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Abstract

Learning is the key feature of mammalian brain. It is widely believed that change in synaptic connection

between neurons is the essential substrate for learning. Experimental studies in last two decades further

revealed rules and constraints on synaptic plasticity. Correspondingly, many theoretical studies were

conducted on synaptic plasticity. However, many of these studies were only concerning on its dynamic

properties, and did not provide functional implication. In addition, most studies were limited to single

spine or single cell levels due to numerical and analytical complexity arise from interaction of synaptic

dynamics and neural dynamics, and little is known about properties of synaptic dynamics in neural

circuits. On the other hand, many attempts were also made from machine learning perspective, but

in these studies, biological constraints were often taken for granted, in particular, little is explained on

how functional neural circuits are self-organized in the absence of absolute teaching signals, or explicit

objective functions.

This thesis is an interim report of an attempt to bridge the gap between two kind of studies. The

thesis consists of four independent works related to the question above. Each work capture one or

two aspects of complicated synaptic plasticity, and performs both analysis based on dynamic systems

theory, and functional investigation based on information theory or machine learning study. Four works

were arranged in the order of spatial scale of phenomenon considered in the study.

The first work is focused on a single synapse and a dendritic hotspot consist of several number

of synapses. In the work, I studied on how nearby synapses on a dendritic tree interact with each

other. Especially, I investigated the functional role of recently discovered heterosynaptic spike-timine-

dependent plasticity (h-STDP).

In the second work, the main focus is still a single synapse, but here I studied long-term dynamics

of a dendritic spine. In the long timescale, elimination and creation of spines is expected to play crucial

role in addition to synaptic weight plasticity, because such spine turnover is known to be active even

in the cortex of adult mammalian. Thus, in this study, I investigate how elimination and creation of

spines helps learning and computation in collaboration with synaptic weight plasticity.

On the third work, I shifted my focus to neural circuits. Although, the actual neural circuits in the

brain are highly complicated, there are number of basic circuit motifs. Feedback-type circuit is one of

such motifs, and indeed observed in many neural systems. In the study, I investigated how feedback-

type neural circuits can perform learning with spike-timing-dependent plasticity (STDP). In particular,

I revealed how propagation of spike correlation in a feedback-type circuit drives STDP learning.

The last work is about recurrent neural circuits. Although there are many theoretical studies

on synaptic learning in recurrent circuits, most of them are about input-driven learning, and little

is known about modulation of learned memory traces by spontaneous activity. By considering simple

neural models, I studied how cell assemblies are selectively retained or merged by STDP through

spontaneous activity. Especially, my study revealed possible functional roles of short-term plasticity for
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the modulation of memory traces.

Detailed results of those studies are explained in each chapter, but key findings of the thesis are

• Calcium-based synaptic plasticity model can replicate various results of heterosynaptic spike-

timing-dependent plasticity by adding current-based heterosynaptic terms (Chapter 2).

• By considering h-STDP, critical period plasticity of binocular matching is explained by GABA-

maturation (Chapter 2).

• To perform inference by a feedforward neural network with limited connections, under certain

conditions, it is better to encode information by synaptic connections not by synaptic weights,

because signal variability is reduced in the former case (Chapter 3).

• Under the presence of random noise, spike correlation should be as precise as possible to per-

form correlation-based learning. However, in the presence of cross-talk noise, non-precise spike-

correlation is beneficial for learning (Chapter 4).

• In feedback-type neural circuits, STDP-based learning mimics Bayesian independent compo-

nent analysis, because membrane potential dynamics approximates likelihood functions of hidden

sources (Chapter 4).

• Alternation of cell assemblies, which is observed in the hippocampus of rodents, possibly supports

cell assembly retention by inducing activity-dependent long-term potentiation(LTP). In addition,

presynaptic release probability should be non-zero small value in order to achieve such alternation-

based retention (Chapter 5).

• Selective retention and merging of memory traces are possibly supported by dynamic modulation

of cell assemblies during awake-quiet or sleep states (Chapter 5).

As all these studies are purely theoretical, their impacts on the understanding of the brain are

limited. Still, my study provides several novel interpretations for previously observed phenomena, as

well as several experimentally testable predictions. Therefore, I believe these works extend our knowledge

on brain science in a tiny but significant portion.
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Chapter 1

Background

(Reply of the senses to Intellect): ’Miserable Mind, you

get your evidence from us, and do you try to overthrow

us? The overthrow will be your downfall’.

— Dêmocritus of Abdêra, Ancilla to the Pre-Socratic

Philosophers, 68:125

Synaptic Dynamics and Learning

The central theme of this thesis is synaptic dynamics and learning, but relationship between synaptic

plasticity and learning is not trivial. Synapses change their structure in response to synaptic inputs,

neuromodulators, neuronal activity, or even spontaneously. In general, we can understand those changes

as learning if such changes help neural circuits to perform better computation or information processing,

and enhance the adaptability and survivability of the animal. For example, synaptic degeneration in

Alzheimer’s deceases does not satisfy this criteria because the degeneration typically degrades infor-

mation storage capacity of the circuits [234]. On the other hand, enhanced spine elimination during

developmental period is learning because an animal usually acquire better sensory information processing

and motor control skills through developmental change in neural circuits [105].

The brain can perform object recognition, decision making, sensory-motor control, and many other

functions that require appropriate computational procedures, and arguably these di↵erent computations

require di↵erent types of learning. For a well-defined computation, in principle, we can predict how

neural circuits should be organized, and ideally we can evaluate optimality of neural activity or synaptic

weights organization. However, except for simple systems, such prediction or evaluation is mostly

impractical because of various di�culty arise from complexity and inscrutability of the brain. Still, by

assuming that the brain is operated in a near-optimal regime, we can relate synaptic dynamics and

learning. This means that if some characteristic synaptic dynamics is observed in various areas of

many species in wide range of conditions, the dynamics should be related to learning. Following this
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principle, I first briefly list up typical behavior of synapses, then from the next chapter, I investigate

their functions.

Synaptic plasticity mechanisms

Figure 1.1. Plasticities in various temporal and spatial scales. Numbers written besides the
mechanism are the section in the thesis at which the plasticity mechanism was considered.

Plasticity is the fundamental mechanism of learning in the brain. Thus, expectedly there are various

di↵erent mechanisms that cause changes in neural circuits. Figure 1.1 summarizes the synaptic plasticity

mechanisms I employed in this thesis. Here, X-axis of the figure represents the main timescale of

plasticity mechanism and the y-axis represents the main spatial scale. Below, I explain the main

plasticity mechanisms.

Spike-Timing Dependent Plasticity

Change in EPSP size does not only depend on firing rates of presynaptic and postsynaptic neurons, but

also influenced by relative timing of spikes at presynaptic and postsynaptic neurons. This spike-timing-

dependent form of synaptic plasticity is called STDP. Although, synaptic weight change by STDP

depends on the membrane potential of the postsynaptic neuron [43], firing rates of the postsynaptic

and presynaptic neurons [209], number of AMPA receptor on the postsynaptic spine [20] [225], relative

timings of successive spikes [187] [84], neuromodulation [253], relative position of the synapse on the

dendrite [138] [210], and the timing of inputs at neighboring synapses [94] [176], still in the simplest
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form, synaptic weight change can be approximated as below,

�w(�t) =

8
>><

>>:

Ape
��t if �t > 0

�Ade
�t if �t < 0

(1.1)

where �t is the relative spike timing between the postsynaptic spike and the presynaptic spike (i.e.

if the post-neuron fires before the pre-neuron fires, �t becomes positive in this case). Note that

this simple form of formalization does not reproduce any of dependence listed above, including the

firing rates dependence. Despite lack of firing rate dependence, this form of STDP is often called as

Hebbian [213], because the rule is sensitive to causal relationship between presynaptic and postsynaptic

activities.

Inhibitory spike-timing-dependent plasticity

Although, most studies on STDP are focused on excitatory synaptic connections from excitatory neurons

to other excitatory neurons, partly because excitatory neurons are believed to play primary role in cortical

information processing, recent experimental results suggest that other types of synaptic connections

also show STDP-type plasticity [231]. For instance, Woodin and colleagues revealed that GABAergic

synapses on excitatory neurons show coincidence-detection type STDP, but interestingly, their results

suggest that synaptic plasticity is not realized by the potentiation of synapse itself, but by change in

cotransporter activity [243]. It is also known that glutaminergic synapses on inhibitory neurons show

STDP [146] [66], in particular, STDP at excitatory-to-inhibitory connections is suggested to play a

critical role in critical period plasticity [248]. Theoretical studies suggest that inhibitory STDP supports

retention of the detailed excitatory-to-inhibitory balance [230]. Especially, recent studies indicate that

inhibitory STDP play a critical role in stabilization of recurrent circuits [142] [252] that is di�cult to

achieve when only excitatory-to-excitatory connections are plastic [166].

Spinogenesis, Wiring plasticity

Most synaptic connections are projected to the dendritic tree of the postsynaptic neuron. In particular,

a majority of excitatory connections are projected to dendritic spines protruded from the dendritic tree.

These spines are known to change their sizes in response to long-term potentiation (LTP) or depression

(LTD), and also eliminated or created depending on neural activity or even spontaneously [105] [116].

Creation and elimination of spine, which is often called spinogenesis, is most active in the developmental

period, but even in the adult cortex, spinogenesis is frequently induced [105]. In case of rodents, previous

studies suggest that the spine turn over rate is up to 15% per day in the sensory cortex [104], and

even 5 % per day in the motor cortex [255]. In addition, recent experimental results suggest that spine

turnover is tightly correlated with task acquisition [245] [244]. For instance, Xu and colleagues revealed

that in motor learning task, performance after learning is positively correlated with the amount of spines
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created during the training period and survived until the test [245]. Therefore, spinogenesis is possibly

important in synaptic learning, but their functions are not yet well characterized.

Heterosynaptic plasticity

In cortical circuits, synapses are projected to dendritic tree, and it has long been known that synapses

on the dendritic tree interact with each other in their plastic changes [85] [174], yet these heterosy-

naptic plasticity mechanisms were known to work on timescale of minutes to hours. For instance, in

hippocampal synapses, by inducing strong LTP at one excitatory synapse, at nearby excitatory spines,

thresholds for LTP decreases several minutes after the original LTP due to spreading of Ras activity [93].

Recently results further suggest that heterosynaptic plasticity is also caused by spike correlation between

nearby synapses in milliseconds timescale [182] [94]. For example, in Scha↵er-collateral synapses, by

inducing GABA uncaging right before pre and postsynaptic stimulation, time window of STDP at the

stimulated excitatory synapse changes due to heterosynaptic e↵ect from the inhibitory input [94]. In

the next chapter, I consider the function of these spike-timing-dependent heterosynaptic plasticity.

Homeostatic plasticity

In addition to activity dependent plasticity mechanisms, synapses are also modified through homeostatic

mechanism [224]. For instance, when the activity of neurons stays high for a certain period, synapses are

down regulated to reduce the postsynaptic firing rate. These homeostatic changes typically occur at the

timescale of days. Note that, many activity dependent plasticity mechanisms have intrinsic homeostatic

e↵ects. For example, synaptic weight dependence of STDP prevents divergence of synaptic weights

(see equation (4.9) for details).

Neuromodulation

In addition to local plasticity mechanisms listed above, there exits global regulation mechanisms through

neuro-modulators. In particular, cortical synapses are known to change their STDP rules in response

to neuromodulation [207] [34]. For instance, under the presence of dopamine, the STDP window of

glutamate synapses turns nearly symmetric in rat hippocampus [253]. We discuss their functional merits

in section 5.
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Chapter 2

GABA-driven Synaptic Organization

by Heterosynaptic

Spike-Timing-Dependent Plasticity

Balance between excitatory and inhibitory inputs is a key feature of cortical dynamics. Such balance

is arguably preserved in dendritic branches, yet its underlying mechanism and functional roles are

still unknown. Here, by introducing spike-timing dependent heterosynaptic plasticity, I show that the

detailed balance on dendritic branch is robustly achieved, as a result of GABA-driven local synaptic

clustering. A neuron with the local balance can optimally perform abstract change detection task, due to

functional specialization at each branch. I further demonstrate that heterosynaptic plasticity explains

critical period plasticity of binocular matching. My study provides a theoretical basis for functional

investigation of heterosynaptic plasticity.

Introduction

Activity dependent synaptic plasticity is essential for learning. Especially, spike time di↵erence between

presynaptic and postsynaptic neurons is a critical factor for synaptic learning [20] [32]. Recent experi-

mental results further revealed that the relative spike timings among neighboring synapses on a dendritic

branch have significant influence on changes in synaptic e�ciency of these synapses [94] [182] [176].

Especially, the timing of GABAergic input exerts a great impact on synaptic plasticity at nearby Gluta-

matergic synapses. Similar phenomenon were also observed in biophysical simulations [46] [14]. This

heterosynaptic form of spike-timing-dependent plasticity (h-STDP) is potentially important for synap-

tic organization on dendritic tree, and resultant dendritic computation [163] [25] [117]. However, the

functional role of h-STDP remains elusive, partly due to lack of simple analytical model.

In the understanding of homosynaptic STDP, simple mathematical formulation of plasticity has been
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playing important roles [73] [213] [230]. Following these studies, I constructed a mathematical model

of h-STDP based on calcium-based synaptic plasticity models [208] [86], and then considered potential

functional merits of the plasticity. The model reproduces the several e↵ects of h-STDP observed in the

hippocampal CA1 area and the striatum of rodents, and provides analytical insights for the underlying

mechanism. The model further indicates that h-STDP causes the detailed balance between excitatory

and inhibitory inputs on a dendritic branch, because long-term depression (LTD) at excitatory synapses

is shunted by correlated inhibitory inputs on neighboring dendrite. This result suggests that not only the

number and the total current of excitatory/inhibitory synapses are balanced at a branch [143] [242], but

temporal input structure is also balanced as observed in the soma [58] [67]. Moreover, by considering

supervised learning on a two-layered single cell model, I show that such detailed balance is beneficial

for change detection. The model also reconciles with critical period plasticity of binocular matching

observed in V1 of mice [235] [236], and provides a candidate explanation on how GABA-maturation

modulates the orientation selectivity of excitatory neurons.

Results

Calcium-based synaptic plasticity model with current-based heterosynaptic in-

teraction explains h-STDP.

I constructed a model of a dendritic spine as shown in Fig. 2.1A (see Model A
1

in Methods for details).

In the model, the membrane potential of the spine is modulated by influx/outflux from AMPA/NMDA

receptors (xA and gN (u)xN in Fig. 2.1A), back-propagation (xBP ), and heterosynaptic currents from

nearby excitatory/inhibitory synapses (xE and xI). Calcium concentration in the spine is controlled

through NMDA receptors and voltage-dependent calcium channels (VDCC) [99]. Because, both NMDA

and VDCC are voltage-dependent [147], the calcium level in the spine is indirectly controlled by pre,

post, and heterosynaptic activities (Fig. 2.1B top and middle panels). For synaptic plasticity, I used

calcium-based plasticity model, in which LTP/LTD are initiated if the Ca2+ level is above LTP/LTD

thresholds (orange and cyan lines in Fig. 2.1B middle). This plasticity model is known to well capture

homosynaptic STDP [208] [86]. I introduced an intermediate variable y(t) to capture non-graded nature

of synaptic weight change [185]. Thus, change in Ca2+ level is first embodied in the intermediate y(t)

(Fig. 2.1B bottom), then reflected to the synaptic weight w(t) upon accumulation.

I first consider the e↵ect of inhibitory input to synaptic plasticity at nearby excitatory spines. A

recent experimental result revealed that, in medium spiny neuron, a synaptic connection from a cortical

excitatory neuron typically shows anti-Hebbian type STDP under pairwise stimulation protocol, but

if GABA-A receptor is blocked, STDP time window flips to Hebbian [182] (points in Fig. 2.2A).

The proposed model can explain this phenomenon in the following way. Let us first consider the

case when the presynaptic excitatory input arrives before the postsynaptic spike. If the GABAergic
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Figure 2.1. Schematic figure of the model of heterosynaptic spike-timing-dependent plasticity
(h-STDP). (A) Two variables in the spine u(t) and c(t) represent the normalized membrane potential
and Ca2+ concentration respectively. Presynaptic input modulates u(t) through AMPA (xA) and
NMDA (gN (u)xN ) receptors. In addition, u(t) is changed by back-propagation (xBP ), and
heterosynaptic current caused by excitatory (xE) and inhibitory (xI) inputs. Calcium level c(t) is
modulated by influx/outflux through NMDA (gN (u)xN ) and VDCC (gV (u)). c(t) is consequently
controlled by u(t) because both NMDA and VDCC are voltage-dependent. (B) An example of
dynamics of the membrane potential variable u(t) (top), Ca2+ concentration c(t) (middle), and the
intermediate variable y(t) (bottom).

input is blocked, because of membrane depolarization at the excitatory spine due to presynaptic and

postsynaptic spikes, calcium concentration rises up above the LTP threshold (red line in Fig 2.2B upper-

right), hence induces LTP after repetitive stimulation (red line in Fig 2.2B lower-right). On the other

hand, if the GABAergic input arrives coincidentally with the presynaptic input, depolarization at the

excitatory spine is attenuated by negative current influx though the inhibitory synapse. As a result,

calcium concentration cannot go up enough to cause LTP although it is still enough to cause LTD,

thus eventually LTD is induced (black lines in Fig 2.2B right). Similarly when the postsynaptic spike

arrives to the spine before the presynaptic spike does, without any GABAergic input, the presynaptic

spike causes slow decay in the level of calcium concentration that may induce LTD (red lines in Fig 2.2B

left). On the contrary, if the GABAergic input is provided simultaneously with the presynaptic input,

slow decay in the calcium concentration is blocked because the inhibitory input causes hyperpolarization

of the membrane potential at the excitatory spine. As a result, LTP is more likely achieved (black lines

in Fig. 2.2B left). Therefore, when a GABAergic input is provided in coincidence with the presynaptic

spike, the STDP time window changes sign in both pre-post and post-pre regimes (lines in Fig. 2.2A).

GABAergic e↵ect on excitatory synaptic plasticity is also observed in CA1 [94]. In this case, post-

pre stimulation does not induce LTD unless GABA uncaging is conducted near the excitatory spine

right before the postsynaptic spike arrives at the spine, whereas LTP is induced by pre-post stimulation

regardless of GABA uncaging (blue and cyan points in Fig. 2.2C). The proposed model can also replicate

this result. In pre-post stimulation, due to positive feedback through NMDA receptor, membrane

potential of the spine shows strong depolarization even if inhibitory current is delivered through GABA
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Figure 2.2. The model reproduces spike-timing-dependent heterosynaptic e↵ects. (A) Spike timing
window with/without a di-synaptic GABAergic input. Lines are simulation data, and points are
experimental data taken from Paille et al., 2013 [182]. Vertical lines represent the timing di↵erences
at which Fig. B is calculated (�t = ±12.5 ms). (B) Dynamics of calcium concentration c(t) (top)
and the intermediate variable y(t) (bottom) at the stimulated spine. Gray areas in the bottom figures
represent regions satisfying y(t) < yth/Krep, in which the change in the intermediate is not reflected
into synaptic weight, where Krep represents the number of paired stimulation given in the simulation
for fig. A,C. (C) Synaptic weight change with/without GABAergic inputs right before pre/post
stimulation. Data points were taken from Hayama et al., 2013 [94]. The cyan point is a result from
muscimol application, not GABA uncaging. (D) Dynamics of c(t) and y(t) at the stimulated spine
(blue lines) and a neighboring spine (green lines).
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uncaging (blue lines in Fig. 2.2D upper-right). Thus, LTP is caused after repetitive stimulation (blue

lines in Fig. 2.2D lower-right). On the other hand, in post-pre protocol, in the absence of GABAergic

input, LTP/LTD e↵ects tend to cancel each other, whereas LTD becomes dominant under GABA

condition (blue lines in Fig. 2.2D left).

In addition to inhibitory-to-excitatory e↵ect, excitatory-to-excitatory e↵ect is also observed in case

of CA1 [94]. If GABA uncaging is performed right before postsynaptic firing, LTD is also observed

in neighboring excitatory spines. This E-to-E heterosynaptic e↵ect is not observed for LTP or in the

absence of GABAergic input (green points in Fig 2.2C). In my framework, excitatory current influx

from a nearby synapse causes mild potentiation of calcium concentration in cooperation with inhibitory

current influx, hence eventually induces LTD (green lines in Fig 2.2D left). Note that for this E-to-E

e↵ect, interaction at latter stage of synaptic plasticity may also play a dominant role [94].

Phase transitions underlying h-STDP.

Though, in the previous section, I introduced a complicated model to achieve correspondence with the

biological process and get insight into the underlying mechanism, not all components of the model

above are necessary to reproduce e↵ects of h-STDP. Here, I provide a simple analytically tractable

model to investigate the robustness of the proposed mechanism.

To this end, I shrink the model to the one in which calcium level at spine is directly modulated by

pre-, post-, and heterosynaptic activity as below,

dCi(t)

dt
= �Ci(t)

⌧C
+ CpreXi(t� da) + Cpost [1 + gC(Ci(t��t))]Xpost(t� dd)

�CI

X

j2⌦

I

i

XI
j (t� dI) + CE

X

j2⌦

E

i

XE
j (t� dE). (2.1)

Here, Ci(t) represents Ca2+ concentration at spine i, Xi and Xpost represent presynaptic and postsy-

naptic spikes respectively, and ⌦

I
i and ⌦

E
i are sets of neighboring inhibitory and excitatory synapses (see

Model B in Methods for the details of the model). In addition, da, dd are axonal delay and dendritic

delay, and dE , dI are delays in heterosynaptic interaction. Despite simplicity, the model can reproduce

heterosynaptic e↵ects observed in striatum and CA1 neurons, though quantitative correspondence is

hard to achieve in this case (Fig. 2.3A and B respectively). The model further provides analytical

insights for the phenomena.

Let us first consider how the inhibitory e↵ect parameter CI controls I-to-E heterosynaptic e↵ect

observed in the CA1 experiment. If we characterize STDP time windows by the total number of local

minimum/maximum, the parameter space can be divided into several di↵erent phases (Fig. 2.3C). If

LTP threshold ✓p satisfies Cpre < ✓p < Cpost, Hebbian type STDP time window appears when the

strength of heterosynaptic inhibitory e↵ect CI satisfies (Cpost� ✓p)e�I/⌧C < CI < Cpree
�
I

/⌧
C (Orange

phase in the middle of Fig. 2.3C). Here I defined �I as the spike timing di↵erence between inhibitory spike
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Figure 2.3. Heterosynaptic STDP can be understood as phase transitions on STDP time window in
the analytical model (A, B) STDP windows at various strength of heterosynaptic inhibitory e↵ect.
Fig. A corresponds to the striatum experiment, while Fig. B reproduces the CA1 experiment. Note
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show the number of local minimum/maximum. (D) Phase diagram calculated for pre and
postsynaptic e↵ect parameters at a fixed inhibitory e↵ect (CI = 0.5).
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and presynaptic (postsynaptic) spikes in pre-post (post-pre) stimulation protocols. If CI is larger than

Cpre exp(�I/⌧C), strong inhibitory e↵ect causes LTD even in pre-post regime (green phase in Fig. 2.3C),

whereas LTD in post-pre regime is suppressed when CI is smaller than (Cpost � ✓p) exp(�I/⌧C) (gray

phase in Fig. 2.3C). This analysis confirms that, to observe heterosynaptic LTD, the heterosynaptic

spike timing di↵erence �I should be smaller than the timescale of Ca2+ dynamics ⌧C [94], because

�I < ⌧C log

C
I

C
post

�✓
p

is necessary for a significant heterosynaptic LTD, and typically CI is smaller

than Cpost and ✓p. In addition, heterosynaptic suppression of pre-post LTP is very unlikely to happen,

because CI > Cpre is necessary even if �I = 0, but heterosynaptic e↵ect on Ca2+ dynamics in the

spine is expected to be smaller than the homosynaptic e↵ect (i.e. CI < Cpre).

The model also provides analytical insight for E-to-E interaction. When the postsynaptic e↵ect

parameter Cpost satisfies ✓p < Cpost < ✓p + CIe
��

I

/⌧
C , and the presynaptic e↵ect parameter Cpre

fits into CIe
��

I

/⌧
C < Cpre < ✓p, STDP time window shows Hebbian-type timing dependency (orange

phase in Fig. 2.3D). On the other hand, if Cpre is smaller than CIe
��

I

/⌧
C while satisfying ✓p +

CIe
��

I � Cpost < Cpre, then STDP curve becomes LTD dominant (green phase in Fig. 2.3D). In

E-to-E interaction, neighboring synapses receive small heterosynaptic calcium transient CE , instead

of presynaptic input Cpre. As a result, even if Cpre is large enough to cause Hebbian plasticity, CE

is typically smaller than Cpre, thus only LTD is observed in neighboring synapses as in experiments

[94] [174]. These analytical results revealed that heterosynaptic e↵ects are observable if parameters of

calcium dynamics belong to a certain phase in the parameter space, thus h-STDP is robustly reproducible

in my framework.

h-STDP induces local functional E/I balance at dendritic hotspots

Results so far suggest that the proposed model gives a good approximation of h-STDP. I next considered

how this h-STDP rule shapes synaptic organization on the dendrite of a simulated neuron to investigate

its possible functions. To this end, I first consider a model of a dendritic hotspot [113] that receives

10 excitatory inputs and 1 inhibitory input (Fig. 2.4A). Excitatory inputs are organized in 5 pairs,

and each pair of excitatory synapses receives correlated inputs (Fig. 2.4B; see Model A
2

in Methods

for details). In addition, the inhibitory input is correlated with one excitatory pair (Blue ones in Fig.

2.4A). Here, I assumed that postsynaptic activity follows a Poisson process, because influence of a

single hotspot to the soma is usually negligible. In addition, I neglected the e↵ect of morphology

and hypothesized that delay between all spines within the hotspot is the same. In this configuration,

surprisingly, excitatory synapses correlated with the inhibitory one are potentiated while other synapses

experience minor de-potentiation (Fig. 2.4C). This potentiation is only observable when inhibitory

activity is tightly correlated with excitatory activities, and slightly larger when inhibitory spike precedes

excitatory spikes compared to the opposite case (Fig. 2.4D). In addition, heterosynaptic inhibitory

e↵ect �G needs to be relatively small in order to observe correlated potentiation (red area in Fig. 2.4E).
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Otherwise, inhibitory input causes strong hyperpolarization on nearby synapses, resulting depression at

correlated excitatory synapses instead of potentiation (blue area in Fig. 2.4E). These results indicate

that h-STDP induces local functional E/I balance by potentiating excitatory synapses correlated with

inhibitory synapses.
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Figure 2.4. Emergence of local functional Excitatory/Inhibitory balance by heterosynaptic STDP (A)
Schematic figure of a dendritic hotspot model. (B) Examples of correlated spike inputs. (C) Changes
in intermediate y (top) and weight w (bottom) by h-STDP. (D) Synaptic weight change at the
excitatory synapses correlated with the inhibitory inputs, at various inhibitory delays. (E) Relative
weight changes wR calculated at various parameters. I defined wR by
wR ⌘ hwE

i ii2corr � hwE
i ii2un�corr, where ”corr” represents a set of excitatory synapses correlated

with the inhibitory synapse, and ”un-corr” stands for uncorrelated ones. (F) Probability of LTP/LTD
occurrence calculated from simulation. (G, H) Results in single-spike simulations. E/I coincidence
prevents LTD e↵ect due to pre-spike (G), without a↵ecting LTP e↵ect due to pre-post coincidence
(H). In fig. G, inhibitory spikes were provided at t = 0 in the black line, t = �100ms in the gray line,
and the presynaptic spike was given at t = 0 in both lines. Similarly, in fig. H, postsynaptic spikes
were provided at t = �50 (light-gray), 0 (black), +50 ms (dark-gray), and the presynaptic spike was
given at t = 0 in all lines.

To reveal underlying mechanism of this E/I balance generation, from simulation data, I calculated

the probability of calcium level being above the LTD/LTP thresholds after a presynaptic spike. LTP

probability shows the same trajectory after a presynaptic spike on average, regardless of whether presy-

naptic activity is correlated with inhibitory input or not (dotted lines in Fig. 2.4F). On the other hand,

LTD probability is lower for spine correlated with inhibitory inputs (solid lines in Fig. 2.4F), although

the probability goes up after the presynaptic spike in both cases. This asymmetry between LTP and

LTD can be understood in the following way; LTD is mainly caused when the presynaptic neuron spikes

and the postsynaptic neuron stays silent both in the experiment [151] and in the model (gray line in

Fig. 2.4G). However, if inhibitory input is provided at nearby dendrite in coincidence, calcium boost

caused by excitatory presynaptic input is attenuated by heterosynaptic inhibitory e↵ect (black line in

Fig. 2.4G). As a result, LTD is shunted by correlated inhibitory inputs. On the other hand, LTP is

mainly caused by coincidence between pre and postsynaptic neurons, which induces large increase in

calcium level compared to attenuation by heterosynaptic inhibitory e↵ect. Thus, inhibitory activity at

nearby site does not prevent LTP at correlated excitatory synapses (Fig. 2.4H). Therefore, correlated

spines experiences less depression, as a result, tend to be potentiated as a net sum.
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To check the generality of the local E/I balance, I extended the model to a two-layered single cell

by modeling each branch with one dendritic hotspot (Fig. 2.5A; see Model A
3

in Methods for details),

and investigated the dendritic organization by h-STDP. Even in this case, when inhibitory inputs show

diverse selectivity, each dendritic hotspot shapes its synaptic organization based on the selectivity of the

inhibitory input (Fig. 2.5B). These result further imply that correlation-based clustering of excitatory

synapses observed in previous experiments [122] [217] are possibly caused by common inhibitory inputs

instead of direct interaction among excitatory spines.
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Figure 2.5. Local functional E/I balance in a two-layered single cell model (A) Schematics of the
single cell model. In the model, each branch receives 10 excitatory inputs and 1 inhibitory input.
Colors of the circles correspond to the feature-selectivity of inhibitory inputs. For instance, in the far
left branch, the inhibitory neuron is correlated with excitatory synapses represented with blue lines in
fig. B. (B) Synaptic weight change at each branch.

Local functional E/I balance enables optimal change detection from noisy stim-

uli

In the previous section, I demonstrated that h-STDP induces local E/I balance on a dendritic branch. I

next investigate functional advantages of this local balance by considering what kind of teaching signal

induces local E/I balance in supervised learning. In this way, we can perform rigid comparison with all

the other possible synaptic organization.

To this end, based on the two-layered single neuron model in the previous section, I constructed a

model of an excitatory neuron in primary sensory cortex (see Model C in Methods for details). The

postsynaptic neuron has K numbers of dendritic branch each receives NE
b excitatory inputs and one

inhibitory input. To mimic the sensory stimuli, we introduced one external variable ✓, which shows a

random walk and occasionally jumps to a distant value (Fig 2.6A top). For instance, in case of primary

visual cortex, variable ✓ would be the direction of moving bar stimuli. For input neurons, I assumed that
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both excitatory and inhibitory input neurons show feature selectivity, and follow rate-modulated Poisson

processes based on the external variable (Fig. 2.6A bottom). I additionally assumed that inhibitory

response is broader and slightly delayed as often seen in the sensory cortex [148] [67]. I performed

supervised learning on the somatic membrane potential by minimizing the error between the desired

potential and the actual potential, which is calculated as the nonlinear sum of activities in dendritic

branches. For the objectives of supervised signals, I considered two cases. One is change detection task

in which the neuron should be depolarized if the external variable shows a rapid change within past 20

milliseconds, and otherwise should be hyperpolarized (Fig. 2.6D left). The other task is excitability

maximization, in which the neuron should be in the depolarized state regardless of the external variable

(Fig. 2.6D right).

Time[ms]

M
e
m

b
ra

n
e

p
o

te
n

ti
a
l

E
x
te

rn
a

l

v
a

ri
a

b
le

Time[ms]

teaching signal

somatic potential

Time[s]

M
e

a
n

 

s
q
u

a
re

 e
rr

o
r

O
ri
e
n
ta

ti
o

n

d
if
fe

re
n

c
e

Time[s]Time[ms]

E
x
te

rn
a

l

v
a
ri
a
b

le
 ș

S
e

le
c
ti
v
e

d
ir
e
c
ti
o
n

Inhibitory

Excitatory (before) Excitatory (after)

A B

C D

Figure 2.6. Supervised learning on a two-layered single cell model with two di↵erent teaching signals
(A) An example of dynamics of the external variable ✓(t) (top), and the spike responses of excitatory
(black dots) and inhibitory (red dots) neurons. (B) Mean square error (top) and the orientation
di↵erence between excitatory population and inhibitory neuron (bottom) on a dendritic branch. (C)
Polar representation of orientation selectivity of excitatory population and inhibitory neuron. (D)
Examples of dynamics after learning. Red lines represent teaching signals, and blue/green lines are
somatic potential.

By error back-propagating algorithm [197], we can modify weights of excitatory synapses on dendritic

branches for minimizing the error. Indeed, for both teaching signals, mean square errors decrease as the

learning progresses (Fig. 2.6B top). Interestingly, orientation di↵erence between the inhibitory input

and the excitatory population weights at each dendritic branch converged to the opposite values in two

tasks (Fig. 2.6B bottom). In case of the change detection task, the orientation di↵erence decreases

so that excitatory and inhibitory inputs show the similar orientation selectivity (Fig. 2.6C top). On

the other hand, in the excitability maximization task, the excitatory selectivity develops to the opposite

direction with the inhibitory selectivity (Fig. 2.6C bottom). These results indicate that local functional

E/I balance is not suitable for excitability maximization, but highly beneficial for the change detection.

In visual [28] and auditory [54] cortices, many excitatory neurons are known to sensitive for change
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in the external environment. My result predicts that in these neurons, inhibitory input show similar

selectivity with excitatory inputs on nearby spines. Note that, in the model, each dendritic branch is

specialized for detecting a change for one direction (Fig. 2.6C top), as a result, somatic potential can

response to change in arbitrary directions, whereas in previous point-neuron models, typically an output

neuron can barely response to one specific change [125] [230].

h-STDP explains critical period plasticity of binocular matching

Results so far indicate h-STDP induces GABA-driven circuit formation. To confirm that these results

are applicable for the developmental plasticity, I next consider a model of critical period plasticity in

binocular matching [235] [236]. In mice, two weeks after the eye opening, typically binocular neurons

in V1 still have di↵erent orientation selectivity for inputs from two eyes. Nevertheless, after a month,

selective orientation for both eyes get closer, and almost coincides with each other eventually [235].

Importantly, this phenomenon is not likely to be explained by simple Hebbian plasticity, because in that

case, binocular matching should be initiated in first two weeks upon eye opening.

I modeled this process with a two-layered single cell introduced in Fig.5 (see Model A
4

in Methods

for details). Inputs were modeled as rate modulated Poisson processes driven by a circular variable

✓, as in the previous section. I assumed that (i) inputs from ipsi- and contralateral eyes already

have some weak orientation selectivity at the eye opening [235] [61], (ii) Inhibitory cells are driven

by both ipsi- and contralateral eyes [248] [130], (iii) Average selectivity of inhibitory inputs comes

in between the selectivity for ipsilateral inputs and contralateral inputs. The last assumption is not

supported from experimental evidence, but if inhibition is provided from neighboring interneurons,

these inhibitory neurons are likely to be driven by similar feedforward excitatory inputs to those drive

the output neuron. Here, I consider direction selectivity instead of orientation selectivity for simplicity,

but the same argument holds for the latter.

In the simulation, I first run the process without inhibition then introduced GABAergic inputs after a

while (red lines in Fig. 2.7A-C represent the starting point of inhibitory inputs). After the introduction,

mean excitatory input direction in each branch converged to the direction of the local inhibition (Fig.

2.7A top), though synaptic weight development was biased toward the global direction selectivity (Fig.

2.7D; here, the bias is toward the right side). Thus, even if we consider all the synapses, the di↵erence

between ipsi- and contralateral selectivity became smaller (Fig. 2.7A middle). As a result, binocular

selectivity became stronger (Fig. 2.7A bottom), and the response for monocular inputs matches with

each other (Fig. 2.7E). When I deprived inputs from the contralateral eye right after the introduction

of inhibition, binocular matching was blocked (Fig. 2.7B), while the matching was not disrupted when

the deprivation was performed before the introduction of GABAergic input (Fig. 2.7C). These results

indicate that GABA-maturation and resultant h-STDP can be a part of the underlying mechanism for

critical period plasticity in binocular matching.
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Figure 2.7. heterosynaptic plasticity can trigger binocular matching (A-C) (top): Di↵erence between
mean excitatory direction selectivity and inhibitory direction selectivity in a branch. (middle):
Di↵erence between mean ipsi-driven excitatory direction selectivity and mean contra-driven excitatory
direction selectivity over all synapses on the neuron. (bottom): Direction selectivity index calculated
for contralateral inputs (purple), ipsilateral inputs (light-green), and binocular input (black). In all
figures, red vertical lines represent the timing for introduction of inhibitory inputs. In shadowed areas
of Fig. B, C, to mimic monocular deprivation, contra-driven inputs were replaced with rate-fixed
Poisson inputs. (D) Examples of direction selectivity of a branch before (gray lines) and after
(purple/light-green lines) the learning. Red lines represent the selectivity of the inhibitory input. (E)
Firing responses of the neuron before (left) and after (right) the learning.

