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Preface

Within the last few decades, the anomalous diffusion processes which cannot be adequately
modeled by the classical diffusion equation have been observed and confirmed in several dif-
ferent application areas in biology, geological sciences, medicine, etc.. One of the possibilities
to interpret the anomalous phenomenon in some anomalous diffusion processes on the macro
level is to use the time-fractional diffusion equations. There have been numerous important
works involving these kinds of time-fractional diffusion equations from physical or mathematical
aspects. Here we do not intend any lists of references and we refer only to [36], [37] and [56]
and the references therein. In Chapter 1–3, we continue the research activities of [36], [37] and
[56], and investigate the forward and inverse problems for diffusion equation of the single- or
multi-term fractional derivatives.

However, by integrating the fractional derivatives over the order of the derivative within a
given range (say, [0, 1]), we arrive at the distributed order derivatives

D
(µ)
t ϕ(t) =

∫ 1

0

∂αt ϕ(t)µ(α)dα,

where µ is a non-negative continuous function on [0, 1], and ∂αt is the Caputo fractional deriva-
tive of order α:

∂αt ϕ(t) =





ϕ(t), α = 0,

1

Γ(1 − α)

∫ t

0

ϕ′(τ)

(t− τ)α
dτ, 0 < α < 1,

ϕ′(t), α = 1.

The distributed order derivative was introduced for the first time in [9] and soon attracted
attention of physicists who recognized that these equations can serve as models for a so-called
ultra slow diffusion processes which have been found in polymer physics, kinetics of particles
moving in the quenched random force fields etc..

Let us mention that the single or multi-term time-fractional derivatives can be formally
obtained from the distributed order derivative by setting the weight function in form of a finite
linear combination of the Dirac δ-functions with the positive weight coefficients. In Chapter 4,
forward and inverse problems for distributed order fractional diffusion equation





D
(µ)
t u = −Au+B(x) · ∇u+ c(x)u + F in Ω× (0, T ),

u(x, 0) = a, in Ω,

u(x, t) = 0, on ∂Ω× (0, T )

(0.1)

are considered. Here Ω is assumed to be a bounded domain in Rd with sufficiently smooth
boundary ∂Ω. The operator A denotes a symmetric elliptic operator (e.g., A = −∆).

Chapter 1

In this chapter, we consider the initial-boundary value problem for the single-term time-
fractional diffusion equation. On the basis of unique continuation for parabolic equations,
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we establish the following unique continuation principle, which is slightly weaker than that for
the parabolic case.

Theorem 0.1 Let 0 < α < 1, F = 0 and (B, c) ∈ (L∞(Ω))d+1 in (1.7). Furthermore, we

suppose that u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2γ(Ω) ∩H1
0 (Ω)) (γ ∈ (12 , 1)) satisfies (1.7). Let

ω ⊂ Ω be an arbitrarily chosen subdomain.

Then

u = 0 in ω × (0, T ) implies u = 0 in Q

Next, we consider an inverse source problem for (0.1) under the assumption that the inho-
mogeneous term F is in form of separation of variables.

Problem 0.1 Let the subdomain ω ⊂ Ω and T > 0 be any given. Assume that the initial

value a = 0 and the source term F (x, t) = ρ(t)f(x) in (0.1) where ρ is given, and let u satisfy

(0.1). Determine f(x) by the interior observation

u|ω×(0,T ).

As an application of the weak unique continuation, a uniqueness for determining the source
term by interior measurement is proved.

Theorem 0.2 Let a = 0, f ∈ L2(Ω) and ρ ∈ C1[0, T ] with ρ(0) 6= 0 in the initial-boundary

value problem (0.1), and suppose that ω be an arbitrary open subset of Ω. Then u = 0 in

ω × (0, T ) implies f = 0 in Ω.

Chapter 2

As a natural extension, we consider the case of µ =
∑ℓ

j=1 qj(x, t)δ(·−αj), 0 < αℓ < · · · < α1 < 1
which derives the multi-term time-fractional diffusion equation. This equation is expected
to improve the modeling accuracy in depicting the anomalous diffusion due to its potential
feasibility.

Firstly, we apply the eigenfunction expansion and Fredholm principle for compact operator
to prove unique existence as well as regularity of solution.

Theorem 0.3 Let 0 < αℓ < · · · < α1 < 1 and T > 0 be fixed constants. Assuming that

q1 = 1, qj ∈ W 2,∞(Ω) (j = 2, · · · , ℓ), and (B, c) ∈ (L∞(Ω))d+1. Then for any fixed constant

γ ∈ [ 12 , 1), the initial-boundary value problem (0.1) with F = 0 and a ∈ L2(Ω) admits a unique

mild solution u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ] : H2γ(Ω) ∩H1
0 (Ω)) such that

‖u(t)‖H2γ (Ω) ≤ Ct−α1γeCT ‖a‖L2(Ω), t ∈ (0, T ].

Moreover u : (0, T ] → H2γ(Ω) can be analytically extended to the sector {z 6= 0; | arg z| < π
2 }.

Theorem 0.4 Let 0 < αℓ < · · · < α1 < 1 and T > 0 be given. Assuming that (B, c) ∈
(L∞(Ω))d+1, qj ∈ L∞(Ω)(j = 2, · · · , ℓ). Let F ∈ L2(0, T ;L2(Ω)), a = 0, then the initial-

boundary value problem (0.1) admits a unique weak solution u ∈ L2(0, T ;H2(Ω) ∩ H1
0 (Ω)) ∩

Hα1(0, T ;L2(Ω)). Moreover the following estimate holds:

‖u‖Hα1(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H2(Ω)) ≤ CT ‖F‖L2(0,T ;L2(Ω)).

Secondly, we investigated some further properties of the solution to our initial-boundary
value problem. In the case when all the coefficients qj are positive, B = 0 and F = 0, according
to the argument in the proof of Watson’s lemma, we derived that the decay rate of the solution
is determined by the lowest order αℓ, that is,
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Theorem 0.5 Let αj ∈ (0, 1) be constants such that αℓ < · · · < α1, and {qj}
ℓ
j=1 be in

W 2,∞(Ω) with qj > 0 in Ω. We further assume that c ∈ L∞(Ω) such that c ≤ 0 in Ω. Then

there exists v(t) ∈ H1
0 (Ω) ∩H

2(Ω), the unique solution of the initial-boundary value problem




qℓ(x)∂
αℓ

t v(x, t) = −Av(x, t) + c(x)v(x, t), x ∈ Ω, t > 0,

v(x, 0) = a(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0,

where has the same asymptotic behavior as u, in the sense that

‖u(· , t)− v(· , t)‖H2(Ω) = O(t−min{2αℓ,αℓ−1})‖a‖L2(Ω) as t→ ∞.

It is a remarkable property of fractional diffusion equation since the classical advection
equation admits non-zero solutions decaying exponentially. This is one description of the slower
diffusion, compared to the classical one.

Finally, when we consider (0.1) as model equation for describing e.g., anomalous diffusion in
inhomogeneous media, the orders αj of fractional derivatives should be determined by the inho-
mogeneity of the media, but it is not clear which physical law can correspond the inhomogeneity
to the orders αj . Thus one reasonable way for estimating αj is an inverse problem of determin-
ing α1, ..., αℓ in order to match available data such as using the interior observation or by using
the method of Dirichlet-to-Neumann map. We firstly investigate inverse problem of identifying
fractional orders from pointwise observation. Secondly, we consider an inverse boundary value
problem for diffusion equation (0.1). We prove that the Dirichlet-to-Neumann map uniquely
determines the number of fractional time-derivative terms, the orders of the derivatives and
spatially varying coefficients.

Chapter 3

In the case of µ = δ(· − 1) +
∑ℓ

j=1 qj(x, t)δ(· − αj), 0 < αℓ < · · · < α1 <
1
2 , letting d ∈ C2(Ω)

and |∇d| 6= 0 on Ω and setting ψ = ζ(x)−βt2−2α1 with β > 0. We first discuss the derivation of

a Carleman estimate for L0 = ∂t −
∑d

i,j=1 aij(x, t)∂i∂j with the new weight function ϕ := eλψ.
Namely

Theorem 0.6 Let Σ0 = Ω × {0} and D ⊂ Q be bounded domain whose boundary ∂D is

composed of a finite number of smooth surfaces. Then there exists a constant λ0 > 0 such that

for arbitrary λ ≥ λ0, we can choose a constant s0(λ) > 0 satisfying: there exists a constant

C = C(s0, λ0) such that
∫

D

{
1

sϕ
|∂tu|

2 + sλ2ϕ|∇u|2 + s3λ4ϕ3u2
}
e2sϕdxdt

≤C

∫

D

|L0u|
2e2sϕdxdt + eC(λ)s

∫

∂D

(|∇u|2 + |u|2)dSdt+ eC(λ)s

∫

∂D\Σ0

|∂tu|
2dSdt

for all s > s0 and all u ∈ H2,1(D).

On the basis of the above Carleman estimates for parabolic equations with the weight func-
tion ψ, we prove a Hölder stability for the generalized fractional advection dispersion equations
by considering the fractional derivative as perturbation for the first order time-derivative.

Theorem 0.7 Let Γ ⊂ ∂Ω be an arbitrary non-empty sub-boundary of ∂Ω. For any ε > 0
and an arbitrary bounded domain Ω0 such that Ω0 ⊂ Ω∪Γ, ∂Ω0 ∩ ∂Ω ( Γ is a non-empty open

subset of ∂Ω, there exist constants C > 0 and θ ∈ (0, 1) such that

‖u‖H1,1(Ω0×(0,ε)) ≤ C‖u‖1−θH1,1(Q)F̃
θ,

where F̃ := ‖u(·, 0)‖L2(Ω) + ‖F‖L2(Q) + ‖u‖H1(Γ×(0,T )) + ‖∂νAu‖L2(Γ×(0,T )).
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Chapter 4

In Chapter 4, we investigate the well-posedness and some important properties of the solutions
to initial-boundary value problems for time-fractional diffusion equations of distributed orders.

First, by exploiting eigenfunction expansion and carrying out the inversion Laplace trans-
forms on several integral loops, various estimates are established.

Theorem 0.8 For any fixed T > 0. Let F = 0, a ∈ L2(Ω), B = 0, c(≤ 0) ∈ C(Ω) and

µ ∈ C[0, 1] be non-negative and not vanish in [0, 1]. Then the initial-boundary value problem

(0.1) admits a unique solution u(·, t) ∈ H1
0 (Ω) ∩H

2(Ω) such that

‖∂mt u(·, t)‖H2(Ω) ≤ C‖a‖L2(Ω)
Mmm!

tm+1 log(2T/t)

holds true for t ∈ (0, T ] and m = 0, 1, · · · . Moreover, u(·, t) is real analytic in t ∈ (0, T ] and
can be analytically extended to (0,∞).

Theorem 0.9 Let a = 0, F ∈ L2(0, T ;L2(Ω)), B = 0, and c(≤ 0) ∈ C(Ω). We assume

the weight function µ ∈ C[0, 1] is nonnegative, and does not vanish in [0, 1]. Then the solution

u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) and admits

‖u‖L2(0,T ;H2(Ω)) ≤ C‖F‖L2(0,T ;L2(Ω)).

Based on the above theorems, we further verify the Lipschitz continuous dependency of the
solution to (0.1) with respect to µ and the diffusion coefficient in A, which is fundamental for
the optimization approach to the related coefficient inverse problem.

Second, by a Laplace transform argument, under some suitable assumptions on the weight
function µ, it turns out that the solutions decay logarithmically as t→ ∞.

Theorem 0.10 Let µ ∈ C[0, 1] be a non-negative function and not vanish in [0, 1]. We

further assume that a ∈ L2(Ω), F = 0, B = 0 and c(≤ 0) ∈ C(Ω).
Then

‖u( · , t)‖H2(Ω) ≤ C‖a‖L2(Ω)(log t)
−1

for the solution u to the initial-boundary value problem (0.1) for sufficiently large t > 0.
Moreover, if the weight function µ(α) admits the representation µ(α) = µ(0)+o(αδ), µ(0) >

0, with some δ > 0 as α → 0, then the asymptotic formula

‖u(· , t)− µ(0)
log t (A− c)−1a‖H2(Ω) = o((log t)−1)‖a‖L2(Ω), t→ ∞

holds true. The last formula holds uniformly dependently on Ω, the spatial dimension d, the
initial condition a, the coefficients aij of the spatial differential operator of the equation (0.1),
and the exponent δ of the asymptotic expansion of the weight function µ.

Finally, we consider an inverse problem of the determination of the weight function for
(0.1). For the statement of our main problem, we introduce an admissible set of unknown
weight function,

U = {µ ∈ C[0, 1];µ ≥ 0, 6≡ 0}.

Problem 0.2 Assume F = 0 in (0.1). Let x0 ∈ Ω be fixed and let I ⊂ (0, T ) be a non-empty

open interval. Let u, v be the solutions to the initial-boundary value problems (0.1) with respect

to µ1, µ2 ∈ U separately. We will investigate whether u = v in {x0} × I can derive µ1 = µ2.

As an application of the analyticity, we give a uniqueness result for the above inverse problem
on the determination of the weight function µ.

Theorem 0.11 Let µ1, µ2 ∈ U . Assume that F = 0, B = 0, c(≤ 0) ∈ C(Ω). We further

assume that a ≥ 0 in Ω, a 6≡ 0 and a ∈ H2γ(Ω) with γ > max{ d2 + δ − 1, 0}, δ > 0 can be

sufficiently small. Then µ1 = µ2 provided

u(x0, t) = v(x0, t), x0 ∈ Ω, t ∈ I.
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Chapter 1

Single-term time-fractional

diffusion equations

In this chapter, we investigate the unique continuation principle for single-term time-fractional
diffusion equations. On the basis of unique continuation for parabolic equations, a weak unique
continuation principle for the time-fractional diffusion equations is proved. As an application
of the weak unique continuation principle, the uniqueness for an inverse problem of the deter-
mination of the spatial component of the source term in the time-fractional diffusion equation
by interior measurement is proved.

Keywords: fractional diffusion equation, analyticity, weak unique continuation, inverse
source problem

1.1 Introduction and main results

The classical diffusion equations with integer-order derivative have played important roles in
modelling contaminants diffusion processes. However, in recent two decades, more and more
experimental data in some diffusion processes in highly heterogeneous media, show that the
classical model may be inadequate in order to interpret experimental data. For example, Adams
and Gelhar [2] points out that field data in a saturated zone of a highly heterogeneous aquifer
indicate a long-tailed profile in the spatial distribution of densities as the time passes, which is
difficult to be interpreted by the classical diffusion equation.

For better model, a diffusion equation where the first-order time derivative is replaced by a
derivative of fractional order α ∈ (0, 1) has been proposed, that is

∂αt u = −Au+B(x) · ∇u+ c(x)u + F (x, t), (x, t) ∈ Ω× (0, T ), (1.1)

where T > 0, Ω is an open bounded domain in Rd with a smooth boundary (for example, of
C2 class), α ∈ (0, 1), and ∂αt denotes the Caputo derivative with respect to t:

∂αt g(t) := J1−α

(
dg

dt

)
(t),

where Jβ (β > 0) is the Riemann-Liouville fractional integral operator defined by

Jβg(t) =
1

Γ(β)

∫ t

0

(t− τ)β−1g(τ)dτ.

The operator A is uniformly elliptic operator (e.g., A = −∆).
This modified model is presented as a useful approach for the description of transport

dynamics in complex system that are governed by anomalous diffusion and non-exponential
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relaxation patterns, and attracted great attention from different areas. For numerical calcula-
tion, see Beson et al [5], Diethelm and Luchko [14], Meerschaert et al [48] and the references
therein. For theoretical aspects, see Gorenflo et al [17], Luchko [33], Luchko and Gorenflo [36],
Sakamoto and Yamamoto [60], Xu et al [64], etc.. For the inverse source problems, see Luchko
et al [39], Sakamoto and Yamamoto [61], and Xu and Zhang [67]. For other kind of inverse
problems for fractional diffusion equations, see, e.g., Cheng et al [11], Liu and Yamamoto [42],
Yamamoto and Zhang [68], and the references therein.

However, to the best of the authors’ knowledge, there are very few works on forward and
inverse problems for non-symmetric time-fractional diffusion equations in spite of the physical
and practical importance.

In this chapter, we are interested in the unique continuation principle for fractional diffusion
equations. As one of the remarkable characterizations of parabolic equations, the classical
unique continuation asserts that any solution of a parabolic equation that is defined on a
domain D must vanish in all of D if it vanishes on an open subset in D (See, e.g., [65]), which
can be further applied to deal with inverse source problems. The main focuses of this chapter
is to construct the unique continuation principle for the differential equation in (1.7), namely,

Theorem 1.1 (Weak unique continuation) Let 0 < α < 1, F = 0 and (B, c) ∈ (L∞(Ω))d+1

in (1.1). Furthermore, we suppose that u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ];H2γ(Ω) ∩H1
0 (Ω)) (γ ∈

(12 , 1)) satisfies (1.7). Let ω ⊂ Ω be an arbitrarily chosen subdomain.

Then

u = 0 in ω × (0, T ) implies u = 0 in Ω× (0, T ).

Then we are devoted to studying the unique determination of the spatial component of the
inhomogeneous term by the extra data on the solution u to the initial-boundary value problem

{
u(x, 0) = a, x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).
(1.2)

for (1.1):

Problem 1.1 Let the subdomain ω ⊂ Ω and T > 0 be any given. Assume that the initial

value a = 0 and the source term F (x, t) = ρ(t)f(x) in (1.1) where ρ is given, and let u satisfy

(1.1) respectively. Determine f(x) by the interior observation

u|ω×(0,T ).

From the weak unique continuation, we have

Theorem 1.2 (Uniqueness) Let a = 0, f ∈ L2(Ω) and ρ ∈ C1[0, T ] with ρ(0) 6= 0 in the

initial-boundary value problem (1.2) for (1.1), and suppose that ω be an arbitrary open subset

of Ω. Then u = 0 in ω × (0, T ) implies f = 0 in Ω.

We only obtain the uniqueness result for the determination of the source term from interior
observation and cannot show the stability for this kind of inverse problems for the fractional
diffusion equations since integration by parts fails which is the key point of the Carleman
estimate. (See, e.g., [65])

The remainder of this chapter is organized as follows. A proof of the unique continuation
for the equation in (1.1) is given in Section 1.2 on the basis of unique continuation for parabolic
equations and elliptic equations. In Section 1.3, based on Duhamel’s principle and the estab-
lished unique continuation, we give the proof uniqueness result for inverse source problem (1.1)
with interior measurement. Finally, concluding remarks are given in Section 1.4.

1.2 Proof of Theorem 1.1

In this section, we prove the weak unique continuation for the differential equation in (1.1) by
the unique continuation for the parabolic equations. The key point is that we obtain a relation
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between parabolic equations and time-fractional diffusion equations by the Laplace transform.
Sakamoto and Yamamoto [60] proved this lemma provided B ≡ 0. However, their method
mainly based on the eigenfunction expansion argument which very depends on the symmetric
of the system, so their methods cannot work for the non-symmetric case.

Before giving the proof, we first fix some general settings and notations. Let L2(Ω) be a
usual L2- space with the inner product (·, ·) and H1

0 (Ω), H
γ(Ω) (γ > 0) denote the Sobolev

spaces (see, e.g., Adams [1]). The elliptic operator A is defined for ϕ ∈ H1
0 (Ω)∩H

2(Ω) defined
as

Aϕ(x) = −

d∑

i,j=1

∂xi

(
aij(x)∂xj

ϕ(x)
)
, (1.3)

where aij = aji ∈ C1(Ω), 1 ≤ i, j ≤ d. Moreover there exists a constant σ > 0 such that

σ
d∑

i=1

ξ2i ≤
d∑

i,j=1

aij(x)ξiξj , x ∈ Ω, ξ ∈ Rd.

We recall a useful lemma,

Lemma 1.1 (Theorem 4.1 in [43]) Under the assumptions in Theorem 1.1, let 1
2 < γ < 1

be given constant. Then there exists a unique mild solution u ∈ C((0, T ];H2γ(Ω) ∩ H1
0 (Ω)) ∩

C([0, T ];L2(Ω)) to the initial-boundary value problem (1.2) for (1.1). Moreover, the solution

u : (0, T ) → H2γ(Ω) is analytic and can be analytically extended to (0,∞), and there exists a

constant C = C(d, α,A, B, c, γ) > 0 such that

‖u(·, t)‖H2γ(Ω) ≤ CeCT t−αγ‖f‖L2(Ω), 0 < t < T. (1.4)

Remark 1.1 We note that in the case of B ∈ W 1,∞(Ω) and c ≤ 0, we can moreover see
that the initial-boundary value problem (1.7) admits a unique solution u ∈ C([0, T ];L2(Ω)) ∩
C((0, T ];H1

0 (Ω) ∩H
2(Ω))) and u can be analytically extended to (0,∞).

Proof of Theorem 1.1. By our assumptions and Lemma 1.1, we can analytically extend the
function u(x, t) from (0, T ] to (0,∞), by the same notation we denote the extension. We
consider the following initial-boundary value problem





∂αt u = −Au+B(x) · ∇u+ c(x)u in Ω× (0,∞),

u = a in Ω× {0},

u = 0 on ∂Ω× (0,∞).

(1.5)

Now we apply the Laplace transform L (we also use the notation ·̂) on both sides of the equation
in (1.5), and use the formula

L(∂αt ϕ)(s) = sαLϕ(s)− sα−1ϕ(0+)

to derive the transformed algebraic equation

{
sαû(x; s)− sα−1a = −Aû(x; s) +B(x) · ∇û(x; s) + c(x)û(x; s), x ∈ Ω,

û(x; s) = 0, x ∈ ∂Ω,

where s > M1 with M1 > 0 being sufficiently large. Multiplying both sides of the equations on
the above by s1−α, and denoting v̂(x; s) := s1−αû(x; s), we then obtain the following elliptic
type equations with parameter s

{
sαv̂(x; s)− a = −Av̂(x; s) +B(x) · ∇v̂(x; s) + c(x)v̂(x; s), x ∈ Ω,

v̂(x; s) = 0, x ∈ ∂Ω,
(1.6)
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for s > M1. On the other hand, let us turn to consider an initial-boundary value problem for
parabolic type equation defined as follows





∂tw = −Aw +B(x) · ∇w + c(x)w in Ω× (0,∞),

w = a in Ω× {0},

w = 0 on ∂Ω× (0,∞).

Again by applying Laplace transforms on both sides of the equations in the above initial-
boundary value problem, it follows that

{
ηŵ(x; η) − a = −Aŵ(x; η) +B(x) · ∇ŵ(x; η) + c(x)ŵ(x; η), x ∈ Ω,

ŵ(x; η) = 0, x ∈ ∂Ω,

where η > M2 and M2 > 0 is a sufficiently large constant. After the change of variable η = sα,
we find

{
sαŵ(x; sα)− a = −Aŵ(x; sα) +B(x) · ∇ŵ(x; sα) + c(x)ŵ(x; sα), x ∈ Ω,

ŵ(x; sα) = 0, x ∈ ∂Ω

for sα > M2. Now noting (1.6), from the uniqueness result for boundary value problems for
the elliptic type equations, we then obtain

ŵ(x; sα) = v̂(x; s) = s1−αû(x; s), (x; s) ∈ Ω× {s > M},

where M := max{M
1
α

2 ,M1}, hence that

ŵ(x; η) = 0, (x; η) ∈ ω × {η > Mα}

in view of Lemma 1.1, by the uniqueness of Laplace transform, finally that

w(x, t) = 0, (x, t) ∈ ω × (0,∞).

We conclude from the unique continuation principle of parabolic equations (see, e.g., [65]) that

w(x, t) = 0, (x, t) ∈ Ω× (0,∞),

which implies a = w(·, 0) = 0 in Ω, finally that

u(x, t) = 0, (x, t) ∈ Ω× (0,∞).

This completes the proof of the first part of Theorem 1.1.

1.3 Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The argument is mainly based on the weak
unique continuation proved in Section 1.2 and Duhamel’s principle

Lemma 1.2 (Duhamel’s principle) Let F (x, t) = ρ(t)f(x) in (1.1). Assuming u is the weak

solution of initial-boundary value problem (1.2) for (1.1). Then

u(x, t) =

∫ t

0

θ(t− s)v(x, s)ds in Ω× (0, T ),

where J1−αθ(t) = ρ(t), and v such that





∂αt v = −Av +B(x) · ∇v + c(x)v in Ω× (0, T ),

v(·, 0) = f in Ω

v = 0 on ∂Ω× (0, T ).

(1.7)
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The proof can be found in Lemma 4.1 in [40].
We are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Let u satisfy the problem (1.1) and the interior observation u|ω×(0,T ) =
0. From Lemma 1.2, we have

Θ(t) :=

∫ t

0

θ(t− s)v(x, s)ds = 0, (x, t) ∈ ω × (0, T ),

where v is the solution to the problem (1.7). Noting that Fubini’s theorem implies

J1−α
0+ Θ(t) =

1

Γ(1− α)

∫ t

0

(t− τ)−α
∫ τ

0

θ(τ − s)v(x, s)dsdτ

=

∫ t

0

(
1

Γ(1− α)

∫ t

s

(t− τ)−αθ(τ − s)dτ

)
v(x, s)ds =

∫ t

0

(J1−α
0+ θ)(t− s)v(x, s)ds,

which implies ∫ t

0

ρ(t− s)v(x, s)ds = 0, (x, t) ∈ ω × (0, T ).

Consequently taking derivative with respect to t we find

ρ(0)v(x, t) +

∫ t

0

ρ′(t− s)v(x, s)ds = 0, (x, t) ∈ ω × (0, T ).

Then ρ(0) 6= 0 leads to

‖v(·, t)‖L2(ω) ≤
1

|ρ(0)|

∫ t

0

‖ρ‖C1[0,T ]‖v(·, s)‖L2(ω)ds, t ∈ (0, T ).

By Gronwall’s inequality, we obtain v|ω×(0,T ) = 0. Hence according to Theorem 1.1, we derive
v = 0 in Q, implying f = v(·, 0) = 0. This completes the proof of theorem.

1.4 Conclusions and open problems

As an application of the analyticity, we proved the weak type unique continuation principle by
noting the relation between time-fractional diffusion equations and parabolic equations. Letting
α = 1 in Theorem 1.1, we have that the uniqueness holds without v|∂Ω = 0 which is the unique
continuation (e.g., [65]). However, for α ∈ (0, 1), we do not know whether the uniqueness holds
without v|∂Ω = 0.

In Theorem 1.2, we only proved the uniqueness result for the inverse source problem. It
is known that such kind of inverse problem to the parabolic or hyperbolic equation admits
the well-posedness in Hadamard sense by Carleman estimate or Multiplier method. But such
kinds of methods for the parabolic or hyperbolic equation are failed in the case of fractional
diffusion equation since there is no classical integration by part for the fractional derivatives.
For a general fractional diffusion equation, the stability remains open.



Chapter 2

Multi-term time fractional

diffusion equations

In this chapter, we discuss the initial-boundary value problems for diffusion equations with
multi-term time-fractional derivatives. In the case of homogeneous equations, by means of the
Mittag-Leffler function and the eigenfunction expansion, we reduce the problem to an integral
equation for a solution to show the unique existence and the analyticity of solution for the
equation. Different to the homogeneous case, we extend the Caputo derivative in Sobolev space
and regard the lower order terms as perturbation to prove the unique existence of solutions
to nonhomogeneous equations. Especially, in the case of homogeneous equation where all the
coefficients of the time-fractional derivatives are positive, by the Laplace transform argument,
it turns out that the decay rate of the solution for long time is dominated by the lowest order
of the time-fractional derivatives. Finally, several inverse problems of the determination of
the orders are investigated by mainly using the analyticity of the solution to the differential
equation.

Keywords: multi-term time-fractional diffusion equation, uniqueness and existence, ana-
lyticity, asymptotic behavior, Laplace transform, Fredholm alternative, Determination of frac-
tional orders

2.1 Introduction

Let Ω be an open bounded domain in Rd with a smooth boundary (for example, of C∞ class),
and for an arbitrarily fixed T > 0, we set Q := Ω× (0, T ), Σ := ∂Ω× (0, T ). We deal with the
following initial-boundary value problem for the multi-term time-fractional diffusion equation





ℓ∑

j=1

qj(x, t)∂
αj

t u = −Au+B(x, t) · ∇u+ b(x, t)u + F (x, t), (x, t) ∈ Q,

u(x, 0) = a(x), (x, t) ∈ Ω,

u(x, t) = 0, (x, t) ∈ Σ.

(2.1)

where αj (j = 1, · · · , ℓ) are positive constants such that 1 ≤ αℓ < · · · < α1 < 1, qj ∈
L2(Ω × (0, T )), (j = 1, · · · , ℓ), and we assume q1 = 1 without loss of generality. −A is a
symmetric uniformly elliptic operator defined by (1.3) in Chapter 1.

In the case of ℓ = 1, equation (2.1) is reduced to its single-term counterpart (1.1). As we
mentioned in Chapter 1, the fractional diffusion equation is presented as a useful model for
the anomalous diffusion in heterogeneous medium. As a natural extension for the single-term
time-fractional diffusion equation, the multi-term time-fractional diffusion equation modifies
the model simulating the advection and attracted great attention from different aspect due to
its potential feasibility. In [13], a solution to an initial-boundary value problem is formally
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represented by Fourier series. However no proofs for the convergence of the series and for the
uniqueness of the solution. A proof of the convergence of the series defining the solution of the
multi-term time-fractional diffusion equation with positive constant coefficients can be found
in the paper [37]. [28] discusses the case where the spatial dimension is one, the coefficients are
constants and the spatial fractional derivative is considered, and establishes the formula of the
solution. The paper [34] proves the unique existence of the classical solution, the maximum
principle and related properties in the case where the coefficients of the time derivatives are
positive and independent on x, and the arguments are based on the Fourier method, that is, the
separation of the variables. These papers mainly discuss the case where the spatial differential
operators is a symmetric elliptic operator and the coefficients of time-fractional derivatives are
positive constants.

In this chapter, we are concerned with the forward and inverse problems for the initial-
boundary value problem (2.1). For the forward problem, firstly, the continuous dependency
of the solution to (2.1) with respect to initial value and source term is proved by using fixed
point method and the Fredholm alternative under some suitable assumption on the coefficients.
Moreover, in the case when all of the coefficients of the fractional derivatives are positive, the
use of Laplace transform and analyticity yields that for homogeneous equation, the asymptotic
behavior of the solution is dominated by the lowest fractional orders, which can be regarded
as a generalization of the asymptotic behavior result in Li et al [37] where they dealt with the
case of positive-constant coefficients. Next on basis of these established results for the forward
problem, we can deduce the Lipschitz stability of the solution to (2.17) with respect to αj , qj
(j = 1, · · · , ℓ) and diffusion coefficients. As a direct corollary, we can establish an existence
result for the optimization approach to the simultaneous reconstruction of various coefficients.

Finally, as an application of the analyticity, we investigate two kinds of inverse problems
of identifying fractional orders and other quantities in diffusion equations with multiple time-
fractional derivatives, and establish the uniqueness of our inverse problems.

The rest of this chapter is organized as follows: In Section 2.2.1 for the homogeneous
equations, the unique existence and the analyticity of the solution to the problem (2.1) are
proved under some suitable assumptions on the coefficients. In Section 2.2.2, for the non-
homogeneous equations with initial value a = 0, the Fredholm alternative is applied to show
unique existence as well as regularity of the solution. The long-time asymptotic behavior are
given in Section 2.3. Finally, in Section 2.4.1, the uniqueness in determining orders αj by
measured data at one endpoint is proved. In Section 2.4.2, by applying the Laplace transforms
of the solutions to (2.1) and reducing our inverse problem to the inverse boundary value problem
for elliptic equations, we complete the proof of Theorem 2.6.

