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Abstract

Various fields of natural science are abundant in image data and it was reported that there
was the case where a method of image analysis in astronomy is effective in life science.
Although the subjects of astronomy and life science are greatly different from each other,
it is surprising that there is a common approach to image data analysis. Judging from
such a situation, we suspect a universal principle of image analysis in natural science,
independent of specific fields. This thesis introduces a variety of viewpoints to look for
the principle and aims to innovate the whole of natural science.

Natural science has been done by building a hypothesis using measurement data
and testing it by new experiment. Ironically, this natural repetition is stopped by the
incredibly increasing amount of data due to advances in technology. On the other
hand, computers and information science have made progress remarkably. We need a
novel framework where information science and natural science cooperate to revive and
bring back the traditional loop of hypothesis and testing to the present. We call such a
framework data-driven science.

When people in information science and people in natural science try to collaborate,
the following problems often arise. One is that there are too many methods developed in
information science for people in natural science to select an adequate one. Another is
that natural science is too subdivided for people in information science to understand all
of the expert knowledge. In order to achieve a breakthrough, We propose the three levels
of data-driven science as a guiding principle of data-driven science.

The three levels of data-driven science is highly influenced by David Marr ’s three
levels at which any machine carrying out information processing should be discussed. The
modeling level is newly inserted between the level of computational theory and the level
of representation/algorithm, both of which are included in Marr ’s three levels, to form
the three levels of data-driven science. At the level of computational theory, people in
natural science discusses what to do in data analysis based on their own prior knowledge.
At the level of representation/algorithm, people in information science develop an efficient
solution to mathematically hard problems with the aid of computers. At the center level
of modeling, people in natural science state clearly the goal and strategy of data analysis
with as few a technical terms as possible. This helps the understanding of people in
information science. Not only that, the discussion at the modeling level promotes the
recognition of similar problems in different fields. What is most important is that all
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the people share the fundamental problems accumulated at the modeling level, and recall
at all times that such sophisticated problems are worth solving at all costs. The thesis
presents three topics of modeling contributed by the author: Markov random field (MRF),
compressed sensing and solution-space analysis.

It is important to extract latent variables from image data in natural science. In
particular, the estimation of the diffusion coefficient of target phenomena is essential. We
focus on the correspondence between the diffusion equation and MRF developed in the
field of image processing, and explain a method for estimating the diffusion coefficient,
proposed by the author.

MRF is used to model image data based on the knowledge that the target phenomenon
is spatially smooth. For example, in image restoration, one introduces a regularization
term, which imposes a penalty on pairs of adjacent pixels if their values are distant,
to estimate the original image. The coefficient is called a hyperparameter and the
performance is sensitive to its adjustment. Actually, this hyperparameter corresponds
the diffusion coefficient. We stress that, in natural science, the diffusion coefficient itself
is a significant quantity. The proposed method enables us to evaluate the confidence of
data as well as to estimate the value of hyperparameters, using the framework of Bayesian
inference.

The proposed method is unique in focusing on the posterior distribution itself. In
particular, the posterior distribution of hyperparameters is calculated exactly regarding
a minimum model needed to understand the diffusion phenomena. It is shown that
the breadth of posterior distribution is used to evaluate the confidence of the data.
Besides, the approximate posterior distribution obtained by the method of variational
Bayes overestimates the confidence.

The purpose of compressed sensing is to reconstruct the original signal from a reduced
amount of data by designing efficient experiment. We need to solve an underdetermined
problem where the amount of data is smaller than the number of variables to be
determined. The strategy adopted here is to assume the sparseness of the original signal.
A signal is called to be sparse if there are few nonzero components. When the original
signal is sure to be sparse, one can obtain it by selecting the sparsest one among a lot of
solution candidates which could describe the measurement data.

We apply compressed sensing to the observation of quasiparticle interference using
scanning tunneling microscopy/spectroscopy. This application is considered to be effective
because the pattern of interference can be assumed to be sparse in Fourier space. This
observation plays an important role in condensed matter physics. In addition, it is a really
interesting subject in the context of compressed sensing. It is because complementary
methods of experiment exist and the measuring system is controllable enough to adapt
flexibly to newly designed experiments.

Specifically, we demonstrate whether, from a reduced amount of data, the circular
pattern unique to electrons on the Ag(111) surface is reconstructed. First, without
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utilizing the sparseness assumption, the pseudoinverse operation fails to obtain a proper
Fourier-transformed image. Then, we examined the performance of LASSO (Least
Absolute Shrinkage and Selection Operator), which prefers a sparse solution. In the
case of data which are downsampled at regular intervals, even LASSO fails, but in
the case of randomly reduced data, LASSO succeeds in compressed sensing. We show
that the synergy between measurement methods and analysis methods is essential in the
improvement of experiment.

When we try to obtain the posterior distribution of hyperparameters and the sparsest
solution numerically, it causes the issue of combinatorial explosion. These problems
have an energy function which has too a complex structure to be optimized using naive
algorithms. In such a case, two approaches are conceived. One is to narrow the search
space, such as the methods of variational Bayes in Bayesian inference. The other is to
replace the energy function by a tractable one, such as the method of convex relaxation
in sparse estimation. In order to take advantage of knowledge from information science,
it is important to reveal the structure of solution space as well as the properties of these
approaches.

The solution space is too high-dimensional to be visualized. Then, we focus on the
density of states of solution space. The density of states is obtained by counting the
number of states which realize a certain value of energy, and expressing the numbers as a
function of energy.

We apply the analysis of the density of states to the problem of overcomplete sparse
approximation. The purpose of overcomplete sparse approximation is to select a small
number of basis vectors among a given overcomplete basis to approximate a given data as
precisely as possible, using a linear combination of the selected basis vectors. This problem
was proved to be NP-hard. We analyze the density of states in the large-size limit,
using the replica method developed in statistical-mechanical informatics. Besides, the
performances of two algorithms, called LASSO and OMP (Orthogonal Matching Pursuit),
are examined and compared to the theoretical performance limit led by solution-space
analysis. LASSO employs convex relaxation, and OMP employs the approach of narrowing
the search space by neglecting collaboration effects of a certain pair of basis vectors. As
a result, OMP outperforms LASSO, but does not achieve the performance limit.

In conclusion, we state the relation between the three research topics. It is easy to
understand if the very deed of acquiring image data in natural science is discussed under
the three levels of data-driven science. The goal of data acquisition is to see unseen
objects. There are two strategies. One is to model target phenomena to extract latent
structures from image data. The problem is how the model is approximated precisely to
the reality and is addressed by the MRF study. The other is the attempt to measure
target phenomena directly by well-calculated experiment. The problem is how such a
difficult experiment is conducted efficiently and is addressed by the research of compressed
sensing. Needless to say, the knowledge of the solution-space analysis is the key to both
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of the problems. We discuss the modeling of phenomena, measurement, and analysis, and
this triangle should be shared by natural science and information science. Consequently,
data-driven science will be created.
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Chapter 1

Introduction

1.1 Image data and natural science

Seeing is believing. Image data often surprise and inspire us to believe what we could
not be sure of. Wilhelm Röntgen took the first photograph of his wife’s bones along with
her ring, using X-ray [93]. This achievement made him the first laureate of the Nobel
Prize in Physics in 1901. The photographic methods for elementary particles developed
by Cecil Powell were used to demonstrate the existence of mesons that Hideki Yukawa
already predicted [109, 69]. Gerd Binnig and Heinrich Rohrer invented STM (Scanning
Tunneling Microscopy) to confirm the 7×7 reconstruction structure of the Si(111) surface
that was a controversial topic in surface science for a long time [6, 7]. The scope of
image data is not limited to physics. MRI (Magnetic Resonance Imaging) enables us to
see the internal parts of a body without any radiation exposure [70]. The GFP (Green
Fluorescent Protein) discovered by Osamu Shimomura enables us to visualize intracellular
phenomena such as signal transduction in real time [97]. In geophysics and seismology,
the seismic tomography reveals the three-dimensional geologic structure and advances our
understanding of various dynamic processes in Earth [1, 50, 51, 48]. Modern astronomers
are endeavoring to take a photograph of a black hole using an array of radio telescopes
called ALMA (Atacama Large Millimeter/submillimeter Array) [25, 54, 4].

Various fields of natural science are abundant in image data due to recent progress in
experimental and measurement techniques. Taking such an influential trend into account,
one of the leading journals Science featured data science in 2011. This volume has an
interesting article reporting interdisciplinary collaborations which were unusual in those
days [91]. The article starts with two images: one is from astronomy, and the other
is from medicine. The topics of these two disciplines are completely different, but the
article introduces some cases where a medical method of data analysis was found to
perform well in analyzing image data in astronomy, and vice versa. For example, an
astronomer surveying star-forming regions wanted a three-dimensional view of the regions,
but astronomers had no access to it using two-dimensional images. When the astronomer
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presented her problem at a workshop, however, a radiologist in the audience recognized
that the method needed in astronomy already existed in medicine. The method enables
us to view the accumulation of tomographic data in three dimensions and was developed
for use with medical scans such as MRIs. Their collaboration began immediately. On the
other hand, there is a case where computer algorithms designed for picking out galaxies,
nebulae, or star clusters in large batches of astronomical images were found to be useful
in the hunt for cancer in medical images. After reading the article, one would probably
notice that the first two images are similar to each other somehow.

It is expected that interdisciplinary collaborations will occur in other fields of natural
science. In order to accomplish a lot of collaborations, we should reveal the background
of the collaborations between astronomy and medicine reported in the article. We need
to discuss the part of somehow in the similarity further. In the article, an astronomy
student says that his data became amazingly more intuitive to understand when they were
visualized in three dimensions with the above-mentioned medical software, for the first
time. An oncologist involved with the collaboration says that, once noticed, astronomy
and medicine may well have the same goal to identify and quantify obscure objects in a lot
of image data, though their subjects are different. However, how can we pass by the scene
of academic encounter, or take it as merely a surprise, much less as something natural? It
is more natural to believe that fundamental principles of data analysis lie in various fields.
This belief cannot be confirmed until we look out over the diversity in natural science
without being trapped in a single discipline. It is indispensable, therefore, to discover
something independent of different fields and then establish a universal framework for
scientific image data. As a result, the whole of natural science will be innovated.

1.2 Data-driven science

Truthfully speaking, the innovation of natural science requires another collaboration. It is
information science that should be incorporated as well. In earlier times, natural science
was driven by scientists’ intuition about data. For example, Johannes Kepler derived
his laws of planetary motion from Tycho Brahe’s data of astronomical observations.
It was fortunate that something inspiring Kepler was included in Brahe’s data, the
amount of which was as small as a genius could manage by hand. Nowadays, an
incredible amount of data is available, but ironically, many scientists are bewildered
at this amount, never to make the most of their precious data. The only thing that
we should do then, is to look somewhere else: the field of information science. The
recent progress in information science has provided elaborate solutions to a variety
of problems regarding data analysis, involving machine learning, information theory,
artificial intelligence, statistical-mechanical informatics, and so forth. We will therefore
establish a novel framework where information science and natural science are closely
cooperated to revive and bring back the traditional loop of hypothesis and testing into
the present. Let us call this framework data-driven science.
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Figure 1.1: Marr’s three levels where any machine of information processing should be
understood.

It is important to remember Marr’s three levels, when data-driven science is thought of
as an information-processing system. David Marr, a neuroscientist, proposed in his book
Vision [74], that any machine carrying out an information-processing task be understood
at three different levels: computational theory, representation and algorithm, and
hardware implementation, as shown in Fig. 1.1. At the first level of computational theory,
the goal and strategy of information processing are clearly stated and their appropriateness
is judged from given data and prior knowledge. At the second level of representation and
algorithm, the procedure of information processing and the criterion for the evaluation
of achievement are formulated mathematically or in an alternative way. At the third
level of hardware implementation, the physical realization of information processing is
discussed from the viewpoint of the detailed computer or brain architecture. The second
and third levels are well-studied in information science and the translation between them
is relatively smooth. However, most of the existing approaches to data-driven science lack
sufficient communication between the first and second levels, in other words, that between
natural science and information science. It is, therefore, most necessary to bridge the gap.

What we should do before anything else is to unravel the many-to-many
correspondence between the two sciences. Natural science has been too subdivided
for people in information science to follow everything technical in all the disciplines.
Information science is also being split gradually. People in natural science are often at
a loss as to what algorithms to use. Here, let us turn to the case of bioinformatics, a
successful example of the collaboration between information science and a specific field
of natural science. A goal of bioinformatics is, for example, to search the whole genome
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for a small number of genes, with which a person is susceptible to a certain disease. The
achievements of bioinformatics can be attributed to the smooth translation between the
level of computational theory and the level of representation and algorithm. A genome
is represented by only four letters, that is, adenine (A), cytosine (C), guanine (G), and
thymine (T), and their sequences are suitable for sophisticated algorithms developed in
the field of natural language processing. Bioinfomatics restricted itself to a one-to-one
correspondence spontaneously from the very beginning.

Natural science abruptly gets crowded with a variety of something informatics, but
it is doubtful whether all of them will perform well. In the case of bioinfomatics, the
history of genome research was not so long, and humans had little knowledge about
genetic code itself. Then, one had no choice but to adopt whatever might be useful in
analyzing massive genetic data produced by high-throughput sequencing methods. On
the other hand, most fields of natural science are built on a lot of previous discoveries.
Elaborate algorithms, however fast they are, are not suitable for data analysis, if they
do not match the goal and strategy derived from the known facts. Conversely, simple
algorithms, however old-fashioned they are in a certain field, could be epoch-making in
other fields. From the above argument, we can understand that it is inevitable to form
common bases where people in different disciplines are brought together, in order to solve
the problem of many-to-many correspondence.

Lately, the author, with his colleagues, proposed the three levels of data-driven science
as a guiding principle of data-driven science as shown in Fig. 1.2 [58]. The concept of
our three levels of data-driven science is highly influenced by Marr’s three levels and
composed of the level of computational theory, the level of modeling, and the level of
representation and algorithm. The modeling level is newly inserted as the place where
common bases of data-driven science are discussed. In the modeling level, researchers in
natural science explain their goal and strategy with as few a technical terms as possible,
and those in information science classify their methods systematically in accordance with
the essential request offered by natural science. The common knowledge acquired at the
modeling level enables researchers to recognize more frequently that methods developed
for achieving a seemingly different goal can be effective in their own field, as reported in
the article of Science. In this way, our three levels of data-driven science would probably
connect natural science and information science.

1.3 Overview of Thesis

The thesis focuses on image data in natural science to promote data-driven science. We
consider that there are three targets to be discussed at the modeling level: phenomena,
measurement, and analysis. In accordance with them, we will explain three topics
contributed by the author: Markov random field, compressed sensing, and solution-space
analysis. Markov random field is used to model natural phenomena to estimate latent
structures from image data. Compressed sensing makes many kinds of experiments
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Figure 1.2: Three levels of data-driven science. The modeling level is inserted between
the level of computational theory and the level of representation and algorithm.

efficient according to their measurement principles. Solution-space analysis provides a
common basis where a lot of methods of data analysis should be compared.

1.3.1 Markov random field

Roughly speaking, natural phenomena are spatially and temporally continuous, and image
data recording them are also smooth. Each pixel of scientific images is considered to take
a value close to those of its adjacent pixels. Let us begin our discussion with this simple
statistical property of image data. The proximity of neighbors is well described by Markov
random field (MRF) developed in information science. MRF has been popular in the field
of image processing since Stuart Geman and Donald Geman published their work in 1984
[41]. The task of image restoration by MRF is illustrated in Fig. 1.3. The energy function
E is given by

E(x|y) = 1

2

∑
i

(yi − xi)2 +
λ

2

∑
i

(xi+1 − xi)2, (1.1)

where x is an original image, y is an observed image, and the estimated image is given
by x that minimizes E. The concept of MRF is included in the second term. This
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Figure 1.3: An illustration of image restoration by Markov random field. The energy
function E is given by Eq. (1.1). The original image is recovered from the observed image
as if the measured values of neighboring pixels were linked with springs.

regularization term has an effect of bringing the measured values of neighboring pixels
close to each other, as if the values were linked with springs. The coefficient λ of the
regularization term is called a regularization parameter, and it plays the role of adjusting
the strength of springs.

MRF is very suitable for image analysis in natural science due to its equivalence with
the diffusion equation [82]:

∂ϕ

∂t
= D

∂2ϕ

∂x2
, (1.2)

where the time derivative is proportional to the second derivative with respect to space,
and its proportionality constant is determined by the diffusion coefficient D. Now, let us
consider x that minimizes the MRF term in Eq. (1.1). The method of steepest descent
for this minimization is represented by

∂xi
∂t

= −λ
2

∂

∂xi

[∑
i

(xi+1 − xi)2
]
. (1.3)

The right-hand side is calculated as follow:

−λ
2

∂

∂xi

[
· · ·+ (xi − xi−1)

2 + (xi+1 − xi)2 + · · ·
]

= −λ
2
[2(xi − xi−1)− 2(xi+1 − xi)]

= λ [(xi+1 − xi)− (xi − xi−1)] . (1.4)

This result of calculation indicates a discretized second derivative with respect to space.
Consequently, Eq. (1.3) corresponds to the diffusion equation (1.2), and the regularization
parameter λ is nothing but the diffusion coefficient.

6



The estimation of the diffusion coefficient from image data is attractive as a primitive
problem in natural science. It is well-known in information science that the framework of
Bayesian inference is helpful in executing this [9]. Many methods of point estimation were
proposed to determine the values of hyperparameters properly to improve the performance
of image processing. Note that the variables corresponding to the regularization parameter
is often called hyperparameters in the framework of Bayesian inference. However, these
methods are not sufficient, because they miss the general goal of evaluating how much
confidence one can say something scientific from the given data with. The estimate of
the diffusion coefficient, a physical quantity, should be evaluated not only in terms of
accuracy, but also in terms of reliability. The author, therefore, proposed a Bayesian
method of distribution estimation [82]. This method enables us to calculate the posterior
distribution itself of hyperparameters in MRF analytically, and to evaluate the confidence
of data by the breadth of the distribution. MRF and this proposed method are explained
in Chapter 2.