Discussion

In this study, I first showed that a calcium-based plasticity model robustly captures several di↵erent

characteristics of plasticity-related interaction between neighboring synapses in millisecond timescale

by introducing current-based heterosynaptic interaction terms (Fig. 2.2,2.3). Based on this proposed

model, I next investigated the possible functions of h-STDP. My study revealed that correlated E/I

synaptic inputs on the same hotspot causes the local function E/I balance (Fig. 2.4,2.5), which is

beneficial for change detection (Fig. 2.6). Furthermore, I found that h-STDP can induces binocular

matching upon GABA maturation, and support accurate input estimation (Fig. 2.7).

Experimental predictions

My study provides three experimental testable predictions: First, the results in Figure 4 indicate that

LTD at an excitatory synapse is cancelled out by coincident inhibitory inputs to the nearby dendrite.

Thus, LTD by low frequency stimuli [151] can be attenuated by coincident GABA uncaging around

the stimulated spine. Note that this result would not contradict with GABA-driven heterosynaptic

LTD observed in paired stimulation, because in that experiment, the excitatory spine was presumably

overexcited for inducing LTD in the absence of GABA [94]. Indeed, coincident GABAergic inputs may

induce hetersosynaptic LTD by combining with presynaptic stimulation at moderately high frequency

that itself does not cause LTD [22].
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Secondly, my results provide a hypothesis on synaptic organization on dendritic tree. It is known

that excitatory synaptic inputs to a dendritic hotspot often show correlated activities [122] [217]. My

results indicate that an inhibitory input should also be correlated to excitatory inputs projected to the

nearby dendrite (Fig. 2.4,2.5), especially on a dendritic tree of an excitatory neuron that is sensitive to

change in the external environment (Fig. 2.6). Also the model explains why feature selectivity of these

spines typically shows weak similarity despite their correlation [113] [38]. Suppose a synaptic cluster

is shaped by a common inhibitory heterosynaptic e↵ect, not by excitatory-to-excitatory interaction,

variability within the cluster tends to be large, because inhibitory neurons in sensory cortex typically

have wider feature selectivity than excitatory neurons [148] [165]. In addition, it should also be noted

that, E-to-E heterosynaptic LTP is typically induced as a meta-plasticity in a timescale of minutes [93],

which itself is not su�cient to create a correlation-based synaptic cluster.

The third implication of the model is about binocular matching. My model indicates that GABA-

maturation plays a critical role in binocular matching, but the phenomenon can also be explained by

Hebbian plasticity plus some kind of meta-plasticity. If binocular matching is purely induced by Hebbian

plasticity not through heterosynaptic mechanism, selective orientation after the matching depends solely

on the initial selectivity for monocular inputs. Especially when the contralateral input is larger than the

ipsilateral input, resultant selectivity should nearly coincides with the original contralateral selectivity.

On the other hand, if the proposed mechanism takes part in the development, the consequent selectivity

should also be influenced by mean selectivity of input inhibitory neurons. Thus, long-term imaging

of monocular selectivity at binocular neurons in V1 would reveal whether a covariance-based rule is

su�cient enough to explain the phenomena, or some other mechanisms including the proposed one also

play a role in the shift. In addition, it is known that precocious GABA maturation disrupts binocular

matching [236]. My model suggests that the disruption is possibly related to the violation of the

third assumption in the model, which is correlation of mean inhibitory inputs to both ipsi- and lateral

selectivity of the postsynaptic neuron.

Carrier of heterosynaptic interaction

Heterosynaptic plasticity has been observed in various spatial and temporal scales, and arguably underly-

ing molecular mechanisms are di↵erent from one to one [174]. In case of milliseconds-order interaction,

single-atomic ions are strong candidates, because poly-atomic ions such as IP3 are too big to move

rapidly from spine to spine [202]. If change in Ca2+ concentration at an un-stimulated spine is cru-

cial for synaptic plasticity, Ca2+ influx/outflux from either intra or extracellular sources are necessary

for induction of heterosynaptic plasticity. Because inhibitory synaptic inputs often change the Ca2+

concentration in the dendritic branch locally [168], intracellular modulation of calcium is plausible,

but at the same time, extracellular Ca2+ influx/outflux through NMDA and VDCC should also be

driven strongly by heterosynaptic activity, because often inhibitory inputs modulate membrane voltage
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locally [75]. In addition, most of intracellular calcium-ions exist within calcium-bu↵er [99], and they

may also important for induction of synaptic plasticity. In my model, both current-based interaction

(Model A) and calcium-based interaction (ModeI B) replicate the experimental results (Fig. 2.2 and

2.3). Nevertheless, my study implies that intracellular supply may not be su�cient, because, according

to my analytical study, the heterosynaptic Ca2+ change typically needs to be comparable with the

homosynaptic change in order to cause significant heterosynaptic plasticity (Fig. 2.3C, D).

Note that heterosynaptic interaction does not need to work in milliseconds order to interfere with

STDP. For instance, E-to-E heterosynaptic LTD can be initiated by spreading of LTD-related molecules,

not by neural dynamics-related components [94]. In addition, Paille et al. proposed that the shift in

STDP time window observed in their experiment is possibly explained by change in the ratio between

calcium influx through NMDA and the influx through VDCC [182].

Inhibitory cell types

Somatostatin positive (SOM+) inhibitory neurons are the major candidate for heterosynaptic STDP,

because they are typically projected to the dendrite, their IPSP curves is shorter than the timescales

of NMDA or Ca2+ dynamics [153], and they often show strong feature selectivity compared to other

inhibitory neuron types [148]. However, the model does not exclude parvalbumin positive (PV+)

inhibitory neurons, because they usually have projections to proximal dendrites, and they are typically

fast spiking [153]. In particular, h-STDP through PV+ cell may play important roles in critical period

plasticity [218].

In addition, many inhibitory synapses are projected to dendritic spine [39], though I mainly considered

inhibitory synapses on dendritic shaft in this study. My result implies that heterosynaptic e↵ect by these

synapses would be more specific and possibly strong.

Related theoretical studies

Previous biophysical simulation studies revealed that synaptic plasticity at excitatory synapse critically

depends on inhibitory inputs at nearby dendrite [46] [14], but these studies did not reveal general rules

nor functional roles of the heterosynaptic plasticity. On the other hands, network modeling studies

found that heterosynaptic plasticity provides a homeostatic mechanism [40] [252], but in these models,

heterosynaptic plasticity were modeled as a global homeostatic plasticity without any branch specificity,

and the advantage over other homeostatic mechanisms was unclear. In my work, by considering inter-

mediate abstraction with analytical but biologically plausible models, I proposed candidate mechanisms

for experimental results that have not modeled before, and potential functions of h-STDP in neural

circuit formation.
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Methods

Model A1: Calcium-based STDP model with current-based heterosynaptic in-

teraction

Let us first consider membrane dynamics of a dendritic spine. Membrane potential of a spine is mainly

driven by presynaptic inputs through AMPA/NMDA receptors, backpropagation of postsynaptic spike,

leaky currents, and current influx/outflux caused by excitatory/inhibitory synaptic inputs at nearby

synapses. Hence, I modeled membrane dynamics of spine i with the following di↵erential equation:

dui (t)

dt
= �ui (t)

⌧m
+�Ax

A
i (t)+�NgN (ui)x

N
i (t)+�BPx

BP
i (t)��I

X

j2⌦

I

i

xI
j (t� dI)+�E

X

j2⌦

E

i

xE
j (t� dE),

(2.2)

where ui is the membrane potential of the spine, and ⌧m is the membrane time constant. Here,

conductance changes were approximated by current changes. The resting potential was renormalized

to zero for simplicity. In next terms, xA
i and xN

i are glutamate concentration on AMPA/NMDA

receptors respectively. The function gN (ui) = ↵Nui + �N represents voltage dependence of current

influx through NMDA receptors. This positive feedback is enhanced when additional current is provided

through back-propagation. As a result, the model reproduces large depolarization caused by coincident

spike between presynaptic and postsynaptic neurons. Although AMPA receptor also shows voltage

dependence, here I neglected the dependence, as the relative change is small around the resting potential

[147]. xBP
i is the e↵ect of backpropagation from soma, and the last two term of the equation represents

heterosynaptic current, which is given as the sum of inhibitory/excitatory currents xI
j , x

E
j at nearby

synapses. I defined sets of nearby inhibitory/excitatory synapses as ⌦I
i and ⌦

E
i respectively, and their

delays were denoted as dI and dE . Each input xQ
i (Q = A,N,BP,I,E) is given as convoluted spikes:

dxQ

i

(t)

dt = �xQ

i

(t)

⌧
Q

+

P
sk
�
�
t� sk

�
, where sk represents the spike timing of the k-th spike. In the

simulation, although convolution is calculated at the heterosynaptic synapse, this does not influence

results because exponential decay is linear.

I next consider calcium influx to a spine through NMDA receptors and VDCC. For a given membrane

potential ui, calcium concentration at spine i can be written as

dci
dt

= � ci
⌧C

+ gN (ui)x
N
i (t) + gV (ui) , (2.3)

where gV (ui) = ↵V ui represents calcium influx through VDCC, and gN (ui)x
N
i (t) is the influx from

NMDA.

Calcium concentration at spine is the major indicator of synaptic plasticity, and many results indicate

that high Ca2+ concentration on a spine typically induces LTP, while low concentration often causes

LTD [147]. Previous modeling studies revealed calcium-based synaptic plasticity model constructed on

that principle well replicate various homosynaptic STDP time window observed in in vitro experiments

27



[208] [86]. Hence, here I employed their framework for plasticity model. I additionally introduced

an intermediate variable to reflect all-or-none nature of synaptic weight change [185]. This variable

is expected to correspond with concentration of plasticity related enzymes such as CaMKII or PP1.

Similar results are expected for stochastic bi-stable attractor model [87] [86]. In the proposed model

the intermediate yi and synaptic weight wi follow

dyi (t)

dt
= �yi (t)

⌧y
+ Cp[ci � ✓p]

+

� Cd[ci � ✓d]
+

,

dwi (t)

dt
= Bp[yi � yth]

+

⇥
xH
i � hth

⇤
+

�Bd[� (yi + yth)]
+

. (2.4)

[X]

+

is a sign function which returns 1 if X � 0, returns 0 otherwise. xH
i is a gating term introduced for

preventing pathological behavior. Without this term, modeled synapse can show potentiation without

any presynaptic input if calcium concentration is high enough, though such phenomena are not reported

yet. Note that this term is a constraint for plausibility, hence not necessary for reproduction of experi-

mental results. In addition, as observed in recent experiments [71], in the model, back-propagation is

not necessary for LTP, if presynaptic inputs are given when the membrane potential at the spine is well

depolarized.

In the simulation, I set common parameters as ⌧C = 18.0, ⌧M = 3.0, ⌧N = 15.0, ⌧A = 3.0,

⌧BP = 3.0, ⌧I = 3.0, ⌧E = 6.0, ⌧Y = 50, 000, ⌧H = 50, 000, dI = 0.0, ↵N = 1.0, ↵V = 2.0, �A = 1.0,

✓p = 70, ✓d = 35, Cp = 2.3, Cd = 1.0, Bp = 0.001, Bd = 0.0005, hth = 0.01. In the model of

STDP at striatum, in addition, I used �N = 1.0, �N = 0.0, �BP = 8.0, �I = 5.0, yth = 250, while

for the model of Scha↵er collateral synapses, I used dE = 1.0, �N = 0.0, �N = 0.2, �BP = 8.5,

�I = 3.0, �E = 1.0, yth = 750. In the parameter search, decay time constants were chosen from

biologically reasonable ranges [123], ↵N , �A, Cd, Bd were fixed at unitary values, and other parameters

were manually tuned. Synaptic weight variables {w} were bounded to 0 < w < 500, and initialized

at w = 100. All other variables were initialized at zero in the simulation. Paired stimulation was

given every 1 second for 100 seconds, and synaptic weight changes were calculated from the values

400 seconds after the end of stimulation. In the cortico-striatal synapse model, the inhibitory spike was

presented at the same timing with the presynaptic spike, and for Scha↵er collateral synapses, inhibitory

spikes were given 10 milliseconds before pre (post) spikes in pre-post (post-pre) stimulation protocols.

In calculation of intermediate variable y(t) in Fig. 2.2B,D, I ignored the e↵ect of exponential term,

because of the di↵erence in timescale. I subtracted 7.5 milliseconds of axonal delay from the timing of

presynaptic stimulation in the calculation of spike timing di↵erence.

Model A2: Models of a dendritic hotspot

Dendritic hotspot model was constructed based on the Scha↵er collateral synapse model described

above. For simplicity, I hypothesized that heterosynaptic e↵ect by inhibitory spike arrives at excitatory
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spines at the same time, and I disregarded E-to-E interaction by setting gammaE = 0.0E. Correlated

spikes were generated using a hidden variable as in previous studies [230] [102]. I generated five dynamic

hidden variables, and updated them at each time step by sµ(t + �t) = (⇣ � 1

2

)(1 � ↵s) + sµ(t)↵s,

where ↵S = exp[��t/⌧S ], ⌧S = 10ms, and ⇣ is a random variable uniformly chosen from [0,1). In the

simulation, the time step was set at �t = 0.1ms. Activities of presynaptic neurons were generated by

rate-modulated Poisson process with rEi (t) = [rEX + rEs sµ(t)]+ for excitatory neuron i modulated by

the hidden variable µ. Similarly, the presynaptic inhibitory neuron was described by a Poisson-model

with rI(t) = [rIX + rISs0(t)]+. Activity of the postsynaptic neuron was given as a Poisson-model with

a fixed rate rpost. I set parameters {rEx , rEs , rpost} in a way that all pre and postsynaptic excitatory

neurons show the same firing rate, to avoid the e↵ect of firing-rate di↵erence on synaptic plasticity.

For parameters, I used �I = 0.5, �N = 1.0, �BP = 8.0, Cp = 2.1, yth = 250 and other parameters

were kept at the same value with the original Scha↵er collateral model. Except for Fig. 2.4D, the

delay of inhibitory spike was set as zero. Presynaptic activities were given by rEX = 1.0, rES = 500.0,

rIX = 2.0, rIS = 1000.0, and postsynaptic firing rate was set as rpost = 5.0.

Model A3: a two-layered single cell model Previous studies suggest that com-

plicated dendritic computation

can be approximated by a two-layered single cell model [189] [145]. Thus, I constructed a single cell

model by assuming that each hotspot works as a subunit of a two-layered model. I defined the mean

potential of a dendritic subunit k by uk
b (t) ⌘

PNE

b

i=1

wk
i u

k
i (t)/(w

E
o N

E
b ), and calculated the somatic mem-

brane potential by usoma(t) ⌘ ��SxBP
(t) +

P
k gb(u

k
b (t)). Here, I subtracted the back propagation

term to reproduce the e↵ect of refractory period. Postsynaptic spikes were given as a rate-modulated

Poisson model with the rate usoma(t)/Idv(t). Idv(t) is the divisive inhibition term introduced to keep the

output firing rate at rpost. By using the mean somatic potential dū
soma

(t)
dt = � 1

⌧
V

(ūsoma � usoma(t)),

Idv(t) was calculated as Idv(t) ⌘ ūsoma(t)/rpost. In the simulation, I used �S = 10.0, Cp = 2.0,

⌧V = 1 seconds, and other parameters were kept at the same values with the hotspot model.

Model A4: A model of binocular matching

For the model of critical period plasticity of binocular matching, I used the two-layered single cell model

introduced in the previous section (Model A
3

). The neuron has K = 100 dendritic branches, each

receives NE
b = 20 excitatory inputs and 1 inhibitory input. At each branch, half of excitatory inputs

are from the contralateral eye, and the other half are from the ipsilateral eye. Each excitatory input

neuron have direction selectivity characterized with ✓Ek,i, and shows rate-modulated Poisson firing with

rk,i(t) = rEx exp

⇥
�E cos(✓(t)� ✓Ek,i)

⇤
/I

0

(�E),
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where where I
0

(�) is the modified Bessel function of order 0 (input configure is basically the same with

Model C ). Similarly, firing rate of an inhibitory neuron is given as rIk(t) = rIx exp
⇥
�I cos(✓(t)� ✓Ik)

⇤
/I

0

(�I).

For each input neuron, mean direction selectivity {✓Ek,i, ✓Ik} were randomly chosen from a von Mises

distribution exp [�S cos(✓ � ✓Q)] /2⇡I0(�S), where Q={contra, ipsi, inh}. In the simulation, I used

✓contra = �⇡/4, ✓ipsi = ⇡/4, ✓inh = 0. Direction of visual stimulus ✓(t) changes randomly with

✓(t + �t) = ✓(t) + �sr⇣G where ⇣G is a Gaussian random variable, and �t is the time step of

the simulation. To mimic monocular deprivation, in the shadowed area of Fig. 2.7B,C, I replaced

contra-driven input neuron activity with a Poisson spike with constant firing rate rEmd. In addition,

in Fig. 2.7B, to simulate the lack of contra-driven inputs to inhibitory neurons, I replaced inhibitory

activity with rIk(t) = rImd + (rIx/2) exp
h
�I cos(✓(t)� ✓Ik,md)

i
/I

0

(�I), where ✓Ik,md was sampled from

exp [�S cos(✓(t)� ✓ipsi)] /2⇡I0(�S).

To evaluate the development of binocular matching, I introduced three order parameters. First,

the di↵erence between mean excitatory direction selectivity and inhibitory selectivity at a branch k

was evaluated by ✓db,k =

���arg
⇣P

i w
E
k,ie

i(✓E
k,i

�✓I
k

)

⌘���. Similarly, the global direction selectivity di↵erence

between inputs from the ipsi- and contralateral eyes were defined by

✓dG =

ˆd

2

4
arg

0

@
KX

k=1

X

i2ipsi

wE
k,ie

i✓E
k,i

1

A , arg

 
KX

k=1

X

i2contrai

wE
k,ie

i✓E
k,i

!3

5 ,

where the function ˆd[✓
1

, ✓
2

] calculates the phase di↵erence between two angles. Finally, direction

selectivity index DSI for binocular input was calculated by

DSI =

�����

PK
k=1

PNE

b

i=1

wk,ie
i✓E

k,i

PK
k=1

PNE

b

i=1

wk,i

����� .

For the calculation of the monocular direction selectivity index, at each branch k, I took sum over NE
b /2

excitatory inputs corresponding to the each eye instead of all NE
b inputs. In Fig. 2.7E, I measured

direction selectivity by providing monocular inputs for 100 seconds. The sensory stimulus ✓(t) was

randomly sampled every 100 milliseconds.

In the simulation, mostly I used the same parameters with the model A
3

. In addition, I set �I = 4.0,

Cp = 1.85, yth = 75.0. Inputs parameters were set at �E = 4.0, �I = 2.0, �S = 1.0, ✓contra = �⇡/4,

✓ipsi = ⇡/4, ✓inh = 0, rEX = 5.0, rIX = 10.0, rEmd = 1.0, rImd = 1.0, �sr = 0.1
p
�t .

Model B: A reduced analytical model of a spine

If we shrink equations for membrane potential and calcium concentration into one, the reduced equation

would be written as,

dCi(t)

dt
= �Ci(t)

⌧C
+ CpreXi(t� da) + Cpost [1 + gC(Ci(t��t))]Xpost(t� dd)
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�CI

X

j2⌦

I

i

XI
j (t� dI) + CE

X

j2⌦

E

i

XE
j (t� dE),

where gc(X) = ⌘[X]

+

captures the nonlinear e↵ect caused by pre-post coincidence. gc was calculated

from the value of Ci at t = t ��t to avoid pathological divergence caused by the delta function. In

the simulation, I simply used value of Ci one time step before. Here, all input Xi, Xpost, XI
j , X

E
j

are given as point processes. For the intermediate y, I used the same equation as before. Note that

above equation is basically same with the one in [86] except for the nonlinear term gc(C) and the

heterosynaptic terms.

Let us consider weight dynamics of an excitatory synapse that has only one inhibitory synapse in its

neighbor. For analytical tractability, I consider the case when presynaptic, postsynaptic, and inhibitory

neurons fire only one spikes at t = tpre, tpost, tI . In case of the CA1 experiment, because GABA

uncaging was always performed before pre and postsynaptic spike, the timing of inhibitory spike is given

as tI = min(tpre, tpost) � �I for �I > 0. Note that spike timings are counted at the excitatory spine,

so the actual timings are t0pre = tpre � daxon, t0post = tpost � ddendrite, t0I = tII � dI � dinhaxon. In

this case, the change in intermediate variable of the excitatory synapse is given as

�y =

8
><

>:

G
1

(C
1

, tpre � tpost) +G
2

�
Cpre + C

1

e�(t
pre

�t
post

)/⌧
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�
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G
1

(C
2

, tpost � tpre) +G
2

�
Cpost

⇥
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�
C

2

e�(t
post

�t
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)/⌧
C

�⇤
+ C

2

e�(t
post

�t
pre

)/⌧
C

�
(otherwise)

where,

C
1

⌘ Cpost � CIe
�(t

post

�t
I

)/⌧
C , C

2

⌘ Cpre � CIe
�(t

pre

�t
I

)/⌧
C

G
1

(C,�t) ⌘ Bp[C � ✓p]
+

✓h
⌧C log

C
✓
p

��t
i

+

�t+
h
�t� ⌧C log

C
✓
p

i

+

⌧C log

C
✓
p

◆
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+

✓h
⌧C log

C
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+
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h
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C
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⌧C log
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⌧C log
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⌧C log
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.

Similarly, in case of the striatum experiment, by setting ⌘ = 0, the change in the intermediate variable

is given as

�y =

8
>>>><

>>>>:

G
1

(Cpost, tpre � tpost) +G
1

(C
3

, tI � tpre) +G
2

�
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I

�t
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�
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1
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2

�
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4

e�(t
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�t
I
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C

�
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(Cpre, tpost � tpre) +G
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�
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e�(t
I

�t
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)/⌧
C

�
(iftpre < tpost < tI),

where C
3

⌘ Cpre + Cposte
�(t

pre

�t
post

)/⌧
C , C

4

⌘ �CI + Cpree
�(t

I

�t
pre

)/⌧
C , and C

5

⌘ Cpost +

Cpree
�(t

post

�t
pre

)/⌧
C .

In the simulation, parameters were set at ⌧C = 30ms, Cpost = 2.0, ✓p = 1.6, ✓d = 1.0. Additionaly,

in the model of a Scha↵er collateral synapse, I used �I = 1.0, Cpre = 1.0, CE = 0.30, ⌘ = 2.0, and
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for the model of a cortico-striatal synapse, I employed �I = 5.0, Cpre = 0.75, CE = 0.0, ⌘ = 0.0.

Model C: Supervised learning with a two-layered single cell model

I constructed the model by considering a two-layered single cell model with K = 100 dendritic branches,

each receives NE
b = 20 excitatory inputs and 1 inhibitory input. Input neuron activity depends on an

external variable ✓, defined on a ring as ✓ 2 [�pi, pi). The variable ✓ follows a random walk process

plus occasional jump as:

✓(t+�t) =

8
>><

>>:

✓(t) +
�
1

2

+ ⇣U
�
⇡ (with prob. �t/⌧✓)

✓(t) + �✓⇣G (otherwise),

where ⇣U is a random variable uniformly sampled from [0,1), and ⇣G is a Gaussian random variable. As

in model A
4

, the response of excitatory input neurons follow a rate-modulated Poisson process with

rate rk,j(t), which is defined from von Mises distribution as

rk,j(t) = rEx exp

⇥
�E cos(✓(t)� ✓Ek,i)

⇤
/I

0

(�E),

where I
0

(�) is the modified Bessel function of order 0. The firing rate of an inhibitory input neuron

is given as rIk(t) = rIx exp
⇥
�I cos(✓(t� �✓)� ✓Ik)

⇤
/I

0

(�I), where �✓ is the delay in inhibitory response

(�✓ = 5.0ms in the simulation). Membrane dynamics of the output neuron was defined as

vk (t) =

X

i2⌦

E

k

wE
k,i

Z 1

0

d⌧ · "E (⌧) sk,i (t� ⌧)�
X

j2⌦

I

k

wI
o

Z 1

0

d⌧ · "I (⌧) sk,j (t� ⌧)

vsoma (t) =

X
k
g (vk (t)), g (v) = (1 + exp [��g (v � ↵g)])

�1

where EPSP/IPSP curves were given by double exponential kernels ✏E(t) =
⇣
e�t/⌧E

a � e�t/⌧E

b

⌘
/(⌧Ea �

⌧Eb ), and ✏I(t) =
⇣
e�t/⌧I

a � e�t/⌧I

b

⌘
/(⌧ Ia�⌧ Ib ) for t > 0. In this formulation, for a given target somatic

potential vteach, supervised learning by error back-propagation [197] is exactly calculable. By considering

stochastic gradient descendent on the squared error (vsoma(t)� vteach(t)), the learning rule is derived

as

�wE
k,i / [vteach (t)� vsoma (t)] · g (vk (t)) · [1� g (vk (t))] ·

Z 1

0

d⌧ · "E (⌧) sk,i (t� ⌧). (2.5)

Note that the rule is written as a function of the somatic potential, the local dendritic potential,

and presynaptic activity. Error back-propagation learning is often criticized as biologically implausible,

because the learning rule is non-local in the conventional implementation [180], but here we can avoid

implausibility by considering branch-dependent plasticity.
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For the change detection task, the teaching signal was defined as

Uteach(t) =

8
>><

>>:

UH (if t� tj < tcd)

UL (otherwise)

where tj represents the timing of the most recent jump in the external variable ✓, and tcd is the desired

duration of the response. In the excitability maximization task, Uteach(t) was fixed at UH regardless of

the external variable.

In the simulation, parameters were set at ⌧Ea = 1.0, ⌧Eb = 5.0, ⌧ Ia = 1.0, ⌧ Ib = 10.0, ⌧✓ = 1000.0

ms, �✓ = 0.03
p
�t, �E = 4.0, �I = 4.0, rEx = 50.0, rIx = 200.0, ↵g = 4.0, �g = 1.0, wI

o = 10.0, and

initial value of excitatory weights were set at wE
k,i = 2.0. Stimulus selectivity of input neurons {✓Ek,i}

and {✓Ik} were randomly selected from [�⇡,⇡). For supervised signals, I used UH = 20.0, UL = 2.0.

In the change detection task, the learning rate was set at ⌘ = 0.001, and for excitability maximization,

I used ⌘ = 0.0002. The particular learning rate parameters were chosen to achieve error reduction in a

similar timescale at two tasks, and the convergence was robust against parameter choice.
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Chapter 3

Wiring Plasticity Generates E�cient

Network Structure for Synaptic

Plasticity

In the adult mammalian cortex, a small fraction of spines are created and eliminated every day, and

the resultant synaptic connection structure is highly nonrandom, even in local circuits. However, it

remains unknown whether a particular synaptic connection structure is functionally advantageous in

local circuits, and why creation and elimination of synaptic connections is necessary in addition to

rich synaptic weight plasticity. To answer these questions, I studied an inference task model through

theoretical and numerical analyses. I demonstrate that a robustly beneficial network structure natu-

rally emerges by combining Hebbian-type synaptic weight plasticity and wiring plasticity. Especially

in a sparsely connected network, wiring plasticity achieves reliable computation by enabling e�cient

information transmission. Furthermore, the proposed rule reproduces experimental observed correlation

between spine dynamics and task performance.

Introduction

The amplitude of excitatory and inhibitory postsynaptic potentials (EPSPs and IPSPs), often referred

to as synaptic weight, is considered a fundamental variable in neural computation [23] [49]. In the

mammalian cortex, excitatory synapses often show large variations in EPSP amplitudes [214] [108]

[31], and the amplitude of a synapse can be stable over trials [135] and time [247], enabling rich

information capacity compared with that at binary synapses [26] [100]. In addition, synaptic weight

shows a wide variety of plasticity which depend primarily on the activity of presynaptic and postsynaptic

neurons [32] [64]. Correspondingly, previous theoretical results suggest that under appropriate synaptic

plasticity, a randomly connected network is computationally su�cient for various tasks [149] [72].
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On the other hand, it is also known that synaptic wiring plasticity and the resultant synaptic

connection structure are crucial for computation in the brain [42] [105]. Elimination and creation of

dendritic spines are active even in the brain of adult mammalians. In rodents, the spine turnover rate is

up to 15% per day in sensory cortex [104] and 5% per day in motor cortex [255]. Recent studies further

revealed that spine dynamics are tightly correlated with the performance of motor-related tasks [245]

[244]. Previous modeling studies suggest that wiring plasticity helps memory storage [188] [215] [126].

However, in those studies, EPSP amplitude was often assumed to be a binary variable, and wiring

plasticity was performed in a heuristic manner. Thus it remains unknown what should be encoded by

synaptic connection structure when synaptic weights have a rich capacity for representation, and how

such a connection structure can be achieved through a local spine elimination and creation mechanism,

which is arguably noisy and stochastic [116].

To answer these questions, I constructed a theoretical model of an inference task. I first studied how

sparse connectivity a↵ects the performance of the network by analytic consideration and information

theoretic evaluations. Then, I investigated how synaptic weights and connectivity should be organized

to perform robust inference, especially under the presence of variability in the input structure. Based

on these insights, I proposed a local unsupervised rule for wiring and synaptic weight plasticity. In

addition, I demonstrated that connection structure and synaptic weight learn di↵erent components

under a dynamic environment, enabling robust computation. Lastly, I investigated whether the model

is consistent with various experimental results on spine dynamics.

Results

Connection structure reduces signal variability in sparsely connected networks

What should be represented by synaptic connections and their weights, and how are those represen-

tations acquired? To explore the answers to these questions, I studied a hidden variable estimation

task (Fig. 3.1A), which appears in various stages of neural information processing [17] [144]. In the

task, at every time t, one hidden state is sampled with equal probability from p number of exter-

nal states st = {0, 1, ..., p � 1}. Neurons in the input layer show independent stochastic responses

rtX,j N(✓jµ,�X) due to various noises (Fig. 3.1B middle), where ✓jµ is the average firing rate of

neuron j to the stimulus µ, and �X is the constant noise amplitude. Although, I used Gaussian noise

for analytical purposes, the following argument is applicable for any stochastic response that follows

a general exponential family, including Poisson firing (Supplementary Fig. 1). Neurons in the output

layer estimate the hidden variable from input neuron activity and represent the variable with population

firing {rY,i}. This task is computationally di�cult because most input neurons have mixed selectivity

for several hidden inputs, and the responses of the input neurons are highly stochastic (Fig. 3.1C). Let
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me assume that the dynamics of output neurons are written as follows:

rtY,i = roY exp

XM

j=1

cij
�
wijr

t
X,j � hw

�
� Itinh

�
, Itinh = log

XN

i=1

exp

✓XM

j=1

cij
⇥
wijr

t
X,j � hw

⇤◆�

(3.1)

where cij (= 0 or 1) represents connectivity from input neuron j to output neuron i, wij is its synaptic

weight (EPSP size), and hw is the threshold. M and N are population sizes of the input and output

layers, respectively. In the model, all feedforward connections are excitatory, and the inhibitory input is

provided as the global inhibition Itinh.

Figure 3.1. Description of the model. (A) Schematic diagram of the model. (B) An example of
model behavior calculated at ⇢ = 0.16, when the synaptic connection is organized using the
weight-coding scheme. The top panel represents the external variable, which takes an integer 0 to 9 in
the simulation. The middle panel is the response of input neurons, and the bottom panel shows the
activity of output neurons. In the simulation, each external state was randomly presented, but here
the trials are sorted in ascending order. (C) Examples of neural activity in a simulation. Graphs on
the top row represent the average firing rates of five randomly sampled input neurons for given
external states (black lines) and their standard deviation (gray shadows). The bottom graphs are
subthreshold responses of output neurons that represent the external state s = 1. Because the
boundary condition for the membrane parameter vi ⌘

P
j cij(wijr

t
X,j � hw) was introduced as

vi > maxi0{vi0 � vd}, vi is typically bounded at �vd. Note that vi is the unnormalized log-likelihood,
and the units on the y-axis are arbitrary.

If the feedforward connection is all-to-all (i.e., cij = 1 for all i, j pairs), by setting the weights as

wij = qjµ ⌘ ✓jµ/�2

X for output neuron i that represents external state µ, the network gives an optimal

inference from the given firing rate vector rtX , because the value qjµ represents how much evidence

the firing rate of neuron j provides for a particular external state µ. (For details, see Methods 1.1).

However, if the connectivity between the two layers is sparse, as in most regions of the brain [190],

optimal inference is generally unattainable because each output neuron can obtain a limited set of

information from the input layer. How should one choose connection structure and synaptic weights

in such a case? Intuitively, we could expect that if we randomly eliminate connections while keeping

the synaptic weights of output neuron i that represents external state µ as wij / qjµ (below, I call it

as weight coding), the network still works at a near-optimal accuracy. On the other hand, even if the

synaptic weight is a constant value, if the connection probability is kept at ⇢ij / qjµ (i.e. connectivity

coding; see Methods 1.2 for details of coding strategies), the network is expected to achieve near-

optimal performance. Figure 3.2A describes the connection matrices between input/output layers in
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two strategies. In the weight coding, if we sort input neurons with their preferred external states, the

diagonal components of the connection matrix show high synaptic weights, whereas in the connectivity

coding, the diagonal components show dense connection (Fig. 3.2A). Both of realizations asymptotically

converge to optimal solution when the number of neurons in the middle layer is su�ciently large, though

in a finite network, not strictly optimal under given constraints. In addition, both of them are obtainable

through biologically plausible local Hebbian learning rules as I demonstrate in subsequent sections.

Figure 3.2. Performance comparison between connectivity coding and weight coding. (A)
Examples of synaptic weight matrices in weight coding (W-coding) and connectivity coding
(C-coding) schemes. X-neurons were sorted by their selectivity for external states. (B) Comparison of
the performance between connectivity coding and weight coding schemes at various sparseness of
connectivity. Orange and cyan lines are simulation results. The error bars represent standard deviation
over 10 independent simulations. In the following panels, error bars are trial variability over 10
simulations. Red and blue lines are analytical results. (C) Analytically evaluated coe�cient of
variation (CV) of output firing rate and corresponding simulation results. For simulation results, the
variance was evaluated over whole output neurons from their firing rates for their selective external
states. (D) Estimated maximum transfer entropy for two coding strategies. Black horizontal line is
the maximal information loge p. (E) Relative information capacity of connection structure versus
synaptic weight is shown at various values of synaptic connectivity. In the orange (cyan) area, the
synaptic connectivity has higher (lower) information capacity than the synaptic weights. Plus symbol
represents the data point obtained from CA3-to-CA1 connections.

I evaluated the accuracy of the external state estimation using a bootstrap method (Methods 3.2)

for both coding strategies. Under intermediate connectivity, both strategies showed reasonably good

performance (as in Fig. 3.1B bottom). Intriguingly, in sparsely connected networks, the connectivity

coding outperformed the weight coding, despite its binary representation (Fig. 3.2B cyan/orange

lines). The analytical results confirmed this tendency (Fig. 3.2B red/blue lines; see Methods 2.1 for

the details) and indicated that the firing rates of output neurons selective for the given external state

show less variability in connectivity coding than in the weight coding, enabling more reliable information

transmission (Fig. 3.2C). To further understand this phenomenon, I evaluated the maximum transfer

entropy of the feed forward connections: TE = hH(st)�H(st|rtX , C)it. Because of limited connectivity,

each output neuron obtains information only from the connected input neurons. Thus, the transfer
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entropy was typically lower under sparse than under dense connections in both strategies (Fig. 3.2D).

However, in the connectivity coding scheme, because each output neuron can get information from

relevant input neurons, the transfer entropy became relatively large compared to the weight coding

(orange line in Fig. 3.2D). Therefore, analyses from both statistical and information theory-based

perspectives confirm the advantage of connectivity coding over the weight coding in the sparse regions.