2.2 Wellposedness

In this section, we consider the initial-boundary value problem (2.1). Our overall plan is first
to define and then construct an appropriate weak solution u of (2.1), and later to investigate
the asymptotic, analytic and other properties of the solution u.

Recently, more and more publications related to fractional diffusion equations, show that
there are lots of big different properties between the homogeneous equations and nonhomoge-
neous equations, see, e.g., [16], [41], [66] and the references therein, which show that there is a
big gap between these two cases. Therefore, it should be suitable to define the weak solution
separately. To this end, we start with some general settings and notations. First we define an
operator A by

Aψ = −Aψ, ψ ∈ D(A) := H2(Ω) ∩H1
0 (Ω).

Let {λk, ϕk}
∞
k=1 be an eigensystem of the elliptic operator A. That is, 0 < λ1 < λ2 ≤

· · · , limk→∞ λk = ∞, Aϕk = λkϕk and ϕk ∈ D(A). Then the fractional power Aγ is de-
fined for γ ∈ R (e.g., [50]) by

Aγψ =

∞∑

n=1

λγn(ψ, ϕn)ϕn,
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where

ψ ∈ D(Aγ) :=

{
ψ ∈ L2(Ω) :

∞∑

n=1

λ2γn |(ψ, ϕn)|
2 <∞

}

and that D(Aγ) is a Hilbert space with the norm

‖ψ‖D(Aγ) =

(
∞∑

n=1

λ2γn |(ψ, ϕn)|
2

) 1
2

.

Moreover we define the Mittag-Leffler function by

Eα,β(z) :=

∞∑

k=0

zk

Γ(αk + β)
, z ∈ C, (2.2)

where α > 0 and β ∈ R are arbitrary constants. The above formula and the classical asymptotics

Γ(η) = e−ηηη−
1
2 (2π)

1
2

(
1 +O

(
1

η

))
as η → +∞ (2.3)

(e.g., Abramowitz and Stegun [3], p.257) imply that the radius of convergence is ∞ and so
Eα,β(z) is an entire function of z ∈ C. Furthermore, the following useful lemma holds:

Lemma 2.1 (i) Let 0 < α < 2 and β ∈ R be arbitrary. We suppose that µ is such that
π
2α < µ < min{π, πα}. Then there exists a constant C = C(α, β, µ) > 0 such that

|Eα,β(z)| ≤
C

1 + |z|
, µ ≤ | arg z| ≤ π.

(ii) For λ > 0, α > 0 and positive integer n ∈ N, we have

dn

dtn
Eα,1(−λt

α) = −λtα−nEα,α−n+1(−λt
α), t > 0.

Moreover, Eα,1(−λt
α) with 0 < α < 1 is completely monotonic, that is, (−1)n dn

dtnEα,1(−λt
α) ≥

0 for all t > 0 and n = 0, 1, · · · .

The proof can be found in Gorenflo and Mainardi [18], on p. 35 in Podlubny [52] and
Lemma 3.2 in Sakamoto and Yamamoto [60].

2.2.1 Homogeneous equation

Throughout this section, we set F = 0. We assume that B, c are independent of t and that

(B, c) ∈ (L∞(Ω))d+1.

Next we give the definition of the solution to the initial-boundary value problem (2.1). To
this end, we formally show an integral equation which is equivalent to (2.1), which is only
composed of u,∇u without the time derivative of the solution.

We define an operator S(z) : L2(Ω) → L2(Ω) for z ∈ {z 6= 0; | arg z| < π
2 } by

S(z)a :=

∞∑

n=1

(a, ϕn)Eα,1(−λnz
α)ϕn, a ∈ L2(Ω). (2.4)

In view of (ii) in Lemma 2.1, the term-wise differentiations are possible and give

S(j)(z)a := −

∞∑

n=1

λn(a, ϕn)z
α1−jEα1,α1−j+1(−λnz

α1)ϕn, j = 1, 2
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for a ∈ L2(Ω). Moreover, From the definition of (2.4) and the property of the Mittag-Leffler
function, S(j)(z) (j = 0, 1, 2) are analytic in the sector Ωθ and by Theorem 1.6 in [52] (p.35),
we can prove that there exists a constant C > 0 which is independent of z such that

‖Aγ−1S(j)(z)‖L2(Ω)→L2(Ω) ≤ C|z|α1−j−α1γ , j = 0, 1, 2 (2.5)

for z ∈ Ωθ and 0 ≤ γ ≤ 1, where ‖ · ‖L2(Ω)→L2(Ω) denotes the operator norm from L2(Ω) to
L2(Ω).

In fact, by using Γ(z + 1) = zΓ(z) for Re z > 0, the termwise differentiations yield

dj

dzj
Eα1,1(−λz

α1) = −λzα1−jEα1,α1−j+1(−λz
α1), z ∈ Ωθ, λ > 0, j = 1, 2.

Therefore we have

Aγ−1S(j)(z)a = −
∞∑

n=1

λγn(a, ϕn)z
α1−jEα1,α1−j+1(−λnz

α1)ϕn,

and so

‖Aγ−1S(j)(z)a‖2L2(Ω) ≤ |z|2(α1−j)
∞∑

n=1

λ2γn |(a, ϕn)|
2|Eα1,α1−j+1(−λnz

α1)|2

≤C|z|2(α1−j)
∞∑

n=1

λ2γn |(a, ϕn)|
2

(
1

1 + |λn||zα1 |

)2

.

Here we used

|Eα1,α1−j+1(−λnz
α1)| ≤

C

1 + |λn||zα1 |

if 0 < arg zα1 < π
2α1 (e.g., Theorem 1.6 (p.35) in [52]). Therefore

‖Aγ−1S(j)(z)a‖2L2(Ω) ≤ C|z|2(α1−j−γα1)
∞∑

n=1

|(a, ϕn)L2(Ω)|
2

(
(|λn||z|

α1)γ

1 + |λn||zα1 |

)2

≤C|z|2(α1−j−γα1) max
η≥0

(
ηγ

1 + η

)2 ∞∑

n=1

|(a, ϕn)|
2,

which proves (2.5).
By regarding the term B(x) · ∇u(x, t) + c(x)u(x, t) as a source term, from Theorem 2.2 in

[60], we find an implicit form of the solution u to the problem (1.1), say, the following integral
equation of u,

u(t) = S(t)a−

∫ t

0

A−1S′(t− s)(B · ∇u(s) + cu(s))ds+

ℓ∑

j=2

∫ t

0

A−1S′(t− s)qj∂
αj

t u(s)ds.

We consider the last term
ℓ∑

j=2

∫ t

0

A−1S′(t− s)qj∂
αj

t u(s)ds.

Noting by the definition of Caputo fractional derivative, we have

∫ t

0

A−1S′(t− s)
(
qj∂

αj

t u(s)
)
ds =

∫ t

0

A−1S′(t− s)
1

Γ(1 − αj)

(∫ s

0

(s− r)−αj qju
′(r)dr

)
ds,

where we denote u′(t) := du
dt (t), by Fubini’s theorem we exchange the orders of integrals and

change the variable s→ ξ by ξ := s−r
t−r to obtain

∫ t

0

A−1S′(t− s)qj∂
αj

t u(s)ds =

∫ t

0

(∫ t

r

A−1S′(t− s)
(s− r)−αj

Γ(1− αj)
ds

)
qju

′(r)dr
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=

∫ t

0

(∫ 1

0

A−1S′
(
(1− ξ)(t− r)

) ξ−αj

Γ(1− αj)
dξ

)
(t− r)1−αj qju

′(r)dr =:
I(t)

Γ(1− αj)
.

Since the integrands have singularities at ξ = 0, 1 and r = t, we should understand that

I(t) = lim
ǫ1,ǫ2,ǫ3↓0

∫ t−ǫ3

0

( ∫ 1−ǫ1

ǫ2

A−1S′
(
(1 − ξ)(t− r)

)
ξ−αjdξ

)
(t− r)1−αj qju

′(r)dr

=: lim
ǫ1,ǫ2,ǫ3↓0

Iǫ1,ǫ2,ǫ3(t)

Integration by parts yields

Iǫ1,ǫ2,ǫ3(t) =

(∫ 1−ǫ1

ǫ2

A−1S′
(
(1− ξ)(t− r)

)
ξ−αjdξ

)
qju(r)(t− r)1−αj

∣∣∣
r=t−ǫ3

r=0

+

∫ t−ǫ3

0

(∫ 1−ǫ1

ǫ2

A−1S′′
(
(1 − ξ)(t− r)

)
(1− ξ)ξ−αjdξ

)
(t− r)1−αj qju(r)dr

+

∫ t−ǫ3

0

(∫ 1−ǫ1

ǫ2

A−1S′
(
(1− ξ)(t − r)

)
ξ−αjdξ

)
(1 − αj)(t− r)−αj qju(r)dr

= :

3∑

k=1

I(k)ǫ1,ǫ2,ǫ3(t).

We evaluate each of the above three terms separately. First for I
(1)
ǫ1,ǫ2,ǫ3(t), from (2.5) and

α1 > αj for j = 2, ..., ℓ, it follows that

∥∥∥∥
∫ 1−ǫ1

ǫ2

A−1S′
(
(1− ξ)(t− r)

)
ξ−αjdξ

∥∥∥∥
L2(Ω)→L2(Ω)

≤ C

∫ 1−ǫ1

ǫ2

(
(1− ξ)(t− r)

)α1−1
ξ−αjdξ.

Moreover from the property of the Beta function that

∫ 1

0

(1− ξ)α−1ξβ−1dξ =
Γ(α)Γ(β)

Γ(α+ β)
<∞, α, β > 0, (2.6)

by α1 > αj for j = 2, ..., ℓ, for r = t− ǫ3 we have

∥∥∥∥
(∫ 1−ǫ1

ǫ2

A−1S′((1− ξ)(t− r))ξ−αjdξ

)
qju(r)(t − r)1−αj

∥∥∥∥
L2(Ω)

≤ Cǫ
α1−αj

3 ‖u‖L∞(0,T ;L2(Ω)) → 0

as ǫ3 → 0. Hence by u(0) = a, we see that

lim
ǫ1,ǫ2,ǫ3↓0

I(1)ǫ1,ǫ2,ǫ3(t) = t1−αj

∫ 1

0

A−1S′((1− ξ)t)ξ−αj qjadξ.

Next we estimate I
(2)
ǫ1,ǫ2,ǫ3(t), again by using (2.5) and α1 > αj for j = 2, ..., ℓ, it follows that

‖I(2)ǫ1,ǫ2,ǫ3(t)‖L2(Ω) ≤

∫ t−ǫ3

0

(∫ 1−ǫ1

ǫ2

(1− ξ)α1−1ξ−αjdξ

)
(t− r)α1−αj−1dr‖u‖L∞(0,T ;L2(Ω)),

the integrand is integrable in 0 < ξ < 1 and 0 < r < t in view of (2.6) and we take the limit as
ǫ1, ǫ2, ǫ3 ↓ 0 to derive

lim
ǫ1,ǫ2,ǫ3↓0

I(2)ǫ1,ǫ2,ǫ3(t) =:

∫ t

0

(∫ 1

0

A−1S′′
(
(1− ξ)(t− r)

)
(1− ξ)ξ−αjdξ

)
(t− r)1−αj qju(r)dr

Finally, for I
(3)
ǫ1,ǫ2,ǫ3(t) we argue similarly to obtain

lim
ǫ1,ǫ2,ǫ3↓0

I(3)ǫ1,ǫ2,ǫ3(t) =: (1− αj)

∫ t

0

(∫ 1

0

A−1S′((1 − ξ)(t− r))ξ−αjdξ

)
(t− r)−αj qju(r)dr.



2.2 Wellposedness 11

Thus

I(t) =t1−αj

∫ 1

0

A−1S′((1− ξ)t)ξ−αj qjadξ

+

∫ t

0

(∫ 1

0

A−1S′′((1 − ξ)(t− r))ξ−αjdξ

)
(t− r)1−αj qju(r)dr

+ (1− αj)

∫ t

0

(∫ 1

0

A−1S′((1− ξ)(t − r))ξ−αjdξ

)
(t− r)−αj qju(r)dr.

Consequently we have

u(t) = S(t)a+

ℓ∑

j=2

1

Γ(1− αj)

∫ t

0

A−1S′(t− r)r−αj qjadr

−

∫ t

0

A−1S′(t− r)(B · ∇u(r) + cu(r))dr

+

ℓ∑

j=2

1

Γ(1− αj)

∫ t

0

∫ 1

0

A−1S′′
(
(1− s)(t− r)

)
(1 − s)(t− r)1−αjs−αjqju(r)dsdr

+
ℓ∑

j=2

1− αj
Γ(1− αj)

∫ t

0

∫ 1

0

A−1S′
(
(1− s)(t− r)

)
(t− r)−αjs−αjqju(r)dsdr =:

5∑

j=1

Ij . (2.7)

Setting F = 0 in initial-boundary value problem (2.1), since the mild solution to (2.1)
satisfies the integral equation (2.7), after the change of variables, we find

u(t) =S(t)a−

ℓ∑

j=2

t1−αj

Γ(1− αj)

∫ 1

0

A−1S′(rt)(1 − r)−αj qjadr − t

∫ 1

0

A−1S′(rt)ũ
(
(1 − r)t

)
dr

+

ℓ∑

j=2

(1− αj)t
1−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′
(
(1 − s)rt

)
r−αjs−αjqju

(
(1 − r)t

)
dsdr

+
ℓ∑

j=2

t2−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′′
(
(1− s)rt

)
(1 − s)r1−αjs−αjqju

(
(1− r)t

)
dsdr, (2.8)

where ũ := B · ∇u+ cu.
Based on the above integral equation for u, we have the following definition of the weak

solution to the problem (2.1).

Definition 2.1 (Weak solution) Let a ∈ L2(Ω). We call a function u a solution to (2.1) if
u ∈ C((0, T ];H2(Ω) ∩H1

0 (Ω)) ∩C([0, T ];L
2(Ω)) and satisfies (2.8) and

lim
t→0

‖u(·, t)− a‖L2(Ω) = 0.

We now investigate the properties of the solution to initial-boundary value problem (2.1)
with F = 0. We extend the variable t in (2.8) from (0, T ) to the sector {z 6= 0; | arg z| < π

2 },
and setting u0 = 0, we define un+1(z) (n = 0, 1, · · · ) as follows:

un+1(z) = S(z)a−

ℓ∑

j=2

z1−αj

Γ(1− αj)

∫ 1

0

A−1S′(rz)(1 − r)−αj qjadr

− z

∫ 1

0

A−1S′(rz)ũn
(
(1− r)z

)
dr

+

ℓ∑

j=2

(1− αj)z
1−αj

Γ(1 − αj)

∫ 1

0

∫ 1

0

A−1S′
(
(1− s)rz

)
r−αjs−αjqjun

(
(1− r)z

)
dsdr
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+
ℓ∑

j=2

z2−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′′
(
(1− s)rz

)
(1− s)r1−αj s−αjqjun

(
(1− r)z

)
dsdr. (2.9)

Here ũn(z) := B · ∇un(z) + cun(z). We conclude from the definition (2.4) of S(z) and the
properties of Mittag-Leffler function that un(z) defined in (2.9) uniformly converges to the
solution to the initial-boundary value problem (2.1) with F = 0 as n → ∞ for any compact
subset of the section {z 6= 0; | arg z| < π

2 }. Namely the following theorem holds.

Theorem 2.1 Let 0 < αℓ < · · · < α1 < 1 and T > 0 be fixed constants. Assuming that

qj ∈W 2,∞(Ω) (j = 2, · · · , ℓ), (B, c) ∈ (L∞(Ω))d+1. Then for any fixed constant γ ∈ [ 12 , 1), the
initial-boundary value problem (2.1) with F = 0 and a ∈ L2(Ω) admits a unique mild solution

u ∈ C([0, T ];L2(Ω)) ∩ C((0, T ] : H2γ(Ω) ∩H1
0 (Ω)) such that

‖u(t)‖H2γ (Ω) ≤ Ct−α1γeCT ‖a‖L2(Ω), t ∈ (0, T ].

Moreover u : (0, T ] → H2γ(Ω) can be analytically extended to the sector {z 6= 0; | arg z| < π
2 }.

Here and henceforth in this section, C > 0 denotes the constants which are independent of
T , n, a and u, but may depend on γ, {αi}

ℓ
i=1, d, B, c, Ω, {qj}

ℓ
j=2 and the coefficients of A.

Remark 2.1 In [8] a similar fractional diffusion equation is discussed for F = 0 and B = 0
and a similar regularity is proved. However [8] assumes an extra condition α1 + αℓ > 1, and
our main result needs not such an assumption.

Proof. For any n ∈ N, taking the operator Aγ on both sides of (2.9), from (2.5) for the z ∈
Ωθ,T := {z 6= 0; | arg z| < θ, |z| ≤ T } with θ ∈ (0, π2 ), we claim that the following estimate
holds:

‖un+1(z)− un(z)‖D(Aγ) ≤M1M
n




ℓ∑

j=1

Jβj



n

(
g
)
(|z|)‖a‖L2(Ω), n ∈ N, (2.10)

where g(t) := t−α1γ , β1 := α1−α1γ, βj := α1−αj, j = 2, · · · , ℓ, the constantM is independent
of T , t > 0, z ∈ Ωθ,T , but may dependent on γ, d, Ω, θ, p, p1, ..., pℓ, α1, ..., αℓ, and by Jα we
denote the Riemann-Liouville fractional integral

(Jαf)(t) :=
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, α > 0,

and denote J0f(t) = f(t). We now proceed by induction on n to prove (2.10). Firstly, for
n = 0, using the estimate (2.5), noting u0 = 0, then for z ∈ Ωθ,T , we have

‖u1(z)‖D(Aγ) ≤

ℓ∑

j=2

∥∥∥∥
−z1−αj

Γ(1− αj)

∫ 1

0

Aγ−1S′(rz)(1 − r)−αj qjadr

∥∥∥∥
L2(Ω)

+ ‖AγS(z)a‖L2(Ω)

≤C

ℓ∑

j=2

|z|α1−αj−α1γ

∫ 1

0

rα1−1−α1γ(1− r)−αjdr‖a‖L2(Ω) + |z|−α1γ‖a‖L2(Ω).

Since γ ∈ [ 12 , 1), and noting that |z|α1−αj−α1γ ≤ Tα1−αj |z|−α1γ , we see that

‖u1(z)− u0(z)‖D(Aγ) ≤ C(

ℓ∑

j=2

Tα1−αj + 1)|z|−α1γ‖a‖L2(Ω) =:M1|z|
−α1γ‖a‖L2(Ω).

Next, for any n ∈ N, in view of the inequalities ‖B · ∇v‖L2(Ω) ≤ C‖v‖
D(A

1
2 )

≤ C‖v‖D(Aγ) for

v ∈ D(Aγ) and γ ∈ [ 12 , 1), we derive

‖A−1S′(rz)
(
ũn+1 − ũn

)
(z)‖D(Aγ) ≤ C‖Aγ−1S′(rz)‖L2(Ω)→L2(Ω)‖(un − un−1)(z)‖D(Aγ).
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Combining the above inequalities with (2.5) for z ∈ Ωθ,T , we can prove that

‖un+1(z)− un(z)‖D(Aγ)

≤C|z|β1

∫ 1

0

rβ1−1‖un((1− r)z)− un−1((1 − r)z)‖
D(A

1
2 )
dr

+ C

ℓ∑

j=2

|z|βj

(∫ 1

0

(1 − s)β1−1s−αjds

)∫ 1

0

rβj−1‖un((1 − r)z)− un−1((1 − r)z)‖D(Aγ)dr,

where β1 := α1 − α1γ, βj := α1 − αj , j = 2, · · · , ℓ. Noting that, for 0 < αj < α1 < 1,
j = 2, · · · , ℓ and (2.6), we have

‖un+1(z)− un(z)‖D(Aγ) ≤ C

ℓ∑

j=1

|z|βj

∫ 1

0

rβj−1‖un((1 − r)z)− un−1((1− r)z)‖D(Aγ)dr.

Consequently, by inductive assumption, we can prove

‖un+1(z)− un(z)‖D(Aγ) ≤ C
ℓ∑

j=1

|z|βj

∫ 1

0

rβj−1M1M
n−1

(
ℓ∑

i=1

Jβi

)n−1 (
g
)
((1 − r)|z|)dr.

After making the change of variable r → (1 − r)|z| and from the definition of the Riemann-
Liouville fractional integral, we see that

‖un+1(z)− un(z)‖D(Aγ) ≤ CM1M
n−1

ℓ∑

j=1

∫ |z|

0

(|z| − r)βj−1

(
ℓ∑

i=1

Jβi

)n−1
(
g
)
(r)dr

=CM1M
n−1

ℓ∑

j=1

Γ(βj)J
βj



(

ℓ∑

i=1

Jβi

)n−1
(
g
)

 (|z|)

≤CM1M
n−1 max

1≤j≤ℓ
{Γ(βj)}

ℓ∑

j=1

Jβj



(

ℓ∑

i=1

Jβi

)n−1
(
g
)

 (|z|) =M1M

n

(
ℓ∑

i=1

Jβi

)n
(
g
)
(|z|),

where we set M := Cmax1≤j≤ℓ{Γ(βj)}. Therefore by indcution, (2.10) holds true. Moreover,
noting the semigroup property

JαJβ = Jα+β , α ≥ 0, β ≥ 0,

and the effect of the operator Jα on the power functions

Jαtβ =
Γ(β + 1)

Γ(β + 1 + α)
tα+β, α ≥ 0, β > −1, t > 0,

we derive

‖un+1(z)− un(z)‖D(Aγ) ≤M1M
n

∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Jβ1k1+···+βℓkℓ(g)(|z|)

=M1M
n

∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Γ(1− α1γ)|z|

β1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)
, z ∈ Ωθ,T . (2.11)

Here we noticed for any subset K compacted in Ωθ,T that

∞∑

n=0

Mn
∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Γ(1− α1γ)|z|

β1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)
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converges uniformly in K. In fact, the asymptotic behavior (2.3) yields

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1) ≥ CΓ(β(k1 + · · ·+ kℓ)− α1γ + 1) = CΓ(βn− α1γ + 1),

and noting that
∑
k1+···+kℓ=n

(
n
k1

)
· · ·
(
n
kℓ

)
= ℓn, it follows for z ∈ Ωθ,T that

∞∑

n=0

∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Mn|z|β1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)
≤ C

∞∑

n=0

ℓn
MnT βn|z|−α1γ

Γ(βn− α1γ + 1)
,

where β := max1≤j≤ℓ{βj}, β := min1≤j≤ℓ{βj}. Again using the asymptotic behavior (2.3), we
find

ℓn+1Mn+1T β(n+1)

Γ(β(n+ 1)− α1γ + 1)

/ ℓnMnT βn

Γ(βn− α1γ + 1)
−→ 0 as n→ ∞,

so that
∞∑

n=0

Mn
∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
|z|β1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)
<∞.

Hence the majorant test implies
∑∞
n=1 ‖un+1(z)− un(z)‖D(Aγ) is convergent uniformly in any

compact subset of Ωθ,T . Therefore there exists u∗(z) ∈ L2(Ω) such that ‖un(z)− u∗(z)‖D(Aγ)

tends to 0 as n → ∞ uniformly in any compact subset of Ωθ,T . We thus assert that u =
u∗|Ω×(0,T ] is the unique solution to the integral equation (2.7).

Furthermore, we can see from (2.10) that ‖Aγu∗(t)‖L2(Ω) = O(eCt), as t → ∞. Indeed, for
any T ≥ 1 and 0 < t ≤ T , we have

‖Aγu∗(t)‖L2(Ω) ≤
∞∑

n=0

‖Aγun+1(t)−Aγun(t)‖L2(Ω)

≤M1

∞∑

n=0

Mn
∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Γ(1− α1γ)T

β1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)

= :M1Γ(1− α1γ)H(T ).

The estimate of H(t) as t→ ∞ follows from the fact that the Laplace transform

LH(s) :=

∫ ∞

0

∞∑

n=0

∑

k1+···+kℓ=n

(
n

k1

)
· · ·

(
n

kℓ

)
Mntβ1k1+···+βℓkℓ−α1γ

Γ(β1k1 + · · ·+ βℓkℓ − α1γ + 1)
e−stdt

=
sα1γ−1

1−M
∑ℓ
j=1 s

−βj

,

where Re s > M2 and M2 > 0 is a sufficiently large constant, has only finite simple poles
in the main sheet of Riemann surface cutting off the negative axis. We denote the poles as
{s1, · · · , sℓ}. Moreover, we can see that si ∈ R and si > 0, i = 1, · · · ,m. Indeed, for s := reiθ

with θ ∈ [−π, π] such that 1−M
∑ℓ
j=1 s

−βj = 0, that is,

ℓ∑

j=1

r−βj cosβjθ − i

ℓ∑

j=1

r−βj sinβjθ =
1

M
,

which implies
∑ℓ

j=1 r
−βj sinβjθ = 0, and noting that sinβjθ (j = 1, · · · , ℓ) have the same

signals, hence θ = 0. Now by Fourier-Mellin formula (e.g., [55]), we have

H(t) =
1

2πi

∫ M2+i∞

M2−i∞

LH(s)estds.
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Now we choose a small constant 0 < γ < min{s1, · · · , sℓ} such that 1 −M
∑ℓ

j=1 s
−βj 6= 0 for

s 6= s1, · · · , sℓ, Re s ≥ γ, and then by Residue Theorem (e.g., [53]), for t > 0 we see that

H(t) =

m∑

j=1

aje
sjt +

1

2πi

∫ γ+i∞

γ−i∞

LH(s)estds,

where aj := lims→sj (s − sj)LH(s), and the shift in the line of integration is justified by the
fact estLH(s) → 0 as Im s→ ∞ with Re s bounded.

Integration by parts shows

∫ γ+i∞

γ−i∞

LH(s)estds =
sα1γ−1

1−M
∑ℓ

j=1 s
−βj

est

t

∣∣∣∣
s=γ+i∞

s=γ−i∞

−

∫ γ+i∞

γ−i∞

est

t

(α1γ − 1)sα1γ−2(1−M
∑ℓ

j=1 s
−βj )− sα1γ−1M

∑ℓ
j=1 βjs

−βj−1

(1 −M
∑ℓ

j=1 s
−βj )2

ds.

Therefore ∣∣∣∣∣∣
H(t)−

m∑

j=1

aje
sjt

∣∣∣∣∣∣
= O

(
1

t
eγt
)
, t→ ∞.

See e.g., [19] as for a similar argument. Consequently, we derive that

H(t) = O(eCt), t→ ∞,

which implies
‖u∗(t)‖D(Aγ) ≤ Ct−α1γeCT ‖a‖L2(Ω), t ∈ (0, T ]. (2.12)

Let us turn to show the analyticity of the solution with respect to z. For this, by induction,
we first prove that un : Ωθ,T → D(Aγ) is analytic for n = 0, 1, · · · . By u0 ≡ 0, it is obvious
for n = 0. We assume that un : Ωθ,T → D(Aγ) is analytic in z. We estimate the integrands in
(2.9). The use of (2.5) implies

‖A−1S′(rz)(1 − r)−αj qja‖D(Aγ)

≤C(rz)α1−α1γ−1(1− r)−αj‖a‖L2(Ω)

≤C|z|α1−α1γ−1rα1−α1γ−1(1− r)−αj ‖a‖L2(Ω),

‖A−1S′(rz)(B · ∇un((1− r)z) + cun((1 − r)z))‖D(Aγ)

≤C(rz)α1−α1γ−1‖un((1− r)z)‖
D(A

1
2 )

≤C|z|α1−α1γ−1rα1−α1γ−1‖un((1− r)z)‖
D(A

1
2 )
,

‖A−1S′((1− s)rz)r−αj s−αjqjun((1− r)z)‖D(Aγ)

≤C((1 − s)rz)α1−1r−αjs−αj‖un((1 − r)z)‖D(Aγ)

≤C|z|α1−1rα1−αj−1(1− s)−αjs−αj‖un((1− r)z)‖D(Aγ)

and

‖A−1S′′((1− s)rz)(1 − s)r1−αjs−αjqjun((1 − r)z)‖D(Aγ)

≤C((1 − s)rz)α1−2(1− s)r1−αjs−αj‖un((1 − r)z)‖D(Aγ)

≤C|z|α1−2rα1−αj−1s−αj (1 − s)α1−1‖un((1− r)z)‖D(Aγ ).

Here in view of (2.3) and (2.11), it follows that

‖un(z)‖D(Aγ) ≤ Cn|z|
−α1γ‖a‖L2(Ω), z ∈ Ωθ,T ,
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hence that the D(Aγ)-norm of the integrands in (2.9) are integrable in r, s ∈ (0, 1). Therefore
un+1((1 − r)z) : Ωθ,T → D(Aγ) is analytic, we see that also un+1 : Ωθ,T → D(Aγ) is analytic.
Thus by induction un : Ωθ,T → D(Aγ) is analytic for all n ∈ N. Since we have proved that∑∞

n=1 ‖un+1(z)−un(z)‖D(Aγ) is convergent uniformly in any compact subset of Ωθ,T , therefore
u∗ : Ωθ,T → D(Aγ) is analytic. Moreover, since T and θ are arbitrarily chosen, we deduce u∗ is
analytic in the sector {s ∈ C; s 6= 0, | arg s| < π

2 }.
Finally, we see that u(·, t) (t ∈ (0, T ]) is just the solution to (2.1) and such that

‖u(·, t)‖H2γ(Ω) ≤ Ct−α1γeCT ‖a‖L2(Ω), γ ∈ [
1

2
, 1), t ∈ (0, T ]

in view of (2.12). This completes the proof of the theorem.

Remark 2.2 If we furthermore assume that

B ∈ {W 1,∞(Ω)}d and c ∈ W 1,∞(Ω),

we point out that the solution u(t) to the initial-boundary value problem (2.1) can achieve more
regularity on time and space, that is, u ∈ C((0, T ];H1

0 (Ω) ∩H
2(Ω)) and

‖u(t)‖H2(Ω) ≤ Ct−α1eCT ‖a‖L2(Ω), 0 < t ≤ T.

Theorem 2.1 shows that the spatial regularity can be as close as possible to, but cannot
achieve the maximal regularity, say, H2(Ω)-regularity, providing the continuity of the solution
with respect to time t ∈ (0, T ]. However, next theorem demonstrates for a.e. t ∈ (0, T ], the
solution u(t) can achieve the maximal spatial regularity, that is, u(t) ∈ H2(Ω) for almost all
t ∈ (0, T ).

Theorem 2.2 (H2(Ω)–regularity) Let 0 < αℓ < · · · < α1 < 1 and T > 0 be given.

Assuming that a ∈ L2(Ω), F = 0, qj ∈ W 2,∞(Ω) (j = 2, · · · , ℓ), (B, c) ∈ (L∞(Ω))d+1. Then

the solution u to the initial-boundary value problem (2.1) belongs to Lp(0, T ;H1
0 (Ω) ∩ H

2(Ω))
with 1 ≤ p < min{2, 1

α1
}. Moreover the following estimate

‖u‖Lp(0,T ;H2(Ω)) ≤ CT ‖a‖L2(Ω)

holds true.

Remark 2.3 This is a very different property compared with parabolic equations whose
solutions can not be in Lp(0, T ;H2(Ω)) for any p ≥ 1 providing the initial value is in L2(Ω).

Proof. Now let us take the operator A on the both sides of (2.7), we evaluate each of the five
terms separately. Estimate of I1(t). We conclude from (2.5) that

‖I1(t)‖D(A) ≤ Ct−α1‖a‖L2(Ω), t ∈ (0, T ].

In order to estimate ‖I2(t)‖D(A), we break up the integral in I2 into two integrals as follows

AI2(t) =

ℓ∑

j=2

∫ t
2

0

S′(r)(t − r)−αj
qja

Γ(1− αj)
dr +

ℓ∑

j=2

∫ t

t
2

S′(r)(t − r)−αj
qja

Γ(1− αj)
dr

=: AI21(t) +AI22(t).