1.3.2 Compressed sensing

Indeed, MRF is a general tool for modeling natural phenomena described by diffusion
processes. Besides, some fundamental equations include diffusion terms, such as the
Navier-Stokes equations in fluid dynamics, and the Schrödinger equation in quantum
mechanics. It could be possible to some extent to apply the concept of MRF to such an
intricate system with a slight modification. However, there is a limit. For example, the
formation mechanisms of internal organs, protein molecules, and black holes are difficult
to be deduced from fundamental equations. What interests us then, is how image data of
these things are obtained experimentally. Internal organs are scanned using MRI, protein
molecules are investigated using NMR (Nuclear Magnetic Resonance), and black holes
are observed by astronomical interferometers. Recently, it was reported that experiments
of MRI, NMR, and interferometry could be more efficient by compressed sensing [72, 73,
61, 53, 54]. We are, therefore, curious about compressed sensing.

Figure 1.4 describes a very simple model of scientific measurements, formulated by

y = Ax, (1.5)

where y is a data vector, x is an original signal, and A is a measurement marix. The
problem addressed by compressed sensing is, in short, as to how to obtain the original
signal from a reduced amount of data, as shown in Fig. 1.4. In the case where the data
is scarce, the number of rows of the measurement matrix is decreased and the problem
becomes underdetermined. The strategy of compressed sensing is to reduce the number
of parameters to be estimated, by confidently assuming that the original signal x has a
few nonzeros. This sparseness assumption can be justified by the derivation of Kepler’s
law, where a large amount of astronomical data is reduced to a few explanatory variables
such as the orbital period, the semi-major axis of the orbit, and so forth. Anyway, one
can recover the original signal from scarce data by techniques of compressed sensing.
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Figure 1.4: An illustration of compressed sensing, formulated by y = Ax. The case where
the data y is scarce, is dealt with by assuming that the original signal x is sparse.

To the best of our knowledge, the author is the first to apply compressed sensing
to the observation of QPI (quasiparticle interference) using STM/S (scanning tunneling
microscopy/spectroscopy) [84]. This experiment of physics is a really important target
of compressed sensing for three reasons. The first reason is that the measurement
principle of STM/S is Fourier transform, as well as that of MRI, NMR, and astronomical
interferometry. Then, it is considered that the application of compressed sensing to
STM/S performs well in a certain degree. The second reason is that experimental physics
has more than one approaches to the same subject. In the case of QPI study, ARPES
(angle-resolved photoemission spectroscopy) plays a complementary role to STM/S. From
the viewpoint of computational physics, ab initio calculations can be used to confirm the
experimental results. Unlike MRI or NMR studies, where the accuracy of data analysis
is eventually judged by professionals, such as radiologists and biologists, there are some
other evidence that supports the results of data analysis. The third reason is that STM/S
measurments are flexible for the design of experiments. In the research of compressed
sensing, it is often argued that the number of measurements can be reduced, but it is
seldom discussed how to reduce it. In the first place, there are few places on Earth where
astronomical observatories can be built, and there is little room to design measurement.
On the other hand, STM/S enables us to measure the surface of materials at arbitrary
locations. It means that we are able to examine the performance of efficient methods for
compressed sensing, by putting them into practice. The theoretical aspect of compressed
sensing is reviewed in Chapter 3, and our application of compressed sensing to STM/S
measurements is explained in Chapter 4.
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Figure 1.5: An illustration of solution-space analysis. The left shows the multi-valley
landscape of a complex energy function E(c) which has a lot of local optima. The right
shows the density of statesW (E) standing for the solution space of the left. W (E) counts
the number of states c that satisfy E(c) = E.

1.3.3 Solution-space analysis

The two topics so far are regarding image data itself and its measurement, both of which
are motivated by the side of natural science. The other side of information science should
be discussed at the modeling level. Information science provides so many methods for
data analysis that people in natural science are often confused as to what method to use.
Information science itself has begun to branch as shown in the lower part of Fig. 1.2, and
then, some algorithms could perhaps be named differently among separate divisions. Our
purpose here is to establish a common base where data-analysis methods are classified and
compared systematically according to their goals. In order to achieve this purpose, we
focus on analyzing the solution space itself, apart from conventional attempts to search
for only the optimal solution.

Most of the difficult problems arise from the complexity of energy function (also called
cost function and objective function). The left of Fig. 1.5 shows the landscape of an energy
function, which has a multi-valley structure. If you try to optimize the energy function
with the method of steepest descent, you will be trapped in any one of many local minima,
never to reach the global minima. There are two representative approaches to manage
such a situation. One is the restriction approach where the solution space to be searched
is limited to some extent, such as the method of variational Bayes in Bayesian inference
[3]. The other is the relaxation approach where the energy function is replaced by a more
tractable one, such as convex relaxation of compressed sensing [18, 19]. Sometimes, either
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will do, but in most cases, both will not perform well at the beginning. Then, we have to
locate the cause of failure in the whole solution space.

It is true that the solution space is too high-dimensional to be visualized, but it is
possible to see the density of states, as shown in the right of Fig. 1.5. When the solution
space is characterized by c and the energy function is given by E(c), the density of states
W (E) counts the number of states c which satisfy E(c) = E, namely,

W (E) = #{c|E(c) = E}, (1.6)

where # is the cardinality of a set. All the solutions obtained by existing methods can
be projected onto the density of states, and compared with each other. The shape of the
density of states W (E) would probably tell us the properties of the problem itself and the
barriers which hinder existing methods from good performance. In particular, the author
analyzed the solution space regarding the problem of overcomplete sparse approximation,
by using methods of statistical mechanics [83]: the replica method as a theoretical tool
[86] and the exchange Monte Carlo method as a numerical tool [99, 56]. This analysis is
explained in detail in Chapter 5.
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Chapter 2

Markov Random Field

2.1 Introduction

It is important to focus on spatial continuity often assumed to exist in a broad field
of natural science. The Markov random field (MRF) approach is a useful method of
representing the smoothness in image processing such as image restoration and image
segmentation [41, 89, 101, 87, 82]. We will introduce the concept of MRF, giving cases of
image restoration.

We consider cases where an original image x ∈ RN is estimated from an observed
image y ∈ RN . Figures 2.1 and 2.2 illustrate the one- and two-dimensional cases of
image restoration, respectively. The naivest method of image restoration is to swallow
the observed image as an estimator of the original image, formulated as the following
minimization problem

min
x

{
1

2

∑
i

(yi − xi)2
}
. (2.1)

However, this method causes over-fitting when the observed image has been blurred by
measurement noise, shown in Figs. 2.1(b) and 2.2(b). Noise is considered to be added
independently to each pixel of the observed noise and break the smoothness of the original
image.

Regularization techniques are often employed to deal with the problem of over-fitting.
Regularization is based on modifying the objective function by adding a regularization
term which can be regarded as a penalty. According to the notion of MRF, differences
between values of neighboring pixels should be punished in image restoration, as follows:

min
x

1

2

∑
i

(yi − xi)2 +
λ

2

∑
⟨i,j⟩

(xi − xj)2
 , (2.2)

where
∑

⟨i,j⟩ represents summation over a set of all pairs of neighboring pixels. The second
term is a regularization term, which has an effect of making values of neighboring pixels
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Figure 2.1: Image restoration by MRF is illustrated in the one-dimensional case. (a)
Original image. (b) Observed image. (c) Estimated image with a proper value of the
regularization parameter λ. (d) Estimated image with an infinitely large value of λ.
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Figure 2.2: Image restoration by MRF is illustrated in the two-dimensional case. (a)
Original image. (b) Observed image. (c) Estimated image with a proper value of the
regularization parameter λ. (d) Estimated image with an infinitely large value of λ.

13



close to each other. The coefficient of the regularization term, λ, is called a regularization
parameter.

The solution to the regularization problem can be obtained by using methods of linear
algebra. The objective function of the problem (2.2) is also expressed as

E(x;y, λ) =
1

2
(y − x)T(y − x) +

λ

2
xTLx, (2.3)

where (·)T represents the transpose of a matrix. The matrix L is known as a Laplacian
matrix, whose components are given by

Lij =


(the number of neighboring pixels to i) if i = j

−1 if i and j are neighboring

0 otherwise

. (2.4)

Minimizing the function (2.3), we obtain an estimator of the original image

x̂MRF = (I + λL)−1y, (2.5)

where I is the identity matrix.
When the regularization parameter is set to a proper value, the solution (2.5) is a

good estimator of the original image, as shown in Figs. 2.1(c) and 2.2(c). Nevertheless,
the performance of image restoration depends highly on the value of the regularization
parameter λ. If λ is set to zero, the regularization term plays no role, only to produce
the same results with those of the naivest method. If λ is set to a too large value, the
estimator is excessively smooth as shown in Figs. 2.1(d) and 2.2(d). In order to recover
the original image, it is important to adjust the regularization parameter λ in a proper
way. The framework of Bayesian inference helps us to understand the relation of this
parameter λ to the observed image.

2.2 Bayesian inference

Bayesian inference is a methodology to tackle inverse problems such as image restoration
[9]. In applying Bayesian inference, it is essential to make use of forward models and prior
knowledge of target data. Therefore, we clarify the measurement process of image data
before a Bayesian method of image restoration is explained.

Our measurement process of image data is illustrated by using a graphical model as
shown in Fig. 2.3. In the measurement process, noise is added to each pixel of image data,

yi = xi + ni, (2.6)

where ni denotes the noise term. When the measurement noise ni can be regarded as
independent and identically distributed Gaussian random variables, the measurement
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Figure 2.3: Graphical model of measurement process. The variables x and y represent
an original image and an observed image, respectively. The variables α and β are
hyperparameters in our model.

process is represented in a stochastic way as follows:

p(y|x, β) = 1

Zlike(x, β)
exp

[
−β
2

∑
i

(yi − xi)2
]
. (2.7)

This probability distribution function is called a likelihood function in the context of
Bayesian inference. The normalization factor Zlike is given by

Zlike(x, β) =

∫
dy exp

[
−β
2

∑
i

(yi − xi)2
]
. (2.8)

The parameter β represents the precision of measurement and is called a hyperparameter.
When the value of β is larger, it means that the magnitude of noise is smaller.

An advantage of Bayesian inference is its ability to utilize prior knowledge of target
objects. A useful knowledge for image restoration is the smoothness of the original image,
which is represented as the following probability distribution function according to the
notion of MRF,

p(x|α) = 1

Zpri(α)
exp

−α
2

∑
⟨i,j⟩

(xi − xj)2
 . (2.9)

This probability distribution function is called a prior distribution in the context of
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Bayesian inference. The normalization factor Zpri is given by

Zpri(α) =

∫
dx exp

−α
2

∑
⟨i,j⟩

(xi − xj)2
 . (2.10)

The parameter α is another hyperparameter which represents the degree of smoothness
of the original image. When the value of α is larger, there is a higher probability that
the original image has a lot of pairs of neighboring pixels whose values are close to each
other.

Bayesian inference is carried out on the basis of posterior distributions, which are
calculated from likelihood functions and prior distributions. According to Bayes’ theorem,
we are able to calculate posterior distributions of the original image x given an observed
image y as follows:

p(x|y, β, α) = p(y|x, β)p(x|α)
p(y|β, α)

. (2.11)

The denominator of the right-hand side of Eq. (2.11) is also calculated by using likelihood
functions and prior distributions as follows:

p(y|β, α) =
∫

dxp(y|x, β)p(x|α). (2.12)

Bayes’ theorem (2.11) claims direct connection between posterior distributions, the key to
inverse problems, and generative models of data represented as likelihood functions and
prior distributions, and hence it seems as if we could trace back along the law of causality
with the help of the theorem.

Maximum a posteriori estimation is a Bayesian method of image restoration and it is
conducted by maximizing the posterior distribution as follows:

x̂MAP = argmax
x
{p(x|y, β, α)} . (2.13)

In our model, the posterior distribution is given by

p(x|y, β, α) ∝ exp

−β
2

∑
i

(yi − xi)2 −
α

2

∑
⟨i,j⟩

(xi − xj)2
 , (2.14)

substituting Eqs. (2.7) and (2.9) into Eq. (2.11). Comparing maximum a posteriori
estimation with the regularization approach (2.2), we see that both methods yield the
same estimator on condition that the regularization parameter λ is set to be equal to the
ratio of hyperparameters, α/β. A different point between the two methods is that there is
a framework of hyperparameter estimation in Bayesian inference. This framework allows
us to determine hyperparameters, which can be regarded as the regularization parameter,
in an objective way from image data.
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2.3 Hyperparameter estimation

Our purpose is to launch and promote image data-driven sciences beyond ordinary image
processing. Then, let us discuss the physical significance of hyperparameters in our
forward model [82]. Our MRF model is related with the following stochastic diffusion
equation,

∂ϕ

∂t
(x, t) = D

∂2ϕ

∂x2
(x, t) + ζ(x, t), (2.15)

where ϕ is a scalar field and ζ represents stochastic fluctuations whose correlations are
given by

⟨ζ(x1, t1)ζ(x2, t2)⟩ = σ2δ(x1 − x2)δ(t1 − t2). (2.16)

In the limit t→ +∞, we obtain⟨
∂ϕ

∂x
(x1, t)

∂ϕ

∂x
(x2, t)

⟩
→ σ2

2D
δ(x1 − x2), (2.17)

though the detail of calculation is explained in Appendix A. The coefficient of the
right-hand side of Eq. (2.17), σ2/(2D), is the variance of spatial derivative values of ϕ and,
comparing with Eq. (2.9), the hyperparameter α is considered to be directly proportional
to the parameter D called the diffusion coefficient. Hyperparameters are often regarded
as mere tuning parameters in image processing, but it should be stressed that they play
an important role of physical parameters which are used to explain the dynamics of target
objects. Therefore, we have to estimate hyperparameters not only by point estimators but
also with error-bars in order to evaluate the confidence of measurement. The framework
of Bayesian inference enables us to do such a thing.

We start here to explain a Bayesian method of hyperparameter estimation. The
key function is a posterior distribution of hyperparameters given image data, p(α, β|y).
According to Bayes’ theorem, we obtain

p(α, β|y) ∝ p(y|β, α)p(β, α). (2.18)

The probability function p(β, α) is a prior distribution of hyperparameters and we employ
a uniform prior

p(β, α) ∝ constant, (2.19)

assuming that there is no prior knowledge of hyperparameters. We substitute Eqs. (2.12)
and (2.19) into Eq. (2.18) to obtain

p(α, β|y) ∝
∫

dxp(y|x, β)p(x|α). (2.20)
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At a glance, we get aware of a multiple integral in the right-hand side of Eq. (2.20). This
operation of integration, called marginalization, is essential to hyperparameter estimation,
because in order to estimate latent variables we have to take all the cases of ordinary
parameters such as x into consideration.

We substitute our model into Eq. (2.20) to obtain

p(α, β|y) ∝
∫

dx
1

Zlike(x, β)
exp

[
−β
2

∑
i

(yi − xi)2
]

× 1

Zpri(α)
exp

−α
2

∑
⟨i,j⟩

(xi − xj)2
 . (2.21)

Our generative model is based on normal distributions, and therefore we are able to
marginalize the parameters x analytically, by using Gaussian integral,∫

dxe−
a
2
x2

=

√
2π

a
(2.22)

Results of the calculation are given by

p(α, β|y) ∝
N∏
k=1

√
βα

β + αlk
exp

[
−1

2

βαlk
β + αlk

|ỹk|2
]
. (2.23)

The variables lk (k = 1, . . . , N) are eigenvalues of the Laplacian matrix L defined by
Eq. (2.4). The matrix L is a Hermitian matrix and can be diagonalized by a unitary
matrix P as follows:

P ∗LP = diag(l1, l2, . . . , lN), (2.24)

where (·)∗ is the conjugate transpose of a matrix and diag(·) represents a diagonal matrix.
The vector ỹ = (ỹ1, ỹ2, . . . , ỹN)

T is given by

ỹ = P ∗y. (2.25)

In more general cases where an original image x is observed more than once to obtain
a set of image data {yt} = {y1,y2, . . . ,yT}, the measurement process is expressed as

p({yt}|β, α) =
∫

dx

{
T∏
t=1

p(yt|x, β)

}
p(x|α). (2.26)

According to Bayes’ theorem, the posterior probability is given by

p(α, β|{yt})

∝
N∏
k=1

√
βα

βT + αlk
exp

[
−1

2

βαlk
β + αlk

|ỹavek |2
]
β

T−1
2 exp

[
−β(T − 1)

2
(ỹstdk )2

]
, (2.27)
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where

ỹavek =
1

T

∑
t

ỹtk, (2.28)

ỹstdk =

√
1

T − 1

∑
t

|ỹtk − ỹavek |2. (2.29)

Our method of hyperparameter estimation is based on the posterior distribution,
Eq. (2.27), derived analytically. The posterior distribution has more information than
point estimators, such as the maximum likelihood estimator, do. For example, the
breadth of posterior distribution is expected to reflect the confidence of measurement. We
will examine the performance of our method of hyperparameter estimation by numerical
simulation in the following section.

2.4 Numerical simulation

We evaluate our Bayesian method of hyperparameter estimation by numerical simulation.
In this section, for the sake of simplicity, original images are assumed to satisfy periodic
boundary conditions. On this assumption, the discrete Fourier transform can be used as
a diagonalization matrix of the Laplacian matrix, namely P in Eq. (2.24).

We examine the case of two-dimensional images. In simulations, we generate image
data which follow Eqs. (2.7) and (2.9) and calculate posterior distributions based on
Eq. (2.27), substituting values of the synthetic data into {yt}. The number of pixels of
image data is set to N = 1282. The true values of hyperparameters are set to (α0, β0) =
(1, 0.03). Figure 2.4 shows joint posterior distributions p(α, β|{yt}), and Figs. 2.5 and
2.6 show marginalized posterior distributions of α and those of β, respectively defined by

p(α|{yt}) =

∫
p(α, β|{yt})dβ, (2.30)

p(β|{yt}) =

∫
p(α, β|{yt})dα. (2.31)

In these figures, we see that the location of posterior distributions is closer to the true
value as the number of measurements, T , increases. Figure 2.7 shows the posterior mean
values of hyperparameters, defined by such as

α̂PM = ⟨α⟩α,β|{yt} =

∫
αp(α, β|{yt})dαdβ, (2.32)

β̂PM = ⟨β⟩α,β|{yt} =

∫
βp(α, β|{yt})dαdβ. (2.33)

We see that, in both cases of α and β, posterior mean gets closer to the true value and its
standard deviation decreases as the number of image data used in estimation increases.
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Figure 2.4: Joint posterior distributions of (α, β) calculated from two-dimensional
observed images. The horizontal and vertical axes represent α and β, respectively. Cases
of T = 1, 2, 3, 4 are listed from the left to the right. Distributions in the same row are
obtained by the same original image. The true values of hyperparameters are set to
(α0, β0) = (1, 0.03). The number of pixels of image data is set to N = 1282.
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Figure 2.5: Marginalized posterior distributions of α calculated from two-dimensional
observed images. Cases of T = 1, 2, 3, 4 are listed from the left to the right. Distributions
in the same row are obtained by the same original image. The true values of
hyperparameters are set to (α0, β0) = (1, 0.03). The number of pixels of image data
is set to N = 1282.
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Figure 2.6: Marginalized posterior distributions of β calculated from two-dimensional
observed images. Cases of T = 1, 2, 3, 4 are listed from the left to the right. Distributions
in the same row are obtained by the same original image. The true values of
hyperparameters are set to (α0, β0) = (1, 0.03). The number of pixels of image data
is set to N = 1282.
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Figure 2.7: Posterior mean values of hyperparameters calculated from two-dimensional
observed images in the case of T = 1 to 10. Averaged values over 100 trials are shown
and error-bars represent standard deviations. The left and the right panels are about α
and β, respectively. The true values of hyperparameters are set to (α0, β0) = (1, 0.03).
The number of pixels of image data is set to N = 1282.