The result above can also be extended to arbitrary feedforward network as below. For a feed-

forward network of M times N neurons with connection probability ⇢, information capacity of con-

nections is given as IC(⇢) ⌘ logMN C⇢MN , where H represents the entropy function . Similarly,

for a given connections between two layers, information capacity of synaptic weights is written as

H(⇢) ⌘ �⇢ log ⇢ � (1 � ⇢) log(1 � ⇢), where b is the number of distinctive synaptic states [227].

Therefore, when the connection probability ? satisfies , synaptic connections and weights have the

same information capacities. This means that, as depicted in Figure 3.2E, in a sparsely connected

network, synaptic connections tend to have larger relative information capacity, compared to a dense

network with the same b. This result is consistent with the model above, because stochastic firing of

presynaptic neuron can be translated as synaptic noise. Furthermore, in the CA3-to-CA1 connection of

mice, connection probability is estimated to be around 6% [204], and information capacity of synaptic

weight is around 4.7 bits [15], thus the connection structure should also play an active role in neural

coding in the real brain (data point in Fig. 3.2E).

Dual coding by synaptic weights and connections enables robust inference

In the section above, I demonstrated that a random connection structure highly degrades information

transmission in a sparse regime to the degree that weight coding with random connection fell behind

connectivity coding with a fixed weight. Therefore, in a sparse regime, it is necessary to integrate

representations by synaptic weights and connections, but how should we achieve such a representation?

Theoretically speaking, we should choose a connection structure that minimizes the loss of informa-

tion due to sparse connectivity. This can be achieved by minimizing the KL-divergence between the

distribution of the external states estimated from the all-to-all network, and the distribution estimated

from a given connection structure (i.e. argmin

kCk0=⇢MN

hDKL [p(st|rX , Call)||p(st|rX , C)]ir
X

, see Methods

2.2 for details). However, this calculation requires combinatorial optimization, and local approximation

is generally di�cult [57], thus expectedly the brain employs some heuristic alternatives. Experimen-

tal results indicate that synaptic connections and weights are often representing similar features. For

example, the EPSP size of a connection in a clustered network is typically larger than the average

EPSP size [135] [184], and a similar property is suggested to hold for interlayer connections [250] [191].

Therefore, we could expect that by simply combining the weight coding and connectivity coding in

the previous section, low performance at the sparse regime can be avoided. On the other hand, in

the previous modeling studies, synaptic rewiring and resultant connection structure were often gen-
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erated by cut-o↵ algorithm in which a synapse is eliminated if the weight is smaller than the given

criteria [35] [170]. Thus, let us next compare the representation by combining the weight coding and

connectivity coding (I call it as the dual coding below), with the cut-o↵ coding strategy.

Figure 3.3A describes the synaptic weight distributions in the two strategies, as well as in random

connection (see Methods 1.3 for details of the implementation). When connectivity coding and weight

coding are combined (i.e. in the dual coding), connection probability becomes larger in proportion

to its synaptic weight (Fig. 3.3A middle), and the resultant distribution exhibits a broad distribution

as observed in the experiments [214] [108], whereas in the cut-o↵ strategy, the weight distribution

is concentrated at a non-zero value (Fig. 3.3A right). Intuitively, the cut-o↵ strategy seems more

selective and beneficial for inference. Indeed, in the original task, the cut-o↵ strategy enabled near-

optimal performance, though the dual coding also improved the performance compared to a randomly

connected network(Fig. 3.3C). However, under the presence of variability in the input layer, cut-o↵

strategy is no longer advantageous. For instance, let me consider the case when noise amplitude �X

is not constant but pre-neuron dependent. If the firing rate variability of input neuron j is given by

�X,j ⌘ �X exp (2⇣j log �r) /�r, where ⇣j is a random variable uniformly sampled from [0, 1), and �r is

the degree of variability, in an all-to-all network, optimal inference is still achieved by setting synaptic

weights as wij = qjµ ⌘ ✓jµ/�
2

X,j . On the contrary, in the sparse region, the performance is disrupted

especially in the cut-o↵ strategy, so that the dual coding outperformed the cut-o↵ strategy (Fig. 3.3D).

To further illustrate this phenomenon, let us next consider a case when a quarter of input neurons

show a constant high response for all of the external states as ˜✓jµ = ✓const and the rest of input

neurons show high response for randomly selected half of external states (i.e. Pr

h
˜✓jµ = ✓high

i
=

Pr

h
˜✓jµ = ✓low

i
=

1

2

), where ✓low < ✓high < ✓const, and ✓jµ =

˜✓jµ/Zµ with the normalization factor

Zµ = roX

�r
PM

j=1

˜✓jµ

.
M . Even in this case, wij = qjµ ⌘ ✓jµ/�

2

X is the optimal synaptic weights

configuration in the all-to-all network, but if we create a sparse network with cut-o↵ algorithm, the

performance drops dramatically at certain connectivity, whereas in the dual coding, the accuracy is kept

at some high levels even in the sparse connectivity (Fig. 3.3E).

To get insights on why the dual coding is more robust against variability in the input layer, for

three input configurations described above, I calculated the relationship between synaptic weight wij

and the information gained by a single synaptic connection �Iij . Here, I defined the information gain

�Iij by the mean reduction in the KL divergence DKL [p(st|rX , Call)||p(st|rX , C)], achieved by adding

one synaptic connection cij to a randomly connected network C (see Method 2.2 for details). In the

original model, �Iij has nearly a linear relationship with the synaptic weight wij (gray points in Fig.

3.3B), thus by simply removing the connections with small synaptic weights, a near-optimal connection

structure was acquired (Fig. 3.3C). On the other hand, when the input layer is not homogeneous, large

synapses tend to have negative (black circles in Fig. 3.3B) or zero (black points in Fig. 3.3B) gains, as
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Figure 3.3. Dual coding yields robust information representation compared to fixed random
connections and cut-o↵ strategy. (A) Synaptic weight distributions in random connection (left),
dual coding (middle), and cut-o↵ (right) strategies. Light colors represent possible connections (i.e.
distributions of synaptic weights under all-to-all connections), while dark colors show the actual
connections. Connection probability was set at ⇢ = 0.1. (B) Relationships between the synaptic
weight and the information gain per connection for three input configurations described in panels
C-E. The open black circles were calculated with �r = 2.0 instead of �r = 4.0 for illustration purpose.
(C-E) Comparisons of performance among di↵erent connection structure organizations. Note that
black lines represent lower bounds for the optimal performance, but not the exact optimal solutions.
In panel D, the means and standard deviations were calculated over 100 simulation trials instead of 10
due to intrinsic variability.

a result, the linear relationship between the weight and the information gain was lost. Thus, in these

cases, the dual coding is less likely to be disrupted by non-beneficial connections.

Although my consideration here is limited to a specific realization of synaptic weights, in general,

it is di�cult to represent the information gain by locally acquired synaptic weight, so we could expect

that the cut-o↵ strategy is not the optimal connectivity organization in many cases.

Local Hebbian learning of the dual coding

The argument in the previous section suggest that, by combining the weight coding and connectivity

coding, the network can robustly perform inference especially in sparsely connected regions. However, in

the previous sections, a specific connection and weight structure were given a priori, although structures

in local neural circuits are expected to be obtained with local weight plasticity and wiring plasticity.

Thus, I next investigate whether dual coding can be achieved through a local unsupervised synaptic

plasticity rule.

Let us first consider learning of synaptic weights. In order to achieve the weight coding, synaptic

weight wij should converge to wij = qjµ/�
2

X ⇢̄ = hrtX,jr
t
Y,i/

�
�2

X ⇢̄r
t
Y,i

�
i when output neuron i represents

external state µ, and ⇢̄ represents the mean connectivity of the network. Thus, synaptic weight change
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�wij = wt+1

ij � wt
ij is given as:

�wij = (⌘X/�)
�
rtY,i

⇥
rtX,j � �2

X ⇢̄wij

⇤
+ bh

⇥
roY /N � rtY,i

⇤�
. (3.2)

The second term is the homeostatic term heuristically added to constrain the average firing rates

of output neurons [224]. Note that the first term corresponds to stochastic gradient descending on

DKL [p⇤(rtX)||p(rtX |C,W )], because the weight coding approximates the optimal representation by

synaptic weights [171](see Methods 1.4 for details). I performed this unsupervised synaptic weight

learning on a randomly connected network. When the connectivity is su�ciently dense, the network

successfully acquired a suitable representation (Fig. 3.4A). Especially under a su�cient level of home-

ostatic plasticity (Fig. 3.4B), the average firing rate showed a narrow unimodal distribution (Fig. 3.4C

top), and most of the output neurons acquired selectivity for one of external states (Fig. 3.4C bottom).

Figure 3.4. Synaptic weight learning on random connection structures. (A) An example of
output neuron activity before (top) and after (bottom) synaptic weight learning calculated at
connectivity ⇢ = 0.4. (B) Selectivity of output neurons and accuracy of estimation at various
strengths of homeostatic plasticity at ⇢ = 0.4. Selectivity was defined as

P
st=µ r

t
Y,i/

P
t r

t
Y,i for

i 2 ⌦µ. (C) Histogram of average firing rates of output neurons (top), and selectivity of each neuron
calculated for the simulation depicted in panel A.

I next investigated the learning of connection structures by wiring plasticity. Unlike synaptic weight

plasticity, it is not yet well understood how we can achieve functional connection structure with local

wiring plasticity. In particular, rapid rewiring may disrupt the network structure, and possibly worsen

the performance [35]. Thus, let us first consider a simple rewiring rule, and discuss the biological

correspondence later. Here, I introduced a variable ⇢ij , for each combination (i, j) of presynaptic

neuron j and postsynaptic neuron i, which represents the connection probability. If we randomly create

a synaptic connection between neuron (i, j) with probability ⇢ij/⌧c and eliminate it with probability

(1 � ⇢ij)/⌧c, on average there is a connection between neuron (i, j) with probability ⇢ij , when the

maximum number of synaptic connections is bounded by 1. In this way, the total number of synaptic

connections is kept constant on average, without any global regulation mechanism.

From a similar argument done for synaptic weights, the learning rule for connection probability ⇢ij

is derived as:

�⇢ij = ⌘⇢r
t
Y,i

⇥
rtX,j � �2

X⇢ijwo

⇤
, (3.3)
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where wo is the expected mean synaptic weight (Methods 1.5). Under this rule, the connection proba-

bilities converge to the connectivity coding. Moreover, although this rule does not maximize the transfer

entropy of the connections, direction of learning is on average close to the direction of the stochastic

gradient on transfer entropy. Therefore, the above rule does not reduce the transfer entropy of the

connection on average (see Methods 1.6).

Figure 3.5A shows the typical behavior of ⇢ij and wij under combination of this wiring rule (equation

(3)) and the weight plasticity rule described in equation (2) (I call this combination as the dual Hebbian

rule because both equations (2) and (3) have Hebbian forms). When the connection probability is low,

connections between two neurons are rare, and, even when a spine is created due to probabilistic

creation, the spine is rapidly eliminated (Fig. 3.5A top). In the moderate connection probability,

spine creation is more frequent, and the created spine survives longer (Fig. 3.5A middle). When the

connection probability is high enough, there is almost always a connection between two neurons, and

the synaptic weight of the connection is large because synaptic weight dynamics also follow a similar

Hebbian rule (Fig. 3.5A bottom).

I implemented the dual Hebbian rule in my model and compared the performance of the model

with that of synaptic weight plasticity on a fixed random synaptic connection structure. Because

spine creation and elimination are naturally balanced in the proposed rule (Fig. 3.5B top), the total

number of synaptic connections was nearly unchanged throughout the learning process (Fig. 3.5B

bottom). As expected, the dual Hebbian rule yielded better performance (Fig. 3.5C,D) and higher

estimated transfer entropy than the corresponding weight plasticity only model (Fig. 3.5E). This

improvement was particularly significant when the frequency of rewiring was in an intermediate range

(Fig. 3.5F). When rewiring was too slow, the model showed essentially the same behavior as that in the

weight plasticity only model, whereas excessively frequent probabilistic rewiring disturbed the connection

structure. Although a direct comparison with experimental results is di�cult, the optimal rewiring

timescale occurred within hours to days, under the assumption that firing rate dynamics (equation (1))

are updated every 10 to 100 ms. Initially, both connectivity and weights were random (Fig. 3.5G

left), but after the learning process, the diagonal components of the weight matrix developed relatively

larger synaptic weights, and, at the same time, denser connectivity than the o↵-diagonal components

(Fig. 3.5G right). Thus, through dual Hebbian learning, the network can indeed acquire a connection

structure that enables e�cient information transmission between two layers; as a result, the performance

improves when the connectivity is moderately sparse (Fig. 3.5D, E). Although the performance was

slightly worse than that of a fully-connected network, synaptic transmission consumes a large amount

of energy [206], and synaptic connection is a major source of noise [62]. Therefore, it is beneficial for

the brain to achieve a similar level of performance using a network with fewer connections.
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Figure 3.5. Dual Hebbian learning for synaptic weights and connections. (A) Examples of spine
creation and elimination. In all three panels, green lines show synaptic weights, and blue lines are
connection probability. When there is not a synaptic connection between two neurons, the synaptic
weight becomes zero, but the connection probability can take a non-zero value. Simulation was
calculated at ⇢ = 0.48, ⌘⇢ = 0.001, and ⌧c = 10

5. (B) Change in connectivity due to synaptic
elimination and creation. Number of spines eliminated (red) and created (green) per unit time was
balanced (top). As a result, connectivity did not appreciably change due to rewiring (bottom). Black
lines in the bottom graph are the mean connectivity at � = 0.1 and � = 0.101 in the model without
rewiring. (C) Accuracy of estimation for the model with/without wiring plasticity. For the dual
Hebbian model, the sparseness parameter was set as � = 0.1, whereas � = 0.101 was used for the
weight plasticity model to perform comparisons at the same connectivity (see panel B). (D, E)
Comparison of the performance (D) and the maximum estimated transfer entropy (E) after learning
between the dual Hebbian model and the model implemented with synaptic plasticity only at various
degrees of connectivity. Horizontal line in panel E represents the total information loge p. (F)
Accuracy of estimation with various timescales for rewiring ⌧c. Note that the simulation was
performed only for 5⇥ 10

6 time steps, and the performance did not converge for the model with a
longer timescale. (G) Synaptic weight matrices before (left) and after (right) learning. Both
X-neurons (input neuron) and Y-neurons (output neurons) were sorted based on their preferred
external states.
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Connection structure can acquire constant components of stimuli and enable

rapid learning

I have shown that the dual coding by synaptic weights and connections robustly helps computation

in a sparsely connected network, and the desirable weight and connectivity structures are naturally

acquired through the dual Hebbian rule. Although I was primary focused on sparse regions, the rule

potentially provides some beneficial e↵ects even in densely connected networks. To consider this issue,

I extended the previous static external model to a dynamic one, in which at every interval T
2

, response

probabilities of input neurons partly change. If we define the constant component as ✓const and the

variable component as ✓var, then the total model becomes ✓jµ =

1

Z

⇥
m✓

const
jµ + (1� m)✓varjµ

⇤
, where

the normalization term is given as 1

MZ2

MP
j=1

⇥
m✓

const
jµ + (1� m) ✓varjµ

⇤
2

= (roX)

2 (Fig. 3.6A). In this

case, when the learning was performed only with synaptic weights based on fixed random connections,

although the performance rapidly improved, every time a part of the model changed, the performance

dropped dramatically and only gradually returned to a higher level (cyan line in Fig. 3.6B). By con-

trast, under the dual Hebbian learning rule, the performance immediately after the model shift (i.e.,

the performance at the trough of the oscillation) gradually increased, and convergence became faster

(Fig. 3.6B,C), although the total connectivity stayed nearly the same (Fig. 3.6D). After learning, the

synaptic connection structure showed a higher correlation with the constant component than with the

variable component (Fig. 3.6E; see Methods 3.3). By contrast, at every session, synaptic weight struc-

ture learned the variable component better than it learned the constant component (Fig. 3.6F). The

timescale for synaptic rewiring needed to be long enough to be comparable with the timescale of the

external variability T
2

to capture the constant component. Otherwise, connectivity was also strongly

modulated by the variable component of the external model (Fig. 3.6G). After su�cient learning, the

synaptic weight w and the corresponding connection probability ⇢ roughly followed a linear relationship

(Fig. 3.6H). Remarkably, some synapses developed connection probability ⇢ = 1, meaning that these

synapses were almost permanently stable because the elimination probability (1� ⇢)/⌧c became nearly

zero.

Approximated dual Hebbian learning rule reconciles with experimentally ob-

served spine dynamics

My results up to this point have revealed functional advantages of dual Hebbian learning. In this last

section, I investigated the correspondence between the experimentally observed spine dynamics and the

proposed rule. To this end, I first studied whether a realistic spine dynamics rule approximates the

proposed rule, and then examined if the rule explains the experimentally known relationship between

synaptic rewiring and motor learning [245] [244].

Previous experimental results suggest that a small spine is more likely to be eliminated [247] [116],

and spine size often increases or decreases in response to LTP or LTD respectively, with a certain
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Figure 3.6. Dual learning under a dynamic environment. (A) Examples of input neuron
responses. Blue lines represent the constant components ✓const, green lines show the variable
components ✓var, and magenta lines are the total external models ✓ calculated from the normalized
sum. (B) Learning curves for the model with or without wiring plasticity, when the variable
components change every 10

5 time steps. (C) Accuracy of estimation for various ratios of constant
components. Early phase performance was calculated from the activity within 10,000 steps after the
variable component shift, and the late phase performance was calculated from the activity within
10,000 steps before the shift. As in panel B, orange lines represent the dual Hebbian model, and cyan
lines are for the model with weight plasticity only. (D) Trajectories of connectivity change.
Connectivity tends to increase slightly during learning. Dotted lines are mean connectivity at (m, �)
= (0.0, 0.595), (0.2, 0.625), (0.4, 0.64), (0.5, 0.64), (0.6, 0.635), and (0.8, 0.620). In panel C, these
parameters were used for the synaptic plasticity only model, whereas � was fixed at � = 0.6 for the
dual Hebbian model. (E,F) Model error calculated from connectivity (E) and synaptic weights (F).
Note that the timescale of panel F is the duration in which the variable component is constant, not
the entire simulation (i.e. the scale of x-axis is 104 not 106). (G) Model error calculated from
connectivity for various rewiring timescales ⌧c. For a large ⌧c, the learning process does not converge
during the simulation. (H) Relationship between synaptic weight w and connection probability ⇢ at
the end of learning. When the external model is stable, w and ⇢ have a more linear relationship than
that for the variable case. (I) Comparison of performances among the model without wiring plasticity
(cyan), the dual Hebbian model (orange), the approximated model (magenta).
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delay [160] [240]. In addition, though spine creation is to some extent influenced by postsynaptic

activity [127] [246], the creation is expected to be more or less a random process [105]. Thus, changes

in the connection probability can be described as

⇢tij =

8
><

>:

⇢t�1

ij + ⌘⇢
⇥
�2wij � ⇢t�1

ij

⇤
(ifcij = 1)

�2wo (ifcij = 0) .
(3.4)

By combining this rule and the Hebbian weight plasticity described in equation (2), the dynamics

of connection probability well replicated the experimentally observed spine dynamics [247] [116] (Fig.

3.7A-C). Moreover, the rule outperformed the synaptic weight only model in the inference task, although

the rule performed poorly compared to the dual Hebbian rule due to the lack of activity dependence in

spine creation (magenta line in Fig. 3.6I). This result suggests that plasticity rule by equations (2) and

(4) well approximates the dual Hebbian rule (equations (2)+(3)). This is because, even if the changes

in the connection probability are given as a function of synaptic weight as in equation (4), as long as

the weight plasticity rule follows equation (2), wiring plasticity indirectly shows a Hebbian dependency

for pre- and postsynaptic activities as in the original dual Hebbian rule (equation (3)). As a result, the

approximated rule gives a good approximation of the original dual Hebbian rule.

Figure 3.7. Spine dynamics of the approximated dual Hebbian model. (A) Relative change of
connection probability in 10

5 time steps. If the initial connection probability is low, the relative change
after 105 time steps has a tendency to be positive, whereas spines with a high connection probability
are more likely to show negative changes. The line at the bottom represents eliminated spines (i.e.,
relative change = -1). (B,C) Relationships between spine age and the mean connection probability
(B) and the 5-days survival rate (C). Consistent with the experimental results, survival rate is
positively correlated with spine age. 5-days survival rate was calculated by regarding 10

5 time steps as
one day.

I next applied this approximated learning rule to motor learning tasks. The primary motor cortex

has to adequately read-out motor commands based on inputs from pre-motor regions [199] [216]. In

addition, the connection from layer 2/3 to layer 5 is considered to be a major pathway in motor

learning [156]. Thus I hypothesized that the input and output layers of my model can represent layers

2/3 and 5 in the motor cortex. I first studied the influence of training on spine survival [244] (Fig.

3.8A). To compare with experimental results, below I regarded 10

5 time steps as one day, and described

the training and control phases as two independent external models ✓ctrl and ✓train. In both training

and control cases, newly created spines were less stable than pre-existing spines (solid lines vs. dotted
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lines in Fig. 3.8B), because older spines tended to have a larger connection probability (Fig. 3.7B). In

addition, continuous training turned pre-existed spines less stable and new spines more stable than their

respective counterparts in the control case (red lines vs. lime lines in Fig. 3.8B). The 5-day survival

rate of a spine was higher for spines created within a couple of days from the beginning of training

compared with spines in the control case, whereas the survival rate converged to the control level after

several days of training (Fig. 3.8C). I next considered the relationship between spine dynamics and task

performance [245]. For this purpose, I compared task performance at the beginning of the test period

among simulations with various training lengths (Fig. 3.8D). Here, I assumed that spine elimination

was enhanced during continuous training, as is observed in experiments [245] [244]. The performance

was positively correlated with both the survival rate at day 7 of new spines formed during the first

2 days, and the elimination rate of existing spines (left and right panels of Fig. 3.8E). By contrast,

the performance was independent from the total ratio of newly formed spines from day 0 to 6 (middle

panel of Fig. 3.8E). These results demonstrate that complex spine dynamics are well described by the

approximated dual Hebbian rule, suggesting that the brain uses a dual learning mechanism.

Discussion

In this study, I first analyzed how random connection structures impair performance in sparsely connected

networks by analyzing the change in signal variability and the transfer entropy in the weight coding and

the connectivity coding strategies (Fig. 3.2). Subsequently, I showed that connection structures created

by the cut-o↵ strategy are not beneficial under the presence of input variability, due to lack of positive

correlation between the information gain and weight of synaptic connections (Fig. 3.3). Based on these

insights, I proposed that the dual coding by weight and connectivity structures as a robust representation

strategy, then demonstrated that the dual coding is naturally achieved through dual Hebbian learning

by synaptic weight plasticity and wiring plasticity (Fig. 3.4, 3.5). I also revealed that, even in a

densely connected network in which synaptic weight plasticity is su�cient in terms of performance, by

encoding the time-invariant components with synaptic connection structure, the network can achieve

rapid learning and robust performance (Fig. 3.6). Even if spine creation is random, the proposed

framework still works e↵ectively, and the approximated model with random spine creation is indeed

su�cient to reproduce various experimental results (Fig. 3.7, 3.8).

Model evaluation

Spine dynamics depend on the age of the animal [104], the brain region [255], and many molecules play

crucial roles [116] [33], making it di�cult for any theoretical models to fully capture the complexity.

Nevertheless, my simple mathematical model replicated many key features [247] [245] [244] [116]. For

instance, small spines often show enlargement, while large spines are more likely to show shrinkage

(Fig. 3.7A). Older spines tend to have a large connection probability, which is proportional to spine
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Figure 3.8. Influence of training on spine dynamics. (A) Schematic diagrams of the simulation
protocols for panels B,C, and F,G, and examples of spine dynamics for pre-existing spines and new
spines. (B) Spine survival rates for control and training simulations. Dotted lines represent survival
rates of pre-existing spines (spines created before day 0 and existing on day 2), and solid lines are new
spines created between day 0 and day 2. (C) The 5-day survival rate of spines created at di↵erent
stages of learning. (D,E) Relationships between creation and elimination of spines and task
performance. Performance was calculated from the activity within 2,000-7,000 time steps after the
beginning of the test phase. In the simulation, the synaptic elimination was increased fivefold from day
1 to the end of training. (F) E↵ect of similarity between the control condition and training on the new
spine survival rate. The value of m was changed as in Figure 3.6C to alter the similarity between the
two conditions. Note that m = 0 in panels A-E, and G. (G) Spine survival rates for short-training (2
d) and long-training (30 d) simulations. Pre-existing and new spines were defined as in panels A,B.
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size (Fig. 3.7B), and they are more stable (Fig. 3.7C). In addition, training enhances the stability of

newly created spines, whereas it degrades the stability of older spines (Fig. 3.8B).

Experimental prediction

In the developmental stage, both axon guidance [169] and dendritic extension [159] show Hebbian-type

activity dependence, but in the adult cortex, both axons and dendrites seldom change their structures

[105]. Thus, although recent experimental results suggest some activity dependence for spine creation

[127] [246], it is still unclear to what extent spine creation depends on the activity of presynaptic and

postsynaptic neurons. My model indicates that in terms of performance, spine creation should fully

depend on both presynaptic and postsynaptic activity (Fig. 3.6I). However, I also showed that it is

possible to replicate a wide range of experimental results on spine dynamics without activity-dependent

spine creation (Fig. 3.8).

Furthermore, whether or not spine survival rate increases through training is controversial [245] [244].

My model predicts that the stability of new spines highly depends on the similarity between the new

task and control behavior (Fig. 3.8F). When the similarity is low, new spines created in the new task

are expected to be more stable than those created in the control case, because the synaptic connection

structure would need to be reorganized. By contrast, when the similarity is high, the stability of the

new spines would be comparable to that of the control. In addition, my model replicates the e↵ect of

varying training duration on spine stability [245]. When training was rapidly terminated, newly formed

spines became less stable than those undergoing continuous training (Fig. 3.8G).

Related studies

Previous theoretical studies revealed candidate rules for spine creation and elimination [50] [254] [63],

yet their functional benefits were not fully clarified in those studies. Some modeling studies considered

the functional implications of synaptic rewiring [188] or optimality in regard to benefit and wiring

cost [37], but the functional significance of synaptic plasticity and the variability of EPSP size were not

considered in those models. In comparison, my study revealed functional roles of wiring plasticity that

cooperates with synaptic weight plasticity and obeys local unsupervised rewiring rules. In addition, I

extended the previous results on single-spine information storage and synaptic noise [227] into a network,

and provided a comparison with experimental results (Fig. 3.2E).

Previous studies on associative memory models found the cut-o↵ coding as the optimal strategy for

maximizing the information capacity per synapse [35] [126]. My results suggest that the above result

is the outcome of the tight positive correlation between the information gain and synaptic weight in

associative memory systems, and not generally applicable to other paradigms (Fig. 3.3BC). In addition,

although cut-o↵ strategy did not yield biologically plausible synaptic weight distributions in my task

setting (Fig. 3.3A right), in perceptron-based models, this unrealistic situation can be avoided by
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tuning the threshold of neural dynamics [26] [198]. Especially, cut-o↵ strategy may provide a good

approximation for developmental wiring plasticity [129], though the algorithm is not fully consistent

with wiring plasticity in the adult animals.

Finally, my model provides a biologically plausible interpretation for multi-timescale learning pro-

cesses. It was previously shown that learning with two synaptic variables on di↵erent timescales is

beneficial under a dynamically changing environment [70]. In my model, both fast and slow variables

played important roles, whereas in previous studies, only one variable was usually more e↵ective than

others, depending on the task context.

Methods

1. Model

1.1 Model dynamics

I first define the model and the learning rule for general exponential family, and derive equations for two

examples (Gaussian and Poisson). In the task, at every time t, one hidden state st is sampled from prior

distribution p(s). Neurons in the input layer show stochastic response rtX,j that follows probabilistic

distribution f(rX,j |st):

f(rX,j |µ) ⌘ exp [h(✓jµ)g(rX,j)�A(✓jµ) +B(rX,j)] . (3.5)

From these input neuron activities, neurons in output layer estimate the hidden variables. Here I assume

maximum likelihood estimation for decision making unit, as the external state is a discrete variable. In

this framework, in order to detect the hidden signal, firing rate of neuron i should be proportional to

posterior

rtY,i / Pr

⇥
st = �i|rtX

⇤
. (3.6)

where �i represents the index of the hidden variable preferred by output neuron i [17] [144]. Note that

{rX,j} represent firing rates of input neurons, whereas {rY,i} represent the rates of output neurons.

Due to Bayes rule, estimation of st is given by,

log p(st = µ|rtX) =

MP
j=1

logp(rtX,j |st = µ) + log p(st = µ)� log p(rtX)

=

MP
j=1

⇥
qµjg(r

t
X,j)� ↵(qµj) +B(rtX,j)

⇤
+ log p(st = µ)� log p(rtX),

(3.7)
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where qjµ ⌘ h(✓jµ), ↵(qjµ) ⌘ A
�
h�1

(qjµ)
�
. If I assume the uniformity of hidden states as log p(st =

µ) : const and 1

M

PM
j=1

↵(qjµ) = ↵o, the equation above becomes

log p(st = µ|rtX) =

MX

j=1

⇥
qµjg(r

t
X,j) +B(rtX,j)

⇤
� log p(rtX) + const.

To achieve neural implementation of this inference problem, let us consider a neural dynamics in which

the firing rates of output neurons follow,

rtY,i = roY exp

2

4
MX

j=1

cij
�
wijg(r

t
X,j)� hw

�
� Itinh

3

5 , (3.8)

where,

Itinh ⌘ log

2

4
NX

i=1

exp

0

@
MX

j=1

cij
⇥
wijg(r

t
X,j)� hw

⇤
1

A

3

5 ,

and hw is the threshold. If connection is all-to-all, wij = qjµ gives optimal inference, because

rtY,i
roY

=

exp

hP
j qjµg(r

t
X,j)

i

P
⌫ exp

hP
j qj⌫g(r

t
X,j)

i
= p(st = µ|rtX) (3.9)

Note that hw is not necessary to achieve optimal inference, however, under a sparse connection, hw

is important for reducing the e↵ect of connection variability. In this formalization, even in non-all-to-

all network, if the sparseness of connectivity stays in reasonable range, near-optimal inference can be

performed for arbitrary feedforward connectivity by adjusting synaptic weight to wij = wµj ⌘ qjµ/⇢µj

where ⇢µj =
1

|⌦
µ

|
P

i2⌦

µ

cij .

1.2. Weight coding and connectivity coding

Let us first consider the case when the connection probability is constant (i.e. ⇢ij = ⇢). By substituting

⇢ij = ⇢ into the above equations, c and w are given with Pr [cij = 1] = ⇢ and wij = wµj = qjµ/⇢,

where the mean connectivity is given as ⇢ = �q̄, and barq is the average of the normalized mean response

qjµ (i.e., q̄ =

1

Mp

P
j

P
µ qjµ ). Parameter � is introduced to control the sparseness of connections,

and here I assumed that neuron i represents the external state µ = floor(p⇥i
N )(i.e., if µN

p < i  (µ+1)N
p ,

output neuron i represents the state µ). Under this configuration, the representation is solely achieved

by the synaptic weights, thus I call this coding strategy as the weight coding.

On the other hand, if the synaptic weight is kept at a constant value, the representation is real-

ized by synaptic connection structure (i.e. connectivity coding). In this case, the model is given by

Pr [cij = 1] = ⇢µj and wij = wµj = 1/�, where ⇢µj = min (�qjµ, 1).
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1.3 Dual coding and cut-o↵ coding

By combining the weight coding and connectivity coding described above, the dual coding is given

as wij = wµj = qjµ/⇢, Pr [cij = 1] = ⇢µj , ⇢µj = min (�qjµ, 1), where ⇢ was defined by ⇢ = �q̄,

q̄ =

1

Mp

P
j

P
µ qjµ, as in the weight coding. For the cut-o↵ coding strategy, the synaptic weight

was chosen as wij = wµj = qjµ/⇢o where ⇢o is the mean connection probability. Based on these

synaptic weights, for each output neuron, I selected M⇢o largest synaptic connections, and eliminated

all other connections. Thus, connection matrix C was given as cij =

hP
j0 [wij  wij0 ]

+

M⇢o

i

+

,

where [true]
+

= 1, [false]
+

= 0. When multiple connections have the same weight, I randomly selected

the connections so that the total number of inbound connections becomes M⇢o. Finally, in the random

connection strategy, synaptic weights and connections were determined as wij = wµj = qjµ/⇢o,

Pr [cij = 1] = ⇢o.

1.4 Synaptic weight learning

To perform maximum likelihood estimation from output neuron activity, synaptic weight matrix be-

tween input neurons and output neurons should provide a reverse model of input neuron activity.

If the reverse model is faithful, KL-divergence between the true input and the estimated distribu-

tions would be minimized [48] [171]. Therefore, synaptic weights learning can be performed by

argminW DKL [p⇤(rtX)||p(rtX |C,W )]. Likelihood p(rtX |C,W ) is approximated as

p(rtX |C,W ) /
P
µ
p(rtX |st = µ,C,W )p(st = µ|C,W )

=

P
µ
p(st = µ|C,W ) exp

"
P
j

⇣
h(✓C,W

j,µ )g(rtX,j)�A(✓C,W
j,µ ) +B(rtX,j)

⌘#

'
P
µ
p(st = µ) exp

"
P
j

⇣
qC,W
jµ g(rtX,j)� ↵(q

C,W
jµ ) +B(rtX,j)

⌘#
.

(3.10)

in the second line is the average response estimated from connectivity matrix C, and weight matrix

W . In the last equation, qC,W
jµ is substituted for h(✓C,W

j,µ ). If we approximate the estimated parameter

qC,W
jµ with qC,W

jµ ' ⇢owij by using the average connectivity ⇢o, a synaptic weight plasticity rule is given

by stochastic gradient descending as

�wij / @ log p(rtX |C,W )

@wij

= p(st = µ|rtX , C,W )⇢o

⇣
g(rtX,j)� ↵

0
(⇢owij)

⌘

' rtY,i⇢o

⇣
g(rtX,j)� ↵

0
(⇢owij)

⌘
(3.11)

Especially, in a Gaussian model, the synaptic weight converges to the weight coding as wij =
⌦
rtY,ir

t
X,j

��
�2

X⇢or
t
Y,i

�↵
=

qjµ/⇢o, where µ is the external state that output neuron i learned to represent (i.e. i 2 ⌦µ ).

As I was considering population representation, in which the total number of output neuron is larger

than the total number of external states (i.e. p < N), there is a redundancy in representation. Thus,
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to make use of most of population, homeostatic constraint is necessary. For homeostatic plasticity, I

set a constraint on the output firing rate. By combining two terms, synaptic weight plasticity rule is

given as

�wij =
⌘X
�

�
rtY,i

⇥
g(rtX,j)� ↵0

(⇢owij)
⇤
+ bh

⇥
roY /N � rtY,i

⇤�
. (3.12)

By changing the strength of homeostatic plasticity bh, the network changes its behavior. The learning

rate is divided by �, because the mean of w is proportional to 1/�. Although, this learning rule is

unsupervised, each output neuron naturally selects an external state in self-organisation manner.

1.5 Synaptic connection learning

Wiring plasticity of synaptic connection can be given in a similar manner. As shown in Figure 3.3, if the

synaptic connection structure of network is correlated with the external model, the learning performance

typically gets better. Therefore, by considering argmin⇢DKL [p⇤(rtX)||p(rtX |⇢,W )], the update rule of

connection probability is given as

�⇢ij / rtY,iwo

⇥
g(rtX,j)� ↵0

(⇢ijwo)
⇤
. (3.13)

Here, I approximated wij with its average value wo. In this implementation, if synaptic weight is also

plastic, convergence of KL-divergence is no longer guaranteed, yet as shown in Figure 3.3, redundant

representation robustly provides a good heuristic solution.

Let us next consider the implementation of the rewiring process with local spine elimination and

creation based on the connection probability ⇢ij . To keep the detailed balance of connection probability,

creation probability cp(⇢) and elimination probability ep(⇢) need to satisfy

(1� ⇢)cp(⇢) = ⇢ep(⇢).

The simplest functions that satisfy above equation is cp(⇢) ⌘ ⇢/⌧c, ep ⌘ (1� ⇢)/⌧c. In the simulation,

I implemented this rule by changing cij from 1 to 0 with probability (1 � ⇢)/⌧c for every connection

with cij = 1, and shift cij from 0 to 1 with probability ⇢/⌧c for non-existing connection (cij = 0) at

every time step.

