of extension of special Lagrangian submanifolds in Cm by Harvey and Lawson
[22] and Lagrangian self-similar solutions in Cm by Joyce, Lee and Tsui in [26], see Remark 6.3 and
Remark 7.2. As an application of these theorems, we concretely construct some examples.

Example 1.4 (cf. Example 8.4). For any integer g ≥ 1, we construct a real 6-dimensional Calabi–Yau
cone Mg and a 3-dimensional special Lagrangian submanifold F 1

g : L1
g → Mg which is diffeomorphic

to Σg × R and a compact Lagrangian self-similar solution (self-shrinker) F 2
g : L2

g → Mg which is
diffeomorphic to Σg × S1 concretely, where Σg is a closed surface of genus g.

This part is organized as follows. In Section 2, we introduce some basic definitions and propositions
in toric Sasaki manifolds. In Section 3, we construct Lagrangian submanifolds in cones over toric Sasaki
manifolds. In Section 4, we explain some details about almost Calabi–Yau manifolds, Lagrangian
angles, special Lagrangian submanifolds and generalized mean curvature vectors. In Section 5, we
compute the Lagrangian angles of Lagrangians constructed in Section 3 when the ambient is a toric
almost Calabi–Yau cone. Section 6 is devoted to the proofs of Theorem 6.1 and 6.2. Section 7 is
devoted to the proofs of Theorem 7.1. In Section 8, for an application of our theorems, we construct
some concrete examples in toric Calabi–Yau 3-folds.

2 Toric Sasaki manifold

In this section we introduce some definitions and propositions in toric Sasaki manifolds. Proofs of the
results in this section are summarized in the papers of Boyer and Galicki [3] and Martelli, Sparks and
Yau [36]. First of all, we define Sasaki manifolds.
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Definition 2.1. Let (S, g) be a Riemannian manifold and ∇ the Levi-Civita connection of the Rie-
mannian metric g. Then (S, g) is said to be a Sasaki manifold if and only if it satisfies one of the
following two equivalent conditions.

(2.1.a) There exists a Killing vector field ξ of unit length on S so that the tensor field Φ of type (1, 1),
defined by Φ(X) = ∇Xξ, satisfies

(∇XΦ)(Y ) = g(ξ, Y )X − g(X,Y )ξ.

(2.1.b) There exists a complex structure J on C(S) compatible with g so that (C(S), ḡ, J) becomes a
Kähler manifold.

We call the quadruple (ξ, η,Φ, g) on S the Sasaki structure. S is often identified with the subman-
ifold {r = 1} = S×{1} ⊂ C(S). By the definition, the dimension of S is odd and denoted by 2m− 1.
Hence the complex dimension of C(S) is m. Note that C(S) does not contain the apex.

The equivalence of (2.1.a) and (2.1.b) can be seen as follows. If (S, g) satisfies the condition (2.1.a),
we can define a complex structure J on C(C) as

JY = Φ(Y )− η(Y )r
∂

∂r
and Jr

∂

∂r
= ξ.

for all Y ∈ Γ(TS) and r(∂/∂r) ∈ Γ(TR+), where η is a 1-form on S defined by η(Y ) = g(ξ, Y ).
Conversely, if (S, g) satisfies condition (2.1.b), we have a Killing vector field ξ defined as ξ = J ∂

∂r .
We can extend ξ and η also on the cone C(S) by putting

ξ = Jr
∂

∂r
, η(Y ) =

1

r2
g(ξ, Y )

where Y is any smooth vector field on C(S). Of course η on C(S) is the pull-back of η on S by the
projection π : C(S) → S. Furthermore the 1-form η is expressed on C(S) as

η = 2dc log r (1)

where dc = i
2 (∂̄ − ∂). From (1), the Kähler form ω of the cone (C(S), g) is expressed as

ω =
1

2
d(r2η) =

1

2
ddcr2 =

i

2
∂∂r2. (2)

Remember that we have defined R+-action on C(S) in Definition 1.1. By (2), it is clear that ρ∗ω = ρ2ω,
where we denote the transition map with respect to ρ ∈ R+ by the same symbol ρ : C(S) → C(S);
ρ(p) = ρ · p. Next, we introduce the notion of toric Sasaki manifolds.

Definition 2.2. A Sasaki manifold with Sasaki structure (S, ξ, η,Φ, g) of dimension 2m− 1 is a toric
Sasaki manifold if and only if it satisfies one of the following two equivalent conditions.

(2.2.a) There is an effective action of m-dimensional torus Tm on S preserving the Sasaki structure.

(2.2.b) There is an effective holomorphic action of m-dimensional torus Tm on C(S) preserving g.
Furthermore two projections π : C(S) → S and r : C(S) → R+ satisfy π(τ · p) = τ · π(p) and
r(τ · p) = r(p) for all τ ∈ Tm and p ∈ C(S).

It is clear that R+-action and Tm-action is commutative. The most typical example of the toric
Sasaki manifold is the sphere S2m−1, because C(S) = Cm \ {0} is toric Kähler.

The equivalence of (2.2.a) and (2.2.b) can be seen as follows. If a Sasaki manifold (S, g) satisfies
the condition (2.2.a), let τ ∈ Tm act on C(S) as

τ · p0 = (τ · s0, r0)
for all p0 = (s0, r0) ∈ C(S). Then this action on C(S) satisfies the condition (2.2.b). Conversely, if a
Sasaki manifold (S, g) satisfies the condition (2.2.b), then the restriction of Tm-action to S satisfies
the condition (2.2.a).

Let g ∼= Rm be the Lie algebra of Tm and g∗ be the dual vector space. We identify the vector field
on C(S) generated by v ∈ g and v itself. That is, for p ∈ C(S) we write

v(p) =
d

dt

∣∣∣∣
t=0

exp(tv) · p.
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A toric Sasaki manifold and its cone have a moment map µ : C(S) → g∗ with respect to the Kähler
form ω = 1

2d(r
2η). It is given by

⟨µ(p), v⟩ = 1

2
r2(p)η(v(p)), (3)

for all p ∈ C(S) and v ∈ g and it satisfy

d⟨µ, v⟩ = −ω(v, ·).
On the other hand, since C(S) is a toric variety, there exists a fan Σ of C(S) and the com-

plex structure on C(S) is determined by Σ. Moreover there exists an m-dimensional complex torus
TmC (∼= (C×)m) contains Tm as a compact subgroup, and TmC acts on C(S) as a bi-holomorphic automor-
phism and has an open dense TmC -orbit. Hence, over C(S), there exists an intrinsic anti-holomorphic
involution σ : C(S) → C(S) determined by Σ, that is, σ2 = id and σ∗J = −Jσ∗. This involution
satisfies

σ(w · p) = w · σ(p), (4)

where w ∈ TmC and p ∈ C(S). We denote the set of fixed points of σ by

C(S)σ = { p ∈ C(S) | σ(p) = p }.
Then it is a real m-dimensional submanifold of C(S), and we call it a real form of C(S). Now we
consider some properties of σ and C(S)σ.

Proposition 2.3. The involution σ : C(S) → C(S) is anti-symplectic. Thus it is also isometry.

Proof. Let U0 be an open dense TmC -orbit. For (w1, . . . , wm) ∈ U0
∼= TmC

∼= (C×)m, we take a

logarithmic holomorphic coordinates (z1, . . . , zm) defined by ez
k

= wk. Since ω is Tm-invariant and
the action of Tm is Hamiltonian, there exists a function F (x) ∈ C∞(Rm) with the property

ω =
i

2

m∑
k,ℓ=1

∂2F

∂xk∂xℓ
dzk ∧ dzℓ on U0,

where zk = xk+iyk. (See Guillemin [17].) On U0, the involution σ coincides with the standard complex
conjugate σ(z) = z, where z = (z1, . . . , zm). Note that F is independent of the coordinates (yk)mk=1.
Thus we have σ∗ω = −ω on U0. Since U0 is open and dense in C(S), thus we have σ∗ω = −ω on C(S).
Second statement follows immediately by combining the property that σ is anti-holomorphic.

Here we have some remarks.

Remark 2.4. Take a point p in real form C(S)σ and two vectors X,Y in TpC(S)
σ. Since σ∗X = X

and σ∗Y = Y , we have
ω(X,Y ) = ω(σ∗X,σ∗Y ) = −ω(X,Y )

by Proposition 2.3, hence ω = 0 on C(S)σ. This means that the real form C(S)σ is a Lagrangian
submanifold in C(S). Moreover if we apply the condition (4) for p and τ ∈ Tm, we have σ(τ ·p) = τ−1·p,
hence for all v ∈ g we have σ∗v(p) = −v(p). This means that v(p) is orthogonal to TpC(S)

σ with
respect to g.

In general we do not know for p in C(S)σ whether its position vector −→p is tangent to C(S)σ.
However if we assume the Reeb field ξ is generated by an element in g, then it is ensured. For such a
toric Sasaki manifold, we identify the Reeb vector field ξ and an element in g that generates ξ.

Proposition 2.5. Let (S, ξ, η,Φ, g) be a toric Sasaki manifold. If the Reeb field ξ is generated by an
element in g, then for all p in C(S)σ its position vector −→p is tangent to C(S)σ.

Proof. Remember Remark 2.4. Since C(S)σ is a Lagrangian submanifold, we have orthogonal decom-
position

TpC(S) = TpC(S)
σ ⊕ J(TpC(S)

σ),

with respect to g. Now ξ is in g, hence ξ(p) is orthogonal to TpC(S)
σ, that is, ξ(p) is in J(TpC(S)

σ).
On the other hand, ξ(p) = J(r ∂∂r )|at p = J(−→p ). Thus we have −→p ∈ TpC(S)

σ.
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In this Part we always assume that the Reeb field ξ of toric Sasaki manifold is generated by
an element in g. By Proposition 2.5, it follows that C(S)σ is also a cone manifold. If we write
Sσ = { p ∈ S | σ(p) = p }, then C(S)σ = C(Sσ).

In the last of this section, we remark some facts that is well known in the toric contact geometry
and the algebraic toric geometry. Let C(S) be the cone of a toric Sasaki manifold S with dimension
2m− 1 and with the Reeb field ξ. Let Zg

∼= Zm be the integral lattice of g, that is the kernel of the
exponential map exp : g → Tm. Let Σ be a fan of C(S) and Λ = {λ1, . . . , λd} ⊂ Zg be the primitive
generators of the 1-dimensional cones of Σ. Let ∆ = µ(C(S)) be a moment image of C(S) and let ∆∗

0

be a (open) dual cone of ∆ defined by

∆∗
0 := {x ∈ g | ⟨y, x⟩ > 0 for all y ∈ ∆ }.

Remark 2.6. In fact, ∆ is a good rational polyhedral cone defined below and the Reeb field ξ is an
element of ∆∗

0.

The second statement in Remark 2.6 is clear since for all p in C(S) we have

⟨µ(p), ξ⟩ = 1

2
r2(p)η(ξ(p)) =

1

2
r2(p) > 0.

Definition 2.7 (Good cone, cf. [30]). First we say that a subset ∆ ⊂ g∗ is a rational polyhedral cone
if there exists a finite set of primitive vectors Λ = {λ1, . . . , λd} ⊂ Zg such that

∆ = { y ∈ g∗ | ⟨y, λ⟩ ≥ 0 for λ ∈ Λ } − {0}.
We assume that the set Λ is minimal, that is, we can not express ∆ by any subset Λ′ ⊂ Λ, Λ′ ̸= Λ.
Furthermore we say that ∆ is strongly convex if ∆ ∪ {0} does not contain any straight lines of the
form ℓ = { p+ vt | t ∈ R } for some p and v in g∗. Under these assumptions a strongly convex rational
polyhedral cone ∆ with non-empty interior is good if the following condition holds. If a subset Λ′ ⊂ Λ
satisfies

{ y ∈ ∆ | ⟨y, λ⟩ = 0 for λ ∈ Λ′ } ̸= ∅,
then Λ′ is linearly independent over Z and{ ∑

λ∈Λ′

aλλ

∣∣∣∣ aλ ∈ R
}
∩ Zg =

{ ∑
λ∈Λ′

mλλ

∣∣∣∣mλ ∈ Z
}
. (5)

By the standard algebraic toric geometry theory, we know that the canonical line bundle KC(S) of
C(S) is trivial or not. That is the following remark.

Remark 2.8. The canonical line bundle KC(S) of C(S) is trivial if and only if there exists an element
γ ∈ (Zg)

∗ ∼= Zm such that
⟨γ, λ⟩ = 1

for all λ ∈ Λ. In fact, by using this element γ = (γ1, . . . , γm), we can construct canonical non-vanishing
holomorphic (m, 0)-form on C(S) by purely algebraic toric geometry way, and we denote it by Ωγ . On
the open dense TmC -orbit U0

∼= (C×)m, we can express Ωγ by the logarithmic holomorphic coordinates
(zk)mk=1 by

Ωγ = exp(γ1z
1 + · · ·+ γmz

m)dz1 ∧ · · · ∧ dzm.

3 Construction of Lagrangian submanifolds

Let (S, g) be a toric Sasaki manifold with dimR S = 2m−1 and (C(S), g) be the toric Kähler cone. In
this section we construct the explicit examples of Lagrangian submanifolds in C(S). Let µ : C(S) → g∗

be a moment map and ∆ = µ(C(S)) be the moment image of C(S). As explained in Section 2, there
exists a finite set of primitive vectors Λ = {λ1, . . . , λd} ⊂ Zg such that

∆ = { y ∈ g∗ | ⟨y, λ⟩ ≥ 0 forλ ∈ Λ } − {0}.
To construct Lagrangian submanifolds, first of all, take ζ ∈ g and c ∈ R, and we denote the

hyperplane { y ∈ g∗ | ⟨y, ζ⟩ = c } by Hζ,c. We assume that

Int∆ ∩Hζ,c ̸= ∅ and (6)

ζ /∈ zy for any y ∈ ∆ ∩Hζ,c, (7)
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where we define zy for y ∈ ∆ by

zy = SpanR{λi | ⟨y, λi⟩ = 0}.
For example, if y ∈ Int∆ then zy = {0}. We denote the intersection of ∆ and Hζ,c by

∆ζ,c = ∆ ∩Hζ,c.

First assumption (6) means that ∆ζ,c is codimension one in ∆. Second assumption (7) means that
if p ∈ C(S) is in µ−1(∆ζ,c) then ζ(p) ̸= 0, where we identify ζ ∈ g and the vector field on C(S)
generated by ζ ∈ g.

Let σ : C(S) → C(S) be the involution explained in Section 2 and C(S)σ be the real form. Let
µσ : C(S)σ → ∆ be the restriction of µ on the real form. In fact, µσ is a 2m-fold ramified covering of
∆. We define a subset of C(S)σ as the pull-back of ∆ζ,c by µ

σ by

C(S)σζ,c = (µσ)−1(∆ζ,c)

= { p ∈ C(S)σ | ⟨µ(p), ζ⟩ = c }.
By the assumptions (6) and (7), in fact C(S)σζ,c is a real (m− 1)-dimensional submanifold in the real
form C(S)σ. Since µσ is a 2m-fold covering of ∆, C(S)σζ,c is a 2m-fold covering of ∆ζ,c.

Remark 3.1. If ζ and c do not satisfy the assumptions (6) and (7), then C(S)σζ,c may become a
singular submanifold.

To construct a Lagrangian submanifold, we move C(S)σζ,c by a one parameter action of R+ and

torus Tm. Take an open interval I ⊂ R. Let f : I → R and ρ : I → R+ be two functions on I, and
τ0 be an element of torus Tm. We assume that ḟ is non-vanishing on I. We denote the 1-parameter
orbit {exp(f(t)ζ) · τ0}t∈I in torus by {τ(t)}t∈I . We define a real m-dimensional manifold by

Lζ,c = C(S)σζ,c × I.

Definition 3.2. We define a map F : Lζ,c → C(S) by

F (p, t) := ρ(t) · τ(t) · p
for (p, t) ∈ C(S)σζ,c × I = Lζ,c.

Remark 3.3. If ρ(t) · τ(t) is defined on I = R and periodic, then we can reduce I to S1 and take
Lζ,c as C(S)

σ
ζ,c × S1.

Theorem 3.4. F : Lζ,c → C(S) is a Lagrangian submanifold in C(S).

Proof. Fix x0 = (p0, t0) ∈ Lζ,c. For any X ∈ Tp0C(S)
σ
ζ,c, we have

F∗X = (ρ(t0) · τ(t0))∗X (8)

and for ∂/∂t ∈ Tt0I we have

F∗
∂

∂t
= (ρ(t0) · τ(t0))∗

(
ρ̇(t0)

ρ(t0)
−→p0 + ḟ(t0)ζ(p0)

)
. (9)

By the assumption, ḟ(t0)ζ(p0) ̸= 0 and it is orthogonal to all tangent vectors on C(S)σ, it follows
that F is an immersion. Next, it is clear that

ω(F∗X,F∗Y ) = ρ2(t0)ω(X,Y ) = 0,

ω(F∗∂/∂t, F∗∂/∂t) = 0 and

ω(F∗∂/∂t, F∗X) = ρ2(t0)ḟ(t0)ω(ζ(p0), X).

As mentioned in Remark 2.4, if two vectors X and Y are tangent to the real form then ω(X,Y ) = 0
and note that position vector −→p0 is tangent to the real form. Finally, in fact ω(ζ(p0), X) = 0 since

ω(ζ(p0), X) = X(⟨µ, ζ⟩)
and by definition of C(S)σζ,c the function ⟨µ, ζ⟩ is a constant c on C(S)σζ,c. Thus we have F ∗ω = 0
and F is a Lagrangian immersion.

4 almost Calabi–Yau manifold

In this section, we recall the details about almost Calabi–Yau manifolds, special Lagrangian subman-
ifolds and so on.
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Definition 4.1. Let (M,ω) be a Kähler manifold with complex dimension m. If the canonical line
bundle KM is trivial, we can take a non-vanishing holomorphic (m, 0)-form Ω on M . Then we call
a triple (M,ω,Ω) an almost Calabi–Yau manifold. Furthermore if the function ψ : M → R defined
below is identically constant, we call it a Calabi–Yau manifold.

On an almost Calabi–Yau manifold (M,ω,Ω), we define a function ψ by

e2mψ
ωm

m!
= (−1)

m(m−1)
2

(
i

2

)m
Ω ∧ Ω̄.

In this section, we always assume that (M,ω,Ω) is an almost Calabi–Yau manifold with complex
dimension m. Next, we define the Lagrangian angle of a Lagrangian submanifold.

Definition 4.2. Let F : L → M be a Lagrangian submanifold. The Lagrangian angle of F is the
map θF : L→ R/πZ defined by

F ∗(Ω) = eiθF+mF∗(ψ)dVF∗(g),

where g is the Riemannian metric on M with respect to ω.

Note that we do not assume that L is oriented. Thus dVF∗(g) has ambiguity of the sign. Since
F : L→M is a Lagrangian submanifold, θF is well defined. For details, see for example Harvey and
Lawson [22, III.1] or Behrndt [2].

Remark 4.3. Note that F ∗Ω is a non-vanishing complex-valued m-form on L. Hence on each local
coordinates (U, x1, . . . , xm) we can express F ∗Ω as

F ∗Ω = h(x)dx1 ∧ · · · ∧ dxm.
Here h is a non-vanishing complex-valued function on U . Then the Lagrangian angle θF is exactly
arg h the argument of h.

Now we can define special Lagrangian submanifolds.

Definition 4.4. Take a constant θ ∈ R. We say that F : L→M is a special Lagrangian submanifold
with phase eiθ if the Lagrangian angle θF is identically constant θ. This condition is equivalent to
that

F ∗(Im(e−iθΩ)) = F ∗(cos θ ImΩ− sin θReΩ) = 0.

If F : L→M is a special Lagrangian submanifold with phase eiθ, then there is a unique orientation
on L in which F ∗(Re(e−iθΩ)) = F ∗(cos θReΩ + sin θ ImΩ) is positive.

Historically Harvey and Lawson [22] have defined special Lagrangian submanifolds by calibrations.
Of course we can define special Lagrangian submanifolds in almost Calabi–Yau manifolds by calibra-
tions as follows. Let g be a Riemannian metric with respect to ω. Here we define a new Riemannian
metric g̃ on M by conformally rescaling by g̃ = e2ψg. Then the m-form Re(e−iθΩ) becomes a cali-
bration on the Riemannian manifold (M, g̃) and the definition of special Lagrangian submanifolds in
(M,ω,Ω) is restated as a calibrated submanifold in the Riemannian manifold (M, g̃) with respect to
Re(e−iθΩ).

Here we introduce the generalized mean curvature vector field. The generalized mean curvature
vector field was introduced by Behrndt in [1, §3] and later generalized by Smoczyk and Wang in [46].

Definition 4.5. The generalized mean curvature vector field Hg of F : L → M is a normal vector
field defined by

Hg = H −m(∇ψ)⊥.

Here H is the ordinary mean curvature vector field of F : L→M , ∇ is the gradient with respect
to g, and ⊥ is the projection from TM to T⊥L it is the g-orthogonal complement of F∗(TL).

Note that if ψ is constant or equivalently (M,ω,Ω) is Ricci-flat, thenHg ≡ H. As well known, if the
ambient space is a Calabi–Yau manifold, then the Lagrangian angle θF of a Lagrangian submanifold
F : L→M and its mean curvature vector field H satisfy the equation

H = J∇θF .
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More precisely, H = JF∗(∇F∗gθF ) where ∇F∗g is the (F ∗g)-gradient on L, however we write it as
above for short. On the other hand, if the ambient space is an almost Calabi–Yau manifold, the above
equation does not hold in general. However if we take Hg instead of H, the above equation holds.
This is proved by Behrndt [1, Prop. 4].

Proposition 4.6 (cf. [1, Prop. 4]). Let F : L → M be a Lagrangian submanifold in an almost
Calabi–Yau manifold. Then the generalized mean curvature vector field satisfies Hg = J∇θF .

It is clear that if L is connected, then L is a special Lagrangian submanifold if and only if Hg ≡ 0.
For more motivation to introduce the generalized mean curvature vector field and some properties,
refer the paper of Behrndt [2].

5 Lagrangian angle

Let (C(S), g) be the toric Kähler cone over a (2m − 1)-dimensional toric Sasaki manifold (S, g). In
this section we assume that the canonical line bundle KC(S) is trivial. As mentioned in Remark 2.8,
this assumption is equivalent to that there exists an element γ ∈ (Zg)

∗ ∼= Zm such that

⟨γ, λ⟩ = 1

for all λ ∈ Λ. Then we can take a non-vanishing holomorphic (m, 0)-form Ωγ which is expressed as

Ωγ = exp(γ1z
1 + · · ·+ γmz

m)dz1 ∧ · · · ∧ dzm

on the open dense TmC -orbit U0
∼= (C×)m by the logarithmic holomorphic coordinates (zk)mk=1. Thus

we have a toric almost Calabi–Yau cone manifold (C(S), ω,Ωγ).
Remember that in Section 3 we took the data c ∈ R, ζ ∈ g, I ⊂ R, f : I → R, ρ : I → R+ and

τ0 ∈ Tm, and we denoted τ(t) = exp(f(t)ζ) · τ0. We have defined a submanifold

C(S)σζ,c = { p ∈ C(S)σ | ⟨µ(p), ζ⟩ = c },
an m-dimensional manifold

Lζ,c = C(S)σζ,c × I

and a map F : Lζ,c → C(S) by
F (p, t) = ρ(t) · τ(t) · p.

Then by Theorem 3.4, F : Lζ,c → C(S) is a Lagrangian submanifold.
In this section, we want to compute F ∗Ωγ and the Lagrangian angle θF . Let U0

∼= (C×)m

be an open dense TmC -orbit and (zk)mk=1 be the logarithmic holomorphic coordinates on U0. Then
C(S)σ ∩ U0 = { (x1, . . . , xm) ∈ Rm } and

C(S)σζ,c ∩ U0 = { (x1, . . . , xm) | ⟨µ(x), ζ⟩ = c }.
We have only to compute F ∗Ωγ on this open dense subset. If we denote τ0 = (eiν

1

, . . . eiν
m

) ∈ Tm

then we have the following lemma.

Lemma 5.1. The Lagrangian angle of F : Lζ,c → (C(S), ω,Ωγ) is given by

θF (x, t) =f(t)

m∑
k=1

γkζ
k +

m∑
k=1

γkν
k (10)

+ arg

( m∑
k=1

((
ρ̇(t)

ρ(t)
ξk + iḟ(t)ζk

)
∂⟨µ(x), ζ⟩

∂xk

))
modπ,

where ξ = (ξ1, . . . , ξm) is the Reeb field on C(S).

Proof. Let L̃ = C(S)σ × I and ι : Lζ,c → L̃ be an inclusion map. If we define F̃ : L̃→ C(S) by

F̃ (p, t) = ρ(t) · τ(t) · p,
then F = F̃ ◦ ι and F ∗Ωγ = ι∗(F̃ ∗Ωγ). For τ = (eiθ

1

, . . . , eiθ
m

) ∈ Tm, the transition map τ : U0 → U0

is expressed by
τ · (z1, . . . zm) = (z1 + iθ1, . . . , zm + iθm).
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Since J(r ∂∂r ) = ξ and

ξ = ξ1
∂

∂y1
+ · · ·+ ξm

∂

∂ym
,

we have

r
∂

∂r
= ξ1

∂

∂x1
+ · · ·+ ξm

∂

∂xm
.

Hence for ρ ∈ R+ the transition map ρ : U0 → U0 is expressed by

ρ · (z1, . . . zm) = (z1 + ξ1 log ρ, . . . , zm + ξm log ρ).

Then we have
(F̃ ∗zk)(x1, . . . , xm, t) = xk + ξk log ρ(t) + i(f(t)ζk + νk).

Since
Ωγ = exp(γ1z

1 + · · ·+ γmz
m)dz1 ∧ · · · ∧ dzm

on U0 we have
F̃ ∗Ωγ = exp(h1(x, t) + ih2(x, t))d(F̃

∗z1) ∧ · · · ∧ d(F̃ ∗zm),

where we put

h1(x, t) =
m∑
k=1

γkx
k + log ρ(t)

m∑
k=1

γkξ
k,

h2(x, t) = f(t)

m∑
k=1

γkζ
k +

m∑
k=1

γkν
k and

d(F̃ ∗zk) = dxk +

(
ρ̇(t)

ρ(t)
ξk + iḟ(t)ζk

)
dt.

Fix a point p0 ∈ C(S)σζ,c ∩ U0. If we put ϕ(x) := ⟨µ(x), ζ⟩ − c, then C(S)σζ,c is locally expressed

around p0 as { (x1, . . . , xm) | ϕ(x1, . . . , xm) = 0 }. By the definition of a moment map and the
non-degeneracy of Kähler form, we have dϕ = −ω(ζ, ·) ̸= 0 at p0. Hence there exists k0 ∈ {1, . . . ,m}
such that ∂ϕ

∂xk0
(p0) ̸= 0. Thus by the implicit function theorem, xk0 is locally represented as xk0 =

xk0(x1, . . . , xk0−1, xk0+1, . . . , xm). Note that since ϕ(x1, . . . , xm) = 0, we have

∂ϕ

∂xℓ
+

∂ϕ

∂xk0
∂xk0

∂xℓ
= 0

for all ℓ ̸= k0. If we take (x1, . . . , xk0−1, xk0+1, . . . , xm) as a local coordinates on C(S)σζ,c, we have

ι∗(d(F̃ ∗z1) ∧ · · · ∧ d(F̃ ∗zm))

=h3(x, t)dx
1 ∧ · · · ∧ dxk0−1 ∧ dxk0+1 ∧ · · · ∧ dxm ∧ dt,

where

h3(x, t) = (−1)m−k0
(
∂⟨µ(x), ζ⟩
∂xk0

)−1( m∑
ℓ=1

(
ρ̇(t)

ρ(t)
ξℓ + iḟ(t)ζℓ

)
∂⟨µ(x), ζ⟩

∂xℓ

)
.

As mentioned in Remark 4.3, the Lagrangian angle θF is

arg(h3 exp(h1 + ih2)) = h2 + arg(h3).

One can prove that this coincides with the right hand side of the equation (10).

6 Construction of special Lagrangian submanifolds

Let (C(S), ω,Ωγ) be a toric almost Calabi–Yau cone over a toric Sasaki manifold (S, g). In this section,
we construct the special Lagrangian submanifolds in C(S). Let F : L(ζ, c) → C(S) be a Lagrangian
submanifold explained in Section 3. Then we find the conditions such that F is a special Lagrangian
submanifold. Remember that we denote the Reeb field ξ and write τ0 = (eiν

1

, . . . , eiν
m

) ∈ Tm. Here
we put

N := ⟨ζ, γ⟩ =
m∑
k=1

γkζ
k and θ :=

m∑
k=1

γkν
k.
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Theorem 6.1. Assume that the function ρ : I → R+ is identically constant. Take a constant θ0 ∈ R.
Then F : Lζ,c → C(S) is a special Lagrangian submanifold with phase eiθ0 if and only if

N = 0 and θ +
π

2
= θ0.

Proof. Since ρ̇(t) = 0, by Lemma 5.1 we have the Lagrangian angle

θF (p, t) = f(t)N + θ +
π

2
.

Note that we have assumed that f(t) is not constant. Thus the statement follows clearly.

Theorem 6.2. We assume that ζ = ξ, and put κ(t) := log ρ(t). Take a constant θ0 ∈ R. Then
F : Lζ,c → C(S) is a special Lagrangian submanifold with phase eiθ0 if and only if

Im(ei(θ−θ0)eN(κ(t)+if(t))) = const (11)

Proof. Since ζ = ξ, by Lemma 5.1, we have the Lagrangian angle

θF (p, t) = f(t)N + θ + arg(κ̇(t) + iḟ(t))

= arg((κ̇(t) + iḟ(t))ei(f(t)N+θ)). (12)

Note that γ is in ∆ since ⟨γ, λ⟩ = 1 for all λ ∈ Λ and, as mentioned in Remark 2.6, the Reeb field
ξ = ζ is in ∆∗

0 and this means that N = ⟨γ, ζ⟩ > 0. Since the argument of a complex valued function
is unchanged by a multiplication of a positive function, we can multiply the term in the argument in
(12) by NeNκ(t) and we have

θF (p, t) = arg((κ̇(t) + iḟ(t))ei(f(t)N+θ))

= arg(N(κ̇(t) + iḟ(t))eNκ(t)+i(f(t)N+θ)).