Bayesian inference based on posterior mean values performs well for hyperparameter
estimation in our MRF model. Simultaneously, we can assure that we are able to enhance
the confidence of measurements by obtaining more data.

Evaluation of the confidence of measurements by using methods of point estimation
such as posterior mean needs a lot of data obtained on the same conditions as shown
in Fig. 2.7. However, such an abundant data are not necessarily available in the scene
of natural science. Once we acquire a posterior distribution, we are able to focus on its
breadth, which can be evaluated quantitatively by entropy. The entropy of probability
distribution functions is defined by such as

Hα = ⟨− ln p(α|{yt})⟩α|{yt}, (2.34)

Hβ = ⟨− ln p(β|{yt})⟩β|{yt}. (2.35)

Figure 2.8 shows the entropy values of hyperparameters. We see that the entropy
values decrease as the confidence of measurements is raised by increasing the number of
measurements T . The entropy is highly correlated with the standard deviation of posterior
mean values and can be used as a criterion to evaluate the confidence of measurements.
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Figure 2.8: Entropy values of hyperparameters calculated from two-dimensional observed
images in the case of T = 1 to 10. Averaged values over 100 trials are shown and
error-bars represent standard deviations. The size of some error-bars are comparable to
that of markers. The left and the right panels are about α and β, respectively. The true
values of hyperparameters are set to (α0, β0) = (1, 0.03). The number of pixels of image
data is set to N = 1282.

2.5 Variational Bayesian method

Variational Bayesian inference is a well-known approach for calculating intractable
posterior distributions of a number of random variables approximately [3]. A variational
Bayesian method employs a tractable trial function and is conducted by minimizing the
distance between the trial function and the posterior distribution. As a trial function of
our posterior distributions p(α, β,x|{yt}), we use the following factorized distribution,

q(α, β,x) = q(α)q(β)q(x). (2.36)

The distance is often measured by the Kullback-Leibler divergence defined by

KL(q||p) =
∫
q(α, β,x) ln

q(α, β,x)

p(α, β,x|y)
dαdβdx. (2.37)

Our purpose is to minimize the divergence on the condition that the probability of the
whole parameter space is equal to one and we conduct it using the method of Lagrange
multipliers. The objective functional is

L(q) = KL(q||p) + λα

[∫
q(α)dα− 1

]
+λβ

[∫
q(β)dβ − 1

]
+ λx

[∫
q(x)dx− 1

]
, (2.38)
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and its minimizer is given by

ln q(α) = ⟨ln p(α, β,x|{yt}⟩β,x + constant, (2.39a)

ln q(β) = ⟨ln p(α, β,x|{yt}⟩α,x + constant, (2.39b)

ln q(x) = ⟨ln p(α, β,x|{yt}⟩α,β + constant, (2.39c)

Eqs. (2.39) are not closed because the right-hand sides include the operation of
expectation value with regard to the probability distribution functions shown in the
left-hand sides. We need to solve them in a self-consistent way.

Returning to our MRF model, we substitute Eqs. (2.7) and (2.9) into Eqs. (2.39) to
obtain the solution

q(α) ∝ α
N
2 exp

[
−
(
N

2
+ 1

)
α

θα

]
(2.40a)

q(β) ∝ β
TN
2 exp

[
−
(
TN

2
+ 1

)
β

θβ

]
(2.40b)

q(x) ∝
N∏
k=1

exp

[
−θαlk + θβT

2

∣∣∣∣x̃k − θβT

θαlk + θβT
ỹavek

∣∣∣∣2
]

(2.40c)

where the values of θα and θβ are determined by repeating the following iteration

θα =

(
N

2
+ 1

)[∑
k

lk
2

{
1

θαlk + θβT
+

(
θβT

θαlk + θβT

)2

|ỹavek |
2

}]−1

, (2.41a)

θβ =

(
TN

2
+ 1

)[∑
k

T

2

{
1

θαlk + θβT
+

(
θαlk

θαlk + θβT

)2

|ỹavek |
2

+
1

T

∑
t

∣∣ỹtk − ỹavek

∣∣2}]−1

. (2.41b)

We will now evaluate the performance of our variational Bayesian method by numerical
simulations. We deal with the same situation with the previous section. We examine the
case of two-dimensional images which satisfy periodic boundary conditions. The number
of pixels of image data is set to N = 1282. The true values of hyperparameters are set to
(α0, β0) = (1, 0.03).

Figure 2.9 shows joint posterior distributions obtained by our variational Bayesian
method, q(α, β) = q(α)q(β), and Figs. 2.10 and 2.11 show its marginalized posterior
distributions of α and those of β, respectively. In these figures, we see that the location
of posterior distribution is closer to the true value as the number of measurements, T ,
increases. Figure 2.12 shows the posterior mean values of hyperparameters. We see that
both of the posterior mean of α and β get closer to the true value and its standard
deviation decreases as the number of image data used in estimation increases. Comparing
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Figs. 2.7 and 2.12, we find that our variational Bayesian method performs almost as well
as the exact calculation in terms of point estimation. Besides, we can make sure that the
confidence of measurements is enhanced by increasing the amount of data.

From the viewpoint of distribution estimation, the results of our variational Bayesian
method change from those of the exact calculation. Figure 2.9 shows joint posterior
distributions of α and β calculated using our variational Bayesian method. As is clearly
seen in Figs. 2.4 and 2.9, the shape of posterior distributions obtained by the two methods
are different from each other. Our variational Bayesian method gives us narrower posterior
distributions. This fact means that one can overestimate the confidence of measurements.

The degree of overestimation seems to depend on the kind of hyperparameters to be
estimated. We show marginalized posterior distributions of α and β in Figs. 2.10 and 2.11.
We compare them with Figs. 2.5 and 2.6 to find the confidence of α is overestimated too
much while that of β is not so. Figure 2.13 plots the entropy of the posterior distribution
against the amount of image data. In the case of β, the entropy decreases as the number
of observations increases. In the case of α, on the other hand, the decrease in the entropy
seems to stop where T is approximately equal to five. According to this result it is
considered that for the purpose of estimating the value of α it is sufficient to observe
five sheets of image data. However, this behavior of the entropy does not capture the
decreasing tendency of the standard deviation of posterior mean values which happens
as the amount of data increases. We claim that it is risky to use posterior distributions
obtained by variational Bayesian methods for evaluating the confidence of hyperparameter
estimation.

What is the difference between α and β? Let us recall the meaning of the
hyperparameters. The hyperparmaeter α represent the degree of smoothness of original
images and can be interpreted as the diffusion coefficient. The other hyperparameter β
is the precision of measurements. As indicated in Fig. 2.3, α is farther away from the
observed data in the data-generating mechanism than β is. We infer that deep parameters
such as α are hard to estimate and are sensitive to approximation employed for estimation
even if it is little.

2.6 Discussion

The chapter has explained the MRF approach to image data analysis. We pointed out that
MRF is equivalent to the diffusion equation and the hyperparameters represent significant
physical quantities as well as tuning parameters. Then, we proposed a Bayesian method
of hyperparameter estimation and evaluate its performance by numerical simulations.
We made the most of the framework of Bayesian method to evaluate data reliability by
calculating the entropy of posterior distributions. In addition, we demonstrated that the
variational Bayesian method fails to calculate posterior distributions.

It is trivial that the reliability of data increases as the amount of data increases without
deteriorating their quality. From the viewpoint of design of experiments, it is significant to
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Figure 2.9: Joint posterior distributions of (α, β) approximately calculated from
two-dimensional observed images using our variational Bayesian method. The horizontal
and vertical axes represent α and β, respectively. Cases of T = 1, 2, 3, 4 are listed from
the left to the right. Distributions in the same row are obtained by the same original
image. The true values of hyperparameters are set to (α0, β0) = (1, 0.03). The number of
pixels of image data is set to N = 1282.
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Figure 2.10: Marginalized posterior distributions of α calculated from two-dimensional
observed images using our variational Bayesian method. Cases of T = 1, 2, 3, 4 are listed
from the left to the right. Distributions in the same row are obtained by the same original
image. The true values of hyperparameters are set to (α0, β0) = (1, 0.03). The number of
pixels of image data is set to N = 1282.
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Figure 2.11: Marginalized posterior distributions of β calculated from two-dimensional
observed images using our variational Bayesian method. Cases of T = 1, 2, 3, 4 are listed
from the left to the right. Distributions in the same row are obtained by the same original
image. The true values of hyperparameters are set to (α0, β0) = (1, 0.03). The number of
pixels of image data is set to N = 1282.
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Figure 2.12: Posterior mean values of hyperparameters calculated from two-dimensional
observed images in the case of T = 1 to 10, obtained by our variational Bayesian method.
Averaged values over 100 trials are shown and error-bars represent standard deviations.
The left and the right panels are about α and β, respectively. The true values of
hyperparameters are set to (α0, β0) = (1, 0.03). The number of pixels of image data
is set to N = 1282.

optimize experimental conditions in practical situations where a trade-off problem exists.
For example, when the measurement time is limited, it is difficult to determine whether
to increase the number of image data at the expense of measurement precision. We will
probably take not only the Gaussian noise but also the Poissonian noise into consideration
if very little time is available [105, 94].

Much more still remains to be discussed. For example, let us consider the discipline of
geoscience where the concept of MRF has recently begun to be utilized [64, 87, 65, 66, 60].
It is also important how many measurement points to prepare for obtaining image data of
broad regions. In the case of geological boring survey, one cannot cover the whole earth
with innumerable holes. Our framework of evaluating the reliability is expected to be
helpful for planning where to investigate the next. Actually, there are few methods for
observing the inside of the earth directly like boring survey. In this case, one has no choice
but to use an indirect method such as seismic tomography. However, wave velocity maps
obtained by seismic tomography are nonlinearly connected to the distribution of geofluids.
Our framework should be extended so as to apply such a nonlinear measurement.
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Figure 2.13: Entropy values of hyperparameters calculated from two-dimensional observed
images in the case of T = 1 to 10, obtained by our variational Bayesian method. Averaged
values over 100 trials are shown and error-bars represent standard deviations. The size of
some error-bars are comparable to that of markers. The left and the right panels are about
α and β, respectively. The true values of hyperparameters are set to (α0, β0) = (1, 0.03).
The number of pixels of image data is set to N = 1282.
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Chapter 3

Theory of Compressed Sensing

3.1 Introduction

Most of the measurement systems in natural science are regarded as linear. We will
formulate a linear model of the measurement process. Let a column vector x0 =
(x01, x

0
2, . . . , x

0
N)

T be an original signal and the number of its non-zero elements is denoted
by K. When the measurement system is described by a set of N -dimensional row vectors,
{ā1, . . . , āM}, each of the data yµ is obtained by

yµ = āµx
0 (µ ∈ {1, 2, . . . ,M}) (3.1)

and the whole data y = (y1, . . . , yM)T are expressed as

y = Ax0, (3.2)

where the matrix A is called a measurement matrix defined by A = (āT
1 , . . . , ā

T
M)T. A

measurement matrix A is also called a basis matrix because a data vector is expressed as
a linear combination of its column vectors {a1, . . . ,aN} in the following way,

y =
∑
i

x0iai. (3.3)

The purpose is to estimate the original signal x0 from the data y based on the relation
Eq. (3.2). If the number of measurements is larger than the dimension of the original
signal, that is M > N , we are able to acquire the original signal from the data y as a
solution of the least-squares method,

x̂ls = argmin
x

{
||y −Ax||22

}
. (3.4)

The solution is obtained by

x̂ls = A+y, (3.5)
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where A+ is the Moore-Penrose pseudoinverse matrix of A. Compressed sensing is aimed
at the situation where the number of measurements is smaller than the dimension of the
original signal, M < N , but in this case the linear system Eq. (3.2) is underdetermined
and the least-squares method cannot lead to a unique solution.

Sparseness is the secret to compressed sensing. A signal is called to be sparse if its
non-zero elements are few. In the case of a sparse signal, the l0-minimization method is
considered to perform well even if M < N . Let us introduce the l0-norm, denoted by
|| · ||0, which is the number of non-zero elements of a vector and ||x0|| is set to be equal
to K. The l0-minimization method is carried out by solving the following constrained
optimization problem,

min
x
{||x||0}, subject to y = Ax, (3.6)

where || · ||0 is called the l0-norm of a vector, defined as the number of non-zero elements
of a vector (though l0-norm is not a proper norm in a mathematical sense). However, it is
difficult to carry out the l0-norm minimization method because the problem, Eq. (3.6), is
NP-hard and it causes a combinatorial explosion [85]. It is necessary to design an efficient
algorithm for practical use of compressed sensing.

3.2 Approximate algorithms

A lot of approximate algorithms have been designed in order to address the problem
of combinatorial explosion and some of them have recently become popular because
it was demonstrated that their solutions are equal to or close to the original signal
under appropriate conditions. Most of the algorithms are divided into two approaches:
relaxation and greedy approaches [38, 92]. We will explain these approaches and their
representative algorithms.

3.2.1 Relaxation approach

The relaxation approach is based on replacing the original optimization problem by a
tractable one. For example convex relaxations are often employed to approximate a
non-convex optimization problem by a convex one close to the original one. Convex
relaxations are useful because there are well-known algorithms to carry out convex
optimization efficiently.

In compressed sensing, the cost function of the l0-minimization method, Eq. (3.6), is
non-convex and intractable. We are interested in the performance of convex-relaxation
approaches where the l0-norm is replaced by the l1-norm or by the l2-norm as follows:

min
x
{||x||1} subject to y = Ax, (3.7)

min
x
{||x||2} subject to y = Ax, (3.8)
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Figure 3.1: Geometric representation of the lp-norm minimization methods in compressed
sensing with (N,M,K) = (3, 2, 1) and the p = 0, 1, 2 cases are shown from the left. The
red filled circle located at (x1, x2, x3) = (0, 0, 1) is the original signal. The green dashed
line is a subspace determined by measurements and of course crosses the original signal
point in the noiseless case. The blue subspace is the smallest lp-ball that touches the
measurement line and the point of contact, the red open circle, represents the estimator
of the lp-norm minimization methods. In the p = 0, 1 cases, the estimator point is equal
to the original point, but in the p = 2 case, the estimator point is different from the
original point.

where || · ||1 is called the l1-norm of a vector defined as

||x||1 =
N∑
i=1

|xi|. (3.9)

The l1-norm minimization method, Eq. (3.7), is also known as basis pursuit [18, 19].
Basis pursuit can be reformulated as a linear program [10]. Linear programming is a
well-studied class of optimization problems with efficient solution techniques and needs
only polynomial time to execute [62]. The l2-norm minimization method, Eq. (3.8), can
be executed by operating the pseudoinverse A+ to the data vector y.

Let us compare the sparseness of solutions obtained by the lp-norm minimization
methods. Figure 3.1 illustrates the methods geometrically. The red filled circle represents
a sparse original signal (s1, s2, s3) = (0, 0, 1). If a data vector y = (y1, y2)

T is obtained by
two trials of measurement {ā1, ā2}, the solution space can be restricted to a subspace
represented by a green dashed line. Then, the lp-norm minimization methods are
employed to select a unique solution from the measurement line. Carrying out the lp-norm
minimization is equivalent to finding the smallest lp-ball tangent to the measurement line
and the point of contact, denoted by a red open circle, means the estimator. Here, a
lp-ball Cp with a radius R is defined by

Cp = {x | ||x||p ≤ R}. (3.10)
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Algorithm 1 Orthogonal matching pursuit

Input: a data vector y ∈ RM , a measurement matrix A = (a1, . . . ,aN) ∈ RM×N ,
Sparseness K.
Initialize: x← 0, S ← ∅, U ← {1, 2, . . . , N}
Iterate:
for n = 1 to K do
r ← y −Ax
for i = 1 to N do
hi ← aT

i r
end for
j ← arg max

i∈U
{|hi|}

S ← S ∪ {j}, U ← U\{j}
x← arg min

z∈RN

{||y −Az||2} subj. to supp(z) ⊂ S

end for
Output: a sparse vector x

(∅ represents the empty set, and supp(·) represents the support of a function)

The estimator of the l0- and l1-norm minimization tends to be as sparse as the original
signal because l0- and l1-balls are pointed outwardly. On the other hand, the l2-norm
minimization method gives not a sparse solution because of the spherical form of l2-balls.
Therefore, basis pursuit is considered to perform well in terms of accuracy and tractability.

3.2.2 Greedy approach

It is beneficial to regard the task of compressed sensing as the problem of subset selection
in order to discuss the greedy approach. Compressed sensing is formulated as a problem
of selecting a small subset of basis vectors to explain the data sufficiently. The execution
of the greedy approach starts with the empty set and is followed by adding basis vectors
one by one to make an appropriate subset. The greedy approach employs a criterion
to measure the fitness of basis vectors to the target data and at each iteration the best
basis vectors among remaining ones is selected according to the criterion. The greedy
approach approximates the exhaustive-search method by making the locally optimal
choice repeatedly and cuts down its computational cost by not rethinking about basis
vectors which were selected once. Of course, greedy algorithms are not necessarily
guaranteed to be exact as well as basis pursuit, but are easy to understand and implement
intuitively.

A representative algorithm of the greedy approach is orthogonal matching pursuit
shown in Algorithm 1. At each iteration of orthogonal matching pursuit, one chooses the
best column vector that is closest to the residual vector r, where the criterion is the inner
product between the residual vector and each of the basis vectors.
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3.3 Performance analysis of basis pursuit

As explained so far, basis pursuit is considered to have two advantage points, tractability
and accuracy. It is no exaggeration to say that the success of basis pursuit has triggered the
recent spread of compressed sensing. It was demonstrated at last that basis pursuit gives
the same solution with the l0-minimization method on appropriate conditions [29, 33, 28].
In this section, we review three approaches to mathematically demonstrate that basis
pursuit is useful for compressed sensing, in a brief way: restricted isometry property,
geometry, and statistical mechanics.