1.6 Dual Hebbian rule and estimated transfer entropy

The results in the main texts suggest that non-random synaptic connection structure can be beneficial

either when that increases estimated transfer entropy or is correlated with the structure of the external

model. To derive dual Hebbian rule, I used the latter property, yet in the simulation, estimated transfer

entropy also increased by the dual Hebbian rule. Here, I consider relationship of two objective functions.
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Estimation of the external state from the sampled inputs is approximated as

hp(st = µ)|{cijrtX,j}ii2⌦

µ

' 1

|⌦µ|
X

i2⌦

µ

p(st = µ) exp
⇣P

j ⇢ij
⇥
qµjg(r

t
X,j)� ↵(qµj) +B(rtX,j)

⇤⌘

P
⌫ p(s

t
= ⌫) exp

⇣P
j cij

h
q⌫jg(rtX,j)� ↵(q⌫j) +B(rtX,j)

i⌘

(3.14)

Therefore, by considering stochastic gradient descending, an update rule of ⇢ij is given as

�⇢ij /
�
1 + log rtY,i

�
roY
�
rtY,i

⇥
g(rtX,j)� ↵(qµj)/qµj +B(rtX,j)

�
qµj

⇤
(3.15)

If I compare this equation with the equation for dual Hebbian rule (equation (13)), both of them

are monotonically increasing function of rtY,i and have the same dependence on g(rtX,j) although

normalization terms are di↵erent. Thus, under an adequate normalization, the inner product of change

direction is on average positive. Therefore, although dual Hebbian learning rule does not maximize the

estimated maximum transfer entropy, the rule rarely diminishes it.

1.7 Gaussian model

I constructed mean response probabilities {✓jµ}µ=1,...,p
j=1,...,M by following 2 steps. First, non-normalized

response probabilities {˜✓jµ}µ=1,...,p
j=1,...,M were chosen from a truncated normal distribution N(µM ,�M ) de-

fined on [0,1). Second, I defined {✓jµ}µ=1,...,p
j=1,...,M by ✓jµ =

˜✓jµ/Zµ, where Zµ = roX

�r
PM

j=1

˜✓jµ

.
M .

When the noise follows a Gaussian distribution, the response functions in equation (5) are given as

h(✓) =
✓

�2

x

, g(r) = r, A(✓) =
✓2

2�2

x

+ log(

p
2⇡�x), B(r) = � r2

2�2

x

. (3.16)

Because h�1

(q) = �2

Xq, ↵(q) is given as ↵(q) ⌘ A
�
h�1

(q)
�
= �2

xq
2

�
2+ log(

p
2⇡�x). By substituting

above values into the original equations, the neural dynamics is given as

rtY,i = roY exp

XM

j=1

cij
�
wijr

t
X,j � wo

�
� Itinh

�
. (3.17)

Similarly, dual Hebbian rule becomes

�wij =

⌘X
�

�
rtY,i

⇥
rtX,j � �2

X⇢owij

⇤
+ bh

⇥
roY /N � rtY,i

⇤�
(3.18)

�⇢ij = ⌘⇢r
t
Y,i

�
rtX,j � �2

x⇢ijwo

�
. (3.19)

1.8 Poisson model

For Poisson model, I defined mean response probabilities {✓jµ}µ=1,...,p
j=1,...,M from a log-normal distribution

instead of a normal distribution. Non-normalized values were sampled from a truncated log-normal

distribution logN(µp
M ,�p

M ) defined on (lp
min

, lp
max

). Normalization was performed as ✓jµ =

˜✓jµ/Zµ for

{˜✓jµ}µ=1,...,p
j=1,...,M , where Zµ = roXM

.P
j ✓jµ. Because the noise follows a Poisson distribution p(r|✓) =
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exp [�q + r log q � log r!], the response functions are given as

h(✓) = log ✓, g(r) = r, A(✓) = ✓, B(r) = � log r! . (3.20)

As a result, ↵(q) is defined as ↵(q) ⌘ A
�
h�1

(q)
�
= eq. By substituting them to the original equations,

the neural dynamics also follows equation (17). If connection is all-to-all, by setting wij = log ✓jµ/✓o

for i 2 ⌦µ, optimal inference is achievable. Here, I normalized ✓j by ✓o, which is defined as ✓o =

1

2

minj,µ ✓µj , in order to keep synaptic weights in non-negative values.

Learning rules for synaptic weight and connection are given as

�wij =

⌘x
�

�
rtY,i

⇥
rtX,j � ✓min exp[⇢owij ]

⇤
+ bh

⇥
roY /N � rtY,i

⇤�
, (3.21)

�⇢ij = ⌘⇢r
t
Y,i

�
rtX,j � ✓min exp(⇢ijwo)

�
. (3.22)

Note that the first term of the synaptic weight learning rule coincides with a previously proposed

optimal learning rule for spiking neurons [171] [90]. In calculation of model error, error was cal-

culated as d =

q
1

pM

P
µ

P
j (q̃jµ � q⇤jµ)2, where estimated parameter {q̃jµ} was given by q̃jµ =

hq⇤
jµ

iq̄
jµP

q

P
j

q̄
jµ

/pM . Here, hq⇤jµi represents the mean of true {qjµ}, and non-normalized estimator q̄jµ

was calculated as q̄jµ =

1

hc
ij

i|⌦
µ

|
P

i2⌦

µ

cijwij . In Figure S1D, estimation from connectivity was cal-

culated from q̄Cjµ =

1

hc
ij

i|⌦
µ

|
P

i2⌦

µ

cij , and similarly, estimation from weights was calculated by q̄Wjµ =

1

|⌦
µ

|
P

i2⌦
µ

c
ij

P
i2⌦

µ

cijwij . For parameters, I used µp
M = 0.0, �p

M = 1.0, lpmin = 0.2, lpmax = 20.0,

wo = 1/�, roX = 0.3, and for other parameters, I used same values with the Gaussian model.

2 Analytical evaluations

2.1 Evaluation of performances in weight coding and connectivity coding

In Gaussian model, we can analytically evaluate the performance in two coding schemes. As the

dynamics of output neurons follows rY,i = roY exp

hP
j cij(wijr

t
X,j � wo)� Itinh

i
, membrane potential

variable ui, which is defined as

ui ⌘
X

j
cij(wijr

t
X,j � wo), (3.23)

determines firing rates of each neuron. Because {✓jµ} is normalized with
PM

j=1

✓2jµ
�
M = (roX)

2, mean

and variance of {✓jµ} are given as

µ✓ =
µMroXp
µ2

M + �2

x

,�2

✓ =

(�MroX)

2

µ2

M + �2

M

, (3.24)

where µM and �M are the mean and variance of the original non-normalized truncated Gaussian

distribution {˜✓jµ}. Because both rX,j and {✓jµ} approximately follow Gaussian distribution, ui is

expected to follow Gaussian. Therefore, by evaluating its mean and variance, we can characterize the
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distribution of ui for a given external state [11].

Let us first consider the distribution of ui in the weight coding. In weight coding scheme, wij and

cij are defined as

wij = ✓jµ
�
⇢�2

x, Pr [cij = 1] = ⇢ (3.25)

where ⇢ = �µ✓/�
2

X . By setting wo = µ2

✓/(⇢�
2

X), the mean membrane potential of output neuron i

selective for given signal (i.e. i 2 ⌃µ for st = µ ) is calculated as,

huii =
DX

j

⇣
✓2jµ � h✓jµi

2

⌘.
�2

x

E
= M�2

✓

�
�2

x.

Similarly, the variance of ui is given as

h(ui � huii)2i =
* 

1

⇢�
X

P
j

cij✓jµ⇣j +
1

⇢�2
X

P
j

(cij � ⇢)
�
✓2jµ � µ2

✓

�
+

1

�2
X

P
j

�
✓2jµ �

⇥
µ2

✓ + �2

✓

⇤�
!

2

+

=

M
⇢�2

X

�
µ2

✓ + �2

✓

�
+

M�2
✓

⇢�4
X

⇥
2

�
2µ2

✓ + �2

✓

�
+ (1� ⇢)�2

✓

⇤

(3.26)

where ⇣i is a Gaussian random variable. On the other hand, if output neuron i is not selective for the

presented stimuli (if st 6= µ and i 2 ⌃µ ), wij and rX,j are independent. Thus, the mean and the

variance of ui are given as,

huii = 0, h(ui � huii)2i =
M

⇢�2

x

(µ2

✓ + �2

✓) +
M�2

✓

⇢�4

x

�
2µ2

✓ + �2

✓

�

In addition to that, due to feedforward connection, output neurons show noise correlation. For two

output neurons i and l selective for di↵erent states (i.e. i 2 ⌦µ and l 6= ⌦µ ), the covariance between

ui and ul satisfies

h(ui � huii)(ul � huli)i =
D
⇢2
X

j
wijwlj(rX,j � ✓jµ)2

E
= Mµ2

✓

�
�2

x

Therefore, approximately (ui, ul) follows a multivariable Gaussian distributions

0

B@
ui

ul

1

CA = N

0

B@

0

B@
M�2

✓

�2
x

0

1

CA ,

0

B@
M
(

µ2
✓

+�2
✓

)

⇢�2
X

+

M�2
✓

[

2

(

2µ2
✓

+�2
✓

)

+(1�⇢)�2
✓

]

⇢�4
X

Mµ2
✓

�2
x

Mµ2
✓

�2
x

M(µ2
✓

+�2
✓

)

⇢�2
x

+

M�2
✓

(

2µ2
✓

+�2
✓

)

⇢�4
x

1

CA

1

CA .

(3.27)

In maximum likelihood estimation, the estimation fails if a non-selective output neuron shows higher

firing rate than the selective neuron. When there are two output neurons, probability for such an event

is calculated as

✏w = Pr

hX
j
clj(wljr

t
X,j � wo) >

X
j
cij(wijr

t
X,j � wo)|st = µ, i 2 ⌦µ, l 62 ⌦µ

i
.

In the simulation, there are p � 1 distractors per one selective output neuron. Thus, approximately,
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accuracy of estimation was evaluated by (1�✏w)p�1. In Figure 3.2B, I numerically calculated this value

for the analytical estimation.

Similarly, in connectivity coding, wij and cij are given as

wij = 1/�, Pr[cij = 1] = ⇢ij , ⇢ij = �✓jµ
�
�2

x.

By setting wo = µ✓/�, from a similar calculation done above, the mean and the variance of (ui, ul)

are derived as

0

B@
ui

ul

1

CA = N

0

B@

0

B@
M�2

✓

�2
x

0

1

CA ,

0

B@
Mµ

✓

� +

M�2
✓

[

µ
✓

�2
x

���2
✓

]

��4
x

Mµ2
✓

�2
x

+

Mµ2
✓

�2
✓

�4
x

Mµ2
✓

�2
x

+

Mµ2
✓

�2
✓

�4
x

Mµ
✓

� +

Mµ
✓

�2
✓

��2
x

1

CA

1

CA . (3.28)

If we compare the two coding schemes, means are the same for two coding schemes, and as � satisfies

� = �2

X⇢/µ✓ variance of non-selective output neuron are similar. The main di↵erence is the second

term of signal variance. In the weight coding, signal variance is proportional to 1/�, on the other hands,

in the connectivity coding, the second term of signal variance is negative, and does not depend on the

connectivity. As a result, in the adequately sparse regime, firing rate variability of selective output

neuron becomes smaller in connectivity coding, and the estimation accuracy is better. In the sparse

limit, the first term of variance becomes dominant and both schemes do not work well, consequently,

the advantage for connectivity coding disappears. Coe�cient of variation calculated for signal terms is

indeed smaller in connectivity coding scheme (blue and red lines in Fig 2C), and the same tendency is

observed in simulation (cyan and orange lines in Fig 2C).

2.2 Optimality of connectivity

To evaluate optimality of a given connection matrix C, I calculated the posterior probability of the

external states estimated from C and rX , and compared then to that from the fully connected network

Call. Below, I denote the mean KL-divergence hDKL [p (st|rX , Call) ||p (st|rX , C)]ir
X

as I(Call, C)

for readability. When the true external state is st = ⌫, firing rates of input neurons are given by

rtX,j N(✓j⌫ ,�X), hence this I(Call, C) is approximately evaluated as

I (Call, C) ⇡ 1

p

P
⌫

⌦
DKL

⇥
p
�
st|rX|⌫ , Call

�
||p

�
st|rX|⌫ , C

�⇤↵
r
X

⇡ 1

p

P
⌫
DKL

h
hp (st| {✓j⌫ + �X⇣j} , Call)i{⇣

j

}||hp (s
t| {✓j⌫ + �X⇣j} , C)i{⇣

j

}

i

where {⇣i} are Gaussian random variables, and Call represents the all-to-all connection matrix. By

taking integral over Gaussian variables, the posterior probability is evaluated as

⌦
p
�
st = µ| {✓j⌫ + �X⇣j} , C

�↵
{⇣

j

}
⇠
=

1

|⌦µ|
X

i2⌦

µ

exp

�
�i,Cµ⌫ +

1

2

 i,C
µ

�

P
µ0 exp

⇣
�i,Cµ0⌫ +

1

2

 i,C
µ0

⌘ ⌘ p⌫
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where

�i,Cµ⌫ ⌘
X

j
cij
�
2✓µj✓⌫j � ✓2µj

���
2�2

X

�
,  i,C

µ ⌘
X

j
cij(✓µj/�X)

2

.

Thus, the KL-divergence between estimations by two connection structures Call and C is approximated

as:

I (Call, C) ⇡ 1

p

X

⌫

X

µ

p⌫
�
st = µ|Call

�
log

p⌫ (s
t
= µ|Call)

p⌫ (st = µ|C)

(3.29)

In the black lines in Figures 3.3C-E, I maximized the approximated KL-divergence I(Call, C) with a

hill-climbing method from various initial conditions, thus the lines may not be the exact optimal, but

rather lower bounds of the optimal performance. Information gain by a connection cij was evaluated

by

�Iij ⌘ hI (Call, C)� I (Call, C + ⌘ij)iC , (3.30)

where ⌘ij is a N⇥M matrix in which only (i, j) element takes 1, and all other elements are 0. In Figure

3.3B, I took average over 1000 random connection structures with connection probability ⇢ = 0.1.

3 Model settings

3.1 Details of simulation

In the simulation, the external variable st was chosen from 10 discrete variables (p = 10) with equal

probability (Pr[st = q] = 1/p, for all q). The mean response probability ✓jµ was given first by

randomly chosen parameters {˜✓jµ}µ=0,...,p�1

j=1,...,M from the truncated normal distribution N(µM ,�M ) in

[0,1), and then normalized using ✓jµ =

˜✓jµ/Zµ, where Zµ = roX

�r
PM

j=1

˜✓jµ

.
M. Mean weight

wo was defined as wo = roX/�. The normalization factor hw was defined as hw = q̄/� in Figures

3.1?2 and 3.4-5, where q̄ =

1

Mp

P
j

P
µ ✓jµ/�

2

X , and as hw = roX/� in Figures 3.6?7, as the mean

of ✓ depends on m. In Figure 3.3, I used hw = q̄/� for the dual coding, and hw = q̄/⇢o for the

rest. Average connectivity ⇢̄ was calculated from the initial connection matrix of each simulation. In

the calculation of the dynamics, for the membrane parameter vi ⌘
P

j cij
�
wijr

t
X,j � hw

�
, a boundary

condition vi > maxl{vl� vd} was introduced for numerical convenience, where vd = �60. In addition,

synaptic weight wij was bounded to a non-negative value (wij > 0), and the connection probability

was defined as ⇢ 2 [0, 1]. For simulations with synaptic weight learning, initial weights were defined

as wij =

�
1 + �init

w

�
/�, where �init

w = 0.1, and ⇣ is a Gaussian random variable. Similarly, in the

simulation with structural plasticity, the initial condition for the synaptic connection matrix was defined

as Pr[cij = 1] = �h✓jµi/�2

X . In both the dual Hebbian rule and the approximated dual Hebbian rule,

the synaptic weight of a newly created spine was given as wij =
�
1 + �init

w ⇣
�
wo, for a random Gaussian

variable ⇣  N(0, 1). In Figure 3.8, simulations were initiated at -20 days (i.e., 2 ⇥ 10

6 steps before

stimulus onset) to ensure convergence for the control condition. For model parameters, µM = 1.0,

�M = 1.0, �X = 1.0, M = 200, N = 100, roX = 1.0, and roY = 1.0 were used, and for learning-related
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parameters, ⌘X = 0.01, bh = 0.1, ⌘⇢ = 0.001, ⌧c = 10

6, T
2

= 10

5, and m = 0.5 were used. In

Figures 3.7 and 3.8, ⌘⇢ = 0.0001, ⌧c = 3⇥ 10

5, and � = 0.6 were used, unless otherwise stated.

3.2 Accuracy of estimation

The accuracy was measured with the bootstrap method. By using data from t � To <= t0 < t, the

selectivity of output neurons was first decided. ⌦µ was defined as a set of output neurons that represents

external state µ. Neuron i belongs to set ⌦µ if i satisfies

µ = argmax

µ0

Pt
t0=t�T

o

[st = µ0
]

+

rtY,iPt
t0=t�T

o

[st = µ0
]

+

,

where operator [X]

+

returns 1 if X is true; otherwise, it returns 0. By using this selectivity, based on

data from t <= t0 < t+ To, the accuracy was estimated as

1

To

t+T
o

�1X

t0=t

2

4 1

|⌦st0 |
X

i2⌦

s

t

0

rt
0

Y,i > max

µ 6=st0

1

|⌦µ|
X

i2⌦

µ

rt
0

Y,i

3

5

tof

.

In the simulation, To = 10

3 was used because this value is su�ciently slow compared with weight

change but su�ciently long to suppress variability.

3.3. Model error

Using the same procedure, model error was estimated as

d =

vuut 1

pM

pX

µ=1

MX

j=1

⇣
˜✓jµ � ✓jµ

⌘
2

,

where ˜✓jµ represents the estimated parameter. ˜✓jµ was estimated by

¯✓jµ =

1

hciji |⌦µ|
X

i2⌦

µ

cijwij , ˜✓jµ = rXo
¯✓jµ

,r
1

M

XM

j=1

¯✓2jµ.

In Figure 3.6E, the estimation of the internal model from connectivity was calculated by

¯✓Cjµ =

1

hciji |⌦µ|
X

i2⌦

µ

cij .

Similarly, the estimation from the synaptic weight in Figure 3.6F was performed with

¯✓Wjµ =

1

|⌦µ|
X

i2⌦

µ

cijwij

,
X

i2⌦

µ

cij .
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3.4 Transfer entropy

Entropy reduction caused by partial information on input firing rates was evaluated by transfer entropy:

TE =

⌦
H
�
st
�
�H

�
st|rtX , C

�↵
t
,

where

H (st|rtX , C) = �
Pp

µ=1
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Output group ⌦µ was determined as described above. Here, the true model was used instead of the

estimated model to evaluate the maximum transfer entropy achieved by the network.
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Supplementary Figures

Supplementary Figure 1. Results in Poisson model. (A) An example of output neuron activity
before (top) and after (bottom) synaptic weight learning at connectivity ⇢ = 0.25. (B) Synaptic
weight matrices before (left) and after (right) learning. Both X-neurons and Y-neurons were sorted
based on their preferred external states. (C) Accuracy of estimation at various timescale of rewiring
⌧c. (D) Model error calculated from connectivity (left) and synaptic weights (right). (E) Comparison
of performance among the model without wiring plasticity (cyan), and dual Hebbian model(orange).
Corresponding results in the Gaussian model are described in Fig. 3.4A, Fig. 3.5F, Fig. 3.5G, Fig.
3.6EF, Fig. 3.6I respectively.
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Chapter 4

Mixed Signal Learning by Spike

Correlation Propagation in Feedback

Inhibitory Circuits

Introduction

Neurons receive inputs from a large number of other neurons encoding a variety of information about

various signals. Despite the diversity and variability of input spike trains, neurons can learn and represent

specific information during developmental processes and according to specific task requirements. Spike-

timing-dependent plasticity (STDP) [152] [20] is a candidate mechanism of neural learning. Extensive

studies have revealed the type of information that a single neuron can learn through STDP [73] [213]

[88] [136] [82]; however, the type of information that a population of neurons interacting with each

other learns through STDP has not yet been determined. Understanding this extension from a single

neuron to a population of neurons is crucial because a single neuron learns and represents only a limited

amount of information that may be transmitted to it from thousands of inputs.

Among neural interactions, lateral inhibition is a basic interaction widely observed in various regions,

such as the olfactory bulb [9], visual cortex [134], somatosensory cortex [3], and entorhinal cortex [45].

Previous theoretical results showed that neural circuits with lateral inhibition enhance signal detection [5]

[239] and improve learning performance [164] [68] [16]. Several simulation studies further revealed that

neurons acquire receptive field [238] [203] [120] or spike patterns [158] through STDP by introducing

lateral inhibition; yet, those studies were limited to simplified cases for which a large population of

independent neurons was suggested to be su�cient [88] [157] [43]. Therefore, it remains unclear

whether lateral inhibition plays a crucial role in STDP learning; in particular, the spike level e↵ects of

lateral inhibition remain elusive. Moreover, recent experimental results suggest that animals learn and
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discriminate mixed olfactory signals [241] [173] [195] or auditory signals masked by noise [162] [194],

but it is still unknown how feedback interactions contribute to such learning.

Here, by considering a simple feedback network model of spiking neurons, I investigated the algorithm

inherent to STDP in neural circuits containing feedback. I analyzed the propagation of spike correlations

through inhibitory circuits, and revealed how such secondary correlations influence STDP learning

at both feedforward and feedback connections. I discovered that the timescale of spike correlation

preferable for learning depends on whether the noise is independent from any signal (random noise)

or generated from the mixing of signals (cross-talk noise). I also found that excitatory and inhibitory

STDP cooperatively shapes lateral circuit structure, making it suitable for signal detection. I further

found a possible link between stochastic membrane dynamics and sampling process, which is necessary

for neural approximation of learning algorithm of Bayesian independent component analysis (ICA). I

applied my findings by demonstrating that STDP implements a spike-based solution in neural circuits

for the cocktail party problem [162] [41] [95].

Results

Model

I constructed a network model with three feedforward layers as shown in Fig. 4.1A (see Neural dynamics

in Methods for details). The external source layer represents the external environment or neural activity

at sensory systems. The external layer also provides common inputs to the input layer and induces

correlations in the neurons in the input layer. The input layer shows rate-modulated Poisson firing

based on events at the external layer and external noise, which is approximated with the constant firing

rate roi . Subsequently, spike activity at the input layer projects to the output layer, which also receives

inhibitory feedback from the lateral layer. Neurons in the lateral layers are excited by inputs from the

output layer. I assumed that all neurons in the input layer and the output layer are excitatory, whereas

lateral-layer neurons are assumed to be inhibitory. Although excitatory lateral interactions also exist in

the sensory cortex, they are typically sparse [103] and weak [3] compared with inhibitory interactions;

thus I concentrated on the latter. For the analytical treatment, the neurons in the output and lateral

layers were modeled with a linear Poisson model. I first studied synaptic plasticity at the feedforward

connections (connections from the input layer to the output layer), while fixing lateral connections

(i.e., connections from the output layer to the lateral layer and connections from the lateral layer to the

output layer). For STDP, I used pairwise log-STDP (Fig. 4.1B) [81], which replicates the experimentally

observed long-tailed synaptic weight distribution [214] [31].

I considered the case for information encoded in the correlated activity of input neurons [233]

[131], and fixed the average firing rate of all input neurons at the constant value ⌫Xo (See Table

1 and 2 for the list of variables and parameters). If the firing rate of input neuron i is given as

64



Figure 4.1. Description of the model. (A) Schematic figure of the model. (B) Spike-time dependent
synaptic weight change in log- spike-timing-dependent plasticity (STDP). (C) Normalized temporal
cross-correlogram of input neurons receiving common sources (gray line), and kernel functions of
plasticity propagated by feedforward correlation (blue line) and feedback correlation (green line).

roi +
Pp

µ=1

qiµ
R1
0

�(t0)sµ(t� t0)dt0, for external event sµ(t) and the response probability of the neuron

qiµ, then common inputs from the external layer induce a temporal correlation proportional to

h(⌧ ; ✓t) ⌘
Z 1

max(⌧,0)

dt0�(t0)�(t0 � ⌧), (4.1)

where �(t) is a response kernel (see equation (14) and (24) in Methods for details). If we use �(t) =

t2e�t/✓
t/2✓3t , where ✓t is the parameter that controls the timescale of spike correlations, then h(⌧ ; ✓t) =

1

16✓3
t

(⌧2 + 3✓t|⌧ | + 3✓2t )e
�|⌧ |/✓

t (gray line in Fig. 4.1C). For the kernel function, I used the gamma

distribution with shape parameter kg = 3 in order to reproduce broad spike correlations typically

observed in cortical neurons [132] [12]. Synaptic weight dynamics by STDP is written as

dwX
ji

dt
= xi(t� dXa

ji )

Z 1

0

Fd(w
X
ji , s)yj(t� s� dXd

ji )ds+ yj(t� dXd
ji )

Z 1

0

Fp(w
X
ji , s)xi(t� s� dXa

ji )ds

for Fd(w
X
ij , s) = fd(w

X
ij )e

�s/⌧
d , Fp(w

X
ij , s) = fp(w

X
ij )e

�s/⌧
p , where fd(w) and fp(w) are synaptic

weight dependence of LTD/LTP (long-term depression/potentiation), respectively. By taking the av-

erage of above equation over time and ensemble (see Average synaptic weight velocity in Methods for

details), the weight change of the feedforward connection WX can be approximated as

˙WX ⇡WX

�
gX
1

E � gX
2

WZWY

�
Ct, (4.2)

where gX
1

and gX
2

are scalar coe�cients, C is the correlation matrix, and E is the identity matrix (see

equations (25)-(30) for derivation). The first term describes the synaptic weight change directly caused

by an input spike correlation and can be rewritten into the convolution of the temporal correlation and

correlation kernel function �X
1

as

gX
1

⌘ GX
1

(wX
o ), GX

1

(w) ⌘
Z 1

�1
�X
1

(⌧ ;w)h(⌧)d⌧,

�X
1

(⌧ ;w) =

Z 1

�⌧+2d
Xd

dsF (w, s)✏X(⌧ + s� 2dXd), (4.3)
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where F (w, s) = Fd(w,�s) if s < 0, else F (w, s) = Fp(w, s), and ✏X is the EPSP curve of input

neurons (see equation (15) and (31) in the Methods). By the deconvolution of GX
1

(w), we can separate

the e↵ect of the intrinsic network property �X
1

and that of the input correlation h(⌧) for STDP-based

learning. Due to causality, LTP/LTD balance, and dendritic delay, �X
1

(⌧ ;w) typically becomes LTP-

dominant around ⌧ = 0 (blue line in Fig. 4.1C; I set w = wX
o ), so that gX

1

takes positive values,

which enables coincidence-based learning [213] [88] [76]. The second term of equation (2), which is

of particular interest in this model, describes how the input correlation influences STDP learning at

feedforward connections through lateral inhibition:

gX
2

⌘ GX
2

(wX
o ), GX

2

(w) ⌘
Z 1

�1
�X
2

(⌧ ;w)h(⌧)d⌧

�X
2

(⌧ ;w) =

Z 1

�⌧+D

dsF (w, s)

Z ⌧+s�D

0

dr✏Z(r)

Z ⌧+s�r�D

0

dq✏Y (q)✏X(⌧ + s� r � q �D),(4.4)

where D = 2dXd + dY + dZ , and ✏Y and ✏Z are EPSP/IPSP curves of output/inhibitory neurons,

respectively. This term primarily causes LTD as the sign flips through lateral inhibition ( ��X
2

(⌧ ;w);

shown as the green line in Fig. 4.1C). Previous simulation studies showed lateral inhibition has critical

e↵ects on excitatory STDP learning [238] [203] [120]; however, it has not yet been well studied how

a secondary correlation generated through the lateral circuits influences STDP at feedforward connec-

tions, and it is still largely unknown how lateral inhibition functions with various stimuli in di↵erent

neural circuits. For example, the correlation kernel of the feedback term exhibits a delay as the signal

propagates through the inhibitory circuit; yet, we do not know how much delay is permitted for e↵ective

learning or if realistic synaptic delays satisfy such a condition. Furthermore, it is also unknown what

information a circuit can learn if there are several mixed signals with di↵erent amplitudes for which

symmetry-breaking learning [88] [77] is not valid. Therefore, using theoretical analysis and simulation,

I first investigated the properties of the inhibitory kernel ��X
2

(⌧ ;w) in STDP learning.

Lateral inhibition enhances minor source detection by STDP

In equation (2), if lateral inhibition is negligible (i.e., gX
2

/gX
1

= 0), all output neurons acquire the

principal component of the response probability matrix Q, and the other information is neglected [82]

[177] [4]. On the other hand, if lateral inhibition is e↵ective, di↵erent output neurons may acquire various

components of the external structure. I first examined that point in a simple network model with two

independent external sources (Fig. 4.2A). In the model, each external source drives an independent

subgroup of input neurons (I defined those input neurons as A-neurons and B-neurons), which project

excitatory inputs to all of the output neurons. Here, I assume that source A drives input neurons with

a higher probability than source B (qA = 0.6, qB = 0.5), so that input neurons projected by source A

show higher correlations (cA = 0.36) than those receiving the output of source B (cB = 0.25). In the

66



matrix form,

Q =

0

BBBB@

qA 0

0 qB

0 0

1

CCCCA
, C =

0

BBBB@

cA 0 0

0 cB 0

0 0 0

1

CCCCA

The third row in Q represents response probabilities of background neurons in the input layer (gray

triangles in Fig. 4.2A; note that C = QQt). I refer to this as the minor source detection task below.

Here, for lateral connections, I assumed that both excitatory-to-inhibitory (E-to-I) and inhibitory-to-

excitatory (I-to-E) connections are well organized such that inhibition only works mutually between

two output neuron groups (Fig. 4.2A; blue lines are E-to-I and red lines are I-to-E connections. See

also equation (30) in Methods). The origin of these structured lateral connections is discussed later.

When the network is excited by inputs from external sources, excitatory postsynaptic potential (EPSP)

sizes of feedforward connections WX change according to STDP rules. Initially, in all output neurons,

synaptic weights from A-neurons (blue triangles in Fig. 4.2A) become larger because A-neurons are

more strongly correlated with one another than B-neurons are. However, as learning proceeds, one

of the output neuron groups becomes selective for the minor source B (Fig. 4.2B). After 30 min,

the network successfully learns both sources. If we focus on the peristimulus time histogram (PSTH)

for the average membrane potential of output neurons aligned to external events, both neuron groups

initially show weak responses to both correlation events, and yet the depolarization is relatively higher

for source A than for source B (Fig. 4.2C left). After 10 min of learning, both neuron groups show

relatively stronger initial responses for source A, but group 1 shows a hyperpolarization soon after the

initial response (Fig. 4.2C middle). As a result, synaptic weights from A-neurons to group 1 become

weaker, and group 1 neurons eventually become selective for the minor source B (Fig. 4.2C right).

The mean cross-correlation (see cross-correlation in Methods for details) between the external sources

and the population activity of output neurons is maximized when the delay is approximately 10-15

ms (Fig. 4.2E). If we fix the delay at 14 ms, then the cross-correlation gradually increases as the

network learns both sources (Fig. 4.2D). The same argument holds if mutual information is used for

performance evaluation (green lines in Figures 4.2D, 4.2E). Interestingly, the network better detects

the minor source when it is learned with a highly correlated source compared with when it is learned

with another minor source (Fig. 4.2F), because a highly correlated opponent source causes strong

lateral inhibition on the output neurons, which enhances minor source learning. Similar results are also

obtained for conductance-based leaky integrate-and-fire (LIF) neurons (Supplementary Figure 1).

Lateral inhibition should be strong, fast, and sharp

To investigate how and when the network can acquire multiple sources represented by correlated inputs,

I further analyzed the model above (see Mean-field approximation of a two-source model in Methods

for details). Because both output excitatory neurons and lateral inhibitory neurons are bundled into
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Figure 4.2. Lateral inhibition enables minor source detection by spike-timing-dependent plasticity
(STDP) through membrane hyperpolarization. (A) Schematic figure of the simplified model. SA and
SB (on the left side) are the sources that project to subsets of input neurons (colored triangles). Gray
triangles are background neurons, black triangles (on the right) are output neurons, and red circles are
inhibitory neurons. (B) Development of synaptic weights. Thick lines are mean synaptic weights from
A-neurons (blue), B-neurons (red), and Background-neurons (orange) to each output neuron. Thin
lines are traces of individual synaptic weights. Gray bar shows the timing at which figure C is
calculated. (C) Peristimulus time histograms (PSTHs) of membrane potentials averaged within
output neuron groups. T = 0 indicates the timing of events at external layers. The three figures are
calculated from the data at t = 0-1 min, 7-8 min, and 29-30 min. (D) Development of mean
cross-correlation and mutual information between external sources and population activity of output
neurons for the simulation depicted in panels B and C. (E) Delay dependence of mean
cross-correlation and mutual information. Both values were calculated from five simulations. (F)
Cross-correlation between the output group that detected the minor source and the minor source
activity for various response probabilities qB with a fixed qA(= 0.6). When none of output groups
detected the minor source, the larger value calculated for the two output groups was used.
Throughout the study, error bars represent standard deviation calculated from five simulations, unless
otherwise indicated.
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groups, in the mean-field approximation, we can approximateM excitatory populations and N inhibitory

populations into two representative output neurons and two inhibitory neurons. Similarly, input neurons

can be bundled into three groups (A-neurons, B-neurons, and Background-neurons). In addition, I

assumed that the synaptic connections from Background-neurons to output neurons are fixed because

they showed little weight change in the simulation (orange lines in Fig. 4.2B). In this approximation, by

inserting equation (32) into equation (29), the mean synaptic weight changes of feedforward connections

follow

dwX
µ⌫

dt
'

L/L
aX

⌫0

Law
X
µ⌫0⌫So G

X
1

(wX
µ⌫)

X
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L/L
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⌫0
=1
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X
2

(wX
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+
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µ⌫)

2

4�⌫Xo
�
2

L/L
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⌫0
=1
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L/L
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⌫0
=1
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X
µ̄⌫0 + (NawZ)

2

MawY ⌫
X
o ⌫

Z
µ

3

5(4.5)

where µ = 1, 2 and µ̄ = 2, 1 ( µ 6= µ̄ ), and ⌫ = A,B. The first two terms are correlation-based

learning, and the last term is the homeostatic e↵ect intrinsic to STDP [88]. GX
1

and GX
2

are coe�cients

determined by synaptic delays, EPSP/IPSP (Inhibitory postsynaptic potential) shapes, and correlation

structure, as shown in equations (3) and (4). By solving the self-consistency condition (equation (34)

in Methods), the firing rates of inhibitory neurons are approximated as

⌫Z
1

=

MawY ⌫
X
o

1� (MawY NawZ)
2

⇥�
Law1A + Law1B + 2Law

X
o

�
� (MawY NawZ)

�
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=

MawY ⌫
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o

1� (MawY NawZ)
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⇥�
Law2A + Law2B + 2Law

X
o

�
� (MawY NawZ)

�
Law1A + Law1B + 2Law

X
o

�⇤
(4.6)

I estimated the nullclines by calculating the lines that satisfy ẇ (w
1A, w1B , w

⇤
2A(w1A, w1B), w

⇤
2B(w1A, w1B)) =

0 for µ = A or B. As a result, I found that when the mutual inhibition is weak (wI = 10), the system

has only one stable point at which w
1A is larger than w

1B (Fig. 4.3A left). At this point, w
2A is also

larger than w
2B (w

2A = 9.64, w
2B = 3.60; not shown in the figure), which means that both output

neuron groups are specialized for the major source A (I call this state a winner-take-all state or T-

state); however, if the inhibition is moderately strong (wI = 21.5), two new stable fixed points and two

unstable fixed points appear in the system (Fig. 4.3A middle). In the stable point on the left, neuron

group 1 picks up source B while neuron group 2 picks up source A (w
2A = 12.52, w

2B = 2.87). On the

right-hand side, neuron group 1 selects source A while neuron group 2 selects source B (I denote those

two states as winners-share-all states or S-states below). At the stable point in the middle, both groups

detect source A (w
1A = w

2A = 9.47, w
1B = w

2B = 3.61). Note that because of the mutual inhibition,

the synaptic weight from A-neuron is smaller when both groups learn A than it is when only group 1

learns A. For strong inhibition (wI = 40.0), the stable point in the middle disappears, and the system

is stable only when two neuron groups detect di↵erent sources (Fig. 4.3A right). Simulation results

confirm this analysis because strong inhibition indeed causes a winner-share-all state in which multiple

neuron groups survive in competition [68], whereas the network tends to show a winner-take-all learning
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when the inhibition is weak (Fig. 4.3B). I measured the degree of winner-share-all/winner-take-all states

by defining the specialization index wSI as

w0
SI = (w

1A � w
1B)(w2B � w

2A), wSI = w0
SI/

q
|w0

SI | (4.7)

If w0
SI = 0, I set wSI = 0. If two output groups are specialized for di↵erent sources, wSI becomes

positive, whereas if two groups are specialized for the same source, wSI becomes negative. When the

synaptic delay in the lateral connections is small, only S-states are stable, whereas at longer delays,

both S-states and T-states are stable. In the simulation, the network typically grows toward the latter

state in the bistable strategy (Fig. 4.3C). Moreover, if we change the shape of the IPSP curve while

keeping ⌧ZB = 5⌧ZA , for steep IPSP curves (i.e., both ⌧ZA and ⌧ZB are small), only the S-states are

stable, whereas T-states also become stable for slower IPSPs (Fig. 4.3D). Therefore, both analytical

and simulation studies indicate that lateral inhibition should be strong, fast and sharp to detect higher

correlation structure. Moreover, lateral inhibition does not need to be pathologically strong because

the I/E balance of NawZ/Lw
X
o ' 20% is su�cient to cause multistability.