If we put
h(t) = eNκ(t)+i(f(t)N+θ),

then it is clear that θF (p, t) = arg(ḣ(t)). Thus it follows that θF ≡ θ0 constant if and only if

Im(ei(θ−θ0)eN(κ(t)+if(t))) = const.

Remark 6.3. If we define the curves cj : I → C× by

cj(t) := ρξ
j

(t)ei(f(t)ξ
j+νj),

then the equality (11) in Theorem 6.2 is equivalent to the equality

Im
(
e−iθ0cγ11 · · · cγmm

)
= const.

For example in Cm, the canonical Reeb field is ξ = (1, . . . , 1) and we can take γ = (1, . . . , 1). Then if
we take θ0 = 0 and ν1 = · · · = νm = 0 for example, then c1(t) = · · · = cm(t), and we put c(t) := c1(t).
Then the equality (11) in Theorem 6.2 becomes

Im(cm(t)) = const,

and the image of F : Lζ,c → Cm coincides with

{ (c(t)x1, . . . , c(t)xm) ∈ Cm | t ∈ I, xj ∈ R, (x1)2 + · · ·+ (xm)2 = c }.
Hence this is an extension of examples of special Lagrangian submanifolds mentioned in Theorem 3.5
in Section III.3.B. in the paper of Harvey and Lawson [22].

7 Construction of Lagrangian self-similar solutions

Let (C(S), ω,Ωγ) be a toric almost Calabi–Yau cone over a toric Sasaki manifold (S, g). Since C(S)
has both the cone structure and the almost Calabi–Yau structure, we can consider both the position
vector and the generalized mean curvature vector. Then we can defined the generalized self-similar
solution. Let M be a manifold and F : M → C(S) be an immersion. Then we say that F is a
generalized self-similar solution if

Hg = λ
−→
F ⊥
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for some λ ∈ R. In this section, we construct the Lagrangian generalized self-similar solutions in C(S).
Let F : Lζ,c → C(S) be a Lagrangian submanifold explained in Section 3. Remember that we denote

the Reeb field ξ and write τ0 = (eiν
1

, . . . , eiν
m

) ∈ Tm, and in Section 6, we put

N = ⟨ζ, γ⟩ =
m∑
k=1

γkζ
k and θ =

m∑
k=1

γkν
k.

Theorem 7.1. Let us assume that ζ = ξ, and put c(t) := ρ(t)eif(t) ∈ C×. If there exist a function
θ : I → R/πZ and a constant A ∈ R, and θ(t) and c(t) satisfy the differential equations{

ċ(t) = ei(θ(t)−θ)c(t)
N−1

θ̇(t) = Aρ(t)N sin(f(t)N + θ − θ(t)),
(13)

then F : Lζ,c → C(S) is a Lagrangian generalized self-similar solution with

2cHg = A
−→
F

⊥

and Lagrangian angle θF (p, t) = θ(t).

Proof. First of all, we prove that the Lagrangian angle θF (p, t) is equal to θ(t). Since ζ = ξ, by Lemma
5.1 we have the Lagrangian angle

θF (p, t) = f(t)N + θ + arg(κ̇(t) + iḟ(t)),

where κ(t) = log ρ(t). Since the argument of a complex valued function is unchanged under the
multiplication of a positive real valued function, by multiplying 2ρ(t)2 we have

arg(κ̇(t) + iḟ(t)) = arg(2ρ(t)2κ̇(t) + 2iρ(t)2ḟ(t))

= arg

(
d

dt
(ρ(t)2) + 2iρ(t)2ḟ(t)

)
.

Since c(t) = ρ(t)eif(t), we have

ċ(t) = ρ̇(t)eif(t) + iρ(t)ḟ(t)eif(t)

and multiplying this equation by 2ρ(t)e−if(t)(= 2c(t)) we have

2c(t)ċ(t) =
d

dt
(ρ(t)2) + 2iρ(t)2ḟ(t). (14)

If we use the differential equation (13) with respect to c(t) then the left hand side of (14) is equal to

2c(t)ċ(t) = 2ei(θ(t)−θ)c(t)
N

= 2ρ(t)Nei(θ(t)−θ−f(t)N). (15)

Thus we have

arg(κ̇(t) + iḟ(t)) = θ(t)− θ − f(t)N.

Consequently we have proved that

θF (p, t) = θ(t).

We turn to the proof of 2cHg = A
−→
F

⊥
. Since ω is non-degenerate and we have the orthogonal

decomposition
TF (p)C(S) = F∗(TpLζ,c)⊕ J(F∗(TpLζ,c))

for all p in Lζ,c, we have only to prove that

ω(2cHg, F∗X) = ω(A
−→
F

⊥
, F∗X)

for all X tangent to Lζ,c. Furthermore, since ω(A
−→
F

⊥
, F∗X) = ω(A

−→
F , F∗X), it is equivalent to prove

that
ω(2cHg, F∗X) = ω(A

−→
F , F∗X).

Remember that Lζ,c = C(S)σζ,c × I. Fix x0 = (p0, t0) in Lζ,c, X in Tp0C(S)
σ
ζ,c and ∂/∂t in Tt0I. See

the equalities (8) and (9) in the proof of Theorem 3.4, we have

F∗X = (ρ(t0) · τ(t0))∗X

F∗
∂

∂t
= (ρ(t0) · τ(t0))∗

(
ρ̇(t0)

ρ(t0)
−→p0 + ḟ(t0)ξ(p0)

)
.
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By Proposition 4.6 we have

Hg = JF∗(∇F∗gθF ),

where ∇F∗g is the (F ∗g)-gradient on L. By the definition of the position vector, one can prove that
−→
F (x0) = (ρ(t0) · τ(t0))∗(−→p0)

at x0 = (p0, t0). Note that we have proved that the Lagrangian angle

θF (p, t) = θ(t)

and this function is independent of any points in C(S)σζ,c. Thus if X is tangent to C(S)σζ,c at p0, then
we have

ω(2cHg, F∗X) = 2c ω(JF∗(∇F∗gθF ), F∗X) = −2c(F ∗g)(∇F∗gθF , X)

= −2cX(θF ) = 0.

Since if we substitute two vectors tangent to the real form into ω then it is zero, and −→p0 is tangent to
the real form, for X tangent to C(S)σζ,c at p0 we have

ω(A
−→
F , F∗X) = Aρ2(t0)ω(

−→p0, X) = 0.

Thus we have

ω(2cHg, F∗X) = 0 = ω(A
−→
F , F∗X)

for all X tangent to C(S)σζ,c at p0. Next, for ∂/∂t tangent to I at t0, we have

ω(2cHg, F∗
∂

∂t
) = 2c ω(JF∗(∇F∗gθF ), F∗

∂

∂t
) = −2c(F ∗g)(∇F∗gθF ,

∂

∂t
)

= −2c
∂

∂t
θF = −2cθ̇(t0)

= −2cAρ(t0)
N sin(f(t0)N + θ − θ(t0)).

In the last equality, we use the differential equation (13) with respect to θ(t). On the other hand, we
have

ω(A
−→
F , F∗

∂

∂t
) = Aρ2(t0)ḟ(t0)ω(

−→p0, ξ(p0)) = Aρ2(t0)ḟ(t0)
−→p0(⟨µ, ξ⟩))

= Aρ2(t0)ḟ(t0)
d

dρ

∣∣∣∣
ρ=1

⟨µ(ρ · p0), ξ⟩

= Aρ2(t0)ḟ(t0)
d

dρ

∣∣∣∣
ρ=1

ρ2⟨µ(p0), ξ⟩

= 2cAρ2(t0)ḟ(t0).

In the fourth equality, we use ⟨µ(ρ · p0), ξ⟩ = ρ2⟨µ(p0), ξ⟩ for a ρ ∈ R+ action and it follows by the
definition of the moment map (3). In the last equality, remember that for p0 in C(S)σζ,c (now ζ = ξ
by the assumption) ⟨µ(p0), ζ⟩ = c by the definition of C(S)σζ,c. By the equality (14), we know that

2ρ2(t0)ḟ(t0) is the imaginary part of 2c(t0)ċ(t0), and using the equality (15) we show that

2ρ2(t0)ḟ(t0) = 2ρN (t0) sin(θ(t0)− θ − f(t0)N)

Thus we have

ω(2cHg, F∗
∂

∂t
) = ω(A

−→
F , F∗

∂

∂t
).

This means that 2cHg = A
−→
F

⊥
.

Remark 7.2. Here we assume that all ξj ̸= 0. If we define curves cj : I → C∗ by

cj(t) := ρξ
j

(t)ei(f(t)ξ
j+νj),

then the differential equations (13) in Theorem 7.1 are equivalent to the following differential equations.{
d
dtc

1/ξj

j (t) = eiθ(t)cγ11 (t) · · · cγj−1/ξj

j (t) · · · cγmm (t) (j = 1, . . . ,m)
d
dtθ(t) = A Im(e−iθ(t)cγ11 (t) · · · cγmm (t)).

(16)

For example in Cm, the canonical Reeb field is ξ = (1, . . . , 1) and γ = (1, . . . , 1). Then if we take

17



θ0 = 0 and ν1 = · · · = νm = 0 for example, then the above equality (16) becomes{
d
dtcj(t) = eiθ(t)c1(t) · · · cj−1(t) · cj+1(t) · · · cm(t) (j = 1, . . . ,m)
d
dtθ(t) = A Im(e−iθ(t)c1(t) · · · cm(t)),

and the image of F : Lζ,c → Cm coincides with

{ (c1(t)x1, . . . , cm(t)xm) ∈ Cm | t ∈ I, xj ∈ R, (x1)2 + · · ·+ (xm)2 = c }.
This differential equations appear in Theorem A in the paper of Joyce, Lee and Tsui [26]. Hence this
is one of extension of the paper of Joyce, Lee and Tsui in Cm to the toric almost Calabi–Yau cone.

8 Examples

In this section, we apply the theorems and construct some concrete examples of special Lagrangians
and Lagrangian self-similar solutions. As explained in Remark 2.6 in Section 2, the moment image of
a toric Kähler cone is a strongly convex good rational polyhedral cone. Conversely, we can construct
a toric Kähler cone from a strongly convex good rational polyhedral cone by the Delzant construction.

Let
∆ = { y ∈ g∗ | ⟨y, λi⟩ ≥ 0 for i = 1, · · · , d } − {0}

be a strongly convex good rational polyhedral cone and put the (open) dual cone

∆∗
0 = { ξ ∈ g | ⟨v, ξ⟩ > 0 for all v ∈ ∆ }.

Proposition 8.1. For ∆ and ξ ∈ ∆∗
0, there exists a compact connected toric Sasaki manifold (S, g)

whose moment image is equal to ∆ and whose Reeb vector field is generated by ξ.

This proposition is proved by the Delzant construction, for details see [30] and [35]. Of course the
cone (C(S), g) of (S, g) is a toric Kähler manifold whose moment image is equal to ∆.

As mentioned in Remark 2.8 in Section 2, the canonical line bundle KC(S) is trivial if and only if
there exists an element γ in (Zg)

∗ ∼= Zm such that ⟨γ, λj⟩ = 1 for all j = 1, . . . , d, and using γ we can
construct a non-vanishing holomorphic (m, 0)-form Ωγ that is written by

Ωγ = exp(γ1z
1 + . . . γmz

m)dz1 ∧ · · · ∧ dzm (17)

on an open dense TmC -orbit by the logarithmic holomorphic coordinates. This condition is called
the height 1 and in fact there exists a definition of the height ℓ for some ℓ ∈ Z, for example see
Cho-Futaki-Ono [10]. Here we want to introduce the results in [10].

Theorem 8.2 (cf. Theorem 1.2 in [10]). Let S be a compact toric Sasaki manifold with cB1 > 0
and c1(D) = 0. Then by deforming the Sasaki structure varying the Reeb vector field, we obtain a
Sasaki-Einstein structure.

We do not explain the meanings of cB1 and c1(D) in this Part, but in [10] it is proved that the
condition with cB1 > 0 and c1(D) = 0 is equivalent to the height ℓ for some ℓ ∈ Z. Note that (S, g)
is Sasaki-Einstein if and only if (C(S), ω) is Ricci flat. Thus, if we use Theorem 8.2, then we get a
toric Calabi–Yau cone (C(S), ω,Ωγ) rather than almost Calabi–Yau . The merit of using the toric
Calabi–Yau is that Hg coincides with H.

From now on, we restrict ourselves to the case of dimC C(S) = 3. There is a useful proposition
(c.f. [10] ) to check whether given inward conormal vectors λi satisfy the goodness condition (5) of
Definition 2.7.

Proposition 8.3. Let ∆ be a strongly convex rational polyhedral cone in R3 given by

∆ = { y ∈ R3 | ⟨y, λi⟩ ≥ 0, j = 1, · · · , d } − {0}

λ1 =

 1
p1
q1

 , · · · , λd =

 1
pd
qd

 .

Then ∆ is good in the sense of Definition 2.7 if and only if either

1. |pi+1 − pi| = 1 or
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2. |qi+1 − qi| = 1 or

3. pi+1 − pi and qi+1 − qi are relatively prime non-zero integers

for i = 1, · · · , d where we have put λd+1 = λ1.

Example 8.4. Take an integer g ≥ 1. If g = 1, let ∆ be the strongly convex rational polyhedral cone
defined by

∆ = ∆1 = { y ∈ R3 | ⟨y, λi⟩ ≥ 0, i = 1, 2, 3, 4 } − {0}
with

λ1 :=

 1
−1
−1

 , λ2 :=

 1
0
−1

 , λ3 :=

1
1
0

 , λ4 :=

1
2
3

 .

If g ≧ 2 let ∆ be the strongly convex rational polyhedral cone defined by

∆ = ∆g = { y ∈ R3 | ⟨y, λi⟩ ≥ 0, i = 1, . . . , g + 3 } − {0}
with

λ1 :=

 1
−1
−1

 , λk :=

 1
k − 2

(k − 2)2 − 1

 (k = 2, 3, . . . , g + 2), λg+3 :=

 1
−2
g2

 ,

Then by Proposition 8.3, ∆ is a strongly convex good rational polyhedral cone. Since we can take γ
as (1, 0, 0) so that ⟨γ, λj⟩ = 1 for j = 1, . . . , g + 3, this condition satisfies the height 1 and we can
use Theorem 8.2. Let (C(S), ω) be a toric Kähler manifold whose moment image is equal to ∆. The
existence of it is guaranteed by Proposition 8.1. If necessary, we deform the Kähler form ω and Reeb
field ξ on C(S) so that (C(S), ω) is Ricci flat by Theorem 8.2. Thus we can assume that (C(S), ω)
is Ricci flat. Furthermore, since we can take γ as above, the canonical line bundle KC(S) is trivial
and we have a non-vanishing holomorphic (3, 0)-form Ωγ on C(S). Thus we have a Calabi–Yau cone
Mg = (C(S), ω,Ωγ) and denote its Reeb field by ξ.

For example, if we take

c :=
1

2
⟨γ, ξ⟩ and ζ := ξ,

then ζ and c satisfy the assumptions (6) and (7) in Section 3, which proved in Proposition 9.1 in
Section 9. Then the shape of ∆ζ,c = ∆ ∩ Hζ,c is a (g + 3)-gon, which proved in Proposition 9.2 in
Section 9. For example if g = 1 then ∆ζ,c is a quadrilateral and if g = 2 then ∆ζ,c is a pentagon.

Remember that µσ, the restriction of the moment map µ to the real form C(S)σ, is a 23(= 8)-
fold covering of ∆, and we have defined C(S)σζ,c = (µσ)−1(∆ζ,c). Hence the topological shape of
the C(S)σζ,c is a 2-dimensional surface constructed from 8-copies of ∆ζ,c that is glued with certain
boundaries. In this setting, we can see that

C(S)σζ,c
∼= Σg,

where Σg is a closed surface of genus g. This will be explained in Proposition 9.3 in Section 9.
Special Lagrangian. First we construct special Lagrangian submanifolds using Theorem 6.2.

Now N = ⟨γ, ζ⟩ > 0. For example take θ0 = 0. Then, for example, take an open interval I = (0, π),
and define f : I → R and ρ : I → R+ by

f(t) =
1

N
t and ρ(t) =

(
1

sin t

)1/N

,

and take τ0 = (eiν
1

, eiν
2

, eiν
3

) in T 3 as ν1 = ν2 = ν3 = 0. Then θ = γ1ν
1 + γ2ν

2 + γ3ν
3 = 0. This

setting satisfies the equality (11). Thus F : Lζ,c → Mg is a special Lagrangian submanifold and Lζ,c
is diffeomorphic to

Lζ,c ∼= Σg × R.

Note that of course the map F and Lζ,c depend on g, and in Example 1.4 we denote these by
F 1
g : L1

g →Mg.
Lagrangian self-similar solution. Next we construct Lagrangian (generalized) self-similar

solutions using Theorem 7.1. Now N = ⟨γ, ζ⟩ > 0. For example take

θ(t) = Nt+
π

2
and A = −N.
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Then, for example, take an interval I = R, and define f : I → R and ρ : I → R+ by

f(t) = t and ρ(t) = 1,

and take τ0 = (eiν
1

, eiν
2

, eiν
3

) in T 3 as ν1 = ν2 = ν3 = 0. Then θ = γ1ν
1 + γ2ν

2 + γ3ν
3 = 0. This

setting satisfies the differential equations (13). Thus F : Lζ,c → C(S) is a Lagrangian self-similar
solution (self-shrinker). Furthermore as mentioned in Remark 3.3, we can reduce I to S1, hence we
have a compact Lagrangian self-shrinker F : Lζ,c →Mg with

Hg = −
−→
F

⊥

which is diffeomorphic to
Lζ,c ∼= Σg × S1.

Note that of course the map F and Lζ,c depend on g, and in Example 1.4 we denote these by
F 2
g : L2

g →Mg.

Remark 8.5. In Mg(= C(S)) constructed above, it is clear that the real form C(S)σ itself is one of
the most typical examples of special Lagrangian submanifold in C(S), and it is a cone. Hence C(S)σ

is also diffeomorphic to Σg × R. However the above example F 1
g : L1

g →Mg is different from the real
form itself, especially it dose not have a cone shape.

9 Appendix

In this Section, we give some proofs for the statements mentioned in Example 8.4 in Section 8.

Proposition 9.1. ζ and c in Example 8.4 satisfy the assumptions (6) and (7) in Section 3.

Proof. First, it is clear that 1
2γ is in Int∆ and it is also in Hζ,c. This proves that ζ and c satisfy the

assumption (6). Next we prove that ζ and c satisfy the assumption (7) by the proof of contradiction.
Assume that there exists y in ∆ ∩Hζ,c such that ζ is in zy. Here remember that

zy = SpanR{λj | ⟨y, λj⟩ = 0 }.
Since y is in ∆ and, as mentioned in Remark 2.6, the Reeb field ξ is in ∆∗

0, this means that ⟨y, ζ⟩ =
⟨y, ξ⟩ > 0. On the other hand, the pairing of y and all elements in zy is zero. This is in contradiction
to that ζ is in zy. Thus we have proved that ζ and c satisfy the assumption (7).

Proposition 9.2. The shape of ∆ζ,c = ∆ ∩Hζ,c in Example 8.4 is a (g + 3)-gon.

Proof. First, we denote the facet of ∆ defined by λj by

Fj = { y ∈ ∆ | ⟨y, λj⟩ = 0 }
for j = 1, . . . , g + 3. Next, take an element y in Fj and put κ := c

⟨y,ζ⟩ . Since
1
2γ and y are in ∆ and

ζ = ξ is in ∆∗
0, it follows that c = 1

2 ⟨γ, ξ⟩ > 0, ⟨y, ζ⟩ > 0 and κ > 0. Then κy is in Fj and Hζ,c.
This means that the hyperplane Hζ,c intersects all facets of ∆. Thus we have proved that ∆ζ,c is a
(g + 3)-gon.

Proposition 9.3. Under the setting in Example 8.4,

C(S)σζ,c
∼= Σg,

where Σg is a closed surface of genus g.

Proof. There exists an open dense T 3
C-orbit on C(S). We identify T 3

C with (C×)3. It is clear that the
real form of (C×)3 is (R×)3 and it has 8 connected components R3(κ1, κ2, κ3), where κi are +1 or −1
and we define

R3(κ1, κ2, κ3) = { (x1, x2, x3) ∈ R3 | κ1x1 > 0, κ2x2 > 0, κ3x3 > 0 }.
There is a standard diffeomorphism from each R3(κ1, κ2, κ3) to R3 defined by

− log | · | : R3(κ1, κ2, κ3) → R3,

that is , (x1, x2, x3) maps to (− log |x1|,− log |x2|,− log |x3|). In the algebraic toric geometry, there
is a concept of manifolds with corner associated with toric varieties. From this view point, we can
consider that R3 is rescaled and embedded into ∆, that is a manifold with corner. This means that
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the infinity toward the direction of λj in R3 corresponds to the facet Fj of ∆ defined by λj . For more
general treatment, see Oda [42]. In this sense, we identify R3 and Int ∆, and we identify the infinity
toward the direction of λj in R3 and the facet Fj of ∆ defined by λj . For each inward conormal
λj = (λ1j , λ

2
j , λ

3
j ) of ∆, then consider a curve cj(t) in R3 ∼= Int∆ defined by

cj(t) = tλj = (λ1j t, λ
2
j t, λ

3
j t).

Then the pull back of cj(t) to R3(κ1, κ2, κ3) by − log | · | is
c̃j(t) = (κ1e

−λ1
j t, κ2e

−λ2
j t, κ3e

−λ3
j t)

and if we put s = e−t > 0 then this curve c̃j(t) in R3(κ1, κ2, κ3) is written by

c̃j(s) = (κ1s
λ1
j , κ2s

λ2
j , κ3s

λ3
j ).

If this curve tends to the facet Fj , then it is equivalent to t → +∞ and also s → +0. If we allow to
take s = 0, then the point c̃j(0) can be considered as in the facet Fj and furthermore if we allow to
take s < 0, then the curve c̃j(s) is in

R3((−1)λ
1
jκ1, (−1)λ

2
jκ2, (−1)λ

3
jκ3).

This means that if we prepare 8 copies of ∆ and give the labels formally to each ∆ as

∆(+1,+1,+1), ∆(+1,+1,−1), ∆(+1,−1,+1), ∆(+1,−1,−1),
∆(−1,+1,+1), ∆(−1,+1,−1), ∆(−1,−1,+1), ∆(−1,−1,−1),

(18)

then ∆(κ1, κ2, κ3) and ∆((−1)λ
1
jκ1, (−1)λ

2
jκ2, (−1)λ

3
jκ3) are glued together along the facet Fj defined

by λj .
In the above observation, we consider the gluing relation of 8 copies of ∆ however, the glueing

relation of ∆ζ,c is the same as ∆. That is, if we prepare 8 copies of ∆ζ,c and give the labels formally

to each ∆ζ,c as same as (18), then ∆ζ,c(κ1, κ2, κ3) and ∆ζ,c((−1)λ
1
jκ1, (−1)λ

2
jκ2, (−1)λ

3
jκ3) are glued

together along the edge Ej = Fj ∩∆ζ,c defined by λj . This is the topological shape of C(S)σζ,c.
Then one can check that C(S)σζ,c

∼= Σg by the straight forward observations glueing 8 copies of
∆ζ,c as above relations. In Figure 1 and Figure 2, we draw the image of the way of gluing in the case
g = 1 and g = 2 respectively. In these figures, we write ∆ζ,c(κ1, κ2, κ3) by (κ1, κ2, κ3) for short and
the edge Ej by j for short, and glue same labels together. Note that in Figure 2 we write a pentagon
as a quadrilateral by joining edge 4 and edge 5 flatly to write a picture easily.
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Part II

Weighted Hamiltonian stationary
Lagrangian submanifolds and generalized
Lagrangian mean curvature flows in toric
almost Calabi–Yau manifolds
Abstract. In this Part, we generalize examples of Lagrangian mean curvature flows constructed
by Lee and Wang in Cm to toric almost Calabi–Yau manifolds. To be more precise, we construct
examples of weighted Hamiltonian stationary Lagrangian submanifolds in toric almost Calabi–Yau
manifolds and solutions of generalized Lagrangian mean curvature flows starting from these examples.
We allow these flows to have some singularities and topological changes.

10 Introduction

Recently, study of Lagrangian submanifolds acquire much importance in association with Mirror
Symmetry. There are several classes of Lagrangian submanifolds. For example, special Lagrangian
submanifolds are defined in Calabi–Yau manifolds by Harvey and Lawson [22] and they have an impor-
tant role in the Strominger–Yau–Zaslow conjecture [48]. A class of Hamiltonian stationary Lagrangian
submanifolds is also defined in Calabi–Yau manifolds, especially a special Lagrangian submanifold is
a Hamiltonian stationary Lagrangian submanifold. In general, constructing explicit examples of spe-
cial or Hamiltonian stationary Lagrangian submanifolds is difficult since these conditions are locally
written by nonlinear PDE. However some examples are constructed in the case that the ambient
Calabi–Yau manifold has symmetries, especially in Cm.

First, we introduce some previously known examples of special or Hamiltonian stationary La-
grangian submanifolds and Lagrangian mean curvature flows. One of examples of special Lagrangian
submanifolds in Cm constructed by Harvey and Lawson [22, III.3.A] is defined by

Mc := { (z1, . . . , zm) ∈ Cm | Im(z1 · · · zm) = c1, |z1|2 − |zj |2 = cj (j = 2, . . . ,m)},
where c = (c1, . . . , cm) ∈ Rm. Note that the phase of Mc is im. We remark that if c1 = 0 and
zj = xje

iθj for xj ∈ R and θj ∈ R, then Mc is written by

{ exp(θ2ζ2 + · · ·+ θmζm) · x ∈ Cm | x ∈ Rm, θj ∈ R, ⟨µ(x), ζj⟩ =
cj
2
(j = 2, . . . ,m)},

where ζj := (1, 0, . . . , 0,−1, 0, . . . , 0) = e1 − ej ∈ Rm, µ(x) := 1
2 (x

2
1, . . . , x

2
m) and exp(v) · x =

(x1e
2πiv1 , . . . , xme

2πivm) for v = (v1, . . . , vm) ∈ Rm. This is a Tm−1-invariant special Lagrangian
submanifold in Cm.

Next examples of special Lagrangian submanifolds in Cm are constructed by Joyce [24, Example
9.4]. He considered a family of T 1-invariant Lagrangian submanifolds denoted by

Na1,...,am
c := { (x1e2πia1θ, . . . , xme2πiamθ) ∈ Cm | θ ∈ R, a1x21 + · · ·+ amx

2
m = c},

where a = (a1, . . . , am) ∈ Rm and c ∈ R, and he proved that Na1,...,am
c is a special Lagrangian

submanifold if and only if

a1 + · · ·+ am = 0. (19)

He constructed these examples by using a moment map of T 1-action on Cm. Of course, in the same
way as Mc, the Lagrangian submanifold Na1,...,am

c can be written by

{ exp(θa) · x | x ∈ Rm, θ ∈ R, ⟨µ(x), a⟩ = c

2
}.

These two examples suggest that a torus action, a real structure and a moment map are useful to
construct special Lagrangian submanifolds. From this view point, the author [50] generalized Joyce’s
example Na1,...,am

c in Cm to in an m-dimensional toric almost Calabi–Yau cone manifold. To be more
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precisely, the author constructed examples of special Lagrangian submanifolds of the form

{ exp(tζ) · p | p ∈Mσ, t ∈ R, ⟨µ(p), ζ⟩ = c }
in a toric almost Calabi–Yau cone manifold (M,ω, g, J,Ωγ), where M

σ is the real form of M , µ is
a moment map of Tm-action on M , ζ is a vector in Rm satisfying a special condition and c is a
constant. This is a T 1-invariant special Lagrangian submanifold in a toric almost Calabi–Yau cone
manifold (M,ω, g, J,Ωγ).

This type of constructions is also effective to construct examples of Hamiltonian stationary La-
grangian submanifolds and its mean curvature flows. Actually, Lee and Wang [29] proved that Vt
defined by {

(x1e
2πiζ1s, . . . , xme

2πiζms) ∈ Cm
∣∣∣∣ 0 ≤ s ≤ 1,

m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj , x = (x1, . . . , xm) ∈ Rm
}

is Hamiltonian stationary Lagrangian submanifolds for all ζ ∈ Rm and c ∈ R. Furthermore, they
proved that this family {Vt}t∈R is a solution of mean curvature flow and it has a singularity when
t = 0. To be more precise, they proved that it is a solution of Brakke flow. Here Brakke flow proposed
by Brakke [4] is a weak formulation of a mean curvature flow with singularities .

A mean curvature flow is one of potential approaches to find a special Lagrangian submanifold in
a given Calabi–Yau manifold as the following meaning. If there exists a long time solution of a mean
curvature flow starting from a given Lagrangian submanifold and the flow converges to a smooth
manifold, then it is a minimal Lagrangian submanifold, that is, a special Lagrangian submanifold.
Indeed, this method has more deep background related to Mirror Symmetry proposed by Thomas and
Yau [49]. Roughly speaking, they introduce a stability condition on Lagrangian submanifolds and
conjecture that the Lagrangian mean curvature flow starting from a stable Lagrangian submanifold
exists for all time and converges to a special Lagrangian submanifold in its Hamiltonian deforma-
tion class. This conjecture is called Thomas–Yau conjecture. Recently, Joyce [25] has updated the
Thomas–Yau conjectures to achieve more plausible statement. In [25], he discusses the possibility that
the Lagrangian mean curvature flow develops singularities many times even if an initial Lagrangian
submanifold is stable and mentions the necessity of surgeries of Lagrangian mean curvature flows.
Thus it is meaningful to construct examples of Lagrangian mean curvature flows with singularities to
understand the motion of Lagrangian mean curvature flows and to develop this program.