For AI21(t). Integrating by parts derives

AI21(t) =
ℓ∑

j=2

qj
Γ(1− αj)

S(r)(t− r)−αia
∣∣∣
r= t

2

r=0
−

ℓ∑

j=2

αj

∫ t
2

0

S(r)(t − r)−αj−1 qja

Γ(1− αj)
dr.
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Since ‖S(t)‖L2(Ω)→L2(Ω) is uniformly bounded for t ∈ [0, T ], it is easily seen that

‖I21(t)‖D(A) ≤ C

ℓ∑

j=2

t−αj‖a‖L2(Ω), t ∈ (0, T ].

For AI22(t), from (2.5), it follows

‖I22(t)‖D(A) ≤ C
ℓ∑

j=2

∫ t

t
2

r−1(t− r)−αjdr‖a‖L2(Ω) ≤ C
ℓ∑

j=2

t−αj‖a‖L2(Ω).

For I3(t), 0 < t ≤ T , from (2.5), recalling the definition of S(t) in (2.4), we derive

‖I3(t)‖
2
D(A) =

∥∥∥∥
∫ t

0

S′(t− r)(B · ∇u(r) + cu(r))dr

∥∥∥∥
2

L2(Ω)

≤

∞∑

n=1

∣∣∣∣
∫ t

0

λn(t− r)α1−1Eα1,α1(−λn(t− r)α1)(B · ∇u(r) + cu(r), ϕn)dr

∣∣∣∣
2

.

Thus the Young inequality implies

∫ T

0

‖I3(t)‖
2
D(A)dt ≤

∞∑

n=1

(∫ T

0

λnr
α1−1 |Eα1,α1(−λnr

α1)| dr
)2 ∫ T

0

|(B · ∇u(r) + cu(r), ϕn)|
2dr.

Moreover, the use of Lemma 2.1 derives that
∫ T

0

∣∣λnrα1−1Eα1,α1(−λnr
α1)
∣∣ dr =

∫ T

0

λnr
α1−1Eα1,α1(−λnr

α1)dr = 1−Eα1,1(−λnT
α1) ≤ CT ,

thereby obtaining the inequalities

∫ T

0

‖I3(t)‖
2
D(A)dt ≤CT

∫ T

0

∞∑

n=1

|(B · ∇u(r) + cu(r), ϕn)|
2dr ≤ CT

∫ T

0

‖u(t)‖2H1(Ω)dt

≤CT

∫ T

0

(t−
1
2α1‖a‖L2(Ω))

2dt ≤ CT ‖a‖
2
L2(Ω).

Here in the third inequality we used the estimate (2.12). For I4(t), from (2.5), select ǫ > 0
small enough, and similar to the argument used in Theorem 2.1, it follows that

‖I4(t)‖D(A) ≤ C

ℓ∑

j=2

(∫ 1

0

(1− s)α1−α1ǫ−1s−αjds

)∫ t

0

(t− r)α1(1−ε)−1−αj‖A1−εu(r)‖L2(Ω)dr.

Again the use of (2.12) leads to

‖I4(t)‖D(A) ≤ CT

ℓ∑

j=2

t−αj‖a‖L2(Ω), 0 < t ≤ T.

For I5(t) we argument similarly to obtain

‖I5(t)‖D(A) ≤ CT

ℓ∑

i=2

t−αi‖a‖L2(Ω).

Finally, we proved that for any t ∈ (0, T ], the solution u satisfies

(∫ T

0

‖u(t)‖pH2(Ω)dt

) 1
p

≤ CT ‖a‖L2(Ω), 1 ≤ p < min{2, 1
α1

}.

This completes the proof of the theorem.
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2.2.2 Nonhomogeneous equation

In this section, we are concerned to initial-boundary value problem (2.1) providing a = 0 and
F ∈ L2(Q) (Q := Ω× (0, T )). Different to the initial-boundary value problem for homogeneous
equation discussed in Section 2.2.1 where the unique solution is shown to be continuous with
respect to t ∈ (0, T ], the time-regularity cannot make sense pointwisely any more in view of
Theorem 1.1 in Gorenflo et al [16] where the maximal time-regularity of the solution is shown to
be Hα1(0, T ;L2(Ω)). Therefore we have to revise the definition of the solution used in Definition
2.1 as follows:

Definition 2.2 (Weak solution) Let a = 0 and F ∈ L2(Q). We call u a weak solution to

the initial-boundary value problem (2.1) if u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)) satisfies

J−α1u ∈ L2(0, T ;L2(Ω))

and

∂α1
t u+

ℓ∑

j=2

qj∂
αj

t u = −Au+B · ∇u+ cu+ F in L2(0, T ;L2(Ω)).

Here we should understand the Caputo derivative ∂αt (0 < α < 1) as a unique extension of
the operator ∂αt : C∞(0, T ) → L2(0, T ) on Hα(0, T ) according to Gorenflo et al [16].

Moreover, we note that J−α1u ∈ L2(0, T ;L2(Ω)) implies u(x, ·) ∈ R(Jα1) for almost all
x ∈ Ω. Hence if 1

2 < α1 < 1, then by Theorem 1.1 (i) in [16], we have the initial condition
u(x, 0) = 0 is valid automatically. However, for 0 < α ≤ 1

2 , the initial condition in u(x, 0) = 0
is not meaningful at all. We should understand the behavior of u(x, ·) ∈ R(Jα1) near t = 0 in
the case of 0 < α1 ≤ 1

2 in the following sense

lim
t→0

J1−α1u(x, t) = lim
t→0

J1−α1Jα1φ(x, t) = lim
t→0

Jφ(x, t) = lim
t→0

∫ t

0

φ(x, s)ds = 0,

where φ = J−α1u. For more detailed interpretation of the above definition, see e.g., [16].
We have

Theorem 2.3 Let 0 < αℓ < · · · < α1 < 1 and T > 0 be given. Assuming that B ∈
(L∞(Q))d, qj ∈ L∞(Q)(j = 2, · · · , ℓ), b ∈ L∞(Q). Let F ∈ L2(0, T ;L2(Ω)), a = 0, then

the initial-boundary value problem (2.1) admits a unique weak solution u ∈ L2(0, T ;H2(Ω) ∩
H1

0 (Ω)) ∩H
α1(0, T ;L2(Ω)). Moreover the following estimate holds:

‖u‖Hα1(0,T ;L2(Ω)) + ‖u‖L2(0,T ;H2(Ω)) ≤ CT ‖F‖L2(0,T ;L2(Ω)).

Proof. Similar to the argument used in Section 2.2.1, we have

u(t) =

ℓ∑

j=2

∫ t

0

A−1S′(t−s)qj∂
αj

t u(s)ds−

∫ t

0

A−1S′(t−s)(B ·∇u(s)+cu(s)+F (·, s))ds. (2.13)

We set

Lu = −

∫ t

0

A−1S′(t− s)(B · ∇u(s) + cu(s))ds,

(Kju)(t) =

∫ t

0

A−1S′(t− s)qj(s)∂
αj

t u(s)ds, 2 ≤ j ≤ ℓ

and K =
∑ℓ
j=2Kj . Then our equation (2.13) is rewritten as

u = (K + L)u+ g in L2(Q).

Here we set g(t) = −
∫ t
0
A−1S′(t− s)F (·, s)ds, and

Xη = Hα(0, η;L2(Ω)) ∩ L2(0, η;H2(Ω))



2.2 Wellposedness 19

for η ∈ (0, T ) with the norm

‖v‖Xη
:= ‖v‖Hα(0,η;L2(Ω)) + ‖v‖L2(0,η;H2(Ω)).

From Sakamoto and Yamamoto [60], we have

‖g‖Xη
≤ C‖F‖L2(0,η;L2(Ω)).

We next prove that K + L : Xη → Xη is compact. In fact, by Theorem 4.2 in [16], we can
directly prove

‖Lu‖Xη
≤ C(‖B · ∇u‖L2(0,η;L2(Ω)) + ‖cu‖L2(0,η;L2(Ω))) ≤ C‖u‖L2(0,η;H1(Ω)). (2.14)

Then the embedding Xη → L2(0, η;H1(Ω)) is compact, and so the operator L : Xη → Xη is
compact.

We see

‖Kju‖Xη
≤ C‖u‖Hαj (0,η;L2(Ω)) ≤ C‖u‖Hα2(0,η;L2(Ω)), j = 2, · · · , ℓ, (2.15)

where the constant C > 0 is independent of η ∈ (0, T ) (see p.434 in Sakamoto and Yamamoto
[60]). By α1 > αj for j = 2, · · · , ℓ, the embedding Xη → Hα2(0, η;L2(Ω)) is compact (e.g.,
Temam [63], Chap. III §2, or we can prove directly similarly to Chapter 5 of Baumeister [4]).
Hence K : Xη → Xη is a composition of compact operators. Hence K + L : Xη → Xη is a
compact operator.

Next we are to verify that 1 is not an eigenvalue of K + L, that is, (K + L)u = u implies
u = 0. First we prove

‖∂βt u‖L2(0,η;L2(Ω)) ≤ Cηα1−β‖∂α1
t u‖L2(0,η;L2(Ω)) (2.16)

for 0 ≤ β < α1 and u ∈ R(Jα1). Indeed, since Jγ with γ ∈ R is defined by the fractional power,
we have

J−βu = Jα1−βJ−α1u, u ∈ R(Jα1)

(e.g., Pazy [50], Theorem 6.8 (p.72)). Therefore

‖∂βt u(x, ·)‖L2(0,η) = ‖J−βu(x, ·)‖L2(0,η) = ‖Jα1−βJ−α1u(x, ·)‖L2(0,η).

On the other hand, by the Young inequality, for w ∈ Hα1(0, η), we have

‖Jα1−βw‖L2(0,η) =
1

Γ(α1 − β)

∥∥∥∥
∫ t

0

(t− s)(α1−β)−1w(s)ds

∥∥∥∥
L2(0,η)

≤
1

Γ(α1 − β)

∫ η

0

s(α1−β)−1ds

(∫ η

0

|w(s)|2ds

) 1
2

=
1

Γ(α1 − β + 1)
ηα1−β‖w‖L2(0,η).

Hence

‖∂βt u(x, ·)‖L2(0,η) ≤ Cηα1−β‖J−α1u(x, ·)‖L2(0,η) = Cηα1−β‖∂α1
t u(x, ·)‖L2(0,η).

Thus, by taking the norm in L2(Ω), the proof of (2.16) is completed.
Now we estimate Kju for j = 2, · · · , ℓ. The inequalities (2.15) and (2.16) yield

‖Kju‖Xη
≤ C‖∂

αj

t u‖L2(0,η;L2(Ω))

≤Cηα1−αj‖∂α1
t u‖L2(0,η;L2(Ω)) ≤ Cηα1−α2‖u‖Hα1(0,η;L2(Ω)), j = 2, · · · , ℓ.

From the estimate (2.14), by the interpolation inequality, for any ǫ > 0, there exists a
constant Cǫ > 0 such that

‖u‖L2(0,η;H1(Ω)) ≤ ǫ‖u‖L2(0,η;H2(Ω)) + Cǫ‖u‖L2(0,η;L2(Ω))).
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Therefore by (2.16) with β = 0, we have

‖u‖Xη
≤ǫ‖u‖Xη

+ Cǫ‖u‖L2(0,η;L2(Ω)))

≤ǫ‖u‖Xη
+ Cǫη

α1‖u‖Hα1(0,η;L2(Ω))) ≤ (ǫ + Cǫη
α1)‖u‖Xη

.

Hence
‖Ku+ Lu‖Xη

≤ (Cηα1−α2 + ǫ+ Cǫη
α1)‖u‖Xη

.

We fix 0 < ǫ < 1 arbitrarily. Then we choose η > 0 sufficiently small, so that

Cηα1−α2 + ǫ+ Cǫη
α1 < 1.

Hence, since u = (K + L)u in Xη, we have u(x, t) = 0 for x ∈ Ω and 0 < t < η.
Next we continue this argument over η. By u = 0 for 0 < t < η, we have

∂
αj

t u(t) =
1

Γ(1− αj)

∫ t

η

(t− s)−αj
∂u

∂s
(s)ds, t > η.

We set ũ(t) = u(t+ η). Therefore

∂
αj

t ũ(t− η) =
1

Γ(1− αj)

∫ t

η

(t− s)−αj
∂ũ

∂s
(s− η)ds

=
1

Γ(1− αj)

∫ t−η

0

(t− η − ξ)−αj
∂ũ

∂ξ
(ξ)dξ, t > η,

that is,

∂
αj

t ũ(t) =
1

Γ(1− αj)

∫ t

0

(t− ξ)−αj
∂ũ

∂ξ
(ξ)dξ, t > 0.

Therefore ũ = (K + L)ũ for t > 0. The same argument yields ũ = 0 for 0 < t < η. Hence
u(t+ η) = 0 for 0 < t < η, that is, u(t) = 0 for 0 < t < 2η. Repeating the above argument, we
see that u(t) = 0 for 0 < t < T .

Consequently, by the Fredholm alternative, we complete the proof of Theorem 2.3.

2.3 Long-time asymptotic behavior

For a fixed positive integer ℓ, let αj ∈ (0, 1) be constants such that αℓ < · · · < α1. Setting
B = 0 in (2.1), we consider the following initial-boundary value problem





ℓ∑

j=1

qj(x)∂
αj

t u(x, t) = −Au(x, t) + c(x)u(x, t), x ∈ Ω, t > 0,

u(x, 0) = a(x), x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

(2.17)

Based on the results in Section 2.2.1 and Remark 2.2, we know that the mild solution u to (2.1)
uniquely exists in H1

0 (Ω) ∩H
2(Ω) for any t ∈ (0, T ] and admits

‖u(·, t)‖H2(Ω) ≤ Ct−α1eCT ‖a‖L2(Ω), t ∈ (0, T ], γ ∈ [
1

2
, 1). (2.18)

Thus the asymptotic behavior near 0 is only related to the largest order of the fractional
derivatives. As for the long-time asymptotic behavior, for ℓ = 1, Sakamoto and Yamamoto
[60] asserts that the solution decays in polynomial t−α1 as t → ∞, which is a typical property
of fractional diffusion equations in contrast to the exponential decay in the classical diffusion
equations. In Li et al. [37], the initial-boundary value problem for the multi-term time-fractional
diffusion equation with positive-constant coefficients was investigated. The Laplace transform
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in time was applied to show that the decay rate is indeed t−αℓ at best as t → ∞, where αℓ is
the lowest order of the time-fractional derivatives.

Here in this section we are devoted to the long-time asymptotic behavior of the solution to
the initial-boundary value problem (2.1), and attempt to establish results parallel to that for
the case of positive-constant coefficients. Namely, the following theorem holds.

Theorem 2.4 Let αj ∈ (0, 1) be constants such that αℓ < · · · < α1, and {qj}
ℓ
j=1 be in

W 2,∞(Ω) with qj > 0 in Ω. We further assume that c ∈ W 1,∞(Ω) such that b ≤ 0 in Ω. Then

there exists v ∈ H1
0 (Ω) ∩H

2(Ω), the unique solution of the initial-boundary value problem




qℓ(x)∂
αℓ

t v(x, t) = −Av(x, t) + c(x)v(x, t), x ∈ Ω, t > 0,

v(x, 0) = a(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t > 0,

(2.19)

where has the same asymptotic behavior as u, in the sense that

‖u(· , t)− v(· , t)‖H2(Ω) = O(t−min{2αℓ,αℓ−1})‖a‖L2(Ω) as t→ ∞,

where (A−c)−1(qℓa) denotes the unique solution of (A−c)w = qℓa for w ∈ H2(Ω)∩H1
0 (Ω), and

the constant C > 0 is independent of t, a and u, but may depend on d, Ω, {αj}
ℓ
j=1, {qj}

ℓ
j=1, c

and {aij}.

Corollary 2.1 Under the same assumptions in Theorem 2.4, then u admits the following

estimate
∥∥∥∥u( · , t)−

(A− b)−1(qℓa)t
−αℓ

Γ(1− αℓ)

∥∥∥∥
H2(Ω)

≤ C‖a‖L2(Ω)t
−min{2αℓ,αℓ−1} for sufficiently large t > 0.

Moreover, suppose that ‖u(· , t)‖H2(Ω) = o(t−αℓ) as t → ∞, then u(x, t) = 0 for all x ∈ Ω and

t > 0.

The above theorem shows that the solution u to the initial-boundary value problem (2.1) is
approximated by the solution v to the initial-boundary value problem (2.19). Moreover, from
Corollary 2.1, we can see that the decay rate of u is t−αℓ at best. The assumption b ≤ 0 and
qj > 0 in Ω are necessary for proving that the Laplace transform û(x, s) of the solution u to
our problem (2.1) has no poles in the main sheet of Riemann surface cutting off the negative
axis, which is essential for the proof of Theorem 2.4. In the case of negative coefficients {qj},
a counterexample can be found in [37].

For the statement of our main results, we set

Sθ := {s ∈ C; s 6= 0, | arg s| < θ}, π
2 < θ < min{ π

2α1
, π}.

From (2.18), we can apply the Laplace transform ·̂ on both sides on the equation in (2.1), and
use the formula

∂̂αt f(s) = sαf̂(s)− sα−1f(0+),

to derive the transformed algebraic equation

(A− b(x))û(x; s) +Q(x; s)û(x; s) = s−1Q(x; s)a(x), Ω× {Re s > M},

where we set Q(x; s) :=
∑ℓ

j=1 qj(x)s
αj . We check at once that û : {Re s > M} → H2(Ω) is

analytic, which is clear from the property of Laplace transform. Moreover, we claim that û(x, s)
(Re s > M) can be analytically extended to the sector Sθ. Namely, the following lemma holds.

Lemma 2.2 Under the assumptions in Theorem 2.1, the Laplace transform û of the unique

mild solution u to the initial-boundary value problem (2.1) can be analytically extended to the

sector Sθ. Moreover, there exists a constant C only depending on d, Ω, θ, b, {αj}, {qj}, {aij}
such that

‖Lu(· ; s)‖H1(Ω) ≤ C
ℓ∑

j=1

rαj−1‖a‖L2(Ω), ∀s = reiρ ∈ Sθ. (2.20)
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Proof. Firstly from Theorem 2.1, we see that the solution u to the initial-boundary value
problem 2.1 can be analytically extended to the sector {s ∈ C; | arg s| < π

2 }. Therefore by an
argument similar to the proof of Theorem 0.1 in [51], we can prove that the Laplace transform
û : {Re s > M} → H2(Ω) can be analytically extended to the sector Sθ.

Now let us turn to give an estimate for the Laplace transform û : Sθ → H2(Ω). For this, we
define a bilinear operator B[Φ,Ψ; s] : H1

0 (Ω)×H1
0 (Ω) → C by

B[Φ,Ψ; s] :=

∫

Ω

(
(A− b)Φ(x)

)
Ψ(x) +Q(x; s)Φ(x)Ψ(x)dx, s ∈ Sθ,

where Ψ denotes conjugate of Ψ. Integration by parts yields

B[Φ,Ψ; s] =

∫

Ω

d∑

i,j=1

aij∂iΦ(x)∂jΨ(x) + (Q(x; s)− b(x))Φ(x)Ψ(x)dx.

Taking Φ = Ψ implies

B[Φ,Φ; s] =

∫

Ω

d∑

i,j=1

aij∂iΦ(x)∂jΦ(x) + (Q(x; s)− b(x))|Φ(x)|2dx,

hence that

Re (B[Φ,Φ; s]) =

∫

Ω

d∑

i,j=1

aij(Re ∂iΦRe ∂jΦ+ Im ∂iΦ Im ∂jΦ) + (ReQ− b)|Φ|2dx.

From ReQ(x; s) =
∑ℓ

j=1 qj(x)r
αj cosαjρ > 0 in view of s = reiρ ∈ Sθ, and b ≤ 0, it follows

that

Re (B[Φ,Φ; s]) ≥

∫

Ω

d∑

i,j=1

aij
(
Re ∂iΦ(x)Re ∂jΦ(x) + Im ∂iΦ(x) Im ∂jΦ(x)

)
dx.

The ellipticity of {aij} and the use of Poincaré’s inequality imply

Re (B[Φ,Φ; s]) ≥ C‖Re∇Φ‖2L2(Ω) + C‖ Im∇Φ‖2L2(Ω) ≥ C‖Φ‖2H1(Ω).

Consequently

C‖û(· ; s)‖2H1(Ω) ≤|B[û(· ; s), û(· ; s) ; s] =
∣∣(s−1Q(·; s))a, û(· ; s))

∣∣

≤C

ℓ∑

j=1

rαj−1‖a‖L2(Ω)‖û(· ; s)‖H1(Ω)

in view of the Hölder inequality, finally that

‖û(· ; s)‖H1(Ω) ≤ C
ℓ∑

j=1

rαj−1‖a‖L2(Ω), for s ∈ Sθ.

The proof of Lemma 2.2 is completed.

Proof of Theorem 2.4. By Fourier-Mellin formula (e.g., [55]), we have

u(x, t) =
1

2πi

∫ M+i∞

M−i∞

û(x; s)estds.

From Lemma 2.2, we see that the Laplace transform û(x; s) of the solution to the initial-
boundary value problem (2.1) is analytic in the sector Sθ. Therefore by Residue Theorem (e.g.,
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[53]), for t > 0 we see that the inverse Laplace transform of û can be represented by an integral
on the contour γ(ǫ, θ) defined as {s ∈ C; arg s = θ, |s| ≥ ǫ} ∪ {s ∈ C; | arg s| ≤ θ, |s| = ǫ}, that
is

u(x, t) =
1

2πi

∫

γ(ǫ,θ)

û(x; s)estds,

where in fact the shift in the line of integration is justified by the estimate (2.20). Moreover,
again from the estimate (2.20), we can let ǫ tend to 0, then we have

u(x, t) =
1

2πi

∫

γ(0,θ)

û(x; s)estds.

We repeat the above argument to derive that v̂(· ; s) ∈ H1
0 (Ω), where v solves the problem (2.19)

and
‖v̂(· ; s)‖H1(Ω) ≤ C|s|αℓ−1‖a‖L2(Ω), for s ∈ γ(0, θ), (2.21)

hence v(t) = 1
2πi

∫
γ(0,θ)

v̂(x; s)estds. Thus

‖u(· , t)− v(· , t)‖H2(Ω) ≤ C

∫

γ(0,θ)

‖û(· ; s)− v̂(· ; s)‖H2(Ω)|e
stds| (2.22)

Noting that û− v̂ satisfies the following problem





(A− b)(û− v̂) + qℓ(x)s
αℓ(û− v̂) +

ℓ−1∑

j=1

qj(x)s
αj û =

ℓ−1∑

j=1

qj(x)s
αj−1a(x), x ∈ Ω, s ∈ Sθ

û(x; s)− v̂(x; s) = 0, x ∈ ∂Ω, s ∈ Sθ.

Then again using the boundary regularity estimates in elliptic equation combining (2.20) we
deduce that

‖û(· ; s)− v̂(· ; s)‖H2(Ω)

≤Crαℓ‖û(· ; s)− v̂(· ; s)‖L2(Ω) + C




ℓ∑

i=1

ℓ−1∑

j=1

rαi+αj−1 +

ℓ−1∑

j=1

rαj−1


 ‖a‖L2(Ω). (2.23)

Now for 0 < δ0 < 1 small enough such that Cδαℓ

0 ≤ 1
2 , we break up the integral in (2.22) into

two parts

‖u(· , t)− v(· , t)‖H2(Ω) ≤C

(∫ δ0

0

+

∫ ∞

δ0

)
‖û(· ; reiθ)− v̂(· ; reiθ)‖H2(Ω)e

rt cos θdr

= : I1(t; δ0) + I2(t; δ0).

For I1(t; δ0) (t > 0), from Poincaré’s inequality, we conclude from (2.23) that

‖û(· ; s)− v̂(· ; s)‖H2(Ω) ≤ 2C
( ℓ∑

i=1

ℓ−1∑

j=1

rαi+αj−1 +

ℓ−1∑

j=1

rαj−1
)
‖a‖L2(Ω), |s| ≤ δ0,

which implies

I1(t; δ0) ≤

∫ δ0

0

‖û(· ; reiθ)− v̂(· ; reiθ)‖H2(Ω)e
rt cos θdr ≤ C

( ℓ∑

i=1

ℓ−1∑

j=1

t−αi−αj +
ℓ−1∑

j=1

t−αj

)
‖a‖L2(Ω).

For I2(t; δ0) (t > 0), the use of (2.23) yields

‖û(· ; s)− v̂(· ; s)‖H2(Ω)
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≤Crαℓ

(
‖û(· ; s)‖L2(Ω) + ‖v̂(· ; s)‖L2(Ω)

)
+ C




ℓ∑

i=1

ℓ−1∑

j=1

rαi+αj−1 +

ℓ−1∑

j=1

rαj−1


 ‖a‖L2(Ω),

where |s| ≥ δ0, hence combining (2.20) with (2.21) gives

I2(t; δ0) ≤ C




ℓ∑

j=1

t−αℓ−αj + t−2αℓ +

ℓ∑

i=1

ℓ−1∑

j=1

t−αi−αj +

ℓ−1∑

j=1

t−αj


 ‖a‖L2(Ω).

Substituting the estimates for I1(t; δ0) and I2(t; δ0) into (2.22), we can assert that

‖u(· , t)− v(· , t)‖H2(Ω) ≤ Ct−α‖a‖L2(Ω), t > 0 large enough.

where α := min{2αℓ, αℓ−1}. This completes the proof of Theorem 2.4.

Proof of Corollary 2.1. In order to prove the asymptotic behavior of u, we denote uℓ =
(A−b)−1(qℓa)t

−αℓ

Γ(1−αℓ)
and notice that the Laplace transform ûℓ of uℓ is (A − b)−1(qℓa)s

αℓ−1 and

satisfies Aûℓ − bûℓ = qℓs
αℓ−1a and ûℓ(· ; s) ∈ H1

0 (Ω) for s ∈ Sθ. Thus v̂ − ûℓ satisfies

{
(A− b)(v̂(x; s)− ûℓ(x; s)) = −qℓ(x)s

αℓ v̂(x; s), x ∈ Ω, s ∈ Sθ,

v̂(x; s)− ûℓ(x; s) = 0, x ∈ ∂Ω, s ∈ Sθ,

Therefore, the regularity estimate for elliptic equations and (2.21) combined yield

‖v̂(· ; s)− ûℓ(· ; s)‖H2(Ω) ≤ Cr2αℓ−1‖a‖L2(Ω)

An argument similar to the proof in Theorem 2.4 implies

‖v(· , t)− uℓ(· , t)‖H2(Ω) ≤ Ct−2αℓ‖a‖L2(Ω),

hence

‖u(· , t)− uℓ(· , t)‖H2(Ω) ≤ Ct−min{2αℓ,αℓ−1}‖a‖L2(Ω), for t > 0 large enough,

which completes the proof of Corollary 2.1.

2.4 Inverse problems of determination of fractional orders

Nowadays pollution of the environment has become a global problem. For the accurate pre-
diction of the diffusion of the pollution, the investigation of the behavior of the solution to
the initial-boundary value problem becomes critical. In view of results in Section 2.3, it turns
out that the fractional orders are very important for the prediction of the asymptotic behavior
of the solution to the initial-boundary value problem (2.17) is only dominated by the lowest
fractional order as t→ ∞. As t→ 0, the decay rate of the solutions is dominated by the highest
order t−α1 . In this section, we focus on inverse problems of determination of fractional orders
in the diffusion model, which are important for experimentally evaluating the anomaly of the
diffusion in heterogeneous media.

When we consider (2.1) as model equation for describing e.g., anomalous diffusion in inho-
mogeneous media, the orders αj of fractional derivatives should be determined by the inhomo-
geneity of the media, but it is not clear which physical law can correspond the inhomogeneity to
the orders αj . Thus one reasonable way for estimating αj is an inverse problem of determining
α1, ..., αn in order to match available data such as u(x0, t), 0 < t < T at a monitoring point
x0 ∈ Ω.

In case of all the coefficients of the fractional derivatives are positive constants, by means of
eigenfunction expansion, the unique determination of fractional orders is proved by using one-
point interior measurement. In its space-dependent counterpart, the analyticity of the solution
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and Laplace transform are applied to show the Dirichlet-to-Neumann map can simultaneously
identify the number and orders of derivatives and coefficients. For the uniqueness for the above
two inverse problems, see, e.g., [44] and [45] in the list of major publications.

In this section, we investigate two kinds of inverse problems of identifying fractional or-
ders and other quantities in diffusion equations with multiple time-fractional derivatives, and
establish the uniqueness of our inverse problems.

2.4.1 Inverse problem with L
2(Ω) initial value

In this section, we consider a bounded domain Ω ⊂ Rd with smooth boundary ∂Ω. Let T > 0
be fixed arbitrarily. Consider the following initial value - boundary value problem





n∑

j=1

qj∂
αj

t u+Au = 0 in Q,

u(·, 0) = a in Ω,

u(x, t) = 0 on Σ,

(2.24)

where αj and qj > 0, j = 1, · · · , n, are constants such that

0 < α1 < · · · < αn < 1, (2.25)

A is the elliptic operator which is defined by (1.3). We define the operator A in D(A) =
H2(Ω) ∩H1

0 (Ω) as follows:
Aψ = Aψ, ψ ∈ D(A).

We recall the eigensystem {λk, ϕk}
∞
k=1 of the elliptic operatorA: 0 < λ1 < λ2 < · · · , limk→∞ λk =

∞, and Aϕk = λkφk, {ϕk}
∞
k=1 ⊂ D(A) forms an orthogonal basis of L2(Ω).

Henceforth (·, ·) denotes the scalar product in L2(Ω). Moreover we can define a fractional
power Aγ of A with γ > 0 (e.g., Tanabe [62]).

We discuss

Problem 2.1 Let x0 ∈ Ω be fixed and let I ⊂ (0, T ) be a non-empty open interval. Deter-

mine the number n of fractional orders αj, fractional orders {αj}
n
j=1 of the time derivatives, and

constant coefficients {qj}
n
j=1 of the fractional derivatives from interior measurement u(x0, t),

t ∈ I.

Theorem 2.5 (Uniqueness) Assuming that a ≥ 0 in Ω, a 6≡ 0 and a ∈ D(Aγ) with γ >
max{ d2 + δ− 1, 0}, δ > 0 can be sufficiently small. Let u be the weak solution to (2.24), and let

v be the weak solution to (2.26) with the same initial and boundary conditions as (2.24):





m∑

j=1

rj∂
βj

t v +Av = 0 in Q,

v(·, 0) = a in Ω,

v = 0 on Σ,

(2.26)

where ri > 0, i = 1, · · · ,m are constants, and

0 < β1 < · · · < βℓ < 1. (2.27)

Then for any fixed x0 ∈ Ω, u(x0, t) = v(x0, t), t ∈ I, implies m = n, αi = βi, qi = ri,
i = 1, · · · , n.