1
B

Figure 4.3. Lateral inhibition is strong, fast, and sharp. (A) Nullclines of the average synaptic weight
changes at di↵erent inhibitory amplitudes wZ = 0.1, 0.215, 0.4. The inset in the middle graph is a
magnified view of boxed area. (B) Specialization indices wSI for various inhibitory weights. Positive
wSI indicates the winner-share-all state, whereas negative wSI indicates the winner-take-all state.
Blue lines are analytical estimations and cyan squares are the results of simulations. Vertical lines
correspond to the values at which the nullclines in Fig. 4.A are calculated. (C) The same graphs for
various synaptic delays. The average synaptic delay of both lateral excitatory (dYmin + dYmax)/2 and
inhibitory (dZmin + dZmax)/2 connections was changed, while the variability was kept at
dYmax � dYmin = dZmax � dZmin = 1.0 ms. (D) IPSP rise time dependence. The inset shows IPSP curves
at {⌧ZA , ⌧ZB } = {0.5, 2.5} (gray line), {1.5, 7.5} (dark gray line), and {2.5, 12.5} (black line).

Optimal correlation timescale changes depend on the noise source

In the previous section, I revealed the e↵ects of network properties for a fixed input correlation structure;

however, actual neurons show various timescales for correlations depending on the brain region [42] [12]
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and characteristics of the stimuli [150] [124], and it is largely unknown how di↵erent timescales influence

correlation-driven learning. Therefore, I next considered the e↵ect of correlation timescales, especially

on noise tolerance. In my current model, input neurons respond to external sources with input kernel

�(t) = t2e�t/✓
t/2✓3t (Fig. 4.4A left), and so the correlation between input neuron i and l is given as

Cil(s) = ⌫So

pX

µ=1

qiµqlµh(s)

By changing the parameter ✓t, I studied the e↵ect of the correlation timescale on learning. The

correlation is precise when ✓t is small, whereas it becomes broad at large values of ✓t (Fig. 4.4A

right, Fig. 4.4B). Because STDP causes homeostatic plasticity that does not depend on a correlation,

as shown in the third term of equation (5), in a more precise approximation, equation (2) should be

written as

˙WX ⇡WX

�
gX
1

E � gX
2

WZWY

�
Ct

+ hhomeostatic termi. (4.8)

I first calculated gX
1

and gX
2

at various ✓t. Both gX
1

and gX
2

become smaller for a larger ✓t, but decreases

in gX
2

are slower than those in gX
1

, and, as a result,  = gX
2

/gX
1

becomes larger for a longer correlation

timescale (Fig. 4.4C). This means that a longer temporal correlation is more suitable for the detection

of multi-components. This is indeed confirmed in the simulation (Fig. 4.4D). When ✓t = 0.5 and the

minor component is slightly weaker than the major one (cA = 0.36, cB = 0.25), the minor component

is no longer detectable. On the other hand, at ✓t = 2.0, the minor component is detectable even if the

strength of the induced correlation is less than half (cA = 0.36, cB = 0.16). At ✓t = 4.0, gX
1

becomes

smaller so that even the major signal is not fully detectable.

Similar results hold for crosstalk noise. In the model above, the noise is provided through the

spontaneous Poisson firing of input neurons as random noise (Fig. 4.4E top, black dots are spikes

caused by random noise). In reality, however, there would be crosstalk noise among input spike trains

caused by the interference of external sources. I implemented this crosstalk noise by introducing non-

diagonal components in the response probability matrix as

Q =

0

BBBB@

qS qN

qN qS

0 0

1

CCCCA
,

where qS is the response probability to the preferred signal and qN is that to the non-preferred signal

(Fig. 4.4E bottom). I refer to this as the noisy source detection task below. To make a clear comparison,

in the simulation of random noise, I kept qN = 0 and changed the spontaneous firing rate of the input

neurons (roi ) to modify the noise intensity, whereas in simulation of crosstalk noise I removed random

noise (i.e., roi = 0) and changed qN . For random noise, a smaller ✓t enables better learning because

a large gX
1

competes with the homeostatic force (Fig. 4.4F). By contrast, for crosstalk noise, the
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Figure 4.4. Optimal correlation timescale changes depending on noise characteristics. (A) Response
kernels of input neurons to external events (left) and cross-correlation among input neurons
responding to the same source calculated from simulated data (right) for three di↵erent correlation
timescale parameters ✓t. (B) Raster plots of input neurons for various ✓t. Only 100 correlated neurons
are plotted although there are 400 input neurons in total. (C) Analytically calculated correlation
kernels gX

1

, gX
2

(left), and their ratio gX
1

/gX
2

. (D) Specialization index wSI for various response
probabilities qB while fixing qA = 0.6. Lines represent wR at analytically estimated stable points, and
dotted squares represent simulation results. (E) Raster plots of two types of noise. The upper panel
shows random noise, whereas the lower panel depicts crosstalk noise. In both panels, the first 100
neurons respond primarily to the cyan source, and the next 100 neurons respond to the purple source.
For random noise, the noise (black dots) is independent from the signals, whereas the crosstalk noise
(purple dots in the lower half, cyan dots in the upper half) is correlated with the signal for the other
population. (F, G) The e↵ects of random noise (F) and crosstalk noise (G) at various correlation
timescales.
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performance is better at ✓t = 2.0 than at ✓t = 0.5 because strong lateral inhibition suppresses crosstalk

noise (Fig. 4.4G). Although for small noise regimens, the network performs better at ✓t = 0.5 than

at ✓t = 2.0, but the di↵erence is almost negligible. Therefore, to cope with crosstalk noise, the spike

correlation needs to be broad, whereas a narrow spike correlation is better for random noise. I note that

qualitatively the same arguments as above also hold for the exponential kernel (Supplementary Figure

3D,E). However, the ratio of two coe�cients (i.e., e = gXe2/g
X
e1) is typically smaller for this kernel than

for the kernel I used throughout this study (Supplementary Figure 3B,C vs. Fig. 4.4D) because lateral

inhibition is less e↵ective due to highly peaked spike correlation (Supplementary Figure 3A).

Excitatory and inhibitory STDP cooperatively shape structured lateral connec-

tions

To this point, I have considered a network already clustered into two assemblies that inhibit one another

(as in Fig. 4.5A left). This means that the network somehow knows a priori that the number of external

sources is two; however, in reality, a randomly connected network should also learn such information.

To test this idea, I introduced STDP-type synaptic plasticity in lateral excitatory connections and

feedback inhibitory connections and investigated how di↵erent STDP rules cause di↵erent structures in

the circuit.

I first checked whether structured lateral connections were helpful for learning. For comparison, I

also considered a model with random lateral connections in which all output neurons and inhibitory

neurons are randomly connected with probability 0.5 (Fig. 4.5A middle). When lateral connections are

random, mean-field equations are modified as

dwX
µ⌫

dt
'

L/L
aX

⌫0
=1

wX
µ⌫0⌫So G

X
1

(wX
µ⌫)

X

⇢

q⌫⇢q⌫0⇢ �NawZMawY

pX

µ0
=1

L/L
aX

⌫0
=1

Law
X
µ0⌫0⌫So G

X
2

(wX
µ⌫)

X

⇢

q⌫⇢q⌫0⇢

+

¯F (wW
µ⌫)

2

4
(⌫Xo )

2

L/L
aX

⌫0
=1

Law
X
µ⌫0 � (⌫Xo )

2NawZMawY

pX

µ0
=1

L/L
aX

⌫0
=1

Law
X
µ0⌫0 + (Nawz)

2MawY ⌫
X
o ⌫

Z
tot

3

5 ,

⌫ztot ⌘ 2MawY ⌫
X
o (Law1A + Law1B + 2Law

x
o )

1 + 2MawyNawZ
. (4.9)

I separated lateral connections into two groups as in the previous case, but this approximation is

legitimate only when two input sources are symmetrical (i.e., qA = qB). In other cases, neurons

are often organized into two groups with di↵erent population sizes. In such cases, for evaluating

performance, I measured average weights from source A on the output neurons receiving stronger

inputs from A-neurons than from B-neurons or Background-neurons. For randomly connected lateral

inhibition, learning performance dropped significantly in noisy source detection (Fig. 4.5B) and in minor

source detection (Fig. 4.5C); thus clustered connectivity is indeed advantageous for learning.

I next investigated whether such structure can be learned using STDP rules. I first introduced Heb-

bian STDP for both E-to-I and I-to-E connections. With these learning rules, the lateral connections
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Figure 4.5. Lateral connection structuring by excitatory and inhibitory spike-timing-dependent
plasticity (STDP). (A) Schematic figures of connections between the output layer and the lateral
layer. In the simulation, each layer consists of 20 neurons. (B) The e↵ect of crosstalk noise on
di↵erent lateral structures. Analytical results are shown as bold lines, and the results from simulations
are shown as dotted lines. (C) Minor source detection with di↵erent lateral structures. Because the
specialization index is not well defined for a network with random lateral connections, the average
synaptic weights from source A to those output neurons that prefer source A were measured instead.
(D) Synaptic weight development at three connections. In the left and right columns, panels show
synaptic weights of excitatory/inhibitory synapses projected to the neuron group 1 (top) and group 2
(bottom). In the middle graph, panels correspond to excitatory synapses projected from the neuron
group 1 (top) and group 2 (bottom). In all panels, thin lines indicate the development of individual
synapses, thick lines represent average weights onto output neurons, and colors indicate A-neurons
(blue), B-neurons (red), and Background-neurons (orange). (E, F) Performance of the network with
di↵erent lateral structures in noisy signal detection (E) and minor signal detection (F). Here (and only
here), a pre-learned network is used to investigate responses for various inputs.
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successfully learn a mutual inhibition structure (Fig. 4.5D); however, this learning is achievable only

when the learning of a hidden external structure is possible from the random lateral connections (ma-

genta lines in Fig. 4.5B, C; note that orange points are hidden by magenta points because they show

similar behaviors in noisy cases), which means either when crosstalk noise is low or two sources have

similar amplitudes. Nevertheless, once a structure is obtained in easy settings (qN = 0 or qA = qB),

that network outperforms the network with random lateral connections in both noisy source detection

(Fig. 4.5E) and minor source detection (Fig. 4.5F). In Fig. 4.5E, I evaluated the performance of

noisy source detection by first conducting STDP learning at qN = 0, and then I terminated STDP

and performed simulations at the various noise levels qN . Similarly, in the minor source detection task

depicted in Fig. 4.5F, I first performed STDP learning with qA = qB = 0.6, and then evaluated the

performance for a smaller qB . STDP can also generate similar lateral connection structures when the

total number of input sources is larger than two (Supplementary Figures S2A, S2B). Therefore, STDP

at lateral connections helps signal detection by e�ciently organizing the connection structure.

I next studied the analytical conditions for learning of the clustered structure (see Analytic approach

for STDP in lateral and inhibitory connections in Methods for details). The synaptic weight dynamics

of lateral excitatory and inhibitory connections are approximately given as

˙WY ⇡ gY
1

WY WXCtW t
X , gY

1

⌘
Z 1

�1
dsFY

(s)

Z
DX

r

Z
DY

u

Z
DX

r0 h(u+ r0 � s� r)

˙WZ ⇡ gZ
1

WXCW t
XW t

Y , gZ
1

⌘
Z 1

�1
dsFZ

(s)

Z
DX

r

Z
DY

u

Z
DX

r0 h(r � s� u� r0 � dz � dY ).(4.10)

Both equations represent indirect e↵ects of the input correlation propagated into the lateral circuit.

From a linear analysis, we can expect that when gY
1

is positive, E-to-I connections tend to be feature

selective (see equation (35) in Methods). Each inhibitory neuron receives stronger inputs from one of the

output neuron groups and, as a result, shows a higher firing rate for the corresponding external signal.

On the other hand, if gZ
1

is positive, I-to-E connections are organized in reciprocal form, where one of

the reciprocal connections is enhanced and the other is suppressed (see equation (36) in Methods). We

can evaluate feature selectivity of inhibitory neurons by
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N
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(4.11)

where ⌦

Y
A and ⌦

Y
B are the sets of excitatory neurons responding preferentially to sources A and B,

respectively. Indeed, when the LTD time window is narrow, analytically calculated gY
1

tends to take

negative values (the green line in Fig. 4.6A), and E-to-I connections organized in the simulation are

not feature selective (the blue points in Fig. 4.6A). By contrast, for a long LTD time window (i.e.,

when LTD is weakly spike-timing dependent), gY
1

tends to take positive values, and E-to-I connections

become clustered. In the simulation, WZ is also plastic, but as shown in equation (10), the e↵ect of
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WZ on the plasticity of WY is negligible in first-order approximations.

Figure 4.6. Correlation propagation shapes lateral connection structure (A) Comparison between
feature selectivity (blue dots) calculated from simulation results and analytically calculated correlation
kernel function gY

1

(green line) for lateral excitatory connections. Thin green horizontal line
representsgY

1

= 0. (B) Comparison between the degree of mutual inhibition (blue dots) calculated
from the simulation and analytically calculated correlation kernel gZ

1

(green line) for lateral inhibitory
connections. Negative gZ

1

is correlated with a high degree of mutual inhibition, as expected (see
Methods). (C) Ratio of output neurons tuned for the minor source in a minor source detection task
under Hebbian and anti-Hebbian inhibitory spike-timing-dependent plasticity.

Similarly, for I-to-E connections, I measure the degree of mutual inhibition (non-reciprocity) with

'Z
=

1

N

NX

k=1

�����
wY

kjPM
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wY
kj

�
wZ

jkPM
j=1

wZ
jk

����� (4.12)

When LTD is strongly spike-timing dependent, gZ
1

is negative and 'Z calculated from the simulation

data tends to be large (Fig. 4.6B), which means that inhibitory connections are organized such that the

inhibition functions as mutual inhibition between excitatory neuron groups. Note that the organized

neuronal wiring patterns are not a pure product of the pre-post causality of STDP but the e↵ect of spike

correlations propagating through lateral inhibitory circuits. If the structural plasticity is merely caused

by the pre-post causality, both 'Y and 'Z can decrease with increases in the inhibitory population

while maintaining the total synaptic weights because the causal e↵ect becomes weaker as each synaptic

weight becomes smaller [119]; however, in my simulations, the values of both quantities generally

increased for larger inhibitory populations (Supplementary Figure S2C).

Hebbian inhibitory STDP at lateral connections is not always beneficial for learning. For example,

in minor source detection, if I use Hebbian inhibitory STDP, a slightly minor source is not detectable,

whereas for anti-Hebbian STDP, a small number of neurons still detect the minor source because

reciprocal connections from strong-source responsive inhibitory neurons to strong-source responsive

output neurons inhibit synaptic weight development for the stronger source (Fig. 4.6C).

Neural Bayesian ICA and blind source separation

My results to this point have revealed that correlation-based STDP learning combined with lateral inhi-

bition can successfully detect signals from mixed inputs masked by noises. To confirm this mechanism is

indeed e↵ective in realistic tasks, I applied the above method to blind source separation. I first examined
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the condition in which the network could capture external sources. I extended the previous network to

include four independent sources mixed at the input layer (Fig. 4.7A). In the present application, I used

structured lateral connections because learning for clustered structures is di�cult with noisy stimuli, as

shown in the preceding section. The response probability matrix Q and correlation matrix C are given

as

Q =

0

BBBBBBB@

qS qN 0 qN

qN qS qN 0

0 qN qS qN

qN 0 qN qS

1

CCCCCCCA

, C =

0

BBBBBBB@

q2S + 2q2N 2qSqN 2q2N 2qSqN

2qSqN q2S + 2q2N 2qSqN 2q2N

2q2N 2qSqN q2S + 2q2N 2qSqN

2qSqN 2q2N 2qSqN q2S + 2q2N

1

CCCCCCCA

.

Therefore, the principal components of matrix Q (i.e., eigenvectors of C) are {1, 1, 1, 1,}, {-1, 0, 1, 0},

{0, -1, 0, 1}, {-1, 1, -1, 1}. Because the first-order approximation of synaptic weight dynamics follows

˙WX ⇡ gX
1

WXCt, we may expect that synaptic weight vectors converge to the eigenvectors of the

principal components; however, this was not the case in my simulations, even if we took into account

the non-negativity of synaptic weights (see Fig. 4.7B, where I renormalized the principal vectors to

[0, 1]). Instead, each weight vector converged to a column of the response probability matrix Q (Fig.

4.7B, the left panel is the projection to the first two dimensions, and the right panel is the projection

to the other two dimensions). This result implies that the network can extract independent sources,

rather than principal components, from multiple intermixed inputs.

I next evaluated the performance of hidden external source detection, especially its tolerance against

crosstalk noise. To this end, I compared the performance of the model with that of the Bayesian ICA

algorithm, in which independence of external sources is treated as a prior [193] [128]. In the algorithm,

the learned mixing matrix may converge to its Bayesian optimal value estimated from a stream of inputs.

Although we cannot directly argue the optimality of cross-correlations, if the mixing matrix is accurately

estimated, external activity is also well inferred, and thus we can use the mean cross-correlation as a

measure for the optimality of learning. In terms of discretized input activity X, the external source

activity S and prior information I, we can express the conditional probability of the estimated response

probability matrix ˜Q as P [

˜Q|X, I] = P [

˜Q|I
P [X|I]

R
P [X|S, ˜Q, I]P [S|I]dS (see Bayesian ICA in Methods

for details). This means that even if no prior information is given for ˜Q itself (i.e. P [

˜Q|I] = const.

), posterior P [

˜Q|X, I] still depends on a prior given for S. If we introduce a prior that each external

source follows an independent Bernoulli Process (i.e. P [S|I] =
QT/�t

k=1
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i=1

(rs�t)s
k

µ

(1� rs�t)1�sk
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then the stochastic gradient descendent of posterior function is given as,
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S

Figure 4.7. With lateral inhibition, spike-timing-dependent plasticity (STDP) mimics Bayesian
independent component analysis (ICA). (A) Schematic figure of the model with four sources. (B)
Synaptic weight development in input neuron space. Arrows qA to qD are response probability vectors
of the four sources, and PC1 to PC4 are normalized principal components of the correlation matrix C.
Lines represent traces of average synaptic weight from each input group to the output groups that
learned corresponding sources during the learning process. (C) Comparison of performance among the
ideal observer, Bayesian ICA learning, and STDP learning. (D) LTP/LTD time window of Bayesian
ICA learning. (E) Behaviors of log-membrane potential (color lines) in the STDP model, and
estimated log-posterior (black lines) in the Bayesian ICA algorithm for the same stimuli. Vertical lines
represent timings of external events. Log-membrane potentials are normalized to align the mean and
the variance to the corresponding log-posteriors.
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where

pki = 1� (1� roi�t)
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I approximated this Bayesian ICA algorithm by a sequential sampling source activity instead of calcu-

lating the integral over all possible combinations in the estimation of the log-posterior of the response

probability matrix Q. In this approximation, the learning rule of the estimated response probability

matrix ˜Q obeys
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where Y is the sampled sequence, and pki (Y
1:k�1

) is the sample based approximation of pki in the

previous equation. This rule has spike-timing and weight dependence similar to those seen in STDP

(Fig. 4.7D). Although the performance of STDP is much worse than the ideal case (when the true Q

is given), this performance is similar to that for the sample-based learning algorithm discussed above

(Fig. 4.7C). Therefore, the network detects independent sources if crosstalk noise is not large. I further

studied the response of the models for the same inputs and found that the logarithm of the average

membrane potential uE
µ =

1

|⌦
µ

|
P

j2⌦

µ

uE
j well approximates the log-posterior estimated in Bayesian

ICA, even in the absence of a stimulus (Fig. 4.7E). This result suggests that in the STDP model,

expected external states are naturally sampled through membrane dynamics that are generated through

the interplay of feedforward and feedback inputs.

I finally performed the blind separation task using the same network as shown in Fig. 4.7A. I

created ”sensory” inputs by mixing four artificially created auditory sequences (Fig. 4.8A). In the

auditory cortex, various frequency components of a sound, particularly high-frequency components,

are represented by specific neurons typically organized in a tonotopic map structure [205], whereas

low-frequency components are expected to be perceived as a change in sound pressure. Furthermore,

populations of neurons in the primary auditory cortex are known to synchronize the relative timing of

their spikes during auditory stimuli and provide correlated spike inputs for higher cortical areas in which

the auditory scene is fully analyzed and perceived [52] [10]. I modeled these features by assuming that

input neurons have a preferred frequency {fi} defined as

fi = exp


i

L
(log fmax � log fmin) + log fmin

�
,

and auditory inputs are provided as time-dependent response probabilities, which follow qi(t) = qo
P

q a
q
l (t)a

q
h(fi),

where aqh(f) is the spectrum of auditory source q (left panel of Fig. 4.8C), and aql (t) is the temporal

change of the sound pressure (black lines in Fig. 4.8B). In this representation, each sound source
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is represented by correlated spikes of neural populations (right panel of Fig. 4.8C). Even if signals

have overlapping frequency components {aqh(f)}q, blind separation is possible as long as {aql (t)}q are

independent and have sharp rising profiles su�cient to cause spike correlations. After learning, four

output neuron groups successfully detected changes in the sound pressure of the four original auditory

signals (colored lines in Fig. 4.8B) by correctly identifying the input neurons that encoded the signals.

Therefore, STDP rules implemented in a feedforward neural network with lateral inhibition serve as a

spike-based solution to the blind source separation or cocktail party e↵ect problem.

Figure 4.8. Blind source separation by spike-timing-dependent plasticity (STDP). (A) Four original
auditory signals (from the top to the fourth set of signals) and one mixed signal (bottom). (B)
Amplitudes of original signals (black lines) and those estimated from output firing rates (colored
lines). (C) Spectra of auditory sources aqh(f) (left). Raster plots of input neuron activity. Colors were
probabilistically assigned based on expected sources. All figures were calculated from the
30’00”-30’10” portion of the auditory signals and simulation.

Discussion

By analytically investigating the propagation of input correlations through feedback circuits, I revealed

how lateral inhibition influenced plasticity at feedforward connections. I showed that a population of

neurons could learn multiple signals with di↵erent strengths or mixed levels. In addition, I found that

to perform learning from signals corrupted with random noise, the timescale of the input correlations

needed to be in the range of milliseconds, whereas the timescale was broader for crosstalk noise, which

may explain why the spike correlation of cortical neurons often exhibits a large jitter (approximately

10 ms) [12] [132]. I also investigated the functional roles of STDP at lateral excitatory and inhibitory

connections to demonstrate that Hebbian STDP shaped the lateral structure to improve signal detection

performance. The results also suggested that anti-Hebbian plasticity was helpful for learning from minor
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sources and implied that di↵erent STDP rules at lateral connections induced di↵erent algorithms at

feedforward connections. Furthermore, I derived an STDP-like online learning rule by considering an

approximation of Bayesian ICA with sequence sampling. This result suggested that lateral inhibition

adjusted the membrane potentials of postsynaptic neurons so that their spiking processes accurately

performed sequence sampling. I also demonstrated that this mechanism was applicable to blind source

separation of auditory signals.

Noise characteristics and correlation timescales

Simultaneously recorded neurons in close proximity often show correlated spiking, yet the precision of

these correlations varies across brain regions. Neurons in the lateral geniculate nucleus show strong spike

correlations [42] [47], while correlations in V1 [132] [221] or higher visual areas [12] are less precise. My

results indicate the interesting possibility that these di↵erences may reflect the di↵erent characteristics of

the noise with which the various cortical areas need to contend. At an early stage of sensory processing,

the major noise component may be environmentally produced background noise from various sources;

thus precise spike correlation is beneficial at this stage for noise reduction during signal detection and

learning (Fig. 4.4G). By contrast, in higher sensory cortices, crosstalk noise accumulated through signal

propagation in circuits may form the primary noise source, so less precise spike correlation is preferable

(Fig. 4.4H). It would be intriguing to examine whether lower and higher cortical areas similarly change

the strength of spike correlations for other sensory modalities.

STDP in E-to-I and I-to-E connections

It is known that both glutaminergic synapses on inhibitory neurons [146] [66] and GABAergic synapses

on excitatory neurons [243] [89] show STDP, and it is also known that STDP at E-to-I connections plays

an important role in developmental plasticity [248]; however, detailed properties of these plasticities

are still largely disputable [133] [231] and, reportedly, highly dependent on inhibitory cell type [172],

neuromodulator [107], and region [133]. I showed that in a feedback circuit, Hebbian inhibitory STDP

preferred winner-take-all while anti-Hebbian inhibitory STDP tended to cause winner-share-all (see

Fukai and Tanaka 1997 for winner-share-all) at excitatory neurons (Fig. 4.6D). This result indicates

that di↵erent inhibitory STDP imposes di↵erent functions for excitatory STDP, which suggests that a

neural circuit may select optimal inhibitory STDP for a specific purpose or strategy of learning, and this

may di↵er across regions and be modified by neuromodulators. A recent study showed that inhibitory

plasticity even directly influences the plasticity at excitatory synapses of the postsynaptic neuron [237].

In such cases, algorithm selection would play a more important role than it did for the standard STDP

implemented in my model.

Recently, inhibitory neurons in the rodent hippocampus CA1 were shown to display context-dependent

activity rate changes during a spatial learning task, in association with the activity rate changes in ex-

81



citatory cells [59]. In addition, the authors suggested the candidate mechanism for this change in

activity is STDP at E-to-I synapses. My results examining E-to-I STDP confirmed this configuration of

inhibitory cells modulated by plasticity at feedforward excitatory connections (Figures 4.5D, S2A, S2B).

In my model, although inhibitory neurons are not directly projected from input sources, as excitatory

neurons learn a specific input source (Fig. 4.5D, left panel), inhibitory neurons acquire feature selectiv-

ity through Hebbian STDP at synaptic connections from those excitatory neurons (Fig. 4.5D, middle

panel). Furthermore, my results indicate an important function of these feature-selective inhibitory

neurons. Once an adequate circuit structure is learned and inhibitory connections are organized into

a feature-selective pattern, even if the input to the network becomes noisy or faint, the network can

still robustly detect signals (Figures 4.5E, 4.5F). This robustness would be useful for spatial learning,

as contextual information is often uncertain.

STDP and Bayesian ICA

Results above indicated that STDP in a lateral inhibition circuit mimicked Bayesian ICA [193] [128].

First, output neurons were able to detect hidden external sources, without capturing principal compo-

nents (Fig. 4.7B). Previous results suggest that for a single output neuron, an additional homeostatic

competition mechanism is necessary to detect an independent component [82] [43]. In addition, when

information is coded by firing rate, homeostatic plasticity is critically important, because STDP it-

self does not mimic Bienenstock-Cooper-Munro learning [203]. However in my model, information

was encoded by correlation, and mutual inhibition naturally induced intercellular competition so that

intracellular competition through homeostatic plasticity was unnecessary. Moreover, my analytical re-

sults suggested the reason that independent sources are detected. To perform a principal components

analysis using neural units, the synaptic weight change needs to follow

˙WX = WXC � LT [WXCW t
X ]WX ,

where LT[] means lower triangle matrix [201] [178]. This LT transformation protects principal compo-

nents caused by the lateral modification from higher order components; however in my model, because

all output neurons receive the same number of inhibitory inputs (equation 2), all neurons are decorrelated

with one another and develop into independent components.

Recently, it was shown that STDP can perform Bayesian optimal learning [171] [90]. In the model

used by those authors, the synaptic weight matrix is treated as a hyper parameter and estimated by

considering the maximum likelihood estimation of input spike trains. By contrast, in the Bayesian ICA

framework, the mixing matrix (corresponding to synaptic weight matrix) is treated as a probabilistic

variable. Using this framework, we needed to calculate an integral over all possible source activities

in the past to derive stochastic gradient descendent; however, as shown in Fig. 4.7C, the stochastic

learning was well performed by employing an approximation with sequential sampling. Moreover, I
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naturally derived an adequate LTP time window from the response kernel of input neurons to external

events (Fig. 4.7D). I also found that STDP self-organized a lateral circuit structure that performed

better than a random global inhibition (Figures 4.5E, 4.5F). Mathematically, to perform sampling from a

probabilistic distribution, we first needed to calculate the occurrence probability of each state; however,

in a neural model, membrane potentials of output neurons approximately represent the occurrence

probability through membrane dynamics. In machine learning methods, integration over possible source

activities is often approximated using Markov chain Monte Carlo (MCMC) sampling [167]. Interestingly,

a recent study showed that a recurrent network performed MCMC sampling [27] [222], suggesting that

my network may perform a more accurate sampling in the presence of recurrent excitatory connections.

Suboptimality of STDP

Previous theoretical results suggest that STDP can modulate synaptic weights in a way that opti-

mizes information transmission between pre- and postsynaptic neurons [222] [97]. In the Bayesian ICA

framework, blind source separation can be formulized as an optimization problem, but, in this case,

the problem itself is ill-defined because optimality does not guarantee the true solution. In addition,

local minima are often unavoidable for online learning rules. Nevertheless, the problems faced by the

brain are often ill-defined, and suboptimality is inevitable [18]. Because I performed both nonlinear

dynamics-based and machine learning-based analyses, I can o↵er some insights regarding the origins

of local minima in stochastic gradient descendent learning. In the initial state, synaptic weights are

typically homogeneously distributed, and this state is often locally stable. As a result, the homogeneous

stable point is more likely to be selected in learning (Figures 4.2C, 4.2D) than the non-homogenous,

more desirable, points; however, introducing additional noise may change this situation. Indeed, in

Figures 4.4B and 4.7C, the performance of the model was improved by adding a small amount of noise

to input activities, although the improvement was not significant; however, because a large amount of

noise is harmful for computations and stable learning, the benefit of noise addition is highly limited,

and the brain may recruit other mechanisms for near optimal learning.

Neural mechanism of blind source separation

Humans and nonhuman animals can detect a specific auditory sequence from a mixed, noisy auditory

stimulus, a phenomenon often called the cocktail party e↵ect. The mechanism underlying the cocktail

party e↵ect remains elusive [162] [41] [95], although several solutions have been proposed [232] [8]. An

e↵ective solution for this problem is ICA [44] [19] [6], and the neural implementation of the algorithm

has been studied by several authors [164] [203] [114] [83]. My study extended these results through

a rigorous analytical treatment on biologically plausible STDP learning of spiking neurons, and my

analyses enabled us to discover interesting functions of correlation coding. Moreover, by explicitly

modeling inhibitory neurons, I found that STDP at E-to-I and I-to-E connections cooperatively organized
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a lateral structure suitable for blind source separation. In addition, I successfully extended a previous

model for the formation of static visual receptive fields [203] [120] to a more dynamic model in an

auditory blind source separation task. In realistic auditory scene analysis, the frequency spectrum of

acoustic signals is first analyzed in the cochlea, where each frequency component is the mixture of

sound components from independent sources. Components belonging to the same source may be

separated and integrated by downstream auditory neurons for the perception of the original signal.

These frequency components can be considered a mixed signal in the ICA problem [211]; thus even

if signals are mixed in frequency space, if the amplitudes of the signals are temporally independent,

blind separation is still achievable. In the neural implementation of the problem, if two frequencies are

commonly activated in the same signal, neurons representing those frequencies show spike correlation

under the presence of the signal; thus the learning process is naturally achieved by STDP learning.

These results indicate an active role of spike correlation and STDP in e�cient biological learning.

Methods

Model

Neural dynamics Based on the previous study [82], I constructed a network model with one external

layer and three layers of neurons (Fig. 4.1A). The first layer is the external layer that corresponds to

external stimuli or the sensory system’s response to these stimuli. For simplicity, I approximated the

activity of external sources using a Poisson process with the constant rate ⌫So . If I define the Poisson

process with rate r as �̂(r) , the activity of the external source µ at time t is written as sµ(t) = �̂(⌫So )

(see Table 1 for the list of variables). Neurons in the input layer fire spikes in response to activity in the

external layer. By assuming a rate-modulated Poisson process, the spiking activity of the input neuron

i follows

xi(t) = �̂

"
roi +

pX

µ=1

qiµ

Z 1

0

�(t0)sµ(t� t0)dt0

#
, (4.14)

where roi is the instantaneous firing rate defined with roi = ⌫xo �
Pp

µ=1

qiµ⌫
S
o , qiµ is the response

probability for the hidden external source µ, and �(t) = t2e�t/✓
t/2✓3t is the response kernel for each

external event. In most theoretical studies, cross-correlations give an exponential decay or a delta

function [88] [76], but here I used a response kernel that produces broader correlations (Fig. 4.4A

right), because the actual correlations observed in the cortex are usually not sharply peaked [12] [132].

For instance, for the exponential kernel �e(t) = e�t/✓
t/✓t, correlations show a peaked distribution even

if the timescale parameter ✓t is several milliseconds (Supplementary Figure 3A). Because of the common

inputs from the external layer, input neurons show highly correlated activity, which enables population

coding of the hidden structure. Although here I explicitly assumed the presence of the external layer,

these analytical results can also be applied for arbitrary realization of a spatiotemporal correlation.

Output neurons are modeled with the Poisson neuron model [88] [76] [119] in which the membrane

84



potential of neuron j at time t is described as

uE
j (t) =

MX

j=1

wX
ji

Z 1

0

✏X(r)xi(t� r � dXji)dr �
NX

k=1

wZ
jk

Z 1

0

✏Z(r)zk(t� r � dZjk)dr, (4.15)

where wX
ji and wZ

jk are the EPSPs/IPSPs of input currents from input neuron xi and lateral neuron zk,

respectively, convolution functions are defined as ✏X(r) = e�r/⌧

X

A �e�r/⌧

X

B

⌧X

A

�⌧X

B

and ✏Z(r) =
e�r/⌧

Z

A�e�r/⌧

Z

B

⌧Z

A

�⌧Z

B

,

and synaptic delays in the feedforward excitatory and feedback inhibitory connections are dXij and dZjk.

For feedforward excitatory connections, the synaptic delay dXij is given by the sum of the axonal delay

daij and dendritic delay ddij , whereas for inhibitory connections, I assume for simplicity that the delay

is purely axonal. The response of the output neuron follows yj(t) = �̂
⇥
gE(u

E
j )
⇤
. Similarly, inhibitory

neurons in the lateral layer show Poisson firing based on the membrane potential {uI
k}k=1,...,N which

is defined as

uI
k(t) =

MX

j

wY
kj

Z 1

0

✏Y (r)yj(t� r � dYkj)dr, (4.16)

for EPSPs of a lateral connection wY
kj , convolution function ✏Y (r) =

e�r/⌧

Y

A �e�r/⌧

Y

B

⌧Y

A

�⌧Y

B

, and synaptic delay

of the lateral connection dYkj . The synaptic delay of the excitatory lateral connection is also approximated

as the axonal delay. The spiking activity of the inhibitory neurons is given with zk(t) = �̂
⇥
gI(u

I
k)
⇤
. For

analytical tractability, I use a linear response curve gE(u) = u and gI(u) = u.