In this Part, we construct explicit examples of special or weighted Hamiltonian stationary La-
grangian submanifolds in toric almost Calabi–Yau manifolds and construct solutions of generalized
Lagrangian mean curvature flows with singularities and topological changes starting from these exam-
ples. These examples can be considered as some kind of generalization of examples of Lee and Wang
[29] in Cm to toric almost Calabi–Yau manifolds. When the ambient space is a general toric almost
Calabi–Yau manifold, its topology is not simple and there are many fixed points of torus action. Hence
we can get examples of special or weighted Hamiltonian stationary Lagrangian submanifolds with var-
ious topologies. Furthermore, its generalized Lagrangian mean curvature flow develops singularities
many times though examples of Lee and Wang in Cm develops a singularity once.

Note that, in this Part, we use notions of weighted Hamiltonian stationary and generalized La-
grangian mean curvature flow. These notions are modifications of the ordinary notions of Hamil-
tonian stationary and Lagrangian mean curvature flow defined in Calabi–Yau manifolds to almost
Calabi–Yau manifolds. See Section 13 for precise definitions.

Here we give a short description of the main results of this Part. Let (M,ω, g, J,Ωγ) be a real
2m-dimensional toric almost Calabi–Yau manifold with torus Tm action. To be more precise, that
is a toric Kähler manifold with a nonvanishing holomorphic (m, 0)-form Ωγ . We see in Section 13
that Ωγ is constructed by a vector γ in Zm which is canonically determined by the toric structure of
(M,J). Note that we do not assume that (M,ω, g, J) is Ricci-flat. Since (M,ω, g, J) is a toric Kähler
manifold, there exist a moment map µ :M → ∆ with a moment polytope ∆ and an anti-holomorphic
and anti-symplectic involution σ : M → M , see Section 11 for more precise settings. We denote the
fixed point set of σ by Mσ and call it the real form of M . This is a real m-dimensional submanifold
in M . Fix an integer n with 0 ≤ n ≤ m. Take a set of n vectors ζ = { ζ1, . . . , ζn } ⊂ Zm and a set of
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n constants c = { c1, . . . , cn } ⊂ R and consider the set

Mσ
ζ,c := { p ∈Mσ | ⟨µ(p), ζi⟩ = ci, i = 1, . . . , n }.

We assume that Mσ
ζ,c is a real (m − n)-dimensional submanifold in Mσ and Tζ := Vζ/(Vζ ∩ Zm) is

isomorphic to a subtorus Tn in Tm, where Vζ := SpanR{ζ1, . . . , ζn}. Then we put a realm-dimensional
manifold as

Lζ,c :=Mσ
ζ,c × Tζ (20)

and define a map Fζ,c : Lζ,c →M by

Fζ,c(p, [v]) := exp v · p.
Then the main theorems in this Part are the following.

Theorem 10.1. Fζ,c : Lζ,c → M is a Tn-invariant weighted Hamiltonian stationary Lagrangian
submanifold for all ζ and c, and its Lagrangian angle θζ,c : Lζ,c → R/πZ is given by θζ,c(p, [v]) =
2π⟨γ, v⟩ + π

2n (mod. π). Thus Fζ,c : Lζ,c → M is a special Lagrangian submanifold if and only if
⟨γ, ζi⟩ = 0 for all i = 1, . . . , n.

Theorem 10.2. The family of the images of {Fζ,c(t) : Lζ,c(t) →M}0≤t≤T is a solution of generalized
Lagrangian mean curvature flow with singularities and topological changes with initial condition Fζ,c,
where c(t) := { c1(t), . . . , cn(t) } and each cj(t) is given by cj(t) := cj − 2πt⟨γ, ζj⟩. Here T is the first
time that Mσ

ζ,c(t) becomes empty set.

Theorem 10.1 is a summary of Theorem 13.2, Corollary 13.3 and Theorem 13.5. Theorem 10.2 is
a part of Theorem 14.2.

The definitions of Lagrangian angle and weighted Hamiltonian stationary are given in Section
13. The meaning of weighted Hamiltonian stationary is explained in Section 16. The notion of
generalized Lagrangian mean curvature flow with singularities and topological changes is defined
in Section 14. Roughly speaking, this flow is parametrized by a smooth flow except for some m-
dimensional Hausdorff measure zero sets. In Example 15.1 of Section 15, we see that our construction
is a kind of generalization of the example of Lee and Wang [29]. In Example 15.2, we give a concrete
example of generalized Lagrangian mean curvature flow with singularities and topological changes in
KP2 , the total space of the canonical bundle over P2.

We note that the example Mc of Harvey and Lawson is in the case when n = m−1, and Na1,...,am
c

of Joyce, Vt of Lee and Wang and the previous work of the author in [50] are in the case when
n = 1. After finishing my work, the author learned from H. Konno that the Mironov and Panov
[38] constructed examples of Tn-invariant Hamiltonian stationary Lagrangian submanifolds in m-
dimensional toric varieties for 0 ≤ n ≤ m. First, Mironov [37] constructed Tn-invariant Hamiltonian
stationary or minimal Lagrangian submanifolds in Cm and CPm. These examples can be written as
the form (20) in Cm. In [38], they used a Kähler quotient of Cm to construct new examples in toric
varieties. We remark that our method is different from theirs in the point that we use the real form
and a moment map rather than Kähler quotient, and furthermore we study the motion of generalized
Lagrangian mean curvature flows starting from these examples.

11 Toric Kähler manifold

In this section, we fix our notations of toric Kähler geometry and introduce an anti-holomorphic
involution and its properties. Let Tm ∼= (S1)m be an m-dimensional real torus and (M,ω, g, J) be
a toric Kähler manifold with complex dimension m. Then Tm acts on M effectively and the Kähler
form ω is invariant under the action. Let µ : M → g∗ be a moment map and ∆ := µ(M) be a
moment polytope, where g is a Lie algebra of Tm and g∗ is its dual. Since (M,J) is a toric variety,
there is a complex torus TmC

∼= (C×)m which is a complexification of Tm and TmC acts on (M,J) as
biholomorphic automorphisms. Then M has an open dense TmC -orbit and we denote the fan of (M,J)
by Σ. Let Σ(1) := { ρ ∈ Σ | dim ρ = 1 } be the set of 1-dimensional cones in Σ. We assume that Σ(1)
is a finite set and write Σ(1) = {ρ1, . . . , ρd}. Let λi be the primitive element in Zm that generates ρi
for i = 1, . . . , d, that is, ρi = R+λi. Note that, in general, ∆ is not a closed subset in g∗. For example,
if we consider a toric Kähler manifold constructed by removing all fixed points of torus action from
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some toric Kähler manifold, then its moment polytope has a shape that all vertices are removed from
the original polytope and this is not a closed subset.

We assume that there exist κi in R for i = 1, . . . , d so that the closure of ∆ is given by

∆ =
d∩
i=1

H+
λi,κi

.

Here for a nonzero vector λ in g and κ in R, we define the affine hyperplane Hλ,κ and closed half-space
H+
λ,κ by

Hλ,κ := { y ∈ g∗ | ⟨y, λ⟩ = κ } and H+
λ,κ := { y ∈ g∗ | ⟨y, λ⟩ ≥ κ }.

A subset F ⊂ ∆ is called a face of ∆ if and only if there exist a vector v in g and a constant c such
that

∆ ⊂ H+
v,c and F = ∆ ∩Hv,c.

We denote the set of all faces of ∆ by F . Then we assume that there exists a subset G of F such that
∆ is of the form

∆−
∪
F∈G

F.

For a point y in ∆, we define zy a subspace of g by

zy := SpanR{λi | y ∈ Hλi,κi
}.

For example, if y is in the interior of ∆ then zy is {0}. For a point p in M , if we denote the stabilizer
at p by Zp = { t ∈ Tm | t · p = p }, then the Lie algebra of Zp coincides with zµ(p). Thus, if µ(p) is
in the interior of ∆ then torus action is free at p, and if µ maps p to a vertex of ∆ then p is a fixed
point.

Since (M,J) is a toric variety, there exists the intrinsic anti-holomorphic involution σ : M → M
determined by the fan Σ, that is, σ2 = id and σ∗J = −Jσ∗, where J is the complex structure on M .
This involution satisfies σ(u · p) = u · σ(p), where u ∈ TmC acts on p. Let Mσ := { p ∈ M | σ(p) = p }
be the set of fixed points of σ, that is a submanifold of M with real dimension m, we call it the real
form of M .

Proposition 11.1. The involution σ :M →M is anti-symplectic, and consequently σ is isometry.

Proof. Let U be an open dense TmC -orbit. For (w1, . . . , wm) ∈ U ∼= (C×)m, we take the logarithmic

holomorphic coordinates (z1, . . . , zm) with ez
i

= wi. Since ω is Tm-invariant and the action of Tm is
Hamiltonian, there exists a function F ∈ C∞(Rm) with the property

ω =

√
−1

2

m∑
i,j=1

∂2F

∂xi∂xj
dzi ∧ dzj on U, (21)

where zi = xi +
√
−1yi. (See Theorem 3.3 in Appendix 2 of [18].) On U , the involution σ coincides

with the standard complex conjugate σ(z) = z, where z = (z1, . . . , zm). Since ω is Tm-invariant, note
that F is independent of the coordinates (y1, . . . , ym). Thus we have σ∗ω = −ω on U . Since U is
open and dense in M , thus we have σ∗ω = −ω on M .

12 Lagrangian submanifold

In this section, we construct our examples of Lagrangian submanifold. First of all, let n be an integer
with 0 ≤ n ≤ m. Next, take a set of n vectors ζ = {ζi}ni=1 ⊂ g and a set of n constants c = {ci}ni=1 ⊂ R.
If n = 0, we take no vectors and no constants. We assume that {ζi}ni=1 is linearly independent. Then
the intersection of n affine hyperplanes Hζi,ci defines a (m− n)-dimensional affine plane. We assume
that this affine plane intersects in the interior of ∆, and we define ∆ζ,c a subset of ∆ by

∆ζ,c : = ∆ ∩
( n∩
i=1

Hζi,ci

)
= { y ∈ ∆ | ⟨y, ζi⟩ = ci, (i = 1, . . . , n) }.
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Definition 12.1. Let Vζ := SpanR{ζ1, . . . , ζn} ⊂ g. We call a point y in ∆ a ζ-singular point if and
only if Vζ ∩ zy ̸= {0}, and if Vζ ∩ zy = {0} we call y a ζ-regular point. We denote the set of all
ζ-singular points and all ζ-regular points in ∆ by ∆ζsing and ∆ζreg respectively. Note that ∆ζreg is
open dense in ∆.

For a point p in M , a vector v in g generates a tangent vector at p denoted by

vp =
d

dt

∣∣∣∣
t=0

exp(tv) · p.

This map g → TpM is a homomorphism. Then it is clear that y is a ζ-regular point if and only if the
restricted homomorphism Vζ → TpM is injective for a p in µ−1(y). For example, vertices of ∆ are
always ζ-singular points and interior points are always ζ-regular points.

Definition 12.2. We call a point p in Mσ a ζ-singular point if and only if µ(p) is a ζ-singular point,
and if not, we call p a ζ-regular point. We denote the set of all ζ-singular points and all ζ-regular
points in Mσ by Mσ

ζsing and Mσ
ζreg respectively. Note that Mσ

ζreg is open dense in Mσ.

Definition 12.3. We denote the restriction of the moment map on the real form by µσ :Mσ → Rm.
We define a subset of Mσ as the pull-back of ∆ζ,c by µ

σ by

Mσ
ζ,c : = (µσ)−1(∆ζ,c)

= { p ∈Mσ | ⟨µ(p), ζi⟩ = ci, i = 1, . . . , n }.

Proposition 12.4. If ∆ζ,c is contained in ∆ζreg, then Mσ
ζ,c is a smooth submanifold of Mσ with

dimRM
σ
ζ,c = m− n.

Proof. We define n functions fi (i = 1, . . . , n) on Mσ by

fi(p) := ⟨µ(p), ζi⟩ − ci.

Then Mσ
ζ,c = { p ∈ Mσ | fi(p) = 0, i = 1, . . . , n }. By a property of the moment map, for all p in

Mσ
ζ,c, we have

dfi(p) = d⟨µ, ζi⟩(p) = −ω(ζi,p, ·).
Since every point in ∆ζ,c is ζ-regular, the restricted homomorphism Vζ → TpM is injective for all p
in Mσ

ζ,c. Thus {dfi}ni=1 are linearly independent 1-forms on Mσ
ζ,c. This means that Mσ

ζ,c is a smooth
submanifold of Mσ by the implicit function theorem.

In this section, we assume that ∆ζ,c is contained in ∆ζreg. Then Mσ
ζ,c is a smooth submanifold

of Mσ. Let exp : g → Tm be the exponential map. Let Zg(∼= Zm) be a integral lattice of g, that is
a kernel of exp : g → Tm and g/Zg

∼= Tm. Let 1
2Zg be the set of all elements y in g such that 2y is

in Zg. Then 1
2Zg/Zg

∼= {1,−1}m is a subgroup of Tm considered as all elements t in Tm such that
t2 = e identity element. Let Vζ = SpanR{ζ1, . . . , ζn} ⊂ g. Now we construct a manifold Lζ,c with real
dimension m.

(I) Generic case. For a generic case, let U be an open small ball in Vζ centered at 0 such that U and
1
2Zg intersect only at 0. Then we define an m-dimensional manifold Lζ,c and a map Fζ,c : Lζ,c → M
by

Lζ,c =Mσ
ζ,c × U and Fζ,c(p, v) := exp(v) · p,

for p in Mσ
ζ,c and v in U . Then Fζ,c is injective and its image is

L′
ζ,c := { exp(v) · p | v ∈ U, p ∈Mσ, ⟨µ(p), ζj⟩ = cj , j = 1, . . . , n }. (22)

(II) Unimodular case. If the set of vectors ζ = {ζi}ni=1 satisfies the following unimodular condition
then we can take Lζ,c as explained below.

Definition 12.5. We say that ζ satisfies the unimodular condition if there exists a set of n vectors
v = {vj}nj=1 in Vζ ∩ Zg such that v is a base of Vζ and v is a generator of Vζ ∩ Zg over Z.
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If ζ satisfies the unimodular condition, we replace U in the case (I) by Tζ := Vζ/(Vζ ∩ Zg) and we
define an m-dimensional manifold Lζ,c and a map Fζ,c : Lζ,c →M by

Lζ,c =Mσ
ζ,c × Tζ and Fζ,c(p, [v]) := exp(v) · p,

for p in Mσ
ζ,c and [v] in Tζ = Vζ/(Vζ ∩ Zg), this map is well defined. Since Tζ ∼= Tn which is a

subtorus of Tm, the product manifold Lζ,c is diffeomorphic to Mσ
ζ,c × Tn. We denote the subgroup

(Vζ ∩ 1
2Zg)/(Vζ ∩Zg) of Tζ by Kζ . Then, of course, Kζ acts on Tζ freely and Kζ also acts on Mσ

ζ,c as

[k] · p := exp(k) · p
for [k] in Kζ and p in Mσ

ζ,c. Thus Kζ acts on Lζ,c =Mσ
ζ,c × Tζ as a diagonal action and this action is

free. Hence we have an m-dimensional manifold L̃ζ,c by

L̃ζ,c := (Mσ
ζ,c × Tζ)/Kζ .

In this case (II), Fζ,c : Lζ,c →M is not injective and one can show that Fζ,c(p1, [v1]) = Fζ,c(p2, [v2]) if
and only if there exists a [k] in Kζ such that [k] · (p1, [v1]) = (p2, [v2]). Thus the image of Fζ,c written
by

L′
ζ,c := { exp(v) · p | v ∈ Vζ , p ∈Mσ, ⟨µ(p), ζj⟩ = cj , j = 1, . . . , n } (23)

is diffeomorphic to L̃ζ,c. Note that L̃ζ,c is a T
n-bundle over a smooth (m− n)-dimensional manifold

Mσ
ζ,c/Kζ .

Remark 12.6. Here we explain the meaning of Lζ,c and the number n, that is the number of vectors
in ζ. In an m-dimensional toric Kähler manifold M , there are two typical Lagrangian submanifolds,
one is the real form Mσ and the other is a torus fiber Tm, and these two Lagrangians Mσ and Tm

intersect transverse and orthogonal just like Rm and iRm in Cm. First, if we take n = 0 then we
take no vectors ζ and no constants c. Then Lζ,c becomes the real form Mσ, hence Lζ,c has no torus
factors. On the other hand, if n is full, that is, n = m, then Mσ

ζ,c = {pt}, thus Lζ,c is diffeomorphic
to a torus fiber Tm. Hence, roughly speaking, Lζ,c is a hybrid (or interpolation) of the real form Mσ

and a torus fiber Tm, and n is the dimension of torus factors in Lζ,c.

From now, we consider both cases (I) and (II) above.

Theorem 12.7. Fζ,c : Lζ,c →M is a Lagrangian immersion.

Proof. In this proof, we write Fζ,c by F for short. Since the case (II) is locally diffeomorphic to the
cace (I), it is clear that we only have to prove in the case (I). First we prove that F is an immersion
map. Fix a point x = (p, v) in Lζ,c =Mσ

ζ,c × U . Then we have a decomposition

TxLζ,c = TpM
σ
ζ,c ⊕ TvU,

and note that TvU ∼= Vζ since U is an open ball in a vector space Vζ . Take tangent vectors X,X1, X2

in TpM
σ
ζ,c. We have

F∗X = tv∗X,

where we put tv := exp(v) for short, and we identify an element tv in Tm with a left transition map
tv :M →M . Take vectors Y, Y1, Y2 in TvU ∼= Vζ . We have

F∗Y = tv∗Yp.

Here Yp is the tangent vector at p generated by Y ∈ Vζ ⊂ g. Since g is torus-invariant, that is, t∗vg = g,
we have

g(F∗X,F∗Y ) = g(tv∗X, tv∗Yp) = (t∗vg)(X,Yp) = g(X,Yp). (24)

Note that σ∗X = X since X is tangent to the real form, and σ∗Yp = −Yp since the direction of the
curve of the exponential map generated by Y is reversed by σ because of the reration σ(u ·p) = u−1 ·p
for all u in Tm. Since σ is isometry, that is σ∗g = g, by Proposition 11.1, we have

g(X,Yp) = (σ∗g)(X,Yp) = g(σ∗X,σ∗Yp) = −g(X,Yp),
and this means that g(X,Yp) = 0 and also g(F∗X,F∗Y ) = 0 by (24). Thus F∗(TpM

σ
ζ,c) and F∗(TvU)

are orthogonal to each other. It is clear that F∗ restricted on TpM
σ
ζ,c is injective and F∗ restricted on

TvU is also injective. Thus F∗ is injective on TxLζ,c and F is an immersion map.
Next we prove that F is a Lagrangian, that is, F ∗ω = 0. It is easy to see (F ∗ω)(X1, X2) = 0 and

(F ∗ω)(Y1, Y2) = 0 since the real form and a torus fiber are typical Lagrangians. We can also prove
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that (F ∗ω)(X,Y ) = 0 easily. Since ω is torus-invariant and ω(·, Yp) = d⟨µ, Y ⟩, we have

(F ∗ω)(X,Y ) = ω(F∗X,F∗Y ) = ω(X,Yp) = X(⟨µ, Y ⟩).
Since Y is in TvU ∼= Vζ = SpanR{ζ1, . . . , ζn}, we can write Y as Y = a1ζ1 + · · · + anζn for some
coefficients ak ∈ R, and we have

⟨µ, Y ⟩ = a1⟨µ, ζ1⟩+ · · ·+ an⟨µ, ζn⟩.
By the definition of Mσ

ζ,c, this function ⟨µ, Y ⟩ is a constant

a1c1 + · · ·+ ancn
on Mσ

ζ,c, and now X is a tangent vector on Mσ
ζ,c, thus it is clear that

X(⟨µ, Y ⟩) = 0.

Hence we have F ∗ω = 0.

13 Lagrangian angle

In above sections, the ambient space (M,ω, g, J) is a toric Kähler manifold. From this section, we
assume that the canonical line bundle KM of (M,J) is trivial. This condition is equivalent to that
there exists a vector γ in Z∗

g such that ⟨γ, λi⟩ = 1 for all i = 1, . . . , d, where λi is a primitive generator
of a 1-dimensional cone of fan Σ of M , see Section 11. In fact, if such a vector γ = (γ1, . . . , γm) exists,
a holomorphic (m, 0)-form

Ωγ := eγ1z
1+···+γmzmdz1 ∧ · · · ∧ dzm (25)

written by logarithmic holomorphic coordinates on an open dense (C∗)m-orbit can be extend overM as
a nowhere vanishing holomorphic (m, 0)-form. We call this (M,ω, g, J,Ωγ) a toric almost Calabi–Yau
manifold.

In general, an m-dimensional Kähler manifold (M,ω, g, J) with nowhere vanishing holomorphic
(m, 0)-form Ω is called an almost Calabi–Yau manifold, and for a Lagrangian immersion F : L → M
we can define the Lagrangian angle θF : L → R/πZ as follows. For a point x in L, take a local chart
(U, (x1, . . . , xm)) around x, then F ∗Ω is a C∗-valuedm-form on U , so there exists a C∗-valued function
hU on U such that

F ∗Ω = hU (x
1, . . . , xm)dx1 ∧ · · · ∧ dxm

on U , and we define the Lagrangian angle θF : L→ R/πZ by

θF (x) := arg(hU (x)) mod π.

This definition is independent of the choice of local charts. It is clear that if L is oriented we can lift
θF to a R/2πZ-valued function θF : L→ R/2πZ. If we can lift θF to a R-valued function θF : L→ R
then F : L→M is called Maslov zero, and furthermore if θF is constant θ0 then F : L→M is called
a special Lagrangian submanifold with phase eiθ0 . Note that the definition of special Lagrangian
condition depends on the choice of holomorphic volume form Ω.

In [1], Behrndt introduced the notion of the generalized mean curvature vector field K for a
Lagrangian immersion F : L→M in an almost Calabi–Yau manifold. The generalized mean curvature
vector field K is defined by

K := H −m∇ψ⊥, (26)

where H is the mean curvature vector field of the immersion F : L → (M, g), ψ is a function on M
defined by the following equation;

e2mψ
ωm

m!
= (−1)

m(m−1)
2

(
i

2

)m
Ω ∧ Ω, (27)

and ∇ψ⊥ is the normal part of the gradient of ψ. By the definition of K, if M is a Calabi–Yau
manifold, that is, ψ ≡ 0, then the generalized mean curvature vector field K coincides with the mean
curvature vector field H. In Proposition 4.8 in [2], Behrndt proved the relation between K and θF
which is written by

K = J∇θF . (28)

Thus K ≡ 0 is equivalent to that L is a special Lagrangian submanifold.
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Furthermore, in this Part, we introduce the notion of weighted Hamiltonian stationary for a La-
grangian immersion F : L→M into an almost Calabi–Yau manifold (M,ω, g, J,Ω) with ψ defined by
(27).

Definition 13.1. Let θF be the Lagrangian angle of F : L→M . If ∆fθF = 0 then we call F : L→M
a weighted Hamiltonian stationary Lagrangian submanifold.

Here f is a function on L defined by f := −mF ∗ψ and ∆f is the weighted Laplacian on Riemannian
manifold (L,F ∗g). In general, for a Riemannian manifold (N,h) with a function f , the weighted
Laplacian with respect to f is defined by ∆fu := ∆u + ⟨∇u,∇f⟩. Thus, if M is a Calabi–Yau
manifold, that is, ψ = 0, then the notion of weighted Hamiltonian stationary is equivalent to the
Hamiltonian stationary condition, namely ∆θF = 0. For the meaning of the weighted Hamiltonian
stationary condition, See Section 16. Note that ∆f is the standard Laplace operator on L with respect
to a Riemannian metric F ∗(e2ψg).

In this section, we compute the Lagrangian angle of our example Fζ,c : Lζ,c → M constructed in
Section 12, and show some properties of Fζ,c : Lζ,c →M .

Let (M,ω, g, J,Ωγ) be an m-dimensional toric almost Calabi–Yau manifold and Fζ,c : Lζ,c → M
be a Lagrangian immersion constructed by ζ = {ζ1, . . . , ζn} ⊂ g and c = {c1, . . . , cn} ⊂ R, explained
in Section 12.

Theorem 13.2. The Lagrangian angle θ of Fζ,c : Lζ,c →M is given by

θ(x) = 2π⟨γ, v⟩+ π

2
n mod π

for x = (p, v) in Lζ,c = Mσ
ζ,c × U in the case (I) and for x = (p, [v]) in Lζ,c = Mσ

ζ,c × Tζ in the case
(II).

Proof. In this proof, we write Fζ,c by F for short. It is clear that we only have to prove in the case

(I). Let Mσ be a real form of M and g be a Lie algebra of Tm. We define a map F̃ :Mσ × g →M by

F̃ (p, v) := exp(v) · p.
Remember that Lζ,c = Mσ

ζ,c × U , and Mσ
ζ,c is an (m − n)-dimensional submanifold in Mσ and U is

an n-dimensional submanifold in g. Thus we have the inclusion map Lζ,c into M
σ × g by

ι = (ι1, ι2) : Lζ,c =Mσ
ζ,c × U ↪→Mσ × g.

Then the map F : Lζ,c → M coincides with F̃ ◦ ι by the definition of F , so we compute ι∗(F̃ ∗Ωγ)
to compute F ∗Ωγ . It is enough to prove this theorem on an open dense (C∗)m-orbit, so we take a
logarithmic holomorphic coordinates (z1, . . . , zm), then (x1, . . . , xm) define local coordinates on the
real form Mσ, where zj = xj + iyj . Let (t1, . . . , tm) be coordinates of g ∼= Rm, then we have a local
expression of a map F̃ :Mσ × g →M by

F̃ (x1, . . . , xm, t1, . . . , tm) = (x1 + 2πit1, . . . , xm + 2πitm).

Since Ωγ = eγ1z
1+···+γmzmdz1 ∧ · · · ∧ dzm, we have

F̃ ∗Ωγ = e(γ1x
1+···+γmxm)+2πi(γ1t

1+···+γmtm)(dx1 + 2πidt1) ∧ · · · ∧ (dxm + 2πidtm).

Since Lζ,c = Mσ
ζ,c × U , and Mσ

ζ,c is an (m − n)-dimensional submanifold in Mσ and U is an n-

dimensional submanifold in g, in the expansion of (dx1 + 2πidt1) ∧ · · · ∧ (dxm + 2πidtm), differential
forms such as

(2πi)ndxI ∧ dtJ

with ♯I = m− n and ♯J = n do not vanish after pull-back by ι, and other forms vanish, where I and
J are multi-indices. Thus the argument of F ∗Ωγ = ι∗(F̃ ∗Ωγ) at (p, v) is the argument of

(2πi)ne⟨γ,p⟩+2πi⟨γ,v⟩,

that is, 2π⟨γ, v⟩+ π
2n mod π.

Then the following corollary is clear.

Corollary 13.3. Fζ,c : Lζ,c → M is a special Lagrangian submanifold if and only if ⟨γ, ζi⟩ = 0 for
all i = 1, . . . , n.
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Remark 13.4. It is clear that the real form Mσ, that is the case of n = 0, is always a special
Lagrangian submanifold, and every torus fiber, that is the case of n = m, is not a special Lagrangian
submanifold with respect to this holomorphic volume form Ωγ . If M = Cm, we take γ = (1, . . . , 1),
see also Example 15.1. Then the special Lagrangian condition (19) by Joyce introduced in Section 10
coincides with the condition ⟨γ, a⟩ = 0 in Corollary 13.3.

Theorem 13.5. Fζ,c : Lζ,c →M is weighted Hamiltonian stationary.

Proof. In this proof, we write Fζ,c by F for short. We only have to prove that ∆fθ = 0 in the case (I)
that Lζ,c = Mσ

ζ,c × U . As noted above, ∆f is the standard Laplace operator on L with respect to a

Riemannian metric F ∗(e2ψg). Since g is invariant under the torus action and it is easily seen that ψ is
also torus invariant by the equation (25) and (27), so the metric e2ψg is also a torus invariant metric
on M . Since F : Lζ,c →M is given by F (p, v) := exp(v) ·p and e2ψg is a torus invariant metric on M ,
the metric F ∗(e2ψg) on L is independent of the U -factor of Lζ,c. Furthermore, in the proof of Theorem
12.7 we prove that F∗(TM

σ
ζ,c) and F∗(TU) are orthogonal, thus F ∗(e2ψg) is a product metric over

Mσ
ζ,c and U locally. By Theorem 13.2, the Lagrangian angle is given by θ(p, v) = 2π⟨γ, v⟩+ π

2n, it is
independent ofMσ

ζ,c-factor of Lζ,c and affine on U -factor. Then one can easily prove that ∆fθ = 0.

14 Mean curvature flow

In this section, we consider generalized Lagrangian mean curvature flows. In general, a generalized
Lagrangian mean curvature flow is defined in an almost Calabi–Yau manifold (M,ω, g, J,Ω). Let
F0 : L → M be a Lagrangian immersion, then a one parameter family of Lagrangian submanifolds
F : L × I → M is called a solution of a generalized Lagrangian mean curvature flow with initial
condition F0, if it moves along its generalized Lagrangian mean curvature vector field K defined in
(26), that is, (

∂F

∂t

)⊥

= Kt and F (·, 0) = F0, (29)

where Kt is the generalized Lagrangian mean curvature vector field of immersion Ft : L→M defined
by Ft(p) := F (p, t). Of course, if M is a Calabi–Yau manifold then a generalized Lagrangian mean
curvature flow is an ordinary Lagrangian mean curvature flow. It is clear that K = 0 on a special
Lagrangian submanifold by the equation (28), thus a special Lagrangian submanifold is a stationary
solution of a generalized Lagrangian mean curvature flow. In general, a generalized Lagrangian mean
curvature flow develops some singularities in a finite time, so here we define a notion of a generalized
Lagrangian mean curvature flow with some singularities and topological changes.