Proof. We know that

u(·, t) =

∞∑

j=1

(1− λjt
αnE

(j)
q,α′,1+αn

(t))(a, φj)φj , (2.28)



2.4 Inverse problems of determination of fractional orders 26

v(·, t) =

∞∑

j=1

(1− λjt
βℓE

(j)
r,β′,1+βℓ

(t))(a, φj)φj in L2(Ω) (2.29)

for each t ∈ [0, T ] (e.g., Theorem 2.4 in [37]). The Sobolev embedding inequality yields that

‖φj‖C(Ω) ≤ C‖A
d
4+εφj‖L2(Ω) with sufficiently small ε > 0, and we have C0j

2
d ≤ λj ≤ C1j

2
d

(see, e.g., [10]). Therefore, fixing t0 > 0 arbitrarily, similarly to the proof of Theorem 2.5, for
t ∈ [t0, T ], we obtain

∞∑

j=1

|(1 − λjt
αnE

(j)
q,α′,1+αn

(t))|‖(a, φj)φj‖C(Ω) ≤ C
∞∑

j=1

n−1∑

i=1

tαn−αi

1 + λjtαn
‖(Aγa, φj)A

−γφj‖C(Ω)

≤C

∞∑

j=1

|(Aγa, φj)|

n−1∑

i=1

tαn−αi

1 + λjtαn
λ

d
4+ε−γ
j ≤ C

∞∑

j=1

|(Aγa, φj)|λ
d
4+ε−γ−1
j

≤C




∞∑

j=1

|(Aγa, φj)|
2




1
2



∞∑

j=1

λ
d
2+2ε−2γ−2
j




1
2

.

By λj ∼ j
2
d as j → ∞ (e.g., [10]) and γ > d

2 − 1, we see that
∑∞
j=1 λ

d
2+2ε−2γ−2
j <∞. Hence

∞∑

j=1

|(1− λjt
αnE

(j)
q,α′,1+αn

(t))|‖(a, φj)φj‖C(Ω) <∞, t0 ≤ t ≤ T. (2.30)

Therefore, we see that the series on the right-hand side of (2.28) and (2.29) are convergent
uniformly in x ∈ Ω and t ∈ [t0, T ]. Moreover, since the solutions u and v can be analytically
extended to t > 0 in view of the analyticity of the multinomial Mittag-Leffler function (e.g.,
[43]), we have u(x0, t) = v(x0, t) for t > 0. Consequently by the Laplace transform, we obtain

∞∑

j=1

ρj

∑n
i=1 qiη

αi−1

∑n
i=1 qiη

αi + λj
=

∞∑

j=1

ρj

∑m
i=1 riη

βi−1

∑m
i=1 riη

βi + λj
, η > 0,

where ρj = (a, φj)φj(x0). Moreover, noting γ > d
2 − 1, similarly to (2.30), we have

∑∞
j=1 |ρj | <

∞. Therefore
∞∑

j=1

λjρj∑n
i=1 qiη

αi + λj
=

∞∑

j=1

λjρj∑m
i=1 riη

βi + λj
, η ∈ R with |η| small enough, (2.31)

where the series on both sides are uniformly convergent for |η| small enough. On the other
hand, we set

pk = (−1)k
∞∑

j=1

ρj

λkj
.

Then
0 < (−1)kpk <∞, k ∈ N.

In fact, since
∑∞

j=1 |ρj | <∞, and λj > 0, limλj = ∞, we see that pk <∞. By the assumption

of a, we have p1 = −
∑∞
j=1 λ

−1
j (a, φj)φj(x0) = −(A−1a)(x0). Setting b = −A−1a, we have

Ab = −a and b|∂Ω = 0. By the strong maximum principle for Au = −
∑d

i,j=1 ∂j(aij∂iu) − cu

with c ≤ 0 and a ≥ 0, we have b < 0 in Ω. Hence p1 < 0. Similarly, we can prove (−1)kpk > 0
for k = 2, 3, · · · .

We consider the asymptotic expansion of (2.31) near η = 0. Since λj > 0 for j ∈ N, we have∣∣∣
∑n

i=1 qiη
αi

λj

∣∣∣ < 1,
∣∣∣
∑m

i=1 riη
βi

λj

∣∣∣ < 1 for small η and all j ∈ N. Consequently

∞∑

k=1

pk

(
n∑

i=1

qiη
αi

)k
=

∞∑

k=1

pk

(
m∑

i=1

riη
βi

)k
, uniformly converges for small |η|. (2.32)
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Firstly, we prove m = n. Otherwise, we can assume m > n. Now we proceed by induction
to prove that αi = βi, qi = ri, i = 1, · · · , n. First we prove α1 = β1, q1 = r1. From (2.32), we
see that

p1q1η
α1 + p1

n∑

i=2

qiη
αi +

∞∑

k=2

pk

(
n∑

i=1

qiη
αi

)k
= p1r1η

β1 + p1

m∑

i=2

riη
βi +

∞∑

k=2

pk

(
m∑

i=1

riη
βi

)k
.

We see that α1 = β1 from p1 < 0, q1 > 0 and r1 > 0. If not, we can assume that α1 > β1.
Dividing both sides of the above equality by ηβ1 , we obtain

p1q1η
α1−β1 + p1

n∑

i=2

qiη
αi−β1 +

∞∑

k=2

pk

(
n∑

i=1

qiη
αi

)k
η−β1

=p1r1 + p1

m∑

i=2

riη
βi−β1 +

∞∑

k=2

pk

(
m∑

i=1

riη
βi

)k
η−β1 . (2.33)

Now letting η → 0, from α1 > β1, (2.25) and (2.27), we derive that the left-hand side of (2.33)
tends to 0, but the right-hand side tends to p1r1 6= 0, which is a contradiction. Hence α1 ≤ β1.
By a similar argument, we have α1 ≥ β1. Therefore α1 = β1 and q1 = r1.

Suppose for j ∈ N, 1 ≤ j ≤ n− 1 that αi = βi, qi = ri, for i = 1, · · · , j, that is

∞∑

k=1

pk




j∑

i=1

qiη
αi +

n∑

i=j+1

qiη
αi



k

=

∞∑

j=1

pk




j∑

i=1

qiη
αi +

m∑

i=j+1

riη
βi



k

, (2.34)

uniformly converges for small |η|. We show that (2.34) holds also for j + 1.
By S1 and S2 we denote the sets of the orders ℓ of the terms of ηℓ of each side of (2.34)

respectively. For the case

αj+1 > βj+1 and βj+1 /∈

{
j∑

i=1

kiαi; ki ∈ N

}
, (2.35)

from (2.25) and (2.27), it follows that

βj+1 /∈





j∑

i=1

kiαi +

n∑

i=j+1

kiαi; ki ∈ N



 .

In fact, if not, then there exist k0i ∈ N for i = 1, · · · , n such that

βj+1 =

j∑

i=1

k0i αi +

n∑

i=j+1

k0i αi.

Then (2.25), (2.27) and (2.35) show that βj+1 < αj+1 < · · · < αn. Hence k0i = 0 for i =

j + 1, · · · , n. This means βj+1 ∈
{∑j

i=1 kiαi; ki ∈ N
}
, which is a contradiction. Moreover

we can find βj+1 /∈ S1 in view of

S1 ⊂





j∑

i=1

kiαi +

n∑

i=j+1

kiαi; ki ∈ N



 ,

which is a contraction since (2.35) yields that βj+1 ∈ S2. Indeed the coefficient of ηβj+1 on the
right-hand side of (2.34) is p1rj+1 6= 0.
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For the case

αj+1 > βj+1 and βj+1 ∈

{
j∑

i=1

kiαi; ki ∈ N

}
, (2.36)

we now proceed to show that the coefficients of ηβj+1 on both sides of (2.34) are different.
Indeed, again using assumptions (2.25) and (2.27), we find that the coefficient of ηβj+1 on the
left-hand side of (2.34) is composed only of the coefficients of ηαi , i = 1, · · · , j, that is

∑

k1α1···+kjαj=βj+1

pk1+···+kjq
k1
1 · · · q

kj
j .

Similarly, we see that the coefficient of ηβj+1 on the right-hand side of (2.34) is

p1rj+1 +
∑

k1α1···+kjαj=βj+1

pk1+···+kjq
k1
1 · · · q

kj
j .

This is a contradiction since p1 < 0 and rj+1 > 0. Consequently, αj+1 ≤ βj+1. In the same
manner, we can see αj+1 ≥ βj+1. Therefore

∞∑

k=1

pk



j+1∑

i=1

qiη
αi +

n∑

i=j+2

qiη
αi



k

=

∞∑

k=1

pk



j+1∑

i=1

qiη
αi +

m∑

i=j+2

riη
βi



k

.

By induction, we can derive αi = βi and qi = ri for i = 1, · · · , n, that is

∞∑

k=1

pk

(
n∑

i=1

qiη
αi

)k
=

∞∑

k=1

pk

(
n∑

i=1

qiη
αi +

m∑

i=n+1

riη
βi

)k
. (2.37)

Consequently

βn+1 ∈

{
n∑

i=1

kiαi; ki ∈ N

}
.

This is impossible. In fact, we find that the coefficient of ηβn+1 on the left-hand side of (2.37)
is ∑

k1α1···+knαn=βn+1

pk1+···+knq
k1
1 · · · qknn .

and the coefficient of ηβn+1 on the right-hand side of (2.37) is

p1rn+1 +
∑

k1α1···+knαn=βn+1

pk1+···+knq
k1
1 · · · qknn ,

which is a contradiction in view of rn+1 > 0. Therefore, we see that m > n is impossible. Hence
m ≤ n. Similarly, we can prove that m ≥ n. Finally we obtain m = n and repeat the above
argument to obtain αi = βi, qi = ri, i = 1, · · · , n.

2.4.2 Inverse problem with many measurement

We consider 



ℓ∑

j=1

pj(x)∂
αj

t u = ∆u+ p(x)u, (x, t) ∈ Q,

u(x, t) = 0, x ∈ Ω,

u(x, t) = λ(t)g(x), (x, t) ∈ Σ.

(2.38)



2.4 Inverse problems of determination of fractional orders 29

Henceforth, Let ν be the outward unit normal vector to ∂Ω. We denote ∂u
∂ν = ∇u · ν. For

ℓ ∈ N, we set α = (α1, · · · , αℓ) ∈ (0, 1)ℓ where αℓ < αℓ−1 < · · · < α1. We note that also ℓ is
unknown parameter in the inverse problem.

We state

Problem 2.2 Let λ 6≡ 0 be fixed. For g ∈ H
3
2 (∂Ω), we define the Dirichlet-to-Neumann

map by

Λ(ℓ,α, pj, p)g :=
∂u

∂ν

∣∣∣
∂Σ

∈ L2(0, T ;H
1
2 (∂Ω)).

Then we discuss whether (ℓ,α, pj, p) is uniquely determined by the Dirichlet-to-Neumann map

Λ(ℓ,α, pj, p) : H
3
2 (∂Ω) −→ L2(0, T ;H

1
2 (∂Ω)).

Our inverse problem is based on the Dirichlet-to-Neumann map, and for elliptic equations,
there have been numerous important works. Here we do not intend any lists of references and
we refer only to Imanuvilov and Yamamoto [25], Isakov [26], Sylvester and Uhlmann [59] and
the references therein.

For the statement of our main results, we introduce some notations. As an admissible set
of unknown fractional orders including numbers and coefficients, we set

U = {(ℓ,α, pj, p) ∈ N× (0, 1)ℓ × C∞(Ω)ℓ+1; p1 > 0, pj 	 0, 2 ≤ j ≤ ℓ, p ≤ 0 on Ω}.

where α := (α1, · · · , αℓ) such that αℓ < αℓ−1 < · · · < α1. For θ ∈
(
0, π2

)
and T > 0, we further

set
Ωθ := {z ∈ C; z 6= 0, | arg z| < θ}, Ωθ,T := {z ∈ Ωθ; |z| < T }.

We are ready to state our main result.

Theorem 2.6 (Uniqueness) Let (ℓ,α, pj , p), (m,β, qj, q) ∈ U . Assume that for some θ ∈
(0, π2 ) the function λ 6≡ 0 can be analytically extended to Ωθ with λ(0) = 0 and λ′(0) = 0 and

there exists a constant C0 > 0 such that |λ(k)(t)| ≤ C0e
C0t, t > 0, 0 ≤ k ≤ 2. Then ℓ = m,

α = β, pj = qj, 1 ≤ j ≤ ℓ and p = q provided

Λ(ℓ,α, pj , p)g = Λ(m,β, qj, q)g, ∀g ∈ H
3
2 (∂Ω). (2.39)

The assumption pj ≥ 0, j = 2, · · · , ℓ, and p ≤ 0 on Ω is sufficient for proving that |u(x, t)| =
O(eC1t) as t → ∞ with some constant C1 > 0. Such an estimate is sufficient for taking the
Laplace transforms of u, which is a key element of the proof of Theorem 2.6. In this section,
we do not discuss the inverse problem without the condition pj ≥ 0 and p ≤ 0.

In U , we can relax the regularity of p, p1, ...., pℓ but we do not discuss here. Moreover, in
the two dimensional case d = 2, thanks to Imanuvilov and Yamamoto [24], we can prove a
sharp uniqueness result where Dirichlet inputs and Neumann outputs can be restricted on an
arbitrary subboundary and the required regularity of unknown coefficients is relaxed.

Corollary 2.2 Let Ω ⊂ R2 be a bounded domain with smooth boundary ∂Ω and Γ ⊂ ∂Ω be

an arbitrarily given subboundary and let γ > 2 be arbitrarily fixed. We assume the λ satisfies

the same conditions as in Theorem 2.6. We set

Û = {(ℓ,α, pj, p) ∈ N×(0, 1)ℓ×(W 2,∞(Ω))ℓ×W 1,γ(Ω); p1 > 0, pj 	 0, 2 ≤ j ≤ ℓ, p ≤ 0 on Ω}.

If (ℓ,α, pj , p), (m,β, qj, q) ∈ Û satisfy

Λ(ℓ,α, pj , p)g = Λ(m,β, qj, q)g on Γ

for all g ∈ H
3
2 (∂Ω) with supp g ⊂ Γ, then ℓ = m, α = β, pj = qj, 1 ≤ j ≤ ℓ and p = q.

As for inverse problems for single-term time-fractional diffusion equations, recently re-
searches are extended and we can refer e.g., to see e.g., Cheng et al [11], Hatano et al [21],
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Li et al [46]. The references are rapidly increasing and we do not intend to create a com-
plete list. The Gel’fand-Levitan theory which plays an essential role in [11] and [46], but the
asymptotic behavior of the solution used in [21] cannot be applied to show the uniqueness of
for inverse problems for multi-term time-fractional diffusion equations.

As for inverse problems for multi-term time-fractional diffusion equations, to the best knowl-
edge of the authors, there are no published results except for Li and Yamamoto [44].

Before we give a proof of Theorem 2.6, we first establish the analyticity of the solution u to
the initial-boundary value problem (2.1), which are necessary for the proof of Theorem 2.6.

We start from the following observation. By the Sobolev extension theorem, the assumption
g ∈ H

3
2 (∂Ω) allows us to choose g̃ ∈ H2(Ω) such that g̃|∂Ω = g. Now introducing the new

unknown function ũ(x, t) = u(x, t)− λ(t)g̃(x), we can rewrite (2.1) as




∂α1
t ũ+

ℓ∑

j=2

p̃j∂
αj

t ũ = div
(

1
p1
∇ũ
)
+B · ∇ũ+ bũ+ F in Q,

ũ = 0 on Ω× {0},

ũ = 0 on Σ,

(2.40)

where p̃j(x) :=
pj(x)
p1(x)

, j = 2, · · · , ℓ, B(x) := −∇( 1
p1(x)

), b(x) := p(x)
p1(x)

and

F (x, t) :=
1

p1(x)


λ(t)∆g̃(x) + λ(t)p(x)g̃(x)−

ℓ∑

j=1

(∂
αj

t λ)(t)pj(x)g̃(x)


 . (2.41)

By pj, p ∈ C∞(Ω) for j = 1, ..., ℓ, we see that p̃j , B, b ∈ C∞(Ω) for j = 2, ..., ℓ.
Later in the proof of Theorem 2.7, we can see that F ∈ W 1,∞(0, T ;L2(Ω)) under the

assumptions in Theorem 2.6. Thus here for convenience we only give the definition of the weak
solution to (2.40) in the case of F ∈W 1,∞(0, T ;L2(Ω)).

Definition 2.3 (Weak solution) Let F ∈ W 1,∞(0, T ;L2(Ω)), we call ũ a weak solution to

the initial-boundary value problem (2.40) if ũ ∈ C1((0, T ];L2(Ω)) ∩ C([0, T ];H2(Ω) ∩ H1
0 (Ω)),

and satisfies the differential equation in (2.40) and limt→0+ ‖ũ(·, t)‖L2(Ω) = 0.

For the weak solution with the right-hand side in L2(Q), see Gorenflo et al [16].
Based on the above definition of a weak solution to the initial-boundary value problem (2.40)

which is equivalent to our original problem (2.1), we see that u(x, t) = ũ(x, t)+λ(t)g̃(x) is a weak
solution to the initial-boundary value problem (2.1) under the assumptions of Theorem 2.6.

For easily proceeding the estimates for the solution defined in the above definition, similar
to the argument used in Section 2.2.1, we show an equivalent integral equation of the solution,
which is only composed of ũ,∇ũ without the time derivative of the solution. To this end, we
start from fixing some general settings and notations. When no ambiguity is possible, we use
A to denote the following operator

(Aψ)(x) := −div
(

1
p1(x)

∇ψ(x)
)
, x ∈ Ω, ψ ∈ H2(Ω) ∩H1

0 (Ω),

and denote {λn, ϕn}
∞
n=1 as the eigensystem of the elliptic operator A, that is, 0 < λ1 < λ2 ≤

λ3 · · · , Aϕn = λnϕn and {ϕn}
∞
n=1 ⊂ H2(Ω) ∩ H1

0 (Ω) forms an orthonormal basis of L2(Ω).
We note that limn→∞ λn = ∞. Then we can define the fractional power Aγ for γ ∈ R of the
operator A (e.g., Tanabe [62]), and we see that

Aγ1ψ =

∞∑

n=1

λγn(ψ, ϕn)ϕn, ψ ∈ D(Aγ) :=

{
ψ ∈ L2(Ω) :

∞∑

n=1

λ2γn |(ψ, ϕn)|
2 <∞

}

and D(Aγ) is a Hilbert space with the norm

‖ψ‖D(Aγ) =

(
∞∑

n=1

λ2γn |(ψ, ϕn)L2(Ω)|
2

) 1
2

.
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Recall the definition S in (2.4), here we use eigensystem of the operator A to define the operator
S(z) : L2(Ω) → L2(Ω) for z ∈ Ωθ in the same way, that is,

S(z)a :=

∞∑

n=1

(a, ϕn)Eα1,1(−λnz
α1)ϕn, 0 < α1 < 1

for a ∈ L2(Ω), where Eα,β(z) is the Mittag-Leffler function defined in (2.2). It is not difficult
to see that all the properties established in Section 2.2 hold true.

Henceforth we write u(t) = u(·, t), F (t) = F (·, t), etc., which mean functions in t with values
in L2(Ω).

Now by an argument similar to the calculation used in Section 2.2, by regarding the term
−
∑ℓ
j=2 p̃j∂

αj

t ũ+B · ∇ũ+ bũ+ F as new source term in (2.40), we can represent

ũ(t) = −

∫ t

0

A−1S′(t− s)(B · ∇ũ(s) + bũ(s) + F (s))ds+

ℓ∑

j=2

∫ t

0

A−1S′(t− s)p̃j∂
αj

t ũ(s)ds.

which is equivalent to (2.40). Based on the calculation used in the derivation of (2.7), we
conclude that the solution ũ to (2.40) satisfies the following integral equation

ũ(t) =−

∫ t

0

A−1S′(t− r)(B · ∇ũ(r) + bũ(r) + F (r))dr

+
ℓ∑

j=2

1

Γ(1 − αj)

∫ t

0

(∫ 1

0

A−1S′′
(
(1− s)(t− r)

)
(1− s)(t− r)1−αj s−αj p̃jũ(r)ds

)
dr

+

ℓ∑

j=2

1− αj
Γ(1 − αj)

∫ t

0

(∫ 1

0

A−1S′
(
(1 − s)(t− r)

)
(t− r)−αjs−αj p̃j ũ(r)ds

)
dr. (2.42)

Based on the above assumptions and notations, we are ready to give the proof of the following
theorem which is a key of the proof of Theorem 2.6.

Theorem 2.7 Let (ℓ,α, pj, p) ∈ U and T > 0 be arbitrarily given. Assume that g ∈

H
3
2 (∂Ω) ∩ C(∂Ω), λ(0) = 0, λ′(0) = 0, for θ ∈ (0, π2 ), the function λ(t) can be analytically

extended to Ωθ and λ ∈W 2,∞(Ωθ,T ). Then there exists a unique weak solution u to the problem

(2.1) such that u ∈ C([0, T ];H2(Ω) ∩H1
0 (Ω)) ∩ C

1((0, T ];H2(Ω)), and u: (0, T ] → H2(Ω) can

be analytically extended to Ωθ.
Moreover there exists a constant C = C(g), depending also on T,Ω such that

‖u‖C(Ω×[0,T ]) ≤ C(g)‖λ‖C[0,T ]. (2.43)

Proof. The uniqueness of u follows directly from (2.43). Thus it suffices to prove the existence
of analytic u and (2.43).

First we point out that F (x, ·) defined in (2.41) can be analytically extended to Ωθ. In fact,
it is sufficient to prove that ∂αt λ can be analytically extended to Ωθ,T with any α ∈ (0, 1) and

T > 0. Let z ∈ Ωθ,T be arbitrarily fixed. We set λ′(s) := dλ(s)
ds and

λα(z) :=
z1−α

Γ(1− α)

∫ 1

0

(1− η)−αλ′(ηz)dη =
1

Γ(1− α)

∫ z

0

(z − s)−αλ′(s)ds. (2.44)

The last integral is considered on the segment from 0 to z in C, and we see that λα(z) is well-
defined for z ∈ Ωθ,T . By the definition of ∂αt λ(t) for t > 0 we can verify that λα(t) = ∂αt λ(t)
for t > 0. For any small ǫ > 0, we set

λǫα(z) :=
z1−α

Γ(1− α)

∫ 1−ǫ

0

(1− η)−αλ′(ηz)dη.
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By the analyticity of λ in Ωθ, we see that λǫα is analytic in Ωθ,T . For any z ∈ Ωθ,T , we have

|λǫα(z)− λα(z)| ≤
T 1−α

Γ(1 − α)

∫ 1

1−ǫ

(1− η)−α |λ′(ηz)| dη ≤ C sup
s∈[0,z]

|λ′(s)|

∫ 1

1−ǫ

(1− η)−αdη.

Here [0, z] denotes the closed segment in C from 0 to z. Therefore, for any fixed T > 0, we see
that

sup
z∈Ωθ,T

|λǫα(z)− λα(z)| −→ 0 as ǫ→ 0.

Since λǫα is analytic in Ωθ,T , we see that λα is analytic in Ωθ,T , because λα is the uniform
convergent limit of analytic functions λǫα in Ωθ,T . Thus we completed the proof that F (·, t) can
be analytically extended to Ωθ and F (·, z) : Ωθ −→ D(A) is analytic in z, and by the same
notation we denote the extension, that is

F (x, z) :=
1

p1(x)


λ(z)∆g̃(x) + λ(z)p(x)g̃(x)−

ℓ∑

j=1

λαj
(z)p̃j(x)g̃(x)


 .

Next we estimate F (x, z) for x ∈ Ω and z ∈ Ωθ,T . Without loss of generality, we assume that
T ≥ 1. First we have

‖F‖L∞(Ωθ,T ;L2(Ω)) ≤ C


‖λ‖L∞(Ωθ,T ) +

ℓ∑

j=1

‖λαj
‖L∞(Ωθ,T )


 .

Here and henceforth C > 0 denotes a generic constant which is independent of T , z ∈ Ωθ,T ,
but dependent on d,Ω, T, g, θ, p, p1, ..., pℓ, α1, ..., αℓ. By T ≥ 1, direct calculations yield

|λαj
(z)| =

|z|1−αj

Γ(1− αj)

∣∣∣∣
∫ 1

0

(1− η)−αjλ′(ηz)dη

∣∣∣∣ ≤ CT 1−αj

∫ 1

0

(1− η)−αjdη‖λ‖W 1,∞(Ωθ,T ),

(2.45)
and so

‖F‖L∞(Ωθ,T ;L2(Ω)) ≤ CT ‖λ‖W 1,∞(Ωθ,T ).

Moreover, by 0 < αj < 1, λ′(0) = 0 and integration by parts yield

λαj
(z) =

z1−αj

Γ(1− αj)

∫ 1

0

(1− η)−αjλ′(ηz)dη

=
z1−αj

Γ(1− αj)

([
λ′(ηz)

(1− η)1−αj

1− αj

]η=0

η=1

+

∫ 1

0

(1− η)1−αj

1− αj
λ′′(ηz)zdη

)

=
z1−αj

Γ(1− αj)

∫ 1

0

(1− η)1−αj

1− αj
λ′′(ηz)zdη =

1

Γ(1− αj)

∫ z

0

(z − s)1−αj

1− αj
λ′′(s)ds.

Therefore we can differentiate in z to have

λ′αj
(z) =

1

Γ(1− αj)

∫ z

0

(z − s)−αjλ′′(s)ds,

and again by change of the variables s = ηz, similarly to (2.45), we obtain

‖λ′αj
‖L∞(Ωθ,T ) ≤ CT ‖λ‖W 2,∞(Ωθ,T ).

Hence ‖∂zF‖L∞(Ωθ,T ;L2(Ω)) ≤ CT ‖λ‖W 2,∞(Ωθ,T ). Consequently, noting that g̃ ∈ H2(Ω), p1, p̃j ∈

C∞(Ω) for j = 2, ..., ℓ, we see

F : Ωθ,T −→ L2(Ω) is analytic, ‖F‖W 1,∞(Ωθ,T ;L2(Ω)) ≤ CT ‖λ‖W 2,∞(Ωθ,T ). (2.46)
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Now let us turn to consider the uniqueness existence and the analyticity of the solution to
the integral equation (2.42). For this, after the change r → η := 1− r

t of variables in (2.42), by
r = (1− η)t we find

ũ(t) =− t

∫ 1

0

A−1S′(rt)
(
B · ∇ũ

(
(1− r)t

)
+ bũ

(
(1− r)t

)
+ F

(
(1 − r)t

))
dr

+

ℓ∑

j=2

t2−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′′
(
(1 − s)rt

)
(1− s)r1−αjs−αj p̃j ũ

(
(1− r)t

)
dsdr

+

ℓ∑

j=2

(1 − αj)t
1−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′
(
(1− s)rt

)
r−αjs−αj p̃j ũ

(
(1 − r)t

)
dsdr. (2.47)

Moreover, we extend the variable t in (2.47) from (0, T ) to the sector Ωθ,T , and setting ũ0 = 0,
we inductively define ũn+1(z) (n = 0, 1, · · · ) as follows:

ũn+1(z) =− z

∫ 1

0

A−1S′(rz)
(
B · ∇ũn

(
(1− r)z

)
+ bũn

(
(1− r)z

)
+ F

(
(1− r)z

))
dr

+
ℓ∑

j=2

z2−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′′
(
(1− s)rz

)
(1− s)r1−αjs−αj p̃j ũn

(
(1− r)z

)
dsdr

+

ℓ∑

j=2

(1− αj)z
1−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′
(
(1− s)rz

)
r−αjs−αj p̃j ũn

(
(1− r)z

)
dsdr. (2.48)

Now by induction we will prove that

‖ũn+1(z)− ũn(z)‖D(A) ≤
Cn(|z|α0T β0Γ(α0))

n

Γ(nα0 + 1)
M1, n = 0, 1, 2, ..., ∀z ∈ Ωθ,T , (2.49)

where α0 = minj=2,3,··· ,ℓ{
α1

2 , α1 − αj}, β0 = maxj=2,3,··· ,ℓ{
α1

2 , α1 − αj} − α0 and M1 is chosen
later. First for n = 0, integrating by parts and using (2.5), (2.46) and ũ0 = 0, we see

‖ũ1(z)− ũ0(z)‖D(A) = ‖Aũ1(z)‖L2(Ω) =

∥∥∥∥z
∫ 1

0

S′(rz)F ((1 − r)z)dr

∥∥∥∥
L2(Ω)

=

∥∥∥∥S(rz)F ((1 − r)z)
∣∣∣
r=1

r=0
−

∫ 1

0

S(rz)F ′((1 − r)z)(−z)dr

∥∥∥∥
L2(Ω)

≤‖S(z)F (0)− F (z)‖L2(Ω) + C

∫ 1

0

‖F ′((1− r)z)‖L2(Ω)dr

≤CT ‖λ‖W 2,∞(Ωθ,T ) =:M1.

For the first equality, by the definition of the norm in D(A), we note ‖v‖D(A) = ‖Av‖L2(Ω).
Next we estimate ‖ũn+1(z)− ũn(z)‖D(A). By (2.48) we have

Aũn+1(z)−Aũn(z) = −z

∫ 1

0

S′(rz)
(
B · (∇ũn −∇ũn−1)

(
(1− r)z

)
+ b(ũn − ũn−1)

(
(1− r)z

))
dr

+
ℓ∑

j=2

z2−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′′
(
(1 − s)rz

)
(1− s)r1−αj s−αjA(p̃j(ũn − ũn−1)

(
(1− r)z

)
)dsdr

+

ℓ∑

j=2

(1 − αj)z
1−αj

Γ(1− αj)

∫ 1

0

∫ 1

0

A−1S′
(
(1− s)rz

)
r−αjs−αjA(p̃j(ũn − ũn−1)

(
(1 − r)z

)
)dsdr.

For any n ∈ N, in view of (2.5), the assumption B ∈ C∞(Ω) and the inequality
‖B · ∇v‖

D(A
1
2 )

≤ C‖v‖D(A) for v ∈ D(A), we derive

‖A−1S′(rz)B · (∇ũn −∇ũn−1)((1 − r)z)‖D(A)
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=‖A− 1
2S′(rz)A

1
2 (B · (∇ũn −∇ũn−1)((1 − r)z))‖L2(Ω)

≤C‖A− 1
2S′(rz)‖L2(Ω)→L2(Ω)‖B · (∇ũn −∇ũn−1)((1 − r)z)‖H1(Ω)

≤C‖A− 1
2S′(rz)‖L2(Ω)→L2(Ω)‖(ũn − ũn−1)((1 − r)z)‖D(A)

≤C|z|
α1
2 −1r

α1
2 −1‖(ũn − ũn−1)((1− r)z)‖D(A) (2.50)

for z ∈ Ωθ,T . Estimating other terms similarly, in view of (2.5), we obtain

‖ũn+1(z)− ũn(z)‖D(A)

≤C|z|
α1
2

∫ 1

0

r
α1
2 −1‖ũn((1 − r)z)− ũn−1((1− r)z)‖D(A)dr

+C
ℓ∑

j=2

|z|α1−αj

∫ 1

0

(1− s)α1−1s−αjds

∫ 1

0

rα1−αj−1‖ũn((1 − r)z)− ũn−1((1 − r)z)‖D(A)dr.

Noting that 0 < αℓ < · · · < α1 < 1 and (2.6), we have

‖ũn+1(z)− ũn(z)‖D(A)

≤C


|z|

α1
2 +

ℓ∑

j=2

|z|α1−αj



∫ 1

0

(r
α1
2 −1 +

ℓ∑

j=2

rα1−αj−1)‖ũn((1− r)z)− ũn−1((1 − r)z)‖D(A)dr

≤C|z|α0T β0

∫ 1

0

rα0−1‖ũn((1− r)z)− ũn−1((1 − r)z)‖D(A)dr, z ∈ Ωθ,T .