3.3.1 Restricted isometry property

A series of proof is based on the restricted isometry property also known as the uniform
uncertainty principle [14, 15, 13], introduced by Candès and Tao [16, 17]. The s-th
restricted isometry constant δs of a measurement matrix A is defined by the smallest
δ ≥ 0 such that

(1− δ)||x||22 ≤ ||Ax||22 ≤ (1 + δ)||x||22 (3.11)

for all vectors x such that ||x||0 ≤ s. A matrix A is said to have the restricted isometry
property if δs is small for large s. In an extreme case of an orthogonal matrix A, the
restricted isometry constant is equal to 0 for all s because for all x

||Ax||22 = (Ax)T(Ax) = xTATAx = xTIx = xTx = ||x||22, (3.12)

where I is the identity matrix. Then, the restricted isometry property can be regarded
as a measure of orthogonality.

We here return to the problem of whether basis pursuit is exact or not. A sufficient
condition involving the restricted isometry property was obtained by Candès [13]. More
precisely, if the measurement matrix satisfies δ2s <

√
2− 1, the solution to basis pursuit

(3.7) is equal to that of the l0-norm minimization method (3.6) for all sparse signals x such
that ||x||0 ≤ s. This sufficient condition has been improved several times [37, 36, 11, 12,
80]. On the other hand, it was reported that there are matrices with restricted isometry
constant δ2s arbitrarily close to 1/

√
2 for which some sparse vectors are not recovered by

using basis pursuit [24]. This report implies that there is a boundary between success and
failure of basis pursuit.

Incidentally, the restricted isometry property is also used to evaluate the performance
of greedy approaches in a similar way [38]. It was observed that orthogonal matching
pursuit can fail to recover the original signal under a standard restricted isometry
condition [27]. On the other hand, it was demonstrated that orthogonal matching pursuit
succeeds in compressed sensing when a number of iterations that is proportional to the
number of nonzero components [110].
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3.3.2 Geometry

A boundary between success and failure of basis pursuit was found by Donoho and Tanner,
using methods of geometry [31, 26] as illustrated in Fig. 3.1. They handled the case where
the length of signals N is infinitely large with the ratio of M to N fixed and a random
matrix is employed as a measurement matrix A [104]. In their proof, a measurement
matrix A is associated to a polytope P ⊂ RM such that

P = {y ∈ RM | ∃x ∈ C, y = Ax}, (3.13)

where C is the N -dimensional l1-ball, namely

C = {x ∈ RN | ||x||1 ≤ 1}. (3.14)

The key concept they introduced is the central neighborliness of centrosymmetric
polytopes such as the above P . A centrosymmetric polytope is called centralK-neighborly
if every subset of K vertices not including an antipodal pair forms a face [42]. Then, they
proved that if and only if the polytope P has 2N vertices and is central K-neighborly,
the basis pursuit method recovers the original signal such that ||s||0 < K. Based on this
geometric interpretation, they finally derived an explicit form of the boundary separating
two regions of success and failure regarding basis pursuit.

Surprisingly, exactly the same form of the boundary was obtained using methods
of statistical mechanics although this approach is not mathematically rigorous [59, 40].
Because statistical mechanics has a lot of affinity with Bayesian inference, it is widely
applicable to performance analysis of various settings of compressed sensing. Besides, it
is useful to design efficient algorithms such as approximate message passing [30]. In the
following subsection, we will explain the performance analysis of compressed sensing using
methods from statistical mechanics.

3.3.3 Statistical mechanics

Let us formulate the problem of compressed sensing in the language of statistical
mechanics or probability theory according to Kabashima et al. [59]. We assume that
an original signal is sampled from the following probability distribution function

p(x0) =
N∏
i=1

{
(1− ρ)δ(x0i ) + ρ

1√
2π

exp

[
−(x0i )

2

2

]}
(3.15)

where the parameter ρ controls the sparseness of the signal. The measurement matrix is
drawn from

p(A) =
M∏
µ=1

N∏
i=1

√
N

2π
exp

[
−N

2
(Aµi)

2

]
(3.16)
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Considering the noiseless case, the measurement process is expressed as

p(y|A,x0) = δ(y −Ax0) =
M∏
µ=1

δ

[
yµ −

N∑
i=1

Aµix
0
i

]
. (3.17)

The purpose is to obtain an estimator of x0 given a data vector y.
The l1-norm minimization method is related to the following canonical distribution,

p(x|y) = 1

Z(β)
exp [−β||x||1] δ (y −Ax) , (3.18)

where Z is a partition function defined by

Z(β) =

∫
dx exp [−β||x||1] δ (y −Ax) . (3.19)

The solution of the l1-norm minimization method corresponds to the ground state sampled
from Eq. (3.18) in the limit of β → +∞. From the viewpoint of Bayesian inference,
the canonical distribution is regarded as a posterior distribution derived from a prior
distribution,

p(x) ∝ exp [−β||x||1] , (3.20)

and a likelihood function,

p(y|x) = δ(y −Ax). (3.21)

Mean squared error is used to evaluate the performance of the l1-norm minimization
method. The typical error value is given by

ϵ = lim
β→+∞

[⟨
1

N
||x− x0||22

⟩
x|y

]
y,A,x0

, (3.22)

where ⟨·⟩x|y is the thermal average with regard to Eq. (3.18) and [·]y,A,x0 is the
configurational average with regard to Eqs. (3.15) to (3.17). Employing a modified
partition function,

Z(β, βϵ) =

∫
dx exp

[
−β||x||1 − βϵ||x− x0||22

]
δ (y −Ax) , (3.23)

the error value is expressed as

ϵ = lim
β→+∞

lim
βϵ→+0

− ∂

∂βϵ

[
1

N
lnZ(β, βϵ)

]
y,A,x0

. (3.24)
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Figure 3.2: The solid line is the boundary between success and failure of the l1-norm
minimization method obtained by a method of statistical mechanics [59]. Above the line
is the region of success. The horizontal axis ρ = K/N represents the degree of sparseness
of the original signal. The vertical axis α =M/N represents the number of measurements
compared to the number of variables

We analyze the performance of the l1-norm minimization method in the
thermodynamic limit, namely N → +∞ with ρ = K/N and α = M/N fixed, using
methods derived from statistical mechanics. The mean squared error can be assessed by
the saddle-point method and the replica method to obtain

ϵ = Q− 2m+ ρ. (3.25)
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Here, the equations of state that determine the value of Q and m are given by

m̂ =
α

2

1

χ
, (3.26a)

Q̂ =
α

2

1

χ
, (3.26b)

χ̂ =
α

2

Q− 2m+ ρ

χ2
, (3.26c)

m = ρ
m̂

Q̂
erfc(θm), (3.26d)

Q = (1− ρ) 1

8θ2Q̂2

{
(1 + 2θ2)erfc(θ)− θ 2√

π
e−θ2

}
, (3.26e)

+ρ
1

8θ2mQ̂
2

{
(1 + 2θ2m)erfc(θm)− θm

2√
π
e−θ2m

}
, (3.26f)

χ = (1− ρ) 1

2Q̂
erfc(θ) + ρ

1

2Q̂
erfc(θm), (3.26g)

where θ = 1√
4χ̂
, θm = 1√

4χ̂+8m̂2
, and erfc(·) is the complementary error function defined

by

erfc(x) =
2√
π

∫ +∞

x

dte−t2 . (3.27)

Figure 3.2 shows the boundary between success and failure of the l1-norm minimization
method. In the top-left region above the boundary, the mean squared error is zero and
the l1-norm minimization method succeeds in compressed sensing. Of course, the l1-norm
minimization method fails in the case where the number of measurements is small though
the original signal is not so sparse. However, judging from the breadth of the success
region, basis pursuit is considered to be practical.
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Chapter 4

Application of Compressed Sensing
to Experimental Physics

4.1 Scanning probe microscopy

In 1982, scanning probe microscopy (SPM) originated from the invention of scanning
tunneling microscopy (STM) by Binnig and Rohrer [6, 5]. SPM is a group of experimental
technology in which, as shown in Fig. 4.1, a characteristic probe is brought close to a
material surface and the surface is scanned over a large region to acquire imaging data.
The tip of the probe is so sharp that at its very end there is only one atom as shown in the
enlarged view of Fig. 4.1. Thanks to the extreme sensitivity of tunneling current to height,
the resolution of SPM is comparable to the size of atoms. The first significant achievement
of SPM is the determination of Si(111)-(7×7) surface reconstruction structure, also known
as a dimer-adatom-stacking fault (DAS) model. Without the SPM technology, the DAS
model was controversial for more than 25 years and there was only indirect evidence in
reciprocal space obtained by electron-diffraction experiments [96, 68, 103, 46, 71, 77].
Then, the real-space observation of the Si(111) surface with STM by the inventors was
really astonishing to the society of surface science and simultaneously this achievement
established that the SPM technology is effective and promising [7].

The SPM technology has a simple measurement principle of scanning material surfaces
with a sharp probe. More interestingly, SPM can be applied to measuring various
physical quantities of various material surfaces just by changing stuff for its probe. In
atomic force microscopy (AFM), a cantilever is used for a probe to detect atomic force
[8]. Because there is atomic force such as van der Waals force even between insulator
materials, AFM is used to study insulator surfaces. Besides, it was reported that AFM
can be used to distinguish between different chemical species of atoms on a material
surface [98]. Spin-polarized scanning tunneling microscopy (SPSTM) was invented by
Wiesendanger et al. [107, 106]. SPSTM employs a probe whose tip is covered with thin
film of magnetic materials. Because tunneling conductance depends on the direction of
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Figure 4.1: Measurement principle of scanning probe microscopy.

spin angular momentum in material surfaces, SPSTM enables us to reveal complicated
magnetic nanostructure such as conical spin-spirals and skyrmions [49, 108].

We explain the mechanism of the STM measurement briefly. STM is based on
the phenomenon of quantum tunneling, where particles such as electrons move through
potential barriers which could not be passed in the range of classical mechanics. It means
that, even if the conducting tip of STM is in no direct contact with the sample surface,
a certain amount of electric current can flow between them. According to the theory of
quantum mechanics, the amount of tunneling current is given by

I(r, z, V ) ∝
∫ +∞

−∞
ρtip(E)f(E)ρsample(r, E + eV )(1− f(E + eV ))T (r, z, eV, E)dE. (4.1)

Here, r is the coordinates on the sample surface, z is the distance between the surface and
the probe tip, V is the bias voltage, E is the energy, e is the elementary charge, ρtip is the
density of states (the DOS) of the tip, ρsample is the local density of states (the LDOS) of
the sample surface, f is the Fermi distribution function, and T is the tunneling transition
probability. For low temperatures, we obtain

I(r, z, V ) ∝
∫ 0

−eV

ρtip(E)ρsample(r, E + eV )T (r, z, eV, E)dE. (4.2)
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When a simple material such as tungsten metal or a platinum-iridium alloy is used for
the tip, ρtip is regarded as constant and the tunneling current is reduced to

I(r, z, V ) ∝
∫ eV

0

ρsample(r, E)T (r, z, eV, E)dE. (4.3)

According to the Wentzel-Kramers-Brillouin (WKB) theory, the transition probability is
given by

T (r, z, eV, E) ∝ exp [−2κ(r, eV, E)z] , (4.4)

where κ is expressed as

κ(r, eV, E) =

√
2m(ϕ(r)− E + eV/2)

ℏ
, (4.5)

using the work function ϕ. The work function refers to the minimum energy needed to
remove an electron from a material surface to a vacuum space and is considered to be
dominant in κ. As a result, we obtain the following relation

I(r, z, V ) ∝ exp [−2κ(r)z]
∫ eV

0

ρsample(r, E)dE, (4.6)

κ(r) =

√
2mϕ(r)

ℏ
∼ 1Å

−1
. (4.7)

In Eq. (4.6), we see that the amount of tunneling current gets one digit smaller as the
distance between the tip and atoms on the surface increases by a length comparable to
the size of atoms. Thanks to the high sensitivity, topography data of material surfaces
at atom resolution are available by scanning them keeping the tunneling current and bias
voltage constant.

In this work, we focus on scanning tunneling spectroscopy (STS), an application of
STM. The STS technique enables us to distinguish electrons which have different energy
values. STS makes use of the fact that the derivative of the tunneling current with
respect to the bias voltage dI/dV , namely the tunneling conductance, is proportional to
the LDOS,

dI

dV
∝ ρsample(r, E = eV ), (4.8)

according to Eq. (4.6). Then, dI/dV image data recorded at various bias voltage points
give us a lot of information on energy dependence of LDOS maps of electrons.

4.2 Quasiparticle interference

When material surfaces are observed at atom resolution by STM, we see various kinds
of patterns [47, 20]. A dI/dV image of a surface of Au on mica is shown in Fig. 4.2
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Figure 4.2: A dI/dV image of an Au-on-mica sample observed by STM (the area of the
region, 69.6nm×69.6nm; the number of measurement points, 512×512; a bias voltage,
-100mV).

and there is a LDOS pattern which reminds us of traditional Japanese gardens. Along
the step in the bottom left is a parallel wave pattern and concentric circular patterns are
formed with their centers on point defects. Standing-wave patterns on metal surfaces are
caused by interference of free electrons scattered by defects and impurities and we call
them patterns of electron standing wave.

Scientists not only from surface science but also from other fields of condensed matter
physics pay attention to the recent results of STS measurements. The STM and STS
technologies have been playing a great role in revealing the emergence mechanism of
superconductivity [52, 75, 43, 44, 35] and topological insulators [95, 111, 2, 88, 90].
For example, when an iron-based superconductor material is observed by the STM
measurement, a similar pattern to ones appearing on metal surfaces is seen [45]. This
pattern is considered to be formed by Bogoliubov quasiparticles, which are broken pairs
of Cooper pairs, and is also known as quasiparticle interference patterns. Quasiparticle
interference patterns observed by STS are expected to be useful for evaluating the band
dispersion of strongly correlated electron systems and the spin structure of topological
insulators.

Quantum physics tells us that electrons exhibit the property of waves and their
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behavior is described by wave functions. The squared absolute value of a wave function,
|ψ(r)|2, is interpreted as the probability density of an electron being at a location r in
a two-dimensional surface. Then, wave functions ψ are linked to LDOS images in the
following way,

ρ(r) ∝ |ψ(r)|2. (4.9)

In order to discuss the dispersion relation between energy and wavenumber, we are
interested in the Fourier transform of wave functions, which is related to that of LDOS
images as follows:

ρ̃(q) =

∫
dkψ̃(k)ψ̃∗(k − q), (4.10)

derived from Eq. (4.9), where

ρ̃(q) =

∫
drρ(r)e2πiq·r, (4.11)

ψ̃(k) =

∫
drψ(r)e2πik·r (4.12)

For the sake of simplicity, we have assumed the isotropy of scattering. This relation
indicates that the Fourier transform of LDOS images recorded at a bias voltage is
equivalent to a mapping of scattering vectors q = k − k′ at an energy value.

Let us consider simple systems described by a free-electron model whose dispersion
relation is parabolic as shown in Fig. 4.3(a). When the paraboloid is cut at the E = eV
plane according to the bias voltage, a contour of constant electron energy appears in k
space as shown in Fig. 4.3(b). In the case of the free-electron model, contours of constant
electron energy are circular and described by

ψ̃(k) ∝ δ(|k| − k0), (4.13)

and then a corresponding scattering-vector map is given by

ρ̃(q) ∝


1

|q|
2k0

√
1−

(
|q|
2k0

)2
if 0 < |q| < 2k0

0 otherwise

. (4.14)

We see that the scattering-vector map takes a infinitely large value at the origin and points
on the origin-centered circle with a radius of 2k0 as shown in Fig. 4.3(c). The Fourier
transforms of dI/dV images obtained at various bias voltage points by STS correspond to
scattering-vector maps such as Fig. 4.3(c) and are considered to be the key to dispersion
relation.
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Figure 4.3: (a) Parabolic dispersion relation seen in free-electron systems, formulated by
E = ℏ2k2

2m∗ . (b) A contour of constant electron energy in k space, namely a cross section
of (a) cut by the plane E = eV . (c) A map of scattering vectors which connect points on
the contour of electron energy in (b).

4.3 Translation into compressed sensing

A drawback of the STM or STS measurement is that it takes a lot of experimental time to
conduct spectroscopy measurement at many locations in a broad region of surfaces. We
apply compressed sensing to retrieve scattering-vector maps from dI/dV images partially
obtained at a small number of measurement points. It is considered to be appropriate
to assume the sparseness of scattering-vector maps, because a limited number of ways of
electron scattering are allowed according to the dispersion relation.

Let us formulate the measurement system of STS according to Chap. 3. In STS
measurements, a dI/dV image at a bias voltage, {ρ(rµ)}, is the data vector {yµ}, a
scattering-vector map {ρ̃(qi)} is the original signal {x0i } to be estimated, and Fourier
transform connects them as follows:

y = Ax0 + n, (4.15)

where A represents the Fourier basis and n is a vector which represents measurement
noise.

Previous studies of STM or STS often employ a fast Fourier transform (FFT) algorithm
to estimate x0 from y by carrying out Fourier transform,

x̂FT = A∗y, (4.16)

where A∗ is the conjugate transpose matrix of A. In the underdetermined case, the
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Algorithm 2 Approximate message passing (AMP)

Input: data vector y ∈ RM , basis matrix A = (a1, . . . ,aN) ∈ RM×N , regularization
coefficient λ, tuning parameter δ.
x← 0, χ← 0, r ← y
while until convergence do
Q̂← 1

1+χ

r ← (1− Q̂)r + Q̂(y −Ax)
h← Q̂x+ATr
for i = 1 to N do
xi ← (1− δ)xi + δ 1

Q̂
sign(hi)(|hi| − λ)Θ(|hi| − λ)

end for
χ← (1− δ)χ+ δ 1

Q̂

1
M

∑
i Θ(|hi| − λ)

end while
Output: the sparse vector x

(sign(·) represents the sign function, and Θ(·) represents Heaviside’s step function)

estimator x̂FT is equivalent to the solution of the l2-norm minimization method,

min
x
||x||2 subject to y = Ax. (4.17)

As illustrated in Fig. 3.1, the l2-norm minimization is not suitable for compressed sensing
based on sparseness. In addition, the constraint y = Ax is too strict in noisy situations.