Definition 14.1. Let (M,ω, g, J,Ω) be a real 2m-dimensional almost Calabi–Yau manifold and
{Lt}t∈I be a one parameter family of subsets in M . Then we call {Lt}t∈I a solution of a gen-
eralized Lagrangian mean curvature flow with singularities and topological changes if there exists
a real m-dimensional manifold L and a solution of a generalized Lagrangian mean curvature flow
F : L× I →M such that Ft : L→M is an embedding into Lt and m-dimensional Hausdorff measure
of Lt \ Ft(L) is zero, i.e.

Ft(L) ⊂ Lt and Hm(Lt \ Ft(L)) = 0. (30)

It means that {Lt}t∈I is almost parametrized by a smooth solution of a generalized Lagrangian
mean curvature flow.

The purpose of this section is to observe how our concrete examples Fζ,c : Lζ,c → M move
along the generalized Lagrangian mean curvature flow. Let (M,ω, g, J,Ωγ) be a toric almost Calabi–
Yau manifold and Fζ,c : Lζ,c → M be a Lagrangian submanifold constructed in Section 12 by data
ζ = {ζ1, . . . , ζn} ⊂ g and c = {c1, . . . , cn} ⊂ R. Let

ci(t) := ci − 2π⟨γ, ζi⟩t
for t ∈ R and we denote c(t) := {c1(t), . . . , cn(t)}. We define an open interval I by

I :=

{
t ∈ R

∣∣∣∣ Int∆ ∩
( n∩
i=1

Hζi,ci(t)

)
̸= ∅

}
,
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by the assumption of ζ and c we have 0 ∈ I.

Theorem 14.2. A one parameter family of subsets {L′
ζ,c(t)}t∈I defined by (22) in the case (I) or by

(23) in the case (II) is a solution of a generalized Lagrangian mean curvature flow with singularities
and topological changes.

Proof. It is sufficient to prove this theorem in the case (I). First we define

∆′′
ζ,c(t) := Int∆ ∩

( n∩
i=1

Hζi,ci(t)

)
.

Remember that ∆ζ,c(t) is defined by

∆ζ,c(t) := ∆ ∩
( n∩
i=1

Hζi,ci(t)

)
.

Since ∆ζ,c(t) \∆′′
ζ,c(t) is contained in ∂∆ζ,c(t), it is clear that (m− n)-dimensional Hausdorff measure

of ∆ζ,c(t) \∆′′
ζ,c(t) is zero. Since each ∆′′

ζ,c(t) is an (m− n)-dimensional connected convex affine open

subset in Rm, all ∆′′
ζ,c(t) are diffeomorphic to each other.

Next we define

M ′′σ
ζ,c(t) := (µσ)−1(∆′′

ζ,c(t)) and L′′
ζ,c(t) :=M ′′σ

ζ,c(t) × U.

ThenM ′′σ
ζ,c(t) is an (m−n)-dimensional open dense submanifold inM , and L′′

ζ,c(t) is an m-dimensional

open dense submanifold in Lζ,c(t). As same as ∆′′
ζ,c(t), all M

′′σ
ζ,c(t) are diffeomorphic to each other,

and (m− n)-dimensional Hausdorff measure of Mσ
ζ,c(t) \M

′′σ
ζ,c(t) is zero, and m-dimensional Hausdorff

measure of Lζ,c(t) \ L′′
ζ,c(t) is also zero. Thus we can take a one parameter family of diffeomorphisms

Gt :M
′′σ
ζ,c →M ′′σ

ζ,c(t),

for all t ∈ I, and Gt induces a one parameter family of diffeomorphisms

G̃t : L
′′
ζ,c → L′′

ζ,c(t)

by G̃t(p, v) := (Gt(p), v). Then we have a one parameter family of maps F : L′′
ζ,c × I →M by

Ft(p, v) := Fζ,c(t) ◦ G̃t(p, v) = exp(v) ·Gt(p).
It is clear that

Ft(L
′′
ζ,c) = Fζ,c(t)(G̃t(L

′′
ζ,c)) = Fζ,c(t)(L

′′
ζ,c(t)) ⊂ L′

ζ,c(t),

where remember that

L′
ζ,c(t) = { exp(v) · p | v ∈ U, p ∈Mσ, ⟨µ(p), ζj⟩ = cj(t), j = 1, . . . , n }.

Since torus action is free on M ′′σ
ζ,c(t), one can easily prove that Ft is embedding for all t, and m-

dimensional Hausdorff measure of L′
ζ,c(t) \ Ft(L

′′
ζ,c) is zero.

Hence the remainder we have to prove is to prove that F : L′′
ζ,c×I →M is a solution of a generalized

Lagrangian mean curvature flow. Since both Kt and the normal part of ∂F/∂t are sections of normal
bundle and Ft : L

′′
ζ,c →M is a Lagrangian submanifold, it is enough to prove

ω(
∂F

∂t
, Ft∗Z) = ω(Kt, Ft∗Z) (31)

for all tangent vectors Z on L′′
ζ,c to prove the equation (29). Fix a point x = (p, v) in L′′

ζ,c =M ′′σ
ζ,c ×U .

Since we have a decomposition
TxL

′′
ζ,c = TpM

′′σ
ζ,c ⊕ TvU

and note that TvU ∼= Vζ , a tangent vector Z is written by Z = X + Y for some tangent vectors X in
TpM

′′σ
ζ,c and Y in Vζ . For X and Y , we have

Ft∗X = exp(v)∗(Gt∗X) and Ft∗Y = exp(v)∗(YGt(p)).

For X, we have

ω(
∂F

∂t
, Ft∗X) = ω(exp(v)∗(

∂G

∂t
), exp(v)∗(Gt∗X)) = ω(

∂G

∂t
,Gt∗X) = 0.

The second equality follows from the torus invariance of ω, and the third equality follows from that
both ∂G/∂t and Gt∗X are tangent to real form and it is a Lagrangian. If we use the equation (28),
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we have

ω(Kt, Ft∗X) = ω(J∇θFt , Ft∗X) = −g(∇θFt , Ft∗X) = −XθFt = 0,

since θFt(p, v) = 2π⟨γ, v⟩+ π
2n by Theorem 13.2 and it is independent ofM ′′σ

ζ,c part. Thus the equation
(31) holds for X. Next, for Y, we have

ω(
∂F

∂t
, Ft∗Y ) = ω(

∂G

∂t
, YGt(p)) =

∂G

∂t
⟨µ, Y ⟩ = ∂

∂t
⟨µ ◦Gt, Y ⟩

=
∂

∂t
⟨µ ◦Gt, a1ζ1 + · · ·+ anζn⟩

=
∂

∂t
(a1c1(t) + · · ·+ ancn(t))

= −2π⟨γ, Y ⟩.
The second equality follows from the assumption of the moment map µ. In the fourth equality we
put Y = a1ζ1 + · · ·+ anζn for some coefficients ai and the fifth equality follows from the definition of
M ′′σ
ζ,c(t). In the last equality, remember that ci(t) is defined by ci(t) := ci − 2π⟨γ, ζi⟩t. If we use the

equation (28), we have

ω(Kt, Ft∗Y ) = ω(J∇θFt , Ft∗Y ) = −g(∇θFt , Ft∗Y ) = −Y θFt = −2π⟨γ, Y ⟩.
Thus the equation (31) holds for Y and it is proved that F : L′′

ζ,c×I →M is a solution of a generalized
Lagrangian mean curvature flow.

15 Examples

In this section, we give some examples of our main theorems. First we explain that if the ambient
space M is Cm then our examples coincide with those constructed by Lee and Wang in [29].

Example 15.1. Let (Cm, ω, g, J,Ω) be a standard complex plane with a holomorphic volume form
Ω = dw1 ∧ · · · ∧ dwm by the standard coordinates w. If we write wi = ezi where wi ̸= 0, then Ω is
written by Ω = ez1+···+zmdz1 ∧ · · · ∧ dzm. Hence we can take γ as γ = (1, . . . , 1). A moment map is
given by µ(w) = 1

2 (|w1|2, . . . , |wm|2) and a moment polytope is given by

∆ = { y ∈ Rm | ⟨y, λi⟩ ≥ 0, i = 1, . . . ,m },
where λi := ei, the i-th standard base, and then we have ⟨γ, λi⟩ = 1 for all i. The real form of
Cm is Rm and note that Rm can be constructed by gluing from 2m-copies of ∆. Take one vector
ζ = (ζ1, . . . , ζm) ∈ Rm satisfying ⟨γ, ζ⟩ > 0 and c = 0. Since

c(t) = c− 2π⟨γ, ζ⟩t = −2πt⟨γ, ζ⟩ = −2πt
m∑
j=1

ζj

and ∆ζ,c(t) = { y ∈ ∆ | ⟨y, ζ⟩ = c(t) }, we have

Mσ
ζ,c(t) = (µ|Rm)−1(∆ζ,c(t))

=

{
x ∈ Rm

∣∣∣∣ m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj

}
,

and L′
ζ,c(t), the image of Fζ,c(t) : Lζ,c → Cm, is given by

L′
ζ,c(t) =

{
(x1e

2πiζ1s, . . . , xme
2πiζms) ∈ Cm

∣∣∣∣ 0 ≤ s ≤ 1,

m∑
j=1

ζjx
2
j = −4πt

m∑
j=1

ζj , x = (x1, . . . , xm) ∈ Rm
}
.

This L′
ζ,c(t) coincides with Vt in Theorem 1.1 in [29], and Lee and Wang proved that Vt is Hamil-

tonian stationary and {Vt}t∈R forms an eternal solution for Brakke flow. Hence our theorems can
be considered as a kind of generalization of example of Lee and Wang to toric almost Calabi–Yau
manifolds.

Example 15.2. Let M = KP2 be the total space of the canonical line bundle of P2. Then a moment
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polytope is given by ∆ = { y ∈ R3 | ⟨y, λi⟩ ≥ κi, i = 1, . . . , 4 }, where
λ1 = (0, 0, 1), λ2 = (1, 0, 1), λ3 = (0, 1, 1), λ4 = (−1,−1, 1)

and κ1 = κ2 = κ3 = 0, κ4 = −1. Of course, M is a toric almost Calabi–Yau manifold since we can
take γ = (0, 0, 1) so that ⟨γ, λi⟩ = 1 for all i. For example, take n = 1, and take one vector and one
constant as

ζ = (3, 1, 5) and c = 5.

Then ∆ζ,c(t) is written by
∆ζ,c(t) = { y ∈ ∆ | ⟨y, ζ⟩ = 5− 10πt },

since c(t) = c − 2π⟨γ, ζ⟩t and t ≥ 0. We write each facet of ∆ by Fi := { y ∈ ∆ | ⟨y, λi⟩ = κi } for
i = 1, 2, 3, 4.

By simple calculation, one can easily see the following.

• On 0 ≤ t < 1
5π , ∆ζ,c(t) intersects with F2, F3 and F4, so ∆ζ,c(t) is a triangle.

• At t = 1
5π , ∆ζ,c(t) across (1, 0, 0), a vertex of ∆, and a topological change happens.

• On 1
5π < t < 2

5π , ∆ζ,c(t) intersects with F1, F2, F3 and F4, so ∆ζ,c(t) is a square.

• At t = 2
5π , ∆ζ,c(t) across (0, 1, 0), a vertex of ∆, and a topological change happens.

• On 2
5π < t < 1

2π , ∆ζ,c(t) intersects with F1, F2 and F3, so ∆ζ,c(t) is a triangle.

• At t = 1
2π , ∆ζ,c(t) is one point {(0, 0, 0)}, this means that ∆ζ,c(t) vanishes.

Hence a solution {L′
ζ,c(t)}t∈I of a generalized Lagrangian mean curvature flow with singularities and

topological changes exists for t ∈ I = [0, 1
2π ). It forms singularities and topological changes when

t = 1
5π and t = 2

5π , and vanishes when t = 1
2π .

One can see the topology of Lζ,c(t) = Mσ
ζ,c(t) × S1 (since now Tζ ∼= S1) by the same argument as

explained in the proof of Proposition A.3 in [50]. In fact the topology ofMσ
ζ,c(t) is S

2 when 0 ≤ t < 1
5π ,

is T 2 when 1
5π < t < 2

5π , is S
2 when 2

5π < t < 1
2π .

16 Appendix

In Section 13, we introduce the notion of the weighted Hamiltonian stationary. In this appendix, we
explain the meaning of it. Let (M,ω, g, J,Ω) be a 2m-dimensional almost Calabi–Yau manifold with
the function ψ defined by (27) and F : L→M be a Lagrangian immersion with the Lagrangian angle
θF . Then we say that F : L → M is a weighted Hamiltonian stationary if ∆fθF = 0. Here f is a
function on L defined by f := −mF ∗ψ and ∆f is the weighted Laplacian on Riemannian manifold
(L,F ∗g) defined by ∆fu := ∆u+ ⟨∇u,∇f⟩, where ∆ is the standard Laplacian on L with respect to
a metric F ∗g.

Let g̃ := e2ψg be a conformal rescaling of g on M , then we get a new Riemannian manifold (M, g̃).
For an immersion F : L→M , we define a weighted volume functional Volψ by

Volψ(F ) :=

∫
L

dVF∗g̃,

where dVF∗g̃ is the volume form on L with respect to a metric F ∗g̃. Note that the relation between
dVF∗g̃ and dVF∗g is given by

dVF∗g̃ = emF
∗ψdVF∗g = e−fdVF∗g.

Then we consider a symplectic manifold (M,ω) with the weighted volume functional Volψ. The
following proposition is the meaning of the weighted Hamiltonian stationary.

Proposition 16.1. A Lagrangian immersion F : L → M is weighted Hamiltonian stationary if and
only if F is a critical point of the weighted volume functional Volψ along Hamiltonian deformations
with respect to ω.
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Proof. Let {Ft : L→M}t be a Hamiltonian deformation of F with Hamiltonian functions {ht : L→
R}t, that is, F0 = F and

ω(
∂F

∂t
, · ) = −dht. (32)

If L is non-compact, we assume that each ht has a compact support. Then the first variation of Volψ
at F along {Ft : L→M}t is derived by the first variation formula as

d

dt

∣∣∣∣
t=0

Volψ(Ft) =
d

dt

∣∣∣∣
t=0

∫
L

emF
∗
t ψdVF∗

t g

= −
∫
L

g(emF
∗ψH −memF

∗ψ∇ψ⊥,
∂F

∂t

∣∣∣∣
t=0

)dVF∗g

= −
∫
L

g(H −m∇ψ⊥,
∂F

∂t

∣∣∣∣
t=0

)e−fdVF∗g.

Next we remember the definition of the generalized mean curvature vector filed K, see (26), and use
the equation (28), then we have

−
∫
L

g(H −m∇ψ⊥,
∂F

∂t

∣∣∣∣
t=0

)e−fdVF∗g = −
∫
L

g(K,
∂F

∂t

∣∣∣∣
t=0

)e−fdVF∗g

= −
∫
L

g(J∇θF ,
∂F

∂t

∣∣∣∣
t=0

)e−fdVF∗g.

Since the equation (32) is equivalent to ∂F
∂t = J∇ht, we have

−
∫
L

g(J∇θF ,
∂F

∂t

∣∣∣∣
t=0

)e−fdVF∗g = −
∫
L

g(J∇θF , J∇h0)e−fdVF∗g

= −
∫
L

⟨dθF , dh0⟩F∗ge
−fdVF∗g

= −
∫
L

(∆fθF )h0e
−fdVF∗g

= −
∫
L

(∆fθF )h0dVF∗g̃.

In the third equality, we use the another definition of ∆fu = δf (du), where δf is the formal adjoint of d
with respect to a weighted measure e−fdVF∗g. One can easily show that δf (du) = ∆u+ ⟨∇u,∇f⟩F∗g.
Now we can take any h0, thus it is clear that the first variation of Volψ at F along all Hamiltonian
deformations is zero if and only if ∆fθF = 0.
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Part III

Ricci-mean curvature flows in gradient
shrinking Ricci solitons
Abstract. Huisken [23] studied asymptotic behavior of a mean curvature flow in a Euclidean space
when it develops a singularity of type I, and proved that its rescaled flow converges to a self-shrinker
in the Euclidean space. In this Part, we generalize this result for a Ricci-mean curvature flow moving
along a Ricci flow constructed from a gradient shrinking Ricci soliton.

17 Introduction

Let M and N be manifolds with dimension m and n respectively, satisfying m ≤ n. Let g = ( gt ; t ∈
[0, T1) ) be a smooth 1-parameter family of Riemannian metrics on N and F : M × [0, T2) → N be a
smooth 1-parameter family of immersions with T2 ≤ T1, that is, Ft : M → N defined by Ft( · ) := F (·, t)
is an immersion map. We say that the pair of g and F is a solution of the Ricci-mean curvature flow
if it satisfies the following coupled equation of the Ricci flow and the mean curvature flow:

∂gt
∂t

= −2Ric(gt) (33a)

∂Ft
∂t

= H(Ft), (33b)

where H(Ft) denotes the mean curvature vector field of Ft : M → N computed by the ambient
Riemannian metric gt at the time t. Note that this coupling is partial, that is, the Ricci flow equation
(33a) does not depend on F . It is clear that a Ricci-mean curvature flow is a mean curvature flow
when the ambient Riemannian manifold (N, g0) is Ricci flat (especially (Rn, gst)).

Huisken [23] studied asymptotic behavior of a mean curvature flow in a Euclidean space when it
develops a singularity of type I, and proved that its rescaled flow converges to a self-shrinker in the
Euclidean space. In this Part, we generalize this result to a Ricci-mean curvature flow moving along
a Ricci flow constructed from a gradient shrinking Ricci soliton. Before stating our main results, we
review the definition of self-similar solutions in Rn and the results due to Huisken [23].

On Rn, we naturally identify a point x = (x1, . . . , xn) ∈ Rn with a tangent vector −→x ∈ TxRn by

−→x := x1
∂

∂x1
+ · · ·+ xn

∂

∂xn
.

For an immersion map F : M → Rn, we have a section
−→
F ∈ Γ(M,F ∗(TRn)) defined by

−→
F (p) :=

−−→
F (p)

for all p ∈M . Then F : M → Rn is called a self-similar solution if it satisfies

H(F ) =
λ

2

−→
F

⊥
(34)

for some constant λ ∈ R, where ⊥ denotes the projection onto the normal bundle of M . A self-similar
solution is called a self-expander, steady or self-shrinker when λ > 0, λ = 0 or λ < 0 respectively.

Let M be an m-dimensional compact manifold and F : M × [0, T ) → Rn be a mean curvature flow
with the maximal time T < ∞, that is, we can not extend the flow over the time T . Further assume
that F satisfies the following two conditions (A1) and (B1).

(A1) The norm of the second fundamental form of Ft (denoted by A(Ft)) satisfies

lim sup
t→T

(√
T − tmax

M
|A(Ft)|

)
<∞.

(B1) There exists a point p0 in M such that Ft(p0) → O ∈ Rn as t→ T .

If a mean curvature flow satisfies (A1), then we say that it develops a singularity of type I, and for the
remaining case we say that it develops a singularity of type II. The condition (B1) guarantees that
there exists at least one point inM such that its image of the rescaled flow remains in a bounded region
in Rn, thus the limiting submanifold is nonempty. In [23], it is also assumed that |A(Ft)|(p0) → ∞
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as t → T for p0 given in (B1). However, this assumption is not necessary to prove Theorem 17.1
introduced below.

For each t ∈ (−∞, T ), let Φt : Rn → Rn be a diffeomorphism of Rn defined by

Φt(x) :=
1√
T − t

x.

Define the rescaled flow F̃ : M × [− log T,∞) → Rn by

F̃s := Φt ◦ Ft with s = − log(T − t).

Then it satisfies the normalized mean curvature flow equation:

∂F̃s
∂s

= H(F̃s) +
1

2

−→̃
Fs.

Huisken proved the following (cf. Proposition 3.4 and Theorem 3.5 in [23]).

Theorem 17.1. Under the assumptions (A1) and (B1), for each sequence sj → ∞, there exists a

subsequence sjk such that the sequence of immersed submanifolds M̃sjk
:= F̃sjk (M) converges smoothly

to an immersed nonempty limiting submanifold M̃∞ ⊂ Rn, and M̃∞ is a self-shrinker with λ = −1 in
(34).

By this theorem, a self-shrinker can be considered as a local model of a singularity of type I for a
mean curvature flow in Rn.

On the other hand, there is also the notion of type I singularity for a Ricci flow g = ( gt ; t ∈ [0, T ) )
on a manifold N . Assume that T <∞ is the maximal time. We say that g forms a singularity of type
I if

lim sup
t→T

(
(T − t) sup

N
|Rm(gt)|

)
<∞,

where Rm(gt) denotes the Riemannian curvature tensor of gt. In the Ricci flow case, a gradient
shrinking Ricci soliton can be considered as a local model of a singularity of type I (cf. [13, 41, 43]).
Actually, from a gradient shrinking Ricci soliton, we can construct a Ricci flow which develops a
singularity of type I by the action of diffeomorphisms and scaling. In this Part, we consider a Ricci-
mean curvature flow along this Ricci flow, and assume that the mean curvature flow and the Ricci
flow develop singularities at the same time. Then we prove the convergence of the rescaled flow to
a self-shrinker in the gradient shrinking Ricci soliton under the type I assumption (more precisely,
under the assumption (A2) when N is compact, and (A2) and (B2) when N is non-compact). The
precise settings and main results are the following.

Let (N, g̃, f̃) be an n-dimensional complete gradient shrinking Ricci soliton with

Ric(g̃) + Hess f̃ − 1

2
g̃ = 0. (35)

As Hamilton’s proof of Theorem 20.1 in [20], one can easily see that R(g̃) + |∇f̃ |2 − f̃ is a constant,
where R(g̃) denotes the scalar curvature of g̃. Hence by adding some constant to f̃ if necessary, we
may assume that the potential function f̃ also satisfies

R(g̃) + |∇f̃ |2 − f̃ = 0. (36)

For an immersion F : M → N , we get a section (∇f̃) ◦ F ∈ Γ(M,F ∗(TN)), and we usually omit
the symbol ◦F , for short.

Definition 17.2. If an immersion map F : M → N satisfies

H(F ) = λ∇f̃
⊥

(37)

for some constant λ ∈ R, we call it a self-similar solution. A self-similar solution is called a self-
expander, steady or self-shrinker when λ > 0, λ = 0 or λ < 0 respectively.

Definition 17.3. If a 1-parameter family of immersions F̃ : M × [0, S) → N satisfies

∂F̃s
∂s

= H(F̃s) +∇f̃ , (38)

we call it a normalized mean curvature flow.
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Fix a positive time 0 < T < ∞. Let {Φt : N → N}t∈(−∞,T ) be the 1-parameter family of

diffeomorphisms with Φ0 = idN generated by the time-dependent vector field Vt := 1
T−t∇f̃ . For

t ∈ (−∞, T ), define
gt := (T − t)Φ∗

t g̃ and ft := Φ∗
t f̃ .

Then gt satisfies the Ricci flow equation (33a). Assume that F : M × [0, T ) → N is a solution of
Ricci-mean curvature flow (33b) along this Ricci flow g = ( gt ; t ∈ [0, T ) ). We consider the following
two conditions (A2) and (B2).

(A2) The norm of the second fundamental form of Ft (denoted by A(Ft)) satisfies

lim sup
t→T

(√
T − tmax

M
|A(Ft)|

)
<∞.

(B2) There exists a point p0 ∈M such that when t→ T

ℓFt(p0),t → f pointwise on N × [0, T ),

where f : N × [0, T ) → R is a function on N × [0, T ) defined above and ℓ∗,• : N × [0, •) → R is
the reduced distance based at (∗, •).

Remark 17.4. The condition (A2) corresponds to (A1). In (A2), note that A(Ft) and its norm
|A(Ft)| are computed by the ambient metric gt at each time t. In this Part, we do not assume that

lim sup
t→T

sup
M

|A(Ft)| = ∞. (39)

If F : M×[0, T ) → N satisfies (39) and (A2), we say that F develops a singularity of type I. Hence (A2)
is slightly weaker than the condition that F develops a singularity of type I. Especially, non-singular
case (that is, lim supt→T supM |A(Ft)| <∞) is contained in (A2).

Remark 17.5. The condition (B2) corresponds to (B1). In (B2), ℓFt(p0),t is the reduced distance for
the Ricci flow g based at (Ft(p0), t) introduced by Perelman. Here we explain this briefly. Let (N, gt)
be a Ricci flow on [0, T ). For any curve γ : [t1, t2] → N with 0 ≤ t1 < t2 < T , we define the L-length
of γ by

L(γ) :=
∫ t2

t1

√
t2 − t

(
R(gt) + |γ̇|2

)
dt,

where |γ̇| is the norm of γ̇(t) measured by gt. For a fixed point (p2, t2) in the space-time N × (0, T ),
we get the reduced distance

ℓp2,t2 : N × [0, t2) → R
based at (p2, t2) defined by

ℓp2,t2(p1, t1) :=
1

2
√
t2 − t1

inf
γ

L(γ),

where the infimum is taken over all curves γ : [t1, t2] → N with γ(t1) = p1 and γ(t2) = p2. In
Remark 17.10, we see that (B1) and (B2) are equivalent when (N, g̃, f̃) is the Gaussian soliton
(Rn, gst, 14 |x|

2).

If (N, g̃, f̃) is compact (resp. non-compact), we assume that F satisfies (A2) (resp. (A2) and (B2)).
As in the Euclidean case, we consider the rescaled flow F̃ : M × [− log T,∞) → N defined by

F̃s := Φt ◦ Ft with s = − log(T − t), (40)

and we can see that F̃ becomes a normalized mean curvature flow in (N, g̃, f̃) (cf. Proposition 20.4).
Then the main results in this Part are the following.

Theorem 17.6. Assume that (N, g̃, f̃) is compact. Let F : M× [0, T ) → N be a Ricci-mean curvature
flow along the Ricci flow (N, gt) defined by gt := (T−t)Φ∗

t g̃. Assume thatM is compact and F satisfies
(A2). Let F̃ : M × [− log T,∞) → N be defined by (40). Then, for any sequence s1 < s2 < · · · <
sj < · · · → ∞ and points {xj}∞j=1 in M , there exist sub-sequences sjk and xjk such that the family

of immersion maps F̃sjk : M → N from pointed manifolds (M,xjk) converges to an immersion map

F̃∞ : M∞ → N from some pointed manifold (M∞, x∞). Furthermore, M∞ is a complete Riemannian
manifold with metric F̃ ∗

∞g̃ and F̃∞ is a self-shrinker in (N, g̃, f̃) with λ = −1, that is, F̃∞ satisfies

H(F̃∞) = −∇f̃⊥.
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Theorem 17.7. Assume that (N, g̃, f̃) is non-compact and satisfies the assumption in Remark 17.8.
Under the same setting in Theorem 17.6, assume that M is compact and F satisfies (A2) and (B2).
Then, for any sequence of times sj, the same statement as Theorem 17.6 holds, where we fix xj := p0
for all j.

Remark 17.8. For a complete non-compact Riemannian manifold (N, g̃), we assume that there is an
isometrically embedding Θ: N → RL into some higher dimensional Euclidean space with

|∇pA(Θ)| ≤ D̃p <∞
for some constants D̃p > 0 for all p ≥ 0. Under this assumption, one can see that (N, g̃) must have
the bounded geometry by Theorem 23.5 and Gauss equation (71) (and its iterated derivatives).

Remark 17.9. The notion of the convergence of immersions from pointed manifolds is defined in
Section 23 (cf. Definition 23.7). Roughly speaking, it is the immersion version of the Cheeger–Gromov
convergence of pointed Riemannian manifolds.

Remark 17.10. We see that Theorem 17.7 implies Theorem 17.1 in Rn. Consider Rn as the Gaussian
soliton with potential function f̃(x) := 1

4 |x|
2. Since −→x = 2∇f̃(x), Definition 17.2 coincides with (34)

in Rn. It is trivial that (Rn, gst) satisfies the assumption in Remark 17.8. We take T = 1 for simplicity.
Then we have

Φt(x) =
1√
T − t

x, gt ≡ gst, f(x, t) =
|x|2

4(T − t)
.

Since gt is the trivial Ricci flow, the condition (A1) and (A2) coincides. Furthermore, one can easily
see that in this trivial Ricci flow Perelman’s reduced distance bases at (∗, •) is given by

ℓ∗,•(x, t) :=
|x− ∗|2

4(• − t)
.

Hence it is clear
ℓFt(p0),t → f pointwise on Rn × [0, T )

when Ft(p0) → O as t→ T , that is, the condition (B1) implies (B2). Conversely, under the assumption
(B2) we can see that Ft(p0) → O as t→ T since

1

4t
|Ft(p0)|2 = ℓFt(p0),t(O, 0) → f(O, 0) = 0

as t→ T (<∞). Hence (B1) and (B2) are equivalent in Rn, and Theorem 17.7 implies Theorem 17.1.

Example 17.11. Here we consider compact examples of self-similar solutions embedded in compact
gradient shrinking Ricci solitons. Let (N, g̃, f̃) be a compact gradient shrinking Ricci soliton. Then
N itself and a critical point P (0-dimensional submanifold) of f̃ are trivially compact self-similar
solutions, since H = 0 and ∇f̃⊥ = 0. The next examples are given in Kähler-Ricci solitons. Let
(N, g̃, f̃) be a compact gradient shrinking Kähler Ricci soliton. Let M ⊂ N be a compact complex
submanifold such that the gradient ∇f̃ is tangent to M . Then M is a compact self-similar solution,
since H = 0 (by a well-known fact that a complex submanifold in a Kähler manifold is minimal) and
∇f̃⊥ = 0 onM . Actually, Cao [5] and Koiso [27] (for notations and assumptions, see [28]) constructed
examples of compact gradient shrinking Kähler Ricci solitons. By their construction, each soliton is
the total space of some complex P1-fibration and the gradient of the potential function is tangent to
every P1-fiber. Hence each P1-fiber is a compact self-similar solution with real dimension 2.