By the assumption (2.49) of induction, we again use (2.6) to derive

‖ũn+1(z)− ũn(z)‖D(A) ≤ CM1|z|
α0T β0

∫ 1

0

rα0−1C
n−1(|z|α0T β0(1− r)α0Γ(α0))

n−1

Γ((n− 1)α0 + 1)
dr

=M1
(C|z|α0T β0Γ(α0))

n

Γ(nα0 + 1)
. (2.51)

Hence the proof of (2.49) is completed by induction. Therefore by (2.3), we have

‖ũn(z)‖D(A) ≤

n−1∑

k=1

‖ũk+1(z)− ũk(z)‖D(A) ≤

∞∑

k=1

M1
(CTα0+β0Γ(α0))

n

Γ(nα0 + 1)
. <∞. (2.52)

Next by indutction, we will prove that ũn : Ωθ,T −→ D(A) is analytic in z for n = 0, 1, 2, ....
By ũ0 ≡ 0, it is obvious for n = 0. We assume that ũn : Ωθ,T −→ D(A) is analytic in z. We
estimate the integrands in (2.48). Similarly to (2.50), we have

‖A−1S′(rz)(B · ∇ũn((1 − r)z) + bũn((1 − r)z))‖D(A)

≤C|z|
α1
2 −1r

α1
2 −1‖ũn((1− r)z)‖D(A),

‖A−1S′′((1 − s)rz)(1− s)r1−αjs−αj p̃j ũn((1 − r)z)‖D(A)

≤C((1 − s)r|z|)α1−2(1 − s)r1−αjs−αj‖ũn((1 − r)z)‖D(A)

≤C|z|α1−2(1 − s)α1−1rα1−αj−1s−αj‖ũn((1− r)z)‖D(A)

and

‖A−1S′((1− s)rz)r−αj s−αj p̃j ũn((1− r)z)‖D(A)

≤C((1 − s)r|z|)α1−1r−αjs−αj‖ũn((1− r)z)‖D(A)

≤C|z|α1−1(1 − s)α1−1rα1−αj−1s−αj‖ũn((1 − r)z)‖D(A).
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Hence, in view of (2.46) and (2.52), the D(A)-norms of the integrands in (2.48) are integrable
in r, s ∈ (0, 1). Therefore, since ũn((1 − r)z) : Ωθ,T −→ D(A) is analytic, we see that also
ũn+1 : Ωθ,T −→ D(A) is analytic. Thus by induction ũn : Ωθ,T −→ D(A) is analytic for all
n ∈ N .

We proceed to the completion of the proof of Theorem 2.2. Using (2.3), we see that

∞∑

n=0

(CTα0+β0Γ(α0))
n

Γ(nα0 + 1)
<∞.

Hence the majorant test implies
∑∞

n=0 ‖ũn+1(z)− ũn(z)‖D(A) converges uniformly in z ∈ Ωθ,T .
Therefore there exists ũ(z) ∈ L2(Ω) such that ‖Aũn(z) − Aũ(z)‖L2(Ω) tends to 0 as n → ∞
uniformly in z ∈ Ωθ,T . Recalling the analyticity of ũn in z ∈ Ωθ,T for n = 1, 2, · · · , we see that
Aũ(z) is analytic in Ωθ,T . Moreover, since T is arbitrarily chosen, we deduce Aũ(z) is analytic
in the sector Ωθ.

Next we prove (2.43). In view of p ≤ 0, p1 > 0 and pj ≥ 0 on Ω for 2 ≤ j ≤ ℓ, we can prove

u(x, t) ≤ max{0, max
x∈∂Ω,0≤t≤T

g(x)λ(t)} for x ∈ Ω, 0 ≤ t ≤ T . (2.53)

In fact, we can repeat the proof of Theorem 2 in Luchko [34] which assumes that p1, ..., pℓ are all
constants and p1 > 0, pj ≥ 0 for j = 2, ..., ℓ. Therefore (2.53) holds if u is sufficiently smooth.
For our solution with the boundary value g(x)λ(t), applying an approximating argument, we
see that (2.53) is valid for the solutions constructed in the theorem.

Replacing u by −u and applying (2.53), we obtain

−u(x, t) ≤ max{0, max
x∈∂Ω,0≤t≤T

(−g(x)λ(t))},

that is,
u(x, t) ≥ min{0, min

x∈∂Ω,0≤t≤T
g(x)λ(t)}

for x ∈ Ω and 0 ≤ t ≤ T . Combining (2.53), we obtain

|u(x, t)| ≤ max
x∈∂Ω,0≤t≤T

|g(x)λ(t)|

for x ∈ Ω and 0 ≤ t ≤ T . Therefore the proof of (2.43) is completed.
Finally we show that ũ(z) is the weak solution to (2.40) when the variable z is restricted

to (0, T ). In fact, denoting the imaginary part of ũ(t), ∀t ∈ (0, T ) as Im ũ(t), we see that
v := Im ũ(t) is a weak solution to the following initial-boundary problem:





∂α1
t v +

ℓ∑

j=2

p̃j(x)∂
αj

t v = div

(
1

p1(x)
∇v

)
+B(x) · ∇v + b(x)v in Ω× (0, T ],

v(x, 0) = 0 in Ω,

v(x, t) = 0 on ∂Ω× (0, T ].

Using the uniqueness result of the above problem (e.g., Theorem 2.4 in [43]), we have Im ũ(t) =
0, ∀t ∈ (0, T ). Thus again by the uniqueness argument we see that ũ(t) = Re ũ(t), ∀t ∈ (0, T )
solves (2.40). Consequently, we see that u(t) = ũ(t) + λ(t)g̃ is the weak solution to (2.1) and
is analytic from (0, T ] to H2(Ω) in view of the analyticity of λ(t). This completes the proof of
the theorem.

Now let us turn to the proof of our main theorem in this subsection. The proofs rely on
relevant uniqueness for Calderón problems. For convenience, we describe uniqueness results
which are applied for our proof.

Let Γ+,Γ− ⊂ ∂Ω be sub-boundaries. By

Λ(q,Γ−,Γ+)f =
∂u

∂ν
|Γ+
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we define the Dirichlet-to-Neumann map for

∆u+ qu = 0 in Ω, u|Γ−
= f, u|∂Ω\Γ−

= 0.

The sub-boundaries Γ− and Γ+ can be regarded as input sub-boundary and output sub-
boundary respectively.

Sylvester and Uhlmann [59] proved the uniqueness in determining q(x) by the Dirichlet-
to-Neumann map Λ(q,Γ−,Γ+) for the case of Γ+ = Γ− = ∂Ω where one must change all the
Dirichlet data on the whole boundary and measure all the corresponding Neumann data on
the whole boundary. On the other hand, the uniqueness by Λ(q,Γ−,Γ+) with limited Γ+ and
Γ− is important and there have been several works and in particular we apply Imanuvilov
and Yamamoto [24] which proved the uniqueness for the Caldrón problem with arbitrary sub-
boundary Γ+ = Γ−.

The analyicity in t of the solution to (1) (Theorem 2.2) reduces the Dirichlet-to-Neumann
map for (1) to the Calderón problem, so that we can apply various existing uniqueness results.
Here we apply only [24] and [59] as such known results and we note that we can obtain various
types of uniqueness for the inverse problem for (1) if we apply other uniqueness results for
Calderón problems. As for other uniqueness results for the Calderón problem, we refer for
example to Bukhgeim and Uhlmann [6], Imanuvilov and Yamamoto [25], Kenig and Salo [31],
and the references therein.

The proof of Corollary 2.2 is the same as the proof of Theorem 2.6, and the only difference
is that instead of the uniqueness result in Theorem 0.1 of [59], we have to use Theorem 0.1 in
[24]. Thus it is sufficient to prove Theorem 2.6

Proof of Theorem 2.6. Our key idea is to reduce the inverse problem to the corresponding
inverse boundary value problem for the Schrödinger equation

{
∆v(x, s) + Ps(x)v(x, s) = 0 in Ω,

v(x, s) = g(x) on ∂Ω,

for all large s > 0. Here and henceforth we set Ps(x) := p(x) −
∑ℓ
j=1 pj(x)s

αj .
Let u1(g)(x, t) and u2(g)(x, t) be the solutions to (2.1) with (ℓ,α, pj, p) and (m,β, qj, q)

respectively. Since λ(t) is t-analytic in t > 0, Theorem 2.7 implies that u1(g)(x, t) and u2(g)(x, t)

are t-analytic in t > 0 under the norm H2(Ω). Therefore, since w 7→ ∂w
∂ν : H

3
2 (∂Ω) → H

1
2 (∂Ω)

is continuous, equality (2.39) implies

∂u1(g)

∂ν
(x, t) =

∂u2(g)

∂ν
(x, t), x ∈ ∂Ω, 0 < t <∞ for g ∈ H

3
2 (∂Ω).

Let (Lu)(x, s) :=
∫∞

0
u(x, t)e−stdt be the Laplace transform of u(x, t) in t for each fixed x ∈ Ω.

By (2.43) in Theorem 2.7 and assumption |λ(t)| ≤ C0e
C0t for t > 0, we see that |u(x, t)| ≤ CeC0t

for t > 0, where C > 0 is a constant and is independent of t > 0 and x ∈ Ω. Therefore
(Luk(g))(x, s), k = 1, 2, exist for s > C1 where C1 > 0 is some constant depending only on λ.
Using uk(g)(x, 0) = 0, by [52], we have

L(∂αt uk(g))(x, s) = sα(Luk(g))(x, s), s > C1, x ∈ Ω, k = 1, 2.

Therefore L(∂αt uk)(x, s) exists for s > C1 and x ∈ Ω, k = 1, 2. Since (1) holds for all t > 0, it
follows that L(∆uk(g))(x, s), k = 1, 2, exist for s > C1 and x ∈ Ω. Hence

{
∆L(u1(g))(x, s) + Ps(x)L(u1(g))(x, s) = 0, x ∈ Ω, s > C1,

L(u1(g))(x, s) = (Lλ)(s)g(x), x ∈ ∂Ω, s > C1,

{
∆L(u2(g))(x, s) +Qs(x)L(u2(g))(x, s) = 0, x ∈ Ω, s > C1,

L(u2(g))(x, s) = (Lλ)(s)g(x), x ∈ ∂Ω, s > C1,



2.5 Conclusions and open problems 37

and
∂L(u1(g))

∂ν
(x, s) =

∂L(u2(g))

∂ν
(x, s), ∀x ∈ ∂Ω, and ∀s > C1,

where Qs(x) := q(x) −
∑m

j=1 qj(x)s
βj . On the other hand, we consider the following two

boundary value problems

{
∆v1(x, s) + Ps(x)v1(x, s) = 0, x ∈ Ω, s > C1,

v1(x, s) = g(x), x ∈ ∂Ω, s > C1.
(2.54)

and {
∆v2(x, s) +Qs(x)v2(x, s) = 0, x ∈ Ω, s > C1,

v2(x, s) = g(x), x ∈ ∂Ω, s > C1.
(2.55)

Then we define the Dirichlet-to-Neumann maps corresponding to the boundary value problems
(2.54) and (2.55) as Λ(Ps) and Λ(Qs) respectively by

Λ(Ps)g :=
∂v1(g)

∂ν

∣∣∣
∂Ω
, Λ(Qs)g :=

∂v2(g)

∂ν

∣∣∣
∂Ω
.

Now we prove that there exists a subset σ ⊂ (C1,∞) such that σ contains a non-empty open
interval and

Λ(ℓ,α, pj, p)g = Λ(m,β, qj, q)g =⇒ Λ(Ps)g = Λ(Qs)g for all g ∈ H
3
2 (∂Ω) and s ∈ σ. (2.56)

In fact, (Lλ)(z) is analytic in Re z > C1 and {s; (Lλ)(s) = 0, s > C1} has no accumulation
points except for ∞. Therefore σ := (C1,∞) \ {s; (Lλ)(s) = 0, s > C1} contains a non-empty

open interval. Then we can set ṽj(g)(x, s) =
L(uj(g))(x,s)

(Lλ)(s) for j = 1, 2 and s ∈ σ. It is not very

difficult to see that ṽ1(g) and ṽ2(g) are the solutions to (2.54) and (2.55) respectively. From
the uniqueness of the boundary value problem, we see that ṽj(g) = vj(g), j = 1, 2 for s ∈ σ.

Here by the density of H
3
2 (∂Ω) in H

1
2 (∂Ω) and the continuity of Λ(Ps) : H

1
2 (∂Ω) −→

H− 1
2 (∂Ω), we see that (2.56) holds for all g ∈ H

1
2 (∂Ω).

Therefore from the uniqueness in determining a potential by Dirichlet-to-Neumann map
(e.g., in [59]), we see that Ps(x) = Qs(x) for all x ∈ Ω and s ∈ σ. Since σ contains a non-empty
open interval, we obtain ℓ = m, α = β, pj = qj , 1 ≤ j ≤ ℓ and p = q. Thus the proof of
Theorem 1.1 is completed.

2.5 Conclusions and open problems

In this paper, we mainly dealt with the forward and inverse problems to the initial-boundary
value problem for the multi-term time-fractional diffusion equations.

For the forward problem, by means of Fourier methods and Fredholm theory for the compact
operator, we show the unique existence of the solutions to the initial-boundary value problems,
and we succeed in determining the solutions by initial values and the source terms. Indeed, in
the case of the non-homogeneous equation, we considered the initial-boundary value problem
provided all the coefficients are spatial and temporal dependence, whereas for the homogeneous
counterpart, due to our methods, the assumption that all the coefficients are independent of
the time is necessary. Furthermore, by a Laplace transform argument, it turns out that the
decay rate of the solution for long time is dominated by the lowest order of the time-fractional
derivatives, which generalized that for the case of positive-constant coefficients discussed in [37].

For the inverse problems, first, in case of all the coefficients of the fractional derivatives are
positive constants, by means of eigenfunction expansion, Theorem 2.5 shows the uniqueness in
determining fractional orders in the d–dimensional diffusion equation with L2(Ω)-initial function
by using one interior point measurement. In its space-dependent counterpart, as an application
of the analyticity of the solution and Laplace transform, Theorem 2.6 gives an affirmative answer
for the uniqueness in determining the number of fractional time-derivative terms, the orders of
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the derivatives and spatially varying coefficients under the assumption that the boundary input
is in form of separation of variables. For the general boundary input with time t being fixed, it
is still expected to get the uniqueness of the same inverse problem and remains open.



Chapter 3

Fractional advection-diffusion

equations

In this chapter, we continue to consider a multi-term time-fractional diffusion equation, but here
the multi-term derivatives including the first order derivative ∂t, that is, fractional advection
diffusion equations (FADE). Some properties of FADE are expected to be partly inherited by
parabolic equations, which enable us apply Carleman estimates for parabolic equations to prove
a Carleman estimate for the generalized fractional-in-time advection dispersion equations by
considering the fractional derivative as perturbation for the first order time-derivative. The
point is a special choice of the time factor of the weight function. As an application of the
Carleman estimate, we show a Hölder dependency of solutions with respect to initial values,
Cauchy data and source terms.

Keywords: fractional advection dispersion equation, Carleman estimate, Conditional sta-
bility

3.1 Introduction and main results

The advection dispersion equation (ADE) based on Fick’s law has been widely used to solve
a range of problems in analysing mass transport. Recently numerous field experiments for the
solute transport in highly heterogeneous media demonstrate that solute concentration profiles
exhibited anomalous non-Fickian growth rates, skewness, sharp leading edges and so-called
“long tails”(See e.g., Benson et al [7], Hatano and Hatano [20], and Levy and Berkowitz [35]),
which are poorly characterized by the conventional mass transport equations. To sufficiently
predict these effects, the non-Fickian diffusion model has been proposed to mass transport
model, say, fractional-in-time advection-dispersion equation (FADE):

∂tu(x, t) + ∂αt u(x, t) = ∆u(x, t), (x, t) ∈ Rd × (0,∞). (3.1)

See, e.g., [22], [23], [57] and the references therein for the FADEs. In Hornung and Showalter
[22], diffusion models in fractured media are described, say, a generalized form of equation
(3.1), and a general elementary proof for well-posedness with the additional appropriate initial
and boundary conditions are given. the macro advection-dispersion experiment (MADE) site
mobile tritium mass decline is consistent with a fractional time derivative of order α = 0.33,
while Haggerty et al [23] stream tracer test is well modeled by a fractional time derivative
of order α = 0.28 In Schumer et al [57], in the case of 1-dimension, the solution to (3.1) is
gained by performing an integral transform on the solution of any boundary value problem for
transport in the absence of an immobile phase.

In this chapter, assuming 0 < αℓ < · · · < α1 <
1
2 , we consider a generalized FADE

(Lu)(x, t) ≡ ∂tu+

ℓ∑

j=1

qj(x, t)∂
αj

t u−

d∑

i,j=1

ai,j(x, t)∂i∂ju−

d∑

i=1

bi(x, t)∂iu− c(x, t)u = f, (3.2)
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where (x, t) in Rd × (0,∞). The equation here is very different from [22], [23] and [57]. In our
case, fully taking into account the impact of space, time and time delay, the generalized FADE
can be regarded as more feasible equation than the advection diffusion equations in modeling
the diffusion in the heterogeneous media. All the previous methods used in Chapter 1 and
Chapter 2, e.g., eigenfunction expansion, Laplace transform, fail, which forces us to adopt a
completely different approach to the forward and inverse problems for FADEs.

We investigate the continuous dependency on initial values, boundary values and source
terms for the equation (3.2) by the Carleman estimate for parabolic equations. To the best
knowledge of the authors, the stability results of the equation (3.2) were not yet established. To
this end, we start from fixing some general settings and notations. Let T > 0 be fixed constant
and Ω ⊂ Rd is a bounded domain, d ≥ 1, with sufficiently smooth boundary ∂Ω, for example,
of C2-class. We set Q := Ω× (0, T ). Assume that aij = aji ∈ C1(Q), 1 ≤ i, j ≤ d, satisfies that

σ

d∑

j=1

ξ2j ≤

d∑

j,k=1

ajk(x, t)ξjξk, (x, t) ∈ Q, ξ ∈ Rd,

where σ > 0 is a constant independent of x, t, ξ. We set ∂νAu =
∑d

i,j=1 aijνi∂ju where

(ν1, · · · , νd) denotes the unit outwards normal vector to the boundary ∂Ω× (0, T ). Let L2(Ω)
and Hk,ℓ(Q) (k ≥ 0, ℓ ≥ 0) denote Sobolev spaces (See, e.g., Adams [1] and Yamamoto [65]).

Theorem 3.1 Let Γ ⊂ ∂Ω be an arbitrary non-empty sub-boundary of ∂Ω. For any ε > 0
and an arbitrary bounded domain Ω0 such that Ω0 ⊂ Ω∪Γ, ∂Ω0 ∩ ∂Ω ( Γ is a non-empty open

subset of ∂Ω, there exist constants C > 0 and θ ∈ (0, 1) such that

‖u‖H1,1(Ω0×(0,ε)) ≤ C‖u‖1−θH1,1(Q)F
θ, (3.3)

where F := ‖u(·, 0)‖L2(Ω) + ‖f‖L2(Q) + ‖u‖H1(Γ×(0,T )) + ‖∂νAu‖L2(Γ×(0,T )).

Remark 3.1 Different to the results in Yamamoto [65], here due to the choice of the weight
function in the derivation of the Carleman estimate in Section 3.2, we can only prove that the
continuous dependency of the solution with respect to initial values, boundary values and source
terms in the case of α ∈ (0, 12 ).

The rest of this chapter is organized in three sections. In section 3.2, we derive a Carleman
type estimate for parabolic equations with a new weight function. In Section 3.3, by regarding
the fractional-order terms as non-homogeneous term and applying the Carleman estimate for
the parabolic equations in Section 3.2, we prove the continuous dependency on initial values,
Cauchy data and source terms. Finally, concluding remarks are given in Section 3.4.

3.2 Carleman estimate for parabolic equations

In this section, letting ζ ∈ C2(Ω) and |∇ζ| 6= 0 on Ω and setting ψ = ζ(x) − βt2−2α1 with

β > 0, we discuss the derivation of a Carleman estimate for L0 = ∂t−
∑d

i,j=1 aij(x, t)∂i∂j with

the new weight function ϕ := eλψ. Namely

Lemma 3.1 Let Σ0 = Ω × {0} and D ⊂ Q be bounded domain whose boundary ∂D is

composed of a finite number of smooth surfaces. Then there exists a constant λ0 > 0 such that

for arbitrary λ ≥ λ0, we can choose a constant s0(λ) > 0 satisfying: there exists a constant

C = C(s0, λ0) such that

∫

D

{
1

sϕ
|∂tu|

2 + sλ2ϕ|∇u|2 + s3λ4ϕ3u2
}
e2sϕdxdt

≤C

∫

D

|L0u|
2e2sϕdxdt+ eC(λ)s

∫

∂D

(|∇u|2 + |u|2)dSdt+ eC(λ)s

∫

∂D\Σ0

|∂tu|
2dSdt (3.4)

for all s > s0 and all u ∈ H2,1(D).
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Proof. We follow the arguments on pp.9-19 of the survey paper [65] to prove the estimate
(3.4). We use the same notations, where we must modify locally because our choice of the time
dependency of ψ is different.

We set

σ(x, t) =

d∑

i,j=1

aij(x, t)(∂iζ)∂jζ, (x, t) ∈ Q

and
w(x, t) = esϕ(x,t)u(x, t)

and

Pw = esϕL0(e
−sϕw) =∂tw −

d∑

i,j=1

aij∂j∂jw + 2sλϕ

d∑

i,j=1

aij(∂iζ)∂jw

− s2λ2ϕ2σw + sλ2ϕσw + sλϕw

d∑

i,j=1

aij∂i∂jζ − sλϕw(∂tψ).

Similar to the argument used in [65], we decompose P into the parts P1 and P2, where P1

is composed of second-order and zero-order terms in x, and P2 is composed of first-order terms
in t and first-order terms in x, say

Pw = P1w + P2w,

where

P1w = −

d∑

i,j=1

aij∂j∂jw − s2λ2ϕ2σw +


sλ2ϕσ + sλϕ

d∑

i,j=1

aij∂i∂jζ − sλϕw(∂tψ)


w,

and

P2w = ∂tw + 2sλϕ

d∑

i,j=1

aij(∂iζ)∂jw.

We first estimate
∫
D |P2w|

2 + 2(P1w)(P2w)dxdt from below. By ‖esϕL0u‖
2
L2(D) = ‖P1w +

P2w‖
2
L2(D), we have

2

∫

D

(P1w)(P2w)dxdt + ‖P2w‖
2
L2(D) ≤

∫

D

|L0u|
2e2sϕdxdt.

We estimate

∫

D

(P1w)(P2w)dxdt =−

d∑

i,j=1

∫

D

aij(∂i∂jw)∂twdxdt

−

d∑

i,j=1

∫

D

aij(∂i∂jw)2sλϕ

d∑

k,l=1

ak,l(∂kζ)∂lwdxdt

−

∫

D

s2λ2ϕ2σw∂twdxdt −

∫

D

2s3λ3ϕ3σw
d∑

i,j=1

aij(∂iζ)∂jwdxdt

+

∫

D

(A1w)∂twdxdt +

∫

D

(A1w)2sϕ

d∑

i,j=1

aij(∂iζ)∂jwdxdt

= :

6∑

k=1

Jk,
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where A1w = sλ2ϕσw+sλϕw
∑d

i,j=1 aij∂i∂jζ−sλϕw∂tψ =: sλ2ϕa1(x, t;λ, s)w. Now, applying
the integration by parts and aij = aji, we estimate Jk, k = 1, · · · , 6 separately.

J1 = −

d∑

i,j=1

∫

D

aij(∂i∂jw)∂twdxdt

=
d∑

i,j=1

∫

D

(∂iaij)(∂jw)∂twdxdt +
d∑

i,j=1

∫

D

aij(∂jw)∂i∂twdxdt −
d∑

i,j=1

∫

∂D\Σ0

aij(∂jw)νi∂twdSdt.

Here and henceforth ν := (ν1, · · · , νd, νd+1) denotes the unit normal exterior with respect to
the boundary ∂D of D. In particular, νd+1 is the component in the time direction. Therefore
integration by parts yields

J1 =

d∑

i,j=1

∫

D

(∂iaij)(∂jw)∂twdxdt +
1

2

d∑

i,j=1

∫

D

aij∂t
(
(∂iw)∂jw

)
dxdt

−

d∑

i,j=1

∫

∂D\Σ0

aij(∂jw)νi∂twdSdt

=

d∑

i,j=1

∫

D

(∂iaij)(∂jw)∂twdxdt −
1

2

d∑

i,j=1

∫

D

(∂taij)(∂iw)∂jwdxdt

+
1

2

d∑

i,j=1

∫

∂D

aij(∂iw)(∂jw)νn+1dSdt−

d∑

i,j=1

∫

∂D\Σ0

aij(∂jw)νi∂twdSdt.

Thus

|J1| ≤C

∫

D

|∇w||∂tw|dxdt + C

∫

D

|∇w|2dxdt+ C

∫

∂D

|∇w|2dSdt+ C

∫

∂D\Σ0

|∇w||∂tw|dSdt

≤C

∫

D

|∇w||∂tw|dxdt + C

∫

D

|∇w|2dxdt+ C

∫

∂D

|∇w|2dSdt+ C

∫

∂D\Σ0

|∂tw|
2dSdt.

Since the Cauchy-Schwarz inequality implies that

|∇w||∂tw| = s
1
2λ

1
2ϕ

1
2 |∇w|s−

1
2λ−

1
2ϕ− 1

2 |∂tw| ≤
1

2
sλϕ|∇w|2 +

1

2

1

sλϕ
|∂tw|

2,

we have

|J1| ≤C

∫

D

1

sλϕ
|∂tw|

2dxdt+ C

∫

D

sλϕ|∇w|2dxdt

+ C

∫

∂D

|∇w|2dSdt+ C

∫

∂D\Σ0

|∂tw|
2dSdt. (3.5)

Next similar to the argument on pp. 12-13 in [65], we have

J2 =−
d∑

i,j=1

d∑

k,l=1

∫

D

2sλϕaijakl(∂kζ)(∂lw)∂i∂jwdxdt

=2sλ

∫

D

d∑

i,j=1

d∑

k,l=1

λ(∂iζ)ϕaijakl(∂kζ)(∂lw)∂jwdxdt

+ 2sλ

∫

D

d∑

i,j=1

d∑

k,l=1

ϕ∂i(aijakl∂kζ)(∂lw)∂jwdxdt
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+ 2sλ

∫

D

d∑

i,j=1

d∑

k,l=1

ϕaijakl(∂kζ)(∂i∂lw)∂jwdxdt

− 2sλ

∫

∂D

d∑

i,j=1

d∑

k,l=1

ϕaijakl(∂kζ)(∂lζ)(∂lw)(∂jw)νidSdt.

We have

(first term) = 2sλ2
∫

D

ϕ

∣∣∣∣∣∣

d∑

i,j=1

aij(∂iζ)∂jw

∣∣∣∣∣∣

2

dxdt ≥ 0

and

(third term) =sλ

∫

D

ϕ

d∑

i,j=1

d∑

k,l=1

aijakl(∂kζ)∂l
(
(∂iw)(∂jw)

)
dxdt

=sλ

∫

∂D

ϕ

d∑

i,j=1

d∑

k,l=1

aijakl(∂kζ)(∂iw)(∂jw)νldSdt

− sλ2
∫

D

ϕ

d∑

i,j=1

σaij(∂iw)∂jwdxdt

− sλ

∫

D

ϕ
d∑

i,j=1

d∑

k,l=1

∂l
(
aijakl(∂kζ)

)
(∂iw)∂jwdxdt,

which imply

J2 ≥ −

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt − C

∫

D

sλϕ|∇w|2dxdt− C

∫

∂D

sλϕ|∇w|2dSdt. (3.6)

|J3| =

∣∣∣∣−
1

2

∫

D

s2λ2ϕ2σ∂t(w
2)dxdt

∣∣∣∣

=

∣∣∣∣
∫

D

s2λ3ϕ2β(2α1 − 2)t1−2α1σw2dxdt+
1

2

∫

D

s2λ2ϕ2(∂tσ)w
2dxdt−

1

2

∫

∂D

s2λ2ϕ2σw2νd+1dSdt

∣∣∣∣

≤C

∫

D

s2λ3ϕ2w2dxdt + C

∫

∂D

s2λ2ϕ2w2dSdt. (3.7)

J4 =−

∫

D

s3λ3ϕ3
d∑

i,j=1

σaij(∂iζ)∂j(w
2)dxdt

=3

∫

D

s3λ4ϕ3σ2w2dxdt+

∫

D

s3λ3ϕ3
d∑

i,j=1

∂j(σaij∂iζ)wdxdt

−

∫

∂D

s3λ3ϕ3
d∑

i,j=1

σaij(∂iζ)w
2νjdSdt

≥3

∫

D

s3λ4ϕ3σ2w2dxdt− C

∫

D

s3λ3ϕ3w2dxdt− C

∫

∂D

s3λ3ϕ3w2dSdt. (3.8)

From

J6 =

∫

D

a1s
2λ3ϕ2

d∑

i,j=1

aij(∂iζ)∂j(w
2)dxdt
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=

∫

∂D

a1s
2λ3ϕ2

d∑

i,j=1

aij(∂iζ)w
2νjdSdt− 2

∫

D

s2λ4ϕ2a1σw
2dxdt

− 2

∫

D

s2λ3ϕ2
d∑

i,j=1

∂j(a1aij(∂iζ))w
2dxdt,

we have

|J6| ≤ C

∫

D

s2λ4ϕ2w2dxdt+ C

∫

∂D

s2λ3ϕ2w2dSdt. (3.9)

We estimate J5 by a different way. First we note that

A1w = sλ2ϕσw + sλϕ

d∑

i,j=1

aij(∂i∂jζ)w + sλϕ(2 − 2α1)βt
1−2α1w

and

(A1w)∂tw =
1

2
sλ2ϕσ∂t(w

2) +O(sλϕ)w∂tw.

Therefore

J5 =

∫

D

O(sλϕ)w∂twdxdt + (1 − α1)β

∫

D

t1−2α1sλ3ϕσw2dxdt+
1

2

∫

D

sλ2ϕ(∂tσ)w
2dxdt

+
1

2

∫

∂D

sλ2ϕσw2νd+1dSdt.

Therefore

|J5| ≤C

∫

∂D

sλ2ϕw2dSdt+ C

∫

D

sλ3ϕw2dxdt+ C

∫

D

s
3
2λ

3
2ϕ

3
2 |w|s−

1
2 λ−

1
2ϕ− 1

2 |∂tw|dxdt

≤C

∫

D

s3λ3ϕ3w2dxdt+ C

∫

D

1

sλϕ
|∂tw|

2dxdt+ C

∫

∂D

sλ2ϕw2dSdt. (3.10)

Hence

∫

D

(P1w)(P2w)dxdt ≥

∫

D

3s3λ4ϕ3σ2w2dxdt−

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt

− C

∫

D

(s3λ3ϕ3 + s2λ4ϕ2)w2dxdt− C

∫

D

1

sλϕ
|∂tw|

2dxdt− C

∫

D

sλϕ|∇w|2dxdt

− C

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ3w2)dSdt− C

∫

∂D\Σ0

|∂tw|
2dSdt.

By the definition of P2, we have

ǫ

∫

D

1

sϕ
|∂tw|

2dxdt =ǫ

∫

D

1

sϕ

∣∣∣∣∣∣
P2w − 2sλϕ

d∑

i,j=1

aij(∂iζ)∂jw

∣∣∣∣∣∣

2

dxdt

≤C

∫

D

|P2w|
2dxdt+ Cǫ

∫

D

sλ2ϕ|∇w|2dxdt.

Hence

3

∫

D

s3λ4ϕ3σ2w2dxdt−

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt +

(
ǫ−

C

λ

)∫

D

1

sϕ
|∂tw|

2dxdt

≤C

∫

D

|L0u|
2e2sϕdxdt+ C

∫

D

(sλϕ+ ǫsλ2ϕ)|∇w|2dxdt+ C

∫

D

(s3λ3ϕ3 + s2λ4ϕ2)w2dxdt
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+ C

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ3w2)dSdt+ C

∫

∂D\Σ0

|∂tw|
2dSdt. (3.11)

The first and second terms on the left-hand side have different signs and so we need another
estimate. Thus we will execute another estimation for

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt

by means of ∫

D

(P1w + P2w)× sλ2ϕσwdxdt.