We adopt the convex-relaxation approach for compressed sensing, and considering the
noise we use least absolute shrinkage and selection operator (LASSO) instead of basis
pursuit [102]. LASSO is carried out by solving the following optimization problem

min
x

{
||y −Ax||22 + λ||x||1

}
, (4.18)

where λ is a regularization parameter and is set to a positive value. LASSO is known to
be equivalent to the following optimization problem,

min
x
{||x||1} subject to ||y −Ax||22 < ϵ. (4.19)

Comparing with the basis pursuit method, Eq. (3.7), we see that LASSO adopts a weaker
constraint regarding data fitting and is considered to be robust against measurement noise.

We carry out LASSO using the approximate-message-passing (AMP) algorithm [30].
The AMP algorithm is shown in Algorithm 2. LASSO is reformulated by a quadratic
program. Quadratic programming is a well-studied class of optimization problems and
can be solved with a computational cost of the order O(N3). On the other hand, AMP
needs only a computational cost of the order O(N2) per update. AMP is a modification
of belief propagation methods and was developed in the field of statistical mechanics.

49



Surface

(a)

Surface

(b)

Surface

(c)

Figure 4.4: Methods of the STM measurement. (a) A conventional time-consuming
method recording at a large number of measurement spots. (b) The regular downsampling
method in which measurement spots are thinned out at regular intervals. (c) The random
downsampling method in which measurement spots are thinned out randomly.

We use a cross-validation method to determine the parameter of LASSO λ [32, 63, 9].
Hopefully, the value of the parameter is determined so as to minimize the predictive error
on new data, but one misses the original purpose of decreasing measurement time if one
gets new data just for this purpose. Cross validation methods are used to estimate the
predictive error without new data. We explain the procedure of cross-validation methods.
First, one divides the data set {yµ} into two sets, namely a training set {ytrainµ } and a
testing set {ytestµ }. Second, one operates LASSO to the training set with various values of
λ to obtain estimates of x, denoted by x̂train(λ), as follows:

x̂train(λ) = arg min
x

||ytrain −Atrainx||22 + λ||x||1, (4.20)

where Atrain is a submatrix of A composed of row vectors corresponding to the training
set. Third, one calculates the cross validation error (CVE) defined by

CVE(λ) =

√
1

M test
||ytest −Atestx̂train(λ)||22, (4.21)

where M test is the number of elements of the testing set and Atest is a submatrix of A
composed of row vectors corresponding to the testing set. Finally, we adopt a value of λ
which gives the smallest CVE. The value of CVE depends on how to select the training
data in the first step and one often uses the mean value of CVE over several trials on
different training sets, such as leave-one-out cross validation and K-fold cross validation.

Putting compressed sensing into practice, we stress that there is room for improvement
not only in methods of analysis but also in measurement methods. The point is how to
decrease the number of measurement spots. The STM measurement is usually conducted
at a large number of measurement spots to obtain a full set of image data as shown in
Fig. 4.4(a). Naively, it could be fine to thin out spots at regular intervals as shown in
Fig. 4.4(b), but we need not stick to do so because we do not use an FFT algorithm
now. Instead, we propose to decrease the number of spots at random intervals as shown
in Fig. 4.4(c). We compare the performance of the regular downsampling and the
random downsampling when data obtained by the methods are analyzed using a method
of compressed sensing, LASSO.
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Figure 4.5: A topographic image of an Ag(111) surface obtained by STM (the area of
the measurement region, 100nm×100nm; the number of measurement points, 256×256; a
bias voltage, 50mV).

4.4 Demonstration

We investigate the effects of compressed sensing on the STM and STS measuments by
numerical simulation using a set of raw data. Figure 4.5 shows an STM image to be used
in all numerical simulations. The experiments to obtain the image data were performed
using an ultrahigh vacuum STM setup (USM-1300, Unisoku, and SPM-1000, RHK) in
which the tip and sample can be cooled down to approximately 2.6K at the Institute for
Solid State Physics, the University of Tokyo. A single crystalline Ag(111) substrate was
cleaned by repetitive Ar sputtering and annealing at approximately 800◦C. The STM
image of the Ag(111) surface was obtained at 4.2K. An electrochemically etched W tip,
which was annealed at approximately 900◦C in situ for removing the oxide layer from
the tip apex, was used for the imaging. Topographic images are obtained based on the
amount of tunneling current I, not dI/dV . According to Eq. (4.6), the quantity I is
proportional to the integral of the sample LDOS over the energy interval between 0 and
eV . Given at a low bias voltage V = 50mV, however, topographic images can be regarded
as LDOS maps at the Fermi energy because the range of integration in the right-hand-side
of Eq. (4.6) is small. The full set of the image data is composed of 256×256 pixels and the
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Figure 4.6: (a) A scattering-vector map obtained by the Fourier transform of the image
data shown in Fig. 4.5. (b) Intensity of the scattering-vector map on the white diagonal
line.
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Figure 4.7: Scattering-vector maps estimated by Fourier transform without LASSO. The
STM data of Fig. 4.5 is thinned out by the regular downsampling. The number of data
points used for estimation is (a) 128×128, (b) 85×85, (c) 64×64.

data are normalized to be regarded as random variable whose mean and variance are zero
and one, respectively. We try retrieving scattering-vector maps from only a part of the
raw data to simulate downsampling methods numerically and evaluate the performance
of compressed sensing.

When a conventional method of Fourier transform is applied to the image data of Fig.
4.5, we obtain a scattering-vector map shown in Fig. 4.6. The surface state of Ag(111)
can be described by a free-electron-like model and a circular pattern is clearly seen in
Fig. 4.6(a). This pattern is the ‘answer’ pattern in simulations below. Figure 4.6(b)
plots the intensity of the scattering-vector map on the white diagonal line and we are
sure that there is a peak where the circular pattern is located. When we operate Fourier
transform to regularly downsampled data without a method of compressed sensing, the
circular pattern in the scattering-vector map is hidden, as shown in Fig. 4.7. At a
glance, unexpected arc-shaped patterns appear in the case of 85×85, Fig. 4.7(b), and
they get closer to the answer circle as the degree of downsampling is higher. We attribute
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Figure 4.8: Scattering-vector maps estimated by Fourier transform without LASSO. The
STM data of Fig. 4.5 is thinned out by the random downsampling. The number of data
points used for estimation is (a) 16384, (b) 7225, (c) 4096.

it to the aliasing phenomenon also known as a cause of Moiré patterns, where different
wavenumber components in an image data obtained with a constant spatial period become
indistinguishable from one another.

In order to remove the aliasing effect, we operate the same Fourier transform to
randomly downsampled data. Figure 4.8 shows the results. We see that there is
no aliasing pattern and random sampling is effective in the treatment of aliasing.
Comparing Fig. 4.8 with the answer pattern in Fig. 4.6, the circular pattern is hidden
behind high-wavenumber components. In the case of the Ag(111) surface, the strength
of high-wavenumber components is considered to be zero, but this method based on
conventional Fourier transform captures measurement noise including high-wavenumber
components and results in overfitting.

Now, we apply compressed sensing to randomly downsampled data. Instead of
conventional Fourier transform, we use LASSO, which is carried out by the approximate
message passing (AMP) algorithm shown in Algorithm 2. The regularization parameter
of LASSO, λ, is determined by 10-fold cross validation. Figure 4.9 shows the results of
LASSO. The circular pattern is clearly seen even in the case of 4096 data points in Fig.
4.9(c). The aliasing pattern does not appear around the circle. Figure 4.10 shows the
intensity values on the diagonal line of scattering maps shown in Figs. 4.8 and 4.9. We
see that peaks at the circular pattern are prominent in the results of LASSO while they
are comparable with the magnitude of noise in the results of Fourier transform. We claim
that LASSO enables us to decrease the number of measurement points without degrading
the quality of scattering maps.

In order to make sure of the effect of random sampling, we operate LASSO to regularly
downsampled data. Figure 4.11 shows the results. The pattern of aliasing still remains
around the circular pattern in the same way with Fig. 4.7. We have checked that the
aliasing pattern is not removed just by using LASSO. In order to realize compressed
sensing, we should pay attention not only to analysis methods but also to measurement
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Figure 4.9: Scattering-vector maps estimated by LASSO. The STM data of Fig. 4.5 is
thinned out by the random downsampling. The number of data points used for estimation
is (a) 16384, (b) 7225, (c) 4096.
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Figure 4.10: Intensity is plotted on the diagonal line of scattering maps shown in Figs.
4.8 and 4.9. The STM data of Fig. 4.5 is thinned out by the random downsampling. The
number of data points used for estimation is (a) 16384, (b) 7225, (c) 4096.

methods, and in this case LASSO and the random sampling are necessary.
A further interest is what happens if the number of measurements is decreased more

than the cases studied so far. Figure 4.12 shows the results of such cases where the number
of data points is 2601 and 1764. In the case of 2601 pixels shown in Fig. 4.12(a), we can
narrowly see the circular pattern, and in the case of 1764 pixels shown in Fig. 4.12(b),
we cannot at all. However, we have to say that this judgment is biased. Without a prior
knowledge that the dispersion relation of the Ag(111) surface is parabolic, it could be
possible to think that the result in Fig. 4.12(b) is true.

We are forced to make a criterion to see if the given result is trustworthy or not, but
it is really challenging. We focus on the behavior of CVE values, which are calculated to
determine the value of λ in LASSO. Figure 4.13 shows CVE values calculated in 10-fold
cross validation conducted to acquire scattering maps in Figs. 4.9 and 4.12. Noting that
the data y has been normalized, the value of CVE is equal to one in the limit of λ→ +∞
because the estimate x̂ obtained by LASSO with an infinitely large λ is equal to the
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Figure 4.11: Scattering-vector maps estimated by LASSO. The STM data of Fig. 4.5 is
thinned out by the regular downsampling. The number of data points used for estimation
is (a) 128×128, (b) 85×85, (c) 64×64.
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Figure 4.12: Scattering-vector maps estimated by LASSO. The STM data of Fig. 4.5 is
thinned out by the random downsampling. The number of data points used for estimation
is (a) 2601, (b) 1764.

zero vector. In the case of 16384 pixels, 7225 pixels, and 4096 pixels where the circular
pattern is clearly seen in scattering maps, CVE values are much smaller than one. In
contrast, in the case of fewer pixels where the circular pattern is not seen, CVE values
are comparable to one and it means that the estimate of LASSO is equivalent to the zero
vector, a nonsense solution. Consequently, the behavior of CVE values are considered
to be useful for evaluating the reliability of the data. Future work will complement the
theoretical approach to the role of CVE.

4.5 Discussion

We have explained the performance of compressed sensing when it is applied to STS
measurement. We demonstrated that LASSO enables us to obtain the circular pattern
on scattering maps from partial data of STS. Besides the analysis method, we proposed
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Figure 4.13: Plots of CVE values against λ calculated in 10-fold cross validation to
determine the value of λ to obtain Figs. 4.9 and 4.12.

a new measurement method of random sampling and revealed that the random sampling
is effective in the removal of aliasing. It is always controversial whether the quality of
measurement is enough or not, but we showed a possibility that CVE plays a role of
criterion for the judgment.

We have shown that compressed sensing is useful for recovering the circle on the
q-space, but our end goal is the dispersion relation of materials in the (k, E)-space, that
is represented by a parabola (refer to Fig. 4.3(a)) or more complicated forms. Obviously,
we should study more about measurement along the energy axis E. There is still room to
improve it from both the aspect of data analysis and the aspect of measurement method.
A more challenging topic is how to transform the k-space representation from the q-space
representation. Let us recall Eq. (4.10) to find that both representations are connected in
a nonlinear way. In order to solve this nonlinear problem, it is considered to be promising
to compare STS data with other data from angle resolved photoemission spectroscopy
[21, 55, 2] and ab initio calculation [79, 78].
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Chapter 5

Solution-Space Analysis

5.1 Sparse approximation problem

Let us formulate the problem of sparse approximation. Given a data vector y ∈ RM and
a proper basis matrix A = (a1, . . . ,aN) ∈ RM×N , the purpose of sparse approximation
is to find a sparse vector x ∈ RN , the number of whose non-zero elements is K (< M),
such that the data is represented in the following way,

y ≈ Ax, (5.1)

keeping the distortion as small as possible. We measure the distortion ϵ using a mean
squared error,

ϵ =
1

2M
||y −Ax||22, (5.2)

where || · ||2 is the l2-norm of a vector, defined as ||y||2 =
√∑

i y
2
i . In addition, We call the

constant r = K/M the compression rate. We are interested in the performance of sparse
approximation evaluated by the relation between the distortion and the compression rate.

Conventional methods of sparse approximation employ a square basis matrix such as
Fourier and wavelet bases. In order to achieve a good trade-off relation, we discuss the use
of an overcomplete basis. An overcomplete basis is composed of more column vectors than
the dimension of the data vector, namely N > M . Thanks to the extra column vectors,
this strategy based on overcomplete bases is expected to outperform the conventional
methods.

In the discussion of sparse approximation, it is beneficial to divide its procedure into
two steps. In the first step basis vectors are selected, often called support estimation,
and in the second step the coefficients of basis vectors are determined. Once a certain
combination of basis vectors is chosen, it is relatively easy to determine the coefficients so
as to minimize the distortion by using the method of least squares. Therefore, we focus
on the step of support estimation. Naively, we conceive of calculating the distortion of
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all possible combinations of basis vectors and choosing the optimal combination. We
call this the exhaustive-search method. We will analyze the performance when the
exhaustive-search method is carried out exactly, using methods of statistical mechanics.

The exhaustive-search method is, if conducted literally, an absolute method, but is
not practical from the viewpoint of computational complexity. There are NCK options
of selecting K basis vectors among N ones, and it causes a combinatorial explosion.
It is important to develop an efficient method of choosing proper basis vectors used to
represent the data. We discuss the convex-relaxation and greedy approaches to design a
useful method of basis selection. Our adoption of these approaches is motivated by their
application in compressed sensing to decrease computational time. We will examine the
performance of these algorithms.

5.2 Performance of the overcomplete-basis strategy

The distortion of sparse approximation is highly affected by the result of support
estimation. It is important to analyze a histogram which represents a frequency
distribution of distortion values when all possible sets of basis vectors are examined.
We will analyze it using methods of statistical mechanics. Statistical mechanics provides
useful methods of analyzing behaviors of systems in the large-size limit, M → +∞ with
r = K/M and α = N/M fixed, called the thermodynamic limit. We note that the
definition of α here is different from that in Chap. 3. The meaning of α here is the degree of
overcompleteness here, while in Chap. 3 it means how small the number of measurements
is compared to the number of unknown variables. In the context of statistical mechanics,
the frequency distribution can be regarded as the Boltzmann entropy. The minimum
distortion value is evaluated at the zero-entropy point.

For the sake of simplicity, our analysis deals with the situation where the data are
composed of independent and identically distributed random variables from a normal
distribution whose mean and variance are zero and σ2

y respectively, denoted by N (0, σ2
y),

and a basis whose components are independent and identically distributed random
variables from N (0,M−1) is used.

5.2.1 Theoretical analysis

In order to interpret the problem of support estimation as that of statistical mechanics,
let us introduce a binary vector c ∈ {1, 0}N to store information on whether each basis
vector is chosen (ci = 1) or not (ci = 0), and then they can be regarded as spin variables.
We discuss a system characterized by a Hamiltonian,

Hls(c; β1) = −
1

β1
ln

∫
dcxe

−β1
2
||y−A(c◦x)||22 , (5.3)

where ◦ represents the Hadamard product of two vectors, defined as (v ◦ w)i = viwi,∫
dcx =

∏N
i=1

∫
dcixi, and

∫
dcixi =

∫
dxi (ci = 1) or 1 (ci = 0). This Hamiltonian is
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related to the cost function of the method of least squares, when a set of basis vectors
labeled by c is used, as follows:

Hls(c; β1)→ min
x

1

2
||y −A(c ◦ x)||22, as β1 → +∞. (5.4)

The parameter β1 plays a role of inverse temperature regarding the use of the method
of least squares, and taking the limit of β1 → +∞ corresponds to carrying out the
least-squares methods. Based on this Hamiltonian, we naturally introduce a canonical
distribution of spin variables c as follows:

p(c|β) = 1

Z(β)
δ(||c||0 −K)e−βHls(c;β1), (5.5)

where || · ||0 denotes the so-called l0-norm of a vector. The l0-norm represents the number
of non-zero elements of a vector, defined as ||v||0 =

∑
i |vi|0, where |vi|0 is equal to 1

(vi ̸= 0) or 0 (vi = 0). The normalization factor Z is called a partition function, defined
as

Z(β) =
∑
c

δ(||c||0 −K)e−βHls(c,β1). (5.6)

The parameter β plays a role of inverse temperature regarding the step of support
estimation. Taking the limit of β → +0 tells us the performance in the case of random
choice, and better sets of basis vectors tend to be sampled from a canonical distribution
with a larger β.