Finally, we give some comments for Lagrangian self-similar solutions. For a Lagrangian immersion
F : L → N in a Kähler manifold N with a Kähler form ω, a 1-form ωH on L defined by ωH(X) :=
ω(H(F ), F∗X) is called the mean curvature form. In Theorem 2.3.5 in [44], Smoczyk proved that
there exists no compact Lagrangian self-similar solution with exact mean curvature form in Cn. In his
proof, it is proved that a compact Lagrangian self-similar solution with exact mean curvature form is
a minimal submanifold in Cn. However there exists no compact minimal submanifold in Cn. Hence
the assertion holds. As an analog of this theorem, we have the following theorem and its proof is given
at the end of Section 20.

Theorem 17.12. Let (N, g, f) be a gradient shrinking Kähler Ricci soliton and F : L → N be a
compact Lagrangian self-similar solution with exact mean curvature form. Then F : L → N is a
minimal Lagrangian immersion.
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Relation to previous literature. Recently there has been some studies in Ricci-mean curvature
flows. One of main streams of the study is to generalize results established for mean curvature flows
in Kähler-Einstein manifolds to Ricci-mean curvature flows along Kähler-Ricci flows. For example,
some results for Lagrangian mean curvature flows can be generalized (cf. [21, 31]). Another main
stream of the study is to generalize Huisken’s monotonicity formula in Rn to Ricci-mean curvature
flows along Ricci flows. In this direction, Lott considered a mean curvature flow in a gradient Ricci
soliton in Section 5 in [32], and a certain kind of monotonicity formula is obtained in gradient steady
soliton case. He also gave a definition of a self-similar solution for hypersurfaces in a gradient Ricci
soliton. Our definition of a self-similar solution (cf. Definition 17.2) coincides with Lott’s one for
hypersurfaces. In Remark 5 in [32], he pointed out the existence of an analog of a monotonicity
formula in gradient shrinking soliton case. Actually, a monotonicity formula for a mean curvature
flow moving in a gradient shrinking Ricci soliton was also given by Magni, Mantegazza and Tsatis
(cf. Proposition 3.1 in [33]) more directly. In this Part, we reintroduce their monotonicity formula in
Section 20. There is also a generalization of Huisken’s work to a mean curvature flow in a Riemannian
cone manifold (cf. [14]).

Organization of this paper. The rest of this Part is organized as follows. In Section 18, we prove
Theorem 17.6 and 17.7, after reviewing the proof of Theorem 17.1. In this proof, we use lemmas
and propositions proved in the following sections and appendices. In Section 19, we introduce some
general formulas for the first variation of a certain kind of weighted volume functional. In Section 20,
we study some properties of Ricci-mean curvature flows along Ricci flows constructed from gradient
shrinking Ricci solitons, and introduce the monotonicity formula. Furthermore, we prove the estimates
for higher derivatives of the second fundamental forms of a rescaled flow and give an analog of Stone’s
estimate. In Section 21, we give a general treatment of evolution equations for tensors along Ricci-
mean curvature flows. In Section 22, we give an estimate which is used in the proof of Lemma 20.10.
In Section 23, we give a definition of convergence of immersion maps into a Riemannian manifold and
prove some propositions.

18 Proofs of main theorems

In this section, we give proofs of Theorem 17.6 and 17.7. First of all, we review the proof of Theo-
rem 17.1. The key results to prove Theorem 17.1 are the following (i), (ii) and (iii).

(i) The monotonicity formula for the weighted volume functional (cf. Theorem 3.1 and Corollary
3.2 in [23]).

Here the weighted volume functional is defined by∫
M̃

e−
|x|2
4 dµM̃

for a submanifold M̃ in Rn. This result corresponds to Proposition 20.5 and 20.6. For a subman-
ifold M̃ (or immersion F̃ : M → N) in a gradient shrinking Ricci soliton (N, g̃, f̃), we consider the

weighted volume functional
∫
M
e−f̃dµ(F̃ ∗g̃). The monotonicity formula decides the profile of the

limiting submanifold M̃∞ if it exists.

(ii) Uniform estimates for all derivatives of second fundamental forms of M̃sj (cf. Proposition 2.3
in [23]).

This result corresponds to Proposition 20.9. It is proved by the parabolic maximum principle for the
evolution equation of |∇̃kÃs|2 and the argument of degree (it is explained in the proof of Proposi-
tion 20.9). This result implies the sub-convergence of M̃sj to some limiting submanifold M̃∞.

(iii) A uniform estimate for the second derivative of the weighted volume functional. It is proved by
Stone’s estimate (cf. Lemma 2.9 in [47]) and the result (ii).

In this Part we prepare an analog of Stone’s estimate in Lemma 20.7, and by combining Lemma 20.7
and Proposition 20.9 we prove Proposition 20.10 which is an analog of the result (iii). This result is
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necessary in the following sense. In general, if we know d
dsF(s) ≤ 0 for some smooth non-negative

function F : [0,∞) → [0,∞), we can say that F is monotone decreasing and converges to some value
as s → ∞. However we can not say that d

dsF(sj) → 0 for any sequence s1 < s2 < · · · → ∞. If

we further know that | d
2

d2sF(s)| ≤ C uniformly, then we can say that. In our situation, F(s) is the

weighted volume of M̃s. This argument is pointed out right before Lemma 3.2.7 in [34].

Proof of Theorem 17.6. First, we prove the existence of a smooth manifold M∞ and a smooth map
F̃∞ : M∞ → N . Next, we show that this F̃∞ is a self-shrinker by using the monotonicity formula (55)
in Proposition 20.6.

By Proposition 20.9, for all k = 0, 1, 2, . . . , there exist constants Ck > 0 such that

|∇̃kA(F̃s)| ≤ Ck on M × [− log T,∞).

Since N is compact, by Theorem 23.9, we get a sub-sequence jk, a pointed manifold (M∞, x∞)
and an immersion map F̃∞ : M∞ → N with a complete Riemannian metric F ∗

∞g̃ on M∞ such that
F̃sjk : (M,xjk) → N converges to F̃∞ : (M∞, x∞) → N in the sense of Definition 23.7 as k → ∞. We

denote F̃sjk by F̃k for short. Then, there exist an exhaustion {Uk}∞k=1 of M∞ with x∞ ∈ Uk and a

sequence of diffeomorphisms Ψk : Uk → Vk := Ψk(Uk) ⊂ M with Ψk(x∞) = xjk such that Ψ∗
k(F̃

∗
k g̃)

converges in C∞ to F̃ ∗
∞g̃ uniformly on compact sets in M∞, and furthermore the sequence of maps

F̃k ◦Ψk : Uk → N converges in C∞ to F∞ : M∞ → N uniformly on compact sets in M∞.
Let K ⊂M∞ be any compact set. Then we will prove that∫

K

∣∣∣H(F̃∞) +∇f̃⊥F̃∞

∣∣∣2
g̃
e−f̃◦F̃∞dµ(F̃ ∗

∞g̃) = 0.

It is clear that this implies that F̃∞ : M∞ → N satisfies

H(F̃∞) = −∇f̃⊥F̃∞

on M∞, where ⊥F̃∞
denotes the normal projection with respect to F̃∞. Its proof is the following.

For K, there exists k0 such that K ⊂ Uk for all k ≥ k0. Since F̃k ◦ Ψk : Uk → N converges to
F∞ : M∞ → N in C∞ uniformly on K for k ≥ k0, we have∫

K

∣∣∣H(F̃k ◦Ψk) +∇f̃⊥F̃k◦Ψk

∣∣∣2
g̃
e−f̃◦(F̃k◦Φk)dµ((F̃k ◦ Φk)∗g̃)

→
∫
K

∣∣∣H(F̃∞) +∇f̃⊥F̃∞

∣∣∣2
g̃
e−f̃◦F̃∞dµ(F̃ ∗

∞g̃)

(41)

as k → ∞. Since Ψk : Uk → Vk ⊂M is a diffeomorphism, it is clear that∫
K

∣∣∣H(F̃k ◦Ψk) +∇f̃⊥F̃k◦Ψk

∣∣∣2
g̃
e−f̃◦(F̃k◦Ψk)dµ((F̃k ◦Ψk)∗g̃)

=

∫
Ψk(K)

∣∣∣H(F̃k) +∇f̃⊥F̃k

∣∣∣2
g̃
e−f̃◦F̃kdµ(F̃ ∗

k g̃)

≤
∫
M

∣∣∣H(F̃k) +∇f̃⊥F̃k

∣∣∣2
g̃
e−f̃◦F̃kdµ(F̃ ∗

k g̃).

(42)

By using the monotonicity formula (55) and Lemma 20.10, one can prove that∫
M

∣∣∣H(F̃k) +∇f̃⊥F̃k

∣∣∣2
g̃
e−f̃◦F̃kdµ(F̃ ∗

k g̃) → 0 (43)

as k → ∞ by the argument of contradiction. Actually, assume that there exist a constant δ > 0 and
a subsequence {ℓ} ⊂ {k} with ℓ→ ∞ such that∫

M

∣∣∣H(F̃ℓ) +∇f̃⊥F̃ℓ

∣∣∣2
g̃
e−f̃◦F̃ℓdµ(F̃ ∗

ℓ g̃) ≥ δ.

Then one can easily see that ∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃) ≥
δ

2
,

for s ∈ [sℓ, sℓ +
δ

2C′ ], where we used Lemma 20.10 and C ′ is the constant appeared in that lemma.
Hence we have that ∫ ∞

− log T

∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)ds = ∞.
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On the other hand, by the monotonicity formula (55):
d

ds

∫
M

e−f̃◦F̃ dµ(F̃ ∗g̃) = −
∫
M

∣∣∣H(F̃ ) +∇f̃⊥F̃

∣∣∣2
g̃
e−f̃◦F̃ dµ(F̃ ∗g̃) ≤ 0,

the weighted volume ∫
M

e−f̃◦F̃sdµ(F̃ ∗
s g̃)

is monotone decreasing and non-negative, thus it converges to some value

α := lim
s→∞

∫
M

e−f̃◦F̃sdµ(F̃ ∗
s g̃) <∞.

Hence we have∫ ∞

− log T

∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃) = −α+

∫
M

e−f̃◦F̃•dµ(F̃ ∗
• g̃) <∞,

where • = − log T . This is a contradiction. Thus, by combining (41)-(43), it follows that∫
K

∣∣∣H(F̃∞) +∇f̃⊥F̃∞

∣∣∣2
g̃
e−f̃◦F̃∞dµ(F̃ ∗

∞g̃) = 0.

Here we completed the proof.

Next, we give the proof of the non-compact version of the above theorem.

Proof of Theorem 17.7. We will prove that F̃sj (p0) is a bounded sequence in (N, g̃). For any t1, t2
with 0 ≤ t1 < t2 < T , we can take {Ft(p0)}t∈[t1,t2] as a curve joining Ft1(p0) and Ft2(p0). Hence we
have

ℓFt2 (p0),t2
(Ft1(p0), t1) ≤

1

2
√
t2 − t1

∫ t2

t1

√
t2 − t

(
R(gt) +

∣∣∣∣∂Ft∂t
∣∣∣∣2
)
dt

=
1

2
√
t2 − t1

∫ t2

t1

√
t2 − t

(
R(gt) + |H(Ft)|2

)
dt

By the assumption (A2), (T − t)|H(Ft)|2 is bounded, and it is clear that (T − t)R(gt) = R(g0) and it
is also bounded by the assumption in Remark 17.8. Hence we have R(gt) + |H(Ft)|2 ≤ C

T−t for some
C > 0 and

ℓFt2
(p0),t2(Ft1(p0), t1) ≤

C

2
√
t2 − t1

∫ t2

t1

√
t2 − t

T − t
dt

≤ C

2
√
t2 − t1

∫ t2

t1

1√
T − t

dt

≤C
√
T − t1√
t2 − t1

.

By the assumption (B2), by taking the limit as t2 → T , we have

f(Ft1(p0), t1) ≤ C.

Since f(Ft(p0), t) = ft(Ft(p0)) = f̃(F̃s(p0)), the above bound means that

f̃(F̃s(p0)) ≤ C

on s ∈ [− log T,∞). In [7] (cf, Theorem 1.1), Cao and Zhou proved that there exist positive constants
C1 and C2 such that

1

4
(r − C1)

2 ≤ f̃ ≤ 1

4
(r + C2)

2

on N , where r(q) = dg̃(q0, q) is the distance function from some fixed point q0 in N . Hence we have

dg̃(q0, F̃s(p0)) ≤ 2
√
C + C1,

that is, F̃s(p0) moves in a bounded region in N . Hence we can use Theorem 23.9 with a bounded
sequence F̃sj (p0). Then the remainder part of the proof is completely same as the proof of the case
that N is compact.
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19 Monotonicity formulas

In this section, we introduce some general formulas which are useful in the following sections and
appendices. LetM and N be manifolds with dimension m and n respectively, and assume that m ≤ n
and M is compact. We denote the space of all immersion maps from M to N by Imm(M,N) and the
space of all Riemannian metrics on N by Met(N). Consider the following functional:

F : C∞(M)× Imm(M,N)× C∞(N)>0 ×Met(N) → R

F(u, F, ρ, g) :=

∫
M

uF ∗ρ dµ(F ∗g) .
(44)

Here u is a smooth function on M and ρ is a positive smooth function on N . First of all, we remark
some elementary symmetric properties associated with F . Here we denote diffeomorphism groups of
M and N by Diff(M) and Diff(N) respectively.

Remark 19.1. For φ ∈ Diff(M) and ψ ∈ Diff(N), we have

F(φ∗u, ψ−1 ◦ F ◦ φ,ψ∗ρ, ψ∗g) = F(u, F, ρ, g),

and for a positive constant λ > 0 we have

F(λn−mu, F, λ−nρ, λ2g) = F(u, F, ρ, g).

Let p := (u, F, ρ, g) be a point in C∞(M)×Imm(M,N)×C∞(N)>0×Met(N) and v := (w, V, k, h)
be a tangent vector of C∞(M) × Imm(M,N) × C∞(N)>0 × Met(N) at p. Namely, w ∈ C∞(M),
V ∈ Γ(M,F ∗(TN)), k ∈ C∞(N) and h ∈ Sym2(N). Then we consider the first variation of F at p in
the direction v, denoted by δvF(p).

Proposition 19.2. We have

δvF(p) =−
∫
M

u g(V +∇f⊥F ,H(F ) +∇f⊥F )F ∗ρ dµ(F ∗g)

+

∫
M

uF ∗
(
∆gρ+ k +

1

2
ρ trh

)
dµ(F ∗g)

+

∫
M

(
w −∆F∗gu− g(V, F∗∇u)

+ u tr⊥F
(
Hess f − 1

2
h
))

F ∗ρ dµ(F ∗g),

(45)

where we define f by ρ = (4πτ)−
n
2 e−f for a positive function τ = τ(t) (which depends only on t) and

H(F ) is the mean curvature vector field of immersion F from M to a Riemannian manifold (N, g).

Remark 19.3. Here, note that there is an ambiguity of a choice of a function τ , but the gradient
and Hessian of f do not depend on the choice of τ .

Notation 19.4. By ⊥F , we denote the normal projection with respect to the orthogonal decompo-
sition

F ∗(TN) = F∗(TM)⊕ T⊥FM

defined by the immersion F , and by tr⊥F we denote the normal trace, that is, for a 2-tensor η on N
and a point p ∈M , (tr⊥F η)(p) is defined by

(tr⊥F η)(p) :=
n−m∑
j=1

η(F (p))(νj , νj),

where {νj}n−mj=1 is an orthonormal basis of T⊥F
p M .

Proof. Let {Fs :M → N}s∈(−ϵ,ϵ) be a smooth 1-parameter family of immersions with

F0 = F and
∂Fs
∂s

∣∣∣∣
s=0

= V.

Let us := u + sw, ρs := ρ + sk and gs := g + sh. Then ps := (us, Fs, ρs, gs) is a curve in C∞(M) ×
Imm(M,N)×C∞(N)>0 ×Met(N) with p0 = p and ṗ0 = v. Then the first variation of F at p in the
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direction v is calculated as

δvF(p) =
d

ds

∣∣∣∣
s=0

F(ps) =
d

ds

∣∣∣∣
s=0

∫
M

us F
∗
sρs dµ(F

∗
s gs),

and we have
d

ds

∣∣∣∣
s=0

∫
M

us F
∗
sρs dµ(F

∗
s gs)

=

∫
M

wF ∗ρ dµ(F ∗g) +

∫
M

u g(V,∇ρ) dµ(F ∗g) +

∫
M

uF ∗k dµ(F ∗g)

+

∫
M

uF ∗ρ

(
d

ds

∣∣∣∣
s=0

dµ(F ∗
s g)

)
+

∫
M

uF ∗ρ

(
d

ds

∣∣∣∣
s=0

dµ(F ∗gs)

)
.

(46)

It is well-known that the first variation of the induced measure dµ(F ∗
s g) is given by

d

ds

∣∣∣∣
s=0

dµ(F ∗
s g) = {divF∗g F

−1
∗ (V ⊤F )− g(H(F ), V )}dµ(F ∗g).

On the right hand side of the above equation, we decompose V as V = V ⊤F +V ⊥F ∈ F∗(TM)⊕T⊥FM ,
and we take the divergence of F−1

∗ (V ⊤F ) on a Riemannian manifold (M,F ∗g).
On the other hand, F ∗gs is a time-dependent metric on M . Since gs = g + sh, we have F ∗gs =

F ∗g + sF ∗h. Thus, the derivation of F ∗gs is F ∗h at s = 0. In such a situation, it is also well-known
that the first variation of the induced measure dµ(F ∗gs) of a time-dependent metric on M is given by

d

ds

∣∣∣∣
s=0

dµ(F ∗gs) =
1

2
tr(F ∗h)dµ(F ∗g),

where the trace is taken with respect to a metric F ∗g on M . By the divergence formula on (M,F ∗g),
we have ∫

M

uF ∗ρdivF∗g F
−1
∗ (V ⊤F )dµ(F ∗g)

=−
∫
M

(F ∗g)(F−1
∗ (V ⊤F ),∇(uF ∗ρ))dµ(F ∗g)

=−
∫
M

g(V, F∗∇u)F ∗ρ dµ(F ∗g)−
∫
M

u g(V,∇ρ⊤F ) dµ(F ∗g).

Since ∇ρ = −ρ∇f , we have∫
M

u g(V,∇ρ) dµ(F ∗g) +

∫
M

uF ∗ρ

(
d

ds

∣∣∣∣
s=0

dµ(F ∗
s g)

)
=−

∫
M

g(V, F∗∇u)F ∗ρ dµ(F ∗g)−
∫
M

u g(V,H(F ) +∇f⊥F )F ∗ρ dµ(F ∗g).

(47)

It is clear that

tr(F ∗h) = F ∗(trh)− tr⊥F h.

Hence we have ∫
M

uF ∗k dµ(F ∗g) +

∫
M

uF ∗ρ

(
d

ds

∣∣∣∣
s=0

dµ(F ∗gs)

)
=

∫
M

uF ∗
(
k +

1

2
ρ trh

)
dµ(F ∗g)−

∫
M

1

2
uF ∗ρ(tr⊥F h)dµ(F ∗g).

Furthermore, one can easily see that

F ∗(∆gρ) = ∆F∗g(F
∗ρ)− g(H(F ),∇ρ) + tr⊥F (Hess ρ)

= ∆F∗g(F
∗ρ) + F ∗ρ g(∇f⊥F ,H(F ) +∇f⊥F )− F ∗ρ tr⊥F (Hess f).
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Hence we have ∫
M

uF ∗k dµ(F ∗g) +

∫
M

uF ∗ρ

(
d

ds

∣∣∣∣
s=0

dµ(F ∗gs)

)
=

∫
M

uF ∗
(
∆gρ+ k +

1

2
ρ trh

)
dµ(F ∗g)−

∫
M

1

2
uF ∗ρ(tr⊥F h)dµ(F ∗g)

−
∫
M

uF ∗(∆gρ)dµ(F
∗g)

=

∫
M

uF ∗
(
∆gρ+ k +

1

2
ρ trh

)
dµ(F ∗g)

−
∫
M

u g(∇f⊥F ,H(F ) +∇f⊥F )F ∗ρ dµ(F ∗g)

+

∫
M

(
−∆F∗gu+ u tr⊥F (Hess f − 1

2
h)

)
F ∗ρ dµ(F ∗g),

(48)

where we used ∫
M

u∆F∗g(F
∗ρ)dµ(F ∗g) =

∫
M

(∆F∗gu)F
∗ρ dµ(F ∗g).

Finally, by combining equations (46)-(48), we get the formula (45).

By using this general formula (45), we get the following monotonicity formula for Ricci-mean
curvature flows.

Proposition 19.5. Assume that the pair g = ( gt ; t ∈ [0, T1) ) and F : M × [0, T2) → N is a solution
of Ricci-mean curvature flow with T2 ≤ T1, that is, these satisfy (33a) and (33b). Further assume
that a smooth positive function ρ : N × [0, T1) → R+ on N and a smooth non-negative function
u : M × [0, T2) → R on M satisfy the following coupled equations:

∂ρt
∂t

= −∆gtρt +R(gt)ρt (49a)

∂ut
∂t

= ∆F∗
t gt
ut − ut tr

⊥Ft

(
Ric(gt) + Hess ft), (49b)

where we define f by ρ = (4πτ)−
n
2 e−f for a positive function τ = τ(t). Then we have, for all

t ∈ (0, T2),
d

dt
F(ut, Ft, ρt, gt) = −

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
t ρtdµ(F

∗
t gt) ≤ 0. (50)

Proof. Since gt is a solution of the Ricci flow (33a), h = −2Ric(gt) in the equation (45) of Proposi-
tion 19.2. Furthermore, V = H(Ft) in this case, and g(V, Ft∗∇ut) = 0 since V (= H(Ft)) is a normal
vector and Ft∗∇ut is a tangent vector. Then, the equality (50) is clear by Proposition 19.2.

Remark 19.6. The equation (49a) is called the conjugate heat equation for the Ricci flow, and the
equation (49b) is a linear heat equation with time-dependent potential tr⊥Ft

(
Ric(gt)+Hess ft) on M .

Proposition 19.7. Assume that τ(t) = T − t. Let u : M × [0, T ) → R be a solution for (49b). Define

v : M × [0, T ) → R by u = (4πτ)
n−m

2 v. Then v satisfies
∂v

∂t
= ∆F∗gv − v tr⊥F (Ric + Hess f − g

2τ
), (49b′)

and the converse is also true.

Proof. We have
∂u

∂t
−∆F∗gu+ u tr⊥F (Ric + Hess f)

=− n−m

2τ
u+ (4πτ)

n−m
2
∂v

∂t
−∆F∗gu+ u tr⊥F (Ric + Hess f)

=(4πτ)
n−m

2

(
∂v

∂t
−∆F∗gv + v tr⊥F (Ric + Hess f − g

2τ
)

)
.

Thus, the equivalence is clear.

45



Example 19.8. If the ambient space is a Euclidean space, that is, (N, g) = (Rn, gst), we can reduce
Huisken’s monotonicity formula from (50). LetM be anm dimensional compact manifold and F : M×
[0, T ) → Rn be a mean curvature flow. Fix a point y0 ∈ Rn. Let ρ : Rn× [0, T ) → R+ be the standard
backward heat kernel on Rn at (y0, T ), that is, ρ is defined by

ρ(y, t) :=
1

(4π(T − t))
n
2
e−

|y−y0|2
4(T−t) .

Of course, ρ satisfies the backward heat equation (49a) with R = 0. In this case, since f is |y −
y0|2/(4(T − t)), we have

Hess f =
gst

2(T − t)
and tr⊥(Hess f) =

n−m

2(T − t)
.

Thus one can easily see that u : M × [0, T ) → R defined by

u(p, t) := (4π(T − t))
n−m

2

is the non-negative solution of (49b) with initial condition u(·, 0) = (4πT )
n−m

2 . Hence by Theorem 19.5
we have

d

dt
F(ut, Ft, ρt, gst) = −

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2F ∗
t ρtdµ(F

∗
t gst).

By definitions, we have

F(ut, Ft, ρt, gst) =

∫
M

ut F
∗
tρt dµ(F

∗
t gst)

=

∫
M

1

(4π(T − t))
m
2
e−

|Ft−y0|2
4(T−t) dµ(F ∗

t gst)

and

∇ft(Ft(p)) =
−→
Ft(p)−−→y0
2(T − t)

at p ∈M . Then we get Huisken’s monotonicity formula:
d

dt

∫
M

1

(4π(T − t))
m
2
e−

|Ft−y0|2
4(T−t) dµ(F ∗

t gst)

=−
∫
M

1

(4π(T − t))
m
2
e−

|Ft−y0|2
4(T−t)

∣∣∣∣H(Ft) +
(
−→
Ft(p)−−→y0)⊥Ft

2(T − t)

∣∣∣∣2dµ(F ∗
t gst) ≤ 0.

20 mean curvature flows in gradient shrinking Ricci solitons

In this section, we recall some definitions and properties of gradient shrinking Ricci solitons and self-
similar solutions (cf. Definition 17.2), and prove the monotonicity formula for a Ricci-mean curvature
flow along a Ricci flow constructed from a gradient shrinking Ricci soliton and also prove an analog
of Stone’s estimate.

Recall that if an n-dimensional Riemannian manifold (N, g̃) and a function f̃ on N satisfies the
equation (35):

Ric(g̃) + Hess f̃ − 1

2
g̃ = 0,

it is called a gradient shrinking Ricci soliton. In this Part we assume that (N, g̃) is a complete
Riemannian manifold. Then by the result due to Zhang [54], it follows that ∇f̃ is a complete vector
field on N . As Theorem 20.1 in Hamilton’s paper [20], one can easily see that R(g̃) + |∇f̃ |2 − f̃ is a
constant. Hence by adding some constant to f̃ if necessary, we can assume that the potential function
f̃ satisfying (35) also satisfy the equation (36):

R(g̃) + |∇f̃ |2 − f̃ = 0.

As a special case of a more general result for complete ancient solutions by Chen [8] (cf. Corollary
2.5), we can see that (N, g̃, f̃) must have the nonnegative scalar curvature R(g̃) ≥ 0. Hence we have

0 ≤ |∇f̃ |2 ≤ f̃ and 0 ≤ R(g̃) ≤ f̃ .
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Fix a positive time T > 0 arbitrary. Let {Φt : N → N}t∈(−∞,T ) be the 1-parameter family of

diffeomorphisms with Φ0 = idN generated by the time-dependent vector field V (t) := 1
T−t∇f̃ . For

t ∈ (−∞, T ), define

gt := (T − t)Φ∗
t g̃, ft := Φ∗

t f̃ , ρt := (4π(T − t))−
n
2 e−ft .

Then by the standard calculation, one can prove the following (cf. [40]).

Proposition 20.1. g is the solution of the Ricci flow, ∂g
∂t = −2Ric, on the time interval (−∞, T )

with g0 = T g̃, and ρ and f satisfy the following equations:
∂ρ

∂t
= −∆gρ+R(g)ρ (51)

Ric(g) + Hess f − g

2(T − t)
= 0. (52)

R(g) + |∇f |2 − f

T − t
= 0. (53)

Recall that an immersion map F : M → N is called a self-similar solution if it satisfies the equation
(37):

H(F ) = λ∇f̃⊥,

and it is called shrinking when λ < 0, steady when λ = 0 and expanding when λ > 0. A self-similar
solution corresponds to a minimal submanifold in a conformal rescaled ambient space. The precise
statement is the following.

Proposition 20.2. Let F : M → N be an immersion map in a gradient shrinking Ricci soliton
(N, g̃, f̃). Then the following two conditions are equivalent.

1. F is a self-similar solution with coefficient λ.

2. F is a minimal immersion with respect to a metric e2λf̃/mg̃ on N .

Here m is the dimension of M .

Proof. One can easily see that in general if we denote the mean curvature vector field of F in (N, g̃)
by H(F ) then the mean curvature vector field in the conformal rescaling (N, e2φg̃) is given by

e−2φ(H(F )−m∇φ⊥).

Hence, by putting φ := λf̃/m, the equivalence is clear.

From a self-shrinker, we can construct a solution of Ricci-mean curvature flow canonically.

Proposition 20.3. Let F̃ : M → N be a self-shrinker with λ = −1. For a fixed time T > 0, let Φt and
gt be defined as above, and define Ψt := Φ−1

t . Then F : M× [0, T ) → N defined by F (p, t) := Ψt(F̃ (p))
satisfies (

∂F

∂t

)⊥

= H(Ft),

in the Ricci flow (N, gt) defined on t ∈ [0, T ), that is, F becomes a solution of the Ricci-mean curvature
flow in (N, gt) up to a time-dependent re-parametrization of M .

Proof. By differentiating the identity Φt ◦Ψt = idN , we have

1

T − t
∇f̃ +Φt∗

(
∂Ψt
∂t

)
= 0.

Hence we can see that
∂Ψt
∂t

= −Ψt∗

(
1

T − t
∇f̃
)
.
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Since H(F̃ ) = −∇f̃⊥, more precisely H(F̃ ) = −∇f̃⊥F̃ ,g̃ (note that the notion of the normal projection
depends on an immersion map and an ambient metric), we have(

∂F

∂t

)⊥Ft,gt

=

(
−Ψt∗

(
1

T − t
∇f̃
))⊥Ft,gt

=−Ψt∗

(
1

T − t
∇f̃⊥F̃ ,g̃

)
=

1

T − t
Ψt∗(H(F̃ ))

=H(Ft),

where H(F̃ ) is the mean curvature vector field with respect to the metric g̃ and H(Ft) is the one with
respect to the metric gt.

There exists a one to one correspondence between Ricci-mean curvature flows in (N, gt) and nor-
malized mean curvature flows (cf. Definition 17.3) in (N, g̃).