That is, multiplying

esϕL0u = ∂tw + 2sλϕ

d∑

i,j=1

aij(∂iζ)∂jw −

d∑

i,j=1

aij∂j∂jw − s2λ2ϕ2σw +A1w

with sλ2ϕσw, we obtain

∫

D

sλ2ϕσwesϕL0udxdt

=
1

2

∫

D

sλ2ϕσ∂t(w
2)dxdt+

∫

D

s2λ3ϕ2σ

d∑

i,j=1

aij(∂iζ)∂j(w
2)dxdt−

∫

D

sλ2ϕσ

d∑

i,j=1

aijw∂j∂jwdxdt

−

∫

D

s3λ4ϕ3σ2w2dxdt +

∫

D

sλ2ϕσwA1wdxdt =:
5∑

k=1

Ik.

First, in terms of the integration by parts, noting that |σ| ≤ C, |∂tσ| ≤ C, ∂iϕ = λϕ∂iζ and
∂tϕ = 2(α1 − 1)λβϕt1−2α1 , we have

|I1| =
1

2

∣∣∣∣
∫

∂D

sλ2ϕσw2νd+1dSdt−

∫

D

sλ2(∂tϕ)σw
2dxdt−

∫

D

sλ2ϕ(∂tσ)w
2dxdt

∣∣∣∣

≤C

∫

D

sλ3ϕw2dxdt+ C

∫

∂D

sλ2ϕw2dSdt. (3.12)

|I2| =

∣∣∣∣∣− 2

∫

D

s2λ4ϕ2σ2w2dxdt−

∫

D

s2λ3ϕ2σ

d∑

i,j=1

∂j(aij(∂iζ))w
2dxdt

+

∫

∂D

s2λ3ϕ2σ

d∑

i,j=1

aij(∂iζ)w
2νjdSdt

∣∣∣∣∣

≤C

∫

D

s2λ4ϕ2w2dxdt+ C

∫

∂D

s2λ3ϕ2w2dSdt. (3.13)

I3 =

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt +

∫

D

sλ2
d∑

i,j=1

∂i(ϕσaij)w∂jwdxdt

−

∫

∂D

sλ2ϕσ

d∑

i,j=1

aijw(∂jw)νidSdt

≥

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt − C

∫

D

sλ3ϕ|∇w||w|dxdt − C

∫

∂D

sλ2ϕ|∇w||w|dSdt.
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By

sλ3ϕ|∇w||w| = (sλ2ϕ|w|)(λ|∇w|) ≤
1

2
s2λ4ϕ2w2 +

1

2
λ2|∇w|2,

and

sλ2ϕ|∇w||w| = (sλ
3
2ϕ|w|)(λ

1
2 |∇w|) ≤

1

2
s2λ3ϕ2w2 +

1

2
λ|∇w|2,

we have

I3 ≥

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt− C

∫

D

s2λ4ϕ2w2dxdt− C

∫

D

λ2|∇w|2dxdt

− C

∫

∂D

λ|∇w|2dSdt− C

∫

∂D

s2λ3ϕ2w2dSdt. (3.14)

From the definition of A1, we see that

|I5| =

∣∣∣∣
∫

D

sλ2ϕσwA1wdxdt

∣∣∣∣ ≤ C

∫

D

(s2λ4ϕ2 + s2λ3ϕ2)w2dxdt ≤ C

∫

D

s2λ4ϕ2w2dxdt. (3.15)

Therefore

∫

D

sλ2ϕσ

d∑

i,j=1

aij(∂iw)∂jwdxdt −

∫

D

s3λ4ϕ3σ2w2dxdt

≤

∫

D

|sλ2ϕσwesϕL0u|dxdt+ C

∫

D

λ2|∇w|2dxdt+ C

∫

D

s2λ4ϕ2w2dxdt

+

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ2w2)dSdt.

Furthermore, from

|sλ2ϕσwesϕL0u| ≤
1

2
|L0u|

2e2sϕ +
1

2
s2λ4ϕ2σ2w2,

we have

∫

D

sλ2ϕσ2
d∑

i,j=1

aij(∂iw)∂jwdxdt−

∫

D

s3λ4ϕ3σ2w2dxdt

≤

∫

D

|L0u|
2e2sϕdxdt+ C

∫

D

λ2|∇w|2dxdt+ C

∫

D

s2λ4ϕ2w2dxdt

+

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ2w2)dSdt. (3.16)

Finally, we consider (3.16)× 2+ (3.11). By the ellipticity of aij and σ0 := inf(x,t)∈Q σ(x, t) > 0,
we obtain

∫

D

s3λ4ϕ3σ2
0w

2dxdt+

∫

D

(σ2
0 − Cǫ)sλ2ϕ|∇w|2dxdt+

(
ǫ−

C

λ

)∫

D

1

sϕ
|∂tw|

2dxdt

≤C

∫

D

|L0u|
2e2sϕdxdt + C

∫

D

(s3λ3ϕ3 + s2λ4ϕ2)w2dxdt+ C

∫

D

(sλϕ + λ2)|∇w|2dxdt

+

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ2w2)dSdt+

∫

∂D\Σ0

|∂tw|
2dSdt.

Thus choosing ǫ > 0 small, and choosing λ and then s large, we can absorb terms suitably to
obtain

∫

D

{
1

sϕ
|∂tw|

2 + sλ2ϕ|∇w|2 + s3λ4ϕ3w2

}
dxdt
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≤C

∫

D

|L0u|
2e2sϕdxdt +

∫

∂D

(sλϕ|∇w|2 + s3λ3ϕ2w2)dSdt+

∫

∂D\Σ0

|∂tw|
2dSdt.

Noting w = uesϕ, we have
∫

D

{
1

sϕ
|∂tu|

2 + sλ2ϕ|∇u|2 + s3λ4ϕ3u2
}
e2sϕdxdt

≤C

∫

D

|L0u|
2e2sϕdxdt+ eC(λ)s

∫

∂D

(|∇u|2 + u2)dSdt+ eC(λ)s

∫

∂D\Σ0

|∂tu|
2dSdt.

3.3 Proof of the main theorem

The key idea for proving Theorem 3.1 is to regard the fractional derivatives as the perturbation
for the first order time-derivative and use the Carleman estimate for the parabolic equation
derived in Section 3.2. The first problem which we have to overcome is to evaluate the fractional
derivative by the first order time-derivative under some suitable norm. Namely, the following
lemma holds.

Lemma 3.2 Let T > 0 and 0 < α ≤ α1 <
1
2 be given constants, then for any sub-domain

D of Q := Ω× (0, T ), the following inequality

∫

D

|∂αt u|
2e2sϕdxdt ≤ C

∫

D

1

sλϕ
|∂tu|

2e2sϕdxdt (3.17)

holds true for all u ∈ H2,1(Q), where ϕ = eλψ with ψ(x, t) = ζ(x) − βt2−2α1 .

Proof. From the definition of the Caputo derivative, it follows that

∫

D

|∂αt u|
2e2sϕdxdt =

∫

D

∣∣∣∣
1

Γ(1− α)

∫ t

0

(t− r)−α∂ru(x, r)dr

∣∣∣∣
2

e2sϕdxdt.

We note that ϕ(x, t) ≥ c0, where c0 > 0 is a constant. We have

∂tψ = β(2α1 − 2)t1−2α1 , ∂tϕ = λ(∂tψ)ϕ = (2α1 − 2)βλϕt1−2α1 .

Hence

t1−2α1e2sϕ = −
1

4βsλϕ(1− α1)
∂t(e

2sϕ).

By the Cauchy-Schwarz inequality and (3), we have

∫ T

0

∣∣∣∣
∫ t

0

(t− r)−α∂ru(r)dr

∣∣∣∣
2

e2sϕ(x,t)dt ≤

∫ T

0

(∫ t

0

(t− r)−2αdr

)(∫ t

0

|∂ru(r)|
2dr

)
e2sϕ(x,t)dt

=
1

1− 2α

∫ T

0

t1−2α

(∫ t

0

|∂ru(r)|
2dr

)
e2sϕ(x,t)dt

Moreover, since 0 < α < α1, we see that

∫ T

0

∣∣∣∣
∫ t

0

(t− r)−α∂ru(r)dr

∣∣∣∣
2

e2sϕ(x,t)dt ≤
T 2(α1−α)

1− 2α

∫ T

0

t1−2α1

(∫ t

0

|∂ru(r)|
2dr

)
e2sϕ(x,t)dt

=
T 2(α1−α)

(1 − 2α)(1− α1)

∫ T

0

−1

4βsλϕ
∂t(e

2sϕ(x,t))

(∫ t

0

|∂ru(r)|
2dr

)
dt.

Integration by parts yields

∫ T

0

t1−2α1

(∫ t

0

|∂ru(r)|
2dr

)
e2sϕ(x,t)dt
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=
1

1− α1

(
−1

4βsλϕ

∫ t

0

|∂ru|
2dr

)
e2sϕ(x,t)

∣∣∣
t=T

t=0

+
1

1− α1

∫ T

0

1

4βsλϕ
|∂tu|

2e2sϕdt+

∫ T

0

t1−2α1

2sϕ

(∫ t

0

|∂ru(r)|
2dr

)
e2sϕdt

≤
1

1− α1

∫ T

0

1

4βsλϕ
|∂tu|

2e2sϕdt+

∫ T

0

t1−2α1

2sϕ

(∫ t

0

|∂ru(r)
2dr

)
e2sϕdt.

The last term on the right-hand side can be absorbed into the left-hand side by choosing s > 0
large and we have

∫ T

0

t1−2α1

(∫ t

0

|∂ru(r)|
2dr

)
e2sϕ(x,t)dt ≤ C

∫ T

0

1

sλϕ
|∂tu(t)|

2e2sϕdt.

Thus ∫

Q

|∂αt u|
2e2sϕdxdt ≤ C

∫

Q

1

sλϕ
|∂tu|

2e2sϕdxdt. (3.18)

Firstly, in the case of u ∈ H2,1(Q) satisfying suppu ⊂ D, (3.18) implies that the estimate (3.17)
holds true. Next, in view of the fact that C∞

c (D) is dense in H2,1(D), by an approximation
argument, we can show that the estimate (3.17) is valid for any u ∈ H2,1(Q).

Before giving the proof of Theorem 3.1, we introduce some notations.
For arbitrary given domain Ω0 such that Ω0 ⊂ Ω, similar to Theorem 5.1 in [65], we will

choose a suitable weight function ψ(x, t) := ζ(x)−βt2−2α1 . For this, we first choose a bounded
domain Ω1 with smooth boundary such that

Ω ( Ω1, Γ = ∂Ω ∩ Ω1, ∂Ω \ Γ ⊂ ∂Ω1.

We then apply Lemma 4.1 in [65] to obtain d ∈ C2(Ω1) satisfying

ζ(x) > 0, x ∈ Ω1, ζ(x) = 0, x ∈ ∂Ω1, |∇ζ(x)| > 0, x ∈ Ω.

Then we can choose β > 0 and ε > 0 such that

βε2−2α1 < ‖ζ‖C(Ω1)
< 22−2α1βε2−2α1 . (3.19)

Moreover, since Ω0 ⊂ Ω1, we can choose a sufficiently large N > 1 such that

Ω0 ⊂ Ω ∩ {x ∈ Ω1; ζ(x) >
4

N
‖ζ‖C(Ω1)

}. (3.20)

We set µk = exp{λ( kN ‖ζ‖C(Ω1)
− βε2−2α1

N )}, k = 1, 2, 3, 4. Then we can verify from (3.19)

and (3.20) that

Ω0 × (0,
ε

M
) ⊂ D3 ⊂ D1 ⊂ Ω× (0, 2ε), (3.21)

where M := N
1

2−2α1 , Dj := {(x, t); x ∈ Ω, t > 0, ϕ(x, t) > µj}, j = 1, 3, and

∂D1 ⊂ Σ0 ∪Σ1 ∪ Σ2, (3.22)

where Σ0 = {(x, 0); x ∈ Ω}, Σ1 ⊂ Γ× (0, T ) and Σ2 = {(x, t); x ∈ Ω, t > 0, ϕ(x, t) = µ1}.

Now we are ready to give the proof of our main theorem.

Proof of Theorem 3.1. We start from the Cauchy problem

{
u(x, t) = g0(x, t) on Γ× (0, T ],

∂νAu(x, t) = g1(x, t) on Γ× (0, T ]
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for the equation (3.2).
Henceforth C > 0 denotes generic constants depending on λ, but independent of s and

the choice of g0, g1, u. For it, we need a cut-off function because we have no data ∂νAu on
∂D \ Γ× (0, T ). Let χ ∈ C∞(Rn+1) such that 0 ≤ χ ≤ 1 and

χ(x, t) =

{
1, ϕ(x, t) > µ3,

0, ϕ(x, t) < µ2.
(3.23)

Setting v := χu, L̃ := L−
∑ℓ

j=1 qj∂
αj

t , and then using Leibniz’s formula for the differential
of the product we have

L̃v = χLu− χ

ℓ∑

j=1

qj∂
αj

t u+A1u = χf − χ

ℓ∑

j=1

qj∂
αj

t u+A1u. (3.24)

Here the last term A1u involves only the linear combination of (∂tχ)u, (∂i∂jχ)u, (∂iχ)(∂ju)
and (∂iχ)u, i, j = 1, · · · , n.

By (3.22) and (3.23), we see that v = |∇v| = 0 on Σ2. Hence using the Carleman estimate
in Lemma 3.1, from D3 ⊂ D1 by an argument similar to Theorem 3.2 in [65] in D1 to (3.24),
we find

∫

D3

{
1

s
|∂tv|

2 + sλ2ϕ|∇v|2 + s3λ4ϕ3v2
}
e2sϕdxdt

≤

∫

Q

f2e2sϕdxdt+ C

∫

D1

ℓ∑

j=1

|∂
αj

t u|2e2sϕdxdt+ C

∫

D1

|A1u|
2e2sϕdxdt

+ eC(λ)s

∫

Σ0∪(Γ×(0,T ))

(|∇v|2 + v2)dSdt+ eC(λ)s

∫

Γ×(0,T )

|∂tv|
2dSdt. (3.25)

for all s ≥ s0 and λ ≥ λ0.
By (3.23), A1u does not vanish only if µ2 ≤ ϕ(x, t) ≤ µ3 and so

∫

D1

|A1u|
2e2sϕdxdt ≤ Ce2sµ3‖u‖2H1,0(Q).

Moreover, from (3.21) and Lemma 3.2, by taking λ large enough, we conclude that the term∫
D3

∑ℓ
j=1 |∂

αj

t u|2e2sϕdxdt can be absorbed by the left-hand side of (3.25), which implies

∫

D3

{
1

s
|∂tu|

2 + sλ2ϕ|∇u|2 + s3λ4ϕ3u2
}
e2sϕdxdt

≤CeC(λ)s‖f‖L2(Q) + Ce2sµ3‖u‖2H1,0(Q) + C

ℓ∑

j=1

∫

D1\D3

|∂
αj

t u|2e2sϕdxdt

+ eC(λ)s

∫

Σ0∪(Γ×(0,T ))

(|∇v|2 + v2)dSdt+ eC(λ)s

∫

Γ×(0,T )

|∂tv|
2dSdt.

By (3.20), we can directly verify that ϕ(x, t) ≤ µ3 in D1 \D3, and if (x, t) ∈ Ω0 × (0, εN ),
then ϕ(x, t) > µ4. Then combined with (3.21) and (3.22), again from Lemma 3.2, we have

e2sµ4

∫ ε
N

0

∫

Ω0

{
1

s
|∂tu|

2 + s|∇u|2 + s3u2
}
dxdt

≤CeC(λ)s‖f‖L2(Q) + Ce2sµ3‖u‖2H1,0(Q) + Ce2sµ3

∫

D1\D3

|∂tu|
2dxdt

+ eCs
∫

Ω

(|∇v(x, 0)|2 + v(x, 0)2)dx+ eCs
∫

Γ×(0,T )

(|∂tv|
2 + |∇v|2 + v2)dSdt.
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for s ≥ s0. Then dividing both sides by e2sµ4 , since

se−2s(µ4−µ3) ≤ Ce−s(µ4−µ3) ≤ Ce−Cs,

by replacing ε
N by ε and C by CeCs0 , we have

‖u‖2H1,1(Ω0×(0,ε)) ≤ Ce−(µ4−µ3)s‖u‖2H1,1(Q) + CeCsF 2 (3.26)

for all s > 0 and ε > 0 and u ∈ H2,1(Q).
First, if F = 0, letting s→ ∞, we conclude that u = 0 in Ω0 × (0, ε), so that the conclusion

of Theorem 3.1 holds true. Next let F 6= 0. First let F ≥ ‖u‖H1,1(Q). Then (3.26) implies

‖u‖H1,1(Ω0×(0,ε)) ≤ CeCsF, s > 0,

which already proves the theorem. Second let F ≤ ‖u‖H1,1(Q), we choose s > 0 minimizing the
right-hand side of (3.26), that is

e−s(µ4−µ3)‖u‖2H1,1(Q) = eCsF 2.

By F 6= 0, we can choose

s =
2

C + µ4 − µ3
log

‖u‖H1,1(Q)

F
> 0.

Then (3.26) gives

‖u‖H1,1(Ω0×(0,ε)) ≤ 2C‖u‖
C

C+µ4−µ3

H1,1(Q) F
µ4−µ3

C+µ4−µ3 .

The proof of Theorem (3.1) is completed.

3.4 Conclusions and open problems

We firstly established a Carleman estimate for the parabolic equation with a new weight func-
tion. Theorem 3.1 was then proved by regarding the fractional order terms as perturbation
and the use of the Carleman estimate for the parabolic equations. All the above arguments are
valid only for the case of order α1 ∈ (0, 12 ). Moreover, due to our choice of the weight function,
we do not know whether the estimate is valid without the initial value.

On the other hand, that regarding the fractional order terms as perturbation and the choice
of the new weight function are not suitable for the study of the inverse problems. As is well
known, for dealing with the inverse problems, the Carleman type estimate derived by ψ :=
ζ(x) − β(t − t0)

2 (t0 ∈ (0, T )) should be better according to the series of theories in [65].
However, the weight function used in [65] cannot work for our FADEs. The inverse problems
for the equation (3.2) remain open.



Chapter 4

Distributed order time-fractional

diffusion equations

This chapter is mainly devoted to the investigation of some important properties of solutions
to initial-boundary value problems for time-fractional diffusion equations of distributed orders
in bounded multi-dimensional domains. Using eigenfunction expansion and carrying out the
inversion Laplace transforms on several integral loops, we prove the uniqueness and continuous
dependency of the solutions on initial values and source terms as well as the analyticity. Fur-
thermore, under some suitable assumptions on the weight function µ, by a Laplace transform
argument, it turns out that the solutions decay logarithmically as t→ ∞. As t→ 0, the decay
rate of the solutions is dominated by the term (t log 1/t)−1. Finally, as an application of the
analyticity, we give a uniqueness result for a related inverse problem on the determination of
the weight function µ in the distributed derivative from one interior point observation.

Keywords: distributed order time-fractional diffusion equation, initial-boundary value
problem, analyticity, Laplace transform, eigenfunction expansion, asymptotic behavior, inverse
problem

4.1 Introduction

Within the last few decades, some recent publications by physicists (see [12], [49], [58] and the
references therein) are devoted to some ultraslow diffusion where the mean square displacement
is of logarithmic growth. The usual way to model such processes is to employ the so called
diffusion equation of distributed orders with a continuous weight function µ in [0, 1]





D
(µ)
t u(x, t) = −Au(x, t) + F (x, t), (x, t) ∈ Q,

u(x, 0) = a(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ Σ,

(4.1)

where T > 0 is a fixed constant, and Ω is an open bounded domain in Rd with a smooth
boundary ∂Ω, which is defined e.g., by some C2 functional relations. a ∈ L2(Ω) and A is a
symmetric uniformly elliptic operator defined in Chapter 1.

From the mathematical viewpoint, the forward problems for such equations were investigated
e.g. in [29], [30], [33] [47] and the references therein. In [29, 30], the fundamental solutions
to the Cauchy problems for both the ordinary and the partial fractional differential equations
with distributed order derivatives with continuously differential weight functions have been
derived and investigated in detail. [33] applied an appropriate maximum principle to show
the uniqueness results for the initial-boundary value problems for the diffusion equation of
distributed orders. The existence of the solution is illustrated by constructing a formal solution
using the Fourier method of variables separation, but no proofs for the convergence of the
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series (i.e. the obtained formal solutions are in fact solutions) were given in [33]. [47] provided
explicit strong solutions and stochastic analogues for distributed-order time-fractional diffusion
equations, with Dirichlet boundary conditions provided that the weight function in the definition
of distributed order derivative is in C1(0, 1).

In this chapter, we are concerned with the well-posedness and the asymptotic behavior of
the solution to the initial-boundary value problem (4.1), and we attempt to establish results
parallel to that for the multi-term case. On the basis of eigenfunction expansion, by exploiting
the inversion Laplace transforms on several integral loops, we give estimates for the solution,
which imply the analyticity and continuous dependency of the solutions on initial values and
source terms. The employed technique follows the lines of the paper [33], where solutions of
the corresponding initial-boundary value problems for the diffusion equations of distributed
orders were formally represented in the form of the Fourier series via the Laplace and inversion
Laplace transform. Furthermore, for the asymptotic behavior of the solution, we employ the
Laplace transform argument to show that the solutions decay logarithmically as t → ∞. As
t → 0, the decay rate of the solutions is dominated by the term (t log 1/t)−1 under some
suitable assumptions on the weight function µ. Thus the asymptotic behavior of the solutions
to the initial-boundary value problem for the time-fractional diffusion equation of distributed
orders is shown to be different compared from equations with a finite number of time fractional
derivatives which is discussed in Chapter 2. Finally, as an application of the analyticity, we give
a uniqueness result for a related inverse problem on the determination of the weight function µ
in the distributed derivative from one interior point observation.

The rest of this chapter is organized as follows. The proof of the uniqueness existence
and the analyticity of solution to initial-boundary value problem for distributed order time-
fractional diffusion equation are given in Section 4.2.1. In Section 4.3, the Strichartz estimates
are established. The proofs of the long-time asymptotic formulas are given in Section 4.4.
Finally, the last section is devoted to the proof of the uniqueness of the inverse problem of
determining the weight function in the distributed derivative.

4.2 Wellposedness

In this section, we first introduce a definition of the weak solution to the initial-boundary
value problem for the distributed order time fractional diffusion equations by means of Laplace
transform, and then consider the unique existence of the weak solution.

Before we start with the investigation of uniqueness and existence of the solution to the
initial-boundary value problem for (4.1), we point out that it is difficult to follow the way used
in Definition 2.2 in Chapter 2 to introduce the definition of weak solutions of (4.1) since it is

not very easy to find the inverse operator of D
(µ)
t and a suitable Sobolev space Hγ(0, T ;L2(Ω)),

γ > 0 to give the definition. In other words, distributed order fractional diffusion equation (4.1)
is completely different from the single-term or multi-term time-fractional diffusion equation.
To overcome this gap we follow Definition 1.1 in [32] to give the following definition of weak
solutions to the initial-boundary value problem (4.1) by means of Laplace transform. Let χ(0,T )

be the characteristic function of (0, T ).

Definition 4.1 (Weak solution) Let a ∈ L2(Ω), and F ∈ L1(0, T ;L2(Ω)). We say that

initial-boundary value problem (4.1) admits a weak solution u if there exists v ∈ L∞
loc(R

+;L2(Ω))
such that:

1) v|Q = u and inf{s > 0 : e−stv ∈ L1(R+;L2(Ω))} = s0 <∞,

2) for all s > s0 the Laplace transform v̂(s) := Lv(s) :=
∫∞

0 e−stv(t, ·)dt of v solves

{
(A+ sw(s))v̂(s) = F̂ (s) in Ω,

v̂(s) = 0 on ∂Ω,

where w(s) :=
∫ 1

0 s
α−1µ(α)dα and F̂ (s) := L(Fχ(0,T ))(s) =

∫ T
0 e−stF (t, ·)dt.
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We recall the eigensystem {λn, ϕn} of the operator A := A, that is, {ϕn}
∞
n=1 satisfy Aϕn =

λnϕn and ϕn ∈ D(A), and we assume the solution u to (4.1) can be formally represented in
the form

u( · , t) =

∞∑

n=1

un(t)ϕn, t > 0,

and substituting this representation into (4.1), by orthogonality of {ϕn}, we obtain the following
equations for the coefficients un:

{
D

(µ)
t un(t) + λnun(t) = Fn := (F, ϕn), t > 0,

un(0) = an := (a, ϕn),
n = 1, 2, · · · . (4.2)

Application of the Laplace transform

(Lg(t))(s) = ĝ(s) :=

∫ ∞

0

g(t) e−st dt

to (4.2) along with the known formula

(L∂αt g(t))(s) = sαĝ(s)− sα−1g(0+)

leads to an algebraic equation

ûn(s)

∫ 1

0

sαµ(α)dα + λnûn(s) = an

∫ 1

0

sα−1µ(α)dα + F̂n, Re s > s0

for the unknown function ûn. This equation can be directly solved:

ûn(s) =
w(s)

sw(s) + λn
an +

1

sw(s) + λn
F̂n, Re s > s0,

where the auxiliary function w is determined by the weight function µ as follows:

w(s) =

∫ 1

0

sα−1µ(α)dα =

∫ 1

0

e(α−1) log sµ(α)dα.

By Fourier-Mellin formula (see e.g., [55]), we have

un(t) =
1

2πi

∫ s0+i∞

s0−i∞

ûn(s)e
stds, n = 1, 2, · · · ,

which yields the formal representation of the solution to the initial-boundary value problem
(4.1). Moreover, taking the principal value of the logarithmic function on the complex plane
cut along the negative part of the real axis, we can extend w(s) to an analytic function on the
complex plane with the cut. For any λn > 0, the function sw(s) + λn has no zeros on the main
sheet of the Riemann surface for the logarithmic function. Indeed, we can prove

Lemma 4.1 Let µ ∈ C[0, 1] be a non-negative function satisfying the condition µ 6≡ 0.
Then the estimates

|w(s)| ≤
C(|s| − 1)

|s| log |s|
,

and

|sw(s) + λ| ≥ C > 0

hold true for any s ∈ C \ {0}, where C > 0 is a constant independent of λ and s.
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Proof. By the definition of w(s), we have

|w(s)| ≤ ‖µ‖C[0,1]

∫ 1

0

e(α−1) log |s|dα = ‖µ‖C[0,1]
|s| − 1

|s| log |s|
.

Since θ ∈ (π2 , π) and µ 6≡ 0, we obtain

|sw(s) + λ| ≥ | Im sw(s)| =

∫ 1

0

|s|α sin(αθ)µ(α)dα ≥

∫ 1

0

sin(αθ)µ(α)dα > 0,

which completes the proof of the lemma.

Therefore, ûn(s) is an analytic function on the main sheet of the Riemann surface of the
complex plane cut along the negative real semi-axis.

On the basis of the above argument and the estimates in Lemma 4.1, from the residue
theorem (see e.g., [53]), for t > 0 we deduce that the inverse Laplace transform of ûn can be
represented by

un(t) =
1

2πi

∫

γ(ε,θ)

ûn(s)e
stds, (4.3)

here γ(ε, θ) (θ ∈ (π2 , π) and ε > 0) denotes a contour in C consisting of the following three
parts:

1. γ−(ε, θ): arg s = −θ, |s| ≥ ε;

2. γc(ε, θ): −θ ≤ arg s ≤ θ, |s| = ε;

3. γ+(ε, θ): arg s = θ, |s| ≥ ε.

Now we introduce the operators S1(t), S2(t) : L
2(Ω) → L2(Ω) for t > 0 which are defined as

follows:

S1(t)ψ :=
∞∑

n=1

1

2πi

∫

γ(ε,θ)

w(s)

sw(s) + λn
estds (ψ, ϕn)ϕn (4.4)

and

S2(t)ψ :=

∞∑

n=1

1

2πi

∫

γ(ε,θ)

1

sw(s) + λn
estds (ψ, ϕn)ϕn. (4.5)

Then the formal representation of the solution to the problem (4.1) is given by

u(t) = S1(t)a+

∫ t

0

S2(t− τ)F (τ)dτ, t ∈ (0, T ). (4.6)

In the following two subsections, we are to show that the above formal representation (4.6)
of the solution is indeed the weak solution to the initial-boundary value problem (4.1) and give
the estimate.

4.2.1 Homogeneous equation

In this section, we are mainly devoted to the investigation of the properties, e.g., wellposedness
and analyticity of the solutions to the initial-boundary value problems (4.1) provided the source
term F vanishes.

Theorem 4.1 For any fixed T > 0. Let F = 0, a ∈ L2(Ω) and µ ∈ C[0, 1] be non-negative

and not vanish in [0, 1]. Then the initial-boundary value problem (4.1) admits a unique solution

u(·, t) ∈ H1
0 (Ω) ∩H

2(Ω) such that

‖∂mt u(·, t)‖H2(Ω) ≤ C‖a‖L2(Ω)
Mmm!

tm+1 log(2T/t)

holds true for t ∈ (0, T ] and m = 0, 1, · · · . Moreover, u(·, t) is real analytic in t ∈ (0, T ] and
can be analytically extended to (0,∞).



4.2 Wellposedness 55

Here and henceforth, C > 0 denotes generic constant which is independent of t, λn, a, u and
may change line by line.

Before giving a proof of Theorem 4.1, some important auxiliary results are formulated and
proved. We first derive estimates of the auxiliary function w(s) which are needed for the proofs
of our main results.

Lemma 4.2 Let s ∈ γ(ε, θ) and suppose µ(≥ 0) ∈ C[0, 1] does not identically zero. Then

|sw(s) + λn| ≥ Cλn

is valid for sufficiently large n, where C > 0 is a constant which is independent of s, n, λn.

Proof. We first introduce two useful parameters Kn and K ′
n defined as follows

∫ 1

0

(Kn)
αµ(α)dα = δ−1λn,

∫ 1

0

(K ′
n)
αµ(α)dα = δλn,

where δ > 0 is small enough. In the case of |s| = |reiθ| ≥ Kn, we see that

|sw(s) + λn| ≥ |Re sw(s) + λn| =

∫ π
2θ

0

|s|α cos(θα)µ(α)dα + λn ≥ λn

if µ(α) = 0 for any α ∈ [ π2θ , 1]. On the other hand, if there exists δ1 ∈ ( π2θ , 1) such that
µ(δ1) > 0, it follows that

|sw(s) + λn| ≥ |Re sw(s) + λn| ≥

∫ 1

δ1

rα| cos(θα)|µ(α)dα − λn ≥ | cos θδ1|

∫ 1

δ1

rαµ(α)dα − λn.

In view of the fact that ∫ δ1

0

rαµ(α)dα ≤
1

2

∫ 1

δ1

rαµ(α)dα (4.7)

for sufficiently large r > 0, hence that

|sw(s) + λn| ≥
| cos(θδ1)|

2

∫ 1

0

rαµ(α)dα − λn ≥
| cos(θδ1)|

2δ
λn − λn ≥ Cλn, r ≥ Kn, n ≥ N,

where N ∈ N is sufficiently large, and δ > 0 is small enough. In the case of |s| ∈ [K ′
n,Kn],

similar to the above argument, we see that

|sw(s) + λn| ≥ Cλn

if µ(α) = 0 for any α ∈ [ π2θ , 1]. On the other hand, if there exists δ1 ∈ ( π2θ , 1) such that
µ(δ1) > 0, we conclude from (4.7) that

|sw(s) + λn| ≥ | Im sw(s)| ≥

∫ 1

δ1

|s|α sin(θα)µ(α)dα ≥ sin θ

∫ 1

δ1

rαµ(α)dα ≥
sin θ

2

∫ 1

0

rαµ(α)dα

for sufficiently large r > 0. Thus noting the definition of K ′
n, we see that for |s| ∈ [K ′

n,Kn],
the estimates

|sw(s) + λn| ≥
sin θ

2

∫ 1

0

(K ′
n)
αµ(α)dα =

δ

2
λn sin θ, n ≥ N

holds true for sufficiently large N ∈ N. In the case of |s| ≤ K ′
n, we find

|sw(s) + λn| ≥ λn − |sw(s)| ≥ λn −

∫ 1

0

rαµ(α)dα ≥ λn −

∫ 1

0

(K ′
n)
αµ(α)dα ≥ (1− δ)λn

for sufficiently small δ > 0. Combining all the estimates above, we finally obtain

|sw(s) + λn| ≥ Cλn, n ≥ N,

where s ∈ γ(ε, θ) and N ∈ N is sufficiently large.