The typical value of the distortion at a temperature point β is given by

ϵ(β) = lim
β1→+∞

1

M

[
⟨Hls(c; β1)⟩c|β

]
y,A

, (5.7)

where ⟨·⟩c|β represents the thermal average with regard to c, and [·]y,A represents the
configurational average with regard to y and A. Employing the partition function Z, the
distortion is also expressed as

ϵ(β) = lim
β1→+∞

− 1

M

∂

∂β
[lnZ(β)]y,A. (5.8)

Now, let us define an entropy-density function of interest as

s(ϵ, β1) =
1

M
ln (#{c | ||c||0 =Mr ∧Hls(c; β1) =Mϵ}) , (5.9)

and then the partition function can be also expressed as

Z(β, β1) =
∑
ϵ

eM(s(ϵ,β1)−βϵ). (5.10)
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In the thermodynamic limit M → +∞ as will be taking, the typical value of the entropy
density is also expressed as a function of β

s(β) = βϵ(β) + lim
β1→+∞

1

M
[lnZ(β, β1)]y,A. (5.11)

For the sake of convenience, we define a free-energy density as

f(β) = lim
β1→+∞

− 1

Mβ
[lnZ(β, β1)]y,A, (5.12)

and its relations to the distortion and the entropy density are given by

ϵ(β) =
∂

∂β
(βf(β)), (5.13)

s(β) = β(ϵ(β)− f(β)). (5.14)

The point of the analysis is assessing the free-energy density f in the thermodynamic
limit. Though the details of calculation are described in Appendix B.1, this assessment
can be performed by using the saddle-point method and the replica method, which yields

lim
M→∞

f(β)

= − 1

β

[
1

2
ln

1 + χ1

1 + χ1 + β(Q− q)
− β

2

q + σ2
y

1 + χ1 + β(Q− q)

+r̂r + β(Q̂Q− (χ̂1 + q̂)χ1)− β2((χ̂1 + q̂)Q− q̂q)

−α
∫

Dz ln(1− ρ(z))

]
, (5.15)

where

ρ(z) =
1√

Q̂−βχ̂1

Q̂
exp

[
r̂ − β

2
q̂

Q̂−βχ̂1
z2
]
+ 1

, (5.16)

and the parameters {Q,χ1, q, r̂, Q̂, χ̂1, q̂} are substituted for by the solution of the
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equations of state:

Q̂ =
1

2

1

1 + χ1

, (5.17a)

χ̂1 =
1

2

Q− q
(1 + χ1)(1 + χ1 + β(Q− q))

, (5.17b)

q̂ =
1

2

q + σ2
y

(1 + χ1 + β(Q− q))2
, (5.17c)

r = α

∫
Dzρ(z), (5.17d)

Q = α

∫
Dzρ(z)

(
1

2

χ̂1

Q̂(Q̂− βχ̂1)
+

1

2

q̂

(Q̂− βχ̂1)2
z2

)
, (5.17e)

χ1 = α

∫
Dzρ(z)

(
1

2

1

Q̂

)
, (5.17f)

q =
α

β

∫
Dzρ(z)

(
1

2

1

Q̂− βχ̂1

− 1

2

Q̂− β(χ̂1 + q̂)

(Q̂− βχ̂1)2
z2

)
. (5.17g)

The distortion and the entropy density are analyzed as follows:

lim
M→+∞

ϵ(β) = χ̂1 + q̂, (5.18)

lim
M→+∞

s(β) = β(ϵ(β)− f(β)). (5.19)

5.2.2 Numerical Analysis

When the system size M is sufficiently small, we can obtain the free-energy density f by
exhaustively searching all possible combinations of basis vectors. In the case where M is
less small, we use the exchange Monte Carlo method to sample basis vector combinations
obeying the canonical distribution at various temperature points [99, 56], and then are
able to estimate the free-energy density f using the multi-histogram method [34].

In simulations, we set σ2
y = 1 and α = 2. We treat two values of r equal to 0.2

and 0.4. In the case of r = 0.2 (0.4), we calculate the values of free-energy density
at 15 temperature points, which are distributed according to a geometric progression
in the range between 1 and 10 (between 1 and 35) in the value of β. We conduct the
exhaustive-search method for M ≤ 25 (15), and use the exchange Monte Carlo method
for larger M . The configurational average with regard to (y,A) is dealt with by taking
the median over 1000 different trials. The error bars are estimated by using the Bootstrap
method.

The exchange Monte Carlo simulations are conducted as follows. At every temperature
point, we randomly choose the initial vector c among those satisfying ||c||0 = K. For r =
0.2, the number of Monte Carlo steps required for sufficient sampling is 2, 3, 4, 7, 10× 104
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Figure 5.1: Theoretically and numerically estimated free-energy density values f at
some temperature points β. Red crosses and black circles on the vertical axis represent
theoretical and numerical estimates, respectively. Numerical estimates are extrapolated
from the results of finite-size numerical simulations, represented by black circles. Some
error bars are smaller than markers. The related parameters are set to σ2

y = 1, α = 2,
and r = 0.2 (left), 0.4 (right).

for M = 30, 35, 40, 45, 50, respectively, while for r = 0.4 it is 2, 4, 8, 15, 30 × 104 for
M = 20, 25, 30, 35, 40, respectively. The first half of the Monte Carlo steps are discarded
in order to decrease the effects of initial values. One Monte Carlo step consists of two
parts. First, updating once at every temperature point, and then exchanging once between
every pair of neighboring temperature points. In each update of c, we randomly choose
one index i such that ci = 0 and another j such that cj = 0 to flip into the opposite
state, namely we set ci = 0 and cj = 1, and accept or reject this trial according to the
Metropolis criterion [76]. The Metropolis criterion is also used in c’s exchange between
different temperature points.

The results of numerical simulations are shown in Fig. 5.1. Numerically estimated
free-energy density values f are represented by black circles on the vertical axis. They are
extrapolated from finite-size results by linear regression, in which the asymptotic form is
given by f ≈ a + bM−1 + cM−1 lnM−1. This asymptotic form is exact at β = 0 as is
derived from Stirling’s approximation,

M ! ≈
√
2πM

(
M

e

)M

if M ≫ 1, (5.20)

and this exactness motivates us to employ the same form for β ̸= 0 as well. Theoretically
estimated values, Eq. (5.15), are represented by red crosses in Fig. 5.1. We compare
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Figure 5.2: Theoretically estimated free-energy density f , distortion ϵ, and entropy density
s. The related parameters are set to σ2

y = 1, α = 2, and r = 0.2 (left), 0.4 (right).
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Figure 5.3: Plots of entropy density s against distortion ϵ. The related parameters are
set to σ2

y = 1, α = 2, and r = 0.2 (left), 0.4 (right).

theoretically and numerically estimated values to find that they are very close to each
other. Consequently, our theoretical analysis is considered to be correct.

5.2.3 Trade-off relation

We discuss the relation between the distortion and the compression rate from the results
of our theoretical analysis. The theoretically estimated free-energy density f , distortion
ϵ, and entropy density s are shown in Fig. 5.2. There is a significant point where
the entropy is equal to zero. Zero entropy means that there is only one set of basis
vectors which gives the corresponding distortion value. Conversely, it is impossible for
our overcomplete-basis strategy to achieve a smaller distortion. Then, the region of smaller
β than the zero-entropy point is of interest. In the region of interest, the free-energy is a
monotonically increasing function of β. Without any computational cost, the state tends
to be β → 0 according to the slope of the free-energy. In this way, we are convinced
that the random method is related to the limit of β → 0. When we spend so much
computational cost as to conduct the exhaustive-search method, the state is brought up
to the summit of the free energy and the minimum value of distortion is achieved.

Figure 5.3 plots the entropy density s against the distortion ϵ. The curves in Fig.
5.3 are equivalent to the frequency distributions of all the values of distortion that are
smaller than one obtained by the random method. The entropy has the maximum at the
random-method point and decreases as the distortion decreases. The value of distortion
at the zero-entropy point is explicitly shown and the minimum distortion is smaller in the
case of r = 0.4 than in the case of r = 0.2. In Fig. 5.4, the compression rate is plotted
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Figure 5.4: Plots of compression rate r against distortion ϵ obtained by the
exhaustive-search method. The related parameters are set to σ2

y = 1, α = 1, 2, 3.

against the distortion. It is certain that there is a trade-off relation between the distortion
and the compression rate, regardless of the degree of overcompleteness represented by the
parameter α. Another interesting finding is that the trade-off curve is nearer to the origin
as α is larger. When the degree of overcompleteness increases, the performance of sparse
approximation improves.

5.3 Performance of practical algorithms

We have seen that the overcomplete-basis strategy is promising for the task of sparse
approximation. However, it is more difficult to choose the best combination of basis
vectors when the degree of overcompleteneess is higher. It is important to investigate the
performance of well-known sparseness-inducing algorithms and to develop an practical
and efficient algorithm.

As stated above, an absolute method is the exhaustive-search method, but it causes
a combinatorial explosion. If one selects basis vectors randomly, the distortion value is
given by

lim
M→+∞

ϵ =
1− r
2

σ2
y, (5.21)

as mentioned at the end of Appendix B.1. In order to improve the practical performance,
we examine the performance of least absolute shrinkage and selection operator (LASSO)
and orthogonal matching pursuit (OMP) when they are used for sparse approximation.
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LASSO and OMP are representative algorithms of the convex-relaxation approach and
of the greedy approach, respectively. Both algorithms are famous in the context of
compressed sensing and refer to Sec. 3.2 and Sec. 4.3.

5.3.1 Least absolute shrinkage and selection operator

Least absolute and shrinkage and selection operator (LASSO) is carried out by solving
the following minimization problem

min
x

{
1

2
||y −Ax||22 + λ||x||1

}
, (5.22)

where || · ||1 is the l1-norm of a vector, defined by ||x||1 =
∑

i |xi|, with the absolute value
denoted by | · |. LASSO is not so computationally hard because the minimization problem
can be reformulated as a form of quadratic programming, that is carried out exactly with
O(M3) computational cost. In addition, the l1-norm term causes the sparsifying effect of
choosing a small set of basis vectors and its coefficient λ can be adjusted according to the
desired compression rate.

Unfortunately, LASSO alone is not considered to work well in sparse approximation
because the intention to minimize distortion might be blurred by the l1-norm term. To
remove the extra distortion caused by the l1-norm term, we propose that, after the support
estimation of the compressed vector obtained by LASSO, the values of coefficients are
determined again by the method of least squares. When the solution of LASSO is denoted
by γ, this procedure is described as follows:

min
x

1

2
||y −A(|γ|0 ◦ x)||22, (5.23)

where | · |0 of a vector is defined as (|γ|0)i = |γi|0.
Using methods of statistical mechanics, the performance of LASSO can be evaluated

theoretically in a similar way to the analysis of compressed sensing by Kabashima et al.
[59]. The details of calculation are described in Appendix B.2. The compression rate and
the distortion of the compressed vector given by LASSO alone

lim
M→+∞

r = αerfc(θ), (5.24)

lim
M→+∞

ϵLASSO = χ̂p, (5.25)

where θ = λ√
4χ̂p

and erfc(·) is the complementary error function defined by

erfc(x) =
2√
π

∫ +∞

x

dte−t2 . (5.26)
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The parameter χ̂p is substituted for by the solution of the equations of state with regard

to {P, χp, P̂ , χ̂p}:

P̂ =
1

2

1

1 + χp

, (5.27a)

χ̂p =
1

2

P + σ2
y

(1 + χp)2
, (5.27b)

P = α
χ̂p

2P̂ 2

(
(1 + 2θ2)erfc(θ)− θ 2√

π
e−θ2

)
, (5.27c)

χp = α
1

2P̂
erfc(θ), (5.27d)

When the method of least squares is operated after LASSO, the compression rate
does not change, but the distortion probably improves, We can also assess the distortion
obtained by the method of least squares after LASSO using a statistical-mechanical
technique developed to analyze the systems described by the so-called Franz-Parisi
potential [39]. For the details of calculation, see Appendix B.2. According to our analysis,
the distortion is given by

lim
M→+∞

ϵ = χ̂q. (5.28)

The parameter χ̂q is substituted for by the solution of the equations of state with regard
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to {C, χc, Q, χq, Ĉ, χ̂c, Q̂, χ̂q},

Ĉ =
1

2

χc

1 + χp

1

1 + χq

, (5.29a)

χ̂c = −1

2

χc

(1 + χp)2
P + σ2

y

1 + χq

+
1

2

1

1 + χp

C + σ2
y

1 + χq

, (5.29b)

Q̂ =
1

2

1

1 + χq

, (5.29c)

χ̂q =
1

2

(
χc

1 + χp

)2 P + σ2
y

(1 + χq)2
− χc

1 + χp

C + σ2
y

(1 + χq)2
+

1

2

Q+ σ2
y

(1 + χq)2
, (5.29d)

C = α
χ̂p

2P̂ Q̂

((
χ̂c

χ̂p

+ (1 + 2θ2)
Ĉ

P̂

)
erfc(θ)− Ĉ

P̂
θ

2√
π
e−θ2

)
, (5.29e)

χc = α
1

2Q̂

(
Ĉ

P̂
erfc(θ) +

χ̂c

χ̂p

θ
2√
π
e−θ2

)
, (5.29f)

Q = α
χ̂p

2Q̂2

((
χ̂q

χ̂p

+ 2
χ̂c

χ̂p

Ĉ

P̂
+ (1 + 2θ2)

Ĉ2

P̂ 2

)
erfc(θ) +

(
χ̂2
c

χ̂2
p

− Ĉ2

P̂ 2

)
θ

2√
π
e−θ2

)
,

(5.29g)

χq = α
1

2Q̂
erfc(θ) (5.29h)

when the solution of the equation of state with regard to {P, χp, P̂ , χ̂p} is substituted.
When the system size M is finite, we can carry out LASSO exactly. We extrapolate

the compression rate and the distortion in the thermodynamic limit of M → +∞ from
the results of finite-size systems and check if our theoretical analysis is valid. In numerical
simulations, we set σ2

y = 1 and α = 2. We treat two values of λ equal to 1 and 2. We use
a method of quadratic programming to obtain compression rate r and distortion before
and after the method of least squares, ϵLASSO and ϵ. The configurational average with
regard to (y,A) is dealt with by taking the median over 1000 different trials. The error
bars are estimated by using the Bootstrap method.

The results of numerical simulations are shown in Fig. 5.5. Numerically estimated
values in the thermodynamic limit are represented by black circles on the vertical axis.
They are extrapolated from finite-size results by linear regression, in which the asymptotic
form is given by r ≈ a0+a1M

−1, ϵLASSO ≈ b0+b1M
−1, and ϵ ≈ c0+c1M

−1. Theoretically
estimated values are represented by red crosses in Fig. 5.5. We compare theoretically and
numerically estimated values to see that they are very close to each other. Consequently,
our theoretical analysis is considered to be valid.

Figure 5.6 plots the compression rate r and the distortion ϵ against the coefficient of
the l1-norm term λ. Judging from the left panel of Fig. 5.6, we see that LASSO has a
sparsifying effect thanks to the l1-norm term and the compression rate can be controlled
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Figure 5.5: Theoretically and numerically estimated performance of LASSO. Red crosses
and black circles on the vertical axis represent theoretical and numerical estimates,
respectively. Numerical estimates are extrapolated from the results of finite-size numerical
simulations, represented by black circles. Some error bars are smaller than markers. The
related parameters are set to σ2

y = 1, α = 2, and λ = 1, 2. The compression rate r, the
distortion obtained by LASSO alone ϵLASSO, and the distortion obtained by the method
of least squares after LASSO ϵ are shown from the left.
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Figure 5.6: Plots of theoretically estimated compression rate and distortion against λ.
The related parameters are set to σ2

y = 1 and α = 2.

by changing the value of its coefficient λ. However, in the right panel, we find that the
distortion obtained by LASSO alone is larger than that after using the method of least
squares. We infer that this inferiority of LASSO alone can be attributed to the l1-norm
term. When LASSO is used for sparse approximation, it should be accompanied with
the method of least squares to decrease the distortion. Figure 5.7 plots the compression
rate against the distortion obtained by the method of least squares after LASSO. The
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Figure 5.7: Plots of compression rate r against distortion ϵ obtained by the method of
least squares after LASSO. The lines represent theoretical estimates. The circles, triangles
and crosses represent extrapolated estimates from finite-size results when approximate
message passing is used to carry out LASSO. The extrapolation is conducted in the same
way as shown in Fig. 5.5. The related parameters are set to σ2

y = 1, α = 1, 2, 3.

performance of LASSO has a trade-off relation between the compression rate and the
distortion as well and improves as a more overcomplete basis is used.

Approximate message passing (AMP) is based on the concept of belief propagation and
is a useful algorithm to execute LASSO. LASSO is often carried out exactly as a quadratic
programming with a computational cost of order O(M3). In contrast, AMP only requires
a computational time of order O(M2) per update. In spite of the low computational cost,
as shown in Fig. 5.7, the performance achieved by AMP is very close to the theoretically
estimated performance of LASSO.

5.3.2 Orthogonal matching pursuit

Orthogonal matching pursuit (OMP) is a well-known algorithm of the greedy approach.
OMP requires a polynomial computational complexity of order O(M4) and is considered
to be practical. We examine the performance of OMP when it is applied for sparse
approximation. Numerically extrapolated performance of OMP in the thermodynamic
limit is shown in Fig. 5.8. From the results of OMP, we are convinced of the trade-off
relation in the task of sparse approximation. As well as the exhaustive-search method and
LASSO, the performance is enhanced with a more overcomplete basis. This indicates that,
regardless of methods, the overcompleteness of a basis is effective for sparse approximation.
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Figure 5.8: Plots of compression rate r against distortion ϵ obtained by orthogonal
matching pursuit. The circles, triangles and crosses represent extrapolated estimates
from finite-size results. The extrapolation is conducted in the same way as shown in Fig.
5.5. The related parameters are set to σ2

y = 1, α = 1, 2, 3.

We compare the performance of OMP with that of the random method, LASSO, and
the exhaustive-search method. Figure 5.9 shows the trade-off relation achieved by each of
the methods. We claim that OMP outperforms LASSO as well as the random method,
though it does not come up to the performance of the exhaustive search method. It is
expected to be useful to develop an efficient algorithm for sparse approximation from the
viewpoint of the greedy approach. In order to design a new algorithm, it is important
to analyze OMP in a theoretical way to understand why OMP performs well. Previous
studies provided us with a theoretical approach to OMP using a submodular property
of set functions [22, 23]. sparse approximation can be regarded as a subset-selection
problem and the cost function is expressed as a set function. Then, this approach gives
us an upper bound in terms of the value of distortion. The theoretical relation between
the compression rate and the distortion is not known and the trade-off relation achieved
by greedy algorithms including OMP is a target in future work.

Let us look again at the density of states of the problem of overcomplete sparse
approximation, shown in Fig. 5.10. This time, Fig. 5.10 shows the locations of the
solutions obtained by various methods examined so far: the exhaustive search method,
OMP, LASSO, and the random method. We confirm that this entropy curve has a simple
form. The entropy decreases monotonously to zero at a certain distortion value which
would probably be obtained by the exhaustive search method. If the solution space has
a broad plateau, the entropy curve has an unnatural peak, but such a structure does not
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Figure 5.9: Trade-off relations achieved by the exhaustive-search method, the random
method, LASSO, and OMP are plotted. The related parameters are set to σ2

y = 1, α = 2.
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Figure 5.10: The entropy density of the problem of overcomplete sparse approximation
and the solutions obtained by various methods: the exhaustive search method, OMP
LASSO, and the random method. The related parameters are set to σ2

y = 1, α = 2,
r = 0.5.

exist. It is considered, therefore, that the problem of overcomplete sparse approximation
is tractable enough to obtain a better solution with more computational cost.
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Figure 5.11: Results of image data compression on sparse approximation using the
overcomplete basis strategy. The degree of overcompleteness is set to α = 2. (a) Original
image data. (b) Compressed image data recovered from the representation obtained by
OMP. The compression rate is r = 0.5. PSNR is 28.2. The time required is approximately
55 sec. (c) Compressed image data recovered from the representation obtained by AMP.
The regularization coefficient is λ = 0.65, so that r ≈ 0.5. The AMP-compressed
representation is given after the method of least squares. PSNR is 22.9. The time required
is approximately 4.5 sec.