Proposition 20.4. For a fixed time T > 0, let Φt and gt be defined as above. If F : M×[0, T ) → N is a
Ricci-mean curvature flow along the Ricci flow (N, gt), then the rescaled flow F̃ : M×[− log T,∞) → N
defined by the equation (40):

F̃s := Φt ◦ Ft with s = − log(T − t)

for s ∈ [− log T,∞) becomes a normalized mean curvature flow in (N, g̃), that is, it satisfies

∂F̃

∂s
= H(F̃ ) +∇f̃ .

Conversely, if F̃ : M × [− log T,∞) → N is a normalized mean curvature flow in (N, g̃), then the flow
F : M × [0, T ) → N defined by (40) becomes a Ricci-mean curvature flow along the Ricci flow (N, gt).

Proof. By differentiating F̃ , we have

∂F̃

∂s
= ∇f̃ + (T − t)Φt∗

(
∂F

∂t

)
.

Furthermore, it is clear that
(T − t)Φt∗(H(Ft)) = H(F̃s).

Hence, the correspondence between Ricci-mean curvature flows along (N, gt) and normalized mean
curvature flows in (N, g̃) is clear.

Here the monotonicity formula for a Ricci-mean curvature flow moving along the Ricci flow (N, gt)
is almost clear by Proposition 19.5.

Proposition 20.5. For a fixed time T > 0, let gt, ft, and ρt be defined as above, and define ut :=

(4π(T − t))
n−m

2 . If F : M × [0, T ) → N is a Ricci-mean curvature flow along the Ricci flow (N, gt)
and M is compact, then we have the monotonicity formula:

d

dt

∫
M

uF ∗ρ dµ(F ∗g) = −
∫
M

u
∣∣∣H(F ) +∇f⊥F

∣∣∣2
g
F ∗ρ dµ(F ∗g) ≤ 0. (54)

Proof. By Proposition 20.1, we see that ρ satisfies the conjugate heat equation (49a). To see that u
satisfies the equation (49b), we use the equivalent equation (49b′). In this case, by Proposition 20.1,
the equation (49b′) becomes

∂v

∂t
= ∆F∗gv,

the standard heat equation on M , where u and v are related by u = (4π(T − t))
n−m

2 v. Then v ≡ 1

is a trivial solution of (49b′). Hence ut = (4π(T − t))
n−m

2 becomes a solution of (49b). Thus, by
Proposition 19.5, we have the above monotonicity formula (54).

By Proposition 20.5, we can deduce the following monotonicity formula of the weighted volume
functional for a normalized mean curvature flow, immediately.
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Proposition 20.6. If F̃ : M × [− log T,∞) → N is a normalized mean curvature flow in (N, g̃, f̃)
and M is compact, then we have the monotonicity formula:

d

ds

∫
M

e−f̃◦F̃ dµ(F̃ ∗g̃) = −
∫
M

∣∣∣H(F̃ ) +∇f̃⊥F̃

∣∣∣2
g̃
e−f̃◦F̃ dµ(F̃ ∗g̃) ≤ 0. (55)

Proof. In this proof, we follow the notations in Proposition 20.4. It is clear that ft ◦ Ft = f̃ ◦ F̃s and
F ∗
t gt = (T − t)F̃ ∗

s g̃. Hence we have

ut F
∗
tρt dµ(F

∗
t gt) =(4π(T − t))−

m
2 e−ft◦Ft dµ(F ∗

t gt)

=(4π)−
m
2 e−f̃◦F̃s dµ(F̃ ∗

s g̃) .

Since H(F̃s) = (T − t)Φt∗H(Ft) and ∇f̃ = (T − t)Φt∗∇ft, we have

(T − t)
∣∣∣H(Ft) +∇f⊥Ft

t

∣∣∣2
gt

=
∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
.

Thus, by the equality (54), one can easily see that the equality (55) holds.

To prove the main theorems, we need the following key lemma. Its proof is an analog of the proof

of Stone’s estimate (cf. Lemma 2.9 in [47]). Stone considered the weight e−
√
f̃ in the Euclidean case,

where f̃ := |x|2/4. However we consider the weight e−
f̃
2 here, since − f̃

2 is a smooth function and we
can apply Proposition 19.2.

Lemma 20.7. Assume that (N, g̃) has bounded geometry. If F̃ : M×[− log T,∞) → N is a normalized
mean curvature flow in (N, g̃, f̃) and M is compact, then there exists a constant C > 0 such that∫

M

e−
f̃
2 ◦F̃ dµ(F̃ ∗g̃) ≤ C. (56)

uniformly on [− log T,∞).

Proof. In this proof, we follow the notations in Proposition 20.4. As the proof of Proposition 20.6, we
have ∫

M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) = (4π)
m
2

∫
M

ut F
∗
t ρ̄t dµ(F

∗
t gt),

where

ρ̄t :=
1

(4π(T − t))
n
2
e−

ft
2 and ut := (4π(T − t))

n−m
2 .

By Proposition 19.2, we have
d

dt

∫
M

ut F
∗
t ρ̄t dµ(F

∗
t gt)

=−
∫
M

ut

∣∣∣H(Ft) +
1

2
∇f⊥Ft

t

∣∣∣2
gt
F ∗
t ρ̄t dµ(F

∗
t gt)

+

∫
M

utF
∗
t

(
∂ρ̄t
∂t

+∆gt ρ̄t −R(gt)ρ̄t

)
dµ(F ∗

t gt)

+

∫
M

(
∂ut
∂t

−∆F∗
t gt
ut + ut tr

⊥Ft

(
1

2
Hess ft +Ric(gt)

))
F ∗
t ρ̄t dµ(F

∗
t gt) .

By using ∂f
∂t = |∇f |2 and |∇f |2 = f

T−t −R(g), we have

∂ρ̄

∂t
= ρ̄

(
n

2(T − t)
− f

2(T − t)
+

1

2
R(g)

)
.

By using ∆gf = −R(g) + n
2(T−t) and |∇f |2 = f

T−t −R(g), we have

∆gρ̄ = ρ̄

(
f

4(T − t)
+

1

4
R(g)− n

4(T − t)

)
.

Hence we have
∂ρ̄

∂t
+∆gρ̄−R(g)ρ̄ = ρ̄

(
n

4(T − t)
− f

4(T − t)
− 1

4
R(g)

)
≤ ρ̄

4(T − t)
(n− f).
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Furthermore, since u satisfies
∂ut
∂t

−∆F∗
t gt
ut + ut tr

⊥Ft (Hess ft +Ric(gt)) = 0,

we have
∂ut
∂t

−∆F∗
t gt
ut + ut tr

⊥Ft

(
1

2
Hess ft +Ric(gt)

)
= −1

2
ut tr

⊥Ft Hess ft.

By using Hess ft =
1

2(T−t)gt − Ric(gt), we have

−1

2
ut tr

⊥Ft Hess ft = ut

(
− n−m

4(T − t)
+

1

2
tr⊥Ft Ric(gt)

)
.

It is clear that

tr⊥Ft Ric(gt) ≤ (n−m)|Ric(gt)|gt = (n−m)
|Ric(g̃)|g̃
T − t

≤ C ′′

T − t
,

where C ′′ := (n−m)maxN |Ric(g̃)|g̃ is a bounded constant since (N, g̃) has bounded geometry. Hence
we have

d

dt

∫
M

ut F
∗
t ρ̄t dµ(F

∗
t gt) <

1

4(T − t)

∫
M

(
C0 − ft ◦ Ft

)
ut F

∗
t ρ̄t dµ(F

∗
t gt),

where C0 := m+ 4C ′′ + 1. Since s = − log(T − t), we have
d

ds

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) = (4π)
m
2 (T − t)

d

dt

∫
M

ut F
∗
t ρ̄t dµ(F

∗
t gt) .

Hence we have
d

ds

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) <
1

4

∫
M

(
C0 − f̃ ◦ F̃s

)
e−

f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) .

Here we divide M into time-dependent three pieces as follows:

M1,s := F̃−1
s ({f̃ ≤ C0}),

M2,s := F̃−1
s ({C0 < f̃ ≤ 2C0}),

M3,s := F̃−1
s ({2C0 < f̃}).

On each component, we have∫
M1,s

(
C0 − f̃ ◦ F̃s

)
e−

f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ C0

∫
M1,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃),∫
M2,s

(
C0 − f̃ ◦ F̃s

)
e−

f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ 0∫
M3,s

(
C0 − f̃ ◦ F̃s

)
e−

f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ −C0

∫
M3,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) .

Thus we have
d

ds

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃)

<
C0

4

(∫
M1,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃)−
∫
M3,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃)

)
.

(57)

On the other hand, by the monotonicity formula (cf. Proposition 20.6), we have∫
M

e−f̃◦F̃s dµ(F̃ ∗
s g̃) ≤ C ′,

where C ′ is the value of the left hand side at the initial time s = − log T . We further define a region
in M by

M4,s := F̃−1
s ({f̃ ≤ 2C0}) =M1,s ∪M2,s.

Since e−
f̃
2 = e

f̃
2 e−f̃ ≤ e

C0
2 e−f̃ on M1,s, we have∫

M1,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ e
C0
2

∫
M

e−f̃◦F̃s dµ(F̃ ∗
s g̃) ≤ e

C0
2 C ′ =: C1.
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As on M1,s, we have ∫
M4,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ eC0C ′ =: C2. (58)

Hence, by the inequality (57), we see that for each s ∈ [− log T,∞) we must have either
d

ds

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) < 0 or

∫
M3,s

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ C1.

Since M = M3,s ∪M4,s and we have the bound (58), we see that for each s ∈ [− log T,∞) we must
have either

d

ds

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) < 0 or

∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ C1 + C2.

This condition implies that∫
M

e−
f̃
2 ◦F̃s dµ(F̃ ∗

s g̃) ≤ max{C1 + C2, C3} =: C,

where C3 is the value of the left hand side at the initial time s = − log T .

Remark 20.8. In Section 17, we consider the condition (A2):

lim sup
t→T

(
√
T − t sup

M
|A(Ft)|gt) <∞,

for a Ricci-mean curvature flow F : M× [0, T ) → N along the Ricci flow gt. Note that ifM is compact
then this condition is equivalent to that there exists a constant C0 > 0 such that

max
M

|A(Ft)|gt ≤
C0√
T − t

on [0, T ).

Proposition 20.9. Let (N, g̃, f̃) be a gradient shrinking Ricci soliton with bounded geometry. For
a fixed time T > 0, let Φt and gt be defined as above, and let F : M × [0, T ) → N be a Ricci-mean
curvature flow along the Ricci flow (N, gt). Assume that M is compact and F satisfies the condition
(A2). Let F̃ be the normalized mean curvature flow defined by (40). Then, for all k = 0, 1, 2, . . . ,
there exist constants Ck > 0 such that

|∇̃kA(F̃s)|g̃ ≤ Ck on M × [− log T,∞),

where ∇̃ is the connection defined by the Levi–Civita connection on (N, g̃) and the one on (M, F̃ ∗
s g̃).

Proof. First of all, by the definitions of gt = (T − t)Φ∗
t g̃ and F̃s = Φt ◦ Ft, one can easily see that

∇̃kA(F̃s) = Φt∗∇kA(Ft), |∇̃kA(F̃s)|g̃ = (T − t)
1
2+

1
2k|∇kA(Ft)|gt , (59)

|∇̃kRm(g̃)|g̃ = (T − t)1+
1
2k|∇kRm(gt)|gt (60)

for all k = 0, 1, 2, . . . , where ∇̃ is the connection defined by the Levi–Civita connection on (N, g̃) and
the one on (M, F̃ ∗

s g̃), and ∇ is the connection defined by the Levi–Civita connection on (N, gt) and
the one on (M,F ∗

t gt). In this sense, as Huisken done in [23], we can consider the degree of ∇kA(Ft) is
1
2 +

1
2k and the degree of ∇kRm(gt) is 1+

1
2k. We will write A(Ft) and A(F̃s) by A and Ã respectively,

and also write Rm(gt) and Rm(g̃) by Rm and R̃m respectively, for short. To use the argument of
degree more rigorously, we define a set Va,b and a vector space Va,b as follows. First, we recall the
notion of ∗-product here. For tensors T1 and T2, we write T1 ∗ T2 to mean a tensor formed by a sum
of terms each one of them obtained by contracting some indices of the pair T1 and T2 by using g, F ∗g
and these inverses, and there is a property that

|T1 ∗ T2| ≤ C|T1||T2|, (61)

where C > 0 is a constant which depends only on the algebraic structure of T1 ∗T2. Then, for a, b ∈ N,
we define a set Va,b as the set of all (time-dependent) tensors T on M which can be expressed as

T = (∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (
p
∗DF )

with I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying
I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
= a and

J∑
j=1

ℓj ≤ b,
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and we define a vector space Va,b as the set of all tensors T on M which can be expressed as

T = a1T1 + · · ·+ arTr
for some r ∈ N, a1 . . . ar ∈ R and T1, . . . , Tr ∈ Va,b.

For the case k = 0, as noted in Remark 20.8, there exists a constant C0 > 0 such that

|A| ≤ C0√
T − t

on M × [0, T ),

since F satisfies the condition (A2). Hence we have

|Ã| =
√
T − t|A| ≤ C0.

For the case k ≥ 0, we work by induction on k ∈ N. The case k = 0 has already proved above.
For a fixed k ≥ 1, assume that there exist positive constants C0, C1, . . . , Ck−1 such that

|∇̃iÃ| ≤ Ci on M × [− log T,∞)

for i = 0, 1, . . . , k − 1. We consider the evolution equation of |∇̃kÃ|2, and finally we will prove
the bound of |∇̃kÃ|2 by the parabolic maximum principle. Since |∇̃kÃ|2 = (T − t)k+1|∇kA|2 and
∂
∂s = (T − t) ∂∂t , we have that

∂

∂s
|∇̃kÃ|2 = −(k + 1)|∇̃kÃ|2 + (T − t)k+2 ∂

∂t
|∇kA|2

≤ (T − t)k+2 ∂

∂t
|∇kA|2.

By Proposition 21.19, there exist tensors E [k] ∈ V 3
2+

1
2k,k

, C[k] ∈ V 3
2+

1
2k,k+1 and G[k] ∈ V 1

2+
1
2k,k−1

such that
∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 + E [k] ∗ ∇kA+ C[k] ∗ G[k],

where ∆ is the Laplacian on (M,F ∗
t gt). Let ∆̃ be the Laplacian on (M, F̃ ∗

s g̃), then we have (T−t)∆ =
∆̃. Hence we have

(T − t)k+2(∆|∇kA|2 − 2|∇k+1A|2) = ∆̃|∇̃kÃ|2 − 2|∇̃k+1Ã|2.
Since G[k] ∈ V 1

2+
1
2k,k−1, there exist r ∈ N, a1 . . . ar ∈ R and

G[k]1, . . . ,G[k]r ∈ V 1
2+

1
2k,k−1

such that
G[k] = a1G[k]1 + · · ·+ arG[k]r.

Hence we have
|G[k]| ≤ |a1||G[k]1|+ · · ·+ |ar||G[k]r|.

By the definition of V 1
2+

1
2k,k−1, each G[k]• can be expressed as

(∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (
p
∗DF )

with some I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying
I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
=

1

2
+

1

2
k and

J∑
j=1

ℓj ≤ k − 1.

Hence, by using (59), (60), and (61), we have

(T − t)
1
2+

1
2k|G[k]•|

≤C(T − t)
1
2+

1
2k|∇k1Rm| · · · |∇kIRm||∇ℓ1A| · · · |∇ℓJA||DF |p

=C(
√
m)p|∇̃k1R̃m| · · · |∇̃kI R̃m||∇̃ℓ1Ã| · · · |∇̃ℓJ Ã|

for some constant C > 0. Here note that |DF | =
√
m. Since (N, g̃) has bounded geometry, each

|∇̃kiR̃m| is bounded. Furthermore, since ℓj ≤ k − 1, each |∇̃ℓj Ã| is bounded by the assumption of
induction. Hence there exists a constant C ′ > 0 such that

(T − t)
1
2+

1
2k|G[k]| ≤ C ′.

Since E [k] ∈ V 3
2+

1
2k,k

, there exist r′ ∈ N, b1 . . . br′ ∈ R and

E [k]1, . . . , E [k]r′ ∈ V 3
2+

1
2k,k
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such that
E [k] = b1E [k]1 + · · ·+ br′E [k]r′ .

Hence we have
|E [k]| ≤ |b1||E [k]1|+ · · ·+ |br′ ||E [k]r′ |.

By the definition of V 3
2+

1
2k,k

, each E [k]• can be expressed as

(∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (
p
∗DF )

with some I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying
I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
=

3

2
+

1

2
k and

J∑
j=1

ℓj ≤ k.

If max{ℓ1, . . . , ℓJ} ≤ k − 1, we can prove that (T − t)
3
2+

1
2k|E [k]•| is bounded by the same argument

as the case of G[k]•. If max{ℓ1, . . . , ℓJ} = k, one can easily see that the possible forms of E [k]• are

A ∗A ∗ ∇kA ∗ (
p
∗DF ) and Rm ∗ ∇kA ∗ (

p
∗DF ).

In both cases, we can see by the same argument as the case of G[k]• that there exists a constant C̃ > 0

such that (T − t)
3
2+

1
2k|E [k]•| ≤ C̃|∇̃kÃ|. Hence we can see that there exists a constant C ′′ > 0 such

that
(T − t)

3
2+

1
2k|E [k]| ≤ C ′′(1 + |∇̃kÃ|).

Since C[k] ∈ V 3
2+

1
2k,k+1, there exist r′′ ∈ N, c1 . . . cr′′ ∈ R and

C[k]1, . . . , C[k]r′′ ∈ V 3
2+

1
2k,k+1

such that
C[k] = c1C[k]1 + · · ·+ cr′′C[k]r′′ .

Hence we have
|C[k]| ≤ |c1||C[k]1|+ · · ·+ |cr′′ ||C[k]r′′ |.

By the definition of V 3
2+

1
2k,k+1, each C[k]• can be expressed as

(∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (
p
∗DF )

with some I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying
I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
=

3

2
+

1

2
k and

J∑
j=1

ℓj ≤ k + 1.

If max{ℓ1, . . . , ℓJ} ≤ k − 1, we can prove that (T − t)
3
2+

1
2k|C[k]•| is bounded by the same argument

as the case of G[k]•. If max{ℓ1, . . . , ℓJ} = k, one can easily see that the possible forms of C[k]• are

A ∗A ∗ ∇kA ∗ (
p
∗DF ) and Rm ∗ ∇kA ∗ (

p
∗DF ),

and we have (T − t)
3
2+

1
2k|C[k]•| ≤ C̃|∇̃kÃ| as the case of E [k]•. If max{ℓ1, . . . , ℓJ} = k + 1, one can

easily see that the possible form of C[k]• is

∇k+1A ∗ (
p
∗DF ),

and we have (T − t)
3
2+

1
2k|C[k]•| ≤ C̃ ′|∇̃k+1Ã| for some constant C̃ ′ > 0. Hence we can see that there

exists a constant C ′′′ > 0 such that

(T − t)
3
2+

1
2k|C[k]| ≤ C ′′′(1 + |∇̃kA|+ |∇̃k+1Ã|).

Hence we have
∂

∂s
|∇̃kÃ|2 ≤(T − t)k+2 ∂

∂t
|∇kA|2

≤∆̃|∇̃kÃ|2 − 2|∇̃k+1Ã|2 + C ′′(1 + |∇̃kÃ|)|∇̃kÃ|
+ C ′C ′′′(1 + |∇̃kÃ|+ |∇̃k+1Ã|).
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Since −|∇̃k+1Ã|2 + C ′C ′′′|∇̃k+1Ã| ≤ (C′C′′′)2

4 , we have

∂

∂s
|∇̃kÃ|2 ≤∆̃|∇̃kÃ|2 − |∇̃k+1Ã|2

+ C ′′|∇̃kÃ|2 + (C ′′ + C ′C ′′′)|∇̃kÃ|+ C ′C ′′′ +
(C ′C ′′′)2

4
.

By putting C̄k := C ′′ + (C ′′ + C ′C ′′′) + C ′C ′′′ + (C′C′′′)2

4 , we have

∂

∂s
|∇̃kÃ|2 ≤ ∆̃|∇̃kÃ|2 − |∇̃k+1Ã|2 + C̄k(1 + |∇̃kÃ|2). (62)

Hence immediately we have
∂

∂s
|∇̃kÃ|2 ≤ ∆̃|∇̃kÃ|2 + C̄k(1 + |∇̃kÃ|2). (63)

Note that the inequality (62) also holds for k − 1, that is, we have
∂

∂s
|∇̃k−1Ã|2 ≤ ∆̃|∇̃k−1Ã|2 − |∇̃kÃ|2 + C̄k−1(1 + |∇̃k−1Ã|2), (64)

for some constant C̄k−1 > 0. Hence by combining the inequality (63) and (64), we have
∂

∂s
(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2) ≤∆̃(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2)

+ C̄k − C̄k|∇̃kÃ|2

+ 2C̄kC̄k−1(1 + |∇̃k−1Ã|2).

(65)

Since we have

C̄k − C̄k|∇̃kÃ|2 + 2C̄kC̄k−1(1 + |∇̃k−1Ã|2)
=− C̄k(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2)
+ C̄k(1 + 2C̄k−1 + 2(C̄k + C̄k−1)|∇̃k−1Ã|2)

and |∇̃k−1Ã|2 is bounded by the assumption of induction, one can easily see that there exists a

constant ¯̄Ck > 0 such that
∂

∂s
(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2 − ¯̄Ck) ≤ ∆̃(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2 − ¯̄Ck)

− C̄k(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2 − ¯̄Ck).

Thus, by putting µ := eC̄ks(|∇̃kÃ|2 + 2C̄k|∇̃k−1Ã|2 − ¯̄Ck), we have
∂

∂s
µ ≤ ∆̃µ.

Since M is compact, µ is bounded at initial time s = − log T . Then, by the parabolic maximum
principle, it follows that µ is also bounded onM × [− log T,∞), that is, there exists a constant C̃k > 0
such that µ ≤ C̃k on M × [− log T,∞). Hence we have

|∇̃kÃ|2 ≤ e−C̄ksC̃k − 2C̄k|∇̃k−1Ã|2 + ¯̄Ck ≤ T C̄k C̃k +
¯̄Ck.

Thus, by putting Ck := T C̄k C̃k +
¯̄Ck, we have

|∇̃kÃ| ≤ Ck.

Hence the induction argument can be proceeded, and we completed the proof.

Combining Lemma 20.7 and Proposition 20.9, we can deduce the following uniform bound of the
second derivative of the weighted volume.

Lemma 20.10. Let (N, g̃, f̃) be a gradient shrinking Ricci soliton with bounded geometry. For a fixed
time T > 0, let Φt and gt be defined as above, and let F : M × [0, T ) → N be a Ricci-mean curvature
flow along the Ricci flow (N, gt). Assume that M is compact and F satisfies the condition (A2). Let
F̃ be the normalized mean curvature flow defined by (40). Then there exists a constant C ′ > 0 such
that ∣∣∣∣∣ d2ds2

∫
M

e−f̃◦F̃s dµ(F̃ ∗
s g̃)

∣∣∣∣∣ =
∣∣∣∣∣ dds

∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

∣∣∣∣∣ ≤ C ′

uniformly on [− log T,∞).
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Proof. As the proof of Proposition 20.6, we have∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

=(4π)
m
2 (T − t)

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt),

where u := (4π(T − t))
n−m

2 . Since d
ds = (T − t) ddt , we have

d

ds

∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

=− (4π)
m
2 (T − t)

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt)

+ (4π)
m
2 (T − t)2

d

dt

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt)

=−
∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

+ (4π)
m
2 (T − t)2

d

dt

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt).

(66)

First, we consider the term

−
∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃).

Since |H(F̃s)| ≤
√
m|A(F̃s)| and we know that |A(F̃s)| ≤ C0 by Proposition 20.9, we can see that∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2 ≤|H(F̃s)|2 + 2|H(F̃s)||∇f̃ |+ |∇f̃ |2

≤C ′′(1 + |∇f̃ |2)
≤C ′′(1 + f̃ ◦ F̃s)

for some constant C ′′ > 0, where we used 0 ≤ |∇f̃ |2 ≤ f̃ . Hence we have∣∣∣∣∣−
∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

∣∣∣∣∣
≤C ′′

∫
M

(1 + f̃ ◦ F̃s)e−f̃◦F̃sdµ(F̃ ∗
s g̃).

(67)

Next we consider the term

(4π)
m
2 (T − t)2

d

dt

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt).

By Proposition 19.2, we have
d

dt

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
F ∗
tρt dµ(F

∗
t gt)

=−
∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣4
gt
F ∗
tρt dµ(F

∗
t g) +

∫
M

Lūt F
∗
tρt dµ(F

∗
t gt),

(68)

where we put

ūt :=ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
,

Lūt :=
∂

∂t
ūt −∆F∗

t gt
ūt + ūttr

⊥(Ric(gt) + Hess ft)

=ut

(
∂

∂t
−∆F∗

t gt

)∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
.
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First, as the above argument, we can see that∣∣∣∣∣−(4π)
m
2 (T − t)2

∫
M

ut

∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣4
gt
F ∗
tρt dµ(F

∗
t gt)

∣∣∣∣∣
≤C ′′′

∫
M

(1 + f̃2 ◦ F̃s)e−f̃◦F̃sdµ(F̃ ∗
s g̃)

(69)

for some constant C ′′′ > 0. Next we consider(
∂

∂t
−∆F∗

t gt

)∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt
.

In fact, by the long computation (cf. Lemma 22.1), it follows that there exists a constant C ′′′′ > 0
such that

(T − t)2

∣∣∣∣∣
(
∂

∂t
−∆F∗

t gt

)∣∣∣H(Ft) +∇ft⊥Ft

∣∣∣2
gt

∣∣∣∣∣ ≤ C ′′′′(1 + f̃ ◦ F̃s). (70)

By combining (66)-(70), it follows that there exists a constant C̄ > 0 such that∣∣∣∣∣ dds
∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

∣∣∣∣∣
≤C̄

∫
M

(1 + f̃2 ◦ F̃s)e−f̃◦F̃sdµ(F̃ ∗
s g̃).

Note that (1 + f̃2)e−f̃ = (1 + f̃2)e−
f̃
2 e−

f̃
2 and (1 + f̃2)e−

f̃
2 is a bounded function on N , that is,

(1 + f̃2)e−
f̃
2 ≤ C̄ ′ for some constant C̄ ′. Thus we have∣∣∣∣∣ dds

∫
M

∣∣∣H(F̃s) +∇f̃⊥F̃s

∣∣∣2
g̃
e−f̃◦F̃sdµ(F̃ ∗

s g̃)

∣∣∣∣∣
≤C̄

∫
M

(1 + f̃2 ◦ F̃s)e−f̃◦F̃sdµ(F̃ ∗
s g̃)

≤C̄C̄ ′
∫
M

e−
f̃
2 ◦F̃sdµ(F̃ ∗

s g̃) ≤ C̄C̄ ′C =: C ′,

where C is the constant appeared in (56) of Lemma 20.7.

Finally, here we give the proof of Theorem 17.12.

Proof of Theorem 17.12. We denote the Kähler form and the complex structure on (N, g, f) by ω and
J respectively. Since F : L→ N is a self-similar solution, F satisfies

H(F ) = λ∇f⊥

for some constant λ ∈ R. Then, by the definition of the mean curvature form ωH , for a tangent vector
X on L, we have

ωH(X) = ω(H(F ), F∗X) = λω(∇f⊥, F∗X) = λω(∇f, F∗X),

where we used the Lagrangian condition in the last equality. Since the mean curvature form is exact,
there exists a smooth function θ on L such that ωH = dθ. Let {ei}ni=1 be an orthonormal local frame
on L with respect to the metric F ∗g. Since ω and J are parallel, we have

∆θ =∇eiωH(ei)− ωH(∇eiei)

=λ∇eiω(∇f, F∗ei)− ωH(∇eiei)

=− λHess f(F∗ei, JF∗ei) + λω(∇f,∇F∗eiF∗ei)− λω(∇f, F∗(∇eiei))

=− λHess f(F∗ei, JF∗ei) + λω(∇f,H(F )).

Since the ambient is a gradient shrinking Kähler Ricci soliton, we have

Hess f(F∗ei, JF∗ei) = −Ric(F∗ei, JF∗ei) +
1

2
g(F∗ei, JF∗ei) = 0.

Furthermore, we have

ω(∇f,H(F )) = ω(∇f⊤,H(F )) = ω(F∗∇(F ∗f),H(F )) = −(F ∗g)(∇(F ∗f),∇θ).
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Hence θ satisfies the following linear elliptic equation:

∆θ + λ(F ∗g)(∇(F ∗f),∇θ) = 0.

Since L is compact, by the maximum principle, we obtain that θ is a constant, and this implies that
H(F ) = 0.

21 Evolution equations

In this Section, we give a general treatment of evolution equations for tensors with Ricci-mean cur-
vature flows along Ricci flows. Note that, in this Section, we do not assume that gt is the Ricci flow
constructed by a gradient shrinking Ricci soliton.

Let M and N be manifolds with dimension m and n respectively, and assume that m ≤ n. Let
g = ( gt ; t ∈ [0, T1) ) be a solution of Ricci flow (33a) and F : M × [0, T2) → N be a solution of
Ricci-mean curvature flow (33b) with T2 ≤ T1. Here we introduce the notion of the covariant time
derivative ∇t as in [45]. Assume that, for each t ∈ [0, T2), T (t) is a smooth section of

Et := (
A
⊗F ∗

t (TN))⊗ (
B
⊗F ∗

t (T
∗N))⊗ (

C
⊗TM)⊗ (

D
⊗T ∗M)

over M , and its correspondence t 7→ T (t) is smooth. Then for each t ∈ [0, T2) we define (∇tT )(t)
as follows, and it is also a smooth section of Et. Denote T by local coordinates (yα)nα=1 on N and
(xi)mi=1 on M as

Tα1...αA i1...iC
β1...βB j1...jD

.