Synaptic Plasticity For most of this study, I focused on synaptic plasticity in the feedforward con-

nection WX , with fixed lateral synaptic weights WY and WZ . When the timing of the spikes at the

cell bodies of pre- and postsynaptic neurons is tpre and tpost, spike timings at the synaptic sites are

tspre = tpre + daji and tspost = tpost + ddji with axonal and dendritic delays of daji and ddji. For every pair

of tspre and tspost, synaptic weight change is given with

�wX
ji =

8
>><

>>:

⌘Xfp(w
X
ji ) exp

⇥
�(tspost � tspre)/⌧p

⇤
(if tspost > tspre)

⌘Xfd(w
X
ji ) exp

⇥
�(tspre � tspost)/⌧d

⇤
(if tspost < tspre)

. (4.17)

For the synaptic weight dependence of STDP, I considered a pairwise log-STDP [81] in which LTP/LTD

follows

fp(w) = Cp(1 + �stdp⇠)e
�w/(�w

o

), fd(w) = �Cd(1 + �stdp⇠)
log(1 + ↵w/wo)

log(1 + ↵)
(4.18)

where ⇠ is a Gaussian random variable. The log-weight dependence well replicates experimentally

observed synaptic weight distributions [214] [31] and is suggested to have an important function in

memory modulation [101]. Analytical treatment below is applicable to other types of synaptic weight

dependence, yet in the additive STDP (i.e. fp(w) = Cp and fd(w) = Cd), the mean-field equation

typically does not have any stable fixed point. In addition, under the multiplicative STDP in which
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LTD has a linear rather than a logarithmic dependence on synaptic weight, strong correlation is often

necessary to induce salient LTP [81]. The coe�cients Cp = 1 and Cd = Cp⌧p/⌧d are chosen so that

total LTP and LTD are balanced around the referential synaptic weight.

The STDP at E-to-I connections and I-to-E connections is similarly defined. For simplicity, I assume

that synaptic delays are solely axonal (i.e., dYk,j = dY,ak,j ,dZj,k = dZ,a
j,k ), and the change in synaptic weight

does not depend on the synaptic weight. To maintain the balance between LTP and LTD, coe�cients

are chosen as CY
p = 1, CY

d = �Y CY
p ⌧

Y
p /⌧Yd , ⌘Y = 0.3⌘wY

o /wX
o . Similarly, for I-to-E connections,

CZ
p = 1, CZ

d = �ZCZ
p ⌧

Z
p /⌧Zd , ⌘Z = 0.3⌘wZ

o /w
X
o . I also modify constant (initial) synaptic weights to

wY
o = 50.0 and wZ

o = 25.0, and bounded synaptic weights with wY
max = 100.0 and wZ

max = 50.0. In

this normalization, the total lateral inhibition takes the same value as that in the non-plastic model at

the initial state. Time windows are defined as ⌧Yp = ⌧Yd = ⌧Zp = ⌧Zd = 20.0 ms.

In Fig. 4.6C, anti-Hebbian STDP was calculated by

�wQ
=

8
>><

>>:

�⌘Q exp

h
�(tspost � tspre)/⌧

Q
d

i
(if tspost > tspre)

⌘Q�Q(⌧Qd /⌧Qp ) exp

⇥
�(tspre � tspost)/⌧

Q
p

⇤
(if tspost < tspre)

for Q = Y or Z. Similarly, the correlation detector type of STDP in Supplementary Figure 2 was defined

as

�wQ
=

8
>><

>>:

⌘Q
⇣
exp

⇥
�(tspost � tspre)/⌧

Q
p

⇤
� (⌧Qp /⌧Qd ) exp

h
�(tspost � tspre)/⌧

Q
d

i⌘
(if tspost > tspre)

⌘Q�Q
⇣
exp

⇥
�(tspre � tspost)/⌧

Q
p

⇤
� (⌧Qp /⌧Qd ) exp

h
�(tspre � tspost)/⌧

Q
d

i⌘
(if tspre > tspost)

The anti-correlation detector was calculated by changing the sign of above equations.

Leaky Integrate-and-Fire (LIF) Model In the main text, I performed all simulations with a linear

Poisson model for analytical purposes, although I also confirmed those results with a conductance-based

LIF model (Supplementary Figure 1). In the LIF model, the membrane potentials of excitatory neurons

follow

dvEj
dt

= � 1

⌧Em

�
vEj � VL

�
� gEE

j

�
vEj � VE

�
� gEI

j

�
vEj � VI

�
,

dgEE
j

dt
= �

gEE
j

⌧EE
s

+

LX

i=1

wX
ji

X

ts
i

�(t� tsi ), and
dgEI

j

dt
= �

gEI
j

⌧EI
s

+

NX

k=1

wZd
jk

X

ts
k

�(t� tsk).

where gEE
j and gEI

j are excitatory and inhibitory conductances, respectively, and tsi and tsk are the spike

timings of input neuron i and lateral neuron k. Similarly, for inhibitory neurons in the lateral layer,

dvIk
dt

= � 1

⌧ Im

�
vIk � VL

�
� gIEk

�
vIk � VE

�
� gIIk

�
vIk � VI

�
,
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dgIEk
dt

= �gIEk
⌧ IEs

+

LX

i=1

wY
kj

X

ts
j

�(t� tsj), and
dgIIk
dt

= �gIIk
⌧ IIs

+ wII

X

ts
r

�(t� tsr).

In addition to the excitatory inputs from the output layer, I added random inhibitory inputs as Poisson

processes with a fixed firing rate rIIo for inhibitory neurons. A neuron fires if the membrane potential

exceeds the threshold Vth, and immediately goes into a refractory period in which the membrane

potential stays at Vref for 1 ms after spiking. Plasticity was implemented for wX
ji in the same manner

as that for the Poisson model. Parameters were chosen as VL = �70.0, VE = 0.0, VI = �80.0,

Vref = �60.0, Vth = �50.0 mV, tEm = 20.0, tIm = 10.0, tEE
s = 5.0, tEI

s = 2.5, tIEs = 4.0,tIIs = 5.0

ms, wX
o = 0.001, wI

o = 0.008, wL
o = 1.0, rIIo = 1000.0 Hz, wII

o = 0.005, Cd = 1.8Cp⌧
X
p /⌧Xd , and

↵ = 50.0. All other parameters were the same as those used in the Poisson model (Table 2).

In the LIF model, synaptic weights develop in a manner similar to that for the linear Poisson

model, although change occurs more rapidly (Figures 4.1B, S1A). Both cross-correlation and mutual

information behave as they do in the Poisson model, but the performance is slightly better, possibly

because the dynamics are deterministic (Figures 4.1D, 4.1E, S1B, S1C); however, membrane potentials

show di↵erent responses for correlation events (Figure S1D) because output neurons are constantly in

high-conductance states, so that correlation events immediately cause spikes. As a result, membrane

potentials drop to the Vref , and the average potential goes down. Interestingly, after neuron groups

detect di↵erent signals, a preferred signal initially causes hyperpolarization due to firing, but, subse-

quently, a non-preferred signal causes hyperpolarization due to lateral inhibition (Fig. 4.1D right). The

PSTH of firing shows that the behavior of the membrane potential in the Poisson model is similar

(Figures 4.1C and S1E). This is natural, because in the linear Poisson model, the firing rate has lin-

ear relationship with the membrane potential, whereas in LIF model relationship between the average

membrane potential and firing rate is highly non-linear.

Bayesian ICA If discretized with �t, the time series of the external source activity is written as S =

{sµk}k=1,...,T/�t
µ=1,...,p , and input activity becomes X = {xik}k=1,...,T/�t

i=1,...,L . Therefore, for prior information

I, the joint probability of sources S and the estimated response probability matrix Q is

P
h
S, ˜Q|X, I

i
= P

h
X|S, ˜Q, I

i
P
h
S, ˜Q|I

i
/P [X|I]

Therefore, by considering marginal probability,

P [

˜Q|X, I] =
P [

˜Q|I]
P [X|I]

Z
P [X|S, ˜Q, I]P [S|I]dS. (4.19)

By considering maximum likelihood estimation for a given prior P [S|I], Q can be optimally estimated

[193] [128]. In my problem setting, by assuming that external signals are independent, and input
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neurons respond to signals with a Bernoulli process,

P [X|S, ˜Q, I] =

T/�tY

k=1

LY

i=1

⇥
xk
i p

k
i + (1� xk

i )(1� pki )
⇤
, P [S|I] =

T/�tY

k=1

LY

i=1

(rs�t)
sk
µ

(1� rs�t)
1�sk

µ ,

where

pki = 1� (1� roi�t)

pY

µ=1

"
1� q̃iµ

1X

k0
=0

�k0sk�k0

µ

#
, �k =

1

2✓3t
[(k + 1/2)�t]

2

exp [�(k + 1/2)�t/✓t] .

Therefore, log-likelihood becomes

logP [

˜Q|X, I] = log

0

@
Z

dS

T/�tY

k=1

"
LY

i=1

�
xk
i p

k
i + (1� xk

i )(1� pki )
�
⇥

pY

µ=1

(rs�t)s
k

µ

(1� rs�t)1�sk
µ

#1

A .

(4.20)

By taking gradient descendent,

@

@q̃iµ
logP [

˜Q|X, I] =
1

Zp

T/�tX

k=1

Z
P [S,X| ˜Q, I]

2xk
i � 1

xk
i p

k
i /(1� pki ) + (1� xk

i )

P1
k0

=0

�k0sk�k0

µ

1� q̃iµ
P1

k0
=0

�k0sk�k0
µ

dS.

Therefore, we need to calculate the integral over all possible combinations of sources in the past to

obtain stochastic gradient descendent; however, such a calculation is computationally di�cult and

incompatible with neural computation. Instead, I used sequential sampling of Y = {yµk}k=1,...,T/�t
µ=1,...,p ,

which is randomly sampled from

P [yk = sk] / P [sk, xk|Y 1:k�1, ˜Q, I]

=

LY

i=1

�
xk
i p

k
i (s

k, Y 1:k�1

) + (1� xk
i )
�
1� pki (s

k, Y 1:k�1

)

��

⇥
pY

µ=1

(rs�t)y
k

µ

(1� rs�t)1�yk

µ , (4.21)

where

pki (y
k, Y 1:k�1

) = 1� (1� roi�t)

pY

µ=1

"
1� q̃iµ

1X

k0
=0

�k0yk�k0

µ

#
.

Note in the above equations, xk is given as a fixed value and not a random variable. Under this

sample-based approximation, the stochastic gradient descendent follows

�qkiµ /
2xk

i � 1

xk
i p

k
i (y

k, Y 1:k�1

)/(1� p(yk, Y 1:k�1

)) + (1� xk
i )
⇥

P1
k0

=0

�k0yk�k0

µ

1� q̃iµ
P1

k0
=0

�k0yk�k0
µ

(4.22)

For Fig. 4.7C, I discretized the activity of hidden sources and input neurons with 5 ms bins, and

performed learning with a learning rate ⌘SGD
= 0.001. Cross-correlation was evaluated using the

sample sequence Y . For the ideal case, we performed sequential sampling from the true response

probability Q.
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If yk�k0

µ = 1 and yk�k00

µ = 0 for all other nearby k00( 6= k0), and if qi⌫ = 0 for all ⌫( 6= µ), then LTP

at the connection qiµ caused by an output spike yk�k0

µ = 1 for xk
i = 1 is written as

�qk,k
0,LTP

iµ =

�
1�

⇥
rXo � rSo q̃iµ

⇤�
(1� q̃iµ�k0

)

1� (1� [rXo � rSo q̃iµ]) (1� q̃iµ�k0
)

⇥ �k0

1� q̃iµ�k0
. (4.23)

In the absence of the input spike (xk
i = 0), an output spike yk�k0

µ = 1 causes LTD in total �qLTD
iµ =

�
P1

k0
=0

�
k

0
1�q̃

iµ

�
k

0
. Therefore, this learning rule has weight dependence and temporal dependence similar

to those in STDP. In Fig. 4.7D, I plotted �qk,k
0,LTP

iµ and �qLTD
iµ for di↵erent q̃iµ ( q̃iµ = 0.1, 0.3, 0.5).

Blind source separation In the blind source separation task, I created the original source by calcu-

lating high-frequency and low-frequency components separately. First, the spectrum of the signal q at

a high frequency was defined as

aqh(f) =
X

i

X

k

aqh,ib
q
h,kp

2⇡�hf,k
exp

h
�(f � kfq

h,i)
2/(2�2

hf,k)

i
,

where fq
h,i is a characteristic frequency of signal q, and kfq

h,i are the harmonics of that frequency. The

standard deviation was defined as �hf,k = k�o
hf for �o

hf = 20Hz. Low-frequency components were

directly given as exponential oscillations as below.

aql (t) =
1

Zl
exp

"
�l
X

i

aql,i cos
⇣
2⇡fq

l,i(t� �
q
l,i)

⌘#
,

fq
l,i is a characteristic frequency, and �ql,i is the delay. By combining these two components, the

amplitude of a mixed sound is given as

a(t) =
X

q

aql (t)
X

i

aqh(fi) cos
⇣
2⇡fi(t� �qf )

⌘
.

Summation over frequency f is performed using 400 representative values that correspond to the tuned

frequency of each input neuron:

fi = exp


i

L
(log fmax � log fmin) + log fmin

�
.

In neural implementation, input neurons were stimulated with the response probability qi(t) = qo
P

q a
q
l (t)a

q
h(fi)

where qo = 0.05.

In the simulated example, for high-frequency components, I defined fq
h,i = {{523.3,784.0}, {587.4,880.0},

{650.0,830.6}, {698.5,932.4}}, aqh,i = {{0.6,0.4}, {0.3,0.7}, {0.5,0.5}, {0.9,0.3}}, bqh,k = {{1.0,0.5,0.2,0.1},

{1.0,0.5,0.3,0.2}, {1.0,0.1,1.0,0.8}, {1.0,0.8,0.1,0.1}}, and �o
h,f = 20 Hz. Each column represents

four di↵erent sources. Similarly for low-frequency components, I used fq
l,i = {{0.4,5.0,10.0,40.0,88.0},

{0.6,6.0,8.0,42.0,86.0}, {0.2,4.0,7.5,44.0,84.0}, {0.3,6.0,7.0,46.0,82.0}}, aql,i = {{0.3,0.4,0.2,0.5,0.5},
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{0.25,0.5,0.2,0.5,0.5}, {0.24,0.3,0.4,0.5,0.5}, {0.61,0.2,0.2,0.5,0.5}}, �ql,i = {{1.0,0.25,0.65,0.17,0.01},

{3.0,0.12,0.32,0.13,0.02}, {7.8,0.55,0.40,0.11,0.03}, {4.5,0.22,0.71,0.07,0.05}}, �I = 5.0, and Zl =

27.24. I chose fmin = 500 Hz, fmin = 4, 500 Hz, and �qf was randomly selected from 0 to 1/fmin.

Fig. 4.8A was generated by performing Fourier transformations with 25 ms sliding bins at every 2.5 ms.

Details of the simulation Simulations were calculated using the Runge-Kutta method, with a 0.05 ms

time step. Initial synaptic weights were randomly chosen with wQ
ij = wQ

o (1+�
init
W ⇣) for Q = X, Y, Z and

a random Gaussian variable ⇣. Similarly, synaptic delays were decided as dQij = dQmin + (dQmax� dQmin)⇠

for a random variable ⇠ uniformly chosen from [0, 1].

Analytical consideration of synaptic weight dynamics

Correlation among input neurons Because input neurons receive common inputs from external

sources, I define cross-correlation among input neurons as Cil(s) ⌘ hxi(t)xl(t � s)i � hxi(t)ihxl(t)i,

and cross-correlation among input neurons satisfies

Cil(s) =

*
�̂

"
roi +

pX

µ=1

qiµ

Z 1

0

�(t0)sµ(t� t0)dt0

#
⇥ �̂

"
rol +

pX

µ=1

qlµ

Z 1

0

�(t00)sµ(t� s� t00)dt00

#+
� (⌫Xo )

2

⇠
=

⌫So

pX

µ=1

qiµqlµ

Z 1

0

dt0
Z 1

0

dt00�(t0)�(t00)�(t0 � t00 � s)

= ⌫So

pX

µ=1

qiµqlµ

Z 1

max(0,s)

dt0�(t0)�(t0 � s). (4.24)

When �(t) = t2e�t/✓
t/2✓3t , Cil(s) becomes

Cil(s) = ⌫So

pX

µ=1

qiµqlµ
1

16✓t
3

�
s2 + 3✓t |s|+ 3✓t

2

�
e�|s|/✓

t

= ⌫So

pX

µ=1

qiµqlµh(s),

where h(s) ⌘ 1

16✓3
t

�
s2 + 3✓t|s|+ 3✓2t

�
e�|s|/✓

t .

Average synaptic weight velocity The synaptic weight dynamics defined above can be rewritten as

dwX
ji

dt
= xi(t�dXa

ji )

Z 1

0

Fd(w
X
ji , s)yj(t� s� dXd

ji )ds+yj(t�dXd
ji )

Z 1

0

Fp(w
X
ji , s)xi(t� s� dXa

ji )ds,

(4.25)

for Fd(w
X
ij , s) = fd(w

X
ij )e

�s/⌧
d , Fp(w

X
ij , s) = fp(w

X
ij )e

�s/⌧
p . By taking an average over a short period

of time and also using a stochastic Poisson process, synaptic weight change follows

*
dwX

ji

dt

+
=

⌧
xi(t� dXa

ji )

Z 1

0

Fd(w
X
ji , s)yj(t� s� dXd

ji )ds

�
+

⌧
yj(t� dXd

ji )

Z 1

0

Fp(w
X
ji , s)xi(t� s� dXa

ji )ds

�

=

⌧
xi(t� dXa

ji )

Z
0

�1
Fd(w

X
ji ,�s0)yj(t+ s0 � dXd

ji )ds0
�
+

⌧
yj(t� dXd

ji )

Z 1

0

Fp(w
X
ji , s)xi(t� s� dXa

ji )ds

�

=

⌧Z
0

�1
Fd(w

X
ji ,�s0)xi(t

0 � s0 � dXa
ji )yj(t

0 � dXd
ji )ds0

�
+

⌧Z 1

0

Fp(w
X
ji , s)xi(t� s� dXa

ji )yj(t� dXd
ji )ds

�
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⇠
=

Z 1

�1
F (wX

ji , s)
⌦
xi(t� s� dXa

ji )yj(t� dXd
ji )

↵
ds,

where

F (w, s) ⌘

8
><

>:

Fp(w, s) (if s � 0)

Fd(w,�s) (if s < 0).

Therefore, by calculating the cross-correlation between pre-spikes xi and post-spikes yj , synaptic weight

dynamics can be analytically estimated. Because the spike probability linearly depends on the membrane

potential in my model, cross-correlation follows

⌦
xi(t� s� dXa

ji )yj(t� dXd
ji )

↵ ⇠
=

⌦
xi(t� s� dXa

ji )uE
j (t� dXd

ji )

↵

⇠
=

LX

l=1

wX
jl

Z 1

0

dr"X(r)
⌦
xi(t� s� dXa

ji )xl(t� dXd
ji � r � dXji)

↵

�
NX

k=1

wZ
jk

Z 1

0

dr"Z(r)
⌦
xi(t� s� dXa

ji )zk(t� dXd
ji � r � dZjk)

↵
.

Since I define cross-correlation among input neurons as

Cil(s) ⌘ hxi(t)xl(t� s)i � hxi(t)i hxl(t)i ,

the first term is written as

LX

l=1

wX
jl

Z 1

0

dr"X(r)
⌦
xi(t� s� dXa

ji )xl(t� dXd
ji � r � dXji)

↵ ⇠
=

LX

l=1

wX
jl


(⌫Xo )

2

+

Z 1

0

dr"X(r)Cil(r � s+ 2dXd)

�
.

(4.26)

This result is consistent with that in previous studies [88] [76] [119]. The analysis can be extended to

the cross-correlation between an input neuron and a lateral inhibitory neuron as

D
xi(t� s� dXa

ji )zk(t� dXd
ji � r � dZjk)

E
⇠
=

D
xi(t� s� dXa

ji )uI
k(t� dXd

ji � r � dZjk)
E

⇠
=

MP
m=1

wY
km

R1
0

dq"Y (q)
D
xi(t� s� dXa

ji )ym(t� dXd
ji � r � dZjk � q � dYkm)

E

⇠
=

MP
m=1

wY
km

LP
l=1

wX
ml

R1
0

dq"Y (q)
R1
0

dr0"X(r0)
D
xi(t� s� dXa

ji )xl(t� dXd
ji � r � dZjk � q � dYkm � r0 � dXml)

E

�
MP

m=1

wY
km

NP
n=1

wZ
mn

R1
0

dq"Y (q)
R1
0

dr0"Z(r
0
)

D
xi(t� s� dXa

ji )zn(t� dXd
ji � r � dZjk � q � dYkm � r0 � dZmn)

E

⇠
=

MP
m=1

wY
km

LP
l=1

wX
ml

h
(⌫Xo )

2

+

R1
0

dq"Y (q)
R1
0

dr0"X(r0)Cil(r + q + r0 � s+ 2dXd + dZ + dY )
i

�
MP

m=1

wY
km

NP
n=1

wZ
mn⌫o⌫

Z
n .

(4.27)

Theoretically, expansion over a lateral connection should be performed infinite times to obtain the exact

solution, but at each expansion, the delay caused by synaptic delay dZ +dY and EPSP/IPSP rise times

is accumulated so that the e↵ect on correlation rapidly becomes small, especially when the original

input cross-correlation C(t) is narrow; however, even if C(t) is broad, the e↵ect for learning is bounded
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by the STDP time window. Therefore, higher order terms practically influence weight dynamics only

through firing rates, so that by applying the approximation

Z 1

0

dq"Y (q)

Z 1

0

dr0"Z(r
0
)

⌦
xi(t� s� dXa

ji )zn(t� dXd
ji � r � dZjk � q � dYkm � r0 � dZmn)

↵ ⇠
=

⌫Xo ⌫
Z
n ,

the last term can be obtained. In general, ⌫Zn is not analytically calculable, but by considering the

balanced condition, it can be estimated. Therefore, the second term is given as

NP
k=1

wZ
jk

R1
0

dr"Z(r)
D
xi(t� s� dXa

ji )zk(t� dXd
ji � r � dZjk)

E

⇠
=

NP
k=1

wZ
jk

MP
m=1

wY
km

LP
l=1

wX
ml

h
(⌫Xo )

2

+

R1
0

dr"Z(r)
R1
0

dq"Y (q)
R1
0

dr0"X(r0)Cil(r + q + r0 � s+ 2dXd + dZ + dY )
i

�
NP

k=1

wZ
jk

MP
m=1

wY
km

NP
n=1

wZ
mn⌫

X
o ⌫

Z
n .

Therefore, if I denote

�

X1

il (wX
ji ) ⌘

Z 1

�1
dsF (wX

ji , s)

Z 1

0

dr"X(r)Cil,

�

X2

il (wX
ji ) ⌘

Z 1

�1
dsF (wX

ji , s)

Z 1

0

dr"Z(r)

Z 1

0

dq"Y (q)

Z 1

0

dr0"X(r0)Cil(r + q + r0 � s+ 2dXd + dZ + dY ),

¯F (wX
ji ) ⌘

Z 1

�1
F (wX

ji , s)ds, (4.28)

average synaptic weight dynamics satisfies

⌧
dwX

ji

dt

�
⇠
=

LP
l=1

wX
jl�

X1

il (wX
ji )�

NP
k=1

wZ
jk

MP
m=1

wY
km

LP
l=1

wX
ml�

X2

il (wX
ji )

+

¯F (wX
ji )


LP

l=1

wX
jl (⌫

X
o )

2 �
NP

k=1

wZ
jk

MP
m=1

wY
km

LP
l=1

wX
ml(⌫

X
o )

2

+

NP
k=1

wZ
jk

MP
m=1

wY
km

NP
n=1

wX
mn⌫

X
o ⌫

Z
n

�
.

(4.29)

The first two terms are Hebbian terms that depend on correlation by �

X1 and �

X2, whereas the

remainders are homeostatic terms. In all terms, synaptic weight dependence is primarily caused by wX
ji

and not by other synapses. By inserting the explicit representation of correlation into the equation

above, �X1 and �

X2 can be rewritten as

�

X1

il (wX
ji ) = ⌫So G

X
1

(wX
ji )

pX

µ=1

qiµqlµ, �

X2

il (wX
ji ) = ⌫So G

X
2

(wX
ji )

pX

µ=1

qiµqlµ,

GX
1

(wX
ji ) ⌘

Z 1

�1
dsF (wX

ji , s)

Z 1

0

dr"X(r)

Z 1

max(0,r�s+2d
Xd

)

dt0�(t0)�(t0 � (r � s+ 2dXd)),

GX
2

(wX
ji ) ⌘

Z 1

�1
dsF (wX

ji , s)

Z 1

0

dr"Z(r)

Z 1

0

dq"Y (q)

Z 1

0

dr0"X(r0)

⇥
Z 1

max(0,t00)

dt0�(t0)�(t0 � (r + q + r0 � s+ 2dXd + dZ + dY )), (4.30)

where t00 = r+q+r0�s+2dXd+dZ+dY . Note that GX
1

and GX
2

do not depend on any indexes of the

neurons, except for synaptic weight dependency, and so the two values are considered basic constants
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that decide how correlation shapes learning.

If I ignore the homeostatic term, then the synaptic weight dynamic is written in the matrix form as
•

WX ⇡ (WXCt
) .GX

1

� (WXWZWY C
t
) .GX

2

, where the dot product is defined as (A.B)ij = AijBij

. Especially if I approximate GX
1

and GX
2

with gX
1

⌘ GX
1

(wX
o ) and gX

2

⌘ GX
2

(wX
o ) (or if weight

dependence is negligible as in additive-STDP),
•

WX ⇡WX

�
gX
1

E � gX
2

WZWY

�
Ct.

The correlation kernel �X
1

was derived from

GX
1

(wX
ji ) =

Z 1

�1
dsF (wX

ji , s)

Z 1

0

dr"X(r)

Z 1

max(0,r�s+2d
Xd

)

dt0
Z 1

�1
d⌧

⇥�(t0)�(t0 � (r � s+ 2dXd))� (⌧ � (r � s+ 2dXd))

=

Z 1

�1
d⌧

Z 1

�⌧+2d
Xd

dsF
�
wX

ji , s
�
"X (s� 2dXd)

Z 1

max(0,⌧)

dt0�(t0)�(t0 � ⌧)

=

Z 1

�1
�X
1

(⌧ ;wX
ji )h(⌧)d⌧ (4.31)

where �X
1

(⌧ ;w) =
R1
�⌧+2d

Xd

dsF (w, s) "X (⌧ + s� 2dXd), and h(⌧ ; ✓t) ⌘
R1
max(⌧,0)

dt0�(t0)�(t0 � ⌧).

The second correlation kernel �X
2

was calculated in a similar way.

Mean-field approximation of a two-source model If the correlation structure C(s) is simply orga-

nized, further analytical consideration is possible. In the two-source model shown in Fig. 4.2A, lateral

connections are structured non-reciprocally, and EPSP/IPSP sizes are constants. The synaptic weight

matrices are written as

WY
km =

8
><

>:

wY ( if bk/Nac= bm/Mac )

0 ( otherwise )
, WZ

jk =

8
><

>:

wZ ( if bj/Mac 6= bk/Nac )

0 ( otherwise ).
(4.32)

Therefore, the original L x M di↵erential equations can be reduced into 2 x 2 equations of representative

neurons as

dwX
µ⌫

dt
⇠
=

L/L
aX

⌫0
=1

Law
X
µ⌫0⌫So G

X
(wX

⌫⌫0)

X

⇢

q⌫⇢q⌫0⇢ �NawZMawY

L/L
aX

⌫0
=1

Law
X
µ̄⌫0⌫So G

Y
(wX

⌫⌫0)

X

⇢

q⌫⇢q⌫0⇢

+

¯F (wX
µ⌫)

2

4
(⌫Xo )

2

L/L
aX

⌫0
=1

Law
X
µ⌫0 � (⌫Xo )

2

NawZMawY

L/L
aX

⌫0
=1

Law
X
µ̄⌫0 + (NawZ)

2

MawY ⌫
X
o ⌫

Z
µ

3

5 .(4.33)

The firing rates of inhibitory neurons can be approximated as

⌫Zµ
⇠
=

1

Na

X

k2⌦

Z

µ

uI
k
⇠
=

MawY ⌫
Y
µ
⇠
=

MawY

��
LawµA + LawµB + 2Law

X
o

�
⌫Xo �Nawz⌫

Z
µ̄

�
. (4.34)

Therefore, by solving the simultaneous equations for ⌫Z
1

and ⌫Z
2

,

⌫Z
1

=

MawY ⌫
X
o

1� (MawY NawZ)
2

⇥�
Law1A + Law1B + 2Law

X
o

�
� (MawY NawZ)

�
Law2A + Law2B + 2Law

X
o

�⇤
,
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⌫Z
2

=

MawY ⌫
X
o

1� (MawY NawZ)
2

⇥�
Law2A + Law2B + 2Law

X
o

�
� (MawY NawZ)

�
Law1A + Law1B + 2Law

X
o

�⇤
.

This analytical approach is applicable only when the synaptic weight change is su�ciently slow relative

to the neural dynamics. Also, because I ignored the variance in the synaptic weights, numerically the

accuracy is limited.

Analytic approach for STDP in lateral and inhibitory connections Using a similar calculation as

above, synaptic weight development of the lateral connections is given as

·WY ⇡ gY
1

WY WXCtW t
X � gY

2

WY WXCtW t
XW t

Y W
t
z � gY

3

WY WZWY WXCtW t
X , (4.35)

where

gY
1

⌘
Z 1

�1
dsFY

(s)

Z
DX

r

Z
DY

u

Z
DX

r0 h(u+ r0 � s� r)

gY
2

⌘
Z 1

�1
dsFY

(s)

Z
DX

r

Z
DY

u

Z
DZ

q

Z
DY

u0

Z
DX

r0 h(u
0
+ r0 � s� q � u� r � dY � dZ)

gY
3

⌘
Z 1

�1
dsFY

(s)

Z
DX

r

Z
DY

u

Z
DZ

q

Z
DY

u0

Z
DX

r0 h(u+ q + u0
+ r0 + dY + dZ � s� r),

where
R
DX

r ⌘
R1
0

dr✏x(r). The meaning of these equations is made clear by summarizing the correla-

tion propagation in the diagrams (Figure S2D i-iii). In the diagram, blue wavy lines represent intrinsic

correlation, and arrows are synaptic connections. To estimate how a blue correlation influences STDP

at a red arrow, we need to determine all the major trajectories in which the correlation reaches pre-

and postsynaptic neurons. In the linear Poisson framework, for a given trajectory, the propagation

of a correlation is calculated by simply using integrals as above. From this diagram, we can safely

assume that gY
2

and gY
3

are negligibly smaller than gY
1

, because trajectories (ii) and (iii) are secondary

correlations and also contain synaptic delays. In this approximation, I additionally assume that

C =

0

B@
cs 0

0 cs

1

CA , WX =

0

B@
wX

s wX
w

wX
w wX

s

1

CA .

Then,

d

dt

0

BBBBBBB@

wY
11

wY
12

wY
21

wY
22

1

CCCCCCCA

⇡

0

BBBBBBB@

AL BL
0 0

BL AL
0 0

0 0 AL BL

0 0 BL AL

1

CCCCCCCA

0

BBBBBBB@

wY
11

wY
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wY
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wY
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1

CCCCCCCA

,

AL ⌘ cSg
Y
1

⇣�
wX

s

�
2

+

�
wX

w

�
2

⌘
, BL ⌘ 2csg

Y
1

wX
s wX

w .

Therefore,
�
wY

11

, wY
12

, wY
21

, wY
22

�
/ (+1,�1,�1,+1) is a eigenvector of the transition matrix, and the

eigenvalue is csgY
1

�
wX

s � wX
w

�
2

. Because the eigenvector develops by exp

h
csg

Y
1

�
wX

s � wX
w

�
2

t
i
, when
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gY
1

is positive, the E-to-I connections are more likely to be structured in a way that the inhibitory

neurons become feature selective. On the other hand, if that value is negative, such structure may not

be obtained. Note that (1, -1, -1, 1) is not the principal eigenvector in this simple analysis, because

the eigensystem of the matrix is { {AL
+BL, AL

+BL, AL �BL, AL �BL}; {1, 1, 0, 0}, {0, 0, 1, 1},

{1,�1, 0, 0}, {0, 0, 1,�1}}. Similarly, for inhibitory connections

˙WZ ⇡ gZ
1

WXCW t
XW t

Y � gZ
2

WZWY WXCW t
XW t

Y

gZ
1

⌘
R1
�1 FZ

(s)
R
DX

r

R
DY

u

R
DX

r0 h(r � s� u� r0 � dZ � dY )

gZ
2

⌘
R1
�1 FZ

(s)
R
DZ

q

R
DY

u

R
DX

r

R
DY

u0

R
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I approximated with only two terms because the third term is negligible (Figure S2D iv-vi). If we assume

WY =

0

B@
wY

d wY
r

wY
r wY

d

1

CA, and gZ
2

= 0, then the synaptic weight change follows �wZ
11

��wZ
12

= �wZ
22

�

�wZ
21

= cSg
Z
1

�
wX

s � wX
s

�
2

�
wY

d � wY
r

�
. This means that if gZ

1

is positive, reciprocal connections are

enhanced (or inhibitory connections to the neurons coding a similar feature are enhanced), whereas

for negative gZ
1

, inhibitory connections develop non-reciprocally (i.e., lateral connections function as

mutual inhibition between output excitatory neuron groups).

I have restricted my consideration to Hebbian STDP, but the properties of STDP on E-to-I and I-to-

E connections are still debatable [133] [231]. Although it is di�cult to study all combinations of STDPs,

we can still provide analytical insights by investigating the behaviors of gY
1

and gZ
1

. Supplementary

Fig. 4.2E shows the behaviors of four di↵erent types of STDP. This indicates that the anti-correlation

detector type of E-to-I STDP [146] tends to cause non-feature-selective lateral connections. In addition,

under the anti-coincidence detector type of I-to-E STDP [243], mutual inhibition structures would be

preferred; however, the implication of my analytical method is limited, and further study will be necessary

to fully understand the functions of the various types of STDP.

Evaluation of the performance

Cross-correlation I evaluated the performance by measuring the mean cross-correlation between the

external sources and population activity of the output neurons. For time bin �t = 10 ms, the activity

of source µ is defined as skµ =

1

�t

R
(k+1)�t

k�t
sµ(t)dt, and, similarly, the population activity of the output

neuron group ⌫ is yk⌫ (⌧D) =

P
j2⌦

Y

⌫

1

�t

R
(k+1)�t

k�t
yj(t+ ⌧D)dt, where ⌦

Y
⌫ is a set of output neurons

coding a source ⌫. For these, cross-correlation is defined as

cµ⌫(⌧D) ⌘ 1

�s
µ�

y
⌫

T
c

/�tX

k=1

(skµ � s̄µ)(y
k
⌫ � ȳ⌫),
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where s̄µ ⌘ 1

T
c

R T
o

+T
c

T
o

sµ(t)dt, ȳ⌫ ⌘ 1

T
c

R T
o

+T
c

T
o

y⌫(t)dt, �s
µ ⌘

s
T
c

/�tP
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(skµ � s̄µ)
2, and �y

⌫ ⌘

s
T
c

/�tP
k=1

(yk⌫ � ȳ⌫)
2.

I used Tc = 10 ms for the analysis. Correspondence between sources and output groups are arbitrary,

and so the learned correlation should be given as c(⌧D) ⌘ max

 

1

p

pP
µ=1

cµ (µ)(⌧D) for all the p! num-

ber of combinations with function between sources and output groups. For example, when p = 2,

c(⌧D) = max{ 1

2

[cA1

(⌧D) + cB2

(⌧D)], 1

2

[cA2

(⌧D) + cB1

(⌧D)]}. Although, in reality, supervised or re-

inforcement learning is necessary to perform this readout, for simplicity I did not implement readout

neurons explicitly. In Fig. 4.2F, I plotted max

⌫
cB⌫(⌧D) for the minor source B.

For the models with randomly connected lateral inhibition and (e+i) STDP, I defined output neuron

j as belonging to ⌦

Y
µ if

1��
⌦

X
µ

��
X
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⌫ 6=µ
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⌫ |
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;

for ↵th = 1.5, and the cross-correlation was calculated based on ⌦

Y
µ .

Mutual information Based on the discretized hidden external source/output neuron activity skµ, y
k
⌫ ,

I defined the binary variables

ŝkµ ⌘

8
><

>:

1 ( if skµ>s̄kµ + �s
µ)

0 (otherwise)
, ŷk⌫ ⌘

8
><

>:

1 ( if yk⌫>ȳk⌫ + �y
⌫)

0 (otherwise)
.

Based on these variables, the states at time k can be defined as ŝk ⌘ (ŝk
1

, ..., ŝkp), ŷ
k ⌘ (ŷk

1

, ..., ŷkp).