5.3.3 Application to image data

We investigate the performance of sparse approximation, when it is applied to a task of
image data compression. We compress image data composed of 256×256 pixels. The
experimental procedure of compression is as follows. First, image data are normalized
so as to set the mean and variance to 0 and 1, respectively. Next, 256×256 pixels are
randomly permuted, in order to obtain 1024 column vectors, whose dimensionality is
64. Following these operations, the data can be regarded as random numbers with a
mean and variance of 0 and 1, which enables us to compare the data with the theoretical
analysis we have already conducted. Finally, setting r = 0.5, we compress each of the
column vectors into a representation vector by using a 64×128 random matrix, namely
α = 2. We examine the performances of OMP and AMP. When applying AMP, we set the
regularization coefficient to 0.65, so that the compression rate r is approximately equal to
0.5, and the method of least squares is operated after carrying out LASSO. The results of
experiments are shown in Fig, 5.11. Although OMP requires a computational time that
is several times larger than that of AMP, OMP outperforms AMP in terms of appearance
and peak signal-to-noise ratio (PSNR), defined by

PSNR = 10 log10
2552

1
N

∑
ij(Îij − Iij)2

, (5.30)

where I = {Iij} and Î = {Îij} represent an original image and a compressed image,
respectively, and N is the number of image pixels.
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5.4 Discussion

We have discussed the overcomplete-basis strategy for sparse approximation. The concept
of sparse approximation was formulated using statistical mechanics and the performance
limit of our strategy was evaluated in terms of compression rate and distortion, using the
saddle-point method and the replica ansatzes. In addition, we examined the practical
performances of LASSO and OMP when they are used for sparse approximation. We
indicated that OMP outperforms LASSO in the context of sparse approximation, which
is surprising in light of more popularity of LASSO in compressed sensing. Though there
is still room to improve the performance, it is expected that more elaborate greedy
algorithms will be developed and available for dictionary learning in future work.

Let us consider the significance of the exhaustive search method and then the
solution-space analysis again. Most of the intractable problems in data-driven science
has a multivalley structure where exponentially increasing local minima exist or a
trade-off relation where several competitive conditions should be fulfilled simultaneously.
Originally, the exhaustive search is essential to the discover of the optimal solution
in such a complex solution space. For example, in psychiatry, the exhaustive search
was used to classify hemodynamic data of near-infrared spectroscopy in an attempt to
distinguish two seemingly similar disorders [57]. In geology, the exhaustive search proposes
a good geochemical criterion for estimating the inundation area of past tsunamis [67].
In condensed matter physics, a Bayesian framework for the determination of effective
Hamiltonian using data of numerical simulation was proposed based on the exhaustive
search [100].

When the system size is too large for a combinatorial explosion to be ignored, the
exchange Monte Carlo method plays an alternative role of the exhaustive search method
[81]. It is well known that the exchange Monte Carlo method searches for the global
solution without being trapped in a local solution. An advantage of the exchange Monte
Carlo method is that it enables us to visualize the property of solution space efficiently as
the entropy function. The landscape of solution space enables us to reveal the limitation of
various algorithms and our analysis method and its extension will probably give theoretical
evidence.
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Chapter 6

Conclusion

We here summarize the innovative points of our three topics: MRF, compressed sensing,
and solution-space analysis. First, in the MRF study, we pointed out the correspondence
between the diffusion equation and MRF. This correspondence enables us to estimate the
diffusion coefficient, a latent variable behind image data, with Bayesian methods. We
focused on the posterior distribution itself and explained our proposed method can be
used to evaluate the confidence of data as well. Next, a novel application of compressed
sensing to experimental physics was reported. We demonstrated that the observation of
quasiparticle interference using scanning tunneling microscopy/spectroscopy can be made
more efficient by methods of compressed sensing. This application would broaden the
horizons of compressed sensing in two points. One is that the results of this experiment
can be validated by different experiments and numerical simulations. The other is that the
measurement system is simple enough to adapt to newly proposed methods of experiment.
Finally, in order to evaluate the difficulty of essential problems in data-driven science,
we developed a method for capturing the structure of the solution space. We utilized
methods of statistical mechanics to reveal the density of states regarding the problem of
overcomplete sparse approximation. Then, the performances of existing algorithms are
projected onto the density of states to compare them to the performance limit derived
theoretically.

Let us restate the importance of the three levels of data-driven science. The three
levels are composed of computational theory, modeling and representation/algorithm. The
level of modeling plays the lead role of interface between computational theory (natural
science) and representation/algorithm (information science). At the modeling level, the
problem to be solved in each field of natural science is explained with as few technical
terms of the field as possible. These kinds of deeds would make the essence of problems
familiar to people in information science. Not only that, people in natural science would
probably learn to recognize similar problems in different disciplines, and the distribution
of various methods would become popular, as reported in the article of Science. What is
most important is that all people share the fundamental problems accumulated through
the activities of data-driven science, and then, recall at all times that such sophisticated
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problems are worth solving at all costs.
What is the relation between our three topics under the three levels of data-driven

science, especially at the modeling level? A little thought of data acquisition itself from
the viewpoint of the three levels will show that clearly. The goal of data acquisition is,
needless to say, to see unseen objects. There are two strategies to achieve this goal. One
is to acquire data as if you took a picture. Of course, nothing of interest appears in the
image data explicitly. In this case, it is indispensable to model the natural phenomena
and to estimate the unseen structure based on this model. The essence of this procedure is
discussed in our MRF study. The other is to make an elaborate measuring system which
can manage to look directly at the target. However, the cost of this experiment and the
size of equipment tends to increase. Then, we need to model the measurement principles,
and to make the most of this model to improve the experiment. Such an attempt is
discussed in our research of compressed sensing.

These two strategies of data acquisition have a common issue. In the first strategy,
we need to select the most suitable model of the target phenomena, but we take all
the scenarios derived from many model candidates into consideration. In the second
strategy, a lot of solution candidates remain due to insufficient data, but the best solution
is salvaged in accordance with well-calculated measurement principles. Both problems
cannot be solved until the whole solution space is searched. Therefore, it is confirmed
that our third topic, the solution-space analysis, is beneficial to this issue.

For future work, we will first enhance the modeling level, and then make progress in
data-driven science.

At the very beginning, it occurred to us that the solution space of compressed sensing
should be analyzed as well as that of sparse approximation. In our research of compressed
sensing, we applied LASSO to STM/S measurement as explained in Chapter 4, but it is
considered that OMP and the exhaustive-search method outperform LASSO as well as
in the case of sparse approximation as explained in Chapter 5. If so, it means that
the reduced cost of the experiment can be diverted to a new challenging experiment.
Therefore, we are curious about the solution-space analysis of various kinds of practical
problems.

Next, how to combine the model of phenomena and the model of measurement to
be beneficial is a natural question. The Bayesian framework of distribution estimation
explained in Chapter 2 provides a clue to this issue. If the intricate measurement model
is represented in a stochastic way as well as the diffusion equation, Bayesian inference
connects them seamlessly. After that, we have only to evaluate the confidence of data to
judge the appropriateness of experiment to the target phenomenon.

As the discussion at the modeling level heats up, a triangle between phenomenon,
measurement, and analysis will be formed there, though there are only three points
presented in this thesis now. What to do next is, needless to say, to enlarge the triangle.
Indeed, people in natural science return to their own field to confront new problems.
However, if they keep the three levels of data-driven science in mind, they are able to
project the problems onto the modeling level. In most cases, these problems should be
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close to one of the existing modeling topics, and could be solved with a slight modification
by people in information science. Even if this is not the case, we can ask whether
scientists in other fields of natural science are in similar trouble, and take advantage
of an opportunity to discuss together with them. Consequently, the whole of natural
science will never fail to be innovated.

Before concluding the thesis, let me introduce a Japanese athlete. His name is So
Takei. He won the Japan Decathlon Championship in 1997, and he was part of the team
that won the 4×100 meters relay in the World Masters Championship in 2015. I was really
impressed with him talking about his way of thinking on a TV program I watched while
I was writing this thesis. He said that there is an efficient training method for improving
sports, and asked the master of ceremony to extend both arms straight out horizontally
with both eyes closed. After doing so, the master opened his eyes to find his arms a little
higher, and said optimistically, “Only three centimeters. Good, isn’t it?” “Not at all,” the
athlete answered immediately. He explained seriously that, if you were a baseball player
trying to hit a home run, the gap would be fatal. Then, he emphasized that those who aim
at a certain sport must first learn to control their own body perfectly, and it is never too
late to start the sport after that. In the athlete’s arguments, I felt it was something close
to data-driven science. How you want to move is at the level of computational theory, and
your actual move is at the level of representation and algorithm. The problem is the gap
between them. Then, you have to learn to control your body perfectly. This is nothing but
the modeling level. At the modeling level, it is alright to begin with a simple move such
as raising your arms. Later in the program, the athlete explained what to do to run fast
as well, noting that all famous athletes are doing this. It is well-known that fast runners
run swinging their arms, but he added why they do this. According to him, this move
has an effect of reducing their weight by floating their body. In the language of the three
levels, it means that he clearly stated not only the strategy but also its appropriateness.
Of course, strength training remains, but it would be at the level of representation and
algorithm. The athlete inspired me with the thought that the three levels of something
applies not only to data-driven science but also to social science, humanities, and sports.
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Appendix A

Appendix of Chapter 2

A.1 Correlation of stochastic diffusion systems

Stochastic diffusion systems are described by the following equation,

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t) + ζ(x, t), (A.1)

where ζ(x, t) represents stochastic fluctuation added at a place and time (x, t). We
consider cases where the correlation of the fluctuation is given by

⟨ζ(x1, t1)ζ(x2, t2)⟩ = σ2δ(x1 − x2)δ(t1 − t2). (A.2)

Fourier transform is useful for solving Eq. (A.1). We define the Fourier transform of
u and ζ by

ũ(q, t) =
1√
2π

∫
dxeiqxu(x, t) (A.3a)

ζ̃(q, t) =
1√
2π

∫
dxeiqxζ(x, t), (A.3b)

and then we obtain the Fourier representation of the diffusion equation,

∂ũ

∂t
(q, t) = −Dq2ũ(q, t) + ζ̃(q, t). (A.4)

The solution of this differential equation is given by

ũ(q, t) = e−Dq2tũ(q, 0) +

∫ t

0

dt′e−Dq2(t−t′)ζ̃(q, t′). (A.5)

The first term of the right-hand side of Eq. (A.5) can be ignored in the limit of t→ +∞.
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We are interested in the following correlation function,

C(x1, x2, t) =

⟨
∂u

∂x
(x1, t)

∂u

∂x
(x2, t)

⟩
. (A.6)

Employing the Fourier transform of u, we obtain

C(x1, x2, t) =
1

2π

∫
dq1e

iq1x1(iq1)

∫
dq2e

iq2x2(iq2)⟨ũ(q1, t)ũ(q2, t)⟩. (A.7)

Substituting the solution, Eq. (A.5), we obtain

C(x1, x2, t) =
1

2π

∫
dq1e

iq1x1(iq1)

∫
dq2e

iq2x2(iq2)

×
∫ t

0

dt′1e
−Dq21(t−t′1)

∫ t

0

dt′2e
−Dq22(t−t′2)⟨ζ̃(q1, t′1)ζ̃(q2, t′2)⟩. (A.8)

The property of fluctuation, Eq. (A.2) gives us

⟨ζ̃(q1, t′1)ζ̃(q2, t′2)⟩ = σ2δ(q1 + q2)δ(t
′
1 − t′2), (A.9)

where we have used the Fourier representation of the delta function

δ(q) =
1

2π

∫
dxe−iqx. (A.10)

We substitute Eq. (A.9) into Eq. (A.8) to yield

C(x1, x2, t) =
σ2

2D
δ(x1 − x2)

[
1− e−2Dq2t

]
(A.11)

→ σ2

2D
δ(x1 − x2), as t→ +∞. (A.12)
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Appendix B

Appendix of Chapter 5

B.1 Entropy of the overcomplete-basis strategy

We explain the calculation of the free-energy density f in detail. Let us introduce a
variable ν = β/β1 and a function

Z(c; β, ν) = e−
β
ν
Hls(c;β/ν), (B.1)

and we obtain

f(β) = lim
ν→+0

− 1

Mβ

[
ln
∑
c

δ(||c||0 −Mr)(Z(c; β, ν))ν
]
y,A

. (B.2)

We define a function

g(n, ν; β) = − 1

Mβ
ln

[(∑
c

δ(||c||0 −Mr)(Z(c; β, ν))ν
)n]

y,A

, (B.3)

to express the free-energy density as

f(β) = lim
n,ν→+0

∂

∂n
g(n, ν; β), (B.4)

derived from an identity

[lnZ] = lim
n→+0

∂

∂n
ln[Zn]. (B.5)

When (n, ν) are positive integers, we obtain

g(n, ν; β) = − 1

Mβ
ln Tr

{ca}
Tr

{xaα}

([
e−

β
2ν

∑
a

∑
α(yµ−

∑
i Aµic

a
i x

aα
i )2
]
y,A

)M

, (B.6)
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where

Tr
{ca}

=
n∏

a=1

∑
ca

δ

(∑
i

cai −Mr

)
, (B.7)

Tr
{xaα}

=
n∏

a=1

ν∏
α=1

∫
dcax

aα. (B.8)

Let us introduce variables such as

saαµ =
∑
i

Aµic
a
i x

aα
i , (B.9)

Q(aα)(bβ) =
1

M

∑
i

(cai x
aα
i )(cbix

bβ
i ), (B.10)

According to the central limit theorem, we regard the variables {saα} as random variables
which follow a zero-mean multivariate normal distribution and its covariances are given
as follows:

[saαµ s
bβ
µ′ ]A = δµµ′Q(aα)(bβ). (B.11)

Using these variables, we obtain

g(n, ν; β)

= − 1

Mβ
ln Tr

{ca}
Tr

{xaα}
Tr

{Q(aα)(bβ)}

([
e−

β
2ν

∑
a

∑
α(y−saα)2

]
y,{saα}|{Q(aα)(bβ)}

)M

, (B.12)

where

Tr
{Q(aα)(bβ)}

=
∏

(aα),(bβ)

∫
dQ(aα)(bβ)δ

(∑
i

(cai x
aα
i )(cbix

bβ
i )−MQ(aα)(bβ)

)
. (B.13)

After introducing the Fourier representation of the delta function, such as

δ

(∑
i

cai −Mr

)
=

1

2π

∫
dr̃ae

−ir̃a(
∑

i c
a
i −Mr), (B.14)

the saddle-point method is employed to obtain

lim
M→+∞

g(n, ν; β)

= extr
Θ

{
− 1

β

[
ln
[
e−

β
2ν

∑
a

∑
α(y−saα)2

]
y,{saα}|{Q(aα)(bβ)}

+
∑
a

ir̃ar +
∑

(aα),(bβ)

iQ̃(aα)(bβ)Q(aα)(bβ)

+α ln
∑
{ca}

Tr
{xaα}

e−
∑

a ir̃aca−
∑

(aα)(bβ) iQ̃(aα)(bβ)(c
axaα)(cbxbβ)

]}
, (B.15)
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where Θ = {Q(aα)(bβ), r̃a, Q̃(aα)(bβ)}. Considering replica symmetry, the extremizer is
assumed to be in the subspace parameterized by

(Q(aα)(bβ), Q̃(aα)(bβ)) =


(Q, Q̃) if a = b ∧ α = β

(q1, q̃1) if a = b ∧ α ̸= β

(q, q̃) if a ̸= b

, (B.16a)

r̃a = r̃. (B.16b)

If this is the case, we obtain

lim
M→+∞

g(n, ν; β)

= extr
Θ̃

{
− 1

β

[
ln

∫
DyDw

(∫
Dv

(∫
Due−

β
2ν

(
√
Q−q1u+

√
q1−qv+

√
qw−σyy)2

)ν)n

+nir̃r + nνiQ̃Q+ nν(ν − 1)iq̃1q1 + n(n− 1)ν2iq̃q

+α ln

∫
Dz

(∑
c

e−ir̃c

∫
Dt
(
Tr
x
e−i(Q̃−q̃1)cx2+t

√
−2i(q̃1−q̃)cx+z

√
−2iq̃cx

)ν)n]}
,

(B.17)

where Θ̃ = {Q, q1, q, r̃, Q̃, q̃1, q̃}.
We assume that Eq. (B.17) is true not only for positive integers (n, ν) but also for

real numbers (n, ν). We define the following parameters

χ1 = β1(Q− q1), (B.18a)

r̂ = ir̃, (B.18b)

Q̂ = β−1
1 i(Q̃− q̃1), (B.18c)

χ̂1 = β−2
1 i(q̃1 − q̃), (B.18d)

q̂ = −β−2
1 iq̃, (B.18e)

and Θ̂ = {Q,χ1, q, r̂, Q̂, χ̂1, q̂} are assumed to be of the order O(1). Taking the limits of
(n, ν)→ (0, 0) gives us

lim
M→∞

f(β)

= extr
Θ̂

{
− 1

β

[
1

2
ln

1 + χ1

1 + χ1 + β(Q− q)
− β

2

q + σ2
y

1 + χ1 + β(Q− q)

+r̂r + β(Q̂Q− (χ̂1 + q̂)χ1)− β2((χ̂1 + q̂)Q− q̂q)

−α
∫

Dz ln(1− ρ(z))

]}
, (B.19)
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where

ρ(z) =
1√

Q̂−βχ̂1

Q̂
exp

[
r̂ − β

2
q̂

Q̂−βχ̂1
z2
]
+ 1

. (B.20)

The extremization conditions with regard to Θ̂ lead to the equations of state

Q̂ =
1

2

1

1 + χ1

, (B.21a)

χ̂1 =
1

2

Q− q
(1 + χ1)(1 + χ1 + β(Q− q))

, (B.21b)

q̂ =
1

2

q + σ2
y

(1 + χ1 + β(Q− q))2
, (B.21c)

r = α

∫
Dzρ(z), (B.21d)

Q = α

∫
Dzρ(z)

(
1

2

χ̂1

Q̂(Q̂− βχ̂1)
+

1

2

q̂

(Q̂− βχ̂1)2
z2

)
, (B.21e)

χ1 = α

∫
Dzρ(z)

(
1

2

1

Q̂

)
, (B.21f)

q =
α

β

∫
Dzρ(z)

(
1

2

1

Q̂− βχ̂1

− 1

2

Q̂− β(χ̂1 + q̂)

(Q̂− βχ̂1)2
z2

)
. (B.21g)

Using the extremizer of the right-hand side of Eq. (B.19) and the equations of state,
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Eqs. (B.21), the distortion and the entropy density are calculated as follows:

lim
M→+∞

ϵ(β) = lim
M→+∞

∂

∂β
(βf(β)) (B.22)

=
1

2

Q+ σ2
y

1 + χ1 + β(Q− q)
− β

2

(q + σ2
y)(Q− q)

(1 + χ1 + β(Q− q))2

−(Q̂Q− (χ̂1 + q̂)χ1) + 2β((χ̂1 + q̂)Q− q̂q)

−α
∫

Dzρ(z)

(
1

2

χ̂1

Q̂− βχ̂1

+
1

2

Q̂q̂

(Q̂− βχ̂1)2
z2

)
(B.23)

= χ̂1 + q̂, (B.24)

lim
M→+∞

s(β) = lim
M→+∞

β(ϵ(β)− f(β)) (B.25)

=
1

2
ln

1 + χ1

1 + χ1 + β(Q− q)
+

1

2

β(Q− q)
1 + χ1 + β(Q− q)

− β

2

β(Q− q)(q + σ2
y)

(1 + χ1 + β(Q− q))2

+r̂r + β2((χ̂1 + q̂)Q)− q̂q)

−α
∫

Dzρ(z)

(
1

2

χ̂1

Q̂− βχ̂1

+
1

2

Q̂q̂

(Q̂− βχ̂1)2
z2

)
− α

∫
Dz ln(1− ρ(z)).