This is the coefficient of
∂

∂yα1
⊗ · · · ⊗ ∂

∂yαA
⊗ dyβ1 ⊗ · · · ⊗ dyβB ⊗ ∂

∂xi1
⊗ · · · ⊗ ∂

∂xiC
⊗ dxj1 ⊗ · · · ⊗ dxjD

of T . Then the coefficients of (∇tT )(t) is defined by

(∇tT )
α1...αA i1...iC

β1...βB j1...jD
:=

∂

∂t
Tα1...αA i1...iC

β1...βB j1...jD

+
A∑
p=1

Γ
αp

γδH
γTα1...δ...αA i1...iC

β1...βB j1...jD

−
B∑
p=1

Γδγβp
HγTα1...αA i1...iC

β1...δ...βB j1...jD
,

where Γαβγ is the Christoffel symbol of the Levi–Civita connection of gt on N for each time t. Then
one can easily check that this definition does not depend on the choice of local coordinates and defines
a global smooth section of Et over M .

Remark 21.1. One can easily check that ∇t satisfies Leibniz rule for tensor contractions. For
example, for tensors Sαij , T

β
kℓ, Uαβ , V

ik, W jℓ, we have

∇t(S
α
ijT

β
kℓUαβV

ikW jℓ) = ∇tS
α
ijT

β
kℓUαβV

ikW jℓ + Sαij∇tT
β
kℓUαβV

ikW jℓ

+ SαijT
β
kℓ∇tUαβV

ikW jℓ

+ SαijT
β
kℓUαβ∇tV

ikW jℓ + SαijT
β
kℓUαβV

ik∇tW
jℓ.

Note that in this Part we define

Rm(X,Y )Z := (∇X∇Y −∇Y∇X −∇[X,Y ])Z

Rαβγδ := g

(
∂

∂yα
,Rm

(
∂

∂yγ
,
∂

∂yδ

)
∂

∂yβ

)
,

Rαγ := Ricαγ := gβδRαβγδ,

and we define

Fαi = Fαi (t) :=
∂Fαt
∂xi

,

that is a coefficient of the tensor DFt(= Ft∗) ∈ Γ(M,F ∗
t (TN) ⊗ T ∗M). By the straightforward

computation with the definition of ∇t, we get the following formulas, Lemma 21.2, 21.3, and 21.4.
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Lemma 21.2. We have

∇t∇jT
α
i1...ik

−∇j∇tT
α
i1...ik

=RαγδβH
δF βj T

γ
i1...ik

+
∂

∂t
ΓαβγF

β
j T

γ
i1...ik

−
k∑
p=1

∂

∂t
ΓℓjipT

α
i1...ℓ...ik

,

where Γijk is the Christoffel symbol of the Levi–Civita connection of F ∗
t gt on M for each time t.

Lemma 21.3. By the restriction, we consider gt, more precisely gt ◦ Ft, as a section of F ∗
t (T

∗N)⊗
F ∗
t (T

∗N) over M . Then we have
∇tgαβ = −2Rαβ .

Lemma 21.4. We have
∇tF

α
i = ∇iH

α.

Combining above lemmas, we have the following.

Lemma 21.5. Put gij = (F ∗
t gt)ij = gαβF

α
i F

β
j . Then we have

∂

∂t
gij = ∇tgij = −2((F ∗Ric)ij + g(H,Aij)).

Proof. By the definition of ∇t, the first equality
∂
∂tgij = ∇tgij is clear. By the remark that ∇t satisfies

Leibniz rule for tensor contractions and by Lemma 21.3 and 21.4, we have

∇tgij = ∇t(gαβF
α
i F

β
j )

= ∇tgαβF
α
i F

β
j + gαβ∇tF

α
i F

β
j + gαβF

α
i ∇tF

β
j

= −2RαβF
α
i F

β
j + gαβ∇iH

αF βj + gαβF
α
i ∇jH

β .

Since H is a normal vector field, we have gαβH
αF βi = 0. By differentiating both sides by ∇j , we have

0 = gαβ∇jH
αF βi + gαβH

αAβji.

Here we used Aβji = ∇jF
β
i . Since Aij is symmetric, we have

gαβ∇iH
αF βj + gαβF

α
i ∇jH

β = −2gαβH
αAβij .

Here we completed the proof.

By using ∂
∂tgαβ = −2Rαβ and the Koszul formula, one can deduce the following formula immedi-

ately.

Lemma 21.6. We have
∂

∂t
Γγαβ = −gγδ(∇αRδβ +∇βRαδ −∇δRαβ).

As an analog of Lemma 21.6, we can prove the following.

Lemma 21.7. We have
∂

∂t
Γkij = −gkℓ(∇iTℓj +∇jTiℓ −∇ℓTij),

where we put Tij := (F ∗Ric)ij + g(H,Aij).

Here we introduce the notion of ∗-product following Hamilton [19].

Notation 21.8. For tensors S and T , we write S ∗ T to mean a tensor formed by a sum of terms
each one of them obtained by contracting some indices of the pair S and T by using g and F ∗g and
these inverse. There is a property of ∗-product that

|S ∗ T | ≤ C|S||T |,
where C > 0 is a constant which depends only on the algebraic structure of S ∗ T .
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Definition 21.9. For a, b ∈ N, we define a set Va,b as the set of all (time-dependent) tensors T on M
which can be expressed as

T = (∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (
p
∗DF )

with I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying
I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
= a and

J∑
j=1

ℓj ≤ b,

and we define a vector space Va,b as the set of all tensors T on M which can be expressed as

T = a1T1 + · · ·+ arTr
for some r ∈ N, a1 . . . ar ∈ R and T1, . . . , Tr ∈ Va,b.

Since ∇DF = A, the following is clear.

Proposition 21.10. Assume that T1 ∈ Va1,b1 , T2 ∈ Va2,b2 and T3 ∈ Va3,b3 . Then we have

T1 ∗ T2 ∈ Va1+a2,b1+b2 and ∇T3 ∈ Va3+ 1
2 ,b3+1,

whenever T1 ∗ T2 makes sense.

Combining Lemma 21.2, 21.6, 21.7, and Proposition 21.10, the following is clear.

Lemma 21.11. For a time dependent tensor T = (Tαi1...ik) ∈ Va,b, we have

∇t∇jT
α
i1...ik

−∇j∇tT
α
i1...ik

∈ Va+ 3
2 ,b+1.

Lemma 21.12. For a tensor T = (Tαi1...ik) ∈ Va,b, we have

∇j∆T
α
i1...ik

−∆∇jT
α
i1...ik

∈ Va+ 3
2 ,b+1.

Proof. First of all, we have

∇j∆T
α
i1...ik

=∇j∇p∇pTαi1...ik

=∇p∇j(∇pTαi1...ik) +RαβγδF
γ
j F

δ
p∇pT βi1...ik

+Rpℓjp∇
ℓTαi1...ik −

k∑
s=1

Rℓisjp∇
pTαi1...ℓ...ik ,

where Rijkℓ is the Riemannian curvature tensor of F ∗
t gt on M . Then, by the Gauss equation:

Rkiℓj = RϵβγδF
ϵ
kF

β
i F

γ
ℓ F

δ
j −AβkjAβiℓ +AβkℓAβij ∈ V1,0, (71)

we can see that

∇j∆T
α
i1...ik

−∇p∇j∇pTαi1...ik ∈ Va+ 3
2 ,b+1.

As above computations, we have

∇j∇pTαi1...ik −∇p∇jT
α
i1...ik

∈ Va+1,b.

Hence, by differentiating by ∇p, we have

∇p∇j∇pTαi1...ik −∇p∇p∇jT
α
i1...ik

∈ Va+ 3
2 ,b+1.

Note that ∇p∇p∇jT
α
i1...ik

= ∆∇jT
α
i1...ik

. Here we completed the proof.

Lemma 21.13. For a time dependent tensor T = (Tαi1...ik) ∈ Va,b there exists a tensor D = D(T ) ∈
Va+1,b such that

∇t|T |2 = 2⟨∇tT, T ⟩+D ∗ T.

Proof. We have

∇t|T |2 =∇t(gαβg
i1j1 . . . gikjkTαi1...ikT

β
j1...jk

)

=2⟨∇tT, T ⟩+∇tg ∗ T ∗ T +∇t((F
∗g)−1) ∗ T ∗ T

=2⟨∇tT, T ⟩+ (∇tg ∗ T +∇t((F
∗g)−1) ∗ T ) ∗ T.

By Lemma 21.3 and 21.5, we have

∇tg,∇t((F
∗g)−1) ∈ V1,0.

Thus the statement is clear.
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Lemma 21.14. For k ≥ 1, by definitions, it is clear that

Fαp ∇i1 . . .∇ikAα ∈ V 1
2+

1
2k,k

.

Actually, it is true that
Fαp ∇i1 . . .∇ikAα ∈ V 1

2+
1
2k,k−1.

For k = 0, it is clear that
Fαp Aα = 0

since A is a normal bundle valued 2-tensor.

Proof. By differentiating the equation Fαp Aα = 0, we have

Fαp ∇i1Aα = −Aαi1pAα ∈ V1,0.

Hence the statement is true for k = 1. Assume that for k − 1 the statement is true. Then, for k, the
statement is also true since we have

Fαp ∇i1 . . .∇ikAα = ∇i1(F
α
p ∇i2 . . .∇ikAα)−Aαi1p∇i2 . . .∇ikAα.

We completed the proof.

Lemma 21.15. There exist tensors B = (Bαij) ∈ V 3
2 ,0

and C = (Cpij) ∈ V 3
2 ,1

such that

∇tA
α
ij = ∆Aαij + Bαij + CpijF

α
p .

Proof. By identies Aαij = ∇iF
α
j and ∇tF

α
j = ∇jH

α and Lemma 21.2, we have

∇tA
α
ij =∇t∇iF

α
j

=∇i∇tF
α
j +RαγδβH

δF βi F
γ
j +

∂

∂t
ΓαβγF

β
i F

γ
j − ∂

∂t
ΓℓijF

α
ℓ

=∇i∇jH
α +RαγδβH

δF βi F
γ
j +

∂

∂t
ΓαβγF

β
i F

γ
j − ∂

∂t
ΓℓijF

α
ℓ .

Furthermore, by using Simons’ identity:

∇k∇ℓH
α =∆Aαkℓ + (∇ϵR

α
βγδ +∇γR

α
δβϵ)F

ϵ
i F

β
ℓ F

γ
k F

δi

+Rαβγδ(2A
β
ikF

γ
ℓ F

δi + 2AβiℓF
γ
k F

δi +HδF βℓ F
γ
k +AγℓkF

β
i F

δi)

− (∇kR
p
ℓ +∇ℓR

p
k −∇pRkℓ)F

α
p

+ 2R i j
k ℓ A

α
ij −RpkA

α
pℓ −RpℓA

α
pk,

we have

∇tA
α
ij =∆Aαij

+ (∇ϵR
α
βγδ +∇γR

α
δβϵ)F

ϵ
kF

β
j F

γ
i F

δk

+Rαβγδ(2A
β
kiF

γ
j F

δk + 2AβkjF
γ
i F

δk +HδF βj F
γ
i +AγjiF

β
k F

δk)

− (∇iR
p
j +∇jR

p
i −∇pRij)F

α
p

+ 2R k ℓ
i j A

α
kℓ −RpiA

α
pj −RpjA

α
pi

+RαγδβH
δF βi F

γ
j +

∂

∂t
ΓαβγF

β
i F

γ
j − ∂

∂t
ΓpijF

α
p .

By putting

Bαij :=(∇ϵR
α
βγδ +∇γR

α
δβϵ)F

ϵ
kF

β
j F

γ
i F

δk

+Rαβγδ(2A
β
kiF

γ
j F

δk + 2AβkjF
γ
i F

δk +HδF βj F
γ
i +AγjiF

β
k F

δk)

+ 2R k ℓ
i j A

α
kℓ −RpiA

α
pj −RpjA

α
pi

+RαγδβH
δF βi F

γ
j +

∂

∂t
ΓαβγF

β
i F

γ
j

Cpij :=− (∇iR
p
j +∇jR

p
i −∇pRij)−

∂

∂t
Γpij ,

We have
∇tA

α
ij = ∆Aαij + Bαij + CpijF

α
p .
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Furthermore, by using Lemma 21.6, 21.7 and Gauss equation (71), one can easily see that

B = (Bαij) ∈ V 3
2 ,0

and C = (Cpij) ∈ V 3
2 ,1
.

Here we completed the proof.

Proposition 21.16. There exists a tensor E ∈ V 3
2 ,0

such that

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + E ∗A.

Proof. By Lemma 21.13, there exists a tensor D = D(A) ∈ V 3
2 ,0

such that

∂

∂t
|A|2 = ∇t|A|2 = 2⟨∇tA,A⟩+D ∗A.

By Lemma 21.15, we have

2⟨∇tA,A⟩ =2(∆Aαij + Bαij + CpijF
α
p )A

ij
α

=∆|A|2 − 2|∇A|2 + B ∗A.
Here we used Fαp A

ij
α = 0. Hence, by putting E := D + B, we have

∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + E ∗A,

and, we have that
E ∈ V 3

2 ,0
.

Here we completed the proof.

Proposition 21.17. We have
∂

∂t
|A|2 ≤ ∆|A|2 − 2|∇A|2 + C1|A|4 + C2|Rm||A|2 + C3|∇Rm||A|,

for positive constants C1, C2, C3 which depend only on the dimension of M and N , where Rm is the
Riemannian curvature tensor of (N, gt).

Proof. By Proposition 21.16, we know that
∂

∂t
|A|2 = ∆|A|2 − 2|∇A|2 + E ∗A.

Since E ∈ V 3
2 ,0

, the tensor E can be constructed by

A ∗A ∗A ∗ (∗iDF ), Rm ∗A ∗ (∗jDF ), ∇Rm ∗ (∗kDF ).
Note that we can not decide i, j, k from the information that E ∈ V 3

2 ,0
. However this is not a matter

when we consider the norm of tensors since the norm of DF is a constant
√
m. Hence we see that

there exist positive constants C1, C2, C3 which depend only on the dimensions of M and N such that

|E ∗A| ≤ C1|A|4 + C2|Rm||A|2 + C3|∇Rm||A|.
Here we completed the proof.

Proposition 21.18. For all k ≥ 0 there exist tensors B[k] ∈ V 3
2+

1
2k,k

and C[k] ∈ V 3
2+

1
2k,k+1 such that

∇t∇ℓ1 . . .∇ℓkA
α
ij = ∆∇ℓ1 . . .∇ℓkA

α
ij + B[k] + C[k]pFαp .

Proof. We work by induction on k ∈ N. For the case k = 0, the statement is true by Lemma 21.15.
Assume that for k − 1 the statement is true. Since

∇ℓ2 . . .∇ℓkA
α
ij ∈ V 3

2+
1
2 (k−1),k−1,

by defining D as
∇t∇ℓ1∇ℓ2 . . .∇ℓkA

α
ij = ∇ℓ1∇t∇ℓ2 . . .∇ℓkA

α
ij +D,

we have, by Lemma 21.11, that

D ∈ V 3
2+

1
2k,k

.

By the assumption of the induction for k − 1, we have

∇ℓ1∇t∇ℓ2 . . .∇ℓkA
α
ij

=∇ℓ1(∆∇ℓ2 . . .∇ℓkA
α
ij + B[k − 1] + C[k − 1]pFαp )

=∇ℓ1∆∇ℓ2 . . .∇ℓkA
α
ij +∇B[k − 1] +∇C[k − 1]pFαp + C[k − 1] ∗A.
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Furthermore by Lemma 21.12, by defining D′ as

∇ℓ1∆∇ℓ2 . . .∇ℓkA
α
ij = ∆∇ℓ1∇ℓ2 . . .∇ℓkA

α
ij +D′,

we have that

D′ ∈ V 3
2+

1
2k,k

.

Hence, by putting

B[k] :=∇B[k − 1] + C[k − 1] ∗A+D +D′.

C[k] :=∇C[k − 1],

we have
∇t∇ℓ1 . . .∇ℓkA

α
ij = ∆∇ℓ1 . . .∇ℓkA

α
ij + B[k] + C[k]pFαp .

and
B[k] ∈ V 3

2+
1
2k,k

and C[k] ∈ V 3
2+

1
2k,k+1.

Here we completed the proof.

Proposition 21.19. For all k ≥ 0 there exist tensors E [k] ∈ V 3
2+

1
2k,k

, C[k] ∈ V 3
2+

1
2k,k+1 and G[k] ∈

V 1
2+

1
2k,k−1 such that

∂

∂t
|∇kA|2 = ∆|∇kA|2 − 2|∇k+1A|2 + E [k] ∗ ∇kA+ C[k] ∗ G[k].

Proof. Put Tαℓ1...ℓkij := ∇ℓ1 . . .∇ℓkA
α
ij . Since T ∈ V 1

2+
1
2k,k

, by Lemma 21.13 there exists a tensor

D[k] = D(T ) ∈ V 3
2+

1
2k,k

such that

∂

∂t
|T |2 = ∇t|T |2 = 2⟨∇tT, T ⟩+D[k] ∗ T.

By Proposition 21.18, there exist tensors B[k] ∈ V 3
2+

1
2k,k

and C[k] ∈ V 3
2+

1
2k,k+1 such that

∇tT = ∆T + B[k] + C[k]pFαp .
Hence we have

2⟨∇tT, T ⟩ =2⟨∆T, T ⟩+ B[k] ∗ T + C[k]pFαp Tα
=∆|T |2 − 2|∇T |2 + B[k] ∗ T + C[k]pFαp Tα.

By Lemma 21.14, we have
G[k] := Fαp Tα ∈ V 1

2+
1
2k,k−1.

Hence, by putting E [k] := D[k] + B[k] ∈ V 3
2+

1
2k,k

, we have

∂

∂t
|T |2 = ∆|T |2 − 2|∇T |2 + E [k] ∗ T + C[k] ∗ G[k].

Here we completed the proof.

22 An estimate in the proof of Lemma 20.10

In this Section, we give a proof for the following estimate which is used in the proof of Lemma 20.10.
It is just a straightforward long computation.

Lemma 22.1. In the situation of Lemma 20.10, there exists a constant C ′′′′ > 0 such that

(T − t)2

∣∣∣∣∣
(
∂

∂t
−∆F∗

t gt

)∣∣∣H(Ft) +∇ft⊥Ft

∣∣∣2
gt

∣∣∣∣∣ ≤ C ′′′′(1 + f̃ ◦ F̃s). (72)

Proof. First of all, we define Wc,d and Wc,d as analogs of Va,b and Va,b. For c, d ∈ N, we define a set
Wc,d as the set of all (time-dependent) tensors T on M which can be expressed as

T =
1

(T − t)q
(
r∗∇f) ∗ (∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (

p
∗DF )

with q, r, I, J, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying

q +
1

2
r +

I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
= c and r ≤ d,
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and we define a vector space Wc,d as the set of all tensors T on M which can be expressed as

T = a1T1 + · · ·+ avTv
for some v ∈ N, a1 . . . av ∈ R and T1, . . . , Tv ∈ Wc,d. By the definition, it is clear that Va,b ⊂ Wa,0,
and if T1 ∈ Wc1,d1 and T2 ∈ Wc2,d2 then T1 ∗ T2 ∈ Wc1+c2,d1+d2 .

Note that we consider∇αf as a tensor field overM by pulling it back by Ft. However we sometimes
omit the symbol ◦Ft. Then we have

∇i∇αf = F βi ∇β∇αf = −Ric αβ F
β
i +

1

2(T − t)
Fαi ∈ W1,0, (73)

where we used Ricαβ +∇α∇βf = 1
2(T−t)gαβ . Hence we can see that if T ∈ Wc,d then ∇T ∈ Wc+ 1

2 ,d
.

To prove this lemma, we use the identity∣∣∣H(Ft) +∇f⊥Ft
t

∣∣∣2
gt

= |H(Ft)|2gt + 2gt(H(Ft),∇ft) + |∇ft|2gt − |∇ft⊤Ft |2gt .

By Lemma 21.5 and 21.15, we have

∇tH
α =∇t(g

ijAαij)

=2(RicβγF
βiF γj +HβAijβ )A

α
ij + gij(∆Aαij + Bαij + CpijF

α
p )

=∆Hα + B̄α + gijCpijF
α
p ,

where we put B̄α := 2(RicβγF
βiF γj +HβAijβ )A

α
ij + gijBαij ∈ V 3

2 ,0
. Since H ∈ V 1

2 ,0
, by Lemma 21.13

there exists a tensor D = D(H) ∈ V 3
2 ,0

such that

∂

∂t
|H|2 =2⟨∇tH,H⟩+DαHα

=2⟨∆H,H⟩+ 2B̄αHα +DαHα

=∆|H|2 − 2|∇H|2 + 2B̄αHα +DαHα,

where we used Fαp Hα = 0. Thus we have(
∂

∂t
−∆F∗g

)
|H|2 = −2|∇H|2 + 2B̄αHα +DαHα,

and it is clear that (
∂

∂t
−∆F∗g

)
|H|2 ∈ W2,0. (74)

Next, we consider ∇t∇αf . Then, by the definition of ∇t, we have

∇t∇αf =
∂

∂t
∇αf +Hβ∇β∇αf

=
∂

∂t
∇αf − RicαβH

β +
1

2(T − t)
Hα,

where we used Ricαβ+∇α∇βf = 1
2(T−t)gαβ . Furthermore, by using ∂

∂tg
αβ = 2Ricαβ and ∂

∂tf = |∇f |2,
one can easily see that

∂

∂t
∇αf =

1

T − t
∇αf.

Thus we have

∇t∇αf =
1

T − t
∇αf − RicαβH

β +
1

2(T − t)
Hα ∈ W 3

2 ,1
.

Hence we can see that

∇t(gαβH
α∇βf) = ∇tgαβH

α∇βf + gαβ∇tH
α∇βf + gαβH

α∇t∇βf ∈ W2,1

and
∆(gαβH

α∇βf) ∈ W2,1

Thus we have (
∂

∂t
−∆F∗g

)
g(H(F ),∇f) ∈ W2,1. (75)
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Next, one can easily see that

∇t|∇f |2 = ∇tgαβ∇αf∇βf + 2∇t∇αf∇αf ∈ W2,2

and
∆|∇f |2 ∈ W2,2.

Hence we have (
∂

∂t
−∆F∗g

)
|∇f |2 ∈ W2,2. (76)

Finally, one can easily see that

∇t|∇ft⊤Ft |2gt = ∇t((F
∗g)kℓgαβgγδF

β
k F

δ
ℓ∇αf∇γf) ∈ W2,2

and
∆|∇ft⊤Ft |2gt ∈ W2,2.

Hence we have (
∂

∂t
−∆F∗g

)
|∇ft⊤Ft |2gt ∈ W2,2. (77)

Hence, by (74)–(77), we have(
∂

∂t
−∆F∗g

)∣∣∣H(F ) +∇f⊥F

∣∣∣2
g
∈ W2,2.

By the definition of W2,2, there exist v ∈ N, a1 . . . av ∈ R and T1, . . . , Tv ∈W2,2 such that(
∂

∂t
−∆F∗g

)∣∣∣H(F ) +∇f⊥F

∣∣∣2
g
= a1T1 + · · ·+ avTv.

Hence we have ∣∣∣∣( ∂

∂t
−∆F∗g

) ∣∣H(F ) +∇f⊥F
∣∣2
g

∣∣∣∣ ≤ |a1||T1|+ · · ·+ |av||Tv|.

By the definition of W2,2, each T• can be expressed as

T• =
1

(T − t)q
(
r∗∇f) ∗ (∇k1Rm ∗ · · · ∗ ∇kIRm) ∗ (∇ℓ1A ∗ · · · ∗ ∇ℓJA) ∗ (

p
∗DF )

with some I, J, q, r, p, k1, . . . , kI , ℓ1, . . . , ℓJ ∈ N satisfying

q +
1

2
r +

I∑
i=1

(
1 +

1

2
ki

)
+

J∑
j=1

(
1

2
+

1

2
ℓj

)
= 2 and r ≤ 2,

Here note that by Proposition 20.9 and the equation (59) it follows that (T − t) 1
2+

1
2 ℓ|∇ℓA| is bounded

for all ℓ ≥ 0. Furthermore by the equation (60) it is clear that (T − t)1+
1
2k|∇kRm| is bounded for all

k ≥ 0. Hence, for T• above, we have

(T − t)2|T•| ≤ C(T − t)
1
2 r|∇f |r

for some C > 0. Furthermore, we have

|∇f |g =
1√
T − t

|∇f̃ |g̃ ≤
1√
T − t

√
f̃ .

Thus we have
(T − t)2|T•| ≤ Cf̃

1
2 r.

Now each T• is in W2,2, so r ≤ 2. For r = 0, 1, 2, it is clear that f̃
1
2 r ≤ 1 + f̃ . Thus we have proved

that there exists a constant C ′′′′ > 0 such that

(T − t)2
∣∣∣∣( ∂

∂t
−∆F∗g

) ∣∣H(F ) +∇f⊥F
∣∣2
g

∣∣∣∣ ≤ C ′′′′(1 + f̃).

23 convergence of submanifolds

In this Section, we give a definition of the convergence of immersion maps into a Riemannian manifolds
and prove some propositions.
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Let (N, g) be an n-dimensional Riemannian manifold and E be a real vector bundle over N with
a metric h. Take a compatible connection ∇ over E, that is, for all smooth sections e, f ∈ Γ(N,E)
and a vector field X ∈ X(N) we have

X(h(e, f)) = h(∇Xe, f) + h(e,∇Xf).

Definition 23.1. Let p ∈ N. Let K ⊂ N be a compact set and Ω ⊂ N be an open set satisfying
K ⊂ Ω. Let {ξk}∞k=1 be a sequence of sections of E defined on Ω and ξ∞ be a section of E defined on
Ω. We say that ξk converges in Cp to ξ∞ uniformly on K if for every ϵ > 0 there exists k0 = k0(ϵ)
such that for k ≥ k0,

sup
0≤α≤p

sup
x∈K

|∇α(ξk − ξ∞)|gα⊗h < ϵ.

Furthermore, we say ξk converges in C∞ to ξ∞ uniformly on K if ξk converges in Cp to ξ∞ uniformly
on K for every p ∈ N.

Let {Uk}∞k=1 be a sequence of open sets in N . We call {Uk}∞k=1 an exhaustion of N if Uk is compact
and Uk ⊂ Uk+1 for all k, and ∪∞

k=1Uk = N .

Definition 23.2. Let {Uk}∞k=1 be an exhaustion of N . Let {ξk}∞k=1 be a sequence of locally defined
sections of E such that each ξk is defined on Uk. Let ξ∞ be a section of E defined on N . We say
that ξk converges in C∞ to ξ∞ uniformly on compact sets in N if for any compact set K ⊂ N there
exists k0 = k0(K) such that K ⊂ Uk for all k ≥ k0 and the sequence {ξk|Uk0

}∞k=k0 converges in C∞

to ξ∞|Uk0
uniformly on K.

Definition 23.3. A sequence {(Nk, gk, xk)}∞k=1 of complete pointed Riemannian manifolds converges
to a complete pointed Riemannian manifold (N∞, g∞, x∞) if there exists

(1) an exhaustion {Uk}∞k=1 of N∞ with x∞ ∈ Uk and

(2) a sequence of diffeomorphisms Ψk : Uk → Vk ⊂ Nk with Ψk(x∞) = xk

such that Ψ∗
kgk converges in C∞ to g∞ uniformly on compact sets in N∞.

This notion of convergence is often referred as (smooth) Cheeger–Gromov convergence, C∞-
convergence or geometric convergence. A basic fact of Cheeger–Gromov convergence is the following.
For the proof, see [39].

Theorem 23.4. Let {(Nk, gk, xk)}∞k=1 be a sequence of n-dimensional complete pointed Riemannian
manifolds. Suppose that

(1) for each integer p ≥ 0, there exists a constant 0 < Cp <∞ such that

|∇pRm(gk)|gk ≤ Cp for all k ≥ 1

(2) there exists a constant 0 < η <∞ such that

inj(xk, gk) ≥ η for all k ≥ 1

where Rm(gk) is the Riemannian curvature tensor of (Nk, gk) and inj(xk, gk) is the injectivity radius
at xk with respect to gk. Then, there exist a complete pointed Riemannian manifold (N∞, g∞, x∞)
and a subsequence {kℓ}∞ℓ=1 such that the subsequence {(Nkℓ , gkℓ , xkℓ)}∞ℓ=1 converges to (N∞, g∞, x∞).

To prove the convergence of submanifolds in a Riemannian manifold, we need the following estimate
for the injectivity radius of a submanifold. This estimate is proved by combining Klingenberg’s lemma
and Hessian comparison theorem of the square of the distance function (cf. Theorem 2.1 in [9]).

Theorem 23.5. Let (N, g) be an n-dimensional complete Riemannian manifold with

|Rm(g)| ≤ C and inj(N, g) ≥ η

for some constants C, η > 0. Let M be a compact manifold and F : M → N be an immersion map
with

|A(F )| ≤ D

with some constant D > 0. Then there exists a constant δ = δ(C, η,D, n) > 0 such that

inj(M,F ∗g) ≥ δ.
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The following remark partially overlaps with Remark 17.8.

Remark 23.6. In the remainder of this Section, for a complete Riemannian manifold (N, g), we
assume that we have an isometrically embedding Θ: N → (RL, gst) into some higher dimensional
Euclidean space with

|∇pA(Θ)| ≤ D̃p <∞

for all p ≥ 0. Under this assumption, one can see that (N, g) must have the bounded geometry
by Theorem 23.5 and Gauss equation (71) (and its iterated derivatives), and note that all compact
Riemannian manifolds always satisfy this condition. For a map F : U → N from an open set U in
some Riemannian manifold (M,h), by composing Θ, we have a map Θ◦F : U → RL, and furthermore
we consider Θ ◦ F as a section of the trivial RL-bundle over U with a fiber metric gst. We write the
standard flat connection of the trivial RL bundle by ∇̄. Then ∇̄(Θ ◦ F ) is a section of T ∗M ⊗ RL
over U . The Levi–Civita connection on TM and the connection ∇̄ on RL induce the connection on
T ∗M ⊗ RL, and we use the same symbol ∇̄ to denote this connection.