Therefore, the probability that the external state takes one particular state is ps(ŝ = ŝ0) ⌘ 1

T
c

/�t

T
c

/�tP
k=1

⇥
ŝk = ŝ0

⇤
tof

,

where [X]tof takes 1 if X is true, otherwise it takes 0, for the statement X. Therefore, mutual infor-

mation can be defined as

MI ⌘
X

ŝ0

X

ŷ0

psy(ŝ = ŝ0, ŷ = ŷ0)log
2

✓
psy(ŝ = ŝ0, ŷ = ŷ0)

ps(ŝ = ŝ0)py(ŷ = ŷ0)

◆
.
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Tables

Table 1. Definition of variables

sµ(t) The activity of external source µ sµ(t) = �̂[⌫So ]

xi(t) The spiking activity of input neuron i equation (14)

uE
j (t) Membrane potential of output neuron j equation (15)

yj(t) The spiking activity of output neuron j yj(t) = �̂[uE
j (t)]

uI
k(t) Membrane potential of inhibitory neuron k equation (16)

zk(t) The spiking activity of inhibitory neuron k zk(t) = �̂[uI
k(t)]

wX
ji The synaptic weight of a feed-forward excitatory connection from j to i equation (17)

qiµ Response probability of input neuron i to external source µ equation (14)

Cil Non-normalized correlation between input neuron i and l Cil =
P

µ qiµqlµ

Cil(s) Cross correlation between input neuron i and l equation (24)

GX
1

(w), GX
2

(w) Coe�cients of correlation-based synaptic weight change equation (30)

�X
1

, �X
2

The correlation kernel functions equation (3),(4)

Table 2. Parameter settings

T Simulation time 3000 s (for Figures 4.5C-E, 4.6, 4.7: T = 4000 s)

L, M , N Neural population 400, 20, 20 (for Figures 4.7, 4.8: M = N = 40)

La, Ma, Na Neural subpopulation 100, 10, 10

⌧XA , ⌧XB , ⌧YA , ⌧YB , ⌧ZA , ⌧ZB EPSP/IPSP time constants 5.0, 1.0, 4.0, 0.8, 2.5, 0.5 ms

wX
o , wY

o , wZ
o Synaptic weights 2.5, 100.0, 50.0 (for Figures 4.7, 4.8: wZ

o = 80.0)

dXa
min, d

Xa
max Axonal delays 2.0, 4.0 ms

dXd
min, d

Xd
max Dendritic delays 0.5, 1.5 ms

dYmin, d
Y
max, d

Z
min, d

Z
max Synaptic (axonal) delays 0.2, 1.2, 0.2, 1.2 ms

✓t Correlation timescale 2.0 ms

⌫So , ⌫
X
o Firing rates 10, 10 Hz

⌘X Learning rate 0.05wX
o

�sig Noise amplitude of plasticity 0.3

⌧p, ⌧d STDP time windows 17, 34 ms

↵, � Parameters for log-STDP 20.0, 50.0

�init
W Initial variance of synaptic weights 0.1

�Y , �Z LTD/LTP balance 1.4, 0.7
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Supplementary Figures

Supplementary Figure 1. Simulations with the leaky integrate-and-fire model. (A) Synaptic weight
developments at the feedforward connection. (B) Cross-correlation and mutual information calculated
for various delays. Both values were calculated by averaging five independent simulation results. (C)
Development of two values for the simulation shown in (A). (D) PSTH of the membrane potential
calculated for gray areas in (A). (E) Peristimulus time histogram (PSTH) of the firing probability for
the same simulation.
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Supplementary Figure 2. Spike-timing-dependent plasticity (STDP) at lateral connections shapes
network structure. (A, B) Synaptic weight development when the number of external inputs is three
(A) and four (B). Thick lines represent averages over all synapses, and thin lines represent individual
synaptic weights. Colors represent detected sources for output neurons (left) and inhibitory neurons
(middle right). (C) Relationship between the number of inhibitory neurons and the lateral structure.
(D) Propagation of structure. i to iii correspond to lateral excitatory connections, and iv to vi
correspond to feedback inhibitory connections. (E) Analytic results for various types of STDP.

Supplementary Figure 3. The e↵ects of noise in the model with exponential correlation kernel. (A)
Cross-correlations among input neurons responding to the same source calculated from simulated data
for three di↵erent correlation timescale parameters ✓t. Note that in Figure 4.3, I used ✓t = 0.5, 2.0,
4.0 ms, while here I used ✓t =1.0, 3.0, 5.0ms. (B, C) The correlation kernels gXe1, g

X
e2 (B) and their

ratio gXe1/g
X
e2 (C) are shown for the kernels gXe1 and gXe2 that were calculated from equation (30) with

�e(t) = e�t/✓
t/✓t. (D,E) The e↵ects of random noise (D) and crosstalk noise (E) at various

correlation timescales.
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Chapter 5

A Spiking Neuron Model of Cell

Assembly Modulation

Introduction

Learning and memory are fundamental brain functions supported by hippocampal neural circuits, and

long-term potentiation (LTP) and depression (LTD) of synapses are considered to underlie activity-

dependent modifications of hippocampal circuits during memory processes. According to the cell-

assembly hypothesis [96] [30], memory traces may be represented by functionally grouped assemblies of

neurons. Although the mechanism to generate memory traces remains elusive, experimental evidence

suggests that the groups of neurons activated during behavior are reactivated and reorganized in the

awake-quiet and sleep states of animals [179] [55]. These results indicate that memory traces are not

static entities driven solely by external stimuli as often assumed in previous theoretical studies, but

are actively retained and modulated by spontaneous network dynamics. Moreover, latent modulations,

especially selective retention and integration, of memory traces are important in various cognitive

tasks [140]. Especially, recent experiments found spontaneous flickering of cell assemblies in the quiet

states [111] [112] [59], but their functional roles and circuit mechanism are not yet known.

In order to explore the spontaneous modulation of memory traces, we need to model spontaneous

activity states with activity-dependent synaptic plasticity, such as spike-timing-dependent plasticity

(STDP), in which synaptic weights are modified depending on pre- and post-synaptic spike events oc-

curring in a millisecond-range timescale [152] [20]. Along with long-term plasticity, cortical synapses also

undergo short-term plasticity [1] [223]. Short-term plasticity, especially short-term depression (STD),

can induce dramatic changes in the characteristic dynamics of recurrent network models such as spon-

taneous transitions among point attractors [183] [155] or rotational motions in ring attractors [249].

Because STDP depends on spiking activity within a timescale comparable with that of the complex

network dynamics, short-term plasticity may significantly influence the processes of cell-assembly for-
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mation and retention in recurrent neural networks. In fact, recent experimental results suggest strong

influences of short-term synaptic plasticity on memory function [219] [2]. Nevertheless, little is known

about interplay between short-term and long-term synaptic plasticity in activity-dependent structuring

of recurrent neural networks.

Motivated by the cell-assembly hypothesis [96] [30], here I investigate how STD and STDP may

cooperatively generate and modulate cell assemblies in response to external stimuli to a recurrent

network model also equipped with homeostatic plasticity [224]. I ask whether and how the network

retains the memory traces of stimuli for a significantly long period of seconds and minutes in the

absence of the stimuli. I explore interactions between multiple cell assemblies during their formation

and retention. The model reveals several conditions on the properties of STD and STDP for the robust

maintenance of memory traces in noisy background network activity. In particular, I show that STD

plays a crucial role in the retention process. Moreover, my results indicate that spontaneous flickering

support cell assembly retention, by controlling synaptic e�ciency change due to STD. Furthermore,

I show that modifications of STDP time window, such as observed in hippocampal synapses under

dopaminergic modulations [253] or in some neocortical synapses during the development [109], enable

the model to dynamically combine multiple cell assemblies into stable clusters with a finite memory

capacity.

Results

I construct a recurrent circuit model consisting of 2500 excitatory neurons and 500 inhibitory neurons

that are randomly connected with each other. I introduce short-term plasticity and long-term plasticity

into synaptic connections between excitatory neurons, where long-term plasticity is implemented as a

combination of log-STDP (Fig. 5.1A) and homeostatic plasticity (Methods). I focus on the e↵ect of

short-term depression on the generation and retention of cell assemblies by long-term plasticity.

Figure 5.1. Rate-dependent plasticity through STDP and homeostatic plasticity. (A) Spike timing
dependence of log-STDP was calculated from equation (7) for given synaptic weights (inset). See
Methods for details. (B) Firing rate dependence of synaptic weights at the fixed-point of equation (1)
representing synaptic dynamics of STDP and homeostatic plasticity. The fixed weights are analytically
calculated for various firing rates of pre-neuron rpre at given firing rates of post-neuron rpost.
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Cell assembly formation

If we neglect the e↵ect of synaptic noise, the weight change of synapse JEE
ij is approximately written

as
dJEE

ij

dt
⇠
=

rprerpost
�
Cp⌧p � fd

�
JEE
ij

�
Cd⌧d

�
+

JEE � JEE
ij

⌧h
(5.1)

where rpre and rpost are the firing rates of pre- and post-synaptic neurons, respectively. The first term

expresses the e↵ect of STDP, whereas the latter term describes the e↵ect of homeostatic plasticity.

When LTP slightly outbalances LTD on average, at its steady state, weights have positive correlations

with the firing rates of both pre and post neurons (Fig. 5.1B, for a given rpost) due to relatively

strong homeostatic plasticity. If a synaptic weight is large, on average it decreases not only for low

input/output rates but also for high firing rates due to the weight dependence of LTD term, so the

network tends to be stabilized at a finite firing rate with robustly configured synaptic weights.

First, I consider the e↵ect of STD on cell assembly formation by selectively stimulating an excitatory

neuron group (Fig. 5.2A). The weights of synaptic connections are initially random (Fig. 5.2C left),

and the network shows an irregular spontaneous activity state with low firing rates (rE = 1.5� 2.0Hz,

rI = 10�15Hz) (Fig. 5.2D left). Then, I apply a constant external current Ip = 1.0 to randomly chosen

20% of excitatory neurons for 30 seconds. During this external stimulation, those 20% of excitatory

neurons constantly fire at a high firing rate of 10-15Hz, and as a result synaptic connections among

these neurons become strong (Fig. 5.2B, blue shadow indicates the neurons receiving the external

stimulus) due to long-term potentiation caused by the high firing rates of presynaptic and postsynaptic

neurons (as shown in Fig. 5.1B). After the stimulus is turned o↵, the average connection strength

between stimulated neurons is significantly larger than other excitatory connections (Fig. 5.2C right),

and the firing rates of these neurons are also higher than others (Fig. 5.2D). Thus, a cell assembly can

be formed in a stimulus-dependent manner. The average weight of synapses belonging to the assembly

becomes larger for stronger input current (Fig. 5.2E). The observed phenomena are qualitatively the

same for simulations at di↵erent values of the release probability parameters (Fig. 5.2F), implying that

the details of STD are not essential for the generation of cell assemblies.

Cell assembly retention

Because neurons belonging to a cell assembly interact with neurons outside it, the stability of cell

assembles in the absence of external stimuli is not trivially ensured. In fact, this stability crucially

relies on the properties of STD, as shown below. After the termination of stimuli, the average synaptic

weights in general return slowly toward the initial values, although they eventually converge to certain

values that may not coincide with the initial ones. When the release probability is small (usd = 0.1),

the weights inside the cell assembly is distinctly larger than other weights (Fig. 5.3A left), and the

trace of the cell assembly remains visible even after 30 minutes in both synaptic weights (Fig. 5.3B

left) and neural activity (Fig. 5.3C left). Synaptic weights between neurons inside the cell assembly
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Figure 5.2. Cell assembly formation by external input for arbitrary strength of STD. In all panels,
”ca” stands for a cell assembly and ”bg” for background neurons that do not belong to the assembly.
The strength of STD was set as usd = 0.1 in simulations from panel B to E. (A) Schematic
illustration of the model. I stimulate some of excitatory neurons (blue shaded area) in a randomly
connected recurrent neural circuit. Triangles indicate excitatory neurons, whereas circles represent
inhibitory neurons. (B) Time evolution of the average synaptic weights within the selected cell
assembly (blue), from background excitatory neurons to the assembly (green), from the assembly to
background excitatory neurons (cyan), and outside the cell assembly (black). (C) Synaptic weight
matrices of excitatory connections are shown before (left) and after (right) the application of external
input (arrows in B). Excitatory neurons are separated into 100 bins to calculate the average weights.
(D) Raster plots of spiking activity before (left) and after (right) the application of external input,
where red dots represent inhibitory spikes and black dots show excitatory spikes. The temporal
position of dots are represents the update timing of the spiking state. Neurons 1 to 500 belong to the
cell assembly. (E) Dynamics of the average synaptic weight within the cell assembly calculated for
various magnitudes of external input Ip. Thin lines are the results from individual simulation trials,
and the thick lines are the averages of five simulation trials at each parameter value. (F) Dynamics of
the average synaptic weight within the cell assembly calculated at Ip = 1.0 for various values of the
release probability usd.
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and background cells (i.e., cells not belonging to the assembly) are somewhat larger than those among

background cells, as the high rate of presynaptic (postsynaptic) firing enhances synaptic weights due to

the firing-rate dependency of STDP. Background neurons also change their firing pattern because the

balance condition of the network changes after learning. On each excitatory neuron belonging to the

cell assembly, synaptic weights from other cells in the assembly remain large showing large fluctuations,

whereas the weights from background cells stay small (Fig. 5.3D). Eventually, the synaptic weights

on assembly cells obey a long tailed distribution in which the long-tail mainly consists of synapses

from other neurons in the assembly, while that of background neurons constitutes a more Gaussian-like

distribution (Fig. 5.3E). In contrast, for strong STD (usd = 0.5), spontaneous activity gradually erases

the cell assembly (Fig. 5.3A right), and both neural activity and the synaptic weight matrix become

nearly random after several minutes (Fig. 5.3B right, Fig. 5.3C right). These results indicate that STD

is highly influential on the cell assembly retention: especially strong STD disturbs the retention.

Fig. 5.4A shows the average synaptic weight inside the cell assembly observed after 30 minutes. The

value decreases monotonically as the release probability increases. When the release probability is larger

than 0.2, the assembly becomes indistinguishable from other synaptic weights. I studied whether the

above results are a direct consequence of STD or merely reflect the e↵ect of other parameters modulated

by STD. I first checked the e↵ect of inhibitory inputs. When STD is strong, each excitatory neuron

generate fewer spikes for the same inputs, thus the excitatory-inhibitory balance of the recurrent network

shifts to an inhibition-dominant regime. I calculated the average firing rate of excitatory neurons for

various inhibitory connection weights JEI and release probabilities usd at a fixed value of JEE (Fig.

5.4B). Then, I adjusted the values of JEI such that excitatory neurons fire at a similar average firing

rate (of 1.8Hz) for simulations at di↵erent release probabilities, and calculated the average synaptic

weight in the cell assembly after 30 minutes of exposure to long-term synaptic plasticity. If the weight

dependence on usd arises from di↵erences in the excitation-inhibition balance in Fig. 5.4A, the weights

would not change their values in these simulations. However, the average weight almost monotonically

decreases as the release probability increases (Fig. 5.4C), indicating that inhibitory inputs are unlikely

to cause the decrease of synaptic weights.

Next, I considered the e↵ect of input duration. For usd = 0.1, longer input duration resulted in

slightly larger synaptic weights in the cell assembly. In contrast, the weights were not retained for

usd = 0.5 even when the input duration was as long as three minutes (Fig. 5.4D). Therefore, a robust

retention of cell assemblies is possible only if STD is su�ciently weak. If LTP is su�ciently strong

compared to LTD ( Cp⌧p/Cd⌧d > 1.6 ) cell assemblies also remain stable for large usd (Fig. 5.4E).

However, such a strong LTP is highly unlikely for cortical synapses. Here, I defined the relative weight

w
1

as w
1

= hJEE
ij icellassembly � hJEE

ij iall to evaluate the robustness of cell assemblies.

Finally, I numerically solved equation (10) to study the e↵ect of STD on the stability of cell as-

semblies. I calculated the fixed points of equation (10) for given value of Jca, and then calculated the

weight velocity shown in equation (1) at various values of Jca. I found that for given release probability
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Figure 5.3. Strong STD disturbs cell assembly retention. (A) Time evolution of average synaptic
weights within the selected cell assembly (blue), from background excitatory neurons to the assembly
(green), from the assembly to background neurons (cyan), and between background excitatory
neurons (black). The left and right panel show results for usd = 0.1 and usd = 0.5, respectively. (B)
Weight matrices of excitatory synaptic connections calculated at t = 30 min are shown for
usd = 0.1(left) and usd = 0.5(right). (C) Raster plots are displayed for the weight matrices shown in
B. (D) Dynamics of individual synaptic weights is shown on one excitatory neuron in the assembly.
Blue lines correspond to weights from neurons belonging to the assembly, whereas gray lines to those
from background excitatory neurons. (E) Distributions of input synaptic weights were calculated from
simulation data at t = 26.7-30 min for the neuron shown in D.
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Figure 5.4. Crucial e↵ects of STD on cell assembly retention. Unless otherwise mentioned, error bars
represent the standard deviation obtained by five simulation trials. The results shown in panel A and
C to E were calculated at t = 30 min. (A) Relationship between the release probability usd and the
average synaptic weight within the cell assembly. The results were averaged over five simulation trials.
The weights of synapses other than JEE were constant. (B) Relationship between
inhibitory-to-excitatory synaptic weights JEI and the average firing rates of excitatory neurons is
shown in a network model without long-term synaptic plasticity. Horizontal line indicates rE = 1.8 Hz.
(C) Release probability dependence of the average synaptic weight within the assembly is shown. Each
plot was calculated using the value of JEI which sets the average firing rate of excitatory neurons to
1.8Hz. (D) Relationship between the average synaptic weight within the assembly and input duration
is shown. (E) The dependence of the relative synaptic weight w

1

to LTP/LTD ratio g = Cp⌧p/Cd⌧d,
which I varied by changing the value of Cp between 0.015 and 0.0255. (F) Mean-field approximation
gives the velocity of weight change as a function of the synaptic weight. Each line is calculated from
equation (10) using the steepest descent method from various initial conditions.
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usd, the numerical solution typically has two stable points corresponding to a state (with small Jca)

in which background neurons are most active and a state (with large Jca) in which neurons belonging

to a cell assembly are almost exclusively active (Fig. 5.4F). As the release probability is increased, the

stable fixed point with large Jca moves to the left side, while the stable point with small Jca eventually

disappears in the analytic treatment. In numerical simulations of the network model, however, the

two states become closer and less distinguishable (data not shown), implying that they should merge

together at a critical value of usd in Fig. 5.4F. This discrepancy around a critical point is considered to

arise from the approximations I employed for making the neural dynamics and weight dynamics analyt-

ically tractable. For example, I used mean synaptic weights in analyzing neural and synaptic dynamics

although the weight distribution is far from a Gaussian (Fig. 5.3E). These approximations presumably

oversimplify the dynamics of my network model with highly heterogeneous synaptic weights.

Interferences between cell assemblies

The results shown in the previous section have revealed that STD has strong influences on the retention

of a cell assembly, but not much on its formation. To further demonstrate the e↵ects of STD on the

formation and retention of multiple cell assemblies, I stimulated a randomly chosen 20% of excitatory

neurons in a recurrent network that initially had random synaptic weights. Directly after the first

stimulation, I stimulated another 20% of excitatory neurons that do not overlap with the first group

(Fig. 5.5A). I applied the first stimulus for 90 seconds and the second stimulus for 30 seconds because the

application of the second one rapidly weakened recurrent synapses in the first neuron group. During the

second stimulus, inhibitory neurons suppress the activity of the first neuron group, and then homeostatic

plasticity weakens synaptic connections between these inactive neurons. Under these conditions, the

external stimuli generated two cell assemblies in the recurrent network. Here, I ask whether these cell

assemblies survive separately, disappear or merge with one another when they undergo spontaneous

network activity.

To quantify the di↵erent wiring patterns emergent in the network, I define the relative synaptic

weight w
2

as

w̃
2

=

✓
J
11

� 1

2

(J
12

+ J
21

)

◆✓
J
22

� 1

2

(J
12

+ J
21

)

◆
, w

2

= w̃w/
p

|w̃
2

|

where Jµ⌫ is the average weight of synaptic connections from cell assembly ⌫ to cell assembly µ. The

relative weight is normalized such that it has the dimension of synaptic weights. If the two assemblies

survive independently, J
11

and J
22

should be much larger than J
12

and J
21

, making w
2

strongly positive.

On the contrary, if the first assembly survives and the second one disappears, w
2

may take a negative

value. If the two assemblies merge into one or both of them disappear, w
2

will be close to zero.

Depending on the value of the release probability, the relative weight acquires positive, negative

or almost vanishing values when the network undergoes spontaneous activity (Fig. 5.5B). For small
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Figure 5.5. Retention of cell assemblies by weak STD. (A) A first external input activates 20% of
excitatory neurons (ca1, blue shaded area), and then a second input successively activates other 20%
of excitatory neurons (ca2, green area). Neurons not stimulated by the external inputs are regarded as
background (bg). (B) Time evolution of relative synaptic weight w

2

. Blue shade indicates the interval
of the first stimulus, and the green shade denotes the second one. I defined the retention time of a
cell assembly as the time at which w

2

crosses threshold from above (w
2

= 0.015: dotted line). (C)
Time evolution of the average synaptic weight for three values of usd. The weights were separately
averaged over synapses within and between di↵erent cell assemblies and background neurons. In the
left and middle panels, black lines for bg-to-bg connections are hidden behind purple lines. (D) Raster
plots of spiking activity corresponding to the three cases shown in C. Color codes are the same as in
Fig. 5.2C. First 500 neurons belong to the first assembly and the second 500 neurons to the second
assembly. (E) Synaptic weight matrices of excitatory connections are shown for the above three cases.
(F), (G) The relative synaptic weight w

2

and the retention time of ca2 are shown as functions of the
release probability usd. (H) Relationship between the input duration to ca1 and the relative synaptic
weight w

2

at t = 30 min.
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release probability (usd = 0.1) both assemblies exhibit high firing rates after the two stimuli, but only

one of them remains active after several minutes (Fig. 5.5D, left). Accordingly, the synaptic weight

matrix retains memory traces only for the surviving assembly, but not for the other (Fig. 5.5C and

5E, left). Interestingly, the transient state of cell assemblies can show slow oscillations at 0.5-2 Hz

(Fig. 5.5D, left), unlike in the previous case with a single cell assembly. If STD is slightly stronger

(usd = 0.2), the two assemblies are kept activated alternately even 15 minutes (biological time) after

the termination of external stimuli (Fig. 5.5D, middle), and the synaptic weight matrix indicates clearly

distinct memory traces of these assemblies (Fig. 5.5E, middle). However, I note that these assemblies

are not permanently stable and eventually disappear, typically after 30 to 60 minutes (Fig. 5.5E,

middle). If STD is further strengthened (usd = 0.35), the average synaptic weights rapidly decrease in

both assemblies (Fig. 5.5C, E, right) and connections become stronger between the assemblies. As a

result, they merge into a large assembly (Fig. 5.5D, right) though this assembly is also unstable and

eventually disappears (Fig. 5.5C right).

The relative weight w
2

at 30 minutes takes negative values for weak STD (usd < 0.15), positive

values for intermediate strength of STD (0.15 < usd < 0.35), and vanishes for stronger STD (Fig.

5.5F). If we define the lifetime of assemblies as the time at which w
2

becomes smaller than 0.1JEE ,

the lifetime is maximized when STD is modestly strong (Fig. 5.5G). Therefore, adequately strong

STD is necessary for a prolonged retention of stimulus-induced cell assemblies. Varying the duration

of the first stimulus does not essentially change these results (Fig. 5.5H), suggesting that the internal

dynamics of synapses and neurons determines the lifetime of cell assembles. At usd = 0.1, the winning

assembly changes from the second to the first if the duration of the first stimulus is about 1-1.5 minutes

(data not shown). I also performed simulation with Poisson neuron model to ensure the universality of

the results (Supplementary Text S1 and Supplementary Fig. 5.S1).

Stability analysis for cell assemblies

I next investigate the stability conditions for dual cell assemblies. Because the synaptic weight matrix

changes much more slowly than the membrane potentials, I first study the dynamics of average firing

rates for a given weight configuration by the mean-field approximation. I derived the null-clines ṙca1,

ṙca2 of firing rates by numerically solving equation (9) for a network containing two cell assemblies,

that is for a synaptic weight matrix given as: Jca1 = Jca2 = 0.3, and all other excitatory weights as

0.17. The intersections of the two null-clines correspond to the fixed points of the network dynamics.

In general, the network has an unstable fixed point and two stable fixed points in which one of the two

assemblies displays a non-vanishing firing rate (Fig. 5.6A). Making an approximation that a smaller

variable between rca1 and rca2 is slaved to a bigger one, for the case when rca1 > rca2, we obtain the

110



potential function

drca1
dt

=

@U

@rca1

U(rca1 � rca2) ⇠
=

Z r
ca1

0

dr0ca1
1

⌧udE

H [uca1 (r
0
ca1, r

⇤
ca2(r

0
ca1)) /�ca1 (r

0
ca1, r

⇤
ca2(r

0
ca1))]

+

1

2

r2ca1 + U
0

(5.2)

The indices ”ca1” and ”ca2” are reversed when rca1 < rca2. Note that in general we cannot derive a

one-dimensional potential function for a dynamical system of more than two variables without such an

approximation. I adjust the constant term U
0

such that U(0) = 0 for di↵erent values of the release

probability.

Figure 5.6. STD induces alternate excitations of assemblies, which enlarges synaptic weights within
the assemblies. (A) Null-clines of firing rates for a synaptic weight matrix calculated from equation
(9). (B) Potential function U is calculated for the di↵erence in firing rate between two assemblies.
The normalization factor U

0

is determined to ensure U(0) = 0. (C) A monotonic relationship between
the release probability and the average interval of the alternation of cell assemblies. The interval was
defined as a duration in which one assembly continuously shows higher firing rates than the other.
Firing rates were calculated in 10 milliseconds-long time bins. Error bars are the standard derivation
of intervals observed during 80 seconds after the stimulus termination in a simulation trial. (D),
Typical behavior of the average synaptic weights (above), synaptic e�ciency for STD (middle), and
neuronal firing rates (below). The first (blue) and second (green) cell assemblies show high firing
rates alternately. (E) Relationship between the interval and synaptic weight change for usd = 0.1
(cyan) and usd = 0.2 (yellow). Inset illustrates the two quantities shown. The ordinate shows synaptic
weight change �w in an interval ( �tw milliseconds) starting from the activation of the
corresponding cell assembly. Dots are data points obtained from simulation, while solid curves
indicate analytic results. (F) Interval dependence of the synaptic weight velocity is shown, which was
defined as an expected synaptic weight change in a second. Solid curves show the analytic results
calculated at Jca1 = 0.311, Jca2 = 0.287, Jbg = 0.156, rca1 = 13.38 Hz and rca2 = 12.82 Hz.

For a given synaptic weight matrix, the potential barrier separating the two stable states becomes

lower as the release probability gets larger (Fig. 5.6B). Driven by random noise, therefore the network
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state tends to oscillate between the two stable points, each corresponding to one active cell assembly,

more frequently for larger release probability. We have already observed this alternation between active

cell assemblies in the previous simulations. I confirmed this result by numerical calculations of the

average periods of these oscillations following the stimulus termination and a regression analysis with

function Ae�U(u
sd

) ( A = 0.0679, � = 0.0691), where U(usd) is the potential calculated at u = usd

(Fig. 5.6C). Note that the average interval is shorter when the amplitude of noise is larger, which

typically occurs when the average firing rate of excitatory neurons is high.

I next consider how the evolution of firing rate controls the dynamics of synaptic weights. Synaptic

weights within a cell assembly rapidly increase when the assembly is active, and gradually decrease

otherwise (Fig. 5.6D above). Correspondingly, the synaptic e�ciencies for STD drop sharply at the

beginning of the active epoch, and they recover slowly in the silent epoch (Fig. 5.6D middle). In

contrast, synaptic weights between the two assemblies undergo significant changes only when a post-

synaptic assembly is transiently active (Fig. 5.6D above). To analyze how STD influences this active

maintenance of synaptic weights, I investigate the relationship between the interval of cell-assembly ac-

tivation (i.e. the duration of the silent epoch), �t, and the change in intra-assembly synaptic weights

at the beginning of an active epoch, �J . The two quantities are positively correlated (dots in Fig.

5.6E), and �J tends to be larger for weaker STD (i.e., smaller usd), as explained analytically below.

When a cell assembly is active, the e�ciency of synapses decreases in the assembly until it reaches the

equilibrium value ỹca = 1/(1 + usd⌧sdrca). In contrast, during the silent period of an assembly, the

e�ciencies gradually recover toward an initial level,

ỹ0ca(�t) = ỹca + (1� ỹca)(1� e�t/⌧
sd

),

which depends nonlinearly on the value of usd. After the silent epoch of length �t, the average firing

rate r0ca(�t) of the assembly becomes higher than the average firing rate rca in the equilibrium state,

because the synaptic e�ciency ỹ0ca(�t) is larger than the equilibrium e�ciency ỹca. We can calculate

the firing rate r0ca(�t) by substituting ỹ0ca(�t) into yca in equation (9) (Method). From equation (1),

we can then calculate the average weight increase �J(�t) between the neurons in the initial �tw

milliseconds of the active epoch as

�J(�t) =
h
(r0ca(�t))

2

(Cp⌧p � fd(Jca)Cd⌧d) + (JEE � Jca)/⌧h

i
�tw.

This function calculated from the numerical data observed in simulations (Jca1 = 0.311, Jca2 = 0.287,

Jbg = 0.156, rca1 = 13.38 Hz for usd = 0.1; Jca1 = 0.317, Jca2 = 0.309, Jbg = 0.155, rca1 = 10.14

Hz for usd = 0.2) fits the actual values well (Fig. 5.6E, solid lines).

I found that the firing rate r0ca(�t) generally increases with �t. However, this does not imply that

longer �t, which typically occurs for weaker STD, is advantageous for the retention of cell assemblies
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because the velocity of weight change per unit time, �J(�t)/(�t+Tactive), where Tactive is the average

interval of an active epoch, does not increase monotonically with �t. In Fig. 5.6F, I show the weight

velocity calculated by using the average intervals obtained numerically (T ca1
active = 0.65, T ca2

active = 0.53

for usd = 0.1). Thus, although longer intervals generate larger weight changes, they also generate

more robust stable states of the potential function (Fig. 5.6B), and the alternate activation of two

cell assemblies becomes more di�cult (see Fig. 5.5D). In contrast, if the strength of STD is in an

appropriate range, the two assemblies are alternately activated by noise, enabling the synaptic weights

in a resting assembly to increase during its following active period. Although a rigorous analysis of the

stability of cell assemblies at relatively strong STD is di�cult, we can provide intuition for the observed

e↵ects. If STD is weak, an active assembly has a relatively long lifetime. In this case, active assemblies

switch only infrequently and the alternate activation can be stable. In contrast, if STD is strong and an

active assembly has a short lifetime, active cell assemblies switch frequently and synaptic connections

are reciprocally strengthened between the two assemblies, implying that they eventually merge together.

Crucial e↵ects of STDP time window on the stability of cell assemblies

The results shown in the preceding section reveal that cell assemblies are metastable and can survive

synaptic bombardment in spontaneous activity only for a few tens of minutes. Although the storage

of episodic memory can be as long as hours and days, biological processes responsible for this are

considered to involve cellular and molecular mechanisms [192]. Results explained above demonstrate

how cell assemblies may be maintained against noise through a network mechanism for minutes to hours.

The lifetime of assemblies observed in the previous section is much longer than the characteristic time

scales of synaptic and neuronal dynamics. However, the lifetime may not be long enough to induce

molecular and cellular processes to stabilize patented synapses. Especially, as we will see later, cell

assemblies are less stable when more metastable states exist in the network. In this section, I explore a

possible solution to this problem.

As in the previous section, I define the relative weight wp as

w̃p = min

µ 6=⌫

✓
Jµµ �

1

2

[Jµ⌫ + J⌫µ]

◆✓
J⌫⌫ �

1

2

[Jµ⌫ + J⌫µ]

◆
, wp = w̃p/

q
|wp|,

for general cases with more than two cell assemblies, where Jµ⌫ is the average synaptic weight from cell

assembly µ to ⌫. Because it is time-consuming to train the network with many cell assemblies, hereafter

I construct a synaptic weight matrix by hand such that it contains p assemblies each consisting of NEa

excitatory neurons (Methods). I examine what STDP rule may retain stable cell assemblies.

I first investigate models with a relatively small number of assemblies (p = 3 or 5). When STDP is

asymmetric-Hebbian and usd has an adequate value (Fig. 5.7A, B), the cell assemblies are activated

independently and randomly for a while. However, the transient network state switches between di↵erent

activation patterns of cell assemblies until it displays a sequential activation pattern of assemblies, which
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in turn evolves into synfire-like activity (Fig. 5.7C, at t=60-70 sec). However, this activity is unstable

and does not persist. Thus, the network eventually returns to random firing states. The lifetime of cell

assemblies is longest at a moderate release probability (Fig. 5.7B). I found that such a transient state

evolution is typical for the asymmetric STDP window.

Figure 5.7. The retention of cell assemblies with Hebbian and symmetric STDP windows. (A) An
asymmetric STDP window was calculated for JEE

ij = 0.15. (B) The retention time significantly varies
with the release probability of STD. I defined the retention time as a period with a su�ciently large
relative weights: wp > 0.1JEE . (C) Raster plot of spiking activity is shown for the Hebbian STDP
rule shown in A. (D) A symmetric STDP window was calculated for JEE

ij = 0.15. (E) Dynamics of
the average synaptic weights at usd = 0.2 within (blue) and between (black) assemblies. (F) Raster
plot of spiking activity for the symmetric STDP rule shown in D. (G) Relationship between the release
probability usd and relative weight wp at t = 30 min. (H) (top) I constructed a histogram of the
number of activation over all cell assemblies shown in F. The abscissa shows the number of activation
of each assembly normalized by the average number of activation of all assemblies. (middle) I
calculated a histogram for the occurrence of all possible 20 (54) sequential transitions between two
assemblies. The occurrence number of each transition was normalized by the average occurrence
number over all transitions. (bottom) Histograms of triplet transitions, such as assembly 1! 2! 1

(left) and 1! 2! 3 (right), are shown after a normalization by all possible 80 (54+543) triplet
transition patterns. All three histograms are obtained from the results of five simulation trials.

Cortical synapses are known to change their STDP rules [207] [34]. In particular, under the presence

of dopamine, the STDP window of glutamate synapses turns nearly symmetric in rat hippocampus [253].

Moreover, during the developmental stage, excitatory connections from layer 4 to layer 2/3 display

symmetric STDP [109]. So, I investigated whether a symmetric window function may change the

stability of cell assemblies with the following STDP window (Fig. 5.7D):

�Jij = Cp exp (|tpre � tpost|/⌧p)� fd(Jij)Cd exp (|tpost � tpre|/⌧d) . (5.3)

I performed numerical simulations of this network for p = 3 or 5 and usd = 0.2. The average weights

within cell assemblies converge to stable values after several minutes (Fig. 5.7E). The network persis-
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tently and irregularly activates all cell assemblies one by one, and this state remains stable even after

30 minutes (Fig. 5.7F). Consistent with out previous results, such irregular stable states appear only

when the strength of STD is in an adequate range (Fig. 5.7G). I next examined whether the activation

pattern is random or biased by analyzing spike data taken from 10 to 30 minutes after the initiation

of spontaneous activity. I found that all assemblies are activated for nearly the same amount of time

(Fig. 5.7H, top). The frequencies of sequential transitions between two assemblies show no statistically

significant bias (Fig. 5.7H, middle). In contrast, sequences involving the reactivation of an assembly,

such as 1 ! 2 ! 1, are less likely to occur because STD of mutual excitation in an active assembly

suppresses the immediate reactivation of the same assembly. Therefore, the frequencies show some bias

among triplets of assemblies (Fig. 5.7H, bottom). The occurrence of monotonous short sequences of

cell assemblies is a typical problem in recurrent networks with STDP [65]. It is noteworthy that excita-

tory weight matrices do not develop short sequences in the present model because synaptic e�ciency

does not recover in a short time.

Does the retention of cell assemblies sustained by random activation shown above in neural networks

with small numbers of assemblies hold for large-scale network models? To answer this, I performed

simulations of a network containing a large number of cell assemblies. I set model parameters as

usd = 0.2, p = 32, a = 0.03, Jca = 0.7, and Jbg = 0.15. Note that the size of this network is the

same as the previous ones, but each cell assembly now consists of 75 neurons while 500 in previous

models. The network initially retains all assemblies by randomly visiting them (Fig. 5.8A, left). After 30

minutes passed, however, some cell assemblies survived stably, but others simply disappeared or merged

into bigger stable assemblies (Fig. 5.8A, right). Activity-dependent reorganization of synaptic weight

matrix Jµ⌫ underlies these changes in the spontaneous activity pattern (Fig. 5.8B). We may define

”the storage capacity” of the recurrent network as the number of independent assemblies surviving the

reorganization process. This definition can be considered as a natural extension of the storage capacity

defined for associative memory model [106]. To this end, I define a binary matrix ˜Aµ⌫ as

˜Aµ⌫ =

8
>><

>>:

1, if Jµ⌫ > 1.5hJµ⌫i

0, otherwise.