(B.26)

In the limit of β → 0, the equations of state (B.21) are solved analytically to obtain

lim
M→+∞

ϵ(β → 0) =
1− r
2

σ2
y, (B.27)

which corresponds to the value of distortion achieved by the random method.

B.2 Performance of the l1-norm regularization

approach

B.2.1 Statistical-mechanical representation

We explain the performance analysis of the l1-norm regularization approach in detail.
We use some methods of statistical mechanics as well as the entropy analysis of the
overcomplete-basis strategy. The l1-norm regularization is represented by a Hamiltonian

H1(γ;λ) =
1

2
||y −Aγ||22 + λ||γ||1. (B.28)

This Hamiltonian is equal to the cost function of LASSO, Eq. (5.22). The corresponding
canonical distribution is given by

p1(γ|β, λ) =
1

Z1(β, λ)
e−βH1(γ;λ). (B.29)
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The parameter β plays a role of inverse temperature. The normalization factor Z1 is
called a partition function defined as

Z1(β, λ) =

∫
dγe−βH1(γ;λ). (B.30)

The typical value of compression rate determined by the l1-norm regularization is
expressed as

r1(λ) = lim
β→+∞

1

M

[
⟨||γ||0⟩γ|β,λ

]
y,A

. (B.31)

The compression rate is also expressed as

r1(λ) = lim
κ→0

∂

∂κ
f1(β, κ, λ), (B.32)

using a free-energy density defined by

f1(λ, κ) = lim
β→+∞

− 1

Mβ

[
ln

∫
dγe−βH1(γ)−βκ||γ||0

]
y,A

. (B.33)

The typical value of distortion obtained by the l1-norm regularization is expressed as

ϵLASSO(λ) = lim
β→+∞

1

M

[⟨
1

2
||y −Aγ||22

⟩
γ|β,λ

]
y,A

(B.34)

The distortion is also expressed as

ϵLASSO(λ) = lim
β→+∞

(
∂

∂β
β − λ ∂

∂λ

)
f1(λ, 0) (B.35)

After the method of least squares is used, the compression rate does not change, but
the distortion is expected to improve. This distortion value is expressed as

ϵ1(λ) = lim
β→+∞

lim
β1→+∞

1

M

[
⟨Hls(|γ|0; β1)⟩γ|β

]
y,A

, (B.36)

where | · |0 of a vector is defined by (|v|0)i = |vi|0, and |vi|0 = 0 (vi = 0) or 1 (vi ̸= 0).

B.2.2 Before the method of least squares

We define a function

gLASSO(n; β, κ) = −
1

Mβ
ln

[(∫
dγe−βH1(γ)−βκ||γ||0

)n]
y,A

, (B.37)
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to express the free-energy density as

f1(λ, κ) = lim
β→+∞

lim
n→0

∂

∂n
gLASSO(n; β, κ), (B.38)

derived from an identity

[lnZ] = lim
n→+0

∂

∂n
ln[Zn]. (B.39)

When (n, ν) are positive integers, we obtain

gLASSO(n; β, κ) = −
1

Mβ
ln Tr

{γa}

([
e−

β
2

∑
a(yµ−

∑
i Aµiγ

a
i )

2
]
y,A

)M

, (B.40)

where

Tr
{γa}

=
n∏

a=1

∫
dγae−βλ

∑
i |γa

i |−βκ
∑

i |γa
i |0 . (B.41)

Let us introduce variables such as

saµ =
∑
i

Aµiγ
a
i , (B.42)

Pab =
1

M

∑
i

ξai ξ
b
i . (B.43)

According to the central limit theorem, we regard the variables {sa} as random variables
which follow a zero-mean multivariate normal distribution and its covariances are given
as follows: [saµs

b
µ′ ]A = δµµ′Pab. Using these variables, we obtain

gLASSO(n; β, κ) = −
1

Mβ
ln Tr

{γa}
Tr

{Pab}

([
e−

β
2

∑
a(y−sa)2

]
y,{sa}|{Pab}

)M

, (B.44)

where

Tr
{Pab}

=
∏
a,b

∫
dPabδ

(∑
i

γai γ
b
i −MPab

)
. (B.45)

After introducing the Fourier representation of the delta function, such as

δ

(∑
i

γai γ
b
i −MPab

)
=

1

2π

∫
dP̃abe

−iP̃ab(
∑

i γ
a
i γ

b
i−MPab), (B.46)
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the saddle-point method is employed to obtain

lim
M→+∞

gLASSO(n; β, κ)

= extr
ΘLASSO

{
− 1

β

[
ln
[
e−

β
2

∑
a(y−sa)2

]
y,{sa}|{Pab}

+
∑
a,b

iP̃abPab

+α ln Tr
{γa}

e−
∑

a,b iP̃abγ
aγb

]}
(B.47)

where ΘLASSO = {Pab, P̃ab}. Considering replica symmetry, the extremizer is assumed to
be in the subspace parametrized by

(Pab, P̃ab) =

{
(P, P̃ ) if a = b

(p, p̃) if a ̸= b
. (B.48)

If this is the case, we obtain

lim
M→+∞

gLASSO(n; β, κ)

= extr
Θ̃LASSO

{
− 1

β

[
ln

∫
DyDw

(∫
Dve−

β
2
(
√
P−pv+

√
pw−σyy)2

)n
]}

+niP̃P + n(n− 1)ip̃p

+α ln

∫
Dz

(
Tr
γ
e−i(P̃−p̃)γ2+z

√
−2ip̃γ

)n
]}

(B.49)

where Θ̃LASSO = {P, p, P̃ , p̃}.
We assume that Eq. (B.49) is true not only for positive integers n but also for real

numbers n. We define the following parameters

χp = β(P − p), (B.50a)

P̂ = β−1i(P̃ − p̃), (B.50b)

χ̂p = −β−2ip̃, (B.50c)

and Θ̂LASSO = {P, χp, P̂ , χ̂p} are assumed to be of the order O(1). Taking the limit of
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n→ 0 gives us

lim
M→+∞

f1(λ, κ)

= extr
Θ̂LASSO

{
1

2

P + σ2
y

1 + χp

−P̂P + χ̂pχp

−α χ̂p

2P̂

(
(1 + 2θ+θ−)erfc(θ+)− θ−

2√
π
e−θ2+

)}
, (B.51)

where Θ̂LASSO = {P, χp, P̂ , χ̂p}, θ± = λ±
√

4κP̂√
4χ̂p

and erfc(·) is the complementary error

function defined as

erfc(x) =
2√
π

∫ +∞

x

dte−t2 . (B.52)

Taking the limit of κ → 0, the extremization conditions with regard to Θ̂LASSO lead to
the equations of state

P̂ =
1

2

1

1 + χp

, (B.53a)

χ̂p =
1

2

P + σ2
y

(1 + χp)2
, (B.53b)

P = α
χ̂p

2P̂ 2

(
(1 + 2θ2)erfc(θ)− θ 2√

π
e−θ2

)
, (B.53c)

χp = α
1

2P̂
erfc(θ), (B.53d)

where θ = λ√
4χ̂p

.

Using the solution of the equations of state, Eqs. (B.53), the compression rate and the
distortion are calculated as follows:

lim
M→+∞

r1(λ) = αerfc(θ) (B.54)

lim
M→+∞

ϵLASSO(λ) = χ̂p (B.55)

B.2.3 After the method of least squares

We define a function

g1(n, ν; β, β1, λ) = −
1

Mβ1
ln

[
(Z1(β, λ))

n−1

∫
dγe−βH1(γ;λ)(Z1(γ; β1))

ν

]
y,A

(B.56)

89



where

Z1(γ; β1) = e−β1Hls(|γ|0,β1). (B.57)

Then, the distortion is expressed as

ϵ1(λ) = lim
β→+∞

lim
β1→+∞

lim
n→0

lim
ν→0

∂

∂ν
g1(n, ν, β, β1, λ) (B.58)

When (n, ν) are positive integers, we obtain

g1(n, ν; β, β1, λ)

= − 1

Mβ1
ln Tr

{γa}
Tr
{xα}

([
e−

β
2

∑
a(yµ−

∑
i Aµiγ

a
i )

2−β1
2

∑
α(yµ−

∑
i Aµi|γ1

i |0xα
i )

2
]
y,A

)M

,

(B.59)

where

Tr
{γa}

=
n∏

a=1

∫
dγae−βλ

∑
i |γa

i |, (B.60a)

Tr
{xα}

=
ν∏

α=1

∫
d|ξ1|0x

α. (B.60b)

Let us introduce variables such as

saµ =
∑
i

Aµiγ
a
i , (B.61a)

tαµ =
∑
i

Aµi|γ1i |0xαi , (B.61b)

and

Pab =
1

M

∑
i

γai γ
b
i , (B.62a)

Cαb =
1

M

∑
i

(|γ1i |0xαi )γbi , (B.62b)

Daβ =
1

M

∑
i

γai (|γ1i |0x
β
i ), (B.62c)

Qαβ =
1

M

∑
i

(|γ1i |0xαi )(|γ1i |0x
β
i ). (B.62d)

According to the central limit theorem, we regard the variables {sa, tα} as random
variables which follow a zero-mean multivariate normal distribution and its covariances
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are given as follows: [
saµs

b
µ′

]
A

= δµµ′Pab, (B.63a)[
tαµs

b
µ′

]
A

= δµµ′Cαb, (B.63b)[
saµt

β
µ′

]
A

= δµµ′Daβ, (B.63c)[
tαµt

β
µ

]
A

= δµµ′Qαβ. (B.63d)

Using these variables, we obtain

g1(n, ν; β, β1)

= − 1

Mβ1
ln Tr

{γa}
Tr
{xα}

Tr
{Pab,Cαb,Daβ ,Qαβ}([

e−
β
2

∑
a(y−sa)2−β1

2

∑
α(y−tα)2

]
y,{sa,tα}|{Pab,Cαb,Daβ ,Qαβ}

)M

, (B.64)

where

Tr
{Pab,Cαb,Daβ ,Qαβ}

=
∏
a,b

∫
dPabδ

(∑
i

γai γ
b
i −MPab

)
∏
α,b

∫
dCαbδ

(∑
i

(|γ1i |0xαi )γbi −MCαb

)
∏
a,β

∫
dDaβδ

(∑
i

γai (|γ1i |0x
β
i )−MDaβ

)
∏
α,β

∫
dQαβδ

(∑
i

(|γ1i |0xαi )(|γ1i |0x
β
i )−MQαβ

)
. (B.65)

After introducing the Fourier representation of the delta function, such as

δ

(∑
i

(|γ1i |0xαi )(|γ1i |0x
β
i )−MQαβ

)
=

1

2π

∫
dQ̃αβe

−iQ̃αβ(
∑

i(|γ1
i |0xα

i )(|γ1
i |0x

β
i )−MQαβ),

(B.66)

91



the saddle-point method is employed, to obtain

g1(n, ν, β, β1)

= extr
Θ1

{
− 1

β1

[
ln
[
e−

β
2

∑
a(y−sa)2−β1

2

∑
α(y−sα)2

]
y,{sa,tα}|{Pab,Cαb,Daβ ,Qαβ}

+
∑
a,b

iP̃abPab +
∑
αb

iC̃αbCαb +
∑
aβ

iD̃aβDaβ +
∑
αβ

iQ̃αβQαβ

+α ln Tr
{γa}

Tr
{xα}

e−
∑

a,b iP̃abγ
aγb−

∑
α,b(|γ1|0xα)γb−

∑
aβ γa(|γ1|0xβ)−

∑
αβ(|γ1|0xα)(|γ1|0xβ)

]}
,

(B.67)

where Θ1 = {Cαb, Daβ, Qαβ, C̃αb, D̃aβ, Q̃αβ}. For ΘLASSO = {Pab, P̃ab}, we substitute
the extremizer of the right-hand side of Eq. (B.47). Considering replica symmetry, the
extremizer is assumed to be in the subspace parametrized by

(Cαb, C̃αb) =

{
(C, C̃) if a = 1

(c, c̃) if a ̸= 1
, (B.68)

(Daβ, D̃aβ) =

{
(C, C̃) if a = 1

(c, c̃) if a ̸= 1
, (B.69)

(Qαβ, Q̃αβ) =

{
(Q, Q̃) if α = β

(q, q̃) if α ̸= β
. (B.70)

If this is the case, we obtain

lim
M→+∞

g1(n, ν; β, β1)

= extr
Θ̃1

{
− 1

β1

[
ln

∫
DyDzDw

(∫
Dve−

β
2
(
√
P−pv+

√
pw−σyy)2

)n−1

∫
Dve−

β
2
(
√
P−pv+

√
pw−σyy)2(∫

Due
−β1

2
(
√
Q−qu+

√
q− (C−c)2

P−p
− c2

p
z+ C−c√

P−p
v+ c√

p
w−σyy)2

)ν

niP̃P + n(n− 1)ip̃p+ 2νiC̃C + 2(n− 1)νic̃c+ νiQ̃Q+ ν(ν − 1)iq̃q

+α ln

∫
DzDwDvDu

(
Tr
γ
e−i(P̃−p̃)γ2+(u

√
−2i(p̃−c̃)+v

√
−2ic̃)γ

)n−1

Tr
γ
e−i((P̃−p̃)−(C̃−c̃))γ2+(u

√
−2i(p̃−c̃)+w

√
−2i(C̃−c̃)+v

√
−2ic̃)γ

(
Tr
x
e−i((Q̃−q̃)−(C̃−c̃))(|γ|0x)2+(z

√
−2i(q̃−c̃)+w

√
−2i(C̃−c̃)+v

√
−2ic̃)|γ|0x

)ν]}
. (B.71)
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where Θ̃1 = {C, c,Q, q, C̃, c̃, Q̃, q̃}. The set of parameters Θ̃LASSO = {P, p, P̃ , p̃}
corresponds to the extremizer of the right-hand side of Eq. (B.49).

We assume that Eq. (B.71) is true not only for positive integers (n, ν) but also for real
numbers (n, ν). We define the following parameters

χc = β(C − c) (B.72a)

χq = β(Q− q) (B.72b)

Ĉ = β−1i(C̃ + c̃) (B.72c)

χ̂c = −β−2ic̃ (B.72d)

Q̂ = β−1i(Q̃− q̃) (B.72e)

χ̂q = −β−2iq̃ (B.72f)

and Θ̂1 = {C, χc, Q, χq, Ĉ, χ̂c, Q̂, χ̂q} are assumed to be of the order O(1). Taking the
limits of (n, ν)→ (0, 0) and β = β1 → +∞ gives us

lim
M→+∞

ϵ1(λ)

= extr
Θ̂1

{
1

2

(
χc

1 + χp

)2 P + σ2
y

1 + χq

− χc

1 + χp

C + σ2
y

1 + χq

+
1

2

Q+ σ2
y

1 + χq

−(Q̂Q− χ̂qχq) + 2(ĈC + χ̂cχc)

−α χ̂p

2Q̂

((
χ̂q

χ̂p

+ 2
χ̂c

χ̂p

Ĉ

P̂
+ (1 + 2θ2)

Ĉ2

P̂ 2

)
erfc(θ)

+θ

(
χ̂2
c

χ̂2
p

− Ĉ2

P̂ 2

)
2√
π
e−θ2

)}
, (B.73)

where Θ̂1 = {C, χc, Q, χc, Ĉ, χ̂c, Q̂, χ̂c}, θ = λ√
4χ̂p

and erfc(·) is the complementary error

function. The set of parameters Θ̃LASSO = {P, χp, P̂ , χ̂p} corresponds to the extremizer of

the right-hand side of Eq. (B.51). The extremization conditions with regard to Θ̂1 lead
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to the equations of state

Ĉ =
1

2

χc

1 + χp

1

1 + χq

, (B.74a)

χ̂c = −1

2

χc

(1 + χp)2
P + σ2

y

1 + χq

+
1

2

1

1 + χp

C + σ2
y

1 + χq

, (B.74b)

Q̂ =
1

2

1

1 + χq

, (B.74c)

χ̂q =
1

2

(
χc

1 + χp

)2 P + σ2
y

(1 + χq)2
− χc

1 + χp

C + σ2
y

(1 + χq)2
+

1

2

Q+ σ2
y

(1 + χq)2
, (B.74d)

C = α
χ̂p

2P̂ Q̂

((
χ̂c

χ̂p

+ (1 + 2θ2)
Ĉ

P̂

)
erfc(θ)− Ĉ

P̂
θ

2√
π
e−θ2

)
, (B.74e)

χc = α
1

2Q̂

(
Ĉ

P̂
erfc(θ) +

χ̂c

χ̂p

θ
2√
π
e−θ2

)
, (B.74f)

Q = α
χ̂p

2Q̂2

((
χ̂q

χ̂p

+ 2
χ̂c

χ̂p

Ĉ

P̂
+ (1 + 2θ2)

Ĉ2

P̂ 2

)
erfc(θ) +

(
χ̂2
c

χ̂2
p

− Ĉ2

P̂ 2

)
θ

2√
π
e−θ2

)
,

(B.74g)

χq = α
1

2Q̂
erfc(θ) (B.74h)
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