4.2 Wellposedness 56

Lemma 4.3 Under the assumptions in Theorem 4.1. Then the function un(t) defined by

(4.3) admits the following estimates

∣∣∣∣
dmun(t)

dtm

∣∣∣∣ ≤
C|an|

λn

Mm

tm+1 log(2T/t)
, m = 0, 1, · · · (4.8)

for t ∈ (0, T ] and n = 1, 2, · · · . Moreover, |un(t)| ≤ C|an| holds true for t ∈ [0, T ].

Proof. Recalling the representation (4.3), for m = 0, 1, · · · , we see that

dmun(t)

dtm
=

an
2πi

∫

γ(ε,θ)

w(s)sm

sw(s) + λn
estds.

We first evaluate the right-hand side of the above equation for the case where n > N with
sufficiently large N . Letting ε > 1 in the definition of the contour γ(ε, θ), by Lemma 4.2, a
direct calculation yields

∣∣∣∣
dmun(t)

dtm

∣∣∣∣ ≤ C|an|

∫ ∞

ε

|w(s)smest|

λn

∣∣∣
s=reiθ

dr + C|an|

∫ θ

−θ

(ε− 1)εm

λnε log ε
εdρ

=: Im,n,1(t) + Im,n,2(t), n ≥ N,

where t ∈ (0, T ], m = 0, 1, · · · and N is sufficiently large. We start with the estimate for Im,n,2.

Noting that (ε−1)
log ε ≤ C for fixed ε > 1, then the following estimate

Im,n,2(t) ≤
C|an|

λn
εm

holds true for t ∈ (0, T ], m = 0, 1, · · · and n > N . From the definition of w(s), a direct
calculation implies

In,1(t) ≤
C|an|

λn

∫ ∞

ε

∫ 1

0

rm+α−1µ(α)dαe−rt| cos θ|dr.

From the Fubini theorem and noting that the Laplace transform of rm+α−1 is Γ(m+α)
sm+α , it follows

that

Im,n,1(t) ≤
C|an|

λn

∫ 1

0

∫ ∞

ε

rm+α−1e−rt| cos θ|drµ(α)dα ≤
C|an|

λn

∫ 1

0

Γ(m+ α)

(t| cos θ|)m+α
dα.

Therefore

Im,n,1(t) ≤
C|an|m!

| cos θ|m+1λntm

∫ 1

0

t−αdα =
C|an|m!

| cos θ|m+1λn

1− 1
t

log t
≤
C|an|

λn

Mmm!

tm+1 log(2T/t)
, m = 0, 1, · · · ,

where t ∈ (0, T ] and N ∈ N is sufficiently large. Consequently, we have

∣∣∣∣
dmun(t)

dtm

∣∣∣∣ ≤
C|an|

λn

Mmm!

tm+1 log(2T/t)
, t ∈ (0, T ], n ≥ N, m = 0, 1, · · · .

In the case of n ≤ N , similarly to the above argument for n > N , we see that the inequality

|sw(s) + λn| ≥ | Im sw(s)| ≥

∫ 1

δ2

|s|α sin(θα)µ(α)dα ≥ εδ2
∫ 1

δ2

sin(θα)µ(α)dα ≥ C > 0

are valid for |s| ≥ ε, where δ2 ∈ (0, 1) such that µ(δ2) 6= 0, which implies

∣∣∣∣
dmun(t)

dtm

∣∣∣∣ ≤ C|an|

∫ ∞

ε

|w(s)smest|s=reiθdr + C|an|

∫ θ

−θ

(ε− 1)εm

ε log ε
εdρ.
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Again using the above argument, we see that

∣∣∣∣
dmun(t)

dtm

∣∣∣∣ ≤ C|an|
Mmm!

tm+1 log(2T/t)
, m = 0, 1, · · · .

holds true for t ∈ (0, T ] and n < N , which completes the proof of (4.8).
Now let us turn to the estimate |un(t)| ≤ C|an| for t ∈ [0, T ] and n = 1, 2, · · · . Recalling the

representation (4.3), by the arguments similar to (2.19) in [29], we let θ → π and take ε = Kn

to derive that

un(t) =
anλn
2πi

∫ ∞

Kn

r−1e−rtΦ(r)dr +
an
2πi

∫

γ(Kn,π)∩{|s|=Kn}

w(s)

sw(s) + λn
estds

=: In,1(t) + In,2(t),

where t ∈ [0, T ], Kn > 0 (n = 1, 2, · · · ) are defined in Lemma 4.2, and

Φ(r) :=

∫ 1

0 r
α sin(πα)µ(α)dα

(
∫ 1

0
rα cos(πα)µ(α)dα + λn)2 + (

∫ 1

0
rα sin(πα)µ(α)dα)2

.

Based on the notation of Kn, using the proof in Lemma 4.2, we see that the following estimate

∣∣∣∣
∫ 1

0

rα cos(πα)µ(α)dα + λn

∣∣∣∣ ≥ Cλn (4.9)

is valid for r ≥ Kn and n ≥ N with N ∈ N being large enough. Now we define Rn as follows

∫ 1

0

Rαn sin(πα)µ(α)dα = δλn, δ > 0 small enough.

Without loss of generalization, we assumeKn ≤ Rn and break the interval [Kn,∞) into [Kn, Rn]
and [Rn,∞) and have

|In,1(t)| ≤ C|an|λn

∫ Rn

Kn

r−1Φ(r)dr + C|an|λn

∫ ∞

Rn

r−1Φ(r)dr =: Qn,1(t) +Qn,2(t),

where t ∈ [0, T ]. From the estimate (4.9) and the Fubini theorem, the following estimates

Qn,1(t) ≤ C|an|λn

∫ Rn

Kn

r−1

∫ 1

0 r
α sin(πα)µ(α)dα

λ2n
dr

=
C|an|

λn

∫ 1

0

µ(α)

∫ Rn

Kn

rα−1dr sin(πα)dα

are valid for t ∈ [0, T ], hence that

Qn,1(t) ≤
C|an|

λn

∫ 1

0

Rαnµ(α) sin(πα)dα ≤ C|an|

for t ∈ [0, T ] and n ≥ N in view of the definition of Rn. For Qn,2(t), t ∈ [0, T ]. Noting the fact

∣∣∣∣
∫ 1

0

rα cos(πα)µ(α)dα + λn

∣∣∣∣ ≥ 0

implies

Φ(r) ≤
1∫ 1

0 r
α sin(πα)µ(α)dα

, (4.10)
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hence that

Qn,2(t) ≤ C|an|λn

∫ ∞

Rn

1∫ 1

0
rα+1 sin(πα)µ(α)dα

dr

≤
C|an|λn∫ 1

0
Rαn sin(πα)µ(α)dα

=
C

δ
|an|

in view of inequality

∫ ∞

Rn

1∫ 1

0
rα+1 sin(πα)µ(α)dα

dr ≤
C∫ 1

0
Rαn sin(πα)µ(α)dα

, n ≥ N, (4.11)

which can be derived from the L’Hospital theorem. Let us trun to evaluate In,2(t). Noting
that the integrand in In,2(t) is analytic on the complex plane cutting off the negative real axis,
then by the Cauchy theorem, the contour γ(Kn, π) ∩ {|s| = Kn} can be shifted to the contour
γ̃ consisting of the following three parts

1. γ1: s ∈ γ(Kn, π) ∩ {|s| = Kn},
3π
4 < | arg s| ≤ π,

2. γ2: ε < |s| < Kn, | arg s| =
3π
4 ,

3. γ3: |s| = ε, | arg s| < 3π
4 ,

where ε > 0 is sufficiently small, and hence that

|In,2(t)| ≤ C|an|

3∑

j=1

∫

γj

|w(s)|

|sw(s) + λn|
|estds| =:

3∑

j=1

Pn,j(t), t ∈ [0, T ].

Let θ = 3π
4 in Lemma 4.2, we see that

Pn,1(t) ≤ C|an|

∫ π

3π
4

∫ 1

0
Kα
nµ(α)dα

λn
dρ ≤ C|an|, t ∈ [0, T ]

in view of the definition of Kn. Next we give estimates for Pn,3(t), t ∈ [0, T ]. For this, since
ε > 0 is small enough, we see that

Pn,3(t) ≤ C|an|

∫ π
2

−π
2

ε− 1

λnε log ε
εeεt cos ρdρ ≤

C|an|

λn
.

For Pn,2(t). Because of the increasing of the function
∫ 1

0
rαµ(α)dα, we see that Kn > K ′

n and
break the integral in Pn,2 into two parts as follows

Pn,2(t) ≤ C|an|

∫ K′
n

ε

|w(s)||est|

|sw(s) + λn|

∣∣∣
s=re

3π
4

i
dr + C|an|

∫ Kn

K′
n

|w(s)||est|

|sw(s) + λn|

∣∣∣
s=re

3π
4

i
dr

=: Un,1(t) + Un,2(t)

for t ∈ [0, T ]. Again using Lemma 4.2, we conclude that

|w(s)|

|sw(s) + λn|
≤

∫ 1

0
rα−1µ(α)dα

Cλn
, s = re

3π
4 i, ε ≤ r ≤ K ′

n,

hence that

Un,1(t) ≤
C|an|

λn

∫ K′
n

ε

∫ 1

0

rα−1µ(α)dαdr ≤
C|an|

λn

∫ 1

0

(K ′
n)
αµ(α)dα ≤ C|an|, t ∈ [0, T ],
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where we used the Fubini theorem and the definition of K ′
n. For Un,2, first we claim that

Kn

K′
n
≤ C for any n ∈ N. In fact, if not, we can choose a subsequence of Knk

and K ′
nk

such that

Knk

K ′
nk

≥ k, k ∈ N.

But from the definition of Kn and K ′
n, we see that

∫ 1

0 (Knk
)αµ(α)dα

∫ 1

0
(K ′

nk
)αµ(α)dα

= δ−2.

Since µ ∈ C[0, 1] does not identically equal zero, we can choose δ1 ∈ (0, 1) such that µ(δ1) > 0,
therefore

δ−2 =

∫ 1

0 (Knk
/K ′

nk
)α(K ′

nk
)αµ(α)dα

∫ 1

0
(K ′

nk
)αµ(α)dα

≥

∫ 1

δ1
(Knk

/K ′
nk
)α(K ′

nk
)αµ(α)dα

∫ 1

0
(K ′

nk
)αµ(α)dα

≥
kδ1
∫ 1

δ1
(K ′

nk
)αµ(α)dα

∫ 1

0
(K ′

nk
)αµ(α)dα

.

By noting that ∫ δ1

0

(K ′
nk
)αµ(α)dα ≤

1

2

∫ 1

δ1

(K ′
nk
)αµ(α)dα,

for k large enough, we finally conclude that δ−2 ≥ Ckδ1 , which is a contradiction when k is
sufficiently large. Combined the above argument, we see that the following inequalities

Un,2(t) ≤ C|an|

∫ Kn

K′
n

∫ 1

0
rα−1µ(α)dα

∫ 1

0 r
α sin(3π4 α)µ(α)dα

≤ C|an|

∫ Kn

K′
n

r−1dr ≤ C|an| log
Kn

K ′
n

≤ C|an|

are valid for t ∈ [0, T ] and n ≥ N with sufficiently large N ∈ N. Finally we obtain

|un(t)| ≤ C|an|, t ∈ [0, T ], n ≥ N with sufficiently large N ∈ N.

In the case of n ≤ N , we have

un(t) =
anλn
2πi

∫ ∞

ε

r−1e−rtΦ(r)dr +
an
2πi

∫

γ(ε,π)∩{|s|=ε}

w(s)

sw(s) + λn
estds.

In view of estimate (4.10) for Φ, it follows that

|un(t)| ≤ C|an|

∫ ∞

ε

1∫ 1

0
rα+1 sin(πα)µ(α)dα

dr + C|an|

∫ π

−π

ε− 1

log ε
dρ ≤ C|an|. (4.12)

Here we used the inequality similar to (4.11). Then combining the above estimates, we finally
complete the proof of the lemma.

One important point we would like to mention here is that we in fact proved that the formal
solution u(·, t) belongs to the Sobolev space H1

0 (Ω) ∩H
2(Ω) for any t ∈ (0, T ] and satisfies the

differential equation in our initial-boundary value problem (4.1). What we then need to do is
to prove u(·, t) tends to a as t→ 0 in L2(Ω). Indeed the following lemma holds.

Lemma 4.4 Under the same assumptions in Theorem 4.1. Then u tends to a as t → 0 in

the sense of L2(Ω).

Proof. We first show that for each n ∈ N, un(t) tends to an as t → ∞. By noting that the
Laplace transform of 1 is s−1, we first have the representation

un(t)− an =
an
2πi

∫ M+i∞

M−i∞

(
w(s)

sw(s) + λn
−

1

s

)
estds (4.13)
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and so

un(t)− an =
−anλn
π

Im

∫ ∞

0

est

s(sw(s) + λn)

∣∣∣
s=M+ir

idr.

We set M = 1
t and proceed with estimations of the above integral:

|un(t)− an| ≤
|an|λn
π

∣∣∣∣∣

∫ ∞

0

e(ir+
1
t
)t

(ir + 1
t )(sw(s) + λn)

∣∣∣
s= 1

t
+ir

dr

∣∣∣∣∣

≤

∫ ∞

0

C|an|λn

(r2 + 1
t2 )

1
2 |sw(s) + λn|

∣∣∣
s= 1

t
+ir

dr.

Since 0 ≤ arg s < π
2 for s = 1

t + ir, and noting that µ ∈ C[0, 1] does not identically zero, there
exists a constant δ0 and δ1 such that 0 < δ1 < δ0 < 1 and µ(α) > 0 for [δ1, δ0]. We obtain

|sw(s) + λn| ≥

∫ 1

0

|s|α cos(α arg s)µ(α)dα ≥ C
|s|δ0 − |s|δ1

log |s|
.

Applying this to the last estimate for |un(t)− an|, we have

|un(t)− an| ≤ Cλn|an|

∫ ∞

0

log(r2 + 1
t2 )

(r2 + 1
t2 )

1
2

(
(r2 + 1

t2 )
δ0
2 − (r2 + 1

t2 )
δ1
2

)dr

for small enough t > 0. Moreover, since

log(r2 + 1
t2 )

(r2 + 1
t2 )

1+δ0
2

(
(r2 + 1

t2 )
1−δ0

2 − (r2 + 1
t2 )

δ1−δ0
2

) ≤
C

(r2 + 1)
1+δ0

2 (r2 + 1)
1−δ0

4

for small enough t > 0, the Lebesgue dominated convergence theorem can be applied for the
estimate |un(t)− an|. Thus

|un(t)− an| → 0, as t→ 0, n = 1, 2, . . . .

Combining the estimate in Lemma 4.3, we see that |un(t)− an| ≤ C|an|, and then again using
the Lebesgue theorem, we find

lim
t→0

‖u(t)− a‖2L2(Ω) = lim
t→0

∞∑

n=1

|un(t)− an|
2 =

∞∑

n=1

lim
t→0

|un(t)− an|
2 = 0

which completes the proof of Lemma 4.4.

Proof of Theorem 4.1. Now Lemma 4.3 and Lemma 4.4 together show that u(·, t) defined
by (4.3) belongs to H1

0 (Ω) ∩H
2(Ω) and solves the initial-boundary value problem (4.1).

It remains to prove the analyticity of the solution to the problem (4.1). We conclude from
Lemma 4.3 that the following two statements

1. u(·, t) ∈ C∞((0,∞);L2(Ω));

2. For any interval [δ, T ], there exists positive constant M =M(µ, δ, T ) such that

∥∥∥∥
∂mu(·, t)

∂tm

∥∥∥∥
H2(Ω)

≤ CMmm!‖a‖L2(Ω), ∀t ∈ [δ, T ], m = 0, 1, · · ·

hold true for any m = 0, 1, · · · . Therefore u(·, t) is real analytic in t ∈ (0, T ] in H2(Ω), e.g.,
pp. 65-66 in John [27]. Moreover, since δ > 0 and T > 0 can be arbitrarily chosen, we thus
conclude that u(·, t) can be analytically extended to t ∈ (0,∞), which completes the proof of
Theorem 4.1.
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4.2.2 Nonhomogeneous equation

Throughout this section, we assume a = 0 and F ∈ L2(Q) in (4.1), and then establish the
wellposedness for our initial-boundary value problem.

We have

Theorem 4.2 (Wellposedness) Let a = 0, and F ∈ L2(Q). We assume the weight function

µ ∈ C[0, 1] is nonnegative, and there exist α0 ∈ (0, 1) and small δ > 0 such that

µ > 0 in [α0 − δ, α0]. (4.14)

Then the problem (4.1) admits a unique solution u ∈ L2(0, T ;H2(Ω)) satisfying

‖u‖L2(0,T ;H2(Ω)) ≤ C‖F‖L2(Q).

Recalling the positivity of the multinomial Mittag-Leffler function (see, e.g., Lemma 6.4 in
[37]) which plays an essential role for obtaining the H2(Ω)-regularity for the solution provided
in the case of F ∈ L2(Q), we are expected to get the sharp regularity by establishing the
paralysed property of

G(µ)
n (t) :=

1

2πi

∫

γ(ε,θ)

1

sw(s) + λn
estds, t ∈ (0, T ) (4.15)

for each n ∈ N, so that similar arguments are feasible for distributed order time-fractional
diffusion equations.

Lemma 4.5 Assume the weight function µ ∈ C[0, 1] is nonnegative. Then

G(µ)
n (t) < 0, for t ∈ (0, T ) and n ∈ N.

Proof. We first observe that the integral in Jn is the sum of the integral over γc(ε, θ) and the
functions

G
(µ)
n,±(t) =

1

2πi

∫

γ±(ε,θ)

1

sw(s) + λn
estds.

We have

G
(µ)
n,+(t) +G

(µ)
n,−(t) =

1

π
Im

{
eiθ
∫ ∞

ε

erte
iθ

reiθw(reiθ) + λn
dr

}
.

We have to consider the expression
∫ ∞

ε

{
Im
(
eiθerte

iθ
)
Re

(
1

reiθw(reiθ) + λn

)
+ Re

(
eiθerte

iθ
)
Im

(
1

reiθw(reiθ) + λn

)}
dr.

We have
Im
(
eiθerte

iθ
)
= ert cos θ sin(θ + rt sin θ).

It is easy to see that the above expression tends to zero as θ → π, and noting that

Im

(
1

reiπw(reiπ) + λn

)
=

∫ 1

0
rα sin(πα)µ(α)dα

[∫ 1

0
rα cos(πα)µ(α)dα + λn

]2
+
[∫ 1

0
rα sin(πα)µ(α)dα

]2 =: Φn(r),

so that

G(µ)
n (t) =

1

2πi

∫

γc(ε,π)

1

sw(s) + λn
estds−

1

π

∫ ∞

ε

Φn(r)e
−rtdr.

By an argument similar to Lemma 3.1 in [38], we have that the first term on the right hand
side of the above equality tends to 0 as ε→ 0, hence that

G(µ)
n (t) = −

1

π

∫ ∞

0

Φn(r)e
−rtdr < 0

in view of the notation of Φn(r).
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Proof of Theorem 4.2. Now let us take the operator A on the both sides of (4.6), we derive

‖u‖2D(A) =

∥∥∥∥
∫ t

0

AS2(t− τ)F (τ)dτ

∥∥∥∥
2

L2(Ω)

≤

∞∑

n=1

∣∣∣∣
∫ t

0

λnG
(µ)
n (t− τ)(F (τ), ϕn)dτ

∣∣∣∣
2

.

Thus the Young inequality implies

∫ T

0

‖u(t)‖2D(A)dt ≤
∞∑

n=1

(∫ T

0

λn|G
(µ)
n (t)|dt

)2 ∫ T

0

|(F (t), ϕn)|
2 dt.

Moreover, the use of Lemma 4.5 and Fubini’s theorem derive that

∫ T

0

λn|G
(µ)
n (t)|dt =

λn
π

∫ ∞

0

Φn(r)dr

∫ T

0

e−rtdt ≤
Cλn
π

∫ ∞

0

Φn(r)

r
dr ≤ C,

here in the inequality, we used an argument similar to the proof of Lemma 4.3, thereby obtaining
the estimates

∫ T

0

‖u(t)‖2D(A)dt ≤ C

∞∑

n=1

∫ T

0

(F (t), ϕn)
2dt = C‖F‖2L2(Q),

that is
‖u‖L2(0,T ;H2(Ω)) ≤ C‖F‖2L2(Q),

which completes the proof of the theorem.

4.3 Strichartz estimate

Throughout this section, we assume F ∈ L1(0, T ;L2(Ω)) and a ∈ D(Aγ), γ ∈ (0, 1], in (4.1),
and establish the Strichartz estimate (see, e.g., [54]) which should be regarded as the starting
point for some further research concerning the theory of nonlinear fractional diffusion equations.

By an argument similar to the proof for Theorem 1.3 in [32], we have the following Strichartz
estimate for the solution u to the initial-boundary value problem (4.1).

Theorem 4.3 (Strichartz estimates) Let a ∈ D(Aγ), γ ∈ (0, 1] and µ satisfy (4.14). As-

sume that 1 ≤ q ≤ ∞ satisfies





q = ∞,
d

4
< γ < 1,

2 < q <∞, γ =
d

4
,

q =
2d

d− 4γ
, 0 < γ <

d

4
,

(4.16)

and we set F ∈ L1(0, T ;L2(Ω)). Then for any 1 ≤ p < 1
1−α0(1−γ)

, the weak solution u to (4.1)

admits

‖u‖Lp(0,T ;Lq(Ω)) ≤ C(‖a‖H2γ (Ω) + ‖F‖L1(0,T ;L2(Ω))).

Before proceeding to the proof of the Strichartz estimate of the solution to the initial-
boundary value problem (4.1) stated in Theorem 4.3, we introduce some key lemmas for showing
the theorem.

Lemma 4.6 Let ε > 0 and γ ∈ [0, 1] be arbitrarily fixed constants. We assume the weight

function µ fulfils the condition (4.14). Then for s = reiθ satisfying r > ε and θ ∈ (π2 , π), there
exists a positive constant C = C(α0, γ, µ, ε, θ) such that

λγn| Im (sw(s))|1−γ

|sw(s) + λn|
≤ C
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Proof. Indeed, in the case of |Re (sw(s))| ≤ 1
2λn, we see that (Re (sw(s)) + λn)

2 ≥ 1
4λ

2
n,

therefore
λγn| Im (sw(s))|1−γ

|sw(s) + λn|
≤

λγn( Im (sw(s)))1−γ√
1
4λ

2
n + ( Im (sw(s)))2

≤ C.

On the other hand, for |Re (sw(s))| ≥ 1
2λn, by recalling the definition of w(s), from the in-

equality | cos(αθ)| ≤ C sin(αθ) for α ∈ [α0, 1] and θ ∈ (π2 , π), we can conclude the following
estimates

|Re (sw(s))| =

∫ 1

0

|s|α| cos(αθ)|µ(α)dα ≤ C

∫ 1

0

|s|α sin(αθ)µ(α)dα = C Im (sw(s)) (4.17)

are valid for s = reiθ satisfying r > ε and θ ∈ (π2π), hence we have

λγn| Im (sw(s))|1−γ

|sw(s) + λn|
≤
λγn( Im (sw(s)))1−γ√

( Im (sw(s)))2
≤ 2γ

|Re (sw(s))|γ | Im (sw(s))|1−γ

Im (sw(s))
≤ C.

This completes the proof of the lemma.

Lemma 4.7 Assume the weight function µ ∈ C[0, 1] is nonnegative and satisfies (4.14).
Then there exist C = C(µ, γ, τ, T ) > 0 such that

‖AτS1(t)ψ‖L2(Ω) ≤ C‖ψ‖H2γ (Ω)t
γ−τ , t ∈ (0, T ], γ ∈ (0, 1], τ ≥ γ. (4.18)

Proof. Recalling the notations (4.3) and (4.4), it is sufficient to give an estimate for E
(µ)
n (t)

defined by

E(µ)
n (t) :=

1

2πi

∫

γ(ε,θ)

w(s)est

sw(s) + λn
estds

for t ∈ (0, T ), n ∈ N. For this, we have

|E(µ)
n (t)| ≤ C

(∫

γc(ε,θ)

+

∫

γ±(ε,θ)

)
|w(s)est|

|sw(s) + λn|

∣∣∣
s=reiθ

dr =: En,c(t) + En,±(t),

where t ∈ (0, T ] and n ∈ N.
Letting ε > 0 in the definition of the contour γ(ε, θ) small enough, we have En,c(t) ≤

C
λn

is
valid for t ∈ (0, T ] and n ∈ N. Next, for En,±(t), from the estimate (4.17), a direct calculation
implies

En,±(t) ≤C

∫ ∞

ε

Im (sw(s))

|sw(s) + λn|
e−rt| cos θ|

dr

r
.

We break up the integral into (ε, ε0λn) and (ε0λn,∞) to derive

En,±(t) ≤ C

(∫ ε0λn

ε

+

∫ ∞

ε0λn

)
Im (sw(s))

|sw(s) + λn|
e−rt| cos θ|

dr

r
=: E

(1)
n,±(t) + E

(2)
n,±(t),

where ε0 > 0 is small enough, and estimate them separately. For E
(1)
n,±(t), since |s| ≤ ε0λn

yields |sw(s) + λn| ≥ Cλn, and noting that | Im (sw(s))| ≤ Cr, we have

E
(1)
n,±(t) ≤

C

λn

∫ ε0λn

ε

e−rt| cos θ|dr =
C

λn

∫ ε0λn

ε

1

rτ−γtτ−γ
dr ≤

Cλγn
λτn

tγ−τ ,

where we choose τ ≥ γ. Moreover, in view of Lemma 4.6, it follows that

E
(2)
n,±(t) ≤ C

∫ ∞

ε0λn

r−1e−rt| cos θ|dr ≤ C

∫ ∞

ε0λn

r−1 1

rτ−γtτ−γ
dr ≤

Cλγn
λτn

tγ−τ ,
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where τ ≥ γ. Consequently, we have

|E(µ)
n (t)| ≤

Cλγn
λτn

tγ−τ , t ∈ (0, T ), τ ≥ γ, γ ∈ (0, 1].

Thus for ψ ∈ D(Aγ), we find

‖AτS1(t)ψ‖
2
L2(Ω) =

∞∑

n=1

λ2τn |E(µ)
n (t)2|(ψ, ϕn)

2 ≤ Ct2(γ−τ)
∞∑

n=1

λ2γn (ψ, ϕn)
2,

that is
‖AτS1(t)ψ‖L2(Ω) ≤ C‖ψ‖D(Aγ)t

γ−τ , t ∈ (0, T ), τ ≥ γ.

This completes the proof of the lemma.

Now let us turn to the evaluation of the operator S2(t).

Lemma 4.8 Under the same assumptions in Lemma 4.7. Then there exist C = C(µ, κ, κ0, T ) >
0 such that

‖AκS2(t)φ‖L2(Ω) ≤ C‖φ‖L2(Ω)t
−κ0 , 0 < t < T,

where κ ∈ [0, 1), and κ0 ∈ (1− α0(1− κ), 1).

Proof. For 0 < t ≤ T , we recall (4.15), and have

G(µ)
n (t) =

1

2πi

(∫

γc(ε,θ)

+

∫

γ±(ε,θ)

)
est

sw(s) + λn
ds =: Gn,1(t) +Gn,1(t).

We set ε > 0 small enough, and then by an argument used in Lemma 4.7, we obtain that
|Gn,1(t)| ≤

C
λn
, 0 < t ≤ T, n ∈ N. Now we consider the integral Gn,2(t) with 0 < t ≤ T .

Again, breaking the integral in Gn,2 into the following two parts (ε, ε0λn) and (ε0λn,∞), and
employing the similar argument used in Lemma 4.7 give

Gn,2(t) ≤ C

∫ ε0λn

ε

1

λn
e−rt| cos θ|dr + C

∫ ∞

ε0λn

1

|sw(s) + λn|
e−rt| cos θ|dr

≤
C

λκnt
κ
+
C

λκn

∫ ∞

ε0λn

λκn( Im (sw(s)))1−κ

|sw(s) + λn|

e−rt| cos θ|

( Im (sw(s)))1−κ
dr

where ε, ε0 > 0 are small enough. We further note that the assumption (4.14) yields

Im (sw(s)) =

∫ 1

0

rα sin(θα)µ(α)dα ≥ C

∫ α0

α0−δ

rαdα =
Crα0

log r
, r > ε0λn.

Then we can choose κ0 ∈ (0, 1) such that κ0 > 1− α0(1− κ), hence that

|Gn,2(t)| ≤
C

λκnt
κ
+
C

λκn

∫ ∞

ε0λn

1

rα0(1−κ)

1

rκ0tκ0
dr ≤

C

λκnt
κ0
, 0 < t < T.

Combining all the above estimates for Gn,1 and Gn,2, it follows that

|G(µ)
n (t)| ≤

C

λκnt
κ0
, n ∈ N, 0 < t < T,

where 1− α0(1− κ) < κ0 < 1.
Finally, for φ ∈ L2(Ω), we obtain

‖AκS2(t)φ‖
2
L2(Ω) =

∞∑

n=1

λ2κn |G(µ)
n (t)2|(φ, ϕn)

2 ≤ Ct−2κ0

∞∑

n=1

(φ, ϕn)
2,

that is
‖AκS2(t)φ‖L2(Ω) ≤ C‖φ‖L2(Ω)t

−κ0 , t ∈ (0, T ),

where 1− α0(1− κ) < κ0 < 1. The proof of the lemma is complete.
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Now we are ready to give the proof of Theorem 4.3

Proof of Theorem 4.3. Let a ∈ D(Aγ), γ ∈ (0, 1], and F ∈ L1(0, T ;L2(Ω)), taking the
operator Aκ, γ ≤ κ < 1, on both sides of (4.6), we conclude from Lemma 4.7 and Lemma 4.8
that

‖AκS1(t)a‖L2(Ω) ≤ ‖Aγa‖L2(Ω)t
γ−κ

and
‖AκS2(t− τ)F (τ)‖L2(Ω) ≤ (t− τ)−κ0‖F (τ)‖L2(Ω), 0 < t < T,

where κ ≥ γ and 1− α0(1− κ) < κ0 < 1.
Consequently, by letting κ = γ, and for p ∈ [1, 1

κ0
), from Young’s inequality, we have

(∫ T

0

‖u(t)‖pD(Aγ)dt

) 1
p

≤ CT 1/p‖Aγa‖L2(Ω) + C

(∫ T

0

t1−κ0pdt

) 1
p ∫ T

0

‖F (t)‖L2(Ω)dt,

that is
‖u‖Lp(0,T ;H2γ (Ω)) ≤ CT 1/p‖a‖H2γ(Ω) + CT 1/p−κ0‖F‖L1(0,T ;L2(Ω)).

By the Sobolev embedding theorem, for all 0 < t < T , we have

‖u(t)‖Lq(Ω) ≤ C‖u(t)‖H2γ(Ω),

where 1 ≤ q ≤ ∞ satisfies (4.16). Applying this estimate, we obtain

‖u‖Lp(0,T ;Lq(Ω)) ≤ CT 1/p‖a‖H2γ(Ω) + CT 1/p−κ0‖F‖L1(0,T ;L2(Ω))

where κ0 such that 1− α0(1− γ) < κ0 < 1 which completes the proof of the theorem.