The following is the definition of the convergence of (pointed) immersions. It is the immersion
map version of the Cheeger–Gromov convergence.

Definition 23.7. Let (N, g) be a complete n-dimensional Riemannian manifold satisfying the assump-
tion in Remark 23.6 (= Remark 17.8). Assume that for each k ≥ 1 we have an m-dimensional pointed
manifold (Mk, xk) and an immersion map Fk : Mk → N . Then we say that a sequence of immersion
maps {Fk : Mk → N}∞k=1 converges to an immersion map F∞ : M∞ → N from an m-dimensional
pointed manifold (M∞, x∞) if there exist

(1) an exhaustion {Uk}∞k=1 of M∞ with x∞ ∈ Uk and

(2) a sequence of diffeomorphisms Ψk : Uk → Vk ⊂Mk with Ψk(x∞) = xk such that the sequence of
maps Fk ◦Ψk : Uk → N converges in C∞ to F∞ : M∞ → N uniformly on compact sets in M∞.

It is clear that if {Fk : (Mk, xk) → N}∞k=1 converges to F∞ : (M∞, x∞) → N then {(Mk, F
∗
k g, xk)}∞k=1

converges to (M∞, F
∗
∞g, x∞) in the sense of Cheeger–Gromov convergence. To prove Theorem 23.9,

we need the following Lemma. For the proof, see Corollary 4.6 in [11].

Lemma 23.8. Let M be a manifold, K be a compact set in M and U be an open set in M with
K ⊂ U . Assume that we have Riemannian metrics g and ĝ on U , and these two satisfy

|∇ℓ(g − ĝ)|g ≤ ϵℓ on K

for some constants ϵℓ for all ℓ ≥ 0, where ∇ is the Levi–Civita connection with respect to g. Let
E → U be a vector bundle over U with a fiber metric h and a compatible connection ∇̄, and T be a
section of E over U which satisfies

|∇̂ℓT |ĝ⊗h ≤ Ĉℓ on K

for some constants Ĉℓ for all ℓ ≥ 0, where ∇̂ is the connection induced by the Levi–Civita connection
with respect to ĝ and the connection ∇̄. Then for each ℓ ≥ 0 there exists a constant Cℓ which depends
only on {ϵp}ℓp=0 and {Ĉp}ℓp=0 such that

|∇ℓT |g⊗h ≤ Cℓ on K,

where ∇ is the connection induced by the Levi–Civita connection with respect to g and the connection
∇̄.

Theorem 23.9. Let (N, g) be a complete n-dimensional Riemannian manifold satisfying the as-
sumption in Remark 23.6 (= Remark 17.8). Let {(Mk, xk)}∞k=1 be a sequence of compact pointed
m-dimensional manifolds and {Fk : Mk → N}∞k=1 be a sequence of immersions with

|∇pA(Fk)| ≤ Dp <∞
for all p ≥ 0. In the case that (N, g) is non-compact, we further assume that {Fk(xk)}∞k=1 is a bounded
sequence in N . Then, there exist a pointed manifold (M∞, x∞), an immersion F∞ : M∞ → N and a
subsequence {kℓ}∞ℓ=1 such that {Fkℓ : Mkℓ → N}∞ℓ=1 converges to F∞ : M∞ → N and (M∞, F

∗
∞g) is a

complete Riemannian manifold.
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Proof. First of all, we prove that the sequence {(Mk, F
∗
k g, xk)}∞k=1 sub-converges to some complete

pointed Riemannian manifold (M∞, h∞, x∞). By Remark 23.6 (= Remark 17.8), (N, g) has bounded
geometry, that is,

|∇pRm(g)| ≤ Cp <∞ and inj(N, g) ≥ η > 0

for some positive constants Cp and η. Then, by Theorem 23.5, there exists a constant δ = δ(C0, η,D0, n) >
0 such that

inj(Mk, F
∗
k g) ≥ δ > 0.

We denote the Riemannian curvature tensor of (Mk, F
∗
k g) by Rm(F ∗

k g). Then, by Gauss equation

(71) and its iterated derivatives, we can see that there exist constants C̃p > 0 such that

|∇pRm(F ∗
k g)| ≤ C̃p <∞,

for all p ≥ 0, where each C̃p does not depend on k. Then, by Theorem 23.4, {(Mk, F
∗
k g, xk)}∞k=1

sub-converges to some complete pointed Riemannian manifold (M∞, h∞, x∞). Note that, in the
following in this proof, we continue to use the letter k for indices of subsequences. Since (Mk, F

∗
k g, xk)

converge to (M∞, h∞, x∞), there exist an exhaustion Uk of M∞ with x∞ ∈ Uk and a sequence of
diffeomorphisms Ψk : Uk → Ψk(Uk) ⊂Mk with Ψ(x∞) = xk.

Next, we prove that the sequence of smooth maps Fk ◦Ψk : Uk → N sub-converge to some smooth
map F∞ : M∞ → N uniformly on compact sets in M∞. We denote Θ ◦ Fk ◦ Ψk : Uk → RL by F̄k
for short. We will use the standard diagonal argument to construct a map F∞ : M∞ → N . Take a
sequence of radii R1 < R2 < · · · → ∞, and consider balls Bi := Bh∞(x∞, Ri) ⊂M∞.

First of all, we work on B1. Since Uk is an exhaustion, there exists k1 such that B1 ⊂ Uk for all
k ≥ k1. Hence we have a sequence of C∞-maps F̄k = Θ ◦ Fk ◦Ψk : (Uk ⊃)B1 → RL restricted on B1

for all k ≥ k1.

(0): C0-estimate. First, we derive a C0-bound for F̄k. If N is compact, then the image Θ(N) is a

compact set in RL and contained in some ball

Bgst(0, Ĉ0) = { y ∈ RL | |y|gst < Ĉ0 }
with radius Ĉ0. Since each image F̄k(B1) is contained in Θ(N), we have

|F̄k|gst ≤ Ĉ0 on B1.

It is clear that the constant Ĉ0 does not depend on k. If N is non-compact, we need some additional
argument to get a C0-bound. Since |F̄ ∗

k gst − h∞|h∞ = |Ψ∗
k(F

∗
k g) − h∞|h∞ → 0 uniformly on B1, for

a given ϵ > 0 there exists k′1(≥ k1) such that on B1

|F̄ ∗
k gst − h∞|h∞ < ϵ for k ≥ k′1,

and this implies that

|F̄k(x∞)− F̄k(x)|gst ≤
√
1 + ϵ dh∞(x∞, x) ≤

√
1 + ϵR1

for all x ∈ B1 and k ≥ k′1. Furthermore, by the assumption for the non-compact case, {Fk(xk)}∞k=1 is
a bounded sequence in N . Hence F̄k(x∞) = (Θ ◦ Fk)(xk) is also a bounded sequence in RL, that is,
there exists a constant Ĉ ′

0 such that |F̄k(x∞)|gst ≤ Ĉ ′
0. Hence we have

|F̄k|gst ≤ Ĉ ′
0 +

√
1 + ϵR1 =: Ĉ0

for k ≥ k′1. It is clear that Ĉ0 does not depend on k. Hence we get a C0-bound.

(1): C1-estimate. Next, we consider a C1-bound for F̄k. One can easily see that ∇gst F̄k = DF̄k.

Since F̄k : (B1, F̄
∗
k gst) → (RL, gst) is an isometric immersion, we have a C1-bound

|∇gst F̄k|F̄∗
k gst⊗gst = |DF̄k|F̄∗

k gst⊗gst =
√
m =: Ĉ1.

(2): C2-estimate. Next, we derive a C2-bound for F̄k. Let ∇̂ be the connection on (⊗pT ∗M) ⊗ RL

(p ≥ 0) over B1 induced by the metric F̄ ∗
k gst and gst. Note that ∇̂ = ∇gst for p = 0. Since ∇̂F̄k = DF̄k,

we have
∇̂2F̄k = A(F̄k),

the second fundamental form of the isometric immersion F̄k = Θ ◦ Fk ◦ Ψk : (B1, F̄
∗
k gst) → (RL, gst).
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Hence, by using the composition rule for the second fundamental forms of immersions, we have

∇̂2F̄k(X,Y ) =A(F̄k)(X,Y )

=A(Θ)((Fk ◦Ψk)∗X, (Fk ◦Ψk)∗Y ) + Θ∗(A(Fk)(Ψk∗X,Ψk∗Y ))

for any tangent vectors X and Y on M . By using the notion of ∗-product, this identity is written as

∇̂2F̄k = A(Θ) ∗ (2∗D(Fk ◦Ψk)) +A(Fk) ∗DΘ ∗ (2∗DΨk). (78)

Since |D(Fk ◦Ψk)|F̄∗
k gst⊗g = |DΨk|F̄∗

k gst⊗F
∗
k g

=
√
m and |DΘ|g⊗gst =

√
n, we have

|∇̂2F̄k|F̄∗
k gst⊗gst ≤ Ĉ ′

2|A(Θ)|g⊗gst + Ĉ ′′
2 |A(Fk)|F∗

k g⊗g

for some constants Ĉ ′
2 and Ĉ ′′

2 which do not depend on k. Furthermore, by the assumptions, we have
|A(Θ)|g⊗gst ≤ D̃0 and |A(Fk)|F∗

k g⊗g ≤ D0. Hence we have a C2-bound

|∇̂2F̄k|F̄∗
k gst⊗gst ≤ Ĉ ′

2D̃0 + Ĉ ′′
2D0 =: Ĉ2.

It is clear that Ĉ2 does not depend on k.

(p): Cp-estimate. By differentiating (78), we can get a Cp-bound. We only observe a C3-bound.
Note that for any tangent vectors X and Y on M we have

(∇F̄∗
k gst⊗gD(Fk ◦Ψk))(X,Y ) = A(Fk ◦Ψk)(X,Y ) = A(Fk)(Ψk∗X,Ψk∗Y ).

By using the notion of ∗-product, this identity is written as

∇F̄∗
k gst⊗gD(Fk ◦Ψk) = A(Fk) ∗ (

2∗DΨk).

Furthermore, note that ∇g⊗gstDΘ = A(Θ) and ∇F̄∗
k gst⊗F

∗
k g
DΨk = 0. Hence we have

∇̂3F̄k =∇g⊗gstA(Θ) ∗ (2∗D(Fk ◦Ψk))

+ 2A(Θ) ∗D(Fk ◦Ψk) ∗A(Fk) ∗ (
2∗DΨk)

+∇F∗
k g⊗gA(Fk) ∗DΘ ∗ (2∗DΨk)

+A(Fk) ∗A(Θ) ∗ (2∗DΨk).

By the assumptions, norms of all tensors appeared in the above inequality is bounded. Hence we have
a C3-bound

|∇̂3F̄k|F̄∗
k gst⊗gst ≤ Ĉ3

for some constant Ĉ3 which does not depend on k. For higher derivatives, one can prove that there
exists a constant Ĉp > 0 which does not depend on k such that

|∇̂pF̄k|F̄∗
k gst⊗gst ≤ Ĉp,

by induction.
On the above argument, we have proved that there exist constants Ĉp (p ≥ 0) which do not depend

on k such that |∇̂pF̄k|F̄∗
k gst⊗gst ≤ Ĉp. Hence by Lemma 23.8 we can prove that there exist constants

Cp (p ≥ 0) which do not depend on k such that

|∇pF̄k|h∞⊗gst ≤ Cp.

Hence, by The Arzelà–Ascoli Theorem, there exists a smooth map F̄1,∞ : B1 → RL and F̄k sub-
converges to F̄1,∞ in C∞ on B1. Since all images F̄k(B1) are contained in Θ(N), the image F̄1,∞(B1)
is also contained in Θ(N). Furthermore F̄1,∞ : B1 → RL has the property that

F̄ ∗
1,∞gst = h∞,

since |F̄ ∗
1,∞gst − h∞|h∞ ≤ |F̄ ∗

1,∞gst − F̄ ∗
k gst|h∞ + |F̄ ∗

k gst − h∞|h∞ and the right hand side converges to

0 as k → ∞ on B1. Thus, especially, F̄1,∞ : B1 → RL is an immersion map.
Next, for the subsequence of F̄k which converges to F̄1,∞, we work on B2. Then all the above

argument also work on B2 and we can show that there exists a smooth immersion map F̄2,∞ : B2 →
Θ(N) ⊂ RL with F̄ ∗

2,∞gst = h∞ and F̄2,∞ = F̄1,∞ on B1 and F̄k sub-converges to F̄2,∞ in C∞ on B2.
By iterating this construction and the diagonal argument, finally we get a smooth immersion map
F̄∞ : M∞ → Θ(N) ⊂ RL with F̄ ∗

∞gst = h∞ and F̄k sub-converges to F̄∞ uniformly on compact sets
in M∞ in C∞, and the map defined by F∞ := Θ−1 ◦ F̄∞ : M∞ → N is the requiring one satisfying
the properties in the statement.
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Part IV

Lagrangian self-similar solutions in
gradient shrinking Kähler-Ricci solitons
abstract In this Part, we give a lower bound estimate for the diameter of a Lagrangian self-shrinker
in a gradient shrinking Kähler-Ricci soliton as an analog of a result of A. Futaki, H. Li and X.-D. Li
[15] for a self-shrinker in a Euclidean space. We also prove an analog of a result of H.-D. Cao and H.
Li [6] about the non-existence of compact self-expanders in a Euclidean space.

24 Introduction

A gradient shrinking Kähler-Ricci soliton is a Kähler manifold (N,ω, g, J) with a smooth function
f : N → R satisfying

Ric(g) + Hessgf = g. (79)

By the equation (79), it follows that the (2, 0)-part of Hess f is zero. Hence it is clear that the (1, 0)-
part of ∇f is a holomorphic vector field on N . By a simple calculation, it is proved that the gradient
of R(g) + |∇f |2 − 2f is zero, and we put a constant C0 by

C0 := R(g) + |∇f |2 − 2f, (80)

where R(g) is the scalar curvature of (N, g). It is proved that R(g) ≥ 0 for a complete gradient
shrinking Ricci soliton by an application of Corollary 2.5 in [8].

For an immersion F : L→ N , we get a section (∇f) ◦F ∈ Γ(L,F ∗(TN)), and we usually omit the
symbol ◦F , for short.

Definition 24.1. An immersion map F : L→ N is called a self-similar solution if it satisfies

H = λ∇f⊥ (81)

for some constant λ ∈ R, where H is the mean curvature vector field of F and ⊥ denotes the projection
onto the normal bundle of L. It is called a self-shrinker, a steady soliton or a self-expander when λ < 0,
λ = 0 or λ > 0, respectively.

For example, a function f(z1, . . . , zm) := 1
2 (|z

1|2 + · · · + |zm|2) on Cm with the standard Kähler
structure satisfies the identity (79), and it satisfies ∇f(x) = x under a natural identification of points
and tangent vectors for all points x ∈ Cm ∼= R2m. Hence the equation (81) coincides with Hx = λx⊥

for all points x ∈ F (L) ⊂ Cm ∼= R2m, and Definition 24.1 can be considered as a generalization of a
self-similar solution in a Euclidean space to in a gradient shrinking Ricci soliton.

There are many results about self-similar solutions in a Euclidean space. By a generalization of
the notion of a self-similar solution in a Euclidean space to in a gradient shrinking Ricci soliton as in
Definition 24.1, we can discuss which results about self-similar solutions in a Euclidean space also hold
in a gradient shrinking Ricci soliton. As an example of such results, it is proved that a part of a result
due to Smoczyk also holds in a gradient shrinking Kähler-Ricci soliton. More precisely, in the proof
of Theorem 2.3.5 in [44], Smoczyk proved that every compact Lagrangian self-similar solution with
exact mean curvature form is a minimal submanifold in Cn, and as a generalization of this statement,
it is proved in [53] that every compact Lagrangian self-similar solution with exact mean curvature
form is a minimal submanifold in a gradient shrinking Kähler-Ricci soliton.

In this Part, we give further two results which are already established when (N, g) is a Euclidean
space. The first result is an analog of Theorem 4.3 of [15] under the Lagrangian assumption.

Theorem 24.2. Let (N,ω, g, J) be a 2m-dimensional gradient shrinking Kähler-Ricci soliton with
potential function f : N → R satisfying the equation (79). Let F : L → N be a compact Lagrangian
self-shrinker with

H = −1

2
∇f⊥.
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Assume that F (L) is not contained in { f = m− C0

2 }, where C0 is a constant defined by (80). Then
we have

diam(L,F ∗g) ≥ π√
3
4 + m

2 (K0 +A2
0)
,

for constants K0, A0 ≥ 0 satisfying |KN | ≤ K0 and |A| ≤ A0, where KN is the sectional curvature of
(N, g) and A is the second fundamental form of F .

The second result is an analog of Proposition 5.3 of [6] under the Lagrangian assumption.

Theorem 24.3. Let (N,ω, g, J) be a 2m-dimensional gradient shrinking Kähler-Ricci soliton with
potential function f : N → R satisfying the equation (79). Then we have the following.

• If R(g) > 2m, there exists no compact Lagrangian self-shrinker in N .

• If R(g) < 2m, there exists no compact Lagrangian self-expander in N .

• If R(g) = 2m, every compact Lagrangian self-similar solution in N is a minimal submanifold.

The rest of this Part is organized as follows. In Section 25, we give some characterization of self-
similar solutions in gradient shrinking Ricci solitons. In Section 26, we give a proof of Theorem 24.2
and 24.3.

25 Characterization of self-similar solutions

In this section, we give some characterization of self-similar solutions in gradient shrinking Ricci
solitons and review a result in [53].

The first characterization is given by the variation of the weighted volume as follows. Let (N, g, f)
be a n-dimensional gradient shrinking Ricci soliton with potential function f satisfying (79). For an
m-dimensional compact manifold L and a constant λ ∈ R, we define the weighted volume functional
Fλ by

Fλ(F ) :=
∫
L

eλfdµ(F ∗g)

for each immersion F : L→ N , where dµ(F ∗g) is the induced measure on L with respect to the metric
F ∗g.

Proposition 25.1. Let F : L → N be an immersion and λ ∈ R be a constant. Then the following
three conditions are equivalent.

1. F is a self-similar solution with H = λ∇f⊥.

2. F is a minimal immersion with respect to a metric e2λf/mg on N .

3. F is a critical point of Fλ.

The equivalence of (1) and (2) is proved in [53], and the equivalence of (2) and (3) can be easily
proved by the equality ∫

L

eλfdµ(F ∗g) =

∫
L

dµ(F ∗(e2λf/mg)).

The equivalence of (1) and (3) can be considered as a generalization of Proposition 3.6 in [12].
The second characterization is given by the asymptotic behavior of a Ricci-mean curvature flow,

the coupled equation of the Ricci flow and the mean curvature flow. Let (N,ω, g, J) be a compact
2m-dimensional complete gradient shrinking Kähler-Ricci soliton with a potential function f : N →
R satisfying (79). Fix a time T > 0. Then for t ∈ [0, T ) we define gt := (T − t)Φ∗

t g, where
{Φt : N → N}t∈(−∞,T ) is the 1-parameter family of holomorphic automorphisms of (N, J) with Φ0 =

idN generated by the time dependent vector field 1
2(T−t)∇f . Then gt is a solution of Kähler-Ricci

flow, that is, the associated Kähler form ωt(·, ·) := gt(J ·, ·) satisfies
∂

∂t
ωt = −ρ(ωt),
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where ρ(·, ·) := Ric(J ·, ·) is the Ricci form of ωt. Here we review the main result in [53]. Let L be an
m-dimensional compact manifold and F : L× [0, T ) → N be a solution of Ricci-mean curvature flow
along gt = (T − t)Φ∗

t g, that is, F satisfies
∂

∂t
Ft = H(Ft),

where H(Ft) is the mean curvature vector field of Ft(·) := F (·, t) calculated by gt at each time t.
Assume that the initial immersion F0 : L → N is a Lagrangian immersion for the initial Kähler form
ω. Then, it follows that Ft : L→ N is also a Lagrangian immersion with respect to ωt for all t ∈ [0, T )
(c.f. [31]). That is, the Lagrangian condition is preserved under a Ricci-mean curvature flow along a
Kähler-Ricci flow. We further assume that F develops a singularity of type I, that is, the norm of the
second fundamental form of Ft (denoted by A(Ft)) satisfies

lim sup
t→T

(√
T − tmax

L
|A(Ft)|

)
<∞.

Then, in [53], it is proved that for any sequence tj → T and any point p0 ∈ L the family of

pointed immersions F̃j : (L, p0) → N defined by F̃j := Φtj ◦ Ftj subconverges to a pointed immersion

F̃∞ : (L∞, p∞) → N satisfying

H(F̃∞) = −1

2
∇f⊥.

This result can be considered as a generalization of Huisken’s result in [23] for a mean curvature flow
in a Euclidean space.

Since each F̃j is a Lagrangian immersion in (N,ω) and the Lagrangian condition (F̃ ∗
j ω = 0) is a

closed condition, it follows that F̃∞ : L∞ → N is a Lagrangian immersion, that is, the Lagrangian
self-shrinker. Hence a Lagrangian self-shrinker is an asymptotic model of a Lagrangian mean curvature
flow with a type I singularity along a Kähler-Ricci flow constructed from a gradient shrinking Kähler-
Ricci soliton.

Remark 25.2. Actually, the same statement also holds under some additional assumptions even
though N is non-compact and complete, see [53] for detail. The differences of factor 2 or 1/2 between
coefficients appeared in some formula in this Part and those in [53] arise from the difference of factor 2
between the Ricci flow equation ∂tgt = −2Ric(gt) and the Kähler-Ricci flow equation ∂tωt = −ρ(ωt).

26 Proofs of Theorem 24.2 and 24.3

First, we give a proof of Theorem 24.2. The proof is an analog of the proof of Theorem 4.3 of [15].
As the first step, we prove that the weighted Laplacian ∆ϕ defined below has an eigenvalue 1. In the
second step, we use Theorem 1.1 in [15] giving an estimate for the first eigenvalue of the weighted
Laplacian.

Proof of Theorem 24.2. Put a smooth function on L by ϕ := 1
2f ◦ F and consider the weighted

Laplacian
L := ∆ϕ := ∆−∇ϕ · ∇

which acts on C∞(L), where ∆ and ∇ is the Laplacian and the gradient on (L,F ∗g). Then we have

Lϕ =
1

2
∆(f ◦ F )− 1

4
(F ∗g)(∇(f ◦ F ),∇(f ◦ F ))

=
1

2
∆(f ◦ F )− 1

4
|∇f⊤|2

=
1

2

(
tr⊤Hessgf + g(∇f,H)

)
− 1

4
|∇f⊤|2,

where tr⊤ is the tangential trace, that is, tr⊤B := trF∗g(F
∗B) for a 2-tensor B on N . Since H =

−1
2∇f

⊥, we have

1

2
g(∇f,H)− 1

4
|∇f⊤|2 = −1

4
|∇f⊥|2 − 1

4
|∇f⊤|2 = −1

4
|∇f |2.
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Since (N, g) is a gradient shrinking Ricci soliton satisfying (79), we have

tr⊤Hessgf = tr⊤(g − Ric(g)) = m− tr⊤Ric(g).

Furthermore, since F : L→ N is a Lagrangian immersion and (N, g, J) is a Kähler manifold, we have

tr⊤Ric(g) =
m∑
i=1

Ric(g)(F∗ei, F∗ei)

=
1

2

m∑
i=1

Ric(g)(F∗ei, F∗ei) +
1

2

m∑
i=1

Ric(g)(JF∗ei, JF∗ei) =
1

2
R(g),

for an orthonormal basis e1, . . . , em on (L,F ∗g). Hence we have

Lϕ =
m

2
− 1

4
(R(g) + |∇f |2) = m

2
− 1

4
(C0 + 2f) =

(
m

2
− C0

4

)
− ϕ.

Since L(const) = 0, we have

L
((

m

2
− C0

4

)
− ϕ

)
= −

((
m

2
− C0

4

)
− ϕ

)
.

By the assumption, m2 − C0

4 − ϕ ̸= 0. Hence we have proved that 1 is an eigenvalue of the weighted
Laplacian L = ∆ϕ.

Next, we prove that

Ric(F ∗g) + HessF∗gϕ ≥ κF ∗g, (82)

for a Riemannian manifold (L,F ∗g), where

κ :=
1

2
−m(K0 +A2

0).

Let X be a tangent vector on L and e1, . . . , em be an orthonormal basis on (L,F ∗g). Then, by the
Gauss equation, we have

Ric(F ∗g)(X,X) =
m∑
i=1

Rm(F ∗g)(X, ei, X, ei)

=
m∑
i=1

Rm(g)(F∗X,F∗ei, F∗X,F∗ei)

−
m∑
i=1

|A(X, ei)|2 + g(A(X,X),H).

Furthermore, we have

HessF∗gϕ(X,X) =
1

2
HessF∗g(f ◦ F )(X,X)

=
1

2

(
Hessgf(F∗X,F∗X) + g(A(X,X),∇f)

)
=
1

2
|X|2 − 1

2
Ric(g)(F∗X,F∗X)− g(A(X,X),H),

where we used Hessgf = g − Ric and ∇f⊥ = −2H. Since
m∑
i=1

Rm(g)(F∗X,F∗ei, F∗X,F∗ei)−
1

2
Ric(g)(F∗X,F∗X)

=
1

2

m∑
i=1

Rm(g)(F∗X,F∗ei, F∗X,F∗ei)−
1

2

m∑
i=1

Rm(g)(F∗X, JF∗ei, F∗X, JF∗ei)

≥− 1

2
mK0|X|2 − 1

2
mK0|X|2 = −mK0|X|2

and

−
m∑
i=1

|A(X, ei)|2 ≥ −mA0|X|2,
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we have

Ric(F ∗g)(X,X) + HessF∗gϕ(X,X) ≥
(
1

2
−m(K0 +A2

0)

)
|X|2.

Hence the inequality (82) holds.
Thus, by Theorem 1.1 in [15], we have

1 ≥ sup
s∈(0,1)

{
4s(1− s)

π2

d2
+ sκ

}
, (83)

where d := diam(L,F∗g). Choosing s =
1
2 in (83), we have

d ≥ π√
1− 1

2κ
=

π√
3
4 + m

2 (K0 +A2
0)
.

Hence the proof is completed.

Next, we prove Theorem 24.3. The proof is an analog of the proof of Proposition 5.3 of [6].

Proof of Theorem 24.3. Let F : Lm → N2m be a compact Lagrangian self-similar solution with H =
λ∇f⊥ for some constant λ ∈ R. Using computations in the proof of Theorem 24.2, we have

∆(f ◦ F ) = tr⊤Hessgf + g(∇f,H)

= m− 1

2
R(g) +

1

λ
|H|2

if λ ̸= 0, where ∆ is the Laplacian on (L,F ∗g). Hence we have

0 =

∫
L

∆(f ◦ F )dµ(F ∗g) =

∫
L

(
m− 1

2
R(g) +

1

λ
|H|2

)
dµ(F ∗g),

and the theorem holds immediately.
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Mathematics, 122, Birkhäuser Boston, Inc., Boston, MA, 1994.

[19] R. Hamilton. Three-manifolds with positive Ricci curvature. J. Differential Geom., 17(1982), no.
2, 255–306.

[20] R. Hamilton. The formation of singularities in the Ricci flow. Surveys in differential geometry,
Vol. II (Cambridge, MA, 1993), 7–136, Int. Press, Cambridge, MA, 1995.

[21] X. Han and J. Li. The Lagrangian mean curvature flow along the Kähler-Ricci flow. Recent devel-
opments in geometry and analysis, 147–154, Adv. Lect. Math. (ALM), 23, Int. Press, Somerville,
MA, 2012.

[22] R. Harvey and H. B. Lawson, Jr. Calibrated geometries. Acta Math., 148(1982), 47–157.

[23] G. Huisken. Asymptotic behavior for singularities of the mean curvature flow. J. Differential
Geom., 31(1990), no. 1, 285–299.

[24] D. Joyce. Special Lagrangian m-folds in Cm with symmetries. Duke Math. J., 115(2002), no. 1,
1–51.

[25] D. Joyce. Conjectures on Bridgeland stability for Fukaya categories of Calabi–Yau manifolds,
special Lagrangians, and Lagrangian mean curvature flow. EMS Surv. Math. Sci. , 2(2015), no.
1, 1–62.

[26] D. Joyce, Y.-I. Lee, and M.-P. Tsui. Self-similar solutions and translating solitons for Lagrangian
mean curvature flow. J. Differential Geom., 84(2010), no. 1, 127–161.

[27] N. Koiso. On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics. Recent
topics in differential and analytic geometry, 327–337, Adv. Stud. Pure Math., 18-I, Academic
Press, Boston, MA, 1990.

[28] N. Koiso and Y. Sakane. Nonhomogeneous Kähler-Einstein metrics on compact complex mani-
folds. Curvature and topology of Riemannian manifolds (Katata, 1985), 165–179, Lecture Notes
in Math., 1201, Springer, Berlin, 1986.

[29] Y. I. Lee and M.-T. Wang. Hamiltonian stationary cones and self-similar solutions in higher
dimensions, Trans. Amer. Math. Soc., 362(2010), no. 3, 1491–1503.

74



[30] E. Lerman. Contact toric manifolds. J. Symplectic Geom., 1(2003), no. 4, 785–828.

[31] J. D. Lotay and T. Pacini. Coupled flows, convexity and calibrations: Lagrangian and totally
real geometry. arXiv:1404.4227, 2014.

[32] J. Lott. Mean curvature flow in a Ricci flow background. Comm. Math. Phys. 313(2012), no. 2,
517–533.

[33] A. Magni, C. Mantegazza, and E. Tsatis. Flow by mean curvature inside a moving ambient space.
J. Evol. Equ. 13(2013), no. 3, 561–576.

[34] C. Mantegazza. Lecture notes on mean curvature flow. Progress in Mathematics, 290.
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