I remove the columns and rows that give vanishing diagonal elements ˜Aµµ = 0 because cell assembly

µ no longer exists in such a case. I then counted the number of disconnected subgraphs in the graph

generated from the resultant adjacency matrix (Fig. 2.8C: in this case the storage capacity is 12),

which should be equivalent to the storage capacity. I found that the storage capacity depends on the

strength of STD, and vanishes for too strong STD (Fig. 5.8D). Furthermore, whether a particular

cell assembly survives or merges into a larger assembly strongly depends on the initial weight matrix

(Methods). If some initial cell assemblies have weak intra-assembly connections, they are unlikely to

survive (Fig. 5.8E). Two assemblies are likely to merge into a single assembly if one or both directions of
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the inter-assembly connections are strong (Fig. 5.8F). Thus, when excitatory connections obey STDP

and STD, the network has a limited capacity that is maintained by eliminating ”weak” assemblies and

integrating strongly linked assemblies into single assemblies.

Figure 5.8. Merging and oblivion of cell assemblies through spontaneous activity. (A) Raster plot of
spiking activity in a network embedding 32 cell assemblies. Active epochs of initial assemblies are
shown by di↵erent colors in the left panel, while those of merged assemblies are shown in the right
panel. (B) Synaptic weight matrix after 30 minutes of spontaneous activity. (C) A graphical
representation of the merged connection matrix, where each numbered circle corresponds to an initial
assembly. (D) Relationship between the storage capacity and the release probability. (E) The survival
rate of each assembly depends on the initial magnitudes of intra-assembly synaptic weights. I
separated cell assemblies into four groups according to the initial weight values ( 0.55 < Jµµ  0.58,
0.58 < Jµµ  0.60, 0.60 < Jµµ  0.62, 0.62 < Jµµ  0.65 : the boundaries were decided such that
each group contains 5 to 15 assemblies) and calculated the fraction of the assemblies that survived in
the reorganization. See Methods for other details of the simulations. (F) The rate of merging of a cell
assembly as a function of the initial synaptic weight. As in E, I separated 992 inter-assembly
connections into five groups ( 0.155 < Jµ⌫  0.165,0.165 < Jµ⌫  0.175,0.175 < Jµ⌫ 
0.185,0.185 < Jµ⌫  0.195,0.195 < Jµ⌫  0.205 ) so that each group contains more than 100
assemblies.

Discussion

I have shown that interplays between STDP and STD enrich synaptic weight dynamics in recurrent

neural networks, and cause critical e↵ects on the cell assembly retention and modulation in the timescales
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of seconds and minutes. Some cell assemblies merge into a larger assembly or others are eliminated,

and the resultant neuronal circuit is able to retain a finite number of memory traces. In these processes,

STD crucially influences the stability of modifiable synapses against noisy background activity.

Implications in cortical memory processing

The model proposes a possible circuit mechanism for the long-term retention of selective memory

traces encoded by external stimuli into subnetworks of highly connected neurons. In a long time

scale, molecular and cellular mechanisms are necessary to maintain synaptic memory traces [192], and

it is unlikely that constant reactivation of synapses is permanently necessary for retaining memory.

Nevertheless, many experimental results indicate the importance of reactivation of memory traces in

learning [179] [55]. My results suggest that these memory traces undergo flexible modifications through

the internal network dynamics, and consequently only strong memory traces are preserved in the circuits

(Fig. 5.8E). Moreover, if some assemblies are initially linked with stronger excitatory connections, where

the initial connection strength is determined by the strength of external stimuli (Fig. 5.2E), the internal

dynamics likely integrate these assemblies into one large assembly to co-activate them in the equilibrium

network state. These results seem to be consistent with some properties of episodic memory processing

by the brain. It is known in humans that sleep enhances the formation of relational memory [60] and

false memory [56]. Though my model is too oversimplified to replicate characteristic neural activity

during sleep, it explains that initially correlated memory traces can merge together through a repeated

reactivation of the corresponding cell assemblies (Fig. 5.8F). Direct experimental evidence supporting

this result is awaited.

Possible implications in memory deficits and cortical development

A recent study shows that mice lacking cbl-b, a cell signaling related gene widely expressed in the

hippocampus of rodents, display an improved performance in long-term memory retention tasks. In

these mice, paired-pulse facilitation at Scha↵er collateral-CA1 synapses is enhanced, but long-term

synaptic potentiation shows no di↵erence [219]. Because paired-pulse facilitation is enhanced at low

release probabilities [51], my model with weaker STD may account for the enhanced memory retention

of cbl-b null mice observed in experiments. The model may also explain the relationship between the

accumulation of amyloid-� and pathological memory dysfunction. Accumulated amyloid-� is known to

disturb long-term potentiation in the hippocampus [234] and this disturbance is often considered as the

potential mechanism of dysfunction. My model implies that an enhanced short-term depression, which

actually occurs in the presence of an excess amount of amyloid-� [2], may disturb memory retention.

It is also known that corticosterone, a hormone controlling stress-induced memory improvement and

impairment [200], modifies the probability of presynaptic glutamate releases in the hippocampus of

mice [115]. Thus, my model suggests that modifications in short-term plasticity may provide a universal
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mechanism to control the stability of memory traces in pathological neural circuits.

The results are possibly relevant to developmental plasticity as well. It is known that in the primary

sensory cortex of rodents, glutamatergic synapses show a weakened short-term depression as the animal

grows up. The timing of this change typically coincides with the critical period [181] [36] in which the

maturation of GABAergic synapses also occurs [98]. A possible explanation of this coincident timing

is that the reduction of STD occurs in order to provide more excitatory current, so that the network

can keep a balanced state, despite the growth of inhibitory current. As shown in Fig. 5.4B, my model

supports this view. Moreover, my model may explain why the strength of STD has to change with

successive developmental stages. If STD were strong in immature animals, STDP would not organize

any input-dependent structure in cortical circuits: STD may e↵ectively decouple cortical networks from

the influence of a↵erent inputs from thalamocortical pathways until they are well organized.

Limitations of the model

Although I pursued biologically plausibility in the present modeling, some assumptions of the model

remain to be confirmed by experiment. I assumed that LTD of excitatory synapses has a logarithmic

weight dependence, implying that synaptic weights only sublinearly influence the LTD of strong synapses.

However, the weight dependence for strong synapses is still unknown. I also implicitly assumed that

synaptic weights are solely modified by STDP and homeostatic plasticity within 30 minutes to 1 hour

from the application of external stimuli and molecular processes for the consolidation of memory trace

occur later. However, the actual synaptic mechanism of memory consolidation is more complicated and

remains elusive [192]. In addition, synaptic weights displayed large fluctuations in Fig. 5.3D, which has

not been observed in previous experiments. The large-amplitude fluctuations were partly due to my

choice of a relatively large learning rate and partly due to the inherent nature of the present log-STDP

model. Nevertheless, these fluctuations are unlikely to be harmful to the practical function of synapses

because the oscillation amplitude of the mean weight change was less than 1% of the mean synaptic

weight (Fig. 5.6D).

Related previous studies

There are a few recurrent network models that consider both STDP and short-term plasticity. Del

Giudice and Mattia showed that a recurrent network with short-term depression is able to robustly

organize working memory activity by STDP without destabilizing spontaneous activity [53]. My results

are consistent with this result because STD generates a shallow potential well for memory traces (Fig.

5.6B). I have further investigated recurrent circuits embedding multiple cell assemblies, and found that

moderate STD is beneficial to the memory retention through interactions. The model proposes that

interplay between STD and STDP is a possible mechanism of selective retention and integration of

memory traces in recurrent neural networks. The role of STD was also demonstrated in recurrent
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neural networks with STDP for the improvement of pattern separation and pattern completion [69].

As for the role of STDP in cell assembly formation without retention or modulation, already many

studies exist [80]. While weight-dependent STDP degrades memory retention compared to additive

STDP [21], the log-STDP rule (a variant of multiplicative STDP) used in this study improves the

stability of learned network structure, reproducing experimentally observed long-tailed unimodal synaptic

weight distributions [81]. Log-normal weight distribution can also be reproduced by network e↵ect [254].

A recent theoretical study showed that stable learning is also possible by considering meta-plasticity

in addition to the conventional additive STDP [24]. Multiple cell assemblies were created by inducing

symmetry breaking through synchronous spikes [139], correlated inputs [?] [79], or synaptic delays

caused by topological network structure [110]. Other models made use of additional mechanisms

such as oscillatory dynamics [137], voltage-dependence [43], triplet STDP [29], or specific network

configurations [121]. In some works short-term plasticity was also introduced [110] [121], though its

functional role was not intensively discussed in these studies. The e↵ects of neuromodulation were

also considered, in which neuromodulators scaled up the learning speed and scaled down the synaptic

weight [29]. Recently, some models even consider cell assembly retention [142] [252], yet in these

studies, assemblies are simply retained without ant active modulation.

Methods

Model configuration

I construct a recurrent circuit model based on the chaotic balance network model [228] [229] and extend

it to include both short-term and long-term plasticity. The network consists of NE excitatory neurons

and NI inhibitory neurons (NE = 2500, NI = 500), connected randomly with connection probability

cXY (X,Y = EorI). I defined connection matrix {cXY
ij }X,Y=EorI

i=1,...,N
X

,j=1,...,N
Y

in which cXY
ij = 1s if

there is a synaptic connection from j to i, otherwise cXY
ij = 0. For simplicity, I consider the case

where only synaptic connections between excitatory neurons show both types of plasticity, while the

weights of excitatory to inhibitory, inhibitory to excitatory, and inhibitory to inhibitory connections are

kept at constant values JIE , JEI , and JII , respectively. In the main result, I used binary neurons

taking only two states, 0 or 1. In the binary model, the states of the i-th excitatory and inhibitory

neurons are defined as xE
i (t), x

I
i 2 {0, 1}. The state of each neuron is updated at time {tEi,k}k=1,2,...

or {tIi,k}k=1,2,... according to a random process with the average intervals tEud and tIud, respectively. In

the simulation, I implemented this update procedure by updating NEh/⌧
ud
E excitatory and NIh/⌧

ud
I

inhibitory neurons at every h milliseconds (h = 0.01 milliseconds; ⌧Eud, ⌧
I
ud = 5.0 and 2.5 milliseconds,

respectively). The use of binary neurons and discrete update rule reduces the computational load of

the simulation of a large recurrent network model with long-term plasticity, and similar results are also
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observable in Poisson Model (Fig. S1). The update rules are written as
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where ✓[] is a step function, and yj(t) is the synaptic e�ciency, representing the e↵ect of short-term

depression. The terms IexE mex and IexI mex are the fixed components of the amplitudes of random

external inputs to excitatory and inhibitory neurons, respectively, while IexE �ex⇣
E
i,k and ⇣exI �ex⇣

I
i,k are

the random components of those external inputs. The noise terms {⇣Ei,k}, {⇣Ii,k} are Gaussian random

variables with mean 0 and variance 1. The additional external current Iip(t
E
i,k) is Ip only for excitatory

neurons in the stimulated assembly during the external stimulation, and otherwise remains zero. In the

present simulation, I typically applied Ip = 1.0 to 500 selected excitatory neurons for tens of seconds.

The variables hE , hI are the thresholds of the neurons. Once updated, each neuron keeps its state

until the next update. For instance, if tEj,l  tEi,k < tEj,l+1

, then xE
j (t

E
i,k) = xE

j (t
E
j,l). I did not introduce

a reset procedure mimicking a repolarization process after spiking, because inputs to a neuron are

refreshed by every update of the neuron. Excitatory neurons stay in the spiking state for 5 msec on

average, while inhibitory ones continue to fire typically for 2.5 msec. Thus, neurons rarely stay in the

spiking state for a long time due to the randomness of update. Note JEE
ij is normalized such that the

size of the first EPSP is the same (=JEE
ij ) for di↵erent release probabilities. This means that the total

synaptic weight JEE
ij,max is given as JEE

ij,max = JEE
ij /usd. Under this normalization, we can investigate

the e↵ect of STD without interference from absolute synaptic weights.

Short-term plasticity is approximately described by the spiking activity of presynaptic neuron [223].

Namely, synaptic e�ciency yj is described with the di↵erential equation

dyj
dt

=

1� yj
⌧sd

� usdyj
X

k

x(tEj,k)�(t� tEj,k+i), (5.6)

where usd is the release probability and ⌧sd is the recovery time constant ( ⌧sd = 0.6 seconds). In

numerical simulations, I discretize the time variable such that the synaptic e�ciency decreases at the

next update when a presynaptic neuron fires.

For long-term plasticity, I consider log-STDP [81] and homeostatic plasticity. Log-STDP is a spike-

pair-based STDP-model with a logarithmic weight dependence of LTD (Fig. 5.1A). It was modeled

to account for the long-tailed, typically lognormal, distributions of the strength of excitatory synapses

in the hippocampus and neocortex [209] [31]. The synaptic weight change for two spikes at tpre and
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tpost is written as

�Jij =

8
>><

>>:

Cp exp ((tpre � tpost)/⌧p) (if tpre  tpost)

fd(Jij)Cd exp ((tpost � tpre)/⌧d) (if tpost < tpre),

(5.7)

where fd(Jij) = log(1 + ↵Jij/JEE)/ log(1 + ↵), and ⌧p, ⌧d are the decay time constants of LTP and

LTD respectively ( ⌧p = 20, ⌧d = 40 milliseconds). In calculating the time di↵erences between pre- and

post-synaptic firing for STDP, I define the time of firing of a neuron as the time of update at which its

state becomes 1. Conduction delays between neurons were not taken into account. If a neuron remains

in the spiking state for two consecutive bins, those events are regarded as the generation of two spikes.

In addition, I consider the e↵ect of homeostatic synaptic plasticity as

dJEE
ij

dt
=

JEE � JEE
ij (t)

⌧h
+ �h⇣ij(t), (5.8)

with Gaussian random noise ⇣ij(t). Time constant ⌧h of homeostatic plasticity need to be su�ciently

short in order to stabilize the network with STDP, while that should be long enough not to erase learned

structure rapidly [251]. I set ⌧h in order of minutes in the simulation.

Finally, to ensure the stability of the recurrent network, I set boundary conditions for excitatory

synapses as 0 < JEE
ij < Jmax and for the mean excitatory synaptic weight on individual excitatory

cells as 0 < 1

KE

i

PN
E

j 6=i J
EE
ij < J tot

max, where KE
i is the total number of excitatory inputs to neuron i.

When the mean excitatory synaptic weight exceeds the upper limit, I subtract the excess amount from

all synapses equally.

I used discrete update rule for spiking to reduce the computational cost, and employed di↵erential

equations only for slow variables (i.e., synaptic e�cacies and homeostatic plasticity). This heterotic

update procedure makes simulations faster and more robust in a broad range of parameter values

without changing the essential features of network dynamics. However, because the exact spike timing

depends on the random update of binary neurons, the update of synapses by STDP undergoes additional

noise. This large noise seems reasonable because the in vitro synaptic modification by STDP is often

highly noisy [20], and is expected to be more noisy in vivo. To justify the heterotic update procedure,

I performed simulations in a similar network of Poisson neuron model. The details of this model are

explained below and Supplementary Figure S1.

Spiking neuron model

In the main article, I used a binary model for modeling neuron. In order to support the generality of

the model, I reproduce the main results of the model with a Poisson neuron model [74] [76]. Excitatory

and inhibitory neurons follow spiking dynamics defined as below. Synaptic depression is added only for

121



E-to-E connections.

uE
i (t) =

N
EX

j 6=i

JEE
ij

Z 1

0

"E(⌧)yj(t� ⌧)xE
j (t� ⌧ � dEE

ij )d⌧ �
N

IX

j

JEI

Z 1

0

"I(⌧)x
I
j (t� ⌧ � dEI

ij )d⌧

uI
i (t) =

N
EX

j

JIE

Z 1

0

"E(⌧)x
E
j (t� ⌧ � dIEij )d⌧ �

N
IX

j 6=i

JII

Z 1

0

"I(⌧)x
I
j (t� ⌧ � dIIij )d⌧

"E(t) =

exp(�t/⌧AE )� exp(�t/⌧BE )

⌧AE � ⌧BE
, "I(t) =

exp(�t/⌧AI )� exp(�t/⌧BI )

⌧AI � ⌧BI
dyi(t)

dt
=

1� yi(t)

⌧sd
� usdyi(t)x

E
i (t)

uE
i , uI

i are membrane potentials of excitatory/inhibitory neurons calculated by a sum of excitatory

and inhibitory currents of a neuron. Synaptic currents are given by convolution of input spikes with

EPSP/IPSP curves given as ✏E(t), ✏I(t). I assumed that synaptic delays dEE
ij , dIEij , dEI

ij , dIIij are

uniformly distributed in 0.5-1.5milliseconds for all connections. Synaptic depression is controlled by

synaptic e�ciency yi. By membrane dynamics described in equations above, spiking process of neurons

is given as below.

⇢Ei (t) = ⇢E,ext
i (t) + gE

�
uE
i (t)

�
, gE(u) =

AE

1 + exp(��u+ hE)

⇢Ii (t) = gI
�
uI
i (t)

�
, gI(u) =

AI

1 + exp(��u+ hI)

xE
i (t)  Poisson

�
⇢Ei (t)

�
, xI

i (t) Poisson
�
⇢Ii (t)

�

Spikes xE
i ,x

I
i are probabilistically generated with sigmoidal response functions gE(u), gI(u). I added

external inputs ⇢E,ext
i (t) = 10Hz to ignite the spiking process at first 100 milliseconds of simulation.

After that, external input terms ⇢E,ext
i (t) are kept as zero. Synaptic weights of E-to-E connections are

modified by STDP and homeostatic plasticity as below.

dJEE
ij

dt
= xE

j (t� dEE
ij )

Z 1

0

Fd(s, J
EE
ij )xE

i (t� s)ds+xE
i (t)

Z 1

0

Fp(s)x
E
i (t� s� dEE

ij )ds

+

JEE � JEE
ij

⌧h
+ �h⇣

Fd(s, J
EE
ij ) = Cd (1 + �stdp⇣)

log(1 + ↵JEE
ij

�
JEE)

log(1 + ↵)
exp(�s/⌧d), Fp(s) = Cp (1 + �stdp⇣) exp(�s/⌧p)

To guarantee stability of the model, I set lower/upper boundaries ( 0 < JEE
ij < 10JEE

o ) to E-to-E

connections. I chose the same parameter with the model in the main text for time constant of STD,

STDP, and homeostatic plasticity. Parameters used in the simulation are summarized in Table 2. All

di↵erential equations are solved with Runge-Kutta method with interval h = 0.1milliseconds.

As the simulation tends to take a long time, I created relatively small network with 300 excitatory

neurons and 60 inhibitory neurons. Also, because the robustness in parameter space is relatively limited

[166], I simulated only one configuration corresponding to Fig. 5.5, at a given parameter set. I
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introduced two cell assemblies each consists of 100 non-overlapping excitatory neurons by hands with

following equations for a Gaussian random variable ⇣ij .

JEE
ij (t = 0) =

8
><

>:

4JEE
init (1 + �J⇣ij) (insidecellassemblies)

JEE
init (1 + �J⇣ij) (otherwise)

Then, observed dynamics change of synaptic weights and neural activity after a dozen minutes of

spontaneous activity. As a result, the network showed similar phenomena with those we observed in

Fig. 5.5. When STD is weak (i.e., usd is small), two assemblies show competition, then eventually

one of them become dominant (Figure S1-left, usd = 0.15 ). On the other hand, at strong STD, two

assemblies tend to merge each other (Figure S1-right, usd = 0.25). At the adequate level of STD, both

of them survive by alternative excitation (Figure S1-center, usd = 0.2 ).

In order to obtain the results shown for the Poisson neuron model, gE(u) needs to be a sigmoid-type

function. When gE(u) is linear, bi-stable state is not robustly attained, while gE(u) is exponential, the

network tends to display epileptic states. In addition, synaptic weight changes by STDP need to be

noisy. On the other hand, in the original model �step was zero because the model has intrinsic noise

due to probabilistic updating.

Mean-field (MF) approximation of cell-assembly dynamics

When the firing rate of presynaptic neuron j is constant, we find from the fixed point of equation

(6) that synaptic e�ciency yj converges to yj =

1

1+u
sd

⌧
sd

r
j

. With this relation, we may use a mean-

field approximation for a given synaptic weight configuration [183] [196]. When excitatory neurons

are separated into p number of non-overlapping cell assemblies with the sparseness a
1

, a
2

,..., ap (
Pp

µ=1

aµ = 1), the mean-field equations are calculated as follows:

rµ = H(uµ/�µ)/⌧
ud
E , rI = H(uI/�I)/⌧

ud
I , H(x) =

1

2

erfc(�x/
p
2), yµ = 1/(1 + �rµ⌧

ud
E ),

uµ = cEENE

pX

⌫=1

anuJµ⌫y⌫r⌫⌧
sd
E � cEINIJEIrI⌧

ud
I + IexE mes � hE ,

uI = cIENEJIE

pX

µ=1

aµrµ⌧
ud
E � cIINIJIIrI⌧

ud
I + IexI mex � hI ,

�2

µ
⇠
=

cEENE(1 + �2

J)

pX

⌫=1

J2

µ⌫y
2

nur⌫⌧
ud
E + cEINIJ

2

EIrI⌧
ud
i + (IexE �ex)

2,

�2

I
⇠
=

cIENEJ
2

IE(1 + �2

J)

pX

µ=1

aµrµ⌧
ud
E + cIINIJ

2

IIrI⌧
ud
I + (IexI �ex)

2 (5.9)

where parameter �J is the relative variance of synaptic weight, and Jµ⌫ is the average synaptic weight

from cell assembly ⌫ to µ. When the synaptic weight distribution is not Gaussian, as in the case for

log-STDP, the mean-field approximation is not accurate unless the correction terms representing the

e↵ect of strong synapses are added [220] [100]. However, here I use the above equations for simplicity.
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In Fig. 5.6A-C, I calculate the fixed points of equation (9) for two cell assemblies, ca1 and ca2,

by substituting p = 3, a
1

= 0.2, a
2

= 0.2, a
3

= 0.6 (a
3

corresponds to the background neurons) to

equation (9) and by setting synaptic weights as

Jµ⌫ =

8
>>>>>><

>>>>>>:

Jca1 (if µ = ⌫ = 1)

Jca2 (if µ = ⌫ = 2)

Jbg (otherwise).

In the calculation, I assume that variables rI and r
3

(= rbg) are slaved to r
1

(= rca1) and r
2

(= rca2). As

shown in Fig. 5.6E-F, I calculate the average firing rate rca(�t) after �t milliseconds of a silent epoch,

by substituting the post-silent-epoch e�ciency ỹ0ca(�t) into the corresponding yµ in equation (9). For

instance, in the derivation of r0ca1, I used ỹ0ca1(�t) =

1

1+�r
ca1⌧ud

E

+

⇣
1 +

1

1+�r
ca1⌧ud

E

⌘
(1 � e�t/⌧

sd

)

instead of y
1

=

1

1+�r1⌧ud

E

, then calculate the fixed point. Note that I set rca1 equal to a fixed value

estimated from simulations (in Fig. 5.6E, rca1 = 13.38 [Hz] for usd = 0.1 and rca1 = 10.14 [Hz] for

usd = 0.2. In Fig. 5.6F, rca1 = 13.38 [Hz] and rca2 = 12.82 [Hz]), while r
1

was kept as a free variable.

MF approximation of weight dynamics

I extend the MF approximation to consider the weight dynamics under long-term synaptic plasticity.

For simplicity, I assume that the average synaptic weight from a cell assembly to a background neuron

pool is the same as the average weight from the background to the cell assembly. In this case, from the

MF approximation, the stable point of the network is described by the three parameters rI , rca, and rbg

corresponding to the average firing rates of inhibitory neurons, excitatory neurons belonging to a cell

assembly, and other excitatory neurons (background neurons), and the three parameters Jca, Jm, and

Jbg representing the average weights of connections inside the cell assembly, between the assembly and

the background, and among the background neurons, respectively. Thus, the equilibrium firing rates

are expressed as

rI = H(uI/�I)/⌧
ud
I , rca = H(uca/�ca)/⌧

ud
E /⌧udE , rbg = H(ubg/�bg)/⌧

ud
E ,

r2ca (Cp⌧p � fd(Jca)Cd⌧d) + (JEE � Jca)/⌧h = 0,

rcarbg (Cp⌧p � fd(Jm)Cd⌧d) + (JEE � Jm)/⌧h = 0,

r2bg (Cp⌧p � fd(Jbg)Cd⌧d) + (JEE � Jbg)/⌧h = 0. (5.10)

Note that the above approximation is only applicable under the assumption that the firing rates are

uniquely determined for the given synaptic weights. When the firing rates show bi-stability for given

synaptic weights, an analytic approach to the synaptic weight dynamics is very hard.
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Initial conditions

I set the initial synaptic weight matrix for simulations as JEE
ij (t = 0) = J init

EE (1+ �J⇣ij) in simulations

shown in Figures 5.2 to 5.6. Those in Fig. 5.7 and Fig. 5.8A-D, the initial synaptic weight matrix is

given as

JEE
ij (t = 0) =

8
>><

>>:

Jca(1 + �J⇣ij) (inside cel assemblies)

Jbg(1 + �J⇣ij) (otherwise),

where each cell assembly contains NEa neurons and ⇣ij is a Gaussian random variable. Parameter

values are chosen as Jca = 0.70, Jbg = 0.16, a = 0.03 and p = 32 for the model with a large number

of cell assemblies, while Jca = 0.30, Jbg = 0.16, a = 0.2 and p = 3or5 for the models with a small

number of assemblies. In Fig. 5.8E, I introduce an initial bias in the weights within cell assemblies as

JEE
ij (t = 0) =

8
>><

>>:

Jca(1� 0.2⌘µ)(1 + �J⇣ij) (inside cel assemblies)

Jbg(1 + �J⇣ij) (otherwise),

where ⌘µ is an uniform random variable drawn from ⌘µ 2 [0, 1) for each cell assembly µ. Similarly in

Fig. 5.8F, I bias the weights within assemblies as

JEE
ij (t = 0) =

8
>><

>>:

Jca(1 + �J⇣ij) (inside cel assemblies)

Jbg(1 + 0.25⌘µ⌫)(1 + �J⇣ij) (otherwise).

In all simulations, I set other initial conditions as yj(t = 0) = 1/(1+6usd), Prob[xE
i (t = 0) = 1] = 0.02,

and Prob[xI
i (t = 0) = 1] = 0.01.

Details of simulation

In the presented simulations, every 0.01 milliseconds, 5 excitatory and 2 inhibitory randomly selected

neurons are updated. STDP is calculated for neighboring spikes within 500 milliseconds. The di↵erential

equations of synaptic e�ciency for STD is solved by Runge-Kutta method with 0.1 ms time steps, while

homeostatic plasticity is calculated by Runge-Kutta method with 10.0 milliseconds time step in which

values are updated at every t = 10.0 milliseconds for t = 0, 10, 20 ms,... This approximation is

reasonable as homeostatic plasticity generates negligibly small changes in synaptic weights at each time

step. The parameters used in the present simulations are summarized in Table 1. Code for simulations

is written with C++ and Python, and is performed on a cluster machine.
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Supplementary Figures

Supplementary Figure 1. Figure S1. The model with Poisson neuron model (A) Time evolution of
the average synaptic weight for three values of usd (usd =0.15,0.20,0.25 from the left side). (B)
Raster plots of spiking activity corresponding to the three cases shown in A. (C) Synaptic weight
matrices of excitatory connections are shown for the above three cases. Configuration of graphs are
the same with Fig. 5.5(C),(D),(E). Details of the model are summarized in the Method.
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Table

Table 1: Parameters used in the simulations.

NE , NI Number of excitatory/inhibitory neurons 2500, 500

cEE , cEI , cIE , cII Connection probabilities 0.2,0.5,0.2,0.5

JIE , JEI , JII Synaptic weights 0.15,0.15,0.06 (In Fig. 5.2A and 3, JEI = 0.20)

JEE Standard synaptic weight 0.15

J init
EE ,�J Initial conditions of synaptic weight 0.18, 0.3

IexE , IexI Amplitude of steady external input 2.0, 0.5

mex,�ex Mean and variance of external input 0.3, 0.1

hE , hI Thresholds of update 1.0, 1.0

tudE , tudI Average intervals of update 5.0, 2.5 milliseconds

h Interval of state update 0.01 milliseconds

⌧sd Decay time constant of STD 600 milliseconds

usd Release probability of synapse 0.05-0.5

Cp, Cd Coe�cients of STDP 0.01875, 0.0075

⌧p, ⌧d Decay time constants of STDP 20, 40 milliseconds

↵ Degree of log-STDP 50.0

⌧h Decay time of homeostatic plasticity 100 seconds

�h Noise amplitude of homeostatic plasticity 0.00015 per 10 milliseconds

Jmax, J
tot
max Boundary conditions 0.75, 0.25
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Table 2: Parameters used in the Poisson model.

NE , NI Number of excitatory/inhibitory neurons 300, 60

cEE , cEI , cIE , cII Connection probabilities 0.5,1.0,1.0,1.0

JIE , JEI , JII Synaptic weights 1.333,0.600,0.333

JEE Standard synaptic weight 0.667

dEE
ij , dEI

ij , dIEij , dIIij Synaptic delays 0.5-1.5 milliseconds

J init
EE , �J Initial conditions of synaptic weight 1.15JEE , 0.1

AE ,AI Maximal firing rates 100, 200Hz

hE , hI Thresholds of f-I curve 0.5,2.0

⌧AE , ⌧BE EPSP-curve 5.0, 1.0 milliseconds

⌧AI , ⌧BI IPSP-curve 2.5, 1.0 milliseconds

⌧sd Decay time constant of STD 600 milliseconds

usd Release probability of synapse 0.15-0.25

Cp, Cd Coe�cients of STDP 0.125JEE , 0.05JEE

⌧p, ⌧d Decay time constants of STDP 20, 40 milliseconds

↵ Degree of log-STDP 50.0

�step Noise amplitude of STDP 1.0

⌧h Decay time of homeostatic plasticity 100 seconds

�h Noise amplitude of homeostatic plasticity 0.0001JEE per 0.1 milliseconds
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Chapter 6

Conclusion

How biological mechanisms of plasticity provide e�cient learning schemes for

neural computation?

In this thesis, I investigated synaptic dynamics and learning in various spatial and temporal scales,

through both dynamic systems perspective and information-theoretic or machine learning perspectives.

Due to this integrative approach, my studies provide several insights on how biological mechanisms of

plasticity provide e�cient learning schemes for neural computation.

First, on h-STDP, I found that h-STDP is e↵ective for detecting a change in the environment, but

not for maximization of neuronal excitability, because h-STDP robustly causes the detailed balance in

dendritic branches. In particular, due to branch specificity of h-STDP, each branch is specialized for

certain change, as a result, single neuron can detect change in a large domain (Chapter 2).

Secondly, I demonstrated that functional advantages of spine turnover depend on the sparseness

of connectivity in the considered circuits. When connections are sparsely organized, creation and

elimination of spines can yield a connection structure which is able to perform robust inference from

given inputs, because functional connection structures tend to reduce signal variability. On the other

hand, if there are dense connections between two layers, connection structure should capture the time-

invariant components of the stimuli (Chapter 3).

Furthermore, I found that, in feedback-type neural circuits, correlation-based STDP learning mim-

ics Bayesian ICA algorithms. To achieve the learning, spike correlation should not be too precise,

because spike correlation does not propagate e↵ectively in the circuit in that case. Moreover, my study

also revealed potential functions of excitatory-to-inhibitory STDP and inhibitory-to-excitatory STDP in

feedback-type circuits. These plasticity can cooperatively shape the lateral circuit for signal detection.

In particular, through STDP, the lateral circuits is self-organized into a suitable structure depending on

the number of independent signals projected to the circuit (Chapter 4).

Finally, my study on cell assembly modulation proposes a functional role for dopaminergic mod-

ulation of STDP. Cell assemblies are potentially better retained under dopaminergic modulation, and
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bi-directional merging is enhanced because of the change in STDP time window. In addition, small

but non-zero synaptic release probability supports these retention and merging process by enriching the

neural dynamics (Chapter 5).

Relationship between studies

It should be noted that, chronologically speaking, four works are conducted in the opposite way. In

my Master’s thesis on a spiking neuron model of associative memory, I revealed the condition in which

attractor states and spontaneous activity [100], but both analytical and simulation study suggested

that such multistable states are only attainable in some finely-tuned parameter regions. I hypothesized

that if attractors states are automatically recalled in the spontaneous activity, by activity-dependent

synaptic plasticity, the neural circuit could be able to stay in the finely tuned state, and consequently

retain memory traces. As a result, I developed a spiking neuron model of cell assembly modulation

discussed in Chapter 5.

In that study, I developed an analytical techniques to analyze interaction between neural dynamics

and synaptic weight dynamics, but the correspondence with simulation results and analytical predictions

was limited partly due to complexity of the fully recurrent neural model. Thus, I was motivated to do

analytical works on some simpler network motifs, such as feedback-type circuits. In addition, in the

model used in Chapter 5 and many other previous studies on STDP in recurrent circuits, the learning

was mainly driven by firing rates, not by spike-correlation, although STDP learning should be performed

though spike correlation, because otherwise STDP is not necessary. From these two motivations, I next

studied STDP learning based on spike-correlation propagation in a feedback-type circuit (Chapter 4).

The work in chapter 3 was conducted from a little di↵erent motivation. For one thing, I hypothesized

that synaptic rewiring can be well described from the perspective of optimality, partly motivated from

the result about Bayesian ICA in Chapter 4. For the other thing, considering the learning beyond

local neural circuits, connection structure is expected to play a crucial role, but very few theoretical

results were known on that topic, especially, the relationship between connection structure and synaptic

weight plasticity remains elusive. Motivated from these two perspectives, the study in Chapter 3 was

developed.

The work in chapter 2 was motivated from works in Chapter 3 and 4. In the study in Chapter 4,

I focused on the influence of somatic inhibition for synaptic plasticity, although many inhibitory inputs

are projected to the dendritic tree. Therefore, I was motivated to perform complementary study on the

dendritic inhibition, especially, on their functional roles in excitatory synaptic plasticity. In addition, the

simple model of spine turnover in Chapter 3 had a limited prediction power over experimental study.

Thus, I developed a model of dendritic plasticity in Chapter 2 which proposed several experimentally

testable predictions.
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Future direction

Functional roles of redundant synaptic connections

Due to technical advance, growing numbers of new kinds of data are available in neuroscience nowadays.

One remarkable attempt is connectomics, which is a study on detailed structure of neural circuits.

Although, so far they have reconstructed a tiny portion of the brain (⇠ 10µm3 ), some of their results

are already insightful. For instance, in their recent paper [118], they revealed that there are many

multiple connections between identified axon-dendrite pairs, though they only constructed a small

portion of a dendritic tree.

Another interesting yet highly criticized attempt is the blue brain project. In the project, Markram

and his colleagues are conducting reconstruction of rodent or hopefully human brain in a supercomputer.

Their reconstruction is still limited to a single column of the barrel cortex, yet some of their data accu-

mulated for reconstruction are again quite insightful. In particular, From morphological reconstruction

and algorithmic estimation, they claimed that in the barrel cortex, most interneuronal connections are

actually realized by multiple synapses, and mean number of synapses per connection is estimated to be

around 10 [154].

Thus, both of these two new studies indicate that synaptic connections are much more redundant

than we previously though they were. However, little is known about their functional roles. In particular,

synaptic connections are often created sporadically on the dendritic tree, thus each synapse in a single

pre-post pair may play di↵erent roles in dendritic computation. By extending Bayesian method employed

in Chapter 3, I am planning to give a insight on this issue.

Beyond local circuits

In this thesis, I mainly considered local circuits, or small fractions of local circuits for simplicity. Indeed,

most of previous studies in theoretical neuroscience are focused on local circuit such as feedforward

networks, or randomly connected recurrent networks [212]. However, to fully understand the brain,

especially its higher-order functions, it is inevitable to study global circuits, such as cortical microcircuits,

or hippocampal-entorhinal circuits. For example, we do not know how information is routed from a

circuit to other circuits, how neural circuits learn to select relevant information from bombardment of

incoming spikes, and how innate or learned connection structures guide neural computation. These

questions should be fully investigated in the next decade, for further understanding of the brain.
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