Remark 4.1 If a = 0 and F ∈ L1(0, T ;L2(Ω)) does not vanish, then Lemma 4.8 asserts the
solution u ∈ Lp(0, T ;D(Aγ)), where γ can be arbitrarily close to 1 but is never touch 1, except
for the special case that F is in L2(Q). The technical reason is that only in case of F ∈ L2(Q)
one can take advantage of the property in Lemma 4.5 for getting the H2(Ω)– regularity.

4.4 Long-time asymptotic behavior

In this section, we mainly discuss the long-time asymptotic behavior of solutions to the initial-
boundary value problem (4.1) under the assumption that the source term F = 0, and compare
our results with those obtained for the initial-boundary value problems for the multi-term
time-fractional diffusion equations (see [8], [34], [37] and [43]).

Henceforth C denotes a positive constant that is independent of the time variable t, the
initial condition a, and the solution u, but may depend on Ω, d, aij and µ.

Theorem 4.4 Let µ(≥ 0) ∈ C[0, 1] not vanish in [0, 1]. We further assume a ∈ L2(Ω), and
F = 0.

Then

‖u( · , t)‖H2(Ω) ≤ C‖a‖L2(Ω)(log t)
−1

for the solution u to the initial-boundary value problem (4.1) for sufficiently large t > 0.
Moreover, if the weight function µ(α) admits the representation µ(α) = µ(0)+o(αδ), µ(0) >

0, with some δ > 0 as α → 0, then the asymptotic formula

‖u( · , t)− µ(0)
log tA

−1a‖H2(Ω) = o((log t)−1)‖a‖L2(Ω), t→ ∞

holds true. The last formula holds uniformly dependently on Ω, the spatial dimension d, the
initial condition a, the coefficients aij of the spatial differential operator of the equation (4.1),
and the exponent δ of the asymptotic expansion of the weight function µ.
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In particular, the second part of Theorem 4.4 means that the decay rate (log t)−1 of a
solution u to the problem under consideration is the best possible one. More precisely, we have
the following statement:

Corollary 4.1 Let the weight function µ admit µ(α) = µ(0) + o(αδ) with some δ > 0 as

α → 0. Moreover suppose that

‖u( · , t)‖H2(Ω) = o((log t)−1), as t→ ∞.

Then u(x, t) = 0 for all x ∈ Ω and t > 0.

Let us recall that the multi-term time-fractional diffusion equation

ℓ∑

j=1

qj∂
αj

t u+Au = 0, (x, t) ∈ Ω× (0,∞)

can be formally obtained from the equation (4.1) by setting the weight function µ(α) =∑ℓ
j=1 qjδ(α − αj), 0 < αℓ < · · ·α1 < 1, 0 < qj , j = 1, . . . , ℓ. In Chapter 2, the asymptotic

behavior of solutions to initial-boundary value problems for the multi-term fractional diffusion
equations was investigated. In particular, it was shown there that the decay rate of solution is
t−αℓ as t → ∞, αℓ being the smallest exponent of the multi-term fractional derivative. Thus a
multi-term fractional diffusion equation cannot simulate a very slow logarithmic decay rate of
its solutions. In other words, distributed order fractional diffusion equation (4.1) is completely

different from the case of a singular measure µ of the type µ(α) =
∑ℓ

j=1 qjδ(α− αj), which is
a multi-term fractional diffusion equation.

The proof of Theorem 4.4 will be complete if we show the asymptotic bahavior of the solution
un to the Cauchy problem (4.2). In fact, (4.2) is a Cauchy problem for an ordinary fractional
differential equation of distributed orders. For a fixed value of λn, this problem was investigated
in [29] and [30]. In this part of the section, we follow the analysis method employed in [30]
for all λn. Our target is to describe long-time asymptotic behavior of the solution un(t) to the
Cauchy problem (4.2). To reach this aim, we need a more detailed analysis compared to [29]
and [30].

We start from

Lemma 4.9 Let µ ∈ C[0, 1] be a non-negative function satisfying the conditions µ(0) > 0
and

µ(α) = µ(0) + o(αδ), α→ 0, (4.19)

where δ is a positive constant. Then the estimate
∣∣∣∣

w(s)

sw(s) + λn
−

1

λn

µ(0)(s− 1)

s log s

∣∣∣∣ ≤
C

λn|s|(log 1/|s|)1+δ
, 0 < |s| < ε0 (4.20)

holds true, where C > 0 is a constant independent of λn and s and ε0 > 0 is sufficiently small.

Proof. First we have
∣∣∣∣

w(s)

sw(s) + λn
−
µ(0)(s− 1)

λns log s

∣∣∣∣ ≤
∣∣∣∣

w(s)

sw(s) + λn
−
w(s)

λn

∣∣∣∣+
∣∣∣∣
w(s)

λn
−
µ(0)(s− 1)

λns log s

∣∣∣∣
=:Qn,1(s) +Qn,2(s).

Since ε0 is sufficiently small and λn ≥ λ1 > 0, the function Qn,1(s) can be estimated by Lemma
4.2:

Qn,1(s) =
|sw2(s)|

λn|sw(s) + λn|
≤ C

1
|s| (

|s|−1
log |s|)

2

λ2n
≤

C

λn|s|(log 1/|s|)2
, 0 < |s| < ε0.

As to Qn,2(s), we employ the integral
∫ 1

0 s
α−1dα = s−1

s log s and the asymptotic formula (4.19) to
obtain

Qn,2(s) =
1

λn

∣∣∣∣
∫ 1

0

sα−1µ(α)dα −

∫ 1

0

sα−1µ(0)dα

∣∣∣∣ ≤
C

λn

∫ 1

0

|s|α−1αδdα
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and then the inequality

Qn,2(s) ≤
C

λn|s|

∫ 1

0

e−α log(1/|s|)αδdα, 0 < |s| < ε0.

After the change of variables α log(1/|s|) → α in the last integral, we have

Qn,2(s) ≤
C

λn|s|(log 1/|s|)δ+1

∫ ∞

0

e−ααδdα ≤
C

λn|s|(log 1/|s|)δ+1
.

We thus obtain the estimate
∣∣∣∣

w(s)

sw(s) + λn
−

1

λn

µ(0)(s− 1)

s log s

∣∣∣∣ ≤
C

λn

1

|s|(log 1/|s|)1+δ
, 0 < |s| < ε0,

which completes the proof of the lemma.

Now we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. For n ≥ N with sufficiently large N , the representation (4.3) and
Lemma 4.2 yield

|un(t)| ≤
C|an|

λn

∫ ∞

ε

|w(reiθ)|ert cos θdr +
C|an|

λn

∫ θ

−θ

ε− 1

log ε
eεt cos ρdρ =: In,1(t) + In,2(t).

Taking ε = 1
t , we can assert that

In,2(t) ≤
C|an|

λn

∫ θ

−θ

1

log 1
ε

eεt cos ρdρ =
C|an|

λn

∫ θ

−θ

1

log t
ecos ρdρ ≤

C|an|

λn log t

for sufficiently large t. In order to estimate In,1(t), we proceed as follows:

In,1(t) =
C|an|

λn

∫ ∞

1
t

|w(reiθ)|ert cos θdr ≤
C|an|

λn

∫ ∞

0

∫ 1

0

rα−1dαert cos θdr

for sufficiently large t. From the Fubini’s lemma, and noting that

∫ ∞

0

rα−1e−rsdr =
Γ(α)

sα
,

we arrive at the desired estimate

In,1(t) ≤
C|an|

λn

∫ 1

0

Γ(α)

(t| cos θ|)α
dα ≤

C|an|

λn

1− 1/t

log t
≤

C|an|

λn log t
, n ≥ N

for sufficiently large N and sufficiently large t. If n < N , then we note from Lemma 4.1 that
|sw(s) + λn| > C > 0, and estimate the integral (4.3) as follows:

|un(t)| ≤C|an|

∫ ∞

1/t

∫ 1

0

rα−1dαert cos θdr + C|an|

∫ θ

−θ

1/t− 1

log 1/t
ecos ρdρ

for sufficiently large t. Similarly to the case n ≥ N we see that the inequality |un(t)| ≤
C|an|
log t

holds true if t is large enough and n < N .
Collecting all the above estimates, we obtain

|un(t)| ≤
C|an|

λn log t
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for sufficiently large t and n = 1, 2, . . . . It follows from the representation (4.3) that

‖u(·, t)‖2H2(Ω) ≤ C
∞∑

n=1

λ2nu
2
n ≤

∞∑

n=1

λ2n
Ca2n

λ2n(log t)
2
≤
C‖a‖2L2(Ω)

(log t)2
,

that is, ‖u(·, t)‖H2(Ω) ≤ C‖a‖L2(Ω)(log t)
−1 for sufficiently large t, which proves the first part

of Theorem 4.4.
Now we assume that µ(α) = µ(0) + o(αδ), δ > 0 as α → 0 and rewrite the representation

(4.3) as follows:

un(t) =
an
2πi

∫

γ(ε,θ)

( w(s)

sw(s) + λn
−
µ(0)(s− 1)

λns log s

)
estds

+
an
2πi

∫

γ(ε,θ)

µ(0)(s− 1)

λns log s
estds =: Rn,1(t) +Rn,2(t).

In order to estimate Rn,1(t), for sufficiently large t, we set ε := 1
t < ε0 in the definition of the

contour γ(ε, θ) and employ inequality (4.20) to obtain

|Rn,1(t)| ≤

∫

γ(ε,θ)∩{|s|<ε0}

C|an|

λn|s|(log 1/|s|)δ+1
|estds|

+ C

∫

γ(ε,θ)∩{|s|≥ε0}

(
|w(s)an|

|sw(s) + λn|
+
µ(0)|an||s− 1|

λn|s|| log s|

)
|estds|

≤

∫ ε0

1
t

C|an|

λnr(log 1/r)δ+1
ert cos θdr +

∫ θ

−θ

C|an|

λn
1
t (log t)

δ+1
ecos ρ 1

t dρ

+ C|an|

∫ ∞

ε0

∫ 1

0 r
α−1µ(α)dα + µ(0)

∫ 1

0 r
α−1dα

λn
ert cos θdr =:

3∑

j=1

Hn,j(t).

Here in the last inequality, we used the Lemma 4.2 and facts that
∫ 1

0
sα−1dα = s−1

s log s and

|w(s)| ≤
∫ 1

0 |s|α−1µ(α)dα. We start with the integral Hn,1(t). Noting that r(log 1/r)δ+1 ≥
1
t (log t)

δ+1 for 1
t ≤ r ≤ ε0, where t is sufficiently large and ε0 > 0 is small enough, we arrive at

the estimate

Hn,1(t) ≤

∫ ε0

1
t

C|an|

λn
1
t (log t)

δ+1
ert cos θdr ≤

C|an|

λn(log t)δ+1

Now we consider the integral Hn,2(t). A direct calculation yields

Hn,2(t) ≤
C|an|

λn(log t)δ+1
, n ≥ N.

Now let us consider the integral Hn,3(t). In view of the inequality ert cos θ ≤ C
|rt cos θ|2 for r > ε0,

we have

|Hn,3(t)| ≤
C|an|

λn

∫ ∞

ε0

∫ 1

0

rα−1dα
C

r2t2
dr ≤

C|an|

λnt2
, n > N.

for sufficiently large t and N . Now we collect the estimates for the integrals Hn,j(t), j = 1, 2, 3
and thus obtain the inequality

Rn,1 ≤
C|an|

λn(log t)δ+1
, n > N

for sufficiently large t and N .
In order to estimate Rn,2(t), we shall show that Rn,2(t) is the Laplace transform of a

positive function, which implies that the function Rn,2(t) is completely monotone. Once we
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have established this property of Rn,2(t), the Karamata-Feller Tauberian theorem (see e.g.,
Chapter XIII in [15]) along with the asymptotic formula

s− 1

s log s
=

1

s log 1/s
−

1

log 1/s
=

1

s log 1/s
+

o(1)

s log 1/s
, s→ 0,

leads to the asymptotic formula

Rn,2(t) =
µ(0)an
λn log t

+
o(1)an
λn log t

, t → ∞,

Consequently, we arrive at the desired representation

un(t) =
µ(0)an
λn log t

+
an

λn log t
o(1), t → ∞.

Now it remains to show that the function Rn,2(t) is indeed the Laplace transform of a positive
function. First we note that Rn,2(t) is independent of θ and ε because the function s−1

s log s
is analytic on the main sheet of the Riemann surface for the logarithmic function. Now the
function Rn,2(t) is represented in the form

Rn,2(t) =
anµ(0)

2πλni

∫

γc(ε,θ)

s− 1

s log s
estds

+
anµ(0)

2πλni

∫

γ±(ε,θ)

s− 1

s log s
estds =: Vn,1(t) + Vn,2(t).

For the function Vn,1(t), the arguments similar to the estimation of In,2(t) in the first part of
our proof lead to the relation

|Vn,1(t)| ≤
C|an|

λn

eεt

log 1/ε
→ 0, ε→ 0. (4.21)

As to the function Vn,2(t), we first represent it in the form

Vn,2(t) =
anµ(0)

πλn
Im

∫ ∞

ε

reiθ − 1

reiθ log(reiθ)
ere

iθteiθdr

=
anµ(0)

πλn
Im

∫ ∞

ε

1

r

reiθ − 1

(log r) + iθ
ere

iθtdr.

Because the last integral is independent of the parameter θ, we consider its limit as θ → π. We
thus get the representation

Vn,2(t) =
anµ(0)

πλn
Im

∫ ∞

ε

−r − 1

(log r) + iπ

e−rt

r
dr =

anµ(0)

λn

∫ ∞

ε

r + 1

(log r)2 + π2

e−rt

r
dr

=
anµ(0)

λn

∫ 1

ε

r + 1

(log r)2 + π2

e−rt

r
dr +

anµ(0)

λn

∫ ∞

1

r + 1

(log r)2 + π2

e−rt

r
dr.

Employing the variables substitution log r → r, we see that

∫ 1

0

1

r

r + 1

(log r)2 + π2
e−rtdr =

∫ 0

∞

er + 1

r2 + π2
e−ertdr

is finite for any t > 0 and the following limit value exists:

lim
ε→0

lim
θ→π

Vn,2(t) =
anµ(0)

λn

∫ ∞

0

1

r

r + 1

(log r)2 + π2
e−rtdr.
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The last formula along with the limit value (4.21) leads to

Rn,2(t) =
anµ(0)

λn

∫ ∞

0

r + 1

r

1

(log r)2 + π2
e−rtdr,

which proves that the function Rn,2(t) is indeed completely monotonic, which is our desired
conclusion.

Summarizing now the above estimates for the coefficients un(t) of the Fourier series (4.6),
we finally obtain the asymptotic formula

u( · , t) =
µ(0)

log t

∞∑

n=1

an
λn
ϕn +

o(1)

log t

∞∑

n=1

an
λn
ϕn

=
µ(0)

log t
A−1a+

o(1)

log t
A−1a, t→ ∞,

which implies

‖u( · , t)− µ(0)
log tA

−1a‖H2(Ω) = o((log t)−1)‖a‖L2(Ω), t→ ∞.

This finishes the proof of Theorem 4.4.

Proof of Corollary 4.1. The relation

‖(log t)u(·, t)− µ(0)A−1a‖H2(Ω) = o(1)‖a‖L2(Ω) → 0, t→ ∞

easily follows from the second part of Theorem 4.4. By the assumption of the corollary,
‖(log t)u(·, t)‖H2(Ω) → 0 as t → ∞. Hence the relation µ(0)A−1a = 0 is valid. Since µ(0) 6= 0,
the equation A−1a = 0 is satisfied. By the conditions we posed on the operator A, the above
equation possesses only one trivial solution a = 0. In this case, the initial-boundary value
problem (4.1) has only the trivial solution, too, e.g., u(x, t) = 0 for x ∈ Ω and t > 0. This
completes the proof of Corollary 4.1.

4.5 Lipschitz stability with respect to distributed orders

and coefficients

Based on the above theorem, in this section, we follow the framework of the argument used in
[37] to further verify the Lipschitz continuous dependency of the solution to (2.17) with respect
to µ and the diffusion coefficient in A, which is fundamental for the optimization approach to
the related coefficient inverse problem.

More precisely, we evaluate the difference between the solutions u and ũ to





D
(µ)
t u = LDu in Q,

u|t=0 = a in Ω,

u = 0 on Σ

(4.22)

and 



D
(µ̃)
t ũ = LD̃ũ in Q,

ũ|t=0 = a in Ω,

ũ = 0 on Σ

(4.23)

respectively, where LDu(x, t) := div(D(x)∇u(x, t)) and D denotes the diffusion coefficient. To
this end, we restrict the coefficients in the admissible sets

Wα0 := {µ ∈ C[0, 1]; µ ≥ 0, µ(α0) > 0},

U := {D ∈ C1(Ω); D ≥ δ in Ω , ‖D‖C1(Ω) ≤M}.
(4.24)
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Lemma 4.10 Under the assumptions in Theorem 4.1. We further assume a ∈ H2γ(Ω) with
(0 < γ ≤ 1) and µ satisfies (4.14). Then the solution u(t) to the initial-boundary value problem

(4.1) with F = 0 admits the following estimate

‖∂tu(t)‖L2(Ω) ≤ C‖a‖H2γ(Ω)t
−γ0 , t ∈ (0, T ], (4.25)

where γ0 > 1− α0γ.

Proof. We will first show ∣∣∣∣∣
dE

(µ)
n (t)

dt

∣∣∣∣∣ ≤ Cλγnt
−γ0 , γ ∈ (0, 1)

for t ∈ (0, T ] and n = 1, 2, · · · .
For this, in view of the Cauchy theorem and notation (4.15), we see that

dE
(µ)
n (t)

dt
=

1

2πi

∫

γ(ε,θ)

sw(s)

sw(s) + λn
estds =

−1

2πi

∫

γ(ε,θ)

λn
sw(s) + λn

estds = −λnG
(µ)
n .

Now taking κ = 1− γ in the estimate in Lemma 4.8, it follows that

λn|G
(µ)
n (t)| ≤

Cλγn
tγ0

, 1− α0γ < γ0 < 1.

Consequently, we have

∣∣∣∣∣
dE

(µ)
n (t)

dt

∣∣∣∣∣ ≤
Cλγn
tγ0

, t ∈ (0, T ], γ ∈ (0, 1], n ∈ N,

where 1− α0γ < γ0 < 1. Now combining the above estimates, from (4.3) and (4.6), we find

‖∂tu(t)‖L2(Ω) =

∞∑

n=1

(a, ϕn)
2

∣∣∣∣∣
dE

(µ)
n (t)

dt

∣∣∣∣∣

2

≤

∞∑

n=1

λ2γn (a, ϕn)
2t−2γ0 ,

which derives

‖∂tu(t)‖L2(Ω) ≤ C‖a‖H2γ (Ω)t
−γ0 , 0 < γ ≤ 1, 1− α0γ < γ0 < 1,

which completes the proof of Lemma 4.10.

Under these settings, we can show the following result on Lipschitz stability.

Theorem 4.5 Fix γ ∈ (0, 1] and κ ∈ (0, 1). Let u and ũ be the solutions to (4.22) and

(4.23) respectively, where

a ∈ D(Aγ), µ ∈ Wα0 , D, D̃ ∈ U

and Wα0 , U are defined in (4.24). Then for any κ0 ∈ (1− α0(1− κ), 1) and 1 ≤ p < 1
κ0
, there

exists a constant C > 0 depending only on a, T , κ, κ0, Wα0 and U such that

‖u− ũ‖Lp(0,T ;D(Aκ)) ≤ C
(
‖µ− µ̃‖C[0,1] + ‖D − D̃‖C1(Ω)

)
. (4.26)

The above theorem extends a similar result in [37] for the multi-term case. It is also
fundamental for the optimization method for an inverse problem of determining µ,D(x) by
extra data of the solution.

As a direct application of Lemma 4.8 and Lemma 4.10, it is straightforward to show the
Lipschitz stability of the solution with respect to various coefficients.
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Proof of Theorem 4.5. Let γ, κ ∈ (0, 1], a ∈ D(Aγ) and C > 0 be a general constant which
depends only on γ, κ, α0, a, Wα0 and U . First, by taking the difference of systems (4.23) and
(4.22), it turns out that the system for v := u− ũ reads





D
(µ)
t v = LDv + F in Q,

v|t=0 = 0 in Ω

v = 0 on Σ,

where
F := D

(µ̃−µ)
t ũ+ LD−D̃ũ.

Therefore, it suffices to dominate F by the difference of coefficients.
To this end, first it is readily seen from Lemma 4.7 and Lemma 4.10 immediately yields

‖u‖L1(0,T ;H2(Ω)) ≤ CT γ , ‖∂tu‖L1(0,T ;L2(Ω)) ≤ CTα0γ , (4.27)

where µ(α0) > 0, and α0 ∈ (0, 1). Therefore, together with D, D̃ ∈ C1(Ω), we see

‖LD̃−Dũ‖L1(0,T ;H2(Ω)) ≤ C‖D − D̃‖C1(Ω)‖ũ‖L1(0,T ;H2(Ω)).

On the other hand, a direct application of the definition of the distributed order derivative, we
obtain

|D
(µ̃−µ)
t ũ(t)| ≤ ‖µ̃− µ‖C[0,1]

∫ 1

0

|∂αt ũ(t)|dα ≤ ‖µ̃− µ‖C[0,1]

∫ 1

0

1

Γ(1 − α)

∫ t

0

|∂rũ(r)|

(t− r)α
drdα.

Therefore the combination of the above estimate and Young’s inequality immediately yields
that

‖D
(µ̃−µ)
t ũ‖L1(0,T ;L2(Ω)) ≤ C‖µ̃− µ‖C[0,1]

∫ 1

0

(∫ T

0

t−α

Γ(1 − α)
dt

)(∫ T

0

|∂tũ(t)|dt

)
dα

≤C‖µ̃− µ‖C[0,1]

∫ 1

0

T 1−α

(1− α)Γ(1 − α)
dα = C‖µ̃− µ‖C[0,1]

∫ 1

0

Tα0γT 1−α

Γ(2− α)
dα,

here α0 ∈ (0, 1) such that µ(α0) > 0, and in the last equality, we used the property of the
Gamma function Γ(1+α) = αΓ(α), α > 0. Now from the analyticity of the Gamma, it follows
that

‖D
(µ̃−µ)
t ũ‖L1(0,T ;L2(Ω)) ≤

CTα0γ

| logT |
‖µ̃− µ‖C[0,1].

Therefore, we see F ∈ L1(0, T ;L2(Ω)) from (4.27), and that

‖F‖L1(0,T ;L2(Ω)) ≤
CTα0γ

logT
‖µ− µ̃‖C[0,1] + CT γ‖D − D̃‖C1(Ω).

Consequently, it is straightforward to employ Lemma 4.8 to obtain

‖u− ũ‖Lp(0,T ;D(Aκ)) ≤CT
1/p−κ0‖F‖L1(0,T ;L2(Ω))

≤
CT 1/p+α0γ−κ0

| logT |
‖µ− µ̃‖C[0,1] + CT 1/p+γ−κ0‖D − D̃‖C1(Ω),

where α0 ∈ (0, 1) satisfies µ(α0) > 0, γ ∈ (0, 1], 1 ≤ p < 1
κ0
, and κ ∈ [0, 1) such that

1− α0(1− κ) < κ0 < 1.
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4.6 Inverse problem

As we mentioned above, the distributed order time-fractional diffusion equations can be re-
garded as a kind of generalization for the multi-term case, it is natural to expect the parallel
generalization for the inverse problems,

For the statement of our main problem, we introduce an admissible set of unknown weight
function. We set

U = {µ ∈ C[0, 1];µ ≥ 0, 6≡ 0}.

Problem 4.1 Assume F = 0 in (4.1). Let x0 ∈ Ω be fixed and let I ⊂ (0, T ) be a non-empty

open interval. Let u, v be the solutions to the initial-boundary value problems (4.1) with respect

to µ1, µ2 ∈ U separately. We will investigate whether u = v in {x0} × I can derive µ1 = µ2.

This is our inverse problem, and in this section we discuss the uniqueness as the fundamental
theoretical topic for the inverse problem and attempt to establish results parallel to that for
the multi-term case.

We have

Theorem 4.6 (Uniqueness) Let µ1, µ2 ∈ U . Assume that a ≥ 0 in Ω, a 6≡ 0 and a ∈ D(Aγ)
with γ > max{ d2 + δ − 1, 0}, δ > 0 can be sufficiently small. Then µ1 = µ2 provided

u(x0, t) = v(x0, t), x0 ∈ Ω, t ∈ I.

Proof. From the arguments in Section 4.2.1, we know that

u(·, t) =
1

2πi

∞∑

n=1

∫ M+i∞

M−i∞

w1(s)

sw1(s) + λn
estds(a, ϕn)ϕn, (4.28)

v(·, t) =
1

2πi

∞∑

n=1

∫ M+i∞

M−i∞

w2(s)

sw2(s) + λn
estds(a, ϕn)ϕn in L2(Ω) (4.29)

for each t ∈ [0, T ]. The Sobolev embedding inequality yields that ‖ϕn‖C(Ω) ≤ C‖A
d
4+εϕn‖L2(Ω)

with sufficiently small ε > 0, and we have C0n
2
d ≤ λn ≤ C1n

2
d (see, e.g., [10]). Therefore, fixing

t0 > 0 arbitrarily, from the estimate in Lemma 4.3, for t ∈ [t0, T ], we obtain

1

2π

∞∑

n=1

∣∣∣∣∣

∫ M+i∞

M−i∞

wj(s)

swj(s) + λn
estds

∣∣∣∣∣ ‖(a, ϕn)ϕn‖C(Ω) ≤ C

∞∑

n=1

1

λnt
‖(Aγa, ϕn)A

−γϕn‖C(Ω)

≤C
∞∑

n=1

|(Aγa, ϕn)|
1

λnt0
λ

d
4+ε−γ
n ≤ C

∞∑

n=1

|(Aγa, ϕn)|λ
d
4+ε−γ−1
n

≤C

(
∞∑

n=1

|(Aγa, ϕn)|
2

) 1
2
(

∞∑

n=1

λ
d
2+2ε−2γ−2
n

) 1
2

, j = 1, 2.

By λn ∼ n
2
d as n→ ∞ (e.g., [10]) and γ > d

2 − 1, we see that
∑∞
n=1 λ

d
2+2ε−2γ−2
n <∞. Hence

1

2π

∞∑

n=1

∣∣∣∣∣

∫ M+i∞

M−i∞

wj(s)

swj(s) + λn
estds

∣∣∣∣∣ ‖(a, ϕn)ϕn‖C(Ω) <∞, t0 ≤ t ≤ T, j = 1, 2. (4.30)

Therefore, we see that the series on the right-hand side of (4.28) and (4.29) are convergent
uniformly in x ∈ Ω and t ∈ [t0, T ]. Moreover, since the solutions u and v can be analytically
extended to t > 0 in view of Theorem 4.1, we have u(x0, t) = v(x0, t) for t > 0. Consequently
by the Laplace transform, we obtain

∞∑

n=1

ρn
w1(s)

sw1(s) + λn
=

∞∑

n=1

ρn
w2(s)

sw2(s) + λn
, s > 0,
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where ρn = (a, ϕn)ϕn(x0). Moreover, noting γ > d
2−1, similarly to (4.30), we have

∑∞
n=1 |ρn| <

∞. Therefore

∞∑

n=1

λnρn
sw1(s) + λn

=

∞∑

n=1

λnρn
sw2(s) + λn

, s ∈ R with |s| small enough,

where the series on both sides are uniformly convergent for |s| small enough. Consequently, we
find

(sw1(s)− sw2(s))

∞∑

n=1

ρnλn
(sw1(s) + λn)(sw2(s) + λn)

= 0. (4.31)

Since
∑∞
n=1 |ρn| < ∞, and λn > 0, lim λn = ∞, we see that

∑∞
n=1

ρn
λn

< ∞. Moreover, by

the assumption of a, we have
∑∞
n=1 λ

−1
n (a, ϕn)ϕn(x0) = −(A−1a)(x0). Setting b = −A−1a, we

have Ab = −a and b|∂Ω = 0. By the strong maximum principle for Au = −
∑d
i,j=1 ∂j(aij∂iu)

with a ≥ 0, we have b < 0 in Ω. Hence

∞∑

n=1

λ−1
n (a, ϕn)ϕn(x0) > 0.

By noting that
∑∞

n=1
ρn
λn

<∞, it is not difficult to show that the function

∞∑

n=1

ρnλn
(sw1(s) + λn)(sw2(s) + λn)

is continuous for s in (0, ǫ) with sufficiently small ǫ > 0, it follows that

∞∑

n=1

ρnλn
(sw1(s) + λn)(sw2(s) + λn)

> 0

is valid for s ∈ (0, ε). Therefore (4.31) implies

sw1(s)− sw2(s) = 0, s ∈ (0, ε),

The use of the analyticity of the functions sw1 and sw2 gives

∫ 1

0

(µ1(α) − µ2(α))s
αdα = 0, s > 0,

that is ∫ 1

0

(µ1(α) − µ2(α))e
α log sdα = 0, s > 0.

After the change of the variable, we find

∫ ∞

0

χ(0,1)(µ1(α)− µ2(α))e
−αsdα = 0, s > 0,

which yields
µ1(α) = µ2(α), α ∈ [0, 1]

in view of the uniqueness of the Laplace transform.
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4.7 Conclusions and open problems

We summarize this chapter by providing several concluding remarks. Concerning the initial-
boundary value problem (4.1), we mainly dealt with forward and inverse problems for the
initial-boundary value problems for the fractional diffusion equations of distributed orders on
the bounded multi-dimensional domains.

For the forward problem, on the basis of the representation of solutions and a careful anal-
ysis of several contour integral representation of inversion Laplace transform, we succeed in
dominating the solutions by the initial value a and the source term F (See Theorems 4.1-4.2
and Theorem 4.3). By using the above estimate, we establish the Lipschitz stability of the
solution with respect to µ and the diffusion coefficient. Furthermore, we succeed in showing the
long-time asymptotic behavior on the basis of the representation of solutions and the Laplace
transform. These properties are very essential for analysis of the suitable numerical methods
for this type of problems and for dealing with the inverse problems for the fractional diffusion
equations of distributed orders.

For the inverse problem, as a direct application of the analyticity of the solution to the initial-
boundary value problem (4.1), the uniqueness of the determination of the weight function µ
is established. We compare the conclusions in Theorem 2.5 with those of multi-term cases
obtained in Chapter 2. It turns out that Theorem 4.6 is a parallel extension of its multi-term
counterpart.

As to the open problems related to the initial-boundary value problems for the fractional
diffusion equations of distributed orders, let us mention the following ones: In the proofs of
our results, we needed the non-negativity of the weight function µ(α), α ∈ [0, 1] that are
necessary for ensuring that the Laplace transform û(x, s) of the solution u has no poles in
the main sheet of the Riemann surface of the logarithmic function. It would be interesting to
investigate what happens with the asymptotic properties of the solutions if one or both of these
assumptions are not valid. Another interesting direction of research would be to investigate
the initial-boundary value problems for the fractional diffusion equations of distributed orders
with the non-continuous weight functions. As we established in this chapter, the characteristic
behavior of the solutions is very different in the case of the singular weight functions in the
form µ(α) = δ(α− α0) and the continuous functions. The case of the non-continuous but also
non-singular weight functions will probably lead to yet another type of asymptotic behavior of
solutions to the problem under consideration.

Finally, the question if the estimate for the short-time asymptotic of the solution that was
presented in Theorem 4.5 is sharp or not still remains open and should be investigated.
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